1 /*- 2 * Copyright (c) 2002, 2003 Networks Associates Technology, Inc. 3 * All rights reserved. 4 * 5 * This software was developed for the FreeBSD Project by Marshall 6 * Kirk McKusick and Network Associates Laboratories, the Security 7 * Research Division of Network Associates, Inc. under DARPA/SPAWAR 8 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS 9 * research program 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * Copyright (c) 1982, 1986, 1989, 1993 33 * The Regents of the University of California. All rights reserved. 34 * 35 * Redistribution and use in source and binary forms, with or without 36 * modification, are permitted provided that the following conditions 37 * are met: 38 * 1. Redistributions of source code must retain the above copyright 39 * notice, this list of conditions and the following disclaimer. 40 * 2. Redistributions in binary form must reproduce the above copyright 41 * notice, this list of conditions and the following disclaimer in the 42 * documentation and/or other materials provided with the distribution. 43 * 4. Neither the name of the University nor the names of its contributors 44 * may be used to endorse or promote products derived from this software 45 * without specific prior written permission. 46 * 47 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 48 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 49 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 50 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 51 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 52 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 53 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 54 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 55 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 56 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 57 * SUCH DAMAGE. 58 * 59 * from: @(#)ufs_readwrite.c 8.11 (Berkeley) 5/8/95 60 * from: $FreeBSD: .../ufs/ufs_readwrite.c,v 1.96 2002/08/12 09:22:11 phk ... 61 * @(#)ffs_vnops.c 8.15 (Berkeley) 5/14/95 62 */ 63 64 #include <sys/cdefs.h> 65 __FBSDID("$FreeBSD$"); 66 67 #include <sys/param.h> 68 #include <sys/bio.h> 69 #include <sys/systm.h> 70 #include <sys/buf.h> 71 #include <sys/conf.h> 72 #include <sys/extattr.h> 73 #include <sys/kernel.h> 74 #include <sys/limits.h> 75 #include <sys/malloc.h> 76 #include <sys/mount.h> 77 #include <sys/priv.h> 78 #include <sys/rwlock.h> 79 #include <sys/stat.h> 80 #include <sys/vmmeter.h> 81 #include <sys/vnode.h> 82 83 #include <vm/vm.h> 84 #include <vm/vm_param.h> 85 #include <vm/vm_extern.h> 86 #include <vm/vm_object.h> 87 #include <vm/vm_page.h> 88 #include <vm/vm_pager.h> 89 #include <vm/vnode_pager.h> 90 91 #include <ufs/ufs/extattr.h> 92 #include <ufs/ufs/quota.h> 93 #include <ufs/ufs/inode.h> 94 #include <ufs/ufs/ufs_extern.h> 95 #include <ufs/ufs/ufsmount.h> 96 97 #include <ufs/ffs/fs.h> 98 #include <ufs/ffs/ffs_extern.h> 99 #include "opt_directio.h" 100 #include "opt_ffs.h" 101 102 #ifdef DIRECTIO 103 extern int ffs_rawread(struct vnode *vp, struct uio *uio, int *workdone); 104 #endif 105 static vop_fsync_t ffs_fsync; 106 static vop_lock1_t ffs_lock; 107 static vop_read_t ffs_read; 108 static vop_write_t ffs_write; 109 static int ffs_extread(struct vnode *vp, struct uio *uio, int ioflag); 110 static int ffs_extwrite(struct vnode *vp, struct uio *uio, int ioflag, 111 struct ucred *cred); 112 static vop_strategy_t ffsext_strategy; 113 static vop_closeextattr_t ffs_closeextattr; 114 static vop_deleteextattr_t ffs_deleteextattr; 115 static vop_getextattr_t ffs_getextattr; 116 static vop_listextattr_t ffs_listextattr; 117 static vop_openextattr_t ffs_openextattr; 118 static vop_setextattr_t ffs_setextattr; 119 static vop_vptofh_t ffs_vptofh; 120 121 122 /* Global vfs data structures for ufs. */ 123 struct vop_vector ffs_vnodeops1 = { 124 .vop_default = &ufs_vnodeops, 125 .vop_fsync = ffs_fsync, 126 .vop_getpages = vnode_pager_local_getpages, 127 .vop_getpages_async = vnode_pager_local_getpages_async, 128 .vop_lock1 = ffs_lock, 129 .vop_read = ffs_read, 130 .vop_reallocblks = ffs_reallocblks, 131 .vop_write = ffs_write, 132 .vop_vptofh = ffs_vptofh, 133 }; 134 135 struct vop_vector ffs_fifoops1 = { 136 .vop_default = &ufs_fifoops, 137 .vop_fsync = ffs_fsync, 138 .vop_reallocblks = ffs_reallocblks, /* XXX: really ??? */ 139 .vop_vptofh = ffs_vptofh, 140 }; 141 142 /* Global vfs data structures for ufs. */ 143 struct vop_vector ffs_vnodeops2 = { 144 .vop_default = &ufs_vnodeops, 145 .vop_fsync = ffs_fsync, 146 .vop_getpages = vnode_pager_local_getpages, 147 .vop_getpages_async = vnode_pager_local_getpages_async, 148 .vop_lock1 = ffs_lock, 149 .vop_read = ffs_read, 150 .vop_reallocblks = ffs_reallocblks, 151 .vop_write = ffs_write, 152 .vop_closeextattr = ffs_closeextattr, 153 .vop_deleteextattr = ffs_deleteextattr, 154 .vop_getextattr = ffs_getextattr, 155 .vop_listextattr = ffs_listextattr, 156 .vop_openextattr = ffs_openextattr, 157 .vop_setextattr = ffs_setextattr, 158 .vop_vptofh = ffs_vptofh, 159 }; 160 161 struct vop_vector ffs_fifoops2 = { 162 .vop_default = &ufs_fifoops, 163 .vop_fsync = ffs_fsync, 164 .vop_lock1 = ffs_lock, 165 .vop_reallocblks = ffs_reallocblks, 166 .vop_strategy = ffsext_strategy, 167 .vop_closeextattr = ffs_closeextattr, 168 .vop_deleteextattr = ffs_deleteextattr, 169 .vop_getextattr = ffs_getextattr, 170 .vop_listextattr = ffs_listextattr, 171 .vop_openextattr = ffs_openextattr, 172 .vop_setextattr = ffs_setextattr, 173 .vop_vptofh = ffs_vptofh, 174 }; 175 176 /* 177 * Synch an open file. 178 */ 179 /* ARGSUSED */ 180 static int 181 ffs_fsync(struct vop_fsync_args *ap) 182 { 183 struct vnode *vp; 184 struct bufobj *bo; 185 int error; 186 187 vp = ap->a_vp; 188 bo = &vp->v_bufobj; 189 retry: 190 error = ffs_syncvnode(vp, ap->a_waitfor, 0); 191 if (error) 192 return (error); 193 if (ap->a_waitfor == MNT_WAIT && DOINGSOFTDEP(vp)) { 194 error = softdep_fsync(vp); 195 if (error) 196 return (error); 197 198 /* 199 * The softdep_fsync() function may drop vp lock, 200 * allowing for dirty buffers to reappear on the 201 * bo_dirty list. Recheck and resync as needed. 202 */ 203 BO_LOCK(bo); 204 if ((vp->v_type == VREG || vp->v_type == VDIR) && 205 (bo->bo_numoutput > 0 || bo->bo_dirty.bv_cnt > 0)) { 206 BO_UNLOCK(bo); 207 goto retry; 208 } 209 BO_UNLOCK(bo); 210 } 211 return (0); 212 } 213 214 int 215 ffs_syncvnode(struct vnode *vp, int waitfor, int flags) 216 { 217 struct inode *ip; 218 struct bufobj *bo; 219 struct buf *bp; 220 struct buf *nbp; 221 ufs_lbn_t lbn; 222 int error, wait, passes; 223 224 ip = VTOI(vp); 225 ip->i_flag &= ~IN_NEEDSYNC; 226 bo = &vp->v_bufobj; 227 228 /* 229 * When doing MNT_WAIT we must first flush all dependencies 230 * on the inode. 231 */ 232 if (DOINGSOFTDEP(vp) && waitfor == MNT_WAIT && 233 (error = softdep_sync_metadata(vp)) != 0) 234 return (error); 235 236 /* 237 * Flush all dirty buffers associated with a vnode. 238 */ 239 error = 0; 240 passes = 0; 241 wait = 0; /* Always do an async pass first. */ 242 lbn = lblkno(ip->i_fs, (ip->i_size + ip->i_fs->fs_bsize - 1)); 243 BO_LOCK(bo); 244 loop: 245 TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) 246 bp->b_vflags &= ~BV_SCANNED; 247 TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) { 248 /* 249 * Reasons to skip this buffer: it has already been considered 250 * on this pass, the buffer has dependencies that will cause 251 * it to be redirtied and it has not already been deferred, 252 * or it is already being written. 253 */ 254 if ((bp->b_vflags & BV_SCANNED) != 0) 255 continue; 256 bp->b_vflags |= BV_SCANNED; 257 /* Flush indirects in order. */ 258 if (waitfor == MNT_WAIT && bp->b_lblkno <= -NDADDR && 259 lbn_level(bp->b_lblkno) >= passes) 260 continue; 261 if (bp->b_lblkno > lbn) 262 panic("ffs_syncvnode: syncing truncated data."); 263 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) == 0) { 264 BO_UNLOCK(bo); 265 } else if (wait != 0) { 266 if (BUF_LOCK(bp, 267 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, 268 BO_LOCKPTR(bo)) != 0) { 269 bp->b_vflags &= ~BV_SCANNED; 270 goto next; 271 } 272 } else 273 continue; 274 if ((bp->b_flags & B_DELWRI) == 0) 275 panic("ffs_fsync: not dirty"); 276 /* 277 * Check for dependencies and potentially complete them. 278 */ 279 if (!LIST_EMPTY(&bp->b_dep) && 280 (error = softdep_sync_buf(vp, bp, 281 wait ? MNT_WAIT : MNT_NOWAIT)) != 0) { 282 /* I/O error. */ 283 if (error != EBUSY) { 284 BUF_UNLOCK(bp); 285 return (error); 286 } 287 /* If we deferred once, don't defer again. */ 288 if ((bp->b_flags & B_DEFERRED) == 0) { 289 bp->b_flags |= B_DEFERRED; 290 BUF_UNLOCK(bp); 291 goto next; 292 } 293 } 294 if (wait) { 295 bremfree(bp); 296 if ((error = bwrite(bp)) != 0) 297 return (error); 298 } else if ((bp->b_flags & B_CLUSTEROK)) { 299 (void) vfs_bio_awrite(bp); 300 } else { 301 bremfree(bp); 302 (void) bawrite(bp); 303 } 304 next: 305 /* 306 * Since we may have slept during the I/O, we need 307 * to start from a known point. 308 */ 309 BO_LOCK(bo); 310 nbp = TAILQ_FIRST(&bo->bo_dirty.bv_hd); 311 } 312 if (waitfor != MNT_WAIT) { 313 BO_UNLOCK(bo); 314 if ((flags & NO_INO_UPDT) != 0) 315 return (0); 316 else 317 return (ffs_update(vp, 0)); 318 } 319 /* Drain IO to see if we're done. */ 320 bufobj_wwait(bo, 0, 0); 321 /* 322 * Block devices associated with filesystems may have new I/O 323 * requests posted for them even if the vnode is locked, so no 324 * amount of trying will get them clean. We make several passes 325 * as a best effort. 326 * 327 * Regular files may need multiple passes to flush all dependency 328 * work as it is possible that we must write once per indirect 329 * level, once for the leaf, and once for the inode and each of 330 * these will be done with one sync and one async pass. 331 */ 332 if (bo->bo_dirty.bv_cnt > 0) { 333 /* Write the inode after sync passes to flush deps. */ 334 if (wait && DOINGSOFTDEP(vp) && (flags & NO_INO_UPDT) == 0) { 335 BO_UNLOCK(bo); 336 ffs_update(vp, 1); 337 BO_LOCK(bo); 338 } 339 /* switch between sync/async. */ 340 wait = !wait; 341 if (wait == 1 || ++passes < NIADDR + 2) 342 goto loop; 343 #ifdef INVARIANTS 344 if (!vn_isdisk(vp, NULL)) 345 vprint("ffs_fsync: dirty", vp); 346 #endif 347 } 348 BO_UNLOCK(bo); 349 error = 0; 350 if ((flags & NO_INO_UPDT) == 0) 351 error = ffs_update(vp, 1); 352 if (DOINGSUJ(vp)) 353 softdep_journal_fsync(VTOI(vp)); 354 return (error); 355 } 356 357 static int 358 ffs_lock(ap) 359 struct vop_lock1_args /* { 360 struct vnode *a_vp; 361 int a_flags; 362 struct thread *a_td; 363 char *file; 364 int line; 365 } */ *ap; 366 { 367 #ifndef NO_FFS_SNAPSHOT 368 struct vnode *vp; 369 int flags; 370 struct lock *lkp; 371 int result; 372 373 switch (ap->a_flags & LK_TYPE_MASK) { 374 case LK_SHARED: 375 case LK_UPGRADE: 376 case LK_EXCLUSIVE: 377 vp = ap->a_vp; 378 flags = ap->a_flags; 379 for (;;) { 380 #ifdef DEBUG_VFS_LOCKS 381 KASSERT(vp->v_holdcnt != 0, 382 ("ffs_lock %p: zero hold count", vp)); 383 #endif 384 lkp = vp->v_vnlock; 385 result = _lockmgr_args(lkp, flags, VI_MTX(vp), 386 LK_WMESG_DEFAULT, LK_PRIO_DEFAULT, LK_TIMO_DEFAULT, 387 ap->a_file, ap->a_line); 388 if (lkp == vp->v_vnlock || result != 0) 389 break; 390 /* 391 * Apparent success, except that the vnode 392 * mutated between snapshot file vnode and 393 * regular file vnode while this process 394 * slept. The lock currently held is not the 395 * right lock. Release it, and try to get the 396 * new lock. 397 */ 398 (void) _lockmgr_args(lkp, LK_RELEASE, NULL, 399 LK_WMESG_DEFAULT, LK_PRIO_DEFAULT, LK_TIMO_DEFAULT, 400 ap->a_file, ap->a_line); 401 if ((flags & (LK_INTERLOCK | LK_NOWAIT)) == 402 (LK_INTERLOCK | LK_NOWAIT)) 403 return (EBUSY); 404 if ((flags & LK_TYPE_MASK) == LK_UPGRADE) 405 flags = (flags & ~LK_TYPE_MASK) | LK_EXCLUSIVE; 406 flags &= ~LK_INTERLOCK; 407 } 408 break; 409 default: 410 result = VOP_LOCK1_APV(&ufs_vnodeops, ap); 411 } 412 return (result); 413 #else 414 return (VOP_LOCK1_APV(&ufs_vnodeops, ap)); 415 #endif 416 } 417 418 /* 419 * Vnode op for reading. 420 */ 421 static int 422 ffs_read(ap) 423 struct vop_read_args /* { 424 struct vnode *a_vp; 425 struct uio *a_uio; 426 int a_ioflag; 427 struct ucred *a_cred; 428 } */ *ap; 429 { 430 struct vnode *vp; 431 struct inode *ip; 432 struct uio *uio; 433 struct fs *fs; 434 struct buf *bp; 435 ufs_lbn_t lbn, nextlbn; 436 off_t bytesinfile; 437 long size, xfersize, blkoffset; 438 ssize_t orig_resid; 439 int error; 440 int seqcount; 441 int ioflag; 442 443 vp = ap->a_vp; 444 uio = ap->a_uio; 445 ioflag = ap->a_ioflag; 446 if (ap->a_ioflag & IO_EXT) 447 #ifdef notyet 448 return (ffs_extread(vp, uio, ioflag)); 449 #else 450 panic("ffs_read+IO_EXT"); 451 #endif 452 #ifdef DIRECTIO 453 if ((ioflag & IO_DIRECT) != 0) { 454 int workdone; 455 456 error = ffs_rawread(vp, uio, &workdone); 457 if (error != 0 || workdone != 0) 458 return error; 459 } 460 #endif 461 462 seqcount = ap->a_ioflag >> IO_SEQSHIFT; 463 ip = VTOI(vp); 464 465 #ifdef INVARIANTS 466 if (uio->uio_rw != UIO_READ) 467 panic("ffs_read: mode"); 468 469 if (vp->v_type == VLNK) { 470 if ((int)ip->i_size < vp->v_mount->mnt_maxsymlinklen) 471 panic("ffs_read: short symlink"); 472 } else if (vp->v_type != VREG && vp->v_type != VDIR) 473 panic("ffs_read: type %d", vp->v_type); 474 #endif 475 orig_resid = uio->uio_resid; 476 KASSERT(orig_resid >= 0, ("ffs_read: uio->uio_resid < 0")); 477 if (orig_resid == 0) 478 return (0); 479 KASSERT(uio->uio_offset >= 0, ("ffs_read: uio->uio_offset < 0")); 480 fs = ip->i_fs; 481 if (uio->uio_offset < ip->i_size && 482 uio->uio_offset >= fs->fs_maxfilesize) 483 return (EOVERFLOW); 484 485 for (error = 0, bp = NULL; uio->uio_resid > 0; bp = NULL) { 486 if ((bytesinfile = ip->i_size - uio->uio_offset) <= 0) 487 break; 488 lbn = lblkno(fs, uio->uio_offset); 489 nextlbn = lbn + 1; 490 491 /* 492 * size of buffer. The buffer representing the 493 * end of the file is rounded up to the size of 494 * the block type ( fragment or full block, 495 * depending ). 496 */ 497 size = blksize(fs, ip, lbn); 498 blkoffset = blkoff(fs, uio->uio_offset); 499 500 /* 501 * The amount we want to transfer in this iteration is 502 * one FS block less the amount of the data before 503 * our startpoint (duh!) 504 */ 505 xfersize = fs->fs_bsize - blkoffset; 506 507 /* 508 * But if we actually want less than the block, 509 * or the file doesn't have a whole block more of data, 510 * then use the lesser number. 511 */ 512 if (uio->uio_resid < xfersize) 513 xfersize = uio->uio_resid; 514 if (bytesinfile < xfersize) 515 xfersize = bytesinfile; 516 517 if (lblktosize(fs, nextlbn) >= ip->i_size) { 518 /* 519 * Don't do readahead if this is the end of the file. 520 */ 521 error = bread_gb(vp, lbn, size, NOCRED, 522 GB_UNMAPPED, &bp); 523 } else if ((vp->v_mount->mnt_flag & MNT_NOCLUSTERR) == 0) { 524 /* 525 * Otherwise if we are allowed to cluster, 526 * grab as much as we can. 527 * 528 * XXX This may not be a win if we are not 529 * doing sequential access. 530 */ 531 error = cluster_read(vp, ip->i_size, lbn, 532 size, NOCRED, blkoffset + uio->uio_resid, 533 seqcount, GB_UNMAPPED, &bp); 534 } else if (seqcount > 1) { 535 /* 536 * If we are NOT allowed to cluster, then 537 * if we appear to be acting sequentially, 538 * fire off a request for a readahead 539 * as well as a read. Note that the 4th and 5th 540 * arguments point to arrays of the size specified in 541 * the 6th argument. 542 */ 543 u_int nextsize = blksize(fs, ip, nextlbn); 544 error = breadn_flags(vp, lbn, size, &nextlbn, 545 &nextsize, 1, NOCRED, GB_UNMAPPED, &bp); 546 } else { 547 /* 548 * Failing all of the above, just read what the 549 * user asked for. Interestingly, the same as 550 * the first option above. 551 */ 552 error = bread_gb(vp, lbn, size, NOCRED, 553 GB_UNMAPPED, &bp); 554 } 555 if (error) { 556 brelse(bp); 557 bp = NULL; 558 break; 559 } 560 561 /* 562 * If IO_DIRECT then set B_DIRECT for the buffer. This 563 * will cause us to attempt to release the buffer later on 564 * and will cause the buffer cache to attempt to free the 565 * underlying pages. 566 */ 567 if (ioflag & IO_DIRECT) 568 bp->b_flags |= B_DIRECT; 569 570 /* 571 * We should only get non-zero b_resid when an I/O error 572 * has occurred, which should cause us to break above. 573 * However, if the short read did not cause an error, 574 * then we want to ensure that we do not uiomove bad 575 * or uninitialized data. 576 */ 577 size -= bp->b_resid; 578 if (size < xfersize) { 579 if (size == 0) 580 break; 581 xfersize = size; 582 } 583 584 if ((bp->b_flags & B_UNMAPPED) == 0) { 585 error = vn_io_fault_uiomove((char *)bp->b_data + 586 blkoffset, (int)xfersize, uio); 587 } else { 588 error = vn_io_fault_pgmove(bp->b_pages, blkoffset, 589 (int)xfersize, uio); 590 } 591 if (error) 592 break; 593 594 if ((ioflag & (IO_VMIO|IO_DIRECT)) && 595 (LIST_EMPTY(&bp->b_dep))) { 596 /* 597 * If there are no dependencies, and it's VMIO, 598 * then we don't need the buf, mark it available 599 * for freeing. For non-direct VMIO reads, the VM 600 * has the data. 601 */ 602 bp->b_flags |= B_RELBUF; 603 brelse(bp); 604 } else { 605 /* 606 * Otherwise let whoever 607 * made the request take care of 608 * freeing it. We just queue 609 * it onto another list. 610 */ 611 bqrelse(bp); 612 } 613 } 614 615 /* 616 * This can only happen in the case of an error 617 * because the loop above resets bp to NULL on each iteration 618 * and on normal completion has not set a new value into it. 619 * so it must have come from a 'break' statement 620 */ 621 if (bp != NULL) { 622 if ((ioflag & (IO_VMIO|IO_DIRECT)) && 623 (LIST_EMPTY(&bp->b_dep))) { 624 bp->b_flags |= B_RELBUF; 625 brelse(bp); 626 } else { 627 bqrelse(bp); 628 } 629 } 630 631 if ((error == 0 || uio->uio_resid != orig_resid) && 632 (vp->v_mount->mnt_flag & (MNT_NOATIME | MNT_RDONLY)) == 0 && 633 (ip->i_flag & IN_ACCESS) == 0) { 634 VI_LOCK(vp); 635 ip->i_flag |= IN_ACCESS; 636 VI_UNLOCK(vp); 637 } 638 return (error); 639 } 640 641 /* 642 * Vnode op for writing. 643 */ 644 static int 645 ffs_write(ap) 646 struct vop_write_args /* { 647 struct vnode *a_vp; 648 struct uio *a_uio; 649 int a_ioflag; 650 struct ucred *a_cred; 651 } */ *ap; 652 { 653 struct vnode *vp; 654 struct uio *uio; 655 struct inode *ip; 656 struct fs *fs; 657 struct buf *bp; 658 ufs_lbn_t lbn; 659 off_t osize; 660 ssize_t resid; 661 int seqcount; 662 int blkoffset, error, flags, ioflag, size, xfersize; 663 664 vp = ap->a_vp; 665 uio = ap->a_uio; 666 ioflag = ap->a_ioflag; 667 if (ap->a_ioflag & IO_EXT) 668 #ifdef notyet 669 return (ffs_extwrite(vp, uio, ioflag, ap->a_cred)); 670 #else 671 panic("ffs_write+IO_EXT"); 672 #endif 673 674 seqcount = ap->a_ioflag >> IO_SEQSHIFT; 675 ip = VTOI(vp); 676 677 #ifdef INVARIANTS 678 if (uio->uio_rw != UIO_WRITE) 679 panic("ffs_write: mode"); 680 #endif 681 682 switch (vp->v_type) { 683 case VREG: 684 if (ioflag & IO_APPEND) 685 uio->uio_offset = ip->i_size; 686 if ((ip->i_flags & APPEND) && uio->uio_offset != ip->i_size) 687 return (EPERM); 688 /* FALLTHROUGH */ 689 case VLNK: 690 break; 691 case VDIR: 692 panic("ffs_write: dir write"); 693 break; 694 default: 695 panic("ffs_write: type %p %d (%d,%d)", vp, (int)vp->v_type, 696 (int)uio->uio_offset, 697 (int)uio->uio_resid 698 ); 699 } 700 701 KASSERT(uio->uio_resid >= 0, ("ffs_write: uio->uio_resid < 0")); 702 KASSERT(uio->uio_offset >= 0, ("ffs_write: uio->uio_offset < 0")); 703 fs = ip->i_fs; 704 if ((uoff_t)uio->uio_offset + uio->uio_resid > fs->fs_maxfilesize) 705 return (EFBIG); 706 /* 707 * Maybe this should be above the vnode op call, but so long as 708 * file servers have no limits, I don't think it matters. 709 */ 710 if (vn_rlimit_fsize(vp, uio, uio->uio_td)) 711 return (EFBIG); 712 713 resid = uio->uio_resid; 714 osize = ip->i_size; 715 if (seqcount > BA_SEQMAX) 716 flags = BA_SEQMAX << BA_SEQSHIFT; 717 else 718 flags = seqcount << BA_SEQSHIFT; 719 if ((ioflag & IO_SYNC) && !DOINGASYNC(vp)) 720 flags |= IO_SYNC; 721 flags |= BA_UNMAPPED; 722 723 for (error = 0; uio->uio_resid > 0;) { 724 lbn = lblkno(fs, uio->uio_offset); 725 blkoffset = blkoff(fs, uio->uio_offset); 726 xfersize = fs->fs_bsize - blkoffset; 727 if (uio->uio_resid < xfersize) 728 xfersize = uio->uio_resid; 729 if (uio->uio_offset + xfersize > ip->i_size) 730 vnode_pager_setsize(vp, uio->uio_offset + xfersize); 731 732 /* 733 * We must perform a read-before-write if the transfer size 734 * does not cover the entire buffer. 735 */ 736 if (fs->fs_bsize > xfersize) 737 flags |= BA_CLRBUF; 738 else 739 flags &= ~BA_CLRBUF; 740 /* XXX is uio->uio_offset the right thing here? */ 741 error = UFS_BALLOC(vp, uio->uio_offset, xfersize, 742 ap->a_cred, flags, &bp); 743 if (error != 0) { 744 vnode_pager_setsize(vp, ip->i_size); 745 break; 746 } 747 if (ioflag & IO_DIRECT) 748 bp->b_flags |= B_DIRECT; 749 if ((ioflag & (IO_SYNC|IO_INVAL)) == (IO_SYNC|IO_INVAL)) 750 bp->b_flags |= B_NOCACHE; 751 752 if (uio->uio_offset + xfersize > ip->i_size) { 753 ip->i_size = uio->uio_offset + xfersize; 754 DIP_SET(ip, i_size, ip->i_size); 755 } 756 757 size = blksize(fs, ip, lbn) - bp->b_resid; 758 if (size < xfersize) 759 xfersize = size; 760 761 if ((bp->b_flags & B_UNMAPPED) == 0) { 762 error = vn_io_fault_uiomove((char *)bp->b_data + 763 blkoffset, (int)xfersize, uio); 764 } else { 765 error = vn_io_fault_pgmove(bp->b_pages, blkoffset, 766 (int)xfersize, uio); 767 } 768 /* 769 * If the buffer is not already filled and we encounter an 770 * error while trying to fill it, we have to clear out any 771 * garbage data from the pages instantiated for the buffer. 772 * If we do not, a failed uiomove() during a write can leave 773 * the prior contents of the pages exposed to a userland mmap. 774 * 775 * Note that we need only clear buffers with a transfer size 776 * equal to the block size because buffers with a shorter 777 * transfer size were cleared above by the call to UFS_BALLOC() 778 * with the BA_CLRBUF flag set. 779 * 780 * If the source region for uiomove identically mmaps the 781 * buffer, uiomove() performed the NOP copy, and the buffer 782 * content remains valid because the page fault handler 783 * validated the pages. 784 */ 785 if (error != 0 && (bp->b_flags & B_CACHE) == 0 && 786 fs->fs_bsize == xfersize) 787 vfs_bio_clrbuf(bp); 788 if ((ioflag & (IO_VMIO|IO_DIRECT)) && 789 (LIST_EMPTY(&bp->b_dep))) { 790 bp->b_flags |= B_RELBUF; 791 } 792 793 /* 794 * If IO_SYNC each buffer is written synchronously. Otherwise 795 * if we have a severe page deficiency write the buffer 796 * asynchronously. Otherwise try to cluster, and if that 797 * doesn't do it then either do an async write (if O_DIRECT), 798 * or a delayed write (if not). 799 */ 800 if (ioflag & IO_SYNC) { 801 (void)bwrite(bp); 802 } else if (vm_page_count_severe() || 803 buf_dirty_count_severe() || 804 (ioflag & IO_ASYNC)) { 805 bp->b_flags |= B_CLUSTEROK; 806 bawrite(bp); 807 } else if (xfersize + blkoffset == fs->fs_bsize) { 808 if ((vp->v_mount->mnt_flag & MNT_NOCLUSTERW) == 0) { 809 bp->b_flags |= B_CLUSTEROK; 810 cluster_write(vp, bp, ip->i_size, seqcount, 811 GB_UNMAPPED); 812 } else { 813 bawrite(bp); 814 } 815 } else if (ioflag & IO_DIRECT) { 816 bp->b_flags |= B_CLUSTEROK; 817 bawrite(bp); 818 } else { 819 bp->b_flags |= B_CLUSTEROK; 820 bdwrite(bp); 821 } 822 if (error || xfersize == 0) 823 break; 824 ip->i_flag |= IN_CHANGE | IN_UPDATE; 825 } 826 /* 827 * If we successfully wrote any data, and we are not the superuser 828 * we clear the setuid and setgid bits as a precaution against 829 * tampering. 830 */ 831 if ((ip->i_mode & (ISUID | ISGID)) && resid > uio->uio_resid && 832 ap->a_cred) { 833 if (priv_check_cred(ap->a_cred, PRIV_VFS_RETAINSUGID, 0)) { 834 ip->i_mode &= ~(ISUID | ISGID); 835 DIP_SET(ip, i_mode, ip->i_mode); 836 } 837 } 838 if (error) { 839 if (ioflag & IO_UNIT) { 840 (void)ffs_truncate(vp, osize, 841 IO_NORMAL | (ioflag & IO_SYNC), ap->a_cred); 842 uio->uio_offset -= resid - uio->uio_resid; 843 uio->uio_resid = resid; 844 } 845 } else if (resid > uio->uio_resid && (ioflag & IO_SYNC)) 846 error = ffs_update(vp, 1); 847 return (error); 848 } 849 850 /* 851 * Extended attribute area reading. 852 */ 853 static int 854 ffs_extread(struct vnode *vp, struct uio *uio, int ioflag) 855 { 856 struct inode *ip; 857 struct ufs2_dinode *dp; 858 struct fs *fs; 859 struct buf *bp; 860 ufs_lbn_t lbn, nextlbn; 861 off_t bytesinfile; 862 long size, xfersize, blkoffset; 863 ssize_t orig_resid; 864 int error; 865 866 ip = VTOI(vp); 867 fs = ip->i_fs; 868 dp = ip->i_din2; 869 870 #ifdef INVARIANTS 871 if (uio->uio_rw != UIO_READ || fs->fs_magic != FS_UFS2_MAGIC) 872 panic("ffs_extread: mode"); 873 874 #endif 875 orig_resid = uio->uio_resid; 876 KASSERT(orig_resid >= 0, ("ffs_extread: uio->uio_resid < 0")); 877 if (orig_resid == 0) 878 return (0); 879 KASSERT(uio->uio_offset >= 0, ("ffs_extread: uio->uio_offset < 0")); 880 881 for (error = 0, bp = NULL; uio->uio_resid > 0; bp = NULL) { 882 if ((bytesinfile = dp->di_extsize - uio->uio_offset) <= 0) 883 break; 884 lbn = lblkno(fs, uio->uio_offset); 885 nextlbn = lbn + 1; 886 887 /* 888 * size of buffer. The buffer representing the 889 * end of the file is rounded up to the size of 890 * the block type ( fragment or full block, 891 * depending ). 892 */ 893 size = sblksize(fs, dp->di_extsize, lbn); 894 blkoffset = blkoff(fs, uio->uio_offset); 895 896 /* 897 * The amount we want to transfer in this iteration is 898 * one FS block less the amount of the data before 899 * our startpoint (duh!) 900 */ 901 xfersize = fs->fs_bsize - blkoffset; 902 903 /* 904 * But if we actually want less than the block, 905 * or the file doesn't have a whole block more of data, 906 * then use the lesser number. 907 */ 908 if (uio->uio_resid < xfersize) 909 xfersize = uio->uio_resid; 910 if (bytesinfile < xfersize) 911 xfersize = bytesinfile; 912 913 if (lblktosize(fs, nextlbn) >= dp->di_extsize) { 914 /* 915 * Don't do readahead if this is the end of the info. 916 */ 917 error = bread(vp, -1 - lbn, size, NOCRED, &bp); 918 } else { 919 /* 920 * If we have a second block, then 921 * fire off a request for a readahead 922 * as well as a read. Note that the 4th and 5th 923 * arguments point to arrays of the size specified in 924 * the 6th argument. 925 */ 926 u_int nextsize = sblksize(fs, dp->di_extsize, nextlbn); 927 928 nextlbn = -1 - nextlbn; 929 error = breadn(vp, -1 - lbn, 930 size, &nextlbn, &nextsize, 1, NOCRED, &bp); 931 } 932 if (error) { 933 brelse(bp); 934 bp = NULL; 935 break; 936 } 937 938 /* 939 * If IO_DIRECT then set B_DIRECT for the buffer. This 940 * will cause us to attempt to release the buffer later on 941 * and will cause the buffer cache to attempt to free the 942 * underlying pages. 943 */ 944 if (ioflag & IO_DIRECT) 945 bp->b_flags |= B_DIRECT; 946 947 /* 948 * We should only get non-zero b_resid when an I/O error 949 * has occurred, which should cause us to break above. 950 * However, if the short read did not cause an error, 951 * then we want to ensure that we do not uiomove bad 952 * or uninitialized data. 953 */ 954 size -= bp->b_resid; 955 if (size < xfersize) { 956 if (size == 0) 957 break; 958 xfersize = size; 959 } 960 961 error = uiomove((char *)bp->b_data + blkoffset, 962 (int)xfersize, uio); 963 if (error) 964 break; 965 966 if ((ioflag & (IO_VMIO|IO_DIRECT)) && 967 (LIST_EMPTY(&bp->b_dep))) { 968 /* 969 * If there are no dependencies, and it's VMIO, 970 * then we don't need the buf, mark it available 971 * for freeing. For non-direct VMIO reads, the VM 972 * has the data. 973 */ 974 bp->b_flags |= B_RELBUF; 975 brelse(bp); 976 } else { 977 /* 978 * Otherwise let whoever 979 * made the request take care of 980 * freeing it. We just queue 981 * it onto another list. 982 */ 983 bqrelse(bp); 984 } 985 } 986 987 /* 988 * This can only happen in the case of an error 989 * because the loop above resets bp to NULL on each iteration 990 * and on normal completion has not set a new value into it. 991 * so it must have come from a 'break' statement 992 */ 993 if (bp != NULL) { 994 if ((ioflag & (IO_VMIO|IO_DIRECT)) && 995 (LIST_EMPTY(&bp->b_dep))) { 996 bp->b_flags |= B_RELBUF; 997 brelse(bp); 998 } else { 999 bqrelse(bp); 1000 } 1001 } 1002 return (error); 1003 } 1004 1005 /* 1006 * Extended attribute area writing. 1007 */ 1008 static int 1009 ffs_extwrite(struct vnode *vp, struct uio *uio, int ioflag, struct ucred *ucred) 1010 { 1011 struct inode *ip; 1012 struct ufs2_dinode *dp; 1013 struct fs *fs; 1014 struct buf *bp; 1015 ufs_lbn_t lbn; 1016 off_t osize; 1017 ssize_t resid; 1018 int blkoffset, error, flags, size, xfersize; 1019 1020 ip = VTOI(vp); 1021 fs = ip->i_fs; 1022 dp = ip->i_din2; 1023 1024 #ifdef INVARIANTS 1025 if (uio->uio_rw != UIO_WRITE || fs->fs_magic != FS_UFS2_MAGIC) 1026 panic("ffs_extwrite: mode"); 1027 #endif 1028 1029 if (ioflag & IO_APPEND) 1030 uio->uio_offset = dp->di_extsize; 1031 KASSERT(uio->uio_offset >= 0, ("ffs_extwrite: uio->uio_offset < 0")); 1032 KASSERT(uio->uio_resid >= 0, ("ffs_extwrite: uio->uio_resid < 0")); 1033 if ((uoff_t)uio->uio_offset + uio->uio_resid > NXADDR * fs->fs_bsize) 1034 return (EFBIG); 1035 1036 resid = uio->uio_resid; 1037 osize = dp->di_extsize; 1038 flags = IO_EXT; 1039 if ((ioflag & IO_SYNC) && !DOINGASYNC(vp)) 1040 flags |= IO_SYNC; 1041 1042 for (error = 0; uio->uio_resid > 0;) { 1043 lbn = lblkno(fs, uio->uio_offset); 1044 blkoffset = blkoff(fs, uio->uio_offset); 1045 xfersize = fs->fs_bsize - blkoffset; 1046 if (uio->uio_resid < xfersize) 1047 xfersize = uio->uio_resid; 1048 1049 /* 1050 * We must perform a read-before-write if the transfer size 1051 * does not cover the entire buffer. 1052 */ 1053 if (fs->fs_bsize > xfersize) 1054 flags |= BA_CLRBUF; 1055 else 1056 flags &= ~BA_CLRBUF; 1057 error = UFS_BALLOC(vp, uio->uio_offset, xfersize, 1058 ucred, flags, &bp); 1059 if (error != 0) 1060 break; 1061 /* 1062 * If the buffer is not valid we have to clear out any 1063 * garbage data from the pages instantiated for the buffer. 1064 * If we do not, a failed uiomove() during a write can leave 1065 * the prior contents of the pages exposed to a userland 1066 * mmap(). XXX deal with uiomove() errors a better way. 1067 */ 1068 if ((bp->b_flags & B_CACHE) == 0 && fs->fs_bsize <= xfersize) 1069 vfs_bio_clrbuf(bp); 1070 if (ioflag & IO_DIRECT) 1071 bp->b_flags |= B_DIRECT; 1072 1073 if (uio->uio_offset + xfersize > dp->di_extsize) 1074 dp->di_extsize = uio->uio_offset + xfersize; 1075 1076 size = sblksize(fs, dp->di_extsize, lbn) - bp->b_resid; 1077 if (size < xfersize) 1078 xfersize = size; 1079 1080 error = 1081 uiomove((char *)bp->b_data + blkoffset, (int)xfersize, uio); 1082 if ((ioflag & (IO_VMIO|IO_DIRECT)) && 1083 (LIST_EMPTY(&bp->b_dep))) { 1084 bp->b_flags |= B_RELBUF; 1085 } 1086 1087 /* 1088 * If IO_SYNC each buffer is written synchronously. Otherwise 1089 * if we have a severe page deficiency write the buffer 1090 * asynchronously. Otherwise try to cluster, and if that 1091 * doesn't do it then either do an async write (if O_DIRECT), 1092 * or a delayed write (if not). 1093 */ 1094 if (ioflag & IO_SYNC) { 1095 (void)bwrite(bp); 1096 } else if (vm_page_count_severe() || 1097 buf_dirty_count_severe() || 1098 xfersize + blkoffset == fs->fs_bsize || 1099 (ioflag & (IO_ASYNC | IO_DIRECT))) 1100 bawrite(bp); 1101 else 1102 bdwrite(bp); 1103 if (error || xfersize == 0) 1104 break; 1105 ip->i_flag |= IN_CHANGE; 1106 } 1107 /* 1108 * If we successfully wrote any data, and we are not the superuser 1109 * we clear the setuid and setgid bits as a precaution against 1110 * tampering. 1111 */ 1112 if ((ip->i_mode & (ISUID | ISGID)) && resid > uio->uio_resid && ucred) { 1113 if (priv_check_cred(ucred, PRIV_VFS_RETAINSUGID, 0)) { 1114 ip->i_mode &= ~(ISUID | ISGID); 1115 dp->di_mode = ip->i_mode; 1116 } 1117 } 1118 if (error) { 1119 if (ioflag & IO_UNIT) { 1120 (void)ffs_truncate(vp, osize, 1121 IO_EXT | (ioflag&IO_SYNC), ucred); 1122 uio->uio_offset -= resid - uio->uio_resid; 1123 uio->uio_resid = resid; 1124 } 1125 } else if (resid > uio->uio_resid && (ioflag & IO_SYNC)) 1126 error = ffs_update(vp, 1); 1127 return (error); 1128 } 1129 1130 1131 /* 1132 * Vnode operating to retrieve a named extended attribute. 1133 * 1134 * Locate a particular EA (nspace:name) in the area (ptr:length), and return 1135 * the length of the EA, and possibly the pointer to the entry and to the data. 1136 */ 1137 static int 1138 ffs_findextattr(u_char *ptr, u_int length, int nspace, const char *name, u_char **eap, u_char **eac) 1139 { 1140 u_char *p, *pe, *pn, *p0; 1141 int eapad1, eapad2, ealength, ealen, nlen; 1142 uint32_t ul; 1143 1144 pe = ptr + length; 1145 nlen = strlen(name); 1146 1147 for (p = ptr; p < pe; p = pn) { 1148 p0 = p; 1149 bcopy(p, &ul, sizeof(ul)); 1150 pn = p + ul; 1151 /* make sure this entry is complete */ 1152 if (pn > pe) 1153 break; 1154 p += sizeof(uint32_t); 1155 if (*p != nspace) 1156 continue; 1157 p++; 1158 eapad2 = *p++; 1159 if (*p != nlen) 1160 continue; 1161 p++; 1162 if (bcmp(p, name, nlen)) 1163 continue; 1164 ealength = sizeof(uint32_t) + 3 + nlen; 1165 eapad1 = 8 - (ealength % 8); 1166 if (eapad1 == 8) 1167 eapad1 = 0; 1168 ealength += eapad1; 1169 ealen = ul - ealength - eapad2; 1170 p += nlen + eapad1; 1171 if (eap != NULL) 1172 *eap = p0; 1173 if (eac != NULL) 1174 *eac = p; 1175 return (ealen); 1176 } 1177 return(-1); 1178 } 1179 1180 static int 1181 ffs_rdextattr(u_char **p, struct vnode *vp, struct thread *td, int extra) 1182 { 1183 struct inode *ip; 1184 struct ufs2_dinode *dp; 1185 struct fs *fs; 1186 struct uio luio; 1187 struct iovec liovec; 1188 u_int easize; 1189 int error; 1190 u_char *eae; 1191 1192 ip = VTOI(vp); 1193 fs = ip->i_fs; 1194 dp = ip->i_din2; 1195 easize = dp->di_extsize; 1196 if ((uoff_t)easize + extra > NXADDR * fs->fs_bsize) 1197 return (EFBIG); 1198 1199 eae = malloc(easize + extra, M_TEMP, M_WAITOK); 1200 1201 liovec.iov_base = eae; 1202 liovec.iov_len = easize; 1203 luio.uio_iov = &liovec; 1204 luio.uio_iovcnt = 1; 1205 luio.uio_offset = 0; 1206 luio.uio_resid = easize; 1207 luio.uio_segflg = UIO_SYSSPACE; 1208 luio.uio_rw = UIO_READ; 1209 luio.uio_td = td; 1210 1211 error = ffs_extread(vp, &luio, IO_EXT | IO_SYNC); 1212 if (error) { 1213 free(eae, M_TEMP); 1214 return(error); 1215 } 1216 *p = eae; 1217 return (0); 1218 } 1219 1220 static void 1221 ffs_lock_ea(struct vnode *vp) 1222 { 1223 struct inode *ip; 1224 1225 ip = VTOI(vp); 1226 VI_LOCK(vp); 1227 while (ip->i_flag & IN_EA_LOCKED) { 1228 ip->i_flag |= IN_EA_LOCKWAIT; 1229 msleep(&ip->i_ea_refs, &vp->v_interlock, PINOD + 2, "ufs_ea", 1230 0); 1231 } 1232 ip->i_flag |= IN_EA_LOCKED; 1233 VI_UNLOCK(vp); 1234 } 1235 1236 static void 1237 ffs_unlock_ea(struct vnode *vp) 1238 { 1239 struct inode *ip; 1240 1241 ip = VTOI(vp); 1242 VI_LOCK(vp); 1243 if (ip->i_flag & IN_EA_LOCKWAIT) 1244 wakeup(&ip->i_ea_refs); 1245 ip->i_flag &= ~(IN_EA_LOCKED | IN_EA_LOCKWAIT); 1246 VI_UNLOCK(vp); 1247 } 1248 1249 static int 1250 ffs_open_ea(struct vnode *vp, struct ucred *cred, struct thread *td) 1251 { 1252 struct inode *ip; 1253 struct ufs2_dinode *dp; 1254 int error; 1255 1256 ip = VTOI(vp); 1257 1258 ffs_lock_ea(vp); 1259 if (ip->i_ea_area != NULL) { 1260 ip->i_ea_refs++; 1261 ffs_unlock_ea(vp); 1262 return (0); 1263 } 1264 dp = ip->i_din2; 1265 error = ffs_rdextattr(&ip->i_ea_area, vp, td, 0); 1266 if (error) { 1267 ffs_unlock_ea(vp); 1268 return (error); 1269 } 1270 ip->i_ea_len = dp->di_extsize; 1271 ip->i_ea_error = 0; 1272 ip->i_ea_refs++; 1273 ffs_unlock_ea(vp); 1274 return (0); 1275 } 1276 1277 /* 1278 * Vnode extattr transaction commit/abort 1279 */ 1280 static int 1281 ffs_close_ea(struct vnode *vp, int commit, struct ucred *cred, struct thread *td) 1282 { 1283 struct inode *ip; 1284 struct uio luio; 1285 struct iovec liovec; 1286 int error; 1287 struct ufs2_dinode *dp; 1288 1289 ip = VTOI(vp); 1290 1291 ffs_lock_ea(vp); 1292 if (ip->i_ea_area == NULL) { 1293 ffs_unlock_ea(vp); 1294 return (EINVAL); 1295 } 1296 dp = ip->i_din2; 1297 error = ip->i_ea_error; 1298 if (commit && error == 0) { 1299 ASSERT_VOP_ELOCKED(vp, "ffs_close_ea commit"); 1300 if (cred == NOCRED) 1301 cred = vp->v_mount->mnt_cred; 1302 liovec.iov_base = ip->i_ea_area; 1303 liovec.iov_len = ip->i_ea_len; 1304 luio.uio_iov = &liovec; 1305 luio.uio_iovcnt = 1; 1306 luio.uio_offset = 0; 1307 luio.uio_resid = ip->i_ea_len; 1308 luio.uio_segflg = UIO_SYSSPACE; 1309 luio.uio_rw = UIO_WRITE; 1310 luio.uio_td = td; 1311 /* XXX: I'm not happy about truncating to zero size */ 1312 if (ip->i_ea_len < dp->di_extsize) 1313 error = ffs_truncate(vp, 0, IO_EXT, cred); 1314 error = ffs_extwrite(vp, &luio, IO_EXT | IO_SYNC, cred); 1315 } 1316 if (--ip->i_ea_refs == 0) { 1317 free(ip->i_ea_area, M_TEMP); 1318 ip->i_ea_area = NULL; 1319 ip->i_ea_len = 0; 1320 ip->i_ea_error = 0; 1321 } 1322 ffs_unlock_ea(vp); 1323 return (error); 1324 } 1325 1326 /* 1327 * Vnode extattr strategy routine for fifos. 1328 * 1329 * We need to check for a read or write of the external attributes. 1330 * Otherwise we just fall through and do the usual thing. 1331 */ 1332 static int 1333 ffsext_strategy(struct vop_strategy_args *ap) 1334 /* 1335 struct vop_strategy_args { 1336 struct vnodeop_desc *a_desc; 1337 struct vnode *a_vp; 1338 struct buf *a_bp; 1339 }; 1340 */ 1341 { 1342 struct vnode *vp; 1343 daddr_t lbn; 1344 1345 vp = ap->a_vp; 1346 lbn = ap->a_bp->b_lblkno; 1347 if (VTOI(vp)->i_fs->fs_magic == FS_UFS2_MAGIC && 1348 lbn < 0 && lbn >= -NXADDR) 1349 return (VOP_STRATEGY_APV(&ufs_vnodeops, ap)); 1350 if (vp->v_type == VFIFO) 1351 return (VOP_STRATEGY_APV(&ufs_fifoops, ap)); 1352 panic("spec nodes went here"); 1353 } 1354 1355 /* 1356 * Vnode extattr transaction commit/abort 1357 */ 1358 static int 1359 ffs_openextattr(struct vop_openextattr_args *ap) 1360 /* 1361 struct vop_openextattr_args { 1362 struct vnodeop_desc *a_desc; 1363 struct vnode *a_vp; 1364 IN struct ucred *a_cred; 1365 IN struct thread *a_td; 1366 }; 1367 */ 1368 { 1369 1370 if (ap->a_vp->v_type == VCHR || ap->a_vp->v_type == VBLK) 1371 return (EOPNOTSUPP); 1372 1373 return (ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td)); 1374 } 1375 1376 1377 /* 1378 * Vnode extattr transaction commit/abort 1379 */ 1380 static int 1381 ffs_closeextattr(struct vop_closeextattr_args *ap) 1382 /* 1383 struct vop_closeextattr_args { 1384 struct vnodeop_desc *a_desc; 1385 struct vnode *a_vp; 1386 int a_commit; 1387 IN struct ucred *a_cred; 1388 IN struct thread *a_td; 1389 }; 1390 */ 1391 { 1392 1393 if (ap->a_vp->v_type == VCHR || ap->a_vp->v_type == VBLK) 1394 return (EOPNOTSUPP); 1395 1396 if (ap->a_commit && (ap->a_vp->v_mount->mnt_flag & MNT_RDONLY)) 1397 return (EROFS); 1398 1399 return (ffs_close_ea(ap->a_vp, ap->a_commit, ap->a_cred, ap->a_td)); 1400 } 1401 1402 /* 1403 * Vnode operation to remove a named attribute. 1404 */ 1405 static int 1406 ffs_deleteextattr(struct vop_deleteextattr_args *ap) 1407 /* 1408 vop_deleteextattr { 1409 IN struct vnode *a_vp; 1410 IN int a_attrnamespace; 1411 IN const char *a_name; 1412 IN struct ucred *a_cred; 1413 IN struct thread *a_td; 1414 }; 1415 */ 1416 { 1417 struct inode *ip; 1418 struct fs *fs; 1419 uint32_t ealength, ul; 1420 int ealen, olen, eapad1, eapad2, error, i, easize; 1421 u_char *eae, *p; 1422 1423 ip = VTOI(ap->a_vp); 1424 fs = ip->i_fs; 1425 1426 if (ap->a_vp->v_type == VCHR || ap->a_vp->v_type == VBLK) 1427 return (EOPNOTSUPP); 1428 1429 if (strlen(ap->a_name) == 0) 1430 return (EINVAL); 1431 1432 if (ap->a_vp->v_mount->mnt_flag & MNT_RDONLY) 1433 return (EROFS); 1434 1435 error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace, 1436 ap->a_cred, ap->a_td, VWRITE); 1437 if (error) { 1438 1439 /* 1440 * ffs_lock_ea is not needed there, because the vnode 1441 * must be exclusively locked. 1442 */ 1443 if (ip->i_ea_area != NULL && ip->i_ea_error == 0) 1444 ip->i_ea_error = error; 1445 return (error); 1446 } 1447 1448 error = ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td); 1449 if (error) 1450 return (error); 1451 1452 ealength = eapad1 = ealen = eapad2 = 0; 1453 1454 eae = malloc(ip->i_ea_len, M_TEMP, M_WAITOK); 1455 bcopy(ip->i_ea_area, eae, ip->i_ea_len); 1456 easize = ip->i_ea_len; 1457 1458 olen = ffs_findextattr(eae, easize, ap->a_attrnamespace, ap->a_name, 1459 &p, NULL); 1460 if (olen == -1) { 1461 /* delete but nonexistent */ 1462 free(eae, M_TEMP); 1463 ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td); 1464 return(ENOATTR); 1465 } 1466 bcopy(p, &ul, sizeof ul); 1467 i = p - eae + ul; 1468 if (ul != ealength) { 1469 bcopy(p + ul, p + ealength, easize - i); 1470 easize += (ealength - ul); 1471 } 1472 if (easize > NXADDR * fs->fs_bsize) { 1473 free(eae, M_TEMP); 1474 ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td); 1475 if (ip->i_ea_area != NULL && ip->i_ea_error == 0) 1476 ip->i_ea_error = ENOSPC; 1477 return(ENOSPC); 1478 } 1479 p = ip->i_ea_area; 1480 ip->i_ea_area = eae; 1481 ip->i_ea_len = easize; 1482 free(p, M_TEMP); 1483 error = ffs_close_ea(ap->a_vp, 1, ap->a_cred, ap->a_td); 1484 return(error); 1485 } 1486 1487 /* 1488 * Vnode operation to retrieve a named extended attribute. 1489 */ 1490 static int 1491 ffs_getextattr(struct vop_getextattr_args *ap) 1492 /* 1493 vop_getextattr { 1494 IN struct vnode *a_vp; 1495 IN int a_attrnamespace; 1496 IN const char *a_name; 1497 INOUT struct uio *a_uio; 1498 OUT size_t *a_size; 1499 IN struct ucred *a_cred; 1500 IN struct thread *a_td; 1501 }; 1502 */ 1503 { 1504 struct inode *ip; 1505 u_char *eae, *p; 1506 unsigned easize; 1507 int error, ealen; 1508 1509 ip = VTOI(ap->a_vp); 1510 1511 if (ap->a_vp->v_type == VCHR || ap->a_vp->v_type == VBLK) 1512 return (EOPNOTSUPP); 1513 1514 error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace, 1515 ap->a_cred, ap->a_td, VREAD); 1516 if (error) 1517 return (error); 1518 1519 error = ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td); 1520 if (error) 1521 return (error); 1522 1523 eae = ip->i_ea_area; 1524 easize = ip->i_ea_len; 1525 1526 ealen = ffs_findextattr(eae, easize, ap->a_attrnamespace, ap->a_name, 1527 NULL, &p); 1528 if (ealen >= 0) { 1529 error = 0; 1530 if (ap->a_size != NULL) 1531 *ap->a_size = ealen; 1532 else if (ap->a_uio != NULL) 1533 error = uiomove(p, ealen, ap->a_uio); 1534 } else 1535 error = ENOATTR; 1536 1537 ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td); 1538 return(error); 1539 } 1540 1541 /* 1542 * Vnode operation to retrieve extended attributes on a vnode. 1543 */ 1544 static int 1545 ffs_listextattr(struct vop_listextattr_args *ap) 1546 /* 1547 vop_listextattr { 1548 IN struct vnode *a_vp; 1549 IN int a_attrnamespace; 1550 INOUT struct uio *a_uio; 1551 OUT size_t *a_size; 1552 IN struct ucred *a_cred; 1553 IN struct thread *a_td; 1554 }; 1555 */ 1556 { 1557 struct inode *ip; 1558 u_char *eae, *p, *pe, *pn; 1559 unsigned easize; 1560 uint32_t ul; 1561 int error, ealen; 1562 1563 ip = VTOI(ap->a_vp); 1564 1565 if (ap->a_vp->v_type == VCHR || ap->a_vp->v_type == VBLK) 1566 return (EOPNOTSUPP); 1567 1568 error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace, 1569 ap->a_cred, ap->a_td, VREAD); 1570 if (error) 1571 return (error); 1572 1573 error = ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td); 1574 if (error) 1575 return (error); 1576 eae = ip->i_ea_area; 1577 easize = ip->i_ea_len; 1578 1579 error = 0; 1580 if (ap->a_size != NULL) 1581 *ap->a_size = 0; 1582 pe = eae + easize; 1583 for(p = eae; error == 0 && p < pe; p = pn) { 1584 bcopy(p, &ul, sizeof(ul)); 1585 pn = p + ul; 1586 if (pn > pe) 1587 break; 1588 p += sizeof(ul); 1589 if (*p++ != ap->a_attrnamespace) 1590 continue; 1591 p++; /* pad2 */ 1592 ealen = *p; 1593 if (ap->a_size != NULL) { 1594 *ap->a_size += ealen + 1; 1595 } else if (ap->a_uio != NULL) { 1596 error = uiomove(p, ealen + 1, ap->a_uio); 1597 } 1598 } 1599 ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td); 1600 return(error); 1601 } 1602 1603 /* 1604 * Vnode operation to set a named attribute. 1605 */ 1606 static int 1607 ffs_setextattr(struct vop_setextattr_args *ap) 1608 /* 1609 vop_setextattr { 1610 IN struct vnode *a_vp; 1611 IN int a_attrnamespace; 1612 IN const char *a_name; 1613 INOUT struct uio *a_uio; 1614 IN struct ucred *a_cred; 1615 IN struct thread *a_td; 1616 }; 1617 */ 1618 { 1619 struct inode *ip; 1620 struct fs *fs; 1621 uint32_t ealength, ul; 1622 ssize_t ealen; 1623 int olen, eapad1, eapad2, error, i, easize; 1624 u_char *eae, *p; 1625 1626 ip = VTOI(ap->a_vp); 1627 fs = ip->i_fs; 1628 1629 if (ap->a_vp->v_type == VCHR || ap->a_vp->v_type == VBLK) 1630 return (EOPNOTSUPP); 1631 1632 if (strlen(ap->a_name) == 0) 1633 return (EINVAL); 1634 1635 /* XXX Now unsupported API to delete EAs using NULL uio. */ 1636 if (ap->a_uio == NULL) 1637 return (EOPNOTSUPP); 1638 1639 if (ap->a_vp->v_mount->mnt_flag & MNT_RDONLY) 1640 return (EROFS); 1641 1642 ealen = ap->a_uio->uio_resid; 1643 if (ealen < 0 || ealen > lblktosize(fs, NXADDR)) 1644 return (EINVAL); 1645 1646 error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace, 1647 ap->a_cred, ap->a_td, VWRITE); 1648 if (error) { 1649 1650 /* 1651 * ffs_lock_ea is not needed there, because the vnode 1652 * must be exclusively locked. 1653 */ 1654 if (ip->i_ea_area != NULL && ip->i_ea_error == 0) 1655 ip->i_ea_error = error; 1656 return (error); 1657 } 1658 1659 error = ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td); 1660 if (error) 1661 return (error); 1662 1663 ealength = sizeof(uint32_t) + 3 + strlen(ap->a_name); 1664 eapad1 = 8 - (ealength % 8); 1665 if (eapad1 == 8) 1666 eapad1 = 0; 1667 eapad2 = 8 - (ealen % 8); 1668 if (eapad2 == 8) 1669 eapad2 = 0; 1670 ealength += eapad1 + ealen + eapad2; 1671 1672 eae = malloc(ip->i_ea_len + ealength, M_TEMP, M_WAITOK); 1673 bcopy(ip->i_ea_area, eae, ip->i_ea_len); 1674 easize = ip->i_ea_len; 1675 1676 olen = ffs_findextattr(eae, easize, 1677 ap->a_attrnamespace, ap->a_name, &p, NULL); 1678 if (olen == -1) { 1679 /* new, append at end */ 1680 p = eae + easize; 1681 easize += ealength; 1682 } else { 1683 bcopy(p, &ul, sizeof ul); 1684 i = p - eae + ul; 1685 if (ul != ealength) { 1686 bcopy(p + ul, p + ealength, easize - i); 1687 easize += (ealength - ul); 1688 } 1689 } 1690 if (easize > lblktosize(fs, NXADDR)) { 1691 free(eae, M_TEMP); 1692 ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td); 1693 if (ip->i_ea_area != NULL && ip->i_ea_error == 0) 1694 ip->i_ea_error = ENOSPC; 1695 return(ENOSPC); 1696 } 1697 bcopy(&ealength, p, sizeof(ealength)); 1698 p += sizeof(ealength); 1699 *p++ = ap->a_attrnamespace; 1700 *p++ = eapad2; 1701 *p++ = strlen(ap->a_name); 1702 strcpy(p, ap->a_name); 1703 p += strlen(ap->a_name); 1704 bzero(p, eapad1); 1705 p += eapad1; 1706 error = uiomove(p, ealen, ap->a_uio); 1707 if (error) { 1708 free(eae, M_TEMP); 1709 ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td); 1710 if (ip->i_ea_area != NULL && ip->i_ea_error == 0) 1711 ip->i_ea_error = error; 1712 return(error); 1713 } 1714 p += ealen; 1715 bzero(p, eapad2); 1716 1717 p = ip->i_ea_area; 1718 ip->i_ea_area = eae; 1719 ip->i_ea_len = easize; 1720 free(p, M_TEMP); 1721 error = ffs_close_ea(ap->a_vp, 1, ap->a_cred, ap->a_td); 1722 return(error); 1723 } 1724 1725 /* 1726 * Vnode pointer to File handle 1727 */ 1728 static int 1729 ffs_vptofh(struct vop_vptofh_args *ap) 1730 /* 1731 vop_vptofh { 1732 IN struct vnode *a_vp; 1733 IN struct fid *a_fhp; 1734 }; 1735 */ 1736 { 1737 struct inode *ip; 1738 struct ufid *ufhp; 1739 1740 ip = VTOI(ap->a_vp); 1741 ufhp = (struct ufid *)ap->a_fhp; 1742 ufhp->ufid_len = sizeof(struct ufid); 1743 ufhp->ufid_ino = ip->i_number; 1744 ufhp->ufid_gen = ip->i_gen; 1745 return (0); 1746 } 1747