1 /*- 2 * SPDX-License-Identifier: (BSD-2-Clause AND BSD-3-Clause) 3 * 4 * Copyright (c) 2002, 2003 Networks Associates Technology, Inc. 5 * All rights reserved. 6 * 7 * This software was developed for the FreeBSD Project by Marshall 8 * Kirk McKusick and Network Associates Laboratories, the Security 9 * Research Division of Network Associates, Inc. under DARPA/SPAWAR 10 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS 11 * research program 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 1. Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * Copyright (c) 1982, 1986, 1989, 1993 35 * The Regents of the University of California. All rights reserved. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 1. Redistributions of source code must retain the above copyright 41 * notice, this list of conditions and the following disclaimer. 42 * 2. Redistributions in binary form must reproduce the above copyright 43 * notice, this list of conditions and the following disclaimer in the 44 * documentation and/or other materials provided with the distribution. 45 * 3. Neither the name of the University nor the names of its contributors 46 * may be used to endorse or promote products derived from this software 47 * without specific prior written permission. 48 * 49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 59 * SUCH DAMAGE. 60 * from: $FreeBSD: .../ufs/ufs_readwrite.c,v 1.96 2002/08/12 09:22:11 phk ... 61 */ 62 63 #include <sys/cdefs.h> 64 #include "opt_directio.h" 65 #include "opt_ffs.h" 66 #include "opt_ufs.h" 67 68 #include <sys/param.h> 69 #include <sys/bio.h> 70 #include <sys/systm.h> 71 #include <sys/buf.h> 72 #include <sys/conf.h> 73 #include <sys/extattr.h> 74 #include <sys/kernel.h> 75 #include <sys/limits.h> 76 #include <sys/malloc.h> 77 #include <sys/mount.h> 78 #include <sys/priv.h> 79 #include <sys/rwlock.h> 80 #include <sys/stat.h> 81 #include <sys/sysctl.h> 82 #include <sys/vmmeter.h> 83 #include <sys/vnode.h> 84 85 #include <vm/vm.h> 86 #include <vm/vm_param.h> 87 #include <vm/vm_extern.h> 88 #include <vm/vm_object.h> 89 #include <vm/vm_page.h> 90 #include <vm/vm_pager.h> 91 #include <vm/vnode_pager.h> 92 93 #include <ufs/ufs/extattr.h> 94 #include <ufs/ufs/quota.h> 95 #include <ufs/ufs/inode.h> 96 #include <ufs/ufs/ufs_extern.h> 97 #include <ufs/ufs/ufsmount.h> 98 #include <ufs/ufs/dir.h> 99 #ifdef UFS_DIRHASH 100 #include <ufs/ufs/dirhash.h> 101 #endif 102 103 #include <ufs/ffs/fs.h> 104 #include <ufs/ffs/ffs_extern.h> 105 106 #define ALIGNED_TO(ptr, s) \ 107 (((uintptr_t)(ptr) & (_Alignof(s) - 1)) == 0) 108 109 #ifdef DIRECTIO 110 extern int ffs_rawread(struct vnode *vp, struct uio *uio, int *workdone); 111 #endif 112 static vop_fdatasync_t ffs_fdatasync; 113 static vop_fsync_t ffs_fsync; 114 static vop_getpages_t ffs_getpages; 115 static vop_getpages_async_t ffs_getpages_async; 116 static vop_lock1_t ffs_lock; 117 #ifdef INVARIANTS 118 static vop_unlock_t ffs_unlock_debug; 119 #endif 120 static vop_read_t ffs_read; 121 static vop_write_t ffs_write; 122 static int ffs_extread(struct vnode *vp, struct uio *uio, int ioflag); 123 static int ffs_extwrite(struct vnode *vp, struct uio *uio, int ioflag, 124 struct ucred *cred); 125 static vop_strategy_t ffsext_strategy; 126 static vop_closeextattr_t ffs_closeextattr; 127 static vop_deleteextattr_t ffs_deleteextattr; 128 static vop_getextattr_t ffs_getextattr; 129 static vop_listextattr_t ffs_listextattr; 130 static vop_openextattr_t ffs_openextattr; 131 static vop_setextattr_t ffs_setextattr; 132 static vop_vptofh_t ffs_vptofh; 133 static vop_vput_pair_t ffs_vput_pair; 134 135 vop_fplookup_vexec_t ufs_fplookup_vexec; 136 137 /* Global vfs data structures for ufs. */ 138 struct vop_vector ffs_vnodeops1 = { 139 .vop_default = &ufs_vnodeops, 140 .vop_fsync = ffs_fsync, 141 .vop_fdatasync = ffs_fdatasync, 142 .vop_getpages = ffs_getpages, 143 .vop_getpages_async = ffs_getpages_async, 144 .vop_lock1 = ffs_lock, 145 #ifdef INVARIANTS 146 .vop_unlock = ffs_unlock_debug, 147 #endif 148 .vop_read = ffs_read, 149 .vop_reallocblks = ffs_reallocblks, 150 .vop_write = ffs_write, 151 .vop_vptofh = ffs_vptofh, 152 .vop_vput_pair = ffs_vput_pair, 153 .vop_fplookup_vexec = ufs_fplookup_vexec, 154 .vop_fplookup_symlink = VOP_EAGAIN, 155 }; 156 VFS_VOP_VECTOR_REGISTER(ffs_vnodeops1); 157 158 struct vop_vector ffs_fifoops1 = { 159 .vop_default = &ufs_fifoops, 160 .vop_fsync = ffs_fsync, 161 .vop_fdatasync = ffs_fdatasync, 162 .vop_lock1 = ffs_lock, 163 #ifdef INVARIANTS 164 .vop_unlock = ffs_unlock_debug, 165 #endif 166 .vop_vptofh = ffs_vptofh, 167 .vop_fplookup_vexec = VOP_EAGAIN, 168 .vop_fplookup_symlink = VOP_EAGAIN, 169 }; 170 VFS_VOP_VECTOR_REGISTER(ffs_fifoops1); 171 172 /* Global vfs data structures for ufs. */ 173 struct vop_vector ffs_vnodeops2 = { 174 .vop_default = &ufs_vnodeops, 175 .vop_fsync = ffs_fsync, 176 .vop_fdatasync = ffs_fdatasync, 177 .vop_getpages = ffs_getpages, 178 .vop_getpages_async = ffs_getpages_async, 179 .vop_lock1 = ffs_lock, 180 #ifdef INVARIANTS 181 .vop_unlock = ffs_unlock_debug, 182 #endif 183 .vop_read = ffs_read, 184 .vop_reallocblks = ffs_reallocblks, 185 .vop_write = ffs_write, 186 .vop_closeextattr = ffs_closeextattr, 187 .vop_deleteextattr = ffs_deleteextattr, 188 .vop_getextattr = ffs_getextattr, 189 .vop_listextattr = ffs_listextattr, 190 .vop_openextattr = ffs_openextattr, 191 .vop_setextattr = ffs_setextattr, 192 .vop_vptofh = ffs_vptofh, 193 .vop_vput_pair = ffs_vput_pair, 194 .vop_fplookup_vexec = ufs_fplookup_vexec, 195 .vop_fplookup_symlink = VOP_EAGAIN, 196 }; 197 VFS_VOP_VECTOR_REGISTER(ffs_vnodeops2); 198 199 struct vop_vector ffs_fifoops2 = { 200 .vop_default = &ufs_fifoops, 201 .vop_fsync = ffs_fsync, 202 .vop_fdatasync = ffs_fdatasync, 203 .vop_lock1 = ffs_lock, 204 #ifdef INVARIANTS 205 .vop_unlock = ffs_unlock_debug, 206 #endif 207 .vop_reallocblks = ffs_reallocblks, 208 .vop_strategy = ffsext_strategy, 209 .vop_closeextattr = ffs_closeextattr, 210 .vop_deleteextattr = ffs_deleteextattr, 211 .vop_getextattr = ffs_getextattr, 212 .vop_listextattr = ffs_listextattr, 213 .vop_openextattr = ffs_openextattr, 214 .vop_setextattr = ffs_setextattr, 215 .vop_vptofh = ffs_vptofh, 216 .vop_fplookup_vexec = VOP_EAGAIN, 217 .vop_fplookup_symlink = VOP_EAGAIN, 218 }; 219 VFS_VOP_VECTOR_REGISTER(ffs_fifoops2); 220 221 /* 222 * Synch an open file. 223 */ 224 /* ARGSUSED */ 225 static int 226 ffs_fsync(struct vop_fsync_args *ap) 227 { 228 struct vnode *vp; 229 struct bufobj *bo; 230 int error; 231 232 vp = ap->a_vp; 233 bo = &vp->v_bufobj; 234 retry: 235 error = ffs_syncvnode(vp, ap->a_waitfor, 0); 236 if (error) 237 return (error); 238 if (ap->a_waitfor == MNT_WAIT && DOINGSOFTDEP(vp)) { 239 error = softdep_fsync(vp); 240 if (error) 241 return (error); 242 243 /* 244 * The softdep_fsync() function may drop vp lock, 245 * allowing for dirty buffers to reappear on the 246 * bo_dirty list. Recheck and resync as needed. 247 */ 248 BO_LOCK(bo); 249 if ((vp->v_type == VREG || vp->v_type == VDIR) && 250 (bo->bo_numoutput > 0 || bo->bo_dirty.bv_cnt > 0)) { 251 BO_UNLOCK(bo); 252 goto retry; 253 } 254 BO_UNLOCK(bo); 255 } 256 if (ffs_fsfail_cleanup(VFSTOUFS(vp->v_mount), 0)) 257 return (ENXIO); 258 return (0); 259 } 260 261 int 262 ffs_syncvnode(struct vnode *vp, int waitfor, int flags) 263 { 264 struct inode *ip; 265 struct bufobj *bo; 266 struct ufsmount *ump; 267 struct buf *bp, *nbp; 268 ufs_lbn_t lbn; 269 int error, passes, wflag; 270 bool still_dirty, unlocked, wait; 271 272 ip = VTOI(vp); 273 bo = &vp->v_bufobj; 274 ump = VFSTOUFS(vp->v_mount); 275 #ifdef WITNESS 276 wflag = IS_SNAPSHOT(ip) ? LK_NOWITNESS : 0; 277 #else 278 wflag = 0; 279 #endif 280 281 /* 282 * When doing MNT_WAIT we must first flush all dependencies 283 * on the inode. 284 */ 285 if (DOINGSOFTDEP(vp) && waitfor == MNT_WAIT && 286 (error = softdep_sync_metadata(vp)) != 0) { 287 if (ffs_fsfail_cleanup(ump, error)) 288 error = 0; 289 return (error); 290 } 291 292 /* 293 * Flush all dirty buffers associated with a vnode. 294 */ 295 error = 0; 296 passes = 0; 297 wait = false; /* Always do an async pass first. */ 298 unlocked = false; 299 lbn = lblkno(ITOFS(ip), (ip->i_size + ITOFS(ip)->fs_bsize - 1)); 300 BO_LOCK(bo); 301 loop: 302 TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) 303 bp->b_vflags &= ~BV_SCANNED; 304 TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) { 305 /* 306 * Reasons to skip this buffer: it has already been considered 307 * on this pass, the buffer has dependencies that will cause 308 * it to be redirtied and it has not already been deferred, 309 * or it is already being written. 310 */ 311 if ((bp->b_vflags & BV_SCANNED) != 0) 312 continue; 313 bp->b_vflags |= BV_SCANNED; 314 /* 315 * Flush indirects in order, if requested. 316 * 317 * Note that if only datasync is requested, we can 318 * skip indirect blocks when softupdates are not 319 * active. Otherwise we must flush them with data, 320 * since dependencies prevent data block writes. 321 */ 322 if (waitfor == MNT_WAIT && bp->b_lblkno <= -UFS_NDADDR && 323 (lbn_level(bp->b_lblkno) >= passes || 324 ((flags & DATA_ONLY) != 0 && !DOINGSOFTDEP(vp)))) 325 continue; 326 if (bp->b_lblkno > lbn) 327 panic("ffs_syncvnode: syncing truncated data."); 328 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) == 0) { 329 BO_UNLOCK(bo); 330 } else if (wait) { 331 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL | 332 LK_INTERLOCK | wflag, BO_LOCKPTR(bo)) != 0) { 333 BO_LOCK(bo); 334 bp->b_vflags &= ~BV_SCANNED; 335 goto next_locked; 336 } 337 } else 338 continue; 339 if ((bp->b_flags & B_DELWRI) == 0) 340 panic("ffs_fsync: not dirty"); 341 /* 342 * Check for dependencies and potentially complete them. 343 */ 344 if (!LIST_EMPTY(&bp->b_dep) && 345 (error = softdep_sync_buf(vp, bp, 346 wait ? MNT_WAIT : MNT_NOWAIT)) != 0) { 347 /* 348 * Lock order conflict, buffer was already unlocked, 349 * and vnode possibly unlocked. 350 */ 351 if (error == ERELOOKUP) { 352 if (vp->v_data == NULL) 353 return (EBADF); 354 unlocked = true; 355 if (DOINGSOFTDEP(vp) && waitfor == MNT_WAIT && 356 (error = softdep_sync_metadata(vp)) != 0) { 357 if (ffs_fsfail_cleanup(ump, error)) 358 error = 0; 359 return (unlocked && error == 0 ? 360 ERELOOKUP : error); 361 } 362 /* Re-evaluate inode size */ 363 lbn = lblkno(ITOFS(ip), (ip->i_size + 364 ITOFS(ip)->fs_bsize - 1)); 365 goto next; 366 } 367 /* I/O error. */ 368 if (error != EBUSY) { 369 BUF_UNLOCK(bp); 370 return (error); 371 } 372 /* If we deferred once, don't defer again. */ 373 if ((bp->b_flags & B_DEFERRED) == 0) { 374 bp->b_flags |= B_DEFERRED; 375 BUF_UNLOCK(bp); 376 goto next; 377 } 378 } 379 if (wait) { 380 bremfree(bp); 381 error = bwrite(bp); 382 if (ffs_fsfail_cleanup(ump, error)) 383 error = 0; 384 if (error != 0) 385 return (error); 386 } else if ((bp->b_flags & B_CLUSTEROK)) { 387 (void) vfs_bio_awrite(bp); 388 } else { 389 bremfree(bp); 390 (void) bawrite(bp); 391 } 392 next: 393 /* 394 * Since we may have slept during the I/O, we need 395 * to start from a known point. 396 */ 397 BO_LOCK(bo); 398 next_locked: 399 nbp = TAILQ_FIRST(&bo->bo_dirty.bv_hd); 400 } 401 if (waitfor != MNT_WAIT) { 402 BO_UNLOCK(bo); 403 if ((flags & NO_INO_UPDT) != 0) 404 return (unlocked ? ERELOOKUP : 0); 405 error = ffs_update(vp, 0); 406 if (error == 0 && unlocked) 407 error = ERELOOKUP; 408 return (error); 409 } 410 /* Drain IO to see if we're done. */ 411 bufobj_wwait(bo, 0, 0); 412 /* 413 * Block devices associated with filesystems may have new I/O 414 * requests posted for them even if the vnode is locked, so no 415 * amount of trying will get them clean. We make several passes 416 * as a best effort. 417 * 418 * Regular files may need multiple passes to flush all dependency 419 * work as it is possible that we must write once per indirect 420 * level, once for the leaf, and once for the inode and each of 421 * these will be done with one sync and one async pass. 422 */ 423 if (bo->bo_dirty.bv_cnt > 0) { 424 if ((flags & DATA_ONLY) == 0) { 425 still_dirty = true; 426 } else { 427 /* 428 * For data-only sync, dirty indirect buffers 429 * are ignored. 430 */ 431 still_dirty = false; 432 TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) { 433 if (bp->b_lblkno > -UFS_NDADDR) { 434 still_dirty = true; 435 break; 436 } 437 } 438 } 439 440 if (still_dirty) { 441 /* Write the inode after sync passes to flush deps. */ 442 if (wait && DOINGSOFTDEP(vp) && 443 (flags & NO_INO_UPDT) == 0) { 444 BO_UNLOCK(bo); 445 ffs_update(vp, 1); 446 BO_LOCK(bo); 447 } 448 /* switch between sync/async. */ 449 wait = !wait; 450 if (wait || ++passes < UFS_NIADDR + 2) 451 goto loop; 452 } 453 } 454 BO_UNLOCK(bo); 455 error = 0; 456 if ((flags & DATA_ONLY) == 0) { 457 if ((flags & NO_INO_UPDT) == 0) 458 error = ffs_update(vp, 1); 459 if (DOINGSUJ(vp)) 460 softdep_journal_fsync(VTOI(vp)); 461 } else if ((ip->i_flags & (IN_SIZEMOD | IN_IBLKDATA)) != 0) { 462 error = ffs_update(vp, 1); 463 } 464 if (error == 0 && unlocked) 465 error = ERELOOKUP; 466 if (error == 0) 467 ip->i_flag &= ~IN_NEEDSYNC; 468 return (error); 469 } 470 471 static int 472 ffs_fdatasync(struct vop_fdatasync_args *ap) 473 { 474 475 return (ffs_syncvnode(ap->a_vp, MNT_WAIT, DATA_ONLY)); 476 } 477 478 static int 479 ffs_lock( 480 struct vop_lock1_args /* { 481 struct vnode *a_vp; 482 int a_flags; 483 char *file; 484 int line; 485 } */ *ap) 486 { 487 #if !defined(NO_FFS_SNAPSHOT) || defined(DIAGNOSTIC) 488 struct vnode *vp = ap->a_vp; 489 #endif /* !NO_FFS_SNAPSHOT || DIAGNOSTIC */ 490 #ifdef DIAGNOSTIC 491 struct inode *ip; 492 #endif /* DIAGNOSTIC */ 493 int result; 494 #ifndef NO_FFS_SNAPSHOT 495 int flags; 496 struct lock *lkp; 497 498 /* 499 * Adaptive spinning mixed with SU leads to trouble. use a giant hammer 500 * and only use it when LK_NODDLKTREAT is set. Currently this means it 501 * is only used during path lookup. 502 */ 503 if ((ap->a_flags & LK_NODDLKTREAT) != 0) 504 ap->a_flags |= LK_ADAPTIVE; 505 switch (ap->a_flags & LK_TYPE_MASK) { 506 case LK_SHARED: 507 case LK_UPGRADE: 508 case LK_EXCLUSIVE: 509 flags = ap->a_flags; 510 for (;;) { 511 #ifdef DEBUG_VFS_LOCKS 512 VNPASS(vp->v_holdcnt != 0, vp); 513 #endif /* DEBUG_VFS_LOCKS */ 514 lkp = vp->v_vnlock; 515 result = lockmgr_lock_flags(lkp, flags, 516 &VI_MTX(vp)->lock_object, ap->a_file, ap->a_line); 517 if (lkp == vp->v_vnlock || result != 0) 518 break; 519 /* 520 * Apparent success, except that the vnode 521 * mutated between snapshot file vnode and 522 * regular file vnode while this process 523 * slept. The lock currently held is not the 524 * right lock. Release it, and try to get the 525 * new lock. 526 */ 527 lockmgr_unlock(lkp); 528 if ((flags & (LK_INTERLOCK | LK_NOWAIT)) == 529 (LK_INTERLOCK | LK_NOWAIT)) 530 return (EBUSY); 531 if ((flags & LK_TYPE_MASK) == LK_UPGRADE) 532 flags = (flags & ~LK_TYPE_MASK) | LK_EXCLUSIVE; 533 flags &= ~LK_INTERLOCK; 534 } 535 #ifdef DIAGNOSTIC 536 switch (ap->a_flags & LK_TYPE_MASK) { 537 case LK_UPGRADE: 538 case LK_EXCLUSIVE: 539 if (result == 0 && vp->v_vnlock->lk_recurse == 0) { 540 ip = VTOI(vp); 541 if (ip != NULL) 542 ip->i_lock_gen++; 543 } 544 } 545 #endif /* DIAGNOSTIC */ 546 break; 547 default: 548 #ifdef DIAGNOSTIC 549 if ((ap->a_flags & LK_TYPE_MASK) == LK_DOWNGRADE) { 550 ip = VTOI(vp); 551 if (ip != NULL) 552 ufs_unlock_tracker(ip); 553 } 554 #endif /* DIAGNOSTIC */ 555 result = VOP_LOCK1_APV(&ufs_vnodeops, ap); 556 break; 557 } 558 #else /* NO_FFS_SNAPSHOT */ 559 /* 560 * See above for an explanation. 561 */ 562 if ((ap->a_flags & LK_NODDLKTREAT) != 0) 563 ap->a_flags |= LK_ADAPTIVE; 564 #ifdef DIAGNOSTIC 565 if ((ap->a_flags & LK_TYPE_MASK) == LK_DOWNGRADE) { 566 ip = VTOI(vp); 567 if (ip != NULL) 568 ufs_unlock_tracker(ip); 569 } 570 #endif /* DIAGNOSTIC */ 571 result = VOP_LOCK1_APV(&ufs_vnodeops, ap); 572 #endif /* NO_FFS_SNAPSHOT */ 573 #ifdef DIAGNOSTIC 574 switch (ap->a_flags & LK_TYPE_MASK) { 575 case LK_UPGRADE: 576 case LK_EXCLUSIVE: 577 if (result == 0 && vp->v_vnlock->lk_recurse == 0) { 578 ip = VTOI(vp); 579 if (ip != NULL) 580 ip->i_lock_gen++; 581 } 582 } 583 #endif /* DIAGNOSTIC */ 584 return (result); 585 } 586 587 #ifdef INVARIANTS 588 static int 589 ffs_unlock_debug(struct vop_unlock_args *ap) 590 { 591 struct vnode *vp; 592 struct inode *ip; 593 594 vp = ap->a_vp; 595 ip = VTOI(vp); 596 if (ip->i_flag & UFS_INODE_FLAG_LAZY_MASK_ASSERTABLE) { 597 if ((vp->v_mflag & VMP_LAZYLIST) == 0) { 598 VI_LOCK(vp); 599 VNASSERT((vp->v_mflag & VMP_LAZYLIST), vp, 600 ("%s: modified vnode (%x) not on lazy list", 601 __func__, ip->i_flag)); 602 VI_UNLOCK(vp); 603 } 604 } 605 KASSERT(vp->v_type != VDIR || vp->v_vnlock->lk_recurse != 0 || 606 (ip->i_flag & IN_ENDOFF) == 0, 607 ("ufs dir vp %p ip %p flags %#x", vp, ip, ip->i_flag)); 608 #ifdef DIAGNOSTIC 609 if (VOP_ISLOCKED(vp) == LK_EXCLUSIVE && ip != NULL && 610 vp->v_vnlock->lk_recurse == 0) 611 ufs_unlock_tracker(ip); 612 #endif 613 return (VOP_UNLOCK_APV(&ufs_vnodeops, ap)); 614 } 615 #endif 616 617 static int 618 ffs_read_hole(struct uio *uio, long xfersize, long *size) 619 { 620 ssize_t saved_resid, tlen; 621 int error; 622 623 while (xfersize > 0) { 624 tlen = min(xfersize, ZERO_REGION_SIZE); 625 saved_resid = uio->uio_resid; 626 error = vn_io_fault_uiomove(__DECONST(void *, zero_region), 627 tlen, uio); 628 if (error != 0) 629 return (error); 630 tlen = saved_resid - uio->uio_resid; 631 xfersize -= tlen; 632 *size -= tlen; 633 } 634 return (0); 635 } 636 637 /* 638 * Vnode op for reading. 639 */ 640 static int 641 ffs_read( 642 struct vop_read_args /* { 643 struct vnode *a_vp; 644 struct uio *a_uio; 645 int a_ioflag; 646 struct ucred *a_cred; 647 } */ *ap) 648 { 649 struct vnode *vp; 650 struct inode *ip; 651 struct uio *uio; 652 struct fs *fs; 653 struct buf *bp; 654 ufs_lbn_t lbn, nextlbn; 655 off_t bytesinfile; 656 long size, xfersize, blkoffset; 657 ssize_t orig_resid; 658 int bflag, error, ioflag, seqcount; 659 660 vp = ap->a_vp; 661 uio = ap->a_uio; 662 ioflag = ap->a_ioflag; 663 if (ap->a_ioflag & IO_EXT) 664 #ifdef notyet 665 return (ffs_extread(vp, uio, ioflag)); 666 #else 667 panic("ffs_read+IO_EXT"); 668 #endif 669 #ifdef DIRECTIO 670 if ((ioflag & IO_DIRECT) != 0) { 671 int workdone; 672 673 error = ffs_rawread(vp, uio, &workdone); 674 if (error != 0 || workdone != 0) 675 return error; 676 } 677 #endif 678 679 seqcount = ap->a_ioflag >> IO_SEQSHIFT; 680 ip = VTOI(vp); 681 682 #ifdef INVARIANTS 683 if (uio->uio_rw != UIO_READ) 684 panic("ffs_read: mode"); 685 686 if (vp->v_type == VLNK) { 687 if ((int)ip->i_size < VFSTOUFS(vp->v_mount)->um_maxsymlinklen) 688 panic("ffs_read: short symlink"); 689 } else if (vp->v_type != VREG && vp->v_type != VDIR) 690 panic("ffs_read: type %d", vp->v_type); 691 #endif 692 orig_resid = uio->uio_resid; 693 KASSERT(orig_resid >= 0, ("ffs_read: uio->uio_resid < 0")); 694 if (orig_resid == 0) 695 return (0); 696 KASSERT(uio->uio_offset >= 0, ("ffs_read: uio->uio_offset < 0")); 697 fs = ITOFS(ip); 698 if (uio->uio_offset < ip->i_size && 699 uio->uio_offset >= fs->fs_maxfilesize) 700 return (EOVERFLOW); 701 702 bflag = GB_UNMAPPED | (uio->uio_segflg == UIO_NOCOPY ? 0 : GB_NOSPARSE); 703 #ifdef WITNESS 704 bflag |= IS_SNAPSHOT(ip) ? GB_NOWITNESS : 0; 705 #endif 706 for (error = 0, bp = NULL; uio->uio_resid > 0; bp = NULL) { 707 if ((bytesinfile = ip->i_size - uio->uio_offset) <= 0) 708 break; 709 lbn = lblkno(fs, uio->uio_offset); 710 nextlbn = lbn + 1; 711 712 /* 713 * size of buffer. The buffer representing the 714 * end of the file is rounded up to the size of 715 * the block type ( fragment or full block, 716 * depending ). 717 */ 718 size = blksize(fs, ip, lbn); 719 blkoffset = blkoff(fs, uio->uio_offset); 720 721 /* 722 * The amount we want to transfer in this iteration is 723 * one FS block less the amount of the data before 724 * our startpoint (duh!) 725 */ 726 xfersize = fs->fs_bsize - blkoffset; 727 728 /* 729 * But if we actually want less than the block, 730 * or the file doesn't have a whole block more of data, 731 * then use the lesser number. 732 */ 733 if (uio->uio_resid < xfersize) 734 xfersize = uio->uio_resid; 735 if (bytesinfile < xfersize) 736 xfersize = bytesinfile; 737 738 if (lblktosize(fs, nextlbn) >= ip->i_size) { 739 /* 740 * Don't do readahead if this is the end of the file. 741 */ 742 error = bread_gb(vp, lbn, size, NOCRED, bflag, &bp); 743 } else if ((vp->v_mount->mnt_flag & MNT_NOCLUSTERR) == 0) { 744 /* 745 * Otherwise if we are allowed to cluster, 746 * grab as much as we can. 747 * 748 * XXX This may not be a win if we are not 749 * doing sequential access. 750 */ 751 error = cluster_read(vp, ip->i_size, lbn, 752 size, NOCRED, blkoffset + uio->uio_resid, 753 seqcount, bflag, &bp); 754 } else if (seqcount > 1) { 755 /* 756 * If we are NOT allowed to cluster, then 757 * if we appear to be acting sequentially, 758 * fire off a request for a readahead 759 * as well as a read. Note that the 4th and 5th 760 * arguments point to arrays of the size specified in 761 * the 6th argument. 762 */ 763 int nextsize = blksize(fs, ip, nextlbn); 764 error = breadn_flags(vp, lbn, lbn, size, &nextlbn, 765 &nextsize, 1, NOCRED, bflag, NULL, &bp); 766 } else { 767 /* 768 * Failing all of the above, just read what the 769 * user asked for. Interestingly, the same as 770 * the first option above. 771 */ 772 error = bread_gb(vp, lbn, size, NOCRED, bflag, &bp); 773 } 774 if (error == EJUSTRETURN) { 775 error = ffs_read_hole(uio, xfersize, &size); 776 if (error == 0) 777 continue; 778 } 779 if (error != 0) { 780 brelse(bp); 781 bp = NULL; 782 break; 783 } 784 785 /* 786 * We should only get non-zero b_resid when an I/O error 787 * has occurred, which should cause us to break above. 788 * However, if the short read did not cause an error, 789 * then we want to ensure that we do not uiomove bad 790 * or uninitialized data. 791 */ 792 size -= bp->b_resid; 793 if (size < xfersize) { 794 if (size == 0) 795 break; 796 xfersize = size; 797 } 798 799 if (buf_mapped(bp)) { 800 error = vn_io_fault_uiomove((char *)bp->b_data + 801 blkoffset, (int)xfersize, uio); 802 } else { 803 error = vn_io_fault_pgmove(bp->b_pages, 804 blkoffset + (bp->b_offset & PAGE_MASK), 805 (int)xfersize, uio); 806 } 807 if (error) 808 break; 809 810 vfs_bio_brelse(bp, ioflag); 811 } 812 813 /* 814 * This can only happen in the case of an error 815 * because the loop above resets bp to NULL on each iteration 816 * and on normal completion has not set a new value into it. 817 * so it must have come from a 'break' statement 818 */ 819 if (bp != NULL) 820 vfs_bio_brelse(bp, ioflag); 821 822 if ((error == 0 || uio->uio_resid != orig_resid) && 823 (vp->v_mount->mnt_flag & (MNT_NOATIME | MNT_RDONLY)) == 0) 824 UFS_INODE_SET_FLAG_SHARED(ip, IN_ACCESS); 825 return (error); 826 } 827 828 /* 829 * Vnode op for writing. 830 */ 831 static int 832 ffs_write( 833 struct vop_write_args /* { 834 struct vnode *a_vp; 835 struct uio *a_uio; 836 int a_ioflag; 837 struct ucred *a_cred; 838 } */ *ap) 839 { 840 struct vnode *vp; 841 struct uio *uio; 842 struct inode *ip; 843 struct fs *fs; 844 struct buf *bp; 845 ufs_lbn_t lbn; 846 off_t osize; 847 ssize_t resid, r; 848 int seqcount; 849 int blkoffset, error, flags, ioflag, size, xfersize; 850 851 vp = ap->a_vp; 852 if (DOINGSUJ(vp)) 853 softdep_prealloc(vp, MNT_WAIT); 854 if (vp->v_data == NULL) 855 return (EBADF); 856 857 uio = ap->a_uio; 858 ioflag = ap->a_ioflag; 859 if (ap->a_ioflag & IO_EXT) 860 #ifdef notyet 861 return (ffs_extwrite(vp, uio, ioflag, ap->a_cred)); 862 #else 863 panic("ffs_write+IO_EXT"); 864 #endif 865 866 seqcount = ap->a_ioflag >> IO_SEQSHIFT; 867 ip = VTOI(vp); 868 869 #ifdef INVARIANTS 870 if (uio->uio_rw != UIO_WRITE) 871 panic("ffs_write: mode"); 872 #endif 873 874 switch (vp->v_type) { 875 case VREG: 876 if (ioflag & IO_APPEND) 877 uio->uio_offset = ip->i_size; 878 if ((ip->i_flags & APPEND) && uio->uio_offset != ip->i_size) 879 return (EPERM); 880 /* FALLTHROUGH */ 881 case VLNK: 882 break; 883 case VDIR: 884 panic("ffs_write: dir write"); 885 break; 886 default: 887 panic("ffs_write: type %p %d (%d,%d)", vp, (int)vp->v_type, 888 (int)uio->uio_offset, 889 (int)uio->uio_resid 890 ); 891 } 892 893 KASSERT(uio->uio_resid >= 0, ("ffs_write: uio->uio_resid < 0")); 894 KASSERT(uio->uio_offset >= 0, ("ffs_write: uio->uio_offset < 0")); 895 fs = ITOFS(ip); 896 897 /* 898 * Maybe this should be above the vnode op call, but so long as 899 * file servers have no limits, I don't think it matters. 900 */ 901 error = vn_rlimit_fsizex(vp, uio, fs->fs_maxfilesize, &r, 902 uio->uio_td); 903 if (error != 0) { 904 vn_rlimit_fsizex_res(uio, r); 905 return (error); 906 } 907 908 resid = uio->uio_resid; 909 osize = ip->i_size; 910 if (seqcount > BA_SEQMAX) 911 flags = BA_SEQMAX << BA_SEQSHIFT; 912 else 913 flags = seqcount << BA_SEQSHIFT; 914 if (ioflag & IO_SYNC) 915 flags |= IO_SYNC; 916 flags |= BA_UNMAPPED; 917 918 for (error = 0; uio->uio_resid > 0;) { 919 lbn = lblkno(fs, uio->uio_offset); 920 blkoffset = blkoff(fs, uio->uio_offset); 921 xfersize = fs->fs_bsize - blkoffset; 922 if (uio->uio_resid < xfersize) 923 xfersize = uio->uio_resid; 924 if (uio->uio_offset + xfersize > ip->i_size) 925 vnode_pager_setsize(vp, uio->uio_offset + xfersize); 926 927 /* 928 * We must perform a read-before-write if the transfer size 929 * does not cover the entire buffer. 930 */ 931 if (fs->fs_bsize > xfersize) 932 flags |= BA_CLRBUF; 933 else 934 flags &= ~BA_CLRBUF; 935 /* XXX is uio->uio_offset the right thing here? */ 936 error = UFS_BALLOC(vp, uio->uio_offset, xfersize, 937 ap->a_cred, flags, &bp); 938 if (error != 0) { 939 vnode_pager_setsize(vp, ip->i_size); 940 break; 941 } 942 if ((ioflag & (IO_SYNC|IO_INVAL)) == (IO_SYNC|IO_INVAL)) 943 bp->b_flags |= B_NOCACHE; 944 945 if (uio->uio_offset + xfersize > ip->i_size) { 946 ip->i_size = uio->uio_offset + xfersize; 947 DIP_SET(ip, i_size, ip->i_size); 948 UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE); 949 } 950 951 size = blksize(fs, ip, lbn) - bp->b_resid; 952 if (size < xfersize) 953 xfersize = size; 954 955 if (buf_mapped(bp)) { 956 error = vn_io_fault_uiomove((char *)bp->b_data + 957 blkoffset, (int)xfersize, uio); 958 } else { 959 error = vn_io_fault_pgmove(bp->b_pages, 960 blkoffset + (bp->b_offset & PAGE_MASK), 961 (int)xfersize, uio); 962 } 963 /* 964 * If the buffer is not already filled and we encounter an 965 * error while trying to fill it, we have to clear out any 966 * garbage data from the pages instantiated for the buffer. 967 * If we do not, a failed uiomove() during a write can leave 968 * the prior contents of the pages exposed to a userland mmap. 969 * 970 * Note that we need only clear buffers with a transfer size 971 * equal to the block size because buffers with a shorter 972 * transfer size were cleared above by the call to UFS_BALLOC() 973 * with the BA_CLRBUF flag set. 974 * 975 * If the source region for uiomove identically mmaps the 976 * buffer, uiomove() performed the NOP copy, and the buffer 977 * content remains valid because the page fault handler 978 * validated the pages. 979 */ 980 if (error != 0 && (bp->b_flags & B_CACHE) == 0 && 981 fs->fs_bsize == xfersize) { 982 if (error == EFAULT && LIST_EMPTY(&bp->b_dep)) { 983 bp->b_flags |= B_INVAL | B_RELBUF | B_NOCACHE; 984 brelse(bp); 985 break; 986 } else { 987 vfs_bio_clrbuf(bp); 988 } 989 } 990 991 vfs_bio_set_flags(bp, ioflag); 992 993 /* 994 * If IO_SYNC each buffer is written synchronously. Otherwise 995 * if we have a severe page deficiency write the buffer 996 * asynchronously. Otherwise try to cluster, and if that 997 * doesn't do it then either do an async write (if O_DIRECT), 998 * or a delayed write (if not). 999 */ 1000 if (ioflag & IO_SYNC) { 1001 (void)bwrite(bp); 1002 } else if (vm_page_count_severe() || 1003 buf_dirty_count_severe() || 1004 (ioflag & IO_ASYNC)) { 1005 bp->b_flags |= B_CLUSTEROK; 1006 bawrite(bp); 1007 } else if (xfersize + blkoffset == fs->fs_bsize) { 1008 if ((vp->v_mount->mnt_flag & MNT_NOCLUSTERW) == 0) { 1009 bp->b_flags |= B_CLUSTEROK; 1010 cluster_write(vp, &ip->i_clusterw, bp, 1011 ip->i_size, seqcount, GB_UNMAPPED); 1012 } else { 1013 bawrite(bp); 1014 } 1015 } else if (ioflag & IO_DIRECT) { 1016 bp->b_flags |= B_CLUSTEROK; 1017 bawrite(bp); 1018 } else { 1019 bp->b_flags |= B_CLUSTEROK; 1020 bdwrite(bp); 1021 } 1022 if (error || xfersize == 0) 1023 break; 1024 UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_UPDATE); 1025 } 1026 /* 1027 * If we successfully wrote any data, and we are not the superuser 1028 * we clear the setuid and setgid bits as a precaution against 1029 * tampering. 1030 */ 1031 if ((ip->i_mode & (ISUID | ISGID)) && resid > uio->uio_resid && 1032 ap->a_cred) { 1033 if (priv_check_cred(ap->a_cred, PRIV_VFS_RETAINSUGID)) { 1034 vn_seqc_write_begin(vp); 1035 UFS_INODE_SET_MODE(ip, ip->i_mode & ~(ISUID | ISGID)); 1036 DIP_SET(ip, i_mode, ip->i_mode); 1037 vn_seqc_write_end(vp); 1038 } 1039 } 1040 if (error) { 1041 if (ioflag & IO_UNIT) { 1042 (void)ffs_truncate(vp, osize, 1043 IO_NORMAL | (ioflag & IO_SYNC), ap->a_cred); 1044 uio->uio_offset -= resid - uio->uio_resid; 1045 uio->uio_resid = resid; 1046 } 1047 } else if (resid > uio->uio_resid && (ioflag & IO_SYNC)) { 1048 if (!(ioflag & IO_DATASYNC) || 1049 (ip->i_flags & (IN_SIZEMOD | IN_IBLKDATA))) 1050 error = ffs_update(vp, 1); 1051 if (ffs_fsfail_cleanup(VFSTOUFS(vp->v_mount), error)) 1052 error = ENXIO; 1053 } 1054 vn_rlimit_fsizex_res(uio, r); 1055 return (error); 1056 } 1057 1058 /* 1059 * Extended attribute area reading. 1060 */ 1061 static int 1062 ffs_extread(struct vnode *vp, struct uio *uio, int ioflag) 1063 { 1064 struct inode *ip; 1065 struct ufs2_dinode *dp; 1066 struct fs *fs; 1067 struct buf *bp; 1068 ufs_lbn_t lbn, nextlbn; 1069 off_t bytesinfile; 1070 long size, xfersize, blkoffset; 1071 ssize_t orig_resid; 1072 int error; 1073 1074 ip = VTOI(vp); 1075 fs = ITOFS(ip); 1076 dp = ip->i_din2; 1077 1078 #ifdef INVARIANTS 1079 if (uio->uio_rw != UIO_READ || fs->fs_magic != FS_UFS2_MAGIC) 1080 panic("ffs_extread: mode"); 1081 1082 #endif 1083 orig_resid = uio->uio_resid; 1084 KASSERT(orig_resid >= 0, ("ffs_extread: uio->uio_resid < 0")); 1085 if (orig_resid == 0) 1086 return (0); 1087 KASSERT(uio->uio_offset >= 0, ("ffs_extread: uio->uio_offset < 0")); 1088 1089 for (error = 0, bp = NULL; uio->uio_resid > 0; bp = NULL) { 1090 if ((bytesinfile = dp->di_extsize - uio->uio_offset) <= 0) 1091 break; 1092 lbn = lblkno(fs, uio->uio_offset); 1093 nextlbn = lbn + 1; 1094 1095 /* 1096 * size of buffer. The buffer representing the 1097 * end of the file is rounded up to the size of 1098 * the block type ( fragment or full block, 1099 * depending ). 1100 */ 1101 size = sblksize(fs, dp->di_extsize, lbn); 1102 blkoffset = blkoff(fs, uio->uio_offset); 1103 1104 /* 1105 * The amount we want to transfer in this iteration is 1106 * one FS block less the amount of the data before 1107 * our startpoint (duh!) 1108 */ 1109 xfersize = fs->fs_bsize - blkoffset; 1110 1111 /* 1112 * But if we actually want less than the block, 1113 * or the file doesn't have a whole block more of data, 1114 * then use the lesser number. 1115 */ 1116 if (uio->uio_resid < xfersize) 1117 xfersize = uio->uio_resid; 1118 if (bytesinfile < xfersize) 1119 xfersize = bytesinfile; 1120 1121 if (lblktosize(fs, nextlbn) >= dp->di_extsize) { 1122 /* 1123 * Don't do readahead if this is the end of the info. 1124 */ 1125 error = bread(vp, -1 - lbn, size, NOCRED, &bp); 1126 } else { 1127 /* 1128 * If we have a second block, then 1129 * fire off a request for a readahead 1130 * as well as a read. Note that the 4th and 5th 1131 * arguments point to arrays of the size specified in 1132 * the 6th argument. 1133 */ 1134 int nextsize = sblksize(fs, dp->di_extsize, nextlbn); 1135 nextlbn = -1 - nextlbn; 1136 error = breadn(vp, -1 - lbn, 1137 size, &nextlbn, &nextsize, 1, NOCRED, &bp); 1138 } 1139 if (error) { 1140 brelse(bp); 1141 bp = NULL; 1142 break; 1143 } 1144 1145 /* 1146 * We should only get non-zero b_resid when an I/O error 1147 * has occurred, which should cause us to break above. 1148 * However, if the short read did not cause an error, 1149 * then we want to ensure that we do not uiomove bad 1150 * or uninitialized data. 1151 */ 1152 size -= bp->b_resid; 1153 if (size < xfersize) { 1154 if (size == 0) 1155 break; 1156 xfersize = size; 1157 } 1158 1159 error = uiomove((char *)bp->b_data + blkoffset, 1160 (int)xfersize, uio); 1161 if (error) 1162 break; 1163 vfs_bio_brelse(bp, ioflag); 1164 } 1165 1166 /* 1167 * This can only happen in the case of an error 1168 * because the loop above resets bp to NULL on each iteration 1169 * and on normal completion has not set a new value into it. 1170 * so it must have come from a 'break' statement 1171 */ 1172 if (bp != NULL) 1173 vfs_bio_brelse(bp, ioflag); 1174 return (error); 1175 } 1176 1177 /* 1178 * Extended attribute area writing. 1179 */ 1180 static int 1181 ffs_extwrite(struct vnode *vp, struct uio *uio, int ioflag, struct ucred *ucred) 1182 { 1183 struct inode *ip; 1184 struct ufs2_dinode *dp; 1185 struct fs *fs; 1186 struct buf *bp; 1187 ufs_lbn_t lbn; 1188 off_t osize; 1189 ssize_t resid; 1190 int blkoffset, error, flags, size, xfersize; 1191 1192 ip = VTOI(vp); 1193 fs = ITOFS(ip); 1194 dp = ip->i_din2; 1195 1196 #ifdef INVARIANTS 1197 if (uio->uio_rw != UIO_WRITE || fs->fs_magic != FS_UFS2_MAGIC) 1198 panic("ffs_extwrite: mode"); 1199 #endif 1200 1201 if (ioflag & IO_APPEND) 1202 uio->uio_offset = dp->di_extsize; 1203 KASSERT(uio->uio_offset >= 0, ("ffs_extwrite: uio->uio_offset < 0")); 1204 KASSERT(uio->uio_resid >= 0, ("ffs_extwrite: uio->uio_resid < 0")); 1205 if ((uoff_t)uio->uio_offset + uio->uio_resid > 1206 UFS_NXADDR * fs->fs_bsize) 1207 return (EFBIG); 1208 1209 resid = uio->uio_resid; 1210 osize = dp->di_extsize; 1211 flags = IO_EXT; 1212 if (ioflag & IO_SYNC) 1213 flags |= IO_SYNC; 1214 1215 for (error = 0; uio->uio_resid > 0;) { 1216 lbn = lblkno(fs, uio->uio_offset); 1217 blkoffset = blkoff(fs, uio->uio_offset); 1218 xfersize = fs->fs_bsize - blkoffset; 1219 if (uio->uio_resid < xfersize) 1220 xfersize = uio->uio_resid; 1221 1222 /* 1223 * We must perform a read-before-write if the transfer size 1224 * does not cover the entire buffer. 1225 */ 1226 if (fs->fs_bsize > xfersize) 1227 flags |= BA_CLRBUF; 1228 else 1229 flags &= ~BA_CLRBUF; 1230 error = UFS_BALLOC(vp, uio->uio_offset, xfersize, 1231 ucred, flags, &bp); 1232 if (error != 0) 1233 break; 1234 /* 1235 * If the buffer is not valid we have to clear out any 1236 * garbage data from the pages instantiated for the buffer. 1237 * If we do not, a failed uiomove() during a write can leave 1238 * the prior contents of the pages exposed to a userland 1239 * mmap(). XXX deal with uiomove() errors a better way. 1240 */ 1241 if ((bp->b_flags & B_CACHE) == 0 && fs->fs_bsize <= xfersize) 1242 vfs_bio_clrbuf(bp); 1243 1244 if (uio->uio_offset + xfersize > dp->di_extsize) { 1245 dp->di_extsize = uio->uio_offset + xfersize; 1246 UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE); 1247 } 1248 1249 size = sblksize(fs, dp->di_extsize, lbn) - bp->b_resid; 1250 if (size < xfersize) 1251 xfersize = size; 1252 1253 error = 1254 uiomove((char *)bp->b_data + blkoffset, (int)xfersize, uio); 1255 1256 vfs_bio_set_flags(bp, ioflag); 1257 1258 /* 1259 * If IO_SYNC each buffer is written synchronously. Otherwise 1260 * if we have a severe page deficiency write the buffer 1261 * asynchronously. Otherwise try to cluster, and if that 1262 * doesn't do it then either do an async write (if O_DIRECT), 1263 * or a delayed write (if not). 1264 */ 1265 if (ioflag & IO_SYNC) { 1266 (void)bwrite(bp); 1267 } else if (vm_page_count_severe() || 1268 buf_dirty_count_severe() || 1269 xfersize + blkoffset == fs->fs_bsize || 1270 (ioflag & (IO_ASYNC | IO_DIRECT))) 1271 bawrite(bp); 1272 else 1273 bdwrite(bp); 1274 if (error || xfersize == 0) 1275 break; 1276 UFS_INODE_SET_FLAG(ip, IN_CHANGE); 1277 } 1278 /* 1279 * If we successfully wrote any data, and we are not the superuser 1280 * we clear the setuid and setgid bits as a precaution against 1281 * tampering. 1282 */ 1283 if ((ip->i_mode & (ISUID | ISGID)) && resid > uio->uio_resid && ucred) { 1284 if (priv_check_cred(ucred, PRIV_VFS_RETAINSUGID)) { 1285 vn_seqc_write_begin(vp); 1286 UFS_INODE_SET_MODE(ip, ip->i_mode & ~(ISUID | ISGID)); 1287 dp->di_mode = ip->i_mode; 1288 vn_seqc_write_end(vp); 1289 } 1290 } 1291 if (error) { 1292 if (ioflag & IO_UNIT) { 1293 (void)ffs_truncate(vp, osize, 1294 IO_EXT | (ioflag&IO_SYNC), ucred); 1295 uio->uio_offset -= resid - uio->uio_resid; 1296 uio->uio_resid = resid; 1297 } 1298 } else if (resid > uio->uio_resid && (ioflag & IO_SYNC)) 1299 error = ffs_update(vp, 1); 1300 return (error); 1301 } 1302 1303 /* 1304 * Vnode operating to retrieve a named extended attribute. 1305 * 1306 * Locate a particular EA (nspace:name) in the area (ptr:length), and return 1307 * the length of the EA, and possibly the pointer to the entry and to the data. 1308 */ 1309 static int 1310 ffs_findextattr(uint8_t *ptr, uint64_t length, int nspace, const char *name, 1311 struct extattr **eapp, uint8_t **eac) 1312 { 1313 struct extattr *eap, *eaend; 1314 size_t nlen; 1315 1316 nlen = strlen(name); 1317 KASSERT(ALIGNED_TO(ptr, struct extattr), ("unaligned")); 1318 eap = (struct extattr *)ptr; 1319 eaend = (struct extattr *)(ptr + length); 1320 for (; eap < eaend; eap = EXTATTR_NEXT(eap)) { 1321 KASSERT(EXTATTR_NEXT(eap) <= eaend, 1322 ("extattr next %p beyond %p", EXTATTR_NEXT(eap), eaend)); 1323 if (eap->ea_namespace != nspace || eap->ea_namelength != nlen 1324 || memcmp(eap->ea_name, name, nlen) != 0) 1325 continue; 1326 if (eapp != NULL) 1327 *eapp = eap; 1328 if (eac != NULL) 1329 *eac = EXTATTR_CONTENT(eap); 1330 return (EXTATTR_CONTENT_SIZE(eap)); 1331 } 1332 return (-1); 1333 } 1334 1335 static int 1336 ffs_rdextattr(uint8_t **p, struct vnode *vp, struct thread *td) 1337 { 1338 const struct extattr *eap, *eaend, *eapnext; 1339 struct inode *ip; 1340 struct ufs2_dinode *dp; 1341 struct fs *fs; 1342 struct uio luio; 1343 struct iovec liovec; 1344 uint64_t easize; 1345 int error; 1346 uint8_t *eae; 1347 1348 ip = VTOI(vp); 1349 fs = ITOFS(ip); 1350 dp = ip->i_din2; 1351 easize = dp->di_extsize; 1352 if ((uoff_t)easize > UFS_NXADDR * fs->fs_bsize) 1353 return (EFBIG); 1354 1355 eae = malloc(easize, M_TEMP, M_WAITOK); 1356 1357 liovec.iov_base = eae; 1358 liovec.iov_len = easize; 1359 luio.uio_iov = &liovec; 1360 luio.uio_iovcnt = 1; 1361 luio.uio_offset = 0; 1362 luio.uio_resid = easize; 1363 luio.uio_segflg = UIO_SYSSPACE; 1364 luio.uio_rw = UIO_READ; 1365 luio.uio_td = td; 1366 1367 error = ffs_extread(vp, &luio, IO_EXT | IO_SYNC); 1368 if (error) { 1369 free(eae, M_TEMP); 1370 return (error); 1371 } 1372 /* Validate disk xattrfile contents. */ 1373 for (eap = (void *)eae, eaend = (void *)(eae + easize); eap < eaend; 1374 eap = eapnext) { 1375 /* Detect zeroed out tail */ 1376 if (eap->ea_length < sizeof(*eap) || eap->ea_length == 0) { 1377 easize = (const uint8_t *)eap - eae; 1378 break; 1379 } 1380 1381 eapnext = EXTATTR_NEXT(eap); 1382 /* Bogusly long entry. */ 1383 if (eapnext > eaend) { 1384 free(eae, M_TEMP); 1385 return (EINTEGRITY); 1386 } 1387 } 1388 ip->i_ea_len = easize; 1389 *p = eae; 1390 return (0); 1391 } 1392 1393 static void 1394 ffs_lock_ea(struct vnode *vp) 1395 { 1396 struct inode *ip; 1397 1398 ip = VTOI(vp); 1399 VI_LOCK(vp); 1400 while (ip->i_flag & IN_EA_LOCKED) { 1401 UFS_INODE_SET_FLAG(ip, IN_EA_LOCKWAIT); 1402 msleep(&ip->i_ea_refs, &vp->v_interlock, PINOD + 2, "ufs_ea", 1403 0); 1404 } 1405 UFS_INODE_SET_FLAG(ip, IN_EA_LOCKED); 1406 VI_UNLOCK(vp); 1407 } 1408 1409 static void 1410 ffs_unlock_ea(struct vnode *vp) 1411 { 1412 struct inode *ip; 1413 1414 ip = VTOI(vp); 1415 VI_LOCK(vp); 1416 if (ip->i_flag & IN_EA_LOCKWAIT) 1417 wakeup(&ip->i_ea_refs); 1418 ip->i_flag &= ~(IN_EA_LOCKED | IN_EA_LOCKWAIT); 1419 VI_UNLOCK(vp); 1420 } 1421 1422 static int 1423 ffs_open_ea(struct vnode *vp, struct ucred *cred, struct thread *td) 1424 { 1425 struct inode *ip; 1426 int error; 1427 1428 ip = VTOI(vp); 1429 1430 ffs_lock_ea(vp); 1431 if (ip->i_ea_area != NULL) { 1432 ip->i_ea_refs++; 1433 ffs_unlock_ea(vp); 1434 return (0); 1435 } 1436 error = ffs_rdextattr(&ip->i_ea_area, vp, td); 1437 if (error) { 1438 ffs_unlock_ea(vp); 1439 return (error); 1440 } 1441 ip->i_ea_error = 0; 1442 ip->i_ea_refs++; 1443 ffs_unlock_ea(vp); 1444 return (0); 1445 } 1446 1447 /* 1448 * Vnode extattr transaction commit/abort 1449 */ 1450 static int 1451 ffs_close_ea(struct vnode *vp, int commit, struct ucred *cred, struct thread *td) 1452 { 1453 struct inode *ip; 1454 struct uio luio; 1455 struct iovec *liovec; 1456 struct ufs2_dinode *dp; 1457 size_t ea_len, tlen; 1458 int error, i, lcnt; 1459 bool truncate; 1460 1461 ip = VTOI(vp); 1462 1463 ffs_lock_ea(vp); 1464 if (ip->i_ea_area == NULL) { 1465 ffs_unlock_ea(vp); 1466 return (EINVAL); 1467 } 1468 dp = ip->i_din2; 1469 error = ip->i_ea_error; 1470 truncate = false; 1471 if (commit && error == 0) { 1472 ASSERT_VOP_ELOCKED(vp, "ffs_close_ea commit"); 1473 if (cred == NOCRED) 1474 cred = vp->v_mount->mnt_cred; 1475 1476 ea_len = MAX(ip->i_ea_len, dp->di_extsize); 1477 for (lcnt = 1, tlen = ea_len - ip->i_ea_len; tlen > 0;) { 1478 tlen -= MIN(ZERO_REGION_SIZE, tlen); 1479 lcnt++; 1480 } 1481 1482 liovec = __builtin_alloca(lcnt * sizeof(struct iovec)); 1483 luio.uio_iovcnt = lcnt; 1484 1485 liovec[0].iov_base = ip->i_ea_area; 1486 liovec[0].iov_len = ip->i_ea_len; 1487 for (i = 1, tlen = ea_len - ip->i_ea_len; i < lcnt; i++) { 1488 liovec[i].iov_base = __DECONST(void *, zero_region); 1489 liovec[i].iov_len = MIN(ZERO_REGION_SIZE, tlen); 1490 tlen -= liovec[i].iov_len; 1491 } 1492 MPASS(tlen == 0); 1493 1494 luio.uio_iov = liovec; 1495 luio.uio_offset = 0; 1496 luio.uio_resid = ea_len; 1497 luio.uio_segflg = UIO_SYSSPACE; 1498 luio.uio_rw = UIO_WRITE; 1499 luio.uio_td = td; 1500 error = ffs_extwrite(vp, &luio, IO_EXT | IO_SYNC, cred); 1501 if (error == 0 && ip->i_ea_len == 0) 1502 truncate = true; 1503 } 1504 if (--ip->i_ea_refs == 0) { 1505 free(ip->i_ea_area, M_TEMP); 1506 ip->i_ea_area = NULL; 1507 ip->i_ea_len = 0; 1508 ip->i_ea_error = 0; 1509 } 1510 ffs_unlock_ea(vp); 1511 1512 if (truncate) 1513 ffs_truncate(vp, 0, IO_EXT, cred); 1514 return (error); 1515 } 1516 1517 /* 1518 * Vnode extattr strategy routine for fifos. 1519 * 1520 * We need to check for a read or write of the external attributes. 1521 * Otherwise we just fall through and do the usual thing. 1522 */ 1523 static int 1524 ffsext_strategy( 1525 struct vop_strategy_args /* { 1526 struct vnodeop_desc *a_desc; 1527 struct vnode *a_vp; 1528 struct buf *a_bp; 1529 } */ *ap) 1530 { 1531 struct vnode *vp; 1532 daddr_t lbn; 1533 1534 vp = ap->a_vp; 1535 lbn = ap->a_bp->b_lblkno; 1536 if (I_IS_UFS2(VTOI(vp)) && lbn < 0 && lbn >= -UFS_NXADDR) 1537 return (VOP_STRATEGY_APV(&ufs_vnodeops, ap)); 1538 if (vp->v_type == VFIFO) 1539 return (VOP_STRATEGY_APV(&ufs_fifoops, ap)); 1540 panic("spec nodes went here"); 1541 } 1542 1543 /* 1544 * Vnode extattr transaction commit/abort 1545 */ 1546 static int 1547 ffs_openextattr( 1548 struct vop_openextattr_args /* { 1549 struct vnodeop_desc *a_desc; 1550 struct vnode *a_vp; 1551 IN struct ucred *a_cred; 1552 IN struct thread *a_td; 1553 } */ *ap) 1554 { 1555 1556 if (ap->a_vp->v_type == VCHR || ap->a_vp->v_type == VBLK) 1557 return (EOPNOTSUPP); 1558 1559 return (ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td)); 1560 } 1561 1562 /* 1563 * Vnode extattr transaction commit/abort 1564 */ 1565 static int 1566 ffs_closeextattr( 1567 struct vop_closeextattr_args /* { 1568 struct vnodeop_desc *a_desc; 1569 struct vnode *a_vp; 1570 int a_commit; 1571 IN struct ucred *a_cred; 1572 IN struct thread *a_td; 1573 } */ *ap) 1574 { 1575 struct vnode *vp; 1576 1577 vp = ap->a_vp; 1578 if (vp->v_type == VCHR || vp->v_type == VBLK) 1579 return (EOPNOTSUPP); 1580 if (ap->a_commit && (vp->v_mount->mnt_flag & MNT_RDONLY) != 0) 1581 return (EROFS); 1582 1583 if (ap->a_commit && DOINGSUJ(vp)) { 1584 ASSERT_VOP_ELOCKED(vp, "ffs_closeextattr commit"); 1585 softdep_prealloc(vp, MNT_WAIT); 1586 if (vp->v_data == NULL) 1587 return (EBADF); 1588 } 1589 return (ffs_close_ea(vp, ap->a_commit, ap->a_cred, ap->a_td)); 1590 } 1591 1592 /* 1593 * Vnode operation to remove a named attribute. 1594 */ 1595 static int 1596 ffs_deleteextattr( 1597 struct vop_deleteextattr_args /* { 1598 IN struct vnode *a_vp; 1599 IN int a_attrnamespace; 1600 IN const char *a_name; 1601 IN struct ucred *a_cred; 1602 IN struct thread *a_td; 1603 } */ *ap) 1604 { 1605 struct vnode *vp; 1606 struct inode *ip; 1607 struct extattr *eap; 1608 uint32_t ul; 1609 int olen, error, i, easize; 1610 uint8_t *eae; 1611 void *tmp; 1612 1613 vp = ap->a_vp; 1614 ip = VTOI(vp); 1615 1616 if (vp->v_type == VCHR || vp->v_type == VBLK) 1617 return (EOPNOTSUPP); 1618 if (strlen(ap->a_name) == 0) 1619 return (EINVAL); 1620 if (vp->v_mount->mnt_flag & MNT_RDONLY) 1621 return (EROFS); 1622 1623 error = extattr_check_cred(vp, ap->a_attrnamespace, 1624 ap->a_cred, ap->a_td, VWRITE); 1625 if (error) { 1626 /* 1627 * ffs_lock_ea is not needed there, because the vnode 1628 * must be exclusively locked. 1629 */ 1630 if (ip->i_ea_area != NULL && ip->i_ea_error == 0) 1631 ip->i_ea_error = error; 1632 return (error); 1633 } 1634 1635 if (DOINGSUJ(vp)) { 1636 ASSERT_VOP_ELOCKED(vp, "ffs_deleteextattr"); 1637 softdep_prealloc(vp, MNT_WAIT); 1638 if (vp->v_data == NULL) 1639 return (EBADF); 1640 } 1641 1642 error = ffs_open_ea(vp, ap->a_cred, ap->a_td); 1643 if (error) 1644 return (error); 1645 1646 /* CEM: delete could be done in-place instead */ 1647 eae = malloc(ip->i_ea_len, M_TEMP, M_WAITOK); 1648 bcopy(ip->i_ea_area, eae, ip->i_ea_len); 1649 easize = ip->i_ea_len; 1650 1651 olen = ffs_findextattr(eae, easize, ap->a_attrnamespace, ap->a_name, 1652 &eap, NULL); 1653 if (olen == -1) { 1654 /* delete but nonexistent */ 1655 free(eae, M_TEMP); 1656 ffs_close_ea(vp, 0, ap->a_cred, ap->a_td); 1657 return (ENOATTR); 1658 } 1659 ul = eap->ea_length; 1660 i = (uint8_t *)EXTATTR_NEXT(eap) - eae; 1661 bcopy(EXTATTR_NEXT(eap), eap, easize - i); 1662 easize -= ul; 1663 1664 tmp = ip->i_ea_area; 1665 ip->i_ea_area = eae; 1666 ip->i_ea_len = easize; 1667 free(tmp, M_TEMP); 1668 error = ffs_close_ea(vp, 1, ap->a_cred, ap->a_td); 1669 return (error); 1670 } 1671 1672 /* 1673 * Vnode operation to retrieve a named extended attribute. 1674 */ 1675 static int 1676 ffs_getextattr( 1677 struct vop_getextattr_args /* { 1678 IN struct vnode *a_vp; 1679 IN int a_attrnamespace; 1680 IN const char *a_name; 1681 INOUT struct uio *a_uio; 1682 OUT size_t *a_size; 1683 IN struct ucred *a_cred; 1684 IN struct thread *a_td; 1685 } */ *ap) 1686 { 1687 struct inode *ip; 1688 uint8_t *eae, *p; 1689 unsigned easize; 1690 int error, ealen; 1691 1692 ip = VTOI(ap->a_vp); 1693 1694 if (ap->a_vp->v_type == VCHR || ap->a_vp->v_type == VBLK) 1695 return (EOPNOTSUPP); 1696 1697 error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace, 1698 ap->a_cred, ap->a_td, VREAD); 1699 if (error) 1700 return (error); 1701 1702 error = ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td); 1703 if (error) 1704 return (error); 1705 1706 eae = ip->i_ea_area; 1707 easize = ip->i_ea_len; 1708 1709 ealen = ffs_findextattr(eae, easize, ap->a_attrnamespace, ap->a_name, 1710 NULL, &p); 1711 if (ealen >= 0) { 1712 error = 0; 1713 if (ap->a_size != NULL) 1714 *ap->a_size = ealen; 1715 else if (ap->a_uio != NULL) 1716 error = uiomove(p, ealen, ap->a_uio); 1717 } else 1718 error = ENOATTR; 1719 1720 ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td); 1721 return (error); 1722 } 1723 1724 /* 1725 * Vnode operation to retrieve extended attributes on a vnode. 1726 */ 1727 static int 1728 ffs_listextattr( 1729 struct vop_listextattr_args /* { 1730 IN struct vnode *a_vp; 1731 IN int a_attrnamespace; 1732 INOUT struct uio *a_uio; 1733 OUT size_t *a_size; 1734 IN struct ucred *a_cred; 1735 IN struct thread *a_td; 1736 } */ *ap) 1737 { 1738 struct inode *ip; 1739 struct extattr *eap, *eaend; 1740 int error, ealen; 1741 1742 ip = VTOI(ap->a_vp); 1743 1744 if (ap->a_vp->v_type == VCHR || ap->a_vp->v_type == VBLK) 1745 return (EOPNOTSUPP); 1746 1747 error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace, 1748 ap->a_cred, ap->a_td, VREAD); 1749 if (error) 1750 return (error); 1751 1752 error = ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td); 1753 if (error) 1754 return (error); 1755 1756 error = 0; 1757 if (ap->a_size != NULL) 1758 *ap->a_size = 0; 1759 1760 KASSERT(ALIGNED_TO(ip->i_ea_area, struct extattr), ("unaligned")); 1761 eap = (struct extattr *)ip->i_ea_area; 1762 eaend = (struct extattr *)(ip->i_ea_area + ip->i_ea_len); 1763 for (; error == 0 && eap < eaend; eap = EXTATTR_NEXT(eap)) { 1764 KASSERT(EXTATTR_NEXT(eap) <= eaend, 1765 ("extattr next %p beyond %p", EXTATTR_NEXT(eap), eaend)); 1766 if (eap->ea_namespace != ap->a_attrnamespace) 1767 continue; 1768 1769 ealen = eap->ea_namelength; 1770 if (ap->a_size != NULL) 1771 *ap->a_size += ealen + 1; 1772 else if (ap->a_uio != NULL) 1773 error = uiomove(&eap->ea_namelength, ealen + 1, 1774 ap->a_uio); 1775 } 1776 1777 ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td); 1778 return (error); 1779 } 1780 1781 /* 1782 * Vnode operation to set a named attribute. 1783 */ 1784 static int 1785 ffs_setextattr( 1786 struct vop_setextattr_args /* { 1787 IN struct vnode *a_vp; 1788 IN int a_attrnamespace; 1789 IN const char *a_name; 1790 INOUT struct uio *a_uio; 1791 IN struct ucred *a_cred; 1792 IN struct thread *a_td; 1793 } */ *ap) 1794 { 1795 struct vnode *vp; 1796 struct inode *ip; 1797 struct fs *fs; 1798 struct extattr *eap; 1799 uint32_t ealength, ul; 1800 ssize_t ealen; 1801 int olen, eapad1, eapad2, error, i, easize; 1802 uint8_t *eae; 1803 void *tmp; 1804 1805 vp = ap->a_vp; 1806 ip = VTOI(vp); 1807 fs = ITOFS(ip); 1808 1809 if (vp->v_type == VCHR || vp->v_type == VBLK) 1810 return (EOPNOTSUPP); 1811 if (strlen(ap->a_name) == 0) 1812 return (EINVAL); 1813 1814 /* XXX Now unsupported API to delete EAs using NULL uio. */ 1815 if (ap->a_uio == NULL) 1816 return (EOPNOTSUPP); 1817 1818 if (vp->v_mount->mnt_flag & MNT_RDONLY) 1819 return (EROFS); 1820 1821 ealen = ap->a_uio->uio_resid; 1822 if (ealen < 0 || ealen > lblktosize(fs, UFS_NXADDR)) 1823 return (EINVAL); 1824 1825 error = extattr_check_cred(vp, ap->a_attrnamespace, 1826 ap->a_cred, ap->a_td, VWRITE); 1827 if (error) { 1828 /* 1829 * ffs_lock_ea is not needed there, because the vnode 1830 * must be exclusively locked. 1831 */ 1832 if (ip->i_ea_area != NULL && ip->i_ea_error == 0) 1833 ip->i_ea_error = error; 1834 return (error); 1835 } 1836 1837 if (DOINGSUJ(vp)) { 1838 ASSERT_VOP_ELOCKED(vp, "ffs_deleteextattr"); 1839 softdep_prealloc(vp, MNT_WAIT); 1840 if (vp->v_data == NULL) 1841 return (EBADF); 1842 } 1843 1844 error = ffs_open_ea(vp, ap->a_cred, ap->a_td); 1845 if (error) 1846 return (error); 1847 1848 ealength = sizeof(uint32_t) + 3 + strlen(ap->a_name); 1849 eapad1 = roundup2(ealength, 8) - ealength; 1850 eapad2 = roundup2(ealen, 8) - ealen; 1851 ealength += eapad1 + ealen + eapad2; 1852 1853 /* 1854 * CEM: rewrites of the same size or smaller could be done in-place 1855 * instead. (We don't acquire any fine-grained locks in here either, 1856 * so we could also do bigger writes in-place.) 1857 */ 1858 eae = malloc(ip->i_ea_len + ealength, M_TEMP, M_WAITOK); 1859 bcopy(ip->i_ea_area, eae, ip->i_ea_len); 1860 easize = ip->i_ea_len; 1861 1862 olen = ffs_findextattr(eae, easize, ap->a_attrnamespace, ap->a_name, 1863 &eap, NULL); 1864 if (olen == -1) { 1865 /* new, append at end */ 1866 KASSERT(ALIGNED_TO(eae + easize, struct extattr), 1867 ("unaligned")); 1868 eap = (struct extattr *)(eae + easize); 1869 easize += ealength; 1870 } else { 1871 ul = eap->ea_length; 1872 i = (uint8_t *)EXTATTR_NEXT(eap) - eae; 1873 if (ul != ealength) { 1874 bcopy(EXTATTR_NEXT(eap), (uint8_t *)eap + ealength, 1875 easize - i); 1876 easize += (ealength - ul); 1877 } 1878 } 1879 if (easize > lblktosize(fs, UFS_NXADDR)) { 1880 free(eae, M_TEMP); 1881 ffs_close_ea(vp, 0, ap->a_cred, ap->a_td); 1882 if (ip->i_ea_area != NULL && ip->i_ea_error == 0) 1883 ip->i_ea_error = ENOSPC; 1884 return (ENOSPC); 1885 } 1886 eap->ea_length = ealength; 1887 eap->ea_namespace = ap->a_attrnamespace; 1888 eap->ea_contentpadlen = eapad2; 1889 eap->ea_namelength = strlen(ap->a_name); 1890 memcpy(eap->ea_name, ap->a_name, strlen(ap->a_name)); 1891 bzero(&eap->ea_name[strlen(ap->a_name)], eapad1); 1892 error = uiomove(EXTATTR_CONTENT(eap), ealen, ap->a_uio); 1893 if (error) { 1894 free(eae, M_TEMP); 1895 ffs_close_ea(vp, 0, ap->a_cred, ap->a_td); 1896 if (ip->i_ea_area != NULL && ip->i_ea_error == 0) 1897 ip->i_ea_error = error; 1898 return (error); 1899 } 1900 bzero((uint8_t *)EXTATTR_CONTENT(eap) + ealen, eapad2); 1901 1902 tmp = ip->i_ea_area; 1903 ip->i_ea_area = eae; 1904 ip->i_ea_len = easize; 1905 free(tmp, M_TEMP); 1906 error = ffs_close_ea(vp, 1, ap->a_cred, ap->a_td); 1907 return (error); 1908 } 1909 1910 /* 1911 * Vnode pointer to File handle 1912 */ 1913 static int 1914 ffs_vptofh( 1915 struct vop_vptofh_args /* { 1916 IN struct vnode *a_vp; 1917 IN struct fid *a_fhp; 1918 } */ *ap) 1919 { 1920 struct inode *ip; 1921 struct ufid *ufhp; 1922 1923 ip = VTOI(ap->a_vp); 1924 ufhp = (struct ufid *)ap->a_fhp; 1925 ufhp->ufid_len = sizeof(struct ufid); 1926 ufhp->ufid_ino = ip->i_number; 1927 ufhp->ufid_gen = ip->i_gen; 1928 return (0); 1929 } 1930 1931 SYSCTL_DECL(_vfs_ffs); 1932 static int use_buf_pager = 1; 1933 SYSCTL_INT(_vfs_ffs, OID_AUTO, use_buf_pager, CTLFLAG_RWTUN, &use_buf_pager, 0, 1934 "Always use buffer pager instead of bmap"); 1935 1936 static daddr_t 1937 ffs_gbp_getblkno(struct vnode *vp, vm_ooffset_t off) 1938 { 1939 1940 return (lblkno(VFSTOUFS(vp->v_mount)->um_fs, off)); 1941 } 1942 1943 static int 1944 ffs_gbp_getblksz(struct vnode *vp, daddr_t lbn, long *sz) 1945 { 1946 1947 *sz = blksize(VFSTOUFS(vp->v_mount)->um_fs, VTOI(vp), lbn); 1948 return (0); 1949 } 1950 1951 static int 1952 ffs_getpages(struct vop_getpages_args *ap) 1953 { 1954 struct vnode *vp; 1955 struct ufsmount *um; 1956 1957 vp = ap->a_vp; 1958 um = VFSTOUFS(vp->v_mount); 1959 1960 if (!use_buf_pager && um->um_devvp->v_bufobj.bo_bsize <= PAGE_SIZE) 1961 return (vnode_pager_generic_getpages(vp, ap->a_m, ap->a_count, 1962 ap->a_rbehind, ap->a_rahead, NULL, NULL)); 1963 return (vfs_bio_getpages(vp, ap->a_m, ap->a_count, ap->a_rbehind, 1964 ap->a_rahead, ffs_gbp_getblkno, ffs_gbp_getblksz)); 1965 } 1966 1967 static int 1968 ffs_getpages_async(struct vop_getpages_async_args *ap) 1969 { 1970 struct vnode *vp; 1971 struct ufsmount *um; 1972 bool do_iodone; 1973 int error; 1974 1975 vp = ap->a_vp; 1976 um = VFSTOUFS(vp->v_mount); 1977 do_iodone = true; 1978 1979 if (um->um_devvp->v_bufobj.bo_bsize <= PAGE_SIZE) { 1980 error = vnode_pager_generic_getpages(vp, ap->a_m, ap->a_count, 1981 ap->a_rbehind, ap->a_rahead, ap->a_iodone, ap->a_arg); 1982 if (error == 0) 1983 do_iodone = false; 1984 } else { 1985 error = vfs_bio_getpages(vp, ap->a_m, ap->a_count, 1986 ap->a_rbehind, ap->a_rahead, ffs_gbp_getblkno, 1987 ffs_gbp_getblksz); 1988 } 1989 if (do_iodone && ap->a_iodone != NULL) 1990 ap->a_iodone(ap->a_arg, ap->a_m, ap->a_count, error); 1991 1992 return (error); 1993 } 1994 1995 static int 1996 ffs_vput_pair(struct vop_vput_pair_args *ap) 1997 { 1998 struct mount *mp; 1999 struct vnode *dvp, *vp, *vp1, **vpp; 2000 struct inode *dp, *ip; 2001 ino_t ip_ino; 2002 uint64_t ip_gen; 2003 int error, vp_locked; 2004 2005 dvp = ap->a_dvp; 2006 dp = VTOI(dvp); 2007 vpp = ap->a_vpp; 2008 vp = vpp != NULL ? *vpp : NULL; 2009 2010 if ((dp->i_flag & (IN_NEEDSYNC | IN_ENDOFF)) == 0) { 2011 vput(dvp); 2012 if (vp != NULL && ap->a_unlock_vp) 2013 vput(vp); 2014 return (0); 2015 } 2016 2017 mp = dvp->v_mount; 2018 if (vp != NULL) { 2019 if (ap->a_unlock_vp) { 2020 vput(vp); 2021 } else { 2022 MPASS(vp->v_type != VNON); 2023 vp_locked = VOP_ISLOCKED(vp); 2024 ip = VTOI(vp); 2025 ip_ino = ip->i_number; 2026 ip_gen = ip->i_gen; 2027 VOP_UNLOCK(vp); 2028 } 2029 } 2030 2031 /* 2032 * If compaction or fsync was requested do it in ffs_vput_pair() 2033 * now that other locks are no longer held. 2034 */ 2035 if ((dp->i_flag & IN_ENDOFF) != 0) { 2036 VNASSERT(I_ENDOFF(dp) != 0 && I_ENDOFF(dp) < dp->i_size, dvp, 2037 ("IN_ENDOFF set but I_ENDOFF() is not")); 2038 dp->i_flag &= ~IN_ENDOFF; 2039 error = UFS_TRUNCATE(dvp, (off_t)I_ENDOFF(dp), IO_NORMAL | 2040 (DOINGASYNC(dvp) ? 0 : IO_SYNC), curthread->td_ucred); 2041 if (error != 0 && error != ERELOOKUP) { 2042 if (!ffs_fsfail_cleanup(VFSTOUFS(mp), error)) { 2043 vn_printf(dvp, 2044 "IN_ENDOFF: failed to truncate, " 2045 "error %d\n", error); 2046 } 2047 #ifdef UFS_DIRHASH 2048 ufsdirhash_free(dp); 2049 #endif 2050 } 2051 SET_I_ENDOFF(dp, 0); 2052 } 2053 if ((dp->i_flag & IN_NEEDSYNC) != 0) { 2054 do { 2055 error = ffs_syncvnode(dvp, MNT_WAIT, 0); 2056 } while (error == ERELOOKUP); 2057 } 2058 2059 vput(dvp); 2060 2061 if (vp == NULL || ap->a_unlock_vp) 2062 return (0); 2063 MPASS(mp != NULL); 2064 2065 /* 2066 * It is possible that vp is reclaimed at this point. Only 2067 * routines that call us with a_unlock_vp == false can find 2068 * that their vp has been reclaimed. There are three areas 2069 * that are affected: 2070 * 1) vn_open_cred() - later VOPs could fail, but 2071 * dead_open() returns 0 to simulate successful open. 2072 * 2) ffs_snapshot() - creation of snapshot fails with EBADF. 2073 * 3) NFS server (several places) - code is prepared to detect 2074 * and respond to dead vnodes by returning ESTALE. 2075 */ 2076 VOP_LOCK(vp, vp_locked | LK_RETRY); 2077 if (IS_UFS(vp)) 2078 return (0); 2079 2080 /* 2081 * Try harder to recover from reclaimed vp if reclaim was not 2082 * because underlying inode was cleared. We saved inode 2083 * number and inode generation, so we can try to reinstantiate 2084 * exactly same version of inode. If this fails, return 2085 * original doomed vnode and let caller to handle 2086 * consequences. 2087 * 2088 * Note that callers must keep write started around 2089 * VOP_VPUT_PAIR() calls, so it is safe to use mp without 2090 * busying it. 2091 */ 2092 VOP_UNLOCK(vp); 2093 error = ffs_inotovp(mp, ip_ino, ip_gen, LK_EXCLUSIVE, &vp1, 2094 FFSV_REPLACE_DOOMED); 2095 if (error != 0) { 2096 VOP_LOCK(vp, vp_locked | LK_RETRY); 2097 } else { 2098 vrele(vp); 2099 *vpp = vp1; 2100 } 2101 return (error); 2102 } 2103