1 /*- 2 * SPDX-License-Identifier: (BSD-2-Clause-FreeBSD AND BSD-3-Clause) 3 * 4 * Copyright (c) 2002, 2003 Networks Associates Technology, Inc. 5 * All rights reserved. 6 * 7 * This software was developed for the FreeBSD Project by Marshall 8 * Kirk McKusick and Network Associates Laboratories, the Security 9 * Research Division of Network Associates, Inc. under DARPA/SPAWAR 10 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS 11 * research program 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 1. Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * Copyright (c) 1982, 1986, 1989, 1993 35 * The Regents of the University of California. All rights reserved. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 1. Redistributions of source code must retain the above copyright 41 * notice, this list of conditions and the following disclaimer. 42 * 2. Redistributions in binary form must reproduce the above copyright 43 * notice, this list of conditions and the following disclaimer in the 44 * documentation and/or other materials provided with the distribution. 45 * 3. Neither the name of the University nor the names of its contributors 46 * may be used to endorse or promote products derived from this software 47 * without specific prior written permission. 48 * 49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 59 * SUCH DAMAGE. 60 * 61 * from: @(#)ufs_readwrite.c 8.11 (Berkeley) 5/8/95 62 * from: $FreeBSD: .../ufs/ufs_readwrite.c,v 1.96 2002/08/12 09:22:11 phk ... 63 * @(#)ffs_vnops.c 8.15 (Berkeley) 5/14/95 64 */ 65 66 #include <sys/cdefs.h> 67 __FBSDID("$FreeBSD$"); 68 69 #include "opt_directio.h" 70 #include "opt_ffs.h" 71 #include "opt_ufs.h" 72 73 #include <sys/param.h> 74 #include <sys/bio.h> 75 #include <sys/systm.h> 76 #include <sys/buf.h> 77 #include <sys/conf.h> 78 #include <sys/extattr.h> 79 #include <sys/kernel.h> 80 #include <sys/limits.h> 81 #include <sys/malloc.h> 82 #include <sys/mount.h> 83 #include <sys/priv.h> 84 #include <sys/rwlock.h> 85 #include <sys/stat.h> 86 #include <sys/sysctl.h> 87 #include <sys/vmmeter.h> 88 #include <sys/vnode.h> 89 90 #include <vm/vm.h> 91 #include <vm/vm_param.h> 92 #include <vm/vm_extern.h> 93 #include <vm/vm_object.h> 94 #include <vm/vm_page.h> 95 #include <vm/vm_pager.h> 96 #include <vm/vnode_pager.h> 97 98 #include <ufs/ufs/extattr.h> 99 #include <ufs/ufs/quota.h> 100 #include <ufs/ufs/inode.h> 101 #include <ufs/ufs/ufs_extern.h> 102 #include <ufs/ufs/ufsmount.h> 103 #include <ufs/ufs/dir.h> 104 #ifdef UFS_DIRHASH 105 #include <ufs/ufs/dirhash.h> 106 #endif 107 108 #include <ufs/ffs/fs.h> 109 #include <ufs/ffs/ffs_extern.h> 110 111 #define ALIGNED_TO(ptr, s) \ 112 (((uintptr_t)(ptr) & (_Alignof(s) - 1)) == 0) 113 114 #ifdef DIRECTIO 115 extern int ffs_rawread(struct vnode *vp, struct uio *uio, int *workdone); 116 #endif 117 static vop_fdatasync_t ffs_fdatasync; 118 static vop_fsync_t ffs_fsync; 119 static vop_getpages_t ffs_getpages; 120 static vop_getpages_async_t ffs_getpages_async; 121 static vop_lock1_t ffs_lock; 122 #ifdef INVARIANTS 123 static vop_unlock_t ffs_unlock_debug; 124 #endif 125 static vop_read_t ffs_read; 126 static vop_write_t ffs_write; 127 static int ffs_extread(struct vnode *vp, struct uio *uio, int ioflag); 128 static int ffs_extwrite(struct vnode *vp, struct uio *uio, int ioflag, 129 struct ucred *cred); 130 static vop_strategy_t ffsext_strategy; 131 static vop_closeextattr_t ffs_closeextattr; 132 static vop_deleteextattr_t ffs_deleteextattr; 133 static vop_getextattr_t ffs_getextattr; 134 static vop_listextattr_t ffs_listextattr; 135 static vop_openextattr_t ffs_openextattr; 136 static vop_setextattr_t ffs_setextattr; 137 static vop_vptofh_t ffs_vptofh; 138 static vop_vput_pair_t ffs_vput_pair; 139 140 /* Global vfs data structures for ufs. */ 141 struct vop_vector ffs_vnodeops1 = { 142 .vop_default = &ufs_vnodeops, 143 .vop_fsync = ffs_fsync, 144 .vop_fdatasync = ffs_fdatasync, 145 .vop_getpages = ffs_getpages, 146 .vop_getpages_async = ffs_getpages_async, 147 .vop_lock1 = ffs_lock, 148 #ifdef INVARIANTS 149 .vop_unlock = ffs_unlock_debug, 150 #endif 151 .vop_read = ffs_read, 152 .vop_reallocblks = ffs_reallocblks, 153 .vop_write = ffs_write, 154 .vop_vptofh = ffs_vptofh, 155 .vop_vput_pair = ffs_vput_pair, 156 }; 157 VFS_VOP_VECTOR_REGISTER(ffs_vnodeops1); 158 159 struct vop_vector ffs_fifoops1 = { 160 .vop_default = &ufs_fifoops, 161 .vop_fsync = ffs_fsync, 162 .vop_fdatasync = ffs_fdatasync, 163 .vop_lock1 = ffs_lock, 164 #ifdef INVARIANTS 165 .vop_unlock = ffs_unlock_debug, 166 #endif 167 .vop_vptofh = ffs_vptofh, 168 }; 169 VFS_VOP_VECTOR_REGISTER(ffs_fifoops1); 170 171 /* Global vfs data structures for ufs. */ 172 struct vop_vector ffs_vnodeops2 = { 173 .vop_default = &ufs_vnodeops, 174 .vop_fsync = ffs_fsync, 175 .vop_fdatasync = ffs_fdatasync, 176 .vop_getpages = ffs_getpages, 177 .vop_getpages_async = ffs_getpages_async, 178 .vop_lock1 = ffs_lock, 179 #ifdef INVARIANTS 180 .vop_unlock = ffs_unlock_debug, 181 #endif 182 .vop_read = ffs_read, 183 .vop_reallocblks = ffs_reallocblks, 184 .vop_write = ffs_write, 185 .vop_closeextattr = ffs_closeextattr, 186 .vop_deleteextattr = ffs_deleteextattr, 187 .vop_getextattr = ffs_getextattr, 188 .vop_listextattr = ffs_listextattr, 189 .vop_openextattr = ffs_openextattr, 190 .vop_setextattr = ffs_setextattr, 191 .vop_vptofh = ffs_vptofh, 192 .vop_vput_pair = ffs_vput_pair, 193 }; 194 VFS_VOP_VECTOR_REGISTER(ffs_vnodeops2); 195 196 struct vop_vector ffs_fifoops2 = { 197 .vop_default = &ufs_fifoops, 198 .vop_fsync = ffs_fsync, 199 .vop_fdatasync = ffs_fdatasync, 200 .vop_lock1 = ffs_lock, 201 #ifdef INVARIANTS 202 .vop_unlock = ffs_unlock_debug, 203 #endif 204 .vop_reallocblks = ffs_reallocblks, 205 .vop_strategy = ffsext_strategy, 206 .vop_closeextattr = ffs_closeextattr, 207 .vop_deleteextattr = ffs_deleteextattr, 208 .vop_getextattr = ffs_getextattr, 209 .vop_listextattr = ffs_listextattr, 210 .vop_openextattr = ffs_openextattr, 211 .vop_setextattr = ffs_setextattr, 212 .vop_vptofh = ffs_vptofh, 213 }; 214 VFS_VOP_VECTOR_REGISTER(ffs_fifoops2); 215 216 /* 217 * Synch an open file. 218 */ 219 /* ARGSUSED */ 220 static int 221 ffs_fsync(struct vop_fsync_args *ap) 222 { 223 struct vnode *vp; 224 struct bufobj *bo; 225 int error; 226 227 vp = ap->a_vp; 228 bo = &vp->v_bufobj; 229 retry: 230 error = ffs_syncvnode(vp, ap->a_waitfor, 0); 231 if (error) 232 return (error); 233 if (ap->a_waitfor == MNT_WAIT && DOINGSOFTDEP(vp)) { 234 error = softdep_fsync(vp); 235 if (error) 236 return (error); 237 238 /* 239 * The softdep_fsync() function may drop vp lock, 240 * allowing for dirty buffers to reappear on the 241 * bo_dirty list. Recheck and resync as needed. 242 */ 243 BO_LOCK(bo); 244 if ((vp->v_type == VREG || vp->v_type == VDIR) && 245 (bo->bo_numoutput > 0 || bo->bo_dirty.bv_cnt > 0)) { 246 BO_UNLOCK(bo); 247 goto retry; 248 } 249 BO_UNLOCK(bo); 250 } 251 if (ffs_fsfail_cleanup(VFSTOUFS(vp->v_mount), 0)) 252 return (ENXIO); 253 return (0); 254 } 255 256 int 257 ffs_syncvnode(struct vnode *vp, int waitfor, int flags) 258 { 259 struct inode *ip; 260 struct bufobj *bo; 261 struct ufsmount *ump; 262 struct buf *bp, *nbp; 263 ufs_lbn_t lbn; 264 int error, passes; 265 bool still_dirty, unlocked, wait; 266 267 ip = VTOI(vp); 268 bo = &vp->v_bufobj; 269 ump = VFSTOUFS(vp->v_mount); 270 271 /* 272 * When doing MNT_WAIT we must first flush all dependencies 273 * on the inode. 274 */ 275 if (DOINGSOFTDEP(vp) && waitfor == MNT_WAIT && 276 (error = softdep_sync_metadata(vp)) != 0) { 277 if (ffs_fsfail_cleanup(ump, error)) 278 error = 0; 279 return (error); 280 } 281 282 /* 283 * Flush all dirty buffers associated with a vnode. 284 */ 285 error = 0; 286 passes = 0; 287 wait = false; /* Always do an async pass first. */ 288 unlocked = false; 289 lbn = lblkno(ITOFS(ip), (ip->i_size + ITOFS(ip)->fs_bsize - 1)); 290 BO_LOCK(bo); 291 loop: 292 TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) 293 bp->b_vflags &= ~BV_SCANNED; 294 TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) { 295 /* 296 * Reasons to skip this buffer: it has already been considered 297 * on this pass, the buffer has dependencies that will cause 298 * it to be redirtied and it has not already been deferred, 299 * or it is already being written. 300 */ 301 if ((bp->b_vflags & BV_SCANNED) != 0) 302 continue; 303 bp->b_vflags |= BV_SCANNED; 304 /* 305 * Flush indirects in order, if requested. 306 * 307 * Note that if only datasync is requested, we can 308 * skip indirect blocks when softupdates are not 309 * active. Otherwise we must flush them with data, 310 * since dependencies prevent data block writes. 311 */ 312 if (waitfor == MNT_WAIT && bp->b_lblkno <= -UFS_NDADDR && 313 (lbn_level(bp->b_lblkno) >= passes || 314 ((flags & DATA_ONLY) != 0 && !DOINGSOFTDEP(vp)))) 315 continue; 316 if (bp->b_lblkno > lbn) 317 panic("ffs_syncvnode: syncing truncated data."); 318 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) == 0) { 319 BO_UNLOCK(bo); 320 } else if (wait) { 321 if (BUF_LOCK(bp, 322 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, 323 BO_LOCKPTR(bo)) != 0) { 324 bp->b_vflags &= ~BV_SCANNED; 325 goto next; 326 } 327 } else 328 continue; 329 if ((bp->b_flags & B_DELWRI) == 0) 330 panic("ffs_fsync: not dirty"); 331 /* 332 * Check for dependencies and potentially complete them. 333 */ 334 if (!LIST_EMPTY(&bp->b_dep) && 335 (error = softdep_sync_buf(vp, bp, 336 wait ? MNT_WAIT : MNT_NOWAIT)) != 0) { 337 /* 338 * Lock order conflict, buffer was already unlocked, 339 * and vnode possibly unlocked. 340 */ 341 if (error == ERELOOKUP) { 342 if (vp->v_data == NULL) 343 return (EBADF); 344 unlocked = true; 345 if (DOINGSOFTDEP(vp) && waitfor == MNT_WAIT && 346 (error = softdep_sync_metadata(vp)) != 0) { 347 if (ffs_fsfail_cleanup(ump, error)) 348 error = 0; 349 return (unlocked && error == 0 ? 350 ERELOOKUP : error); 351 } 352 /* Re-evaluate inode size */ 353 lbn = lblkno(ITOFS(ip), (ip->i_size + 354 ITOFS(ip)->fs_bsize - 1)); 355 goto next; 356 } 357 /* I/O error. */ 358 if (error != EBUSY) { 359 BUF_UNLOCK(bp); 360 return (error); 361 } 362 /* If we deferred once, don't defer again. */ 363 if ((bp->b_flags & B_DEFERRED) == 0) { 364 bp->b_flags |= B_DEFERRED; 365 BUF_UNLOCK(bp); 366 goto next; 367 } 368 } 369 if (wait) { 370 bremfree(bp); 371 error = bwrite(bp); 372 if (ffs_fsfail_cleanup(ump, error)) 373 error = 0; 374 if (error != 0) 375 return (error); 376 } else if ((bp->b_flags & B_CLUSTEROK)) { 377 (void) vfs_bio_awrite(bp); 378 } else { 379 bremfree(bp); 380 (void) bawrite(bp); 381 } 382 next: 383 /* 384 * Since we may have slept during the I/O, we need 385 * to start from a known point. 386 */ 387 BO_LOCK(bo); 388 nbp = TAILQ_FIRST(&bo->bo_dirty.bv_hd); 389 } 390 if (waitfor != MNT_WAIT) { 391 BO_UNLOCK(bo); 392 if ((flags & NO_INO_UPDT) != 0) 393 return (unlocked ? ERELOOKUP : 0); 394 error = ffs_update(vp, 0); 395 if (error == 0 && unlocked) 396 error = ERELOOKUP; 397 return (error); 398 } 399 /* Drain IO to see if we're done. */ 400 bufobj_wwait(bo, 0, 0); 401 /* 402 * Block devices associated with filesystems may have new I/O 403 * requests posted for them even if the vnode is locked, so no 404 * amount of trying will get them clean. We make several passes 405 * as a best effort. 406 * 407 * Regular files may need multiple passes to flush all dependency 408 * work as it is possible that we must write once per indirect 409 * level, once for the leaf, and once for the inode and each of 410 * these will be done with one sync and one async pass. 411 */ 412 if (bo->bo_dirty.bv_cnt > 0) { 413 if ((flags & DATA_ONLY) == 0) { 414 still_dirty = true; 415 } else { 416 /* 417 * For data-only sync, dirty indirect buffers 418 * are ignored. 419 */ 420 still_dirty = false; 421 TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) { 422 if (bp->b_lblkno > -UFS_NDADDR) { 423 still_dirty = true; 424 break; 425 } 426 } 427 } 428 429 if (still_dirty) { 430 /* Write the inode after sync passes to flush deps. */ 431 if (wait && DOINGSOFTDEP(vp) && 432 (flags & NO_INO_UPDT) == 0) { 433 BO_UNLOCK(bo); 434 ffs_update(vp, 1); 435 BO_LOCK(bo); 436 } 437 /* switch between sync/async. */ 438 wait = !wait; 439 if (wait || ++passes < UFS_NIADDR + 2) 440 goto loop; 441 } 442 } 443 BO_UNLOCK(bo); 444 error = 0; 445 if ((flags & DATA_ONLY) == 0) { 446 if ((flags & NO_INO_UPDT) == 0) 447 error = ffs_update(vp, 1); 448 if (DOINGSUJ(vp)) 449 softdep_journal_fsync(VTOI(vp)); 450 } else if ((ip->i_flags & (IN_SIZEMOD | IN_IBLKDATA)) != 0) { 451 error = ffs_update(vp, 1); 452 } 453 if (error == 0 && unlocked) 454 error = ERELOOKUP; 455 if (error == 0) 456 ip->i_flag &= ~IN_NEEDSYNC; 457 return (error); 458 } 459 460 static int 461 ffs_fdatasync(struct vop_fdatasync_args *ap) 462 { 463 464 return (ffs_syncvnode(ap->a_vp, MNT_WAIT, DATA_ONLY)); 465 } 466 467 static int 468 ffs_lock(ap) 469 struct vop_lock1_args /* { 470 struct vnode *a_vp; 471 int a_flags; 472 char *file; 473 int line; 474 } */ *ap; 475 { 476 #if !defined(NO_FFS_SNAPSHOT) || defined(DIAGNOSTIC) 477 struct vnode *vp = ap->a_vp; 478 #endif /* !NO_FFS_SNAPSHOT || DIAGNOSTIC */ 479 #ifdef DIAGNOSTIC 480 struct inode *ip; 481 #endif /* DIAGNOSTIC */ 482 int result; 483 #ifndef NO_FFS_SNAPSHOT 484 int flags; 485 struct lock *lkp; 486 487 /* 488 * Adaptive spinning mixed with SU leads to trouble. use a giant hammer 489 * and only use it when LK_NODDLKTREAT is set. Currently this means it 490 * is only used during path lookup. 491 */ 492 if ((ap->a_flags & LK_NODDLKTREAT) != 0) 493 ap->a_flags |= LK_ADAPTIVE; 494 switch (ap->a_flags & LK_TYPE_MASK) { 495 case LK_SHARED: 496 case LK_UPGRADE: 497 case LK_EXCLUSIVE: 498 flags = ap->a_flags; 499 for (;;) { 500 #ifdef DEBUG_VFS_LOCKS 501 VNPASS(vp->v_holdcnt != 0, vp); 502 #endif /* DEBUG_VFS_LOCKS */ 503 lkp = vp->v_vnlock; 504 result = lockmgr_lock_flags(lkp, flags, 505 &VI_MTX(vp)->lock_object, ap->a_file, ap->a_line); 506 if (lkp == vp->v_vnlock || result != 0) 507 break; 508 /* 509 * Apparent success, except that the vnode 510 * mutated between snapshot file vnode and 511 * regular file vnode while this process 512 * slept. The lock currently held is not the 513 * right lock. Release it, and try to get the 514 * new lock. 515 */ 516 lockmgr_unlock(lkp); 517 if ((flags & (LK_INTERLOCK | LK_NOWAIT)) == 518 (LK_INTERLOCK | LK_NOWAIT)) 519 return (EBUSY); 520 if ((flags & LK_TYPE_MASK) == LK_UPGRADE) 521 flags = (flags & ~LK_TYPE_MASK) | LK_EXCLUSIVE; 522 flags &= ~LK_INTERLOCK; 523 } 524 #ifdef DIAGNOSTIC 525 switch (ap->a_flags & LK_TYPE_MASK) { 526 case LK_UPGRADE: 527 case LK_EXCLUSIVE: 528 if (result == 0 && vp->v_vnlock->lk_recurse == 0) { 529 ip = VTOI(vp); 530 if (ip != NULL) 531 ip->i_lock_gen++; 532 } 533 } 534 #endif /* DIAGNOSTIC */ 535 break; 536 default: 537 #ifdef DIAGNOSTIC 538 if ((ap->a_flags & LK_TYPE_MASK) == LK_DOWNGRADE) { 539 ip = VTOI(vp); 540 if (ip != NULL) 541 ufs_unlock_tracker(ip); 542 } 543 #endif /* DIAGNOSTIC */ 544 result = VOP_LOCK1_APV(&ufs_vnodeops, ap); 545 break; 546 } 547 #else /* NO_FFS_SNAPSHOT */ 548 /* 549 * See above for an explanation. 550 */ 551 if ((ap->a_flags & LK_NODDLKTREAT) != 0) 552 ap->a_flags |= LK_ADAPTIVE; 553 #ifdef DIAGNOSTIC 554 if ((ap->a_flags & LK_TYPE_MASK) == LK_DOWNGRADE) { 555 ip = VTOI(vp); 556 if (ip != NULL) 557 ufs_unlock_tracker(ip); 558 } 559 #endif /* DIAGNOSTIC */ 560 result = VOP_LOCK1_APV(&ufs_vnodeops, ap); 561 #endif /* NO_FFS_SNAPSHOT */ 562 #ifdef DIAGNOSTIC 563 switch (ap->a_flags & LK_TYPE_MASK) { 564 case LK_UPGRADE: 565 case LK_EXCLUSIVE: 566 if (result == 0 && vp->v_vnlock->lk_recurse == 0) { 567 ip = VTOI(vp); 568 if (ip != NULL) 569 ip->i_lock_gen++; 570 } 571 } 572 #endif /* DIAGNOSTIC */ 573 return (result); 574 } 575 576 #ifdef INVARIANTS 577 static int 578 ffs_unlock_debug(struct vop_unlock_args *ap) 579 { 580 struct vnode *vp; 581 struct inode *ip; 582 583 vp = ap->a_vp; 584 ip = VTOI(vp); 585 if (ip->i_flag & UFS_INODE_FLAG_LAZY_MASK_ASSERTABLE) { 586 if ((vp->v_mflag & VMP_LAZYLIST) == 0) { 587 VI_LOCK(vp); 588 VNASSERT((vp->v_mflag & VMP_LAZYLIST), vp, 589 ("%s: modified vnode (%x) not on lazy list", 590 __func__, ip->i_flag)); 591 VI_UNLOCK(vp); 592 } 593 } 594 KASSERT(vp->v_type != VDIR || vp->v_vnlock->lk_recurse != 0 || 595 (ip->i_flag & IN_ENDOFF) == 0, 596 ("ufs dir vp %p ip %p flags %#x", vp, ip, ip->i_flag)); 597 #ifdef DIAGNOSTIC 598 if (VOP_ISLOCKED(vp) == LK_EXCLUSIVE && ip != NULL && 599 vp->v_vnlock->lk_recurse == 0) 600 ufs_unlock_tracker(ip); 601 #endif 602 return (VOP_UNLOCK_APV(&ufs_vnodeops, ap)); 603 } 604 #endif 605 606 static int 607 ffs_read_hole(struct uio *uio, long xfersize, long *size) 608 { 609 ssize_t saved_resid, tlen; 610 int error; 611 612 while (xfersize > 0) { 613 tlen = min(xfersize, ZERO_REGION_SIZE); 614 saved_resid = uio->uio_resid; 615 error = vn_io_fault_uiomove(__DECONST(void *, zero_region), 616 tlen, uio); 617 if (error != 0) 618 return (error); 619 tlen = saved_resid - uio->uio_resid; 620 xfersize -= tlen; 621 *size -= tlen; 622 } 623 return (0); 624 } 625 626 /* 627 * Vnode op for reading. 628 */ 629 static int 630 ffs_read(ap) 631 struct vop_read_args /* { 632 struct vnode *a_vp; 633 struct uio *a_uio; 634 int a_ioflag; 635 struct ucred *a_cred; 636 } */ *ap; 637 { 638 struct vnode *vp; 639 struct inode *ip; 640 struct uio *uio; 641 struct fs *fs; 642 struct buf *bp; 643 ufs_lbn_t lbn, nextlbn; 644 off_t bytesinfile; 645 long size, xfersize, blkoffset; 646 ssize_t orig_resid; 647 int bflag, error, ioflag, seqcount; 648 649 vp = ap->a_vp; 650 uio = ap->a_uio; 651 ioflag = ap->a_ioflag; 652 if (ap->a_ioflag & IO_EXT) 653 #ifdef notyet 654 return (ffs_extread(vp, uio, ioflag)); 655 #else 656 panic("ffs_read+IO_EXT"); 657 #endif 658 #ifdef DIRECTIO 659 if ((ioflag & IO_DIRECT) != 0) { 660 int workdone; 661 662 error = ffs_rawread(vp, uio, &workdone); 663 if (error != 0 || workdone != 0) 664 return error; 665 } 666 #endif 667 668 seqcount = ap->a_ioflag >> IO_SEQSHIFT; 669 ip = VTOI(vp); 670 671 #ifdef INVARIANTS 672 if (uio->uio_rw != UIO_READ) 673 panic("ffs_read: mode"); 674 675 if (vp->v_type == VLNK) { 676 if ((int)ip->i_size < vp->v_mount->mnt_maxsymlinklen) 677 panic("ffs_read: short symlink"); 678 } else if (vp->v_type != VREG && vp->v_type != VDIR) 679 panic("ffs_read: type %d", vp->v_type); 680 #endif 681 orig_resid = uio->uio_resid; 682 KASSERT(orig_resid >= 0, ("ffs_read: uio->uio_resid < 0")); 683 if (orig_resid == 0) 684 return (0); 685 KASSERT(uio->uio_offset >= 0, ("ffs_read: uio->uio_offset < 0")); 686 fs = ITOFS(ip); 687 if (uio->uio_offset < ip->i_size && 688 uio->uio_offset >= fs->fs_maxfilesize) 689 return (EOVERFLOW); 690 691 bflag = GB_UNMAPPED | (uio->uio_segflg == UIO_NOCOPY ? 0 : GB_NOSPARSE); 692 for (error = 0, bp = NULL; uio->uio_resid > 0; bp = NULL) { 693 if ((bytesinfile = ip->i_size - uio->uio_offset) <= 0) 694 break; 695 lbn = lblkno(fs, uio->uio_offset); 696 nextlbn = lbn + 1; 697 698 /* 699 * size of buffer. The buffer representing the 700 * end of the file is rounded up to the size of 701 * the block type ( fragment or full block, 702 * depending ). 703 */ 704 size = blksize(fs, ip, lbn); 705 blkoffset = blkoff(fs, uio->uio_offset); 706 707 /* 708 * The amount we want to transfer in this iteration is 709 * one FS block less the amount of the data before 710 * our startpoint (duh!) 711 */ 712 xfersize = fs->fs_bsize - blkoffset; 713 714 /* 715 * But if we actually want less than the block, 716 * or the file doesn't have a whole block more of data, 717 * then use the lesser number. 718 */ 719 if (uio->uio_resid < xfersize) 720 xfersize = uio->uio_resid; 721 if (bytesinfile < xfersize) 722 xfersize = bytesinfile; 723 724 if (lblktosize(fs, nextlbn) >= ip->i_size) { 725 /* 726 * Don't do readahead if this is the end of the file. 727 */ 728 error = bread_gb(vp, lbn, size, NOCRED, bflag, &bp); 729 } else if ((vp->v_mount->mnt_flag & MNT_NOCLUSTERR) == 0) { 730 /* 731 * Otherwise if we are allowed to cluster, 732 * grab as much as we can. 733 * 734 * XXX This may not be a win if we are not 735 * doing sequential access. 736 */ 737 error = cluster_read(vp, ip->i_size, lbn, 738 size, NOCRED, blkoffset + uio->uio_resid, 739 seqcount, bflag, &bp); 740 } else if (seqcount > 1) { 741 /* 742 * If we are NOT allowed to cluster, then 743 * if we appear to be acting sequentially, 744 * fire off a request for a readahead 745 * as well as a read. Note that the 4th and 5th 746 * arguments point to arrays of the size specified in 747 * the 6th argument. 748 */ 749 u_int nextsize = blksize(fs, ip, nextlbn); 750 error = breadn_flags(vp, lbn, lbn, size, &nextlbn, 751 &nextsize, 1, NOCRED, bflag, NULL, &bp); 752 } else { 753 /* 754 * Failing all of the above, just read what the 755 * user asked for. Interestingly, the same as 756 * the first option above. 757 */ 758 error = bread_gb(vp, lbn, size, NOCRED, bflag, &bp); 759 } 760 if (error == EJUSTRETURN) { 761 error = ffs_read_hole(uio, xfersize, &size); 762 if (error == 0) 763 continue; 764 } 765 if (error != 0) { 766 brelse(bp); 767 bp = NULL; 768 break; 769 } 770 771 /* 772 * We should only get non-zero b_resid when an I/O error 773 * has occurred, which should cause us to break above. 774 * However, if the short read did not cause an error, 775 * then we want to ensure that we do not uiomove bad 776 * or uninitialized data. 777 */ 778 size -= bp->b_resid; 779 if (size < xfersize) { 780 if (size == 0) 781 break; 782 xfersize = size; 783 } 784 785 if (buf_mapped(bp)) { 786 error = vn_io_fault_uiomove((char *)bp->b_data + 787 blkoffset, (int)xfersize, uio); 788 } else { 789 error = vn_io_fault_pgmove(bp->b_pages, blkoffset, 790 (int)xfersize, uio); 791 } 792 if (error) 793 break; 794 795 vfs_bio_brelse(bp, ioflag); 796 } 797 798 /* 799 * This can only happen in the case of an error 800 * because the loop above resets bp to NULL on each iteration 801 * and on normal completion has not set a new value into it. 802 * so it must have come from a 'break' statement 803 */ 804 if (bp != NULL) 805 vfs_bio_brelse(bp, ioflag); 806 807 if ((error == 0 || uio->uio_resid != orig_resid) && 808 (vp->v_mount->mnt_flag & (MNT_NOATIME | MNT_RDONLY)) == 0) 809 UFS_INODE_SET_FLAG_SHARED(ip, IN_ACCESS); 810 return (error); 811 } 812 813 /* 814 * Vnode op for writing. 815 */ 816 static int 817 ffs_write(ap) 818 struct vop_write_args /* { 819 struct vnode *a_vp; 820 struct uio *a_uio; 821 int a_ioflag; 822 struct ucred *a_cred; 823 } */ *ap; 824 { 825 struct vnode *vp; 826 struct uio *uio; 827 struct inode *ip; 828 struct fs *fs; 829 struct buf *bp; 830 ufs_lbn_t lbn; 831 off_t osize; 832 ssize_t resid; 833 int seqcount; 834 int blkoffset, error, flags, ioflag, size, xfersize; 835 836 vp = ap->a_vp; 837 if (DOINGSUJ(vp)) 838 softdep_prealloc(vp, MNT_WAIT); 839 if (vp->v_data == NULL) 840 return (EBADF); 841 842 uio = ap->a_uio; 843 ioflag = ap->a_ioflag; 844 if (ap->a_ioflag & IO_EXT) 845 #ifdef notyet 846 return (ffs_extwrite(vp, uio, ioflag, ap->a_cred)); 847 #else 848 panic("ffs_write+IO_EXT"); 849 #endif 850 851 seqcount = ap->a_ioflag >> IO_SEQSHIFT; 852 ip = VTOI(vp); 853 854 #ifdef INVARIANTS 855 if (uio->uio_rw != UIO_WRITE) 856 panic("ffs_write: mode"); 857 #endif 858 859 switch (vp->v_type) { 860 case VREG: 861 if (ioflag & IO_APPEND) 862 uio->uio_offset = ip->i_size; 863 if ((ip->i_flags & APPEND) && uio->uio_offset != ip->i_size) 864 return (EPERM); 865 /* FALLTHROUGH */ 866 case VLNK: 867 break; 868 case VDIR: 869 panic("ffs_write: dir write"); 870 break; 871 default: 872 panic("ffs_write: type %p %d (%d,%d)", vp, (int)vp->v_type, 873 (int)uio->uio_offset, 874 (int)uio->uio_resid 875 ); 876 } 877 878 KASSERT(uio->uio_resid >= 0, ("ffs_write: uio->uio_resid < 0")); 879 KASSERT(uio->uio_offset >= 0, ("ffs_write: uio->uio_offset < 0")); 880 fs = ITOFS(ip); 881 if ((uoff_t)uio->uio_offset + uio->uio_resid > fs->fs_maxfilesize) 882 return (EFBIG); 883 /* 884 * Maybe this should be above the vnode op call, but so long as 885 * file servers have no limits, I don't think it matters. 886 */ 887 if (vn_rlimit_fsize(vp, uio, uio->uio_td)) 888 return (EFBIG); 889 890 resid = uio->uio_resid; 891 osize = ip->i_size; 892 if (seqcount > BA_SEQMAX) 893 flags = BA_SEQMAX << BA_SEQSHIFT; 894 else 895 flags = seqcount << BA_SEQSHIFT; 896 if (ioflag & IO_SYNC) 897 flags |= IO_SYNC; 898 flags |= BA_UNMAPPED; 899 900 for (error = 0; uio->uio_resid > 0;) { 901 lbn = lblkno(fs, uio->uio_offset); 902 blkoffset = blkoff(fs, uio->uio_offset); 903 xfersize = fs->fs_bsize - blkoffset; 904 if (uio->uio_resid < xfersize) 905 xfersize = uio->uio_resid; 906 if (uio->uio_offset + xfersize > ip->i_size) 907 vnode_pager_setsize(vp, uio->uio_offset + xfersize); 908 909 /* 910 * We must perform a read-before-write if the transfer size 911 * does not cover the entire buffer. 912 */ 913 if (fs->fs_bsize > xfersize) 914 flags |= BA_CLRBUF; 915 else 916 flags &= ~BA_CLRBUF; 917 /* XXX is uio->uio_offset the right thing here? */ 918 error = UFS_BALLOC(vp, uio->uio_offset, xfersize, 919 ap->a_cred, flags, &bp); 920 if (error != 0) { 921 vnode_pager_setsize(vp, ip->i_size); 922 break; 923 } 924 if ((ioflag & (IO_SYNC|IO_INVAL)) == (IO_SYNC|IO_INVAL)) 925 bp->b_flags |= B_NOCACHE; 926 927 if (uio->uio_offset + xfersize > ip->i_size) { 928 ip->i_size = uio->uio_offset + xfersize; 929 DIP_SET(ip, i_size, ip->i_size); 930 UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE); 931 } 932 933 size = blksize(fs, ip, lbn) - bp->b_resid; 934 if (size < xfersize) 935 xfersize = size; 936 937 if (buf_mapped(bp)) { 938 error = vn_io_fault_uiomove((char *)bp->b_data + 939 blkoffset, (int)xfersize, uio); 940 } else { 941 error = vn_io_fault_pgmove(bp->b_pages, blkoffset, 942 (int)xfersize, uio); 943 } 944 /* 945 * If the buffer is not already filled and we encounter an 946 * error while trying to fill it, we have to clear out any 947 * garbage data from the pages instantiated for the buffer. 948 * If we do not, a failed uiomove() during a write can leave 949 * the prior contents of the pages exposed to a userland mmap. 950 * 951 * Note that we need only clear buffers with a transfer size 952 * equal to the block size because buffers with a shorter 953 * transfer size were cleared above by the call to UFS_BALLOC() 954 * with the BA_CLRBUF flag set. 955 * 956 * If the source region for uiomove identically mmaps the 957 * buffer, uiomove() performed the NOP copy, and the buffer 958 * content remains valid because the page fault handler 959 * validated the pages. 960 */ 961 if (error != 0 && (bp->b_flags & B_CACHE) == 0 && 962 fs->fs_bsize == xfersize) 963 vfs_bio_clrbuf(bp); 964 965 vfs_bio_set_flags(bp, ioflag); 966 967 /* 968 * If IO_SYNC each buffer is written synchronously. Otherwise 969 * if we have a severe page deficiency write the buffer 970 * asynchronously. Otherwise try to cluster, and if that 971 * doesn't do it then either do an async write (if O_DIRECT), 972 * or a delayed write (if not). 973 */ 974 if (ioflag & IO_SYNC) { 975 (void)bwrite(bp); 976 } else if (vm_page_count_severe() || 977 buf_dirty_count_severe() || 978 (ioflag & IO_ASYNC)) { 979 bp->b_flags |= B_CLUSTEROK; 980 bawrite(bp); 981 } else if (xfersize + blkoffset == fs->fs_bsize) { 982 if ((vp->v_mount->mnt_flag & MNT_NOCLUSTERW) == 0) { 983 bp->b_flags |= B_CLUSTEROK; 984 cluster_write(vp, &ip->i_clusterw, bp, 985 ip->i_size, seqcount, GB_UNMAPPED); 986 } else { 987 bawrite(bp); 988 } 989 } else if (ioflag & IO_DIRECT) { 990 bp->b_flags |= B_CLUSTEROK; 991 bawrite(bp); 992 } else { 993 bp->b_flags |= B_CLUSTEROK; 994 bdwrite(bp); 995 } 996 if (error || xfersize == 0) 997 break; 998 UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_UPDATE); 999 } 1000 /* 1001 * If we successfully wrote any data, and we are not the superuser 1002 * we clear the setuid and setgid bits as a precaution against 1003 * tampering. 1004 */ 1005 if ((ip->i_mode & (ISUID | ISGID)) && resid > uio->uio_resid && 1006 ap->a_cred) { 1007 if (priv_check_cred(ap->a_cred, PRIV_VFS_RETAINSUGID)) { 1008 vn_seqc_write_begin(vp); 1009 UFS_INODE_SET_MODE(ip, ip->i_mode & ~(ISUID | ISGID)); 1010 DIP_SET(ip, i_mode, ip->i_mode); 1011 vn_seqc_write_end(vp); 1012 } 1013 } 1014 if (error) { 1015 if (ioflag & IO_UNIT) { 1016 (void)ffs_truncate(vp, osize, 1017 IO_NORMAL | (ioflag & IO_SYNC), ap->a_cred); 1018 uio->uio_offset -= resid - uio->uio_resid; 1019 uio->uio_resid = resid; 1020 } 1021 } else if (resid > uio->uio_resid && (ioflag & IO_SYNC)) { 1022 if (!(ioflag & IO_DATASYNC) || 1023 (ip->i_flags & (IN_SIZEMOD | IN_IBLKDATA))) 1024 error = ffs_update(vp, 1); 1025 if (ffs_fsfail_cleanup(VFSTOUFS(vp->v_mount), error)) 1026 error = ENXIO; 1027 } 1028 return (error); 1029 } 1030 1031 /* 1032 * Extended attribute area reading. 1033 */ 1034 static int 1035 ffs_extread(struct vnode *vp, struct uio *uio, int ioflag) 1036 { 1037 struct inode *ip; 1038 struct ufs2_dinode *dp; 1039 struct fs *fs; 1040 struct buf *bp; 1041 ufs_lbn_t lbn, nextlbn; 1042 off_t bytesinfile; 1043 long size, xfersize, blkoffset; 1044 ssize_t orig_resid; 1045 int error; 1046 1047 ip = VTOI(vp); 1048 fs = ITOFS(ip); 1049 dp = ip->i_din2; 1050 1051 #ifdef INVARIANTS 1052 if (uio->uio_rw != UIO_READ || fs->fs_magic != FS_UFS2_MAGIC) 1053 panic("ffs_extread: mode"); 1054 1055 #endif 1056 orig_resid = uio->uio_resid; 1057 KASSERT(orig_resid >= 0, ("ffs_extread: uio->uio_resid < 0")); 1058 if (orig_resid == 0) 1059 return (0); 1060 KASSERT(uio->uio_offset >= 0, ("ffs_extread: uio->uio_offset < 0")); 1061 1062 for (error = 0, bp = NULL; uio->uio_resid > 0; bp = NULL) { 1063 if ((bytesinfile = dp->di_extsize - uio->uio_offset) <= 0) 1064 break; 1065 lbn = lblkno(fs, uio->uio_offset); 1066 nextlbn = lbn + 1; 1067 1068 /* 1069 * size of buffer. The buffer representing the 1070 * end of the file is rounded up to the size of 1071 * the block type ( fragment or full block, 1072 * depending ). 1073 */ 1074 size = sblksize(fs, dp->di_extsize, lbn); 1075 blkoffset = blkoff(fs, uio->uio_offset); 1076 1077 /* 1078 * The amount we want to transfer in this iteration is 1079 * one FS block less the amount of the data before 1080 * our startpoint (duh!) 1081 */ 1082 xfersize = fs->fs_bsize - blkoffset; 1083 1084 /* 1085 * But if we actually want less than the block, 1086 * or the file doesn't have a whole block more of data, 1087 * then use the lesser number. 1088 */ 1089 if (uio->uio_resid < xfersize) 1090 xfersize = uio->uio_resid; 1091 if (bytesinfile < xfersize) 1092 xfersize = bytesinfile; 1093 1094 if (lblktosize(fs, nextlbn) >= dp->di_extsize) { 1095 /* 1096 * Don't do readahead if this is the end of the info. 1097 */ 1098 error = bread(vp, -1 - lbn, size, NOCRED, &bp); 1099 } else { 1100 /* 1101 * If we have a second block, then 1102 * fire off a request for a readahead 1103 * as well as a read. Note that the 4th and 5th 1104 * arguments point to arrays of the size specified in 1105 * the 6th argument. 1106 */ 1107 u_int nextsize = sblksize(fs, dp->di_extsize, nextlbn); 1108 1109 nextlbn = -1 - nextlbn; 1110 error = breadn(vp, -1 - lbn, 1111 size, &nextlbn, &nextsize, 1, NOCRED, &bp); 1112 } 1113 if (error) { 1114 brelse(bp); 1115 bp = NULL; 1116 break; 1117 } 1118 1119 /* 1120 * We should only get non-zero b_resid when an I/O error 1121 * has occurred, which should cause us to break above. 1122 * However, if the short read did not cause an error, 1123 * then we want to ensure that we do not uiomove bad 1124 * or uninitialized data. 1125 */ 1126 size -= bp->b_resid; 1127 if (size < xfersize) { 1128 if (size == 0) 1129 break; 1130 xfersize = size; 1131 } 1132 1133 error = uiomove((char *)bp->b_data + blkoffset, 1134 (int)xfersize, uio); 1135 if (error) 1136 break; 1137 vfs_bio_brelse(bp, ioflag); 1138 } 1139 1140 /* 1141 * This can only happen in the case of an error 1142 * because the loop above resets bp to NULL on each iteration 1143 * and on normal completion has not set a new value into it. 1144 * so it must have come from a 'break' statement 1145 */ 1146 if (bp != NULL) 1147 vfs_bio_brelse(bp, ioflag); 1148 return (error); 1149 } 1150 1151 /* 1152 * Extended attribute area writing. 1153 */ 1154 static int 1155 ffs_extwrite(struct vnode *vp, struct uio *uio, int ioflag, struct ucred *ucred) 1156 { 1157 struct inode *ip; 1158 struct ufs2_dinode *dp; 1159 struct fs *fs; 1160 struct buf *bp; 1161 ufs_lbn_t lbn; 1162 off_t osize; 1163 ssize_t resid; 1164 int blkoffset, error, flags, size, xfersize; 1165 1166 ip = VTOI(vp); 1167 fs = ITOFS(ip); 1168 dp = ip->i_din2; 1169 1170 #ifdef INVARIANTS 1171 if (uio->uio_rw != UIO_WRITE || fs->fs_magic != FS_UFS2_MAGIC) 1172 panic("ffs_extwrite: mode"); 1173 #endif 1174 1175 if (ioflag & IO_APPEND) 1176 uio->uio_offset = dp->di_extsize; 1177 KASSERT(uio->uio_offset >= 0, ("ffs_extwrite: uio->uio_offset < 0")); 1178 KASSERT(uio->uio_resid >= 0, ("ffs_extwrite: uio->uio_resid < 0")); 1179 if ((uoff_t)uio->uio_offset + uio->uio_resid > 1180 UFS_NXADDR * fs->fs_bsize) 1181 return (EFBIG); 1182 1183 resid = uio->uio_resid; 1184 osize = dp->di_extsize; 1185 flags = IO_EXT; 1186 if (ioflag & IO_SYNC) 1187 flags |= IO_SYNC; 1188 1189 for (error = 0; uio->uio_resid > 0;) { 1190 lbn = lblkno(fs, uio->uio_offset); 1191 blkoffset = blkoff(fs, uio->uio_offset); 1192 xfersize = fs->fs_bsize - blkoffset; 1193 if (uio->uio_resid < xfersize) 1194 xfersize = uio->uio_resid; 1195 1196 /* 1197 * We must perform a read-before-write if the transfer size 1198 * does not cover the entire buffer. 1199 */ 1200 if (fs->fs_bsize > xfersize) 1201 flags |= BA_CLRBUF; 1202 else 1203 flags &= ~BA_CLRBUF; 1204 error = UFS_BALLOC(vp, uio->uio_offset, xfersize, 1205 ucred, flags, &bp); 1206 if (error != 0) 1207 break; 1208 /* 1209 * If the buffer is not valid we have to clear out any 1210 * garbage data from the pages instantiated for the buffer. 1211 * If we do not, a failed uiomove() during a write can leave 1212 * the prior contents of the pages exposed to a userland 1213 * mmap(). XXX deal with uiomove() errors a better way. 1214 */ 1215 if ((bp->b_flags & B_CACHE) == 0 && fs->fs_bsize <= xfersize) 1216 vfs_bio_clrbuf(bp); 1217 1218 if (uio->uio_offset + xfersize > dp->di_extsize) { 1219 dp->di_extsize = uio->uio_offset + xfersize; 1220 UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE); 1221 } 1222 1223 size = sblksize(fs, dp->di_extsize, lbn) - bp->b_resid; 1224 if (size < xfersize) 1225 xfersize = size; 1226 1227 error = 1228 uiomove((char *)bp->b_data + blkoffset, (int)xfersize, uio); 1229 1230 vfs_bio_set_flags(bp, ioflag); 1231 1232 /* 1233 * If IO_SYNC each buffer is written synchronously. Otherwise 1234 * if we have a severe page deficiency write the buffer 1235 * asynchronously. Otherwise try to cluster, and if that 1236 * doesn't do it then either do an async write (if O_DIRECT), 1237 * or a delayed write (if not). 1238 */ 1239 if (ioflag & IO_SYNC) { 1240 (void)bwrite(bp); 1241 } else if (vm_page_count_severe() || 1242 buf_dirty_count_severe() || 1243 xfersize + blkoffset == fs->fs_bsize || 1244 (ioflag & (IO_ASYNC | IO_DIRECT))) 1245 bawrite(bp); 1246 else 1247 bdwrite(bp); 1248 if (error || xfersize == 0) 1249 break; 1250 UFS_INODE_SET_FLAG(ip, IN_CHANGE); 1251 } 1252 /* 1253 * If we successfully wrote any data, and we are not the superuser 1254 * we clear the setuid and setgid bits as a precaution against 1255 * tampering. 1256 */ 1257 if ((ip->i_mode & (ISUID | ISGID)) && resid > uio->uio_resid && ucred) { 1258 if (priv_check_cred(ucred, PRIV_VFS_RETAINSUGID)) { 1259 vn_seqc_write_begin(vp); 1260 UFS_INODE_SET_MODE(ip, ip->i_mode & ~(ISUID | ISGID)); 1261 dp->di_mode = ip->i_mode; 1262 vn_seqc_write_end(vp); 1263 } 1264 } 1265 if (error) { 1266 if (ioflag & IO_UNIT) { 1267 (void)ffs_truncate(vp, osize, 1268 IO_EXT | (ioflag&IO_SYNC), ucred); 1269 uio->uio_offset -= resid - uio->uio_resid; 1270 uio->uio_resid = resid; 1271 } 1272 } else if (resid > uio->uio_resid && (ioflag & IO_SYNC)) 1273 error = ffs_update(vp, 1); 1274 return (error); 1275 } 1276 1277 /* 1278 * Vnode operating to retrieve a named extended attribute. 1279 * 1280 * Locate a particular EA (nspace:name) in the area (ptr:length), and return 1281 * the length of the EA, and possibly the pointer to the entry and to the data. 1282 */ 1283 static int 1284 ffs_findextattr(u_char *ptr, u_int length, int nspace, const char *name, 1285 struct extattr **eapp, u_char **eac) 1286 { 1287 struct extattr *eap, *eaend; 1288 size_t nlen; 1289 1290 nlen = strlen(name); 1291 KASSERT(ALIGNED_TO(ptr, struct extattr), ("unaligned")); 1292 eap = (struct extattr *)ptr; 1293 eaend = (struct extattr *)(ptr + length); 1294 for (; eap < eaend; eap = EXTATTR_NEXT(eap)) { 1295 KASSERT(EXTATTR_NEXT(eap) <= eaend, 1296 ("extattr next %p beyond %p", EXTATTR_NEXT(eap), eaend)); 1297 if (eap->ea_namespace != nspace || eap->ea_namelength != nlen 1298 || memcmp(eap->ea_name, name, nlen) != 0) 1299 continue; 1300 if (eapp != NULL) 1301 *eapp = eap; 1302 if (eac != NULL) 1303 *eac = EXTATTR_CONTENT(eap); 1304 return (EXTATTR_CONTENT_SIZE(eap)); 1305 } 1306 return (-1); 1307 } 1308 1309 static int 1310 ffs_rdextattr(u_char **p, struct vnode *vp, struct thread *td) 1311 { 1312 const struct extattr *eap, *eaend, *eapnext; 1313 struct inode *ip; 1314 struct ufs2_dinode *dp; 1315 struct fs *fs; 1316 struct uio luio; 1317 struct iovec liovec; 1318 u_int easize; 1319 int error; 1320 u_char *eae; 1321 1322 ip = VTOI(vp); 1323 fs = ITOFS(ip); 1324 dp = ip->i_din2; 1325 easize = dp->di_extsize; 1326 if ((uoff_t)easize > UFS_NXADDR * fs->fs_bsize) 1327 return (EFBIG); 1328 1329 eae = malloc(easize, M_TEMP, M_WAITOK); 1330 1331 liovec.iov_base = eae; 1332 liovec.iov_len = easize; 1333 luio.uio_iov = &liovec; 1334 luio.uio_iovcnt = 1; 1335 luio.uio_offset = 0; 1336 luio.uio_resid = easize; 1337 luio.uio_segflg = UIO_SYSSPACE; 1338 luio.uio_rw = UIO_READ; 1339 luio.uio_td = td; 1340 1341 error = ffs_extread(vp, &luio, IO_EXT | IO_SYNC); 1342 if (error) { 1343 free(eae, M_TEMP); 1344 return (error); 1345 } 1346 /* Validate disk xattrfile contents. */ 1347 for (eap = (void *)eae, eaend = (void *)(eae + easize); eap < eaend; 1348 eap = eapnext) { 1349 eapnext = EXTATTR_NEXT(eap); 1350 /* Bogusly short entry or bogusly long entry. */ 1351 if (eap->ea_length < sizeof(*eap) || eapnext > eaend) { 1352 free(eae, M_TEMP); 1353 return (EINTEGRITY); 1354 } 1355 } 1356 *p = eae; 1357 return (0); 1358 } 1359 1360 static void 1361 ffs_lock_ea(struct vnode *vp) 1362 { 1363 struct inode *ip; 1364 1365 ip = VTOI(vp); 1366 VI_LOCK(vp); 1367 while (ip->i_flag & IN_EA_LOCKED) { 1368 UFS_INODE_SET_FLAG(ip, IN_EA_LOCKWAIT); 1369 msleep(&ip->i_ea_refs, &vp->v_interlock, PINOD + 2, "ufs_ea", 1370 0); 1371 } 1372 UFS_INODE_SET_FLAG(ip, IN_EA_LOCKED); 1373 VI_UNLOCK(vp); 1374 } 1375 1376 static void 1377 ffs_unlock_ea(struct vnode *vp) 1378 { 1379 struct inode *ip; 1380 1381 ip = VTOI(vp); 1382 VI_LOCK(vp); 1383 if (ip->i_flag & IN_EA_LOCKWAIT) 1384 wakeup(&ip->i_ea_refs); 1385 ip->i_flag &= ~(IN_EA_LOCKED | IN_EA_LOCKWAIT); 1386 VI_UNLOCK(vp); 1387 } 1388 1389 static int 1390 ffs_open_ea(struct vnode *vp, struct ucred *cred, struct thread *td) 1391 { 1392 struct inode *ip; 1393 struct ufs2_dinode *dp; 1394 int error; 1395 1396 ip = VTOI(vp); 1397 1398 ffs_lock_ea(vp); 1399 if (ip->i_ea_area != NULL) { 1400 ip->i_ea_refs++; 1401 ffs_unlock_ea(vp); 1402 return (0); 1403 } 1404 dp = ip->i_din2; 1405 error = ffs_rdextattr(&ip->i_ea_area, vp, td); 1406 if (error) { 1407 ffs_unlock_ea(vp); 1408 return (error); 1409 } 1410 ip->i_ea_len = dp->di_extsize; 1411 ip->i_ea_error = 0; 1412 ip->i_ea_refs++; 1413 ffs_unlock_ea(vp); 1414 return (0); 1415 } 1416 1417 /* 1418 * Vnode extattr transaction commit/abort 1419 */ 1420 static int 1421 ffs_close_ea(struct vnode *vp, int commit, struct ucred *cred, struct thread *td) 1422 { 1423 struct inode *ip; 1424 struct uio luio; 1425 struct iovec *liovec; 1426 struct ufs2_dinode *dp; 1427 size_t ea_len, tlen; 1428 int error, i, lcnt; 1429 1430 ip = VTOI(vp); 1431 1432 ffs_lock_ea(vp); 1433 if (ip->i_ea_area == NULL) { 1434 ffs_unlock_ea(vp); 1435 return (EINVAL); 1436 } 1437 dp = ip->i_din2; 1438 error = ip->i_ea_error; 1439 if (commit && error == 0) { 1440 ASSERT_VOP_ELOCKED(vp, "ffs_close_ea commit"); 1441 if (cred == NOCRED) 1442 cred = vp->v_mount->mnt_cred; 1443 1444 ea_len = MAX(ip->i_ea_len, dp->di_extsize); 1445 for (lcnt = 1, tlen = ea_len - ip->i_ea_len; tlen > 0;) { 1446 tlen -= MIN(ZERO_REGION_SIZE, tlen); 1447 lcnt++; 1448 } 1449 1450 liovec = __builtin_alloca(lcnt * sizeof(struct iovec)); 1451 luio.uio_iovcnt = lcnt; 1452 1453 liovec[0].iov_base = ip->i_ea_area; 1454 liovec[0].iov_len = ip->i_ea_len; 1455 for (i = 1, tlen = ea_len; i < lcnt; i++) { 1456 liovec[i].iov_base = __DECONST(void *, zero_region); 1457 liovec[i].iov_len = MIN(ZERO_REGION_SIZE, tlen); 1458 tlen -= liovec[i].iov_len; 1459 } 1460 MPASS(tlen == ip->i_ea_len); 1461 1462 luio.uio_iov = liovec; 1463 luio.uio_offset = 0; 1464 luio.uio_resid = ea_len; 1465 luio.uio_segflg = UIO_SYSSPACE; 1466 luio.uio_rw = UIO_WRITE; 1467 luio.uio_td = td; 1468 error = ffs_extwrite(vp, &luio, IO_EXT | IO_SYNC, cred); 1469 } 1470 if (--ip->i_ea_refs == 0) { 1471 free(ip->i_ea_area, M_TEMP); 1472 ip->i_ea_area = NULL; 1473 ip->i_ea_len = 0; 1474 ip->i_ea_error = 0; 1475 } 1476 ffs_unlock_ea(vp); 1477 1478 if (commit && error == 0 && ip->i_ea_len == 0) 1479 ffs_truncate(vp, 0, IO_EXT, cred); 1480 return (error); 1481 } 1482 1483 /* 1484 * Vnode extattr strategy routine for fifos. 1485 * 1486 * We need to check for a read or write of the external attributes. 1487 * Otherwise we just fall through and do the usual thing. 1488 */ 1489 static int 1490 ffsext_strategy(struct vop_strategy_args *ap) 1491 /* 1492 struct vop_strategy_args { 1493 struct vnodeop_desc *a_desc; 1494 struct vnode *a_vp; 1495 struct buf *a_bp; 1496 }; 1497 */ 1498 { 1499 struct vnode *vp; 1500 daddr_t lbn; 1501 1502 vp = ap->a_vp; 1503 lbn = ap->a_bp->b_lblkno; 1504 if (I_IS_UFS2(VTOI(vp)) && lbn < 0 && lbn >= -UFS_NXADDR) 1505 return (VOP_STRATEGY_APV(&ufs_vnodeops, ap)); 1506 if (vp->v_type == VFIFO) 1507 return (VOP_STRATEGY_APV(&ufs_fifoops, ap)); 1508 panic("spec nodes went here"); 1509 } 1510 1511 /* 1512 * Vnode extattr transaction commit/abort 1513 */ 1514 static int 1515 ffs_openextattr(struct vop_openextattr_args *ap) 1516 /* 1517 struct vop_openextattr_args { 1518 struct vnodeop_desc *a_desc; 1519 struct vnode *a_vp; 1520 IN struct ucred *a_cred; 1521 IN struct thread *a_td; 1522 }; 1523 */ 1524 { 1525 1526 if (ap->a_vp->v_type == VCHR || ap->a_vp->v_type == VBLK) 1527 return (EOPNOTSUPP); 1528 1529 return (ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td)); 1530 } 1531 1532 /* 1533 * Vnode extattr transaction commit/abort 1534 */ 1535 static int 1536 ffs_closeextattr(struct vop_closeextattr_args *ap) 1537 /* 1538 struct vop_closeextattr_args { 1539 struct vnodeop_desc *a_desc; 1540 struct vnode *a_vp; 1541 int a_commit; 1542 IN struct ucred *a_cred; 1543 IN struct thread *a_td; 1544 }; 1545 */ 1546 { 1547 struct vnode *vp; 1548 1549 vp = ap->a_vp; 1550 if (vp->v_type == VCHR || vp->v_type == VBLK) 1551 return (EOPNOTSUPP); 1552 if (ap->a_commit && (vp->v_mount->mnt_flag & MNT_RDONLY) != 0) 1553 return (EROFS); 1554 1555 if (ap->a_commit && DOINGSUJ(vp)) { 1556 ASSERT_VOP_ELOCKED(vp, "ffs_closeextattr commit"); 1557 softdep_prealloc(vp, MNT_WAIT); 1558 if (vp->v_data == NULL) 1559 return (EBADF); 1560 } 1561 return (ffs_close_ea(vp, ap->a_commit, ap->a_cred, ap->a_td)); 1562 } 1563 1564 /* 1565 * Vnode operation to remove a named attribute. 1566 */ 1567 static int 1568 ffs_deleteextattr(struct vop_deleteextattr_args *ap) 1569 /* 1570 vop_deleteextattr { 1571 IN struct vnode *a_vp; 1572 IN int a_attrnamespace; 1573 IN const char *a_name; 1574 IN struct ucred *a_cred; 1575 IN struct thread *a_td; 1576 }; 1577 */ 1578 { 1579 struct vnode *vp; 1580 struct inode *ip; 1581 struct extattr *eap; 1582 uint32_t ul; 1583 int olen, error, i, easize; 1584 u_char *eae; 1585 void *tmp; 1586 1587 vp = ap->a_vp; 1588 ip = VTOI(vp); 1589 1590 if (vp->v_type == VCHR || vp->v_type == VBLK) 1591 return (EOPNOTSUPP); 1592 if (strlen(ap->a_name) == 0) 1593 return (EINVAL); 1594 if (vp->v_mount->mnt_flag & MNT_RDONLY) 1595 return (EROFS); 1596 1597 error = extattr_check_cred(vp, ap->a_attrnamespace, 1598 ap->a_cred, ap->a_td, VWRITE); 1599 if (error) { 1600 /* 1601 * ffs_lock_ea is not needed there, because the vnode 1602 * must be exclusively locked. 1603 */ 1604 if (ip->i_ea_area != NULL && ip->i_ea_error == 0) 1605 ip->i_ea_error = error; 1606 return (error); 1607 } 1608 1609 if (DOINGSUJ(vp)) { 1610 ASSERT_VOP_ELOCKED(vp, "ffs_deleteextattr"); 1611 softdep_prealloc(vp, MNT_WAIT); 1612 if (vp->v_data == NULL) 1613 return (EBADF); 1614 } 1615 1616 error = ffs_open_ea(vp, ap->a_cred, ap->a_td); 1617 if (error) 1618 return (error); 1619 1620 /* CEM: delete could be done in-place instead */ 1621 eae = malloc(ip->i_ea_len, M_TEMP, M_WAITOK); 1622 bcopy(ip->i_ea_area, eae, ip->i_ea_len); 1623 easize = ip->i_ea_len; 1624 1625 olen = ffs_findextattr(eae, easize, ap->a_attrnamespace, ap->a_name, 1626 &eap, NULL); 1627 if (olen == -1) { 1628 /* delete but nonexistent */ 1629 free(eae, M_TEMP); 1630 ffs_close_ea(vp, 0, ap->a_cred, ap->a_td); 1631 return (ENOATTR); 1632 } 1633 ul = eap->ea_length; 1634 i = (u_char *)EXTATTR_NEXT(eap) - eae; 1635 bcopy(EXTATTR_NEXT(eap), eap, easize - i); 1636 easize -= ul; 1637 1638 tmp = ip->i_ea_area; 1639 ip->i_ea_area = eae; 1640 ip->i_ea_len = easize; 1641 free(tmp, M_TEMP); 1642 error = ffs_close_ea(vp, 1, ap->a_cred, ap->a_td); 1643 return (error); 1644 } 1645 1646 /* 1647 * Vnode operation to retrieve a named extended attribute. 1648 */ 1649 static int 1650 ffs_getextattr(struct vop_getextattr_args *ap) 1651 /* 1652 vop_getextattr { 1653 IN struct vnode *a_vp; 1654 IN int a_attrnamespace; 1655 IN const char *a_name; 1656 INOUT struct uio *a_uio; 1657 OUT size_t *a_size; 1658 IN struct ucred *a_cred; 1659 IN struct thread *a_td; 1660 }; 1661 */ 1662 { 1663 struct inode *ip; 1664 u_char *eae, *p; 1665 unsigned easize; 1666 int error, ealen; 1667 1668 ip = VTOI(ap->a_vp); 1669 1670 if (ap->a_vp->v_type == VCHR || ap->a_vp->v_type == VBLK) 1671 return (EOPNOTSUPP); 1672 1673 error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace, 1674 ap->a_cred, ap->a_td, VREAD); 1675 if (error) 1676 return (error); 1677 1678 error = ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td); 1679 if (error) 1680 return (error); 1681 1682 eae = ip->i_ea_area; 1683 easize = ip->i_ea_len; 1684 1685 ealen = ffs_findextattr(eae, easize, ap->a_attrnamespace, ap->a_name, 1686 NULL, &p); 1687 if (ealen >= 0) { 1688 error = 0; 1689 if (ap->a_size != NULL) 1690 *ap->a_size = ealen; 1691 else if (ap->a_uio != NULL) 1692 error = uiomove(p, ealen, ap->a_uio); 1693 } else 1694 error = ENOATTR; 1695 1696 ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td); 1697 return (error); 1698 } 1699 1700 /* 1701 * Vnode operation to retrieve extended attributes on a vnode. 1702 */ 1703 static int 1704 ffs_listextattr(struct vop_listextattr_args *ap) 1705 /* 1706 vop_listextattr { 1707 IN struct vnode *a_vp; 1708 IN int a_attrnamespace; 1709 INOUT struct uio *a_uio; 1710 OUT size_t *a_size; 1711 IN struct ucred *a_cred; 1712 IN struct thread *a_td; 1713 }; 1714 */ 1715 { 1716 struct inode *ip; 1717 struct extattr *eap, *eaend; 1718 int error, ealen; 1719 1720 ip = VTOI(ap->a_vp); 1721 1722 if (ap->a_vp->v_type == VCHR || ap->a_vp->v_type == VBLK) 1723 return (EOPNOTSUPP); 1724 1725 error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace, 1726 ap->a_cred, ap->a_td, VREAD); 1727 if (error) 1728 return (error); 1729 1730 error = ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td); 1731 if (error) 1732 return (error); 1733 1734 error = 0; 1735 if (ap->a_size != NULL) 1736 *ap->a_size = 0; 1737 1738 KASSERT(ALIGNED_TO(ip->i_ea_area, struct extattr), ("unaligned")); 1739 eap = (struct extattr *)ip->i_ea_area; 1740 eaend = (struct extattr *)(ip->i_ea_area + ip->i_ea_len); 1741 for (; error == 0 && eap < eaend; eap = EXTATTR_NEXT(eap)) { 1742 KASSERT(EXTATTR_NEXT(eap) <= eaend, 1743 ("extattr next %p beyond %p", EXTATTR_NEXT(eap), eaend)); 1744 if (eap->ea_namespace != ap->a_attrnamespace) 1745 continue; 1746 1747 ealen = eap->ea_namelength; 1748 if (ap->a_size != NULL) 1749 *ap->a_size += ealen + 1; 1750 else if (ap->a_uio != NULL) 1751 error = uiomove(&eap->ea_namelength, ealen + 1, 1752 ap->a_uio); 1753 } 1754 1755 ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td); 1756 return (error); 1757 } 1758 1759 /* 1760 * Vnode operation to set a named attribute. 1761 */ 1762 static int 1763 ffs_setextattr(struct vop_setextattr_args *ap) 1764 /* 1765 vop_setextattr { 1766 IN struct vnode *a_vp; 1767 IN int a_attrnamespace; 1768 IN const char *a_name; 1769 INOUT struct uio *a_uio; 1770 IN struct ucred *a_cred; 1771 IN struct thread *a_td; 1772 }; 1773 */ 1774 { 1775 struct vnode *vp; 1776 struct inode *ip; 1777 struct fs *fs; 1778 struct extattr *eap; 1779 uint32_t ealength, ul; 1780 ssize_t ealen; 1781 int olen, eapad1, eapad2, error, i, easize; 1782 u_char *eae; 1783 void *tmp; 1784 1785 vp = ap->a_vp; 1786 ip = VTOI(vp); 1787 fs = ITOFS(ip); 1788 1789 if (vp->v_type == VCHR || vp->v_type == VBLK) 1790 return (EOPNOTSUPP); 1791 if (strlen(ap->a_name) == 0) 1792 return (EINVAL); 1793 1794 /* XXX Now unsupported API to delete EAs using NULL uio. */ 1795 if (ap->a_uio == NULL) 1796 return (EOPNOTSUPP); 1797 1798 if (vp->v_mount->mnt_flag & MNT_RDONLY) 1799 return (EROFS); 1800 1801 ealen = ap->a_uio->uio_resid; 1802 if (ealen < 0 || ealen > lblktosize(fs, UFS_NXADDR)) 1803 return (EINVAL); 1804 1805 error = extattr_check_cred(vp, ap->a_attrnamespace, 1806 ap->a_cred, ap->a_td, VWRITE); 1807 if (error) { 1808 /* 1809 * ffs_lock_ea is not needed there, because the vnode 1810 * must be exclusively locked. 1811 */ 1812 if (ip->i_ea_area != NULL && ip->i_ea_error == 0) 1813 ip->i_ea_error = error; 1814 return (error); 1815 } 1816 1817 if (DOINGSUJ(vp)) { 1818 ASSERT_VOP_ELOCKED(vp, "ffs_deleteextattr"); 1819 softdep_prealloc(vp, MNT_WAIT); 1820 if (vp->v_data == NULL) 1821 return (EBADF); 1822 } 1823 1824 error = ffs_open_ea(vp, ap->a_cred, ap->a_td); 1825 if (error) 1826 return (error); 1827 1828 ealength = sizeof(uint32_t) + 3 + strlen(ap->a_name); 1829 eapad1 = roundup2(ealength, 8) - ealength; 1830 eapad2 = roundup2(ealen, 8) - ealen; 1831 ealength += eapad1 + ealen + eapad2; 1832 1833 /* 1834 * CEM: rewrites of the same size or smaller could be done in-place 1835 * instead. (We don't acquire any fine-grained locks in here either, 1836 * so we could also do bigger writes in-place.) 1837 */ 1838 eae = malloc(ip->i_ea_len + ealength, M_TEMP, M_WAITOK); 1839 bcopy(ip->i_ea_area, eae, ip->i_ea_len); 1840 easize = ip->i_ea_len; 1841 1842 olen = ffs_findextattr(eae, easize, ap->a_attrnamespace, ap->a_name, 1843 &eap, NULL); 1844 if (olen == -1) { 1845 /* new, append at end */ 1846 KASSERT(ALIGNED_TO(eae + easize, struct extattr), 1847 ("unaligned")); 1848 eap = (struct extattr *)(eae + easize); 1849 easize += ealength; 1850 } else { 1851 ul = eap->ea_length; 1852 i = (u_char *)EXTATTR_NEXT(eap) - eae; 1853 if (ul != ealength) { 1854 bcopy(EXTATTR_NEXT(eap), (u_char *)eap + ealength, 1855 easize - i); 1856 easize += (ealength - ul); 1857 } 1858 } 1859 if (easize > lblktosize(fs, UFS_NXADDR)) { 1860 free(eae, M_TEMP); 1861 ffs_close_ea(vp, 0, ap->a_cred, ap->a_td); 1862 if (ip->i_ea_area != NULL && ip->i_ea_error == 0) 1863 ip->i_ea_error = ENOSPC; 1864 return (ENOSPC); 1865 } 1866 eap->ea_length = ealength; 1867 eap->ea_namespace = ap->a_attrnamespace; 1868 eap->ea_contentpadlen = eapad2; 1869 eap->ea_namelength = strlen(ap->a_name); 1870 memcpy(eap->ea_name, ap->a_name, strlen(ap->a_name)); 1871 bzero(&eap->ea_name[strlen(ap->a_name)], eapad1); 1872 error = uiomove(EXTATTR_CONTENT(eap), ealen, ap->a_uio); 1873 if (error) { 1874 free(eae, M_TEMP); 1875 ffs_close_ea(vp, 0, ap->a_cred, ap->a_td); 1876 if (ip->i_ea_area != NULL && ip->i_ea_error == 0) 1877 ip->i_ea_error = error; 1878 return (error); 1879 } 1880 bzero((u_char *)EXTATTR_CONTENT(eap) + ealen, eapad2); 1881 1882 tmp = ip->i_ea_area; 1883 ip->i_ea_area = eae; 1884 ip->i_ea_len = easize; 1885 free(tmp, M_TEMP); 1886 error = ffs_close_ea(vp, 1, ap->a_cred, ap->a_td); 1887 return (error); 1888 } 1889 1890 /* 1891 * Vnode pointer to File handle 1892 */ 1893 static int 1894 ffs_vptofh(struct vop_vptofh_args *ap) 1895 /* 1896 vop_vptofh { 1897 IN struct vnode *a_vp; 1898 IN struct fid *a_fhp; 1899 }; 1900 */ 1901 { 1902 struct inode *ip; 1903 struct ufid *ufhp; 1904 1905 ip = VTOI(ap->a_vp); 1906 ufhp = (struct ufid *)ap->a_fhp; 1907 ufhp->ufid_len = sizeof(struct ufid); 1908 ufhp->ufid_ino = ip->i_number; 1909 ufhp->ufid_gen = ip->i_gen; 1910 return (0); 1911 } 1912 1913 SYSCTL_DECL(_vfs_ffs); 1914 static int use_buf_pager = 1; 1915 SYSCTL_INT(_vfs_ffs, OID_AUTO, use_buf_pager, CTLFLAG_RWTUN, &use_buf_pager, 0, 1916 "Always use buffer pager instead of bmap"); 1917 1918 static daddr_t 1919 ffs_gbp_getblkno(struct vnode *vp, vm_ooffset_t off) 1920 { 1921 1922 return (lblkno(VFSTOUFS(vp->v_mount)->um_fs, off)); 1923 } 1924 1925 static int 1926 ffs_gbp_getblksz(struct vnode *vp, daddr_t lbn) 1927 { 1928 1929 return (blksize(VFSTOUFS(vp->v_mount)->um_fs, VTOI(vp), lbn)); 1930 } 1931 1932 static int 1933 ffs_getpages(struct vop_getpages_args *ap) 1934 { 1935 struct vnode *vp; 1936 struct ufsmount *um; 1937 1938 vp = ap->a_vp; 1939 um = VFSTOUFS(vp->v_mount); 1940 1941 if (!use_buf_pager && um->um_devvp->v_bufobj.bo_bsize <= PAGE_SIZE) 1942 return (vnode_pager_generic_getpages(vp, ap->a_m, ap->a_count, 1943 ap->a_rbehind, ap->a_rahead, NULL, NULL)); 1944 return (vfs_bio_getpages(vp, ap->a_m, ap->a_count, ap->a_rbehind, 1945 ap->a_rahead, ffs_gbp_getblkno, ffs_gbp_getblksz)); 1946 } 1947 1948 static int 1949 ffs_getpages_async(struct vop_getpages_async_args *ap) 1950 { 1951 struct vnode *vp; 1952 struct ufsmount *um; 1953 bool do_iodone; 1954 int error; 1955 1956 vp = ap->a_vp; 1957 um = VFSTOUFS(vp->v_mount); 1958 do_iodone = true; 1959 1960 if (um->um_devvp->v_bufobj.bo_bsize <= PAGE_SIZE) { 1961 error = vnode_pager_generic_getpages(vp, ap->a_m, ap->a_count, 1962 ap->a_rbehind, ap->a_rahead, ap->a_iodone, ap->a_arg); 1963 if (error == 0) 1964 do_iodone = false; 1965 } else { 1966 error = vfs_bio_getpages(vp, ap->a_m, ap->a_count, 1967 ap->a_rbehind, ap->a_rahead, ffs_gbp_getblkno, 1968 ffs_gbp_getblksz); 1969 } 1970 if (do_iodone && ap->a_iodone != NULL) 1971 ap->a_iodone(ap->a_arg, ap->a_m, ap->a_count, error); 1972 1973 return (error); 1974 } 1975 1976 static int 1977 ffs_vput_pair(struct vop_vput_pair_args *ap) 1978 { 1979 struct mount *mp; 1980 struct vnode *dvp, *vp, *vp1, **vpp; 1981 struct inode *dp, *ip; 1982 ino_t ip_ino; 1983 u_int64_t ip_gen; 1984 off_t old_size; 1985 int error, vp_locked; 1986 1987 dvp = ap->a_dvp; 1988 dp = VTOI(dvp); 1989 vpp = ap->a_vpp; 1990 vp = vpp != NULL ? *vpp : NULL; 1991 1992 if ((dp->i_flag & (IN_NEEDSYNC | IN_ENDOFF)) == 0) { 1993 vput(dvp); 1994 if (vp != NULL && ap->a_unlock_vp) 1995 vput(vp); 1996 return (0); 1997 } 1998 1999 mp = dvp->v_mount; 2000 if (vp != NULL) { 2001 if (ap->a_unlock_vp) { 2002 vput(vp); 2003 } else { 2004 MPASS(vp->v_type != VNON); 2005 vp_locked = VOP_ISLOCKED(vp); 2006 ip = VTOI(vp); 2007 ip_ino = ip->i_number; 2008 ip_gen = ip->i_gen; 2009 VOP_UNLOCK(vp); 2010 } 2011 } 2012 2013 /* 2014 * If compaction or fsync was requested do it in ffs_vput_pair() 2015 * now that other locks are no longer held. 2016 */ 2017 if ((dp->i_flag & IN_ENDOFF) != 0) { 2018 VNASSERT(I_ENDOFF(dp) != 0 && I_ENDOFF(dp) < dp->i_size, dvp, 2019 ("IN_ENDOFF set but I_ENDOFF() is not")); 2020 dp->i_flag &= ~IN_ENDOFF; 2021 old_size = dp->i_size; 2022 error = UFS_TRUNCATE(dvp, (off_t)I_ENDOFF(dp), IO_NORMAL | 2023 (DOINGASYNC(dvp) ? 0 : IO_SYNC), curthread->td_ucred); 2024 if (error != 0 && error != ERELOOKUP) { 2025 if (!ffs_fsfail_cleanup(VFSTOUFS(mp), error)) { 2026 vn_printf(dvp, 2027 "IN_ENDOFF: failed to truncate, " 2028 "error %d\n", error); 2029 } 2030 #ifdef UFS_DIRHASH 2031 ufsdirhash_free(dp); 2032 #endif 2033 } 2034 SET_I_ENDOFF(dp, 0); 2035 } 2036 if ((dp->i_flag & IN_NEEDSYNC) != 0) { 2037 do { 2038 error = ffs_syncvnode(dvp, MNT_WAIT, 0); 2039 } while (error == ERELOOKUP); 2040 } 2041 2042 vput(dvp); 2043 2044 if (vp == NULL || ap->a_unlock_vp) 2045 return (0); 2046 MPASS(mp != NULL); 2047 2048 /* 2049 * It is possible that vp is reclaimed at this point. Only 2050 * routines that call us with a_unlock_vp == false can find 2051 * that their vp has been reclaimed. There are three areas 2052 * that are affected: 2053 * 1) vn_open_cred() - later VOPs could fail, but 2054 * dead_open() returns 0 to simulate successful open. 2055 * 2) ffs_snapshot() - creation of snapshot fails with EBADF. 2056 * 3) NFS server (several places) - code is prepared to detect 2057 * and respond to dead vnodes by returning ESTALE. 2058 */ 2059 VOP_LOCK(vp, vp_locked | LK_RETRY); 2060 if (!VN_IS_DOOMED(vp)) 2061 return (0); 2062 2063 /* 2064 * Try harder to recover from reclaimed vp if reclaim was not 2065 * because underlying inode was cleared. We saved inode 2066 * number and inode generation, so we can try to reinstantiate 2067 * exactly same version of inode. If this fails, return 2068 * original doomed vnode and let caller to handle 2069 * consequences. 2070 * 2071 * Note that callers must keep write started around 2072 * VOP_VPUT_PAIR() calls, so it is safe to use mp without 2073 * busying it. 2074 */ 2075 VOP_UNLOCK(vp); 2076 error = ffs_inotovp(mp, ip_ino, ip_gen, LK_EXCLUSIVE, &vp1, 2077 FFSV_REPLACE_DOOMED); 2078 if (error != 0) { 2079 VOP_LOCK(vp, vp_locked | LK_RETRY); 2080 } else { 2081 vrele(vp); 2082 *vpp = vp1; 2083 } 2084 return (error); 2085 } 2086