1 /*- 2 * SPDX-License-Identifier: (BSD-2-Clause-FreeBSD AND BSD-3-Clause) 3 * 4 * Copyright (c) 2002, 2003 Networks Associates Technology, Inc. 5 * All rights reserved. 6 * 7 * This software was developed for the FreeBSD Project by Marshall 8 * Kirk McKusick and Network Associates Laboratories, the Security 9 * Research Division of Network Associates, Inc. under DARPA/SPAWAR 10 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS 11 * research program 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 1. Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * Copyright (c) 1982, 1986, 1989, 1993 35 * The Regents of the University of California. All rights reserved. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 1. Redistributions of source code must retain the above copyright 41 * notice, this list of conditions and the following disclaimer. 42 * 2. Redistributions in binary form must reproduce the above copyright 43 * notice, this list of conditions and the following disclaimer in the 44 * documentation and/or other materials provided with the distribution. 45 * 3. Neither the name of the University nor the names of its contributors 46 * may be used to endorse or promote products derived from this software 47 * without specific prior written permission. 48 * 49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 59 * SUCH DAMAGE. 60 * 61 * from: @(#)ufs_readwrite.c 8.11 (Berkeley) 5/8/95 62 * from: $FreeBSD: .../ufs/ufs_readwrite.c,v 1.96 2002/08/12 09:22:11 phk ... 63 * @(#)ffs_vnops.c 8.15 (Berkeley) 5/14/95 64 */ 65 66 #include <sys/cdefs.h> 67 __FBSDID("$FreeBSD$"); 68 69 #include "opt_directio.h" 70 #include "opt_ffs.h" 71 #include "opt_ufs.h" 72 73 #include <sys/param.h> 74 #include <sys/bio.h> 75 #include <sys/systm.h> 76 #include <sys/buf.h> 77 #include <sys/conf.h> 78 #include <sys/extattr.h> 79 #include <sys/kernel.h> 80 #include <sys/limits.h> 81 #include <sys/malloc.h> 82 #include <sys/mount.h> 83 #include <sys/priv.h> 84 #include <sys/rwlock.h> 85 #include <sys/stat.h> 86 #include <sys/sysctl.h> 87 #include <sys/vmmeter.h> 88 #include <sys/vnode.h> 89 90 #include <vm/vm.h> 91 #include <vm/vm_param.h> 92 #include <vm/vm_extern.h> 93 #include <vm/vm_object.h> 94 #include <vm/vm_page.h> 95 #include <vm/vm_pager.h> 96 #include <vm/vnode_pager.h> 97 98 #include <ufs/ufs/extattr.h> 99 #include <ufs/ufs/quota.h> 100 #include <ufs/ufs/inode.h> 101 #include <ufs/ufs/ufs_extern.h> 102 #include <ufs/ufs/ufsmount.h> 103 #include <ufs/ufs/dir.h> 104 #ifdef UFS_DIRHASH 105 #include <ufs/ufs/dirhash.h> 106 #endif 107 108 #include <ufs/ffs/fs.h> 109 #include <ufs/ffs/ffs_extern.h> 110 111 #define ALIGNED_TO(ptr, s) \ 112 (((uintptr_t)(ptr) & (_Alignof(s) - 1)) == 0) 113 114 #ifdef DIRECTIO 115 extern int ffs_rawread(struct vnode *vp, struct uio *uio, int *workdone); 116 #endif 117 static vop_fdatasync_t ffs_fdatasync; 118 static vop_fsync_t ffs_fsync; 119 static vop_getpages_t ffs_getpages; 120 static vop_getpages_async_t ffs_getpages_async; 121 static vop_lock1_t ffs_lock; 122 #ifdef INVARIANTS 123 static vop_unlock_t ffs_unlock_debug; 124 #endif 125 static vop_read_t ffs_read; 126 static vop_write_t ffs_write; 127 static int ffs_extread(struct vnode *vp, struct uio *uio, int ioflag); 128 static int ffs_extwrite(struct vnode *vp, struct uio *uio, int ioflag, 129 struct ucred *cred); 130 static vop_strategy_t ffsext_strategy; 131 static vop_closeextattr_t ffs_closeextattr; 132 static vop_deleteextattr_t ffs_deleteextattr; 133 static vop_getextattr_t ffs_getextattr; 134 static vop_listextattr_t ffs_listextattr; 135 static vop_openextattr_t ffs_openextattr; 136 static vop_setextattr_t ffs_setextattr; 137 static vop_vptofh_t ffs_vptofh; 138 static vop_vput_pair_t ffs_vput_pair; 139 140 /* Global vfs data structures for ufs. */ 141 struct vop_vector ffs_vnodeops1 = { 142 .vop_default = &ufs_vnodeops, 143 .vop_fsync = ffs_fsync, 144 .vop_fdatasync = ffs_fdatasync, 145 .vop_getpages = ffs_getpages, 146 .vop_getpages_async = ffs_getpages_async, 147 .vop_lock1 = ffs_lock, 148 #ifdef INVARIANTS 149 .vop_unlock = ffs_unlock_debug, 150 #endif 151 .vop_read = ffs_read, 152 .vop_reallocblks = ffs_reallocblks, 153 .vop_write = ffs_write, 154 .vop_vptofh = ffs_vptofh, 155 .vop_vput_pair = ffs_vput_pair, 156 }; 157 VFS_VOP_VECTOR_REGISTER(ffs_vnodeops1); 158 159 struct vop_vector ffs_fifoops1 = { 160 .vop_default = &ufs_fifoops, 161 .vop_fsync = ffs_fsync, 162 .vop_fdatasync = ffs_fdatasync, 163 .vop_lock1 = ffs_lock, 164 #ifdef INVARIANTS 165 .vop_unlock = ffs_unlock_debug, 166 #endif 167 .vop_vptofh = ffs_vptofh, 168 }; 169 VFS_VOP_VECTOR_REGISTER(ffs_fifoops1); 170 171 /* Global vfs data structures for ufs. */ 172 struct vop_vector ffs_vnodeops2 = { 173 .vop_default = &ufs_vnodeops, 174 .vop_fsync = ffs_fsync, 175 .vop_fdatasync = ffs_fdatasync, 176 .vop_getpages = ffs_getpages, 177 .vop_getpages_async = ffs_getpages_async, 178 .vop_lock1 = ffs_lock, 179 #ifdef INVARIANTS 180 .vop_unlock = ffs_unlock_debug, 181 #endif 182 .vop_read = ffs_read, 183 .vop_reallocblks = ffs_reallocblks, 184 .vop_write = ffs_write, 185 .vop_closeextattr = ffs_closeextattr, 186 .vop_deleteextattr = ffs_deleteextattr, 187 .vop_getextattr = ffs_getextattr, 188 .vop_listextattr = ffs_listextattr, 189 .vop_openextattr = ffs_openextattr, 190 .vop_setextattr = ffs_setextattr, 191 .vop_vptofh = ffs_vptofh, 192 .vop_vput_pair = ffs_vput_pair, 193 }; 194 VFS_VOP_VECTOR_REGISTER(ffs_vnodeops2); 195 196 struct vop_vector ffs_fifoops2 = { 197 .vop_default = &ufs_fifoops, 198 .vop_fsync = ffs_fsync, 199 .vop_fdatasync = ffs_fdatasync, 200 .vop_lock1 = ffs_lock, 201 #ifdef INVARIANTS 202 .vop_unlock = ffs_unlock_debug, 203 #endif 204 .vop_reallocblks = ffs_reallocblks, 205 .vop_strategy = ffsext_strategy, 206 .vop_closeextattr = ffs_closeextattr, 207 .vop_deleteextattr = ffs_deleteextattr, 208 .vop_getextattr = ffs_getextattr, 209 .vop_listextattr = ffs_listextattr, 210 .vop_openextattr = ffs_openextattr, 211 .vop_setextattr = ffs_setextattr, 212 .vop_vptofh = ffs_vptofh, 213 }; 214 VFS_VOP_VECTOR_REGISTER(ffs_fifoops2); 215 216 /* 217 * Synch an open file. 218 */ 219 /* ARGSUSED */ 220 static int 221 ffs_fsync(struct vop_fsync_args *ap) 222 { 223 struct vnode *vp; 224 struct bufobj *bo; 225 int error; 226 227 vp = ap->a_vp; 228 bo = &vp->v_bufobj; 229 retry: 230 error = ffs_syncvnode(vp, ap->a_waitfor, 0); 231 if (error) 232 return (error); 233 if (ap->a_waitfor == MNT_WAIT && DOINGSOFTDEP(vp)) { 234 error = softdep_fsync(vp); 235 if (error) 236 return (error); 237 238 /* 239 * The softdep_fsync() function may drop vp lock, 240 * allowing for dirty buffers to reappear on the 241 * bo_dirty list. Recheck and resync as needed. 242 */ 243 BO_LOCK(bo); 244 if ((vp->v_type == VREG || vp->v_type == VDIR) && 245 (bo->bo_numoutput > 0 || bo->bo_dirty.bv_cnt > 0)) { 246 BO_UNLOCK(bo); 247 goto retry; 248 } 249 BO_UNLOCK(bo); 250 } 251 if (ffs_fsfail_cleanup(VFSTOUFS(vp->v_mount), 0)) 252 return (ENXIO); 253 return (0); 254 } 255 256 int 257 ffs_syncvnode(struct vnode *vp, int waitfor, int flags) 258 { 259 struct inode *ip; 260 struct bufobj *bo; 261 struct ufsmount *ump; 262 struct buf *bp, *nbp; 263 ufs_lbn_t lbn; 264 int error, passes, wflag; 265 bool still_dirty, unlocked, wait; 266 267 ip = VTOI(vp); 268 bo = &vp->v_bufobj; 269 ump = VFSTOUFS(vp->v_mount); 270 #ifdef WITNESS 271 wflag = IS_SNAPSHOT(ip) ? LK_NOWITNESS : 0; 272 #else 273 wflag = 0; 274 #endif 275 276 /* 277 * When doing MNT_WAIT we must first flush all dependencies 278 * on the inode. 279 */ 280 if (DOINGSOFTDEP(vp) && waitfor == MNT_WAIT && 281 (error = softdep_sync_metadata(vp)) != 0) { 282 if (ffs_fsfail_cleanup(ump, error)) 283 error = 0; 284 return (error); 285 } 286 287 /* 288 * Flush all dirty buffers associated with a vnode. 289 */ 290 error = 0; 291 passes = 0; 292 wait = false; /* Always do an async pass first. */ 293 unlocked = false; 294 lbn = lblkno(ITOFS(ip), (ip->i_size + ITOFS(ip)->fs_bsize - 1)); 295 BO_LOCK(bo); 296 loop: 297 TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) 298 bp->b_vflags &= ~BV_SCANNED; 299 TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) { 300 /* 301 * Reasons to skip this buffer: it has already been considered 302 * on this pass, the buffer has dependencies that will cause 303 * it to be redirtied and it has not already been deferred, 304 * or it is already being written. 305 */ 306 if ((bp->b_vflags & BV_SCANNED) != 0) 307 continue; 308 bp->b_vflags |= BV_SCANNED; 309 /* 310 * Flush indirects in order, if requested. 311 * 312 * Note that if only datasync is requested, we can 313 * skip indirect blocks when softupdates are not 314 * active. Otherwise we must flush them with data, 315 * since dependencies prevent data block writes. 316 */ 317 if (waitfor == MNT_WAIT && bp->b_lblkno <= -UFS_NDADDR && 318 (lbn_level(bp->b_lblkno) >= passes || 319 ((flags & DATA_ONLY) != 0 && !DOINGSOFTDEP(vp)))) 320 continue; 321 if (bp->b_lblkno > lbn) 322 panic("ffs_syncvnode: syncing truncated data."); 323 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) == 0) { 324 BO_UNLOCK(bo); 325 } else if (wait) { 326 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL | 327 LK_INTERLOCK | wflag, BO_LOCKPTR(bo)) != 0) { 328 BO_LOCK(bo); 329 bp->b_vflags &= ~BV_SCANNED; 330 goto next_locked; 331 } 332 } else 333 continue; 334 if ((bp->b_flags & B_DELWRI) == 0) 335 panic("ffs_fsync: not dirty"); 336 /* 337 * Check for dependencies and potentially complete them. 338 */ 339 if (!LIST_EMPTY(&bp->b_dep) && 340 (error = softdep_sync_buf(vp, bp, 341 wait ? MNT_WAIT : MNT_NOWAIT)) != 0) { 342 /* 343 * Lock order conflict, buffer was already unlocked, 344 * and vnode possibly unlocked. 345 */ 346 if (error == ERELOOKUP) { 347 if (vp->v_data == NULL) 348 return (EBADF); 349 unlocked = true; 350 if (DOINGSOFTDEP(vp) && waitfor == MNT_WAIT && 351 (error = softdep_sync_metadata(vp)) != 0) { 352 if (ffs_fsfail_cleanup(ump, error)) 353 error = 0; 354 return (unlocked && error == 0 ? 355 ERELOOKUP : error); 356 } 357 /* Re-evaluate inode size */ 358 lbn = lblkno(ITOFS(ip), (ip->i_size + 359 ITOFS(ip)->fs_bsize - 1)); 360 goto next; 361 } 362 /* I/O error. */ 363 if (error != EBUSY) { 364 BUF_UNLOCK(bp); 365 return (error); 366 } 367 /* If we deferred once, don't defer again. */ 368 if ((bp->b_flags & B_DEFERRED) == 0) { 369 bp->b_flags |= B_DEFERRED; 370 BUF_UNLOCK(bp); 371 goto next; 372 } 373 } 374 if (wait) { 375 bremfree(bp); 376 error = bwrite(bp); 377 if (ffs_fsfail_cleanup(ump, error)) 378 error = 0; 379 if (error != 0) 380 return (error); 381 } else if ((bp->b_flags & B_CLUSTEROK)) { 382 (void) vfs_bio_awrite(bp); 383 } else { 384 bremfree(bp); 385 (void) bawrite(bp); 386 } 387 next: 388 /* 389 * Since we may have slept during the I/O, we need 390 * to start from a known point. 391 */ 392 BO_LOCK(bo); 393 next_locked: 394 nbp = TAILQ_FIRST(&bo->bo_dirty.bv_hd); 395 } 396 if (waitfor != MNT_WAIT) { 397 BO_UNLOCK(bo); 398 if ((flags & NO_INO_UPDT) != 0) 399 return (unlocked ? ERELOOKUP : 0); 400 error = ffs_update(vp, 0); 401 if (error == 0 && unlocked) 402 error = ERELOOKUP; 403 return (error); 404 } 405 /* Drain IO to see if we're done. */ 406 bufobj_wwait(bo, 0, 0); 407 /* 408 * Block devices associated with filesystems may have new I/O 409 * requests posted for them even if the vnode is locked, so no 410 * amount of trying will get them clean. We make several passes 411 * as a best effort. 412 * 413 * Regular files may need multiple passes to flush all dependency 414 * work as it is possible that we must write once per indirect 415 * level, once for the leaf, and once for the inode and each of 416 * these will be done with one sync and one async pass. 417 */ 418 if (bo->bo_dirty.bv_cnt > 0) { 419 if ((flags & DATA_ONLY) == 0) { 420 still_dirty = true; 421 } else { 422 /* 423 * For data-only sync, dirty indirect buffers 424 * are ignored. 425 */ 426 still_dirty = false; 427 TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) { 428 if (bp->b_lblkno > -UFS_NDADDR) { 429 still_dirty = true; 430 break; 431 } 432 } 433 } 434 435 if (still_dirty) { 436 /* Write the inode after sync passes to flush deps. */ 437 if (wait && DOINGSOFTDEP(vp) && 438 (flags & NO_INO_UPDT) == 0) { 439 BO_UNLOCK(bo); 440 ffs_update(vp, 1); 441 BO_LOCK(bo); 442 } 443 /* switch between sync/async. */ 444 wait = !wait; 445 if (wait || ++passes < UFS_NIADDR + 2) 446 goto loop; 447 } 448 } 449 BO_UNLOCK(bo); 450 error = 0; 451 if ((flags & DATA_ONLY) == 0) { 452 if ((flags & NO_INO_UPDT) == 0) 453 error = ffs_update(vp, 1); 454 if (DOINGSUJ(vp)) 455 softdep_journal_fsync(VTOI(vp)); 456 } else if ((ip->i_flags & (IN_SIZEMOD | IN_IBLKDATA)) != 0) { 457 error = ffs_update(vp, 1); 458 } 459 if (error == 0 && unlocked) 460 error = ERELOOKUP; 461 if (error == 0) 462 ip->i_flag &= ~IN_NEEDSYNC; 463 return (error); 464 } 465 466 static int 467 ffs_fdatasync(struct vop_fdatasync_args *ap) 468 { 469 470 return (ffs_syncvnode(ap->a_vp, MNT_WAIT, DATA_ONLY)); 471 } 472 473 static int 474 ffs_lock( 475 struct vop_lock1_args /* { 476 struct vnode *a_vp; 477 int a_flags; 478 char *file; 479 int line; 480 } */ *ap) 481 { 482 #if !defined(NO_FFS_SNAPSHOT) || defined(DIAGNOSTIC) 483 struct vnode *vp = ap->a_vp; 484 #endif /* !NO_FFS_SNAPSHOT || DIAGNOSTIC */ 485 #ifdef DIAGNOSTIC 486 struct inode *ip; 487 #endif /* DIAGNOSTIC */ 488 int result; 489 #ifndef NO_FFS_SNAPSHOT 490 int flags; 491 struct lock *lkp; 492 493 /* 494 * Adaptive spinning mixed with SU leads to trouble. use a giant hammer 495 * and only use it when LK_NODDLKTREAT is set. Currently this means it 496 * is only used during path lookup. 497 */ 498 if ((ap->a_flags & LK_NODDLKTREAT) != 0) 499 ap->a_flags |= LK_ADAPTIVE; 500 switch (ap->a_flags & LK_TYPE_MASK) { 501 case LK_SHARED: 502 case LK_UPGRADE: 503 case LK_EXCLUSIVE: 504 flags = ap->a_flags; 505 for (;;) { 506 #ifdef DEBUG_VFS_LOCKS 507 VNPASS(vp->v_holdcnt != 0, vp); 508 #endif /* DEBUG_VFS_LOCKS */ 509 lkp = vp->v_vnlock; 510 result = lockmgr_lock_flags(lkp, flags, 511 &VI_MTX(vp)->lock_object, ap->a_file, ap->a_line); 512 if (lkp == vp->v_vnlock || result != 0) 513 break; 514 /* 515 * Apparent success, except that the vnode 516 * mutated between snapshot file vnode and 517 * regular file vnode while this process 518 * slept. The lock currently held is not the 519 * right lock. Release it, and try to get the 520 * new lock. 521 */ 522 lockmgr_unlock(lkp); 523 if ((flags & (LK_INTERLOCK | LK_NOWAIT)) == 524 (LK_INTERLOCK | LK_NOWAIT)) 525 return (EBUSY); 526 if ((flags & LK_TYPE_MASK) == LK_UPGRADE) 527 flags = (flags & ~LK_TYPE_MASK) | LK_EXCLUSIVE; 528 flags &= ~LK_INTERLOCK; 529 } 530 #ifdef DIAGNOSTIC 531 switch (ap->a_flags & LK_TYPE_MASK) { 532 case LK_UPGRADE: 533 case LK_EXCLUSIVE: 534 if (result == 0 && vp->v_vnlock->lk_recurse == 0) { 535 ip = VTOI(vp); 536 if (ip != NULL) 537 ip->i_lock_gen++; 538 } 539 } 540 #endif /* DIAGNOSTIC */ 541 break; 542 default: 543 #ifdef DIAGNOSTIC 544 if ((ap->a_flags & LK_TYPE_MASK) == LK_DOWNGRADE) { 545 ip = VTOI(vp); 546 if (ip != NULL) 547 ufs_unlock_tracker(ip); 548 } 549 #endif /* DIAGNOSTIC */ 550 result = VOP_LOCK1_APV(&ufs_vnodeops, ap); 551 break; 552 } 553 #else /* NO_FFS_SNAPSHOT */ 554 /* 555 * See above for an explanation. 556 */ 557 if ((ap->a_flags & LK_NODDLKTREAT) != 0) 558 ap->a_flags |= LK_ADAPTIVE; 559 #ifdef DIAGNOSTIC 560 if ((ap->a_flags & LK_TYPE_MASK) == LK_DOWNGRADE) { 561 ip = VTOI(vp); 562 if (ip != NULL) 563 ufs_unlock_tracker(ip); 564 } 565 #endif /* DIAGNOSTIC */ 566 result = VOP_LOCK1_APV(&ufs_vnodeops, ap); 567 #endif /* NO_FFS_SNAPSHOT */ 568 #ifdef DIAGNOSTIC 569 switch (ap->a_flags & LK_TYPE_MASK) { 570 case LK_UPGRADE: 571 case LK_EXCLUSIVE: 572 if (result == 0 && vp->v_vnlock->lk_recurse == 0) { 573 ip = VTOI(vp); 574 if (ip != NULL) 575 ip->i_lock_gen++; 576 } 577 } 578 #endif /* DIAGNOSTIC */ 579 return (result); 580 } 581 582 #ifdef INVARIANTS 583 static int 584 ffs_unlock_debug(struct vop_unlock_args *ap) 585 { 586 struct vnode *vp; 587 struct inode *ip; 588 589 vp = ap->a_vp; 590 ip = VTOI(vp); 591 if (ip->i_flag & UFS_INODE_FLAG_LAZY_MASK_ASSERTABLE) { 592 if ((vp->v_mflag & VMP_LAZYLIST) == 0) { 593 VI_LOCK(vp); 594 VNASSERT((vp->v_mflag & VMP_LAZYLIST), vp, 595 ("%s: modified vnode (%x) not on lazy list", 596 __func__, ip->i_flag)); 597 VI_UNLOCK(vp); 598 } 599 } 600 KASSERT(vp->v_type != VDIR || vp->v_vnlock->lk_recurse != 0 || 601 (ip->i_flag & IN_ENDOFF) == 0, 602 ("ufs dir vp %p ip %p flags %#x", vp, ip, ip->i_flag)); 603 #ifdef DIAGNOSTIC 604 if (VOP_ISLOCKED(vp) == LK_EXCLUSIVE && ip != NULL && 605 vp->v_vnlock->lk_recurse == 0) 606 ufs_unlock_tracker(ip); 607 #endif 608 return (VOP_UNLOCK_APV(&ufs_vnodeops, ap)); 609 } 610 #endif 611 612 static int 613 ffs_read_hole(struct uio *uio, long xfersize, long *size) 614 { 615 ssize_t saved_resid, tlen; 616 int error; 617 618 while (xfersize > 0) { 619 tlen = min(xfersize, ZERO_REGION_SIZE); 620 saved_resid = uio->uio_resid; 621 error = vn_io_fault_uiomove(__DECONST(void *, zero_region), 622 tlen, uio); 623 if (error != 0) 624 return (error); 625 tlen = saved_resid - uio->uio_resid; 626 xfersize -= tlen; 627 *size -= tlen; 628 } 629 return (0); 630 } 631 632 /* 633 * Vnode op for reading. 634 */ 635 static int 636 ffs_read( 637 struct vop_read_args /* { 638 struct vnode *a_vp; 639 struct uio *a_uio; 640 int a_ioflag; 641 struct ucred *a_cred; 642 } */ *ap) 643 { 644 struct vnode *vp; 645 struct inode *ip; 646 struct uio *uio; 647 struct fs *fs; 648 struct buf *bp; 649 ufs_lbn_t lbn, nextlbn; 650 off_t bytesinfile; 651 long size, xfersize, blkoffset; 652 ssize_t orig_resid; 653 int bflag, error, ioflag, seqcount; 654 655 vp = ap->a_vp; 656 uio = ap->a_uio; 657 ioflag = ap->a_ioflag; 658 if (ap->a_ioflag & IO_EXT) 659 #ifdef notyet 660 return (ffs_extread(vp, uio, ioflag)); 661 #else 662 panic("ffs_read+IO_EXT"); 663 #endif 664 #ifdef DIRECTIO 665 if ((ioflag & IO_DIRECT) != 0) { 666 int workdone; 667 668 error = ffs_rawread(vp, uio, &workdone); 669 if (error != 0 || workdone != 0) 670 return error; 671 } 672 #endif 673 674 seqcount = ap->a_ioflag >> IO_SEQSHIFT; 675 ip = VTOI(vp); 676 677 #ifdef INVARIANTS 678 if (uio->uio_rw != UIO_READ) 679 panic("ffs_read: mode"); 680 681 if (vp->v_type == VLNK) { 682 if ((int)ip->i_size < VFSTOUFS(vp->v_mount)->um_maxsymlinklen) 683 panic("ffs_read: short symlink"); 684 } else if (vp->v_type != VREG && vp->v_type != VDIR) 685 panic("ffs_read: type %d", vp->v_type); 686 #endif 687 orig_resid = uio->uio_resid; 688 KASSERT(orig_resid >= 0, ("ffs_read: uio->uio_resid < 0")); 689 if (orig_resid == 0) 690 return (0); 691 KASSERT(uio->uio_offset >= 0, ("ffs_read: uio->uio_offset < 0")); 692 fs = ITOFS(ip); 693 if (uio->uio_offset < ip->i_size && 694 uio->uio_offset >= fs->fs_maxfilesize) 695 return (EOVERFLOW); 696 697 bflag = GB_UNMAPPED | (uio->uio_segflg == UIO_NOCOPY ? 0 : GB_NOSPARSE); 698 #ifdef WITNESS 699 bflag |= IS_SNAPSHOT(ip) ? GB_NOWITNESS : 0; 700 #endif 701 for (error = 0, bp = NULL; uio->uio_resid > 0; bp = NULL) { 702 if ((bytesinfile = ip->i_size - uio->uio_offset) <= 0) 703 break; 704 lbn = lblkno(fs, uio->uio_offset); 705 nextlbn = lbn + 1; 706 707 /* 708 * size of buffer. The buffer representing the 709 * end of the file is rounded up to the size of 710 * the block type ( fragment or full block, 711 * depending ). 712 */ 713 size = blksize(fs, ip, lbn); 714 blkoffset = blkoff(fs, uio->uio_offset); 715 716 /* 717 * The amount we want to transfer in this iteration is 718 * one FS block less the amount of the data before 719 * our startpoint (duh!) 720 */ 721 xfersize = fs->fs_bsize - blkoffset; 722 723 /* 724 * But if we actually want less than the block, 725 * or the file doesn't have a whole block more of data, 726 * then use the lesser number. 727 */ 728 if (uio->uio_resid < xfersize) 729 xfersize = uio->uio_resid; 730 if (bytesinfile < xfersize) 731 xfersize = bytesinfile; 732 733 if (lblktosize(fs, nextlbn) >= ip->i_size) { 734 /* 735 * Don't do readahead if this is the end of the file. 736 */ 737 error = bread_gb(vp, lbn, size, NOCRED, bflag, &bp); 738 } else if ((vp->v_mount->mnt_flag & MNT_NOCLUSTERR) == 0) { 739 /* 740 * Otherwise if we are allowed to cluster, 741 * grab as much as we can. 742 * 743 * XXX This may not be a win if we are not 744 * doing sequential access. 745 */ 746 error = cluster_read(vp, ip->i_size, lbn, 747 size, NOCRED, blkoffset + uio->uio_resid, 748 seqcount, bflag, &bp); 749 } else if (seqcount > 1) { 750 /* 751 * If we are NOT allowed to cluster, then 752 * if we appear to be acting sequentially, 753 * fire off a request for a readahead 754 * as well as a read. Note that the 4th and 5th 755 * arguments point to arrays of the size specified in 756 * the 6th argument. 757 */ 758 u_int nextsize = blksize(fs, ip, nextlbn); 759 error = breadn_flags(vp, lbn, lbn, size, &nextlbn, 760 &nextsize, 1, NOCRED, bflag, NULL, &bp); 761 } else { 762 /* 763 * Failing all of the above, just read what the 764 * user asked for. Interestingly, the same as 765 * the first option above. 766 */ 767 error = bread_gb(vp, lbn, size, NOCRED, bflag, &bp); 768 } 769 if (error == EJUSTRETURN) { 770 error = ffs_read_hole(uio, xfersize, &size); 771 if (error == 0) 772 continue; 773 } 774 if (error != 0) { 775 brelse(bp); 776 bp = NULL; 777 break; 778 } 779 780 /* 781 * We should only get non-zero b_resid when an I/O error 782 * has occurred, which should cause us to break above. 783 * However, if the short read did not cause an error, 784 * then we want to ensure that we do not uiomove bad 785 * or uninitialized data. 786 */ 787 size -= bp->b_resid; 788 if (size < xfersize) { 789 if (size == 0) 790 break; 791 xfersize = size; 792 } 793 794 if (buf_mapped(bp)) { 795 error = vn_io_fault_uiomove((char *)bp->b_data + 796 blkoffset, (int)xfersize, uio); 797 } else { 798 error = vn_io_fault_pgmove(bp->b_pages, 799 blkoffset + (bp->b_offset & PAGE_MASK), 800 (int)xfersize, uio); 801 } 802 if (error) 803 break; 804 805 vfs_bio_brelse(bp, ioflag); 806 } 807 808 /* 809 * This can only happen in the case of an error 810 * because the loop above resets bp to NULL on each iteration 811 * and on normal completion has not set a new value into it. 812 * so it must have come from a 'break' statement 813 */ 814 if (bp != NULL) 815 vfs_bio_brelse(bp, ioflag); 816 817 if ((error == 0 || uio->uio_resid != orig_resid) && 818 (vp->v_mount->mnt_flag & (MNT_NOATIME | MNT_RDONLY)) == 0) 819 UFS_INODE_SET_FLAG_SHARED(ip, IN_ACCESS); 820 return (error); 821 } 822 823 /* 824 * Vnode op for writing. 825 */ 826 static int 827 ffs_write( 828 struct vop_write_args /* { 829 struct vnode *a_vp; 830 struct uio *a_uio; 831 int a_ioflag; 832 struct ucred *a_cred; 833 } */ *ap) 834 { 835 struct vnode *vp; 836 struct uio *uio; 837 struct inode *ip; 838 struct fs *fs; 839 struct buf *bp; 840 ufs_lbn_t lbn; 841 off_t osize; 842 ssize_t resid; 843 int seqcount; 844 int blkoffset, error, flags, ioflag, size, xfersize; 845 846 vp = ap->a_vp; 847 if (DOINGSUJ(vp)) 848 softdep_prealloc(vp, MNT_WAIT); 849 if (vp->v_data == NULL) 850 return (EBADF); 851 852 uio = ap->a_uio; 853 ioflag = ap->a_ioflag; 854 if (ap->a_ioflag & IO_EXT) 855 #ifdef notyet 856 return (ffs_extwrite(vp, uio, ioflag, ap->a_cred)); 857 #else 858 panic("ffs_write+IO_EXT"); 859 #endif 860 861 seqcount = ap->a_ioflag >> IO_SEQSHIFT; 862 ip = VTOI(vp); 863 864 #ifdef INVARIANTS 865 if (uio->uio_rw != UIO_WRITE) 866 panic("ffs_write: mode"); 867 #endif 868 869 switch (vp->v_type) { 870 case VREG: 871 if (ioflag & IO_APPEND) 872 uio->uio_offset = ip->i_size; 873 if ((ip->i_flags & APPEND) && uio->uio_offset != ip->i_size) 874 return (EPERM); 875 /* FALLTHROUGH */ 876 case VLNK: 877 break; 878 case VDIR: 879 panic("ffs_write: dir write"); 880 break; 881 default: 882 panic("ffs_write: type %p %d (%d,%d)", vp, (int)vp->v_type, 883 (int)uio->uio_offset, 884 (int)uio->uio_resid 885 ); 886 } 887 888 KASSERT(uio->uio_resid >= 0, ("ffs_write: uio->uio_resid < 0")); 889 KASSERT(uio->uio_offset >= 0, ("ffs_write: uio->uio_offset < 0")); 890 fs = ITOFS(ip); 891 if ((uoff_t)uio->uio_offset + uio->uio_resid > fs->fs_maxfilesize) 892 return (EFBIG); 893 /* 894 * Maybe this should be above the vnode op call, but so long as 895 * file servers have no limits, I don't think it matters. 896 */ 897 if (vn_rlimit_fsize(vp, uio, uio->uio_td)) 898 return (EFBIG); 899 900 resid = uio->uio_resid; 901 osize = ip->i_size; 902 if (seqcount > BA_SEQMAX) 903 flags = BA_SEQMAX << BA_SEQSHIFT; 904 else 905 flags = seqcount << BA_SEQSHIFT; 906 if (ioflag & IO_SYNC) 907 flags |= IO_SYNC; 908 flags |= BA_UNMAPPED; 909 910 for (error = 0; uio->uio_resid > 0;) { 911 lbn = lblkno(fs, uio->uio_offset); 912 blkoffset = blkoff(fs, uio->uio_offset); 913 xfersize = fs->fs_bsize - blkoffset; 914 if (uio->uio_resid < xfersize) 915 xfersize = uio->uio_resid; 916 if (uio->uio_offset + xfersize > ip->i_size) 917 vnode_pager_setsize(vp, uio->uio_offset + xfersize); 918 919 /* 920 * We must perform a read-before-write if the transfer size 921 * does not cover the entire buffer. 922 */ 923 if (fs->fs_bsize > xfersize) 924 flags |= BA_CLRBUF; 925 else 926 flags &= ~BA_CLRBUF; 927 /* XXX is uio->uio_offset the right thing here? */ 928 error = UFS_BALLOC(vp, uio->uio_offset, xfersize, 929 ap->a_cred, flags, &bp); 930 if (error != 0) { 931 vnode_pager_setsize(vp, ip->i_size); 932 break; 933 } 934 if ((ioflag & (IO_SYNC|IO_INVAL)) == (IO_SYNC|IO_INVAL)) 935 bp->b_flags |= B_NOCACHE; 936 937 if (uio->uio_offset + xfersize > ip->i_size) { 938 ip->i_size = uio->uio_offset + xfersize; 939 DIP_SET(ip, i_size, ip->i_size); 940 UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE); 941 } 942 943 size = blksize(fs, ip, lbn) - bp->b_resid; 944 if (size < xfersize) 945 xfersize = size; 946 947 if (buf_mapped(bp)) { 948 error = vn_io_fault_uiomove((char *)bp->b_data + 949 blkoffset, (int)xfersize, uio); 950 } else { 951 error = vn_io_fault_pgmove(bp->b_pages, 952 blkoffset + (bp->b_offset & PAGE_MASK), 953 (int)xfersize, uio); 954 } 955 /* 956 * If the buffer is not already filled and we encounter an 957 * error while trying to fill it, we have to clear out any 958 * garbage data from the pages instantiated for the buffer. 959 * If we do not, a failed uiomove() during a write can leave 960 * the prior contents of the pages exposed to a userland mmap. 961 * 962 * Note that we need only clear buffers with a transfer size 963 * equal to the block size because buffers with a shorter 964 * transfer size were cleared above by the call to UFS_BALLOC() 965 * with the BA_CLRBUF flag set. 966 * 967 * If the source region for uiomove identically mmaps the 968 * buffer, uiomove() performed the NOP copy, and the buffer 969 * content remains valid because the page fault handler 970 * validated the pages. 971 */ 972 if (error != 0 && (bp->b_flags & B_CACHE) == 0 && 973 fs->fs_bsize == xfersize) 974 vfs_bio_clrbuf(bp); 975 976 vfs_bio_set_flags(bp, ioflag); 977 978 /* 979 * If IO_SYNC each buffer is written synchronously. Otherwise 980 * if we have a severe page deficiency write the buffer 981 * asynchronously. Otherwise try to cluster, and if that 982 * doesn't do it then either do an async write (if O_DIRECT), 983 * or a delayed write (if not). 984 */ 985 if (ioflag & IO_SYNC) { 986 (void)bwrite(bp); 987 } else if (vm_page_count_severe() || 988 buf_dirty_count_severe() || 989 (ioflag & IO_ASYNC)) { 990 bp->b_flags |= B_CLUSTEROK; 991 bawrite(bp); 992 } else if (xfersize + blkoffset == fs->fs_bsize) { 993 if ((vp->v_mount->mnt_flag & MNT_NOCLUSTERW) == 0) { 994 bp->b_flags |= B_CLUSTEROK; 995 cluster_write(vp, &ip->i_clusterw, bp, 996 ip->i_size, seqcount, GB_UNMAPPED); 997 } else { 998 bawrite(bp); 999 } 1000 } else if (ioflag & IO_DIRECT) { 1001 bp->b_flags |= B_CLUSTEROK; 1002 bawrite(bp); 1003 } else { 1004 bp->b_flags |= B_CLUSTEROK; 1005 bdwrite(bp); 1006 } 1007 if (error || xfersize == 0) 1008 break; 1009 UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_UPDATE); 1010 } 1011 /* 1012 * If we successfully wrote any data, and we are not the superuser 1013 * we clear the setuid and setgid bits as a precaution against 1014 * tampering. 1015 */ 1016 if ((ip->i_mode & (ISUID | ISGID)) && resid > uio->uio_resid && 1017 ap->a_cred) { 1018 if (priv_check_cred(ap->a_cred, PRIV_VFS_RETAINSUGID)) { 1019 vn_seqc_write_begin(vp); 1020 UFS_INODE_SET_MODE(ip, ip->i_mode & ~(ISUID | ISGID)); 1021 DIP_SET(ip, i_mode, ip->i_mode); 1022 vn_seqc_write_end(vp); 1023 } 1024 } 1025 if (error) { 1026 if (ioflag & IO_UNIT) { 1027 (void)ffs_truncate(vp, osize, 1028 IO_NORMAL | (ioflag & IO_SYNC), ap->a_cred); 1029 uio->uio_offset -= resid - uio->uio_resid; 1030 uio->uio_resid = resid; 1031 } 1032 } else if (resid > uio->uio_resid && (ioflag & IO_SYNC)) { 1033 if (!(ioflag & IO_DATASYNC) || 1034 (ip->i_flags & (IN_SIZEMOD | IN_IBLKDATA))) 1035 error = ffs_update(vp, 1); 1036 if (ffs_fsfail_cleanup(VFSTOUFS(vp->v_mount), error)) 1037 error = ENXIO; 1038 } 1039 return (error); 1040 } 1041 1042 /* 1043 * Extended attribute area reading. 1044 */ 1045 static int 1046 ffs_extread(struct vnode *vp, struct uio *uio, int ioflag) 1047 { 1048 struct inode *ip; 1049 struct ufs2_dinode *dp; 1050 struct fs *fs; 1051 struct buf *bp; 1052 ufs_lbn_t lbn, nextlbn; 1053 off_t bytesinfile; 1054 long size, xfersize, blkoffset; 1055 ssize_t orig_resid; 1056 int error; 1057 1058 ip = VTOI(vp); 1059 fs = ITOFS(ip); 1060 dp = ip->i_din2; 1061 1062 #ifdef INVARIANTS 1063 if (uio->uio_rw != UIO_READ || fs->fs_magic != FS_UFS2_MAGIC) 1064 panic("ffs_extread: mode"); 1065 1066 #endif 1067 orig_resid = uio->uio_resid; 1068 KASSERT(orig_resid >= 0, ("ffs_extread: uio->uio_resid < 0")); 1069 if (orig_resid == 0) 1070 return (0); 1071 KASSERT(uio->uio_offset >= 0, ("ffs_extread: uio->uio_offset < 0")); 1072 1073 for (error = 0, bp = NULL; uio->uio_resid > 0; bp = NULL) { 1074 if ((bytesinfile = dp->di_extsize - uio->uio_offset) <= 0) 1075 break; 1076 lbn = lblkno(fs, uio->uio_offset); 1077 nextlbn = lbn + 1; 1078 1079 /* 1080 * size of buffer. The buffer representing the 1081 * end of the file is rounded up to the size of 1082 * the block type ( fragment or full block, 1083 * depending ). 1084 */ 1085 size = sblksize(fs, dp->di_extsize, lbn); 1086 blkoffset = blkoff(fs, uio->uio_offset); 1087 1088 /* 1089 * The amount we want to transfer in this iteration is 1090 * one FS block less the amount of the data before 1091 * our startpoint (duh!) 1092 */ 1093 xfersize = fs->fs_bsize - blkoffset; 1094 1095 /* 1096 * But if we actually want less than the block, 1097 * or the file doesn't have a whole block more of data, 1098 * then use the lesser number. 1099 */ 1100 if (uio->uio_resid < xfersize) 1101 xfersize = uio->uio_resid; 1102 if (bytesinfile < xfersize) 1103 xfersize = bytesinfile; 1104 1105 if (lblktosize(fs, nextlbn) >= dp->di_extsize) { 1106 /* 1107 * Don't do readahead if this is the end of the info. 1108 */ 1109 error = bread(vp, -1 - lbn, size, NOCRED, &bp); 1110 } else { 1111 /* 1112 * If we have a second block, then 1113 * fire off a request for a readahead 1114 * as well as a read. Note that the 4th and 5th 1115 * arguments point to arrays of the size specified in 1116 * the 6th argument. 1117 */ 1118 u_int nextsize = sblksize(fs, dp->di_extsize, nextlbn); 1119 1120 nextlbn = -1 - nextlbn; 1121 error = breadn(vp, -1 - lbn, 1122 size, &nextlbn, &nextsize, 1, NOCRED, &bp); 1123 } 1124 if (error) { 1125 brelse(bp); 1126 bp = NULL; 1127 break; 1128 } 1129 1130 /* 1131 * We should only get non-zero b_resid when an I/O error 1132 * has occurred, which should cause us to break above. 1133 * However, if the short read did not cause an error, 1134 * then we want to ensure that we do not uiomove bad 1135 * or uninitialized data. 1136 */ 1137 size -= bp->b_resid; 1138 if (size < xfersize) { 1139 if (size == 0) 1140 break; 1141 xfersize = size; 1142 } 1143 1144 error = uiomove((char *)bp->b_data + blkoffset, 1145 (int)xfersize, uio); 1146 if (error) 1147 break; 1148 vfs_bio_brelse(bp, ioflag); 1149 } 1150 1151 /* 1152 * This can only happen in the case of an error 1153 * because the loop above resets bp to NULL on each iteration 1154 * and on normal completion has not set a new value into it. 1155 * so it must have come from a 'break' statement 1156 */ 1157 if (bp != NULL) 1158 vfs_bio_brelse(bp, ioflag); 1159 return (error); 1160 } 1161 1162 /* 1163 * Extended attribute area writing. 1164 */ 1165 static int 1166 ffs_extwrite(struct vnode *vp, struct uio *uio, int ioflag, struct ucred *ucred) 1167 { 1168 struct inode *ip; 1169 struct ufs2_dinode *dp; 1170 struct fs *fs; 1171 struct buf *bp; 1172 ufs_lbn_t lbn; 1173 off_t osize; 1174 ssize_t resid; 1175 int blkoffset, error, flags, size, xfersize; 1176 1177 ip = VTOI(vp); 1178 fs = ITOFS(ip); 1179 dp = ip->i_din2; 1180 1181 #ifdef INVARIANTS 1182 if (uio->uio_rw != UIO_WRITE || fs->fs_magic != FS_UFS2_MAGIC) 1183 panic("ffs_extwrite: mode"); 1184 #endif 1185 1186 if (ioflag & IO_APPEND) 1187 uio->uio_offset = dp->di_extsize; 1188 KASSERT(uio->uio_offset >= 0, ("ffs_extwrite: uio->uio_offset < 0")); 1189 KASSERT(uio->uio_resid >= 0, ("ffs_extwrite: uio->uio_resid < 0")); 1190 if ((uoff_t)uio->uio_offset + uio->uio_resid > 1191 UFS_NXADDR * fs->fs_bsize) 1192 return (EFBIG); 1193 1194 resid = uio->uio_resid; 1195 osize = dp->di_extsize; 1196 flags = IO_EXT; 1197 if (ioflag & IO_SYNC) 1198 flags |= IO_SYNC; 1199 1200 for (error = 0; uio->uio_resid > 0;) { 1201 lbn = lblkno(fs, uio->uio_offset); 1202 blkoffset = blkoff(fs, uio->uio_offset); 1203 xfersize = fs->fs_bsize - blkoffset; 1204 if (uio->uio_resid < xfersize) 1205 xfersize = uio->uio_resid; 1206 1207 /* 1208 * We must perform a read-before-write if the transfer size 1209 * does not cover the entire buffer. 1210 */ 1211 if (fs->fs_bsize > xfersize) 1212 flags |= BA_CLRBUF; 1213 else 1214 flags &= ~BA_CLRBUF; 1215 error = UFS_BALLOC(vp, uio->uio_offset, xfersize, 1216 ucred, flags, &bp); 1217 if (error != 0) 1218 break; 1219 /* 1220 * If the buffer is not valid we have to clear out any 1221 * garbage data from the pages instantiated for the buffer. 1222 * If we do not, a failed uiomove() during a write can leave 1223 * the prior contents of the pages exposed to a userland 1224 * mmap(). XXX deal with uiomove() errors a better way. 1225 */ 1226 if ((bp->b_flags & B_CACHE) == 0 && fs->fs_bsize <= xfersize) 1227 vfs_bio_clrbuf(bp); 1228 1229 if (uio->uio_offset + xfersize > dp->di_extsize) { 1230 dp->di_extsize = uio->uio_offset + xfersize; 1231 UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE); 1232 } 1233 1234 size = sblksize(fs, dp->di_extsize, lbn) - bp->b_resid; 1235 if (size < xfersize) 1236 xfersize = size; 1237 1238 error = 1239 uiomove((char *)bp->b_data + blkoffset, (int)xfersize, uio); 1240 1241 vfs_bio_set_flags(bp, ioflag); 1242 1243 /* 1244 * If IO_SYNC each buffer is written synchronously. Otherwise 1245 * if we have a severe page deficiency write the buffer 1246 * asynchronously. Otherwise try to cluster, and if that 1247 * doesn't do it then either do an async write (if O_DIRECT), 1248 * or a delayed write (if not). 1249 */ 1250 if (ioflag & IO_SYNC) { 1251 (void)bwrite(bp); 1252 } else if (vm_page_count_severe() || 1253 buf_dirty_count_severe() || 1254 xfersize + blkoffset == fs->fs_bsize || 1255 (ioflag & (IO_ASYNC | IO_DIRECT))) 1256 bawrite(bp); 1257 else 1258 bdwrite(bp); 1259 if (error || xfersize == 0) 1260 break; 1261 UFS_INODE_SET_FLAG(ip, IN_CHANGE); 1262 } 1263 /* 1264 * If we successfully wrote any data, and we are not the superuser 1265 * we clear the setuid and setgid bits as a precaution against 1266 * tampering. 1267 */ 1268 if ((ip->i_mode & (ISUID | ISGID)) && resid > uio->uio_resid && ucred) { 1269 if (priv_check_cred(ucred, PRIV_VFS_RETAINSUGID)) { 1270 vn_seqc_write_begin(vp); 1271 UFS_INODE_SET_MODE(ip, ip->i_mode & ~(ISUID | ISGID)); 1272 dp->di_mode = ip->i_mode; 1273 vn_seqc_write_end(vp); 1274 } 1275 } 1276 if (error) { 1277 if (ioflag & IO_UNIT) { 1278 (void)ffs_truncate(vp, osize, 1279 IO_EXT | (ioflag&IO_SYNC), ucred); 1280 uio->uio_offset -= resid - uio->uio_resid; 1281 uio->uio_resid = resid; 1282 } 1283 } else if (resid > uio->uio_resid && (ioflag & IO_SYNC)) 1284 error = ffs_update(vp, 1); 1285 return (error); 1286 } 1287 1288 /* 1289 * Vnode operating to retrieve a named extended attribute. 1290 * 1291 * Locate a particular EA (nspace:name) in the area (ptr:length), and return 1292 * the length of the EA, and possibly the pointer to the entry and to the data. 1293 */ 1294 static int 1295 ffs_findextattr(u_char *ptr, u_int length, int nspace, const char *name, 1296 struct extattr **eapp, u_char **eac) 1297 { 1298 struct extattr *eap, *eaend; 1299 size_t nlen; 1300 1301 nlen = strlen(name); 1302 KASSERT(ALIGNED_TO(ptr, struct extattr), ("unaligned")); 1303 eap = (struct extattr *)ptr; 1304 eaend = (struct extattr *)(ptr + length); 1305 for (; eap < eaend; eap = EXTATTR_NEXT(eap)) { 1306 KASSERT(EXTATTR_NEXT(eap) <= eaend, 1307 ("extattr next %p beyond %p", EXTATTR_NEXT(eap), eaend)); 1308 if (eap->ea_namespace != nspace || eap->ea_namelength != nlen 1309 || memcmp(eap->ea_name, name, nlen) != 0) 1310 continue; 1311 if (eapp != NULL) 1312 *eapp = eap; 1313 if (eac != NULL) 1314 *eac = EXTATTR_CONTENT(eap); 1315 return (EXTATTR_CONTENT_SIZE(eap)); 1316 } 1317 return (-1); 1318 } 1319 1320 static int 1321 ffs_rdextattr(u_char **p, struct vnode *vp, struct thread *td) 1322 { 1323 const struct extattr *eap, *eaend, *eapnext; 1324 struct inode *ip; 1325 struct ufs2_dinode *dp; 1326 struct fs *fs; 1327 struct uio luio; 1328 struct iovec liovec; 1329 u_int easize; 1330 int error; 1331 u_char *eae; 1332 1333 ip = VTOI(vp); 1334 fs = ITOFS(ip); 1335 dp = ip->i_din2; 1336 easize = dp->di_extsize; 1337 if ((uoff_t)easize > UFS_NXADDR * fs->fs_bsize) 1338 return (EFBIG); 1339 1340 eae = malloc(easize, M_TEMP, M_WAITOK); 1341 1342 liovec.iov_base = eae; 1343 liovec.iov_len = easize; 1344 luio.uio_iov = &liovec; 1345 luio.uio_iovcnt = 1; 1346 luio.uio_offset = 0; 1347 luio.uio_resid = easize; 1348 luio.uio_segflg = UIO_SYSSPACE; 1349 luio.uio_rw = UIO_READ; 1350 luio.uio_td = td; 1351 1352 error = ffs_extread(vp, &luio, IO_EXT | IO_SYNC); 1353 if (error) { 1354 free(eae, M_TEMP); 1355 return (error); 1356 } 1357 /* Validate disk xattrfile contents. */ 1358 for (eap = (void *)eae, eaend = (void *)(eae + easize); eap < eaend; 1359 eap = eapnext) { 1360 /* Detect zeroed out tail */ 1361 if (eap->ea_length < sizeof(*eap) || eap->ea_length == 0) { 1362 easize = (const u_char *)eap - eae; 1363 break; 1364 } 1365 1366 eapnext = EXTATTR_NEXT(eap); 1367 /* Bogusly long entry. */ 1368 if (eapnext > eaend) { 1369 free(eae, M_TEMP); 1370 return (EINTEGRITY); 1371 } 1372 } 1373 ip->i_ea_len = easize; 1374 *p = eae; 1375 return (0); 1376 } 1377 1378 static void 1379 ffs_lock_ea(struct vnode *vp) 1380 { 1381 struct inode *ip; 1382 1383 ip = VTOI(vp); 1384 VI_LOCK(vp); 1385 while (ip->i_flag & IN_EA_LOCKED) { 1386 UFS_INODE_SET_FLAG(ip, IN_EA_LOCKWAIT); 1387 msleep(&ip->i_ea_refs, &vp->v_interlock, PINOD + 2, "ufs_ea", 1388 0); 1389 } 1390 UFS_INODE_SET_FLAG(ip, IN_EA_LOCKED); 1391 VI_UNLOCK(vp); 1392 } 1393 1394 static void 1395 ffs_unlock_ea(struct vnode *vp) 1396 { 1397 struct inode *ip; 1398 1399 ip = VTOI(vp); 1400 VI_LOCK(vp); 1401 if (ip->i_flag & IN_EA_LOCKWAIT) 1402 wakeup(&ip->i_ea_refs); 1403 ip->i_flag &= ~(IN_EA_LOCKED | IN_EA_LOCKWAIT); 1404 VI_UNLOCK(vp); 1405 } 1406 1407 static int 1408 ffs_open_ea(struct vnode *vp, struct ucred *cred, struct thread *td) 1409 { 1410 struct inode *ip; 1411 int error; 1412 1413 ip = VTOI(vp); 1414 1415 ffs_lock_ea(vp); 1416 if (ip->i_ea_area != NULL) { 1417 ip->i_ea_refs++; 1418 ffs_unlock_ea(vp); 1419 return (0); 1420 } 1421 error = ffs_rdextattr(&ip->i_ea_area, vp, td); 1422 if (error) { 1423 ffs_unlock_ea(vp); 1424 return (error); 1425 } 1426 ip->i_ea_error = 0; 1427 ip->i_ea_refs++; 1428 ffs_unlock_ea(vp); 1429 return (0); 1430 } 1431 1432 /* 1433 * Vnode extattr transaction commit/abort 1434 */ 1435 static int 1436 ffs_close_ea(struct vnode *vp, int commit, struct ucred *cred, struct thread *td) 1437 { 1438 struct inode *ip; 1439 struct uio luio; 1440 struct iovec *liovec; 1441 struct ufs2_dinode *dp; 1442 size_t ea_len, tlen; 1443 int error, i, lcnt; 1444 bool truncate; 1445 1446 ip = VTOI(vp); 1447 1448 ffs_lock_ea(vp); 1449 if (ip->i_ea_area == NULL) { 1450 ffs_unlock_ea(vp); 1451 return (EINVAL); 1452 } 1453 dp = ip->i_din2; 1454 error = ip->i_ea_error; 1455 truncate = false; 1456 if (commit && error == 0) { 1457 ASSERT_VOP_ELOCKED(vp, "ffs_close_ea commit"); 1458 if (cred == NOCRED) 1459 cred = vp->v_mount->mnt_cred; 1460 1461 ea_len = MAX(ip->i_ea_len, dp->di_extsize); 1462 for (lcnt = 1, tlen = ea_len - ip->i_ea_len; tlen > 0;) { 1463 tlen -= MIN(ZERO_REGION_SIZE, tlen); 1464 lcnt++; 1465 } 1466 1467 liovec = __builtin_alloca(lcnt * sizeof(struct iovec)); 1468 luio.uio_iovcnt = lcnt; 1469 1470 liovec[0].iov_base = ip->i_ea_area; 1471 liovec[0].iov_len = ip->i_ea_len; 1472 for (i = 1, tlen = ea_len - ip->i_ea_len; i < lcnt; i++) { 1473 liovec[i].iov_base = __DECONST(void *, zero_region); 1474 liovec[i].iov_len = MIN(ZERO_REGION_SIZE, tlen); 1475 tlen -= liovec[i].iov_len; 1476 } 1477 MPASS(tlen == 0); 1478 1479 luio.uio_iov = liovec; 1480 luio.uio_offset = 0; 1481 luio.uio_resid = ea_len; 1482 luio.uio_segflg = UIO_SYSSPACE; 1483 luio.uio_rw = UIO_WRITE; 1484 luio.uio_td = td; 1485 error = ffs_extwrite(vp, &luio, IO_EXT | IO_SYNC, cred); 1486 if (error == 0 && ip->i_ea_len == 0) 1487 truncate = true; 1488 } 1489 if (--ip->i_ea_refs == 0) { 1490 free(ip->i_ea_area, M_TEMP); 1491 ip->i_ea_area = NULL; 1492 ip->i_ea_len = 0; 1493 ip->i_ea_error = 0; 1494 } 1495 ffs_unlock_ea(vp); 1496 1497 if (truncate) 1498 ffs_truncate(vp, 0, IO_EXT, cred); 1499 return (error); 1500 } 1501 1502 /* 1503 * Vnode extattr strategy routine for fifos. 1504 * 1505 * We need to check for a read or write of the external attributes. 1506 * Otherwise we just fall through and do the usual thing. 1507 */ 1508 static int 1509 ffsext_strategy( 1510 struct vop_strategy_args /* { 1511 struct vnodeop_desc *a_desc; 1512 struct vnode *a_vp; 1513 struct buf *a_bp; 1514 } */ *ap) 1515 { 1516 struct vnode *vp; 1517 daddr_t lbn; 1518 1519 vp = ap->a_vp; 1520 lbn = ap->a_bp->b_lblkno; 1521 if (I_IS_UFS2(VTOI(vp)) && lbn < 0 && lbn >= -UFS_NXADDR) 1522 return (VOP_STRATEGY_APV(&ufs_vnodeops, ap)); 1523 if (vp->v_type == VFIFO) 1524 return (VOP_STRATEGY_APV(&ufs_fifoops, ap)); 1525 panic("spec nodes went here"); 1526 } 1527 1528 /* 1529 * Vnode extattr transaction commit/abort 1530 */ 1531 static int 1532 ffs_openextattr( 1533 struct vop_openextattr_args /* { 1534 struct vnodeop_desc *a_desc; 1535 struct vnode *a_vp; 1536 IN struct ucred *a_cred; 1537 IN struct thread *a_td; 1538 } */ *ap) 1539 { 1540 1541 if (ap->a_vp->v_type == VCHR || ap->a_vp->v_type == VBLK) 1542 return (EOPNOTSUPP); 1543 1544 return (ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td)); 1545 } 1546 1547 /* 1548 * Vnode extattr transaction commit/abort 1549 */ 1550 static int 1551 ffs_closeextattr( 1552 struct vop_closeextattr_args /* { 1553 struct vnodeop_desc *a_desc; 1554 struct vnode *a_vp; 1555 int a_commit; 1556 IN struct ucred *a_cred; 1557 IN struct thread *a_td; 1558 } */ *ap) 1559 { 1560 struct vnode *vp; 1561 1562 vp = ap->a_vp; 1563 if (vp->v_type == VCHR || vp->v_type == VBLK) 1564 return (EOPNOTSUPP); 1565 if (ap->a_commit && (vp->v_mount->mnt_flag & MNT_RDONLY) != 0) 1566 return (EROFS); 1567 1568 if (ap->a_commit && DOINGSUJ(vp)) { 1569 ASSERT_VOP_ELOCKED(vp, "ffs_closeextattr commit"); 1570 softdep_prealloc(vp, MNT_WAIT); 1571 if (vp->v_data == NULL) 1572 return (EBADF); 1573 } 1574 return (ffs_close_ea(vp, ap->a_commit, ap->a_cred, ap->a_td)); 1575 } 1576 1577 /* 1578 * Vnode operation to remove a named attribute. 1579 */ 1580 static int 1581 ffs_deleteextattr( 1582 struct vop_deleteextattr_args /* { 1583 IN struct vnode *a_vp; 1584 IN int a_attrnamespace; 1585 IN const char *a_name; 1586 IN struct ucred *a_cred; 1587 IN struct thread *a_td; 1588 } */ *ap) 1589 { 1590 struct vnode *vp; 1591 struct inode *ip; 1592 struct extattr *eap; 1593 uint32_t ul; 1594 int olen, error, i, easize; 1595 u_char *eae; 1596 void *tmp; 1597 1598 vp = ap->a_vp; 1599 ip = VTOI(vp); 1600 1601 if (vp->v_type == VCHR || vp->v_type == VBLK) 1602 return (EOPNOTSUPP); 1603 if (strlen(ap->a_name) == 0) 1604 return (EINVAL); 1605 if (vp->v_mount->mnt_flag & MNT_RDONLY) 1606 return (EROFS); 1607 1608 error = extattr_check_cred(vp, ap->a_attrnamespace, 1609 ap->a_cred, ap->a_td, VWRITE); 1610 if (error) { 1611 /* 1612 * ffs_lock_ea is not needed there, because the vnode 1613 * must be exclusively locked. 1614 */ 1615 if (ip->i_ea_area != NULL && ip->i_ea_error == 0) 1616 ip->i_ea_error = error; 1617 return (error); 1618 } 1619 1620 if (DOINGSUJ(vp)) { 1621 ASSERT_VOP_ELOCKED(vp, "ffs_deleteextattr"); 1622 softdep_prealloc(vp, MNT_WAIT); 1623 if (vp->v_data == NULL) 1624 return (EBADF); 1625 } 1626 1627 error = ffs_open_ea(vp, ap->a_cred, ap->a_td); 1628 if (error) 1629 return (error); 1630 1631 /* CEM: delete could be done in-place instead */ 1632 eae = malloc(ip->i_ea_len, M_TEMP, M_WAITOK); 1633 bcopy(ip->i_ea_area, eae, ip->i_ea_len); 1634 easize = ip->i_ea_len; 1635 1636 olen = ffs_findextattr(eae, easize, ap->a_attrnamespace, ap->a_name, 1637 &eap, NULL); 1638 if (olen == -1) { 1639 /* delete but nonexistent */ 1640 free(eae, M_TEMP); 1641 ffs_close_ea(vp, 0, ap->a_cred, ap->a_td); 1642 return (ENOATTR); 1643 } 1644 ul = eap->ea_length; 1645 i = (u_char *)EXTATTR_NEXT(eap) - eae; 1646 bcopy(EXTATTR_NEXT(eap), eap, easize - i); 1647 easize -= ul; 1648 1649 tmp = ip->i_ea_area; 1650 ip->i_ea_area = eae; 1651 ip->i_ea_len = easize; 1652 free(tmp, M_TEMP); 1653 error = ffs_close_ea(vp, 1, ap->a_cred, ap->a_td); 1654 return (error); 1655 } 1656 1657 /* 1658 * Vnode operation to retrieve a named extended attribute. 1659 */ 1660 static int 1661 ffs_getextattr( 1662 struct vop_getextattr_args /* { 1663 IN struct vnode *a_vp; 1664 IN int a_attrnamespace; 1665 IN const char *a_name; 1666 INOUT struct uio *a_uio; 1667 OUT size_t *a_size; 1668 IN struct ucred *a_cred; 1669 IN struct thread *a_td; 1670 } */ *ap) 1671 { 1672 struct inode *ip; 1673 u_char *eae, *p; 1674 unsigned easize; 1675 int error, ealen; 1676 1677 ip = VTOI(ap->a_vp); 1678 1679 if (ap->a_vp->v_type == VCHR || ap->a_vp->v_type == VBLK) 1680 return (EOPNOTSUPP); 1681 1682 error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace, 1683 ap->a_cred, ap->a_td, VREAD); 1684 if (error) 1685 return (error); 1686 1687 error = ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td); 1688 if (error) 1689 return (error); 1690 1691 eae = ip->i_ea_area; 1692 easize = ip->i_ea_len; 1693 1694 ealen = ffs_findextattr(eae, easize, ap->a_attrnamespace, ap->a_name, 1695 NULL, &p); 1696 if (ealen >= 0) { 1697 error = 0; 1698 if (ap->a_size != NULL) 1699 *ap->a_size = ealen; 1700 else if (ap->a_uio != NULL) 1701 error = uiomove(p, ealen, ap->a_uio); 1702 } else 1703 error = ENOATTR; 1704 1705 ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td); 1706 return (error); 1707 } 1708 1709 /* 1710 * Vnode operation to retrieve extended attributes on a vnode. 1711 */ 1712 static int 1713 ffs_listextattr( 1714 struct vop_listextattr_args /* { 1715 IN struct vnode *a_vp; 1716 IN int a_attrnamespace; 1717 INOUT struct uio *a_uio; 1718 OUT size_t *a_size; 1719 IN struct ucred *a_cred; 1720 IN struct thread *a_td; 1721 } */ *ap) 1722 { 1723 struct inode *ip; 1724 struct extattr *eap, *eaend; 1725 int error, ealen; 1726 1727 ip = VTOI(ap->a_vp); 1728 1729 if (ap->a_vp->v_type == VCHR || ap->a_vp->v_type == VBLK) 1730 return (EOPNOTSUPP); 1731 1732 error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace, 1733 ap->a_cred, ap->a_td, VREAD); 1734 if (error) 1735 return (error); 1736 1737 error = ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td); 1738 if (error) 1739 return (error); 1740 1741 error = 0; 1742 if (ap->a_size != NULL) 1743 *ap->a_size = 0; 1744 1745 KASSERT(ALIGNED_TO(ip->i_ea_area, struct extattr), ("unaligned")); 1746 eap = (struct extattr *)ip->i_ea_area; 1747 eaend = (struct extattr *)(ip->i_ea_area + ip->i_ea_len); 1748 for (; error == 0 && eap < eaend; eap = EXTATTR_NEXT(eap)) { 1749 KASSERT(EXTATTR_NEXT(eap) <= eaend, 1750 ("extattr next %p beyond %p", EXTATTR_NEXT(eap), eaend)); 1751 if (eap->ea_namespace != ap->a_attrnamespace) 1752 continue; 1753 1754 ealen = eap->ea_namelength; 1755 if (ap->a_size != NULL) 1756 *ap->a_size += ealen + 1; 1757 else if (ap->a_uio != NULL) 1758 error = uiomove(&eap->ea_namelength, ealen + 1, 1759 ap->a_uio); 1760 } 1761 1762 ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td); 1763 return (error); 1764 } 1765 1766 /* 1767 * Vnode operation to set a named attribute. 1768 */ 1769 static int 1770 ffs_setextattr( 1771 struct vop_setextattr_args /* { 1772 IN struct vnode *a_vp; 1773 IN int a_attrnamespace; 1774 IN const char *a_name; 1775 INOUT struct uio *a_uio; 1776 IN struct ucred *a_cred; 1777 IN struct thread *a_td; 1778 } */ *ap) 1779 { 1780 struct vnode *vp; 1781 struct inode *ip; 1782 struct fs *fs; 1783 struct extattr *eap; 1784 uint32_t ealength, ul; 1785 ssize_t ealen; 1786 int olen, eapad1, eapad2, error, i, easize; 1787 u_char *eae; 1788 void *tmp; 1789 1790 vp = ap->a_vp; 1791 ip = VTOI(vp); 1792 fs = ITOFS(ip); 1793 1794 if (vp->v_type == VCHR || vp->v_type == VBLK) 1795 return (EOPNOTSUPP); 1796 if (strlen(ap->a_name) == 0) 1797 return (EINVAL); 1798 1799 /* XXX Now unsupported API to delete EAs using NULL uio. */ 1800 if (ap->a_uio == NULL) 1801 return (EOPNOTSUPP); 1802 1803 if (vp->v_mount->mnt_flag & MNT_RDONLY) 1804 return (EROFS); 1805 1806 ealen = ap->a_uio->uio_resid; 1807 if (ealen < 0 || ealen > lblktosize(fs, UFS_NXADDR)) 1808 return (EINVAL); 1809 1810 error = extattr_check_cred(vp, ap->a_attrnamespace, 1811 ap->a_cred, ap->a_td, VWRITE); 1812 if (error) { 1813 /* 1814 * ffs_lock_ea is not needed there, because the vnode 1815 * must be exclusively locked. 1816 */ 1817 if (ip->i_ea_area != NULL && ip->i_ea_error == 0) 1818 ip->i_ea_error = error; 1819 return (error); 1820 } 1821 1822 if (DOINGSUJ(vp)) { 1823 ASSERT_VOP_ELOCKED(vp, "ffs_deleteextattr"); 1824 softdep_prealloc(vp, MNT_WAIT); 1825 if (vp->v_data == NULL) 1826 return (EBADF); 1827 } 1828 1829 error = ffs_open_ea(vp, ap->a_cred, ap->a_td); 1830 if (error) 1831 return (error); 1832 1833 ealength = sizeof(uint32_t) + 3 + strlen(ap->a_name); 1834 eapad1 = roundup2(ealength, 8) - ealength; 1835 eapad2 = roundup2(ealen, 8) - ealen; 1836 ealength += eapad1 + ealen + eapad2; 1837 1838 /* 1839 * CEM: rewrites of the same size or smaller could be done in-place 1840 * instead. (We don't acquire any fine-grained locks in here either, 1841 * so we could also do bigger writes in-place.) 1842 */ 1843 eae = malloc(ip->i_ea_len + ealength, M_TEMP, M_WAITOK); 1844 bcopy(ip->i_ea_area, eae, ip->i_ea_len); 1845 easize = ip->i_ea_len; 1846 1847 olen = ffs_findextattr(eae, easize, ap->a_attrnamespace, ap->a_name, 1848 &eap, NULL); 1849 if (olen == -1) { 1850 /* new, append at end */ 1851 KASSERT(ALIGNED_TO(eae + easize, struct extattr), 1852 ("unaligned")); 1853 eap = (struct extattr *)(eae + easize); 1854 easize += ealength; 1855 } else { 1856 ul = eap->ea_length; 1857 i = (u_char *)EXTATTR_NEXT(eap) - eae; 1858 if (ul != ealength) { 1859 bcopy(EXTATTR_NEXT(eap), (u_char *)eap + ealength, 1860 easize - i); 1861 easize += (ealength - ul); 1862 } 1863 } 1864 if (easize > lblktosize(fs, UFS_NXADDR)) { 1865 free(eae, M_TEMP); 1866 ffs_close_ea(vp, 0, ap->a_cred, ap->a_td); 1867 if (ip->i_ea_area != NULL && ip->i_ea_error == 0) 1868 ip->i_ea_error = ENOSPC; 1869 return (ENOSPC); 1870 } 1871 eap->ea_length = ealength; 1872 eap->ea_namespace = ap->a_attrnamespace; 1873 eap->ea_contentpadlen = eapad2; 1874 eap->ea_namelength = strlen(ap->a_name); 1875 memcpy(eap->ea_name, ap->a_name, strlen(ap->a_name)); 1876 bzero(&eap->ea_name[strlen(ap->a_name)], eapad1); 1877 error = uiomove(EXTATTR_CONTENT(eap), ealen, ap->a_uio); 1878 if (error) { 1879 free(eae, M_TEMP); 1880 ffs_close_ea(vp, 0, ap->a_cred, ap->a_td); 1881 if (ip->i_ea_area != NULL && ip->i_ea_error == 0) 1882 ip->i_ea_error = error; 1883 return (error); 1884 } 1885 bzero((u_char *)EXTATTR_CONTENT(eap) + ealen, eapad2); 1886 1887 tmp = ip->i_ea_area; 1888 ip->i_ea_area = eae; 1889 ip->i_ea_len = easize; 1890 free(tmp, M_TEMP); 1891 error = ffs_close_ea(vp, 1, ap->a_cred, ap->a_td); 1892 return (error); 1893 } 1894 1895 /* 1896 * Vnode pointer to File handle 1897 */ 1898 static int 1899 ffs_vptofh( 1900 struct vop_vptofh_args /* { 1901 IN struct vnode *a_vp; 1902 IN struct fid *a_fhp; 1903 } */ *ap) 1904 { 1905 struct inode *ip; 1906 struct ufid *ufhp; 1907 1908 ip = VTOI(ap->a_vp); 1909 ufhp = (struct ufid *)ap->a_fhp; 1910 ufhp->ufid_len = sizeof(struct ufid); 1911 ufhp->ufid_ino = ip->i_number; 1912 ufhp->ufid_gen = ip->i_gen; 1913 return (0); 1914 } 1915 1916 SYSCTL_DECL(_vfs_ffs); 1917 static int use_buf_pager = 1; 1918 SYSCTL_INT(_vfs_ffs, OID_AUTO, use_buf_pager, CTLFLAG_RWTUN, &use_buf_pager, 0, 1919 "Always use buffer pager instead of bmap"); 1920 1921 static daddr_t 1922 ffs_gbp_getblkno(struct vnode *vp, vm_ooffset_t off) 1923 { 1924 1925 return (lblkno(VFSTOUFS(vp->v_mount)->um_fs, off)); 1926 } 1927 1928 static int 1929 ffs_gbp_getblksz(struct vnode *vp, daddr_t lbn, long *sz) 1930 { 1931 1932 *sz = blksize(VFSTOUFS(vp->v_mount)->um_fs, VTOI(vp), lbn); 1933 return (0); 1934 } 1935 1936 static int 1937 ffs_getpages(struct vop_getpages_args *ap) 1938 { 1939 struct vnode *vp; 1940 struct ufsmount *um; 1941 1942 vp = ap->a_vp; 1943 um = VFSTOUFS(vp->v_mount); 1944 1945 if (!use_buf_pager && um->um_devvp->v_bufobj.bo_bsize <= PAGE_SIZE) 1946 return (vnode_pager_generic_getpages(vp, ap->a_m, ap->a_count, 1947 ap->a_rbehind, ap->a_rahead, NULL, NULL)); 1948 return (vfs_bio_getpages(vp, ap->a_m, ap->a_count, ap->a_rbehind, 1949 ap->a_rahead, ffs_gbp_getblkno, ffs_gbp_getblksz)); 1950 } 1951 1952 static int 1953 ffs_getpages_async(struct vop_getpages_async_args *ap) 1954 { 1955 struct vnode *vp; 1956 struct ufsmount *um; 1957 bool do_iodone; 1958 int error; 1959 1960 vp = ap->a_vp; 1961 um = VFSTOUFS(vp->v_mount); 1962 do_iodone = true; 1963 1964 if (um->um_devvp->v_bufobj.bo_bsize <= PAGE_SIZE) { 1965 error = vnode_pager_generic_getpages(vp, ap->a_m, ap->a_count, 1966 ap->a_rbehind, ap->a_rahead, ap->a_iodone, ap->a_arg); 1967 if (error == 0) 1968 do_iodone = false; 1969 } else { 1970 error = vfs_bio_getpages(vp, ap->a_m, ap->a_count, 1971 ap->a_rbehind, ap->a_rahead, ffs_gbp_getblkno, 1972 ffs_gbp_getblksz); 1973 } 1974 if (do_iodone && ap->a_iodone != NULL) 1975 ap->a_iodone(ap->a_arg, ap->a_m, ap->a_count, error); 1976 1977 return (error); 1978 } 1979 1980 static int 1981 ffs_vput_pair(struct vop_vput_pair_args *ap) 1982 { 1983 struct mount *mp; 1984 struct vnode *dvp, *vp, *vp1, **vpp; 1985 struct inode *dp, *ip; 1986 ino_t ip_ino; 1987 u_int64_t ip_gen; 1988 int error, vp_locked; 1989 1990 dvp = ap->a_dvp; 1991 dp = VTOI(dvp); 1992 vpp = ap->a_vpp; 1993 vp = vpp != NULL ? *vpp : NULL; 1994 1995 if ((dp->i_flag & (IN_NEEDSYNC | IN_ENDOFF)) == 0) { 1996 vput(dvp); 1997 if (vp != NULL && ap->a_unlock_vp) 1998 vput(vp); 1999 return (0); 2000 } 2001 2002 mp = dvp->v_mount; 2003 if (vp != NULL) { 2004 if (ap->a_unlock_vp) { 2005 vput(vp); 2006 } else { 2007 MPASS(vp->v_type != VNON); 2008 vp_locked = VOP_ISLOCKED(vp); 2009 ip = VTOI(vp); 2010 ip_ino = ip->i_number; 2011 ip_gen = ip->i_gen; 2012 VOP_UNLOCK(vp); 2013 } 2014 } 2015 2016 /* 2017 * If compaction or fsync was requested do it in ffs_vput_pair() 2018 * now that other locks are no longer held. 2019 */ 2020 if ((dp->i_flag & IN_ENDOFF) != 0) { 2021 VNASSERT(I_ENDOFF(dp) != 0 && I_ENDOFF(dp) < dp->i_size, dvp, 2022 ("IN_ENDOFF set but I_ENDOFF() is not")); 2023 dp->i_flag &= ~IN_ENDOFF; 2024 error = UFS_TRUNCATE(dvp, (off_t)I_ENDOFF(dp), IO_NORMAL | 2025 (DOINGASYNC(dvp) ? 0 : IO_SYNC), curthread->td_ucred); 2026 if (error != 0 && error != ERELOOKUP) { 2027 if (!ffs_fsfail_cleanup(VFSTOUFS(mp), error)) { 2028 vn_printf(dvp, 2029 "IN_ENDOFF: failed to truncate, " 2030 "error %d\n", error); 2031 } 2032 #ifdef UFS_DIRHASH 2033 ufsdirhash_free(dp); 2034 #endif 2035 } 2036 SET_I_ENDOFF(dp, 0); 2037 } 2038 if ((dp->i_flag & IN_NEEDSYNC) != 0) { 2039 do { 2040 error = ffs_syncvnode(dvp, MNT_WAIT, 0); 2041 } while (error == ERELOOKUP); 2042 } 2043 2044 vput(dvp); 2045 2046 if (vp == NULL || ap->a_unlock_vp) 2047 return (0); 2048 MPASS(mp != NULL); 2049 2050 /* 2051 * It is possible that vp is reclaimed at this point. Only 2052 * routines that call us with a_unlock_vp == false can find 2053 * that their vp has been reclaimed. There are three areas 2054 * that are affected: 2055 * 1) vn_open_cred() - later VOPs could fail, but 2056 * dead_open() returns 0 to simulate successful open. 2057 * 2) ffs_snapshot() - creation of snapshot fails with EBADF. 2058 * 3) NFS server (several places) - code is prepared to detect 2059 * and respond to dead vnodes by returning ESTALE. 2060 */ 2061 VOP_LOCK(vp, vp_locked | LK_RETRY); 2062 if (IS_UFS(vp)) 2063 return (0); 2064 2065 /* 2066 * Try harder to recover from reclaimed vp if reclaim was not 2067 * because underlying inode was cleared. We saved inode 2068 * number and inode generation, so we can try to reinstantiate 2069 * exactly same version of inode. If this fails, return 2070 * original doomed vnode and let caller to handle 2071 * consequences. 2072 * 2073 * Note that callers must keep write started around 2074 * VOP_VPUT_PAIR() calls, so it is safe to use mp without 2075 * busying it. 2076 */ 2077 VOP_UNLOCK(vp); 2078 error = ffs_inotovp(mp, ip_ino, ip_gen, LK_EXCLUSIVE, &vp1, 2079 FFSV_REPLACE_DOOMED); 2080 if (error != 0) { 2081 VOP_LOCK(vp, vp_locked | LK_RETRY); 2082 } else { 2083 vrele(vp); 2084 *vpp = vp1; 2085 } 2086 return (error); 2087 } 2088