xref: /freebsd/sys/ufs/ffs/ffs_vnops.c (revision 978c7e224719f27f66b5f40a55aeec996758f681)
1 /*-
2  * SPDX-License-Identifier: (BSD-2-Clause-FreeBSD AND BSD-3-Clause)
3  *
4  * Copyright (c) 2002, 2003 Networks Associates Technology, Inc.
5  * All rights reserved.
6  *
7  * This software was developed for the FreeBSD Project by Marshall
8  * Kirk McKusick and Network Associates Laboratories, the Security
9  * Research Division of Network Associates, Inc. under DARPA/SPAWAR
10  * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
11  * research program
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * Copyright (c) 1982, 1986, 1989, 1993
35  *	The Regents of the University of California.  All rights reserved.
36  *
37  * Redistribution and use in source and binary forms, with or without
38  * modification, are permitted provided that the following conditions
39  * are met:
40  * 1. Redistributions of source code must retain the above copyright
41  *    notice, this list of conditions and the following disclaimer.
42  * 2. Redistributions in binary form must reproduce the above copyright
43  *    notice, this list of conditions and the following disclaimer in the
44  *    documentation and/or other materials provided with the distribution.
45  * 3. Neither the name of the University nor the names of its contributors
46  *    may be used to endorse or promote products derived from this software
47  *    without specific prior written permission.
48  *
49  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59  * SUCH DAMAGE.
60  *
61  *	from: @(#)ufs_readwrite.c	8.11 (Berkeley) 5/8/95
62  * from: $FreeBSD: .../ufs/ufs_readwrite.c,v 1.96 2002/08/12 09:22:11 phk ...
63  *	@(#)ffs_vnops.c	8.15 (Berkeley) 5/14/95
64  */
65 
66 #include <sys/cdefs.h>
67 __FBSDID("$FreeBSD$");
68 
69 #include "opt_directio.h"
70 #include "opt_ffs.h"
71 #include "opt_ufs.h"
72 
73 #include <sys/param.h>
74 #include <sys/bio.h>
75 #include <sys/systm.h>
76 #include <sys/buf.h>
77 #include <sys/conf.h>
78 #include <sys/extattr.h>
79 #include <sys/kernel.h>
80 #include <sys/limits.h>
81 #include <sys/malloc.h>
82 #include <sys/mount.h>
83 #include <sys/priv.h>
84 #include <sys/rwlock.h>
85 #include <sys/stat.h>
86 #include <sys/sysctl.h>
87 #include <sys/vmmeter.h>
88 #include <sys/vnode.h>
89 
90 #include <vm/vm.h>
91 #include <vm/vm_param.h>
92 #include <vm/vm_extern.h>
93 #include <vm/vm_object.h>
94 #include <vm/vm_page.h>
95 #include <vm/vm_pager.h>
96 #include <vm/vnode_pager.h>
97 
98 #include <ufs/ufs/extattr.h>
99 #include <ufs/ufs/quota.h>
100 #include <ufs/ufs/inode.h>
101 #include <ufs/ufs/ufs_extern.h>
102 #include <ufs/ufs/ufsmount.h>
103 #include <ufs/ufs/dir.h>
104 #ifdef UFS_DIRHASH
105 #include <ufs/ufs/dirhash.h>
106 #endif
107 
108 #include <ufs/ffs/fs.h>
109 #include <ufs/ffs/ffs_extern.h>
110 
111 #define	ALIGNED_TO(ptr, s)	\
112 	(((uintptr_t)(ptr) & (_Alignof(s) - 1)) == 0)
113 
114 #ifdef DIRECTIO
115 extern int	ffs_rawread(struct vnode *vp, struct uio *uio, int *workdone);
116 #endif
117 static vop_fdatasync_t	ffs_fdatasync;
118 static vop_fsync_t	ffs_fsync;
119 static vop_getpages_t	ffs_getpages;
120 static vop_getpages_async_t	ffs_getpages_async;
121 static vop_lock1_t	ffs_lock;
122 #ifdef INVARIANTS
123 static vop_unlock_t	ffs_unlock_debug;
124 #endif
125 static vop_read_t	ffs_read;
126 static vop_write_t	ffs_write;
127 static int	ffs_extread(struct vnode *vp, struct uio *uio, int ioflag);
128 static int	ffs_extwrite(struct vnode *vp, struct uio *uio, int ioflag,
129 		    struct ucred *cred);
130 static vop_strategy_t	ffsext_strategy;
131 static vop_closeextattr_t	ffs_closeextattr;
132 static vop_deleteextattr_t	ffs_deleteextattr;
133 static vop_getextattr_t	ffs_getextattr;
134 static vop_listextattr_t	ffs_listextattr;
135 static vop_openextattr_t	ffs_openextattr;
136 static vop_setextattr_t	ffs_setextattr;
137 static vop_vptofh_t	ffs_vptofh;
138 static vop_vput_pair_t	ffs_vput_pair;
139 
140 /* Global vfs data structures for ufs. */
141 struct vop_vector ffs_vnodeops1 = {
142 	.vop_default =		&ufs_vnodeops,
143 	.vop_fsync =		ffs_fsync,
144 	.vop_fdatasync =	ffs_fdatasync,
145 	.vop_getpages =		ffs_getpages,
146 	.vop_getpages_async =	ffs_getpages_async,
147 	.vop_lock1 =		ffs_lock,
148 #ifdef INVARIANTS
149 	.vop_unlock =		ffs_unlock_debug,
150 #endif
151 	.vop_read =		ffs_read,
152 	.vop_reallocblks =	ffs_reallocblks,
153 	.vop_write =		ffs_write,
154 	.vop_vptofh =		ffs_vptofh,
155 	.vop_vput_pair =	ffs_vput_pair,
156 };
157 VFS_VOP_VECTOR_REGISTER(ffs_vnodeops1);
158 
159 struct vop_vector ffs_fifoops1 = {
160 	.vop_default =		&ufs_fifoops,
161 	.vop_fsync =		ffs_fsync,
162 	.vop_fdatasync =	ffs_fdatasync,
163 	.vop_lock1 =		ffs_lock,
164 #ifdef INVARIANTS
165 	.vop_unlock =		ffs_unlock_debug,
166 #endif
167 	.vop_vptofh =		ffs_vptofh,
168 };
169 VFS_VOP_VECTOR_REGISTER(ffs_fifoops1);
170 
171 /* Global vfs data structures for ufs. */
172 struct vop_vector ffs_vnodeops2 = {
173 	.vop_default =		&ufs_vnodeops,
174 	.vop_fsync =		ffs_fsync,
175 	.vop_fdatasync =	ffs_fdatasync,
176 	.vop_getpages =		ffs_getpages,
177 	.vop_getpages_async =	ffs_getpages_async,
178 	.vop_lock1 =		ffs_lock,
179 #ifdef INVARIANTS
180 	.vop_unlock =		ffs_unlock_debug,
181 #endif
182 	.vop_read =		ffs_read,
183 	.vop_reallocblks =	ffs_reallocblks,
184 	.vop_write =		ffs_write,
185 	.vop_closeextattr =	ffs_closeextattr,
186 	.vop_deleteextattr =	ffs_deleteextattr,
187 	.vop_getextattr =	ffs_getextattr,
188 	.vop_listextattr =	ffs_listextattr,
189 	.vop_openextattr =	ffs_openextattr,
190 	.vop_setextattr =	ffs_setextattr,
191 	.vop_vptofh =		ffs_vptofh,
192 	.vop_vput_pair =	ffs_vput_pair,
193 };
194 VFS_VOP_VECTOR_REGISTER(ffs_vnodeops2);
195 
196 struct vop_vector ffs_fifoops2 = {
197 	.vop_default =		&ufs_fifoops,
198 	.vop_fsync =		ffs_fsync,
199 	.vop_fdatasync =	ffs_fdatasync,
200 	.vop_lock1 =		ffs_lock,
201 #ifdef INVARIANTS
202 	.vop_unlock =		ffs_unlock_debug,
203 #endif
204 	.vop_reallocblks =	ffs_reallocblks,
205 	.vop_strategy =		ffsext_strategy,
206 	.vop_closeextattr =	ffs_closeextattr,
207 	.vop_deleteextattr =	ffs_deleteextattr,
208 	.vop_getextattr =	ffs_getextattr,
209 	.vop_listextattr =	ffs_listextattr,
210 	.vop_openextattr =	ffs_openextattr,
211 	.vop_setextattr =	ffs_setextattr,
212 	.vop_vptofh =		ffs_vptofh,
213 };
214 VFS_VOP_VECTOR_REGISTER(ffs_fifoops2);
215 
216 /*
217  * Synch an open file.
218  */
219 /* ARGSUSED */
220 static int
221 ffs_fsync(struct vop_fsync_args *ap)
222 {
223 	struct vnode *vp;
224 	struct bufobj *bo;
225 	int error;
226 
227 	vp = ap->a_vp;
228 	bo = &vp->v_bufobj;
229 retry:
230 	error = ffs_syncvnode(vp, ap->a_waitfor, 0);
231 	if (error)
232 		return (error);
233 	if (ap->a_waitfor == MNT_WAIT && DOINGSOFTDEP(vp)) {
234 		error = softdep_fsync(vp);
235 		if (error)
236 			return (error);
237 
238 		/*
239 		 * The softdep_fsync() function may drop vp lock,
240 		 * allowing for dirty buffers to reappear on the
241 		 * bo_dirty list. Recheck and resync as needed.
242 		 */
243 		BO_LOCK(bo);
244 		if ((vp->v_type == VREG || vp->v_type == VDIR) &&
245 		    (bo->bo_numoutput > 0 || bo->bo_dirty.bv_cnt > 0)) {
246 			BO_UNLOCK(bo);
247 			goto retry;
248 		}
249 		BO_UNLOCK(bo);
250 	}
251 	if (ffs_fsfail_cleanup(VFSTOUFS(vp->v_mount), 0))
252 		return (ENXIO);
253 	return (0);
254 }
255 
256 int
257 ffs_syncvnode(struct vnode *vp, int waitfor, int flags)
258 {
259 	struct inode *ip;
260 	struct bufobj *bo;
261 	struct ufsmount *ump;
262 	struct buf *bp, *nbp;
263 	ufs_lbn_t lbn;
264 	int error, passes, wflag;
265 	bool still_dirty, unlocked, wait;
266 
267 	ip = VTOI(vp);
268 	bo = &vp->v_bufobj;
269 	ump = VFSTOUFS(vp->v_mount);
270 #ifdef WITNESS
271 	wflag = IS_SNAPSHOT(ip) ? LK_NOWITNESS : 0;
272 #else
273 	wflag = 0;
274 #endif
275 
276 	/*
277 	 * When doing MNT_WAIT we must first flush all dependencies
278 	 * on the inode.
279 	 */
280 	if (DOINGSOFTDEP(vp) && waitfor == MNT_WAIT &&
281 	    (error = softdep_sync_metadata(vp)) != 0) {
282 		if (ffs_fsfail_cleanup(ump, error))
283 			error = 0;
284 		return (error);
285 	}
286 
287 	/*
288 	 * Flush all dirty buffers associated with a vnode.
289 	 */
290 	error = 0;
291 	passes = 0;
292 	wait = false;	/* Always do an async pass first. */
293 	unlocked = false;
294 	lbn = lblkno(ITOFS(ip), (ip->i_size + ITOFS(ip)->fs_bsize - 1));
295 	BO_LOCK(bo);
296 loop:
297 	TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs)
298 		bp->b_vflags &= ~BV_SCANNED;
299 	TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
300 		/*
301 		 * Reasons to skip this buffer: it has already been considered
302 		 * on this pass, the buffer has dependencies that will cause
303 		 * it to be redirtied and it has not already been deferred,
304 		 * or it is already being written.
305 		 */
306 		if ((bp->b_vflags & BV_SCANNED) != 0)
307 			continue;
308 		bp->b_vflags |= BV_SCANNED;
309 		/*
310 		 * Flush indirects in order, if requested.
311 		 *
312 		 * Note that if only datasync is requested, we can
313 		 * skip indirect blocks when softupdates are not
314 		 * active.  Otherwise we must flush them with data,
315 		 * since dependencies prevent data block writes.
316 		 */
317 		if (waitfor == MNT_WAIT && bp->b_lblkno <= -UFS_NDADDR &&
318 		    (lbn_level(bp->b_lblkno) >= passes ||
319 		    ((flags & DATA_ONLY) != 0 && !DOINGSOFTDEP(vp))))
320 			continue;
321 		if (bp->b_lblkno > lbn)
322 			panic("ffs_syncvnode: syncing truncated data.");
323 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) == 0) {
324 			BO_UNLOCK(bo);
325 		} else if (wait) {
326 			if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL |
327 			    LK_INTERLOCK | wflag, BO_LOCKPTR(bo)) != 0) {
328 				BO_LOCK(bo);
329 				bp->b_vflags &= ~BV_SCANNED;
330 				goto next_locked;
331 			}
332 		} else
333 			continue;
334 		if ((bp->b_flags & B_DELWRI) == 0)
335 			panic("ffs_fsync: not dirty");
336 		/*
337 		 * Check for dependencies and potentially complete them.
338 		 */
339 		if (!LIST_EMPTY(&bp->b_dep) &&
340 		    (error = softdep_sync_buf(vp, bp,
341 		    wait ? MNT_WAIT : MNT_NOWAIT)) != 0) {
342 			/*
343 			 * Lock order conflict, buffer was already unlocked,
344 			 * and vnode possibly unlocked.
345 			 */
346 			if (error == ERELOOKUP) {
347 				if (vp->v_data == NULL)
348 					return (EBADF);
349 				unlocked = true;
350 				if (DOINGSOFTDEP(vp) && waitfor == MNT_WAIT &&
351 				    (error = softdep_sync_metadata(vp)) != 0) {
352 					if (ffs_fsfail_cleanup(ump, error))
353 						error = 0;
354 					return (unlocked && error == 0 ?
355 					    ERELOOKUP : error);
356 				}
357 				/* Re-evaluate inode size */
358 				lbn = lblkno(ITOFS(ip), (ip->i_size +
359 				    ITOFS(ip)->fs_bsize - 1));
360 				goto next;
361 			}
362 			/* I/O error. */
363 			if (error != EBUSY) {
364 				BUF_UNLOCK(bp);
365 				return (error);
366 			}
367 			/* If we deferred once, don't defer again. */
368 		    	if ((bp->b_flags & B_DEFERRED) == 0) {
369 				bp->b_flags |= B_DEFERRED;
370 				BUF_UNLOCK(bp);
371 				goto next;
372 			}
373 		}
374 		if (wait) {
375 			bremfree(bp);
376 			error = bwrite(bp);
377 			if (ffs_fsfail_cleanup(ump, error))
378 				error = 0;
379 			if (error != 0)
380 				return (error);
381 		} else if ((bp->b_flags & B_CLUSTEROK)) {
382 			(void) vfs_bio_awrite(bp);
383 		} else {
384 			bremfree(bp);
385 			(void) bawrite(bp);
386 		}
387 next:
388 		/*
389 		 * Since we may have slept during the I/O, we need
390 		 * to start from a known point.
391 		 */
392 		BO_LOCK(bo);
393 next_locked:
394 		nbp = TAILQ_FIRST(&bo->bo_dirty.bv_hd);
395 	}
396 	if (waitfor != MNT_WAIT) {
397 		BO_UNLOCK(bo);
398 		if ((flags & NO_INO_UPDT) != 0)
399 			return (unlocked ? ERELOOKUP : 0);
400 		error = ffs_update(vp, 0);
401 		if (error == 0 && unlocked)
402 			error = ERELOOKUP;
403 		return (error);
404 	}
405 	/* Drain IO to see if we're done. */
406 	bufobj_wwait(bo, 0, 0);
407 	/*
408 	 * Block devices associated with filesystems may have new I/O
409 	 * requests posted for them even if the vnode is locked, so no
410 	 * amount of trying will get them clean.  We make several passes
411 	 * as a best effort.
412 	 *
413 	 * Regular files may need multiple passes to flush all dependency
414 	 * work as it is possible that we must write once per indirect
415 	 * level, once for the leaf, and once for the inode and each of
416 	 * these will be done with one sync and one async pass.
417 	 */
418 	if (bo->bo_dirty.bv_cnt > 0) {
419 		if ((flags & DATA_ONLY) == 0) {
420 			still_dirty = true;
421 		} else {
422 			/*
423 			 * For data-only sync, dirty indirect buffers
424 			 * are ignored.
425 			 */
426 			still_dirty = false;
427 			TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) {
428 				if (bp->b_lblkno > -UFS_NDADDR) {
429 					still_dirty = true;
430 					break;
431 				}
432 			}
433 		}
434 
435 		if (still_dirty) {
436 			/* Write the inode after sync passes to flush deps. */
437 			if (wait && DOINGSOFTDEP(vp) &&
438 			    (flags & NO_INO_UPDT) == 0) {
439 				BO_UNLOCK(bo);
440 				ffs_update(vp, 1);
441 				BO_LOCK(bo);
442 			}
443 			/* switch between sync/async. */
444 			wait = !wait;
445 			if (wait || ++passes < UFS_NIADDR + 2)
446 				goto loop;
447 		}
448 	}
449 	BO_UNLOCK(bo);
450 	error = 0;
451 	if ((flags & DATA_ONLY) == 0) {
452 		if ((flags & NO_INO_UPDT) == 0)
453 			error = ffs_update(vp, 1);
454 		if (DOINGSUJ(vp))
455 			softdep_journal_fsync(VTOI(vp));
456 	} else if ((ip->i_flags & (IN_SIZEMOD | IN_IBLKDATA)) != 0) {
457 		error = ffs_update(vp, 1);
458 	}
459 	if (error == 0 && unlocked)
460 		error = ERELOOKUP;
461 	if (error == 0)
462 		ip->i_flag &= ~IN_NEEDSYNC;
463 	return (error);
464 }
465 
466 static int
467 ffs_fdatasync(struct vop_fdatasync_args *ap)
468 {
469 
470 	return (ffs_syncvnode(ap->a_vp, MNT_WAIT, DATA_ONLY));
471 }
472 
473 static int
474 ffs_lock(ap)
475 	struct vop_lock1_args /* {
476 		struct vnode *a_vp;
477 		int a_flags;
478 		char *file;
479 		int line;
480 	} */ *ap;
481 {
482 #if !defined(NO_FFS_SNAPSHOT) || defined(DIAGNOSTIC)
483 	struct vnode *vp = ap->a_vp;
484 #endif	/* !NO_FFS_SNAPSHOT || DIAGNOSTIC */
485 #ifdef DIAGNOSTIC
486 	struct inode *ip;
487 #endif	/* DIAGNOSTIC */
488 	int result;
489 #ifndef NO_FFS_SNAPSHOT
490 	int flags;
491 	struct lock *lkp;
492 
493 	/*
494 	 * Adaptive spinning mixed with SU leads to trouble. use a giant hammer
495 	 * and only use it when LK_NODDLKTREAT is set. Currently this means it
496 	 * is only used during path lookup.
497 	 */
498 	if ((ap->a_flags & LK_NODDLKTREAT) != 0)
499 		ap->a_flags |= LK_ADAPTIVE;
500 	switch (ap->a_flags & LK_TYPE_MASK) {
501 	case LK_SHARED:
502 	case LK_UPGRADE:
503 	case LK_EXCLUSIVE:
504 		flags = ap->a_flags;
505 		for (;;) {
506 #ifdef DEBUG_VFS_LOCKS
507 			VNPASS(vp->v_holdcnt != 0, vp);
508 #endif	/* DEBUG_VFS_LOCKS */
509 			lkp = vp->v_vnlock;
510 			result = lockmgr_lock_flags(lkp, flags,
511 			    &VI_MTX(vp)->lock_object, ap->a_file, ap->a_line);
512 			if (lkp == vp->v_vnlock || result != 0)
513 				break;
514 			/*
515 			 * Apparent success, except that the vnode
516 			 * mutated between snapshot file vnode and
517 			 * regular file vnode while this process
518 			 * slept.  The lock currently held is not the
519 			 * right lock.  Release it, and try to get the
520 			 * new lock.
521 			 */
522 			lockmgr_unlock(lkp);
523 			if ((flags & (LK_INTERLOCK | LK_NOWAIT)) ==
524 			    (LK_INTERLOCK | LK_NOWAIT))
525 				return (EBUSY);
526 			if ((flags & LK_TYPE_MASK) == LK_UPGRADE)
527 				flags = (flags & ~LK_TYPE_MASK) | LK_EXCLUSIVE;
528 			flags &= ~LK_INTERLOCK;
529 		}
530 #ifdef DIAGNOSTIC
531 		switch (ap->a_flags & LK_TYPE_MASK) {
532 		case LK_UPGRADE:
533 		case LK_EXCLUSIVE:
534 			if (result == 0 && vp->v_vnlock->lk_recurse == 0) {
535 				ip = VTOI(vp);
536 				if (ip != NULL)
537 					ip->i_lock_gen++;
538 			}
539 		}
540 #endif	/* DIAGNOSTIC */
541 		break;
542 	default:
543 #ifdef DIAGNOSTIC
544 		if ((ap->a_flags & LK_TYPE_MASK) == LK_DOWNGRADE) {
545 			ip = VTOI(vp);
546 			if (ip != NULL)
547 				ufs_unlock_tracker(ip);
548 		}
549 #endif	/* DIAGNOSTIC */
550 		result = VOP_LOCK1_APV(&ufs_vnodeops, ap);
551 		break;
552 	}
553 #else	/* NO_FFS_SNAPSHOT */
554 	/*
555 	 * See above for an explanation.
556 	 */
557 	if ((ap->a_flags & LK_NODDLKTREAT) != 0)
558 		ap->a_flags |= LK_ADAPTIVE;
559 #ifdef DIAGNOSTIC
560 	if ((ap->a_flags & LK_TYPE_MASK) == LK_DOWNGRADE) {
561 		ip = VTOI(vp);
562 		if (ip != NULL)
563 			ufs_unlock_tracker(ip);
564 	}
565 #endif	/* DIAGNOSTIC */
566 	result =  VOP_LOCK1_APV(&ufs_vnodeops, ap);
567 #endif	/* NO_FFS_SNAPSHOT */
568 #ifdef DIAGNOSTIC
569 	switch (ap->a_flags & LK_TYPE_MASK) {
570 	case LK_UPGRADE:
571 	case LK_EXCLUSIVE:
572 		if (result == 0 && vp->v_vnlock->lk_recurse == 0) {
573 			ip = VTOI(vp);
574 			if (ip != NULL)
575 				ip->i_lock_gen++;
576 		}
577 	}
578 #endif	/* DIAGNOSTIC */
579 	return (result);
580 }
581 
582 #ifdef INVARIANTS
583 static int
584 ffs_unlock_debug(struct vop_unlock_args *ap)
585 {
586 	struct vnode *vp;
587 	struct inode *ip;
588 
589 	vp = ap->a_vp;
590 	ip = VTOI(vp);
591 	if (ip->i_flag & UFS_INODE_FLAG_LAZY_MASK_ASSERTABLE) {
592 		if ((vp->v_mflag & VMP_LAZYLIST) == 0) {
593 			VI_LOCK(vp);
594 			VNASSERT((vp->v_mflag & VMP_LAZYLIST), vp,
595 			    ("%s: modified vnode (%x) not on lazy list",
596 			    __func__, ip->i_flag));
597 			VI_UNLOCK(vp);
598 		}
599 	}
600 	KASSERT(vp->v_type != VDIR || vp->v_vnlock->lk_recurse != 0 ||
601 	    (ip->i_flag & IN_ENDOFF) == 0,
602 	    ("ufs dir vp %p ip %p flags %#x", vp, ip, ip->i_flag));
603 #ifdef DIAGNOSTIC
604 	if (VOP_ISLOCKED(vp) == LK_EXCLUSIVE && ip != NULL &&
605 	    vp->v_vnlock->lk_recurse == 0)
606 		ufs_unlock_tracker(ip);
607 #endif
608 	return (VOP_UNLOCK_APV(&ufs_vnodeops, ap));
609 }
610 #endif
611 
612 static int
613 ffs_read_hole(struct uio *uio, long xfersize, long *size)
614 {
615 	ssize_t saved_resid, tlen;
616 	int error;
617 
618 	while (xfersize > 0) {
619 		tlen = min(xfersize, ZERO_REGION_SIZE);
620 		saved_resid = uio->uio_resid;
621 		error = vn_io_fault_uiomove(__DECONST(void *, zero_region),
622 		    tlen, uio);
623 		if (error != 0)
624 			return (error);
625 		tlen = saved_resid - uio->uio_resid;
626 		xfersize -= tlen;
627 		*size -= tlen;
628 	}
629 	return (0);
630 }
631 
632 /*
633  * Vnode op for reading.
634  */
635 static int
636 ffs_read(ap)
637 	struct vop_read_args /* {
638 		struct vnode *a_vp;
639 		struct uio *a_uio;
640 		int a_ioflag;
641 		struct ucred *a_cred;
642 	} */ *ap;
643 {
644 	struct vnode *vp;
645 	struct inode *ip;
646 	struct uio *uio;
647 	struct fs *fs;
648 	struct buf *bp;
649 	ufs_lbn_t lbn, nextlbn;
650 	off_t bytesinfile;
651 	long size, xfersize, blkoffset;
652 	ssize_t orig_resid;
653 	int bflag, error, ioflag, seqcount;
654 
655 	vp = ap->a_vp;
656 	uio = ap->a_uio;
657 	ioflag = ap->a_ioflag;
658 	if (ap->a_ioflag & IO_EXT)
659 #ifdef notyet
660 		return (ffs_extread(vp, uio, ioflag));
661 #else
662 		panic("ffs_read+IO_EXT");
663 #endif
664 #ifdef DIRECTIO
665 	if ((ioflag & IO_DIRECT) != 0) {
666 		int workdone;
667 
668 		error = ffs_rawread(vp, uio, &workdone);
669 		if (error != 0 || workdone != 0)
670 			return error;
671 	}
672 #endif
673 
674 	seqcount = ap->a_ioflag >> IO_SEQSHIFT;
675 	ip = VTOI(vp);
676 
677 #ifdef INVARIANTS
678 	if (uio->uio_rw != UIO_READ)
679 		panic("ffs_read: mode");
680 
681 	if (vp->v_type == VLNK) {
682 		if ((int)ip->i_size < VFSTOUFS(vp->v_mount)->um_maxsymlinklen)
683 			panic("ffs_read: short symlink");
684 	} else if (vp->v_type != VREG && vp->v_type != VDIR)
685 		panic("ffs_read: type %d",  vp->v_type);
686 #endif
687 	orig_resid = uio->uio_resid;
688 	KASSERT(orig_resid >= 0, ("ffs_read: uio->uio_resid < 0"));
689 	if (orig_resid == 0)
690 		return (0);
691 	KASSERT(uio->uio_offset >= 0, ("ffs_read: uio->uio_offset < 0"));
692 	fs = ITOFS(ip);
693 	if (uio->uio_offset < ip->i_size &&
694 	    uio->uio_offset >= fs->fs_maxfilesize)
695 		return (EOVERFLOW);
696 
697 	bflag = GB_UNMAPPED | (uio->uio_segflg == UIO_NOCOPY ? 0 : GB_NOSPARSE);
698 	for (error = 0, bp = NULL; uio->uio_resid > 0; bp = NULL) {
699 		if ((bytesinfile = ip->i_size - uio->uio_offset) <= 0)
700 			break;
701 		lbn = lblkno(fs, uio->uio_offset);
702 		nextlbn = lbn + 1;
703 
704 		/*
705 		 * size of buffer.  The buffer representing the
706 		 * end of the file is rounded up to the size of
707 		 * the block type ( fragment or full block,
708 		 * depending ).
709 		 */
710 		size = blksize(fs, ip, lbn);
711 		blkoffset = blkoff(fs, uio->uio_offset);
712 
713 		/*
714 		 * The amount we want to transfer in this iteration is
715 		 * one FS block less the amount of the data before
716 		 * our startpoint (duh!)
717 		 */
718 		xfersize = fs->fs_bsize - blkoffset;
719 
720 		/*
721 		 * But if we actually want less than the block,
722 		 * or the file doesn't have a whole block more of data,
723 		 * then use the lesser number.
724 		 */
725 		if (uio->uio_resid < xfersize)
726 			xfersize = uio->uio_resid;
727 		if (bytesinfile < xfersize)
728 			xfersize = bytesinfile;
729 
730 		if (lblktosize(fs, nextlbn) >= ip->i_size) {
731 			/*
732 			 * Don't do readahead if this is the end of the file.
733 			 */
734 			error = bread_gb(vp, lbn, size, NOCRED, bflag, &bp);
735 		} else if ((vp->v_mount->mnt_flag & MNT_NOCLUSTERR) == 0) {
736 			/*
737 			 * Otherwise if we are allowed to cluster,
738 			 * grab as much as we can.
739 			 *
740 			 * XXX  This may not be a win if we are not
741 			 * doing sequential access.
742 			 */
743 			error = cluster_read(vp, ip->i_size, lbn,
744 			    size, NOCRED, blkoffset + uio->uio_resid,
745 			    seqcount, bflag, &bp);
746 		} else if (seqcount > 1) {
747 			/*
748 			 * If we are NOT allowed to cluster, then
749 			 * if we appear to be acting sequentially,
750 			 * fire off a request for a readahead
751 			 * as well as a read. Note that the 4th and 5th
752 			 * arguments point to arrays of the size specified in
753 			 * the 6th argument.
754 			 */
755 			u_int nextsize = blksize(fs, ip, nextlbn);
756 			error = breadn_flags(vp, lbn, lbn, size, &nextlbn,
757 			    &nextsize, 1, NOCRED, bflag, NULL, &bp);
758 		} else {
759 			/*
760 			 * Failing all of the above, just read what the
761 			 * user asked for. Interestingly, the same as
762 			 * the first option above.
763 			 */
764 			error = bread_gb(vp, lbn, size, NOCRED, bflag, &bp);
765 		}
766 		if (error == EJUSTRETURN) {
767 			error = ffs_read_hole(uio, xfersize, &size);
768 			if (error == 0)
769 				continue;
770 		}
771 		if (error != 0) {
772 			brelse(bp);
773 			bp = NULL;
774 			break;
775 		}
776 
777 		/*
778 		 * We should only get non-zero b_resid when an I/O error
779 		 * has occurred, which should cause us to break above.
780 		 * However, if the short read did not cause an error,
781 		 * then we want to ensure that we do not uiomove bad
782 		 * or uninitialized data.
783 		 */
784 		size -= bp->b_resid;
785 		if (size < xfersize) {
786 			if (size == 0)
787 				break;
788 			xfersize = size;
789 		}
790 
791 		if (buf_mapped(bp)) {
792 			error = vn_io_fault_uiomove((char *)bp->b_data +
793 			    blkoffset, (int)xfersize, uio);
794 		} else {
795 			error = vn_io_fault_pgmove(bp->b_pages, blkoffset,
796 			    (int)xfersize, uio);
797 		}
798 		if (error)
799 			break;
800 
801 		vfs_bio_brelse(bp, ioflag);
802 	}
803 
804 	/*
805 	 * This can only happen in the case of an error
806 	 * because the loop above resets bp to NULL on each iteration
807 	 * and on normal completion has not set a new value into it.
808 	 * so it must have come from a 'break' statement
809 	 */
810 	if (bp != NULL)
811 		vfs_bio_brelse(bp, ioflag);
812 
813 	if ((error == 0 || uio->uio_resid != orig_resid) &&
814 	    (vp->v_mount->mnt_flag & (MNT_NOATIME | MNT_RDONLY)) == 0)
815 		UFS_INODE_SET_FLAG_SHARED(ip, IN_ACCESS);
816 	return (error);
817 }
818 
819 /*
820  * Vnode op for writing.
821  */
822 static int
823 ffs_write(ap)
824 	struct vop_write_args /* {
825 		struct vnode *a_vp;
826 		struct uio *a_uio;
827 		int a_ioflag;
828 		struct ucred *a_cred;
829 	} */ *ap;
830 {
831 	struct vnode *vp;
832 	struct uio *uio;
833 	struct inode *ip;
834 	struct fs *fs;
835 	struct buf *bp;
836 	ufs_lbn_t lbn;
837 	off_t osize;
838 	ssize_t resid;
839 	int seqcount;
840 	int blkoffset, error, flags, ioflag, size, xfersize;
841 
842 	vp = ap->a_vp;
843 	if (DOINGSUJ(vp))
844 		softdep_prealloc(vp, MNT_WAIT);
845 	if (vp->v_data == NULL)
846 		return (EBADF);
847 
848 	uio = ap->a_uio;
849 	ioflag = ap->a_ioflag;
850 	if (ap->a_ioflag & IO_EXT)
851 #ifdef notyet
852 		return (ffs_extwrite(vp, uio, ioflag, ap->a_cred));
853 #else
854 		panic("ffs_write+IO_EXT");
855 #endif
856 
857 	seqcount = ap->a_ioflag >> IO_SEQSHIFT;
858 	ip = VTOI(vp);
859 
860 #ifdef INVARIANTS
861 	if (uio->uio_rw != UIO_WRITE)
862 		panic("ffs_write: mode");
863 #endif
864 
865 	switch (vp->v_type) {
866 	case VREG:
867 		if (ioflag & IO_APPEND)
868 			uio->uio_offset = ip->i_size;
869 		if ((ip->i_flags & APPEND) && uio->uio_offset != ip->i_size)
870 			return (EPERM);
871 		/* FALLTHROUGH */
872 	case VLNK:
873 		break;
874 	case VDIR:
875 		panic("ffs_write: dir write");
876 		break;
877 	default:
878 		panic("ffs_write: type %p %d (%d,%d)", vp, (int)vp->v_type,
879 			(int)uio->uio_offset,
880 			(int)uio->uio_resid
881 		);
882 	}
883 
884 	KASSERT(uio->uio_resid >= 0, ("ffs_write: uio->uio_resid < 0"));
885 	KASSERT(uio->uio_offset >= 0, ("ffs_write: uio->uio_offset < 0"));
886 	fs = ITOFS(ip);
887 	if ((uoff_t)uio->uio_offset + uio->uio_resid > fs->fs_maxfilesize)
888 		return (EFBIG);
889 	/*
890 	 * Maybe this should be above the vnode op call, but so long as
891 	 * file servers have no limits, I don't think it matters.
892 	 */
893 	if (vn_rlimit_fsize(vp, uio, uio->uio_td))
894 		return (EFBIG);
895 
896 	resid = uio->uio_resid;
897 	osize = ip->i_size;
898 	if (seqcount > BA_SEQMAX)
899 		flags = BA_SEQMAX << BA_SEQSHIFT;
900 	else
901 		flags = seqcount << BA_SEQSHIFT;
902 	if (ioflag & IO_SYNC)
903 		flags |= IO_SYNC;
904 	flags |= BA_UNMAPPED;
905 
906 	for (error = 0; uio->uio_resid > 0;) {
907 		lbn = lblkno(fs, uio->uio_offset);
908 		blkoffset = blkoff(fs, uio->uio_offset);
909 		xfersize = fs->fs_bsize - blkoffset;
910 		if (uio->uio_resid < xfersize)
911 			xfersize = uio->uio_resid;
912 		if (uio->uio_offset + xfersize > ip->i_size)
913 			vnode_pager_setsize(vp, uio->uio_offset + xfersize);
914 
915 		/*
916 		 * We must perform a read-before-write if the transfer size
917 		 * does not cover the entire buffer.
918 		 */
919 		if (fs->fs_bsize > xfersize)
920 			flags |= BA_CLRBUF;
921 		else
922 			flags &= ~BA_CLRBUF;
923 /* XXX is uio->uio_offset the right thing here? */
924 		error = UFS_BALLOC(vp, uio->uio_offset, xfersize,
925 		    ap->a_cred, flags, &bp);
926 		if (error != 0) {
927 			vnode_pager_setsize(vp, ip->i_size);
928 			break;
929 		}
930 		if ((ioflag & (IO_SYNC|IO_INVAL)) == (IO_SYNC|IO_INVAL))
931 			bp->b_flags |= B_NOCACHE;
932 
933 		if (uio->uio_offset + xfersize > ip->i_size) {
934 			ip->i_size = uio->uio_offset + xfersize;
935 			DIP_SET(ip, i_size, ip->i_size);
936 			UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE);
937 		}
938 
939 		size = blksize(fs, ip, lbn) - bp->b_resid;
940 		if (size < xfersize)
941 			xfersize = size;
942 
943 		if (buf_mapped(bp)) {
944 			error = vn_io_fault_uiomove((char *)bp->b_data +
945 			    blkoffset, (int)xfersize, uio);
946 		} else {
947 			error = vn_io_fault_pgmove(bp->b_pages, blkoffset,
948 			    (int)xfersize, uio);
949 		}
950 		/*
951 		 * If the buffer is not already filled and we encounter an
952 		 * error while trying to fill it, we have to clear out any
953 		 * garbage data from the pages instantiated for the buffer.
954 		 * If we do not, a failed uiomove() during a write can leave
955 		 * the prior contents of the pages exposed to a userland mmap.
956 		 *
957 		 * Note that we need only clear buffers with a transfer size
958 		 * equal to the block size because buffers with a shorter
959 		 * transfer size were cleared above by the call to UFS_BALLOC()
960 		 * with the BA_CLRBUF flag set.
961 		 *
962 		 * If the source region for uiomove identically mmaps the
963 		 * buffer, uiomove() performed the NOP copy, and the buffer
964 		 * content remains valid because the page fault handler
965 		 * validated the pages.
966 		 */
967 		if (error != 0 && (bp->b_flags & B_CACHE) == 0 &&
968 		    fs->fs_bsize == xfersize)
969 			vfs_bio_clrbuf(bp);
970 
971 		vfs_bio_set_flags(bp, ioflag);
972 
973 		/*
974 		 * If IO_SYNC each buffer is written synchronously.  Otherwise
975 		 * if we have a severe page deficiency write the buffer
976 		 * asynchronously.  Otherwise try to cluster, and if that
977 		 * doesn't do it then either do an async write (if O_DIRECT),
978 		 * or a delayed write (if not).
979 		 */
980 		if (ioflag & IO_SYNC) {
981 			(void)bwrite(bp);
982 		} else if (vm_page_count_severe() ||
983 			    buf_dirty_count_severe() ||
984 			    (ioflag & IO_ASYNC)) {
985 			bp->b_flags |= B_CLUSTEROK;
986 			bawrite(bp);
987 		} else if (xfersize + blkoffset == fs->fs_bsize) {
988 			if ((vp->v_mount->mnt_flag & MNT_NOCLUSTERW) == 0) {
989 				bp->b_flags |= B_CLUSTEROK;
990 				cluster_write(vp, &ip->i_clusterw, bp,
991 				    ip->i_size, seqcount, GB_UNMAPPED);
992 			} else {
993 				bawrite(bp);
994 			}
995 		} else if (ioflag & IO_DIRECT) {
996 			bp->b_flags |= B_CLUSTEROK;
997 			bawrite(bp);
998 		} else {
999 			bp->b_flags |= B_CLUSTEROK;
1000 			bdwrite(bp);
1001 		}
1002 		if (error || xfersize == 0)
1003 			break;
1004 		UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_UPDATE);
1005 	}
1006 	/*
1007 	 * If we successfully wrote any data, and we are not the superuser
1008 	 * we clear the setuid and setgid bits as a precaution against
1009 	 * tampering.
1010 	 */
1011 	if ((ip->i_mode & (ISUID | ISGID)) && resid > uio->uio_resid &&
1012 	    ap->a_cred) {
1013 		if (priv_check_cred(ap->a_cred, PRIV_VFS_RETAINSUGID)) {
1014 			vn_seqc_write_begin(vp);
1015 			UFS_INODE_SET_MODE(ip, ip->i_mode & ~(ISUID | ISGID));
1016 			DIP_SET(ip, i_mode, ip->i_mode);
1017 			vn_seqc_write_end(vp);
1018 		}
1019 	}
1020 	if (error) {
1021 		if (ioflag & IO_UNIT) {
1022 			(void)ffs_truncate(vp, osize,
1023 			    IO_NORMAL | (ioflag & IO_SYNC), ap->a_cred);
1024 			uio->uio_offset -= resid - uio->uio_resid;
1025 			uio->uio_resid = resid;
1026 		}
1027 	} else if (resid > uio->uio_resid && (ioflag & IO_SYNC)) {
1028 		if (!(ioflag & IO_DATASYNC) ||
1029 		    (ip->i_flags & (IN_SIZEMOD | IN_IBLKDATA)))
1030 			error = ffs_update(vp, 1);
1031 		if (ffs_fsfail_cleanup(VFSTOUFS(vp->v_mount), error))
1032 			error = ENXIO;
1033 	}
1034 	return (error);
1035 }
1036 
1037 /*
1038  * Extended attribute area reading.
1039  */
1040 static int
1041 ffs_extread(struct vnode *vp, struct uio *uio, int ioflag)
1042 {
1043 	struct inode *ip;
1044 	struct ufs2_dinode *dp;
1045 	struct fs *fs;
1046 	struct buf *bp;
1047 	ufs_lbn_t lbn, nextlbn;
1048 	off_t bytesinfile;
1049 	long size, xfersize, blkoffset;
1050 	ssize_t orig_resid;
1051 	int error;
1052 
1053 	ip = VTOI(vp);
1054 	fs = ITOFS(ip);
1055 	dp = ip->i_din2;
1056 
1057 #ifdef INVARIANTS
1058 	if (uio->uio_rw != UIO_READ || fs->fs_magic != FS_UFS2_MAGIC)
1059 		panic("ffs_extread: mode");
1060 
1061 #endif
1062 	orig_resid = uio->uio_resid;
1063 	KASSERT(orig_resid >= 0, ("ffs_extread: uio->uio_resid < 0"));
1064 	if (orig_resid == 0)
1065 		return (0);
1066 	KASSERT(uio->uio_offset >= 0, ("ffs_extread: uio->uio_offset < 0"));
1067 
1068 	for (error = 0, bp = NULL; uio->uio_resid > 0; bp = NULL) {
1069 		if ((bytesinfile = dp->di_extsize - uio->uio_offset) <= 0)
1070 			break;
1071 		lbn = lblkno(fs, uio->uio_offset);
1072 		nextlbn = lbn + 1;
1073 
1074 		/*
1075 		 * size of buffer.  The buffer representing the
1076 		 * end of the file is rounded up to the size of
1077 		 * the block type ( fragment or full block,
1078 		 * depending ).
1079 		 */
1080 		size = sblksize(fs, dp->di_extsize, lbn);
1081 		blkoffset = blkoff(fs, uio->uio_offset);
1082 
1083 		/*
1084 		 * The amount we want to transfer in this iteration is
1085 		 * one FS block less the amount of the data before
1086 		 * our startpoint (duh!)
1087 		 */
1088 		xfersize = fs->fs_bsize - blkoffset;
1089 
1090 		/*
1091 		 * But if we actually want less than the block,
1092 		 * or the file doesn't have a whole block more of data,
1093 		 * then use the lesser number.
1094 		 */
1095 		if (uio->uio_resid < xfersize)
1096 			xfersize = uio->uio_resid;
1097 		if (bytesinfile < xfersize)
1098 			xfersize = bytesinfile;
1099 
1100 		if (lblktosize(fs, nextlbn) >= dp->di_extsize) {
1101 			/*
1102 			 * Don't do readahead if this is the end of the info.
1103 			 */
1104 			error = bread(vp, -1 - lbn, size, NOCRED, &bp);
1105 		} else {
1106 			/*
1107 			 * If we have a second block, then
1108 			 * fire off a request for a readahead
1109 			 * as well as a read. Note that the 4th and 5th
1110 			 * arguments point to arrays of the size specified in
1111 			 * the 6th argument.
1112 			 */
1113 			u_int nextsize = sblksize(fs, dp->di_extsize, nextlbn);
1114 
1115 			nextlbn = -1 - nextlbn;
1116 			error = breadn(vp, -1 - lbn,
1117 			    size, &nextlbn, &nextsize, 1, NOCRED, &bp);
1118 		}
1119 		if (error) {
1120 			brelse(bp);
1121 			bp = NULL;
1122 			break;
1123 		}
1124 
1125 		/*
1126 		 * We should only get non-zero b_resid when an I/O error
1127 		 * has occurred, which should cause us to break above.
1128 		 * However, if the short read did not cause an error,
1129 		 * then we want to ensure that we do not uiomove bad
1130 		 * or uninitialized data.
1131 		 */
1132 		size -= bp->b_resid;
1133 		if (size < xfersize) {
1134 			if (size == 0)
1135 				break;
1136 			xfersize = size;
1137 		}
1138 
1139 		error = uiomove((char *)bp->b_data + blkoffset,
1140 					(int)xfersize, uio);
1141 		if (error)
1142 			break;
1143 		vfs_bio_brelse(bp, ioflag);
1144 	}
1145 
1146 	/*
1147 	 * This can only happen in the case of an error
1148 	 * because the loop above resets bp to NULL on each iteration
1149 	 * and on normal completion has not set a new value into it.
1150 	 * so it must have come from a 'break' statement
1151 	 */
1152 	if (bp != NULL)
1153 		vfs_bio_brelse(bp, ioflag);
1154 	return (error);
1155 }
1156 
1157 /*
1158  * Extended attribute area writing.
1159  */
1160 static int
1161 ffs_extwrite(struct vnode *vp, struct uio *uio, int ioflag, struct ucred *ucred)
1162 {
1163 	struct inode *ip;
1164 	struct ufs2_dinode *dp;
1165 	struct fs *fs;
1166 	struct buf *bp;
1167 	ufs_lbn_t lbn;
1168 	off_t osize;
1169 	ssize_t resid;
1170 	int blkoffset, error, flags, size, xfersize;
1171 
1172 	ip = VTOI(vp);
1173 	fs = ITOFS(ip);
1174 	dp = ip->i_din2;
1175 
1176 #ifdef INVARIANTS
1177 	if (uio->uio_rw != UIO_WRITE || fs->fs_magic != FS_UFS2_MAGIC)
1178 		panic("ffs_extwrite: mode");
1179 #endif
1180 
1181 	if (ioflag & IO_APPEND)
1182 		uio->uio_offset = dp->di_extsize;
1183 	KASSERT(uio->uio_offset >= 0, ("ffs_extwrite: uio->uio_offset < 0"));
1184 	KASSERT(uio->uio_resid >= 0, ("ffs_extwrite: uio->uio_resid < 0"));
1185 	if ((uoff_t)uio->uio_offset + uio->uio_resid >
1186 	    UFS_NXADDR * fs->fs_bsize)
1187 		return (EFBIG);
1188 
1189 	resid = uio->uio_resid;
1190 	osize = dp->di_extsize;
1191 	flags = IO_EXT;
1192 	if (ioflag & IO_SYNC)
1193 		flags |= IO_SYNC;
1194 
1195 	for (error = 0; uio->uio_resid > 0;) {
1196 		lbn = lblkno(fs, uio->uio_offset);
1197 		blkoffset = blkoff(fs, uio->uio_offset);
1198 		xfersize = fs->fs_bsize - blkoffset;
1199 		if (uio->uio_resid < xfersize)
1200 			xfersize = uio->uio_resid;
1201 
1202 		/*
1203 		 * We must perform a read-before-write if the transfer size
1204 		 * does not cover the entire buffer.
1205 		 */
1206 		if (fs->fs_bsize > xfersize)
1207 			flags |= BA_CLRBUF;
1208 		else
1209 			flags &= ~BA_CLRBUF;
1210 		error = UFS_BALLOC(vp, uio->uio_offset, xfersize,
1211 		    ucred, flags, &bp);
1212 		if (error != 0)
1213 			break;
1214 		/*
1215 		 * If the buffer is not valid we have to clear out any
1216 		 * garbage data from the pages instantiated for the buffer.
1217 		 * If we do not, a failed uiomove() during a write can leave
1218 		 * the prior contents of the pages exposed to a userland
1219 		 * mmap().  XXX deal with uiomove() errors a better way.
1220 		 */
1221 		if ((bp->b_flags & B_CACHE) == 0 && fs->fs_bsize <= xfersize)
1222 			vfs_bio_clrbuf(bp);
1223 
1224 		if (uio->uio_offset + xfersize > dp->di_extsize) {
1225 			dp->di_extsize = uio->uio_offset + xfersize;
1226 			UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE);
1227 		}
1228 
1229 		size = sblksize(fs, dp->di_extsize, lbn) - bp->b_resid;
1230 		if (size < xfersize)
1231 			xfersize = size;
1232 
1233 		error =
1234 		    uiomove((char *)bp->b_data + blkoffset, (int)xfersize, uio);
1235 
1236 		vfs_bio_set_flags(bp, ioflag);
1237 
1238 		/*
1239 		 * If IO_SYNC each buffer is written synchronously.  Otherwise
1240 		 * if we have a severe page deficiency write the buffer
1241 		 * asynchronously.  Otherwise try to cluster, and if that
1242 		 * doesn't do it then either do an async write (if O_DIRECT),
1243 		 * or a delayed write (if not).
1244 		 */
1245 		if (ioflag & IO_SYNC) {
1246 			(void)bwrite(bp);
1247 		} else if (vm_page_count_severe() ||
1248 			    buf_dirty_count_severe() ||
1249 			    xfersize + blkoffset == fs->fs_bsize ||
1250 			    (ioflag & (IO_ASYNC | IO_DIRECT)))
1251 			bawrite(bp);
1252 		else
1253 			bdwrite(bp);
1254 		if (error || xfersize == 0)
1255 			break;
1256 		UFS_INODE_SET_FLAG(ip, IN_CHANGE);
1257 	}
1258 	/*
1259 	 * If we successfully wrote any data, and we are not the superuser
1260 	 * we clear the setuid and setgid bits as a precaution against
1261 	 * tampering.
1262 	 */
1263 	if ((ip->i_mode & (ISUID | ISGID)) && resid > uio->uio_resid && ucred) {
1264 		if (priv_check_cred(ucred, PRIV_VFS_RETAINSUGID)) {
1265 			vn_seqc_write_begin(vp);
1266 			UFS_INODE_SET_MODE(ip, ip->i_mode & ~(ISUID | ISGID));
1267 			dp->di_mode = ip->i_mode;
1268 			vn_seqc_write_end(vp);
1269 		}
1270 	}
1271 	if (error) {
1272 		if (ioflag & IO_UNIT) {
1273 			(void)ffs_truncate(vp, osize,
1274 			    IO_EXT | (ioflag&IO_SYNC), ucred);
1275 			uio->uio_offset -= resid - uio->uio_resid;
1276 			uio->uio_resid = resid;
1277 		}
1278 	} else if (resid > uio->uio_resid && (ioflag & IO_SYNC))
1279 		error = ffs_update(vp, 1);
1280 	return (error);
1281 }
1282 
1283 /*
1284  * Vnode operating to retrieve a named extended attribute.
1285  *
1286  * Locate a particular EA (nspace:name) in the area (ptr:length), and return
1287  * the length of the EA, and possibly the pointer to the entry and to the data.
1288  */
1289 static int
1290 ffs_findextattr(u_char *ptr, u_int length, int nspace, const char *name,
1291     struct extattr **eapp, u_char **eac)
1292 {
1293 	struct extattr *eap, *eaend;
1294 	size_t nlen;
1295 
1296 	nlen = strlen(name);
1297 	KASSERT(ALIGNED_TO(ptr, struct extattr), ("unaligned"));
1298 	eap = (struct extattr *)ptr;
1299 	eaend = (struct extattr *)(ptr + length);
1300 	for (; eap < eaend; eap = EXTATTR_NEXT(eap)) {
1301 		KASSERT(EXTATTR_NEXT(eap) <= eaend,
1302 		    ("extattr next %p beyond %p", EXTATTR_NEXT(eap), eaend));
1303 		if (eap->ea_namespace != nspace || eap->ea_namelength != nlen
1304 		    || memcmp(eap->ea_name, name, nlen) != 0)
1305 			continue;
1306 		if (eapp != NULL)
1307 			*eapp = eap;
1308 		if (eac != NULL)
1309 			*eac = EXTATTR_CONTENT(eap);
1310 		return (EXTATTR_CONTENT_SIZE(eap));
1311 	}
1312 	return (-1);
1313 }
1314 
1315 static int
1316 ffs_rdextattr(u_char **p, struct vnode *vp, struct thread *td)
1317 {
1318 	const struct extattr *eap, *eaend, *eapnext;
1319 	struct inode *ip;
1320 	struct ufs2_dinode *dp;
1321 	struct fs *fs;
1322 	struct uio luio;
1323 	struct iovec liovec;
1324 	u_int easize;
1325 	int error;
1326 	u_char *eae;
1327 
1328 	ip = VTOI(vp);
1329 	fs = ITOFS(ip);
1330 	dp = ip->i_din2;
1331 	easize = dp->di_extsize;
1332 	if ((uoff_t)easize > UFS_NXADDR * fs->fs_bsize)
1333 		return (EFBIG);
1334 
1335 	eae = malloc(easize, M_TEMP, M_WAITOK);
1336 
1337 	liovec.iov_base = eae;
1338 	liovec.iov_len = easize;
1339 	luio.uio_iov = &liovec;
1340 	luio.uio_iovcnt = 1;
1341 	luio.uio_offset = 0;
1342 	luio.uio_resid = easize;
1343 	luio.uio_segflg = UIO_SYSSPACE;
1344 	luio.uio_rw = UIO_READ;
1345 	luio.uio_td = td;
1346 
1347 	error = ffs_extread(vp, &luio, IO_EXT | IO_SYNC);
1348 	if (error) {
1349 		free(eae, M_TEMP);
1350 		return (error);
1351 	}
1352 	/* Validate disk xattrfile contents. */
1353 	for (eap = (void *)eae, eaend = (void *)(eae + easize); eap < eaend;
1354 	    eap = eapnext) {
1355 		/* Detect zeroed out tail */
1356 		if (eap->ea_length < sizeof(*eap) || eap->ea_length == 0) {
1357 			easize = (const u_char *)eap - eae;
1358 			break;
1359 		}
1360 
1361 		eapnext = EXTATTR_NEXT(eap);
1362 		/* Bogusly long entry. */
1363 		if (eapnext > eaend) {
1364 			free(eae, M_TEMP);
1365 			return (EINTEGRITY);
1366 		}
1367 	}
1368 	ip->i_ea_len = easize;
1369 	*p = eae;
1370 	return (0);
1371 }
1372 
1373 static void
1374 ffs_lock_ea(struct vnode *vp)
1375 {
1376 	struct inode *ip;
1377 
1378 	ip = VTOI(vp);
1379 	VI_LOCK(vp);
1380 	while (ip->i_flag & IN_EA_LOCKED) {
1381 		UFS_INODE_SET_FLAG(ip, IN_EA_LOCKWAIT);
1382 		msleep(&ip->i_ea_refs, &vp->v_interlock, PINOD + 2, "ufs_ea",
1383 		    0);
1384 	}
1385 	UFS_INODE_SET_FLAG(ip, IN_EA_LOCKED);
1386 	VI_UNLOCK(vp);
1387 }
1388 
1389 static void
1390 ffs_unlock_ea(struct vnode *vp)
1391 {
1392 	struct inode *ip;
1393 
1394 	ip = VTOI(vp);
1395 	VI_LOCK(vp);
1396 	if (ip->i_flag & IN_EA_LOCKWAIT)
1397 		wakeup(&ip->i_ea_refs);
1398 	ip->i_flag &= ~(IN_EA_LOCKED | IN_EA_LOCKWAIT);
1399 	VI_UNLOCK(vp);
1400 }
1401 
1402 static int
1403 ffs_open_ea(struct vnode *vp, struct ucred *cred, struct thread *td)
1404 {
1405 	struct inode *ip;
1406 	int error;
1407 
1408 	ip = VTOI(vp);
1409 
1410 	ffs_lock_ea(vp);
1411 	if (ip->i_ea_area != NULL) {
1412 		ip->i_ea_refs++;
1413 		ffs_unlock_ea(vp);
1414 		return (0);
1415 	}
1416 	error = ffs_rdextattr(&ip->i_ea_area, vp, td);
1417 	if (error) {
1418 		ffs_unlock_ea(vp);
1419 		return (error);
1420 	}
1421 	ip->i_ea_error = 0;
1422 	ip->i_ea_refs++;
1423 	ffs_unlock_ea(vp);
1424 	return (0);
1425 }
1426 
1427 /*
1428  * Vnode extattr transaction commit/abort
1429  */
1430 static int
1431 ffs_close_ea(struct vnode *vp, int commit, struct ucred *cred, struct thread *td)
1432 {
1433 	struct inode *ip;
1434 	struct uio luio;
1435 	struct iovec *liovec;
1436 	struct ufs2_dinode *dp;
1437 	size_t ea_len, tlen;
1438 	int error, i, lcnt;
1439 	bool truncate;
1440 
1441 	ip = VTOI(vp);
1442 
1443 	ffs_lock_ea(vp);
1444 	if (ip->i_ea_area == NULL) {
1445 		ffs_unlock_ea(vp);
1446 		return (EINVAL);
1447 	}
1448 	dp = ip->i_din2;
1449 	error = ip->i_ea_error;
1450 	truncate = false;
1451 	if (commit && error == 0) {
1452 		ASSERT_VOP_ELOCKED(vp, "ffs_close_ea commit");
1453 		if (cred == NOCRED)
1454 			cred =  vp->v_mount->mnt_cred;
1455 
1456 		ea_len = MAX(ip->i_ea_len, dp->di_extsize);
1457 		for (lcnt = 1, tlen = ea_len - ip->i_ea_len; tlen > 0;) {
1458 			tlen -= MIN(ZERO_REGION_SIZE, tlen);
1459 			lcnt++;
1460 		}
1461 
1462 		liovec = __builtin_alloca(lcnt * sizeof(struct iovec));
1463 		luio.uio_iovcnt = lcnt;
1464 
1465 		liovec[0].iov_base = ip->i_ea_area;
1466 		liovec[0].iov_len = ip->i_ea_len;
1467 		for (i = 1, tlen = ea_len - ip->i_ea_len; i < lcnt; i++) {
1468 			liovec[i].iov_base = __DECONST(void *, zero_region);
1469 			liovec[i].iov_len = MIN(ZERO_REGION_SIZE, tlen);
1470 			tlen -= liovec[i].iov_len;
1471 		}
1472 		MPASS(tlen == 0);
1473 
1474 		luio.uio_iov = liovec;
1475 		luio.uio_offset = 0;
1476 		luio.uio_resid = ea_len;
1477 		luio.uio_segflg = UIO_SYSSPACE;
1478 		luio.uio_rw = UIO_WRITE;
1479 		luio.uio_td = td;
1480 		error = ffs_extwrite(vp, &luio, IO_EXT | IO_SYNC, cred);
1481 		if (error == 0 && ip->i_ea_len == 0)
1482 			truncate = true;
1483 	}
1484 	if (--ip->i_ea_refs == 0) {
1485 		free(ip->i_ea_area, M_TEMP);
1486 		ip->i_ea_area = NULL;
1487 		ip->i_ea_len = 0;
1488 		ip->i_ea_error = 0;
1489 	}
1490 	ffs_unlock_ea(vp);
1491 
1492 	if (truncate)
1493 		ffs_truncate(vp, 0, IO_EXT, cred);
1494 	return (error);
1495 }
1496 
1497 /*
1498  * Vnode extattr strategy routine for fifos.
1499  *
1500  * We need to check for a read or write of the external attributes.
1501  * Otherwise we just fall through and do the usual thing.
1502  */
1503 static int
1504 ffsext_strategy(struct vop_strategy_args *ap)
1505 /*
1506 struct vop_strategy_args {
1507 	struct vnodeop_desc *a_desc;
1508 	struct vnode *a_vp;
1509 	struct buf *a_bp;
1510 };
1511 */
1512 {
1513 	struct vnode *vp;
1514 	daddr_t lbn;
1515 
1516 	vp = ap->a_vp;
1517 	lbn = ap->a_bp->b_lblkno;
1518 	if (I_IS_UFS2(VTOI(vp)) && lbn < 0 && lbn >= -UFS_NXADDR)
1519 		return (VOP_STRATEGY_APV(&ufs_vnodeops, ap));
1520 	if (vp->v_type == VFIFO)
1521 		return (VOP_STRATEGY_APV(&ufs_fifoops, ap));
1522 	panic("spec nodes went here");
1523 }
1524 
1525 /*
1526  * Vnode extattr transaction commit/abort
1527  */
1528 static int
1529 ffs_openextattr(struct vop_openextattr_args *ap)
1530 /*
1531 struct vop_openextattr_args {
1532 	struct vnodeop_desc *a_desc;
1533 	struct vnode *a_vp;
1534 	IN struct ucred *a_cred;
1535 	IN struct thread *a_td;
1536 };
1537 */
1538 {
1539 
1540 	if (ap->a_vp->v_type == VCHR || ap->a_vp->v_type == VBLK)
1541 		return (EOPNOTSUPP);
1542 
1543 	return (ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td));
1544 }
1545 
1546 /*
1547  * Vnode extattr transaction commit/abort
1548  */
1549 static int
1550 ffs_closeextattr(struct vop_closeextattr_args *ap)
1551 /*
1552 struct vop_closeextattr_args {
1553 	struct vnodeop_desc *a_desc;
1554 	struct vnode *a_vp;
1555 	int a_commit;
1556 	IN struct ucred *a_cred;
1557 	IN struct thread *a_td;
1558 };
1559 */
1560 {
1561 	struct vnode *vp;
1562 
1563 	vp = ap->a_vp;
1564 	if (vp->v_type == VCHR || vp->v_type == VBLK)
1565 		return (EOPNOTSUPP);
1566 	if (ap->a_commit && (vp->v_mount->mnt_flag & MNT_RDONLY) != 0)
1567 		return (EROFS);
1568 
1569 	if (ap->a_commit && DOINGSUJ(vp)) {
1570 		ASSERT_VOP_ELOCKED(vp, "ffs_closeextattr commit");
1571 		softdep_prealloc(vp, MNT_WAIT);
1572 		if (vp->v_data == NULL)
1573 			return (EBADF);
1574 	}
1575 	return (ffs_close_ea(vp, ap->a_commit, ap->a_cred, ap->a_td));
1576 }
1577 
1578 /*
1579  * Vnode operation to remove a named attribute.
1580  */
1581 static int
1582 ffs_deleteextattr(struct vop_deleteextattr_args *ap)
1583 /*
1584 vop_deleteextattr {
1585 	IN struct vnode *a_vp;
1586 	IN int a_attrnamespace;
1587 	IN const char *a_name;
1588 	IN struct ucred *a_cred;
1589 	IN struct thread *a_td;
1590 };
1591 */
1592 {
1593 	struct vnode *vp;
1594 	struct inode *ip;
1595 	struct extattr *eap;
1596 	uint32_t ul;
1597 	int olen, error, i, easize;
1598 	u_char *eae;
1599 	void *tmp;
1600 
1601 	vp = ap->a_vp;
1602 	ip = VTOI(vp);
1603 
1604 	if (vp->v_type == VCHR || vp->v_type == VBLK)
1605 		return (EOPNOTSUPP);
1606 	if (strlen(ap->a_name) == 0)
1607 		return (EINVAL);
1608 	if (vp->v_mount->mnt_flag & MNT_RDONLY)
1609 		return (EROFS);
1610 
1611 	error = extattr_check_cred(vp, ap->a_attrnamespace,
1612 	    ap->a_cred, ap->a_td, VWRITE);
1613 	if (error) {
1614 		/*
1615 		 * ffs_lock_ea is not needed there, because the vnode
1616 		 * must be exclusively locked.
1617 		 */
1618 		if (ip->i_ea_area != NULL && ip->i_ea_error == 0)
1619 			ip->i_ea_error = error;
1620 		return (error);
1621 	}
1622 
1623 	if (DOINGSUJ(vp)) {
1624 		ASSERT_VOP_ELOCKED(vp, "ffs_deleteextattr");
1625 		softdep_prealloc(vp, MNT_WAIT);
1626 		if (vp->v_data == NULL)
1627 			return (EBADF);
1628 	}
1629 
1630 	error = ffs_open_ea(vp, ap->a_cred, ap->a_td);
1631 	if (error)
1632 		return (error);
1633 
1634 	/* CEM: delete could be done in-place instead */
1635 	eae = malloc(ip->i_ea_len, M_TEMP, M_WAITOK);
1636 	bcopy(ip->i_ea_area, eae, ip->i_ea_len);
1637 	easize = ip->i_ea_len;
1638 
1639 	olen = ffs_findextattr(eae, easize, ap->a_attrnamespace, ap->a_name,
1640 	    &eap, NULL);
1641 	if (olen == -1) {
1642 		/* delete but nonexistent */
1643 		free(eae, M_TEMP);
1644 		ffs_close_ea(vp, 0, ap->a_cred, ap->a_td);
1645 		return (ENOATTR);
1646 	}
1647 	ul = eap->ea_length;
1648 	i = (u_char *)EXTATTR_NEXT(eap) - eae;
1649 	bcopy(EXTATTR_NEXT(eap), eap, easize - i);
1650 	easize -= ul;
1651 
1652 	tmp = ip->i_ea_area;
1653 	ip->i_ea_area = eae;
1654 	ip->i_ea_len = easize;
1655 	free(tmp, M_TEMP);
1656 	error = ffs_close_ea(vp, 1, ap->a_cred, ap->a_td);
1657 	return (error);
1658 }
1659 
1660 /*
1661  * Vnode operation to retrieve a named extended attribute.
1662  */
1663 static int
1664 ffs_getextattr(struct vop_getextattr_args *ap)
1665 /*
1666 vop_getextattr {
1667 	IN struct vnode *a_vp;
1668 	IN int a_attrnamespace;
1669 	IN const char *a_name;
1670 	INOUT struct uio *a_uio;
1671 	OUT size_t *a_size;
1672 	IN struct ucred *a_cred;
1673 	IN struct thread *a_td;
1674 };
1675 */
1676 {
1677 	struct inode *ip;
1678 	u_char *eae, *p;
1679 	unsigned easize;
1680 	int error, ealen;
1681 
1682 	ip = VTOI(ap->a_vp);
1683 
1684 	if (ap->a_vp->v_type == VCHR || ap->a_vp->v_type == VBLK)
1685 		return (EOPNOTSUPP);
1686 
1687 	error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace,
1688 	    ap->a_cred, ap->a_td, VREAD);
1689 	if (error)
1690 		return (error);
1691 
1692 	error = ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td);
1693 	if (error)
1694 		return (error);
1695 
1696 	eae = ip->i_ea_area;
1697 	easize = ip->i_ea_len;
1698 
1699 	ealen = ffs_findextattr(eae, easize, ap->a_attrnamespace, ap->a_name,
1700 	    NULL, &p);
1701 	if (ealen >= 0) {
1702 		error = 0;
1703 		if (ap->a_size != NULL)
1704 			*ap->a_size = ealen;
1705 		else if (ap->a_uio != NULL)
1706 			error = uiomove(p, ealen, ap->a_uio);
1707 	} else
1708 		error = ENOATTR;
1709 
1710 	ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td);
1711 	return (error);
1712 }
1713 
1714 /*
1715  * Vnode operation to retrieve extended attributes on a vnode.
1716  */
1717 static int
1718 ffs_listextattr(struct vop_listextattr_args *ap)
1719 /*
1720 vop_listextattr {
1721 	IN struct vnode *a_vp;
1722 	IN int a_attrnamespace;
1723 	INOUT struct uio *a_uio;
1724 	OUT size_t *a_size;
1725 	IN struct ucred *a_cred;
1726 	IN struct thread *a_td;
1727 };
1728 */
1729 {
1730 	struct inode *ip;
1731 	struct extattr *eap, *eaend;
1732 	int error, ealen;
1733 
1734 	ip = VTOI(ap->a_vp);
1735 
1736 	if (ap->a_vp->v_type == VCHR || ap->a_vp->v_type == VBLK)
1737 		return (EOPNOTSUPP);
1738 
1739 	error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace,
1740 	    ap->a_cred, ap->a_td, VREAD);
1741 	if (error)
1742 		return (error);
1743 
1744 	error = ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td);
1745 	if (error)
1746 		return (error);
1747 
1748 	error = 0;
1749 	if (ap->a_size != NULL)
1750 		*ap->a_size = 0;
1751 
1752 	KASSERT(ALIGNED_TO(ip->i_ea_area, struct extattr), ("unaligned"));
1753 	eap = (struct extattr *)ip->i_ea_area;
1754 	eaend = (struct extattr *)(ip->i_ea_area + ip->i_ea_len);
1755 	for (; error == 0 && eap < eaend; eap = EXTATTR_NEXT(eap)) {
1756 		KASSERT(EXTATTR_NEXT(eap) <= eaend,
1757 		    ("extattr next %p beyond %p", EXTATTR_NEXT(eap), eaend));
1758 		if (eap->ea_namespace != ap->a_attrnamespace)
1759 			continue;
1760 
1761 		ealen = eap->ea_namelength;
1762 		if (ap->a_size != NULL)
1763 			*ap->a_size += ealen + 1;
1764 		else if (ap->a_uio != NULL)
1765 			error = uiomove(&eap->ea_namelength, ealen + 1,
1766 			    ap->a_uio);
1767 	}
1768 
1769 	ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td);
1770 	return (error);
1771 }
1772 
1773 /*
1774  * Vnode operation to set a named attribute.
1775  */
1776 static int
1777 ffs_setextattr(struct vop_setextattr_args *ap)
1778 /*
1779 vop_setextattr {
1780 	IN struct vnode *a_vp;
1781 	IN int a_attrnamespace;
1782 	IN const char *a_name;
1783 	INOUT struct uio *a_uio;
1784 	IN struct ucred *a_cred;
1785 	IN struct thread *a_td;
1786 };
1787 */
1788 {
1789 	struct vnode *vp;
1790 	struct inode *ip;
1791 	struct fs *fs;
1792 	struct extattr *eap;
1793 	uint32_t ealength, ul;
1794 	ssize_t ealen;
1795 	int olen, eapad1, eapad2, error, i, easize;
1796 	u_char *eae;
1797 	void *tmp;
1798 
1799 	vp = ap->a_vp;
1800 	ip = VTOI(vp);
1801 	fs = ITOFS(ip);
1802 
1803 	if (vp->v_type == VCHR || vp->v_type == VBLK)
1804 		return (EOPNOTSUPP);
1805 	if (strlen(ap->a_name) == 0)
1806 		return (EINVAL);
1807 
1808 	/* XXX Now unsupported API to delete EAs using NULL uio. */
1809 	if (ap->a_uio == NULL)
1810 		return (EOPNOTSUPP);
1811 
1812 	if (vp->v_mount->mnt_flag & MNT_RDONLY)
1813 		return (EROFS);
1814 
1815 	ealen = ap->a_uio->uio_resid;
1816 	if (ealen < 0 || ealen > lblktosize(fs, UFS_NXADDR))
1817 		return (EINVAL);
1818 
1819 	error = extattr_check_cred(vp, ap->a_attrnamespace,
1820 	    ap->a_cred, ap->a_td, VWRITE);
1821 	if (error) {
1822 		/*
1823 		 * ffs_lock_ea is not needed there, because the vnode
1824 		 * must be exclusively locked.
1825 		 */
1826 		if (ip->i_ea_area != NULL && ip->i_ea_error == 0)
1827 			ip->i_ea_error = error;
1828 		return (error);
1829 	}
1830 
1831 	if (DOINGSUJ(vp)) {
1832 		ASSERT_VOP_ELOCKED(vp, "ffs_deleteextattr");
1833 		softdep_prealloc(vp, MNT_WAIT);
1834 		if (vp->v_data == NULL)
1835 			return (EBADF);
1836 	}
1837 
1838 	error = ffs_open_ea(vp, ap->a_cred, ap->a_td);
1839 	if (error)
1840 		return (error);
1841 
1842 	ealength = sizeof(uint32_t) + 3 + strlen(ap->a_name);
1843 	eapad1 = roundup2(ealength, 8) - ealength;
1844 	eapad2 = roundup2(ealen, 8) - ealen;
1845 	ealength += eapad1 + ealen + eapad2;
1846 
1847 	/*
1848 	 * CEM: rewrites of the same size or smaller could be done in-place
1849 	 * instead.  (We don't acquire any fine-grained locks in here either,
1850 	 * so we could also do bigger writes in-place.)
1851 	 */
1852 	eae = malloc(ip->i_ea_len + ealength, M_TEMP, M_WAITOK);
1853 	bcopy(ip->i_ea_area, eae, ip->i_ea_len);
1854 	easize = ip->i_ea_len;
1855 
1856 	olen = ffs_findextattr(eae, easize, ap->a_attrnamespace, ap->a_name,
1857 	    &eap, NULL);
1858         if (olen == -1) {
1859 		/* new, append at end */
1860 		KASSERT(ALIGNED_TO(eae + easize, struct extattr),
1861 		    ("unaligned"));
1862 		eap = (struct extattr *)(eae + easize);
1863 		easize += ealength;
1864 	} else {
1865 		ul = eap->ea_length;
1866 		i = (u_char *)EXTATTR_NEXT(eap) - eae;
1867 		if (ul != ealength) {
1868 			bcopy(EXTATTR_NEXT(eap), (u_char *)eap + ealength,
1869 			    easize - i);
1870 			easize += (ealength - ul);
1871 		}
1872 	}
1873 	if (easize > lblktosize(fs, UFS_NXADDR)) {
1874 		free(eae, M_TEMP);
1875 		ffs_close_ea(vp, 0, ap->a_cred, ap->a_td);
1876 		if (ip->i_ea_area != NULL && ip->i_ea_error == 0)
1877 			ip->i_ea_error = ENOSPC;
1878 		return (ENOSPC);
1879 	}
1880 	eap->ea_length = ealength;
1881 	eap->ea_namespace = ap->a_attrnamespace;
1882 	eap->ea_contentpadlen = eapad2;
1883 	eap->ea_namelength = strlen(ap->a_name);
1884 	memcpy(eap->ea_name, ap->a_name, strlen(ap->a_name));
1885 	bzero(&eap->ea_name[strlen(ap->a_name)], eapad1);
1886 	error = uiomove(EXTATTR_CONTENT(eap), ealen, ap->a_uio);
1887 	if (error) {
1888 		free(eae, M_TEMP);
1889 		ffs_close_ea(vp, 0, ap->a_cred, ap->a_td);
1890 		if (ip->i_ea_area != NULL && ip->i_ea_error == 0)
1891 			ip->i_ea_error = error;
1892 		return (error);
1893 	}
1894 	bzero((u_char *)EXTATTR_CONTENT(eap) + ealen, eapad2);
1895 
1896 	tmp = ip->i_ea_area;
1897 	ip->i_ea_area = eae;
1898 	ip->i_ea_len = easize;
1899 	free(tmp, M_TEMP);
1900 	error = ffs_close_ea(vp, 1, ap->a_cred, ap->a_td);
1901 	return (error);
1902 }
1903 
1904 /*
1905  * Vnode pointer to File handle
1906  */
1907 static int
1908 ffs_vptofh(struct vop_vptofh_args *ap)
1909 /*
1910 vop_vptofh {
1911 	IN struct vnode *a_vp;
1912 	IN struct fid *a_fhp;
1913 };
1914 */
1915 {
1916 	struct inode *ip;
1917 	struct ufid *ufhp;
1918 
1919 	ip = VTOI(ap->a_vp);
1920 	ufhp = (struct ufid *)ap->a_fhp;
1921 	ufhp->ufid_len = sizeof(struct ufid);
1922 	ufhp->ufid_ino = ip->i_number;
1923 	ufhp->ufid_gen = ip->i_gen;
1924 	return (0);
1925 }
1926 
1927 SYSCTL_DECL(_vfs_ffs);
1928 static int use_buf_pager = 1;
1929 SYSCTL_INT(_vfs_ffs, OID_AUTO, use_buf_pager, CTLFLAG_RWTUN, &use_buf_pager, 0,
1930     "Always use buffer pager instead of bmap");
1931 
1932 static daddr_t
1933 ffs_gbp_getblkno(struct vnode *vp, vm_ooffset_t off)
1934 {
1935 
1936 	return (lblkno(VFSTOUFS(vp->v_mount)->um_fs, off));
1937 }
1938 
1939 static int
1940 ffs_gbp_getblksz(struct vnode *vp, daddr_t lbn, long *sz)
1941 {
1942 
1943 	*sz = blksize(VFSTOUFS(vp->v_mount)->um_fs, VTOI(vp), lbn);
1944 	return (0);
1945 }
1946 
1947 static int
1948 ffs_getpages(struct vop_getpages_args *ap)
1949 {
1950 	struct vnode *vp;
1951 	struct ufsmount *um;
1952 
1953 	vp = ap->a_vp;
1954 	um = VFSTOUFS(vp->v_mount);
1955 
1956 	if (!use_buf_pager && um->um_devvp->v_bufobj.bo_bsize <= PAGE_SIZE)
1957 		return (vnode_pager_generic_getpages(vp, ap->a_m, ap->a_count,
1958 		    ap->a_rbehind, ap->a_rahead, NULL, NULL));
1959 	return (vfs_bio_getpages(vp, ap->a_m, ap->a_count, ap->a_rbehind,
1960 	    ap->a_rahead, ffs_gbp_getblkno, ffs_gbp_getblksz));
1961 }
1962 
1963 static int
1964 ffs_getpages_async(struct vop_getpages_async_args *ap)
1965 {
1966 	struct vnode *vp;
1967 	struct ufsmount *um;
1968 	bool do_iodone;
1969 	int error;
1970 
1971 	vp = ap->a_vp;
1972 	um = VFSTOUFS(vp->v_mount);
1973 	do_iodone = true;
1974 
1975 	if (um->um_devvp->v_bufobj.bo_bsize <= PAGE_SIZE) {
1976 		error = vnode_pager_generic_getpages(vp, ap->a_m, ap->a_count,
1977 		    ap->a_rbehind, ap->a_rahead, ap->a_iodone, ap->a_arg);
1978 		if (error == 0)
1979 			do_iodone = false;
1980 	} else {
1981 		error = vfs_bio_getpages(vp, ap->a_m, ap->a_count,
1982 		    ap->a_rbehind, ap->a_rahead, ffs_gbp_getblkno,
1983 		    ffs_gbp_getblksz);
1984 	}
1985 	if (do_iodone && ap->a_iodone != NULL)
1986 		ap->a_iodone(ap->a_arg, ap->a_m, ap->a_count, error);
1987 
1988 	return (error);
1989 }
1990 
1991 static int
1992 ffs_vput_pair(struct vop_vput_pair_args *ap)
1993 {
1994 	struct mount *mp;
1995 	struct vnode *dvp, *vp, *vp1, **vpp;
1996 	struct inode *dp, *ip;
1997 	ino_t ip_ino;
1998 	u_int64_t ip_gen;
1999 	int error, vp_locked;
2000 
2001 	dvp = ap->a_dvp;
2002 	dp = VTOI(dvp);
2003 	vpp = ap->a_vpp;
2004 	vp = vpp != NULL ? *vpp : NULL;
2005 
2006 	if ((dp->i_flag & (IN_NEEDSYNC | IN_ENDOFF)) == 0) {
2007 		vput(dvp);
2008 		if (vp != NULL && ap->a_unlock_vp)
2009 			vput(vp);
2010 		return (0);
2011 	}
2012 
2013 	mp = dvp->v_mount;
2014 	if (vp != NULL) {
2015 		if (ap->a_unlock_vp) {
2016 			vput(vp);
2017 		} else {
2018 			MPASS(vp->v_type != VNON);
2019 			vp_locked = VOP_ISLOCKED(vp);
2020 			ip = VTOI(vp);
2021 			ip_ino = ip->i_number;
2022 			ip_gen = ip->i_gen;
2023 			VOP_UNLOCK(vp);
2024 		}
2025 	}
2026 
2027 	/*
2028 	 * If compaction or fsync was requested do it in ffs_vput_pair()
2029 	 * now that other locks are no longer held.
2030          */
2031 	if ((dp->i_flag & IN_ENDOFF) != 0) {
2032 		VNASSERT(I_ENDOFF(dp) != 0 && I_ENDOFF(dp) < dp->i_size, dvp,
2033 		    ("IN_ENDOFF set but I_ENDOFF() is not"));
2034 		dp->i_flag &= ~IN_ENDOFF;
2035 		error = UFS_TRUNCATE(dvp, (off_t)I_ENDOFF(dp), IO_NORMAL |
2036 		    (DOINGASYNC(dvp) ? 0 : IO_SYNC), curthread->td_ucred);
2037 		if (error != 0 && error != ERELOOKUP) {
2038 			if (!ffs_fsfail_cleanup(VFSTOUFS(mp), error)) {
2039 				vn_printf(dvp,
2040 				    "IN_ENDOFF: failed to truncate, "
2041 				    "error %d\n", error);
2042 			}
2043 #ifdef UFS_DIRHASH
2044 			ufsdirhash_free(dp);
2045 #endif
2046 		}
2047 		SET_I_ENDOFF(dp, 0);
2048 	}
2049 	if ((dp->i_flag & IN_NEEDSYNC) != 0) {
2050 		do {
2051 			error = ffs_syncvnode(dvp, MNT_WAIT, 0);
2052 		} while (error == ERELOOKUP);
2053 	}
2054 
2055 	vput(dvp);
2056 
2057 	if (vp == NULL || ap->a_unlock_vp)
2058 		return (0);
2059 	MPASS(mp != NULL);
2060 
2061 	/*
2062 	 * It is possible that vp is reclaimed at this point. Only
2063 	 * routines that call us with a_unlock_vp == false can find
2064 	 * that their vp has been reclaimed. There are three areas
2065 	 * that are affected:
2066 	 * 1) vn_open_cred() - later VOPs could fail, but
2067 	 *    dead_open() returns 0 to simulate successful open.
2068 	 * 2) ffs_snapshot() - creation of snapshot fails with EBADF.
2069 	 * 3) NFS server (several places) - code is prepared to detect
2070 	 *    and respond to dead vnodes by returning ESTALE.
2071 	 */
2072 	VOP_LOCK(vp, vp_locked | LK_RETRY);
2073 	if (IS_UFS(vp))
2074 		return (0);
2075 
2076 	/*
2077 	 * Try harder to recover from reclaimed vp if reclaim was not
2078 	 * because underlying inode was cleared.  We saved inode
2079 	 * number and inode generation, so we can try to reinstantiate
2080 	 * exactly same version of inode.  If this fails, return
2081 	 * original doomed vnode and let caller to handle
2082 	 * consequences.
2083 	 *
2084 	 * Note that callers must keep write started around
2085 	 * VOP_VPUT_PAIR() calls, so it is safe to use mp without
2086 	 * busying it.
2087 	 */
2088 	VOP_UNLOCK(vp);
2089 	error = ffs_inotovp(mp, ip_ino, ip_gen, LK_EXCLUSIVE, &vp1,
2090 	    FFSV_REPLACE_DOOMED);
2091 	if (error != 0) {
2092 		VOP_LOCK(vp, vp_locked | LK_RETRY);
2093 	} else {
2094 		vrele(vp);
2095 		*vpp = vp1;
2096 	}
2097 	return (error);
2098 }
2099