1 /*- 2 * SPDX-License-Identifier: (BSD-2-Clause-FreeBSD AND BSD-3-Clause) 3 * 4 * Copyright (c) 2002, 2003 Networks Associates Technology, Inc. 5 * All rights reserved. 6 * 7 * This software was developed for the FreeBSD Project by Marshall 8 * Kirk McKusick and Network Associates Laboratories, the Security 9 * Research Division of Network Associates, Inc. under DARPA/SPAWAR 10 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS 11 * research program 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 1. Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * Copyright (c) 1982, 1986, 1989, 1993 35 * The Regents of the University of California. All rights reserved. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 1. Redistributions of source code must retain the above copyright 41 * notice, this list of conditions and the following disclaimer. 42 * 2. Redistributions in binary form must reproduce the above copyright 43 * notice, this list of conditions and the following disclaimer in the 44 * documentation and/or other materials provided with the distribution. 45 * 3. Neither the name of the University nor the names of its contributors 46 * may be used to endorse or promote products derived from this software 47 * without specific prior written permission. 48 * 49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 59 * SUCH DAMAGE. 60 * 61 * from: @(#)ufs_readwrite.c 8.11 (Berkeley) 5/8/95 62 * from: $FreeBSD: .../ufs/ufs_readwrite.c,v 1.96 2002/08/12 09:22:11 phk ... 63 * @(#)ffs_vnops.c 8.15 (Berkeley) 5/14/95 64 */ 65 66 #include <sys/cdefs.h> 67 __FBSDID("$FreeBSD$"); 68 69 #include "opt_directio.h" 70 #include "opt_ffs.h" 71 #include "opt_ufs.h" 72 73 #include <sys/param.h> 74 #include <sys/bio.h> 75 #include <sys/systm.h> 76 #include <sys/buf.h> 77 #include <sys/conf.h> 78 #include <sys/extattr.h> 79 #include <sys/kernel.h> 80 #include <sys/limits.h> 81 #include <sys/malloc.h> 82 #include <sys/mount.h> 83 #include <sys/priv.h> 84 #include <sys/rwlock.h> 85 #include <sys/stat.h> 86 #include <sys/sysctl.h> 87 #include <sys/vmmeter.h> 88 #include <sys/vnode.h> 89 90 #include <vm/vm.h> 91 #include <vm/vm_param.h> 92 #include <vm/vm_extern.h> 93 #include <vm/vm_object.h> 94 #include <vm/vm_page.h> 95 #include <vm/vm_pager.h> 96 #include <vm/vnode_pager.h> 97 98 #include <ufs/ufs/extattr.h> 99 #include <ufs/ufs/quota.h> 100 #include <ufs/ufs/inode.h> 101 #include <ufs/ufs/ufs_extern.h> 102 #include <ufs/ufs/ufsmount.h> 103 #include <ufs/ufs/dir.h> 104 #ifdef UFS_DIRHASH 105 #include <ufs/ufs/dirhash.h> 106 #endif 107 108 #include <ufs/ffs/fs.h> 109 #include <ufs/ffs/ffs_extern.h> 110 111 #define ALIGNED_TO(ptr, s) \ 112 (((uintptr_t)(ptr) & (_Alignof(s) - 1)) == 0) 113 114 #ifdef DIRECTIO 115 extern int ffs_rawread(struct vnode *vp, struct uio *uio, int *workdone); 116 #endif 117 static vop_fdatasync_t ffs_fdatasync; 118 static vop_fsync_t ffs_fsync; 119 static vop_getpages_t ffs_getpages; 120 static vop_getpages_async_t ffs_getpages_async; 121 static vop_lock1_t ffs_lock; 122 #ifdef INVARIANTS 123 static vop_unlock_t ffs_unlock_debug; 124 #endif 125 static vop_read_t ffs_read; 126 static vop_write_t ffs_write; 127 static int ffs_extread(struct vnode *vp, struct uio *uio, int ioflag); 128 static int ffs_extwrite(struct vnode *vp, struct uio *uio, int ioflag, 129 struct ucred *cred); 130 static vop_strategy_t ffsext_strategy; 131 static vop_closeextattr_t ffs_closeextattr; 132 static vop_deleteextattr_t ffs_deleteextattr; 133 static vop_getextattr_t ffs_getextattr; 134 static vop_listextattr_t ffs_listextattr; 135 static vop_openextattr_t ffs_openextattr; 136 static vop_setextattr_t ffs_setextattr; 137 static vop_vptofh_t ffs_vptofh; 138 static vop_vput_pair_t ffs_vput_pair; 139 140 /* Global vfs data structures for ufs. */ 141 struct vop_vector ffs_vnodeops1 = { 142 .vop_default = &ufs_vnodeops, 143 .vop_fsync = ffs_fsync, 144 .vop_fdatasync = ffs_fdatasync, 145 .vop_getpages = ffs_getpages, 146 .vop_getpages_async = ffs_getpages_async, 147 .vop_lock1 = ffs_lock, 148 #ifdef INVARIANTS 149 .vop_unlock = ffs_unlock_debug, 150 #endif 151 .vop_read = ffs_read, 152 .vop_reallocblks = ffs_reallocblks, 153 .vop_write = ffs_write, 154 .vop_vptofh = ffs_vptofh, 155 .vop_vput_pair = ffs_vput_pair, 156 }; 157 VFS_VOP_VECTOR_REGISTER(ffs_vnodeops1); 158 159 struct vop_vector ffs_fifoops1 = { 160 .vop_default = &ufs_fifoops, 161 .vop_fsync = ffs_fsync, 162 .vop_fdatasync = ffs_fdatasync, 163 .vop_lock1 = ffs_lock, 164 #ifdef INVARIANTS 165 .vop_unlock = ffs_unlock_debug, 166 #endif 167 .vop_vptofh = ffs_vptofh, 168 }; 169 VFS_VOP_VECTOR_REGISTER(ffs_fifoops1); 170 171 /* Global vfs data structures for ufs. */ 172 struct vop_vector ffs_vnodeops2 = { 173 .vop_default = &ufs_vnodeops, 174 .vop_fsync = ffs_fsync, 175 .vop_fdatasync = ffs_fdatasync, 176 .vop_getpages = ffs_getpages, 177 .vop_getpages_async = ffs_getpages_async, 178 .vop_lock1 = ffs_lock, 179 #ifdef INVARIANTS 180 .vop_unlock = ffs_unlock_debug, 181 #endif 182 .vop_read = ffs_read, 183 .vop_reallocblks = ffs_reallocblks, 184 .vop_write = ffs_write, 185 .vop_closeextattr = ffs_closeextattr, 186 .vop_deleteextattr = ffs_deleteextattr, 187 .vop_getextattr = ffs_getextattr, 188 .vop_listextattr = ffs_listextattr, 189 .vop_openextattr = ffs_openextattr, 190 .vop_setextattr = ffs_setextattr, 191 .vop_vptofh = ffs_vptofh, 192 .vop_vput_pair = ffs_vput_pair, 193 }; 194 VFS_VOP_VECTOR_REGISTER(ffs_vnodeops2); 195 196 struct vop_vector ffs_fifoops2 = { 197 .vop_default = &ufs_fifoops, 198 .vop_fsync = ffs_fsync, 199 .vop_fdatasync = ffs_fdatasync, 200 .vop_lock1 = ffs_lock, 201 #ifdef INVARIANTS 202 .vop_unlock = ffs_unlock_debug, 203 #endif 204 .vop_reallocblks = ffs_reallocblks, 205 .vop_strategy = ffsext_strategy, 206 .vop_closeextattr = ffs_closeextattr, 207 .vop_deleteextattr = ffs_deleteextattr, 208 .vop_getextattr = ffs_getextattr, 209 .vop_listextattr = ffs_listextattr, 210 .vop_openextattr = ffs_openextattr, 211 .vop_setextattr = ffs_setextattr, 212 .vop_vptofh = ffs_vptofh, 213 }; 214 VFS_VOP_VECTOR_REGISTER(ffs_fifoops2); 215 216 /* 217 * Synch an open file. 218 */ 219 /* ARGSUSED */ 220 static int 221 ffs_fsync(struct vop_fsync_args *ap) 222 { 223 struct vnode *vp; 224 struct bufobj *bo; 225 int error; 226 227 vp = ap->a_vp; 228 bo = &vp->v_bufobj; 229 retry: 230 error = ffs_syncvnode(vp, ap->a_waitfor, 0); 231 if (error) 232 return (error); 233 if (ap->a_waitfor == MNT_WAIT && DOINGSOFTDEP(vp)) { 234 error = softdep_fsync(vp); 235 if (error) 236 return (error); 237 238 /* 239 * The softdep_fsync() function may drop vp lock, 240 * allowing for dirty buffers to reappear on the 241 * bo_dirty list. Recheck and resync as needed. 242 */ 243 BO_LOCK(bo); 244 if ((vp->v_type == VREG || vp->v_type == VDIR) && 245 (bo->bo_numoutput > 0 || bo->bo_dirty.bv_cnt > 0)) { 246 BO_UNLOCK(bo); 247 goto retry; 248 } 249 BO_UNLOCK(bo); 250 } 251 if (ffs_fsfail_cleanup(VFSTOUFS(vp->v_mount), 0)) 252 return (ENXIO); 253 return (0); 254 } 255 256 int 257 ffs_syncvnode(struct vnode *vp, int waitfor, int flags) 258 { 259 struct inode *ip; 260 struct bufobj *bo; 261 struct ufsmount *ump; 262 struct buf *bp, *nbp; 263 ufs_lbn_t lbn; 264 int error, passes, wflag; 265 bool still_dirty, unlocked, wait; 266 267 ip = VTOI(vp); 268 bo = &vp->v_bufobj; 269 ump = VFSTOUFS(vp->v_mount); 270 #ifdef WITNESS 271 wflag = IS_SNAPSHOT(ip) ? LK_NOWITNESS : 0; 272 #else 273 wflag = 0; 274 #endif 275 276 /* 277 * When doing MNT_WAIT we must first flush all dependencies 278 * on the inode. 279 */ 280 if (DOINGSOFTDEP(vp) && waitfor == MNT_WAIT && 281 (error = softdep_sync_metadata(vp)) != 0) { 282 if (ffs_fsfail_cleanup(ump, error)) 283 error = 0; 284 return (error); 285 } 286 287 /* 288 * Flush all dirty buffers associated with a vnode. 289 */ 290 error = 0; 291 passes = 0; 292 wait = false; /* Always do an async pass first. */ 293 unlocked = false; 294 lbn = lblkno(ITOFS(ip), (ip->i_size + ITOFS(ip)->fs_bsize - 1)); 295 BO_LOCK(bo); 296 loop: 297 TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) 298 bp->b_vflags &= ~BV_SCANNED; 299 TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) { 300 /* 301 * Reasons to skip this buffer: it has already been considered 302 * on this pass, the buffer has dependencies that will cause 303 * it to be redirtied and it has not already been deferred, 304 * or it is already being written. 305 */ 306 if ((bp->b_vflags & BV_SCANNED) != 0) 307 continue; 308 bp->b_vflags |= BV_SCANNED; 309 /* 310 * Flush indirects in order, if requested. 311 * 312 * Note that if only datasync is requested, we can 313 * skip indirect blocks when softupdates are not 314 * active. Otherwise we must flush them with data, 315 * since dependencies prevent data block writes. 316 */ 317 if (waitfor == MNT_WAIT && bp->b_lblkno <= -UFS_NDADDR && 318 (lbn_level(bp->b_lblkno) >= passes || 319 ((flags & DATA_ONLY) != 0 && !DOINGSOFTDEP(vp)))) 320 continue; 321 if (bp->b_lblkno > lbn) 322 panic("ffs_syncvnode: syncing truncated data."); 323 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) == 0) { 324 BO_UNLOCK(bo); 325 } else if (wait) { 326 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL | 327 LK_INTERLOCK | wflag, BO_LOCKPTR(bo)) != 0) { 328 BO_LOCK(bo); 329 bp->b_vflags &= ~BV_SCANNED; 330 goto next_locked; 331 } 332 } else 333 continue; 334 if ((bp->b_flags & B_DELWRI) == 0) 335 panic("ffs_fsync: not dirty"); 336 /* 337 * Check for dependencies and potentially complete them. 338 */ 339 if (!LIST_EMPTY(&bp->b_dep) && 340 (error = softdep_sync_buf(vp, bp, 341 wait ? MNT_WAIT : MNT_NOWAIT)) != 0) { 342 /* 343 * Lock order conflict, buffer was already unlocked, 344 * and vnode possibly unlocked. 345 */ 346 if (error == ERELOOKUP) { 347 if (vp->v_data == NULL) 348 return (EBADF); 349 unlocked = true; 350 if (DOINGSOFTDEP(vp) && waitfor == MNT_WAIT && 351 (error = softdep_sync_metadata(vp)) != 0) { 352 if (ffs_fsfail_cleanup(ump, error)) 353 error = 0; 354 return (unlocked && error == 0 ? 355 ERELOOKUP : error); 356 } 357 /* Re-evaluate inode size */ 358 lbn = lblkno(ITOFS(ip), (ip->i_size + 359 ITOFS(ip)->fs_bsize - 1)); 360 goto next; 361 } 362 /* I/O error. */ 363 if (error != EBUSY) { 364 BUF_UNLOCK(bp); 365 return (error); 366 } 367 /* If we deferred once, don't defer again. */ 368 if ((bp->b_flags & B_DEFERRED) == 0) { 369 bp->b_flags |= B_DEFERRED; 370 BUF_UNLOCK(bp); 371 goto next; 372 } 373 } 374 if (wait) { 375 bremfree(bp); 376 error = bwrite(bp); 377 if (ffs_fsfail_cleanup(ump, error)) 378 error = 0; 379 if (error != 0) 380 return (error); 381 } else if ((bp->b_flags & B_CLUSTEROK)) { 382 (void) vfs_bio_awrite(bp); 383 } else { 384 bremfree(bp); 385 (void) bawrite(bp); 386 } 387 next: 388 /* 389 * Since we may have slept during the I/O, we need 390 * to start from a known point. 391 */ 392 BO_LOCK(bo); 393 next_locked: 394 nbp = TAILQ_FIRST(&bo->bo_dirty.bv_hd); 395 } 396 if (waitfor != MNT_WAIT) { 397 BO_UNLOCK(bo); 398 if ((flags & NO_INO_UPDT) != 0) 399 return (unlocked ? ERELOOKUP : 0); 400 error = ffs_update(vp, 0); 401 if (error == 0 && unlocked) 402 error = ERELOOKUP; 403 return (error); 404 } 405 /* Drain IO to see if we're done. */ 406 bufobj_wwait(bo, 0, 0); 407 /* 408 * Block devices associated with filesystems may have new I/O 409 * requests posted for them even if the vnode is locked, so no 410 * amount of trying will get them clean. We make several passes 411 * as a best effort. 412 * 413 * Regular files may need multiple passes to flush all dependency 414 * work as it is possible that we must write once per indirect 415 * level, once for the leaf, and once for the inode and each of 416 * these will be done with one sync and one async pass. 417 */ 418 if (bo->bo_dirty.bv_cnt > 0) { 419 if ((flags & DATA_ONLY) == 0) { 420 still_dirty = true; 421 } else { 422 /* 423 * For data-only sync, dirty indirect buffers 424 * are ignored. 425 */ 426 still_dirty = false; 427 TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) { 428 if (bp->b_lblkno > -UFS_NDADDR) { 429 still_dirty = true; 430 break; 431 } 432 } 433 } 434 435 if (still_dirty) { 436 /* Write the inode after sync passes to flush deps. */ 437 if (wait && DOINGSOFTDEP(vp) && 438 (flags & NO_INO_UPDT) == 0) { 439 BO_UNLOCK(bo); 440 ffs_update(vp, 1); 441 BO_LOCK(bo); 442 } 443 /* switch between sync/async. */ 444 wait = !wait; 445 if (wait || ++passes < UFS_NIADDR + 2) 446 goto loop; 447 } 448 } 449 BO_UNLOCK(bo); 450 error = 0; 451 if ((flags & DATA_ONLY) == 0) { 452 if ((flags & NO_INO_UPDT) == 0) 453 error = ffs_update(vp, 1); 454 if (DOINGSUJ(vp)) 455 softdep_journal_fsync(VTOI(vp)); 456 } else if ((ip->i_flags & (IN_SIZEMOD | IN_IBLKDATA)) != 0) { 457 error = ffs_update(vp, 1); 458 } 459 if (error == 0 && unlocked) 460 error = ERELOOKUP; 461 if (error == 0) 462 ip->i_flag &= ~IN_NEEDSYNC; 463 return (error); 464 } 465 466 static int 467 ffs_fdatasync(struct vop_fdatasync_args *ap) 468 { 469 470 return (ffs_syncvnode(ap->a_vp, MNT_WAIT, DATA_ONLY)); 471 } 472 473 static int 474 ffs_lock(ap) 475 struct vop_lock1_args /* { 476 struct vnode *a_vp; 477 int a_flags; 478 char *file; 479 int line; 480 } */ *ap; 481 { 482 #if !defined(NO_FFS_SNAPSHOT) || defined(DIAGNOSTIC) 483 struct vnode *vp = ap->a_vp; 484 #endif /* !NO_FFS_SNAPSHOT || DIAGNOSTIC */ 485 #ifdef DIAGNOSTIC 486 struct inode *ip; 487 #endif /* DIAGNOSTIC */ 488 int result; 489 #ifndef NO_FFS_SNAPSHOT 490 int flags; 491 struct lock *lkp; 492 493 /* 494 * Adaptive spinning mixed with SU leads to trouble. use a giant hammer 495 * and only use it when LK_NODDLKTREAT is set. Currently this means it 496 * is only used during path lookup. 497 */ 498 if ((ap->a_flags & LK_NODDLKTREAT) != 0) 499 ap->a_flags |= LK_ADAPTIVE; 500 switch (ap->a_flags & LK_TYPE_MASK) { 501 case LK_SHARED: 502 case LK_UPGRADE: 503 case LK_EXCLUSIVE: 504 flags = ap->a_flags; 505 for (;;) { 506 #ifdef DEBUG_VFS_LOCKS 507 VNPASS(vp->v_holdcnt != 0, vp); 508 #endif /* DEBUG_VFS_LOCKS */ 509 lkp = vp->v_vnlock; 510 result = lockmgr_lock_flags(lkp, flags, 511 &VI_MTX(vp)->lock_object, ap->a_file, ap->a_line); 512 if (lkp == vp->v_vnlock || result != 0) 513 break; 514 /* 515 * Apparent success, except that the vnode 516 * mutated between snapshot file vnode and 517 * regular file vnode while this process 518 * slept. The lock currently held is not the 519 * right lock. Release it, and try to get the 520 * new lock. 521 */ 522 lockmgr_unlock(lkp); 523 if ((flags & (LK_INTERLOCK | LK_NOWAIT)) == 524 (LK_INTERLOCK | LK_NOWAIT)) 525 return (EBUSY); 526 if ((flags & LK_TYPE_MASK) == LK_UPGRADE) 527 flags = (flags & ~LK_TYPE_MASK) | LK_EXCLUSIVE; 528 flags &= ~LK_INTERLOCK; 529 } 530 #ifdef DIAGNOSTIC 531 switch (ap->a_flags & LK_TYPE_MASK) { 532 case LK_UPGRADE: 533 case LK_EXCLUSIVE: 534 if (result == 0 && vp->v_vnlock->lk_recurse == 0) { 535 ip = VTOI(vp); 536 if (ip != NULL) 537 ip->i_lock_gen++; 538 } 539 } 540 #endif /* DIAGNOSTIC */ 541 break; 542 default: 543 #ifdef DIAGNOSTIC 544 if ((ap->a_flags & LK_TYPE_MASK) == LK_DOWNGRADE) { 545 ip = VTOI(vp); 546 if (ip != NULL) 547 ufs_unlock_tracker(ip); 548 } 549 #endif /* DIAGNOSTIC */ 550 result = VOP_LOCK1_APV(&ufs_vnodeops, ap); 551 break; 552 } 553 #else /* NO_FFS_SNAPSHOT */ 554 /* 555 * See above for an explanation. 556 */ 557 if ((ap->a_flags & LK_NODDLKTREAT) != 0) 558 ap->a_flags |= LK_ADAPTIVE; 559 #ifdef DIAGNOSTIC 560 if ((ap->a_flags & LK_TYPE_MASK) == LK_DOWNGRADE) { 561 ip = VTOI(vp); 562 if (ip != NULL) 563 ufs_unlock_tracker(ip); 564 } 565 #endif /* DIAGNOSTIC */ 566 result = VOP_LOCK1_APV(&ufs_vnodeops, ap); 567 #endif /* NO_FFS_SNAPSHOT */ 568 #ifdef DIAGNOSTIC 569 switch (ap->a_flags & LK_TYPE_MASK) { 570 case LK_UPGRADE: 571 case LK_EXCLUSIVE: 572 if (result == 0 && vp->v_vnlock->lk_recurse == 0) { 573 ip = VTOI(vp); 574 if (ip != NULL) 575 ip->i_lock_gen++; 576 } 577 } 578 #endif /* DIAGNOSTIC */ 579 return (result); 580 } 581 582 #ifdef INVARIANTS 583 static int 584 ffs_unlock_debug(struct vop_unlock_args *ap) 585 { 586 struct vnode *vp; 587 struct inode *ip; 588 589 vp = ap->a_vp; 590 ip = VTOI(vp); 591 if (ip->i_flag & UFS_INODE_FLAG_LAZY_MASK_ASSERTABLE) { 592 if ((vp->v_mflag & VMP_LAZYLIST) == 0) { 593 VI_LOCK(vp); 594 VNASSERT((vp->v_mflag & VMP_LAZYLIST), vp, 595 ("%s: modified vnode (%x) not on lazy list", 596 __func__, ip->i_flag)); 597 VI_UNLOCK(vp); 598 } 599 } 600 KASSERT(vp->v_type != VDIR || vp->v_vnlock->lk_recurse != 0 || 601 (ip->i_flag & IN_ENDOFF) == 0, 602 ("ufs dir vp %p ip %p flags %#x", vp, ip, ip->i_flag)); 603 #ifdef DIAGNOSTIC 604 if (VOP_ISLOCKED(vp) == LK_EXCLUSIVE && ip != NULL && 605 vp->v_vnlock->lk_recurse == 0) 606 ufs_unlock_tracker(ip); 607 #endif 608 return (VOP_UNLOCK_APV(&ufs_vnodeops, ap)); 609 } 610 #endif 611 612 static int 613 ffs_read_hole(struct uio *uio, long xfersize, long *size) 614 { 615 ssize_t saved_resid, tlen; 616 int error; 617 618 while (xfersize > 0) { 619 tlen = min(xfersize, ZERO_REGION_SIZE); 620 saved_resid = uio->uio_resid; 621 error = vn_io_fault_uiomove(__DECONST(void *, zero_region), 622 tlen, uio); 623 if (error != 0) 624 return (error); 625 tlen = saved_resid - uio->uio_resid; 626 xfersize -= tlen; 627 *size -= tlen; 628 } 629 return (0); 630 } 631 632 /* 633 * Vnode op for reading. 634 */ 635 static int 636 ffs_read(ap) 637 struct vop_read_args /* { 638 struct vnode *a_vp; 639 struct uio *a_uio; 640 int a_ioflag; 641 struct ucred *a_cred; 642 } */ *ap; 643 { 644 struct vnode *vp; 645 struct inode *ip; 646 struct uio *uio; 647 struct fs *fs; 648 struct buf *bp; 649 ufs_lbn_t lbn, nextlbn; 650 off_t bytesinfile; 651 long size, xfersize, blkoffset; 652 ssize_t orig_resid; 653 int bflag, error, ioflag, seqcount; 654 655 vp = ap->a_vp; 656 uio = ap->a_uio; 657 ioflag = ap->a_ioflag; 658 if (ap->a_ioflag & IO_EXT) 659 #ifdef notyet 660 return (ffs_extread(vp, uio, ioflag)); 661 #else 662 panic("ffs_read+IO_EXT"); 663 #endif 664 #ifdef DIRECTIO 665 if ((ioflag & IO_DIRECT) != 0) { 666 int workdone; 667 668 error = ffs_rawread(vp, uio, &workdone); 669 if (error != 0 || workdone != 0) 670 return error; 671 } 672 #endif 673 674 seqcount = ap->a_ioflag >> IO_SEQSHIFT; 675 ip = VTOI(vp); 676 677 #ifdef INVARIANTS 678 if (uio->uio_rw != UIO_READ) 679 panic("ffs_read: mode"); 680 681 if (vp->v_type == VLNK) { 682 if ((int)ip->i_size < VFSTOUFS(vp->v_mount)->um_maxsymlinklen) 683 panic("ffs_read: short symlink"); 684 } else if (vp->v_type != VREG && vp->v_type != VDIR) 685 panic("ffs_read: type %d", vp->v_type); 686 #endif 687 orig_resid = uio->uio_resid; 688 KASSERT(orig_resid >= 0, ("ffs_read: uio->uio_resid < 0")); 689 if (orig_resid == 0) 690 return (0); 691 KASSERT(uio->uio_offset >= 0, ("ffs_read: uio->uio_offset < 0")); 692 fs = ITOFS(ip); 693 if (uio->uio_offset < ip->i_size && 694 uio->uio_offset >= fs->fs_maxfilesize) 695 return (EOVERFLOW); 696 697 bflag = GB_UNMAPPED | (uio->uio_segflg == UIO_NOCOPY ? 0 : GB_NOSPARSE); 698 #ifdef WITNESS 699 bflag |= IS_SNAPSHOT(ip) ? GB_NOWITNESS : 0; 700 #endif 701 for (error = 0, bp = NULL; uio->uio_resid > 0; bp = NULL) { 702 if ((bytesinfile = ip->i_size - uio->uio_offset) <= 0) 703 break; 704 lbn = lblkno(fs, uio->uio_offset); 705 nextlbn = lbn + 1; 706 707 /* 708 * size of buffer. The buffer representing the 709 * end of the file is rounded up to the size of 710 * the block type ( fragment or full block, 711 * depending ). 712 */ 713 size = blksize(fs, ip, lbn); 714 blkoffset = blkoff(fs, uio->uio_offset); 715 716 /* 717 * The amount we want to transfer in this iteration is 718 * one FS block less the amount of the data before 719 * our startpoint (duh!) 720 */ 721 xfersize = fs->fs_bsize - blkoffset; 722 723 /* 724 * But if we actually want less than the block, 725 * or the file doesn't have a whole block more of data, 726 * then use the lesser number. 727 */ 728 if (uio->uio_resid < xfersize) 729 xfersize = uio->uio_resid; 730 if (bytesinfile < xfersize) 731 xfersize = bytesinfile; 732 733 if (lblktosize(fs, nextlbn) >= ip->i_size) { 734 /* 735 * Don't do readahead if this is the end of the file. 736 */ 737 error = bread_gb(vp, lbn, size, NOCRED, bflag, &bp); 738 } else if ((vp->v_mount->mnt_flag & MNT_NOCLUSTERR) == 0) { 739 /* 740 * Otherwise if we are allowed to cluster, 741 * grab as much as we can. 742 * 743 * XXX This may not be a win if we are not 744 * doing sequential access. 745 */ 746 error = cluster_read(vp, ip->i_size, lbn, 747 size, NOCRED, blkoffset + uio->uio_resid, 748 seqcount, bflag, &bp); 749 } else if (seqcount > 1) { 750 /* 751 * If we are NOT allowed to cluster, then 752 * if we appear to be acting sequentially, 753 * fire off a request for a readahead 754 * as well as a read. Note that the 4th and 5th 755 * arguments point to arrays of the size specified in 756 * the 6th argument. 757 */ 758 u_int nextsize = blksize(fs, ip, nextlbn); 759 error = breadn_flags(vp, lbn, lbn, size, &nextlbn, 760 &nextsize, 1, NOCRED, bflag, NULL, &bp); 761 } else { 762 /* 763 * Failing all of the above, just read what the 764 * user asked for. Interestingly, the same as 765 * the first option above. 766 */ 767 error = bread_gb(vp, lbn, size, NOCRED, bflag, &bp); 768 } 769 if (error == EJUSTRETURN) { 770 error = ffs_read_hole(uio, xfersize, &size); 771 if (error == 0) 772 continue; 773 } 774 if (error != 0) { 775 brelse(bp); 776 bp = NULL; 777 break; 778 } 779 780 /* 781 * We should only get non-zero b_resid when an I/O error 782 * has occurred, which should cause us to break above. 783 * However, if the short read did not cause an error, 784 * then we want to ensure that we do not uiomove bad 785 * or uninitialized data. 786 */ 787 size -= bp->b_resid; 788 if (size < xfersize) { 789 if (size == 0) 790 break; 791 xfersize = size; 792 } 793 794 if (buf_mapped(bp)) { 795 error = vn_io_fault_uiomove((char *)bp->b_data + 796 blkoffset, (int)xfersize, uio); 797 } else { 798 error = vn_io_fault_pgmove(bp->b_pages, blkoffset, 799 (int)xfersize, uio); 800 } 801 if (error) 802 break; 803 804 vfs_bio_brelse(bp, ioflag); 805 } 806 807 /* 808 * This can only happen in the case of an error 809 * because the loop above resets bp to NULL on each iteration 810 * and on normal completion has not set a new value into it. 811 * so it must have come from a 'break' statement 812 */ 813 if (bp != NULL) 814 vfs_bio_brelse(bp, ioflag); 815 816 if ((error == 0 || uio->uio_resid != orig_resid) && 817 (vp->v_mount->mnt_flag & (MNT_NOATIME | MNT_RDONLY)) == 0) 818 UFS_INODE_SET_FLAG_SHARED(ip, IN_ACCESS); 819 return (error); 820 } 821 822 /* 823 * Vnode op for writing. 824 */ 825 static int 826 ffs_write(ap) 827 struct vop_write_args /* { 828 struct vnode *a_vp; 829 struct uio *a_uio; 830 int a_ioflag; 831 struct ucred *a_cred; 832 } */ *ap; 833 { 834 struct vnode *vp; 835 struct uio *uio; 836 struct inode *ip; 837 struct fs *fs; 838 struct buf *bp; 839 ufs_lbn_t lbn; 840 off_t osize; 841 ssize_t resid; 842 int seqcount; 843 int blkoffset, error, flags, ioflag, size, xfersize; 844 845 vp = ap->a_vp; 846 if (DOINGSUJ(vp)) 847 softdep_prealloc(vp, MNT_WAIT); 848 if (vp->v_data == NULL) 849 return (EBADF); 850 851 uio = ap->a_uio; 852 ioflag = ap->a_ioflag; 853 if (ap->a_ioflag & IO_EXT) 854 #ifdef notyet 855 return (ffs_extwrite(vp, uio, ioflag, ap->a_cred)); 856 #else 857 panic("ffs_write+IO_EXT"); 858 #endif 859 860 seqcount = ap->a_ioflag >> IO_SEQSHIFT; 861 ip = VTOI(vp); 862 863 #ifdef INVARIANTS 864 if (uio->uio_rw != UIO_WRITE) 865 panic("ffs_write: mode"); 866 #endif 867 868 switch (vp->v_type) { 869 case VREG: 870 if (ioflag & IO_APPEND) 871 uio->uio_offset = ip->i_size; 872 if ((ip->i_flags & APPEND) && uio->uio_offset != ip->i_size) 873 return (EPERM); 874 /* FALLTHROUGH */ 875 case VLNK: 876 break; 877 case VDIR: 878 panic("ffs_write: dir write"); 879 break; 880 default: 881 panic("ffs_write: type %p %d (%d,%d)", vp, (int)vp->v_type, 882 (int)uio->uio_offset, 883 (int)uio->uio_resid 884 ); 885 } 886 887 KASSERT(uio->uio_resid >= 0, ("ffs_write: uio->uio_resid < 0")); 888 KASSERT(uio->uio_offset >= 0, ("ffs_write: uio->uio_offset < 0")); 889 fs = ITOFS(ip); 890 if ((uoff_t)uio->uio_offset + uio->uio_resid > fs->fs_maxfilesize) 891 return (EFBIG); 892 /* 893 * Maybe this should be above the vnode op call, but so long as 894 * file servers have no limits, I don't think it matters. 895 */ 896 if (vn_rlimit_fsize(vp, uio, uio->uio_td)) 897 return (EFBIG); 898 899 resid = uio->uio_resid; 900 osize = ip->i_size; 901 if (seqcount > BA_SEQMAX) 902 flags = BA_SEQMAX << BA_SEQSHIFT; 903 else 904 flags = seqcount << BA_SEQSHIFT; 905 if (ioflag & IO_SYNC) 906 flags |= IO_SYNC; 907 flags |= BA_UNMAPPED; 908 909 for (error = 0; uio->uio_resid > 0;) { 910 lbn = lblkno(fs, uio->uio_offset); 911 blkoffset = blkoff(fs, uio->uio_offset); 912 xfersize = fs->fs_bsize - blkoffset; 913 if (uio->uio_resid < xfersize) 914 xfersize = uio->uio_resid; 915 if (uio->uio_offset + xfersize > ip->i_size) 916 vnode_pager_setsize(vp, uio->uio_offset + xfersize); 917 918 /* 919 * We must perform a read-before-write if the transfer size 920 * does not cover the entire buffer. 921 */ 922 if (fs->fs_bsize > xfersize) 923 flags |= BA_CLRBUF; 924 else 925 flags &= ~BA_CLRBUF; 926 /* XXX is uio->uio_offset the right thing here? */ 927 error = UFS_BALLOC(vp, uio->uio_offset, xfersize, 928 ap->a_cred, flags, &bp); 929 if (error != 0) { 930 vnode_pager_setsize(vp, ip->i_size); 931 break; 932 } 933 if ((ioflag & (IO_SYNC|IO_INVAL)) == (IO_SYNC|IO_INVAL)) 934 bp->b_flags |= B_NOCACHE; 935 936 if (uio->uio_offset + xfersize > ip->i_size) { 937 ip->i_size = uio->uio_offset + xfersize; 938 DIP_SET(ip, i_size, ip->i_size); 939 UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE); 940 } 941 942 size = blksize(fs, ip, lbn) - bp->b_resid; 943 if (size < xfersize) 944 xfersize = size; 945 946 if (buf_mapped(bp)) { 947 error = vn_io_fault_uiomove((char *)bp->b_data + 948 blkoffset, (int)xfersize, uio); 949 } else { 950 error = vn_io_fault_pgmove(bp->b_pages, blkoffset, 951 (int)xfersize, uio); 952 } 953 /* 954 * If the buffer is not already filled and we encounter an 955 * error while trying to fill it, we have to clear out any 956 * garbage data from the pages instantiated for the buffer. 957 * If we do not, a failed uiomove() during a write can leave 958 * the prior contents of the pages exposed to a userland mmap. 959 * 960 * Note that we need only clear buffers with a transfer size 961 * equal to the block size because buffers with a shorter 962 * transfer size were cleared above by the call to UFS_BALLOC() 963 * with the BA_CLRBUF flag set. 964 * 965 * If the source region for uiomove identically mmaps the 966 * buffer, uiomove() performed the NOP copy, and the buffer 967 * content remains valid because the page fault handler 968 * validated the pages. 969 */ 970 if (error != 0 && (bp->b_flags & B_CACHE) == 0 && 971 fs->fs_bsize == xfersize) 972 vfs_bio_clrbuf(bp); 973 974 vfs_bio_set_flags(bp, ioflag); 975 976 /* 977 * If IO_SYNC each buffer is written synchronously. Otherwise 978 * if we have a severe page deficiency write the buffer 979 * asynchronously. Otherwise try to cluster, and if that 980 * doesn't do it then either do an async write (if O_DIRECT), 981 * or a delayed write (if not). 982 */ 983 if (ioflag & IO_SYNC) { 984 (void)bwrite(bp); 985 } else if (vm_page_count_severe() || 986 buf_dirty_count_severe() || 987 (ioflag & IO_ASYNC)) { 988 bp->b_flags |= B_CLUSTEROK; 989 bawrite(bp); 990 } else if (xfersize + blkoffset == fs->fs_bsize) { 991 if ((vp->v_mount->mnt_flag & MNT_NOCLUSTERW) == 0) { 992 bp->b_flags |= B_CLUSTEROK; 993 cluster_write(vp, &ip->i_clusterw, bp, 994 ip->i_size, seqcount, GB_UNMAPPED); 995 } else { 996 bawrite(bp); 997 } 998 } else if (ioflag & IO_DIRECT) { 999 bp->b_flags |= B_CLUSTEROK; 1000 bawrite(bp); 1001 } else { 1002 bp->b_flags |= B_CLUSTEROK; 1003 bdwrite(bp); 1004 } 1005 if (error || xfersize == 0) 1006 break; 1007 UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_UPDATE); 1008 } 1009 /* 1010 * If we successfully wrote any data, and we are not the superuser 1011 * we clear the setuid and setgid bits as a precaution against 1012 * tampering. 1013 */ 1014 if ((ip->i_mode & (ISUID | ISGID)) && resid > uio->uio_resid && 1015 ap->a_cred) { 1016 if (priv_check_cred(ap->a_cred, PRIV_VFS_RETAINSUGID)) { 1017 vn_seqc_write_begin(vp); 1018 UFS_INODE_SET_MODE(ip, ip->i_mode & ~(ISUID | ISGID)); 1019 DIP_SET(ip, i_mode, ip->i_mode); 1020 vn_seqc_write_end(vp); 1021 } 1022 } 1023 if (error) { 1024 if (ioflag & IO_UNIT) { 1025 (void)ffs_truncate(vp, osize, 1026 IO_NORMAL | (ioflag & IO_SYNC), ap->a_cred); 1027 uio->uio_offset -= resid - uio->uio_resid; 1028 uio->uio_resid = resid; 1029 } 1030 } else if (resid > uio->uio_resid && (ioflag & IO_SYNC)) { 1031 if (!(ioflag & IO_DATASYNC) || 1032 (ip->i_flags & (IN_SIZEMOD | IN_IBLKDATA))) 1033 error = ffs_update(vp, 1); 1034 if (ffs_fsfail_cleanup(VFSTOUFS(vp->v_mount), error)) 1035 error = ENXIO; 1036 } 1037 return (error); 1038 } 1039 1040 /* 1041 * Extended attribute area reading. 1042 */ 1043 static int 1044 ffs_extread(struct vnode *vp, struct uio *uio, int ioflag) 1045 { 1046 struct inode *ip; 1047 struct ufs2_dinode *dp; 1048 struct fs *fs; 1049 struct buf *bp; 1050 ufs_lbn_t lbn, nextlbn; 1051 off_t bytesinfile; 1052 long size, xfersize, blkoffset; 1053 ssize_t orig_resid; 1054 int error; 1055 1056 ip = VTOI(vp); 1057 fs = ITOFS(ip); 1058 dp = ip->i_din2; 1059 1060 #ifdef INVARIANTS 1061 if (uio->uio_rw != UIO_READ || fs->fs_magic != FS_UFS2_MAGIC) 1062 panic("ffs_extread: mode"); 1063 1064 #endif 1065 orig_resid = uio->uio_resid; 1066 KASSERT(orig_resid >= 0, ("ffs_extread: uio->uio_resid < 0")); 1067 if (orig_resid == 0) 1068 return (0); 1069 KASSERT(uio->uio_offset >= 0, ("ffs_extread: uio->uio_offset < 0")); 1070 1071 for (error = 0, bp = NULL; uio->uio_resid > 0; bp = NULL) { 1072 if ((bytesinfile = dp->di_extsize - uio->uio_offset) <= 0) 1073 break; 1074 lbn = lblkno(fs, uio->uio_offset); 1075 nextlbn = lbn + 1; 1076 1077 /* 1078 * size of buffer. The buffer representing the 1079 * end of the file is rounded up to the size of 1080 * the block type ( fragment or full block, 1081 * depending ). 1082 */ 1083 size = sblksize(fs, dp->di_extsize, lbn); 1084 blkoffset = blkoff(fs, uio->uio_offset); 1085 1086 /* 1087 * The amount we want to transfer in this iteration is 1088 * one FS block less the amount of the data before 1089 * our startpoint (duh!) 1090 */ 1091 xfersize = fs->fs_bsize - blkoffset; 1092 1093 /* 1094 * But if we actually want less than the block, 1095 * or the file doesn't have a whole block more of data, 1096 * then use the lesser number. 1097 */ 1098 if (uio->uio_resid < xfersize) 1099 xfersize = uio->uio_resid; 1100 if (bytesinfile < xfersize) 1101 xfersize = bytesinfile; 1102 1103 if (lblktosize(fs, nextlbn) >= dp->di_extsize) { 1104 /* 1105 * Don't do readahead if this is the end of the info. 1106 */ 1107 error = bread(vp, -1 - lbn, size, NOCRED, &bp); 1108 } else { 1109 /* 1110 * If we have a second block, then 1111 * fire off a request for a readahead 1112 * as well as a read. Note that the 4th and 5th 1113 * arguments point to arrays of the size specified in 1114 * the 6th argument. 1115 */ 1116 u_int nextsize = sblksize(fs, dp->di_extsize, nextlbn); 1117 1118 nextlbn = -1 - nextlbn; 1119 error = breadn(vp, -1 - lbn, 1120 size, &nextlbn, &nextsize, 1, NOCRED, &bp); 1121 } 1122 if (error) { 1123 brelse(bp); 1124 bp = NULL; 1125 break; 1126 } 1127 1128 /* 1129 * We should only get non-zero b_resid when an I/O error 1130 * has occurred, which should cause us to break above. 1131 * However, if the short read did not cause an error, 1132 * then we want to ensure that we do not uiomove bad 1133 * or uninitialized data. 1134 */ 1135 size -= bp->b_resid; 1136 if (size < xfersize) { 1137 if (size == 0) 1138 break; 1139 xfersize = size; 1140 } 1141 1142 error = uiomove((char *)bp->b_data + blkoffset, 1143 (int)xfersize, uio); 1144 if (error) 1145 break; 1146 vfs_bio_brelse(bp, ioflag); 1147 } 1148 1149 /* 1150 * This can only happen in the case of an error 1151 * because the loop above resets bp to NULL on each iteration 1152 * and on normal completion has not set a new value into it. 1153 * so it must have come from a 'break' statement 1154 */ 1155 if (bp != NULL) 1156 vfs_bio_brelse(bp, ioflag); 1157 return (error); 1158 } 1159 1160 /* 1161 * Extended attribute area writing. 1162 */ 1163 static int 1164 ffs_extwrite(struct vnode *vp, struct uio *uio, int ioflag, struct ucred *ucred) 1165 { 1166 struct inode *ip; 1167 struct ufs2_dinode *dp; 1168 struct fs *fs; 1169 struct buf *bp; 1170 ufs_lbn_t lbn; 1171 off_t osize; 1172 ssize_t resid; 1173 int blkoffset, error, flags, size, xfersize; 1174 1175 ip = VTOI(vp); 1176 fs = ITOFS(ip); 1177 dp = ip->i_din2; 1178 1179 #ifdef INVARIANTS 1180 if (uio->uio_rw != UIO_WRITE || fs->fs_magic != FS_UFS2_MAGIC) 1181 panic("ffs_extwrite: mode"); 1182 #endif 1183 1184 if (ioflag & IO_APPEND) 1185 uio->uio_offset = dp->di_extsize; 1186 KASSERT(uio->uio_offset >= 0, ("ffs_extwrite: uio->uio_offset < 0")); 1187 KASSERT(uio->uio_resid >= 0, ("ffs_extwrite: uio->uio_resid < 0")); 1188 if ((uoff_t)uio->uio_offset + uio->uio_resid > 1189 UFS_NXADDR * fs->fs_bsize) 1190 return (EFBIG); 1191 1192 resid = uio->uio_resid; 1193 osize = dp->di_extsize; 1194 flags = IO_EXT; 1195 if (ioflag & IO_SYNC) 1196 flags |= IO_SYNC; 1197 1198 for (error = 0; uio->uio_resid > 0;) { 1199 lbn = lblkno(fs, uio->uio_offset); 1200 blkoffset = blkoff(fs, uio->uio_offset); 1201 xfersize = fs->fs_bsize - blkoffset; 1202 if (uio->uio_resid < xfersize) 1203 xfersize = uio->uio_resid; 1204 1205 /* 1206 * We must perform a read-before-write if the transfer size 1207 * does not cover the entire buffer. 1208 */ 1209 if (fs->fs_bsize > xfersize) 1210 flags |= BA_CLRBUF; 1211 else 1212 flags &= ~BA_CLRBUF; 1213 error = UFS_BALLOC(vp, uio->uio_offset, xfersize, 1214 ucred, flags, &bp); 1215 if (error != 0) 1216 break; 1217 /* 1218 * If the buffer is not valid we have to clear out any 1219 * garbage data from the pages instantiated for the buffer. 1220 * If we do not, a failed uiomove() during a write can leave 1221 * the prior contents of the pages exposed to a userland 1222 * mmap(). XXX deal with uiomove() errors a better way. 1223 */ 1224 if ((bp->b_flags & B_CACHE) == 0 && fs->fs_bsize <= xfersize) 1225 vfs_bio_clrbuf(bp); 1226 1227 if (uio->uio_offset + xfersize > dp->di_extsize) { 1228 dp->di_extsize = uio->uio_offset + xfersize; 1229 UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE); 1230 } 1231 1232 size = sblksize(fs, dp->di_extsize, lbn) - bp->b_resid; 1233 if (size < xfersize) 1234 xfersize = size; 1235 1236 error = 1237 uiomove((char *)bp->b_data + blkoffset, (int)xfersize, uio); 1238 1239 vfs_bio_set_flags(bp, ioflag); 1240 1241 /* 1242 * If IO_SYNC each buffer is written synchronously. Otherwise 1243 * if we have a severe page deficiency write the buffer 1244 * asynchronously. Otherwise try to cluster, and if that 1245 * doesn't do it then either do an async write (if O_DIRECT), 1246 * or a delayed write (if not). 1247 */ 1248 if (ioflag & IO_SYNC) { 1249 (void)bwrite(bp); 1250 } else if (vm_page_count_severe() || 1251 buf_dirty_count_severe() || 1252 xfersize + blkoffset == fs->fs_bsize || 1253 (ioflag & (IO_ASYNC | IO_DIRECT))) 1254 bawrite(bp); 1255 else 1256 bdwrite(bp); 1257 if (error || xfersize == 0) 1258 break; 1259 UFS_INODE_SET_FLAG(ip, IN_CHANGE); 1260 } 1261 /* 1262 * If we successfully wrote any data, and we are not the superuser 1263 * we clear the setuid and setgid bits as a precaution against 1264 * tampering. 1265 */ 1266 if ((ip->i_mode & (ISUID | ISGID)) && resid > uio->uio_resid && ucred) { 1267 if (priv_check_cred(ucred, PRIV_VFS_RETAINSUGID)) { 1268 vn_seqc_write_begin(vp); 1269 UFS_INODE_SET_MODE(ip, ip->i_mode & ~(ISUID | ISGID)); 1270 dp->di_mode = ip->i_mode; 1271 vn_seqc_write_end(vp); 1272 } 1273 } 1274 if (error) { 1275 if (ioflag & IO_UNIT) { 1276 (void)ffs_truncate(vp, osize, 1277 IO_EXT | (ioflag&IO_SYNC), ucred); 1278 uio->uio_offset -= resid - uio->uio_resid; 1279 uio->uio_resid = resid; 1280 } 1281 } else if (resid > uio->uio_resid && (ioflag & IO_SYNC)) 1282 error = ffs_update(vp, 1); 1283 return (error); 1284 } 1285 1286 /* 1287 * Vnode operating to retrieve a named extended attribute. 1288 * 1289 * Locate a particular EA (nspace:name) in the area (ptr:length), and return 1290 * the length of the EA, and possibly the pointer to the entry and to the data. 1291 */ 1292 static int 1293 ffs_findextattr(u_char *ptr, u_int length, int nspace, const char *name, 1294 struct extattr **eapp, u_char **eac) 1295 { 1296 struct extattr *eap, *eaend; 1297 size_t nlen; 1298 1299 nlen = strlen(name); 1300 KASSERT(ALIGNED_TO(ptr, struct extattr), ("unaligned")); 1301 eap = (struct extattr *)ptr; 1302 eaend = (struct extattr *)(ptr + length); 1303 for (; eap < eaend; eap = EXTATTR_NEXT(eap)) { 1304 KASSERT(EXTATTR_NEXT(eap) <= eaend, 1305 ("extattr next %p beyond %p", EXTATTR_NEXT(eap), eaend)); 1306 if (eap->ea_namespace != nspace || eap->ea_namelength != nlen 1307 || memcmp(eap->ea_name, name, nlen) != 0) 1308 continue; 1309 if (eapp != NULL) 1310 *eapp = eap; 1311 if (eac != NULL) 1312 *eac = EXTATTR_CONTENT(eap); 1313 return (EXTATTR_CONTENT_SIZE(eap)); 1314 } 1315 return (-1); 1316 } 1317 1318 static int 1319 ffs_rdextattr(u_char **p, struct vnode *vp, struct thread *td) 1320 { 1321 const struct extattr *eap, *eaend, *eapnext; 1322 struct inode *ip; 1323 struct ufs2_dinode *dp; 1324 struct fs *fs; 1325 struct uio luio; 1326 struct iovec liovec; 1327 u_int easize; 1328 int error; 1329 u_char *eae; 1330 1331 ip = VTOI(vp); 1332 fs = ITOFS(ip); 1333 dp = ip->i_din2; 1334 easize = dp->di_extsize; 1335 if ((uoff_t)easize > UFS_NXADDR * fs->fs_bsize) 1336 return (EFBIG); 1337 1338 eae = malloc(easize, M_TEMP, M_WAITOK); 1339 1340 liovec.iov_base = eae; 1341 liovec.iov_len = easize; 1342 luio.uio_iov = &liovec; 1343 luio.uio_iovcnt = 1; 1344 luio.uio_offset = 0; 1345 luio.uio_resid = easize; 1346 luio.uio_segflg = UIO_SYSSPACE; 1347 luio.uio_rw = UIO_READ; 1348 luio.uio_td = td; 1349 1350 error = ffs_extread(vp, &luio, IO_EXT | IO_SYNC); 1351 if (error) { 1352 free(eae, M_TEMP); 1353 return (error); 1354 } 1355 /* Validate disk xattrfile contents. */ 1356 for (eap = (void *)eae, eaend = (void *)(eae + easize); eap < eaend; 1357 eap = eapnext) { 1358 /* Detect zeroed out tail */ 1359 if (eap->ea_length < sizeof(*eap) || eap->ea_length == 0) { 1360 easize = (const u_char *)eap - eae; 1361 break; 1362 } 1363 1364 eapnext = EXTATTR_NEXT(eap); 1365 /* Bogusly long entry. */ 1366 if (eapnext > eaend) { 1367 free(eae, M_TEMP); 1368 return (EINTEGRITY); 1369 } 1370 } 1371 ip->i_ea_len = easize; 1372 *p = eae; 1373 return (0); 1374 } 1375 1376 static void 1377 ffs_lock_ea(struct vnode *vp) 1378 { 1379 struct inode *ip; 1380 1381 ip = VTOI(vp); 1382 VI_LOCK(vp); 1383 while (ip->i_flag & IN_EA_LOCKED) { 1384 UFS_INODE_SET_FLAG(ip, IN_EA_LOCKWAIT); 1385 msleep(&ip->i_ea_refs, &vp->v_interlock, PINOD + 2, "ufs_ea", 1386 0); 1387 } 1388 UFS_INODE_SET_FLAG(ip, IN_EA_LOCKED); 1389 VI_UNLOCK(vp); 1390 } 1391 1392 static void 1393 ffs_unlock_ea(struct vnode *vp) 1394 { 1395 struct inode *ip; 1396 1397 ip = VTOI(vp); 1398 VI_LOCK(vp); 1399 if (ip->i_flag & IN_EA_LOCKWAIT) 1400 wakeup(&ip->i_ea_refs); 1401 ip->i_flag &= ~(IN_EA_LOCKED | IN_EA_LOCKWAIT); 1402 VI_UNLOCK(vp); 1403 } 1404 1405 static int 1406 ffs_open_ea(struct vnode *vp, struct ucred *cred, struct thread *td) 1407 { 1408 struct inode *ip; 1409 int error; 1410 1411 ip = VTOI(vp); 1412 1413 ffs_lock_ea(vp); 1414 if (ip->i_ea_area != NULL) { 1415 ip->i_ea_refs++; 1416 ffs_unlock_ea(vp); 1417 return (0); 1418 } 1419 error = ffs_rdextattr(&ip->i_ea_area, vp, td); 1420 if (error) { 1421 ffs_unlock_ea(vp); 1422 return (error); 1423 } 1424 ip->i_ea_error = 0; 1425 ip->i_ea_refs++; 1426 ffs_unlock_ea(vp); 1427 return (0); 1428 } 1429 1430 /* 1431 * Vnode extattr transaction commit/abort 1432 */ 1433 static int 1434 ffs_close_ea(struct vnode *vp, int commit, struct ucred *cred, struct thread *td) 1435 { 1436 struct inode *ip; 1437 struct uio luio; 1438 struct iovec *liovec; 1439 struct ufs2_dinode *dp; 1440 size_t ea_len, tlen; 1441 int error, i, lcnt; 1442 bool truncate; 1443 1444 ip = VTOI(vp); 1445 1446 ffs_lock_ea(vp); 1447 if (ip->i_ea_area == NULL) { 1448 ffs_unlock_ea(vp); 1449 return (EINVAL); 1450 } 1451 dp = ip->i_din2; 1452 error = ip->i_ea_error; 1453 truncate = false; 1454 if (commit && error == 0) { 1455 ASSERT_VOP_ELOCKED(vp, "ffs_close_ea commit"); 1456 if (cred == NOCRED) 1457 cred = vp->v_mount->mnt_cred; 1458 1459 ea_len = MAX(ip->i_ea_len, dp->di_extsize); 1460 for (lcnt = 1, tlen = ea_len - ip->i_ea_len; tlen > 0;) { 1461 tlen -= MIN(ZERO_REGION_SIZE, tlen); 1462 lcnt++; 1463 } 1464 1465 liovec = __builtin_alloca(lcnt * sizeof(struct iovec)); 1466 luio.uio_iovcnt = lcnt; 1467 1468 liovec[0].iov_base = ip->i_ea_area; 1469 liovec[0].iov_len = ip->i_ea_len; 1470 for (i = 1, tlen = ea_len - ip->i_ea_len; i < lcnt; i++) { 1471 liovec[i].iov_base = __DECONST(void *, zero_region); 1472 liovec[i].iov_len = MIN(ZERO_REGION_SIZE, tlen); 1473 tlen -= liovec[i].iov_len; 1474 } 1475 MPASS(tlen == 0); 1476 1477 luio.uio_iov = liovec; 1478 luio.uio_offset = 0; 1479 luio.uio_resid = ea_len; 1480 luio.uio_segflg = UIO_SYSSPACE; 1481 luio.uio_rw = UIO_WRITE; 1482 luio.uio_td = td; 1483 error = ffs_extwrite(vp, &luio, IO_EXT | IO_SYNC, cred); 1484 if (error == 0 && ip->i_ea_len == 0) 1485 truncate = true; 1486 } 1487 if (--ip->i_ea_refs == 0) { 1488 free(ip->i_ea_area, M_TEMP); 1489 ip->i_ea_area = NULL; 1490 ip->i_ea_len = 0; 1491 ip->i_ea_error = 0; 1492 } 1493 ffs_unlock_ea(vp); 1494 1495 if (truncate) 1496 ffs_truncate(vp, 0, IO_EXT, cred); 1497 return (error); 1498 } 1499 1500 /* 1501 * Vnode extattr strategy routine for fifos. 1502 * 1503 * We need to check for a read or write of the external attributes. 1504 * Otherwise we just fall through and do the usual thing. 1505 */ 1506 static int 1507 ffsext_strategy(struct vop_strategy_args *ap) 1508 /* 1509 struct vop_strategy_args { 1510 struct vnodeop_desc *a_desc; 1511 struct vnode *a_vp; 1512 struct buf *a_bp; 1513 }; 1514 */ 1515 { 1516 struct vnode *vp; 1517 daddr_t lbn; 1518 1519 vp = ap->a_vp; 1520 lbn = ap->a_bp->b_lblkno; 1521 if (I_IS_UFS2(VTOI(vp)) && lbn < 0 && lbn >= -UFS_NXADDR) 1522 return (VOP_STRATEGY_APV(&ufs_vnodeops, ap)); 1523 if (vp->v_type == VFIFO) 1524 return (VOP_STRATEGY_APV(&ufs_fifoops, ap)); 1525 panic("spec nodes went here"); 1526 } 1527 1528 /* 1529 * Vnode extattr transaction commit/abort 1530 */ 1531 static int 1532 ffs_openextattr(struct vop_openextattr_args *ap) 1533 /* 1534 struct vop_openextattr_args { 1535 struct vnodeop_desc *a_desc; 1536 struct vnode *a_vp; 1537 IN struct ucred *a_cred; 1538 IN struct thread *a_td; 1539 }; 1540 */ 1541 { 1542 1543 if (ap->a_vp->v_type == VCHR || ap->a_vp->v_type == VBLK) 1544 return (EOPNOTSUPP); 1545 1546 return (ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td)); 1547 } 1548 1549 /* 1550 * Vnode extattr transaction commit/abort 1551 */ 1552 static int 1553 ffs_closeextattr(struct vop_closeextattr_args *ap) 1554 /* 1555 struct vop_closeextattr_args { 1556 struct vnodeop_desc *a_desc; 1557 struct vnode *a_vp; 1558 int a_commit; 1559 IN struct ucred *a_cred; 1560 IN struct thread *a_td; 1561 }; 1562 */ 1563 { 1564 struct vnode *vp; 1565 1566 vp = ap->a_vp; 1567 if (vp->v_type == VCHR || vp->v_type == VBLK) 1568 return (EOPNOTSUPP); 1569 if (ap->a_commit && (vp->v_mount->mnt_flag & MNT_RDONLY) != 0) 1570 return (EROFS); 1571 1572 if (ap->a_commit && DOINGSUJ(vp)) { 1573 ASSERT_VOP_ELOCKED(vp, "ffs_closeextattr commit"); 1574 softdep_prealloc(vp, MNT_WAIT); 1575 if (vp->v_data == NULL) 1576 return (EBADF); 1577 } 1578 return (ffs_close_ea(vp, ap->a_commit, ap->a_cred, ap->a_td)); 1579 } 1580 1581 /* 1582 * Vnode operation to remove a named attribute. 1583 */ 1584 static int 1585 ffs_deleteextattr(struct vop_deleteextattr_args *ap) 1586 /* 1587 vop_deleteextattr { 1588 IN struct vnode *a_vp; 1589 IN int a_attrnamespace; 1590 IN const char *a_name; 1591 IN struct ucred *a_cred; 1592 IN struct thread *a_td; 1593 }; 1594 */ 1595 { 1596 struct vnode *vp; 1597 struct inode *ip; 1598 struct extattr *eap; 1599 uint32_t ul; 1600 int olen, error, i, easize; 1601 u_char *eae; 1602 void *tmp; 1603 1604 vp = ap->a_vp; 1605 ip = VTOI(vp); 1606 1607 if (vp->v_type == VCHR || vp->v_type == VBLK) 1608 return (EOPNOTSUPP); 1609 if (strlen(ap->a_name) == 0) 1610 return (EINVAL); 1611 if (vp->v_mount->mnt_flag & MNT_RDONLY) 1612 return (EROFS); 1613 1614 error = extattr_check_cred(vp, ap->a_attrnamespace, 1615 ap->a_cred, ap->a_td, VWRITE); 1616 if (error) { 1617 /* 1618 * ffs_lock_ea is not needed there, because the vnode 1619 * must be exclusively locked. 1620 */ 1621 if (ip->i_ea_area != NULL && ip->i_ea_error == 0) 1622 ip->i_ea_error = error; 1623 return (error); 1624 } 1625 1626 if (DOINGSUJ(vp)) { 1627 ASSERT_VOP_ELOCKED(vp, "ffs_deleteextattr"); 1628 softdep_prealloc(vp, MNT_WAIT); 1629 if (vp->v_data == NULL) 1630 return (EBADF); 1631 } 1632 1633 error = ffs_open_ea(vp, ap->a_cred, ap->a_td); 1634 if (error) 1635 return (error); 1636 1637 /* CEM: delete could be done in-place instead */ 1638 eae = malloc(ip->i_ea_len, M_TEMP, M_WAITOK); 1639 bcopy(ip->i_ea_area, eae, ip->i_ea_len); 1640 easize = ip->i_ea_len; 1641 1642 olen = ffs_findextattr(eae, easize, ap->a_attrnamespace, ap->a_name, 1643 &eap, NULL); 1644 if (olen == -1) { 1645 /* delete but nonexistent */ 1646 free(eae, M_TEMP); 1647 ffs_close_ea(vp, 0, ap->a_cred, ap->a_td); 1648 return (ENOATTR); 1649 } 1650 ul = eap->ea_length; 1651 i = (u_char *)EXTATTR_NEXT(eap) - eae; 1652 bcopy(EXTATTR_NEXT(eap), eap, easize - i); 1653 easize -= ul; 1654 1655 tmp = ip->i_ea_area; 1656 ip->i_ea_area = eae; 1657 ip->i_ea_len = easize; 1658 free(tmp, M_TEMP); 1659 error = ffs_close_ea(vp, 1, ap->a_cred, ap->a_td); 1660 return (error); 1661 } 1662 1663 /* 1664 * Vnode operation to retrieve a named extended attribute. 1665 */ 1666 static int 1667 ffs_getextattr(struct vop_getextattr_args *ap) 1668 /* 1669 vop_getextattr { 1670 IN struct vnode *a_vp; 1671 IN int a_attrnamespace; 1672 IN const char *a_name; 1673 INOUT struct uio *a_uio; 1674 OUT size_t *a_size; 1675 IN struct ucred *a_cred; 1676 IN struct thread *a_td; 1677 }; 1678 */ 1679 { 1680 struct inode *ip; 1681 u_char *eae, *p; 1682 unsigned easize; 1683 int error, ealen; 1684 1685 ip = VTOI(ap->a_vp); 1686 1687 if (ap->a_vp->v_type == VCHR || ap->a_vp->v_type == VBLK) 1688 return (EOPNOTSUPP); 1689 1690 error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace, 1691 ap->a_cred, ap->a_td, VREAD); 1692 if (error) 1693 return (error); 1694 1695 error = ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td); 1696 if (error) 1697 return (error); 1698 1699 eae = ip->i_ea_area; 1700 easize = ip->i_ea_len; 1701 1702 ealen = ffs_findextattr(eae, easize, ap->a_attrnamespace, ap->a_name, 1703 NULL, &p); 1704 if (ealen >= 0) { 1705 error = 0; 1706 if (ap->a_size != NULL) 1707 *ap->a_size = ealen; 1708 else if (ap->a_uio != NULL) 1709 error = uiomove(p, ealen, ap->a_uio); 1710 } else 1711 error = ENOATTR; 1712 1713 ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td); 1714 return (error); 1715 } 1716 1717 /* 1718 * Vnode operation to retrieve extended attributes on a vnode. 1719 */ 1720 static int 1721 ffs_listextattr(struct vop_listextattr_args *ap) 1722 /* 1723 vop_listextattr { 1724 IN struct vnode *a_vp; 1725 IN int a_attrnamespace; 1726 INOUT struct uio *a_uio; 1727 OUT size_t *a_size; 1728 IN struct ucred *a_cred; 1729 IN struct thread *a_td; 1730 }; 1731 */ 1732 { 1733 struct inode *ip; 1734 struct extattr *eap, *eaend; 1735 int error, ealen; 1736 1737 ip = VTOI(ap->a_vp); 1738 1739 if (ap->a_vp->v_type == VCHR || ap->a_vp->v_type == VBLK) 1740 return (EOPNOTSUPP); 1741 1742 error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace, 1743 ap->a_cred, ap->a_td, VREAD); 1744 if (error) 1745 return (error); 1746 1747 error = ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td); 1748 if (error) 1749 return (error); 1750 1751 error = 0; 1752 if (ap->a_size != NULL) 1753 *ap->a_size = 0; 1754 1755 KASSERT(ALIGNED_TO(ip->i_ea_area, struct extattr), ("unaligned")); 1756 eap = (struct extattr *)ip->i_ea_area; 1757 eaend = (struct extattr *)(ip->i_ea_area + ip->i_ea_len); 1758 for (; error == 0 && eap < eaend; eap = EXTATTR_NEXT(eap)) { 1759 KASSERT(EXTATTR_NEXT(eap) <= eaend, 1760 ("extattr next %p beyond %p", EXTATTR_NEXT(eap), eaend)); 1761 if (eap->ea_namespace != ap->a_attrnamespace) 1762 continue; 1763 1764 ealen = eap->ea_namelength; 1765 if (ap->a_size != NULL) 1766 *ap->a_size += ealen + 1; 1767 else if (ap->a_uio != NULL) 1768 error = uiomove(&eap->ea_namelength, ealen + 1, 1769 ap->a_uio); 1770 } 1771 1772 ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td); 1773 return (error); 1774 } 1775 1776 /* 1777 * Vnode operation to set a named attribute. 1778 */ 1779 static int 1780 ffs_setextattr(struct vop_setextattr_args *ap) 1781 /* 1782 vop_setextattr { 1783 IN struct vnode *a_vp; 1784 IN int a_attrnamespace; 1785 IN const char *a_name; 1786 INOUT struct uio *a_uio; 1787 IN struct ucred *a_cred; 1788 IN struct thread *a_td; 1789 }; 1790 */ 1791 { 1792 struct vnode *vp; 1793 struct inode *ip; 1794 struct fs *fs; 1795 struct extattr *eap; 1796 uint32_t ealength, ul; 1797 ssize_t ealen; 1798 int olen, eapad1, eapad2, error, i, easize; 1799 u_char *eae; 1800 void *tmp; 1801 1802 vp = ap->a_vp; 1803 ip = VTOI(vp); 1804 fs = ITOFS(ip); 1805 1806 if (vp->v_type == VCHR || vp->v_type == VBLK) 1807 return (EOPNOTSUPP); 1808 if (strlen(ap->a_name) == 0) 1809 return (EINVAL); 1810 1811 /* XXX Now unsupported API to delete EAs using NULL uio. */ 1812 if (ap->a_uio == NULL) 1813 return (EOPNOTSUPP); 1814 1815 if (vp->v_mount->mnt_flag & MNT_RDONLY) 1816 return (EROFS); 1817 1818 ealen = ap->a_uio->uio_resid; 1819 if (ealen < 0 || ealen > lblktosize(fs, UFS_NXADDR)) 1820 return (EINVAL); 1821 1822 error = extattr_check_cred(vp, ap->a_attrnamespace, 1823 ap->a_cred, ap->a_td, VWRITE); 1824 if (error) { 1825 /* 1826 * ffs_lock_ea is not needed there, because the vnode 1827 * must be exclusively locked. 1828 */ 1829 if (ip->i_ea_area != NULL && ip->i_ea_error == 0) 1830 ip->i_ea_error = error; 1831 return (error); 1832 } 1833 1834 if (DOINGSUJ(vp)) { 1835 ASSERT_VOP_ELOCKED(vp, "ffs_deleteextattr"); 1836 softdep_prealloc(vp, MNT_WAIT); 1837 if (vp->v_data == NULL) 1838 return (EBADF); 1839 } 1840 1841 error = ffs_open_ea(vp, ap->a_cred, ap->a_td); 1842 if (error) 1843 return (error); 1844 1845 ealength = sizeof(uint32_t) + 3 + strlen(ap->a_name); 1846 eapad1 = roundup2(ealength, 8) - ealength; 1847 eapad2 = roundup2(ealen, 8) - ealen; 1848 ealength += eapad1 + ealen + eapad2; 1849 1850 /* 1851 * CEM: rewrites of the same size or smaller could be done in-place 1852 * instead. (We don't acquire any fine-grained locks in here either, 1853 * so we could also do bigger writes in-place.) 1854 */ 1855 eae = malloc(ip->i_ea_len + ealength, M_TEMP, M_WAITOK); 1856 bcopy(ip->i_ea_area, eae, ip->i_ea_len); 1857 easize = ip->i_ea_len; 1858 1859 olen = ffs_findextattr(eae, easize, ap->a_attrnamespace, ap->a_name, 1860 &eap, NULL); 1861 if (olen == -1) { 1862 /* new, append at end */ 1863 KASSERT(ALIGNED_TO(eae + easize, struct extattr), 1864 ("unaligned")); 1865 eap = (struct extattr *)(eae + easize); 1866 easize += ealength; 1867 } else { 1868 ul = eap->ea_length; 1869 i = (u_char *)EXTATTR_NEXT(eap) - eae; 1870 if (ul != ealength) { 1871 bcopy(EXTATTR_NEXT(eap), (u_char *)eap + ealength, 1872 easize - i); 1873 easize += (ealength - ul); 1874 } 1875 } 1876 if (easize > lblktosize(fs, UFS_NXADDR)) { 1877 free(eae, M_TEMP); 1878 ffs_close_ea(vp, 0, ap->a_cred, ap->a_td); 1879 if (ip->i_ea_area != NULL && ip->i_ea_error == 0) 1880 ip->i_ea_error = ENOSPC; 1881 return (ENOSPC); 1882 } 1883 eap->ea_length = ealength; 1884 eap->ea_namespace = ap->a_attrnamespace; 1885 eap->ea_contentpadlen = eapad2; 1886 eap->ea_namelength = strlen(ap->a_name); 1887 memcpy(eap->ea_name, ap->a_name, strlen(ap->a_name)); 1888 bzero(&eap->ea_name[strlen(ap->a_name)], eapad1); 1889 error = uiomove(EXTATTR_CONTENT(eap), ealen, ap->a_uio); 1890 if (error) { 1891 free(eae, M_TEMP); 1892 ffs_close_ea(vp, 0, ap->a_cred, ap->a_td); 1893 if (ip->i_ea_area != NULL && ip->i_ea_error == 0) 1894 ip->i_ea_error = error; 1895 return (error); 1896 } 1897 bzero((u_char *)EXTATTR_CONTENT(eap) + ealen, eapad2); 1898 1899 tmp = ip->i_ea_area; 1900 ip->i_ea_area = eae; 1901 ip->i_ea_len = easize; 1902 free(tmp, M_TEMP); 1903 error = ffs_close_ea(vp, 1, ap->a_cred, ap->a_td); 1904 return (error); 1905 } 1906 1907 /* 1908 * Vnode pointer to File handle 1909 */ 1910 static int 1911 ffs_vptofh(struct vop_vptofh_args *ap) 1912 /* 1913 vop_vptofh { 1914 IN struct vnode *a_vp; 1915 IN struct fid *a_fhp; 1916 }; 1917 */ 1918 { 1919 struct inode *ip; 1920 struct ufid *ufhp; 1921 1922 ip = VTOI(ap->a_vp); 1923 ufhp = (struct ufid *)ap->a_fhp; 1924 ufhp->ufid_len = sizeof(struct ufid); 1925 ufhp->ufid_ino = ip->i_number; 1926 ufhp->ufid_gen = ip->i_gen; 1927 return (0); 1928 } 1929 1930 SYSCTL_DECL(_vfs_ffs); 1931 static int use_buf_pager = 1; 1932 SYSCTL_INT(_vfs_ffs, OID_AUTO, use_buf_pager, CTLFLAG_RWTUN, &use_buf_pager, 0, 1933 "Always use buffer pager instead of bmap"); 1934 1935 static daddr_t 1936 ffs_gbp_getblkno(struct vnode *vp, vm_ooffset_t off) 1937 { 1938 1939 return (lblkno(VFSTOUFS(vp->v_mount)->um_fs, off)); 1940 } 1941 1942 static int 1943 ffs_gbp_getblksz(struct vnode *vp, daddr_t lbn, long *sz) 1944 { 1945 1946 *sz = blksize(VFSTOUFS(vp->v_mount)->um_fs, VTOI(vp), lbn); 1947 return (0); 1948 } 1949 1950 static int 1951 ffs_getpages(struct vop_getpages_args *ap) 1952 { 1953 struct vnode *vp; 1954 struct ufsmount *um; 1955 1956 vp = ap->a_vp; 1957 um = VFSTOUFS(vp->v_mount); 1958 1959 if (!use_buf_pager && um->um_devvp->v_bufobj.bo_bsize <= PAGE_SIZE) 1960 return (vnode_pager_generic_getpages(vp, ap->a_m, ap->a_count, 1961 ap->a_rbehind, ap->a_rahead, NULL, NULL)); 1962 return (vfs_bio_getpages(vp, ap->a_m, ap->a_count, ap->a_rbehind, 1963 ap->a_rahead, ffs_gbp_getblkno, ffs_gbp_getblksz)); 1964 } 1965 1966 static int 1967 ffs_getpages_async(struct vop_getpages_async_args *ap) 1968 { 1969 struct vnode *vp; 1970 struct ufsmount *um; 1971 bool do_iodone; 1972 int error; 1973 1974 vp = ap->a_vp; 1975 um = VFSTOUFS(vp->v_mount); 1976 do_iodone = true; 1977 1978 if (um->um_devvp->v_bufobj.bo_bsize <= PAGE_SIZE) { 1979 error = vnode_pager_generic_getpages(vp, ap->a_m, ap->a_count, 1980 ap->a_rbehind, ap->a_rahead, ap->a_iodone, ap->a_arg); 1981 if (error == 0) 1982 do_iodone = false; 1983 } else { 1984 error = vfs_bio_getpages(vp, ap->a_m, ap->a_count, 1985 ap->a_rbehind, ap->a_rahead, ffs_gbp_getblkno, 1986 ffs_gbp_getblksz); 1987 } 1988 if (do_iodone && ap->a_iodone != NULL) 1989 ap->a_iodone(ap->a_arg, ap->a_m, ap->a_count, error); 1990 1991 return (error); 1992 } 1993 1994 static int 1995 ffs_vput_pair(struct vop_vput_pair_args *ap) 1996 { 1997 struct mount *mp; 1998 struct vnode *dvp, *vp, *vp1, **vpp; 1999 struct inode *dp, *ip; 2000 ino_t ip_ino; 2001 u_int64_t ip_gen; 2002 int error, vp_locked; 2003 2004 dvp = ap->a_dvp; 2005 dp = VTOI(dvp); 2006 vpp = ap->a_vpp; 2007 vp = vpp != NULL ? *vpp : NULL; 2008 2009 if ((dp->i_flag & (IN_NEEDSYNC | IN_ENDOFF)) == 0) { 2010 vput(dvp); 2011 if (vp != NULL && ap->a_unlock_vp) 2012 vput(vp); 2013 return (0); 2014 } 2015 2016 mp = dvp->v_mount; 2017 if (vp != NULL) { 2018 if (ap->a_unlock_vp) { 2019 vput(vp); 2020 } else { 2021 MPASS(vp->v_type != VNON); 2022 vp_locked = VOP_ISLOCKED(vp); 2023 ip = VTOI(vp); 2024 ip_ino = ip->i_number; 2025 ip_gen = ip->i_gen; 2026 VOP_UNLOCK(vp); 2027 } 2028 } 2029 2030 /* 2031 * If compaction or fsync was requested do it in ffs_vput_pair() 2032 * now that other locks are no longer held. 2033 */ 2034 if ((dp->i_flag & IN_ENDOFF) != 0) { 2035 VNASSERT(I_ENDOFF(dp) != 0 && I_ENDOFF(dp) < dp->i_size, dvp, 2036 ("IN_ENDOFF set but I_ENDOFF() is not")); 2037 dp->i_flag &= ~IN_ENDOFF; 2038 error = UFS_TRUNCATE(dvp, (off_t)I_ENDOFF(dp), IO_NORMAL | 2039 (DOINGASYNC(dvp) ? 0 : IO_SYNC), curthread->td_ucred); 2040 if (error != 0 && error != ERELOOKUP) { 2041 if (!ffs_fsfail_cleanup(VFSTOUFS(mp), error)) { 2042 vn_printf(dvp, 2043 "IN_ENDOFF: failed to truncate, " 2044 "error %d\n", error); 2045 } 2046 #ifdef UFS_DIRHASH 2047 ufsdirhash_free(dp); 2048 #endif 2049 } 2050 SET_I_ENDOFF(dp, 0); 2051 } 2052 if ((dp->i_flag & IN_NEEDSYNC) != 0) { 2053 do { 2054 error = ffs_syncvnode(dvp, MNT_WAIT, 0); 2055 } while (error == ERELOOKUP); 2056 } 2057 2058 vput(dvp); 2059 2060 if (vp == NULL || ap->a_unlock_vp) 2061 return (0); 2062 MPASS(mp != NULL); 2063 2064 /* 2065 * It is possible that vp is reclaimed at this point. Only 2066 * routines that call us with a_unlock_vp == false can find 2067 * that their vp has been reclaimed. There are three areas 2068 * that are affected: 2069 * 1) vn_open_cred() - later VOPs could fail, but 2070 * dead_open() returns 0 to simulate successful open. 2071 * 2) ffs_snapshot() - creation of snapshot fails with EBADF. 2072 * 3) NFS server (several places) - code is prepared to detect 2073 * and respond to dead vnodes by returning ESTALE. 2074 */ 2075 VOP_LOCK(vp, vp_locked | LK_RETRY); 2076 if (IS_UFS(vp)) 2077 return (0); 2078 2079 /* 2080 * Try harder to recover from reclaimed vp if reclaim was not 2081 * because underlying inode was cleared. We saved inode 2082 * number and inode generation, so we can try to reinstantiate 2083 * exactly same version of inode. If this fails, return 2084 * original doomed vnode and let caller to handle 2085 * consequences. 2086 * 2087 * Note that callers must keep write started around 2088 * VOP_VPUT_PAIR() calls, so it is safe to use mp without 2089 * busying it. 2090 */ 2091 VOP_UNLOCK(vp); 2092 error = ffs_inotovp(mp, ip_ino, ip_gen, LK_EXCLUSIVE, &vp1, 2093 FFSV_REPLACE_DOOMED); 2094 if (error != 0) { 2095 VOP_LOCK(vp, vp_locked | LK_RETRY); 2096 } else { 2097 vrele(vp); 2098 *vpp = vp1; 2099 } 2100 return (error); 2101 } 2102