xref: /freebsd/sys/ufs/ffs/ffs_vnops.c (revision f15e18a642cb3f7ebc747f8e9cdf11274140107d)
1 /*-
2  * SPDX-License-Identifier: (BSD-2-Clause-FreeBSD AND BSD-3-Clause)
3  *
4  * Copyright (c) 2002, 2003 Networks Associates Technology, Inc.
5  * All rights reserved.
6  *
7  * This software was developed for the FreeBSD Project by Marshall
8  * Kirk McKusick and Network Associates Laboratories, the Security
9  * Research Division of Network Associates, Inc. under DARPA/SPAWAR
10  * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
11  * research program
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * Copyright (c) 1982, 1986, 1989, 1993
35  *	The Regents of the University of California.  All rights reserved.
36  *
37  * Redistribution and use in source and binary forms, with or without
38  * modification, are permitted provided that the following conditions
39  * are met:
40  * 1. Redistributions of source code must retain the above copyright
41  *    notice, this list of conditions and the following disclaimer.
42  * 2. Redistributions in binary form must reproduce the above copyright
43  *    notice, this list of conditions and the following disclaimer in the
44  *    documentation and/or other materials provided with the distribution.
45  * 3. Neither the name of the University nor the names of its contributors
46  *    may be used to endorse or promote products derived from this software
47  *    without specific prior written permission.
48  *
49  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59  * SUCH DAMAGE.
60  *
61  *	from: @(#)ufs_readwrite.c	8.11 (Berkeley) 5/8/95
62  * from: $FreeBSD: .../ufs/ufs_readwrite.c,v 1.96 2002/08/12 09:22:11 phk ...
63  *	@(#)ffs_vnops.c	8.15 (Berkeley) 5/14/95
64  */
65 
66 #include <sys/cdefs.h>
67 __FBSDID("$FreeBSD$");
68 
69 #include "opt_directio.h"
70 #include "opt_ffs.h"
71 #include "opt_ufs.h"
72 
73 #include <sys/param.h>
74 #include <sys/bio.h>
75 #include <sys/systm.h>
76 #include <sys/buf.h>
77 #include <sys/conf.h>
78 #include <sys/extattr.h>
79 #include <sys/kernel.h>
80 #include <sys/limits.h>
81 #include <sys/malloc.h>
82 #include <sys/mount.h>
83 #include <sys/priv.h>
84 #include <sys/rwlock.h>
85 #include <sys/stat.h>
86 #include <sys/sysctl.h>
87 #include <sys/vmmeter.h>
88 #include <sys/vnode.h>
89 
90 #include <vm/vm.h>
91 #include <vm/vm_param.h>
92 #include <vm/vm_extern.h>
93 #include <vm/vm_object.h>
94 #include <vm/vm_page.h>
95 #include <vm/vm_pager.h>
96 #include <vm/vnode_pager.h>
97 
98 #include <ufs/ufs/extattr.h>
99 #include <ufs/ufs/quota.h>
100 #include <ufs/ufs/inode.h>
101 #include <ufs/ufs/ufs_extern.h>
102 #include <ufs/ufs/ufsmount.h>
103 #include <ufs/ufs/dir.h>
104 #ifdef UFS_DIRHASH
105 #include <ufs/ufs/dirhash.h>
106 #endif
107 
108 #include <ufs/ffs/fs.h>
109 #include <ufs/ffs/ffs_extern.h>
110 
111 #define	ALIGNED_TO(ptr, s)	\
112 	(((uintptr_t)(ptr) & (_Alignof(s) - 1)) == 0)
113 
114 #ifdef DIRECTIO
115 extern int	ffs_rawread(struct vnode *vp, struct uio *uio, int *workdone);
116 #endif
117 static vop_fdatasync_t	ffs_fdatasync;
118 static vop_fsync_t	ffs_fsync;
119 static vop_getpages_t	ffs_getpages;
120 static vop_getpages_async_t	ffs_getpages_async;
121 static vop_lock1_t	ffs_lock;
122 #ifdef INVARIANTS
123 static vop_unlock_t	ffs_unlock_debug;
124 #endif
125 static vop_read_t	ffs_read;
126 static vop_write_t	ffs_write;
127 static int	ffs_extread(struct vnode *vp, struct uio *uio, int ioflag);
128 static int	ffs_extwrite(struct vnode *vp, struct uio *uio, int ioflag,
129 		    struct ucred *cred);
130 static vop_strategy_t	ffsext_strategy;
131 static vop_closeextattr_t	ffs_closeextattr;
132 static vop_deleteextattr_t	ffs_deleteextattr;
133 static vop_getextattr_t	ffs_getextattr;
134 static vop_listextattr_t	ffs_listextattr;
135 static vop_openextattr_t	ffs_openextattr;
136 static vop_setextattr_t	ffs_setextattr;
137 static vop_vptofh_t	ffs_vptofh;
138 static vop_vput_pair_t	ffs_vput_pair;
139 
140 /* Global vfs data structures for ufs. */
141 struct vop_vector ffs_vnodeops1 = {
142 	.vop_default =		&ufs_vnodeops,
143 	.vop_fsync =		ffs_fsync,
144 	.vop_fdatasync =	ffs_fdatasync,
145 	.vop_getpages =		ffs_getpages,
146 	.vop_getpages_async =	ffs_getpages_async,
147 	.vop_lock1 =		ffs_lock,
148 #ifdef INVARIANTS
149 	.vop_unlock =		ffs_unlock_debug,
150 #endif
151 	.vop_read =		ffs_read,
152 	.vop_reallocblks =	ffs_reallocblks,
153 	.vop_write =		ffs_write,
154 	.vop_vptofh =		ffs_vptofh,
155 	.vop_vput_pair =	ffs_vput_pair,
156 };
157 VFS_VOP_VECTOR_REGISTER(ffs_vnodeops1);
158 
159 struct vop_vector ffs_fifoops1 = {
160 	.vop_default =		&ufs_fifoops,
161 	.vop_fsync =		ffs_fsync,
162 	.vop_fdatasync =	ffs_fdatasync,
163 	.vop_lock1 =		ffs_lock,
164 #ifdef INVARIANTS
165 	.vop_unlock =		ffs_unlock_debug,
166 #endif
167 	.vop_vptofh =		ffs_vptofh,
168 };
169 VFS_VOP_VECTOR_REGISTER(ffs_fifoops1);
170 
171 /* Global vfs data structures for ufs. */
172 struct vop_vector ffs_vnodeops2 = {
173 	.vop_default =		&ufs_vnodeops,
174 	.vop_fsync =		ffs_fsync,
175 	.vop_fdatasync =	ffs_fdatasync,
176 	.vop_getpages =		ffs_getpages,
177 	.vop_getpages_async =	ffs_getpages_async,
178 	.vop_lock1 =		ffs_lock,
179 #ifdef INVARIANTS
180 	.vop_unlock =		ffs_unlock_debug,
181 #endif
182 	.vop_read =		ffs_read,
183 	.vop_reallocblks =	ffs_reallocblks,
184 	.vop_write =		ffs_write,
185 	.vop_closeextattr =	ffs_closeextattr,
186 	.vop_deleteextattr =	ffs_deleteextattr,
187 	.vop_getextattr =	ffs_getextattr,
188 	.vop_listextattr =	ffs_listextattr,
189 	.vop_openextattr =	ffs_openextattr,
190 	.vop_setextattr =	ffs_setextattr,
191 	.vop_vptofh =		ffs_vptofh,
192 	.vop_vput_pair =	ffs_vput_pair,
193 };
194 VFS_VOP_VECTOR_REGISTER(ffs_vnodeops2);
195 
196 struct vop_vector ffs_fifoops2 = {
197 	.vop_default =		&ufs_fifoops,
198 	.vop_fsync =		ffs_fsync,
199 	.vop_fdatasync =	ffs_fdatasync,
200 	.vop_lock1 =		ffs_lock,
201 #ifdef INVARIANTS
202 	.vop_unlock =		ffs_unlock_debug,
203 #endif
204 	.vop_reallocblks =	ffs_reallocblks,
205 	.vop_strategy =		ffsext_strategy,
206 	.vop_closeextattr =	ffs_closeextattr,
207 	.vop_deleteextattr =	ffs_deleteextattr,
208 	.vop_getextattr =	ffs_getextattr,
209 	.vop_listextattr =	ffs_listextattr,
210 	.vop_openextattr =	ffs_openextattr,
211 	.vop_setextattr =	ffs_setextattr,
212 	.vop_vptofh =		ffs_vptofh,
213 };
214 VFS_VOP_VECTOR_REGISTER(ffs_fifoops2);
215 
216 /*
217  * Synch an open file.
218  */
219 /* ARGSUSED */
220 static int
221 ffs_fsync(struct vop_fsync_args *ap)
222 {
223 	struct vnode *vp;
224 	struct bufobj *bo;
225 	int error;
226 
227 	vp = ap->a_vp;
228 	bo = &vp->v_bufobj;
229 retry:
230 	error = ffs_syncvnode(vp, ap->a_waitfor, 0);
231 	if (error)
232 		return (error);
233 	if (ap->a_waitfor == MNT_WAIT && DOINGSOFTDEP(vp)) {
234 		error = softdep_fsync(vp);
235 		if (error)
236 			return (error);
237 
238 		/*
239 		 * The softdep_fsync() function may drop vp lock,
240 		 * allowing for dirty buffers to reappear on the
241 		 * bo_dirty list. Recheck and resync as needed.
242 		 */
243 		BO_LOCK(bo);
244 		if ((vp->v_type == VREG || vp->v_type == VDIR) &&
245 		    (bo->bo_numoutput > 0 || bo->bo_dirty.bv_cnt > 0)) {
246 			BO_UNLOCK(bo);
247 			goto retry;
248 		}
249 		BO_UNLOCK(bo);
250 	}
251 	if (ffs_fsfail_cleanup(VFSTOUFS(vp->v_mount), 0))
252 		return (ENXIO);
253 	return (0);
254 }
255 
256 int
257 ffs_syncvnode(struct vnode *vp, int waitfor, int flags)
258 {
259 	struct inode *ip;
260 	struct bufobj *bo;
261 	struct ufsmount *ump;
262 	struct buf *bp, *nbp;
263 	ufs_lbn_t lbn;
264 	int error, passes;
265 	bool still_dirty, unlocked, wait;
266 
267 	ip = VTOI(vp);
268 	bo = &vp->v_bufobj;
269 	ump = VFSTOUFS(vp->v_mount);
270 
271 	/*
272 	 * When doing MNT_WAIT we must first flush all dependencies
273 	 * on the inode.
274 	 */
275 	if (DOINGSOFTDEP(vp) && waitfor == MNT_WAIT &&
276 	    (error = softdep_sync_metadata(vp)) != 0) {
277 		if (ffs_fsfail_cleanup(ump, error))
278 			error = 0;
279 		return (error);
280 	}
281 
282 	/*
283 	 * Flush all dirty buffers associated with a vnode.
284 	 */
285 	error = 0;
286 	passes = 0;
287 	wait = false;	/* Always do an async pass first. */
288 	unlocked = false;
289 	lbn = lblkno(ITOFS(ip), (ip->i_size + ITOFS(ip)->fs_bsize - 1));
290 	BO_LOCK(bo);
291 loop:
292 	TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs)
293 		bp->b_vflags &= ~BV_SCANNED;
294 	TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
295 		/*
296 		 * Reasons to skip this buffer: it has already been considered
297 		 * on this pass, the buffer has dependencies that will cause
298 		 * it to be redirtied and it has not already been deferred,
299 		 * or it is already being written.
300 		 */
301 		if ((bp->b_vflags & BV_SCANNED) != 0)
302 			continue;
303 		bp->b_vflags |= BV_SCANNED;
304 		/*
305 		 * Flush indirects in order, if requested.
306 		 *
307 		 * Note that if only datasync is requested, we can
308 		 * skip indirect blocks when softupdates are not
309 		 * active.  Otherwise we must flush them with data,
310 		 * since dependencies prevent data block writes.
311 		 */
312 		if (waitfor == MNT_WAIT && bp->b_lblkno <= -UFS_NDADDR &&
313 		    (lbn_level(bp->b_lblkno) >= passes ||
314 		    ((flags & DATA_ONLY) != 0 && !DOINGSOFTDEP(vp))))
315 			continue;
316 		if (bp->b_lblkno > lbn)
317 			panic("ffs_syncvnode: syncing truncated data.");
318 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) == 0) {
319 			BO_UNLOCK(bo);
320 		} else if (wait) {
321 			if (BUF_LOCK(bp,
322 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
323 			    BO_LOCKPTR(bo)) != 0) {
324 				bp->b_vflags &= ~BV_SCANNED;
325 				goto next;
326 			}
327 		} else
328 			continue;
329 		if ((bp->b_flags & B_DELWRI) == 0)
330 			panic("ffs_fsync: not dirty");
331 		/*
332 		 * Check for dependencies and potentially complete them.
333 		 */
334 		if (!LIST_EMPTY(&bp->b_dep) &&
335 		    (error = softdep_sync_buf(vp, bp,
336 		    wait ? MNT_WAIT : MNT_NOWAIT)) != 0) {
337 			/*
338 			 * Lock order conflict, buffer was already unlocked,
339 			 * and vnode possibly unlocked.
340 			 */
341 			if (error == ERELOOKUP) {
342 				if (vp->v_data == NULL)
343 					return (EBADF);
344 				unlocked = true;
345 				if (DOINGSOFTDEP(vp) && waitfor == MNT_WAIT &&
346 				    (error = softdep_sync_metadata(vp)) != 0) {
347 					if (ffs_fsfail_cleanup(ump, error))
348 						error = 0;
349 					return (unlocked && error == 0 ?
350 					    ERELOOKUP : error);
351 				}
352 				/* Re-evaluate inode size */
353 				lbn = lblkno(ITOFS(ip), (ip->i_size +
354 				    ITOFS(ip)->fs_bsize - 1));
355 				goto next;
356 			}
357 			/* I/O error. */
358 			if (error != EBUSY) {
359 				BUF_UNLOCK(bp);
360 				return (error);
361 			}
362 			/* If we deferred once, don't defer again. */
363 		    	if ((bp->b_flags & B_DEFERRED) == 0) {
364 				bp->b_flags |= B_DEFERRED;
365 				BUF_UNLOCK(bp);
366 				goto next;
367 			}
368 		}
369 		if (wait) {
370 			bremfree(bp);
371 			error = bwrite(bp);
372 			if (ffs_fsfail_cleanup(ump, error))
373 				error = 0;
374 			if (error != 0)
375 				return (error);
376 		} else if ((bp->b_flags & B_CLUSTEROK)) {
377 			(void) vfs_bio_awrite(bp);
378 		} else {
379 			bremfree(bp);
380 			(void) bawrite(bp);
381 		}
382 next:
383 		/*
384 		 * Since we may have slept during the I/O, we need
385 		 * to start from a known point.
386 		 */
387 		BO_LOCK(bo);
388 		nbp = TAILQ_FIRST(&bo->bo_dirty.bv_hd);
389 	}
390 	if (waitfor != MNT_WAIT) {
391 		BO_UNLOCK(bo);
392 		if ((flags & NO_INO_UPDT) != 0)
393 			return (unlocked ? ERELOOKUP : 0);
394 		error = ffs_update(vp, 0);
395 		if (error == 0 && unlocked)
396 			error = ERELOOKUP;
397 		return (error);
398 	}
399 	/* Drain IO to see if we're done. */
400 	bufobj_wwait(bo, 0, 0);
401 	/*
402 	 * Block devices associated with filesystems may have new I/O
403 	 * requests posted for them even if the vnode is locked, so no
404 	 * amount of trying will get them clean.  We make several passes
405 	 * as a best effort.
406 	 *
407 	 * Regular files may need multiple passes to flush all dependency
408 	 * work as it is possible that we must write once per indirect
409 	 * level, once for the leaf, and once for the inode and each of
410 	 * these will be done with one sync and one async pass.
411 	 */
412 	if (bo->bo_dirty.bv_cnt > 0) {
413 		if ((flags & DATA_ONLY) == 0) {
414 			still_dirty = true;
415 		} else {
416 			/*
417 			 * For data-only sync, dirty indirect buffers
418 			 * are ignored.
419 			 */
420 			still_dirty = false;
421 			TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) {
422 				if (bp->b_lblkno > -UFS_NDADDR) {
423 					still_dirty = true;
424 					break;
425 				}
426 			}
427 		}
428 
429 		if (still_dirty) {
430 			/* Write the inode after sync passes to flush deps. */
431 			if (wait && DOINGSOFTDEP(vp) &&
432 			    (flags & NO_INO_UPDT) == 0) {
433 				BO_UNLOCK(bo);
434 				ffs_update(vp, 1);
435 				BO_LOCK(bo);
436 			}
437 			/* switch between sync/async. */
438 			wait = !wait;
439 			if (wait || ++passes < UFS_NIADDR + 2)
440 				goto loop;
441 		}
442 	}
443 	BO_UNLOCK(bo);
444 	error = 0;
445 	if ((flags & DATA_ONLY) == 0) {
446 		if ((flags & NO_INO_UPDT) == 0)
447 			error = ffs_update(vp, 1);
448 		if (DOINGSUJ(vp))
449 			softdep_journal_fsync(VTOI(vp));
450 	} else if ((ip->i_flags & (IN_SIZEMOD | IN_IBLKDATA)) != 0) {
451 		error = ffs_update(vp, 1);
452 	}
453 	if (error == 0 && unlocked)
454 		error = ERELOOKUP;
455 	if (error == 0)
456 		ip->i_flag &= ~IN_NEEDSYNC;
457 	return (error);
458 }
459 
460 static int
461 ffs_fdatasync(struct vop_fdatasync_args *ap)
462 {
463 
464 	return (ffs_syncvnode(ap->a_vp, MNT_WAIT, DATA_ONLY));
465 }
466 
467 static int
468 ffs_lock(ap)
469 	struct vop_lock1_args /* {
470 		struct vnode *a_vp;
471 		int a_flags;
472 		char *file;
473 		int line;
474 	} */ *ap;
475 {
476 #if !defined(NO_FFS_SNAPSHOT) || defined(DIAGNOSTIC)
477 	struct vnode *vp = ap->a_vp;
478 #endif	/* !NO_FFS_SNAPSHOT || DIAGNOSTIC */
479 #ifdef DIAGNOSTIC
480 	struct inode *ip;
481 #endif	/* DIAGNOSTIC */
482 	int result;
483 #ifndef NO_FFS_SNAPSHOT
484 	int flags;
485 	struct lock *lkp;
486 
487 	/*
488 	 * Adaptive spinning mixed with SU leads to trouble. use a giant hammer
489 	 * and only use it when LK_NODDLKTREAT is set. Currently this means it
490 	 * is only used during path lookup.
491 	 */
492 	if ((ap->a_flags & LK_NODDLKTREAT) != 0)
493 		ap->a_flags |= LK_ADAPTIVE;
494 	switch (ap->a_flags & LK_TYPE_MASK) {
495 	case LK_SHARED:
496 	case LK_UPGRADE:
497 	case LK_EXCLUSIVE:
498 		flags = ap->a_flags;
499 		for (;;) {
500 #ifdef DEBUG_VFS_LOCKS
501 			VNPASS(vp->v_holdcnt != 0, vp);
502 #endif	/* DEBUG_VFS_LOCKS */
503 			lkp = vp->v_vnlock;
504 			result = lockmgr_lock_flags(lkp, flags,
505 			    &VI_MTX(vp)->lock_object, ap->a_file, ap->a_line);
506 			if (lkp == vp->v_vnlock || result != 0)
507 				break;
508 			/*
509 			 * Apparent success, except that the vnode
510 			 * mutated between snapshot file vnode and
511 			 * regular file vnode while this process
512 			 * slept.  The lock currently held is not the
513 			 * right lock.  Release it, and try to get the
514 			 * new lock.
515 			 */
516 			lockmgr_unlock(lkp);
517 			if ((flags & (LK_INTERLOCK | LK_NOWAIT)) ==
518 			    (LK_INTERLOCK | LK_NOWAIT))
519 				return (EBUSY);
520 			if ((flags & LK_TYPE_MASK) == LK_UPGRADE)
521 				flags = (flags & ~LK_TYPE_MASK) | LK_EXCLUSIVE;
522 			flags &= ~LK_INTERLOCK;
523 		}
524 #ifdef DIAGNOSTIC
525 		switch (ap->a_flags & LK_TYPE_MASK) {
526 		case LK_UPGRADE:
527 		case LK_EXCLUSIVE:
528 			if (result == 0 && vp->v_vnlock->lk_recurse == 0) {
529 				ip = VTOI(vp);
530 				if (ip != NULL)
531 					ip->i_lock_gen++;
532 			}
533 		}
534 #endif	/* DIAGNOSTIC */
535 		break;
536 	default:
537 #ifdef DIAGNOSTIC
538 		if ((ap->a_flags & LK_TYPE_MASK) == LK_DOWNGRADE) {
539 			ip = VTOI(vp);
540 			if (ip != NULL)
541 				ufs_unlock_tracker(ip);
542 		}
543 #endif	/* DIAGNOSTIC */
544 		result = VOP_LOCK1_APV(&ufs_vnodeops, ap);
545 		break;
546 	}
547 #else	/* NO_FFS_SNAPSHOT */
548 	/*
549 	 * See above for an explanation.
550 	 */
551 	if ((ap->a_flags & LK_NODDLKTREAT) != 0)
552 		ap->a_flags |= LK_ADAPTIVE;
553 #ifdef DIAGNOSTIC
554 	if ((ap->a_flags & LK_TYPE_MASK) == LK_DOWNGRADE) {
555 		ip = VTOI(vp);
556 		if (ip != NULL)
557 			ufs_unlock_tracker(ip);
558 	}
559 #endif	/* DIAGNOSTIC */
560 	result =  VOP_LOCK1_APV(&ufs_vnodeops, ap);
561 #endif	/* NO_FFS_SNAPSHOT */
562 #ifdef DIAGNOSTIC
563 	switch (ap->a_flags & LK_TYPE_MASK) {
564 	case LK_UPGRADE:
565 	case LK_EXCLUSIVE:
566 		if (result == 0 && vp->v_vnlock->lk_recurse == 0) {
567 			ip = VTOI(vp);
568 			if (ip != NULL)
569 				ip->i_lock_gen++;
570 		}
571 	}
572 #endif	/* DIAGNOSTIC */
573 	return (result);
574 }
575 
576 #ifdef INVARIANTS
577 static int
578 ffs_unlock_debug(struct vop_unlock_args *ap)
579 {
580 	struct vnode *vp;
581 	struct inode *ip;
582 
583 	vp = ap->a_vp;
584 	ip = VTOI(vp);
585 	if (ip->i_flag & UFS_INODE_FLAG_LAZY_MASK_ASSERTABLE) {
586 		if ((vp->v_mflag & VMP_LAZYLIST) == 0) {
587 			VI_LOCK(vp);
588 			VNASSERT((vp->v_mflag & VMP_LAZYLIST), vp,
589 			    ("%s: modified vnode (%x) not on lazy list",
590 			    __func__, ip->i_flag));
591 			VI_UNLOCK(vp);
592 		}
593 	}
594 	KASSERT(vp->v_type != VDIR || vp->v_vnlock->lk_recurse != 0 ||
595 	    (ip->i_flag & IN_ENDOFF) == 0,
596 	    ("ufs dir vp %p ip %p flags %#x", vp, ip, ip->i_flag));
597 #ifdef DIAGNOSTIC
598 	if (VOP_ISLOCKED(vp) == LK_EXCLUSIVE && ip != NULL &&
599 	    vp->v_vnlock->lk_recurse == 0)
600 		ufs_unlock_tracker(ip);
601 #endif
602 	return (VOP_UNLOCK_APV(&ufs_vnodeops, ap));
603 }
604 #endif
605 
606 static int
607 ffs_read_hole(struct uio *uio, long xfersize, long *size)
608 {
609 	ssize_t saved_resid, tlen;
610 	int error;
611 
612 	while (xfersize > 0) {
613 		tlen = min(xfersize, ZERO_REGION_SIZE);
614 		saved_resid = uio->uio_resid;
615 		error = vn_io_fault_uiomove(__DECONST(void *, zero_region),
616 		    tlen, uio);
617 		if (error != 0)
618 			return (error);
619 		tlen = saved_resid - uio->uio_resid;
620 		xfersize -= tlen;
621 		*size -= tlen;
622 	}
623 	return (0);
624 }
625 
626 /*
627  * Vnode op for reading.
628  */
629 static int
630 ffs_read(ap)
631 	struct vop_read_args /* {
632 		struct vnode *a_vp;
633 		struct uio *a_uio;
634 		int a_ioflag;
635 		struct ucred *a_cred;
636 	} */ *ap;
637 {
638 	struct vnode *vp;
639 	struct inode *ip;
640 	struct uio *uio;
641 	struct fs *fs;
642 	struct buf *bp;
643 	ufs_lbn_t lbn, nextlbn;
644 	off_t bytesinfile;
645 	long size, xfersize, blkoffset;
646 	ssize_t orig_resid;
647 	int bflag, error, ioflag, seqcount;
648 
649 	vp = ap->a_vp;
650 	uio = ap->a_uio;
651 	ioflag = ap->a_ioflag;
652 	if (ap->a_ioflag & IO_EXT)
653 #ifdef notyet
654 		return (ffs_extread(vp, uio, ioflag));
655 #else
656 		panic("ffs_read+IO_EXT");
657 #endif
658 #ifdef DIRECTIO
659 	if ((ioflag & IO_DIRECT) != 0) {
660 		int workdone;
661 
662 		error = ffs_rawread(vp, uio, &workdone);
663 		if (error != 0 || workdone != 0)
664 			return error;
665 	}
666 #endif
667 
668 	seqcount = ap->a_ioflag >> IO_SEQSHIFT;
669 	ip = VTOI(vp);
670 
671 #ifdef INVARIANTS
672 	if (uio->uio_rw != UIO_READ)
673 		panic("ffs_read: mode");
674 
675 	if (vp->v_type == VLNK) {
676 		if ((int)ip->i_size < vp->v_mount->mnt_maxsymlinklen)
677 			panic("ffs_read: short symlink");
678 	} else if (vp->v_type != VREG && vp->v_type != VDIR)
679 		panic("ffs_read: type %d",  vp->v_type);
680 #endif
681 	orig_resid = uio->uio_resid;
682 	KASSERT(orig_resid >= 0, ("ffs_read: uio->uio_resid < 0"));
683 	if (orig_resid == 0)
684 		return (0);
685 	KASSERT(uio->uio_offset >= 0, ("ffs_read: uio->uio_offset < 0"));
686 	fs = ITOFS(ip);
687 	if (uio->uio_offset < ip->i_size &&
688 	    uio->uio_offset >= fs->fs_maxfilesize)
689 		return (EOVERFLOW);
690 
691 	bflag = GB_UNMAPPED | (uio->uio_segflg == UIO_NOCOPY ? 0 : GB_NOSPARSE);
692 	for (error = 0, bp = NULL; uio->uio_resid > 0; bp = NULL) {
693 		if ((bytesinfile = ip->i_size - uio->uio_offset) <= 0)
694 			break;
695 		lbn = lblkno(fs, uio->uio_offset);
696 		nextlbn = lbn + 1;
697 
698 		/*
699 		 * size of buffer.  The buffer representing the
700 		 * end of the file is rounded up to the size of
701 		 * the block type ( fragment or full block,
702 		 * depending ).
703 		 */
704 		size = blksize(fs, ip, lbn);
705 		blkoffset = blkoff(fs, uio->uio_offset);
706 
707 		/*
708 		 * The amount we want to transfer in this iteration is
709 		 * one FS block less the amount of the data before
710 		 * our startpoint (duh!)
711 		 */
712 		xfersize = fs->fs_bsize - blkoffset;
713 
714 		/*
715 		 * But if we actually want less than the block,
716 		 * or the file doesn't have a whole block more of data,
717 		 * then use the lesser number.
718 		 */
719 		if (uio->uio_resid < xfersize)
720 			xfersize = uio->uio_resid;
721 		if (bytesinfile < xfersize)
722 			xfersize = bytesinfile;
723 
724 		if (lblktosize(fs, nextlbn) >= ip->i_size) {
725 			/*
726 			 * Don't do readahead if this is the end of the file.
727 			 */
728 			error = bread_gb(vp, lbn, size, NOCRED, bflag, &bp);
729 		} else if ((vp->v_mount->mnt_flag & MNT_NOCLUSTERR) == 0) {
730 			/*
731 			 * Otherwise if we are allowed to cluster,
732 			 * grab as much as we can.
733 			 *
734 			 * XXX  This may not be a win if we are not
735 			 * doing sequential access.
736 			 */
737 			error = cluster_read(vp, ip->i_size, lbn,
738 			    size, NOCRED, blkoffset + uio->uio_resid,
739 			    seqcount, bflag, &bp);
740 		} else if (seqcount > 1) {
741 			/*
742 			 * If we are NOT allowed to cluster, then
743 			 * if we appear to be acting sequentially,
744 			 * fire off a request for a readahead
745 			 * as well as a read. Note that the 4th and 5th
746 			 * arguments point to arrays of the size specified in
747 			 * the 6th argument.
748 			 */
749 			u_int nextsize = blksize(fs, ip, nextlbn);
750 			error = breadn_flags(vp, lbn, lbn, size, &nextlbn,
751 			    &nextsize, 1, NOCRED, bflag, NULL, &bp);
752 		} else {
753 			/*
754 			 * Failing all of the above, just read what the
755 			 * user asked for. Interestingly, the same as
756 			 * the first option above.
757 			 */
758 			error = bread_gb(vp, lbn, size, NOCRED, bflag, &bp);
759 		}
760 		if (error == EJUSTRETURN) {
761 			error = ffs_read_hole(uio, xfersize, &size);
762 			if (error == 0)
763 				continue;
764 		}
765 		if (error != 0) {
766 			brelse(bp);
767 			bp = NULL;
768 			break;
769 		}
770 
771 		/*
772 		 * We should only get non-zero b_resid when an I/O error
773 		 * has occurred, which should cause us to break above.
774 		 * However, if the short read did not cause an error,
775 		 * then we want to ensure that we do not uiomove bad
776 		 * or uninitialized data.
777 		 */
778 		size -= bp->b_resid;
779 		if (size < xfersize) {
780 			if (size == 0)
781 				break;
782 			xfersize = size;
783 		}
784 
785 		if (buf_mapped(bp)) {
786 			error = vn_io_fault_uiomove((char *)bp->b_data +
787 			    blkoffset, (int)xfersize, uio);
788 		} else {
789 			error = vn_io_fault_pgmove(bp->b_pages, blkoffset,
790 			    (int)xfersize, uio);
791 		}
792 		if (error)
793 			break;
794 
795 		vfs_bio_brelse(bp, ioflag);
796 	}
797 
798 	/*
799 	 * This can only happen in the case of an error
800 	 * because the loop above resets bp to NULL on each iteration
801 	 * and on normal completion has not set a new value into it.
802 	 * so it must have come from a 'break' statement
803 	 */
804 	if (bp != NULL)
805 		vfs_bio_brelse(bp, ioflag);
806 
807 	if ((error == 0 || uio->uio_resid != orig_resid) &&
808 	    (vp->v_mount->mnt_flag & (MNT_NOATIME | MNT_RDONLY)) == 0)
809 		UFS_INODE_SET_FLAG_SHARED(ip, IN_ACCESS);
810 	return (error);
811 }
812 
813 /*
814  * Vnode op for writing.
815  */
816 static int
817 ffs_write(ap)
818 	struct vop_write_args /* {
819 		struct vnode *a_vp;
820 		struct uio *a_uio;
821 		int a_ioflag;
822 		struct ucred *a_cred;
823 	} */ *ap;
824 {
825 	struct vnode *vp;
826 	struct uio *uio;
827 	struct inode *ip;
828 	struct fs *fs;
829 	struct buf *bp;
830 	ufs_lbn_t lbn;
831 	off_t osize;
832 	ssize_t resid;
833 	int seqcount;
834 	int blkoffset, error, flags, ioflag, size, xfersize;
835 
836 	vp = ap->a_vp;
837 	uio = ap->a_uio;
838 	ioflag = ap->a_ioflag;
839 	if (ap->a_ioflag & IO_EXT)
840 #ifdef notyet
841 		return (ffs_extwrite(vp, uio, ioflag, ap->a_cred));
842 #else
843 		panic("ffs_write+IO_EXT");
844 #endif
845 
846 	seqcount = ap->a_ioflag >> IO_SEQSHIFT;
847 	ip = VTOI(vp);
848 
849 #ifdef INVARIANTS
850 	if (uio->uio_rw != UIO_WRITE)
851 		panic("ffs_write: mode");
852 #endif
853 
854 	switch (vp->v_type) {
855 	case VREG:
856 		if (ioflag & IO_APPEND)
857 			uio->uio_offset = ip->i_size;
858 		if ((ip->i_flags & APPEND) && uio->uio_offset != ip->i_size)
859 			return (EPERM);
860 		/* FALLTHROUGH */
861 	case VLNK:
862 		break;
863 	case VDIR:
864 		panic("ffs_write: dir write");
865 		break;
866 	default:
867 		panic("ffs_write: type %p %d (%d,%d)", vp, (int)vp->v_type,
868 			(int)uio->uio_offset,
869 			(int)uio->uio_resid
870 		);
871 	}
872 
873 	KASSERT(uio->uio_resid >= 0, ("ffs_write: uio->uio_resid < 0"));
874 	KASSERT(uio->uio_offset >= 0, ("ffs_write: uio->uio_offset < 0"));
875 	fs = ITOFS(ip);
876 	if ((uoff_t)uio->uio_offset + uio->uio_resid > fs->fs_maxfilesize)
877 		return (EFBIG);
878 	/*
879 	 * Maybe this should be above the vnode op call, but so long as
880 	 * file servers have no limits, I don't think it matters.
881 	 */
882 	if (vn_rlimit_fsize(vp, uio, uio->uio_td))
883 		return (EFBIG);
884 
885 	resid = uio->uio_resid;
886 	osize = ip->i_size;
887 	if (seqcount > BA_SEQMAX)
888 		flags = BA_SEQMAX << BA_SEQSHIFT;
889 	else
890 		flags = seqcount << BA_SEQSHIFT;
891 	if (ioflag & IO_SYNC)
892 		flags |= IO_SYNC;
893 	flags |= BA_UNMAPPED;
894 
895 	for (error = 0; uio->uio_resid > 0;) {
896 		lbn = lblkno(fs, uio->uio_offset);
897 		blkoffset = blkoff(fs, uio->uio_offset);
898 		xfersize = fs->fs_bsize - blkoffset;
899 		if (uio->uio_resid < xfersize)
900 			xfersize = uio->uio_resid;
901 		if (uio->uio_offset + xfersize > ip->i_size)
902 			vnode_pager_setsize(vp, uio->uio_offset + xfersize);
903 
904 		/*
905 		 * We must perform a read-before-write if the transfer size
906 		 * does not cover the entire buffer.
907 		 */
908 		if (fs->fs_bsize > xfersize)
909 			flags |= BA_CLRBUF;
910 		else
911 			flags &= ~BA_CLRBUF;
912 /* XXX is uio->uio_offset the right thing here? */
913 		error = UFS_BALLOC(vp, uio->uio_offset, xfersize,
914 		    ap->a_cred, flags, &bp);
915 		if (error != 0) {
916 			vnode_pager_setsize(vp, ip->i_size);
917 			break;
918 		}
919 		if ((ioflag & (IO_SYNC|IO_INVAL)) == (IO_SYNC|IO_INVAL))
920 			bp->b_flags |= B_NOCACHE;
921 
922 		if (uio->uio_offset + xfersize > ip->i_size) {
923 			ip->i_size = uio->uio_offset + xfersize;
924 			DIP_SET(ip, i_size, ip->i_size);
925 			UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE);
926 		}
927 
928 		size = blksize(fs, ip, lbn) - bp->b_resid;
929 		if (size < xfersize)
930 			xfersize = size;
931 
932 		if (buf_mapped(bp)) {
933 			error = vn_io_fault_uiomove((char *)bp->b_data +
934 			    blkoffset, (int)xfersize, uio);
935 		} else {
936 			error = vn_io_fault_pgmove(bp->b_pages, blkoffset,
937 			    (int)xfersize, uio);
938 		}
939 		/*
940 		 * If the buffer is not already filled and we encounter an
941 		 * error while trying to fill it, we have to clear out any
942 		 * garbage data from the pages instantiated for the buffer.
943 		 * If we do not, a failed uiomove() during a write can leave
944 		 * the prior contents of the pages exposed to a userland mmap.
945 		 *
946 		 * Note that we need only clear buffers with a transfer size
947 		 * equal to the block size because buffers with a shorter
948 		 * transfer size were cleared above by the call to UFS_BALLOC()
949 		 * with the BA_CLRBUF flag set.
950 		 *
951 		 * If the source region for uiomove identically mmaps the
952 		 * buffer, uiomove() performed the NOP copy, and the buffer
953 		 * content remains valid because the page fault handler
954 		 * validated the pages.
955 		 */
956 		if (error != 0 && (bp->b_flags & B_CACHE) == 0 &&
957 		    fs->fs_bsize == xfersize)
958 			vfs_bio_clrbuf(bp);
959 
960 		vfs_bio_set_flags(bp, ioflag);
961 
962 		/*
963 		 * If IO_SYNC each buffer is written synchronously.  Otherwise
964 		 * if we have a severe page deficiency write the buffer
965 		 * asynchronously.  Otherwise try to cluster, and if that
966 		 * doesn't do it then either do an async write (if O_DIRECT),
967 		 * or a delayed write (if not).
968 		 */
969 		if (ioflag & IO_SYNC) {
970 			(void)bwrite(bp);
971 		} else if (vm_page_count_severe() ||
972 			    buf_dirty_count_severe() ||
973 			    (ioflag & IO_ASYNC)) {
974 			bp->b_flags |= B_CLUSTEROK;
975 			bawrite(bp);
976 		} else if (xfersize + blkoffset == fs->fs_bsize) {
977 			if ((vp->v_mount->mnt_flag & MNT_NOCLUSTERW) == 0) {
978 				bp->b_flags |= B_CLUSTEROK;
979 				cluster_write(vp, bp, ip->i_size, seqcount,
980 				    GB_UNMAPPED);
981 			} else {
982 				bawrite(bp);
983 			}
984 		} else if (ioflag & IO_DIRECT) {
985 			bp->b_flags |= B_CLUSTEROK;
986 			bawrite(bp);
987 		} else {
988 			bp->b_flags |= B_CLUSTEROK;
989 			bdwrite(bp);
990 		}
991 		if (error || xfersize == 0)
992 			break;
993 		UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_UPDATE);
994 	}
995 	/*
996 	 * If we successfully wrote any data, and we are not the superuser
997 	 * we clear the setuid and setgid bits as a precaution against
998 	 * tampering.
999 	 */
1000 	if ((ip->i_mode & (ISUID | ISGID)) && resid > uio->uio_resid &&
1001 	    ap->a_cred) {
1002 		if (priv_check_cred(ap->a_cred, PRIV_VFS_RETAINSUGID)) {
1003 			vn_seqc_write_begin(vp);
1004 			UFS_INODE_SET_MODE(ip, ip->i_mode & ~(ISUID | ISGID));
1005 			DIP_SET(ip, i_mode, ip->i_mode);
1006 			vn_seqc_write_end(vp);
1007 		}
1008 	}
1009 	if (error) {
1010 		if (ioflag & IO_UNIT) {
1011 			(void)ffs_truncate(vp, osize,
1012 			    IO_NORMAL | (ioflag & IO_SYNC), ap->a_cred);
1013 			uio->uio_offset -= resid - uio->uio_resid;
1014 			uio->uio_resid = resid;
1015 		}
1016 	} else if (resid > uio->uio_resid && (ioflag & IO_SYNC)) {
1017 		if (!(ioflag & IO_DATASYNC) ||
1018 		    (ip->i_flags & (IN_SIZEMOD | IN_IBLKDATA)))
1019 			error = ffs_update(vp, 1);
1020 		if (ffs_fsfail_cleanup(VFSTOUFS(vp->v_mount), error))
1021 			error = ENXIO;
1022 	}
1023 	return (error);
1024 }
1025 
1026 /*
1027  * Extended attribute area reading.
1028  */
1029 static int
1030 ffs_extread(struct vnode *vp, struct uio *uio, int ioflag)
1031 {
1032 	struct inode *ip;
1033 	struct ufs2_dinode *dp;
1034 	struct fs *fs;
1035 	struct buf *bp;
1036 	ufs_lbn_t lbn, nextlbn;
1037 	off_t bytesinfile;
1038 	long size, xfersize, blkoffset;
1039 	ssize_t orig_resid;
1040 	int error;
1041 
1042 	ip = VTOI(vp);
1043 	fs = ITOFS(ip);
1044 	dp = ip->i_din2;
1045 
1046 #ifdef INVARIANTS
1047 	if (uio->uio_rw != UIO_READ || fs->fs_magic != FS_UFS2_MAGIC)
1048 		panic("ffs_extread: mode");
1049 
1050 #endif
1051 	orig_resid = uio->uio_resid;
1052 	KASSERT(orig_resid >= 0, ("ffs_extread: uio->uio_resid < 0"));
1053 	if (orig_resid == 0)
1054 		return (0);
1055 	KASSERT(uio->uio_offset >= 0, ("ffs_extread: uio->uio_offset < 0"));
1056 
1057 	for (error = 0, bp = NULL; uio->uio_resid > 0; bp = NULL) {
1058 		if ((bytesinfile = dp->di_extsize - uio->uio_offset) <= 0)
1059 			break;
1060 		lbn = lblkno(fs, uio->uio_offset);
1061 		nextlbn = lbn + 1;
1062 
1063 		/*
1064 		 * size of buffer.  The buffer representing the
1065 		 * end of the file is rounded up to the size of
1066 		 * the block type ( fragment or full block,
1067 		 * depending ).
1068 		 */
1069 		size = sblksize(fs, dp->di_extsize, lbn);
1070 		blkoffset = blkoff(fs, uio->uio_offset);
1071 
1072 		/*
1073 		 * The amount we want to transfer in this iteration is
1074 		 * one FS block less the amount of the data before
1075 		 * our startpoint (duh!)
1076 		 */
1077 		xfersize = fs->fs_bsize - blkoffset;
1078 
1079 		/*
1080 		 * But if we actually want less than the block,
1081 		 * or the file doesn't have a whole block more of data,
1082 		 * then use the lesser number.
1083 		 */
1084 		if (uio->uio_resid < xfersize)
1085 			xfersize = uio->uio_resid;
1086 		if (bytesinfile < xfersize)
1087 			xfersize = bytesinfile;
1088 
1089 		if (lblktosize(fs, nextlbn) >= dp->di_extsize) {
1090 			/*
1091 			 * Don't do readahead if this is the end of the info.
1092 			 */
1093 			error = bread(vp, -1 - lbn, size, NOCRED, &bp);
1094 		} else {
1095 			/*
1096 			 * If we have a second block, then
1097 			 * fire off a request for a readahead
1098 			 * as well as a read. Note that the 4th and 5th
1099 			 * arguments point to arrays of the size specified in
1100 			 * the 6th argument.
1101 			 */
1102 			u_int nextsize = sblksize(fs, dp->di_extsize, nextlbn);
1103 
1104 			nextlbn = -1 - nextlbn;
1105 			error = breadn(vp, -1 - lbn,
1106 			    size, &nextlbn, &nextsize, 1, NOCRED, &bp);
1107 		}
1108 		if (error) {
1109 			brelse(bp);
1110 			bp = NULL;
1111 			break;
1112 		}
1113 
1114 		/*
1115 		 * We should only get non-zero b_resid when an I/O error
1116 		 * has occurred, which should cause us to break above.
1117 		 * However, if the short read did not cause an error,
1118 		 * then we want to ensure that we do not uiomove bad
1119 		 * or uninitialized data.
1120 		 */
1121 		size -= bp->b_resid;
1122 		if (size < xfersize) {
1123 			if (size == 0)
1124 				break;
1125 			xfersize = size;
1126 		}
1127 
1128 		error = uiomove((char *)bp->b_data + blkoffset,
1129 					(int)xfersize, uio);
1130 		if (error)
1131 			break;
1132 		vfs_bio_brelse(bp, ioflag);
1133 	}
1134 
1135 	/*
1136 	 * This can only happen in the case of an error
1137 	 * because the loop above resets bp to NULL on each iteration
1138 	 * and on normal completion has not set a new value into it.
1139 	 * so it must have come from a 'break' statement
1140 	 */
1141 	if (bp != NULL)
1142 		vfs_bio_brelse(bp, ioflag);
1143 	return (error);
1144 }
1145 
1146 /*
1147  * Extended attribute area writing.
1148  */
1149 static int
1150 ffs_extwrite(struct vnode *vp, struct uio *uio, int ioflag, struct ucred *ucred)
1151 {
1152 	struct inode *ip;
1153 	struct ufs2_dinode *dp;
1154 	struct fs *fs;
1155 	struct buf *bp;
1156 	ufs_lbn_t lbn;
1157 	off_t osize;
1158 	ssize_t resid;
1159 	int blkoffset, error, flags, size, xfersize;
1160 
1161 	ip = VTOI(vp);
1162 	fs = ITOFS(ip);
1163 	dp = ip->i_din2;
1164 
1165 #ifdef INVARIANTS
1166 	if (uio->uio_rw != UIO_WRITE || fs->fs_magic != FS_UFS2_MAGIC)
1167 		panic("ffs_extwrite: mode");
1168 #endif
1169 
1170 	if (ioflag & IO_APPEND)
1171 		uio->uio_offset = dp->di_extsize;
1172 	KASSERT(uio->uio_offset >= 0, ("ffs_extwrite: uio->uio_offset < 0"));
1173 	KASSERT(uio->uio_resid >= 0, ("ffs_extwrite: uio->uio_resid < 0"));
1174 	if ((uoff_t)uio->uio_offset + uio->uio_resid >
1175 	    UFS_NXADDR * fs->fs_bsize)
1176 		return (EFBIG);
1177 
1178 	resid = uio->uio_resid;
1179 	osize = dp->di_extsize;
1180 	flags = IO_EXT;
1181 	if (ioflag & IO_SYNC)
1182 		flags |= IO_SYNC;
1183 
1184 	for (error = 0; uio->uio_resid > 0;) {
1185 		lbn = lblkno(fs, uio->uio_offset);
1186 		blkoffset = blkoff(fs, uio->uio_offset);
1187 		xfersize = fs->fs_bsize - blkoffset;
1188 		if (uio->uio_resid < xfersize)
1189 			xfersize = uio->uio_resid;
1190 
1191 		/*
1192 		 * We must perform a read-before-write if the transfer size
1193 		 * does not cover the entire buffer.
1194 		 */
1195 		if (fs->fs_bsize > xfersize)
1196 			flags |= BA_CLRBUF;
1197 		else
1198 			flags &= ~BA_CLRBUF;
1199 		error = UFS_BALLOC(vp, uio->uio_offset, xfersize,
1200 		    ucred, flags, &bp);
1201 		if (error != 0)
1202 			break;
1203 		/*
1204 		 * If the buffer is not valid we have to clear out any
1205 		 * garbage data from the pages instantiated for the buffer.
1206 		 * If we do not, a failed uiomove() during a write can leave
1207 		 * the prior contents of the pages exposed to a userland
1208 		 * mmap().  XXX deal with uiomove() errors a better way.
1209 		 */
1210 		if ((bp->b_flags & B_CACHE) == 0 && fs->fs_bsize <= xfersize)
1211 			vfs_bio_clrbuf(bp);
1212 
1213 		if (uio->uio_offset + xfersize > dp->di_extsize) {
1214 			dp->di_extsize = uio->uio_offset + xfersize;
1215 			UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE);
1216 		}
1217 
1218 		size = sblksize(fs, dp->di_extsize, lbn) - bp->b_resid;
1219 		if (size < xfersize)
1220 			xfersize = size;
1221 
1222 		error =
1223 		    uiomove((char *)bp->b_data + blkoffset, (int)xfersize, uio);
1224 
1225 		vfs_bio_set_flags(bp, ioflag);
1226 
1227 		/*
1228 		 * If IO_SYNC each buffer is written synchronously.  Otherwise
1229 		 * if we have a severe page deficiency write the buffer
1230 		 * asynchronously.  Otherwise try to cluster, and if that
1231 		 * doesn't do it then either do an async write (if O_DIRECT),
1232 		 * or a delayed write (if not).
1233 		 */
1234 		if (ioflag & IO_SYNC) {
1235 			(void)bwrite(bp);
1236 		} else if (vm_page_count_severe() ||
1237 			    buf_dirty_count_severe() ||
1238 			    xfersize + blkoffset == fs->fs_bsize ||
1239 			    (ioflag & (IO_ASYNC | IO_DIRECT)))
1240 			bawrite(bp);
1241 		else
1242 			bdwrite(bp);
1243 		if (error || xfersize == 0)
1244 			break;
1245 		UFS_INODE_SET_FLAG(ip, IN_CHANGE);
1246 	}
1247 	/*
1248 	 * If we successfully wrote any data, and we are not the superuser
1249 	 * we clear the setuid and setgid bits as a precaution against
1250 	 * tampering.
1251 	 */
1252 	if ((ip->i_mode & (ISUID | ISGID)) && resid > uio->uio_resid && ucred) {
1253 		if (priv_check_cred(ucred, PRIV_VFS_RETAINSUGID)) {
1254 			vn_seqc_write_begin(vp);
1255 			UFS_INODE_SET_MODE(ip, ip->i_mode & ~(ISUID | ISGID));
1256 			dp->di_mode = ip->i_mode;
1257 			vn_seqc_write_end(vp);
1258 		}
1259 	}
1260 	if (error) {
1261 		if (ioflag & IO_UNIT) {
1262 			(void)ffs_truncate(vp, osize,
1263 			    IO_EXT | (ioflag&IO_SYNC), ucred);
1264 			uio->uio_offset -= resid - uio->uio_resid;
1265 			uio->uio_resid = resid;
1266 		}
1267 	} else if (resid > uio->uio_resid && (ioflag & IO_SYNC))
1268 		error = ffs_update(vp, 1);
1269 	return (error);
1270 }
1271 
1272 /*
1273  * Vnode operating to retrieve a named extended attribute.
1274  *
1275  * Locate a particular EA (nspace:name) in the area (ptr:length), and return
1276  * the length of the EA, and possibly the pointer to the entry and to the data.
1277  */
1278 static int
1279 ffs_findextattr(u_char *ptr, u_int length, int nspace, const char *name,
1280     struct extattr **eapp, u_char **eac)
1281 {
1282 	struct extattr *eap, *eaend;
1283 	size_t nlen;
1284 
1285 	nlen = strlen(name);
1286 	KASSERT(ALIGNED_TO(ptr, struct extattr), ("unaligned"));
1287 	eap = (struct extattr *)ptr;
1288 	eaend = (struct extattr *)(ptr + length);
1289 	for (; eap < eaend; eap = EXTATTR_NEXT(eap)) {
1290 		KASSERT(EXTATTR_NEXT(eap) <= eaend,
1291 		    ("extattr next %p beyond %p", EXTATTR_NEXT(eap), eaend));
1292 		if (eap->ea_namespace != nspace || eap->ea_namelength != nlen
1293 		    || memcmp(eap->ea_name, name, nlen) != 0)
1294 			continue;
1295 		if (eapp != NULL)
1296 			*eapp = eap;
1297 		if (eac != NULL)
1298 			*eac = EXTATTR_CONTENT(eap);
1299 		return (EXTATTR_CONTENT_SIZE(eap));
1300 	}
1301 	return (-1);
1302 }
1303 
1304 static int
1305 ffs_rdextattr(u_char **p, struct vnode *vp, struct thread *td)
1306 {
1307 	const struct extattr *eap, *eaend, *eapnext;
1308 	struct inode *ip;
1309 	struct ufs2_dinode *dp;
1310 	struct fs *fs;
1311 	struct uio luio;
1312 	struct iovec liovec;
1313 	u_int easize;
1314 	int error;
1315 	u_char *eae;
1316 
1317 	ip = VTOI(vp);
1318 	fs = ITOFS(ip);
1319 	dp = ip->i_din2;
1320 	easize = dp->di_extsize;
1321 	if ((uoff_t)easize > UFS_NXADDR * fs->fs_bsize)
1322 		return (EFBIG);
1323 
1324 	eae = malloc(easize, M_TEMP, M_WAITOK);
1325 
1326 	liovec.iov_base = eae;
1327 	liovec.iov_len = easize;
1328 	luio.uio_iov = &liovec;
1329 	luio.uio_iovcnt = 1;
1330 	luio.uio_offset = 0;
1331 	luio.uio_resid = easize;
1332 	luio.uio_segflg = UIO_SYSSPACE;
1333 	luio.uio_rw = UIO_READ;
1334 	luio.uio_td = td;
1335 
1336 	error = ffs_extread(vp, &luio, IO_EXT | IO_SYNC);
1337 	if (error) {
1338 		free(eae, M_TEMP);
1339 		return (error);
1340 	}
1341 	/* Validate disk xattrfile contents. */
1342 	for (eap = (void *)eae, eaend = (void *)(eae + easize); eap < eaend;
1343 	    eap = eapnext) {
1344 		eapnext = EXTATTR_NEXT(eap);
1345 		/* Bogusly short entry or bogusly long entry. */
1346 		if (eap->ea_length < sizeof(*eap) || eapnext > eaend) {
1347 			free(eae, M_TEMP);
1348 			return (EINTEGRITY);
1349 		}
1350 	}
1351 	*p = eae;
1352 	return (0);
1353 }
1354 
1355 static void
1356 ffs_lock_ea(struct vnode *vp)
1357 {
1358 	struct inode *ip;
1359 
1360 	ip = VTOI(vp);
1361 	VI_LOCK(vp);
1362 	while (ip->i_flag & IN_EA_LOCKED) {
1363 		UFS_INODE_SET_FLAG(ip, IN_EA_LOCKWAIT);
1364 		msleep(&ip->i_ea_refs, &vp->v_interlock, PINOD + 2, "ufs_ea",
1365 		    0);
1366 	}
1367 	UFS_INODE_SET_FLAG(ip, IN_EA_LOCKED);
1368 	VI_UNLOCK(vp);
1369 }
1370 
1371 static void
1372 ffs_unlock_ea(struct vnode *vp)
1373 {
1374 	struct inode *ip;
1375 
1376 	ip = VTOI(vp);
1377 	VI_LOCK(vp);
1378 	if (ip->i_flag & IN_EA_LOCKWAIT)
1379 		wakeup(&ip->i_ea_refs);
1380 	ip->i_flag &= ~(IN_EA_LOCKED | IN_EA_LOCKWAIT);
1381 	VI_UNLOCK(vp);
1382 }
1383 
1384 static int
1385 ffs_open_ea(struct vnode *vp, struct ucred *cred, struct thread *td)
1386 {
1387 	struct inode *ip;
1388 	struct ufs2_dinode *dp;
1389 	int error;
1390 
1391 	ip = VTOI(vp);
1392 
1393 	ffs_lock_ea(vp);
1394 	if (ip->i_ea_area != NULL) {
1395 		ip->i_ea_refs++;
1396 		ffs_unlock_ea(vp);
1397 		return (0);
1398 	}
1399 	dp = ip->i_din2;
1400 	error = ffs_rdextattr(&ip->i_ea_area, vp, td);
1401 	if (error) {
1402 		ffs_unlock_ea(vp);
1403 		return (error);
1404 	}
1405 	ip->i_ea_len = dp->di_extsize;
1406 	ip->i_ea_error = 0;
1407 	ip->i_ea_refs++;
1408 	ffs_unlock_ea(vp);
1409 	return (0);
1410 }
1411 
1412 /*
1413  * Vnode extattr transaction commit/abort
1414  */
1415 static int
1416 ffs_close_ea(struct vnode *vp, int commit, struct ucred *cred, struct thread *td)
1417 {
1418 	struct inode *ip;
1419 	struct uio luio;
1420 	struct iovec liovec;
1421 	int error;
1422 	struct ufs2_dinode *dp;
1423 
1424 	ip = VTOI(vp);
1425 
1426 	ffs_lock_ea(vp);
1427 	if (ip->i_ea_area == NULL) {
1428 		ffs_unlock_ea(vp);
1429 		return (EINVAL);
1430 	}
1431 	dp = ip->i_din2;
1432 	error = ip->i_ea_error;
1433 	if (commit && error == 0) {
1434 		ASSERT_VOP_ELOCKED(vp, "ffs_close_ea commit");
1435 		if (cred == NOCRED)
1436 			cred =  vp->v_mount->mnt_cred;
1437 		liovec.iov_base = ip->i_ea_area;
1438 		liovec.iov_len = ip->i_ea_len;
1439 		luio.uio_iov = &liovec;
1440 		luio.uio_iovcnt = 1;
1441 		luio.uio_offset = 0;
1442 		luio.uio_resid = ip->i_ea_len;
1443 		luio.uio_segflg = UIO_SYSSPACE;
1444 		luio.uio_rw = UIO_WRITE;
1445 		luio.uio_td = td;
1446 		/* XXX: I'm not happy about truncating to zero size */
1447 		if (ip->i_ea_len < dp->di_extsize)
1448 			error = ffs_truncate(vp, 0, IO_EXT, cred);
1449 		error = ffs_extwrite(vp, &luio, IO_EXT | IO_SYNC, cred);
1450 	}
1451 	if (--ip->i_ea_refs == 0) {
1452 		free(ip->i_ea_area, M_TEMP);
1453 		ip->i_ea_area = NULL;
1454 		ip->i_ea_len = 0;
1455 		ip->i_ea_error = 0;
1456 	}
1457 	ffs_unlock_ea(vp);
1458 	return (error);
1459 }
1460 
1461 /*
1462  * Vnode extattr strategy routine for fifos.
1463  *
1464  * We need to check for a read or write of the external attributes.
1465  * Otherwise we just fall through and do the usual thing.
1466  */
1467 static int
1468 ffsext_strategy(struct vop_strategy_args *ap)
1469 /*
1470 struct vop_strategy_args {
1471 	struct vnodeop_desc *a_desc;
1472 	struct vnode *a_vp;
1473 	struct buf *a_bp;
1474 };
1475 */
1476 {
1477 	struct vnode *vp;
1478 	daddr_t lbn;
1479 
1480 	vp = ap->a_vp;
1481 	lbn = ap->a_bp->b_lblkno;
1482 	if (I_IS_UFS2(VTOI(vp)) && lbn < 0 && lbn >= -UFS_NXADDR)
1483 		return (VOP_STRATEGY_APV(&ufs_vnodeops, ap));
1484 	if (vp->v_type == VFIFO)
1485 		return (VOP_STRATEGY_APV(&ufs_fifoops, ap));
1486 	panic("spec nodes went here");
1487 }
1488 
1489 /*
1490  * Vnode extattr transaction commit/abort
1491  */
1492 static int
1493 ffs_openextattr(struct vop_openextattr_args *ap)
1494 /*
1495 struct vop_openextattr_args {
1496 	struct vnodeop_desc *a_desc;
1497 	struct vnode *a_vp;
1498 	IN struct ucred *a_cred;
1499 	IN struct thread *a_td;
1500 };
1501 */
1502 {
1503 
1504 	if (ap->a_vp->v_type == VCHR || ap->a_vp->v_type == VBLK)
1505 		return (EOPNOTSUPP);
1506 
1507 	return (ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td));
1508 }
1509 
1510 /*
1511  * Vnode extattr transaction commit/abort
1512  */
1513 static int
1514 ffs_closeextattr(struct vop_closeextattr_args *ap)
1515 /*
1516 struct vop_closeextattr_args {
1517 	struct vnodeop_desc *a_desc;
1518 	struct vnode *a_vp;
1519 	int a_commit;
1520 	IN struct ucred *a_cred;
1521 	IN struct thread *a_td;
1522 };
1523 */
1524 {
1525 
1526 	if (ap->a_vp->v_type == VCHR || ap->a_vp->v_type == VBLK)
1527 		return (EOPNOTSUPP);
1528 
1529 	if (ap->a_commit && (ap->a_vp->v_mount->mnt_flag & MNT_RDONLY))
1530 		return (EROFS);
1531 
1532 	return (ffs_close_ea(ap->a_vp, ap->a_commit, ap->a_cred, ap->a_td));
1533 }
1534 
1535 /*
1536  * Vnode operation to remove a named attribute.
1537  */
1538 static int
1539 ffs_deleteextattr(struct vop_deleteextattr_args *ap)
1540 /*
1541 vop_deleteextattr {
1542 	IN struct vnode *a_vp;
1543 	IN int a_attrnamespace;
1544 	IN const char *a_name;
1545 	IN struct ucred *a_cred;
1546 	IN struct thread *a_td;
1547 };
1548 */
1549 {
1550 	struct inode *ip;
1551 	struct extattr *eap;
1552 	uint32_t ul;
1553 	int olen, error, i, easize;
1554 	u_char *eae;
1555 	void *tmp;
1556 
1557 	ip = VTOI(ap->a_vp);
1558 
1559 	if (ap->a_vp->v_type == VCHR || ap->a_vp->v_type == VBLK)
1560 		return (EOPNOTSUPP);
1561 
1562 	if (strlen(ap->a_name) == 0)
1563 		return (EINVAL);
1564 
1565 	if (ap->a_vp->v_mount->mnt_flag & MNT_RDONLY)
1566 		return (EROFS);
1567 
1568 	error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace,
1569 	    ap->a_cred, ap->a_td, VWRITE);
1570 	if (error) {
1571 		/*
1572 		 * ffs_lock_ea is not needed there, because the vnode
1573 		 * must be exclusively locked.
1574 		 */
1575 		if (ip->i_ea_area != NULL && ip->i_ea_error == 0)
1576 			ip->i_ea_error = error;
1577 		return (error);
1578 	}
1579 
1580 	error = ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td);
1581 	if (error)
1582 		return (error);
1583 
1584 	/* CEM: delete could be done in-place instead */
1585 	eae = malloc(ip->i_ea_len, M_TEMP, M_WAITOK);
1586 	bcopy(ip->i_ea_area, eae, ip->i_ea_len);
1587 	easize = ip->i_ea_len;
1588 
1589 	olen = ffs_findextattr(eae, easize, ap->a_attrnamespace, ap->a_name,
1590 	    &eap, NULL);
1591 	if (olen == -1) {
1592 		/* delete but nonexistent */
1593 		free(eae, M_TEMP);
1594 		ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td);
1595 		return (ENOATTR);
1596 	}
1597 	ul = eap->ea_length;
1598 	i = (u_char *)EXTATTR_NEXT(eap) - eae;
1599 	bcopy(EXTATTR_NEXT(eap), eap, easize - i);
1600 	easize -= ul;
1601 
1602 	tmp = ip->i_ea_area;
1603 	ip->i_ea_area = eae;
1604 	ip->i_ea_len = easize;
1605 	free(tmp, M_TEMP);
1606 	error = ffs_close_ea(ap->a_vp, 1, ap->a_cred, ap->a_td);
1607 	return (error);
1608 }
1609 
1610 /*
1611  * Vnode operation to retrieve a named extended attribute.
1612  */
1613 static int
1614 ffs_getextattr(struct vop_getextattr_args *ap)
1615 /*
1616 vop_getextattr {
1617 	IN struct vnode *a_vp;
1618 	IN int a_attrnamespace;
1619 	IN const char *a_name;
1620 	INOUT struct uio *a_uio;
1621 	OUT size_t *a_size;
1622 	IN struct ucred *a_cred;
1623 	IN struct thread *a_td;
1624 };
1625 */
1626 {
1627 	struct inode *ip;
1628 	u_char *eae, *p;
1629 	unsigned easize;
1630 	int error, ealen;
1631 
1632 	ip = VTOI(ap->a_vp);
1633 
1634 	if (ap->a_vp->v_type == VCHR || ap->a_vp->v_type == VBLK)
1635 		return (EOPNOTSUPP);
1636 
1637 	error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace,
1638 	    ap->a_cred, ap->a_td, VREAD);
1639 	if (error)
1640 		return (error);
1641 
1642 	error = ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td);
1643 	if (error)
1644 		return (error);
1645 
1646 	eae = ip->i_ea_area;
1647 	easize = ip->i_ea_len;
1648 
1649 	ealen = ffs_findextattr(eae, easize, ap->a_attrnamespace, ap->a_name,
1650 	    NULL, &p);
1651 	if (ealen >= 0) {
1652 		error = 0;
1653 		if (ap->a_size != NULL)
1654 			*ap->a_size = ealen;
1655 		else if (ap->a_uio != NULL)
1656 			error = uiomove(p, ealen, ap->a_uio);
1657 	} else
1658 		error = ENOATTR;
1659 
1660 	ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td);
1661 	return (error);
1662 }
1663 
1664 /*
1665  * Vnode operation to retrieve extended attributes on a vnode.
1666  */
1667 static int
1668 ffs_listextattr(struct vop_listextattr_args *ap)
1669 /*
1670 vop_listextattr {
1671 	IN struct vnode *a_vp;
1672 	IN int a_attrnamespace;
1673 	INOUT struct uio *a_uio;
1674 	OUT size_t *a_size;
1675 	IN struct ucred *a_cred;
1676 	IN struct thread *a_td;
1677 };
1678 */
1679 {
1680 	struct inode *ip;
1681 	struct extattr *eap, *eaend;
1682 	int error, ealen;
1683 
1684 	ip = VTOI(ap->a_vp);
1685 
1686 	if (ap->a_vp->v_type == VCHR || ap->a_vp->v_type == VBLK)
1687 		return (EOPNOTSUPP);
1688 
1689 	error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace,
1690 	    ap->a_cred, ap->a_td, VREAD);
1691 	if (error)
1692 		return (error);
1693 
1694 	error = ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td);
1695 	if (error)
1696 		return (error);
1697 
1698 	error = 0;
1699 	if (ap->a_size != NULL)
1700 		*ap->a_size = 0;
1701 
1702 	KASSERT(ALIGNED_TO(ip->i_ea_area, struct extattr), ("unaligned"));
1703 	eap = (struct extattr *)ip->i_ea_area;
1704 	eaend = (struct extattr *)(ip->i_ea_area + ip->i_ea_len);
1705 	for (; error == 0 && eap < eaend; eap = EXTATTR_NEXT(eap)) {
1706 		KASSERT(EXTATTR_NEXT(eap) <= eaend,
1707 		    ("extattr next %p beyond %p", EXTATTR_NEXT(eap), eaend));
1708 		if (eap->ea_namespace != ap->a_attrnamespace)
1709 			continue;
1710 
1711 		ealen = eap->ea_namelength;
1712 		if (ap->a_size != NULL)
1713 			*ap->a_size += ealen + 1;
1714 		else if (ap->a_uio != NULL)
1715 			error = uiomove(&eap->ea_namelength, ealen + 1,
1716 			    ap->a_uio);
1717 	}
1718 
1719 	ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td);
1720 	return (error);
1721 }
1722 
1723 /*
1724  * Vnode operation to set a named attribute.
1725  */
1726 static int
1727 ffs_setextattr(struct vop_setextattr_args *ap)
1728 /*
1729 vop_setextattr {
1730 	IN struct vnode *a_vp;
1731 	IN int a_attrnamespace;
1732 	IN const char *a_name;
1733 	INOUT struct uio *a_uio;
1734 	IN struct ucred *a_cred;
1735 	IN struct thread *a_td;
1736 };
1737 */
1738 {
1739 	struct inode *ip;
1740 	struct fs *fs;
1741 	struct extattr *eap;
1742 	uint32_t ealength, ul;
1743 	ssize_t ealen;
1744 	int olen, eapad1, eapad2, error, i, easize;
1745 	u_char *eae;
1746 	void *tmp;
1747 
1748 	ip = VTOI(ap->a_vp);
1749 	fs = ITOFS(ip);
1750 
1751 	if (ap->a_vp->v_type == VCHR || ap->a_vp->v_type == VBLK)
1752 		return (EOPNOTSUPP);
1753 
1754 	if (strlen(ap->a_name) == 0)
1755 		return (EINVAL);
1756 
1757 	/* XXX Now unsupported API to delete EAs using NULL uio. */
1758 	if (ap->a_uio == NULL)
1759 		return (EOPNOTSUPP);
1760 
1761 	if (ap->a_vp->v_mount->mnt_flag & MNT_RDONLY)
1762 		return (EROFS);
1763 
1764 	ealen = ap->a_uio->uio_resid;
1765 	if (ealen < 0 || ealen > lblktosize(fs, UFS_NXADDR))
1766 		return (EINVAL);
1767 
1768 	error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace,
1769 	    ap->a_cred, ap->a_td, VWRITE);
1770 	if (error) {
1771 		/*
1772 		 * ffs_lock_ea is not needed there, because the vnode
1773 		 * must be exclusively locked.
1774 		 */
1775 		if (ip->i_ea_area != NULL && ip->i_ea_error == 0)
1776 			ip->i_ea_error = error;
1777 		return (error);
1778 	}
1779 
1780 	error = ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td);
1781 	if (error)
1782 		return (error);
1783 
1784 	ealength = sizeof(uint32_t) + 3 + strlen(ap->a_name);
1785 	eapad1 = roundup2(ealength, 8) - ealength;
1786 	eapad2 = roundup2(ealen, 8) - ealen;
1787 	ealength += eapad1 + ealen + eapad2;
1788 
1789 	/*
1790 	 * CEM: rewrites of the same size or smaller could be done in-place
1791 	 * instead.  (We don't acquire any fine-grained locks in here either,
1792 	 * so we could also do bigger writes in-place.)
1793 	 */
1794 	eae = malloc(ip->i_ea_len + ealength, M_TEMP, M_WAITOK);
1795 	bcopy(ip->i_ea_area, eae, ip->i_ea_len);
1796 	easize = ip->i_ea_len;
1797 
1798 	olen = ffs_findextattr(eae, easize, ap->a_attrnamespace, ap->a_name,
1799 	    &eap, NULL);
1800         if (olen == -1) {
1801 		/* new, append at end */
1802 		KASSERT(ALIGNED_TO(eae + easize, struct extattr),
1803 		    ("unaligned"));
1804 		eap = (struct extattr *)(eae + easize);
1805 		easize += ealength;
1806 	} else {
1807 		ul = eap->ea_length;
1808 		i = (u_char *)EXTATTR_NEXT(eap) - eae;
1809 		if (ul != ealength) {
1810 			bcopy(EXTATTR_NEXT(eap), (u_char *)eap + ealength,
1811 			    easize - i);
1812 			easize += (ealength - ul);
1813 		}
1814 	}
1815 	if (easize > lblktosize(fs, UFS_NXADDR)) {
1816 		free(eae, M_TEMP);
1817 		ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td);
1818 		if (ip->i_ea_area != NULL && ip->i_ea_error == 0)
1819 			ip->i_ea_error = ENOSPC;
1820 		return (ENOSPC);
1821 	}
1822 	eap->ea_length = ealength;
1823 	eap->ea_namespace = ap->a_attrnamespace;
1824 	eap->ea_contentpadlen = eapad2;
1825 	eap->ea_namelength = strlen(ap->a_name);
1826 	memcpy(eap->ea_name, ap->a_name, strlen(ap->a_name));
1827 	bzero(&eap->ea_name[strlen(ap->a_name)], eapad1);
1828 	error = uiomove(EXTATTR_CONTENT(eap), ealen, ap->a_uio);
1829 	if (error) {
1830 		free(eae, M_TEMP);
1831 		ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td);
1832 		if (ip->i_ea_area != NULL && ip->i_ea_error == 0)
1833 			ip->i_ea_error = error;
1834 		return (error);
1835 	}
1836 	bzero((u_char *)EXTATTR_CONTENT(eap) + ealen, eapad2);
1837 
1838 	tmp = ip->i_ea_area;
1839 	ip->i_ea_area = eae;
1840 	ip->i_ea_len = easize;
1841 	free(tmp, M_TEMP);
1842 	error = ffs_close_ea(ap->a_vp, 1, ap->a_cred, ap->a_td);
1843 	return (error);
1844 }
1845 
1846 /*
1847  * Vnode pointer to File handle
1848  */
1849 static int
1850 ffs_vptofh(struct vop_vptofh_args *ap)
1851 /*
1852 vop_vptofh {
1853 	IN struct vnode *a_vp;
1854 	IN struct fid *a_fhp;
1855 };
1856 */
1857 {
1858 	struct inode *ip;
1859 	struct ufid *ufhp;
1860 
1861 	ip = VTOI(ap->a_vp);
1862 	ufhp = (struct ufid *)ap->a_fhp;
1863 	ufhp->ufid_len = sizeof(struct ufid);
1864 	ufhp->ufid_ino = ip->i_number;
1865 	ufhp->ufid_gen = ip->i_gen;
1866 	return (0);
1867 }
1868 
1869 SYSCTL_DECL(_vfs_ffs);
1870 static int use_buf_pager = 1;
1871 SYSCTL_INT(_vfs_ffs, OID_AUTO, use_buf_pager, CTLFLAG_RWTUN, &use_buf_pager, 0,
1872     "Always use buffer pager instead of bmap");
1873 
1874 static daddr_t
1875 ffs_gbp_getblkno(struct vnode *vp, vm_ooffset_t off)
1876 {
1877 
1878 	return (lblkno(VFSTOUFS(vp->v_mount)->um_fs, off));
1879 }
1880 
1881 static int
1882 ffs_gbp_getblksz(struct vnode *vp, daddr_t lbn)
1883 {
1884 
1885 	return (blksize(VFSTOUFS(vp->v_mount)->um_fs, VTOI(vp), lbn));
1886 }
1887 
1888 static int
1889 ffs_getpages(struct vop_getpages_args *ap)
1890 {
1891 	struct vnode *vp;
1892 	struct ufsmount *um;
1893 
1894 	vp = ap->a_vp;
1895 	um = VFSTOUFS(vp->v_mount);
1896 
1897 	if (!use_buf_pager && um->um_devvp->v_bufobj.bo_bsize <= PAGE_SIZE)
1898 		return (vnode_pager_generic_getpages(vp, ap->a_m, ap->a_count,
1899 		    ap->a_rbehind, ap->a_rahead, NULL, NULL));
1900 	return (vfs_bio_getpages(vp, ap->a_m, ap->a_count, ap->a_rbehind,
1901 	    ap->a_rahead, ffs_gbp_getblkno, ffs_gbp_getblksz));
1902 }
1903 
1904 static int
1905 ffs_getpages_async(struct vop_getpages_async_args *ap)
1906 {
1907 	struct vnode *vp;
1908 	struct ufsmount *um;
1909 	bool do_iodone;
1910 	int error;
1911 
1912 	vp = ap->a_vp;
1913 	um = VFSTOUFS(vp->v_mount);
1914 	do_iodone = true;
1915 
1916 	if (um->um_devvp->v_bufobj.bo_bsize <= PAGE_SIZE) {
1917 		error = vnode_pager_generic_getpages(vp, ap->a_m, ap->a_count,
1918 		    ap->a_rbehind, ap->a_rahead, ap->a_iodone, ap->a_arg);
1919 		if (error == 0)
1920 			do_iodone = false;
1921 	} else {
1922 		error = vfs_bio_getpages(vp, ap->a_m, ap->a_count,
1923 		    ap->a_rbehind, ap->a_rahead, ffs_gbp_getblkno,
1924 		    ffs_gbp_getblksz);
1925 	}
1926 	if (do_iodone && ap->a_iodone != NULL)
1927 		ap->a_iodone(ap->a_arg, ap->a_m, ap->a_count, error);
1928 
1929 	return (error);
1930 }
1931 
1932 static int
1933 ffs_vput_pair(struct vop_vput_pair_args *ap)
1934 {
1935 	struct mount *mp;
1936 	struct vnode *dvp, *vp, *vp1, **vpp;
1937 	struct inode *dp, *ip;
1938 	ino_t ip_ino;
1939 	u_int64_t ip_gen;
1940 	off_t old_size;
1941 	int error, vp_locked;
1942 
1943 	dvp = ap->a_dvp;
1944 	dp = VTOI(dvp);
1945 	vpp = ap->a_vpp;
1946 	vp = vpp != NULL ? *vpp : NULL;
1947 
1948 	if ((dp->i_flag & (IN_NEEDSYNC | IN_ENDOFF)) == 0) {
1949 		vput(dvp);
1950 		if (vp != NULL && ap->a_unlock_vp)
1951 			vput(vp);
1952 		return (0);
1953 	}
1954 
1955 	mp = dvp->v_mount;
1956 	if (vp != NULL) {
1957 		if (ap->a_unlock_vp) {
1958 			vput(vp);
1959 		} else {
1960 			MPASS(vp->v_type != VNON);
1961 			vp_locked = VOP_ISLOCKED(vp);
1962 			ip = VTOI(vp);
1963 			ip_ino = ip->i_number;
1964 			ip_gen = ip->i_gen;
1965 			VOP_UNLOCK(vp);
1966 		}
1967 	}
1968 
1969 	/*
1970 	 * If compaction or fsync was requested do it in ffs_vput_pair()
1971 	 * now that other locks are no longer held.
1972          */
1973 	if ((dp->i_flag & IN_ENDOFF) != 0) {
1974 		VNASSERT(I_ENDOFF(dp) != 0 && I_ENDOFF(dp) < dp->i_size, dvp,
1975 		    ("IN_ENDOFF set but I_ENDOFF() is not"));
1976 		dp->i_flag &= ~IN_ENDOFF;
1977 		old_size = dp->i_size;
1978 		error = UFS_TRUNCATE(dvp, (off_t)I_ENDOFF(dp), IO_NORMAL |
1979 		    (DOINGASYNC(dvp) ? 0 : IO_SYNC), curthread->td_ucred);
1980 		if (error != 0 && error != ERELOOKUP) {
1981 			if (!ffs_fsfail_cleanup(VFSTOUFS(mp), error)) {
1982 				vn_printf(dvp,
1983 				    "IN_ENDOFF: failed to truncate, "
1984 				    "error %d\n", error);
1985 			}
1986 #ifdef UFS_DIRHASH
1987 			ufsdirhash_free(dp);
1988 #endif
1989 		}
1990 		SET_I_ENDOFF(dp, 0);
1991 	}
1992 	if ((dp->i_flag & IN_NEEDSYNC) != 0) {
1993 		do {
1994 			error = ffs_syncvnode(dvp, MNT_WAIT, 0);
1995 		} while (error == ERELOOKUP);
1996 	}
1997 
1998 	vput(dvp);
1999 
2000 	if (vp == NULL || ap->a_unlock_vp)
2001 		return (0);
2002 	MPASS(mp != NULL);
2003 
2004 	/*
2005 	 * It is possible that vp is reclaimed at this point. Only
2006 	 * routines that call us with a_unlock_vp == false can find
2007 	 * that their vp has been reclaimed. There are three areas
2008 	 * that are affected:
2009 	 * 1) vn_open_cred() - later VOPs could fail, but
2010 	 *    dead_open() returns 0 to simulate successful open.
2011 	 * 2) ffs_snapshot() - creation of snapshot fails with EBADF.
2012 	 * 3) NFS server (several places) - code is prepared to detect
2013 	 *    and respond to dead vnodes by returning ESTALE.
2014 	 */
2015 	VOP_LOCK(vp, vp_locked | LK_RETRY);
2016 	if (!VN_IS_DOOMED(vp))
2017 		return (0);
2018 
2019 	/*
2020 	 * Try harder to recover from reclaimed vp if reclaim was not
2021 	 * because underlying inode was cleared.  We saved inode
2022 	 * number and inode generation, so we can try to reinstantiate
2023 	 * exactly same version of inode.  If this fails, return
2024 	 * original doomed vnode and let caller to handle
2025 	 * consequences.
2026 	 *
2027 	 * Note that callers must keep write started around
2028 	 * VOP_VPUT_PAIR() calls, so it is safe to use mp without
2029 	 * busying it.
2030 	 */
2031 	VOP_UNLOCK(vp);
2032 	error = ffs_inotovp(mp, ip_ino, ip_gen, LK_EXCLUSIVE, &vp1,
2033 	    FFSV_REPLACE_DOOMED);
2034 	if (error != 0) {
2035 		VOP_LOCK(vp, vp_locked | LK_RETRY);
2036 	} else {
2037 		vrele(vp);
2038 		*vpp = vp1;
2039 	}
2040 	return (error);
2041 }
2042