1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1989, 1991, 1993, 1994 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * @(#)ffs_vfsops.c 8.31 (Berkeley) 5/20/95 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include "opt_quota.h" 38 #include "opt_ufs.h" 39 #include "opt_ffs.h" 40 #include "opt_ddb.h" 41 42 #include <sys/param.h> 43 #include <sys/gsb_crc32.h> 44 #include <sys/systm.h> 45 #include <sys/namei.h> 46 #include <sys/priv.h> 47 #include <sys/proc.h> 48 #include <sys/taskqueue.h> 49 #include <sys/kernel.h> 50 #include <sys/ktr.h> 51 #include <sys/vnode.h> 52 #include <sys/mount.h> 53 #include <sys/bio.h> 54 #include <sys/buf.h> 55 #include <sys/conf.h> 56 #include <sys/fcntl.h> 57 #include <sys/ioccom.h> 58 #include <sys/malloc.h> 59 #include <sys/mutex.h> 60 #include <sys/rwlock.h> 61 #include <sys/sysctl.h> 62 #include <sys/vmmeter.h> 63 64 #include <security/mac/mac_framework.h> 65 66 #include <ufs/ufs/dir.h> 67 #include <ufs/ufs/extattr.h> 68 #include <ufs/ufs/gjournal.h> 69 #include <ufs/ufs/quota.h> 70 #include <ufs/ufs/ufsmount.h> 71 #include <ufs/ufs/inode.h> 72 #include <ufs/ufs/ufs_extern.h> 73 74 #include <ufs/ffs/fs.h> 75 #include <ufs/ffs/ffs_extern.h> 76 77 #include <vm/vm.h> 78 #include <vm/uma.h> 79 #include <vm/vm_page.h> 80 81 #include <geom/geom.h> 82 #include <geom/geom_vfs.h> 83 84 #include <ddb/ddb.h> 85 86 static uma_zone_t uma_inode, uma_ufs1, uma_ufs2; 87 VFS_SMR_DECLARE; 88 89 static int ffs_mountfs(struct vnode *, struct mount *, struct thread *); 90 static void ffs_oldfscompat_read(struct fs *, struct ufsmount *, 91 ufs2_daddr_t); 92 static void ffs_ifree(struct ufsmount *ump, struct inode *ip); 93 static int ffs_sync_lazy(struct mount *mp); 94 static int ffs_use_bread(void *devfd, off_t loc, void **bufp, int size); 95 static int ffs_use_bwrite(void *devfd, off_t loc, void *buf, int size); 96 97 static vfs_init_t ffs_init; 98 static vfs_uninit_t ffs_uninit; 99 static vfs_extattrctl_t ffs_extattrctl; 100 static vfs_cmount_t ffs_cmount; 101 static vfs_unmount_t ffs_unmount; 102 static vfs_mount_t ffs_mount; 103 static vfs_statfs_t ffs_statfs; 104 static vfs_fhtovp_t ffs_fhtovp; 105 static vfs_sync_t ffs_sync; 106 107 static struct vfsops ufs_vfsops = { 108 .vfs_extattrctl = ffs_extattrctl, 109 .vfs_fhtovp = ffs_fhtovp, 110 .vfs_init = ffs_init, 111 .vfs_mount = ffs_mount, 112 .vfs_cmount = ffs_cmount, 113 .vfs_quotactl = ufs_quotactl, 114 .vfs_root = vfs_cache_root, 115 .vfs_cachedroot = ufs_root, 116 .vfs_statfs = ffs_statfs, 117 .vfs_sync = ffs_sync, 118 .vfs_uninit = ffs_uninit, 119 .vfs_unmount = ffs_unmount, 120 .vfs_vget = ffs_vget, 121 .vfs_susp_clean = process_deferred_inactive, 122 }; 123 124 VFS_SET(ufs_vfsops, ufs, 0); 125 MODULE_VERSION(ufs, 1); 126 127 static b_strategy_t ffs_geom_strategy; 128 static b_write_t ffs_bufwrite; 129 130 static struct buf_ops ffs_ops = { 131 .bop_name = "FFS", 132 .bop_write = ffs_bufwrite, 133 .bop_strategy = ffs_geom_strategy, 134 .bop_sync = bufsync, 135 #ifdef NO_FFS_SNAPSHOT 136 .bop_bdflush = bufbdflush, 137 #else 138 .bop_bdflush = ffs_bdflush, 139 #endif 140 }; 141 142 /* 143 * Note that userquota and groupquota options are not currently used 144 * by UFS/FFS code and generally mount(8) does not pass those options 145 * from userland, but they can be passed by loader(8) via 146 * vfs.root.mountfrom.options. 147 */ 148 static const char *ffs_opts[] = { "acls", "async", "noatime", "noclusterr", 149 "noclusterw", "noexec", "export", "force", "from", "groupquota", 150 "multilabel", "nfsv4acls", "fsckpid", "snapshot", "nosuid", "suiddir", 151 "nosymfollow", "sync", "union", "userquota", "untrusted", NULL }; 152 153 static int ffs_enxio_enable = 1; 154 SYSCTL_DECL(_vfs_ffs); 155 SYSCTL_INT(_vfs_ffs, OID_AUTO, enxio_enable, CTLFLAG_RWTUN, 156 &ffs_enxio_enable, 0, 157 "enable mapping of other disk I/O errors to ENXIO"); 158 159 /* 160 * Return buffer with the contents of block "offset" from the beginning of 161 * directory "ip". If "res" is non-zero, fill it in with a pointer to the 162 * remaining space in the directory. 163 */ 164 static int 165 ffs_blkatoff(struct vnode *vp, off_t offset, char **res, struct buf **bpp) 166 { 167 struct inode *ip; 168 struct fs *fs; 169 struct buf *bp; 170 ufs_lbn_t lbn; 171 int bsize, error; 172 173 ip = VTOI(vp); 174 fs = ITOFS(ip); 175 lbn = lblkno(fs, offset); 176 bsize = blksize(fs, ip, lbn); 177 178 *bpp = NULL; 179 error = bread(vp, lbn, bsize, NOCRED, &bp); 180 if (error) { 181 return (error); 182 } 183 if (res) 184 *res = (char *)bp->b_data + blkoff(fs, offset); 185 *bpp = bp; 186 return (0); 187 } 188 189 /* 190 * Load up the contents of an inode and copy the appropriate pieces 191 * to the incore copy. 192 */ 193 static int 194 ffs_load_inode(struct buf *bp, struct inode *ip, struct fs *fs, ino_t ino) 195 { 196 struct ufs1_dinode *dip1; 197 struct ufs2_dinode *dip2; 198 int error; 199 200 if (I_IS_UFS1(ip)) { 201 dip1 = ip->i_din1; 202 *dip1 = 203 *((struct ufs1_dinode *)bp->b_data + ino_to_fsbo(fs, ino)); 204 ip->i_mode = dip1->di_mode; 205 ip->i_nlink = dip1->di_nlink; 206 ip->i_effnlink = dip1->di_nlink; 207 ip->i_size = dip1->di_size; 208 ip->i_flags = dip1->di_flags; 209 ip->i_gen = dip1->di_gen; 210 ip->i_uid = dip1->di_uid; 211 ip->i_gid = dip1->di_gid; 212 return (0); 213 } 214 dip2 = ((struct ufs2_dinode *)bp->b_data + ino_to_fsbo(fs, ino)); 215 if ((error = ffs_verify_dinode_ckhash(fs, dip2)) != 0 && 216 !ffs_fsfail_cleanup(ITOUMP(ip), error)) { 217 printf("%s: inode %jd: check-hash failed\n", fs->fs_fsmnt, 218 (intmax_t)ino); 219 return (error); 220 } 221 *ip->i_din2 = *dip2; 222 dip2 = ip->i_din2; 223 ip->i_mode = dip2->di_mode; 224 ip->i_nlink = dip2->di_nlink; 225 ip->i_effnlink = dip2->di_nlink; 226 ip->i_size = dip2->di_size; 227 ip->i_flags = dip2->di_flags; 228 ip->i_gen = dip2->di_gen; 229 ip->i_uid = dip2->di_uid; 230 ip->i_gid = dip2->di_gid; 231 return (0); 232 } 233 234 /* 235 * Verify that a filesystem block number is a valid data block. 236 * This routine is only called on untrusted filesystems. 237 */ 238 static int 239 ffs_check_blkno(struct mount *mp, ino_t inum, ufs2_daddr_t daddr, int blksize) 240 { 241 struct fs *fs; 242 struct ufsmount *ump; 243 ufs2_daddr_t end_daddr; 244 int cg, havemtx; 245 246 KASSERT((mp->mnt_flag & MNT_UNTRUSTED) != 0, 247 ("ffs_check_blkno called on a trusted file system")); 248 ump = VFSTOUFS(mp); 249 fs = ump->um_fs; 250 cg = dtog(fs, daddr); 251 end_daddr = daddr + numfrags(fs, blksize); 252 /* 253 * Verify that the block number is a valid data block. Also check 254 * that it does not point to an inode block or a superblock. Accept 255 * blocks that are unalloacted (0) or part of snapshot metadata 256 * (BLK_NOCOPY or BLK_SNAP). 257 * 258 * Thus, the block must be in a valid range for the filesystem and 259 * either in the space before a backup superblock (except the first 260 * cylinder group where that space is used by the bootstrap code) or 261 * after the inode blocks and before the end of the cylinder group. 262 */ 263 if ((uint64_t)daddr <= BLK_SNAP || 264 ((uint64_t)end_daddr <= fs->fs_size && 265 ((cg > 0 && end_daddr <= cgsblock(fs, cg)) || 266 (daddr >= cgdmin(fs, cg) && 267 end_daddr <= cgbase(fs, cg) + fs->fs_fpg)))) 268 return (0); 269 if ((havemtx = mtx_owned(UFS_MTX(ump))) == 0) 270 UFS_LOCK(ump); 271 if (ppsratecheck(&ump->um_last_integritymsg, 272 &ump->um_secs_integritymsg, 1)) { 273 UFS_UNLOCK(ump); 274 uprintf("\n%s: inode %jd, out-of-range indirect block " 275 "number %jd\n", mp->mnt_stat.f_mntonname, inum, daddr); 276 if (havemtx) 277 UFS_LOCK(ump); 278 } else if (!havemtx) 279 UFS_UNLOCK(ump); 280 return (EINTEGRITY); 281 } 282 283 /* 284 * Initiate a forcible unmount. 285 * Used to unmount filesystems whose underlying media has gone away. 286 */ 287 static void 288 ffs_fsfail_unmount(void *v, int pending) 289 { 290 struct fsfail_task *etp; 291 struct mount *mp; 292 293 etp = v; 294 295 /* 296 * Find our mount and get a ref on it, then try to unmount. 297 */ 298 mp = vfs_getvfs(&etp->fsid); 299 if (mp != NULL) 300 dounmount(mp, MNT_FORCE, curthread); 301 free(etp, M_UFSMNT); 302 } 303 304 /* 305 * On first ENXIO error, start a task that forcibly unmounts the filesystem. 306 * 307 * Return true if a cleanup is in progress. 308 */ 309 int 310 ffs_fsfail_cleanup(struct ufsmount *ump, int error) 311 { 312 int retval; 313 314 UFS_LOCK(ump); 315 retval = ffs_fsfail_cleanup_locked(ump, error); 316 UFS_UNLOCK(ump); 317 return (retval); 318 } 319 320 int 321 ffs_fsfail_cleanup_locked(struct ufsmount *ump, int error) 322 { 323 struct fsfail_task *etp; 324 struct task *tp; 325 326 mtx_assert(UFS_MTX(ump), MA_OWNED); 327 if (error == ENXIO && (ump->um_flags & UM_FSFAIL_CLEANUP) == 0) { 328 ump->um_flags |= UM_FSFAIL_CLEANUP; 329 /* 330 * Queue an async forced unmount. 331 */ 332 etp = ump->um_fsfail_task; 333 ump->um_fsfail_task = NULL; 334 if (etp != NULL) { 335 tp = &etp->task; 336 TASK_INIT(tp, 0, ffs_fsfail_unmount, etp); 337 taskqueue_enqueue(taskqueue_thread, tp); 338 printf("UFS: forcibly unmounting %s from %s\n", 339 ump->um_mountp->mnt_stat.f_mntfromname, 340 ump->um_mountp->mnt_stat.f_mntonname); 341 } 342 } 343 return ((ump->um_flags & UM_FSFAIL_CLEANUP) != 0); 344 } 345 346 /* 347 * Wrapper used during ENXIO cleanup to allocate empty buffers when 348 * the kernel is unable to read the real one. They are needed so that 349 * the soft updates code can use them to unwind its dependencies. 350 */ 351 int 352 ffs_breadz(struct ufsmount *ump, struct vnode *vp, daddr_t lblkno, 353 daddr_t dblkno, int size, daddr_t *rablkno, int *rabsize, int cnt, 354 struct ucred *cred, int flags, void (*ckhashfunc)(struct buf *), 355 struct buf **bpp) 356 { 357 int error; 358 359 flags |= GB_CVTENXIO; 360 error = breadn_flags(vp, lblkno, dblkno, size, rablkno, rabsize, cnt, 361 cred, flags, ckhashfunc, bpp); 362 if (error != 0 && ffs_fsfail_cleanup(ump, error)) { 363 error = getblkx(vp, lblkno, dblkno, size, 0, 0, flags, bpp); 364 KASSERT(error == 0, ("getblkx failed")); 365 vfs_bio_bzero_buf(*bpp, 0, size); 366 } 367 return (error); 368 } 369 370 static int 371 ffs_mount(struct mount *mp) 372 { 373 struct vnode *devvp, *odevvp; 374 struct thread *td; 375 struct ufsmount *ump = NULL; 376 struct fs *fs; 377 pid_t fsckpid = 0; 378 int error, error1, flags; 379 uint64_t mntorflags, saved_mnt_flag; 380 accmode_t accmode; 381 struct nameidata ndp; 382 char *fspec; 383 384 td = curthread; 385 if (vfs_filteropt(mp->mnt_optnew, ffs_opts)) 386 return (EINVAL); 387 if (uma_inode == NULL) { 388 uma_inode = uma_zcreate("FFS inode", 389 sizeof(struct inode), NULL, NULL, NULL, NULL, 390 UMA_ALIGN_PTR, 0); 391 uma_ufs1 = uma_zcreate("FFS1 dinode", 392 sizeof(struct ufs1_dinode), NULL, NULL, NULL, NULL, 393 UMA_ALIGN_PTR, 0); 394 uma_ufs2 = uma_zcreate("FFS2 dinode", 395 sizeof(struct ufs2_dinode), NULL, NULL, NULL, NULL, 396 UMA_ALIGN_PTR, 0); 397 VFS_SMR_ZONE_SET(uma_inode); 398 } 399 400 vfs_deleteopt(mp->mnt_optnew, "groupquota"); 401 vfs_deleteopt(mp->mnt_optnew, "userquota"); 402 403 fspec = vfs_getopts(mp->mnt_optnew, "from", &error); 404 if (error) 405 return (error); 406 407 mntorflags = 0; 408 if (vfs_getopt(mp->mnt_optnew, "untrusted", NULL, NULL) == 0) 409 mntorflags |= MNT_UNTRUSTED; 410 411 if (vfs_getopt(mp->mnt_optnew, "acls", NULL, NULL) == 0) 412 mntorflags |= MNT_ACLS; 413 414 if (vfs_getopt(mp->mnt_optnew, "snapshot", NULL, NULL) == 0) { 415 mntorflags |= MNT_SNAPSHOT; 416 /* 417 * Once we have set the MNT_SNAPSHOT flag, do not 418 * persist "snapshot" in the options list. 419 */ 420 vfs_deleteopt(mp->mnt_optnew, "snapshot"); 421 vfs_deleteopt(mp->mnt_opt, "snapshot"); 422 } 423 424 if (vfs_getopt(mp->mnt_optnew, "fsckpid", NULL, NULL) == 0 && 425 vfs_scanopt(mp->mnt_optnew, "fsckpid", "%d", &fsckpid) == 1) { 426 /* 427 * Once we have set the restricted PID, do not 428 * persist "fsckpid" in the options list. 429 */ 430 vfs_deleteopt(mp->mnt_optnew, "fsckpid"); 431 vfs_deleteopt(mp->mnt_opt, "fsckpid"); 432 if (mp->mnt_flag & MNT_UPDATE) { 433 if (VFSTOUFS(mp)->um_fs->fs_ronly == 0 && 434 vfs_flagopt(mp->mnt_optnew, "ro", NULL, 0) == 0) { 435 vfs_mount_error(mp, 436 "Checker enable: Must be read-only"); 437 return (EINVAL); 438 } 439 } else if (vfs_flagopt(mp->mnt_optnew, "ro", NULL, 0) == 0) { 440 vfs_mount_error(mp, 441 "Checker enable: Must be read-only"); 442 return (EINVAL); 443 } 444 /* Set to -1 if we are done */ 445 if (fsckpid == 0) 446 fsckpid = -1; 447 } 448 449 if (vfs_getopt(mp->mnt_optnew, "nfsv4acls", NULL, NULL) == 0) { 450 if (mntorflags & MNT_ACLS) { 451 vfs_mount_error(mp, 452 "\"acls\" and \"nfsv4acls\" options " 453 "are mutually exclusive"); 454 return (EINVAL); 455 } 456 mntorflags |= MNT_NFS4ACLS; 457 } 458 459 MNT_ILOCK(mp); 460 mp->mnt_kern_flag &= ~MNTK_FPLOOKUP; 461 mp->mnt_flag |= mntorflags; 462 MNT_IUNLOCK(mp); 463 /* 464 * If updating, check whether changing from read-only to 465 * read/write; if there is no device name, that's all we do. 466 */ 467 if (mp->mnt_flag & MNT_UPDATE) { 468 ump = VFSTOUFS(mp); 469 fs = ump->um_fs; 470 odevvp = ump->um_odevvp; 471 devvp = ump->um_devvp; 472 if (fsckpid == -1 && ump->um_fsckpid > 0) { 473 if ((error = ffs_flushfiles(mp, WRITECLOSE, td)) != 0 || 474 (error = ffs_sbupdate(ump, MNT_WAIT, 0)) != 0) 475 return (error); 476 g_topology_lock(); 477 /* 478 * Return to normal read-only mode. 479 */ 480 error = g_access(ump->um_cp, 0, -1, 0); 481 g_topology_unlock(); 482 ump->um_fsckpid = 0; 483 } 484 if (fs->fs_ronly == 0 && 485 vfs_flagopt(mp->mnt_optnew, "ro", NULL, 0)) { 486 /* 487 * Flush any dirty data and suspend filesystem. 488 */ 489 if ((error = vn_start_write(NULL, &mp, V_WAIT)) != 0) 490 return (error); 491 error = vfs_write_suspend_umnt(mp); 492 if (error != 0) 493 return (error); 494 /* 495 * Check for and optionally get rid of files open 496 * for writing. 497 */ 498 flags = WRITECLOSE; 499 if (mp->mnt_flag & MNT_FORCE) 500 flags |= FORCECLOSE; 501 if (MOUNTEDSOFTDEP(mp)) { 502 error = softdep_flushfiles(mp, flags, td); 503 } else { 504 error = ffs_flushfiles(mp, flags, td); 505 } 506 if (error) { 507 vfs_write_resume(mp, 0); 508 return (error); 509 } 510 if (fs->fs_pendingblocks != 0 || 511 fs->fs_pendinginodes != 0) { 512 printf("WARNING: %s Update error: blocks %jd " 513 "files %d\n", fs->fs_fsmnt, 514 (intmax_t)fs->fs_pendingblocks, 515 fs->fs_pendinginodes); 516 fs->fs_pendingblocks = 0; 517 fs->fs_pendinginodes = 0; 518 } 519 if ((fs->fs_flags & (FS_UNCLEAN | FS_NEEDSFSCK)) == 0) 520 fs->fs_clean = 1; 521 if ((error = ffs_sbupdate(ump, MNT_WAIT, 0)) != 0) { 522 fs->fs_ronly = 0; 523 fs->fs_clean = 0; 524 vfs_write_resume(mp, 0); 525 return (error); 526 } 527 if (MOUNTEDSOFTDEP(mp)) 528 softdep_unmount(mp); 529 g_topology_lock(); 530 /* 531 * Drop our write and exclusive access. 532 */ 533 g_access(ump->um_cp, 0, -1, -1); 534 g_topology_unlock(); 535 fs->fs_ronly = 1; 536 MNT_ILOCK(mp); 537 mp->mnt_flag |= MNT_RDONLY; 538 MNT_IUNLOCK(mp); 539 /* 540 * Allow the writers to note that filesystem 541 * is ro now. 542 */ 543 vfs_write_resume(mp, 0); 544 } 545 if ((mp->mnt_flag & MNT_RELOAD) && 546 (error = ffs_reload(mp, td, 0)) != 0) 547 return (error); 548 if (fs->fs_ronly && 549 !vfs_flagopt(mp->mnt_optnew, "ro", NULL, 0)) { 550 /* 551 * If we are running a checker, do not allow upgrade. 552 */ 553 if (ump->um_fsckpid > 0) { 554 vfs_mount_error(mp, 555 "Active checker, cannot upgrade to write"); 556 return (EINVAL); 557 } 558 /* 559 * If upgrade to read-write by non-root, then verify 560 * that user has necessary permissions on the device. 561 */ 562 vn_lock(odevvp, LK_EXCLUSIVE | LK_RETRY); 563 error = VOP_ACCESS(odevvp, VREAD | VWRITE, 564 td->td_ucred, td); 565 if (error) 566 error = priv_check(td, PRIV_VFS_MOUNT_PERM); 567 VOP_UNLOCK(odevvp); 568 if (error) { 569 return (error); 570 } 571 fs->fs_flags &= ~FS_UNCLEAN; 572 if (fs->fs_clean == 0) { 573 fs->fs_flags |= FS_UNCLEAN; 574 if ((mp->mnt_flag & MNT_FORCE) || 575 ((fs->fs_flags & 576 (FS_SUJ | FS_NEEDSFSCK)) == 0 && 577 (fs->fs_flags & FS_DOSOFTDEP))) { 578 printf("WARNING: %s was not properly " 579 "dismounted\n", fs->fs_fsmnt); 580 } else { 581 vfs_mount_error(mp, 582 "R/W mount of %s denied. %s.%s", 583 fs->fs_fsmnt, 584 "Filesystem is not clean - run fsck", 585 (fs->fs_flags & FS_SUJ) == 0 ? "" : 586 " Forced mount will invalidate" 587 " journal contents"); 588 return (EPERM); 589 } 590 } 591 g_topology_lock(); 592 /* 593 * Request exclusive write access. 594 */ 595 error = g_access(ump->um_cp, 0, 1, 1); 596 g_topology_unlock(); 597 if (error) 598 return (error); 599 if ((error = vn_start_write(NULL, &mp, V_WAIT)) != 0) 600 return (error); 601 error = vfs_write_suspend_umnt(mp); 602 if (error != 0) 603 return (error); 604 fs->fs_ronly = 0; 605 MNT_ILOCK(mp); 606 saved_mnt_flag = MNT_RDONLY; 607 if (MOUNTEDSOFTDEP(mp) && (mp->mnt_flag & 608 MNT_ASYNC) != 0) 609 saved_mnt_flag |= MNT_ASYNC; 610 mp->mnt_flag &= ~saved_mnt_flag; 611 MNT_IUNLOCK(mp); 612 fs->fs_mtime = time_second; 613 /* check to see if we need to start softdep */ 614 if ((fs->fs_flags & FS_DOSOFTDEP) && 615 (error = softdep_mount(devvp, mp, fs, td->td_ucred))){ 616 fs->fs_ronly = 1; 617 MNT_ILOCK(mp); 618 mp->mnt_flag |= saved_mnt_flag; 619 MNT_IUNLOCK(mp); 620 vfs_write_resume(mp, 0); 621 return (error); 622 } 623 fs->fs_clean = 0; 624 if ((error = ffs_sbupdate(ump, MNT_WAIT, 0)) != 0) { 625 fs->fs_ronly = 1; 626 MNT_ILOCK(mp); 627 mp->mnt_flag |= saved_mnt_flag; 628 MNT_IUNLOCK(mp); 629 vfs_write_resume(mp, 0); 630 return (error); 631 } 632 if (fs->fs_snapinum[0] != 0) 633 ffs_snapshot_mount(mp); 634 vfs_write_resume(mp, 0); 635 } 636 /* 637 * Soft updates is incompatible with "async", 638 * so if we are doing softupdates stop the user 639 * from setting the async flag in an update. 640 * Softdep_mount() clears it in an initial mount 641 * or ro->rw remount. 642 */ 643 if (MOUNTEDSOFTDEP(mp)) { 644 /* XXX: Reset too late ? */ 645 MNT_ILOCK(mp); 646 mp->mnt_flag &= ~MNT_ASYNC; 647 MNT_IUNLOCK(mp); 648 } 649 /* 650 * Keep MNT_ACLS flag if it is stored in superblock. 651 */ 652 if ((fs->fs_flags & FS_ACLS) != 0) { 653 /* XXX: Set too late ? */ 654 MNT_ILOCK(mp); 655 mp->mnt_flag |= MNT_ACLS; 656 MNT_IUNLOCK(mp); 657 } 658 659 if ((fs->fs_flags & FS_NFS4ACLS) != 0) { 660 /* XXX: Set too late ? */ 661 MNT_ILOCK(mp); 662 mp->mnt_flag |= MNT_NFS4ACLS; 663 MNT_IUNLOCK(mp); 664 } 665 /* 666 * If this is a request from fsck to clean up the filesystem, 667 * then allow the specified pid to proceed. 668 */ 669 if (fsckpid > 0) { 670 if (ump->um_fsckpid != 0) { 671 vfs_mount_error(mp, 672 "Active checker already running on %s", 673 fs->fs_fsmnt); 674 return (EINVAL); 675 } 676 KASSERT(MOUNTEDSOFTDEP(mp) == 0, 677 ("soft updates enabled on read-only file system")); 678 g_topology_lock(); 679 /* 680 * Request write access. 681 */ 682 error = g_access(ump->um_cp, 0, 1, 0); 683 g_topology_unlock(); 684 if (error) { 685 vfs_mount_error(mp, 686 "Checker activation failed on %s", 687 fs->fs_fsmnt); 688 return (error); 689 } 690 ump->um_fsckpid = fsckpid; 691 if (fs->fs_snapinum[0] != 0) 692 ffs_snapshot_mount(mp); 693 fs->fs_mtime = time_second; 694 fs->fs_fmod = 1; 695 fs->fs_clean = 0; 696 (void) ffs_sbupdate(ump, MNT_WAIT, 0); 697 } 698 699 /* 700 * If this is a snapshot request, take the snapshot. 701 */ 702 if (mp->mnt_flag & MNT_SNAPSHOT) 703 return (ffs_snapshot(mp, fspec)); 704 705 /* 706 * Must not call namei() while owning busy ref. 707 */ 708 vfs_unbusy(mp); 709 } 710 711 /* 712 * Not an update, or updating the name: look up the name 713 * and verify that it refers to a sensible disk device. 714 */ 715 NDINIT(&ndp, LOOKUP, FOLLOW | LOCKLEAF, UIO_SYSSPACE, fspec, td); 716 error = namei(&ndp); 717 if ((mp->mnt_flag & MNT_UPDATE) != 0) { 718 /* 719 * Unmount does not start if MNT_UPDATE is set. Mount 720 * update busies mp before setting MNT_UPDATE. We 721 * must be able to retain our busy ref succesfully, 722 * without sleep. 723 */ 724 error1 = vfs_busy(mp, MBF_NOWAIT); 725 MPASS(error1 == 0); 726 } 727 if (error != 0) 728 return (error); 729 NDFREE(&ndp, NDF_ONLY_PNBUF); 730 devvp = ndp.ni_vp; 731 if (!vn_isdisk_error(devvp, &error)) { 732 vput(devvp); 733 return (error); 734 } 735 736 /* 737 * If mount by non-root, then verify that user has necessary 738 * permissions on the device. 739 */ 740 accmode = VREAD; 741 if ((mp->mnt_flag & MNT_RDONLY) == 0) 742 accmode |= VWRITE; 743 error = VOP_ACCESS(devvp, accmode, td->td_ucred, td); 744 if (error) 745 error = priv_check(td, PRIV_VFS_MOUNT_PERM); 746 if (error) { 747 vput(devvp); 748 return (error); 749 } 750 751 if (mp->mnt_flag & MNT_UPDATE) { 752 /* 753 * Update only 754 * 755 * If it's not the same vnode, or at least the same device 756 * then it's not correct. 757 */ 758 759 if (devvp->v_rdev != ump->um_devvp->v_rdev) 760 error = EINVAL; /* needs translation */ 761 vput(devvp); 762 if (error) 763 return (error); 764 } else { 765 /* 766 * New mount 767 * 768 * We need the name for the mount point (also used for 769 * "last mounted on") copied in. If an error occurs, 770 * the mount point is discarded by the upper level code. 771 * Note that vfs_mount_alloc() populates f_mntonname for us. 772 */ 773 if ((error = ffs_mountfs(devvp, mp, td)) != 0) { 774 vrele(devvp); 775 return (error); 776 } 777 if (fsckpid > 0) { 778 KASSERT(MOUNTEDSOFTDEP(mp) == 0, 779 ("soft updates enabled on read-only file system")); 780 ump = VFSTOUFS(mp); 781 fs = ump->um_fs; 782 g_topology_lock(); 783 /* 784 * Request write access. 785 */ 786 error = g_access(ump->um_cp, 0, 1, 0); 787 g_topology_unlock(); 788 if (error) { 789 printf("WARNING: %s: Checker activation " 790 "failed\n", fs->fs_fsmnt); 791 } else { 792 ump->um_fsckpid = fsckpid; 793 if (fs->fs_snapinum[0] != 0) 794 ffs_snapshot_mount(mp); 795 fs->fs_mtime = time_second; 796 fs->fs_clean = 0; 797 (void) ffs_sbupdate(ump, MNT_WAIT, 0); 798 } 799 } 800 } 801 802 MNT_ILOCK(mp); 803 /* 804 * This is racy versus lookup, see ufs_fplookup_vexec for details. 805 */ 806 if ((mp->mnt_kern_flag & MNTK_FPLOOKUP) != 0) 807 panic("MNTK_FPLOOKUP set on mount %p when it should not be", mp); 808 if ((mp->mnt_flag & (MNT_ACLS | MNT_NFS4ACLS | MNT_UNION)) == 0) 809 mp->mnt_kern_flag |= MNTK_FPLOOKUP; 810 MNT_IUNLOCK(mp); 811 812 vfs_mountedfrom(mp, fspec); 813 return (0); 814 } 815 816 /* 817 * Compatibility with old mount system call. 818 */ 819 820 static int 821 ffs_cmount(struct mntarg *ma, void *data, uint64_t flags) 822 { 823 struct ufs_args args; 824 int error; 825 826 if (data == NULL) 827 return (EINVAL); 828 error = copyin(data, &args, sizeof args); 829 if (error) 830 return (error); 831 832 ma = mount_argsu(ma, "from", args.fspec, MAXPATHLEN); 833 ma = mount_arg(ma, "export", &args.export, sizeof(args.export)); 834 error = kernel_mount(ma, flags); 835 836 return (error); 837 } 838 839 /* 840 * Reload all incore data for a filesystem (used after running fsck on 841 * the root filesystem and finding things to fix). If the 'force' flag 842 * is 0, the filesystem must be mounted read-only. 843 * 844 * Things to do to update the mount: 845 * 1) invalidate all cached meta-data. 846 * 2) re-read superblock from disk. 847 * 3) re-read summary information from disk. 848 * 4) invalidate all inactive vnodes. 849 * 5) clear MNTK_SUSPEND2 and MNTK_SUSPENDED flags, allowing secondary 850 * writers, if requested. 851 * 6) invalidate all cached file data. 852 * 7) re-read inode data for all active vnodes. 853 */ 854 int 855 ffs_reload(struct mount *mp, struct thread *td, int flags) 856 { 857 struct vnode *vp, *mvp, *devvp; 858 struct inode *ip; 859 void *space; 860 struct buf *bp; 861 struct fs *fs, *newfs; 862 struct ufsmount *ump; 863 ufs2_daddr_t sblockloc; 864 int i, blks, error; 865 u_long size; 866 int32_t *lp; 867 868 ump = VFSTOUFS(mp); 869 870 MNT_ILOCK(mp); 871 if ((mp->mnt_flag & MNT_RDONLY) == 0 && (flags & FFSR_FORCE) == 0) { 872 MNT_IUNLOCK(mp); 873 return (EINVAL); 874 } 875 MNT_IUNLOCK(mp); 876 877 /* 878 * Step 1: invalidate all cached meta-data. 879 */ 880 devvp = VFSTOUFS(mp)->um_devvp; 881 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY); 882 if (vinvalbuf(devvp, 0, 0, 0) != 0) 883 panic("ffs_reload: dirty1"); 884 VOP_UNLOCK(devvp); 885 886 /* 887 * Step 2: re-read superblock from disk. 888 */ 889 fs = VFSTOUFS(mp)->um_fs; 890 if ((error = bread(devvp, btodb(fs->fs_sblockloc), fs->fs_sbsize, 891 NOCRED, &bp)) != 0) 892 return (error); 893 newfs = (struct fs *)bp->b_data; 894 if ((newfs->fs_magic != FS_UFS1_MAGIC && 895 newfs->fs_magic != FS_UFS2_MAGIC) || 896 newfs->fs_bsize > MAXBSIZE || 897 newfs->fs_bsize < sizeof(struct fs)) { 898 brelse(bp); 899 return (EIO); /* XXX needs translation */ 900 } 901 /* 902 * Preserve the summary information, read-only status, and 903 * superblock location by copying these fields into our new 904 * superblock before using it to update the existing superblock. 905 */ 906 newfs->fs_si = fs->fs_si; 907 newfs->fs_ronly = fs->fs_ronly; 908 sblockloc = fs->fs_sblockloc; 909 bcopy(newfs, fs, (u_int)fs->fs_sbsize); 910 brelse(bp); 911 mp->mnt_maxsymlinklen = fs->fs_maxsymlinklen; 912 ffs_oldfscompat_read(fs, VFSTOUFS(mp), sblockloc); 913 UFS_LOCK(ump); 914 if (fs->fs_pendingblocks != 0 || fs->fs_pendinginodes != 0) { 915 printf("WARNING: %s: reload pending error: blocks %jd " 916 "files %d\n", fs->fs_fsmnt, (intmax_t)fs->fs_pendingblocks, 917 fs->fs_pendinginodes); 918 fs->fs_pendingblocks = 0; 919 fs->fs_pendinginodes = 0; 920 } 921 UFS_UNLOCK(ump); 922 923 /* 924 * Step 3: re-read summary information from disk. 925 */ 926 size = fs->fs_cssize; 927 blks = howmany(size, fs->fs_fsize); 928 if (fs->fs_contigsumsize > 0) 929 size += fs->fs_ncg * sizeof(int32_t); 930 size += fs->fs_ncg * sizeof(u_int8_t); 931 free(fs->fs_csp, M_UFSMNT); 932 space = malloc(size, M_UFSMNT, M_WAITOK); 933 fs->fs_csp = space; 934 for (i = 0; i < blks; i += fs->fs_frag) { 935 size = fs->fs_bsize; 936 if (i + fs->fs_frag > blks) 937 size = (blks - i) * fs->fs_fsize; 938 error = bread(devvp, fsbtodb(fs, fs->fs_csaddr + i), size, 939 NOCRED, &bp); 940 if (error) 941 return (error); 942 bcopy(bp->b_data, space, (u_int)size); 943 space = (char *)space + size; 944 brelse(bp); 945 } 946 /* 947 * We no longer know anything about clusters per cylinder group. 948 */ 949 if (fs->fs_contigsumsize > 0) { 950 fs->fs_maxcluster = lp = space; 951 for (i = 0; i < fs->fs_ncg; i++) 952 *lp++ = fs->fs_contigsumsize; 953 space = lp; 954 } 955 size = fs->fs_ncg * sizeof(u_int8_t); 956 fs->fs_contigdirs = (u_int8_t *)space; 957 bzero(fs->fs_contigdirs, size); 958 if ((flags & FFSR_UNSUSPEND) != 0) { 959 MNT_ILOCK(mp); 960 mp->mnt_kern_flag &= ~(MNTK_SUSPENDED | MNTK_SUSPEND2); 961 wakeup(&mp->mnt_flag); 962 MNT_IUNLOCK(mp); 963 } 964 965 loop: 966 MNT_VNODE_FOREACH_ALL(vp, mp, mvp) { 967 /* 968 * Skip syncer vnode. 969 */ 970 if (vp->v_type == VNON) { 971 VI_UNLOCK(vp); 972 continue; 973 } 974 /* 975 * Step 4: invalidate all cached file data. 976 */ 977 if (vget(vp, LK_EXCLUSIVE | LK_INTERLOCK)) { 978 MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp); 979 goto loop; 980 } 981 if (vinvalbuf(vp, 0, 0, 0)) 982 panic("ffs_reload: dirty2"); 983 /* 984 * Step 5: re-read inode data for all active vnodes. 985 */ 986 ip = VTOI(vp); 987 error = 988 bread(devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)), 989 (int)fs->fs_bsize, NOCRED, &bp); 990 if (error) { 991 vput(vp); 992 MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp); 993 return (error); 994 } 995 if ((error = ffs_load_inode(bp, ip, fs, ip->i_number)) != 0) { 996 brelse(bp); 997 vput(vp); 998 MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp); 999 return (error); 1000 } 1001 ip->i_effnlink = ip->i_nlink; 1002 brelse(bp); 1003 vput(vp); 1004 } 1005 return (0); 1006 } 1007 1008 /* 1009 * Common code for mount and mountroot 1010 */ 1011 static int 1012 ffs_mountfs(odevvp, mp, td) 1013 struct vnode *odevvp; 1014 struct mount *mp; 1015 struct thread *td; 1016 { 1017 struct ufsmount *ump; 1018 struct fs *fs; 1019 struct cdev *dev; 1020 int error, i, len, ronly; 1021 struct ucred *cred; 1022 struct g_consumer *cp; 1023 struct mount *nmp; 1024 struct vnode *devvp; 1025 struct fsfail_task *etp; 1026 int candelete, canspeedup; 1027 off_t loc; 1028 1029 fs = NULL; 1030 ump = NULL; 1031 cred = td ? td->td_ucred : NOCRED; 1032 ronly = (mp->mnt_flag & MNT_RDONLY) != 0; 1033 1034 devvp = mntfs_allocvp(mp, odevvp); 1035 VOP_UNLOCK(odevvp); 1036 KASSERT(devvp->v_type == VCHR, ("reclaimed devvp")); 1037 dev = devvp->v_rdev; 1038 KASSERT(dev->si_snapdata == NULL, ("non-NULL snapshot data")); 1039 if (atomic_cmpset_acq_ptr((uintptr_t *)&dev->si_mountpt, 0, 1040 (uintptr_t)mp) == 0) { 1041 mntfs_freevp(devvp); 1042 return (EBUSY); 1043 } 1044 g_topology_lock(); 1045 error = g_vfs_open(devvp, &cp, "ffs", ronly ? 0 : 1); 1046 g_topology_unlock(); 1047 if (error != 0) { 1048 atomic_store_rel_ptr((uintptr_t *)&dev->si_mountpt, 0); 1049 mntfs_freevp(devvp); 1050 return (error); 1051 } 1052 dev_ref(dev); 1053 devvp->v_bufobj.bo_ops = &ffs_ops; 1054 BO_LOCK(&odevvp->v_bufobj); 1055 odevvp->v_bufobj.bo_flag |= BO_NOBUFS; 1056 BO_UNLOCK(&odevvp->v_bufobj); 1057 if (dev->si_iosize_max != 0) 1058 mp->mnt_iosize_max = dev->si_iosize_max; 1059 if (mp->mnt_iosize_max > maxphys) 1060 mp->mnt_iosize_max = maxphys; 1061 if ((SBLOCKSIZE % cp->provider->sectorsize) != 0) { 1062 error = EINVAL; 1063 vfs_mount_error(mp, 1064 "Invalid sectorsize %d for superblock size %d", 1065 cp->provider->sectorsize, SBLOCKSIZE); 1066 goto out; 1067 } 1068 /* fetch the superblock and summary information */ 1069 loc = STDSB; 1070 if ((mp->mnt_flag & MNT_ROOTFS) != 0) 1071 loc = STDSB_NOHASHFAIL; 1072 if ((error = ffs_sbget(devvp, &fs, loc, M_UFSMNT, ffs_use_bread)) != 0) 1073 goto out; 1074 fs->fs_flags &= ~FS_UNCLEAN; 1075 if (fs->fs_clean == 0) { 1076 fs->fs_flags |= FS_UNCLEAN; 1077 if (ronly || (mp->mnt_flag & MNT_FORCE) || 1078 ((fs->fs_flags & (FS_SUJ | FS_NEEDSFSCK)) == 0 && 1079 (fs->fs_flags & FS_DOSOFTDEP))) { 1080 printf("WARNING: %s was not properly dismounted\n", 1081 fs->fs_fsmnt); 1082 } else { 1083 vfs_mount_error(mp, "R/W mount of %s denied. %s%s", 1084 fs->fs_fsmnt, "Filesystem is not clean - run fsck.", 1085 (fs->fs_flags & FS_SUJ) == 0 ? "" : 1086 " Forced mount will invalidate journal contents"); 1087 error = EPERM; 1088 goto out; 1089 } 1090 if ((fs->fs_pendingblocks != 0 || fs->fs_pendinginodes != 0) && 1091 (mp->mnt_flag & MNT_FORCE)) { 1092 printf("WARNING: %s: lost blocks %jd files %d\n", 1093 fs->fs_fsmnt, (intmax_t)fs->fs_pendingblocks, 1094 fs->fs_pendinginodes); 1095 fs->fs_pendingblocks = 0; 1096 fs->fs_pendinginodes = 0; 1097 } 1098 } 1099 if (fs->fs_pendingblocks != 0 || fs->fs_pendinginodes != 0) { 1100 printf("WARNING: %s: mount pending error: blocks %jd " 1101 "files %d\n", fs->fs_fsmnt, (intmax_t)fs->fs_pendingblocks, 1102 fs->fs_pendinginodes); 1103 fs->fs_pendingblocks = 0; 1104 fs->fs_pendinginodes = 0; 1105 } 1106 if ((fs->fs_flags & FS_GJOURNAL) != 0) { 1107 #ifdef UFS_GJOURNAL 1108 /* 1109 * Get journal provider name. 1110 */ 1111 len = 1024; 1112 mp->mnt_gjprovider = malloc((u_long)len, M_UFSMNT, M_WAITOK); 1113 if (g_io_getattr("GJOURNAL::provider", cp, &len, 1114 mp->mnt_gjprovider) == 0) { 1115 mp->mnt_gjprovider = realloc(mp->mnt_gjprovider, len, 1116 M_UFSMNT, M_WAITOK); 1117 MNT_ILOCK(mp); 1118 mp->mnt_flag |= MNT_GJOURNAL; 1119 MNT_IUNLOCK(mp); 1120 } else { 1121 printf("WARNING: %s: GJOURNAL flag on fs " 1122 "but no gjournal provider below\n", 1123 mp->mnt_stat.f_mntonname); 1124 free(mp->mnt_gjprovider, M_UFSMNT); 1125 mp->mnt_gjprovider = NULL; 1126 } 1127 #else 1128 printf("WARNING: %s: GJOURNAL flag on fs but no " 1129 "UFS_GJOURNAL support\n", mp->mnt_stat.f_mntonname); 1130 #endif 1131 } else { 1132 mp->mnt_gjprovider = NULL; 1133 } 1134 ump = malloc(sizeof *ump, M_UFSMNT, M_WAITOK | M_ZERO); 1135 ump->um_cp = cp; 1136 ump->um_bo = &devvp->v_bufobj; 1137 ump->um_fs = fs; 1138 if (fs->fs_magic == FS_UFS1_MAGIC) { 1139 ump->um_fstype = UFS1; 1140 ump->um_balloc = ffs_balloc_ufs1; 1141 } else { 1142 ump->um_fstype = UFS2; 1143 ump->um_balloc = ffs_balloc_ufs2; 1144 } 1145 ump->um_blkatoff = ffs_blkatoff; 1146 ump->um_truncate = ffs_truncate; 1147 ump->um_update = ffs_update; 1148 ump->um_valloc = ffs_valloc; 1149 ump->um_vfree = ffs_vfree; 1150 ump->um_ifree = ffs_ifree; 1151 ump->um_rdonly = ffs_rdonly; 1152 ump->um_snapgone = ffs_snapgone; 1153 if ((mp->mnt_flag & MNT_UNTRUSTED) != 0) 1154 ump->um_check_blkno = ffs_check_blkno; 1155 else 1156 ump->um_check_blkno = NULL; 1157 mtx_init(UFS_MTX(ump), "FFS", "FFS Lock", MTX_DEF); 1158 ffs_oldfscompat_read(fs, ump, fs->fs_sblockloc); 1159 fs->fs_ronly = ronly; 1160 fs->fs_active = NULL; 1161 mp->mnt_data = ump; 1162 mp->mnt_stat.f_fsid.val[0] = fs->fs_id[0]; 1163 mp->mnt_stat.f_fsid.val[1] = fs->fs_id[1]; 1164 nmp = NULL; 1165 if (fs->fs_id[0] == 0 || fs->fs_id[1] == 0 || 1166 (nmp = vfs_getvfs(&mp->mnt_stat.f_fsid))) { 1167 if (nmp) 1168 vfs_rel(nmp); 1169 vfs_getnewfsid(mp); 1170 } 1171 mp->mnt_maxsymlinklen = fs->fs_maxsymlinklen; 1172 MNT_ILOCK(mp); 1173 mp->mnt_flag |= MNT_LOCAL; 1174 MNT_IUNLOCK(mp); 1175 if ((fs->fs_flags & FS_MULTILABEL) != 0) { 1176 #ifdef MAC 1177 MNT_ILOCK(mp); 1178 mp->mnt_flag |= MNT_MULTILABEL; 1179 MNT_IUNLOCK(mp); 1180 #else 1181 printf("WARNING: %s: multilabel flag on fs but " 1182 "no MAC support\n", mp->mnt_stat.f_mntonname); 1183 #endif 1184 } 1185 if ((fs->fs_flags & FS_ACLS) != 0) { 1186 #ifdef UFS_ACL 1187 MNT_ILOCK(mp); 1188 1189 if (mp->mnt_flag & MNT_NFS4ACLS) 1190 printf("WARNING: %s: ACLs flag on fs conflicts with " 1191 "\"nfsv4acls\" mount option; option ignored\n", 1192 mp->mnt_stat.f_mntonname); 1193 mp->mnt_flag &= ~MNT_NFS4ACLS; 1194 mp->mnt_flag |= MNT_ACLS; 1195 1196 MNT_IUNLOCK(mp); 1197 #else 1198 printf("WARNING: %s: ACLs flag on fs but no ACLs support\n", 1199 mp->mnt_stat.f_mntonname); 1200 #endif 1201 } 1202 if ((fs->fs_flags & FS_NFS4ACLS) != 0) { 1203 #ifdef UFS_ACL 1204 MNT_ILOCK(mp); 1205 1206 if (mp->mnt_flag & MNT_ACLS) 1207 printf("WARNING: %s: NFSv4 ACLs flag on fs conflicts " 1208 "with \"acls\" mount option; option ignored\n", 1209 mp->mnt_stat.f_mntonname); 1210 mp->mnt_flag &= ~MNT_ACLS; 1211 mp->mnt_flag |= MNT_NFS4ACLS; 1212 1213 MNT_IUNLOCK(mp); 1214 #else 1215 printf("WARNING: %s: NFSv4 ACLs flag on fs but no " 1216 "ACLs support\n", mp->mnt_stat.f_mntonname); 1217 #endif 1218 } 1219 if ((fs->fs_flags & FS_TRIM) != 0) { 1220 len = sizeof(int); 1221 if (g_io_getattr("GEOM::candelete", cp, &len, 1222 &candelete) == 0) { 1223 if (candelete) 1224 ump->um_flags |= UM_CANDELETE; 1225 else 1226 printf("WARNING: %s: TRIM flag on fs but disk " 1227 "does not support TRIM\n", 1228 mp->mnt_stat.f_mntonname); 1229 } else { 1230 printf("WARNING: %s: TRIM flag on fs but disk does " 1231 "not confirm that it supports TRIM\n", 1232 mp->mnt_stat.f_mntonname); 1233 } 1234 if (((ump->um_flags) & UM_CANDELETE) != 0) { 1235 ump->um_trim_tq = taskqueue_create("trim", M_WAITOK, 1236 taskqueue_thread_enqueue, &ump->um_trim_tq); 1237 taskqueue_start_threads(&ump->um_trim_tq, 1, PVFS, 1238 "%s trim", mp->mnt_stat.f_mntonname); 1239 ump->um_trimhash = hashinit(MAXTRIMIO, M_TRIM, 1240 &ump->um_trimlisthashsize); 1241 } 1242 } 1243 1244 len = sizeof(int); 1245 if (g_io_getattr("GEOM::canspeedup", cp, &len, &canspeedup) == 0) { 1246 if (canspeedup) 1247 ump->um_flags |= UM_CANSPEEDUP; 1248 } 1249 1250 ump->um_mountp = mp; 1251 ump->um_dev = dev; 1252 ump->um_devvp = devvp; 1253 ump->um_odevvp = odevvp; 1254 ump->um_nindir = fs->fs_nindir; 1255 ump->um_bptrtodb = fs->fs_fsbtodb; 1256 ump->um_seqinc = fs->fs_frag; 1257 for (i = 0; i < MAXQUOTAS; i++) 1258 ump->um_quotas[i] = NULLVP; 1259 #ifdef UFS_EXTATTR 1260 ufs_extattr_uepm_init(&ump->um_extattr); 1261 #endif 1262 /* 1263 * Set FS local "last mounted on" information (NULL pad) 1264 */ 1265 bzero(fs->fs_fsmnt, MAXMNTLEN); 1266 strlcpy(fs->fs_fsmnt, mp->mnt_stat.f_mntonname, MAXMNTLEN); 1267 mp->mnt_stat.f_iosize = fs->fs_bsize; 1268 1269 if (mp->mnt_flag & MNT_ROOTFS) { 1270 /* 1271 * Root mount; update timestamp in mount structure. 1272 * this will be used by the common root mount code 1273 * to update the system clock. 1274 */ 1275 mp->mnt_time = fs->fs_time; 1276 } 1277 1278 if (ronly == 0) { 1279 fs->fs_mtime = time_second; 1280 if ((fs->fs_flags & FS_DOSOFTDEP) && 1281 (error = softdep_mount(devvp, mp, fs, cred)) != 0) { 1282 ffs_flushfiles(mp, FORCECLOSE, td); 1283 goto out; 1284 } 1285 if (fs->fs_snapinum[0] != 0) 1286 ffs_snapshot_mount(mp); 1287 fs->fs_fmod = 1; 1288 fs->fs_clean = 0; 1289 (void) ffs_sbupdate(ump, MNT_WAIT, 0); 1290 } 1291 /* 1292 * Initialize filesystem state information in mount struct. 1293 */ 1294 MNT_ILOCK(mp); 1295 mp->mnt_kern_flag |= MNTK_LOOKUP_SHARED | MNTK_EXTENDED_SHARED | 1296 MNTK_NO_IOPF | MNTK_UNMAPPED_BUFS | MNTK_USES_BCACHE; 1297 MNT_IUNLOCK(mp); 1298 #ifdef UFS_EXTATTR 1299 #ifdef UFS_EXTATTR_AUTOSTART 1300 /* 1301 * 1302 * Auto-starting does the following: 1303 * - check for /.attribute in the fs, and extattr_start if so 1304 * - for each file in .attribute, enable that file with 1305 * an attribute of the same name. 1306 * Not clear how to report errors -- probably eat them. 1307 * This would all happen while the filesystem was busy/not 1308 * available, so would effectively be "atomic". 1309 */ 1310 (void) ufs_extattr_autostart(mp, td); 1311 #endif /* !UFS_EXTATTR_AUTOSTART */ 1312 #endif /* !UFS_EXTATTR */ 1313 etp = malloc(sizeof *ump->um_fsfail_task, M_UFSMNT, M_WAITOK | M_ZERO); 1314 etp->fsid = mp->mnt_stat.f_fsid; 1315 ump->um_fsfail_task = etp; 1316 return (0); 1317 out: 1318 if (fs != NULL) { 1319 free(fs->fs_csp, M_UFSMNT); 1320 free(fs->fs_si, M_UFSMNT); 1321 free(fs, M_UFSMNT); 1322 } 1323 if (cp != NULL) { 1324 g_topology_lock(); 1325 g_vfs_close(cp); 1326 g_topology_unlock(); 1327 } 1328 if (ump) { 1329 mtx_destroy(UFS_MTX(ump)); 1330 if (mp->mnt_gjprovider != NULL) { 1331 free(mp->mnt_gjprovider, M_UFSMNT); 1332 mp->mnt_gjprovider = NULL; 1333 } 1334 free(ump, M_UFSMNT); 1335 mp->mnt_data = NULL; 1336 } 1337 BO_LOCK(&odevvp->v_bufobj); 1338 odevvp->v_bufobj.bo_flag &= ~BO_NOBUFS; 1339 BO_UNLOCK(&odevvp->v_bufobj); 1340 atomic_store_rel_ptr((uintptr_t *)&dev->si_mountpt, 0); 1341 mntfs_freevp(devvp); 1342 dev_rel(dev); 1343 return (error); 1344 } 1345 1346 /* 1347 * A read function for use by filesystem-layer routines. 1348 */ 1349 static int 1350 ffs_use_bread(void *devfd, off_t loc, void **bufp, int size) 1351 { 1352 struct buf *bp; 1353 int error; 1354 1355 KASSERT(*bufp == NULL, ("ffs_use_bread: non-NULL *bufp %p\n", *bufp)); 1356 *bufp = malloc(size, M_UFSMNT, M_WAITOK); 1357 if ((error = bread((struct vnode *)devfd, btodb(loc), size, NOCRED, 1358 &bp)) != 0) 1359 return (error); 1360 bcopy(bp->b_data, *bufp, size); 1361 bp->b_flags |= B_INVAL | B_NOCACHE; 1362 brelse(bp); 1363 return (0); 1364 } 1365 1366 static int bigcgs = 0; 1367 SYSCTL_INT(_debug, OID_AUTO, bigcgs, CTLFLAG_RW, &bigcgs, 0, ""); 1368 1369 /* 1370 * Sanity checks for loading old filesystem superblocks. 1371 * See ffs_oldfscompat_write below for unwound actions. 1372 * 1373 * XXX - Parts get retired eventually. 1374 * Unfortunately new bits get added. 1375 */ 1376 static void 1377 ffs_oldfscompat_read(fs, ump, sblockloc) 1378 struct fs *fs; 1379 struct ufsmount *ump; 1380 ufs2_daddr_t sblockloc; 1381 { 1382 off_t maxfilesize; 1383 1384 /* 1385 * If not yet done, update fs_flags location and value of fs_sblockloc. 1386 */ 1387 if ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0) { 1388 fs->fs_flags = fs->fs_old_flags; 1389 fs->fs_old_flags |= FS_FLAGS_UPDATED; 1390 fs->fs_sblockloc = sblockloc; 1391 } 1392 /* 1393 * If not yet done, update UFS1 superblock with new wider fields. 1394 */ 1395 if (fs->fs_magic == FS_UFS1_MAGIC && fs->fs_maxbsize != fs->fs_bsize) { 1396 fs->fs_maxbsize = fs->fs_bsize; 1397 fs->fs_time = fs->fs_old_time; 1398 fs->fs_size = fs->fs_old_size; 1399 fs->fs_dsize = fs->fs_old_dsize; 1400 fs->fs_csaddr = fs->fs_old_csaddr; 1401 fs->fs_cstotal.cs_ndir = fs->fs_old_cstotal.cs_ndir; 1402 fs->fs_cstotal.cs_nbfree = fs->fs_old_cstotal.cs_nbfree; 1403 fs->fs_cstotal.cs_nifree = fs->fs_old_cstotal.cs_nifree; 1404 fs->fs_cstotal.cs_nffree = fs->fs_old_cstotal.cs_nffree; 1405 } 1406 if (fs->fs_magic == FS_UFS1_MAGIC && 1407 fs->fs_old_inodefmt < FS_44INODEFMT) { 1408 fs->fs_maxfilesize = ((uint64_t)1 << 31) - 1; 1409 fs->fs_qbmask = ~fs->fs_bmask; 1410 fs->fs_qfmask = ~fs->fs_fmask; 1411 } 1412 if (fs->fs_magic == FS_UFS1_MAGIC) { 1413 ump->um_savedmaxfilesize = fs->fs_maxfilesize; 1414 maxfilesize = (uint64_t)0x80000000 * fs->fs_bsize - 1; 1415 if (fs->fs_maxfilesize > maxfilesize) 1416 fs->fs_maxfilesize = maxfilesize; 1417 } 1418 /* Compatibility for old filesystems */ 1419 if (fs->fs_avgfilesize <= 0) 1420 fs->fs_avgfilesize = AVFILESIZ; 1421 if (fs->fs_avgfpdir <= 0) 1422 fs->fs_avgfpdir = AFPDIR; 1423 if (bigcgs) { 1424 fs->fs_save_cgsize = fs->fs_cgsize; 1425 fs->fs_cgsize = fs->fs_bsize; 1426 } 1427 } 1428 1429 /* 1430 * Unwinding superblock updates for old filesystems. 1431 * See ffs_oldfscompat_read above for details. 1432 * 1433 * XXX - Parts get retired eventually. 1434 * Unfortunately new bits get added. 1435 */ 1436 void 1437 ffs_oldfscompat_write(fs, ump) 1438 struct fs *fs; 1439 struct ufsmount *ump; 1440 { 1441 1442 /* 1443 * Copy back UFS2 updated fields that UFS1 inspects. 1444 */ 1445 if (fs->fs_magic == FS_UFS1_MAGIC) { 1446 fs->fs_old_time = fs->fs_time; 1447 fs->fs_old_cstotal.cs_ndir = fs->fs_cstotal.cs_ndir; 1448 fs->fs_old_cstotal.cs_nbfree = fs->fs_cstotal.cs_nbfree; 1449 fs->fs_old_cstotal.cs_nifree = fs->fs_cstotal.cs_nifree; 1450 fs->fs_old_cstotal.cs_nffree = fs->fs_cstotal.cs_nffree; 1451 fs->fs_maxfilesize = ump->um_savedmaxfilesize; 1452 } 1453 if (bigcgs) { 1454 fs->fs_cgsize = fs->fs_save_cgsize; 1455 fs->fs_save_cgsize = 0; 1456 } 1457 } 1458 1459 /* 1460 * unmount system call 1461 */ 1462 static int 1463 ffs_unmount(mp, mntflags) 1464 struct mount *mp; 1465 int mntflags; 1466 { 1467 struct thread *td; 1468 struct ufsmount *ump = VFSTOUFS(mp); 1469 struct fs *fs; 1470 int error, flags, susp; 1471 #ifdef UFS_EXTATTR 1472 int e_restart; 1473 #endif 1474 1475 flags = 0; 1476 td = curthread; 1477 fs = ump->um_fs; 1478 if (mntflags & MNT_FORCE) 1479 flags |= FORCECLOSE; 1480 susp = fs->fs_ronly == 0; 1481 #ifdef UFS_EXTATTR 1482 if ((error = ufs_extattr_stop(mp, td))) { 1483 if (error != EOPNOTSUPP) 1484 printf("WARNING: unmount %s: ufs_extattr_stop " 1485 "returned errno %d\n", mp->mnt_stat.f_mntonname, 1486 error); 1487 e_restart = 0; 1488 } else { 1489 ufs_extattr_uepm_destroy(&ump->um_extattr); 1490 e_restart = 1; 1491 } 1492 #endif 1493 if (susp) { 1494 error = vfs_write_suspend_umnt(mp); 1495 if (error != 0) 1496 goto fail1; 1497 } 1498 if (MOUNTEDSOFTDEP(mp)) 1499 error = softdep_flushfiles(mp, flags, td); 1500 else 1501 error = ffs_flushfiles(mp, flags, td); 1502 if (error != 0 && !ffs_fsfail_cleanup(ump, error)) 1503 goto fail; 1504 1505 UFS_LOCK(ump); 1506 if (fs->fs_pendingblocks != 0 || fs->fs_pendinginodes != 0) { 1507 printf("WARNING: unmount %s: pending error: blocks %jd " 1508 "files %d\n", fs->fs_fsmnt, (intmax_t)fs->fs_pendingblocks, 1509 fs->fs_pendinginodes); 1510 fs->fs_pendingblocks = 0; 1511 fs->fs_pendinginodes = 0; 1512 } 1513 UFS_UNLOCK(ump); 1514 if (MOUNTEDSOFTDEP(mp)) 1515 softdep_unmount(mp); 1516 if (fs->fs_ronly == 0 || ump->um_fsckpid > 0) { 1517 fs->fs_clean = fs->fs_flags & (FS_UNCLEAN|FS_NEEDSFSCK) ? 0 : 1; 1518 error = ffs_sbupdate(ump, MNT_WAIT, 0); 1519 if (ffs_fsfail_cleanup(ump, error)) 1520 error = 0; 1521 if (error != 0 && !ffs_fsfail_cleanup(ump, error)) { 1522 fs->fs_clean = 0; 1523 goto fail; 1524 } 1525 } 1526 if (susp) 1527 vfs_write_resume(mp, VR_START_WRITE); 1528 if (ump->um_trim_tq != NULL) { 1529 while (ump->um_trim_inflight != 0) 1530 pause("ufsutr", hz); 1531 taskqueue_drain_all(ump->um_trim_tq); 1532 taskqueue_free(ump->um_trim_tq); 1533 free (ump->um_trimhash, M_TRIM); 1534 } 1535 g_topology_lock(); 1536 if (ump->um_fsckpid > 0) { 1537 /* 1538 * Return to normal read-only mode. 1539 */ 1540 error = g_access(ump->um_cp, 0, -1, 0); 1541 ump->um_fsckpid = 0; 1542 } 1543 g_vfs_close(ump->um_cp); 1544 g_topology_unlock(); 1545 BO_LOCK(&ump->um_odevvp->v_bufobj); 1546 ump->um_odevvp->v_bufobj.bo_flag &= ~BO_NOBUFS; 1547 BO_UNLOCK(&ump->um_odevvp->v_bufobj); 1548 atomic_store_rel_ptr((uintptr_t *)&ump->um_dev->si_mountpt, 0); 1549 mntfs_freevp(ump->um_devvp); 1550 vrele(ump->um_odevvp); 1551 dev_rel(ump->um_dev); 1552 mtx_destroy(UFS_MTX(ump)); 1553 if (mp->mnt_gjprovider != NULL) { 1554 free(mp->mnt_gjprovider, M_UFSMNT); 1555 mp->mnt_gjprovider = NULL; 1556 } 1557 free(fs->fs_csp, M_UFSMNT); 1558 free(fs->fs_si, M_UFSMNT); 1559 free(fs, M_UFSMNT); 1560 if (ump->um_fsfail_task != NULL) 1561 free(ump->um_fsfail_task, M_UFSMNT); 1562 free(ump, M_UFSMNT); 1563 mp->mnt_data = NULL; 1564 MNT_ILOCK(mp); 1565 mp->mnt_flag &= ~MNT_LOCAL; 1566 MNT_IUNLOCK(mp); 1567 if (td->td_su == mp) { 1568 td->td_su = NULL; 1569 vfs_rel(mp); 1570 } 1571 return (error); 1572 1573 fail: 1574 if (susp) 1575 vfs_write_resume(mp, VR_START_WRITE); 1576 fail1: 1577 #ifdef UFS_EXTATTR 1578 if (e_restart) { 1579 ufs_extattr_uepm_init(&ump->um_extattr); 1580 #ifdef UFS_EXTATTR_AUTOSTART 1581 (void) ufs_extattr_autostart(mp, td); 1582 #endif 1583 } 1584 #endif 1585 1586 return (error); 1587 } 1588 1589 /* 1590 * Flush out all the files in a filesystem. 1591 */ 1592 int 1593 ffs_flushfiles(mp, flags, td) 1594 struct mount *mp; 1595 int flags; 1596 struct thread *td; 1597 { 1598 struct ufsmount *ump; 1599 int qerror, error; 1600 1601 ump = VFSTOUFS(mp); 1602 qerror = 0; 1603 #ifdef QUOTA 1604 if (mp->mnt_flag & MNT_QUOTA) { 1605 int i; 1606 error = vflush(mp, 0, SKIPSYSTEM|flags, td); 1607 if (error) 1608 return (error); 1609 for (i = 0; i < MAXQUOTAS; i++) { 1610 error = quotaoff(td, mp, i); 1611 if (error != 0) { 1612 if ((flags & EARLYFLUSH) == 0) 1613 return (error); 1614 else 1615 qerror = error; 1616 } 1617 } 1618 1619 /* 1620 * Here we fall through to vflush again to ensure that 1621 * we have gotten rid of all the system vnodes, unless 1622 * quotas must not be closed. 1623 */ 1624 } 1625 #endif 1626 ASSERT_VOP_LOCKED(ump->um_devvp, "ffs_flushfiles"); 1627 if (ump->um_devvp->v_vflag & VV_COPYONWRITE) { 1628 if ((error = vflush(mp, 0, SKIPSYSTEM | flags, td)) != 0) 1629 return (error); 1630 ffs_snapshot_unmount(mp); 1631 flags |= FORCECLOSE; 1632 /* 1633 * Here we fall through to vflush again to ensure 1634 * that we have gotten rid of all the system vnodes. 1635 */ 1636 } 1637 1638 /* 1639 * Do not close system files if quotas were not closed, to be 1640 * able to sync the remaining dquots. The freeblks softupdate 1641 * workitems might hold a reference on a dquot, preventing 1642 * quotaoff() from completing. Next round of 1643 * softdep_flushworklist() iteration should process the 1644 * blockers, allowing the next run of quotaoff() to finally 1645 * flush held dquots. 1646 * 1647 * Otherwise, flush all the files. 1648 */ 1649 if (qerror == 0 && (error = vflush(mp, 0, flags, td)) != 0) 1650 return (error); 1651 1652 /* 1653 * Flush filesystem metadata. 1654 */ 1655 vn_lock(ump->um_devvp, LK_EXCLUSIVE | LK_RETRY); 1656 error = VOP_FSYNC(ump->um_devvp, MNT_WAIT, td); 1657 VOP_UNLOCK(ump->um_devvp); 1658 return (error); 1659 } 1660 1661 /* 1662 * Get filesystem statistics. 1663 */ 1664 static int 1665 ffs_statfs(mp, sbp) 1666 struct mount *mp; 1667 struct statfs *sbp; 1668 { 1669 struct ufsmount *ump; 1670 struct fs *fs; 1671 1672 ump = VFSTOUFS(mp); 1673 fs = ump->um_fs; 1674 if (fs->fs_magic != FS_UFS1_MAGIC && fs->fs_magic != FS_UFS2_MAGIC) 1675 panic("ffs_statfs"); 1676 sbp->f_version = STATFS_VERSION; 1677 sbp->f_bsize = fs->fs_fsize; 1678 sbp->f_iosize = fs->fs_bsize; 1679 sbp->f_blocks = fs->fs_dsize; 1680 UFS_LOCK(ump); 1681 sbp->f_bfree = fs->fs_cstotal.cs_nbfree * fs->fs_frag + 1682 fs->fs_cstotal.cs_nffree + dbtofsb(fs, fs->fs_pendingblocks); 1683 sbp->f_bavail = freespace(fs, fs->fs_minfree) + 1684 dbtofsb(fs, fs->fs_pendingblocks); 1685 sbp->f_files = fs->fs_ncg * fs->fs_ipg - UFS_ROOTINO; 1686 sbp->f_ffree = fs->fs_cstotal.cs_nifree + fs->fs_pendinginodes; 1687 UFS_UNLOCK(ump); 1688 sbp->f_namemax = UFS_MAXNAMLEN; 1689 return (0); 1690 } 1691 1692 static bool 1693 sync_doupdate(struct inode *ip) 1694 { 1695 1696 return ((ip->i_flag & (IN_ACCESS | IN_CHANGE | IN_MODIFIED | 1697 IN_UPDATE)) != 0); 1698 } 1699 1700 static int 1701 ffs_sync_lazy_filter(struct vnode *vp, void *arg __unused) 1702 { 1703 struct inode *ip; 1704 1705 /* 1706 * Flags are safe to access because ->v_data invalidation 1707 * is held off by listmtx. 1708 */ 1709 if (vp->v_type == VNON) 1710 return (false); 1711 ip = VTOI(vp); 1712 if (!sync_doupdate(ip) && (vp->v_iflag & VI_OWEINACT) == 0) 1713 return (false); 1714 return (true); 1715 } 1716 1717 /* 1718 * For a lazy sync, we only care about access times, quotas and the 1719 * superblock. Other filesystem changes are already converted to 1720 * cylinder group blocks or inode blocks updates and are written to 1721 * disk by syncer. 1722 */ 1723 static int 1724 ffs_sync_lazy(mp) 1725 struct mount *mp; 1726 { 1727 struct vnode *mvp, *vp; 1728 struct inode *ip; 1729 struct thread *td; 1730 int allerror, error; 1731 1732 allerror = 0; 1733 td = curthread; 1734 if ((mp->mnt_flag & MNT_NOATIME) != 0) { 1735 #ifdef QUOTA 1736 qsync(mp); 1737 #endif 1738 goto sbupdate; 1739 } 1740 MNT_VNODE_FOREACH_LAZY(vp, mp, mvp, ffs_sync_lazy_filter, NULL) { 1741 if (vp->v_type == VNON) { 1742 VI_UNLOCK(vp); 1743 continue; 1744 } 1745 ip = VTOI(vp); 1746 1747 /* 1748 * The IN_ACCESS flag is converted to IN_MODIFIED by 1749 * ufs_close() and ufs_getattr() by the calls to 1750 * ufs_itimes_locked(), without subsequent UFS_UPDATE(). 1751 * Test also all the other timestamp flags too, to pick up 1752 * any other cases that could be missed. 1753 */ 1754 if (!sync_doupdate(ip) && (vp->v_iflag & VI_OWEINACT) == 0) { 1755 VI_UNLOCK(vp); 1756 continue; 1757 } 1758 if ((error = vget(vp, LK_EXCLUSIVE | LK_NOWAIT | LK_INTERLOCK)) != 0) 1759 continue; 1760 #ifdef QUOTA 1761 qsyncvp(vp); 1762 #endif 1763 if (sync_doupdate(ip)) 1764 error = ffs_update(vp, 0); 1765 if (error != 0) 1766 allerror = error; 1767 vput(vp); 1768 } 1769 sbupdate: 1770 if (VFSTOUFS(mp)->um_fs->fs_fmod != 0 && 1771 (error = ffs_sbupdate(VFSTOUFS(mp), MNT_LAZY, 0)) != 0) 1772 allerror = error; 1773 return (allerror); 1774 } 1775 1776 /* 1777 * Go through the disk queues to initiate sandbagged IO; 1778 * go through the inodes to write those that have been modified; 1779 * initiate the writing of the super block if it has been modified. 1780 * 1781 * Note: we are always called with the filesystem marked busy using 1782 * vfs_busy(). 1783 */ 1784 static int 1785 ffs_sync(mp, waitfor) 1786 struct mount *mp; 1787 int waitfor; 1788 { 1789 struct vnode *mvp, *vp, *devvp; 1790 struct thread *td; 1791 struct inode *ip; 1792 struct ufsmount *ump = VFSTOUFS(mp); 1793 struct fs *fs; 1794 int error, count, lockreq, allerror = 0; 1795 int suspend; 1796 int suspended; 1797 int secondary_writes; 1798 int secondary_accwrites; 1799 int softdep_deps; 1800 int softdep_accdeps; 1801 struct bufobj *bo; 1802 1803 suspend = 0; 1804 suspended = 0; 1805 td = curthread; 1806 fs = ump->um_fs; 1807 if (fs->fs_fmod != 0 && fs->fs_ronly != 0 && ump->um_fsckpid == 0) 1808 panic("%s: ffs_sync: modification on read-only filesystem", 1809 fs->fs_fsmnt); 1810 if (waitfor == MNT_LAZY) { 1811 if (!rebooting) 1812 return (ffs_sync_lazy(mp)); 1813 waitfor = MNT_NOWAIT; 1814 } 1815 1816 /* 1817 * Write back each (modified) inode. 1818 */ 1819 lockreq = LK_EXCLUSIVE | LK_NOWAIT; 1820 if (waitfor == MNT_SUSPEND) { 1821 suspend = 1; 1822 waitfor = MNT_WAIT; 1823 } 1824 if (waitfor == MNT_WAIT) 1825 lockreq = LK_EXCLUSIVE; 1826 lockreq |= LK_INTERLOCK | LK_SLEEPFAIL; 1827 loop: 1828 /* Grab snapshot of secondary write counts */ 1829 MNT_ILOCK(mp); 1830 secondary_writes = mp->mnt_secondary_writes; 1831 secondary_accwrites = mp->mnt_secondary_accwrites; 1832 MNT_IUNLOCK(mp); 1833 1834 /* Grab snapshot of softdep dependency counts */ 1835 softdep_get_depcounts(mp, &softdep_deps, &softdep_accdeps); 1836 1837 MNT_VNODE_FOREACH_ALL(vp, mp, mvp) { 1838 /* 1839 * Depend on the vnode interlock to keep things stable enough 1840 * for a quick test. Since there might be hundreds of 1841 * thousands of vnodes, we cannot afford even a subroutine 1842 * call unless there's a good chance that we have work to do. 1843 */ 1844 if (vp->v_type == VNON) { 1845 VI_UNLOCK(vp); 1846 continue; 1847 } 1848 ip = VTOI(vp); 1849 if ((ip->i_flag & 1850 (IN_ACCESS | IN_CHANGE | IN_MODIFIED | IN_UPDATE)) == 0 && 1851 vp->v_bufobj.bo_dirty.bv_cnt == 0) { 1852 VI_UNLOCK(vp); 1853 continue; 1854 } 1855 if ((error = vget(vp, lockreq)) != 0) { 1856 if (error == ENOENT || error == ENOLCK) { 1857 MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp); 1858 goto loop; 1859 } 1860 continue; 1861 } 1862 #ifdef QUOTA 1863 qsyncvp(vp); 1864 #endif 1865 for (;;) { 1866 error = ffs_syncvnode(vp, waitfor, 0); 1867 if (error == ERELOOKUP) 1868 continue; 1869 if (error != 0) 1870 allerror = error; 1871 break; 1872 } 1873 vput(vp); 1874 } 1875 /* 1876 * Force stale filesystem control information to be flushed. 1877 */ 1878 if (waitfor == MNT_WAIT || rebooting) { 1879 if ((error = softdep_flushworklist(ump->um_mountp, &count, td))) 1880 allerror = error; 1881 if (ffs_fsfail_cleanup(ump, allerror)) 1882 allerror = 0; 1883 /* Flushed work items may create new vnodes to clean */ 1884 if (allerror == 0 && count) 1885 goto loop; 1886 } 1887 1888 devvp = ump->um_devvp; 1889 bo = &devvp->v_bufobj; 1890 BO_LOCK(bo); 1891 if (bo->bo_numoutput > 0 || bo->bo_dirty.bv_cnt > 0) { 1892 BO_UNLOCK(bo); 1893 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY); 1894 error = VOP_FSYNC(devvp, waitfor, td); 1895 VOP_UNLOCK(devvp); 1896 if (MOUNTEDSOFTDEP(mp) && (error == 0 || error == EAGAIN)) 1897 error = ffs_sbupdate(ump, waitfor, 0); 1898 if (error != 0) 1899 allerror = error; 1900 if (ffs_fsfail_cleanup(ump, allerror)) 1901 allerror = 0; 1902 if (allerror == 0 && waitfor == MNT_WAIT) 1903 goto loop; 1904 } else if (suspend != 0) { 1905 if (softdep_check_suspend(mp, 1906 devvp, 1907 softdep_deps, 1908 softdep_accdeps, 1909 secondary_writes, 1910 secondary_accwrites) != 0) { 1911 MNT_IUNLOCK(mp); 1912 goto loop; /* More work needed */ 1913 } 1914 mtx_assert(MNT_MTX(mp), MA_OWNED); 1915 mp->mnt_kern_flag |= MNTK_SUSPEND2 | MNTK_SUSPENDED; 1916 MNT_IUNLOCK(mp); 1917 suspended = 1; 1918 } else 1919 BO_UNLOCK(bo); 1920 /* 1921 * Write back modified superblock. 1922 */ 1923 if (fs->fs_fmod != 0 && 1924 (error = ffs_sbupdate(ump, waitfor, suspended)) != 0) 1925 allerror = error; 1926 if (ffs_fsfail_cleanup(ump, allerror)) 1927 allerror = 0; 1928 return (allerror); 1929 } 1930 1931 int 1932 ffs_vget(mp, ino, flags, vpp) 1933 struct mount *mp; 1934 ino_t ino; 1935 int flags; 1936 struct vnode **vpp; 1937 { 1938 return (ffs_vgetf(mp, ino, flags, vpp, 0)); 1939 } 1940 1941 int 1942 ffs_vgetf(mp, ino, flags, vpp, ffs_flags) 1943 struct mount *mp; 1944 ino_t ino; 1945 int flags; 1946 struct vnode **vpp; 1947 int ffs_flags; 1948 { 1949 struct fs *fs; 1950 struct inode *ip; 1951 struct ufsmount *ump; 1952 struct buf *bp; 1953 struct vnode *vp; 1954 daddr_t dbn; 1955 int error; 1956 1957 MPASS((ffs_flags & (FFSV_REPLACE | FFSV_REPLACE_DOOMED)) == 0 || 1958 (flags & LK_EXCLUSIVE) != 0); 1959 1960 error = vfs_hash_get(mp, ino, flags, curthread, vpp, NULL, NULL); 1961 if (error != 0) 1962 return (error); 1963 if (*vpp != NULL) { 1964 if ((ffs_flags & FFSV_REPLACE) == 0 || 1965 ((ffs_flags & FFSV_REPLACE_DOOMED) == 0 || 1966 !VN_IS_DOOMED(*vpp))) 1967 return (0); 1968 vgone(*vpp); 1969 vput(*vpp); 1970 } 1971 1972 /* 1973 * We must promote to an exclusive lock for vnode creation. This 1974 * can happen if lookup is passed LOCKSHARED. 1975 */ 1976 if ((flags & LK_TYPE_MASK) == LK_SHARED) { 1977 flags &= ~LK_TYPE_MASK; 1978 flags |= LK_EXCLUSIVE; 1979 } 1980 1981 /* 1982 * We do not lock vnode creation as it is believed to be too 1983 * expensive for such rare case as simultaneous creation of vnode 1984 * for same ino by different processes. We just allow them to race 1985 * and check later to decide who wins. Let the race begin! 1986 */ 1987 1988 ump = VFSTOUFS(mp); 1989 fs = ump->um_fs; 1990 ip = uma_zalloc_smr(uma_inode, M_WAITOK | M_ZERO); 1991 1992 /* Allocate a new vnode/inode. */ 1993 error = getnewvnode("ufs", mp, fs->fs_magic == FS_UFS1_MAGIC ? 1994 &ffs_vnodeops1 : &ffs_vnodeops2, &vp); 1995 if (error) { 1996 *vpp = NULL; 1997 uma_zfree_smr(uma_inode, ip); 1998 return (error); 1999 } 2000 /* 2001 * FFS supports recursive locking. 2002 */ 2003 lockmgr(vp->v_vnlock, LK_EXCLUSIVE, NULL); 2004 VN_LOCK_AREC(vp); 2005 vp->v_data = ip; 2006 vp->v_bufobj.bo_bsize = fs->fs_bsize; 2007 ip->i_vnode = vp; 2008 ip->i_ump = ump; 2009 ip->i_number = ino; 2010 ip->i_ea_refs = 0; 2011 ip->i_nextclustercg = -1; 2012 ip->i_flag = fs->fs_magic == FS_UFS1_MAGIC ? 0 : IN_UFS2; 2013 ip->i_mode = 0; /* ensure error cases below throw away vnode */ 2014 #ifdef DIAGNOSTIC 2015 ufs_init_trackers(ip); 2016 #endif 2017 #ifdef QUOTA 2018 { 2019 int i; 2020 for (i = 0; i < MAXQUOTAS; i++) 2021 ip->i_dquot[i] = NODQUOT; 2022 } 2023 #endif 2024 2025 if (ffs_flags & FFSV_FORCEINSMQ) 2026 vp->v_vflag |= VV_FORCEINSMQ; 2027 error = insmntque(vp, mp); 2028 if (error != 0) { 2029 uma_zfree_smr(uma_inode, ip); 2030 *vpp = NULL; 2031 return (error); 2032 } 2033 vp->v_vflag &= ~VV_FORCEINSMQ; 2034 error = vfs_hash_insert(vp, ino, flags, curthread, vpp, NULL, NULL); 2035 if (error != 0) 2036 return (error); 2037 if (*vpp != NULL) { 2038 /* 2039 * Calls from ffs_valloc() (i.e. FFSV_REPLACE set) 2040 * operate on empty inode, which must not be found by 2041 * other threads until fully filled. Vnode for empty 2042 * inode must be not re-inserted on the hash by other 2043 * thread, after removal by us at the beginning. 2044 */ 2045 MPASS((ffs_flags & FFSV_REPLACE) == 0); 2046 return (0); 2047 } 2048 2049 /* Read in the disk contents for the inode, copy into the inode. */ 2050 dbn = fsbtodb(fs, ino_to_fsba(fs, ino)); 2051 error = ffs_breadz(ump, ump->um_devvp, dbn, dbn, (int)fs->fs_bsize, 2052 NULL, NULL, 0, NOCRED, 0, NULL, &bp); 2053 if (error != 0) { 2054 /* 2055 * The inode does not contain anything useful, so it would 2056 * be misleading to leave it on its hash chain. With mode 2057 * still zero, it will be unlinked and returned to the free 2058 * list by vput(). 2059 */ 2060 vgone(vp); 2061 vput(vp); 2062 *vpp = NULL; 2063 return (error); 2064 } 2065 if (I_IS_UFS1(ip)) 2066 ip->i_din1 = uma_zalloc(uma_ufs1, M_WAITOK); 2067 else 2068 ip->i_din2 = uma_zalloc(uma_ufs2, M_WAITOK); 2069 if ((error = ffs_load_inode(bp, ip, fs, ino)) != 0) { 2070 bqrelse(bp); 2071 vgone(vp); 2072 vput(vp); 2073 *vpp = NULL; 2074 return (error); 2075 } 2076 if (DOINGSOFTDEP(vp)) 2077 softdep_load_inodeblock(ip); 2078 else 2079 ip->i_effnlink = ip->i_nlink; 2080 bqrelse(bp); 2081 2082 /* 2083 * Initialize the vnode from the inode, check for aliases. 2084 * Note that the underlying vnode may have changed. 2085 */ 2086 error = ufs_vinit(mp, I_IS_UFS1(ip) ? &ffs_fifoops1 : &ffs_fifoops2, 2087 &vp); 2088 if (error) { 2089 vgone(vp); 2090 vput(vp); 2091 *vpp = NULL; 2092 return (error); 2093 } 2094 2095 /* 2096 * Finish inode initialization. 2097 */ 2098 if (vp->v_type != VFIFO) { 2099 /* FFS supports shared locking for all files except fifos. */ 2100 VN_LOCK_ASHARE(vp); 2101 } 2102 2103 /* 2104 * Set up a generation number for this inode if it does not 2105 * already have one. This should only happen on old filesystems. 2106 */ 2107 if (ip->i_gen == 0) { 2108 while (ip->i_gen == 0) 2109 ip->i_gen = arc4random(); 2110 if ((vp->v_mount->mnt_flag & MNT_RDONLY) == 0) { 2111 UFS_INODE_SET_FLAG(ip, IN_MODIFIED); 2112 DIP_SET(ip, i_gen, ip->i_gen); 2113 } 2114 } 2115 #ifdef MAC 2116 if ((mp->mnt_flag & MNT_MULTILABEL) && ip->i_mode) { 2117 /* 2118 * If this vnode is already allocated, and we're running 2119 * multi-label, attempt to perform a label association 2120 * from the extended attributes on the inode. 2121 */ 2122 error = mac_vnode_associate_extattr(mp, vp); 2123 if (error) { 2124 /* ufs_inactive will release ip->i_devvp ref. */ 2125 vgone(vp); 2126 vput(vp); 2127 *vpp = NULL; 2128 return (error); 2129 } 2130 } 2131 #endif 2132 2133 *vpp = vp; 2134 return (0); 2135 } 2136 2137 /* 2138 * File handle to vnode 2139 * 2140 * Have to be really careful about stale file handles: 2141 * - check that the inode number is valid 2142 * - for UFS2 check that the inode number is initialized 2143 * - call ffs_vget() to get the locked inode 2144 * - check for an unallocated inode (i_mode == 0) 2145 * - check that the given client host has export rights and return 2146 * those rights via. exflagsp and credanonp 2147 */ 2148 static int 2149 ffs_fhtovp(mp, fhp, flags, vpp) 2150 struct mount *mp; 2151 struct fid *fhp; 2152 int flags; 2153 struct vnode **vpp; 2154 { 2155 struct ufid *ufhp; 2156 2157 ufhp = (struct ufid *)fhp; 2158 return (ffs_inotovp(mp, ufhp->ufid_ino, ufhp->ufid_gen, flags, 2159 vpp, 0)); 2160 } 2161 2162 int 2163 ffs_inotovp(mp, ino, gen, lflags, vpp, ffs_flags) 2164 struct mount *mp; 2165 ino_t ino; 2166 u_int64_t gen; 2167 int lflags; 2168 struct vnode **vpp; 2169 int ffs_flags; 2170 { 2171 struct ufsmount *ump; 2172 struct vnode *nvp; 2173 struct inode *ip; 2174 struct fs *fs; 2175 struct cg *cgp; 2176 struct buf *bp; 2177 u_int cg; 2178 int error; 2179 2180 ump = VFSTOUFS(mp); 2181 fs = ump->um_fs; 2182 *vpp = NULL; 2183 2184 if (ino < UFS_ROOTINO || ino >= fs->fs_ncg * fs->fs_ipg) 2185 return (ESTALE); 2186 2187 /* 2188 * Need to check if inode is initialized because UFS2 does lazy 2189 * initialization and nfs_fhtovp can offer arbitrary inode numbers. 2190 */ 2191 if (fs->fs_magic == FS_UFS2_MAGIC) { 2192 cg = ino_to_cg(fs, ino); 2193 error = ffs_getcg(fs, ump->um_devvp, cg, 0, &bp, &cgp); 2194 if (error != 0) 2195 return (error); 2196 if (ino >= cg * fs->fs_ipg + cgp->cg_initediblk) { 2197 brelse(bp); 2198 return (ESTALE); 2199 } 2200 brelse(bp); 2201 } 2202 2203 error = ffs_vgetf(mp, ino, lflags, &nvp, ffs_flags); 2204 if (error != 0) 2205 return (error); 2206 2207 ip = VTOI(nvp); 2208 if (ip->i_mode == 0 || ip->i_gen != gen || ip->i_effnlink <= 0) { 2209 if (ip->i_mode == 0) 2210 vgone(nvp); 2211 vput(nvp); 2212 return (ESTALE); 2213 } 2214 2215 vnode_create_vobject(nvp, DIP(ip, i_size), curthread); 2216 *vpp = nvp; 2217 return (0); 2218 } 2219 2220 /* 2221 * Initialize the filesystem. 2222 */ 2223 static int 2224 ffs_init(vfsp) 2225 struct vfsconf *vfsp; 2226 { 2227 2228 ffs_susp_initialize(); 2229 softdep_initialize(); 2230 return (ufs_init(vfsp)); 2231 } 2232 2233 /* 2234 * Undo the work of ffs_init(). 2235 */ 2236 static int 2237 ffs_uninit(vfsp) 2238 struct vfsconf *vfsp; 2239 { 2240 int ret; 2241 2242 ret = ufs_uninit(vfsp); 2243 softdep_uninitialize(); 2244 ffs_susp_uninitialize(); 2245 taskqueue_drain_all(taskqueue_thread); 2246 return (ret); 2247 } 2248 2249 /* 2250 * Structure used to pass information from ffs_sbupdate to its 2251 * helper routine ffs_use_bwrite. 2252 */ 2253 struct devfd { 2254 struct ufsmount *ump; 2255 struct buf *sbbp; 2256 int waitfor; 2257 int suspended; 2258 int error; 2259 }; 2260 2261 /* 2262 * Write a superblock and associated information back to disk. 2263 */ 2264 int 2265 ffs_sbupdate(ump, waitfor, suspended) 2266 struct ufsmount *ump; 2267 int waitfor; 2268 int suspended; 2269 { 2270 struct fs *fs; 2271 struct buf *sbbp; 2272 struct devfd devfd; 2273 2274 fs = ump->um_fs; 2275 if (fs->fs_ronly == 1 && 2276 (ump->um_mountp->mnt_flag & (MNT_RDONLY | MNT_UPDATE)) != 2277 (MNT_RDONLY | MNT_UPDATE) && ump->um_fsckpid == 0) 2278 panic("ffs_sbupdate: write read-only filesystem"); 2279 /* 2280 * We use the superblock's buf to serialize calls to ffs_sbupdate(). 2281 */ 2282 sbbp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc), 2283 (int)fs->fs_sbsize, 0, 0, 0); 2284 /* 2285 * Initialize info needed for write function. 2286 */ 2287 devfd.ump = ump; 2288 devfd.sbbp = sbbp; 2289 devfd.waitfor = waitfor; 2290 devfd.suspended = suspended; 2291 devfd.error = 0; 2292 return (ffs_sbput(&devfd, fs, fs->fs_sblockloc, ffs_use_bwrite)); 2293 } 2294 2295 /* 2296 * Write function for use by filesystem-layer routines. 2297 */ 2298 static int 2299 ffs_use_bwrite(void *devfd, off_t loc, void *buf, int size) 2300 { 2301 struct devfd *devfdp; 2302 struct ufsmount *ump; 2303 struct buf *bp; 2304 struct fs *fs; 2305 int error; 2306 2307 devfdp = devfd; 2308 ump = devfdp->ump; 2309 fs = ump->um_fs; 2310 /* 2311 * Writing the superblock summary information. 2312 */ 2313 if (loc != fs->fs_sblockloc) { 2314 bp = getblk(ump->um_devvp, btodb(loc), size, 0, 0, 0); 2315 bcopy(buf, bp->b_data, (u_int)size); 2316 if (devfdp->suspended) 2317 bp->b_flags |= B_VALIDSUSPWRT; 2318 if (devfdp->waitfor != MNT_WAIT) 2319 bawrite(bp); 2320 else if ((error = bwrite(bp)) != 0) 2321 devfdp->error = error; 2322 return (0); 2323 } 2324 /* 2325 * Writing the superblock itself. We need to do special checks for it. 2326 */ 2327 bp = devfdp->sbbp; 2328 if (ffs_fsfail_cleanup(ump, devfdp->error)) 2329 devfdp->error = 0; 2330 if (devfdp->error != 0) { 2331 brelse(bp); 2332 return (devfdp->error); 2333 } 2334 if (fs->fs_magic == FS_UFS1_MAGIC && fs->fs_sblockloc != SBLOCK_UFS1 && 2335 (fs->fs_old_flags & FS_FLAGS_UPDATED) == 0) { 2336 printf("WARNING: %s: correcting fs_sblockloc from %jd to %d\n", 2337 fs->fs_fsmnt, fs->fs_sblockloc, SBLOCK_UFS1); 2338 fs->fs_sblockloc = SBLOCK_UFS1; 2339 } 2340 if (fs->fs_magic == FS_UFS2_MAGIC && fs->fs_sblockloc != SBLOCK_UFS2 && 2341 (fs->fs_old_flags & FS_FLAGS_UPDATED) == 0) { 2342 printf("WARNING: %s: correcting fs_sblockloc from %jd to %d\n", 2343 fs->fs_fsmnt, fs->fs_sblockloc, SBLOCK_UFS2); 2344 fs->fs_sblockloc = SBLOCK_UFS2; 2345 } 2346 if (MOUNTEDSOFTDEP(ump->um_mountp)) 2347 softdep_setup_sbupdate(ump, (struct fs *)bp->b_data, bp); 2348 bcopy((caddr_t)fs, bp->b_data, (u_int)fs->fs_sbsize); 2349 fs = (struct fs *)bp->b_data; 2350 ffs_oldfscompat_write(fs, ump); 2351 fs->fs_si = NULL; 2352 /* Recalculate the superblock hash */ 2353 fs->fs_ckhash = ffs_calc_sbhash(fs); 2354 if (devfdp->suspended) 2355 bp->b_flags |= B_VALIDSUSPWRT; 2356 if (devfdp->waitfor != MNT_WAIT) 2357 bawrite(bp); 2358 else if ((error = bwrite(bp)) != 0) 2359 devfdp->error = error; 2360 return (devfdp->error); 2361 } 2362 2363 static int 2364 ffs_extattrctl(struct mount *mp, int cmd, struct vnode *filename_vp, 2365 int attrnamespace, const char *attrname) 2366 { 2367 2368 #ifdef UFS_EXTATTR 2369 return (ufs_extattrctl(mp, cmd, filename_vp, attrnamespace, 2370 attrname)); 2371 #else 2372 return (vfs_stdextattrctl(mp, cmd, filename_vp, attrnamespace, 2373 attrname)); 2374 #endif 2375 } 2376 2377 static void 2378 ffs_ifree(struct ufsmount *ump, struct inode *ip) 2379 { 2380 2381 if (ump->um_fstype == UFS1 && ip->i_din1 != NULL) 2382 uma_zfree(uma_ufs1, ip->i_din1); 2383 else if (ip->i_din2 != NULL) 2384 uma_zfree(uma_ufs2, ip->i_din2); 2385 uma_zfree_smr(uma_inode, ip); 2386 } 2387 2388 static int dobkgrdwrite = 1; 2389 SYSCTL_INT(_debug, OID_AUTO, dobkgrdwrite, CTLFLAG_RW, &dobkgrdwrite, 0, 2390 "Do background writes (honoring the BV_BKGRDWRITE flag)?"); 2391 2392 /* 2393 * Complete a background write started from bwrite. 2394 */ 2395 static void 2396 ffs_backgroundwritedone(struct buf *bp) 2397 { 2398 struct bufobj *bufobj; 2399 struct buf *origbp; 2400 2401 #ifdef SOFTUPDATES 2402 if (!LIST_EMPTY(&bp->b_dep) && (bp->b_ioflags & BIO_ERROR) != 0) 2403 softdep_handle_error(bp); 2404 #endif 2405 2406 /* 2407 * Find the original buffer that we are writing. 2408 */ 2409 bufobj = bp->b_bufobj; 2410 BO_LOCK(bufobj); 2411 if ((origbp = gbincore(bp->b_bufobj, bp->b_lblkno)) == NULL) 2412 panic("backgroundwritedone: lost buffer"); 2413 2414 /* 2415 * We should mark the cylinder group buffer origbp as 2416 * dirty, to not lose the failed write. 2417 */ 2418 if ((bp->b_ioflags & BIO_ERROR) != 0) 2419 origbp->b_vflags |= BV_BKGRDERR; 2420 BO_UNLOCK(bufobj); 2421 /* 2422 * Process dependencies then return any unfinished ones. 2423 */ 2424 if (!LIST_EMPTY(&bp->b_dep) && (bp->b_ioflags & BIO_ERROR) == 0) 2425 buf_complete(bp); 2426 #ifdef SOFTUPDATES 2427 if (!LIST_EMPTY(&bp->b_dep)) 2428 softdep_move_dependencies(bp, origbp); 2429 #endif 2430 /* 2431 * This buffer is marked B_NOCACHE so when it is released 2432 * by biodone it will be tossed. Clear B_IOSTARTED in case of error. 2433 */ 2434 bp->b_flags |= B_NOCACHE; 2435 bp->b_flags &= ~(B_CACHE | B_IOSTARTED); 2436 pbrelvp(bp); 2437 2438 /* 2439 * Prevent brelse() from trying to keep and re-dirtying bp on 2440 * errors. It causes b_bufobj dereference in 2441 * bdirty()/reassignbuf(), and b_bufobj was cleared in 2442 * pbrelvp() above. 2443 */ 2444 if ((bp->b_ioflags & BIO_ERROR) != 0) 2445 bp->b_flags |= B_INVAL; 2446 bufdone(bp); 2447 BO_LOCK(bufobj); 2448 /* 2449 * Clear the BV_BKGRDINPROG flag in the original buffer 2450 * and awaken it if it is waiting for the write to complete. 2451 * If BV_BKGRDINPROG is not set in the original buffer it must 2452 * have been released and re-instantiated - which is not legal. 2453 */ 2454 KASSERT((origbp->b_vflags & BV_BKGRDINPROG), 2455 ("backgroundwritedone: lost buffer2")); 2456 origbp->b_vflags &= ~BV_BKGRDINPROG; 2457 if (origbp->b_vflags & BV_BKGRDWAIT) { 2458 origbp->b_vflags &= ~BV_BKGRDWAIT; 2459 wakeup(&origbp->b_xflags); 2460 } 2461 BO_UNLOCK(bufobj); 2462 } 2463 2464 /* 2465 * Write, release buffer on completion. (Done by iodone 2466 * if async). Do not bother writing anything if the buffer 2467 * is invalid. 2468 * 2469 * Note that we set B_CACHE here, indicating that buffer is 2470 * fully valid and thus cacheable. This is true even of NFS 2471 * now so we set it generally. This could be set either here 2472 * or in biodone() since the I/O is synchronous. We put it 2473 * here. 2474 */ 2475 static int 2476 ffs_bufwrite(struct buf *bp) 2477 { 2478 struct buf *newbp; 2479 struct cg *cgp; 2480 2481 CTR3(KTR_BUF, "bufwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags); 2482 if (bp->b_flags & B_INVAL) { 2483 brelse(bp); 2484 return (0); 2485 } 2486 2487 if (!BUF_ISLOCKED(bp)) 2488 panic("bufwrite: buffer is not busy???"); 2489 /* 2490 * If a background write is already in progress, delay 2491 * writing this block if it is asynchronous. Otherwise 2492 * wait for the background write to complete. 2493 */ 2494 BO_LOCK(bp->b_bufobj); 2495 if (bp->b_vflags & BV_BKGRDINPROG) { 2496 if (bp->b_flags & B_ASYNC) { 2497 BO_UNLOCK(bp->b_bufobj); 2498 bdwrite(bp); 2499 return (0); 2500 } 2501 bp->b_vflags |= BV_BKGRDWAIT; 2502 msleep(&bp->b_xflags, BO_LOCKPTR(bp->b_bufobj), PRIBIO, 2503 "bwrbg", 0); 2504 if (bp->b_vflags & BV_BKGRDINPROG) 2505 panic("bufwrite: still writing"); 2506 } 2507 bp->b_vflags &= ~BV_BKGRDERR; 2508 BO_UNLOCK(bp->b_bufobj); 2509 2510 /* 2511 * If this buffer is marked for background writing and we 2512 * do not have to wait for it, make a copy and write the 2513 * copy so as to leave this buffer ready for further use. 2514 * 2515 * This optimization eats a lot of memory. If we have a page 2516 * or buffer shortfall we can't do it. 2517 */ 2518 if (dobkgrdwrite && (bp->b_xflags & BX_BKGRDWRITE) && 2519 (bp->b_flags & B_ASYNC) && 2520 !vm_page_count_severe() && 2521 !buf_dirty_count_severe()) { 2522 KASSERT(bp->b_iodone == NULL, 2523 ("bufwrite: needs chained iodone (%p)", bp->b_iodone)); 2524 2525 /* get a new block */ 2526 newbp = geteblk(bp->b_bufsize, GB_NOWAIT_BD); 2527 if (newbp == NULL) 2528 goto normal_write; 2529 2530 KASSERT(buf_mapped(bp), ("Unmapped cg")); 2531 memcpy(newbp->b_data, bp->b_data, bp->b_bufsize); 2532 BO_LOCK(bp->b_bufobj); 2533 bp->b_vflags |= BV_BKGRDINPROG; 2534 BO_UNLOCK(bp->b_bufobj); 2535 newbp->b_xflags |= 2536 (bp->b_xflags & BX_FSPRIV) | BX_BKGRDMARKER; 2537 newbp->b_lblkno = bp->b_lblkno; 2538 newbp->b_blkno = bp->b_blkno; 2539 newbp->b_offset = bp->b_offset; 2540 newbp->b_iodone = ffs_backgroundwritedone; 2541 newbp->b_flags |= B_ASYNC; 2542 newbp->b_flags &= ~B_INVAL; 2543 pbgetvp(bp->b_vp, newbp); 2544 2545 #ifdef SOFTUPDATES 2546 /* 2547 * Move over the dependencies. If there are rollbacks, 2548 * leave the parent buffer dirtied as it will need to 2549 * be written again. 2550 */ 2551 if (LIST_EMPTY(&bp->b_dep) || 2552 softdep_move_dependencies(bp, newbp) == 0) 2553 bundirty(bp); 2554 #else 2555 bundirty(bp); 2556 #endif 2557 2558 /* 2559 * Initiate write on the copy, release the original. The 2560 * BKGRDINPROG flag prevents it from going away until 2561 * the background write completes. We have to recalculate 2562 * its check hash in case the buffer gets freed and then 2563 * reconstituted from the buffer cache during a later read. 2564 */ 2565 if ((bp->b_xflags & BX_CYLGRP) != 0) { 2566 cgp = (struct cg *)bp->b_data; 2567 cgp->cg_ckhash = 0; 2568 cgp->cg_ckhash = 2569 calculate_crc32c(~0L, bp->b_data, bp->b_bcount); 2570 } 2571 bqrelse(bp); 2572 bp = newbp; 2573 } else 2574 /* Mark the buffer clean */ 2575 bundirty(bp); 2576 2577 /* Let the normal bufwrite do the rest for us */ 2578 normal_write: 2579 /* 2580 * If we are writing a cylinder group, update its time. 2581 */ 2582 if ((bp->b_xflags & BX_CYLGRP) != 0) { 2583 cgp = (struct cg *)bp->b_data; 2584 cgp->cg_old_time = cgp->cg_time = time_second; 2585 } 2586 return (bufwrite(bp)); 2587 } 2588 2589 static void 2590 ffs_geom_strategy(struct bufobj *bo, struct buf *bp) 2591 { 2592 struct vnode *vp; 2593 struct buf *tbp; 2594 int error, nocopy; 2595 2596 /* 2597 * This is the bufobj strategy for the private VCHR vnodes 2598 * used by FFS to access the underlying storage device. 2599 * We override the default bufobj strategy and thus bypass 2600 * VOP_STRATEGY() for these vnodes. 2601 */ 2602 vp = bo2vnode(bo); 2603 KASSERT(bp->b_vp == NULL || bp->b_vp->v_type != VCHR || 2604 bp->b_vp->v_rdev == NULL || 2605 bp->b_vp->v_rdev->si_mountpt == NULL || 2606 VFSTOUFS(bp->b_vp->v_rdev->si_mountpt) == NULL || 2607 vp == VFSTOUFS(bp->b_vp->v_rdev->si_mountpt)->um_devvp, 2608 ("ffs_geom_strategy() with wrong vp")); 2609 if (bp->b_iocmd == BIO_WRITE) { 2610 if ((bp->b_flags & B_VALIDSUSPWRT) == 0 && 2611 bp->b_vp != NULL && bp->b_vp->v_mount != NULL && 2612 (bp->b_vp->v_mount->mnt_kern_flag & MNTK_SUSPENDED) != 0) 2613 panic("ffs_geom_strategy: bad I/O"); 2614 nocopy = bp->b_flags & B_NOCOPY; 2615 bp->b_flags &= ~(B_VALIDSUSPWRT | B_NOCOPY); 2616 if ((vp->v_vflag & VV_COPYONWRITE) && nocopy == 0 && 2617 vp->v_rdev->si_snapdata != NULL) { 2618 if ((bp->b_flags & B_CLUSTER) != 0) { 2619 runningbufwakeup(bp); 2620 TAILQ_FOREACH(tbp, &bp->b_cluster.cluster_head, 2621 b_cluster.cluster_entry) { 2622 error = ffs_copyonwrite(vp, tbp); 2623 if (error != 0 && 2624 error != EOPNOTSUPP) { 2625 bp->b_error = error; 2626 bp->b_ioflags |= BIO_ERROR; 2627 bp->b_flags &= ~B_BARRIER; 2628 bufdone(bp); 2629 return; 2630 } 2631 } 2632 bp->b_runningbufspace = bp->b_bufsize; 2633 atomic_add_long(&runningbufspace, 2634 bp->b_runningbufspace); 2635 } else { 2636 error = ffs_copyonwrite(vp, bp); 2637 if (error != 0 && error != EOPNOTSUPP) { 2638 bp->b_error = error; 2639 bp->b_ioflags |= BIO_ERROR; 2640 bp->b_flags &= ~B_BARRIER; 2641 bufdone(bp); 2642 return; 2643 } 2644 } 2645 } 2646 #ifdef SOFTUPDATES 2647 if ((bp->b_flags & B_CLUSTER) != 0) { 2648 TAILQ_FOREACH(tbp, &bp->b_cluster.cluster_head, 2649 b_cluster.cluster_entry) { 2650 if (!LIST_EMPTY(&tbp->b_dep)) 2651 buf_start(tbp); 2652 } 2653 } else { 2654 if (!LIST_EMPTY(&bp->b_dep)) 2655 buf_start(bp); 2656 } 2657 2658 #endif 2659 /* 2660 * Check for metadata that needs check-hashes and update them. 2661 */ 2662 switch (bp->b_xflags & BX_FSPRIV) { 2663 case BX_CYLGRP: 2664 ((struct cg *)bp->b_data)->cg_ckhash = 0; 2665 ((struct cg *)bp->b_data)->cg_ckhash = 2666 calculate_crc32c(~0L, bp->b_data, bp->b_bcount); 2667 break; 2668 2669 case BX_SUPERBLOCK: 2670 case BX_INODE: 2671 case BX_INDIR: 2672 case BX_DIR: 2673 printf("Check-hash write is unimplemented!!!\n"); 2674 break; 2675 2676 case 0: 2677 break; 2678 2679 default: 2680 printf("multiple buffer types 0x%b\n", 2681 (u_int)(bp->b_xflags & BX_FSPRIV), 2682 PRINT_UFS_BUF_XFLAGS); 2683 break; 2684 } 2685 } 2686 if (bp->b_iocmd != BIO_READ && ffs_enxio_enable) 2687 bp->b_xflags |= BX_CVTENXIO; 2688 g_vfs_strategy(bo, bp); 2689 } 2690 2691 int 2692 ffs_own_mount(const struct mount *mp) 2693 { 2694 2695 if (mp->mnt_op == &ufs_vfsops) 2696 return (1); 2697 return (0); 2698 } 2699 2700 #ifdef DDB 2701 #ifdef SOFTUPDATES 2702 2703 /* defined in ffs_softdep.c */ 2704 extern void db_print_ffs(struct ufsmount *ump); 2705 2706 DB_SHOW_COMMAND(ffs, db_show_ffs) 2707 { 2708 struct mount *mp; 2709 struct ufsmount *ump; 2710 2711 if (have_addr) { 2712 ump = VFSTOUFS((struct mount *)addr); 2713 db_print_ffs(ump); 2714 return; 2715 } 2716 2717 TAILQ_FOREACH(mp, &mountlist, mnt_list) { 2718 if (!strcmp(mp->mnt_stat.f_fstypename, ufs_vfsconf.vfc_name)) 2719 db_print_ffs(VFSTOUFS(mp)); 2720 } 2721 } 2722 2723 #endif /* SOFTUPDATES */ 2724 #endif /* DDB */ 2725