xref: /freebsd/sys/ufs/ffs/ffs_vnops.c (revision 7773002178c8dbc52b44e4d705f07706409af8e4)
1 /*
2  * Copyright (c) 2002, 2003 Networks Associates Technology, Inc.
3  * All rights reserved.
4  *
5  * This software was developed for the FreeBSD Project by Marshall
6  * Kirk McKusick and Network Associates Laboratories, the Security
7  * Research Division of Network Associates, Inc. under DARPA/SPAWAR
8  * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
9  * research program
10  *
11  * Copyright (c) 1982, 1986, 1989, 1993
12  *	The Regents of the University of California.  All rights reserved.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. All advertising materials mentioning features or use of this software
23  *    must display the following acknowledgement:
24  *	This product includes software developed by the University of
25  *	California, Berkeley and its contributors.
26  * 4. Neither the name of the University nor the names of its contributors
27  *    may be used to endorse or promote products derived from this software
28  *    without specific prior written permission.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40  * SUCH DAMAGE.
41  *
42  *	@(#)ffs_vnops.c	8.15 (Berkeley) 5/14/95
43  */
44 
45 #include <sys/cdefs.h>
46 __FBSDID("$FreeBSD$");
47 
48 #include <sys/param.h>
49 #include <sys/bio.h>
50 #include <sys/systm.h>
51 #include <sys/buf.h>
52 #include <sys/conf.h>
53 #include <sys/extattr.h>
54 #include <sys/kernel.h>
55 #include <sys/limits.h>
56 #include <sys/malloc.h>
57 #include <sys/mount.h>
58 #include <sys/proc.h>
59 #include <sys/resourcevar.h>
60 #include <sys/signalvar.h>
61 #include <sys/stat.h>
62 #include <sys/vmmeter.h>
63 #include <sys/vnode.h>
64 
65 #include <vm/vm.h>
66 #include <vm/vm_extern.h>
67 #include <vm/vm_object.h>
68 #include <vm/vm_page.h>
69 #include <vm/vm_pager.h>
70 #include <vm/vnode_pager.h>
71 
72 #include <ufs/ufs/extattr.h>
73 #include <ufs/ufs/quota.h>
74 #include <ufs/ufs/inode.h>
75 #include <ufs/ufs/ufs_extern.h>
76 #include <ufs/ufs/ufsmount.h>
77 
78 #include <ufs/ffs/fs.h>
79 #include <ufs/ffs/ffs_extern.h>
80 #include "opt_directio.h"
81 
82 #ifdef DIRECTIO
83 extern int	ffs_rawread(struct vnode *vp, struct uio *uio, int *workdone);
84 #endif
85 static int	ffs_fsync(struct vop_fsync_args *);
86 static int	ffs_getpages(struct vop_getpages_args *);
87 static int	ffs_read(struct vop_read_args *);
88 static int	ffs_write(struct vop_write_args *);
89 static int	ffs_extread(struct vnode *vp, struct uio *uio, int ioflag);
90 static int	ffs_extwrite(struct vnode *vp, struct uio *uio, int ioflag,
91 		    struct ucred *cred);
92 static int	ffsext_strategy(struct vop_strategy_args *);
93 static int	ffs_closeextattr(struct vop_closeextattr_args *);
94 static int	ffs_deleteextattr(struct vop_deleteextattr_args *);
95 static int	ffs_getextattr(struct vop_getextattr_args *);
96 static int	ffs_listextattr(struct vop_listextattr_args *);
97 static int	ffs_openextattr(struct vop_openextattr_args *);
98 static int	ffs_setextattr(struct vop_setextattr_args *);
99 
100 
101 /* Global vfs data structures for ufs. */
102 vop_t **ffs_vnodeop_p;
103 static struct vnodeopv_entry_desc ffs_vnodeop_entries[] = {
104 	{ &vop_default_desc,		(vop_t *) ufs_vnoperate },
105 	{ &vop_fsync_desc,		(vop_t *) ffs_fsync },
106 	{ &vop_getpages_desc,		(vop_t *) ffs_getpages },
107 	{ &vop_read_desc,		(vop_t *) ffs_read },
108 	{ &vop_reallocblks_desc,	(vop_t *) ffs_reallocblks },
109 	{ &vop_write_desc,		(vop_t *) ffs_write },
110 	{ &vop_closeextattr_desc,	(vop_t *) ffs_closeextattr },
111 	{ &vop_deleteextattr_desc,	(vop_t *) ffs_deleteextattr },
112 	{ &vop_getextattr_desc,		(vop_t *) ffs_getextattr },
113 	{ &vop_listextattr_desc,	(vop_t *) ffs_listextattr },
114 	{ &vop_openextattr_desc,	(vop_t *) ffs_openextattr },
115 	{ &vop_setextattr_desc,		(vop_t *) ffs_setextattr },
116 	{ NULL, NULL }
117 };
118 static struct vnodeopv_desc ffs_vnodeop_opv_desc =
119 	{ &ffs_vnodeop_p, ffs_vnodeop_entries };
120 
121 vop_t **ffs_specop_p;
122 static struct vnodeopv_entry_desc ffs_specop_entries[] = {
123 	{ &vop_default_desc,		(vop_t *) ufs_vnoperatespec },
124 	{ &vop_fsync_desc,		(vop_t *) ffs_fsync },
125 	{ &vop_reallocblks_desc,	(vop_t *) ffs_reallocblks },
126 	{ &vop_strategy_desc,		(vop_t *) ffsext_strategy },
127 	{ &vop_closeextattr_desc,	(vop_t *) ffs_closeextattr },
128 	{ &vop_deleteextattr_desc,	(vop_t *) ffs_deleteextattr },
129 	{ &vop_getextattr_desc,		(vop_t *) ffs_getextattr },
130 	{ &vop_listextattr_desc,	(vop_t *) ffs_listextattr },
131 	{ &vop_openextattr_desc,	(vop_t *) ffs_openextattr },
132 	{ &vop_setextattr_desc,		(vop_t *) ffs_setextattr },
133 	{ NULL, NULL }
134 };
135 static struct vnodeopv_desc ffs_specop_opv_desc =
136 	{ &ffs_specop_p, ffs_specop_entries };
137 
138 vop_t **ffs_fifoop_p;
139 static struct vnodeopv_entry_desc ffs_fifoop_entries[] = {
140 	{ &vop_default_desc,		(vop_t *) ufs_vnoperatefifo },
141 	{ &vop_fsync_desc,		(vop_t *) ffs_fsync },
142 	{ &vop_reallocblks_desc,	(vop_t *) ffs_reallocblks },
143 	{ &vop_strategy_desc,		(vop_t *) ffsext_strategy },
144 	{ &vop_closeextattr_desc,	(vop_t *) ffs_closeextattr },
145 	{ &vop_deleteextattr_desc,	(vop_t *) ffs_deleteextattr },
146 	{ &vop_getextattr_desc,		(vop_t *) ffs_getextattr },
147 	{ &vop_listextattr_desc,	(vop_t *) ffs_listextattr },
148 	{ &vop_openextattr_desc,	(vop_t *) ffs_openextattr },
149 	{ &vop_setextattr_desc,		(vop_t *) ffs_setextattr },
150 	{ NULL, NULL }
151 };
152 static struct vnodeopv_desc ffs_fifoop_opv_desc =
153 	{ &ffs_fifoop_p, ffs_fifoop_entries };
154 
155 VNODEOP_SET(ffs_vnodeop_opv_desc);
156 VNODEOP_SET(ffs_specop_opv_desc);
157 VNODEOP_SET(ffs_fifoop_opv_desc);
158 
159 /*
160  * Synch an open file.
161  */
162 /* ARGSUSED */
163 static int
164 ffs_fsync(ap)
165 	struct vop_fsync_args /* {
166 		struct vnode *a_vp;
167 		struct ucred *a_cred;
168 		int a_waitfor;
169 		struct thread *a_td;
170 	} */ *ap;
171 {
172 	struct vnode *vp = ap->a_vp;
173 	struct inode *ip = VTOI(vp);
174 	struct buf *bp;
175 	struct buf *nbp;
176 	int s, error, wait, passes, skipmeta;
177 	ufs_lbn_t lbn;
178 
179 	wait = (ap->a_waitfor == MNT_WAIT);
180 	if (vn_isdisk(vp, NULL)) {
181 		lbn = INT_MAX;
182 		if (vp->v_rdev->si_mountpoint != NULL &&
183 		    (vp->v_rdev->si_mountpoint->mnt_flag & MNT_SOFTDEP))
184 			softdep_fsync_mountdev(vp);
185 	} else {
186 		lbn = lblkno(ip->i_fs, (ip->i_size + ip->i_fs->fs_bsize - 1));
187 	}
188 
189 	/*
190 	 * Flush all dirty buffers associated with a vnode.
191 	 */
192 	passes = NIADDR + 1;
193 	skipmeta = 0;
194 	if (wait)
195 		skipmeta = 1;
196 	s = splbio();
197 	VI_LOCK(vp);
198 loop:
199 	TAILQ_FOREACH(bp, &vp->v_dirtyblkhd, b_vnbufs)
200 		bp->b_vflags &= ~BV_SCANNED;
201 	for (bp = TAILQ_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
202 		nbp = TAILQ_NEXT(bp, b_vnbufs);
203 		/*
204 		 * Reasons to skip this buffer: it has already been considered
205 		 * on this pass, this pass is the first time through on a
206 		 * synchronous flush request and the buffer being considered
207 		 * is metadata, the buffer has dependencies that will cause
208 		 * it to be redirtied and it has not already been deferred,
209 		 * or it is already being written.
210 		 */
211 		if ((bp->b_vflags & BV_SCANNED) != 0)
212 			continue;
213 		bp->b_vflags |= BV_SCANNED;
214 		if ((skipmeta == 1 && bp->b_lblkno < 0))
215 			continue;
216 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL))
217 			continue;
218 		if (!wait && LIST_FIRST(&bp->b_dep) != NULL &&
219 		    (bp->b_flags & B_DEFERRED) == 0 &&
220 		    buf_countdeps(bp, 0)) {
221 			bp->b_flags |= B_DEFERRED;
222 			BUF_UNLOCK(bp);
223 			continue;
224 		}
225 		VI_UNLOCK(vp);
226 		if ((bp->b_flags & B_DELWRI) == 0)
227 			panic("ffs_fsync: not dirty");
228 		if (vp != bp->b_vp)
229 			panic("ffs_fsync: vp != vp->b_vp");
230 		/*
231 		 * If this is a synchronous flush request, or it is not a
232 		 * file or device, start the write on this buffer immediatly.
233 		 */
234 		if (wait || (vp->v_type != VREG && vp->v_type != VBLK)) {
235 
236 			/*
237 			 * On our final pass through, do all I/O synchronously
238 			 * so that we can find out if our flush is failing
239 			 * because of write errors.
240 			 */
241 			if (passes > 0 || !wait) {
242 				if ((bp->b_flags & B_CLUSTEROK) && !wait) {
243 					(void) vfs_bio_awrite(bp);
244 				} else {
245 					bremfree(bp);
246 					splx(s);
247 					(void) bawrite(bp);
248 					s = splbio();
249 				}
250 			} else {
251 				bremfree(bp);
252 				splx(s);
253 				if ((error = bwrite(bp)) != 0)
254 					return (error);
255 				s = splbio();
256 			}
257 		} else if ((vp->v_type == VREG) && (bp->b_lblkno >= lbn)) {
258 			/*
259 			 * If the buffer is for data that has been truncated
260 			 * off the file, then throw it away.
261 			 */
262 			bremfree(bp);
263 			bp->b_flags |= B_INVAL | B_NOCACHE;
264 			splx(s);
265 			brelse(bp);
266 			s = splbio();
267 		} else
268 			vfs_bio_awrite(bp);
269 
270 		/*
271 		 * Since we may have slept during the I/O, we need
272 		 * to start from a known point.
273 		 */
274 		VI_LOCK(vp);
275 		nbp = TAILQ_FIRST(&vp->v_dirtyblkhd);
276 	}
277 	/*
278 	 * If we were asked to do this synchronously, then go back for
279 	 * another pass, this time doing the metadata.
280 	 */
281 	if (skipmeta) {
282 		skipmeta = 0;
283 		goto loop;
284 	}
285 
286 	if (wait) {
287 		while (vp->v_numoutput) {
288 			vp->v_iflag |= VI_BWAIT;
289 			msleep((caddr_t)&vp->v_numoutput, VI_MTX(vp),
290 			    PRIBIO + 4, "ffsfsn", 0);
291   		}
292 		VI_UNLOCK(vp);
293 
294 		/*
295 		 * Ensure that any filesystem metatdata associated
296 		 * with the vnode has been written.
297 		 */
298 		splx(s);
299 		if ((error = softdep_sync_metadata(ap)) != 0)
300 			return (error);
301 		s = splbio();
302 
303 		VI_LOCK(vp);
304 		if (!TAILQ_EMPTY(&vp->v_dirtyblkhd)) {
305 			/*
306 			 * Block devices associated with filesystems may
307 			 * have new I/O requests posted for them even if
308 			 * the vnode is locked, so no amount of trying will
309 			 * get them clean. Thus we give block devices a
310 			 * good effort, then just give up. For all other file
311 			 * types, go around and try again until it is clean.
312 			 */
313 			if (passes > 0) {
314 				passes -= 1;
315 				goto loop;
316 			}
317 #ifdef DIAGNOSTIC
318 			if (!vn_isdisk(vp, NULL))
319 				vprint("ffs_fsync: dirty", vp);
320 #endif
321 		}
322 	}
323 	VI_UNLOCK(vp);
324 	splx(s);
325 	return (UFS_UPDATE(vp, wait));
326 }
327 
328 
329 /*
330  * Vnode op for reading.
331  */
332 /* ARGSUSED */
333 static int
334 ffs_read(ap)
335 	struct vop_read_args /* {
336 		struct vnode *a_vp;
337 		struct uio *a_uio;
338 		int a_ioflag;
339 		struct ucred *a_cred;
340 	} */ *ap;
341 {
342 	struct vnode *vp;
343 	struct inode *ip;
344 	struct uio *uio;
345 	struct fs *fs;
346 	struct buf *bp;
347 	ufs_lbn_t lbn, nextlbn;
348 	off_t bytesinfile;
349 	long size, xfersize, blkoffset;
350 	int error, orig_resid;
351 	int seqcount;
352 	int ioflag;
353 	vm_object_t object;
354 
355 	vp = ap->a_vp;
356 	uio = ap->a_uio;
357 	ioflag = ap->a_ioflag;
358 	if (ap->a_ioflag & IO_EXT)
359 #ifdef notyet
360 		return (ffs_extread(vp, uio, ioflag));
361 #else
362 		panic("ffs_read+IO_EXT");
363 #endif
364 #ifdef DIRECTIO
365 	if ((ioflag & IO_DIRECT) != 0) {
366 		int workdone;
367 
368 		error = ffs_rawread(vp, uio, &workdone);
369 		if (error != 0 || workdone != 0)
370 			return error;
371 	}
372 #endif
373 
374 	GIANT_REQUIRED;
375 
376 	seqcount = ap->a_ioflag >> 16;
377 	ip = VTOI(vp);
378 
379 #ifdef DIAGNOSTIC
380 	if (uio->uio_rw != UIO_READ)
381 		panic("ffs_read: mode");
382 
383 	if (vp->v_type == VLNK) {
384 		if ((int)ip->i_size < vp->v_mount->mnt_maxsymlinklen)
385 			panic("ffs_read: short symlink");
386 	} else if (vp->v_type != VREG && vp->v_type != VDIR)
387 		panic("ffs_read: type %d",  vp->v_type);
388 #endif
389 	fs = ip->i_fs;
390 	if ((u_int64_t)uio->uio_offset > fs->fs_maxfilesize)
391 		return (EFBIG);
392 
393 	orig_resid = uio->uio_resid;
394 	if (orig_resid <= 0)
395 		return (0);
396 
397 	object = vp->v_object;
398 
399 	bytesinfile = ip->i_size - uio->uio_offset;
400 	if (bytesinfile <= 0) {
401 		if ((vp->v_mount->mnt_flag & MNT_NOATIME) == 0)
402 			ip->i_flag |= IN_ACCESS;
403 		return 0;
404 	}
405 
406 	if (object) {
407 		vm_object_reference(object);
408 	}
409 
410 	/*
411 	 * Ok so we couldn't do it all in one vm trick...
412 	 * so cycle around trying smaller bites..
413 	 */
414 	for (error = 0, bp = NULL; uio->uio_resid > 0; bp = NULL) {
415 		if ((bytesinfile = ip->i_size - uio->uio_offset) <= 0)
416 			break;
417 
418 		lbn = lblkno(fs, uio->uio_offset);
419 		nextlbn = lbn + 1;
420 
421 		/*
422 		 * size of buffer.  The buffer representing the
423 		 * end of the file is rounded up to the size of
424 		 * the block type ( fragment or full block,
425 		 * depending ).
426 		 */
427 		size = blksize(fs, ip, lbn);
428 		blkoffset = blkoff(fs, uio->uio_offset);
429 
430 		/*
431 		 * The amount we want to transfer in this iteration is
432 		 * one FS block less the amount of the data before
433 		 * our startpoint (duh!)
434 		 */
435 		xfersize = fs->fs_bsize - blkoffset;
436 
437 		/*
438 		 * But if we actually want less than the block,
439 		 * or the file doesn't have a whole block more of data,
440 		 * then use the lesser number.
441 		 */
442 		if (uio->uio_resid < xfersize)
443 			xfersize = uio->uio_resid;
444 		if (bytesinfile < xfersize)
445 			xfersize = bytesinfile;
446 
447 		if (lblktosize(fs, nextlbn) >= ip->i_size) {
448 			/*
449 			 * Don't do readahead if this is the end of the file.
450 			 */
451 			error = bread(vp, lbn, size, NOCRED, &bp);
452 		} else if ((vp->v_mount->mnt_flag & MNT_NOCLUSTERR) == 0) {
453 			/*
454 			 * Otherwise if we are allowed to cluster,
455 			 * grab as much as we can.
456 			 *
457 			 * XXX  This may not be a win if we are not
458 			 * doing sequential access.
459 			 */
460 			error = cluster_read(vp, ip->i_size, lbn,
461 				size, NOCRED, uio->uio_resid, seqcount, &bp);
462 		} else if (seqcount > 1) {
463 			/*
464 			 * If we are NOT allowed to cluster, then
465 			 * if we appear to be acting sequentially,
466 			 * fire off a request for a readahead
467 			 * as well as a read. Note that the 4th and 5th
468 			 * arguments point to arrays of the size specified in
469 			 * the 6th argument.
470 			 */
471 			int nextsize = blksize(fs, ip, nextlbn);
472 			error = breadn(vp, lbn,
473 			    size, &nextlbn, &nextsize, 1, NOCRED, &bp);
474 		} else {
475 			/*
476 			 * Failing all of the above, just read what the
477 			 * user asked for. Interestingly, the same as
478 			 * the first option above.
479 			 */
480 			error = bread(vp, lbn, size, NOCRED, &bp);
481 		}
482 		if (error) {
483 			brelse(bp);
484 			bp = NULL;
485 			break;
486 		}
487 
488 		/*
489 		 * If IO_DIRECT then set B_DIRECT for the buffer.  This
490 		 * will cause us to attempt to release the buffer later on
491 		 * and will cause the buffer cache to attempt to free the
492 		 * underlying pages.
493 		 */
494 		if (ioflag & IO_DIRECT)
495 			bp->b_flags |= B_DIRECT;
496 
497 		/*
498 		 * We should only get non-zero b_resid when an I/O error
499 		 * has occurred, which should cause us to break above.
500 		 * However, if the short read did not cause an error,
501 		 * then we want to ensure that we do not uiomove bad
502 		 * or uninitialized data.
503 		 */
504 		size -= bp->b_resid;
505 		if (size < xfersize) {
506 			if (size == 0)
507 				break;
508 			xfersize = size;
509 		}
510 
511 		{
512 			/*
513 			 * otherwise use the general form
514 			 */
515 			error =
516 				uiomove((char *)bp->b_data + blkoffset,
517 					(int)xfersize, uio);
518 		}
519 
520 		if (error)
521 			break;
522 
523 		if ((ioflag & (IO_VMIO|IO_DIRECT)) &&
524 		   (LIST_FIRST(&bp->b_dep) == NULL)) {
525 			/*
526 			 * If there are no dependencies, and it's VMIO,
527 			 * then we don't need the buf, mark it available
528 			 * for freeing. The VM has the data.
529 			 */
530 			bp->b_flags |= B_RELBUF;
531 			brelse(bp);
532 		} else {
533 			/*
534 			 * Otherwise let whoever
535 			 * made the request take care of
536 			 * freeing it. We just queue
537 			 * it onto another list.
538 			 */
539 			bqrelse(bp);
540 		}
541 	}
542 
543 	/*
544 	 * This can only happen in the case of an error
545 	 * because the loop above resets bp to NULL on each iteration
546 	 * and on normal completion has not set a new value into it.
547 	 * so it must have come from a 'break' statement
548 	 */
549 	if (bp != NULL) {
550 		if ((ioflag & (IO_VMIO|IO_DIRECT)) &&
551 		   (LIST_FIRST(&bp->b_dep) == NULL)) {
552 			bp->b_flags |= B_RELBUF;
553 			brelse(bp);
554 		} else {
555 			bqrelse(bp);
556 		}
557 	}
558 
559 	if (object) {
560 		VM_OBJECT_LOCK(object);
561 		vm_object_vndeallocate(object);
562 	}
563 	if ((error == 0 || uio->uio_resid != orig_resid) &&
564 	    (vp->v_mount->mnt_flag & MNT_NOATIME) == 0)
565 		ip->i_flag |= IN_ACCESS;
566 	return (error);
567 }
568 
569 /*
570  * Vnode op for writing.
571  */
572 static int
573 ffs_write(ap)
574 	struct vop_write_args /* {
575 		struct vnode *a_vp;
576 		struct uio *a_uio;
577 		int a_ioflag;
578 		struct ucred *a_cred;
579 	} */ *ap;
580 {
581 	struct vnode *vp;
582 	struct uio *uio;
583 	struct inode *ip;
584 	struct fs *fs;
585 	struct buf *bp;
586 	struct thread *td;
587 	ufs_lbn_t lbn;
588 	off_t osize;
589 	int seqcount;
590 	int blkoffset, error, extended, flags, ioflag, resid, size, xfersize;
591 	vm_object_t object;
592 
593 	vp = ap->a_vp;
594 	uio = ap->a_uio;
595 	ioflag = ap->a_ioflag;
596 	if (ap->a_ioflag & IO_EXT)
597 #ifdef notyet
598 		return (ffs_extwrite(vp, uio, ioflag, ap->a_cred));
599 #else
600 		panic("ffs_read+IO_EXT");
601 #endif
602 
603 	GIANT_REQUIRED;
604 
605 	extended = 0;
606 	seqcount = ap->a_ioflag >> 16;
607 	ip = VTOI(vp);
608 
609 	object = vp->v_object;
610 	if (object) {
611 		vm_object_reference(object);
612 	}
613 
614 #ifdef DIAGNOSTIC
615 	if (uio->uio_rw != UIO_WRITE)
616 		panic("ffswrite: mode");
617 #endif
618 
619 	switch (vp->v_type) {
620 	case VREG:
621 		if (ioflag & IO_APPEND)
622 			uio->uio_offset = ip->i_size;
623 		if ((ip->i_flags & APPEND) && uio->uio_offset != ip->i_size) {
624 			if (object) {
625 				VM_OBJECT_LOCK(object);
626 				vm_object_vndeallocate(object);
627 			}
628 			return (EPERM);
629 		}
630 		/* FALLTHROUGH */
631 	case VLNK:
632 		break;
633 	case VDIR:
634 		panic("ffswrite: dir write");
635 		break;
636 	default:
637 		panic("ffswrite: type %p %d (%d,%d)", vp, (int)vp->v_type,
638 			(int)uio->uio_offset,
639 			(int)uio->uio_resid
640 		);
641 	}
642 
643 	fs = ip->i_fs;
644 	if (uio->uio_offset < 0 ||
645 	    (u_int64_t)uio->uio_offset + uio->uio_resid > fs->fs_maxfilesize) {
646 		if (object) {
647 			VM_OBJECT_LOCK(object);
648 			vm_object_vndeallocate(object);
649 		}
650 		return (EFBIG);
651 	}
652 	/*
653 	 * Maybe this should be above the vnode op call, but so long as
654 	 * file servers have no limits, I don't think it matters.
655 	 */
656 	td = uio->uio_td;
657 	if (vp->v_type == VREG && td &&
658 	    uio->uio_offset + uio->uio_resid >
659 	    td->td_proc->p_rlimit[RLIMIT_FSIZE].rlim_cur) {
660 		PROC_LOCK(td->td_proc);
661 		psignal(td->td_proc, SIGXFSZ);
662 		PROC_UNLOCK(td->td_proc);
663 		if (object) {
664 			VM_OBJECT_LOCK(object);
665 			vm_object_vndeallocate(object);
666 		}
667 		return (EFBIG);
668 	}
669 
670 	resid = uio->uio_resid;
671 	osize = ip->i_size;
672 	if (seqcount > BA_SEQMAX)
673 		flags = BA_SEQMAX << BA_SEQSHIFT;
674 	else
675 		flags = seqcount << BA_SEQSHIFT;
676 	if ((ioflag & IO_SYNC) && !DOINGASYNC(vp))
677 		flags |= IO_SYNC;
678 
679 	for (error = 0; uio->uio_resid > 0;) {
680 		lbn = lblkno(fs, uio->uio_offset);
681 		blkoffset = blkoff(fs, uio->uio_offset);
682 		xfersize = fs->fs_bsize - blkoffset;
683 		if (uio->uio_resid < xfersize)
684 			xfersize = uio->uio_resid;
685 
686 		if (uio->uio_offset + xfersize > ip->i_size)
687 			vnode_pager_setsize(vp, uio->uio_offset + xfersize);
688 
689                 /*
690 		 * We must perform a read-before-write if the transfer size
691 		 * does not cover the entire buffer.
692                  */
693 		if (fs->fs_bsize > xfersize)
694 			flags |= BA_CLRBUF;
695 		else
696 			flags &= ~BA_CLRBUF;
697 /* XXX is uio->uio_offset the right thing here? */
698 		error = UFS_BALLOC(vp, uio->uio_offset, xfersize,
699 		    ap->a_cred, flags, &bp);
700 		if (error != 0)
701 			break;
702 		/*
703 		 * If the buffer is not valid we have to clear out any
704 		 * garbage data from the pages instantiated for the buffer.
705 		 * If we do not, a failed uiomove() during a write can leave
706 		 * the prior contents of the pages exposed to a userland
707 		 * mmap().  XXX deal with uiomove() errors a better way.
708 		 */
709 		if ((bp->b_flags & B_CACHE) == 0 && fs->fs_bsize <= xfersize)
710 			vfs_bio_clrbuf(bp);
711 		if (ioflag & IO_DIRECT)
712 			bp->b_flags |= B_DIRECT;
713 
714 		if (uio->uio_offset + xfersize > ip->i_size) {
715 			ip->i_size = uio->uio_offset + xfersize;
716 			DIP(ip, i_size) = ip->i_size;
717 			extended = 1;
718 		}
719 
720 		size = blksize(fs, ip, lbn) - bp->b_resid;
721 		if (size < xfersize)
722 			xfersize = size;
723 
724 		error =
725 		    uiomove((char *)bp->b_data + blkoffset, (int)xfersize, uio);
726 		if ((ioflag & (IO_VMIO|IO_DIRECT)) &&
727 		   (LIST_FIRST(&bp->b_dep) == NULL)) {
728 			bp->b_flags |= B_RELBUF;
729 		}
730 
731 		/*
732 		 * If IO_SYNC each buffer is written synchronously.  Otherwise
733 		 * if we have a severe page deficiency write the buffer
734 		 * asynchronously.  Otherwise try to cluster, and if that
735 		 * doesn't do it then either do an async write (if O_DIRECT),
736 		 * or a delayed write (if not).
737 		 */
738 		if (ioflag & IO_SYNC) {
739 			(void)bwrite(bp);
740 		} else if (vm_page_count_severe() ||
741 			    buf_dirty_count_severe() ||
742 			    (ioflag & IO_ASYNC)) {
743 			bp->b_flags |= B_CLUSTEROK;
744 			bawrite(bp);
745 		} else if (xfersize + blkoffset == fs->fs_bsize) {
746 			if ((vp->v_mount->mnt_flag & MNT_NOCLUSTERW) == 0) {
747 				bp->b_flags |= B_CLUSTEROK;
748 				cluster_write(bp, ip->i_size, seqcount);
749 			} else {
750 				bawrite(bp);
751 			}
752 		} else if (ioflag & IO_DIRECT) {
753 			bp->b_flags |= B_CLUSTEROK;
754 			bawrite(bp);
755 		} else {
756 			bp->b_flags |= B_CLUSTEROK;
757 			bdwrite(bp);
758 		}
759 		if (error || xfersize == 0)
760 			break;
761 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
762 	}
763 	/*
764 	 * If we successfully wrote any data, and we are not the superuser
765 	 * we clear the setuid and setgid bits as a precaution against
766 	 * tampering.
767 	 */
768 	if (resid > uio->uio_resid && ap->a_cred &&
769 	    suser_cred(ap->a_cred, PRISON_ROOT)) {
770 		ip->i_mode &= ~(ISUID | ISGID);
771 		DIP(ip, i_mode) = ip->i_mode;
772 	}
773 	if (resid > uio->uio_resid)
774 		VN_KNOTE(vp, NOTE_WRITE | (extended ? NOTE_EXTEND : 0));
775 	if (error) {
776 		if (ioflag & IO_UNIT) {
777 			(void)UFS_TRUNCATE(vp, osize,
778 			    IO_NORMAL | (ioflag & IO_SYNC),
779 			    ap->a_cred, uio->uio_td);
780 			uio->uio_offset -= resid - uio->uio_resid;
781 			uio->uio_resid = resid;
782 		}
783 	} else if (resid > uio->uio_resid && (ioflag & IO_SYNC))
784 		error = UFS_UPDATE(vp, 1);
785 
786 	if (object) {
787 		VM_OBJECT_LOCK(object);
788 		vm_object_vndeallocate(object);
789 	}
790 
791 	return (error);
792 }
793 
794 /*
795  * get page routine
796  */
797 static int
798 ffs_getpages(ap)
799 	struct vop_getpages_args *ap;
800 {
801 	off_t foff, physoffset;
802 	int i, size, bsize;
803 	struct vnode *dp, *vp;
804 	vm_object_t obj;
805 	vm_pindex_t pindex;
806 	vm_page_t mreq;
807 	int bbackwards, bforwards;
808 	int pbackwards, pforwards;
809 	int firstpage;
810 	ufs2_daddr_t reqblkno, reqlblkno;
811 	int poff;
812 	int pcount;
813 	int rtval;
814 	int pagesperblock;
815 
816 	GIANT_REQUIRED;
817 
818 	pcount = round_page(ap->a_count) / PAGE_SIZE;
819 	mreq = ap->a_m[ap->a_reqpage];
820 
821 	/*
822 	 * if ANY DEV_BSIZE blocks are valid on a large filesystem block,
823 	 * then the entire page is valid.  Since the page may be mapped,
824 	 * user programs might reference data beyond the actual end of file
825 	 * occuring within the page.  We have to zero that data.
826 	 */
827 	VM_OBJECT_LOCK(mreq->object);
828 	if (mreq->valid) {
829 		if (mreq->valid != VM_PAGE_BITS_ALL)
830 			vm_page_zero_invalid(mreq, TRUE);
831 		vm_page_lock_queues();
832 		for (i = 0; i < pcount; i++) {
833 			if (i != ap->a_reqpage) {
834 				vm_page_free(ap->a_m[i]);
835 			}
836 		}
837 		vm_page_unlock_queues();
838 		VM_OBJECT_UNLOCK(mreq->object);
839 		return VM_PAGER_OK;
840 	}
841 	VM_OBJECT_UNLOCK(mreq->object);
842 	vp = ap->a_vp;
843 	obj = vp->v_object;
844 	bsize = vp->v_mount->mnt_stat.f_iosize;
845 	pindex = mreq->pindex;
846 	foff = IDX_TO_OFF(pindex) /* + ap->a_offset should be zero */;
847 
848 	if (bsize < PAGE_SIZE)
849 		return vnode_pager_generic_getpages(ap->a_vp, ap->a_m,
850 						    ap->a_count,
851 						    ap->a_reqpage);
852 
853 	/*
854 	 * foff is the file offset of the required page
855 	 * reqlblkno is the logical block that contains the page
856 	 * poff is the index of the page into the logical block
857 	 */
858 	reqlblkno = foff / bsize;
859 	poff = (foff % bsize) / PAGE_SIZE;
860 
861 	dp = VTOI(vp)->i_devvp;
862 	if (ufs_bmaparray(vp, reqlblkno, &reqblkno, 0, &bforwards, &bbackwards)
863 	    || (reqblkno == -1)) {
864 		VM_OBJECT_LOCK(obj);
865 		vm_page_lock_queues();
866 		for(i = 0; i < pcount; i++) {
867 			if (i != ap->a_reqpage)
868 				vm_page_free(ap->a_m[i]);
869 		}
870 		vm_page_unlock_queues();
871 		if (reqblkno == -1) {
872 			if ((mreq->flags & PG_ZERO) == 0)
873 				pmap_zero_page(mreq);
874 			vm_page_undirty(mreq);
875 			mreq->valid = VM_PAGE_BITS_ALL;
876 			VM_OBJECT_UNLOCK(obj);
877 			return VM_PAGER_OK;
878 		} else {
879 			VM_OBJECT_UNLOCK(obj);
880 			return VM_PAGER_ERROR;
881 		}
882 	}
883 
884 	physoffset = (off_t)reqblkno * DEV_BSIZE + poff * PAGE_SIZE;
885 	pagesperblock = bsize / PAGE_SIZE;
886 	/*
887 	 * find the first page that is contiguous...
888 	 * note that pbackwards is the number of pages that are contiguous
889 	 * backwards.
890 	 */
891 	firstpage = 0;
892 	if (ap->a_count) {
893 		pbackwards = poff + bbackwards * pagesperblock;
894 		if (ap->a_reqpage > pbackwards) {
895 			firstpage = ap->a_reqpage - pbackwards;
896 			VM_OBJECT_LOCK(obj);
897 			vm_page_lock_queues();
898 			for(i=0;i<firstpage;i++)
899 				vm_page_free(ap->a_m[i]);
900 			vm_page_unlock_queues();
901 			VM_OBJECT_UNLOCK(obj);
902 		}
903 
904 	/*
905 	 * pforwards is the number of pages that are contiguous
906 	 * after the current page.
907 	 */
908 		pforwards = (pagesperblock - (poff + 1)) +
909 			bforwards * pagesperblock;
910 		if (pforwards < (pcount - (ap->a_reqpage + 1))) {
911 			VM_OBJECT_LOCK(obj);
912 			vm_page_lock_queues();
913 			for( i = ap->a_reqpage + pforwards + 1; i < pcount; i++)
914 				vm_page_free(ap->a_m[i]);
915 			vm_page_unlock_queues();
916 			VM_OBJECT_UNLOCK(obj);
917 			pcount = ap->a_reqpage + pforwards + 1;
918 		}
919 
920 	/*
921 	 * number of pages for I/O corrected for the non-contig pages at
922 	 * the beginning of the array.
923 	 */
924 		pcount -= firstpage;
925 	}
926 
927 	/*
928 	 * calculate the size of the transfer
929 	 */
930 
931 	size = pcount * PAGE_SIZE;
932 
933 	if ((IDX_TO_OFF(ap->a_m[firstpage]->pindex) + size) >
934 		obj->un_pager.vnp.vnp_size)
935 		size = obj->un_pager.vnp.vnp_size -
936 			IDX_TO_OFF(ap->a_m[firstpage]->pindex);
937 
938 	physoffset -= foff;
939 	rtval = VOP_GETPAGES(dp, &ap->a_m[firstpage], size,
940 		(ap->a_reqpage - firstpage), physoffset);
941 
942 	return (rtval);
943 }
944 
945 /*
946  * Extended attribute area reading.
947  */
948 static int
949 ffs_extread(struct vnode *vp, struct uio *uio, int ioflag)
950 {
951 	struct inode *ip;
952 	struct ufs2_dinode *dp;
953 	struct fs *fs;
954 	struct buf *bp;
955 	ufs_lbn_t lbn, nextlbn;
956 	off_t bytesinfile;
957 	long size, xfersize, blkoffset;
958 	int error, orig_resid;
959 
960 	GIANT_REQUIRED;
961 
962 	ip = VTOI(vp);
963 	fs = ip->i_fs;
964 	dp = ip->i_din2;
965 
966 #ifdef DIAGNOSTIC
967 	if (uio->uio_rw != UIO_READ || fs->fs_magic != FS_UFS2_MAGIC)
968 		panic("ffs_extread: mode");
969 
970 #endif
971 	orig_resid = uio->uio_resid;
972 	if (orig_resid <= 0)
973 		return (0);
974 
975 	bytesinfile = dp->di_extsize - uio->uio_offset;
976 	if (bytesinfile <= 0) {
977 		if ((vp->v_mount->mnt_flag & MNT_NOATIME) == 0)
978 			ip->i_flag |= IN_ACCESS;
979 		return 0;
980 	}
981 
982 	for (error = 0, bp = NULL; uio->uio_resid > 0; bp = NULL) {
983 		if ((bytesinfile = dp->di_extsize - uio->uio_offset) <= 0)
984 			break;
985 
986 		lbn = lblkno(fs, uio->uio_offset);
987 		nextlbn = lbn + 1;
988 
989 		/*
990 		 * size of buffer.  The buffer representing the
991 		 * end of the file is rounded up to the size of
992 		 * the block type ( fragment or full block,
993 		 * depending ).
994 		 */
995 		size = sblksize(fs, dp->di_extsize, lbn);
996 		blkoffset = blkoff(fs, uio->uio_offset);
997 
998 		/*
999 		 * The amount we want to transfer in this iteration is
1000 		 * one FS block less the amount of the data before
1001 		 * our startpoint (duh!)
1002 		 */
1003 		xfersize = fs->fs_bsize - blkoffset;
1004 
1005 		/*
1006 		 * But if we actually want less than the block,
1007 		 * or the file doesn't have a whole block more of data,
1008 		 * then use the lesser number.
1009 		 */
1010 		if (uio->uio_resid < xfersize)
1011 			xfersize = uio->uio_resid;
1012 		if (bytesinfile < xfersize)
1013 			xfersize = bytesinfile;
1014 
1015 		if (lblktosize(fs, nextlbn) >= dp->di_extsize) {
1016 			/*
1017 			 * Don't do readahead if this is the end of the info.
1018 			 */
1019 			error = bread(vp, -1 - lbn, size, NOCRED, &bp);
1020 		} else {
1021 			/*
1022 			 * If we have a second block, then
1023 			 * fire off a request for a readahead
1024 			 * as well as a read. Note that the 4th and 5th
1025 			 * arguments point to arrays of the size specified in
1026 			 * the 6th argument.
1027 			 */
1028 			int nextsize = sblksize(fs, dp->di_extsize, nextlbn);
1029 
1030 			nextlbn = -1 - nextlbn;
1031 			error = breadn(vp, -1 - lbn,
1032 			    size, &nextlbn, &nextsize, 1, NOCRED, &bp);
1033 		}
1034 		if (error) {
1035 			brelse(bp);
1036 			bp = NULL;
1037 			break;
1038 		}
1039 
1040 		/*
1041 		 * If IO_DIRECT then set B_DIRECT for the buffer.  This
1042 		 * will cause us to attempt to release the buffer later on
1043 		 * and will cause the buffer cache to attempt to free the
1044 		 * underlying pages.
1045 		 */
1046 		if (ioflag & IO_DIRECT)
1047 			bp->b_flags |= B_DIRECT;
1048 
1049 		/*
1050 		 * We should only get non-zero b_resid when an I/O error
1051 		 * has occurred, which should cause us to break above.
1052 		 * However, if the short read did not cause an error,
1053 		 * then we want to ensure that we do not uiomove bad
1054 		 * or uninitialized data.
1055 		 */
1056 		size -= bp->b_resid;
1057 		if (size < xfersize) {
1058 			if (size == 0)
1059 				break;
1060 			xfersize = size;
1061 		}
1062 
1063 		error = uiomove((char *)bp->b_data + blkoffset,
1064 					(int)xfersize, uio);
1065 		if (error)
1066 			break;
1067 
1068 		if ((ioflag & (IO_VMIO|IO_DIRECT)) &&
1069 		   (LIST_FIRST(&bp->b_dep) == NULL)) {
1070 			/*
1071 			 * If there are no dependencies, and it's VMIO,
1072 			 * then we don't need the buf, mark it available
1073 			 * for freeing. The VM has the data.
1074 			 */
1075 			bp->b_flags |= B_RELBUF;
1076 			brelse(bp);
1077 		} else {
1078 			/*
1079 			 * Otherwise let whoever
1080 			 * made the request take care of
1081 			 * freeing it. We just queue
1082 			 * it onto another list.
1083 			 */
1084 			bqrelse(bp);
1085 		}
1086 	}
1087 
1088 	/*
1089 	 * This can only happen in the case of an error
1090 	 * because the loop above resets bp to NULL on each iteration
1091 	 * and on normal completion has not set a new value into it.
1092 	 * so it must have come from a 'break' statement
1093 	 */
1094 	if (bp != NULL) {
1095 		if ((ioflag & (IO_VMIO|IO_DIRECT)) &&
1096 		   (LIST_FIRST(&bp->b_dep) == NULL)) {
1097 			bp->b_flags |= B_RELBUF;
1098 			brelse(bp);
1099 		} else {
1100 			bqrelse(bp);
1101 		}
1102 	}
1103 
1104 	if ((error == 0 || uio->uio_resid != orig_resid) &&
1105 	    (vp->v_mount->mnt_flag & MNT_NOATIME) == 0)
1106 		ip->i_flag |= IN_ACCESS;
1107 	return (error);
1108 }
1109 
1110 /*
1111  * Extended attribute area writing.
1112  */
1113 static int
1114 ffs_extwrite(struct vnode *vp, struct uio *uio, int ioflag, struct ucred *ucred)
1115 {
1116 	struct inode *ip;
1117 	struct ufs2_dinode *dp;
1118 	struct fs *fs;
1119 	struct buf *bp;
1120 	ufs_lbn_t lbn;
1121 	off_t osize;
1122 	int blkoffset, error, flags, resid, size, xfersize;
1123 
1124 	GIANT_REQUIRED;
1125 
1126 	ip = VTOI(vp);
1127 	fs = ip->i_fs;
1128 	dp = ip->i_din2;
1129 
1130 #ifdef DIAGNOSTIC
1131 	if (uio->uio_rw != UIO_WRITE || fs->fs_magic != FS_UFS2_MAGIC)
1132 		panic("ext_write: mode");
1133 #endif
1134 
1135 	if (ioflag & IO_APPEND)
1136 		uio->uio_offset = dp->di_extsize;
1137 
1138 	if (uio->uio_offset < 0 ||
1139 	    (u_int64_t)uio->uio_offset + uio->uio_resid > NXADDR * fs->fs_bsize)
1140 		return (EFBIG);
1141 
1142 	resid = uio->uio_resid;
1143 	osize = dp->di_extsize;
1144 	flags = IO_EXT;
1145 	if ((ioflag & IO_SYNC) && !DOINGASYNC(vp))
1146 		flags |= IO_SYNC;
1147 
1148 	for (error = 0; uio->uio_resid > 0;) {
1149 		lbn = lblkno(fs, uio->uio_offset);
1150 		blkoffset = blkoff(fs, uio->uio_offset);
1151 		xfersize = fs->fs_bsize - blkoffset;
1152 		if (uio->uio_resid < xfersize)
1153 			xfersize = uio->uio_resid;
1154 
1155                 /*
1156 		 * We must perform a read-before-write if the transfer size
1157 		 * does not cover the entire buffer.
1158                  */
1159 		if (fs->fs_bsize > xfersize)
1160 			flags |= BA_CLRBUF;
1161 		else
1162 			flags &= ~BA_CLRBUF;
1163 		error = UFS_BALLOC(vp, uio->uio_offset, xfersize,
1164 		    ucred, flags, &bp);
1165 		if (error != 0)
1166 			break;
1167 		/*
1168 		 * If the buffer is not valid we have to clear out any
1169 		 * garbage data from the pages instantiated for the buffer.
1170 		 * If we do not, a failed uiomove() during a write can leave
1171 		 * the prior contents of the pages exposed to a userland
1172 		 * mmap().  XXX deal with uiomove() errors a better way.
1173 		 */
1174 		if ((bp->b_flags & B_CACHE) == 0 && fs->fs_bsize <= xfersize)
1175 			vfs_bio_clrbuf(bp);
1176 		if (ioflag & IO_DIRECT)
1177 			bp->b_flags |= B_DIRECT;
1178 
1179 		if (uio->uio_offset + xfersize > dp->di_extsize)
1180 			dp->di_extsize = uio->uio_offset + xfersize;
1181 
1182 		size = sblksize(fs, dp->di_extsize, lbn) - bp->b_resid;
1183 		if (size < xfersize)
1184 			xfersize = size;
1185 
1186 		error =
1187 		    uiomove((char *)bp->b_data + blkoffset, (int)xfersize, uio);
1188 		if ((ioflag & (IO_VMIO|IO_DIRECT)) &&
1189 		   (LIST_FIRST(&bp->b_dep) == NULL)) {
1190 			bp->b_flags |= B_RELBUF;
1191 		}
1192 
1193 		/*
1194 		 * If IO_SYNC each buffer is written synchronously.  Otherwise
1195 		 * if we have a severe page deficiency write the buffer
1196 		 * asynchronously.  Otherwise try to cluster, and if that
1197 		 * doesn't do it then either do an async write (if O_DIRECT),
1198 		 * or a delayed write (if not).
1199 		 */
1200 		if (ioflag & IO_SYNC) {
1201 			(void)bwrite(bp);
1202 		} else if (vm_page_count_severe() ||
1203 			    buf_dirty_count_severe() ||
1204 			    xfersize + blkoffset == fs->fs_bsize ||
1205 			    (ioflag & (IO_ASYNC | IO_DIRECT)))
1206 			bawrite(bp);
1207 		else
1208 			bdwrite(bp);
1209 		if (error || xfersize == 0)
1210 			break;
1211 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
1212 	}
1213 	/*
1214 	 * If we successfully wrote any data, and we are not the superuser
1215 	 * we clear the setuid and setgid bits as a precaution against
1216 	 * tampering.
1217 	 */
1218 	if (resid > uio->uio_resid && ucred &&
1219 	    suser_cred(ucred, PRISON_ROOT)) {
1220 		ip->i_mode &= ~(ISUID | ISGID);
1221 		dp->di_mode = ip->i_mode;
1222 	}
1223 	if (error) {
1224 		if (ioflag & IO_UNIT) {
1225 			(void)UFS_TRUNCATE(vp, osize,
1226 			    IO_EXT | (ioflag&IO_SYNC), ucred, uio->uio_td);
1227 			uio->uio_offset -= resid - uio->uio_resid;
1228 			uio->uio_resid = resid;
1229 		}
1230 	} else if (resid > uio->uio_resid && (ioflag & IO_SYNC))
1231 		error = UFS_UPDATE(vp, 1);
1232 	return (error);
1233 }
1234 
1235 
1236 /*
1237  * Vnode operating to retrieve a named extended attribute.
1238  *
1239  * Locate a particular EA (nspace:name) in the area (ptr:length), and return
1240  * the length of the EA, and possibly the pointer to the entry and to the data.
1241  */
1242 static int
1243 ffs_findextattr(u_char *ptr, u_int length, int nspace, const char *name, u_char **eap, u_char **eac)
1244 {
1245 	u_char *p, *pe, *pn, *p0;
1246 	int eapad1, eapad2, ealength, ealen, nlen;
1247 	uint32_t ul;
1248 
1249 	pe = ptr + length;
1250 	nlen = strlen(name);
1251 
1252 	for (p = ptr; p < pe; p = pn) {
1253 		p0 = p;
1254 		bcopy(p, &ul, sizeof(ul));
1255 		pn = p + ul;
1256 		/* make sure this entry is complete */
1257 		if (pn > pe)
1258 			break;
1259 		p += sizeof(uint32_t);
1260 		if (*p != nspace)
1261 			continue;
1262 		p++;
1263 		eapad2 = *p++;
1264 		if (*p != nlen)
1265 			continue;
1266 		p++;
1267 		if (bcmp(p, name, nlen))
1268 			continue;
1269 		ealength = sizeof(uint32_t) + 3 + nlen;
1270 		eapad1 = 8 - (ealength % 8);
1271 		if (eapad1 == 8)
1272 			eapad1 = 0;
1273 		ealength += eapad1;
1274 		ealen = ul - ealength - eapad2;
1275 		p += nlen + eapad1;
1276 		if (eap != NULL)
1277 			*eap = p0;
1278 		if (eac != NULL)
1279 			*eac = p;
1280 		return (ealen);
1281 	}
1282 	return(-1);
1283 }
1284 
1285 static int
1286 ffs_rdextattr(u_char **p, struct vnode *vp, struct thread *td, int extra)
1287 {
1288 	struct inode *ip;
1289 	struct ufs2_dinode *dp;
1290 	struct uio luio;
1291 	struct iovec liovec;
1292 	int easize, error;
1293 	u_char *eae;
1294 
1295 	ip = VTOI(vp);
1296 	dp = ip->i_din2;
1297 	easize = dp->di_extsize;
1298 
1299 	eae = malloc(easize + extra, M_TEMP, M_WAITOK);
1300 
1301 	liovec.iov_base = eae;
1302 	liovec.iov_len = easize;
1303 	luio.uio_iov = &liovec;
1304 	luio.uio_iovcnt = 1;
1305 	luio.uio_offset = 0;
1306 	luio.uio_resid = easize;
1307 	luio.uio_segflg = UIO_SYSSPACE;
1308 	luio.uio_rw = UIO_READ;
1309 	luio.uio_td = td;
1310 
1311 	error = ffs_extread(vp, &luio, IO_EXT | IO_SYNC);
1312 	if (error) {
1313 		free(eae, M_TEMP);
1314 		return(error);
1315 	}
1316 	*p = eae;
1317 	return (0);
1318 }
1319 
1320 static int
1321 ffs_open_ea(struct vnode *vp, struct ucred *cred, struct thread *td)
1322 {
1323 	struct inode *ip;
1324 	struct ufs2_dinode *dp;
1325 	int error;
1326 
1327 	ip = VTOI(vp);
1328 
1329 	if (ip->i_ea_area != NULL)
1330 		return (EBUSY);
1331 	dp = ip->i_din2;
1332 	error = ffs_rdextattr(&ip->i_ea_area, vp, td, 0);
1333 	if (error)
1334 		return (error);
1335 	ip->i_ea_len = dp->di_extsize;
1336 	ip->i_ea_error = 0;
1337 	return (0);
1338 }
1339 
1340 /*
1341  * Vnode extattr transaction commit/abort
1342  */
1343 static int
1344 ffs_close_ea(struct vnode *vp, int commit, struct ucred *cred, struct thread *td)
1345 {
1346 	struct inode *ip;
1347 	struct uio luio;
1348 	struct iovec liovec;
1349 	int error;
1350 	struct ufs2_dinode *dp;
1351 
1352 	ip = VTOI(vp);
1353 	if (ip->i_ea_area == NULL)
1354 		return (EINVAL);
1355 	dp = ip->i_din2;
1356 	error = ip->i_ea_error;
1357 	if (commit && error == 0) {
1358 		if (cred == NOCRED)
1359 			cred =  vp->v_mount->mnt_cred;
1360 		liovec.iov_base = ip->i_ea_area;
1361 		liovec.iov_len = ip->i_ea_len;
1362 		luio.uio_iov = &liovec;
1363 		luio.uio_iovcnt = 1;
1364 		luio.uio_offset = 0;
1365 		luio.uio_resid = ip->i_ea_len;
1366 		luio.uio_segflg = UIO_SYSSPACE;
1367 		luio.uio_rw = UIO_WRITE;
1368 		luio.uio_td = td;
1369 		/* XXX: I'm not happy about truncating to zero size */
1370 		if (ip->i_ea_len < dp->di_extsize)
1371 			error = ffs_truncate(vp, 0, IO_EXT, cred, td);
1372 		error = ffs_extwrite(vp, &luio, IO_EXT | IO_SYNC, cred);
1373 	}
1374 	free(ip->i_ea_area, M_TEMP);
1375 	ip->i_ea_area = NULL;
1376 	ip->i_ea_len = 0;
1377 	ip->i_ea_error = 0;
1378 	return (error);
1379 }
1380 
1381 /*
1382  * Vnode extattr strategy routine for special devices and fifos.
1383  *
1384  * We need to check for a read or write of the external attributes.
1385  * Otherwise we just fall through and do the usual thing.
1386  */
1387 static int
1388 ffsext_strategy(struct vop_strategy_args *ap)
1389 /*
1390 struct vop_strategy_args {
1391 	struct vnodeop_desc *a_desc;
1392 	struct vnode *a_vp;
1393 	struct buf *a_bp;
1394 };
1395 */
1396 {
1397 	struct vnode *vp;
1398 	daddr_t lbn;
1399 
1400 	KASSERT(ap->a_vp == ap->a_bp->b_vp, ("%s(%p != %p)",
1401 	    __func__, ap->a_vp, ap->a_bp->b_vp));
1402 	vp = ap->a_vp;
1403 	lbn = ap->a_bp->b_lblkno;
1404 	if (VTOI(vp)->i_fs->fs_magic == FS_UFS2_MAGIC &&
1405 	    lbn < 0 && lbn >= -NXADDR)
1406 		return (ufs_vnoperate((struct vop_generic_args *)ap));
1407 	if (vp->v_type == VFIFO)
1408 		return (ufs_vnoperatefifo((struct vop_generic_args *)ap));
1409 	return (ufs_vnoperatespec((struct vop_generic_args *)ap));
1410 }
1411 
1412 /*
1413  * Vnode extattr transaction commit/abort
1414  */
1415 static int
1416 ffs_openextattr(struct vop_openextattr_args *ap)
1417 /*
1418 struct vop_openextattr_args {
1419 	struct vnodeop_desc *a_desc;
1420 	struct vnode *a_vp;
1421 	IN struct ucred *a_cred;
1422 	IN struct thread *a_td;
1423 };
1424 */
1425 {
1426 	struct inode *ip;
1427 	struct fs *fs;
1428 
1429 	ip = VTOI(ap->a_vp);
1430 	fs = ip->i_fs;
1431 	if (fs->fs_magic == FS_UFS1_MAGIC)
1432 		return (ufs_vnoperate((struct vop_generic_args *)ap));
1433 
1434 	if (ap->a_vp->v_type == VCHR)
1435 		return (EOPNOTSUPP);
1436 
1437 	return (ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td));
1438 }
1439 
1440 
1441 /*
1442  * Vnode extattr transaction commit/abort
1443  */
1444 static int
1445 ffs_closeextattr(struct vop_closeextattr_args *ap)
1446 /*
1447 struct vop_closeextattr_args {
1448 	struct vnodeop_desc *a_desc;
1449 	struct vnode *a_vp;
1450 	int a_commit;
1451 	IN struct ucred *a_cred;
1452 	IN struct thread *a_td;
1453 };
1454 */
1455 {
1456 	struct inode *ip;
1457 	struct fs *fs;
1458 
1459 	ip = VTOI(ap->a_vp);
1460 	fs = ip->i_fs;
1461 	if (fs->fs_magic == FS_UFS1_MAGIC)
1462 		return (ufs_vnoperate((struct vop_generic_args *)ap));
1463 
1464 	if (ap->a_vp->v_type == VCHR)
1465 		return (EOPNOTSUPP);
1466 
1467 	return (ffs_close_ea(ap->a_vp, ap->a_commit, ap->a_cred, ap->a_td));
1468 }
1469 
1470 /*
1471  * Vnode operation to remove a named attribute.
1472  */
1473 static int
1474 ffs_deleteextattr(struct vop_deleteextattr_args *ap)
1475 /*
1476 vop_deleteextattr {
1477 	IN struct vnode *a_vp;
1478 	IN int a_attrnamespace;
1479 	IN const char *a_name;
1480 	IN struct ucred *a_cred;
1481 	IN struct thread *a_td;
1482 };
1483 */
1484 {
1485 	struct inode *ip;
1486 	struct fs *fs;
1487 	uint32_t ealength, ul;
1488 	int ealen, olen, eapad1, eapad2, error, i, easize;
1489 	u_char *eae, *p;
1490 	int stand_alone;
1491 
1492 	ip = VTOI(ap->a_vp);
1493 	fs = ip->i_fs;
1494 
1495 	if (fs->fs_magic == FS_UFS1_MAGIC)
1496 		return (ufs_vnoperate((struct vop_generic_args *)ap));
1497 
1498 	if (ap->a_vp->v_type == VCHR)
1499 		return (EOPNOTSUPP);
1500 
1501 	if (strlen(ap->a_name) == 0)
1502 		return (EINVAL);
1503 
1504 	error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace,
1505 	    ap->a_cred, ap->a_td, IWRITE);
1506 	if (error) {
1507 		if (ip->i_ea_area != NULL && ip->i_ea_error == 0)
1508 			ip->i_ea_error = error;
1509 		return (error);
1510 	}
1511 
1512 	if (ip->i_ea_area == NULL) {
1513 		error = ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td);
1514 		if (error)
1515 			return (error);
1516 		stand_alone = 1;
1517 	} else {
1518 		stand_alone = 0;
1519 	}
1520 
1521 	ealength = eapad1 = ealen = eapad2 = 0;
1522 
1523 	eae = malloc(ip->i_ea_len, M_TEMP, M_WAITOK);
1524 	bcopy(ip->i_ea_area, eae, ip->i_ea_len);
1525 	easize = ip->i_ea_len;
1526 
1527 	olen = ffs_findextattr(eae, easize, ap->a_attrnamespace, ap->a_name,
1528 	    &p, NULL);
1529 	if (olen == -1) {
1530 		/* delete but nonexistent */
1531 		free(eae, M_TEMP);
1532 		if (stand_alone)
1533 			ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td);
1534 		return(ENOATTR);
1535 	}
1536 	bcopy(p, &ul, sizeof ul);
1537 	i = p - eae + ul;
1538 	if (ul != ealength) {
1539 		bcopy(p + ul, p + ealength, easize - i);
1540 		easize += (ealength - ul);
1541 	}
1542 	if (easize > NXADDR * fs->fs_bsize) {
1543 		free(eae, M_TEMP);
1544 		if (stand_alone)
1545 			ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td);
1546 		else if (ip->i_ea_error == 0)
1547 			ip->i_ea_error = ENOSPC;
1548 		return(ENOSPC);
1549 	}
1550 	p = ip->i_ea_area;
1551 	ip->i_ea_area = eae;
1552 	ip->i_ea_len = easize;
1553 	free(p, M_TEMP);
1554 	if (stand_alone)
1555 		error = ffs_close_ea(ap->a_vp, 1, ap->a_cred, ap->a_td);
1556 	return(error);
1557 }
1558 
1559 /*
1560  * Vnode operation to retrieve a named extended attribute.
1561  */
1562 static int
1563 ffs_getextattr(struct vop_getextattr_args *ap)
1564 /*
1565 vop_getextattr {
1566 	IN struct vnode *a_vp;
1567 	IN int a_attrnamespace;
1568 	IN const char *a_name;
1569 	INOUT struct uio *a_uio;
1570 	OUT size_t *a_size;
1571 	IN struct ucred *a_cred;
1572 	IN struct thread *a_td;
1573 };
1574 */
1575 {
1576 	struct inode *ip;
1577 	struct fs *fs;
1578 	u_char *eae, *p;
1579 	unsigned easize;
1580 	int error, ealen, stand_alone;
1581 
1582 	ip = VTOI(ap->a_vp);
1583 	fs = ip->i_fs;
1584 
1585 	if (fs->fs_magic == FS_UFS1_MAGIC)
1586 		return (ufs_vnoperate((struct vop_generic_args *)ap));
1587 
1588 	if (ap->a_vp->v_type == VCHR)
1589 		return (EOPNOTSUPP);
1590 
1591 	error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace,
1592 	    ap->a_cred, ap->a_td, IREAD);
1593 	if (error)
1594 		return (error);
1595 
1596 	if (ip->i_ea_area == NULL) {
1597 		error = ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td);
1598 		if (error)
1599 			return (error);
1600 		stand_alone = 1;
1601 	} else {
1602 		stand_alone = 0;
1603 	}
1604 	eae = ip->i_ea_area;
1605 	easize = ip->i_ea_len;
1606 
1607 	ealen = ffs_findextattr(eae, easize, ap->a_attrnamespace, ap->a_name,
1608 	    NULL, &p);
1609 	if (ealen >= 0) {
1610 		error = 0;
1611 		if (ap->a_size != NULL)
1612 			*ap->a_size = ealen;
1613 		else if (ap->a_uio != NULL)
1614 			error = uiomove(p, ealen, ap->a_uio);
1615 	} else
1616 		error = ENOATTR;
1617 	if (stand_alone)
1618 		ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td);
1619 	return(error);
1620 }
1621 
1622 /*
1623  * Vnode operation to retrieve extended attributes on a vnode.
1624  */
1625 static int
1626 ffs_listextattr(struct vop_listextattr_args *ap)
1627 /*
1628 vop_listextattr {
1629 	IN struct vnode *a_vp;
1630 	IN int a_attrnamespace;
1631 	INOUT struct uio *a_uio;
1632 	OUT size_t *a_size;
1633 	IN struct ucred *a_cred;
1634 	IN struct thread *a_td;
1635 };
1636 */
1637 {
1638 	struct inode *ip;
1639 	struct fs *fs;
1640 	u_char *eae, *p, *pe, *pn;
1641 	unsigned easize;
1642 	uint32_t ul;
1643 	int error, ealen, stand_alone;
1644 
1645 	ip = VTOI(ap->a_vp);
1646 	fs = ip->i_fs;
1647 
1648 	if (fs->fs_magic == FS_UFS1_MAGIC)
1649 		return (ufs_vnoperate((struct vop_generic_args *)ap));
1650 
1651 	if (ap->a_vp->v_type == VCHR)
1652 		return (EOPNOTSUPP);
1653 
1654 	error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace,
1655 	    ap->a_cred, ap->a_td, IREAD);
1656 	if (error)
1657 		return (error);
1658 
1659 	if (ip->i_ea_area == NULL) {
1660 		error = ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td);
1661 		if (error)
1662 			return (error);
1663 		stand_alone = 1;
1664 	} else {
1665 		stand_alone = 0;
1666 	}
1667 	eae = ip->i_ea_area;
1668 	easize = ip->i_ea_len;
1669 
1670 	error = 0;
1671 	if (ap->a_size != NULL)
1672 		*ap->a_size = 0;
1673 	pe = eae + easize;
1674 	for(p = eae; error == 0 && p < pe; p = pn) {
1675 		bcopy(p, &ul, sizeof(ul));
1676 		pn = p + ul;
1677 		if (pn > pe)
1678 			break;
1679 		p += sizeof(ul);
1680 		if (*p++ != ap->a_attrnamespace)
1681 			continue;
1682 		p++;	/* pad2 */
1683 		ealen = *p;
1684 		if (ap->a_size != NULL) {
1685 			*ap->a_size += ealen + 1;
1686 		} else if (ap->a_uio != NULL) {
1687 			error = uiomove(p, ealen + 1, ap->a_uio);
1688 		}
1689 	}
1690 	if (stand_alone)
1691 		ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td);
1692 	return(error);
1693 }
1694 
1695 /*
1696  * Vnode operation to set a named attribute.
1697  */
1698 static int
1699 ffs_setextattr(struct vop_setextattr_args *ap)
1700 /*
1701 vop_setextattr {
1702 	IN struct vnode *a_vp;
1703 	IN int a_attrnamespace;
1704 	IN const char *a_name;
1705 	INOUT struct uio *a_uio;
1706 	IN struct ucred *a_cred;
1707 	IN struct thread *a_td;
1708 };
1709 */
1710 {
1711 	struct inode *ip;
1712 	struct fs *fs;
1713 	uint32_t ealength, ul;
1714 	int ealen, olen, eapad1, eapad2, error, i, easize;
1715 	u_char *eae, *p;
1716 	int stand_alone;
1717 
1718 	ip = VTOI(ap->a_vp);
1719 	fs = ip->i_fs;
1720 
1721 	if (fs->fs_magic == FS_UFS1_MAGIC)
1722 		return (ufs_vnoperate((struct vop_generic_args *)ap));
1723 
1724 	if (ap->a_vp->v_type == VCHR)
1725 		return (EOPNOTSUPP);
1726 
1727 	if (strlen(ap->a_name) == 0)
1728 		return (EINVAL);
1729 
1730 	/* XXX Now unsupported API to delete EAs using NULL uio. */
1731 	if (ap->a_uio == NULL)
1732 		return (EOPNOTSUPP);
1733 
1734 	error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace,
1735 	    ap->a_cred, ap->a_td, IWRITE);
1736 	if (error) {
1737 		if (ip->i_ea_area != NULL && ip->i_ea_error == 0)
1738 			ip->i_ea_error = error;
1739 		return (error);
1740 	}
1741 
1742 	if (ip->i_ea_area == NULL) {
1743 		error = ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td);
1744 		if (error)
1745 			return (error);
1746 		stand_alone = 1;
1747 	} else {
1748 		stand_alone = 0;
1749 	}
1750 
1751 	ealen = ap->a_uio->uio_resid;
1752 	ealength = sizeof(uint32_t) + 3 + strlen(ap->a_name);
1753 	eapad1 = 8 - (ealength % 8);
1754 	if (eapad1 == 8)
1755 		eapad1 = 0;
1756 	eapad2 = 8 - (ealen % 8);
1757 	if (eapad2 == 8)
1758 		eapad2 = 0;
1759 	ealength += eapad1 + ealen + eapad2;
1760 
1761 	eae = malloc(ip->i_ea_len + ealength, M_TEMP, M_WAITOK);
1762 	bcopy(ip->i_ea_area, eae, ip->i_ea_len);
1763 	easize = ip->i_ea_len;
1764 
1765 	olen = ffs_findextattr(eae, easize,
1766 	    ap->a_attrnamespace, ap->a_name, &p, NULL);
1767         if (olen == -1) {
1768 		/* new, append at end */
1769 		p = eae + easize;
1770 		easize += ealength;
1771 	} else {
1772 		bcopy(p, &ul, sizeof ul);
1773 		i = p - eae + ul;
1774 		if (ul != ealength) {
1775 			bcopy(p + ul, p + ealength, easize - i);
1776 			easize += (ealength - ul);
1777 		}
1778 	}
1779 	if (easize > NXADDR * fs->fs_bsize) {
1780 		free(eae, M_TEMP);
1781 		if (stand_alone)
1782 			ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td);
1783 		else if (ip->i_ea_error == 0)
1784 			ip->i_ea_error = ENOSPC;
1785 		return(ENOSPC);
1786 	}
1787 	bcopy(&ealength, p, sizeof(ealength));
1788 	p += sizeof(ealength);
1789 	*p++ = ap->a_attrnamespace;
1790 	*p++ = eapad2;
1791 	*p++ = strlen(ap->a_name);
1792 	strcpy(p, ap->a_name);
1793 	p += strlen(ap->a_name);
1794 	bzero(p, eapad1);
1795 	p += eapad1;
1796 	error = uiomove(p, ealen, ap->a_uio);
1797 	if (error) {
1798 		free(eae, M_TEMP);
1799 		if (stand_alone)
1800 			ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td);
1801 		else if (ip->i_ea_error == 0)
1802 			ip->i_ea_error = error;
1803 		return(error);
1804 	}
1805 	p += ealen;
1806 	bzero(p, eapad2);
1807 
1808 	p = ip->i_ea_area;
1809 	ip->i_ea_area = eae;
1810 	ip->i_ea_len = easize;
1811 	free(p, M_TEMP);
1812 	if (stand_alone)
1813 		error = ffs_close_ea(ap->a_vp, 1, ap->a_cred, ap->a_td);
1814 	return(error);
1815 }
1816