1 /*- 2 * SPDX-License-Identifier: (BSD-2-Clause-FreeBSD AND BSD-3-Clause) 3 * 4 * Copyright (c) 2002, 2003 Networks Associates Technology, Inc. 5 * All rights reserved. 6 * 7 * This software was developed for the FreeBSD Project by Marshall 8 * Kirk McKusick and Network Associates Laboratories, the Security 9 * Research Division of Network Associates, Inc. under DARPA/SPAWAR 10 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS 11 * research program 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 1. Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * Copyright (c) 1982, 1986, 1989, 1993 35 * The Regents of the University of California. All rights reserved. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 1. Redistributions of source code must retain the above copyright 41 * notice, this list of conditions and the following disclaimer. 42 * 2. Redistributions in binary form must reproduce the above copyright 43 * notice, this list of conditions and the following disclaimer in the 44 * documentation and/or other materials provided with the distribution. 45 * 3. Neither the name of the University nor the names of its contributors 46 * may be used to endorse or promote products derived from this software 47 * without specific prior written permission. 48 * 49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 59 * SUCH DAMAGE. 60 * 61 * from: @(#)ufs_readwrite.c 8.11 (Berkeley) 5/8/95 62 * from: $FreeBSD: .../ufs/ufs_readwrite.c,v 1.96 2002/08/12 09:22:11 phk ... 63 * @(#)ffs_vnops.c 8.15 (Berkeley) 5/14/95 64 */ 65 66 #include <sys/cdefs.h> 67 __FBSDID("$FreeBSD$"); 68 69 #include "opt_directio.h" 70 #include "opt_ffs.h" 71 #include "opt_ufs.h" 72 73 #include <sys/param.h> 74 #include <sys/bio.h> 75 #include <sys/systm.h> 76 #include <sys/buf.h> 77 #include <sys/conf.h> 78 #include <sys/extattr.h> 79 #include <sys/kernel.h> 80 #include <sys/limits.h> 81 #include <sys/malloc.h> 82 #include <sys/mount.h> 83 #include <sys/priv.h> 84 #include <sys/rwlock.h> 85 #include <sys/stat.h> 86 #include <sys/sysctl.h> 87 #include <sys/vmmeter.h> 88 #include <sys/vnode.h> 89 90 #include <vm/vm.h> 91 #include <vm/vm_param.h> 92 #include <vm/vm_extern.h> 93 #include <vm/vm_object.h> 94 #include <vm/vm_page.h> 95 #include <vm/vm_pager.h> 96 #include <vm/vnode_pager.h> 97 98 #include <ufs/ufs/extattr.h> 99 #include <ufs/ufs/quota.h> 100 #include <ufs/ufs/inode.h> 101 #include <ufs/ufs/ufs_extern.h> 102 #include <ufs/ufs/ufsmount.h> 103 #include <ufs/ufs/dir.h> 104 #ifdef UFS_DIRHASH 105 #include <ufs/ufs/dirhash.h> 106 #endif 107 108 #include <ufs/ffs/fs.h> 109 #include <ufs/ffs/ffs_extern.h> 110 111 #define ALIGNED_TO(ptr, s) \ 112 (((uintptr_t)(ptr) & (_Alignof(s) - 1)) == 0) 113 114 #ifdef DIRECTIO 115 extern int ffs_rawread(struct vnode *vp, struct uio *uio, int *workdone); 116 #endif 117 static vop_fdatasync_t ffs_fdatasync; 118 static vop_fsync_t ffs_fsync; 119 static vop_getpages_t ffs_getpages; 120 static vop_getpages_async_t ffs_getpages_async; 121 static vop_lock1_t ffs_lock; 122 #ifdef INVARIANTS 123 static vop_unlock_t ffs_unlock_debug; 124 #endif 125 static vop_read_t ffs_read; 126 static vop_write_t ffs_write; 127 static int ffs_extread(struct vnode *vp, struct uio *uio, int ioflag); 128 static int ffs_extwrite(struct vnode *vp, struct uio *uio, int ioflag, 129 struct ucred *cred); 130 static vop_strategy_t ffsext_strategy; 131 static vop_closeextattr_t ffs_closeextattr; 132 static vop_deleteextattr_t ffs_deleteextattr; 133 static vop_getextattr_t ffs_getextattr; 134 static vop_listextattr_t ffs_listextattr; 135 static vop_openextattr_t ffs_openextattr; 136 static vop_setextattr_t ffs_setextattr; 137 static vop_vptofh_t ffs_vptofh; 138 static vop_vput_pair_t ffs_vput_pair; 139 140 /* Global vfs data structures for ufs. */ 141 struct vop_vector ffs_vnodeops1 = { 142 .vop_default = &ufs_vnodeops, 143 .vop_fsync = ffs_fsync, 144 .vop_fdatasync = ffs_fdatasync, 145 .vop_getpages = ffs_getpages, 146 .vop_getpages_async = ffs_getpages_async, 147 .vop_lock1 = ffs_lock, 148 #ifdef INVARIANTS 149 .vop_unlock = ffs_unlock_debug, 150 #endif 151 .vop_read = ffs_read, 152 .vop_reallocblks = ffs_reallocblks, 153 .vop_write = ffs_write, 154 .vop_vptofh = ffs_vptofh, 155 .vop_vput_pair = ffs_vput_pair, 156 }; 157 VFS_VOP_VECTOR_REGISTER(ffs_vnodeops1); 158 159 struct vop_vector ffs_fifoops1 = { 160 .vop_default = &ufs_fifoops, 161 .vop_fsync = ffs_fsync, 162 .vop_fdatasync = ffs_fdatasync, 163 .vop_lock1 = ffs_lock, 164 #ifdef INVARIANTS 165 .vop_unlock = ffs_unlock_debug, 166 #endif 167 .vop_vptofh = ffs_vptofh, 168 }; 169 VFS_VOP_VECTOR_REGISTER(ffs_fifoops1); 170 171 /* Global vfs data structures for ufs. */ 172 struct vop_vector ffs_vnodeops2 = { 173 .vop_default = &ufs_vnodeops, 174 .vop_fsync = ffs_fsync, 175 .vop_fdatasync = ffs_fdatasync, 176 .vop_getpages = ffs_getpages, 177 .vop_getpages_async = ffs_getpages_async, 178 .vop_lock1 = ffs_lock, 179 #ifdef INVARIANTS 180 .vop_unlock = ffs_unlock_debug, 181 #endif 182 .vop_read = ffs_read, 183 .vop_reallocblks = ffs_reallocblks, 184 .vop_write = ffs_write, 185 .vop_closeextattr = ffs_closeextattr, 186 .vop_deleteextattr = ffs_deleteextattr, 187 .vop_getextattr = ffs_getextattr, 188 .vop_listextattr = ffs_listextattr, 189 .vop_openextattr = ffs_openextattr, 190 .vop_setextattr = ffs_setextattr, 191 .vop_vptofh = ffs_vptofh, 192 .vop_vput_pair = ffs_vput_pair, 193 }; 194 VFS_VOP_VECTOR_REGISTER(ffs_vnodeops2); 195 196 struct vop_vector ffs_fifoops2 = { 197 .vop_default = &ufs_fifoops, 198 .vop_fsync = ffs_fsync, 199 .vop_fdatasync = ffs_fdatasync, 200 .vop_lock1 = ffs_lock, 201 #ifdef INVARIANTS 202 .vop_unlock = ffs_unlock_debug, 203 #endif 204 .vop_reallocblks = ffs_reallocblks, 205 .vop_strategy = ffsext_strategy, 206 .vop_closeextattr = ffs_closeextattr, 207 .vop_deleteextattr = ffs_deleteextattr, 208 .vop_getextattr = ffs_getextattr, 209 .vop_listextattr = ffs_listextattr, 210 .vop_openextattr = ffs_openextattr, 211 .vop_setextattr = ffs_setextattr, 212 .vop_vptofh = ffs_vptofh, 213 }; 214 VFS_VOP_VECTOR_REGISTER(ffs_fifoops2); 215 216 /* 217 * Synch an open file. 218 */ 219 /* ARGSUSED */ 220 static int 221 ffs_fsync(struct vop_fsync_args *ap) 222 { 223 struct vnode *vp; 224 struct bufobj *bo; 225 int error; 226 227 vp = ap->a_vp; 228 bo = &vp->v_bufobj; 229 retry: 230 error = ffs_syncvnode(vp, ap->a_waitfor, 0); 231 if (error) 232 return (error); 233 if (ap->a_waitfor == MNT_WAIT && DOINGSOFTDEP(vp)) { 234 error = softdep_fsync(vp); 235 if (error) 236 return (error); 237 238 /* 239 * The softdep_fsync() function may drop vp lock, 240 * allowing for dirty buffers to reappear on the 241 * bo_dirty list. Recheck and resync as needed. 242 */ 243 BO_LOCK(bo); 244 if ((vp->v_type == VREG || vp->v_type == VDIR) && 245 (bo->bo_numoutput > 0 || bo->bo_dirty.bv_cnt > 0)) { 246 BO_UNLOCK(bo); 247 goto retry; 248 } 249 BO_UNLOCK(bo); 250 } 251 if (ffs_fsfail_cleanup(VFSTOUFS(vp->v_mount), 0)) 252 return (ENXIO); 253 return (0); 254 } 255 256 int 257 ffs_syncvnode(struct vnode *vp, int waitfor, int flags) 258 { 259 struct inode *ip; 260 struct bufobj *bo; 261 struct ufsmount *ump; 262 struct buf *bp, *nbp; 263 ufs_lbn_t lbn; 264 int error, passes, wflag; 265 bool still_dirty, unlocked, wait; 266 267 ip = VTOI(vp); 268 bo = &vp->v_bufobj; 269 ump = VFSTOUFS(vp->v_mount); 270 #ifdef WITNESS 271 wflag = IS_SNAPSHOT(ip) ? LK_NOWITNESS : 0; 272 #else 273 wflag = 0; 274 #endif 275 276 /* 277 * When doing MNT_WAIT we must first flush all dependencies 278 * on the inode. 279 */ 280 if (DOINGSOFTDEP(vp) && waitfor == MNT_WAIT && 281 (error = softdep_sync_metadata(vp)) != 0) { 282 if (ffs_fsfail_cleanup(ump, error)) 283 error = 0; 284 return (error); 285 } 286 287 /* 288 * Flush all dirty buffers associated with a vnode. 289 */ 290 error = 0; 291 passes = 0; 292 wait = false; /* Always do an async pass first. */ 293 unlocked = false; 294 lbn = lblkno(ITOFS(ip), (ip->i_size + ITOFS(ip)->fs_bsize - 1)); 295 BO_LOCK(bo); 296 loop: 297 TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) 298 bp->b_vflags &= ~BV_SCANNED; 299 TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) { 300 /* 301 * Reasons to skip this buffer: it has already been considered 302 * on this pass, the buffer has dependencies that will cause 303 * it to be redirtied and it has not already been deferred, 304 * or it is already being written. 305 */ 306 if ((bp->b_vflags & BV_SCANNED) != 0) 307 continue; 308 bp->b_vflags |= BV_SCANNED; 309 /* 310 * Flush indirects in order, if requested. 311 * 312 * Note that if only datasync is requested, we can 313 * skip indirect blocks when softupdates are not 314 * active. Otherwise we must flush them with data, 315 * since dependencies prevent data block writes. 316 */ 317 if (waitfor == MNT_WAIT && bp->b_lblkno <= -UFS_NDADDR && 318 (lbn_level(bp->b_lblkno) >= passes || 319 ((flags & DATA_ONLY) != 0 && !DOINGSOFTDEP(vp)))) 320 continue; 321 if (bp->b_lblkno > lbn) 322 panic("ffs_syncvnode: syncing truncated data."); 323 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) == 0) { 324 BO_UNLOCK(bo); 325 } else if (wait) { 326 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL | 327 LK_INTERLOCK | wflag, BO_LOCKPTR(bo)) != 0) { 328 BO_LOCK(bo); 329 bp->b_vflags &= ~BV_SCANNED; 330 goto next_locked; 331 } 332 } else 333 continue; 334 if ((bp->b_flags & B_DELWRI) == 0) 335 panic("ffs_fsync: not dirty"); 336 /* 337 * Check for dependencies and potentially complete them. 338 */ 339 if (!LIST_EMPTY(&bp->b_dep) && 340 (error = softdep_sync_buf(vp, bp, 341 wait ? MNT_WAIT : MNT_NOWAIT)) != 0) { 342 /* 343 * Lock order conflict, buffer was already unlocked, 344 * and vnode possibly unlocked. 345 */ 346 if (error == ERELOOKUP) { 347 if (vp->v_data == NULL) 348 return (EBADF); 349 unlocked = true; 350 if (DOINGSOFTDEP(vp) && waitfor == MNT_WAIT && 351 (error = softdep_sync_metadata(vp)) != 0) { 352 if (ffs_fsfail_cleanup(ump, error)) 353 error = 0; 354 return (unlocked && error == 0 ? 355 ERELOOKUP : error); 356 } 357 /* Re-evaluate inode size */ 358 lbn = lblkno(ITOFS(ip), (ip->i_size + 359 ITOFS(ip)->fs_bsize - 1)); 360 goto next; 361 } 362 /* I/O error. */ 363 if (error != EBUSY) { 364 BUF_UNLOCK(bp); 365 return (error); 366 } 367 /* If we deferred once, don't defer again. */ 368 if ((bp->b_flags & B_DEFERRED) == 0) { 369 bp->b_flags |= B_DEFERRED; 370 BUF_UNLOCK(bp); 371 goto next; 372 } 373 } 374 if (wait) { 375 bremfree(bp); 376 error = bwrite(bp); 377 if (ffs_fsfail_cleanup(ump, error)) 378 error = 0; 379 if (error != 0) 380 return (error); 381 } else if ((bp->b_flags & B_CLUSTEROK)) { 382 (void) vfs_bio_awrite(bp); 383 } else { 384 bremfree(bp); 385 (void) bawrite(bp); 386 } 387 next: 388 /* 389 * Since we may have slept during the I/O, we need 390 * to start from a known point. 391 */ 392 BO_LOCK(bo); 393 next_locked: 394 nbp = TAILQ_FIRST(&bo->bo_dirty.bv_hd); 395 } 396 if (waitfor != MNT_WAIT) { 397 BO_UNLOCK(bo); 398 if ((flags & NO_INO_UPDT) != 0) 399 return (unlocked ? ERELOOKUP : 0); 400 error = ffs_update(vp, 0); 401 if (error == 0 && unlocked) 402 error = ERELOOKUP; 403 return (error); 404 } 405 /* Drain IO to see if we're done. */ 406 bufobj_wwait(bo, 0, 0); 407 /* 408 * Block devices associated with filesystems may have new I/O 409 * requests posted for them even if the vnode is locked, so no 410 * amount of trying will get them clean. We make several passes 411 * as a best effort. 412 * 413 * Regular files may need multiple passes to flush all dependency 414 * work as it is possible that we must write once per indirect 415 * level, once for the leaf, and once for the inode and each of 416 * these will be done with one sync and one async pass. 417 */ 418 if (bo->bo_dirty.bv_cnt > 0) { 419 if ((flags & DATA_ONLY) == 0) { 420 still_dirty = true; 421 } else { 422 /* 423 * For data-only sync, dirty indirect buffers 424 * are ignored. 425 */ 426 still_dirty = false; 427 TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) { 428 if (bp->b_lblkno > -UFS_NDADDR) { 429 still_dirty = true; 430 break; 431 } 432 } 433 } 434 435 if (still_dirty) { 436 /* Write the inode after sync passes to flush deps. */ 437 if (wait && DOINGSOFTDEP(vp) && 438 (flags & NO_INO_UPDT) == 0) { 439 BO_UNLOCK(bo); 440 ffs_update(vp, 1); 441 BO_LOCK(bo); 442 } 443 /* switch between sync/async. */ 444 wait = !wait; 445 if (wait || ++passes < UFS_NIADDR + 2) 446 goto loop; 447 } 448 } 449 BO_UNLOCK(bo); 450 error = 0; 451 if ((flags & DATA_ONLY) == 0) { 452 if ((flags & NO_INO_UPDT) == 0) 453 error = ffs_update(vp, 1); 454 if (DOINGSUJ(vp)) 455 softdep_journal_fsync(VTOI(vp)); 456 } else if ((ip->i_flags & (IN_SIZEMOD | IN_IBLKDATA)) != 0) { 457 error = ffs_update(vp, 1); 458 } 459 if (error == 0 && unlocked) 460 error = ERELOOKUP; 461 if (error == 0) 462 ip->i_flag &= ~IN_NEEDSYNC; 463 return (error); 464 } 465 466 static int 467 ffs_fdatasync(struct vop_fdatasync_args *ap) 468 { 469 470 return (ffs_syncvnode(ap->a_vp, MNT_WAIT, DATA_ONLY)); 471 } 472 473 static int 474 ffs_lock(ap) 475 struct vop_lock1_args /* { 476 struct vnode *a_vp; 477 int a_flags; 478 char *file; 479 int line; 480 } */ *ap; 481 { 482 #if !defined(NO_FFS_SNAPSHOT) || defined(DIAGNOSTIC) 483 struct vnode *vp = ap->a_vp; 484 #endif /* !NO_FFS_SNAPSHOT || DIAGNOSTIC */ 485 #ifdef DIAGNOSTIC 486 struct inode *ip; 487 #endif /* DIAGNOSTIC */ 488 int result; 489 #ifndef NO_FFS_SNAPSHOT 490 int flags; 491 struct lock *lkp; 492 493 /* 494 * Adaptive spinning mixed with SU leads to trouble. use a giant hammer 495 * and only use it when LK_NODDLKTREAT is set. Currently this means it 496 * is only used during path lookup. 497 */ 498 if ((ap->a_flags & LK_NODDLKTREAT) != 0) 499 ap->a_flags |= LK_ADAPTIVE; 500 switch (ap->a_flags & LK_TYPE_MASK) { 501 case LK_SHARED: 502 case LK_UPGRADE: 503 case LK_EXCLUSIVE: 504 flags = ap->a_flags; 505 for (;;) { 506 #ifdef DEBUG_VFS_LOCKS 507 VNPASS(vp->v_holdcnt != 0, vp); 508 #endif /* DEBUG_VFS_LOCKS */ 509 lkp = vp->v_vnlock; 510 result = lockmgr_lock_flags(lkp, flags, 511 &VI_MTX(vp)->lock_object, ap->a_file, ap->a_line); 512 if (lkp == vp->v_vnlock || result != 0) 513 break; 514 /* 515 * Apparent success, except that the vnode 516 * mutated between snapshot file vnode and 517 * regular file vnode while this process 518 * slept. The lock currently held is not the 519 * right lock. Release it, and try to get the 520 * new lock. 521 */ 522 lockmgr_unlock(lkp); 523 if ((flags & (LK_INTERLOCK | LK_NOWAIT)) == 524 (LK_INTERLOCK | LK_NOWAIT)) 525 return (EBUSY); 526 if ((flags & LK_TYPE_MASK) == LK_UPGRADE) 527 flags = (flags & ~LK_TYPE_MASK) | LK_EXCLUSIVE; 528 flags &= ~LK_INTERLOCK; 529 } 530 #ifdef DIAGNOSTIC 531 switch (ap->a_flags & LK_TYPE_MASK) { 532 case LK_UPGRADE: 533 case LK_EXCLUSIVE: 534 if (result == 0 && vp->v_vnlock->lk_recurse == 0) { 535 ip = VTOI(vp); 536 if (ip != NULL) 537 ip->i_lock_gen++; 538 } 539 } 540 #endif /* DIAGNOSTIC */ 541 break; 542 default: 543 #ifdef DIAGNOSTIC 544 if ((ap->a_flags & LK_TYPE_MASK) == LK_DOWNGRADE) { 545 ip = VTOI(vp); 546 if (ip != NULL) 547 ufs_unlock_tracker(ip); 548 } 549 #endif /* DIAGNOSTIC */ 550 result = VOP_LOCK1_APV(&ufs_vnodeops, ap); 551 break; 552 } 553 #else /* NO_FFS_SNAPSHOT */ 554 /* 555 * See above for an explanation. 556 */ 557 if ((ap->a_flags & LK_NODDLKTREAT) != 0) 558 ap->a_flags |= LK_ADAPTIVE; 559 #ifdef DIAGNOSTIC 560 if ((ap->a_flags & LK_TYPE_MASK) == LK_DOWNGRADE) { 561 ip = VTOI(vp); 562 if (ip != NULL) 563 ufs_unlock_tracker(ip); 564 } 565 #endif /* DIAGNOSTIC */ 566 result = VOP_LOCK1_APV(&ufs_vnodeops, ap); 567 #endif /* NO_FFS_SNAPSHOT */ 568 #ifdef DIAGNOSTIC 569 switch (ap->a_flags & LK_TYPE_MASK) { 570 case LK_UPGRADE: 571 case LK_EXCLUSIVE: 572 if (result == 0 && vp->v_vnlock->lk_recurse == 0) { 573 ip = VTOI(vp); 574 if (ip != NULL) 575 ip->i_lock_gen++; 576 } 577 } 578 #endif /* DIAGNOSTIC */ 579 return (result); 580 } 581 582 #ifdef INVARIANTS 583 static int 584 ffs_unlock_debug(struct vop_unlock_args *ap) 585 { 586 struct vnode *vp; 587 struct inode *ip; 588 589 vp = ap->a_vp; 590 ip = VTOI(vp); 591 if (ip->i_flag & UFS_INODE_FLAG_LAZY_MASK_ASSERTABLE) { 592 if ((vp->v_mflag & VMP_LAZYLIST) == 0) { 593 VI_LOCK(vp); 594 VNASSERT((vp->v_mflag & VMP_LAZYLIST), vp, 595 ("%s: modified vnode (%x) not on lazy list", 596 __func__, ip->i_flag)); 597 VI_UNLOCK(vp); 598 } 599 } 600 KASSERT(vp->v_type != VDIR || vp->v_vnlock->lk_recurse != 0 || 601 (ip->i_flag & IN_ENDOFF) == 0, 602 ("ufs dir vp %p ip %p flags %#x", vp, ip, ip->i_flag)); 603 #ifdef DIAGNOSTIC 604 if (VOP_ISLOCKED(vp) == LK_EXCLUSIVE && ip != NULL && 605 vp->v_vnlock->lk_recurse == 0) 606 ufs_unlock_tracker(ip); 607 #endif 608 return (VOP_UNLOCK_APV(&ufs_vnodeops, ap)); 609 } 610 #endif 611 612 static int 613 ffs_read_hole(struct uio *uio, long xfersize, long *size) 614 { 615 ssize_t saved_resid, tlen; 616 int error; 617 618 while (xfersize > 0) { 619 tlen = min(xfersize, ZERO_REGION_SIZE); 620 saved_resid = uio->uio_resid; 621 error = vn_io_fault_uiomove(__DECONST(void *, zero_region), 622 tlen, uio); 623 if (error != 0) 624 return (error); 625 tlen = saved_resid - uio->uio_resid; 626 xfersize -= tlen; 627 *size -= tlen; 628 } 629 return (0); 630 } 631 632 /* 633 * Vnode op for reading. 634 */ 635 static int 636 ffs_read(ap) 637 struct vop_read_args /* { 638 struct vnode *a_vp; 639 struct uio *a_uio; 640 int a_ioflag; 641 struct ucred *a_cred; 642 } */ *ap; 643 { 644 struct vnode *vp; 645 struct inode *ip; 646 struct uio *uio; 647 struct fs *fs; 648 struct buf *bp; 649 ufs_lbn_t lbn, nextlbn; 650 off_t bytesinfile; 651 long size, xfersize, blkoffset; 652 ssize_t orig_resid; 653 int bflag, error, ioflag, seqcount; 654 655 vp = ap->a_vp; 656 uio = ap->a_uio; 657 ioflag = ap->a_ioflag; 658 if (ap->a_ioflag & IO_EXT) 659 #ifdef notyet 660 return (ffs_extread(vp, uio, ioflag)); 661 #else 662 panic("ffs_read+IO_EXT"); 663 #endif 664 #ifdef DIRECTIO 665 if ((ioflag & IO_DIRECT) != 0) { 666 int workdone; 667 668 error = ffs_rawread(vp, uio, &workdone); 669 if (error != 0 || workdone != 0) 670 return error; 671 } 672 #endif 673 674 seqcount = ap->a_ioflag >> IO_SEQSHIFT; 675 ip = VTOI(vp); 676 677 #ifdef INVARIANTS 678 if (uio->uio_rw != UIO_READ) 679 panic("ffs_read: mode"); 680 681 if (vp->v_type == VLNK) { 682 if ((int)ip->i_size < VFSTOUFS(vp->v_mount)->um_maxsymlinklen) 683 panic("ffs_read: short symlink"); 684 } else if (vp->v_type != VREG && vp->v_type != VDIR) 685 panic("ffs_read: type %d", vp->v_type); 686 #endif 687 orig_resid = uio->uio_resid; 688 KASSERT(orig_resid >= 0, ("ffs_read: uio->uio_resid < 0")); 689 if (orig_resid == 0) 690 return (0); 691 KASSERT(uio->uio_offset >= 0, ("ffs_read: uio->uio_offset < 0")); 692 fs = ITOFS(ip); 693 if (uio->uio_offset < ip->i_size && 694 uio->uio_offset >= fs->fs_maxfilesize) 695 return (EOVERFLOW); 696 697 bflag = GB_UNMAPPED | (uio->uio_segflg == UIO_NOCOPY ? 0 : GB_NOSPARSE); 698 for (error = 0, bp = NULL; uio->uio_resid > 0; bp = NULL) { 699 if ((bytesinfile = ip->i_size - uio->uio_offset) <= 0) 700 break; 701 lbn = lblkno(fs, uio->uio_offset); 702 nextlbn = lbn + 1; 703 704 /* 705 * size of buffer. The buffer representing the 706 * end of the file is rounded up to the size of 707 * the block type ( fragment or full block, 708 * depending ). 709 */ 710 size = blksize(fs, ip, lbn); 711 blkoffset = blkoff(fs, uio->uio_offset); 712 713 /* 714 * The amount we want to transfer in this iteration is 715 * one FS block less the amount of the data before 716 * our startpoint (duh!) 717 */ 718 xfersize = fs->fs_bsize - blkoffset; 719 720 /* 721 * But if we actually want less than the block, 722 * or the file doesn't have a whole block more of data, 723 * then use the lesser number. 724 */ 725 if (uio->uio_resid < xfersize) 726 xfersize = uio->uio_resid; 727 if (bytesinfile < xfersize) 728 xfersize = bytesinfile; 729 730 if (lblktosize(fs, nextlbn) >= ip->i_size) { 731 /* 732 * Don't do readahead if this is the end of the file. 733 */ 734 error = bread_gb(vp, lbn, size, NOCRED, bflag, &bp); 735 } else if ((vp->v_mount->mnt_flag & MNT_NOCLUSTERR) == 0) { 736 /* 737 * Otherwise if we are allowed to cluster, 738 * grab as much as we can. 739 * 740 * XXX This may not be a win if we are not 741 * doing sequential access. 742 */ 743 error = cluster_read(vp, ip->i_size, lbn, 744 size, NOCRED, blkoffset + uio->uio_resid, 745 seqcount, bflag, &bp); 746 } else if (seqcount > 1) { 747 /* 748 * If we are NOT allowed to cluster, then 749 * if we appear to be acting sequentially, 750 * fire off a request for a readahead 751 * as well as a read. Note that the 4th and 5th 752 * arguments point to arrays of the size specified in 753 * the 6th argument. 754 */ 755 u_int nextsize = blksize(fs, ip, nextlbn); 756 error = breadn_flags(vp, lbn, lbn, size, &nextlbn, 757 &nextsize, 1, NOCRED, bflag, NULL, &bp); 758 } else { 759 /* 760 * Failing all of the above, just read what the 761 * user asked for. Interestingly, the same as 762 * the first option above. 763 */ 764 error = bread_gb(vp, lbn, size, NOCRED, bflag, &bp); 765 } 766 if (error == EJUSTRETURN) { 767 error = ffs_read_hole(uio, xfersize, &size); 768 if (error == 0) 769 continue; 770 } 771 if (error != 0) { 772 brelse(bp); 773 bp = NULL; 774 break; 775 } 776 777 /* 778 * We should only get non-zero b_resid when an I/O error 779 * has occurred, which should cause us to break above. 780 * However, if the short read did not cause an error, 781 * then we want to ensure that we do not uiomove bad 782 * or uninitialized data. 783 */ 784 size -= bp->b_resid; 785 if (size < xfersize) { 786 if (size == 0) 787 break; 788 xfersize = size; 789 } 790 791 if (buf_mapped(bp)) { 792 error = vn_io_fault_uiomove((char *)bp->b_data + 793 blkoffset, (int)xfersize, uio); 794 } else { 795 error = vn_io_fault_pgmove(bp->b_pages, blkoffset, 796 (int)xfersize, uio); 797 } 798 if (error) 799 break; 800 801 vfs_bio_brelse(bp, ioflag); 802 } 803 804 /* 805 * This can only happen in the case of an error 806 * because the loop above resets bp to NULL on each iteration 807 * and on normal completion has not set a new value into it. 808 * so it must have come from a 'break' statement 809 */ 810 if (bp != NULL) 811 vfs_bio_brelse(bp, ioflag); 812 813 if ((error == 0 || uio->uio_resid != orig_resid) && 814 (vp->v_mount->mnt_flag & (MNT_NOATIME | MNT_RDONLY)) == 0) 815 UFS_INODE_SET_FLAG_SHARED(ip, IN_ACCESS); 816 return (error); 817 } 818 819 /* 820 * Vnode op for writing. 821 */ 822 static int 823 ffs_write(ap) 824 struct vop_write_args /* { 825 struct vnode *a_vp; 826 struct uio *a_uio; 827 int a_ioflag; 828 struct ucred *a_cred; 829 } */ *ap; 830 { 831 struct vnode *vp; 832 struct uio *uio; 833 struct inode *ip; 834 struct fs *fs; 835 struct buf *bp; 836 ufs_lbn_t lbn; 837 off_t osize; 838 ssize_t resid; 839 int seqcount; 840 int blkoffset, error, flags, ioflag, size, xfersize; 841 842 vp = ap->a_vp; 843 if (DOINGSUJ(vp)) 844 softdep_prealloc(vp, MNT_WAIT); 845 if (vp->v_data == NULL) 846 return (EBADF); 847 848 uio = ap->a_uio; 849 ioflag = ap->a_ioflag; 850 if (ap->a_ioflag & IO_EXT) 851 #ifdef notyet 852 return (ffs_extwrite(vp, uio, ioflag, ap->a_cred)); 853 #else 854 panic("ffs_write+IO_EXT"); 855 #endif 856 857 seqcount = ap->a_ioflag >> IO_SEQSHIFT; 858 ip = VTOI(vp); 859 860 #ifdef INVARIANTS 861 if (uio->uio_rw != UIO_WRITE) 862 panic("ffs_write: mode"); 863 #endif 864 865 switch (vp->v_type) { 866 case VREG: 867 if (ioflag & IO_APPEND) 868 uio->uio_offset = ip->i_size; 869 if ((ip->i_flags & APPEND) && uio->uio_offset != ip->i_size) 870 return (EPERM); 871 /* FALLTHROUGH */ 872 case VLNK: 873 break; 874 case VDIR: 875 panic("ffs_write: dir write"); 876 break; 877 default: 878 panic("ffs_write: type %p %d (%d,%d)", vp, (int)vp->v_type, 879 (int)uio->uio_offset, 880 (int)uio->uio_resid 881 ); 882 } 883 884 KASSERT(uio->uio_resid >= 0, ("ffs_write: uio->uio_resid < 0")); 885 KASSERT(uio->uio_offset >= 0, ("ffs_write: uio->uio_offset < 0")); 886 fs = ITOFS(ip); 887 if ((uoff_t)uio->uio_offset + uio->uio_resid > fs->fs_maxfilesize) 888 return (EFBIG); 889 /* 890 * Maybe this should be above the vnode op call, but so long as 891 * file servers have no limits, I don't think it matters. 892 */ 893 if (vn_rlimit_fsize(vp, uio, uio->uio_td)) 894 return (EFBIG); 895 896 resid = uio->uio_resid; 897 osize = ip->i_size; 898 if (seqcount > BA_SEQMAX) 899 flags = BA_SEQMAX << BA_SEQSHIFT; 900 else 901 flags = seqcount << BA_SEQSHIFT; 902 if (ioflag & IO_SYNC) 903 flags |= IO_SYNC; 904 flags |= BA_UNMAPPED; 905 906 for (error = 0; uio->uio_resid > 0;) { 907 lbn = lblkno(fs, uio->uio_offset); 908 blkoffset = blkoff(fs, uio->uio_offset); 909 xfersize = fs->fs_bsize - blkoffset; 910 if (uio->uio_resid < xfersize) 911 xfersize = uio->uio_resid; 912 if (uio->uio_offset + xfersize > ip->i_size) 913 vnode_pager_setsize(vp, uio->uio_offset + xfersize); 914 915 /* 916 * We must perform a read-before-write if the transfer size 917 * does not cover the entire buffer. 918 */ 919 if (fs->fs_bsize > xfersize) 920 flags |= BA_CLRBUF; 921 else 922 flags &= ~BA_CLRBUF; 923 /* XXX is uio->uio_offset the right thing here? */ 924 error = UFS_BALLOC(vp, uio->uio_offset, xfersize, 925 ap->a_cred, flags, &bp); 926 if (error != 0) { 927 vnode_pager_setsize(vp, ip->i_size); 928 break; 929 } 930 if ((ioflag & (IO_SYNC|IO_INVAL)) == (IO_SYNC|IO_INVAL)) 931 bp->b_flags |= B_NOCACHE; 932 933 if (uio->uio_offset + xfersize > ip->i_size) { 934 ip->i_size = uio->uio_offset + xfersize; 935 DIP_SET(ip, i_size, ip->i_size); 936 UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE); 937 } 938 939 size = blksize(fs, ip, lbn) - bp->b_resid; 940 if (size < xfersize) 941 xfersize = size; 942 943 if (buf_mapped(bp)) { 944 error = vn_io_fault_uiomove((char *)bp->b_data + 945 blkoffset, (int)xfersize, uio); 946 } else { 947 error = vn_io_fault_pgmove(bp->b_pages, blkoffset, 948 (int)xfersize, uio); 949 } 950 /* 951 * If the buffer is not already filled and we encounter an 952 * error while trying to fill it, we have to clear out any 953 * garbage data from the pages instantiated for the buffer. 954 * If we do not, a failed uiomove() during a write can leave 955 * the prior contents of the pages exposed to a userland mmap. 956 * 957 * Note that we need only clear buffers with a transfer size 958 * equal to the block size because buffers with a shorter 959 * transfer size were cleared above by the call to UFS_BALLOC() 960 * with the BA_CLRBUF flag set. 961 * 962 * If the source region for uiomove identically mmaps the 963 * buffer, uiomove() performed the NOP copy, and the buffer 964 * content remains valid because the page fault handler 965 * validated the pages. 966 */ 967 if (error != 0 && (bp->b_flags & B_CACHE) == 0 && 968 fs->fs_bsize == xfersize) 969 vfs_bio_clrbuf(bp); 970 971 vfs_bio_set_flags(bp, ioflag); 972 973 /* 974 * If IO_SYNC each buffer is written synchronously. Otherwise 975 * if we have a severe page deficiency write the buffer 976 * asynchronously. Otherwise try to cluster, and if that 977 * doesn't do it then either do an async write (if O_DIRECT), 978 * or a delayed write (if not). 979 */ 980 if (ioflag & IO_SYNC) { 981 (void)bwrite(bp); 982 } else if (vm_page_count_severe() || 983 buf_dirty_count_severe() || 984 (ioflag & IO_ASYNC)) { 985 bp->b_flags |= B_CLUSTEROK; 986 bawrite(bp); 987 } else if (xfersize + blkoffset == fs->fs_bsize) { 988 if ((vp->v_mount->mnt_flag & MNT_NOCLUSTERW) == 0) { 989 bp->b_flags |= B_CLUSTEROK; 990 cluster_write(vp, &ip->i_clusterw, bp, 991 ip->i_size, seqcount, GB_UNMAPPED); 992 } else { 993 bawrite(bp); 994 } 995 } else if (ioflag & IO_DIRECT) { 996 bp->b_flags |= B_CLUSTEROK; 997 bawrite(bp); 998 } else { 999 bp->b_flags |= B_CLUSTEROK; 1000 bdwrite(bp); 1001 } 1002 if (error || xfersize == 0) 1003 break; 1004 UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_UPDATE); 1005 } 1006 /* 1007 * If we successfully wrote any data, and we are not the superuser 1008 * we clear the setuid and setgid bits as a precaution against 1009 * tampering. 1010 */ 1011 if ((ip->i_mode & (ISUID | ISGID)) && resid > uio->uio_resid && 1012 ap->a_cred) { 1013 if (priv_check_cred(ap->a_cred, PRIV_VFS_RETAINSUGID)) { 1014 vn_seqc_write_begin(vp); 1015 UFS_INODE_SET_MODE(ip, ip->i_mode & ~(ISUID | ISGID)); 1016 DIP_SET(ip, i_mode, ip->i_mode); 1017 vn_seqc_write_end(vp); 1018 } 1019 } 1020 if (error) { 1021 if (ioflag & IO_UNIT) { 1022 (void)ffs_truncate(vp, osize, 1023 IO_NORMAL | (ioflag & IO_SYNC), ap->a_cred); 1024 uio->uio_offset -= resid - uio->uio_resid; 1025 uio->uio_resid = resid; 1026 } 1027 } else if (resid > uio->uio_resid && (ioflag & IO_SYNC)) { 1028 if (!(ioflag & IO_DATASYNC) || 1029 (ip->i_flags & (IN_SIZEMOD | IN_IBLKDATA))) 1030 error = ffs_update(vp, 1); 1031 if (ffs_fsfail_cleanup(VFSTOUFS(vp->v_mount), error)) 1032 error = ENXIO; 1033 } 1034 return (error); 1035 } 1036 1037 /* 1038 * Extended attribute area reading. 1039 */ 1040 static int 1041 ffs_extread(struct vnode *vp, struct uio *uio, int ioflag) 1042 { 1043 struct inode *ip; 1044 struct ufs2_dinode *dp; 1045 struct fs *fs; 1046 struct buf *bp; 1047 ufs_lbn_t lbn, nextlbn; 1048 off_t bytesinfile; 1049 long size, xfersize, blkoffset; 1050 ssize_t orig_resid; 1051 int error; 1052 1053 ip = VTOI(vp); 1054 fs = ITOFS(ip); 1055 dp = ip->i_din2; 1056 1057 #ifdef INVARIANTS 1058 if (uio->uio_rw != UIO_READ || fs->fs_magic != FS_UFS2_MAGIC) 1059 panic("ffs_extread: mode"); 1060 1061 #endif 1062 orig_resid = uio->uio_resid; 1063 KASSERT(orig_resid >= 0, ("ffs_extread: uio->uio_resid < 0")); 1064 if (orig_resid == 0) 1065 return (0); 1066 KASSERT(uio->uio_offset >= 0, ("ffs_extread: uio->uio_offset < 0")); 1067 1068 for (error = 0, bp = NULL; uio->uio_resid > 0; bp = NULL) { 1069 if ((bytesinfile = dp->di_extsize - uio->uio_offset) <= 0) 1070 break; 1071 lbn = lblkno(fs, uio->uio_offset); 1072 nextlbn = lbn + 1; 1073 1074 /* 1075 * size of buffer. The buffer representing the 1076 * end of the file is rounded up to the size of 1077 * the block type ( fragment or full block, 1078 * depending ). 1079 */ 1080 size = sblksize(fs, dp->di_extsize, lbn); 1081 blkoffset = blkoff(fs, uio->uio_offset); 1082 1083 /* 1084 * The amount we want to transfer in this iteration is 1085 * one FS block less the amount of the data before 1086 * our startpoint (duh!) 1087 */ 1088 xfersize = fs->fs_bsize - blkoffset; 1089 1090 /* 1091 * But if we actually want less than the block, 1092 * or the file doesn't have a whole block more of data, 1093 * then use the lesser number. 1094 */ 1095 if (uio->uio_resid < xfersize) 1096 xfersize = uio->uio_resid; 1097 if (bytesinfile < xfersize) 1098 xfersize = bytesinfile; 1099 1100 if (lblktosize(fs, nextlbn) >= dp->di_extsize) { 1101 /* 1102 * Don't do readahead if this is the end of the info. 1103 */ 1104 error = bread(vp, -1 - lbn, size, NOCRED, &bp); 1105 } else { 1106 /* 1107 * If we have a second block, then 1108 * fire off a request for a readahead 1109 * as well as a read. Note that the 4th and 5th 1110 * arguments point to arrays of the size specified in 1111 * the 6th argument. 1112 */ 1113 u_int nextsize = sblksize(fs, dp->di_extsize, nextlbn); 1114 1115 nextlbn = -1 - nextlbn; 1116 error = breadn(vp, -1 - lbn, 1117 size, &nextlbn, &nextsize, 1, NOCRED, &bp); 1118 } 1119 if (error) { 1120 brelse(bp); 1121 bp = NULL; 1122 break; 1123 } 1124 1125 /* 1126 * We should only get non-zero b_resid when an I/O error 1127 * has occurred, which should cause us to break above. 1128 * However, if the short read did not cause an error, 1129 * then we want to ensure that we do not uiomove bad 1130 * or uninitialized data. 1131 */ 1132 size -= bp->b_resid; 1133 if (size < xfersize) { 1134 if (size == 0) 1135 break; 1136 xfersize = size; 1137 } 1138 1139 error = uiomove((char *)bp->b_data + blkoffset, 1140 (int)xfersize, uio); 1141 if (error) 1142 break; 1143 vfs_bio_brelse(bp, ioflag); 1144 } 1145 1146 /* 1147 * This can only happen in the case of an error 1148 * because the loop above resets bp to NULL on each iteration 1149 * and on normal completion has not set a new value into it. 1150 * so it must have come from a 'break' statement 1151 */ 1152 if (bp != NULL) 1153 vfs_bio_brelse(bp, ioflag); 1154 return (error); 1155 } 1156 1157 /* 1158 * Extended attribute area writing. 1159 */ 1160 static int 1161 ffs_extwrite(struct vnode *vp, struct uio *uio, int ioflag, struct ucred *ucred) 1162 { 1163 struct inode *ip; 1164 struct ufs2_dinode *dp; 1165 struct fs *fs; 1166 struct buf *bp; 1167 ufs_lbn_t lbn; 1168 off_t osize; 1169 ssize_t resid; 1170 int blkoffset, error, flags, size, xfersize; 1171 1172 ip = VTOI(vp); 1173 fs = ITOFS(ip); 1174 dp = ip->i_din2; 1175 1176 #ifdef INVARIANTS 1177 if (uio->uio_rw != UIO_WRITE || fs->fs_magic != FS_UFS2_MAGIC) 1178 panic("ffs_extwrite: mode"); 1179 #endif 1180 1181 if (ioflag & IO_APPEND) 1182 uio->uio_offset = dp->di_extsize; 1183 KASSERT(uio->uio_offset >= 0, ("ffs_extwrite: uio->uio_offset < 0")); 1184 KASSERT(uio->uio_resid >= 0, ("ffs_extwrite: uio->uio_resid < 0")); 1185 if ((uoff_t)uio->uio_offset + uio->uio_resid > 1186 UFS_NXADDR * fs->fs_bsize) 1187 return (EFBIG); 1188 1189 resid = uio->uio_resid; 1190 osize = dp->di_extsize; 1191 flags = IO_EXT; 1192 if (ioflag & IO_SYNC) 1193 flags |= IO_SYNC; 1194 1195 for (error = 0; uio->uio_resid > 0;) { 1196 lbn = lblkno(fs, uio->uio_offset); 1197 blkoffset = blkoff(fs, uio->uio_offset); 1198 xfersize = fs->fs_bsize - blkoffset; 1199 if (uio->uio_resid < xfersize) 1200 xfersize = uio->uio_resid; 1201 1202 /* 1203 * We must perform a read-before-write if the transfer size 1204 * does not cover the entire buffer. 1205 */ 1206 if (fs->fs_bsize > xfersize) 1207 flags |= BA_CLRBUF; 1208 else 1209 flags &= ~BA_CLRBUF; 1210 error = UFS_BALLOC(vp, uio->uio_offset, xfersize, 1211 ucred, flags, &bp); 1212 if (error != 0) 1213 break; 1214 /* 1215 * If the buffer is not valid we have to clear out any 1216 * garbage data from the pages instantiated for the buffer. 1217 * If we do not, a failed uiomove() during a write can leave 1218 * the prior contents of the pages exposed to a userland 1219 * mmap(). XXX deal with uiomove() errors a better way. 1220 */ 1221 if ((bp->b_flags & B_CACHE) == 0 && fs->fs_bsize <= xfersize) 1222 vfs_bio_clrbuf(bp); 1223 1224 if (uio->uio_offset + xfersize > dp->di_extsize) { 1225 dp->di_extsize = uio->uio_offset + xfersize; 1226 UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE); 1227 } 1228 1229 size = sblksize(fs, dp->di_extsize, lbn) - bp->b_resid; 1230 if (size < xfersize) 1231 xfersize = size; 1232 1233 error = 1234 uiomove((char *)bp->b_data + blkoffset, (int)xfersize, uio); 1235 1236 vfs_bio_set_flags(bp, ioflag); 1237 1238 /* 1239 * If IO_SYNC each buffer is written synchronously. Otherwise 1240 * if we have a severe page deficiency write the buffer 1241 * asynchronously. Otherwise try to cluster, and if that 1242 * doesn't do it then either do an async write (if O_DIRECT), 1243 * or a delayed write (if not). 1244 */ 1245 if (ioflag & IO_SYNC) { 1246 (void)bwrite(bp); 1247 } else if (vm_page_count_severe() || 1248 buf_dirty_count_severe() || 1249 xfersize + blkoffset == fs->fs_bsize || 1250 (ioflag & (IO_ASYNC | IO_DIRECT))) 1251 bawrite(bp); 1252 else 1253 bdwrite(bp); 1254 if (error || xfersize == 0) 1255 break; 1256 UFS_INODE_SET_FLAG(ip, IN_CHANGE); 1257 } 1258 /* 1259 * If we successfully wrote any data, and we are not the superuser 1260 * we clear the setuid and setgid bits as a precaution against 1261 * tampering. 1262 */ 1263 if ((ip->i_mode & (ISUID | ISGID)) && resid > uio->uio_resid && ucred) { 1264 if (priv_check_cred(ucred, PRIV_VFS_RETAINSUGID)) { 1265 vn_seqc_write_begin(vp); 1266 UFS_INODE_SET_MODE(ip, ip->i_mode & ~(ISUID | ISGID)); 1267 dp->di_mode = ip->i_mode; 1268 vn_seqc_write_end(vp); 1269 } 1270 } 1271 if (error) { 1272 if (ioflag & IO_UNIT) { 1273 (void)ffs_truncate(vp, osize, 1274 IO_EXT | (ioflag&IO_SYNC), ucred); 1275 uio->uio_offset -= resid - uio->uio_resid; 1276 uio->uio_resid = resid; 1277 } 1278 } else if (resid > uio->uio_resid && (ioflag & IO_SYNC)) 1279 error = ffs_update(vp, 1); 1280 return (error); 1281 } 1282 1283 /* 1284 * Vnode operating to retrieve a named extended attribute. 1285 * 1286 * Locate a particular EA (nspace:name) in the area (ptr:length), and return 1287 * the length of the EA, and possibly the pointer to the entry and to the data. 1288 */ 1289 static int 1290 ffs_findextattr(u_char *ptr, u_int length, int nspace, const char *name, 1291 struct extattr **eapp, u_char **eac) 1292 { 1293 struct extattr *eap, *eaend; 1294 size_t nlen; 1295 1296 nlen = strlen(name); 1297 KASSERT(ALIGNED_TO(ptr, struct extattr), ("unaligned")); 1298 eap = (struct extattr *)ptr; 1299 eaend = (struct extattr *)(ptr + length); 1300 for (; eap < eaend; eap = EXTATTR_NEXT(eap)) { 1301 KASSERT(EXTATTR_NEXT(eap) <= eaend, 1302 ("extattr next %p beyond %p", EXTATTR_NEXT(eap), eaend)); 1303 if (eap->ea_namespace != nspace || eap->ea_namelength != nlen 1304 || memcmp(eap->ea_name, name, nlen) != 0) 1305 continue; 1306 if (eapp != NULL) 1307 *eapp = eap; 1308 if (eac != NULL) 1309 *eac = EXTATTR_CONTENT(eap); 1310 return (EXTATTR_CONTENT_SIZE(eap)); 1311 } 1312 return (-1); 1313 } 1314 1315 static int 1316 ffs_rdextattr(u_char **p, struct vnode *vp, struct thread *td) 1317 { 1318 const struct extattr *eap, *eaend, *eapnext; 1319 struct inode *ip; 1320 struct ufs2_dinode *dp; 1321 struct fs *fs; 1322 struct uio luio; 1323 struct iovec liovec; 1324 u_int easize; 1325 int error; 1326 u_char *eae; 1327 1328 ip = VTOI(vp); 1329 fs = ITOFS(ip); 1330 dp = ip->i_din2; 1331 easize = dp->di_extsize; 1332 if ((uoff_t)easize > UFS_NXADDR * fs->fs_bsize) 1333 return (EFBIG); 1334 1335 eae = malloc(easize, M_TEMP, M_WAITOK); 1336 1337 liovec.iov_base = eae; 1338 liovec.iov_len = easize; 1339 luio.uio_iov = &liovec; 1340 luio.uio_iovcnt = 1; 1341 luio.uio_offset = 0; 1342 luio.uio_resid = easize; 1343 luio.uio_segflg = UIO_SYSSPACE; 1344 luio.uio_rw = UIO_READ; 1345 luio.uio_td = td; 1346 1347 error = ffs_extread(vp, &luio, IO_EXT | IO_SYNC); 1348 if (error) { 1349 free(eae, M_TEMP); 1350 return (error); 1351 } 1352 /* Validate disk xattrfile contents. */ 1353 for (eap = (void *)eae, eaend = (void *)(eae + easize); eap < eaend; 1354 eap = eapnext) { 1355 /* Detect zeroed out tail */ 1356 if (eap->ea_length < sizeof(*eap) || eap->ea_length == 0) { 1357 easize = (const u_char *)eap - eae; 1358 break; 1359 } 1360 1361 eapnext = EXTATTR_NEXT(eap); 1362 /* Bogusly long entry. */ 1363 if (eapnext > eaend) { 1364 free(eae, M_TEMP); 1365 return (EINTEGRITY); 1366 } 1367 } 1368 ip->i_ea_len = easize; 1369 *p = eae; 1370 return (0); 1371 } 1372 1373 static void 1374 ffs_lock_ea(struct vnode *vp) 1375 { 1376 struct inode *ip; 1377 1378 ip = VTOI(vp); 1379 VI_LOCK(vp); 1380 while (ip->i_flag & IN_EA_LOCKED) { 1381 UFS_INODE_SET_FLAG(ip, IN_EA_LOCKWAIT); 1382 msleep(&ip->i_ea_refs, &vp->v_interlock, PINOD + 2, "ufs_ea", 1383 0); 1384 } 1385 UFS_INODE_SET_FLAG(ip, IN_EA_LOCKED); 1386 VI_UNLOCK(vp); 1387 } 1388 1389 static void 1390 ffs_unlock_ea(struct vnode *vp) 1391 { 1392 struct inode *ip; 1393 1394 ip = VTOI(vp); 1395 VI_LOCK(vp); 1396 if (ip->i_flag & IN_EA_LOCKWAIT) 1397 wakeup(&ip->i_ea_refs); 1398 ip->i_flag &= ~(IN_EA_LOCKED | IN_EA_LOCKWAIT); 1399 VI_UNLOCK(vp); 1400 } 1401 1402 static int 1403 ffs_open_ea(struct vnode *vp, struct ucred *cred, struct thread *td) 1404 { 1405 struct inode *ip; 1406 int error; 1407 1408 ip = VTOI(vp); 1409 1410 ffs_lock_ea(vp); 1411 if (ip->i_ea_area != NULL) { 1412 ip->i_ea_refs++; 1413 ffs_unlock_ea(vp); 1414 return (0); 1415 } 1416 error = ffs_rdextattr(&ip->i_ea_area, vp, td); 1417 if (error) { 1418 ffs_unlock_ea(vp); 1419 return (error); 1420 } 1421 ip->i_ea_error = 0; 1422 ip->i_ea_refs++; 1423 ffs_unlock_ea(vp); 1424 return (0); 1425 } 1426 1427 /* 1428 * Vnode extattr transaction commit/abort 1429 */ 1430 static int 1431 ffs_close_ea(struct vnode *vp, int commit, struct ucred *cred, struct thread *td) 1432 { 1433 struct inode *ip; 1434 struct uio luio; 1435 struct iovec *liovec; 1436 struct ufs2_dinode *dp; 1437 size_t ea_len, tlen; 1438 int error, i, lcnt; 1439 bool truncate; 1440 1441 ip = VTOI(vp); 1442 1443 ffs_lock_ea(vp); 1444 if (ip->i_ea_area == NULL) { 1445 ffs_unlock_ea(vp); 1446 return (EINVAL); 1447 } 1448 dp = ip->i_din2; 1449 error = ip->i_ea_error; 1450 truncate = false; 1451 if (commit && error == 0) { 1452 ASSERT_VOP_ELOCKED(vp, "ffs_close_ea commit"); 1453 if (cred == NOCRED) 1454 cred = vp->v_mount->mnt_cred; 1455 1456 ea_len = MAX(ip->i_ea_len, dp->di_extsize); 1457 for (lcnt = 1, tlen = ea_len - ip->i_ea_len; tlen > 0;) { 1458 tlen -= MIN(ZERO_REGION_SIZE, tlen); 1459 lcnt++; 1460 } 1461 1462 liovec = __builtin_alloca(lcnt * sizeof(struct iovec)); 1463 luio.uio_iovcnt = lcnt; 1464 1465 liovec[0].iov_base = ip->i_ea_area; 1466 liovec[0].iov_len = ip->i_ea_len; 1467 for (i = 1, tlen = ea_len - ip->i_ea_len; i < lcnt; i++) { 1468 liovec[i].iov_base = __DECONST(void *, zero_region); 1469 liovec[i].iov_len = MIN(ZERO_REGION_SIZE, tlen); 1470 tlen -= liovec[i].iov_len; 1471 } 1472 MPASS(tlen == 0); 1473 1474 luio.uio_iov = liovec; 1475 luio.uio_offset = 0; 1476 luio.uio_resid = ea_len; 1477 luio.uio_segflg = UIO_SYSSPACE; 1478 luio.uio_rw = UIO_WRITE; 1479 luio.uio_td = td; 1480 error = ffs_extwrite(vp, &luio, IO_EXT | IO_SYNC, cred); 1481 if (error == 0 && ip->i_ea_len == 0) 1482 truncate = true; 1483 } 1484 if (--ip->i_ea_refs == 0) { 1485 free(ip->i_ea_area, M_TEMP); 1486 ip->i_ea_area = NULL; 1487 ip->i_ea_len = 0; 1488 ip->i_ea_error = 0; 1489 } 1490 ffs_unlock_ea(vp); 1491 1492 if (truncate) 1493 ffs_truncate(vp, 0, IO_EXT, cred); 1494 return (error); 1495 } 1496 1497 /* 1498 * Vnode extattr strategy routine for fifos. 1499 * 1500 * We need to check for a read or write of the external attributes. 1501 * Otherwise we just fall through and do the usual thing. 1502 */ 1503 static int 1504 ffsext_strategy(struct vop_strategy_args *ap) 1505 /* 1506 struct vop_strategy_args { 1507 struct vnodeop_desc *a_desc; 1508 struct vnode *a_vp; 1509 struct buf *a_bp; 1510 }; 1511 */ 1512 { 1513 struct vnode *vp; 1514 daddr_t lbn; 1515 1516 vp = ap->a_vp; 1517 lbn = ap->a_bp->b_lblkno; 1518 if (I_IS_UFS2(VTOI(vp)) && lbn < 0 && lbn >= -UFS_NXADDR) 1519 return (VOP_STRATEGY_APV(&ufs_vnodeops, ap)); 1520 if (vp->v_type == VFIFO) 1521 return (VOP_STRATEGY_APV(&ufs_fifoops, ap)); 1522 panic("spec nodes went here"); 1523 } 1524 1525 /* 1526 * Vnode extattr transaction commit/abort 1527 */ 1528 static int 1529 ffs_openextattr(struct vop_openextattr_args *ap) 1530 /* 1531 struct vop_openextattr_args { 1532 struct vnodeop_desc *a_desc; 1533 struct vnode *a_vp; 1534 IN struct ucred *a_cred; 1535 IN struct thread *a_td; 1536 }; 1537 */ 1538 { 1539 1540 if (ap->a_vp->v_type == VCHR || ap->a_vp->v_type == VBLK) 1541 return (EOPNOTSUPP); 1542 1543 return (ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td)); 1544 } 1545 1546 /* 1547 * Vnode extattr transaction commit/abort 1548 */ 1549 static int 1550 ffs_closeextattr(struct vop_closeextattr_args *ap) 1551 /* 1552 struct vop_closeextattr_args { 1553 struct vnodeop_desc *a_desc; 1554 struct vnode *a_vp; 1555 int a_commit; 1556 IN struct ucred *a_cred; 1557 IN struct thread *a_td; 1558 }; 1559 */ 1560 { 1561 struct vnode *vp; 1562 1563 vp = ap->a_vp; 1564 if (vp->v_type == VCHR || vp->v_type == VBLK) 1565 return (EOPNOTSUPP); 1566 if (ap->a_commit && (vp->v_mount->mnt_flag & MNT_RDONLY) != 0) 1567 return (EROFS); 1568 1569 if (ap->a_commit && DOINGSUJ(vp)) { 1570 ASSERT_VOP_ELOCKED(vp, "ffs_closeextattr commit"); 1571 softdep_prealloc(vp, MNT_WAIT); 1572 if (vp->v_data == NULL) 1573 return (EBADF); 1574 } 1575 return (ffs_close_ea(vp, ap->a_commit, ap->a_cred, ap->a_td)); 1576 } 1577 1578 /* 1579 * Vnode operation to remove a named attribute. 1580 */ 1581 static int 1582 ffs_deleteextattr(struct vop_deleteextattr_args *ap) 1583 /* 1584 vop_deleteextattr { 1585 IN struct vnode *a_vp; 1586 IN int a_attrnamespace; 1587 IN const char *a_name; 1588 IN struct ucred *a_cred; 1589 IN struct thread *a_td; 1590 }; 1591 */ 1592 { 1593 struct vnode *vp; 1594 struct inode *ip; 1595 struct extattr *eap; 1596 uint32_t ul; 1597 int olen, error, i, easize; 1598 u_char *eae; 1599 void *tmp; 1600 1601 vp = ap->a_vp; 1602 ip = VTOI(vp); 1603 1604 if (vp->v_type == VCHR || vp->v_type == VBLK) 1605 return (EOPNOTSUPP); 1606 if (strlen(ap->a_name) == 0) 1607 return (EINVAL); 1608 if (vp->v_mount->mnt_flag & MNT_RDONLY) 1609 return (EROFS); 1610 1611 error = extattr_check_cred(vp, ap->a_attrnamespace, 1612 ap->a_cred, ap->a_td, VWRITE); 1613 if (error) { 1614 /* 1615 * ffs_lock_ea is not needed there, because the vnode 1616 * must be exclusively locked. 1617 */ 1618 if (ip->i_ea_area != NULL && ip->i_ea_error == 0) 1619 ip->i_ea_error = error; 1620 return (error); 1621 } 1622 1623 if (DOINGSUJ(vp)) { 1624 ASSERT_VOP_ELOCKED(vp, "ffs_deleteextattr"); 1625 softdep_prealloc(vp, MNT_WAIT); 1626 if (vp->v_data == NULL) 1627 return (EBADF); 1628 } 1629 1630 error = ffs_open_ea(vp, ap->a_cred, ap->a_td); 1631 if (error) 1632 return (error); 1633 1634 /* CEM: delete could be done in-place instead */ 1635 eae = malloc(ip->i_ea_len, M_TEMP, M_WAITOK); 1636 bcopy(ip->i_ea_area, eae, ip->i_ea_len); 1637 easize = ip->i_ea_len; 1638 1639 olen = ffs_findextattr(eae, easize, ap->a_attrnamespace, ap->a_name, 1640 &eap, NULL); 1641 if (olen == -1) { 1642 /* delete but nonexistent */ 1643 free(eae, M_TEMP); 1644 ffs_close_ea(vp, 0, ap->a_cred, ap->a_td); 1645 return (ENOATTR); 1646 } 1647 ul = eap->ea_length; 1648 i = (u_char *)EXTATTR_NEXT(eap) - eae; 1649 bcopy(EXTATTR_NEXT(eap), eap, easize - i); 1650 easize -= ul; 1651 1652 tmp = ip->i_ea_area; 1653 ip->i_ea_area = eae; 1654 ip->i_ea_len = easize; 1655 free(tmp, M_TEMP); 1656 error = ffs_close_ea(vp, 1, ap->a_cred, ap->a_td); 1657 return (error); 1658 } 1659 1660 /* 1661 * Vnode operation to retrieve a named extended attribute. 1662 */ 1663 static int 1664 ffs_getextattr(struct vop_getextattr_args *ap) 1665 /* 1666 vop_getextattr { 1667 IN struct vnode *a_vp; 1668 IN int a_attrnamespace; 1669 IN const char *a_name; 1670 INOUT struct uio *a_uio; 1671 OUT size_t *a_size; 1672 IN struct ucred *a_cred; 1673 IN struct thread *a_td; 1674 }; 1675 */ 1676 { 1677 struct inode *ip; 1678 u_char *eae, *p; 1679 unsigned easize; 1680 int error, ealen; 1681 1682 ip = VTOI(ap->a_vp); 1683 1684 if (ap->a_vp->v_type == VCHR || ap->a_vp->v_type == VBLK) 1685 return (EOPNOTSUPP); 1686 1687 error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace, 1688 ap->a_cred, ap->a_td, VREAD); 1689 if (error) 1690 return (error); 1691 1692 error = ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td); 1693 if (error) 1694 return (error); 1695 1696 eae = ip->i_ea_area; 1697 easize = ip->i_ea_len; 1698 1699 ealen = ffs_findextattr(eae, easize, ap->a_attrnamespace, ap->a_name, 1700 NULL, &p); 1701 if (ealen >= 0) { 1702 error = 0; 1703 if (ap->a_size != NULL) 1704 *ap->a_size = ealen; 1705 else if (ap->a_uio != NULL) 1706 error = uiomove(p, ealen, ap->a_uio); 1707 } else 1708 error = ENOATTR; 1709 1710 ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td); 1711 return (error); 1712 } 1713 1714 /* 1715 * Vnode operation to retrieve extended attributes on a vnode. 1716 */ 1717 static int 1718 ffs_listextattr(struct vop_listextattr_args *ap) 1719 /* 1720 vop_listextattr { 1721 IN struct vnode *a_vp; 1722 IN int a_attrnamespace; 1723 INOUT struct uio *a_uio; 1724 OUT size_t *a_size; 1725 IN struct ucred *a_cred; 1726 IN struct thread *a_td; 1727 }; 1728 */ 1729 { 1730 struct inode *ip; 1731 struct extattr *eap, *eaend; 1732 int error, ealen; 1733 1734 ip = VTOI(ap->a_vp); 1735 1736 if (ap->a_vp->v_type == VCHR || ap->a_vp->v_type == VBLK) 1737 return (EOPNOTSUPP); 1738 1739 error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace, 1740 ap->a_cred, ap->a_td, VREAD); 1741 if (error) 1742 return (error); 1743 1744 error = ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td); 1745 if (error) 1746 return (error); 1747 1748 error = 0; 1749 if (ap->a_size != NULL) 1750 *ap->a_size = 0; 1751 1752 KASSERT(ALIGNED_TO(ip->i_ea_area, struct extattr), ("unaligned")); 1753 eap = (struct extattr *)ip->i_ea_area; 1754 eaend = (struct extattr *)(ip->i_ea_area + ip->i_ea_len); 1755 for (; error == 0 && eap < eaend; eap = EXTATTR_NEXT(eap)) { 1756 KASSERT(EXTATTR_NEXT(eap) <= eaend, 1757 ("extattr next %p beyond %p", EXTATTR_NEXT(eap), eaend)); 1758 if (eap->ea_namespace != ap->a_attrnamespace) 1759 continue; 1760 1761 ealen = eap->ea_namelength; 1762 if (ap->a_size != NULL) 1763 *ap->a_size += ealen + 1; 1764 else if (ap->a_uio != NULL) 1765 error = uiomove(&eap->ea_namelength, ealen + 1, 1766 ap->a_uio); 1767 } 1768 1769 ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td); 1770 return (error); 1771 } 1772 1773 /* 1774 * Vnode operation to set a named attribute. 1775 */ 1776 static int 1777 ffs_setextattr(struct vop_setextattr_args *ap) 1778 /* 1779 vop_setextattr { 1780 IN struct vnode *a_vp; 1781 IN int a_attrnamespace; 1782 IN const char *a_name; 1783 INOUT struct uio *a_uio; 1784 IN struct ucred *a_cred; 1785 IN struct thread *a_td; 1786 }; 1787 */ 1788 { 1789 struct vnode *vp; 1790 struct inode *ip; 1791 struct fs *fs; 1792 struct extattr *eap; 1793 uint32_t ealength, ul; 1794 ssize_t ealen; 1795 int olen, eapad1, eapad2, error, i, easize; 1796 u_char *eae; 1797 void *tmp; 1798 1799 vp = ap->a_vp; 1800 ip = VTOI(vp); 1801 fs = ITOFS(ip); 1802 1803 if (vp->v_type == VCHR || vp->v_type == VBLK) 1804 return (EOPNOTSUPP); 1805 if (strlen(ap->a_name) == 0) 1806 return (EINVAL); 1807 1808 /* XXX Now unsupported API to delete EAs using NULL uio. */ 1809 if (ap->a_uio == NULL) 1810 return (EOPNOTSUPP); 1811 1812 if (vp->v_mount->mnt_flag & MNT_RDONLY) 1813 return (EROFS); 1814 1815 ealen = ap->a_uio->uio_resid; 1816 if (ealen < 0 || ealen > lblktosize(fs, UFS_NXADDR)) 1817 return (EINVAL); 1818 1819 error = extattr_check_cred(vp, ap->a_attrnamespace, 1820 ap->a_cred, ap->a_td, VWRITE); 1821 if (error) { 1822 /* 1823 * ffs_lock_ea is not needed there, because the vnode 1824 * must be exclusively locked. 1825 */ 1826 if (ip->i_ea_area != NULL && ip->i_ea_error == 0) 1827 ip->i_ea_error = error; 1828 return (error); 1829 } 1830 1831 if (DOINGSUJ(vp)) { 1832 ASSERT_VOP_ELOCKED(vp, "ffs_deleteextattr"); 1833 softdep_prealloc(vp, MNT_WAIT); 1834 if (vp->v_data == NULL) 1835 return (EBADF); 1836 } 1837 1838 error = ffs_open_ea(vp, ap->a_cred, ap->a_td); 1839 if (error) 1840 return (error); 1841 1842 ealength = sizeof(uint32_t) + 3 + strlen(ap->a_name); 1843 eapad1 = roundup2(ealength, 8) - ealength; 1844 eapad2 = roundup2(ealen, 8) - ealen; 1845 ealength += eapad1 + ealen + eapad2; 1846 1847 /* 1848 * CEM: rewrites of the same size or smaller could be done in-place 1849 * instead. (We don't acquire any fine-grained locks in here either, 1850 * so we could also do bigger writes in-place.) 1851 */ 1852 eae = malloc(ip->i_ea_len + ealength, M_TEMP, M_WAITOK); 1853 bcopy(ip->i_ea_area, eae, ip->i_ea_len); 1854 easize = ip->i_ea_len; 1855 1856 olen = ffs_findextattr(eae, easize, ap->a_attrnamespace, ap->a_name, 1857 &eap, NULL); 1858 if (olen == -1) { 1859 /* new, append at end */ 1860 KASSERT(ALIGNED_TO(eae + easize, struct extattr), 1861 ("unaligned")); 1862 eap = (struct extattr *)(eae + easize); 1863 easize += ealength; 1864 } else { 1865 ul = eap->ea_length; 1866 i = (u_char *)EXTATTR_NEXT(eap) - eae; 1867 if (ul != ealength) { 1868 bcopy(EXTATTR_NEXT(eap), (u_char *)eap + ealength, 1869 easize - i); 1870 easize += (ealength - ul); 1871 } 1872 } 1873 if (easize > lblktosize(fs, UFS_NXADDR)) { 1874 free(eae, M_TEMP); 1875 ffs_close_ea(vp, 0, ap->a_cred, ap->a_td); 1876 if (ip->i_ea_area != NULL && ip->i_ea_error == 0) 1877 ip->i_ea_error = ENOSPC; 1878 return (ENOSPC); 1879 } 1880 eap->ea_length = ealength; 1881 eap->ea_namespace = ap->a_attrnamespace; 1882 eap->ea_contentpadlen = eapad2; 1883 eap->ea_namelength = strlen(ap->a_name); 1884 memcpy(eap->ea_name, ap->a_name, strlen(ap->a_name)); 1885 bzero(&eap->ea_name[strlen(ap->a_name)], eapad1); 1886 error = uiomove(EXTATTR_CONTENT(eap), ealen, ap->a_uio); 1887 if (error) { 1888 free(eae, M_TEMP); 1889 ffs_close_ea(vp, 0, ap->a_cred, ap->a_td); 1890 if (ip->i_ea_area != NULL && ip->i_ea_error == 0) 1891 ip->i_ea_error = error; 1892 return (error); 1893 } 1894 bzero((u_char *)EXTATTR_CONTENT(eap) + ealen, eapad2); 1895 1896 tmp = ip->i_ea_area; 1897 ip->i_ea_area = eae; 1898 ip->i_ea_len = easize; 1899 free(tmp, M_TEMP); 1900 error = ffs_close_ea(vp, 1, ap->a_cred, ap->a_td); 1901 return (error); 1902 } 1903 1904 /* 1905 * Vnode pointer to File handle 1906 */ 1907 static int 1908 ffs_vptofh(struct vop_vptofh_args *ap) 1909 /* 1910 vop_vptofh { 1911 IN struct vnode *a_vp; 1912 IN struct fid *a_fhp; 1913 }; 1914 */ 1915 { 1916 struct inode *ip; 1917 struct ufid *ufhp; 1918 1919 ip = VTOI(ap->a_vp); 1920 ufhp = (struct ufid *)ap->a_fhp; 1921 ufhp->ufid_len = sizeof(struct ufid); 1922 ufhp->ufid_ino = ip->i_number; 1923 ufhp->ufid_gen = ip->i_gen; 1924 return (0); 1925 } 1926 1927 SYSCTL_DECL(_vfs_ffs); 1928 static int use_buf_pager = 1; 1929 SYSCTL_INT(_vfs_ffs, OID_AUTO, use_buf_pager, CTLFLAG_RWTUN, &use_buf_pager, 0, 1930 "Always use buffer pager instead of bmap"); 1931 1932 static daddr_t 1933 ffs_gbp_getblkno(struct vnode *vp, vm_ooffset_t off) 1934 { 1935 1936 return (lblkno(VFSTOUFS(vp->v_mount)->um_fs, off)); 1937 } 1938 1939 static int 1940 ffs_gbp_getblksz(struct vnode *vp, daddr_t lbn, long *sz) 1941 { 1942 1943 *sz = blksize(VFSTOUFS(vp->v_mount)->um_fs, VTOI(vp), lbn); 1944 return (0); 1945 } 1946 1947 static int 1948 ffs_getpages(struct vop_getpages_args *ap) 1949 { 1950 struct vnode *vp; 1951 struct ufsmount *um; 1952 1953 vp = ap->a_vp; 1954 um = VFSTOUFS(vp->v_mount); 1955 1956 if (!use_buf_pager && um->um_devvp->v_bufobj.bo_bsize <= PAGE_SIZE) 1957 return (vnode_pager_generic_getpages(vp, ap->a_m, ap->a_count, 1958 ap->a_rbehind, ap->a_rahead, NULL, NULL)); 1959 return (vfs_bio_getpages(vp, ap->a_m, ap->a_count, ap->a_rbehind, 1960 ap->a_rahead, ffs_gbp_getblkno, ffs_gbp_getblksz)); 1961 } 1962 1963 static int 1964 ffs_getpages_async(struct vop_getpages_async_args *ap) 1965 { 1966 struct vnode *vp; 1967 struct ufsmount *um; 1968 bool do_iodone; 1969 int error; 1970 1971 vp = ap->a_vp; 1972 um = VFSTOUFS(vp->v_mount); 1973 do_iodone = true; 1974 1975 if (um->um_devvp->v_bufobj.bo_bsize <= PAGE_SIZE) { 1976 error = vnode_pager_generic_getpages(vp, ap->a_m, ap->a_count, 1977 ap->a_rbehind, ap->a_rahead, ap->a_iodone, ap->a_arg); 1978 if (error == 0) 1979 do_iodone = false; 1980 } else { 1981 error = vfs_bio_getpages(vp, ap->a_m, ap->a_count, 1982 ap->a_rbehind, ap->a_rahead, ffs_gbp_getblkno, 1983 ffs_gbp_getblksz); 1984 } 1985 if (do_iodone && ap->a_iodone != NULL) 1986 ap->a_iodone(ap->a_arg, ap->a_m, ap->a_count, error); 1987 1988 return (error); 1989 } 1990 1991 static int 1992 ffs_vput_pair(struct vop_vput_pair_args *ap) 1993 { 1994 struct mount *mp; 1995 struct vnode *dvp, *vp, *vp1, **vpp; 1996 struct inode *dp, *ip; 1997 ino_t ip_ino; 1998 u_int64_t ip_gen; 1999 int error, vp_locked; 2000 2001 dvp = ap->a_dvp; 2002 dp = VTOI(dvp); 2003 vpp = ap->a_vpp; 2004 vp = vpp != NULL ? *vpp : NULL; 2005 2006 if ((dp->i_flag & (IN_NEEDSYNC | IN_ENDOFF)) == 0) { 2007 vput(dvp); 2008 if (vp != NULL && ap->a_unlock_vp) 2009 vput(vp); 2010 return (0); 2011 } 2012 2013 mp = dvp->v_mount; 2014 if (vp != NULL) { 2015 if (ap->a_unlock_vp) { 2016 vput(vp); 2017 } else { 2018 MPASS(vp->v_type != VNON); 2019 vp_locked = VOP_ISLOCKED(vp); 2020 ip = VTOI(vp); 2021 ip_ino = ip->i_number; 2022 ip_gen = ip->i_gen; 2023 VOP_UNLOCK(vp); 2024 } 2025 } 2026 2027 /* 2028 * If compaction or fsync was requested do it in ffs_vput_pair() 2029 * now that other locks are no longer held. 2030 */ 2031 if ((dp->i_flag & IN_ENDOFF) != 0) { 2032 VNASSERT(I_ENDOFF(dp) != 0 && I_ENDOFF(dp) < dp->i_size, dvp, 2033 ("IN_ENDOFF set but I_ENDOFF() is not")); 2034 dp->i_flag &= ~IN_ENDOFF; 2035 error = UFS_TRUNCATE(dvp, (off_t)I_ENDOFF(dp), IO_NORMAL | 2036 (DOINGASYNC(dvp) ? 0 : IO_SYNC), curthread->td_ucred); 2037 if (error != 0 && error != ERELOOKUP) { 2038 if (!ffs_fsfail_cleanup(VFSTOUFS(mp), error)) { 2039 vn_printf(dvp, 2040 "IN_ENDOFF: failed to truncate, " 2041 "error %d\n", error); 2042 } 2043 #ifdef UFS_DIRHASH 2044 ufsdirhash_free(dp); 2045 #endif 2046 } 2047 SET_I_ENDOFF(dp, 0); 2048 } 2049 if ((dp->i_flag & IN_NEEDSYNC) != 0) { 2050 do { 2051 error = ffs_syncvnode(dvp, MNT_WAIT, 0); 2052 } while (error == ERELOOKUP); 2053 } 2054 2055 vput(dvp); 2056 2057 if (vp == NULL || ap->a_unlock_vp) 2058 return (0); 2059 MPASS(mp != NULL); 2060 2061 /* 2062 * It is possible that vp is reclaimed at this point. Only 2063 * routines that call us with a_unlock_vp == false can find 2064 * that their vp has been reclaimed. There are three areas 2065 * that are affected: 2066 * 1) vn_open_cred() - later VOPs could fail, but 2067 * dead_open() returns 0 to simulate successful open. 2068 * 2) ffs_snapshot() - creation of snapshot fails with EBADF. 2069 * 3) NFS server (several places) - code is prepared to detect 2070 * and respond to dead vnodes by returning ESTALE. 2071 */ 2072 VOP_LOCK(vp, vp_locked | LK_RETRY); 2073 if (IS_UFS(vp)) 2074 return (0); 2075 2076 /* 2077 * Try harder to recover from reclaimed vp if reclaim was not 2078 * because underlying inode was cleared. We saved inode 2079 * number and inode generation, so we can try to reinstantiate 2080 * exactly same version of inode. If this fails, return 2081 * original doomed vnode and let caller to handle 2082 * consequences. 2083 * 2084 * Note that callers must keep write started around 2085 * VOP_VPUT_PAIR() calls, so it is safe to use mp without 2086 * busying it. 2087 */ 2088 VOP_UNLOCK(vp); 2089 error = ffs_inotovp(mp, ip_ino, ip_gen, LK_EXCLUSIVE, &vp1, 2090 FFSV_REPLACE_DOOMED); 2091 if (error != 0) { 2092 VOP_LOCK(vp, vp_locked | LK_RETRY); 2093 } else { 2094 vrele(vp); 2095 *vpp = vp1; 2096 } 2097 return (error); 2098 } 2099