xref: /freebsd/sys/ufs/ffs/ffs_vfsops.c (revision 7d91d6b83e74edf278dde375e6049aca833cbebd)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1989, 1991, 1993, 1994
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *	@(#)ffs_vfsops.c	8.31 (Berkeley) 5/20/95
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 #include "opt_quota.h"
38 #include "opt_ufs.h"
39 #include "opt_ffs.h"
40 #include "opt_ddb.h"
41 
42 #include <sys/param.h>
43 #include <sys/gsb_crc32.h>
44 #include <sys/systm.h>
45 #include <sys/namei.h>
46 #include <sys/priv.h>
47 #include <sys/proc.h>
48 #include <sys/taskqueue.h>
49 #include <sys/kernel.h>
50 #include <sys/ktr.h>
51 #include <sys/vnode.h>
52 #include <sys/mount.h>
53 #include <sys/bio.h>
54 #include <sys/buf.h>
55 #include <sys/conf.h>
56 #include <sys/fcntl.h>
57 #include <sys/ioccom.h>
58 #include <sys/malloc.h>
59 #include <sys/mutex.h>
60 #include <sys/rwlock.h>
61 #include <sys/sysctl.h>
62 #include <sys/vmmeter.h>
63 
64 #include <security/mac/mac_framework.h>
65 
66 #include <ufs/ufs/dir.h>
67 #include <ufs/ufs/extattr.h>
68 #include <ufs/ufs/gjournal.h>
69 #include <ufs/ufs/quota.h>
70 #include <ufs/ufs/ufsmount.h>
71 #include <ufs/ufs/inode.h>
72 #include <ufs/ufs/ufs_extern.h>
73 
74 #include <ufs/ffs/fs.h>
75 #include <ufs/ffs/ffs_extern.h>
76 
77 #include <vm/vm.h>
78 #include <vm/uma.h>
79 #include <vm/vm_page.h>
80 
81 #include <geom/geom.h>
82 #include <geom/geom_vfs.h>
83 
84 #include <ddb/ddb.h>
85 
86 static uma_zone_t uma_inode, uma_ufs1, uma_ufs2;
87 VFS_SMR_DECLARE;
88 
89 static int	ffs_mountfs(struct vnode *, struct mount *, struct thread *);
90 static void	ffs_oldfscompat_read(struct fs *, struct ufsmount *,
91 		    ufs2_daddr_t);
92 static void	ffs_ifree(struct ufsmount *ump, struct inode *ip);
93 static int	ffs_sync_lazy(struct mount *mp);
94 static int	ffs_use_bread(void *devfd, off_t loc, void **bufp, int size);
95 static int	ffs_use_bwrite(void *devfd, off_t loc, void *buf, int size);
96 
97 static vfs_init_t ffs_init;
98 static vfs_uninit_t ffs_uninit;
99 static vfs_extattrctl_t ffs_extattrctl;
100 static vfs_cmount_t ffs_cmount;
101 static vfs_unmount_t ffs_unmount;
102 static vfs_mount_t ffs_mount;
103 static vfs_statfs_t ffs_statfs;
104 static vfs_fhtovp_t ffs_fhtovp;
105 static vfs_sync_t ffs_sync;
106 
107 static struct vfsops ufs_vfsops = {
108 	.vfs_extattrctl =	ffs_extattrctl,
109 	.vfs_fhtovp =		ffs_fhtovp,
110 	.vfs_init =		ffs_init,
111 	.vfs_mount =		ffs_mount,
112 	.vfs_cmount =		ffs_cmount,
113 	.vfs_quotactl =		ufs_quotactl,
114 	.vfs_root =		vfs_cache_root,
115 	.vfs_cachedroot =	ufs_root,
116 	.vfs_statfs =		ffs_statfs,
117 	.vfs_sync =		ffs_sync,
118 	.vfs_uninit =		ffs_uninit,
119 	.vfs_unmount =		ffs_unmount,
120 	.vfs_vget =		ffs_vget,
121 	.vfs_susp_clean =	process_deferred_inactive,
122 };
123 
124 VFS_SET(ufs_vfsops, ufs, 0);
125 MODULE_VERSION(ufs, 1);
126 
127 static b_strategy_t ffs_geom_strategy;
128 static b_write_t ffs_bufwrite;
129 
130 static struct buf_ops ffs_ops = {
131 	.bop_name =	"FFS",
132 	.bop_write =	ffs_bufwrite,
133 	.bop_strategy =	ffs_geom_strategy,
134 	.bop_sync =	bufsync,
135 #ifdef NO_FFS_SNAPSHOT
136 	.bop_bdflush =	bufbdflush,
137 #else
138 	.bop_bdflush =	ffs_bdflush,
139 #endif
140 };
141 
142 /*
143  * Note that userquota and groupquota options are not currently used
144  * by UFS/FFS code and generally mount(8) does not pass those options
145  * from userland, but they can be passed by loader(8) via
146  * vfs.root.mountfrom.options.
147  */
148 static const char *ffs_opts[] = { "acls", "async", "noatime", "noclusterr",
149     "noclusterw", "noexec", "export", "force", "from", "groupquota",
150     "multilabel", "nfsv4acls", "snapshot", "nosuid", "suiddir",
151     "nosymfollow", "sync", "union", "userquota", "untrusted", NULL };
152 
153 static int ffs_enxio_enable = 1;
154 SYSCTL_DECL(_vfs_ffs);
155 SYSCTL_INT(_vfs_ffs, OID_AUTO, enxio_enable, CTLFLAG_RWTUN,
156     &ffs_enxio_enable, 0,
157     "enable mapping of other disk I/O errors to ENXIO");
158 
159 /*
160  * Return buffer with the contents of block "offset" from the beginning of
161  * directory "ip".  If "res" is non-zero, fill it in with a pointer to the
162  * remaining space in the directory.
163  */
164 static int
165 ffs_blkatoff(struct vnode *vp, off_t offset, char **res, struct buf **bpp)
166 {
167 	struct inode *ip;
168 	struct fs *fs;
169 	struct buf *bp;
170 	ufs_lbn_t lbn;
171 	int bsize, error;
172 
173 	ip = VTOI(vp);
174 	fs = ITOFS(ip);
175 	lbn = lblkno(fs, offset);
176 	bsize = blksize(fs, ip, lbn);
177 
178 	*bpp = NULL;
179 	error = bread(vp, lbn, bsize, NOCRED, &bp);
180 	if (error) {
181 		return (error);
182 	}
183 	if (res)
184 		*res = (char *)bp->b_data + blkoff(fs, offset);
185 	*bpp = bp;
186 	return (0);
187 }
188 
189 /*
190  * Load up the contents of an inode and copy the appropriate pieces
191  * to the incore copy.
192  */
193 static int
194 ffs_load_inode(struct buf *bp, struct inode *ip, struct fs *fs, ino_t ino)
195 {
196 	struct ufs1_dinode *dip1;
197 	struct ufs2_dinode *dip2;
198 	int error;
199 
200 	if (I_IS_UFS1(ip)) {
201 		dip1 = ip->i_din1;
202 		*dip1 =
203 		    *((struct ufs1_dinode *)bp->b_data + ino_to_fsbo(fs, ino));
204 		ip->i_mode = dip1->di_mode;
205 		ip->i_nlink = dip1->di_nlink;
206 		ip->i_effnlink = dip1->di_nlink;
207 		ip->i_size = dip1->di_size;
208 		ip->i_flags = dip1->di_flags;
209 		ip->i_gen = dip1->di_gen;
210 		ip->i_uid = dip1->di_uid;
211 		ip->i_gid = dip1->di_gid;
212 		return (0);
213 	}
214 	dip2 = ((struct ufs2_dinode *)bp->b_data + ino_to_fsbo(fs, ino));
215 	if ((error = ffs_verify_dinode_ckhash(fs, dip2)) != 0 &&
216 	    !ffs_fsfail_cleanup(ITOUMP(ip), error)) {
217 		printf("%s: inode %jd: check-hash failed\n", fs->fs_fsmnt,
218 		    (intmax_t)ino);
219 		return (error);
220 	}
221 	*ip->i_din2 = *dip2;
222 	dip2 = ip->i_din2;
223 	ip->i_mode = dip2->di_mode;
224 	ip->i_nlink = dip2->di_nlink;
225 	ip->i_effnlink = dip2->di_nlink;
226 	ip->i_size = dip2->di_size;
227 	ip->i_flags = dip2->di_flags;
228 	ip->i_gen = dip2->di_gen;
229 	ip->i_uid = dip2->di_uid;
230 	ip->i_gid = dip2->di_gid;
231 	return (0);
232 }
233 
234 /*
235  * Verify that a filesystem block number is a valid data block.
236  * This routine is only called on untrusted filesystems.
237  */
238 static int
239 ffs_check_blkno(struct mount *mp, ino_t inum, ufs2_daddr_t daddr, int blksize)
240 {
241 	struct fs *fs;
242 	struct ufsmount *ump;
243 	ufs2_daddr_t end_daddr;
244 	int cg, havemtx;
245 
246 	KASSERT((mp->mnt_flag & MNT_UNTRUSTED) != 0,
247 	    ("ffs_check_blkno called on a trusted file system"));
248 	ump = VFSTOUFS(mp);
249 	fs = ump->um_fs;
250 	cg = dtog(fs, daddr);
251 	end_daddr = daddr + numfrags(fs, blksize);
252 	/*
253 	 * Verify that the block number is a valid data block. Also check
254 	 * that it does not point to an inode block or a superblock. Accept
255 	 * blocks that are unalloacted (0) or part of snapshot metadata
256 	 * (BLK_NOCOPY or BLK_SNAP).
257 	 *
258 	 * Thus, the block must be in a valid range for the filesystem and
259 	 * either in the space before a backup superblock (except the first
260 	 * cylinder group where that space is used by the bootstrap code) or
261 	 * after the inode blocks and before the end of the cylinder group.
262 	 */
263 	if ((uint64_t)daddr <= BLK_SNAP ||
264 	    ((uint64_t)end_daddr <= fs->fs_size &&
265 	    ((cg > 0 && end_daddr <= cgsblock(fs, cg)) ||
266 	    (daddr >= cgdmin(fs, cg) &&
267 	    end_daddr <= cgbase(fs, cg) + fs->fs_fpg))))
268 		return (0);
269 	if ((havemtx = mtx_owned(UFS_MTX(ump))) == 0)
270 		UFS_LOCK(ump);
271 	if (ppsratecheck(&ump->um_last_integritymsg,
272 	    &ump->um_secs_integritymsg, 1)) {
273 		UFS_UNLOCK(ump);
274 		uprintf("\n%s: inode %jd, out-of-range indirect block "
275 		    "number %jd\n", mp->mnt_stat.f_mntonname, inum, daddr);
276 		if (havemtx)
277 			UFS_LOCK(ump);
278 	} else if (!havemtx)
279 		UFS_UNLOCK(ump);
280 	return (EINTEGRITY);
281 }
282 
283 /*
284  * On first ENXIO error, initiate an asynchronous forcible unmount.
285  * Used to unmount filesystems whose underlying media has gone away.
286  *
287  * Return true if a cleanup is in progress.
288  */
289 int
290 ffs_fsfail_cleanup(struct ufsmount *ump, int error)
291 {
292 	int retval;
293 
294 	UFS_LOCK(ump);
295 	retval = ffs_fsfail_cleanup_locked(ump, error);
296 	UFS_UNLOCK(ump);
297 	return (retval);
298 }
299 
300 int
301 ffs_fsfail_cleanup_locked(struct ufsmount *ump, int error)
302 {
303 	mtx_assert(UFS_MTX(ump), MA_OWNED);
304 	if (error == ENXIO && (ump->um_flags & UM_FSFAIL_CLEANUP) == 0) {
305 		ump->um_flags |= UM_FSFAIL_CLEANUP;
306 		/*
307 		 * Queue an async forced unmount.
308 		 */
309 		vfs_ref(ump->um_mountp);
310 		dounmount(ump->um_mountp,
311 		    MNT_FORCE | MNT_RECURSE | MNT_DEFERRED, curthread);
312 		printf("UFS: forcibly unmounting %s from %s\n",
313 		    ump->um_mountp->mnt_stat.f_mntfromname,
314 		    ump->um_mountp->mnt_stat.f_mntonname);
315 	}
316 	return ((ump->um_flags & UM_FSFAIL_CLEANUP) != 0);
317 }
318 
319 /*
320  * Wrapper used during ENXIO cleanup to allocate empty buffers when
321  * the kernel is unable to read the real one. They are needed so that
322  * the soft updates code can use them to unwind its dependencies.
323  */
324 int
325 ffs_breadz(struct ufsmount *ump, struct vnode *vp, daddr_t lblkno,
326     daddr_t dblkno, int size, daddr_t *rablkno, int *rabsize, int cnt,
327     struct ucred *cred, int flags, void (*ckhashfunc)(struct buf *),
328     struct buf **bpp)
329 {
330 	int error;
331 
332 	flags |= GB_CVTENXIO;
333 	error = breadn_flags(vp, lblkno, dblkno, size, rablkno, rabsize, cnt,
334 	    cred, flags, ckhashfunc, bpp);
335 	if (error != 0 && ffs_fsfail_cleanup(ump, error)) {
336 		error = getblkx(vp, lblkno, dblkno, size, 0, 0, flags, bpp);
337 		KASSERT(error == 0, ("getblkx failed"));
338 		vfs_bio_bzero_buf(*bpp, 0, size);
339 	}
340 	return (error);
341 }
342 
343 static int
344 ffs_mount(struct mount *mp)
345 {
346 	struct vnode *devvp, *odevvp;
347 	struct thread *td;
348 	struct ufsmount *ump = NULL;
349 	struct fs *fs;
350 	int error, flags;
351 	int error1 __diagused;
352 	uint64_t mntorflags, saved_mnt_flag;
353 	accmode_t accmode;
354 	struct nameidata ndp;
355 	char *fspec;
356 	bool mounted_softdep;
357 
358 	td = curthread;
359 	if (vfs_filteropt(mp->mnt_optnew, ffs_opts))
360 		return (EINVAL);
361 	if (uma_inode == NULL) {
362 		uma_inode = uma_zcreate("FFS inode",
363 		    sizeof(struct inode), NULL, NULL, NULL, NULL,
364 		    UMA_ALIGN_PTR, 0);
365 		uma_ufs1 = uma_zcreate("FFS1 dinode",
366 		    sizeof(struct ufs1_dinode), NULL, NULL, NULL, NULL,
367 		    UMA_ALIGN_PTR, 0);
368 		uma_ufs2 = uma_zcreate("FFS2 dinode",
369 		    sizeof(struct ufs2_dinode), NULL, NULL, NULL, NULL,
370 		    UMA_ALIGN_PTR, 0);
371 		VFS_SMR_ZONE_SET(uma_inode);
372 	}
373 
374 	vfs_deleteopt(mp->mnt_optnew, "groupquota");
375 	vfs_deleteopt(mp->mnt_optnew, "userquota");
376 
377 	fspec = vfs_getopts(mp->mnt_optnew, "from", &error);
378 	if (error)
379 		return (error);
380 
381 	mntorflags = 0;
382 	if (vfs_getopt(mp->mnt_optnew, "untrusted", NULL, NULL) == 0)
383 		mntorflags |= MNT_UNTRUSTED;
384 
385 	if (vfs_getopt(mp->mnt_optnew, "acls", NULL, NULL) == 0)
386 		mntorflags |= MNT_ACLS;
387 
388 	if (vfs_getopt(mp->mnt_optnew, "snapshot", NULL, NULL) == 0) {
389 		mntorflags |= MNT_SNAPSHOT;
390 		/*
391 		 * Once we have set the MNT_SNAPSHOT flag, do not
392 		 * persist "snapshot" in the options list.
393 		 */
394 		vfs_deleteopt(mp->mnt_optnew, "snapshot");
395 		vfs_deleteopt(mp->mnt_opt, "snapshot");
396 	}
397 
398 	if (vfs_getopt(mp->mnt_optnew, "nfsv4acls", NULL, NULL) == 0) {
399 		if (mntorflags & MNT_ACLS) {
400 			vfs_mount_error(mp,
401 			    "\"acls\" and \"nfsv4acls\" options "
402 			    "are mutually exclusive");
403 			return (EINVAL);
404 		}
405 		mntorflags |= MNT_NFS4ACLS;
406 	}
407 
408 	MNT_ILOCK(mp);
409 	mp->mnt_kern_flag &= ~MNTK_FPLOOKUP;
410 	mp->mnt_flag |= mntorflags;
411 	MNT_IUNLOCK(mp);
412 
413 	/*
414 	 * If this is a snapshot request, take the snapshot.
415 	 */
416 	if (mp->mnt_flag & MNT_SNAPSHOT)
417 		return (ffs_snapshot(mp, fspec));
418 
419 	/*
420 	 * Must not call namei() while owning busy ref.
421 	 */
422 	if (mp->mnt_flag & MNT_UPDATE)
423 		vfs_unbusy(mp);
424 
425 	/*
426 	 * Not an update, or updating the name: look up the name
427 	 * and verify that it refers to a sensible disk device.
428 	 */
429 	NDINIT(&ndp, LOOKUP, FOLLOW | LOCKLEAF, UIO_SYSSPACE, fspec);
430 	error = namei(&ndp);
431 	if ((mp->mnt_flag & MNT_UPDATE) != 0) {
432 		/*
433 		 * Unmount does not start if MNT_UPDATE is set.  Mount
434 		 * update busies mp before setting MNT_UPDATE.  We
435 		 * must be able to retain our busy ref successfully,
436 		 * without sleep.
437 		 */
438 		error1 = vfs_busy(mp, MBF_NOWAIT);
439 		MPASS(error1 == 0);
440 	}
441 	if (error != 0)
442 		return (error);
443 	NDFREE_PNBUF(&ndp);
444 	if (!vn_isdisk_error(ndp.ni_vp, &error)) {
445 		vput(ndp.ni_vp);
446 		return (error);
447 	}
448 
449 	/*
450 	 * If mount by non-root, then verify that user has necessary
451 	 * permissions on the device.
452 	 */
453 	accmode = VREAD;
454 	if ((mp->mnt_flag & MNT_RDONLY) == 0)
455 		accmode |= VWRITE;
456 	error = VOP_ACCESS(ndp.ni_vp, accmode, td->td_ucred, td);
457 	if (error)
458 		error = priv_check(td, PRIV_VFS_MOUNT_PERM);
459 	if (error) {
460 		vput(ndp.ni_vp);
461 		return (error);
462 	}
463 
464 	/*
465 	 * New mount
466 	 *
467 	 * We need the name for the mount point (also used for
468 	 * "last mounted on") copied in. If an error occurs,
469 	 * the mount point is discarded by the upper level code.
470 	 * Note that vfs_mount_alloc() populates f_mntonname for us.
471 	 */
472 	if ((mp->mnt_flag & MNT_UPDATE) == 0) {
473 		if ((error = ffs_mountfs(ndp.ni_vp, mp, td)) != 0) {
474 			vrele(ndp.ni_vp);
475 			return (error);
476 		}
477 	} else {
478 		/*
479 		 * When updating, check whether changing from read-only to
480 		 * read/write; if there is no device name, that's all we do.
481 		 */
482 		ump = VFSTOUFS(mp);
483 		fs = ump->um_fs;
484 		odevvp = ump->um_odevvp;
485 		devvp = ump->um_devvp;
486 
487 		/*
488 		 * If it's not the same vnode, or at least the same device
489 		 * then it's not correct.
490 		 */
491 		if (ndp.ni_vp->v_rdev != ump->um_odevvp->v_rdev)
492 			error = EINVAL; /* needs translation */
493 		vput(ndp.ni_vp);
494 		if (error)
495 			return (error);
496 		if (fs->fs_ronly == 0 &&
497 		    vfs_flagopt(mp->mnt_optnew, "ro", NULL, 0)) {
498 			/*
499 			 * Flush any dirty data and suspend filesystem.
500 			 */
501 			if ((error = vn_start_write(NULL, &mp, V_WAIT)) != 0)
502 				return (error);
503 			error = vfs_write_suspend_umnt(mp);
504 			if (error != 0)
505 				return (error);
506 
507 			fs->fs_ronly = 1;
508 			if (MOUNTEDSOFTDEP(mp)) {
509 				MNT_ILOCK(mp);
510 				mp->mnt_flag &= ~MNT_SOFTDEP;
511 				MNT_IUNLOCK(mp);
512 				mounted_softdep = true;
513 			} else
514 				mounted_softdep = false;
515 
516 			/*
517 			 * Check for and optionally get rid of files open
518 			 * for writing.
519 			 */
520 			flags = WRITECLOSE;
521 			if (mp->mnt_flag & MNT_FORCE)
522 				flags |= FORCECLOSE;
523 			if (mounted_softdep) {
524 				error = softdep_flushfiles(mp, flags, td);
525 			} else {
526 				error = ffs_flushfiles(mp, flags, td);
527 			}
528 			if (error) {
529 				fs->fs_ronly = 0;
530 				if (mounted_softdep) {
531 					MNT_ILOCK(mp);
532 					mp->mnt_flag |= MNT_SOFTDEP;
533 					MNT_IUNLOCK(mp);
534 				}
535 				vfs_write_resume(mp, 0);
536 				return (error);
537 			}
538 
539 			if (fs->fs_pendingblocks != 0 ||
540 			    fs->fs_pendinginodes != 0) {
541 				printf("WARNING: %s Update error: blocks %jd "
542 				    "files %d\n", fs->fs_fsmnt,
543 				    (intmax_t)fs->fs_pendingblocks,
544 				    fs->fs_pendinginodes);
545 				fs->fs_pendingblocks = 0;
546 				fs->fs_pendinginodes = 0;
547 			}
548 			if ((fs->fs_flags & (FS_UNCLEAN | FS_NEEDSFSCK)) == 0)
549 				fs->fs_clean = 1;
550 			if ((error = ffs_sbupdate(ump, MNT_WAIT, 0)) != 0) {
551 				fs->fs_ronly = 0;
552 				fs->fs_clean = 0;
553 				if (mounted_softdep) {
554 					MNT_ILOCK(mp);
555 					mp->mnt_flag |= MNT_SOFTDEP;
556 					MNT_IUNLOCK(mp);
557 				}
558 				vfs_write_resume(mp, 0);
559 				return (error);
560 			}
561 			if (mounted_softdep)
562 				softdep_unmount(mp);
563 			g_topology_lock();
564 			/*
565 			 * Drop our write and exclusive access.
566 			 */
567 			g_access(ump->um_cp, 0, -1, -1);
568 			g_topology_unlock();
569 			MNT_ILOCK(mp);
570 			mp->mnt_flag |= MNT_RDONLY;
571 			MNT_IUNLOCK(mp);
572 			/*
573 			 * Allow the writers to note that filesystem
574 			 * is ro now.
575 			 */
576 			vfs_write_resume(mp, 0);
577 		}
578 		if ((mp->mnt_flag & MNT_RELOAD) &&
579 		    (error = ffs_reload(mp, 0)) != 0)
580 			return (error);
581 		if (fs->fs_ronly &&
582 		    !vfs_flagopt(mp->mnt_optnew, "ro", NULL, 0)) {
583 			/*
584 			 * If upgrade to read-write by non-root, then verify
585 			 * that user has necessary permissions on the device.
586 			 */
587 			vn_lock(odevvp, LK_EXCLUSIVE | LK_RETRY);
588 			error = VOP_ACCESS(odevvp, VREAD | VWRITE,
589 			    td->td_ucred, td);
590 			if (error)
591 				error = priv_check(td, PRIV_VFS_MOUNT_PERM);
592 			VOP_UNLOCK(odevvp);
593 			if (error) {
594 				return (error);
595 			}
596 			fs->fs_flags &= ~FS_UNCLEAN;
597 			if (fs->fs_clean == 0) {
598 				fs->fs_flags |= FS_UNCLEAN;
599 				if ((mp->mnt_flag & MNT_FORCE) ||
600 				    ((fs->fs_flags &
601 				     (FS_SUJ | FS_NEEDSFSCK)) == 0 &&
602 				     (fs->fs_flags & FS_DOSOFTDEP))) {
603 					printf("WARNING: %s was not properly "
604 					   "dismounted\n", fs->fs_fsmnt);
605 				} else {
606 					vfs_mount_error(mp,
607 					   "R/W mount of %s denied. %s.%s",
608 					   fs->fs_fsmnt,
609 					   "Filesystem is not clean - run fsck",
610 					   (fs->fs_flags & FS_SUJ) == 0 ? "" :
611 					   " Forced mount will invalidate"
612 					   " journal contents");
613 					return (EPERM);
614 				}
615 			}
616 			g_topology_lock();
617 			/*
618 			 * Request exclusive write access.
619 			 */
620 			error = g_access(ump->um_cp, 0, 1, 1);
621 			g_topology_unlock();
622 			if (error)
623 				return (error);
624 			if ((error = vn_start_write(NULL, &mp, V_WAIT)) != 0)
625 				return (error);
626 			error = vfs_write_suspend_umnt(mp);
627 			if (error != 0)
628 				return (error);
629 			fs->fs_ronly = 0;
630 			MNT_ILOCK(mp);
631 			saved_mnt_flag = MNT_RDONLY;
632 			if (MOUNTEDSOFTDEP(mp) && (mp->mnt_flag &
633 			    MNT_ASYNC) != 0)
634 				saved_mnt_flag |= MNT_ASYNC;
635 			mp->mnt_flag &= ~saved_mnt_flag;
636 			MNT_IUNLOCK(mp);
637 			fs->fs_mtime = time_second;
638 			/* check to see if we need to start softdep */
639 			if ((fs->fs_flags & FS_DOSOFTDEP) &&
640 			    (error = softdep_mount(devvp, mp, fs, td->td_ucred))){
641 				fs->fs_ronly = 1;
642 				MNT_ILOCK(mp);
643 				mp->mnt_flag |= saved_mnt_flag;
644 				MNT_IUNLOCK(mp);
645 				vfs_write_resume(mp, 0);
646 				return (error);
647 			}
648 			fs->fs_clean = 0;
649 			if ((error = ffs_sbupdate(ump, MNT_WAIT, 0)) != 0) {
650 				fs->fs_ronly = 1;
651 				if ((fs->fs_flags & FS_DOSOFTDEP) != 0)
652 					softdep_unmount(mp);
653 				MNT_ILOCK(mp);
654 				mp->mnt_flag |= saved_mnt_flag;
655 				MNT_IUNLOCK(mp);
656 				vfs_write_resume(mp, 0);
657 				return (error);
658 			}
659 			if (fs->fs_snapinum[0] != 0)
660 				ffs_snapshot_mount(mp);
661 			vfs_write_resume(mp, 0);
662 		}
663 		/*
664 		 * Soft updates is incompatible with "async",
665 		 * so if we are doing softupdates stop the user
666 		 * from setting the async flag in an update.
667 		 * Softdep_mount() clears it in an initial mount
668 		 * or ro->rw remount.
669 		 */
670 		if (MOUNTEDSOFTDEP(mp)) {
671 			/* XXX: Reset too late ? */
672 			MNT_ILOCK(mp);
673 			mp->mnt_flag &= ~MNT_ASYNC;
674 			MNT_IUNLOCK(mp);
675 		}
676 		/*
677 		 * Keep MNT_ACLS flag if it is stored in superblock.
678 		 */
679 		if ((fs->fs_flags & FS_ACLS) != 0) {
680 			/* XXX: Set too late ? */
681 			MNT_ILOCK(mp);
682 			mp->mnt_flag |= MNT_ACLS;
683 			MNT_IUNLOCK(mp);
684 		}
685 
686 		if ((fs->fs_flags & FS_NFS4ACLS) != 0) {
687 			/* XXX: Set too late ? */
688 			MNT_ILOCK(mp);
689 			mp->mnt_flag |= MNT_NFS4ACLS;
690 			MNT_IUNLOCK(mp);
691 		}
692 
693 	}
694 
695 	MNT_ILOCK(mp);
696 	/*
697 	 * This is racy versus lookup, see ufs_fplookup_vexec for details.
698 	 */
699 	if ((mp->mnt_kern_flag & MNTK_FPLOOKUP) != 0)
700 		panic("MNTK_FPLOOKUP set on mount %p when it should not be", mp);
701 	if ((mp->mnt_flag & (MNT_ACLS | MNT_NFS4ACLS | MNT_UNION)) == 0)
702 		mp->mnt_kern_flag |= MNTK_FPLOOKUP;
703 	MNT_IUNLOCK(mp);
704 
705 	vfs_mountedfrom(mp, fspec);
706 	return (0);
707 }
708 
709 /*
710  * Compatibility with old mount system call.
711  */
712 
713 static int
714 ffs_cmount(struct mntarg *ma, void *data, uint64_t flags)
715 {
716 	struct ufs_args args;
717 	int error;
718 
719 	if (data == NULL)
720 		return (EINVAL);
721 	error = copyin(data, &args, sizeof args);
722 	if (error)
723 		return (error);
724 
725 	ma = mount_argsu(ma, "from", args.fspec, MAXPATHLEN);
726 	ma = mount_arg(ma, "export", &args.export, sizeof(args.export));
727 	error = kernel_mount(ma, flags);
728 
729 	return (error);
730 }
731 
732 /*
733  * Reload all incore data for a filesystem (used after running fsck on
734  * the root filesystem and finding things to fix). If the 'force' flag
735  * is 0, the filesystem must be mounted read-only.
736  *
737  * Things to do to update the mount:
738  *	1) invalidate all cached meta-data.
739  *	2) re-read superblock from disk.
740  *	3) re-read summary information from disk.
741  *	4) invalidate all inactive vnodes.
742  *	5) clear MNTK_SUSPEND2 and MNTK_SUSPENDED flags, allowing secondary
743  *	   writers, if requested.
744  *	6) invalidate all cached file data.
745  *	7) re-read inode data for all active vnodes.
746  */
747 int
748 ffs_reload(struct mount *mp, int flags)
749 {
750 	struct vnode *vp, *mvp, *devvp;
751 	struct inode *ip;
752 	void *space;
753 	struct buf *bp;
754 	struct fs *fs, *newfs;
755 	struct ufsmount *ump;
756 	ufs2_daddr_t sblockloc;
757 	int i, blks, error;
758 	u_long size;
759 	int32_t *lp;
760 
761 	ump = VFSTOUFS(mp);
762 
763 	MNT_ILOCK(mp);
764 	if ((mp->mnt_flag & MNT_RDONLY) == 0 && (flags & FFSR_FORCE) == 0) {
765 		MNT_IUNLOCK(mp);
766 		return (EINVAL);
767 	}
768 	MNT_IUNLOCK(mp);
769 
770 	/*
771 	 * Step 1: invalidate all cached meta-data.
772 	 */
773 	devvp = VFSTOUFS(mp)->um_devvp;
774 	vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
775 	if (vinvalbuf(devvp, 0, 0, 0) != 0)
776 		panic("ffs_reload: dirty1");
777 	VOP_UNLOCK(devvp);
778 
779 	/*
780 	 * Step 2: re-read superblock from disk.
781 	 */
782 	fs = VFSTOUFS(mp)->um_fs;
783 	if ((error = bread(devvp, btodb(fs->fs_sblockloc), fs->fs_sbsize,
784 	    NOCRED, &bp)) != 0)
785 		return (error);
786 	newfs = (struct fs *)bp->b_data;
787 	if ((newfs->fs_magic != FS_UFS1_MAGIC &&
788 	     newfs->fs_magic != FS_UFS2_MAGIC) ||
789 	    newfs->fs_bsize > MAXBSIZE ||
790 	    newfs->fs_bsize < sizeof(struct fs)) {
791 			brelse(bp);
792 			return (EIO);		/* XXX needs translation */
793 	}
794 	/*
795 	 * Preserve the summary information, read-only status, and
796 	 * superblock location by copying these fields into our new
797 	 * superblock before using it to update the existing superblock.
798 	 */
799 	newfs->fs_si = fs->fs_si;
800 	newfs->fs_ronly = fs->fs_ronly;
801 	sblockloc = fs->fs_sblockloc;
802 	bcopy(newfs, fs, (u_int)fs->fs_sbsize);
803 	brelse(bp);
804 	ump->um_bsize = fs->fs_bsize;
805 	ump->um_maxsymlinklen = fs->fs_maxsymlinklen;
806 	ffs_oldfscompat_read(fs, VFSTOUFS(mp), sblockloc);
807 	UFS_LOCK(ump);
808 	if (fs->fs_pendingblocks != 0 || fs->fs_pendinginodes != 0) {
809 		printf("WARNING: %s: reload pending error: blocks %jd "
810 		    "files %d\n", fs->fs_fsmnt, (intmax_t)fs->fs_pendingblocks,
811 		    fs->fs_pendinginodes);
812 		fs->fs_pendingblocks = 0;
813 		fs->fs_pendinginodes = 0;
814 	}
815 	UFS_UNLOCK(ump);
816 
817 	/*
818 	 * Step 3: re-read summary information from disk.
819 	 */
820 	size = fs->fs_cssize;
821 	blks = howmany(size, fs->fs_fsize);
822 	if (fs->fs_contigsumsize > 0)
823 		size += fs->fs_ncg * sizeof(int32_t);
824 	size += fs->fs_ncg * sizeof(u_int8_t);
825 	free(fs->fs_csp, M_UFSMNT);
826 	space = malloc(size, M_UFSMNT, M_WAITOK);
827 	fs->fs_csp = space;
828 	for (i = 0; i < blks; i += fs->fs_frag) {
829 		size = fs->fs_bsize;
830 		if (i + fs->fs_frag > blks)
831 			size = (blks - i) * fs->fs_fsize;
832 		error = bread(devvp, fsbtodb(fs, fs->fs_csaddr + i), size,
833 		    NOCRED, &bp);
834 		if (error)
835 			return (error);
836 		bcopy(bp->b_data, space, (u_int)size);
837 		space = (char *)space + size;
838 		brelse(bp);
839 	}
840 	/*
841 	 * We no longer know anything about clusters per cylinder group.
842 	 */
843 	if (fs->fs_contigsumsize > 0) {
844 		fs->fs_maxcluster = lp = space;
845 		for (i = 0; i < fs->fs_ncg; i++)
846 			*lp++ = fs->fs_contigsumsize;
847 		space = lp;
848 	}
849 	size = fs->fs_ncg * sizeof(u_int8_t);
850 	fs->fs_contigdirs = (u_int8_t *)space;
851 	bzero(fs->fs_contigdirs, size);
852 	if ((flags & FFSR_UNSUSPEND) != 0) {
853 		MNT_ILOCK(mp);
854 		mp->mnt_kern_flag &= ~(MNTK_SUSPENDED | MNTK_SUSPEND2);
855 		wakeup(&mp->mnt_flag);
856 		MNT_IUNLOCK(mp);
857 	}
858 
859 loop:
860 	MNT_VNODE_FOREACH_ALL(vp, mp, mvp) {
861 		/*
862 		 * Skip syncer vnode.
863 		 */
864 		if (vp->v_type == VNON) {
865 			VI_UNLOCK(vp);
866 			continue;
867 		}
868 		/*
869 		 * Step 4: invalidate all cached file data.
870 		 */
871 		if (vget(vp, LK_EXCLUSIVE | LK_INTERLOCK)) {
872 			MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
873 			goto loop;
874 		}
875 		if (vinvalbuf(vp, 0, 0, 0))
876 			panic("ffs_reload: dirty2");
877 		/*
878 		 * Step 5: re-read inode data for all active vnodes.
879 		 */
880 		ip = VTOI(vp);
881 		error =
882 		    bread(devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
883 		    (int)fs->fs_bsize, NOCRED, &bp);
884 		if (error) {
885 			vput(vp);
886 			MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
887 			return (error);
888 		}
889 		if ((error = ffs_load_inode(bp, ip, fs, ip->i_number)) != 0) {
890 			brelse(bp);
891 			vput(vp);
892 			MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
893 			return (error);
894 		}
895 		ip->i_effnlink = ip->i_nlink;
896 		brelse(bp);
897 		vput(vp);
898 	}
899 	return (0);
900 }
901 
902 /*
903  * Common code for mount and mountroot
904  */
905 static int
906 ffs_mountfs(struct vnode *odevvp, struct mount *mp, struct thread *td)
907 {
908 	struct ufsmount *ump;
909 	struct fs *fs;
910 	struct cdev *dev;
911 	int error, i, len, ronly;
912 	struct ucred *cred;
913 	struct g_consumer *cp;
914 	struct mount *nmp;
915 	struct vnode *devvp;
916 	int candelete, canspeedup;
917 
918 	fs = NULL;
919 	ump = NULL;
920 	cred = td ? td->td_ucred : NOCRED;
921 	ronly = (mp->mnt_flag & MNT_RDONLY) != 0;
922 
923 	devvp = mntfs_allocvp(mp, odevvp);
924 	VOP_UNLOCK(odevvp);
925 	vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
926 	KASSERT(devvp->v_type == VCHR, ("reclaimed devvp"));
927 	dev = devvp->v_rdev;
928 	KASSERT(dev->si_snapdata == NULL, ("non-NULL snapshot data"));
929 	if (atomic_cmpset_acq_ptr((uintptr_t *)&dev->si_mountpt, 0,
930 	    (uintptr_t)mp) == 0) {
931 		mntfs_freevp(devvp);
932 		return (EBUSY);
933 	}
934 	g_topology_lock();
935 	error = g_vfs_open(devvp, &cp, "ffs", ronly ? 0 : 1);
936 	g_topology_unlock();
937 	if (error != 0) {
938 		atomic_store_rel_ptr((uintptr_t *)&dev->si_mountpt, 0);
939 		mntfs_freevp(devvp);
940 		return (error);
941 	}
942 	dev_ref(dev);
943 	devvp->v_bufobj.bo_ops = &ffs_ops;
944 	BO_LOCK(&odevvp->v_bufobj);
945 	odevvp->v_bufobj.bo_flag |= BO_NOBUFS;
946 	BO_UNLOCK(&odevvp->v_bufobj);
947 	VOP_UNLOCK(devvp);
948 	if (dev->si_iosize_max != 0)
949 		mp->mnt_iosize_max = dev->si_iosize_max;
950 	if (mp->mnt_iosize_max > maxphys)
951 		mp->mnt_iosize_max = maxphys;
952 	if ((SBLOCKSIZE % cp->provider->sectorsize) != 0) {
953 		error = EINVAL;
954 		vfs_mount_error(mp,
955 		    "Invalid sectorsize %d for superblock size %d",
956 		    cp->provider->sectorsize, SBLOCKSIZE);
957 		goto out;
958 	}
959 	/* fetch the superblock and summary information */
960 	if ((mp->mnt_flag & (MNT_ROOTFS | MNT_FORCE)) != 0)
961 		error = ffs_sbsearch(devvp, &fs, 0, M_UFSMNT, ffs_use_bread);
962 	else
963 		error = ffs_sbget(devvp, &fs, UFS_STDSB, 0, M_UFSMNT,
964 		    ffs_use_bread);
965 	if (error != 0)
966 		goto out;
967 	fs->fs_flags &= ~FS_UNCLEAN;
968 	if (fs->fs_clean == 0) {
969 		fs->fs_flags |= FS_UNCLEAN;
970 		if (ronly || (mp->mnt_flag & MNT_FORCE) ||
971 		    ((fs->fs_flags & (FS_SUJ | FS_NEEDSFSCK)) == 0 &&
972 		     (fs->fs_flags & FS_DOSOFTDEP))) {
973 			printf("WARNING: %s was not properly dismounted\n",
974 			    fs->fs_fsmnt);
975 		} else {
976 			vfs_mount_error(mp, "R/W mount of %s denied. %s%s",
977 			    fs->fs_fsmnt, "Filesystem is not clean - run fsck.",
978 			    (fs->fs_flags & FS_SUJ) == 0 ? "" :
979 			    " Forced mount will invalidate journal contents");
980 			error = EPERM;
981 			goto out;
982 		}
983 		if ((fs->fs_pendingblocks != 0 || fs->fs_pendinginodes != 0) &&
984 		    (mp->mnt_flag & MNT_FORCE)) {
985 			printf("WARNING: %s: lost blocks %jd files %d\n",
986 			    fs->fs_fsmnt, (intmax_t)fs->fs_pendingblocks,
987 			    fs->fs_pendinginodes);
988 			fs->fs_pendingblocks = 0;
989 			fs->fs_pendinginodes = 0;
990 		}
991 	}
992 	if (fs->fs_pendingblocks != 0 || fs->fs_pendinginodes != 0) {
993 		printf("WARNING: %s: mount pending error: blocks %jd "
994 		    "files %d\n", fs->fs_fsmnt, (intmax_t)fs->fs_pendingblocks,
995 		    fs->fs_pendinginodes);
996 		fs->fs_pendingblocks = 0;
997 		fs->fs_pendinginodes = 0;
998 	}
999 	if ((fs->fs_flags & FS_GJOURNAL) != 0) {
1000 #ifdef UFS_GJOURNAL
1001 		/*
1002 		 * Get journal provider name.
1003 		 */
1004 		len = 1024;
1005 		mp->mnt_gjprovider = malloc((u_long)len, M_UFSMNT, M_WAITOK);
1006 		if (g_io_getattr("GJOURNAL::provider", cp, &len,
1007 		    mp->mnt_gjprovider) == 0) {
1008 			mp->mnt_gjprovider = realloc(mp->mnt_gjprovider, len,
1009 			    M_UFSMNT, M_WAITOK);
1010 			MNT_ILOCK(mp);
1011 			mp->mnt_flag |= MNT_GJOURNAL;
1012 			MNT_IUNLOCK(mp);
1013 		} else {
1014 			if ((mp->mnt_flag & MNT_RDONLY) == 0)
1015 				printf("WARNING: %s: GJOURNAL flag on fs "
1016 				    "but no gjournal provider below\n",
1017 				    mp->mnt_stat.f_mntonname);
1018 			free(mp->mnt_gjprovider, M_UFSMNT);
1019 			mp->mnt_gjprovider = NULL;
1020 		}
1021 #else
1022 		printf("WARNING: %s: GJOURNAL flag on fs but no "
1023 		    "UFS_GJOURNAL support\n", mp->mnt_stat.f_mntonname);
1024 #endif
1025 	} else {
1026 		mp->mnt_gjprovider = NULL;
1027 	}
1028 	ump = malloc(sizeof *ump, M_UFSMNT, M_WAITOK | M_ZERO);
1029 	ump->um_cp = cp;
1030 	ump->um_bo = &devvp->v_bufobj;
1031 	ump->um_fs = fs;
1032 	if (fs->fs_magic == FS_UFS1_MAGIC) {
1033 		ump->um_fstype = UFS1;
1034 		ump->um_balloc = ffs_balloc_ufs1;
1035 	} else {
1036 		ump->um_fstype = UFS2;
1037 		ump->um_balloc = ffs_balloc_ufs2;
1038 	}
1039 	ump->um_blkatoff = ffs_blkatoff;
1040 	ump->um_truncate = ffs_truncate;
1041 	ump->um_update = ffs_update;
1042 	ump->um_valloc = ffs_valloc;
1043 	ump->um_vfree = ffs_vfree;
1044 	ump->um_ifree = ffs_ifree;
1045 	ump->um_rdonly = ffs_rdonly;
1046 	ump->um_snapgone = ffs_snapgone;
1047 	if ((mp->mnt_flag & MNT_UNTRUSTED) != 0)
1048 		ump->um_check_blkno = ffs_check_blkno;
1049 	else
1050 		ump->um_check_blkno = NULL;
1051 	mtx_init(UFS_MTX(ump), "FFS", "FFS Lock", MTX_DEF);
1052 	sx_init(&ump->um_checkpath_lock, "uchpth");
1053 	ffs_oldfscompat_read(fs, ump, fs->fs_sblockloc);
1054 	fs->fs_ronly = ronly;
1055 	fs->fs_active = NULL;
1056 	mp->mnt_data = ump;
1057 	mp->mnt_stat.f_fsid.val[0] = fs->fs_id[0];
1058 	mp->mnt_stat.f_fsid.val[1] = fs->fs_id[1];
1059 	nmp = NULL;
1060 	if (fs->fs_id[0] == 0 || fs->fs_id[1] == 0 ||
1061 	    (nmp = vfs_getvfs(&mp->mnt_stat.f_fsid))) {
1062 		if (nmp)
1063 			vfs_rel(nmp);
1064 		vfs_getnewfsid(mp);
1065 	}
1066 	ump->um_bsize = fs->fs_bsize;
1067 	ump->um_maxsymlinklen = fs->fs_maxsymlinklen;
1068 	MNT_ILOCK(mp);
1069 	mp->mnt_flag |= MNT_LOCAL;
1070 	MNT_IUNLOCK(mp);
1071 	if ((fs->fs_flags & FS_MULTILABEL) != 0) {
1072 #ifdef MAC
1073 		MNT_ILOCK(mp);
1074 		mp->mnt_flag |= MNT_MULTILABEL;
1075 		MNT_IUNLOCK(mp);
1076 #else
1077 		printf("WARNING: %s: multilabel flag on fs but "
1078 		    "no MAC support\n", mp->mnt_stat.f_mntonname);
1079 #endif
1080 	}
1081 	if ((fs->fs_flags & FS_ACLS) != 0) {
1082 #ifdef UFS_ACL
1083 		MNT_ILOCK(mp);
1084 
1085 		if (mp->mnt_flag & MNT_NFS4ACLS)
1086 			printf("WARNING: %s: ACLs flag on fs conflicts with "
1087 			    "\"nfsv4acls\" mount option; option ignored\n",
1088 			    mp->mnt_stat.f_mntonname);
1089 		mp->mnt_flag &= ~MNT_NFS4ACLS;
1090 		mp->mnt_flag |= MNT_ACLS;
1091 
1092 		MNT_IUNLOCK(mp);
1093 #else
1094 		printf("WARNING: %s: ACLs flag on fs but no ACLs support\n",
1095 		    mp->mnt_stat.f_mntonname);
1096 #endif
1097 	}
1098 	if ((fs->fs_flags & FS_NFS4ACLS) != 0) {
1099 #ifdef UFS_ACL
1100 		MNT_ILOCK(mp);
1101 
1102 		if (mp->mnt_flag & MNT_ACLS)
1103 			printf("WARNING: %s: NFSv4 ACLs flag on fs conflicts "
1104 			    "with \"acls\" mount option; option ignored\n",
1105 			    mp->mnt_stat.f_mntonname);
1106 		mp->mnt_flag &= ~MNT_ACLS;
1107 		mp->mnt_flag |= MNT_NFS4ACLS;
1108 
1109 		MNT_IUNLOCK(mp);
1110 #else
1111 		printf("WARNING: %s: NFSv4 ACLs flag on fs but no "
1112 		    "ACLs support\n", mp->mnt_stat.f_mntonname);
1113 #endif
1114 	}
1115 	if ((fs->fs_flags & FS_TRIM) != 0) {
1116 		len = sizeof(int);
1117 		if (g_io_getattr("GEOM::candelete", cp, &len,
1118 		    &candelete) == 0) {
1119 			if (candelete)
1120 				ump->um_flags |= UM_CANDELETE;
1121 			else
1122 				printf("WARNING: %s: TRIM flag on fs but disk "
1123 				    "does not support TRIM\n",
1124 				    mp->mnt_stat.f_mntonname);
1125 		} else {
1126 			printf("WARNING: %s: TRIM flag on fs but disk does "
1127 			    "not confirm that it supports TRIM\n",
1128 			    mp->mnt_stat.f_mntonname);
1129 		}
1130 		if (((ump->um_flags) & UM_CANDELETE) != 0) {
1131 			ump->um_trim_tq = taskqueue_create("trim", M_WAITOK,
1132 			    taskqueue_thread_enqueue, &ump->um_trim_tq);
1133 			taskqueue_start_threads(&ump->um_trim_tq, 1, PVFS,
1134 			    "%s trim", mp->mnt_stat.f_mntonname);
1135 			ump->um_trimhash = hashinit(MAXTRIMIO, M_TRIM,
1136 			    &ump->um_trimlisthashsize);
1137 		}
1138 	}
1139 
1140 	len = sizeof(int);
1141 	if (g_io_getattr("GEOM::canspeedup", cp, &len, &canspeedup) == 0) {
1142 		if (canspeedup)
1143 			ump->um_flags |= UM_CANSPEEDUP;
1144 	}
1145 
1146 	ump->um_mountp = mp;
1147 	ump->um_dev = dev;
1148 	ump->um_devvp = devvp;
1149 	ump->um_odevvp = odevvp;
1150 	ump->um_nindir = fs->fs_nindir;
1151 	ump->um_bptrtodb = fs->fs_fsbtodb;
1152 	ump->um_seqinc = fs->fs_frag;
1153 	for (i = 0; i < MAXQUOTAS; i++)
1154 		ump->um_quotas[i] = NULLVP;
1155 #ifdef UFS_EXTATTR
1156 	ufs_extattr_uepm_init(&ump->um_extattr);
1157 #endif
1158 	/*
1159 	 * Set FS local "last mounted on" information (NULL pad)
1160 	 */
1161 	bzero(fs->fs_fsmnt, MAXMNTLEN);
1162 	strlcpy(fs->fs_fsmnt, mp->mnt_stat.f_mntonname, MAXMNTLEN);
1163 	mp->mnt_stat.f_iosize = fs->fs_bsize;
1164 
1165 	if (mp->mnt_flag & MNT_ROOTFS) {
1166 		/*
1167 		 * Root mount; update timestamp in mount structure.
1168 		 * this will be used by the common root mount code
1169 		 * to update the system clock.
1170 		 */
1171 		mp->mnt_time = fs->fs_time;
1172 	}
1173 
1174 	if (ronly == 0) {
1175 		fs->fs_mtime = time_second;
1176 		if ((fs->fs_flags & FS_DOSOFTDEP) &&
1177 		    (error = softdep_mount(devvp, mp, fs, cred)) != 0) {
1178 			ffs_flushfiles(mp, FORCECLOSE, td);
1179 			goto out;
1180 		}
1181 		if (fs->fs_snapinum[0] != 0)
1182 			ffs_snapshot_mount(mp);
1183 		fs->fs_fmod = 1;
1184 		fs->fs_clean = 0;
1185 		(void) ffs_sbupdate(ump, MNT_WAIT, 0);
1186 	}
1187 	/*
1188 	 * Initialize filesystem state information in mount struct.
1189 	 */
1190 	MNT_ILOCK(mp);
1191 	mp->mnt_kern_flag |= MNTK_LOOKUP_SHARED | MNTK_EXTENDED_SHARED |
1192 	    MNTK_NO_IOPF | MNTK_UNMAPPED_BUFS | MNTK_USES_BCACHE;
1193 	MNT_IUNLOCK(mp);
1194 #ifdef UFS_EXTATTR
1195 #ifdef UFS_EXTATTR_AUTOSTART
1196 	/*
1197 	 *
1198 	 * Auto-starting does the following:
1199 	 *	- check for /.attribute in the fs, and extattr_start if so
1200 	 *	- for each file in .attribute, enable that file with
1201 	 * 	  an attribute of the same name.
1202 	 * Not clear how to report errors -- probably eat them.
1203 	 * This would all happen while the filesystem was busy/not
1204 	 * available, so would effectively be "atomic".
1205 	 */
1206 	(void) ufs_extattr_autostart(mp, td);
1207 #endif /* !UFS_EXTATTR_AUTOSTART */
1208 #endif /* !UFS_EXTATTR */
1209 	return (0);
1210 out:
1211 	if (fs != NULL) {
1212 		free(fs->fs_csp, M_UFSMNT);
1213 		free(fs->fs_si, M_UFSMNT);
1214 		free(fs, M_UFSMNT);
1215 	}
1216 	if (cp != NULL) {
1217 		g_topology_lock();
1218 		g_vfs_close(cp);
1219 		g_topology_unlock();
1220 	}
1221 	if (ump != NULL) {
1222 		mtx_destroy(UFS_MTX(ump));
1223 		sx_destroy(&ump->um_checkpath_lock);
1224 		if (mp->mnt_gjprovider != NULL) {
1225 			free(mp->mnt_gjprovider, M_UFSMNT);
1226 			mp->mnt_gjprovider = NULL;
1227 		}
1228 		MPASS(ump->um_softdep == NULL);
1229 		free(ump, M_UFSMNT);
1230 		mp->mnt_data = NULL;
1231 	}
1232 	BO_LOCK(&odevvp->v_bufobj);
1233 	odevvp->v_bufobj.bo_flag &= ~BO_NOBUFS;
1234 	BO_UNLOCK(&odevvp->v_bufobj);
1235 	atomic_store_rel_ptr((uintptr_t *)&dev->si_mountpt, 0);
1236 	vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
1237 	mntfs_freevp(devvp);
1238 	dev_rel(dev);
1239 	return (error);
1240 }
1241 
1242 /*
1243  * A read function for use by filesystem-layer routines.
1244  */
1245 static int
1246 ffs_use_bread(void *devfd, off_t loc, void **bufp, int size)
1247 {
1248 	struct buf *bp;
1249 	int error;
1250 
1251 	KASSERT(*bufp == NULL, ("ffs_use_bread: non-NULL *bufp %p\n", *bufp));
1252 	*bufp = malloc(size, M_UFSMNT, M_WAITOK);
1253 	if ((error = bread((struct vnode *)devfd, btodb(loc), size, NOCRED,
1254 	    &bp)) != 0)
1255 		return (error);
1256 	bcopy(bp->b_data, *bufp, size);
1257 	bp->b_flags |= B_INVAL | B_NOCACHE;
1258 	brelse(bp);
1259 	return (0);
1260 }
1261 
1262 static int bigcgs = 0;
1263 SYSCTL_INT(_debug, OID_AUTO, bigcgs, CTLFLAG_RW, &bigcgs, 0, "");
1264 
1265 /*
1266  * Sanity checks for loading old filesystem superblocks.
1267  * See ffs_oldfscompat_write below for unwound actions.
1268  *
1269  * XXX - Parts get retired eventually.
1270  * Unfortunately new bits get added.
1271  */
1272 static void
1273 ffs_oldfscompat_read(struct fs *fs,
1274 	struct ufsmount *ump,
1275 	ufs2_daddr_t sblockloc)
1276 {
1277 	off_t maxfilesize;
1278 
1279 	/*
1280 	 * If not yet done, update fs_flags location and value of fs_sblockloc.
1281 	 */
1282 	if ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0) {
1283 		fs->fs_flags = fs->fs_old_flags;
1284 		fs->fs_old_flags |= FS_FLAGS_UPDATED;
1285 		fs->fs_sblockloc = sblockloc;
1286 	}
1287 	/*
1288 	 * If not yet done, update UFS1 superblock with new wider fields.
1289 	 */
1290 	if (fs->fs_magic == FS_UFS1_MAGIC && fs->fs_maxbsize != fs->fs_bsize) {
1291 		fs->fs_maxbsize = fs->fs_bsize;
1292 		fs->fs_time = fs->fs_old_time;
1293 		fs->fs_size = fs->fs_old_size;
1294 		fs->fs_dsize = fs->fs_old_dsize;
1295 		fs->fs_csaddr = fs->fs_old_csaddr;
1296 		fs->fs_cstotal.cs_ndir = fs->fs_old_cstotal.cs_ndir;
1297 		fs->fs_cstotal.cs_nbfree = fs->fs_old_cstotal.cs_nbfree;
1298 		fs->fs_cstotal.cs_nifree = fs->fs_old_cstotal.cs_nifree;
1299 		fs->fs_cstotal.cs_nffree = fs->fs_old_cstotal.cs_nffree;
1300 	}
1301 	if (fs->fs_magic == FS_UFS1_MAGIC &&
1302 	    fs->fs_old_inodefmt < FS_44INODEFMT) {
1303 		fs->fs_maxfilesize = ((uint64_t)1 << 31) - 1;
1304 		fs->fs_qbmask = ~fs->fs_bmask;
1305 		fs->fs_qfmask = ~fs->fs_fmask;
1306 	}
1307 	if (fs->fs_magic == FS_UFS1_MAGIC) {
1308 		ump->um_savedmaxfilesize = fs->fs_maxfilesize;
1309 		maxfilesize = (uint64_t)0x80000000 * fs->fs_bsize - 1;
1310 		if (fs->fs_maxfilesize > maxfilesize)
1311 			fs->fs_maxfilesize = maxfilesize;
1312 	}
1313 	/* Compatibility for old filesystems */
1314 	if (fs->fs_avgfilesize <= 0)
1315 		fs->fs_avgfilesize = AVFILESIZ;
1316 	if (fs->fs_avgfpdir <= 0)
1317 		fs->fs_avgfpdir = AFPDIR;
1318 	if (bigcgs) {
1319 		fs->fs_save_cgsize = fs->fs_cgsize;
1320 		fs->fs_cgsize = fs->fs_bsize;
1321 	}
1322 }
1323 
1324 /*
1325  * Unwinding superblock updates for old filesystems.
1326  * See ffs_oldfscompat_read above for details.
1327  *
1328  * XXX - Parts get retired eventually.
1329  * Unfortunately new bits get added.
1330  */
1331 void
1332 ffs_oldfscompat_write(struct fs *fs, struct ufsmount *ump)
1333 {
1334 
1335 	/*
1336 	 * Copy back UFS2 updated fields that UFS1 inspects.
1337 	 */
1338 	if (fs->fs_magic == FS_UFS1_MAGIC) {
1339 		fs->fs_old_time = fs->fs_time;
1340 		fs->fs_old_cstotal.cs_ndir = fs->fs_cstotal.cs_ndir;
1341 		fs->fs_old_cstotal.cs_nbfree = fs->fs_cstotal.cs_nbfree;
1342 		fs->fs_old_cstotal.cs_nifree = fs->fs_cstotal.cs_nifree;
1343 		fs->fs_old_cstotal.cs_nffree = fs->fs_cstotal.cs_nffree;
1344 		fs->fs_maxfilesize = ump->um_savedmaxfilesize;
1345 	}
1346 	if (bigcgs) {
1347 		fs->fs_cgsize = fs->fs_save_cgsize;
1348 		fs->fs_save_cgsize = 0;
1349 	}
1350 }
1351 
1352 /*
1353  * unmount system call
1354  */
1355 static int
1356 ffs_unmount(struct mount *mp, int mntflags)
1357 {
1358 	struct thread *td;
1359 	struct ufsmount *ump = VFSTOUFS(mp);
1360 	struct fs *fs;
1361 	int error, flags, susp;
1362 #ifdef UFS_EXTATTR
1363 	int e_restart;
1364 #endif
1365 
1366 	flags = 0;
1367 	td = curthread;
1368 	fs = ump->um_fs;
1369 	if (mntflags & MNT_FORCE)
1370 		flags |= FORCECLOSE;
1371 	susp = fs->fs_ronly == 0;
1372 #ifdef UFS_EXTATTR
1373 	if ((error = ufs_extattr_stop(mp, td))) {
1374 		if (error != EOPNOTSUPP)
1375 			printf("WARNING: unmount %s: ufs_extattr_stop "
1376 			    "returned errno %d\n", mp->mnt_stat.f_mntonname,
1377 			    error);
1378 		e_restart = 0;
1379 	} else {
1380 		ufs_extattr_uepm_destroy(&ump->um_extattr);
1381 		e_restart = 1;
1382 	}
1383 #endif
1384 	if (susp) {
1385 		error = vfs_write_suspend_umnt(mp);
1386 		if (error != 0)
1387 			goto fail1;
1388 	}
1389 	if (MOUNTEDSOFTDEP(mp))
1390 		error = softdep_flushfiles(mp, flags, td);
1391 	else
1392 		error = ffs_flushfiles(mp, flags, td);
1393 	if (error != 0 && !ffs_fsfail_cleanup(ump, error))
1394 		goto fail;
1395 
1396 	UFS_LOCK(ump);
1397 	if (fs->fs_pendingblocks != 0 || fs->fs_pendinginodes != 0) {
1398 		printf("WARNING: unmount %s: pending error: blocks %jd "
1399 		    "files %d\n", fs->fs_fsmnt, (intmax_t)fs->fs_pendingblocks,
1400 		    fs->fs_pendinginodes);
1401 		fs->fs_pendingblocks = 0;
1402 		fs->fs_pendinginodes = 0;
1403 	}
1404 	UFS_UNLOCK(ump);
1405 	if (MOUNTEDSOFTDEP(mp))
1406 		softdep_unmount(mp);
1407 	MPASS(ump->um_softdep == NULL);
1408 	if (fs->fs_ronly == 0) {
1409 		fs->fs_clean = fs->fs_flags & (FS_UNCLEAN|FS_NEEDSFSCK) ? 0 : 1;
1410 		error = ffs_sbupdate(ump, MNT_WAIT, 0);
1411 		if (ffs_fsfail_cleanup(ump, error))
1412 			error = 0;
1413 		if (error != 0 && !ffs_fsfail_cleanup(ump, error)) {
1414 			fs->fs_clean = 0;
1415 			goto fail;
1416 		}
1417 	}
1418 	if (susp)
1419 		vfs_write_resume(mp, VR_START_WRITE);
1420 	if (ump->um_trim_tq != NULL) {
1421 		MPASS(ump->um_trim_inflight == 0);
1422 		taskqueue_free(ump->um_trim_tq);
1423 		free (ump->um_trimhash, M_TRIM);
1424 	}
1425 	vn_lock(ump->um_devvp, LK_EXCLUSIVE | LK_RETRY);
1426 	g_topology_lock();
1427 	g_vfs_close(ump->um_cp);
1428 	g_topology_unlock();
1429 	BO_LOCK(&ump->um_odevvp->v_bufobj);
1430 	ump->um_odevvp->v_bufobj.bo_flag &= ~BO_NOBUFS;
1431 	BO_UNLOCK(&ump->um_odevvp->v_bufobj);
1432 	atomic_store_rel_ptr((uintptr_t *)&ump->um_dev->si_mountpt, 0);
1433 	mntfs_freevp(ump->um_devvp);
1434 	vrele(ump->um_odevvp);
1435 	dev_rel(ump->um_dev);
1436 	mtx_destroy(UFS_MTX(ump));
1437 	sx_destroy(&ump->um_checkpath_lock);
1438 	if (mp->mnt_gjprovider != NULL) {
1439 		free(mp->mnt_gjprovider, M_UFSMNT);
1440 		mp->mnt_gjprovider = NULL;
1441 	}
1442 	free(fs->fs_csp, M_UFSMNT);
1443 	free(fs->fs_si, M_UFSMNT);
1444 	free(fs, M_UFSMNT);
1445 	free(ump, M_UFSMNT);
1446 	mp->mnt_data = NULL;
1447 	MNT_ILOCK(mp);
1448 	mp->mnt_flag &= ~MNT_LOCAL;
1449 	MNT_IUNLOCK(mp);
1450 	if (td->td_su == mp) {
1451 		td->td_su = NULL;
1452 		vfs_rel(mp);
1453 	}
1454 	return (error);
1455 
1456 fail:
1457 	if (susp)
1458 		vfs_write_resume(mp, VR_START_WRITE);
1459 fail1:
1460 #ifdef UFS_EXTATTR
1461 	if (e_restart) {
1462 		ufs_extattr_uepm_init(&ump->um_extattr);
1463 #ifdef UFS_EXTATTR_AUTOSTART
1464 		(void) ufs_extattr_autostart(mp, td);
1465 #endif
1466 	}
1467 #endif
1468 
1469 	return (error);
1470 }
1471 
1472 /*
1473  * Flush out all the files in a filesystem.
1474  */
1475 int
1476 ffs_flushfiles(struct mount *mp, int flags, struct thread *td)
1477 {
1478 	struct ufsmount *ump;
1479 	int qerror, error;
1480 
1481 	ump = VFSTOUFS(mp);
1482 	qerror = 0;
1483 #ifdef QUOTA
1484 	if (mp->mnt_flag & MNT_QUOTA) {
1485 		int i;
1486 		error = vflush(mp, 0, SKIPSYSTEM|flags, td);
1487 		if (error)
1488 			return (error);
1489 		for (i = 0; i < MAXQUOTAS; i++) {
1490 			error = quotaoff(td, mp, i);
1491 			if (error != 0) {
1492 				if ((flags & EARLYFLUSH) == 0)
1493 					return (error);
1494 				else
1495 					qerror = error;
1496 			}
1497 		}
1498 
1499 		/*
1500 		 * Here we fall through to vflush again to ensure that
1501 		 * we have gotten rid of all the system vnodes, unless
1502 		 * quotas must not be closed.
1503 		 */
1504 	}
1505 #endif
1506 	/* devvp is not locked there */
1507 	if (ump->um_devvp->v_vflag & VV_COPYONWRITE) {
1508 		if ((error = vflush(mp, 0, SKIPSYSTEM | flags, td)) != 0)
1509 			return (error);
1510 		ffs_snapshot_unmount(mp);
1511 		flags |= FORCECLOSE;
1512 		/*
1513 		 * Here we fall through to vflush again to ensure
1514 		 * that we have gotten rid of all the system vnodes.
1515 		 */
1516 	}
1517 
1518 	/*
1519 	 * Do not close system files if quotas were not closed, to be
1520 	 * able to sync the remaining dquots.  The freeblks softupdate
1521 	 * workitems might hold a reference on a dquot, preventing
1522 	 * quotaoff() from completing.  Next round of
1523 	 * softdep_flushworklist() iteration should process the
1524 	 * blockers, allowing the next run of quotaoff() to finally
1525 	 * flush held dquots.
1526 	 *
1527 	 * Otherwise, flush all the files.
1528 	 */
1529 	if (qerror == 0 && (error = vflush(mp, 0, flags, td)) != 0)
1530 		return (error);
1531 
1532 	/*
1533 	 * If this is a forcible unmount and there were any files that
1534 	 * were unlinked but still open, then vflush() will have
1535 	 * truncated and freed those files, which might have started
1536 	 * some trim work.  Wait here for any trims to complete
1537 	 * and process the blkfrees which follow the trims.
1538 	 * This may create more dirty devvp buffers and softdep deps.
1539 	 */
1540 	if (ump->um_trim_tq != NULL) {
1541 		while (ump->um_trim_inflight != 0)
1542 			pause("ufsutr", hz);
1543 		taskqueue_drain_all(ump->um_trim_tq);
1544 	}
1545 
1546 	/*
1547 	 * Flush filesystem metadata.
1548 	 */
1549 	vn_lock(ump->um_devvp, LK_EXCLUSIVE | LK_RETRY);
1550 	error = VOP_FSYNC(ump->um_devvp, MNT_WAIT, td);
1551 	VOP_UNLOCK(ump->um_devvp);
1552 	return (error);
1553 }
1554 
1555 /*
1556  * Get filesystem statistics.
1557  */
1558 static int
1559 ffs_statfs(struct mount *mp, struct statfs *sbp)
1560 {
1561 	struct ufsmount *ump;
1562 	struct fs *fs;
1563 
1564 	ump = VFSTOUFS(mp);
1565 	fs = ump->um_fs;
1566 	if (fs->fs_magic != FS_UFS1_MAGIC && fs->fs_magic != FS_UFS2_MAGIC)
1567 		panic("ffs_statfs");
1568 	sbp->f_version = STATFS_VERSION;
1569 	sbp->f_bsize = fs->fs_fsize;
1570 	sbp->f_iosize = fs->fs_bsize;
1571 	sbp->f_blocks = fs->fs_dsize;
1572 	UFS_LOCK(ump);
1573 	sbp->f_bfree = fs->fs_cstotal.cs_nbfree * fs->fs_frag +
1574 	    fs->fs_cstotal.cs_nffree + dbtofsb(fs, fs->fs_pendingblocks);
1575 	sbp->f_bavail = freespace(fs, fs->fs_minfree) +
1576 	    dbtofsb(fs, fs->fs_pendingblocks);
1577 	sbp->f_files =  fs->fs_ncg * fs->fs_ipg - UFS_ROOTINO;
1578 	sbp->f_ffree = fs->fs_cstotal.cs_nifree + fs->fs_pendinginodes;
1579 	UFS_UNLOCK(ump);
1580 	sbp->f_namemax = UFS_MAXNAMLEN;
1581 	return (0);
1582 }
1583 
1584 static bool
1585 sync_doupdate(struct inode *ip)
1586 {
1587 
1588 	return ((ip->i_flag & (IN_ACCESS | IN_CHANGE | IN_MODIFIED |
1589 	    IN_UPDATE)) != 0);
1590 }
1591 
1592 static int
1593 ffs_sync_lazy_filter(struct vnode *vp, void *arg __unused)
1594 {
1595 	struct inode *ip;
1596 
1597 	/*
1598 	 * Flags are safe to access because ->v_data invalidation
1599 	 * is held off by listmtx.
1600 	 */
1601 	if (vp->v_type == VNON)
1602 		return (false);
1603 	ip = VTOI(vp);
1604 	if (!sync_doupdate(ip) && (vp->v_iflag & VI_OWEINACT) == 0)
1605 		return (false);
1606 	return (true);
1607 }
1608 
1609 /*
1610  * For a lazy sync, we only care about access times, quotas and the
1611  * superblock.  Other filesystem changes are already converted to
1612  * cylinder group blocks or inode blocks updates and are written to
1613  * disk by syncer.
1614  */
1615 static int
1616 ffs_sync_lazy(struct mount *mp)
1617 {
1618 	struct vnode *mvp, *vp;
1619 	struct inode *ip;
1620 	int allerror, error;
1621 
1622 	allerror = 0;
1623 	if ((mp->mnt_flag & MNT_NOATIME) != 0) {
1624 #ifdef QUOTA
1625 		qsync(mp);
1626 #endif
1627 		goto sbupdate;
1628 	}
1629 	MNT_VNODE_FOREACH_LAZY(vp, mp, mvp, ffs_sync_lazy_filter, NULL) {
1630 		if (vp->v_type == VNON) {
1631 			VI_UNLOCK(vp);
1632 			continue;
1633 		}
1634 		ip = VTOI(vp);
1635 
1636 		/*
1637 		 * The IN_ACCESS flag is converted to IN_MODIFIED by
1638 		 * ufs_close() and ufs_getattr() by the calls to
1639 		 * ufs_itimes_locked(), without subsequent UFS_UPDATE().
1640 		 * Test also all the other timestamp flags too, to pick up
1641 		 * any other cases that could be missed.
1642 		 */
1643 		if (!sync_doupdate(ip) && (vp->v_iflag & VI_OWEINACT) == 0) {
1644 			VI_UNLOCK(vp);
1645 			continue;
1646 		}
1647 		if ((error = vget(vp, LK_EXCLUSIVE | LK_NOWAIT | LK_INTERLOCK)) != 0)
1648 			continue;
1649 #ifdef QUOTA
1650 		qsyncvp(vp);
1651 #endif
1652 		if (sync_doupdate(ip))
1653 			error = ffs_update(vp, 0);
1654 		if (error != 0)
1655 			allerror = error;
1656 		vput(vp);
1657 	}
1658 sbupdate:
1659 	if (VFSTOUFS(mp)->um_fs->fs_fmod != 0 &&
1660 	    (error = ffs_sbupdate(VFSTOUFS(mp), MNT_LAZY, 0)) != 0)
1661 		allerror = error;
1662 	return (allerror);
1663 }
1664 
1665 /*
1666  * Go through the disk queues to initiate sandbagged IO;
1667  * go through the inodes to write those that have been modified;
1668  * initiate the writing of the super block if it has been modified.
1669  *
1670  * Note: we are always called with the filesystem marked busy using
1671  * vfs_busy().
1672  */
1673 static int
1674 ffs_sync(struct mount *mp, int waitfor)
1675 {
1676 	struct vnode *mvp, *vp, *devvp;
1677 	struct thread *td;
1678 	struct inode *ip;
1679 	struct ufsmount *ump = VFSTOUFS(mp);
1680 	struct fs *fs;
1681 	int error, count, lockreq, allerror = 0;
1682 	int suspend;
1683 	int suspended;
1684 	int secondary_writes;
1685 	int secondary_accwrites;
1686 	int softdep_deps;
1687 	int softdep_accdeps;
1688 	struct bufobj *bo;
1689 
1690 	suspend = 0;
1691 	suspended = 0;
1692 	td = curthread;
1693 	fs = ump->um_fs;
1694 	if (fs->fs_fmod != 0 && fs->fs_ronly != 0)
1695 		panic("%s: ffs_sync: modification on read-only filesystem",
1696 		    fs->fs_fsmnt);
1697 	if (waitfor == MNT_LAZY) {
1698 		if (!rebooting)
1699 			return (ffs_sync_lazy(mp));
1700 		waitfor = MNT_NOWAIT;
1701 	}
1702 
1703 	/*
1704 	 * Write back each (modified) inode.
1705 	 */
1706 	lockreq = LK_EXCLUSIVE | LK_NOWAIT;
1707 	if (waitfor == MNT_SUSPEND) {
1708 		suspend = 1;
1709 		waitfor = MNT_WAIT;
1710 	}
1711 	if (waitfor == MNT_WAIT)
1712 		lockreq = LK_EXCLUSIVE;
1713 	lockreq |= LK_INTERLOCK | LK_SLEEPFAIL;
1714 loop:
1715 	/* Grab snapshot of secondary write counts */
1716 	MNT_ILOCK(mp);
1717 	secondary_writes = mp->mnt_secondary_writes;
1718 	secondary_accwrites = mp->mnt_secondary_accwrites;
1719 	MNT_IUNLOCK(mp);
1720 
1721 	/* Grab snapshot of softdep dependency counts */
1722 	softdep_get_depcounts(mp, &softdep_deps, &softdep_accdeps);
1723 
1724 	MNT_VNODE_FOREACH_ALL(vp, mp, mvp) {
1725 		/*
1726 		 * Depend on the vnode interlock to keep things stable enough
1727 		 * for a quick test.  Since there might be hundreds of
1728 		 * thousands of vnodes, we cannot afford even a subroutine
1729 		 * call unless there's a good chance that we have work to do.
1730 		 */
1731 		if (vp->v_type == VNON) {
1732 			VI_UNLOCK(vp);
1733 			continue;
1734 		}
1735 		ip = VTOI(vp);
1736 		if ((ip->i_flag &
1737 		    (IN_ACCESS | IN_CHANGE | IN_MODIFIED | IN_UPDATE)) == 0 &&
1738 		    vp->v_bufobj.bo_dirty.bv_cnt == 0) {
1739 			VI_UNLOCK(vp);
1740 			continue;
1741 		}
1742 		if ((error = vget(vp, lockreq)) != 0) {
1743 			if (error == ENOENT || error == ENOLCK) {
1744 				MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
1745 				goto loop;
1746 			}
1747 			continue;
1748 		}
1749 #ifdef QUOTA
1750 		qsyncvp(vp);
1751 #endif
1752 		for (;;) {
1753 			error = ffs_syncvnode(vp, waitfor, 0);
1754 			if (error == ERELOOKUP)
1755 				continue;
1756 			if (error != 0)
1757 				allerror = error;
1758 			break;
1759 		}
1760 		vput(vp);
1761 	}
1762 	/*
1763 	 * Force stale filesystem control information to be flushed.
1764 	 */
1765 	if (waitfor == MNT_WAIT || rebooting) {
1766 		if ((error = softdep_flushworklist(ump->um_mountp, &count, td)))
1767 			allerror = error;
1768 		if (ffs_fsfail_cleanup(ump, allerror))
1769 			allerror = 0;
1770 		/* Flushed work items may create new vnodes to clean */
1771 		if (allerror == 0 && count)
1772 			goto loop;
1773 	}
1774 
1775 	devvp = ump->um_devvp;
1776 	bo = &devvp->v_bufobj;
1777 	BO_LOCK(bo);
1778 	if (bo->bo_numoutput > 0 || bo->bo_dirty.bv_cnt > 0) {
1779 		BO_UNLOCK(bo);
1780 		vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
1781 		error = VOP_FSYNC(devvp, waitfor, td);
1782 		VOP_UNLOCK(devvp);
1783 		if (MOUNTEDSOFTDEP(mp) && (error == 0 || error == EAGAIN))
1784 			error = ffs_sbupdate(ump, waitfor, 0);
1785 		if (error != 0)
1786 			allerror = error;
1787 		if (ffs_fsfail_cleanup(ump, allerror))
1788 			allerror = 0;
1789 		if (allerror == 0 && waitfor == MNT_WAIT)
1790 			goto loop;
1791 	} else if (suspend != 0) {
1792 		if (softdep_check_suspend(mp,
1793 					  devvp,
1794 					  softdep_deps,
1795 					  softdep_accdeps,
1796 					  secondary_writes,
1797 					  secondary_accwrites) != 0) {
1798 			MNT_IUNLOCK(mp);
1799 			goto loop;	/* More work needed */
1800 		}
1801 		mtx_assert(MNT_MTX(mp), MA_OWNED);
1802 		mp->mnt_kern_flag |= MNTK_SUSPEND2 | MNTK_SUSPENDED;
1803 		MNT_IUNLOCK(mp);
1804 		suspended = 1;
1805 	} else
1806 		BO_UNLOCK(bo);
1807 	/*
1808 	 * Write back modified superblock.
1809 	 */
1810 	if (fs->fs_fmod != 0 &&
1811 	    (error = ffs_sbupdate(ump, waitfor, suspended)) != 0)
1812 		allerror = error;
1813 	if (ffs_fsfail_cleanup(ump, allerror))
1814 		allerror = 0;
1815 	return (allerror);
1816 }
1817 
1818 int
1819 ffs_vget(struct mount *mp, ino_t ino, int flags, struct vnode **vpp)
1820 {
1821 	return (ffs_vgetf(mp, ino, flags, vpp, 0));
1822 }
1823 
1824 int
1825 ffs_vgetf(struct mount *mp,
1826 	ino_t ino,
1827 	int flags,
1828 	struct vnode **vpp,
1829 	int ffs_flags)
1830 {
1831 	struct fs *fs;
1832 	struct inode *ip;
1833 	struct ufsmount *ump;
1834 	struct buf *bp;
1835 	struct vnode *vp;
1836 	daddr_t dbn;
1837 	int error;
1838 
1839 	MPASS((ffs_flags & (FFSV_REPLACE | FFSV_REPLACE_DOOMED)) == 0 ||
1840 	    (flags & LK_EXCLUSIVE) != 0);
1841 
1842 	error = vfs_hash_get(mp, ino, flags, curthread, vpp, NULL, NULL);
1843 	if (error != 0)
1844 		return (error);
1845 	if (*vpp != NULL) {
1846 		if ((ffs_flags & FFSV_REPLACE) == 0 ||
1847 		    ((ffs_flags & FFSV_REPLACE_DOOMED) == 0 ||
1848 		    !VN_IS_DOOMED(*vpp)))
1849 			return (0);
1850 		vgone(*vpp);
1851 		vput(*vpp);
1852 	}
1853 
1854 	/*
1855 	 * We must promote to an exclusive lock for vnode creation.  This
1856 	 * can happen if lookup is passed LOCKSHARED.
1857 	 */
1858 	if ((flags & LK_TYPE_MASK) == LK_SHARED) {
1859 		flags &= ~LK_TYPE_MASK;
1860 		flags |= LK_EXCLUSIVE;
1861 	}
1862 
1863 	/*
1864 	 * We do not lock vnode creation as it is believed to be too
1865 	 * expensive for such rare case as simultaneous creation of vnode
1866 	 * for same ino by different processes. We just allow them to race
1867 	 * and check later to decide who wins. Let the race begin!
1868 	 */
1869 
1870 	ump = VFSTOUFS(mp);
1871 	fs = ump->um_fs;
1872 	ip = uma_zalloc_smr(uma_inode, M_WAITOK | M_ZERO);
1873 
1874 	/* Allocate a new vnode/inode. */
1875 	error = getnewvnode("ufs", mp, fs->fs_magic == FS_UFS1_MAGIC ?
1876 	    &ffs_vnodeops1 : &ffs_vnodeops2, &vp);
1877 	if (error) {
1878 		*vpp = NULL;
1879 		uma_zfree_smr(uma_inode, ip);
1880 		return (error);
1881 	}
1882 	/*
1883 	 * FFS supports recursive locking.
1884 	 */
1885 	lockmgr(vp->v_vnlock, LK_EXCLUSIVE | LK_NOWITNESS, NULL);
1886 	VN_LOCK_AREC(vp);
1887 	vp->v_data = ip;
1888 	vp->v_bufobj.bo_bsize = fs->fs_bsize;
1889 	ip->i_vnode = vp;
1890 	ip->i_ump = ump;
1891 	ip->i_number = ino;
1892 	ip->i_ea_refs = 0;
1893 	ip->i_nextclustercg = -1;
1894 	ip->i_flag = fs->fs_magic == FS_UFS1_MAGIC ? 0 : IN_UFS2;
1895 	ip->i_mode = 0; /* ensure error cases below throw away vnode */
1896 	cluster_init_vn(&ip->i_clusterw);
1897 #ifdef DIAGNOSTIC
1898 	ufs_init_trackers(ip);
1899 #endif
1900 #ifdef QUOTA
1901 	{
1902 		int i;
1903 		for (i = 0; i < MAXQUOTAS; i++)
1904 			ip->i_dquot[i] = NODQUOT;
1905 	}
1906 #endif
1907 
1908 	if (ffs_flags & FFSV_FORCEINSMQ)
1909 		vp->v_vflag |= VV_FORCEINSMQ;
1910 	error = insmntque(vp, mp);
1911 	if (error != 0) {
1912 		uma_zfree_smr(uma_inode, ip);
1913 		*vpp = NULL;
1914 		return (error);
1915 	}
1916 	vp->v_vflag &= ~VV_FORCEINSMQ;
1917 	error = vfs_hash_insert(vp, ino, flags, curthread, vpp, NULL, NULL);
1918 	if (error != 0)
1919 		return (error);
1920 	if (*vpp != NULL) {
1921 		/*
1922 		 * Calls from ffs_valloc() (i.e. FFSV_REPLACE set)
1923 		 * operate on empty inode, which must not be found by
1924 		 * other threads until fully filled.  Vnode for empty
1925 		 * inode must be not re-inserted on the hash by other
1926 		 * thread, after removal by us at the beginning.
1927 		 */
1928 		MPASS((ffs_flags & FFSV_REPLACE) == 0);
1929 		return (0);
1930 	}
1931 	if (I_IS_UFS1(ip))
1932 		ip->i_din1 = uma_zalloc(uma_ufs1, M_WAITOK);
1933 	else
1934 		ip->i_din2 = uma_zalloc(uma_ufs2, M_WAITOK);
1935 
1936 	if ((ffs_flags & FFSV_NEWINODE) != 0) {
1937 		/* New inode, just zero out its contents. */
1938 		if (I_IS_UFS1(ip))
1939 			memset(ip->i_din1, 0, sizeof(struct ufs1_dinode));
1940 		else
1941 			memset(ip->i_din2, 0, sizeof(struct ufs2_dinode));
1942 	} else {
1943 		/* Read the disk contents for the inode, copy into the inode. */
1944 		dbn = fsbtodb(fs, ino_to_fsba(fs, ino));
1945 		error = ffs_breadz(ump, ump->um_devvp, dbn, dbn,
1946 		    (int)fs->fs_bsize, NULL, NULL, 0, NOCRED, 0, NULL, &bp);
1947 		if (error != 0) {
1948 			/*
1949 			 * The inode does not contain anything useful, so it
1950 			 * would be misleading to leave it on its hash chain.
1951 			 * With mode still zero, it will be unlinked and
1952 			 * returned to the free list by vput().
1953 			 */
1954 			vgone(vp);
1955 			vput(vp);
1956 			*vpp = NULL;
1957 			return (error);
1958 		}
1959 		if ((error = ffs_load_inode(bp, ip, fs, ino)) != 0) {
1960 			bqrelse(bp);
1961 			vgone(vp);
1962 			vput(vp);
1963 			*vpp = NULL;
1964 			return (error);
1965 		}
1966 		bqrelse(bp);
1967 	}
1968 	if (DOINGSOFTDEP(vp) && (!fs->fs_ronly ||
1969 	    (ffs_flags & FFSV_FORCEINODEDEP) != 0))
1970 		softdep_load_inodeblock(ip);
1971 	else
1972 		ip->i_effnlink = ip->i_nlink;
1973 
1974 	/*
1975 	 * Initialize the vnode from the inode, check for aliases.
1976 	 * Note that the underlying vnode may have changed.
1977 	 */
1978 	error = ufs_vinit(mp, I_IS_UFS1(ip) ? &ffs_fifoops1 : &ffs_fifoops2,
1979 	    &vp);
1980 	if (error) {
1981 		vgone(vp);
1982 		vput(vp);
1983 		*vpp = NULL;
1984 		return (error);
1985 	}
1986 
1987 	/*
1988 	 * Finish inode initialization.
1989 	 */
1990 	if (vp->v_type != VFIFO) {
1991 		/* FFS supports shared locking for all files except fifos. */
1992 		VN_LOCK_ASHARE(vp);
1993 	}
1994 
1995 	/*
1996 	 * Set up a generation number for this inode if it does not
1997 	 * already have one. This should only happen on old filesystems.
1998 	 */
1999 	if (ip->i_gen == 0) {
2000 		while (ip->i_gen == 0)
2001 			ip->i_gen = arc4random();
2002 		if ((vp->v_mount->mnt_flag & MNT_RDONLY) == 0) {
2003 			UFS_INODE_SET_FLAG(ip, IN_MODIFIED);
2004 			DIP_SET(ip, i_gen, ip->i_gen);
2005 		}
2006 	}
2007 #ifdef MAC
2008 	if ((mp->mnt_flag & MNT_MULTILABEL) && ip->i_mode) {
2009 		/*
2010 		 * If this vnode is already allocated, and we're running
2011 		 * multi-label, attempt to perform a label association
2012 		 * from the extended attributes on the inode.
2013 		 */
2014 		error = mac_vnode_associate_extattr(mp, vp);
2015 		if (error) {
2016 			/* ufs_inactive will release ip->i_devvp ref. */
2017 			vgone(vp);
2018 			vput(vp);
2019 			*vpp = NULL;
2020 			return (error);
2021 		}
2022 	}
2023 #endif
2024 
2025 	*vpp = vp;
2026 	return (0);
2027 }
2028 
2029 /*
2030  * File handle to vnode
2031  *
2032  * Have to be really careful about stale file handles:
2033  * - check that the inode number is valid
2034  * - for UFS2 check that the inode number is initialized
2035  * - call ffs_vget() to get the locked inode
2036  * - check for an unallocated inode (i_mode == 0)
2037  * - check that the given client host has export rights and return
2038  *   those rights via. exflagsp and credanonp
2039  */
2040 static int
2041 ffs_fhtovp(struct mount *mp, struct fid *fhp, int flags, struct vnode **vpp)
2042 {
2043 	struct ufid *ufhp;
2044 
2045 	ufhp = (struct ufid *)fhp;
2046 	return (ffs_inotovp(mp, ufhp->ufid_ino, ufhp->ufid_gen, flags,
2047 	    vpp, 0));
2048 }
2049 
2050 int
2051 ffs_inotovp(struct mount *mp,
2052 	ino_t ino,
2053 	u_int64_t gen,
2054 	int lflags,
2055 	struct vnode **vpp,
2056 	int ffs_flags)
2057 {
2058 	struct ufsmount *ump;
2059 	struct vnode *nvp;
2060 	struct inode *ip;
2061 	struct fs *fs;
2062 	struct cg *cgp;
2063 	struct buf *bp;
2064 	u_int cg;
2065 	int error;
2066 
2067 	ump = VFSTOUFS(mp);
2068 	fs = ump->um_fs;
2069 	*vpp = NULL;
2070 
2071 	if (ino < UFS_ROOTINO || ino >= fs->fs_ncg * fs->fs_ipg)
2072 		return (ESTALE);
2073 
2074 	/*
2075 	 * Need to check if inode is initialized because UFS2 does lazy
2076 	 * initialization and nfs_fhtovp can offer arbitrary inode numbers.
2077 	 */
2078 	if (fs->fs_magic == FS_UFS2_MAGIC) {
2079 		cg = ino_to_cg(fs, ino);
2080 		error = ffs_getcg(fs, ump->um_devvp, cg, 0, &bp, &cgp);
2081 		if (error != 0)
2082 			return (error);
2083 		if (ino >= cg * fs->fs_ipg + cgp->cg_initediblk) {
2084 			brelse(bp);
2085 			return (ESTALE);
2086 		}
2087 		brelse(bp);
2088 	}
2089 
2090 	error = ffs_vgetf(mp, ino, lflags, &nvp, ffs_flags);
2091 	if (error != 0)
2092 		return (error);
2093 
2094 	ip = VTOI(nvp);
2095 	if (ip->i_mode == 0 || ip->i_gen != gen || ip->i_effnlink <= 0) {
2096 		if (ip->i_mode == 0)
2097 			vgone(nvp);
2098 		vput(nvp);
2099 		return (ESTALE);
2100 	}
2101 
2102 	vnode_create_vobject(nvp, DIP(ip, i_size), curthread);
2103 	*vpp = nvp;
2104 	return (0);
2105 }
2106 
2107 /*
2108  * Initialize the filesystem.
2109  */
2110 static int
2111 ffs_init(struct vfsconf *vfsp)
2112 {
2113 
2114 	ffs_susp_initialize();
2115 	softdep_initialize();
2116 	return (ufs_init(vfsp));
2117 }
2118 
2119 /*
2120  * Undo the work of ffs_init().
2121  */
2122 static int
2123 ffs_uninit(struct vfsconf *vfsp)
2124 {
2125 	int ret;
2126 
2127 	ret = ufs_uninit(vfsp);
2128 	softdep_uninitialize();
2129 	ffs_susp_uninitialize();
2130 	taskqueue_drain_all(taskqueue_thread);
2131 	return (ret);
2132 }
2133 
2134 /*
2135  * Structure used to pass information from ffs_sbupdate to its
2136  * helper routine ffs_use_bwrite.
2137  */
2138 struct devfd {
2139 	struct ufsmount	*ump;
2140 	struct buf	*sbbp;
2141 	int		 waitfor;
2142 	int		 suspended;
2143 	int		 error;
2144 };
2145 
2146 /*
2147  * Write a superblock and associated information back to disk.
2148  */
2149 int
2150 ffs_sbupdate(struct ufsmount *ump, int waitfor, int suspended)
2151 {
2152 	struct fs *fs;
2153 	struct buf *sbbp;
2154 	struct devfd devfd;
2155 
2156 	fs = ump->um_fs;
2157 	if (fs->fs_ronly == 1 &&
2158 	    (ump->um_mountp->mnt_flag & (MNT_RDONLY | MNT_UPDATE)) !=
2159 	    (MNT_RDONLY | MNT_UPDATE))
2160 		panic("ffs_sbupdate: write read-only filesystem");
2161 	/*
2162 	 * We use the superblock's buf to serialize calls to ffs_sbupdate().
2163 	 */
2164 	sbbp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc),
2165 	    (int)fs->fs_sbsize, 0, 0, 0);
2166 	/*
2167 	 * Initialize info needed for write function.
2168 	 */
2169 	devfd.ump = ump;
2170 	devfd.sbbp = sbbp;
2171 	devfd.waitfor = waitfor;
2172 	devfd.suspended = suspended;
2173 	devfd.error = 0;
2174 	return (ffs_sbput(&devfd, fs, fs->fs_sblockloc, ffs_use_bwrite));
2175 }
2176 
2177 /*
2178  * Write function for use by filesystem-layer routines.
2179  */
2180 static int
2181 ffs_use_bwrite(void *devfd, off_t loc, void *buf, int size)
2182 {
2183 	struct devfd *devfdp;
2184 	struct ufsmount *ump;
2185 	struct buf *bp;
2186 	struct fs *fs;
2187 	int error;
2188 
2189 	devfdp = devfd;
2190 	ump = devfdp->ump;
2191 	fs = ump->um_fs;
2192 	/*
2193 	 * Writing the superblock summary information.
2194 	 */
2195 	if (loc != fs->fs_sblockloc) {
2196 		bp = getblk(ump->um_devvp, btodb(loc), size, 0, 0, 0);
2197 		bcopy(buf, bp->b_data, (u_int)size);
2198 		if (devfdp->suspended)
2199 			bp->b_flags |= B_VALIDSUSPWRT;
2200 		if (devfdp->waitfor != MNT_WAIT)
2201 			bawrite(bp);
2202 		else if ((error = bwrite(bp)) != 0)
2203 			devfdp->error = error;
2204 		return (0);
2205 	}
2206 	/*
2207 	 * Writing the superblock itself. We need to do special checks for it.
2208 	 */
2209 	bp = devfdp->sbbp;
2210 	if (ffs_fsfail_cleanup(ump, devfdp->error))
2211 		devfdp->error = 0;
2212 	if (devfdp->error != 0) {
2213 		brelse(bp);
2214 		return (devfdp->error);
2215 	}
2216 	if (fs->fs_magic == FS_UFS1_MAGIC && fs->fs_sblockloc != SBLOCK_UFS1 &&
2217 	    (fs->fs_old_flags & FS_FLAGS_UPDATED) == 0) {
2218 		printf("WARNING: %s: correcting fs_sblockloc from %jd to %d\n",
2219 		    fs->fs_fsmnt, fs->fs_sblockloc, SBLOCK_UFS1);
2220 		fs->fs_sblockloc = SBLOCK_UFS1;
2221 	}
2222 	if (fs->fs_magic == FS_UFS2_MAGIC && fs->fs_sblockloc != SBLOCK_UFS2 &&
2223 	    (fs->fs_old_flags & FS_FLAGS_UPDATED) == 0) {
2224 		printf("WARNING: %s: correcting fs_sblockloc from %jd to %d\n",
2225 		    fs->fs_fsmnt, fs->fs_sblockloc, SBLOCK_UFS2);
2226 		fs->fs_sblockloc = SBLOCK_UFS2;
2227 	}
2228 	if (MOUNTEDSOFTDEP(ump->um_mountp))
2229 		softdep_setup_sbupdate(ump, (struct fs *)bp->b_data, bp);
2230 	UFS_LOCK(ump);
2231 	bcopy((caddr_t)fs, bp->b_data, (u_int)fs->fs_sbsize);
2232 	UFS_UNLOCK(ump);
2233 	fs = (struct fs *)bp->b_data;
2234 	fs->fs_fmod = 0;
2235 	ffs_oldfscompat_write(fs, ump);
2236 	fs->fs_si = NULL;
2237 	/* Recalculate the superblock hash */
2238 	fs->fs_ckhash = ffs_calc_sbhash(fs);
2239 	if (devfdp->suspended)
2240 		bp->b_flags |= B_VALIDSUSPWRT;
2241 	if (devfdp->waitfor != MNT_WAIT)
2242 		bawrite(bp);
2243 	else if ((error = bwrite(bp)) != 0)
2244 		devfdp->error = error;
2245 	return (devfdp->error);
2246 }
2247 
2248 static int
2249 ffs_extattrctl(struct mount *mp, int cmd, struct vnode *filename_vp,
2250 	int attrnamespace, const char *attrname)
2251 {
2252 
2253 #ifdef UFS_EXTATTR
2254 	return (ufs_extattrctl(mp, cmd, filename_vp, attrnamespace,
2255 	    attrname));
2256 #else
2257 	return (vfs_stdextattrctl(mp, cmd, filename_vp, attrnamespace,
2258 	    attrname));
2259 #endif
2260 }
2261 
2262 static void
2263 ffs_ifree(struct ufsmount *ump, struct inode *ip)
2264 {
2265 
2266 	if (ump->um_fstype == UFS1 && ip->i_din1 != NULL)
2267 		uma_zfree(uma_ufs1, ip->i_din1);
2268 	else if (ip->i_din2 != NULL)
2269 		uma_zfree(uma_ufs2, ip->i_din2);
2270 	uma_zfree_smr(uma_inode, ip);
2271 }
2272 
2273 static int dobkgrdwrite = 1;
2274 SYSCTL_INT(_debug, OID_AUTO, dobkgrdwrite, CTLFLAG_RW, &dobkgrdwrite, 0,
2275     "Do background writes (honoring the BV_BKGRDWRITE flag)?");
2276 
2277 /*
2278  * Complete a background write started from bwrite.
2279  */
2280 static void
2281 ffs_backgroundwritedone(struct buf *bp)
2282 {
2283 	struct bufobj *bufobj;
2284 	struct buf *origbp;
2285 
2286 #ifdef SOFTUPDATES
2287 	if (!LIST_EMPTY(&bp->b_dep) && (bp->b_ioflags & BIO_ERROR) != 0)
2288 		softdep_handle_error(bp);
2289 #endif
2290 
2291 	/*
2292 	 * Find the original buffer that we are writing.
2293 	 */
2294 	bufobj = bp->b_bufobj;
2295 	BO_LOCK(bufobj);
2296 	if ((origbp = gbincore(bp->b_bufobj, bp->b_lblkno)) == NULL)
2297 		panic("backgroundwritedone: lost buffer");
2298 
2299 	/*
2300 	 * We should mark the cylinder group buffer origbp as
2301 	 * dirty, to not lose the failed write.
2302 	 */
2303 	if ((bp->b_ioflags & BIO_ERROR) != 0)
2304 		origbp->b_vflags |= BV_BKGRDERR;
2305 	BO_UNLOCK(bufobj);
2306 	/*
2307 	 * Process dependencies then return any unfinished ones.
2308 	 */
2309 	if (!LIST_EMPTY(&bp->b_dep) && (bp->b_ioflags & BIO_ERROR) == 0)
2310 		buf_complete(bp);
2311 #ifdef SOFTUPDATES
2312 	if (!LIST_EMPTY(&bp->b_dep))
2313 		softdep_move_dependencies(bp, origbp);
2314 #endif
2315 	/*
2316 	 * This buffer is marked B_NOCACHE so when it is released
2317 	 * by biodone it will be tossed.  Clear B_IOSTARTED in case of error.
2318 	 */
2319 	bp->b_flags |= B_NOCACHE;
2320 	bp->b_flags &= ~(B_CACHE | B_IOSTARTED);
2321 	pbrelvp(bp);
2322 
2323 	/*
2324 	 * Prevent brelse() from trying to keep and re-dirtying bp on
2325 	 * errors. It causes b_bufobj dereference in
2326 	 * bdirty()/reassignbuf(), and b_bufobj was cleared in
2327 	 * pbrelvp() above.
2328 	 */
2329 	if ((bp->b_ioflags & BIO_ERROR) != 0)
2330 		bp->b_flags |= B_INVAL;
2331 	bufdone(bp);
2332 	BO_LOCK(bufobj);
2333 	/*
2334 	 * Clear the BV_BKGRDINPROG flag in the original buffer
2335 	 * and awaken it if it is waiting for the write to complete.
2336 	 * If BV_BKGRDINPROG is not set in the original buffer it must
2337 	 * have been released and re-instantiated - which is not legal.
2338 	 */
2339 	KASSERT((origbp->b_vflags & BV_BKGRDINPROG),
2340 	    ("backgroundwritedone: lost buffer2"));
2341 	origbp->b_vflags &= ~BV_BKGRDINPROG;
2342 	if (origbp->b_vflags & BV_BKGRDWAIT) {
2343 		origbp->b_vflags &= ~BV_BKGRDWAIT;
2344 		wakeup(&origbp->b_xflags);
2345 	}
2346 	BO_UNLOCK(bufobj);
2347 }
2348 
2349 /*
2350  * Write, release buffer on completion.  (Done by iodone
2351  * if async).  Do not bother writing anything if the buffer
2352  * is invalid.
2353  *
2354  * Note that we set B_CACHE here, indicating that buffer is
2355  * fully valid and thus cacheable.  This is true even of NFS
2356  * now so we set it generally.  This could be set either here
2357  * or in biodone() since the I/O is synchronous.  We put it
2358  * here.
2359  */
2360 static int
2361 ffs_bufwrite(struct buf *bp)
2362 {
2363 	struct buf *newbp;
2364 	struct cg *cgp;
2365 
2366 	CTR3(KTR_BUF, "bufwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
2367 	if (bp->b_flags & B_INVAL) {
2368 		brelse(bp);
2369 		return (0);
2370 	}
2371 
2372 	if (!BUF_ISLOCKED(bp))
2373 		panic("bufwrite: buffer is not busy???");
2374 	/*
2375 	 * If a background write is already in progress, delay
2376 	 * writing this block if it is asynchronous. Otherwise
2377 	 * wait for the background write to complete.
2378 	 */
2379 	BO_LOCK(bp->b_bufobj);
2380 	if (bp->b_vflags & BV_BKGRDINPROG) {
2381 		if (bp->b_flags & B_ASYNC) {
2382 			BO_UNLOCK(bp->b_bufobj);
2383 			bdwrite(bp);
2384 			return (0);
2385 		}
2386 		bp->b_vflags |= BV_BKGRDWAIT;
2387 		msleep(&bp->b_xflags, BO_LOCKPTR(bp->b_bufobj), PRIBIO,
2388 		    "bwrbg", 0);
2389 		if (bp->b_vflags & BV_BKGRDINPROG)
2390 			panic("bufwrite: still writing");
2391 	}
2392 	bp->b_vflags &= ~BV_BKGRDERR;
2393 	BO_UNLOCK(bp->b_bufobj);
2394 
2395 	/*
2396 	 * If this buffer is marked for background writing and we
2397 	 * do not have to wait for it, make a copy and write the
2398 	 * copy so as to leave this buffer ready for further use.
2399 	 *
2400 	 * This optimization eats a lot of memory.  If we have a page
2401 	 * or buffer shortfall we can't do it.
2402 	 */
2403 	if (dobkgrdwrite && (bp->b_xflags & BX_BKGRDWRITE) &&
2404 	    (bp->b_flags & B_ASYNC) &&
2405 	    !vm_page_count_severe() &&
2406 	    !buf_dirty_count_severe()) {
2407 		KASSERT(bp->b_iodone == NULL,
2408 		    ("bufwrite: needs chained iodone (%p)", bp->b_iodone));
2409 
2410 		/* get a new block */
2411 		newbp = geteblk(bp->b_bufsize, GB_NOWAIT_BD);
2412 		if (newbp == NULL)
2413 			goto normal_write;
2414 
2415 		KASSERT(buf_mapped(bp), ("Unmapped cg"));
2416 		memcpy(newbp->b_data, bp->b_data, bp->b_bufsize);
2417 		BO_LOCK(bp->b_bufobj);
2418 		bp->b_vflags |= BV_BKGRDINPROG;
2419 		BO_UNLOCK(bp->b_bufobj);
2420 		newbp->b_xflags |=
2421 		    (bp->b_xflags & BX_FSPRIV) | BX_BKGRDMARKER;
2422 		newbp->b_lblkno = bp->b_lblkno;
2423 		newbp->b_blkno = bp->b_blkno;
2424 		newbp->b_offset = bp->b_offset;
2425 		newbp->b_iodone = ffs_backgroundwritedone;
2426 		newbp->b_flags |= B_ASYNC;
2427 		newbp->b_flags &= ~B_INVAL;
2428 		pbgetvp(bp->b_vp, newbp);
2429 
2430 #ifdef SOFTUPDATES
2431 		/*
2432 		 * Move over the dependencies.  If there are rollbacks,
2433 		 * leave the parent buffer dirtied as it will need to
2434 		 * be written again.
2435 		 */
2436 		if (LIST_EMPTY(&bp->b_dep) ||
2437 		    softdep_move_dependencies(bp, newbp) == 0)
2438 			bundirty(bp);
2439 #else
2440 		bundirty(bp);
2441 #endif
2442 
2443 		/*
2444 		 * Initiate write on the copy, release the original.  The
2445 		 * BKGRDINPROG flag prevents it from going away until
2446 		 * the background write completes. We have to recalculate
2447 		 * its check hash in case the buffer gets freed and then
2448 		 * reconstituted from the buffer cache during a later read.
2449 		 */
2450 		if ((bp->b_xflags & BX_CYLGRP) != 0) {
2451 			cgp = (struct cg *)bp->b_data;
2452 			cgp->cg_ckhash = 0;
2453 			cgp->cg_ckhash =
2454 			    calculate_crc32c(~0L, bp->b_data, bp->b_bcount);
2455 		}
2456 		bqrelse(bp);
2457 		bp = newbp;
2458 	} else
2459 		/* Mark the buffer clean */
2460 		bundirty(bp);
2461 
2462 	/* Let the normal bufwrite do the rest for us */
2463 normal_write:
2464 	/*
2465 	 * If we are writing a cylinder group, update its time.
2466 	 */
2467 	if ((bp->b_xflags & BX_CYLGRP) != 0) {
2468 		cgp = (struct cg *)bp->b_data;
2469 		cgp->cg_old_time = cgp->cg_time = time_second;
2470 	}
2471 	return (bufwrite(bp));
2472 }
2473 
2474 static void
2475 ffs_geom_strategy(struct bufobj *bo, struct buf *bp)
2476 {
2477 	struct vnode *vp;
2478 	struct buf *tbp;
2479 	int error, nocopy;
2480 
2481 	/*
2482 	 * This is the bufobj strategy for the private VCHR vnodes
2483 	 * used by FFS to access the underlying storage device.
2484 	 * We override the default bufobj strategy and thus bypass
2485 	 * VOP_STRATEGY() for these vnodes.
2486 	 */
2487 	vp = bo2vnode(bo);
2488 	KASSERT(bp->b_vp == NULL || bp->b_vp->v_type != VCHR ||
2489 	    bp->b_vp->v_rdev == NULL ||
2490 	    bp->b_vp->v_rdev->si_mountpt == NULL ||
2491 	    VFSTOUFS(bp->b_vp->v_rdev->si_mountpt) == NULL ||
2492 	    vp == VFSTOUFS(bp->b_vp->v_rdev->si_mountpt)->um_devvp,
2493 	    ("ffs_geom_strategy() with wrong vp"));
2494 	if (bp->b_iocmd == BIO_WRITE) {
2495 		if ((bp->b_flags & B_VALIDSUSPWRT) == 0 &&
2496 		    bp->b_vp != NULL && bp->b_vp->v_mount != NULL &&
2497 		    (bp->b_vp->v_mount->mnt_kern_flag & MNTK_SUSPENDED) != 0)
2498 			panic("ffs_geom_strategy: bad I/O");
2499 		nocopy = bp->b_flags & B_NOCOPY;
2500 		bp->b_flags &= ~(B_VALIDSUSPWRT | B_NOCOPY);
2501 		if ((vp->v_vflag & VV_COPYONWRITE) && nocopy == 0 &&
2502 		    vp->v_rdev->si_snapdata != NULL) {
2503 			if ((bp->b_flags & B_CLUSTER) != 0) {
2504 				runningbufwakeup(bp);
2505 				TAILQ_FOREACH(tbp, &bp->b_cluster.cluster_head,
2506 					      b_cluster.cluster_entry) {
2507 					error = ffs_copyonwrite(vp, tbp);
2508 					if (error != 0 &&
2509 					    error != EOPNOTSUPP) {
2510 						bp->b_error = error;
2511 						bp->b_ioflags |= BIO_ERROR;
2512 						bp->b_flags &= ~B_BARRIER;
2513 						bufdone(bp);
2514 						return;
2515 					}
2516 				}
2517 				bp->b_runningbufspace = bp->b_bufsize;
2518 				atomic_add_long(&runningbufspace,
2519 					       bp->b_runningbufspace);
2520 			} else {
2521 				error = ffs_copyonwrite(vp, bp);
2522 				if (error != 0 && error != EOPNOTSUPP) {
2523 					bp->b_error = error;
2524 					bp->b_ioflags |= BIO_ERROR;
2525 					bp->b_flags &= ~B_BARRIER;
2526 					bufdone(bp);
2527 					return;
2528 				}
2529 			}
2530 		}
2531 #ifdef SOFTUPDATES
2532 		if ((bp->b_flags & B_CLUSTER) != 0) {
2533 			TAILQ_FOREACH(tbp, &bp->b_cluster.cluster_head,
2534 				      b_cluster.cluster_entry) {
2535 				if (!LIST_EMPTY(&tbp->b_dep))
2536 					buf_start(tbp);
2537 			}
2538 		} else {
2539 			if (!LIST_EMPTY(&bp->b_dep))
2540 				buf_start(bp);
2541 		}
2542 
2543 #endif
2544 		/*
2545 		 * Check for metadata that needs check-hashes and update them.
2546 		 */
2547 		switch (bp->b_xflags & BX_FSPRIV) {
2548 		case BX_CYLGRP:
2549 			((struct cg *)bp->b_data)->cg_ckhash = 0;
2550 			((struct cg *)bp->b_data)->cg_ckhash =
2551 			    calculate_crc32c(~0L, bp->b_data, bp->b_bcount);
2552 			break;
2553 
2554 		case BX_SUPERBLOCK:
2555 		case BX_INODE:
2556 		case BX_INDIR:
2557 		case BX_DIR:
2558 			printf("Check-hash write is unimplemented!!!\n");
2559 			break;
2560 
2561 		case 0:
2562 			break;
2563 
2564 		default:
2565 			printf("multiple buffer types 0x%b\n",
2566 			    (u_int)(bp->b_xflags & BX_FSPRIV),
2567 			    PRINT_UFS_BUF_XFLAGS);
2568 			break;
2569 		}
2570 	}
2571 	if (bp->b_iocmd != BIO_READ && ffs_enxio_enable)
2572 		bp->b_xflags |= BX_CVTENXIO;
2573 	g_vfs_strategy(bo, bp);
2574 }
2575 
2576 int
2577 ffs_own_mount(const struct mount *mp)
2578 {
2579 
2580 	if (mp->mnt_op == &ufs_vfsops)
2581 		return (1);
2582 	return (0);
2583 }
2584 
2585 #ifdef	DDB
2586 #ifdef SOFTUPDATES
2587 
2588 /* defined in ffs_softdep.c */
2589 extern void db_print_ffs(struct ufsmount *ump);
2590 
2591 DB_SHOW_COMMAND(ffs, db_show_ffs)
2592 {
2593 	struct mount *mp;
2594 	struct ufsmount *ump;
2595 
2596 	if (have_addr) {
2597 		ump = VFSTOUFS((struct mount *)addr);
2598 		db_print_ffs(ump);
2599 		return;
2600 	}
2601 
2602 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
2603 		if (!strcmp(mp->mnt_stat.f_fstypename, ufs_vfsconf.vfc_name))
2604 			db_print_ffs(VFSTOUFS(mp));
2605 	}
2606 }
2607 
2608 #endif	/* SOFTUPDATES */
2609 #endif	/* DDB */
2610