xref: /freebsd/sys/ufs/ffs/ffs_vnops.c (revision 7aa383846770374466b1dcb2cefd71bde9acf463)
1 /*-
2  * Copyright (c) 2002, 2003 Networks Associates Technology, Inc.
3  * All rights reserved.
4  *
5  * This software was developed for the FreeBSD Project by Marshall
6  * Kirk McKusick and Network Associates Laboratories, the Security
7  * Research Division of Network Associates, Inc. under DARPA/SPAWAR
8  * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
9  * research program
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  * Copyright (c) 1982, 1986, 1989, 1993
33  *	The Regents of the University of California.  All rights reserved.
34  *
35  * Redistribution and use in source and binary forms, with or without
36  * modification, are permitted provided that the following conditions
37  * are met:
38  * 1. Redistributions of source code must retain the above copyright
39  *    notice, this list of conditions and the following disclaimer.
40  * 2. Redistributions in binary form must reproduce the above copyright
41  *    notice, this list of conditions and the following disclaimer in the
42  *    documentation and/or other materials provided with the distribution.
43  * 4. Neither the name of the University nor the names of its contributors
44  *    may be used to endorse or promote products derived from this software
45  *    without specific prior written permission.
46  *
47  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
48  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
49  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
50  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
51  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
52  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
53  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
54  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
55  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
56  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
57  * SUCH DAMAGE.
58  *
59  *	from: @(#)ufs_readwrite.c	8.11 (Berkeley) 5/8/95
60  * from: $FreeBSD: .../ufs/ufs_readwrite.c,v 1.96 2002/08/12 09:22:11 phk ...
61  *	@(#)ffs_vnops.c	8.15 (Berkeley) 5/14/95
62  */
63 
64 #include <sys/cdefs.h>
65 __FBSDID("$FreeBSD$");
66 
67 #include <sys/param.h>
68 #include <sys/bio.h>
69 #include <sys/systm.h>
70 #include <sys/buf.h>
71 #include <sys/conf.h>
72 #include <sys/extattr.h>
73 #include <sys/kernel.h>
74 #include <sys/limits.h>
75 #include <sys/malloc.h>
76 #include <sys/mount.h>
77 #include <sys/priv.h>
78 #include <sys/stat.h>
79 #include <sys/vmmeter.h>
80 #include <sys/vnode.h>
81 
82 #include <vm/vm.h>
83 #include <vm/vm_extern.h>
84 #include <vm/vm_object.h>
85 #include <vm/vm_page.h>
86 #include <vm/vm_pager.h>
87 #include <vm/vnode_pager.h>
88 
89 #include <ufs/ufs/extattr.h>
90 #include <ufs/ufs/quota.h>
91 #include <ufs/ufs/inode.h>
92 #include <ufs/ufs/ufs_extern.h>
93 #include <ufs/ufs/ufsmount.h>
94 
95 #include <ufs/ffs/fs.h>
96 #include <ufs/ffs/ffs_extern.h>
97 #include "opt_directio.h"
98 #include "opt_ffs.h"
99 
100 #ifdef DIRECTIO
101 extern int	ffs_rawread(struct vnode *vp, struct uio *uio, int *workdone);
102 #endif
103 static vop_fsync_t	ffs_fsync;
104 static vop_lock1_t	ffs_lock;
105 static vop_getpages_t	ffs_getpages;
106 static vop_read_t	ffs_read;
107 static vop_write_t	ffs_write;
108 static int	ffs_extread(struct vnode *vp, struct uio *uio, int ioflag);
109 static int	ffs_extwrite(struct vnode *vp, struct uio *uio, int ioflag,
110 		    struct ucred *cred);
111 static vop_strategy_t	ffsext_strategy;
112 static vop_closeextattr_t	ffs_closeextattr;
113 static vop_deleteextattr_t	ffs_deleteextattr;
114 static vop_getextattr_t	ffs_getextattr;
115 static vop_listextattr_t	ffs_listextattr;
116 static vop_openextattr_t	ffs_openextattr;
117 static vop_setextattr_t	ffs_setextattr;
118 static vop_vptofh_t	ffs_vptofh;
119 
120 
121 /* Global vfs data structures for ufs. */
122 struct vop_vector ffs_vnodeops1 = {
123 	.vop_default =		&ufs_vnodeops,
124 	.vop_fsync =		ffs_fsync,
125 	.vop_getpages =		ffs_getpages,
126 	.vop_lock1 =		ffs_lock,
127 	.vop_read =		ffs_read,
128 	.vop_reallocblks =	ffs_reallocblks,
129 	.vop_write =		ffs_write,
130 	.vop_vptofh =		ffs_vptofh,
131 };
132 
133 struct vop_vector ffs_fifoops1 = {
134 	.vop_default =		&ufs_fifoops,
135 	.vop_fsync =		ffs_fsync,
136 	.vop_reallocblks =	ffs_reallocblks, /* XXX: really ??? */
137 	.vop_vptofh =		ffs_vptofh,
138 };
139 
140 /* Global vfs data structures for ufs. */
141 struct vop_vector ffs_vnodeops2 = {
142 	.vop_default =		&ufs_vnodeops,
143 	.vop_fsync =		ffs_fsync,
144 	.vop_getpages =		ffs_getpages,
145 	.vop_lock1 =		ffs_lock,
146 	.vop_read =		ffs_read,
147 	.vop_reallocblks =	ffs_reallocblks,
148 	.vop_write =		ffs_write,
149 	.vop_closeextattr =	ffs_closeextattr,
150 	.vop_deleteextattr =	ffs_deleteextattr,
151 	.vop_getextattr =	ffs_getextattr,
152 	.vop_listextattr =	ffs_listextattr,
153 	.vop_openextattr =	ffs_openextattr,
154 	.vop_setextattr =	ffs_setextattr,
155 	.vop_vptofh =		ffs_vptofh,
156 };
157 
158 struct vop_vector ffs_fifoops2 = {
159 	.vop_default =		&ufs_fifoops,
160 	.vop_fsync =		ffs_fsync,
161 	.vop_lock1 =		ffs_lock,
162 	.vop_reallocblks =	ffs_reallocblks,
163 	.vop_strategy =		ffsext_strategy,
164 	.vop_closeextattr =	ffs_closeextattr,
165 	.vop_deleteextattr =	ffs_deleteextattr,
166 	.vop_getextattr =	ffs_getextattr,
167 	.vop_listextattr =	ffs_listextattr,
168 	.vop_openextattr =	ffs_openextattr,
169 	.vop_setextattr =	ffs_setextattr,
170 	.vop_vptofh =		ffs_vptofh,
171 };
172 
173 /*
174  * Synch an open file.
175  */
176 /* ARGSUSED */
177 static int
178 ffs_fsync(struct vop_fsync_args *ap)
179 {
180 	struct vnode *vp;
181 	struct bufobj *bo;
182 	int error;
183 
184 	vp = ap->a_vp;
185 	bo = &vp->v_bufobj;
186 retry:
187 	error = ffs_syncvnode(vp, ap->a_waitfor);
188 	if (error)
189 		return (error);
190 	if (ap->a_waitfor == MNT_WAIT &&
191 	    (vp->v_mount->mnt_flag & MNT_SOFTDEP)) {
192 		error = softdep_fsync(vp);
193 		if (error)
194 			return (error);
195 
196 		/*
197 		 * The softdep_fsync() function may drop vp lock,
198 		 * allowing for dirty buffers to reappear on the
199 		 * bo_dirty list. Recheck and resync as needed.
200 		 */
201 		BO_LOCK(bo);
202 		if (vp->v_type == VREG && (bo->bo_numoutput > 0 ||
203 		    bo->bo_dirty.bv_cnt > 0)) {
204 			BO_UNLOCK(bo);
205 			goto retry;
206 		}
207 		BO_UNLOCK(bo);
208 	}
209 	return (0);
210 }
211 
212 int
213 ffs_syncvnode(struct vnode *vp, int waitfor)
214 {
215 	struct inode *ip = VTOI(vp);
216 	struct bufobj *bo;
217 	struct buf *bp;
218 	struct buf *nbp;
219 	int s, error, wait, passes, skipmeta;
220 	ufs_lbn_t lbn;
221 
222 	wait = (waitfor == MNT_WAIT);
223 	lbn = lblkno(ip->i_fs, (ip->i_size + ip->i_fs->fs_bsize - 1));
224 	bo = &vp->v_bufobj;
225 	ip->i_flag &= ~IN_NEEDSYNC;
226 
227 	/*
228 	 * Flush all dirty buffers associated with a vnode.
229 	 */
230 	passes = NIADDR + 1;
231 	skipmeta = 0;
232 	if (wait)
233 		skipmeta = 1;
234 	s = splbio();
235 	BO_LOCK(bo);
236 loop:
237 	TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs)
238 		bp->b_vflags &= ~BV_SCANNED;
239 	TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
240 		/*
241 		 * Reasons to skip this buffer: it has already been considered
242 		 * on this pass, this pass is the first time through on a
243 		 * synchronous flush request and the buffer being considered
244 		 * is metadata, the buffer has dependencies that will cause
245 		 * it to be redirtied and it has not already been deferred,
246 		 * or it is already being written.
247 		 */
248 		if ((bp->b_vflags & BV_SCANNED) != 0)
249 			continue;
250 		bp->b_vflags |= BV_SCANNED;
251 		if ((skipmeta == 1 && bp->b_lblkno < 0))
252 			continue;
253 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL))
254 			continue;
255 		BO_UNLOCK(bo);
256 		if (!wait && !LIST_EMPTY(&bp->b_dep) &&
257 		    (bp->b_flags & B_DEFERRED) == 0 &&
258 		    buf_countdeps(bp, 0)) {
259 			bp->b_flags |= B_DEFERRED;
260 			BUF_UNLOCK(bp);
261 			BO_LOCK(bo);
262 			continue;
263 		}
264 		if ((bp->b_flags & B_DELWRI) == 0)
265 			panic("ffs_fsync: not dirty");
266 		/*
267 		 * If this is a synchronous flush request, or it is not a
268 		 * file or device, start the write on this buffer immediately.
269 		 */
270 		if (wait || (vp->v_type != VREG && vp->v_type != VBLK)) {
271 
272 			/*
273 			 * On our final pass through, do all I/O synchronously
274 			 * so that we can find out if our flush is failing
275 			 * because of write errors.
276 			 */
277 			if (passes > 0 || !wait) {
278 				if ((bp->b_flags & B_CLUSTEROK) && !wait) {
279 					(void) vfs_bio_awrite(bp);
280 				} else {
281 					bremfree(bp);
282 					splx(s);
283 					(void) bawrite(bp);
284 					s = splbio();
285 				}
286 			} else {
287 				bremfree(bp);
288 				splx(s);
289 				if ((error = bwrite(bp)) != 0)
290 					return (error);
291 				s = splbio();
292 			}
293 		} else if ((vp->v_type == VREG) && (bp->b_lblkno >= lbn)) {
294 			/*
295 			 * If the buffer is for data that has been truncated
296 			 * off the file, then throw it away.
297 			 */
298 			bremfree(bp);
299 			bp->b_flags |= B_INVAL | B_NOCACHE;
300 			splx(s);
301 			brelse(bp);
302 			s = splbio();
303 		} else
304 			vfs_bio_awrite(bp);
305 
306 		/*
307 		 * Since we may have slept during the I/O, we need
308 		 * to start from a known point.
309 		 */
310 		BO_LOCK(bo);
311 		nbp = TAILQ_FIRST(&bo->bo_dirty.bv_hd);
312 	}
313 	/*
314 	 * If we were asked to do this synchronously, then go back for
315 	 * another pass, this time doing the metadata.
316 	 */
317 	if (skipmeta) {
318 		skipmeta = 0;
319 		goto loop;
320 	}
321 
322 	if (wait) {
323 		bufobj_wwait(bo, 3, 0);
324 		BO_UNLOCK(bo);
325 
326 		/*
327 		 * Ensure that any filesystem metatdata associated
328 		 * with the vnode has been written.
329 		 */
330 		splx(s);
331 		if ((error = softdep_sync_metadata(vp)) != 0)
332 			return (error);
333 		s = splbio();
334 
335 		BO_LOCK(bo);
336 		if (bo->bo_dirty.bv_cnt > 0) {
337 			/*
338 			 * Block devices associated with filesystems may
339 			 * have new I/O requests posted for them even if
340 			 * the vnode is locked, so no amount of trying will
341 			 * get them clean. Thus we give block devices a
342 			 * good effort, then just give up. For all other file
343 			 * types, go around and try again until it is clean.
344 			 */
345 			if (passes > 0) {
346 				passes -= 1;
347 				goto loop;
348 			}
349 #ifdef INVARIANTS
350 			if (!vn_isdisk(vp, NULL))
351 				vprint("ffs_fsync: dirty", vp);
352 #endif
353 		}
354 	}
355 	BO_UNLOCK(bo);
356 	splx(s);
357 	return (ffs_update(vp, wait));
358 }
359 
360 static int
361 ffs_lock(ap)
362 	struct vop_lock1_args /* {
363 		struct vnode *a_vp;
364 		int a_flags;
365 		struct thread *a_td;
366 		char *file;
367 		int line;
368 	} */ *ap;
369 {
370 #ifndef NO_FFS_SNAPSHOT
371 	struct vnode *vp;
372 	int flags;
373 	struct lock *lkp;
374 	int result;
375 
376 	switch (ap->a_flags & LK_TYPE_MASK) {
377 	case LK_SHARED:
378 	case LK_UPGRADE:
379 	case LK_EXCLUSIVE:
380 		vp = ap->a_vp;
381 		flags = ap->a_flags;
382 		for (;;) {
383 #ifdef DEBUG_VFS_LOCKS
384 			KASSERT(vp->v_holdcnt != 0,
385 			    ("ffs_lock %p: zero hold count", vp));
386 #endif
387 			lkp = vp->v_vnlock;
388 			result = _lockmgr_args(lkp, flags, VI_MTX(vp),
389 			    LK_WMESG_DEFAULT, LK_PRIO_DEFAULT, LK_TIMO_DEFAULT,
390 			    ap->a_file, ap->a_line);
391 			if (lkp == vp->v_vnlock || result != 0)
392 				break;
393 			/*
394 			 * Apparent success, except that the vnode
395 			 * mutated between snapshot file vnode and
396 			 * regular file vnode while this process
397 			 * slept.  The lock currently held is not the
398 			 * right lock.  Release it, and try to get the
399 			 * new lock.
400 			 */
401 			(void) _lockmgr_args(lkp, LK_RELEASE, NULL,
402 			    LK_WMESG_DEFAULT, LK_PRIO_DEFAULT, LK_TIMO_DEFAULT,
403 			    ap->a_file, ap->a_line);
404 			if ((flags & (LK_INTERLOCK | LK_NOWAIT)) ==
405 			    (LK_INTERLOCK | LK_NOWAIT))
406 				return (EBUSY);
407 			if ((flags & LK_TYPE_MASK) == LK_UPGRADE)
408 				flags = (flags & ~LK_TYPE_MASK) | LK_EXCLUSIVE;
409 			flags &= ~LK_INTERLOCK;
410 		}
411 		break;
412 	default:
413 		result = VOP_LOCK1_APV(&ufs_vnodeops, ap);
414 	}
415 	return (result);
416 #else
417 	return (VOP_LOCK1_APV(&ufs_vnodeops, ap));
418 #endif
419 }
420 
421 /*
422  * Vnode op for reading.
423  */
424 /* ARGSUSED */
425 static int
426 ffs_read(ap)
427 	struct vop_read_args /* {
428 		struct vnode *a_vp;
429 		struct uio *a_uio;
430 		int a_ioflag;
431 		struct ucred *a_cred;
432 	} */ *ap;
433 {
434 	struct vnode *vp;
435 	struct inode *ip;
436 	struct uio *uio;
437 	struct fs *fs;
438 	struct buf *bp;
439 	ufs_lbn_t lbn, nextlbn;
440 	off_t bytesinfile;
441 	long size, xfersize, blkoffset;
442 	int error, orig_resid;
443 	int seqcount;
444 	int ioflag;
445 
446 	vp = ap->a_vp;
447 	uio = ap->a_uio;
448 	ioflag = ap->a_ioflag;
449 	if (ap->a_ioflag & IO_EXT)
450 #ifdef notyet
451 		return (ffs_extread(vp, uio, ioflag));
452 #else
453 		panic("ffs_read+IO_EXT");
454 #endif
455 #ifdef DIRECTIO
456 	if ((ioflag & IO_DIRECT) != 0) {
457 		int workdone;
458 
459 		error = ffs_rawread(vp, uio, &workdone);
460 		if (error != 0 || workdone != 0)
461 			return error;
462 	}
463 #endif
464 
465 	seqcount = ap->a_ioflag >> IO_SEQSHIFT;
466 	ip = VTOI(vp);
467 
468 #ifdef INVARIANTS
469 	if (uio->uio_rw != UIO_READ)
470 		panic("ffs_read: mode");
471 
472 	if (vp->v_type == VLNK) {
473 		if ((int)ip->i_size < vp->v_mount->mnt_maxsymlinklen)
474 			panic("ffs_read: short symlink");
475 	} else if (vp->v_type != VREG && vp->v_type != VDIR)
476 		panic("ffs_read: type %d",  vp->v_type);
477 #endif
478 	orig_resid = uio->uio_resid;
479 	KASSERT(orig_resid >= 0, ("ffs_read: uio->uio_resid < 0"));
480 	if (orig_resid == 0)
481 		return (0);
482 	KASSERT(uio->uio_offset >= 0, ("ffs_read: uio->uio_offset < 0"));
483 	fs = ip->i_fs;
484 	if (uio->uio_offset < ip->i_size &&
485 	    uio->uio_offset >= fs->fs_maxfilesize)
486 		return (EOVERFLOW);
487 
488 	for (error = 0, bp = NULL; uio->uio_resid > 0; bp = NULL) {
489 		if ((bytesinfile = ip->i_size - uio->uio_offset) <= 0)
490 			break;
491 		lbn = lblkno(fs, uio->uio_offset);
492 		nextlbn = lbn + 1;
493 
494 		/*
495 		 * size of buffer.  The buffer representing the
496 		 * end of the file is rounded up to the size of
497 		 * the block type ( fragment or full block,
498 		 * depending ).
499 		 */
500 		size = blksize(fs, ip, lbn);
501 		blkoffset = blkoff(fs, uio->uio_offset);
502 
503 		/*
504 		 * The amount we want to transfer in this iteration is
505 		 * one FS block less the amount of the data before
506 		 * our startpoint (duh!)
507 		 */
508 		xfersize = fs->fs_bsize - blkoffset;
509 
510 		/*
511 		 * But if we actually want less than the block,
512 		 * or the file doesn't have a whole block more of data,
513 		 * then use the lesser number.
514 		 */
515 		if (uio->uio_resid < xfersize)
516 			xfersize = uio->uio_resid;
517 		if (bytesinfile < xfersize)
518 			xfersize = bytesinfile;
519 
520 		if (lblktosize(fs, nextlbn) >= ip->i_size) {
521 			/*
522 			 * Don't do readahead if this is the end of the file.
523 			 */
524 			error = bread(vp, lbn, size, NOCRED, &bp);
525 		} else if ((vp->v_mount->mnt_flag & MNT_NOCLUSTERR) == 0) {
526 			/*
527 			 * Otherwise if we are allowed to cluster,
528 			 * grab as much as we can.
529 			 *
530 			 * XXX  This may not be a win if we are not
531 			 * doing sequential access.
532 			 */
533 			error = cluster_read(vp, ip->i_size, lbn,
534 				size, NOCRED, blkoffset + uio->uio_resid, seqcount, &bp);
535 		} else if (seqcount > 1) {
536 			/*
537 			 * If we are NOT allowed to cluster, then
538 			 * if we appear to be acting sequentially,
539 			 * fire off a request for a readahead
540 			 * as well as a read. Note that the 4th and 5th
541 			 * arguments point to arrays of the size specified in
542 			 * the 6th argument.
543 			 */
544 			int nextsize = blksize(fs, ip, nextlbn);
545 			error = breadn(vp, lbn,
546 			    size, &nextlbn, &nextsize, 1, NOCRED, &bp);
547 		} else {
548 			/*
549 			 * Failing all of the above, just read what the
550 			 * user asked for. Interestingly, the same as
551 			 * the first option above.
552 			 */
553 			error = bread(vp, lbn, size, NOCRED, &bp);
554 		}
555 		if (error) {
556 			brelse(bp);
557 			bp = NULL;
558 			break;
559 		}
560 
561 		/*
562 		 * If IO_DIRECT then set B_DIRECT for the buffer.  This
563 		 * will cause us to attempt to release the buffer later on
564 		 * and will cause the buffer cache to attempt to free the
565 		 * underlying pages.
566 		 */
567 		if (ioflag & IO_DIRECT)
568 			bp->b_flags |= B_DIRECT;
569 
570 		/*
571 		 * We should only get non-zero b_resid when an I/O error
572 		 * has occurred, which should cause us to break above.
573 		 * However, if the short read did not cause an error,
574 		 * then we want to ensure that we do not uiomove bad
575 		 * or uninitialized data.
576 		 */
577 		size -= bp->b_resid;
578 		if (size < xfersize) {
579 			if (size == 0)
580 				break;
581 			xfersize = size;
582 		}
583 
584 		error = uiomove((char *)bp->b_data + blkoffset,
585 		    (int)xfersize, uio);
586 		if (error)
587 			break;
588 
589 		if ((ioflag & (IO_VMIO|IO_DIRECT)) &&
590 		   (LIST_EMPTY(&bp->b_dep))) {
591 			/*
592 			 * If there are no dependencies, and it's VMIO,
593 			 * then we don't need the buf, mark it available
594 			 * for freeing. The VM has the data.
595 			 */
596 			bp->b_flags |= B_RELBUF;
597 			brelse(bp);
598 		} else {
599 			/*
600 			 * Otherwise let whoever
601 			 * made the request take care of
602 			 * freeing it. We just queue
603 			 * it onto another list.
604 			 */
605 			bqrelse(bp);
606 		}
607 	}
608 
609 	/*
610 	 * This can only happen in the case of an error
611 	 * because the loop above resets bp to NULL on each iteration
612 	 * and on normal completion has not set a new value into it.
613 	 * so it must have come from a 'break' statement
614 	 */
615 	if (bp != NULL) {
616 		if ((ioflag & (IO_VMIO|IO_DIRECT)) &&
617 		   (LIST_EMPTY(&bp->b_dep))) {
618 			bp->b_flags |= B_RELBUF;
619 			brelse(bp);
620 		} else {
621 			bqrelse(bp);
622 		}
623 	}
624 
625 	if ((error == 0 || uio->uio_resid != orig_resid) &&
626 	    (vp->v_mount->mnt_flag & MNT_NOATIME) == 0 &&
627 	    (ip->i_flag & IN_ACCESS) == 0) {
628 		VI_LOCK(vp);
629 		ip->i_flag |= IN_ACCESS;
630 		VI_UNLOCK(vp);
631 	}
632 	return (error);
633 }
634 
635 /*
636  * Vnode op for writing.
637  */
638 static int
639 ffs_write(ap)
640 	struct vop_write_args /* {
641 		struct vnode *a_vp;
642 		struct uio *a_uio;
643 		int a_ioflag;
644 		struct ucred *a_cred;
645 	} */ *ap;
646 {
647 	struct vnode *vp;
648 	struct uio *uio;
649 	struct inode *ip;
650 	struct fs *fs;
651 	struct buf *bp;
652 	ufs_lbn_t lbn;
653 	off_t osize;
654 	int seqcount;
655 	int blkoffset, error, flags, ioflag, resid, size, xfersize;
656 
657 	vp = ap->a_vp;
658 	uio = ap->a_uio;
659 	ioflag = ap->a_ioflag;
660 	if (ap->a_ioflag & IO_EXT)
661 #ifdef notyet
662 		return (ffs_extwrite(vp, uio, ioflag, ap->a_cred));
663 #else
664 		panic("ffs_write+IO_EXT");
665 #endif
666 
667 	seqcount = ap->a_ioflag >> IO_SEQSHIFT;
668 	ip = VTOI(vp);
669 
670 #ifdef INVARIANTS
671 	if (uio->uio_rw != UIO_WRITE)
672 		panic("ffs_write: mode");
673 #endif
674 
675 	switch (vp->v_type) {
676 	case VREG:
677 		if (ioflag & IO_APPEND)
678 			uio->uio_offset = ip->i_size;
679 		if ((ip->i_flags & APPEND) && uio->uio_offset != ip->i_size)
680 			return (EPERM);
681 		/* FALLTHROUGH */
682 	case VLNK:
683 		break;
684 	case VDIR:
685 		panic("ffs_write: dir write");
686 		break;
687 	default:
688 		panic("ffs_write: type %p %d (%d,%d)", vp, (int)vp->v_type,
689 			(int)uio->uio_offset,
690 			(int)uio->uio_resid
691 		);
692 	}
693 
694 	KASSERT(uio->uio_resid >= 0, ("ffs_write: uio->uio_resid < 0"));
695 	KASSERT(uio->uio_offset >= 0, ("ffs_write: uio->uio_offset < 0"));
696 	fs = ip->i_fs;
697 	if ((uoff_t)uio->uio_offset + uio->uio_resid > fs->fs_maxfilesize)
698 		return (EFBIG);
699 	/*
700 	 * Maybe this should be above the vnode op call, but so long as
701 	 * file servers have no limits, I don't think it matters.
702 	 */
703 	if (vn_rlimit_fsize(vp, uio, uio->uio_td))
704 		return (EFBIG);
705 
706 	resid = uio->uio_resid;
707 	osize = ip->i_size;
708 	if (seqcount > BA_SEQMAX)
709 		flags = BA_SEQMAX << BA_SEQSHIFT;
710 	else
711 		flags = seqcount << BA_SEQSHIFT;
712 	if ((ioflag & IO_SYNC) && !DOINGASYNC(vp))
713 		flags |= IO_SYNC;
714 
715 	for (error = 0; uio->uio_resid > 0;) {
716 		lbn = lblkno(fs, uio->uio_offset);
717 		blkoffset = blkoff(fs, uio->uio_offset);
718 		xfersize = fs->fs_bsize - blkoffset;
719 		if (uio->uio_resid < xfersize)
720 			xfersize = uio->uio_resid;
721 		if (uio->uio_offset + xfersize > ip->i_size)
722 			vnode_pager_setsize(vp, uio->uio_offset + xfersize);
723 
724                 /*
725 		 * We must perform a read-before-write if the transfer size
726 		 * does not cover the entire buffer.
727                  */
728 		if (fs->fs_bsize > xfersize)
729 			flags |= BA_CLRBUF;
730 		else
731 			flags &= ~BA_CLRBUF;
732 /* XXX is uio->uio_offset the right thing here? */
733 		error = UFS_BALLOC(vp, uio->uio_offset, xfersize,
734 		    ap->a_cred, flags, &bp);
735 		if (error != 0) {
736 			vnode_pager_setsize(vp, ip->i_size);
737 			break;
738 		}
739 		/*
740 		 * If the buffer is not valid we have to clear out any
741 		 * garbage data from the pages instantiated for the buffer.
742 		 * If we do not, a failed uiomove() during a write can leave
743 		 * the prior contents of the pages exposed to a userland
744 		 * mmap().  XXX deal with uiomove() errors a better way.
745 		 */
746 		if ((bp->b_flags & B_CACHE) == 0 && fs->fs_bsize <= xfersize)
747 			vfs_bio_clrbuf(bp);
748 		if (ioflag & IO_DIRECT)
749 			bp->b_flags |= B_DIRECT;
750 		if ((ioflag & (IO_SYNC|IO_INVAL)) == (IO_SYNC|IO_INVAL))
751 			bp->b_flags |= B_NOCACHE;
752 
753 		if (uio->uio_offset + xfersize > ip->i_size) {
754 			ip->i_size = uio->uio_offset + xfersize;
755 			DIP_SET(ip, i_size, ip->i_size);
756 		}
757 
758 		size = blksize(fs, ip, lbn) - bp->b_resid;
759 		if (size < xfersize)
760 			xfersize = size;
761 
762 		error =
763 		    uiomove((char *)bp->b_data + blkoffset, (int)xfersize, uio);
764 		if ((ioflag & (IO_VMIO|IO_DIRECT)) &&
765 		   (LIST_EMPTY(&bp->b_dep))) {
766 			bp->b_flags |= B_RELBUF;
767 		}
768 
769 		/*
770 		 * If IO_SYNC each buffer is written synchronously.  Otherwise
771 		 * if we have a severe page deficiency write the buffer
772 		 * asynchronously.  Otherwise try to cluster, and if that
773 		 * doesn't do it then either do an async write (if O_DIRECT),
774 		 * or a delayed write (if not).
775 		 */
776 		if (ioflag & IO_SYNC) {
777 			(void)bwrite(bp);
778 		} else if (vm_page_count_severe() ||
779 			    buf_dirty_count_severe() ||
780 			    (ioflag & IO_ASYNC)) {
781 			bp->b_flags |= B_CLUSTEROK;
782 			bawrite(bp);
783 		} else if (xfersize + blkoffset == fs->fs_bsize) {
784 			if ((vp->v_mount->mnt_flag & MNT_NOCLUSTERW) == 0) {
785 				bp->b_flags |= B_CLUSTEROK;
786 				cluster_write(vp, bp, ip->i_size, seqcount);
787 			} else {
788 				bawrite(bp);
789 			}
790 		} else if (ioflag & IO_DIRECT) {
791 			bp->b_flags |= B_CLUSTEROK;
792 			bawrite(bp);
793 		} else {
794 			bp->b_flags |= B_CLUSTEROK;
795 			bdwrite(bp);
796 		}
797 		if (error || xfersize == 0)
798 			break;
799 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
800 	}
801 	/*
802 	 * If we successfully wrote any data, and we are not the superuser
803 	 * we clear the setuid and setgid bits as a precaution against
804 	 * tampering.
805 	 */
806 	if ((ip->i_mode & (ISUID | ISGID)) && resid > uio->uio_resid &&
807 	    ap->a_cred) {
808 		if (priv_check_cred(ap->a_cred, PRIV_VFS_RETAINSUGID, 0)) {
809 			ip->i_mode &= ~(ISUID | ISGID);
810 			DIP_SET(ip, i_mode, ip->i_mode);
811 		}
812 	}
813 	if (error) {
814 		if (ioflag & IO_UNIT) {
815 			(void)ffs_truncate(vp, osize,
816 			    IO_NORMAL | (ioflag & IO_SYNC),
817 			    ap->a_cred, uio->uio_td);
818 			uio->uio_offset -= resid - uio->uio_resid;
819 			uio->uio_resid = resid;
820 		}
821 	} else if (resid > uio->uio_resid && (ioflag & IO_SYNC))
822 		error = ffs_update(vp, 1);
823 	return (error);
824 }
825 
826 /*
827  * get page routine
828  */
829 static int
830 ffs_getpages(ap)
831 	struct vop_getpages_args *ap;
832 {
833 	int i;
834 	vm_page_t mreq;
835 	int pcount;
836 
837 	pcount = round_page(ap->a_count) / PAGE_SIZE;
838 	mreq = ap->a_m[ap->a_reqpage];
839 
840 	/*
841 	 * if ANY DEV_BSIZE blocks are valid on a large filesystem block,
842 	 * then the entire page is valid.  Since the page may be mapped,
843 	 * user programs might reference data beyond the actual end of file
844 	 * occuring within the page.  We have to zero that data.
845 	 */
846 	VM_OBJECT_LOCK(mreq->object);
847 	if (mreq->valid) {
848 		if (mreq->valid != VM_PAGE_BITS_ALL)
849 			vm_page_zero_invalid(mreq, TRUE);
850 		for (i = 0; i < pcount; i++) {
851 			if (i != ap->a_reqpage) {
852 				vm_page_lock(ap->a_m[i]);
853 				vm_page_free(ap->a_m[i]);
854 				vm_page_unlock(ap->a_m[i]);
855 			}
856 		}
857 		VM_OBJECT_UNLOCK(mreq->object);
858 		return VM_PAGER_OK;
859 	}
860 	VM_OBJECT_UNLOCK(mreq->object);
861 
862 	return vnode_pager_generic_getpages(ap->a_vp, ap->a_m,
863 					    ap->a_count,
864 					    ap->a_reqpage);
865 }
866 
867 
868 /*
869  * Extended attribute area reading.
870  */
871 static int
872 ffs_extread(struct vnode *vp, struct uio *uio, int ioflag)
873 {
874 	struct inode *ip;
875 	struct ufs2_dinode *dp;
876 	struct fs *fs;
877 	struct buf *bp;
878 	ufs_lbn_t lbn, nextlbn;
879 	off_t bytesinfile;
880 	long size, xfersize, blkoffset;
881 	int error, orig_resid;
882 
883 	ip = VTOI(vp);
884 	fs = ip->i_fs;
885 	dp = ip->i_din2;
886 
887 #ifdef INVARIANTS
888 	if (uio->uio_rw != UIO_READ || fs->fs_magic != FS_UFS2_MAGIC)
889 		panic("ffs_extread: mode");
890 
891 #endif
892 	orig_resid = uio->uio_resid;
893 	KASSERT(orig_resid >= 0, ("ffs_extread: uio->uio_resid < 0"));
894 	if (orig_resid == 0)
895 		return (0);
896 	KASSERT(uio->uio_offset >= 0, ("ffs_extread: uio->uio_offset < 0"));
897 
898 	for (error = 0, bp = NULL; uio->uio_resid > 0; bp = NULL) {
899 		if ((bytesinfile = dp->di_extsize - uio->uio_offset) <= 0)
900 			break;
901 		lbn = lblkno(fs, uio->uio_offset);
902 		nextlbn = lbn + 1;
903 
904 		/*
905 		 * size of buffer.  The buffer representing the
906 		 * end of the file is rounded up to the size of
907 		 * the block type ( fragment or full block,
908 		 * depending ).
909 		 */
910 		size = sblksize(fs, dp->di_extsize, lbn);
911 		blkoffset = blkoff(fs, uio->uio_offset);
912 
913 		/*
914 		 * The amount we want to transfer in this iteration is
915 		 * one FS block less the amount of the data before
916 		 * our startpoint (duh!)
917 		 */
918 		xfersize = fs->fs_bsize - blkoffset;
919 
920 		/*
921 		 * But if we actually want less than the block,
922 		 * or the file doesn't have a whole block more of data,
923 		 * then use the lesser number.
924 		 */
925 		if (uio->uio_resid < xfersize)
926 			xfersize = uio->uio_resid;
927 		if (bytesinfile < xfersize)
928 			xfersize = bytesinfile;
929 
930 		if (lblktosize(fs, nextlbn) >= dp->di_extsize) {
931 			/*
932 			 * Don't do readahead if this is the end of the info.
933 			 */
934 			error = bread(vp, -1 - lbn, size, NOCRED, &bp);
935 		} else {
936 			/*
937 			 * If we have a second block, then
938 			 * fire off a request for a readahead
939 			 * as well as a read. Note that the 4th and 5th
940 			 * arguments point to arrays of the size specified in
941 			 * the 6th argument.
942 			 */
943 			int nextsize = sblksize(fs, dp->di_extsize, nextlbn);
944 
945 			nextlbn = -1 - nextlbn;
946 			error = breadn(vp, -1 - lbn,
947 			    size, &nextlbn, &nextsize, 1, NOCRED, &bp);
948 		}
949 		if (error) {
950 			brelse(bp);
951 			bp = NULL;
952 			break;
953 		}
954 
955 		/*
956 		 * If IO_DIRECT then set B_DIRECT for the buffer.  This
957 		 * will cause us to attempt to release the buffer later on
958 		 * and will cause the buffer cache to attempt to free the
959 		 * underlying pages.
960 		 */
961 		if (ioflag & IO_DIRECT)
962 			bp->b_flags |= B_DIRECT;
963 
964 		/*
965 		 * We should only get non-zero b_resid when an I/O error
966 		 * has occurred, which should cause us to break above.
967 		 * However, if the short read did not cause an error,
968 		 * then we want to ensure that we do not uiomove bad
969 		 * or uninitialized data.
970 		 */
971 		size -= bp->b_resid;
972 		if (size < xfersize) {
973 			if (size == 0)
974 				break;
975 			xfersize = size;
976 		}
977 
978 		error = uiomove((char *)bp->b_data + blkoffset,
979 					(int)xfersize, uio);
980 		if (error)
981 			break;
982 
983 		if ((ioflag & (IO_VMIO|IO_DIRECT)) &&
984 		   (LIST_EMPTY(&bp->b_dep))) {
985 			/*
986 			 * If there are no dependencies, and it's VMIO,
987 			 * then we don't need the buf, mark it available
988 			 * for freeing. The VM has the data.
989 			 */
990 			bp->b_flags |= B_RELBUF;
991 			brelse(bp);
992 		} else {
993 			/*
994 			 * Otherwise let whoever
995 			 * made the request take care of
996 			 * freeing it. We just queue
997 			 * it onto another list.
998 			 */
999 			bqrelse(bp);
1000 		}
1001 	}
1002 
1003 	/*
1004 	 * This can only happen in the case of an error
1005 	 * because the loop above resets bp to NULL on each iteration
1006 	 * and on normal completion has not set a new value into it.
1007 	 * so it must have come from a 'break' statement
1008 	 */
1009 	if (bp != NULL) {
1010 		if ((ioflag & (IO_VMIO|IO_DIRECT)) &&
1011 		   (LIST_EMPTY(&bp->b_dep))) {
1012 			bp->b_flags |= B_RELBUF;
1013 			brelse(bp);
1014 		} else {
1015 			bqrelse(bp);
1016 		}
1017 	}
1018 	return (error);
1019 }
1020 
1021 /*
1022  * Extended attribute area writing.
1023  */
1024 static int
1025 ffs_extwrite(struct vnode *vp, struct uio *uio, int ioflag, struct ucred *ucred)
1026 {
1027 	struct inode *ip;
1028 	struct ufs2_dinode *dp;
1029 	struct fs *fs;
1030 	struct buf *bp;
1031 	ufs_lbn_t lbn;
1032 	off_t osize;
1033 	int blkoffset, error, flags, resid, size, xfersize;
1034 
1035 	ip = VTOI(vp);
1036 	fs = ip->i_fs;
1037 	dp = ip->i_din2;
1038 
1039 #ifdef INVARIANTS
1040 	if (uio->uio_rw != UIO_WRITE || fs->fs_magic != FS_UFS2_MAGIC)
1041 		panic("ffs_extwrite: mode");
1042 #endif
1043 
1044 	if (ioflag & IO_APPEND)
1045 		uio->uio_offset = dp->di_extsize;
1046 	KASSERT(uio->uio_offset >= 0, ("ffs_extwrite: uio->uio_offset < 0"));
1047 	KASSERT(uio->uio_resid >= 0, ("ffs_extwrite: uio->uio_resid < 0"));
1048 	if ((uoff_t)uio->uio_offset + uio->uio_resid > NXADDR * fs->fs_bsize)
1049 		return (EFBIG);
1050 
1051 	resid = uio->uio_resid;
1052 	osize = dp->di_extsize;
1053 	flags = IO_EXT;
1054 	if ((ioflag & IO_SYNC) && !DOINGASYNC(vp))
1055 		flags |= IO_SYNC;
1056 
1057 	for (error = 0; uio->uio_resid > 0;) {
1058 		lbn = lblkno(fs, uio->uio_offset);
1059 		blkoffset = blkoff(fs, uio->uio_offset);
1060 		xfersize = fs->fs_bsize - blkoffset;
1061 		if (uio->uio_resid < xfersize)
1062 			xfersize = uio->uio_resid;
1063 
1064 		/*
1065 		 * We must perform a read-before-write if the transfer size
1066 		 * does not cover the entire buffer.
1067                  */
1068 		if (fs->fs_bsize > xfersize)
1069 			flags |= BA_CLRBUF;
1070 		else
1071 			flags &= ~BA_CLRBUF;
1072 		error = UFS_BALLOC(vp, uio->uio_offset, xfersize,
1073 		    ucred, flags, &bp);
1074 		if (error != 0)
1075 			break;
1076 		/*
1077 		 * If the buffer is not valid we have to clear out any
1078 		 * garbage data from the pages instantiated for the buffer.
1079 		 * If we do not, a failed uiomove() during a write can leave
1080 		 * the prior contents of the pages exposed to a userland
1081 		 * mmap().  XXX deal with uiomove() errors a better way.
1082 		 */
1083 		if ((bp->b_flags & B_CACHE) == 0 && fs->fs_bsize <= xfersize)
1084 			vfs_bio_clrbuf(bp);
1085 		if (ioflag & IO_DIRECT)
1086 			bp->b_flags |= B_DIRECT;
1087 
1088 		if (uio->uio_offset + xfersize > dp->di_extsize)
1089 			dp->di_extsize = uio->uio_offset + xfersize;
1090 
1091 		size = sblksize(fs, dp->di_extsize, lbn) - bp->b_resid;
1092 		if (size < xfersize)
1093 			xfersize = size;
1094 
1095 		error =
1096 		    uiomove((char *)bp->b_data + blkoffset, (int)xfersize, uio);
1097 		if ((ioflag & (IO_VMIO|IO_DIRECT)) &&
1098 		   (LIST_EMPTY(&bp->b_dep))) {
1099 			bp->b_flags |= B_RELBUF;
1100 		}
1101 
1102 		/*
1103 		 * If IO_SYNC each buffer is written synchronously.  Otherwise
1104 		 * if we have a severe page deficiency write the buffer
1105 		 * asynchronously.  Otherwise try to cluster, and if that
1106 		 * doesn't do it then either do an async write (if O_DIRECT),
1107 		 * or a delayed write (if not).
1108 		 */
1109 		if (ioflag & IO_SYNC) {
1110 			(void)bwrite(bp);
1111 		} else if (vm_page_count_severe() ||
1112 			    buf_dirty_count_severe() ||
1113 			    xfersize + blkoffset == fs->fs_bsize ||
1114 			    (ioflag & (IO_ASYNC | IO_DIRECT)))
1115 			bawrite(bp);
1116 		else
1117 			bdwrite(bp);
1118 		if (error || xfersize == 0)
1119 			break;
1120 		ip->i_flag |= IN_CHANGE;
1121 	}
1122 	/*
1123 	 * If we successfully wrote any data, and we are not the superuser
1124 	 * we clear the setuid and setgid bits as a precaution against
1125 	 * tampering.
1126 	 */
1127 	if ((ip->i_mode & (ISUID | ISGID)) && resid > uio->uio_resid && ucred) {
1128 		if (priv_check_cred(ucred, PRIV_VFS_RETAINSUGID, 0)) {
1129 			ip->i_mode &= ~(ISUID | ISGID);
1130 			dp->di_mode = ip->i_mode;
1131 		}
1132 	}
1133 	if (error) {
1134 		if (ioflag & IO_UNIT) {
1135 			(void)ffs_truncate(vp, osize,
1136 			    IO_EXT | (ioflag&IO_SYNC), ucred, uio->uio_td);
1137 			uio->uio_offset -= resid - uio->uio_resid;
1138 			uio->uio_resid = resid;
1139 		}
1140 	} else if (resid > uio->uio_resid && (ioflag & IO_SYNC))
1141 		error = ffs_update(vp, 1);
1142 	return (error);
1143 }
1144 
1145 
1146 /*
1147  * Vnode operating to retrieve a named extended attribute.
1148  *
1149  * Locate a particular EA (nspace:name) in the area (ptr:length), and return
1150  * the length of the EA, and possibly the pointer to the entry and to the data.
1151  */
1152 static int
1153 ffs_findextattr(u_char *ptr, u_int length, int nspace, const char *name, u_char **eap, u_char **eac)
1154 {
1155 	u_char *p, *pe, *pn, *p0;
1156 	int eapad1, eapad2, ealength, ealen, nlen;
1157 	uint32_t ul;
1158 
1159 	pe = ptr + length;
1160 	nlen = strlen(name);
1161 
1162 	for (p = ptr; p < pe; p = pn) {
1163 		p0 = p;
1164 		bcopy(p, &ul, sizeof(ul));
1165 		pn = p + ul;
1166 		/* make sure this entry is complete */
1167 		if (pn > pe)
1168 			break;
1169 		p += sizeof(uint32_t);
1170 		if (*p != nspace)
1171 			continue;
1172 		p++;
1173 		eapad2 = *p++;
1174 		if (*p != nlen)
1175 			continue;
1176 		p++;
1177 		if (bcmp(p, name, nlen))
1178 			continue;
1179 		ealength = sizeof(uint32_t) + 3 + nlen;
1180 		eapad1 = 8 - (ealength % 8);
1181 		if (eapad1 == 8)
1182 			eapad1 = 0;
1183 		ealength += eapad1;
1184 		ealen = ul - ealength - eapad2;
1185 		p += nlen + eapad1;
1186 		if (eap != NULL)
1187 			*eap = p0;
1188 		if (eac != NULL)
1189 			*eac = p;
1190 		return (ealen);
1191 	}
1192 	return(-1);
1193 }
1194 
1195 static int
1196 ffs_rdextattr(u_char **p, struct vnode *vp, struct thread *td, int extra)
1197 {
1198 	struct inode *ip;
1199 	struct ufs2_dinode *dp;
1200 	struct fs *fs;
1201 	struct uio luio;
1202 	struct iovec liovec;
1203 	int easize, error;
1204 	u_char *eae;
1205 
1206 	ip = VTOI(vp);
1207 	fs = ip->i_fs;
1208 	dp = ip->i_din2;
1209 	easize = dp->di_extsize;
1210 	if ((uoff_t)easize + extra > NXADDR * fs->fs_bsize)
1211 		return (EFBIG);
1212 
1213 	eae = malloc(easize + extra, M_TEMP, M_WAITOK);
1214 
1215 	liovec.iov_base = eae;
1216 	liovec.iov_len = easize;
1217 	luio.uio_iov = &liovec;
1218 	luio.uio_iovcnt = 1;
1219 	luio.uio_offset = 0;
1220 	luio.uio_resid = easize;
1221 	luio.uio_segflg = UIO_SYSSPACE;
1222 	luio.uio_rw = UIO_READ;
1223 	luio.uio_td = td;
1224 
1225 	error = ffs_extread(vp, &luio, IO_EXT | IO_SYNC);
1226 	if (error) {
1227 		free(eae, M_TEMP);
1228 		return(error);
1229 	}
1230 	*p = eae;
1231 	return (0);
1232 }
1233 
1234 static void
1235 ffs_lock_ea(struct vnode *vp)
1236 {
1237 	struct inode *ip;
1238 
1239 	ip = VTOI(vp);
1240 	VI_LOCK(vp);
1241 	while (ip->i_flag & IN_EA_LOCKED) {
1242 		ip->i_flag |= IN_EA_LOCKWAIT;
1243 		msleep(&ip->i_ea_refs, &vp->v_interlock, PINOD + 2, "ufs_ea",
1244 		    0);
1245 	}
1246 	ip->i_flag |= IN_EA_LOCKED;
1247 	VI_UNLOCK(vp);
1248 }
1249 
1250 static void
1251 ffs_unlock_ea(struct vnode *vp)
1252 {
1253 	struct inode *ip;
1254 
1255 	ip = VTOI(vp);
1256 	VI_LOCK(vp);
1257 	if (ip->i_flag & IN_EA_LOCKWAIT)
1258 		wakeup(&ip->i_ea_refs);
1259 	ip->i_flag &= ~(IN_EA_LOCKED | IN_EA_LOCKWAIT);
1260 	VI_UNLOCK(vp);
1261 }
1262 
1263 static int
1264 ffs_open_ea(struct vnode *vp, struct ucred *cred, struct thread *td)
1265 {
1266 	struct inode *ip;
1267 	struct ufs2_dinode *dp;
1268 	int error;
1269 
1270 	ip = VTOI(vp);
1271 
1272 	ffs_lock_ea(vp);
1273 	if (ip->i_ea_area != NULL) {
1274 		ip->i_ea_refs++;
1275 		ffs_unlock_ea(vp);
1276 		return (0);
1277 	}
1278 	dp = ip->i_din2;
1279 	error = ffs_rdextattr(&ip->i_ea_area, vp, td, 0);
1280 	if (error) {
1281 		ffs_unlock_ea(vp);
1282 		return (error);
1283 	}
1284 	ip->i_ea_len = dp->di_extsize;
1285 	ip->i_ea_error = 0;
1286 	ip->i_ea_refs++;
1287 	ffs_unlock_ea(vp);
1288 	return (0);
1289 }
1290 
1291 /*
1292  * Vnode extattr transaction commit/abort
1293  */
1294 static int
1295 ffs_close_ea(struct vnode *vp, int commit, struct ucred *cred, struct thread *td)
1296 {
1297 	struct inode *ip;
1298 	struct uio luio;
1299 	struct iovec liovec;
1300 	int error;
1301 	struct ufs2_dinode *dp;
1302 
1303 	ip = VTOI(vp);
1304 
1305 	ffs_lock_ea(vp);
1306 	if (ip->i_ea_area == NULL) {
1307 		ffs_unlock_ea(vp);
1308 		return (EINVAL);
1309 	}
1310 	dp = ip->i_din2;
1311 	error = ip->i_ea_error;
1312 	if (commit && error == 0) {
1313 		ASSERT_VOP_ELOCKED(vp, "ffs_close_ea commit");
1314 		if (cred == NOCRED)
1315 			cred =  vp->v_mount->mnt_cred;
1316 		liovec.iov_base = ip->i_ea_area;
1317 		liovec.iov_len = ip->i_ea_len;
1318 		luio.uio_iov = &liovec;
1319 		luio.uio_iovcnt = 1;
1320 		luio.uio_offset = 0;
1321 		luio.uio_resid = ip->i_ea_len;
1322 		luio.uio_segflg = UIO_SYSSPACE;
1323 		luio.uio_rw = UIO_WRITE;
1324 		luio.uio_td = td;
1325 		/* XXX: I'm not happy about truncating to zero size */
1326 		if (ip->i_ea_len < dp->di_extsize)
1327 			error = ffs_truncate(vp, 0, IO_EXT, cred, td);
1328 		error = ffs_extwrite(vp, &luio, IO_EXT | IO_SYNC, cred);
1329 	}
1330 	if (--ip->i_ea_refs == 0) {
1331 		free(ip->i_ea_area, M_TEMP);
1332 		ip->i_ea_area = NULL;
1333 		ip->i_ea_len = 0;
1334 		ip->i_ea_error = 0;
1335 	}
1336 	ffs_unlock_ea(vp);
1337 	return (error);
1338 }
1339 
1340 /*
1341  * Vnode extattr strategy routine for fifos.
1342  *
1343  * We need to check for a read or write of the external attributes.
1344  * Otherwise we just fall through and do the usual thing.
1345  */
1346 static int
1347 ffsext_strategy(struct vop_strategy_args *ap)
1348 /*
1349 struct vop_strategy_args {
1350 	struct vnodeop_desc *a_desc;
1351 	struct vnode *a_vp;
1352 	struct buf *a_bp;
1353 };
1354 */
1355 {
1356 	struct vnode *vp;
1357 	daddr_t lbn;
1358 
1359 	vp = ap->a_vp;
1360 	lbn = ap->a_bp->b_lblkno;
1361 	if (VTOI(vp)->i_fs->fs_magic == FS_UFS2_MAGIC &&
1362 	    lbn < 0 && lbn >= -NXADDR)
1363 		return (VOP_STRATEGY_APV(&ufs_vnodeops, ap));
1364 	if (vp->v_type == VFIFO)
1365 		return (VOP_STRATEGY_APV(&ufs_fifoops, ap));
1366 	panic("spec nodes went here");
1367 }
1368 
1369 /*
1370  * Vnode extattr transaction commit/abort
1371  */
1372 static int
1373 ffs_openextattr(struct vop_openextattr_args *ap)
1374 /*
1375 struct vop_openextattr_args {
1376 	struct vnodeop_desc *a_desc;
1377 	struct vnode *a_vp;
1378 	IN struct ucred *a_cred;
1379 	IN struct thread *a_td;
1380 };
1381 */
1382 {
1383 	struct inode *ip;
1384 	struct fs *fs;
1385 
1386 	ip = VTOI(ap->a_vp);
1387 	fs = ip->i_fs;
1388 
1389 	if (ap->a_vp->v_type == VCHR || ap->a_vp->v_type == VBLK)
1390 		return (EOPNOTSUPP);
1391 
1392 	return (ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td));
1393 }
1394 
1395 
1396 /*
1397  * Vnode extattr transaction commit/abort
1398  */
1399 static int
1400 ffs_closeextattr(struct vop_closeextattr_args *ap)
1401 /*
1402 struct vop_closeextattr_args {
1403 	struct vnodeop_desc *a_desc;
1404 	struct vnode *a_vp;
1405 	int a_commit;
1406 	IN struct ucred *a_cred;
1407 	IN struct thread *a_td;
1408 };
1409 */
1410 {
1411 	struct inode *ip;
1412 	struct fs *fs;
1413 
1414 	ip = VTOI(ap->a_vp);
1415 	fs = ip->i_fs;
1416 
1417 	if (ap->a_vp->v_type == VCHR || ap->a_vp->v_type == VBLK)
1418 		return (EOPNOTSUPP);
1419 
1420 	if (ap->a_commit && (ap->a_vp->v_mount->mnt_flag & MNT_RDONLY))
1421 		return (EROFS);
1422 
1423 	return (ffs_close_ea(ap->a_vp, ap->a_commit, ap->a_cred, ap->a_td));
1424 }
1425 
1426 /*
1427  * Vnode operation to remove a named attribute.
1428  */
1429 static int
1430 ffs_deleteextattr(struct vop_deleteextattr_args *ap)
1431 /*
1432 vop_deleteextattr {
1433 	IN struct vnode *a_vp;
1434 	IN int a_attrnamespace;
1435 	IN const char *a_name;
1436 	IN struct ucred *a_cred;
1437 	IN struct thread *a_td;
1438 };
1439 */
1440 {
1441 	struct inode *ip;
1442 	struct fs *fs;
1443 	uint32_t ealength, ul;
1444 	int ealen, olen, eapad1, eapad2, error, i, easize;
1445 	u_char *eae, *p;
1446 
1447 	ip = VTOI(ap->a_vp);
1448 	fs = ip->i_fs;
1449 
1450 	if (ap->a_vp->v_type == VCHR || ap->a_vp->v_type == VBLK)
1451 		return (EOPNOTSUPP);
1452 
1453 	if (strlen(ap->a_name) == 0)
1454 		return (EINVAL);
1455 
1456 	if (ap->a_vp->v_mount->mnt_flag & MNT_RDONLY)
1457 		return (EROFS);
1458 
1459 	error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace,
1460 	    ap->a_cred, ap->a_td, VWRITE);
1461 	if (error) {
1462 
1463 		/*
1464 		 * ffs_lock_ea is not needed there, because the vnode
1465 		 * must be exclusively locked.
1466 		 */
1467 		if (ip->i_ea_area != NULL && ip->i_ea_error == 0)
1468 			ip->i_ea_error = error;
1469 		return (error);
1470 	}
1471 
1472 	error = ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td);
1473 	if (error)
1474 		return (error);
1475 
1476 	ealength = eapad1 = ealen = eapad2 = 0;
1477 
1478 	eae = malloc(ip->i_ea_len, M_TEMP, M_WAITOK);
1479 	bcopy(ip->i_ea_area, eae, ip->i_ea_len);
1480 	easize = ip->i_ea_len;
1481 
1482 	olen = ffs_findextattr(eae, easize, ap->a_attrnamespace, ap->a_name,
1483 	    &p, NULL);
1484 	if (olen == -1) {
1485 		/* delete but nonexistent */
1486 		free(eae, M_TEMP);
1487 		ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td);
1488 		return(ENOATTR);
1489 	}
1490 	bcopy(p, &ul, sizeof ul);
1491 	i = p - eae + ul;
1492 	if (ul != ealength) {
1493 		bcopy(p + ul, p + ealength, easize - i);
1494 		easize += (ealength - ul);
1495 	}
1496 	if (easize > NXADDR * fs->fs_bsize) {
1497 		free(eae, M_TEMP);
1498 		ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td);
1499 		if (ip->i_ea_area != NULL && ip->i_ea_error == 0)
1500 			ip->i_ea_error = ENOSPC;
1501 		return(ENOSPC);
1502 	}
1503 	p = ip->i_ea_area;
1504 	ip->i_ea_area = eae;
1505 	ip->i_ea_len = easize;
1506 	free(p, M_TEMP);
1507 	error = ffs_close_ea(ap->a_vp, 1, ap->a_cred, ap->a_td);
1508 	return(error);
1509 }
1510 
1511 /*
1512  * Vnode operation to retrieve a named extended attribute.
1513  */
1514 static int
1515 ffs_getextattr(struct vop_getextattr_args *ap)
1516 /*
1517 vop_getextattr {
1518 	IN struct vnode *a_vp;
1519 	IN int a_attrnamespace;
1520 	IN const char *a_name;
1521 	INOUT struct uio *a_uio;
1522 	OUT size_t *a_size;
1523 	IN struct ucred *a_cred;
1524 	IN struct thread *a_td;
1525 };
1526 */
1527 {
1528 	struct inode *ip;
1529 	struct fs *fs;
1530 	u_char *eae, *p;
1531 	unsigned easize;
1532 	int error, ealen;
1533 
1534 	ip = VTOI(ap->a_vp);
1535 	fs = ip->i_fs;
1536 
1537 	if (ap->a_vp->v_type == VCHR || ap->a_vp->v_type == VBLK)
1538 		return (EOPNOTSUPP);
1539 
1540 	error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace,
1541 	    ap->a_cred, ap->a_td, VREAD);
1542 	if (error)
1543 		return (error);
1544 
1545 	error = ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td);
1546 	if (error)
1547 		return (error);
1548 
1549 	eae = ip->i_ea_area;
1550 	easize = ip->i_ea_len;
1551 
1552 	ealen = ffs_findextattr(eae, easize, ap->a_attrnamespace, ap->a_name,
1553 	    NULL, &p);
1554 	if (ealen >= 0) {
1555 		error = 0;
1556 		if (ap->a_size != NULL)
1557 			*ap->a_size = ealen;
1558 		else if (ap->a_uio != NULL)
1559 			error = uiomove(p, ealen, ap->a_uio);
1560 	} else
1561 		error = ENOATTR;
1562 
1563 	ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td);
1564 	return(error);
1565 }
1566 
1567 /*
1568  * Vnode operation to retrieve extended attributes on a vnode.
1569  */
1570 static int
1571 ffs_listextattr(struct vop_listextattr_args *ap)
1572 /*
1573 vop_listextattr {
1574 	IN struct vnode *a_vp;
1575 	IN int a_attrnamespace;
1576 	INOUT struct uio *a_uio;
1577 	OUT size_t *a_size;
1578 	IN struct ucred *a_cred;
1579 	IN struct thread *a_td;
1580 };
1581 */
1582 {
1583 	struct inode *ip;
1584 	struct fs *fs;
1585 	u_char *eae, *p, *pe, *pn;
1586 	unsigned easize;
1587 	uint32_t ul;
1588 	int error, ealen;
1589 
1590 	ip = VTOI(ap->a_vp);
1591 	fs = ip->i_fs;
1592 
1593 	if (ap->a_vp->v_type == VCHR || ap->a_vp->v_type == VBLK)
1594 		return (EOPNOTSUPP);
1595 
1596 	error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace,
1597 	    ap->a_cred, ap->a_td, VREAD);
1598 	if (error)
1599 		return (error);
1600 
1601 	error = ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td);
1602 	if (error)
1603 		return (error);
1604 	eae = ip->i_ea_area;
1605 	easize = ip->i_ea_len;
1606 
1607 	error = 0;
1608 	if (ap->a_size != NULL)
1609 		*ap->a_size = 0;
1610 	pe = eae + easize;
1611 	for(p = eae; error == 0 && p < pe; p = pn) {
1612 		bcopy(p, &ul, sizeof(ul));
1613 		pn = p + ul;
1614 		if (pn > pe)
1615 			break;
1616 		p += sizeof(ul);
1617 		if (*p++ != ap->a_attrnamespace)
1618 			continue;
1619 		p++;	/* pad2 */
1620 		ealen = *p;
1621 		if (ap->a_size != NULL) {
1622 			*ap->a_size += ealen + 1;
1623 		} else if (ap->a_uio != NULL) {
1624 			error = uiomove(p, ealen + 1, ap->a_uio);
1625 		}
1626 	}
1627 	ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td);
1628 	return(error);
1629 }
1630 
1631 /*
1632  * Vnode operation to set a named attribute.
1633  */
1634 static int
1635 ffs_setextattr(struct vop_setextattr_args *ap)
1636 /*
1637 vop_setextattr {
1638 	IN struct vnode *a_vp;
1639 	IN int a_attrnamespace;
1640 	IN const char *a_name;
1641 	INOUT struct uio *a_uio;
1642 	IN struct ucred *a_cred;
1643 	IN struct thread *a_td;
1644 };
1645 */
1646 {
1647 	struct inode *ip;
1648 	struct fs *fs;
1649 	uint32_t ealength, ul;
1650 	int ealen, olen, eapad1, eapad2, error, i, easize;
1651 	u_char *eae, *p;
1652 
1653 	ip = VTOI(ap->a_vp);
1654 	fs = ip->i_fs;
1655 
1656 	if (ap->a_vp->v_type == VCHR || ap->a_vp->v_type == VBLK)
1657 		return (EOPNOTSUPP);
1658 
1659 	if (strlen(ap->a_name) == 0)
1660 		return (EINVAL);
1661 
1662 	/* XXX Now unsupported API to delete EAs using NULL uio. */
1663 	if (ap->a_uio == NULL)
1664 		return (EOPNOTSUPP);
1665 
1666 	if (ap->a_vp->v_mount->mnt_flag & MNT_RDONLY)
1667 		return (EROFS);
1668 
1669 	error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace,
1670 	    ap->a_cred, ap->a_td, VWRITE);
1671 	if (error) {
1672 
1673 		/*
1674 		 * ffs_lock_ea is not needed there, because the vnode
1675 		 * must be exclusively locked.
1676 		 */
1677 		if (ip->i_ea_area != NULL && ip->i_ea_error == 0)
1678 			ip->i_ea_error = error;
1679 		return (error);
1680 	}
1681 
1682 	error = ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td);
1683 	if (error)
1684 		return (error);
1685 
1686 	ealen = ap->a_uio->uio_resid;
1687 	ealength = sizeof(uint32_t) + 3 + strlen(ap->a_name);
1688 	eapad1 = 8 - (ealength % 8);
1689 	if (eapad1 == 8)
1690 		eapad1 = 0;
1691 	eapad2 = 8 - (ealen % 8);
1692 	if (eapad2 == 8)
1693 		eapad2 = 0;
1694 	ealength += eapad1 + ealen + eapad2;
1695 
1696 	eae = malloc(ip->i_ea_len + ealength, M_TEMP, M_WAITOK);
1697 	bcopy(ip->i_ea_area, eae, ip->i_ea_len);
1698 	easize = ip->i_ea_len;
1699 
1700 	olen = ffs_findextattr(eae, easize,
1701 	    ap->a_attrnamespace, ap->a_name, &p, NULL);
1702         if (olen == -1) {
1703 		/* new, append at end */
1704 		p = eae + easize;
1705 		easize += ealength;
1706 	} else {
1707 		bcopy(p, &ul, sizeof ul);
1708 		i = p - eae + ul;
1709 		if (ul != ealength) {
1710 			bcopy(p + ul, p + ealength, easize - i);
1711 			easize += (ealength - ul);
1712 		}
1713 	}
1714 	if (easize > NXADDR * fs->fs_bsize) {
1715 		free(eae, M_TEMP);
1716 		ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td);
1717 		if (ip->i_ea_area != NULL && ip->i_ea_error == 0)
1718 			ip->i_ea_error = ENOSPC;
1719 		return(ENOSPC);
1720 	}
1721 	bcopy(&ealength, p, sizeof(ealength));
1722 	p += sizeof(ealength);
1723 	*p++ = ap->a_attrnamespace;
1724 	*p++ = eapad2;
1725 	*p++ = strlen(ap->a_name);
1726 	strcpy(p, ap->a_name);
1727 	p += strlen(ap->a_name);
1728 	bzero(p, eapad1);
1729 	p += eapad1;
1730 	error = uiomove(p, ealen, ap->a_uio);
1731 	if (error) {
1732 		free(eae, M_TEMP);
1733 		ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td);
1734 		if (ip->i_ea_area != NULL && ip->i_ea_error == 0)
1735 			ip->i_ea_error = error;
1736 		return(error);
1737 	}
1738 	p += ealen;
1739 	bzero(p, eapad2);
1740 
1741 	p = ip->i_ea_area;
1742 	ip->i_ea_area = eae;
1743 	ip->i_ea_len = easize;
1744 	free(p, M_TEMP);
1745 	error = ffs_close_ea(ap->a_vp, 1, ap->a_cred, ap->a_td);
1746 	return(error);
1747 }
1748 
1749 /*
1750  * Vnode pointer to File handle
1751  */
1752 static int
1753 ffs_vptofh(struct vop_vptofh_args *ap)
1754 /*
1755 vop_vptofh {
1756 	IN struct vnode *a_vp;
1757 	IN struct fid *a_fhp;
1758 };
1759 */
1760 {
1761 	struct inode *ip;
1762 	struct ufid *ufhp;
1763 
1764 	ip = VTOI(ap->a_vp);
1765 	ufhp = (struct ufid *)ap->a_fhp;
1766 	ufhp->ufid_len = sizeof(struct ufid);
1767 	ufhp->ufid_ino = ip->i_number;
1768 	ufhp->ufid_gen = ip->i_gen;
1769 	return (0);
1770 }
1771