1 /*- 2 * SPDX-License-Identifier: (BSD-2-Clause-FreeBSD AND BSD-3-Clause) 3 * 4 * Copyright (c) 2002, 2003 Networks Associates Technology, Inc. 5 * All rights reserved. 6 * 7 * This software was developed for the FreeBSD Project by Marshall 8 * Kirk McKusick and Network Associates Laboratories, the Security 9 * Research Division of Network Associates, Inc. under DARPA/SPAWAR 10 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS 11 * research program 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 1. Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * Copyright (c) 1982, 1986, 1989, 1993 35 * The Regents of the University of California. All rights reserved. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 1. Redistributions of source code must retain the above copyright 41 * notice, this list of conditions and the following disclaimer. 42 * 2. Redistributions in binary form must reproduce the above copyright 43 * notice, this list of conditions and the following disclaimer in the 44 * documentation and/or other materials provided with the distribution. 45 * 3. Neither the name of the University nor the names of its contributors 46 * may be used to endorse or promote products derived from this software 47 * without specific prior written permission. 48 * 49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 59 * SUCH DAMAGE. 60 * 61 * from: @(#)ufs_readwrite.c 8.11 (Berkeley) 5/8/95 62 * from: $FreeBSD: .../ufs/ufs_readwrite.c,v 1.96 2002/08/12 09:22:11 phk ... 63 * @(#)ffs_vnops.c 8.15 (Berkeley) 5/14/95 64 */ 65 66 #include <sys/cdefs.h> 67 __FBSDID("$FreeBSD$"); 68 69 #include <sys/param.h> 70 #include <sys/bio.h> 71 #include <sys/systm.h> 72 #include <sys/buf.h> 73 #include <sys/conf.h> 74 #include <sys/extattr.h> 75 #include <sys/kernel.h> 76 #include <sys/limits.h> 77 #include <sys/malloc.h> 78 #include <sys/mount.h> 79 #include <sys/priv.h> 80 #include <sys/rwlock.h> 81 #include <sys/stat.h> 82 #include <sys/sysctl.h> 83 #include <sys/vmmeter.h> 84 #include <sys/vnode.h> 85 86 #include <vm/vm.h> 87 #include <vm/vm_param.h> 88 #include <vm/vm_extern.h> 89 #include <vm/vm_object.h> 90 #include <vm/vm_page.h> 91 #include <vm/vm_pager.h> 92 #include <vm/vnode_pager.h> 93 94 #include <ufs/ufs/extattr.h> 95 #include <ufs/ufs/quota.h> 96 #include <ufs/ufs/inode.h> 97 #include <ufs/ufs/ufs_extern.h> 98 #include <ufs/ufs/ufsmount.h> 99 100 #include <ufs/ffs/fs.h> 101 #include <ufs/ffs/ffs_extern.h> 102 #include "opt_directio.h" 103 #include "opt_ffs.h" 104 105 #define ALIGNED_TO(ptr, s) \ 106 (((uintptr_t)(ptr) & (_Alignof(s) - 1)) == 0) 107 108 #ifdef DIRECTIO 109 extern int ffs_rawread(struct vnode *vp, struct uio *uio, int *workdone); 110 #endif 111 static vop_fdatasync_t ffs_fdatasync; 112 static vop_fsync_t ffs_fsync; 113 static vop_getpages_t ffs_getpages; 114 static vop_lock1_t ffs_lock; 115 static vop_read_t ffs_read; 116 static vop_write_t ffs_write; 117 static int ffs_extread(struct vnode *vp, struct uio *uio, int ioflag); 118 static int ffs_extwrite(struct vnode *vp, struct uio *uio, int ioflag, 119 struct ucred *cred); 120 static vop_strategy_t ffsext_strategy; 121 static vop_closeextattr_t ffs_closeextattr; 122 static vop_deleteextattr_t ffs_deleteextattr; 123 static vop_getextattr_t ffs_getextattr; 124 static vop_listextattr_t ffs_listextattr; 125 static vop_openextattr_t ffs_openextattr; 126 static vop_setextattr_t ffs_setextattr; 127 static vop_vptofh_t ffs_vptofh; 128 129 /* Global vfs data structures for ufs. */ 130 struct vop_vector ffs_vnodeops1 = { 131 .vop_default = &ufs_vnodeops, 132 .vop_fsync = ffs_fsync, 133 .vop_fdatasync = ffs_fdatasync, 134 .vop_getpages = ffs_getpages, 135 .vop_getpages_async = vnode_pager_local_getpages_async, 136 .vop_lock1 = ffs_lock, 137 .vop_read = ffs_read, 138 .vop_reallocblks = ffs_reallocblks, 139 .vop_write = ffs_write, 140 .vop_vptofh = ffs_vptofh, 141 }; 142 143 struct vop_vector ffs_fifoops1 = { 144 .vop_default = &ufs_fifoops, 145 .vop_fsync = ffs_fsync, 146 .vop_fdatasync = ffs_fdatasync, 147 .vop_reallocblks = ffs_reallocblks, /* XXX: really ??? */ 148 .vop_vptofh = ffs_vptofh, 149 }; 150 151 /* Global vfs data structures for ufs. */ 152 struct vop_vector ffs_vnodeops2 = { 153 .vop_default = &ufs_vnodeops, 154 .vop_fsync = ffs_fsync, 155 .vop_fdatasync = ffs_fdatasync, 156 .vop_getpages = ffs_getpages, 157 .vop_getpages_async = vnode_pager_local_getpages_async, 158 .vop_lock1 = ffs_lock, 159 .vop_read = ffs_read, 160 .vop_reallocblks = ffs_reallocblks, 161 .vop_write = ffs_write, 162 .vop_closeextattr = ffs_closeextattr, 163 .vop_deleteextattr = ffs_deleteextattr, 164 .vop_getextattr = ffs_getextattr, 165 .vop_listextattr = ffs_listextattr, 166 .vop_openextattr = ffs_openextattr, 167 .vop_setextattr = ffs_setextattr, 168 .vop_vptofh = ffs_vptofh, 169 }; 170 171 struct vop_vector ffs_fifoops2 = { 172 .vop_default = &ufs_fifoops, 173 .vop_fsync = ffs_fsync, 174 .vop_fdatasync = ffs_fdatasync, 175 .vop_lock1 = ffs_lock, 176 .vop_reallocblks = ffs_reallocblks, 177 .vop_strategy = ffsext_strategy, 178 .vop_closeextattr = ffs_closeextattr, 179 .vop_deleteextattr = ffs_deleteextattr, 180 .vop_getextattr = ffs_getextattr, 181 .vop_listextattr = ffs_listextattr, 182 .vop_openextattr = ffs_openextattr, 183 .vop_setextattr = ffs_setextattr, 184 .vop_vptofh = ffs_vptofh, 185 }; 186 187 /* 188 * Synch an open file. 189 */ 190 /* ARGSUSED */ 191 static int 192 ffs_fsync(struct vop_fsync_args *ap) 193 { 194 struct vnode *vp; 195 struct bufobj *bo; 196 int error; 197 198 vp = ap->a_vp; 199 bo = &vp->v_bufobj; 200 retry: 201 error = ffs_syncvnode(vp, ap->a_waitfor, 0); 202 if (error) 203 return (error); 204 if (ap->a_waitfor == MNT_WAIT && DOINGSOFTDEP(vp)) { 205 error = softdep_fsync(vp); 206 if (error) 207 return (error); 208 209 /* 210 * The softdep_fsync() function may drop vp lock, 211 * allowing for dirty buffers to reappear on the 212 * bo_dirty list. Recheck and resync as needed. 213 */ 214 BO_LOCK(bo); 215 if ((vp->v_type == VREG || vp->v_type == VDIR) && 216 (bo->bo_numoutput > 0 || bo->bo_dirty.bv_cnt > 0)) { 217 BO_UNLOCK(bo); 218 goto retry; 219 } 220 BO_UNLOCK(bo); 221 } 222 return (0); 223 } 224 225 int 226 ffs_syncvnode(struct vnode *vp, int waitfor, int flags) 227 { 228 struct inode *ip; 229 struct bufobj *bo; 230 struct buf *bp, *nbp; 231 ufs_lbn_t lbn; 232 int error, passes; 233 bool still_dirty, wait; 234 235 ip = VTOI(vp); 236 ip->i_flag &= ~IN_NEEDSYNC; 237 bo = &vp->v_bufobj; 238 239 /* 240 * When doing MNT_WAIT we must first flush all dependencies 241 * on the inode. 242 */ 243 if (DOINGSOFTDEP(vp) && waitfor == MNT_WAIT && 244 (error = softdep_sync_metadata(vp)) != 0) 245 return (error); 246 247 /* 248 * Flush all dirty buffers associated with a vnode. 249 */ 250 error = 0; 251 passes = 0; 252 wait = false; /* Always do an async pass first. */ 253 lbn = lblkno(ITOFS(ip), (ip->i_size + ITOFS(ip)->fs_bsize - 1)); 254 BO_LOCK(bo); 255 loop: 256 TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) 257 bp->b_vflags &= ~BV_SCANNED; 258 TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) { 259 /* 260 * Reasons to skip this buffer: it has already been considered 261 * on this pass, the buffer has dependencies that will cause 262 * it to be redirtied and it has not already been deferred, 263 * or it is already being written. 264 */ 265 if ((bp->b_vflags & BV_SCANNED) != 0) 266 continue; 267 bp->b_vflags |= BV_SCANNED; 268 /* 269 * Flush indirects in order, if requested. 270 * 271 * Note that if only datasync is requested, we can 272 * skip indirect blocks when softupdates are not 273 * active. Otherwise we must flush them with data, 274 * since dependencies prevent data block writes. 275 */ 276 if (waitfor == MNT_WAIT && bp->b_lblkno <= -UFS_NDADDR && 277 (lbn_level(bp->b_lblkno) >= passes || 278 ((flags & DATA_ONLY) != 0 && !DOINGSOFTDEP(vp)))) 279 continue; 280 if (bp->b_lblkno > lbn) 281 panic("ffs_syncvnode: syncing truncated data."); 282 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) == 0) { 283 BO_UNLOCK(bo); 284 } else if (wait) { 285 if (BUF_LOCK(bp, 286 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, 287 BO_LOCKPTR(bo)) != 0) { 288 bp->b_vflags &= ~BV_SCANNED; 289 goto next; 290 } 291 } else 292 continue; 293 if ((bp->b_flags & B_DELWRI) == 0) 294 panic("ffs_fsync: not dirty"); 295 /* 296 * Check for dependencies and potentially complete them. 297 */ 298 if (!LIST_EMPTY(&bp->b_dep) && 299 (error = softdep_sync_buf(vp, bp, 300 wait ? MNT_WAIT : MNT_NOWAIT)) != 0) { 301 /* I/O error. */ 302 if (error != EBUSY) { 303 BUF_UNLOCK(bp); 304 return (error); 305 } 306 /* If we deferred once, don't defer again. */ 307 if ((bp->b_flags & B_DEFERRED) == 0) { 308 bp->b_flags |= B_DEFERRED; 309 BUF_UNLOCK(bp); 310 goto next; 311 } 312 } 313 if (wait) { 314 bremfree(bp); 315 if ((error = bwrite(bp)) != 0) 316 return (error); 317 } else if ((bp->b_flags & B_CLUSTEROK)) { 318 (void) vfs_bio_awrite(bp); 319 } else { 320 bremfree(bp); 321 (void) bawrite(bp); 322 } 323 next: 324 /* 325 * Since we may have slept during the I/O, we need 326 * to start from a known point. 327 */ 328 BO_LOCK(bo); 329 nbp = TAILQ_FIRST(&bo->bo_dirty.bv_hd); 330 } 331 if (waitfor != MNT_WAIT) { 332 BO_UNLOCK(bo); 333 if ((flags & NO_INO_UPDT) != 0) 334 return (0); 335 else 336 return (ffs_update(vp, 0)); 337 } 338 /* Drain IO to see if we're done. */ 339 bufobj_wwait(bo, 0, 0); 340 /* 341 * Block devices associated with filesystems may have new I/O 342 * requests posted for them even if the vnode is locked, so no 343 * amount of trying will get them clean. We make several passes 344 * as a best effort. 345 * 346 * Regular files may need multiple passes to flush all dependency 347 * work as it is possible that we must write once per indirect 348 * level, once for the leaf, and once for the inode and each of 349 * these will be done with one sync and one async pass. 350 */ 351 if (bo->bo_dirty.bv_cnt > 0) { 352 if ((flags & DATA_ONLY) == 0) { 353 still_dirty = true; 354 } else { 355 /* 356 * For data-only sync, dirty indirect buffers 357 * are ignored. 358 */ 359 still_dirty = false; 360 TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) { 361 if (bp->b_lblkno > -UFS_NDADDR) { 362 still_dirty = true; 363 break; 364 } 365 } 366 } 367 368 if (still_dirty) { 369 /* Write the inode after sync passes to flush deps. */ 370 if (wait && DOINGSOFTDEP(vp) && 371 (flags & NO_INO_UPDT) == 0) { 372 BO_UNLOCK(bo); 373 ffs_update(vp, 1); 374 BO_LOCK(bo); 375 } 376 /* switch between sync/async. */ 377 wait = !wait; 378 if (wait || ++passes < UFS_NIADDR + 2) 379 goto loop; 380 #ifdef INVARIANTS 381 if (!vn_isdisk(vp, NULL)) 382 vn_printf(vp, "ffs_fsync: dirty "); 383 #endif 384 } 385 } 386 BO_UNLOCK(bo); 387 error = 0; 388 if ((flags & DATA_ONLY) == 0) { 389 if ((flags & NO_INO_UPDT) == 0) 390 error = ffs_update(vp, 1); 391 if (DOINGSUJ(vp)) 392 softdep_journal_fsync(VTOI(vp)); 393 } 394 return (error); 395 } 396 397 static int 398 ffs_fdatasync(struct vop_fdatasync_args *ap) 399 { 400 401 return (ffs_syncvnode(ap->a_vp, MNT_WAIT, DATA_ONLY)); 402 } 403 404 static int 405 ffs_lock(ap) 406 struct vop_lock1_args /* { 407 struct vnode *a_vp; 408 int a_flags; 409 struct thread *a_td; 410 char *file; 411 int line; 412 } */ *ap; 413 { 414 #ifndef NO_FFS_SNAPSHOT 415 struct vnode *vp; 416 int flags; 417 struct lock *lkp; 418 int result; 419 420 switch (ap->a_flags & LK_TYPE_MASK) { 421 case LK_SHARED: 422 case LK_UPGRADE: 423 case LK_EXCLUSIVE: 424 vp = ap->a_vp; 425 flags = ap->a_flags; 426 for (;;) { 427 #ifdef DEBUG_VFS_LOCKS 428 KASSERT(vp->v_holdcnt != 0, 429 ("ffs_lock %p: zero hold count", vp)); 430 #endif 431 lkp = vp->v_vnlock; 432 result = _lockmgr_args(lkp, flags, VI_MTX(vp), 433 LK_WMESG_DEFAULT, LK_PRIO_DEFAULT, LK_TIMO_DEFAULT, 434 ap->a_file, ap->a_line); 435 if (lkp == vp->v_vnlock || result != 0) 436 break; 437 /* 438 * Apparent success, except that the vnode 439 * mutated between snapshot file vnode and 440 * regular file vnode while this process 441 * slept. The lock currently held is not the 442 * right lock. Release it, and try to get the 443 * new lock. 444 */ 445 (void) _lockmgr_args(lkp, LK_RELEASE, NULL, 446 LK_WMESG_DEFAULT, LK_PRIO_DEFAULT, LK_TIMO_DEFAULT, 447 ap->a_file, ap->a_line); 448 if ((flags & (LK_INTERLOCK | LK_NOWAIT)) == 449 (LK_INTERLOCK | LK_NOWAIT)) 450 return (EBUSY); 451 if ((flags & LK_TYPE_MASK) == LK_UPGRADE) 452 flags = (flags & ~LK_TYPE_MASK) | LK_EXCLUSIVE; 453 flags &= ~LK_INTERLOCK; 454 } 455 break; 456 default: 457 result = VOP_LOCK1_APV(&ufs_vnodeops, ap); 458 } 459 return (result); 460 #else 461 return (VOP_LOCK1_APV(&ufs_vnodeops, ap)); 462 #endif 463 } 464 465 static int 466 ffs_read_hole(struct uio *uio, long xfersize, long *size) 467 { 468 ssize_t saved_resid, tlen; 469 int error; 470 471 while (xfersize > 0) { 472 tlen = min(xfersize, ZERO_REGION_SIZE); 473 saved_resid = uio->uio_resid; 474 error = vn_io_fault_uiomove(__DECONST(void *, zero_region), 475 tlen, uio); 476 if (error != 0) 477 return (error); 478 tlen = saved_resid - uio->uio_resid; 479 xfersize -= tlen; 480 *size -= tlen; 481 } 482 return (0); 483 } 484 485 /* 486 * Vnode op for reading. 487 */ 488 static int 489 ffs_read(ap) 490 struct vop_read_args /* { 491 struct vnode *a_vp; 492 struct uio *a_uio; 493 int a_ioflag; 494 struct ucred *a_cred; 495 } */ *ap; 496 { 497 struct vnode *vp; 498 struct inode *ip; 499 struct uio *uio; 500 struct fs *fs; 501 struct buf *bp; 502 ufs_lbn_t lbn, nextlbn; 503 off_t bytesinfile; 504 long size, xfersize, blkoffset; 505 ssize_t orig_resid; 506 int bflag, error, ioflag, seqcount; 507 508 vp = ap->a_vp; 509 uio = ap->a_uio; 510 ioflag = ap->a_ioflag; 511 if (ap->a_ioflag & IO_EXT) 512 #ifdef notyet 513 return (ffs_extread(vp, uio, ioflag)); 514 #else 515 panic("ffs_read+IO_EXT"); 516 #endif 517 #ifdef DIRECTIO 518 if ((ioflag & IO_DIRECT) != 0) { 519 int workdone; 520 521 error = ffs_rawread(vp, uio, &workdone); 522 if (error != 0 || workdone != 0) 523 return error; 524 } 525 #endif 526 527 seqcount = ap->a_ioflag >> IO_SEQSHIFT; 528 ip = VTOI(vp); 529 530 #ifdef INVARIANTS 531 if (uio->uio_rw != UIO_READ) 532 panic("ffs_read: mode"); 533 534 if (vp->v_type == VLNK) { 535 if ((int)ip->i_size < vp->v_mount->mnt_maxsymlinklen) 536 panic("ffs_read: short symlink"); 537 } else if (vp->v_type != VREG && vp->v_type != VDIR) 538 panic("ffs_read: type %d", vp->v_type); 539 #endif 540 orig_resid = uio->uio_resid; 541 KASSERT(orig_resid >= 0, ("ffs_read: uio->uio_resid < 0")); 542 if (orig_resid == 0) 543 return (0); 544 KASSERT(uio->uio_offset >= 0, ("ffs_read: uio->uio_offset < 0")); 545 fs = ITOFS(ip); 546 if (uio->uio_offset < ip->i_size && 547 uio->uio_offset >= fs->fs_maxfilesize) 548 return (EOVERFLOW); 549 550 bflag = GB_UNMAPPED | (uio->uio_segflg == UIO_NOCOPY ? 0 : GB_NOSPARSE); 551 for (error = 0, bp = NULL; uio->uio_resid > 0; bp = NULL) { 552 if ((bytesinfile = ip->i_size - uio->uio_offset) <= 0) 553 break; 554 lbn = lblkno(fs, uio->uio_offset); 555 nextlbn = lbn + 1; 556 557 /* 558 * size of buffer. The buffer representing the 559 * end of the file is rounded up to the size of 560 * the block type ( fragment or full block, 561 * depending ). 562 */ 563 size = blksize(fs, ip, lbn); 564 blkoffset = blkoff(fs, uio->uio_offset); 565 566 /* 567 * The amount we want to transfer in this iteration is 568 * one FS block less the amount of the data before 569 * our startpoint (duh!) 570 */ 571 xfersize = fs->fs_bsize - blkoffset; 572 573 /* 574 * But if we actually want less than the block, 575 * or the file doesn't have a whole block more of data, 576 * then use the lesser number. 577 */ 578 if (uio->uio_resid < xfersize) 579 xfersize = uio->uio_resid; 580 if (bytesinfile < xfersize) 581 xfersize = bytesinfile; 582 583 if (lblktosize(fs, nextlbn) >= ip->i_size) { 584 /* 585 * Don't do readahead if this is the end of the file. 586 */ 587 error = bread_gb(vp, lbn, size, NOCRED, bflag, &bp); 588 } else if ((vp->v_mount->mnt_flag & MNT_NOCLUSTERR) == 0) { 589 /* 590 * Otherwise if we are allowed to cluster, 591 * grab as much as we can. 592 * 593 * XXX This may not be a win if we are not 594 * doing sequential access. 595 */ 596 error = cluster_read(vp, ip->i_size, lbn, 597 size, NOCRED, blkoffset + uio->uio_resid, 598 seqcount, bflag, &bp); 599 } else if (seqcount > 1) { 600 /* 601 * If we are NOT allowed to cluster, then 602 * if we appear to be acting sequentially, 603 * fire off a request for a readahead 604 * as well as a read. Note that the 4th and 5th 605 * arguments point to arrays of the size specified in 606 * the 6th argument. 607 */ 608 u_int nextsize = blksize(fs, ip, nextlbn); 609 error = breadn_flags(vp, lbn, size, &nextlbn, 610 &nextsize, 1, NOCRED, bflag, NULL, &bp); 611 } else { 612 /* 613 * Failing all of the above, just read what the 614 * user asked for. Interestingly, the same as 615 * the first option above. 616 */ 617 error = bread_gb(vp, lbn, size, NOCRED, bflag, &bp); 618 } 619 if (error == EJUSTRETURN) { 620 error = ffs_read_hole(uio, xfersize, &size); 621 if (error == 0) 622 continue; 623 } 624 if (error != 0) { 625 brelse(bp); 626 bp = NULL; 627 break; 628 } 629 630 /* 631 * We should only get non-zero b_resid when an I/O error 632 * has occurred, which should cause us to break above. 633 * However, if the short read did not cause an error, 634 * then we want to ensure that we do not uiomove bad 635 * or uninitialized data. 636 */ 637 size -= bp->b_resid; 638 if (size < xfersize) { 639 if (size == 0) 640 break; 641 xfersize = size; 642 } 643 644 if (buf_mapped(bp)) { 645 error = vn_io_fault_uiomove((char *)bp->b_data + 646 blkoffset, (int)xfersize, uio); 647 } else { 648 error = vn_io_fault_pgmove(bp->b_pages, blkoffset, 649 (int)xfersize, uio); 650 } 651 if (error) 652 break; 653 654 vfs_bio_brelse(bp, ioflag); 655 } 656 657 /* 658 * This can only happen in the case of an error 659 * because the loop above resets bp to NULL on each iteration 660 * and on normal completion has not set a new value into it. 661 * so it must have come from a 'break' statement 662 */ 663 if (bp != NULL) 664 vfs_bio_brelse(bp, ioflag); 665 666 if ((error == 0 || uio->uio_resid != orig_resid) && 667 (vp->v_mount->mnt_flag & (MNT_NOATIME | MNT_RDONLY)) == 0 && 668 (ip->i_flag & IN_ACCESS) == 0) { 669 VI_LOCK(vp); 670 ip->i_flag |= IN_ACCESS; 671 VI_UNLOCK(vp); 672 } 673 return (error); 674 } 675 676 /* 677 * Vnode op for writing. 678 */ 679 static int 680 ffs_write(ap) 681 struct vop_write_args /* { 682 struct vnode *a_vp; 683 struct uio *a_uio; 684 int a_ioflag; 685 struct ucred *a_cred; 686 } */ *ap; 687 { 688 struct vnode *vp; 689 struct uio *uio; 690 struct inode *ip; 691 struct fs *fs; 692 struct buf *bp; 693 ufs_lbn_t lbn; 694 off_t osize; 695 ssize_t resid; 696 int seqcount; 697 int blkoffset, error, flags, ioflag, size, xfersize; 698 699 vp = ap->a_vp; 700 uio = ap->a_uio; 701 ioflag = ap->a_ioflag; 702 if (ap->a_ioflag & IO_EXT) 703 #ifdef notyet 704 return (ffs_extwrite(vp, uio, ioflag, ap->a_cred)); 705 #else 706 panic("ffs_write+IO_EXT"); 707 #endif 708 709 seqcount = ap->a_ioflag >> IO_SEQSHIFT; 710 ip = VTOI(vp); 711 712 #ifdef INVARIANTS 713 if (uio->uio_rw != UIO_WRITE) 714 panic("ffs_write: mode"); 715 #endif 716 717 switch (vp->v_type) { 718 case VREG: 719 if (ioflag & IO_APPEND) 720 uio->uio_offset = ip->i_size; 721 if ((ip->i_flags & APPEND) && uio->uio_offset != ip->i_size) 722 return (EPERM); 723 /* FALLTHROUGH */ 724 case VLNK: 725 break; 726 case VDIR: 727 panic("ffs_write: dir write"); 728 break; 729 default: 730 panic("ffs_write: type %p %d (%d,%d)", vp, (int)vp->v_type, 731 (int)uio->uio_offset, 732 (int)uio->uio_resid 733 ); 734 } 735 736 KASSERT(uio->uio_resid >= 0, ("ffs_write: uio->uio_resid < 0")); 737 KASSERT(uio->uio_offset >= 0, ("ffs_write: uio->uio_offset < 0")); 738 fs = ITOFS(ip); 739 if ((uoff_t)uio->uio_offset + uio->uio_resid > fs->fs_maxfilesize) 740 return (EFBIG); 741 /* 742 * Maybe this should be above the vnode op call, but so long as 743 * file servers have no limits, I don't think it matters. 744 */ 745 if (vn_rlimit_fsize(vp, uio, uio->uio_td)) 746 return (EFBIG); 747 748 resid = uio->uio_resid; 749 osize = ip->i_size; 750 if (seqcount > BA_SEQMAX) 751 flags = BA_SEQMAX << BA_SEQSHIFT; 752 else 753 flags = seqcount << BA_SEQSHIFT; 754 if (ioflag & IO_SYNC) 755 flags |= IO_SYNC; 756 flags |= BA_UNMAPPED; 757 758 for (error = 0; uio->uio_resid > 0;) { 759 lbn = lblkno(fs, uio->uio_offset); 760 blkoffset = blkoff(fs, uio->uio_offset); 761 xfersize = fs->fs_bsize - blkoffset; 762 if (uio->uio_resid < xfersize) 763 xfersize = uio->uio_resid; 764 if (uio->uio_offset + xfersize > ip->i_size) 765 vnode_pager_setsize(vp, uio->uio_offset + xfersize); 766 767 /* 768 * We must perform a read-before-write if the transfer size 769 * does not cover the entire buffer. 770 */ 771 if (fs->fs_bsize > xfersize) 772 flags |= BA_CLRBUF; 773 else 774 flags &= ~BA_CLRBUF; 775 /* XXX is uio->uio_offset the right thing here? */ 776 error = UFS_BALLOC(vp, uio->uio_offset, xfersize, 777 ap->a_cred, flags, &bp); 778 if (error != 0) { 779 vnode_pager_setsize(vp, ip->i_size); 780 break; 781 } 782 if ((ioflag & (IO_SYNC|IO_INVAL)) == (IO_SYNC|IO_INVAL)) 783 bp->b_flags |= B_NOCACHE; 784 785 if (uio->uio_offset + xfersize > ip->i_size) { 786 ip->i_size = uio->uio_offset + xfersize; 787 DIP_SET(ip, i_size, ip->i_size); 788 } 789 790 size = blksize(fs, ip, lbn) - bp->b_resid; 791 if (size < xfersize) 792 xfersize = size; 793 794 if (buf_mapped(bp)) { 795 error = vn_io_fault_uiomove((char *)bp->b_data + 796 blkoffset, (int)xfersize, uio); 797 } else { 798 error = vn_io_fault_pgmove(bp->b_pages, blkoffset, 799 (int)xfersize, uio); 800 } 801 /* 802 * If the buffer is not already filled and we encounter an 803 * error while trying to fill it, we have to clear out any 804 * garbage data from the pages instantiated for the buffer. 805 * If we do not, a failed uiomove() during a write can leave 806 * the prior contents of the pages exposed to a userland mmap. 807 * 808 * Note that we need only clear buffers with a transfer size 809 * equal to the block size because buffers with a shorter 810 * transfer size were cleared above by the call to UFS_BALLOC() 811 * with the BA_CLRBUF flag set. 812 * 813 * If the source region for uiomove identically mmaps the 814 * buffer, uiomove() performed the NOP copy, and the buffer 815 * content remains valid because the page fault handler 816 * validated the pages. 817 */ 818 if (error != 0 && (bp->b_flags & B_CACHE) == 0 && 819 fs->fs_bsize == xfersize) 820 vfs_bio_clrbuf(bp); 821 822 vfs_bio_set_flags(bp, ioflag); 823 824 /* 825 * If IO_SYNC each buffer is written synchronously. Otherwise 826 * if we have a severe page deficiency write the buffer 827 * asynchronously. Otherwise try to cluster, and if that 828 * doesn't do it then either do an async write (if O_DIRECT), 829 * or a delayed write (if not). 830 */ 831 if (ioflag & IO_SYNC) { 832 (void)bwrite(bp); 833 } else if (vm_page_count_severe() || 834 buf_dirty_count_severe() || 835 (ioflag & IO_ASYNC)) { 836 bp->b_flags |= B_CLUSTEROK; 837 bawrite(bp); 838 } else if (xfersize + blkoffset == fs->fs_bsize) { 839 if ((vp->v_mount->mnt_flag & MNT_NOCLUSTERW) == 0) { 840 bp->b_flags |= B_CLUSTEROK; 841 cluster_write(vp, bp, ip->i_size, seqcount, 842 GB_UNMAPPED); 843 } else { 844 bawrite(bp); 845 } 846 } else if (ioflag & IO_DIRECT) { 847 bp->b_flags |= B_CLUSTEROK; 848 bawrite(bp); 849 } else { 850 bp->b_flags |= B_CLUSTEROK; 851 bdwrite(bp); 852 } 853 if (error || xfersize == 0) 854 break; 855 ip->i_flag |= IN_CHANGE | IN_UPDATE; 856 } 857 /* 858 * If we successfully wrote any data, and we are not the superuser 859 * we clear the setuid and setgid bits as a precaution against 860 * tampering. 861 */ 862 if ((ip->i_mode & (ISUID | ISGID)) && resid > uio->uio_resid && 863 ap->a_cred) { 864 if (priv_check_cred(ap->a_cred, PRIV_VFS_RETAINSUGID, 0)) { 865 ip->i_mode &= ~(ISUID | ISGID); 866 DIP_SET(ip, i_mode, ip->i_mode); 867 } 868 } 869 if (error) { 870 if (ioflag & IO_UNIT) { 871 (void)ffs_truncate(vp, osize, 872 IO_NORMAL | (ioflag & IO_SYNC), ap->a_cred); 873 uio->uio_offset -= resid - uio->uio_resid; 874 uio->uio_resid = resid; 875 } 876 } else if (resid > uio->uio_resid && (ioflag & IO_SYNC)) 877 error = ffs_update(vp, 1); 878 return (error); 879 } 880 881 /* 882 * Extended attribute area reading. 883 */ 884 static int 885 ffs_extread(struct vnode *vp, struct uio *uio, int ioflag) 886 { 887 struct inode *ip; 888 struct ufs2_dinode *dp; 889 struct fs *fs; 890 struct buf *bp; 891 ufs_lbn_t lbn, nextlbn; 892 off_t bytesinfile; 893 long size, xfersize, blkoffset; 894 ssize_t orig_resid; 895 int error; 896 897 ip = VTOI(vp); 898 fs = ITOFS(ip); 899 dp = ip->i_din2; 900 901 #ifdef INVARIANTS 902 if (uio->uio_rw != UIO_READ || fs->fs_magic != FS_UFS2_MAGIC) 903 panic("ffs_extread: mode"); 904 905 #endif 906 orig_resid = uio->uio_resid; 907 KASSERT(orig_resid >= 0, ("ffs_extread: uio->uio_resid < 0")); 908 if (orig_resid == 0) 909 return (0); 910 KASSERT(uio->uio_offset >= 0, ("ffs_extread: uio->uio_offset < 0")); 911 912 for (error = 0, bp = NULL; uio->uio_resid > 0; bp = NULL) { 913 if ((bytesinfile = dp->di_extsize - uio->uio_offset) <= 0) 914 break; 915 lbn = lblkno(fs, uio->uio_offset); 916 nextlbn = lbn + 1; 917 918 /* 919 * size of buffer. The buffer representing the 920 * end of the file is rounded up to the size of 921 * the block type ( fragment or full block, 922 * depending ). 923 */ 924 size = sblksize(fs, dp->di_extsize, lbn); 925 blkoffset = blkoff(fs, uio->uio_offset); 926 927 /* 928 * The amount we want to transfer in this iteration is 929 * one FS block less the amount of the data before 930 * our startpoint (duh!) 931 */ 932 xfersize = fs->fs_bsize - blkoffset; 933 934 /* 935 * But if we actually want less than the block, 936 * or the file doesn't have a whole block more of data, 937 * then use the lesser number. 938 */ 939 if (uio->uio_resid < xfersize) 940 xfersize = uio->uio_resid; 941 if (bytesinfile < xfersize) 942 xfersize = bytesinfile; 943 944 if (lblktosize(fs, nextlbn) >= dp->di_extsize) { 945 /* 946 * Don't do readahead if this is the end of the info. 947 */ 948 error = bread(vp, -1 - lbn, size, NOCRED, &bp); 949 } else { 950 /* 951 * If we have a second block, then 952 * fire off a request for a readahead 953 * as well as a read. Note that the 4th and 5th 954 * arguments point to arrays of the size specified in 955 * the 6th argument. 956 */ 957 u_int nextsize = sblksize(fs, dp->di_extsize, nextlbn); 958 959 nextlbn = -1 - nextlbn; 960 error = breadn(vp, -1 - lbn, 961 size, &nextlbn, &nextsize, 1, NOCRED, &bp); 962 } 963 if (error) { 964 brelse(bp); 965 bp = NULL; 966 break; 967 } 968 969 /* 970 * We should only get non-zero b_resid when an I/O error 971 * has occurred, which should cause us to break above. 972 * However, if the short read did not cause an error, 973 * then we want to ensure that we do not uiomove bad 974 * or uninitialized data. 975 */ 976 size -= bp->b_resid; 977 if (size < xfersize) { 978 if (size == 0) 979 break; 980 xfersize = size; 981 } 982 983 error = uiomove((char *)bp->b_data + blkoffset, 984 (int)xfersize, uio); 985 if (error) 986 break; 987 vfs_bio_brelse(bp, ioflag); 988 } 989 990 /* 991 * This can only happen in the case of an error 992 * because the loop above resets bp to NULL on each iteration 993 * and on normal completion has not set a new value into it. 994 * so it must have come from a 'break' statement 995 */ 996 if (bp != NULL) 997 vfs_bio_brelse(bp, ioflag); 998 return (error); 999 } 1000 1001 /* 1002 * Extended attribute area writing. 1003 */ 1004 static int 1005 ffs_extwrite(struct vnode *vp, struct uio *uio, int ioflag, struct ucred *ucred) 1006 { 1007 struct inode *ip; 1008 struct ufs2_dinode *dp; 1009 struct fs *fs; 1010 struct buf *bp; 1011 ufs_lbn_t lbn; 1012 off_t osize; 1013 ssize_t resid; 1014 int blkoffset, error, flags, size, xfersize; 1015 1016 ip = VTOI(vp); 1017 fs = ITOFS(ip); 1018 dp = ip->i_din2; 1019 1020 #ifdef INVARIANTS 1021 if (uio->uio_rw != UIO_WRITE || fs->fs_magic != FS_UFS2_MAGIC) 1022 panic("ffs_extwrite: mode"); 1023 #endif 1024 1025 if (ioflag & IO_APPEND) 1026 uio->uio_offset = dp->di_extsize; 1027 KASSERT(uio->uio_offset >= 0, ("ffs_extwrite: uio->uio_offset < 0")); 1028 KASSERT(uio->uio_resid >= 0, ("ffs_extwrite: uio->uio_resid < 0")); 1029 if ((uoff_t)uio->uio_offset + uio->uio_resid > 1030 UFS_NXADDR * fs->fs_bsize) 1031 return (EFBIG); 1032 1033 resid = uio->uio_resid; 1034 osize = dp->di_extsize; 1035 flags = IO_EXT; 1036 if (ioflag & IO_SYNC) 1037 flags |= IO_SYNC; 1038 1039 for (error = 0; uio->uio_resid > 0;) { 1040 lbn = lblkno(fs, uio->uio_offset); 1041 blkoffset = blkoff(fs, uio->uio_offset); 1042 xfersize = fs->fs_bsize - blkoffset; 1043 if (uio->uio_resid < xfersize) 1044 xfersize = uio->uio_resid; 1045 1046 /* 1047 * We must perform a read-before-write if the transfer size 1048 * does not cover the entire buffer. 1049 */ 1050 if (fs->fs_bsize > xfersize) 1051 flags |= BA_CLRBUF; 1052 else 1053 flags &= ~BA_CLRBUF; 1054 error = UFS_BALLOC(vp, uio->uio_offset, xfersize, 1055 ucred, flags, &bp); 1056 if (error != 0) 1057 break; 1058 /* 1059 * If the buffer is not valid we have to clear out any 1060 * garbage data from the pages instantiated for the buffer. 1061 * If we do not, a failed uiomove() during a write can leave 1062 * the prior contents of the pages exposed to a userland 1063 * mmap(). XXX deal with uiomove() errors a better way. 1064 */ 1065 if ((bp->b_flags & B_CACHE) == 0 && fs->fs_bsize <= xfersize) 1066 vfs_bio_clrbuf(bp); 1067 1068 if (uio->uio_offset + xfersize > dp->di_extsize) 1069 dp->di_extsize = uio->uio_offset + xfersize; 1070 1071 size = sblksize(fs, dp->di_extsize, lbn) - bp->b_resid; 1072 if (size < xfersize) 1073 xfersize = size; 1074 1075 error = 1076 uiomove((char *)bp->b_data + blkoffset, (int)xfersize, uio); 1077 1078 vfs_bio_set_flags(bp, ioflag); 1079 1080 /* 1081 * If IO_SYNC each buffer is written synchronously. Otherwise 1082 * if we have a severe page deficiency write the buffer 1083 * asynchronously. Otherwise try to cluster, and if that 1084 * doesn't do it then either do an async write (if O_DIRECT), 1085 * or a delayed write (if not). 1086 */ 1087 if (ioflag & IO_SYNC) { 1088 (void)bwrite(bp); 1089 } else if (vm_page_count_severe() || 1090 buf_dirty_count_severe() || 1091 xfersize + blkoffset == fs->fs_bsize || 1092 (ioflag & (IO_ASYNC | IO_DIRECT))) 1093 bawrite(bp); 1094 else 1095 bdwrite(bp); 1096 if (error || xfersize == 0) 1097 break; 1098 ip->i_flag |= IN_CHANGE; 1099 } 1100 /* 1101 * If we successfully wrote any data, and we are not the superuser 1102 * we clear the setuid and setgid bits as a precaution against 1103 * tampering. 1104 */ 1105 if ((ip->i_mode & (ISUID | ISGID)) && resid > uio->uio_resid && ucred) { 1106 if (priv_check_cred(ucred, PRIV_VFS_RETAINSUGID, 0)) { 1107 ip->i_mode &= ~(ISUID | ISGID); 1108 dp->di_mode = ip->i_mode; 1109 } 1110 } 1111 if (error) { 1112 if (ioflag & IO_UNIT) { 1113 (void)ffs_truncate(vp, osize, 1114 IO_EXT | (ioflag&IO_SYNC), ucred); 1115 uio->uio_offset -= resid - uio->uio_resid; 1116 uio->uio_resid = resid; 1117 } 1118 } else if (resid > uio->uio_resid && (ioflag & IO_SYNC)) 1119 error = ffs_update(vp, 1); 1120 return (error); 1121 } 1122 1123 1124 /* 1125 * Vnode operating to retrieve a named extended attribute. 1126 * 1127 * Locate a particular EA (nspace:name) in the area (ptr:length), and return 1128 * the length of the EA, and possibly the pointer to the entry and to the data. 1129 */ 1130 static int 1131 ffs_findextattr(u_char *ptr, u_int length, int nspace, const char *name, 1132 struct extattr **eapp, u_char **eac) 1133 { 1134 struct extattr *eap, *eaend; 1135 size_t nlen; 1136 1137 nlen = strlen(name); 1138 KASSERT(ALIGNED_TO(ptr, struct extattr), ("unaligned")); 1139 eap = (struct extattr *)ptr; 1140 eaend = (struct extattr *)(ptr + length); 1141 for (; eap < eaend; eap = EXTATTR_NEXT(eap)) { 1142 /* make sure this entry is complete */ 1143 if (EXTATTR_NEXT(eap) > eaend) 1144 break; 1145 if (eap->ea_namespace != nspace || eap->ea_namelength != nlen 1146 || memcmp(eap->ea_name, name, nlen) != 0) 1147 continue; 1148 if (eapp != NULL) 1149 *eapp = eap; 1150 if (eac != NULL) 1151 *eac = EXTATTR_CONTENT(eap); 1152 return (EXTATTR_CONTENT_SIZE(eap)); 1153 } 1154 return (-1); 1155 } 1156 1157 static int 1158 ffs_rdextattr(u_char **p, struct vnode *vp, struct thread *td, int extra) 1159 { 1160 struct inode *ip; 1161 struct ufs2_dinode *dp; 1162 struct fs *fs; 1163 struct uio luio; 1164 struct iovec liovec; 1165 u_int easize; 1166 int error; 1167 u_char *eae; 1168 1169 ip = VTOI(vp); 1170 fs = ITOFS(ip); 1171 dp = ip->i_din2; 1172 easize = dp->di_extsize; 1173 if ((uoff_t)easize + extra > UFS_NXADDR * fs->fs_bsize) 1174 return (EFBIG); 1175 1176 eae = malloc(easize + extra, M_TEMP, M_WAITOK); 1177 1178 liovec.iov_base = eae; 1179 liovec.iov_len = easize; 1180 luio.uio_iov = &liovec; 1181 luio.uio_iovcnt = 1; 1182 luio.uio_offset = 0; 1183 luio.uio_resid = easize; 1184 luio.uio_segflg = UIO_SYSSPACE; 1185 luio.uio_rw = UIO_READ; 1186 luio.uio_td = td; 1187 1188 error = ffs_extread(vp, &luio, IO_EXT | IO_SYNC); 1189 if (error) { 1190 free(eae, M_TEMP); 1191 return(error); 1192 } 1193 *p = eae; 1194 return (0); 1195 } 1196 1197 static void 1198 ffs_lock_ea(struct vnode *vp) 1199 { 1200 struct inode *ip; 1201 1202 ip = VTOI(vp); 1203 VI_LOCK(vp); 1204 while (ip->i_flag & IN_EA_LOCKED) { 1205 ip->i_flag |= IN_EA_LOCKWAIT; 1206 msleep(&ip->i_ea_refs, &vp->v_interlock, PINOD + 2, "ufs_ea", 1207 0); 1208 } 1209 ip->i_flag |= IN_EA_LOCKED; 1210 VI_UNLOCK(vp); 1211 } 1212 1213 static void 1214 ffs_unlock_ea(struct vnode *vp) 1215 { 1216 struct inode *ip; 1217 1218 ip = VTOI(vp); 1219 VI_LOCK(vp); 1220 if (ip->i_flag & IN_EA_LOCKWAIT) 1221 wakeup(&ip->i_ea_refs); 1222 ip->i_flag &= ~(IN_EA_LOCKED | IN_EA_LOCKWAIT); 1223 VI_UNLOCK(vp); 1224 } 1225 1226 static int 1227 ffs_open_ea(struct vnode *vp, struct ucred *cred, struct thread *td) 1228 { 1229 struct inode *ip; 1230 struct ufs2_dinode *dp; 1231 int error; 1232 1233 ip = VTOI(vp); 1234 1235 ffs_lock_ea(vp); 1236 if (ip->i_ea_area != NULL) { 1237 ip->i_ea_refs++; 1238 ffs_unlock_ea(vp); 1239 return (0); 1240 } 1241 dp = ip->i_din2; 1242 error = ffs_rdextattr(&ip->i_ea_area, vp, td, 0); 1243 if (error) { 1244 ffs_unlock_ea(vp); 1245 return (error); 1246 } 1247 ip->i_ea_len = dp->di_extsize; 1248 ip->i_ea_error = 0; 1249 ip->i_ea_refs++; 1250 ffs_unlock_ea(vp); 1251 return (0); 1252 } 1253 1254 /* 1255 * Vnode extattr transaction commit/abort 1256 */ 1257 static int 1258 ffs_close_ea(struct vnode *vp, int commit, struct ucred *cred, struct thread *td) 1259 { 1260 struct inode *ip; 1261 struct uio luio; 1262 struct iovec liovec; 1263 int error; 1264 struct ufs2_dinode *dp; 1265 1266 ip = VTOI(vp); 1267 1268 ffs_lock_ea(vp); 1269 if (ip->i_ea_area == NULL) { 1270 ffs_unlock_ea(vp); 1271 return (EINVAL); 1272 } 1273 dp = ip->i_din2; 1274 error = ip->i_ea_error; 1275 if (commit && error == 0) { 1276 ASSERT_VOP_ELOCKED(vp, "ffs_close_ea commit"); 1277 if (cred == NOCRED) 1278 cred = vp->v_mount->mnt_cred; 1279 liovec.iov_base = ip->i_ea_area; 1280 liovec.iov_len = ip->i_ea_len; 1281 luio.uio_iov = &liovec; 1282 luio.uio_iovcnt = 1; 1283 luio.uio_offset = 0; 1284 luio.uio_resid = ip->i_ea_len; 1285 luio.uio_segflg = UIO_SYSSPACE; 1286 luio.uio_rw = UIO_WRITE; 1287 luio.uio_td = td; 1288 /* XXX: I'm not happy about truncating to zero size */ 1289 if (ip->i_ea_len < dp->di_extsize) 1290 error = ffs_truncate(vp, 0, IO_EXT, cred); 1291 error = ffs_extwrite(vp, &luio, IO_EXT | IO_SYNC, cred); 1292 } 1293 if (--ip->i_ea_refs == 0) { 1294 free(ip->i_ea_area, M_TEMP); 1295 ip->i_ea_area = NULL; 1296 ip->i_ea_len = 0; 1297 ip->i_ea_error = 0; 1298 } 1299 ffs_unlock_ea(vp); 1300 return (error); 1301 } 1302 1303 /* 1304 * Vnode extattr strategy routine for fifos. 1305 * 1306 * We need to check for a read or write of the external attributes. 1307 * Otherwise we just fall through and do the usual thing. 1308 */ 1309 static int 1310 ffsext_strategy(struct vop_strategy_args *ap) 1311 /* 1312 struct vop_strategy_args { 1313 struct vnodeop_desc *a_desc; 1314 struct vnode *a_vp; 1315 struct buf *a_bp; 1316 }; 1317 */ 1318 { 1319 struct vnode *vp; 1320 daddr_t lbn; 1321 1322 vp = ap->a_vp; 1323 lbn = ap->a_bp->b_lblkno; 1324 if (I_IS_UFS2(VTOI(vp)) && lbn < 0 && lbn >= -UFS_NXADDR) 1325 return (VOP_STRATEGY_APV(&ufs_vnodeops, ap)); 1326 if (vp->v_type == VFIFO) 1327 return (VOP_STRATEGY_APV(&ufs_fifoops, ap)); 1328 panic("spec nodes went here"); 1329 } 1330 1331 /* 1332 * Vnode extattr transaction commit/abort 1333 */ 1334 static int 1335 ffs_openextattr(struct vop_openextattr_args *ap) 1336 /* 1337 struct vop_openextattr_args { 1338 struct vnodeop_desc *a_desc; 1339 struct vnode *a_vp; 1340 IN struct ucred *a_cred; 1341 IN struct thread *a_td; 1342 }; 1343 */ 1344 { 1345 1346 if (ap->a_vp->v_type == VCHR || ap->a_vp->v_type == VBLK) 1347 return (EOPNOTSUPP); 1348 1349 return (ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td)); 1350 } 1351 1352 1353 /* 1354 * Vnode extattr transaction commit/abort 1355 */ 1356 static int 1357 ffs_closeextattr(struct vop_closeextattr_args *ap) 1358 /* 1359 struct vop_closeextattr_args { 1360 struct vnodeop_desc *a_desc; 1361 struct vnode *a_vp; 1362 int a_commit; 1363 IN struct ucred *a_cred; 1364 IN struct thread *a_td; 1365 }; 1366 */ 1367 { 1368 1369 if (ap->a_vp->v_type == VCHR || ap->a_vp->v_type == VBLK) 1370 return (EOPNOTSUPP); 1371 1372 if (ap->a_commit && (ap->a_vp->v_mount->mnt_flag & MNT_RDONLY)) 1373 return (EROFS); 1374 1375 return (ffs_close_ea(ap->a_vp, ap->a_commit, ap->a_cred, ap->a_td)); 1376 } 1377 1378 /* 1379 * Vnode operation to remove a named attribute. 1380 */ 1381 static int 1382 ffs_deleteextattr(struct vop_deleteextattr_args *ap) 1383 /* 1384 vop_deleteextattr { 1385 IN struct vnode *a_vp; 1386 IN int a_attrnamespace; 1387 IN const char *a_name; 1388 IN struct ucred *a_cred; 1389 IN struct thread *a_td; 1390 }; 1391 */ 1392 { 1393 struct inode *ip; 1394 struct extattr *eap; 1395 uint32_t ul; 1396 int olen, error, i, easize; 1397 u_char *eae; 1398 void *tmp; 1399 1400 ip = VTOI(ap->a_vp); 1401 1402 if (ap->a_vp->v_type == VCHR || ap->a_vp->v_type == VBLK) 1403 return (EOPNOTSUPP); 1404 1405 if (strlen(ap->a_name) == 0) 1406 return (EINVAL); 1407 1408 if (ap->a_vp->v_mount->mnt_flag & MNT_RDONLY) 1409 return (EROFS); 1410 1411 error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace, 1412 ap->a_cred, ap->a_td, VWRITE); 1413 if (error) { 1414 1415 /* 1416 * ffs_lock_ea is not needed there, because the vnode 1417 * must be exclusively locked. 1418 */ 1419 if (ip->i_ea_area != NULL && ip->i_ea_error == 0) 1420 ip->i_ea_error = error; 1421 return (error); 1422 } 1423 1424 error = ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td); 1425 if (error) 1426 return (error); 1427 1428 /* CEM: delete could be done in-place instead */ 1429 eae = malloc(ip->i_ea_len, M_TEMP, M_WAITOK); 1430 bcopy(ip->i_ea_area, eae, ip->i_ea_len); 1431 easize = ip->i_ea_len; 1432 1433 olen = ffs_findextattr(eae, easize, ap->a_attrnamespace, ap->a_name, 1434 &eap, NULL); 1435 if (olen == -1) { 1436 /* delete but nonexistent */ 1437 free(eae, M_TEMP); 1438 ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td); 1439 return (ENOATTR); 1440 } 1441 ul = eap->ea_length; 1442 i = (u_char *)EXTATTR_NEXT(eap) - eae; 1443 bcopy(EXTATTR_NEXT(eap), eap, easize - i); 1444 easize -= ul; 1445 1446 tmp = ip->i_ea_area; 1447 ip->i_ea_area = eae; 1448 ip->i_ea_len = easize; 1449 free(tmp, M_TEMP); 1450 error = ffs_close_ea(ap->a_vp, 1, ap->a_cred, ap->a_td); 1451 return (error); 1452 } 1453 1454 /* 1455 * Vnode operation to retrieve a named extended attribute. 1456 */ 1457 static int 1458 ffs_getextattr(struct vop_getextattr_args *ap) 1459 /* 1460 vop_getextattr { 1461 IN struct vnode *a_vp; 1462 IN int a_attrnamespace; 1463 IN const char *a_name; 1464 INOUT struct uio *a_uio; 1465 OUT size_t *a_size; 1466 IN struct ucred *a_cred; 1467 IN struct thread *a_td; 1468 }; 1469 */ 1470 { 1471 struct inode *ip; 1472 u_char *eae, *p; 1473 unsigned easize; 1474 int error, ealen; 1475 1476 ip = VTOI(ap->a_vp); 1477 1478 if (ap->a_vp->v_type == VCHR || ap->a_vp->v_type == VBLK) 1479 return (EOPNOTSUPP); 1480 1481 error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace, 1482 ap->a_cred, ap->a_td, VREAD); 1483 if (error) 1484 return (error); 1485 1486 error = ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td); 1487 if (error) 1488 return (error); 1489 1490 eae = ip->i_ea_area; 1491 easize = ip->i_ea_len; 1492 1493 ealen = ffs_findextattr(eae, easize, ap->a_attrnamespace, ap->a_name, 1494 NULL, &p); 1495 if (ealen >= 0) { 1496 error = 0; 1497 if (ap->a_size != NULL) 1498 *ap->a_size = ealen; 1499 else if (ap->a_uio != NULL) 1500 error = uiomove(p, ealen, ap->a_uio); 1501 } else 1502 error = ENOATTR; 1503 1504 ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td); 1505 return (error); 1506 } 1507 1508 /* 1509 * Vnode operation to retrieve extended attributes on a vnode. 1510 */ 1511 static int 1512 ffs_listextattr(struct vop_listextattr_args *ap) 1513 /* 1514 vop_listextattr { 1515 IN struct vnode *a_vp; 1516 IN int a_attrnamespace; 1517 INOUT struct uio *a_uio; 1518 OUT size_t *a_size; 1519 IN struct ucred *a_cred; 1520 IN struct thread *a_td; 1521 }; 1522 */ 1523 { 1524 struct inode *ip; 1525 struct extattr *eap, *eaend; 1526 int error, ealen; 1527 1528 ip = VTOI(ap->a_vp); 1529 1530 if (ap->a_vp->v_type == VCHR || ap->a_vp->v_type == VBLK) 1531 return (EOPNOTSUPP); 1532 1533 error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace, 1534 ap->a_cred, ap->a_td, VREAD); 1535 if (error) 1536 return (error); 1537 1538 error = ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td); 1539 if (error) 1540 return (error); 1541 1542 error = 0; 1543 if (ap->a_size != NULL) 1544 *ap->a_size = 0; 1545 1546 KASSERT(ALIGNED_TO(ip->i_ea_area, struct extattr), ("unaligned")); 1547 eap = (struct extattr *)ip->i_ea_area; 1548 eaend = (struct extattr *)(ip->i_ea_area + ip->i_ea_len); 1549 for (; error == 0 && eap < eaend; eap = EXTATTR_NEXT(eap)) { 1550 /* make sure this entry is complete */ 1551 if (EXTATTR_NEXT(eap) > eaend) 1552 break; 1553 if (eap->ea_namespace != ap->a_attrnamespace) 1554 continue; 1555 1556 ealen = eap->ea_namelength; 1557 if (ap->a_size != NULL) 1558 *ap->a_size += ealen + 1; 1559 else if (ap->a_uio != NULL) 1560 error = uiomove(&eap->ea_namelength, ealen + 1, 1561 ap->a_uio); 1562 } 1563 1564 ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td); 1565 return (error); 1566 } 1567 1568 /* 1569 * Vnode operation to set a named attribute. 1570 */ 1571 static int 1572 ffs_setextattr(struct vop_setextattr_args *ap) 1573 /* 1574 vop_setextattr { 1575 IN struct vnode *a_vp; 1576 IN int a_attrnamespace; 1577 IN const char *a_name; 1578 INOUT struct uio *a_uio; 1579 IN struct ucred *a_cred; 1580 IN struct thread *a_td; 1581 }; 1582 */ 1583 { 1584 struct inode *ip; 1585 struct fs *fs; 1586 struct extattr *eap; 1587 uint32_t ealength, ul; 1588 ssize_t ealen; 1589 int olen, eapad1, eapad2, error, i, easize; 1590 u_char *eae; 1591 void *tmp; 1592 1593 ip = VTOI(ap->a_vp); 1594 fs = ITOFS(ip); 1595 1596 if (ap->a_vp->v_type == VCHR || ap->a_vp->v_type == VBLK) 1597 return (EOPNOTSUPP); 1598 1599 if (strlen(ap->a_name) == 0) 1600 return (EINVAL); 1601 1602 /* XXX Now unsupported API to delete EAs using NULL uio. */ 1603 if (ap->a_uio == NULL) 1604 return (EOPNOTSUPP); 1605 1606 if (ap->a_vp->v_mount->mnt_flag & MNT_RDONLY) 1607 return (EROFS); 1608 1609 ealen = ap->a_uio->uio_resid; 1610 if (ealen < 0 || ealen > lblktosize(fs, UFS_NXADDR)) 1611 return (EINVAL); 1612 1613 error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace, 1614 ap->a_cred, ap->a_td, VWRITE); 1615 if (error) { 1616 1617 /* 1618 * ffs_lock_ea is not needed there, because the vnode 1619 * must be exclusively locked. 1620 */ 1621 if (ip->i_ea_area != NULL && ip->i_ea_error == 0) 1622 ip->i_ea_error = error; 1623 return (error); 1624 } 1625 1626 error = ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td); 1627 if (error) 1628 return (error); 1629 1630 ealength = sizeof(uint32_t) + 3 + strlen(ap->a_name); 1631 eapad1 = roundup2(ealength, 8) - ealength; 1632 eapad2 = roundup2(ealen, 8) - ealen; 1633 ealength += eapad1 + ealen + eapad2; 1634 1635 /* 1636 * CEM: rewrites of the same size or smaller could be done in-place 1637 * instead. (We don't acquire any fine-grained locks in here either, 1638 * so we could also do bigger writes in-place.) 1639 */ 1640 eae = malloc(ip->i_ea_len + ealength, M_TEMP, M_WAITOK); 1641 bcopy(ip->i_ea_area, eae, ip->i_ea_len); 1642 easize = ip->i_ea_len; 1643 1644 olen = ffs_findextattr(eae, easize, ap->a_attrnamespace, ap->a_name, 1645 &eap, NULL); 1646 if (olen == -1) { 1647 /* new, append at end */ 1648 KASSERT(ALIGNED_TO(eae + easize, struct extattr), 1649 ("unaligned")); 1650 eap = (struct extattr *)(eae + easize); 1651 easize += ealength; 1652 } else { 1653 ul = eap->ea_length; 1654 i = (u_char *)EXTATTR_NEXT(eap) - eae; 1655 if (ul != ealength) { 1656 bcopy(EXTATTR_NEXT(eap), (u_char *)eap + ealength, 1657 easize - i); 1658 easize += (ealength - ul); 1659 } 1660 } 1661 if (easize > lblktosize(fs, UFS_NXADDR)) { 1662 free(eae, M_TEMP); 1663 ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td); 1664 if (ip->i_ea_area != NULL && ip->i_ea_error == 0) 1665 ip->i_ea_error = ENOSPC; 1666 return (ENOSPC); 1667 } 1668 eap->ea_length = ealength; 1669 eap->ea_namespace = ap->a_attrnamespace; 1670 eap->ea_contentpadlen = eapad2; 1671 eap->ea_namelength = strlen(ap->a_name); 1672 memcpy(eap->ea_name, ap->a_name, strlen(ap->a_name)); 1673 bzero(&eap->ea_name[strlen(ap->a_name)], eapad1); 1674 error = uiomove(EXTATTR_CONTENT(eap), ealen, ap->a_uio); 1675 if (error) { 1676 free(eae, M_TEMP); 1677 ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td); 1678 if (ip->i_ea_area != NULL && ip->i_ea_error == 0) 1679 ip->i_ea_error = error; 1680 return (error); 1681 } 1682 bzero((u_char *)EXTATTR_CONTENT(eap) + ealen, eapad2); 1683 1684 tmp = ip->i_ea_area; 1685 ip->i_ea_area = eae; 1686 ip->i_ea_len = easize; 1687 free(tmp, M_TEMP); 1688 error = ffs_close_ea(ap->a_vp, 1, ap->a_cred, ap->a_td); 1689 return (error); 1690 } 1691 1692 /* 1693 * Vnode pointer to File handle 1694 */ 1695 static int 1696 ffs_vptofh(struct vop_vptofh_args *ap) 1697 /* 1698 vop_vptofh { 1699 IN struct vnode *a_vp; 1700 IN struct fid *a_fhp; 1701 }; 1702 */ 1703 { 1704 struct inode *ip; 1705 struct ufid *ufhp; 1706 1707 ip = VTOI(ap->a_vp); 1708 ufhp = (struct ufid *)ap->a_fhp; 1709 ufhp->ufid_len = sizeof(struct ufid); 1710 ufhp->ufid_ino = ip->i_number; 1711 ufhp->ufid_gen = ip->i_gen; 1712 return (0); 1713 } 1714 1715 SYSCTL_DECL(_vfs_ffs); 1716 static int use_buf_pager = 1; 1717 SYSCTL_INT(_vfs_ffs, OID_AUTO, use_buf_pager, CTLFLAG_RWTUN, &use_buf_pager, 0, 1718 "Always use buffer pager instead of bmap"); 1719 1720 static daddr_t 1721 ffs_gbp_getblkno(struct vnode *vp, vm_ooffset_t off) 1722 { 1723 1724 return (lblkno(VFSTOUFS(vp->v_mount)->um_fs, off)); 1725 } 1726 1727 static int 1728 ffs_gbp_getblksz(struct vnode *vp, daddr_t lbn) 1729 { 1730 1731 return (blksize(VFSTOUFS(vp->v_mount)->um_fs, VTOI(vp), lbn)); 1732 } 1733 1734 static int 1735 ffs_getpages(struct vop_getpages_args *ap) 1736 { 1737 struct vnode *vp; 1738 struct ufsmount *um; 1739 1740 vp = ap->a_vp; 1741 um = VFSTOUFS(vp->v_mount); 1742 1743 if (!use_buf_pager && um->um_devvp->v_bufobj.bo_bsize <= PAGE_SIZE) 1744 return (vnode_pager_generic_getpages(vp, ap->a_m, ap->a_count, 1745 ap->a_rbehind, ap->a_rahead, NULL, NULL)); 1746 return (vfs_bio_getpages(vp, ap->a_m, ap->a_count, ap->a_rbehind, 1747 ap->a_rahead, ffs_gbp_getblkno, ffs_gbp_getblksz)); 1748 } 1749