xref: /freebsd/sys/ufs/ffs/ffs_vnops.c (revision 884a2a699669ec61e2366e3e358342dbc94be24a)
1 /*-
2  * Copyright (c) 2002, 2003 Networks Associates Technology, Inc.
3  * All rights reserved.
4  *
5  * This software was developed for the FreeBSD Project by Marshall
6  * Kirk McKusick and Network Associates Laboratories, the Security
7  * Research Division of Network Associates, Inc. under DARPA/SPAWAR
8  * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
9  * research program
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  * Copyright (c) 1982, 1986, 1989, 1993
33  *	The Regents of the University of California.  All rights reserved.
34  *
35  * Redistribution and use in source and binary forms, with or without
36  * modification, are permitted provided that the following conditions
37  * are met:
38  * 1. Redistributions of source code must retain the above copyright
39  *    notice, this list of conditions and the following disclaimer.
40  * 2. Redistributions in binary form must reproduce the above copyright
41  *    notice, this list of conditions and the following disclaimer in the
42  *    documentation and/or other materials provided with the distribution.
43  * 4. Neither the name of the University nor the names of its contributors
44  *    may be used to endorse or promote products derived from this software
45  *    without specific prior written permission.
46  *
47  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
48  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
49  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
50  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
51  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
52  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
53  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
54  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
55  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
56  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
57  * SUCH DAMAGE.
58  *
59  *	from: @(#)ufs_readwrite.c	8.11 (Berkeley) 5/8/95
60  * from: $FreeBSD: .../ufs/ufs_readwrite.c,v 1.96 2002/08/12 09:22:11 phk ...
61  *	@(#)ffs_vnops.c	8.15 (Berkeley) 5/14/95
62  */
63 
64 #include <sys/cdefs.h>
65 __FBSDID("$FreeBSD$");
66 
67 #include <sys/param.h>
68 #include <sys/bio.h>
69 #include <sys/systm.h>
70 #include <sys/buf.h>
71 #include <sys/conf.h>
72 #include <sys/extattr.h>
73 #include <sys/kernel.h>
74 #include <sys/limits.h>
75 #include <sys/malloc.h>
76 #include <sys/mount.h>
77 #include <sys/priv.h>
78 #include <sys/stat.h>
79 #include <sys/vmmeter.h>
80 #include <sys/vnode.h>
81 
82 #include <vm/vm.h>
83 #include <vm/vm_extern.h>
84 #include <vm/vm_object.h>
85 #include <vm/vm_page.h>
86 #include <vm/vm_pager.h>
87 #include <vm/vnode_pager.h>
88 
89 #include <ufs/ufs/extattr.h>
90 #include <ufs/ufs/quota.h>
91 #include <ufs/ufs/inode.h>
92 #include <ufs/ufs/ufs_extern.h>
93 #include <ufs/ufs/ufsmount.h>
94 
95 #include <ufs/ffs/fs.h>
96 #include <ufs/ffs/ffs_extern.h>
97 #include "opt_directio.h"
98 #include "opt_ffs.h"
99 
100 #ifdef DIRECTIO
101 extern int	ffs_rawread(struct vnode *vp, struct uio *uio, int *workdone);
102 #endif
103 static vop_fsync_t	ffs_fsync;
104 static vop_lock1_t	ffs_lock;
105 static vop_getpages_t	ffs_getpages;
106 static vop_read_t	ffs_read;
107 static vop_write_t	ffs_write;
108 static int	ffs_extread(struct vnode *vp, struct uio *uio, int ioflag);
109 static int	ffs_extwrite(struct vnode *vp, struct uio *uio, int ioflag,
110 		    struct ucred *cred);
111 static vop_strategy_t	ffsext_strategy;
112 static vop_closeextattr_t	ffs_closeextattr;
113 static vop_deleteextattr_t	ffs_deleteextattr;
114 static vop_getextattr_t	ffs_getextattr;
115 static vop_listextattr_t	ffs_listextattr;
116 static vop_openextattr_t	ffs_openextattr;
117 static vop_setextattr_t	ffs_setextattr;
118 static vop_vptofh_t	ffs_vptofh;
119 
120 
121 /* Global vfs data structures for ufs. */
122 struct vop_vector ffs_vnodeops1 = {
123 	.vop_default =		&ufs_vnodeops,
124 	.vop_fsync =		ffs_fsync,
125 	.vop_getpages =		ffs_getpages,
126 	.vop_lock1 =		ffs_lock,
127 	.vop_read =		ffs_read,
128 	.vop_reallocblks =	ffs_reallocblks,
129 	.vop_write =		ffs_write,
130 	.vop_vptofh =		ffs_vptofh,
131 };
132 
133 struct vop_vector ffs_fifoops1 = {
134 	.vop_default =		&ufs_fifoops,
135 	.vop_fsync =		ffs_fsync,
136 	.vop_reallocblks =	ffs_reallocblks, /* XXX: really ??? */
137 	.vop_vptofh =		ffs_vptofh,
138 };
139 
140 /* Global vfs data structures for ufs. */
141 struct vop_vector ffs_vnodeops2 = {
142 	.vop_default =		&ufs_vnodeops,
143 	.vop_fsync =		ffs_fsync,
144 	.vop_getpages =		ffs_getpages,
145 	.vop_lock1 =		ffs_lock,
146 	.vop_read =		ffs_read,
147 	.vop_reallocblks =	ffs_reallocblks,
148 	.vop_write =		ffs_write,
149 	.vop_closeextattr =	ffs_closeextattr,
150 	.vop_deleteextattr =	ffs_deleteextattr,
151 	.vop_getextattr =	ffs_getextattr,
152 	.vop_listextattr =	ffs_listextattr,
153 	.vop_openextattr =	ffs_openextattr,
154 	.vop_setextattr =	ffs_setextattr,
155 	.vop_vptofh =		ffs_vptofh,
156 };
157 
158 struct vop_vector ffs_fifoops2 = {
159 	.vop_default =		&ufs_fifoops,
160 	.vop_fsync =		ffs_fsync,
161 	.vop_lock1 =		ffs_lock,
162 	.vop_reallocblks =	ffs_reallocblks,
163 	.vop_strategy =		ffsext_strategy,
164 	.vop_closeextattr =	ffs_closeextattr,
165 	.vop_deleteextattr =	ffs_deleteextattr,
166 	.vop_getextattr =	ffs_getextattr,
167 	.vop_listextattr =	ffs_listextattr,
168 	.vop_openextattr =	ffs_openextattr,
169 	.vop_setextattr =	ffs_setextattr,
170 	.vop_vptofh =		ffs_vptofh,
171 };
172 
173 /*
174  * Synch an open file.
175  */
176 /* ARGSUSED */
177 static int
178 ffs_fsync(struct vop_fsync_args *ap)
179 {
180 	struct vnode *vp;
181 	struct bufobj *bo;
182 	int error;
183 
184 	vp = ap->a_vp;
185 	bo = &vp->v_bufobj;
186 retry:
187 	error = ffs_syncvnode(vp, ap->a_waitfor);
188 	if (error)
189 		return (error);
190 	if (ap->a_waitfor == MNT_WAIT &&
191 	    (vp->v_mount->mnt_flag & MNT_SOFTDEP)) {
192 		error = softdep_fsync(vp);
193 		if (error)
194 			return (error);
195 
196 		/*
197 		 * The softdep_fsync() function may drop vp lock,
198 		 * allowing for dirty buffers to reappear on the
199 		 * bo_dirty list. Recheck and resync as needed.
200 		 */
201 		BO_LOCK(bo);
202 		if (vp->v_type == VREG && (bo->bo_numoutput > 0 ||
203 		    bo->bo_dirty.bv_cnt > 0)) {
204 			BO_UNLOCK(bo);
205 			goto retry;
206 		}
207 		BO_UNLOCK(bo);
208 	}
209 	return (0);
210 }
211 
212 int
213 ffs_syncvnode(struct vnode *vp, int waitfor)
214 {
215 	struct inode *ip = VTOI(vp);
216 	struct bufobj *bo;
217 	struct buf *bp;
218 	struct buf *nbp;
219 	int s, error, wait, passes, skipmeta;
220 	ufs_lbn_t lbn;
221 
222 	wait = (waitfor == MNT_WAIT);
223 	lbn = lblkno(ip->i_fs, (ip->i_size + ip->i_fs->fs_bsize - 1));
224 	bo = &vp->v_bufobj;
225 	ip->i_flag &= ~IN_NEEDSYNC;
226 
227 	/*
228 	 * Flush all dirty buffers associated with a vnode.
229 	 */
230 	passes = NIADDR + 1;
231 	skipmeta = 0;
232 	if (wait)
233 		skipmeta = 1;
234 	s = splbio();
235 	BO_LOCK(bo);
236 loop:
237 	TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs)
238 		bp->b_vflags &= ~BV_SCANNED;
239 	TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
240 		/*
241 		 * Reasons to skip this buffer: it has already been considered
242 		 * on this pass, this pass is the first time through on a
243 		 * synchronous flush request and the buffer being considered
244 		 * is metadata, the buffer has dependencies that will cause
245 		 * it to be redirtied and it has not already been deferred,
246 		 * or it is already being written.
247 		 */
248 		if ((bp->b_vflags & BV_SCANNED) != 0)
249 			continue;
250 		bp->b_vflags |= BV_SCANNED;
251 		if ((skipmeta == 1 && bp->b_lblkno < 0))
252 			continue;
253 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL))
254 			continue;
255 		BO_UNLOCK(bo);
256 		if (!wait && !LIST_EMPTY(&bp->b_dep) &&
257 		    (bp->b_flags & B_DEFERRED) == 0 &&
258 		    buf_countdeps(bp, 0)) {
259 			bp->b_flags |= B_DEFERRED;
260 			BUF_UNLOCK(bp);
261 			BO_LOCK(bo);
262 			continue;
263 		}
264 		if ((bp->b_flags & B_DELWRI) == 0)
265 			panic("ffs_fsync: not dirty");
266 		/*
267 		 * If this is a synchronous flush request, or it is not a
268 		 * file or device, start the write on this buffer immediately.
269 		 */
270 		if (wait || (vp->v_type != VREG && vp->v_type != VBLK)) {
271 
272 			/*
273 			 * On our final pass through, do all I/O synchronously
274 			 * so that we can find out if our flush is failing
275 			 * because of write errors.
276 			 */
277 			if (passes > 0 || !wait) {
278 				if ((bp->b_flags & B_CLUSTEROK) && !wait) {
279 					(void) vfs_bio_awrite(bp);
280 				} else {
281 					bremfree(bp);
282 					splx(s);
283 					(void) bawrite(bp);
284 					s = splbio();
285 				}
286 			} else {
287 				bremfree(bp);
288 				splx(s);
289 				if ((error = bwrite(bp)) != 0)
290 					return (error);
291 				s = splbio();
292 			}
293 		} else if ((vp->v_type == VREG) && (bp->b_lblkno >= lbn)) {
294 			/*
295 			 * If the buffer is for data that has been truncated
296 			 * off the file, then throw it away.
297 			 */
298 			bremfree(bp);
299 			bp->b_flags |= B_INVAL | B_NOCACHE;
300 			splx(s);
301 			brelse(bp);
302 			s = splbio();
303 		} else
304 			vfs_bio_awrite(bp);
305 
306 		/*
307 		 * Since we may have slept during the I/O, we need
308 		 * to start from a known point.
309 		 */
310 		BO_LOCK(bo);
311 		nbp = TAILQ_FIRST(&bo->bo_dirty.bv_hd);
312 	}
313 	/*
314 	 * If we were asked to do this synchronously, then go back for
315 	 * another pass, this time doing the metadata.
316 	 */
317 	if (skipmeta) {
318 		skipmeta = 0;
319 		goto loop;
320 	}
321 
322 	if (wait) {
323 		bufobj_wwait(bo, 3, 0);
324 		BO_UNLOCK(bo);
325 
326 		/*
327 		 * Ensure that any filesystem metatdata associated
328 		 * with the vnode has been written.
329 		 */
330 		splx(s);
331 		if ((error = softdep_sync_metadata(vp)) != 0)
332 			return (error);
333 		s = splbio();
334 
335 		BO_LOCK(bo);
336 		if (bo->bo_dirty.bv_cnt > 0) {
337 			/*
338 			 * Block devices associated with filesystems may
339 			 * have new I/O requests posted for them even if
340 			 * the vnode is locked, so no amount of trying will
341 			 * get them clean. Thus we give block devices a
342 			 * good effort, then just give up. For all other file
343 			 * types, go around and try again until it is clean.
344 			 */
345 			if (passes > 0) {
346 				passes -= 1;
347 				goto loop;
348 			}
349 #ifdef INVARIANTS
350 			if (!vn_isdisk(vp, NULL))
351 				vprint("ffs_fsync: dirty", vp);
352 #endif
353 		}
354 	}
355 	BO_UNLOCK(bo);
356 	splx(s);
357 	return (ffs_update(vp, wait));
358 }
359 
360 static int
361 ffs_lock(ap)
362 	struct vop_lock1_args /* {
363 		struct vnode *a_vp;
364 		int a_flags;
365 		struct thread *a_td;
366 		char *file;
367 		int line;
368 	} */ *ap;
369 {
370 #ifndef NO_FFS_SNAPSHOT
371 	struct vnode *vp;
372 	int flags;
373 	struct lock *lkp;
374 	int result;
375 
376 	switch (ap->a_flags & LK_TYPE_MASK) {
377 	case LK_SHARED:
378 	case LK_UPGRADE:
379 	case LK_EXCLUSIVE:
380 		vp = ap->a_vp;
381 		flags = ap->a_flags;
382 		for (;;) {
383 #ifdef DEBUG_VFS_LOCKS
384 			KASSERT(vp->v_holdcnt != 0,
385 			    ("ffs_lock %p: zero hold count", vp));
386 #endif
387 			lkp = vp->v_vnlock;
388 			result = _lockmgr_args(lkp, flags, VI_MTX(vp),
389 			    LK_WMESG_DEFAULT, LK_PRIO_DEFAULT, LK_TIMO_DEFAULT,
390 			    ap->a_file, ap->a_line);
391 			if (lkp == vp->v_vnlock || result != 0)
392 				break;
393 			/*
394 			 * Apparent success, except that the vnode
395 			 * mutated between snapshot file vnode and
396 			 * regular file vnode while this process
397 			 * slept.  The lock currently held is not the
398 			 * right lock.  Release it, and try to get the
399 			 * new lock.
400 			 */
401 			(void) _lockmgr_args(lkp, LK_RELEASE, NULL,
402 			    LK_WMESG_DEFAULT, LK_PRIO_DEFAULT, LK_TIMO_DEFAULT,
403 			    ap->a_file, ap->a_line);
404 			if ((flags & (LK_INTERLOCK | LK_NOWAIT)) ==
405 			    (LK_INTERLOCK | LK_NOWAIT))
406 				return (EBUSY);
407 			if ((flags & LK_TYPE_MASK) == LK_UPGRADE)
408 				flags = (flags & ~LK_TYPE_MASK) | LK_EXCLUSIVE;
409 			flags &= ~LK_INTERLOCK;
410 		}
411 		break;
412 	default:
413 		result = VOP_LOCK1_APV(&ufs_vnodeops, ap);
414 	}
415 	return (result);
416 #else
417 	return (VOP_LOCK1_APV(&ufs_vnodeops, ap));
418 #endif
419 }
420 
421 /*
422  * Vnode op for reading.
423  */
424 /* ARGSUSED */
425 static int
426 ffs_read(ap)
427 	struct vop_read_args /* {
428 		struct vnode *a_vp;
429 		struct uio *a_uio;
430 		int a_ioflag;
431 		struct ucred *a_cred;
432 	} */ *ap;
433 {
434 	struct vnode *vp;
435 	struct inode *ip;
436 	struct uio *uio;
437 	struct fs *fs;
438 	struct buf *bp;
439 	ufs_lbn_t lbn, nextlbn;
440 	off_t bytesinfile;
441 	long size, xfersize, blkoffset;
442 	int error, orig_resid;
443 	int seqcount;
444 	int ioflag;
445 
446 	vp = ap->a_vp;
447 	uio = ap->a_uio;
448 	ioflag = ap->a_ioflag;
449 	if (ap->a_ioflag & IO_EXT)
450 #ifdef notyet
451 		return (ffs_extread(vp, uio, ioflag));
452 #else
453 		panic("ffs_read+IO_EXT");
454 #endif
455 #ifdef DIRECTIO
456 	if ((ioflag & IO_DIRECT) != 0) {
457 		int workdone;
458 
459 		error = ffs_rawread(vp, uio, &workdone);
460 		if (error != 0 || workdone != 0)
461 			return error;
462 	}
463 #endif
464 
465 	seqcount = ap->a_ioflag >> IO_SEQSHIFT;
466 	ip = VTOI(vp);
467 
468 #ifdef INVARIANTS
469 	if (uio->uio_rw != UIO_READ)
470 		panic("ffs_read: mode");
471 
472 	if (vp->v_type == VLNK) {
473 		if ((int)ip->i_size < vp->v_mount->mnt_maxsymlinklen)
474 			panic("ffs_read: short symlink");
475 	} else if (vp->v_type != VREG && vp->v_type != VDIR)
476 		panic("ffs_read: type %d",  vp->v_type);
477 #endif
478 	orig_resid = uio->uio_resid;
479 	KASSERT(orig_resid >= 0, ("ffs_read: uio->uio_resid < 0"));
480 	if (orig_resid == 0)
481 		return (0);
482 	KASSERT(uio->uio_offset >= 0, ("ffs_read: uio->uio_offset < 0"));
483 	fs = ip->i_fs;
484 	if (uio->uio_offset < ip->i_size &&
485 	    uio->uio_offset >= fs->fs_maxfilesize)
486 		return (EOVERFLOW);
487 
488 	for (error = 0, bp = NULL; uio->uio_resid > 0; bp = NULL) {
489 		if ((bytesinfile = ip->i_size - uio->uio_offset) <= 0)
490 			break;
491 		lbn = lblkno(fs, uio->uio_offset);
492 		nextlbn = lbn + 1;
493 
494 		/*
495 		 * size of buffer.  The buffer representing the
496 		 * end of the file is rounded up to the size of
497 		 * the block type ( fragment or full block,
498 		 * depending ).
499 		 */
500 		size = blksize(fs, ip, lbn);
501 		blkoffset = blkoff(fs, uio->uio_offset);
502 
503 		/*
504 		 * The amount we want to transfer in this iteration is
505 		 * one FS block less the amount of the data before
506 		 * our startpoint (duh!)
507 		 */
508 		xfersize = fs->fs_bsize - blkoffset;
509 
510 		/*
511 		 * But if we actually want less than the block,
512 		 * or the file doesn't have a whole block more of data,
513 		 * then use the lesser number.
514 		 */
515 		if (uio->uio_resid < xfersize)
516 			xfersize = uio->uio_resid;
517 		if (bytesinfile < xfersize)
518 			xfersize = bytesinfile;
519 
520 		if (lblktosize(fs, nextlbn) >= ip->i_size) {
521 			/*
522 			 * Don't do readahead if this is the end of the file.
523 			 */
524 			error = bread(vp, lbn, size, NOCRED, &bp);
525 		} else if ((vp->v_mount->mnt_flag & MNT_NOCLUSTERR) == 0) {
526 			/*
527 			 * Otherwise if we are allowed to cluster,
528 			 * grab as much as we can.
529 			 *
530 			 * XXX  This may not be a win if we are not
531 			 * doing sequential access.
532 			 */
533 			error = cluster_read(vp, ip->i_size, lbn,
534 				size, NOCRED, blkoffset + uio->uio_resid, seqcount, &bp);
535 		} else if (seqcount > 1) {
536 			/*
537 			 * If we are NOT allowed to cluster, then
538 			 * if we appear to be acting sequentially,
539 			 * fire off a request for a readahead
540 			 * as well as a read. Note that the 4th and 5th
541 			 * arguments point to arrays of the size specified in
542 			 * the 6th argument.
543 			 */
544 			int nextsize = blksize(fs, ip, nextlbn);
545 			error = breadn(vp, lbn,
546 			    size, &nextlbn, &nextsize, 1, NOCRED, &bp);
547 		} else {
548 			/*
549 			 * Failing all of the above, just read what the
550 			 * user asked for. Interestingly, the same as
551 			 * the first option above.
552 			 */
553 			error = bread(vp, lbn, size, NOCRED, &bp);
554 		}
555 		if (error) {
556 			brelse(bp);
557 			bp = NULL;
558 			break;
559 		}
560 
561 		/*
562 		 * If IO_DIRECT then set B_DIRECT for the buffer.  This
563 		 * will cause us to attempt to release the buffer later on
564 		 * and will cause the buffer cache to attempt to free the
565 		 * underlying pages.
566 		 */
567 		if (ioflag & IO_DIRECT)
568 			bp->b_flags |= B_DIRECT;
569 
570 		/*
571 		 * We should only get non-zero b_resid when an I/O error
572 		 * has occurred, which should cause us to break above.
573 		 * However, if the short read did not cause an error,
574 		 * then we want to ensure that we do not uiomove bad
575 		 * or uninitialized data.
576 		 */
577 		size -= bp->b_resid;
578 		if (size < xfersize) {
579 			if (size == 0)
580 				break;
581 			xfersize = size;
582 		}
583 
584 		error = uiomove((char *)bp->b_data + blkoffset,
585 		    (int)xfersize, uio);
586 		if (error)
587 			break;
588 
589 		if ((ioflag & (IO_VMIO|IO_DIRECT)) &&
590 		   (LIST_EMPTY(&bp->b_dep))) {
591 			/*
592 			 * If there are no dependencies, and it's VMIO,
593 			 * then we don't need the buf, mark it available
594 			 * for freeing.  For non-direct VMIO reads, the VM
595 			 * has the data.
596 			 */
597 			bp->b_flags |= B_RELBUF;
598 			brelse(bp);
599 		} else {
600 			/*
601 			 * Otherwise let whoever
602 			 * made the request take care of
603 			 * freeing it. We just queue
604 			 * it onto another list.
605 			 */
606 			bqrelse(bp);
607 		}
608 	}
609 
610 	/*
611 	 * This can only happen in the case of an error
612 	 * because the loop above resets bp to NULL on each iteration
613 	 * and on normal completion has not set a new value into it.
614 	 * so it must have come from a 'break' statement
615 	 */
616 	if (bp != NULL) {
617 		if ((ioflag & (IO_VMIO|IO_DIRECT)) &&
618 		   (LIST_EMPTY(&bp->b_dep))) {
619 			bp->b_flags |= B_RELBUF;
620 			brelse(bp);
621 		} else {
622 			bqrelse(bp);
623 		}
624 	}
625 
626 	if ((error == 0 || uio->uio_resid != orig_resid) &&
627 	    (vp->v_mount->mnt_flag & MNT_NOATIME) == 0 &&
628 	    (ip->i_flag & IN_ACCESS) == 0) {
629 		VI_LOCK(vp);
630 		ip->i_flag |= IN_ACCESS;
631 		VI_UNLOCK(vp);
632 	}
633 	return (error);
634 }
635 
636 /*
637  * Vnode op for writing.
638  */
639 static int
640 ffs_write(ap)
641 	struct vop_write_args /* {
642 		struct vnode *a_vp;
643 		struct uio *a_uio;
644 		int a_ioflag;
645 		struct ucred *a_cred;
646 	} */ *ap;
647 {
648 	struct vnode *vp;
649 	struct uio *uio;
650 	struct inode *ip;
651 	struct fs *fs;
652 	struct buf *bp;
653 	ufs_lbn_t lbn;
654 	off_t osize;
655 	int seqcount;
656 	int blkoffset, error, flags, ioflag, resid, size, xfersize;
657 
658 	vp = ap->a_vp;
659 	uio = ap->a_uio;
660 	ioflag = ap->a_ioflag;
661 	if (ap->a_ioflag & IO_EXT)
662 #ifdef notyet
663 		return (ffs_extwrite(vp, uio, ioflag, ap->a_cred));
664 #else
665 		panic("ffs_write+IO_EXT");
666 #endif
667 
668 	seqcount = ap->a_ioflag >> IO_SEQSHIFT;
669 	ip = VTOI(vp);
670 
671 #ifdef INVARIANTS
672 	if (uio->uio_rw != UIO_WRITE)
673 		panic("ffs_write: mode");
674 #endif
675 
676 	switch (vp->v_type) {
677 	case VREG:
678 		if (ioflag & IO_APPEND)
679 			uio->uio_offset = ip->i_size;
680 		if ((ip->i_flags & APPEND) && uio->uio_offset != ip->i_size)
681 			return (EPERM);
682 		/* FALLTHROUGH */
683 	case VLNK:
684 		break;
685 	case VDIR:
686 		panic("ffs_write: dir write");
687 		break;
688 	default:
689 		panic("ffs_write: type %p %d (%d,%d)", vp, (int)vp->v_type,
690 			(int)uio->uio_offset,
691 			(int)uio->uio_resid
692 		);
693 	}
694 
695 	KASSERT(uio->uio_resid >= 0, ("ffs_write: uio->uio_resid < 0"));
696 	KASSERT(uio->uio_offset >= 0, ("ffs_write: uio->uio_offset < 0"));
697 	fs = ip->i_fs;
698 	if ((uoff_t)uio->uio_offset + uio->uio_resid > fs->fs_maxfilesize)
699 		return (EFBIG);
700 	/*
701 	 * Maybe this should be above the vnode op call, but so long as
702 	 * file servers have no limits, I don't think it matters.
703 	 */
704 	if (vn_rlimit_fsize(vp, uio, uio->uio_td))
705 		return (EFBIG);
706 
707 	resid = uio->uio_resid;
708 	osize = ip->i_size;
709 	if (seqcount > BA_SEQMAX)
710 		flags = BA_SEQMAX << BA_SEQSHIFT;
711 	else
712 		flags = seqcount << BA_SEQSHIFT;
713 	if ((ioflag & IO_SYNC) && !DOINGASYNC(vp))
714 		flags |= IO_SYNC;
715 
716 	for (error = 0; uio->uio_resid > 0;) {
717 		lbn = lblkno(fs, uio->uio_offset);
718 		blkoffset = blkoff(fs, uio->uio_offset);
719 		xfersize = fs->fs_bsize - blkoffset;
720 		if (uio->uio_resid < xfersize)
721 			xfersize = uio->uio_resid;
722 		if (uio->uio_offset + xfersize > ip->i_size)
723 			vnode_pager_setsize(vp, uio->uio_offset + xfersize);
724 
725                 /*
726 		 * We must perform a read-before-write if the transfer size
727 		 * does not cover the entire buffer.
728                  */
729 		if (fs->fs_bsize > xfersize)
730 			flags |= BA_CLRBUF;
731 		else
732 			flags &= ~BA_CLRBUF;
733 /* XXX is uio->uio_offset the right thing here? */
734 		error = UFS_BALLOC(vp, uio->uio_offset, xfersize,
735 		    ap->a_cred, flags, &bp);
736 		if (error != 0) {
737 			vnode_pager_setsize(vp, ip->i_size);
738 			break;
739 		}
740 		/*
741 		 * If the buffer is not valid we have to clear out any
742 		 * garbage data from the pages instantiated for the buffer.
743 		 * If we do not, a failed uiomove() during a write can leave
744 		 * the prior contents of the pages exposed to a userland
745 		 * mmap().  XXX deal with uiomove() errors a better way.
746 		 */
747 		if ((bp->b_flags & B_CACHE) == 0 && fs->fs_bsize <= xfersize)
748 			vfs_bio_clrbuf(bp);
749 		if (ioflag & IO_DIRECT)
750 			bp->b_flags |= B_DIRECT;
751 		if ((ioflag & (IO_SYNC|IO_INVAL)) == (IO_SYNC|IO_INVAL))
752 			bp->b_flags |= B_NOCACHE;
753 
754 		if (uio->uio_offset + xfersize > ip->i_size) {
755 			ip->i_size = uio->uio_offset + xfersize;
756 			DIP_SET(ip, i_size, ip->i_size);
757 		}
758 
759 		size = blksize(fs, ip, lbn) - bp->b_resid;
760 		if (size < xfersize)
761 			xfersize = size;
762 
763 		error =
764 		    uiomove((char *)bp->b_data + blkoffset, (int)xfersize, uio);
765 		if ((ioflag & (IO_VMIO|IO_DIRECT)) &&
766 		   (LIST_EMPTY(&bp->b_dep))) {
767 			bp->b_flags |= B_RELBUF;
768 		}
769 
770 		/*
771 		 * If IO_SYNC each buffer is written synchronously.  Otherwise
772 		 * if we have a severe page deficiency write the buffer
773 		 * asynchronously.  Otherwise try to cluster, and if that
774 		 * doesn't do it then either do an async write (if O_DIRECT),
775 		 * or a delayed write (if not).
776 		 */
777 		if (ioflag & IO_SYNC) {
778 			(void)bwrite(bp);
779 		} else if (vm_page_count_severe() ||
780 			    buf_dirty_count_severe() ||
781 			    (ioflag & IO_ASYNC)) {
782 			bp->b_flags |= B_CLUSTEROK;
783 			bawrite(bp);
784 		} else if (xfersize + blkoffset == fs->fs_bsize) {
785 			if ((vp->v_mount->mnt_flag & MNT_NOCLUSTERW) == 0) {
786 				bp->b_flags |= B_CLUSTEROK;
787 				cluster_write(vp, bp, ip->i_size, seqcount);
788 			} else {
789 				bawrite(bp);
790 			}
791 		} else if (ioflag & IO_DIRECT) {
792 			bp->b_flags |= B_CLUSTEROK;
793 			bawrite(bp);
794 		} else {
795 			bp->b_flags |= B_CLUSTEROK;
796 			bdwrite(bp);
797 		}
798 		if (error || xfersize == 0)
799 			break;
800 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
801 	}
802 	/*
803 	 * If we successfully wrote any data, and we are not the superuser
804 	 * we clear the setuid and setgid bits as a precaution against
805 	 * tampering.
806 	 */
807 	if ((ip->i_mode & (ISUID | ISGID)) && resid > uio->uio_resid &&
808 	    ap->a_cred) {
809 		if (priv_check_cred(ap->a_cred, PRIV_VFS_RETAINSUGID, 0)) {
810 			ip->i_mode &= ~(ISUID | ISGID);
811 			DIP_SET(ip, i_mode, ip->i_mode);
812 		}
813 	}
814 	if (error) {
815 		if (ioflag & IO_UNIT) {
816 			(void)ffs_truncate(vp, osize,
817 			    IO_NORMAL | (ioflag & IO_SYNC),
818 			    ap->a_cred, uio->uio_td);
819 			uio->uio_offset -= resid - uio->uio_resid;
820 			uio->uio_resid = resid;
821 		}
822 	} else if (resid > uio->uio_resid && (ioflag & IO_SYNC))
823 		error = ffs_update(vp, 1);
824 	return (error);
825 }
826 
827 /*
828  * get page routine
829  */
830 static int
831 ffs_getpages(ap)
832 	struct vop_getpages_args *ap;
833 {
834 	int i;
835 	vm_page_t mreq;
836 	int pcount;
837 
838 	pcount = round_page(ap->a_count) / PAGE_SIZE;
839 	mreq = ap->a_m[ap->a_reqpage];
840 
841 	/*
842 	 * if ANY DEV_BSIZE blocks are valid on a large filesystem block,
843 	 * then the entire page is valid.  Since the page may be mapped,
844 	 * user programs might reference data beyond the actual end of file
845 	 * occuring within the page.  We have to zero that data.
846 	 */
847 	VM_OBJECT_LOCK(mreq->object);
848 	if (mreq->valid) {
849 		if (mreq->valid != VM_PAGE_BITS_ALL)
850 			vm_page_zero_invalid(mreq, TRUE);
851 		for (i = 0; i < pcount; i++) {
852 			if (i != ap->a_reqpage) {
853 				vm_page_lock(ap->a_m[i]);
854 				vm_page_free(ap->a_m[i]);
855 				vm_page_unlock(ap->a_m[i]);
856 			}
857 		}
858 		VM_OBJECT_UNLOCK(mreq->object);
859 		return VM_PAGER_OK;
860 	}
861 	VM_OBJECT_UNLOCK(mreq->object);
862 
863 	return vnode_pager_generic_getpages(ap->a_vp, ap->a_m,
864 					    ap->a_count,
865 					    ap->a_reqpage);
866 }
867 
868 
869 /*
870  * Extended attribute area reading.
871  */
872 static int
873 ffs_extread(struct vnode *vp, struct uio *uio, int ioflag)
874 {
875 	struct inode *ip;
876 	struct ufs2_dinode *dp;
877 	struct fs *fs;
878 	struct buf *bp;
879 	ufs_lbn_t lbn, nextlbn;
880 	off_t bytesinfile;
881 	long size, xfersize, blkoffset;
882 	int error, orig_resid;
883 
884 	ip = VTOI(vp);
885 	fs = ip->i_fs;
886 	dp = ip->i_din2;
887 
888 #ifdef INVARIANTS
889 	if (uio->uio_rw != UIO_READ || fs->fs_magic != FS_UFS2_MAGIC)
890 		panic("ffs_extread: mode");
891 
892 #endif
893 	orig_resid = uio->uio_resid;
894 	KASSERT(orig_resid >= 0, ("ffs_extread: uio->uio_resid < 0"));
895 	if (orig_resid == 0)
896 		return (0);
897 	KASSERT(uio->uio_offset >= 0, ("ffs_extread: uio->uio_offset < 0"));
898 
899 	for (error = 0, bp = NULL; uio->uio_resid > 0; bp = NULL) {
900 		if ((bytesinfile = dp->di_extsize - uio->uio_offset) <= 0)
901 			break;
902 		lbn = lblkno(fs, uio->uio_offset);
903 		nextlbn = lbn + 1;
904 
905 		/*
906 		 * size of buffer.  The buffer representing the
907 		 * end of the file is rounded up to the size of
908 		 * the block type ( fragment or full block,
909 		 * depending ).
910 		 */
911 		size = sblksize(fs, dp->di_extsize, lbn);
912 		blkoffset = blkoff(fs, uio->uio_offset);
913 
914 		/*
915 		 * The amount we want to transfer in this iteration is
916 		 * one FS block less the amount of the data before
917 		 * our startpoint (duh!)
918 		 */
919 		xfersize = fs->fs_bsize - blkoffset;
920 
921 		/*
922 		 * But if we actually want less than the block,
923 		 * or the file doesn't have a whole block more of data,
924 		 * then use the lesser number.
925 		 */
926 		if (uio->uio_resid < xfersize)
927 			xfersize = uio->uio_resid;
928 		if (bytesinfile < xfersize)
929 			xfersize = bytesinfile;
930 
931 		if (lblktosize(fs, nextlbn) >= dp->di_extsize) {
932 			/*
933 			 * Don't do readahead if this is the end of the info.
934 			 */
935 			error = bread(vp, -1 - lbn, size, NOCRED, &bp);
936 		} else {
937 			/*
938 			 * If we have a second block, then
939 			 * fire off a request for a readahead
940 			 * as well as a read. Note that the 4th and 5th
941 			 * arguments point to arrays of the size specified in
942 			 * the 6th argument.
943 			 */
944 			int nextsize = sblksize(fs, dp->di_extsize, nextlbn);
945 
946 			nextlbn = -1 - nextlbn;
947 			error = breadn(vp, -1 - lbn,
948 			    size, &nextlbn, &nextsize, 1, NOCRED, &bp);
949 		}
950 		if (error) {
951 			brelse(bp);
952 			bp = NULL;
953 			break;
954 		}
955 
956 		/*
957 		 * If IO_DIRECT then set B_DIRECT for the buffer.  This
958 		 * will cause us to attempt to release the buffer later on
959 		 * and will cause the buffer cache to attempt to free the
960 		 * underlying pages.
961 		 */
962 		if (ioflag & IO_DIRECT)
963 			bp->b_flags |= B_DIRECT;
964 
965 		/*
966 		 * We should only get non-zero b_resid when an I/O error
967 		 * has occurred, which should cause us to break above.
968 		 * However, if the short read did not cause an error,
969 		 * then we want to ensure that we do not uiomove bad
970 		 * or uninitialized data.
971 		 */
972 		size -= bp->b_resid;
973 		if (size < xfersize) {
974 			if (size == 0)
975 				break;
976 			xfersize = size;
977 		}
978 
979 		error = uiomove((char *)bp->b_data + blkoffset,
980 					(int)xfersize, uio);
981 		if (error)
982 			break;
983 
984 		if ((ioflag & (IO_VMIO|IO_DIRECT)) &&
985 		   (LIST_EMPTY(&bp->b_dep))) {
986 			/*
987 			 * If there are no dependencies, and it's VMIO,
988 			 * then we don't need the buf, mark it available
989 			 * for freeing.  For non-direct VMIO reads, the VM
990 			 * has the data.
991 			 */
992 			bp->b_flags |= B_RELBUF;
993 			brelse(bp);
994 		} else {
995 			/*
996 			 * Otherwise let whoever
997 			 * made the request take care of
998 			 * freeing it. We just queue
999 			 * it onto another list.
1000 			 */
1001 			bqrelse(bp);
1002 		}
1003 	}
1004 
1005 	/*
1006 	 * This can only happen in the case of an error
1007 	 * because the loop above resets bp to NULL on each iteration
1008 	 * and on normal completion has not set a new value into it.
1009 	 * so it must have come from a 'break' statement
1010 	 */
1011 	if (bp != NULL) {
1012 		if ((ioflag & (IO_VMIO|IO_DIRECT)) &&
1013 		   (LIST_EMPTY(&bp->b_dep))) {
1014 			bp->b_flags |= B_RELBUF;
1015 			brelse(bp);
1016 		} else {
1017 			bqrelse(bp);
1018 		}
1019 	}
1020 	return (error);
1021 }
1022 
1023 /*
1024  * Extended attribute area writing.
1025  */
1026 static int
1027 ffs_extwrite(struct vnode *vp, struct uio *uio, int ioflag, struct ucred *ucred)
1028 {
1029 	struct inode *ip;
1030 	struct ufs2_dinode *dp;
1031 	struct fs *fs;
1032 	struct buf *bp;
1033 	ufs_lbn_t lbn;
1034 	off_t osize;
1035 	int blkoffset, error, flags, resid, size, xfersize;
1036 
1037 	ip = VTOI(vp);
1038 	fs = ip->i_fs;
1039 	dp = ip->i_din2;
1040 
1041 #ifdef INVARIANTS
1042 	if (uio->uio_rw != UIO_WRITE || fs->fs_magic != FS_UFS2_MAGIC)
1043 		panic("ffs_extwrite: mode");
1044 #endif
1045 
1046 	if (ioflag & IO_APPEND)
1047 		uio->uio_offset = dp->di_extsize;
1048 	KASSERT(uio->uio_offset >= 0, ("ffs_extwrite: uio->uio_offset < 0"));
1049 	KASSERT(uio->uio_resid >= 0, ("ffs_extwrite: uio->uio_resid < 0"));
1050 	if ((uoff_t)uio->uio_offset + uio->uio_resid > NXADDR * fs->fs_bsize)
1051 		return (EFBIG);
1052 
1053 	resid = uio->uio_resid;
1054 	osize = dp->di_extsize;
1055 	flags = IO_EXT;
1056 	if ((ioflag & IO_SYNC) && !DOINGASYNC(vp))
1057 		flags |= IO_SYNC;
1058 
1059 	for (error = 0; uio->uio_resid > 0;) {
1060 		lbn = lblkno(fs, uio->uio_offset);
1061 		blkoffset = blkoff(fs, uio->uio_offset);
1062 		xfersize = fs->fs_bsize - blkoffset;
1063 		if (uio->uio_resid < xfersize)
1064 			xfersize = uio->uio_resid;
1065 
1066 		/*
1067 		 * We must perform a read-before-write if the transfer size
1068 		 * does not cover the entire buffer.
1069                  */
1070 		if (fs->fs_bsize > xfersize)
1071 			flags |= BA_CLRBUF;
1072 		else
1073 			flags &= ~BA_CLRBUF;
1074 		error = UFS_BALLOC(vp, uio->uio_offset, xfersize,
1075 		    ucred, flags, &bp);
1076 		if (error != 0)
1077 			break;
1078 		/*
1079 		 * If the buffer is not valid we have to clear out any
1080 		 * garbage data from the pages instantiated for the buffer.
1081 		 * If we do not, a failed uiomove() during a write can leave
1082 		 * the prior contents of the pages exposed to a userland
1083 		 * mmap().  XXX deal with uiomove() errors a better way.
1084 		 */
1085 		if ((bp->b_flags & B_CACHE) == 0 && fs->fs_bsize <= xfersize)
1086 			vfs_bio_clrbuf(bp);
1087 		if (ioflag & IO_DIRECT)
1088 			bp->b_flags |= B_DIRECT;
1089 
1090 		if (uio->uio_offset + xfersize > dp->di_extsize)
1091 			dp->di_extsize = uio->uio_offset + xfersize;
1092 
1093 		size = sblksize(fs, dp->di_extsize, lbn) - bp->b_resid;
1094 		if (size < xfersize)
1095 			xfersize = size;
1096 
1097 		error =
1098 		    uiomove((char *)bp->b_data + blkoffset, (int)xfersize, uio);
1099 		if ((ioflag & (IO_VMIO|IO_DIRECT)) &&
1100 		   (LIST_EMPTY(&bp->b_dep))) {
1101 			bp->b_flags |= B_RELBUF;
1102 		}
1103 
1104 		/*
1105 		 * If IO_SYNC each buffer is written synchronously.  Otherwise
1106 		 * if we have a severe page deficiency write the buffer
1107 		 * asynchronously.  Otherwise try to cluster, and if that
1108 		 * doesn't do it then either do an async write (if O_DIRECT),
1109 		 * or a delayed write (if not).
1110 		 */
1111 		if (ioflag & IO_SYNC) {
1112 			(void)bwrite(bp);
1113 		} else if (vm_page_count_severe() ||
1114 			    buf_dirty_count_severe() ||
1115 			    xfersize + blkoffset == fs->fs_bsize ||
1116 			    (ioflag & (IO_ASYNC | IO_DIRECT)))
1117 			bawrite(bp);
1118 		else
1119 			bdwrite(bp);
1120 		if (error || xfersize == 0)
1121 			break;
1122 		ip->i_flag |= IN_CHANGE;
1123 	}
1124 	/*
1125 	 * If we successfully wrote any data, and we are not the superuser
1126 	 * we clear the setuid and setgid bits as a precaution against
1127 	 * tampering.
1128 	 */
1129 	if ((ip->i_mode & (ISUID | ISGID)) && resid > uio->uio_resid && ucred) {
1130 		if (priv_check_cred(ucred, PRIV_VFS_RETAINSUGID, 0)) {
1131 			ip->i_mode &= ~(ISUID | ISGID);
1132 			dp->di_mode = ip->i_mode;
1133 		}
1134 	}
1135 	if (error) {
1136 		if (ioflag & IO_UNIT) {
1137 			(void)ffs_truncate(vp, osize,
1138 			    IO_EXT | (ioflag&IO_SYNC), ucred, uio->uio_td);
1139 			uio->uio_offset -= resid - uio->uio_resid;
1140 			uio->uio_resid = resid;
1141 		}
1142 	} else if (resid > uio->uio_resid && (ioflag & IO_SYNC))
1143 		error = ffs_update(vp, 1);
1144 	return (error);
1145 }
1146 
1147 
1148 /*
1149  * Vnode operating to retrieve a named extended attribute.
1150  *
1151  * Locate a particular EA (nspace:name) in the area (ptr:length), and return
1152  * the length of the EA, and possibly the pointer to the entry and to the data.
1153  */
1154 static int
1155 ffs_findextattr(u_char *ptr, u_int length, int nspace, const char *name, u_char **eap, u_char **eac)
1156 {
1157 	u_char *p, *pe, *pn, *p0;
1158 	int eapad1, eapad2, ealength, ealen, nlen;
1159 	uint32_t ul;
1160 
1161 	pe = ptr + length;
1162 	nlen = strlen(name);
1163 
1164 	for (p = ptr; p < pe; p = pn) {
1165 		p0 = p;
1166 		bcopy(p, &ul, sizeof(ul));
1167 		pn = p + ul;
1168 		/* make sure this entry is complete */
1169 		if (pn > pe)
1170 			break;
1171 		p += sizeof(uint32_t);
1172 		if (*p != nspace)
1173 			continue;
1174 		p++;
1175 		eapad2 = *p++;
1176 		if (*p != nlen)
1177 			continue;
1178 		p++;
1179 		if (bcmp(p, name, nlen))
1180 			continue;
1181 		ealength = sizeof(uint32_t) + 3 + nlen;
1182 		eapad1 = 8 - (ealength % 8);
1183 		if (eapad1 == 8)
1184 			eapad1 = 0;
1185 		ealength += eapad1;
1186 		ealen = ul - ealength - eapad2;
1187 		p += nlen + eapad1;
1188 		if (eap != NULL)
1189 			*eap = p0;
1190 		if (eac != NULL)
1191 			*eac = p;
1192 		return (ealen);
1193 	}
1194 	return(-1);
1195 }
1196 
1197 static int
1198 ffs_rdextattr(u_char **p, struct vnode *vp, struct thread *td, int extra)
1199 {
1200 	struct inode *ip;
1201 	struct ufs2_dinode *dp;
1202 	struct fs *fs;
1203 	struct uio luio;
1204 	struct iovec liovec;
1205 	int easize, error;
1206 	u_char *eae;
1207 
1208 	ip = VTOI(vp);
1209 	fs = ip->i_fs;
1210 	dp = ip->i_din2;
1211 	easize = dp->di_extsize;
1212 	if ((uoff_t)easize + extra > NXADDR * fs->fs_bsize)
1213 		return (EFBIG);
1214 
1215 	eae = malloc(easize + extra, M_TEMP, M_WAITOK);
1216 
1217 	liovec.iov_base = eae;
1218 	liovec.iov_len = easize;
1219 	luio.uio_iov = &liovec;
1220 	luio.uio_iovcnt = 1;
1221 	luio.uio_offset = 0;
1222 	luio.uio_resid = easize;
1223 	luio.uio_segflg = UIO_SYSSPACE;
1224 	luio.uio_rw = UIO_READ;
1225 	luio.uio_td = td;
1226 
1227 	error = ffs_extread(vp, &luio, IO_EXT | IO_SYNC);
1228 	if (error) {
1229 		free(eae, M_TEMP);
1230 		return(error);
1231 	}
1232 	*p = eae;
1233 	return (0);
1234 }
1235 
1236 static void
1237 ffs_lock_ea(struct vnode *vp)
1238 {
1239 	struct inode *ip;
1240 
1241 	ip = VTOI(vp);
1242 	VI_LOCK(vp);
1243 	while (ip->i_flag & IN_EA_LOCKED) {
1244 		ip->i_flag |= IN_EA_LOCKWAIT;
1245 		msleep(&ip->i_ea_refs, &vp->v_interlock, PINOD + 2, "ufs_ea",
1246 		    0);
1247 	}
1248 	ip->i_flag |= IN_EA_LOCKED;
1249 	VI_UNLOCK(vp);
1250 }
1251 
1252 static void
1253 ffs_unlock_ea(struct vnode *vp)
1254 {
1255 	struct inode *ip;
1256 
1257 	ip = VTOI(vp);
1258 	VI_LOCK(vp);
1259 	if (ip->i_flag & IN_EA_LOCKWAIT)
1260 		wakeup(&ip->i_ea_refs);
1261 	ip->i_flag &= ~(IN_EA_LOCKED | IN_EA_LOCKWAIT);
1262 	VI_UNLOCK(vp);
1263 }
1264 
1265 static int
1266 ffs_open_ea(struct vnode *vp, struct ucred *cred, struct thread *td)
1267 {
1268 	struct inode *ip;
1269 	struct ufs2_dinode *dp;
1270 	int error;
1271 
1272 	ip = VTOI(vp);
1273 
1274 	ffs_lock_ea(vp);
1275 	if (ip->i_ea_area != NULL) {
1276 		ip->i_ea_refs++;
1277 		ffs_unlock_ea(vp);
1278 		return (0);
1279 	}
1280 	dp = ip->i_din2;
1281 	error = ffs_rdextattr(&ip->i_ea_area, vp, td, 0);
1282 	if (error) {
1283 		ffs_unlock_ea(vp);
1284 		return (error);
1285 	}
1286 	ip->i_ea_len = dp->di_extsize;
1287 	ip->i_ea_error = 0;
1288 	ip->i_ea_refs++;
1289 	ffs_unlock_ea(vp);
1290 	return (0);
1291 }
1292 
1293 /*
1294  * Vnode extattr transaction commit/abort
1295  */
1296 static int
1297 ffs_close_ea(struct vnode *vp, int commit, struct ucred *cred, struct thread *td)
1298 {
1299 	struct inode *ip;
1300 	struct uio luio;
1301 	struct iovec liovec;
1302 	int error;
1303 	struct ufs2_dinode *dp;
1304 
1305 	ip = VTOI(vp);
1306 
1307 	ffs_lock_ea(vp);
1308 	if (ip->i_ea_area == NULL) {
1309 		ffs_unlock_ea(vp);
1310 		return (EINVAL);
1311 	}
1312 	dp = ip->i_din2;
1313 	error = ip->i_ea_error;
1314 	if (commit && error == 0) {
1315 		ASSERT_VOP_ELOCKED(vp, "ffs_close_ea commit");
1316 		if (cred == NOCRED)
1317 			cred =  vp->v_mount->mnt_cred;
1318 		liovec.iov_base = ip->i_ea_area;
1319 		liovec.iov_len = ip->i_ea_len;
1320 		luio.uio_iov = &liovec;
1321 		luio.uio_iovcnt = 1;
1322 		luio.uio_offset = 0;
1323 		luio.uio_resid = ip->i_ea_len;
1324 		luio.uio_segflg = UIO_SYSSPACE;
1325 		luio.uio_rw = UIO_WRITE;
1326 		luio.uio_td = td;
1327 		/* XXX: I'm not happy about truncating to zero size */
1328 		if (ip->i_ea_len < dp->di_extsize)
1329 			error = ffs_truncate(vp, 0, IO_EXT, cred, td);
1330 		error = ffs_extwrite(vp, &luio, IO_EXT | IO_SYNC, cred);
1331 	}
1332 	if (--ip->i_ea_refs == 0) {
1333 		free(ip->i_ea_area, M_TEMP);
1334 		ip->i_ea_area = NULL;
1335 		ip->i_ea_len = 0;
1336 		ip->i_ea_error = 0;
1337 	}
1338 	ffs_unlock_ea(vp);
1339 	return (error);
1340 }
1341 
1342 /*
1343  * Vnode extattr strategy routine for fifos.
1344  *
1345  * We need to check for a read or write of the external attributes.
1346  * Otherwise we just fall through and do the usual thing.
1347  */
1348 static int
1349 ffsext_strategy(struct vop_strategy_args *ap)
1350 /*
1351 struct vop_strategy_args {
1352 	struct vnodeop_desc *a_desc;
1353 	struct vnode *a_vp;
1354 	struct buf *a_bp;
1355 };
1356 */
1357 {
1358 	struct vnode *vp;
1359 	daddr_t lbn;
1360 
1361 	vp = ap->a_vp;
1362 	lbn = ap->a_bp->b_lblkno;
1363 	if (VTOI(vp)->i_fs->fs_magic == FS_UFS2_MAGIC &&
1364 	    lbn < 0 && lbn >= -NXADDR)
1365 		return (VOP_STRATEGY_APV(&ufs_vnodeops, ap));
1366 	if (vp->v_type == VFIFO)
1367 		return (VOP_STRATEGY_APV(&ufs_fifoops, ap));
1368 	panic("spec nodes went here");
1369 }
1370 
1371 /*
1372  * Vnode extattr transaction commit/abort
1373  */
1374 static int
1375 ffs_openextattr(struct vop_openextattr_args *ap)
1376 /*
1377 struct vop_openextattr_args {
1378 	struct vnodeop_desc *a_desc;
1379 	struct vnode *a_vp;
1380 	IN struct ucred *a_cred;
1381 	IN struct thread *a_td;
1382 };
1383 */
1384 {
1385 	struct inode *ip;
1386 	struct fs *fs;
1387 
1388 	ip = VTOI(ap->a_vp);
1389 	fs = ip->i_fs;
1390 
1391 	if (ap->a_vp->v_type == VCHR || ap->a_vp->v_type == VBLK)
1392 		return (EOPNOTSUPP);
1393 
1394 	return (ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td));
1395 }
1396 
1397 
1398 /*
1399  * Vnode extattr transaction commit/abort
1400  */
1401 static int
1402 ffs_closeextattr(struct vop_closeextattr_args *ap)
1403 /*
1404 struct vop_closeextattr_args {
1405 	struct vnodeop_desc *a_desc;
1406 	struct vnode *a_vp;
1407 	int a_commit;
1408 	IN struct ucred *a_cred;
1409 	IN struct thread *a_td;
1410 };
1411 */
1412 {
1413 	struct inode *ip;
1414 	struct fs *fs;
1415 
1416 	ip = VTOI(ap->a_vp);
1417 	fs = ip->i_fs;
1418 
1419 	if (ap->a_vp->v_type == VCHR || ap->a_vp->v_type == VBLK)
1420 		return (EOPNOTSUPP);
1421 
1422 	if (ap->a_commit && (ap->a_vp->v_mount->mnt_flag & MNT_RDONLY))
1423 		return (EROFS);
1424 
1425 	return (ffs_close_ea(ap->a_vp, ap->a_commit, ap->a_cred, ap->a_td));
1426 }
1427 
1428 /*
1429  * Vnode operation to remove a named attribute.
1430  */
1431 static int
1432 ffs_deleteextattr(struct vop_deleteextattr_args *ap)
1433 /*
1434 vop_deleteextattr {
1435 	IN struct vnode *a_vp;
1436 	IN int a_attrnamespace;
1437 	IN const char *a_name;
1438 	IN struct ucred *a_cred;
1439 	IN struct thread *a_td;
1440 };
1441 */
1442 {
1443 	struct inode *ip;
1444 	struct fs *fs;
1445 	uint32_t ealength, ul;
1446 	int ealen, olen, eapad1, eapad2, error, i, easize;
1447 	u_char *eae, *p;
1448 
1449 	ip = VTOI(ap->a_vp);
1450 	fs = ip->i_fs;
1451 
1452 	if (ap->a_vp->v_type == VCHR || ap->a_vp->v_type == VBLK)
1453 		return (EOPNOTSUPP);
1454 
1455 	if (strlen(ap->a_name) == 0)
1456 		return (EINVAL);
1457 
1458 	if (ap->a_vp->v_mount->mnt_flag & MNT_RDONLY)
1459 		return (EROFS);
1460 
1461 	error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace,
1462 	    ap->a_cred, ap->a_td, VWRITE);
1463 	if (error) {
1464 
1465 		/*
1466 		 * ffs_lock_ea is not needed there, because the vnode
1467 		 * must be exclusively locked.
1468 		 */
1469 		if (ip->i_ea_area != NULL && ip->i_ea_error == 0)
1470 			ip->i_ea_error = error;
1471 		return (error);
1472 	}
1473 
1474 	error = ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td);
1475 	if (error)
1476 		return (error);
1477 
1478 	ealength = eapad1 = ealen = eapad2 = 0;
1479 
1480 	eae = malloc(ip->i_ea_len, M_TEMP, M_WAITOK);
1481 	bcopy(ip->i_ea_area, eae, ip->i_ea_len);
1482 	easize = ip->i_ea_len;
1483 
1484 	olen = ffs_findextattr(eae, easize, ap->a_attrnamespace, ap->a_name,
1485 	    &p, NULL);
1486 	if (olen == -1) {
1487 		/* delete but nonexistent */
1488 		free(eae, M_TEMP);
1489 		ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td);
1490 		return(ENOATTR);
1491 	}
1492 	bcopy(p, &ul, sizeof ul);
1493 	i = p - eae + ul;
1494 	if (ul != ealength) {
1495 		bcopy(p + ul, p + ealength, easize - i);
1496 		easize += (ealength - ul);
1497 	}
1498 	if (easize > NXADDR * fs->fs_bsize) {
1499 		free(eae, M_TEMP);
1500 		ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td);
1501 		if (ip->i_ea_area != NULL && ip->i_ea_error == 0)
1502 			ip->i_ea_error = ENOSPC;
1503 		return(ENOSPC);
1504 	}
1505 	p = ip->i_ea_area;
1506 	ip->i_ea_area = eae;
1507 	ip->i_ea_len = easize;
1508 	free(p, M_TEMP);
1509 	error = ffs_close_ea(ap->a_vp, 1, ap->a_cred, ap->a_td);
1510 	return(error);
1511 }
1512 
1513 /*
1514  * Vnode operation to retrieve a named extended attribute.
1515  */
1516 static int
1517 ffs_getextattr(struct vop_getextattr_args *ap)
1518 /*
1519 vop_getextattr {
1520 	IN struct vnode *a_vp;
1521 	IN int a_attrnamespace;
1522 	IN const char *a_name;
1523 	INOUT struct uio *a_uio;
1524 	OUT size_t *a_size;
1525 	IN struct ucred *a_cred;
1526 	IN struct thread *a_td;
1527 };
1528 */
1529 {
1530 	struct inode *ip;
1531 	struct fs *fs;
1532 	u_char *eae, *p;
1533 	unsigned easize;
1534 	int error, ealen;
1535 
1536 	ip = VTOI(ap->a_vp);
1537 	fs = ip->i_fs;
1538 
1539 	if (ap->a_vp->v_type == VCHR || ap->a_vp->v_type == VBLK)
1540 		return (EOPNOTSUPP);
1541 
1542 	error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace,
1543 	    ap->a_cred, ap->a_td, VREAD);
1544 	if (error)
1545 		return (error);
1546 
1547 	error = ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td);
1548 	if (error)
1549 		return (error);
1550 
1551 	eae = ip->i_ea_area;
1552 	easize = ip->i_ea_len;
1553 
1554 	ealen = ffs_findextattr(eae, easize, ap->a_attrnamespace, ap->a_name,
1555 	    NULL, &p);
1556 	if (ealen >= 0) {
1557 		error = 0;
1558 		if (ap->a_size != NULL)
1559 			*ap->a_size = ealen;
1560 		else if (ap->a_uio != NULL)
1561 			error = uiomove(p, ealen, ap->a_uio);
1562 	} else
1563 		error = ENOATTR;
1564 
1565 	ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td);
1566 	return(error);
1567 }
1568 
1569 /*
1570  * Vnode operation to retrieve extended attributes on a vnode.
1571  */
1572 static int
1573 ffs_listextattr(struct vop_listextattr_args *ap)
1574 /*
1575 vop_listextattr {
1576 	IN struct vnode *a_vp;
1577 	IN int a_attrnamespace;
1578 	INOUT struct uio *a_uio;
1579 	OUT size_t *a_size;
1580 	IN struct ucred *a_cred;
1581 	IN struct thread *a_td;
1582 };
1583 */
1584 {
1585 	struct inode *ip;
1586 	struct fs *fs;
1587 	u_char *eae, *p, *pe, *pn;
1588 	unsigned easize;
1589 	uint32_t ul;
1590 	int error, ealen;
1591 
1592 	ip = VTOI(ap->a_vp);
1593 	fs = ip->i_fs;
1594 
1595 	if (ap->a_vp->v_type == VCHR || ap->a_vp->v_type == VBLK)
1596 		return (EOPNOTSUPP);
1597 
1598 	error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace,
1599 	    ap->a_cred, ap->a_td, VREAD);
1600 	if (error)
1601 		return (error);
1602 
1603 	error = ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td);
1604 	if (error)
1605 		return (error);
1606 	eae = ip->i_ea_area;
1607 	easize = ip->i_ea_len;
1608 
1609 	error = 0;
1610 	if (ap->a_size != NULL)
1611 		*ap->a_size = 0;
1612 	pe = eae + easize;
1613 	for(p = eae; error == 0 && p < pe; p = pn) {
1614 		bcopy(p, &ul, sizeof(ul));
1615 		pn = p + ul;
1616 		if (pn > pe)
1617 			break;
1618 		p += sizeof(ul);
1619 		if (*p++ != ap->a_attrnamespace)
1620 			continue;
1621 		p++;	/* pad2 */
1622 		ealen = *p;
1623 		if (ap->a_size != NULL) {
1624 			*ap->a_size += ealen + 1;
1625 		} else if (ap->a_uio != NULL) {
1626 			error = uiomove(p, ealen + 1, ap->a_uio);
1627 		}
1628 	}
1629 	ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td);
1630 	return(error);
1631 }
1632 
1633 /*
1634  * Vnode operation to set a named attribute.
1635  */
1636 static int
1637 ffs_setextattr(struct vop_setextattr_args *ap)
1638 /*
1639 vop_setextattr {
1640 	IN struct vnode *a_vp;
1641 	IN int a_attrnamespace;
1642 	IN const char *a_name;
1643 	INOUT struct uio *a_uio;
1644 	IN struct ucred *a_cred;
1645 	IN struct thread *a_td;
1646 };
1647 */
1648 {
1649 	struct inode *ip;
1650 	struct fs *fs;
1651 	uint32_t ealength, ul;
1652 	int ealen, olen, eapad1, eapad2, error, i, easize;
1653 	u_char *eae, *p;
1654 
1655 	ip = VTOI(ap->a_vp);
1656 	fs = ip->i_fs;
1657 
1658 	if (ap->a_vp->v_type == VCHR || ap->a_vp->v_type == VBLK)
1659 		return (EOPNOTSUPP);
1660 
1661 	if (strlen(ap->a_name) == 0)
1662 		return (EINVAL);
1663 
1664 	/* XXX Now unsupported API to delete EAs using NULL uio. */
1665 	if (ap->a_uio == NULL)
1666 		return (EOPNOTSUPP);
1667 
1668 	if (ap->a_vp->v_mount->mnt_flag & MNT_RDONLY)
1669 		return (EROFS);
1670 
1671 	error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace,
1672 	    ap->a_cred, ap->a_td, VWRITE);
1673 	if (error) {
1674 
1675 		/*
1676 		 * ffs_lock_ea is not needed there, because the vnode
1677 		 * must be exclusively locked.
1678 		 */
1679 		if (ip->i_ea_area != NULL && ip->i_ea_error == 0)
1680 			ip->i_ea_error = error;
1681 		return (error);
1682 	}
1683 
1684 	error = ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td);
1685 	if (error)
1686 		return (error);
1687 
1688 	ealen = ap->a_uio->uio_resid;
1689 	ealength = sizeof(uint32_t) + 3 + strlen(ap->a_name);
1690 	eapad1 = 8 - (ealength % 8);
1691 	if (eapad1 == 8)
1692 		eapad1 = 0;
1693 	eapad2 = 8 - (ealen % 8);
1694 	if (eapad2 == 8)
1695 		eapad2 = 0;
1696 	ealength += eapad1 + ealen + eapad2;
1697 
1698 	eae = malloc(ip->i_ea_len + ealength, M_TEMP, M_WAITOK);
1699 	bcopy(ip->i_ea_area, eae, ip->i_ea_len);
1700 	easize = ip->i_ea_len;
1701 
1702 	olen = ffs_findextattr(eae, easize,
1703 	    ap->a_attrnamespace, ap->a_name, &p, NULL);
1704         if (olen == -1) {
1705 		/* new, append at end */
1706 		p = eae + easize;
1707 		easize += ealength;
1708 	} else {
1709 		bcopy(p, &ul, sizeof ul);
1710 		i = p - eae + ul;
1711 		if (ul != ealength) {
1712 			bcopy(p + ul, p + ealength, easize - i);
1713 			easize += (ealength - ul);
1714 		}
1715 	}
1716 	if (easize > NXADDR * fs->fs_bsize) {
1717 		free(eae, M_TEMP);
1718 		ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td);
1719 		if (ip->i_ea_area != NULL && ip->i_ea_error == 0)
1720 			ip->i_ea_error = ENOSPC;
1721 		return(ENOSPC);
1722 	}
1723 	bcopy(&ealength, p, sizeof(ealength));
1724 	p += sizeof(ealength);
1725 	*p++ = ap->a_attrnamespace;
1726 	*p++ = eapad2;
1727 	*p++ = strlen(ap->a_name);
1728 	strcpy(p, ap->a_name);
1729 	p += strlen(ap->a_name);
1730 	bzero(p, eapad1);
1731 	p += eapad1;
1732 	error = uiomove(p, ealen, ap->a_uio);
1733 	if (error) {
1734 		free(eae, M_TEMP);
1735 		ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td);
1736 		if (ip->i_ea_area != NULL && ip->i_ea_error == 0)
1737 			ip->i_ea_error = error;
1738 		return(error);
1739 	}
1740 	p += ealen;
1741 	bzero(p, eapad2);
1742 
1743 	p = ip->i_ea_area;
1744 	ip->i_ea_area = eae;
1745 	ip->i_ea_len = easize;
1746 	free(p, M_TEMP);
1747 	error = ffs_close_ea(ap->a_vp, 1, ap->a_cred, ap->a_td);
1748 	return(error);
1749 }
1750 
1751 /*
1752  * Vnode pointer to File handle
1753  */
1754 static int
1755 ffs_vptofh(struct vop_vptofh_args *ap)
1756 /*
1757 vop_vptofh {
1758 	IN struct vnode *a_vp;
1759 	IN struct fid *a_fhp;
1760 };
1761 */
1762 {
1763 	struct inode *ip;
1764 	struct ufid *ufhp;
1765 
1766 	ip = VTOI(ap->a_vp);
1767 	ufhp = (struct ufid *)ap->a_fhp;
1768 	ufhp->ufid_len = sizeof(struct ufid);
1769 	ufhp->ufid_ino = ip->i_number;
1770 	ufhp->ufid_gen = ip->i_gen;
1771 	return (0);
1772 }
1773