1 /* 2 * Copyright (c) 1982, 1986, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. All advertising materials mentioning features or use of this software 14 * must display the following acknowledgement: 15 * This product includes software developed by the University of 16 * California, Berkeley and its contributors. 17 * 4. Neither the name of the University nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 * 33 * @(#)fs.h 8.13 (Berkeley) 3/21/95 34 * $Id: fs.h,v 1.12 1997/03/24 03:19:37 bde Exp $ 35 */ 36 37 #ifndef _UFS_FFS_FS_H_ 38 #define _UFS_FFS_FS_H_ 39 40 /* 41 * Each disk drive contains some number of file systems. 42 * A file system consists of a number of cylinder groups. 43 * Each cylinder group has inodes and data. 44 * 45 * A file system is described by its super-block, which in turn 46 * describes the cylinder groups. The super-block is critical 47 * data and is replicated in each cylinder group to protect against 48 * catastrophic loss. This is done at `newfs' time and the critical 49 * super-block data does not change, so the copies need not be 50 * referenced further unless disaster strikes. 51 * 52 * For file system fs, the offsets of the various blocks of interest 53 * are given in the super block as: 54 * [fs->fs_sblkno] Super-block 55 * [fs->fs_cblkno] Cylinder group block 56 * [fs->fs_iblkno] Inode blocks 57 * [fs->fs_dblkno] Data blocks 58 * The beginning of cylinder group cg in fs, is given by 59 * the ``cgbase(fs, cg)'' macro. 60 * 61 * The first boot and super blocks are given in absolute disk addresses. 62 * The byte-offset forms are preferred, as they don't imply a sector size. 63 */ 64 #define BBSIZE 8192 65 #define SBSIZE 8192 66 #define BBOFF ((off_t)(0)) 67 #define SBOFF ((off_t)(BBOFF + BBSIZE)) 68 #define BBLOCK ((ufs_daddr_t)(0)) 69 #define SBLOCK ((ufs_daddr_t)(BBLOCK + BBSIZE / DEV_BSIZE)) 70 71 /* 72 * Addresses stored in inodes are capable of addressing fragments 73 * of `blocks'. File system blocks of at most size MAXBSIZE can 74 * be optionally broken into 2, 4, or 8 pieces, each of which is 75 * addressable; these pieces may be DEV_BSIZE, or some multiple of 76 * a DEV_BSIZE unit. 77 * 78 * Large files consist of exclusively large data blocks. To avoid 79 * undue wasted disk space, the last data block of a small file may be 80 * allocated as only as many fragments of a large block as are 81 * necessary. The file system format retains only a single pointer 82 * to such a fragment, which is a piece of a single large block that 83 * has been divided. The size of such a fragment is determinable from 84 * information in the inode, using the ``blksize(fs, ip, lbn)'' macro. 85 * 86 * The file system records space availability at the fragment level; 87 * to determine block availability, aligned fragments are examined. 88 */ 89 90 /* 91 * MINBSIZE is the smallest allowable block size. 92 * In order to insure that it is possible to create files of size 93 * 2^32 with only two levels of indirection, MINBSIZE is set to 4096. 94 * MINBSIZE must be big enough to hold a cylinder group block, 95 * thus changes to (struct cg) must keep its size within MINBSIZE. 96 * Note that super blocks are always of size SBSIZE, 97 * and that both SBSIZE and MAXBSIZE must be >= MINBSIZE. 98 */ 99 #define MINBSIZE 4096 100 101 /* 102 * The path name on which the file system is mounted is maintained 103 * in fs_fsmnt. MAXMNTLEN defines the amount of space allocated in 104 * the super block for this name. 105 */ 106 #define MAXMNTLEN 512 107 108 /* 109 * The limit on the amount of summary information per file system 110 * is defined by MAXCSBUFS. It is currently parameterized for a 111 * size of 128 bytes (2 million cylinder groups on machines with 112 * 32-bit pointers, and 1 million on 64-bit machines). One pointer 113 * is taken away to point to an array of cluster sizes that is 114 * computed as cylinder groups are inspected. 115 */ 116 #define MAXCSBUFS ((128 / sizeof(void *)) - 1) 117 118 /* 119 * A summary of contiguous blocks of various sizes is maintained 120 * in each cylinder group. Normally this is set by the initial 121 * value of fs_maxcontig. To conserve space, a maximum summary size 122 * is set by FS_MAXCONTIG. 123 */ 124 #define FS_MAXCONTIG 16 125 126 /* 127 * MINFREE gives the minimum acceptable percentage of file system 128 * blocks which may be free. If the freelist drops below this level 129 * only the superuser may continue to allocate blocks. This may 130 * be set to 0 if no reserve of free blocks is deemed necessary, 131 * however throughput drops by fifty percent if the file system 132 * is run at between 95% and 100% full; thus the minimum default 133 * value of fs_minfree is 5%. However, to get good clustering 134 * performance, 10% is a better choice. hence we use 10% as our 135 * default value. With 10% free space, fragmentation is not a 136 * problem, so we choose to optimize for time. 137 */ 138 #define MINFREE 8 139 #define DEFAULTOPT FS_OPTTIME 140 141 /* 142 * Per cylinder group information; summarized in blocks allocated 143 * from first cylinder group data blocks. These blocks have to be 144 * read in from fs_csaddr (size fs_cssize) in addition to the 145 * super block. 146 * 147 * N.B. sizeof(struct csum) must be a power of two in order for 148 * the ``fs_cs'' macro to work (see below). 149 */ 150 struct csum { 151 int32_t cs_ndir; /* number of directories */ 152 int32_t cs_nbfree; /* number of free blocks */ 153 int32_t cs_nifree; /* number of free inodes */ 154 int32_t cs_nffree; /* number of free frags */ 155 }; 156 157 /* 158 * Super block for an FFS file system. 159 */ 160 struct fs { 161 int32_t fs_firstfield; /* historic file system linked list, */ 162 int32_t fs_unused_1; /* used for incore super blocks */ 163 ufs_daddr_t fs_sblkno; /* addr of super-block in filesys */ 164 ufs_daddr_t fs_cblkno; /* offset of cyl-block in filesys */ 165 ufs_daddr_t fs_iblkno; /* offset of inode-blocks in filesys */ 166 ufs_daddr_t fs_dblkno; /* offset of first data after cg */ 167 int32_t fs_cgoffset; /* cylinder group offset in cylinder */ 168 int32_t fs_cgmask; /* used to calc mod fs_ntrak */ 169 time_t fs_time; /* last time written */ 170 int32_t fs_size; /* number of blocks in fs */ 171 int32_t fs_dsize; /* number of data blocks in fs */ 172 int32_t fs_ncg; /* number of cylinder groups */ 173 int32_t fs_bsize; /* size of basic blocks in fs */ 174 int32_t fs_fsize; /* size of frag blocks in fs */ 175 int32_t fs_frag; /* number of frags in a block in fs */ 176 /* these are configuration parameters */ 177 int32_t fs_minfree; /* minimum percentage of free blocks */ 178 int32_t fs_rotdelay; /* num of ms for optimal next block */ 179 int32_t fs_rps; /* disk revolutions per second */ 180 /* these fields can be computed from the others */ 181 int32_t fs_bmask; /* ``blkoff'' calc of blk offsets */ 182 int32_t fs_fmask; /* ``fragoff'' calc of frag offsets */ 183 int32_t fs_bshift; /* ``lblkno'' calc of logical blkno */ 184 int32_t fs_fshift; /* ``numfrags'' calc number of frags */ 185 /* these are configuration parameters */ 186 int32_t fs_maxcontig; /* max number of contiguous blks */ 187 int32_t fs_maxbpg; /* max number of blks per cyl group */ 188 /* these fields can be computed from the others */ 189 int32_t fs_fragshift; /* block to frag shift */ 190 int32_t fs_fsbtodb; /* fsbtodb and dbtofsb shift constant */ 191 int32_t fs_sbsize; /* actual size of super block */ 192 int32_t fs_csmask; /* csum block offset */ 193 int32_t fs_csshift; /* csum block number */ 194 int32_t fs_nindir; /* value of NINDIR */ 195 int32_t fs_inopb; /* value of INOPB */ 196 int32_t fs_nspf; /* value of NSPF */ 197 /* yet another configuration parameter */ 198 int32_t fs_optim; /* optimization preference, see below */ 199 /* these fields are derived from the hardware */ 200 int32_t fs_npsect; /* # sectors/track including spares */ 201 int32_t fs_interleave; /* hardware sector interleave */ 202 int32_t fs_trackskew; /* sector 0 skew, per track */ 203 /* fs_id takes the space of the unused fs_headswitch and fs_trkseek fields */ 204 int32_t fs_id[2]; /* unique filesystem id */ 205 /* sizes determined by number of cylinder groups and their sizes */ 206 ufs_daddr_t fs_csaddr; /* blk addr of cyl grp summary area */ 207 int32_t fs_cssize; /* size of cyl grp summary area */ 208 int32_t fs_cgsize; /* cylinder group size */ 209 /* these fields are derived from the hardware */ 210 int32_t fs_ntrak; /* tracks per cylinder */ 211 int32_t fs_nsect; /* sectors per track */ 212 int32_t fs_spc; /* sectors per cylinder */ 213 /* this comes from the disk driver partitioning */ 214 int32_t fs_ncyl; /* cylinders in file system */ 215 /* these fields can be computed from the others */ 216 int32_t fs_cpg; /* cylinders per group */ 217 int32_t fs_ipg; /* inodes per group */ 218 int32_t fs_fpg; /* blocks per group * fs_frag */ 219 /* this data must be re-computed after crashes */ 220 struct csum fs_cstotal; /* cylinder summary information */ 221 /* these fields are cleared at mount time */ 222 int8_t fs_fmod; /* super block modified flag */ 223 int8_t fs_clean; /* file system is clean flag */ 224 int8_t fs_ronly; /* mounted read-only flag */ 225 int8_t fs_flags; /* see FS_ flags below */ 226 u_char fs_fsmnt[MAXMNTLEN]; /* name mounted on */ 227 /* these fields retain the current block allocation info */ 228 int32_t fs_cgrotor; /* last cg searched */ 229 struct csum *fs_csp[MAXCSBUFS];/* list of fs_cs info buffers */ 230 int32_t *fs_maxcluster; /* max cluster in each cyl group */ 231 int32_t fs_cpc; /* cyl per cycle in postbl */ 232 int16_t fs_opostbl[16][8]; /* old rotation block list head */ 233 int32_t fs_sparecon[50]; /* reserved for future constants */ 234 int32_t fs_contigsumsize; /* size of cluster summary array */ 235 int32_t fs_maxsymlinklen; /* max length of an internal symlink */ 236 int32_t fs_inodefmt; /* format of on-disk inodes */ 237 u_int64_t fs_maxfilesize; /* maximum representable file size */ 238 int64_t fs_qbmask; /* ~fs_bmask for use with 64-bit size */ 239 int64_t fs_qfmask; /* ~fs_fmask for use with 64-bit size */ 240 int32_t fs_state; /* validate fs_clean field */ 241 int32_t fs_postblformat; /* format of positional layout tables */ 242 int32_t fs_nrpos; /* number of rotational positions */ 243 int32_t fs_postbloff; /* (u_int16) rotation block list head */ 244 int32_t fs_rotbloff; /* (u_int8) blocks for each rotation */ 245 int32_t fs_magic; /* magic number */ 246 u_int8_t fs_space[1]; /* list of blocks for each rotation */ 247 /* actually longer */ 248 }; 249 250 /* 251 * Filesystem identification 252 */ 253 #define FS_MAGIC 0x011954 /* the fast filesystem magic number */ 254 #define FS_OKAY 0x7c269d38 /* superblock checksum */ 255 #define FS_42INODEFMT -1 /* 4.2BSD inode format */ 256 #define FS_44INODEFMT 2 /* 4.4BSD inode format */ 257 258 /* 259 * Preference for optimization. 260 */ 261 #define FS_OPTTIME 0 /* minimize allocation time */ 262 #define FS_OPTSPACE 1 /* minimize disk fragmentation */ 263 264 /* 265 * Filesystem flags. 266 */ 267 #define FS_UNCLEAN 0x01 /* filesystem not clean at mount */ 268 #define FS_DOSOFTDEP 0x02 /* filesystem using soft dependencies */ 269 270 /* 271 * Rotational layout table format types 272 */ 273 #define FS_42POSTBLFMT -1 /* 4.2BSD rotational table format */ 274 #define FS_DYNAMICPOSTBLFMT 1 /* dynamic rotational table format */ 275 /* 276 * Macros for access to superblock array structures 277 */ 278 #define fs_postbl(fs, cylno) \ 279 (((fs)->fs_postblformat == FS_42POSTBLFMT) \ 280 ? ((fs)->fs_opostbl[cylno]) \ 281 : ((int16_t *)((u_int8_t *)(fs) + \ 282 (fs)->fs_postbloff) + (cylno) * (fs)->fs_nrpos)) 283 #define fs_rotbl(fs) \ 284 (((fs)->fs_postblformat == FS_42POSTBLFMT) \ 285 ? ((fs)->fs_space) \ 286 : ((u_int8_t *)((u_int8_t *)(fs) + (fs)->fs_rotbloff))) 287 288 /* 289 * The size of a cylinder group is calculated by CGSIZE. The maximum size 290 * is limited by the fact that cylinder groups are at most one block. 291 * Its size is derived from the size of the maps maintained in the 292 * cylinder group and the (struct cg) size. 293 */ 294 #define CGSIZE(fs) \ 295 /* base cg */ (sizeof(struct cg) + sizeof(int32_t) + \ 296 /* blktot size */ (fs)->fs_cpg * sizeof(int32_t) + \ 297 /* blks size */ (fs)->fs_cpg * (fs)->fs_nrpos * sizeof(int16_t) + \ 298 /* inode map */ howmany((fs)->fs_ipg, NBBY) + \ 299 /* block map */ howmany((fs)->fs_cpg * (fs)->fs_spc / NSPF(fs), NBBY) +\ 300 /* if present */ ((fs)->fs_contigsumsize <= 0 ? 0 : \ 301 /* cluster sum */ (fs)->fs_contigsumsize * sizeof(int32_t) + \ 302 /* cluster map */ howmany((fs)->fs_cpg * (fs)->fs_spc / NSPB(fs), NBBY))) 303 304 /* 305 * Convert cylinder group to base address of its global summary info. 306 * 307 * N.B. This macro assumes that sizeof(struct csum) is a power of two. 308 */ 309 #define fs_cs(fs, indx) \ 310 fs_csp[(indx) >> (fs)->fs_csshift][(indx) & ~(fs)->fs_csmask] 311 312 /* 313 * Cylinder group block for a file system. 314 */ 315 #define CG_MAGIC 0x090255 316 struct cg { 317 int32_t cg_firstfield; /* historic cyl groups linked list */ 318 int32_t cg_magic; /* magic number */ 319 time_t cg_time; /* time last written */ 320 int32_t cg_cgx; /* we are the cgx'th cylinder group */ 321 int16_t cg_ncyl; /* number of cyl's this cg */ 322 int16_t cg_niblk; /* number of inode blocks this cg */ 323 int32_t cg_ndblk; /* number of data blocks this cg */ 324 struct csum cg_cs; /* cylinder summary information */ 325 int32_t cg_rotor; /* position of last used block */ 326 int32_t cg_frotor; /* position of last used frag */ 327 int32_t cg_irotor; /* position of last used inode */ 328 int32_t cg_frsum[MAXFRAG]; /* counts of available frags */ 329 int32_t cg_btotoff; /* (int32) block totals per cylinder */ 330 int32_t cg_boff; /* (u_int16) free block positions */ 331 int32_t cg_iusedoff; /* (u_int8) used inode map */ 332 int32_t cg_freeoff; /* (u_int8) free block map */ 333 int32_t cg_nextfreeoff; /* (u_int8) next available space */ 334 int32_t cg_clustersumoff; /* (u_int32) counts of avail clusters */ 335 int32_t cg_clusteroff; /* (u_int8) free cluster map */ 336 int32_t cg_nclusterblks; /* number of clusters this cg */ 337 int32_t cg_sparecon[13]; /* reserved for future use */ 338 u_int8_t cg_space[1]; /* space for cylinder group maps */ 339 /* actually longer */ 340 }; 341 342 /* 343 * Macros for access to cylinder group array structures 344 */ 345 #define cg_blktot(cgp) \ 346 (((cgp)->cg_magic != CG_MAGIC) \ 347 ? (((struct ocg *)(cgp))->cg_btot) \ 348 : ((int32_t *)((u_int8_t *)(cgp) + (cgp)->cg_btotoff))) 349 #define cg_blks(fs, cgp, cylno) \ 350 (((cgp)->cg_magic != CG_MAGIC) \ 351 ? (((struct ocg *)(cgp))->cg_b[cylno]) \ 352 : ((int16_t *)((u_int8_t *)(cgp) + \ 353 (cgp)->cg_boff) + (cylno) * (fs)->fs_nrpos)) 354 #define cg_inosused(cgp) \ 355 (((cgp)->cg_magic != CG_MAGIC) \ 356 ? (((struct ocg *)(cgp))->cg_iused) \ 357 : ((u_int8_t *)((u_int8_t *)(cgp) + (cgp)->cg_iusedoff))) 358 #define cg_blksfree(cgp) \ 359 (((cgp)->cg_magic != CG_MAGIC) \ 360 ? (((struct ocg *)(cgp))->cg_free) \ 361 : ((u_int8_t *)((u_int8_t *)(cgp) + (cgp)->cg_freeoff))) 362 #define cg_chkmagic(cgp) \ 363 ((cgp)->cg_magic == CG_MAGIC || ((struct ocg *)(cgp))->cg_magic == CG_MAGIC) 364 #define cg_clustersfree(cgp) \ 365 ((u_int8_t *)((u_int8_t *)(cgp) + (cgp)->cg_clusteroff)) 366 #define cg_clustersum(cgp) \ 367 ((int32_t *)((u_int8_t *)(cgp) + (cgp)->cg_clustersumoff)) 368 369 /* 370 * The following structure is defined 371 * for compatibility with old file systems. 372 */ 373 struct ocg { 374 int32_t cg_firstfield; /* historic linked list of cyl groups */ 375 int32_t cg_unused_1; /* used for incore cyl groups */ 376 time_t cg_time; /* time last written */ 377 int32_t cg_cgx; /* we are the cgx'th cylinder group */ 378 int16_t cg_ncyl; /* number of cyl's this cg */ 379 int16_t cg_niblk; /* number of inode blocks this cg */ 380 int32_t cg_ndblk; /* number of data blocks this cg */ 381 struct csum cg_cs; /* cylinder summary information */ 382 int32_t cg_rotor; /* position of last used block */ 383 int32_t cg_frotor; /* position of last used frag */ 384 int32_t cg_irotor; /* position of last used inode */ 385 int32_t cg_frsum[8]; /* counts of available frags */ 386 int32_t cg_btot[32]; /* block totals per cylinder */ 387 int16_t cg_b[32][8]; /* positions of free blocks */ 388 u_int8_t cg_iused[256]; /* used inode map */ 389 int32_t cg_magic; /* magic number */ 390 u_int8_t cg_free[1]; /* free block map */ 391 /* actually longer */ 392 }; 393 394 /* 395 * Turn file system block numbers into disk block addresses. 396 * This maps file system blocks to device size blocks. 397 */ 398 #define fsbtodb(fs, b) ((b) << (fs)->fs_fsbtodb) 399 #define dbtofsb(fs, b) ((b) >> (fs)->fs_fsbtodb) 400 401 /* 402 * Cylinder group macros to locate things in cylinder groups. 403 * They calc file system addresses of cylinder group data structures. 404 */ 405 #define cgbase(fs, c) ((ufs_daddr_t)((fs)->fs_fpg * (c))) 406 #define cgdmin(fs, c) (cgstart(fs, c) + (fs)->fs_dblkno) /* 1st data */ 407 #define cgimin(fs, c) (cgstart(fs, c) + (fs)->fs_iblkno) /* inode blk */ 408 #define cgsblock(fs, c) (cgstart(fs, c) + (fs)->fs_sblkno) /* super blk */ 409 #define cgtod(fs, c) (cgstart(fs, c) + (fs)->fs_cblkno) /* cg block */ 410 #define cgstart(fs, c) \ 411 (cgbase(fs, c) + (fs)->fs_cgoffset * ((c) & ~((fs)->fs_cgmask))) 412 413 /* 414 * Macros for handling inode numbers: 415 * inode number to file system block offset. 416 * inode number to cylinder group number. 417 * inode number to file system block address. 418 */ 419 #define ino_to_cg(fs, x) ((x) / (fs)->fs_ipg) 420 #define ino_to_fsba(fs, x) \ 421 ((ufs_daddr_t)(cgimin(fs, ino_to_cg(fs, x)) + \ 422 (blkstofrags((fs), (((x) % (fs)->fs_ipg) / INOPB(fs)))))) 423 #define ino_to_fsbo(fs, x) ((x) % INOPB(fs)) 424 425 /* 426 * Give cylinder group number for a file system block. 427 * Give cylinder group block number for a file system block. 428 */ 429 #define dtog(fs, d) ((d) / (fs)->fs_fpg) 430 #define dtogd(fs, d) ((d) % (fs)->fs_fpg) 431 432 /* 433 * Extract the bits for a block from a map. 434 * Compute the cylinder and rotational position of a cyl block addr. 435 */ 436 #define blkmap(fs, map, loc) \ 437 (((map)[(loc) / NBBY] >> ((loc) % NBBY)) & (0xff >> (NBBY - (fs)->fs_frag))) 438 #define cbtocylno(fs, bno) \ 439 ((bno) * NSPF(fs) / (fs)->fs_spc) 440 #define cbtorpos(fs, bno) \ 441 (((bno) * NSPF(fs) % (fs)->fs_spc / (fs)->fs_nsect * (fs)->fs_trackskew + \ 442 (bno) * NSPF(fs) % (fs)->fs_spc % (fs)->fs_nsect * (fs)->fs_interleave) % \ 443 (fs)->fs_nsect * (fs)->fs_nrpos / (fs)->fs_npsect) 444 445 /* 446 * The following macros optimize certain frequently calculated 447 * quantities by using shifts and masks in place of divisions 448 * modulos and multiplications. 449 */ 450 #define blkoff(fs, loc) /* calculates (loc % fs->fs_bsize) */ \ 451 ((loc) & (fs)->fs_qbmask) 452 #define fragoff(fs, loc) /* calculates (loc % fs->fs_fsize) */ \ 453 ((loc) & (fs)->fs_qfmask) 454 #define lblktosize(fs, blk) /* calculates ((off_t)blk * fs->fs_bsize) */ \ 455 ((off_t)(blk) << (fs)->fs_bshift) 456 /* Use this only when `blk' is known to be small, e.g., < NDADDR. */ 457 #define smalllblktosize(fs, blk) /* calculates (blk * fs->fs_bsize) */ \ 458 ((blk) << (fs)->fs_bshift) 459 #define lblkno(fs, loc) /* calculates (loc / fs->fs_bsize) */ \ 460 ((loc) >> (fs)->fs_bshift) 461 #define numfrags(fs, loc) /* calculates (loc / fs->fs_fsize) */ \ 462 ((loc) >> (fs)->fs_fshift) 463 #define blkroundup(fs, size) /* calculates roundup(size, fs->fs_bsize) */ \ 464 (((size) + (fs)->fs_qbmask) & (fs)->fs_bmask) 465 #define fragroundup(fs, size) /* calculates roundup(size, fs->fs_fsize) */ \ 466 (((size) + (fs)->fs_qfmask) & (fs)->fs_fmask) 467 #define fragstoblks(fs, frags) /* calculates (frags / fs->fs_frag) */ \ 468 ((frags) >> (fs)->fs_fragshift) 469 #define blkstofrags(fs, blks) /* calculates (blks * fs->fs_frag) */ \ 470 ((blks) << (fs)->fs_fragshift) 471 #define fragnum(fs, fsb) /* calculates (fsb % fs->fs_frag) */ \ 472 ((fsb) & ((fs)->fs_frag - 1)) 473 #define blknum(fs, fsb) /* calculates rounddown(fsb, fs->fs_frag) */ \ 474 ((fsb) &~ ((fs)->fs_frag - 1)) 475 476 /* 477 * Determine the number of available frags given a 478 * percentage to hold in reserve. 479 */ 480 #define freespace(fs, percentreserved) \ 481 (blkstofrags((fs), (fs)->fs_cstotal.cs_nbfree) + \ 482 (fs)->fs_cstotal.cs_nffree - ((fs)->fs_dsize * (percentreserved) / 100)) 483 484 /* 485 * Determining the size of a file block in the file system. 486 */ 487 #define blksize(fs, ip, lbn) \ 488 (((lbn) >= NDADDR || (ip)->i_size >= smalllblktosize(fs, (lbn) + 1)) \ 489 ? (fs)->fs_bsize \ 490 : (fragroundup(fs, blkoff(fs, (ip)->i_size)))) 491 #define dblksize(fs, dip, lbn) \ 492 (((lbn) >= NDADDR || (dip)->di_size >= smalllblktosize(fs, (lbn) + 1)) \ 493 ? (fs)->fs_bsize \ 494 : (fragroundup(fs, blkoff(fs, (dip)->di_size)))) 495 #define sblksize(fs, size, lbn) \ 496 (((lbn) >= NDADDR || (size) >= ((lbn) + 1) << (fs)->fs_bshift) \ 497 ? (fs)->fs_bsize \ 498 : (fragroundup(fs, blkoff(fs, (size))))) 499 500 501 /* 502 * Number of disk sectors per block/fragment; assumes DEV_BSIZE byte 503 * sector size. 504 */ 505 #define NSPB(fs) ((fs)->fs_nspf << (fs)->fs_fragshift) 506 #define NSPF(fs) ((fs)->fs_nspf) 507 508 /* 509 * Number of inodes in a secondary storage block/fragment. 510 */ 511 #define INOPB(fs) ((fs)->fs_inopb) 512 #define INOPF(fs) ((fs)->fs_inopb >> (fs)->fs_fragshift) 513 514 /* 515 * Number of indirects in a file system block. 516 */ 517 #define NINDIR(fs) ((fs)->fs_nindir) 518 519 extern int inside[], around[]; 520 extern u_char *fragtbl[]; 521 522 #endif 523