xref: /freebsd/sys/ufs/ffs/ffs_vnops.c (revision 97cb52fa9aefd90fad38790fded50905aeeb9b9e)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 2002, 2003 Networks Associates Technology, Inc.
5  * All rights reserved.
6  *
7  * This software was developed for the FreeBSD Project by Marshall
8  * Kirk McKusick and Network Associates Laboratories, the Security
9  * Research Division of Network Associates, Inc. under DARPA/SPAWAR
10  * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
11  * research program
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * Copyright (c) 1982, 1986, 1989, 1993
35  *	The Regents of the University of California.  All rights reserved.
36  *
37  * Redistribution and use in source and binary forms, with or without
38  * modification, are permitted provided that the following conditions
39  * are met:
40  * 1. Redistributions of source code must retain the above copyright
41  *    notice, this list of conditions and the following disclaimer.
42  * 2. Redistributions in binary form must reproduce the above copyright
43  *    notice, this list of conditions and the following disclaimer in the
44  *    documentation and/or other materials provided with the distribution.
45  * 3. Neither the name of the University nor the names of its contributors
46  *    may be used to endorse or promote products derived from this software
47  *    without specific prior written permission.
48  *
49  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59  * SUCH DAMAGE.
60  *
61  *	from: @(#)ufs_readwrite.c	8.11 (Berkeley) 5/8/95
62  * from: $FreeBSD: .../ufs/ufs_readwrite.c,v 1.96 2002/08/12 09:22:11 phk ...
63  *	@(#)ffs_vnops.c	8.15 (Berkeley) 5/14/95
64  */
65 
66 #include <sys/cdefs.h>
67 __FBSDID("$FreeBSD$");
68 
69 #include <sys/param.h>
70 #include <sys/bio.h>
71 #include <sys/systm.h>
72 #include <sys/buf.h>
73 #include <sys/conf.h>
74 #include <sys/extattr.h>
75 #include <sys/kernel.h>
76 #include <sys/limits.h>
77 #include <sys/malloc.h>
78 #include <sys/mount.h>
79 #include <sys/priv.h>
80 #include <sys/rwlock.h>
81 #include <sys/stat.h>
82 #include <sys/sysctl.h>
83 #include <sys/vmmeter.h>
84 #include <sys/vnode.h>
85 
86 #include <vm/vm.h>
87 #include <vm/vm_param.h>
88 #include <vm/vm_extern.h>
89 #include <vm/vm_object.h>
90 #include <vm/vm_page.h>
91 #include <vm/vm_pager.h>
92 #include <vm/vnode_pager.h>
93 
94 #include <ufs/ufs/extattr.h>
95 #include <ufs/ufs/quota.h>
96 #include <ufs/ufs/inode.h>
97 #include <ufs/ufs/ufs_extern.h>
98 #include <ufs/ufs/ufsmount.h>
99 
100 #include <ufs/ffs/fs.h>
101 #include <ufs/ffs/ffs_extern.h>
102 #include "opt_directio.h"
103 #include "opt_ffs.h"
104 
105 #define	ALIGNED_TO(ptr, s)	\
106 	(((uintptr_t)(ptr) & (_Alignof(s) - 1)) == 0)
107 
108 #ifdef DIRECTIO
109 extern int	ffs_rawread(struct vnode *vp, struct uio *uio, int *workdone);
110 #endif
111 static vop_fdatasync_t	ffs_fdatasync;
112 static vop_fsync_t	ffs_fsync;
113 static vop_getpages_t	ffs_getpages;
114 static vop_lock1_t	ffs_lock;
115 static vop_read_t	ffs_read;
116 static vop_write_t	ffs_write;
117 static int	ffs_extread(struct vnode *vp, struct uio *uio, int ioflag);
118 static int	ffs_extwrite(struct vnode *vp, struct uio *uio, int ioflag,
119 		    struct ucred *cred);
120 static vop_strategy_t	ffsext_strategy;
121 static vop_closeextattr_t	ffs_closeextattr;
122 static vop_deleteextattr_t	ffs_deleteextattr;
123 static vop_getextattr_t	ffs_getextattr;
124 static vop_listextattr_t	ffs_listextattr;
125 static vop_openextattr_t	ffs_openextattr;
126 static vop_setextattr_t	ffs_setextattr;
127 static vop_vptofh_t	ffs_vptofh;
128 
129 /* Global vfs data structures for ufs. */
130 struct vop_vector ffs_vnodeops1 = {
131 	.vop_default =		&ufs_vnodeops,
132 	.vop_fsync =		ffs_fsync,
133 	.vop_fdatasync =	ffs_fdatasync,
134 	.vop_getpages =		ffs_getpages,
135 	.vop_getpages_async =	vnode_pager_local_getpages_async,
136 	.vop_lock1 =		ffs_lock,
137 	.vop_read =		ffs_read,
138 	.vop_reallocblks =	ffs_reallocblks,
139 	.vop_write =		ffs_write,
140 	.vop_vptofh =		ffs_vptofh,
141 };
142 
143 struct vop_vector ffs_fifoops1 = {
144 	.vop_default =		&ufs_fifoops,
145 	.vop_fsync =		ffs_fsync,
146 	.vop_fdatasync =	ffs_fdatasync,
147 	.vop_reallocblks =	ffs_reallocblks, /* XXX: really ??? */
148 	.vop_vptofh =		ffs_vptofh,
149 };
150 
151 /* Global vfs data structures for ufs. */
152 struct vop_vector ffs_vnodeops2 = {
153 	.vop_default =		&ufs_vnodeops,
154 	.vop_fsync =		ffs_fsync,
155 	.vop_fdatasync =	ffs_fdatasync,
156 	.vop_getpages =		ffs_getpages,
157 	.vop_getpages_async =	vnode_pager_local_getpages_async,
158 	.vop_lock1 =		ffs_lock,
159 	.vop_read =		ffs_read,
160 	.vop_reallocblks =	ffs_reallocblks,
161 	.vop_write =		ffs_write,
162 	.vop_closeextattr =	ffs_closeextattr,
163 	.vop_deleteextattr =	ffs_deleteextattr,
164 	.vop_getextattr =	ffs_getextattr,
165 	.vop_listextattr =	ffs_listextattr,
166 	.vop_openextattr =	ffs_openextattr,
167 	.vop_setextattr =	ffs_setextattr,
168 	.vop_vptofh =		ffs_vptofh,
169 };
170 
171 struct vop_vector ffs_fifoops2 = {
172 	.vop_default =		&ufs_fifoops,
173 	.vop_fsync =		ffs_fsync,
174 	.vop_fdatasync =	ffs_fdatasync,
175 	.vop_lock1 =		ffs_lock,
176 	.vop_reallocblks =	ffs_reallocblks,
177 	.vop_strategy =		ffsext_strategy,
178 	.vop_closeextattr =	ffs_closeextattr,
179 	.vop_deleteextattr =	ffs_deleteextattr,
180 	.vop_getextattr =	ffs_getextattr,
181 	.vop_listextattr =	ffs_listextattr,
182 	.vop_openextattr =	ffs_openextattr,
183 	.vop_setextattr =	ffs_setextattr,
184 	.vop_vptofh =		ffs_vptofh,
185 };
186 
187 /*
188  * Synch an open file.
189  */
190 /* ARGSUSED */
191 static int
192 ffs_fsync(struct vop_fsync_args *ap)
193 {
194 	struct vnode *vp;
195 	struct bufobj *bo;
196 	int error;
197 
198 	vp = ap->a_vp;
199 	bo = &vp->v_bufobj;
200 retry:
201 	error = ffs_syncvnode(vp, ap->a_waitfor, 0);
202 	if (error)
203 		return (error);
204 	if (ap->a_waitfor == MNT_WAIT && DOINGSOFTDEP(vp)) {
205 		error = softdep_fsync(vp);
206 		if (error)
207 			return (error);
208 
209 		/*
210 		 * The softdep_fsync() function may drop vp lock,
211 		 * allowing for dirty buffers to reappear on the
212 		 * bo_dirty list. Recheck and resync as needed.
213 		 */
214 		BO_LOCK(bo);
215 		if ((vp->v_type == VREG || vp->v_type == VDIR) &&
216 		    (bo->bo_numoutput > 0 || bo->bo_dirty.bv_cnt > 0)) {
217 			BO_UNLOCK(bo);
218 			goto retry;
219 		}
220 		BO_UNLOCK(bo);
221 	}
222 	return (0);
223 }
224 
225 int
226 ffs_syncvnode(struct vnode *vp, int waitfor, int flags)
227 {
228 	struct inode *ip;
229 	struct bufobj *bo;
230 	struct buf *bp, *nbp;
231 	ufs_lbn_t lbn;
232 	int error, passes;
233 	bool still_dirty, wait;
234 
235 	ip = VTOI(vp);
236 	ip->i_flag &= ~IN_NEEDSYNC;
237 	bo = &vp->v_bufobj;
238 
239 	/*
240 	 * When doing MNT_WAIT we must first flush all dependencies
241 	 * on the inode.
242 	 */
243 	if (DOINGSOFTDEP(vp) && waitfor == MNT_WAIT &&
244 	    (error = softdep_sync_metadata(vp)) != 0)
245 		return (error);
246 
247 	/*
248 	 * Flush all dirty buffers associated with a vnode.
249 	 */
250 	error = 0;
251 	passes = 0;
252 	wait = false;	/* Always do an async pass first. */
253 	lbn = lblkno(ITOFS(ip), (ip->i_size + ITOFS(ip)->fs_bsize - 1));
254 	BO_LOCK(bo);
255 loop:
256 	TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs)
257 		bp->b_vflags &= ~BV_SCANNED;
258 	TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
259 		/*
260 		 * Reasons to skip this buffer: it has already been considered
261 		 * on this pass, the buffer has dependencies that will cause
262 		 * it to be redirtied and it has not already been deferred,
263 		 * or it is already being written.
264 		 */
265 		if ((bp->b_vflags & BV_SCANNED) != 0)
266 			continue;
267 		bp->b_vflags |= BV_SCANNED;
268 		/*
269 		 * Flush indirects in order, if requested.
270 		 *
271 		 * Note that if only datasync is requested, we can
272 		 * skip indirect blocks when softupdates are not
273 		 * active.  Otherwise we must flush them with data,
274 		 * since dependencies prevent data block writes.
275 		 */
276 		if (waitfor == MNT_WAIT && bp->b_lblkno <= -UFS_NDADDR &&
277 		    (lbn_level(bp->b_lblkno) >= passes ||
278 		    ((flags & DATA_ONLY) != 0 && !DOINGSOFTDEP(vp))))
279 			continue;
280 		if (bp->b_lblkno > lbn)
281 			panic("ffs_syncvnode: syncing truncated data.");
282 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) == 0) {
283 			BO_UNLOCK(bo);
284 		} else if (wait) {
285 			if (BUF_LOCK(bp,
286 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
287 			    BO_LOCKPTR(bo)) != 0) {
288 				bp->b_vflags &= ~BV_SCANNED;
289 				goto next;
290 			}
291 		} else
292 			continue;
293 		if ((bp->b_flags & B_DELWRI) == 0)
294 			panic("ffs_fsync: not dirty");
295 		/*
296 		 * Check for dependencies and potentially complete them.
297 		 */
298 		if (!LIST_EMPTY(&bp->b_dep) &&
299 		    (error = softdep_sync_buf(vp, bp,
300 		    wait ? MNT_WAIT : MNT_NOWAIT)) != 0) {
301 			/* I/O error. */
302 			if (error != EBUSY) {
303 				BUF_UNLOCK(bp);
304 				return (error);
305 			}
306 			/* If we deferred once, don't defer again. */
307 		    	if ((bp->b_flags & B_DEFERRED) == 0) {
308 				bp->b_flags |= B_DEFERRED;
309 				BUF_UNLOCK(bp);
310 				goto next;
311 			}
312 		}
313 		if (wait) {
314 			bremfree(bp);
315 			if ((error = bwrite(bp)) != 0)
316 				return (error);
317 		} else if ((bp->b_flags & B_CLUSTEROK)) {
318 			(void) vfs_bio_awrite(bp);
319 		} else {
320 			bremfree(bp);
321 			(void) bawrite(bp);
322 		}
323 next:
324 		/*
325 		 * Since we may have slept during the I/O, we need
326 		 * to start from a known point.
327 		 */
328 		BO_LOCK(bo);
329 		nbp = TAILQ_FIRST(&bo->bo_dirty.bv_hd);
330 	}
331 	if (waitfor != MNT_WAIT) {
332 		BO_UNLOCK(bo);
333 		if ((flags & NO_INO_UPDT) != 0)
334 			return (0);
335 		else
336 			return (ffs_update(vp, 0));
337 	}
338 	/* Drain IO to see if we're done. */
339 	bufobj_wwait(bo, 0, 0);
340 	/*
341 	 * Block devices associated with filesystems may have new I/O
342 	 * requests posted for them even if the vnode is locked, so no
343 	 * amount of trying will get them clean.  We make several passes
344 	 * as a best effort.
345 	 *
346 	 * Regular files may need multiple passes to flush all dependency
347 	 * work as it is possible that we must write once per indirect
348 	 * level, once for the leaf, and once for the inode and each of
349 	 * these will be done with one sync and one async pass.
350 	 */
351 	if (bo->bo_dirty.bv_cnt > 0) {
352 		if ((flags & DATA_ONLY) == 0) {
353 			still_dirty = true;
354 		} else {
355 			/*
356 			 * For data-only sync, dirty indirect buffers
357 			 * are ignored.
358 			 */
359 			still_dirty = false;
360 			TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) {
361 				if (bp->b_lblkno > -UFS_NDADDR) {
362 					still_dirty = true;
363 					break;
364 				}
365 			}
366 		}
367 
368 		if (still_dirty) {
369 			/* Write the inode after sync passes to flush deps. */
370 			if (wait && DOINGSOFTDEP(vp) &&
371 			    (flags & NO_INO_UPDT) == 0) {
372 				BO_UNLOCK(bo);
373 				ffs_update(vp, 1);
374 				BO_LOCK(bo);
375 			}
376 			/* switch between sync/async. */
377 			wait = !wait;
378 			if (wait || ++passes < UFS_NIADDR + 2)
379 				goto loop;
380 #ifdef INVARIANTS
381 			if (!vn_isdisk(vp, NULL))
382 				vn_printf(vp, "ffs_fsync: dirty ");
383 #endif
384 		}
385 	}
386 	BO_UNLOCK(bo);
387 	error = 0;
388 	if ((flags & DATA_ONLY) == 0) {
389 		if ((flags & NO_INO_UPDT) == 0)
390 			error = ffs_update(vp, 1);
391 		if (DOINGSUJ(vp))
392 			softdep_journal_fsync(VTOI(vp));
393 	}
394 	return (error);
395 }
396 
397 static int
398 ffs_fdatasync(struct vop_fdatasync_args *ap)
399 {
400 
401 	return (ffs_syncvnode(ap->a_vp, MNT_WAIT, DATA_ONLY));
402 }
403 
404 static int
405 ffs_lock(ap)
406 	struct vop_lock1_args /* {
407 		struct vnode *a_vp;
408 		int a_flags;
409 		struct thread *a_td;
410 		char *file;
411 		int line;
412 	} */ *ap;
413 {
414 #ifndef NO_FFS_SNAPSHOT
415 	struct vnode *vp;
416 	int flags;
417 	struct lock *lkp;
418 	int result;
419 
420 	switch (ap->a_flags & LK_TYPE_MASK) {
421 	case LK_SHARED:
422 	case LK_UPGRADE:
423 	case LK_EXCLUSIVE:
424 		vp = ap->a_vp;
425 		flags = ap->a_flags;
426 		for (;;) {
427 #ifdef DEBUG_VFS_LOCKS
428 			KASSERT(vp->v_holdcnt != 0,
429 			    ("ffs_lock %p: zero hold count", vp));
430 #endif
431 			lkp = vp->v_vnlock;
432 			result = _lockmgr_args(lkp, flags, VI_MTX(vp),
433 			    LK_WMESG_DEFAULT, LK_PRIO_DEFAULT, LK_TIMO_DEFAULT,
434 			    ap->a_file, ap->a_line);
435 			if (lkp == vp->v_vnlock || result != 0)
436 				break;
437 			/*
438 			 * Apparent success, except that the vnode
439 			 * mutated between snapshot file vnode and
440 			 * regular file vnode while this process
441 			 * slept.  The lock currently held is not the
442 			 * right lock.  Release it, and try to get the
443 			 * new lock.
444 			 */
445 			(void) _lockmgr_args(lkp, LK_RELEASE, NULL,
446 			    LK_WMESG_DEFAULT, LK_PRIO_DEFAULT, LK_TIMO_DEFAULT,
447 			    ap->a_file, ap->a_line);
448 			if ((flags & (LK_INTERLOCK | LK_NOWAIT)) ==
449 			    (LK_INTERLOCK | LK_NOWAIT))
450 				return (EBUSY);
451 			if ((flags & LK_TYPE_MASK) == LK_UPGRADE)
452 				flags = (flags & ~LK_TYPE_MASK) | LK_EXCLUSIVE;
453 			flags &= ~LK_INTERLOCK;
454 		}
455 		break;
456 	default:
457 		result = VOP_LOCK1_APV(&ufs_vnodeops, ap);
458 	}
459 	return (result);
460 #else
461 	return (VOP_LOCK1_APV(&ufs_vnodeops, ap));
462 #endif
463 }
464 
465 /*
466  * Vnode op for reading.
467  */
468 static int
469 ffs_read(ap)
470 	struct vop_read_args /* {
471 		struct vnode *a_vp;
472 		struct uio *a_uio;
473 		int a_ioflag;
474 		struct ucred *a_cred;
475 	} */ *ap;
476 {
477 	struct vnode *vp;
478 	struct inode *ip;
479 	struct uio *uio;
480 	struct fs *fs;
481 	struct buf *bp;
482 	ufs_lbn_t lbn, nextlbn;
483 	off_t bytesinfile;
484 	long size, xfersize, blkoffset;
485 	ssize_t orig_resid;
486 	int error;
487 	int seqcount;
488 	int ioflag;
489 
490 	vp = ap->a_vp;
491 	uio = ap->a_uio;
492 	ioflag = ap->a_ioflag;
493 	if (ap->a_ioflag & IO_EXT)
494 #ifdef notyet
495 		return (ffs_extread(vp, uio, ioflag));
496 #else
497 		panic("ffs_read+IO_EXT");
498 #endif
499 #ifdef DIRECTIO
500 	if ((ioflag & IO_DIRECT) != 0) {
501 		int workdone;
502 
503 		error = ffs_rawread(vp, uio, &workdone);
504 		if (error != 0 || workdone != 0)
505 			return error;
506 	}
507 #endif
508 
509 	seqcount = ap->a_ioflag >> IO_SEQSHIFT;
510 	ip = VTOI(vp);
511 
512 #ifdef INVARIANTS
513 	if (uio->uio_rw != UIO_READ)
514 		panic("ffs_read: mode");
515 
516 	if (vp->v_type == VLNK) {
517 		if ((int)ip->i_size < vp->v_mount->mnt_maxsymlinklen)
518 			panic("ffs_read: short symlink");
519 	} else if (vp->v_type != VREG && vp->v_type != VDIR)
520 		panic("ffs_read: type %d",  vp->v_type);
521 #endif
522 	orig_resid = uio->uio_resid;
523 	KASSERT(orig_resid >= 0, ("ffs_read: uio->uio_resid < 0"));
524 	if (orig_resid == 0)
525 		return (0);
526 	KASSERT(uio->uio_offset >= 0, ("ffs_read: uio->uio_offset < 0"));
527 	fs = ITOFS(ip);
528 	if (uio->uio_offset < ip->i_size &&
529 	    uio->uio_offset >= fs->fs_maxfilesize)
530 		return (EOVERFLOW);
531 
532 	for (error = 0, bp = NULL; uio->uio_resid > 0; bp = NULL) {
533 		if ((bytesinfile = ip->i_size - uio->uio_offset) <= 0)
534 			break;
535 		lbn = lblkno(fs, uio->uio_offset);
536 		nextlbn = lbn + 1;
537 
538 		/*
539 		 * size of buffer.  The buffer representing the
540 		 * end of the file is rounded up to the size of
541 		 * the block type ( fragment or full block,
542 		 * depending ).
543 		 */
544 		size = blksize(fs, ip, lbn);
545 		blkoffset = blkoff(fs, uio->uio_offset);
546 
547 		/*
548 		 * The amount we want to transfer in this iteration is
549 		 * one FS block less the amount of the data before
550 		 * our startpoint (duh!)
551 		 */
552 		xfersize = fs->fs_bsize - blkoffset;
553 
554 		/*
555 		 * But if we actually want less than the block,
556 		 * or the file doesn't have a whole block more of data,
557 		 * then use the lesser number.
558 		 */
559 		if (uio->uio_resid < xfersize)
560 			xfersize = uio->uio_resid;
561 		if (bytesinfile < xfersize)
562 			xfersize = bytesinfile;
563 
564 		if (lblktosize(fs, nextlbn) >= ip->i_size) {
565 			/*
566 			 * Don't do readahead if this is the end of the file.
567 			 */
568 			error = bread_gb(vp, lbn, size, NOCRED,
569 			    GB_UNMAPPED, &bp);
570 		} else if ((vp->v_mount->mnt_flag & MNT_NOCLUSTERR) == 0) {
571 			/*
572 			 * Otherwise if we are allowed to cluster,
573 			 * grab as much as we can.
574 			 *
575 			 * XXX  This may not be a win if we are not
576 			 * doing sequential access.
577 			 */
578 			error = cluster_read(vp, ip->i_size, lbn,
579 			    size, NOCRED, blkoffset + uio->uio_resid,
580 			    seqcount, GB_UNMAPPED, &bp);
581 		} else if (seqcount > 1) {
582 			/*
583 			 * If we are NOT allowed to cluster, then
584 			 * if we appear to be acting sequentially,
585 			 * fire off a request for a readahead
586 			 * as well as a read. Note that the 4th and 5th
587 			 * arguments point to arrays of the size specified in
588 			 * the 6th argument.
589 			 */
590 			u_int nextsize = blksize(fs, ip, nextlbn);
591 			error = breadn_flags(vp, lbn, size, &nextlbn,
592 			    &nextsize, 1, NOCRED, GB_UNMAPPED, NULL, &bp);
593 		} else {
594 			/*
595 			 * Failing all of the above, just read what the
596 			 * user asked for. Interestingly, the same as
597 			 * the first option above.
598 			 */
599 			error = bread_gb(vp, lbn, size, NOCRED,
600 			    GB_UNMAPPED, &bp);
601 		}
602 		if (error) {
603 			brelse(bp);
604 			bp = NULL;
605 			break;
606 		}
607 
608 		/*
609 		 * We should only get non-zero b_resid when an I/O error
610 		 * has occurred, which should cause us to break above.
611 		 * However, if the short read did not cause an error,
612 		 * then we want to ensure that we do not uiomove bad
613 		 * or uninitialized data.
614 		 */
615 		size -= bp->b_resid;
616 		if (size < xfersize) {
617 			if (size == 0)
618 				break;
619 			xfersize = size;
620 		}
621 
622 		if (buf_mapped(bp)) {
623 			error = vn_io_fault_uiomove((char *)bp->b_data +
624 			    blkoffset, (int)xfersize, uio);
625 		} else {
626 			error = vn_io_fault_pgmove(bp->b_pages, blkoffset,
627 			    (int)xfersize, uio);
628 		}
629 		if (error)
630 			break;
631 
632 		vfs_bio_brelse(bp, ioflag);
633 	}
634 
635 	/*
636 	 * This can only happen in the case of an error
637 	 * because the loop above resets bp to NULL on each iteration
638 	 * and on normal completion has not set a new value into it.
639 	 * so it must have come from a 'break' statement
640 	 */
641 	if (bp != NULL)
642 		vfs_bio_brelse(bp, ioflag);
643 
644 	if ((error == 0 || uio->uio_resid != orig_resid) &&
645 	    (vp->v_mount->mnt_flag & (MNT_NOATIME | MNT_RDONLY)) == 0 &&
646 	    (ip->i_flag & IN_ACCESS) == 0) {
647 		VI_LOCK(vp);
648 		ip->i_flag |= IN_ACCESS;
649 		VI_UNLOCK(vp);
650 	}
651 	return (error);
652 }
653 
654 /*
655  * Vnode op for writing.
656  */
657 static int
658 ffs_write(ap)
659 	struct vop_write_args /* {
660 		struct vnode *a_vp;
661 		struct uio *a_uio;
662 		int a_ioflag;
663 		struct ucred *a_cred;
664 	} */ *ap;
665 {
666 	struct vnode *vp;
667 	struct uio *uio;
668 	struct inode *ip;
669 	struct fs *fs;
670 	struct buf *bp;
671 	ufs_lbn_t lbn;
672 	off_t osize;
673 	ssize_t resid;
674 	int seqcount;
675 	int blkoffset, error, flags, ioflag, size, xfersize;
676 
677 	vp = ap->a_vp;
678 	uio = ap->a_uio;
679 	ioflag = ap->a_ioflag;
680 	if (ap->a_ioflag & IO_EXT)
681 #ifdef notyet
682 		return (ffs_extwrite(vp, uio, ioflag, ap->a_cred));
683 #else
684 		panic("ffs_write+IO_EXT");
685 #endif
686 
687 	seqcount = ap->a_ioflag >> IO_SEQSHIFT;
688 	ip = VTOI(vp);
689 
690 #ifdef INVARIANTS
691 	if (uio->uio_rw != UIO_WRITE)
692 		panic("ffs_write: mode");
693 #endif
694 
695 	switch (vp->v_type) {
696 	case VREG:
697 		if (ioflag & IO_APPEND)
698 			uio->uio_offset = ip->i_size;
699 		if ((ip->i_flags & APPEND) && uio->uio_offset != ip->i_size)
700 			return (EPERM);
701 		/* FALLTHROUGH */
702 	case VLNK:
703 		break;
704 	case VDIR:
705 		panic("ffs_write: dir write");
706 		break;
707 	default:
708 		panic("ffs_write: type %p %d (%d,%d)", vp, (int)vp->v_type,
709 			(int)uio->uio_offset,
710 			(int)uio->uio_resid
711 		);
712 	}
713 
714 	KASSERT(uio->uio_resid >= 0, ("ffs_write: uio->uio_resid < 0"));
715 	KASSERT(uio->uio_offset >= 0, ("ffs_write: uio->uio_offset < 0"));
716 	fs = ITOFS(ip);
717 	if ((uoff_t)uio->uio_offset + uio->uio_resid > fs->fs_maxfilesize)
718 		return (EFBIG);
719 	/*
720 	 * Maybe this should be above the vnode op call, but so long as
721 	 * file servers have no limits, I don't think it matters.
722 	 */
723 	if (vn_rlimit_fsize(vp, uio, uio->uio_td))
724 		return (EFBIG);
725 
726 	resid = uio->uio_resid;
727 	osize = ip->i_size;
728 	if (seqcount > BA_SEQMAX)
729 		flags = BA_SEQMAX << BA_SEQSHIFT;
730 	else
731 		flags = seqcount << BA_SEQSHIFT;
732 	if (ioflag & IO_SYNC)
733 		flags |= IO_SYNC;
734 	flags |= BA_UNMAPPED;
735 
736 	for (error = 0; uio->uio_resid > 0;) {
737 		lbn = lblkno(fs, uio->uio_offset);
738 		blkoffset = blkoff(fs, uio->uio_offset);
739 		xfersize = fs->fs_bsize - blkoffset;
740 		if (uio->uio_resid < xfersize)
741 			xfersize = uio->uio_resid;
742 		if (uio->uio_offset + xfersize > ip->i_size)
743 			vnode_pager_setsize(vp, uio->uio_offset + xfersize);
744 
745 		/*
746 		 * We must perform a read-before-write if the transfer size
747 		 * does not cover the entire buffer.
748 		 */
749 		if (fs->fs_bsize > xfersize)
750 			flags |= BA_CLRBUF;
751 		else
752 			flags &= ~BA_CLRBUF;
753 /* XXX is uio->uio_offset the right thing here? */
754 		error = UFS_BALLOC(vp, uio->uio_offset, xfersize,
755 		    ap->a_cred, flags, &bp);
756 		if (error != 0) {
757 			vnode_pager_setsize(vp, ip->i_size);
758 			break;
759 		}
760 		if ((ioflag & (IO_SYNC|IO_INVAL)) == (IO_SYNC|IO_INVAL))
761 			bp->b_flags |= B_NOCACHE;
762 
763 		if (uio->uio_offset + xfersize > ip->i_size) {
764 			ip->i_size = uio->uio_offset + xfersize;
765 			DIP_SET(ip, i_size, ip->i_size);
766 		}
767 
768 		size = blksize(fs, ip, lbn) - bp->b_resid;
769 		if (size < xfersize)
770 			xfersize = size;
771 
772 		if (buf_mapped(bp)) {
773 			error = vn_io_fault_uiomove((char *)bp->b_data +
774 			    blkoffset, (int)xfersize, uio);
775 		} else {
776 			error = vn_io_fault_pgmove(bp->b_pages, blkoffset,
777 			    (int)xfersize, uio);
778 		}
779 		/*
780 		 * If the buffer is not already filled and we encounter an
781 		 * error while trying to fill it, we have to clear out any
782 		 * garbage data from the pages instantiated for the buffer.
783 		 * If we do not, a failed uiomove() during a write can leave
784 		 * the prior contents of the pages exposed to a userland mmap.
785 		 *
786 		 * Note that we need only clear buffers with a transfer size
787 		 * equal to the block size because buffers with a shorter
788 		 * transfer size were cleared above by the call to UFS_BALLOC()
789 		 * with the BA_CLRBUF flag set.
790 		 *
791 		 * If the source region for uiomove identically mmaps the
792 		 * buffer, uiomove() performed the NOP copy, and the buffer
793 		 * content remains valid because the page fault handler
794 		 * validated the pages.
795 		 */
796 		if (error != 0 && (bp->b_flags & B_CACHE) == 0 &&
797 		    fs->fs_bsize == xfersize)
798 			vfs_bio_clrbuf(bp);
799 
800 		vfs_bio_set_flags(bp, ioflag);
801 
802 		/*
803 		 * If IO_SYNC each buffer is written synchronously.  Otherwise
804 		 * if we have a severe page deficiency write the buffer
805 		 * asynchronously.  Otherwise try to cluster, and if that
806 		 * doesn't do it then either do an async write (if O_DIRECT),
807 		 * or a delayed write (if not).
808 		 */
809 		if (ioflag & IO_SYNC) {
810 			(void)bwrite(bp);
811 		} else if (vm_page_count_severe() ||
812 			    buf_dirty_count_severe() ||
813 			    (ioflag & IO_ASYNC)) {
814 			bp->b_flags |= B_CLUSTEROK;
815 			bawrite(bp);
816 		} else if (xfersize + blkoffset == fs->fs_bsize) {
817 			if ((vp->v_mount->mnt_flag & MNT_NOCLUSTERW) == 0) {
818 				bp->b_flags |= B_CLUSTEROK;
819 				cluster_write(vp, bp, ip->i_size, seqcount,
820 				    GB_UNMAPPED);
821 			} else {
822 				bawrite(bp);
823 			}
824 		} else if (ioflag & IO_DIRECT) {
825 			bp->b_flags |= B_CLUSTEROK;
826 			bawrite(bp);
827 		} else {
828 			bp->b_flags |= B_CLUSTEROK;
829 			bdwrite(bp);
830 		}
831 		if (error || xfersize == 0)
832 			break;
833 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
834 	}
835 	/*
836 	 * If we successfully wrote any data, and we are not the superuser
837 	 * we clear the setuid and setgid bits as a precaution against
838 	 * tampering.
839 	 */
840 	if ((ip->i_mode & (ISUID | ISGID)) && resid > uio->uio_resid &&
841 	    ap->a_cred) {
842 		if (priv_check_cred(ap->a_cred, PRIV_VFS_RETAINSUGID, 0)) {
843 			ip->i_mode &= ~(ISUID | ISGID);
844 			DIP_SET(ip, i_mode, ip->i_mode);
845 		}
846 	}
847 	if (error) {
848 		if (ioflag & IO_UNIT) {
849 			(void)ffs_truncate(vp, osize,
850 			    IO_NORMAL | (ioflag & IO_SYNC), ap->a_cred);
851 			uio->uio_offset -= resid - uio->uio_resid;
852 			uio->uio_resid = resid;
853 		}
854 	} else if (resid > uio->uio_resid && (ioflag & IO_SYNC))
855 		error = ffs_update(vp, 1);
856 	return (error);
857 }
858 
859 /*
860  * Extended attribute area reading.
861  */
862 static int
863 ffs_extread(struct vnode *vp, struct uio *uio, int ioflag)
864 {
865 	struct inode *ip;
866 	struct ufs2_dinode *dp;
867 	struct fs *fs;
868 	struct buf *bp;
869 	ufs_lbn_t lbn, nextlbn;
870 	off_t bytesinfile;
871 	long size, xfersize, blkoffset;
872 	ssize_t orig_resid;
873 	int error;
874 
875 	ip = VTOI(vp);
876 	fs = ITOFS(ip);
877 	dp = ip->i_din2;
878 
879 #ifdef INVARIANTS
880 	if (uio->uio_rw != UIO_READ || fs->fs_magic != FS_UFS2_MAGIC)
881 		panic("ffs_extread: mode");
882 
883 #endif
884 	orig_resid = uio->uio_resid;
885 	KASSERT(orig_resid >= 0, ("ffs_extread: uio->uio_resid < 0"));
886 	if (orig_resid == 0)
887 		return (0);
888 	KASSERT(uio->uio_offset >= 0, ("ffs_extread: uio->uio_offset < 0"));
889 
890 	for (error = 0, bp = NULL; uio->uio_resid > 0; bp = NULL) {
891 		if ((bytesinfile = dp->di_extsize - uio->uio_offset) <= 0)
892 			break;
893 		lbn = lblkno(fs, uio->uio_offset);
894 		nextlbn = lbn + 1;
895 
896 		/*
897 		 * size of buffer.  The buffer representing the
898 		 * end of the file is rounded up to the size of
899 		 * the block type ( fragment or full block,
900 		 * depending ).
901 		 */
902 		size = sblksize(fs, dp->di_extsize, lbn);
903 		blkoffset = blkoff(fs, uio->uio_offset);
904 
905 		/*
906 		 * The amount we want to transfer in this iteration is
907 		 * one FS block less the amount of the data before
908 		 * our startpoint (duh!)
909 		 */
910 		xfersize = fs->fs_bsize - blkoffset;
911 
912 		/*
913 		 * But if we actually want less than the block,
914 		 * or the file doesn't have a whole block more of data,
915 		 * then use the lesser number.
916 		 */
917 		if (uio->uio_resid < xfersize)
918 			xfersize = uio->uio_resid;
919 		if (bytesinfile < xfersize)
920 			xfersize = bytesinfile;
921 
922 		if (lblktosize(fs, nextlbn) >= dp->di_extsize) {
923 			/*
924 			 * Don't do readahead if this is the end of the info.
925 			 */
926 			error = bread(vp, -1 - lbn, size, NOCRED, &bp);
927 		} else {
928 			/*
929 			 * If we have a second block, then
930 			 * fire off a request for a readahead
931 			 * as well as a read. Note that the 4th and 5th
932 			 * arguments point to arrays of the size specified in
933 			 * the 6th argument.
934 			 */
935 			u_int nextsize = sblksize(fs, dp->di_extsize, nextlbn);
936 
937 			nextlbn = -1 - nextlbn;
938 			error = breadn(vp, -1 - lbn,
939 			    size, &nextlbn, &nextsize, 1, NOCRED, &bp);
940 		}
941 		if (error) {
942 			brelse(bp);
943 			bp = NULL;
944 			break;
945 		}
946 
947 		/*
948 		 * We should only get non-zero b_resid when an I/O error
949 		 * has occurred, which should cause us to break above.
950 		 * However, if the short read did not cause an error,
951 		 * then we want to ensure that we do not uiomove bad
952 		 * or uninitialized data.
953 		 */
954 		size -= bp->b_resid;
955 		if (size < xfersize) {
956 			if (size == 0)
957 				break;
958 			xfersize = size;
959 		}
960 
961 		error = uiomove((char *)bp->b_data + blkoffset,
962 					(int)xfersize, uio);
963 		if (error)
964 			break;
965 		vfs_bio_brelse(bp, ioflag);
966 	}
967 
968 	/*
969 	 * This can only happen in the case of an error
970 	 * because the loop above resets bp to NULL on each iteration
971 	 * and on normal completion has not set a new value into it.
972 	 * so it must have come from a 'break' statement
973 	 */
974 	if (bp != NULL)
975 		vfs_bio_brelse(bp, ioflag);
976 	return (error);
977 }
978 
979 /*
980  * Extended attribute area writing.
981  */
982 static int
983 ffs_extwrite(struct vnode *vp, struct uio *uio, int ioflag, struct ucred *ucred)
984 {
985 	struct inode *ip;
986 	struct ufs2_dinode *dp;
987 	struct fs *fs;
988 	struct buf *bp;
989 	ufs_lbn_t lbn;
990 	off_t osize;
991 	ssize_t resid;
992 	int blkoffset, error, flags, size, xfersize;
993 
994 	ip = VTOI(vp);
995 	fs = ITOFS(ip);
996 	dp = ip->i_din2;
997 
998 #ifdef INVARIANTS
999 	if (uio->uio_rw != UIO_WRITE || fs->fs_magic != FS_UFS2_MAGIC)
1000 		panic("ffs_extwrite: mode");
1001 #endif
1002 
1003 	if (ioflag & IO_APPEND)
1004 		uio->uio_offset = dp->di_extsize;
1005 	KASSERT(uio->uio_offset >= 0, ("ffs_extwrite: uio->uio_offset < 0"));
1006 	KASSERT(uio->uio_resid >= 0, ("ffs_extwrite: uio->uio_resid < 0"));
1007 	if ((uoff_t)uio->uio_offset + uio->uio_resid >
1008 	    UFS_NXADDR * fs->fs_bsize)
1009 		return (EFBIG);
1010 
1011 	resid = uio->uio_resid;
1012 	osize = dp->di_extsize;
1013 	flags = IO_EXT;
1014 	if (ioflag & IO_SYNC)
1015 		flags |= IO_SYNC;
1016 
1017 	for (error = 0; uio->uio_resid > 0;) {
1018 		lbn = lblkno(fs, uio->uio_offset);
1019 		blkoffset = blkoff(fs, uio->uio_offset);
1020 		xfersize = fs->fs_bsize - blkoffset;
1021 		if (uio->uio_resid < xfersize)
1022 			xfersize = uio->uio_resid;
1023 
1024 		/*
1025 		 * We must perform a read-before-write if the transfer size
1026 		 * does not cover the entire buffer.
1027 		 */
1028 		if (fs->fs_bsize > xfersize)
1029 			flags |= BA_CLRBUF;
1030 		else
1031 			flags &= ~BA_CLRBUF;
1032 		error = UFS_BALLOC(vp, uio->uio_offset, xfersize,
1033 		    ucred, flags, &bp);
1034 		if (error != 0)
1035 			break;
1036 		/*
1037 		 * If the buffer is not valid we have to clear out any
1038 		 * garbage data from the pages instantiated for the buffer.
1039 		 * If we do not, a failed uiomove() during a write can leave
1040 		 * the prior contents of the pages exposed to a userland
1041 		 * mmap().  XXX deal with uiomove() errors a better way.
1042 		 */
1043 		if ((bp->b_flags & B_CACHE) == 0 && fs->fs_bsize <= xfersize)
1044 			vfs_bio_clrbuf(bp);
1045 
1046 		if (uio->uio_offset + xfersize > dp->di_extsize)
1047 			dp->di_extsize = uio->uio_offset + xfersize;
1048 
1049 		size = sblksize(fs, dp->di_extsize, lbn) - bp->b_resid;
1050 		if (size < xfersize)
1051 			xfersize = size;
1052 
1053 		error =
1054 		    uiomove((char *)bp->b_data + blkoffset, (int)xfersize, uio);
1055 
1056 		vfs_bio_set_flags(bp, ioflag);
1057 
1058 		/*
1059 		 * If IO_SYNC each buffer is written synchronously.  Otherwise
1060 		 * if we have a severe page deficiency write the buffer
1061 		 * asynchronously.  Otherwise try to cluster, and if that
1062 		 * doesn't do it then either do an async write (if O_DIRECT),
1063 		 * or a delayed write (if not).
1064 		 */
1065 		if (ioflag & IO_SYNC) {
1066 			(void)bwrite(bp);
1067 		} else if (vm_page_count_severe() ||
1068 			    buf_dirty_count_severe() ||
1069 			    xfersize + blkoffset == fs->fs_bsize ||
1070 			    (ioflag & (IO_ASYNC | IO_DIRECT)))
1071 			bawrite(bp);
1072 		else
1073 			bdwrite(bp);
1074 		if (error || xfersize == 0)
1075 			break;
1076 		ip->i_flag |= IN_CHANGE;
1077 	}
1078 	/*
1079 	 * If we successfully wrote any data, and we are not the superuser
1080 	 * we clear the setuid and setgid bits as a precaution against
1081 	 * tampering.
1082 	 */
1083 	if ((ip->i_mode & (ISUID | ISGID)) && resid > uio->uio_resid && ucred) {
1084 		if (priv_check_cred(ucred, PRIV_VFS_RETAINSUGID, 0)) {
1085 			ip->i_mode &= ~(ISUID | ISGID);
1086 			dp->di_mode = ip->i_mode;
1087 		}
1088 	}
1089 	if (error) {
1090 		if (ioflag & IO_UNIT) {
1091 			(void)ffs_truncate(vp, osize,
1092 			    IO_EXT | (ioflag&IO_SYNC), ucred);
1093 			uio->uio_offset -= resid - uio->uio_resid;
1094 			uio->uio_resid = resid;
1095 		}
1096 	} else if (resid > uio->uio_resid && (ioflag & IO_SYNC))
1097 		error = ffs_update(vp, 1);
1098 	return (error);
1099 }
1100 
1101 
1102 /*
1103  * Vnode operating to retrieve a named extended attribute.
1104  *
1105  * Locate a particular EA (nspace:name) in the area (ptr:length), and return
1106  * the length of the EA, and possibly the pointer to the entry and to the data.
1107  */
1108 static int
1109 ffs_findextattr(u_char *ptr, u_int length, int nspace, const char *name,
1110     struct extattr **eapp, u_char **eac)
1111 {
1112 	struct extattr *eap, *eaend;
1113 	size_t nlen;
1114 
1115 	nlen = strlen(name);
1116 	KASSERT(ALIGNED_TO(ptr, struct extattr), ("unaligned"));
1117 	eap = (struct extattr *)ptr;
1118 	eaend = (struct extattr *)(ptr + length);
1119 	for (; eap < eaend; eap = EXTATTR_NEXT(eap)) {
1120 		/* make sure this entry is complete */
1121 		if (EXTATTR_NEXT(eap) > eaend)
1122 			break;
1123 		if (eap->ea_namespace != nspace || eap->ea_namelength != nlen
1124 		    || memcmp(eap->ea_name, name, nlen) != 0)
1125 			continue;
1126 		if (eapp != NULL)
1127 			*eapp = eap;
1128 		if (eac != NULL)
1129 			*eac = EXTATTR_CONTENT(eap);
1130 		return (EXTATTR_CONTENT_SIZE(eap));
1131 	}
1132 	return (-1);
1133 }
1134 
1135 static int
1136 ffs_rdextattr(u_char **p, struct vnode *vp, struct thread *td, int extra)
1137 {
1138 	struct inode *ip;
1139 	struct ufs2_dinode *dp;
1140 	struct fs *fs;
1141 	struct uio luio;
1142 	struct iovec liovec;
1143 	u_int easize;
1144 	int error;
1145 	u_char *eae;
1146 
1147 	ip = VTOI(vp);
1148 	fs = ITOFS(ip);
1149 	dp = ip->i_din2;
1150 	easize = dp->di_extsize;
1151 	if ((uoff_t)easize + extra > UFS_NXADDR * fs->fs_bsize)
1152 		return (EFBIG);
1153 
1154 	eae = malloc(easize + extra, M_TEMP, M_WAITOK);
1155 
1156 	liovec.iov_base = eae;
1157 	liovec.iov_len = easize;
1158 	luio.uio_iov = &liovec;
1159 	luio.uio_iovcnt = 1;
1160 	luio.uio_offset = 0;
1161 	luio.uio_resid = easize;
1162 	luio.uio_segflg = UIO_SYSSPACE;
1163 	luio.uio_rw = UIO_READ;
1164 	luio.uio_td = td;
1165 
1166 	error = ffs_extread(vp, &luio, IO_EXT | IO_SYNC);
1167 	if (error) {
1168 		free(eae, M_TEMP);
1169 		return(error);
1170 	}
1171 	*p = eae;
1172 	return (0);
1173 }
1174 
1175 static void
1176 ffs_lock_ea(struct vnode *vp)
1177 {
1178 	struct inode *ip;
1179 
1180 	ip = VTOI(vp);
1181 	VI_LOCK(vp);
1182 	while (ip->i_flag & IN_EA_LOCKED) {
1183 		ip->i_flag |= IN_EA_LOCKWAIT;
1184 		msleep(&ip->i_ea_refs, &vp->v_interlock, PINOD + 2, "ufs_ea",
1185 		    0);
1186 	}
1187 	ip->i_flag |= IN_EA_LOCKED;
1188 	VI_UNLOCK(vp);
1189 }
1190 
1191 static void
1192 ffs_unlock_ea(struct vnode *vp)
1193 {
1194 	struct inode *ip;
1195 
1196 	ip = VTOI(vp);
1197 	VI_LOCK(vp);
1198 	if (ip->i_flag & IN_EA_LOCKWAIT)
1199 		wakeup(&ip->i_ea_refs);
1200 	ip->i_flag &= ~(IN_EA_LOCKED | IN_EA_LOCKWAIT);
1201 	VI_UNLOCK(vp);
1202 }
1203 
1204 static int
1205 ffs_open_ea(struct vnode *vp, struct ucred *cred, struct thread *td)
1206 {
1207 	struct inode *ip;
1208 	struct ufs2_dinode *dp;
1209 	int error;
1210 
1211 	ip = VTOI(vp);
1212 
1213 	ffs_lock_ea(vp);
1214 	if (ip->i_ea_area != NULL) {
1215 		ip->i_ea_refs++;
1216 		ffs_unlock_ea(vp);
1217 		return (0);
1218 	}
1219 	dp = ip->i_din2;
1220 	error = ffs_rdextattr(&ip->i_ea_area, vp, td, 0);
1221 	if (error) {
1222 		ffs_unlock_ea(vp);
1223 		return (error);
1224 	}
1225 	ip->i_ea_len = dp->di_extsize;
1226 	ip->i_ea_error = 0;
1227 	ip->i_ea_refs++;
1228 	ffs_unlock_ea(vp);
1229 	return (0);
1230 }
1231 
1232 /*
1233  * Vnode extattr transaction commit/abort
1234  */
1235 static int
1236 ffs_close_ea(struct vnode *vp, int commit, struct ucred *cred, struct thread *td)
1237 {
1238 	struct inode *ip;
1239 	struct uio luio;
1240 	struct iovec liovec;
1241 	int error;
1242 	struct ufs2_dinode *dp;
1243 
1244 	ip = VTOI(vp);
1245 
1246 	ffs_lock_ea(vp);
1247 	if (ip->i_ea_area == NULL) {
1248 		ffs_unlock_ea(vp);
1249 		return (EINVAL);
1250 	}
1251 	dp = ip->i_din2;
1252 	error = ip->i_ea_error;
1253 	if (commit && error == 0) {
1254 		ASSERT_VOP_ELOCKED(vp, "ffs_close_ea commit");
1255 		if (cred == NOCRED)
1256 			cred =  vp->v_mount->mnt_cred;
1257 		liovec.iov_base = ip->i_ea_area;
1258 		liovec.iov_len = ip->i_ea_len;
1259 		luio.uio_iov = &liovec;
1260 		luio.uio_iovcnt = 1;
1261 		luio.uio_offset = 0;
1262 		luio.uio_resid = ip->i_ea_len;
1263 		luio.uio_segflg = UIO_SYSSPACE;
1264 		luio.uio_rw = UIO_WRITE;
1265 		luio.uio_td = td;
1266 		/* XXX: I'm not happy about truncating to zero size */
1267 		if (ip->i_ea_len < dp->di_extsize)
1268 			error = ffs_truncate(vp, 0, IO_EXT, cred);
1269 		error = ffs_extwrite(vp, &luio, IO_EXT | IO_SYNC, cred);
1270 	}
1271 	if (--ip->i_ea_refs == 0) {
1272 		free(ip->i_ea_area, M_TEMP);
1273 		ip->i_ea_area = NULL;
1274 		ip->i_ea_len = 0;
1275 		ip->i_ea_error = 0;
1276 	}
1277 	ffs_unlock_ea(vp);
1278 	return (error);
1279 }
1280 
1281 /*
1282  * Vnode extattr strategy routine for fifos.
1283  *
1284  * We need to check for a read or write of the external attributes.
1285  * Otherwise we just fall through and do the usual thing.
1286  */
1287 static int
1288 ffsext_strategy(struct vop_strategy_args *ap)
1289 /*
1290 struct vop_strategy_args {
1291 	struct vnodeop_desc *a_desc;
1292 	struct vnode *a_vp;
1293 	struct buf *a_bp;
1294 };
1295 */
1296 {
1297 	struct vnode *vp;
1298 	daddr_t lbn;
1299 
1300 	vp = ap->a_vp;
1301 	lbn = ap->a_bp->b_lblkno;
1302 	if (I_IS_UFS2(VTOI(vp)) && lbn < 0 && lbn >= -UFS_NXADDR)
1303 		return (VOP_STRATEGY_APV(&ufs_vnodeops, ap));
1304 	if (vp->v_type == VFIFO)
1305 		return (VOP_STRATEGY_APV(&ufs_fifoops, ap));
1306 	panic("spec nodes went here");
1307 }
1308 
1309 /*
1310  * Vnode extattr transaction commit/abort
1311  */
1312 static int
1313 ffs_openextattr(struct vop_openextattr_args *ap)
1314 /*
1315 struct vop_openextattr_args {
1316 	struct vnodeop_desc *a_desc;
1317 	struct vnode *a_vp;
1318 	IN struct ucred *a_cred;
1319 	IN struct thread *a_td;
1320 };
1321 */
1322 {
1323 
1324 	if (ap->a_vp->v_type == VCHR || ap->a_vp->v_type == VBLK)
1325 		return (EOPNOTSUPP);
1326 
1327 	return (ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td));
1328 }
1329 
1330 
1331 /*
1332  * Vnode extattr transaction commit/abort
1333  */
1334 static int
1335 ffs_closeextattr(struct vop_closeextattr_args *ap)
1336 /*
1337 struct vop_closeextattr_args {
1338 	struct vnodeop_desc *a_desc;
1339 	struct vnode *a_vp;
1340 	int a_commit;
1341 	IN struct ucred *a_cred;
1342 	IN struct thread *a_td;
1343 };
1344 */
1345 {
1346 
1347 	if (ap->a_vp->v_type == VCHR || ap->a_vp->v_type == VBLK)
1348 		return (EOPNOTSUPP);
1349 
1350 	if (ap->a_commit && (ap->a_vp->v_mount->mnt_flag & MNT_RDONLY))
1351 		return (EROFS);
1352 
1353 	return (ffs_close_ea(ap->a_vp, ap->a_commit, ap->a_cred, ap->a_td));
1354 }
1355 
1356 /*
1357  * Vnode operation to remove a named attribute.
1358  */
1359 static int
1360 ffs_deleteextattr(struct vop_deleteextattr_args *ap)
1361 /*
1362 vop_deleteextattr {
1363 	IN struct vnode *a_vp;
1364 	IN int a_attrnamespace;
1365 	IN const char *a_name;
1366 	IN struct ucred *a_cred;
1367 	IN struct thread *a_td;
1368 };
1369 */
1370 {
1371 	struct inode *ip;
1372 	struct fs *fs;
1373 	struct extattr *eap;
1374 	uint32_t ul;
1375 	int olen, error, i, easize;
1376 	u_char *eae;
1377 	void *tmp;
1378 
1379 	ip = VTOI(ap->a_vp);
1380 	fs = ITOFS(ip);
1381 
1382 	if (ap->a_vp->v_type == VCHR || ap->a_vp->v_type == VBLK)
1383 		return (EOPNOTSUPP);
1384 
1385 	if (strlen(ap->a_name) == 0)
1386 		return (EINVAL);
1387 
1388 	if (ap->a_vp->v_mount->mnt_flag & MNT_RDONLY)
1389 		return (EROFS);
1390 
1391 	error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace,
1392 	    ap->a_cred, ap->a_td, VWRITE);
1393 	if (error) {
1394 
1395 		/*
1396 		 * ffs_lock_ea is not needed there, because the vnode
1397 		 * must be exclusively locked.
1398 		 */
1399 		if (ip->i_ea_area != NULL && ip->i_ea_error == 0)
1400 			ip->i_ea_error = error;
1401 		return (error);
1402 	}
1403 
1404 	error = ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td);
1405 	if (error)
1406 		return (error);
1407 
1408 	/* CEM: delete could be done in-place instead */
1409 	eae = malloc(ip->i_ea_len, M_TEMP, M_WAITOK);
1410 	bcopy(ip->i_ea_area, eae, ip->i_ea_len);
1411 	easize = ip->i_ea_len;
1412 
1413 	olen = ffs_findextattr(eae, easize, ap->a_attrnamespace, ap->a_name,
1414 	    &eap, NULL);
1415 	if (olen == -1) {
1416 		/* delete but nonexistent */
1417 		free(eae, M_TEMP);
1418 		ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td);
1419 		return (ENOATTR);
1420 	}
1421 	ul = eap->ea_length;
1422 	i = (u_char *)EXTATTR_NEXT(eap) - eae;
1423 	bcopy(EXTATTR_NEXT(eap), eap, easize - i);
1424 	easize -= ul;
1425 
1426 	tmp = ip->i_ea_area;
1427 	ip->i_ea_area = eae;
1428 	ip->i_ea_len = easize;
1429 	free(tmp, M_TEMP);
1430 	error = ffs_close_ea(ap->a_vp, 1, ap->a_cred, ap->a_td);
1431 	return (error);
1432 }
1433 
1434 /*
1435  * Vnode operation to retrieve a named extended attribute.
1436  */
1437 static int
1438 ffs_getextattr(struct vop_getextattr_args *ap)
1439 /*
1440 vop_getextattr {
1441 	IN struct vnode *a_vp;
1442 	IN int a_attrnamespace;
1443 	IN const char *a_name;
1444 	INOUT struct uio *a_uio;
1445 	OUT size_t *a_size;
1446 	IN struct ucred *a_cred;
1447 	IN struct thread *a_td;
1448 };
1449 */
1450 {
1451 	struct inode *ip;
1452 	u_char *eae, *p;
1453 	unsigned easize;
1454 	int error, ealen;
1455 
1456 	ip = VTOI(ap->a_vp);
1457 
1458 	if (ap->a_vp->v_type == VCHR || ap->a_vp->v_type == VBLK)
1459 		return (EOPNOTSUPP);
1460 
1461 	error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace,
1462 	    ap->a_cred, ap->a_td, VREAD);
1463 	if (error)
1464 		return (error);
1465 
1466 	error = ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td);
1467 	if (error)
1468 		return (error);
1469 
1470 	eae = ip->i_ea_area;
1471 	easize = ip->i_ea_len;
1472 
1473 	ealen = ffs_findextattr(eae, easize, ap->a_attrnamespace, ap->a_name,
1474 	    NULL, &p);
1475 	if (ealen >= 0) {
1476 		error = 0;
1477 		if (ap->a_size != NULL)
1478 			*ap->a_size = ealen;
1479 		else if (ap->a_uio != NULL)
1480 			error = uiomove(p, ealen, ap->a_uio);
1481 	} else
1482 		error = ENOATTR;
1483 
1484 	ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td);
1485 	return (error);
1486 }
1487 
1488 /*
1489  * Vnode operation to retrieve extended attributes on a vnode.
1490  */
1491 static int
1492 ffs_listextattr(struct vop_listextattr_args *ap)
1493 /*
1494 vop_listextattr {
1495 	IN struct vnode *a_vp;
1496 	IN int a_attrnamespace;
1497 	INOUT struct uio *a_uio;
1498 	OUT size_t *a_size;
1499 	IN struct ucred *a_cred;
1500 	IN struct thread *a_td;
1501 };
1502 */
1503 {
1504 	struct inode *ip;
1505 	struct extattr *eap, *eaend;
1506 	int error, ealen;
1507 
1508 	ip = VTOI(ap->a_vp);
1509 
1510 	if (ap->a_vp->v_type == VCHR || ap->a_vp->v_type == VBLK)
1511 		return (EOPNOTSUPP);
1512 
1513 	error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace,
1514 	    ap->a_cred, ap->a_td, VREAD);
1515 	if (error)
1516 		return (error);
1517 
1518 	error = ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td);
1519 	if (error)
1520 		return (error);
1521 
1522 	error = 0;
1523 	if (ap->a_size != NULL)
1524 		*ap->a_size = 0;
1525 
1526 	KASSERT(ALIGNED_TO(ip->i_ea_area, struct extattr), ("unaligned"));
1527 	eap = (struct extattr *)ip->i_ea_area;
1528 	eaend = (struct extattr *)(ip->i_ea_area + ip->i_ea_len);
1529 	for (; error == 0 && eap < eaend; eap = EXTATTR_NEXT(eap)) {
1530 		/* make sure this entry is complete */
1531 		if (EXTATTR_NEXT(eap) > eaend)
1532 			break;
1533 		if (eap->ea_namespace != ap->a_attrnamespace)
1534 			continue;
1535 
1536 		ealen = eap->ea_namelength;
1537 		if (ap->a_size != NULL)
1538 			*ap->a_size += ealen + 1;
1539 		else if (ap->a_uio != NULL)
1540 			error = uiomove(&eap->ea_namelength, ealen + 1,
1541 			    ap->a_uio);
1542 	}
1543 
1544 	ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td);
1545 	return (error);
1546 }
1547 
1548 /*
1549  * Vnode operation to set a named attribute.
1550  */
1551 static int
1552 ffs_setextattr(struct vop_setextattr_args *ap)
1553 /*
1554 vop_setextattr {
1555 	IN struct vnode *a_vp;
1556 	IN int a_attrnamespace;
1557 	IN const char *a_name;
1558 	INOUT struct uio *a_uio;
1559 	IN struct ucred *a_cred;
1560 	IN struct thread *a_td;
1561 };
1562 */
1563 {
1564 	struct inode *ip;
1565 	struct fs *fs;
1566 	struct extattr *eap;
1567 	uint32_t ealength, ul;
1568 	ssize_t ealen;
1569 	int olen, eapad1, eapad2, error, i, easize;
1570 	u_char *eae;
1571 	void *tmp;
1572 
1573 	ip = VTOI(ap->a_vp);
1574 	fs = ITOFS(ip);
1575 
1576 	if (ap->a_vp->v_type == VCHR || ap->a_vp->v_type == VBLK)
1577 		return (EOPNOTSUPP);
1578 
1579 	if (strlen(ap->a_name) == 0)
1580 		return (EINVAL);
1581 
1582 	/* XXX Now unsupported API to delete EAs using NULL uio. */
1583 	if (ap->a_uio == NULL)
1584 		return (EOPNOTSUPP);
1585 
1586 	if (ap->a_vp->v_mount->mnt_flag & MNT_RDONLY)
1587 		return (EROFS);
1588 
1589 	ealen = ap->a_uio->uio_resid;
1590 	if (ealen < 0 || ealen > lblktosize(fs, UFS_NXADDR))
1591 		return (EINVAL);
1592 
1593 	error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace,
1594 	    ap->a_cred, ap->a_td, VWRITE);
1595 	if (error) {
1596 
1597 		/*
1598 		 * ffs_lock_ea is not needed there, because the vnode
1599 		 * must be exclusively locked.
1600 		 */
1601 		if (ip->i_ea_area != NULL && ip->i_ea_error == 0)
1602 			ip->i_ea_error = error;
1603 		return (error);
1604 	}
1605 
1606 	error = ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td);
1607 	if (error)
1608 		return (error);
1609 
1610 	ealength = sizeof(uint32_t) + 3 + strlen(ap->a_name);
1611 	eapad1 = roundup2(ealength, 8) - ealength;
1612 	eapad2 = roundup2(ealen, 8) - ealen;
1613 	ealength += eapad1 + ealen + eapad2;
1614 
1615 	/*
1616 	 * CEM: rewrites of the same size or smaller could be done in-place
1617 	 * instead.  (We don't acquire any fine-grained locks in here either,
1618 	 * so we could also do bigger writes in-place.)
1619 	 */
1620 	eae = malloc(ip->i_ea_len + ealength, M_TEMP, M_WAITOK);
1621 	bcopy(ip->i_ea_area, eae, ip->i_ea_len);
1622 	easize = ip->i_ea_len;
1623 
1624 	olen = ffs_findextattr(eae, easize, ap->a_attrnamespace, ap->a_name,
1625 	    &eap, NULL);
1626         if (olen == -1) {
1627 		/* new, append at end */
1628 		KASSERT(ALIGNED_TO(eae + easize, struct extattr),
1629 		    ("unaligned"));
1630 		eap = (struct extattr *)(eae + easize);
1631 		easize += ealength;
1632 	} else {
1633 		ul = eap->ea_length;
1634 		i = (u_char *)EXTATTR_NEXT(eap) - eae;
1635 		if (ul != ealength) {
1636 			bcopy(EXTATTR_NEXT(eap), (u_char *)eap + ealength,
1637 			    easize - i);
1638 			easize += (ealength - ul);
1639 		}
1640 	}
1641 	if (easize > lblktosize(fs, UFS_NXADDR)) {
1642 		free(eae, M_TEMP);
1643 		ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td);
1644 		if (ip->i_ea_area != NULL && ip->i_ea_error == 0)
1645 			ip->i_ea_error = ENOSPC;
1646 		return (ENOSPC);
1647 	}
1648 	eap->ea_length = ealength;
1649 	eap->ea_namespace = ap->a_attrnamespace;
1650 	eap->ea_contentpadlen = eapad2;
1651 	eap->ea_namelength = strlen(ap->a_name);
1652 	memcpy(eap->ea_name, ap->a_name, strlen(ap->a_name));
1653 	bzero(&eap->ea_name[strlen(ap->a_name)], eapad1);
1654 	error = uiomove(EXTATTR_CONTENT(eap), ealen, ap->a_uio);
1655 	if (error) {
1656 		free(eae, M_TEMP);
1657 		ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td);
1658 		if (ip->i_ea_area != NULL && ip->i_ea_error == 0)
1659 			ip->i_ea_error = error;
1660 		return (error);
1661 	}
1662 	bzero((u_char *)EXTATTR_CONTENT(eap) + ealen, eapad2);
1663 
1664 	tmp = ip->i_ea_area;
1665 	ip->i_ea_area = eae;
1666 	ip->i_ea_len = easize;
1667 	free(tmp, M_TEMP);
1668 	error = ffs_close_ea(ap->a_vp, 1, ap->a_cred, ap->a_td);
1669 	return (error);
1670 }
1671 
1672 /*
1673  * Vnode pointer to File handle
1674  */
1675 static int
1676 ffs_vptofh(struct vop_vptofh_args *ap)
1677 /*
1678 vop_vptofh {
1679 	IN struct vnode *a_vp;
1680 	IN struct fid *a_fhp;
1681 };
1682 */
1683 {
1684 	struct inode *ip;
1685 	struct ufid *ufhp;
1686 
1687 	ip = VTOI(ap->a_vp);
1688 	ufhp = (struct ufid *)ap->a_fhp;
1689 	ufhp->ufid_len = sizeof(struct ufid);
1690 	ufhp->ufid_ino = ip->i_number;
1691 	ufhp->ufid_gen = ip->i_gen;
1692 	return (0);
1693 }
1694 
1695 SYSCTL_DECL(_vfs_ffs);
1696 static int use_buf_pager = 1;
1697 SYSCTL_INT(_vfs_ffs, OID_AUTO, use_buf_pager, CTLFLAG_RWTUN, &use_buf_pager, 0,
1698     "Always use buffer pager instead of bmap");
1699 
1700 static daddr_t
1701 ffs_gbp_getblkno(struct vnode *vp, vm_ooffset_t off)
1702 {
1703 
1704 	return (lblkno(VFSTOUFS(vp->v_mount)->um_fs, off));
1705 }
1706 
1707 static int
1708 ffs_gbp_getblksz(struct vnode *vp, daddr_t lbn)
1709 {
1710 
1711 	return (blksize(VFSTOUFS(vp->v_mount)->um_fs, VTOI(vp), lbn));
1712 }
1713 
1714 static int
1715 ffs_getpages(struct vop_getpages_args *ap)
1716 {
1717 	struct vnode *vp;
1718 	struct ufsmount *um;
1719 
1720 	vp = ap->a_vp;
1721 	um = VFSTOUFS(vp->v_mount);
1722 
1723 	if (!use_buf_pager && um->um_devvp->v_bufobj.bo_bsize <= PAGE_SIZE)
1724 		return (vnode_pager_generic_getpages(vp, ap->a_m, ap->a_count,
1725 		    ap->a_rbehind, ap->a_rahead, NULL, NULL));
1726 	return (vfs_bio_getpages(vp, ap->a_m, ap->a_count, ap->a_rbehind,
1727 	    ap->a_rahead, ffs_gbp_getblkno, ffs_gbp_getblksz));
1728 }
1729