1 /*- 2 * SPDX-License-Identifier: (BSD-2-Clause AND BSD-3-Clause) 3 * 4 * Copyright (c) 2002, 2003 Networks Associates Technology, Inc. 5 * All rights reserved. 6 * 7 * This software was developed for the FreeBSD Project by Marshall 8 * Kirk McKusick and Network Associates Laboratories, the Security 9 * Research Division of Network Associates, Inc. under DARPA/SPAWAR 10 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS 11 * research program 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 1. Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * Copyright (c) 1982, 1986, 1989, 1993 35 * The Regents of the University of California. All rights reserved. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 1. Redistributions of source code must retain the above copyright 41 * notice, this list of conditions and the following disclaimer. 42 * 2. Redistributions in binary form must reproduce the above copyright 43 * notice, this list of conditions and the following disclaimer in the 44 * documentation and/or other materials provided with the distribution. 45 * 3. Neither the name of the University nor the names of its contributors 46 * may be used to endorse or promote products derived from this software 47 * without specific prior written permission. 48 * 49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 59 * SUCH DAMAGE. 60 * 61 * from: @(#)ufs_readwrite.c 8.11 (Berkeley) 5/8/95 62 * from: $FreeBSD: .../ufs/ufs_readwrite.c,v 1.96 2002/08/12 09:22:11 phk ... 63 * @(#)ffs_vnops.c 8.15 (Berkeley) 5/14/95 64 */ 65 66 #include <sys/cdefs.h> 67 #include "opt_directio.h" 68 #include "opt_ffs.h" 69 #include "opt_ufs.h" 70 71 #include <sys/param.h> 72 #include <sys/bio.h> 73 #include <sys/systm.h> 74 #include <sys/buf.h> 75 #include <sys/conf.h> 76 #include <sys/extattr.h> 77 #include <sys/kernel.h> 78 #include <sys/limits.h> 79 #include <sys/malloc.h> 80 #include <sys/mount.h> 81 #include <sys/priv.h> 82 #include <sys/rwlock.h> 83 #include <sys/stat.h> 84 #include <sys/sysctl.h> 85 #include <sys/vmmeter.h> 86 #include <sys/vnode.h> 87 88 #include <vm/vm.h> 89 #include <vm/vm_param.h> 90 #include <vm/vm_extern.h> 91 #include <vm/vm_object.h> 92 #include <vm/vm_page.h> 93 #include <vm/vm_pager.h> 94 #include <vm/vnode_pager.h> 95 96 #include <ufs/ufs/extattr.h> 97 #include <ufs/ufs/quota.h> 98 #include <ufs/ufs/inode.h> 99 #include <ufs/ufs/ufs_extern.h> 100 #include <ufs/ufs/ufsmount.h> 101 #include <ufs/ufs/dir.h> 102 #ifdef UFS_DIRHASH 103 #include <ufs/ufs/dirhash.h> 104 #endif 105 106 #include <ufs/ffs/fs.h> 107 #include <ufs/ffs/ffs_extern.h> 108 109 #define ALIGNED_TO(ptr, s) \ 110 (((uintptr_t)(ptr) & (_Alignof(s) - 1)) == 0) 111 112 #ifdef DIRECTIO 113 extern int ffs_rawread(struct vnode *vp, struct uio *uio, int *workdone); 114 #endif 115 static vop_fdatasync_t ffs_fdatasync; 116 static vop_fsync_t ffs_fsync; 117 static vop_getpages_t ffs_getpages; 118 static vop_getpages_async_t ffs_getpages_async; 119 static vop_lock1_t ffs_lock; 120 #ifdef INVARIANTS 121 static vop_unlock_t ffs_unlock_debug; 122 #endif 123 static vop_read_t ffs_read; 124 static vop_write_t ffs_write; 125 static int ffs_extread(struct vnode *vp, struct uio *uio, int ioflag); 126 static int ffs_extwrite(struct vnode *vp, struct uio *uio, int ioflag, 127 struct ucred *cred); 128 static vop_strategy_t ffsext_strategy; 129 static vop_closeextattr_t ffs_closeextattr; 130 static vop_deleteextattr_t ffs_deleteextattr; 131 static vop_getextattr_t ffs_getextattr; 132 static vop_listextattr_t ffs_listextattr; 133 static vop_openextattr_t ffs_openextattr; 134 static vop_setextattr_t ffs_setextattr; 135 static vop_vptofh_t ffs_vptofh; 136 static vop_vput_pair_t ffs_vput_pair; 137 138 /* Global vfs data structures for ufs. */ 139 struct vop_vector ffs_vnodeops1 = { 140 .vop_default = &ufs_vnodeops, 141 .vop_fsync = ffs_fsync, 142 .vop_fdatasync = ffs_fdatasync, 143 .vop_getpages = ffs_getpages, 144 .vop_getpages_async = ffs_getpages_async, 145 .vop_lock1 = ffs_lock, 146 #ifdef INVARIANTS 147 .vop_unlock = ffs_unlock_debug, 148 #endif 149 .vop_read = ffs_read, 150 .vop_reallocblks = ffs_reallocblks, 151 .vop_write = ffs_write, 152 .vop_vptofh = ffs_vptofh, 153 .vop_vput_pair = ffs_vput_pair, 154 .vop_fplookup_vexec = VOP_EAGAIN, 155 .vop_fplookup_symlink = VOP_EAGAIN, 156 }; 157 VFS_VOP_VECTOR_REGISTER(ffs_vnodeops1); 158 159 struct vop_vector ffs_fifoops1 = { 160 .vop_default = &ufs_fifoops, 161 .vop_fsync = ffs_fsync, 162 .vop_fdatasync = ffs_fdatasync, 163 .vop_lock1 = ffs_lock, 164 #ifdef INVARIANTS 165 .vop_unlock = ffs_unlock_debug, 166 #endif 167 .vop_vptofh = ffs_vptofh, 168 .vop_fplookup_vexec = VOP_EAGAIN, 169 .vop_fplookup_symlink = VOP_EAGAIN, 170 }; 171 VFS_VOP_VECTOR_REGISTER(ffs_fifoops1); 172 173 /* Global vfs data structures for ufs. */ 174 struct vop_vector ffs_vnodeops2 = { 175 .vop_default = &ufs_vnodeops, 176 .vop_fsync = ffs_fsync, 177 .vop_fdatasync = ffs_fdatasync, 178 .vop_getpages = ffs_getpages, 179 .vop_getpages_async = ffs_getpages_async, 180 .vop_lock1 = ffs_lock, 181 #ifdef INVARIANTS 182 .vop_unlock = ffs_unlock_debug, 183 #endif 184 .vop_read = ffs_read, 185 .vop_reallocblks = ffs_reallocblks, 186 .vop_write = ffs_write, 187 .vop_closeextattr = ffs_closeextattr, 188 .vop_deleteextattr = ffs_deleteextattr, 189 .vop_getextattr = ffs_getextattr, 190 .vop_listextattr = ffs_listextattr, 191 .vop_openextattr = ffs_openextattr, 192 .vop_setextattr = ffs_setextattr, 193 .vop_vptofh = ffs_vptofh, 194 .vop_vput_pair = ffs_vput_pair, 195 .vop_fplookup_vexec = VOP_EAGAIN, 196 .vop_fplookup_symlink = VOP_EAGAIN, 197 }; 198 VFS_VOP_VECTOR_REGISTER(ffs_vnodeops2); 199 200 struct vop_vector ffs_fifoops2 = { 201 .vop_default = &ufs_fifoops, 202 .vop_fsync = ffs_fsync, 203 .vop_fdatasync = ffs_fdatasync, 204 .vop_lock1 = ffs_lock, 205 #ifdef INVARIANTS 206 .vop_unlock = ffs_unlock_debug, 207 #endif 208 .vop_reallocblks = ffs_reallocblks, 209 .vop_strategy = ffsext_strategy, 210 .vop_closeextattr = ffs_closeextattr, 211 .vop_deleteextattr = ffs_deleteextattr, 212 .vop_getextattr = ffs_getextattr, 213 .vop_listextattr = ffs_listextattr, 214 .vop_openextattr = ffs_openextattr, 215 .vop_setextattr = ffs_setextattr, 216 .vop_vptofh = ffs_vptofh, 217 .vop_fplookup_vexec = VOP_EAGAIN, 218 .vop_fplookup_symlink = VOP_EAGAIN, 219 }; 220 VFS_VOP_VECTOR_REGISTER(ffs_fifoops2); 221 222 /* 223 * Synch an open file. 224 */ 225 /* ARGSUSED */ 226 static int 227 ffs_fsync(struct vop_fsync_args *ap) 228 { 229 struct vnode *vp; 230 struct bufobj *bo; 231 int error; 232 233 vp = ap->a_vp; 234 bo = &vp->v_bufobj; 235 retry: 236 error = ffs_syncvnode(vp, ap->a_waitfor, 0); 237 if (error) 238 return (error); 239 if (ap->a_waitfor == MNT_WAIT && DOINGSOFTDEP(vp)) { 240 error = softdep_fsync(vp); 241 if (error) 242 return (error); 243 244 /* 245 * The softdep_fsync() function may drop vp lock, 246 * allowing for dirty buffers to reappear on the 247 * bo_dirty list. Recheck and resync as needed. 248 */ 249 BO_LOCK(bo); 250 if ((vp->v_type == VREG || vp->v_type == VDIR) && 251 (bo->bo_numoutput > 0 || bo->bo_dirty.bv_cnt > 0)) { 252 BO_UNLOCK(bo); 253 goto retry; 254 } 255 BO_UNLOCK(bo); 256 } 257 if (ffs_fsfail_cleanup(VFSTOUFS(vp->v_mount), 0)) 258 return (ENXIO); 259 return (0); 260 } 261 262 int 263 ffs_syncvnode(struct vnode *vp, int waitfor, int flags) 264 { 265 struct inode *ip; 266 struct bufobj *bo; 267 struct ufsmount *ump; 268 struct buf *bp, *nbp; 269 ufs_lbn_t lbn; 270 int error, passes, wflag; 271 bool still_dirty, unlocked, wait; 272 273 ip = VTOI(vp); 274 bo = &vp->v_bufobj; 275 ump = VFSTOUFS(vp->v_mount); 276 #ifdef WITNESS 277 wflag = IS_SNAPSHOT(ip) ? LK_NOWITNESS : 0; 278 #else 279 wflag = 0; 280 #endif 281 282 /* 283 * When doing MNT_WAIT we must first flush all dependencies 284 * on the inode. 285 */ 286 if (DOINGSOFTDEP(vp) && waitfor == MNT_WAIT && 287 (error = softdep_sync_metadata(vp)) != 0) { 288 if (ffs_fsfail_cleanup(ump, error)) 289 error = 0; 290 return (error); 291 } 292 293 /* 294 * Flush all dirty buffers associated with a vnode. 295 */ 296 error = 0; 297 passes = 0; 298 wait = false; /* Always do an async pass first. */ 299 unlocked = false; 300 lbn = lblkno(ITOFS(ip), (ip->i_size + ITOFS(ip)->fs_bsize - 1)); 301 BO_LOCK(bo); 302 loop: 303 TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) 304 bp->b_vflags &= ~BV_SCANNED; 305 TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) { 306 /* 307 * Reasons to skip this buffer: it has already been considered 308 * on this pass, the buffer has dependencies that will cause 309 * it to be redirtied and it has not already been deferred, 310 * or it is already being written. 311 */ 312 if ((bp->b_vflags & BV_SCANNED) != 0) 313 continue; 314 bp->b_vflags |= BV_SCANNED; 315 /* 316 * Flush indirects in order, if requested. 317 * 318 * Note that if only datasync is requested, we can 319 * skip indirect blocks when softupdates are not 320 * active. Otherwise we must flush them with data, 321 * since dependencies prevent data block writes. 322 */ 323 if (waitfor == MNT_WAIT && bp->b_lblkno <= -UFS_NDADDR && 324 (lbn_level(bp->b_lblkno) >= passes || 325 ((flags & DATA_ONLY) != 0 && !DOINGSOFTDEP(vp)))) 326 continue; 327 if (bp->b_lblkno > lbn) 328 panic("ffs_syncvnode: syncing truncated data."); 329 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) == 0) { 330 BO_UNLOCK(bo); 331 } else if (wait) { 332 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL | 333 LK_INTERLOCK | wflag, BO_LOCKPTR(bo)) != 0) { 334 BO_LOCK(bo); 335 bp->b_vflags &= ~BV_SCANNED; 336 goto next_locked; 337 } 338 } else 339 continue; 340 if ((bp->b_flags & B_DELWRI) == 0) 341 panic("ffs_fsync: not dirty"); 342 /* 343 * Check for dependencies and potentially complete them. 344 */ 345 if (!LIST_EMPTY(&bp->b_dep) && 346 (error = softdep_sync_buf(vp, bp, 347 wait ? MNT_WAIT : MNT_NOWAIT)) != 0) { 348 /* 349 * Lock order conflict, buffer was already unlocked, 350 * and vnode possibly unlocked. 351 */ 352 if (error == ERELOOKUP) { 353 if (vp->v_data == NULL) 354 return (EBADF); 355 unlocked = true; 356 if (DOINGSOFTDEP(vp) && waitfor == MNT_WAIT && 357 (error = softdep_sync_metadata(vp)) != 0) { 358 if (ffs_fsfail_cleanup(ump, error)) 359 error = 0; 360 return (unlocked && error == 0 ? 361 ERELOOKUP : error); 362 } 363 /* Re-evaluate inode size */ 364 lbn = lblkno(ITOFS(ip), (ip->i_size + 365 ITOFS(ip)->fs_bsize - 1)); 366 goto next; 367 } 368 /* I/O error. */ 369 if (error != EBUSY) { 370 BUF_UNLOCK(bp); 371 return (error); 372 } 373 /* If we deferred once, don't defer again. */ 374 if ((bp->b_flags & B_DEFERRED) == 0) { 375 bp->b_flags |= B_DEFERRED; 376 BUF_UNLOCK(bp); 377 goto next; 378 } 379 } 380 if (wait) { 381 bremfree(bp); 382 error = bwrite(bp); 383 if (ffs_fsfail_cleanup(ump, error)) 384 error = 0; 385 if (error != 0) 386 return (error); 387 } else if ((bp->b_flags & B_CLUSTEROK)) { 388 (void) vfs_bio_awrite(bp); 389 } else { 390 bremfree(bp); 391 (void) bawrite(bp); 392 } 393 next: 394 /* 395 * Since we may have slept during the I/O, we need 396 * to start from a known point. 397 */ 398 BO_LOCK(bo); 399 next_locked: 400 nbp = TAILQ_FIRST(&bo->bo_dirty.bv_hd); 401 } 402 if (waitfor != MNT_WAIT) { 403 BO_UNLOCK(bo); 404 if ((flags & NO_INO_UPDT) != 0) 405 return (unlocked ? ERELOOKUP : 0); 406 error = ffs_update(vp, 0); 407 if (error == 0 && unlocked) 408 error = ERELOOKUP; 409 return (error); 410 } 411 /* Drain IO to see if we're done. */ 412 bufobj_wwait(bo, 0, 0); 413 /* 414 * Block devices associated with filesystems may have new I/O 415 * requests posted for them even if the vnode is locked, so no 416 * amount of trying will get them clean. We make several passes 417 * as a best effort. 418 * 419 * Regular files may need multiple passes to flush all dependency 420 * work as it is possible that we must write once per indirect 421 * level, once for the leaf, and once for the inode and each of 422 * these will be done with one sync and one async pass. 423 */ 424 if (bo->bo_dirty.bv_cnt > 0) { 425 if ((flags & DATA_ONLY) == 0) { 426 still_dirty = true; 427 } else { 428 /* 429 * For data-only sync, dirty indirect buffers 430 * are ignored. 431 */ 432 still_dirty = false; 433 TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) { 434 if (bp->b_lblkno > -UFS_NDADDR) { 435 still_dirty = true; 436 break; 437 } 438 } 439 } 440 441 if (still_dirty) { 442 /* Write the inode after sync passes to flush deps. */ 443 if (wait && DOINGSOFTDEP(vp) && 444 (flags & NO_INO_UPDT) == 0) { 445 BO_UNLOCK(bo); 446 ffs_update(vp, 1); 447 BO_LOCK(bo); 448 } 449 /* switch between sync/async. */ 450 wait = !wait; 451 if (wait || ++passes < UFS_NIADDR + 2) 452 goto loop; 453 } 454 } 455 BO_UNLOCK(bo); 456 error = 0; 457 if ((flags & DATA_ONLY) == 0) { 458 if ((flags & NO_INO_UPDT) == 0) 459 error = ffs_update(vp, 1); 460 if (DOINGSUJ(vp)) 461 softdep_journal_fsync(VTOI(vp)); 462 } else if ((ip->i_flags & (IN_SIZEMOD | IN_IBLKDATA)) != 0) { 463 error = ffs_update(vp, 1); 464 } 465 if (error == 0 && unlocked) 466 error = ERELOOKUP; 467 if (error == 0) 468 ip->i_flag &= ~IN_NEEDSYNC; 469 return (error); 470 } 471 472 static int 473 ffs_fdatasync(struct vop_fdatasync_args *ap) 474 { 475 476 return (ffs_syncvnode(ap->a_vp, MNT_WAIT, DATA_ONLY)); 477 } 478 479 static int 480 ffs_lock( 481 struct vop_lock1_args /* { 482 struct vnode *a_vp; 483 int a_flags; 484 char *file; 485 int line; 486 } */ *ap) 487 { 488 #if !defined(NO_FFS_SNAPSHOT) || defined(DIAGNOSTIC) 489 struct vnode *vp = ap->a_vp; 490 #endif /* !NO_FFS_SNAPSHOT || DIAGNOSTIC */ 491 #ifdef DIAGNOSTIC 492 struct inode *ip; 493 #endif /* DIAGNOSTIC */ 494 int result; 495 #ifndef NO_FFS_SNAPSHOT 496 int flags; 497 struct lock *lkp; 498 499 /* 500 * Adaptive spinning mixed with SU leads to trouble. use a giant hammer 501 * and only use it when LK_NODDLKTREAT is set. Currently this means it 502 * is only used during path lookup. 503 */ 504 if ((ap->a_flags & LK_NODDLKTREAT) != 0) 505 ap->a_flags |= LK_ADAPTIVE; 506 switch (ap->a_flags & LK_TYPE_MASK) { 507 case LK_SHARED: 508 case LK_UPGRADE: 509 case LK_EXCLUSIVE: 510 flags = ap->a_flags; 511 for (;;) { 512 #ifdef DEBUG_VFS_LOCKS 513 VNPASS(vp->v_holdcnt != 0, vp); 514 #endif /* DEBUG_VFS_LOCKS */ 515 lkp = vp->v_vnlock; 516 result = lockmgr_lock_flags(lkp, flags, 517 &VI_MTX(vp)->lock_object, ap->a_file, ap->a_line); 518 if (lkp == vp->v_vnlock || result != 0) 519 break; 520 /* 521 * Apparent success, except that the vnode 522 * mutated between snapshot file vnode and 523 * regular file vnode while this process 524 * slept. The lock currently held is not the 525 * right lock. Release it, and try to get the 526 * new lock. 527 */ 528 lockmgr_unlock(lkp); 529 if ((flags & (LK_INTERLOCK | LK_NOWAIT)) == 530 (LK_INTERLOCK | LK_NOWAIT)) 531 return (EBUSY); 532 if ((flags & LK_TYPE_MASK) == LK_UPGRADE) 533 flags = (flags & ~LK_TYPE_MASK) | LK_EXCLUSIVE; 534 flags &= ~LK_INTERLOCK; 535 } 536 #ifdef DIAGNOSTIC 537 switch (ap->a_flags & LK_TYPE_MASK) { 538 case LK_UPGRADE: 539 case LK_EXCLUSIVE: 540 if (result == 0 && vp->v_vnlock->lk_recurse == 0) { 541 ip = VTOI(vp); 542 if (ip != NULL) 543 ip->i_lock_gen++; 544 } 545 } 546 #endif /* DIAGNOSTIC */ 547 break; 548 default: 549 #ifdef DIAGNOSTIC 550 if ((ap->a_flags & LK_TYPE_MASK) == LK_DOWNGRADE) { 551 ip = VTOI(vp); 552 if (ip != NULL) 553 ufs_unlock_tracker(ip); 554 } 555 #endif /* DIAGNOSTIC */ 556 result = VOP_LOCK1_APV(&ufs_vnodeops, ap); 557 break; 558 } 559 #else /* NO_FFS_SNAPSHOT */ 560 /* 561 * See above for an explanation. 562 */ 563 if ((ap->a_flags & LK_NODDLKTREAT) != 0) 564 ap->a_flags |= LK_ADAPTIVE; 565 #ifdef DIAGNOSTIC 566 if ((ap->a_flags & LK_TYPE_MASK) == LK_DOWNGRADE) { 567 ip = VTOI(vp); 568 if (ip != NULL) 569 ufs_unlock_tracker(ip); 570 } 571 #endif /* DIAGNOSTIC */ 572 result = VOP_LOCK1_APV(&ufs_vnodeops, ap); 573 #endif /* NO_FFS_SNAPSHOT */ 574 #ifdef DIAGNOSTIC 575 switch (ap->a_flags & LK_TYPE_MASK) { 576 case LK_UPGRADE: 577 case LK_EXCLUSIVE: 578 if (result == 0 && vp->v_vnlock->lk_recurse == 0) { 579 ip = VTOI(vp); 580 if (ip != NULL) 581 ip->i_lock_gen++; 582 } 583 } 584 #endif /* DIAGNOSTIC */ 585 return (result); 586 } 587 588 #ifdef INVARIANTS 589 static int 590 ffs_unlock_debug(struct vop_unlock_args *ap) 591 { 592 struct vnode *vp; 593 struct inode *ip; 594 595 vp = ap->a_vp; 596 ip = VTOI(vp); 597 if (ip->i_flag & UFS_INODE_FLAG_LAZY_MASK_ASSERTABLE) { 598 if ((vp->v_mflag & VMP_LAZYLIST) == 0) { 599 VI_LOCK(vp); 600 VNASSERT((vp->v_mflag & VMP_LAZYLIST), vp, 601 ("%s: modified vnode (%x) not on lazy list", 602 __func__, ip->i_flag)); 603 VI_UNLOCK(vp); 604 } 605 } 606 KASSERT(vp->v_type != VDIR || vp->v_vnlock->lk_recurse != 0 || 607 (ip->i_flag & IN_ENDOFF) == 0, 608 ("ufs dir vp %p ip %p flags %#x", vp, ip, ip->i_flag)); 609 #ifdef DIAGNOSTIC 610 if (VOP_ISLOCKED(vp) == LK_EXCLUSIVE && ip != NULL && 611 vp->v_vnlock->lk_recurse == 0) 612 ufs_unlock_tracker(ip); 613 #endif 614 return (VOP_UNLOCK_APV(&ufs_vnodeops, ap)); 615 } 616 #endif 617 618 static int 619 ffs_read_hole(struct uio *uio, long xfersize, long *size) 620 { 621 ssize_t saved_resid, tlen; 622 int error; 623 624 while (xfersize > 0) { 625 tlen = min(xfersize, ZERO_REGION_SIZE); 626 saved_resid = uio->uio_resid; 627 error = vn_io_fault_uiomove(__DECONST(void *, zero_region), 628 tlen, uio); 629 if (error != 0) 630 return (error); 631 tlen = saved_resid - uio->uio_resid; 632 xfersize -= tlen; 633 *size -= tlen; 634 } 635 return (0); 636 } 637 638 /* 639 * Vnode op for reading. 640 */ 641 static int 642 ffs_read( 643 struct vop_read_args /* { 644 struct vnode *a_vp; 645 struct uio *a_uio; 646 int a_ioflag; 647 struct ucred *a_cred; 648 } */ *ap) 649 { 650 struct vnode *vp; 651 struct inode *ip; 652 struct uio *uio; 653 struct fs *fs; 654 struct buf *bp; 655 ufs_lbn_t lbn, nextlbn; 656 off_t bytesinfile; 657 long size, xfersize, blkoffset; 658 ssize_t orig_resid; 659 int bflag, error, ioflag, seqcount; 660 661 vp = ap->a_vp; 662 uio = ap->a_uio; 663 ioflag = ap->a_ioflag; 664 if (ap->a_ioflag & IO_EXT) 665 #ifdef notyet 666 return (ffs_extread(vp, uio, ioflag)); 667 #else 668 panic("ffs_read+IO_EXT"); 669 #endif 670 #ifdef DIRECTIO 671 if ((ioflag & IO_DIRECT) != 0) { 672 int workdone; 673 674 error = ffs_rawread(vp, uio, &workdone); 675 if (error != 0 || workdone != 0) 676 return error; 677 } 678 #endif 679 680 seqcount = ap->a_ioflag >> IO_SEQSHIFT; 681 ip = VTOI(vp); 682 683 #ifdef INVARIANTS 684 if (uio->uio_rw != UIO_READ) 685 panic("ffs_read: mode"); 686 687 if (vp->v_type == VLNK) { 688 if ((int)ip->i_size < VFSTOUFS(vp->v_mount)->um_maxsymlinklen) 689 panic("ffs_read: short symlink"); 690 } else if (vp->v_type != VREG && vp->v_type != VDIR) 691 panic("ffs_read: type %d", vp->v_type); 692 #endif 693 orig_resid = uio->uio_resid; 694 KASSERT(orig_resid >= 0, ("ffs_read: uio->uio_resid < 0")); 695 if (orig_resid == 0) 696 return (0); 697 KASSERT(uio->uio_offset >= 0, ("ffs_read: uio->uio_offset < 0")); 698 fs = ITOFS(ip); 699 if (uio->uio_offset < ip->i_size && 700 uio->uio_offset >= fs->fs_maxfilesize) 701 return (EOVERFLOW); 702 703 bflag = GB_UNMAPPED | (uio->uio_segflg == UIO_NOCOPY ? 0 : GB_NOSPARSE); 704 #ifdef WITNESS 705 bflag |= IS_SNAPSHOT(ip) ? GB_NOWITNESS : 0; 706 #endif 707 for (error = 0, bp = NULL; uio->uio_resid > 0; bp = NULL) { 708 if ((bytesinfile = ip->i_size - uio->uio_offset) <= 0) 709 break; 710 lbn = lblkno(fs, uio->uio_offset); 711 nextlbn = lbn + 1; 712 713 /* 714 * size of buffer. The buffer representing the 715 * end of the file is rounded up to the size of 716 * the block type ( fragment or full block, 717 * depending ). 718 */ 719 size = blksize(fs, ip, lbn); 720 blkoffset = blkoff(fs, uio->uio_offset); 721 722 /* 723 * The amount we want to transfer in this iteration is 724 * one FS block less the amount of the data before 725 * our startpoint (duh!) 726 */ 727 xfersize = fs->fs_bsize - blkoffset; 728 729 /* 730 * But if we actually want less than the block, 731 * or the file doesn't have a whole block more of data, 732 * then use the lesser number. 733 */ 734 if (uio->uio_resid < xfersize) 735 xfersize = uio->uio_resid; 736 if (bytesinfile < xfersize) 737 xfersize = bytesinfile; 738 739 if (lblktosize(fs, nextlbn) >= ip->i_size) { 740 /* 741 * Don't do readahead if this is the end of the file. 742 */ 743 error = bread_gb(vp, lbn, size, NOCRED, bflag, &bp); 744 } else if ((vp->v_mount->mnt_flag & MNT_NOCLUSTERR) == 0) { 745 /* 746 * Otherwise if we are allowed to cluster, 747 * grab as much as we can. 748 * 749 * XXX This may not be a win if we are not 750 * doing sequential access. 751 */ 752 error = cluster_read(vp, ip->i_size, lbn, 753 size, NOCRED, blkoffset + uio->uio_resid, 754 seqcount, bflag, &bp); 755 } else if (seqcount > 1) { 756 /* 757 * If we are NOT allowed to cluster, then 758 * if we appear to be acting sequentially, 759 * fire off a request for a readahead 760 * as well as a read. Note that the 4th and 5th 761 * arguments point to arrays of the size specified in 762 * the 6th argument. 763 */ 764 int nextsize = blksize(fs, ip, nextlbn); 765 error = breadn_flags(vp, lbn, lbn, size, &nextlbn, 766 &nextsize, 1, NOCRED, bflag, NULL, &bp); 767 } else { 768 /* 769 * Failing all of the above, just read what the 770 * user asked for. Interestingly, the same as 771 * the first option above. 772 */ 773 error = bread_gb(vp, lbn, size, NOCRED, bflag, &bp); 774 } 775 if (error == EJUSTRETURN) { 776 error = ffs_read_hole(uio, xfersize, &size); 777 if (error == 0) 778 continue; 779 } 780 if (error != 0) { 781 brelse(bp); 782 bp = NULL; 783 break; 784 } 785 786 /* 787 * We should only get non-zero b_resid when an I/O error 788 * has occurred, which should cause us to break above. 789 * However, if the short read did not cause an error, 790 * then we want to ensure that we do not uiomove bad 791 * or uninitialized data. 792 */ 793 size -= bp->b_resid; 794 if (size < xfersize) { 795 if (size == 0) 796 break; 797 xfersize = size; 798 } 799 800 if (buf_mapped(bp)) { 801 error = vn_io_fault_uiomove((char *)bp->b_data + 802 blkoffset, (int)xfersize, uio); 803 } else { 804 error = vn_io_fault_pgmove(bp->b_pages, 805 blkoffset + (bp->b_offset & PAGE_MASK), 806 (int)xfersize, uio); 807 } 808 if (error) 809 break; 810 811 vfs_bio_brelse(bp, ioflag); 812 } 813 814 /* 815 * This can only happen in the case of an error 816 * because the loop above resets bp to NULL on each iteration 817 * and on normal completion has not set a new value into it. 818 * so it must have come from a 'break' statement 819 */ 820 if (bp != NULL) 821 vfs_bio_brelse(bp, ioflag); 822 823 if ((error == 0 || uio->uio_resid != orig_resid) && 824 (vp->v_mount->mnt_flag & (MNT_NOATIME | MNT_RDONLY)) == 0) 825 UFS_INODE_SET_FLAG_SHARED(ip, IN_ACCESS); 826 return (error); 827 } 828 829 /* 830 * Vnode op for writing. 831 */ 832 static int 833 ffs_write( 834 struct vop_write_args /* { 835 struct vnode *a_vp; 836 struct uio *a_uio; 837 int a_ioflag; 838 struct ucred *a_cred; 839 } */ *ap) 840 { 841 struct vnode *vp; 842 struct uio *uio; 843 struct inode *ip; 844 struct fs *fs; 845 struct buf *bp; 846 ufs_lbn_t lbn; 847 off_t osize; 848 ssize_t resid, r; 849 int seqcount; 850 int blkoffset, error, flags, ioflag, size, xfersize; 851 852 vp = ap->a_vp; 853 if (DOINGSUJ(vp)) 854 softdep_prealloc(vp, MNT_WAIT); 855 if (vp->v_data == NULL) 856 return (EBADF); 857 858 uio = ap->a_uio; 859 ioflag = ap->a_ioflag; 860 if (ap->a_ioflag & IO_EXT) 861 #ifdef notyet 862 return (ffs_extwrite(vp, uio, ioflag, ap->a_cred)); 863 #else 864 panic("ffs_write+IO_EXT"); 865 #endif 866 867 seqcount = ap->a_ioflag >> IO_SEQSHIFT; 868 ip = VTOI(vp); 869 870 #ifdef INVARIANTS 871 if (uio->uio_rw != UIO_WRITE) 872 panic("ffs_write: mode"); 873 #endif 874 875 switch (vp->v_type) { 876 case VREG: 877 if (ioflag & IO_APPEND) 878 uio->uio_offset = ip->i_size; 879 if ((ip->i_flags & APPEND) && uio->uio_offset != ip->i_size) 880 return (EPERM); 881 /* FALLTHROUGH */ 882 case VLNK: 883 break; 884 case VDIR: 885 panic("ffs_write: dir write"); 886 break; 887 default: 888 panic("ffs_write: type %p %d (%d,%d)", vp, (int)vp->v_type, 889 (int)uio->uio_offset, 890 (int)uio->uio_resid 891 ); 892 } 893 894 KASSERT(uio->uio_resid >= 0, ("ffs_write: uio->uio_resid < 0")); 895 KASSERT(uio->uio_offset >= 0, ("ffs_write: uio->uio_offset < 0")); 896 fs = ITOFS(ip); 897 898 /* 899 * Maybe this should be above the vnode op call, but so long as 900 * file servers have no limits, I don't think it matters. 901 */ 902 error = vn_rlimit_fsizex(vp, uio, fs->fs_maxfilesize, &r, 903 uio->uio_td); 904 if (error != 0) { 905 vn_rlimit_fsizex_res(uio, r); 906 return (error); 907 } 908 909 resid = uio->uio_resid; 910 osize = ip->i_size; 911 if (seqcount > BA_SEQMAX) 912 flags = BA_SEQMAX << BA_SEQSHIFT; 913 else 914 flags = seqcount << BA_SEQSHIFT; 915 if (ioflag & IO_SYNC) 916 flags |= IO_SYNC; 917 flags |= BA_UNMAPPED; 918 919 for (error = 0; uio->uio_resid > 0;) { 920 lbn = lblkno(fs, uio->uio_offset); 921 blkoffset = blkoff(fs, uio->uio_offset); 922 xfersize = fs->fs_bsize - blkoffset; 923 if (uio->uio_resid < xfersize) 924 xfersize = uio->uio_resid; 925 if (uio->uio_offset + xfersize > ip->i_size) 926 vnode_pager_setsize(vp, uio->uio_offset + xfersize); 927 928 /* 929 * We must perform a read-before-write if the transfer size 930 * does not cover the entire buffer. 931 */ 932 if (fs->fs_bsize > xfersize) 933 flags |= BA_CLRBUF; 934 else 935 flags &= ~BA_CLRBUF; 936 /* XXX is uio->uio_offset the right thing here? */ 937 error = UFS_BALLOC(vp, uio->uio_offset, xfersize, 938 ap->a_cred, flags, &bp); 939 if (error != 0) { 940 vnode_pager_setsize(vp, ip->i_size); 941 break; 942 } 943 if ((ioflag & (IO_SYNC|IO_INVAL)) == (IO_SYNC|IO_INVAL)) 944 bp->b_flags |= B_NOCACHE; 945 946 if (uio->uio_offset + xfersize > ip->i_size) { 947 ip->i_size = uio->uio_offset + xfersize; 948 DIP_SET(ip, i_size, ip->i_size); 949 UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE); 950 } 951 952 size = blksize(fs, ip, lbn) - bp->b_resid; 953 if (size < xfersize) 954 xfersize = size; 955 956 if (buf_mapped(bp)) { 957 error = vn_io_fault_uiomove((char *)bp->b_data + 958 blkoffset, (int)xfersize, uio); 959 } else { 960 error = vn_io_fault_pgmove(bp->b_pages, 961 blkoffset + (bp->b_offset & PAGE_MASK), 962 (int)xfersize, uio); 963 } 964 /* 965 * If the buffer is not already filled and we encounter an 966 * error while trying to fill it, we have to clear out any 967 * garbage data from the pages instantiated for the buffer. 968 * If we do not, a failed uiomove() during a write can leave 969 * the prior contents of the pages exposed to a userland mmap. 970 * 971 * Note that we need only clear buffers with a transfer size 972 * equal to the block size because buffers with a shorter 973 * transfer size were cleared above by the call to UFS_BALLOC() 974 * with the BA_CLRBUF flag set. 975 * 976 * If the source region for uiomove identically mmaps the 977 * buffer, uiomove() performed the NOP copy, and the buffer 978 * content remains valid because the page fault handler 979 * validated the pages. 980 */ 981 if (error != 0 && (bp->b_flags & B_CACHE) == 0 && 982 fs->fs_bsize == xfersize) 983 vfs_bio_clrbuf(bp); 984 985 vfs_bio_set_flags(bp, ioflag); 986 987 /* 988 * If IO_SYNC each buffer is written synchronously. Otherwise 989 * if we have a severe page deficiency write the buffer 990 * asynchronously. Otherwise try to cluster, and if that 991 * doesn't do it then either do an async write (if O_DIRECT), 992 * or a delayed write (if not). 993 */ 994 if (ioflag & IO_SYNC) { 995 (void)bwrite(bp); 996 } else if (vm_page_count_severe() || 997 buf_dirty_count_severe() || 998 (ioflag & IO_ASYNC)) { 999 bp->b_flags |= B_CLUSTEROK; 1000 bawrite(bp); 1001 } else if (xfersize + blkoffset == fs->fs_bsize) { 1002 if ((vp->v_mount->mnt_flag & MNT_NOCLUSTERW) == 0) { 1003 bp->b_flags |= B_CLUSTEROK; 1004 cluster_write(vp, &ip->i_clusterw, bp, 1005 ip->i_size, seqcount, GB_UNMAPPED); 1006 } else { 1007 bawrite(bp); 1008 } 1009 } else if (ioflag & IO_DIRECT) { 1010 bp->b_flags |= B_CLUSTEROK; 1011 bawrite(bp); 1012 } else { 1013 bp->b_flags |= B_CLUSTEROK; 1014 bdwrite(bp); 1015 } 1016 if (error || xfersize == 0) 1017 break; 1018 UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_UPDATE); 1019 } 1020 /* 1021 * If we successfully wrote any data, and we are not the superuser 1022 * we clear the setuid and setgid bits as a precaution against 1023 * tampering. 1024 */ 1025 if ((ip->i_mode & (ISUID | ISGID)) && resid > uio->uio_resid && 1026 ap->a_cred) { 1027 if (priv_check_cred(ap->a_cred, PRIV_VFS_RETAINSUGID)) { 1028 vn_seqc_write_begin(vp); 1029 UFS_INODE_SET_MODE(ip, ip->i_mode & ~(ISUID | ISGID)); 1030 DIP_SET(ip, i_mode, ip->i_mode); 1031 vn_seqc_write_end(vp); 1032 } 1033 } 1034 if (error) { 1035 if (ioflag & IO_UNIT) { 1036 (void)ffs_truncate(vp, osize, 1037 IO_NORMAL | (ioflag & IO_SYNC), ap->a_cred); 1038 uio->uio_offset -= resid - uio->uio_resid; 1039 uio->uio_resid = resid; 1040 } 1041 } else if (resid > uio->uio_resid && (ioflag & IO_SYNC)) { 1042 if (!(ioflag & IO_DATASYNC) || 1043 (ip->i_flags & (IN_SIZEMOD | IN_IBLKDATA))) 1044 error = ffs_update(vp, 1); 1045 if (ffs_fsfail_cleanup(VFSTOUFS(vp->v_mount), error)) 1046 error = ENXIO; 1047 } 1048 vn_rlimit_fsizex_res(uio, r); 1049 return (error); 1050 } 1051 1052 /* 1053 * Extended attribute area reading. 1054 */ 1055 static int 1056 ffs_extread(struct vnode *vp, struct uio *uio, int ioflag) 1057 { 1058 struct inode *ip; 1059 struct ufs2_dinode *dp; 1060 struct fs *fs; 1061 struct buf *bp; 1062 ufs_lbn_t lbn, nextlbn; 1063 off_t bytesinfile; 1064 long size, xfersize, blkoffset; 1065 ssize_t orig_resid; 1066 int error; 1067 1068 ip = VTOI(vp); 1069 fs = ITOFS(ip); 1070 dp = ip->i_din2; 1071 1072 #ifdef INVARIANTS 1073 if (uio->uio_rw != UIO_READ || fs->fs_magic != FS_UFS2_MAGIC) 1074 panic("ffs_extread: mode"); 1075 1076 #endif 1077 orig_resid = uio->uio_resid; 1078 KASSERT(orig_resid >= 0, ("ffs_extread: uio->uio_resid < 0")); 1079 if (orig_resid == 0) 1080 return (0); 1081 KASSERT(uio->uio_offset >= 0, ("ffs_extread: uio->uio_offset < 0")); 1082 1083 for (error = 0, bp = NULL; uio->uio_resid > 0; bp = NULL) { 1084 if ((bytesinfile = dp->di_extsize - uio->uio_offset) <= 0) 1085 break; 1086 lbn = lblkno(fs, uio->uio_offset); 1087 nextlbn = lbn + 1; 1088 1089 /* 1090 * size of buffer. The buffer representing the 1091 * end of the file is rounded up to the size of 1092 * the block type ( fragment or full block, 1093 * depending ). 1094 */ 1095 size = sblksize(fs, dp->di_extsize, lbn); 1096 blkoffset = blkoff(fs, uio->uio_offset); 1097 1098 /* 1099 * The amount we want to transfer in this iteration is 1100 * one FS block less the amount of the data before 1101 * our startpoint (duh!) 1102 */ 1103 xfersize = fs->fs_bsize - blkoffset; 1104 1105 /* 1106 * But if we actually want less than the block, 1107 * or the file doesn't have a whole block more of data, 1108 * then use the lesser number. 1109 */ 1110 if (uio->uio_resid < xfersize) 1111 xfersize = uio->uio_resid; 1112 if (bytesinfile < xfersize) 1113 xfersize = bytesinfile; 1114 1115 if (lblktosize(fs, nextlbn) >= dp->di_extsize) { 1116 /* 1117 * Don't do readahead if this is the end of the info. 1118 */ 1119 error = bread(vp, -1 - lbn, size, NOCRED, &bp); 1120 } else { 1121 /* 1122 * If we have a second block, then 1123 * fire off a request for a readahead 1124 * as well as a read. Note that the 4th and 5th 1125 * arguments point to arrays of the size specified in 1126 * the 6th argument. 1127 */ 1128 int nextsize = sblksize(fs, dp->di_extsize, nextlbn); 1129 nextlbn = -1 - nextlbn; 1130 error = breadn(vp, -1 - lbn, 1131 size, &nextlbn, &nextsize, 1, NOCRED, &bp); 1132 } 1133 if (error) { 1134 brelse(bp); 1135 bp = NULL; 1136 break; 1137 } 1138 1139 /* 1140 * We should only get non-zero b_resid when an I/O error 1141 * has occurred, which should cause us to break above. 1142 * However, if the short read did not cause an error, 1143 * then we want to ensure that we do not uiomove bad 1144 * or uninitialized data. 1145 */ 1146 size -= bp->b_resid; 1147 if (size < xfersize) { 1148 if (size == 0) 1149 break; 1150 xfersize = size; 1151 } 1152 1153 error = uiomove((char *)bp->b_data + blkoffset, 1154 (int)xfersize, uio); 1155 if (error) 1156 break; 1157 vfs_bio_brelse(bp, ioflag); 1158 } 1159 1160 /* 1161 * This can only happen in the case of an error 1162 * because the loop above resets bp to NULL on each iteration 1163 * and on normal completion has not set a new value into it. 1164 * so it must have come from a 'break' statement 1165 */ 1166 if (bp != NULL) 1167 vfs_bio_brelse(bp, ioflag); 1168 return (error); 1169 } 1170 1171 /* 1172 * Extended attribute area writing. 1173 */ 1174 static int 1175 ffs_extwrite(struct vnode *vp, struct uio *uio, int ioflag, struct ucred *ucred) 1176 { 1177 struct inode *ip; 1178 struct ufs2_dinode *dp; 1179 struct fs *fs; 1180 struct buf *bp; 1181 ufs_lbn_t lbn; 1182 off_t osize; 1183 ssize_t resid; 1184 int blkoffset, error, flags, size, xfersize; 1185 1186 ip = VTOI(vp); 1187 fs = ITOFS(ip); 1188 dp = ip->i_din2; 1189 1190 #ifdef INVARIANTS 1191 if (uio->uio_rw != UIO_WRITE || fs->fs_magic != FS_UFS2_MAGIC) 1192 panic("ffs_extwrite: mode"); 1193 #endif 1194 1195 if (ioflag & IO_APPEND) 1196 uio->uio_offset = dp->di_extsize; 1197 KASSERT(uio->uio_offset >= 0, ("ffs_extwrite: uio->uio_offset < 0")); 1198 KASSERT(uio->uio_resid >= 0, ("ffs_extwrite: uio->uio_resid < 0")); 1199 if ((uoff_t)uio->uio_offset + uio->uio_resid > 1200 UFS_NXADDR * fs->fs_bsize) 1201 return (EFBIG); 1202 1203 resid = uio->uio_resid; 1204 osize = dp->di_extsize; 1205 flags = IO_EXT; 1206 if (ioflag & IO_SYNC) 1207 flags |= IO_SYNC; 1208 1209 for (error = 0; uio->uio_resid > 0;) { 1210 lbn = lblkno(fs, uio->uio_offset); 1211 blkoffset = blkoff(fs, uio->uio_offset); 1212 xfersize = fs->fs_bsize - blkoffset; 1213 if (uio->uio_resid < xfersize) 1214 xfersize = uio->uio_resid; 1215 1216 /* 1217 * We must perform a read-before-write if the transfer size 1218 * does not cover the entire buffer. 1219 */ 1220 if (fs->fs_bsize > xfersize) 1221 flags |= BA_CLRBUF; 1222 else 1223 flags &= ~BA_CLRBUF; 1224 error = UFS_BALLOC(vp, uio->uio_offset, xfersize, 1225 ucred, flags, &bp); 1226 if (error != 0) 1227 break; 1228 /* 1229 * If the buffer is not valid we have to clear out any 1230 * garbage data from the pages instantiated for the buffer. 1231 * If we do not, a failed uiomove() during a write can leave 1232 * the prior contents of the pages exposed to a userland 1233 * mmap(). XXX deal with uiomove() errors a better way. 1234 */ 1235 if ((bp->b_flags & B_CACHE) == 0 && fs->fs_bsize <= xfersize) 1236 vfs_bio_clrbuf(bp); 1237 1238 if (uio->uio_offset + xfersize > dp->di_extsize) { 1239 dp->di_extsize = uio->uio_offset + xfersize; 1240 UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE); 1241 } 1242 1243 size = sblksize(fs, dp->di_extsize, lbn) - bp->b_resid; 1244 if (size < xfersize) 1245 xfersize = size; 1246 1247 error = 1248 uiomove((char *)bp->b_data + blkoffset, (int)xfersize, uio); 1249 1250 vfs_bio_set_flags(bp, ioflag); 1251 1252 /* 1253 * If IO_SYNC each buffer is written synchronously. Otherwise 1254 * if we have a severe page deficiency write the buffer 1255 * asynchronously. Otherwise try to cluster, and if that 1256 * doesn't do it then either do an async write (if O_DIRECT), 1257 * or a delayed write (if not). 1258 */ 1259 if (ioflag & IO_SYNC) { 1260 (void)bwrite(bp); 1261 } else if (vm_page_count_severe() || 1262 buf_dirty_count_severe() || 1263 xfersize + blkoffset == fs->fs_bsize || 1264 (ioflag & (IO_ASYNC | IO_DIRECT))) 1265 bawrite(bp); 1266 else 1267 bdwrite(bp); 1268 if (error || xfersize == 0) 1269 break; 1270 UFS_INODE_SET_FLAG(ip, IN_CHANGE); 1271 } 1272 /* 1273 * If we successfully wrote any data, and we are not the superuser 1274 * we clear the setuid and setgid bits as a precaution against 1275 * tampering. 1276 */ 1277 if ((ip->i_mode & (ISUID | ISGID)) && resid > uio->uio_resid && ucred) { 1278 if (priv_check_cred(ucred, PRIV_VFS_RETAINSUGID)) { 1279 vn_seqc_write_begin(vp); 1280 UFS_INODE_SET_MODE(ip, ip->i_mode & ~(ISUID | ISGID)); 1281 dp->di_mode = ip->i_mode; 1282 vn_seqc_write_end(vp); 1283 } 1284 } 1285 if (error) { 1286 if (ioflag & IO_UNIT) { 1287 (void)ffs_truncate(vp, osize, 1288 IO_EXT | (ioflag&IO_SYNC), ucred); 1289 uio->uio_offset -= resid - uio->uio_resid; 1290 uio->uio_resid = resid; 1291 } 1292 } else if (resid > uio->uio_resid && (ioflag & IO_SYNC)) 1293 error = ffs_update(vp, 1); 1294 return (error); 1295 } 1296 1297 /* 1298 * Vnode operating to retrieve a named extended attribute. 1299 * 1300 * Locate a particular EA (nspace:name) in the area (ptr:length), and return 1301 * the length of the EA, and possibly the pointer to the entry and to the data. 1302 */ 1303 static int 1304 ffs_findextattr(uint8_t *ptr, uint64_t length, int nspace, const char *name, 1305 struct extattr **eapp, uint8_t **eac) 1306 { 1307 struct extattr *eap, *eaend; 1308 size_t nlen; 1309 1310 nlen = strlen(name); 1311 KASSERT(ALIGNED_TO(ptr, struct extattr), ("unaligned")); 1312 eap = (struct extattr *)ptr; 1313 eaend = (struct extattr *)(ptr + length); 1314 for (; eap < eaend; eap = EXTATTR_NEXT(eap)) { 1315 KASSERT(EXTATTR_NEXT(eap) <= eaend, 1316 ("extattr next %p beyond %p", EXTATTR_NEXT(eap), eaend)); 1317 if (eap->ea_namespace != nspace || eap->ea_namelength != nlen 1318 || memcmp(eap->ea_name, name, nlen) != 0) 1319 continue; 1320 if (eapp != NULL) 1321 *eapp = eap; 1322 if (eac != NULL) 1323 *eac = EXTATTR_CONTENT(eap); 1324 return (EXTATTR_CONTENT_SIZE(eap)); 1325 } 1326 return (-1); 1327 } 1328 1329 static int 1330 ffs_rdextattr(uint8_t **p, struct vnode *vp, struct thread *td) 1331 { 1332 const struct extattr *eap, *eaend, *eapnext; 1333 struct inode *ip; 1334 struct ufs2_dinode *dp; 1335 struct fs *fs; 1336 struct uio luio; 1337 struct iovec liovec; 1338 uint64_t easize; 1339 int error; 1340 uint8_t *eae; 1341 1342 ip = VTOI(vp); 1343 fs = ITOFS(ip); 1344 dp = ip->i_din2; 1345 easize = dp->di_extsize; 1346 if ((uoff_t)easize > UFS_NXADDR * fs->fs_bsize) 1347 return (EFBIG); 1348 1349 eae = malloc(easize, M_TEMP, M_WAITOK); 1350 1351 liovec.iov_base = eae; 1352 liovec.iov_len = easize; 1353 luio.uio_iov = &liovec; 1354 luio.uio_iovcnt = 1; 1355 luio.uio_offset = 0; 1356 luio.uio_resid = easize; 1357 luio.uio_segflg = UIO_SYSSPACE; 1358 luio.uio_rw = UIO_READ; 1359 luio.uio_td = td; 1360 1361 error = ffs_extread(vp, &luio, IO_EXT | IO_SYNC); 1362 if (error) { 1363 free(eae, M_TEMP); 1364 return (error); 1365 } 1366 /* Validate disk xattrfile contents. */ 1367 for (eap = (void *)eae, eaend = (void *)(eae + easize); eap < eaend; 1368 eap = eapnext) { 1369 /* Detect zeroed out tail */ 1370 if (eap->ea_length < sizeof(*eap) || eap->ea_length == 0) { 1371 easize = (const uint8_t *)eap - eae; 1372 break; 1373 } 1374 1375 eapnext = EXTATTR_NEXT(eap); 1376 /* Bogusly long entry. */ 1377 if (eapnext > eaend) { 1378 free(eae, M_TEMP); 1379 return (EINTEGRITY); 1380 } 1381 } 1382 ip->i_ea_len = easize; 1383 *p = eae; 1384 return (0); 1385 } 1386 1387 static void 1388 ffs_lock_ea(struct vnode *vp) 1389 { 1390 struct inode *ip; 1391 1392 ip = VTOI(vp); 1393 VI_LOCK(vp); 1394 while (ip->i_flag & IN_EA_LOCKED) { 1395 UFS_INODE_SET_FLAG(ip, IN_EA_LOCKWAIT); 1396 msleep(&ip->i_ea_refs, &vp->v_interlock, PINOD + 2, "ufs_ea", 1397 0); 1398 } 1399 UFS_INODE_SET_FLAG(ip, IN_EA_LOCKED); 1400 VI_UNLOCK(vp); 1401 } 1402 1403 static void 1404 ffs_unlock_ea(struct vnode *vp) 1405 { 1406 struct inode *ip; 1407 1408 ip = VTOI(vp); 1409 VI_LOCK(vp); 1410 if (ip->i_flag & IN_EA_LOCKWAIT) 1411 wakeup(&ip->i_ea_refs); 1412 ip->i_flag &= ~(IN_EA_LOCKED | IN_EA_LOCKWAIT); 1413 VI_UNLOCK(vp); 1414 } 1415 1416 static int 1417 ffs_open_ea(struct vnode *vp, struct ucred *cred, struct thread *td) 1418 { 1419 struct inode *ip; 1420 int error; 1421 1422 ip = VTOI(vp); 1423 1424 ffs_lock_ea(vp); 1425 if (ip->i_ea_area != NULL) { 1426 ip->i_ea_refs++; 1427 ffs_unlock_ea(vp); 1428 return (0); 1429 } 1430 error = ffs_rdextattr(&ip->i_ea_area, vp, td); 1431 if (error) { 1432 ffs_unlock_ea(vp); 1433 return (error); 1434 } 1435 ip->i_ea_error = 0; 1436 ip->i_ea_refs++; 1437 ffs_unlock_ea(vp); 1438 return (0); 1439 } 1440 1441 /* 1442 * Vnode extattr transaction commit/abort 1443 */ 1444 static int 1445 ffs_close_ea(struct vnode *vp, int commit, struct ucred *cred, struct thread *td) 1446 { 1447 struct inode *ip; 1448 struct uio luio; 1449 struct iovec *liovec; 1450 struct ufs2_dinode *dp; 1451 size_t ea_len, tlen; 1452 int error, i, lcnt; 1453 bool truncate; 1454 1455 ip = VTOI(vp); 1456 1457 ffs_lock_ea(vp); 1458 if (ip->i_ea_area == NULL) { 1459 ffs_unlock_ea(vp); 1460 return (EINVAL); 1461 } 1462 dp = ip->i_din2; 1463 error = ip->i_ea_error; 1464 truncate = false; 1465 if (commit && error == 0) { 1466 ASSERT_VOP_ELOCKED(vp, "ffs_close_ea commit"); 1467 if (cred == NOCRED) 1468 cred = vp->v_mount->mnt_cred; 1469 1470 ea_len = MAX(ip->i_ea_len, dp->di_extsize); 1471 for (lcnt = 1, tlen = ea_len - ip->i_ea_len; tlen > 0;) { 1472 tlen -= MIN(ZERO_REGION_SIZE, tlen); 1473 lcnt++; 1474 } 1475 1476 liovec = __builtin_alloca(lcnt * sizeof(struct iovec)); 1477 luio.uio_iovcnt = lcnt; 1478 1479 liovec[0].iov_base = ip->i_ea_area; 1480 liovec[0].iov_len = ip->i_ea_len; 1481 for (i = 1, tlen = ea_len - ip->i_ea_len; i < lcnt; i++) { 1482 liovec[i].iov_base = __DECONST(void *, zero_region); 1483 liovec[i].iov_len = MIN(ZERO_REGION_SIZE, tlen); 1484 tlen -= liovec[i].iov_len; 1485 } 1486 MPASS(tlen == 0); 1487 1488 luio.uio_iov = liovec; 1489 luio.uio_offset = 0; 1490 luio.uio_resid = ea_len; 1491 luio.uio_segflg = UIO_SYSSPACE; 1492 luio.uio_rw = UIO_WRITE; 1493 luio.uio_td = td; 1494 error = ffs_extwrite(vp, &luio, IO_EXT | IO_SYNC, cred); 1495 if (error == 0 && ip->i_ea_len == 0) 1496 truncate = true; 1497 } 1498 if (--ip->i_ea_refs == 0) { 1499 free(ip->i_ea_area, M_TEMP); 1500 ip->i_ea_area = NULL; 1501 ip->i_ea_len = 0; 1502 ip->i_ea_error = 0; 1503 } 1504 ffs_unlock_ea(vp); 1505 1506 if (truncate) 1507 ffs_truncate(vp, 0, IO_EXT, cred); 1508 return (error); 1509 } 1510 1511 /* 1512 * Vnode extattr strategy routine for fifos. 1513 * 1514 * We need to check for a read or write of the external attributes. 1515 * Otherwise we just fall through and do the usual thing. 1516 */ 1517 static int 1518 ffsext_strategy( 1519 struct vop_strategy_args /* { 1520 struct vnodeop_desc *a_desc; 1521 struct vnode *a_vp; 1522 struct buf *a_bp; 1523 } */ *ap) 1524 { 1525 struct vnode *vp; 1526 daddr_t lbn; 1527 1528 vp = ap->a_vp; 1529 lbn = ap->a_bp->b_lblkno; 1530 if (I_IS_UFS2(VTOI(vp)) && lbn < 0 && lbn >= -UFS_NXADDR) 1531 return (VOP_STRATEGY_APV(&ufs_vnodeops, ap)); 1532 if (vp->v_type == VFIFO) 1533 return (VOP_STRATEGY_APV(&ufs_fifoops, ap)); 1534 panic("spec nodes went here"); 1535 } 1536 1537 /* 1538 * Vnode extattr transaction commit/abort 1539 */ 1540 static int 1541 ffs_openextattr( 1542 struct vop_openextattr_args /* { 1543 struct vnodeop_desc *a_desc; 1544 struct vnode *a_vp; 1545 IN struct ucred *a_cred; 1546 IN struct thread *a_td; 1547 } */ *ap) 1548 { 1549 1550 if (ap->a_vp->v_type == VCHR || ap->a_vp->v_type == VBLK) 1551 return (EOPNOTSUPP); 1552 1553 return (ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td)); 1554 } 1555 1556 /* 1557 * Vnode extattr transaction commit/abort 1558 */ 1559 static int 1560 ffs_closeextattr( 1561 struct vop_closeextattr_args /* { 1562 struct vnodeop_desc *a_desc; 1563 struct vnode *a_vp; 1564 int a_commit; 1565 IN struct ucred *a_cred; 1566 IN struct thread *a_td; 1567 } */ *ap) 1568 { 1569 struct vnode *vp; 1570 1571 vp = ap->a_vp; 1572 if (vp->v_type == VCHR || vp->v_type == VBLK) 1573 return (EOPNOTSUPP); 1574 if (ap->a_commit && (vp->v_mount->mnt_flag & MNT_RDONLY) != 0) 1575 return (EROFS); 1576 1577 if (ap->a_commit && DOINGSUJ(vp)) { 1578 ASSERT_VOP_ELOCKED(vp, "ffs_closeextattr commit"); 1579 softdep_prealloc(vp, MNT_WAIT); 1580 if (vp->v_data == NULL) 1581 return (EBADF); 1582 } 1583 return (ffs_close_ea(vp, ap->a_commit, ap->a_cred, ap->a_td)); 1584 } 1585 1586 /* 1587 * Vnode operation to remove a named attribute. 1588 */ 1589 static int 1590 ffs_deleteextattr( 1591 struct vop_deleteextattr_args /* { 1592 IN struct vnode *a_vp; 1593 IN int a_attrnamespace; 1594 IN const char *a_name; 1595 IN struct ucred *a_cred; 1596 IN struct thread *a_td; 1597 } */ *ap) 1598 { 1599 struct vnode *vp; 1600 struct inode *ip; 1601 struct extattr *eap; 1602 uint32_t ul; 1603 int olen, error, i, easize; 1604 uint8_t *eae; 1605 void *tmp; 1606 1607 vp = ap->a_vp; 1608 ip = VTOI(vp); 1609 1610 if (vp->v_type == VCHR || vp->v_type == VBLK) 1611 return (EOPNOTSUPP); 1612 if (strlen(ap->a_name) == 0) 1613 return (EINVAL); 1614 if (vp->v_mount->mnt_flag & MNT_RDONLY) 1615 return (EROFS); 1616 1617 error = extattr_check_cred(vp, ap->a_attrnamespace, 1618 ap->a_cred, ap->a_td, VWRITE); 1619 if (error) { 1620 /* 1621 * ffs_lock_ea is not needed there, because the vnode 1622 * must be exclusively locked. 1623 */ 1624 if (ip->i_ea_area != NULL && ip->i_ea_error == 0) 1625 ip->i_ea_error = error; 1626 return (error); 1627 } 1628 1629 if (DOINGSUJ(vp)) { 1630 ASSERT_VOP_ELOCKED(vp, "ffs_deleteextattr"); 1631 softdep_prealloc(vp, MNT_WAIT); 1632 if (vp->v_data == NULL) 1633 return (EBADF); 1634 } 1635 1636 error = ffs_open_ea(vp, ap->a_cred, ap->a_td); 1637 if (error) 1638 return (error); 1639 1640 /* CEM: delete could be done in-place instead */ 1641 eae = malloc(ip->i_ea_len, M_TEMP, M_WAITOK); 1642 bcopy(ip->i_ea_area, eae, ip->i_ea_len); 1643 easize = ip->i_ea_len; 1644 1645 olen = ffs_findextattr(eae, easize, ap->a_attrnamespace, ap->a_name, 1646 &eap, NULL); 1647 if (olen == -1) { 1648 /* delete but nonexistent */ 1649 free(eae, M_TEMP); 1650 ffs_close_ea(vp, 0, ap->a_cred, ap->a_td); 1651 return (ENOATTR); 1652 } 1653 ul = eap->ea_length; 1654 i = (uint8_t *)EXTATTR_NEXT(eap) - eae; 1655 bcopy(EXTATTR_NEXT(eap), eap, easize - i); 1656 easize -= ul; 1657 1658 tmp = ip->i_ea_area; 1659 ip->i_ea_area = eae; 1660 ip->i_ea_len = easize; 1661 free(tmp, M_TEMP); 1662 error = ffs_close_ea(vp, 1, ap->a_cred, ap->a_td); 1663 return (error); 1664 } 1665 1666 /* 1667 * Vnode operation to retrieve a named extended attribute. 1668 */ 1669 static int 1670 ffs_getextattr( 1671 struct vop_getextattr_args /* { 1672 IN struct vnode *a_vp; 1673 IN int a_attrnamespace; 1674 IN const char *a_name; 1675 INOUT struct uio *a_uio; 1676 OUT size_t *a_size; 1677 IN struct ucred *a_cred; 1678 IN struct thread *a_td; 1679 } */ *ap) 1680 { 1681 struct inode *ip; 1682 uint8_t *eae, *p; 1683 unsigned easize; 1684 int error, ealen; 1685 1686 ip = VTOI(ap->a_vp); 1687 1688 if (ap->a_vp->v_type == VCHR || ap->a_vp->v_type == VBLK) 1689 return (EOPNOTSUPP); 1690 1691 error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace, 1692 ap->a_cred, ap->a_td, VREAD); 1693 if (error) 1694 return (error); 1695 1696 error = ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td); 1697 if (error) 1698 return (error); 1699 1700 eae = ip->i_ea_area; 1701 easize = ip->i_ea_len; 1702 1703 ealen = ffs_findextattr(eae, easize, ap->a_attrnamespace, ap->a_name, 1704 NULL, &p); 1705 if (ealen >= 0) { 1706 error = 0; 1707 if (ap->a_size != NULL) 1708 *ap->a_size = ealen; 1709 else if (ap->a_uio != NULL) 1710 error = uiomove(p, ealen, ap->a_uio); 1711 } else 1712 error = ENOATTR; 1713 1714 ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td); 1715 return (error); 1716 } 1717 1718 /* 1719 * Vnode operation to retrieve extended attributes on a vnode. 1720 */ 1721 static int 1722 ffs_listextattr( 1723 struct vop_listextattr_args /* { 1724 IN struct vnode *a_vp; 1725 IN int a_attrnamespace; 1726 INOUT struct uio *a_uio; 1727 OUT size_t *a_size; 1728 IN struct ucred *a_cred; 1729 IN struct thread *a_td; 1730 } */ *ap) 1731 { 1732 struct inode *ip; 1733 struct extattr *eap, *eaend; 1734 int error, ealen; 1735 1736 ip = VTOI(ap->a_vp); 1737 1738 if (ap->a_vp->v_type == VCHR || ap->a_vp->v_type == VBLK) 1739 return (EOPNOTSUPP); 1740 1741 error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace, 1742 ap->a_cred, ap->a_td, VREAD); 1743 if (error) 1744 return (error); 1745 1746 error = ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td); 1747 if (error) 1748 return (error); 1749 1750 error = 0; 1751 if (ap->a_size != NULL) 1752 *ap->a_size = 0; 1753 1754 KASSERT(ALIGNED_TO(ip->i_ea_area, struct extattr), ("unaligned")); 1755 eap = (struct extattr *)ip->i_ea_area; 1756 eaend = (struct extattr *)(ip->i_ea_area + ip->i_ea_len); 1757 for (; error == 0 && eap < eaend; eap = EXTATTR_NEXT(eap)) { 1758 KASSERT(EXTATTR_NEXT(eap) <= eaend, 1759 ("extattr next %p beyond %p", EXTATTR_NEXT(eap), eaend)); 1760 if (eap->ea_namespace != ap->a_attrnamespace) 1761 continue; 1762 1763 ealen = eap->ea_namelength; 1764 if (ap->a_size != NULL) 1765 *ap->a_size += ealen + 1; 1766 else if (ap->a_uio != NULL) 1767 error = uiomove(&eap->ea_namelength, ealen + 1, 1768 ap->a_uio); 1769 } 1770 1771 ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td); 1772 return (error); 1773 } 1774 1775 /* 1776 * Vnode operation to set a named attribute. 1777 */ 1778 static int 1779 ffs_setextattr( 1780 struct vop_setextattr_args /* { 1781 IN struct vnode *a_vp; 1782 IN int a_attrnamespace; 1783 IN const char *a_name; 1784 INOUT struct uio *a_uio; 1785 IN struct ucred *a_cred; 1786 IN struct thread *a_td; 1787 } */ *ap) 1788 { 1789 struct vnode *vp; 1790 struct inode *ip; 1791 struct fs *fs; 1792 struct extattr *eap; 1793 uint32_t ealength, ul; 1794 ssize_t ealen; 1795 int olen, eapad1, eapad2, error, i, easize; 1796 uint8_t *eae; 1797 void *tmp; 1798 1799 vp = ap->a_vp; 1800 ip = VTOI(vp); 1801 fs = ITOFS(ip); 1802 1803 if (vp->v_type == VCHR || vp->v_type == VBLK) 1804 return (EOPNOTSUPP); 1805 if (strlen(ap->a_name) == 0) 1806 return (EINVAL); 1807 1808 /* XXX Now unsupported API to delete EAs using NULL uio. */ 1809 if (ap->a_uio == NULL) 1810 return (EOPNOTSUPP); 1811 1812 if (vp->v_mount->mnt_flag & MNT_RDONLY) 1813 return (EROFS); 1814 1815 ealen = ap->a_uio->uio_resid; 1816 if (ealen < 0 || ealen > lblktosize(fs, UFS_NXADDR)) 1817 return (EINVAL); 1818 1819 error = extattr_check_cred(vp, ap->a_attrnamespace, 1820 ap->a_cred, ap->a_td, VWRITE); 1821 if (error) { 1822 /* 1823 * ffs_lock_ea is not needed there, because the vnode 1824 * must be exclusively locked. 1825 */ 1826 if (ip->i_ea_area != NULL && ip->i_ea_error == 0) 1827 ip->i_ea_error = error; 1828 return (error); 1829 } 1830 1831 if (DOINGSUJ(vp)) { 1832 ASSERT_VOP_ELOCKED(vp, "ffs_deleteextattr"); 1833 softdep_prealloc(vp, MNT_WAIT); 1834 if (vp->v_data == NULL) 1835 return (EBADF); 1836 } 1837 1838 error = ffs_open_ea(vp, ap->a_cred, ap->a_td); 1839 if (error) 1840 return (error); 1841 1842 ealength = sizeof(uint32_t) + 3 + strlen(ap->a_name); 1843 eapad1 = roundup2(ealength, 8) - ealength; 1844 eapad2 = roundup2(ealen, 8) - ealen; 1845 ealength += eapad1 + ealen + eapad2; 1846 1847 /* 1848 * CEM: rewrites of the same size or smaller could be done in-place 1849 * instead. (We don't acquire any fine-grained locks in here either, 1850 * so we could also do bigger writes in-place.) 1851 */ 1852 eae = malloc(ip->i_ea_len + ealength, M_TEMP, M_WAITOK); 1853 bcopy(ip->i_ea_area, eae, ip->i_ea_len); 1854 easize = ip->i_ea_len; 1855 1856 olen = ffs_findextattr(eae, easize, ap->a_attrnamespace, ap->a_name, 1857 &eap, NULL); 1858 if (olen == -1) { 1859 /* new, append at end */ 1860 KASSERT(ALIGNED_TO(eae + easize, struct extattr), 1861 ("unaligned")); 1862 eap = (struct extattr *)(eae + easize); 1863 easize += ealength; 1864 } else { 1865 ul = eap->ea_length; 1866 i = (uint8_t *)EXTATTR_NEXT(eap) - eae; 1867 if (ul != ealength) { 1868 bcopy(EXTATTR_NEXT(eap), (uint8_t *)eap + ealength, 1869 easize - i); 1870 easize += (ealength - ul); 1871 } 1872 } 1873 if (easize > lblktosize(fs, UFS_NXADDR)) { 1874 free(eae, M_TEMP); 1875 ffs_close_ea(vp, 0, ap->a_cred, ap->a_td); 1876 if (ip->i_ea_area != NULL && ip->i_ea_error == 0) 1877 ip->i_ea_error = ENOSPC; 1878 return (ENOSPC); 1879 } 1880 eap->ea_length = ealength; 1881 eap->ea_namespace = ap->a_attrnamespace; 1882 eap->ea_contentpadlen = eapad2; 1883 eap->ea_namelength = strlen(ap->a_name); 1884 memcpy(eap->ea_name, ap->a_name, strlen(ap->a_name)); 1885 bzero(&eap->ea_name[strlen(ap->a_name)], eapad1); 1886 error = uiomove(EXTATTR_CONTENT(eap), ealen, ap->a_uio); 1887 if (error) { 1888 free(eae, M_TEMP); 1889 ffs_close_ea(vp, 0, ap->a_cred, ap->a_td); 1890 if (ip->i_ea_area != NULL && ip->i_ea_error == 0) 1891 ip->i_ea_error = error; 1892 return (error); 1893 } 1894 bzero((uint8_t *)EXTATTR_CONTENT(eap) + ealen, eapad2); 1895 1896 tmp = ip->i_ea_area; 1897 ip->i_ea_area = eae; 1898 ip->i_ea_len = easize; 1899 free(tmp, M_TEMP); 1900 error = ffs_close_ea(vp, 1, ap->a_cred, ap->a_td); 1901 return (error); 1902 } 1903 1904 /* 1905 * Vnode pointer to File handle 1906 */ 1907 static int 1908 ffs_vptofh( 1909 struct vop_vptofh_args /* { 1910 IN struct vnode *a_vp; 1911 IN struct fid *a_fhp; 1912 } */ *ap) 1913 { 1914 struct inode *ip; 1915 struct ufid *ufhp; 1916 1917 ip = VTOI(ap->a_vp); 1918 ufhp = (struct ufid *)ap->a_fhp; 1919 ufhp->ufid_len = sizeof(struct ufid); 1920 ufhp->ufid_ino = ip->i_number; 1921 ufhp->ufid_gen = ip->i_gen; 1922 return (0); 1923 } 1924 1925 SYSCTL_DECL(_vfs_ffs); 1926 static int use_buf_pager = 1; 1927 SYSCTL_INT(_vfs_ffs, OID_AUTO, use_buf_pager, CTLFLAG_RWTUN, &use_buf_pager, 0, 1928 "Always use buffer pager instead of bmap"); 1929 1930 static daddr_t 1931 ffs_gbp_getblkno(struct vnode *vp, vm_ooffset_t off) 1932 { 1933 1934 return (lblkno(VFSTOUFS(vp->v_mount)->um_fs, off)); 1935 } 1936 1937 static int 1938 ffs_gbp_getblksz(struct vnode *vp, daddr_t lbn, long *sz) 1939 { 1940 1941 *sz = blksize(VFSTOUFS(vp->v_mount)->um_fs, VTOI(vp), lbn); 1942 return (0); 1943 } 1944 1945 static int 1946 ffs_getpages(struct vop_getpages_args *ap) 1947 { 1948 struct vnode *vp; 1949 struct ufsmount *um; 1950 1951 vp = ap->a_vp; 1952 um = VFSTOUFS(vp->v_mount); 1953 1954 if (!use_buf_pager && um->um_devvp->v_bufobj.bo_bsize <= PAGE_SIZE) 1955 return (vnode_pager_generic_getpages(vp, ap->a_m, ap->a_count, 1956 ap->a_rbehind, ap->a_rahead, NULL, NULL)); 1957 return (vfs_bio_getpages(vp, ap->a_m, ap->a_count, ap->a_rbehind, 1958 ap->a_rahead, ffs_gbp_getblkno, ffs_gbp_getblksz)); 1959 } 1960 1961 static int 1962 ffs_getpages_async(struct vop_getpages_async_args *ap) 1963 { 1964 struct vnode *vp; 1965 struct ufsmount *um; 1966 bool do_iodone; 1967 int error; 1968 1969 vp = ap->a_vp; 1970 um = VFSTOUFS(vp->v_mount); 1971 do_iodone = true; 1972 1973 if (um->um_devvp->v_bufobj.bo_bsize <= PAGE_SIZE) { 1974 error = vnode_pager_generic_getpages(vp, ap->a_m, ap->a_count, 1975 ap->a_rbehind, ap->a_rahead, ap->a_iodone, ap->a_arg); 1976 if (error == 0) 1977 do_iodone = false; 1978 } else { 1979 error = vfs_bio_getpages(vp, ap->a_m, ap->a_count, 1980 ap->a_rbehind, ap->a_rahead, ffs_gbp_getblkno, 1981 ffs_gbp_getblksz); 1982 } 1983 if (do_iodone && ap->a_iodone != NULL) 1984 ap->a_iodone(ap->a_arg, ap->a_m, ap->a_count, error); 1985 1986 return (error); 1987 } 1988 1989 static int 1990 ffs_vput_pair(struct vop_vput_pair_args *ap) 1991 { 1992 struct mount *mp; 1993 struct vnode *dvp, *vp, *vp1, **vpp; 1994 struct inode *dp, *ip; 1995 ino_t ip_ino; 1996 uint64_t ip_gen; 1997 int error, vp_locked; 1998 1999 dvp = ap->a_dvp; 2000 dp = VTOI(dvp); 2001 vpp = ap->a_vpp; 2002 vp = vpp != NULL ? *vpp : NULL; 2003 2004 if ((dp->i_flag & (IN_NEEDSYNC | IN_ENDOFF)) == 0) { 2005 vput(dvp); 2006 if (vp != NULL && ap->a_unlock_vp) 2007 vput(vp); 2008 return (0); 2009 } 2010 2011 mp = dvp->v_mount; 2012 if (vp != NULL) { 2013 if (ap->a_unlock_vp) { 2014 vput(vp); 2015 } else { 2016 MPASS(vp->v_type != VNON); 2017 vp_locked = VOP_ISLOCKED(vp); 2018 ip = VTOI(vp); 2019 ip_ino = ip->i_number; 2020 ip_gen = ip->i_gen; 2021 VOP_UNLOCK(vp); 2022 } 2023 } 2024 2025 /* 2026 * If compaction or fsync was requested do it in ffs_vput_pair() 2027 * now that other locks are no longer held. 2028 */ 2029 if ((dp->i_flag & IN_ENDOFF) != 0) { 2030 VNASSERT(I_ENDOFF(dp) != 0 && I_ENDOFF(dp) < dp->i_size, dvp, 2031 ("IN_ENDOFF set but I_ENDOFF() is not")); 2032 dp->i_flag &= ~IN_ENDOFF; 2033 error = UFS_TRUNCATE(dvp, (off_t)I_ENDOFF(dp), IO_NORMAL | 2034 (DOINGASYNC(dvp) ? 0 : IO_SYNC), curthread->td_ucred); 2035 if (error != 0 && error != ERELOOKUP) { 2036 if (!ffs_fsfail_cleanup(VFSTOUFS(mp), error)) { 2037 vn_printf(dvp, 2038 "IN_ENDOFF: failed to truncate, " 2039 "error %d\n", error); 2040 } 2041 #ifdef UFS_DIRHASH 2042 ufsdirhash_free(dp); 2043 #endif 2044 } 2045 SET_I_ENDOFF(dp, 0); 2046 } 2047 if ((dp->i_flag & IN_NEEDSYNC) != 0) { 2048 do { 2049 error = ffs_syncvnode(dvp, MNT_WAIT, 0); 2050 } while (error == ERELOOKUP); 2051 } 2052 2053 vput(dvp); 2054 2055 if (vp == NULL || ap->a_unlock_vp) 2056 return (0); 2057 MPASS(mp != NULL); 2058 2059 /* 2060 * It is possible that vp is reclaimed at this point. Only 2061 * routines that call us with a_unlock_vp == false can find 2062 * that their vp has been reclaimed. There are three areas 2063 * that are affected: 2064 * 1) vn_open_cred() - later VOPs could fail, but 2065 * dead_open() returns 0 to simulate successful open. 2066 * 2) ffs_snapshot() - creation of snapshot fails with EBADF. 2067 * 3) NFS server (several places) - code is prepared to detect 2068 * and respond to dead vnodes by returning ESTALE. 2069 */ 2070 VOP_LOCK(vp, vp_locked | LK_RETRY); 2071 if (IS_UFS(vp)) 2072 return (0); 2073 2074 /* 2075 * Try harder to recover from reclaimed vp if reclaim was not 2076 * because underlying inode was cleared. We saved inode 2077 * number and inode generation, so we can try to reinstantiate 2078 * exactly same version of inode. If this fails, return 2079 * original doomed vnode and let caller to handle 2080 * consequences. 2081 * 2082 * Note that callers must keep write started around 2083 * VOP_VPUT_PAIR() calls, so it is safe to use mp without 2084 * busying it. 2085 */ 2086 VOP_UNLOCK(vp); 2087 error = ffs_inotovp(mp, ip_ino, ip_gen, LK_EXCLUSIVE, &vp1, 2088 FFSV_REPLACE_DOOMED); 2089 if (error != 0) { 2090 VOP_LOCK(vp, vp_locked | LK_RETRY); 2091 } else { 2092 vrele(vp); 2093 *vpp = vp1; 2094 } 2095 return (error); 2096 } 2097