1 /*- 2 * Copyright (c) 2002, 2003 Networks Associates Technology, Inc. 3 * All rights reserved. 4 * 5 * This software was developed for the FreeBSD Project by Marshall 6 * Kirk McKusick and Network Associates Laboratories, the Security 7 * Research Division of Network Associates, Inc. under DARPA/SPAWAR 8 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS 9 * research program 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * Copyright (c) 1982, 1986, 1989, 1993 33 * The Regents of the University of California. All rights reserved. 34 * 35 * Redistribution and use in source and binary forms, with or without 36 * modification, are permitted provided that the following conditions 37 * are met: 38 * 1. Redistributions of source code must retain the above copyright 39 * notice, this list of conditions and the following disclaimer. 40 * 2. Redistributions in binary form must reproduce the above copyright 41 * notice, this list of conditions and the following disclaimer in the 42 * documentation and/or other materials provided with the distribution. 43 * 4. Neither the name of the University nor the names of its contributors 44 * may be used to endorse or promote products derived from this software 45 * without specific prior written permission. 46 * 47 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 48 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 49 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 50 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 51 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 52 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 53 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 54 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 55 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 56 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 57 * SUCH DAMAGE. 58 * 59 * from: @(#)ufs_readwrite.c 8.11 (Berkeley) 5/8/95 60 * from: $FreeBSD: .../ufs/ufs_readwrite.c,v 1.96 2002/08/12 09:22:11 phk ... 61 * @(#)ffs_vnops.c 8.15 (Berkeley) 5/14/95 62 */ 63 64 #include <sys/cdefs.h> 65 __FBSDID("$FreeBSD$"); 66 67 #include <sys/param.h> 68 #include <sys/bio.h> 69 #include <sys/systm.h> 70 #include <sys/buf.h> 71 #include <sys/conf.h> 72 #include <sys/extattr.h> 73 #include <sys/kernel.h> 74 #include <sys/limits.h> 75 #include <sys/malloc.h> 76 #include <sys/mount.h> 77 #include <sys/priv.h> 78 #include <sys/proc.h> 79 #include <sys/resourcevar.h> 80 #include <sys/signalvar.h> 81 #include <sys/stat.h> 82 #include <sys/vmmeter.h> 83 #include <sys/vnode.h> 84 85 #include <vm/vm.h> 86 #include <vm/vm_extern.h> 87 #include <vm/vm_object.h> 88 #include <vm/vm_page.h> 89 #include <vm/vm_pager.h> 90 #include <vm/vnode_pager.h> 91 92 #include <ufs/ufs/extattr.h> 93 #include <ufs/ufs/quota.h> 94 #include <ufs/ufs/inode.h> 95 #include <ufs/ufs/ufs_extern.h> 96 #include <ufs/ufs/ufsmount.h> 97 98 #include <ufs/ffs/fs.h> 99 #include <ufs/ffs/ffs_extern.h> 100 #include "opt_directio.h" 101 #include "opt_ffs.h" 102 103 #ifdef DIRECTIO 104 extern int ffs_rawread(struct vnode *vp, struct uio *uio, int *workdone); 105 #endif 106 static vop_fsync_t ffs_fsync; 107 static vop_lock1_t ffs_lock; 108 static vop_getpages_t ffs_getpages; 109 static vop_read_t ffs_read; 110 static vop_write_t ffs_write; 111 static int ffs_extread(struct vnode *vp, struct uio *uio, int ioflag); 112 static int ffs_extwrite(struct vnode *vp, struct uio *uio, int ioflag, 113 struct ucred *cred); 114 static vop_strategy_t ffsext_strategy; 115 static vop_closeextattr_t ffs_closeextattr; 116 static vop_deleteextattr_t ffs_deleteextattr; 117 static vop_getextattr_t ffs_getextattr; 118 static vop_listextattr_t ffs_listextattr; 119 static vop_openextattr_t ffs_openextattr; 120 static vop_setextattr_t ffs_setextattr; 121 static vop_vptofh_t ffs_vptofh; 122 123 124 /* Global vfs data structures for ufs. */ 125 struct vop_vector ffs_vnodeops1 = { 126 .vop_default = &ufs_vnodeops, 127 .vop_fsync = ffs_fsync, 128 .vop_getpages = ffs_getpages, 129 .vop_lock1 = ffs_lock, 130 .vop_read = ffs_read, 131 .vop_reallocblks = ffs_reallocblks, 132 .vop_write = ffs_write, 133 .vop_vptofh = ffs_vptofh, 134 }; 135 136 struct vop_vector ffs_fifoops1 = { 137 .vop_default = &ufs_fifoops, 138 .vop_fsync = ffs_fsync, 139 .vop_reallocblks = ffs_reallocblks, /* XXX: really ??? */ 140 .vop_vptofh = ffs_vptofh, 141 }; 142 143 /* Global vfs data structures for ufs. */ 144 struct vop_vector ffs_vnodeops2 = { 145 .vop_default = &ufs_vnodeops, 146 .vop_fsync = ffs_fsync, 147 .vop_getpages = ffs_getpages, 148 .vop_lock1 = ffs_lock, 149 .vop_read = ffs_read, 150 .vop_reallocblks = ffs_reallocblks, 151 .vop_write = ffs_write, 152 .vop_closeextattr = ffs_closeextattr, 153 .vop_deleteextattr = ffs_deleteextattr, 154 .vop_getextattr = ffs_getextattr, 155 .vop_listextattr = ffs_listextattr, 156 .vop_openextattr = ffs_openextattr, 157 .vop_setextattr = ffs_setextattr, 158 .vop_vptofh = ffs_vptofh, 159 }; 160 161 struct vop_vector ffs_fifoops2 = { 162 .vop_default = &ufs_fifoops, 163 .vop_fsync = ffs_fsync, 164 .vop_lock1 = ffs_lock, 165 .vop_reallocblks = ffs_reallocblks, 166 .vop_strategy = ffsext_strategy, 167 .vop_closeextattr = ffs_closeextattr, 168 .vop_deleteextattr = ffs_deleteextattr, 169 .vop_getextattr = ffs_getextattr, 170 .vop_listextattr = ffs_listextattr, 171 .vop_openextattr = ffs_openextattr, 172 .vop_setextattr = ffs_setextattr, 173 .vop_vptofh = ffs_vptofh, 174 }; 175 176 /* 177 * Synch an open file. 178 */ 179 /* ARGSUSED */ 180 static int 181 ffs_fsync(struct vop_fsync_args *ap) 182 { 183 struct vnode *vp; 184 struct bufobj *bo; 185 int error; 186 187 vp = ap->a_vp; 188 bo = &vp->v_bufobj; 189 retry: 190 error = ffs_syncvnode(vp, ap->a_waitfor); 191 if (error) 192 return (error); 193 if (ap->a_waitfor == MNT_WAIT && 194 (vp->v_mount->mnt_flag & MNT_SOFTDEP)) { 195 error = softdep_fsync(vp); 196 if (error) 197 return (error); 198 199 /* 200 * The softdep_fsync() function may drop vp lock, 201 * allowing for dirty buffers to reappear on the 202 * bo_dirty list. Recheck and resync as needed. 203 */ 204 BO_LOCK(bo); 205 if (vp->v_type == VREG && (bo->bo_numoutput > 0 || 206 bo->bo_dirty.bv_cnt > 0)) { 207 BO_UNLOCK(bo); 208 goto retry; 209 } 210 BO_UNLOCK(bo); 211 } 212 return (0); 213 } 214 215 int 216 ffs_syncvnode(struct vnode *vp, int waitfor) 217 { 218 struct inode *ip = VTOI(vp); 219 struct bufobj *bo; 220 struct buf *bp; 221 struct buf *nbp; 222 int s, error, wait, passes, skipmeta; 223 ufs_lbn_t lbn; 224 225 wait = (waitfor == MNT_WAIT); 226 lbn = lblkno(ip->i_fs, (ip->i_size + ip->i_fs->fs_bsize - 1)); 227 bo = &vp->v_bufobj; 228 ip->i_flag &= ~IN_NEEDSYNC; 229 230 /* 231 * Flush all dirty buffers associated with a vnode. 232 */ 233 passes = NIADDR + 1; 234 skipmeta = 0; 235 if (wait) 236 skipmeta = 1; 237 s = splbio(); 238 BO_LOCK(bo); 239 loop: 240 TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) 241 bp->b_vflags &= ~BV_SCANNED; 242 TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) { 243 /* 244 * Reasons to skip this buffer: it has already been considered 245 * on this pass, this pass is the first time through on a 246 * synchronous flush request and the buffer being considered 247 * is metadata, the buffer has dependencies that will cause 248 * it to be redirtied and it has not already been deferred, 249 * or it is already being written. 250 */ 251 if ((bp->b_vflags & BV_SCANNED) != 0) 252 continue; 253 bp->b_vflags |= BV_SCANNED; 254 if ((skipmeta == 1 && bp->b_lblkno < 0)) 255 continue; 256 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL)) 257 continue; 258 BO_UNLOCK(bo); 259 if (!wait && !LIST_EMPTY(&bp->b_dep) && 260 (bp->b_flags & B_DEFERRED) == 0 && 261 buf_countdeps(bp, 0)) { 262 bp->b_flags |= B_DEFERRED; 263 BUF_UNLOCK(bp); 264 BO_LOCK(bo); 265 continue; 266 } 267 if ((bp->b_flags & B_DELWRI) == 0) 268 panic("ffs_fsync: not dirty"); 269 /* 270 * If this is a synchronous flush request, or it is not a 271 * file or device, start the write on this buffer immediately. 272 */ 273 if (wait || (vp->v_type != VREG && vp->v_type != VBLK)) { 274 275 /* 276 * On our final pass through, do all I/O synchronously 277 * so that we can find out if our flush is failing 278 * because of write errors. 279 */ 280 if (passes > 0 || !wait) { 281 if ((bp->b_flags & B_CLUSTEROK) && !wait) { 282 (void) vfs_bio_awrite(bp); 283 } else { 284 bremfree(bp); 285 splx(s); 286 (void) bawrite(bp); 287 s = splbio(); 288 } 289 } else { 290 bremfree(bp); 291 splx(s); 292 if ((error = bwrite(bp)) != 0) 293 return (error); 294 s = splbio(); 295 } 296 } else if ((vp->v_type == VREG) && (bp->b_lblkno >= lbn)) { 297 /* 298 * If the buffer is for data that has been truncated 299 * off the file, then throw it away. 300 */ 301 bremfree(bp); 302 bp->b_flags |= B_INVAL | B_NOCACHE; 303 splx(s); 304 brelse(bp); 305 s = splbio(); 306 } else 307 vfs_bio_awrite(bp); 308 309 /* 310 * Since we may have slept during the I/O, we need 311 * to start from a known point. 312 */ 313 BO_LOCK(bo); 314 nbp = TAILQ_FIRST(&bo->bo_dirty.bv_hd); 315 } 316 /* 317 * If we were asked to do this synchronously, then go back for 318 * another pass, this time doing the metadata. 319 */ 320 if (skipmeta) { 321 skipmeta = 0; 322 goto loop; 323 } 324 325 if (wait) { 326 bufobj_wwait(bo, 3, 0); 327 BO_UNLOCK(bo); 328 329 /* 330 * Ensure that any filesystem metatdata associated 331 * with the vnode has been written. 332 */ 333 splx(s); 334 if ((error = softdep_sync_metadata(vp)) != 0) 335 return (error); 336 s = splbio(); 337 338 BO_LOCK(bo); 339 if (bo->bo_dirty.bv_cnt > 0) { 340 /* 341 * Block devices associated with filesystems may 342 * have new I/O requests posted for them even if 343 * the vnode is locked, so no amount of trying will 344 * get them clean. Thus we give block devices a 345 * good effort, then just give up. For all other file 346 * types, go around and try again until it is clean. 347 */ 348 if (passes > 0) { 349 passes -= 1; 350 goto loop; 351 } 352 #ifdef INVARIANTS 353 if (!vn_isdisk(vp, NULL)) 354 vprint("ffs_fsync: dirty", vp); 355 #endif 356 } 357 } 358 BO_UNLOCK(bo); 359 splx(s); 360 return (ffs_update(vp, wait)); 361 } 362 363 static int 364 ffs_lock(ap) 365 struct vop_lock1_args /* { 366 struct vnode *a_vp; 367 int a_flags; 368 struct thread *a_td; 369 char *file; 370 int line; 371 } */ *ap; 372 { 373 #ifndef NO_FFS_SNAPSHOT 374 struct vnode *vp; 375 int flags; 376 struct lock *lkp; 377 int result; 378 379 switch (ap->a_flags & LK_TYPE_MASK) { 380 case LK_SHARED: 381 case LK_UPGRADE: 382 case LK_EXCLUSIVE: 383 vp = ap->a_vp; 384 flags = ap->a_flags; 385 for (;;) { 386 #ifdef DEBUG_VFS_LOCKS 387 KASSERT(vp->v_holdcnt != 0, 388 ("ffs_lock %p: zero hold count", vp)); 389 #endif 390 lkp = vp->v_vnlock; 391 result = _lockmgr_args(lkp, flags, VI_MTX(vp), 392 LK_WMESG_DEFAULT, LK_PRIO_DEFAULT, LK_TIMO_DEFAULT, 393 ap->a_file, ap->a_line); 394 if (lkp == vp->v_vnlock || result != 0) 395 break; 396 /* 397 * Apparent success, except that the vnode 398 * mutated between snapshot file vnode and 399 * regular file vnode while this process 400 * slept. The lock currently held is not the 401 * right lock. Release it, and try to get the 402 * new lock. 403 */ 404 (void) _lockmgr_args(lkp, LK_RELEASE, NULL, 405 LK_WMESG_DEFAULT, LK_PRIO_DEFAULT, LK_TIMO_DEFAULT, 406 ap->a_file, ap->a_line); 407 if ((flags & (LK_INTERLOCK | LK_NOWAIT)) == 408 (LK_INTERLOCK | LK_NOWAIT)) 409 return (EBUSY); 410 if ((flags & LK_TYPE_MASK) == LK_UPGRADE) 411 flags = (flags & ~LK_TYPE_MASK) | LK_EXCLUSIVE; 412 flags &= ~LK_INTERLOCK; 413 } 414 break; 415 default: 416 result = VOP_LOCK1_APV(&ufs_vnodeops, ap); 417 } 418 return (result); 419 #else 420 return (VOP_LOCK1_APV(&ufs_vnodeops, ap)); 421 #endif 422 } 423 424 /* 425 * Vnode op for reading. 426 */ 427 /* ARGSUSED */ 428 static int 429 ffs_read(ap) 430 struct vop_read_args /* { 431 struct vnode *a_vp; 432 struct uio *a_uio; 433 int a_ioflag; 434 struct ucred *a_cred; 435 } */ *ap; 436 { 437 struct vnode *vp; 438 struct inode *ip; 439 struct uio *uio; 440 struct fs *fs; 441 struct buf *bp; 442 ufs_lbn_t lbn, nextlbn; 443 off_t bytesinfile; 444 long size, xfersize, blkoffset; 445 int error, orig_resid; 446 int seqcount; 447 int ioflag; 448 449 vp = ap->a_vp; 450 uio = ap->a_uio; 451 ioflag = ap->a_ioflag; 452 if (ap->a_ioflag & IO_EXT) 453 #ifdef notyet 454 return (ffs_extread(vp, uio, ioflag)); 455 #else 456 panic("ffs_read+IO_EXT"); 457 #endif 458 #ifdef DIRECTIO 459 if ((ioflag & IO_DIRECT) != 0) { 460 int workdone; 461 462 error = ffs_rawread(vp, uio, &workdone); 463 if (error != 0 || workdone != 0) 464 return error; 465 } 466 #endif 467 468 seqcount = ap->a_ioflag >> IO_SEQSHIFT; 469 ip = VTOI(vp); 470 471 #ifdef INVARIANTS 472 if (uio->uio_rw != UIO_READ) 473 panic("ffs_read: mode"); 474 475 if (vp->v_type == VLNK) { 476 if ((int)ip->i_size < vp->v_mount->mnt_maxsymlinklen) 477 panic("ffs_read: short symlink"); 478 } else if (vp->v_type != VREG && vp->v_type != VDIR) 479 panic("ffs_read: type %d", vp->v_type); 480 #endif 481 orig_resid = uio->uio_resid; 482 KASSERT(orig_resid >= 0, ("ffs_read: uio->uio_resid < 0")); 483 if (orig_resid == 0) 484 return (0); 485 KASSERT(uio->uio_offset >= 0, ("ffs_read: uio->uio_offset < 0")); 486 fs = ip->i_fs; 487 if (uio->uio_offset < ip->i_size && 488 uio->uio_offset >= fs->fs_maxfilesize) 489 return (EOVERFLOW); 490 491 for (error = 0, bp = NULL; uio->uio_resid > 0; bp = NULL) { 492 if ((bytesinfile = ip->i_size - uio->uio_offset) <= 0) 493 break; 494 lbn = lblkno(fs, uio->uio_offset); 495 nextlbn = lbn + 1; 496 497 /* 498 * size of buffer. The buffer representing the 499 * end of the file is rounded up to the size of 500 * the block type ( fragment or full block, 501 * depending ). 502 */ 503 size = blksize(fs, ip, lbn); 504 blkoffset = blkoff(fs, uio->uio_offset); 505 506 /* 507 * The amount we want to transfer in this iteration is 508 * one FS block less the amount of the data before 509 * our startpoint (duh!) 510 */ 511 xfersize = fs->fs_bsize - blkoffset; 512 513 /* 514 * But if we actually want less than the block, 515 * or the file doesn't have a whole block more of data, 516 * then use the lesser number. 517 */ 518 if (uio->uio_resid < xfersize) 519 xfersize = uio->uio_resid; 520 if (bytesinfile < xfersize) 521 xfersize = bytesinfile; 522 523 if (lblktosize(fs, nextlbn) >= ip->i_size) { 524 /* 525 * Don't do readahead if this is the end of the file. 526 */ 527 error = bread(vp, lbn, size, NOCRED, &bp); 528 } else if ((vp->v_mount->mnt_flag & MNT_NOCLUSTERR) == 0) { 529 /* 530 * Otherwise if we are allowed to cluster, 531 * grab as much as we can. 532 * 533 * XXX This may not be a win if we are not 534 * doing sequential access. 535 */ 536 error = cluster_read(vp, ip->i_size, lbn, 537 size, NOCRED, blkoffset + uio->uio_resid, seqcount, &bp); 538 } else if (seqcount > 1) { 539 /* 540 * If we are NOT allowed to cluster, then 541 * if we appear to be acting sequentially, 542 * fire off a request for a readahead 543 * as well as a read. Note that the 4th and 5th 544 * arguments point to arrays of the size specified in 545 * the 6th argument. 546 */ 547 int nextsize = blksize(fs, ip, nextlbn); 548 error = breadn(vp, lbn, 549 size, &nextlbn, &nextsize, 1, NOCRED, &bp); 550 } else { 551 /* 552 * Failing all of the above, just read what the 553 * user asked for. Interestingly, the same as 554 * the first option above. 555 */ 556 error = bread(vp, lbn, size, NOCRED, &bp); 557 } 558 if (error) { 559 brelse(bp); 560 bp = NULL; 561 break; 562 } 563 564 /* 565 * If IO_DIRECT then set B_DIRECT for the buffer. This 566 * will cause us to attempt to release the buffer later on 567 * and will cause the buffer cache to attempt to free the 568 * underlying pages. 569 */ 570 if (ioflag & IO_DIRECT) 571 bp->b_flags |= B_DIRECT; 572 573 /* 574 * We should only get non-zero b_resid when an I/O error 575 * has occurred, which should cause us to break above. 576 * However, if the short read did not cause an error, 577 * then we want to ensure that we do not uiomove bad 578 * or uninitialized data. 579 */ 580 size -= bp->b_resid; 581 if (size < xfersize) { 582 if (size == 0) 583 break; 584 xfersize = size; 585 } 586 587 error = uiomove((char *)bp->b_data + blkoffset, 588 (int)xfersize, uio); 589 if (error) 590 break; 591 592 if ((ioflag & (IO_VMIO|IO_DIRECT)) && 593 (LIST_EMPTY(&bp->b_dep))) { 594 /* 595 * If there are no dependencies, and it's VMIO, 596 * then we don't need the buf, mark it available 597 * for freeing. The VM has the data. 598 */ 599 bp->b_flags |= B_RELBUF; 600 brelse(bp); 601 } else { 602 /* 603 * Otherwise let whoever 604 * made the request take care of 605 * freeing it. We just queue 606 * it onto another list. 607 */ 608 bqrelse(bp); 609 } 610 } 611 612 /* 613 * This can only happen in the case of an error 614 * because the loop above resets bp to NULL on each iteration 615 * and on normal completion has not set a new value into it. 616 * so it must have come from a 'break' statement 617 */ 618 if (bp != NULL) { 619 if ((ioflag & (IO_VMIO|IO_DIRECT)) && 620 (LIST_EMPTY(&bp->b_dep))) { 621 bp->b_flags |= B_RELBUF; 622 brelse(bp); 623 } else { 624 bqrelse(bp); 625 } 626 } 627 628 if ((error == 0 || uio->uio_resid != orig_resid) && 629 (vp->v_mount->mnt_flag & MNT_NOATIME) == 0 && 630 (ip->i_flag & IN_ACCESS) == 0) { 631 VI_LOCK(vp); 632 ip->i_flag |= IN_ACCESS; 633 VI_UNLOCK(vp); 634 } 635 return (error); 636 } 637 638 /* 639 * Vnode op for writing. 640 */ 641 static int 642 ffs_write(ap) 643 struct vop_write_args /* { 644 struct vnode *a_vp; 645 struct uio *a_uio; 646 int a_ioflag; 647 struct ucred *a_cred; 648 } */ *ap; 649 { 650 struct vnode *vp; 651 struct uio *uio; 652 struct inode *ip; 653 struct fs *fs; 654 struct buf *bp; 655 struct thread *td; 656 ufs_lbn_t lbn; 657 off_t osize; 658 int seqcount; 659 int blkoffset, error, flags, ioflag, resid, size, xfersize; 660 661 vp = ap->a_vp; 662 uio = ap->a_uio; 663 ioflag = ap->a_ioflag; 664 if (ap->a_ioflag & IO_EXT) 665 #ifdef notyet 666 return (ffs_extwrite(vp, uio, ioflag, ap->a_cred)); 667 #else 668 panic("ffs_write+IO_EXT"); 669 #endif 670 671 seqcount = ap->a_ioflag >> IO_SEQSHIFT; 672 ip = VTOI(vp); 673 674 #ifdef INVARIANTS 675 if (uio->uio_rw != UIO_WRITE) 676 panic("ffs_write: mode"); 677 #endif 678 679 switch (vp->v_type) { 680 case VREG: 681 if (ioflag & IO_APPEND) 682 uio->uio_offset = ip->i_size; 683 if ((ip->i_flags & APPEND) && uio->uio_offset != ip->i_size) 684 return (EPERM); 685 /* FALLTHROUGH */ 686 case VLNK: 687 break; 688 case VDIR: 689 panic("ffs_write: dir write"); 690 break; 691 default: 692 panic("ffs_write: type %p %d (%d,%d)", vp, (int)vp->v_type, 693 (int)uio->uio_offset, 694 (int)uio->uio_resid 695 ); 696 } 697 698 KASSERT(uio->uio_resid >= 0, ("ffs_write: uio->uio_resid < 0")); 699 KASSERT(uio->uio_offset >= 0, ("ffs_write: uio->uio_offset < 0")); 700 fs = ip->i_fs; 701 if ((uoff_t)uio->uio_offset + uio->uio_resid > fs->fs_maxfilesize) 702 return (EFBIG); 703 /* 704 * Maybe this should be above the vnode op call, but so long as 705 * file servers have no limits, I don't think it matters. 706 */ 707 td = uio->uio_td; 708 if (vp->v_type == VREG && td != NULL) { 709 PROC_LOCK(td->td_proc); 710 if (uio->uio_offset + uio->uio_resid > 711 lim_cur(td->td_proc, RLIMIT_FSIZE)) { 712 psignal(td->td_proc, SIGXFSZ); 713 PROC_UNLOCK(td->td_proc); 714 return (EFBIG); 715 } 716 PROC_UNLOCK(td->td_proc); 717 } 718 719 resid = uio->uio_resid; 720 osize = ip->i_size; 721 if (seqcount > BA_SEQMAX) 722 flags = BA_SEQMAX << BA_SEQSHIFT; 723 else 724 flags = seqcount << BA_SEQSHIFT; 725 if ((ioflag & IO_SYNC) && !DOINGASYNC(vp)) 726 flags |= IO_SYNC; 727 728 for (error = 0; uio->uio_resid > 0;) { 729 lbn = lblkno(fs, uio->uio_offset); 730 blkoffset = blkoff(fs, uio->uio_offset); 731 xfersize = fs->fs_bsize - blkoffset; 732 if (uio->uio_resid < xfersize) 733 xfersize = uio->uio_resid; 734 if (uio->uio_offset + xfersize > ip->i_size) 735 vnode_pager_setsize(vp, uio->uio_offset + xfersize); 736 737 /* 738 * We must perform a read-before-write if the transfer size 739 * does not cover the entire buffer. 740 */ 741 if (fs->fs_bsize > xfersize) 742 flags |= BA_CLRBUF; 743 else 744 flags &= ~BA_CLRBUF; 745 /* XXX is uio->uio_offset the right thing here? */ 746 error = UFS_BALLOC(vp, uio->uio_offset, xfersize, 747 ap->a_cred, flags, &bp); 748 if (error != 0) { 749 vnode_pager_setsize(vp, ip->i_size); 750 break; 751 } 752 /* 753 * If the buffer is not valid we have to clear out any 754 * garbage data from the pages instantiated for the buffer. 755 * If we do not, a failed uiomove() during a write can leave 756 * the prior contents of the pages exposed to a userland 757 * mmap(). XXX deal with uiomove() errors a better way. 758 */ 759 if ((bp->b_flags & B_CACHE) == 0 && fs->fs_bsize <= xfersize) 760 vfs_bio_clrbuf(bp); 761 if (ioflag & IO_DIRECT) 762 bp->b_flags |= B_DIRECT; 763 if ((ioflag & (IO_SYNC|IO_INVAL)) == (IO_SYNC|IO_INVAL)) 764 bp->b_flags |= B_NOCACHE; 765 766 if (uio->uio_offset + xfersize > ip->i_size) { 767 ip->i_size = uio->uio_offset + xfersize; 768 DIP_SET(ip, i_size, ip->i_size); 769 } 770 771 size = blksize(fs, ip, lbn) - bp->b_resid; 772 if (size < xfersize) 773 xfersize = size; 774 775 error = 776 uiomove((char *)bp->b_data + blkoffset, (int)xfersize, uio); 777 if ((ioflag & (IO_VMIO|IO_DIRECT)) && 778 (LIST_EMPTY(&bp->b_dep))) { 779 bp->b_flags |= B_RELBUF; 780 } 781 782 /* 783 * If IO_SYNC each buffer is written synchronously. Otherwise 784 * if we have a severe page deficiency write the buffer 785 * asynchronously. Otherwise try to cluster, and if that 786 * doesn't do it then either do an async write (if O_DIRECT), 787 * or a delayed write (if not). 788 */ 789 if (ioflag & IO_SYNC) { 790 (void)bwrite(bp); 791 } else if (vm_page_count_severe() || 792 buf_dirty_count_severe() || 793 (ioflag & IO_ASYNC)) { 794 bp->b_flags |= B_CLUSTEROK; 795 bawrite(bp); 796 } else if (xfersize + blkoffset == fs->fs_bsize) { 797 if ((vp->v_mount->mnt_flag & MNT_NOCLUSTERW) == 0) { 798 bp->b_flags |= B_CLUSTEROK; 799 cluster_write(vp, bp, ip->i_size, seqcount); 800 } else { 801 bawrite(bp); 802 } 803 } else if (ioflag & IO_DIRECT) { 804 bp->b_flags |= B_CLUSTEROK; 805 bawrite(bp); 806 } else { 807 bp->b_flags |= B_CLUSTEROK; 808 bdwrite(bp); 809 } 810 if (error || xfersize == 0) 811 break; 812 ip->i_flag |= IN_CHANGE | IN_UPDATE; 813 } 814 /* 815 * If we successfully wrote any data, and we are not the superuser 816 * we clear the setuid and setgid bits as a precaution against 817 * tampering. 818 */ 819 if ((ip->i_mode & (ISUID | ISGID)) && resid > uio->uio_resid && 820 ap->a_cred) { 821 if (priv_check_cred(ap->a_cred, PRIV_VFS_RETAINSUGID, 0)) { 822 ip->i_mode &= ~(ISUID | ISGID); 823 DIP_SET(ip, i_mode, ip->i_mode); 824 } 825 } 826 if (error) { 827 if (ioflag & IO_UNIT) { 828 (void)ffs_truncate(vp, osize, 829 IO_NORMAL | (ioflag & IO_SYNC), 830 ap->a_cred, uio->uio_td); 831 uio->uio_offset -= resid - uio->uio_resid; 832 uio->uio_resid = resid; 833 } 834 } else if (resid > uio->uio_resid && (ioflag & IO_SYNC)) 835 error = ffs_update(vp, 1); 836 return (error); 837 } 838 839 /* 840 * get page routine 841 */ 842 static int 843 ffs_getpages(ap) 844 struct vop_getpages_args *ap; 845 { 846 int i; 847 vm_page_t mreq; 848 int pcount; 849 850 pcount = round_page(ap->a_count) / PAGE_SIZE; 851 mreq = ap->a_m[ap->a_reqpage]; 852 853 /* 854 * if ANY DEV_BSIZE blocks are valid on a large filesystem block, 855 * then the entire page is valid. Since the page may be mapped, 856 * user programs might reference data beyond the actual end of file 857 * occuring within the page. We have to zero that data. 858 */ 859 VM_OBJECT_LOCK(mreq->object); 860 if (mreq->valid) { 861 if (mreq->valid != VM_PAGE_BITS_ALL) 862 vm_page_zero_invalid(mreq, TRUE); 863 vm_page_lock_queues(); 864 for (i = 0; i < pcount; i++) { 865 if (i != ap->a_reqpage) { 866 vm_page_free(ap->a_m[i]); 867 } 868 } 869 vm_page_unlock_queues(); 870 VM_OBJECT_UNLOCK(mreq->object); 871 return VM_PAGER_OK; 872 } 873 VM_OBJECT_UNLOCK(mreq->object); 874 875 return vnode_pager_generic_getpages(ap->a_vp, ap->a_m, 876 ap->a_count, 877 ap->a_reqpage); 878 } 879 880 881 /* 882 * Extended attribute area reading. 883 */ 884 static int 885 ffs_extread(struct vnode *vp, struct uio *uio, int ioflag) 886 { 887 struct inode *ip; 888 struct ufs2_dinode *dp; 889 struct fs *fs; 890 struct buf *bp; 891 ufs_lbn_t lbn, nextlbn; 892 off_t bytesinfile; 893 long size, xfersize, blkoffset; 894 int error, orig_resid; 895 896 ip = VTOI(vp); 897 fs = ip->i_fs; 898 dp = ip->i_din2; 899 900 #ifdef INVARIANTS 901 if (uio->uio_rw != UIO_READ || fs->fs_magic != FS_UFS2_MAGIC) 902 panic("ffs_extread: mode"); 903 904 #endif 905 orig_resid = uio->uio_resid; 906 KASSERT(orig_resid >= 0, ("ffs_extread: uio->uio_resid < 0")); 907 if (orig_resid == 0) 908 return (0); 909 KASSERT(uio->uio_offset >= 0, ("ffs_extread: uio->uio_offset < 0")); 910 911 for (error = 0, bp = NULL; uio->uio_resid > 0; bp = NULL) { 912 if ((bytesinfile = dp->di_extsize - uio->uio_offset) <= 0) 913 break; 914 lbn = lblkno(fs, uio->uio_offset); 915 nextlbn = lbn + 1; 916 917 /* 918 * size of buffer. The buffer representing the 919 * end of the file is rounded up to the size of 920 * the block type ( fragment or full block, 921 * depending ). 922 */ 923 size = sblksize(fs, dp->di_extsize, lbn); 924 blkoffset = blkoff(fs, uio->uio_offset); 925 926 /* 927 * The amount we want to transfer in this iteration is 928 * one FS block less the amount of the data before 929 * our startpoint (duh!) 930 */ 931 xfersize = fs->fs_bsize - blkoffset; 932 933 /* 934 * But if we actually want less than the block, 935 * or the file doesn't have a whole block more of data, 936 * then use the lesser number. 937 */ 938 if (uio->uio_resid < xfersize) 939 xfersize = uio->uio_resid; 940 if (bytesinfile < xfersize) 941 xfersize = bytesinfile; 942 943 if (lblktosize(fs, nextlbn) >= dp->di_extsize) { 944 /* 945 * Don't do readahead if this is the end of the info. 946 */ 947 error = bread(vp, -1 - lbn, size, NOCRED, &bp); 948 } else { 949 /* 950 * If we have a second block, then 951 * fire off a request for a readahead 952 * as well as a read. Note that the 4th and 5th 953 * arguments point to arrays of the size specified in 954 * the 6th argument. 955 */ 956 int nextsize = sblksize(fs, dp->di_extsize, nextlbn); 957 958 nextlbn = -1 - nextlbn; 959 error = breadn(vp, -1 - lbn, 960 size, &nextlbn, &nextsize, 1, NOCRED, &bp); 961 } 962 if (error) { 963 brelse(bp); 964 bp = NULL; 965 break; 966 } 967 968 /* 969 * If IO_DIRECT then set B_DIRECT for the buffer. This 970 * will cause us to attempt to release the buffer later on 971 * and will cause the buffer cache to attempt to free the 972 * underlying pages. 973 */ 974 if (ioflag & IO_DIRECT) 975 bp->b_flags |= B_DIRECT; 976 977 /* 978 * We should only get non-zero b_resid when an I/O error 979 * has occurred, which should cause us to break above. 980 * However, if the short read did not cause an error, 981 * then we want to ensure that we do not uiomove bad 982 * or uninitialized data. 983 */ 984 size -= bp->b_resid; 985 if (size < xfersize) { 986 if (size == 0) 987 break; 988 xfersize = size; 989 } 990 991 error = uiomove((char *)bp->b_data + blkoffset, 992 (int)xfersize, uio); 993 if (error) 994 break; 995 996 if ((ioflag & (IO_VMIO|IO_DIRECT)) && 997 (LIST_EMPTY(&bp->b_dep))) { 998 /* 999 * If there are no dependencies, and it's VMIO, 1000 * then we don't need the buf, mark it available 1001 * for freeing. The VM has the data. 1002 */ 1003 bp->b_flags |= B_RELBUF; 1004 brelse(bp); 1005 } else { 1006 /* 1007 * Otherwise let whoever 1008 * made the request take care of 1009 * freeing it. We just queue 1010 * it onto another list. 1011 */ 1012 bqrelse(bp); 1013 } 1014 } 1015 1016 /* 1017 * This can only happen in the case of an error 1018 * because the loop above resets bp to NULL on each iteration 1019 * and on normal completion has not set a new value into it. 1020 * so it must have come from a 'break' statement 1021 */ 1022 if (bp != NULL) { 1023 if ((ioflag & (IO_VMIO|IO_DIRECT)) && 1024 (LIST_EMPTY(&bp->b_dep))) { 1025 bp->b_flags |= B_RELBUF; 1026 brelse(bp); 1027 } else { 1028 bqrelse(bp); 1029 } 1030 } 1031 return (error); 1032 } 1033 1034 /* 1035 * Extended attribute area writing. 1036 */ 1037 static int 1038 ffs_extwrite(struct vnode *vp, struct uio *uio, int ioflag, struct ucred *ucred) 1039 { 1040 struct inode *ip; 1041 struct ufs2_dinode *dp; 1042 struct fs *fs; 1043 struct buf *bp; 1044 ufs_lbn_t lbn; 1045 off_t osize; 1046 int blkoffset, error, flags, resid, size, xfersize; 1047 1048 ip = VTOI(vp); 1049 fs = ip->i_fs; 1050 dp = ip->i_din2; 1051 1052 KASSERT(!(ip->i_flag & IN_SPACECOUNTED), ("inode %u: inode is dead", 1053 ip->i_number)); 1054 1055 #ifdef INVARIANTS 1056 if (uio->uio_rw != UIO_WRITE || fs->fs_magic != FS_UFS2_MAGIC) 1057 panic("ffs_extwrite: mode"); 1058 #endif 1059 1060 if (ioflag & IO_APPEND) 1061 uio->uio_offset = dp->di_extsize; 1062 KASSERT(uio->uio_offset >= 0, ("ffs_extwrite: uio->uio_offset < 0")); 1063 KASSERT(uio->uio_resid >= 0, ("ffs_extwrite: uio->uio_resid < 0")); 1064 if ((uoff_t)uio->uio_offset + uio->uio_resid > NXADDR * fs->fs_bsize) 1065 return (EFBIG); 1066 1067 resid = uio->uio_resid; 1068 osize = dp->di_extsize; 1069 flags = IO_EXT; 1070 if ((ioflag & IO_SYNC) && !DOINGASYNC(vp)) 1071 flags |= IO_SYNC; 1072 1073 for (error = 0; uio->uio_resid > 0;) { 1074 lbn = lblkno(fs, uio->uio_offset); 1075 blkoffset = blkoff(fs, uio->uio_offset); 1076 xfersize = fs->fs_bsize - blkoffset; 1077 if (uio->uio_resid < xfersize) 1078 xfersize = uio->uio_resid; 1079 1080 /* 1081 * We must perform a read-before-write if the transfer size 1082 * does not cover the entire buffer. 1083 */ 1084 if (fs->fs_bsize > xfersize) 1085 flags |= BA_CLRBUF; 1086 else 1087 flags &= ~BA_CLRBUF; 1088 error = UFS_BALLOC(vp, uio->uio_offset, xfersize, 1089 ucred, flags, &bp); 1090 if (error != 0) 1091 break; 1092 /* 1093 * If the buffer is not valid we have to clear out any 1094 * garbage data from the pages instantiated for the buffer. 1095 * If we do not, a failed uiomove() during a write can leave 1096 * the prior contents of the pages exposed to a userland 1097 * mmap(). XXX deal with uiomove() errors a better way. 1098 */ 1099 if ((bp->b_flags & B_CACHE) == 0 && fs->fs_bsize <= xfersize) 1100 vfs_bio_clrbuf(bp); 1101 if (ioflag & IO_DIRECT) 1102 bp->b_flags |= B_DIRECT; 1103 1104 if (uio->uio_offset + xfersize > dp->di_extsize) 1105 dp->di_extsize = uio->uio_offset + xfersize; 1106 1107 size = sblksize(fs, dp->di_extsize, lbn) - bp->b_resid; 1108 if (size < xfersize) 1109 xfersize = size; 1110 1111 error = 1112 uiomove((char *)bp->b_data + blkoffset, (int)xfersize, uio); 1113 if ((ioflag & (IO_VMIO|IO_DIRECT)) && 1114 (LIST_EMPTY(&bp->b_dep))) { 1115 bp->b_flags |= B_RELBUF; 1116 } 1117 1118 /* 1119 * If IO_SYNC each buffer is written synchronously. Otherwise 1120 * if we have a severe page deficiency write the buffer 1121 * asynchronously. Otherwise try to cluster, and if that 1122 * doesn't do it then either do an async write (if O_DIRECT), 1123 * or a delayed write (if not). 1124 */ 1125 if (ioflag & IO_SYNC) { 1126 (void)bwrite(bp); 1127 } else if (vm_page_count_severe() || 1128 buf_dirty_count_severe() || 1129 xfersize + blkoffset == fs->fs_bsize || 1130 (ioflag & (IO_ASYNC | IO_DIRECT))) 1131 bawrite(bp); 1132 else 1133 bdwrite(bp); 1134 if (error || xfersize == 0) 1135 break; 1136 ip->i_flag |= IN_CHANGE; 1137 } 1138 /* 1139 * If we successfully wrote any data, and we are not the superuser 1140 * we clear the setuid and setgid bits as a precaution against 1141 * tampering. 1142 */ 1143 if ((ip->i_mode & (ISUID | ISGID)) && resid > uio->uio_resid && ucred) { 1144 if (priv_check_cred(ucred, PRIV_VFS_RETAINSUGID, 0)) { 1145 ip->i_mode &= ~(ISUID | ISGID); 1146 dp->di_mode = ip->i_mode; 1147 } 1148 } 1149 if (error) { 1150 if (ioflag & IO_UNIT) { 1151 (void)ffs_truncate(vp, osize, 1152 IO_EXT | (ioflag&IO_SYNC), ucred, uio->uio_td); 1153 uio->uio_offset -= resid - uio->uio_resid; 1154 uio->uio_resid = resid; 1155 } 1156 } else if (resid > uio->uio_resid && (ioflag & IO_SYNC)) 1157 error = ffs_update(vp, 1); 1158 return (error); 1159 } 1160 1161 1162 /* 1163 * Vnode operating to retrieve a named extended attribute. 1164 * 1165 * Locate a particular EA (nspace:name) in the area (ptr:length), and return 1166 * the length of the EA, and possibly the pointer to the entry and to the data. 1167 */ 1168 static int 1169 ffs_findextattr(u_char *ptr, u_int length, int nspace, const char *name, u_char **eap, u_char **eac) 1170 { 1171 u_char *p, *pe, *pn, *p0; 1172 int eapad1, eapad2, ealength, ealen, nlen; 1173 uint32_t ul; 1174 1175 pe = ptr + length; 1176 nlen = strlen(name); 1177 1178 for (p = ptr; p < pe; p = pn) { 1179 p0 = p; 1180 bcopy(p, &ul, sizeof(ul)); 1181 pn = p + ul; 1182 /* make sure this entry is complete */ 1183 if (pn > pe) 1184 break; 1185 p += sizeof(uint32_t); 1186 if (*p != nspace) 1187 continue; 1188 p++; 1189 eapad2 = *p++; 1190 if (*p != nlen) 1191 continue; 1192 p++; 1193 if (bcmp(p, name, nlen)) 1194 continue; 1195 ealength = sizeof(uint32_t) + 3 + nlen; 1196 eapad1 = 8 - (ealength % 8); 1197 if (eapad1 == 8) 1198 eapad1 = 0; 1199 ealength += eapad1; 1200 ealen = ul - ealength - eapad2; 1201 p += nlen + eapad1; 1202 if (eap != NULL) 1203 *eap = p0; 1204 if (eac != NULL) 1205 *eac = p; 1206 return (ealen); 1207 } 1208 return(-1); 1209 } 1210 1211 static int 1212 ffs_rdextattr(u_char **p, struct vnode *vp, struct thread *td, int extra) 1213 { 1214 struct inode *ip; 1215 struct ufs2_dinode *dp; 1216 struct fs *fs; 1217 struct uio luio; 1218 struct iovec liovec; 1219 int easize, error; 1220 u_char *eae; 1221 1222 ip = VTOI(vp); 1223 fs = ip->i_fs; 1224 dp = ip->i_din2; 1225 easize = dp->di_extsize; 1226 if ((uoff_t)easize + extra > NXADDR * fs->fs_bsize) 1227 return (EFBIG); 1228 1229 eae = malloc(easize + extra, M_TEMP, M_WAITOK); 1230 1231 liovec.iov_base = eae; 1232 liovec.iov_len = easize; 1233 luio.uio_iov = &liovec; 1234 luio.uio_iovcnt = 1; 1235 luio.uio_offset = 0; 1236 luio.uio_resid = easize; 1237 luio.uio_segflg = UIO_SYSSPACE; 1238 luio.uio_rw = UIO_READ; 1239 luio.uio_td = td; 1240 1241 error = ffs_extread(vp, &luio, IO_EXT | IO_SYNC); 1242 if (error) { 1243 free(eae, M_TEMP); 1244 return(error); 1245 } 1246 *p = eae; 1247 return (0); 1248 } 1249 1250 static void 1251 ffs_lock_ea(struct vnode *vp) 1252 { 1253 struct inode *ip; 1254 1255 ip = VTOI(vp); 1256 VI_LOCK(vp); 1257 while (ip->i_flag & IN_EA_LOCKED) { 1258 ip->i_flag |= IN_EA_LOCKWAIT; 1259 msleep(&ip->i_ea_refs, &vp->v_interlock, PINOD + 2, "ufs_ea", 1260 0); 1261 } 1262 ip->i_flag |= IN_EA_LOCKED; 1263 VI_UNLOCK(vp); 1264 } 1265 1266 static void 1267 ffs_unlock_ea(struct vnode *vp) 1268 { 1269 struct inode *ip; 1270 1271 ip = VTOI(vp); 1272 VI_LOCK(vp); 1273 if (ip->i_flag & IN_EA_LOCKWAIT) 1274 wakeup(&ip->i_ea_refs); 1275 ip->i_flag &= ~(IN_EA_LOCKED | IN_EA_LOCKWAIT); 1276 VI_UNLOCK(vp); 1277 } 1278 1279 static int 1280 ffs_open_ea(struct vnode *vp, struct ucred *cred, struct thread *td) 1281 { 1282 struct inode *ip; 1283 struct ufs2_dinode *dp; 1284 int error; 1285 1286 ip = VTOI(vp); 1287 1288 ffs_lock_ea(vp); 1289 if (ip->i_ea_area != NULL) { 1290 ip->i_ea_refs++; 1291 ffs_unlock_ea(vp); 1292 return (0); 1293 } 1294 dp = ip->i_din2; 1295 error = ffs_rdextattr(&ip->i_ea_area, vp, td, 0); 1296 if (error) { 1297 ffs_unlock_ea(vp); 1298 return (error); 1299 } 1300 ip->i_ea_len = dp->di_extsize; 1301 ip->i_ea_error = 0; 1302 ip->i_ea_refs++; 1303 ffs_unlock_ea(vp); 1304 return (0); 1305 } 1306 1307 /* 1308 * Vnode extattr transaction commit/abort 1309 */ 1310 static int 1311 ffs_close_ea(struct vnode *vp, int commit, struct ucred *cred, struct thread *td) 1312 { 1313 struct inode *ip; 1314 struct uio luio; 1315 struct iovec liovec; 1316 int error; 1317 struct ufs2_dinode *dp; 1318 1319 ip = VTOI(vp); 1320 1321 ffs_lock_ea(vp); 1322 if (ip->i_ea_area == NULL) { 1323 ffs_unlock_ea(vp); 1324 return (EINVAL); 1325 } 1326 dp = ip->i_din2; 1327 error = ip->i_ea_error; 1328 if (commit && error == 0) { 1329 ASSERT_VOP_ELOCKED(vp, "ffs_close_ea commit"); 1330 if (cred == NOCRED) 1331 cred = vp->v_mount->mnt_cred; 1332 liovec.iov_base = ip->i_ea_area; 1333 liovec.iov_len = ip->i_ea_len; 1334 luio.uio_iov = &liovec; 1335 luio.uio_iovcnt = 1; 1336 luio.uio_offset = 0; 1337 luio.uio_resid = ip->i_ea_len; 1338 luio.uio_segflg = UIO_SYSSPACE; 1339 luio.uio_rw = UIO_WRITE; 1340 luio.uio_td = td; 1341 /* XXX: I'm not happy about truncating to zero size */ 1342 if (ip->i_ea_len < dp->di_extsize) 1343 error = ffs_truncate(vp, 0, IO_EXT, cred, td); 1344 error = ffs_extwrite(vp, &luio, IO_EXT | IO_SYNC, cred); 1345 } 1346 if (--ip->i_ea_refs == 0) { 1347 free(ip->i_ea_area, M_TEMP); 1348 ip->i_ea_area = NULL; 1349 ip->i_ea_len = 0; 1350 ip->i_ea_error = 0; 1351 } 1352 ffs_unlock_ea(vp); 1353 return (error); 1354 } 1355 1356 /* 1357 * Vnode extattr strategy routine for fifos. 1358 * 1359 * We need to check for a read or write of the external attributes. 1360 * Otherwise we just fall through and do the usual thing. 1361 */ 1362 static int 1363 ffsext_strategy(struct vop_strategy_args *ap) 1364 /* 1365 struct vop_strategy_args { 1366 struct vnodeop_desc *a_desc; 1367 struct vnode *a_vp; 1368 struct buf *a_bp; 1369 }; 1370 */ 1371 { 1372 struct vnode *vp; 1373 daddr_t lbn; 1374 1375 vp = ap->a_vp; 1376 lbn = ap->a_bp->b_lblkno; 1377 if (VTOI(vp)->i_fs->fs_magic == FS_UFS2_MAGIC && 1378 lbn < 0 && lbn >= -NXADDR) 1379 return (VOP_STRATEGY_APV(&ufs_vnodeops, ap)); 1380 if (vp->v_type == VFIFO) 1381 return (VOP_STRATEGY_APV(&ufs_fifoops, ap)); 1382 panic("spec nodes went here"); 1383 } 1384 1385 /* 1386 * Vnode extattr transaction commit/abort 1387 */ 1388 static int 1389 ffs_openextattr(struct vop_openextattr_args *ap) 1390 /* 1391 struct vop_openextattr_args { 1392 struct vnodeop_desc *a_desc; 1393 struct vnode *a_vp; 1394 IN struct ucred *a_cred; 1395 IN struct thread *a_td; 1396 }; 1397 */ 1398 { 1399 struct inode *ip; 1400 struct fs *fs; 1401 1402 ip = VTOI(ap->a_vp); 1403 fs = ip->i_fs; 1404 1405 if (ap->a_vp->v_type == VCHR || ap->a_vp->v_type == VBLK) 1406 return (EOPNOTSUPP); 1407 1408 return (ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td)); 1409 } 1410 1411 1412 /* 1413 * Vnode extattr transaction commit/abort 1414 */ 1415 static int 1416 ffs_closeextattr(struct vop_closeextattr_args *ap) 1417 /* 1418 struct vop_closeextattr_args { 1419 struct vnodeop_desc *a_desc; 1420 struct vnode *a_vp; 1421 int a_commit; 1422 IN struct ucred *a_cred; 1423 IN struct thread *a_td; 1424 }; 1425 */ 1426 { 1427 struct inode *ip; 1428 struct fs *fs; 1429 1430 ip = VTOI(ap->a_vp); 1431 fs = ip->i_fs; 1432 1433 if (ap->a_vp->v_type == VCHR || ap->a_vp->v_type == VBLK) 1434 return (EOPNOTSUPP); 1435 1436 if (ap->a_commit && (ap->a_vp->v_mount->mnt_flag & MNT_RDONLY)) 1437 return (EROFS); 1438 1439 return (ffs_close_ea(ap->a_vp, ap->a_commit, ap->a_cred, ap->a_td)); 1440 } 1441 1442 /* 1443 * Vnode operation to remove a named attribute. 1444 */ 1445 static int 1446 ffs_deleteextattr(struct vop_deleteextattr_args *ap) 1447 /* 1448 vop_deleteextattr { 1449 IN struct vnode *a_vp; 1450 IN int a_attrnamespace; 1451 IN const char *a_name; 1452 IN struct ucred *a_cred; 1453 IN struct thread *a_td; 1454 }; 1455 */ 1456 { 1457 struct inode *ip; 1458 struct fs *fs; 1459 uint32_t ealength, ul; 1460 int ealen, olen, eapad1, eapad2, error, i, easize; 1461 u_char *eae, *p; 1462 1463 ip = VTOI(ap->a_vp); 1464 fs = ip->i_fs; 1465 1466 if (ap->a_vp->v_type == VCHR || ap->a_vp->v_type == VBLK) 1467 return (EOPNOTSUPP); 1468 1469 if (strlen(ap->a_name) == 0) 1470 return (EINVAL); 1471 1472 if (ap->a_vp->v_mount->mnt_flag & MNT_RDONLY) 1473 return (EROFS); 1474 1475 error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace, 1476 ap->a_cred, ap->a_td, VWRITE); 1477 if (error) { 1478 1479 /* 1480 * ffs_lock_ea is not needed there, because the vnode 1481 * must be exclusively locked. 1482 */ 1483 if (ip->i_ea_area != NULL && ip->i_ea_error == 0) 1484 ip->i_ea_error = error; 1485 return (error); 1486 } 1487 1488 error = ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td); 1489 if (error) 1490 return (error); 1491 1492 ealength = eapad1 = ealen = eapad2 = 0; 1493 1494 eae = malloc(ip->i_ea_len, M_TEMP, M_WAITOK); 1495 bcopy(ip->i_ea_area, eae, ip->i_ea_len); 1496 easize = ip->i_ea_len; 1497 1498 olen = ffs_findextattr(eae, easize, ap->a_attrnamespace, ap->a_name, 1499 &p, NULL); 1500 if (olen == -1) { 1501 /* delete but nonexistent */ 1502 free(eae, M_TEMP); 1503 ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td); 1504 return(ENOATTR); 1505 } 1506 bcopy(p, &ul, sizeof ul); 1507 i = p - eae + ul; 1508 if (ul != ealength) { 1509 bcopy(p + ul, p + ealength, easize - i); 1510 easize += (ealength - ul); 1511 } 1512 if (easize > NXADDR * fs->fs_bsize) { 1513 free(eae, M_TEMP); 1514 ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td); 1515 if (ip->i_ea_area != NULL && ip->i_ea_error == 0) 1516 ip->i_ea_error = ENOSPC; 1517 return(ENOSPC); 1518 } 1519 p = ip->i_ea_area; 1520 ip->i_ea_area = eae; 1521 ip->i_ea_len = easize; 1522 free(p, M_TEMP); 1523 error = ffs_close_ea(ap->a_vp, 1, ap->a_cred, ap->a_td); 1524 return(error); 1525 } 1526 1527 /* 1528 * Vnode operation to retrieve a named extended attribute. 1529 */ 1530 static int 1531 ffs_getextattr(struct vop_getextattr_args *ap) 1532 /* 1533 vop_getextattr { 1534 IN struct vnode *a_vp; 1535 IN int a_attrnamespace; 1536 IN const char *a_name; 1537 INOUT struct uio *a_uio; 1538 OUT size_t *a_size; 1539 IN struct ucred *a_cred; 1540 IN struct thread *a_td; 1541 }; 1542 */ 1543 { 1544 struct inode *ip; 1545 struct fs *fs; 1546 u_char *eae, *p; 1547 unsigned easize; 1548 int error, ealen; 1549 1550 ip = VTOI(ap->a_vp); 1551 fs = ip->i_fs; 1552 1553 if (ap->a_vp->v_type == VCHR || ap->a_vp->v_type == VBLK) 1554 return (EOPNOTSUPP); 1555 1556 error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace, 1557 ap->a_cred, ap->a_td, VREAD); 1558 if (error) 1559 return (error); 1560 1561 error = ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td); 1562 if (error) 1563 return (error); 1564 1565 eae = ip->i_ea_area; 1566 easize = ip->i_ea_len; 1567 1568 ealen = ffs_findextattr(eae, easize, ap->a_attrnamespace, ap->a_name, 1569 NULL, &p); 1570 if (ealen >= 0) { 1571 error = 0; 1572 if (ap->a_size != NULL) 1573 *ap->a_size = ealen; 1574 else if (ap->a_uio != NULL) 1575 error = uiomove(p, ealen, ap->a_uio); 1576 } else 1577 error = ENOATTR; 1578 1579 ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td); 1580 return(error); 1581 } 1582 1583 /* 1584 * Vnode operation to retrieve extended attributes on a vnode. 1585 */ 1586 static int 1587 ffs_listextattr(struct vop_listextattr_args *ap) 1588 /* 1589 vop_listextattr { 1590 IN struct vnode *a_vp; 1591 IN int a_attrnamespace; 1592 INOUT struct uio *a_uio; 1593 OUT size_t *a_size; 1594 IN struct ucred *a_cred; 1595 IN struct thread *a_td; 1596 }; 1597 */ 1598 { 1599 struct inode *ip; 1600 struct fs *fs; 1601 u_char *eae, *p, *pe, *pn; 1602 unsigned easize; 1603 uint32_t ul; 1604 int error, ealen; 1605 1606 ip = VTOI(ap->a_vp); 1607 fs = ip->i_fs; 1608 1609 if (ap->a_vp->v_type == VCHR || ap->a_vp->v_type == VBLK) 1610 return (EOPNOTSUPP); 1611 1612 error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace, 1613 ap->a_cred, ap->a_td, VREAD); 1614 if (error) 1615 return (error); 1616 1617 error = ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td); 1618 if (error) 1619 return (error); 1620 eae = ip->i_ea_area; 1621 easize = ip->i_ea_len; 1622 1623 error = 0; 1624 if (ap->a_size != NULL) 1625 *ap->a_size = 0; 1626 pe = eae + easize; 1627 for(p = eae; error == 0 && p < pe; p = pn) { 1628 bcopy(p, &ul, sizeof(ul)); 1629 pn = p + ul; 1630 if (pn > pe) 1631 break; 1632 p += sizeof(ul); 1633 if (*p++ != ap->a_attrnamespace) 1634 continue; 1635 p++; /* pad2 */ 1636 ealen = *p; 1637 if (ap->a_size != NULL) { 1638 *ap->a_size += ealen + 1; 1639 } else if (ap->a_uio != NULL) { 1640 error = uiomove(p, ealen + 1, ap->a_uio); 1641 } 1642 } 1643 ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td); 1644 return(error); 1645 } 1646 1647 /* 1648 * Vnode operation to set a named attribute. 1649 */ 1650 static int 1651 ffs_setextattr(struct vop_setextattr_args *ap) 1652 /* 1653 vop_setextattr { 1654 IN struct vnode *a_vp; 1655 IN int a_attrnamespace; 1656 IN const char *a_name; 1657 INOUT struct uio *a_uio; 1658 IN struct ucred *a_cred; 1659 IN struct thread *a_td; 1660 }; 1661 */ 1662 { 1663 struct inode *ip; 1664 struct fs *fs; 1665 uint32_t ealength, ul; 1666 int ealen, olen, eapad1, eapad2, error, i, easize; 1667 u_char *eae, *p; 1668 1669 ip = VTOI(ap->a_vp); 1670 fs = ip->i_fs; 1671 1672 if (ap->a_vp->v_type == VCHR || ap->a_vp->v_type == VBLK) 1673 return (EOPNOTSUPP); 1674 1675 if (strlen(ap->a_name) == 0) 1676 return (EINVAL); 1677 1678 /* XXX Now unsupported API to delete EAs using NULL uio. */ 1679 if (ap->a_uio == NULL) 1680 return (EOPNOTSUPP); 1681 1682 if (ap->a_vp->v_mount->mnt_flag & MNT_RDONLY) 1683 return (EROFS); 1684 1685 error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace, 1686 ap->a_cred, ap->a_td, VWRITE); 1687 if (error) { 1688 1689 /* 1690 * ffs_lock_ea is not needed there, because the vnode 1691 * must be exclusively locked. 1692 */ 1693 if (ip->i_ea_area != NULL && ip->i_ea_error == 0) 1694 ip->i_ea_error = error; 1695 return (error); 1696 } 1697 1698 error = ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td); 1699 if (error) 1700 return (error); 1701 1702 ealen = ap->a_uio->uio_resid; 1703 ealength = sizeof(uint32_t) + 3 + strlen(ap->a_name); 1704 eapad1 = 8 - (ealength % 8); 1705 if (eapad1 == 8) 1706 eapad1 = 0; 1707 eapad2 = 8 - (ealen % 8); 1708 if (eapad2 == 8) 1709 eapad2 = 0; 1710 ealength += eapad1 + ealen + eapad2; 1711 1712 eae = malloc(ip->i_ea_len + ealength, M_TEMP, M_WAITOK); 1713 bcopy(ip->i_ea_area, eae, ip->i_ea_len); 1714 easize = ip->i_ea_len; 1715 1716 olen = ffs_findextattr(eae, easize, 1717 ap->a_attrnamespace, ap->a_name, &p, NULL); 1718 if (olen == -1) { 1719 /* new, append at end */ 1720 p = eae + easize; 1721 easize += ealength; 1722 } else { 1723 bcopy(p, &ul, sizeof ul); 1724 i = p - eae + ul; 1725 if (ul != ealength) { 1726 bcopy(p + ul, p + ealength, easize - i); 1727 easize += (ealength - ul); 1728 } 1729 } 1730 if (easize > NXADDR * fs->fs_bsize) { 1731 free(eae, M_TEMP); 1732 ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td); 1733 if (ip->i_ea_area != NULL && ip->i_ea_error == 0) 1734 ip->i_ea_error = ENOSPC; 1735 return(ENOSPC); 1736 } 1737 bcopy(&ealength, p, sizeof(ealength)); 1738 p += sizeof(ealength); 1739 *p++ = ap->a_attrnamespace; 1740 *p++ = eapad2; 1741 *p++ = strlen(ap->a_name); 1742 strcpy(p, ap->a_name); 1743 p += strlen(ap->a_name); 1744 bzero(p, eapad1); 1745 p += eapad1; 1746 error = uiomove(p, ealen, ap->a_uio); 1747 if (error) { 1748 free(eae, M_TEMP); 1749 ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td); 1750 if (ip->i_ea_area != NULL && ip->i_ea_error == 0) 1751 ip->i_ea_error = error; 1752 return(error); 1753 } 1754 p += ealen; 1755 bzero(p, eapad2); 1756 1757 p = ip->i_ea_area; 1758 ip->i_ea_area = eae; 1759 ip->i_ea_len = easize; 1760 free(p, M_TEMP); 1761 error = ffs_close_ea(ap->a_vp, 1, ap->a_cred, ap->a_td); 1762 return(error); 1763 } 1764 1765 /* 1766 * Vnode pointer to File handle 1767 */ 1768 static int 1769 ffs_vptofh(struct vop_vptofh_args *ap) 1770 /* 1771 vop_vptofh { 1772 IN struct vnode *a_vp; 1773 IN struct fid *a_fhp; 1774 }; 1775 */ 1776 { 1777 struct inode *ip; 1778 struct ufid *ufhp; 1779 1780 ip = VTOI(ap->a_vp); 1781 ufhp = (struct ufid *)ap->a_fhp; 1782 ufhp->ufid_len = sizeof(struct ufid); 1783 ufhp->ufid_ino = ip->i_number; 1784 ufhp->ufid_gen = ip->i_gen; 1785 return (0); 1786 } 1787