1 /*- 2 * Copyright (c) 2002, 2003 Networks Associates Technology, Inc. 3 * All rights reserved. 4 * 5 * This software was developed for the FreeBSD Project by Marshall 6 * Kirk McKusick and Network Associates Laboratories, the Security 7 * Research Division of Network Associates, Inc. under DARPA/SPAWAR 8 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS 9 * research program 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * Copyright (c) 1982, 1986, 1989, 1993 33 * The Regents of the University of California. All rights reserved. 34 * 35 * Redistribution and use in source and binary forms, with or without 36 * modification, are permitted provided that the following conditions 37 * are met: 38 * 1. Redistributions of source code must retain the above copyright 39 * notice, this list of conditions and the following disclaimer. 40 * 2. Redistributions in binary form must reproduce the above copyright 41 * notice, this list of conditions and the following disclaimer in the 42 * documentation and/or other materials provided with the distribution. 43 * 4. Neither the name of the University nor the names of its contributors 44 * may be used to endorse or promote products derived from this software 45 * without specific prior written permission. 46 * 47 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 48 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 49 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 50 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 51 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 52 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 53 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 54 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 55 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 56 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 57 * SUCH DAMAGE. 58 * 59 * from: @(#)ufs_readwrite.c 8.11 (Berkeley) 5/8/95 60 * from: $FreeBSD: .../ufs/ufs_readwrite.c,v 1.96 2002/08/12 09:22:11 phk ... 61 * @(#)ffs_vnops.c 8.15 (Berkeley) 5/14/95 62 */ 63 64 #include <sys/cdefs.h> 65 __FBSDID("$FreeBSD$"); 66 67 #include <sys/param.h> 68 #include <sys/bio.h> 69 #include <sys/systm.h> 70 #include <sys/buf.h> 71 #include <sys/conf.h> 72 #include <sys/extattr.h> 73 #include <sys/kernel.h> 74 #include <sys/limits.h> 75 #include <sys/malloc.h> 76 #include <sys/mount.h> 77 #include <sys/priv.h> 78 #include <sys/proc.h> 79 #include <sys/resourcevar.h> 80 #include <sys/signalvar.h> 81 #include <sys/stat.h> 82 #include <sys/vmmeter.h> 83 #include <sys/vnode.h> 84 85 #include <vm/vm.h> 86 #include <vm/vm_extern.h> 87 #include <vm/vm_object.h> 88 #include <vm/vm_page.h> 89 #include <vm/vm_pager.h> 90 #include <vm/vnode_pager.h> 91 92 #include <ufs/ufs/extattr.h> 93 #include <ufs/ufs/quota.h> 94 #include <ufs/ufs/inode.h> 95 #include <ufs/ufs/ufs_extern.h> 96 #include <ufs/ufs/ufsmount.h> 97 98 #include <ufs/ffs/fs.h> 99 #include <ufs/ffs/ffs_extern.h> 100 #include "opt_directio.h" 101 #include "opt_ffs.h" 102 103 #ifdef DIRECTIO 104 extern int ffs_rawread(struct vnode *vp, struct uio *uio, int *workdone); 105 #endif 106 static vop_fsync_t ffs_fsync; 107 static vop_lock1_t ffs_lock; 108 static vop_getpages_t ffs_getpages; 109 static vop_read_t ffs_read; 110 static vop_write_t ffs_write; 111 static int ffs_extread(struct vnode *vp, struct uio *uio, int ioflag); 112 static int ffs_extwrite(struct vnode *vp, struct uio *uio, int ioflag, 113 struct ucred *cred); 114 static vop_strategy_t ffsext_strategy; 115 static vop_closeextattr_t ffs_closeextattr; 116 static vop_deleteextattr_t ffs_deleteextattr; 117 static vop_getextattr_t ffs_getextattr; 118 static vop_listextattr_t ffs_listextattr; 119 static vop_openextattr_t ffs_openextattr; 120 static vop_setextattr_t ffs_setextattr; 121 static vop_vptofh_t ffs_vptofh; 122 123 124 /* Global vfs data structures for ufs. */ 125 struct vop_vector ffs_vnodeops1 = { 126 .vop_default = &ufs_vnodeops, 127 .vop_fsync = ffs_fsync, 128 .vop_getpages = ffs_getpages, 129 .vop_lock1 = ffs_lock, 130 .vop_read = ffs_read, 131 .vop_reallocblks = ffs_reallocblks, 132 .vop_write = ffs_write, 133 .vop_vptofh = ffs_vptofh, 134 }; 135 136 struct vop_vector ffs_fifoops1 = { 137 .vop_default = &ufs_fifoops, 138 .vop_fsync = ffs_fsync, 139 .vop_reallocblks = ffs_reallocblks, /* XXX: really ??? */ 140 .vop_vptofh = ffs_vptofh, 141 }; 142 143 /* Global vfs data structures for ufs. */ 144 struct vop_vector ffs_vnodeops2 = { 145 .vop_default = &ufs_vnodeops, 146 .vop_fsync = ffs_fsync, 147 .vop_getpages = ffs_getpages, 148 .vop_lock1 = ffs_lock, 149 .vop_read = ffs_read, 150 .vop_reallocblks = ffs_reallocblks, 151 .vop_write = ffs_write, 152 .vop_closeextattr = ffs_closeextattr, 153 .vop_deleteextattr = ffs_deleteextattr, 154 .vop_getextattr = ffs_getextattr, 155 .vop_listextattr = ffs_listextattr, 156 .vop_openextattr = ffs_openextattr, 157 .vop_setextattr = ffs_setextattr, 158 .vop_vptofh = ffs_vptofh, 159 }; 160 161 struct vop_vector ffs_fifoops2 = { 162 .vop_default = &ufs_fifoops, 163 .vop_fsync = ffs_fsync, 164 .vop_lock1 = ffs_lock, 165 .vop_reallocblks = ffs_reallocblks, 166 .vop_strategy = ffsext_strategy, 167 .vop_closeextattr = ffs_closeextattr, 168 .vop_deleteextattr = ffs_deleteextattr, 169 .vop_getextattr = ffs_getextattr, 170 .vop_listextattr = ffs_listextattr, 171 .vop_openextattr = ffs_openextattr, 172 .vop_setextattr = ffs_setextattr, 173 .vop_vptofh = ffs_vptofh, 174 }; 175 176 /* 177 * Synch an open file. 178 */ 179 /* ARGSUSED */ 180 static int 181 ffs_fsync(struct vop_fsync_args *ap) 182 { 183 int error; 184 185 error = ffs_syncvnode(ap->a_vp, ap->a_waitfor); 186 if (error) 187 return (error); 188 if (ap->a_waitfor == MNT_WAIT && 189 (ap->a_vp->v_mount->mnt_flag & MNT_SOFTDEP)) 190 error = softdep_fsync(ap->a_vp); 191 return (error); 192 } 193 194 int 195 ffs_syncvnode(struct vnode *vp, int waitfor) 196 { 197 struct inode *ip = VTOI(vp); 198 struct buf *bp; 199 struct buf *nbp; 200 int s, error, wait, passes, skipmeta; 201 ufs_lbn_t lbn; 202 203 wait = (waitfor == MNT_WAIT); 204 lbn = lblkno(ip->i_fs, (ip->i_size + ip->i_fs->fs_bsize - 1)); 205 206 /* 207 * Flush all dirty buffers associated with a vnode. 208 */ 209 passes = NIADDR + 1; 210 skipmeta = 0; 211 if (wait) 212 skipmeta = 1; 213 s = splbio(); 214 VI_LOCK(vp); 215 loop: 216 TAILQ_FOREACH(bp, &vp->v_bufobj.bo_dirty.bv_hd, b_bobufs) 217 bp->b_vflags &= ~BV_SCANNED; 218 TAILQ_FOREACH_SAFE(bp, &vp->v_bufobj.bo_dirty.bv_hd, b_bobufs, nbp) { 219 /* 220 * Reasons to skip this buffer: it has already been considered 221 * on this pass, this pass is the first time through on a 222 * synchronous flush request and the buffer being considered 223 * is metadata, the buffer has dependencies that will cause 224 * it to be redirtied and it has not already been deferred, 225 * or it is already being written. 226 */ 227 if ((bp->b_vflags & BV_SCANNED) != 0) 228 continue; 229 bp->b_vflags |= BV_SCANNED; 230 if ((skipmeta == 1 && bp->b_lblkno < 0)) 231 continue; 232 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL)) 233 continue; 234 VI_UNLOCK(vp); 235 if (!wait && !LIST_EMPTY(&bp->b_dep) && 236 (bp->b_flags & B_DEFERRED) == 0 && 237 buf_countdeps(bp, 0)) { 238 bp->b_flags |= B_DEFERRED; 239 BUF_UNLOCK(bp); 240 VI_LOCK(vp); 241 continue; 242 } 243 if ((bp->b_flags & B_DELWRI) == 0) 244 panic("ffs_fsync: not dirty"); 245 /* 246 * If this is a synchronous flush request, or it is not a 247 * file or device, start the write on this buffer immediatly. 248 */ 249 if (wait || (vp->v_type != VREG && vp->v_type != VBLK)) { 250 251 /* 252 * On our final pass through, do all I/O synchronously 253 * so that we can find out if our flush is failing 254 * because of write errors. 255 */ 256 if (passes > 0 || !wait) { 257 if ((bp->b_flags & B_CLUSTEROK) && !wait) { 258 (void) vfs_bio_awrite(bp); 259 } else { 260 bremfree(bp); 261 splx(s); 262 (void) bawrite(bp); 263 s = splbio(); 264 } 265 } else { 266 bremfree(bp); 267 splx(s); 268 if ((error = bwrite(bp)) != 0) 269 return (error); 270 s = splbio(); 271 } 272 } else if ((vp->v_type == VREG) && (bp->b_lblkno >= lbn)) { 273 /* 274 * If the buffer is for data that has been truncated 275 * off the file, then throw it away. 276 */ 277 bremfree(bp); 278 bp->b_flags |= B_INVAL | B_NOCACHE; 279 splx(s); 280 brelse(bp); 281 s = splbio(); 282 } else 283 vfs_bio_awrite(bp); 284 285 /* 286 * Since we may have slept during the I/O, we need 287 * to start from a known point. 288 */ 289 VI_LOCK(vp); 290 nbp = TAILQ_FIRST(&vp->v_bufobj.bo_dirty.bv_hd); 291 } 292 /* 293 * If we were asked to do this synchronously, then go back for 294 * another pass, this time doing the metadata. 295 */ 296 if (skipmeta) { 297 skipmeta = 0; 298 goto loop; 299 } 300 301 if (wait) { 302 bufobj_wwait(&vp->v_bufobj, 3, 0); 303 VI_UNLOCK(vp); 304 305 /* 306 * Ensure that any filesystem metatdata associated 307 * with the vnode has been written. 308 */ 309 splx(s); 310 if ((error = softdep_sync_metadata(vp)) != 0) 311 return (error); 312 s = splbio(); 313 314 VI_LOCK(vp); 315 if (vp->v_bufobj.bo_dirty.bv_cnt > 0) { 316 /* 317 * Block devices associated with filesystems may 318 * have new I/O requests posted for them even if 319 * the vnode is locked, so no amount of trying will 320 * get them clean. Thus we give block devices a 321 * good effort, then just give up. For all other file 322 * types, go around and try again until it is clean. 323 */ 324 if (passes > 0) { 325 passes -= 1; 326 goto loop; 327 } 328 #ifdef DIAGNOSTIC 329 if (!vn_isdisk(vp, NULL)) 330 vprint("ffs_fsync: dirty", vp); 331 #endif 332 } 333 } 334 VI_UNLOCK(vp); 335 splx(s); 336 return (ffs_update(vp, wait)); 337 } 338 339 static int 340 ffs_lock(ap) 341 struct vop_lock1_args /* { 342 struct vnode *a_vp; 343 int a_flags; 344 struct thread *a_td; 345 char *file; 346 int line; 347 } */ *ap; 348 { 349 #ifndef NO_FFS_SNAPSHOT 350 struct vnode *vp; 351 int flags; 352 struct lock *lkp; 353 int result; 354 355 switch (ap->a_flags & LK_TYPE_MASK) { 356 case LK_SHARED: 357 case LK_UPGRADE: 358 case LK_EXCLUSIVE: 359 vp = ap->a_vp; 360 flags = ap->a_flags; 361 for (;;) { 362 /* 363 * vnode interlock must be held to ensure that 364 * the possibly external lock isn't freed, 365 * e.g. when mutating from snapshot file vnode 366 * to regular file vnode. 367 */ 368 if ((flags & LK_INTERLOCK) == 0) { 369 VI_LOCK(vp); 370 flags |= LK_INTERLOCK; 371 } 372 lkp = vp->v_vnlock; 373 result = _lockmgr(lkp, flags, VI_MTX(vp), ap->a_td, ap->a_file, ap->a_line); 374 if (lkp == vp->v_vnlock || result != 0) 375 break; 376 /* 377 * Apparent success, except that the vnode 378 * mutated between snapshot file vnode and 379 * regular file vnode while this process 380 * slept. The lock currently held is not the 381 * right lock. Release it, and try to get the 382 * new lock. 383 */ 384 (void) _lockmgr(lkp, LK_RELEASE, VI_MTX(vp), ap->a_td, ap->a_file, ap->a_line); 385 if ((flags & LK_TYPE_MASK) == LK_UPGRADE) 386 flags = (flags & ~LK_TYPE_MASK) | LK_EXCLUSIVE; 387 flags &= ~LK_INTERLOCK; 388 } 389 break; 390 default: 391 result = VOP_LOCK1_APV(&ufs_vnodeops, ap); 392 } 393 return (result); 394 #else 395 return (VOP_LOCK1_APV(&ufs_vnodeops, ap)); 396 #endif 397 } 398 399 /* 400 * Vnode op for reading. 401 */ 402 /* ARGSUSED */ 403 static int 404 ffs_read(ap) 405 struct vop_read_args /* { 406 struct vnode *a_vp; 407 struct uio *a_uio; 408 int a_ioflag; 409 struct ucred *a_cred; 410 } */ *ap; 411 { 412 struct vnode *vp; 413 struct inode *ip; 414 struct uio *uio; 415 struct fs *fs; 416 struct buf *bp; 417 ufs_lbn_t lbn, nextlbn; 418 off_t bytesinfile; 419 long size, xfersize, blkoffset; 420 int error, orig_resid; 421 int seqcount; 422 int ioflag; 423 424 vp = ap->a_vp; 425 uio = ap->a_uio; 426 ioflag = ap->a_ioflag; 427 if (ap->a_ioflag & IO_EXT) 428 #ifdef notyet 429 return (ffs_extread(vp, uio, ioflag)); 430 #else 431 panic("ffs_read+IO_EXT"); 432 #endif 433 #ifdef DIRECTIO 434 if ((ioflag & IO_DIRECT) != 0) { 435 int workdone; 436 437 error = ffs_rawread(vp, uio, &workdone); 438 if (error != 0 || workdone != 0) 439 return error; 440 } 441 #endif 442 443 seqcount = ap->a_ioflag >> IO_SEQSHIFT; 444 ip = VTOI(vp); 445 446 #ifdef DIAGNOSTIC 447 if (uio->uio_rw != UIO_READ) 448 panic("ffs_read: mode"); 449 450 if (vp->v_type == VLNK) { 451 if ((int)ip->i_size < vp->v_mount->mnt_maxsymlinklen) 452 panic("ffs_read: short symlink"); 453 } else if (vp->v_type != VREG && vp->v_type != VDIR) 454 panic("ffs_read: type %d", vp->v_type); 455 #endif 456 orig_resid = uio->uio_resid; 457 KASSERT(orig_resid >= 0, ("ffs_read: uio->uio_resid < 0")); 458 if (orig_resid == 0) 459 return (0); 460 KASSERT(uio->uio_offset >= 0, ("ffs_read: uio->uio_offset < 0")); 461 fs = ip->i_fs; 462 if (uio->uio_offset < ip->i_size && 463 uio->uio_offset >= fs->fs_maxfilesize) 464 return (EOVERFLOW); 465 466 for (error = 0, bp = NULL; uio->uio_resid > 0; bp = NULL) { 467 if ((bytesinfile = ip->i_size - uio->uio_offset) <= 0) 468 break; 469 lbn = lblkno(fs, uio->uio_offset); 470 nextlbn = lbn + 1; 471 472 /* 473 * size of buffer. The buffer representing the 474 * end of the file is rounded up to the size of 475 * the block type ( fragment or full block, 476 * depending ). 477 */ 478 size = blksize(fs, ip, lbn); 479 blkoffset = blkoff(fs, uio->uio_offset); 480 481 /* 482 * The amount we want to transfer in this iteration is 483 * one FS block less the amount of the data before 484 * our startpoint (duh!) 485 */ 486 xfersize = fs->fs_bsize - blkoffset; 487 488 /* 489 * But if we actually want less than the block, 490 * or the file doesn't have a whole block more of data, 491 * then use the lesser number. 492 */ 493 if (uio->uio_resid < xfersize) 494 xfersize = uio->uio_resid; 495 if (bytesinfile < xfersize) 496 xfersize = bytesinfile; 497 498 if (lblktosize(fs, nextlbn) >= ip->i_size) { 499 /* 500 * Don't do readahead if this is the end of the file. 501 */ 502 error = bread(vp, lbn, size, NOCRED, &bp); 503 } else if ((vp->v_mount->mnt_flag & MNT_NOCLUSTERR) == 0) { 504 /* 505 * Otherwise if we are allowed to cluster, 506 * grab as much as we can. 507 * 508 * XXX This may not be a win if we are not 509 * doing sequential access. 510 */ 511 error = cluster_read(vp, ip->i_size, lbn, 512 size, NOCRED, blkoffset + uio->uio_resid, seqcount, &bp); 513 } else if (seqcount > 1) { 514 /* 515 * If we are NOT allowed to cluster, then 516 * if we appear to be acting sequentially, 517 * fire off a request for a readahead 518 * as well as a read. Note that the 4th and 5th 519 * arguments point to arrays of the size specified in 520 * the 6th argument. 521 */ 522 int nextsize = blksize(fs, ip, nextlbn); 523 error = breadn(vp, lbn, 524 size, &nextlbn, &nextsize, 1, NOCRED, &bp); 525 } else { 526 /* 527 * Failing all of the above, just read what the 528 * user asked for. Interestingly, the same as 529 * the first option above. 530 */ 531 error = bread(vp, lbn, size, NOCRED, &bp); 532 } 533 if (error) { 534 brelse(bp); 535 bp = NULL; 536 break; 537 } 538 539 /* 540 * If IO_DIRECT then set B_DIRECT for the buffer. This 541 * will cause us to attempt to release the buffer later on 542 * and will cause the buffer cache to attempt to free the 543 * underlying pages. 544 */ 545 if (ioflag & IO_DIRECT) 546 bp->b_flags |= B_DIRECT; 547 548 /* 549 * We should only get non-zero b_resid when an I/O error 550 * has occurred, which should cause us to break above. 551 * However, if the short read did not cause an error, 552 * then we want to ensure that we do not uiomove bad 553 * or uninitialized data. 554 */ 555 size -= bp->b_resid; 556 if (size < xfersize) { 557 if (size == 0) 558 break; 559 xfersize = size; 560 } 561 562 error = uiomove((char *)bp->b_data + blkoffset, 563 (int)xfersize, uio); 564 if (error) 565 break; 566 567 if ((ioflag & (IO_VMIO|IO_DIRECT)) && 568 (LIST_EMPTY(&bp->b_dep))) { 569 /* 570 * If there are no dependencies, and it's VMIO, 571 * then we don't need the buf, mark it available 572 * for freeing. The VM has the data. 573 */ 574 bp->b_flags |= B_RELBUF; 575 brelse(bp); 576 } else { 577 /* 578 * Otherwise let whoever 579 * made the request take care of 580 * freeing it. We just queue 581 * it onto another list. 582 */ 583 bqrelse(bp); 584 } 585 } 586 587 /* 588 * This can only happen in the case of an error 589 * because the loop above resets bp to NULL on each iteration 590 * and on normal completion has not set a new value into it. 591 * so it must have come from a 'break' statement 592 */ 593 if (bp != NULL) { 594 if ((ioflag & (IO_VMIO|IO_DIRECT)) && 595 (LIST_EMPTY(&bp->b_dep))) { 596 bp->b_flags |= B_RELBUF; 597 brelse(bp); 598 } else { 599 bqrelse(bp); 600 } 601 } 602 603 if ((error == 0 || uio->uio_resid != orig_resid) && 604 (vp->v_mount->mnt_flag & MNT_NOATIME) == 0) { 605 VI_LOCK(vp); 606 ip->i_flag |= IN_ACCESS; 607 VI_UNLOCK(vp); 608 } 609 return (error); 610 } 611 612 /* 613 * Vnode op for writing. 614 */ 615 static int 616 ffs_write(ap) 617 struct vop_write_args /* { 618 struct vnode *a_vp; 619 struct uio *a_uio; 620 int a_ioflag; 621 struct ucred *a_cred; 622 } */ *ap; 623 { 624 struct vnode *vp; 625 struct uio *uio; 626 struct inode *ip; 627 struct fs *fs; 628 struct buf *bp; 629 struct thread *td; 630 ufs_lbn_t lbn; 631 off_t osize; 632 int seqcount; 633 int blkoffset, error, flags, ioflag, resid, size, xfersize; 634 635 vp = ap->a_vp; 636 uio = ap->a_uio; 637 ioflag = ap->a_ioflag; 638 if (ap->a_ioflag & IO_EXT) 639 #ifdef notyet 640 return (ffs_extwrite(vp, uio, ioflag, ap->a_cred)); 641 #else 642 panic("ffs_write+IO_EXT"); 643 #endif 644 645 seqcount = ap->a_ioflag >> IO_SEQSHIFT; 646 ip = VTOI(vp); 647 648 #ifdef DIAGNOSTIC 649 if (uio->uio_rw != UIO_WRITE) 650 panic("ffs_write: mode"); 651 #endif 652 653 switch (vp->v_type) { 654 case VREG: 655 if (ioflag & IO_APPEND) 656 uio->uio_offset = ip->i_size; 657 if ((ip->i_flags & APPEND) && uio->uio_offset != ip->i_size) 658 return (EPERM); 659 /* FALLTHROUGH */ 660 case VLNK: 661 break; 662 case VDIR: 663 panic("ffs_write: dir write"); 664 break; 665 default: 666 panic("ffs_write: type %p %d (%d,%d)", vp, (int)vp->v_type, 667 (int)uio->uio_offset, 668 (int)uio->uio_resid 669 ); 670 } 671 672 KASSERT(uio->uio_resid >= 0, ("ffs_write: uio->uio_resid < 0")); 673 KASSERT(uio->uio_offset >= 0, ("ffs_write: uio->uio_offset < 0")); 674 fs = ip->i_fs; 675 if ((uoff_t)uio->uio_offset + uio->uio_resid > fs->fs_maxfilesize) 676 return (EFBIG); 677 /* 678 * Maybe this should be above the vnode op call, but so long as 679 * file servers have no limits, I don't think it matters. 680 */ 681 td = uio->uio_td; 682 if (vp->v_type == VREG && td != NULL) { 683 PROC_LOCK(td->td_proc); 684 if (uio->uio_offset + uio->uio_resid > 685 lim_cur(td->td_proc, RLIMIT_FSIZE)) { 686 psignal(td->td_proc, SIGXFSZ); 687 PROC_UNLOCK(td->td_proc); 688 return (EFBIG); 689 } 690 PROC_UNLOCK(td->td_proc); 691 } 692 693 resid = uio->uio_resid; 694 osize = ip->i_size; 695 if (seqcount > BA_SEQMAX) 696 flags = BA_SEQMAX << BA_SEQSHIFT; 697 else 698 flags = seqcount << BA_SEQSHIFT; 699 if ((ioflag & IO_SYNC) && !DOINGASYNC(vp)) 700 flags |= IO_SYNC; 701 702 for (error = 0; uio->uio_resid > 0;) { 703 lbn = lblkno(fs, uio->uio_offset); 704 blkoffset = blkoff(fs, uio->uio_offset); 705 xfersize = fs->fs_bsize - blkoffset; 706 if (uio->uio_resid < xfersize) 707 xfersize = uio->uio_resid; 708 if (uio->uio_offset + xfersize > ip->i_size) 709 vnode_pager_setsize(vp, uio->uio_offset + xfersize); 710 711 /* 712 * We must perform a read-before-write if the transfer size 713 * does not cover the entire buffer. 714 */ 715 if (fs->fs_bsize > xfersize) 716 flags |= BA_CLRBUF; 717 else 718 flags &= ~BA_CLRBUF; 719 /* XXX is uio->uio_offset the right thing here? */ 720 error = UFS_BALLOC(vp, uio->uio_offset, xfersize, 721 ap->a_cred, flags, &bp); 722 if (error != 0) 723 break; 724 /* 725 * If the buffer is not valid we have to clear out any 726 * garbage data from the pages instantiated for the buffer. 727 * If we do not, a failed uiomove() during a write can leave 728 * the prior contents of the pages exposed to a userland 729 * mmap(). XXX deal with uiomove() errors a better way. 730 */ 731 if ((bp->b_flags & B_CACHE) == 0 && fs->fs_bsize <= xfersize) 732 vfs_bio_clrbuf(bp); 733 if (ioflag & IO_DIRECT) 734 bp->b_flags |= B_DIRECT; 735 if ((ioflag & (IO_SYNC|IO_INVAL)) == (IO_SYNC|IO_INVAL)) 736 bp->b_flags |= B_NOCACHE; 737 738 if (uio->uio_offset + xfersize > ip->i_size) { 739 ip->i_size = uio->uio_offset + xfersize; 740 DIP_SET(ip, i_size, ip->i_size); 741 } 742 743 size = blksize(fs, ip, lbn) - bp->b_resid; 744 if (size < xfersize) 745 xfersize = size; 746 747 error = 748 uiomove((char *)bp->b_data + blkoffset, (int)xfersize, uio); 749 if ((ioflag & (IO_VMIO|IO_DIRECT)) && 750 (LIST_EMPTY(&bp->b_dep))) { 751 bp->b_flags |= B_RELBUF; 752 } 753 754 /* 755 * If IO_SYNC each buffer is written synchronously. Otherwise 756 * if we have a severe page deficiency write the buffer 757 * asynchronously. Otherwise try to cluster, and if that 758 * doesn't do it then either do an async write (if O_DIRECT), 759 * or a delayed write (if not). 760 */ 761 if (ioflag & IO_SYNC) { 762 (void)bwrite(bp); 763 } else if (vm_page_count_severe() || 764 buf_dirty_count_severe() || 765 (ioflag & IO_ASYNC)) { 766 bp->b_flags |= B_CLUSTEROK; 767 bawrite(bp); 768 } else if (xfersize + blkoffset == fs->fs_bsize) { 769 if ((vp->v_mount->mnt_flag & MNT_NOCLUSTERW) == 0) { 770 bp->b_flags |= B_CLUSTEROK; 771 cluster_write(vp, bp, ip->i_size, seqcount); 772 } else { 773 bawrite(bp); 774 } 775 } else if (ioflag & IO_DIRECT) { 776 bp->b_flags |= B_CLUSTEROK; 777 bawrite(bp); 778 } else { 779 bp->b_flags |= B_CLUSTEROK; 780 bdwrite(bp); 781 } 782 if (error || xfersize == 0) 783 break; 784 ip->i_flag |= IN_CHANGE | IN_UPDATE; 785 } 786 /* 787 * If we successfully wrote any data, and we are not the superuser 788 * we clear the setuid and setgid bits as a precaution against 789 * tampering. 790 */ 791 if ((ip->i_mode & (ISUID | ISGID)) && resid > uio->uio_resid && 792 ap->a_cred) { 793 if (priv_check_cred(ap->a_cred, PRIV_VFS_RETAINSUGID, 0)) { 794 ip->i_mode &= ~(ISUID | ISGID); 795 DIP_SET(ip, i_mode, ip->i_mode); 796 } 797 } 798 if (error) { 799 if (ioflag & IO_UNIT) { 800 (void)ffs_truncate(vp, osize, 801 IO_NORMAL | (ioflag & IO_SYNC), 802 ap->a_cred, uio->uio_td); 803 uio->uio_offset -= resid - uio->uio_resid; 804 uio->uio_resid = resid; 805 } 806 } else if (resid > uio->uio_resid && (ioflag & IO_SYNC)) 807 error = ffs_update(vp, 1); 808 return (error); 809 } 810 811 /* 812 * get page routine 813 */ 814 static int 815 ffs_getpages(ap) 816 struct vop_getpages_args *ap; 817 { 818 int i; 819 vm_page_t mreq; 820 int pcount; 821 822 pcount = round_page(ap->a_count) / PAGE_SIZE; 823 mreq = ap->a_m[ap->a_reqpage]; 824 825 /* 826 * if ANY DEV_BSIZE blocks are valid on a large filesystem block, 827 * then the entire page is valid. Since the page may be mapped, 828 * user programs might reference data beyond the actual end of file 829 * occuring within the page. We have to zero that data. 830 */ 831 VM_OBJECT_LOCK(mreq->object); 832 if (mreq->valid) { 833 if (mreq->valid != VM_PAGE_BITS_ALL) 834 vm_page_zero_invalid(mreq, TRUE); 835 vm_page_lock_queues(); 836 for (i = 0; i < pcount; i++) { 837 if (i != ap->a_reqpage) { 838 vm_page_free(ap->a_m[i]); 839 } 840 } 841 vm_page_unlock_queues(); 842 VM_OBJECT_UNLOCK(mreq->object); 843 return VM_PAGER_OK; 844 } 845 VM_OBJECT_UNLOCK(mreq->object); 846 847 return vnode_pager_generic_getpages(ap->a_vp, ap->a_m, 848 ap->a_count, 849 ap->a_reqpage); 850 } 851 852 853 /* 854 * Extended attribute area reading. 855 */ 856 static int 857 ffs_extread(struct vnode *vp, struct uio *uio, int ioflag) 858 { 859 struct inode *ip; 860 struct ufs2_dinode *dp; 861 struct fs *fs; 862 struct buf *bp; 863 ufs_lbn_t lbn, nextlbn; 864 off_t bytesinfile; 865 long size, xfersize, blkoffset; 866 int error, orig_resid; 867 868 ip = VTOI(vp); 869 fs = ip->i_fs; 870 dp = ip->i_din2; 871 872 #ifdef DIAGNOSTIC 873 if (uio->uio_rw != UIO_READ || fs->fs_magic != FS_UFS2_MAGIC) 874 panic("ffs_extread: mode"); 875 876 #endif 877 orig_resid = uio->uio_resid; 878 KASSERT(orig_resid >= 0, ("ffs_extread: uio->uio_resid < 0")); 879 if (orig_resid == 0) 880 return (0); 881 KASSERT(uio->uio_offset >= 0, ("ffs_extread: uio->uio_offset < 0")); 882 883 for (error = 0, bp = NULL; uio->uio_resid > 0; bp = NULL) { 884 if ((bytesinfile = dp->di_extsize - uio->uio_offset) <= 0) 885 break; 886 lbn = lblkno(fs, uio->uio_offset); 887 nextlbn = lbn + 1; 888 889 /* 890 * size of buffer. The buffer representing the 891 * end of the file is rounded up to the size of 892 * the block type ( fragment or full block, 893 * depending ). 894 */ 895 size = sblksize(fs, dp->di_extsize, lbn); 896 blkoffset = blkoff(fs, uio->uio_offset); 897 898 /* 899 * The amount we want to transfer in this iteration is 900 * one FS block less the amount of the data before 901 * our startpoint (duh!) 902 */ 903 xfersize = fs->fs_bsize - blkoffset; 904 905 /* 906 * But if we actually want less than the block, 907 * or the file doesn't have a whole block more of data, 908 * then use the lesser number. 909 */ 910 if (uio->uio_resid < xfersize) 911 xfersize = uio->uio_resid; 912 if (bytesinfile < xfersize) 913 xfersize = bytesinfile; 914 915 if (lblktosize(fs, nextlbn) >= dp->di_extsize) { 916 /* 917 * Don't do readahead if this is the end of the info. 918 */ 919 error = bread(vp, -1 - lbn, size, NOCRED, &bp); 920 } else { 921 /* 922 * If we have a second block, then 923 * fire off a request for a readahead 924 * as well as a read. Note that the 4th and 5th 925 * arguments point to arrays of the size specified in 926 * the 6th argument. 927 */ 928 int nextsize = sblksize(fs, dp->di_extsize, nextlbn); 929 930 nextlbn = -1 - nextlbn; 931 error = breadn(vp, -1 - lbn, 932 size, &nextlbn, &nextsize, 1, NOCRED, &bp); 933 } 934 if (error) { 935 brelse(bp); 936 bp = NULL; 937 break; 938 } 939 940 /* 941 * If IO_DIRECT then set B_DIRECT for the buffer. This 942 * will cause us to attempt to release the buffer later on 943 * and will cause the buffer cache to attempt to free the 944 * underlying pages. 945 */ 946 if (ioflag & IO_DIRECT) 947 bp->b_flags |= B_DIRECT; 948 949 /* 950 * We should only get non-zero b_resid when an I/O error 951 * has occurred, which should cause us to break above. 952 * However, if the short read did not cause an error, 953 * then we want to ensure that we do not uiomove bad 954 * or uninitialized data. 955 */ 956 size -= bp->b_resid; 957 if (size < xfersize) { 958 if (size == 0) 959 break; 960 xfersize = size; 961 } 962 963 error = uiomove((char *)bp->b_data + blkoffset, 964 (int)xfersize, uio); 965 if (error) 966 break; 967 968 if ((ioflag & (IO_VMIO|IO_DIRECT)) && 969 (LIST_EMPTY(&bp->b_dep))) { 970 /* 971 * If there are no dependencies, and it's VMIO, 972 * then we don't need the buf, mark it available 973 * for freeing. The VM has the data. 974 */ 975 bp->b_flags |= B_RELBUF; 976 brelse(bp); 977 } else { 978 /* 979 * Otherwise let whoever 980 * made the request take care of 981 * freeing it. We just queue 982 * it onto another list. 983 */ 984 bqrelse(bp); 985 } 986 } 987 988 /* 989 * This can only happen in the case of an error 990 * because the loop above resets bp to NULL on each iteration 991 * and on normal completion has not set a new value into it. 992 * so it must have come from a 'break' statement 993 */ 994 if (bp != NULL) { 995 if ((ioflag & (IO_VMIO|IO_DIRECT)) && 996 (LIST_EMPTY(&bp->b_dep))) { 997 bp->b_flags |= B_RELBUF; 998 brelse(bp); 999 } else { 1000 bqrelse(bp); 1001 } 1002 } 1003 1004 if ((error == 0 || uio->uio_resid != orig_resid) && 1005 (vp->v_mount->mnt_flag & MNT_NOATIME) == 0) { 1006 VI_LOCK(vp); 1007 ip->i_flag |= IN_ACCESS; 1008 VI_UNLOCK(vp); 1009 } 1010 return (error); 1011 } 1012 1013 /* 1014 * Extended attribute area writing. 1015 */ 1016 static int 1017 ffs_extwrite(struct vnode *vp, struct uio *uio, int ioflag, struct ucred *ucred) 1018 { 1019 struct inode *ip; 1020 struct ufs2_dinode *dp; 1021 struct fs *fs; 1022 struct buf *bp; 1023 ufs_lbn_t lbn; 1024 off_t osize; 1025 int blkoffset, error, flags, resid, size, xfersize; 1026 1027 ip = VTOI(vp); 1028 fs = ip->i_fs; 1029 dp = ip->i_din2; 1030 1031 KASSERT(!(ip->i_flag & IN_SPACECOUNTED), ("inode %u: inode is dead", 1032 ip->i_number)); 1033 1034 #ifdef DIAGNOSTIC 1035 if (uio->uio_rw != UIO_WRITE || fs->fs_magic != FS_UFS2_MAGIC) 1036 panic("ffs_extwrite: mode"); 1037 #endif 1038 1039 if (ioflag & IO_APPEND) 1040 uio->uio_offset = dp->di_extsize; 1041 KASSERT(uio->uio_offset >= 0, ("ffs_extwrite: uio->uio_offset < 0")); 1042 KASSERT(uio->uio_resid >= 0, ("ffs_extwrite: uio->uio_resid < 0")); 1043 if ((uoff_t)uio->uio_offset + uio->uio_resid > NXADDR * fs->fs_bsize) 1044 return (EFBIG); 1045 1046 resid = uio->uio_resid; 1047 osize = dp->di_extsize; 1048 flags = IO_EXT; 1049 if ((ioflag & IO_SYNC) && !DOINGASYNC(vp)) 1050 flags |= IO_SYNC; 1051 1052 for (error = 0; uio->uio_resid > 0;) { 1053 lbn = lblkno(fs, uio->uio_offset); 1054 blkoffset = blkoff(fs, uio->uio_offset); 1055 xfersize = fs->fs_bsize - blkoffset; 1056 if (uio->uio_resid < xfersize) 1057 xfersize = uio->uio_resid; 1058 1059 /* 1060 * We must perform a read-before-write if the transfer size 1061 * does not cover the entire buffer. 1062 */ 1063 if (fs->fs_bsize > xfersize) 1064 flags |= BA_CLRBUF; 1065 else 1066 flags &= ~BA_CLRBUF; 1067 error = UFS_BALLOC(vp, uio->uio_offset, xfersize, 1068 ucred, flags, &bp); 1069 if (error != 0) 1070 break; 1071 /* 1072 * If the buffer is not valid we have to clear out any 1073 * garbage data from the pages instantiated for the buffer. 1074 * If we do not, a failed uiomove() during a write can leave 1075 * the prior contents of the pages exposed to a userland 1076 * mmap(). XXX deal with uiomove() errors a better way. 1077 */ 1078 if ((bp->b_flags & B_CACHE) == 0 && fs->fs_bsize <= xfersize) 1079 vfs_bio_clrbuf(bp); 1080 if (ioflag & IO_DIRECT) 1081 bp->b_flags |= B_DIRECT; 1082 1083 if (uio->uio_offset + xfersize > dp->di_extsize) 1084 dp->di_extsize = uio->uio_offset + xfersize; 1085 1086 size = sblksize(fs, dp->di_extsize, lbn) - bp->b_resid; 1087 if (size < xfersize) 1088 xfersize = size; 1089 1090 error = 1091 uiomove((char *)bp->b_data + blkoffset, (int)xfersize, uio); 1092 if ((ioflag & (IO_VMIO|IO_DIRECT)) && 1093 (LIST_EMPTY(&bp->b_dep))) { 1094 bp->b_flags |= B_RELBUF; 1095 } 1096 1097 /* 1098 * If IO_SYNC each buffer is written synchronously. Otherwise 1099 * if we have a severe page deficiency write the buffer 1100 * asynchronously. Otherwise try to cluster, and if that 1101 * doesn't do it then either do an async write (if O_DIRECT), 1102 * or a delayed write (if not). 1103 */ 1104 if (ioflag & IO_SYNC) { 1105 (void)bwrite(bp); 1106 } else if (vm_page_count_severe() || 1107 buf_dirty_count_severe() || 1108 xfersize + blkoffset == fs->fs_bsize || 1109 (ioflag & (IO_ASYNC | IO_DIRECT))) 1110 bawrite(bp); 1111 else 1112 bdwrite(bp); 1113 if (error || xfersize == 0) 1114 break; 1115 ip->i_flag |= IN_CHANGE | IN_UPDATE; 1116 } 1117 /* 1118 * If we successfully wrote any data, and we are not the superuser 1119 * we clear the setuid and setgid bits as a precaution against 1120 * tampering. 1121 */ 1122 if ((ip->i_mode & (ISUID | ISGID)) && resid > uio->uio_resid && ucred) { 1123 if (priv_check_cred(ucred, PRIV_VFS_RETAINSUGID, 0)) { 1124 ip->i_mode &= ~(ISUID | ISGID); 1125 dp->di_mode = ip->i_mode; 1126 } 1127 } 1128 if (error) { 1129 if (ioflag & IO_UNIT) { 1130 (void)ffs_truncate(vp, osize, 1131 IO_EXT | (ioflag&IO_SYNC), ucred, uio->uio_td); 1132 uio->uio_offset -= resid - uio->uio_resid; 1133 uio->uio_resid = resid; 1134 } 1135 } else if (resid > uio->uio_resid && (ioflag & IO_SYNC)) 1136 error = ffs_update(vp, 1); 1137 return (error); 1138 } 1139 1140 1141 /* 1142 * Vnode operating to retrieve a named extended attribute. 1143 * 1144 * Locate a particular EA (nspace:name) in the area (ptr:length), and return 1145 * the length of the EA, and possibly the pointer to the entry and to the data. 1146 */ 1147 static int 1148 ffs_findextattr(u_char *ptr, u_int length, int nspace, const char *name, u_char **eap, u_char **eac) 1149 { 1150 u_char *p, *pe, *pn, *p0; 1151 int eapad1, eapad2, ealength, ealen, nlen; 1152 uint32_t ul; 1153 1154 pe = ptr + length; 1155 nlen = strlen(name); 1156 1157 for (p = ptr; p < pe; p = pn) { 1158 p0 = p; 1159 bcopy(p, &ul, sizeof(ul)); 1160 pn = p + ul; 1161 /* make sure this entry is complete */ 1162 if (pn > pe) 1163 break; 1164 p += sizeof(uint32_t); 1165 if (*p != nspace) 1166 continue; 1167 p++; 1168 eapad2 = *p++; 1169 if (*p != nlen) 1170 continue; 1171 p++; 1172 if (bcmp(p, name, nlen)) 1173 continue; 1174 ealength = sizeof(uint32_t) + 3 + nlen; 1175 eapad1 = 8 - (ealength % 8); 1176 if (eapad1 == 8) 1177 eapad1 = 0; 1178 ealength += eapad1; 1179 ealen = ul - ealength - eapad2; 1180 p += nlen + eapad1; 1181 if (eap != NULL) 1182 *eap = p0; 1183 if (eac != NULL) 1184 *eac = p; 1185 return (ealen); 1186 } 1187 return(-1); 1188 } 1189 1190 static int 1191 ffs_rdextattr(u_char **p, struct vnode *vp, struct thread *td, int extra) 1192 { 1193 struct inode *ip; 1194 struct ufs2_dinode *dp; 1195 struct fs *fs; 1196 struct uio luio; 1197 struct iovec liovec; 1198 int easize, error; 1199 u_char *eae; 1200 1201 ip = VTOI(vp); 1202 fs = ip->i_fs; 1203 dp = ip->i_din2; 1204 easize = dp->di_extsize; 1205 if ((uoff_t)easize + extra > NXADDR * fs->fs_bsize) 1206 return (EFBIG); 1207 1208 eae = malloc(easize + extra, M_TEMP, M_WAITOK); 1209 1210 liovec.iov_base = eae; 1211 liovec.iov_len = easize; 1212 luio.uio_iov = &liovec; 1213 luio.uio_iovcnt = 1; 1214 luio.uio_offset = 0; 1215 luio.uio_resid = easize; 1216 luio.uio_segflg = UIO_SYSSPACE; 1217 luio.uio_rw = UIO_READ; 1218 luio.uio_td = td; 1219 1220 error = ffs_extread(vp, &luio, IO_EXT | IO_SYNC); 1221 if (error) { 1222 free(eae, M_TEMP); 1223 return(error); 1224 } 1225 *p = eae; 1226 return (0); 1227 } 1228 1229 static int 1230 ffs_open_ea(struct vnode *vp, struct ucred *cred, struct thread *td) 1231 { 1232 struct inode *ip; 1233 struct ufs2_dinode *dp; 1234 int error; 1235 1236 ip = VTOI(vp); 1237 1238 if (ip->i_ea_area != NULL) 1239 return (EBUSY); 1240 dp = ip->i_din2; 1241 error = ffs_rdextattr(&ip->i_ea_area, vp, td, 0); 1242 if (error) 1243 return (error); 1244 ip->i_ea_len = dp->di_extsize; 1245 ip->i_ea_error = 0; 1246 return (0); 1247 } 1248 1249 /* 1250 * Vnode extattr transaction commit/abort 1251 */ 1252 static int 1253 ffs_close_ea(struct vnode *vp, int commit, struct ucred *cred, struct thread *td) 1254 { 1255 struct inode *ip; 1256 struct uio luio; 1257 struct iovec liovec; 1258 int error; 1259 struct ufs2_dinode *dp; 1260 1261 ip = VTOI(vp); 1262 if (ip->i_ea_area == NULL) 1263 return (EINVAL); 1264 dp = ip->i_din2; 1265 error = ip->i_ea_error; 1266 if (commit && error == 0) { 1267 if (cred == NOCRED) 1268 cred = vp->v_mount->mnt_cred; 1269 liovec.iov_base = ip->i_ea_area; 1270 liovec.iov_len = ip->i_ea_len; 1271 luio.uio_iov = &liovec; 1272 luio.uio_iovcnt = 1; 1273 luio.uio_offset = 0; 1274 luio.uio_resid = ip->i_ea_len; 1275 luio.uio_segflg = UIO_SYSSPACE; 1276 luio.uio_rw = UIO_WRITE; 1277 luio.uio_td = td; 1278 /* XXX: I'm not happy about truncating to zero size */ 1279 if (ip->i_ea_len < dp->di_extsize) 1280 error = ffs_truncate(vp, 0, IO_EXT, cred, td); 1281 error = ffs_extwrite(vp, &luio, IO_EXT | IO_SYNC, cred); 1282 } 1283 free(ip->i_ea_area, M_TEMP); 1284 ip->i_ea_area = NULL; 1285 ip->i_ea_len = 0; 1286 ip->i_ea_error = 0; 1287 return (error); 1288 } 1289 1290 /* 1291 * Vnode extattr strategy routine for fifos. 1292 * 1293 * We need to check for a read or write of the external attributes. 1294 * Otherwise we just fall through and do the usual thing. 1295 */ 1296 static int 1297 ffsext_strategy(struct vop_strategy_args *ap) 1298 /* 1299 struct vop_strategy_args { 1300 struct vnodeop_desc *a_desc; 1301 struct vnode *a_vp; 1302 struct buf *a_bp; 1303 }; 1304 */ 1305 { 1306 struct vnode *vp; 1307 daddr_t lbn; 1308 1309 vp = ap->a_vp; 1310 lbn = ap->a_bp->b_lblkno; 1311 if (VTOI(vp)->i_fs->fs_magic == FS_UFS2_MAGIC && 1312 lbn < 0 && lbn >= -NXADDR) 1313 return (VOP_STRATEGY_APV(&ufs_vnodeops, ap)); 1314 if (vp->v_type == VFIFO) 1315 return (VOP_STRATEGY_APV(&ufs_fifoops, ap)); 1316 panic("spec nodes went here"); 1317 } 1318 1319 /* 1320 * Vnode extattr transaction commit/abort 1321 */ 1322 static int 1323 ffs_openextattr(struct vop_openextattr_args *ap) 1324 /* 1325 struct vop_openextattr_args { 1326 struct vnodeop_desc *a_desc; 1327 struct vnode *a_vp; 1328 IN struct ucred *a_cred; 1329 IN struct thread *a_td; 1330 }; 1331 */ 1332 { 1333 struct inode *ip; 1334 struct fs *fs; 1335 1336 ip = VTOI(ap->a_vp); 1337 fs = ip->i_fs; 1338 1339 if (ap->a_vp->v_type == VCHR) 1340 return (EOPNOTSUPP); 1341 1342 return (ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td)); 1343 } 1344 1345 1346 /* 1347 * Vnode extattr transaction commit/abort 1348 */ 1349 static int 1350 ffs_closeextattr(struct vop_closeextattr_args *ap) 1351 /* 1352 struct vop_closeextattr_args { 1353 struct vnodeop_desc *a_desc; 1354 struct vnode *a_vp; 1355 int a_commit; 1356 IN struct ucred *a_cred; 1357 IN struct thread *a_td; 1358 }; 1359 */ 1360 { 1361 struct inode *ip; 1362 struct fs *fs; 1363 1364 ip = VTOI(ap->a_vp); 1365 fs = ip->i_fs; 1366 1367 if (ap->a_vp->v_type == VCHR) 1368 return (EOPNOTSUPP); 1369 1370 if (ap->a_commit && (ap->a_vp->v_mount->mnt_flag & MNT_RDONLY)) 1371 return (EROFS); 1372 1373 return (ffs_close_ea(ap->a_vp, ap->a_commit, ap->a_cred, ap->a_td)); 1374 } 1375 1376 /* 1377 * Vnode operation to remove a named attribute. 1378 */ 1379 static int 1380 ffs_deleteextattr(struct vop_deleteextattr_args *ap) 1381 /* 1382 vop_deleteextattr { 1383 IN struct vnode *a_vp; 1384 IN int a_attrnamespace; 1385 IN const char *a_name; 1386 IN struct ucred *a_cred; 1387 IN struct thread *a_td; 1388 }; 1389 */ 1390 { 1391 struct inode *ip; 1392 struct fs *fs; 1393 uint32_t ealength, ul; 1394 int ealen, olen, eapad1, eapad2, error, i, easize; 1395 u_char *eae, *p; 1396 int stand_alone; 1397 1398 ip = VTOI(ap->a_vp); 1399 fs = ip->i_fs; 1400 1401 if (ap->a_vp->v_type == VCHR) 1402 return (EOPNOTSUPP); 1403 1404 if (strlen(ap->a_name) == 0) 1405 return (EINVAL); 1406 1407 if (ap->a_vp->v_mount->mnt_flag & MNT_RDONLY) 1408 return (EROFS); 1409 1410 error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace, 1411 ap->a_cred, ap->a_td, IWRITE); 1412 if (error) { 1413 if (ip->i_ea_area != NULL && ip->i_ea_error == 0) 1414 ip->i_ea_error = error; 1415 return (error); 1416 } 1417 1418 if (ip->i_ea_area == NULL) { 1419 error = ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td); 1420 if (error) 1421 return (error); 1422 stand_alone = 1; 1423 } else { 1424 stand_alone = 0; 1425 } 1426 1427 ealength = eapad1 = ealen = eapad2 = 0; 1428 1429 eae = malloc(ip->i_ea_len, M_TEMP, M_WAITOK); 1430 bcopy(ip->i_ea_area, eae, ip->i_ea_len); 1431 easize = ip->i_ea_len; 1432 1433 olen = ffs_findextattr(eae, easize, ap->a_attrnamespace, ap->a_name, 1434 &p, NULL); 1435 if (olen == -1) { 1436 /* delete but nonexistent */ 1437 free(eae, M_TEMP); 1438 if (stand_alone) 1439 ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td); 1440 return(ENOATTR); 1441 } 1442 bcopy(p, &ul, sizeof ul); 1443 i = p - eae + ul; 1444 if (ul != ealength) { 1445 bcopy(p + ul, p + ealength, easize - i); 1446 easize += (ealength - ul); 1447 } 1448 if (easize > NXADDR * fs->fs_bsize) { 1449 free(eae, M_TEMP); 1450 if (stand_alone) 1451 ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td); 1452 else if (ip->i_ea_error == 0) 1453 ip->i_ea_error = ENOSPC; 1454 return(ENOSPC); 1455 } 1456 p = ip->i_ea_area; 1457 ip->i_ea_area = eae; 1458 ip->i_ea_len = easize; 1459 free(p, M_TEMP); 1460 if (stand_alone) 1461 error = ffs_close_ea(ap->a_vp, 1, ap->a_cred, ap->a_td); 1462 return(error); 1463 } 1464 1465 /* 1466 * Vnode operation to retrieve a named extended attribute. 1467 */ 1468 static int 1469 ffs_getextattr(struct vop_getextattr_args *ap) 1470 /* 1471 vop_getextattr { 1472 IN struct vnode *a_vp; 1473 IN int a_attrnamespace; 1474 IN const char *a_name; 1475 INOUT struct uio *a_uio; 1476 OUT size_t *a_size; 1477 IN struct ucred *a_cred; 1478 IN struct thread *a_td; 1479 }; 1480 */ 1481 { 1482 struct inode *ip; 1483 struct fs *fs; 1484 u_char *eae, *p; 1485 unsigned easize; 1486 int error, ealen, stand_alone; 1487 1488 ip = VTOI(ap->a_vp); 1489 fs = ip->i_fs; 1490 1491 if (ap->a_vp->v_type == VCHR) 1492 return (EOPNOTSUPP); 1493 1494 error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace, 1495 ap->a_cred, ap->a_td, IREAD); 1496 if (error) 1497 return (error); 1498 1499 if (ip->i_ea_area == NULL) { 1500 error = ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td); 1501 if (error) 1502 return (error); 1503 stand_alone = 1; 1504 } else { 1505 stand_alone = 0; 1506 } 1507 eae = ip->i_ea_area; 1508 easize = ip->i_ea_len; 1509 1510 ealen = ffs_findextattr(eae, easize, ap->a_attrnamespace, ap->a_name, 1511 NULL, &p); 1512 if (ealen >= 0) { 1513 error = 0; 1514 if (ap->a_size != NULL) 1515 *ap->a_size = ealen; 1516 else if (ap->a_uio != NULL) 1517 error = uiomove(p, ealen, ap->a_uio); 1518 } else 1519 error = ENOATTR; 1520 if (stand_alone) 1521 ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td); 1522 return(error); 1523 } 1524 1525 /* 1526 * Vnode operation to retrieve extended attributes on a vnode. 1527 */ 1528 static int 1529 ffs_listextattr(struct vop_listextattr_args *ap) 1530 /* 1531 vop_listextattr { 1532 IN struct vnode *a_vp; 1533 IN int a_attrnamespace; 1534 INOUT struct uio *a_uio; 1535 OUT size_t *a_size; 1536 IN struct ucred *a_cred; 1537 IN struct thread *a_td; 1538 }; 1539 */ 1540 { 1541 struct inode *ip; 1542 struct fs *fs; 1543 u_char *eae, *p, *pe, *pn; 1544 unsigned easize; 1545 uint32_t ul; 1546 int error, ealen, stand_alone; 1547 1548 ip = VTOI(ap->a_vp); 1549 fs = ip->i_fs; 1550 1551 if (ap->a_vp->v_type == VCHR) 1552 return (EOPNOTSUPP); 1553 1554 error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace, 1555 ap->a_cred, ap->a_td, IREAD); 1556 if (error) 1557 return (error); 1558 1559 if (ip->i_ea_area == NULL) { 1560 error = ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td); 1561 if (error) 1562 return (error); 1563 stand_alone = 1; 1564 } else { 1565 stand_alone = 0; 1566 } 1567 eae = ip->i_ea_area; 1568 easize = ip->i_ea_len; 1569 1570 error = 0; 1571 if (ap->a_size != NULL) 1572 *ap->a_size = 0; 1573 pe = eae + easize; 1574 for(p = eae; error == 0 && p < pe; p = pn) { 1575 bcopy(p, &ul, sizeof(ul)); 1576 pn = p + ul; 1577 if (pn > pe) 1578 break; 1579 p += sizeof(ul); 1580 if (*p++ != ap->a_attrnamespace) 1581 continue; 1582 p++; /* pad2 */ 1583 ealen = *p; 1584 if (ap->a_size != NULL) { 1585 *ap->a_size += ealen + 1; 1586 } else if (ap->a_uio != NULL) { 1587 error = uiomove(p, ealen + 1, ap->a_uio); 1588 } 1589 } 1590 if (stand_alone) 1591 ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td); 1592 return(error); 1593 } 1594 1595 /* 1596 * Vnode operation to set a named attribute. 1597 */ 1598 static int 1599 ffs_setextattr(struct vop_setextattr_args *ap) 1600 /* 1601 vop_setextattr { 1602 IN struct vnode *a_vp; 1603 IN int a_attrnamespace; 1604 IN const char *a_name; 1605 INOUT struct uio *a_uio; 1606 IN struct ucred *a_cred; 1607 IN struct thread *a_td; 1608 }; 1609 */ 1610 { 1611 struct inode *ip; 1612 struct fs *fs; 1613 uint32_t ealength, ul; 1614 int ealen, olen, eapad1, eapad2, error, i, easize; 1615 u_char *eae, *p; 1616 int stand_alone; 1617 1618 ip = VTOI(ap->a_vp); 1619 fs = ip->i_fs; 1620 1621 if (ap->a_vp->v_type == VCHR) 1622 return (EOPNOTSUPP); 1623 1624 if (strlen(ap->a_name) == 0) 1625 return (EINVAL); 1626 1627 /* XXX Now unsupported API to delete EAs using NULL uio. */ 1628 if (ap->a_uio == NULL) 1629 return (EOPNOTSUPP); 1630 1631 if (ap->a_vp->v_mount->mnt_flag & MNT_RDONLY) 1632 return (EROFS); 1633 1634 error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace, 1635 ap->a_cred, ap->a_td, IWRITE); 1636 if (error) { 1637 if (ip->i_ea_area != NULL && ip->i_ea_error == 0) 1638 ip->i_ea_error = error; 1639 return (error); 1640 } 1641 1642 if (ip->i_ea_area == NULL) { 1643 error = ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td); 1644 if (error) 1645 return (error); 1646 stand_alone = 1; 1647 } else { 1648 stand_alone = 0; 1649 } 1650 1651 ealen = ap->a_uio->uio_resid; 1652 ealength = sizeof(uint32_t) + 3 + strlen(ap->a_name); 1653 eapad1 = 8 - (ealength % 8); 1654 if (eapad1 == 8) 1655 eapad1 = 0; 1656 eapad2 = 8 - (ealen % 8); 1657 if (eapad2 == 8) 1658 eapad2 = 0; 1659 ealength += eapad1 + ealen + eapad2; 1660 1661 eae = malloc(ip->i_ea_len + ealength, M_TEMP, M_WAITOK); 1662 bcopy(ip->i_ea_area, eae, ip->i_ea_len); 1663 easize = ip->i_ea_len; 1664 1665 olen = ffs_findextattr(eae, easize, 1666 ap->a_attrnamespace, ap->a_name, &p, NULL); 1667 if (olen == -1) { 1668 /* new, append at end */ 1669 p = eae + easize; 1670 easize += ealength; 1671 } else { 1672 bcopy(p, &ul, sizeof ul); 1673 i = p - eae + ul; 1674 if (ul != ealength) { 1675 bcopy(p + ul, p + ealength, easize - i); 1676 easize += (ealength - ul); 1677 } 1678 } 1679 if (easize > NXADDR * fs->fs_bsize) { 1680 free(eae, M_TEMP); 1681 if (stand_alone) 1682 ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td); 1683 else if (ip->i_ea_error == 0) 1684 ip->i_ea_error = ENOSPC; 1685 return(ENOSPC); 1686 } 1687 bcopy(&ealength, p, sizeof(ealength)); 1688 p += sizeof(ealength); 1689 *p++ = ap->a_attrnamespace; 1690 *p++ = eapad2; 1691 *p++ = strlen(ap->a_name); 1692 strcpy(p, ap->a_name); 1693 p += strlen(ap->a_name); 1694 bzero(p, eapad1); 1695 p += eapad1; 1696 error = uiomove(p, ealen, ap->a_uio); 1697 if (error) { 1698 free(eae, M_TEMP); 1699 if (stand_alone) 1700 ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td); 1701 else if (ip->i_ea_error == 0) 1702 ip->i_ea_error = error; 1703 return(error); 1704 } 1705 p += ealen; 1706 bzero(p, eapad2); 1707 1708 p = ip->i_ea_area; 1709 ip->i_ea_area = eae; 1710 ip->i_ea_len = easize; 1711 free(p, M_TEMP); 1712 if (stand_alone) 1713 error = ffs_close_ea(ap->a_vp, 1, ap->a_cred, ap->a_td); 1714 return(error); 1715 } 1716 1717 /* 1718 * Vnode pointer to File handle 1719 */ 1720 static int 1721 ffs_vptofh(struct vop_vptofh_args *ap) 1722 /* 1723 vop_vptofh { 1724 IN struct vnode *a_vp; 1725 IN struct fid *a_fhp; 1726 }; 1727 */ 1728 { 1729 struct inode *ip; 1730 struct ufid *ufhp; 1731 1732 ip = VTOI(ap->a_vp); 1733 ufhp = (struct ufid *)ap->a_fhp; 1734 ufhp->ufid_len = sizeof(struct ufid); 1735 ufhp->ufid_ino = ip->i_number; 1736 ufhp->ufid_gen = ip->i_gen; 1737 return (0); 1738 } 1739