1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1989, 1991, 1993, 1994 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * @(#)ffs_vfsops.c 8.31 (Berkeley) 5/20/95 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include "opt_quota.h" 38 #include "opt_ufs.h" 39 #include "opt_ffs.h" 40 #include "opt_ddb.h" 41 42 #include <sys/param.h> 43 #include <sys/gsb_crc32.h> 44 #include <sys/systm.h> 45 #include <sys/namei.h> 46 #include <sys/priv.h> 47 #include <sys/proc.h> 48 #include <sys/taskqueue.h> 49 #include <sys/kernel.h> 50 #include <sys/ktr.h> 51 #include <sys/vnode.h> 52 #include <sys/mount.h> 53 #include <sys/bio.h> 54 #include <sys/buf.h> 55 #include <sys/conf.h> 56 #include <sys/fcntl.h> 57 #include <sys/ioccom.h> 58 #include <sys/malloc.h> 59 #include <sys/mutex.h> 60 #include <sys/rwlock.h> 61 #include <sys/sysctl.h> 62 #include <sys/vmmeter.h> 63 64 #include <security/mac/mac_framework.h> 65 66 #include <ufs/ufs/dir.h> 67 #include <ufs/ufs/extattr.h> 68 #include <ufs/ufs/gjournal.h> 69 #include <ufs/ufs/quota.h> 70 #include <ufs/ufs/ufsmount.h> 71 #include <ufs/ufs/inode.h> 72 #include <ufs/ufs/ufs_extern.h> 73 74 #include <ufs/ffs/fs.h> 75 #include <ufs/ffs/ffs_extern.h> 76 77 #include <vm/vm.h> 78 #include <vm/uma.h> 79 #include <vm/vm_page.h> 80 81 #include <geom/geom.h> 82 #include <geom/geom_vfs.h> 83 84 #include <ddb/ddb.h> 85 86 static uma_zone_t uma_inode, uma_ufs1, uma_ufs2; 87 VFS_SMR_DECLARE; 88 89 static int ffs_mountfs(struct vnode *, struct mount *, struct thread *); 90 static void ffs_oldfscompat_read(struct fs *, struct ufsmount *, 91 ufs2_daddr_t); 92 static void ffs_ifree(struct ufsmount *ump, struct inode *ip); 93 static int ffs_sync_lazy(struct mount *mp); 94 static int ffs_use_bread(void *devfd, off_t loc, void **bufp, int size); 95 static int ffs_use_bwrite(void *devfd, off_t loc, void *buf, int size); 96 97 static vfs_init_t ffs_init; 98 static vfs_uninit_t ffs_uninit; 99 static vfs_extattrctl_t ffs_extattrctl; 100 static vfs_cmount_t ffs_cmount; 101 static vfs_unmount_t ffs_unmount; 102 static vfs_mount_t ffs_mount; 103 static vfs_statfs_t ffs_statfs; 104 static vfs_fhtovp_t ffs_fhtovp; 105 static vfs_sync_t ffs_sync; 106 107 static struct vfsops ufs_vfsops = { 108 .vfs_extattrctl = ffs_extattrctl, 109 .vfs_fhtovp = ffs_fhtovp, 110 .vfs_init = ffs_init, 111 .vfs_mount = ffs_mount, 112 .vfs_cmount = ffs_cmount, 113 .vfs_quotactl = ufs_quotactl, 114 .vfs_root = vfs_cache_root, 115 .vfs_cachedroot = ufs_root, 116 .vfs_statfs = ffs_statfs, 117 .vfs_sync = ffs_sync, 118 .vfs_uninit = ffs_uninit, 119 .vfs_unmount = ffs_unmount, 120 .vfs_vget = ffs_vget, 121 .vfs_susp_clean = process_deferred_inactive, 122 }; 123 124 VFS_SET(ufs_vfsops, ufs, 0); 125 MODULE_VERSION(ufs, 1); 126 127 static b_strategy_t ffs_geom_strategy; 128 static b_write_t ffs_bufwrite; 129 130 static struct buf_ops ffs_ops = { 131 .bop_name = "FFS", 132 .bop_write = ffs_bufwrite, 133 .bop_strategy = ffs_geom_strategy, 134 .bop_sync = bufsync, 135 #ifdef NO_FFS_SNAPSHOT 136 .bop_bdflush = bufbdflush, 137 #else 138 .bop_bdflush = ffs_bdflush, 139 #endif 140 }; 141 142 /* 143 * Note that userquota and groupquota options are not currently used 144 * by UFS/FFS code and generally mount(8) does not pass those options 145 * from userland, but they can be passed by loader(8) via 146 * vfs.root.mountfrom.options. 147 */ 148 static const char *ffs_opts[] = { "acls", "async", "noatime", "noclusterr", 149 "noclusterw", "noexec", "export", "force", "from", "groupquota", 150 "multilabel", "nfsv4acls", "snapshot", "nosuid", "suiddir", 151 "nosymfollow", "sync", "union", "userquota", "untrusted", NULL }; 152 153 static int ffs_enxio_enable = 1; 154 SYSCTL_DECL(_vfs_ffs); 155 SYSCTL_INT(_vfs_ffs, OID_AUTO, enxio_enable, CTLFLAG_RWTUN, 156 &ffs_enxio_enable, 0, 157 "enable mapping of other disk I/O errors to ENXIO"); 158 159 /* 160 * Return buffer with the contents of block "offset" from the beginning of 161 * directory "ip". If "res" is non-zero, fill it in with a pointer to the 162 * remaining space in the directory. 163 */ 164 static int 165 ffs_blkatoff(struct vnode *vp, off_t offset, char **res, struct buf **bpp) 166 { 167 struct inode *ip; 168 struct fs *fs; 169 struct buf *bp; 170 ufs_lbn_t lbn; 171 int bsize, error; 172 173 ip = VTOI(vp); 174 fs = ITOFS(ip); 175 lbn = lblkno(fs, offset); 176 bsize = blksize(fs, ip, lbn); 177 178 *bpp = NULL; 179 error = bread(vp, lbn, bsize, NOCRED, &bp); 180 if (error) { 181 return (error); 182 } 183 if (res) 184 *res = (char *)bp->b_data + blkoff(fs, offset); 185 *bpp = bp; 186 return (0); 187 } 188 189 /* 190 * Load up the contents of an inode and copy the appropriate pieces 191 * to the incore copy. 192 */ 193 static int 194 ffs_load_inode(struct buf *bp, struct inode *ip, struct fs *fs, ino_t ino) 195 { 196 struct ufs1_dinode *dip1; 197 struct ufs2_dinode *dip2; 198 int error; 199 200 if (I_IS_UFS1(ip)) { 201 dip1 = ip->i_din1; 202 *dip1 = 203 *((struct ufs1_dinode *)bp->b_data + ino_to_fsbo(fs, ino)); 204 ip->i_mode = dip1->di_mode; 205 ip->i_nlink = dip1->di_nlink; 206 ip->i_effnlink = dip1->di_nlink; 207 ip->i_size = dip1->di_size; 208 ip->i_flags = dip1->di_flags; 209 ip->i_gen = dip1->di_gen; 210 ip->i_uid = dip1->di_uid; 211 ip->i_gid = dip1->di_gid; 212 return (0); 213 } 214 dip2 = ((struct ufs2_dinode *)bp->b_data + ino_to_fsbo(fs, ino)); 215 if ((error = ffs_verify_dinode_ckhash(fs, dip2)) != 0 && 216 !ffs_fsfail_cleanup(ITOUMP(ip), error)) { 217 printf("%s: inode %jd: check-hash failed\n", fs->fs_fsmnt, 218 (intmax_t)ino); 219 return (error); 220 } 221 *ip->i_din2 = *dip2; 222 dip2 = ip->i_din2; 223 ip->i_mode = dip2->di_mode; 224 ip->i_nlink = dip2->di_nlink; 225 ip->i_effnlink = dip2->di_nlink; 226 ip->i_size = dip2->di_size; 227 ip->i_flags = dip2->di_flags; 228 ip->i_gen = dip2->di_gen; 229 ip->i_uid = dip2->di_uid; 230 ip->i_gid = dip2->di_gid; 231 return (0); 232 } 233 234 /* 235 * Verify that a filesystem block number is a valid data block. 236 * This routine is only called on untrusted filesystems. 237 */ 238 static int 239 ffs_check_blkno(struct mount *mp, ino_t inum, ufs2_daddr_t daddr, int blksize) 240 { 241 struct fs *fs; 242 struct ufsmount *ump; 243 ufs2_daddr_t end_daddr; 244 int cg, havemtx; 245 246 KASSERT((mp->mnt_flag & MNT_UNTRUSTED) != 0, 247 ("ffs_check_blkno called on a trusted file system")); 248 ump = VFSTOUFS(mp); 249 fs = ump->um_fs; 250 cg = dtog(fs, daddr); 251 end_daddr = daddr + numfrags(fs, blksize); 252 /* 253 * Verify that the block number is a valid data block. Also check 254 * that it does not point to an inode block or a superblock. Accept 255 * blocks that are unalloacted (0) or part of snapshot metadata 256 * (BLK_NOCOPY or BLK_SNAP). 257 * 258 * Thus, the block must be in a valid range for the filesystem and 259 * either in the space before a backup superblock (except the first 260 * cylinder group where that space is used by the bootstrap code) or 261 * after the inode blocks and before the end of the cylinder group. 262 */ 263 if ((uint64_t)daddr <= BLK_SNAP || 264 ((uint64_t)end_daddr <= fs->fs_size && 265 ((cg > 0 && end_daddr <= cgsblock(fs, cg)) || 266 (daddr >= cgdmin(fs, cg) && 267 end_daddr <= cgbase(fs, cg) + fs->fs_fpg)))) 268 return (0); 269 if ((havemtx = mtx_owned(UFS_MTX(ump))) == 0) 270 UFS_LOCK(ump); 271 if (ppsratecheck(&ump->um_last_integritymsg, 272 &ump->um_secs_integritymsg, 1)) { 273 UFS_UNLOCK(ump); 274 uprintf("\n%s: inode %jd, out-of-range indirect block " 275 "number %jd\n", mp->mnt_stat.f_mntonname, inum, daddr); 276 if (havemtx) 277 UFS_LOCK(ump); 278 } else if (!havemtx) 279 UFS_UNLOCK(ump); 280 return (EINTEGRITY); 281 } 282 283 /* 284 * On first ENXIO error, initiate an asynchronous forcible unmount. 285 * Used to unmount filesystems whose underlying media has gone away. 286 * 287 * Return true if a cleanup is in progress. 288 */ 289 int 290 ffs_fsfail_cleanup(struct ufsmount *ump, int error) 291 { 292 int retval; 293 294 UFS_LOCK(ump); 295 retval = ffs_fsfail_cleanup_locked(ump, error); 296 UFS_UNLOCK(ump); 297 return (retval); 298 } 299 300 int 301 ffs_fsfail_cleanup_locked(struct ufsmount *ump, int error) 302 { 303 mtx_assert(UFS_MTX(ump), MA_OWNED); 304 if (error == ENXIO && (ump->um_flags & UM_FSFAIL_CLEANUP) == 0) { 305 ump->um_flags |= UM_FSFAIL_CLEANUP; 306 /* 307 * Queue an async forced unmount. 308 */ 309 vfs_ref(ump->um_mountp); 310 dounmount(ump->um_mountp, 311 MNT_FORCE | MNT_RECURSE | MNT_DEFERRED, curthread); 312 printf("UFS: forcibly unmounting %s from %s\n", 313 ump->um_mountp->mnt_stat.f_mntfromname, 314 ump->um_mountp->mnt_stat.f_mntonname); 315 } 316 return ((ump->um_flags & UM_FSFAIL_CLEANUP) != 0); 317 } 318 319 /* 320 * Wrapper used during ENXIO cleanup to allocate empty buffers when 321 * the kernel is unable to read the real one. They are needed so that 322 * the soft updates code can use them to unwind its dependencies. 323 */ 324 int 325 ffs_breadz(struct ufsmount *ump, struct vnode *vp, daddr_t lblkno, 326 daddr_t dblkno, int size, daddr_t *rablkno, int *rabsize, int cnt, 327 struct ucred *cred, int flags, void (*ckhashfunc)(struct buf *), 328 struct buf **bpp) 329 { 330 int error; 331 332 flags |= GB_CVTENXIO; 333 error = breadn_flags(vp, lblkno, dblkno, size, rablkno, rabsize, cnt, 334 cred, flags, ckhashfunc, bpp); 335 if (error != 0 && ffs_fsfail_cleanup(ump, error)) { 336 error = getblkx(vp, lblkno, dblkno, size, 0, 0, flags, bpp); 337 KASSERT(error == 0, ("getblkx failed")); 338 vfs_bio_bzero_buf(*bpp, 0, size); 339 } 340 return (error); 341 } 342 343 static int 344 ffs_mount(struct mount *mp) 345 { 346 struct vnode *devvp, *odevvp; 347 struct thread *td; 348 struct ufsmount *ump = NULL; 349 struct fs *fs; 350 int error, flags; 351 int error1 __diagused; 352 uint64_t mntorflags, saved_mnt_flag; 353 accmode_t accmode; 354 struct nameidata ndp; 355 char *fspec; 356 bool mounted_softdep; 357 358 td = curthread; 359 if (vfs_filteropt(mp->mnt_optnew, ffs_opts)) 360 return (EINVAL); 361 if (uma_inode == NULL) { 362 uma_inode = uma_zcreate("FFS inode", 363 sizeof(struct inode), NULL, NULL, NULL, NULL, 364 UMA_ALIGN_PTR, 0); 365 uma_ufs1 = uma_zcreate("FFS1 dinode", 366 sizeof(struct ufs1_dinode), NULL, NULL, NULL, NULL, 367 UMA_ALIGN_PTR, 0); 368 uma_ufs2 = uma_zcreate("FFS2 dinode", 369 sizeof(struct ufs2_dinode), NULL, NULL, NULL, NULL, 370 UMA_ALIGN_PTR, 0); 371 VFS_SMR_ZONE_SET(uma_inode); 372 } 373 374 vfs_deleteopt(mp->mnt_optnew, "groupquota"); 375 vfs_deleteopt(mp->mnt_optnew, "userquota"); 376 377 fspec = vfs_getopts(mp->mnt_optnew, "from", &error); 378 if (error) 379 return (error); 380 381 mntorflags = 0; 382 if (vfs_getopt(mp->mnt_optnew, "untrusted", NULL, NULL) == 0) 383 mntorflags |= MNT_UNTRUSTED; 384 385 if (vfs_getopt(mp->mnt_optnew, "acls", NULL, NULL) == 0) 386 mntorflags |= MNT_ACLS; 387 388 if (vfs_getopt(mp->mnt_optnew, "snapshot", NULL, NULL) == 0) { 389 mntorflags |= MNT_SNAPSHOT; 390 /* 391 * Once we have set the MNT_SNAPSHOT flag, do not 392 * persist "snapshot" in the options list. 393 */ 394 vfs_deleteopt(mp->mnt_optnew, "snapshot"); 395 vfs_deleteopt(mp->mnt_opt, "snapshot"); 396 } 397 398 if (vfs_getopt(mp->mnt_optnew, "nfsv4acls", NULL, NULL) == 0) { 399 if (mntorflags & MNT_ACLS) { 400 vfs_mount_error(mp, 401 "\"acls\" and \"nfsv4acls\" options " 402 "are mutually exclusive"); 403 return (EINVAL); 404 } 405 mntorflags |= MNT_NFS4ACLS; 406 } 407 408 MNT_ILOCK(mp); 409 mp->mnt_kern_flag &= ~MNTK_FPLOOKUP; 410 mp->mnt_flag |= mntorflags; 411 MNT_IUNLOCK(mp); 412 413 /* 414 * If this is a snapshot request, take the snapshot. 415 */ 416 if (mp->mnt_flag & MNT_SNAPSHOT) 417 return (ffs_snapshot(mp, fspec)); 418 419 /* 420 * Must not call namei() while owning busy ref. 421 */ 422 if (mp->mnt_flag & MNT_UPDATE) 423 vfs_unbusy(mp); 424 425 /* 426 * Not an update, or updating the name: look up the name 427 * and verify that it refers to a sensible disk device. 428 */ 429 NDINIT(&ndp, LOOKUP, FOLLOW | LOCKLEAF, UIO_SYSSPACE, fspec); 430 error = namei(&ndp); 431 if ((mp->mnt_flag & MNT_UPDATE) != 0) { 432 /* 433 * Unmount does not start if MNT_UPDATE is set. Mount 434 * update busies mp before setting MNT_UPDATE. We 435 * must be able to retain our busy ref successfully, 436 * without sleep. 437 */ 438 error1 = vfs_busy(mp, MBF_NOWAIT); 439 MPASS(error1 == 0); 440 } 441 if (error != 0) 442 return (error); 443 NDFREE_PNBUF(&ndp); 444 if (!vn_isdisk_error(ndp.ni_vp, &error)) { 445 vput(ndp.ni_vp); 446 return (error); 447 } 448 449 /* 450 * If mount by non-root, then verify that user has necessary 451 * permissions on the device. 452 */ 453 accmode = VREAD; 454 if ((mp->mnt_flag & MNT_RDONLY) == 0) 455 accmode |= VWRITE; 456 error = VOP_ACCESS(ndp.ni_vp, accmode, td->td_ucred, td); 457 if (error) 458 error = priv_check(td, PRIV_VFS_MOUNT_PERM); 459 if (error) { 460 vput(ndp.ni_vp); 461 return (error); 462 } 463 464 /* 465 * New mount 466 * 467 * We need the name for the mount point (also used for 468 * "last mounted on") copied in. If an error occurs, 469 * the mount point is discarded by the upper level code. 470 * Note that vfs_mount_alloc() populates f_mntonname for us. 471 */ 472 if ((mp->mnt_flag & MNT_UPDATE) == 0) { 473 if ((error = ffs_mountfs(ndp.ni_vp, mp, td)) != 0) { 474 vrele(ndp.ni_vp); 475 return (error); 476 } 477 } else { 478 /* 479 * When updating, check whether changing from read-only to 480 * read/write; if there is no device name, that's all we do. 481 */ 482 ump = VFSTOUFS(mp); 483 fs = ump->um_fs; 484 odevvp = ump->um_odevvp; 485 devvp = ump->um_devvp; 486 487 /* 488 * If it's not the same vnode, or at least the same device 489 * then it's not correct. 490 */ 491 if (ndp.ni_vp->v_rdev != ump->um_odevvp->v_rdev) 492 error = EINVAL; /* needs translation */ 493 vput(ndp.ni_vp); 494 if (error) 495 return (error); 496 if (fs->fs_ronly == 0 && 497 vfs_flagopt(mp->mnt_optnew, "ro", NULL, 0)) { 498 /* 499 * Flush any dirty data and suspend filesystem. 500 */ 501 if ((error = vn_start_write(NULL, &mp, V_WAIT)) != 0) 502 return (error); 503 error = vfs_write_suspend_umnt(mp); 504 if (error != 0) 505 return (error); 506 507 fs->fs_ronly = 1; 508 if (MOUNTEDSOFTDEP(mp)) { 509 MNT_ILOCK(mp); 510 mp->mnt_flag &= ~MNT_SOFTDEP; 511 MNT_IUNLOCK(mp); 512 mounted_softdep = true; 513 } else 514 mounted_softdep = false; 515 516 /* 517 * Check for and optionally get rid of files open 518 * for writing. 519 */ 520 flags = WRITECLOSE; 521 if (mp->mnt_flag & MNT_FORCE) 522 flags |= FORCECLOSE; 523 if (mounted_softdep) { 524 error = softdep_flushfiles(mp, flags, td); 525 } else { 526 error = ffs_flushfiles(mp, flags, td); 527 } 528 if (error) { 529 fs->fs_ronly = 0; 530 if (mounted_softdep) { 531 MNT_ILOCK(mp); 532 mp->mnt_flag |= MNT_SOFTDEP; 533 MNT_IUNLOCK(mp); 534 } 535 vfs_write_resume(mp, 0); 536 return (error); 537 } 538 539 if (fs->fs_pendingblocks != 0 || 540 fs->fs_pendinginodes != 0) { 541 printf("WARNING: %s Update error: blocks %jd " 542 "files %d\n", fs->fs_fsmnt, 543 (intmax_t)fs->fs_pendingblocks, 544 fs->fs_pendinginodes); 545 fs->fs_pendingblocks = 0; 546 fs->fs_pendinginodes = 0; 547 } 548 if ((fs->fs_flags & (FS_UNCLEAN | FS_NEEDSFSCK)) == 0) 549 fs->fs_clean = 1; 550 if ((error = ffs_sbupdate(ump, MNT_WAIT, 0)) != 0) { 551 fs->fs_ronly = 0; 552 fs->fs_clean = 0; 553 if (mounted_softdep) { 554 MNT_ILOCK(mp); 555 mp->mnt_flag |= MNT_SOFTDEP; 556 MNT_IUNLOCK(mp); 557 } 558 vfs_write_resume(mp, 0); 559 return (error); 560 } 561 if (mounted_softdep) 562 softdep_unmount(mp); 563 g_topology_lock(); 564 /* 565 * Drop our write and exclusive access. 566 */ 567 g_access(ump->um_cp, 0, -1, -1); 568 g_topology_unlock(); 569 MNT_ILOCK(mp); 570 mp->mnt_flag |= MNT_RDONLY; 571 MNT_IUNLOCK(mp); 572 /* 573 * Allow the writers to note that filesystem 574 * is ro now. 575 */ 576 vfs_write_resume(mp, 0); 577 } 578 if ((mp->mnt_flag & MNT_RELOAD) && 579 (error = ffs_reload(mp, 0)) != 0) 580 return (error); 581 if (fs->fs_ronly && 582 !vfs_flagopt(mp->mnt_optnew, "ro", NULL, 0)) { 583 /* 584 * If upgrade to read-write by non-root, then verify 585 * that user has necessary permissions on the device. 586 */ 587 vn_lock(odevvp, LK_EXCLUSIVE | LK_RETRY); 588 error = VOP_ACCESS(odevvp, VREAD | VWRITE, 589 td->td_ucred, td); 590 if (error) 591 error = priv_check(td, PRIV_VFS_MOUNT_PERM); 592 VOP_UNLOCK(odevvp); 593 if (error) { 594 return (error); 595 } 596 fs->fs_flags &= ~FS_UNCLEAN; 597 if (fs->fs_clean == 0) { 598 fs->fs_flags |= FS_UNCLEAN; 599 if ((mp->mnt_flag & MNT_FORCE) || 600 ((fs->fs_flags & 601 (FS_SUJ | FS_NEEDSFSCK)) == 0 && 602 (fs->fs_flags & FS_DOSOFTDEP))) { 603 printf("WARNING: %s was not properly " 604 "dismounted\n", fs->fs_fsmnt); 605 } else { 606 vfs_mount_error(mp, 607 "R/W mount of %s denied. %s.%s", 608 fs->fs_fsmnt, 609 "Filesystem is not clean - run fsck", 610 (fs->fs_flags & FS_SUJ) == 0 ? "" : 611 " Forced mount will invalidate" 612 " journal contents"); 613 return (EPERM); 614 } 615 } 616 g_topology_lock(); 617 /* 618 * Request exclusive write access. 619 */ 620 error = g_access(ump->um_cp, 0, 1, 1); 621 g_topology_unlock(); 622 if (error) 623 return (error); 624 if ((error = vn_start_write(NULL, &mp, V_WAIT)) != 0) 625 return (error); 626 error = vfs_write_suspend_umnt(mp); 627 if (error != 0) 628 return (error); 629 fs->fs_ronly = 0; 630 MNT_ILOCK(mp); 631 saved_mnt_flag = MNT_RDONLY; 632 if (MOUNTEDSOFTDEP(mp) && (mp->mnt_flag & 633 MNT_ASYNC) != 0) 634 saved_mnt_flag |= MNT_ASYNC; 635 mp->mnt_flag &= ~saved_mnt_flag; 636 MNT_IUNLOCK(mp); 637 fs->fs_mtime = time_second; 638 /* check to see if we need to start softdep */ 639 if ((fs->fs_flags & FS_DOSOFTDEP) && 640 (error = softdep_mount(devvp, mp, fs, td->td_ucred))){ 641 fs->fs_ronly = 1; 642 MNT_ILOCK(mp); 643 mp->mnt_flag |= saved_mnt_flag; 644 MNT_IUNLOCK(mp); 645 vfs_write_resume(mp, 0); 646 return (error); 647 } 648 fs->fs_clean = 0; 649 if ((error = ffs_sbupdate(ump, MNT_WAIT, 0)) != 0) { 650 fs->fs_ronly = 1; 651 if ((fs->fs_flags & FS_DOSOFTDEP) != 0) 652 softdep_unmount(mp); 653 MNT_ILOCK(mp); 654 mp->mnt_flag |= saved_mnt_flag; 655 MNT_IUNLOCK(mp); 656 vfs_write_resume(mp, 0); 657 return (error); 658 } 659 if (fs->fs_snapinum[0] != 0) 660 ffs_snapshot_mount(mp); 661 vfs_write_resume(mp, 0); 662 } 663 /* 664 * Soft updates is incompatible with "async", 665 * so if we are doing softupdates stop the user 666 * from setting the async flag in an update. 667 * Softdep_mount() clears it in an initial mount 668 * or ro->rw remount. 669 */ 670 if (MOUNTEDSOFTDEP(mp)) { 671 /* XXX: Reset too late ? */ 672 MNT_ILOCK(mp); 673 mp->mnt_flag &= ~MNT_ASYNC; 674 MNT_IUNLOCK(mp); 675 } 676 /* 677 * Keep MNT_ACLS flag if it is stored in superblock. 678 */ 679 if ((fs->fs_flags & FS_ACLS) != 0) { 680 /* XXX: Set too late ? */ 681 MNT_ILOCK(mp); 682 mp->mnt_flag |= MNT_ACLS; 683 MNT_IUNLOCK(mp); 684 } 685 686 if ((fs->fs_flags & FS_NFS4ACLS) != 0) { 687 /* XXX: Set too late ? */ 688 MNT_ILOCK(mp); 689 mp->mnt_flag |= MNT_NFS4ACLS; 690 MNT_IUNLOCK(mp); 691 } 692 693 } 694 695 MNT_ILOCK(mp); 696 /* 697 * This is racy versus lookup, see ufs_fplookup_vexec for details. 698 */ 699 if ((mp->mnt_kern_flag & MNTK_FPLOOKUP) != 0) 700 panic("MNTK_FPLOOKUP set on mount %p when it should not be", mp); 701 if ((mp->mnt_flag & (MNT_ACLS | MNT_NFS4ACLS | MNT_UNION)) == 0) 702 mp->mnt_kern_flag |= MNTK_FPLOOKUP; 703 MNT_IUNLOCK(mp); 704 705 vfs_mountedfrom(mp, fspec); 706 return (0); 707 } 708 709 /* 710 * Compatibility with old mount system call. 711 */ 712 713 static int 714 ffs_cmount(struct mntarg *ma, void *data, uint64_t flags) 715 { 716 struct ufs_args args; 717 int error; 718 719 if (data == NULL) 720 return (EINVAL); 721 error = copyin(data, &args, sizeof args); 722 if (error) 723 return (error); 724 725 ma = mount_argsu(ma, "from", args.fspec, MAXPATHLEN); 726 ma = mount_arg(ma, "export", &args.export, sizeof(args.export)); 727 error = kernel_mount(ma, flags); 728 729 return (error); 730 } 731 732 /* 733 * Reload all incore data for a filesystem (used after running fsck on 734 * the root filesystem and finding things to fix). If the 'force' flag 735 * is 0, the filesystem must be mounted read-only. 736 * 737 * Things to do to update the mount: 738 * 1) invalidate all cached meta-data. 739 * 2) re-read superblock from disk. 740 * 3) re-read summary information from disk. 741 * 4) invalidate all inactive vnodes. 742 * 5) clear MNTK_SUSPEND2 and MNTK_SUSPENDED flags, allowing secondary 743 * writers, if requested. 744 * 6) invalidate all cached file data. 745 * 7) re-read inode data for all active vnodes. 746 */ 747 int 748 ffs_reload(struct mount *mp, int flags) 749 { 750 struct vnode *vp, *mvp, *devvp; 751 struct inode *ip; 752 void *space; 753 struct buf *bp; 754 struct fs *fs, *newfs; 755 struct ufsmount *ump; 756 ufs2_daddr_t sblockloc; 757 int i, blks, error; 758 u_long size; 759 int32_t *lp; 760 761 ump = VFSTOUFS(mp); 762 763 MNT_ILOCK(mp); 764 if ((mp->mnt_flag & MNT_RDONLY) == 0 && (flags & FFSR_FORCE) == 0) { 765 MNT_IUNLOCK(mp); 766 return (EINVAL); 767 } 768 MNT_IUNLOCK(mp); 769 770 /* 771 * Step 1: invalidate all cached meta-data. 772 */ 773 devvp = VFSTOUFS(mp)->um_devvp; 774 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY); 775 if (vinvalbuf(devvp, 0, 0, 0) != 0) 776 panic("ffs_reload: dirty1"); 777 VOP_UNLOCK(devvp); 778 779 /* 780 * Step 2: re-read superblock from disk. 781 */ 782 fs = VFSTOUFS(mp)->um_fs; 783 if ((error = bread(devvp, btodb(fs->fs_sblockloc), fs->fs_sbsize, 784 NOCRED, &bp)) != 0) 785 return (error); 786 newfs = (struct fs *)bp->b_data; 787 if ((newfs->fs_magic != FS_UFS1_MAGIC && 788 newfs->fs_magic != FS_UFS2_MAGIC) || 789 newfs->fs_bsize > MAXBSIZE || 790 newfs->fs_bsize < sizeof(struct fs)) { 791 brelse(bp); 792 return (EIO); /* XXX needs translation */ 793 } 794 /* 795 * Preserve the summary information, read-only status, and 796 * superblock location by copying these fields into our new 797 * superblock before using it to update the existing superblock. 798 */ 799 newfs->fs_si = fs->fs_si; 800 newfs->fs_ronly = fs->fs_ronly; 801 sblockloc = fs->fs_sblockloc; 802 bcopy(newfs, fs, (u_int)fs->fs_sbsize); 803 brelse(bp); 804 ump->um_bsize = fs->fs_bsize; 805 ump->um_maxsymlinklen = fs->fs_maxsymlinklen; 806 ffs_oldfscompat_read(fs, VFSTOUFS(mp), sblockloc); 807 UFS_LOCK(ump); 808 if (fs->fs_pendingblocks != 0 || fs->fs_pendinginodes != 0) { 809 printf("WARNING: %s: reload pending error: blocks %jd " 810 "files %d\n", fs->fs_fsmnt, (intmax_t)fs->fs_pendingblocks, 811 fs->fs_pendinginodes); 812 fs->fs_pendingblocks = 0; 813 fs->fs_pendinginodes = 0; 814 } 815 UFS_UNLOCK(ump); 816 817 /* 818 * Step 3: re-read summary information from disk. 819 */ 820 size = fs->fs_cssize; 821 blks = howmany(size, fs->fs_fsize); 822 if (fs->fs_contigsumsize > 0) 823 size += fs->fs_ncg * sizeof(int32_t); 824 size += fs->fs_ncg * sizeof(u_int8_t); 825 free(fs->fs_csp, M_UFSMNT); 826 space = malloc(size, M_UFSMNT, M_WAITOK); 827 fs->fs_csp = space; 828 for (i = 0; i < blks; i += fs->fs_frag) { 829 size = fs->fs_bsize; 830 if (i + fs->fs_frag > blks) 831 size = (blks - i) * fs->fs_fsize; 832 error = bread(devvp, fsbtodb(fs, fs->fs_csaddr + i), size, 833 NOCRED, &bp); 834 if (error) 835 return (error); 836 bcopy(bp->b_data, space, (u_int)size); 837 space = (char *)space + size; 838 brelse(bp); 839 } 840 /* 841 * We no longer know anything about clusters per cylinder group. 842 */ 843 if (fs->fs_contigsumsize > 0) { 844 fs->fs_maxcluster = lp = space; 845 for (i = 0; i < fs->fs_ncg; i++) 846 *lp++ = fs->fs_contigsumsize; 847 space = lp; 848 } 849 size = fs->fs_ncg * sizeof(u_int8_t); 850 fs->fs_contigdirs = (u_int8_t *)space; 851 bzero(fs->fs_contigdirs, size); 852 if ((flags & FFSR_UNSUSPEND) != 0) { 853 MNT_ILOCK(mp); 854 mp->mnt_kern_flag &= ~(MNTK_SUSPENDED | MNTK_SUSPEND2); 855 wakeup(&mp->mnt_flag); 856 MNT_IUNLOCK(mp); 857 } 858 859 loop: 860 MNT_VNODE_FOREACH_ALL(vp, mp, mvp) { 861 /* 862 * Skip syncer vnode. 863 */ 864 if (vp->v_type == VNON) { 865 VI_UNLOCK(vp); 866 continue; 867 } 868 /* 869 * Step 4: invalidate all cached file data. 870 */ 871 if (vget(vp, LK_EXCLUSIVE | LK_INTERLOCK)) { 872 MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp); 873 goto loop; 874 } 875 if (vinvalbuf(vp, 0, 0, 0)) 876 panic("ffs_reload: dirty2"); 877 /* 878 * Step 5: re-read inode data for all active vnodes. 879 */ 880 ip = VTOI(vp); 881 error = 882 bread(devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)), 883 (int)fs->fs_bsize, NOCRED, &bp); 884 if (error) { 885 vput(vp); 886 MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp); 887 return (error); 888 } 889 if ((error = ffs_load_inode(bp, ip, fs, ip->i_number)) != 0) { 890 brelse(bp); 891 vput(vp); 892 MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp); 893 return (error); 894 } 895 ip->i_effnlink = ip->i_nlink; 896 brelse(bp); 897 vput(vp); 898 } 899 return (0); 900 } 901 902 /* 903 * Common code for mount and mountroot 904 */ 905 static int 906 ffs_mountfs(struct vnode *odevvp, struct mount *mp, struct thread *td) 907 { 908 struct ufsmount *ump; 909 struct fs *fs; 910 struct cdev *dev; 911 int error, i, len, ronly; 912 struct ucred *cred; 913 struct g_consumer *cp; 914 struct mount *nmp; 915 struct vnode *devvp; 916 int candelete, canspeedup, flags; 917 off_t loc; 918 919 fs = NULL; 920 ump = NULL; 921 cred = td ? td->td_ucred : NOCRED; 922 ronly = (mp->mnt_flag & MNT_RDONLY) != 0; 923 924 devvp = mntfs_allocvp(mp, odevvp); 925 VOP_UNLOCK(odevvp); 926 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY); 927 KASSERT(devvp->v_type == VCHR, ("reclaimed devvp")); 928 dev = devvp->v_rdev; 929 KASSERT(dev->si_snapdata == NULL, ("non-NULL snapshot data")); 930 if (atomic_cmpset_acq_ptr((uintptr_t *)&dev->si_mountpt, 0, 931 (uintptr_t)mp) == 0) { 932 mntfs_freevp(devvp); 933 return (EBUSY); 934 } 935 g_topology_lock(); 936 error = g_vfs_open(devvp, &cp, "ffs", ronly ? 0 : 1); 937 g_topology_unlock(); 938 if (error != 0) { 939 atomic_store_rel_ptr((uintptr_t *)&dev->si_mountpt, 0); 940 mntfs_freevp(devvp); 941 return (error); 942 } 943 dev_ref(dev); 944 devvp->v_bufobj.bo_ops = &ffs_ops; 945 BO_LOCK(&odevvp->v_bufobj); 946 odevvp->v_bufobj.bo_flag |= BO_NOBUFS; 947 BO_UNLOCK(&odevvp->v_bufobj); 948 VOP_UNLOCK(devvp); 949 if (dev->si_iosize_max != 0) 950 mp->mnt_iosize_max = dev->si_iosize_max; 951 if (mp->mnt_iosize_max > maxphys) 952 mp->mnt_iosize_max = maxphys; 953 if ((SBLOCKSIZE % cp->provider->sectorsize) != 0) { 954 error = EINVAL; 955 vfs_mount_error(mp, 956 "Invalid sectorsize %d for superblock size %d", 957 cp->provider->sectorsize, SBLOCKSIZE); 958 goto out; 959 } 960 /* fetch the superblock and summary information */ 961 loc = UFS_STDSB; 962 flags = 0; 963 if ((mp->mnt_flag & (MNT_ROOTFS | MNT_FORCE)) != 0) 964 flags = UFS_NOHASHFAIL; 965 if ((error = ffs_sbget(devvp, &fs, loc, flags, M_UFSMNT, ffs_use_bread)) 966 != 0) 967 goto out; 968 fs->fs_flags &= ~FS_UNCLEAN; 969 if (fs->fs_clean == 0) { 970 fs->fs_flags |= FS_UNCLEAN; 971 if (ronly || (mp->mnt_flag & MNT_FORCE) || 972 ((fs->fs_flags & (FS_SUJ | FS_NEEDSFSCK)) == 0 && 973 (fs->fs_flags & FS_DOSOFTDEP))) { 974 printf("WARNING: %s was not properly dismounted\n", 975 fs->fs_fsmnt); 976 } else { 977 vfs_mount_error(mp, "R/W mount of %s denied. %s%s", 978 fs->fs_fsmnt, "Filesystem is not clean - run fsck.", 979 (fs->fs_flags & FS_SUJ) == 0 ? "" : 980 " Forced mount will invalidate journal contents"); 981 error = EPERM; 982 goto out; 983 } 984 if ((fs->fs_pendingblocks != 0 || fs->fs_pendinginodes != 0) && 985 (mp->mnt_flag & MNT_FORCE)) { 986 printf("WARNING: %s: lost blocks %jd files %d\n", 987 fs->fs_fsmnt, (intmax_t)fs->fs_pendingblocks, 988 fs->fs_pendinginodes); 989 fs->fs_pendingblocks = 0; 990 fs->fs_pendinginodes = 0; 991 } 992 } 993 if (fs->fs_pendingblocks != 0 || fs->fs_pendinginodes != 0) { 994 printf("WARNING: %s: mount pending error: blocks %jd " 995 "files %d\n", fs->fs_fsmnt, (intmax_t)fs->fs_pendingblocks, 996 fs->fs_pendinginodes); 997 fs->fs_pendingblocks = 0; 998 fs->fs_pendinginodes = 0; 999 } 1000 if ((fs->fs_flags & FS_GJOURNAL) != 0) { 1001 #ifdef UFS_GJOURNAL 1002 /* 1003 * Get journal provider name. 1004 */ 1005 len = 1024; 1006 mp->mnt_gjprovider = malloc((u_long)len, M_UFSMNT, M_WAITOK); 1007 if (g_io_getattr("GJOURNAL::provider", cp, &len, 1008 mp->mnt_gjprovider) == 0) { 1009 mp->mnt_gjprovider = realloc(mp->mnt_gjprovider, len, 1010 M_UFSMNT, M_WAITOK); 1011 MNT_ILOCK(mp); 1012 mp->mnt_flag |= MNT_GJOURNAL; 1013 MNT_IUNLOCK(mp); 1014 } else { 1015 if ((mp->mnt_flag & MNT_RDONLY) == 0) 1016 printf("WARNING: %s: GJOURNAL flag on fs " 1017 "but no gjournal provider below\n", 1018 mp->mnt_stat.f_mntonname); 1019 free(mp->mnt_gjprovider, M_UFSMNT); 1020 mp->mnt_gjprovider = NULL; 1021 } 1022 #else 1023 printf("WARNING: %s: GJOURNAL flag on fs but no " 1024 "UFS_GJOURNAL support\n", mp->mnt_stat.f_mntonname); 1025 #endif 1026 } else { 1027 mp->mnt_gjprovider = NULL; 1028 } 1029 ump = malloc(sizeof *ump, M_UFSMNT, M_WAITOK | M_ZERO); 1030 ump->um_cp = cp; 1031 ump->um_bo = &devvp->v_bufobj; 1032 ump->um_fs = fs; 1033 if (fs->fs_magic == FS_UFS1_MAGIC) { 1034 ump->um_fstype = UFS1; 1035 ump->um_balloc = ffs_balloc_ufs1; 1036 } else { 1037 ump->um_fstype = UFS2; 1038 ump->um_balloc = ffs_balloc_ufs2; 1039 } 1040 ump->um_blkatoff = ffs_blkatoff; 1041 ump->um_truncate = ffs_truncate; 1042 ump->um_update = ffs_update; 1043 ump->um_valloc = ffs_valloc; 1044 ump->um_vfree = ffs_vfree; 1045 ump->um_ifree = ffs_ifree; 1046 ump->um_rdonly = ffs_rdonly; 1047 ump->um_snapgone = ffs_snapgone; 1048 if ((mp->mnt_flag & MNT_UNTRUSTED) != 0) 1049 ump->um_check_blkno = ffs_check_blkno; 1050 else 1051 ump->um_check_blkno = NULL; 1052 mtx_init(UFS_MTX(ump), "FFS", "FFS Lock", MTX_DEF); 1053 sx_init(&ump->um_checkpath_lock, "uchpth"); 1054 ffs_oldfscompat_read(fs, ump, fs->fs_sblockloc); 1055 fs->fs_ronly = ronly; 1056 fs->fs_active = NULL; 1057 mp->mnt_data = ump; 1058 mp->mnt_stat.f_fsid.val[0] = fs->fs_id[0]; 1059 mp->mnt_stat.f_fsid.val[1] = fs->fs_id[1]; 1060 nmp = NULL; 1061 if (fs->fs_id[0] == 0 || fs->fs_id[1] == 0 || 1062 (nmp = vfs_getvfs(&mp->mnt_stat.f_fsid))) { 1063 if (nmp) 1064 vfs_rel(nmp); 1065 vfs_getnewfsid(mp); 1066 } 1067 ump->um_bsize = fs->fs_bsize; 1068 ump->um_maxsymlinklen = fs->fs_maxsymlinklen; 1069 MNT_ILOCK(mp); 1070 mp->mnt_flag |= MNT_LOCAL; 1071 MNT_IUNLOCK(mp); 1072 if ((fs->fs_flags & FS_MULTILABEL) != 0) { 1073 #ifdef MAC 1074 MNT_ILOCK(mp); 1075 mp->mnt_flag |= MNT_MULTILABEL; 1076 MNT_IUNLOCK(mp); 1077 #else 1078 printf("WARNING: %s: multilabel flag on fs but " 1079 "no MAC support\n", mp->mnt_stat.f_mntonname); 1080 #endif 1081 } 1082 if ((fs->fs_flags & FS_ACLS) != 0) { 1083 #ifdef UFS_ACL 1084 MNT_ILOCK(mp); 1085 1086 if (mp->mnt_flag & MNT_NFS4ACLS) 1087 printf("WARNING: %s: ACLs flag on fs conflicts with " 1088 "\"nfsv4acls\" mount option; option ignored\n", 1089 mp->mnt_stat.f_mntonname); 1090 mp->mnt_flag &= ~MNT_NFS4ACLS; 1091 mp->mnt_flag |= MNT_ACLS; 1092 1093 MNT_IUNLOCK(mp); 1094 #else 1095 printf("WARNING: %s: ACLs flag on fs but no ACLs support\n", 1096 mp->mnt_stat.f_mntonname); 1097 #endif 1098 } 1099 if ((fs->fs_flags & FS_NFS4ACLS) != 0) { 1100 #ifdef UFS_ACL 1101 MNT_ILOCK(mp); 1102 1103 if (mp->mnt_flag & MNT_ACLS) 1104 printf("WARNING: %s: NFSv4 ACLs flag on fs conflicts " 1105 "with \"acls\" mount option; option ignored\n", 1106 mp->mnt_stat.f_mntonname); 1107 mp->mnt_flag &= ~MNT_ACLS; 1108 mp->mnt_flag |= MNT_NFS4ACLS; 1109 1110 MNT_IUNLOCK(mp); 1111 #else 1112 printf("WARNING: %s: NFSv4 ACLs flag on fs but no " 1113 "ACLs support\n", mp->mnt_stat.f_mntonname); 1114 #endif 1115 } 1116 if ((fs->fs_flags & FS_TRIM) != 0) { 1117 len = sizeof(int); 1118 if (g_io_getattr("GEOM::candelete", cp, &len, 1119 &candelete) == 0) { 1120 if (candelete) 1121 ump->um_flags |= UM_CANDELETE; 1122 else 1123 printf("WARNING: %s: TRIM flag on fs but disk " 1124 "does not support TRIM\n", 1125 mp->mnt_stat.f_mntonname); 1126 } else { 1127 printf("WARNING: %s: TRIM flag on fs but disk does " 1128 "not confirm that it supports TRIM\n", 1129 mp->mnt_stat.f_mntonname); 1130 } 1131 if (((ump->um_flags) & UM_CANDELETE) != 0) { 1132 ump->um_trim_tq = taskqueue_create("trim", M_WAITOK, 1133 taskqueue_thread_enqueue, &ump->um_trim_tq); 1134 taskqueue_start_threads(&ump->um_trim_tq, 1, PVFS, 1135 "%s trim", mp->mnt_stat.f_mntonname); 1136 ump->um_trimhash = hashinit(MAXTRIMIO, M_TRIM, 1137 &ump->um_trimlisthashsize); 1138 } 1139 } 1140 1141 len = sizeof(int); 1142 if (g_io_getattr("GEOM::canspeedup", cp, &len, &canspeedup) == 0) { 1143 if (canspeedup) 1144 ump->um_flags |= UM_CANSPEEDUP; 1145 } 1146 1147 ump->um_mountp = mp; 1148 ump->um_dev = dev; 1149 ump->um_devvp = devvp; 1150 ump->um_odevvp = odevvp; 1151 ump->um_nindir = fs->fs_nindir; 1152 ump->um_bptrtodb = fs->fs_fsbtodb; 1153 ump->um_seqinc = fs->fs_frag; 1154 for (i = 0; i < MAXQUOTAS; i++) 1155 ump->um_quotas[i] = NULLVP; 1156 #ifdef UFS_EXTATTR 1157 ufs_extattr_uepm_init(&ump->um_extattr); 1158 #endif 1159 /* 1160 * Set FS local "last mounted on" information (NULL pad) 1161 */ 1162 bzero(fs->fs_fsmnt, MAXMNTLEN); 1163 strlcpy(fs->fs_fsmnt, mp->mnt_stat.f_mntonname, MAXMNTLEN); 1164 mp->mnt_stat.f_iosize = fs->fs_bsize; 1165 1166 if (mp->mnt_flag & MNT_ROOTFS) { 1167 /* 1168 * Root mount; update timestamp in mount structure. 1169 * this will be used by the common root mount code 1170 * to update the system clock. 1171 */ 1172 mp->mnt_time = fs->fs_time; 1173 } 1174 1175 if (ronly == 0) { 1176 fs->fs_mtime = time_second; 1177 if ((fs->fs_flags & FS_DOSOFTDEP) && 1178 (error = softdep_mount(devvp, mp, fs, cred)) != 0) { 1179 ffs_flushfiles(mp, FORCECLOSE, td); 1180 goto out; 1181 } 1182 if (fs->fs_snapinum[0] != 0) 1183 ffs_snapshot_mount(mp); 1184 fs->fs_fmod = 1; 1185 fs->fs_clean = 0; 1186 (void) ffs_sbupdate(ump, MNT_WAIT, 0); 1187 } 1188 /* 1189 * Initialize filesystem state information in mount struct. 1190 */ 1191 MNT_ILOCK(mp); 1192 mp->mnt_kern_flag |= MNTK_LOOKUP_SHARED | MNTK_EXTENDED_SHARED | 1193 MNTK_NO_IOPF | MNTK_UNMAPPED_BUFS | MNTK_USES_BCACHE; 1194 MNT_IUNLOCK(mp); 1195 #ifdef UFS_EXTATTR 1196 #ifdef UFS_EXTATTR_AUTOSTART 1197 /* 1198 * 1199 * Auto-starting does the following: 1200 * - check for /.attribute in the fs, and extattr_start if so 1201 * - for each file in .attribute, enable that file with 1202 * an attribute of the same name. 1203 * Not clear how to report errors -- probably eat them. 1204 * This would all happen while the filesystem was busy/not 1205 * available, so would effectively be "atomic". 1206 */ 1207 (void) ufs_extattr_autostart(mp, td); 1208 #endif /* !UFS_EXTATTR_AUTOSTART */ 1209 #endif /* !UFS_EXTATTR */ 1210 return (0); 1211 out: 1212 if (fs != NULL) { 1213 free(fs->fs_csp, M_UFSMNT); 1214 free(fs->fs_si, M_UFSMNT); 1215 free(fs, M_UFSMNT); 1216 } 1217 if (cp != NULL) { 1218 g_topology_lock(); 1219 g_vfs_close(cp); 1220 g_topology_unlock(); 1221 } 1222 if (ump != NULL) { 1223 mtx_destroy(UFS_MTX(ump)); 1224 sx_destroy(&ump->um_checkpath_lock); 1225 if (mp->mnt_gjprovider != NULL) { 1226 free(mp->mnt_gjprovider, M_UFSMNT); 1227 mp->mnt_gjprovider = NULL; 1228 } 1229 MPASS(ump->um_softdep == NULL); 1230 free(ump, M_UFSMNT); 1231 mp->mnt_data = NULL; 1232 } 1233 BO_LOCK(&odevvp->v_bufobj); 1234 odevvp->v_bufobj.bo_flag &= ~BO_NOBUFS; 1235 BO_UNLOCK(&odevvp->v_bufobj); 1236 atomic_store_rel_ptr((uintptr_t *)&dev->si_mountpt, 0); 1237 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY); 1238 mntfs_freevp(devvp); 1239 dev_rel(dev); 1240 return (error); 1241 } 1242 1243 /* 1244 * A read function for use by filesystem-layer routines. 1245 */ 1246 static int 1247 ffs_use_bread(void *devfd, off_t loc, void **bufp, int size) 1248 { 1249 struct buf *bp; 1250 int error; 1251 1252 KASSERT(*bufp == NULL, ("ffs_use_bread: non-NULL *bufp %p\n", *bufp)); 1253 *bufp = malloc(size, M_UFSMNT, M_WAITOK); 1254 if ((error = bread((struct vnode *)devfd, btodb(loc), size, NOCRED, 1255 &bp)) != 0) 1256 return (error); 1257 bcopy(bp->b_data, *bufp, size); 1258 bp->b_flags |= B_INVAL | B_NOCACHE; 1259 brelse(bp); 1260 return (0); 1261 } 1262 1263 static int bigcgs = 0; 1264 SYSCTL_INT(_debug, OID_AUTO, bigcgs, CTLFLAG_RW, &bigcgs, 0, ""); 1265 1266 /* 1267 * Sanity checks for loading old filesystem superblocks. 1268 * See ffs_oldfscompat_write below for unwound actions. 1269 * 1270 * XXX - Parts get retired eventually. 1271 * Unfortunately new bits get added. 1272 */ 1273 static void 1274 ffs_oldfscompat_read(struct fs *fs, 1275 struct ufsmount *ump, 1276 ufs2_daddr_t sblockloc) 1277 { 1278 off_t maxfilesize; 1279 1280 /* 1281 * If not yet done, update fs_flags location and value of fs_sblockloc. 1282 */ 1283 if ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0) { 1284 fs->fs_flags = fs->fs_old_flags; 1285 fs->fs_old_flags |= FS_FLAGS_UPDATED; 1286 fs->fs_sblockloc = sblockloc; 1287 } 1288 /* 1289 * If not yet done, update UFS1 superblock with new wider fields. 1290 */ 1291 if (fs->fs_magic == FS_UFS1_MAGIC && fs->fs_maxbsize != fs->fs_bsize) { 1292 fs->fs_maxbsize = fs->fs_bsize; 1293 fs->fs_time = fs->fs_old_time; 1294 fs->fs_size = fs->fs_old_size; 1295 fs->fs_dsize = fs->fs_old_dsize; 1296 fs->fs_csaddr = fs->fs_old_csaddr; 1297 fs->fs_cstotal.cs_ndir = fs->fs_old_cstotal.cs_ndir; 1298 fs->fs_cstotal.cs_nbfree = fs->fs_old_cstotal.cs_nbfree; 1299 fs->fs_cstotal.cs_nifree = fs->fs_old_cstotal.cs_nifree; 1300 fs->fs_cstotal.cs_nffree = fs->fs_old_cstotal.cs_nffree; 1301 } 1302 if (fs->fs_magic == FS_UFS1_MAGIC && 1303 fs->fs_old_inodefmt < FS_44INODEFMT) { 1304 fs->fs_maxfilesize = ((uint64_t)1 << 31) - 1; 1305 fs->fs_qbmask = ~fs->fs_bmask; 1306 fs->fs_qfmask = ~fs->fs_fmask; 1307 } 1308 if (fs->fs_magic == FS_UFS1_MAGIC) { 1309 ump->um_savedmaxfilesize = fs->fs_maxfilesize; 1310 maxfilesize = (uint64_t)0x80000000 * fs->fs_bsize - 1; 1311 if (fs->fs_maxfilesize > maxfilesize) 1312 fs->fs_maxfilesize = maxfilesize; 1313 } 1314 /* Compatibility for old filesystems */ 1315 if (fs->fs_avgfilesize <= 0) 1316 fs->fs_avgfilesize = AVFILESIZ; 1317 if (fs->fs_avgfpdir <= 0) 1318 fs->fs_avgfpdir = AFPDIR; 1319 if (bigcgs) { 1320 fs->fs_save_cgsize = fs->fs_cgsize; 1321 fs->fs_cgsize = fs->fs_bsize; 1322 } 1323 } 1324 1325 /* 1326 * Unwinding superblock updates for old filesystems. 1327 * See ffs_oldfscompat_read above for details. 1328 * 1329 * XXX - Parts get retired eventually. 1330 * Unfortunately new bits get added. 1331 */ 1332 void 1333 ffs_oldfscompat_write(struct fs *fs, struct ufsmount *ump) 1334 { 1335 1336 /* 1337 * Copy back UFS2 updated fields that UFS1 inspects. 1338 */ 1339 if (fs->fs_magic == FS_UFS1_MAGIC) { 1340 fs->fs_old_time = fs->fs_time; 1341 fs->fs_old_cstotal.cs_ndir = fs->fs_cstotal.cs_ndir; 1342 fs->fs_old_cstotal.cs_nbfree = fs->fs_cstotal.cs_nbfree; 1343 fs->fs_old_cstotal.cs_nifree = fs->fs_cstotal.cs_nifree; 1344 fs->fs_old_cstotal.cs_nffree = fs->fs_cstotal.cs_nffree; 1345 fs->fs_maxfilesize = ump->um_savedmaxfilesize; 1346 } 1347 if (bigcgs) { 1348 fs->fs_cgsize = fs->fs_save_cgsize; 1349 fs->fs_save_cgsize = 0; 1350 } 1351 } 1352 1353 /* 1354 * unmount system call 1355 */ 1356 static int 1357 ffs_unmount(struct mount *mp, int mntflags) 1358 { 1359 struct thread *td; 1360 struct ufsmount *ump = VFSTOUFS(mp); 1361 struct fs *fs; 1362 int error, flags, susp; 1363 #ifdef UFS_EXTATTR 1364 int e_restart; 1365 #endif 1366 1367 flags = 0; 1368 td = curthread; 1369 fs = ump->um_fs; 1370 if (mntflags & MNT_FORCE) 1371 flags |= FORCECLOSE; 1372 susp = fs->fs_ronly == 0; 1373 #ifdef UFS_EXTATTR 1374 if ((error = ufs_extattr_stop(mp, td))) { 1375 if (error != EOPNOTSUPP) 1376 printf("WARNING: unmount %s: ufs_extattr_stop " 1377 "returned errno %d\n", mp->mnt_stat.f_mntonname, 1378 error); 1379 e_restart = 0; 1380 } else { 1381 ufs_extattr_uepm_destroy(&ump->um_extattr); 1382 e_restart = 1; 1383 } 1384 #endif 1385 if (susp) { 1386 error = vfs_write_suspend_umnt(mp); 1387 if (error != 0) 1388 goto fail1; 1389 } 1390 if (MOUNTEDSOFTDEP(mp)) 1391 error = softdep_flushfiles(mp, flags, td); 1392 else 1393 error = ffs_flushfiles(mp, flags, td); 1394 if (error != 0 && !ffs_fsfail_cleanup(ump, error)) 1395 goto fail; 1396 1397 UFS_LOCK(ump); 1398 if (fs->fs_pendingblocks != 0 || fs->fs_pendinginodes != 0) { 1399 printf("WARNING: unmount %s: pending error: blocks %jd " 1400 "files %d\n", fs->fs_fsmnt, (intmax_t)fs->fs_pendingblocks, 1401 fs->fs_pendinginodes); 1402 fs->fs_pendingblocks = 0; 1403 fs->fs_pendinginodes = 0; 1404 } 1405 UFS_UNLOCK(ump); 1406 if (MOUNTEDSOFTDEP(mp)) 1407 softdep_unmount(mp); 1408 MPASS(ump->um_softdep == NULL); 1409 if (fs->fs_ronly == 0) { 1410 fs->fs_clean = fs->fs_flags & (FS_UNCLEAN|FS_NEEDSFSCK) ? 0 : 1; 1411 error = ffs_sbupdate(ump, MNT_WAIT, 0); 1412 if (ffs_fsfail_cleanup(ump, error)) 1413 error = 0; 1414 if (error != 0 && !ffs_fsfail_cleanup(ump, error)) { 1415 fs->fs_clean = 0; 1416 goto fail; 1417 } 1418 } 1419 if (susp) 1420 vfs_write_resume(mp, VR_START_WRITE); 1421 if (ump->um_trim_tq != NULL) { 1422 MPASS(ump->um_trim_inflight == 0); 1423 taskqueue_free(ump->um_trim_tq); 1424 free (ump->um_trimhash, M_TRIM); 1425 } 1426 vn_lock(ump->um_devvp, LK_EXCLUSIVE | LK_RETRY); 1427 g_topology_lock(); 1428 g_vfs_close(ump->um_cp); 1429 g_topology_unlock(); 1430 BO_LOCK(&ump->um_odevvp->v_bufobj); 1431 ump->um_odevvp->v_bufobj.bo_flag &= ~BO_NOBUFS; 1432 BO_UNLOCK(&ump->um_odevvp->v_bufobj); 1433 atomic_store_rel_ptr((uintptr_t *)&ump->um_dev->si_mountpt, 0); 1434 mntfs_freevp(ump->um_devvp); 1435 vrele(ump->um_odevvp); 1436 dev_rel(ump->um_dev); 1437 mtx_destroy(UFS_MTX(ump)); 1438 sx_destroy(&ump->um_checkpath_lock); 1439 if (mp->mnt_gjprovider != NULL) { 1440 free(mp->mnt_gjprovider, M_UFSMNT); 1441 mp->mnt_gjprovider = NULL; 1442 } 1443 free(fs->fs_csp, M_UFSMNT); 1444 free(fs->fs_si, M_UFSMNT); 1445 free(fs, M_UFSMNT); 1446 free(ump, M_UFSMNT); 1447 mp->mnt_data = NULL; 1448 MNT_ILOCK(mp); 1449 mp->mnt_flag &= ~MNT_LOCAL; 1450 MNT_IUNLOCK(mp); 1451 if (td->td_su == mp) { 1452 td->td_su = NULL; 1453 vfs_rel(mp); 1454 } 1455 return (error); 1456 1457 fail: 1458 if (susp) 1459 vfs_write_resume(mp, VR_START_WRITE); 1460 fail1: 1461 #ifdef UFS_EXTATTR 1462 if (e_restart) { 1463 ufs_extattr_uepm_init(&ump->um_extattr); 1464 #ifdef UFS_EXTATTR_AUTOSTART 1465 (void) ufs_extattr_autostart(mp, td); 1466 #endif 1467 } 1468 #endif 1469 1470 return (error); 1471 } 1472 1473 /* 1474 * Flush out all the files in a filesystem. 1475 */ 1476 int 1477 ffs_flushfiles(struct mount *mp, int flags, struct thread *td) 1478 { 1479 struct ufsmount *ump; 1480 int qerror, error; 1481 1482 ump = VFSTOUFS(mp); 1483 qerror = 0; 1484 #ifdef QUOTA 1485 if (mp->mnt_flag & MNT_QUOTA) { 1486 int i; 1487 error = vflush(mp, 0, SKIPSYSTEM|flags, td); 1488 if (error) 1489 return (error); 1490 for (i = 0; i < MAXQUOTAS; i++) { 1491 error = quotaoff(td, mp, i); 1492 if (error != 0) { 1493 if ((flags & EARLYFLUSH) == 0) 1494 return (error); 1495 else 1496 qerror = error; 1497 } 1498 } 1499 1500 /* 1501 * Here we fall through to vflush again to ensure that 1502 * we have gotten rid of all the system vnodes, unless 1503 * quotas must not be closed. 1504 */ 1505 } 1506 #endif 1507 /* devvp is not locked there */ 1508 if (ump->um_devvp->v_vflag & VV_COPYONWRITE) { 1509 if ((error = vflush(mp, 0, SKIPSYSTEM | flags, td)) != 0) 1510 return (error); 1511 ffs_snapshot_unmount(mp); 1512 flags |= FORCECLOSE; 1513 /* 1514 * Here we fall through to vflush again to ensure 1515 * that we have gotten rid of all the system vnodes. 1516 */ 1517 } 1518 1519 /* 1520 * Do not close system files if quotas were not closed, to be 1521 * able to sync the remaining dquots. The freeblks softupdate 1522 * workitems might hold a reference on a dquot, preventing 1523 * quotaoff() from completing. Next round of 1524 * softdep_flushworklist() iteration should process the 1525 * blockers, allowing the next run of quotaoff() to finally 1526 * flush held dquots. 1527 * 1528 * Otherwise, flush all the files. 1529 */ 1530 if (qerror == 0 && (error = vflush(mp, 0, flags, td)) != 0) 1531 return (error); 1532 1533 /* 1534 * If this is a forcible unmount and there were any files that 1535 * were unlinked but still open, then vflush() will have 1536 * truncated and freed those files, which might have started 1537 * some trim work. Wait here for any trims to complete 1538 * and process the blkfrees which follow the trims. 1539 * This may create more dirty devvp buffers and softdep deps. 1540 */ 1541 if (ump->um_trim_tq != NULL) { 1542 while (ump->um_trim_inflight != 0) 1543 pause("ufsutr", hz); 1544 taskqueue_drain_all(ump->um_trim_tq); 1545 } 1546 1547 /* 1548 * Flush filesystem metadata. 1549 */ 1550 vn_lock(ump->um_devvp, LK_EXCLUSIVE | LK_RETRY); 1551 error = VOP_FSYNC(ump->um_devvp, MNT_WAIT, td); 1552 VOP_UNLOCK(ump->um_devvp); 1553 return (error); 1554 } 1555 1556 /* 1557 * Get filesystem statistics. 1558 */ 1559 static int 1560 ffs_statfs(struct mount *mp, struct statfs *sbp) 1561 { 1562 struct ufsmount *ump; 1563 struct fs *fs; 1564 1565 ump = VFSTOUFS(mp); 1566 fs = ump->um_fs; 1567 if (fs->fs_magic != FS_UFS1_MAGIC && fs->fs_magic != FS_UFS2_MAGIC) 1568 panic("ffs_statfs"); 1569 sbp->f_version = STATFS_VERSION; 1570 sbp->f_bsize = fs->fs_fsize; 1571 sbp->f_iosize = fs->fs_bsize; 1572 sbp->f_blocks = fs->fs_dsize; 1573 UFS_LOCK(ump); 1574 sbp->f_bfree = fs->fs_cstotal.cs_nbfree * fs->fs_frag + 1575 fs->fs_cstotal.cs_nffree + dbtofsb(fs, fs->fs_pendingblocks); 1576 sbp->f_bavail = freespace(fs, fs->fs_minfree) + 1577 dbtofsb(fs, fs->fs_pendingblocks); 1578 sbp->f_files = fs->fs_ncg * fs->fs_ipg - UFS_ROOTINO; 1579 sbp->f_ffree = fs->fs_cstotal.cs_nifree + fs->fs_pendinginodes; 1580 UFS_UNLOCK(ump); 1581 sbp->f_namemax = UFS_MAXNAMLEN; 1582 return (0); 1583 } 1584 1585 static bool 1586 sync_doupdate(struct inode *ip) 1587 { 1588 1589 return ((ip->i_flag & (IN_ACCESS | IN_CHANGE | IN_MODIFIED | 1590 IN_UPDATE)) != 0); 1591 } 1592 1593 static int 1594 ffs_sync_lazy_filter(struct vnode *vp, void *arg __unused) 1595 { 1596 struct inode *ip; 1597 1598 /* 1599 * Flags are safe to access because ->v_data invalidation 1600 * is held off by listmtx. 1601 */ 1602 if (vp->v_type == VNON) 1603 return (false); 1604 ip = VTOI(vp); 1605 if (!sync_doupdate(ip) && (vp->v_iflag & VI_OWEINACT) == 0) 1606 return (false); 1607 return (true); 1608 } 1609 1610 /* 1611 * For a lazy sync, we only care about access times, quotas and the 1612 * superblock. Other filesystem changes are already converted to 1613 * cylinder group blocks or inode blocks updates and are written to 1614 * disk by syncer. 1615 */ 1616 static int 1617 ffs_sync_lazy(struct mount *mp) 1618 { 1619 struct vnode *mvp, *vp; 1620 struct inode *ip; 1621 int allerror, error; 1622 1623 allerror = 0; 1624 if ((mp->mnt_flag & MNT_NOATIME) != 0) { 1625 #ifdef QUOTA 1626 qsync(mp); 1627 #endif 1628 goto sbupdate; 1629 } 1630 MNT_VNODE_FOREACH_LAZY(vp, mp, mvp, ffs_sync_lazy_filter, NULL) { 1631 if (vp->v_type == VNON) { 1632 VI_UNLOCK(vp); 1633 continue; 1634 } 1635 ip = VTOI(vp); 1636 1637 /* 1638 * The IN_ACCESS flag is converted to IN_MODIFIED by 1639 * ufs_close() and ufs_getattr() by the calls to 1640 * ufs_itimes_locked(), without subsequent UFS_UPDATE(). 1641 * Test also all the other timestamp flags too, to pick up 1642 * any other cases that could be missed. 1643 */ 1644 if (!sync_doupdate(ip) && (vp->v_iflag & VI_OWEINACT) == 0) { 1645 VI_UNLOCK(vp); 1646 continue; 1647 } 1648 if ((error = vget(vp, LK_EXCLUSIVE | LK_NOWAIT | LK_INTERLOCK)) != 0) 1649 continue; 1650 #ifdef QUOTA 1651 qsyncvp(vp); 1652 #endif 1653 if (sync_doupdate(ip)) 1654 error = ffs_update(vp, 0); 1655 if (error != 0) 1656 allerror = error; 1657 vput(vp); 1658 } 1659 sbupdate: 1660 if (VFSTOUFS(mp)->um_fs->fs_fmod != 0 && 1661 (error = ffs_sbupdate(VFSTOUFS(mp), MNT_LAZY, 0)) != 0) 1662 allerror = error; 1663 return (allerror); 1664 } 1665 1666 /* 1667 * Go through the disk queues to initiate sandbagged IO; 1668 * go through the inodes to write those that have been modified; 1669 * initiate the writing of the super block if it has been modified. 1670 * 1671 * Note: we are always called with the filesystem marked busy using 1672 * vfs_busy(). 1673 */ 1674 static int 1675 ffs_sync(struct mount *mp, int waitfor) 1676 { 1677 struct vnode *mvp, *vp, *devvp; 1678 struct thread *td; 1679 struct inode *ip; 1680 struct ufsmount *ump = VFSTOUFS(mp); 1681 struct fs *fs; 1682 int error, count, lockreq, allerror = 0; 1683 int suspend; 1684 int suspended; 1685 int secondary_writes; 1686 int secondary_accwrites; 1687 int softdep_deps; 1688 int softdep_accdeps; 1689 struct bufobj *bo; 1690 1691 suspend = 0; 1692 suspended = 0; 1693 td = curthread; 1694 fs = ump->um_fs; 1695 if (fs->fs_fmod != 0 && fs->fs_ronly != 0) 1696 panic("%s: ffs_sync: modification on read-only filesystem", 1697 fs->fs_fsmnt); 1698 if (waitfor == MNT_LAZY) { 1699 if (!rebooting) 1700 return (ffs_sync_lazy(mp)); 1701 waitfor = MNT_NOWAIT; 1702 } 1703 1704 /* 1705 * Write back each (modified) inode. 1706 */ 1707 lockreq = LK_EXCLUSIVE | LK_NOWAIT; 1708 if (waitfor == MNT_SUSPEND) { 1709 suspend = 1; 1710 waitfor = MNT_WAIT; 1711 } 1712 if (waitfor == MNT_WAIT) 1713 lockreq = LK_EXCLUSIVE; 1714 lockreq |= LK_INTERLOCK | LK_SLEEPFAIL; 1715 loop: 1716 /* Grab snapshot of secondary write counts */ 1717 MNT_ILOCK(mp); 1718 secondary_writes = mp->mnt_secondary_writes; 1719 secondary_accwrites = mp->mnt_secondary_accwrites; 1720 MNT_IUNLOCK(mp); 1721 1722 /* Grab snapshot of softdep dependency counts */ 1723 softdep_get_depcounts(mp, &softdep_deps, &softdep_accdeps); 1724 1725 MNT_VNODE_FOREACH_ALL(vp, mp, mvp) { 1726 /* 1727 * Depend on the vnode interlock to keep things stable enough 1728 * for a quick test. Since there might be hundreds of 1729 * thousands of vnodes, we cannot afford even a subroutine 1730 * call unless there's a good chance that we have work to do. 1731 */ 1732 if (vp->v_type == VNON) { 1733 VI_UNLOCK(vp); 1734 continue; 1735 } 1736 ip = VTOI(vp); 1737 if ((ip->i_flag & 1738 (IN_ACCESS | IN_CHANGE | IN_MODIFIED | IN_UPDATE)) == 0 && 1739 vp->v_bufobj.bo_dirty.bv_cnt == 0) { 1740 VI_UNLOCK(vp); 1741 continue; 1742 } 1743 if ((error = vget(vp, lockreq)) != 0) { 1744 if (error == ENOENT || error == ENOLCK) { 1745 MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp); 1746 goto loop; 1747 } 1748 continue; 1749 } 1750 #ifdef QUOTA 1751 qsyncvp(vp); 1752 #endif 1753 for (;;) { 1754 error = ffs_syncvnode(vp, waitfor, 0); 1755 if (error == ERELOOKUP) 1756 continue; 1757 if (error != 0) 1758 allerror = error; 1759 break; 1760 } 1761 vput(vp); 1762 } 1763 /* 1764 * Force stale filesystem control information to be flushed. 1765 */ 1766 if (waitfor == MNT_WAIT || rebooting) { 1767 if ((error = softdep_flushworklist(ump->um_mountp, &count, td))) 1768 allerror = error; 1769 if (ffs_fsfail_cleanup(ump, allerror)) 1770 allerror = 0; 1771 /* Flushed work items may create new vnodes to clean */ 1772 if (allerror == 0 && count) 1773 goto loop; 1774 } 1775 1776 devvp = ump->um_devvp; 1777 bo = &devvp->v_bufobj; 1778 BO_LOCK(bo); 1779 if (bo->bo_numoutput > 0 || bo->bo_dirty.bv_cnt > 0) { 1780 BO_UNLOCK(bo); 1781 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY); 1782 error = VOP_FSYNC(devvp, waitfor, td); 1783 VOP_UNLOCK(devvp); 1784 if (MOUNTEDSOFTDEP(mp) && (error == 0 || error == EAGAIN)) 1785 error = ffs_sbupdate(ump, waitfor, 0); 1786 if (error != 0) 1787 allerror = error; 1788 if (ffs_fsfail_cleanup(ump, allerror)) 1789 allerror = 0; 1790 if (allerror == 0 && waitfor == MNT_WAIT) 1791 goto loop; 1792 } else if (suspend != 0) { 1793 if (softdep_check_suspend(mp, 1794 devvp, 1795 softdep_deps, 1796 softdep_accdeps, 1797 secondary_writes, 1798 secondary_accwrites) != 0) { 1799 MNT_IUNLOCK(mp); 1800 goto loop; /* More work needed */ 1801 } 1802 mtx_assert(MNT_MTX(mp), MA_OWNED); 1803 mp->mnt_kern_flag |= MNTK_SUSPEND2 | MNTK_SUSPENDED; 1804 MNT_IUNLOCK(mp); 1805 suspended = 1; 1806 } else 1807 BO_UNLOCK(bo); 1808 /* 1809 * Write back modified superblock. 1810 */ 1811 if (fs->fs_fmod != 0 && 1812 (error = ffs_sbupdate(ump, waitfor, suspended)) != 0) 1813 allerror = error; 1814 if (ffs_fsfail_cleanup(ump, allerror)) 1815 allerror = 0; 1816 return (allerror); 1817 } 1818 1819 int 1820 ffs_vget(struct mount *mp, ino_t ino, int flags, struct vnode **vpp) 1821 { 1822 return (ffs_vgetf(mp, ino, flags, vpp, 0)); 1823 } 1824 1825 int 1826 ffs_vgetf(struct mount *mp, 1827 ino_t ino, 1828 int flags, 1829 struct vnode **vpp, 1830 int ffs_flags) 1831 { 1832 struct fs *fs; 1833 struct inode *ip; 1834 struct ufsmount *ump; 1835 struct buf *bp; 1836 struct vnode *vp; 1837 daddr_t dbn; 1838 int error; 1839 1840 MPASS((ffs_flags & (FFSV_REPLACE | FFSV_REPLACE_DOOMED)) == 0 || 1841 (flags & LK_EXCLUSIVE) != 0); 1842 1843 error = vfs_hash_get(mp, ino, flags, curthread, vpp, NULL, NULL); 1844 if (error != 0) 1845 return (error); 1846 if (*vpp != NULL) { 1847 if ((ffs_flags & FFSV_REPLACE) == 0 || 1848 ((ffs_flags & FFSV_REPLACE_DOOMED) == 0 || 1849 !VN_IS_DOOMED(*vpp))) 1850 return (0); 1851 vgone(*vpp); 1852 vput(*vpp); 1853 } 1854 1855 /* 1856 * We must promote to an exclusive lock for vnode creation. This 1857 * can happen if lookup is passed LOCKSHARED. 1858 */ 1859 if ((flags & LK_TYPE_MASK) == LK_SHARED) { 1860 flags &= ~LK_TYPE_MASK; 1861 flags |= LK_EXCLUSIVE; 1862 } 1863 1864 /* 1865 * We do not lock vnode creation as it is believed to be too 1866 * expensive for such rare case as simultaneous creation of vnode 1867 * for same ino by different processes. We just allow them to race 1868 * and check later to decide who wins. Let the race begin! 1869 */ 1870 1871 ump = VFSTOUFS(mp); 1872 fs = ump->um_fs; 1873 ip = uma_zalloc_smr(uma_inode, M_WAITOK | M_ZERO); 1874 1875 /* Allocate a new vnode/inode. */ 1876 error = getnewvnode("ufs", mp, fs->fs_magic == FS_UFS1_MAGIC ? 1877 &ffs_vnodeops1 : &ffs_vnodeops2, &vp); 1878 if (error) { 1879 *vpp = NULL; 1880 uma_zfree_smr(uma_inode, ip); 1881 return (error); 1882 } 1883 /* 1884 * FFS supports recursive locking. 1885 */ 1886 lockmgr(vp->v_vnlock, LK_EXCLUSIVE | LK_NOWITNESS, NULL); 1887 VN_LOCK_AREC(vp); 1888 vp->v_data = ip; 1889 vp->v_bufobj.bo_bsize = fs->fs_bsize; 1890 ip->i_vnode = vp; 1891 ip->i_ump = ump; 1892 ip->i_number = ino; 1893 ip->i_ea_refs = 0; 1894 ip->i_nextclustercg = -1; 1895 ip->i_flag = fs->fs_magic == FS_UFS1_MAGIC ? 0 : IN_UFS2; 1896 ip->i_mode = 0; /* ensure error cases below throw away vnode */ 1897 cluster_init_vn(&ip->i_clusterw); 1898 #ifdef DIAGNOSTIC 1899 ufs_init_trackers(ip); 1900 #endif 1901 #ifdef QUOTA 1902 { 1903 int i; 1904 for (i = 0; i < MAXQUOTAS; i++) 1905 ip->i_dquot[i] = NODQUOT; 1906 } 1907 #endif 1908 1909 if (ffs_flags & FFSV_FORCEINSMQ) 1910 vp->v_vflag |= VV_FORCEINSMQ; 1911 error = insmntque(vp, mp); 1912 if (error != 0) { 1913 uma_zfree_smr(uma_inode, ip); 1914 *vpp = NULL; 1915 return (error); 1916 } 1917 vp->v_vflag &= ~VV_FORCEINSMQ; 1918 error = vfs_hash_insert(vp, ino, flags, curthread, vpp, NULL, NULL); 1919 if (error != 0) 1920 return (error); 1921 if (*vpp != NULL) { 1922 /* 1923 * Calls from ffs_valloc() (i.e. FFSV_REPLACE set) 1924 * operate on empty inode, which must not be found by 1925 * other threads until fully filled. Vnode for empty 1926 * inode must be not re-inserted on the hash by other 1927 * thread, after removal by us at the beginning. 1928 */ 1929 MPASS((ffs_flags & FFSV_REPLACE) == 0); 1930 return (0); 1931 } 1932 1933 /* Read in the disk contents for the inode, copy into the inode. */ 1934 dbn = fsbtodb(fs, ino_to_fsba(fs, ino)); 1935 error = ffs_breadz(ump, ump->um_devvp, dbn, dbn, (int)fs->fs_bsize, 1936 NULL, NULL, 0, NOCRED, 0, NULL, &bp); 1937 if (error != 0) { 1938 /* 1939 * The inode does not contain anything useful, so it would 1940 * be misleading to leave it on its hash chain. With mode 1941 * still zero, it will be unlinked and returned to the free 1942 * list by vput(). 1943 */ 1944 vgone(vp); 1945 vput(vp); 1946 *vpp = NULL; 1947 return (error); 1948 } 1949 if (I_IS_UFS1(ip)) 1950 ip->i_din1 = uma_zalloc(uma_ufs1, M_WAITOK); 1951 else 1952 ip->i_din2 = uma_zalloc(uma_ufs2, M_WAITOK); 1953 if ((error = ffs_load_inode(bp, ip, fs, ino)) != 0) { 1954 bqrelse(bp); 1955 vgone(vp); 1956 vput(vp); 1957 *vpp = NULL; 1958 return (error); 1959 } 1960 if (DOINGSOFTDEP(vp) && (!fs->fs_ronly || 1961 (ffs_flags & FFSV_FORCEINODEDEP) != 0)) 1962 softdep_load_inodeblock(ip); 1963 else 1964 ip->i_effnlink = ip->i_nlink; 1965 bqrelse(bp); 1966 1967 /* 1968 * Initialize the vnode from the inode, check for aliases. 1969 * Note that the underlying vnode may have changed. 1970 */ 1971 error = ufs_vinit(mp, I_IS_UFS1(ip) ? &ffs_fifoops1 : &ffs_fifoops2, 1972 &vp); 1973 if (error) { 1974 vgone(vp); 1975 vput(vp); 1976 *vpp = NULL; 1977 return (error); 1978 } 1979 1980 /* 1981 * Finish inode initialization. 1982 */ 1983 if (vp->v_type != VFIFO) { 1984 /* FFS supports shared locking for all files except fifos. */ 1985 VN_LOCK_ASHARE(vp); 1986 } 1987 1988 /* 1989 * Set up a generation number for this inode if it does not 1990 * already have one. This should only happen on old filesystems. 1991 */ 1992 if (ip->i_gen == 0) { 1993 while (ip->i_gen == 0) 1994 ip->i_gen = arc4random(); 1995 if ((vp->v_mount->mnt_flag & MNT_RDONLY) == 0) { 1996 UFS_INODE_SET_FLAG(ip, IN_MODIFIED); 1997 DIP_SET(ip, i_gen, ip->i_gen); 1998 } 1999 } 2000 #ifdef MAC 2001 if ((mp->mnt_flag & MNT_MULTILABEL) && ip->i_mode) { 2002 /* 2003 * If this vnode is already allocated, and we're running 2004 * multi-label, attempt to perform a label association 2005 * from the extended attributes on the inode. 2006 */ 2007 error = mac_vnode_associate_extattr(mp, vp); 2008 if (error) { 2009 /* ufs_inactive will release ip->i_devvp ref. */ 2010 vgone(vp); 2011 vput(vp); 2012 *vpp = NULL; 2013 return (error); 2014 } 2015 } 2016 #endif 2017 2018 *vpp = vp; 2019 return (0); 2020 } 2021 2022 /* 2023 * File handle to vnode 2024 * 2025 * Have to be really careful about stale file handles: 2026 * - check that the inode number is valid 2027 * - for UFS2 check that the inode number is initialized 2028 * - call ffs_vget() to get the locked inode 2029 * - check for an unallocated inode (i_mode == 0) 2030 * - check that the given client host has export rights and return 2031 * those rights via. exflagsp and credanonp 2032 */ 2033 static int 2034 ffs_fhtovp(struct mount *mp, struct fid *fhp, int flags, struct vnode **vpp) 2035 { 2036 struct ufid *ufhp; 2037 2038 ufhp = (struct ufid *)fhp; 2039 return (ffs_inotovp(mp, ufhp->ufid_ino, ufhp->ufid_gen, flags, 2040 vpp, 0)); 2041 } 2042 2043 int 2044 ffs_inotovp(struct mount *mp, 2045 ino_t ino, 2046 u_int64_t gen, 2047 int lflags, 2048 struct vnode **vpp, 2049 int ffs_flags) 2050 { 2051 struct ufsmount *ump; 2052 struct vnode *nvp; 2053 struct inode *ip; 2054 struct fs *fs; 2055 struct cg *cgp; 2056 struct buf *bp; 2057 u_int cg; 2058 int error; 2059 2060 ump = VFSTOUFS(mp); 2061 fs = ump->um_fs; 2062 *vpp = NULL; 2063 2064 if (ino < UFS_ROOTINO || ino >= fs->fs_ncg * fs->fs_ipg) 2065 return (ESTALE); 2066 2067 /* 2068 * Need to check if inode is initialized because UFS2 does lazy 2069 * initialization and nfs_fhtovp can offer arbitrary inode numbers. 2070 */ 2071 if (fs->fs_magic == FS_UFS2_MAGIC) { 2072 cg = ino_to_cg(fs, ino); 2073 error = ffs_getcg(fs, ump->um_devvp, cg, 0, &bp, &cgp); 2074 if (error != 0) 2075 return (error); 2076 if (ino >= cg * fs->fs_ipg + cgp->cg_initediblk) { 2077 brelse(bp); 2078 return (ESTALE); 2079 } 2080 brelse(bp); 2081 } 2082 2083 error = ffs_vgetf(mp, ino, lflags, &nvp, ffs_flags); 2084 if (error != 0) 2085 return (error); 2086 2087 ip = VTOI(nvp); 2088 if (ip->i_mode == 0 || ip->i_gen != gen || ip->i_effnlink <= 0) { 2089 if (ip->i_mode == 0) 2090 vgone(nvp); 2091 vput(nvp); 2092 return (ESTALE); 2093 } 2094 2095 vnode_create_vobject(nvp, DIP(ip, i_size), curthread); 2096 *vpp = nvp; 2097 return (0); 2098 } 2099 2100 /* 2101 * Initialize the filesystem. 2102 */ 2103 static int 2104 ffs_init(struct vfsconf *vfsp) 2105 { 2106 2107 ffs_susp_initialize(); 2108 softdep_initialize(); 2109 return (ufs_init(vfsp)); 2110 } 2111 2112 /* 2113 * Undo the work of ffs_init(). 2114 */ 2115 static int 2116 ffs_uninit(struct vfsconf *vfsp) 2117 { 2118 int ret; 2119 2120 ret = ufs_uninit(vfsp); 2121 softdep_uninitialize(); 2122 ffs_susp_uninitialize(); 2123 taskqueue_drain_all(taskqueue_thread); 2124 return (ret); 2125 } 2126 2127 /* 2128 * Structure used to pass information from ffs_sbupdate to its 2129 * helper routine ffs_use_bwrite. 2130 */ 2131 struct devfd { 2132 struct ufsmount *ump; 2133 struct buf *sbbp; 2134 int waitfor; 2135 int suspended; 2136 int error; 2137 }; 2138 2139 /* 2140 * Write a superblock and associated information back to disk. 2141 */ 2142 int 2143 ffs_sbupdate(struct ufsmount *ump, int waitfor, int suspended) 2144 { 2145 struct fs *fs; 2146 struct buf *sbbp; 2147 struct devfd devfd; 2148 2149 fs = ump->um_fs; 2150 if (fs->fs_ronly == 1 && 2151 (ump->um_mountp->mnt_flag & (MNT_RDONLY | MNT_UPDATE)) != 2152 (MNT_RDONLY | MNT_UPDATE)) 2153 panic("ffs_sbupdate: write read-only filesystem"); 2154 /* 2155 * We use the superblock's buf to serialize calls to ffs_sbupdate(). 2156 */ 2157 sbbp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc), 2158 (int)fs->fs_sbsize, 0, 0, 0); 2159 /* 2160 * Initialize info needed for write function. 2161 */ 2162 devfd.ump = ump; 2163 devfd.sbbp = sbbp; 2164 devfd.waitfor = waitfor; 2165 devfd.suspended = suspended; 2166 devfd.error = 0; 2167 return (ffs_sbput(&devfd, fs, fs->fs_sblockloc, ffs_use_bwrite)); 2168 } 2169 2170 /* 2171 * Write function for use by filesystem-layer routines. 2172 */ 2173 static int 2174 ffs_use_bwrite(void *devfd, off_t loc, void *buf, int size) 2175 { 2176 struct devfd *devfdp; 2177 struct ufsmount *ump; 2178 struct buf *bp; 2179 struct fs *fs; 2180 int error; 2181 2182 devfdp = devfd; 2183 ump = devfdp->ump; 2184 fs = ump->um_fs; 2185 /* 2186 * Writing the superblock summary information. 2187 */ 2188 if (loc != fs->fs_sblockloc) { 2189 bp = getblk(ump->um_devvp, btodb(loc), size, 0, 0, 0); 2190 bcopy(buf, bp->b_data, (u_int)size); 2191 if (devfdp->suspended) 2192 bp->b_flags |= B_VALIDSUSPWRT; 2193 if (devfdp->waitfor != MNT_WAIT) 2194 bawrite(bp); 2195 else if ((error = bwrite(bp)) != 0) 2196 devfdp->error = error; 2197 return (0); 2198 } 2199 /* 2200 * Writing the superblock itself. We need to do special checks for it. 2201 */ 2202 bp = devfdp->sbbp; 2203 if (ffs_fsfail_cleanup(ump, devfdp->error)) 2204 devfdp->error = 0; 2205 if (devfdp->error != 0) { 2206 brelse(bp); 2207 return (devfdp->error); 2208 } 2209 if (fs->fs_magic == FS_UFS1_MAGIC && fs->fs_sblockloc != SBLOCK_UFS1 && 2210 (fs->fs_old_flags & FS_FLAGS_UPDATED) == 0) { 2211 printf("WARNING: %s: correcting fs_sblockloc from %jd to %d\n", 2212 fs->fs_fsmnt, fs->fs_sblockloc, SBLOCK_UFS1); 2213 fs->fs_sblockloc = SBLOCK_UFS1; 2214 } 2215 if (fs->fs_magic == FS_UFS2_MAGIC && fs->fs_sblockloc != SBLOCK_UFS2 && 2216 (fs->fs_old_flags & FS_FLAGS_UPDATED) == 0) { 2217 printf("WARNING: %s: correcting fs_sblockloc from %jd to %d\n", 2218 fs->fs_fsmnt, fs->fs_sblockloc, SBLOCK_UFS2); 2219 fs->fs_sblockloc = SBLOCK_UFS2; 2220 } 2221 if (MOUNTEDSOFTDEP(ump->um_mountp)) 2222 softdep_setup_sbupdate(ump, (struct fs *)bp->b_data, bp); 2223 UFS_LOCK(ump); 2224 bcopy((caddr_t)fs, bp->b_data, (u_int)fs->fs_sbsize); 2225 UFS_UNLOCK(ump); 2226 fs = (struct fs *)bp->b_data; 2227 fs->fs_fmod = 0; 2228 ffs_oldfscompat_write(fs, ump); 2229 fs->fs_si = NULL; 2230 /* Recalculate the superblock hash */ 2231 fs->fs_ckhash = ffs_calc_sbhash(fs); 2232 if (devfdp->suspended) 2233 bp->b_flags |= B_VALIDSUSPWRT; 2234 if (devfdp->waitfor != MNT_WAIT) 2235 bawrite(bp); 2236 else if ((error = bwrite(bp)) != 0) 2237 devfdp->error = error; 2238 return (devfdp->error); 2239 } 2240 2241 static int 2242 ffs_extattrctl(struct mount *mp, int cmd, struct vnode *filename_vp, 2243 int attrnamespace, const char *attrname) 2244 { 2245 2246 #ifdef UFS_EXTATTR 2247 return (ufs_extattrctl(mp, cmd, filename_vp, attrnamespace, 2248 attrname)); 2249 #else 2250 return (vfs_stdextattrctl(mp, cmd, filename_vp, attrnamespace, 2251 attrname)); 2252 #endif 2253 } 2254 2255 static void 2256 ffs_ifree(struct ufsmount *ump, struct inode *ip) 2257 { 2258 2259 if (ump->um_fstype == UFS1 && ip->i_din1 != NULL) 2260 uma_zfree(uma_ufs1, ip->i_din1); 2261 else if (ip->i_din2 != NULL) 2262 uma_zfree(uma_ufs2, ip->i_din2); 2263 uma_zfree_smr(uma_inode, ip); 2264 } 2265 2266 static int dobkgrdwrite = 1; 2267 SYSCTL_INT(_debug, OID_AUTO, dobkgrdwrite, CTLFLAG_RW, &dobkgrdwrite, 0, 2268 "Do background writes (honoring the BV_BKGRDWRITE flag)?"); 2269 2270 /* 2271 * Complete a background write started from bwrite. 2272 */ 2273 static void 2274 ffs_backgroundwritedone(struct buf *bp) 2275 { 2276 struct bufobj *bufobj; 2277 struct buf *origbp; 2278 2279 #ifdef SOFTUPDATES 2280 if (!LIST_EMPTY(&bp->b_dep) && (bp->b_ioflags & BIO_ERROR) != 0) 2281 softdep_handle_error(bp); 2282 #endif 2283 2284 /* 2285 * Find the original buffer that we are writing. 2286 */ 2287 bufobj = bp->b_bufobj; 2288 BO_LOCK(bufobj); 2289 if ((origbp = gbincore(bp->b_bufobj, bp->b_lblkno)) == NULL) 2290 panic("backgroundwritedone: lost buffer"); 2291 2292 /* 2293 * We should mark the cylinder group buffer origbp as 2294 * dirty, to not lose the failed write. 2295 */ 2296 if ((bp->b_ioflags & BIO_ERROR) != 0) 2297 origbp->b_vflags |= BV_BKGRDERR; 2298 BO_UNLOCK(bufobj); 2299 /* 2300 * Process dependencies then return any unfinished ones. 2301 */ 2302 if (!LIST_EMPTY(&bp->b_dep) && (bp->b_ioflags & BIO_ERROR) == 0) 2303 buf_complete(bp); 2304 #ifdef SOFTUPDATES 2305 if (!LIST_EMPTY(&bp->b_dep)) 2306 softdep_move_dependencies(bp, origbp); 2307 #endif 2308 /* 2309 * This buffer is marked B_NOCACHE so when it is released 2310 * by biodone it will be tossed. Clear B_IOSTARTED in case of error. 2311 */ 2312 bp->b_flags |= B_NOCACHE; 2313 bp->b_flags &= ~(B_CACHE | B_IOSTARTED); 2314 pbrelvp(bp); 2315 2316 /* 2317 * Prevent brelse() from trying to keep and re-dirtying bp on 2318 * errors. It causes b_bufobj dereference in 2319 * bdirty()/reassignbuf(), and b_bufobj was cleared in 2320 * pbrelvp() above. 2321 */ 2322 if ((bp->b_ioflags & BIO_ERROR) != 0) 2323 bp->b_flags |= B_INVAL; 2324 bufdone(bp); 2325 BO_LOCK(bufobj); 2326 /* 2327 * Clear the BV_BKGRDINPROG flag in the original buffer 2328 * and awaken it if it is waiting for the write to complete. 2329 * If BV_BKGRDINPROG is not set in the original buffer it must 2330 * have been released and re-instantiated - which is not legal. 2331 */ 2332 KASSERT((origbp->b_vflags & BV_BKGRDINPROG), 2333 ("backgroundwritedone: lost buffer2")); 2334 origbp->b_vflags &= ~BV_BKGRDINPROG; 2335 if (origbp->b_vflags & BV_BKGRDWAIT) { 2336 origbp->b_vflags &= ~BV_BKGRDWAIT; 2337 wakeup(&origbp->b_xflags); 2338 } 2339 BO_UNLOCK(bufobj); 2340 } 2341 2342 /* 2343 * Write, release buffer on completion. (Done by iodone 2344 * if async). Do not bother writing anything if the buffer 2345 * is invalid. 2346 * 2347 * Note that we set B_CACHE here, indicating that buffer is 2348 * fully valid and thus cacheable. This is true even of NFS 2349 * now so we set it generally. This could be set either here 2350 * or in biodone() since the I/O is synchronous. We put it 2351 * here. 2352 */ 2353 static int 2354 ffs_bufwrite(struct buf *bp) 2355 { 2356 struct buf *newbp; 2357 struct cg *cgp; 2358 2359 CTR3(KTR_BUF, "bufwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags); 2360 if (bp->b_flags & B_INVAL) { 2361 brelse(bp); 2362 return (0); 2363 } 2364 2365 if (!BUF_ISLOCKED(bp)) 2366 panic("bufwrite: buffer is not busy???"); 2367 /* 2368 * If a background write is already in progress, delay 2369 * writing this block if it is asynchronous. Otherwise 2370 * wait for the background write to complete. 2371 */ 2372 BO_LOCK(bp->b_bufobj); 2373 if (bp->b_vflags & BV_BKGRDINPROG) { 2374 if (bp->b_flags & B_ASYNC) { 2375 BO_UNLOCK(bp->b_bufobj); 2376 bdwrite(bp); 2377 return (0); 2378 } 2379 bp->b_vflags |= BV_BKGRDWAIT; 2380 msleep(&bp->b_xflags, BO_LOCKPTR(bp->b_bufobj), PRIBIO, 2381 "bwrbg", 0); 2382 if (bp->b_vflags & BV_BKGRDINPROG) 2383 panic("bufwrite: still writing"); 2384 } 2385 bp->b_vflags &= ~BV_BKGRDERR; 2386 BO_UNLOCK(bp->b_bufobj); 2387 2388 /* 2389 * If this buffer is marked for background writing and we 2390 * do not have to wait for it, make a copy and write the 2391 * copy so as to leave this buffer ready for further use. 2392 * 2393 * This optimization eats a lot of memory. If we have a page 2394 * or buffer shortfall we can't do it. 2395 */ 2396 if (dobkgrdwrite && (bp->b_xflags & BX_BKGRDWRITE) && 2397 (bp->b_flags & B_ASYNC) && 2398 !vm_page_count_severe() && 2399 !buf_dirty_count_severe()) { 2400 KASSERT(bp->b_iodone == NULL, 2401 ("bufwrite: needs chained iodone (%p)", bp->b_iodone)); 2402 2403 /* get a new block */ 2404 newbp = geteblk(bp->b_bufsize, GB_NOWAIT_BD); 2405 if (newbp == NULL) 2406 goto normal_write; 2407 2408 KASSERT(buf_mapped(bp), ("Unmapped cg")); 2409 memcpy(newbp->b_data, bp->b_data, bp->b_bufsize); 2410 BO_LOCK(bp->b_bufobj); 2411 bp->b_vflags |= BV_BKGRDINPROG; 2412 BO_UNLOCK(bp->b_bufobj); 2413 newbp->b_xflags |= 2414 (bp->b_xflags & BX_FSPRIV) | BX_BKGRDMARKER; 2415 newbp->b_lblkno = bp->b_lblkno; 2416 newbp->b_blkno = bp->b_blkno; 2417 newbp->b_offset = bp->b_offset; 2418 newbp->b_iodone = ffs_backgroundwritedone; 2419 newbp->b_flags |= B_ASYNC; 2420 newbp->b_flags &= ~B_INVAL; 2421 pbgetvp(bp->b_vp, newbp); 2422 2423 #ifdef SOFTUPDATES 2424 /* 2425 * Move over the dependencies. If there are rollbacks, 2426 * leave the parent buffer dirtied as it will need to 2427 * be written again. 2428 */ 2429 if (LIST_EMPTY(&bp->b_dep) || 2430 softdep_move_dependencies(bp, newbp) == 0) 2431 bundirty(bp); 2432 #else 2433 bundirty(bp); 2434 #endif 2435 2436 /* 2437 * Initiate write on the copy, release the original. The 2438 * BKGRDINPROG flag prevents it from going away until 2439 * the background write completes. We have to recalculate 2440 * its check hash in case the buffer gets freed and then 2441 * reconstituted from the buffer cache during a later read. 2442 */ 2443 if ((bp->b_xflags & BX_CYLGRP) != 0) { 2444 cgp = (struct cg *)bp->b_data; 2445 cgp->cg_ckhash = 0; 2446 cgp->cg_ckhash = 2447 calculate_crc32c(~0L, bp->b_data, bp->b_bcount); 2448 } 2449 bqrelse(bp); 2450 bp = newbp; 2451 } else 2452 /* Mark the buffer clean */ 2453 bundirty(bp); 2454 2455 /* Let the normal bufwrite do the rest for us */ 2456 normal_write: 2457 /* 2458 * If we are writing a cylinder group, update its time. 2459 */ 2460 if ((bp->b_xflags & BX_CYLGRP) != 0) { 2461 cgp = (struct cg *)bp->b_data; 2462 cgp->cg_old_time = cgp->cg_time = time_second; 2463 } 2464 return (bufwrite(bp)); 2465 } 2466 2467 static void 2468 ffs_geom_strategy(struct bufobj *bo, struct buf *bp) 2469 { 2470 struct vnode *vp; 2471 struct buf *tbp; 2472 int error, nocopy; 2473 2474 /* 2475 * This is the bufobj strategy for the private VCHR vnodes 2476 * used by FFS to access the underlying storage device. 2477 * We override the default bufobj strategy and thus bypass 2478 * VOP_STRATEGY() for these vnodes. 2479 */ 2480 vp = bo2vnode(bo); 2481 KASSERT(bp->b_vp == NULL || bp->b_vp->v_type != VCHR || 2482 bp->b_vp->v_rdev == NULL || 2483 bp->b_vp->v_rdev->si_mountpt == NULL || 2484 VFSTOUFS(bp->b_vp->v_rdev->si_mountpt) == NULL || 2485 vp == VFSTOUFS(bp->b_vp->v_rdev->si_mountpt)->um_devvp, 2486 ("ffs_geom_strategy() with wrong vp")); 2487 if (bp->b_iocmd == BIO_WRITE) { 2488 if ((bp->b_flags & B_VALIDSUSPWRT) == 0 && 2489 bp->b_vp != NULL && bp->b_vp->v_mount != NULL && 2490 (bp->b_vp->v_mount->mnt_kern_flag & MNTK_SUSPENDED) != 0) 2491 panic("ffs_geom_strategy: bad I/O"); 2492 nocopy = bp->b_flags & B_NOCOPY; 2493 bp->b_flags &= ~(B_VALIDSUSPWRT | B_NOCOPY); 2494 if ((vp->v_vflag & VV_COPYONWRITE) && nocopy == 0 && 2495 vp->v_rdev->si_snapdata != NULL) { 2496 if ((bp->b_flags & B_CLUSTER) != 0) { 2497 runningbufwakeup(bp); 2498 TAILQ_FOREACH(tbp, &bp->b_cluster.cluster_head, 2499 b_cluster.cluster_entry) { 2500 error = ffs_copyonwrite(vp, tbp); 2501 if (error != 0 && 2502 error != EOPNOTSUPP) { 2503 bp->b_error = error; 2504 bp->b_ioflags |= BIO_ERROR; 2505 bp->b_flags &= ~B_BARRIER; 2506 bufdone(bp); 2507 return; 2508 } 2509 } 2510 bp->b_runningbufspace = bp->b_bufsize; 2511 atomic_add_long(&runningbufspace, 2512 bp->b_runningbufspace); 2513 } else { 2514 error = ffs_copyonwrite(vp, bp); 2515 if (error != 0 && error != EOPNOTSUPP) { 2516 bp->b_error = error; 2517 bp->b_ioflags |= BIO_ERROR; 2518 bp->b_flags &= ~B_BARRIER; 2519 bufdone(bp); 2520 return; 2521 } 2522 } 2523 } 2524 #ifdef SOFTUPDATES 2525 if ((bp->b_flags & B_CLUSTER) != 0) { 2526 TAILQ_FOREACH(tbp, &bp->b_cluster.cluster_head, 2527 b_cluster.cluster_entry) { 2528 if (!LIST_EMPTY(&tbp->b_dep)) 2529 buf_start(tbp); 2530 } 2531 } else { 2532 if (!LIST_EMPTY(&bp->b_dep)) 2533 buf_start(bp); 2534 } 2535 2536 #endif 2537 /* 2538 * Check for metadata that needs check-hashes and update them. 2539 */ 2540 switch (bp->b_xflags & BX_FSPRIV) { 2541 case BX_CYLGRP: 2542 ((struct cg *)bp->b_data)->cg_ckhash = 0; 2543 ((struct cg *)bp->b_data)->cg_ckhash = 2544 calculate_crc32c(~0L, bp->b_data, bp->b_bcount); 2545 break; 2546 2547 case BX_SUPERBLOCK: 2548 case BX_INODE: 2549 case BX_INDIR: 2550 case BX_DIR: 2551 printf("Check-hash write is unimplemented!!!\n"); 2552 break; 2553 2554 case 0: 2555 break; 2556 2557 default: 2558 printf("multiple buffer types 0x%b\n", 2559 (u_int)(bp->b_xflags & BX_FSPRIV), 2560 PRINT_UFS_BUF_XFLAGS); 2561 break; 2562 } 2563 } 2564 if (bp->b_iocmd != BIO_READ && ffs_enxio_enable) 2565 bp->b_xflags |= BX_CVTENXIO; 2566 g_vfs_strategy(bo, bp); 2567 } 2568 2569 int 2570 ffs_own_mount(const struct mount *mp) 2571 { 2572 2573 if (mp->mnt_op == &ufs_vfsops) 2574 return (1); 2575 return (0); 2576 } 2577 2578 #ifdef DDB 2579 #ifdef SOFTUPDATES 2580 2581 /* defined in ffs_softdep.c */ 2582 extern void db_print_ffs(struct ufsmount *ump); 2583 2584 DB_SHOW_COMMAND(ffs, db_show_ffs) 2585 { 2586 struct mount *mp; 2587 struct ufsmount *ump; 2588 2589 if (have_addr) { 2590 ump = VFSTOUFS((struct mount *)addr); 2591 db_print_ffs(ump); 2592 return; 2593 } 2594 2595 TAILQ_FOREACH(mp, &mountlist, mnt_list) { 2596 if (!strcmp(mp->mnt_stat.f_fstypename, ufs_vfsconf.vfc_name)) 2597 db_print_ffs(VFSTOUFS(mp)); 2598 } 2599 } 2600 2601 #endif /* SOFTUPDATES */ 2602 #endif /* DDB */ 2603