1 /*- 2 * SPDX-License-Identifier: (BSD-2-Clause-FreeBSD AND BSD-3-Clause) 3 * 4 * Copyright (c) 2002, 2003 Networks Associates Technology, Inc. 5 * All rights reserved. 6 * 7 * This software was developed for the FreeBSD Project by Marshall 8 * Kirk McKusick and Network Associates Laboratories, the Security 9 * Research Division of Network Associates, Inc. under DARPA/SPAWAR 10 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS 11 * research program 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 1. Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * Copyright (c) 1982, 1986, 1989, 1993 35 * The Regents of the University of California. All rights reserved. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 1. Redistributions of source code must retain the above copyright 41 * notice, this list of conditions and the following disclaimer. 42 * 2. Redistributions in binary form must reproduce the above copyright 43 * notice, this list of conditions and the following disclaimer in the 44 * documentation and/or other materials provided with the distribution. 45 * 3. Neither the name of the University nor the names of its contributors 46 * may be used to endorse or promote products derived from this software 47 * without specific prior written permission. 48 * 49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 59 * SUCH DAMAGE. 60 * 61 * from: @(#)ufs_readwrite.c 8.11 (Berkeley) 5/8/95 62 * from: $FreeBSD: .../ufs/ufs_readwrite.c,v 1.96 2002/08/12 09:22:11 phk ... 63 * @(#)ffs_vnops.c 8.15 (Berkeley) 5/14/95 64 */ 65 66 #include <sys/cdefs.h> 67 __FBSDID("$FreeBSD$"); 68 69 #include <sys/param.h> 70 #include <sys/bio.h> 71 #include <sys/systm.h> 72 #include <sys/buf.h> 73 #include <sys/conf.h> 74 #include <sys/extattr.h> 75 #include <sys/kernel.h> 76 #include <sys/limits.h> 77 #include <sys/malloc.h> 78 #include <sys/mount.h> 79 #include <sys/priv.h> 80 #include <sys/rwlock.h> 81 #include <sys/stat.h> 82 #include <sys/sysctl.h> 83 #include <sys/vmmeter.h> 84 #include <sys/vnode.h> 85 86 #include <vm/vm.h> 87 #include <vm/vm_param.h> 88 #include <vm/vm_extern.h> 89 #include <vm/vm_object.h> 90 #include <vm/vm_page.h> 91 #include <vm/vm_pager.h> 92 #include <vm/vnode_pager.h> 93 94 #include <ufs/ufs/extattr.h> 95 #include <ufs/ufs/quota.h> 96 #include <ufs/ufs/inode.h> 97 #include <ufs/ufs/ufs_extern.h> 98 #include <ufs/ufs/ufsmount.h> 99 100 #include <ufs/ffs/fs.h> 101 #include <ufs/ffs/ffs_extern.h> 102 #include "opt_directio.h" 103 #include "opt_ffs.h" 104 105 #define ALIGNED_TO(ptr, s) \ 106 (((uintptr_t)(ptr) & (_Alignof(s) - 1)) == 0) 107 108 #ifdef DIRECTIO 109 extern int ffs_rawread(struct vnode *vp, struct uio *uio, int *workdone); 110 #endif 111 static vop_fdatasync_t ffs_fdatasync; 112 static vop_fsync_t ffs_fsync; 113 static vop_getpages_t ffs_getpages; 114 static vop_getpages_async_t ffs_getpages_async; 115 static vop_lock1_t ffs_lock; 116 #ifdef INVARIANTS 117 static vop_unlock_t ffs_unlock_debug; 118 #endif 119 static vop_read_t ffs_read; 120 static vop_write_t ffs_write; 121 static int ffs_extread(struct vnode *vp, struct uio *uio, int ioflag); 122 static int ffs_extwrite(struct vnode *vp, struct uio *uio, int ioflag, 123 struct ucred *cred); 124 static vop_strategy_t ffsext_strategy; 125 static vop_closeextattr_t ffs_closeextattr; 126 static vop_deleteextattr_t ffs_deleteextattr; 127 static vop_getextattr_t ffs_getextattr; 128 static vop_listextattr_t ffs_listextattr; 129 static vop_openextattr_t ffs_openextattr; 130 static vop_setextattr_t ffs_setextattr; 131 static vop_vptofh_t ffs_vptofh; 132 133 /* Global vfs data structures for ufs. */ 134 struct vop_vector ffs_vnodeops1 = { 135 .vop_default = &ufs_vnodeops, 136 .vop_fsync = ffs_fsync, 137 .vop_fdatasync = ffs_fdatasync, 138 .vop_getpages = ffs_getpages, 139 .vop_getpages_async = ffs_getpages_async, 140 .vop_lock1 = ffs_lock, 141 #ifdef INVARIANTS 142 .vop_unlock = ffs_unlock_debug, 143 #endif 144 .vop_read = ffs_read, 145 .vop_reallocblks = ffs_reallocblks, 146 .vop_write = ffs_write, 147 .vop_vptofh = ffs_vptofh, 148 }; 149 VFS_VOP_VECTOR_REGISTER(ffs_vnodeops1); 150 151 struct vop_vector ffs_fifoops1 = { 152 .vop_default = &ufs_fifoops, 153 .vop_fsync = ffs_fsync, 154 .vop_fdatasync = ffs_fdatasync, 155 .vop_lock1 = ffs_lock, 156 #ifdef INVARIANTS 157 .vop_unlock = ffs_unlock_debug, 158 #endif 159 .vop_vptofh = ffs_vptofh, 160 }; 161 VFS_VOP_VECTOR_REGISTER(ffs_fifoops1); 162 163 /* Global vfs data structures for ufs. */ 164 struct vop_vector ffs_vnodeops2 = { 165 .vop_default = &ufs_vnodeops, 166 .vop_fsync = ffs_fsync, 167 .vop_fdatasync = ffs_fdatasync, 168 .vop_getpages = ffs_getpages, 169 .vop_getpages_async = ffs_getpages_async, 170 .vop_lock1 = ffs_lock, 171 #ifdef INVARIANTS 172 .vop_unlock = ffs_unlock_debug, 173 #endif 174 .vop_read = ffs_read, 175 .vop_reallocblks = ffs_reallocblks, 176 .vop_write = ffs_write, 177 .vop_closeextattr = ffs_closeextattr, 178 .vop_deleteextattr = ffs_deleteextattr, 179 .vop_getextattr = ffs_getextattr, 180 .vop_listextattr = ffs_listextattr, 181 .vop_openextattr = ffs_openextattr, 182 .vop_setextattr = ffs_setextattr, 183 .vop_vptofh = ffs_vptofh, 184 }; 185 VFS_VOP_VECTOR_REGISTER(ffs_vnodeops2); 186 187 struct vop_vector ffs_fifoops2 = { 188 .vop_default = &ufs_fifoops, 189 .vop_fsync = ffs_fsync, 190 .vop_fdatasync = ffs_fdatasync, 191 .vop_lock1 = ffs_lock, 192 #ifdef INVARIANTS 193 .vop_unlock = ffs_unlock_debug, 194 #endif 195 .vop_reallocblks = ffs_reallocblks, 196 .vop_strategy = ffsext_strategy, 197 .vop_closeextattr = ffs_closeextattr, 198 .vop_deleteextattr = ffs_deleteextattr, 199 .vop_getextattr = ffs_getextattr, 200 .vop_listextattr = ffs_listextattr, 201 .vop_openextattr = ffs_openextattr, 202 .vop_setextattr = ffs_setextattr, 203 .vop_vptofh = ffs_vptofh, 204 }; 205 VFS_VOP_VECTOR_REGISTER(ffs_fifoops2); 206 207 /* 208 * Synch an open file. 209 */ 210 /* ARGSUSED */ 211 static int 212 ffs_fsync(struct vop_fsync_args *ap) 213 { 214 struct vnode *vp; 215 struct bufobj *bo; 216 int error; 217 218 vp = ap->a_vp; 219 bo = &vp->v_bufobj; 220 retry: 221 error = ffs_syncvnode(vp, ap->a_waitfor, 0); 222 if (error) 223 return (error); 224 if (ap->a_waitfor == MNT_WAIT && DOINGSOFTDEP(vp)) { 225 error = softdep_fsync(vp); 226 if (error) 227 return (error); 228 229 /* 230 * The softdep_fsync() function may drop vp lock, 231 * allowing for dirty buffers to reappear on the 232 * bo_dirty list. Recheck and resync as needed. 233 */ 234 BO_LOCK(bo); 235 if ((vp->v_type == VREG || vp->v_type == VDIR) && 236 (bo->bo_numoutput > 0 || bo->bo_dirty.bv_cnt > 0)) { 237 BO_UNLOCK(bo); 238 goto retry; 239 } 240 BO_UNLOCK(bo); 241 } 242 return (0); 243 } 244 245 int 246 ffs_syncvnode(struct vnode *vp, int waitfor, int flags) 247 { 248 struct inode *ip; 249 struct bufobj *bo; 250 struct buf *bp, *nbp; 251 ufs_lbn_t lbn; 252 int error, passes; 253 bool still_dirty, wait; 254 255 ip = VTOI(vp); 256 ip->i_flag &= ~IN_NEEDSYNC; 257 bo = &vp->v_bufobj; 258 259 /* 260 * When doing MNT_WAIT we must first flush all dependencies 261 * on the inode. 262 */ 263 if (DOINGSOFTDEP(vp) && waitfor == MNT_WAIT && 264 (error = softdep_sync_metadata(vp)) != 0) 265 return (error); 266 267 /* 268 * Flush all dirty buffers associated with a vnode. 269 */ 270 error = 0; 271 passes = 0; 272 wait = false; /* Always do an async pass first. */ 273 lbn = lblkno(ITOFS(ip), (ip->i_size + ITOFS(ip)->fs_bsize - 1)); 274 BO_LOCK(bo); 275 loop: 276 TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) 277 bp->b_vflags &= ~BV_SCANNED; 278 TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) { 279 /* 280 * Reasons to skip this buffer: it has already been considered 281 * on this pass, the buffer has dependencies that will cause 282 * it to be redirtied and it has not already been deferred, 283 * or it is already being written. 284 */ 285 if ((bp->b_vflags & BV_SCANNED) != 0) 286 continue; 287 bp->b_vflags |= BV_SCANNED; 288 /* 289 * Flush indirects in order, if requested. 290 * 291 * Note that if only datasync is requested, we can 292 * skip indirect blocks when softupdates are not 293 * active. Otherwise we must flush them with data, 294 * since dependencies prevent data block writes. 295 */ 296 if (waitfor == MNT_WAIT && bp->b_lblkno <= -UFS_NDADDR && 297 (lbn_level(bp->b_lblkno) >= passes || 298 ((flags & DATA_ONLY) != 0 && !DOINGSOFTDEP(vp)))) 299 continue; 300 if (bp->b_lblkno > lbn) 301 panic("ffs_syncvnode: syncing truncated data."); 302 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) == 0) { 303 BO_UNLOCK(bo); 304 } else if (wait) { 305 if (BUF_LOCK(bp, 306 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, 307 BO_LOCKPTR(bo)) != 0) { 308 bp->b_vflags &= ~BV_SCANNED; 309 goto next; 310 } 311 } else 312 continue; 313 if ((bp->b_flags & B_DELWRI) == 0) 314 panic("ffs_fsync: not dirty"); 315 /* 316 * Check for dependencies and potentially complete them. 317 */ 318 if (!LIST_EMPTY(&bp->b_dep) && 319 (error = softdep_sync_buf(vp, bp, 320 wait ? MNT_WAIT : MNT_NOWAIT)) != 0) { 321 /* I/O error. */ 322 if (error != EBUSY) { 323 BUF_UNLOCK(bp); 324 return (error); 325 } 326 /* If we deferred once, don't defer again. */ 327 if ((bp->b_flags & B_DEFERRED) == 0) { 328 bp->b_flags |= B_DEFERRED; 329 BUF_UNLOCK(bp); 330 goto next; 331 } 332 } 333 if (wait) { 334 bremfree(bp); 335 if ((error = bwrite(bp)) != 0) 336 return (error); 337 } else if ((bp->b_flags & B_CLUSTEROK)) { 338 (void) vfs_bio_awrite(bp); 339 } else { 340 bremfree(bp); 341 (void) bawrite(bp); 342 } 343 next: 344 /* 345 * Since we may have slept during the I/O, we need 346 * to start from a known point. 347 */ 348 BO_LOCK(bo); 349 nbp = TAILQ_FIRST(&bo->bo_dirty.bv_hd); 350 } 351 if (waitfor != MNT_WAIT) { 352 BO_UNLOCK(bo); 353 if ((flags & NO_INO_UPDT) != 0) 354 return (0); 355 else 356 return (ffs_update(vp, 0)); 357 } 358 /* Drain IO to see if we're done. */ 359 bufobj_wwait(bo, 0, 0); 360 /* 361 * Block devices associated with filesystems may have new I/O 362 * requests posted for them even if the vnode is locked, so no 363 * amount of trying will get them clean. We make several passes 364 * as a best effort. 365 * 366 * Regular files may need multiple passes to flush all dependency 367 * work as it is possible that we must write once per indirect 368 * level, once for the leaf, and once for the inode and each of 369 * these will be done with one sync and one async pass. 370 */ 371 if (bo->bo_dirty.bv_cnt > 0) { 372 if ((flags & DATA_ONLY) == 0) { 373 still_dirty = true; 374 } else { 375 /* 376 * For data-only sync, dirty indirect buffers 377 * are ignored. 378 */ 379 still_dirty = false; 380 TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) { 381 if (bp->b_lblkno > -UFS_NDADDR) { 382 still_dirty = true; 383 break; 384 } 385 } 386 } 387 388 if (still_dirty) { 389 /* Write the inode after sync passes to flush deps. */ 390 if (wait && DOINGSOFTDEP(vp) && 391 (flags & NO_INO_UPDT) == 0) { 392 BO_UNLOCK(bo); 393 ffs_update(vp, 1); 394 BO_LOCK(bo); 395 } 396 /* switch between sync/async. */ 397 wait = !wait; 398 if (wait || ++passes < UFS_NIADDR + 2) 399 goto loop; 400 } 401 } 402 BO_UNLOCK(bo); 403 error = 0; 404 if ((flags & DATA_ONLY) == 0) { 405 if ((flags & NO_INO_UPDT) == 0) 406 error = ffs_update(vp, 1); 407 if (DOINGSUJ(vp)) 408 softdep_journal_fsync(VTOI(vp)); 409 } 410 return (error); 411 } 412 413 static int 414 ffs_fdatasync(struct vop_fdatasync_args *ap) 415 { 416 417 return (ffs_syncvnode(ap->a_vp, MNT_WAIT, DATA_ONLY)); 418 } 419 420 static int 421 ffs_lock(ap) 422 struct vop_lock1_args /* { 423 struct vnode *a_vp; 424 int a_flags; 425 struct thread *a_td; 426 char *file; 427 int line; 428 } */ *ap; 429 { 430 #ifndef NO_FFS_SNAPSHOT 431 struct vnode *vp; 432 int flags; 433 struct lock *lkp; 434 int result; 435 436 switch (ap->a_flags & LK_TYPE_MASK) { 437 case LK_SHARED: 438 case LK_UPGRADE: 439 case LK_EXCLUSIVE: 440 vp = ap->a_vp; 441 flags = ap->a_flags; 442 for (;;) { 443 #ifdef DEBUG_VFS_LOCKS 444 KASSERT(vp->v_holdcnt != 0, 445 ("ffs_lock %p: zero hold count", vp)); 446 #endif 447 lkp = vp->v_vnlock; 448 result = _lockmgr_args(lkp, flags, VI_MTX(vp), 449 LK_WMESG_DEFAULT, LK_PRIO_DEFAULT, LK_TIMO_DEFAULT, 450 ap->a_file, ap->a_line); 451 if (lkp == vp->v_vnlock || result != 0) 452 break; 453 /* 454 * Apparent success, except that the vnode 455 * mutated between snapshot file vnode and 456 * regular file vnode while this process 457 * slept. The lock currently held is not the 458 * right lock. Release it, and try to get the 459 * new lock. 460 */ 461 (void) _lockmgr_args(lkp, LK_RELEASE, NULL, 462 LK_WMESG_DEFAULT, LK_PRIO_DEFAULT, LK_TIMO_DEFAULT, 463 ap->a_file, ap->a_line); 464 if ((flags & (LK_INTERLOCK | LK_NOWAIT)) == 465 (LK_INTERLOCK | LK_NOWAIT)) 466 return (EBUSY); 467 if ((flags & LK_TYPE_MASK) == LK_UPGRADE) 468 flags = (flags & ~LK_TYPE_MASK) | LK_EXCLUSIVE; 469 flags &= ~LK_INTERLOCK; 470 } 471 break; 472 default: 473 result = VOP_LOCK1_APV(&ufs_vnodeops, ap); 474 } 475 return (result); 476 #else 477 return (VOP_LOCK1_APV(&ufs_vnodeops, ap)); 478 #endif 479 } 480 481 #ifdef INVARIANTS 482 static int 483 ffs_unlock_debug(struct vop_unlock_args *ap) 484 { 485 struct vnode *vp = ap->a_vp; 486 struct inode *ip = VTOI(vp); 487 488 if (ip->i_flag & UFS_INODE_FLAG_LAZY_MASK_ASSERTABLE) { 489 if ((vp->v_mflag & VMP_LAZYLIST) == 0) { 490 VI_LOCK(vp); 491 VNASSERT((vp->v_mflag & VMP_LAZYLIST), vp, 492 ("%s: modified vnode (%x) not on lazy list", 493 __func__, ip->i_flag)); 494 VI_UNLOCK(vp); 495 } 496 } 497 return (VOP_UNLOCK_APV(&ufs_vnodeops, ap)); 498 } 499 #endif 500 501 static int 502 ffs_read_hole(struct uio *uio, long xfersize, long *size) 503 { 504 ssize_t saved_resid, tlen; 505 int error; 506 507 while (xfersize > 0) { 508 tlen = min(xfersize, ZERO_REGION_SIZE); 509 saved_resid = uio->uio_resid; 510 error = vn_io_fault_uiomove(__DECONST(void *, zero_region), 511 tlen, uio); 512 if (error != 0) 513 return (error); 514 tlen = saved_resid - uio->uio_resid; 515 xfersize -= tlen; 516 *size -= tlen; 517 } 518 return (0); 519 } 520 521 /* 522 * Vnode op for reading. 523 */ 524 static int 525 ffs_read(ap) 526 struct vop_read_args /* { 527 struct vnode *a_vp; 528 struct uio *a_uio; 529 int a_ioflag; 530 struct ucred *a_cred; 531 } */ *ap; 532 { 533 struct vnode *vp; 534 struct inode *ip; 535 struct uio *uio; 536 struct fs *fs; 537 struct buf *bp; 538 ufs_lbn_t lbn, nextlbn; 539 off_t bytesinfile; 540 long size, xfersize, blkoffset; 541 ssize_t orig_resid; 542 int bflag, error, ioflag, seqcount; 543 544 vp = ap->a_vp; 545 uio = ap->a_uio; 546 ioflag = ap->a_ioflag; 547 if (ap->a_ioflag & IO_EXT) 548 #ifdef notyet 549 return (ffs_extread(vp, uio, ioflag)); 550 #else 551 panic("ffs_read+IO_EXT"); 552 #endif 553 #ifdef DIRECTIO 554 if ((ioflag & IO_DIRECT) != 0) { 555 int workdone; 556 557 error = ffs_rawread(vp, uio, &workdone); 558 if (error != 0 || workdone != 0) 559 return error; 560 } 561 #endif 562 563 seqcount = ap->a_ioflag >> IO_SEQSHIFT; 564 ip = VTOI(vp); 565 566 #ifdef INVARIANTS 567 if (uio->uio_rw != UIO_READ) 568 panic("ffs_read: mode"); 569 570 if (vp->v_type == VLNK) { 571 if ((int)ip->i_size < vp->v_mount->mnt_maxsymlinklen) 572 panic("ffs_read: short symlink"); 573 } else if (vp->v_type != VREG && vp->v_type != VDIR) 574 panic("ffs_read: type %d", vp->v_type); 575 #endif 576 orig_resid = uio->uio_resid; 577 KASSERT(orig_resid >= 0, ("ffs_read: uio->uio_resid < 0")); 578 if (orig_resid == 0) 579 return (0); 580 KASSERT(uio->uio_offset >= 0, ("ffs_read: uio->uio_offset < 0")); 581 fs = ITOFS(ip); 582 if (uio->uio_offset < ip->i_size && 583 uio->uio_offset >= fs->fs_maxfilesize) 584 return (EOVERFLOW); 585 586 bflag = GB_UNMAPPED | (uio->uio_segflg == UIO_NOCOPY ? 0 : GB_NOSPARSE); 587 for (error = 0, bp = NULL; uio->uio_resid > 0; bp = NULL) { 588 if ((bytesinfile = ip->i_size - uio->uio_offset) <= 0) 589 break; 590 lbn = lblkno(fs, uio->uio_offset); 591 nextlbn = lbn + 1; 592 593 /* 594 * size of buffer. The buffer representing the 595 * end of the file is rounded up to the size of 596 * the block type ( fragment or full block, 597 * depending ). 598 */ 599 size = blksize(fs, ip, lbn); 600 blkoffset = blkoff(fs, uio->uio_offset); 601 602 /* 603 * The amount we want to transfer in this iteration is 604 * one FS block less the amount of the data before 605 * our startpoint (duh!) 606 */ 607 xfersize = fs->fs_bsize - blkoffset; 608 609 /* 610 * But if we actually want less than the block, 611 * or the file doesn't have a whole block more of data, 612 * then use the lesser number. 613 */ 614 if (uio->uio_resid < xfersize) 615 xfersize = uio->uio_resid; 616 if (bytesinfile < xfersize) 617 xfersize = bytesinfile; 618 619 if (lblktosize(fs, nextlbn) >= ip->i_size) { 620 /* 621 * Don't do readahead if this is the end of the file. 622 */ 623 error = bread_gb(vp, lbn, size, NOCRED, bflag, &bp); 624 } else if ((vp->v_mount->mnt_flag & MNT_NOCLUSTERR) == 0) { 625 /* 626 * Otherwise if we are allowed to cluster, 627 * grab as much as we can. 628 * 629 * XXX This may not be a win if we are not 630 * doing sequential access. 631 */ 632 error = cluster_read(vp, ip->i_size, lbn, 633 size, NOCRED, blkoffset + uio->uio_resid, 634 seqcount, bflag, &bp); 635 } else if (seqcount > 1) { 636 /* 637 * If we are NOT allowed to cluster, then 638 * if we appear to be acting sequentially, 639 * fire off a request for a readahead 640 * as well as a read. Note that the 4th and 5th 641 * arguments point to arrays of the size specified in 642 * the 6th argument. 643 */ 644 u_int nextsize = blksize(fs, ip, nextlbn); 645 error = breadn_flags(vp, lbn, lbn, size, &nextlbn, 646 &nextsize, 1, NOCRED, bflag, NULL, &bp); 647 } else { 648 /* 649 * Failing all of the above, just read what the 650 * user asked for. Interestingly, the same as 651 * the first option above. 652 */ 653 error = bread_gb(vp, lbn, size, NOCRED, bflag, &bp); 654 } 655 if (error == EJUSTRETURN) { 656 error = ffs_read_hole(uio, xfersize, &size); 657 if (error == 0) 658 continue; 659 } 660 if (error != 0) { 661 brelse(bp); 662 bp = NULL; 663 break; 664 } 665 666 /* 667 * We should only get non-zero b_resid when an I/O error 668 * has occurred, which should cause us to break above. 669 * However, if the short read did not cause an error, 670 * then we want to ensure that we do not uiomove bad 671 * or uninitialized data. 672 */ 673 size -= bp->b_resid; 674 if (size < xfersize) { 675 if (size == 0) 676 break; 677 xfersize = size; 678 } 679 680 if (buf_mapped(bp)) { 681 error = vn_io_fault_uiomove((char *)bp->b_data + 682 blkoffset, (int)xfersize, uio); 683 } else { 684 error = vn_io_fault_pgmove(bp->b_pages, blkoffset, 685 (int)xfersize, uio); 686 } 687 if (error) 688 break; 689 690 vfs_bio_brelse(bp, ioflag); 691 } 692 693 /* 694 * This can only happen in the case of an error 695 * because the loop above resets bp to NULL on each iteration 696 * and on normal completion has not set a new value into it. 697 * so it must have come from a 'break' statement 698 */ 699 if (bp != NULL) 700 vfs_bio_brelse(bp, ioflag); 701 702 if ((error == 0 || uio->uio_resid != orig_resid) && 703 (vp->v_mount->mnt_flag & (MNT_NOATIME | MNT_RDONLY)) == 0) 704 UFS_INODE_SET_FLAG_SHARED(ip, IN_ACCESS); 705 return (error); 706 } 707 708 /* 709 * Vnode op for writing. 710 */ 711 static int 712 ffs_write(ap) 713 struct vop_write_args /* { 714 struct vnode *a_vp; 715 struct uio *a_uio; 716 int a_ioflag; 717 struct ucred *a_cred; 718 } */ *ap; 719 { 720 struct vnode *vp; 721 struct uio *uio; 722 struct inode *ip; 723 struct fs *fs; 724 struct buf *bp; 725 ufs_lbn_t lbn; 726 off_t osize; 727 ssize_t resid; 728 int seqcount; 729 int blkoffset, error, flags, ioflag, size, xfersize; 730 731 vp = ap->a_vp; 732 uio = ap->a_uio; 733 ioflag = ap->a_ioflag; 734 if (ap->a_ioflag & IO_EXT) 735 #ifdef notyet 736 return (ffs_extwrite(vp, uio, ioflag, ap->a_cred)); 737 #else 738 panic("ffs_write+IO_EXT"); 739 #endif 740 741 seqcount = ap->a_ioflag >> IO_SEQSHIFT; 742 ip = VTOI(vp); 743 744 #ifdef INVARIANTS 745 if (uio->uio_rw != UIO_WRITE) 746 panic("ffs_write: mode"); 747 #endif 748 749 switch (vp->v_type) { 750 case VREG: 751 if (ioflag & IO_APPEND) 752 uio->uio_offset = ip->i_size; 753 if ((ip->i_flags & APPEND) && uio->uio_offset != ip->i_size) 754 return (EPERM); 755 /* FALLTHROUGH */ 756 case VLNK: 757 break; 758 case VDIR: 759 panic("ffs_write: dir write"); 760 break; 761 default: 762 panic("ffs_write: type %p %d (%d,%d)", vp, (int)vp->v_type, 763 (int)uio->uio_offset, 764 (int)uio->uio_resid 765 ); 766 } 767 768 KASSERT(uio->uio_resid >= 0, ("ffs_write: uio->uio_resid < 0")); 769 KASSERT(uio->uio_offset >= 0, ("ffs_write: uio->uio_offset < 0")); 770 fs = ITOFS(ip); 771 if ((uoff_t)uio->uio_offset + uio->uio_resid > fs->fs_maxfilesize) 772 return (EFBIG); 773 /* 774 * Maybe this should be above the vnode op call, but so long as 775 * file servers have no limits, I don't think it matters. 776 */ 777 if (vn_rlimit_fsize(vp, uio, uio->uio_td)) 778 return (EFBIG); 779 780 resid = uio->uio_resid; 781 osize = ip->i_size; 782 if (seqcount > BA_SEQMAX) 783 flags = BA_SEQMAX << BA_SEQSHIFT; 784 else 785 flags = seqcount << BA_SEQSHIFT; 786 if (ioflag & IO_SYNC) 787 flags |= IO_SYNC; 788 flags |= BA_UNMAPPED; 789 790 for (error = 0; uio->uio_resid > 0;) { 791 lbn = lblkno(fs, uio->uio_offset); 792 blkoffset = blkoff(fs, uio->uio_offset); 793 xfersize = fs->fs_bsize - blkoffset; 794 if (uio->uio_resid < xfersize) 795 xfersize = uio->uio_resid; 796 if (uio->uio_offset + xfersize > ip->i_size) 797 vnode_pager_setsize(vp, uio->uio_offset + xfersize); 798 799 /* 800 * We must perform a read-before-write if the transfer size 801 * does not cover the entire buffer. 802 */ 803 if (fs->fs_bsize > xfersize) 804 flags |= BA_CLRBUF; 805 else 806 flags &= ~BA_CLRBUF; 807 /* XXX is uio->uio_offset the right thing here? */ 808 error = UFS_BALLOC(vp, uio->uio_offset, xfersize, 809 ap->a_cred, flags, &bp); 810 if (error != 0) { 811 vnode_pager_setsize(vp, ip->i_size); 812 break; 813 } 814 if ((ioflag & (IO_SYNC|IO_INVAL)) == (IO_SYNC|IO_INVAL)) 815 bp->b_flags |= B_NOCACHE; 816 817 if (uio->uio_offset + xfersize > ip->i_size) { 818 ip->i_size = uio->uio_offset + xfersize; 819 DIP_SET(ip, i_size, ip->i_size); 820 } 821 822 size = blksize(fs, ip, lbn) - bp->b_resid; 823 if (size < xfersize) 824 xfersize = size; 825 826 if (buf_mapped(bp)) { 827 error = vn_io_fault_uiomove((char *)bp->b_data + 828 blkoffset, (int)xfersize, uio); 829 } else { 830 error = vn_io_fault_pgmove(bp->b_pages, blkoffset, 831 (int)xfersize, uio); 832 } 833 /* 834 * If the buffer is not already filled and we encounter an 835 * error while trying to fill it, we have to clear out any 836 * garbage data from the pages instantiated for the buffer. 837 * If we do not, a failed uiomove() during a write can leave 838 * the prior contents of the pages exposed to a userland mmap. 839 * 840 * Note that we need only clear buffers with a transfer size 841 * equal to the block size because buffers with a shorter 842 * transfer size were cleared above by the call to UFS_BALLOC() 843 * with the BA_CLRBUF flag set. 844 * 845 * If the source region for uiomove identically mmaps the 846 * buffer, uiomove() performed the NOP copy, and the buffer 847 * content remains valid because the page fault handler 848 * validated the pages. 849 */ 850 if (error != 0 && (bp->b_flags & B_CACHE) == 0 && 851 fs->fs_bsize == xfersize) 852 vfs_bio_clrbuf(bp); 853 854 vfs_bio_set_flags(bp, ioflag); 855 856 /* 857 * If IO_SYNC each buffer is written synchronously. Otherwise 858 * if we have a severe page deficiency write the buffer 859 * asynchronously. Otherwise try to cluster, and if that 860 * doesn't do it then either do an async write (if O_DIRECT), 861 * or a delayed write (if not). 862 */ 863 if (ioflag & IO_SYNC) { 864 (void)bwrite(bp); 865 } else if (vm_page_count_severe() || 866 buf_dirty_count_severe() || 867 (ioflag & IO_ASYNC)) { 868 bp->b_flags |= B_CLUSTEROK; 869 bawrite(bp); 870 } else if (xfersize + blkoffset == fs->fs_bsize) { 871 if ((vp->v_mount->mnt_flag & MNT_NOCLUSTERW) == 0) { 872 bp->b_flags |= B_CLUSTEROK; 873 cluster_write(vp, bp, ip->i_size, seqcount, 874 GB_UNMAPPED); 875 } else { 876 bawrite(bp); 877 } 878 } else if (ioflag & IO_DIRECT) { 879 bp->b_flags |= B_CLUSTEROK; 880 bawrite(bp); 881 } else { 882 bp->b_flags |= B_CLUSTEROK; 883 bdwrite(bp); 884 } 885 if (error || xfersize == 0) 886 break; 887 UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_UPDATE); 888 } 889 /* 890 * If we successfully wrote any data, and we are not the superuser 891 * we clear the setuid and setgid bits as a precaution against 892 * tampering. 893 */ 894 if ((ip->i_mode & (ISUID | ISGID)) && resid > uio->uio_resid && 895 ap->a_cred) { 896 if (priv_check_cred(ap->a_cred, PRIV_VFS_RETAINSUGID)) { 897 ip->i_mode &= ~(ISUID | ISGID); 898 DIP_SET(ip, i_mode, ip->i_mode); 899 } 900 } 901 if (error) { 902 if (ioflag & IO_UNIT) { 903 (void)ffs_truncate(vp, osize, 904 IO_NORMAL | (ioflag & IO_SYNC), ap->a_cred); 905 uio->uio_offset -= resid - uio->uio_resid; 906 uio->uio_resid = resid; 907 } 908 } else if (resid > uio->uio_resid && (ioflag & IO_SYNC)) 909 error = ffs_update(vp, 1); 910 return (error); 911 } 912 913 /* 914 * Extended attribute area reading. 915 */ 916 static int 917 ffs_extread(struct vnode *vp, struct uio *uio, int ioflag) 918 { 919 struct inode *ip; 920 struct ufs2_dinode *dp; 921 struct fs *fs; 922 struct buf *bp; 923 ufs_lbn_t lbn, nextlbn; 924 off_t bytesinfile; 925 long size, xfersize, blkoffset; 926 ssize_t orig_resid; 927 int error; 928 929 ip = VTOI(vp); 930 fs = ITOFS(ip); 931 dp = ip->i_din2; 932 933 #ifdef INVARIANTS 934 if (uio->uio_rw != UIO_READ || fs->fs_magic != FS_UFS2_MAGIC) 935 panic("ffs_extread: mode"); 936 937 #endif 938 orig_resid = uio->uio_resid; 939 KASSERT(orig_resid >= 0, ("ffs_extread: uio->uio_resid < 0")); 940 if (orig_resid == 0) 941 return (0); 942 KASSERT(uio->uio_offset >= 0, ("ffs_extread: uio->uio_offset < 0")); 943 944 for (error = 0, bp = NULL; uio->uio_resid > 0; bp = NULL) { 945 if ((bytesinfile = dp->di_extsize - uio->uio_offset) <= 0) 946 break; 947 lbn = lblkno(fs, uio->uio_offset); 948 nextlbn = lbn + 1; 949 950 /* 951 * size of buffer. The buffer representing the 952 * end of the file is rounded up to the size of 953 * the block type ( fragment or full block, 954 * depending ). 955 */ 956 size = sblksize(fs, dp->di_extsize, lbn); 957 blkoffset = blkoff(fs, uio->uio_offset); 958 959 /* 960 * The amount we want to transfer in this iteration is 961 * one FS block less the amount of the data before 962 * our startpoint (duh!) 963 */ 964 xfersize = fs->fs_bsize - blkoffset; 965 966 /* 967 * But if we actually want less than the block, 968 * or the file doesn't have a whole block more of data, 969 * then use the lesser number. 970 */ 971 if (uio->uio_resid < xfersize) 972 xfersize = uio->uio_resid; 973 if (bytesinfile < xfersize) 974 xfersize = bytesinfile; 975 976 if (lblktosize(fs, nextlbn) >= dp->di_extsize) { 977 /* 978 * Don't do readahead if this is the end of the info. 979 */ 980 error = bread(vp, -1 - lbn, size, NOCRED, &bp); 981 } else { 982 /* 983 * If we have a second block, then 984 * fire off a request for a readahead 985 * as well as a read. Note that the 4th and 5th 986 * arguments point to arrays of the size specified in 987 * the 6th argument. 988 */ 989 u_int nextsize = sblksize(fs, dp->di_extsize, nextlbn); 990 991 nextlbn = -1 - nextlbn; 992 error = breadn(vp, -1 - lbn, 993 size, &nextlbn, &nextsize, 1, NOCRED, &bp); 994 } 995 if (error) { 996 brelse(bp); 997 bp = NULL; 998 break; 999 } 1000 1001 /* 1002 * We should only get non-zero b_resid when an I/O error 1003 * has occurred, which should cause us to break above. 1004 * However, if the short read did not cause an error, 1005 * then we want to ensure that we do not uiomove bad 1006 * or uninitialized data. 1007 */ 1008 size -= bp->b_resid; 1009 if (size < xfersize) { 1010 if (size == 0) 1011 break; 1012 xfersize = size; 1013 } 1014 1015 error = uiomove((char *)bp->b_data + blkoffset, 1016 (int)xfersize, uio); 1017 if (error) 1018 break; 1019 vfs_bio_brelse(bp, ioflag); 1020 } 1021 1022 /* 1023 * This can only happen in the case of an error 1024 * because the loop above resets bp to NULL on each iteration 1025 * and on normal completion has not set a new value into it. 1026 * so it must have come from a 'break' statement 1027 */ 1028 if (bp != NULL) 1029 vfs_bio_brelse(bp, ioflag); 1030 return (error); 1031 } 1032 1033 /* 1034 * Extended attribute area writing. 1035 */ 1036 static int 1037 ffs_extwrite(struct vnode *vp, struct uio *uio, int ioflag, struct ucred *ucred) 1038 { 1039 struct inode *ip; 1040 struct ufs2_dinode *dp; 1041 struct fs *fs; 1042 struct buf *bp; 1043 ufs_lbn_t lbn; 1044 off_t osize; 1045 ssize_t resid; 1046 int blkoffset, error, flags, size, xfersize; 1047 1048 ip = VTOI(vp); 1049 fs = ITOFS(ip); 1050 dp = ip->i_din2; 1051 1052 #ifdef INVARIANTS 1053 if (uio->uio_rw != UIO_WRITE || fs->fs_magic != FS_UFS2_MAGIC) 1054 panic("ffs_extwrite: mode"); 1055 #endif 1056 1057 if (ioflag & IO_APPEND) 1058 uio->uio_offset = dp->di_extsize; 1059 KASSERT(uio->uio_offset >= 0, ("ffs_extwrite: uio->uio_offset < 0")); 1060 KASSERT(uio->uio_resid >= 0, ("ffs_extwrite: uio->uio_resid < 0")); 1061 if ((uoff_t)uio->uio_offset + uio->uio_resid > 1062 UFS_NXADDR * fs->fs_bsize) 1063 return (EFBIG); 1064 1065 resid = uio->uio_resid; 1066 osize = dp->di_extsize; 1067 flags = IO_EXT; 1068 if (ioflag & IO_SYNC) 1069 flags |= IO_SYNC; 1070 1071 for (error = 0; uio->uio_resid > 0;) { 1072 lbn = lblkno(fs, uio->uio_offset); 1073 blkoffset = blkoff(fs, uio->uio_offset); 1074 xfersize = fs->fs_bsize - blkoffset; 1075 if (uio->uio_resid < xfersize) 1076 xfersize = uio->uio_resid; 1077 1078 /* 1079 * We must perform a read-before-write if the transfer size 1080 * does not cover the entire buffer. 1081 */ 1082 if (fs->fs_bsize > xfersize) 1083 flags |= BA_CLRBUF; 1084 else 1085 flags &= ~BA_CLRBUF; 1086 error = UFS_BALLOC(vp, uio->uio_offset, xfersize, 1087 ucred, flags, &bp); 1088 if (error != 0) 1089 break; 1090 /* 1091 * If the buffer is not valid we have to clear out any 1092 * garbage data from the pages instantiated for the buffer. 1093 * If we do not, a failed uiomove() during a write can leave 1094 * the prior contents of the pages exposed to a userland 1095 * mmap(). XXX deal with uiomove() errors a better way. 1096 */ 1097 if ((bp->b_flags & B_CACHE) == 0 && fs->fs_bsize <= xfersize) 1098 vfs_bio_clrbuf(bp); 1099 1100 if (uio->uio_offset + xfersize > dp->di_extsize) 1101 dp->di_extsize = uio->uio_offset + xfersize; 1102 1103 size = sblksize(fs, dp->di_extsize, lbn) - bp->b_resid; 1104 if (size < xfersize) 1105 xfersize = size; 1106 1107 error = 1108 uiomove((char *)bp->b_data + blkoffset, (int)xfersize, uio); 1109 1110 vfs_bio_set_flags(bp, ioflag); 1111 1112 /* 1113 * If IO_SYNC each buffer is written synchronously. Otherwise 1114 * if we have a severe page deficiency write the buffer 1115 * asynchronously. Otherwise try to cluster, and if that 1116 * doesn't do it then either do an async write (if O_DIRECT), 1117 * or a delayed write (if not). 1118 */ 1119 if (ioflag & IO_SYNC) { 1120 (void)bwrite(bp); 1121 } else if (vm_page_count_severe() || 1122 buf_dirty_count_severe() || 1123 xfersize + blkoffset == fs->fs_bsize || 1124 (ioflag & (IO_ASYNC | IO_DIRECT))) 1125 bawrite(bp); 1126 else 1127 bdwrite(bp); 1128 if (error || xfersize == 0) 1129 break; 1130 UFS_INODE_SET_FLAG(ip, IN_CHANGE); 1131 } 1132 /* 1133 * If we successfully wrote any data, and we are not the superuser 1134 * we clear the setuid and setgid bits as a precaution against 1135 * tampering. 1136 */ 1137 if ((ip->i_mode & (ISUID | ISGID)) && resid > uio->uio_resid && ucred) { 1138 if (priv_check_cred(ucred, PRIV_VFS_RETAINSUGID)) { 1139 ip->i_mode &= ~(ISUID | ISGID); 1140 dp->di_mode = ip->i_mode; 1141 } 1142 } 1143 if (error) { 1144 if (ioflag & IO_UNIT) { 1145 (void)ffs_truncate(vp, osize, 1146 IO_EXT | (ioflag&IO_SYNC), ucred); 1147 uio->uio_offset -= resid - uio->uio_resid; 1148 uio->uio_resid = resid; 1149 } 1150 } else if (resid > uio->uio_resid && (ioflag & IO_SYNC)) 1151 error = ffs_update(vp, 1); 1152 return (error); 1153 } 1154 1155 1156 /* 1157 * Vnode operating to retrieve a named extended attribute. 1158 * 1159 * Locate a particular EA (nspace:name) in the area (ptr:length), and return 1160 * the length of the EA, and possibly the pointer to the entry and to the data. 1161 */ 1162 static int 1163 ffs_findextattr(u_char *ptr, u_int length, int nspace, const char *name, 1164 struct extattr **eapp, u_char **eac) 1165 { 1166 struct extattr *eap, *eaend; 1167 size_t nlen; 1168 1169 nlen = strlen(name); 1170 KASSERT(ALIGNED_TO(ptr, struct extattr), ("unaligned")); 1171 eap = (struct extattr *)ptr; 1172 eaend = (struct extattr *)(ptr + length); 1173 for (; eap < eaend; eap = EXTATTR_NEXT(eap)) { 1174 /* make sure this entry is complete */ 1175 if (EXTATTR_NEXT(eap) > eaend) 1176 break; 1177 if (eap->ea_namespace != nspace || eap->ea_namelength != nlen 1178 || memcmp(eap->ea_name, name, nlen) != 0) 1179 continue; 1180 if (eapp != NULL) 1181 *eapp = eap; 1182 if (eac != NULL) 1183 *eac = EXTATTR_CONTENT(eap); 1184 return (EXTATTR_CONTENT_SIZE(eap)); 1185 } 1186 return (-1); 1187 } 1188 1189 static int 1190 ffs_rdextattr(u_char **p, struct vnode *vp, struct thread *td, int extra) 1191 { 1192 struct inode *ip; 1193 struct ufs2_dinode *dp; 1194 struct fs *fs; 1195 struct uio luio; 1196 struct iovec liovec; 1197 u_int easize; 1198 int error; 1199 u_char *eae; 1200 1201 ip = VTOI(vp); 1202 fs = ITOFS(ip); 1203 dp = ip->i_din2; 1204 easize = dp->di_extsize; 1205 if ((uoff_t)easize + extra > UFS_NXADDR * fs->fs_bsize) 1206 return (EFBIG); 1207 1208 eae = malloc(easize + extra, M_TEMP, M_WAITOK); 1209 1210 liovec.iov_base = eae; 1211 liovec.iov_len = easize; 1212 luio.uio_iov = &liovec; 1213 luio.uio_iovcnt = 1; 1214 luio.uio_offset = 0; 1215 luio.uio_resid = easize; 1216 luio.uio_segflg = UIO_SYSSPACE; 1217 luio.uio_rw = UIO_READ; 1218 luio.uio_td = td; 1219 1220 error = ffs_extread(vp, &luio, IO_EXT | IO_SYNC); 1221 if (error) { 1222 free(eae, M_TEMP); 1223 return(error); 1224 } 1225 *p = eae; 1226 return (0); 1227 } 1228 1229 static void 1230 ffs_lock_ea(struct vnode *vp) 1231 { 1232 struct inode *ip; 1233 1234 ip = VTOI(vp); 1235 VI_LOCK(vp); 1236 while (ip->i_flag & IN_EA_LOCKED) { 1237 UFS_INODE_SET_FLAG(ip, IN_EA_LOCKWAIT); 1238 msleep(&ip->i_ea_refs, &vp->v_interlock, PINOD + 2, "ufs_ea", 1239 0); 1240 } 1241 UFS_INODE_SET_FLAG(ip, IN_EA_LOCKED); 1242 VI_UNLOCK(vp); 1243 } 1244 1245 static void 1246 ffs_unlock_ea(struct vnode *vp) 1247 { 1248 struct inode *ip; 1249 1250 ip = VTOI(vp); 1251 VI_LOCK(vp); 1252 if (ip->i_flag & IN_EA_LOCKWAIT) 1253 wakeup(&ip->i_ea_refs); 1254 ip->i_flag &= ~(IN_EA_LOCKED | IN_EA_LOCKWAIT); 1255 VI_UNLOCK(vp); 1256 } 1257 1258 static int 1259 ffs_open_ea(struct vnode *vp, struct ucred *cred, struct thread *td) 1260 { 1261 struct inode *ip; 1262 struct ufs2_dinode *dp; 1263 int error; 1264 1265 ip = VTOI(vp); 1266 1267 ffs_lock_ea(vp); 1268 if (ip->i_ea_area != NULL) { 1269 ip->i_ea_refs++; 1270 ffs_unlock_ea(vp); 1271 return (0); 1272 } 1273 dp = ip->i_din2; 1274 error = ffs_rdextattr(&ip->i_ea_area, vp, td, 0); 1275 if (error) { 1276 ffs_unlock_ea(vp); 1277 return (error); 1278 } 1279 ip->i_ea_len = dp->di_extsize; 1280 ip->i_ea_error = 0; 1281 ip->i_ea_refs++; 1282 ffs_unlock_ea(vp); 1283 return (0); 1284 } 1285 1286 /* 1287 * Vnode extattr transaction commit/abort 1288 */ 1289 static int 1290 ffs_close_ea(struct vnode *vp, int commit, struct ucred *cred, struct thread *td) 1291 { 1292 struct inode *ip; 1293 struct uio luio; 1294 struct iovec liovec; 1295 int error; 1296 struct ufs2_dinode *dp; 1297 1298 ip = VTOI(vp); 1299 1300 ffs_lock_ea(vp); 1301 if (ip->i_ea_area == NULL) { 1302 ffs_unlock_ea(vp); 1303 return (EINVAL); 1304 } 1305 dp = ip->i_din2; 1306 error = ip->i_ea_error; 1307 if (commit && error == 0) { 1308 ASSERT_VOP_ELOCKED(vp, "ffs_close_ea commit"); 1309 if (cred == NOCRED) 1310 cred = vp->v_mount->mnt_cred; 1311 liovec.iov_base = ip->i_ea_area; 1312 liovec.iov_len = ip->i_ea_len; 1313 luio.uio_iov = &liovec; 1314 luio.uio_iovcnt = 1; 1315 luio.uio_offset = 0; 1316 luio.uio_resid = ip->i_ea_len; 1317 luio.uio_segflg = UIO_SYSSPACE; 1318 luio.uio_rw = UIO_WRITE; 1319 luio.uio_td = td; 1320 /* XXX: I'm not happy about truncating to zero size */ 1321 if (ip->i_ea_len < dp->di_extsize) 1322 error = ffs_truncate(vp, 0, IO_EXT, cred); 1323 error = ffs_extwrite(vp, &luio, IO_EXT | IO_SYNC, cred); 1324 } 1325 if (--ip->i_ea_refs == 0) { 1326 free(ip->i_ea_area, M_TEMP); 1327 ip->i_ea_area = NULL; 1328 ip->i_ea_len = 0; 1329 ip->i_ea_error = 0; 1330 } 1331 ffs_unlock_ea(vp); 1332 return (error); 1333 } 1334 1335 /* 1336 * Vnode extattr strategy routine for fifos. 1337 * 1338 * We need to check for a read or write of the external attributes. 1339 * Otherwise we just fall through and do the usual thing. 1340 */ 1341 static int 1342 ffsext_strategy(struct vop_strategy_args *ap) 1343 /* 1344 struct vop_strategy_args { 1345 struct vnodeop_desc *a_desc; 1346 struct vnode *a_vp; 1347 struct buf *a_bp; 1348 }; 1349 */ 1350 { 1351 struct vnode *vp; 1352 daddr_t lbn; 1353 1354 vp = ap->a_vp; 1355 lbn = ap->a_bp->b_lblkno; 1356 if (I_IS_UFS2(VTOI(vp)) && lbn < 0 && lbn >= -UFS_NXADDR) 1357 return (VOP_STRATEGY_APV(&ufs_vnodeops, ap)); 1358 if (vp->v_type == VFIFO) 1359 return (VOP_STRATEGY_APV(&ufs_fifoops, ap)); 1360 panic("spec nodes went here"); 1361 } 1362 1363 /* 1364 * Vnode extattr transaction commit/abort 1365 */ 1366 static int 1367 ffs_openextattr(struct vop_openextattr_args *ap) 1368 /* 1369 struct vop_openextattr_args { 1370 struct vnodeop_desc *a_desc; 1371 struct vnode *a_vp; 1372 IN struct ucred *a_cred; 1373 IN struct thread *a_td; 1374 }; 1375 */ 1376 { 1377 1378 if (ap->a_vp->v_type == VCHR || ap->a_vp->v_type == VBLK) 1379 return (EOPNOTSUPP); 1380 1381 return (ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td)); 1382 } 1383 1384 1385 /* 1386 * Vnode extattr transaction commit/abort 1387 */ 1388 static int 1389 ffs_closeextattr(struct vop_closeextattr_args *ap) 1390 /* 1391 struct vop_closeextattr_args { 1392 struct vnodeop_desc *a_desc; 1393 struct vnode *a_vp; 1394 int a_commit; 1395 IN struct ucred *a_cred; 1396 IN struct thread *a_td; 1397 }; 1398 */ 1399 { 1400 1401 if (ap->a_vp->v_type == VCHR || ap->a_vp->v_type == VBLK) 1402 return (EOPNOTSUPP); 1403 1404 if (ap->a_commit && (ap->a_vp->v_mount->mnt_flag & MNT_RDONLY)) 1405 return (EROFS); 1406 1407 return (ffs_close_ea(ap->a_vp, ap->a_commit, ap->a_cred, ap->a_td)); 1408 } 1409 1410 /* 1411 * Vnode operation to remove a named attribute. 1412 */ 1413 static int 1414 ffs_deleteextattr(struct vop_deleteextattr_args *ap) 1415 /* 1416 vop_deleteextattr { 1417 IN struct vnode *a_vp; 1418 IN int a_attrnamespace; 1419 IN const char *a_name; 1420 IN struct ucred *a_cred; 1421 IN struct thread *a_td; 1422 }; 1423 */ 1424 { 1425 struct inode *ip; 1426 struct extattr *eap; 1427 uint32_t ul; 1428 int olen, error, i, easize; 1429 u_char *eae; 1430 void *tmp; 1431 1432 ip = VTOI(ap->a_vp); 1433 1434 if (ap->a_vp->v_type == VCHR || ap->a_vp->v_type == VBLK) 1435 return (EOPNOTSUPP); 1436 1437 if (strlen(ap->a_name) == 0) 1438 return (EINVAL); 1439 1440 if (ap->a_vp->v_mount->mnt_flag & MNT_RDONLY) 1441 return (EROFS); 1442 1443 error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace, 1444 ap->a_cred, ap->a_td, VWRITE); 1445 if (error) { 1446 1447 /* 1448 * ffs_lock_ea is not needed there, because the vnode 1449 * must be exclusively locked. 1450 */ 1451 if (ip->i_ea_area != NULL && ip->i_ea_error == 0) 1452 ip->i_ea_error = error; 1453 return (error); 1454 } 1455 1456 error = ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td); 1457 if (error) 1458 return (error); 1459 1460 /* CEM: delete could be done in-place instead */ 1461 eae = malloc(ip->i_ea_len, M_TEMP, M_WAITOK); 1462 bcopy(ip->i_ea_area, eae, ip->i_ea_len); 1463 easize = ip->i_ea_len; 1464 1465 olen = ffs_findextattr(eae, easize, ap->a_attrnamespace, ap->a_name, 1466 &eap, NULL); 1467 if (olen == -1) { 1468 /* delete but nonexistent */ 1469 free(eae, M_TEMP); 1470 ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td); 1471 return (ENOATTR); 1472 } 1473 ul = eap->ea_length; 1474 i = (u_char *)EXTATTR_NEXT(eap) - eae; 1475 bcopy(EXTATTR_NEXT(eap), eap, easize - i); 1476 easize -= ul; 1477 1478 tmp = ip->i_ea_area; 1479 ip->i_ea_area = eae; 1480 ip->i_ea_len = easize; 1481 free(tmp, M_TEMP); 1482 error = ffs_close_ea(ap->a_vp, 1, ap->a_cred, ap->a_td); 1483 return (error); 1484 } 1485 1486 /* 1487 * Vnode operation to retrieve a named extended attribute. 1488 */ 1489 static int 1490 ffs_getextattr(struct vop_getextattr_args *ap) 1491 /* 1492 vop_getextattr { 1493 IN struct vnode *a_vp; 1494 IN int a_attrnamespace; 1495 IN const char *a_name; 1496 INOUT struct uio *a_uio; 1497 OUT size_t *a_size; 1498 IN struct ucred *a_cred; 1499 IN struct thread *a_td; 1500 }; 1501 */ 1502 { 1503 struct inode *ip; 1504 u_char *eae, *p; 1505 unsigned easize; 1506 int error, ealen; 1507 1508 ip = VTOI(ap->a_vp); 1509 1510 if (ap->a_vp->v_type == VCHR || ap->a_vp->v_type == VBLK) 1511 return (EOPNOTSUPP); 1512 1513 error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace, 1514 ap->a_cred, ap->a_td, VREAD); 1515 if (error) 1516 return (error); 1517 1518 error = ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td); 1519 if (error) 1520 return (error); 1521 1522 eae = ip->i_ea_area; 1523 easize = ip->i_ea_len; 1524 1525 ealen = ffs_findextattr(eae, easize, ap->a_attrnamespace, ap->a_name, 1526 NULL, &p); 1527 if (ealen >= 0) { 1528 error = 0; 1529 if (ap->a_size != NULL) 1530 *ap->a_size = ealen; 1531 else if (ap->a_uio != NULL) 1532 error = uiomove(p, ealen, ap->a_uio); 1533 } else 1534 error = ENOATTR; 1535 1536 ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td); 1537 return (error); 1538 } 1539 1540 /* 1541 * Vnode operation to retrieve extended attributes on a vnode. 1542 */ 1543 static int 1544 ffs_listextattr(struct vop_listextattr_args *ap) 1545 /* 1546 vop_listextattr { 1547 IN struct vnode *a_vp; 1548 IN int a_attrnamespace; 1549 INOUT struct uio *a_uio; 1550 OUT size_t *a_size; 1551 IN struct ucred *a_cred; 1552 IN struct thread *a_td; 1553 }; 1554 */ 1555 { 1556 struct inode *ip; 1557 struct extattr *eap, *eaend; 1558 int error, ealen; 1559 1560 ip = VTOI(ap->a_vp); 1561 1562 if (ap->a_vp->v_type == VCHR || ap->a_vp->v_type == VBLK) 1563 return (EOPNOTSUPP); 1564 1565 error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace, 1566 ap->a_cred, ap->a_td, VREAD); 1567 if (error) 1568 return (error); 1569 1570 error = ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td); 1571 if (error) 1572 return (error); 1573 1574 error = 0; 1575 if (ap->a_size != NULL) 1576 *ap->a_size = 0; 1577 1578 KASSERT(ALIGNED_TO(ip->i_ea_area, struct extattr), ("unaligned")); 1579 eap = (struct extattr *)ip->i_ea_area; 1580 eaend = (struct extattr *)(ip->i_ea_area + ip->i_ea_len); 1581 for (; error == 0 && eap < eaend; eap = EXTATTR_NEXT(eap)) { 1582 /* make sure this entry is complete */ 1583 if (EXTATTR_NEXT(eap) > eaend) 1584 break; 1585 if (eap->ea_namespace != ap->a_attrnamespace) 1586 continue; 1587 1588 ealen = eap->ea_namelength; 1589 if (ap->a_size != NULL) 1590 *ap->a_size += ealen + 1; 1591 else if (ap->a_uio != NULL) 1592 error = uiomove(&eap->ea_namelength, ealen + 1, 1593 ap->a_uio); 1594 } 1595 1596 ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td); 1597 return (error); 1598 } 1599 1600 /* 1601 * Vnode operation to set a named attribute. 1602 */ 1603 static int 1604 ffs_setextattr(struct vop_setextattr_args *ap) 1605 /* 1606 vop_setextattr { 1607 IN struct vnode *a_vp; 1608 IN int a_attrnamespace; 1609 IN const char *a_name; 1610 INOUT struct uio *a_uio; 1611 IN struct ucred *a_cred; 1612 IN struct thread *a_td; 1613 }; 1614 */ 1615 { 1616 struct inode *ip; 1617 struct fs *fs; 1618 struct extattr *eap; 1619 uint32_t ealength, ul; 1620 ssize_t ealen; 1621 int olen, eapad1, eapad2, error, i, easize; 1622 u_char *eae; 1623 void *tmp; 1624 1625 ip = VTOI(ap->a_vp); 1626 fs = ITOFS(ip); 1627 1628 if (ap->a_vp->v_type == VCHR || ap->a_vp->v_type == VBLK) 1629 return (EOPNOTSUPP); 1630 1631 if (strlen(ap->a_name) == 0) 1632 return (EINVAL); 1633 1634 /* XXX Now unsupported API to delete EAs using NULL uio. */ 1635 if (ap->a_uio == NULL) 1636 return (EOPNOTSUPP); 1637 1638 if (ap->a_vp->v_mount->mnt_flag & MNT_RDONLY) 1639 return (EROFS); 1640 1641 ealen = ap->a_uio->uio_resid; 1642 if (ealen < 0 || ealen > lblktosize(fs, UFS_NXADDR)) 1643 return (EINVAL); 1644 1645 error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace, 1646 ap->a_cred, ap->a_td, VWRITE); 1647 if (error) { 1648 1649 /* 1650 * ffs_lock_ea is not needed there, because the vnode 1651 * must be exclusively locked. 1652 */ 1653 if (ip->i_ea_area != NULL && ip->i_ea_error == 0) 1654 ip->i_ea_error = error; 1655 return (error); 1656 } 1657 1658 error = ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td); 1659 if (error) 1660 return (error); 1661 1662 ealength = sizeof(uint32_t) + 3 + strlen(ap->a_name); 1663 eapad1 = roundup2(ealength, 8) - ealength; 1664 eapad2 = roundup2(ealen, 8) - ealen; 1665 ealength += eapad1 + ealen + eapad2; 1666 1667 /* 1668 * CEM: rewrites of the same size or smaller could be done in-place 1669 * instead. (We don't acquire any fine-grained locks in here either, 1670 * so we could also do bigger writes in-place.) 1671 */ 1672 eae = malloc(ip->i_ea_len + ealength, M_TEMP, M_WAITOK); 1673 bcopy(ip->i_ea_area, eae, ip->i_ea_len); 1674 easize = ip->i_ea_len; 1675 1676 olen = ffs_findextattr(eae, easize, ap->a_attrnamespace, ap->a_name, 1677 &eap, NULL); 1678 if (olen == -1) { 1679 /* new, append at end */ 1680 KASSERT(ALIGNED_TO(eae + easize, struct extattr), 1681 ("unaligned")); 1682 eap = (struct extattr *)(eae + easize); 1683 easize += ealength; 1684 } else { 1685 ul = eap->ea_length; 1686 i = (u_char *)EXTATTR_NEXT(eap) - eae; 1687 if (ul != ealength) { 1688 bcopy(EXTATTR_NEXT(eap), (u_char *)eap + ealength, 1689 easize - i); 1690 easize += (ealength - ul); 1691 } 1692 } 1693 if (easize > lblktosize(fs, UFS_NXADDR)) { 1694 free(eae, M_TEMP); 1695 ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td); 1696 if (ip->i_ea_area != NULL && ip->i_ea_error == 0) 1697 ip->i_ea_error = ENOSPC; 1698 return (ENOSPC); 1699 } 1700 eap->ea_length = ealength; 1701 eap->ea_namespace = ap->a_attrnamespace; 1702 eap->ea_contentpadlen = eapad2; 1703 eap->ea_namelength = strlen(ap->a_name); 1704 memcpy(eap->ea_name, ap->a_name, strlen(ap->a_name)); 1705 bzero(&eap->ea_name[strlen(ap->a_name)], eapad1); 1706 error = uiomove(EXTATTR_CONTENT(eap), ealen, ap->a_uio); 1707 if (error) { 1708 free(eae, M_TEMP); 1709 ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td); 1710 if (ip->i_ea_area != NULL && ip->i_ea_error == 0) 1711 ip->i_ea_error = error; 1712 return (error); 1713 } 1714 bzero((u_char *)EXTATTR_CONTENT(eap) + ealen, eapad2); 1715 1716 tmp = ip->i_ea_area; 1717 ip->i_ea_area = eae; 1718 ip->i_ea_len = easize; 1719 free(tmp, M_TEMP); 1720 error = ffs_close_ea(ap->a_vp, 1, ap->a_cred, ap->a_td); 1721 return (error); 1722 } 1723 1724 /* 1725 * Vnode pointer to File handle 1726 */ 1727 static int 1728 ffs_vptofh(struct vop_vptofh_args *ap) 1729 /* 1730 vop_vptofh { 1731 IN struct vnode *a_vp; 1732 IN struct fid *a_fhp; 1733 }; 1734 */ 1735 { 1736 struct inode *ip; 1737 struct ufid *ufhp; 1738 1739 ip = VTOI(ap->a_vp); 1740 ufhp = (struct ufid *)ap->a_fhp; 1741 ufhp->ufid_len = sizeof(struct ufid); 1742 ufhp->ufid_ino = ip->i_number; 1743 ufhp->ufid_gen = ip->i_gen; 1744 return (0); 1745 } 1746 1747 SYSCTL_DECL(_vfs_ffs); 1748 static int use_buf_pager = 1; 1749 SYSCTL_INT(_vfs_ffs, OID_AUTO, use_buf_pager, CTLFLAG_RWTUN, &use_buf_pager, 0, 1750 "Always use buffer pager instead of bmap"); 1751 1752 static daddr_t 1753 ffs_gbp_getblkno(struct vnode *vp, vm_ooffset_t off) 1754 { 1755 1756 return (lblkno(VFSTOUFS(vp->v_mount)->um_fs, off)); 1757 } 1758 1759 static int 1760 ffs_gbp_getblksz(struct vnode *vp, daddr_t lbn) 1761 { 1762 1763 return (blksize(VFSTOUFS(vp->v_mount)->um_fs, VTOI(vp), lbn)); 1764 } 1765 1766 static int 1767 ffs_getpages(struct vop_getpages_args *ap) 1768 { 1769 struct vnode *vp; 1770 struct ufsmount *um; 1771 1772 vp = ap->a_vp; 1773 um = VFSTOUFS(vp->v_mount); 1774 1775 if (!use_buf_pager && um->um_devvp->v_bufobj.bo_bsize <= PAGE_SIZE) 1776 return (vnode_pager_generic_getpages(vp, ap->a_m, ap->a_count, 1777 ap->a_rbehind, ap->a_rahead, NULL, NULL)); 1778 return (vfs_bio_getpages(vp, ap->a_m, ap->a_count, ap->a_rbehind, 1779 ap->a_rahead, ffs_gbp_getblkno, ffs_gbp_getblksz)); 1780 } 1781 1782 static int 1783 ffs_getpages_async(struct vop_getpages_async_args *ap) 1784 { 1785 struct vnode *vp; 1786 struct ufsmount *um; 1787 int error; 1788 1789 vp = ap->a_vp; 1790 um = VFSTOUFS(vp->v_mount); 1791 1792 if (um->um_devvp->v_bufobj.bo_bsize <= PAGE_SIZE) 1793 return (vnode_pager_generic_getpages(vp, ap->a_m, ap->a_count, 1794 ap->a_rbehind, ap->a_rahead, ap->a_iodone, ap->a_arg)); 1795 1796 error = vfs_bio_getpages(vp, ap->a_m, ap->a_count, ap->a_rbehind, 1797 ap->a_rahead, ffs_gbp_getblkno, ffs_gbp_getblksz); 1798 ap->a_iodone(ap->a_arg, ap->a_m, ap->a_count, error); 1799 1800 return (error); 1801 } 1802 1803