1 /*- 2 * SPDX-License-Identifier: (BSD-2-Clause-FreeBSD AND BSD-3-Clause) 3 * 4 * Copyright (c) 2002, 2003 Networks Associates Technology, Inc. 5 * All rights reserved. 6 * 7 * This software was developed for the FreeBSD Project by Marshall 8 * Kirk McKusick and Network Associates Laboratories, the Security 9 * Research Division of Network Associates, Inc. under DARPA/SPAWAR 10 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS 11 * research program 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 1. Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * Copyright (c) 1982, 1986, 1989, 1993 35 * The Regents of the University of California. All rights reserved. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 1. Redistributions of source code must retain the above copyright 41 * notice, this list of conditions and the following disclaimer. 42 * 2. Redistributions in binary form must reproduce the above copyright 43 * notice, this list of conditions and the following disclaimer in the 44 * documentation and/or other materials provided with the distribution. 45 * 3. Neither the name of the University nor the names of its contributors 46 * may be used to endorse or promote products derived from this software 47 * without specific prior written permission. 48 * 49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 59 * SUCH DAMAGE. 60 * 61 * from: @(#)ufs_readwrite.c 8.11 (Berkeley) 5/8/95 62 * from: $FreeBSD: .../ufs/ufs_readwrite.c,v 1.96 2002/08/12 09:22:11 phk ... 63 * @(#)ffs_vnops.c 8.15 (Berkeley) 5/14/95 64 */ 65 66 #include <sys/cdefs.h> 67 __FBSDID("$FreeBSD$"); 68 69 #include <sys/param.h> 70 #include <sys/bio.h> 71 #include <sys/systm.h> 72 #include <sys/buf.h> 73 #include <sys/conf.h> 74 #include <sys/extattr.h> 75 #include <sys/kernel.h> 76 #include <sys/limits.h> 77 #include <sys/malloc.h> 78 #include <sys/mount.h> 79 #include <sys/priv.h> 80 #include <sys/rwlock.h> 81 #include <sys/stat.h> 82 #include <sys/sysctl.h> 83 #include <sys/vmmeter.h> 84 #include <sys/vnode.h> 85 86 #include <vm/vm.h> 87 #include <vm/vm_param.h> 88 #include <vm/vm_extern.h> 89 #include <vm/vm_object.h> 90 #include <vm/vm_page.h> 91 #include <vm/vm_pager.h> 92 #include <vm/vnode_pager.h> 93 94 #include <ufs/ufs/extattr.h> 95 #include <ufs/ufs/quota.h> 96 #include <ufs/ufs/inode.h> 97 #include <ufs/ufs/ufs_extern.h> 98 #include <ufs/ufs/ufsmount.h> 99 100 #include <ufs/ffs/fs.h> 101 #include <ufs/ffs/ffs_extern.h> 102 #include "opt_directio.h" 103 #include "opt_ffs.h" 104 105 #define ALIGNED_TO(ptr, s) \ 106 (((uintptr_t)(ptr) & (_Alignof(s) - 1)) == 0) 107 108 #ifdef DIRECTIO 109 extern int ffs_rawread(struct vnode *vp, struct uio *uio, int *workdone); 110 #endif 111 static vop_fdatasync_t ffs_fdatasync; 112 static vop_fsync_t ffs_fsync; 113 static vop_getpages_t ffs_getpages; 114 static vop_getpages_async_t ffs_getpages_async; 115 static vop_lock1_t ffs_lock; 116 #ifdef INVARIANTS 117 static vop_unlock_t ffs_unlock_debug; 118 #endif 119 static vop_read_t ffs_read; 120 static vop_write_t ffs_write; 121 static int ffs_extread(struct vnode *vp, struct uio *uio, int ioflag); 122 static int ffs_extwrite(struct vnode *vp, struct uio *uio, int ioflag, 123 struct ucred *cred); 124 static vop_strategy_t ffsext_strategy; 125 static vop_closeextattr_t ffs_closeextattr; 126 static vop_deleteextattr_t ffs_deleteextattr; 127 static vop_getextattr_t ffs_getextattr; 128 static vop_listextattr_t ffs_listextattr; 129 static vop_openextattr_t ffs_openextattr; 130 static vop_setextattr_t ffs_setextattr; 131 static vop_vptofh_t ffs_vptofh; 132 133 /* Global vfs data structures for ufs. */ 134 struct vop_vector ffs_vnodeops1 = { 135 .vop_default = &ufs_vnodeops, 136 .vop_fsync = ffs_fsync, 137 .vop_fdatasync = ffs_fdatasync, 138 .vop_getpages = ffs_getpages, 139 .vop_getpages_async = ffs_getpages_async, 140 .vop_lock1 = ffs_lock, 141 #ifdef INVARIANTS 142 .vop_unlock = ffs_unlock_debug, 143 #endif 144 .vop_read = ffs_read, 145 .vop_reallocblks = ffs_reallocblks, 146 .vop_write = ffs_write, 147 .vop_vptofh = ffs_vptofh, 148 }; 149 VFS_VOP_VECTOR_REGISTER(ffs_vnodeops1); 150 151 struct vop_vector ffs_fifoops1 = { 152 .vop_default = &ufs_fifoops, 153 .vop_fsync = ffs_fsync, 154 .vop_fdatasync = ffs_fdatasync, 155 .vop_lock1 = ffs_lock, 156 #ifdef INVARIANTS 157 .vop_unlock = ffs_unlock_debug, 158 #endif 159 .vop_vptofh = ffs_vptofh, 160 }; 161 VFS_VOP_VECTOR_REGISTER(ffs_fifoops1); 162 163 /* Global vfs data structures for ufs. */ 164 struct vop_vector ffs_vnodeops2 = { 165 .vop_default = &ufs_vnodeops, 166 .vop_fsync = ffs_fsync, 167 .vop_fdatasync = ffs_fdatasync, 168 .vop_getpages = ffs_getpages, 169 .vop_getpages_async = ffs_getpages_async, 170 .vop_lock1 = ffs_lock, 171 #ifdef INVARIANTS 172 .vop_unlock = ffs_unlock_debug, 173 #endif 174 .vop_read = ffs_read, 175 .vop_reallocblks = ffs_reallocblks, 176 .vop_write = ffs_write, 177 .vop_closeextattr = ffs_closeextattr, 178 .vop_deleteextattr = ffs_deleteextattr, 179 .vop_getextattr = ffs_getextattr, 180 .vop_listextattr = ffs_listextattr, 181 .vop_openextattr = ffs_openextattr, 182 .vop_setextattr = ffs_setextattr, 183 .vop_vptofh = ffs_vptofh, 184 }; 185 VFS_VOP_VECTOR_REGISTER(ffs_vnodeops2); 186 187 struct vop_vector ffs_fifoops2 = { 188 .vop_default = &ufs_fifoops, 189 .vop_fsync = ffs_fsync, 190 .vop_fdatasync = ffs_fdatasync, 191 .vop_lock1 = ffs_lock, 192 #ifdef INVARIANTS 193 .vop_unlock = ffs_unlock_debug, 194 #endif 195 .vop_reallocblks = ffs_reallocblks, 196 .vop_strategy = ffsext_strategy, 197 .vop_closeextattr = ffs_closeextattr, 198 .vop_deleteextattr = ffs_deleteextattr, 199 .vop_getextattr = ffs_getextattr, 200 .vop_listextattr = ffs_listextattr, 201 .vop_openextattr = ffs_openextattr, 202 .vop_setextattr = ffs_setextattr, 203 .vop_vptofh = ffs_vptofh, 204 }; 205 VFS_VOP_VECTOR_REGISTER(ffs_fifoops2); 206 207 /* 208 * Synch an open file. 209 */ 210 /* ARGSUSED */ 211 static int 212 ffs_fsync(struct vop_fsync_args *ap) 213 { 214 struct vnode *vp; 215 struct bufobj *bo; 216 int error; 217 218 vp = ap->a_vp; 219 bo = &vp->v_bufobj; 220 retry: 221 error = ffs_syncvnode(vp, ap->a_waitfor, 0); 222 if (error) 223 return (error); 224 if (ap->a_waitfor == MNT_WAIT && DOINGSOFTDEP(vp)) { 225 error = softdep_fsync(vp); 226 if (error) 227 return (error); 228 229 /* 230 * The softdep_fsync() function may drop vp lock, 231 * allowing for dirty buffers to reappear on the 232 * bo_dirty list. Recheck and resync as needed. 233 */ 234 BO_LOCK(bo); 235 if ((vp->v_type == VREG || vp->v_type == VDIR) && 236 (bo->bo_numoutput > 0 || bo->bo_dirty.bv_cnt > 0)) { 237 BO_UNLOCK(bo); 238 goto retry; 239 } 240 BO_UNLOCK(bo); 241 } 242 if (ffs_fsfail_cleanup(VFSTOUFS(vp->v_mount), 0)) 243 return (ENXIO); 244 return (0); 245 } 246 247 int 248 ffs_syncvnode(struct vnode *vp, int waitfor, int flags) 249 { 250 struct inode *ip; 251 struct bufobj *bo; 252 struct ufsmount *ump; 253 struct buf *bp, *nbp; 254 ufs_lbn_t lbn; 255 int error, passes; 256 bool still_dirty, unlocked, wait; 257 258 ip = VTOI(vp); 259 ip->i_flag &= ~IN_NEEDSYNC; 260 bo = &vp->v_bufobj; 261 ump = VFSTOUFS(vp->v_mount); 262 263 /* 264 * When doing MNT_WAIT we must first flush all dependencies 265 * on the inode. 266 */ 267 if (DOINGSOFTDEP(vp) && waitfor == MNT_WAIT && 268 (error = softdep_sync_metadata(vp)) != 0) { 269 if (ffs_fsfail_cleanup(ump, error)) 270 error = 0; 271 return (error); 272 } 273 274 /* 275 * Flush all dirty buffers associated with a vnode. 276 */ 277 error = 0; 278 passes = 0; 279 wait = false; /* Always do an async pass first. */ 280 unlocked = false; 281 lbn = lblkno(ITOFS(ip), (ip->i_size + ITOFS(ip)->fs_bsize - 1)); 282 BO_LOCK(bo); 283 loop: 284 TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) 285 bp->b_vflags &= ~BV_SCANNED; 286 TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) { 287 /* 288 * Reasons to skip this buffer: it has already been considered 289 * on this pass, the buffer has dependencies that will cause 290 * it to be redirtied and it has not already been deferred, 291 * or it is already being written. 292 */ 293 if ((bp->b_vflags & BV_SCANNED) != 0) 294 continue; 295 bp->b_vflags |= BV_SCANNED; 296 /* 297 * Flush indirects in order, if requested. 298 * 299 * Note that if only datasync is requested, we can 300 * skip indirect blocks when softupdates are not 301 * active. Otherwise we must flush them with data, 302 * since dependencies prevent data block writes. 303 */ 304 if (waitfor == MNT_WAIT && bp->b_lblkno <= -UFS_NDADDR && 305 (lbn_level(bp->b_lblkno) >= passes || 306 ((flags & DATA_ONLY) != 0 && !DOINGSOFTDEP(vp)))) 307 continue; 308 if (bp->b_lblkno > lbn) 309 panic("ffs_syncvnode: syncing truncated data."); 310 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) == 0) { 311 BO_UNLOCK(bo); 312 } else if (wait) { 313 if (BUF_LOCK(bp, 314 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, 315 BO_LOCKPTR(bo)) != 0) { 316 bp->b_vflags &= ~BV_SCANNED; 317 goto next; 318 } 319 } else 320 continue; 321 if ((bp->b_flags & B_DELWRI) == 0) 322 panic("ffs_fsync: not dirty"); 323 /* 324 * Check for dependencies and potentially complete them. 325 */ 326 if (!LIST_EMPTY(&bp->b_dep) && 327 (error = softdep_sync_buf(vp, bp, 328 wait ? MNT_WAIT : MNT_NOWAIT)) != 0) { 329 /* 330 * Lock order conflict, buffer was already unlocked, 331 * and vnode possibly unlocked. 332 */ 333 if (error == ERELOOKUP) { 334 if (vp->v_data == NULL) 335 return (EBADF); 336 unlocked = true; 337 if (DOINGSOFTDEP(vp) && waitfor == MNT_WAIT && 338 (error = softdep_sync_metadata(vp)) != 0) { 339 if (ffs_fsfail_cleanup(ump, error)) 340 error = 0; 341 return (unlocked && error == 0 ? 342 ERELOOKUP : error); 343 } 344 /* Re-evaluate inode size */ 345 lbn = lblkno(ITOFS(ip), (ip->i_size + 346 ITOFS(ip)->fs_bsize - 1)); 347 goto next; 348 } 349 /* I/O error. */ 350 if (error != EBUSY) { 351 BUF_UNLOCK(bp); 352 return (error); 353 } 354 /* If we deferred once, don't defer again. */ 355 if ((bp->b_flags & B_DEFERRED) == 0) { 356 bp->b_flags |= B_DEFERRED; 357 BUF_UNLOCK(bp); 358 goto next; 359 } 360 } 361 if (wait) { 362 bremfree(bp); 363 error = bwrite(bp); 364 if (ffs_fsfail_cleanup(ump, error)) 365 error = 0; 366 if (error != 0) 367 return (error); 368 } else if ((bp->b_flags & B_CLUSTEROK)) { 369 (void) vfs_bio_awrite(bp); 370 } else { 371 bremfree(bp); 372 (void) bawrite(bp); 373 } 374 next: 375 /* 376 * Since we may have slept during the I/O, we need 377 * to start from a known point. 378 */ 379 BO_LOCK(bo); 380 nbp = TAILQ_FIRST(&bo->bo_dirty.bv_hd); 381 } 382 if (waitfor != MNT_WAIT) { 383 BO_UNLOCK(bo); 384 if ((flags & NO_INO_UPDT) != 0) 385 return (unlocked ? ERELOOKUP : 0); 386 error = ffs_update(vp, 0); 387 if (error == 0 && unlocked) 388 error = ERELOOKUP; 389 return (error); 390 } 391 /* Drain IO to see if we're done. */ 392 bufobj_wwait(bo, 0, 0); 393 /* 394 * Block devices associated with filesystems may have new I/O 395 * requests posted for them even if the vnode is locked, so no 396 * amount of trying will get them clean. We make several passes 397 * as a best effort. 398 * 399 * Regular files may need multiple passes to flush all dependency 400 * work as it is possible that we must write once per indirect 401 * level, once for the leaf, and once for the inode and each of 402 * these will be done with one sync and one async pass. 403 */ 404 if (bo->bo_dirty.bv_cnt > 0) { 405 if ((flags & DATA_ONLY) == 0) { 406 still_dirty = true; 407 } else { 408 /* 409 * For data-only sync, dirty indirect buffers 410 * are ignored. 411 */ 412 still_dirty = false; 413 TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) { 414 if (bp->b_lblkno > -UFS_NDADDR) { 415 still_dirty = true; 416 break; 417 } 418 } 419 } 420 421 if (still_dirty) { 422 /* Write the inode after sync passes to flush deps. */ 423 if (wait && DOINGSOFTDEP(vp) && 424 (flags & NO_INO_UPDT) == 0) { 425 BO_UNLOCK(bo); 426 ffs_update(vp, 1); 427 BO_LOCK(bo); 428 } 429 /* switch between sync/async. */ 430 wait = !wait; 431 if (wait || ++passes < UFS_NIADDR + 2) 432 goto loop; 433 } 434 } 435 BO_UNLOCK(bo); 436 error = 0; 437 if ((flags & DATA_ONLY) == 0) { 438 if ((flags & NO_INO_UPDT) == 0) 439 error = ffs_update(vp, 1); 440 if (DOINGSUJ(vp)) 441 softdep_journal_fsync(VTOI(vp)); 442 } else if ((ip->i_flags & (IN_SIZEMOD | IN_IBLKDATA)) != 0) { 443 error = ffs_update(vp, 1); 444 } 445 if (error == 0 && unlocked) 446 error = ERELOOKUP; 447 return (error); 448 } 449 450 static int 451 ffs_fdatasync(struct vop_fdatasync_args *ap) 452 { 453 454 return (ffs_syncvnode(ap->a_vp, MNT_WAIT, DATA_ONLY)); 455 } 456 457 static int 458 ffs_lock(ap) 459 struct vop_lock1_args /* { 460 struct vnode *a_vp; 461 int a_flags; 462 char *file; 463 int line; 464 } */ *ap; 465 { 466 #if !defined(NO_FFS_SNAPSHOT) || defined(DIAGNOSTIC) 467 struct vnode *vp = ap->a_vp; 468 #endif /* !NO_FFS_SNAPSHOT || DIAGNOSTIC */ 469 #ifdef DIAGNOSTIC 470 struct inode *ip; 471 #endif /* DIAGNOSTIC */ 472 int result; 473 #ifndef NO_FFS_SNAPSHOT 474 int flags; 475 struct lock *lkp; 476 477 /* 478 * Adaptive spinning mixed with SU leads to trouble. use a giant hammer 479 * and only use it when LK_NODDLKTREAT is set. Currently this means it 480 * is only used during path lookup. 481 */ 482 if ((ap->a_flags & LK_NODDLKTREAT) != 0) 483 ap->a_flags |= LK_ADAPTIVE; 484 switch (ap->a_flags & LK_TYPE_MASK) { 485 case LK_SHARED: 486 case LK_UPGRADE: 487 case LK_EXCLUSIVE: 488 flags = ap->a_flags; 489 for (;;) { 490 #ifdef DEBUG_VFS_LOCKS 491 VNPASS(vp->v_holdcnt != 0, vp); 492 #endif /* DEBUG_VFS_LOCKS */ 493 lkp = vp->v_vnlock; 494 result = lockmgr_lock_flags(lkp, flags, 495 &VI_MTX(vp)->lock_object, ap->a_file, ap->a_line); 496 if (lkp == vp->v_vnlock || result != 0) 497 break; 498 /* 499 * Apparent success, except that the vnode 500 * mutated between snapshot file vnode and 501 * regular file vnode while this process 502 * slept. The lock currently held is not the 503 * right lock. Release it, and try to get the 504 * new lock. 505 */ 506 lockmgr_unlock(lkp); 507 if ((flags & (LK_INTERLOCK | LK_NOWAIT)) == 508 (LK_INTERLOCK | LK_NOWAIT)) 509 return (EBUSY); 510 if ((flags & LK_TYPE_MASK) == LK_UPGRADE) 511 flags = (flags & ~LK_TYPE_MASK) | LK_EXCLUSIVE; 512 flags &= ~LK_INTERLOCK; 513 } 514 #ifdef DIAGNOSTIC 515 switch (ap->a_flags & LK_TYPE_MASK) { 516 case LK_UPGRADE: 517 case LK_EXCLUSIVE: 518 if (result == 0 && vp->v_vnlock->lk_recurse == 0) { 519 ip = VTOI(vp); 520 if (ip != NULL) 521 ip->i_lock_gen++; 522 } 523 } 524 #endif /* DIAGNOSTIC */ 525 break; 526 default: 527 #ifdef DIAGNOSTIC 528 if ((ap->a_flags & LK_TYPE_MASK) == LK_DOWNGRADE) { 529 ip = VTOI(vp); 530 if (ip != NULL) 531 ufs_unlock_tracker(ip); 532 } 533 #endif /* DIAGNOSTIC */ 534 result = VOP_LOCK1_APV(&ufs_vnodeops, ap); 535 break; 536 } 537 #else /* NO_FFS_SNAPSHOT */ 538 /* 539 * See above for an explanation. 540 */ 541 if ((ap->a_flags & LK_NODDLKTREAT) != 0) 542 ap->a_flags |= LK_ADAPTIVE; 543 #ifdef DIAGNOSTIC 544 if ((ap->a_flags & LK_TYPE_MASK) == LK_DOWNGRADE) { 545 ip = VTOI(vp); 546 if (ip != NULL) 547 ufs_unlock_tracker(ip); 548 } 549 #endif /* DIAGNOSTIC */ 550 result = VOP_LOCK1_APV(&ufs_vnodeops, ap); 551 #endif /* NO_FFS_SNAPSHOT */ 552 #ifdef DIAGNOSTIC 553 switch (ap->a_flags & LK_TYPE_MASK) { 554 case LK_UPGRADE: 555 case LK_EXCLUSIVE: 556 if (result == 0 && vp->v_vnlock->lk_recurse == 0) { 557 ip = VTOI(vp); 558 if (ip != NULL) 559 ip->i_lock_gen++; 560 } 561 } 562 #endif /* DIAGNOSTIC */ 563 return (result); 564 } 565 566 #ifdef INVARIANTS 567 static int 568 ffs_unlock_debug(struct vop_unlock_args *ap) 569 { 570 struct vnode *vp; 571 struct inode *ip; 572 573 vp = ap->a_vp; 574 ip = VTOI(vp); 575 if (ip->i_flag & UFS_INODE_FLAG_LAZY_MASK_ASSERTABLE) { 576 if ((vp->v_mflag & VMP_LAZYLIST) == 0) { 577 VI_LOCK(vp); 578 VNASSERT((vp->v_mflag & VMP_LAZYLIST), vp, 579 ("%s: modified vnode (%x) not on lazy list", 580 __func__, ip->i_flag)); 581 VI_UNLOCK(vp); 582 } 583 } 584 #ifdef DIAGNOSTIC 585 if (VOP_ISLOCKED(vp) == LK_EXCLUSIVE && ip != NULL && 586 vp->v_vnlock->lk_recurse == 0) 587 ufs_unlock_tracker(ip); 588 #endif 589 return (VOP_UNLOCK_APV(&ufs_vnodeops, ap)); 590 } 591 #endif 592 593 static int 594 ffs_read_hole(struct uio *uio, long xfersize, long *size) 595 { 596 ssize_t saved_resid, tlen; 597 int error; 598 599 while (xfersize > 0) { 600 tlen = min(xfersize, ZERO_REGION_SIZE); 601 saved_resid = uio->uio_resid; 602 error = vn_io_fault_uiomove(__DECONST(void *, zero_region), 603 tlen, uio); 604 if (error != 0) 605 return (error); 606 tlen = saved_resid - uio->uio_resid; 607 xfersize -= tlen; 608 *size -= tlen; 609 } 610 return (0); 611 } 612 613 /* 614 * Vnode op for reading. 615 */ 616 static int 617 ffs_read(ap) 618 struct vop_read_args /* { 619 struct vnode *a_vp; 620 struct uio *a_uio; 621 int a_ioflag; 622 struct ucred *a_cred; 623 } */ *ap; 624 { 625 struct vnode *vp; 626 struct inode *ip; 627 struct uio *uio; 628 struct fs *fs; 629 struct buf *bp; 630 ufs_lbn_t lbn, nextlbn; 631 off_t bytesinfile; 632 long size, xfersize, blkoffset; 633 ssize_t orig_resid; 634 int bflag, error, ioflag, seqcount; 635 636 vp = ap->a_vp; 637 uio = ap->a_uio; 638 ioflag = ap->a_ioflag; 639 if (ap->a_ioflag & IO_EXT) 640 #ifdef notyet 641 return (ffs_extread(vp, uio, ioflag)); 642 #else 643 panic("ffs_read+IO_EXT"); 644 #endif 645 #ifdef DIRECTIO 646 if ((ioflag & IO_DIRECT) != 0) { 647 int workdone; 648 649 error = ffs_rawread(vp, uio, &workdone); 650 if (error != 0 || workdone != 0) 651 return error; 652 } 653 #endif 654 655 seqcount = ap->a_ioflag >> IO_SEQSHIFT; 656 ip = VTOI(vp); 657 658 #ifdef INVARIANTS 659 if (uio->uio_rw != UIO_READ) 660 panic("ffs_read: mode"); 661 662 if (vp->v_type == VLNK) { 663 if ((int)ip->i_size < vp->v_mount->mnt_maxsymlinklen) 664 panic("ffs_read: short symlink"); 665 } else if (vp->v_type != VREG && vp->v_type != VDIR) 666 panic("ffs_read: type %d", vp->v_type); 667 #endif 668 orig_resid = uio->uio_resid; 669 KASSERT(orig_resid >= 0, ("ffs_read: uio->uio_resid < 0")); 670 if (orig_resid == 0) 671 return (0); 672 KASSERT(uio->uio_offset >= 0, ("ffs_read: uio->uio_offset < 0")); 673 fs = ITOFS(ip); 674 if (uio->uio_offset < ip->i_size && 675 uio->uio_offset >= fs->fs_maxfilesize) 676 return (EOVERFLOW); 677 678 bflag = GB_UNMAPPED | (uio->uio_segflg == UIO_NOCOPY ? 0 : GB_NOSPARSE); 679 for (error = 0, bp = NULL; uio->uio_resid > 0; bp = NULL) { 680 if ((bytesinfile = ip->i_size - uio->uio_offset) <= 0) 681 break; 682 lbn = lblkno(fs, uio->uio_offset); 683 nextlbn = lbn + 1; 684 685 /* 686 * size of buffer. The buffer representing the 687 * end of the file is rounded up to the size of 688 * the block type ( fragment or full block, 689 * depending ). 690 */ 691 size = blksize(fs, ip, lbn); 692 blkoffset = blkoff(fs, uio->uio_offset); 693 694 /* 695 * The amount we want to transfer in this iteration is 696 * one FS block less the amount of the data before 697 * our startpoint (duh!) 698 */ 699 xfersize = fs->fs_bsize - blkoffset; 700 701 /* 702 * But if we actually want less than the block, 703 * or the file doesn't have a whole block more of data, 704 * then use the lesser number. 705 */ 706 if (uio->uio_resid < xfersize) 707 xfersize = uio->uio_resid; 708 if (bytesinfile < xfersize) 709 xfersize = bytesinfile; 710 711 if (lblktosize(fs, nextlbn) >= ip->i_size) { 712 /* 713 * Don't do readahead if this is the end of the file. 714 */ 715 error = bread_gb(vp, lbn, size, NOCRED, bflag, &bp); 716 } else if ((vp->v_mount->mnt_flag & MNT_NOCLUSTERR) == 0) { 717 /* 718 * Otherwise if we are allowed to cluster, 719 * grab as much as we can. 720 * 721 * XXX This may not be a win if we are not 722 * doing sequential access. 723 */ 724 error = cluster_read(vp, ip->i_size, lbn, 725 size, NOCRED, blkoffset + uio->uio_resid, 726 seqcount, bflag, &bp); 727 } else if (seqcount > 1) { 728 /* 729 * If we are NOT allowed to cluster, then 730 * if we appear to be acting sequentially, 731 * fire off a request for a readahead 732 * as well as a read. Note that the 4th and 5th 733 * arguments point to arrays of the size specified in 734 * the 6th argument. 735 */ 736 u_int nextsize = blksize(fs, ip, nextlbn); 737 error = breadn_flags(vp, lbn, lbn, size, &nextlbn, 738 &nextsize, 1, NOCRED, bflag, NULL, &bp); 739 } else { 740 /* 741 * Failing all of the above, just read what the 742 * user asked for. Interestingly, the same as 743 * the first option above. 744 */ 745 error = bread_gb(vp, lbn, size, NOCRED, bflag, &bp); 746 } 747 if (error == EJUSTRETURN) { 748 error = ffs_read_hole(uio, xfersize, &size); 749 if (error == 0) 750 continue; 751 } 752 if (error != 0) { 753 brelse(bp); 754 bp = NULL; 755 break; 756 } 757 758 /* 759 * We should only get non-zero b_resid when an I/O error 760 * has occurred, which should cause us to break above. 761 * However, if the short read did not cause an error, 762 * then we want to ensure that we do not uiomove bad 763 * or uninitialized data. 764 */ 765 size -= bp->b_resid; 766 if (size < xfersize) { 767 if (size == 0) 768 break; 769 xfersize = size; 770 } 771 772 if (buf_mapped(bp)) { 773 error = vn_io_fault_uiomove((char *)bp->b_data + 774 blkoffset, (int)xfersize, uio); 775 } else { 776 error = vn_io_fault_pgmove(bp->b_pages, blkoffset, 777 (int)xfersize, uio); 778 } 779 if (error) 780 break; 781 782 vfs_bio_brelse(bp, ioflag); 783 } 784 785 /* 786 * This can only happen in the case of an error 787 * because the loop above resets bp to NULL on each iteration 788 * and on normal completion has not set a new value into it. 789 * so it must have come from a 'break' statement 790 */ 791 if (bp != NULL) 792 vfs_bio_brelse(bp, ioflag); 793 794 if ((error == 0 || uio->uio_resid != orig_resid) && 795 (vp->v_mount->mnt_flag & (MNT_NOATIME | MNT_RDONLY)) == 0) 796 UFS_INODE_SET_FLAG_SHARED(ip, IN_ACCESS); 797 return (error); 798 } 799 800 /* 801 * Vnode op for writing. 802 */ 803 static int 804 ffs_write(ap) 805 struct vop_write_args /* { 806 struct vnode *a_vp; 807 struct uio *a_uio; 808 int a_ioflag; 809 struct ucred *a_cred; 810 } */ *ap; 811 { 812 struct vnode *vp; 813 struct uio *uio; 814 struct inode *ip; 815 struct fs *fs; 816 struct buf *bp; 817 ufs_lbn_t lbn; 818 off_t osize; 819 ssize_t resid; 820 int seqcount; 821 int blkoffset, error, flags, ioflag, size, xfersize; 822 823 vp = ap->a_vp; 824 uio = ap->a_uio; 825 ioflag = ap->a_ioflag; 826 if (ap->a_ioflag & IO_EXT) 827 #ifdef notyet 828 return (ffs_extwrite(vp, uio, ioflag, ap->a_cred)); 829 #else 830 panic("ffs_write+IO_EXT"); 831 #endif 832 833 seqcount = ap->a_ioflag >> IO_SEQSHIFT; 834 ip = VTOI(vp); 835 836 #ifdef INVARIANTS 837 if (uio->uio_rw != UIO_WRITE) 838 panic("ffs_write: mode"); 839 #endif 840 841 switch (vp->v_type) { 842 case VREG: 843 if (ioflag & IO_APPEND) 844 uio->uio_offset = ip->i_size; 845 if ((ip->i_flags & APPEND) && uio->uio_offset != ip->i_size) 846 return (EPERM); 847 /* FALLTHROUGH */ 848 case VLNK: 849 break; 850 case VDIR: 851 panic("ffs_write: dir write"); 852 break; 853 default: 854 panic("ffs_write: type %p %d (%d,%d)", vp, (int)vp->v_type, 855 (int)uio->uio_offset, 856 (int)uio->uio_resid 857 ); 858 } 859 860 KASSERT(uio->uio_resid >= 0, ("ffs_write: uio->uio_resid < 0")); 861 KASSERT(uio->uio_offset >= 0, ("ffs_write: uio->uio_offset < 0")); 862 fs = ITOFS(ip); 863 if ((uoff_t)uio->uio_offset + uio->uio_resid > fs->fs_maxfilesize) 864 return (EFBIG); 865 /* 866 * Maybe this should be above the vnode op call, but so long as 867 * file servers have no limits, I don't think it matters. 868 */ 869 if (vn_rlimit_fsize(vp, uio, uio->uio_td)) 870 return (EFBIG); 871 872 resid = uio->uio_resid; 873 osize = ip->i_size; 874 if (seqcount > BA_SEQMAX) 875 flags = BA_SEQMAX << BA_SEQSHIFT; 876 else 877 flags = seqcount << BA_SEQSHIFT; 878 if (ioflag & IO_SYNC) 879 flags |= IO_SYNC; 880 flags |= BA_UNMAPPED; 881 882 for (error = 0; uio->uio_resid > 0;) { 883 lbn = lblkno(fs, uio->uio_offset); 884 blkoffset = blkoff(fs, uio->uio_offset); 885 xfersize = fs->fs_bsize - blkoffset; 886 if (uio->uio_resid < xfersize) 887 xfersize = uio->uio_resid; 888 if (uio->uio_offset + xfersize > ip->i_size) 889 vnode_pager_setsize(vp, uio->uio_offset + xfersize); 890 891 /* 892 * We must perform a read-before-write if the transfer size 893 * does not cover the entire buffer. 894 */ 895 if (fs->fs_bsize > xfersize) 896 flags |= BA_CLRBUF; 897 else 898 flags &= ~BA_CLRBUF; 899 /* XXX is uio->uio_offset the right thing here? */ 900 error = UFS_BALLOC(vp, uio->uio_offset, xfersize, 901 ap->a_cred, flags, &bp); 902 if (error != 0) { 903 vnode_pager_setsize(vp, ip->i_size); 904 break; 905 } 906 if ((ioflag & (IO_SYNC|IO_INVAL)) == (IO_SYNC|IO_INVAL)) 907 bp->b_flags |= B_NOCACHE; 908 909 if (uio->uio_offset + xfersize > ip->i_size) { 910 ip->i_size = uio->uio_offset + xfersize; 911 DIP_SET(ip, i_size, ip->i_size); 912 UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE); 913 } 914 915 size = blksize(fs, ip, lbn) - bp->b_resid; 916 if (size < xfersize) 917 xfersize = size; 918 919 if (buf_mapped(bp)) { 920 error = vn_io_fault_uiomove((char *)bp->b_data + 921 blkoffset, (int)xfersize, uio); 922 } else { 923 error = vn_io_fault_pgmove(bp->b_pages, blkoffset, 924 (int)xfersize, uio); 925 } 926 /* 927 * If the buffer is not already filled and we encounter an 928 * error while trying to fill it, we have to clear out any 929 * garbage data from the pages instantiated for the buffer. 930 * If we do not, a failed uiomove() during a write can leave 931 * the prior contents of the pages exposed to a userland mmap. 932 * 933 * Note that we need only clear buffers with a transfer size 934 * equal to the block size because buffers with a shorter 935 * transfer size were cleared above by the call to UFS_BALLOC() 936 * with the BA_CLRBUF flag set. 937 * 938 * If the source region for uiomove identically mmaps the 939 * buffer, uiomove() performed the NOP copy, and the buffer 940 * content remains valid because the page fault handler 941 * validated the pages. 942 */ 943 if (error != 0 && (bp->b_flags & B_CACHE) == 0 && 944 fs->fs_bsize == xfersize) 945 vfs_bio_clrbuf(bp); 946 947 vfs_bio_set_flags(bp, ioflag); 948 949 /* 950 * If IO_SYNC each buffer is written synchronously. Otherwise 951 * if we have a severe page deficiency write the buffer 952 * asynchronously. Otherwise try to cluster, and if that 953 * doesn't do it then either do an async write (if O_DIRECT), 954 * or a delayed write (if not). 955 */ 956 if (ioflag & IO_SYNC) { 957 (void)bwrite(bp); 958 } else if (vm_page_count_severe() || 959 buf_dirty_count_severe() || 960 (ioflag & IO_ASYNC)) { 961 bp->b_flags |= B_CLUSTEROK; 962 bawrite(bp); 963 } else if (xfersize + blkoffset == fs->fs_bsize) { 964 if ((vp->v_mount->mnt_flag & MNT_NOCLUSTERW) == 0) { 965 bp->b_flags |= B_CLUSTEROK; 966 cluster_write(vp, bp, ip->i_size, seqcount, 967 GB_UNMAPPED); 968 } else { 969 bawrite(bp); 970 } 971 } else if (ioflag & IO_DIRECT) { 972 bp->b_flags |= B_CLUSTEROK; 973 bawrite(bp); 974 } else { 975 bp->b_flags |= B_CLUSTEROK; 976 bdwrite(bp); 977 } 978 if (error || xfersize == 0) 979 break; 980 UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_UPDATE); 981 } 982 /* 983 * If we successfully wrote any data, and we are not the superuser 984 * we clear the setuid and setgid bits as a precaution against 985 * tampering. 986 */ 987 if ((ip->i_mode & (ISUID | ISGID)) && resid > uio->uio_resid && 988 ap->a_cred) { 989 if (priv_check_cred(ap->a_cred, PRIV_VFS_RETAINSUGID)) { 990 vn_seqc_write_begin(vp); 991 UFS_INODE_SET_MODE(ip, ip->i_mode & ~(ISUID | ISGID)); 992 DIP_SET(ip, i_mode, ip->i_mode); 993 vn_seqc_write_end(vp); 994 } 995 } 996 if (error) { 997 if (ioflag & IO_UNIT) { 998 (void)ffs_truncate(vp, osize, 999 IO_NORMAL | (ioflag & IO_SYNC), ap->a_cred); 1000 uio->uio_offset -= resid - uio->uio_resid; 1001 uio->uio_resid = resid; 1002 } 1003 } else if (resid > uio->uio_resid && (ioflag & IO_SYNC)) { 1004 if (!(ioflag & IO_DATASYNC) || 1005 (ip->i_flags & (IN_SIZEMOD | IN_IBLKDATA))) 1006 error = ffs_update(vp, 1); 1007 if (ffs_fsfail_cleanup(VFSTOUFS(vp->v_mount), error)) 1008 error = ENXIO; 1009 } 1010 return (error); 1011 } 1012 1013 /* 1014 * Extended attribute area reading. 1015 */ 1016 static int 1017 ffs_extread(struct vnode *vp, struct uio *uio, int ioflag) 1018 { 1019 struct inode *ip; 1020 struct ufs2_dinode *dp; 1021 struct fs *fs; 1022 struct buf *bp; 1023 ufs_lbn_t lbn, nextlbn; 1024 off_t bytesinfile; 1025 long size, xfersize, blkoffset; 1026 ssize_t orig_resid; 1027 int error; 1028 1029 ip = VTOI(vp); 1030 fs = ITOFS(ip); 1031 dp = ip->i_din2; 1032 1033 #ifdef INVARIANTS 1034 if (uio->uio_rw != UIO_READ || fs->fs_magic != FS_UFS2_MAGIC) 1035 panic("ffs_extread: mode"); 1036 1037 #endif 1038 orig_resid = uio->uio_resid; 1039 KASSERT(orig_resid >= 0, ("ffs_extread: uio->uio_resid < 0")); 1040 if (orig_resid == 0) 1041 return (0); 1042 KASSERT(uio->uio_offset >= 0, ("ffs_extread: uio->uio_offset < 0")); 1043 1044 for (error = 0, bp = NULL; uio->uio_resid > 0; bp = NULL) { 1045 if ((bytesinfile = dp->di_extsize - uio->uio_offset) <= 0) 1046 break; 1047 lbn = lblkno(fs, uio->uio_offset); 1048 nextlbn = lbn + 1; 1049 1050 /* 1051 * size of buffer. The buffer representing the 1052 * end of the file is rounded up to the size of 1053 * the block type ( fragment or full block, 1054 * depending ). 1055 */ 1056 size = sblksize(fs, dp->di_extsize, lbn); 1057 blkoffset = blkoff(fs, uio->uio_offset); 1058 1059 /* 1060 * The amount we want to transfer in this iteration is 1061 * one FS block less the amount of the data before 1062 * our startpoint (duh!) 1063 */ 1064 xfersize = fs->fs_bsize - blkoffset; 1065 1066 /* 1067 * But if we actually want less than the block, 1068 * or the file doesn't have a whole block more of data, 1069 * then use the lesser number. 1070 */ 1071 if (uio->uio_resid < xfersize) 1072 xfersize = uio->uio_resid; 1073 if (bytesinfile < xfersize) 1074 xfersize = bytesinfile; 1075 1076 if (lblktosize(fs, nextlbn) >= dp->di_extsize) { 1077 /* 1078 * Don't do readahead if this is the end of the info. 1079 */ 1080 error = bread(vp, -1 - lbn, size, NOCRED, &bp); 1081 } else { 1082 /* 1083 * If we have a second block, then 1084 * fire off a request for a readahead 1085 * as well as a read. Note that the 4th and 5th 1086 * arguments point to arrays of the size specified in 1087 * the 6th argument. 1088 */ 1089 u_int nextsize = sblksize(fs, dp->di_extsize, nextlbn); 1090 1091 nextlbn = -1 - nextlbn; 1092 error = breadn(vp, -1 - lbn, 1093 size, &nextlbn, &nextsize, 1, NOCRED, &bp); 1094 } 1095 if (error) { 1096 brelse(bp); 1097 bp = NULL; 1098 break; 1099 } 1100 1101 /* 1102 * We should only get non-zero b_resid when an I/O error 1103 * has occurred, which should cause us to break above. 1104 * However, if the short read did not cause an error, 1105 * then we want to ensure that we do not uiomove bad 1106 * or uninitialized data. 1107 */ 1108 size -= bp->b_resid; 1109 if (size < xfersize) { 1110 if (size == 0) 1111 break; 1112 xfersize = size; 1113 } 1114 1115 error = uiomove((char *)bp->b_data + blkoffset, 1116 (int)xfersize, uio); 1117 if (error) 1118 break; 1119 vfs_bio_brelse(bp, ioflag); 1120 } 1121 1122 /* 1123 * This can only happen in the case of an error 1124 * because the loop above resets bp to NULL on each iteration 1125 * and on normal completion has not set a new value into it. 1126 * so it must have come from a 'break' statement 1127 */ 1128 if (bp != NULL) 1129 vfs_bio_brelse(bp, ioflag); 1130 return (error); 1131 } 1132 1133 /* 1134 * Extended attribute area writing. 1135 */ 1136 static int 1137 ffs_extwrite(struct vnode *vp, struct uio *uio, int ioflag, struct ucred *ucred) 1138 { 1139 struct inode *ip; 1140 struct ufs2_dinode *dp; 1141 struct fs *fs; 1142 struct buf *bp; 1143 ufs_lbn_t lbn; 1144 off_t osize; 1145 ssize_t resid; 1146 int blkoffset, error, flags, size, xfersize; 1147 1148 ip = VTOI(vp); 1149 fs = ITOFS(ip); 1150 dp = ip->i_din2; 1151 1152 #ifdef INVARIANTS 1153 if (uio->uio_rw != UIO_WRITE || fs->fs_magic != FS_UFS2_MAGIC) 1154 panic("ffs_extwrite: mode"); 1155 #endif 1156 1157 if (ioflag & IO_APPEND) 1158 uio->uio_offset = dp->di_extsize; 1159 KASSERT(uio->uio_offset >= 0, ("ffs_extwrite: uio->uio_offset < 0")); 1160 KASSERT(uio->uio_resid >= 0, ("ffs_extwrite: uio->uio_resid < 0")); 1161 if ((uoff_t)uio->uio_offset + uio->uio_resid > 1162 UFS_NXADDR * fs->fs_bsize) 1163 return (EFBIG); 1164 1165 resid = uio->uio_resid; 1166 osize = dp->di_extsize; 1167 flags = IO_EXT; 1168 if (ioflag & IO_SYNC) 1169 flags |= IO_SYNC; 1170 1171 for (error = 0; uio->uio_resid > 0;) { 1172 lbn = lblkno(fs, uio->uio_offset); 1173 blkoffset = blkoff(fs, uio->uio_offset); 1174 xfersize = fs->fs_bsize - blkoffset; 1175 if (uio->uio_resid < xfersize) 1176 xfersize = uio->uio_resid; 1177 1178 /* 1179 * We must perform a read-before-write if the transfer size 1180 * does not cover the entire buffer. 1181 */ 1182 if (fs->fs_bsize > xfersize) 1183 flags |= BA_CLRBUF; 1184 else 1185 flags &= ~BA_CLRBUF; 1186 error = UFS_BALLOC(vp, uio->uio_offset, xfersize, 1187 ucred, flags, &bp); 1188 if (error != 0) 1189 break; 1190 /* 1191 * If the buffer is not valid we have to clear out any 1192 * garbage data from the pages instantiated for the buffer. 1193 * If we do not, a failed uiomove() during a write can leave 1194 * the prior contents of the pages exposed to a userland 1195 * mmap(). XXX deal with uiomove() errors a better way. 1196 */ 1197 if ((bp->b_flags & B_CACHE) == 0 && fs->fs_bsize <= xfersize) 1198 vfs_bio_clrbuf(bp); 1199 1200 if (uio->uio_offset + xfersize > dp->di_extsize) { 1201 dp->di_extsize = uio->uio_offset + xfersize; 1202 UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE); 1203 } 1204 1205 size = sblksize(fs, dp->di_extsize, lbn) - bp->b_resid; 1206 if (size < xfersize) 1207 xfersize = size; 1208 1209 error = 1210 uiomove((char *)bp->b_data + blkoffset, (int)xfersize, uio); 1211 1212 vfs_bio_set_flags(bp, ioflag); 1213 1214 /* 1215 * If IO_SYNC each buffer is written synchronously. Otherwise 1216 * if we have a severe page deficiency write the buffer 1217 * asynchronously. Otherwise try to cluster, and if that 1218 * doesn't do it then either do an async write (if O_DIRECT), 1219 * or a delayed write (if not). 1220 */ 1221 if (ioflag & IO_SYNC) { 1222 (void)bwrite(bp); 1223 } else if (vm_page_count_severe() || 1224 buf_dirty_count_severe() || 1225 xfersize + blkoffset == fs->fs_bsize || 1226 (ioflag & (IO_ASYNC | IO_DIRECT))) 1227 bawrite(bp); 1228 else 1229 bdwrite(bp); 1230 if (error || xfersize == 0) 1231 break; 1232 UFS_INODE_SET_FLAG(ip, IN_CHANGE); 1233 } 1234 /* 1235 * If we successfully wrote any data, and we are not the superuser 1236 * we clear the setuid and setgid bits as a precaution against 1237 * tampering. 1238 */ 1239 if ((ip->i_mode & (ISUID | ISGID)) && resid > uio->uio_resid && ucred) { 1240 if (priv_check_cred(ucred, PRIV_VFS_RETAINSUGID)) { 1241 vn_seqc_write_begin(vp); 1242 UFS_INODE_SET_MODE(ip, ip->i_mode & ~(ISUID | ISGID)); 1243 dp->di_mode = ip->i_mode; 1244 vn_seqc_write_end(vp); 1245 } 1246 } 1247 if (error) { 1248 if (ioflag & IO_UNIT) { 1249 (void)ffs_truncate(vp, osize, 1250 IO_EXT | (ioflag&IO_SYNC), ucred); 1251 uio->uio_offset -= resid - uio->uio_resid; 1252 uio->uio_resid = resid; 1253 } 1254 } else if (resid > uio->uio_resid && (ioflag & IO_SYNC)) 1255 error = ffs_update(vp, 1); 1256 return (error); 1257 } 1258 1259 /* 1260 * Vnode operating to retrieve a named extended attribute. 1261 * 1262 * Locate a particular EA (nspace:name) in the area (ptr:length), and return 1263 * the length of the EA, and possibly the pointer to the entry and to the data. 1264 */ 1265 static int 1266 ffs_findextattr(u_char *ptr, u_int length, int nspace, const char *name, 1267 struct extattr **eapp, u_char **eac) 1268 { 1269 struct extattr *eap, *eaend; 1270 size_t nlen; 1271 1272 nlen = strlen(name); 1273 KASSERT(ALIGNED_TO(ptr, struct extattr), ("unaligned")); 1274 eap = (struct extattr *)ptr; 1275 eaend = (struct extattr *)(ptr + length); 1276 for (; eap < eaend; eap = EXTATTR_NEXT(eap)) { 1277 KASSERT(EXTATTR_NEXT(eap) <= eaend, 1278 ("extattr next %p beyond %p", EXTATTR_NEXT(eap), eaend)); 1279 if (eap->ea_namespace != nspace || eap->ea_namelength != nlen 1280 || memcmp(eap->ea_name, name, nlen) != 0) 1281 continue; 1282 if (eapp != NULL) 1283 *eapp = eap; 1284 if (eac != NULL) 1285 *eac = EXTATTR_CONTENT(eap); 1286 return (EXTATTR_CONTENT_SIZE(eap)); 1287 } 1288 return (-1); 1289 } 1290 1291 static int 1292 ffs_rdextattr(u_char **p, struct vnode *vp, struct thread *td) 1293 { 1294 const struct extattr *eap, *eaend, *eapnext; 1295 struct inode *ip; 1296 struct ufs2_dinode *dp; 1297 struct fs *fs; 1298 struct uio luio; 1299 struct iovec liovec; 1300 u_int easize; 1301 int error; 1302 u_char *eae; 1303 1304 ip = VTOI(vp); 1305 fs = ITOFS(ip); 1306 dp = ip->i_din2; 1307 easize = dp->di_extsize; 1308 if ((uoff_t)easize > UFS_NXADDR * fs->fs_bsize) 1309 return (EFBIG); 1310 1311 eae = malloc(easize, M_TEMP, M_WAITOK); 1312 1313 liovec.iov_base = eae; 1314 liovec.iov_len = easize; 1315 luio.uio_iov = &liovec; 1316 luio.uio_iovcnt = 1; 1317 luio.uio_offset = 0; 1318 luio.uio_resid = easize; 1319 luio.uio_segflg = UIO_SYSSPACE; 1320 luio.uio_rw = UIO_READ; 1321 luio.uio_td = td; 1322 1323 error = ffs_extread(vp, &luio, IO_EXT | IO_SYNC); 1324 if (error) { 1325 free(eae, M_TEMP); 1326 return (error); 1327 } 1328 /* Validate disk xattrfile contents. */ 1329 for (eap = (void *)eae, eaend = (void *)(eae + easize); eap < eaend; 1330 eap = eapnext) { 1331 eapnext = EXTATTR_NEXT(eap); 1332 /* Bogusly short entry or bogusly long entry. */ 1333 if (eap->ea_length < sizeof(*eap) || eapnext > eaend) { 1334 free(eae, M_TEMP); 1335 return (EINTEGRITY); 1336 } 1337 } 1338 *p = eae; 1339 return (0); 1340 } 1341 1342 static void 1343 ffs_lock_ea(struct vnode *vp) 1344 { 1345 struct inode *ip; 1346 1347 ip = VTOI(vp); 1348 VI_LOCK(vp); 1349 while (ip->i_flag & IN_EA_LOCKED) { 1350 UFS_INODE_SET_FLAG(ip, IN_EA_LOCKWAIT); 1351 msleep(&ip->i_ea_refs, &vp->v_interlock, PINOD + 2, "ufs_ea", 1352 0); 1353 } 1354 UFS_INODE_SET_FLAG(ip, IN_EA_LOCKED); 1355 VI_UNLOCK(vp); 1356 } 1357 1358 static void 1359 ffs_unlock_ea(struct vnode *vp) 1360 { 1361 struct inode *ip; 1362 1363 ip = VTOI(vp); 1364 VI_LOCK(vp); 1365 if (ip->i_flag & IN_EA_LOCKWAIT) 1366 wakeup(&ip->i_ea_refs); 1367 ip->i_flag &= ~(IN_EA_LOCKED | IN_EA_LOCKWAIT); 1368 VI_UNLOCK(vp); 1369 } 1370 1371 static int 1372 ffs_open_ea(struct vnode *vp, struct ucred *cred, struct thread *td) 1373 { 1374 struct inode *ip; 1375 struct ufs2_dinode *dp; 1376 int error; 1377 1378 ip = VTOI(vp); 1379 1380 ffs_lock_ea(vp); 1381 if (ip->i_ea_area != NULL) { 1382 ip->i_ea_refs++; 1383 ffs_unlock_ea(vp); 1384 return (0); 1385 } 1386 dp = ip->i_din2; 1387 error = ffs_rdextattr(&ip->i_ea_area, vp, td); 1388 if (error) { 1389 ffs_unlock_ea(vp); 1390 return (error); 1391 } 1392 ip->i_ea_len = dp->di_extsize; 1393 ip->i_ea_error = 0; 1394 ip->i_ea_refs++; 1395 ffs_unlock_ea(vp); 1396 return (0); 1397 } 1398 1399 /* 1400 * Vnode extattr transaction commit/abort 1401 */ 1402 static int 1403 ffs_close_ea(struct vnode *vp, int commit, struct ucred *cred, struct thread *td) 1404 { 1405 struct inode *ip; 1406 struct uio luio; 1407 struct iovec liovec; 1408 int error; 1409 struct ufs2_dinode *dp; 1410 1411 ip = VTOI(vp); 1412 1413 ffs_lock_ea(vp); 1414 if (ip->i_ea_area == NULL) { 1415 ffs_unlock_ea(vp); 1416 return (EINVAL); 1417 } 1418 dp = ip->i_din2; 1419 error = ip->i_ea_error; 1420 if (commit && error == 0) { 1421 ASSERT_VOP_ELOCKED(vp, "ffs_close_ea commit"); 1422 if (cred == NOCRED) 1423 cred = vp->v_mount->mnt_cred; 1424 liovec.iov_base = ip->i_ea_area; 1425 liovec.iov_len = ip->i_ea_len; 1426 luio.uio_iov = &liovec; 1427 luio.uio_iovcnt = 1; 1428 luio.uio_offset = 0; 1429 luio.uio_resid = ip->i_ea_len; 1430 luio.uio_segflg = UIO_SYSSPACE; 1431 luio.uio_rw = UIO_WRITE; 1432 luio.uio_td = td; 1433 /* XXX: I'm not happy about truncating to zero size */ 1434 if (ip->i_ea_len < dp->di_extsize) 1435 error = ffs_truncate(vp, 0, IO_EXT, cred); 1436 error = ffs_extwrite(vp, &luio, IO_EXT | IO_SYNC, cred); 1437 } 1438 if (--ip->i_ea_refs == 0) { 1439 free(ip->i_ea_area, M_TEMP); 1440 ip->i_ea_area = NULL; 1441 ip->i_ea_len = 0; 1442 ip->i_ea_error = 0; 1443 } 1444 ffs_unlock_ea(vp); 1445 return (error); 1446 } 1447 1448 /* 1449 * Vnode extattr strategy routine for fifos. 1450 * 1451 * We need to check for a read or write of the external attributes. 1452 * Otherwise we just fall through and do the usual thing. 1453 */ 1454 static int 1455 ffsext_strategy(struct vop_strategy_args *ap) 1456 /* 1457 struct vop_strategy_args { 1458 struct vnodeop_desc *a_desc; 1459 struct vnode *a_vp; 1460 struct buf *a_bp; 1461 }; 1462 */ 1463 { 1464 struct vnode *vp; 1465 daddr_t lbn; 1466 1467 vp = ap->a_vp; 1468 lbn = ap->a_bp->b_lblkno; 1469 if (I_IS_UFS2(VTOI(vp)) && lbn < 0 && lbn >= -UFS_NXADDR) 1470 return (VOP_STRATEGY_APV(&ufs_vnodeops, ap)); 1471 if (vp->v_type == VFIFO) 1472 return (VOP_STRATEGY_APV(&ufs_fifoops, ap)); 1473 panic("spec nodes went here"); 1474 } 1475 1476 /* 1477 * Vnode extattr transaction commit/abort 1478 */ 1479 static int 1480 ffs_openextattr(struct vop_openextattr_args *ap) 1481 /* 1482 struct vop_openextattr_args { 1483 struct vnodeop_desc *a_desc; 1484 struct vnode *a_vp; 1485 IN struct ucred *a_cred; 1486 IN struct thread *a_td; 1487 }; 1488 */ 1489 { 1490 1491 if (ap->a_vp->v_type == VCHR || ap->a_vp->v_type == VBLK) 1492 return (EOPNOTSUPP); 1493 1494 return (ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td)); 1495 } 1496 1497 /* 1498 * Vnode extattr transaction commit/abort 1499 */ 1500 static int 1501 ffs_closeextattr(struct vop_closeextattr_args *ap) 1502 /* 1503 struct vop_closeextattr_args { 1504 struct vnodeop_desc *a_desc; 1505 struct vnode *a_vp; 1506 int a_commit; 1507 IN struct ucred *a_cred; 1508 IN struct thread *a_td; 1509 }; 1510 */ 1511 { 1512 1513 if (ap->a_vp->v_type == VCHR || ap->a_vp->v_type == VBLK) 1514 return (EOPNOTSUPP); 1515 1516 if (ap->a_commit && (ap->a_vp->v_mount->mnt_flag & MNT_RDONLY)) 1517 return (EROFS); 1518 1519 return (ffs_close_ea(ap->a_vp, ap->a_commit, ap->a_cred, ap->a_td)); 1520 } 1521 1522 /* 1523 * Vnode operation to remove a named attribute. 1524 */ 1525 static int 1526 ffs_deleteextattr(struct vop_deleteextattr_args *ap) 1527 /* 1528 vop_deleteextattr { 1529 IN struct vnode *a_vp; 1530 IN int a_attrnamespace; 1531 IN const char *a_name; 1532 IN struct ucred *a_cred; 1533 IN struct thread *a_td; 1534 }; 1535 */ 1536 { 1537 struct inode *ip; 1538 struct extattr *eap; 1539 uint32_t ul; 1540 int olen, error, i, easize; 1541 u_char *eae; 1542 void *tmp; 1543 1544 ip = VTOI(ap->a_vp); 1545 1546 if (ap->a_vp->v_type == VCHR || ap->a_vp->v_type == VBLK) 1547 return (EOPNOTSUPP); 1548 1549 if (strlen(ap->a_name) == 0) 1550 return (EINVAL); 1551 1552 if (ap->a_vp->v_mount->mnt_flag & MNT_RDONLY) 1553 return (EROFS); 1554 1555 error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace, 1556 ap->a_cred, ap->a_td, VWRITE); 1557 if (error) { 1558 /* 1559 * ffs_lock_ea is not needed there, because the vnode 1560 * must be exclusively locked. 1561 */ 1562 if (ip->i_ea_area != NULL && ip->i_ea_error == 0) 1563 ip->i_ea_error = error; 1564 return (error); 1565 } 1566 1567 error = ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td); 1568 if (error) 1569 return (error); 1570 1571 /* CEM: delete could be done in-place instead */ 1572 eae = malloc(ip->i_ea_len, M_TEMP, M_WAITOK); 1573 bcopy(ip->i_ea_area, eae, ip->i_ea_len); 1574 easize = ip->i_ea_len; 1575 1576 olen = ffs_findextattr(eae, easize, ap->a_attrnamespace, ap->a_name, 1577 &eap, NULL); 1578 if (olen == -1) { 1579 /* delete but nonexistent */ 1580 free(eae, M_TEMP); 1581 ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td); 1582 return (ENOATTR); 1583 } 1584 ul = eap->ea_length; 1585 i = (u_char *)EXTATTR_NEXT(eap) - eae; 1586 bcopy(EXTATTR_NEXT(eap), eap, easize - i); 1587 easize -= ul; 1588 1589 tmp = ip->i_ea_area; 1590 ip->i_ea_area = eae; 1591 ip->i_ea_len = easize; 1592 free(tmp, M_TEMP); 1593 error = ffs_close_ea(ap->a_vp, 1, ap->a_cred, ap->a_td); 1594 return (error); 1595 } 1596 1597 /* 1598 * Vnode operation to retrieve a named extended attribute. 1599 */ 1600 static int 1601 ffs_getextattr(struct vop_getextattr_args *ap) 1602 /* 1603 vop_getextattr { 1604 IN struct vnode *a_vp; 1605 IN int a_attrnamespace; 1606 IN const char *a_name; 1607 INOUT struct uio *a_uio; 1608 OUT size_t *a_size; 1609 IN struct ucred *a_cred; 1610 IN struct thread *a_td; 1611 }; 1612 */ 1613 { 1614 struct inode *ip; 1615 u_char *eae, *p; 1616 unsigned easize; 1617 int error, ealen; 1618 1619 ip = VTOI(ap->a_vp); 1620 1621 if (ap->a_vp->v_type == VCHR || ap->a_vp->v_type == VBLK) 1622 return (EOPNOTSUPP); 1623 1624 error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace, 1625 ap->a_cred, ap->a_td, VREAD); 1626 if (error) 1627 return (error); 1628 1629 error = ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td); 1630 if (error) 1631 return (error); 1632 1633 eae = ip->i_ea_area; 1634 easize = ip->i_ea_len; 1635 1636 ealen = ffs_findextattr(eae, easize, ap->a_attrnamespace, ap->a_name, 1637 NULL, &p); 1638 if (ealen >= 0) { 1639 error = 0; 1640 if (ap->a_size != NULL) 1641 *ap->a_size = ealen; 1642 else if (ap->a_uio != NULL) 1643 error = uiomove(p, ealen, ap->a_uio); 1644 } else 1645 error = ENOATTR; 1646 1647 ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td); 1648 return (error); 1649 } 1650 1651 /* 1652 * Vnode operation to retrieve extended attributes on a vnode. 1653 */ 1654 static int 1655 ffs_listextattr(struct vop_listextattr_args *ap) 1656 /* 1657 vop_listextattr { 1658 IN struct vnode *a_vp; 1659 IN int a_attrnamespace; 1660 INOUT struct uio *a_uio; 1661 OUT size_t *a_size; 1662 IN struct ucred *a_cred; 1663 IN struct thread *a_td; 1664 }; 1665 */ 1666 { 1667 struct inode *ip; 1668 struct extattr *eap, *eaend; 1669 int error, ealen; 1670 1671 ip = VTOI(ap->a_vp); 1672 1673 if (ap->a_vp->v_type == VCHR || ap->a_vp->v_type == VBLK) 1674 return (EOPNOTSUPP); 1675 1676 error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace, 1677 ap->a_cred, ap->a_td, VREAD); 1678 if (error) 1679 return (error); 1680 1681 error = ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td); 1682 if (error) 1683 return (error); 1684 1685 error = 0; 1686 if (ap->a_size != NULL) 1687 *ap->a_size = 0; 1688 1689 KASSERT(ALIGNED_TO(ip->i_ea_area, struct extattr), ("unaligned")); 1690 eap = (struct extattr *)ip->i_ea_area; 1691 eaend = (struct extattr *)(ip->i_ea_area + ip->i_ea_len); 1692 for (; error == 0 && eap < eaend; eap = EXTATTR_NEXT(eap)) { 1693 KASSERT(EXTATTR_NEXT(eap) <= eaend, 1694 ("extattr next %p beyond %p", EXTATTR_NEXT(eap), eaend)); 1695 if (eap->ea_namespace != ap->a_attrnamespace) 1696 continue; 1697 1698 ealen = eap->ea_namelength; 1699 if (ap->a_size != NULL) 1700 *ap->a_size += ealen + 1; 1701 else if (ap->a_uio != NULL) 1702 error = uiomove(&eap->ea_namelength, ealen + 1, 1703 ap->a_uio); 1704 } 1705 1706 ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td); 1707 return (error); 1708 } 1709 1710 /* 1711 * Vnode operation to set a named attribute. 1712 */ 1713 static int 1714 ffs_setextattr(struct vop_setextattr_args *ap) 1715 /* 1716 vop_setextattr { 1717 IN struct vnode *a_vp; 1718 IN int a_attrnamespace; 1719 IN const char *a_name; 1720 INOUT struct uio *a_uio; 1721 IN struct ucred *a_cred; 1722 IN struct thread *a_td; 1723 }; 1724 */ 1725 { 1726 struct inode *ip; 1727 struct fs *fs; 1728 struct extattr *eap; 1729 uint32_t ealength, ul; 1730 ssize_t ealen; 1731 int olen, eapad1, eapad2, error, i, easize; 1732 u_char *eae; 1733 void *tmp; 1734 1735 ip = VTOI(ap->a_vp); 1736 fs = ITOFS(ip); 1737 1738 if (ap->a_vp->v_type == VCHR || ap->a_vp->v_type == VBLK) 1739 return (EOPNOTSUPP); 1740 1741 if (strlen(ap->a_name) == 0) 1742 return (EINVAL); 1743 1744 /* XXX Now unsupported API to delete EAs using NULL uio. */ 1745 if (ap->a_uio == NULL) 1746 return (EOPNOTSUPP); 1747 1748 if (ap->a_vp->v_mount->mnt_flag & MNT_RDONLY) 1749 return (EROFS); 1750 1751 ealen = ap->a_uio->uio_resid; 1752 if (ealen < 0 || ealen > lblktosize(fs, UFS_NXADDR)) 1753 return (EINVAL); 1754 1755 error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace, 1756 ap->a_cred, ap->a_td, VWRITE); 1757 if (error) { 1758 /* 1759 * ffs_lock_ea is not needed there, because the vnode 1760 * must be exclusively locked. 1761 */ 1762 if (ip->i_ea_area != NULL && ip->i_ea_error == 0) 1763 ip->i_ea_error = error; 1764 return (error); 1765 } 1766 1767 error = ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td); 1768 if (error) 1769 return (error); 1770 1771 ealength = sizeof(uint32_t) + 3 + strlen(ap->a_name); 1772 eapad1 = roundup2(ealength, 8) - ealength; 1773 eapad2 = roundup2(ealen, 8) - ealen; 1774 ealength += eapad1 + ealen + eapad2; 1775 1776 /* 1777 * CEM: rewrites of the same size or smaller could be done in-place 1778 * instead. (We don't acquire any fine-grained locks in here either, 1779 * so we could also do bigger writes in-place.) 1780 */ 1781 eae = malloc(ip->i_ea_len + ealength, M_TEMP, M_WAITOK); 1782 bcopy(ip->i_ea_area, eae, ip->i_ea_len); 1783 easize = ip->i_ea_len; 1784 1785 olen = ffs_findextattr(eae, easize, ap->a_attrnamespace, ap->a_name, 1786 &eap, NULL); 1787 if (olen == -1) { 1788 /* new, append at end */ 1789 KASSERT(ALIGNED_TO(eae + easize, struct extattr), 1790 ("unaligned")); 1791 eap = (struct extattr *)(eae + easize); 1792 easize += ealength; 1793 } else { 1794 ul = eap->ea_length; 1795 i = (u_char *)EXTATTR_NEXT(eap) - eae; 1796 if (ul != ealength) { 1797 bcopy(EXTATTR_NEXT(eap), (u_char *)eap + ealength, 1798 easize - i); 1799 easize += (ealength - ul); 1800 } 1801 } 1802 if (easize > lblktosize(fs, UFS_NXADDR)) { 1803 free(eae, M_TEMP); 1804 ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td); 1805 if (ip->i_ea_area != NULL && ip->i_ea_error == 0) 1806 ip->i_ea_error = ENOSPC; 1807 return (ENOSPC); 1808 } 1809 eap->ea_length = ealength; 1810 eap->ea_namespace = ap->a_attrnamespace; 1811 eap->ea_contentpadlen = eapad2; 1812 eap->ea_namelength = strlen(ap->a_name); 1813 memcpy(eap->ea_name, ap->a_name, strlen(ap->a_name)); 1814 bzero(&eap->ea_name[strlen(ap->a_name)], eapad1); 1815 error = uiomove(EXTATTR_CONTENT(eap), ealen, ap->a_uio); 1816 if (error) { 1817 free(eae, M_TEMP); 1818 ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td); 1819 if (ip->i_ea_area != NULL && ip->i_ea_error == 0) 1820 ip->i_ea_error = error; 1821 return (error); 1822 } 1823 bzero((u_char *)EXTATTR_CONTENT(eap) + ealen, eapad2); 1824 1825 tmp = ip->i_ea_area; 1826 ip->i_ea_area = eae; 1827 ip->i_ea_len = easize; 1828 free(tmp, M_TEMP); 1829 error = ffs_close_ea(ap->a_vp, 1, ap->a_cred, ap->a_td); 1830 return (error); 1831 } 1832 1833 /* 1834 * Vnode pointer to File handle 1835 */ 1836 static int 1837 ffs_vptofh(struct vop_vptofh_args *ap) 1838 /* 1839 vop_vptofh { 1840 IN struct vnode *a_vp; 1841 IN struct fid *a_fhp; 1842 }; 1843 */ 1844 { 1845 struct inode *ip; 1846 struct ufid *ufhp; 1847 1848 ip = VTOI(ap->a_vp); 1849 ufhp = (struct ufid *)ap->a_fhp; 1850 ufhp->ufid_len = sizeof(struct ufid); 1851 ufhp->ufid_ino = ip->i_number; 1852 ufhp->ufid_gen = ip->i_gen; 1853 return (0); 1854 } 1855 1856 SYSCTL_DECL(_vfs_ffs); 1857 static int use_buf_pager = 1; 1858 SYSCTL_INT(_vfs_ffs, OID_AUTO, use_buf_pager, CTLFLAG_RWTUN, &use_buf_pager, 0, 1859 "Always use buffer pager instead of bmap"); 1860 1861 static daddr_t 1862 ffs_gbp_getblkno(struct vnode *vp, vm_ooffset_t off) 1863 { 1864 1865 return (lblkno(VFSTOUFS(vp->v_mount)->um_fs, off)); 1866 } 1867 1868 static int 1869 ffs_gbp_getblksz(struct vnode *vp, daddr_t lbn) 1870 { 1871 1872 return (blksize(VFSTOUFS(vp->v_mount)->um_fs, VTOI(vp), lbn)); 1873 } 1874 1875 static int 1876 ffs_getpages(struct vop_getpages_args *ap) 1877 { 1878 struct vnode *vp; 1879 struct ufsmount *um; 1880 1881 vp = ap->a_vp; 1882 um = VFSTOUFS(vp->v_mount); 1883 1884 if (!use_buf_pager && um->um_devvp->v_bufobj.bo_bsize <= PAGE_SIZE) 1885 return (vnode_pager_generic_getpages(vp, ap->a_m, ap->a_count, 1886 ap->a_rbehind, ap->a_rahead, NULL, NULL)); 1887 return (vfs_bio_getpages(vp, ap->a_m, ap->a_count, ap->a_rbehind, 1888 ap->a_rahead, ffs_gbp_getblkno, ffs_gbp_getblksz)); 1889 } 1890 1891 static int 1892 ffs_getpages_async(struct vop_getpages_async_args *ap) 1893 { 1894 struct vnode *vp; 1895 struct ufsmount *um; 1896 bool do_iodone; 1897 int error; 1898 1899 vp = ap->a_vp; 1900 um = VFSTOUFS(vp->v_mount); 1901 do_iodone = true; 1902 1903 if (um->um_devvp->v_bufobj.bo_bsize <= PAGE_SIZE) { 1904 error = vnode_pager_generic_getpages(vp, ap->a_m, ap->a_count, 1905 ap->a_rbehind, ap->a_rahead, ap->a_iodone, ap->a_arg); 1906 if (error == 0) 1907 do_iodone = false; 1908 } else { 1909 error = vfs_bio_getpages(vp, ap->a_m, ap->a_count, 1910 ap->a_rbehind, ap->a_rahead, ffs_gbp_getblkno, 1911 ffs_gbp_getblksz); 1912 } 1913 if (do_iodone && ap->a_iodone != NULL) 1914 ap->a_iodone(ap->a_arg, ap->a_m, ap->a_count, error); 1915 1916 return (error); 1917 } 1918