1 /*- 2 * Copyright (c) 2002, 2003 Networks Associates Technology, Inc. 3 * All rights reserved. 4 * 5 * This software was developed for the FreeBSD Project by Marshall 6 * Kirk McKusick and Network Associates Laboratories, the Security 7 * Research Division of Network Associates, Inc. under DARPA/SPAWAR 8 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS 9 * research program 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * Copyright (c) 1982, 1986, 1989, 1993 33 * The Regents of the University of California. All rights reserved. 34 * 35 * Redistribution and use in source and binary forms, with or without 36 * modification, are permitted provided that the following conditions 37 * are met: 38 * 1. Redistributions of source code must retain the above copyright 39 * notice, this list of conditions and the following disclaimer. 40 * 2. Redistributions in binary form must reproduce the above copyright 41 * notice, this list of conditions and the following disclaimer in the 42 * documentation and/or other materials provided with the distribution. 43 * 4. Neither the name of the University nor the names of its contributors 44 * may be used to endorse or promote products derived from this software 45 * without specific prior written permission. 46 * 47 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 48 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 49 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 50 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 51 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 52 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 53 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 54 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 55 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 56 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 57 * SUCH DAMAGE. 58 * 59 * from: @(#)ufs_readwrite.c 8.11 (Berkeley) 5/8/95 60 * from: $FreeBSD: .../ufs/ufs_readwrite.c,v 1.96 2002/08/12 09:22:11 phk ... 61 * @(#)ffs_vnops.c 8.15 (Berkeley) 5/14/95 62 */ 63 64 #include <sys/cdefs.h> 65 __FBSDID("$FreeBSD$"); 66 67 #include <sys/param.h> 68 #include <sys/bio.h> 69 #include <sys/systm.h> 70 #include <sys/buf.h> 71 #include <sys/conf.h> 72 #include <sys/extattr.h> 73 #include <sys/kernel.h> 74 #include <sys/limits.h> 75 #include <sys/malloc.h> 76 #include <sys/mount.h> 77 #include <sys/priv.h> 78 #include <sys/rwlock.h> 79 #include <sys/stat.h> 80 #include <sys/sysctl.h> 81 #include <sys/vmmeter.h> 82 #include <sys/vnode.h> 83 84 #include <vm/vm.h> 85 #include <vm/vm_param.h> 86 #include <vm/vm_extern.h> 87 #include <vm/vm_object.h> 88 #include <vm/vm_page.h> 89 #include <vm/vm_pager.h> 90 #include <vm/vm_pageout.h> 91 #include <vm/vnode_pager.h> 92 93 #include <ufs/ufs/extattr.h> 94 #include <ufs/ufs/quota.h> 95 #include <ufs/ufs/inode.h> 96 #include <ufs/ufs/ufs_extern.h> 97 #include <ufs/ufs/ufsmount.h> 98 99 #include <ufs/ffs/fs.h> 100 #include <ufs/ffs/ffs_extern.h> 101 #include "opt_directio.h" 102 #include "opt_ffs.h" 103 104 #ifdef DIRECTIO 105 extern int ffs_rawread(struct vnode *vp, struct uio *uio, int *workdone); 106 #endif 107 static vop_fdatasync_t ffs_fdatasync; 108 static vop_fsync_t ffs_fsync; 109 static vop_getpages_t ffs_getpages; 110 static vop_lock1_t ffs_lock; 111 static vop_read_t ffs_read; 112 static vop_write_t ffs_write; 113 static int ffs_extread(struct vnode *vp, struct uio *uio, int ioflag); 114 static int ffs_extwrite(struct vnode *vp, struct uio *uio, int ioflag, 115 struct ucred *cred); 116 static vop_strategy_t ffsext_strategy; 117 static vop_closeextattr_t ffs_closeextattr; 118 static vop_deleteextattr_t ffs_deleteextattr; 119 static vop_getextattr_t ffs_getextattr; 120 static vop_listextattr_t ffs_listextattr; 121 static vop_openextattr_t ffs_openextattr; 122 static vop_setextattr_t ffs_setextattr; 123 static vop_vptofh_t ffs_vptofh; 124 125 /* Global vfs data structures for ufs. */ 126 struct vop_vector ffs_vnodeops1 = { 127 .vop_default = &ufs_vnodeops, 128 .vop_fsync = ffs_fsync, 129 .vop_fdatasync = ffs_fdatasync, 130 .vop_getpages = ffs_getpages, 131 .vop_getpages_async = vnode_pager_local_getpages_async, 132 .vop_lock1 = ffs_lock, 133 .vop_read = ffs_read, 134 .vop_reallocblks = ffs_reallocblks, 135 .vop_write = ffs_write, 136 .vop_vptofh = ffs_vptofh, 137 }; 138 139 struct vop_vector ffs_fifoops1 = { 140 .vop_default = &ufs_fifoops, 141 .vop_fsync = ffs_fsync, 142 .vop_fdatasync = ffs_fdatasync, 143 .vop_reallocblks = ffs_reallocblks, /* XXX: really ??? */ 144 .vop_vptofh = ffs_vptofh, 145 }; 146 147 /* Global vfs data structures for ufs. */ 148 struct vop_vector ffs_vnodeops2 = { 149 .vop_default = &ufs_vnodeops, 150 .vop_fsync = ffs_fsync, 151 .vop_fdatasync = ffs_fdatasync, 152 .vop_getpages = ffs_getpages, 153 .vop_getpages_async = vnode_pager_local_getpages_async, 154 .vop_lock1 = ffs_lock, 155 .vop_read = ffs_read, 156 .vop_reallocblks = ffs_reallocblks, 157 .vop_write = ffs_write, 158 .vop_closeextattr = ffs_closeextattr, 159 .vop_deleteextattr = ffs_deleteextattr, 160 .vop_getextattr = ffs_getextattr, 161 .vop_listextattr = ffs_listextattr, 162 .vop_openextattr = ffs_openextattr, 163 .vop_setextattr = ffs_setextattr, 164 .vop_vptofh = ffs_vptofh, 165 }; 166 167 struct vop_vector ffs_fifoops2 = { 168 .vop_default = &ufs_fifoops, 169 .vop_fsync = ffs_fsync, 170 .vop_fdatasync = ffs_fdatasync, 171 .vop_lock1 = ffs_lock, 172 .vop_reallocblks = ffs_reallocblks, 173 .vop_strategy = ffsext_strategy, 174 .vop_closeextattr = ffs_closeextattr, 175 .vop_deleteextattr = ffs_deleteextattr, 176 .vop_getextattr = ffs_getextattr, 177 .vop_listextattr = ffs_listextattr, 178 .vop_openextattr = ffs_openextattr, 179 .vop_setextattr = ffs_setextattr, 180 .vop_vptofh = ffs_vptofh, 181 }; 182 183 /* 184 * Synch an open file. 185 */ 186 /* ARGSUSED */ 187 static int 188 ffs_fsync(struct vop_fsync_args *ap) 189 { 190 struct vnode *vp; 191 struct bufobj *bo; 192 int error; 193 194 vp = ap->a_vp; 195 bo = &vp->v_bufobj; 196 retry: 197 error = ffs_syncvnode(vp, ap->a_waitfor, 0); 198 if (error) 199 return (error); 200 if (ap->a_waitfor == MNT_WAIT && DOINGSOFTDEP(vp)) { 201 error = softdep_fsync(vp); 202 if (error) 203 return (error); 204 205 /* 206 * The softdep_fsync() function may drop vp lock, 207 * allowing for dirty buffers to reappear on the 208 * bo_dirty list. Recheck and resync as needed. 209 */ 210 BO_LOCK(bo); 211 if ((vp->v_type == VREG || vp->v_type == VDIR) && 212 (bo->bo_numoutput > 0 || bo->bo_dirty.bv_cnt > 0)) { 213 BO_UNLOCK(bo); 214 goto retry; 215 } 216 BO_UNLOCK(bo); 217 } 218 return (0); 219 } 220 221 int 222 ffs_syncvnode(struct vnode *vp, int waitfor, int flags) 223 { 224 struct inode *ip; 225 struct bufobj *bo; 226 struct buf *bp, *nbp; 227 ufs_lbn_t lbn; 228 int error, passes; 229 bool still_dirty, wait; 230 231 ip = VTOI(vp); 232 ip->i_flag &= ~IN_NEEDSYNC; 233 bo = &vp->v_bufobj; 234 235 /* 236 * When doing MNT_WAIT we must first flush all dependencies 237 * on the inode. 238 */ 239 if (DOINGSOFTDEP(vp) && waitfor == MNT_WAIT && 240 (error = softdep_sync_metadata(vp)) != 0) 241 return (error); 242 243 /* 244 * Flush all dirty buffers associated with a vnode. 245 */ 246 error = 0; 247 passes = 0; 248 wait = false; /* Always do an async pass first. */ 249 lbn = lblkno(ITOFS(ip), (ip->i_size + ITOFS(ip)->fs_bsize - 1)); 250 BO_LOCK(bo); 251 loop: 252 TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) 253 bp->b_vflags &= ~BV_SCANNED; 254 TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) { 255 /* 256 * Reasons to skip this buffer: it has already been considered 257 * on this pass, the buffer has dependencies that will cause 258 * it to be redirtied and it has not already been deferred, 259 * or it is already being written. 260 */ 261 if ((bp->b_vflags & BV_SCANNED) != 0) 262 continue; 263 bp->b_vflags |= BV_SCANNED; 264 /* 265 * Flush indirects in order, if requested. 266 * 267 * Note that if only datasync is requested, we can 268 * skip indirect blocks when softupdates are not 269 * active. Otherwise we must flush them with data, 270 * since dependencies prevent data block writes. 271 */ 272 if (waitfor == MNT_WAIT && bp->b_lblkno <= -NDADDR && 273 (lbn_level(bp->b_lblkno) >= passes || 274 ((flags & DATA_ONLY) != 0 && !DOINGSOFTDEP(vp)))) 275 continue; 276 if (bp->b_lblkno > lbn) 277 panic("ffs_syncvnode: syncing truncated data."); 278 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) == 0) { 279 BO_UNLOCK(bo); 280 } else if (wait) { 281 if (BUF_LOCK(bp, 282 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, 283 BO_LOCKPTR(bo)) != 0) { 284 bp->b_vflags &= ~BV_SCANNED; 285 goto next; 286 } 287 } else 288 continue; 289 if ((bp->b_flags & B_DELWRI) == 0) 290 panic("ffs_fsync: not dirty"); 291 /* 292 * Check for dependencies and potentially complete them. 293 */ 294 if (!LIST_EMPTY(&bp->b_dep) && 295 (error = softdep_sync_buf(vp, bp, 296 wait ? MNT_WAIT : MNT_NOWAIT)) != 0) { 297 /* I/O error. */ 298 if (error != EBUSY) { 299 BUF_UNLOCK(bp); 300 return (error); 301 } 302 /* If we deferred once, don't defer again. */ 303 if ((bp->b_flags & B_DEFERRED) == 0) { 304 bp->b_flags |= B_DEFERRED; 305 BUF_UNLOCK(bp); 306 goto next; 307 } 308 } 309 if (wait) { 310 bremfree(bp); 311 if ((error = bwrite(bp)) != 0) 312 return (error); 313 } else if ((bp->b_flags & B_CLUSTEROK)) { 314 (void) vfs_bio_awrite(bp); 315 } else { 316 bremfree(bp); 317 (void) bawrite(bp); 318 } 319 next: 320 /* 321 * Since we may have slept during the I/O, we need 322 * to start from a known point. 323 */ 324 BO_LOCK(bo); 325 nbp = TAILQ_FIRST(&bo->bo_dirty.bv_hd); 326 } 327 if (waitfor != MNT_WAIT) { 328 BO_UNLOCK(bo); 329 if ((flags & NO_INO_UPDT) != 0) 330 return (0); 331 else 332 return (ffs_update(vp, 0)); 333 } 334 /* Drain IO to see if we're done. */ 335 bufobj_wwait(bo, 0, 0); 336 /* 337 * Block devices associated with filesystems may have new I/O 338 * requests posted for them even if the vnode is locked, so no 339 * amount of trying will get them clean. We make several passes 340 * as a best effort. 341 * 342 * Regular files may need multiple passes to flush all dependency 343 * work as it is possible that we must write once per indirect 344 * level, once for the leaf, and once for the inode and each of 345 * these will be done with one sync and one async pass. 346 */ 347 if (bo->bo_dirty.bv_cnt > 0) { 348 if ((flags & DATA_ONLY) == 0) { 349 still_dirty = true; 350 } else { 351 /* 352 * For data-only sync, dirty indirect buffers 353 * are ignored. 354 */ 355 still_dirty = false; 356 TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) { 357 if (bp->b_lblkno > -NDADDR) { 358 still_dirty = true; 359 break; 360 } 361 } 362 } 363 364 if (still_dirty) { 365 /* Write the inode after sync passes to flush deps. */ 366 if (wait && DOINGSOFTDEP(vp) && 367 (flags & NO_INO_UPDT) == 0) { 368 BO_UNLOCK(bo); 369 ffs_update(vp, 1); 370 BO_LOCK(bo); 371 } 372 /* switch between sync/async. */ 373 wait = !wait; 374 if (wait || ++passes < NIADDR + 2) 375 goto loop; 376 #ifdef INVARIANTS 377 if (!vn_isdisk(vp, NULL)) 378 vn_printf(vp, "ffs_fsync: dirty "); 379 #endif 380 } 381 } 382 BO_UNLOCK(bo); 383 error = 0; 384 if ((flags & DATA_ONLY) == 0) { 385 if ((flags & NO_INO_UPDT) == 0) 386 error = ffs_update(vp, 1); 387 if (DOINGSUJ(vp)) 388 softdep_journal_fsync(VTOI(vp)); 389 } 390 return (error); 391 } 392 393 static int 394 ffs_fdatasync(struct vop_fdatasync_args *ap) 395 { 396 397 return (ffs_syncvnode(ap->a_vp, MNT_WAIT, DATA_ONLY)); 398 } 399 400 static int 401 ffs_lock(ap) 402 struct vop_lock1_args /* { 403 struct vnode *a_vp; 404 int a_flags; 405 struct thread *a_td; 406 char *file; 407 int line; 408 } */ *ap; 409 { 410 #ifndef NO_FFS_SNAPSHOT 411 struct vnode *vp; 412 int flags; 413 struct lock *lkp; 414 int result; 415 416 switch (ap->a_flags & LK_TYPE_MASK) { 417 case LK_SHARED: 418 case LK_UPGRADE: 419 case LK_EXCLUSIVE: 420 vp = ap->a_vp; 421 flags = ap->a_flags; 422 for (;;) { 423 #ifdef DEBUG_VFS_LOCKS 424 KASSERT(vp->v_holdcnt != 0, 425 ("ffs_lock %p: zero hold count", vp)); 426 #endif 427 lkp = vp->v_vnlock; 428 result = _lockmgr_args(lkp, flags, VI_MTX(vp), 429 LK_WMESG_DEFAULT, LK_PRIO_DEFAULT, LK_TIMO_DEFAULT, 430 ap->a_file, ap->a_line); 431 if (lkp == vp->v_vnlock || result != 0) 432 break; 433 /* 434 * Apparent success, except that the vnode 435 * mutated between snapshot file vnode and 436 * regular file vnode while this process 437 * slept. The lock currently held is not the 438 * right lock. Release it, and try to get the 439 * new lock. 440 */ 441 (void) _lockmgr_args(lkp, LK_RELEASE, NULL, 442 LK_WMESG_DEFAULT, LK_PRIO_DEFAULT, LK_TIMO_DEFAULT, 443 ap->a_file, ap->a_line); 444 if ((flags & (LK_INTERLOCK | LK_NOWAIT)) == 445 (LK_INTERLOCK | LK_NOWAIT)) 446 return (EBUSY); 447 if ((flags & LK_TYPE_MASK) == LK_UPGRADE) 448 flags = (flags & ~LK_TYPE_MASK) | LK_EXCLUSIVE; 449 flags &= ~LK_INTERLOCK; 450 } 451 break; 452 default: 453 result = VOP_LOCK1_APV(&ufs_vnodeops, ap); 454 } 455 return (result); 456 #else 457 return (VOP_LOCK1_APV(&ufs_vnodeops, ap)); 458 #endif 459 } 460 461 /* 462 * Vnode op for reading. 463 */ 464 static int 465 ffs_read(ap) 466 struct vop_read_args /* { 467 struct vnode *a_vp; 468 struct uio *a_uio; 469 int a_ioflag; 470 struct ucred *a_cred; 471 } */ *ap; 472 { 473 struct vnode *vp; 474 struct inode *ip; 475 struct uio *uio; 476 struct fs *fs; 477 struct buf *bp; 478 ufs_lbn_t lbn, nextlbn; 479 off_t bytesinfile; 480 long size, xfersize, blkoffset; 481 ssize_t orig_resid; 482 int error; 483 int seqcount; 484 int ioflag; 485 486 vp = ap->a_vp; 487 uio = ap->a_uio; 488 ioflag = ap->a_ioflag; 489 if (ap->a_ioflag & IO_EXT) 490 #ifdef notyet 491 return (ffs_extread(vp, uio, ioflag)); 492 #else 493 panic("ffs_read+IO_EXT"); 494 #endif 495 #ifdef DIRECTIO 496 if ((ioflag & IO_DIRECT) != 0) { 497 int workdone; 498 499 error = ffs_rawread(vp, uio, &workdone); 500 if (error != 0 || workdone != 0) 501 return error; 502 } 503 #endif 504 505 seqcount = ap->a_ioflag >> IO_SEQSHIFT; 506 ip = VTOI(vp); 507 508 #ifdef INVARIANTS 509 if (uio->uio_rw != UIO_READ) 510 panic("ffs_read: mode"); 511 512 if (vp->v_type == VLNK) { 513 if ((int)ip->i_size < vp->v_mount->mnt_maxsymlinklen) 514 panic("ffs_read: short symlink"); 515 } else if (vp->v_type != VREG && vp->v_type != VDIR) 516 panic("ffs_read: type %d", vp->v_type); 517 #endif 518 orig_resid = uio->uio_resid; 519 KASSERT(orig_resid >= 0, ("ffs_read: uio->uio_resid < 0")); 520 if (orig_resid == 0) 521 return (0); 522 KASSERT(uio->uio_offset >= 0, ("ffs_read: uio->uio_offset < 0")); 523 fs = ITOFS(ip); 524 if (uio->uio_offset < ip->i_size && 525 uio->uio_offset >= fs->fs_maxfilesize) 526 return (EOVERFLOW); 527 528 for (error = 0, bp = NULL; uio->uio_resid > 0; bp = NULL) { 529 if ((bytesinfile = ip->i_size - uio->uio_offset) <= 0) 530 break; 531 lbn = lblkno(fs, uio->uio_offset); 532 nextlbn = lbn + 1; 533 534 /* 535 * size of buffer. The buffer representing the 536 * end of the file is rounded up to the size of 537 * the block type ( fragment or full block, 538 * depending ). 539 */ 540 size = blksize(fs, ip, lbn); 541 blkoffset = blkoff(fs, uio->uio_offset); 542 543 /* 544 * The amount we want to transfer in this iteration is 545 * one FS block less the amount of the data before 546 * our startpoint (duh!) 547 */ 548 xfersize = fs->fs_bsize - blkoffset; 549 550 /* 551 * But if we actually want less than the block, 552 * or the file doesn't have a whole block more of data, 553 * then use the lesser number. 554 */ 555 if (uio->uio_resid < xfersize) 556 xfersize = uio->uio_resid; 557 if (bytesinfile < xfersize) 558 xfersize = bytesinfile; 559 560 if (lblktosize(fs, nextlbn) >= ip->i_size) { 561 /* 562 * Don't do readahead if this is the end of the file. 563 */ 564 error = bread_gb(vp, lbn, size, NOCRED, 565 GB_UNMAPPED, &bp); 566 } else if ((vp->v_mount->mnt_flag & MNT_NOCLUSTERR) == 0) { 567 /* 568 * Otherwise if we are allowed to cluster, 569 * grab as much as we can. 570 * 571 * XXX This may not be a win if we are not 572 * doing sequential access. 573 */ 574 error = cluster_read(vp, ip->i_size, lbn, 575 size, NOCRED, blkoffset + uio->uio_resid, 576 seqcount, GB_UNMAPPED, &bp); 577 } else if (seqcount > 1) { 578 /* 579 * If we are NOT allowed to cluster, then 580 * if we appear to be acting sequentially, 581 * fire off a request for a readahead 582 * as well as a read. Note that the 4th and 5th 583 * arguments point to arrays of the size specified in 584 * the 6th argument. 585 */ 586 u_int nextsize = blksize(fs, ip, nextlbn); 587 error = breadn_flags(vp, lbn, size, &nextlbn, 588 &nextsize, 1, NOCRED, GB_UNMAPPED, &bp); 589 } else { 590 /* 591 * Failing all of the above, just read what the 592 * user asked for. Interestingly, the same as 593 * the first option above. 594 */ 595 error = bread_gb(vp, lbn, size, NOCRED, 596 GB_UNMAPPED, &bp); 597 } 598 if (error) { 599 brelse(bp); 600 bp = NULL; 601 break; 602 } 603 604 /* 605 * If IO_DIRECT then set B_DIRECT for the buffer. This 606 * will cause us to attempt to release the buffer later on 607 * and will cause the buffer cache to attempt to free the 608 * underlying pages. 609 */ 610 if (ioflag & IO_DIRECT) 611 bp->b_flags |= B_DIRECT; 612 613 /* 614 * We should only get non-zero b_resid when an I/O error 615 * has occurred, which should cause us to break above. 616 * However, if the short read did not cause an error, 617 * then we want to ensure that we do not uiomove bad 618 * or uninitialized data. 619 */ 620 size -= bp->b_resid; 621 if (size < xfersize) { 622 if (size == 0) 623 break; 624 xfersize = size; 625 } 626 627 if (buf_mapped(bp)) { 628 error = vn_io_fault_uiomove((char *)bp->b_data + 629 blkoffset, (int)xfersize, uio); 630 } else { 631 error = vn_io_fault_pgmove(bp->b_pages, blkoffset, 632 (int)xfersize, uio); 633 } 634 if (error) 635 break; 636 637 if ((ioflag & (IO_VMIO|IO_DIRECT)) && 638 (LIST_EMPTY(&bp->b_dep))) { 639 /* 640 * If there are no dependencies, and it's VMIO, 641 * then we don't need the buf, mark it available 642 * for freeing. For non-direct VMIO reads, the VM 643 * has the data. 644 */ 645 bp->b_flags |= B_RELBUF; 646 brelse(bp); 647 } else { 648 /* 649 * Otherwise let whoever 650 * made the request take care of 651 * freeing it. We just queue 652 * it onto another list. 653 */ 654 bqrelse(bp); 655 } 656 } 657 658 /* 659 * This can only happen in the case of an error 660 * because the loop above resets bp to NULL on each iteration 661 * and on normal completion has not set a new value into it. 662 * so it must have come from a 'break' statement 663 */ 664 if (bp != NULL) { 665 if ((ioflag & (IO_VMIO|IO_DIRECT)) && 666 (LIST_EMPTY(&bp->b_dep))) { 667 bp->b_flags |= B_RELBUF; 668 brelse(bp); 669 } else { 670 bqrelse(bp); 671 } 672 } 673 674 if ((error == 0 || uio->uio_resid != orig_resid) && 675 (vp->v_mount->mnt_flag & (MNT_NOATIME | MNT_RDONLY)) == 0 && 676 (ip->i_flag & IN_ACCESS) == 0) { 677 VI_LOCK(vp); 678 ip->i_flag |= IN_ACCESS; 679 VI_UNLOCK(vp); 680 } 681 return (error); 682 } 683 684 /* 685 * Vnode op for writing. 686 */ 687 static int 688 ffs_write(ap) 689 struct vop_write_args /* { 690 struct vnode *a_vp; 691 struct uio *a_uio; 692 int a_ioflag; 693 struct ucred *a_cred; 694 } */ *ap; 695 { 696 struct vnode *vp; 697 struct uio *uio; 698 struct inode *ip; 699 struct fs *fs; 700 struct buf *bp; 701 ufs_lbn_t lbn; 702 off_t osize; 703 ssize_t resid; 704 int seqcount; 705 int blkoffset, error, flags, ioflag, size, xfersize; 706 707 vp = ap->a_vp; 708 uio = ap->a_uio; 709 ioflag = ap->a_ioflag; 710 if (ap->a_ioflag & IO_EXT) 711 #ifdef notyet 712 return (ffs_extwrite(vp, uio, ioflag, ap->a_cred)); 713 #else 714 panic("ffs_write+IO_EXT"); 715 #endif 716 717 seqcount = ap->a_ioflag >> IO_SEQSHIFT; 718 ip = VTOI(vp); 719 720 #ifdef INVARIANTS 721 if (uio->uio_rw != UIO_WRITE) 722 panic("ffs_write: mode"); 723 #endif 724 725 switch (vp->v_type) { 726 case VREG: 727 if (ioflag & IO_APPEND) 728 uio->uio_offset = ip->i_size; 729 if ((ip->i_flags & APPEND) && uio->uio_offset != ip->i_size) 730 return (EPERM); 731 /* FALLTHROUGH */ 732 case VLNK: 733 break; 734 case VDIR: 735 panic("ffs_write: dir write"); 736 break; 737 default: 738 panic("ffs_write: type %p %d (%d,%d)", vp, (int)vp->v_type, 739 (int)uio->uio_offset, 740 (int)uio->uio_resid 741 ); 742 } 743 744 KASSERT(uio->uio_resid >= 0, ("ffs_write: uio->uio_resid < 0")); 745 KASSERT(uio->uio_offset >= 0, ("ffs_write: uio->uio_offset < 0")); 746 fs = ITOFS(ip); 747 if ((uoff_t)uio->uio_offset + uio->uio_resid > fs->fs_maxfilesize) 748 return (EFBIG); 749 /* 750 * Maybe this should be above the vnode op call, but so long as 751 * file servers have no limits, I don't think it matters. 752 */ 753 if (vn_rlimit_fsize(vp, uio, uio->uio_td)) 754 return (EFBIG); 755 756 resid = uio->uio_resid; 757 osize = ip->i_size; 758 if (seqcount > BA_SEQMAX) 759 flags = BA_SEQMAX << BA_SEQSHIFT; 760 else 761 flags = seqcount << BA_SEQSHIFT; 762 if (ioflag & IO_SYNC) 763 flags |= IO_SYNC; 764 flags |= BA_UNMAPPED; 765 766 for (error = 0; uio->uio_resid > 0;) { 767 lbn = lblkno(fs, uio->uio_offset); 768 blkoffset = blkoff(fs, uio->uio_offset); 769 xfersize = fs->fs_bsize - blkoffset; 770 if (uio->uio_resid < xfersize) 771 xfersize = uio->uio_resid; 772 if (uio->uio_offset + xfersize > ip->i_size) 773 vnode_pager_setsize(vp, uio->uio_offset + xfersize); 774 775 /* 776 * We must perform a read-before-write if the transfer size 777 * does not cover the entire buffer. 778 */ 779 if (fs->fs_bsize > xfersize) 780 flags |= BA_CLRBUF; 781 else 782 flags &= ~BA_CLRBUF; 783 /* XXX is uio->uio_offset the right thing here? */ 784 error = UFS_BALLOC(vp, uio->uio_offset, xfersize, 785 ap->a_cred, flags, &bp); 786 if (error != 0) { 787 vnode_pager_setsize(vp, ip->i_size); 788 break; 789 } 790 if (ioflag & IO_DIRECT) 791 bp->b_flags |= B_DIRECT; 792 if ((ioflag & (IO_SYNC|IO_INVAL)) == (IO_SYNC|IO_INVAL)) 793 bp->b_flags |= B_NOCACHE; 794 795 if (uio->uio_offset + xfersize > ip->i_size) { 796 ip->i_size = uio->uio_offset + xfersize; 797 DIP_SET(ip, i_size, ip->i_size); 798 } 799 800 size = blksize(fs, ip, lbn) - bp->b_resid; 801 if (size < xfersize) 802 xfersize = size; 803 804 if (buf_mapped(bp)) { 805 error = vn_io_fault_uiomove((char *)bp->b_data + 806 blkoffset, (int)xfersize, uio); 807 } else { 808 error = vn_io_fault_pgmove(bp->b_pages, blkoffset, 809 (int)xfersize, uio); 810 } 811 /* 812 * If the buffer is not already filled and we encounter an 813 * error while trying to fill it, we have to clear out any 814 * garbage data from the pages instantiated for the buffer. 815 * If we do not, a failed uiomove() during a write can leave 816 * the prior contents of the pages exposed to a userland mmap. 817 * 818 * Note that we need only clear buffers with a transfer size 819 * equal to the block size because buffers with a shorter 820 * transfer size were cleared above by the call to UFS_BALLOC() 821 * with the BA_CLRBUF flag set. 822 * 823 * If the source region for uiomove identically mmaps the 824 * buffer, uiomove() performed the NOP copy, and the buffer 825 * content remains valid because the page fault handler 826 * validated the pages. 827 */ 828 if (error != 0 && (bp->b_flags & B_CACHE) == 0 && 829 fs->fs_bsize == xfersize) 830 vfs_bio_clrbuf(bp); 831 if ((ioflag & (IO_VMIO|IO_DIRECT)) && 832 (LIST_EMPTY(&bp->b_dep))) { 833 bp->b_flags |= B_RELBUF; 834 } 835 836 /* 837 * If IO_SYNC each buffer is written synchronously. Otherwise 838 * if we have a severe page deficiency write the buffer 839 * asynchronously. Otherwise try to cluster, and if that 840 * doesn't do it then either do an async write (if O_DIRECT), 841 * or a delayed write (if not). 842 */ 843 if (ioflag & IO_SYNC) { 844 (void)bwrite(bp); 845 } else if (vm_page_count_severe() || 846 buf_dirty_count_severe() || 847 (ioflag & IO_ASYNC)) { 848 bp->b_flags |= B_CLUSTEROK; 849 bawrite(bp); 850 } else if (xfersize + blkoffset == fs->fs_bsize) { 851 if ((vp->v_mount->mnt_flag & MNT_NOCLUSTERW) == 0) { 852 bp->b_flags |= B_CLUSTEROK; 853 cluster_write(vp, bp, ip->i_size, seqcount, 854 GB_UNMAPPED); 855 } else { 856 bawrite(bp); 857 } 858 } else if (ioflag & IO_DIRECT) { 859 bp->b_flags |= B_CLUSTEROK; 860 bawrite(bp); 861 } else { 862 bp->b_flags |= B_CLUSTEROK; 863 bdwrite(bp); 864 } 865 if (error || xfersize == 0) 866 break; 867 ip->i_flag |= IN_CHANGE | IN_UPDATE; 868 } 869 /* 870 * If we successfully wrote any data, and we are not the superuser 871 * we clear the setuid and setgid bits as a precaution against 872 * tampering. 873 */ 874 if ((ip->i_mode & (ISUID | ISGID)) && resid > uio->uio_resid && 875 ap->a_cred) { 876 if (priv_check_cred(ap->a_cred, PRIV_VFS_RETAINSUGID, 0)) { 877 ip->i_mode &= ~(ISUID | ISGID); 878 DIP_SET(ip, i_mode, ip->i_mode); 879 } 880 } 881 if (error) { 882 if (ioflag & IO_UNIT) { 883 (void)ffs_truncate(vp, osize, 884 IO_NORMAL | (ioflag & IO_SYNC), ap->a_cred); 885 uio->uio_offset -= resid - uio->uio_resid; 886 uio->uio_resid = resid; 887 } 888 } else if (resid > uio->uio_resid && (ioflag & IO_SYNC)) 889 error = ffs_update(vp, 1); 890 return (error); 891 } 892 893 /* 894 * Extended attribute area reading. 895 */ 896 static int 897 ffs_extread(struct vnode *vp, struct uio *uio, int ioflag) 898 { 899 struct inode *ip; 900 struct ufs2_dinode *dp; 901 struct fs *fs; 902 struct buf *bp; 903 ufs_lbn_t lbn, nextlbn; 904 off_t bytesinfile; 905 long size, xfersize, blkoffset; 906 ssize_t orig_resid; 907 int error; 908 909 ip = VTOI(vp); 910 fs = ITOFS(ip); 911 dp = ip->i_din2; 912 913 #ifdef INVARIANTS 914 if (uio->uio_rw != UIO_READ || fs->fs_magic != FS_UFS2_MAGIC) 915 panic("ffs_extread: mode"); 916 917 #endif 918 orig_resid = uio->uio_resid; 919 KASSERT(orig_resid >= 0, ("ffs_extread: uio->uio_resid < 0")); 920 if (orig_resid == 0) 921 return (0); 922 KASSERT(uio->uio_offset >= 0, ("ffs_extread: uio->uio_offset < 0")); 923 924 for (error = 0, bp = NULL; uio->uio_resid > 0; bp = NULL) { 925 if ((bytesinfile = dp->di_extsize - uio->uio_offset) <= 0) 926 break; 927 lbn = lblkno(fs, uio->uio_offset); 928 nextlbn = lbn + 1; 929 930 /* 931 * size of buffer. The buffer representing the 932 * end of the file is rounded up to the size of 933 * the block type ( fragment or full block, 934 * depending ). 935 */ 936 size = sblksize(fs, dp->di_extsize, lbn); 937 blkoffset = blkoff(fs, uio->uio_offset); 938 939 /* 940 * The amount we want to transfer in this iteration is 941 * one FS block less the amount of the data before 942 * our startpoint (duh!) 943 */ 944 xfersize = fs->fs_bsize - blkoffset; 945 946 /* 947 * But if we actually want less than the block, 948 * or the file doesn't have a whole block more of data, 949 * then use the lesser number. 950 */ 951 if (uio->uio_resid < xfersize) 952 xfersize = uio->uio_resid; 953 if (bytesinfile < xfersize) 954 xfersize = bytesinfile; 955 956 if (lblktosize(fs, nextlbn) >= dp->di_extsize) { 957 /* 958 * Don't do readahead if this is the end of the info. 959 */ 960 error = bread(vp, -1 - lbn, size, NOCRED, &bp); 961 } else { 962 /* 963 * If we have a second block, then 964 * fire off a request for a readahead 965 * as well as a read. Note that the 4th and 5th 966 * arguments point to arrays of the size specified in 967 * the 6th argument. 968 */ 969 u_int nextsize = sblksize(fs, dp->di_extsize, nextlbn); 970 971 nextlbn = -1 - nextlbn; 972 error = breadn(vp, -1 - lbn, 973 size, &nextlbn, &nextsize, 1, NOCRED, &bp); 974 } 975 if (error) { 976 brelse(bp); 977 bp = NULL; 978 break; 979 } 980 981 /* 982 * If IO_DIRECT then set B_DIRECT for the buffer. This 983 * will cause us to attempt to release the buffer later on 984 * and will cause the buffer cache to attempt to free the 985 * underlying pages. 986 */ 987 if (ioflag & IO_DIRECT) 988 bp->b_flags |= B_DIRECT; 989 990 /* 991 * We should only get non-zero b_resid when an I/O error 992 * has occurred, which should cause us to break above. 993 * However, if the short read did not cause an error, 994 * then we want to ensure that we do not uiomove bad 995 * or uninitialized data. 996 */ 997 size -= bp->b_resid; 998 if (size < xfersize) { 999 if (size == 0) 1000 break; 1001 xfersize = size; 1002 } 1003 1004 error = uiomove((char *)bp->b_data + blkoffset, 1005 (int)xfersize, uio); 1006 if (error) 1007 break; 1008 1009 if ((ioflag & (IO_VMIO|IO_DIRECT)) && 1010 (LIST_EMPTY(&bp->b_dep))) { 1011 /* 1012 * If there are no dependencies, and it's VMIO, 1013 * then we don't need the buf, mark it available 1014 * for freeing. For non-direct VMIO reads, the VM 1015 * has the data. 1016 */ 1017 bp->b_flags |= B_RELBUF; 1018 brelse(bp); 1019 } else { 1020 /* 1021 * Otherwise let whoever 1022 * made the request take care of 1023 * freeing it. We just queue 1024 * it onto another list. 1025 */ 1026 bqrelse(bp); 1027 } 1028 } 1029 1030 /* 1031 * This can only happen in the case of an error 1032 * because the loop above resets bp to NULL on each iteration 1033 * and on normal completion has not set a new value into it. 1034 * so it must have come from a 'break' statement 1035 */ 1036 if (bp != NULL) { 1037 if ((ioflag & (IO_VMIO|IO_DIRECT)) && 1038 (LIST_EMPTY(&bp->b_dep))) { 1039 bp->b_flags |= B_RELBUF; 1040 brelse(bp); 1041 } else { 1042 bqrelse(bp); 1043 } 1044 } 1045 return (error); 1046 } 1047 1048 /* 1049 * Extended attribute area writing. 1050 */ 1051 static int 1052 ffs_extwrite(struct vnode *vp, struct uio *uio, int ioflag, struct ucred *ucred) 1053 { 1054 struct inode *ip; 1055 struct ufs2_dinode *dp; 1056 struct fs *fs; 1057 struct buf *bp; 1058 ufs_lbn_t lbn; 1059 off_t osize; 1060 ssize_t resid; 1061 int blkoffset, error, flags, size, xfersize; 1062 1063 ip = VTOI(vp); 1064 fs = ITOFS(ip); 1065 dp = ip->i_din2; 1066 1067 #ifdef INVARIANTS 1068 if (uio->uio_rw != UIO_WRITE || fs->fs_magic != FS_UFS2_MAGIC) 1069 panic("ffs_extwrite: mode"); 1070 #endif 1071 1072 if (ioflag & IO_APPEND) 1073 uio->uio_offset = dp->di_extsize; 1074 KASSERT(uio->uio_offset >= 0, ("ffs_extwrite: uio->uio_offset < 0")); 1075 KASSERT(uio->uio_resid >= 0, ("ffs_extwrite: uio->uio_resid < 0")); 1076 if ((uoff_t)uio->uio_offset + uio->uio_resid > NXADDR * fs->fs_bsize) 1077 return (EFBIG); 1078 1079 resid = uio->uio_resid; 1080 osize = dp->di_extsize; 1081 flags = IO_EXT; 1082 if (ioflag & IO_SYNC) 1083 flags |= IO_SYNC; 1084 1085 for (error = 0; uio->uio_resid > 0;) { 1086 lbn = lblkno(fs, uio->uio_offset); 1087 blkoffset = blkoff(fs, uio->uio_offset); 1088 xfersize = fs->fs_bsize - blkoffset; 1089 if (uio->uio_resid < xfersize) 1090 xfersize = uio->uio_resid; 1091 1092 /* 1093 * We must perform a read-before-write if the transfer size 1094 * does not cover the entire buffer. 1095 */ 1096 if (fs->fs_bsize > xfersize) 1097 flags |= BA_CLRBUF; 1098 else 1099 flags &= ~BA_CLRBUF; 1100 error = UFS_BALLOC(vp, uio->uio_offset, xfersize, 1101 ucred, flags, &bp); 1102 if (error != 0) 1103 break; 1104 /* 1105 * If the buffer is not valid we have to clear out any 1106 * garbage data from the pages instantiated for the buffer. 1107 * If we do not, a failed uiomove() during a write can leave 1108 * the prior contents of the pages exposed to a userland 1109 * mmap(). XXX deal with uiomove() errors a better way. 1110 */ 1111 if ((bp->b_flags & B_CACHE) == 0 && fs->fs_bsize <= xfersize) 1112 vfs_bio_clrbuf(bp); 1113 if (ioflag & IO_DIRECT) 1114 bp->b_flags |= B_DIRECT; 1115 1116 if (uio->uio_offset + xfersize > dp->di_extsize) 1117 dp->di_extsize = uio->uio_offset + xfersize; 1118 1119 size = sblksize(fs, dp->di_extsize, lbn) - bp->b_resid; 1120 if (size < xfersize) 1121 xfersize = size; 1122 1123 error = 1124 uiomove((char *)bp->b_data + blkoffset, (int)xfersize, uio); 1125 if ((ioflag & (IO_VMIO|IO_DIRECT)) && 1126 (LIST_EMPTY(&bp->b_dep))) { 1127 bp->b_flags |= B_RELBUF; 1128 } 1129 1130 /* 1131 * If IO_SYNC each buffer is written synchronously. Otherwise 1132 * if we have a severe page deficiency write the buffer 1133 * asynchronously. Otherwise try to cluster, and if that 1134 * doesn't do it then either do an async write (if O_DIRECT), 1135 * or a delayed write (if not). 1136 */ 1137 if (ioflag & IO_SYNC) { 1138 (void)bwrite(bp); 1139 } else if (vm_page_count_severe() || 1140 buf_dirty_count_severe() || 1141 xfersize + blkoffset == fs->fs_bsize || 1142 (ioflag & (IO_ASYNC | IO_DIRECT))) 1143 bawrite(bp); 1144 else 1145 bdwrite(bp); 1146 if (error || xfersize == 0) 1147 break; 1148 ip->i_flag |= IN_CHANGE; 1149 } 1150 /* 1151 * If we successfully wrote any data, and we are not the superuser 1152 * we clear the setuid and setgid bits as a precaution against 1153 * tampering. 1154 */ 1155 if ((ip->i_mode & (ISUID | ISGID)) && resid > uio->uio_resid && ucred) { 1156 if (priv_check_cred(ucred, PRIV_VFS_RETAINSUGID, 0)) { 1157 ip->i_mode &= ~(ISUID | ISGID); 1158 dp->di_mode = ip->i_mode; 1159 } 1160 } 1161 if (error) { 1162 if (ioflag & IO_UNIT) { 1163 (void)ffs_truncate(vp, osize, 1164 IO_EXT | (ioflag&IO_SYNC), ucred); 1165 uio->uio_offset -= resid - uio->uio_resid; 1166 uio->uio_resid = resid; 1167 } 1168 } else if (resid > uio->uio_resid && (ioflag & IO_SYNC)) 1169 error = ffs_update(vp, 1); 1170 return (error); 1171 } 1172 1173 1174 /* 1175 * Vnode operating to retrieve a named extended attribute. 1176 * 1177 * Locate a particular EA (nspace:name) in the area (ptr:length), and return 1178 * the length of the EA, and possibly the pointer to the entry and to the data. 1179 */ 1180 static int 1181 ffs_findextattr(u_char *ptr, u_int length, int nspace, const char *name, u_char **eap, u_char **eac) 1182 { 1183 u_char *p, *pe, *pn, *p0; 1184 int eapad1, eapad2, ealength, ealen, nlen; 1185 uint32_t ul; 1186 1187 pe = ptr + length; 1188 nlen = strlen(name); 1189 1190 for (p = ptr; p < pe; p = pn) { 1191 p0 = p; 1192 bcopy(p, &ul, sizeof(ul)); 1193 pn = p + ul; 1194 /* make sure this entry is complete */ 1195 if (pn > pe) 1196 break; 1197 p += sizeof(uint32_t); 1198 if (*p != nspace) 1199 continue; 1200 p++; 1201 eapad2 = *p++; 1202 if (*p != nlen) 1203 continue; 1204 p++; 1205 if (bcmp(p, name, nlen)) 1206 continue; 1207 ealength = sizeof(uint32_t) + 3 + nlen; 1208 eapad1 = 8 - (ealength % 8); 1209 if (eapad1 == 8) 1210 eapad1 = 0; 1211 ealength += eapad1; 1212 ealen = ul - ealength - eapad2; 1213 p += nlen + eapad1; 1214 if (eap != NULL) 1215 *eap = p0; 1216 if (eac != NULL) 1217 *eac = p; 1218 return (ealen); 1219 } 1220 return(-1); 1221 } 1222 1223 static int 1224 ffs_rdextattr(u_char **p, struct vnode *vp, struct thread *td, int extra) 1225 { 1226 struct inode *ip; 1227 struct ufs2_dinode *dp; 1228 struct fs *fs; 1229 struct uio luio; 1230 struct iovec liovec; 1231 u_int easize; 1232 int error; 1233 u_char *eae; 1234 1235 ip = VTOI(vp); 1236 fs = ITOFS(ip); 1237 dp = ip->i_din2; 1238 easize = dp->di_extsize; 1239 if ((uoff_t)easize + extra > NXADDR * fs->fs_bsize) 1240 return (EFBIG); 1241 1242 eae = malloc(easize + extra, M_TEMP, M_WAITOK); 1243 1244 liovec.iov_base = eae; 1245 liovec.iov_len = easize; 1246 luio.uio_iov = &liovec; 1247 luio.uio_iovcnt = 1; 1248 luio.uio_offset = 0; 1249 luio.uio_resid = easize; 1250 luio.uio_segflg = UIO_SYSSPACE; 1251 luio.uio_rw = UIO_READ; 1252 luio.uio_td = td; 1253 1254 error = ffs_extread(vp, &luio, IO_EXT | IO_SYNC); 1255 if (error) { 1256 free(eae, M_TEMP); 1257 return(error); 1258 } 1259 *p = eae; 1260 return (0); 1261 } 1262 1263 static void 1264 ffs_lock_ea(struct vnode *vp) 1265 { 1266 struct inode *ip; 1267 1268 ip = VTOI(vp); 1269 VI_LOCK(vp); 1270 while (ip->i_flag & IN_EA_LOCKED) { 1271 ip->i_flag |= IN_EA_LOCKWAIT; 1272 msleep(&ip->i_ea_refs, &vp->v_interlock, PINOD + 2, "ufs_ea", 1273 0); 1274 } 1275 ip->i_flag |= IN_EA_LOCKED; 1276 VI_UNLOCK(vp); 1277 } 1278 1279 static void 1280 ffs_unlock_ea(struct vnode *vp) 1281 { 1282 struct inode *ip; 1283 1284 ip = VTOI(vp); 1285 VI_LOCK(vp); 1286 if (ip->i_flag & IN_EA_LOCKWAIT) 1287 wakeup(&ip->i_ea_refs); 1288 ip->i_flag &= ~(IN_EA_LOCKED | IN_EA_LOCKWAIT); 1289 VI_UNLOCK(vp); 1290 } 1291 1292 static int 1293 ffs_open_ea(struct vnode *vp, struct ucred *cred, struct thread *td) 1294 { 1295 struct inode *ip; 1296 struct ufs2_dinode *dp; 1297 int error; 1298 1299 ip = VTOI(vp); 1300 1301 ffs_lock_ea(vp); 1302 if (ip->i_ea_area != NULL) { 1303 ip->i_ea_refs++; 1304 ffs_unlock_ea(vp); 1305 return (0); 1306 } 1307 dp = ip->i_din2; 1308 error = ffs_rdextattr(&ip->i_ea_area, vp, td, 0); 1309 if (error) { 1310 ffs_unlock_ea(vp); 1311 return (error); 1312 } 1313 ip->i_ea_len = dp->di_extsize; 1314 ip->i_ea_error = 0; 1315 ip->i_ea_refs++; 1316 ffs_unlock_ea(vp); 1317 return (0); 1318 } 1319 1320 /* 1321 * Vnode extattr transaction commit/abort 1322 */ 1323 static int 1324 ffs_close_ea(struct vnode *vp, int commit, struct ucred *cred, struct thread *td) 1325 { 1326 struct inode *ip; 1327 struct uio luio; 1328 struct iovec liovec; 1329 int error; 1330 struct ufs2_dinode *dp; 1331 1332 ip = VTOI(vp); 1333 1334 ffs_lock_ea(vp); 1335 if (ip->i_ea_area == NULL) { 1336 ffs_unlock_ea(vp); 1337 return (EINVAL); 1338 } 1339 dp = ip->i_din2; 1340 error = ip->i_ea_error; 1341 if (commit && error == 0) { 1342 ASSERT_VOP_ELOCKED(vp, "ffs_close_ea commit"); 1343 if (cred == NOCRED) 1344 cred = vp->v_mount->mnt_cred; 1345 liovec.iov_base = ip->i_ea_area; 1346 liovec.iov_len = ip->i_ea_len; 1347 luio.uio_iov = &liovec; 1348 luio.uio_iovcnt = 1; 1349 luio.uio_offset = 0; 1350 luio.uio_resid = ip->i_ea_len; 1351 luio.uio_segflg = UIO_SYSSPACE; 1352 luio.uio_rw = UIO_WRITE; 1353 luio.uio_td = td; 1354 /* XXX: I'm not happy about truncating to zero size */ 1355 if (ip->i_ea_len < dp->di_extsize) 1356 error = ffs_truncate(vp, 0, IO_EXT, cred); 1357 error = ffs_extwrite(vp, &luio, IO_EXT | IO_SYNC, cred); 1358 } 1359 if (--ip->i_ea_refs == 0) { 1360 free(ip->i_ea_area, M_TEMP); 1361 ip->i_ea_area = NULL; 1362 ip->i_ea_len = 0; 1363 ip->i_ea_error = 0; 1364 } 1365 ffs_unlock_ea(vp); 1366 return (error); 1367 } 1368 1369 /* 1370 * Vnode extattr strategy routine for fifos. 1371 * 1372 * We need to check for a read or write of the external attributes. 1373 * Otherwise we just fall through and do the usual thing. 1374 */ 1375 static int 1376 ffsext_strategy(struct vop_strategy_args *ap) 1377 /* 1378 struct vop_strategy_args { 1379 struct vnodeop_desc *a_desc; 1380 struct vnode *a_vp; 1381 struct buf *a_bp; 1382 }; 1383 */ 1384 { 1385 struct vnode *vp; 1386 daddr_t lbn; 1387 1388 vp = ap->a_vp; 1389 lbn = ap->a_bp->b_lblkno; 1390 if (I_IS_UFS2(VTOI(vp)) && lbn < 0 && lbn >= -NXADDR) 1391 return (VOP_STRATEGY_APV(&ufs_vnodeops, ap)); 1392 if (vp->v_type == VFIFO) 1393 return (VOP_STRATEGY_APV(&ufs_fifoops, ap)); 1394 panic("spec nodes went here"); 1395 } 1396 1397 /* 1398 * Vnode extattr transaction commit/abort 1399 */ 1400 static int 1401 ffs_openextattr(struct vop_openextattr_args *ap) 1402 /* 1403 struct vop_openextattr_args { 1404 struct vnodeop_desc *a_desc; 1405 struct vnode *a_vp; 1406 IN struct ucred *a_cred; 1407 IN struct thread *a_td; 1408 }; 1409 */ 1410 { 1411 1412 if (ap->a_vp->v_type == VCHR || ap->a_vp->v_type == VBLK) 1413 return (EOPNOTSUPP); 1414 1415 return (ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td)); 1416 } 1417 1418 1419 /* 1420 * Vnode extattr transaction commit/abort 1421 */ 1422 static int 1423 ffs_closeextattr(struct vop_closeextattr_args *ap) 1424 /* 1425 struct vop_closeextattr_args { 1426 struct vnodeop_desc *a_desc; 1427 struct vnode *a_vp; 1428 int a_commit; 1429 IN struct ucred *a_cred; 1430 IN struct thread *a_td; 1431 }; 1432 */ 1433 { 1434 1435 if (ap->a_vp->v_type == VCHR || ap->a_vp->v_type == VBLK) 1436 return (EOPNOTSUPP); 1437 1438 if (ap->a_commit && (ap->a_vp->v_mount->mnt_flag & MNT_RDONLY)) 1439 return (EROFS); 1440 1441 return (ffs_close_ea(ap->a_vp, ap->a_commit, ap->a_cred, ap->a_td)); 1442 } 1443 1444 /* 1445 * Vnode operation to remove a named attribute. 1446 */ 1447 static int 1448 ffs_deleteextattr(struct vop_deleteextattr_args *ap) 1449 /* 1450 vop_deleteextattr { 1451 IN struct vnode *a_vp; 1452 IN int a_attrnamespace; 1453 IN const char *a_name; 1454 IN struct ucred *a_cred; 1455 IN struct thread *a_td; 1456 }; 1457 */ 1458 { 1459 struct inode *ip; 1460 struct fs *fs; 1461 uint32_t ealength, ul; 1462 int ealen, olen, eapad1, eapad2, error, i, easize; 1463 u_char *eae, *p; 1464 1465 ip = VTOI(ap->a_vp); 1466 fs = ITOFS(ip); 1467 1468 if (ap->a_vp->v_type == VCHR || ap->a_vp->v_type == VBLK) 1469 return (EOPNOTSUPP); 1470 1471 if (strlen(ap->a_name) == 0) 1472 return (EINVAL); 1473 1474 if (ap->a_vp->v_mount->mnt_flag & MNT_RDONLY) 1475 return (EROFS); 1476 1477 error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace, 1478 ap->a_cred, ap->a_td, VWRITE); 1479 if (error) { 1480 1481 /* 1482 * ffs_lock_ea is not needed there, because the vnode 1483 * must be exclusively locked. 1484 */ 1485 if (ip->i_ea_area != NULL && ip->i_ea_error == 0) 1486 ip->i_ea_error = error; 1487 return (error); 1488 } 1489 1490 error = ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td); 1491 if (error) 1492 return (error); 1493 1494 ealength = eapad1 = ealen = eapad2 = 0; 1495 1496 eae = malloc(ip->i_ea_len, M_TEMP, M_WAITOK); 1497 bcopy(ip->i_ea_area, eae, ip->i_ea_len); 1498 easize = ip->i_ea_len; 1499 1500 olen = ffs_findextattr(eae, easize, ap->a_attrnamespace, ap->a_name, 1501 &p, NULL); 1502 if (olen == -1) { 1503 /* delete but nonexistent */ 1504 free(eae, M_TEMP); 1505 ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td); 1506 return(ENOATTR); 1507 } 1508 bcopy(p, &ul, sizeof ul); 1509 i = p - eae + ul; 1510 if (ul != ealength) { 1511 bcopy(p + ul, p + ealength, easize - i); 1512 easize += (ealength - ul); 1513 } 1514 if (easize > NXADDR * fs->fs_bsize) { 1515 free(eae, M_TEMP); 1516 ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td); 1517 if (ip->i_ea_area != NULL && ip->i_ea_error == 0) 1518 ip->i_ea_error = ENOSPC; 1519 return(ENOSPC); 1520 } 1521 p = ip->i_ea_area; 1522 ip->i_ea_area = eae; 1523 ip->i_ea_len = easize; 1524 free(p, M_TEMP); 1525 error = ffs_close_ea(ap->a_vp, 1, ap->a_cred, ap->a_td); 1526 return(error); 1527 } 1528 1529 /* 1530 * Vnode operation to retrieve a named extended attribute. 1531 */ 1532 static int 1533 ffs_getextattr(struct vop_getextattr_args *ap) 1534 /* 1535 vop_getextattr { 1536 IN struct vnode *a_vp; 1537 IN int a_attrnamespace; 1538 IN const char *a_name; 1539 INOUT struct uio *a_uio; 1540 OUT size_t *a_size; 1541 IN struct ucred *a_cred; 1542 IN struct thread *a_td; 1543 }; 1544 */ 1545 { 1546 struct inode *ip; 1547 u_char *eae, *p; 1548 unsigned easize; 1549 int error, ealen; 1550 1551 ip = VTOI(ap->a_vp); 1552 1553 if (ap->a_vp->v_type == VCHR || ap->a_vp->v_type == VBLK) 1554 return (EOPNOTSUPP); 1555 1556 error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace, 1557 ap->a_cred, ap->a_td, VREAD); 1558 if (error) 1559 return (error); 1560 1561 error = ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td); 1562 if (error) 1563 return (error); 1564 1565 eae = ip->i_ea_area; 1566 easize = ip->i_ea_len; 1567 1568 ealen = ffs_findextattr(eae, easize, ap->a_attrnamespace, ap->a_name, 1569 NULL, &p); 1570 if (ealen >= 0) { 1571 error = 0; 1572 if (ap->a_size != NULL) 1573 *ap->a_size = ealen; 1574 else if (ap->a_uio != NULL) 1575 error = uiomove(p, ealen, ap->a_uio); 1576 } else 1577 error = ENOATTR; 1578 1579 ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td); 1580 return(error); 1581 } 1582 1583 /* 1584 * Vnode operation to retrieve extended attributes on a vnode. 1585 */ 1586 static int 1587 ffs_listextattr(struct vop_listextattr_args *ap) 1588 /* 1589 vop_listextattr { 1590 IN struct vnode *a_vp; 1591 IN int a_attrnamespace; 1592 INOUT struct uio *a_uio; 1593 OUT size_t *a_size; 1594 IN struct ucred *a_cred; 1595 IN struct thread *a_td; 1596 }; 1597 */ 1598 { 1599 struct inode *ip; 1600 u_char *eae, *p, *pe, *pn; 1601 unsigned easize; 1602 uint32_t ul; 1603 int error, ealen; 1604 1605 ip = VTOI(ap->a_vp); 1606 1607 if (ap->a_vp->v_type == VCHR || ap->a_vp->v_type == VBLK) 1608 return (EOPNOTSUPP); 1609 1610 error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace, 1611 ap->a_cred, ap->a_td, VREAD); 1612 if (error) 1613 return (error); 1614 1615 error = ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td); 1616 if (error) 1617 return (error); 1618 eae = ip->i_ea_area; 1619 easize = ip->i_ea_len; 1620 1621 error = 0; 1622 if (ap->a_size != NULL) 1623 *ap->a_size = 0; 1624 pe = eae + easize; 1625 for(p = eae; error == 0 && p < pe; p = pn) { 1626 bcopy(p, &ul, sizeof(ul)); 1627 pn = p + ul; 1628 if (pn > pe) 1629 break; 1630 p += sizeof(ul); 1631 if (*p++ != ap->a_attrnamespace) 1632 continue; 1633 p++; /* pad2 */ 1634 ealen = *p; 1635 if (ap->a_size != NULL) { 1636 *ap->a_size += ealen + 1; 1637 } else if (ap->a_uio != NULL) { 1638 error = uiomove(p, ealen + 1, ap->a_uio); 1639 } 1640 } 1641 ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td); 1642 return(error); 1643 } 1644 1645 /* 1646 * Vnode operation to set a named attribute. 1647 */ 1648 static int 1649 ffs_setextattr(struct vop_setextattr_args *ap) 1650 /* 1651 vop_setextattr { 1652 IN struct vnode *a_vp; 1653 IN int a_attrnamespace; 1654 IN const char *a_name; 1655 INOUT struct uio *a_uio; 1656 IN struct ucred *a_cred; 1657 IN struct thread *a_td; 1658 }; 1659 */ 1660 { 1661 struct inode *ip; 1662 struct fs *fs; 1663 uint32_t ealength, ul; 1664 ssize_t ealen; 1665 int olen, eapad1, eapad2, error, i, easize; 1666 u_char *eae, *p; 1667 1668 ip = VTOI(ap->a_vp); 1669 fs = ITOFS(ip); 1670 1671 if (ap->a_vp->v_type == VCHR || ap->a_vp->v_type == VBLK) 1672 return (EOPNOTSUPP); 1673 1674 if (strlen(ap->a_name) == 0) 1675 return (EINVAL); 1676 1677 /* XXX Now unsupported API to delete EAs using NULL uio. */ 1678 if (ap->a_uio == NULL) 1679 return (EOPNOTSUPP); 1680 1681 if (ap->a_vp->v_mount->mnt_flag & MNT_RDONLY) 1682 return (EROFS); 1683 1684 ealen = ap->a_uio->uio_resid; 1685 if (ealen < 0 || ealen > lblktosize(fs, NXADDR)) 1686 return (EINVAL); 1687 1688 error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace, 1689 ap->a_cred, ap->a_td, VWRITE); 1690 if (error) { 1691 1692 /* 1693 * ffs_lock_ea is not needed there, because the vnode 1694 * must be exclusively locked. 1695 */ 1696 if (ip->i_ea_area != NULL && ip->i_ea_error == 0) 1697 ip->i_ea_error = error; 1698 return (error); 1699 } 1700 1701 error = ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td); 1702 if (error) 1703 return (error); 1704 1705 ealength = sizeof(uint32_t) + 3 + strlen(ap->a_name); 1706 eapad1 = 8 - (ealength % 8); 1707 if (eapad1 == 8) 1708 eapad1 = 0; 1709 eapad2 = 8 - (ealen % 8); 1710 if (eapad2 == 8) 1711 eapad2 = 0; 1712 ealength += eapad1 + ealen + eapad2; 1713 1714 eae = malloc(ip->i_ea_len + ealength, M_TEMP, M_WAITOK); 1715 bcopy(ip->i_ea_area, eae, ip->i_ea_len); 1716 easize = ip->i_ea_len; 1717 1718 olen = ffs_findextattr(eae, easize, 1719 ap->a_attrnamespace, ap->a_name, &p, NULL); 1720 if (olen == -1) { 1721 /* new, append at end */ 1722 p = eae + easize; 1723 easize += ealength; 1724 } else { 1725 bcopy(p, &ul, sizeof ul); 1726 i = p - eae + ul; 1727 if (ul != ealength) { 1728 bcopy(p + ul, p + ealength, easize - i); 1729 easize += (ealength - ul); 1730 } 1731 } 1732 if (easize > lblktosize(fs, NXADDR)) { 1733 free(eae, M_TEMP); 1734 ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td); 1735 if (ip->i_ea_area != NULL && ip->i_ea_error == 0) 1736 ip->i_ea_error = ENOSPC; 1737 return(ENOSPC); 1738 } 1739 bcopy(&ealength, p, sizeof(ealength)); 1740 p += sizeof(ealength); 1741 *p++ = ap->a_attrnamespace; 1742 *p++ = eapad2; 1743 *p++ = strlen(ap->a_name); 1744 strcpy(p, ap->a_name); 1745 p += strlen(ap->a_name); 1746 bzero(p, eapad1); 1747 p += eapad1; 1748 error = uiomove(p, ealen, ap->a_uio); 1749 if (error) { 1750 free(eae, M_TEMP); 1751 ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td); 1752 if (ip->i_ea_area != NULL && ip->i_ea_error == 0) 1753 ip->i_ea_error = error; 1754 return(error); 1755 } 1756 p += ealen; 1757 bzero(p, eapad2); 1758 1759 p = ip->i_ea_area; 1760 ip->i_ea_area = eae; 1761 ip->i_ea_len = easize; 1762 free(p, M_TEMP); 1763 error = ffs_close_ea(ap->a_vp, 1, ap->a_cred, ap->a_td); 1764 return(error); 1765 } 1766 1767 /* 1768 * Vnode pointer to File handle 1769 */ 1770 static int 1771 ffs_vptofh(struct vop_vptofh_args *ap) 1772 /* 1773 vop_vptofh { 1774 IN struct vnode *a_vp; 1775 IN struct fid *a_fhp; 1776 }; 1777 */ 1778 { 1779 struct inode *ip; 1780 struct ufid *ufhp; 1781 1782 ip = VTOI(ap->a_vp); 1783 ufhp = (struct ufid *)ap->a_fhp; 1784 ufhp->ufid_len = sizeof(struct ufid); 1785 ufhp->ufid_ino = ip->i_number; 1786 ufhp->ufid_gen = ip->i_gen; 1787 return (0); 1788 } 1789 1790 SYSCTL_DECL(_vfs_ffs); 1791 static int use_buf_pager = 1; 1792 SYSCTL_INT(_vfs_ffs, OID_AUTO, use_buf_pager, CTLFLAG_RWTUN, &use_buf_pager, 0, 1793 "Always use buffer pager instead of bmap"); 1794 static int buf_pager_relbuf; 1795 SYSCTL_INT(_vfs_ffs, OID_AUTO, buf_pager_relbuf, CTLFLAG_RWTUN, 1796 &buf_pager_relbuf, 0, 1797 "Make buffer pager release buffers after reading"); 1798 1799 /* 1800 * The FFS pager. It uses buffer reads to validate pages. 1801 * 1802 * In contrast to the generic local pager from vm/vnode_pager.c, this 1803 * pager correctly and easily handles volumes where the underlying 1804 * device block size is greater than the machine page size. The 1805 * buffer cache transparently extends the requested page run to be 1806 * aligned at the block boundary, and does the necessary bogus page 1807 * replacements in the addends to avoid obliterating already valid 1808 * pages. 1809 * 1810 * The only non-trivial issue is that the exclusive busy state for 1811 * pages, which is assumed by the vm_pager_getpages() interface, is 1812 * incompatible with the VMIO buffer cache's desire to share-busy the 1813 * pages. This function performs a trivial downgrade of the pages' 1814 * state before reading buffers, and a less trivial upgrade from the 1815 * shared-busy to excl-busy state after the read. 1816 */ 1817 static int 1818 ffs_getpages(struct vop_getpages_args *ap) 1819 { 1820 struct vnode *vp; 1821 vm_page_t *ma, m; 1822 vm_object_t object; 1823 struct buf *bp; 1824 struct ufsmount *um; 1825 ufs_lbn_t lbn, lbnp; 1826 vm_ooffset_t la, lb; 1827 long bsize; 1828 int bo_bs, count, error, i; 1829 bool redo, lpart; 1830 1831 vp = ap->a_vp; 1832 ma = ap->a_m; 1833 count = ap->a_count; 1834 1835 um = VFSTOUFS(ap->a_vp->v_mount); 1836 bo_bs = um->um_devvp->v_bufobj.bo_bsize; 1837 if (!use_buf_pager && bo_bs <= PAGE_SIZE) 1838 return (vnode_pager_generic_getpages(vp, ma, count, 1839 ap->a_rbehind, ap->a_rahead, NULL, NULL)); 1840 1841 object = vp->v_object; 1842 la = IDX_TO_OFF(ma[count - 1]->pindex); 1843 if (la >= object->un_pager.vnp.vnp_size) 1844 return (VM_PAGER_BAD); 1845 lpart = la + PAGE_SIZE > object->un_pager.vnp.vnp_size; 1846 if (ap->a_rbehind != NULL) { 1847 lb = IDX_TO_OFF(ma[0]->pindex); 1848 *ap->a_rbehind = OFF_TO_IDX(lb - rounddown2(lb, bo_bs)); 1849 } 1850 if (ap->a_rahead != NULL) { 1851 *ap->a_rahead = OFF_TO_IDX(roundup2(la, bo_bs) - la); 1852 if (la + IDX_TO_OFF(*ap->a_rahead) >= 1853 object->un_pager.vnp.vnp_size) { 1854 *ap->a_rahead = OFF_TO_IDX(roundup2(object->un_pager. 1855 vnp.vnp_size, PAGE_SIZE) - la); 1856 } 1857 } 1858 VM_OBJECT_WLOCK(object); 1859 again: 1860 for (i = 0; i < count; i++) 1861 vm_page_busy_downgrade(ma[i]); 1862 VM_OBJECT_WUNLOCK(object); 1863 1864 lbnp = -1; 1865 for (i = 0; i < count; i++) { 1866 m = ma[i]; 1867 1868 /* 1869 * Pages are shared busy and the object lock is not 1870 * owned, which together allow for the pages' 1871 * invalidation. The racy test for validity avoids 1872 * useless creation of the buffer for the most typical 1873 * case when invalidation is not used in redo or for 1874 * parallel read. The shared->excl upgrade loop at 1875 * the end of the function catches the race in a 1876 * reliable way (protected by the object lock). 1877 */ 1878 if (m->valid == VM_PAGE_BITS_ALL) 1879 continue; 1880 1881 lbn = lblkno(um->um_fs, IDX_TO_OFF(m->pindex)); 1882 if (lbn != lbnp) { 1883 bsize = blksize(um->um_fs, VTOI(vp), lbn); 1884 error = bread_gb(vp, lbn, bsize, NOCRED, GB_UNMAPPED, 1885 &bp); 1886 if (error != 0) 1887 break; 1888 KASSERT(1 /* racy, enable for debugging */ || 1889 m->valid == VM_PAGE_BITS_ALL || i == count - 1, 1890 ("buf %d %p invalid", i, m)); 1891 if (i == count - 1 && lpart) { 1892 VM_OBJECT_WLOCK(object); 1893 if (m->valid != 0 && 1894 m->valid != VM_PAGE_BITS_ALL) 1895 vm_page_zero_invalid(m, TRUE); 1896 VM_OBJECT_WUNLOCK(object); 1897 } 1898 if (LIST_EMPTY(&bp->b_dep)) { 1899 /* 1900 * Invalidation clears m->valid, but 1901 * may leave B_CACHE flag if the 1902 * buffer existed at the invalidation 1903 * time. In this case, recycle the 1904 * buffer to do real read on next 1905 * bread() after redo. 1906 * 1907 * Otherwise B_RELBUF is not strictly 1908 * necessary, enable to reduce buf 1909 * cache pressure. 1910 */ 1911 if (buf_pager_relbuf || 1912 m->valid != VM_PAGE_BITS_ALL) 1913 bp->b_flags |= B_RELBUF; 1914 1915 bp->b_flags &= ~B_NOCACHE; 1916 brelse(bp); 1917 } else { 1918 bqrelse(bp); 1919 } 1920 lbnp = lbn; 1921 } 1922 } 1923 1924 VM_OBJECT_WLOCK(object); 1925 redo = false; 1926 for (i = 0; i < count; i++) { 1927 vm_page_sunbusy(ma[i]); 1928 ma[i] = vm_page_grab(object, ma[i]->pindex, VM_ALLOC_NORMAL); 1929 1930 /* 1931 * Since the pages were only sbusy while neither the 1932 * buffer nor the object lock was held by us, or 1933 * reallocated while vm_page_grab() slept for busy 1934 * relinguish, they could have been invalidated. 1935 * Recheck the valid bits and re-read as needed. 1936 * 1937 * Note that the last page is made fully valid in the 1938 * read loop, and partial validity for the page at 1939 * index count - 1 could mean that the page was 1940 * invalidated or removed, so we must restart for 1941 * safety as well. 1942 */ 1943 if (ma[i]->valid != VM_PAGE_BITS_ALL) 1944 redo = true; 1945 } 1946 if (redo && error == 0) 1947 goto again; 1948 VM_OBJECT_WUNLOCK(object); 1949 return (error != 0 ? VM_PAGER_ERROR : VM_PAGER_OK); 1950 } 1951