1 /*- 2 * Copyright (c) 2002, 2003 Networks Associates Technology, Inc. 3 * All rights reserved. 4 * 5 * This software was developed for the FreeBSD Project by Marshall 6 * Kirk McKusick and Network Associates Laboratories, the Security 7 * Research Division of Network Associates, Inc. under DARPA/SPAWAR 8 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS 9 * research program 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * Copyright (c) 1982, 1986, 1989, 1993 33 * The Regents of the University of California. All rights reserved. 34 * 35 * Redistribution and use in source and binary forms, with or without 36 * modification, are permitted provided that the following conditions 37 * are met: 38 * 1. Redistributions of source code must retain the above copyright 39 * notice, this list of conditions and the following disclaimer. 40 * 2. Redistributions in binary form must reproduce the above copyright 41 * notice, this list of conditions and the following disclaimer in the 42 * documentation and/or other materials provided with the distribution. 43 * 4. Neither the name of the University nor the names of its contributors 44 * may be used to endorse or promote products derived from this software 45 * without specific prior written permission. 46 * 47 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 48 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 49 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 50 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 51 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 52 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 53 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 54 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 55 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 56 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 57 * SUCH DAMAGE. 58 * 59 * from: @(#)ufs_readwrite.c 8.11 (Berkeley) 5/8/95 60 * from: $FreeBSD: .../ufs/ufs_readwrite.c,v 1.96 2002/08/12 09:22:11 phk ... 61 * @(#)ffs_vnops.c 8.15 (Berkeley) 5/14/95 62 */ 63 64 #include <sys/cdefs.h> 65 __FBSDID("$FreeBSD$"); 66 67 #include <sys/param.h> 68 #include <sys/bio.h> 69 #include <sys/systm.h> 70 #include <sys/buf.h> 71 #include <sys/conf.h> 72 #include <sys/extattr.h> 73 #include <sys/kernel.h> 74 #include <sys/limits.h> 75 #include <sys/malloc.h> 76 #include <sys/mount.h> 77 #include <sys/priv.h> 78 #include <sys/proc.h> 79 #include <sys/resourcevar.h> 80 #include <sys/signalvar.h> 81 #include <sys/stat.h> 82 #include <sys/vmmeter.h> 83 #include <sys/vnode.h> 84 85 #include <vm/vm.h> 86 #include <vm/vm_extern.h> 87 #include <vm/vm_object.h> 88 #include <vm/vm_page.h> 89 #include <vm/vm_pager.h> 90 #include <vm/vnode_pager.h> 91 92 #include <ufs/ufs/extattr.h> 93 #include <ufs/ufs/quota.h> 94 #include <ufs/ufs/inode.h> 95 #include <ufs/ufs/ufs_extern.h> 96 #include <ufs/ufs/ufsmount.h> 97 98 #include <ufs/ffs/fs.h> 99 #include <ufs/ffs/ffs_extern.h> 100 #include "opt_directio.h" 101 #include "opt_ffs.h" 102 103 #ifdef DIRECTIO 104 extern int ffs_rawread(struct vnode *vp, struct uio *uio, int *workdone); 105 #endif 106 static vop_fsync_t ffs_fsync; 107 static _vop_lock_t ffs_lock; 108 static vop_getpages_t ffs_getpages; 109 static vop_read_t ffs_read; 110 static vop_write_t ffs_write; 111 static int ffs_extread(struct vnode *vp, struct uio *uio, int ioflag); 112 static int ffs_extwrite(struct vnode *vp, struct uio *uio, int ioflag, 113 struct ucred *cred); 114 static vop_strategy_t ffsext_strategy; 115 static vop_closeextattr_t ffs_closeextattr; 116 static vop_deleteextattr_t ffs_deleteextattr; 117 static vop_getextattr_t ffs_getextattr; 118 static vop_listextattr_t ffs_listextattr; 119 static vop_openextattr_t ffs_openextattr; 120 static vop_setextattr_t ffs_setextattr; 121 static vop_vptofh_t ffs_vptofh; 122 123 124 /* Global vfs data structures for ufs. */ 125 struct vop_vector ffs_vnodeops1 = { 126 .vop_default = &ufs_vnodeops, 127 .vop_fsync = ffs_fsync, 128 .vop_getpages = ffs_getpages, 129 ._vop_lock = ffs_lock, 130 .vop_read = ffs_read, 131 .vop_reallocblks = ffs_reallocblks, 132 .vop_write = ffs_write, 133 .vop_vptofh = ffs_vptofh, 134 }; 135 136 struct vop_vector ffs_fifoops1 = { 137 .vop_default = &ufs_fifoops, 138 .vop_fsync = ffs_fsync, 139 .vop_reallocblks = ffs_reallocblks, /* XXX: really ??? */ 140 .vop_vptofh = ffs_vptofh, 141 }; 142 143 /* Global vfs data structures for ufs. */ 144 struct vop_vector ffs_vnodeops2 = { 145 .vop_default = &ufs_vnodeops, 146 .vop_fsync = ffs_fsync, 147 .vop_getpages = ffs_getpages, 148 ._vop_lock = ffs_lock, 149 .vop_read = ffs_read, 150 .vop_reallocblks = ffs_reallocblks, 151 .vop_write = ffs_write, 152 .vop_closeextattr = ffs_closeextattr, 153 .vop_deleteextattr = ffs_deleteextattr, 154 .vop_getextattr = ffs_getextattr, 155 .vop_listextattr = ffs_listextattr, 156 .vop_openextattr = ffs_openextattr, 157 .vop_setextattr = ffs_setextattr, 158 .vop_vptofh = ffs_vptofh, 159 }; 160 161 struct vop_vector ffs_fifoops2 = { 162 .vop_default = &ufs_fifoops, 163 .vop_fsync = ffs_fsync, 164 ._vop_lock = ffs_lock, 165 .vop_reallocblks = ffs_reallocblks, 166 .vop_strategy = ffsext_strategy, 167 .vop_closeextattr = ffs_closeextattr, 168 .vop_deleteextattr = ffs_deleteextattr, 169 .vop_getextattr = ffs_getextattr, 170 .vop_listextattr = ffs_listextattr, 171 .vop_openextattr = ffs_openextattr, 172 .vop_setextattr = ffs_setextattr, 173 .vop_vptofh = ffs_vptofh, 174 }; 175 176 /* 177 * Synch an open file. 178 */ 179 /* ARGSUSED */ 180 static int 181 ffs_fsync(struct vop_fsync_args *ap) 182 { 183 int error; 184 185 error = ffs_syncvnode(ap->a_vp, ap->a_waitfor); 186 if (error) 187 return (error); 188 if (ap->a_waitfor == MNT_WAIT && 189 (ap->a_vp->v_mount->mnt_flag & MNT_SOFTDEP)) 190 error = softdep_fsync(ap->a_vp); 191 return (error); 192 } 193 194 int 195 ffs_syncvnode(struct vnode *vp, int waitfor) 196 { 197 struct inode *ip = VTOI(vp); 198 struct buf *bp; 199 struct buf *nbp; 200 int s, error, wait, passes, skipmeta; 201 ufs_lbn_t lbn; 202 203 wait = (waitfor == MNT_WAIT); 204 lbn = lblkno(ip->i_fs, (ip->i_size + ip->i_fs->fs_bsize - 1)); 205 206 /* 207 * Flush all dirty buffers associated with a vnode. 208 */ 209 passes = NIADDR + 1; 210 skipmeta = 0; 211 if (wait) 212 skipmeta = 1; 213 s = splbio(); 214 VI_LOCK(vp); 215 loop: 216 TAILQ_FOREACH(bp, &vp->v_bufobj.bo_dirty.bv_hd, b_bobufs) 217 bp->b_vflags &= ~BV_SCANNED; 218 TAILQ_FOREACH_SAFE(bp, &vp->v_bufobj.bo_dirty.bv_hd, b_bobufs, nbp) { 219 /* 220 * Reasons to skip this buffer: it has already been considered 221 * on this pass, this pass is the first time through on a 222 * synchronous flush request and the buffer being considered 223 * is metadata, the buffer has dependencies that will cause 224 * it to be redirtied and it has not already been deferred, 225 * or it is already being written. 226 */ 227 if ((bp->b_vflags & BV_SCANNED) != 0) 228 continue; 229 bp->b_vflags |= BV_SCANNED; 230 if ((skipmeta == 1 && bp->b_lblkno < 0)) 231 continue; 232 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL)) 233 continue; 234 VI_UNLOCK(vp); 235 if (!wait && LIST_FIRST(&bp->b_dep) != NULL && 236 (bp->b_flags & B_DEFERRED) == 0 && 237 buf_countdeps(bp, 0)) { 238 bp->b_flags |= B_DEFERRED; 239 BUF_UNLOCK(bp); 240 VI_LOCK(vp); 241 continue; 242 } 243 if ((bp->b_flags & B_DELWRI) == 0) 244 panic("ffs_fsync: not dirty"); 245 /* 246 * If this is a synchronous flush request, or it is not a 247 * file or device, start the write on this buffer immediatly. 248 */ 249 if (wait || (vp->v_type != VREG && vp->v_type != VBLK)) { 250 251 /* 252 * On our final pass through, do all I/O synchronously 253 * so that we can find out if our flush is failing 254 * because of write errors. 255 */ 256 if (passes > 0 || !wait) { 257 if ((bp->b_flags & B_CLUSTEROK) && !wait) { 258 (void) vfs_bio_awrite(bp); 259 } else { 260 bremfree(bp); 261 splx(s); 262 (void) bawrite(bp); 263 s = splbio(); 264 } 265 } else { 266 bremfree(bp); 267 splx(s); 268 if ((error = bwrite(bp)) != 0) 269 return (error); 270 s = splbio(); 271 } 272 } else if ((vp->v_type == VREG) && (bp->b_lblkno >= lbn)) { 273 /* 274 * If the buffer is for data that has been truncated 275 * off the file, then throw it away. 276 */ 277 bremfree(bp); 278 bp->b_flags |= B_INVAL | B_NOCACHE; 279 splx(s); 280 brelse(bp); 281 s = splbio(); 282 } else 283 vfs_bio_awrite(bp); 284 285 /* 286 * Since we may have slept during the I/O, we need 287 * to start from a known point. 288 */ 289 VI_LOCK(vp); 290 nbp = TAILQ_FIRST(&vp->v_bufobj.bo_dirty.bv_hd); 291 } 292 /* 293 * If we were asked to do this synchronously, then go back for 294 * another pass, this time doing the metadata. 295 */ 296 if (skipmeta) { 297 skipmeta = 0; 298 goto loop; 299 } 300 301 if (wait) { 302 bufobj_wwait(&vp->v_bufobj, 3, 0); 303 VI_UNLOCK(vp); 304 305 /* 306 * Ensure that any filesystem metatdata associated 307 * with the vnode has been written. 308 */ 309 splx(s); 310 if ((error = softdep_sync_metadata(vp)) != 0) 311 return (error); 312 s = splbio(); 313 314 VI_LOCK(vp); 315 if (vp->v_bufobj.bo_dirty.bv_cnt > 0) { 316 /* 317 * Block devices associated with filesystems may 318 * have new I/O requests posted for them even if 319 * the vnode is locked, so no amount of trying will 320 * get them clean. Thus we give block devices a 321 * good effort, then just give up. For all other file 322 * types, go around and try again until it is clean. 323 */ 324 if (passes > 0) { 325 passes -= 1; 326 goto loop; 327 } 328 #ifdef DIAGNOSTIC 329 if (!vn_isdisk(vp, NULL)) 330 vprint("ffs_fsync: dirty", vp); 331 #endif 332 } 333 } 334 VI_UNLOCK(vp); 335 splx(s); 336 return (ffs_update(vp, wait)); 337 } 338 339 static int 340 ffs_lock(ap) 341 struct _vop_lock_args /* { 342 struct vnode *a_vp; 343 int a_flags; 344 struct thread *a_td; 345 char *file; 346 int line; 347 } */ *ap; 348 { 349 #ifndef NO_FFS_SNAPSHOT 350 struct vnode *vp; 351 int flags; 352 struct lock *lkp; 353 int result; 354 355 switch (ap->a_flags & LK_TYPE_MASK) { 356 case LK_SHARED: 357 case LK_UPGRADE: 358 case LK_EXCLUSIVE: 359 vp = ap->a_vp; 360 flags = ap->a_flags; 361 for (;;) { 362 /* 363 * vnode interlock must be held to ensure that 364 * the possibly external lock isn't freed, 365 * e.g. when mutating from snapshot file vnode 366 * to regular file vnode. 367 */ 368 if ((flags & LK_INTERLOCK) == 0) { 369 VI_LOCK(vp); 370 flags |= LK_INTERLOCK; 371 } 372 lkp = vp->v_vnlock; 373 result = _lockmgr(lkp, flags, VI_MTX(vp), ap->a_td, ap->a_file, ap->a_line); 374 if (lkp == vp->v_vnlock || result != 0) 375 break; 376 /* 377 * Apparent success, except that the vnode 378 * mutated between snapshot file vnode and 379 * regular file vnode while this process 380 * slept. The lock currently held is not the 381 * right lock. Release it, and try to get the 382 * new lock. 383 */ 384 (void) _lockmgr(lkp, LK_RELEASE, VI_MTX(vp), ap->a_td, ap->a_file, ap->a_line); 385 if ((flags & LK_TYPE_MASK) == LK_UPGRADE) 386 flags = (flags & ~LK_TYPE_MASK) | LK_EXCLUSIVE; 387 flags &= ~LK_INTERLOCK; 388 } 389 break; 390 default: 391 result = _VOP_LOCK_APV(&ufs_vnodeops, ap); 392 } 393 return (result); 394 #else 395 return (_VOP_LOCK_APV(&ufs_vnodeops, ap)); 396 #endif 397 } 398 399 /* 400 * Vnode op for reading. 401 */ 402 /* ARGSUSED */ 403 static int 404 ffs_read(ap) 405 struct vop_read_args /* { 406 struct vnode *a_vp; 407 struct uio *a_uio; 408 int a_ioflag; 409 struct ucred *a_cred; 410 } */ *ap; 411 { 412 struct vnode *vp; 413 struct inode *ip; 414 struct uio *uio; 415 struct fs *fs; 416 struct buf *bp; 417 ufs_lbn_t lbn, nextlbn; 418 off_t bytesinfile; 419 long size, xfersize, blkoffset; 420 int error, orig_resid; 421 int seqcount; 422 int ioflag; 423 424 vp = ap->a_vp; 425 uio = ap->a_uio; 426 ioflag = ap->a_ioflag; 427 if (ap->a_ioflag & IO_EXT) 428 #ifdef notyet 429 return (ffs_extread(vp, uio, ioflag)); 430 #else 431 panic("ffs_read+IO_EXT"); 432 #endif 433 #ifdef DIRECTIO 434 if ((ioflag & IO_DIRECT) != 0) { 435 int workdone; 436 437 error = ffs_rawread(vp, uio, &workdone); 438 if (error != 0 || workdone != 0) 439 return error; 440 } 441 #endif 442 443 seqcount = ap->a_ioflag >> IO_SEQSHIFT; 444 ip = VTOI(vp); 445 446 #ifdef DIAGNOSTIC 447 if (uio->uio_rw != UIO_READ) 448 panic("ffs_read: mode"); 449 450 if (vp->v_type == VLNK) { 451 if ((int)ip->i_size < vp->v_mount->mnt_maxsymlinklen) 452 panic("ffs_read: short symlink"); 453 } else if (vp->v_type != VREG && vp->v_type != VDIR) 454 panic("ffs_read: type %d", vp->v_type); 455 #endif 456 orig_resid = uio->uio_resid; 457 KASSERT(orig_resid >= 0, ("ffs_read: uio->uio_resid < 0")); 458 if (orig_resid == 0) 459 return (0); 460 KASSERT(uio->uio_offset >= 0, ("ffs_read: uio->uio_offset < 0")); 461 fs = ip->i_fs; 462 if (uio->uio_offset < ip->i_size && 463 uio->uio_offset >= fs->fs_maxfilesize) 464 return (EOVERFLOW); 465 466 for (error = 0, bp = NULL; uio->uio_resid > 0; bp = NULL) { 467 if ((bytesinfile = ip->i_size - uio->uio_offset) <= 0) 468 break; 469 lbn = lblkno(fs, uio->uio_offset); 470 nextlbn = lbn + 1; 471 472 /* 473 * size of buffer. The buffer representing the 474 * end of the file is rounded up to the size of 475 * the block type ( fragment or full block, 476 * depending ). 477 */ 478 size = blksize(fs, ip, lbn); 479 blkoffset = blkoff(fs, uio->uio_offset); 480 481 /* 482 * The amount we want to transfer in this iteration is 483 * one FS block less the amount of the data before 484 * our startpoint (duh!) 485 */ 486 xfersize = fs->fs_bsize - blkoffset; 487 488 /* 489 * But if we actually want less than the block, 490 * or the file doesn't have a whole block more of data, 491 * then use the lesser number. 492 */ 493 if (uio->uio_resid < xfersize) 494 xfersize = uio->uio_resid; 495 if (bytesinfile < xfersize) 496 xfersize = bytesinfile; 497 498 if (lblktosize(fs, nextlbn) >= ip->i_size) { 499 /* 500 * Don't do readahead if this is the end of the file. 501 */ 502 error = bread(vp, lbn, size, NOCRED, &bp); 503 } else if ((vp->v_mount->mnt_flag & MNT_NOCLUSTERR) == 0) { 504 /* 505 * Otherwise if we are allowed to cluster, 506 * grab as much as we can. 507 * 508 * XXX This may not be a win if we are not 509 * doing sequential access. 510 */ 511 error = cluster_read(vp, ip->i_size, lbn, 512 size, NOCRED, blkoffset + uio->uio_resid, seqcount, &bp); 513 } else if (seqcount > 1) { 514 /* 515 * If we are NOT allowed to cluster, then 516 * if we appear to be acting sequentially, 517 * fire off a request for a readahead 518 * as well as a read. Note that the 4th and 5th 519 * arguments point to arrays of the size specified in 520 * the 6th argument. 521 */ 522 int nextsize = blksize(fs, ip, nextlbn); 523 error = breadn(vp, lbn, 524 size, &nextlbn, &nextsize, 1, NOCRED, &bp); 525 } else { 526 /* 527 * Failing all of the above, just read what the 528 * user asked for. Interestingly, the same as 529 * the first option above. 530 */ 531 error = bread(vp, lbn, size, NOCRED, &bp); 532 } 533 if (error) { 534 brelse(bp); 535 bp = NULL; 536 break; 537 } 538 539 /* 540 * If IO_DIRECT then set B_DIRECT for the buffer. This 541 * will cause us to attempt to release the buffer later on 542 * and will cause the buffer cache to attempt to free the 543 * underlying pages. 544 */ 545 if (ioflag & IO_DIRECT) 546 bp->b_flags |= B_DIRECT; 547 548 /* 549 * We should only get non-zero b_resid when an I/O error 550 * has occurred, which should cause us to break above. 551 * However, if the short read did not cause an error, 552 * then we want to ensure that we do not uiomove bad 553 * or uninitialized data. 554 */ 555 size -= bp->b_resid; 556 if (size < xfersize) { 557 if (size == 0) 558 break; 559 xfersize = size; 560 } 561 562 error = uiomove((char *)bp->b_data + blkoffset, 563 (int)xfersize, uio); 564 if (error) 565 break; 566 567 if ((ioflag & (IO_VMIO|IO_DIRECT)) && 568 (LIST_FIRST(&bp->b_dep) == NULL)) { 569 /* 570 * If there are no dependencies, and it's VMIO, 571 * then we don't need the buf, mark it available 572 * for freeing. The VM has the data. 573 */ 574 bp->b_flags |= B_RELBUF; 575 brelse(bp); 576 } else { 577 /* 578 * Otherwise let whoever 579 * made the request take care of 580 * freeing it. We just queue 581 * it onto another list. 582 */ 583 bqrelse(bp); 584 } 585 } 586 587 /* 588 * This can only happen in the case of an error 589 * because the loop above resets bp to NULL on each iteration 590 * and on normal completion has not set a new value into it. 591 * so it must have come from a 'break' statement 592 */ 593 if (bp != NULL) { 594 if ((ioflag & (IO_VMIO|IO_DIRECT)) && 595 (LIST_FIRST(&bp->b_dep) == NULL)) { 596 bp->b_flags |= B_RELBUF; 597 brelse(bp); 598 } else { 599 bqrelse(bp); 600 } 601 } 602 603 if ((error == 0 || uio->uio_resid != orig_resid) && 604 (vp->v_mount->mnt_flag & MNT_NOATIME) == 0) { 605 VI_LOCK(vp); 606 ip->i_flag |= IN_ACCESS; 607 VI_UNLOCK(vp); 608 } 609 return (error); 610 } 611 612 /* 613 * Vnode op for writing. 614 */ 615 static int 616 ffs_write(ap) 617 struct vop_write_args /* { 618 struct vnode *a_vp; 619 struct uio *a_uio; 620 int a_ioflag; 621 struct ucred *a_cred; 622 } */ *ap; 623 { 624 struct vnode *vp; 625 struct uio *uio; 626 struct inode *ip; 627 struct fs *fs; 628 struct buf *bp; 629 struct thread *td; 630 ufs_lbn_t lbn; 631 off_t osize; 632 int seqcount; 633 int blkoffset, error, flags, ioflag, resid, size, xfersize; 634 635 vp = ap->a_vp; 636 uio = ap->a_uio; 637 ioflag = ap->a_ioflag; 638 if (ap->a_ioflag & IO_EXT) 639 #ifdef notyet 640 return (ffs_extwrite(vp, uio, ioflag, ap->a_cred)); 641 #else 642 panic("ffs_write+IO_EXT"); 643 #endif 644 645 seqcount = ap->a_ioflag >> IO_SEQSHIFT; 646 ip = VTOI(vp); 647 648 #ifdef DIAGNOSTIC 649 if (uio->uio_rw != UIO_WRITE) 650 panic("ffs_write: mode"); 651 #endif 652 653 switch (vp->v_type) { 654 case VREG: 655 if (ioflag & IO_APPEND) 656 uio->uio_offset = ip->i_size; 657 if ((ip->i_flags & APPEND) && uio->uio_offset != ip->i_size) 658 return (EPERM); 659 /* FALLTHROUGH */ 660 case VLNK: 661 break; 662 case VDIR: 663 panic("ffs_write: dir write"); 664 break; 665 default: 666 panic("ffs_write: type %p %d (%d,%d)", vp, (int)vp->v_type, 667 (int)uio->uio_offset, 668 (int)uio->uio_resid 669 ); 670 } 671 672 KASSERT(uio->uio_resid >= 0, ("ffs_write: uio->uio_resid < 0")); 673 KASSERT(uio->uio_offset >= 0, ("ffs_write: uio->uio_offset < 0")); 674 fs = ip->i_fs; 675 if ((uoff_t)uio->uio_offset + uio->uio_resid > fs->fs_maxfilesize) 676 return (EFBIG); 677 /* 678 * Maybe this should be above the vnode op call, but so long as 679 * file servers have no limits, I don't think it matters. 680 */ 681 td = uio->uio_td; 682 if (vp->v_type == VREG && td != NULL) { 683 PROC_LOCK(td->td_proc); 684 if (uio->uio_offset + uio->uio_resid > 685 lim_cur(td->td_proc, RLIMIT_FSIZE)) { 686 psignal(td->td_proc, SIGXFSZ); 687 PROC_UNLOCK(td->td_proc); 688 return (EFBIG); 689 } 690 PROC_UNLOCK(td->td_proc); 691 } 692 693 resid = uio->uio_resid; 694 osize = ip->i_size; 695 if (seqcount > BA_SEQMAX) 696 flags = BA_SEQMAX << BA_SEQSHIFT; 697 else 698 flags = seqcount << BA_SEQSHIFT; 699 if ((ioflag & IO_SYNC) && !DOINGASYNC(vp)) 700 flags |= IO_SYNC; 701 702 for (error = 0; uio->uio_resid > 0;) { 703 lbn = lblkno(fs, uio->uio_offset); 704 blkoffset = blkoff(fs, uio->uio_offset); 705 xfersize = fs->fs_bsize - blkoffset; 706 if (uio->uio_resid < xfersize) 707 xfersize = uio->uio_resid; 708 if (uio->uio_offset + xfersize > ip->i_size) 709 vnode_pager_setsize(vp, uio->uio_offset + xfersize); 710 711 /* 712 * We must perform a read-before-write if the transfer size 713 * does not cover the entire buffer. 714 */ 715 if (fs->fs_bsize > xfersize) 716 flags |= BA_CLRBUF; 717 else 718 flags &= ~BA_CLRBUF; 719 /* XXX is uio->uio_offset the right thing here? */ 720 error = UFS_BALLOC(vp, uio->uio_offset, xfersize, 721 ap->a_cred, flags, &bp); 722 if (error != 0) 723 break; 724 /* 725 * If the buffer is not valid we have to clear out any 726 * garbage data from the pages instantiated for the buffer. 727 * If we do not, a failed uiomove() during a write can leave 728 * the prior contents of the pages exposed to a userland 729 * mmap(). XXX deal with uiomove() errors a better way. 730 */ 731 if ((bp->b_flags & B_CACHE) == 0 && fs->fs_bsize <= xfersize) 732 vfs_bio_clrbuf(bp); 733 if (ioflag & IO_DIRECT) 734 bp->b_flags |= B_DIRECT; 735 if ((ioflag & (IO_SYNC|IO_INVAL)) == (IO_SYNC|IO_INVAL)) 736 bp->b_flags |= B_NOCACHE; 737 738 if (uio->uio_offset + xfersize > ip->i_size) { 739 ip->i_size = uio->uio_offset + xfersize; 740 DIP_SET(ip, i_size, ip->i_size); 741 } 742 743 size = blksize(fs, ip, lbn) - bp->b_resid; 744 if (size < xfersize) 745 xfersize = size; 746 747 error = 748 uiomove((char *)bp->b_data + blkoffset, (int)xfersize, uio); 749 if ((ioflag & (IO_VMIO|IO_DIRECT)) && 750 (LIST_FIRST(&bp->b_dep) == NULL)) { 751 bp->b_flags |= B_RELBUF; 752 } 753 754 /* 755 * If IO_SYNC each buffer is written synchronously. Otherwise 756 * if we have a severe page deficiency write the buffer 757 * asynchronously. Otherwise try to cluster, and if that 758 * doesn't do it then either do an async write (if O_DIRECT), 759 * or a delayed write (if not). 760 */ 761 if (ioflag & IO_SYNC) { 762 (void)bwrite(bp); 763 } else if (vm_page_count_severe() || 764 buf_dirty_count_severe() || 765 (ioflag & IO_ASYNC)) { 766 bp->b_flags |= B_CLUSTEROK; 767 bawrite(bp); 768 } else if (xfersize + blkoffset == fs->fs_bsize) { 769 if ((vp->v_mount->mnt_flag & MNT_NOCLUSTERW) == 0) { 770 bp->b_flags |= B_CLUSTEROK; 771 cluster_write(vp, bp, ip->i_size, seqcount); 772 } else { 773 bawrite(bp); 774 } 775 } else if (ioflag & IO_DIRECT) { 776 bp->b_flags |= B_CLUSTEROK; 777 bawrite(bp); 778 } else { 779 bp->b_flags |= B_CLUSTEROK; 780 bdwrite(bp); 781 } 782 if (error || xfersize == 0) 783 break; 784 ip->i_flag |= IN_CHANGE | IN_UPDATE; 785 } 786 /* 787 * If we successfully wrote any data, and we are not the superuser 788 * we clear the setuid and setgid bits as a precaution against 789 * tampering. 790 */ 791 if (resid > uio->uio_resid && ap->a_cred && 792 priv_check_cred(ap->a_cred, PRIV_VFS_CLEARSUGID, 793 SUSER_ALLOWJAIL)) { 794 ip->i_mode &= ~(ISUID | ISGID); 795 DIP_SET(ip, i_mode, ip->i_mode); 796 } 797 if (error) { 798 if (ioflag & IO_UNIT) { 799 (void)ffs_truncate(vp, osize, 800 IO_NORMAL | (ioflag & IO_SYNC), 801 ap->a_cred, uio->uio_td); 802 uio->uio_offset -= resid - uio->uio_resid; 803 uio->uio_resid = resid; 804 } 805 } else if (resid > uio->uio_resid && (ioflag & IO_SYNC)) 806 error = ffs_update(vp, 1); 807 return (error); 808 } 809 810 /* 811 * get page routine 812 */ 813 static int 814 ffs_getpages(ap) 815 struct vop_getpages_args *ap; 816 { 817 int i; 818 vm_page_t mreq; 819 int pcount; 820 821 pcount = round_page(ap->a_count) / PAGE_SIZE; 822 mreq = ap->a_m[ap->a_reqpage]; 823 824 /* 825 * if ANY DEV_BSIZE blocks are valid on a large filesystem block, 826 * then the entire page is valid. Since the page may be mapped, 827 * user programs might reference data beyond the actual end of file 828 * occuring within the page. We have to zero that data. 829 */ 830 VM_OBJECT_LOCK(mreq->object); 831 if (mreq->valid) { 832 if (mreq->valid != VM_PAGE_BITS_ALL) 833 vm_page_zero_invalid(mreq, TRUE); 834 vm_page_lock_queues(); 835 for (i = 0; i < pcount; i++) { 836 if (i != ap->a_reqpage) { 837 vm_page_free(ap->a_m[i]); 838 } 839 } 840 vm_page_unlock_queues(); 841 VM_OBJECT_UNLOCK(mreq->object); 842 return VM_PAGER_OK; 843 } 844 VM_OBJECT_UNLOCK(mreq->object); 845 846 return vnode_pager_generic_getpages(ap->a_vp, ap->a_m, 847 ap->a_count, 848 ap->a_reqpage); 849 } 850 851 852 /* 853 * Extended attribute area reading. 854 */ 855 static int 856 ffs_extread(struct vnode *vp, struct uio *uio, int ioflag) 857 { 858 struct inode *ip; 859 struct ufs2_dinode *dp; 860 struct fs *fs; 861 struct buf *bp; 862 ufs_lbn_t lbn, nextlbn; 863 off_t bytesinfile; 864 long size, xfersize, blkoffset; 865 int error, orig_resid; 866 867 ip = VTOI(vp); 868 fs = ip->i_fs; 869 dp = ip->i_din2; 870 871 #ifdef DIAGNOSTIC 872 if (uio->uio_rw != UIO_READ || fs->fs_magic != FS_UFS2_MAGIC) 873 panic("ffs_extread: mode"); 874 875 #endif 876 orig_resid = uio->uio_resid; 877 KASSERT(orig_resid >= 0, ("ffs_extread: uio->uio_resid < 0")); 878 if (orig_resid == 0) 879 return (0); 880 KASSERT(uio->uio_offset >= 0, ("ffs_extread: uio->uio_offset < 0")); 881 882 for (error = 0, bp = NULL; uio->uio_resid > 0; bp = NULL) { 883 if ((bytesinfile = dp->di_extsize - uio->uio_offset) <= 0) 884 break; 885 lbn = lblkno(fs, uio->uio_offset); 886 nextlbn = lbn + 1; 887 888 /* 889 * size of buffer. The buffer representing the 890 * end of the file is rounded up to the size of 891 * the block type ( fragment or full block, 892 * depending ). 893 */ 894 size = sblksize(fs, dp->di_extsize, lbn); 895 blkoffset = blkoff(fs, uio->uio_offset); 896 897 /* 898 * The amount we want to transfer in this iteration is 899 * one FS block less the amount of the data before 900 * our startpoint (duh!) 901 */ 902 xfersize = fs->fs_bsize - blkoffset; 903 904 /* 905 * But if we actually want less than the block, 906 * or the file doesn't have a whole block more of data, 907 * then use the lesser number. 908 */ 909 if (uio->uio_resid < xfersize) 910 xfersize = uio->uio_resid; 911 if (bytesinfile < xfersize) 912 xfersize = bytesinfile; 913 914 if (lblktosize(fs, nextlbn) >= dp->di_extsize) { 915 /* 916 * Don't do readahead if this is the end of the info. 917 */ 918 error = bread(vp, -1 - lbn, size, NOCRED, &bp); 919 } else { 920 /* 921 * If we have a second block, then 922 * fire off a request for a readahead 923 * as well as a read. Note that the 4th and 5th 924 * arguments point to arrays of the size specified in 925 * the 6th argument. 926 */ 927 int nextsize = sblksize(fs, dp->di_extsize, nextlbn); 928 929 nextlbn = -1 - nextlbn; 930 error = breadn(vp, -1 - lbn, 931 size, &nextlbn, &nextsize, 1, NOCRED, &bp); 932 } 933 if (error) { 934 brelse(bp); 935 bp = NULL; 936 break; 937 } 938 939 /* 940 * If IO_DIRECT then set B_DIRECT for the buffer. This 941 * will cause us to attempt to release the buffer later on 942 * and will cause the buffer cache to attempt to free the 943 * underlying pages. 944 */ 945 if (ioflag & IO_DIRECT) 946 bp->b_flags |= B_DIRECT; 947 948 /* 949 * We should only get non-zero b_resid when an I/O error 950 * has occurred, which should cause us to break above. 951 * However, if the short read did not cause an error, 952 * then we want to ensure that we do not uiomove bad 953 * or uninitialized data. 954 */ 955 size -= bp->b_resid; 956 if (size < xfersize) { 957 if (size == 0) 958 break; 959 xfersize = size; 960 } 961 962 error = uiomove((char *)bp->b_data + blkoffset, 963 (int)xfersize, uio); 964 if (error) 965 break; 966 967 if ((ioflag & (IO_VMIO|IO_DIRECT)) && 968 (LIST_FIRST(&bp->b_dep) == NULL)) { 969 /* 970 * If there are no dependencies, and it's VMIO, 971 * then we don't need the buf, mark it available 972 * for freeing. The VM has the data. 973 */ 974 bp->b_flags |= B_RELBUF; 975 brelse(bp); 976 } else { 977 /* 978 * Otherwise let whoever 979 * made the request take care of 980 * freeing it. We just queue 981 * it onto another list. 982 */ 983 bqrelse(bp); 984 } 985 } 986 987 /* 988 * This can only happen in the case of an error 989 * because the loop above resets bp to NULL on each iteration 990 * and on normal completion has not set a new value into it. 991 * so it must have come from a 'break' statement 992 */ 993 if (bp != NULL) { 994 if ((ioflag & (IO_VMIO|IO_DIRECT)) && 995 (LIST_FIRST(&bp->b_dep) == NULL)) { 996 bp->b_flags |= B_RELBUF; 997 brelse(bp); 998 } else { 999 bqrelse(bp); 1000 } 1001 } 1002 1003 if ((error == 0 || uio->uio_resid != orig_resid) && 1004 (vp->v_mount->mnt_flag & MNT_NOATIME) == 0) { 1005 VI_LOCK(vp); 1006 ip->i_flag |= IN_ACCESS; 1007 VI_UNLOCK(vp); 1008 } 1009 return (error); 1010 } 1011 1012 /* 1013 * Extended attribute area writing. 1014 */ 1015 static int 1016 ffs_extwrite(struct vnode *vp, struct uio *uio, int ioflag, struct ucred *ucred) 1017 { 1018 struct inode *ip; 1019 struct ufs2_dinode *dp; 1020 struct fs *fs; 1021 struct buf *bp; 1022 ufs_lbn_t lbn; 1023 off_t osize; 1024 int blkoffset, error, flags, resid, size, xfersize; 1025 1026 ip = VTOI(vp); 1027 fs = ip->i_fs; 1028 dp = ip->i_din2; 1029 1030 #ifdef DIAGNOSTIC 1031 if (uio->uio_rw != UIO_WRITE || fs->fs_magic != FS_UFS2_MAGIC) 1032 panic("ffs_extwrite: mode"); 1033 #endif 1034 1035 if (ioflag & IO_APPEND) 1036 uio->uio_offset = dp->di_extsize; 1037 KASSERT(uio->uio_offset >= 0, ("ffs_extwrite: uio->uio_offset < 0")); 1038 KASSERT(uio->uio_resid >= 0, ("ffs_extwrite: uio->uio_resid < 0")); 1039 if ((uoff_t)uio->uio_offset + uio->uio_resid > NXADDR * fs->fs_bsize) 1040 return (EFBIG); 1041 1042 resid = uio->uio_resid; 1043 osize = dp->di_extsize; 1044 flags = IO_EXT; 1045 if ((ioflag & IO_SYNC) && !DOINGASYNC(vp)) 1046 flags |= IO_SYNC; 1047 1048 for (error = 0; uio->uio_resid > 0;) { 1049 lbn = lblkno(fs, uio->uio_offset); 1050 blkoffset = blkoff(fs, uio->uio_offset); 1051 xfersize = fs->fs_bsize - blkoffset; 1052 if (uio->uio_resid < xfersize) 1053 xfersize = uio->uio_resid; 1054 1055 /* 1056 * We must perform a read-before-write if the transfer size 1057 * does not cover the entire buffer. 1058 */ 1059 if (fs->fs_bsize > xfersize) 1060 flags |= BA_CLRBUF; 1061 else 1062 flags &= ~BA_CLRBUF; 1063 error = UFS_BALLOC(vp, uio->uio_offset, xfersize, 1064 ucred, flags, &bp); 1065 if (error != 0) 1066 break; 1067 /* 1068 * If the buffer is not valid we have to clear out any 1069 * garbage data from the pages instantiated for the buffer. 1070 * If we do not, a failed uiomove() during a write can leave 1071 * the prior contents of the pages exposed to a userland 1072 * mmap(). XXX deal with uiomove() errors a better way. 1073 */ 1074 if ((bp->b_flags & B_CACHE) == 0 && fs->fs_bsize <= xfersize) 1075 vfs_bio_clrbuf(bp); 1076 if (ioflag & IO_DIRECT) 1077 bp->b_flags |= B_DIRECT; 1078 1079 if (uio->uio_offset + xfersize > dp->di_extsize) 1080 dp->di_extsize = uio->uio_offset + xfersize; 1081 1082 size = sblksize(fs, dp->di_extsize, lbn) - bp->b_resid; 1083 if (size < xfersize) 1084 xfersize = size; 1085 1086 error = 1087 uiomove((char *)bp->b_data + blkoffset, (int)xfersize, uio); 1088 if ((ioflag & (IO_VMIO|IO_DIRECT)) && 1089 (LIST_FIRST(&bp->b_dep) == NULL)) { 1090 bp->b_flags |= B_RELBUF; 1091 } 1092 1093 /* 1094 * If IO_SYNC each buffer is written synchronously. Otherwise 1095 * if we have a severe page deficiency write the buffer 1096 * asynchronously. Otherwise try to cluster, and if that 1097 * doesn't do it then either do an async write (if O_DIRECT), 1098 * or a delayed write (if not). 1099 */ 1100 if (ioflag & IO_SYNC) { 1101 (void)bwrite(bp); 1102 } else if (vm_page_count_severe() || 1103 buf_dirty_count_severe() || 1104 xfersize + blkoffset == fs->fs_bsize || 1105 (ioflag & (IO_ASYNC | IO_DIRECT))) 1106 bawrite(bp); 1107 else 1108 bdwrite(bp); 1109 if (error || xfersize == 0) 1110 break; 1111 ip->i_flag |= IN_CHANGE | IN_UPDATE; 1112 } 1113 /* 1114 * If we successfully wrote any data, and we are not the superuser 1115 * we clear the setuid and setgid bits as a precaution against 1116 * tampering. 1117 */ 1118 if (resid > uio->uio_resid && ucred && 1119 priv_check_cred(ucred, PRIV_VFS_CLEARSUGID, SUSER_ALLOWJAIL)) { 1120 ip->i_mode &= ~(ISUID | ISGID); 1121 dp->di_mode = ip->i_mode; 1122 } 1123 if (error) { 1124 if (ioflag & IO_UNIT) { 1125 (void)ffs_truncate(vp, osize, 1126 IO_EXT | (ioflag&IO_SYNC), ucred, uio->uio_td); 1127 uio->uio_offset -= resid - uio->uio_resid; 1128 uio->uio_resid = resid; 1129 } 1130 } else if (resid > uio->uio_resid && (ioflag & IO_SYNC)) 1131 error = ffs_update(vp, 1); 1132 return (error); 1133 } 1134 1135 1136 /* 1137 * Vnode operating to retrieve a named extended attribute. 1138 * 1139 * Locate a particular EA (nspace:name) in the area (ptr:length), and return 1140 * the length of the EA, and possibly the pointer to the entry and to the data. 1141 */ 1142 static int 1143 ffs_findextattr(u_char *ptr, u_int length, int nspace, const char *name, u_char **eap, u_char **eac) 1144 { 1145 u_char *p, *pe, *pn, *p0; 1146 int eapad1, eapad2, ealength, ealen, nlen; 1147 uint32_t ul; 1148 1149 pe = ptr + length; 1150 nlen = strlen(name); 1151 1152 for (p = ptr; p < pe; p = pn) { 1153 p0 = p; 1154 bcopy(p, &ul, sizeof(ul)); 1155 pn = p + ul; 1156 /* make sure this entry is complete */ 1157 if (pn > pe) 1158 break; 1159 p += sizeof(uint32_t); 1160 if (*p != nspace) 1161 continue; 1162 p++; 1163 eapad2 = *p++; 1164 if (*p != nlen) 1165 continue; 1166 p++; 1167 if (bcmp(p, name, nlen)) 1168 continue; 1169 ealength = sizeof(uint32_t) + 3 + nlen; 1170 eapad1 = 8 - (ealength % 8); 1171 if (eapad1 == 8) 1172 eapad1 = 0; 1173 ealength += eapad1; 1174 ealen = ul - ealength - eapad2; 1175 p += nlen + eapad1; 1176 if (eap != NULL) 1177 *eap = p0; 1178 if (eac != NULL) 1179 *eac = p; 1180 return (ealen); 1181 } 1182 return(-1); 1183 } 1184 1185 static int 1186 ffs_rdextattr(u_char **p, struct vnode *vp, struct thread *td, int extra) 1187 { 1188 struct inode *ip; 1189 struct ufs2_dinode *dp; 1190 struct uio luio; 1191 struct iovec liovec; 1192 int easize, error; 1193 u_char *eae; 1194 1195 ip = VTOI(vp); 1196 dp = ip->i_din2; 1197 easize = dp->di_extsize; 1198 1199 eae = malloc(easize + extra, M_TEMP, M_WAITOK); 1200 1201 liovec.iov_base = eae; 1202 liovec.iov_len = easize; 1203 luio.uio_iov = &liovec; 1204 luio.uio_iovcnt = 1; 1205 luio.uio_offset = 0; 1206 luio.uio_resid = easize; 1207 luio.uio_segflg = UIO_SYSSPACE; 1208 luio.uio_rw = UIO_READ; 1209 luio.uio_td = td; 1210 1211 error = ffs_extread(vp, &luio, IO_EXT | IO_SYNC); 1212 if (error) { 1213 free(eae, M_TEMP); 1214 return(error); 1215 } 1216 *p = eae; 1217 return (0); 1218 } 1219 1220 static int 1221 ffs_open_ea(struct vnode *vp, struct ucred *cred, struct thread *td) 1222 { 1223 struct inode *ip; 1224 struct ufs2_dinode *dp; 1225 int error; 1226 1227 ip = VTOI(vp); 1228 1229 if (ip->i_ea_area != NULL) 1230 return (EBUSY); 1231 dp = ip->i_din2; 1232 error = ffs_rdextattr(&ip->i_ea_area, vp, td, 0); 1233 if (error) 1234 return (error); 1235 ip->i_ea_len = dp->di_extsize; 1236 ip->i_ea_error = 0; 1237 return (0); 1238 } 1239 1240 /* 1241 * Vnode extattr transaction commit/abort 1242 */ 1243 static int 1244 ffs_close_ea(struct vnode *vp, int commit, struct ucred *cred, struct thread *td) 1245 { 1246 struct inode *ip; 1247 struct uio luio; 1248 struct iovec liovec; 1249 int error; 1250 struct ufs2_dinode *dp; 1251 1252 ip = VTOI(vp); 1253 if (ip->i_ea_area == NULL) 1254 return (EINVAL); 1255 dp = ip->i_din2; 1256 error = ip->i_ea_error; 1257 if (commit && error == 0) { 1258 if (cred == NOCRED) 1259 cred = vp->v_mount->mnt_cred; 1260 liovec.iov_base = ip->i_ea_area; 1261 liovec.iov_len = ip->i_ea_len; 1262 luio.uio_iov = &liovec; 1263 luio.uio_iovcnt = 1; 1264 luio.uio_offset = 0; 1265 luio.uio_resid = ip->i_ea_len; 1266 luio.uio_segflg = UIO_SYSSPACE; 1267 luio.uio_rw = UIO_WRITE; 1268 luio.uio_td = td; 1269 /* XXX: I'm not happy about truncating to zero size */ 1270 if (ip->i_ea_len < dp->di_extsize) 1271 error = ffs_truncate(vp, 0, IO_EXT, cred, td); 1272 error = ffs_extwrite(vp, &luio, IO_EXT | IO_SYNC, cred); 1273 } 1274 free(ip->i_ea_area, M_TEMP); 1275 ip->i_ea_area = NULL; 1276 ip->i_ea_len = 0; 1277 ip->i_ea_error = 0; 1278 return (error); 1279 } 1280 1281 /* 1282 * Vnode extattr strategy routine for fifos. 1283 * 1284 * We need to check for a read or write of the external attributes. 1285 * Otherwise we just fall through and do the usual thing. 1286 */ 1287 static int 1288 ffsext_strategy(struct vop_strategy_args *ap) 1289 /* 1290 struct vop_strategy_args { 1291 struct vnodeop_desc *a_desc; 1292 struct vnode *a_vp; 1293 struct buf *a_bp; 1294 }; 1295 */ 1296 { 1297 struct vnode *vp; 1298 daddr_t lbn; 1299 1300 vp = ap->a_vp; 1301 lbn = ap->a_bp->b_lblkno; 1302 if (VTOI(vp)->i_fs->fs_magic == FS_UFS2_MAGIC && 1303 lbn < 0 && lbn >= -NXADDR) 1304 return (VOP_STRATEGY_APV(&ufs_vnodeops, ap)); 1305 if (vp->v_type == VFIFO) 1306 return (VOP_STRATEGY_APV(&ufs_fifoops, ap)); 1307 panic("spec nodes went here"); 1308 } 1309 1310 /* 1311 * Vnode extattr transaction commit/abort 1312 */ 1313 static int 1314 ffs_openextattr(struct vop_openextattr_args *ap) 1315 /* 1316 struct vop_openextattr_args { 1317 struct vnodeop_desc *a_desc; 1318 struct vnode *a_vp; 1319 IN struct ucred *a_cred; 1320 IN struct thread *a_td; 1321 }; 1322 */ 1323 { 1324 struct inode *ip; 1325 struct fs *fs; 1326 1327 ip = VTOI(ap->a_vp); 1328 fs = ip->i_fs; 1329 1330 if (ap->a_vp->v_type == VCHR) 1331 return (EOPNOTSUPP); 1332 1333 return (ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td)); 1334 } 1335 1336 1337 /* 1338 * Vnode extattr transaction commit/abort 1339 */ 1340 static int 1341 ffs_closeextattr(struct vop_closeextattr_args *ap) 1342 /* 1343 struct vop_closeextattr_args { 1344 struct vnodeop_desc *a_desc; 1345 struct vnode *a_vp; 1346 int a_commit; 1347 IN struct ucred *a_cred; 1348 IN struct thread *a_td; 1349 }; 1350 */ 1351 { 1352 struct inode *ip; 1353 struct fs *fs; 1354 1355 ip = VTOI(ap->a_vp); 1356 fs = ip->i_fs; 1357 1358 if (ap->a_vp->v_type == VCHR) 1359 return (EOPNOTSUPP); 1360 1361 if (ap->a_commit && (ap->a_vp->v_mount->mnt_flag & MNT_RDONLY)) 1362 return (EROFS); 1363 1364 return (ffs_close_ea(ap->a_vp, ap->a_commit, ap->a_cred, ap->a_td)); 1365 } 1366 1367 /* 1368 * Vnode operation to remove a named attribute. 1369 */ 1370 static int 1371 ffs_deleteextattr(struct vop_deleteextattr_args *ap) 1372 /* 1373 vop_deleteextattr { 1374 IN struct vnode *a_vp; 1375 IN int a_attrnamespace; 1376 IN const char *a_name; 1377 IN struct ucred *a_cred; 1378 IN struct thread *a_td; 1379 }; 1380 */ 1381 { 1382 struct inode *ip; 1383 struct fs *fs; 1384 uint32_t ealength, ul; 1385 int ealen, olen, eapad1, eapad2, error, i, easize; 1386 u_char *eae, *p; 1387 int stand_alone; 1388 1389 ip = VTOI(ap->a_vp); 1390 fs = ip->i_fs; 1391 1392 if (ap->a_vp->v_type == VCHR) 1393 return (EOPNOTSUPP); 1394 1395 if (strlen(ap->a_name) == 0) 1396 return (EINVAL); 1397 1398 if (ap->a_vp->v_mount->mnt_flag & MNT_RDONLY) 1399 return (EROFS); 1400 1401 error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace, 1402 ap->a_cred, ap->a_td, IWRITE); 1403 if (error) { 1404 if (ip->i_ea_area != NULL && ip->i_ea_error == 0) 1405 ip->i_ea_error = error; 1406 return (error); 1407 } 1408 1409 if (ip->i_ea_area == NULL) { 1410 error = ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td); 1411 if (error) 1412 return (error); 1413 stand_alone = 1; 1414 } else { 1415 stand_alone = 0; 1416 } 1417 1418 ealength = eapad1 = ealen = eapad2 = 0; 1419 1420 eae = malloc(ip->i_ea_len, M_TEMP, M_WAITOK); 1421 bcopy(ip->i_ea_area, eae, ip->i_ea_len); 1422 easize = ip->i_ea_len; 1423 1424 olen = ffs_findextattr(eae, easize, ap->a_attrnamespace, ap->a_name, 1425 &p, NULL); 1426 if (olen == -1) { 1427 /* delete but nonexistent */ 1428 free(eae, M_TEMP); 1429 if (stand_alone) 1430 ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td); 1431 return(ENOATTR); 1432 } 1433 bcopy(p, &ul, sizeof ul); 1434 i = p - eae + ul; 1435 if (ul != ealength) { 1436 bcopy(p + ul, p + ealength, easize - i); 1437 easize += (ealength - ul); 1438 } 1439 if (easize > NXADDR * fs->fs_bsize) { 1440 free(eae, M_TEMP); 1441 if (stand_alone) 1442 ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td); 1443 else if (ip->i_ea_error == 0) 1444 ip->i_ea_error = ENOSPC; 1445 return(ENOSPC); 1446 } 1447 p = ip->i_ea_area; 1448 ip->i_ea_area = eae; 1449 ip->i_ea_len = easize; 1450 free(p, M_TEMP); 1451 if (stand_alone) 1452 error = ffs_close_ea(ap->a_vp, 1, ap->a_cred, ap->a_td); 1453 return(error); 1454 } 1455 1456 /* 1457 * Vnode operation to retrieve a named extended attribute. 1458 */ 1459 static int 1460 ffs_getextattr(struct vop_getextattr_args *ap) 1461 /* 1462 vop_getextattr { 1463 IN struct vnode *a_vp; 1464 IN int a_attrnamespace; 1465 IN const char *a_name; 1466 INOUT struct uio *a_uio; 1467 OUT size_t *a_size; 1468 IN struct ucred *a_cred; 1469 IN struct thread *a_td; 1470 }; 1471 */ 1472 { 1473 struct inode *ip; 1474 struct fs *fs; 1475 u_char *eae, *p; 1476 unsigned easize; 1477 int error, ealen, stand_alone; 1478 1479 ip = VTOI(ap->a_vp); 1480 fs = ip->i_fs; 1481 1482 if (ap->a_vp->v_type == VCHR) 1483 return (EOPNOTSUPP); 1484 1485 error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace, 1486 ap->a_cred, ap->a_td, IREAD); 1487 if (error) 1488 return (error); 1489 1490 if (ip->i_ea_area == NULL) { 1491 error = ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td); 1492 if (error) 1493 return (error); 1494 stand_alone = 1; 1495 } else { 1496 stand_alone = 0; 1497 } 1498 eae = ip->i_ea_area; 1499 easize = ip->i_ea_len; 1500 1501 ealen = ffs_findextattr(eae, easize, ap->a_attrnamespace, ap->a_name, 1502 NULL, &p); 1503 if (ealen >= 0) { 1504 error = 0; 1505 if (ap->a_size != NULL) 1506 *ap->a_size = ealen; 1507 else if (ap->a_uio != NULL) 1508 error = uiomove(p, ealen, ap->a_uio); 1509 } else 1510 error = ENOATTR; 1511 if (stand_alone) 1512 ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td); 1513 return(error); 1514 } 1515 1516 /* 1517 * Vnode operation to retrieve extended attributes on a vnode. 1518 */ 1519 static int 1520 ffs_listextattr(struct vop_listextattr_args *ap) 1521 /* 1522 vop_listextattr { 1523 IN struct vnode *a_vp; 1524 IN int a_attrnamespace; 1525 INOUT struct uio *a_uio; 1526 OUT size_t *a_size; 1527 IN struct ucred *a_cred; 1528 IN struct thread *a_td; 1529 }; 1530 */ 1531 { 1532 struct inode *ip; 1533 struct fs *fs; 1534 u_char *eae, *p, *pe, *pn; 1535 unsigned easize; 1536 uint32_t ul; 1537 int error, ealen, stand_alone; 1538 1539 ip = VTOI(ap->a_vp); 1540 fs = ip->i_fs; 1541 1542 if (ap->a_vp->v_type == VCHR) 1543 return (EOPNOTSUPP); 1544 1545 error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace, 1546 ap->a_cred, ap->a_td, IREAD); 1547 if (error) 1548 return (error); 1549 1550 if (ip->i_ea_area == NULL) { 1551 error = ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td); 1552 if (error) 1553 return (error); 1554 stand_alone = 1; 1555 } else { 1556 stand_alone = 0; 1557 } 1558 eae = ip->i_ea_area; 1559 easize = ip->i_ea_len; 1560 1561 error = 0; 1562 if (ap->a_size != NULL) 1563 *ap->a_size = 0; 1564 pe = eae + easize; 1565 for(p = eae; error == 0 && p < pe; p = pn) { 1566 bcopy(p, &ul, sizeof(ul)); 1567 pn = p + ul; 1568 if (pn > pe) 1569 break; 1570 p += sizeof(ul); 1571 if (*p++ != ap->a_attrnamespace) 1572 continue; 1573 p++; /* pad2 */ 1574 ealen = *p; 1575 if (ap->a_size != NULL) { 1576 *ap->a_size += ealen + 1; 1577 } else if (ap->a_uio != NULL) { 1578 error = uiomove(p, ealen + 1, ap->a_uio); 1579 } 1580 } 1581 if (stand_alone) 1582 ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td); 1583 return(error); 1584 } 1585 1586 /* 1587 * Vnode operation to set a named attribute. 1588 */ 1589 static int 1590 ffs_setextattr(struct vop_setextattr_args *ap) 1591 /* 1592 vop_setextattr { 1593 IN struct vnode *a_vp; 1594 IN int a_attrnamespace; 1595 IN const char *a_name; 1596 INOUT struct uio *a_uio; 1597 IN struct ucred *a_cred; 1598 IN struct thread *a_td; 1599 }; 1600 */ 1601 { 1602 struct inode *ip; 1603 struct fs *fs; 1604 uint32_t ealength, ul; 1605 int ealen, olen, eapad1, eapad2, error, i, easize; 1606 u_char *eae, *p; 1607 int stand_alone; 1608 1609 ip = VTOI(ap->a_vp); 1610 fs = ip->i_fs; 1611 1612 if (ap->a_vp->v_type == VCHR) 1613 return (EOPNOTSUPP); 1614 1615 if (strlen(ap->a_name) == 0) 1616 return (EINVAL); 1617 1618 /* XXX Now unsupported API to delete EAs using NULL uio. */ 1619 if (ap->a_uio == NULL) 1620 return (EOPNOTSUPP); 1621 1622 if (ap->a_vp->v_mount->mnt_flag & MNT_RDONLY) 1623 return (EROFS); 1624 1625 error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace, 1626 ap->a_cred, ap->a_td, IWRITE); 1627 if (error) { 1628 if (ip->i_ea_area != NULL && ip->i_ea_error == 0) 1629 ip->i_ea_error = error; 1630 return (error); 1631 } 1632 1633 if (ip->i_ea_area == NULL) { 1634 error = ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td); 1635 if (error) 1636 return (error); 1637 stand_alone = 1; 1638 } else { 1639 stand_alone = 0; 1640 } 1641 1642 ealen = ap->a_uio->uio_resid; 1643 ealength = sizeof(uint32_t) + 3 + strlen(ap->a_name); 1644 eapad1 = 8 - (ealength % 8); 1645 if (eapad1 == 8) 1646 eapad1 = 0; 1647 eapad2 = 8 - (ealen % 8); 1648 if (eapad2 == 8) 1649 eapad2 = 0; 1650 ealength += eapad1 + ealen + eapad2; 1651 1652 eae = malloc(ip->i_ea_len + ealength, M_TEMP, M_WAITOK); 1653 bcopy(ip->i_ea_area, eae, ip->i_ea_len); 1654 easize = ip->i_ea_len; 1655 1656 olen = ffs_findextattr(eae, easize, 1657 ap->a_attrnamespace, ap->a_name, &p, NULL); 1658 if (olen == -1) { 1659 /* new, append at end */ 1660 p = eae + easize; 1661 easize += ealength; 1662 } else { 1663 bcopy(p, &ul, sizeof ul); 1664 i = p - eae + ul; 1665 if (ul != ealength) { 1666 bcopy(p + ul, p + ealength, easize - i); 1667 easize += (ealength - ul); 1668 } 1669 } 1670 if (easize > NXADDR * fs->fs_bsize) { 1671 free(eae, M_TEMP); 1672 if (stand_alone) 1673 ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td); 1674 else if (ip->i_ea_error == 0) 1675 ip->i_ea_error = ENOSPC; 1676 return(ENOSPC); 1677 } 1678 bcopy(&ealength, p, sizeof(ealength)); 1679 p += sizeof(ealength); 1680 *p++ = ap->a_attrnamespace; 1681 *p++ = eapad2; 1682 *p++ = strlen(ap->a_name); 1683 strcpy(p, ap->a_name); 1684 p += strlen(ap->a_name); 1685 bzero(p, eapad1); 1686 p += eapad1; 1687 error = uiomove(p, ealen, ap->a_uio); 1688 if (error) { 1689 free(eae, M_TEMP); 1690 if (stand_alone) 1691 ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td); 1692 else if (ip->i_ea_error == 0) 1693 ip->i_ea_error = error; 1694 return(error); 1695 } 1696 p += ealen; 1697 bzero(p, eapad2); 1698 1699 p = ip->i_ea_area; 1700 ip->i_ea_area = eae; 1701 ip->i_ea_len = easize; 1702 free(p, M_TEMP); 1703 if (stand_alone) 1704 error = ffs_close_ea(ap->a_vp, 1, ap->a_cred, ap->a_td); 1705 return(error); 1706 } 1707 1708 /* 1709 * Vnode pointer to File handle 1710 */ 1711 static int 1712 ffs_vptofh(struct vop_vptofh_args *ap) 1713 /* 1714 vop_vptofh { 1715 IN struct vnode *a_vp; 1716 IN struct fid *a_fhp; 1717 }; 1718 */ 1719 { 1720 struct inode *ip; 1721 struct ufid *ufhp; 1722 1723 ip = VTOI(ap->a_vp); 1724 ufhp = (struct ufid *)ap->a_fhp; 1725 ufhp->ufid_len = sizeof(struct ufid); 1726 ufhp->ufid_ino = ip->i_number; 1727 ufhp->ufid_gen = ip->i_gen; 1728 return (0); 1729 } 1730