1 /*- 2 * Copyright (c) 2002, 2003 Networks Associates Technology, Inc. 3 * All rights reserved. 4 * 5 * This software was developed for the FreeBSD Project by Marshall 6 * Kirk McKusick and Network Associates Laboratories, the Security 7 * Research Division of Network Associates, Inc. under DARPA/SPAWAR 8 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS 9 * research program 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * Copyright (c) 1982, 1986, 1989, 1993 33 * The Regents of the University of California. All rights reserved. 34 * 35 * Redistribution and use in source and binary forms, with or without 36 * modification, are permitted provided that the following conditions 37 * are met: 38 * 1. Redistributions of source code must retain the above copyright 39 * notice, this list of conditions and the following disclaimer. 40 * 2. Redistributions in binary form must reproduce the above copyright 41 * notice, this list of conditions and the following disclaimer in the 42 * documentation and/or other materials provided with the distribution. 43 * 4. Neither the name of the University nor the names of its contributors 44 * may be used to endorse or promote products derived from this software 45 * without specific prior written permission. 46 * 47 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 48 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 49 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 50 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 51 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 52 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 53 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 54 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 55 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 56 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 57 * SUCH DAMAGE. 58 * 59 * from: @(#)ufs_readwrite.c 8.11 (Berkeley) 5/8/95 60 * from: $FreeBSD: .../ufs/ufs_readwrite.c,v 1.96 2002/08/12 09:22:11 phk ... 61 * @(#)ffs_vnops.c 8.15 (Berkeley) 5/14/95 62 */ 63 64 #include <sys/cdefs.h> 65 __FBSDID("$FreeBSD$"); 66 67 #include <sys/param.h> 68 #include <sys/bio.h> 69 #include <sys/systm.h> 70 #include <sys/buf.h> 71 #include <sys/conf.h> 72 #include <sys/extattr.h> 73 #include <sys/kernel.h> 74 #include <sys/limits.h> 75 #include <sys/malloc.h> 76 #include <sys/mount.h> 77 #include <sys/priv.h> 78 #include <sys/rwlock.h> 79 #include <sys/stat.h> 80 #include <sys/vmmeter.h> 81 #include <sys/vnode.h> 82 83 #include <vm/vm.h> 84 #include <vm/vm_param.h> 85 #include <vm/vm_extern.h> 86 #include <vm/vm_object.h> 87 #include <vm/vm_page.h> 88 #include <vm/vm_pager.h> 89 #include <vm/vnode_pager.h> 90 91 #include <ufs/ufs/extattr.h> 92 #include <ufs/ufs/quota.h> 93 #include <ufs/ufs/inode.h> 94 #include <ufs/ufs/ufs_extern.h> 95 #include <ufs/ufs/ufsmount.h> 96 97 #include <ufs/ffs/fs.h> 98 #include <ufs/ffs/ffs_extern.h> 99 #include "opt_directio.h" 100 #include "opt_ffs.h" 101 102 #ifdef DIRECTIO 103 extern int ffs_rawread(struct vnode *vp, struct uio *uio, int *workdone); 104 #endif 105 static vop_fsync_t ffs_fsync; 106 static vop_lock1_t ffs_lock; 107 static vop_getpages_t ffs_getpages; 108 static vop_read_t ffs_read; 109 static vop_write_t ffs_write; 110 static int ffs_extread(struct vnode *vp, struct uio *uio, int ioflag); 111 static int ffs_extwrite(struct vnode *vp, struct uio *uio, int ioflag, 112 struct ucred *cred); 113 static vop_strategy_t ffsext_strategy; 114 static vop_closeextattr_t ffs_closeextattr; 115 static vop_deleteextattr_t ffs_deleteextattr; 116 static vop_getextattr_t ffs_getextattr; 117 static vop_listextattr_t ffs_listextattr; 118 static vop_openextattr_t ffs_openextattr; 119 static vop_setextattr_t ffs_setextattr; 120 static vop_vptofh_t ffs_vptofh; 121 122 123 /* Global vfs data structures for ufs. */ 124 struct vop_vector ffs_vnodeops1 = { 125 .vop_default = &ufs_vnodeops, 126 .vop_fsync = ffs_fsync, 127 .vop_getpages = ffs_getpages, 128 .vop_lock1 = ffs_lock, 129 .vop_read = ffs_read, 130 .vop_reallocblks = ffs_reallocblks, 131 .vop_write = ffs_write, 132 .vop_vptofh = ffs_vptofh, 133 }; 134 135 struct vop_vector ffs_fifoops1 = { 136 .vop_default = &ufs_fifoops, 137 .vop_fsync = ffs_fsync, 138 .vop_reallocblks = ffs_reallocblks, /* XXX: really ??? */ 139 .vop_vptofh = ffs_vptofh, 140 }; 141 142 /* Global vfs data structures for ufs. */ 143 struct vop_vector ffs_vnodeops2 = { 144 .vop_default = &ufs_vnodeops, 145 .vop_fsync = ffs_fsync, 146 .vop_getpages = ffs_getpages, 147 .vop_lock1 = ffs_lock, 148 .vop_read = ffs_read, 149 .vop_reallocblks = ffs_reallocblks, 150 .vop_write = ffs_write, 151 .vop_closeextattr = ffs_closeextattr, 152 .vop_deleteextattr = ffs_deleteextattr, 153 .vop_getextattr = ffs_getextattr, 154 .vop_listextattr = ffs_listextattr, 155 .vop_openextattr = ffs_openextattr, 156 .vop_setextattr = ffs_setextattr, 157 .vop_vptofh = ffs_vptofh, 158 }; 159 160 struct vop_vector ffs_fifoops2 = { 161 .vop_default = &ufs_fifoops, 162 .vop_fsync = ffs_fsync, 163 .vop_lock1 = ffs_lock, 164 .vop_reallocblks = ffs_reallocblks, 165 .vop_strategy = ffsext_strategy, 166 .vop_closeextattr = ffs_closeextattr, 167 .vop_deleteextattr = ffs_deleteextattr, 168 .vop_getextattr = ffs_getextattr, 169 .vop_listextattr = ffs_listextattr, 170 .vop_openextattr = ffs_openextattr, 171 .vop_setextattr = ffs_setextattr, 172 .vop_vptofh = ffs_vptofh, 173 }; 174 175 /* 176 * Synch an open file. 177 */ 178 /* ARGSUSED */ 179 static int 180 ffs_fsync(struct vop_fsync_args *ap) 181 { 182 struct vnode *vp; 183 struct bufobj *bo; 184 int error; 185 186 vp = ap->a_vp; 187 bo = &vp->v_bufobj; 188 retry: 189 error = ffs_syncvnode(vp, ap->a_waitfor, 0); 190 if (error) 191 return (error); 192 if (ap->a_waitfor == MNT_WAIT && DOINGSOFTDEP(vp)) { 193 error = softdep_fsync(vp); 194 if (error) 195 return (error); 196 197 /* 198 * The softdep_fsync() function may drop vp lock, 199 * allowing for dirty buffers to reappear on the 200 * bo_dirty list. Recheck and resync as needed. 201 */ 202 BO_LOCK(bo); 203 if (vp->v_type == VREG && (bo->bo_numoutput > 0 || 204 bo->bo_dirty.bv_cnt > 0)) { 205 BO_UNLOCK(bo); 206 goto retry; 207 } 208 BO_UNLOCK(bo); 209 } 210 return (0); 211 } 212 213 int 214 ffs_syncvnode(struct vnode *vp, int waitfor, int flags) 215 { 216 struct inode *ip; 217 struct bufobj *bo; 218 struct buf *bp; 219 struct buf *nbp; 220 ufs_lbn_t lbn; 221 int error, wait, passes; 222 223 ip = VTOI(vp); 224 ip->i_flag &= ~IN_NEEDSYNC; 225 bo = &vp->v_bufobj; 226 227 /* 228 * When doing MNT_WAIT we must first flush all dependencies 229 * on the inode. 230 */ 231 if (DOINGSOFTDEP(vp) && waitfor == MNT_WAIT && 232 (error = softdep_sync_metadata(vp)) != 0) 233 return (error); 234 235 /* 236 * Flush all dirty buffers associated with a vnode. 237 */ 238 error = 0; 239 passes = 0; 240 wait = 0; /* Always do an async pass first. */ 241 lbn = lblkno(ip->i_fs, (ip->i_size + ip->i_fs->fs_bsize - 1)); 242 BO_LOCK(bo); 243 loop: 244 TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) 245 bp->b_vflags &= ~BV_SCANNED; 246 TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) { 247 /* 248 * Reasons to skip this buffer: it has already been considered 249 * on this pass, the buffer has dependencies that will cause 250 * it to be redirtied and it has not already been deferred, 251 * or it is already being written. 252 */ 253 if ((bp->b_vflags & BV_SCANNED) != 0) 254 continue; 255 bp->b_vflags |= BV_SCANNED; 256 /* Flush indirects in order. */ 257 if (waitfor == MNT_WAIT && bp->b_lblkno <= -NDADDR && 258 lbn_level(bp->b_lblkno) >= passes) 259 continue; 260 if (bp->b_lblkno > lbn) 261 panic("ffs_syncvnode: syncing truncated data."); 262 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL)) 263 continue; 264 BO_UNLOCK(bo); 265 if ((bp->b_flags & B_DELWRI) == 0) 266 panic("ffs_fsync: not dirty"); 267 /* 268 * Check for dependencies and potentially complete them. 269 */ 270 if (!LIST_EMPTY(&bp->b_dep) && 271 (error = softdep_sync_buf(vp, bp, 272 wait ? MNT_WAIT : MNT_NOWAIT)) != 0) { 273 /* I/O error. */ 274 if (error != EBUSY) { 275 BUF_UNLOCK(bp); 276 return (error); 277 } 278 /* If we deferred once, don't defer again. */ 279 if ((bp->b_flags & B_DEFERRED) == 0) { 280 bp->b_flags |= B_DEFERRED; 281 BUF_UNLOCK(bp); 282 goto next; 283 } 284 } 285 if (wait) { 286 bremfree(bp); 287 if ((error = bwrite(bp)) != 0) 288 return (error); 289 } else if ((bp->b_flags & B_CLUSTEROK)) { 290 (void) vfs_bio_awrite(bp); 291 } else { 292 bremfree(bp); 293 (void) bawrite(bp); 294 } 295 next: 296 /* 297 * Since we may have slept during the I/O, we need 298 * to start from a known point. 299 */ 300 BO_LOCK(bo); 301 nbp = TAILQ_FIRST(&bo->bo_dirty.bv_hd); 302 } 303 if (waitfor != MNT_WAIT) { 304 BO_UNLOCK(bo); 305 if ((flags & NO_INO_UPDT) != 0) 306 return (0); 307 else 308 return (ffs_update(vp, 0)); 309 } 310 /* Drain IO to see if we're done. */ 311 bufobj_wwait(bo, 0, 0); 312 /* 313 * Block devices associated with filesystems may have new I/O 314 * requests posted for them even if the vnode is locked, so no 315 * amount of trying will get them clean. We make several passes 316 * as a best effort. 317 * 318 * Regular files may need multiple passes to flush all dependency 319 * work as it is possible that we must write once per indirect 320 * level, once for the leaf, and once for the inode and each of 321 * these will be done with one sync and one async pass. 322 */ 323 if (bo->bo_dirty.bv_cnt > 0) { 324 /* Write the inode after sync passes to flush deps. */ 325 if (wait && DOINGSOFTDEP(vp) && (flags & NO_INO_UPDT) == 0) { 326 BO_UNLOCK(bo); 327 ffs_update(vp, 1); 328 BO_LOCK(bo); 329 } 330 /* switch between sync/async. */ 331 wait = !wait; 332 if (wait == 1 || ++passes < NIADDR + 2) 333 goto loop; 334 #ifdef INVARIANTS 335 if (!vn_isdisk(vp, NULL)) 336 vprint("ffs_fsync: dirty", vp); 337 #endif 338 } 339 BO_UNLOCK(bo); 340 error = 0; 341 if ((flags & NO_INO_UPDT) == 0) 342 error = ffs_update(vp, 1); 343 if (DOINGSUJ(vp)) 344 softdep_journal_fsync(VTOI(vp)); 345 return (error); 346 } 347 348 static int 349 ffs_lock(ap) 350 struct vop_lock1_args /* { 351 struct vnode *a_vp; 352 int a_flags; 353 struct thread *a_td; 354 char *file; 355 int line; 356 } */ *ap; 357 { 358 #ifndef NO_FFS_SNAPSHOT 359 struct vnode *vp; 360 int flags; 361 struct lock *lkp; 362 int result; 363 364 switch (ap->a_flags & LK_TYPE_MASK) { 365 case LK_SHARED: 366 case LK_UPGRADE: 367 case LK_EXCLUSIVE: 368 vp = ap->a_vp; 369 flags = ap->a_flags; 370 for (;;) { 371 #ifdef DEBUG_VFS_LOCKS 372 KASSERT(vp->v_holdcnt != 0, 373 ("ffs_lock %p: zero hold count", vp)); 374 #endif 375 lkp = vp->v_vnlock; 376 result = _lockmgr_args(lkp, flags, VI_MTX(vp), 377 LK_WMESG_DEFAULT, LK_PRIO_DEFAULT, LK_TIMO_DEFAULT, 378 ap->a_file, ap->a_line); 379 if (lkp == vp->v_vnlock || result != 0) 380 break; 381 /* 382 * Apparent success, except that the vnode 383 * mutated between snapshot file vnode and 384 * regular file vnode while this process 385 * slept. The lock currently held is not the 386 * right lock. Release it, and try to get the 387 * new lock. 388 */ 389 (void) _lockmgr_args(lkp, LK_RELEASE, NULL, 390 LK_WMESG_DEFAULT, LK_PRIO_DEFAULT, LK_TIMO_DEFAULT, 391 ap->a_file, ap->a_line); 392 if ((flags & (LK_INTERLOCK | LK_NOWAIT)) == 393 (LK_INTERLOCK | LK_NOWAIT)) 394 return (EBUSY); 395 if ((flags & LK_TYPE_MASK) == LK_UPGRADE) 396 flags = (flags & ~LK_TYPE_MASK) | LK_EXCLUSIVE; 397 flags &= ~LK_INTERLOCK; 398 } 399 break; 400 default: 401 result = VOP_LOCK1_APV(&ufs_vnodeops, ap); 402 } 403 return (result); 404 #else 405 return (VOP_LOCK1_APV(&ufs_vnodeops, ap)); 406 #endif 407 } 408 409 /* 410 * Vnode op for reading. 411 */ 412 static int 413 ffs_read(ap) 414 struct vop_read_args /* { 415 struct vnode *a_vp; 416 struct uio *a_uio; 417 int a_ioflag; 418 struct ucred *a_cred; 419 } */ *ap; 420 { 421 struct vnode *vp; 422 struct inode *ip; 423 struct uio *uio; 424 struct fs *fs; 425 struct buf *bp; 426 ufs_lbn_t lbn, nextlbn; 427 off_t bytesinfile; 428 long size, xfersize, blkoffset; 429 ssize_t orig_resid; 430 int error; 431 int seqcount; 432 int ioflag; 433 434 vp = ap->a_vp; 435 uio = ap->a_uio; 436 ioflag = ap->a_ioflag; 437 if (ap->a_ioflag & IO_EXT) 438 #ifdef notyet 439 return (ffs_extread(vp, uio, ioflag)); 440 #else 441 panic("ffs_read+IO_EXT"); 442 #endif 443 #ifdef DIRECTIO 444 if ((ioflag & IO_DIRECT) != 0) { 445 int workdone; 446 447 error = ffs_rawread(vp, uio, &workdone); 448 if (error != 0 || workdone != 0) 449 return error; 450 } 451 #endif 452 453 seqcount = ap->a_ioflag >> IO_SEQSHIFT; 454 ip = VTOI(vp); 455 456 #ifdef INVARIANTS 457 if (uio->uio_rw != UIO_READ) 458 panic("ffs_read: mode"); 459 460 if (vp->v_type == VLNK) { 461 if ((int)ip->i_size < vp->v_mount->mnt_maxsymlinklen) 462 panic("ffs_read: short symlink"); 463 } else if (vp->v_type != VREG && vp->v_type != VDIR) 464 panic("ffs_read: type %d", vp->v_type); 465 #endif 466 orig_resid = uio->uio_resid; 467 KASSERT(orig_resid >= 0, ("ffs_read: uio->uio_resid < 0")); 468 if (orig_resid == 0) 469 return (0); 470 KASSERT(uio->uio_offset >= 0, ("ffs_read: uio->uio_offset < 0")); 471 fs = ip->i_fs; 472 if (uio->uio_offset < ip->i_size && 473 uio->uio_offset >= fs->fs_maxfilesize) 474 return (EOVERFLOW); 475 476 for (error = 0, bp = NULL; uio->uio_resid > 0; bp = NULL) { 477 if ((bytesinfile = ip->i_size - uio->uio_offset) <= 0) 478 break; 479 lbn = lblkno(fs, uio->uio_offset); 480 nextlbn = lbn + 1; 481 482 /* 483 * size of buffer. The buffer representing the 484 * end of the file is rounded up to the size of 485 * the block type ( fragment or full block, 486 * depending ). 487 */ 488 size = blksize(fs, ip, lbn); 489 blkoffset = blkoff(fs, uio->uio_offset); 490 491 /* 492 * The amount we want to transfer in this iteration is 493 * one FS block less the amount of the data before 494 * our startpoint (duh!) 495 */ 496 xfersize = fs->fs_bsize - blkoffset; 497 498 /* 499 * But if we actually want less than the block, 500 * or the file doesn't have a whole block more of data, 501 * then use the lesser number. 502 */ 503 if (uio->uio_resid < xfersize) 504 xfersize = uio->uio_resid; 505 if (bytesinfile < xfersize) 506 xfersize = bytesinfile; 507 508 if (lblktosize(fs, nextlbn) >= ip->i_size) { 509 /* 510 * Don't do readahead if this is the end of the file. 511 */ 512 error = bread_gb(vp, lbn, size, NOCRED, 513 GB_UNMAPPED, &bp); 514 } else if ((vp->v_mount->mnt_flag & MNT_NOCLUSTERR) == 0) { 515 /* 516 * Otherwise if we are allowed to cluster, 517 * grab as much as we can. 518 * 519 * XXX This may not be a win if we are not 520 * doing sequential access. 521 */ 522 error = cluster_read(vp, ip->i_size, lbn, 523 size, NOCRED, blkoffset + uio->uio_resid, 524 seqcount, GB_UNMAPPED, &bp); 525 } else if (seqcount > 1) { 526 /* 527 * If we are NOT allowed to cluster, then 528 * if we appear to be acting sequentially, 529 * fire off a request for a readahead 530 * as well as a read. Note that the 4th and 5th 531 * arguments point to arrays of the size specified in 532 * the 6th argument. 533 */ 534 u_int nextsize = blksize(fs, ip, nextlbn); 535 error = breadn_flags(vp, lbn, size, &nextlbn, 536 &nextsize, 1, NOCRED, GB_UNMAPPED, &bp); 537 } else { 538 /* 539 * Failing all of the above, just read what the 540 * user asked for. Interestingly, the same as 541 * the first option above. 542 */ 543 error = bread_gb(vp, lbn, size, NOCRED, 544 GB_UNMAPPED, &bp); 545 } 546 if (error) { 547 brelse(bp); 548 bp = NULL; 549 break; 550 } 551 552 /* 553 * If IO_DIRECT then set B_DIRECT for the buffer. This 554 * will cause us to attempt to release the buffer later on 555 * and will cause the buffer cache to attempt to free the 556 * underlying pages. 557 */ 558 if (ioflag & IO_DIRECT) 559 bp->b_flags |= B_DIRECT; 560 561 /* 562 * We should only get non-zero b_resid when an I/O error 563 * has occurred, which should cause us to break above. 564 * However, if the short read did not cause an error, 565 * then we want to ensure that we do not uiomove bad 566 * or uninitialized data. 567 */ 568 size -= bp->b_resid; 569 if (size < xfersize) { 570 if (size == 0) 571 break; 572 xfersize = size; 573 } 574 575 if ((bp->b_flags & B_UNMAPPED) == 0) { 576 error = vn_io_fault_uiomove((char *)bp->b_data + 577 blkoffset, (int)xfersize, uio); 578 } else { 579 error = vn_io_fault_pgmove(bp->b_pages, blkoffset, 580 (int)xfersize, uio); 581 } 582 if (error) 583 break; 584 585 if ((ioflag & (IO_VMIO|IO_DIRECT)) && 586 (LIST_EMPTY(&bp->b_dep))) { 587 /* 588 * If there are no dependencies, and it's VMIO, 589 * then we don't need the buf, mark it available 590 * for freeing. For non-direct VMIO reads, the VM 591 * has the data. 592 */ 593 bp->b_flags |= B_RELBUF; 594 brelse(bp); 595 } else { 596 /* 597 * Otherwise let whoever 598 * made the request take care of 599 * freeing it. We just queue 600 * it onto another list. 601 */ 602 bqrelse(bp); 603 } 604 } 605 606 /* 607 * This can only happen in the case of an error 608 * because the loop above resets bp to NULL on each iteration 609 * and on normal completion has not set a new value into it. 610 * so it must have come from a 'break' statement 611 */ 612 if (bp != NULL) { 613 if ((ioflag & (IO_VMIO|IO_DIRECT)) && 614 (LIST_EMPTY(&bp->b_dep))) { 615 bp->b_flags |= B_RELBUF; 616 brelse(bp); 617 } else { 618 bqrelse(bp); 619 } 620 } 621 622 if ((error == 0 || uio->uio_resid != orig_resid) && 623 (vp->v_mount->mnt_flag & MNT_NOATIME) == 0 && 624 (ip->i_flag & IN_ACCESS) == 0) { 625 VI_LOCK(vp); 626 ip->i_flag |= IN_ACCESS; 627 VI_UNLOCK(vp); 628 } 629 return (error); 630 } 631 632 /* 633 * Vnode op for writing. 634 */ 635 static int 636 ffs_write(ap) 637 struct vop_write_args /* { 638 struct vnode *a_vp; 639 struct uio *a_uio; 640 int a_ioflag; 641 struct ucred *a_cred; 642 } */ *ap; 643 { 644 struct vnode *vp; 645 struct uio *uio; 646 struct inode *ip; 647 struct fs *fs; 648 struct buf *bp; 649 ufs_lbn_t lbn; 650 off_t osize; 651 ssize_t resid; 652 int seqcount; 653 int blkoffset, error, flags, ioflag, size, xfersize; 654 655 vp = ap->a_vp; 656 uio = ap->a_uio; 657 ioflag = ap->a_ioflag; 658 if (ap->a_ioflag & IO_EXT) 659 #ifdef notyet 660 return (ffs_extwrite(vp, uio, ioflag, ap->a_cred)); 661 #else 662 panic("ffs_write+IO_EXT"); 663 #endif 664 665 seqcount = ap->a_ioflag >> IO_SEQSHIFT; 666 ip = VTOI(vp); 667 668 #ifdef INVARIANTS 669 if (uio->uio_rw != UIO_WRITE) 670 panic("ffs_write: mode"); 671 #endif 672 673 switch (vp->v_type) { 674 case VREG: 675 if (ioflag & IO_APPEND) 676 uio->uio_offset = ip->i_size; 677 if ((ip->i_flags & APPEND) && uio->uio_offset != ip->i_size) 678 return (EPERM); 679 /* FALLTHROUGH */ 680 case VLNK: 681 break; 682 case VDIR: 683 panic("ffs_write: dir write"); 684 break; 685 default: 686 panic("ffs_write: type %p %d (%d,%d)", vp, (int)vp->v_type, 687 (int)uio->uio_offset, 688 (int)uio->uio_resid 689 ); 690 } 691 692 KASSERT(uio->uio_resid >= 0, ("ffs_write: uio->uio_resid < 0")); 693 KASSERT(uio->uio_offset >= 0, ("ffs_write: uio->uio_offset < 0")); 694 fs = ip->i_fs; 695 if ((uoff_t)uio->uio_offset + uio->uio_resid > fs->fs_maxfilesize) 696 return (EFBIG); 697 /* 698 * Maybe this should be above the vnode op call, but so long as 699 * file servers have no limits, I don't think it matters. 700 */ 701 if (vn_rlimit_fsize(vp, uio, uio->uio_td)) 702 return (EFBIG); 703 704 resid = uio->uio_resid; 705 osize = ip->i_size; 706 if (seqcount > BA_SEQMAX) 707 flags = BA_SEQMAX << BA_SEQSHIFT; 708 else 709 flags = seqcount << BA_SEQSHIFT; 710 if ((ioflag & IO_SYNC) && !DOINGASYNC(vp)) 711 flags |= IO_SYNC; 712 flags |= BA_UNMAPPED; 713 714 for (error = 0; uio->uio_resid > 0;) { 715 lbn = lblkno(fs, uio->uio_offset); 716 blkoffset = blkoff(fs, uio->uio_offset); 717 xfersize = fs->fs_bsize - blkoffset; 718 if (uio->uio_resid < xfersize) 719 xfersize = uio->uio_resid; 720 if (uio->uio_offset + xfersize > ip->i_size) 721 vnode_pager_setsize(vp, uio->uio_offset + xfersize); 722 723 /* 724 * We must perform a read-before-write if the transfer size 725 * does not cover the entire buffer. 726 */ 727 if (fs->fs_bsize > xfersize) 728 flags |= BA_CLRBUF; 729 else 730 flags &= ~BA_CLRBUF; 731 /* XXX is uio->uio_offset the right thing here? */ 732 error = UFS_BALLOC(vp, uio->uio_offset, xfersize, 733 ap->a_cred, flags, &bp); 734 if (error != 0) { 735 vnode_pager_setsize(vp, ip->i_size); 736 break; 737 } 738 if (ioflag & IO_DIRECT) 739 bp->b_flags |= B_DIRECT; 740 if ((ioflag & (IO_SYNC|IO_INVAL)) == (IO_SYNC|IO_INVAL)) 741 bp->b_flags |= B_NOCACHE; 742 743 if (uio->uio_offset + xfersize > ip->i_size) { 744 ip->i_size = uio->uio_offset + xfersize; 745 DIP_SET(ip, i_size, ip->i_size); 746 } 747 748 size = blksize(fs, ip, lbn) - bp->b_resid; 749 if (size < xfersize) 750 xfersize = size; 751 752 if ((bp->b_flags & B_UNMAPPED) == 0) { 753 error = vn_io_fault_uiomove((char *)bp->b_data + 754 blkoffset, (int)xfersize, uio); 755 } else { 756 error = vn_io_fault_pgmove(bp->b_pages, blkoffset, 757 (int)xfersize, uio); 758 } 759 /* 760 * If the buffer is not already filled and we encounter an 761 * error while trying to fill it, we have to clear out any 762 * garbage data from the pages instantiated for the buffer. 763 * If we do not, a failed uiomove() during a write can leave 764 * the prior contents of the pages exposed to a userland mmap. 765 * 766 * Note that we need only clear buffers with a transfer size 767 * equal to the block size because buffers with a shorter 768 * transfer size were cleared above by the call to UFS_BALLOC() 769 * with the BA_CLRBUF flag set. 770 * 771 * If the source region for uiomove identically mmaps the 772 * buffer, uiomove() performed the NOP copy, and the buffer 773 * content remains valid because the page fault handler 774 * validated the pages. 775 */ 776 if (error != 0 && (bp->b_flags & B_CACHE) == 0 && 777 fs->fs_bsize == xfersize) 778 vfs_bio_clrbuf(bp); 779 if ((ioflag & (IO_VMIO|IO_DIRECT)) && 780 (LIST_EMPTY(&bp->b_dep))) { 781 bp->b_flags |= B_RELBUF; 782 } 783 784 /* 785 * If IO_SYNC each buffer is written synchronously. Otherwise 786 * if we have a severe page deficiency write the buffer 787 * asynchronously. Otherwise try to cluster, and if that 788 * doesn't do it then either do an async write (if O_DIRECT), 789 * or a delayed write (if not). 790 */ 791 if (ioflag & IO_SYNC) { 792 (void)bwrite(bp); 793 } else if (vm_page_count_severe() || 794 buf_dirty_count_severe() || 795 (ioflag & IO_ASYNC)) { 796 bp->b_flags |= B_CLUSTEROK; 797 bawrite(bp); 798 } else if (xfersize + blkoffset == fs->fs_bsize) { 799 if ((vp->v_mount->mnt_flag & MNT_NOCLUSTERW) == 0) { 800 bp->b_flags |= B_CLUSTEROK; 801 cluster_write(vp, bp, ip->i_size, seqcount, 802 GB_UNMAPPED); 803 } else { 804 bawrite(bp); 805 } 806 } else if (ioflag & IO_DIRECT) { 807 bp->b_flags |= B_CLUSTEROK; 808 bawrite(bp); 809 } else { 810 bp->b_flags |= B_CLUSTEROK; 811 bdwrite(bp); 812 } 813 if (error || xfersize == 0) 814 break; 815 ip->i_flag |= IN_CHANGE | IN_UPDATE; 816 } 817 /* 818 * If we successfully wrote any data, and we are not the superuser 819 * we clear the setuid and setgid bits as a precaution against 820 * tampering. 821 */ 822 if ((ip->i_mode & (ISUID | ISGID)) && resid > uio->uio_resid && 823 ap->a_cred) { 824 if (priv_check_cred(ap->a_cred, PRIV_VFS_RETAINSUGID, 0)) { 825 ip->i_mode &= ~(ISUID | ISGID); 826 DIP_SET(ip, i_mode, ip->i_mode); 827 } 828 } 829 if (error) { 830 if (ioflag & IO_UNIT) { 831 (void)ffs_truncate(vp, osize, 832 IO_NORMAL | (ioflag & IO_SYNC), ap->a_cred); 833 uio->uio_offset -= resid - uio->uio_resid; 834 uio->uio_resid = resid; 835 } 836 } else if (resid > uio->uio_resid && (ioflag & IO_SYNC)) 837 error = ffs_update(vp, 1); 838 return (error); 839 } 840 841 /* 842 * get page routine 843 */ 844 static int 845 ffs_getpages(ap) 846 struct vop_getpages_args *ap; 847 { 848 int i; 849 vm_page_t mreq; 850 int pcount; 851 852 pcount = round_page(ap->a_count) / PAGE_SIZE; 853 mreq = ap->a_m[ap->a_reqpage]; 854 855 /* 856 * if ANY DEV_BSIZE blocks are valid on a large filesystem block, 857 * then the entire page is valid. Since the page may be mapped, 858 * user programs might reference data beyond the actual end of file 859 * occuring within the page. We have to zero that data. 860 */ 861 VM_OBJECT_WLOCK(mreq->object); 862 if (mreq->valid) { 863 if (mreq->valid != VM_PAGE_BITS_ALL) 864 vm_page_zero_invalid(mreq, TRUE); 865 for (i = 0; i < pcount; i++) { 866 if (i != ap->a_reqpage) { 867 vm_page_lock(ap->a_m[i]); 868 vm_page_free(ap->a_m[i]); 869 vm_page_unlock(ap->a_m[i]); 870 } 871 } 872 VM_OBJECT_WUNLOCK(mreq->object); 873 return VM_PAGER_OK; 874 } 875 VM_OBJECT_WUNLOCK(mreq->object); 876 877 return vnode_pager_generic_getpages(ap->a_vp, ap->a_m, 878 ap->a_count, 879 ap->a_reqpage); 880 } 881 882 883 /* 884 * Extended attribute area reading. 885 */ 886 static int 887 ffs_extread(struct vnode *vp, struct uio *uio, int ioflag) 888 { 889 struct inode *ip; 890 struct ufs2_dinode *dp; 891 struct fs *fs; 892 struct buf *bp; 893 ufs_lbn_t lbn, nextlbn; 894 off_t bytesinfile; 895 long size, xfersize, blkoffset; 896 ssize_t orig_resid; 897 int error; 898 899 ip = VTOI(vp); 900 fs = ip->i_fs; 901 dp = ip->i_din2; 902 903 #ifdef INVARIANTS 904 if (uio->uio_rw != UIO_READ || fs->fs_magic != FS_UFS2_MAGIC) 905 panic("ffs_extread: mode"); 906 907 #endif 908 orig_resid = uio->uio_resid; 909 KASSERT(orig_resid >= 0, ("ffs_extread: uio->uio_resid < 0")); 910 if (orig_resid == 0) 911 return (0); 912 KASSERT(uio->uio_offset >= 0, ("ffs_extread: uio->uio_offset < 0")); 913 914 for (error = 0, bp = NULL; uio->uio_resid > 0; bp = NULL) { 915 if ((bytesinfile = dp->di_extsize - uio->uio_offset) <= 0) 916 break; 917 lbn = lblkno(fs, uio->uio_offset); 918 nextlbn = lbn + 1; 919 920 /* 921 * size of buffer. The buffer representing the 922 * end of the file is rounded up to the size of 923 * the block type ( fragment or full block, 924 * depending ). 925 */ 926 size = sblksize(fs, dp->di_extsize, lbn); 927 blkoffset = blkoff(fs, uio->uio_offset); 928 929 /* 930 * The amount we want to transfer in this iteration is 931 * one FS block less the amount of the data before 932 * our startpoint (duh!) 933 */ 934 xfersize = fs->fs_bsize - blkoffset; 935 936 /* 937 * But if we actually want less than the block, 938 * or the file doesn't have a whole block more of data, 939 * then use the lesser number. 940 */ 941 if (uio->uio_resid < xfersize) 942 xfersize = uio->uio_resid; 943 if (bytesinfile < xfersize) 944 xfersize = bytesinfile; 945 946 if (lblktosize(fs, nextlbn) >= dp->di_extsize) { 947 /* 948 * Don't do readahead if this is the end of the info. 949 */ 950 error = bread(vp, -1 - lbn, size, NOCRED, &bp); 951 } else { 952 /* 953 * If we have a second block, then 954 * fire off a request for a readahead 955 * as well as a read. Note that the 4th and 5th 956 * arguments point to arrays of the size specified in 957 * the 6th argument. 958 */ 959 u_int nextsize = sblksize(fs, dp->di_extsize, nextlbn); 960 961 nextlbn = -1 - nextlbn; 962 error = breadn(vp, -1 - lbn, 963 size, &nextlbn, &nextsize, 1, NOCRED, &bp); 964 } 965 if (error) { 966 brelse(bp); 967 bp = NULL; 968 break; 969 } 970 971 /* 972 * If IO_DIRECT then set B_DIRECT for the buffer. This 973 * will cause us to attempt to release the buffer later on 974 * and will cause the buffer cache to attempt to free the 975 * underlying pages. 976 */ 977 if (ioflag & IO_DIRECT) 978 bp->b_flags |= B_DIRECT; 979 980 /* 981 * We should only get non-zero b_resid when an I/O error 982 * has occurred, which should cause us to break above. 983 * However, if the short read did not cause an error, 984 * then we want to ensure that we do not uiomove bad 985 * or uninitialized data. 986 */ 987 size -= bp->b_resid; 988 if (size < xfersize) { 989 if (size == 0) 990 break; 991 xfersize = size; 992 } 993 994 error = uiomove((char *)bp->b_data + blkoffset, 995 (int)xfersize, uio); 996 if (error) 997 break; 998 999 if ((ioflag & (IO_VMIO|IO_DIRECT)) && 1000 (LIST_EMPTY(&bp->b_dep))) { 1001 /* 1002 * If there are no dependencies, and it's VMIO, 1003 * then we don't need the buf, mark it available 1004 * for freeing. For non-direct VMIO reads, the VM 1005 * has the data. 1006 */ 1007 bp->b_flags |= B_RELBUF; 1008 brelse(bp); 1009 } else { 1010 /* 1011 * Otherwise let whoever 1012 * made the request take care of 1013 * freeing it. We just queue 1014 * it onto another list. 1015 */ 1016 bqrelse(bp); 1017 } 1018 } 1019 1020 /* 1021 * This can only happen in the case of an error 1022 * because the loop above resets bp to NULL on each iteration 1023 * and on normal completion has not set a new value into it. 1024 * so it must have come from a 'break' statement 1025 */ 1026 if (bp != NULL) { 1027 if ((ioflag & (IO_VMIO|IO_DIRECT)) && 1028 (LIST_EMPTY(&bp->b_dep))) { 1029 bp->b_flags |= B_RELBUF; 1030 brelse(bp); 1031 } else { 1032 bqrelse(bp); 1033 } 1034 } 1035 return (error); 1036 } 1037 1038 /* 1039 * Extended attribute area writing. 1040 */ 1041 static int 1042 ffs_extwrite(struct vnode *vp, struct uio *uio, int ioflag, struct ucred *ucred) 1043 { 1044 struct inode *ip; 1045 struct ufs2_dinode *dp; 1046 struct fs *fs; 1047 struct buf *bp; 1048 ufs_lbn_t lbn; 1049 off_t osize; 1050 ssize_t resid; 1051 int blkoffset, error, flags, size, xfersize; 1052 1053 ip = VTOI(vp); 1054 fs = ip->i_fs; 1055 dp = ip->i_din2; 1056 1057 #ifdef INVARIANTS 1058 if (uio->uio_rw != UIO_WRITE || fs->fs_magic != FS_UFS2_MAGIC) 1059 panic("ffs_extwrite: mode"); 1060 #endif 1061 1062 if (ioflag & IO_APPEND) 1063 uio->uio_offset = dp->di_extsize; 1064 KASSERT(uio->uio_offset >= 0, ("ffs_extwrite: uio->uio_offset < 0")); 1065 KASSERT(uio->uio_resid >= 0, ("ffs_extwrite: uio->uio_resid < 0")); 1066 if ((uoff_t)uio->uio_offset + uio->uio_resid > NXADDR * fs->fs_bsize) 1067 return (EFBIG); 1068 1069 resid = uio->uio_resid; 1070 osize = dp->di_extsize; 1071 flags = IO_EXT; 1072 if ((ioflag & IO_SYNC) && !DOINGASYNC(vp)) 1073 flags |= IO_SYNC; 1074 1075 for (error = 0; uio->uio_resid > 0;) { 1076 lbn = lblkno(fs, uio->uio_offset); 1077 blkoffset = blkoff(fs, uio->uio_offset); 1078 xfersize = fs->fs_bsize - blkoffset; 1079 if (uio->uio_resid < xfersize) 1080 xfersize = uio->uio_resid; 1081 1082 /* 1083 * We must perform a read-before-write if the transfer size 1084 * does not cover the entire buffer. 1085 */ 1086 if (fs->fs_bsize > xfersize) 1087 flags |= BA_CLRBUF; 1088 else 1089 flags &= ~BA_CLRBUF; 1090 error = UFS_BALLOC(vp, uio->uio_offset, xfersize, 1091 ucred, flags, &bp); 1092 if (error != 0) 1093 break; 1094 /* 1095 * If the buffer is not valid we have to clear out any 1096 * garbage data from the pages instantiated for the buffer. 1097 * If we do not, a failed uiomove() during a write can leave 1098 * the prior contents of the pages exposed to a userland 1099 * mmap(). XXX deal with uiomove() errors a better way. 1100 */ 1101 if ((bp->b_flags & B_CACHE) == 0 && fs->fs_bsize <= xfersize) 1102 vfs_bio_clrbuf(bp); 1103 if (ioflag & IO_DIRECT) 1104 bp->b_flags |= B_DIRECT; 1105 1106 if (uio->uio_offset + xfersize > dp->di_extsize) 1107 dp->di_extsize = uio->uio_offset + xfersize; 1108 1109 size = sblksize(fs, dp->di_extsize, lbn) - bp->b_resid; 1110 if (size < xfersize) 1111 xfersize = size; 1112 1113 error = 1114 uiomove((char *)bp->b_data + blkoffset, (int)xfersize, uio); 1115 if ((ioflag & (IO_VMIO|IO_DIRECT)) && 1116 (LIST_EMPTY(&bp->b_dep))) { 1117 bp->b_flags |= B_RELBUF; 1118 } 1119 1120 /* 1121 * If IO_SYNC each buffer is written synchronously. Otherwise 1122 * if we have a severe page deficiency write the buffer 1123 * asynchronously. Otherwise try to cluster, and if that 1124 * doesn't do it then either do an async write (if O_DIRECT), 1125 * or a delayed write (if not). 1126 */ 1127 if (ioflag & IO_SYNC) { 1128 (void)bwrite(bp); 1129 } else if (vm_page_count_severe() || 1130 buf_dirty_count_severe() || 1131 xfersize + blkoffset == fs->fs_bsize || 1132 (ioflag & (IO_ASYNC | IO_DIRECT))) 1133 bawrite(bp); 1134 else 1135 bdwrite(bp); 1136 if (error || xfersize == 0) 1137 break; 1138 ip->i_flag |= IN_CHANGE; 1139 } 1140 /* 1141 * If we successfully wrote any data, and we are not the superuser 1142 * we clear the setuid and setgid bits as a precaution against 1143 * tampering. 1144 */ 1145 if ((ip->i_mode & (ISUID | ISGID)) && resid > uio->uio_resid && ucred) { 1146 if (priv_check_cred(ucred, PRIV_VFS_RETAINSUGID, 0)) { 1147 ip->i_mode &= ~(ISUID | ISGID); 1148 dp->di_mode = ip->i_mode; 1149 } 1150 } 1151 if (error) { 1152 if (ioflag & IO_UNIT) { 1153 (void)ffs_truncate(vp, osize, 1154 IO_EXT | (ioflag&IO_SYNC), ucred); 1155 uio->uio_offset -= resid - uio->uio_resid; 1156 uio->uio_resid = resid; 1157 } 1158 } else if (resid > uio->uio_resid && (ioflag & IO_SYNC)) 1159 error = ffs_update(vp, 1); 1160 return (error); 1161 } 1162 1163 1164 /* 1165 * Vnode operating to retrieve a named extended attribute. 1166 * 1167 * Locate a particular EA (nspace:name) in the area (ptr:length), and return 1168 * the length of the EA, and possibly the pointer to the entry and to the data. 1169 */ 1170 static int 1171 ffs_findextattr(u_char *ptr, u_int length, int nspace, const char *name, u_char **eap, u_char **eac) 1172 { 1173 u_char *p, *pe, *pn, *p0; 1174 int eapad1, eapad2, ealength, ealen, nlen; 1175 uint32_t ul; 1176 1177 pe = ptr + length; 1178 nlen = strlen(name); 1179 1180 for (p = ptr; p < pe; p = pn) { 1181 p0 = p; 1182 bcopy(p, &ul, sizeof(ul)); 1183 pn = p + ul; 1184 /* make sure this entry is complete */ 1185 if (pn > pe) 1186 break; 1187 p += sizeof(uint32_t); 1188 if (*p != nspace) 1189 continue; 1190 p++; 1191 eapad2 = *p++; 1192 if (*p != nlen) 1193 continue; 1194 p++; 1195 if (bcmp(p, name, nlen)) 1196 continue; 1197 ealength = sizeof(uint32_t) + 3 + nlen; 1198 eapad1 = 8 - (ealength % 8); 1199 if (eapad1 == 8) 1200 eapad1 = 0; 1201 ealength += eapad1; 1202 ealen = ul - ealength - eapad2; 1203 p += nlen + eapad1; 1204 if (eap != NULL) 1205 *eap = p0; 1206 if (eac != NULL) 1207 *eac = p; 1208 return (ealen); 1209 } 1210 return(-1); 1211 } 1212 1213 static int 1214 ffs_rdextattr(u_char **p, struct vnode *vp, struct thread *td, int extra) 1215 { 1216 struct inode *ip; 1217 struct ufs2_dinode *dp; 1218 struct fs *fs; 1219 struct uio luio; 1220 struct iovec liovec; 1221 u_int easize; 1222 int error; 1223 u_char *eae; 1224 1225 ip = VTOI(vp); 1226 fs = ip->i_fs; 1227 dp = ip->i_din2; 1228 easize = dp->di_extsize; 1229 if ((uoff_t)easize + extra > NXADDR * fs->fs_bsize) 1230 return (EFBIG); 1231 1232 eae = malloc(easize + extra, M_TEMP, M_WAITOK); 1233 1234 liovec.iov_base = eae; 1235 liovec.iov_len = easize; 1236 luio.uio_iov = &liovec; 1237 luio.uio_iovcnt = 1; 1238 luio.uio_offset = 0; 1239 luio.uio_resid = easize; 1240 luio.uio_segflg = UIO_SYSSPACE; 1241 luio.uio_rw = UIO_READ; 1242 luio.uio_td = td; 1243 1244 error = ffs_extread(vp, &luio, IO_EXT | IO_SYNC); 1245 if (error) { 1246 free(eae, M_TEMP); 1247 return(error); 1248 } 1249 *p = eae; 1250 return (0); 1251 } 1252 1253 static void 1254 ffs_lock_ea(struct vnode *vp) 1255 { 1256 struct inode *ip; 1257 1258 ip = VTOI(vp); 1259 VI_LOCK(vp); 1260 while (ip->i_flag & IN_EA_LOCKED) { 1261 ip->i_flag |= IN_EA_LOCKWAIT; 1262 msleep(&ip->i_ea_refs, &vp->v_interlock, PINOD + 2, "ufs_ea", 1263 0); 1264 } 1265 ip->i_flag |= IN_EA_LOCKED; 1266 VI_UNLOCK(vp); 1267 } 1268 1269 static void 1270 ffs_unlock_ea(struct vnode *vp) 1271 { 1272 struct inode *ip; 1273 1274 ip = VTOI(vp); 1275 VI_LOCK(vp); 1276 if (ip->i_flag & IN_EA_LOCKWAIT) 1277 wakeup(&ip->i_ea_refs); 1278 ip->i_flag &= ~(IN_EA_LOCKED | IN_EA_LOCKWAIT); 1279 VI_UNLOCK(vp); 1280 } 1281 1282 static int 1283 ffs_open_ea(struct vnode *vp, struct ucred *cred, struct thread *td) 1284 { 1285 struct inode *ip; 1286 struct ufs2_dinode *dp; 1287 int error; 1288 1289 ip = VTOI(vp); 1290 1291 ffs_lock_ea(vp); 1292 if (ip->i_ea_area != NULL) { 1293 ip->i_ea_refs++; 1294 ffs_unlock_ea(vp); 1295 return (0); 1296 } 1297 dp = ip->i_din2; 1298 error = ffs_rdextattr(&ip->i_ea_area, vp, td, 0); 1299 if (error) { 1300 ffs_unlock_ea(vp); 1301 return (error); 1302 } 1303 ip->i_ea_len = dp->di_extsize; 1304 ip->i_ea_error = 0; 1305 ip->i_ea_refs++; 1306 ffs_unlock_ea(vp); 1307 return (0); 1308 } 1309 1310 /* 1311 * Vnode extattr transaction commit/abort 1312 */ 1313 static int 1314 ffs_close_ea(struct vnode *vp, int commit, struct ucred *cred, struct thread *td) 1315 { 1316 struct inode *ip; 1317 struct uio luio; 1318 struct iovec liovec; 1319 int error; 1320 struct ufs2_dinode *dp; 1321 1322 ip = VTOI(vp); 1323 1324 ffs_lock_ea(vp); 1325 if (ip->i_ea_area == NULL) { 1326 ffs_unlock_ea(vp); 1327 return (EINVAL); 1328 } 1329 dp = ip->i_din2; 1330 error = ip->i_ea_error; 1331 if (commit && error == 0) { 1332 ASSERT_VOP_ELOCKED(vp, "ffs_close_ea commit"); 1333 if (cred == NOCRED) 1334 cred = vp->v_mount->mnt_cred; 1335 liovec.iov_base = ip->i_ea_area; 1336 liovec.iov_len = ip->i_ea_len; 1337 luio.uio_iov = &liovec; 1338 luio.uio_iovcnt = 1; 1339 luio.uio_offset = 0; 1340 luio.uio_resid = ip->i_ea_len; 1341 luio.uio_segflg = UIO_SYSSPACE; 1342 luio.uio_rw = UIO_WRITE; 1343 luio.uio_td = td; 1344 /* XXX: I'm not happy about truncating to zero size */ 1345 if (ip->i_ea_len < dp->di_extsize) 1346 error = ffs_truncate(vp, 0, IO_EXT, cred); 1347 error = ffs_extwrite(vp, &luio, IO_EXT | IO_SYNC, cred); 1348 } 1349 if (--ip->i_ea_refs == 0) { 1350 free(ip->i_ea_area, M_TEMP); 1351 ip->i_ea_area = NULL; 1352 ip->i_ea_len = 0; 1353 ip->i_ea_error = 0; 1354 } 1355 ffs_unlock_ea(vp); 1356 return (error); 1357 } 1358 1359 /* 1360 * Vnode extattr strategy routine for fifos. 1361 * 1362 * We need to check for a read or write of the external attributes. 1363 * Otherwise we just fall through and do the usual thing. 1364 */ 1365 static int 1366 ffsext_strategy(struct vop_strategy_args *ap) 1367 /* 1368 struct vop_strategy_args { 1369 struct vnodeop_desc *a_desc; 1370 struct vnode *a_vp; 1371 struct buf *a_bp; 1372 }; 1373 */ 1374 { 1375 struct vnode *vp; 1376 daddr_t lbn; 1377 1378 vp = ap->a_vp; 1379 lbn = ap->a_bp->b_lblkno; 1380 if (VTOI(vp)->i_fs->fs_magic == FS_UFS2_MAGIC && 1381 lbn < 0 && lbn >= -NXADDR) 1382 return (VOP_STRATEGY_APV(&ufs_vnodeops, ap)); 1383 if (vp->v_type == VFIFO) 1384 return (VOP_STRATEGY_APV(&ufs_fifoops, ap)); 1385 panic("spec nodes went here"); 1386 } 1387 1388 /* 1389 * Vnode extattr transaction commit/abort 1390 */ 1391 static int 1392 ffs_openextattr(struct vop_openextattr_args *ap) 1393 /* 1394 struct vop_openextattr_args { 1395 struct vnodeop_desc *a_desc; 1396 struct vnode *a_vp; 1397 IN struct ucred *a_cred; 1398 IN struct thread *a_td; 1399 }; 1400 */ 1401 { 1402 struct inode *ip; 1403 struct fs *fs; 1404 1405 ip = VTOI(ap->a_vp); 1406 fs = ip->i_fs; 1407 1408 if (ap->a_vp->v_type == VCHR || ap->a_vp->v_type == VBLK) 1409 return (EOPNOTSUPP); 1410 1411 return (ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td)); 1412 } 1413 1414 1415 /* 1416 * Vnode extattr transaction commit/abort 1417 */ 1418 static int 1419 ffs_closeextattr(struct vop_closeextattr_args *ap) 1420 /* 1421 struct vop_closeextattr_args { 1422 struct vnodeop_desc *a_desc; 1423 struct vnode *a_vp; 1424 int a_commit; 1425 IN struct ucred *a_cred; 1426 IN struct thread *a_td; 1427 }; 1428 */ 1429 { 1430 struct inode *ip; 1431 struct fs *fs; 1432 1433 ip = VTOI(ap->a_vp); 1434 fs = ip->i_fs; 1435 1436 if (ap->a_vp->v_type == VCHR || ap->a_vp->v_type == VBLK) 1437 return (EOPNOTSUPP); 1438 1439 if (ap->a_commit && (ap->a_vp->v_mount->mnt_flag & MNT_RDONLY)) 1440 return (EROFS); 1441 1442 return (ffs_close_ea(ap->a_vp, ap->a_commit, ap->a_cred, ap->a_td)); 1443 } 1444 1445 /* 1446 * Vnode operation to remove a named attribute. 1447 */ 1448 static int 1449 ffs_deleteextattr(struct vop_deleteextattr_args *ap) 1450 /* 1451 vop_deleteextattr { 1452 IN struct vnode *a_vp; 1453 IN int a_attrnamespace; 1454 IN const char *a_name; 1455 IN struct ucred *a_cred; 1456 IN struct thread *a_td; 1457 }; 1458 */ 1459 { 1460 struct inode *ip; 1461 struct fs *fs; 1462 uint32_t ealength, ul; 1463 int ealen, olen, eapad1, eapad2, error, i, easize; 1464 u_char *eae, *p; 1465 1466 ip = VTOI(ap->a_vp); 1467 fs = ip->i_fs; 1468 1469 if (ap->a_vp->v_type == VCHR || ap->a_vp->v_type == VBLK) 1470 return (EOPNOTSUPP); 1471 1472 if (strlen(ap->a_name) == 0) 1473 return (EINVAL); 1474 1475 if (ap->a_vp->v_mount->mnt_flag & MNT_RDONLY) 1476 return (EROFS); 1477 1478 error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace, 1479 ap->a_cred, ap->a_td, VWRITE); 1480 if (error) { 1481 1482 /* 1483 * ffs_lock_ea is not needed there, because the vnode 1484 * must be exclusively locked. 1485 */ 1486 if (ip->i_ea_area != NULL && ip->i_ea_error == 0) 1487 ip->i_ea_error = error; 1488 return (error); 1489 } 1490 1491 error = ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td); 1492 if (error) 1493 return (error); 1494 1495 ealength = eapad1 = ealen = eapad2 = 0; 1496 1497 eae = malloc(ip->i_ea_len, M_TEMP, M_WAITOK); 1498 bcopy(ip->i_ea_area, eae, ip->i_ea_len); 1499 easize = ip->i_ea_len; 1500 1501 olen = ffs_findextattr(eae, easize, ap->a_attrnamespace, ap->a_name, 1502 &p, NULL); 1503 if (olen == -1) { 1504 /* delete but nonexistent */ 1505 free(eae, M_TEMP); 1506 ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td); 1507 return(ENOATTR); 1508 } 1509 bcopy(p, &ul, sizeof ul); 1510 i = p - eae + ul; 1511 if (ul != ealength) { 1512 bcopy(p + ul, p + ealength, easize - i); 1513 easize += (ealength - ul); 1514 } 1515 if (easize > NXADDR * fs->fs_bsize) { 1516 free(eae, M_TEMP); 1517 ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td); 1518 if (ip->i_ea_area != NULL && ip->i_ea_error == 0) 1519 ip->i_ea_error = ENOSPC; 1520 return(ENOSPC); 1521 } 1522 p = ip->i_ea_area; 1523 ip->i_ea_area = eae; 1524 ip->i_ea_len = easize; 1525 free(p, M_TEMP); 1526 error = ffs_close_ea(ap->a_vp, 1, ap->a_cred, ap->a_td); 1527 return(error); 1528 } 1529 1530 /* 1531 * Vnode operation to retrieve a named extended attribute. 1532 */ 1533 static int 1534 ffs_getextattr(struct vop_getextattr_args *ap) 1535 /* 1536 vop_getextattr { 1537 IN struct vnode *a_vp; 1538 IN int a_attrnamespace; 1539 IN const char *a_name; 1540 INOUT struct uio *a_uio; 1541 OUT size_t *a_size; 1542 IN struct ucred *a_cred; 1543 IN struct thread *a_td; 1544 }; 1545 */ 1546 { 1547 struct inode *ip; 1548 struct fs *fs; 1549 u_char *eae, *p; 1550 unsigned easize; 1551 int error, ealen; 1552 1553 ip = VTOI(ap->a_vp); 1554 fs = ip->i_fs; 1555 1556 if (ap->a_vp->v_type == VCHR || ap->a_vp->v_type == VBLK) 1557 return (EOPNOTSUPP); 1558 1559 error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace, 1560 ap->a_cred, ap->a_td, VREAD); 1561 if (error) 1562 return (error); 1563 1564 error = ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td); 1565 if (error) 1566 return (error); 1567 1568 eae = ip->i_ea_area; 1569 easize = ip->i_ea_len; 1570 1571 ealen = ffs_findextattr(eae, easize, ap->a_attrnamespace, ap->a_name, 1572 NULL, &p); 1573 if (ealen >= 0) { 1574 error = 0; 1575 if (ap->a_size != NULL) 1576 *ap->a_size = ealen; 1577 else if (ap->a_uio != NULL) 1578 error = uiomove(p, ealen, ap->a_uio); 1579 } else 1580 error = ENOATTR; 1581 1582 ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td); 1583 return(error); 1584 } 1585 1586 /* 1587 * Vnode operation to retrieve extended attributes on a vnode. 1588 */ 1589 static int 1590 ffs_listextattr(struct vop_listextattr_args *ap) 1591 /* 1592 vop_listextattr { 1593 IN struct vnode *a_vp; 1594 IN int a_attrnamespace; 1595 INOUT struct uio *a_uio; 1596 OUT size_t *a_size; 1597 IN struct ucred *a_cred; 1598 IN struct thread *a_td; 1599 }; 1600 */ 1601 { 1602 struct inode *ip; 1603 struct fs *fs; 1604 u_char *eae, *p, *pe, *pn; 1605 unsigned easize; 1606 uint32_t ul; 1607 int error, ealen; 1608 1609 ip = VTOI(ap->a_vp); 1610 fs = ip->i_fs; 1611 1612 if (ap->a_vp->v_type == VCHR || ap->a_vp->v_type == VBLK) 1613 return (EOPNOTSUPP); 1614 1615 error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace, 1616 ap->a_cred, ap->a_td, VREAD); 1617 if (error) 1618 return (error); 1619 1620 error = ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td); 1621 if (error) 1622 return (error); 1623 eae = ip->i_ea_area; 1624 easize = ip->i_ea_len; 1625 1626 error = 0; 1627 if (ap->a_size != NULL) 1628 *ap->a_size = 0; 1629 pe = eae + easize; 1630 for(p = eae; error == 0 && p < pe; p = pn) { 1631 bcopy(p, &ul, sizeof(ul)); 1632 pn = p + ul; 1633 if (pn > pe) 1634 break; 1635 p += sizeof(ul); 1636 if (*p++ != ap->a_attrnamespace) 1637 continue; 1638 p++; /* pad2 */ 1639 ealen = *p; 1640 if (ap->a_size != NULL) { 1641 *ap->a_size += ealen + 1; 1642 } else if (ap->a_uio != NULL) { 1643 error = uiomove(p, ealen + 1, ap->a_uio); 1644 } 1645 } 1646 ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td); 1647 return(error); 1648 } 1649 1650 /* 1651 * Vnode operation to set a named attribute. 1652 */ 1653 static int 1654 ffs_setextattr(struct vop_setextattr_args *ap) 1655 /* 1656 vop_setextattr { 1657 IN struct vnode *a_vp; 1658 IN int a_attrnamespace; 1659 IN const char *a_name; 1660 INOUT struct uio *a_uio; 1661 IN struct ucred *a_cred; 1662 IN struct thread *a_td; 1663 }; 1664 */ 1665 { 1666 struct inode *ip; 1667 struct fs *fs; 1668 uint32_t ealength, ul; 1669 ssize_t ealen; 1670 int olen, eapad1, eapad2, error, i, easize; 1671 u_char *eae, *p; 1672 1673 ip = VTOI(ap->a_vp); 1674 fs = ip->i_fs; 1675 1676 if (ap->a_vp->v_type == VCHR || ap->a_vp->v_type == VBLK) 1677 return (EOPNOTSUPP); 1678 1679 if (strlen(ap->a_name) == 0) 1680 return (EINVAL); 1681 1682 /* XXX Now unsupported API to delete EAs using NULL uio. */ 1683 if (ap->a_uio == NULL) 1684 return (EOPNOTSUPP); 1685 1686 if (ap->a_vp->v_mount->mnt_flag & MNT_RDONLY) 1687 return (EROFS); 1688 1689 ealen = ap->a_uio->uio_resid; 1690 if (ealen < 0 || ealen > lblktosize(fs, NXADDR)) 1691 return (EINVAL); 1692 1693 error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace, 1694 ap->a_cred, ap->a_td, VWRITE); 1695 if (error) { 1696 1697 /* 1698 * ffs_lock_ea is not needed there, because the vnode 1699 * must be exclusively locked. 1700 */ 1701 if (ip->i_ea_area != NULL && ip->i_ea_error == 0) 1702 ip->i_ea_error = error; 1703 return (error); 1704 } 1705 1706 error = ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td); 1707 if (error) 1708 return (error); 1709 1710 ealength = sizeof(uint32_t) + 3 + strlen(ap->a_name); 1711 eapad1 = 8 - (ealength % 8); 1712 if (eapad1 == 8) 1713 eapad1 = 0; 1714 eapad2 = 8 - (ealen % 8); 1715 if (eapad2 == 8) 1716 eapad2 = 0; 1717 ealength += eapad1 + ealen + eapad2; 1718 1719 eae = malloc(ip->i_ea_len + ealength, M_TEMP, M_WAITOK); 1720 bcopy(ip->i_ea_area, eae, ip->i_ea_len); 1721 easize = ip->i_ea_len; 1722 1723 olen = ffs_findextattr(eae, easize, 1724 ap->a_attrnamespace, ap->a_name, &p, NULL); 1725 if (olen == -1) { 1726 /* new, append at end */ 1727 p = eae + easize; 1728 easize += ealength; 1729 } else { 1730 bcopy(p, &ul, sizeof ul); 1731 i = p - eae + ul; 1732 if (ul != ealength) { 1733 bcopy(p + ul, p + ealength, easize - i); 1734 easize += (ealength - ul); 1735 } 1736 } 1737 if (easize > lblktosize(fs, NXADDR)) { 1738 free(eae, M_TEMP); 1739 ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td); 1740 if (ip->i_ea_area != NULL && ip->i_ea_error == 0) 1741 ip->i_ea_error = ENOSPC; 1742 return(ENOSPC); 1743 } 1744 bcopy(&ealength, p, sizeof(ealength)); 1745 p += sizeof(ealength); 1746 *p++ = ap->a_attrnamespace; 1747 *p++ = eapad2; 1748 *p++ = strlen(ap->a_name); 1749 strcpy(p, ap->a_name); 1750 p += strlen(ap->a_name); 1751 bzero(p, eapad1); 1752 p += eapad1; 1753 error = uiomove(p, ealen, ap->a_uio); 1754 if (error) { 1755 free(eae, M_TEMP); 1756 ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td); 1757 if (ip->i_ea_area != NULL && ip->i_ea_error == 0) 1758 ip->i_ea_error = error; 1759 return(error); 1760 } 1761 p += ealen; 1762 bzero(p, eapad2); 1763 1764 p = ip->i_ea_area; 1765 ip->i_ea_area = eae; 1766 ip->i_ea_len = easize; 1767 free(p, M_TEMP); 1768 error = ffs_close_ea(ap->a_vp, 1, ap->a_cred, ap->a_td); 1769 return(error); 1770 } 1771 1772 /* 1773 * Vnode pointer to File handle 1774 */ 1775 static int 1776 ffs_vptofh(struct vop_vptofh_args *ap) 1777 /* 1778 vop_vptofh { 1779 IN struct vnode *a_vp; 1780 IN struct fid *a_fhp; 1781 }; 1782 */ 1783 { 1784 struct inode *ip; 1785 struct ufid *ufhp; 1786 1787 ip = VTOI(ap->a_vp); 1788 ufhp = (struct ufid *)ap->a_fhp; 1789 ufhp->ufid_len = sizeof(struct ufid); 1790 ufhp->ufid_ino = ip->i_number; 1791 ufhp->ufid_gen = ip->i_gen; 1792 return (0); 1793 } 1794