xref: /freebsd/sys/ufs/ffs/ffs_vfsops.c (revision 5ca8e32633c4ffbbcd6762e5888b6a4ba0708c6c)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1989, 1991, 1993, 1994
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 #include <sys/cdefs.h>
33 #include "opt_quota.h"
34 #include "opt_ufs.h"
35 #include "opt_ffs.h"
36 #include "opt_ddb.h"
37 
38 #include <sys/param.h>
39 #include <sys/gsb_crc32.h>
40 #include <sys/systm.h>
41 #include <sys/namei.h>
42 #include <sys/priv.h>
43 #include <sys/proc.h>
44 #include <sys/taskqueue.h>
45 #include <sys/kernel.h>
46 #include <sys/ktr.h>
47 #include <sys/vnode.h>
48 #include <sys/mount.h>
49 #include <sys/bio.h>
50 #include <sys/buf.h>
51 #include <sys/conf.h>
52 #include <sys/fcntl.h>
53 #include <sys/ioccom.h>
54 #include <sys/malloc.h>
55 #include <sys/mutex.h>
56 #include <sys/rwlock.h>
57 #include <sys/sysctl.h>
58 #include <sys/vmmeter.h>
59 
60 #include <security/mac/mac_framework.h>
61 
62 #include <ufs/ufs/dir.h>
63 #include <ufs/ufs/extattr.h>
64 #include <ufs/ufs/gjournal.h>
65 #include <ufs/ufs/quota.h>
66 #include <ufs/ufs/ufsmount.h>
67 #include <ufs/ufs/inode.h>
68 #include <ufs/ufs/ufs_extern.h>
69 
70 #include <ufs/ffs/fs.h>
71 #include <ufs/ffs/ffs_extern.h>
72 
73 #include <vm/vm.h>
74 #include <vm/uma.h>
75 #include <vm/vm_page.h>
76 
77 #include <geom/geom.h>
78 #include <geom/geom_vfs.h>
79 
80 #include <ddb/ddb.h>
81 
82 static uma_zone_t uma_inode, uma_ufs1, uma_ufs2;
83 VFS_SMR_DECLARE;
84 
85 static int	ffs_mountfs(struct vnode *, struct mount *, struct thread *);
86 static void	ffs_oldfscompat_read(struct fs *, struct ufsmount *,
87 		    ufs2_daddr_t);
88 static void	ffs_ifree(struct ufsmount *ump, struct inode *ip);
89 static int	ffs_sync_lazy(struct mount *mp);
90 static int	ffs_use_bread(void *devfd, off_t loc, void **bufp, int size);
91 static int	ffs_use_bwrite(void *devfd, off_t loc, void *buf, int size);
92 
93 static vfs_init_t ffs_init;
94 static vfs_uninit_t ffs_uninit;
95 static vfs_extattrctl_t ffs_extattrctl;
96 static vfs_cmount_t ffs_cmount;
97 static vfs_unmount_t ffs_unmount;
98 static vfs_mount_t ffs_mount;
99 static vfs_statfs_t ffs_statfs;
100 static vfs_fhtovp_t ffs_fhtovp;
101 static vfs_sync_t ffs_sync;
102 
103 static struct vfsops ufs_vfsops = {
104 	.vfs_extattrctl =	ffs_extattrctl,
105 	.vfs_fhtovp =		ffs_fhtovp,
106 	.vfs_init =		ffs_init,
107 	.vfs_mount =		ffs_mount,
108 	.vfs_cmount =		ffs_cmount,
109 	.vfs_quotactl =		ufs_quotactl,
110 	.vfs_root =		vfs_cache_root,
111 	.vfs_cachedroot =	ufs_root,
112 	.vfs_statfs =		ffs_statfs,
113 	.vfs_sync =		ffs_sync,
114 	.vfs_uninit =		ffs_uninit,
115 	.vfs_unmount =		ffs_unmount,
116 	.vfs_vget =		ffs_vget,
117 	.vfs_susp_clean =	process_deferred_inactive,
118 };
119 
120 VFS_SET(ufs_vfsops, ufs, 0);
121 MODULE_VERSION(ufs, 1);
122 
123 static b_strategy_t ffs_geom_strategy;
124 static b_write_t ffs_bufwrite;
125 
126 static struct buf_ops ffs_ops = {
127 	.bop_name =	"FFS",
128 	.bop_write =	ffs_bufwrite,
129 	.bop_strategy =	ffs_geom_strategy,
130 	.bop_sync =	bufsync,
131 #ifdef NO_FFS_SNAPSHOT
132 	.bop_bdflush =	bufbdflush,
133 #else
134 	.bop_bdflush =	ffs_bdflush,
135 #endif
136 };
137 
138 /*
139  * Note that userquota and groupquota options are not currently used
140  * by UFS/FFS code and generally mount(8) does not pass those options
141  * from userland, but they can be passed by loader(8) via
142  * vfs.root.mountfrom.options.
143  */
144 static const char *ffs_opts[] = { "acls", "async", "noatime", "noclusterr",
145     "noclusterw", "noexec", "export", "force", "from", "groupquota",
146     "multilabel", "nfsv4acls", "snapshot", "nosuid", "suiddir",
147     "nosymfollow", "sync", "union", "userquota", "untrusted", NULL };
148 
149 static int ffs_enxio_enable = 1;
150 SYSCTL_DECL(_vfs_ffs);
151 SYSCTL_INT(_vfs_ffs, OID_AUTO, enxio_enable, CTLFLAG_RWTUN,
152     &ffs_enxio_enable, 0,
153     "enable mapping of other disk I/O errors to ENXIO");
154 
155 /*
156  * Return buffer with the contents of block "offset" from the beginning of
157  * directory "ip".  If "res" is non-zero, fill it in with a pointer to the
158  * remaining space in the directory.
159  */
160 static int
161 ffs_blkatoff(struct vnode *vp, off_t offset, char **res, struct buf **bpp)
162 {
163 	struct inode *ip;
164 	struct fs *fs;
165 	struct buf *bp;
166 	ufs_lbn_t lbn;
167 	int bsize, error;
168 
169 	ip = VTOI(vp);
170 	fs = ITOFS(ip);
171 	lbn = lblkno(fs, offset);
172 	bsize = blksize(fs, ip, lbn);
173 
174 	*bpp = NULL;
175 	error = bread(vp, lbn, bsize, NOCRED, &bp);
176 	if (error) {
177 		return (error);
178 	}
179 	if (res)
180 		*res = (char *)bp->b_data + blkoff(fs, offset);
181 	*bpp = bp;
182 	return (0);
183 }
184 
185 /*
186  * Load up the contents of an inode and copy the appropriate pieces
187  * to the incore copy.
188  */
189 static int
190 ffs_load_inode(struct buf *bp, struct inode *ip, struct fs *fs, ino_t ino)
191 {
192 	struct ufs1_dinode *dip1;
193 	struct ufs2_dinode *dip2;
194 	int error;
195 
196 	if (I_IS_UFS1(ip)) {
197 		dip1 = ip->i_din1;
198 		*dip1 =
199 		    *((struct ufs1_dinode *)bp->b_data + ino_to_fsbo(fs, ino));
200 		ip->i_mode = dip1->di_mode;
201 		ip->i_nlink = dip1->di_nlink;
202 		ip->i_effnlink = dip1->di_nlink;
203 		ip->i_size = dip1->di_size;
204 		ip->i_flags = dip1->di_flags;
205 		ip->i_gen = dip1->di_gen;
206 		ip->i_uid = dip1->di_uid;
207 		ip->i_gid = dip1->di_gid;
208 		return (0);
209 	}
210 	dip2 = ((struct ufs2_dinode *)bp->b_data + ino_to_fsbo(fs, ino));
211 	if ((error = ffs_verify_dinode_ckhash(fs, dip2)) != 0 &&
212 	    !ffs_fsfail_cleanup(ITOUMP(ip), error)) {
213 		printf("%s: inode %jd: check-hash failed\n", fs->fs_fsmnt,
214 		    (intmax_t)ino);
215 		return (error);
216 	}
217 	*ip->i_din2 = *dip2;
218 	dip2 = ip->i_din2;
219 	ip->i_mode = dip2->di_mode;
220 	ip->i_nlink = dip2->di_nlink;
221 	ip->i_effnlink = dip2->di_nlink;
222 	ip->i_size = dip2->di_size;
223 	ip->i_flags = dip2->di_flags;
224 	ip->i_gen = dip2->di_gen;
225 	ip->i_uid = dip2->di_uid;
226 	ip->i_gid = dip2->di_gid;
227 	return (0);
228 }
229 
230 /*
231  * Verify that a filesystem block number is a valid data block.
232  * This routine is only called on untrusted filesystems.
233  */
234 static int
235 ffs_check_blkno(struct mount *mp, ino_t inum, ufs2_daddr_t daddr, int blksize)
236 {
237 	struct fs *fs;
238 	struct ufsmount *ump;
239 	ufs2_daddr_t end_daddr;
240 	int cg, havemtx;
241 
242 	KASSERT((mp->mnt_flag & MNT_UNTRUSTED) != 0,
243 	    ("ffs_check_blkno called on a trusted file system"));
244 	ump = VFSTOUFS(mp);
245 	fs = ump->um_fs;
246 	cg = dtog(fs, daddr);
247 	end_daddr = daddr + numfrags(fs, blksize);
248 	/*
249 	 * Verify that the block number is a valid data block. Also check
250 	 * that it does not point to an inode block or a superblock. Accept
251 	 * blocks that are unalloacted (0) or part of snapshot metadata
252 	 * (BLK_NOCOPY or BLK_SNAP).
253 	 *
254 	 * Thus, the block must be in a valid range for the filesystem and
255 	 * either in the space before a backup superblock (except the first
256 	 * cylinder group where that space is used by the bootstrap code) or
257 	 * after the inode blocks and before the end of the cylinder group.
258 	 */
259 	if ((uint64_t)daddr <= BLK_SNAP ||
260 	    ((uint64_t)end_daddr <= fs->fs_size &&
261 	    ((cg > 0 && end_daddr <= cgsblock(fs, cg)) ||
262 	    (daddr >= cgdmin(fs, cg) &&
263 	    end_daddr <= cgbase(fs, cg) + fs->fs_fpg))))
264 		return (0);
265 	if ((havemtx = mtx_owned(UFS_MTX(ump))) == 0)
266 		UFS_LOCK(ump);
267 	if (ppsratecheck(&ump->um_last_integritymsg,
268 	    &ump->um_secs_integritymsg, 1)) {
269 		UFS_UNLOCK(ump);
270 		uprintf("\n%s: inode %jd, out-of-range indirect block "
271 		    "number %jd\n", mp->mnt_stat.f_mntonname, inum, daddr);
272 		if (havemtx)
273 			UFS_LOCK(ump);
274 	} else if (!havemtx)
275 		UFS_UNLOCK(ump);
276 	return (EINTEGRITY);
277 }
278 
279 /*
280  * On first ENXIO error, initiate an asynchronous forcible unmount.
281  * Used to unmount filesystems whose underlying media has gone away.
282  *
283  * Return true if a cleanup is in progress.
284  */
285 int
286 ffs_fsfail_cleanup(struct ufsmount *ump, int error)
287 {
288 	int retval;
289 
290 	UFS_LOCK(ump);
291 	retval = ffs_fsfail_cleanup_locked(ump, error);
292 	UFS_UNLOCK(ump);
293 	return (retval);
294 }
295 
296 int
297 ffs_fsfail_cleanup_locked(struct ufsmount *ump, int error)
298 {
299 	mtx_assert(UFS_MTX(ump), MA_OWNED);
300 	if (error == ENXIO && (ump->um_flags & UM_FSFAIL_CLEANUP) == 0) {
301 		ump->um_flags |= UM_FSFAIL_CLEANUP;
302 		if (ump->um_mountp == rootvnode->v_mount)
303 			panic("UFS: root fs would be forcibly unmounted");
304 
305 		/*
306 		 * Queue an async forced unmount.
307 		 */
308 		vfs_ref(ump->um_mountp);
309 		dounmount(ump->um_mountp,
310 		    MNT_FORCE | MNT_RECURSE | MNT_DEFERRED, curthread);
311 		printf("UFS: forcibly unmounting %s from %s\n",
312 		    ump->um_mountp->mnt_stat.f_mntfromname,
313 		    ump->um_mountp->mnt_stat.f_mntonname);
314 	}
315 	return ((ump->um_flags & UM_FSFAIL_CLEANUP) != 0);
316 }
317 
318 /*
319  * Wrapper used during ENXIO cleanup to allocate empty buffers when
320  * the kernel is unable to read the real one. They are needed so that
321  * the soft updates code can use them to unwind its dependencies.
322  */
323 int
324 ffs_breadz(struct ufsmount *ump, struct vnode *vp, daddr_t lblkno,
325     daddr_t dblkno, int size, daddr_t *rablkno, int *rabsize, int cnt,
326     struct ucred *cred, int flags, void (*ckhashfunc)(struct buf *),
327     struct buf **bpp)
328 {
329 	int error;
330 
331 	flags |= GB_CVTENXIO;
332 	error = breadn_flags(vp, lblkno, dblkno, size, rablkno, rabsize, cnt,
333 	    cred, flags, ckhashfunc, bpp);
334 	if (error != 0 && ffs_fsfail_cleanup(ump, error)) {
335 		error = getblkx(vp, lblkno, dblkno, size, 0, 0, flags, bpp);
336 		KASSERT(error == 0, ("getblkx failed"));
337 		vfs_bio_bzero_buf(*bpp, 0, size);
338 	}
339 	return (error);
340 }
341 
342 static int
343 ffs_mount(struct mount *mp)
344 {
345 	struct vnode *devvp, *odevvp;
346 	struct thread *td;
347 	struct ufsmount *ump = NULL;
348 	struct fs *fs;
349 	int error, flags;
350 	int error1 __diagused;
351 	uint64_t mntorflags, saved_mnt_flag;
352 	accmode_t accmode;
353 	struct nameidata ndp;
354 	char *fspec;
355 	bool mounted_softdep;
356 
357 	td = curthread;
358 	if (vfs_filteropt(mp->mnt_optnew, ffs_opts))
359 		return (EINVAL);
360 	if (uma_inode == NULL) {
361 		uma_inode = uma_zcreate("FFS inode",
362 		    sizeof(struct inode), NULL, NULL, NULL, NULL,
363 		    UMA_ALIGN_PTR, 0);
364 		uma_ufs1 = uma_zcreate("FFS1 dinode",
365 		    sizeof(struct ufs1_dinode), NULL, NULL, NULL, NULL,
366 		    UMA_ALIGN_PTR, 0);
367 		uma_ufs2 = uma_zcreate("FFS2 dinode",
368 		    sizeof(struct ufs2_dinode), NULL, NULL, NULL, NULL,
369 		    UMA_ALIGN_PTR, 0);
370 		VFS_SMR_ZONE_SET(uma_inode);
371 	}
372 
373 	vfs_deleteopt(mp->mnt_optnew, "groupquota");
374 	vfs_deleteopt(mp->mnt_optnew, "userquota");
375 
376 	fspec = vfs_getopts(mp->mnt_optnew, "from", &error);
377 	if (error)
378 		return (error);
379 
380 	mntorflags = 0;
381 	if (vfs_getopt(mp->mnt_optnew, "untrusted", NULL, NULL) == 0)
382 		mntorflags |= MNT_UNTRUSTED;
383 
384 	if (vfs_getopt(mp->mnt_optnew, "acls", NULL, NULL) == 0)
385 		mntorflags |= MNT_ACLS;
386 
387 	if (vfs_getopt(mp->mnt_optnew, "snapshot", NULL, NULL) == 0) {
388 		mntorflags |= MNT_SNAPSHOT;
389 		/*
390 		 * Once we have set the MNT_SNAPSHOT flag, do not
391 		 * persist "snapshot" in the options list.
392 		 */
393 		vfs_deleteopt(mp->mnt_optnew, "snapshot");
394 		vfs_deleteopt(mp->mnt_opt, "snapshot");
395 	}
396 
397 	if (vfs_getopt(mp->mnt_optnew, "nfsv4acls", NULL, NULL) == 0) {
398 		if (mntorflags & MNT_ACLS) {
399 			vfs_mount_error(mp,
400 			    "\"acls\" and \"nfsv4acls\" options "
401 			    "are mutually exclusive");
402 			return (EINVAL);
403 		}
404 		mntorflags |= MNT_NFS4ACLS;
405 	}
406 
407 	MNT_ILOCK(mp);
408 	mp->mnt_kern_flag &= ~MNTK_FPLOOKUP;
409 	mp->mnt_flag |= mntorflags;
410 	MNT_IUNLOCK(mp);
411 
412 	/*
413 	 * If this is a snapshot request, take the snapshot.
414 	 */
415 	if (mp->mnt_flag & MNT_SNAPSHOT) {
416 		if ((mp->mnt_flag & MNT_UPDATE) == 0)
417 			return (EINVAL);
418 		return (ffs_snapshot(mp, fspec));
419 	}
420 
421 	/*
422 	 * Must not call namei() while owning busy ref.
423 	 */
424 	if (mp->mnt_flag & MNT_UPDATE)
425 		vfs_unbusy(mp);
426 
427 	/*
428 	 * Not an update, or updating the name: look up the name
429 	 * and verify that it refers to a sensible disk device.
430 	 */
431 	NDINIT(&ndp, LOOKUP, FOLLOW | LOCKLEAF, UIO_SYSSPACE, fspec);
432 	error = namei(&ndp);
433 	if ((mp->mnt_flag & MNT_UPDATE) != 0) {
434 		/*
435 		 * Unmount does not start if MNT_UPDATE is set.  Mount
436 		 * update busies mp before setting MNT_UPDATE.  We
437 		 * must be able to retain our busy ref successfully,
438 		 * without sleep.
439 		 */
440 		error1 = vfs_busy(mp, MBF_NOWAIT);
441 		MPASS(error1 == 0);
442 	}
443 	if (error != 0)
444 		return (error);
445 	NDFREE_PNBUF(&ndp);
446 	if (!vn_isdisk_error(ndp.ni_vp, &error)) {
447 		vput(ndp.ni_vp);
448 		return (error);
449 	}
450 
451 	/*
452 	 * If mount by non-root, then verify that user has necessary
453 	 * permissions on the device.
454 	 */
455 	accmode = VREAD;
456 	if ((mp->mnt_flag & MNT_RDONLY) == 0)
457 		accmode |= VWRITE;
458 	error = VOP_ACCESS(ndp.ni_vp, accmode, td->td_ucred, td);
459 	if (error)
460 		error = priv_check(td, PRIV_VFS_MOUNT_PERM);
461 	if (error) {
462 		vput(ndp.ni_vp);
463 		return (error);
464 	}
465 
466 	/*
467 	 * New mount
468 	 *
469 	 * We need the name for the mount point (also used for
470 	 * "last mounted on") copied in. If an error occurs,
471 	 * the mount point is discarded by the upper level code.
472 	 * Note that vfs_mount_alloc() populates f_mntonname for us.
473 	 */
474 	if ((mp->mnt_flag & MNT_UPDATE) == 0) {
475 		if ((error = ffs_mountfs(ndp.ni_vp, mp, td)) != 0) {
476 			vrele(ndp.ni_vp);
477 			return (error);
478 		}
479 	} else {
480 		/*
481 		 * When updating, check whether changing from read-only to
482 		 * read/write; if there is no device name, that's all we do.
483 		 */
484 		ump = VFSTOUFS(mp);
485 		fs = ump->um_fs;
486 		odevvp = ump->um_odevvp;
487 		devvp = ump->um_devvp;
488 
489 		/*
490 		 * If it's not the same vnode, or at least the same device
491 		 * then it's not correct.
492 		 */
493 		if (ndp.ni_vp->v_rdev != ump->um_odevvp->v_rdev)
494 			error = EINVAL; /* needs translation */
495 		vput(ndp.ni_vp);
496 		if (error)
497 			return (error);
498 		if (fs->fs_ronly == 0 &&
499 		    vfs_flagopt(mp->mnt_optnew, "ro", NULL, 0)) {
500 			/*
501 			 * Flush any dirty data and suspend filesystem.
502 			 */
503 			if ((error = vn_start_write(NULL, &mp, V_WAIT)) != 0)
504 				return (error);
505 			error = vfs_write_suspend_umnt(mp);
506 			if (error != 0)
507 				return (error);
508 
509 			fs->fs_ronly = 1;
510 			if (MOUNTEDSOFTDEP(mp)) {
511 				MNT_ILOCK(mp);
512 				mp->mnt_flag &= ~MNT_SOFTDEP;
513 				MNT_IUNLOCK(mp);
514 				mounted_softdep = true;
515 			} else
516 				mounted_softdep = false;
517 
518 			/*
519 			 * Check for and optionally get rid of files open
520 			 * for writing.
521 			 */
522 			flags = WRITECLOSE;
523 			if (mp->mnt_flag & MNT_FORCE)
524 				flags |= FORCECLOSE;
525 			if (mounted_softdep) {
526 				error = softdep_flushfiles(mp, flags, td);
527 			} else {
528 				error = ffs_flushfiles(mp, flags, td);
529 			}
530 			if (error) {
531 				fs->fs_ronly = 0;
532 				if (mounted_softdep) {
533 					MNT_ILOCK(mp);
534 					mp->mnt_flag |= MNT_SOFTDEP;
535 					MNT_IUNLOCK(mp);
536 				}
537 				vfs_write_resume(mp, 0);
538 				return (error);
539 			}
540 
541 			if (fs->fs_pendingblocks != 0 ||
542 			    fs->fs_pendinginodes != 0) {
543 				printf("WARNING: %s Update error: blocks %jd "
544 				    "files %d\n", fs->fs_fsmnt,
545 				    (intmax_t)fs->fs_pendingblocks,
546 				    fs->fs_pendinginodes);
547 				fs->fs_pendingblocks = 0;
548 				fs->fs_pendinginodes = 0;
549 			}
550 			if ((fs->fs_flags & (FS_UNCLEAN | FS_NEEDSFSCK)) == 0)
551 				fs->fs_clean = 1;
552 			if ((error = ffs_sbupdate(ump, MNT_WAIT, 0)) != 0) {
553 				fs->fs_ronly = 0;
554 				fs->fs_clean = 0;
555 				if (mounted_softdep) {
556 					MNT_ILOCK(mp);
557 					mp->mnt_flag |= MNT_SOFTDEP;
558 					MNT_IUNLOCK(mp);
559 				}
560 				vfs_write_resume(mp, 0);
561 				return (error);
562 			}
563 			if (mounted_softdep)
564 				softdep_unmount(mp);
565 			g_topology_lock();
566 			/*
567 			 * Drop our write and exclusive access.
568 			 */
569 			g_access(ump->um_cp, 0, -1, -1);
570 			g_topology_unlock();
571 			MNT_ILOCK(mp);
572 			mp->mnt_flag |= MNT_RDONLY;
573 			MNT_IUNLOCK(mp);
574 			/*
575 			 * Allow the writers to note that filesystem
576 			 * is ro now.
577 			 */
578 			vfs_write_resume(mp, 0);
579 		}
580 		if ((mp->mnt_flag & MNT_RELOAD) &&
581 		    (error = ffs_reload(mp, 0)) != 0)
582 			return (error);
583 		if (fs->fs_ronly &&
584 		    !vfs_flagopt(mp->mnt_optnew, "ro", NULL, 0)) {
585 			/*
586 			 * If upgrade to read-write by non-root, then verify
587 			 * that user has necessary permissions on the device.
588 			 */
589 			vn_lock(odevvp, LK_EXCLUSIVE | LK_RETRY);
590 			error = VOP_ACCESS(odevvp, VREAD | VWRITE,
591 			    td->td_ucred, td);
592 			if (error)
593 				error = priv_check(td, PRIV_VFS_MOUNT_PERM);
594 			VOP_UNLOCK(odevvp);
595 			if (error) {
596 				return (error);
597 			}
598 			fs->fs_flags &= ~FS_UNCLEAN;
599 			if (fs->fs_clean == 0) {
600 				fs->fs_flags |= FS_UNCLEAN;
601 				if ((mp->mnt_flag & MNT_FORCE) ||
602 				    ((fs->fs_flags &
603 				     (FS_SUJ | FS_NEEDSFSCK)) == 0 &&
604 				     (fs->fs_flags & FS_DOSOFTDEP))) {
605 					printf("WARNING: %s was not properly "
606 					   "dismounted\n",
607 					   mp->mnt_stat.f_mntonname);
608 				} else {
609 					vfs_mount_error(mp,
610 					   "R/W mount of %s denied. %s.%s",
611 					   mp->mnt_stat.f_mntonname,
612 					   "Filesystem is not clean - run fsck",
613 					   (fs->fs_flags & FS_SUJ) == 0 ? "" :
614 					   " Forced mount will invalidate"
615 					   " journal contents");
616 					return (EPERM);
617 				}
618 			}
619 			g_topology_lock();
620 			/*
621 			 * Request exclusive write access.
622 			 */
623 			error = g_access(ump->um_cp, 0, 1, 1);
624 			g_topology_unlock();
625 			if (error)
626 				return (error);
627 			if ((error = vn_start_write(NULL, &mp, V_WAIT)) != 0)
628 				return (error);
629 			error = vfs_write_suspend_umnt(mp);
630 			if (error != 0)
631 				return (error);
632 			fs->fs_ronly = 0;
633 			MNT_ILOCK(mp);
634 			saved_mnt_flag = MNT_RDONLY;
635 			if (MOUNTEDSOFTDEP(mp) && (mp->mnt_flag &
636 			    MNT_ASYNC) != 0)
637 				saved_mnt_flag |= MNT_ASYNC;
638 			mp->mnt_flag &= ~saved_mnt_flag;
639 			MNT_IUNLOCK(mp);
640 			fs->fs_mtime = time_second;
641 			/* check to see if we need to start softdep */
642 			if ((fs->fs_flags & FS_DOSOFTDEP) &&
643 			    (error = softdep_mount(devvp, mp, fs, td->td_ucred))){
644 				fs->fs_ronly = 1;
645 				MNT_ILOCK(mp);
646 				mp->mnt_flag |= saved_mnt_flag;
647 				MNT_IUNLOCK(mp);
648 				vfs_write_resume(mp, 0);
649 				return (error);
650 			}
651 			fs->fs_clean = 0;
652 			if ((error = ffs_sbupdate(ump, MNT_WAIT, 0)) != 0) {
653 				fs->fs_ronly = 1;
654 				if ((fs->fs_flags & FS_DOSOFTDEP) != 0)
655 					softdep_unmount(mp);
656 				MNT_ILOCK(mp);
657 				mp->mnt_flag |= saved_mnt_flag;
658 				MNT_IUNLOCK(mp);
659 				vfs_write_resume(mp, 0);
660 				return (error);
661 			}
662 			if (fs->fs_snapinum[0] != 0)
663 				ffs_snapshot_mount(mp);
664 			vfs_write_resume(mp, 0);
665 		}
666 		/*
667 		 * Soft updates is incompatible with "async",
668 		 * so if we are doing softupdates stop the user
669 		 * from setting the async flag in an update.
670 		 * Softdep_mount() clears it in an initial mount
671 		 * or ro->rw remount.
672 		 */
673 		if (MOUNTEDSOFTDEP(mp)) {
674 			/* XXX: Reset too late ? */
675 			MNT_ILOCK(mp);
676 			mp->mnt_flag &= ~MNT_ASYNC;
677 			MNT_IUNLOCK(mp);
678 		}
679 		/*
680 		 * Keep MNT_ACLS flag if it is stored in superblock.
681 		 */
682 		if ((fs->fs_flags & FS_ACLS) != 0) {
683 			/* XXX: Set too late ? */
684 			MNT_ILOCK(mp);
685 			mp->mnt_flag |= MNT_ACLS;
686 			MNT_IUNLOCK(mp);
687 		}
688 
689 		if ((fs->fs_flags & FS_NFS4ACLS) != 0) {
690 			/* XXX: Set too late ? */
691 			MNT_ILOCK(mp);
692 			mp->mnt_flag |= MNT_NFS4ACLS;
693 			MNT_IUNLOCK(mp);
694 		}
695 
696 	}
697 
698 	MNT_ILOCK(mp);
699 	/*
700 	 * This is racy versus lookup, see ufs_fplookup_vexec for details.
701 	 */
702 	if ((mp->mnt_kern_flag & MNTK_FPLOOKUP) != 0)
703 		panic("MNTK_FPLOOKUP set on mount %p when it should not be", mp);
704 	if ((mp->mnt_flag & (MNT_ACLS | MNT_NFS4ACLS | MNT_UNION)) == 0)
705 		mp->mnt_kern_flag |= MNTK_FPLOOKUP;
706 	MNT_IUNLOCK(mp);
707 
708 	vfs_mountedfrom(mp, fspec);
709 	return (0);
710 }
711 
712 /*
713  * Compatibility with old mount system call.
714  */
715 
716 static int
717 ffs_cmount(struct mntarg *ma, void *data, uint64_t flags)
718 {
719 	struct ufs_args args;
720 	int error;
721 
722 	if (data == NULL)
723 		return (EINVAL);
724 	error = copyin(data, &args, sizeof args);
725 	if (error)
726 		return (error);
727 
728 	ma = mount_argsu(ma, "from", args.fspec, MAXPATHLEN);
729 	ma = mount_arg(ma, "export", &args.export, sizeof(args.export));
730 	error = kernel_mount(ma, flags);
731 
732 	return (error);
733 }
734 
735 /*
736  * Reload all incore data for a filesystem (used after running fsck on
737  * the root filesystem and finding things to fix). If the 'force' flag
738  * is 0, the filesystem must be mounted read-only.
739  *
740  * Things to do to update the mount:
741  *	1) invalidate all cached meta-data.
742  *	2) re-read superblock from disk.
743  *	3) re-read summary information from disk.
744  *	4) invalidate all inactive vnodes.
745  *	5) clear MNTK_SUSPEND2 and MNTK_SUSPENDED flags, allowing secondary
746  *	   writers, if requested.
747  *	6) invalidate all cached file data.
748  *	7) re-read inode data for all active vnodes.
749  */
750 int
751 ffs_reload(struct mount *mp, int flags)
752 {
753 	struct vnode *vp, *mvp, *devvp;
754 	struct inode *ip;
755 	void *space;
756 	struct buf *bp;
757 	struct fs *fs, *newfs;
758 	struct ufsmount *ump;
759 	ufs2_daddr_t sblockloc;
760 	int i, blks, error;
761 	uint64_t size;
762 	int32_t *lp;
763 
764 	ump = VFSTOUFS(mp);
765 
766 	MNT_ILOCK(mp);
767 	if ((mp->mnt_flag & MNT_RDONLY) == 0 && (flags & FFSR_FORCE) == 0) {
768 		MNT_IUNLOCK(mp);
769 		return (EINVAL);
770 	}
771 	MNT_IUNLOCK(mp);
772 
773 	/*
774 	 * Step 1: invalidate all cached meta-data.
775 	 */
776 	devvp = VFSTOUFS(mp)->um_devvp;
777 	vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
778 	if (vinvalbuf(devvp, 0, 0, 0) != 0)
779 		panic("ffs_reload: dirty1");
780 	VOP_UNLOCK(devvp);
781 
782 	/*
783 	 * Step 2: re-read superblock from disk.
784 	 */
785 	fs = VFSTOUFS(mp)->um_fs;
786 	if ((error = bread(devvp, btodb(fs->fs_sblockloc), fs->fs_sbsize,
787 	    NOCRED, &bp)) != 0)
788 		return (error);
789 	newfs = (struct fs *)bp->b_data;
790 	if ((newfs->fs_magic != FS_UFS1_MAGIC &&
791 	     newfs->fs_magic != FS_UFS2_MAGIC) ||
792 	    newfs->fs_bsize > MAXBSIZE ||
793 	    newfs->fs_bsize < sizeof(struct fs)) {
794 			brelse(bp);
795 			return (EINTEGRITY);
796 	}
797 	/*
798 	 * Preserve the summary information, read-only status, and
799 	 * superblock location by copying these fields into our new
800 	 * superblock before using it to update the existing superblock.
801 	 */
802 	newfs->fs_si = fs->fs_si;
803 	newfs->fs_ronly = fs->fs_ronly;
804 	sblockloc = fs->fs_sblockloc;
805 	bcopy(newfs, fs, (uint64_t)fs->fs_sbsize);
806 	brelse(bp);
807 	ump->um_bsize = fs->fs_bsize;
808 	ump->um_maxsymlinklen = fs->fs_maxsymlinklen;
809 	ffs_oldfscompat_read(fs, VFSTOUFS(mp), sblockloc);
810 	UFS_LOCK(ump);
811 	if (fs->fs_pendingblocks != 0 || fs->fs_pendinginodes != 0) {
812 		printf("WARNING: %s: reload pending error: blocks %jd "
813 		    "files %d\n", mp->mnt_stat.f_mntonname,
814 		    (intmax_t)fs->fs_pendingblocks, fs->fs_pendinginodes);
815 		fs->fs_pendingblocks = 0;
816 		fs->fs_pendinginodes = 0;
817 	}
818 	UFS_UNLOCK(ump);
819 
820 	/*
821 	 * Step 3: re-read summary information from disk.
822 	 */
823 	size = fs->fs_cssize;
824 	blks = howmany(size, fs->fs_fsize);
825 	if (fs->fs_contigsumsize > 0)
826 		size += fs->fs_ncg * sizeof(int32_t);
827 	size += fs->fs_ncg * sizeof(uint8_t);
828 	free(fs->fs_csp, M_UFSMNT);
829 	space = malloc(size, M_UFSMNT, M_WAITOK);
830 	fs->fs_csp = space;
831 	for (i = 0; i < blks; i += fs->fs_frag) {
832 		size = fs->fs_bsize;
833 		if (i + fs->fs_frag > blks)
834 			size = (blks - i) * fs->fs_fsize;
835 		error = bread(devvp, fsbtodb(fs, fs->fs_csaddr + i), size,
836 		    NOCRED, &bp);
837 		if (error)
838 			return (error);
839 		bcopy(bp->b_data, space, (uint64_t)size);
840 		space = (char *)space + size;
841 		brelse(bp);
842 	}
843 	/*
844 	 * We no longer know anything about clusters per cylinder group.
845 	 */
846 	if (fs->fs_contigsumsize > 0) {
847 		fs->fs_maxcluster = lp = space;
848 		for (i = 0; i < fs->fs_ncg; i++)
849 			*lp++ = fs->fs_contigsumsize;
850 		space = lp;
851 	}
852 	size = fs->fs_ncg * sizeof(uint8_t);
853 	fs->fs_contigdirs = (uint8_t *)space;
854 	bzero(fs->fs_contigdirs, size);
855 	if ((flags & FFSR_UNSUSPEND) != 0) {
856 		MNT_ILOCK(mp);
857 		mp->mnt_kern_flag &= ~(MNTK_SUSPENDED | MNTK_SUSPEND2);
858 		wakeup(&mp->mnt_flag);
859 		MNT_IUNLOCK(mp);
860 	}
861 
862 loop:
863 	MNT_VNODE_FOREACH_ALL(vp, mp, mvp) {
864 		/*
865 		 * Skip syncer vnode.
866 		 */
867 		if (vp->v_type == VNON) {
868 			VI_UNLOCK(vp);
869 			continue;
870 		}
871 		/*
872 		 * Step 4: invalidate all cached file data.
873 		 */
874 		if (vget(vp, LK_EXCLUSIVE | LK_INTERLOCK)) {
875 			MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
876 			goto loop;
877 		}
878 		if (vinvalbuf(vp, 0, 0, 0))
879 			panic("ffs_reload: dirty2");
880 		/*
881 		 * Step 5: re-read inode data for all active vnodes.
882 		 */
883 		ip = VTOI(vp);
884 		error =
885 		    bread(devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
886 		    (int)fs->fs_bsize, NOCRED, &bp);
887 		if (error) {
888 			vput(vp);
889 			MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
890 			return (error);
891 		}
892 		if ((error = ffs_load_inode(bp, ip, fs, ip->i_number)) != 0) {
893 			brelse(bp);
894 			vput(vp);
895 			MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
896 			return (error);
897 		}
898 		ip->i_effnlink = ip->i_nlink;
899 		brelse(bp);
900 		vput(vp);
901 	}
902 	return (0);
903 }
904 
905 /*
906  * Common code for mount and mountroot
907  */
908 static int
909 ffs_mountfs(struct vnode *odevvp, struct mount *mp, struct thread *td)
910 {
911 	struct ufsmount *ump;
912 	struct fs *fs;
913 	struct cdev *dev;
914 	int error, i, len, ronly;
915 	struct ucred *cred;
916 	struct g_consumer *cp;
917 	struct mount *nmp;
918 	struct vnode *devvp;
919 	int candelete, canspeedup;
920 
921 	fs = NULL;
922 	ump = NULL;
923 	cred = td ? td->td_ucred : NOCRED;
924 	ronly = (mp->mnt_flag & MNT_RDONLY) != 0;
925 
926 	devvp = mntfs_allocvp(mp, odevvp);
927 	KASSERT(devvp->v_type == VCHR, ("reclaimed devvp"));
928 	dev = devvp->v_rdev;
929 	KASSERT(dev->si_snapdata == NULL, ("non-NULL snapshot data"));
930 	if (atomic_cmpset_acq_ptr((uintptr_t *)&dev->si_mountpt, 0,
931 	    (uintptr_t)mp) == 0) {
932 		mntfs_freevp(devvp);
933 		return (EBUSY);
934 	}
935 	g_topology_lock();
936 	error = g_vfs_open(devvp, &cp, "ffs", ronly ? 0 : 1);
937 	g_topology_unlock();
938 	if (error != 0) {
939 		atomic_store_rel_ptr((uintptr_t *)&dev->si_mountpt, 0);
940 		mntfs_freevp(devvp);
941 		return (error);
942 	}
943 	dev_ref(dev);
944 	devvp->v_bufobj.bo_ops = &ffs_ops;
945 	BO_LOCK(&odevvp->v_bufobj);
946 	odevvp->v_bufobj.bo_flag |= BO_NOBUFS;
947 	BO_UNLOCK(&odevvp->v_bufobj);
948 	VOP_UNLOCK(devvp);
949 	if (dev->si_iosize_max != 0)
950 		mp->mnt_iosize_max = dev->si_iosize_max;
951 	if (mp->mnt_iosize_max > maxphys)
952 		mp->mnt_iosize_max = maxphys;
953 	if ((SBLOCKSIZE % cp->provider->sectorsize) != 0) {
954 		error = EINVAL;
955 		vfs_mount_error(mp,
956 		    "Invalid sectorsize %d for superblock size %d",
957 		    cp->provider->sectorsize, SBLOCKSIZE);
958 		goto out;
959 	}
960 	/* fetch the superblock and summary information */
961 	if ((mp->mnt_flag & (MNT_ROOTFS | MNT_FORCE)) != 0)
962 		error = ffs_sbsearch(devvp, &fs, 0, M_UFSMNT, ffs_use_bread);
963 	else
964 		error = ffs_sbget(devvp, &fs, UFS_STDSB, 0, M_UFSMNT,
965 		    ffs_use_bread);
966 	if (error != 0)
967 		goto out;
968 	fs->fs_flags &= ~FS_UNCLEAN;
969 	if (fs->fs_clean == 0) {
970 		fs->fs_flags |= FS_UNCLEAN;
971 		if (ronly || (mp->mnt_flag & MNT_FORCE) ||
972 		    ((fs->fs_flags & (FS_SUJ | FS_NEEDSFSCK)) == 0 &&
973 		     (fs->fs_flags & FS_DOSOFTDEP))) {
974 			printf("WARNING: %s was not properly dismounted\n",
975 			    mp->mnt_stat.f_mntonname);
976 		} else {
977 			vfs_mount_error(mp, "R/W mount on %s denied. "
978 			    "Filesystem is not clean - run fsck.%s",
979 			    mp->mnt_stat.f_mntonname,
980 			    (fs->fs_flags & FS_SUJ) == 0 ? "" :
981 			    " Forced mount will invalidate journal contents");
982 			error = EPERM;
983 			goto out;
984 		}
985 		if ((fs->fs_pendingblocks != 0 || fs->fs_pendinginodes != 0) &&
986 		    (mp->mnt_flag & MNT_FORCE)) {
987 			printf("WARNING: %s: lost blocks %jd files %d\n",
988 			    mp->mnt_stat.f_mntonname,
989 			    (intmax_t)fs->fs_pendingblocks,
990 			    fs->fs_pendinginodes);
991 			fs->fs_pendingblocks = 0;
992 			fs->fs_pendinginodes = 0;
993 		}
994 	}
995 	if (fs->fs_pendingblocks != 0 || fs->fs_pendinginodes != 0) {
996 		printf("WARNING: %s: mount pending error: blocks %jd "
997 		    "files %d\n", mp->mnt_stat.f_mntonname,
998 		    (intmax_t)fs->fs_pendingblocks, fs->fs_pendinginodes);
999 		fs->fs_pendingblocks = 0;
1000 		fs->fs_pendinginodes = 0;
1001 	}
1002 	if ((fs->fs_flags & FS_GJOURNAL) != 0) {
1003 #ifdef UFS_GJOURNAL
1004 		/*
1005 		 * Get journal provider name.
1006 		 */
1007 		len = 1024;
1008 		mp->mnt_gjprovider = malloc((uint64_t)len, M_UFSMNT, M_WAITOK);
1009 		if (g_io_getattr("GJOURNAL::provider", cp, &len,
1010 		    mp->mnt_gjprovider) == 0) {
1011 			mp->mnt_gjprovider = realloc(mp->mnt_gjprovider, len,
1012 			    M_UFSMNT, M_WAITOK);
1013 			MNT_ILOCK(mp);
1014 			mp->mnt_flag |= MNT_GJOURNAL;
1015 			MNT_IUNLOCK(mp);
1016 		} else {
1017 			if ((mp->mnt_flag & MNT_RDONLY) == 0)
1018 				printf("WARNING: %s: GJOURNAL flag on fs "
1019 				    "but no gjournal provider below\n",
1020 				    mp->mnt_stat.f_mntonname);
1021 			free(mp->mnt_gjprovider, M_UFSMNT);
1022 			mp->mnt_gjprovider = NULL;
1023 		}
1024 #else
1025 		printf("WARNING: %s: GJOURNAL flag on fs but no "
1026 		    "UFS_GJOURNAL support\n", mp->mnt_stat.f_mntonname);
1027 #endif
1028 	} else {
1029 		mp->mnt_gjprovider = NULL;
1030 	}
1031 	ump = malloc(sizeof *ump, M_UFSMNT, M_WAITOK | M_ZERO);
1032 	ump->um_cp = cp;
1033 	ump->um_bo = &devvp->v_bufobj;
1034 	ump->um_fs = fs;
1035 	if (fs->fs_magic == FS_UFS1_MAGIC) {
1036 		ump->um_fstype = UFS1;
1037 		ump->um_balloc = ffs_balloc_ufs1;
1038 	} else {
1039 		ump->um_fstype = UFS2;
1040 		ump->um_balloc = ffs_balloc_ufs2;
1041 	}
1042 	ump->um_blkatoff = ffs_blkatoff;
1043 	ump->um_truncate = ffs_truncate;
1044 	ump->um_update = ffs_update;
1045 	ump->um_valloc = ffs_valloc;
1046 	ump->um_vfree = ffs_vfree;
1047 	ump->um_ifree = ffs_ifree;
1048 	ump->um_rdonly = ffs_rdonly;
1049 	ump->um_snapgone = ffs_snapgone;
1050 	if ((mp->mnt_flag & MNT_UNTRUSTED) != 0)
1051 		ump->um_check_blkno = ffs_check_blkno;
1052 	else
1053 		ump->um_check_blkno = NULL;
1054 	mtx_init(UFS_MTX(ump), "FFS", "FFS Lock", MTX_DEF);
1055 	sx_init(&ump->um_checkpath_lock, "uchpth");
1056 	ffs_oldfscompat_read(fs, ump, fs->fs_sblockloc);
1057 	fs->fs_ronly = ronly;
1058 	fs->fs_active = NULL;
1059 	mp->mnt_data = ump;
1060 	mp->mnt_stat.f_fsid.val[0] = fs->fs_id[0];
1061 	mp->mnt_stat.f_fsid.val[1] = fs->fs_id[1];
1062 	nmp = NULL;
1063 	if (fs->fs_id[0] == 0 || fs->fs_id[1] == 0 ||
1064 	    (nmp = vfs_getvfs(&mp->mnt_stat.f_fsid))) {
1065 		if (nmp)
1066 			vfs_rel(nmp);
1067 		vfs_getnewfsid(mp);
1068 	}
1069 	ump->um_bsize = fs->fs_bsize;
1070 	ump->um_maxsymlinklen = fs->fs_maxsymlinklen;
1071 	MNT_ILOCK(mp);
1072 	mp->mnt_flag |= MNT_LOCAL;
1073 	MNT_IUNLOCK(mp);
1074 	if ((fs->fs_flags & FS_MULTILABEL) != 0) {
1075 #ifdef MAC
1076 		MNT_ILOCK(mp);
1077 		mp->mnt_flag |= MNT_MULTILABEL;
1078 		MNT_IUNLOCK(mp);
1079 #else
1080 		printf("WARNING: %s: multilabel flag on fs but "
1081 		    "no MAC support\n", mp->mnt_stat.f_mntonname);
1082 #endif
1083 	}
1084 	if ((fs->fs_flags & FS_ACLS) != 0) {
1085 #ifdef UFS_ACL
1086 		MNT_ILOCK(mp);
1087 
1088 		if (mp->mnt_flag & MNT_NFS4ACLS)
1089 			printf("WARNING: %s: ACLs flag on fs conflicts with "
1090 			    "\"nfsv4acls\" mount option; option ignored\n",
1091 			    mp->mnt_stat.f_mntonname);
1092 		mp->mnt_flag &= ~MNT_NFS4ACLS;
1093 		mp->mnt_flag |= MNT_ACLS;
1094 
1095 		MNT_IUNLOCK(mp);
1096 #else
1097 		printf("WARNING: %s: ACLs flag on fs but no ACLs support\n",
1098 		    mp->mnt_stat.f_mntonname);
1099 #endif
1100 	}
1101 	if ((fs->fs_flags & FS_NFS4ACLS) != 0) {
1102 #ifdef UFS_ACL
1103 		MNT_ILOCK(mp);
1104 
1105 		if (mp->mnt_flag & MNT_ACLS)
1106 			printf("WARNING: %s: NFSv4 ACLs flag on fs conflicts "
1107 			    "with \"acls\" mount option; option ignored\n",
1108 			    mp->mnt_stat.f_mntonname);
1109 		mp->mnt_flag &= ~MNT_ACLS;
1110 		mp->mnt_flag |= MNT_NFS4ACLS;
1111 
1112 		MNT_IUNLOCK(mp);
1113 #else
1114 		printf("WARNING: %s: NFSv4 ACLs flag on fs but no "
1115 		    "ACLs support\n", mp->mnt_stat.f_mntonname);
1116 #endif
1117 	}
1118 	if ((fs->fs_flags & FS_TRIM) != 0) {
1119 		len = sizeof(int);
1120 		if (g_io_getattr("GEOM::candelete", cp, &len,
1121 		    &candelete) == 0) {
1122 			if (candelete)
1123 				ump->um_flags |= UM_CANDELETE;
1124 			else
1125 				printf("WARNING: %s: TRIM flag on fs but disk "
1126 				    "does not support TRIM\n",
1127 				    mp->mnt_stat.f_mntonname);
1128 		} else {
1129 			printf("WARNING: %s: TRIM flag on fs but disk does "
1130 			    "not confirm that it supports TRIM\n",
1131 			    mp->mnt_stat.f_mntonname);
1132 		}
1133 		if (((ump->um_flags) & UM_CANDELETE) != 0) {
1134 			ump->um_trim_tq = taskqueue_create("trim", M_WAITOK,
1135 			    taskqueue_thread_enqueue, &ump->um_trim_tq);
1136 			taskqueue_start_threads(&ump->um_trim_tq, 1, PVFS,
1137 			    "%s trim", mp->mnt_stat.f_mntonname);
1138 			ump->um_trimhash = hashinit(MAXTRIMIO, M_TRIM,
1139 			    &ump->um_trimlisthashsize);
1140 		}
1141 	}
1142 
1143 	len = sizeof(int);
1144 	if (g_io_getattr("GEOM::canspeedup", cp, &len, &canspeedup) == 0) {
1145 		if (canspeedup)
1146 			ump->um_flags |= UM_CANSPEEDUP;
1147 	}
1148 
1149 	ump->um_mountp = mp;
1150 	ump->um_dev = dev;
1151 	ump->um_devvp = devvp;
1152 	ump->um_odevvp = odevvp;
1153 	ump->um_nindir = fs->fs_nindir;
1154 	ump->um_bptrtodb = fs->fs_fsbtodb;
1155 	ump->um_seqinc = fs->fs_frag;
1156 	for (i = 0; i < MAXQUOTAS; i++)
1157 		ump->um_quotas[i] = NULLVP;
1158 #ifdef UFS_EXTATTR
1159 	ufs_extattr_uepm_init(&ump->um_extattr);
1160 #endif
1161 	/*
1162 	 * Set FS local "last mounted on" information (NULL pad)
1163 	 */
1164 	bzero(fs->fs_fsmnt, MAXMNTLEN);
1165 	strlcpy(fs->fs_fsmnt, mp->mnt_stat.f_mntonname, MAXMNTLEN);
1166 	mp->mnt_stat.f_iosize = fs->fs_bsize;
1167 
1168 	if (mp->mnt_flag & MNT_ROOTFS) {
1169 		/*
1170 		 * Root mount; update timestamp in mount structure.
1171 		 * this will be used by the common root mount code
1172 		 * to update the system clock.
1173 		 */
1174 		mp->mnt_time = fs->fs_time;
1175 	}
1176 
1177 	if (ronly == 0) {
1178 		fs->fs_mtime = time_second;
1179 		if ((fs->fs_flags & FS_DOSOFTDEP) &&
1180 		    (error = softdep_mount(devvp, mp, fs, cred)) != 0) {
1181 			ffs_flushfiles(mp, FORCECLOSE, td);
1182 			goto out;
1183 		}
1184 		if (fs->fs_snapinum[0] != 0)
1185 			ffs_snapshot_mount(mp);
1186 		fs->fs_fmod = 1;
1187 		fs->fs_clean = 0;
1188 		(void) ffs_sbupdate(ump, MNT_WAIT, 0);
1189 	}
1190 	/*
1191 	 * Initialize filesystem state information in mount struct.
1192 	 */
1193 	MNT_ILOCK(mp);
1194 	mp->mnt_kern_flag |= MNTK_LOOKUP_SHARED | MNTK_EXTENDED_SHARED |
1195 	    MNTK_NO_IOPF | MNTK_UNMAPPED_BUFS | MNTK_USES_BCACHE;
1196 	MNT_IUNLOCK(mp);
1197 #ifdef UFS_EXTATTR
1198 #ifdef UFS_EXTATTR_AUTOSTART
1199 	/*
1200 	 *
1201 	 * Auto-starting does the following:
1202 	 *	- check for /.attribute in the fs, and extattr_start if so
1203 	 *	- for each file in .attribute, enable that file with
1204 	 * 	  an attribute of the same name.
1205 	 * Not clear how to report errors -- probably eat them.
1206 	 * This would all happen while the filesystem was busy/not
1207 	 * available, so would effectively be "atomic".
1208 	 */
1209 	(void) ufs_extattr_autostart(mp, td);
1210 #endif /* !UFS_EXTATTR_AUTOSTART */
1211 #endif /* !UFS_EXTATTR */
1212 	return (0);
1213 out:
1214 	if (fs != NULL) {
1215 		free(fs->fs_csp, M_UFSMNT);
1216 		free(fs->fs_si, M_UFSMNT);
1217 		free(fs, M_UFSMNT);
1218 	}
1219 	if (cp != NULL) {
1220 		g_topology_lock();
1221 		g_vfs_close(cp);
1222 		g_topology_unlock();
1223 	}
1224 	if (ump != NULL) {
1225 		mtx_destroy(UFS_MTX(ump));
1226 		sx_destroy(&ump->um_checkpath_lock);
1227 		if (mp->mnt_gjprovider != NULL) {
1228 			free(mp->mnt_gjprovider, M_UFSMNT);
1229 			mp->mnt_gjprovider = NULL;
1230 		}
1231 		MPASS(ump->um_softdep == NULL);
1232 		free(ump, M_UFSMNT);
1233 		mp->mnt_data = NULL;
1234 	}
1235 	BO_LOCK(&odevvp->v_bufobj);
1236 	odevvp->v_bufobj.bo_flag &= ~BO_NOBUFS;
1237 	BO_UNLOCK(&odevvp->v_bufobj);
1238 	atomic_store_rel_ptr((uintptr_t *)&dev->si_mountpt, 0);
1239 	vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
1240 	mntfs_freevp(devvp);
1241 	dev_rel(dev);
1242 	return (error);
1243 }
1244 
1245 /*
1246  * A read function for use by filesystem-layer routines.
1247  */
1248 static int
1249 ffs_use_bread(void *devfd, off_t loc, void **bufp, int size)
1250 {
1251 	struct buf *bp;
1252 	int error;
1253 
1254 	KASSERT(*bufp == NULL, ("ffs_use_bread: non-NULL *bufp %p\n", *bufp));
1255 	*bufp = malloc(size, M_UFSMNT, M_WAITOK);
1256 	if ((error = bread((struct vnode *)devfd, btodb(loc), size, NOCRED,
1257 	    &bp)) != 0)
1258 		return (error);
1259 	bcopy(bp->b_data, *bufp, size);
1260 	bp->b_flags |= B_INVAL | B_NOCACHE;
1261 	brelse(bp);
1262 	return (0);
1263 }
1264 
1265 static int bigcgs = 0;
1266 SYSCTL_INT(_debug, OID_AUTO, bigcgs, CTLFLAG_RW, &bigcgs, 0, "");
1267 
1268 /*
1269  * Sanity checks for loading old filesystem superblocks.
1270  * See ffs_oldfscompat_write below for unwound actions.
1271  *
1272  * XXX - Parts get retired eventually.
1273  * Unfortunately new bits get added.
1274  */
1275 static void
1276 ffs_oldfscompat_read(struct fs *fs,
1277 	struct ufsmount *ump,
1278 	ufs2_daddr_t sblockloc)
1279 {
1280 	off_t maxfilesize;
1281 
1282 	/*
1283 	 * If not yet done, update fs_flags location and value of fs_sblockloc.
1284 	 */
1285 	if ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0) {
1286 		fs->fs_flags = fs->fs_old_flags;
1287 		fs->fs_old_flags |= FS_FLAGS_UPDATED;
1288 		fs->fs_sblockloc = sblockloc;
1289 	}
1290 	/*
1291 	 * If not yet done, update UFS1 superblock with new wider fields.
1292 	 */
1293 	if (fs->fs_magic == FS_UFS1_MAGIC && fs->fs_maxbsize != fs->fs_bsize) {
1294 		fs->fs_maxbsize = fs->fs_bsize;
1295 		fs->fs_time = fs->fs_old_time;
1296 		fs->fs_size = fs->fs_old_size;
1297 		fs->fs_dsize = fs->fs_old_dsize;
1298 		fs->fs_csaddr = fs->fs_old_csaddr;
1299 		fs->fs_cstotal.cs_ndir = fs->fs_old_cstotal.cs_ndir;
1300 		fs->fs_cstotal.cs_nbfree = fs->fs_old_cstotal.cs_nbfree;
1301 		fs->fs_cstotal.cs_nifree = fs->fs_old_cstotal.cs_nifree;
1302 		fs->fs_cstotal.cs_nffree = fs->fs_old_cstotal.cs_nffree;
1303 	}
1304 	if (fs->fs_magic == FS_UFS1_MAGIC &&
1305 	    fs->fs_old_inodefmt < FS_44INODEFMT) {
1306 		fs->fs_maxfilesize = ((uint64_t)1 << 31) - 1;
1307 		fs->fs_qbmask = ~fs->fs_bmask;
1308 		fs->fs_qfmask = ~fs->fs_fmask;
1309 	}
1310 	if (fs->fs_magic == FS_UFS1_MAGIC) {
1311 		ump->um_savedmaxfilesize = fs->fs_maxfilesize;
1312 		maxfilesize = (uint64_t)0x80000000 * fs->fs_bsize - 1;
1313 		if (fs->fs_maxfilesize > maxfilesize)
1314 			fs->fs_maxfilesize = maxfilesize;
1315 	}
1316 	/* Compatibility for old filesystems */
1317 	if (fs->fs_avgfilesize <= 0)
1318 		fs->fs_avgfilesize = AVFILESIZ;
1319 	if (fs->fs_avgfpdir <= 0)
1320 		fs->fs_avgfpdir = AFPDIR;
1321 	if (bigcgs) {
1322 		fs->fs_save_cgsize = fs->fs_cgsize;
1323 		fs->fs_cgsize = fs->fs_bsize;
1324 	}
1325 }
1326 
1327 /*
1328  * Unwinding superblock updates for old filesystems.
1329  * See ffs_oldfscompat_read above for details.
1330  *
1331  * XXX - Parts get retired eventually.
1332  * Unfortunately new bits get added.
1333  */
1334 void
1335 ffs_oldfscompat_write(struct fs *fs, struct ufsmount *ump)
1336 {
1337 
1338 	/*
1339 	 * Copy back UFS2 updated fields that UFS1 inspects.
1340 	 */
1341 	if (fs->fs_magic == FS_UFS1_MAGIC) {
1342 		fs->fs_old_time = fs->fs_time;
1343 		fs->fs_old_cstotal.cs_ndir = fs->fs_cstotal.cs_ndir;
1344 		fs->fs_old_cstotal.cs_nbfree = fs->fs_cstotal.cs_nbfree;
1345 		fs->fs_old_cstotal.cs_nifree = fs->fs_cstotal.cs_nifree;
1346 		fs->fs_old_cstotal.cs_nffree = fs->fs_cstotal.cs_nffree;
1347 		fs->fs_maxfilesize = ump->um_savedmaxfilesize;
1348 	}
1349 	if (bigcgs) {
1350 		fs->fs_cgsize = fs->fs_save_cgsize;
1351 		fs->fs_save_cgsize = 0;
1352 	}
1353 }
1354 
1355 /*
1356  * unmount system call
1357  */
1358 static int
1359 ffs_unmount(struct mount *mp, int mntflags)
1360 {
1361 	struct thread *td;
1362 	struct ufsmount *ump = VFSTOUFS(mp);
1363 	struct fs *fs;
1364 	int error, flags, susp;
1365 #ifdef UFS_EXTATTR
1366 	int e_restart;
1367 #endif
1368 
1369 	flags = 0;
1370 	td = curthread;
1371 	fs = ump->um_fs;
1372 	if (mntflags & MNT_FORCE)
1373 		flags |= FORCECLOSE;
1374 	susp = fs->fs_ronly == 0;
1375 #ifdef UFS_EXTATTR
1376 	if ((error = ufs_extattr_stop(mp, td))) {
1377 		if (error != EOPNOTSUPP)
1378 			printf("WARNING: unmount %s: ufs_extattr_stop "
1379 			    "returned errno %d\n", mp->mnt_stat.f_mntonname,
1380 			    error);
1381 		e_restart = 0;
1382 	} else {
1383 		ufs_extattr_uepm_destroy(&ump->um_extattr);
1384 		e_restart = 1;
1385 	}
1386 #endif
1387 	if (susp) {
1388 		error = vfs_write_suspend_umnt(mp);
1389 		if (error != 0)
1390 			goto fail1;
1391 	}
1392 	if (MOUNTEDSOFTDEP(mp))
1393 		error = softdep_flushfiles(mp, flags, td);
1394 	else
1395 		error = ffs_flushfiles(mp, flags, td);
1396 	if (error != 0 && !ffs_fsfail_cleanup(ump, error))
1397 		goto fail;
1398 
1399 	UFS_LOCK(ump);
1400 	if (fs->fs_pendingblocks != 0 || fs->fs_pendinginodes != 0) {
1401 		printf("WARNING: unmount %s: pending error: blocks %jd "
1402 		    "files %d\n", fs->fs_fsmnt, (intmax_t)fs->fs_pendingblocks,
1403 		    fs->fs_pendinginodes);
1404 		fs->fs_pendingblocks = 0;
1405 		fs->fs_pendinginodes = 0;
1406 	}
1407 	UFS_UNLOCK(ump);
1408 	if (MOUNTEDSOFTDEP(mp))
1409 		softdep_unmount(mp);
1410 	MPASS(ump->um_softdep == NULL);
1411 	if (fs->fs_ronly == 0) {
1412 		fs->fs_clean = fs->fs_flags & (FS_UNCLEAN|FS_NEEDSFSCK) ? 0 : 1;
1413 		error = ffs_sbupdate(ump, MNT_WAIT, 0);
1414 		if (ffs_fsfail_cleanup(ump, error))
1415 			error = 0;
1416 		if (error != 0 && !ffs_fsfail_cleanup(ump, error)) {
1417 			fs->fs_clean = 0;
1418 			goto fail;
1419 		}
1420 	}
1421 	if (susp)
1422 		vfs_write_resume(mp, VR_START_WRITE);
1423 	if (ump->um_trim_tq != NULL) {
1424 		MPASS(ump->um_trim_inflight == 0);
1425 		taskqueue_free(ump->um_trim_tq);
1426 		free (ump->um_trimhash, M_TRIM);
1427 	}
1428 	vn_lock(ump->um_devvp, LK_EXCLUSIVE | LK_RETRY);
1429 	g_topology_lock();
1430 	g_vfs_close(ump->um_cp);
1431 	g_topology_unlock();
1432 	BO_LOCK(&ump->um_odevvp->v_bufobj);
1433 	ump->um_odevvp->v_bufobj.bo_flag &= ~BO_NOBUFS;
1434 	BO_UNLOCK(&ump->um_odevvp->v_bufobj);
1435 	atomic_store_rel_ptr((uintptr_t *)&ump->um_dev->si_mountpt, 0);
1436 	mntfs_freevp(ump->um_devvp);
1437 	vrele(ump->um_odevvp);
1438 	dev_rel(ump->um_dev);
1439 	mtx_destroy(UFS_MTX(ump));
1440 	sx_destroy(&ump->um_checkpath_lock);
1441 	if (mp->mnt_gjprovider != NULL) {
1442 		free(mp->mnt_gjprovider, M_UFSMNT);
1443 		mp->mnt_gjprovider = NULL;
1444 	}
1445 	free(fs->fs_csp, M_UFSMNT);
1446 	free(fs->fs_si, M_UFSMNT);
1447 	free(fs, M_UFSMNT);
1448 	free(ump, M_UFSMNT);
1449 	mp->mnt_data = NULL;
1450 	if (td->td_su == mp) {
1451 		td->td_su = NULL;
1452 		vfs_rel(mp);
1453 	}
1454 	return (error);
1455 
1456 fail:
1457 	if (susp)
1458 		vfs_write_resume(mp, VR_START_WRITE);
1459 fail1:
1460 #ifdef UFS_EXTATTR
1461 	if (e_restart) {
1462 		ufs_extattr_uepm_init(&ump->um_extattr);
1463 #ifdef UFS_EXTATTR_AUTOSTART
1464 		(void) ufs_extattr_autostart(mp, td);
1465 #endif
1466 	}
1467 #endif
1468 
1469 	return (error);
1470 }
1471 
1472 /*
1473  * Flush out all the files in a filesystem.
1474  */
1475 int
1476 ffs_flushfiles(struct mount *mp, int flags, struct thread *td)
1477 {
1478 	struct ufsmount *ump;
1479 	int qerror, error;
1480 
1481 	ump = VFSTOUFS(mp);
1482 	qerror = 0;
1483 #ifdef QUOTA
1484 	if (mp->mnt_flag & MNT_QUOTA) {
1485 		int i;
1486 		error = vflush(mp, 0, SKIPSYSTEM|flags, td);
1487 		if (error)
1488 			return (error);
1489 		for (i = 0; i < MAXQUOTAS; i++) {
1490 			error = quotaoff(td, mp, i);
1491 			if (error != 0) {
1492 				if ((flags & EARLYFLUSH) == 0)
1493 					return (error);
1494 				else
1495 					qerror = error;
1496 			}
1497 		}
1498 
1499 		/*
1500 		 * Here we fall through to vflush again to ensure that
1501 		 * we have gotten rid of all the system vnodes, unless
1502 		 * quotas must not be closed.
1503 		 */
1504 	}
1505 #endif
1506 	/* devvp is not locked there */
1507 	if (ump->um_devvp->v_vflag & VV_COPYONWRITE) {
1508 		if ((error = vflush(mp, 0, SKIPSYSTEM | flags, td)) != 0)
1509 			return (error);
1510 		ffs_snapshot_unmount(mp);
1511 		flags |= FORCECLOSE;
1512 		/*
1513 		 * Here we fall through to vflush again to ensure
1514 		 * that we have gotten rid of all the system vnodes.
1515 		 */
1516 	}
1517 
1518 	/*
1519 	 * Do not close system files if quotas were not closed, to be
1520 	 * able to sync the remaining dquots.  The freeblks softupdate
1521 	 * workitems might hold a reference on a dquot, preventing
1522 	 * quotaoff() from completing.  Next round of
1523 	 * softdep_flushworklist() iteration should process the
1524 	 * blockers, allowing the next run of quotaoff() to finally
1525 	 * flush held dquots.
1526 	 *
1527 	 * Otherwise, flush all the files.
1528 	 */
1529 	if (qerror == 0 && (error = vflush(mp, 0, flags, td)) != 0)
1530 		return (error);
1531 
1532 	/*
1533 	 * If this is a forcible unmount and there were any files that
1534 	 * were unlinked but still open, then vflush() will have
1535 	 * truncated and freed those files, which might have started
1536 	 * some trim work.  Wait here for any trims to complete
1537 	 * and process the blkfrees which follow the trims.
1538 	 * This may create more dirty devvp buffers and softdep deps.
1539 	 */
1540 	if (ump->um_trim_tq != NULL) {
1541 		while (ump->um_trim_inflight != 0)
1542 			pause("ufsutr", hz);
1543 		taskqueue_drain_all(ump->um_trim_tq);
1544 	}
1545 
1546 	/*
1547 	 * Flush filesystem metadata.
1548 	 */
1549 	vn_lock(ump->um_devvp, LK_EXCLUSIVE | LK_RETRY);
1550 	error = VOP_FSYNC(ump->um_devvp, MNT_WAIT, td);
1551 	VOP_UNLOCK(ump->um_devvp);
1552 	return (error);
1553 }
1554 
1555 /*
1556  * Get filesystem statistics.
1557  */
1558 static int
1559 ffs_statfs(struct mount *mp, struct statfs *sbp)
1560 {
1561 	struct ufsmount *ump;
1562 	struct fs *fs;
1563 
1564 	ump = VFSTOUFS(mp);
1565 	fs = ump->um_fs;
1566 	if (fs->fs_magic != FS_UFS1_MAGIC && fs->fs_magic != FS_UFS2_MAGIC)
1567 		panic("ffs_statfs");
1568 	sbp->f_version = STATFS_VERSION;
1569 	sbp->f_bsize = fs->fs_fsize;
1570 	sbp->f_iosize = fs->fs_bsize;
1571 	sbp->f_blocks = fs->fs_dsize;
1572 	UFS_LOCK(ump);
1573 	sbp->f_bfree = fs->fs_cstotal.cs_nbfree * fs->fs_frag +
1574 	    fs->fs_cstotal.cs_nffree + dbtofsb(fs, fs->fs_pendingblocks);
1575 	sbp->f_bavail = freespace(fs, fs->fs_minfree) +
1576 	    dbtofsb(fs, fs->fs_pendingblocks);
1577 	sbp->f_files =  fs->fs_ncg * fs->fs_ipg - UFS_ROOTINO;
1578 	sbp->f_ffree = fs->fs_cstotal.cs_nifree + fs->fs_pendinginodes;
1579 	UFS_UNLOCK(ump);
1580 	sbp->f_namemax = UFS_MAXNAMLEN;
1581 	return (0);
1582 }
1583 
1584 static bool
1585 sync_doupdate(struct inode *ip)
1586 {
1587 
1588 	return ((ip->i_flag & (IN_ACCESS | IN_CHANGE | IN_MODIFIED |
1589 	    IN_UPDATE)) != 0);
1590 }
1591 
1592 static int
1593 ffs_sync_lazy_filter(struct vnode *vp, void *arg __unused)
1594 {
1595 	struct inode *ip;
1596 
1597 	/*
1598 	 * Flags are safe to access because ->v_data invalidation
1599 	 * is held off by listmtx.
1600 	 */
1601 	if (vp->v_type == VNON)
1602 		return (false);
1603 	ip = VTOI(vp);
1604 	if (!sync_doupdate(ip) && (vp->v_iflag & VI_OWEINACT) == 0)
1605 		return (false);
1606 	return (true);
1607 }
1608 
1609 /*
1610  * For a lazy sync, we only care about access times, quotas and the
1611  * superblock.  Other filesystem changes are already converted to
1612  * cylinder group blocks or inode blocks updates and are written to
1613  * disk by syncer.
1614  */
1615 static int
1616 ffs_sync_lazy(struct mount *mp)
1617 {
1618 	struct vnode *mvp, *vp;
1619 	struct inode *ip;
1620 	int allerror, error;
1621 
1622 	allerror = 0;
1623 	if ((mp->mnt_flag & MNT_NOATIME) != 0) {
1624 #ifdef QUOTA
1625 		qsync(mp);
1626 #endif
1627 		goto sbupdate;
1628 	}
1629 	MNT_VNODE_FOREACH_LAZY(vp, mp, mvp, ffs_sync_lazy_filter, NULL) {
1630 		if (vp->v_type == VNON) {
1631 			VI_UNLOCK(vp);
1632 			continue;
1633 		}
1634 		ip = VTOI(vp);
1635 
1636 		/*
1637 		 * The IN_ACCESS flag is converted to IN_MODIFIED by
1638 		 * ufs_close() and ufs_getattr() by the calls to
1639 		 * ufs_itimes_locked(), without subsequent UFS_UPDATE().
1640 		 * Test also all the other timestamp flags too, to pick up
1641 		 * any other cases that could be missed.
1642 		 */
1643 		if (!sync_doupdate(ip) && (vp->v_iflag & VI_OWEINACT) == 0) {
1644 			VI_UNLOCK(vp);
1645 			continue;
1646 		}
1647 		if ((error = vget(vp, LK_EXCLUSIVE | LK_NOWAIT | LK_INTERLOCK)) != 0)
1648 			continue;
1649 #ifdef QUOTA
1650 		qsyncvp(vp);
1651 #endif
1652 		if (sync_doupdate(ip))
1653 			error = ffs_update(vp, 0);
1654 		if (error != 0)
1655 			allerror = error;
1656 		vput(vp);
1657 	}
1658 sbupdate:
1659 	if (VFSTOUFS(mp)->um_fs->fs_fmod != 0 &&
1660 	    (error = ffs_sbupdate(VFSTOUFS(mp), MNT_LAZY, 0)) != 0)
1661 		allerror = error;
1662 	return (allerror);
1663 }
1664 
1665 /*
1666  * Go through the disk queues to initiate sandbagged IO;
1667  * go through the inodes to write those that have been modified;
1668  * initiate the writing of the super block if it has been modified.
1669  *
1670  * Note: we are always called with the filesystem marked busy using
1671  * vfs_busy().
1672  */
1673 static int
1674 ffs_sync(struct mount *mp, int waitfor)
1675 {
1676 	struct vnode *mvp, *vp, *devvp;
1677 	struct thread *td;
1678 	struct inode *ip;
1679 	struct ufsmount *ump = VFSTOUFS(mp);
1680 	struct fs *fs;
1681 	int error, count, lockreq, allerror = 0;
1682 	int suspend;
1683 	int suspended;
1684 	int secondary_writes;
1685 	int secondary_accwrites;
1686 	int softdep_deps;
1687 	int softdep_accdeps;
1688 	struct bufobj *bo;
1689 
1690 	suspend = 0;
1691 	suspended = 0;
1692 	td = curthread;
1693 	fs = ump->um_fs;
1694 	if (fs->fs_fmod != 0 && fs->fs_ronly != 0)
1695 		panic("%s: ffs_sync: modification on read-only filesystem",
1696 		    fs->fs_fsmnt);
1697 	if (waitfor == MNT_LAZY) {
1698 		if (!rebooting)
1699 			return (ffs_sync_lazy(mp));
1700 		waitfor = MNT_NOWAIT;
1701 	}
1702 
1703 	/*
1704 	 * Write back each (modified) inode.
1705 	 */
1706 	lockreq = LK_EXCLUSIVE | LK_NOWAIT;
1707 	if (waitfor == MNT_SUSPEND) {
1708 		suspend = 1;
1709 		waitfor = MNT_WAIT;
1710 	}
1711 	if (waitfor == MNT_WAIT)
1712 		lockreq = LK_EXCLUSIVE;
1713 	lockreq |= LK_INTERLOCK;
1714 loop:
1715 	/* Grab snapshot of secondary write counts */
1716 	MNT_ILOCK(mp);
1717 	secondary_writes = mp->mnt_secondary_writes;
1718 	secondary_accwrites = mp->mnt_secondary_accwrites;
1719 	MNT_IUNLOCK(mp);
1720 
1721 	/* Grab snapshot of softdep dependency counts */
1722 	softdep_get_depcounts(mp, &softdep_deps, &softdep_accdeps);
1723 
1724 	MNT_VNODE_FOREACH_ALL(vp, mp, mvp) {
1725 		/*
1726 		 * Depend on the vnode interlock to keep things stable enough
1727 		 * for a quick test.  Since there might be hundreds of
1728 		 * thousands of vnodes, we cannot afford even a subroutine
1729 		 * call unless there's a good chance that we have work to do.
1730 		 */
1731 		if (vp->v_type == VNON) {
1732 			VI_UNLOCK(vp);
1733 			continue;
1734 		}
1735 		ip = VTOI(vp);
1736 		if ((ip->i_flag &
1737 		    (IN_ACCESS | IN_CHANGE | IN_MODIFIED | IN_UPDATE)) == 0 &&
1738 		    vp->v_bufobj.bo_dirty.bv_cnt == 0) {
1739 			VI_UNLOCK(vp);
1740 			continue;
1741 		}
1742 		if ((error = vget(vp, lockreq)) != 0) {
1743 			if (error == ENOENT) {
1744 				MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
1745 				goto loop;
1746 			}
1747 			continue;
1748 		}
1749 #ifdef QUOTA
1750 		qsyncvp(vp);
1751 #endif
1752 		for (;;) {
1753 			error = ffs_syncvnode(vp, waitfor, 0);
1754 			if (error == ERELOOKUP)
1755 				continue;
1756 			if (error != 0)
1757 				allerror = error;
1758 			break;
1759 		}
1760 		vput(vp);
1761 	}
1762 	/*
1763 	 * Force stale filesystem control information to be flushed.
1764 	 */
1765 	if (waitfor == MNT_WAIT || rebooting) {
1766 		if ((error = softdep_flushworklist(ump->um_mountp, &count, td)))
1767 			allerror = error;
1768 		if (ffs_fsfail_cleanup(ump, allerror))
1769 			allerror = 0;
1770 		/* Flushed work items may create new vnodes to clean */
1771 		if (allerror == 0 && count)
1772 			goto loop;
1773 	}
1774 
1775 	devvp = ump->um_devvp;
1776 	bo = &devvp->v_bufobj;
1777 	BO_LOCK(bo);
1778 	if (bo->bo_numoutput > 0 || bo->bo_dirty.bv_cnt > 0) {
1779 		BO_UNLOCK(bo);
1780 		vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
1781 		error = VOP_FSYNC(devvp, waitfor, td);
1782 		VOP_UNLOCK(devvp);
1783 		if (MOUNTEDSOFTDEP(mp) && (error == 0 || error == EAGAIN))
1784 			error = ffs_sbupdate(ump, waitfor, 0);
1785 		if (error != 0)
1786 			allerror = error;
1787 		if (ffs_fsfail_cleanup(ump, allerror))
1788 			allerror = 0;
1789 		if (allerror == 0 && waitfor == MNT_WAIT)
1790 			goto loop;
1791 	} else if (suspend != 0) {
1792 		if (softdep_check_suspend(mp,
1793 					  devvp,
1794 					  softdep_deps,
1795 					  softdep_accdeps,
1796 					  secondary_writes,
1797 					  secondary_accwrites) != 0) {
1798 			MNT_IUNLOCK(mp);
1799 			goto loop;	/* More work needed */
1800 		}
1801 		mtx_assert(MNT_MTX(mp), MA_OWNED);
1802 		mp->mnt_kern_flag |= MNTK_SUSPEND2 | MNTK_SUSPENDED;
1803 		MNT_IUNLOCK(mp);
1804 		suspended = 1;
1805 	} else
1806 		BO_UNLOCK(bo);
1807 	/*
1808 	 * Write back modified superblock.
1809 	 */
1810 	if (fs->fs_fmod != 0 &&
1811 	    (error = ffs_sbupdate(ump, waitfor, suspended)) != 0)
1812 		allerror = error;
1813 	if (ffs_fsfail_cleanup(ump, allerror))
1814 		allerror = 0;
1815 	return (allerror);
1816 }
1817 
1818 int
1819 ffs_vget(struct mount *mp, ino_t ino, int flags, struct vnode **vpp)
1820 {
1821 	return (ffs_vgetf(mp, ino, flags, vpp, 0));
1822 }
1823 
1824 int
1825 ffs_vgetf(struct mount *mp,
1826 	ino_t ino,
1827 	int flags,
1828 	struct vnode **vpp,
1829 	int ffs_flags)
1830 {
1831 	struct fs *fs;
1832 	struct inode *ip;
1833 	struct ufsmount *ump;
1834 	struct buf *bp;
1835 	struct vnode *vp;
1836 	daddr_t dbn;
1837 	int error;
1838 
1839 	MPASS((ffs_flags & (FFSV_REPLACE | FFSV_REPLACE_DOOMED)) == 0 ||
1840 	    (flags & LK_EXCLUSIVE) != 0);
1841 
1842 	error = vfs_hash_get(mp, ino, flags, curthread, vpp, NULL, NULL);
1843 	if (error != 0)
1844 		return (error);
1845 	if (*vpp != NULL) {
1846 		if ((ffs_flags & FFSV_REPLACE) == 0 ||
1847 		    ((ffs_flags & FFSV_REPLACE_DOOMED) == 0 ||
1848 		    !VN_IS_DOOMED(*vpp)))
1849 			return (0);
1850 		vgone(*vpp);
1851 		vput(*vpp);
1852 	}
1853 
1854 	/*
1855 	 * We must promote to an exclusive lock for vnode creation.  This
1856 	 * can happen if lookup is passed LOCKSHARED.
1857 	 */
1858 	if ((flags & LK_TYPE_MASK) == LK_SHARED) {
1859 		flags &= ~LK_TYPE_MASK;
1860 		flags |= LK_EXCLUSIVE;
1861 	}
1862 
1863 	/*
1864 	 * We do not lock vnode creation as it is believed to be too
1865 	 * expensive for such rare case as simultaneous creation of vnode
1866 	 * for same ino by different processes. We just allow them to race
1867 	 * and check later to decide who wins. Let the race begin!
1868 	 */
1869 
1870 	ump = VFSTOUFS(mp);
1871 	fs = ump->um_fs;
1872 	ip = uma_zalloc_smr(uma_inode, M_WAITOK | M_ZERO);
1873 
1874 	/* Allocate a new vnode/inode. */
1875 	error = getnewvnode("ufs", mp, fs->fs_magic == FS_UFS1_MAGIC ?
1876 	    &ffs_vnodeops1 : &ffs_vnodeops2, &vp);
1877 	if (error) {
1878 		*vpp = NULL;
1879 		uma_zfree_smr(uma_inode, ip);
1880 		return (error);
1881 	}
1882 	/*
1883 	 * FFS supports recursive locking.
1884 	 */
1885 	lockmgr(vp->v_vnlock, LK_EXCLUSIVE | LK_NOWITNESS, NULL);
1886 	VN_LOCK_AREC(vp);
1887 	vp->v_data = ip;
1888 	vp->v_bufobj.bo_bsize = fs->fs_bsize;
1889 	ip->i_vnode = vp;
1890 	ip->i_ump = ump;
1891 	ip->i_number = ino;
1892 	ip->i_ea_refs = 0;
1893 	ip->i_nextclustercg = -1;
1894 	ip->i_flag = fs->fs_magic == FS_UFS1_MAGIC ? 0 : IN_UFS2;
1895 	ip->i_mode = 0; /* ensure error cases below throw away vnode */
1896 	cluster_init_vn(&ip->i_clusterw);
1897 #ifdef DIAGNOSTIC
1898 	ufs_init_trackers(ip);
1899 #endif
1900 #ifdef QUOTA
1901 	{
1902 		int i;
1903 		for (i = 0; i < MAXQUOTAS; i++)
1904 			ip->i_dquot[i] = NODQUOT;
1905 	}
1906 #endif
1907 
1908 	if (ffs_flags & FFSV_FORCEINSMQ)
1909 		vp->v_vflag |= VV_FORCEINSMQ;
1910 	error = insmntque(vp, mp);
1911 	if (error != 0) {
1912 		uma_zfree_smr(uma_inode, ip);
1913 		*vpp = NULL;
1914 		return (error);
1915 	}
1916 	vp->v_vflag &= ~VV_FORCEINSMQ;
1917 	error = vfs_hash_insert(vp, ino, flags, curthread, vpp, NULL, NULL);
1918 	if (error != 0)
1919 		return (error);
1920 	if (*vpp != NULL) {
1921 		/*
1922 		 * Calls from ffs_valloc() (i.e. FFSV_REPLACE set)
1923 		 * operate on empty inode, which must not be found by
1924 		 * other threads until fully filled.  Vnode for empty
1925 		 * inode must be not re-inserted on the hash by other
1926 		 * thread, after removal by us at the beginning.
1927 		 */
1928 		MPASS((ffs_flags & FFSV_REPLACE) == 0);
1929 		return (0);
1930 	}
1931 	if (I_IS_UFS1(ip))
1932 		ip->i_din1 = uma_zalloc(uma_ufs1, M_WAITOK);
1933 	else
1934 		ip->i_din2 = uma_zalloc(uma_ufs2, M_WAITOK);
1935 
1936 	if ((ffs_flags & FFSV_NEWINODE) != 0) {
1937 		/* New inode, just zero out its contents. */
1938 		if (I_IS_UFS1(ip))
1939 			memset(ip->i_din1, 0, sizeof(struct ufs1_dinode));
1940 		else
1941 			memset(ip->i_din2, 0, sizeof(struct ufs2_dinode));
1942 	} else {
1943 		/* Read the disk contents for the inode, copy into the inode. */
1944 		dbn = fsbtodb(fs, ino_to_fsba(fs, ino));
1945 		error = ffs_breadz(ump, ump->um_devvp, dbn, dbn,
1946 		    (int)fs->fs_bsize, NULL, NULL, 0, NOCRED, 0, NULL, &bp);
1947 		if (error != 0) {
1948 			/*
1949 			 * The inode does not contain anything useful, so it
1950 			 * would be misleading to leave it on its hash chain.
1951 			 * With mode still zero, it will be unlinked and
1952 			 * returned to the free list by vput().
1953 			 */
1954 			vgone(vp);
1955 			vput(vp);
1956 			*vpp = NULL;
1957 			return (error);
1958 		}
1959 		if ((error = ffs_load_inode(bp, ip, fs, ino)) != 0) {
1960 			bqrelse(bp);
1961 			vgone(vp);
1962 			vput(vp);
1963 			*vpp = NULL;
1964 			return (error);
1965 		}
1966 		bqrelse(bp);
1967 	}
1968 	if (DOINGSOFTDEP(vp) && (!fs->fs_ronly ||
1969 	    (ffs_flags & FFSV_FORCEINODEDEP) != 0))
1970 		softdep_load_inodeblock(ip);
1971 	else
1972 		ip->i_effnlink = ip->i_nlink;
1973 
1974 	/*
1975 	 * Initialize the vnode from the inode, check for aliases.
1976 	 * Note that the underlying vnode may have changed.
1977 	 */
1978 	error = ufs_vinit(mp, I_IS_UFS1(ip) ? &ffs_fifoops1 : &ffs_fifoops2,
1979 	    &vp);
1980 	if (error) {
1981 		vgone(vp);
1982 		vput(vp);
1983 		*vpp = NULL;
1984 		return (error);
1985 	}
1986 
1987 	/*
1988 	 * Finish inode initialization.
1989 	 */
1990 	if (vp->v_type != VFIFO) {
1991 		/* FFS supports shared locking for all files except fifos. */
1992 		VN_LOCK_ASHARE(vp);
1993 	}
1994 
1995 	/*
1996 	 * Set up a generation number for this inode if it does not
1997 	 * already have one. This should only happen on old filesystems.
1998 	 */
1999 	if (ip->i_gen == 0) {
2000 		while (ip->i_gen == 0)
2001 			ip->i_gen = arc4random();
2002 		if ((vp->v_mount->mnt_flag & MNT_RDONLY) == 0) {
2003 			UFS_INODE_SET_FLAG(ip, IN_MODIFIED);
2004 			DIP_SET(ip, i_gen, ip->i_gen);
2005 		}
2006 	}
2007 #ifdef MAC
2008 	if ((mp->mnt_flag & MNT_MULTILABEL) && ip->i_mode) {
2009 		/*
2010 		 * If this vnode is already allocated, and we're running
2011 		 * multi-label, attempt to perform a label association
2012 		 * from the extended attributes on the inode.
2013 		 */
2014 		error = mac_vnode_associate_extattr(mp, vp);
2015 		if (error) {
2016 			/* ufs_inactive will release ip->i_devvp ref. */
2017 			vgone(vp);
2018 			vput(vp);
2019 			*vpp = NULL;
2020 			return (error);
2021 		}
2022 	}
2023 #endif
2024 
2025 	vn_set_state(vp, VSTATE_CONSTRUCTED);
2026 	*vpp = vp;
2027 	return (0);
2028 }
2029 
2030 /*
2031  * File handle to vnode
2032  *
2033  * Have to be really careful about stale file handles:
2034  * - check that the inode number is valid
2035  * - for UFS2 check that the inode number is initialized
2036  * - call ffs_vget() to get the locked inode
2037  * - check for an unallocated inode (i_mode == 0)
2038  * - check that the given client host has export rights and return
2039  *   those rights via. exflagsp and credanonp
2040  */
2041 static int
2042 ffs_fhtovp(struct mount *mp, struct fid *fhp, int flags, struct vnode **vpp)
2043 {
2044 	struct ufid *ufhp;
2045 
2046 	ufhp = (struct ufid *)fhp;
2047 	return (ffs_inotovp(mp, ufhp->ufid_ino, ufhp->ufid_gen, flags,
2048 	    vpp, 0));
2049 }
2050 
2051 /*
2052  * Return a vnode from a mounted filesystem for inode with specified
2053  * generation number. Return ESTALE if the inode with given generation
2054  * number no longer exists on that filesystem.
2055  */
2056 int
2057 ffs_inotovp(struct mount *mp,
2058 	ino_t ino,
2059 	uint64_t gen,
2060 	int lflags,
2061 	struct vnode **vpp,
2062 	int ffs_flags)
2063 {
2064 	struct ufsmount *ump;
2065 	struct vnode *nvp;
2066 	struct inode *ip;
2067 	struct fs *fs;
2068 	struct cg *cgp;
2069 	struct buf *bp;
2070 	uint64_t cg;
2071 
2072 	ump = VFSTOUFS(mp);
2073 	fs = ump->um_fs;
2074 	*vpp = NULL;
2075 
2076 	if (ino < UFS_ROOTINO || ino >= fs->fs_ncg * fs->fs_ipg)
2077 		return (ESTALE);
2078 
2079 	/*
2080 	 * Need to check if inode is initialized because UFS2 does lazy
2081 	 * initialization and nfs_fhtovp can offer arbitrary inode numbers.
2082 	 */
2083 	if (fs->fs_magic == FS_UFS2_MAGIC) {
2084 		cg = ino_to_cg(fs, ino);
2085 		if (ffs_getcg(fs, ump->um_devvp, cg, 0, &bp, &cgp) != 0)
2086 			return (ESTALE);
2087 		if (ino >= cg * fs->fs_ipg + cgp->cg_initediblk) {
2088 			brelse(bp);
2089 			return (ESTALE);
2090 		}
2091 		brelse(bp);
2092 	}
2093 
2094 	if (ffs_vgetf(mp, ino, lflags, &nvp, ffs_flags) != 0)
2095 		return (ESTALE);
2096 
2097 	ip = VTOI(nvp);
2098 	if (ip->i_mode == 0 || ip->i_gen != gen || ip->i_effnlink <= 0) {
2099 		if (ip->i_mode == 0)
2100 			vgone(nvp);
2101 		vput(nvp);
2102 		return (ESTALE);
2103 	}
2104 
2105 	vnode_create_vobject(nvp, DIP(ip, i_size), curthread);
2106 	*vpp = nvp;
2107 	return (0);
2108 }
2109 
2110 /*
2111  * Initialize the filesystem.
2112  */
2113 static int
2114 ffs_init(struct vfsconf *vfsp)
2115 {
2116 
2117 	ffs_susp_initialize();
2118 	softdep_initialize();
2119 	return (ufs_init(vfsp));
2120 }
2121 
2122 /*
2123  * Undo the work of ffs_init().
2124  */
2125 static int
2126 ffs_uninit(struct vfsconf *vfsp)
2127 {
2128 	int ret;
2129 
2130 	ret = ufs_uninit(vfsp);
2131 	softdep_uninitialize();
2132 	ffs_susp_uninitialize();
2133 	taskqueue_drain_all(taskqueue_thread);
2134 	return (ret);
2135 }
2136 
2137 /*
2138  * Structure used to pass information from ffs_sbupdate to its
2139  * helper routine ffs_use_bwrite.
2140  */
2141 struct devfd {
2142 	struct ufsmount	*ump;
2143 	struct buf	*sbbp;
2144 	int		 waitfor;
2145 	int		 suspended;
2146 	int		 error;
2147 };
2148 
2149 /*
2150  * Write a superblock and associated information back to disk.
2151  */
2152 int
2153 ffs_sbupdate(struct ufsmount *ump, int waitfor, int suspended)
2154 {
2155 	struct fs *fs;
2156 	struct buf *sbbp;
2157 	struct devfd devfd;
2158 
2159 	fs = ump->um_fs;
2160 	if (fs->fs_ronly == 1 &&
2161 	    (ump->um_mountp->mnt_flag & (MNT_RDONLY | MNT_UPDATE)) !=
2162 	    (MNT_RDONLY | MNT_UPDATE))
2163 		panic("ffs_sbupdate: write read-only filesystem");
2164 	/*
2165 	 * We use the superblock's buf to serialize calls to ffs_sbupdate().
2166 	 */
2167 	sbbp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc),
2168 	    (int)fs->fs_sbsize, 0, 0, 0);
2169 	/*
2170 	 * Initialize info needed for write function.
2171 	 */
2172 	devfd.ump = ump;
2173 	devfd.sbbp = sbbp;
2174 	devfd.waitfor = waitfor;
2175 	devfd.suspended = suspended;
2176 	devfd.error = 0;
2177 	return (ffs_sbput(&devfd, fs, fs->fs_sblockloc, ffs_use_bwrite));
2178 }
2179 
2180 /*
2181  * Write function for use by filesystem-layer routines.
2182  */
2183 static int
2184 ffs_use_bwrite(void *devfd, off_t loc, void *buf, int size)
2185 {
2186 	struct devfd *devfdp;
2187 	struct ufsmount *ump;
2188 	struct buf *bp;
2189 	struct fs *fs;
2190 	int error;
2191 
2192 	devfdp = devfd;
2193 	ump = devfdp->ump;
2194 	fs = ump->um_fs;
2195 	/*
2196 	 * Writing the superblock summary information.
2197 	 */
2198 	if (loc != fs->fs_sblockloc) {
2199 		bp = getblk(ump->um_devvp, btodb(loc), size, 0, 0, 0);
2200 		bcopy(buf, bp->b_data, (uint64_t)size);
2201 		if (devfdp->suspended)
2202 			bp->b_flags |= B_VALIDSUSPWRT;
2203 		if (devfdp->waitfor != MNT_WAIT)
2204 			bawrite(bp);
2205 		else if ((error = bwrite(bp)) != 0)
2206 			devfdp->error = error;
2207 		return (0);
2208 	}
2209 	/*
2210 	 * Writing the superblock itself. We need to do special checks for it.
2211 	 */
2212 	bp = devfdp->sbbp;
2213 	if (ffs_fsfail_cleanup(ump, devfdp->error))
2214 		devfdp->error = 0;
2215 	if (devfdp->error != 0) {
2216 		brelse(bp);
2217 		return (devfdp->error);
2218 	}
2219 	if (fs->fs_magic == FS_UFS1_MAGIC && fs->fs_sblockloc != SBLOCK_UFS1 &&
2220 	    (fs->fs_old_flags & FS_FLAGS_UPDATED) == 0) {
2221 		printf("WARNING: %s: correcting fs_sblockloc from %jd to %d\n",
2222 		    fs->fs_fsmnt, fs->fs_sblockloc, SBLOCK_UFS1);
2223 		fs->fs_sblockloc = SBLOCK_UFS1;
2224 	}
2225 	if (fs->fs_magic == FS_UFS2_MAGIC && fs->fs_sblockloc != SBLOCK_UFS2 &&
2226 	    (fs->fs_old_flags & FS_FLAGS_UPDATED) == 0) {
2227 		printf("WARNING: %s: correcting fs_sblockloc from %jd to %d\n",
2228 		    fs->fs_fsmnt, fs->fs_sblockloc, SBLOCK_UFS2);
2229 		fs->fs_sblockloc = SBLOCK_UFS2;
2230 	}
2231 	if (MOUNTEDSOFTDEP(ump->um_mountp))
2232 		softdep_setup_sbupdate(ump, (struct fs *)bp->b_data, bp);
2233 	UFS_LOCK(ump);
2234 	bcopy((caddr_t)fs, bp->b_data, (uint64_t)fs->fs_sbsize);
2235 	UFS_UNLOCK(ump);
2236 	fs = (struct fs *)bp->b_data;
2237 	fs->fs_fmod = 0;
2238 	ffs_oldfscompat_write(fs, ump);
2239 	fs->fs_si = NULL;
2240 	/* Recalculate the superblock hash */
2241 	fs->fs_ckhash = ffs_calc_sbhash(fs);
2242 	if (devfdp->suspended)
2243 		bp->b_flags |= B_VALIDSUSPWRT;
2244 	if (devfdp->waitfor != MNT_WAIT)
2245 		bawrite(bp);
2246 	else if ((error = bwrite(bp)) != 0)
2247 		devfdp->error = error;
2248 	return (devfdp->error);
2249 }
2250 
2251 static int
2252 ffs_extattrctl(struct mount *mp, int cmd, struct vnode *filename_vp,
2253 	int attrnamespace, const char *attrname)
2254 {
2255 
2256 #ifdef UFS_EXTATTR
2257 	return (ufs_extattrctl(mp, cmd, filename_vp, attrnamespace,
2258 	    attrname));
2259 #else
2260 	return (vfs_stdextattrctl(mp, cmd, filename_vp, attrnamespace,
2261 	    attrname));
2262 #endif
2263 }
2264 
2265 static void
2266 ffs_ifree(struct ufsmount *ump, struct inode *ip)
2267 {
2268 
2269 	if (ump->um_fstype == UFS1 && ip->i_din1 != NULL)
2270 		uma_zfree(uma_ufs1, ip->i_din1);
2271 	else if (ip->i_din2 != NULL)
2272 		uma_zfree(uma_ufs2, ip->i_din2);
2273 	uma_zfree_smr(uma_inode, ip);
2274 }
2275 
2276 static int dobkgrdwrite = 1;
2277 SYSCTL_INT(_debug, OID_AUTO, dobkgrdwrite, CTLFLAG_RW, &dobkgrdwrite, 0,
2278     "Do background writes (honoring the BV_BKGRDWRITE flag)?");
2279 
2280 /*
2281  * Complete a background write started from bwrite.
2282  */
2283 static void
2284 ffs_backgroundwritedone(struct buf *bp)
2285 {
2286 	struct bufobj *bufobj;
2287 	struct buf *origbp;
2288 
2289 #ifdef SOFTUPDATES
2290 	if (!LIST_EMPTY(&bp->b_dep) && (bp->b_ioflags & BIO_ERROR) != 0)
2291 		softdep_handle_error(bp);
2292 #endif
2293 
2294 	/*
2295 	 * Find the original buffer that we are writing.
2296 	 */
2297 	bufobj = bp->b_bufobj;
2298 	BO_LOCK(bufobj);
2299 	if ((origbp = gbincore(bp->b_bufobj, bp->b_lblkno)) == NULL)
2300 		panic("backgroundwritedone: lost buffer");
2301 
2302 	/*
2303 	 * We should mark the cylinder group buffer origbp as
2304 	 * dirty, to not lose the failed write.
2305 	 */
2306 	if ((bp->b_ioflags & BIO_ERROR) != 0)
2307 		origbp->b_vflags |= BV_BKGRDERR;
2308 	BO_UNLOCK(bufobj);
2309 	/*
2310 	 * Process dependencies then return any unfinished ones.
2311 	 */
2312 	if (!LIST_EMPTY(&bp->b_dep) && (bp->b_ioflags & BIO_ERROR) == 0)
2313 		buf_complete(bp);
2314 #ifdef SOFTUPDATES
2315 	if (!LIST_EMPTY(&bp->b_dep))
2316 		softdep_move_dependencies(bp, origbp);
2317 #endif
2318 	/*
2319 	 * This buffer is marked B_NOCACHE so when it is released
2320 	 * by biodone it will be tossed.  Clear B_IOSTARTED in case of error.
2321 	 */
2322 	bp->b_flags |= B_NOCACHE;
2323 	bp->b_flags &= ~(B_CACHE | B_IOSTARTED);
2324 	pbrelvp(bp);
2325 
2326 	/*
2327 	 * Prevent brelse() from trying to keep and re-dirtying bp on
2328 	 * errors. It causes b_bufobj dereference in
2329 	 * bdirty()/reassignbuf(), and b_bufobj was cleared in
2330 	 * pbrelvp() above.
2331 	 */
2332 	if ((bp->b_ioflags & BIO_ERROR) != 0)
2333 		bp->b_flags |= B_INVAL;
2334 	bufdone(bp);
2335 	BO_LOCK(bufobj);
2336 	/*
2337 	 * Clear the BV_BKGRDINPROG flag in the original buffer
2338 	 * and awaken it if it is waiting for the write to complete.
2339 	 * If BV_BKGRDINPROG is not set in the original buffer it must
2340 	 * have been released and re-instantiated - which is not legal.
2341 	 */
2342 	KASSERT((origbp->b_vflags & BV_BKGRDINPROG),
2343 	    ("backgroundwritedone: lost buffer2"));
2344 	origbp->b_vflags &= ~BV_BKGRDINPROG;
2345 	if (origbp->b_vflags & BV_BKGRDWAIT) {
2346 		origbp->b_vflags &= ~BV_BKGRDWAIT;
2347 		wakeup(&origbp->b_xflags);
2348 	}
2349 	BO_UNLOCK(bufobj);
2350 }
2351 
2352 /*
2353  * Write, release buffer on completion.  (Done by iodone
2354  * if async).  Do not bother writing anything if the buffer
2355  * is invalid.
2356  *
2357  * Note that we set B_CACHE here, indicating that buffer is
2358  * fully valid and thus cacheable.  This is true even of NFS
2359  * now so we set it generally.  This could be set either here
2360  * or in biodone() since the I/O is synchronous.  We put it
2361  * here.
2362  */
2363 static int
2364 ffs_bufwrite(struct buf *bp)
2365 {
2366 	struct buf *newbp;
2367 	struct cg *cgp;
2368 
2369 	CTR3(KTR_BUF, "bufwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
2370 	if (bp->b_flags & B_INVAL) {
2371 		brelse(bp);
2372 		return (0);
2373 	}
2374 
2375 	if (!BUF_ISLOCKED(bp))
2376 		panic("bufwrite: buffer is not busy???");
2377 	/*
2378 	 * If a background write is already in progress, delay
2379 	 * writing this block if it is asynchronous. Otherwise
2380 	 * wait for the background write to complete.
2381 	 */
2382 	BO_LOCK(bp->b_bufobj);
2383 	if (bp->b_vflags & BV_BKGRDINPROG) {
2384 		if (bp->b_flags & B_ASYNC) {
2385 			BO_UNLOCK(bp->b_bufobj);
2386 			bdwrite(bp);
2387 			return (0);
2388 		}
2389 		bp->b_vflags |= BV_BKGRDWAIT;
2390 		msleep(&bp->b_xflags, BO_LOCKPTR(bp->b_bufobj), PRIBIO,
2391 		    "bwrbg", 0);
2392 		if (bp->b_vflags & BV_BKGRDINPROG)
2393 			panic("bufwrite: still writing");
2394 	}
2395 	bp->b_vflags &= ~BV_BKGRDERR;
2396 	BO_UNLOCK(bp->b_bufobj);
2397 
2398 	/*
2399 	 * If this buffer is marked for background writing and we
2400 	 * do not have to wait for it, make a copy and write the
2401 	 * copy so as to leave this buffer ready for further use.
2402 	 *
2403 	 * This optimization eats a lot of memory.  If we have a page
2404 	 * or buffer shortfall we can't do it.
2405 	 */
2406 	if (dobkgrdwrite && (bp->b_xflags & BX_BKGRDWRITE) &&
2407 	    (bp->b_flags & B_ASYNC) &&
2408 	    !vm_page_count_severe() &&
2409 	    !buf_dirty_count_severe()) {
2410 		KASSERT(bp->b_iodone == NULL,
2411 		    ("bufwrite: needs chained iodone (%p)", bp->b_iodone));
2412 
2413 		/* get a new block */
2414 		newbp = geteblk(bp->b_bufsize, GB_NOWAIT_BD);
2415 		if (newbp == NULL)
2416 			goto normal_write;
2417 
2418 		KASSERT(buf_mapped(bp), ("Unmapped cg"));
2419 		memcpy(newbp->b_data, bp->b_data, bp->b_bufsize);
2420 		BO_LOCK(bp->b_bufobj);
2421 		bp->b_vflags |= BV_BKGRDINPROG;
2422 		BO_UNLOCK(bp->b_bufobj);
2423 		newbp->b_xflags |=
2424 		    (bp->b_xflags & BX_FSPRIV) | BX_BKGRDMARKER;
2425 		newbp->b_lblkno = bp->b_lblkno;
2426 		newbp->b_blkno = bp->b_blkno;
2427 		newbp->b_offset = bp->b_offset;
2428 		newbp->b_iodone = ffs_backgroundwritedone;
2429 		newbp->b_flags |= B_ASYNC;
2430 		newbp->b_flags &= ~B_INVAL;
2431 		pbgetvp(bp->b_vp, newbp);
2432 
2433 #ifdef SOFTUPDATES
2434 		/*
2435 		 * Move over the dependencies.  If there are rollbacks,
2436 		 * leave the parent buffer dirtied as it will need to
2437 		 * be written again.
2438 		 */
2439 		if (LIST_EMPTY(&bp->b_dep) ||
2440 		    softdep_move_dependencies(bp, newbp) == 0)
2441 			bundirty(bp);
2442 #else
2443 		bundirty(bp);
2444 #endif
2445 
2446 		/*
2447 		 * Initiate write on the copy, release the original.  The
2448 		 * BKGRDINPROG flag prevents it from going away until
2449 		 * the background write completes. We have to recalculate
2450 		 * its check hash in case the buffer gets freed and then
2451 		 * reconstituted from the buffer cache during a later read.
2452 		 */
2453 		if ((bp->b_xflags & BX_CYLGRP) != 0) {
2454 			cgp = (struct cg *)bp->b_data;
2455 			cgp->cg_ckhash = 0;
2456 			cgp->cg_ckhash =
2457 			    calculate_crc32c(~0L, bp->b_data, bp->b_bcount);
2458 		}
2459 		bqrelse(bp);
2460 		bp = newbp;
2461 	} else
2462 		/* Mark the buffer clean */
2463 		bundirty(bp);
2464 
2465 	/* Let the normal bufwrite do the rest for us */
2466 normal_write:
2467 	/*
2468 	 * If we are writing a cylinder group, update its time.
2469 	 */
2470 	if ((bp->b_xflags & BX_CYLGRP) != 0) {
2471 		cgp = (struct cg *)bp->b_data;
2472 		cgp->cg_old_time = cgp->cg_time = time_second;
2473 	}
2474 	return (bufwrite(bp));
2475 }
2476 
2477 static void
2478 ffs_geom_strategy(struct bufobj *bo, struct buf *bp)
2479 {
2480 	struct vnode *vp;
2481 	struct buf *tbp;
2482 	int error, nocopy;
2483 
2484 	/*
2485 	 * This is the bufobj strategy for the private VCHR vnodes
2486 	 * used by FFS to access the underlying storage device.
2487 	 * We override the default bufobj strategy and thus bypass
2488 	 * VOP_STRATEGY() for these vnodes.
2489 	 */
2490 	vp = bo2vnode(bo);
2491 	KASSERT(bp->b_vp == NULL || bp->b_vp->v_type != VCHR ||
2492 	    bp->b_vp->v_rdev == NULL ||
2493 	    bp->b_vp->v_rdev->si_mountpt == NULL ||
2494 	    VFSTOUFS(bp->b_vp->v_rdev->si_mountpt) == NULL ||
2495 	    vp == VFSTOUFS(bp->b_vp->v_rdev->si_mountpt)->um_devvp,
2496 	    ("ffs_geom_strategy() with wrong vp"));
2497 	if (bp->b_iocmd == BIO_WRITE) {
2498 		if ((bp->b_flags & B_VALIDSUSPWRT) == 0 &&
2499 		    bp->b_vp != NULL && bp->b_vp->v_mount != NULL &&
2500 		    (bp->b_vp->v_mount->mnt_kern_flag & MNTK_SUSPENDED) != 0)
2501 			panic("ffs_geom_strategy: bad I/O");
2502 		nocopy = bp->b_flags & B_NOCOPY;
2503 		bp->b_flags &= ~(B_VALIDSUSPWRT | B_NOCOPY);
2504 		if ((vp->v_vflag & VV_COPYONWRITE) && nocopy == 0 &&
2505 		    vp->v_rdev->si_snapdata != NULL) {
2506 			if ((bp->b_flags & B_CLUSTER) != 0) {
2507 				runningbufwakeup(bp);
2508 				TAILQ_FOREACH(tbp, &bp->b_cluster.cluster_head,
2509 					      b_cluster.cluster_entry) {
2510 					error = ffs_copyonwrite(vp, tbp);
2511 					if (error != 0 &&
2512 					    error != EOPNOTSUPP) {
2513 						bp->b_error = error;
2514 						bp->b_ioflags |= BIO_ERROR;
2515 						bp->b_flags &= ~B_BARRIER;
2516 						bufdone(bp);
2517 						return;
2518 					}
2519 				}
2520 				bp->b_runningbufspace = bp->b_bufsize;
2521 				atomic_add_long(&runningbufspace,
2522 					       bp->b_runningbufspace);
2523 			} else {
2524 				error = ffs_copyonwrite(vp, bp);
2525 				if (error != 0 && error != EOPNOTSUPP) {
2526 					bp->b_error = error;
2527 					bp->b_ioflags |= BIO_ERROR;
2528 					bp->b_flags &= ~B_BARRIER;
2529 					bufdone(bp);
2530 					return;
2531 				}
2532 			}
2533 		}
2534 #ifdef SOFTUPDATES
2535 		if ((bp->b_flags & B_CLUSTER) != 0) {
2536 			TAILQ_FOREACH(tbp, &bp->b_cluster.cluster_head,
2537 				      b_cluster.cluster_entry) {
2538 				if (!LIST_EMPTY(&tbp->b_dep))
2539 					buf_start(tbp);
2540 			}
2541 		} else {
2542 			if (!LIST_EMPTY(&bp->b_dep))
2543 				buf_start(bp);
2544 		}
2545 
2546 #endif
2547 		/*
2548 		 * Check for metadata that needs check-hashes and update them.
2549 		 */
2550 		switch (bp->b_xflags & BX_FSPRIV) {
2551 		case BX_CYLGRP:
2552 			((struct cg *)bp->b_data)->cg_ckhash = 0;
2553 			((struct cg *)bp->b_data)->cg_ckhash =
2554 			    calculate_crc32c(~0L, bp->b_data, bp->b_bcount);
2555 			break;
2556 
2557 		case BX_SUPERBLOCK:
2558 		case BX_INODE:
2559 		case BX_INDIR:
2560 		case BX_DIR:
2561 			printf("Check-hash write is unimplemented!!!\n");
2562 			break;
2563 
2564 		case 0:
2565 			break;
2566 
2567 		default:
2568 			printf("multiple buffer types 0x%b\n",
2569 			    (bp->b_xflags & BX_FSPRIV), PRINT_UFS_BUF_XFLAGS);
2570 			break;
2571 		}
2572 	}
2573 	if (bp->b_iocmd != BIO_READ && ffs_enxio_enable)
2574 		bp->b_xflags |= BX_CVTENXIO;
2575 	g_vfs_strategy(bo, bp);
2576 }
2577 
2578 int
2579 ffs_own_mount(const struct mount *mp)
2580 {
2581 
2582 	if (mp->mnt_op == &ufs_vfsops)
2583 		return (1);
2584 	return (0);
2585 }
2586 
2587 #ifdef	DDB
2588 #ifdef SOFTUPDATES
2589 
2590 /* defined in ffs_softdep.c */
2591 extern void db_print_ffs(struct ufsmount *ump);
2592 
2593 DB_SHOW_COMMAND(ffs, db_show_ffs)
2594 {
2595 	struct mount *mp;
2596 	struct ufsmount *ump;
2597 
2598 	if (have_addr) {
2599 		ump = VFSTOUFS((struct mount *)addr);
2600 		db_print_ffs(ump);
2601 		return;
2602 	}
2603 
2604 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
2605 		if (!strcmp(mp->mnt_stat.f_fstypename, ufs_vfsconf.vfc_name))
2606 			db_print_ffs(VFSTOUFS(mp));
2607 	}
2608 }
2609 
2610 #endif	/* SOFTUPDATES */
2611 #endif	/* DDB */
2612