xref: /freebsd/sys/ufs/ffs/ffs_vnops.c (revision 9268022b74279434ed6300244e3f977e56a8ceb5)
1 /*-
2  * Copyright (c) 2002, 2003 Networks Associates Technology, Inc.
3  * All rights reserved.
4  *
5  * This software was developed for the FreeBSD Project by Marshall
6  * Kirk McKusick and Network Associates Laboratories, the Security
7  * Research Division of Network Associates, Inc. under DARPA/SPAWAR
8  * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
9  * research program
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  * Copyright (c) 1982, 1986, 1989, 1993
33  *	The Regents of the University of California.  All rights reserved.
34  *
35  * Redistribution and use in source and binary forms, with or without
36  * modification, are permitted provided that the following conditions
37  * are met:
38  * 1. Redistributions of source code must retain the above copyright
39  *    notice, this list of conditions and the following disclaimer.
40  * 2. Redistributions in binary form must reproduce the above copyright
41  *    notice, this list of conditions and the following disclaimer in the
42  *    documentation and/or other materials provided with the distribution.
43  * 4. Neither the name of the University nor the names of its contributors
44  *    may be used to endorse or promote products derived from this software
45  *    without specific prior written permission.
46  *
47  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
48  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
49  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
50  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
51  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
52  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
53  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
54  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
55  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
56  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
57  * SUCH DAMAGE.
58  *
59  *	from: @(#)ufs_readwrite.c	8.11 (Berkeley) 5/8/95
60  * from: $FreeBSD: .../ufs/ufs_readwrite.c,v 1.96 2002/08/12 09:22:11 phk ...
61  *	@(#)ffs_vnops.c	8.15 (Berkeley) 5/14/95
62  */
63 
64 #include <sys/cdefs.h>
65 __FBSDID("$FreeBSD$");
66 
67 #include <sys/param.h>
68 #include <sys/bio.h>
69 #include <sys/systm.h>
70 #include <sys/buf.h>
71 #include <sys/conf.h>
72 #include <sys/extattr.h>
73 #include <sys/kernel.h>
74 #include <sys/limits.h>
75 #include <sys/malloc.h>
76 #include <sys/mount.h>
77 #include <sys/priv.h>
78 #include <sys/rwlock.h>
79 #include <sys/stat.h>
80 #include <sys/vmmeter.h>
81 #include <sys/vnode.h>
82 
83 #include <vm/vm.h>
84 #include <vm/vm_param.h>
85 #include <vm/vm_extern.h>
86 #include <vm/vm_object.h>
87 #include <vm/vm_page.h>
88 #include <vm/vm_pager.h>
89 #include <vm/vnode_pager.h>
90 
91 #include <ufs/ufs/extattr.h>
92 #include <ufs/ufs/quota.h>
93 #include <ufs/ufs/inode.h>
94 #include <ufs/ufs/ufs_extern.h>
95 #include <ufs/ufs/ufsmount.h>
96 
97 #include <ufs/ffs/fs.h>
98 #include <ufs/ffs/ffs_extern.h>
99 #include "opt_directio.h"
100 #include "opt_ffs.h"
101 
102 #ifdef DIRECTIO
103 extern int	ffs_rawread(struct vnode *vp, struct uio *uio, int *workdone);
104 #endif
105 static vop_fsync_t	ffs_fsync;
106 static vop_lock1_t	ffs_lock;
107 static vop_read_t	ffs_read;
108 static vop_write_t	ffs_write;
109 static int	ffs_extread(struct vnode *vp, struct uio *uio, int ioflag);
110 static int	ffs_extwrite(struct vnode *vp, struct uio *uio, int ioflag,
111 		    struct ucred *cred);
112 static vop_strategy_t	ffsext_strategy;
113 static vop_closeextattr_t	ffs_closeextattr;
114 static vop_deleteextattr_t	ffs_deleteextattr;
115 static vop_getextattr_t	ffs_getextattr;
116 static vop_listextattr_t	ffs_listextattr;
117 static vop_openextattr_t	ffs_openextattr;
118 static vop_setextattr_t	ffs_setextattr;
119 static vop_vptofh_t	ffs_vptofh;
120 
121 
122 /* Global vfs data structures for ufs. */
123 struct vop_vector ffs_vnodeops1 = {
124 	.vop_default =		&ufs_vnodeops,
125 	.vop_fsync =		ffs_fsync,
126 	.vop_getpages =		vnode_pager_local_getpages,
127 	.vop_lock1 =		ffs_lock,
128 	.vop_read =		ffs_read,
129 	.vop_reallocblks =	ffs_reallocblks,
130 	.vop_write =		ffs_write,
131 	.vop_vptofh =		ffs_vptofh,
132 };
133 
134 struct vop_vector ffs_fifoops1 = {
135 	.vop_default =		&ufs_fifoops,
136 	.vop_fsync =		ffs_fsync,
137 	.vop_reallocblks =	ffs_reallocblks, /* XXX: really ??? */
138 	.vop_vptofh =		ffs_vptofh,
139 };
140 
141 /* Global vfs data structures for ufs. */
142 struct vop_vector ffs_vnodeops2 = {
143 	.vop_default =		&ufs_vnodeops,
144 	.vop_fsync =		ffs_fsync,
145 	.vop_getpages =		vnode_pager_local_getpages,
146 	.vop_lock1 =		ffs_lock,
147 	.vop_read =		ffs_read,
148 	.vop_reallocblks =	ffs_reallocblks,
149 	.vop_write =		ffs_write,
150 	.vop_closeextattr =	ffs_closeextattr,
151 	.vop_deleteextattr =	ffs_deleteextattr,
152 	.vop_getextattr =	ffs_getextattr,
153 	.vop_listextattr =	ffs_listextattr,
154 	.vop_openextattr =	ffs_openextattr,
155 	.vop_setextattr =	ffs_setextattr,
156 	.vop_vptofh =		ffs_vptofh,
157 };
158 
159 struct vop_vector ffs_fifoops2 = {
160 	.vop_default =		&ufs_fifoops,
161 	.vop_fsync =		ffs_fsync,
162 	.vop_lock1 =		ffs_lock,
163 	.vop_reallocblks =	ffs_reallocblks,
164 	.vop_strategy =		ffsext_strategy,
165 	.vop_closeextattr =	ffs_closeextattr,
166 	.vop_deleteextattr =	ffs_deleteextattr,
167 	.vop_getextattr =	ffs_getextattr,
168 	.vop_listextattr =	ffs_listextattr,
169 	.vop_openextattr =	ffs_openextattr,
170 	.vop_setextattr =	ffs_setextattr,
171 	.vop_vptofh =		ffs_vptofh,
172 };
173 
174 /*
175  * Synch an open file.
176  */
177 /* ARGSUSED */
178 static int
179 ffs_fsync(struct vop_fsync_args *ap)
180 {
181 	struct vnode *vp;
182 	struct bufobj *bo;
183 	int error;
184 
185 	vp = ap->a_vp;
186 	bo = &vp->v_bufobj;
187 retry:
188 	error = ffs_syncvnode(vp, ap->a_waitfor, 0);
189 	if (error)
190 		return (error);
191 	if (ap->a_waitfor == MNT_WAIT && DOINGSOFTDEP(vp)) {
192 		error = softdep_fsync(vp);
193 		if (error)
194 			return (error);
195 
196 		/*
197 		 * The softdep_fsync() function may drop vp lock,
198 		 * allowing for dirty buffers to reappear on the
199 		 * bo_dirty list. Recheck and resync as needed.
200 		 */
201 		BO_LOCK(bo);
202 		if (vp->v_type == VREG && (bo->bo_numoutput > 0 ||
203 		    bo->bo_dirty.bv_cnt > 0)) {
204 			BO_UNLOCK(bo);
205 			goto retry;
206 		}
207 		BO_UNLOCK(bo);
208 	}
209 	return (0);
210 }
211 
212 int
213 ffs_syncvnode(struct vnode *vp, int waitfor, int flags)
214 {
215 	struct inode *ip;
216 	struct bufobj *bo;
217 	struct buf *bp;
218 	struct buf *nbp;
219 	ufs_lbn_t lbn;
220 	int error, wait, passes;
221 
222 	ip = VTOI(vp);
223 	ip->i_flag &= ~IN_NEEDSYNC;
224 	bo = &vp->v_bufobj;
225 
226 	/*
227 	 * When doing MNT_WAIT we must first flush all dependencies
228 	 * on the inode.
229 	 */
230 	if (DOINGSOFTDEP(vp) && waitfor == MNT_WAIT &&
231 	    (error = softdep_sync_metadata(vp)) != 0)
232 		return (error);
233 
234 	/*
235 	 * Flush all dirty buffers associated with a vnode.
236 	 */
237 	error = 0;
238 	passes = 0;
239 	wait = 0;	/* Always do an async pass first. */
240 	lbn = lblkno(ip->i_fs, (ip->i_size + ip->i_fs->fs_bsize - 1));
241 	BO_LOCK(bo);
242 loop:
243 	TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs)
244 		bp->b_vflags &= ~BV_SCANNED;
245 	TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
246 		/*
247 		 * Reasons to skip this buffer: it has already been considered
248 		 * on this pass, the buffer has dependencies that will cause
249 		 * it to be redirtied and it has not already been deferred,
250 		 * or it is already being written.
251 		 */
252 		if ((bp->b_vflags & BV_SCANNED) != 0)
253 			continue;
254 		bp->b_vflags |= BV_SCANNED;
255 		/* Flush indirects in order. */
256 		if (waitfor == MNT_WAIT && bp->b_lblkno <= -NDADDR &&
257 		    lbn_level(bp->b_lblkno) >= passes)
258 			continue;
259 		if (bp->b_lblkno > lbn)
260 			panic("ffs_syncvnode: syncing truncated data.");
261 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) == 0) {
262 			BO_UNLOCK(bo);
263 		} else if (wait != 0) {
264 			if (BUF_LOCK(bp,
265 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
266 			    BO_LOCKPTR(bo)) != 0) {
267 				bp->b_vflags &= ~BV_SCANNED;
268 				goto next;
269 			}
270 		} else
271 			continue;
272 		if ((bp->b_flags & B_DELWRI) == 0)
273 			panic("ffs_fsync: not dirty");
274 		/*
275 		 * Check for dependencies and potentially complete them.
276 		 */
277 		if (!LIST_EMPTY(&bp->b_dep) &&
278 		    (error = softdep_sync_buf(vp, bp,
279 		    wait ? MNT_WAIT : MNT_NOWAIT)) != 0) {
280 			/* I/O error. */
281 			if (error != EBUSY) {
282 				BUF_UNLOCK(bp);
283 				return (error);
284 			}
285 			/* If we deferred once, don't defer again. */
286 		    	if ((bp->b_flags & B_DEFERRED) == 0) {
287 				bp->b_flags |= B_DEFERRED;
288 				BUF_UNLOCK(bp);
289 				goto next;
290 			}
291 		}
292 		if (wait) {
293 			bremfree(bp);
294 			if ((error = bwrite(bp)) != 0)
295 				return (error);
296 		} else if ((bp->b_flags & B_CLUSTEROK)) {
297 			(void) vfs_bio_awrite(bp);
298 		} else {
299 			bremfree(bp);
300 			(void) bawrite(bp);
301 		}
302 next:
303 		/*
304 		 * Since we may have slept during the I/O, we need
305 		 * to start from a known point.
306 		 */
307 		BO_LOCK(bo);
308 		nbp = TAILQ_FIRST(&bo->bo_dirty.bv_hd);
309 	}
310 	if (waitfor != MNT_WAIT) {
311 		BO_UNLOCK(bo);
312 		if ((flags & NO_INO_UPDT) != 0)
313 			return (0);
314 		else
315 			return (ffs_update(vp, 0));
316 	}
317 	/* Drain IO to see if we're done. */
318 	bufobj_wwait(bo, 0, 0);
319 	/*
320 	 * Block devices associated with filesystems may have new I/O
321 	 * requests posted for them even if the vnode is locked, so no
322 	 * amount of trying will get them clean.  We make several passes
323 	 * as a best effort.
324 	 *
325 	 * Regular files may need multiple passes to flush all dependency
326 	 * work as it is possible that we must write once per indirect
327 	 * level, once for the leaf, and once for the inode and each of
328 	 * these will be done with one sync and one async pass.
329 	 */
330 	if (bo->bo_dirty.bv_cnt > 0) {
331 		/* Write the inode after sync passes to flush deps. */
332 		if (wait && DOINGSOFTDEP(vp) && (flags & NO_INO_UPDT) == 0) {
333 			BO_UNLOCK(bo);
334 			ffs_update(vp, 1);
335 			BO_LOCK(bo);
336 		}
337 		/* switch between sync/async. */
338 		wait = !wait;
339 		if (wait == 1 || ++passes < NIADDR + 2)
340 			goto loop;
341 #ifdef INVARIANTS
342 		if (!vn_isdisk(vp, NULL))
343 			vprint("ffs_fsync: dirty", vp);
344 #endif
345 	}
346 	BO_UNLOCK(bo);
347 	error = 0;
348 	if ((flags & NO_INO_UPDT) == 0)
349 		error = ffs_update(vp, 1);
350 	if (DOINGSUJ(vp))
351 		softdep_journal_fsync(VTOI(vp));
352 	return (error);
353 }
354 
355 static int
356 ffs_lock(ap)
357 	struct vop_lock1_args /* {
358 		struct vnode *a_vp;
359 		int a_flags;
360 		struct thread *a_td;
361 		char *file;
362 		int line;
363 	} */ *ap;
364 {
365 #ifndef NO_FFS_SNAPSHOT
366 	struct vnode *vp;
367 	int flags;
368 	struct lock *lkp;
369 	int result;
370 
371 	switch (ap->a_flags & LK_TYPE_MASK) {
372 	case LK_SHARED:
373 	case LK_UPGRADE:
374 	case LK_EXCLUSIVE:
375 		vp = ap->a_vp;
376 		flags = ap->a_flags;
377 		for (;;) {
378 #ifdef DEBUG_VFS_LOCKS
379 			KASSERT(vp->v_holdcnt != 0,
380 			    ("ffs_lock %p: zero hold count", vp));
381 #endif
382 			lkp = vp->v_vnlock;
383 			result = _lockmgr_args(lkp, flags, VI_MTX(vp),
384 			    LK_WMESG_DEFAULT, LK_PRIO_DEFAULT, LK_TIMO_DEFAULT,
385 			    ap->a_file, ap->a_line);
386 			if (lkp == vp->v_vnlock || result != 0)
387 				break;
388 			/*
389 			 * Apparent success, except that the vnode
390 			 * mutated between snapshot file vnode and
391 			 * regular file vnode while this process
392 			 * slept.  The lock currently held is not the
393 			 * right lock.  Release it, and try to get the
394 			 * new lock.
395 			 */
396 			(void) _lockmgr_args(lkp, LK_RELEASE, NULL,
397 			    LK_WMESG_DEFAULT, LK_PRIO_DEFAULT, LK_TIMO_DEFAULT,
398 			    ap->a_file, ap->a_line);
399 			if ((flags & (LK_INTERLOCK | LK_NOWAIT)) ==
400 			    (LK_INTERLOCK | LK_NOWAIT))
401 				return (EBUSY);
402 			if ((flags & LK_TYPE_MASK) == LK_UPGRADE)
403 				flags = (flags & ~LK_TYPE_MASK) | LK_EXCLUSIVE;
404 			flags &= ~LK_INTERLOCK;
405 		}
406 		break;
407 	default:
408 		result = VOP_LOCK1_APV(&ufs_vnodeops, ap);
409 	}
410 	return (result);
411 #else
412 	return (VOP_LOCK1_APV(&ufs_vnodeops, ap));
413 #endif
414 }
415 
416 /*
417  * Vnode op for reading.
418  */
419 static int
420 ffs_read(ap)
421 	struct vop_read_args /* {
422 		struct vnode *a_vp;
423 		struct uio *a_uio;
424 		int a_ioflag;
425 		struct ucred *a_cred;
426 	} */ *ap;
427 {
428 	struct vnode *vp;
429 	struct inode *ip;
430 	struct uio *uio;
431 	struct fs *fs;
432 	struct buf *bp;
433 	ufs_lbn_t lbn, nextlbn;
434 	off_t bytesinfile;
435 	long size, xfersize, blkoffset;
436 	ssize_t orig_resid;
437 	int error;
438 	int seqcount;
439 	int ioflag;
440 
441 	vp = ap->a_vp;
442 	uio = ap->a_uio;
443 	ioflag = ap->a_ioflag;
444 	if (ap->a_ioflag & IO_EXT)
445 #ifdef notyet
446 		return (ffs_extread(vp, uio, ioflag));
447 #else
448 		panic("ffs_read+IO_EXT");
449 #endif
450 #ifdef DIRECTIO
451 	if ((ioflag & IO_DIRECT) != 0) {
452 		int workdone;
453 
454 		error = ffs_rawread(vp, uio, &workdone);
455 		if (error != 0 || workdone != 0)
456 			return error;
457 	}
458 #endif
459 
460 	seqcount = ap->a_ioflag >> IO_SEQSHIFT;
461 	ip = VTOI(vp);
462 
463 #ifdef INVARIANTS
464 	if (uio->uio_rw != UIO_READ)
465 		panic("ffs_read: mode");
466 
467 	if (vp->v_type == VLNK) {
468 		if ((int)ip->i_size < vp->v_mount->mnt_maxsymlinklen)
469 			panic("ffs_read: short symlink");
470 	} else if (vp->v_type != VREG && vp->v_type != VDIR)
471 		panic("ffs_read: type %d",  vp->v_type);
472 #endif
473 	orig_resid = uio->uio_resid;
474 	KASSERT(orig_resid >= 0, ("ffs_read: uio->uio_resid < 0"));
475 	if (orig_resid == 0)
476 		return (0);
477 	KASSERT(uio->uio_offset >= 0, ("ffs_read: uio->uio_offset < 0"));
478 	fs = ip->i_fs;
479 	if (uio->uio_offset < ip->i_size &&
480 	    uio->uio_offset >= fs->fs_maxfilesize)
481 		return (EOVERFLOW);
482 
483 	for (error = 0, bp = NULL; uio->uio_resid > 0; bp = NULL) {
484 		if ((bytesinfile = ip->i_size - uio->uio_offset) <= 0)
485 			break;
486 		lbn = lblkno(fs, uio->uio_offset);
487 		nextlbn = lbn + 1;
488 
489 		/*
490 		 * size of buffer.  The buffer representing the
491 		 * end of the file is rounded up to the size of
492 		 * the block type ( fragment or full block,
493 		 * depending ).
494 		 */
495 		size = blksize(fs, ip, lbn);
496 		blkoffset = blkoff(fs, uio->uio_offset);
497 
498 		/*
499 		 * The amount we want to transfer in this iteration is
500 		 * one FS block less the amount of the data before
501 		 * our startpoint (duh!)
502 		 */
503 		xfersize = fs->fs_bsize - blkoffset;
504 
505 		/*
506 		 * But if we actually want less than the block,
507 		 * or the file doesn't have a whole block more of data,
508 		 * then use the lesser number.
509 		 */
510 		if (uio->uio_resid < xfersize)
511 			xfersize = uio->uio_resid;
512 		if (bytesinfile < xfersize)
513 			xfersize = bytesinfile;
514 
515 		if (lblktosize(fs, nextlbn) >= ip->i_size) {
516 			/*
517 			 * Don't do readahead if this is the end of the file.
518 			 */
519 			error = bread_gb(vp, lbn, size, NOCRED,
520 			    GB_UNMAPPED, &bp);
521 		} else if ((vp->v_mount->mnt_flag & MNT_NOCLUSTERR) == 0) {
522 			/*
523 			 * Otherwise if we are allowed to cluster,
524 			 * grab as much as we can.
525 			 *
526 			 * XXX  This may not be a win if we are not
527 			 * doing sequential access.
528 			 */
529 			error = cluster_read(vp, ip->i_size, lbn,
530 			    size, NOCRED, blkoffset + uio->uio_resid,
531 			    seqcount, GB_UNMAPPED, &bp);
532 		} else if (seqcount > 1) {
533 			/*
534 			 * If we are NOT allowed to cluster, then
535 			 * if we appear to be acting sequentially,
536 			 * fire off a request for a readahead
537 			 * as well as a read. Note that the 4th and 5th
538 			 * arguments point to arrays of the size specified in
539 			 * the 6th argument.
540 			 */
541 			u_int nextsize = blksize(fs, ip, nextlbn);
542 			error = breadn_flags(vp, lbn, size, &nextlbn,
543 			    &nextsize, 1, NOCRED, GB_UNMAPPED, &bp);
544 		} else {
545 			/*
546 			 * Failing all of the above, just read what the
547 			 * user asked for. Interestingly, the same as
548 			 * the first option above.
549 			 */
550 			error = bread_gb(vp, lbn, size, NOCRED,
551 			    GB_UNMAPPED, &bp);
552 		}
553 		if (error) {
554 			brelse(bp);
555 			bp = NULL;
556 			break;
557 		}
558 
559 		/*
560 		 * If IO_DIRECT then set B_DIRECT for the buffer.  This
561 		 * will cause us to attempt to release the buffer later on
562 		 * and will cause the buffer cache to attempt to free the
563 		 * underlying pages.
564 		 */
565 		if (ioflag & IO_DIRECT)
566 			bp->b_flags |= B_DIRECT;
567 
568 		/*
569 		 * We should only get non-zero b_resid when an I/O error
570 		 * has occurred, which should cause us to break above.
571 		 * However, if the short read did not cause an error,
572 		 * then we want to ensure that we do not uiomove bad
573 		 * or uninitialized data.
574 		 */
575 		size -= bp->b_resid;
576 		if (size < xfersize) {
577 			if (size == 0)
578 				break;
579 			xfersize = size;
580 		}
581 
582 		if ((bp->b_flags & B_UNMAPPED) == 0) {
583 			error = vn_io_fault_uiomove((char *)bp->b_data +
584 			    blkoffset, (int)xfersize, uio);
585 		} else {
586 			error = vn_io_fault_pgmove(bp->b_pages, blkoffset,
587 			    (int)xfersize, uio);
588 		}
589 		if (error)
590 			break;
591 
592 		if ((ioflag & (IO_VMIO|IO_DIRECT)) &&
593 		   (LIST_EMPTY(&bp->b_dep))) {
594 			/*
595 			 * If there are no dependencies, and it's VMIO,
596 			 * then we don't need the buf, mark it available
597 			 * for freeing.  For non-direct VMIO reads, the VM
598 			 * has the data.
599 			 */
600 			bp->b_flags |= B_RELBUF;
601 			brelse(bp);
602 		} else {
603 			/*
604 			 * Otherwise let whoever
605 			 * made the request take care of
606 			 * freeing it. We just queue
607 			 * it onto another list.
608 			 */
609 			bqrelse(bp);
610 		}
611 	}
612 
613 	/*
614 	 * This can only happen in the case of an error
615 	 * because the loop above resets bp to NULL on each iteration
616 	 * and on normal completion has not set a new value into it.
617 	 * so it must have come from a 'break' statement
618 	 */
619 	if (bp != NULL) {
620 		if ((ioflag & (IO_VMIO|IO_DIRECT)) &&
621 		   (LIST_EMPTY(&bp->b_dep))) {
622 			bp->b_flags |= B_RELBUF;
623 			brelse(bp);
624 		} else {
625 			bqrelse(bp);
626 		}
627 	}
628 
629 	if ((error == 0 || uio->uio_resid != orig_resid) &&
630 	    (vp->v_mount->mnt_flag & (MNT_NOATIME | MNT_RDONLY)) == 0 &&
631 	    (ip->i_flag & IN_ACCESS) == 0) {
632 		VI_LOCK(vp);
633 		ip->i_flag |= IN_ACCESS;
634 		VI_UNLOCK(vp);
635 	}
636 	return (error);
637 }
638 
639 /*
640  * Vnode op for writing.
641  */
642 static int
643 ffs_write(ap)
644 	struct vop_write_args /* {
645 		struct vnode *a_vp;
646 		struct uio *a_uio;
647 		int a_ioflag;
648 		struct ucred *a_cred;
649 	} */ *ap;
650 {
651 	struct vnode *vp;
652 	struct uio *uio;
653 	struct inode *ip;
654 	struct fs *fs;
655 	struct buf *bp;
656 	ufs_lbn_t lbn;
657 	off_t osize;
658 	ssize_t resid;
659 	int seqcount;
660 	int blkoffset, error, flags, ioflag, size, xfersize;
661 
662 	vp = ap->a_vp;
663 	uio = ap->a_uio;
664 	ioflag = ap->a_ioflag;
665 	if (ap->a_ioflag & IO_EXT)
666 #ifdef notyet
667 		return (ffs_extwrite(vp, uio, ioflag, ap->a_cred));
668 #else
669 		panic("ffs_write+IO_EXT");
670 #endif
671 
672 	seqcount = ap->a_ioflag >> IO_SEQSHIFT;
673 	ip = VTOI(vp);
674 
675 #ifdef INVARIANTS
676 	if (uio->uio_rw != UIO_WRITE)
677 		panic("ffs_write: mode");
678 #endif
679 
680 	switch (vp->v_type) {
681 	case VREG:
682 		if (ioflag & IO_APPEND)
683 			uio->uio_offset = ip->i_size;
684 		if ((ip->i_flags & APPEND) && uio->uio_offset != ip->i_size)
685 			return (EPERM);
686 		/* FALLTHROUGH */
687 	case VLNK:
688 		break;
689 	case VDIR:
690 		panic("ffs_write: dir write");
691 		break;
692 	default:
693 		panic("ffs_write: type %p %d (%d,%d)", vp, (int)vp->v_type,
694 			(int)uio->uio_offset,
695 			(int)uio->uio_resid
696 		);
697 	}
698 
699 	KASSERT(uio->uio_resid >= 0, ("ffs_write: uio->uio_resid < 0"));
700 	KASSERT(uio->uio_offset >= 0, ("ffs_write: uio->uio_offset < 0"));
701 	fs = ip->i_fs;
702 	if ((uoff_t)uio->uio_offset + uio->uio_resid > fs->fs_maxfilesize)
703 		return (EFBIG);
704 	/*
705 	 * Maybe this should be above the vnode op call, but so long as
706 	 * file servers have no limits, I don't think it matters.
707 	 */
708 	if (vn_rlimit_fsize(vp, uio, uio->uio_td))
709 		return (EFBIG);
710 
711 	resid = uio->uio_resid;
712 	osize = ip->i_size;
713 	if (seqcount > BA_SEQMAX)
714 		flags = BA_SEQMAX << BA_SEQSHIFT;
715 	else
716 		flags = seqcount << BA_SEQSHIFT;
717 	if ((ioflag & IO_SYNC) && !DOINGASYNC(vp))
718 		flags |= IO_SYNC;
719 	flags |= BA_UNMAPPED;
720 
721 	for (error = 0; uio->uio_resid > 0;) {
722 		lbn = lblkno(fs, uio->uio_offset);
723 		blkoffset = blkoff(fs, uio->uio_offset);
724 		xfersize = fs->fs_bsize - blkoffset;
725 		if (uio->uio_resid < xfersize)
726 			xfersize = uio->uio_resid;
727 		if (uio->uio_offset + xfersize > ip->i_size)
728 			vnode_pager_setsize(vp, uio->uio_offset + xfersize);
729 
730 		/*
731 		 * We must perform a read-before-write if the transfer size
732 		 * does not cover the entire buffer.
733 		 */
734 		if (fs->fs_bsize > xfersize)
735 			flags |= BA_CLRBUF;
736 		else
737 			flags &= ~BA_CLRBUF;
738 /* XXX is uio->uio_offset the right thing here? */
739 		error = UFS_BALLOC(vp, uio->uio_offset, xfersize,
740 		    ap->a_cred, flags, &bp);
741 		if (error != 0) {
742 			vnode_pager_setsize(vp, ip->i_size);
743 			break;
744 		}
745 		if (ioflag & IO_DIRECT)
746 			bp->b_flags |= B_DIRECT;
747 		if ((ioflag & (IO_SYNC|IO_INVAL)) == (IO_SYNC|IO_INVAL))
748 			bp->b_flags |= B_NOCACHE;
749 
750 		if (uio->uio_offset + xfersize > ip->i_size) {
751 			ip->i_size = uio->uio_offset + xfersize;
752 			DIP_SET(ip, i_size, ip->i_size);
753 		}
754 
755 		size = blksize(fs, ip, lbn) - bp->b_resid;
756 		if (size < xfersize)
757 			xfersize = size;
758 
759 		if ((bp->b_flags & B_UNMAPPED) == 0) {
760 			error = vn_io_fault_uiomove((char *)bp->b_data +
761 			    blkoffset, (int)xfersize, uio);
762 		} else {
763 			error = vn_io_fault_pgmove(bp->b_pages, blkoffset,
764 			    (int)xfersize, uio);
765 		}
766 		/*
767 		 * If the buffer is not already filled and we encounter an
768 		 * error while trying to fill it, we have to clear out any
769 		 * garbage data from the pages instantiated for the buffer.
770 		 * If we do not, a failed uiomove() during a write can leave
771 		 * the prior contents of the pages exposed to a userland mmap.
772 		 *
773 		 * Note that we need only clear buffers with a transfer size
774 		 * equal to the block size because buffers with a shorter
775 		 * transfer size were cleared above by the call to UFS_BALLOC()
776 		 * with the BA_CLRBUF flag set.
777 		 *
778 		 * If the source region for uiomove identically mmaps the
779 		 * buffer, uiomove() performed the NOP copy, and the buffer
780 		 * content remains valid because the page fault handler
781 		 * validated the pages.
782 		 */
783 		if (error != 0 && (bp->b_flags & B_CACHE) == 0 &&
784 		    fs->fs_bsize == xfersize)
785 			vfs_bio_clrbuf(bp);
786 		if ((ioflag & (IO_VMIO|IO_DIRECT)) &&
787 		   (LIST_EMPTY(&bp->b_dep))) {
788 			bp->b_flags |= B_RELBUF;
789 		}
790 
791 		/*
792 		 * If IO_SYNC each buffer is written synchronously.  Otherwise
793 		 * if we have a severe page deficiency write the buffer
794 		 * asynchronously.  Otherwise try to cluster, and if that
795 		 * doesn't do it then either do an async write (if O_DIRECT),
796 		 * or a delayed write (if not).
797 		 */
798 		if (ioflag & IO_SYNC) {
799 			(void)bwrite(bp);
800 		} else if (vm_page_count_severe() ||
801 			    buf_dirty_count_severe() ||
802 			    (ioflag & IO_ASYNC)) {
803 			bp->b_flags |= B_CLUSTEROK;
804 			bawrite(bp);
805 		} else if (xfersize + blkoffset == fs->fs_bsize) {
806 			if ((vp->v_mount->mnt_flag & MNT_NOCLUSTERW) == 0) {
807 				bp->b_flags |= B_CLUSTEROK;
808 				cluster_write(vp, bp, ip->i_size, seqcount,
809 				    GB_UNMAPPED);
810 			} else {
811 				bawrite(bp);
812 			}
813 		} else if (ioflag & IO_DIRECT) {
814 			bp->b_flags |= B_CLUSTEROK;
815 			bawrite(bp);
816 		} else {
817 			bp->b_flags |= B_CLUSTEROK;
818 			bdwrite(bp);
819 		}
820 		if (error || xfersize == 0)
821 			break;
822 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
823 	}
824 	/*
825 	 * If we successfully wrote any data, and we are not the superuser
826 	 * we clear the setuid and setgid bits as a precaution against
827 	 * tampering.
828 	 */
829 	if ((ip->i_mode & (ISUID | ISGID)) && resid > uio->uio_resid &&
830 	    ap->a_cred) {
831 		if (priv_check_cred(ap->a_cred, PRIV_VFS_RETAINSUGID, 0)) {
832 			ip->i_mode &= ~(ISUID | ISGID);
833 			DIP_SET(ip, i_mode, ip->i_mode);
834 		}
835 	}
836 	if (error) {
837 		if (ioflag & IO_UNIT) {
838 			(void)ffs_truncate(vp, osize,
839 			    IO_NORMAL | (ioflag & IO_SYNC), ap->a_cred);
840 			uio->uio_offset -= resid - uio->uio_resid;
841 			uio->uio_resid = resid;
842 		}
843 	} else if (resid > uio->uio_resid && (ioflag & IO_SYNC))
844 		error = ffs_update(vp, 1);
845 	return (error);
846 }
847 
848 /*
849  * Extended attribute area reading.
850  */
851 static int
852 ffs_extread(struct vnode *vp, struct uio *uio, int ioflag)
853 {
854 	struct inode *ip;
855 	struct ufs2_dinode *dp;
856 	struct fs *fs;
857 	struct buf *bp;
858 	ufs_lbn_t lbn, nextlbn;
859 	off_t bytesinfile;
860 	long size, xfersize, blkoffset;
861 	ssize_t orig_resid;
862 	int error;
863 
864 	ip = VTOI(vp);
865 	fs = ip->i_fs;
866 	dp = ip->i_din2;
867 
868 #ifdef INVARIANTS
869 	if (uio->uio_rw != UIO_READ || fs->fs_magic != FS_UFS2_MAGIC)
870 		panic("ffs_extread: mode");
871 
872 #endif
873 	orig_resid = uio->uio_resid;
874 	KASSERT(orig_resid >= 0, ("ffs_extread: uio->uio_resid < 0"));
875 	if (orig_resid == 0)
876 		return (0);
877 	KASSERT(uio->uio_offset >= 0, ("ffs_extread: uio->uio_offset < 0"));
878 
879 	for (error = 0, bp = NULL; uio->uio_resid > 0; bp = NULL) {
880 		if ((bytesinfile = dp->di_extsize - uio->uio_offset) <= 0)
881 			break;
882 		lbn = lblkno(fs, uio->uio_offset);
883 		nextlbn = lbn + 1;
884 
885 		/*
886 		 * size of buffer.  The buffer representing the
887 		 * end of the file is rounded up to the size of
888 		 * the block type ( fragment or full block,
889 		 * depending ).
890 		 */
891 		size = sblksize(fs, dp->di_extsize, lbn);
892 		blkoffset = blkoff(fs, uio->uio_offset);
893 
894 		/*
895 		 * The amount we want to transfer in this iteration is
896 		 * one FS block less the amount of the data before
897 		 * our startpoint (duh!)
898 		 */
899 		xfersize = fs->fs_bsize - blkoffset;
900 
901 		/*
902 		 * But if we actually want less than the block,
903 		 * or the file doesn't have a whole block more of data,
904 		 * then use the lesser number.
905 		 */
906 		if (uio->uio_resid < xfersize)
907 			xfersize = uio->uio_resid;
908 		if (bytesinfile < xfersize)
909 			xfersize = bytesinfile;
910 
911 		if (lblktosize(fs, nextlbn) >= dp->di_extsize) {
912 			/*
913 			 * Don't do readahead if this is the end of the info.
914 			 */
915 			error = bread(vp, -1 - lbn, size, NOCRED, &bp);
916 		} else {
917 			/*
918 			 * If we have a second block, then
919 			 * fire off a request for a readahead
920 			 * as well as a read. Note that the 4th and 5th
921 			 * arguments point to arrays of the size specified in
922 			 * the 6th argument.
923 			 */
924 			u_int nextsize = sblksize(fs, dp->di_extsize, nextlbn);
925 
926 			nextlbn = -1 - nextlbn;
927 			error = breadn(vp, -1 - lbn,
928 			    size, &nextlbn, &nextsize, 1, NOCRED, &bp);
929 		}
930 		if (error) {
931 			brelse(bp);
932 			bp = NULL;
933 			break;
934 		}
935 
936 		/*
937 		 * If IO_DIRECT then set B_DIRECT for the buffer.  This
938 		 * will cause us to attempt to release the buffer later on
939 		 * and will cause the buffer cache to attempt to free the
940 		 * underlying pages.
941 		 */
942 		if (ioflag & IO_DIRECT)
943 			bp->b_flags |= B_DIRECT;
944 
945 		/*
946 		 * We should only get non-zero b_resid when an I/O error
947 		 * has occurred, which should cause us to break above.
948 		 * However, if the short read did not cause an error,
949 		 * then we want to ensure that we do not uiomove bad
950 		 * or uninitialized data.
951 		 */
952 		size -= bp->b_resid;
953 		if (size < xfersize) {
954 			if (size == 0)
955 				break;
956 			xfersize = size;
957 		}
958 
959 		error = uiomove((char *)bp->b_data + blkoffset,
960 					(int)xfersize, uio);
961 		if (error)
962 			break;
963 
964 		if ((ioflag & (IO_VMIO|IO_DIRECT)) &&
965 		   (LIST_EMPTY(&bp->b_dep))) {
966 			/*
967 			 * If there are no dependencies, and it's VMIO,
968 			 * then we don't need the buf, mark it available
969 			 * for freeing.  For non-direct VMIO reads, the VM
970 			 * has the data.
971 			 */
972 			bp->b_flags |= B_RELBUF;
973 			brelse(bp);
974 		} else {
975 			/*
976 			 * Otherwise let whoever
977 			 * made the request take care of
978 			 * freeing it. We just queue
979 			 * it onto another list.
980 			 */
981 			bqrelse(bp);
982 		}
983 	}
984 
985 	/*
986 	 * This can only happen in the case of an error
987 	 * because the loop above resets bp to NULL on each iteration
988 	 * and on normal completion has not set a new value into it.
989 	 * so it must have come from a 'break' statement
990 	 */
991 	if (bp != NULL) {
992 		if ((ioflag & (IO_VMIO|IO_DIRECT)) &&
993 		   (LIST_EMPTY(&bp->b_dep))) {
994 			bp->b_flags |= B_RELBUF;
995 			brelse(bp);
996 		} else {
997 			bqrelse(bp);
998 		}
999 	}
1000 	return (error);
1001 }
1002 
1003 /*
1004  * Extended attribute area writing.
1005  */
1006 static int
1007 ffs_extwrite(struct vnode *vp, struct uio *uio, int ioflag, struct ucred *ucred)
1008 {
1009 	struct inode *ip;
1010 	struct ufs2_dinode *dp;
1011 	struct fs *fs;
1012 	struct buf *bp;
1013 	ufs_lbn_t lbn;
1014 	off_t osize;
1015 	ssize_t resid;
1016 	int blkoffset, error, flags, size, xfersize;
1017 
1018 	ip = VTOI(vp);
1019 	fs = ip->i_fs;
1020 	dp = ip->i_din2;
1021 
1022 #ifdef INVARIANTS
1023 	if (uio->uio_rw != UIO_WRITE || fs->fs_magic != FS_UFS2_MAGIC)
1024 		panic("ffs_extwrite: mode");
1025 #endif
1026 
1027 	if (ioflag & IO_APPEND)
1028 		uio->uio_offset = dp->di_extsize;
1029 	KASSERT(uio->uio_offset >= 0, ("ffs_extwrite: uio->uio_offset < 0"));
1030 	KASSERT(uio->uio_resid >= 0, ("ffs_extwrite: uio->uio_resid < 0"));
1031 	if ((uoff_t)uio->uio_offset + uio->uio_resid > NXADDR * fs->fs_bsize)
1032 		return (EFBIG);
1033 
1034 	resid = uio->uio_resid;
1035 	osize = dp->di_extsize;
1036 	flags = IO_EXT;
1037 	if ((ioflag & IO_SYNC) && !DOINGASYNC(vp))
1038 		flags |= IO_SYNC;
1039 
1040 	for (error = 0; uio->uio_resid > 0;) {
1041 		lbn = lblkno(fs, uio->uio_offset);
1042 		blkoffset = blkoff(fs, uio->uio_offset);
1043 		xfersize = fs->fs_bsize - blkoffset;
1044 		if (uio->uio_resid < xfersize)
1045 			xfersize = uio->uio_resid;
1046 
1047 		/*
1048 		 * We must perform a read-before-write if the transfer size
1049 		 * does not cover the entire buffer.
1050 		 */
1051 		if (fs->fs_bsize > xfersize)
1052 			flags |= BA_CLRBUF;
1053 		else
1054 			flags &= ~BA_CLRBUF;
1055 		error = UFS_BALLOC(vp, uio->uio_offset, xfersize,
1056 		    ucred, flags, &bp);
1057 		if (error != 0)
1058 			break;
1059 		/*
1060 		 * If the buffer is not valid we have to clear out any
1061 		 * garbage data from the pages instantiated for the buffer.
1062 		 * If we do not, a failed uiomove() during a write can leave
1063 		 * the prior contents of the pages exposed to a userland
1064 		 * mmap().  XXX deal with uiomove() errors a better way.
1065 		 */
1066 		if ((bp->b_flags & B_CACHE) == 0 && fs->fs_bsize <= xfersize)
1067 			vfs_bio_clrbuf(bp);
1068 		if (ioflag & IO_DIRECT)
1069 			bp->b_flags |= B_DIRECT;
1070 
1071 		if (uio->uio_offset + xfersize > dp->di_extsize)
1072 			dp->di_extsize = uio->uio_offset + xfersize;
1073 
1074 		size = sblksize(fs, dp->di_extsize, lbn) - bp->b_resid;
1075 		if (size < xfersize)
1076 			xfersize = size;
1077 
1078 		error =
1079 		    uiomove((char *)bp->b_data + blkoffset, (int)xfersize, uio);
1080 		if ((ioflag & (IO_VMIO|IO_DIRECT)) &&
1081 		   (LIST_EMPTY(&bp->b_dep))) {
1082 			bp->b_flags |= B_RELBUF;
1083 		}
1084 
1085 		/*
1086 		 * If IO_SYNC each buffer is written synchronously.  Otherwise
1087 		 * if we have a severe page deficiency write the buffer
1088 		 * asynchronously.  Otherwise try to cluster, and if that
1089 		 * doesn't do it then either do an async write (if O_DIRECT),
1090 		 * or a delayed write (if not).
1091 		 */
1092 		if (ioflag & IO_SYNC) {
1093 			(void)bwrite(bp);
1094 		} else if (vm_page_count_severe() ||
1095 			    buf_dirty_count_severe() ||
1096 			    xfersize + blkoffset == fs->fs_bsize ||
1097 			    (ioflag & (IO_ASYNC | IO_DIRECT)))
1098 			bawrite(bp);
1099 		else
1100 			bdwrite(bp);
1101 		if (error || xfersize == 0)
1102 			break;
1103 		ip->i_flag |= IN_CHANGE;
1104 	}
1105 	/*
1106 	 * If we successfully wrote any data, and we are not the superuser
1107 	 * we clear the setuid and setgid bits as a precaution against
1108 	 * tampering.
1109 	 */
1110 	if ((ip->i_mode & (ISUID | ISGID)) && resid > uio->uio_resid && ucred) {
1111 		if (priv_check_cred(ucred, PRIV_VFS_RETAINSUGID, 0)) {
1112 			ip->i_mode &= ~(ISUID | ISGID);
1113 			dp->di_mode = ip->i_mode;
1114 		}
1115 	}
1116 	if (error) {
1117 		if (ioflag & IO_UNIT) {
1118 			(void)ffs_truncate(vp, osize,
1119 			    IO_EXT | (ioflag&IO_SYNC), ucred);
1120 			uio->uio_offset -= resid - uio->uio_resid;
1121 			uio->uio_resid = resid;
1122 		}
1123 	} else if (resid > uio->uio_resid && (ioflag & IO_SYNC))
1124 		error = ffs_update(vp, 1);
1125 	return (error);
1126 }
1127 
1128 
1129 /*
1130  * Vnode operating to retrieve a named extended attribute.
1131  *
1132  * Locate a particular EA (nspace:name) in the area (ptr:length), and return
1133  * the length of the EA, and possibly the pointer to the entry and to the data.
1134  */
1135 static int
1136 ffs_findextattr(u_char *ptr, u_int length, int nspace, const char *name, u_char **eap, u_char **eac)
1137 {
1138 	u_char *p, *pe, *pn, *p0;
1139 	int eapad1, eapad2, ealength, ealen, nlen;
1140 	uint32_t ul;
1141 
1142 	pe = ptr + length;
1143 	nlen = strlen(name);
1144 
1145 	for (p = ptr; p < pe; p = pn) {
1146 		p0 = p;
1147 		bcopy(p, &ul, sizeof(ul));
1148 		pn = p + ul;
1149 		/* make sure this entry is complete */
1150 		if (pn > pe)
1151 			break;
1152 		p += sizeof(uint32_t);
1153 		if (*p != nspace)
1154 			continue;
1155 		p++;
1156 		eapad2 = *p++;
1157 		if (*p != nlen)
1158 			continue;
1159 		p++;
1160 		if (bcmp(p, name, nlen))
1161 			continue;
1162 		ealength = sizeof(uint32_t) + 3 + nlen;
1163 		eapad1 = 8 - (ealength % 8);
1164 		if (eapad1 == 8)
1165 			eapad1 = 0;
1166 		ealength += eapad1;
1167 		ealen = ul - ealength - eapad2;
1168 		p += nlen + eapad1;
1169 		if (eap != NULL)
1170 			*eap = p0;
1171 		if (eac != NULL)
1172 			*eac = p;
1173 		return (ealen);
1174 	}
1175 	return(-1);
1176 }
1177 
1178 static int
1179 ffs_rdextattr(u_char **p, struct vnode *vp, struct thread *td, int extra)
1180 {
1181 	struct inode *ip;
1182 	struct ufs2_dinode *dp;
1183 	struct fs *fs;
1184 	struct uio luio;
1185 	struct iovec liovec;
1186 	u_int easize;
1187 	int error;
1188 	u_char *eae;
1189 
1190 	ip = VTOI(vp);
1191 	fs = ip->i_fs;
1192 	dp = ip->i_din2;
1193 	easize = dp->di_extsize;
1194 	if ((uoff_t)easize + extra > NXADDR * fs->fs_bsize)
1195 		return (EFBIG);
1196 
1197 	eae = malloc(easize + extra, M_TEMP, M_WAITOK);
1198 
1199 	liovec.iov_base = eae;
1200 	liovec.iov_len = easize;
1201 	luio.uio_iov = &liovec;
1202 	luio.uio_iovcnt = 1;
1203 	luio.uio_offset = 0;
1204 	luio.uio_resid = easize;
1205 	luio.uio_segflg = UIO_SYSSPACE;
1206 	luio.uio_rw = UIO_READ;
1207 	luio.uio_td = td;
1208 
1209 	error = ffs_extread(vp, &luio, IO_EXT | IO_SYNC);
1210 	if (error) {
1211 		free(eae, M_TEMP);
1212 		return(error);
1213 	}
1214 	*p = eae;
1215 	return (0);
1216 }
1217 
1218 static void
1219 ffs_lock_ea(struct vnode *vp)
1220 {
1221 	struct inode *ip;
1222 
1223 	ip = VTOI(vp);
1224 	VI_LOCK(vp);
1225 	while (ip->i_flag & IN_EA_LOCKED) {
1226 		ip->i_flag |= IN_EA_LOCKWAIT;
1227 		msleep(&ip->i_ea_refs, &vp->v_interlock, PINOD + 2, "ufs_ea",
1228 		    0);
1229 	}
1230 	ip->i_flag |= IN_EA_LOCKED;
1231 	VI_UNLOCK(vp);
1232 }
1233 
1234 static void
1235 ffs_unlock_ea(struct vnode *vp)
1236 {
1237 	struct inode *ip;
1238 
1239 	ip = VTOI(vp);
1240 	VI_LOCK(vp);
1241 	if (ip->i_flag & IN_EA_LOCKWAIT)
1242 		wakeup(&ip->i_ea_refs);
1243 	ip->i_flag &= ~(IN_EA_LOCKED | IN_EA_LOCKWAIT);
1244 	VI_UNLOCK(vp);
1245 }
1246 
1247 static int
1248 ffs_open_ea(struct vnode *vp, struct ucred *cred, struct thread *td)
1249 {
1250 	struct inode *ip;
1251 	struct ufs2_dinode *dp;
1252 	int error;
1253 
1254 	ip = VTOI(vp);
1255 
1256 	ffs_lock_ea(vp);
1257 	if (ip->i_ea_area != NULL) {
1258 		ip->i_ea_refs++;
1259 		ffs_unlock_ea(vp);
1260 		return (0);
1261 	}
1262 	dp = ip->i_din2;
1263 	error = ffs_rdextattr(&ip->i_ea_area, vp, td, 0);
1264 	if (error) {
1265 		ffs_unlock_ea(vp);
1266 		return (error);
1267 	}
1268 	ip->i_ea_len = dp->di_extsize;
1269 	ip->i_ea_error = 0;
1270 	ip->i_ea_refs++;
1271 	ffs_unlock_ea(vp);
1272 	return (0);
1273 }
1274 
1275 /*
1276  * Vnode extattr transaction commit/abort
1277  */
1278 static int
1279 ffs_close_ea(struct vnode *vp, int commit, struct ucred *cred, struct thread *td)
1280 {
1281 	struct inode *ip;
1282 	struct uio luio;
1283 	struct iovec liovec;
1284 	int error;
1285 	struct ufs2_dinode *dp;
1286 
1287 	ip = VTOI(vp);
1288 
1289 	ffs_lock_ea(vp);
1290 	if (ip->i_ea_area == NULL) {
1291 		ffs_unlock_ea(vp);
1292 		return (EINVAL);
1293 	}
1294 	dp = ip->i_din2;
1295 	error = ip->i_ea_error;
1296 	if (commit && error == 0) {
1297 		ASSERT_VOP_ELOCKED(vp, "ffs_close_ea commit");
1298 		if (cred == NOCRED)
1299 			cred =  vp->v_mount->mnt_cred;
1300 		liovec.iov_base = ip->i_ea_area;
1301 		liovec.iov_len = ip->i_ea_len;
1302 		luio.uio_iov = &liovec;
1303 		luio.uio_iovcnt = 1;
1304 		luio.uio_offset = 0;
1305 		luio.uio_resid = ip->i_ea_len;
1306 		luio.uio_segflg = UIO_SYSSPACE;
1307 		luio.uio_rw = UIO_WRITE;
1308 		luio.uio_td = td;
1309 		/* XXX: I'm not happy about truncating to zero size */
1310 		if (ip->i_ea_len < dp->di_extsize)
1311 			error = ffs_truncate(vp, 0, IO_EXT, cred);
1312 		error = ffs_extwrite(vp, &luio, IO_EXT | IO_SYNC, cred);
1313 	}
1314 	if (--ip->i_ea_refs == 0) {
1315 		free(ip->i_ea_area, M_TEMP);
1316 		ip->i_ea_area = NULL;
1317 		ip->i_ea_len = 0;
1318 		ip->i_ea_error = 0;
1319 	}
1320 	ffs_unlock_ea(vp);
1321 	return (error);
1322 }
1323 
1324 /*
1325  * Vnode extattr strategy routine for fifos.
1326  *
1327  * We need to check for a read or write of the external attributes.
1328  * Otherwise we just fall through and do the usual thing.
1329  */
1330 static int
1331 ffsext_strategy(struct vop_strategy_args *ap)
1332 /*
1333 struct vop_strategy_args {
1334 	struct vnodeop_desc *a_desc;
1335 	struct vnode *a_vp;
1336 	struct buf *a_bp;
1337 };
1338 */
1339 {
1340 	struct vnode *vp;
1341 	daddr_t lbn;
1342 
1343 	vp = ap->a_vp;
1344 	lbn = ap->a_bp->b_lblkno;
1345 	if (VTOI(vp)->i_fs->fs_magic == FS_UFS2_MAGIC &&
1346 	    lbn < 0 && lbn >= -NXADDR)
1347 		return (VOP_STRATEGY_APV(&ufs_vnodeops, ap));
1348 	if (vp->v_type == VFIFO)
1349 		return (VOP_STRATEGY_APV(&ufs_fifoops, ap));
1350 	panic("spec nodes went here");
1351 }
1352 
1353 /*
1354  * Vnode extattr transaction commit/abort
1355  */
1356 static int
1357 ffs_openextattr(struct vop_openextattr_args *ap)
1358 /*
1359 struct vop_openextattr_args {
1360 	struct vnodeop_desc *a_desc;
1361 	struct vnode *a_vp;
1362 	IN struct ucred *a_cred;
1363 	IN struct thread *a_td;
1364 };
1365 */
1366 {
1367 	struct inode *ip;
1368 	struct fs *fs;
1369 
1370 	ip = VTOI(ap->a_vp);
1371 	fs = ip->i_fs;
1372 
1373 	if (ap->a_vp->v_type == VCHR || ap->a_vp->v_type == VBLK)
1374 		return (EOPNOTSUPP);
1375 
1376 	return (ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td));
1377 }
1378 
1379 
1380 /*
1381  * Vnode extattr transaction commit/abort
1382  */
1383 static int
1384 ffs_closeextattr(struct vop_closeextattr_args *ap)
1385 /*
1386 struct vop_closeextattr_args {
1387 	struct vnodeop_desc *a_desc;
1388 	struct vnode *a_vp;
1389 	int a_commit;
1390 	IN struct ucred *a_cred;
1391 	IN struct thread *a_td;
1392 };
1393 */
1394 {
1395 	struct inode *ip;
1396 	struct fs *fs;
1397 
1398 	ip = VTOI(ap->a_vp);
1399 	fs = ip->i_fs;
1400 
1401 	if (ap->a_vp->v_type == VCHR || ap->a_vp->v_type == VBLK)
1402 		return (EOPNOTSUPP);
1403 
1404 	if (ap->a_commit && (ap->a_vp->v_mount->mnt_flag & MNT_RDONLY))
1405 		return (EROFS);
1406 
1407 	return (ffs_close_ea(ap->a_vp, ap->a_commit, ap->a_cred, ap->a_td));
1408 }
1409 
1410 /*
1411  * Vnode operation to remove a named attribute.
1412  */
1413 static int
1414 ffs_deleteextattr(struct vop_deleteextattr_args *ap)
1415 /*
1416 vop_deleteextattr {
1417 	IN struct vnode *a_vp;
1418 	IN int a_attrnamespace;
1419 	IN const char *a_name;
1420 	IN struct ucred *a_cred;
1421 	IN struct thread *a_td;
1422 };
1423 */
1424 {
1425 	struct inode *ip;
1426 	struct fs *fs;
1427 	uint32_t ealength, ul;
1428 	int ealen, olen, eapad1, eapad2, error, i, easize;
1429 	u_char *eae, *p;
1430 
1431 	ip = VTOI(ap->a_vp);
1432 	fs = ip->i_fs;
1433 
1434 	if (ap->a_vp->v_type == VCHR || ap->a_vp->v_type == VBLK)
1435 		return (EOPNOTSUPP);
1436 
1437 	if (strlen(ap->a_name) == 0)
1438 		return (EINVAL);
1439 
1440 	if (ap->a_vp->v_mount->mnt_flag & MNT_RDONLY)
1441 		return (EROFS);
1442 
1443 	error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace,
1444 	    ap->a_cred, ap->a_td, VWRITE);
1445 	if (error) {
1446 
1447 		/*
1448 		 * ffs_lock_ea is not needed there, because the vnode
1449 		 * must be exclusively locked.
1450 		 */
1451 		if (ip->i_ea_area != NULL && ip->i_ea_error == 0)
1452 			ip->i_ea_error = error;
1453 		return (error);
1454 	}
1455 
1456 	error = ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td);
1457 	if (error)
1458 		return (error);
1459 
1460 	ealength = eapad1 = ealen = eapad2 = 0;
1461 
1462 	eae = malloc(ip->i_ea_len, M_TEMP, M_WAITOK);
1463 	bcopy(ip->i_ea_area, eae, ip->i_ea_len);
1464 	easize = ip->i_ea_len;
1465 
1466 	olen = ffs_findextattr(eae, easize, ap->a_attrnamespace, ap->a_name,
1467 	    &p, NULL);
1468 	if (olen == -1) {
1469 		/* delete but nonexistent */
1470 		free(eae, M_TEMP);
1471 		ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td);
1472 		return(ENOATTR);
1473 	}
1474 	bcopy(p, &ul, sizeof ul);
1475 	i = p - eae + ul;
1476 	if (ul != ealength) {
1477 		bcopy(p + ul, p + ealength, easize - i);
1478 		easize += (ealength - ul);
1479 	}
1480 	if (easize > NXADDR * fs->fs_bsize) {
1481 		free(eae, M_TEMP);
1482 		ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td);
1483 		if (ip->i_ea_area != NULL && ip->i_ea_error == 0)
1484 			ip->i_ea_error = ENOSPC;
1485 		return(ENOSPC);
1486 	}
1487 	p = ip->i_ea_area;
1488 	ip->i_ea_area = eae;
1489 	ip->i_ea_len = easize;
1490 	free(p, M_TEMP);
1491 	error = ffs_close_ea(ap->a_vp, 1, ap->a_cred, ap->a_td);
1492 	return(error);
1493 }
1494 
1495 /*
1496  * Vnode operation to retrieve a named extended attribute.
1497  */
1498 static int
1499 ffs_getextattr(struct vop_getextattr_args *ap)
1500 /*
1501 vop_getextattr {
1502 	IN struct vnode *a_vp;
1503 	IN int a_attrnamespace;
1504 	IN const char *a_name;
1505 	INOUT struct uio *a_uio;
1506 	OUT size_t *a_size;
1507 	IN struct ucred *a_cred;
1508 	IN struct thread *a_td;
1509 };
1510 */
1511 {
1512 	struct inode *ip;
1513 	struct fs *fs;
1514 	u_char *eae, *p;
1515 	unsigned easize;
1516 	int error, ealen;
1517 
1518 	ip = VTOI(ap->a_vp);
1519 	fs = ip->i_fs;
1520 
1521 	if (ap->a_vp->v_type == VCHR || ap->a_vp->v_type == VBLK)
1522 		return (EOPNOTSUPP);
1523 
1524 	error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace,
1525 	    ap->a_cred, ap->a_td, VREAD);
1526 	if (error)
1527 		return (error);
1528 
1529 	error = ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td);
1530 	if (error)
1531 		return (error);
1532 
1533 	eae = ip->i_ea_area;
1534 	easize = ip->i_ea_len;
1535 
1536 	ealen = ffs_findextattr(eae, easize, ap->a_attrnamespace, ap->a_name,
1537 	    NULL, &p);
1538 	if (ealen >= 0) {
1539 		error = 0;
1540 		if (ap->a_size != NULL)
1541 			*ap->a_size = ealen;
1542 		else if (ap->a_uio != NULL)
1543 			error = uiomove(p, ealen, ap->a_uio);
1544 	} else
1545 		error = ENOATTR;
1546 
1547 	ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td);
1548 	return(error);
1549 }
1550 
1551 /*
1552  * Vnode operation to retrieve extended attributes on a vnode.
1553  */
1554 static int
1555 ffs_listextattr(struct vop_listextattr_args *ap)
1556 /*
1557 vop_listextattr {
1558 	IN struct vnode *a_vp;
1559 	IN int a_attrnamespace;
1560 	INOUT struct uio *a_uio;
1561 	OUT size_t *a_size;
1562 	IN struct ucred *a_cred;
1563 	IN struct thread *a_td;
1564 };
1565 */
1566 {
1567 	struct inode *ip;
1568 	struct fs *fs;
1569 	u_char *eae, *p, *pe, *pn;
1570 	unsigned easize;
1571 	uint32_t ul;
1572 	int error, ealen;
1573 
1574 	ip = VTOI(ap->a_vp);
1575 	fs = ip->i_fs;
1576 
1577 	if (ap->a_vp->v_type == VCHR || ap->a_vp->v_type == VBLK)
1578 		return (EOPNOTSUPP);
1579 
1580 	error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace,
1581 	    ap->a_cred, ap->a_td, VREAD);
1582 	if (error)
1583 		return (error);
1584 
1585 	error = ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td);
1586 	if (error)
1587 		return (error);
1588 	eae = ip->i_ea_area;
1589 	easize = ip->i_ea_len;
1590 
1591 	error = 0;
1592 	if (ap->a_size != NULL)
1593 		*ap->a_size = 0;
1594 	pe = eae + easize;
1595 	for(p = eae; error == 0 && p < pe; p = pn) {
1596 		bcopy(p, &ul, sizeof(ul));
1597 		pn = p + ul;
1598 		if (pn > pe)
1599 			break;
1600 		p += sizeof(ul);
1601 		if (*p++ != ap->a_attrnamespace)
1602 			continue;
1603 		p++;	/* pad2 */
1604 		ealen = *p;
1605 		if (ap->a_size != NULL) {
1606 			*ap->a_size += ealen + 1;
1607 		} else if (ap->a_uio != NULL) {
1608 			error = uiomove(p, ealen + 1, ap->a_uio);
1609 		}
1610 	}
1611 	ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td);
1612 	return(error);
1613 }
1614 
1615 /*
1616  * Vnode operation to set a named attribute.
1617  */
1618 static int
1619 ffs_setextattr(struct vop_setextattr_args *ap)
1620 /*
1621 vop_setextattr {
1622 	IN struct vnode *a_vp;
1623 	IN int a_attrnamespace;
1624 	IN const char *a_name;
1625 	INOUT struct uio *a_uio;
1626 	IN struct ucred *a_cred;
1627 	IN struct thread *a_td;
1628 };
1629 */
1630 {
1631 	struct inode *ip;
1632 	struct fs *fs;
1633 	uint32_t ealength, ul;
1634 	ssize_t ealen;
1635 	int olen, eapad1, eapad2, error, i, easize;
1636 	u_char *eae, *p;
1637 
1638 	ip = VTOI(ap->a_vp);
1639 	fs = ip->i_fs;
1640 
1641 	if (ap->a_vp->v_type == VCHR || ap->a_vp->v_type == VBLK)
1642 		return (EOPNOTSUPP);
1643 
1644 	if (strlen(ap->a_name) == 0)
1645 		return (EINVAL);
1646 
1647 	/* XXX Now unsupported API to delete EAs using NULL uio. */
1648 	if (ap->a_uio == NULL)
1649 		return (EOPNOTSUPP);
1650 
1651 	if (ap->a_vp->v_mount->mnt_flag & MNT_RDONLY)
1652 		return (EROFS);
1653 
1654 	ealen = ap->a_uio->uio_resid;
1655 	if (ealen < 0 || ealen > lblktosize(fs, NXADDR))
1656 		return (EINVAL);
1657 
1658 	error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace,
1659 	    ap->a_cred, ap->a_td, VWRITE);
1660 	if (error) {
1661 
1662 		/*
1663 		 * ffs_lock_ea is not needed there, because the vnode
1664 		 * must be exclusively locked.
1665 		 */
1666 		if (ip->i_ea_area != NULL && ip->i_ea_error == 0)
1667 			ip->i_ea_error = error;
1668 		return (error);
1669 	}
1670 
1671 	error = ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td);
1672 	if (error)
1673 		return (error);
1674 
1675 	ealength = sizeof(uint32_t) + 3 + strlen(ap->a_name);
1676 	eapad1 = 8 - (ealength % 8);
1677 	if (eapad1 == 8)
1678 		eapad1 = 0;
1679 	eapad2 = 8 - (ealen % 8);
1680 	if (eapad2 == 8)
1681 		eapad2 = 0;
1682 	ealength += eapad1 + ealen + eapad2;
1683 
1684 	eae = malloc(ip->i_ea_len + ealength, M_TEMP, M_WAITOK);
1685 	bcopy(ip->i_ea_area, eae, ip->i_ea_len);
1686 	easize = ip->i_ea_len;
1687 
1688 	olen = ffs_findextattr(eae, easize,
1689 	    ap->a_attrnamespace, ap->a_name, &p, NULL);
1690         if (olen == -1) {
1691 		/* new, append at end */
1692 		p = eae + easize;
1693 		easize += ealength;
1694 	} else {
1695 		bcopy(p, &ul, sizeof ul);
1696 		i = p - eae + ul;
1697 		if (ul != ealength) {
1698 			bcopy(p + ul, p + ealength, easize - i);
1699 			easize += (ealength - ul);
1700 		}
1701 	}
1702 	if (easize > lblktosize(fs, NXADDR)) {
1703 		free(eae, M_TEMP);
1704 		ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td);
1705 		if (ip->i_ea_area != NULL && ip->i_ea_error == 0)
1706 			ip->i_ea_error = ENOSPC;
1707 		return(ENOSPC);
1708 	}
1709 	bcopy(&ealength, p, sizeof(ealength));
1710 	p += sizeof(ealength);
1711 	*p++ = ap->a_attrnamespace;
1712 	*p++ = eapad2;
1713 	*p++ = strlen(ap->a_name);
1714 	strcpy(p, ap->a_name);
1715 	p += strlen(ap->a_name);
1716 	bzero(p, eapad1);
1717 	p += eapad1;
1718 	error = uiomove(p, ealen, ap->a_uio);
1719 	if (error) {
1720 		free(eae, M_TEMP);
1721 		ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td);
1722 		if (ip->i_ea_area != NULL && ip->i_ea_error == 0)
1723 			ip->i_ea_error = error;
1724 		return(error);
1725 	}
1726 	p += ealen;
1727 	bzero(p, eapad2);
1728 
1729 	p = ip->i_ea_area;
1730 	ip->i_ea_area = eae;
1731 	ip->i_ea_len = easize;
1732 	free(p, M_TEMP);
1733 	error = ffs_close_ea(ap->a_vp, 1, ap->a_cred, ap->a_td);
1734 	return(error);
1735 }
1736 
1737 /*
1738  * Vnode pointer to File handle
1739  */
1740 static int
1741 ffs_vptofh(struct vop_vptofh_args *ap)
1742 /*
1743 vop_vptofh {
1744 	IN struct vnode *a_vp;
1745 	IN struct fid *a_fhp;
1746 };
1747 */
1748 {
1749 	struct inode *ip;
1750 	struct ufid *ufhp;
1751 
1752 	ip = VTOI(ap->a_vp);
1753 	ufhp = (struct ufid *)ap->a_fhp;
1754 	ufhp->ufid_len = sizeof(struct ufid);
1755 	ufhp->ufid_ino = ip->i_number;
1756 	ufhp->ufid_gen = ip->i_gen;
1757 	return (0);
1758 }
1759