xref: /freebsd/sys/ufs/ffs/ffs_vnops.c (revision 27c43fe1f3795622c5bd4bbfc465a29a800c0799)
1 /*-
2  * Copyright (c) 2002, 2003 Networks Associates Technology, Inc.
3  * All rights reserved.
4  *
5  * This software was developed for the FreeBSD Project by Marshall
6  * Kirk McKusick and Network Associates Laboratories, the Security
7  * Research Division of Network Associates, Inc. under DARPA/SPAWAR
8  * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
9  * research program
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  * Copyright (c) 1982, 1986, 1989, 1993
33  *	The Regents of the University of California.  All rights reserved.
34  *
35  * Redistribution and use in source and binary forms, with or without
36  * modification, are permitted provided that the following conditions
37  * are met:
38  * 1. Redistributions of source code must retain the above copyright
39  *    notice, this list of conditions and the following disclaimer.
40  * 2. Redistributions in binary form must reproduce the above copyright
41  *    notice, this list of conditions and the following disclaimer in the
42  *    documentation and/or other materials provided with the distribution.
43  * 4. Neither the name of the University nor the names of its contributors
44  *    may be used to endorse or promote products derived from this software
45  *    without specific prior written permission.
46  *
47  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
48  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
49  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
50  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
51  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
52  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
53  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
54  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
55  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
56  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
57  * SUCH DAMAGE.
58  *
59  *	from: @(#)ufs_readwrite.c	8.11 (Berkeley) 5/8/95
60  * from: $FreeBSD: .../ufs/ufs_readwrite.c,v 1.96 2002/08/12 09:22:11 phk ...
61  *	@(#)ffs_vnops.c	8.15 (Berkeley) 5/14/95
62  */
63 
64 #include <sys/cdefs.h>
65 __FBSDID("$FreeBSD$");
66 
67 #include <sys/param.h>
68 #include <sys/bio.h>
69 #include <sys/systm.h>
70 #include <sys/buf.h>
71 #include <sys/conf.h>
72 #include <sys/extattr.h>
73 #include <sys/kernel.h>
74 #include <sys/limits.h>
75 #include <sys/malloc.h>
76 #include <sys/mount.h>
77 #include <sys/priv.h>
78 #include <sys/rwlock.h>
79 #include <sys/stat.h>
80 #include <sys/vmmeter.h>
81 #include <sys/vnode.h>
82 
83 #include <vm/vm.h>
84 #include <vm/vm_param.h>
85 #include <vm/vm_extern.h>
86 #include <vm/vm_object.h>
87 #include <vm/vm_page.h>
88 #include <vm/vm_pager.h>
89 #include <vm/vnode_pager.h>
90 
91 #include <ufs/ufs/extattr.h>
92 #include <ufs/ufs/quota.h>
93 #include <ufs/ufs/inode.h>
94 #include <ufs/ufs/ufs_extern.h>
95 #include <ufs/ufs/ufsmount.h>
96 
97 #include <ufs/ffs/fs.h>
98 #include <ufs/ffs/ffs_extern.h>
99 #include "opt_directio.h"
100 #include "opt_ffs.h"
101 
102 #ifdef DIRECTIO
103 extern int	ffs_rawread(struct vnode *vp, struct uio *uio, int *workdone);
104 #endif
105 static vop_fsync_t	ffs_fsync;
106 static vop_lock1_t	ffs_lock;
107 static vop_getpages_t	ffs_getpages;
108 static vop_read_t	ffs_read;
109 static vop_write_t	ffs_write;
110 static int	ffs_extread(struct vnode *vp, struct uio *uio, int ioflag);
111 static int	ffs_extwrite(struct vnode *vp, struct uio *uio, int ioflag,
112 		    struct ucred *cred);
113 static vop_strategy_t	ffsext_strategy;
114 static vop_closeextattr_t	ffs_closeextattr;
115 static vop_deleteextattr_t	ffs_deleteextattr;
116 static vop_getextattr_t	ffs_getextattr;
117 static vop_listextattr_t	ffs_listextattr;
118 static vop_openextattr_t	ffs_openextattr;
119 static vop_setextattr_t	ffs_setextattr;
120 static vop_vptofh_t	ffs_vptofh;
121 
122 
123 /* Global vfs data structures for ufs. */
124 struct vop_vector ffs_vnodeops1 = {
125 	.vop_default =		&ufs_vnodeops,
126 	.vop_fsync =		ffs_fsync,
127 	.vop_getpages =		ffs_getpages,
128 	.vop_lock1 =		ffs_lock,
129 	.vop_read =		ffs_read,
130 	.vop_reallocblks =	ffs_reallocblks,
131 	.vop_write =		ffs_write,
132 	.vop_vptofh =		ffs_vptofh,
133 };
134 
135 struct vop_vector ffs_fifoops1 = {
136 	.vop_default =		&ufs_fifoops,
137 	.vop_fsync =		ffs_fsync,
138 	.vop_reallocblks =	ffs_reallocblks, /* XXX: really ??? */
139 	.vop_vptofh =		ffs_vptofh,
140 };
141 
142 /* Global vfs data structures for ufs. */
143 struct vop_vector ffs_vnodeops2 = {
144 	.vop_default =		&ufs_vnodeops,
145 	.vop_fsync =		ffs_fsync,
146 	.vop_getpages =		ffs_getpages,
147 	.vop_lock1 =		ffs_lock,
148 	.vop_read =		ffs_read,
149 	.vop_reallocblks =	ffs_reallocblks,
150 	.vop_write =		ffs_write,
151 	.vop_closeextattr =	ffs_closeextattr,
152 	.vop_deleteextattr =	ffs_deleteextattr,
153 	.vop_getextattr =	ffs_getextattr,
154 	.vop_listextattr =	ffs_listextattr,
155 	.vop_openextattr =	ffs_openextattr,
156 	.vop_setextattr =	ffs_setextattr,
157 	.vop_vptofh =		ffs_vptofh,
158 };
159 
160 struct vop_vector ffs_fifoops2 = {
161 	.vop_default =		&ufs_fifoops,
162 	.vop_fsync =		ffs_fsync,
163 	.vop_lock1 =		ffs_lock,
164 	.vop_reallocblks =	ffs_reallocblks,
165 	.vop_strategy =		ffsext_strategy,
166 	.vop_closeextattr =	ffs_closeextattr,
167 	.vop_deleteextattr =	ffs_deleteextattr,
168 	.vop_getextattr =	ffs_getextattr,
169 	.vop_listextattr =	ffs_listextattr,
170 	.vop_openextattr =	ffs_openextattr,
171 	.vop_setextattr =	ffs_setextattr,
172 	.vop_vptofh =		ffs_vptofh,
173 };
174 
175 /*
176  * Synch an open file.
177  */
178 /* ARGSUSED */
179 static int
180 ffs_fsync(struct vop_fsync_args *ap)
181 {
182 	struct vnode *vp;
183 	struct bufobj *bo;
184 	int error;
185 
186 	vp = ap->a_vp;
187 	bo = &vp->v_bufobj;
188 retry:
189 	error = ffs_syncvnode(vp, ap->a_waitfor, 0);
190 	if (error)
191 		return (error);
192 	if (ap->a_waitfor == MNT_WAIT && DOINGSOFTDEP(vp)) {
193 		error = softdep_fsync(vp);
194 		if (error)
195 			return (error);
196 
197 		/*
198 		 * The softdep_fsync() function may drop vp lock,
199 		 * allowing for dirty buffers to reappear on the
200 		 * bo_dirty list. Recheck and resync as needed.
201 		 */
202 		BO_LOCK(bo);
203 		if (vp->v_type == VREG && (bo->bo_numoutput > 0 ||
204 		    bo->bo_dirty.bv_cnt > 0)) {
205 			BO_UNLOCK(bo);
206 			goto retry;
207 		}
208 		BO_UNLOCK(bo);
209 	}
210 	return (0);
211 }
212 
213 int
214 ffs_syncvnode(struct vnode *vp, int waitfor, int flags)
215 {
216 	struct inode *ip;
217 	struct bufobj *bo;
218 	struct buf *bp;
219 	struct buf *nbp;
220 	ufs_lbn_t lbn;
221 	int error, wait, passes;
222 
223 	ip = VTOI(vp);
224 	ip->i_flag &= ~IN_NEEDSYNC;
225 	bo = &vp->v_bufobj;
226 
227 	/*
228 	 * When doing MNT_WAIT we must first flush all dependencies
229 	 * on the inode.
230 	 */
231 	if (DOINGSOFTDEP(vp) && waitfor == MNT_WAIT &&
232 	    (error = softdep_sync_metadata(vp)) != 0)
233 		return (error);
234 
235 	/*
236 	 * Flush all dirty buffers associated with a vnode.
237 	 */
238 	error = 0;
239 	passes = 0;
240 	wait = 0;	/* Always do an async pass first. */
241 	lbn = lblkno(ip->i_fs, (ip->i_size + ip->i_fs->fs_bsize - 1));
242 	BO_LOCK(bo);
243 loop:
244 	TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs)
245 		bp->b_vflags &= ~BV_SCANNED;
246 	TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
247 		/*
248 		 * Reasons to skip this buffer: it has already been considered
249 		 * on this pass, the buffer has dependencies that will cause
250 		 * it to be redirtied and it has not already been deferred,
251 		 * or it is already being written.
252 		 */
253 		if ((bp->b_vflags & BV_SCANNED) != 0)
254 			continue;
255 		bp->b_vflags |= BV_SCANNED;
256 		/* Flush indirects in order. */
257 		if (waitfor == MNT_WAIT && bp->b_lblkno <= -NDADDR &&
258 		    lbn_level(bp->b_lblkno) >= passes)
259 			continue;
260 		if (bp->b_lblkno > lbn)
261 			panic("ffs_syncvnode: syncing truncated data.");
262 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) == 0) {
263 			BO_UNLOCK(bo);
264 		} else if (wait != 0) {
265 			if (BUF_LOCK(bp,
266 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
267 			    BO_LOCKPTR(bo)) != 0) {
268 				bp->b_vflags &= ~BV_SCANNED;
269 				goto next;
270 			}
271 		} else
272 			continue;
273 		if ((bp->b_flags & B_DELWRI) == 0)
274 			panic("ffs_fsync: not dirty");
275 		/*
276 		 * Check for dependencies and potentially complete them.
277 		 */
278 		if (!LIST_EMPTY(&bp->b_dep) &&
279 		    (error = softdep_sync_buf(vp, bp,
280 		    wait ? MNT_WAIT : MNT_NOWAIT)) != 0) {
281 			/* I/O error. */
282 			if (error != EBUSY) {
283 				BUF_UNLOCK(bp);
284 				return (error);
285 			}
286 			/* If we deferred once, don't defer again. */
287 		    	if ((bp->b_flags & B_DEFERRED) == 0) {
288 				bp->b_flags |= B_DEFERRED;
289 				BUF_UNLOCK(bp);
290 				goto next;
291 			}
292 		}
293 		if (wait) {
294 			bremfree(bp);
295 			if ((error = bwrite(bp)) != 0)
296 				return (error);
297 		} else if ((bp->b_flags & B_CLUSTEROK)) {
298 			(void) vfs_bio_awrite(bp);
299 		} else {
300 			bremfree(bp);
301 			(void) bawrite(bp);
302 		}
303 next:
304 		/*
305 		 * Since we may have slept during the I/O, we need
306 		 * to start from a known point.
307 		 */
308 		BO_LOCK(bo);
309 		nbp = TAILQ_FIRST(&bo->bo_dirty.bv_hd);
310 	}
311 	if (waitfor != MNT_WAIT) {
312 		BO_UNLOCK(bo);
313 		if ((flags & NO_INO_UPDT) != 0)
314 			return (0);
315 		else
316 			return (ffs_update(vp, 0));
317 	}
318 	/* Drain IO to see if we're done. */
319 	bufobj_wwait(bo, 0, 0);
320 	/*
321 	 * Block devices associated with filesystems may have new I/O
322 	 * requests posted for them even if the vnode is locked, so no
323 	 * amount of trying will get them clean.  We make several passes
324 	 * as a best effort.
325 	 *
326 	 * Regular files may need multiple passes to flush all dependency
327 	 * work as it is possible that we must write once per indirect
328 	 * level, once for the leaf, and once for the inode and each of
329 	 * these will be done with one sync and one async pass.
330 	 */
331 	if (bo->bo_dirty.bv_cnt > 0) {
332 		/* Write the inode after sync passes to flush deps. */
333 		if (wait && DOINGSOFTDEP(vp) && (flags & NO_INO_UPDT) == 0) {
334 			BO_UNLOCK(bo);
335 			ffs_update(vp, 1);
336 			BO_LOCK(bo);
337 		}
338 		/* switch between sync/async. */
339 		wait = !wait;
340 		if (wait == 1 || ++passes < NIADDR + 2)
341 			goto loop;
342 #ifdef INVARIANTS
343 		if (!vn_isdisk(vp, NULL))
344 			vprint("ffs_fsync: dirty", vp);
345 #endif
346 	}
347 	BO_UNLOCK(bo);
348 	error = 0;
349 	if ((flags & NO_INO_UPDT) == 0)
350 		error = ffs_update(vp, 1);
351 	if (DOINGSUJ(vp))
352 		softdep_journal_fsync(VTOI(vp));
353 	return (error);
354 }
355 
356 static int
357 ffs_lock(ap)
358 	struct vop_lock1_args /* {
359 		struct vnode *a_vp;
360 		int a_flags;
361 		struct thread *a_td;
362 		char *file;
363 		int line;
364 	} */ *ap;
365 {
366 #ifndef NO_FFS_SNAPSHOT
367 	struct vnode *vp;
368 	int flags;
369 	struct lock *lkp;
370 	int result;
371 
372 	switch (ap->a_flags & LK_TYPE_MASK) {
373 	case LK_SHARED:
374 	case LK_UPGRADE:
375 	case LK_EXCLUSIVE:
376 		vp = ap->a_vp;
377 		flags = ap->a_flags;
378 		for (;;) {
379 #ifdef DEBUG_VFS_LOCKS
380 			KASSERT(vp->v_holdcnt != 0,
381 			    ("ffs_lock %p: zero hold count", vp));
382 #endif
383 			lkp = vp->v_vnlock;
384 			result = _lockmgr_args(lkp, flags, VI_MTX(vp),
385 			    LK_WMESG_DEFAULT, LK_PRIO_DEFAULT, LK_TIMO_DEFAULT,
386 			    ap->a_file, ap->a_line);
387 			if (lkp == vp->v_vnlock || result != 0)
388 				break;
389 			/*
390 			 * Apparent success, except that the vnode
391 			 * mutated between snapshot file vnode and
392 			 * regular file vnode while this process
393 			 * slept.  The lock currently held is not the
394 			 * right lock.  Release it, and try to get the
395 			 * new lock.
396 			 */
397 			(void) _lockmgr_args(lkp, LK_RELEASE, NULL,
398 			    LK_WMESG_DEFAULT, LK_PRIO_DEFAULT, LK_TIMO_DEFAULT,
399 			    ap->a_file, ap->a_line);
400 			if ((flags & (LK_INTERLOCK | LK_NOWAIT)) ==
401 			    (LK_INTERLOCK | LK_NOWAIT))
402 				return (EBUSY);
403 			if ((flags & LK_TYPE_MASK) == LK_UPGRADE)
404 				flags = (flags & ~LK_TYPE_MASK) | LK_EXCLUSIVE;
405 			flags &= ~LK_INTERLOCK;
406 		}
407 		break;
408 	default:
409 		result = VOP_LOCK1_APV(&ufs_vnodeops, ap);
410 	}
411 	return (result);
412 #else
413 	return (VOP_LOCK1_APV(&ufs_vnodeops, ap));
414 #endif
415 }
416 
417 /*
418  * Vnode op for reading.
419  */
420 static int
421 ffs_read(ap)
422 	struct vop_read_args /* {
423 		struct vnode *a_vp;
424 		struct uio *a_uio;
425 		int a_ioflag;
426 		struct ucred *a_cred;
427 	} */ *ap;
428 {
429 	struct vnode *vp;
430 	struct inode *ip;
431 	struct uio *uio;
432 	struct fs *fs;
433 	struct buf *bp;
434 	ufs_lbn_t lbn, nextlbn;
435 	off_t bytesinfile;
436 	long size, xfersize, blkoffset;
437 	ssize_t orig_resid;
438 	int error;
439 	int seqcount;
440 	int ioflag;
441 
442 	vp = ap->a_vp;
443 	uio = ap->a_uio;
444 	ioflag = ap->a_ioflag;
445 	if (ap->a_ioflag & IO_EXT)
446 #ifdef notyet
447 		return (ffs_extread(vp, uio, ioflag));
448 #else
449 		panic("ffs_read+IO_EXT");
450 #endif
451 #ifdef DIRECTIO
452 	if ((ioflag & IO_DIRECT) != 0) {
453 		int workdone;
454 
455 		error = ffs_rawread(vp, uio, &workdone);
456 		if (error != 0 || workdone != 0)
457 			return error;
458 	}
459 #endif
460 
461 	seqcount = ap->a_ioflag >> IO_SEQSHIFT;
462 	ip = VTOI(vp);
463 
464 #ifdef INVARIANTS
465 	if (uio->uio_rw != UIO_READ)
466 		panic("ffs_read: mode");
467 
468 	if (vp->v_type == VLNK) {
469 		if ((int)ip->i_size < vp->v_mount->mnt_maxsymlinklen)
470 			panic("ffs_read: short symlink");
471 	} else if (vp->v_type != VREG && vp->v_type != VDIR)
472 		panic("ffs_read: type %d",  vp->v_type);
473 #endif
474 	orig_resid = uio->uio_resid;
475 	KASSERT(orig_resid >= 0, ("ffs_read: uio->uio_resid < 0"));
476 	if (orig_resid == 0)
477 		return (0);
478 	KASSERT(uio->uio_offset >= 0, ("ffs_read: uio->uio_offset < 0"));
479 	fs = ip->i_fs;
480 	if (uio->uio_offset < ip->i_size &&
481 	    uio->uio_offset >= fs->fs_maxfilesize)
482 		return (EOVERFLOW);
483 
484 	for (error = 0, bp = NULL; uio->uio_resid > 0; bp = NULL) {
485 		if ((bytesinfile = ip->i_size - uio->uio_offset) <= 0)
486 			break;
487 		lbn = lblkno(fs, uio->uio_offset);
488 		nextlbn = lbn + 1;
489 
490 		/*
491 		 * size of buffer.  The buffer representing the
492 		 * end of the file is rounded up to the size of
493 		 * the block type ( fragment or full block,
494 		 * depending ).
495 		 */
496 		size = blksize(fs, ip, lbn);
497 		blkoffset = blkoff(fs, uio->uio_offset);
498 
499 		/*
500 		 * The amount we want to transfer in this iteration is
501 		 * one FS block less the amount of the data before
502 		 * our startpoint (duh!)
503 		 */
504 		xfersize = fs->fs_bsize - blkoffset;
505 
506 		/*
507 		 * But if we actually want less than the block,
508 		 * or the file doesn't have a whole block more of data,
509 		 * then use the lesser number.
510 		 */
511 		if (uio->uio_resid < xfersize)
512 			xfersize = uio->uio_resid;
513 		if (bytesinfile < xfersize)
514 			xfersize = bytesinfile;
515 
516 		if (lblktosize(fs, nextlbn) >= ip->i_size) {
517 			/*
518 			 * Don't do readahead if this is the end of the file.
519 			 */
520 			error = bread_gb(vp, lbn, size, NOCRED,
521 			    GB_UNMAPPED, &bp);
522 		} else if ((vp->v_mount->mnt_flag & MNT_NOCLUSTERR) == 0) {
523 			/*
524 			 * Otherwise if we are allowed to cluster,
525 			 * grab as much as we can.
526 			 *
527 			 * XXX  This may not be a win if we are not
528 			 * doing sequential access.
529 			 */
530 			error = cluster_read(vp, ip->i_size, lbn,
531 			    size, NOCRED, blkoffset + uio->uio_resid,
532 			    seqcount, GB_UNMAPPED, &bp);
533 		} else if (seqcount > 1) {
534 			/*
535 			 * If we are NOT allowed to cluster, then
536 			 * if we appear to be acting sequentially,
537 			 * fire off a request for a readahead
538 			 * as well as a read. Note that the 4th and 5th
539 			 * arguments point to arrays of the size specified in
540 			 * the 6th argument.
541 			 */
542 			u_int nextsize = blksize(fs, ip, nextlbn);
543 			error = breadn_flags(vp, lbn, size, &nextlbn,
544 			    &nextsize, 1, NOCRED, GB_UNMAPPED, &bp);
545 		} else {
546 			/*
547 			 * Failing all of the above, just read what the
548 			 * user asked for. Interestingly, the same as
549 			 * the first option above.
550 			 */
551 			error = bread_gb(vp, lbn, size, NOCRED,
552 			    GB_UNMAPPED, &bp);
553 		}
554 		if (error) {
555 			brelse(bp);
556 			bp = NULL;
557 			break;
558 		}
559 
560 		/*
561 		 * If IO_DIRECT then set B_DIRECT for the buffer.  This
562 		 * will cause us to attempt to release the buffer later on
563 		 * and will cause the buffer cache to attempt to free the
564 		 * underlying pages.
565 		 */
566 		if (ioflag & IO_DIRECT)
567 			bp->b_flags |= B_DIRECT;
568 
569 		/*
570 		 * We should only get non-zero b_resid when an I/O error
571 		 * has occurred, which should cause us to break above.
572 		 * However, if the short read did not cause an error,
573 		 * then we want to ensure that we do not uiomove bad
574 		 * or uninitialized data.
575 		 */
576 		size -= bp->b_resid;
577 		if (size < xfersize) {
578 			if (size == 0)
579 				break;
580 			xfersize = size;
581 		}
582 
583 		if ((bp->b_flags & B_UNMAPPED) == 0) {
584 			error = vn_io_fault_uiomove((char *)bp->b_data +
585 			    blkoffset, (int)xfersize, uio);
586 		} else {
587 			error = vn_io_fault_pgmove(bp->b_pages, blkoffset,
588 			    (int)xfersize, uio);
589 		}
590 		if (error)
591 			break;
592 
593 		if ((ioflag & (IO_VMIO|IO_DIRECT)) &&
594 		   (LIST_EMPTY(&bp->b_dep))) {
595 			/*
596 			 * If there are no dependencies, and it's VMIO,
597 			 * then we don't need the buf, mark it available
598 			 * for freeing.  For non-direct VMIO reads, the VM
599 			 * has the data.
600 			 */
601 			bp->b_flags |= B_RELBUF;
602 			brelse(bp);
603 		} else {
604 			/*
605 			 * Otherwise let whoever
606 			 * made the request take care of
607 			 * freeing it. We just queue
608 			 * it onto another list.
609 			 */
610 			bqrelse(bp);
611 		}
612 	}
613 
614 	/*
615 	 * This can only happen in the case of an error
616 	 * because the loop above resets bp to NULL on each iteration
617 	 * and on normal completion has not set a new value into it.
618 	 * so it must have come from a 'break' statement
619 	 */
620 	if (bp != NULL) {
621 		if ((ioflag & (IO_VMIO|IO_DIRECT)) &&
622 		   (LIST_EMPTY(&bp->b_dep))) {
623 			bp->b_flags |= B_RELBUF;
624 			brelse(bp);
625 		} else {
626 			bqrelse(bp);
627 		}
628 	}
629 
630 	if ((error == 0 || uio->uio_resid != orig_resid) &&
631 	    (vp->v_mount->mnt_flag & MNT_NOATIME) == 0 &&
632 	    (ip->i_flag & IN_ACCESS) == 0) {
633 		VI_LOCK(vp);
634 		ip->i_flag |= IN_ACCESS;
635 		VI_UNLOCK(vp);
636 	}
637 	return (error);
638 }
639 
640 /*
641  * Vnode op for writing.
642  */
643 static int
644 ffs_write(ap)
645 	struct vop_write_args /* {
646 		struct vnode *a_vp;
647 		struct uio *a_uio;
648 		int a_ioflag;
649 		struct ucred *a_cred;
650 	} */ *ap;
651 {
652 	struct vnode *vp;
653 	struct uio *uio;
654 	struct inode *ip;
655 	struct fs *fs;
656 	struct buf *bp;
657 	ufs_lbn_t lbn;
658 	off_t osize;
659 	ssize_t resid;
660 	int seqcount;
661 	int blkoffset, error, flags, ioflag, size, xfersize;
662 
663 	vp = ap->a_vp;
664 	uio = ap->a_uio;
665 	ioflag = ap->a_ioflag;
666 	if (ap->a_ioflag & IO_EXT)
667 #ifdef notyet
668 		return (ffs_extwrite(vp, uio, ioflag, ap->a_cred));
669 #else
670 		panic("ffs_write+IO_EXT");
671 #endif
672 
673 	seqcount = ap->a_ioflag >> IO_SEQSHIFT;
674 	ip = VTOI(vp);
675 
676 #ifdef INVARIANTS
677 	if (uio->uio_rw != UIO_WRITE)
678 		panic("ffs_write: mode");
679 #endif
680 
681 	switch (vp->v_type) {
682 	case VREG:
683 		if (ioflag & IO_APPEND)
684 			uio->uio_offset = ip->i_size;
685 		if ((ip->i_flags & APPEND) && uio->uio_offset != ip->i_size)
686 			return (EPERM);
687 		/* FALLTHROUGH */
688 	case VLNK:
689 		break;
690 	case VDIR:
691 		panic("ffs_write: dir write");
692 		break;
693 	default:
694 		panic("ffs_write: type %p %d (%d,%d)", vp, (int)vp->v_type,
695 			(int)uio->uio_offset,
696 			(int)uio->uio_resid
697 		);
698 	}
699 
700 	KASSERT(uio->uio_resid >= 0, ("ffs_write: uio->uio_resid < 0"));
701 	KASSERT(uio->uio_offset >= 0, ("ffs_write: uio->uio_offset < 0"));
702 	fs = ip->i_fs;
703 	if ((uoff_t)uio->uio_offset + uio->uio_resid > fs->fs_maxfilesize)
704 		return (EFBIG);
705 	/*
706 	 * Maybe this should be above the vnode op call, but so long as
707 	 * file servers have no limits, I don't think it matters.
708 	 */
709 	if (vn_rlimit_fsize(vp, uio, uio->uio_td))
710 		return (EFBIG);
711 
712 	resid = uio->uio_resid;
713 	osize = ip->i_size;
714 	if (seqcount > BA_SEQMAX)
715 		flags = BA_SEQMAX << BA_SEQSHIFT;
716 	else
717 		flags = seqcount << BA_SEQSHIFT;
718 	if ((ioflag & IO_SYNC) && !DOINGASYNC(vp))
719 		flags |= IO_SYNC;
720 	flags |= BA_UNMAPPED;
721 
722 	for (error = 0; uio->uio_resid > 0;) {
723 		lbn = lblkno(fs, uio->uio_offset);
724 		blkoffset = blkoff(fs, uio->uio_offset);
725 		xfersize = fs->fs_bsize - blkoffset;
726 		if (uio->uio_resid < xfersize)
727 			xfersize = uio->uio_resid;
728 		if (uio->uio_offset + xfersize > ip->i_size)
729 			vnode_pager_setsize(vp, uio->uio_offset + xfersize);
730 
731 		/*
732 		 * We must perform a read-before-write if the transfer size
733 		 * does not cover the entire buffer.
734 		 */
735 		if (fs->fs_bsize > xfersize)
736 			flags |= BA_CLRBUF;
737 		else
738 			flags &= ~BA_CLRBUF;
739 /* XXX is uio->uio_offset the right thing here? */
740 		error = UFS_BALLOC(vp, uio->uio_offset, xfersize,
741 		    ap->a_cred, flags, &bp);
742 		if (error != 0) {
743 			vnode_pager_setsize(vp, ip->i_size);
744 			break;
745 		}
746 		if (ioflag & IO_DIRECT)
747 			bp->b_flags |= B_DIRECT;
748 		if ((ioflag & (IO_SYNC|IO_INVAL)) == (IO_SYNC|IO_INVAL))
749 			bp->b_flags |= B_NOCACHE;
750 
751 		if (uio->uio_offset + xfersize > ip->i_size) {
752 			ip->i_size = uio->uio_offset + xfersize;
753 			DIP_SET(ip, i_size, ip->i_size);
754 		}
755 
756 		size = blksize(fs, ip, lbn) - bp->b_resid;
757 		if (size < xfersize)
758 			xfersize = size;
759 
760 		if ((bp->b_flags & B_UNMAPPED) == 0) {
761 			error = vn_io_fault_uiomove((char *)bp->b_data +
762 			    blkoffset, (int)xfersize, uio);
763 		} else {
764 			error = vn_io_fault_pgmove(bp->b_pages, blkoffset,
765 			    (int)xfersize, uio);
766 		}
767 		/*
768 		 * If the buffer is not already filled and we encounter an
769 		 * error while trying to fill it, we have to clear out any
770 		 * garbage data from the pages instantiated for the buffer.
771 		 * If we do not, a failed uiomove() during a write can leave
772 		 * the prior contents of the pages exposed to a userland mmap.
773 		 *
774 		 * Note that we need only clear buffers with a transfer size
775 		 * equal to the block size because buffers with a shorter
776 		 * transfer size were cleared above by the call to UFS_BALLOC()
777 		 * with the BA_CLRBUF flag set.
778 		 *
779 		 * If the source region for uiomove identically mmaps the
780 		 * buffer, uiomove() performed the NOP copy, and the buffer
781 		 * content remains valid because the page fault handler
782 		 * validated the pages.
783 		 */
784 		if (error != 0 && (bp->b_flags & B_CACHE) == 0 &&
785 		    fs->fs_bsize == xfersize)
786 			vfs_bio_clrbuf(bp);
787 		if ((ioflag & (IO_VMIO|IO_DIRECT)) &&
788 		   (LIST_EMPTY(&bp->b_dep))) {
789 			bp->b_flags |= B_RELBUF;
790 		}
791 
792 		/*
793 		 * If IO_SYNC each buffer is written synchronously.  Otherwise
794 		 * if we have a severe page deficiency write the buffer
795 		 * asynchronously.  Otherwise try to cluster, and if that
796 		 * doesn't do it then either do an async write (if O_DIRECT),
797 		 * or a delayed write (if not).
798 		 */
799 		if (ioflag & IO_SYNC) {
800 			(void)bwrite(bp);
801 		} else if (vm_page_count_severe() ||
802 			    buf_dirty_count_severe() ||
803 			    (ioflag & IO_ASYNC)) {
804 			bp->b_flags |= B_CLUSTEROK;
805 			bawrite(bp);
806 		} else if (xfersize + blkoffset == fs->fs_bsize) {
807 			if ((vp->v_mount->mnt_flag & MNT_NOCLUSTERW) == 0) {
808 				bp->b_flags |= B_CLUSTEROK;
809 				cluster_write(vp, bp, ip->i_size, seqcount,
810 				    GB_UNMAPPED);
811 			} else {
812 				bawrite(bp);
813 			}
814 		} else if (ioflag & IO_DIRECT) {
815 			bp->b_flags |= B_CLUSTEROK;
816 			bawrite(bp);
817 		} else {
818 			bp->b_flags |= B_CLUSTEROK;
819 			bdwrite(bp);
820 		}
821 		if (error || xfersize == 0)
822 			break;
823 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
824 	}
825 	/*
826 	 * If we successfully wrote any data, and we are not the superuser
827 	 * we clear the setuid and setgid bits as a precaution against
828 	 * tampering.
829 	 */
830 	if ((ip->i_mode & (ISUID | ISGID)) && resid > uio->uio_resid &&
831 	    ap->a_cred) {
832 		if (priv_check_cred(ap->a_cred, PRIV_VFS_RETAINSUGID, 0)) {
833 			ip->i_mode &= ~(ISUID | ISGID);
834 			DIP_SET(ip, i_mode, ip->i_mode);
835 		}
836 	}
837 	if (error) {
838 		if (ioflag & IO_UNIT) {
839 			(void)ffs_truncate(vp, osize,
840 			    IO_NORMAL | (ioflag & IO_SYNC), ap->a_cred);
841 			uio->uio_offset -= resid - uio->uio_resid;
842 			uio->uio_resid = resid;
843 		}
844 	} else if (resid > uio->uio_resid && (ioflag & IO_SYNC))
845 		error = ffs_update(vp, 1);
846 	return (error);
847 }
848 
849 /*
850  * get page routine
851  */
852 static int
853 ffs_getpages(ap)
854 	struct vop_getpages_args *ap;
855 {
856 	int i;
857 	vm_page_t mreq;
858 	int pcount;
859 
860 	pcount = round_page(ap->a_count) / PAGE_SIZE;
861 	mreq = ap->a_m[ap->a_reqpage];
862 
863 	/*
864 	 * if ANY DEV_BSIZE blocks are valid on a large filesystem block,
865 	 * then the entire page is valid.  Since the page may be mapped,
866 	 * user programs might reference data beyond the actual end of file
867 	 * occuring within the page.  We have to zero that data.
868 	 */
869 	VM_OBJECT_WLOCK(mreq->object);
870 	if (mreq->valid) {
871 		if (mreq->valid != VM_PAGE_BITS_ALL)
872 			vm_page_zero_invalid(mreq, TRUE);
873 		for (i = 0; i < pcount; i++) {
874 			if (i != ap->a_reqpage) {
875 				vm_page_lock(ap->a_m[i]);
876 				vm_page_free(ap->a_m[i]);
877 				vm_page_unlock(ap->a_m[i]);
878 			}
879 		}
880 		VM_OBJECT_WUNLOCK(mreq->object);
881 		return VM_PAGER_OK;
882 	}
883 	VM_OBJECT_WUNLOCK(mreq->object);
884 
885 	return vnode_pager_generic_getpages(ap->a_vp, ap->a_m,
886 					    ap->a_count,
887 					    ap->a_reqpage);
888 }
889 
890 
891 /*
892  * Extended attribute area reading.
893  */
894 static int
895 ffs_extread(struct vnode *vp, struct uio *uio, int ioflag)
896 {
897 	struct inode *ip;
898 	struct ufs2_dinode *dp;
899 	struct fs *fs;
900 	struct buf *bp;
901 	ufs_lbn_t lbn, nextlbn;
902 	off_t bytesinfile;
903 	long size, xfersize, blkoffset;
904 	ssize_t orig_resid;
905 	int error;
906 
907 	ip = VTOI(vp);
908 	fs = ip->i_fs;
909 	dp = ip->i_din2;
910 
911 #ifdef INVARIANTS
912 	if (uio->uio_rw != UIO_READ || fs->fs_magic != FS_UFS2_MAGIC)
913 		panic("ffs_extread: mode");
914 
915 #endif
916 	orig_resid = uio->uio_resid;
917 	KASSERT(orig_resid >= 0, ("ffs_extread: uio->uio_resid < 0"));
918 	if (orig_resid == 0)
919 		return (0);
920 	KASSERT(uio->uio_offset >= 0, ("ffs_extread: uio->uio_offset < 0"));
921 
922 	for (error = 0, bp = NULL; uio->uio_resid > 0; bp = NULL) {
923 		if ((bytesinfile = dp->di_extsize - uio->uio_offset) <= 0)
924 			break;
925 		lbn = lblkno(fs, uio->uio_offset);
926 		nextlbn = lbn + 1;
927 
928 		/*
929 		 * size of buffer.  The buffer representing the
930 		 * end of the file is rounded up to the size of
931 		 * the block type ( fragment or full block,
932 		 * depending ).
933 		 */
934 		size = sblksize(fs, dp->di_extsize, lbn);
935 		blkoffset = blkoff(fs, uio->uio_offset);
936 
937 		/*
938 		 * The amount we want to transfer in this iteration is
939 		 * one FS block less the amount of the data before
940 		 * our startpoint (duh!)
941 		 */
942 		xfersize = fs->fs_bsize - blkoffset;
943 
944 		/*
945 		 * But if we actually want less than the block,
946 		 * or the file doesn't have a whole block more of data,
947 		 * then use the lesser number.
948 		 */
949 		if (uio->uio_resid < xfersize)
950 			xfersize = uio->uio_resid;
951 		if (bytesinfile < xfersize)
952 			xfersize = bytesinfile;
953 
954 		if (lblktosize(fs, nextlbn) >= dp->di_extsize) {
955 			/*
956 			 * Don't do readahead if this is the end of the info.
957 			 */
958 			error = bread(vp, -1 - lbn, size, NOCRED, &bp);
959 		} else {
960 			/*
961 			 * If we have a second block, then
962 			 * fire off a request for a readahead
963 			 * as well as a read. Note that the 4th and 5th
964 			 * arguments point to arrays of the size specified in
965 			 * the 6th argument.
966 			 */
967 			u_int nextsize = sblksize(fs, dp->di_extsize, nextlbn);
968 
969 			nextlbn = -1 - nextlbn;
970 			error = breadn(vp, -1 - lbn,
971 			    size, &nextlbn, &nextsize, 1, NOCRED, &bp);
972 		}
973 		if (error) {
974 			brelse(bp);
975 			bp = NULL;
976 			break;
977 		}
978 
979 		/*
980 		 * If IO_DIRECT then set B_DIRECT for the buffer.  This
981 		 * will cause us to attempt to release the buffer later on
982 		 * and will cause the buffer cache to attempt to free the
983 		 * underlying pages.
984 		 */
985 		if (ioflag & IO_DIRECT)
986 			bp->b_flags |= B_DIRECT;
987 
988 		/*
989 		 * We should only get non-zero b_resid when an I/O error
990 		 * has occurred, which should cause us to break above.
991 		 * However, if the short read did not cause an error,
992 		 * then we want to ensure that we do not uiomove bad
993 		 * or uninitialized data.
994 		 */
995 		size -= bp->b_resid;
996 		if (size < xfersize) {
997 			if (size == 0)
998 				break;
999 			xfersize = size;
1000 		}
1001 
1002 		error = uiomove((char *)bp->b_data + blkoffset,
1003 					(int)xfersize, uio);
1004 		if (error)
1005 			break;
1006 
1007 		if ((ioflag & (IO_VMIO|IO_DIRECT)) &&
1008 		   (LIST_EMPTY(&bp->b_dep))) {
1009 			/*
1010 			 * If there are no dependencies, and it's VMIO,
1011 			 * then we don't need the buf, mark it available
1012 			 * for freeing.  For non-direct VMIO reads, the VM
1013 			 * has the data.
1014 			 */
1015 			bp->b_flags |= B_RELBUF;
1016 			brelse(bp);
1017 		} else {
1018 			/*
1019 			 * Otherwise let whoever
1020 			 * made the request take care of
1021 			 * freeing it. We just queue
1022 			 * it onto another list.
1023 			 */
1024 			bqrelse(bp);
1025 		}
1026 	}
1027 
1028 	/*
1029 	 * This can only happen in the case of an error
1030 	 * because the loop above resets bp to NULL on each iteration
1031 	 * and on normal completion has not set a new value into it.
1032 	 * so it must have come from a 'break' statement
1033 	 */
1034 	if (bp != NULL) {
1035 		if ((ioflag & (IO_VMIO|IO_DIRECT)) &&
1036 		   (LIST_EMPTY(&bp->b_dep))) {
1037 			bp->b_flags |= B_RELBUF;
1038 			brelse(bp);
1039 		} else {
1040 			bqrelse(bp);
1041 		}
1042 	}
1043 	return (error);
1044 }
1045 
1046 /*
1047  * Extended attribute area writing.
1048  */
1049 static int
1050 ffs_extwrite(struct vnode *vp, struct uio *uio, int ioflag, struct ucred *ucred)
1051 {
1052 	struct inode *ip;
1053 	struct ufs2_dinode *dp;
1054 	struct fs *fs;
1055 	struct buf *bp;
1056 	ufs_lbn_t lbn;
1057 	off_t osize;
1058 	ssize_t resid;
1059 	int blkoffset, error, flags, size, xfersize;
1060 
1061 	ip = VTOI(vp);
1062 	fs = ip->i_fs;
1063 	dp = ip->i_din2;
1064 
1065 #ifdef INVARIANTS
1066 	if (uio->uio_rw != UIO_WRITE || fs->fs_magic != FS_UFS2_MAGIC)
1067 		panic("ffs_extwrite: mode");
1068 #endif
1069 
1070 	if (ioflag & IO_APPEND)
1071 		uio->uio_offset = dp->di_extsize;
1072 	KASSERT(uio->uio_offset >= 0, ("ffs_extwrite: uio->uio_offset < 0"));
1073 	KASSERT(uio->uio_resid >= 0, ("ffs_extwrite: uio->uio_resid < 0"));
1074 	if ((uoff_t)uio->uio_offset + uio->uio_resid > NXADDR * fs->fs_bsize)
1075 		return (EFBIG);
1076 
1077 	resid = uio->uio_resid;
1078 	osize = dp->di_extsize;
1079 	flags = IO_EXT;
1080 	if ((ioflag & IO_SYNC) && !DOINGASYNC(vp))
1081 		flags |= IO_SYNC;
1082 
1083 	for (error = 0; uio->uio_resid > 0;) {
1084 		lbn = lblkno(fs, uio->uio_offset);
1085 		blkoffset = blkoff(fs, uio->uio_offset);
1086 		xfersize = fs->fs_bsize - blkoffset;
1087 		if (uio->uio_resid < xfersize)
1088 			xfersize = uio->uio_resid;
1089 
1090 		/*
1091 		 * We must perform a read-before-write if the transfer size
1092 		 * does not cover the entire buffer.
1093 		 */
1094 		if (fs->fs_bsize > xfersize)
1095 			flags |= BA_CLRBUF;
1096 		else
1097 			flags &= ~BA_CLRBUF;
1098 		error = UFS_BALLOC(vp, uio->uio_offset, xfersize,
1099 		    ucred, flags, &bp);
1100 		if (error != 0)
1101 			break;
1102 		/*
1103 		 * If the buffer is not valid we have to clear out any
1104 		 * garbage data from the pages instantiated for the buffer.
1105 		 * If we do not, a failed uiomove() during a write can leave
1106 		 * the prior contents of the pages exposed to a userland
1107 		 * mmap().  XXX deal with uiomove() errors a better way.
1108 		 */
1109 		if ((bp->b_flags & B_CACHE) == 0 && fs->fs_bsize <= xfersize)
1110 			vfs_bio_clrbuf(bp);
1111 		if (ioflag & IO_DIRECT)
1112 			bp->b_flags |= B_DIRECT;
1113 
1114 		if (uio->uio_offset + xfersize > dp->di_extsize)
1115 			dp->di_extsize = uio->uio_offset + xfersize;
1116 
1117 		size = sblksize(fs, dp->di_extsize, lbn) - bp->b_resid;
1118 		if (size < xfersize)
1119 			xfersize = size;
1120 
1121 		error =
1122 		    uiomove((char *)bp->b_data + blkoffset, (int)xfersize, uio);
1123 		if ((ioflag & (IO_VMIO|IO_DIRECT)) &&
1124 		   (LIST_EMPTY(&bp->b_dep))) {
1125 			bp->b_flags |= B_RELBUF;
1126 		}
1127 
1128 		/*
1129 		 * If IO_SYNC each buffer is written synchronously.  Otherwise
1130 		 * if we have a severe page deficiency write the buffer
1131 		 * asynchronously.  Otherwise try to cluster, and if that
1132 		 * doesn't do it then either do an async write (if O_DIRECT),
1133 		 * or a delayed write (if not).
1134 		 */
1135 		if (ioflag & IO_SYNC) {
1136 			(void)bwrite(bp);
1137 		} else if (vm_page_count_severe() ||
1138 			    buf_dirty_count_severe() ||
1139 			    xfersize + blkoffset == fs->fs_bsize ||
1140 			    (ioflag & (IO_ASYNC | IO_DIRECT)))
1141 			bawrite(bp);
1142 		else
1143 			bdwrite(bp);
1144 		if (error || xfersize == 0)
1145 			break;
1146 		ip->i_flag |= IN_CHANGE;
1147 	}
1148 	/*
1149 	 * If we successfully wrote any data, and we are not the superuser
1150 	 * we clear the setuid and setgid bits as a precaution against
1151 	 * tampering.
1152 	 */
1153 	if ((ip->i_mode & (ISUID | ISGID)) && resid > uio->uio_resid && ucred) {
1154 		if (priv_check_cred(ucred, PRIV_VFS_RETAINSUGID, 0)) {
1155 			ip->i_mode &= ~(ISUID | ISGID);
1156 			dp->di_mode = ip->i_mode;
1157 		}
1158 	}
1159 	if (error) {
1160 		if (ioflag & IO_UNIT) {
1161 			(void)ffs_truncate(vp, osize,
1162 			    IO_EXT | (ioflag&IO_SYNC), ucred);
1163 			uio->uio_offset -= resid - uio->uio_resid;
1164 			uio->uio_resid = resid;
1165 		}
1166 	} else if (resid > uio->uio_resid && (ioflag & IO_SYNC))
1167 		error = ffs_update(vp, 1);
1168 	return (error);
1169 }
1170 
1171 
1172 /*
1173  * Vnode operating to retrieve a named extended attribute.
1174  *
1175  * Locate a particular EA (nspace:name) in the area (ptr:length), and return
1176  * the length of the EA, and possibly the pointer to the entry and to the data.
1177  */
1178 static int
1179 ffs_findextattr(u_char *ptr, u_int length, int nspace, const char *name, u_char **eap, u_char **eac)
1180 {
1181 	u_char *p, *pe, *pn, *p0;
1182 	int eapad1, eapad2, ealength, ealen, nlen;
1183 	uint32_t ul;
1184 
1185 	pe = ptr + length;
1186 	nlen = strlen(name);
1187 
1188 	for (p = ptr; p < pe; p = pn) {
1189 		p0 = p;
1190 		bcopy(p, &ul, sizeof(ul));
1191 		pn = p + ul;
1192 		/* make sure this entry is complete */
1193 		if (pn > pe)
1194 			break;
1195 		p += sizeof(uint32_t);
1196 		if (*p != nspace)
1197 			continue;
1198 		p++;
1199 		eapad2 = *p++;
1200 		if (*p != nlen)
1201 			continue;
1202 		p++;
1203 		if (bcmp(p, name, nlen))
1204 			continue;
1205 		ealength = sizeof(uint32_t) + 3 + nlen;
1206 		eapad1 = 8 - (ealength % 8);
1207 		if (eapad1 == 8)
1208 			eapad1 = 0;
1209 		ealength += eapad1;
1210 		ealen = ul - ealength - eapad2;
1211 		p += nlen + eapad1;
1212 		if (eap != NULL)
1213 			*eap = p0;
1214 		if (eac != NULL)
1215 			*eac = p;
1216 		return (ealen);
1217 	}
1218 	return(-1);
1219 }
1220 
1221 static int
1222 ffs_rdextattr(u_char **p, struct vnode *vp, struct thread *td, int extra)
1223 {
1224 	struct inode *ip;
1225 	struct ufs2_dinode *dp;
1226 	struct fs *fs;
1227 	struct uio luio;
1228 	struct iovec liovec;
1229 	u_int easize;
1230 	int error;
1231 	u_char *eae;
1232 
1233 	ip = VTOI(vp);
1234 	fs = ip->i_fs;
1235 	dp = ip->i_din2;
1236 	easize = dp->di_extsize;
1237 	if ((uoff_t)easize + extra > NXADDR * fs->fs_bsize)
1238 		return (EFBIG);
1239 
1240 	eae = malloc(easize + extra, M_TEMP, M_WAITOK);
1241 
1242 	liovec.iov_base = eae;
1243 	liovec.iov_len = easize;
1244 	luio.uio_iov = &liovec;
1245 	luio.uio_iovcnt = 1;
1246 	luio.uio_offset = 0;
1247 	luio.uio_resid = easize;
1248 	luio.uio_segflg = UIO_SYSSPACE;
1249 	luio.uio_rw = UIO_READ;
1250 	luio.uio_td = td;
1251 
1252 	error = ffs_extread(vp, &luio, IO_EXT | IO_SYNC);
1253 	if (error) {
1254 		free(eae, M_TEMP);
1255 		return(error);
1256 	}
1257 	*p = eae;
1258 	return (0);
1259 }
1260 
1261 static void
1262 ffs_lock_ea(struct vnode *vp)
1263 {
1264 	struct inode *ip;
1265 
1266 	ip = VTOI(vp);
1267 	VI_LOCK(vp);
1268 	while (ip->i_flag & IN_EA_LOCKED) {
1269 		ip->i_flag |= IN_EA_LOCKWAIT;
1270 		msleep(&ip->i_ea_refs, &vp->v_interlock, PINOD + 2, "ufs_ea",
1271 		    0);
1272 	}
1273 	ip->i_flag |= IN_EA_LOCKED;
1274 	VI_UNLOCK(vp);
1275 }
1276 
1277 static void
1278 ffs_unlock_ea(struct vnode *vp)
1279 {
1280 	struct inode *ip;
1281 
1282 	ip = VTOI(vp);
1283 	VI_LOCK(vp);
1284 	if (ip->i_flag & IN_EA_LOCKWAIT)
1285 		wakeup(&ip->i_ea_refs);
1286 	ip->i_flag &= ~(IN_EA_LOCKED | IN_EA_LOCKWAIT);
1287 	VI_UNLOCK(vp);
1288 }
1289 
1290 static int
1291 ffs_open_ea(struct vnode *vp, struct ucred *cred, struct thread *td)
1292 {
1293 	struct inode *ip;
1294 	struct ufs2_dinode *dp;
1295 	int error;
1296 
1297 	ip = VTOI(vp);
1298 
1299 	ffs_lock_ea(vp);
1300 	if (ip->i_ea_area != NULL) {
1301 		ip->i_ea_refs++;
1302 		ffs_unlock_ea(vp);
1303 		return (0);
1304 	}
1305 	dp = ip->i_din2;
1306 	error = ffs_rdextattr(&ip->i_ea_area, vp, td, 0);
1307 	if (error) {
1308 		ffs_unlock_ea(vp);
1309 		return (error);
1310 	}
1311 	ip->i_ea_len = dp->di_extsize;
1312 	ip->i_ea_error = 0;
1313 	ip->i_ea_refs++;
1314 	ffs_unlock_ea(vp);
1315 	return (0);
1316 }
1317 
1318 /*
1319  * Vnode extattr transaction commit/abort
1320  */
1321 static int
1322 ffs_close_ea(struct vnode *vp, int commit, struct ucred *cred, struct thread *td)
1323 {
1324 	struct inode *ip;
1325 	struct uio luio;
1326 	struct iovec liovec;
1327 	int error;
1328 	struct ufs2_dinode *dp;
1329 
1330 	ip = VTOI(vp);
1331 
1332 	ffs_lock_ea(vp);
1333 	if (ip->i_ea_area == NULL) {
1334 		ffs_unlock_ea(vp);
1335 		return (EINVAL);
1336 	}
1337 	dp = ip->i_din2;
1338 	error = ip->i_ea_error;
1339 	if (commit && error == 0) {
1340 		ASSERT_VOP_ELOCKED(vp, "ffs_close_ea commit");
1341 		if (cred == NOCRED)
1342 			cred =  vp->v_mount->mnt_cred;
1343 		liovec.iov_base = ip->i_ea_area;
1344 		liovec.iov_len = ip->i_ea_len;
1345 		luio.uio_iov = &liovec;
1346 		luio.uio_iovcnt = 1;
1347 		luio.uio_offset = 0;
1348 		luio.uio_resid = ip->i_ea_len;
1349 		luio.uio_segflg = UIO_SYSSPACE;
1350 		luio.uio_rw = UIO_WRITE;
1351 		luio.uio_td = td;
1352 		/* XXX: I'm not happy about truncating to zero size */
1353 		if (ip->i_ea_len < dp->di_extsize)
1354 			error = ffs_truncate(vp, 0, IO_EXT, cred);
1355 		error = ffs_extwrite(vp, &luio, IO_EXT | IO_SYNC, cred);
1356 	}
1357 	if (--ip->i_ea_refs == 0) {
1358 		free(ip->i_ea_area, M_TEMP);
1359 		ip->i_ea_area = NULL;
1360 		ip->i_ea_len = 0;
1361 		ip->i_ea_error = 0;
1362 	}
1363 	ffs_unlock_ea(vp);
1364 	return (error);
1365 }
1366 
1367 /*
1368  * Vnode extattr strategy routine for fifos.
1369  *
1370  * We need to check for a read or write of the external attributes.
1371  * Otherwise we just fall through and do the usual thing.
1372  */
1373 static int
1374 ffsext_strategy(struct vop_strategy_args *ap)
1375 /*
1376 struct vop_strategy_args {
1377 	struct vnodeop_desc *a_desc;
1378 	struct vnode *a_vp;
1379 	struct buf *a_bp;
1380 };
1381 */
1382 {
1383 	struct vnode *vp;
1384 	daddr_t lbn;
1385 
1386 	vp = ap->a_vp;
1387 	lbn = ap->a_bp->b_lblkno;
1388 	if (VTOI(vp)->i_fs->fs_magic == FS_UFS2_MAGIC &&
1389 	    lbn < 0 && lbn >= -NXADDR)
1390 		return (VOP_STRATEGY_APV(&ufs_vnodeops, ap));
1391 	if (vp->v_type == VFIFO)
1392 		return (VOP_STRATEGY_APV(&ufs_fifoops, ap));
1393 	panic("spec nodes went here");
1394 }
1395 
1396 /*
1397  * Vnode extattr transaction commit/abort
1398  */
1399 static int
1400 ffs_openextattr(struct vop_openextattr_args *ap)
1401 /*
1402 struct vop_openextattr_args {
1403 	struct vnodeop_desc *a_desc;
1404 	struct vnode *a_vp;
1405 	IN struct ucred *a_cred;
1406 	IN struct thread *a_td;
1407 };
1408 */
1409 {
1410 	struct inode *ip;
1411 	struct fs *fs;
1412 
1413 	ip = VTOI(ap->a_vp);
1414 	fs = ip->i_fs;
1415 
1416 	if (ap->a_vp->v_type == VCHR || ap->a_vp->v_type == VBLK)
1417 		return (EOPNOTSUPP);
1418 
1419 	return (ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td));
1420 }
1421 
1422 
1423 /*
1424  * Vnode extattr transaction commit/abort
1425  */
1426 static int
1427 ffs_closeextattr(struct vop_closeextattr_args *ap)
1428 /*
1429 struct vop_closeextattr_args {
1430 	struct vnodeop_desc *a_desc;
1431 	struct vnode *a_vp;
1432 	int a_commit;
1433 	IN struct ucred *a_cred;
1434 	IN struct thread *a_td;
1435 };
1436 */
1437 {
1438 	struct inode *ip;
1439 	struct fs *fs;
1440 
1441 	ip = VTOI(ap->a_vp);
1442 	fs = ip->i_fs;
1443 
1444 	if (ap->a_vp->v_type == VCHR || ap->a_vp->v_type == VBLK)
1445 		return (EOPNOTSUPP);
1446 
1447 	if (ap->a_commit && (ap->a_vp->v_mount->mnt_flag & MNT_RDONLY))
1448 		return (EROFS);
1449 
1450 	return (ffs_close_ea(ap->a_vp, ap->a_commit, ap->a_cred, ap->a_td));
1451 }
1452 
1453 /*
1454  * Vnode operation to remove a named attribute.
1455  */
1456 static int
1457 ffs_deleteextattr(struct vop_deleteextattr_args *ap)
1458 /*
1459 vop_deleteextattr {
1460 	IN struct vnode *a_vp;
1461 	IN int a_attrnamespace;
1462 	IN const char *a_name;
1463 	IN struct ucred *a_cred;
1464 	IN struct thread *a_td;
1465 };
1466 */
1467 {
1468 	struct inode *ip;
1469 	struct fs *fs;
1470 	uint32_t ealength, ul;
1471 	int ealen, olen, eapad1, eapad2, error, i, easize;
1472 	u_char *eae, *p;
1473 
1474 	ip = VTOI(ap->a_vp);
1475 	fs = ip->i_fs;
1476 
1477 	if (ap->a_vp->v_type == VCHR || ap->a_vp->v_type == VBLK)
1478 		return (EOPNOTSUPP);
1479 
1480 	if (strlen(ap->a_name) == 0)
1481 		return (EINVAL);
1482 
1483 	if (ap->a_vp->v_mount->mnt_flag & MNT_RDONLY)
1484 		return (EROFS);
1485 
1486 	error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace,
1487 	    ap->a_cred, ap->a_td, VWRITE);
1488 	if (error) {
1489 
1490 		/*
1491 		 * ffs_lock_ea is not needed there, because the vnode
1492 		 * must be exclusively locked.
1493 		 */
1494 		if (ip->i_ea_area != NULL && ip->i_ea_error == 0)
1495 			ip->i_ea_error = error;
1496 		return (error);
1497 	}
1498 
1499 	error = ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td);
1500 	if (error)
1501 		return (error);
1502 
1503 	ealength = eapad1 = ealen = eapad2 = 0;
1504 
1505 	eae = malloc(ip->i_ea_len, M_TEMP, M_WAITOK);
1506 	bcopy(ip->i_ea_area, eae, ip->i_ea_len);
1507 	easize = ip->i_ea_len;
1508 
1509 	olen = ffs_findextattr(eae, easize, ap->a_attrnamespace, ap->a_name,
1510 	    &p, NULL);
1511 	if (olen == -1) {
1512 		/* delete but nonexistent */
1513 		free(eae, M_TEMP);
1514 		ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td);
1515 		return(ENOATTR);
1516 	}
1517 	bcopy(p, &ul, sizeof ul);
1518 	i = p - eae + ul;
1519 	if (ul != ealength) {
1520 		bcopy(p + ul, p + ealength, easize - i);
1521 		easize += (ealength - ul);
1522 	}
1523 	if (easize > NXADDR * fs->fs_bsize) {
1524 		free(eae, M_TEMP);
1525 		ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td);
1526 		if (ip->i_ea_area != NULL && ip->i_ea_error == 0)
1527 			ip->i_ea_error = ENOSPC;
1528 		return(ENOSPC);
1529 	}
1530 	p = ip->i_ea_area;
1531 	ip->i_ea_area = eae;
1532 	ip->i_ea_len = easize;
1533 	free(p, M_TEMP);
1534 	error = ffs_close_ea(ap->a_vp, 1, ap->a_cred, ap->a_td);
1535 	return(error);
1536 }
1537 
1538 /*
1539  * Vnode operation to retrieve a named extended attribute.
1540  */
1541 static int
1542 ffs_getextattr(struct vop_getextattr_args *ap)
1543 /*
1544 vop_getextattr {
1545 	IN struct vnode *a_vp;
1546 	IN int a_attrnamespace;
1547 	IN const char *a_name;
1548 	INOUT struct uio *a_uio;
1549 	OUT size_t *a_size;
1550 	IN struct ucred *a_cred;
1551 	IN struct thread *a_td;
1552 };
1553 */
1554 {
1555 	struct inode *ip;
1556 	struct fs *fs;
1557 	u_char *eae, *p;
1558 	unsigned easize;
1559 	int error, ealen;
1560 
1561 	ip = VTOI(ap->a_vp);
1562 	fs = ip->i_fs;
1563 
1564 	if (ap->a_vp->v_type == VCHR || ap->a_vp->v_type == VBLK)
1565 		return (EOPNOTSUPP);
1566 
1567 	error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace,
1568 	    ap->a_cred, ap->a_td, VREAD);
1569 	if (error)
1570 		return (error);
1571 
1572 	error = ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td);
1573 	if (error)
1574 		return (error);
1575 
1576 	eae = ip->i_ea_area;
1577 	easize = ip->i_ea_len;
1578 
1579 	ealen = ffs_findextattr(eae, easize, ap->a_attrnamespace, ap->a_name,
1580 	    NULL, &p);
1581 	if (ealen >= 0) {
1582 		error = 0;
1583 		if (ap->a_size != NULL)
1584 			*ap->a_size = ealen;
1585 		else if (ap->a_uio != NULL)
1586 			error = uiomove(p, ealen, ap->a_uio);
1587 	} else
1588 		error = ENOATTR;
1589 
1590 	ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td);
1591 	return(error);
1592 }
1593 
1594 /*
1595  * Vnode operation to retrieve extended attributes on a vnode.
1596  */
1597 static int
1598 ffs_listextattr(struct vop_listextattr_args *ap)
1599 /*
1600 vop_listextattr {
1601 	IN struct vnode *a_vp;
1602 	IN int a_attrnamespace;
1603 	INOUT struct uio *a_uio;
1604 	OUT size_t *a_size;
1605 	IN struct ucred *a_cred;
1606 	IN struct thread *a_td;
1607 };
1608 */
1609 {
1610 	struct inode *ip;
1611 	struct fs *fs;
1612 	u_char *eae, *p, *pe, *pn;
1613 	unsigned easize;
1614 	uint32_t ul;
1615 	int error, ealen;
1616 
1617 	ip = VTOI(ap->a_vp);
1618 	fs = ip->i_fs;
1619 
1620 	if (ap->a_vp->v_type == VCHR || ap->a_vp->v_type == VBLK)
1621 		return (EOPNOTSUPP);
1622 
1623 	error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace,
1624 	    ap->a_cred, ap->a_td, VREAD);
1625 	if (error)
1626 		return (error);
1627 
1628 	error = ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td);
1629 	if (error)
1630 		return (error);
1631 	eae = ip->i_ea_area;
1632 	easize = ip->i_ea_len;
1633 
1634 	error = 0;
1635 	if (ap->a_size != NULL)
1636 		*ap->a_size = 0;
1637 	pe = eae + easize;
1638 	for(p = eae; error == 0 && p < pe; p = pn) {
1639 		bcopy(p, &ul, sizeof(ul));
1640 		pn = p + ul;
1641 		if (pn > pe)
1642 			break;
1643 		p += sizeof(ul);
1644 		if (*p++ != ap->a_attrnamespace)
1645 			continue;
1646 		p++;	/* pad2 */
1647 		ealen = *p;
1648 		if (ap->a_size != NULL) {
1649 			*ap->a_size += ealen + 1;
1650 		} else if (ap->a_uio != NULL) {
1651 			error = uiomove(p, ealen + 1, ap->a_uio);
1652 		}
1653 	}
1654 	ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td);
1655 	return(error);
1656 }
1657 
1658 /*
1659  * Vnode operation to set a named attribute.
1660  */
1661 static int
1662 ffs_setextattr(struct vop_setextattr_args *ap)
1663 /*
1664 vop_setextattr {
1665 	IN struct vnode *a_vp;
1666 	IN int a_attrnamespace;
1667 	IN const char *a_name;
1668 	INOUT struct uio *a_uio;
1669 	IN struct ucred *a_cred;
1670 	IN struct thread *a_td;
1671 };
1672 */
1673 {
1674 	struct inode *ip;
1675 	struct fs *fs;
1676 	uint32_t ealength, ul;
1677 	ssize_t ealen;
1678 	int olen, eapad1, eapad2, error, i, easize;
1679 	u_char *eae, *p;
1680 
1681 	ip = VTOI(ap->a_vp);
1682 	fs = ip->i_fs;
1683 
1684 	if (ap->a_vp->v_type == VCHR || ap->a_vp->v_type == VBLK)
1685 		return (EOPNOTSUPP);
1686 
1687 	if (strlen(ap->a_name) == 0)
1688 		return (EINVAL);
1689 
1690 	/* XXX Now unsupported API to delete EAs using NULL uio. */
1691 	if (ap->a_uio == NULL)
1692 		return (EOPNOTSUPP);
1693 
1694 	if (ap->a_vp->v_mount->mnt_flag & MNT_RDONLY)
1695 		return (EROFS);
1696 
1697 	ealen = ap->a_uio->uio_resid;
1698 	if (ealen < 0 || ealen > lblktosize(fs, NXADDR))
1699 		return (EINVAL);
1700 
1701 	error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace,
1702 	    ap->a_cred, ap->a_td, VWRITE);
1703 	if (error) {
1704 
1705 		/*
1706 		 * ffs_lock_ea is not needed there, because the vnode
1707 		 * must be exclusively locked.
1708 		 */
1709 		if (ip->i_ea_area != NULL && ip->i_ea_error == 0)
1710 			ip->i_ea_error = error;
1711 		return (error);
1712 	}
1713 
1714 	error = ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td);
1715 	if (error)
1716 		return (error);
1717 
1718 	ealength = sizeof(uint32_t) + 3 + strlen(ap->a_name);
1719 	eapad1 = 8 - (ealength % 8);
1720 	if (eapad1 == 8)
1721 		eapad1 = 0;
1722 	eapad2 = 8 - (ealen % 8);
1723 	if (eapad2 == 8)
1724 		eapad2 = 0;
1725 	ealength += eapad1 + ealen + eapad2;
1726 
1727 	eae = malloc(ip->i_ea_len + ealength, M_TEMP, M_WAITOK);
1728 	bcopy(ip->i_ea_area, eae, ip->i_ea_len);
1729 	easize = ip->i_ea_len;
1730 
1731 	olen = ffs_findextattr(eae, easize,
1732 	    ap->a_attrnamespace, ap->a_name, &p, NULL);
1733         if (olen == -1) {
1734 		/* new, append at end */
1735 		p = eae + easize;
1736 		easize += ealength;
1737 	} else {
1738 		bcopy(p, &ul, sizeof ul);
1739 		i = p - eae + ul;
1740 		if (ul != ealength) {
1741 			bcopy(p + ul, p + ealength, easize - i);
1742 			easize += (ealength - ul);
1743 		}
1744 	}
1745 	if (easize > lblktosize(fs, NXADDR)) {
1746 		free(eae, M_TEMP);
1747 		ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td);
1748 		if (ip->i_ea_area != NULL && ip->i_ea_error == 0)
1749 			ip->i_ea_error = ENOSPC;
1750 		return(ENOSPC);
1751 	}
1752 	bcopy(&ealength, p, sizeof(ealength));
1753 	p += sizeof(ealength);
1754 	*p++ = ap->a_attrnamespace;
1755 	*p++ = eapad2;
1756 	*p++ = strlen(ap->a_name);
1757 	strcpy(p, ap->a_name);
1758 	p += strlen(ap->a_name);
1759 	bzero(p, eapad1);
1760 	p += eapad1;
1761 	error = uiomove(p, ealen, ap->a_uio);
1762 	if (error) {
1763 		free(eae, M_TEMP);
1764 		ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td);
1765 		if (ip->i_ea_area != NULL && ip->i_ea_error == 0)
1766 			ip->i_ea_error = error;
1767 		return(error);
1768 	}
1769 	p += ealen;
1770 	bzero(p, eapad2);
1771 
1772 	p = ip->i_ea_area;
1773 	ip->i_ea_area = eae;
1774 	ip->i_ea_len = easize;
1775 	free(p, M_TEMP);
1776 	error = ffs_close_ea(ap->a_vp, 1, ap->a_cred, ap->a_td);
1777 	return(error);
1778 }
1779 
1780 /*
1781  * Vnode pointer to File handle
1782  */
1783 static int
1784 ffs_vptofh(struct vop_vptofh_args *ap)
1785 /*
1786 vop_vptofh {
1787 	IN struct vnode *a_vp;
1788 	IN struct fid *a_fhp;
1789 };
1790 */
1791 {
1792 	struct inode *ip;
1793 	struct ufid *ufhp;
1794 
1795 	ip = VTOI(ap->a_vp);
1796 	ufhp = (struct ufid *)ap->a_fhp;
1797 	ufhp->ufid_len = sizeof(struct ufid);
1798 	ufhp->ufid_ino = ip->i_number;
1799 	ufhp->ufid_gen = ip->i_gen;
1800 	return (0);
1801 }
1802