1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1989, 1991, 1993, 1994 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * @(#)ffs_vfsops.c 8.31 (Berkeley) 5/20/95 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include "opt_quota.h" 38 #include "opt_ufs.h" 39 #include "opt_ffs.h" 40 #include "opt_ddb.h" 41 42 #include <sys/param.h> 43 #include <sys/gsb_crc32.h> 44 #include <sys/systm.h> 45 #include <sys/namei.h> 46 #include <sys/priv.h> 47 #include <sys/proc.h> 48 #include <sys/taskqueue.h> 49 #include <sys/kernel.h> 50 #include <sys/ktr.h> 51 #include <sys/vnode.h> 52 #include <sys/mount.h> 53 #include <sys/bio.h> 54 #include <sys/buf.h> 55 #include <sys/conf.h> 56 #include <sys/fcntl.h> 57 #include <sys/ioccom.h> 58 #include <sys/malloc.h> 59 #include <sys/mutex.h> 60 #include <sys/rwlock.h> 61 #include <sys/sysctl.h> 62 #include <sys/vmmeter.h> 63 64 #include <security/mac/mac_framework.h> 65 66 #include <ufs/ufs/dir.h> 67 #include <ufs/ufs/extattr.h> 68 #include <ufs/ufs/gjournal.h> 69 #include <ufs/ufs/quota.h> 70 #include <ufs/ufs/ufsmount.h> 71 #include <ufs/ufs/inode.h> 72 #include <ufs/ufs/ufs_extern.h> 73 74 #include <ufs/ffs/fs.h> 75 #include <ufs/ffs/ffs_extern.h> 76 77 #include <vm/vm.h> 78 #include <vm/uma.h> 79 #include <vm/vm_page.h> 80 81 #include <geom/geom.h> 82 #include <geom/geom_vfs.h> 83 84 #include <ddb/ddb.h> 85 86 static uma_zone_t uma_inode, uma_ufs1, uma_ufs2; 87 VFS_SMR_DECLARE; 88 89 static int ffs_mountfs(struct vnode *, struct mount *, struct thread *); 90 static void ffs_oldfscompat_read(struct fs *, struct ufsmount *, 91 ufs2_daddr_t); 92 static void ffs_ifree(struct ufsmount *ump, struct inode *ip); 93 static int ffs_sync_lazy(struct mount *mp); 94 static int ffs_use_bread(void *devfd, off_t loc, void **bufp, int size); 95 static int ffs_use_bwrite(void *devfd, off_t loc, void *buf, int size); 96 97 static vfs_init_t ffs_init; 98 static vfs_uninit_t ffs_uninit; 99 static vfs_extattrctl_t ffs_extattrctl; 100 static vfs_cmount_t ffs_cmount; 101 static vfs_unmount_t ffs_unmount; 102 static vfs_mount_t ffs_mount; 103 static vfs_statfs_t ffs_statfs; 104 static vfs_fhtovp_t ffs_fhtovp; 105 static vfs_sync_t ffs_sync; 106 107 static struct vfsops ufs_vfsops = { 108 .vfs_extattrctl = ffs_extattrctl, 109 .vfs_fhtovp = ffs_fhtovp, 110 .vfs_init = ffs_init, 111 .vfs_mount = ffs_mount, 112 .vfs_cmount = ffs_cmount, 113 .vfs_quotactl = ufs_quotactl, 114 .vfs_root = vfs_cache_root, 115 .vfs_cachedroot = ufs_root, 116 .vfs_statfs = ffs_statfs, 117 .vfs_sync = ffs_sync, 118 .vfs_uninit = ffs_uninit, 119 .vfs_unmount = ffs_unmount, 120 .vfs_vget = ffs_vget, 121 .vfs_susp_clean = process_deferred_inactive, 122 }; 123 124 VFS_SET(ufs_vfsops, ufs, 0); 125 MODULE_VERSION(ufs, 1); 126 127 static b_strategy_t ffs_geom_strategy; 128 static b_write_t ffs_bufwrite; 129 130 static struct buf_ops ffs_ops = { 131 .bop_name = "FFS", 132 .bop_write = ffs_bufwrite, 133 .bop_strategy = ffs_geom_strategy, 134 .bop_sync = bufsync, 135 #ifdef NO_FFS_SNAPSHOT 136 .bop_bdflush = bufbdflush, 137 #else 138 .bop_bdflush = ffs_bdflush, 139 #endif 140 }; 141 142 /* 143 * Note that userquota and groupquota options are not currently used 144 * by UFS/FFS code and generally mount(8) does not pass those options 145 * from userland, but they can be passed by loader(8) via 146 * vfs.root.mountfrom.options. 147 */ 148 static const char *ffs_opts[] = { "acls", "async", "noatime", "noclusterr", 149 "noclusterw", "noexec", "export", "force", "from", "groupquota", 150 "multilabel", "nfsv4acls", "snapshot", "nosuid", "suiddir", 151 "nosymfollow", "sync", "union", "userquota", "untrusted", NULL }; 152 153 static int ffs_enxio_enable = 1; 154 SYSCTL_DECL(_vfs_ffs); 155 SYSCTL_INT(_vfs_ffs, OID_AUTO, enxio_enable, CTLFLAG_RWTUN, 156 &ffs_enxio_enable, 0, 157 "enable mapping of other disk I/O errors to ENXIO"); 158 159 /* 160 * Return buffer with the contents of block "offset" from the beginning of 161 * directory "ip". If "res" is non-zero, fill it in with a pointer to the 162 * remaining space in the directory. 163 */ 164 static int 165 ffs_blkatoff(struct vnode *vp, off_t offset, char **res, struct buf **bpp) 166 { 167 struct inode *ip; 168 struct fs *fs; 169 struct buf *bp; 170 ufs_lbn_t lbn; 171 int bsize, error; 172 173 ip = VTOI(vp); 174 fs = ITOFS(ip); 175 lbn = lblkno(fs, offset); 176 bsize = blksize(fs, ip, lbn); 177 178 *bpp = NULL; 179 error = bread(vp, lbn, bsize, NOCRED, &bp); 180 if (error) { 181 return (error); 182 } 183 if (res) 184 *res = (char *)bp->b_data + blkoff(fs, offset); 185 *bpp = bp; 186 return (0); 187 } 188 189 /* 190 * Load up the contents of an inode and copy the appropriate pieces 191 * to the incore copy. 192 */ 193 static int 194 ffs_load_inode(struct buf *bp, struct inode *ip, struct fs *fs, ino_t ino) 195 { 196 struct ufs1_dinode *dip1; 197 struct ufs2_dinode *dip2; 198 int error; 199 200 if (I_IS_UFS1(ip)) { 201 dip1 = ip->i_din1; 202 *dip1 = 203 *((struct ufs1_dinode *)bp->b_data + ino_to_fsbo(fs, ino)); 204 ip->i_mode = dip1->di_mode; 205 ip->i_nlink = dip1->di_nlink; 206 ip->i_effnlink = dip1->di_nlink; 207 ip->i_size = dip1->di_size; 208 ip->i_flags = dip1->di_flags; 209 ip->i_gen = dip1->di_gen; 210 ip->i_uid = dip1->di_uid; 211 ip->i_gid = dip1->di_gid; 212 return (0); 213 } 214 dip2 = ((struct ufs2_dinode *)bp->b_data + ino_to_fsbo(fs, ino)); 215 if ((error = ffs_verify_dinode_ckhash(fs, dip2)) != 0 && 216 !ffs_fsfail_cleanup(ITOUMP(ip), error)) { 217 printf("%s: inode %jd: check-hash failed\n", fs->fs_fsmnt, 218 (intmax_t)ino); 219 return (error); 220 } 221 *ip->i_din2 = *dip2; 222 dip2 = ip->i_din2; 223 ip->i_mode = dip2->di_mode; 224 ip->i_nlink = dip2->di_nlink; 225 ip->i_effnlink = dip2->di_nlink; 226 ip->i_size = dip2->di_size; 227 ip->i_flags = dip2->di_flags; 228 ip->i_gen = dip2->di_gen; 229 ip->i_uid = dip2->di_uid; 230 ip->i_gid = dip2->di_gid; 231 return (0); 232 } 233 234 /* 235 * Verify that a filesystem block number is a valid data block. 236 * This routine is only called on untrusted filesystems. 237 */ 238 static int 239 ffs_check_blkno(struct mount *mp, ino_t inum, ufs2_daddr_t daddr, int blksize) 240 { 241 struct fs *fs; 242 struct ufsmount *ump; 243 ufs2_daddr_t end_daddr; 244 int cg, havemtx; 245 246 KASSERT((mp->mnt_flag & MNT_UNTRUSTED) != 0, 247 ("ffs_check_blkno called on a trusted file system")); 248 ump = VFSTOUFS(mp); 249 fs = ump->um_fs; 250 cg = dtog(fs, daddr); 251 end_daddr = daddr + numfrags(fs, blksize); 252 /* 253 * Verify that the block number is a valid data block. Also check 254 * that it does not point to an inode block or a superblock. Accept 255 * blocks that are unalloacted (0) or part of snapshot metadata 256 * (BLK_NOCOPY or BLK_SNAP). 257 * 258 * Thus, the block must be in a valid range for the filesystem and 259 * either in the space before a backup superblock (except the first 260 * cylinder group where that space is used by the bootstrap code) or 261 * after the inode blocks and before the end of the cylinder group. 262 */ 263 if ((uint64_t)daddr <= BLK_SNAP || 264 ((uint64_t)end_daddr <= fs->fs_size && 265 ((cg > 0 && end_daddr <= cgsblock(fs, cg)) || 266 (daddr >= cgdmin(fs, cg) && 267 end_daddr <= cgbase(fs, cg) + fs->fs_fpg)))) 268 return (0); 269 if ((havemtx = mtx_owned(UFS_MTX(ump))) == 0) 270 UFS_LOCK(ump); 271 if (ppsratecheck(&ump->um_last_integritymsg, 272 &ump->um_secs_integritymsg, 1)) { 273 UFS_UNLOCK(ump); 274 uprintf("\n%s: inode %jd, out-of-range indirect block " 275 "number %jd\n", mp->mnt_stat.f_mntonname, inum, daddr); 276 if (havemtx) 277 UFS_LOCK(ump); 278 } else if (!havemtx) 279 UFS_UNLOCK(ump); 280 return (EINTEGRITY); 281 } 282 283 /* 284 * On first ENXIO error, initiate an asynchronous forcible unmount. 285 * Used to unmount filesystems whose underlying media has gone away. 286 * 287 * Return true if a cleanup is in progress. 288 */ 289 int 290 ffs_fsfail_cleanup(struct ufsmount *ump, int error) 291 { 292 int retval; 293 294 UFS_LOCK(ump); 295 retval = ffs_fsfail_cleanup_locked(ump, error); 296 UFS_UNLOCK(ump); 297 return (retval); 298 } 299 300 int 301 ffs_fsfail_cleanup_locked(struct ufsmount *ump, int error) 302 { 303 mtx_assert(UFS_MTX(ump), MA_OWNED); 304 if (error == ENXIO && (ump->um_flags & UM_FSFAIL_CLEANUP) == 0) { 305 ump->um_flags |= UM_FSFAIL_CLEANUP; 306 if (ump->um_mountp == rootvnode->v_mount) 307 panic("UFS: root fs would be forcibly unmounted"); 308 309 /* 310 * Queue an async forced unmount. 311 */ 312 vfs_ref(ump->um_mountp); 313 dounmount(ump->um_mountp, 314 MNT_FORCE | MNT_RECURSE | MNT_DEFERRED, curthread); 315 printf("UFS: forcibly unmounting %s from %s\n", 316 ump->um_mountp->mnt_stat.f_mntfromname, 317 ump->um_mountp->mnt_stat.f_mntonname); 318 } 319 return ((ump->um_flags & UM_FSFAIL_CLEANUP) != 0); 320 } 321 322 /* 323 * Wrapper used during ENXIO cleanup to allocate empty buffers when 324 * the kernel is unable to read the real one. They are needed so that 325 * the soft updates code can use them to unwind its dependencies. 326 */ 327 int 328 ffs_breadz(struct ufsmount *ump, struct vnode *vp, daddr_t lblkno, 329 daddr_t dblkno, int size, daddr_t *rablkno, int *rabsize, int cnt, 330 struct ucred *cred, int flags, void (*ckhashfunc)(struct buf *), 331 struct buf **bpp) 332 { 333 int error; 334 335 flags |= GB_CVTENXIO; 336 error = breadn_flags(vp, lblkno, dblkno, size, rablkno, rabsize, cnt, 337 cred, flags, ckhashfunc, bpp); 338 if (error != 0 && ffs_fsfail_cleanup(ump, error)) { 339 error = getblkx(vp, lblkno, dblkno, size, 0, 0, flags, bpp); 340 KASSERT(error == 0, ("getblkx failed")); 341 vfs_bio_bzero_buf(*bpp, 0, size); 342 } 343 return (error); 344 } 345 346 static int 347 ffs_mount(struct mount *mp) 348 { 349 struct vnode *devvp, *odevvp; 350 struct thread *td; 351 struct ufsmount *ump = NULL; 352 struct fs *fs; 353 int error, flags; 354 int error1 __diagused; 355 uint64_t mntorflags, saved_mnt_flag; 356 accmode_t accmode; 357 struct nameidata ndp; 358 char *fspec; 359 bool mounted_softdep; 360 361 td = curthread; 362 if (vfs_filteropt(mp->mnt_optnew, ffs_opts)) 363 return (EINVAL); 364 if (uma_inode == NULL) { 365 uma_inode = uma_zcreate("FFS inode", 366 sizeof(struct inode), NULL, NULL, NULL, NULL, 367 UMA_ALIGN_PTR, 0); 368 uma_ufs1 = uma_zcreate("FFS1 dinode", 369 sizeof(struct ufs1_dinode), NULL, NULL, NULL, NULL, 370 UMA_ALIGN_PTR, 0); 371 uma_ufs2 = uma_zcreate("FFS2 dinode", 372 sizeof(struct ufs2_dinode), NULL, NULL, NULL, NULL, 373 UMA_ALIGN_PTR, 0); 374 VFS_SMR_ZONE_SET(uma_inode); 375 } 376 377 vfs_deleteopt(mp->mnt_optnew, "groupquota"); 378 vfs_deleteopt(mp->mnt_optnew, "userquota"); 379 380 fspec = vfs_getopts(mp->mnt_optnew, "from", &error); 381 if (error) 382 return (error); 383 384 mntorflags = 0; 385 if (vfs_getopt(mp->mnt_optnew, "untrusted", NULL, NULL) == 0) 386 mntorflags |= MNT_UNTRUSTED; 387 388 if (vfs_getopt(mp->mnt_optnew, "acls", NULL, NULL) == 0) 389 mntorflags |= MNT_ACLS; 390 391 if (vfs_getopt(mp->mnt_optnew, "snapshot", NULL, NULL) == 0) { 392 mntorflags |= MNT_SNAPSHOT; 393 /* 394 * Once we have set the MNT_SNAPSHOT flag, do not 395 * persist "snapshot" in the options list. 396 */ 397 vfs_deleteopt(mp->mnt_optnew, "snapshot"); 398 vfs_deleteopt(mp->mnt_opt, "snapshot"); 399 } 400 401 if (vfs_getopt(mp->mnt_optnew, "nfsv4acls", NULL, NULL) == 0) { 402 if (mntorflags & MNT_ACLS) { 403 vfs_mount_error(mp, 404 "\"acls\" and \"nfsv4acls\" options " 405 "are mutually exclusive"); 406 return (EINVAL); 407 } 408 mntorflags |= MNT_NFS4ACLS; 409 } 410 411 MNT_ILOCK(mp); 412 mp->mnt_kern_flag &= ~MNTK_FPLOOKUP; 413 mp->mnt_flag |= mntorflags; 414 MNT_IUNLOCK(mp); 415 416 /* 417 * If this is a snapshot request, take the snapshot. 418 */ 419 if (mp->mnt_flag & MNT_SNAPSHOT) { 420 if ((mp->mnt_flag & MNT_UPDATE) == 0) 421 return (EINVAL); 422 return (ffs_snapshot(mp, fspec)); 423 } 424 425 /* 426 * Must not call namei() while owning busy ref. 427 */ 428 if (mp->mnt_flag & MNT_UPDATE) 429 vfs_unbusy(mp); 430 431 /* 432 * Not an update, or updating the name: look up the name 433 * and verify that it refers to a sensible disk device. 434 */ 435 NDINIT(&ndp, LOOKUP, FOLLOW | LOCKLEAF, UIO_SYSSPACE, fspec); 436 error = namei(&ndp); 437 if ((mp->mnt_flag & MNT_UPDATE) != 0) { 438 /* 439 * Unmount does not start if MNT_UPDATE is set. Mount 440 * update busies mp before setting MNT_UPDATE. We 441 * must be able to retain our busy ref successfully, 442 * without sleep. 443 */ 444 error1 = vfs_busy(mp, MBF_NOWAIT); 445 MPASS(error1 == 0); 446 } 447 if (error != 0) 448 return (error); 449 NDFREE_PNBUF(&ndp); 450 if (!vn_isdisk_error(ndp.ni_vp, &error)) { 451 vput(ndp.ni_vp); 452 return (error); 453 } 454 455 /* 456 * If mount by non-root, then verify that user has necessary 457 * permissions on the device. 458 */ 459 accmode = VREAD; 460 if ((mp->mnt_flag & MNT_RDONLY) == 0) 461 accmode |= VWRITE; 462 error = VOP_ACCESS(ndp.ni_vp, accmode, td->td_ucred, td); 463 if (error) 464 error = priv_check(td, PRIV_VFS_MOUNT_PERM); 465 if (error) { 466 vput(ndp.ni_vp); 467 return (error); 468 } 469 470 /* 471 * New mount 472 * 473 * We need the name for the mount point (also used for 474 * "last mounted on") copied in. If an error occurs, 475 * the mount point is discarded by the upper level code. 476 * Note that vfs_mount_alloc() populates f_mntonname for us. 477 */ 478 if ((mp->mnt_flag & MNT_UPDATE) == 0) { 479 if ((error = ffs_mountfs(ndp.ni_vp, mp, td)) != 0) { 480 vrele(ndp.ni_vp); 481 return (error); 482 } 483 } else { 484 /* 485 * When updating, check whether changing from read-only to 486 * read/write; if there is no device name, that's all we do. 487 */ 488 ump = VFSTOUFS(mp); 489 fs = ump->um_fs; 490 odevvp = ump->um_odevvp; 491 devvp = ump->um_devvp; 492 493 /* 494 * If it's not the same vnode, or at least the same device 495 * then it's not correct. 496 */ 497 if (ndp.ni_vp->v_rdev != ump->um_odevvp->v_rdev) 498 error = EINVAL; /* needs translation */ 499 vput(ndp.ni_vp); 500 if (error) 501 return (error); 502 if (fs->fs_ronly == 0 && 503 vfs_flagopt(mp->mnt_optnew, "ro", NULL, 0)) { 504 /* 505 * Flush any dirty data and suspend filesystem. 506 */ 507 if ((error = vn_start_write(NULL, &mp, V_WAIT)) != 0) 508 return (error); 509 error = vfs_write_suspend_umnt(mp); 510 if (error != 0) 511 return (error); 512 513 fs->fs_ronly = 1; 514 if (MOUNTEDSOFTDEP(mp)) { 515 MNT_ILOCK(mp); 516 mp->mnt_flag &= ~MNT_SOFTDEP; 517 MNT_IUNLOCK(mp); 518 mounted_softdep = true; 519 } else 520 mounted_softdep = false; 521 522 /* 523 * Check for and optionally get rid of files open 524 * for writing. 525 */ 526 flags = WRITECLOSE; 527 if (mp->mnt_flag & MNT_FORCE) 528 flags |= FORCECLOSE; 529 if (mounted_softdep) { 530 error = softdep_flushfiles(mp, flags, td); 531 } else { 532 error = ffs_flushfiles(mp, flags, td); 533 } 534 if (error) { 535 fs->fs_ronly = 0; 536 if (mounted_softdep) { 537 MNT_ILOCK(mp); 538 mp->mnt_flag |= MNT_SOFTDEP; 539 MNT_IUNLOCK(mp); 540 } 541 vfs_write_resume(mp, 0); 542 return (error); 543 } 544 545 if (fs->fs_pendingblocks != 0 || 546 fs->fs_pendinginodes != 0) { 547 printf("WARNING: %s Update error: blocks %jd " 548 "files %d\n", fs->fs_fsmnt, 549 (intmax_t)fs->fs_pendingblocks, 550 fs->fs_pendinginodes); 551 fs->fs_pendingblocks = 0; 552 fs->fs_pendinginodes = 0; 553 } 554 if ((fs->fs_flags & (FS_UNCLEAN | FS_NEEDSFSCK)) == 0) 555 fs->fs_clean = 1; 556 if ((error = ffs_sbupdate(ump, MNT_WAIT, 0)) != 0) { 557 fs->fs_ronly = 0; 558 fs->fs_clean = 0; 559 if (mounted_softdep) { 560 MNT_ILOCK(mp); 561 mp->mnt_flag |= MNT_SOFTDEP; 562 MNT_IUNLOCK(mp); 563 } 564 vfs_write_resume(mp, 0); 565 return (error); 566 } 567 if (mounted_softdep) 568 softdep_unmount(mp); 569 g_topology_lock(); 570 /* 571 * Drop our write and exclusive access. 572 */ 573 g_access(ump->um_cp, 0, -1, -1); 574 g_topology_unlock(); 575 MNT_ILOCK(mp); 576 mp->mnt_flag |= MNT_RDONLY; 577 MNT_IUNLOCK(mp); 578 /* 579 * Allow the writers to note that filesystem 580 * is ro now. 581 */ 582 vfs_write_resume(mp, 0); 583 } 584 if ((mp->mnt_flag & MNT_RELOAD) && 585 (error = ffs_reload(mp, 0)) != 0) 586 return (error); 587 if (fs->fs_ronly && 588 !vfs_flagopt(mp->mnt_optnew, "ro", NULL, 0)) { 589 /* 590 * If upgrade to read-write by non-root, then verify 591 * that user has necessary permissions on the device. 592 */ 593 vn_lock(odevvp, LK_EXCLUSIVE | LK_RETRY); 594 error = VOP_ACCESS(odevvp, VREAD | VWRITE, 595 td->td_ucred, td); 596 if (error) 597 error = priv_check(td, PRIV_VFS_MOUNT_PERM); 598 VOP_UNLOCK(odevvp); 599 if (error) { 600 return (error); 601 } 602 fs->fs_flags &= ~FS_UNCLEAN; 603 if (fs->fs_clean == 0) { 604 fs->fs_flags |= FS_UNCLEAN; 605 if ((mp->mnt_flag & MNT_FORCE) || 606 ((fs->fs_flags & 607 (FS_SUJ | FS_NEEDSFSCK)) == 0 && 608 (fs->fs_flags & FS_DOSOFTDEP))) { 609 printf("WARNING: %s was not properly " 610 "dismounted\n", 611 mp->mnt_stat.f_mntonname); 612 } else { 613 vfs_mount_error(mp, 614 "R/W mount of %s denied. %s.%s", 615 mp->mnt_stat.f_mntonname, 616 "Filesystem is not clean - run fsck", 617 (fs->fs_flags & FS_SUJ) == 0 ? "" : 618 " Forced mount will invalidate" 619 " journal contents"); 620 return (EPERM); 621 } 622 } 623 g_topology_lock(); 624 /* 625 * Request exclusive write access. 626 */ 627 error = g_access(ump->um_cp, 0, 1, 1); 628 g_topology_unlock(); 629 if (error) 630 return (error); 631 if ((error = vn_start_write(NULL, &mp, V_WAIT)) != 0) 632 return (error); 633 error = vfs_write_suspend_umnt(mp); 634 if (error != 0) 635 return (error); 636 fs->fs_ronly = 0; 637 MNT_ILOCK(mp); 638 saved_mnt_flag = MNT_RDONLY; 639 if (MOUNTEDSOFTDEP(mp) && (mp->mnt_flag & 640 MNT_ASYNC) != 0) 641 saved_mnt_flag |= MNT_ASYNC; 642 mp->mnt_flag &= ~saved_mnt_flag; 643 MNT_IUNLOCK(mp); 644 fs->fs_mtime = time_second; 645 /* check to see if we need to start softdep */ 646 if ((fs->fs_flags & FS_DOSOFTDEP) && 647 (error = softdep_mount(devvp, mp, fs, td->td_ucred))){ 648 fs->fs_ronly = 1; 649 MNT_ILOCK(mp); 650 mp->mnt_flag |= saved_mnt_flag; 651 MNT_IUNLOCK(mp); 652 vfs_write_resume(mp, 0); 653 return (error); 654 } 655 fs->fs_clean = 0; 656 if ((error = ffs_sbupdate(ump, MNT_WAIT, 0)) != 0) { 657 fs->fs_ronly = 1; 658 if ((fs->fs_flags & FS_DOSOFTDEP) != 0) 659 softdep_unmount(mp); 660 MNT_ILOCK(mp); 661 mp->mnt_flag |= saved_mnt_flag; 662 MNT_IUNLOCK(mp); 663 vfs_write_resume(mp, 0); 664 return (error); 665 } 666 if (fs->fs_snapinum[0] != 0) 667 ffs_snapshot_mount(mp); 668 vfs_write_resume(mp, 0); 669 } 670 /* 671 * Soft updates is incompatible with "async", 672 * so if we are doing softupdates stop the user 673 * from setting the async flag in an update. 674 * Softdep_mount() clears it in an initial mount 675 * or ro->rw remount. 676 */ 677 if (MOUNTEDSOFTDEP(mp)) { 678 /* XXX: Reset too late ? */ 679 MNT_ILOCK(mp); 680 mp->mnt_flag &= ~MNT_ASYNC; 681 MNT_IUNLOCK(mp); 682 } 683 /* 684 * Keep MNT_ACLS flag if it is stored in superblock. 685 */ 686 if ((fs->fs_flags & FS_ACLS) != 0) { 687 /* XXX: Set too late ? */ 688 MNT_ILOCK(mp); 689 mp->mnt_flag |= MNT_ACLS; 690 MNT_IUNLOCK(mp); 691 } 692 693 if ((fs->fs_flags & FS_NFS4ACLS) != 0) { 694 /* XXX: Set too late ? */ 695 MNT_ILOCK(mp); 696 mp->mnt_flag |= MNT_NFS4ACLS; 697 MNT_IUNLOCK(mp); 698 } 699 700 } 701 702 MNT_ILOCK(mp); 703 /* 704 * This is racy versus lookup, see ufs_fplookup_vexec for details. 705 */ 706 if ((mp->mnt_kern_flag & MNTK_FPLOOKUP) != 0) 707 panic("MNTK_FPLOOKUP set on mount %p when it should not be", mp); 708 if ((mp->mnt_flag & (MNT_ACLS | MNT_NFS4ACLS | MNT_UNION)) == 0) 709 mp->mnt_kern_flag |= MNTK_FPLOOKUP; 710 MNT_IUNLOCK(mp); 711 712 vfs_mountedfrom(mp, fspec); 713 return (0); 714 } 715 716 /* 717 * Compatibility with old mount system call. 718 */ 719 720 static int 721 ffs_cmount(struct mntarg *ma, void *data, uint64_t flags) 722 { 723 struct ufs_args args; 724 int error; 725 726 if (data == NULL) 727 return (EINVAL); 728 error = copyin(data, &args, sizeof args); 729 if (error) 730 return (error); 731 732 ma = mount_argsu(ma, "from", args.fspec, MAXPATHLEN); 733 ma = mount_arg(ma, "export", &args.export, sizeof(args.export)); 734 error = kernel_mount(ma, flags); 735 736 return (error); 737 } 738 739 /* 740 * Reload all incore data for a filesystem (used after running fsck on 741 * the root filesystem and finding things to fix). If the 'force' flag 742 * is 0, the filesystem must be mounted read-only. 743 * 744 * Things to do to update the mount: 745 * 1) invalidate all cached meta-data. 746 * 2) re-read superblock from disk. 747 * 3) re-read summary information from disk. 748 * 4) invalidate all inactive vnodes. 749 * 5) clear MNTK_SUSPEND2 and MNTK_SUSPENDED flags, allowing secondary 750 * writers, if requested. 751 * 6) invalidate all cached file data. 752 * 7) re-read inode data for all active vnodes. 753 */ 754 int 755 ffs_reload(struct mount *mp, int flags) 756 { 757 struct vnode *vp, *mvp, *devvp; 758 struct inode *ip; 759 void *space; 760 struct buf *bp; 761 struct fs *fs, *newfs; 762 struct ufsmount *ump; 763 ufs2_daddr_t sblockloc; 764 int i, blks, error; 765 uint64_t size; 766 int32_t *lp; 767 768 ump = VFSTOUFS(mp); 769 770 MNT_ILOCK(mp); 771 if ((mp->mnt_flag & MNT_RDONLY) == 0 && (flags & FFSR_FORCE) == 0) { 772 MNT_IUNLOCK(mp); 773 return (EINVAL); 774 } 775 MNT_IUNLOCK(mp); 776 777 /* 778 * Step 1: invalidate all cached meta-data. 779 */ 780 devvp = VFSTOUFS(mp)->um_devvp; 781 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY); 782 if (vinvalbuf(devvp, 0, 0, 0) != 0) 783 panic("ffs_reload: dirty1"); 784 VOP_UNLOCK(devvp); 785 786 /* 787 * Step 2: re-read superblock from disk. 788 */ 789 fs = VFSTOUFS(mp)->um_fs; 790 if ((error = bread(devvp, btodb(fs->fs_sblockloc), fs->fs_sbsize, 791 NOCRED, &bp)) != 0) 792 return (error); 793 newfs = (struct fs *)bp->b_data; 794 if ((newfs->fs_magic != FS_UFS1_MAGIC && 795 newfs->fs_magic != FS_UFS2_MAGIC) || 796 newfs->fs_bsize > MAXBSIZE || 797 newfs->fs_bsize < sizeof(struct fs)) { 798 brelse(bp); 799 return (EINTEGRITY); 800 } 801 /* 802 * Preserve the summary information, read-only status, and 803 * superblock location by copying these fields into our new 804 * superblock before using it to update the existing superblock. 805 */ 806 newfs->fs_si = fs->fs_si; 807 newfs->fs_ronly = fs->fs_ronly; 808 sblockloc = fs->fs_sblockloc; 809 bcopy(newfs, fs, (uint64_t)fs->fs_sbsize); 810 brelse(bp); 811 ump->um_bsize = fs->fs_bsize; 812 ump->um_maxsymlinklen = fs->fs_maxsymlinklen; 813 ffs_oldfscompat_read(fs, VFSTOUFS(mp), sblockloc); 814 UFS_LOCK(ump); 815 if (fs->fs_pendingblocks != 0 || fs->fs_pendinginodes != 0) { 816 printf("WARNING: %s: reload pending error: blocks %jd " 817 "files %d\n", mp->mnt_stat.f_mntonname, 818 (intmax_t)fs->fs_pendingblocks, fs->fs_pendinginodes); 819 fs->fs_pendingblocks = 0; 820 fs->fs_pendinginodes = 0; 821 } 822 UFS_UNLOCK(ump); 823 824 /* 825 * Step 3: re-read summary information from disk. 826 */ 827 size = fs->fs_cssize; 828 blks = howmany(size, fs->fs_fsize); 829 if (fs->fs_contigsumsize > 0) 830 size += fs->fs_ncg * sizeof(int32_t); 831 size += fs->fs_ncg * sizeof(uint8_t); 832 free(fs->fs_csp, M_UFSMNT); 833 space = malloc(size, M_UFSMNT, M_WAITOK); 834 fs->fs_csp = space; 835 for (i = 0; i < blks; i += fs->fs_frag) { 836 size = fs->fs_bsize; 837 if (i + fs->fs_frag > blks) 838 size = (blks - i) * fs->fs_fsize; 839 error = bread(devvp, fsbtodb(fs, fs->fs_csaddr + i), size, 840 NOCRED, &bp); 841 if (error) 842 return (error); 843 bcopy(bp->b_data, space, (uint64_t)size); 844 space = (char *)space + size; 845 brelse(bp); 846 } 847 /* 848 * We no longer know anything about clusters per cylinder group. 849 */ 850 if (fs->fs_contigsumsize > 0) { 851 fs->fs_maxcluster = lp = space; 852 for (i = 0; i < fs->fs_ncg; i++) 853 *lp++ = fs->fs_contigsumsize; 854 space = lp; 855 } 856 size = fs->fs_ncg * sizeof(uint8_t); 857 fs->fs_contigdirs = (uint8_t *)space; 858 bzero(fs->fs_contigdirs, size); 859 if ((flags & FFSR_UNSUSPEND) != 0) { 860 MNT_ILOCK(mp); 861 mp->mnt_kern_flag &= ~(MNTK_SUSPENDED | MNTK_SUSPEND2); 862 wakeup(&mp->mnt_flag); 863 MNT_IUNLOCK(mp); 864 } 865 866 loop: 867 MNT_VNODE_FOREACH_ALL(vp, mp, mvp) { 868 /* 869 * Skip syncer vnode. 870 */ 871 if (vp->v_type == VNON) { 872 VI_UNLOCK(vp); 873 continue; 874 } 875 /* 876 * Step 4: invalidate all cached file data. 877 */ 878 if (vget(vp, LK_EXCLUSIVE | LK_INTERLOCK)) { 879 MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp); 880 goto loop; 881 } 882 if (vinvalbuf(vp, 0, 0, 0)) 883 panic("ffs_reload: dirty2"); 884 /* 885 * Step 5: re-read inode data for all active vnodes. 886 */ 887 ip = VTOI(vp); 888 error = 889 bread(devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)), 890 (int)fs->fs_bsize, NOCRED, &bp); 891 if (error) { 892 vput(vp); 893 MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp); 894 return (error); 895 } 896 if ((error = ffs_load_inode(bp, ip, fs, ip->i_number)) != 0) { 897 brelse(bp); 898 vput(vp); 899 MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp); 900 return (error); 901 } 902 ip->i_effnlink = ip->i_nlink; 903 brelse(bp); 904 vput(vp); 905 } 906 return (0); 907 } 908 909 /* 910 * Common code for mount and mountroot 911 */ 912 static int 913 ffs_mountfs(struct vnode *odevvp, struct mount *mp, struct thread *td) 914 { 915 struct ufsmount *ump; 916 struct fs *fs; 917 struct cdev *dev; 918 int error, i, len, ronly; 919 struct ucred *cred; 920 struct g_consumer *cp; 921 struct mount *nmp; 922 struct vnode *devvp; 923 int candelete, canspeedup; 924 925 fs = NULL; 926 ump = NULL; 927 cred = td ? td->td_ucred : NOCRED; 928 ronly = (mp->mnt_flag & MNT_RDONLY) != 0; 929 930 devvp = mntfs_allocvp(mp, odevvp); 931 KASSERT(devvp->v_type == VCHR, ("reclaimed devvp")); 932 dev = devvp->v_rdev; 933 KASSERT(dev->si_snapdata == NULL, ("non-NULL snapshot data")); 934 if (atomic_cmpset_acq_ptr((uintptr_t *)&dev->si_mountpt, 0, 935 (uintptr_t)mp) == 0) { 936 mntfs_freevp(devvp); 937 return (EBUSY); 938 } 939 g_topology_lock(); 940 error = g_vfs_open(devvp, &cp, "ffs", ronly ? 0 : 1); 941 g_topology_unlock(); 942 if (error != 0) { 943 atomic_store_rel_ptr((uintptr_t *)&dev->si_mountpt, 0); 944 mntfs_freevp(devvp); 945 return (error); 946 } 947 dev_ref(dev); 948 devvp->v_bufobj.bo_ops = &ffs_ops; 949 BO_LOCK(&odevvp->v_bufobj); 950 odevvp->v_bufobj.bo_flag |= BO_NOBUFS; 951 BO_UNLOCK(&odevvp->v_bufobj); 952 VOP_UNLOCK(devvp); 953 if (dev->si_iosize_max != 0) 954 mp->mnt_iosize_max = dev->si_iosize_max; 955 if (mp->mnt_iosize_max > maxphys) 956 mp->mnt_iosize_max = maxphys; 957 if ((SBLOCKSIZE % cp->provider->sectorsize) != 0) { 958 error = EINVAL; 959 vfs_mount_error(mp, 960 "Invalid sectorsize %d for superblock size %d", 961 cp->provider->sectorsize, SBLOCKSIZE); 962 goto out; 963 } 964 /* fetch the superblock and summary information */ 965 if ((mp->mnt_flag & (MNT_ROOTFS | MNT_FORCE)) != 0) 966 error = ffs_sbsearch(devvp, &fs, 0, M_UFSMNT, ffs_use_bread); 967 else 968 error = ffs_sbget(devvp, &fs, UFS_STDSB, 0, M_UFSMNT, 969 ffs_use_bread); 970 if (error != 0) 971 goto out; 972 fs->fs_flags &= ~FS_UNCLEAN; 973 if (fs->fs_clean == 0) { 974 fs->fs_flags |= FS_UNCLEAN; 975 if (ronly || (mp->mnt_flag & MNT_FORCE) || 976 ((fs->fs_flags & (FS_SUJ | FS_NEEDSFSCK)) == 0 && 977 (fs->fs_flags & FS_DOSOFTDEP))) { 978 printf("WARNING: %s was not properly dismounted\n", 979 mp->mnt_stat.f_mntonname); 980 } else { 981 vfs_mount_error(mp, "R/W mount on %s denied. " 982 "Filesystem is not clean - run fsck.%s", 983 mp->mnt_stat.f_mntonname, 984 (fs->fs_flags & FS_SUJ) == 0 ? "" : 985 " Forced mount will invalidate journal contents"); 986 error = EPERM; 987 goto out; 988 } 989 if ((fs->fs_pendingblocks != 0 || fs->fs_pendinginodes != 0) && 990 (mp->mnt_flag & MNT_FORCE)) { 991 printf("WARNING: %s: lost blocks %jd files %d\n", 992 mp->mnt_stat.f_mntonname, 993 (intmax_t)fs->fs_pendingblocks, 994 fs->fs_pendinginodes); 995 fs->fs_pendingblocks = 0; 996 fs->fs_pendinginodes = 0; 997 } 998 } 999 if (fs->fs_pendingblocks != 0 || fs->fs_pendinginodes != 0) { 1000 printf("WARNING: %s: mount pending error: blocks %jd " 1001 "files %d\n", mp->mnt_stat.f_mntonname, 1002 (intmax_t)fs->fs_pendingblocks, fs->fs_pendinginodes); 1003 fs->fs_pendingblocks = 0; 1004 fs->fs_pendinginodes = 0; 1005 } 1006 if ((fs->fs_flags & FS_GJOURNAL) != 0) { 1007 #ifdef UFS_GJOURNAL 1008 /* 1009 * Get journal provider name. 1010 */ 1011 len = 1024; 1012 mp->mnt_gjprovider = malloc((uint64_t)len, M_UFSMNT, M_WAITOK); 1013 if (g_io_getattr("GJOURNAL::provider", cp, &len, 1014 mp->mnt_gjprovider) == 0) { 1015 mp->mnt_gjprovider = realloc(mp->mnt_gjprovider, len, 1016 M_UFSMNT, M_WAITOK); 1017 MNT_ILOCK(mp); 1018 mp->mnt_flag |= MNT_GJOURNAL; 1019 MNT_IUNLOCK(mp); 1020 } else { 1021 if ((mp->mnt_flag & MNT_RDONLY) == 0) 1022 printf("WARNING: %s: GJOURNAL flag on fs " 1023 "but no gjournal provider below\n", 1024 mp->mnt_stat.f_mntonname); 1025 free(mp->mnt_gjprovider, M_UFSMNT); 1026 mp->mnt_gjprovider = NULL; 1027 } 1028 #else 1029 printf("WARNING: %s: GJOURNAL flag on fs but no " 1030 "UFS_GJOURNAL support\n", mp->mnt_stat.f_mntonname); 1031 #endif 1032 } else { 1033 mp->mnt_gjprovider = NULL; 1034 } 1035 ump = malloc(sizeof *ump, M_UFSMNT, M_WAITOK | M_ZERO); 1036 ump->um_cp = cp; 1037 ump->um_bo = &devvp->v_bufobj; 1038 ump->um_fs = fs; 1039 if (fs->fs_magic == FS_UFS1_MAGIC) { 1040 ump->um_fstype = UFS1; 1041 ump->um_balloc = ffs_balloc_ufs1; 1042 } else { 1043 ump->um_fstype = UFS2; 1044 ump->um_balloc = ffs_balloc_ufs2; 1045 } 1046 ump->um_blkatoff = ffs_blkatoff; 1047 ump->um_truncate = ffs_truncate; 1048 ump->um_update = ffs_update; 1049 ump->um_valloc = ffs_valloc; 1050 ump->um_vfree = ffs_vfree; 1051 ump->um_ifree = ffs_ifree; 1052 ump->um_rdonly = ffs_rdonly; 1053 ump->um_snapgone = ffs_snapgone; 1054 if ((mp->mnt_flag & MNT_UNTRUSTED) != 0) 1055 ump->um_check_blkno = ffs_check_blkno; 1056 else 1057 ump->um_check_blkno = NULL; 1058 mtx_init(UFS_MTX(ump), "FFS", "FFS Lock", MTX_DEF); 1059 sx_init(&ump->um_checkpath_lock, "uchpth"); 1060 ffs_oldfscompat_read(fs, ump, fs->fs_sblockloc); 1061 fs->fs_ronly = ronly; 1062 fs->fs_active = NULL; 1063 mp->mnt_data = ump; 1064 mp->mnt_stat.f_fsid.val[0] = fs->fs_id[0]; 1065 mp->mnt_stat.f_fsid.val[1] = fs->fs_id[1]; 1066 nmp = NULL; 1067 if (fs->fs_id[0] == 0 || fs->fs_id[1] == 0 || 1068 (nmp = vfs_getvfs(&mp->mnt_stat.f_fsid))) { 1069 if (nmp) 1070 vfs_rel(nmp); 1071 vfs_getnewfsid(mp); 1072 } 1073 ump->um_bsize = fs->fs_bsize; 1074 ump->um_maxsymlinklen = fs->fs_maxsymlinklen; 1075 MNT_ILOCK(mp); 1076 mp->mnt_flag |= MNT_LOCAL; 1077 MNT_IUNLOCK(mp); 1078 if ((fs->fs_flags & FS_MULTILABEL) != 0) { 1079 #ifdef MAC 1080 MNT_ILOCK(mp); 1081 mp->mnt_flag |= MNT_MULTILABEL; 1082 MNT_IUNLOCK(mp); 1083 #else 1084 printf("WARNING: %s: multilabel flag on fs but " 1085 "no MAC support\n", mp->mnt_stat.f_mntonname); 1086 #endif 1087 } 1088 if ((fs->fs_flags & FS_ACLS) != 0) { 1089 #ifdef UFS_ACL 1090 MNT_ILOCK(mp); 1091 1092 if (mp->mnt_flag & MNT_NFS4ACLS) 1093 printf("WARNING: %s: ACLs flag on fs conflicts with " 1094 "\"nfsv4acls\" mount option; option ignored\n", 1095 mp->mnt_stat.f_mntonname); 1096 mp->mnt_flag &= ~MNT_NFS4ACLS; 1097 mp->mnt_flag |= MNT_ACLS; 1098 1099 MNT_IUNLOCK(mp); 1100 #else 1101 printf("WARNING: %s: ACLs flag on fs but no ACLs support\n", 1102 mp->mnt_stat.f_mntonname); 1103 #endif 1104 } 1105 if ((fs->fs_flags & FS_NFS4ACLS) != 0) { 1106 #ifdef UFS_ACL 1107 MNT_ILOCK(mp); 1108 1109 if (mp->mnt_flag & MNT_ACLS) 1110 printf("WARNING: %s: NFSv4 ACLs flag on fs conflicts " 1111 "with \"acls\" mount option; option ignored\n", 1112 mp->mnt_stat.f_mntonname); 1113 mp->mnt_flag &= ~MNT_ACLS; 1114 mp->mnt_flag |= MNT_NFS4ACLS; 1115 1116 MNT_IUNLOCK(mp); 1117 #else 1118 printf("WARNING: %s: NFSv4 ACLs flag on fs but no " 1119 "ACLs support\n", mp->mnt_stat.f_mntonname); 1120 #endif 1121 } 1122 if ((fs->fs_flags & FS_TRIM) != 0) { 1123 len = sizeof(int); 1124 if (g_io_getattr("GEOM::candelete", cp, &len, 1125 &candelete) == 0) { 1126 if (candelete) 1127 ump->um_flags |= UM_CANDELETE; 1128 else 1129 printf("WARNING: %s: TRIM flag on fs but disk " 1130 "does not support TRIM\n", 1131 mp->mnt_stat.f_mntonname); 1132 } else { 1133 printf("WARNING: %s: TRIM flag on fs but disk does " 1134 "not confirm that it supports TRIM\n", 1135 mp->mnt_stat.f_mntonname); 1136 } 1137 if (((ump->um_flags) & UM_CANDELETE) != 0) { 1138 ump->um_trim_tq = taskqueue_create("trim", M_WAITOK, 1139 taskqueue_thread_enqueue, &ump->um_trim_tq); 1140 taskqueue_start_threads(&ump->um_trim_tq, 1, PVFS, 1141 "%s trim", mp->mnt_stat.f_mntonname); 1142 ump->um_trimhash = hashinit(MAXTRIMIO, M_TRIM, 1143 &ump->um_trimlisthashsize); 1144 } 1145 } 1146 1147 len = sizeof(int); 1148 if (g_io_getattr("GEOM::canspeedup", cp, &len, &canspeedup) == 0) { 1149 if (canspeedup) 1150 ump->um_flags |= UM_CANSPEEDUP; 1151 } 1152 1153 ump->um_mountp = mp; 1154 ump->um_dev = dev; 1155 ump->um_devvp = devvp; 1156 ump->um_odevvp = odevvp; 1157 ump->um_nindir = fs->fs_nindir; 1158 ump->um_bptrtodb = fs->fs_fsbtodb; 1159 ump->um_seqinc = fs->fs_frag; 1160 for (i = 0; i < MAXQUOTAS; i++) 1161 ump->um_quotas[i] = NULLVP; 1162 #ifdef UFS_EXTATTR 1163 ufs_extattr_uepm_init(&ump->um_extattr); 1164 #endif 1165 /* 1166 * Set FS local "last mounted on" information (NULL pad) 1167 */ 1168 bzero(fs->fs_fsmnt, MAXMNTLEN); 1169 strlcpy(fs->fs_fsmnt, mp->mnt_stat.f_mntonname, MAXMNTLEN); 1170 mp->mnt_stat.f_iosize = fs->fs_bsize; 1171 1172 if (mp->mnt_flag & MNT_ROOTFS) { 1173 /* 1174 * Root mount; update timestamp in mount structure. 1175 * this will be used by the common root mount code 1176 * to update the system clock. 1177 */ 1178 mp->mnt_time = fs->fs_time; 1179 } 1180 1181 if (ronly == 0) { 1182 fs->fs_mtime = time_second; 1183 if ((fs->fs_flags & FS_DOSOFTDEP) && 1184 (error = softdep_mount(devvp, mp, fs, cred)) != 0) { 1185 ffs_flushfiles(mp, FORCECLOSE, td); 1186 goto out; 1187 } 1188 if (fs->fs_snapinum[0] != 0) 1189 ffs_snapshot_mount(mp); 1190 fs->fs_fmod = 1; 1191 fs->fs_clean = 0; 1192 (void) ffs_sbupdate(ump, MNT_WAIT, 0); 1193 } 1194 /* 1195 * Initialize filesystem state information in mount struct. 1196 */ 1197 MNT_ILOCK(mp); 1198 mp->mnt_kern_flag |= MNTK_LOOKUP_SHARED | MNTK_EXTENDED_SHARED | 1199 MNTK_NO_IOPF | MNTK_UNMAPPED_BUFS | MNTK_USES_BCACHE; 1200 MNT_IUNLOCK(mp); 1201 #ifdef UFS_EXTATTR 1202 #ifdef UFS_EXTATTR_AUTOSTART 1203 /* 1204 * 1205 * Auto-starting does the following: 1206 * - check for /.attribute in the fs, and extattr_start if so 1207 * - for each file in .attribute, enable that file with 1208 * an attribute of the same name. 1209 * Not clear how to report errors -- probably eat them. 1210 * This would all happen while the filesystem was busy/not 1211 * available, so would effectively be "atomic". 1212 */ 1213 (void) ufs_extattr_autostart(mp, td); 1214 #endif /* !UFS_EXTATTR_AUTOSTART */ 1215 #endif /* !UFS_EXTATTR */ 1216 return (0); 1217 out: 1218 if (fs != NULL) { 1219 free(fs->fs_csp, M_UFSMNT); 1220 free(fs->fs_si, M_UFSMNT); 1221 free(fs, M_UFSMNT); 1222 } 1223 if (cp != NULL) { 1224 g_topology_lock(); 1225 g_vfs_close(cp); 1226 g_topology_unlock(); 1227 } 1228 if (ump != NULL) { 1229 mtx_destroy(UFS_MTX(ump)); 1230 sx_destroy(&ump->um_checkpath_lock); 1231 if (mp->mnt_gjprovider != NULL) { 1232 free(mp->mnt_gjprovider, M_UFSMNT); 1233 mp->mnt_gjprovider = NULL; 1234 } 1235 MPASS(ump->um_softdep == NULL); 1236 free(ump, M_UFSMNT); 1237 mp->mnt_data = NULL; 1238 } 1239 BO_LOCK(&odevvp->v_bufobj); 1240 odevvp->v_bufobj.bo_flag &= ~BO_NOBUFS; 1241 BO_UNLOCK(&odevvp->v_bufobj); 1242 atomic_store_rel_ptr((uintptr_t *)&dev->si_mountpt, 0); 1243 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY); 1244 mntfs_freevp(devvp); 1245 dev_rel(dev); 1246 return (error); 1247 } 1248 1249 /* 1250 * A read function for use by filesystem-layer routines. 1251 */ 1252 static int 1253 ffs_use_bread(void *devfd, off_t loc, void **bufp, int size) 1254 { 1255 struct buf *bp; 1256 int error; 1257 1258 KASSERT(*bufp == NULL, ("ffs_use_bread: non-NULL *bufp %p\n", *bufp)); 1259 *bufp = malloc(size, M_UFSMNT, M_WAITOK); 1260 if ((error = bread((struct vnode *)devfd, btodb(loc), size, NOCRED, 1261 &bp)) != 0) 1262 return (error); 1263 bcopy(bp->b_data, *bufp, size); 1264 bp->b_flags |= B_INVAL | B_NOCACHE; 1265 brelse(bp); 1266 return (0); 1267 } 1268 1269 static int bigcgs = 0; 1270 SYSCTL_INT(_debug, OID_AUTO, bigcgs, CTLFLAG_RW, &bigcgs, 0, ""); 1271 1272 /* 1273 * Sanity checks for loading old filesystem superblocks. 1274 * See ffs_oldfscompat_write below for unwound actions. 1275 * 1276 * XXX - Parts get retired eventually. 1277 * Unfortunately new bits get added. 1278 */ 1279 static void 1280 ffs_oldfscompat_read(struct fs *fs, 1281 struct ufsmount *ump, 1282 ufs2_daddr_t sblockloc) 1283 { 1284 off_t maxfilesize; 1285 1286 /* 1287 * If not yet done, update fs_flags location and value of fs_sblockloc. 1288 */ 1289 if ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0) { 1290 fs->fs_flags = fs->fs_old_flags; 1291 fs->fs_old_flags |= FS_FLAGS_UPDATED; 1292 fs->fs_sblockloc = sblockloc; 1293 } 1294 /* 1295 * If not yet done, update UFS1 superblock with new wider fields. 1296 */ 1297 if (fs->fs_magic == FS_UFS1_MAGIC && fs->fs_maxbsize != fs->fs_bsize) { 1298 fs->fs_maxbsize = fs->fs_bsize; 1299 fs->fs_time = fs->fs_old_time; 1300 fs->fs_size = fs->fs_old_size; 1301 fs->fs_dsize = fs->fs_old_dsize; 1302 fs->fs_csaddr = fs->fs_old_csaddr; 1303 fs->fs_cstotal.cs_ndir = fs->fs_old_cstotal.cs_ndir; 1304 fs->fs_cstotal.cs_nbfree = fs->fs_old_cstotal.cs_nbfree; 1305 fs->fs_cstotal.cs_nifree = fs->fs_old_cstotal.cs_nifree; 1306 fs->fs_cstotal.cs_nffree = fs->fs_old_cstotal.cs_nffree; 1307 } 1308 if (fs->fs_magic == FS_UFS1_MAGIC && 1309 fs->fs_old_inodefmt < FS_44INODEFMT) { 1310 fs->fs_maxfilesize = ((uint64_t)1 << 31) - 1; 1311 fs->fs_qbmask = ~fs->fs_bmask; 1312 fs->fs_qfmask = ~fs->fs_fmask; 1313 } 1314 if (fs->fs_magic == FS_UFS1_MAGIC) { 1315 ump->um_savedmaxfilesize = fs->fs_maxfilesize; 1316 maxfilesize = (uint64_t)0x80000000 * fs->fs_bsize - 1; 1317 if (fs->fs_maxfilesize > maxfilesize) 1318 fs->fs_maxfilesize = maxfilesize; 1319 } 1320 /* Compatibility for old filesystems */ 1321 if (fs->fs_avgfilesize <= 0) 1322 fs->fs_avgfilesize = AVFILESIZ; 1323 if (fs->fs_avgfpdir <= 0) 1324 fs->fs_avgfpdir = AFPDIR; 1325 if (bigcgs) { 1326 fs->fs_save_cgsize = fs->fs_cgsize; 1327 fs->fs_cgsize = fs->fs_bsize; 1328 } 1329 } 1330 1331 /* 1332 * Unwinding superblock updates for old filesystems. 1333 * See ffs_oldfscompat_read above for details. 1334 * 1335 * XXX - Parts get retired eventually. 1336 * Unfortunately new bits get added. 1337 */ 1338 void 1339 ffs_oldfscompat_write(struct fs *fs, struct ufsmount *ump) 1340 { 1341 1342 /* 1343 * Copy back UFS2 updated fields that UFS1 inspects. 1344 */ 1345 if (fs->fs_magic == FS_UFS1_MAGIC) { 1346 fs->fs_old_time = fs->fs_time; 1347 fs->fs_old_cstotal.cs_ndir = fs->fs_cstotal.cs_ndir; 1348 fs->fs_old_cstotal.cs_nbfree = fs->fs_cstotal.cs_nbfree; 1349 fs->fs_old_cstotal.cs_nifree = fs->fs_cstotal.cs_nifree; 1350 fs->fs_old_cstotal.cs_nffree = fs->fs_cstotal.cs_nffree; 1351 fs->fs_maxfilesize = ump->um_savedmaxfilesize; 1352 } 1353 if (bigcgs) { 1354 fs->fs_cgsize = fs->fs_save_cgsize; 1355 fs->fs_save_cgsize = 0; 1356 } 1357 } 1358 1359 /* 1360 * unmount system call 1361 */ 1362 static int 1363 ffs_unmount(struct mount *mp, int mntflags) 1364 { 1365 struct thread *td; 1366 struct ufsmount *ump = VFSTOUFS(mp); 1367 struct fs *fs; 1368 int error, flags, susp; 1369 #ifdef UFS_EXTATTR 1370 int e_restart; 1371 #endif 1372 1373 flags = 0; 1374 td = curthread; 1375 fs = ump->um_fs; 1376 if (mntflags & MNT_FORCE) 1377 flags |= FORCECLOSE; 1378 susp = fs->fs_ronly == 0; 1379 #ifdef UFS_EXTATTR 1380 if ((error = ufs_extattr_stop(mp, td))) { 1381 if (error != EOPNOTSUPP) 1382 printf("WARNING: unmount %s: ufs_extattr_stop " 1383 "returned errno %d\n", mp->mnt_stat.f_mntonname, 1384 error); 1385 e_restart = 0; 1386 } else { 1387 ufs_extattr_uepm_destroy(&ump->um_extattr); 1388 e_restart = 1; 1389 } 1390 #endif 1391 if (susp) { 1392 error = vfs_write_suspend_umnt(mp); 1393 if (error != 0) 1394 goto fail1; 1395 } 1396 if (MOUNTEDSOFTDEP(mp)) 1397 error = softdep_flushfiles(mp, flags, td); 1398 else 1399 error = ffs_flushfiles(mp, flags, td); 1400 if (error != 0 && !ffs_fsfail_cleanup(ump, error)) 1401 goto fail; 1402 1403 UFS_LOCK(ump); 1404 if (fs->fs_pendingblocks != 0 || fs->fs_pendinginodes != 0) { 1405 printf("WARNING: unmount %s: pending error: blocks %jd " 1406 "files %d\n", fs->fs_fsmnt, (intmax_t)fs->fs_pendingblocks, 1407 fs->fs_pendinginodes); 1408 fs->fs_pendingblocks = 0; 1409 fs->fs_pendinginodes = 0; 1410 } 1411 UFS_UNLOCK(ump); 1412 if (MOUNTEDSOFTDEP(mp)) 1413 softdep_unmount(mp); 1414 MPASS(ump->um_softdep == NULL); 1415 if (fs->fs_ronly == 0) { 1416 fs->fs_clean = fs->fs_flags & (FS_UNCLEAN|FS_NEEDSFSCK) ? 0 : 1; 1417 error = ffs_sbupdate(ump, MNT_WAIT, 0); 1418 if (ffs_fsfail_cleanup(ump, error)) 1419 error = 0; 1420 if (error != 0 && !ffs_fsfail_cleanup(ump, error)) { 1421 fs->fs_clean = 0; 1422 goto fail; 1423 } 1424 } 1425 if (susp) 1426 vfs_write_resume(mp, VR_START_WRITE); 1427 if (ump->um_trim_tq != NULL) { 1428 MPASS(ump->um_trim_inflight == 0); 1429 taskqueue_free(ump->um_trim_tq); 1430 free (ump->um_trimhash, M_TRIM); 1431 } 1432 vn_lock(ump->um_devvp, LK_EXCLUSIVE | LK_RETRY); 1433 g_topology_lock(); 1434 g_vfs_close(ump->um_cp); 1435 g_topology_unlock(); 1436 BO_LOCK(&ump->um_odevvp->v_bufobj); 1437 ump->um_odevvp->v_bufobj.bo_flag &= ~BO_NOBUFS; 1438 BO_UNLOCK(&ump->um_odevvp->v_bufobj); 1439 atomic_store_rel_ptr((uintptr_t *)&ump->um_dev->si_mountpt, 0); 1440 mntfs_freevp(ump->um_devvp); 1441 vrele(ump->um_odevvp); 1442 dev_rel(ump->um_dev); 1443 mtx_destroy(UFS_MTX(ump)); 1444 sx_destroy(&ump->um_checkpath_lock); 1445 if (mp->mnt_gjprovider != NULL) { 1446 free(mp->mnt_gjprovider, M_UFSMNT); 1447 mp->mnt_gjprovider = NULL; 1448 } 1449 free(fs->fs_csp, M_UFSMNT); 1450 free(fs->fs_si, M_UFSMNT); 1451 free(fs, M_UFSMNT); 1452 free(ump, M_UFSMNT); 1453 mp->mnt_data = NULL; 1454 if (td->td_su == mp) { 1455 td->td_su = NULL; 1456 vfs_rel(mp); 1457 } 1458 return (error); 1459 1460 fail: 1461 if (susp) 1462 vfs_write_resume(mp, VR_START_WRITE); 1463 fail1: 1464 #ifdef UFS_EXTATTR 1465 if (e_restart) { 1466 ufs_extattr_uepm_init(&ump->um_extattr); 1467 #ifdef UFS_EXTATTR_AUTOSTART 1468 (void) ufs_extattr_autostart(mp, td); 1469 #endif 1470 } 1471 #endif 1472 1473 return (error); 1474 } 1475 1476 /* 1477 * Flush out all the files in a filesystem. 1478 */ 1479 int 1480 ffs_flushfiles(struct mount *mp, int flags, struct thread *td) 1481 { 1482 struct ufsmount *ump; 1483 int qerror, error; 1484 1485 ump = VFSTOUFS(mp); 1486 qerror = 0; 1487 #ifdef QUOTA 1488 if (mp->mnt_flag & MNT_QUOTA) { 1489 int i; 1490 error = vflush(mp, 0, SKIPSYSTEM|flags, td); 1491 if (error) 1492 return (error); 1493 for (i = 0; i < MAXQUOTAS; i++) { 1494 error = quotaoff(td, mp, i); 1495 if (error != 0) { 1496 if ((flags & EARLYFLUSH) == 0) 1497 return (error); 1498 else 1499 qerror = error; 1500 } 1501 } 1502 1503 /* 1504 * Here we fall through to vflush again to ensure that 1505 * we have gotten rid of all the system vnodes, unless 1506 * quotas must not be closed. 1507 */ 1508 } 1509 #endif 1510 /* devvp is not locked there */ 1511 if (ump->um_devvp->v_vflag & VV_COPYONWRITE) { 1512 if ((error = vflush(mp, 0, SKIPSYSTEM | flags, td)) != 0) 1513 return (error); 1514 ffs_snapshot_unmount(mp); 1515 flags |= FORCECLOSE; 1516 /* 1517 * Here we fall through to vflush again to ensure 1518 * that we have gotten rid of all the system vnodes. 1519 */ 1520 } 1521 1522 /* 1523 * Do not close system files if quotas were not closed, to be 1524 * able to sync the remaining dquots. The freeblks softupdate 1525 * workitems might hold a reference on a dquot, preventing 1526 * quotaoff() from completing. Next round of 1527 * softdep_flushworklist() iteration should process the 1528 * blockers, allowing the next run of quotaoff() to finally 1529 * flush held dquots. 1530 * 1531 * Otherwise, flush all the files. 1532 */ 1533 if (qerror == 0 && (error = vflush(mp, 0, flags, td)) != 0) 1534 return (error); 1535 1536 /* 1537 * If this is a forcible unmount and there were any files that 1538 * were unlinked but still open, then vflush() will have 1539 * truncated and freed those files, which might have started 1540 * some trim work. Wait here for any trims to complete 1541 * and process the blkfrees which follow the trims. 1542 * This may create more dirty devvp buffers and softdep deps. 1543 */ 1544 if (ump->um_trim_tq != NULL) { 1545 while (ump->um_trim_inflight != 0) 1546 pause("ufsutr", hz); 1547 taskqueue_drain_all(ump->um_trim_tq); 1548 } 1549 1550 /* 1551 * Flush filesystem metadata. 1552 */ 1553 vn_lock(ump->um_devvp, LK_EXCLUSIVE | LK_RETRY); 1554 error = VOP_FSYNC(ump->um_devvp, MNT_WAIT, td); 1555 VOP_UNLOCK(ump->um_devvp); 1556 return (error); 1557 } 1558 1559 /* 1560 * Get filesystem statistics. 1561 */ 1562 static int 1563 ffs_statfs(struct mount *mp, struct statfs *sbp) 1564 { 1565 struct ufsmount *ump; 1566 struct fs *fs; 1567 1568 ump = VFSTOUFS(mp); 1569 fs = ump->um_fs; 1570 if (fs->fs_magic != FS_UFS1_MAGIC && fs->fs_magic != FS_UFS2_MAGIC) 1571 panic("ffs_statfs"); 1572 sbp->f_version = STATFS_VERSION; 1573 sbp->f_bsize = fs->fs_fsize; 1574 sbp->f_iosize = fs->fs_bsize; 1575 sbp->f_blocks = fs->fs_dsize; 1576 UFS_LOCK(ump); 1577 sbp->f_bfree = fs->fs_cstotal.cs_nbfree * fs->fs_frag + 1578 fs->fs_cstotal.cs_nffree + dbtofsb(fs, fs->fs_pendingblocks); 1579 sbp->f_bavail = freespace(fs, fs->fs_minfree) + 1580 dbtofsb(fs, fs->fs_pendingblocks); 1581 sbp->f_files = fs->fs_ncg * fs->fs_ipg - UFS_ROOTINO; 1582 sbp->f_ffree = fs->fs_cstotal.cs_nifree + fs->fs_pendinginodes; 1583 UFS_UNLOCK(ump); 1584 sbp->f_namemax = UFS_MAXNAMLEN; 1585 return (0); 1586 } 1587 1588 static bool 1589 sync_doupdate(struct inode *ip) 1590 { 1591 1592 return ((ip->i_flag & (IN_ACCESS | IN_CHANGE | IN_MODIFIED | 1593 IN_UPDATE)) != 0); 1594 } 1595 1596 static int 1597 ffs_sync_lazy_filter(struct vnode *vp, void *arg __unused) 1598 { 1599 struct inode *ip; 1600 1601 /* 1602 * Flags are safe to access because ->v_data invalidation 1603 * is held off by listmtx. 1604 */ 1605 if (vp->v_type == VNON) 1606 return (false); 1607 ip = VTOI(vp); 1608 if (!sync_doupdate(ip) && (vp->v_iflag & VI_OWEINACT) == 0) 1609 return (false); 1610 return (true); 1611 } 1612 1613 /* 1614 * For a lazy sync, we only care about access times, quotas and the 1615 * superblock. Other filesystem changes are already converted to 1616 * cylinder group blocks or inode blocks updates and are written to 1617 * disk by syncer. 1618 */ 1619 static int 1620 ffs_sync_lazy(struct mount *mp) 1621 { 1622 struct vnode *mvp, *vp; 1623 struct inode *ip; 1624 int allerror, error; 1625 1626 allerror = 0; 1627 if ((mp->mnt_flag & MNT_NOATIME) != 0) { 1628 #ifdef QUOTA 1629 qsync(mp); 1630 #endif 1631 goto sbupdate; 1632 } 1633 MNT_VNODE_FOREACH_LAZY(vp, mp, mvp, ffs_sync_lazy_filter, NULL) { 1634 if (vp->v_type == VNON) { 1635 VI_UNLOCK(vp); 1636 continue; 1637 } 1638 ip = VTOI(vp); 1639 1640 /* 1641 * The IN_ACCESS flag is converted to IN_MODIFIED by 1642 * ufs_close() and ufs_getattr() by the calls to 1643 * ufs_itimes_locked(), without subsequent UFS_UPDATE(). 1644 * Test also all the other timestamp flags too, to pick up 1645 * any other cases that could be missed. 1646 */ 1647 if (!sync_doupdate(ip) && (vp->v_iflag & VI_OWEINACT) == 0) { 1648 VI_UNLOCK(vp); 1649 continue; 1650 } 1651 if ((error = vget(vp, LK_EXCLUSIVE | LK_NOWAIT | LK_INTERLOCK)) != 0) 1652 continue; 1653 #ifdef QUOTA 1654 qsyncvp(vp); 1655 #endif 1656 if (sync_doupdate(ip)) 1657 error = ffs_update(vp, 0); 1658 if (error != 0) 1659 allerror = error; 1660 vput(vp); 1661 } 1662 sbupdate: 1663 if (VFSTOUFS(mp)->um_fs->fs_fmod != 0 && 1664 (error = ffs_sbupdate(VFSTOUFS(mp), MNT_LAZY, 0)) != 0) 1665 allerror = error; 1666 return (allerror); 1667 } 1668 1669 /* 1670 * Go through the disk queues to initiate sandbagged IO; 1671 * go through the inodes to write those that have been modified; 1672 * initiate the writing of the super block if it has been modified. 1673 * 1674 * Note: we are always called with the filesystem marked busy using 1675 * vfs_busy(). 1676 */ 1677 static int 1678 ffs_sync(struct mount *mp, int waitfor) 1679 { 1680 struct vnode *mvp, *vp, *devvp; 1681 struct thread *td; 1682 struct inode *ip; 1683 struct ufsmount *ump = VFSTOUFS(mp); 1684 struct fs *fs; 1685 int error, count, lockreq, allerror = 0; 1686 int suspend; 1687 int suspended; 1688 int secondary_writes; 1689 int secondary_accwrites; 1690 int softdep_deps; 1691 int softdep_accdeps; 1692 struct bufobj *bo; 1693 1694 suspend = 0; 1695 suspended = 0; 1696 td = curthread; 1697 fs = ump->um_fs; 1698 if (fs->fs_fmod != 0 && fs->fs_ronly != 0) 1699 panic("%s: ffs_sync: modification on read-only filesystem", 1700 fs->fs_fsmnt); 1701 if (waitfor == MNT_LAZY) { 1702 if (!rebooting) 1703 return (ffs_sync_lazy(mp)); 1704 waitfor = MNT_NOWAIT; 1705 } 1706 1707 /* 1708 * Write back each (modified) inode. 1709 */ 1710 lockreq = LK_EXCLUSIVE | LK_NOWAIT; 1711 if (waitfor == MNT_SUSPEND) { 1712 suspend = 1; 1713 waitfor = MNT_WAIT; 1714 } 1715 if (waitfor == MNT_WAIT) 1716 lockreq = LK_EXCLUSIVE; 1717 lockreq |= LK_INTERLOCK; 1718 loop: 1719 /* Grab snapshot of secondary write counts */ 1720 MNT_ILOCK(mp); 1721 secondary_writes = mp->mnt_secondary_writes; 1722 secondary_accwrites = mp->mnt_secondary_accwrites; 1723 MNT_IUNLOCK(mp); 1724 1725 /* Grab snapshot of softdep dependency counts */ 1726 softdep_get_depcounts(mp, &softdep_deps, &softdep_accdeps); 1727 1728 MNT_VNODE_FOREACH_ALL(vp, mp, mvp) { 1729 /* 1730 * Depend on the vnode interlock to keep things stable enough 1731 * for a quick test. Since there might be hundreds of 1732 * thousands of vnodes, we cannot afford even a subroutine 1733 * call unless there's a good chance that we have work to do. 1734 */ 1735 if (vp->v_type == VNON) { 1736 VI_UNLOCK(vp); 1737 continue; 1738 } 1739 ip = VTOI(vp); 1740 if ((ip->i_flag & 1741 (IN_ACCESS | IN_CHANGE | IN_MODIFIED | IN_UPDATE)) == 0 && 1742 vp->v_bufobj.bo_dirty.bv_cnt == 0) { 1743 VI_UNLOCK(vp); 1744 continue; 1745 } 1746 if ((error = vget(vp, lockreq)) != 0) { 1747 if (error == ENOENT) { 1748 MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp); 1749 goto loop; 1750 } 1751 continue; 1752 } 1753 #ifdef QUOTA 1754 qsyncvp(vp); 1755 #endif 1756 for (;;) { 1757 error = ffs_syncvnode(vp, waitfor, 0); 1758 if (error == ERELOOKUP) 1759 continue; 1760 if (error != 0) 1761 allerror = error; 1762 break; 1763 } 1764 vput(vp); 1765 } 1766 /* 1767 * Force stale filesystem control information to be flushed. 1768 */ 1769 if (waitfor == MNT_WAIT || rebooting) { 1770 if ((error = softdep_flushworklist(ump->um_mountp, &count, td))) 1771 allerror = error; 1772 if (ffs_fsfail_cleanup(ump, allerror)) 1773 allerror = 0; 1774 /* Flushed work items may create new vnodes to clean */ 1775 if (allerror == 0 && count) 1776 goto loop; 1777 } 1778 1779 devvp = ump->um_devvp; 1780 bo = &devvp->v_bufobj; 1781 BO_LOCK(bo); 1782 if (bo->bo_numoutput > 0 || bo->bo_dirty.bv_cnt > 0) { 1783 BO_UNLOCK(bo); 1784 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY); 1785 error = VOP_FSYNC(devvp, waitfor, td); 1786 VOP_UNLOCK(devvp); 1787 if (MOUNTEDSOFTDEP(mp) && (error == 0 || error == EAGAIN)) 1788 error = ffs_sbupdate(ump, waitfor, 0); 1789 if (error != 0) 1790 allerror = error; 1791 if (ffs_fsfail_cleanup(ump, allerror)) 1792 allerror = 0; 1793 if (allerror == 0 && waitfor == MNT_WAIT) 1794 goto loop; 1795 } else if (suspend != 0) { 1796 if (softdep_check_suspend(mp, 1797 devvp, 1798 softdep_deps, 1799 softdep_accdeps, 1800 secondary_writes, 1801 secondary_accwrites) != 0) { 1802 MNT_IUNLOCK(mp); 1803 goto loop; /* More work needed */ 1804 } 1805 mtx_assert(MNT_MTX(mp), MA_OWNED); 1806 mp->mnt_kern_flag |= MNTK_SUSPEND2 | MNTK_SUSPENDED; 1807 MNT_IUNLOCK(mp); 1808 suspended = 1; 1809 } else 1810 BO_UNLOCK(bo); 1811 /* 1812 * Write back modified superblock. 1813 */ 1814 if (fs->fs_fmod != 0 && 1815 (error = ffs_sbupdate(ump, waitfor, suspended)) != 0) 1816 allerror = error; 1817 if (ffs_fsfail_cleanup(ump, allerror)) 1818 allerror = 0; 1819 return (allerror); 1820 } 1821 1822 int 1823 ffs_vget(struct mount *mp, ino_t ino, int flags, struct vnode **vpp) 1824 { 1825 return (ffs_vgetf(mp, ino, flags, vpp, 0)); 1826 } 1827 1828 int 1829 ffs_vgetf(struct mount *mp, 1830 ino_t ino, 1831 int flags, 1832 struct vnode **vpp, 1833 int ffs_flags) 1834 { 1835 struct fs *fs; 1836 struct inode *ip; 1837 struct ufsmount *ump; 1838 struct buf *bp; 1839 struct vnode *vp; 1840 daddr_t dbn; 1841 int error; 1842 1843 MPASS((ffs_flags & (FFSV_REPLACE | FFSV_REPLACE_DOOMED)) == 0 || 1844 (flags & LK_EXCLUSIVE) != 0); 1845 1846 error = vfs_hash_get(mp, ino, flags, curthread, vpp, NULL, NULL); 1847 if (error != 0) 1848 return (error); 1849 if (*vpp != NULL) { 1850 if ((ffs_flags & FFSV_REPLACE) == 0 || 1851 ((ffs_flags & FFSV_REPLACE_DOOMED) == 0 || 1852 !VN_IS_DOOMED(*vpp))) 1853 return (0); 1854 vgone(*vpp); 1855 vput(*vpp); 1856 } 1857 1858 /* 1859 * We must promote to an exclusive lock for vnode creation. This 1860 * can happen if lookup is passed LOCKSHARED. 1861 */ 1862 if ((flags & LK_TYPE_MASK) == LK_SHARED) { 1863 flags &= ~LK_TYPE_MASK; 1864 flags |= LK_EXCLUSIVE; 1865 } 1866 1867 /* 1868 * We do not lock vnode creation as it is believed to be too 1869 * expensive for such rare case as simultaneous creation of vnode 1870 * for same ino by different processes. We just allow them to race 1871 * and check later to decide who wins. Let the race begin! 1872 */ 1873 1874 ump = VFSTOUFS(mp); 1875 fs = ump->um_fs; 1876 ip = uma_zalloc_smr(uma_inode, M_WAITOK | M_ZERO); 1877 1878 /* Allocate a new vnode/inode. */ 1879 error = getnewvnode("ufs", mp, fs->fs_magic == FS_UFS1_MAGIC ? 1880 &ffs_vnodeops1 : &ffs_vnodeops2, &vp); 1881 if (error) { 1882 *vpp = NULL; 1883 uma_zfree_smr(uma_inode, ip); 1884 return (error); 1885 } 1886 /* 1887 * FFS supports recursive locking. 1888 */ 1889 lockmgr(vp->v_vnlock, LK_EXCLUSIVE | LK_NOWITNESS, NULL); 1890 VN_LOCK_AREC(vp); 1891 vp->v_data = ip; 1892 vp->v_bufobj.bo_bsize = fs->fs_bsize; 1893 ip->i_vnode = vp; 1894 ip->i_ump = ump; 1895 ip->i_number = ino; 1896 ip->i_ea_refs = 0; 1897 ip->i_nextclustercg = -1; 1898 ip->i_flag = fs->fs_magic == FS_UFS1_MAGIC ? 0 : IN_UFS2; 1899 ip->i_mode = 0; /* ensure error cases below throw away vnode */ 1900 cluster_init_vn(&ip->i_clusterw); 1901 #ifdef DIAGNOSTIC 1902 ufs_init_trackers(ip); 1903 #endif 1904 #ifdef QUOTA 1905 { 1906 int i; 1907 for (i = 0; i < MAXQUOTAS; i++) 1908 ip->i_dquot[i] = NODQUOT; 1909 } 1910 #endif 1911 1912 if (ffs_flags & FFSV_FORCEINSMQ) 1913 vp->v_vflag |= VV_FORCEINSMQ; 1914 error = insmntque(vp, mp); 1915 if (error != 0) { 1916 uma_zfree_smr(uma_inode, ip); 1917 *vpp = NULL; 1918 return (error); 1919 } 1920 vp->v_vflag &= ~VV_FORCEINSMQ; 1921 error = vfs_hash_insert(vp, ino, flags, curthread, vpp, NULL, NULL); 1922 if (error != 0) 1923 return (error); 1924 if (*vpp != NULL) { 1925 /* 1926 * Calls from ffs_valloc() (i.e. FFSV_REPLACE set) 1927 * operate on empty inode, which must not be found by 1928 * other threads until fully filled. Vnode for empty 1929 * inode must be not re-inserted on the hash by other 1930 * thread, after removal by us at the beginning. 1931 */ 1932 MPASS((ffs_flags & FFSV_REPLACE) == 0); 1933 return (0); 1934 } 1935 if (I_IS_UFS1(ip)) 1936 ip->i_din1 = uma_zalloc(uma_ufs1, M_WAITOK); 1937 else 1938 ip->i_din2 = uma_zalloc(uma_ufs2, M_WAITOK); 1939 1940 if ((ffs_flags & FFSV_NEWINODE) != 0) { 1941 /* New inode, just zero out its contents. */ 1942 if (I_IS_UFS1(ip)) 1943 memset(ip->i_din1, 0, sizeof(struct ufs1_dinode)); 1944 else 1945 memset(ip->i_din2, 0, sizeof(struct ufs2_dinode)); 1946 } else { 1947 /* Read the disk contents for the inode, copy into the inode. */ 1948 dbn = fsbtodb(fs, ino_to_fsba(fs, ino)); 1949 error = ffs_breadz(ump, ump->um_devvp, dbn, dbn, 1950 (int)fs->fs_bsize, NULL, NULL, 0, NOCRED, 0, NULL, &bp); 1951 if (error != 0) { 1952 /* 1953 * The inode does not contain anything useful, so it 1954 * would be misleading to leave it on its hash chain. 1955 * With mode still zero, it will be unlinked and 1956 * returned to the free list by vput(). 1957 */ 1958 vgone(vp); 1959 vput(vp); 1960 *vpp = NULL; 1961 return (error); 1962 } 1963 if ((error = ffs_load_inode(bp, ip, fs, ino)) != 0) { 1964 bqrelse(bp); 1965 vgone(vp); 1966 vput(vp); 1967 *vpp = NULL; 1968 return (error); 1969 } 1970 bqrelse(bp); 1971 } 1972 if (DOINGSOFTDEP(vp) && (!fs->fs_ronly || 1973 (ffs_flags & FFSV_FORCEINODEDEP) != 0)) 1974 softdep_load_inodeblock(ip); 1975 else 1976 ip->i_effnlink = ip->i_nlink; 1977 1978 /* 1979 * Initialize the vnode from the inode, check for aliases. 1980 * Note that the underlying vnode may have changed. 1981 */ 1982 error = ufs_vinit(mp, I_IS_UFS1(ip) ? &ffs_fifoops1 : &ffs_fifoops2, 1983 &vp); 1984 if (error) { 1985 vgone(vp); 1986 vput(vp); 1987 *vpp = NULL; 1988 return (error); 1989 } 1990 1991 /* 1992 * Finish inode initialization. 1993 */ 1994 if (vp->v_type != VFIFO) { 1995 /* FFS supports shared locking for all files except fifos. */ 1996 VN_LOCK_ASHARE(vp); 1997 } 1998 1999 /* 2000 * Set up a generation number for this inode if it does not 2001 * already have one. This should only happen on old filesystems. 2002 */ 2003 if (ip->i_gen == 0) { 2004 while (ip->i_gen == 0) 2005 ip->i_gen = arc4random(); 2006 if ((vp->v_mount->mnt_flag & MNT_RDONLY) == 0) { 2007 UFS_INODE_SET_FLAG(ip, IN_MODIFIED); 2008 DIP_SET(ip, i_gen, ip->i_gen); 2009 } 2010 } 2011 #ifdef MAC 2012 if ((mp->mnt_flag & MNT_MULTILABEL) && ip->i_mode) { 2013 /* 2014 * If this vnode is already allocated, and we're running 2015 * multi-label, attempt to perform a label association 2016 * from the extended attributes on the inode. 2017 */ 2018 error = mac_vnode_associate_extattr(mp, vp); 2019 if (error) { 2020 /* ufs_inactive will release ip->i_devvp ref. */ 2021 vgone(vp); 2022 vput(vp); 2023 *vpp = NULL; 2024 return (error); 2025 } 2026 } 2027 #endif 2028 2029 vn_set_state(vp, VSTATE_CONSTRUCTED); 2030 *vpp = vp; 2031 return (0); 2032 } 2033 2034 /* 2035 * File handle to vnode 2036 * 2037 * Have to be really careful about stale file handles: 2038 * - check that the inode number is valid 2039 * - for UFS2 check that the inode number is initialized 2040 * - call ffs_vget() to get the locked inode 2041 * - check for an unallocated inode (i_mode == 0) 2042 * - check that the given client host has export rights and return 2043 * those rights via. exflagsp and credanonp 2044 */ 2045 static int 2046 ffs_fhtovp(struct mount *mp, struct fid *fhp, int flags, struct vnode **vpp) 2047 { 2048 struct ufid *ufhp; 2049 2050 ufhp = (struct ufid *)fhp; 2051 return (ffs_inotovp(mp, ufhp->ufid_ino, ufhp->ufid_gen, flags, 2052 vpp, 0)); 2053 } 2054 2055 /* 2056 * Return a vnode from a mounted filesystem for inode with specified 2057 * generation number. Return ESTALE if the inode with given generation 2058 * number no longer exists on that filesystem. 2059 */ 2060 int 2061 ffs_inotovp(struct mount *mp, 2062 ino_t ino, 2063 uint64_t gen, 2064 int lflags, 2065 struct vnode **vpp, 2066 int ffs_flags) 2067 { 2068 struct ufsmount *ump; 2069 struct vnode *nvp; 2070 struct inode *ip; 2071 struct fs *fs; 2072 struct cg *cgp; 2073 struct buf *bp; 2074 uint64_t cg; 2075 2076 ump = VFSTOUFS(mp); 2077 fs = ump->um_fs; 2078 *vpp = NULL; 2079 2080 if (ino < UFS_ROOTINO || ino >= fs->fs_ncg * fs->fs_ipg) 2081 return (ESTALE); 2082 2083 /* 2084 * Need to check if inode is initialized because UFS2 does lazy 2085 * initialization and nfs_fhtovp can offer arbitrary inode numbers. 2086 */ 2087 if (fs->fs_magic == FS_UFS2_MAGIC) { 2088 cg = ino_to_cg(fs, ino); 2089 if (ffs_getcg(fs, ump->um_devvp, cg, 0, &bp, &cgp) != 0) 2090 return (ESTALE); 2091 if (ino >= cg * fs->fs_ipg + cgp->cg_initediblk) { 2092 brelse(bp); 2093 return (ESTALE); 2094 } 2095 brelse(bp); 2096 } 2097 2098 if (ffs_vgetf(mp, ino, lflags, &nvp, ffs_flags) != 0) 2099 return (ESTALE); 2100 2101 ip = VTOI(nvp); 2102 if (ip->i_mode == 0 || ip->i_gen != gen || ip->i_effnlink <= 0) { 2103 if (ip->i_mode == 0) 2104 vgone(nvp); 2105 vput(nvp); 2106 return (ESTALE); 2107 } 2108 2109 vnode_create_vobject(nvp, DIP(ip, i_size), curthread); 2110 *vpp = nvp; 2111 return (0); 2112 } 2113 2114 /* 2115 * Initialize the filesystem. 2116 */ 2117 static int 2118 ffs_init(struct vfsconf *vfsp) 2119 { 2120 2121 ffs_susp_initialize(); 2122 softdep_initialize(); 2123 return (ufs_init(vfsp)); 2124 } 2125 2126 /* 2127 * Undo the work of ffs_init(). 2128 */ 2129 static int 2130 ffs_uninit(struct vfsconf *vfsp) 2131 { 2132 int ret; 2133 2134 ret = ufs_uninit(vfsp); 2135 softdep_uninitialize(); 2136 ffs_susp_uninitialize(); 2137 taskqueue_drain_all(taskqueue_thread); 2138 return (ret); 2139 } 2140 2141 /* 2142 * Structure used to pass information from ffs_sbupdate to its 2143 * helper routine ffs_use_bwrite. 2144 */ 2145 struct devfd { 2146 struct ufsmount *ump; 2147 struct buf *sbbp; 2148 int waitfor; 2149 int suspended; 2150 int error; 2151 }; 2152 2153 /* 2154 * Write a superblock and associated information back to disk. 2155 */ 2156 int 2157 ffs_sbupdate(struct ufsmount *ump, int waitfor, int suspended) 2158 { 2159 struct fs *fs; 2160 struct buf *sbbp; 2161 struct devfd devfd; 2162 2163 fs = ump->um_fs; 2164 if (fs->fs_ronly == 1 && 2165 (ump->um_mountp->mnt_flag & (MNT_RDONLY | MNT_UPDATE)) != 2166 (MNT_RDONLY | MNT_UPDATE)) 2167 panic("ffs_sbupdate: write read-only filesystem"); 2168 /* 2169 * We use the superblock's buf to serialize calls to ffs_sbupdate(). 2170 */ 2171 sbbp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc), 2172 (int)fs->fs_sbsize, 0, 0, 0); 2173 /* 2174 * Initialize info needed for write function. 2175 */ 2176 devfd.ump = ump; 2177 devfd.sbbp = sbbp; 2178 devfd.waitfor = waitfor; 2179 devfd.suspended = suspended; 2180 devfd.error = 0; 2181 return (ffs_sbput(&devfd, fs, fs->fs_sblockloc, ffs_use_bwrite)); 2182 } 2183 2184 /* 2185 * Write function for use by filesystem-layer routines. 2186 */ 2187 static int 2188 ffs_use_bwrite(void *devfd, off_t loc, void *buf, int size) 2189 { 2190 struct devfd *devfdp; 2191 struct ufsmount *ump; 2192 struct buf *bp; 2193 struct fs *fs; 2194 int error; 2195 2196 devfdp = devfd; 2197 ump = devfdp->ump; 2198 fs = ump->um_fs; 2199 /* 2200 * Writing the superblock summary information. 2201 */ 2202 if (loc != fs->fs_sblockloc) { 2203 bp = getblk(ump->um_devvp, btodb(loc), size, 0, 0, 0); 2204 bcopy(buf, bp->b_data, (uint64_t)size); 2205 if (devfdp->suspended) 2206 bp->b_flags |= B_VALIDSUSPWRT; 2207 if (devfdp->waitfor != MNT_WAIT) 2208 bawrite(bp); 2209 else if ((error = bwrite(bp)) != 0) 2210 devfdp->error = error; 2211 return (0); 2212 } 2213 /* 2214 * Writing the superblock itself. We need to do special checks for it. 2215 */ 2216 bp = devfdp->sbbp; 2217 if (ffs_fsfail_cleanup(ump, devfdp->error)) 2218 devfdp->error = 0; 2219 if (devfdp->error != 0) { 2220 brelse(bp); 2221 return (devfdp->error); 2222 } 2223 if (fs->fs_magic == FS_UFS1_MAGIC && fs->fs_sblockloc != SBLOCK_UFS1 && 2224 (fs->fs_old_flags & FS_FLAGS_UPDATED) == 0) { 2225 printf("WARNING: %s: correcting fs_sblockloc from %jd to %d\n", 2226 fs->fs_fsmnt, fs->fs_sblockloc, SBLOCK_UFS1); 2227 fs->fs_sblockloc = SBLOCK_UFS1; 2228 } 2229 if (fs->fs_magic == FS_UFS2_MAGIC && fs->fs_sblockloc != SBLOCK_UFS2 && 2230 (fs->fs_old_flags & FS_FLAGS_UPDATED) == 0) { 2231 printf("WARNING: %s: correcting fs_sblockloc from %jd to %d\n", 2232 fs->fs_fsmnt, fs->fs_sblockloc, SBLOCK_UFS2); 2233 fs->fs_sblockloc = SBLOCK_UFS2; 2234 } 2235 if (MOUNTEDSOFTDEP(ump->um_mountp)) 2236 softdep_setup_sbupdate(ump, (struct fs *)bp->b_data, bp); 2237 UFS_LOCK(ump); 2238 bcopy((caddr_t)fs, bp->b_data, (uint64_t)fs->fs_sbsize); 2239 UFS_UNLOCK(ump); 2240 fs = (struct fs *)bp->b_data; 2241 fs->fs_fmod = 0; 2242 ffs_oldfscompat_write(fs, ump); 2243 fs->fs_si = NULL; 2244 /* Recalculate the superblock hash */ 2245 fs->fs_ckhash = ffs_calc_sbhash(fs); 2246 if (devfdp->suspended) 2247 bp->b_flags |= B_VALIDSUSPWRT; 2248 if (devfdp->waitfor != MNT_WAIT) 2249 bawrite(bp); 2250 else if ((error = bwrite(bp)) != 0) 2251 devfdp->error = error; 2252 return (devfdp->error); 2253 } 2254 2255 static int 2256 ffs_extattrctl(struct mount *mp, int cmd, struct vnode *filename_vp, 2257 int attrnamespace, const char *attrname) 2258 { 2259 2260 #ifdef UFS_EXTATTR 2261 return (ufs_extattrctl(mp, cmd, filename_vp, attrnamespace, 2262 attrname)); 2263 #else 2264 return (vfs_stdextattrctl(mp, cmd, filename_vp, attrnamespace, 2265 attrname)); 2266 #endif 2267 } 2268 2269 static void 2270 ffs_ifree(struct ufsmount *ump, struct inode *ip) 2271 { 2272 2273 if (ump->um_fstype == UFS1 && ip->i_din1 != NULL) 2274 uma_zfree(uma_ufs1, ip->i_din1); 2275 else if (ip->i_din2 != NULL) 2276 uma_zfree(uma_ufs2, ip->i_din2); 2277 uma_zfree_smr(uma_inode, ip); 2278 } 2279 2280 static int dobkgrdwrite = 1; 2281 SYSCTL_INT(_debug, OID_AUTO, dobkgrdwrite, CTLFLAG_RW, &dobkgrdwrite, 0, 2282 "Do background writes (honoring the BV_BKGRDWRITE flag)?"); 2283 2284 /* 2285 * Complete a background write started from bwrite. 2286 */ 2287 static void 2288 ffs_backgroundwritedone(struct buf *bp) 2289 { 2290 struct bufobj *bufobj; 2291 struct buf *origbp; 2292 2293 #ifdef SOFTUPDATES 2294 if (!LIST_EMPTY(&bp->b_dep) && (bp->b_ioflags & BIO_ERROR) != 0) 2295 softdep_handle_error(bp); 2296 #endif 2297 2298 /* 2299 * Find the original buffer that we are writing. 2300 */ 2301 bufobj = bp->b_bufobj; 2302 BO_LOCK(bufobj); 2303 if ((origbp = gbincore(bp->b_bufobj, bp->b_lblkno)) == NULL) 2304 panic("backgroundwritedone: lost buffer"); 2305 2306 /* 2307 * We should mark the cylinder group buffer origbp as 2308 * dirty, to not lose the failed write. 2309 */ 2310 if ((bp->b_ioflags & BIO_ERROR) != 0) 2311 origbp->b_vflags |= BV_BKGRDERR; 2312 BO_UNLOCK(bufobj); 2313 /* 2314 * Process dependencies then return any unfinished ones. 2315 */ 2316 if (!LIST_EMPTY(&bp->b_dep) && (bp->b_ioflags & BIO_ERROR) == 0) 2317 buf_complete(bp); 2318 #ifdef SOFTUPDATES 2319 if (!LIST_EMPTY(&bp->b_dep)) 2320 softdep_move_dependencies(bp, origbp); 2321 #endif 2322 /* 2323 * This buffer is marked B_NOCACHE so when it is released 2324 * by biodone it will be tossed. Clear B_IOSTARTED in case of error. 2325 */ 2326 bp->b_flags |= B_NOCACHE; 2327 bp->b_flags &= ~(B_CACHE | B_IOSTARTED); 2328 pbrelvp(bp); 2329 2330 /* 2331 * Prevent brelse() from trying to keep and re-dirtying bp on 2332 * errors. It causes b_bufobj dereference in 2333 * bdirty()/reassignbuf(), and b_bufobj was cleared in 2334 * pbrelvp() above. 2335 */ 2336 if ((bp->b_ioflags & BIO_ERROR) != 0) 2337 bp->b_flags |= B_INVAL; 2338 bufdone(bp); 2339 BO_LOCK(bufobj); 2340 /* 2341 * Clear the BV_BKGRDINPROG flag in the original buffer 2342 * and awaken it if it is waiting for the write to complete. 2343 * If BV_BKGRDINPROG is not set in the original buffer it must 2344 * have been released and re-instantiated - which is not legal. 2345 */ 2346 KASSERT((origbp->b_vflags & BV_BKGRDINPROG), 2347 ("backgroundwritedone: lost buffer2")); 2348 origbp->b_vflags &= ~BV_BKGRDINPROG; 2349 if (origbp->b_vflags & BV_BKGRDWAIT) { 2350 origbp->b_vflags &= ~BV_BKGRDWAIT; 2351 wakeup(&origbp->b_xflags); 2352 } 2353 BO_UNLOCK(bufobj); 2354 } 2355 2356 /* 2357 * Write, release buffer on completion. (Done by iodone 2358 * if async). Do not bother writing anything if the buffer 2359 * is invalid. 2360 * 2361 * Note that we set B_CACHE here, indicating that buffer is 2362 * fully valid and thus cacheable. This is true even of NFS 2363 * now so we set it generally. This could be set either here 2364 * or in biodone() since the I/O is synchronous. We put it 2365 * here. 2366 */ 2367 static int 2368 ffs_bufwrite(struct buf *bp) 2369 { 2370 struct buf *newbp; 2371 struct cg *cgp; 2372 2373 CTR3(KTR_BUF, "bufwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags); 2374 if (bp->b_flags & B_INVAL) { 2375 brelse(bp); 2376 return (0); 2377 } 2378 2379 if (!BUF_ISLOCKED(bp)) 2380 panic("bufwrite: buffer is not busy???"); 2381 /* 2382 * If a background write is already in progress, delay 2383 * writing this block if it is asynchronous. Otherwise 2384 * wait for the background write to complete. 2385 */ 2386 BO_LOCK(bp->b_bufobj); 2387 if (bp->b_vflags & BV_BKGRDINPROG) { 2388 if (bp->b_flags & B_ASYNC) { 2389 BO_UNLOCK(bp->b_bufobj); 2390 bdwrite(bp); 2391 return (0); 2392 } 2393 bp->b_vflags |= BV_BKGRDWAIT; 2394 msleep(&bp->b_xflags, BO_LOCKPTR(bp->b_bufobj), PRIBIO, 2395 "bwrbg", 0); 2396 if (bp->b_vflags & BV_BKGRDINPROG) 2397 panic("bufwrite: still writing"); 2398 } 2399 bp->b_vflags &= ~BV_BKGRDERR; 2400 BO_UNLOCK(bp->b_bufobj); 2401 2402 /* 2403 * If this buffer is marked for background writing and we 2404 * do not have to wait for it, make a copy and write the 2405 * copy so as to leave this buffer ready for further use. 2406 * 2407 * This optimization eats a lot of memory. If we have a page 2408 * or buffer shortfall we can't do it. 2409 */ 2410 if (dobkgrdwrite && (bp->b_xflags & BX_BKGRDWRITE) && 2411 (bp->b_flags & B_ASYNC) && 2412 !vm_page_count_severe() && 2413 !buf_dirty_count_severe()) { 2414 KASSERT(bp->b_iodone == NULL, 2415 ("bufwrite: needs chained iodone (%p)", bp->b_iodone)); 2416 2417 /* get a new block */ 2418 newbp = geteblk(bp->b_bufsize, GB_NOWAIT_BD); 2419 if (newbp == NULL) 2420 goto normal_write; 2421 2422 KASSERT(buf_mapped(bp), ("Unmapped cg")); 2423 memcpy(newbp->b_data, bp->b_data, bp->b_bufsize); 2424 BO_LOCK(bp->b_bufobj); 2425 bp->b_vflags |= BV_BKGRDINPROG; 2426 BO_UNLOCK(bp->b_bufobj); 2427 newbp->b_xflags |= 2428 (bp->b_xflags & BX_FSPRIV) | BX_BKGRDMARKER; 2429 newbp->b_lblkno = bp->b_lblkno; 2430 newbp->b_blkno = bp->b_blkno; 2431 newbp->b_offset = bp->b_offset; 2432 newbp->b_iodone = ffs_backgroundwritedone; 2433 newbp->b_flags |= B_ASYNC; 2434 newbp->b_flags &= ~B_INVAL; 2435 pbgetvp(bp->b_vp, newbp); 2436 2437 #ifdef SOFTUPDATES 2438 /* 2439 * Move over the dependencies. If there are rollbacks, 2440 * leave the parent buffer dirtied as it will need to 2441 * be written again. 2442 */ 2443 if (LIST_EMPTY(&bp->b_dep) || 2444 softdep_move_dependencies(bp, newbp) == 0) 2445 bundirty(bp); 2446 #else 2447 bundirty(bp); 2448 #endif 2449 2450 /* 2451 * Initiate write on the copy, release the original. The 2452 * BKGRDINPROG flag prevents it from going away until 2453 * the background write completes. We have to recalculate 2454 * its check hash in case the buffer gets freed and then 2455 * reconstituted from the buffer cache during a later read. 2456 */ 2457 if ((bp->b_xflags & BX_CYLGRP) != 0) { 2458 cgp = (struct cg *)bp->b_data; 2459 cgp->cg_ckhash = 0; 2460 cgp->cg_ckhash = 2461 calculate_crc32c(~0L, bp->b_data, bp->b_bcount); 2462 } 2463 bqrelse(bp); 2464 bp = newbp; 2465 } else 2466 /* Mark the buffer clean */ 2467 bundirty(bp); 2468 2469 /* Let the normal bufwrite do the rest for us */ 2470 normal_write: 2471 /* 2472 * If we are writing a cylinder group, update its time. 2473 */ 2474 if ((bp->b_xflags & BX_CYLGRP) != 0) { 2475 cgp = (struct cg *)bp->b_data; 2476 cgp->cg_old_time = cgp->cg_time = time_second; 2477 } 2478 return (bufwrite(bp)); 2479 } 2480 2481 static void 2482 ffs_geom_strategy(struct bufobj *bo, struct buf *bp) 2483 { 2484 struct vnode *vp; 2485 struct buf *tbp; 2486 int error, nocopy; 2487 2488 /* 2489 * This is the bufobj strategy for the private VCHR vnodes 2490 * used by FFS to access the underlying storage device. 2491 * We override the default bufobj strategy and thus bypass 2492 * VOP_STRATEGY() for these vnodes. 2493 */ 2494 vp = bo2vnode(bo); 2495 KASSERT(bp->b_vp == NULL || bp->b_vp->v_type != VCHR || 2496 bp->b_vp->v_rdev == NULL || 2497 bp->b_vp->v_rdev->si_mountpt == NULL || 2498 VFSTOUFS(bp->b_vp->v_rdev->si_mountpt) == NULL || 2499 vp == VFSTOUFS(bp->b_vp->v_rdev->si_mountpt)->um_devvp, 2500 ("ffs_geom_strategy() with wrong vp")); 2501 if (bp->b_iocmd == BIO_WRITE) { 2502 if ((bp->b_flags & B_VALIDSUSPWRT) == 0 && 2503 bp->b_vp != NULL && bp->b_vp->v_mount != NULL && 2504 (bp->b_vp->v_mount->mnt_kern_flag & MNTK_SUSPENDED) != 0) 2505 panic("ffs_geom_strategy: bad I/O"); 2506 nocopy = bp->b_flags & B_NOCOPY; 2507 bp->b_flags &= ~(B_VALIDSUSPWRT | B_NOCOPY); 2508 if ((vp->v_vflag & VV_COPYONWRITE) && nocopy == 0 && 2509 vp->v_rdev->si_snapdata != NULL) { 2510 if ((bp->b_flags & B_CLUSTER) != 0) { 2511 runningbufwakeup(bp); 2512 TAILQ_FOREACH(tbp, &bp->b_cluster.cluster_head, 2513 b_cluster.cluster_entry) { 2514 error = ffs_copyonwrite(vp, tbp); 2515 if (error != 0 && 2516 error != EOPNOTSUPP) { 2517 bp->b_error = error; 2518 bp->b_ioflags |= BIO_ERROR; 2519 bp->b_flags &= ~B_BARRIER; 2520 bufdone(bp); 2521 return; 2522 } 2523 } 2524 bp->b_runningbufspace = bp->b_bufsize; 2525 atomic_add_long(&runningbufspace, 2526 bp->b_runningbufspace); 2527 } else { 2528 error = ffs_copyonwrite(vp, bp); 2529 if (error != 0 && error != EOPNOTSUPP) { 2530 bp->b_error = error; 2531 bp->b_ioflags |= BIO_ERROR; 2532 bp->b_flags &= ~B_BARRIER; 2533 bufdone(bp); 2534 return; 2535 } 2536 } 2537 } 2538 #ifdef SOFTUPDATES 2539 if ((bp->b_flags & B_CLUSTER) != 0) { 2540 TAILQ_FOREACH(tbp, &bp->b_cluster.cluster_head, 2541 b_cluster.cluster_entry) { 2542 if (!LIST_EMPTY(&tbp->b_dep)) 2543 buf_start(tbp); 2544 } 2545 } else { 2546 if (!LIST_EMPTY(&bp->b_dep)) 2547 buf_start(bp); 2548 } 2549 2550 #endif 2551 /* 2552 * Check for metadata that needs check-hashes and update them. 2553 */ 2554 switch (bp->b_xflags & BX_FSPRIV) { 2555 case BX_CYLGRP: 2556 ((struct cg *)bp->b_data)->cg_ckhash = 0; 2557 ((struct cg *)bp->b_data)->cg_ckhash = 2558 calculate_crc32c(~0L, bp->b_data, bp->b_bcount); 2559 break; 2560 2561 case BX_SUPERBLOCK: 2562 case BX_INODE: 2563 case BX_INDIR: 2564 case BX_DIR: 2565 printf("Check-hash write is unimplemented!!!\n"); 2566 break; 2567 2568 case 0: 2569 break; 2570 2571 default: 2572 printf("multiple buffer types 0x%b\n", 2573 (bp->b_xflags & BX_FSPRIV), PRINT_UFS_BUF_XFLAGS); 2574 break; 2575 } 2576 } 2577 if (bp->b_iocmd != BIO_READ && ffs_enxio_enable) 2578 bp->b_xflags |= BX_CVTENXIO; 2579 g_vfs_strategy(bo, bp); 2580 } 2581 2582 int 2583 ffs_own_mount(const struct mount *mp) 2584 { 2585 2586 if (mp->mnt_op == &ufs_vfsops) 2587 return (1); 2588 return (0); 2589 } 2590 2591 #ifdef DDB 2592 #ifdef SOFTUPDATES 2593 2594 /* defined in ffs_softdep.c */ 2595 extern void db_print_ffs(struct ufsmount *ump); 2596 2597 DB_SHOW_COMMAND(ffs, db_show_ffs) 2598 { 2599 struct mount *mp; 2600 struct ufsmount *ump; 2601 2602 if (have_addr) { 2603 ump = VFSTOUFS((struct mount *)addr); 2604 db_print_ffs(ump); 2605 return; 2606 } 2607 2608 TAILQ_FOREACH(mp, &mountlist, mnt_list) { 2609 if (!strcmp(mp->mnt_stat.f_fstypename, ufs_vfsconf.vfc_name)) 2610 db_print_ffs(VFSTOUFS(mp)); 2611 } 2612 } 2613 2614 #endif /* SOFTUPDATES */ 2615 #endif /* DDB */ 2616