1 /*- 2 * Copyright (c) 2002, 2003 Networks Associates Technology, Inc. 3 * All rights reserved. 4 * 5 * This software was developed for the FreeBSD Project by Marshall 6 * Kirk McKusick and Network Associates Laboratories, the Security 7 * Research Division of Network Associates, Inc. under DARPA/SPAWAR 8 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS 9 * research program 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * Copyright (c) 1982, 1986, 1989, 1993 33 * The Regents of the University of California. All rights reserved. 34 * 35 * Redistribution and use in source and binary forms, with or without 36 * modification, are permitted provided that the following conditions 37 * are met: 38 * 1. Redistributions of source code must retain the above copyright 39 * notice, this list of conditions and the following disclaimer. 40 * 2. Redistributions in binary form must reproduce the above copyright 41 * notice, this list of conditions and the following disclaimer in the 42 * documentation and/or other materials provided with the distribution. 43 * 4. Neither the name of the University nor the names of its contributors 44 * may be used to endorse or promote products derived from this software 45 * without specific prior written permission. 46 * 47 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 48 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 49 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 50 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 51 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 52 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 53 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 54 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 55 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 56 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 57 * SUCH DAMAGE. 58 * 59 * from: @(#)ufs_readwrite.c 8.11 (Berkeley) 5/8/95 60 * from: $FreeBSD: .../ufs/ufs_readwrite.c,v 1.96 2002/08/12 09:22:11 phk ... 61 * @(#)ffs_vnops.c 8.15 (Berkeley) 5/14/95 62 */ 63 64 #include <sys/cdefs.h> 65 __FBSDID("$FreeBSD$"); 66 67 #include <sys/param.h> 68 #include <sys/bio.h> 69 #include <sys/systm.h> 70 #include <sys/buf.h> 71 #include <sys/conf.h> 72 #include <sys/extattr.h> 73 #include <sys/kernel.h> 74 #include <sys/limits.h> 75 #include <sys/malloc.h> 76 #include <sys/mount.h> 77 #include <sys/priv.h> 78 #include <sys/stat.h> 79 #include <sys/vmmeter.h> 80 #include <sys/vnode.h> 81 82 #include <vm/vm.h> 83 #include <vm/vm_extern.h> 84 #include <vm/vm_object.h> 85 #include <vm/vm_page.h> 86 #include <vm/vm_pager.h> 87 #include <vm/vnode_pager.h> 88 89 #include <ufs/ufs/extattr.h> 90 #include <ufs/ufs/quota.h> 91 #include <ufs/ufs/inode.h> 92 #include <ufs/ufs/ufs_extern.h> 93 #include <ufs/ufs/ufsmount.h> 94 95 #include <ufs/ffs/fs.h> 96 #include <ufs/ffs/ffs_extern.h> 97 #include "opt_directio.h" 98 #include "opt_ffs.h" 99 100 #ifdef DIRECTIO 101 extern int ffs_rawread(struct vnode *vp, struct uio *uio, int *workdone); 102 #endif 103 static vop_fsync_t ffs_fsync; 104 static vop_lock1_t ffs_lock; 105 static vop_getpages_t ffs_getpages; 106 static vop_read_t ffs_read; 107 static vop_write_t ffs_write; 108 static int ffs_extread(struct vnode *vp, struct uio *uio, int ioflag); 109 static int ffs_extwrite(struct vnode *vp, struct uio *uio, int ioflag, 110 struct ucred *cred); 111 static vop_strategy_t ffsext_strategy; 112 static vop_closeextattr_t ffs_closeextattr; 113 static vop_deleteextattr_t ffs_deleteextattr; 114 static vop_getextattr_t ffs_getextattr; 115 static vop_listextattr_t ffs_listextattr; 116 static vop_openextattr_t ffs_openextattr; 117 static vop_setextattr_t ffs_setextattr; 118 static vop_vptofh_t ffs_vptofh; 119 120 121 /* Global vfs data structures for ufs. */ 122 struct vop_vector ffs_vnodeops1 = { 123 .vop_default = &ufs_vnodeops, 124 .vop_fsync = ffs_fsync, 125 .vop_getpages = ffs_getpages, 126 .vop_lock1 = ffs_lock, 127 .vop_read = ffs_read, 128 .vop_reallocblks = ffs_reallocblks, 129 .vop_write = ffs_write, 130 .vop_vptofh = ffs_vptofh, 131 }; 132 133 struct vop_vector ffs_fifoops1 = { 134 .vop_default = &ufs_fifoops, 135 .vop_fsync = ffs_fsync, 136 .vop_reallocblks = ffs_reallocblks, /* XXX: really ??? */ 137 .vop_vptofh = ffs_vptofh, 138 }; 139 140 /* Global vfs data structures for ufs. */ 141 struct vop_vector ffs_vnodeops2 = { 142 .vop_default = &ufs_vnodeops, 143 .vop_fsync = ffs_fsync, 144 .vop_getpages = ffs_getpages, 145 .vop_lock1 = ffs_lock, 146 .vop_read = ffs_read, 147 .vop_reallocblks = ffs_reallocblks, 148 .vop_write = ffs_write, 149 .vop_closeextattr = ffs_closeextattr, 150 .vop_deleteextattr = ffs_deleteextattr, 151 .vop_getextattr = ffs_getextattr, 152 .vop_listextattr = ffs_listextattr, 153 .vop_openextattr = ffs_openextattr, 154 .vop_setextattr = ffs_setextattr, 155 .vop_vptofh = ffs_vptofh, 156 }; 157 158 struct vop_vector ffs_fifoops2 = { 159 .vop_default = &ufs_fifoops, 160 .vop_fsync = ffs_fsync, 161 .vop_lock1 = ffs_lock, 162 .vop_reallocblks = ffs_reallocblks, 163 .vop_strategy = ffsext_strategy, 164 .vop_closeextattr = ffs_closeextattr, 165 .vop_deleteextattr = ffs_deleteextattr, 166 .vop_getextattr = ffs_getextattr, 167 .vop_listextattr = ffs_listextattr, 168 .vop_openextattr = ffs_openextattr, 169 .vop_setextattr = ffs_setextattr, 170 .vop_vptofh = ffs_vptofh, 171 }; 172 173 /* 174 * Synch an open file. 175 */ 176 /* ARGSUSED */ 177 static int 178 ffs_fsync(struct vop_fsync_args *ap) 179 { 180 struct vnode *vp; 181 struct bufobj *bo; 182 int error; 183 184 vp = ap->a_vp; 185 bo = &vp->v_bufobj; 186 retry: 187 error = ffs_syncvnode(vp, ap->a_waitfor); 188 if (error) 189 return (error); 190 if (ap->a_waitfor == MNT_WAIT && DOINGSOFTDEP(vp)) { 191 error = softdep_fsync(vp); 192 if (error) 193 return (error); 194 195 /* 196 * The softdep_fsync() function may drop vp lock, 197 * allowing for dirty buffers to reappear on the 198 * bo_dirty list. Recheck and resync as needed. 199 */ 200 BO_LOCK(bo); 201 if (vp->v_type == VREG && (bo->bo_numoutput > 0 || 202 bo->bo_dirty.bv_cnt > 0)) { 203 BO_UNLOCK(bo); 204 goto retry; 205 } 206 BO_UNLOCK(bo); 207 } 208 return (0); 209 } 210 211 int 212 ffs_syncvnode(struct vnode *vp, int waitfor) 213 { 214 struct inode *ip; 215 struct bufobj *bo; 216 struct buf *bp; 217 struct buf *nbp; 218 ufs_lbn_t lbn; 219 int error, wait, passes, noupdate; 220 221 noupdate = waitfor & NO_INO_UPDT; 222 waitfor &= ~NO_INO_UPDT; 223 ip = VTOI(vp); 224 ip->i_flag &= ~IN_NEEDSYNC; 225 bo = &vp->v_bufobj; 226 227 /* 228 * When doing MNT_WAIT we must first flush all dependencies 229 * on the inode. 230 */ 231 if (DOINGSOFTDEP(vp) && waitfor == MNT_WAIT && 232 (error = softdep_sync_metadata(vp)) != 0) 233 return (error); 234 235 /* 236 * Flush all dirty buffers associated with a vnode. 237 */ 238 error = 0; 239 passes = 0; 240 wait = 0; /* Always do an async pass first. */ 241 lbn = lblkno(ip->i_fs, (ip->i_size + ip->i_fs->fs_bsize - 1)); 242 BO_LOCK(bo); 243 loop: 244 TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) 245 bp->b_vflags &= ~BV_SCANNED; 246 TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) { 247 /* 248 * Reasons to skip this buffer: it has already been considered 249 * on this pass, the buffer has dependencies that will cause 250 * it to be redirtied and it has not already been deferred, 251 * or it is already being written. 252 */ 253 if ((bp->b_vflags & BV_SCANNED) != 0) 254 continue; 255 bp->b_vflags |= BV_SCANNED; 256 /* Flush indirects in order. */ 257 if (waitfor == MNT_WAIT && bp->b_lblkno <= -NDADDR && 258 lbn_level(bp->b_lblkno) >= passes) 259 continue; 260 if (bp->b_lblkno > lbn) 261 panic("ffs_syncvnode: syncing truncated data."); 262 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL)) 263 continue; 264 BO_UNLOCK(bo); 265 if ((bp->b_flags & B_DELWRI) == 0) 266 panic("ffs_fsync: not dirty"); 267 /* 268 * Check for dependencies and potentially complete them. 269 */ 270 if (!LIST_EMPTY(&bp->b_dep) && 271 (error = softdep_sync_buf(vp, bp, 272 wait ? MNT_WAIT : MNT_NOWAIT)) != 0) { 273 /* I/O error. */ 274 if (error != EBUSY) { 275 BUF_UNLOCK(bp); 276 return (error); 277 } 278 /* If we deferred once, don't defer again. */ 279 if ((bp->b_flags & B_DEFERRED) == 0) { 280 bp->b_flags |= B_DEFERRED; 281 BUF_UNLOCK(bp); 282 goto next; 283 } 284 } 285 if (wait) { 286 bremfree(bp); 287 if ((error = bwrite(bp)) != 0) 288 return (error); 289 } else if ((bp->b_flags & B_CLUSTEROK)) { 290 (void) vfs_bio_awrite(bp); 291 } else { 292 bremfree(bp); 293 (void) bawrite(bp); 294 } 295 next: 296 /* 297 * Since we may have slept during the I/O, we need 298 * to start from a known point. 299 */ 300 BO_LOCK(bo); 301 nbp = TAILQ_FIRST(&bo->bo_dirty.bv_hd); 302 } 303 if (waitfor != MNT_WAIT) { 304 BO_UNLOCK(bo); 305 if (noupdate) 306 return (0); 307 else 308 return (ffs_update(vp, 0)); 309 } 310 /* Drain IO to see if we're done. */ 311 bufobj_wwait(bo, 0, 0); 312 /* 313 * Block devices associated with filesystems may have new I/O 314 * requests posted for them even if the vnode is locked, so no 315 * amount of trying will get them clean. We make several passes 316 * as a best effort. 317 * 318 * Regular files may need multiple passes to flush all dependency 319 * work as it is possible that we must write once per indirect 320 * level, once for the leaf, and once for the inode and each of 321 * these will be done with one sync and one async pass. 322 */ 323 if (bo->bo_dirty.bv_cnt > 0) { 324 /* Write the inode after sync passes to flush deps. */ 325 if (wait && DOINGSOFTDEP(vp) && noupdate == 0) { 326 BO_UNLOCK(bo); 327 ffs_update(vp, MNT_WAIT); 328 BO_LOCK(bo); 329 } 330 /* switch between sync/async. */ 331 wait = !wait; 332 if (wait == 1 || ++passes < NIADDR + 2) 333 goto loop; 334 #ifdef INVARIANTS 335 if (!vn_isdisk(vp, NULL)) 336 vprint("ffs_fsync: dirty", vp); 337 #endif 338 } 339 BO_UNLOCK(bo); 340 error = 0; 341 if (noupdate == 0) 342 error = ffs_update(vp, MNT_WAIT); 343 if (DOINGSUJ(vp)) 344 softdep_journal_fsync(VTOI(vp)); 345 return (error); 346 } 347 348 static int 349 ffs_lock(ap) 350 struct vop_lock1_args /* { 351 struct vnode *a_vp; 352 int a_flags; 353 struct thread *a_td; 354 char *file; 355 int line; 356 } */ *ap; 357 { 358 #ifndef NO_FFS_SNAPSHOT 359 struct vnode *vp; 360 int flags; 361 struct lock *lkp; 362 int result; 363 364 switch (ap->a_flags & LK_TYPE_MASK) { 365 case LK_SHARED: 366 case LK_UPGRADE: 367 case LK_EXCLUSIVE: 368 vp = ap->a_vp; 369 flags = ap->a_flags; 370 for (;;) { 371 #ifdef DEBUG_VFS_LOCKS 372 KASSERT(vp->v_holdcnt != 0, 373 ("ffs_lock %p: zero hold count", vp)); 374 #endif 375 lkp = vp->v_vnlock; 376 result = _lockmgr_args(lkp, flags, VI_MTX(vp), 377 LK_WMESG_DEFAULT, LK_PRIO_DEFAULT, LK_TIMO_DEFAULT, 378 ap->a_file, ap->a_line); 379 if (lkp == vp->v_vnlock || result != 0) 380 break; 381 /* 382 * Apparent success, except that the vnode 383 * mutated between snapshot file vnode and 384 * regular file vnode while this process 385 * slept. The lock currently held is not the 386 * right lock. Release it, and try to get the 387 * new lock. 388 */ 389 (void) _lockmgr_args(lkp, LK_RELEASE, NULL, 390 LK_WMESG_DEFAULT, LK_PRIO_DEFAULT, LK_TIMO_DEFAULT, 391 ap->a_file, ap->a_line); 392 if ((flags & (LK_INTERLOCK | LK_NOWAIT)) == 393 (LK_INTERLOCK | LK_NOWAIT)) 394 return (EBUSY); 395 if ((flags & LK_TYPE_MASK) == LK_UPGRADE) 396 flags = (flags & ~LK_TYPE_MASK) | LK_EXCLUSIVE; 397 flags &= ~LK_INTERLOCK; 398 } 399 break; 400 default: 401 result = VOP_LOCK1_APV(&ufs_vnodeops, ap); 402 } 403 return (result); 404 #else 405 return (VOP_LOCK1_APV(&ufs_vnodeops, ap)); 406 #endif 407 } 408 409 /* 410 * Vnode op for reading. 411 */ 412 static int 413 ffs_read(ap) 414 struct vop_read_args /* { 415 struct vnode *a_vp; 416 struct uio *a_uio; 417 int a_ioflag; 418 struct ucred *a_cred; 419 } */ *ap; 420 { 421 struct vnode *vp; 422 struct inode *ip; 423 struct uio *uio; 424 struct fs *fs; 425 struct buf *bp; 426 ufs_lbn_t lbn, nextlbn; 427 off_t bytesinfile; 428 long size, xfersize, blkoffset; 429 ssize_t orig_resid; 430 int error; 431 int seqcount; 432 int ioflag; 433 434 vp = ap->a_vp; 435 uio = ap->a_uio; 436 ioflag = ap->a_ioflag; 437 if (ap->a_ioflag & IO_EXT) 438 #ifdef notyet 439 return (ffs_extread(vp, uio, ioflag)); 440 #else 441 panic("ffs_read+IO_EXT"); 442 #endif 443 #ifdef DIRECTIO 444 if ((ioflag & IO_DIRECT) != 0) { 445 int workdone; 446 447 error = ffs_rawread(vp, uio, &workdone); 448 if (error != 0 || workdone != 0) 449 return error; 450 } 451 #endif 452 453 seqcount = ap->a_ioflag >> IO_SEQSHIFT; 454 ip = VTOI(vp); 455 456 #ifdef INVARIANTS 457 if (uio->uio_rw != UIO_READ) 458 panic("ffs_read: mode"); 459 460 if (vp->v_type == VLNK) { 461 if ((int)ip->i_size < vp->v_mount->mnt_maxsymlinklen) 462 panic("ffs_read: short symlink"); 463 } else if (vp->v_type != VREG && vp->v_type != VDIR) 464 panic("ffs_read: type %d", vp->v_type); 465 #endif 466 orig_resid = uio->uio_resid; 467 KASSERT(orig_resid >= 0, ("ffs_read: uio->uio_resid < 0")); 468 if (orig_resid == 0) 469 return (0); 470 KASSERT(uio->uio_offset >= 0, ("ffs_read: uio->uio_offset < 0")); 471 fs = ip->i_fs; 472 if (uio->uio_offset < ip->i_size && 473 uio->uio_offset >= fs->fs_maxfilesize) 474 return (EOVERFLOW); 475 476 for (error = 0, bp = NULL; uio->uio_resid > 0; bp = NULL) { 477 if ((bytesinfile = ip->i_size - uio->uio_offset) <= 0) 478 break; 479 lbn = lblkno(fs, uio->uio_offset); 480 nextlbn = lbn + 1; 481 482 /* 483 * size of buffer. The buffer representing the 484 * end of the file is rounded up to the size of 485 * the block type ( fragment or full block, 486 * depending ). 487 */ 488 size = blksize(fs, ip, lbn); 489 blkoffset = blkoff(fs, uio->uio_offset); 490 491 /* 492 * The amount we want to transfer in this iteration is 493 * one FS block less the amount of the data before 494 * our startpoint (duh!) 495 */ 496 xfersize = fs->fs_bsize - blkoffset; 497 498 /* 499 * But if we actually want less than the block, 500 * or the file doesn't have a whole block more of data, 501 * then use the lesser number. 502 */ 503 if (uio->uio_resid < xfersize) 504 xfersize = uio->uio_resid; 505 if (bytesinfile < xfersize) 506 xfersize = bytesinfile; 507 508 if (lblktosize(fs, nextlbn) >= ip->i_size) { 509 /* 510 * Don't do readahead if this is the end of the file. 511 */ 512 error = bread(vp, lbn, size, NOCRED, &bp); 513 } else if ((vp->v_mount->mnt_flag & MNT_NOCLUSTERR) == 0) { 514 /* 515 * Otherwise if we are allowed to cluster, 516 * grab as much as we can. 517 * 518 * XXX This may not be a win if we are not 519 * doing sequential access. 520 */ 521 error = cluster_read(vp, ip->i_size, lbn, 522 size, NOCRED, blkoffset + uio->uio_resid, seqcount, &bp); 523 } else if (seqcount > 1) { 524 /* 525 * If we are NOT allowed to cluster, then 526 * if we appear to be acting sequentially, 527 * fire off a request for a readahead 528 * as well as a read. Note that the 4th and 5th 529 * arguments point to arrays of the size specified in 530 * the 6th argument. 531 */ 532 int nextsize = blksize(fs, ip, nextlbn); 533 error = breadn(vp, lbn, 534 size, &nextlbn, &nextsize, 1, NOCRED, &bp); 535 } else { 536 /* 537 * Failing all of the above, just read what the 538 * user asked for. Interestingly, the same as 539 * the first option above. 540 */ 541 error = bread(vp, lbn, size, NOCRED, &bp); 542 } 543 if (error) { 544 brelse(bp); 545 bp = NULL; 546 break; 547 } 548 549 /* 550 * If IO_DIRECT then set B_DIRECT for the buffer. This 551 * will cause us to attempt to release the buffer later on 552 * and will cause the buffer cache to attempt to free the 553 * underlying pages. 554 */ 555 if (ioflag & IO_DIRECT) 556 bp->b_flags |= B_DIRECT; 557 558 /* 559 * We should only get non-zero b_resid when an I/O error 560 * has occurred, which should cause us to break above. 561 * However, if the short read did not cause an error, 562 * then we want to ensure that we do not uiomove bad 563 * or uninitialized data. 564 */ 565 size -= bp->b_resid; 566 if (size < xfersize) { 567 if (size == 0) 568 break; 569 xfersize = size; 570 } 571 572 error = uiomove((char *)bp->b_data + blkoffset, 573 (int)xfersize, uio); 574 if (error) 575 break; 576 577 if ((ioflag & (IO_VMIO|IO_DIRECT)) && 578 (LIST_EMPTY(&bp->b_dep))) { 579 /* 580 * If there are no dependencies, and it's VMIO, 581 * then we don't need the buf, mark it available 582 * for freeing. For non-direct VMIO reads, the VM 583 * has the data. 584 */ 585 bp->b_flags |= B_RELBUF; 586 brelse(bp); 587 } else { 588 /* 589 * Otherwise let whoever 590 * made the request take care of 591 * freeing it. We just queue 592 * it onto another list. 593 */ 594 bqrelse(bp); 595 } 596 } 597 598 /* 599 * This can only happen in the case of an error 600 * because the loop above resets bp to NULL on each iteration 601 * and on normal completion has not set a new value into it. 602 * so it must have come from a 'break' statement 603 */ 604 if (bp != NULL) { 605 if ((ioflag & (IO_VMIO|IO_DIRECT)) && 606 (LIST_EMPTY(&bp->b_dep))) { 607 bp->b_flags |= B_RELBUF; 608 brelse(bp); 609 } else { 610 bqrelse(bp); 611 } 612 } 613 614 if ((error == 0 || uio->uio_resid != orig_resid) && 615 (vp->v_mount->mnt_flag & MNT_NOATIME) == 0 && 616 (ip->i_flag & IN_ACCESS) == 0) { 617 VI_LOCK(vp); 618 ip->i_flag |= IN_ACCESS; 619 VI_UNLOCK(vp); 620 } 621 return (error); 622 } 623 624 /* 625 * Vnode op for writing. 626 */ 627 static int 628 ffs_write(ap) 629 struct vop_write_args /* { 630 struct vnode *a_vp; 631 struct uio *a_uio; 632 int a_ioflag; 633 struct ucred *a_cred; 634 } */ *ap; 635 { 636 struct vnode *vp; 637 struct uio *uio; 638 struct inode *ip; 639 struct fs *fs; 640 struct buf *bp; 641 ufs_lbn_t lbn; 642 off_t osize; 643 ssize_t resid; 644 int seqcount; 645 int blkoffset, error, flags, ioflag, size, xfersize; 646 647 vp = ap->a_vp; 648 uio = ap->a_uio; 649 ioflag = ap->a_ioflag; 650 if (ap->a_ioflag & IO_EXT) 651 #ifdef notyet 652 return (ffs_extwrite(vp, uio, ioflag, ap->a_cred)); 653 #else 654 panic("ffs_write+IO_EXT"); 655 #endif 656 657 seqcount = ap->a_ioflag >> IO_SEQSHIFT; 658 ip = VTOI(vp); 659 660 #ifdef INVARIANTS 661 if (uio->uio_rw != UIO_WRITE) 662 panic("ffs_write: mode"); 663 #endif 664 665 switch (vp->v_type) { 666 case VREG: 667 if (ioflag & IO_APPEND) 668 uio->uio_offset = ip->i_size; 669 if ((ip->i_flags & APPEND) && uio->uio_offset != ip->i_size) 670 return (EPERM); 671 /* FALLTHROUGH */ 672 case VLNK: 673 break; 674 case VDIR: 675 panic("ffs_write: dir write"); 676 break; 677 default: 678 panic("ffs_write: type %p %d (%d,%d)", vp, (int)vp->v_type, 679 (int)uio->uio_offset, 680 (int)uio->uio_resid 681 ); 682 } 683 684 KASSERT(uio->uio_resid >= 0, ("ffs_write: uio->uio_resid < 0")); 685 KASSERT(uio->uio_offset >= 0, ("ffs_write: uio->uio_offset < 0")); 686 fs = ip->i_fs; 687 if ((uoff_t)uio->uio_offset + uio->uio_resid > fs->fs_maxfilesize) 688 return (EFBIG); 689 /* 690 * Maybe this should be above the vnode op call, but so long as 691 * file servers have no limits, I don't think it matters. 692 */ 693 if (vn_rlimit_fsize(vp, uio, uio->uio_td)) 694 return (EFBIG); 695 696 resid = uio->uio_resid; 697 osize = ip->i_size; 698 if (seqcount > BA_SEQMAX) 699 flags = BA_SEQMAX << BA_SEQSHIFT; 700 else 701 flags = seqcount << BA_SEQSHIFT; 702 if ((ioflag & IO_SYNC) && !DOINGASYNC(vp)) 703 flags |= IO_SYNC; 704 705 for (error = 0; uio->uio_resid > 0;) { 706 lbn = lblkno(fs, uio->uio_offset); 707 blkoffset = blkoff(fs, uio->uio_offset); 708 xfersize = fs->fs_bsize - blkoffset; 709 if (uio->uio_resid < xfersize) 710 xfersize = uio->uio_resid; 711 if (uio->uio_offset + xfersize > ip->i_size) 712 vnode_pager_setsize(vp, uio->uio_offset + xfersize); 713 714 /* 715 * We must perform a read-before-write if the transfer size 716 * does not cover the entire buffer. 717 */ 718 if (fs->fs_bsize > xfersize) 719 flags |= BA_CLRBUF; 720 else 721 flags &= ~BA_CLRBUF; 722 /* XXX is uio->uio_offset the right thing here? */ 723 error = UFS_BALLOC(vp, uio->uio_offset, xfersize, 724 ap->a_cred, flags, &bp); 725 if (error != 0) { 726 vnode_pager_setsize(vp, ip->i_size); 727 break; 728 } 729 if (ioflag & IO_DIRECT) 730 bp->b_flags |= B_DIRECT; 731 if ((ioflag & (IO_SYNC|IO_INVAL)) == (IO_SYNC|IO_INVAL)) 732 bp->b_flags |= B_NOCACHE; 733 734 if (uio->uio_offset + xfersize > ip->i_size) { 735 ip->i_size = uio->uio_offset + xfersize; 736 DIP_SET(ip, i_size, ip->i_size); 737 } 738 739 size = blksize(fs, ip, lbn) - bp->b_resid; 740 if (size < xfersize) 741 xfersize = size; 742 743 error = 744 uiomove((char *)bp->b_data + blkoffset, (int)xfersize, uio); 745 /* 746 * If the buffer is not already filled and we encounter an 747 * error while trying to fill it, we have to clear out any 748 * garbage data from the pages instantiated for the buffer. 749 * If we do not, a failed uiomove() during a write can leave 750 * the prior contents of the pages exposed to a userland mmap. 751 * 752 * Note that we need only clear buffers with a transfer size 753 * equal to the block size because buffers with a shorter 754 * transfer size were cleared above by the call to UFS_BALLOC() 755 * with the BA_CLRBUF flag set. 756 * 757 * If the source region for uiomove identically mmaps the 758 * buffer, uiomove() performed the NOP copy, and the buffer 759 * content remains valid because the page fault handler 760 * validated the pages. 761 */ 762 if (error != 0 && (bp->b_flags & B_CACHE) == 0 && 763 fs->fs_bsize == xfersize) 764 vfs_bio_clrbuf(bp); 765 if ((ioflag & (IO_VMIO|IO_DIRECT)) && 766 (LIST_EMPTY(&bp->b_dep))) { 767 bp->b_flags |= B_RELBUF; 768 } 769 770 /* 771 * If IO_SYNC each buffer is written synchronously. Otherwise 772 * if we have a severe page deficiency write the buffer 773 * asynchronously. Otherwise try to cluster, and if that 774 * doesn't do it then either do an async write (if O_DIRECT), 775 * or a delayed write (if not). 776 */ 777 if (ioflag & IO_SYNC) { 778 (void)bwrite(bp); 779 } else if (vm_page_count_severe() || 780 buf_dirty_count_severe() || 781 (ioflag & IO_ASYNC)) { 782 bp->b_flags |= B_CLUSTEROK; 783 bawrite(bp); 784 } else if (xfersize + blkoffset == fs->fs_bsize) { 785 if ((vp->v_mount->mnt_flag & MNT_NOCLUSTERW) == 0) { 786 bp->b_flags |= B_CLUSTEROK; 787 cluster_write(vp, bp, ip->i_size, seqcount); 788 } else { 789 bawrite(bp); 790 } 791 } else if (ioflag & IO_DIRECT) { 792 bp->b_flags |= B_CLUSTEROK; 793 bawrite(bp); 794 } else { 795 bp->b_flags |= B_CLUSTEROK; 796 bdwrite(bp); 797 } 798 if (error || xfersize == 0) 799 break; 800 ip->i_flag |= IN_CHANGE | IN_UPDATE; 801 } 802 /* 803 * If we successfully wrote any data, and we are not the superuser 804 * we clear the setuid and setgid bits as a precaution against 805 * tampering. 806 */ 807 if ((ip->i_mode & (ISUID | ISGID)) && resid > uio->uio_resid && 808 ap->a_cred) { 809 if (priv_check_cred(ap->a_cred, PRIV_VFS_RETAINSUGID, 0)) { 810 ip->i_mode &= ~(ISUID | ISGID); 811 DIP_SET(ip, i_mode, ip->i_mode); 812 } 813 } 814 if (error) { 815 if (ioflag & IO_UNIT) { 816 (void)ffs_truncate(vp, osize, 817 IO_NORMAL | (ioflag & IO_SYNC), 818 ap->a_cred, uio->uio_td); 819 uio->uio_offset -= resid - uio->uio_resid; 820 uio->uio_resid = resid; 821 } 822 } else if (resid > uio->uio_resid && (ioflag & IO_SYNC)) 823 error = ffs_update(vp, 1); 824 return (error); 825 } 826 827 /* 828 * get page routine 829 */ 830 static int 831 ffs_getpages(ap) 832 struct vop_getpages_args *ap; 833 { 834 int i; 835 vm_page_t mreq; 836 int pcount; 837 838 pcount = round_page(ap->a_count) / PAGE_SIZE; 839 mreq = ap->a_m[ap->a_reqpage]; 840 841 /* 842 * if ANY DEV_BSIZE blocks are valid on a large filesystem block, 843 * then the entire page is valid. Since the page may be mapped, 844 * user programs might reference data beyond the actual end of file 845 * occuring within the page. We have to zero that data. 846 */ 847 VM_OBJECT_LOCK(mreq->object); 848 if (mreq->valid) { 849 if (mreq->valid != VM_PAGE_BITS_ALL) 850 vm_page_zero_invalid(mreq, TRUE); 851 for (i = 0; i < pcount; i++) { 852 if (i != ap->a_reqpage) { 853 vm_page_lock(ap->a_m[i]); 854 vm_page_free(ap->a_m[i]); 855 vm_page_unlock(ap->a_m[i]); 856 } 857 } 858 VM_OBJECT_UNLOCK(mreq->object); 859 return VM_PAGER_OK; 860 } 861 VM_OBJECT_UNLOCK(mreq->object); 862 863 return vnode_pager_generic_getpages(ap->a_vp, ap->a_m, 864 ap->a_count, 865 ap->a_reqpage); 866 } 867 868 869 /* 870 * Extended attribute area reading. 871 */ 872 static int 873 ffs_extread(struct vnode *vp, struct uio *uio, int ioflag) 874 { 875 struct inode *ip; 876 struct ufs2_dinode *dp; 877 struct fs *fs; 878 struct buf *bp; 879 ufs_lbn_t lbn, nextlbn; 880 off_t bytesinfile; 881 long size, xfersize, blkoffset; 882 ssize_t orig_resid; 883 int error; 884 885 ip = VTOI(vp); 886 fs = ip->i_fs; 887 dp = ip->i_din2; 888 889 #ifdef INVARIANTS 890 if (uio->uio_rw != UIO_READ || fs->fs_magic != FS_UFS2_MAGIC) 891 panic("ffs_extread: mode"); 892 893 #endif 894 orig_resid = uio->uio_resid; 895 KASSERT(orig_resid >= 0, ("ffs_extread: uio->uio_resid < 0")); 896 if (orig_resid == 0) 897 return (0); 898 KASSERT(uio->uio_offset >= 0, ("ffs_extread: uio->uio_offset < 0")); 899 900 for (error = 0, bp = NULL; uio->uio_resid > 0; bp = NULL) { 901 if ((bytesinfile = dp->di_extsize - uio->uio_offset) <= 0) 902 break; 903 lbn = lblkno(fs, uio->uio_offset); 904 nextlbn = lbn + 1; 905 906 /* 907 * size of buffer. The buffer representing the 908 * end of the file is rounded up to the size of 909 * the block type ( fragment or full block, 910 * depending ). 911 */ 912 size = sblksize(fs, dp->di_extsize, lbn); 913 blkoffset = blkoff(fs, uio->uio_offset); 914 915 /* 916 * The amount we want to transfer in this iteration is 917 * one FS block less the amount of the data before 918 * our startpoint (duh!) 919 */ 920 xfersize = fs->fs_bsize - blkoffset; 921 922 /* 923 * But if we actually want less than the block, 924 * or the file doesn't have a whole block more of data, 925 * then use the lesser number. 926 */ 927 if (uio->uio_resid < xfersize) 928 xfersize = uio->uio_resid; 929 if (bytesinfile < xfersize) 930 xfersize = bytesinfile; 931 932 if (lblktosize(fs, nextlbn) >= dp->di_extsize) { 933 /* 934 * Don't do readahead if this is the end of the info. 935 */ 936 error = bread(vp, -1 - lbn, size, NOCRED, &bp); 937 } else { 938 /* 939 * If we have a second block, then 940 * fire off a request for a readahead 941 * as well as a read. Note that the 4th and 5th 942 * arguments point to arrays of the size specified in 943 * the 6th argument. 944 */ 945 int nextsize = sblksize(fs, dp->di_extsize, nextlbn); 946 947 nextlbn = -1 - nextlbn; 948 error = breadn(vp, -1 - lbn, 949 size, &nextlbn, &nextsize, 1, NOCRED, &bp); 950 } 951 if (error) { 952 brelse(bp); 953 bp = NULL; 954 break; 955 } 956 957 /* 958 * If IO_DIRECT then set B_DIRECT for the buffer. This 959 * will cause us to attempt to release the buffer later on 960 * and will cause the buffer cache to attempt to free the 961 * underlying pages. 962 */ 963 if (ioflag & IO_DIRECT) 964 bp->b_flags |= B_DIRECT; 965 966 /* 967 * We should only get non-zero b_resid when an I/O error 968 * has occurred, which should cause us to break above. 969 * However, if the short read did not cause an error, 970 * then we want to ensure that we do not uiomove bad 971 * or uninitialized data. 972 */ 973 size -= bp->b_resid; 974 if (size < xfersize) { 975 if (size == 0) 976 break; 977 xfersize = size; 978 } 979 980 error = uiomove((char *)bp->b_data + blkoffset, 981 (int)xfersize, uio); 982 if (error) 983 break; 984 985 if ((ioflag & (IO_VMIO|IO_DIRECT)) && 986 (LIST_EMPTY(&bp->b_dep))) { 987 /* 988 * If there are no dependencies, and it's VMIO, 989 * then we don't need the buf, mark it available 990 * for freeing. For non-direct VMIO reads, the VM 991 * has the data. 992 */ 993 bp->b_flags |= B_RELBUF; 994 brelse(bp); 995 } else { 996 /* 997 * Otherwise let whoever 998 * made the request take care of 999 * freeing it. We just queue 1000 * it onto another list. 1001 */ 1002 bqrelse(bp); 1003 } 1004 } 1005 1006 /* 1007 * This can only happen in the case of an error 1008 * because the loop above resets bp to NULL on each iteration 1009 * and on normal completion has not set a new value into it. 1010 * so it must have come from a 'break' statement 1011 */ 1012 if (bp != NULL) { 1013 if ((ioflag & (IO_VMIO|IO_DIRECT)) && 1014 (LIST_EMPTY(&bp->b_dep))) { 1015 bp->b_flags |= B_RELBUF; 1016 brelse(bp); 1017 } else { 1018 bqrelse(bp); 1019 } 1020 } 1021 return (error); 1022 } 1023 1024 /* 1025 * Extended attribute area writing. 1026 */ 1027 static int 1028 ffs_extwrite(struct vnode *vp, struct uio *uio, int ioflag, struct ucred *ucred) 1029 { 1030 struct inode *ip; 1031 struct ufs2_dinode *dp; 1032 struct fs *fs; 1033 struct buf *bp; 1034 ufs_lbn_t lbn; 1035 off_t osize; 1036 ssize_t resid; 1037 int blkoffset, error, flags, size, xfersize; 1038 1039 ip = VTOI(vp); 1040 fs = ip->i_fs; 1041 dp = ip->i_din2; 1042 1043 #ifdef INVARIANTS 1044 if (uio->uio_rw != UIO_WRITE || fs->fs_magic != FS_UFS2_MAGIC) 1045 panic("ffs_extwrite: mode"); 1046 #endif 1047 1048 if (ioflag & IO_APPEND) 1049 uio->uio_offset = dp->di_extsize; 1050 KASSERT(uio->uio_offset >= 0, ("ffs_extwrite: uio->uio_offset < 0")); 1051 KASSERT(uio->uio_resid >= 0, ("ffs_extwrite: uio->uio_resid < 0")); 1052 if ((uoff_t)uio->uio_offset + uio->uio_resid > NXADDR * fs->fs_bsize) 1053 return (EFBIG); 1054 1055 resid = uio->uio_resid; 1056 osize = dp->di_extsize; 1057 flags = IO_EXT; 1058 if ((ioflag & IO_SYNC) && !DOINGASYNC(vp)) 1059 flags |= IO_SYNC; 1060 1061 for (error = 0; uio->uio_resid > 0;) { 1062 lbn = lblkno(fs, uio->uio_offset); 1063 blkoffset = blkoff(fs, uio->uio_offset); 1064 xfersize = fs->fs_bsize - blkoffset; 1065 if (uio->uio_resid < xfersize) 1066 xfersize = uio->uio_resid; 1067 1068 /* 1069 * We must perform a read-before-write if the transfer size 1070 * does not cover the entire buffer. 1071 */ 1072 if (fs->fs_bsize > xfersize) 1073 flags |= BA_CLRBUF; 1074 else 1075 flags &= ~BA_CLRBUF; 1076 error = UFS_BALLOC(vp, uio->uio_offset, xfersize, 1077 ucred, flags, &bp); 1078 if (error != 0) 1079 break; 1080 /* 1081 * If the buffer is not valid we have to clear out any 1082 * garbage data from the pages instantiated for the buffer. 1083 * If we do not, a failed uiomove() during a write can leave 1084 * the prior contents of the pages exposed to a userland 1085 * mmap(). XXX deal with uiomove() errors a better way. 1086 */ 1087 if ((bp->b_flags & B_CACHE) == 0 && fs->fs_bsize <= xfersize) 1088 vfs_bio_clrbuf(bp); 1089 if (ioflag & IO_DIRECT) 1090 bp->b_flags |= B_DIRECT; 1091 1092 if (uio->uio_offset + xfersize > dp->di_extsize) 1093 dp->di_extsize = uio->uio_offset + xfersize; 1094 1095 size = sblksize(fs, dp->di_extsize, lbn) - bp->b_resid; 1096 if (size < xfersize) 1097 xfersize = size; 1098 1099 error = 1100 uiomove((char *)bp->b_data + blkoffset, (int)xfersize, uio); 1101 if ((ioflag & (IO_VMIO|IO_DIRECT)) && 1102 (LIST_EMPTY(&bp->b_dep))) { 1103 bp->b_flags |= B_RELBUF; 1104 } 1105 1106 /* 1107 * If IO_SYNC each buffer is written synchronously. Otherwise 1108 * if we have a severe page deficiency write the buffer 1109 * asynchronously. Otherwise try to cluster, and if that 1110 * doesn't do it then either do an async write (if O_DIRECT), 1111 * or a delayed write (if not). 1112 */ 1113 if (ioflag & IO_SYNC) { 1114 (void)bwrite(bp); 1115 } else if (vm_page_count_severe() || 1116 buf_dirty_count_severe() || 1117 xfersize + blkoffset == fs->fs_bsize || 1118 (ioflag & (IO_ASYNC | IO_DIRECT))) 1119 bawrite(bp); 1120 else 1121 bdwrite(bp); 1122 if (error || xfersize == 0) 1123 break; 1124 ip->i_flag |= IN_CHANGE; 1125 } 1126 /* 1127 * If we successfully wrote any data, and we are not the superuser 1128 * we clear the setuid and setgid bits as a precaution against 1129 * tampering. 1130 */ 1131 if ((ip->i_mode & (ISUID | ISGID)) && resid > uio->uio_resid && ucred) { 1132 if (priv_check_cred(ucred, PRIV_VFS_RETAINSUGID, 0)) { 1133 ip->i_mode &= ~(ISUID | ISGID); 1134 dp->di_mode = ip->i_mode; 1135 } 1136 } 1137 if (error) { 1138 if (ioflag & IO_UNIT) { 1139 (void)ffs_truncate(vp, osize, 1140 IO_EXT | (ioflag&IO_SYNC), ucred, uio->uio_td); 1141 uio->uio_offset -= resid - uio->uio_resid; 1142 uio->uio_resid = resid; 1143 } 1144 } else if (resid > uio->uio_resid && (ioflag & IO_SYNC)) 1145 error = ffs_update(vp, 1); 1146 return (error); 1147 } 1148 1149 1150 /* 1151 * Vnode operating to retrieve a named extended attribute. 1152 * 1153 * Locate a particular EA (nspace:name) in the area (ptr:length), and return 1154 * the length of the EA, and possibly the pointer to the entry and to the data. 1155 */ 1156 static int 1157 ffs_findextattr(u_char *ptr, u_int length, int nspace, const char *name, u_char **eap, u_char **eac) 1158 { 1159 u_char *p, *pe, *pn, *p0; 1160 int eapad1, eapad2, ealength, ealen, nlen; 1161 uint32_t ul; 1162 1163 pe = ptr + length; 1164 nlen = strlen(name); 1165 1166 for (p = ptr; p < pe; p = pn) { 1167 p0 = p; 1168 bcopy(p, &ul, sizeof(ul)); 1169 pn = p + ul; 1170 /* make sure this entry is complete */ 1171 if (pn > pe) 1172 break; 1173 p += sizeof(uint32_t); 1174 if (*p != nspace) 1175 continue; 1176 p++; 1177 eapad2 = *p++; 1178 if (*p != nlen) 1179 continue; 1180 p++; 1181 if (bcmp(p, name, nlen)) 1182 continue; 1183 ealength = sizeof(uint32_t) + 3 + nlen; 1184 eapad1 = 8 - (ealength % 8); 1185 if (eapad1 == 8) 1186 eapad1 = 0; 1187 ealength += eapad1; 1188 ealen = ul - ealength - eapad2; 1189 p += nlen + eapad1; 1190 if (eap != NULL) 1191 *eap = p0; 1192 if (eac != NULL) 1193 *eac = p; 1194 return (ealen); 1195 } 1196 return(-1); 1197 } 1198 1199 static int 1200 ffs_rdextattr(u_char **p, struct vnode *vp, struct thread *td, int extra) 1201 { 1202 struct inode *ip; 1203 struct ufs2_dinode *dp; 1204 struct fs *fs; 1205 struct uio luio; 1206 struct iovec liovec; 1207 int easize, error; 1208 u_char *eae; 1209 1210 ip = VTOI(vp); 1211 fs = ip->i_fs; 1212 dp = ip->i_din2; 1213 easize = dp->di_extsize; 1214 if ((uoff_t)easize + extra > NXADDR * fs->fs_bsize) 1215 return (EFBIG); 1216 1217 eae = malloc(easize + extra, M_TEMP, M_WAITOK); 1218 1219 liovec.iov_base = eae; 1220 liovec.iov_len = easize; 1221 luio.uio_iov = &liovec; 1222 luio.uio_iovcnt = 1; 1223 luio.uio_offset = 0; 1224 luio.uio_resid = easize; 1225 luio.uio_segflg = UIO_SYSSPACE; 1226 luio.uio_rw = UIO_READ; 1227 luio.uio_td = td; 1228 1229 error = ffs_extread(vp, &luio, IO_EXT | IO_SYNC); 1230 if (error) { 1231 free(eae, M_TEMP); 1232 return(error); 1233 } 1234 *p = eae; 1235 return (0); 1236 } 1237 1238 static void 1239 ffs_lock_ea(struct vnode *vp) 1240 { 1241 struct inode *ip; 1242 1243 ip = VTOI(vp); 1244 VI_LOCK(vp); 1245 while (ip->i_flag & IN_EA_LOCKED) { 1246 ip->i_flag |= IN_EA_LOCKWAIT; 1247 msleep(&ip->i_ea_refs, &vp->v_interlock, PINOD + 2, "ufs_ea", 1248 0); 1249 } 1250 ip->i_flag |= IN_EA_LOCKED; 1251 VI_UNLOCK(vp); 1252 } 1253 1254 static void 1255 ffs_unlock_ea(struct vnode *vp) 1256 { 1257 struct inode *ip; 1258 1259 ip = VTOI(vp); 1260 VI_LOCK(vp); 1261 if (ip->i_flag & IN_EA_LOCKWAIT) 1262 wakeup(&ip->i_ea_refs); 1263 ip->i_flag &= ~(IN_EA_LOCKED | IN_EA_LOCKWAIT); 1264 VI_UNLOCK(vp); 1265 } 1266 1267 static int 1268 ffs_open_ea(struct vnode *vp, struct ucred *cred, struct thread *td) 1269 { 1270 struct inode *ip; 1271 struct ufs2_dinode *dp; 1272 int error; 1273 1274 ip = VTOI(vp); 1275 1276 ffs_lock_ea(vp); 1277 if (ip->i_ea_area != NULL) { 1278 ip->i_ea_refs++; 1279 ffs_unlock_ea(vp); 1280 return (0); 1281 } 1282 dp = ip->i_din2; 1283 error = ffs_rdextattr(&ip->i_ea_area, vp, td, 0); 1284 if (error) { 1285 ffs_unlock_ea(vp); 1286 return (error); 1287 } 1288 ip->i_ea_len = dp->di_extsize; 1289 ip->i_ea_error = 0; 1290 ip->i_ea_refs++; 1291 ffs_unlock_ea(vp); 1292 return (0); 1293 } 1294 1295 /* 1296 * Vnode extattr transaction commit/abort 1297 */ 1298 static int 1299 ffs_close_ea(struct vnode *vp, int commit, struct ucred *cred, struct thread *td) 1300 { 1301 struct inode *ip; 1302 struct uio luio; 1303 struct iovec liovec; 1304 int error; 1305 struct ufs2_dinode *dp; 1306 1307 ip = VTOI(vp); 1308 1309 ffs_lock_ea(vp); 1310 if (ip->i_ea_area == NULL) { 1311 ffs_unlock_ea(vp); 1312 return (EINVAL); 1313 } 1314 dp = ip->i_din2; 1315 error = ip->i_ea_error; 1316 if (commit && error == 0) { 1317 ASSERT_VOP_ELOCKED(vp, "ffs_close_ea commit"); 1318 if (cred == NOCRED) 1319 cred = vp->v_mount->mnt_cred; 1320 liovec.iov_base = ip->i_ea_area; 1321 liovec.iov_len = ip->i_ea_len; 1322 luio.uio_iov = &liovec; 1323 luio.uio_iovcnt = 1; 1324 luio.uio_offset = 0; 1325 luio.uio_resid = ip->i_ea_len; 1326 luio.uio_segflg = UIO_SYSSPACE; 1327 luio.uio_rw = UIO_WRITE; 1328 luio.uio_td = td; 1329 /* XXX: I'm not happy about truncating to zero size */ 1330 if (ip->i_ea_len < dp->di_extsize) 1331 error = ffs_truncate(vp, 0, IO_EXT, cred, td); 1332 error = ffs_extwrite(vp, &luio, IO_EXT | IO_SYNC, cred); 1333 } 1334 if (--ip->i_ea_refs == 0) { 1335 free(ip->i_ea_area, M_TEMP); 1336 ip->i_ea_area = NULL; 1337 ip->i_ea_len = 0; 1338 ip->i_ea_error = 0; 1339 } 1340 ffs_unlock_ea(vp); 1341 return (error); 1342 } 1343 1344 /* 1345 * Vnode extattr strategy routine for fifos. 1346 * 1347 * We need to check for a read or write of the external attributes. 1348 * Otherwise we just fall through and do the usual thing. 1349 */ 1350 static int 1351 ffsext_strategy(struct vop_strategy_args *ap) 1352 /* 1353 struct vop_strategy_args { 1354 struct vnodeop_desc *a_desc; 1355 struct vnode *a_vp; 1356 struct buf *a_bp; 1357 }; 1358 */ 1359 { 1360 struct vnode *vp; 1361 daddr_t lbn; 1362 1363 vp = ap->a_vp; 1364 lbn = ap->a_bp->b_lblkno; 1365 if (VTOI(vp)->i_fs->fs_magic == FS_UFS2_MAGIC && 1366 lbn < 0 && lbn >= -NXADDR) 1367 return (VOP_STRATEGY_APV(&ufs_vnodeops, ap)); 1368 if (vp->v_type == VFIFO) 1369 return (VOP_STRATEGY_APV(&ufs_fifoops, ap)); 1370 panic("spec nodes went here"); 1371 } 1372 1373 /* 1374 * Vnode extattr transaction commit/abort 1375 */ 1376 static int 1377 ffs_openextattr(struct vop_openextattr_args *ap) 1378 /* 1379 struct vop_openextattr_args { 1380 struct vnodeop_desc *a_desc; 1381 struct vnode *a_vp; 1382 IN struct ucred *a_cred; 1383 IN struct thread *a_td; 1384 }; 1385 */ 1386 { 1387 struct inode *ip; 1388 struct fs *fs; 1389 1390 ip = VTOI(ap->a_vp); 1391 fs = ip->i_fs; 1392 1393 if (ap->a_vp->v_type == VCHR || ap->a_vp->v_type == VBLK) 1394 return (EOPNOTSUPP); 1395 1396 return (ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td)); 1397 } 1398 1399 1400 /* 1401 * Vnode extattr transaction commit/abort 1402 */ 1403 static int 1404 ffs_closeextattr(struct vop_closeextattr_args *ap) 1405 /* 1406 struct vop_closeextattr_args { 1407 struct vnodeop_desc *a_desc; 1408 struct vnode *a_vp; 1409 int a_commit; 1410 IN struct ucred *a_cred; 1411 IN struct thread *a_td; 1412 }; 1413 */ 1414 { 1415 struct inode *ip; 1416 struct fs *fs; 1417 1418 ip = VTOI(ap->a_vp); 1419 fs = ip->i_fs; 1420 1421 if (ap->a_vp->v_type == VCHR || ap->a_vp->v_type == VBLK) 1422 return (EOPNOTSUPP); 1423 1424 if (ap->a_commit && (ap->a_vp->v_mount->mnt_flag & MNT_RDONLY)) 1425 return (EROFS); 1426 1427 return (ffs_close_ea(ap->a_vp, ap->a_commit, ap->a_cred, ap->a_td)); 1428 } 1429 1430 /* 1431 * Vnode operation to remove a named attribute. 1432 */ 1433 static int 1434 ffs_deleteextattr(struct vop_deleteextattr_args *ap) 1435 /* 1436 vop_deleteextattr { 1437 IN struct vnode *a_vp; 1438 IN int a_attrnamespace; 1439 IN const char *a_name; 1440 IN struct ucred *a_cred; 1441 IN struct thread *a_td; 1442 }; 1443 */ 1444 { 1445 struct inode *ip; 1446 struct fs *fs; 1447 uint32_t ealength, ul; 1448 int ealen, olen, eapad1, eapad2, error, i, easize; 1449 u_char *eae, *p; 1450 1451 ip = VTOI(ap->a_vp); 1452 fs = ip->i_fs; 1453 1454 if (ap->a_vp->v_type == VCHR || ap->a_vp->v_type == VBLK) 1455 return (EOPNOTSUPP); 1456 1457 if (strlen(ap->a_name) == 0) 1458 return (EINVAL); 1459 1460 if (ap->a_vp->v_mount->mnt_flag & MNT_RDONLY) 1461 return (EROFS); 1462 1463 error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace, 1464 ap->a_cred, ap->a_td, VWRITE); 1465 if (error) { 1466 1467 /* 1468 * ffs_lock_ea is not needed there, because the vnode 1469 * must be exclusively locked. 1470 */ 1471 if (ip->i_ea_area != NULL && ip->i_ea_error == 0) 1472 ip->i_ea_error = error; 1473 return (error); 1474 } 1475 1476 error = ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td); 1477 if (error) 1478 return (error); 1479 1480 ealength = eapad1 = ealen = eapad2 = 0; 1481 1482 eae = malloc(ip->i_ea_len, M_TEMP, M_WAITOK); 1483 bcopy(ip->i_ea_area, eae, ip->i_ea_len); 1484 easize = ip->i_ea_len; 1485 1486 olen = ffs_findextattr(eae, easize, ap->a_attrnamespace, ap->a_name, 1487 &p, NULL); 1488 if (olen == -1) { 1489 /* delete but nonexistent */ 1490 free(eae, M_TEMP); 1491 ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td); 1492 return(ENOATTR); 1493 } 1494 bcopy(p, &ul, sizeof ul); 1495 i = p - eae + ul; 1496 if (ul != ealength) { 1497 bcopy(p + ul, p + ealength, easize - i); 1498 easize += (ealength - ul); 1499 } 1500 if (easize > NXADDR * fs->fs_bsize) { 1501 free(eae, M_TEMP); 1502 ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td); 1503 if (ip->i_ea_area != NULL && ip->i_ea_error == 0) 1504 ip->i_ea_error = ENOSPC; 1505 return(ENOSPC); 1506 } 1507 p = ip->i_ea_area; 1508 ip->i_ea_area = eae; 1509 ip->i_ea_len = easize; 1510 free(p, M_TEMP); 1511 error = ffs_close_ea(ap->a_vp, 1, ap->a_cred, ap->a_td); 1512 return(error); 1513 } 1514 1515 /* 1516 * Vnode operation to retrieve a named extended attribute. 1517 */ 1518 static int 1519 ffs_getextattr(struct vop_getextattr_args *ap) 1520 /* 1521 vop_getextattr { 1522 IN struct vnode *a_vp; 1523 IN int a_attrnamespace; 1524 IN const char *a_name; 1525 INOUT struct uio *a_uio; 1526 OUT size_t *a_size; 1527 IN struct ucred *a_cred; 1528 IN struct thread *a_td; 1529 }; 1530 */ 1531 { 1532 struct inode *ip; 1533 struct fs *fs; 1534 u_char *eae, *p; 1535 unsigned easize; 1536 int error, ealen; 1537 1538 ip = VTOI(ap->a_vp); 1539 fs = ip->i_fs; 1540 1541 if (ap->a_vp->v_type == VCHR || ap->a_vp->v_type == VBLK) 1542 return (EOPNOTSUPP); 1543 1544 error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace, 1545 ap->a_cred, ap->a_td, VREAD); 1546 if (error) 1547 return (error); 1548 1549 error = ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td); 1550 if (error) 1551 return (error); 1552 1553 eae = ip->i_ea_area; 1554 easize = ip->i_ea_len; 1555 1556 ealen = ffs_findextattr(eae, easize, ap->a_attrnamespace, ap->a_name, 1557 NULL, &p); 1558 if (ealen >= 0) { 1559 error = 0; 1560 if (ap->a_size != NULL) 1561 *ap->a_size = ealen; 1562 else if (ap->a_uio != NULL) 1563 error = uiomove(p, ealen, ap->a_uio); 1564 } else 1565 error = ENOATTR; 1566 1567 ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td); 1568 return(error); 1569 } 1570 1571 /* 1572 * Vnode operation to retrieve extended attributes on a vnode. 1573 */ 1574 static int 1575 ffs_listextattr(struct vop_listextattr_args *ap) 1576 /* 1577 vop_listextattr { 1578 IN struct vnode *a_vp; 1579 IN int a_attrnamespace; 1580 INOUT struct uio *a_uio; 1581 OUT size_t *a_size; 1582 IN struct ucred *a_cred; 1583 IN struct thread *a_td; 1584 }; 1585 */ 1586 { 1587 struct inode *ip; 1588 struct fs *fs; 1589 u_char *eae, *p, *pe, *pn; 1590 unsigned easize; 1591 uint32_t ul; 1592 int error, ealen; 1593 1594 ip = VTOI(ap->a_vp); 1595 fs = ip->i_fs; 1596 1597 if (ap->a_vp->v_type == VCHR || ap->a_vp->v_type == VBLK) 1598 return (EOPNOTSUPP); 1599 1600 error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace, 1601 ap->a_cred, ap->a_td, VREAD); 1602 if (error) 1603 return (error); 1604 1605 error = ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td); 1606 if (error) 1607 return (error); 1608 eae = ip->i_ea_area; 1609 easize = ip->i_ea_len; 1610 1611 error = 0; 1612 if (ap->a_size != NULL) 1613 *ap->a_size = 0; 1614 pe = eae + easize; 1615 for(p = eae; error == 0 && p < pe; p = pn) { 1616 bcopy(p, &ul, sizeof(ul)); 1617 pn = p + ul; 1618 if (pn > pe) 1619 break; 1620 p += sizeof(ul); 1621 if (*p++ != ap->a_attrnamespace) 1622 continue; 1623 p++; /* pad2 */ 1624 ealen = *p; 1625 if (ap->a_size != NULL) { 1626 *ap->a_size += ealen + 1; 1627 } else if (ap->a_uio != NULL) { 1628 error = uiomove(p, ealen + 1, ap->a_uio); 1629 } 1630 } 1631 ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td); 1632 return(error); 1633 } 1634 1635 /* 1636 * Vnode operation to set a named attribute. 1637 */ 1638 static int 1639 ffs_setextattr(struct vop_setextattr_args *ap) 1640 /* 1641 vop_setextattr { 1642 IN struct vnode *a_vp; 1643 IN int a_attrnamespace; 1644 IN const char *a_name; 1645 INOUT struct uio *a_uio; 1646 IN struct ucred *a_cred; 1647 IN struct thread *a_td; 1648 }; 1649 */ 1650 { 1651 struct inode *ip; 1652 struct fs *fs; 1653 uint32_t ealength, ul; 1654 int ealen, olen, eapad1, eapad2, error, i, easize; 1655 u_char *eae, *p; 1656 1657 ip = VTOI(ap->a_vp); 1658 fs = ip->i_fs; 1659 1660 if (ap->a_vp->v_type == VCHR || ap->a_vp->v_type == VBLK) 1661 return (EOPNOTSUPP); 1662 1663 if (strlen(ap->a_name) == 0) 1664 return (EINVAL); 1665 1666 /* XXX Now unsupported API to delete EAs using NULL uio. */ 1667 if (ap->a_uio == NULL) 1668 return (EOPNOTSUPP); 1669 1670 if (ap->a_vp->v_mount->mnt_flag & MNT_RDONLY) 1671 return (EROFS); 1672 1673 error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace, 1674 ap->a_cred, ap->a_td, VWRITE); 1675 if (error) { 1676 1677 /* 1678 * ffs_lock_ea is not needed there, because the vnode 1679 * must be exclusively locked. 1680 */ 1681 if (ip->i_ea_area != NULL && ip->i_ea_error == 0) 1682 ip->i_ea_error = error; 1683 return (error); 1684 } 1685 1686 error = ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td); 1687 if (error) 1688 return (error); 1689 1690 ealen = ap->a_uio->uio_resid; 1691 ealength = sizeof(uint32_t) + 3 + strlen(ap->a_name); 1692 eapad1 = 8 - (ealength % 8); 1693 if (eapad1 == 8) 1694 eapad1 = 0; 1695 eapad2 = 8 - (ealen % 8); 1696 if (eapad2 == 8) 1697 eapad2 = 0; 1698 ealength += eapad1 + ealen + eapad2; 1699 1700 eae = malloc(ip->i_ea_len + ealength, M_TEMP, M_WAITOK); 1701 bcopy(ip->i_ea_area, eae, ip->i_ea_len); 1702 easize = ip->i_ea_len; 1703 1704 olen = ffs_findextattr(eae, easize, 1705 ap->a_attrnamespace, ap->a_name, &p, NULL); 1706 if (olen == -1) { 1707 /* new, append at end */ 1708 p = eae + easize; 1709 easize += ealength; 1710 } else { 1711 bcopy(p, &ul, sizeof ul); 1712 i = p - eae + ul; 1713 if (ul != ealength) { 1714 bcopy(p + ul, p + ealength, easize - i); 1715 easize += (ealength - ul); 1716 } 1717 } 1718 if (easize > NXADDR * fs->fs_bsize) { 1719 free(eae, M_TEMP); 1720 ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td); 1721 if (ip->i_ea_area != NULL && ip->i_ea_error == 0) 1722 ip->i_ea_error = ENOSPC; 1723 return(ENOSPC); 1724 } 1725 bcopy(&ealength, p, sizeof(ealength)); 1726 p += sizeof(ealength); 1727 *p++ = ap->a_attrnamespace; 1728 *p++ = eapad2; 1729 *p++ = strlen(ap->a_name); 1730 strcpy(p, ap->a_name); 1731 p += strlen(ap->a_name); 1732 bzero(p, eapad1); 1733 p += eapad1; 1734 error = uiomove(p, ealen, ap->a_uio); 1735 if (error) { 1736 free(eae, M_TEMP); 1737 ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td); 1738 if (ip->i_ea_area != NULL && ip->i_ea_error == 0) 1739 ip->i_ea_error = error; 1740 return(error); 1741 } 1742 p += ealen; 1743 bzero(p, eapad2); 1744 1745 p = ip->i_ea_area; 1746 ip->i_ea_area = eae; 1747 ip->i_ea_len = easize; 1748 free(p, M_TEMP); 1749 error = ffs_close_ea(ap->a_vp, 1, ap->a_cred, ap->a_td); 1750 return(error); 1751 } 1752 1753 /* 1754 * Vnode pointer to File handle 1755 */ 1756 static int 1757 ffs_vptofh(struct vop_vptofh_args *ap) 1758 /* 1759 vop_vptofh { 1760 IN struct vnode *a_vp; 1761 IN struct fid *a_fhp; 1762 }; 1763 */ 1764 { 1765 struct inode *ip; 1766 struct ufid *ufhp; 1767 1768 ip = VTOI(ap->a_vp); 1769 ufhp = (struct ufid *)ap->a_fhp; 1770 ufhp->ufid_len = sizeof(struct ufid); 1771 ufhp->ufid_ino = ip->i_number; 1772 ufhp->ufid_gen = ip->i_gen; 1773 return (0); 1774 } 1775