1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 2002, 2003 Networks Associates Technology, Inc. 5 * All rights reserved. 6 * 7 * This software was developed for the FreeBSD Project by Marshall 8 * Kirk McKusick and Network Associates Laboratories, the Security 9 * Research Division of Network Associates, Inc. under DARPA/SPAWAR 10 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS 11 * research program 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 1. Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * Copyright (c) 1982, 1986, 1989, 1993 35 * The Regents of the University of California. All rights reserved. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 1. Redistributions of source code must retain the above copyright 41 * notice, this list of conditions and the following disclaimer. 42 * 2. Redistributions in binary form must reproduce the above copyright 43 * notice, this list of conditions and the following disclaimer in the 44 * documentation and/or other materials provided with the distribution. 45 * 3. Neither the name of the University nor the names of its contributors 46 * may be used to endorse or promote products derived from this software 47 * without specific prior written permission. 48 * 49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 59 * SUCH DAMAGE. 60 * 61 * from: @(#)ufs_readwrite.c 8.11 (Berkeley) 5/8/95 62 * from: $FreeBSD: .../ufs/ufs_readwrite.c,v 1.96 2002/08/12 09:22:11 phk ... 63 * @(#)ffs_vnops.c 8.15 (Berkeley) 5/14/95 64 */ 65 66 #include <sys/cdefs.h> 67 __FBSDID("$FreeBSD$"); 68 69 #include <sys/param.h> 70 #include <sys/bio.h> 71 #include <sys/systm.h> 72 #include <sys/buf.h> 73 #include <sys/conf.h> 74 #include <sys/extattr.h> 75 #include <sys/kernel.h> 76 #include <sys/limits.h> 77 #include <sys/malloc.h> 78 #include <sys/mount.h> 79 #include <sys/priv.h> 80 #include <sys/rwlock.h> 81 #include <sys/stat.h> 82 #include <sys/sysctl.h> 83 #include <sys/vmmeter.h> 84 #include <sys/vnode.h> 85 86 #include <vm/vm.h> 87 #include <vm/vm_param.h> 88 #include <vm/vm_extern.h> 89 #include <vm/vm_object.h> 90 #include <vm/vm_page.h> 91 #include <vm/vm_pager.h> 92 #include <vm/vnode_pager.h> 93 94 #include <ufs/ufs/extattr.h> 95 #include <ufs/ufs/quota.h> 96 #include <ufs/ufs/inode.h> 97 #include <ufs/ufs/ufs_extern.h> 98 #include <ufs/ufs/ufsmount.h> 99 100 #include <ufs/ffs/fs.h> 101 #include <ufs/ffs/ffs_extern.h> 102 #include "opt_directio.h" 103 #include "opt_ffs.h" 104 105 #define ALIGNED_TO(ptr, s) \ 106 (((uintptr_t)(ptr) & (_Alignof(s) - 1)) == 0) 107 108 #ifdef DIRECTIO 109 extern int ffs_rawread(struct vnode *vp, struct uio *uio, int *workdone); 110 #endif 111 static vop_fdatasync_t ffs_fdatasync; 112 static vop_fsync_t ffs_fsync; 113 static vop_getpages_t ffs_getpages; 114 static vop_lock1_t ffs_lock; 115 static vop_read_t ffs_read; 116 static vop_write_t ffs_write; 117 static int ffs_extread(struct vnode *vp, struct uio *uio, int ioflag); 118 static int ffs_extwrite(struct vnode *vp, struct uio *uio, int ioflag, 119 struct ucred *cred); 120 static vop_strategy_t ffsext_strategy; 121 static vop_closeextattr_t ffs_closeextattr; 122 static vop_deleteextattr_t ffs_deleteextattr; 123 static vop_getextattr_t ffs_getextattr; 124 static vop_listextattr_t ffs_listextattr; 125 static vop_openextattr_t ffs_openextattr; 126 static vop_setextattr_t ffs_setextattr; 127 static vop_vptofh_t ffs_vptofh; 128 129 /* Global vfs data structures for ufs. */ 130 struct vop_vector ffs_vnodeops1 = { 131 .vop_default = &ufs_vnodeops, 132 .vop_fsync = ffs_fsync, 133 .vop_fdatasync = ffs_fdatasync, 134 .vop_getpages = ffs_getpages, 135 .vop_getpages_async = vnode_pager_local_getpages_async, 136 .vop_lock1 = ffs_lock, 137 .vop_read = ffs_read, 138 .vop_reallocblks = ffs_reallocblks, 139 .vop_write = ffs_write, 140 .vop_vptofh = ffs_vptofh, 141 }; 142 143 struct vop_vector ffs_fifoops1 = { 144 .vop_default = &ufs_fifoops, 145 .vop_fsync = ffs_fsync, 146 .vop_fdatasync = ffs_fdatasync, 147 .vop_reallocblks = ffs_reallocblks, /* XXX: really ??? */ 148 .vop_vptofh = ffs_vptofh, 149 }; 150 151 /* Global vfs data structures for ufs. */ 152 struct vop_vector ffs_vnodeops2 = { 153 .vop_default = &ufs_vnodeops, 154 .vop_fsync = ffs_fsync, 155 .vop_fdatasync = ffs_fdatasync, 156 .vop_getpages = ffs_getpages, 157 .vop_getpages_async = vnode_pager_local_getpages_async, 158 .vop_lock1 = ffs_lock, 159 .vop_read = ffs_read, 160 .vop_reallocblks = ffs_reallocblks, 161 .vop_write = ffs_write, 162 .vop_closeextattr = ffs_closeextattr, 163 .vop_deleteextattr = ffs_deleteextattr, 164 .vop_getextattr = ffs_getextattr, 165 .vop_listextattr = ffs_listextattr, 166 .vop_openextattr = ffs_openextattr, 167 .vop_setextattr = ffs_setextattr, 168 .vop_vptofh = ffs_vptofh, 169 }; 170 171 struct vop_vector ffs_fifoops2 = { 172 .vop_default = &ufs_fifoops, 173 .vop_fsync = ffs_fsync, 174 .vop_fdatasync = ffs_fdatasync, 175 .vop_lock1 = ffs_lock, 176 .vop_reallocblks = ffs_reallocblks, 177 .vop_strategy = ffsext_strategy, 178 .vop_closeextattr = ffs_closeextattr, 179 .vop_deleteextattr = ffs_deleteextattr, 180 .vop_getextattr = ffs_getextattr, 181 .vop_listextattr = ffs_listextattr, 182 .vop_openextattr = ffs_openextattr, 183 .vop_setextattr = ffs_setextattr, 184 .vop_vptofh = ffs_vptofh, 185 }; 186 187 /* 188 * Synch an open file. 189 */ 190 /* ARGSUSED */ 191 static int 192 ffs_fsync(struct vop_fsync_args *ap) 193 { 194 struct vnode *vp; 195 struct bufobj *bo; 196 int error; 197 198 vp = ap->a_vp; 199 bo = &vp->v_bufobj; 200 retry: 201 error = ffs_syncvnode(vp, ap->a_waitfor, 0); 202 if (error) 203 return (error); 204 if (ap->a_waitfor == MNT_WAIT && DOINGSOFTDEP(vp)) { 205 error = softdep_fsync(vp); 206 if (error) 207 return (error); 208 209 /* 210 * The softdep_fsync() function may drop vp lock, 211 * allowing for dirty buffers to reappear on the 212 * bo_dirty list. Recheck and resync as needed. 213 */ 214 BO_LOCK(bo); 215 if ((vp->v_type == VREG || vp->v_type == VDIR) && 216 (bo->bo_numoutput > 0 || bo->bo_dirty.bv_cnt > 0)) { 217 BO_UNLOCK(bo); 218 goto retry; 219 } 220 BO_UNLOCK(bo); 221 } 222 return (0); 223 } 224 225 int 226 ffs_syncvnode(struct vnode *vp, int waitfor, int flags) 227 { 228 struct inode *ip; 229 struct bufobj *bo; 230 struct buf *bp, *nbp; 231 ufs_lbn_t lbn; 232 int error, passes; 233 bool still_dirty, wait; 234 235 ip = VTOI(vp); 236 ip->i_flag &= ~IN_NEEDSYNC; 237 bo = &vp->v_bufobj; 238 239 /* 240 * When doing MNT_WAIT we must first flush all dependencies 241 * on the inode. 242 */ 243 if (DOINGSOFTDEP(vp) && waitfor == MNT_WAIT && 244 (error = softdep_sync_metadata(vp)) != 0) 245 return (error); 246 247 /* 248 * Flush all dirty buffers associated with a vnode. 249 */ 250 error = 0; 251 passes = 0; 252 wait = false; /* Always do an async pass first. */ 253 lbn = lblkno(ITOFS(ip), (ip->i_size + ITOFS(ip)->fs_bsize - 1)); 254 BO_LOCK(bo); 255 loop: 256 TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) 257 bp->b_vflags &= ~BV_SCANNED; 258 TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) { 259 /* 260 * Reasons to skip this buffer: it has already been considered 261 * on this pass, the buffer has dependencies that will cause 262 * it to be redirtied and it has not already been deferred, 263 * or it is already being written. 264 */ 265 if ((bp->b_vflags & BV_SCANNED) != 0) 266 continue; 267 bp->b_vflags |= BV_SCANNED; 268 /* 269 * Flush indirects in order, if requested. 270 * 271 * Note that if only datasync is requested, we can 272 * skip indirect blocks when softupdates are not 273 * active. Otherwise we must flush them with data, 274 * since dependencies prevent data block writes. 275 */ 276 if (waitfor == MNT_WAIT && bp->b_lblkno <= -UFS_NDADDR && 277 (lbn_level(bp->b_lblkno) >= passes || 278 ((flags & DATA_ONLY) != 0 && !DOINGSOFTDEP(vp)))) 279 continue; 280 if (bp->b_lblkno > lbn) 281 panic("ffs_syncvnode: syncing truncated data."); 282 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) == 0) { 283 BO_UNLOCK(bo); 284 } else if (wait) { 285 if (BUF_LOCK(bp, 286 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, 287 BO_LOCKPTR(bo)) != 0) { 288 bp->b_vflags &= ~BV_SCANNED; 289 goto next; 290 } 291 } else 292 continue; 293 if ((bp->b_flags & B_DELWRI) == 0) 294 panic("ffs_fsync: not dirty"); 295 /* 296 * Check for dependencies and potentially complete them. 297 */ 298 if (!LIST_EMPTY(&bp->b_dep) && 299 (error = softdep_sync_buf(vp, bp, 300 wait ? MNT_WAIT : MNT_NOWAIT)) != 0) { 301 /* I/O error. */ 302 if (error != EBUSY) { 303 BUF_UNLOCK(bp); 304 return (error); 305 } 306 /* If we deferred once, don't defer again. */ 307 if ((bp->b_flags & B_DEFERRED) == 0) { 308 bp->b_flags |= B_DEFERRED; 309 BUF_UNLOCK(bp); 310 goto next; 311 } 312 } 313 if (wait) { 314 bremfree(bp); 315 if ((error = bwrite(bp)) != 0) 316 return (error); 317 } else if ((bp->b_flags & B_CLUSTEROK)) { 318 (void) vfs_bio_awrite(bp); 319 } else { 320 bremfree(bp); 321 (void) bawrite(bp); 322 } 323 next: 324 /* 325 * Since we may have slept during the I/O, we need 326 * to start from a known point. 327 */ 328 BO_LOCK(bo); 329 nbp = TAILQ_FIRST(&bo->bo_dirty.bv_hd); 330 } 331 if (waitfor != MNT_WAIT) { 332 BO_UNLOCK(bo); 333 if ((flags & NO_INO_UPDT) != 0) 334 return (0); 335 else 336 return (ffs_update(vp, 0)); 337 } 338 /* Drain IO to see if we're done. */ 339 bufobj_wwait(bo, 0, 0); 340 /* 341 * Block devices associated with filesystems may have new I/O 342 * requests posted for them even if the vnode is locked, so no 343 * amount of trying will get them clean. We make several passes 344 * as a best effort. 345 * 346 * Regular files may need multiple passes to flush all dependency 347 * work as it is possible that we must write once per indirect 348 * level, once for the leaf, and once for the inode and each of 349 * these will be done with one sync and one async pass. 350 */ 351 if (bo->bo_dirty.bv_cnt > 0) { 352 if ((flags & DATA_ONLY) == 0) { 353 still_dirty = true; 354 } else { 355 /* 356 * For data-only sync, dirty indirect buffers 357 * are ignored. 358 */ 359 still_dirty = false; 360 TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) { 361 if (bp->b_lblkno > -UFS_NDADDR) { 362 still_dirty = true; 363 break; 364 } 365 } 366 } 367 368 if (still_dirty) { 369 /* Write the inode after sync passes to flush deps. */ 370 if (wait && DOINGSOFTDEP(vp) && 371 (flags & NO_INO_UPDT) == 0) { 372 BO_UNLOCK(bo); 373 ffs_update(vp, 1); 374 BO_LOCK(bo); 375 } 376 /* switch between sync/async. */ 377 wait = !wait; 378 if (wait || ++passes < UFS_NIADDR + 2) 379 goto loop; 380 #ifdef INVARIANTS 381 if (!vn_isdisk(vp, NULL)) 382 vn_printf(vp, "ffs_fsync: dirty "); 383 #endif 384 } 385 } 386 BO_UNLOCK(bo); 387 error = 0; 388 if ((flags & DATA_ONLY) == 0) { 389 if ((flags & NO_INO_UPDT) == 0) 390 error = ffs_update(vp, 1); 391 if (DOINGSUJ(vp)) 392 softdep_journal_fsync(VTOI(vp)); 393 } 394 return (error); 395 } 396 397 static int 398 ffs_fdatasync(struct vop_fdatasync_args *ap) 399 { 400 401 return (ffs_syncvnode(ap->a_vp, MNT_WAIT, DATA_ONLY)); 402 } 403 404 static int 405 ffs_lock(ap) 406 struct vop_lock1_args /* { 407 struct vnode *a_vp; 408 int a_flags; 409 struct thread *a_td; 410 char *file; 411 int line; 412 } */ *ap; 413 { 414 #ifndef NO_FFS_SNAPSHOT 415 struct vnode *vp; 416 int flags; 417 struct lock *lkp; 418 int result; 419 420 switch (ap->a_flags & LK_TYPE_MASK) { 421 case LK_SHARED: 422 case LK_UPGRADE: 423 case LK_EXCLUSIVE: 424 vp = ap->a_vp; 425 flags = ap->a_flags; 426 for (;;) { 427 #ifdef DEBUG_VFS_LOCKS 428 KASSERT(vp->v_holdcnt != 0, 429 ("ffs_lock %p: zero hold count", vp)); 430 #endif 431 lkp = vp->v_vnlock; 432 result = _lockmgr_args(lkp, flags, VI_MTX(vp), 433 LK_WMESG_DEFAULT, LK_PRIO_DEFAULT, LK_TIMO_DEFAULT, 434 ap->a_file, ap->a_line); 435 if (lkp == vp->v_vnlock || result != 0) 436 break; 437 /* 438 * Apparent success, except that the vnode 439 * mutated between snapshot file vnode and 440 * regular file vnode while this process 441 * slept. The lock currently held is not the 442 * right lock. Release it, and try to get the 443 * new lock. 444 */ 445 (void) _lockmgr_args(lkp, LK_RELEASE, NULL, 446 LK_WMESG_DEFAULT, LK_PRIO_DEFAULT, LK_TIMO_DEFAULT, 447 ap->a_file, ap->a_line); 448 if ((flags & (LK_INTERLOCK | LK_NOWAIT)) == 449 (LK_INTERLOCK | LK_NOWAIT)) 450 return (EBUSY); 451 if ((flags & LK_TYPE_MASK) == LK_UPGRADE) 452 flags = (flags & ~LK_TYPE_MASK) | LK_EXCLUSIVE; 453 flags &= ~LK_INTERLOCK; 454 } 455 break; 456 default: 457 result = VOP_LOCK1_APV(&ufs_vnodeops, ap); 458 } 459 return (result); 460 #else 461 return (VOP_LOCK1_APV(&ufs_vnodeops, ap)); 462 #endif 463 } 464 465 /* 466 * Vnode op for reading. 467 */ 468 static int 469 ffs_read(ap) 470 struct vop_read_args /* { 471 struct vnode *a_vp; 472 struct uio *a_uio; 473 int a_ioflag; 474 struct ucred *a_cred; 475 } */ *ap; 476 { 477 struct vnode *vp; 478 struct inode *ip; 479 struct uio *uio; 480 struct fs *fs; 481 struct buf *bp; 482 ufs_lbn_t lbn, nextlbn; 483 off_t bytesinfile; 484 long size, xfersize, blkoffset; 485 ssize_t orig_resid; 486 int error; 487 int seqcount; 488 int ioflag; 489 490 vp = ap->a_vp; 491 uio = ap->a_uio; 492 ioflag = ap->a_ioflag; 493 if (ap->a_ioflag & IO_EXT) 494 #ifdef notyet 495 return (ffs_extread(vp, uio, ioflag)); 496 #else 497 panic("ffs_read+IO_EXT"); 498 #endif 499 #ifdef DIRECTIO 500 if ((ioflag & IO_DIRECT) != 0) { 501 int workdone; 502 503 error = ffs_rawread(vp, uio, &workdone); 504 if (error != 0 || workdone != 0) 505 return error; 506 } 507 #endif 508 509 seqcount = ap->a_ioflag >> IO_SEQSHIFT; 510 ip = VTOI(vp); 511 512 #ifdef INVARIANTS 513 if (uio->uio_rw != UIO_READ) 514 panic("ffs_read: mode"); 515 516 if (vp->v_type == VLNK) { 517 if ((int)ip->i_size < vp->v_mount->mnt_maxsymlinklen) 518 panic("ffs_read: short symlink"); 519 } else if (vp->v_type != VREG && vp->v_type != VDIR) 520 panic("ffs_read: type %d", vp->v_type); 521 #endif 522 orig_resid = uio->uio_resid; 523 KASSERT(orig_resid >= 0, ("ffs_read: uio->uio_resid < 0")); 524 if (orig_resid == 0) 525 return (0); 526 KASSERT(uio->uio_offset >= 0, ("ffs_read: uio->uio_offset < 0")); 527 fs = ITOFS(ip); 528 if (uio->uio_offset < ip->i_size && 529 uio->uio_offset >= fs->fs_maxfilesize) 530 return (EOVERFLOW); 531 532 for (error = 0, bp = NULL; uio->uio_resid > 0; bp = NULL) { 533 if ((bytesinfile = ip->i_size - uio->uio_offset) <= 0) 534 break; 535 lbn = lblkno(fs, uio->uio_offset); 536 nextlbn = lbn + 1; 537 538 /* 539 * size of buffer. The buffer representing the 540 * end of the file is rounded up to the size of 541 * the block type ( fragment or full block, 542 * depending ). 543 */ 544 size = blksize(fs, ip, lbn); 545 blkoffset = blkoff(fs, uio->uio_offset); 546 547 /* 548 * The amount we want to transfer in this iteration is 549 * one FS block less the amount of the data before 550 * our startpoint (duh!) 551 */ 552 xfersize = fs->fs_bsize - blkoffset; 553 554 /* 555 * But if we actually want less than the block, 556 * or the file doesn't have a whole block more of data, 557 * then use the lesser number. 558 */ 559 if (uio->uio_resid < xfersize) 560 xfersize = uio->uio_resid; 561 if (bytesinfile < xfersize) 562 xfersize = bytesinfile; 563 564 if (lblktosize(fs, nextlbn) >= ip->i_size) { 565 /* 566 * Don't do readahead if this is the end of the file. 567 */ 568 error = bread_gb(vp, lbn, size, NOCRED, 569 GB_UNMAPPED, &bp); 570 } else if ((vp->v_mount->mnt_flag & MNT_NOCLUSTERR) == 0) { 571 /* 572 * Otherwise if we are allowed to cluster, 573 * grab as much as we can. 574 * 575 * XXX This may not be a win if we are not 576 * doing sequential access. 577 */ 578 error = cluster_read(vp, ip->i_size, lbn, 579 size, NOCRED, blkoffset + uio->uio_resid, 580 seqcount, GB_UNMAPPED, &bp); 581 } else if (seqcount > 1) { 582 /* 583 * If we are NOT allowed to cluster, then 584 * if we appear to be acting sequentially, 585 * fire off a request for a readahead 586 * as well as a read. Note that the 4th and 5th 587 * arguments point to arrays of the size specified in 588 * the 6th argument. 589 */ 590 u_int nextsize = blksize(fs, ip, nextlbn); 591 error = breadn_flags(vp, lbn, size, &nextlbn, 592 &nextsize, 1, NOCRED, GB_UNMAPPED, NULL, &bp); 593 } else { 594 /* 595 * Failing all of the above, just read what the 596 * user asked for. Interestingly, the same as 597 * the first option above. 598 */ 599 error = bread_gb(vp, lbn, size, NOCRED, 600 GB_UNMAPPED, &bp); 601 } 602 if (error) { 603 brelse(bp); 604 bp = NULL; 605 break; 606 } 607 608 /* 609 * We should only get non-zero b_resid when an I/O error 610 * has occurred, which should cause us to break above. 611 * However, if the short read did not cause an error, 612 * then we want to ensure that we do not uiomove bad 613 * or uninitialized data. 614 */ 615 size -= bp->b_resid; 616 if (size < xfersize) { 617 if (size == 0) 618 break; 619 xfersize = size; 620 } 621 622 if (buf_mapped(bp)) { 623 error = vn_io_fault_uiomove((char *)bp->b_data + 624 blkoffset, (int)xfersize, uio); 625 } else { 626 error = vn_io_fault_pgmove(bp->b_pages, blkoffset, 627 (int)xfersize, uio); 628 } 629 if (error) 630 break; 631 632 vfs_bio_brelse(bp, ioflag); 633 } 634 635 /* 636 * This can only happen in the case of an error 637 * because the loop above resets bp to NULL on each iteration 638 * and on normal completion has not set a new value into it. 639 * so it must have come from a 'break' statement 640 */ 641 if (bp != NULL) 642 vfs_bio_brelse(bp, ioflag); 643 644 if ((error == 0 || uio->uio_resid != orig_resid) && 645 (vp->v_mount->mnt_flag & (MNT_NOATIME | MNT_RDONLY)) == 0 && 646 (ip->i_flag & IN_ACCESS) == 0) { 647 VI_LOCK(vp); 648 ip->i_flag |= IN_ACCESS; 649 VI_UNLOCK(vp); 650 } 651 return (error); 652 } 653 654 /* 655 * Vnode op for writing. 656 */ 657 static int 658 ffs_write(ap) 659 struct vop_write_args /* { 660 struct vnode *a_vp; 661 struct uio *a_uio; 662 int a_ioflag; 663 struct ucred *a_cred; 664 } */ *ap; 665 { 666 struct vnode *vp; 667 struct uio *uio; 668 struct inode *ip; 669 struct fs *fs; 670 struct buf *bp; 671 ufs_lbn_t lbn; 672 off_t osize; 673 ssize_t resid; 674 int seqcount; 675 int blkoffset, error, flags, ioflag, size, xfersize; 676 677 vp = ap->a_vp; 678 uio = ap->a_uio; 679 ioflag = ap->a_ioflag; 680 if (ap->a_ioflag & IO_EXT) 681 #ifdef notyet 682 return (ffs_extwrite(vp, uio, ioflag, ap->a_cred)); 683 #else 684 panic("ffs_write+IO_EXT"); 685 #endif 686 687 seqcount = ap->a_ioflag >> IO_SEQSHIFT; 688 ip = VTOI(vp); 689 690 #ifdef INVARIANTS 691 if (uio->uio_rw != UIO_WRITE) 692 panic("ffs_write: mode"); 693 #endif 694 695 switch (vp->v_type) { 696 case VREG: 697 if (ioflag & IO_APPEND) 698 uio->uio_offset = ip->i_size; 699 if ((ip->i_flags & APPEND) && uio->uio_offset != ip->i_size) 700 return (EPERM); 701 /* FALLTHROUGH */ 702 case VLNK: 703 break; 704 case VDIR: 705 panic("ffs_write: dir write"); 706 break; 707 default: 708 panic("ffs_write: type %p %d (%d,%d)", vp, (int)vp->v_type, 709 (int)uio->uio_offset, 710 (int)uio->uio_resid 711 ); 712 } 713 714 KASSERT(uio->uio_resid >= 0, ("ffs_write: uio->uio_resid < 0")); 715 KASSERT(uio->uio_offset >= 0, ("ffs_write: uio->uio_offset < 0")); 716 fs = ITOFS(ip); 717 if ((uoff_t)uio->uio_offset + uio->uio_resid > fs->fs_maxfilesize) 718 return (EFBIG); 719 /* 720 * Maybe this should be above the vnode op call, but so long as 721 * file servers have no limits, I don't think it matters. 722 */ 723 if (vn_rlimit_fsize(vp, uio, uio->uio_td)) 724 return (EFBIG); 725 726 resid = uio->uio_resid; 727 osize = ip->i_size; 728 if (seqcount > BA_SEQMAX) 729 flags = BA_SEQMAX << BA_SEQSHIFT; 730 else 731 flags = seqcount << BA_SEQSHIFT; 732 if (ioflag & IO_SYNC) 733 flags |= IO_SYNC; 734 flags |= BA_UNMAPPED; 735 736 for (error = 0; uio->uio_resid > 0;) { 737 lbn = lblkno(fs, uio->uio_offset); 738 blkoffset = blkoff(fs, uio->uio_offset); 739 xfersize = fs->fs_bsize - blkoffset; 740 if (uio->uio_resid < xfersize) 741 xfersize = uio->uio_resid; 742 if (uio->uio_offset + xfersize > ip->i_size) 743 vnode_pager_setsize(vp, uio->uio_offset + xfersize); 744 745 /* 746 * We must perform a read-before-write if the transfer size 747 * does not cover the entire buffer. 748 */ 749 if (fs->fs_bsize > xfersize) 750 flags |= BA_CLRBUF; 751 else 752 flags &= ~BA_CLRBUF; 753 /* XXX is uio->uio_offset the right thing here? */ 754 error = UFS_BALLOC(vp, uio->uio_offset, xfersize, 755 ap->a_cred, flags, &bp); 756 if (error != 0) { 757 vnode_pager_setsize(vp, ip->i_size); 758 break; 759 } 760 if ((ioflag & (IO_SYNC|IO_INVAL)) == (IO_SYNC|IO_INVAL)) 761 bp->b_flags |= B_NOCACHE; 762 763 if (uio->uio_offset + xfersize > ip->i_size) { 764 ip->i_size = uio->uio_offset + xfersize; 765 DIP_SET(ip, i_size, ip->i_size); 766 } 767 768 size = blksize(fs, ip, lbn) - bp->b_resid; 769 if (size < xfersize) 770 xfersize = size; 771 772 if (buf_mapped(bp)) { 773 error = vn_io_fault_uiomove((char *)bp->b_data + 774 blkoffset, (int)xfersize, uio); 775 } else { 776 error = vn_io_fault_pgmove(bp->b_pages, blkoffset, 777 (int)xfersize, uio); 778 } 779 /* 780 * If the buffer is not already filled and we encounter an 781 * error while trying to fill it, we have to clear out any 782 * garbage data from the pages instantiated for the buffer. 783 * If we do not, a failed uiomove() during a write can leave 784 * the prior contents of the pages exposed to a userland mmap. 785 * 786 * Note that we need only clear buffers with a transfer size 787 * equal to the block size because buffers with a shorter 788 * transfer size were cleared above by the call to UFS_BALLOC() 789 * with the BA_CLRBUF flag set. 790 * 791 * If the source region for uiomove identically mmaps the 792 * buffer, uiomove() performed the NOP copy, and the buffer 793 * content remains valid because the page fault handler 794 * validated the pages. 795 */ 796 if (error != 0 && (bp->b_flags & B_CACHE) == 0 && 797 fs->fs_bsize == xfersize) 798 vfs_bio_clrbuf(bp); 799 800 vfs_bio_set_flags(bp, ioflag); 801 802 /* 803 * If IO_SYNC each buffer is written synchronously. Otherwise 804 * if we have a severe page deficiency write the buffer 805 * asynchronously. Otherwise try to cluster, and if that 806 * doesn't do it then either do an async write (if O_DIRECT), 807 * or a delayed write (if not). 808 */ 809 if (ioflag & IO_SYNC) { 810 (void)bwrite(bp); 811 } else if (vm_page_count_severe() || 812 buf_dirty_count_severe() || 813 (ioflag & IO_ASYNC)) { 814 bp->b_flags |= B_CLUSTEROK; 815 bawrite(bp); 816 } else if (xfersize + blkoffset == fs->fs_bsize) { 817 if ((vp->v_mount->mnt_flag & MNT_NOCLUSTERW) == 0) { 818 bp->b_flags |= B_CLUSTEROK; 819 cluster_write(vp, bp, ip->i_size, seqcount, 820 GB_UNMAPPED); 821 } else { 822 bawrite(bp); 823 } 824 } else if (ioflag & IO_DIRECT) { 825 bp->b_flags |= B_CLUSTEROK; 826 bawrite(bp); 827 } else { 828 bp->b_flags |= B_CLUSTEROK; 829 bdwrite(bp); 830 } 831 if (error || xfersize == 0) 832 break; 833 ip->i_flag |= IN_CHANGE | IN_UPDATE; 834 } 835 /* 836 * If we successfully wrote any data, and we are not the superuser 837 * we clear the setuid and setgid bits as a precaution against 838 * tampering. 839 */ 840 if ((ip->i_mode & (ISUID | ISGID)) && resid > uio->uio_resid && 841 ap->a_cred) { 842 if (priv_check_cred(ap->a_cred, PRIV_VFS_RETAINSUGID, 0)) { 843 ip->i_mode &= ~(ISUID | ISGID); 844 DIP_SET(ip, i_mode, ip->i_mode); 845 } 846 } 847 if (error) { 848 if (ioflag & IO_UNIT) { 849 (void)ffs_truncate(vp, osize, 850 IO_NORMAL | (ioflag & IO_SYNC), ap->a_cred); 851 uio->uio_offset -= resid - uio->uio_resid; 852 uio->uio_resid = resid; 853 } 854 } else if (resid > uio->uio_resid && (ioflag & IO_SYNC)) 855 error = ffs_update(vp, 1); 856 return (error); 857 } 858 859 /* 860 * Extended attribute area reading. 861 */ 862 static int 863 ffs_extread(struct vnode *vp, struct uio *uio, int ioflag) 864 { 865 struct inode *ip; 866 struct ufs2_dinode *dp; 867 struct fs *fs; 868 struct buf *bp; 869 ufs_lbn_t lbn, nextlbn; 870 off_t bytesinfile; 871 long size, xfersize, blkoffset; 872 ssize_t orig_resid; 873 int error; 874 875 ip = VTOI(vp); 876 fs = ITOFS(ip); 877 dp = ip->i_din2; 878 879 #ifdef INVARIANTS 880 if (uio->uio_rw != UIO_READ || fs->fs_magic != FS_UFS2_MAGIC) 881 panic("ffs_extread: mode"); 882 883 #endif 884 orig_resid = uio->uio_resid; 885 KASSERT(orig_resid >= 0, ("ffs_extread: uio->uio_resid < 0")); 886 if (orig_resid == 0) 887 return (0); 888 KASSERT(uio->uio_offset >= 0, ("ffs_extread: uio->uio_offset < 0")); 889 890 for (error = 0, bp = NULL; uio->uio_resid > 0; bp = NULL) { 891 if ((bytesinfile = dp->di_extsize - uio->uio_offset) <= 0) 892 break; 893 lbn = lblkno(fs, uio->uio_offset); 894 nextlbn = lbn + 1; 895 896 /* 897 * size of buffer. The buffer representing the 898 * end of the file is rounded up to the size of 899 * the block type ( fragment or full block, 900 * depending ). 901 */ 902 size = sblksize(fs, dp->di_extsize, lbn); 903 blkoffset = blkoff(fs, uio->uio_offset); 904 905 /* 906 * The amount we want to transfer in this iteration is 907 * one FS block less the amount of the data before 908 * our startpoint (duh!) 909 */ 910 xfersize = fs->fs_bsize - blkoffset; 911 912 /* 913 * But if we actually want less than the block, 914 * or the file doesn't have a whole block more of data, 915 * then use the lesser number. 916 */ 917 if (uio->uio_resid < xfersize) 918 xfersize = uio->uio_resid; 919 if (bytesinfile < xfersize) 920 xfersize = bytesinfile; 921 922 if (lblktosize(fs, nextlbn) >= dp->di_extsize) { 923 /* 924 * Don't do readahead if this is the end of the info. 925 */ 926 error = bread(vp, -1 - lbn, size, NOCRED, &bp); 927 } else { 928 /* 929 * If we have a second block, then 930 * fire off a request for a readahead 931 * as well as a read. Note that the 4th and 5th 932 * arguments point to arrays of the size specified in 933 * the 6th argument. 934 */ 935 u_int nextsize = sblksize(fs, dp->di_extsize, nextlbn); 936 937 nextlbn = -1 - nextlbn; 938 error = breadn(vp, -1 - lbn, 939 size, &nextlbn, &nextsize, 1, NOCRED, &bp); 940 } 941 if (error) { 942 brelse(bp); 943 bp = NULL; 944 break; 945 } 946 947 /* 948 * We should only get non-zero b_resid when an I/O error 949 * has occurred, which should cause us to break above. 950 * However, if the short read did not cause an error, 951 * then we want to ensure that we do not uiomove bad 952 * or uninitialized data. 953 */ 954 size -= bp->b_resid; 955 if (size < xfersize) { 956 if (size == 0) 957 break; 958 xfersize = size; 959 } 960 961 error = uiomove((char *)bp->b_data + blkoffset, 962 (int)xfersize, uio); 963 if (error) 964 break; 965 vfs_bio_brelse(bp, ioflag); 966 } 967 968 /* 969 * This can only happen in the case of an error 970 * because the loop above resets bp to NULL on each iteration 971 * and on normal completion has not set a new value into it. 972 * so it must have come from a 'break' statement 973 */ 974 if (bp != NULL) 975 vfs_bio_brelse(bp, ioflag); 976 return (error); 977 } 978 979 /* 980 * Extended attribute area writing. 981 */ 982 static int 983 ffs_extwrite(struct vnode *vp, struct uio *uio, int ioflag, struct ucred *ucred) 984 { 985 struct inode *ip; 986 struct ufs2_dinode *dp; 987 struct fs *fs; 988 struct buf *bp; 989 ufs_lbn_t lbn; 990 off_t osize; 991 ssize_t resid; 992 int blkoffset, error, flags, size, xfersize; 993 994 ip = VTOI(vp); 995 fs = ITOFS(ip); 996 dp = ip->i_din2; 997 998 #ifdef INVARIANTS 999 if (uio->uio_rw != UIO_WRITE || fs->fs_magic != FS_UFS2_MAGIC) 1000 panic("ffs_extwrite: mode"); 1001 #endif 1002 1003 if (ioflag & IO_APPEND) 1004 uio->uio_offset = dp->di_extsize; 1005 KASSERT(uio->uio_offset >= 0, ("ffs_extwrite: uio->uio_offset < 0")); 1006 KASSERT(uio->uio_resid >= 0, ("ffs_extwrite: uio->uio_resid < 0")); 1007 if ((uoff_t)uio->uio_offset + uio->uio_resid > 1008 UFS_NXADDR * fs->fs_bsize) 1009 return (EFBIG); 1010 1011 resid = uio->uio_resid; 1012 osize = dp->di_extsize; 1013 flags = IO_EXT; 1014 if (ioflag & IO_SYNC) 1015 flags |= IO_SYNC; 1016 1017 for (error = 0; uio->uio_resid > 0;) { 1018 lbn = lblkno(fs, uio->uio_offset); 1019 blkoffset = blkoff(fs, uio->uio_offset); 1020 xfersize = fs->fs_bsize - blkoffset; 1021 if (uio->uio_resid < xfersize) 1022 xfersize = uio->uio_resid; 1023 1024 /* 1025 * We must perform a read-before-write if the transfer size 1026 * does not cover the entire buffer. 1027 */ 1028 if (fs->fs_bsize > xfersize) 1029 flags |= BA_CLRBUF; 1030 else 1031 flags &= ~BA_CLRBUF; 1032 error = UFS_BALLOC(vp, uio->uio_offset, xfersize, 1033 ucred, flags, &bp); 1034 if (error != 0) 1035 break; 1036 /* 1037 * If the buffer is not valid we have to clear out any 1038 * garbage data from the pages instantiated for the buffer. 1039 * If we do not, a failed uiomove() during a write can leave 1040 * the prior contents of the pages exposed to a userland 1041 * mmap(). XXX deal with uiomove() errors a better way. 1042 */ 1043 if ((bp->b_flags & B_CACHE) == 0 && fs->fs_bsize <= xfersize) 1044 vfs_bio_clrbuf(bp); 1045 1046 if (uio->uio_offset + xfersize > dp->di_extsize) 1047 dp->di_extsize = uio->uio_offset + xfersize; 1048 1049 size = sblksize(fs, dp->di_extsize, lbn) - bp->b_resid; 1050 if (size < xfersize) 1051 xfersize = size; 1052 1053 error = 1054 uiomove((char *)bp->b_data + blkoffset, (int)xfersize, uio); 1055 1056 vfs_bio_set_flags(bp, ioflag); 1057 1058 /* 1059 * If IO_SYNC each buffer is written synchronously. Otherwise 1060 * if we have a severe page deficiency write the buffer 1061 * asynchronously. Otherwise try to cluster, and if that 1062 * doesn't do it then either do an async write (if O_DIRECT), 1063 * or a delayed write (if not). 1064 */ 1065 if (ioflag & IO_SYNC) { 1066 (void)bwrite(bp); 1067 } else if (vm_page_count_severe() || 1068 buf_dirty_count_severe() || 1069 xfersize + blkoffset == fs->fs_bsize || 1070 (ioflag & (IO_ASYNC | IO_DIRECT))) 1071 bawrite(bp); 1072 else 1073 bdwrite(bp); 1074 if (error || xfersize == 0) 1075 break; 1076 ip->i_flag |= IN_CHANGE; 1077 } 1078 /* 1079 * If we successfully wrote any data, and we are not the superuser 1080 * we clear the setuid and setgid bits as a precaution against 1081 * tampering. 1082 */ 1083 if ((ip->i_mode & (ISUID | ISGID)) && resid > uio->uio_resid && ucred) { 1084 if (priv_check_cred(ucred, PRIV_VFS_RETAINSUGID, 0)) { 1085 ip->i_mode &= ~(ISUID | ISGID); 1086 dp->di_mode = ip->i_mode; 1087 } 1088 } 1089 if (error) { 1090 if (ioflag & IO_UNIT) { 1091 (void)ffs_truncate(vp, osize, 1092 IO_EXT | (ioflag&IO_SYNC), ucred); 1093 uio->uio_offset -= resid - uio->uio_resid; 1094 uio->uio_resid = resid; 1095 } 1096 } else if (resid > uio->uio_resid && (ioflag & IO_SYNC)) 1097 error = ffs_update(vp, 1); 1098 return (error); 1099 } 1100 1101 1102 /* 1103 * Vnode operating to retrieve a named extended attribute. 1104 * 1105 * Locate a particular EA (nspace:name) in the area (ptr:length), and return 1106 * the length of the EA, and possibly the pointer to the entry and to the data. 1107 */ 1108 static int 1109 ffs_findextattr(u_char *ptr, u_int length, int nspace, const char *name, 1110 struct extattr **eapp, u_char **eac) 1111 { 1112 struct extattr *eap, *eaend; 1113 size_t nlen; 1114 1115 nlen = strlen(name); 1116 KASSERT(ALIGNED_TO(ptr, struct extattr), ("unaligned")); 1117 eap = (struct extattr *)ptr; 1118 eaend = (struct extattr *)(ptr + length); 1119 for (; eap < eaend; eap = EXTATTR_NEXT(eap)) { 1120 /* make sure this entry is complete */ 1121 if (EXTATTR_NEXT(eap) > eaend) 1122 break; 1123 if (eap->ea_namespace != nspace || eap->ea_namelength != nlen 1124 || memcmp(eap->ea_name, name, nlen) != 0) 1125 continue; 1126 if (eapp != NULL) 1127 *eapp = eap; 1128 if (eac != NULL) 1129 *eac = EXTATTR_CONTENT(eap); 1130 return (EXTATTR_CONTENT_SIZE(eap)); 1131 } 1132 return (-1); 1133 } 1134 1135 static int 1136 ffs_rdextattr(u_char **p, struct vnode *vp, struct thread *td, int extra) 1137 { 1138 struct inode *ip; 1139 struct ufs2_dinode *dp; 1140 struct fs *fs; 1141 struct uio luio; 1142 struct iovec liovec; 1143 u_int easize; 1144 int error; 1145 u_char *eae; 1146 1147 ip = VTOI(vp); 1148 fs = ITOFS(ip); 1149 dp = ip->i_din2; 1150 easize = dp->di_extsize; 1151 if ((uoff_t)easize + extra > UFS_NXADDR * fs->fs_bsize) 1152 return (EFBIG); 1153 1154 eae = malloc(easize + extra, M_TEMP, M_WAITOK); 1155 1156 liovec.iov_base = eae; 1157 liovec.iov_len = easize; 1158 luio.uio_iov = &liovec; 1159 luio.uio_iovcnt = 1; 1160 luio.uio_offset = 0; 1161 luio.uio_resid = easize; 1162 luio.uio_segflg = UIO_SYSSPACE; 1163 luio.uio_rw = UIO_READ; 1164 luio.uio_td = td; 1165 1166 error = ffs_extread(vp, &luio, IO_EXT | IO_SYNC); 1167 if (error) { 1168 free(eae, M_TEMP); 1169 return(error); 1170 } 1171 *p = eae; 1172 return (0); 1173 } 1174 1175 static void 1176 ffs_lock_ea(struct vnode *vp) 1177 { 1178 struct inode *ip; 1179 1180 ip = VTOI(vp); 1181 VI_LOCK(vp); 1182 while (ip->i_flag & IN_EA_LOCKED) { 1183 ip->i_flag |= IN_EA_LOCKWAIT; 1184 msleep(&ip->i_ea_refs, &vp->v_interlock, PINOD + 2, "ufs_ea", 1185 0); 1186 } 1187 ip->i_flag |= IN_EA_LOCKED; 1188 VI_UNLOCK(vp); 1189 } 1190 1191 static void 1192 ffs_unlock_ea(struct vnode *vp) 1193 { 1194 struct inode *ip; 1195 1196 ip = VTOI(vp); 1197 VI_LOCK(vp); 1198 if (ip->i_flag & IN_EA_LOCKWAIT) 1199 wakeup(&ip->i_ea_refs); 1200 ip->i_flag &= ~(IN_EA_LOCKED | IN_EA_LOCKWAIT); 1201 VI_UNLOCK(vp); 1202 } 1203 1204 static int 1205 ffs_open_ea(struct vnode *vp, struct ucred *cred, struct thread *td) 1206 { 1207 struct inode *ip; 1208 struct ufs2_dinode *dp; 1209 int error; 1210 1211 ip = VTOI(vp); 1212 1213 ffs_lock_ea(vp); 1214 if (ip->i_ea_area != NULL) { 1215 ip->i_ea_refs++; 1216 ffs_unlock_ea(vp); 1217 return (0); 1218 } 1219 dp = ip->i_din2; 1220 error = ffs_rdextattr(&ip->i_ea_area, vp, td, 0); 1221 if (error) { 1222 ffs_unlock_ea(vp); 1223 return (error); 1224 } 1225 ip->i_ea_len = dp->di_extsize; 1226 ip->i_ea_error = 0; 1227 ip->i_ea_refs++; 1228 ffs_unlock_ea(vp); 1229 return (0); 1230 } 1231 1232 /* 1233 * Vnode extattr transaction commit/abort 1234 */ 1235 static int 1236 ffs_close_ea(struct vnode *vp, int commit, struct ucred *cred, struct thread *td) 1237 { 1238 struct inode *ip; 1239 struct uio luio; 1240 struct iovec liovec; 1241 int error; 1242 struct ufs2_dinode *dp; 1243 1244 ip = VTOI(vp); 1245 1246 ffs_lock_ea(vp); 1247 if (ip->i_ea_area == NULL) { 1248 ffs_unlock_ea(vp); 1249 return (EINVAL); 1250 } 1251 dp = ip->i_din2; 1252 error = ip->i_ea_error; 1253 if (commit && error == 0) { 1254 ASSERT_VOP_ELOCKED(vp, "ffs_close_ea commit"); 1255 if (cred == NOCRED) 1256 cred = vp->v_mount->mnt_cred; 1257 liovec.iov_base = ip->i_ea_area; 1258 liovec.iov_len = ip->i_ea_len; 1259 luio.uio_iov = &liovec; 1260 luio.uio_iovcnt = 1; 1261 luio.uio_offset = 0; 1262 luio.uio_resid = ip->i_ea_len; 1263 luio.uio_segflg = UIO_SYSSPACE; 1264 luio.uio_rw = UIO_WRITE; 1265 luio.uio_td = td; 1266 /* XXX: I'm not happy about truncating to zero size */ 1267 if (ip->i_ea_len < dp->di_extsize) 1268 error = ffs_truncate(vp, 0, IO_EXT, cred); 1269 error = ffs_extwrite(vp, &luio, IO_EXT | IO_SYNC, cred); 1270 } 1271 if (--ip->i_ea_refs == 0) { 1272 free(ip->i_ea_area, M_TEMP); 1273 ip->i_ea_area = NULL; 1274 ip->i_ea_len = 0; 1275 ip->i_ea_error = 0; 1276 } 1277 ffs_unlock_ea(vp); 1278 return (error); 1279 } 1280 1281 /* 1282 * Vnode extattr strategy routine for fifos. 1283 * 1284 * We need to check for a read or write of the external attributes. 1285 * Otherwise we just fall through and do the usual thing. 1286 */ 1287 static int 1288 ffsext_strategy(struct vop_strategy_args *ap) 1289 /* 1290 struct vop_strategy_args { 1291 struct vnodeop_desc *a_desc; 1292 struct vnode *a_vp; 1293 struct buf *a_bp; 1294 }; 1295 */ 1296 { 1297 struct vnode *vp; 1298 daddr_t lbn; 1299 1300 vp = ap->a_vp; 1301 lbn = ap->a_bp->b_lblkno; 1302 if (I_IS_UFS2(VTOI(vp)) && lbn < 0 && lbn >= -UFS_NXADDR) 1303 return (VOP_STRATEGY_APV(&ufs_vnodeops, ap)); 1304 if (vp->v_type == VFIFO) 1305 return (VOP_STRATEGY_APV(&ufs_fifoops, ap)); 1306 panic("spec nodes went here"); 1307 } 1308 1309 /* 1310 * Vnode extattr transaction commit/abort 1311 */ 1312 static int 1313 ffs_openextattr(struct vop_openextattr_args *ap) 1314 /* 1315 struct vop_openextattr_args { 1316 struct vnodeop_desc *a_desc; 1317 struct vnode *a_vp; 1318 IN struct ucred *a_cred; 1319 IN struct thread *a_td; 1320 }; 1321 */ 1322 { 1323 1324 if (ap->a_vp->v_type == VCHR || ap->a_vp->v_type == VBLK) 1325 return (EOPNOTSUPP); 1326 1327 return (ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td)); 1328 } 1329 1330 1331 /* 1332 * Vnode extattr transaction commit/abort 1333 */ 1334 static int 1335 ffs_closeextattr(struct vop_closeextattr_args *ap) 1336 /* 1337 struct vop_closeextattr_args { 1338 struct vnodeop_desc *a_desc; 1339 struct vnode *a_vp; 1340 int a_commit; 1341 IN struct ucred *a_cred; 1342 IN struct thread *a_td; 1343 }; 1344 */ 1345 { 1346 1347 if (ap->a_vp->v_type == VCHR || ap->a_vp->v_type == VBLK) 1348 return (EOPNOTSUPP); 1349 1350 if (ap->a_commit && (ap->a_vp->v_mount->mnt_flag & MNT_RDONLY)) 1351 return (EROFS); 1352 1353 return (ffs_close_ea(ap->a_vp, ap->a_commit, ap->a_cred, ap->a_td)); 1354 } 1355 1356 /* 1357 * Vnode operation to remove a named attribute. 1358 */ 1359 static int 1360 ffs_deleteextattr(struct vop_deleteextattr_args *ap) 1361 /* 1362 vop_deleteextattr { 1363 IN struct vnode *a_vp; 1364 IN int a_attrnamespace; 1365 IN const char *a_name; 1366 IN struct ucred *a_cred; 1367 IN struct thread *a_td; 1368 }; 1369 */ 1370 { 1371 struct inode *ip; 1372 struct fs *fs; 1373 struct extattr *eap; 1374 uint32_t ul; 1375 int olen, error, i, easize; 1376 u_char *eae; 1377 void *tmp; 1378 1379 ip = VTOI(ap->a_vp); 1380 fs = ITOFS(ip); 1381 1382 if (ap->a_vp->v_type == VCHR || ap->a_vp->v_type == VBLK) 1383 return (EOPNOTSUPP); 1384 1385 if (strlen(ap->a_name) == 0) 1386 return (EINVAL); 1387 1388 if (ap->a_vp->v_mount->mnt_flag & MNT_RDONLY) 1389 return (EROFS); 1390 1391 error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace, 1392 ap->a_cred, ap->a_td, VWRITE); 1393 if (error) { 1394 1395 /* 1396 * ffs_lock_ea is not needed there, because the vnode 1397 * must be exclusively locked. 1398 */ 1399 if (ip->i_ea_area != NULL && ip->i_ea_error == 0) 1400 ip->i_ea_error = error; 1401 return (error); 1402 } 1403 1404 error = ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td); 1405 if (error) 1406 return (error); 1407 1408 /* CEM: delete could be done in-place instead */ 1409 eae = malloc(ip->i_ea_len, M_TEMP, M_WAITOK); 1410 bcopy(ip->i_ea_area, eae, ip->i_ea_len); 1411 easize = ip->i_ea_len; 1412 1413 olen = ffs_findextattr(eae, easize, ap->a_attrnamespace, ap->a_name, 1414 &eap, NULL); 1415 if (olen == -1) { 1416 /* delete but nonexistent */ 1417 free(eae, M_TEMP); 1418 ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td); 1419 return (ENOATTR); 1420 } 1421 ul = eap->ea_length; 1422 i = (u_char *)EXTATTR_NEXT(eap) - eae; 1423 bcopy(EXTATTR_NEXT(eap), eap, easize - i); 1424 easize -= ul; 1425 1426 tmp = ip->i_ea_area; 1427 ip->i_ea_area = eae; 1428 ip->i_ea_len = easize; 1429 free(tmp, M_TEMP); 1430 error = ffs_close_ea(ap->a_vp, 1, ap->a_cred, ap->a_td); 1431 return (error); 1432 } 1433 1434 /* 1435 * Vnode operation to retrieve a named extended attribute. 1436 */ 1437 static int 1438 ffs_getextattr(struct vop_getextattr_args *ap) 1439 /* 1440 vop_getextattr { 1441 IN struct vnode *a_vp; 1442 IN int a_attrnamespace; 1443 IN const char *a_name; 1444 INOUT struct uio *a_uio; 1445 OUT size_t *a_size; 1446 IN struct ucred *a_cred; 1447 IN struct thread *a_td; 1448 }; 1449 */ 1450 { 1451 struct inode *ip; 1452 u_char *eae, *p; 1453 unsigned easize; 1454 int error, ealen; 1455 1456 ip = VTOI(ap->a_vp); 1457 1458 if (ap->a_vp->v_type == VCHR || ap->a_vp->v_type == VBLK) 1459 return (EOPNOTSUPP); 1460 1461 error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace, 1462 ap->a_cred, ap->a_td, VREAD); 1463 if (error) 1464 return (error); 1465 1466 error = ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td); 1467 if (error) 1468 return (error); 1469 1470 eae = ip->i_ea_area; 1471 easize = ip->i_ea_len; 1472 1473 ealen = ffs_findextattr(eae, easize, ap->a_attrnamespace, ap->a_name, 1474 NULL, &p); 1475 if (ealen >= 0) { 1476 error = 0; 1477 if (ap->a_size != NULL) 1478 *ap->a_size = ealen; 1479 else if (ap->a_uio != NULL) 1480 error = uiomove(p, ealen, ap->a_uio); 1481 } else 1482 error = ENOATTR; 1483 1484 ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td); 1485 return (error); 1486 } 1487 1488 /* 1489 * Vnode operation to retrieve extended attributes on a vnode. 1490 */ 1491 static int 1492 ffs_listextattr(struct vop_listextattr_args *ap) 1493 /* 1494 vop_listextattr { 1495 IN struct vnode *a_vp; 1496 IN int a_attrnamespace; 1497 INOUT struct uio *a_uio; 1498 OUT size_t *a_size; 1499 IN struct ucred *a_cred; 1500 IN struct thread *a_td; 1501 }; 1502 */ 1503 { 1504 struct inode *ip; 1505 struct extattr *eap, *eaend; 1506 int error, ealen; 1507 1508 ip = VTOI(ap->a_vp); 1509 1510 if (ap->a_vp->v_type == VCHR || ap->a_vp->v_type == VBLK) 1511 return (EOPNOTSUPP); 1512 1513 error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace, 1514 ap->a_cred, ap->a_td, VREAD); 1515 if (error) 1516 return (error); 1517 1518 error = ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td); 1519 if (error) 1520 return (error); 1521 1522 error = 0; 1523 if (ap->a_size != NULL) 1524 *ap->a_size = 0; 1525 1526 KASSERT(ALIGNED_TO(ip->i_ea_area, struct extattr), ("unaligned")); 1527 eap = (struct extattr *)ip->i_ea_area; 1528 eaend = (struct extattr *)(ip->i_ea_area + ip->i_ea_len); 1529 for (; error == 0 && eap < eaend; eap = EXTATTR_NEXT(eap)) { 1530 /* make sure this entry is complete */ 1531 if (EXTATTR_NEXT(eap) > eaend) 1532 break; 1533 if (eap->ea_namespace != ap->a_attrnamespace) 1534 continue; 1535 1536 ealen = eap->ea_namelength; 1537 if (ap->a_size != NULL) 1538 *ap->a_size += ealen + 1; 1539 else if (ap->a_uio != NULL) 1540 error = uiomove(&eap->ea_namelength, ealen + 1, 1541 ap->a_uio); 1542 } 1543 1544 ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td); 1545 return (error); 1546 } 1547 1548 /* 1549 * Vnode operation to set a named attribute. 1550 */ 1551 static int 1552 ffs_setextattr(struct vop_setextattr_args *ap) 1553 /* 1554 vop_setextattr { 1555 IN struct vnode *a_vp; 1556 IN int a_attrnamespace; 1557 IN const char *a_name; 1558 INOUT struct uio *a_uio; 1559 IN struct ucred *a_cred; 1560 IN struct thread *a_td; 1561 }; 1562 */ 1563 { 1564 struct inode *ip; 1565 struct fs *fs; 1566 struct extattr *eap; 1567 uint32_t ealength, ul; 1568 ssize_t ealen; 1569 int olen, eapad1, eapad2, error, i, easize; 1570 u_char *eae; 1571 void *tmp; 1572 1573 ip = VTOI(ap->a_vp); 1574 fs = ITOFS(ip); 1575 1576 if (ap->a_vp->v_type == VCHR || ap->a_vp->v_type == VBLK) 1577 return (EOPNOTSUPP); 1578 1579 if (strlen(ap->a_name) == 0) 1580 return (EINVAL); 1581 1582 /* XXX Now unsupported API to delete EAs using NULL uio. */ 1583 if (ap->a_uio == NULL) 1584 return (EOPNOTSUPP); 1585 1586 if (ap->a_vp->v_mount->mnt_flag & MNT_RDONLY) 1587 return (EROFS); 1588 1589 ealen = ap->a_uio->uio_resid; 1590 if (ealen < 0 || ealen > lblktosize(fs, UFS_NXADDR)) 1591 return (EINVAL); 1592 1593 error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace, 1594 ap->a_cred, ap->a_td, VWRITE); 1595 if (error) { 1596 1597 /* 1598 * ffs_lock_ea is not needed there, because the vnode 1599 * must be exclusively locked. 1600 */ 1601 if (ip->i_ea_area != NULL && ip->i_ea_error == 0) 1602 ip->i_ea_error = error; 1603 return (error); 1604 } 1605 1606 error = ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td); 1607 if (error) 1608 return (error); 1609 1610 ealength = sizeof(uint32_t) + 3 + strlen(ap->a_name); 1611 eapad1 = roundup2(ealength, 8) - ealength; 1612 eapad2 = roundup2(ealen, 8) - ealen; 1613 ealength += eapad1 + ealen + eapad2; 1614 1615 /* 1616 * CEM: rewrites of the same size or smaller could be done in-place 1617 * instead. (We don't acquire any fine-grained locks in here either, 1618 * so we could also do bigger writes in-place.) 1619 */ 1620 eae = malloc(ip->i_ea_len + ealength, M_TEMP, M_WAITOK); 1621 bcopy(ip->i_ea_area, eae, ip->i_ea_len); 1622 easize = ip->i_ea_len; 1623 1624 olen = ffs_findextattr(eae, easize, ap->a_attrnamespace, ap->a_name, 1625 &eap, NULL); 1626 if (olen == -1) { 1627 /* new, append at end */ 1628 KASSERT(ALIGNED_TO(eae + easize, struct extattr), 1629 ("unaligned")); 1630 eap = (struct extattr *)(eae + easize); 1631 easize += ealength; 1632 } else { 1633 ul = eap->ea_length; 1634 i = (u_char *)EXTATTR_NEXT(eap) - eae; 1635 if (ul != ealength) { 1636 bcopy(EXTATTR_NEXT(eap), (u_char *)eap + ealength, 1637 easize - i); 1638 easize += (ealength - ul); 1639 } 1640 } 1641 if (easize > lblktosize(fs, UFS_NXADDR)) { 1642 free(eae, M_TEMP); 1643 ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td); 1644 if (ip->i_ea_area != NULL && ip->i_ea_error == 0) 1645 ip->i_ea_error = ENOSPC; 1646 return (ENOSPC); 1647 } 1648 eap->ea_length = ealength; 1649 eap->ea_namespace = ap->a_attrnamespace; 1650 eap->ea_contentpadlen = eapad2; 1651 eap->ea_namelength = strlen(ap->a_name); 1652 memcpy(eap->ea_name, ap->a_name, strlen(ap->a_name)); 1653 bzero(&eap->ea_name[strlen(ap->a_name)], eapad1); 1654 error = uiomove(EXTATTR_CONTENT(eap), ealen, ap->a_uio); 1655 if (error) { 1656 free(eae, M_TEMP); 1657 ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td); 1658 if (ip->i_ea_area != NULL && ip->i_ea_error == 0) 1659 ip->i_ea_error = error; 1660 return (error); 1661 } 1662 bzero((u_char *)EXTATTR_CONTENT(eap) + ealen, eapad2); 1663 1664 tmp = ip->i_ea_area; 1665 ip->i_ea_area = eae; 1666 ip->i_ea_len = easize; 1667 free(tmp, M_TEMP); 1668 error = ffs_close_ea(ap->a_vp, 1, ap->a_cred, ap->a_td); 1669 return (error); 1670 } 1671 1672 /* 1673 * Vnode pointer to File handle 1674 */ 1675 static int 1676 ffs_vptofh(struct vop_vptofh_args *ap) 1677 /* 1678 vop_vptofh { 1679 IN struct vnode *a_vp; 1680 IN struct fid *a_fhp; 1681 }; 1682 */ 1683 { 1684 struct inode *ip; 1685 struct ufid *ufhp; 1686 1687 ip = VTOI(ap->a_vp); 1688 ufhp = (struct ufid *)ap->a_fhp; 1689 ufhp->ufid_len = sizeof(struct ufid); 1690 ufhp->ufid_ino = ip->i_number; 1691 ufhp->ufid_gen = ip->i_gen; 1692 return (0); 1693 } 1694 1695 SYSCTL_DECL(_vfs_ffs); 1696 static int use_buf_pager = 1; 1697 SYSCTL_INT(_vfs_ffs, OID_AUTO, use_buf_pager, CTLFLAG_RWTUN, &use_buf_pager, 0, 1698 "Always use buffer pager instead of bmap"); 1699 1700 static daddr_t 1701 ffs_gbp_getblkno(struct vnode *vp, vm_ooffset_t off) 1702 { 1703 1704 return (lblkno(VFSTOUFS(vp->v_mount)->um_fs, off)); 1705 } 1706 1707 static int 1708 ffs_gbp_getblksz(struct vnode *vp, daddr_t lbn) 1709 { 1710 1711 return (blksize(VFSTOUFS(vp->v_mount)->um_fs, VTOI(vp), lbn)); 1712 } 1713 1714 static int 1715 ffs_getpages(struct vop_getpages_args *ap) 1716 { 1717 struct vnode *vp; 1718 struct ufsmount *um; 1719 1720 vp = ap->a_vp; 1721 um = VFSTOUFS(vp->v_mount); 1722 1723 if (!use_buf_pager && um->um_devvp->v_bufobj.bo_bsize <= PAGE_SIZE) 1724 return (vnode_pager_generic_getpages(vp, ap->a_m, ap->a_count, 1725 ap->a_rbehind, ap->a_rahead, NULL, NULL)); 1726 return (vfs_bio_getpages(vp, ap->a_m, ap->a_count, ap->a_rbehind, 1727 ap->a_rahead, ffs_gbp_getblkno, ffs_gbp_getblksz)); 1728 } 1729