1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1989, 1991, 1993, 1994 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * @(#)ffs_vfsops.c 8.31 (Berkeley) 5/20/95 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include "opt_quota.h" 38 #include "opt_ufs.h" 39 #include "opt_ffs.h" 40 #include "opt_ddb.h" 41 42 #include <sys/param.h> 43 #include <sys/gsb_crc32.h> 44 #include <sys/systm.h> 45 #include <sys/namei.h> 46 #include <sys/priv.h> 47 #include <sys/proc.h> 48 #include <sys/taskqueue.h> 49 #include <sys/kernel.h> 50 #include <sys/ktr.h> 51 #include <sys/vnode.h> 52 #include <sys/mount.h> 53 #include <sys/bio.h> 54 #include <sys/buf.h> 55 #include <sys/conf.h> 56 #include <sys/fcntl.h> 57 #include <sys/ioccom.h> 58 #include <sys/malloc.h> 59 #include <sys/mutex.h> 60 #include <sys/rwlock.h> 61 #include <sys/sysctl.h> 62 #include <sys/vmmeter.h> 63 64 #include <security/mac/mac_framework.h> 65 66 #include <ufs/ufs/dir.h> 67 #include <ufs/ufs/extattr.h> 68 #include <ufs/ufs/gjournal.h> 69 #include <ufs/ufs/quota.h> 70 #include <ufs/ufs/ufsmount.h> 71 #include <ufs/ufs/inode.h> 72 #include <ufs/ufs/ufs_extern.h> 73 74 #include <ufs/ffs/fs.h> 75 #include <ufs/ffs/ffs_extern.h> 76 77 #include <vm/vm.h> 78 #include <vm/uma.h> 79 #include <vm/vm_page.h> 80 81 #include <geom/geom.h> 82 #include <geom/geom_vfs.h> 83 84 #include <ddb/ddb.h> 85 86 static uma_zone_t uma_inode, uma_ufs1, uma_ufs2; 87 VFS_SMR_DECLARE; 88 89 static int ffs_mountfs(struct vnode *, struct mount *, struct thread *); 90 static void ffs_oldfscompat_read(struct fs *, struct ufsmount *, 91 ufs2_daddr_t); 92 static void ffs_ifree(struct ufsmount *ump, struct inode *ip); 93 static int ffs_sync_lazy(struct mount *mp); 94 static int ffs_use_bread(void *devfd, off_t loc, void **bufp, int size); 95 static int ffs_use_bwrite(void *devfd, off_t loc, void *buf, int size); 96 97 static vfs_init_t ffs_init; 98 static vfs_uninit_t ffs_uninit; 99 static vfs_extattrctl_t ffs_extattrctl; 100 static vfs_cmount_t ffs_cmount; 101 static vfs_unmount_t ffs_unmount; 102 static vfs_mount_t ffs_mount; 103 static vfs_statfs_t ffs_statfs; 104 static vfs_fhtovp_t ffs_fhtovp; 105 static vfs_sync_t ffs_sync; 106 107 static struct vfsops ufs_vfsops = { 108 .vfs_extattrctl = ffs_extattrctl, 109 .vfs_fhtovp = ffs_fhtovp, 110 .vfs_init = ffs_init, 111 .vfs_mount = ffs_mount, 112 .vfs_cmount = ffs_cmount, 113 .vfs_quotactl = ufs_quotactl, 114 .vfs_root = vfs_cache_root, 115 .vfs_cachedroot = ufs_root, 116 .vfs_statfs = ffs_statfs, 117 .vfs_sync = ffs_sync, 118 .vfs_uninit = ffs_uninit, 119 .vfs_unmount = ffs_unmount, 120 .vfs_vget = ffs_vget, 121 .vfs_susp_clean = process_deferred_inactive, 122 }; 123 124 VFS_SET(ufs_vfsops, ufs, 0); 125 MODULE_VERSION(ufs, 1); 126 127 static b_strategy_t ffs_geom_strategy; 128 static b_write_t ffs_bufwrite; 129 130 static struct buf_ops ffs_ops = { 131 .bop_name = "FFS", 132 .bop_write = ffs_bufwrite, 133 .bop_strategy = ffs_geom_strategy, 134 .bop_sync = bufsync, 135 #ifdef NO_FFS_SNAPSHOT 136 .bop_bdflush = bufbdflush, 137 #else 138 .bop_bdflush = ffs_bdflush, 139 #endif 140 }; 141 142 /* 143 * Note that userquota and groupquota options are not currently used 144 * by UFS/FFS code and generally mount(8) does not pass those options 145 * from userland, but they can be passed by loader(8) via 146 * vfs.root.mountfrom.options. 147 */ 148 static const char *ffs_opts[] = { "acls", "async", "noatime", "noclusterr", 149 "noclusterw", "noexec", "export", "force", "from", "groupquota", 150 "multilabel", "nfsv4acls", "snapshot", "nosuid", "suiddir", 151 "nosymfollow", "sync", "union", "userquota", "untrusted", NULL }; 152 153 static int ffs_enxio_enable = 1; 154 SYSCTL_DECL(_vfs_ffs); 155 SYSCTL_INT(_vfs_ffs, OID_AUTO, enxio_enable, CTLFLAG_RWTUN, 156 &ffs_enxio_enable, 0, 157 "enable mapping of other disk I/O errors to ENXIO"); 158 159 /* 160 * Return buffer with the contents of block "offset" from the beginning of 161 * directory "ip". If "res" is non-zero, fill it in with a pointer to the 162 * remaining space in the directory. 163 */ 164 static int 165 ffs_blkatoff(struct vnode *vp, off_t offset, char **res, struct buf **bpp) 166 { 167 struct inode *ip; 168 struct fs *fs; 169 struct buf *bp; 170 ufs_lbn_t lbn; 171 int bsize, error; 172 173 ip = VTOI(vp); 174 fs = ITOFS(ip); 175 lbn = lblkno(fs, offset); 176 bsize = blksize(fs, ip, lbn); 177 178 *bpp = NULL; 179 error = bread(vp, lbn, bsize, NOCRED, &bp); 180 if (error) { 181 return (error); 182 } 183 if (res) 184 *res = (char *)bp->b_data + blkoff(fs, offset); 185 *bpp = bp; 186 return (0); 187 } 188 189 /* 190 * Load up the contents of an inode and copy the appropriate pieces 191 * to the incore copy. 192 */ 193 static int 194 ffs_load_inode(struct buf *bp, struct inode *ip, struct fs *fs, ino_t ino) 195 { 196 struct ufs1_dinode *dip1; 197 struct ufs2_dinode *dip2; 198 int error; 199 200 if (I_IS_UFS1(ip)) { 201 dip1 = ip->i_din1; 202 *dip1 = 203 *((struct ufs1_dinode *)bp->b_data + ino_to_fsbo(fs, ino)); 204 ip->i_mode = dip1->di_mode; 205 ip->i_nlink = dip1->di_nlink; 206 ip->i_effnlink = dip1->di_nlink; 207 ip->i_size = dip1->di_size; 208 ip->i_flags = dip1->di_flags; 209 ip->i_gen = dip1->di_gen; 210 ip->i_uid = dip1->di_uid; 211 ip->i_gid = dip1->di_gid; 212 return (0); 213 } 214 dip2 = ((struct ufs2_dinode *)bp->b_data + ino_to_fsbo(fs, ino)); 215 if ((error = ffs_verify_dinode_ckhash(fs, dip2)) != 0 && 216 !ffs_fsfail_cleanup(ITOUMP(ip), error)) { 217 printf("%s: inode %jd: check-hash failed\n", fs->fs_fsmnt, 218 (intmax_t)ino); 219 return (error); 220 } 221 *ip->i_din2 = *dip2; 222 dip2 = ip->i_din2; 223 ip->i_mode = dip2->di_mode; 224 ip->i_nlink = dip2->di_nlink; 225 ip->i_effnlink = dip2->di_nlink; 226 ip->i_size = dip2->di_size; 227 ip->i_flags = dip2->di_flags; 228 ip->i_gen = dip2->di_gen; 229 ip->i_uid = dip2->di_uid; 230 ip->i_gid = dip2->di_gid; 231 return (0); 232 } 233 234 /* 235 * Verify that a filesystem block number is a valid data block. 236 * This routine is only called on untrusted filesystems. 237 */ 238 static int 239 ffs_check_blkno(struct mount *mp, ino_t inum, ufs2_daddr_t daddr, int blksize) 240 { 241 struct fs *fs; 242 struct ufsmount *ump; 243 ufs2_daddr_t end_daddr; 244 int cg, havemtx; 245 246 KASSERT((mp->mnt_flag & MNT_UNTRUSTED) != 0, 247 ("ffs_check_blkno called on a trusted file system")); 248 ump = VFSTOUFS(mp); 249 fs = ump->um_fs; 250 cg = dtog(fs, daddr); 251 end_daddr = daddr + numfrags(fs, blksize); 252 /* 253 * Verify that the block number is a valid data block. Also check 254 * that it does not point to an inode block or a superblock. Accept 255 * blocks that are unalloacted (0) or part of snapshot metadata 256 * (BLK_NOCOPY or BLK_SNAP). 257 * 258 * Thus, the block must be in a valid range for the filesystem and 259 * either in the space before a backup superblock (except the first 260 * cylinder group where that space is used by the bootstrap code) or 261 * after the inode blocks and before the end of the cylinder group. 262 */ 263 if ((uint64_t)daddr <= BLK_SNAP || 264 ((uint64_t)end_daddr <= fs->fs_size && 265 ((cg > 0 && end_daddr <= cgsblock(fs, cg)) || 266 (daddr >= cgdmin(fs, cg) && 267 end_daddr <= cgbase(fs, cg) + fs->fs_fpg)))) 268 return (0); 269 if ((havemtx = mtx_owned(UFS_MTX(ump))) == 0) 270 UFS_LOCK(ump); 271 if (ppsratecheck(&ump->um_last_integritymsg, 272 &ump->um_secs_integritymsg, 1)) { 273 UFS_UNLOCK(ump); 274 uprintf("\n%s: inode %jd, out-of-range indirect block " 275 "number %jd\n", mp->mnt_stat.f_mntonname, inum, daddr); 276 if (havemtx) 277 UFS_LOCK(ump); 278 } else if (!havemtx) 279 UFS_UNLOCK(ump); 280 return (EINTEGRITY); 281 } 282 283 /* 284 * On first ENXIO error, initiate an asynchronous forcible unmount. 285 * Used to unmount filesystems whose underlying media has gone away. 286 * 287 * Return true if a cleanup is in progress. 288 */ 289 int 290 ffs_fsfail_cleanup(struct ufsmount *ump, int error) 291 { 292 int retval; 293 294 UFS_LOCK(ump); 295 retval = ffs_fsfail_cleanup_locked(ump, error); 296 UFS_UNLOCK(ump); 297 return (retval); 298 } 299 300 int 301 ffs_fsfail_cleanup_locked(struct ufsmount *ump, int error) 302 { 303 mtx_assert(UFS_MTX(ump), MA_OWNED); 304 if (error == ENXIO && (ump->um_flags & UM_FSFAIL_CLEANUP) == 0) { 305 ump->um_flags |= UM_FSFAIL_CLEANUP; 306 /* 307 * Queue an async forced unmount. 308 */ 309 vfs_ref(ump->um_mountp); 310 dounmount(ump->um_mountp, 311 MNT_FORCE | MNT_RECURSE | MNT_DEFERRED, curthread); 312 printf("UFS: forcibly unmounting %s from %s\n", 313 ump->um_mountp->mnt_stat.f_mntfromname, 314 ump->um_mountp->mnt_stat.f_mntonname); 315 } 316 return ((ump->um_flags & UM_FSFAIL_CLEANUP) != 0); 317 } 318 319 /* 320 * Wrapper used during ENXIO cleanup to allocate empty buffers when 321 * the kernel is unable to read the real one. They are needed so that 322 * the soft updates code can use them to unwind its dependencies. 323 */ 324 int 325 ffs_breadz(struct ufsmount *ump, struct vnode *vp, daddr_t lblkno, 326 daddr_t dblkno, int size, daddr_t *rablkno, int *rabsize, int cnt, 327 struct ucred *cred, int flags, void (*ckhashfunc)(struct buf *), 328 struct buf **bpp) 329 { 330 int error; 331 332 flags |= GB_CVTENXIO; 333 error = breadn_flags(vp, lblkno, dblkno, size, rablkno, rabsize, cnt, 334 cred, flags, ckhashfunc, bpp); 335 if (error != 0 && ffs_fsfail_cleanup(ump, error)) { 336 error = getblkx(vp, lblkno, dblkno, size, 0, 0, flags, bpp); 337 KASSERT(error == 0, ("getblkx failed")); 338 vfs_bio_bzero_buf(*bpp, 0, size); 339 } 340 return (error); 341 } 342 343 static int 344 ffs_mount(struct mount *mp) 345 { 346 struct vnode *devvp, *odevvp; 347 struct thread *td; 348 struct ufsmount *ump = NULL; 349 struct fs *fs; 350 int error, flags; 351 int error1 __diagused; 352 uint64_t mntorflags, saved_mnt_flag; 353 accmode_t accmode; 354 struct nameidata ndp; 355 char *fspec; 356 bool mounted_softdep; 357 358 td = curthread; 359 if (vfs_filteropt(mp->mnt_optnew, ffs_opts)) 360 return (EINVAL); 361 if (uma_inode == NULL) { 362 uma_inode = uma_zcreate("FFS inode", 363 sizeof(struct inode), NULL, NULL, NULL, NULL, 364 UMA_ALIGN_PTR, 0); 365 uma_ufs1 = uma_zcreate("FFS1 dinode", 366 sizeof(struct ufs1_dinode), NULL, NULL, NULL, NULL, 367 UMA_ALIGN_PTR, 0); 368 uma_ufs2 = uma_zcreate("FFS2 dinode", 369 sizeof(struct ufs2_dinode), NULL, NULL, NULL, NULL, 370 UMA_ALIGN_PTR, 0); 371 VFS_SMR_ZONE_SET(uma_inode); 372 } 373 374 vfs_deleteopt(mp->mnt_optnew, "groupquota"); 375 vfs_deleteopt(mp->mnt_optnew, "userquota"); 376 377 fspec = vfs_getopts(mp->mnt_optnew, "from", &error); 378 if (error) 379 return (error); 380 381 mntorflags = 0; 382 if (vfs_getopt(mp->mnt_optnew, "untrusted", NULL, NULL) == 0) 383 mntorflags |= MNT_UNTRUSTED; 384 385 if (vfs_getopt(mp->mnt_optnew, "acls", NULL, NULL) == 0) 386 mntorflags |= MNT_ACLS; 387 388 if (vfs_getopt(mp->mnt_optnew, "snapshot", NULL, NULL) == 0) { 389 mntorflags |= MNT_SNAPSHOT; 390 /* 391 * Once we have set the MNT_SNAPSHOT flag, do not 392 * persist "snapshot" in the options list. 393 */ 394 vfs_deleteopt(mp->mnt_optnew, "snapshot"); 395 vfs_deleteopt(mp->mnt_opt, "snapshot"); 396 } 397 398 if (vfs_getopt(mp->mnt_optnew, "nfsv4acls", NULL, NULL) == 0) { 399 if (mntorflags & MNT_ACLS) { 400 vfs_mount_error(mp, 401 "\"acls\" and \"nfsv4acls\" options " 402 "are mutually exclusive"); 403 return (EINVAL); 404 } 405 mntorflags |= MNT_NFS4ACLS; 406 } 407 408 MNT_ILOCK(mp); 409 mp->mnt_kern_flag &= ~MNTK_FPLOOKUP; 410 mp->mnt_flag |= mntorflags; 411 MNT_IUNLOCK(mp); 412 /* 413 * If updating, check whether changing from read-only to 414 * read/write; if there is no device name, that's all we do. 415 */ 416 if (mp->mnt_flag & MNT_UPDATE) { 417 ump = VFSTOUFS(mp); 418 fs = ump->um_fs; 419 odevvp = ump->um_odevvp; 420 devvp = ump->um_devvp; 421 if (fs->fs_ronly == 0 && 422 vfs_flagopt(mp->mnt_optnew, "ro", NULL, 0)) { 423 /* 424 * Flush any dirty data and suspend filesystem. 425 */ 426 if ((error = vn_start_write(NULL, &mp, V_WAIT)) != 0) 427 return (error); 428 error = vfs_write_suspend_umnt(mp); 429 if (error != 0) 430 return (error); 431 432 fs->fs_ronly = 1; 433 if (MOUNTEDSOFTDEP(mp)) { 434 MNT_ILOCK(mp); 435 mp->mnt_flag &= ~MNT_SOFTDEP; 436 MNT_IUNLOCK(mp); 437 mounted_softdep = true; 438 } else 439 mounted_softdep = false; 440 441 /* 442 * Check for and optionally get rid of files open 443 * for writing. 444 */ 445 flags = WRITECLOSE; 446 if (mp->mnt_flag & MNT_FORCE) 447 flags |= FORCECLOSE; 448 if (mounted_softdep) { 449 error = softdep_flushfiles(mp, flags, td); 450 } else { 451 error = ffs_flushfiles(mp, flags, td); 452 } 453 if (error) { 454 fs->fs_ronly = 0; 455 if (mounted_softdep) { 456 MNT_ILOCK(mp); 457 mp->mnt_flag |= MNT_SOFTDEP; 458 MNT_IUNLOCK(mp); 459 } 460 vfs_write_resume(mp, 0); 461 return (error); 462 } 463 464 if (fs->fs_pendingblocks != 0 || 465 fs->fs_pendinginodes != 0) { 466 printf("WARNING: %s Update error: blocks %jd " 467 "files %d\n", fs->fs_fsmnt, 468 (intmax_t)fs->fs_pendingblocks, 469 fs->fs_pendinginodes); 470 fs->fs_pendingblocks = 0; 471 fs->fs_pendinginodes = 0; 472 } 473 if ((fs->fs_flags & (FS_UNCLEAN | FS_NEEDSFSCK)) == 0) 474 fs->fs_clean = 1; 475 if ((error = ffs_sbupdate(ump, MNT_WAIT, 0)) != 0) { 476 fs->fs_ronly = 0; 477 fs->fs_clean = 0; 478 if (mounted_softdep) { 479 MNT_ILOCK(mp); 480 mp->mnt_flag |= MNT_SOFTDEP; 481 MNT_IUNLOCK(mp); 482 } 483 vfs_write_resume(mp, 0); 484 return (error); 485 } 486 if (mounted_softdep) 487 softdep_unmount(mp); 488 g_topology_lock(); 489 /* 490 * Drop our write and exclusive access. 491 */ 492 g_access(ump->um_cp, 0, -1, -1); 493 g_topology_unlock(); 494 MNT_ILOCK(mp); 495 mp->mnt_flag |= MNT_RDONLY; 496 MNT_IUNLOCK(mp); 497 /* 498 * Allow the writers to note that filesystem 499 * is ro now. 500 */ 501 vfs_write_resume(mp, 0); 502 } 503 if ((mp->mnt_flag & MNT_RELOAD) && 504 (error = ffs_reload(mp, 0)) != 0) 505 return (error); 506 if (fs->fs_ronly && 507 !vfs_flagopt(mp->mnt_optnew, "ro", NULL, 0)) { 508 /* 509 * If upgrade to read-write by non-root, then verify 510 * that user has necessary permissions on the device. 511 */ 512 vn_lock(odevvp, LK_EXCLUSIVE | LK_RETRY); 513 error = VOP_ACCESS(odevvp, VREAD | VWRITE, 514 td->td_ucred, td); 515 if (error) 516 error = priv_check(td, PRIV_VFS_MOUNT_PERM); 517 VOP_UNLOCK(odevvp); 518 if (error) { 519 return (error); 520 } 521 fs->fs_flags &= ~FS_UNCLEAN; 522 if (fs->fs_clean == 0) { 523 fs->fs_flags |= FS_UNCLEAN; 524 if ((mp->mnt_flag & MNT_FORCE) || 525 ((fs->fs_flags & 526 (FS_SUJ | FS_NEEDSFSCK)) == 0 && 527 (fs->fs_flags & FS_DOSOFTDEP))) { 528 printf("WARNING: %s was not properly " 529 "dismounted\n", fs->fs_fsmnt); 530 } else { 531 vfs_mount_error(mp, 532 "R/W mount of %s denied. %s.%s", 533 fs->fs_fsmnt, 534 "Filesystem is not clean - run fsck", 535 (fs->fs_flags & FS_SUJ) == 0 ? "" : 536 " Forced mount will invalidate" 537 " journal contents"); 538 return (EPERM); 539 } 540 } 541 g_topology_lock(); 542 /* 543 * Request exclusive write access. 544 */ 545 error = g_access(ump->um_cp, 0, 1, 1); 546 g_topology_unlock(); 547 if (error) 548 return (error); 549 if ((error = vn_start_write(NULL, &mp, V_WAIT)) != 0) 550 return (error); 551 error = vfs_write_suspend_umnt(mp); 552 if (error != 0) 553 return (error); 554 fs->fs_ronly = 0; 555 MNT_ILOCK(mp); 556 saved_mnt_flag = MNT_RDONLY; 557 if (MOUNTEDSOFTDEP(mp) && (mp->mnt_flag & 558 MNT_ASYNC) != 0) 559 saved_mnt_flag |= MNT_ASYNC; 560 mp->mnt_flag &= ~saved_mnt_flag; 561 MNT_IUNLOCK(mp); 562 fs->fs_mtime = time_second; 563 /* check to see if we need to start softdep */ 564 if ((fs->fs_flags & FS_DOSOFTDEP) && 565 (error = softdep_mount(devvp, mp, fs, td->td_ucred))){ 566 fs->fs_ronly = 1; 567 MNT_ILOCK(mp); 568 mp->mnt_flag |= saved_mnt_flag; 569 MNT_IUNLOCK(mp); 570 vfs_write_resume(mp, 0); 571 return (error); 572 } 573 fs->fs_clean = 0; 574 if ((error = ffs_sbupdate(ump, MNT_WAIT, 0)) != 0) { 575 fs->fs_ronly = 1; 576 if ((fs->fs_flags & FS_DOSOFTDEP) != 0) 577 softdep_unmount(mp); 578 MNT_ILOCK(mp); 579 mp->mnt_flag |= saved_mnt_flag; 580 MNT_IUNLOCK(mp); 581 vfs_write_resume(mp, 0); 582 return (error); 583 } 584 if (fs->fs_snapinum[0] != 0) 585 ffs_snapshot_mount(mp); 586 vfs_write_resume(mp, 0); 587 } 588 /* 589 * Soft updates is incompatible with "async", 590 * so if we are doing softupdates stop the user 591 * from setting the async flag in an update. 592 * Softdep_mount() clears it in an initial mount 593 * or ro->rw remount. 594 */ 595 if (MOUNTEDSOFTDEP(mp)) { 596 /* XXX: Reset too late ? */ 597 MNT_ILOCK(mp); 598 mp->mnt_flag &= ~MNT_ASYNC; 599 MNT_IUNLOCK(mp); 600 } 601 /* 602 * Keep MNT_ACLS flag if it is stored in superblock. 603 */ 604 if ((fs->fs_flags & FS_ACLS) != 0) { 605 /* XXX: Set too late ? */ 606 MNT_ILOCK(mp); 607 mp->mnt_flag |= MNT_ACLS; 608 MNT_IUNLOCK(mp); 609 } 610 611 if ((fs->fs_flags & FS_NFS4ACLS) != 0) { 612 /* XXX: Set too late ? */ 613 MNT_ILOCK(mp); 614 mp->mnt_flag |= MNT_NFS4ACLS; 615 MNT_IUNLOCK(mp); 616 } 617 618 /* 619 * If this is a snapshot request, take the snapshot. 620 */ 621 if (mp->mnt_flag & MNT_SNAPSHOT) 622 return (ffs_snapshot(mp, fspec)); 623 624 /* 625 * Must not call namei() while owning busy ref. 626 */ 627 vfs_unbusy(mp); 628 } 629 630 /* 631 * Not an update, or updating the name: look up the name 632 * and verify that it refers to a sensible disk device. 633 */ 634 NDINIT(&ndp, LOOKUP, FOLLOW | LOCKLEAF, UIO_SYSSPACE, fspec, td); 635 error = namei(&ndp); 636 if ((mp->mnt_flag & MNT_UPDATE) != 0) { 637 /* 638 * Unmount does not start if MNT_UPDATE is set. Mount 639 * update busies mp before setting MNT_UPDATE. We 640 * must be able to retain our busy ref succesfully, 641 * without sleep. 642 */ 643 error1 = vfs_busy(mp, MBF_NOWAIT); 644 MPASS(error1 == 0); 645 } 646 if (error != 0) 647 return (error); 648 NDFREE(&ndp, NDF_ONLY_PNBUF); 649 devvp = ndp.ni_vp; 650 if (!vn_isdisk_error(devvp, &error)) { 651 vput(devvp); 652 return (error); 653 } 654 655 /* 656 * If mount by non-root, then verify that user has necessary 657 * permissions on the device. 658 */ 659 accmode = VREAD; 660 if ((mp->mnt_flag & MNT_RDONLY) == 0) 661 accmode |= VWRITE; 662 error = VOP_ACCESS(devvp, accmode, td->td_ucred, td); 663 if (error) 664 error = priv_check(td, PRIV_VFS_MOUNT_PERM); 665 if (error) { 666 vput(devvp); 667 return (error); 668 } 669 670 if (mp->mnt_flag & MNT_UPDATE) { 671 /* 672 * Update only 673 * 674 * If it's not the same vnode, or at least the same device 675 * then it's not correct. 676 */ 677 678 if (devvp->v_rdev != ump->um_devvp->v_rdev) 679 error = EINVAL; /* needs translation */ 680 vput(devvp); 681 if (error) 682 return (error); 683 } else { 684 /* 685 * New mount 686 * 687 * We need the name for the mount point (also used for 688 * "last mounted on") copied in. If an error occurs, 689 * the mount point is discarded by the upper level code. 690 * Note that vfs_mount_alloc() populates f_mntonname for us. 691 */ 692 if ((error = ffs_mountfs(devvp, mp, td)) != 0) { 693 vrele(devvp); 694 return (error); 695 } 696 } 697 698 MNT_ILOCK(mp); 699 /* 700 * This is racy versus lookup, see ufs_fplookup_vexec for details. 701 */ 702 if ((mp->mnt_kern_flag & MNTK_FPLOOKUP) != 0) 703 panic("MNTK_FPLOOKUP set on mount %p when it should not be", mp); 704 if ((mp->mnt_flag & (MNT_ACLS | MNT_NFS4ACLS | MNT_UNION)) == 0) 705 mp->mnt_kern_flag |= MNTK_FPLOOKUP; 706 MNT_IUNLOCK(mp); 707 708 vfs_mountedfrom(mp, fspec); 709 return (0); 710 } 711 712 /* 713 * Compatibility with old mount system call. 714 */ 715 716 static int 717 ffs_cmount(struct mntarg *ma, void *data, uint64_t flags) 718 { 719 struct ufs_args args; 720 int error; 721 722 if (data == NULL) 723 return (EINVAL); 724 error = copyin(data, &args, sizeof args); 725 if (error) 726 return (error); 727 728 ma = mount_argsu(ma, "from", args.fspec, MAXPATHLEN); 729 ma = mount_arg(ma, "export", &args.export, sizeof(args.export)); 730 error = kernel_mount(ma, flags); 731 732 return (error); 733 } 734 735 /* 736 * Reload all incore data for a filesystem (used after running fsck on 737 * the root filesystem and finding things to fix). If the 'force' flag 738 * is 0, the filesystem must be mounted read-only. 739 * 740 * Things to do to update the mount: 741 * 1) invalidate all cached meta-data. 742 * 2) re-read superblock from disk. 743 * 3) re-read summary information from disk. 744 * 4) invalidate all inactive vnodes. 745 * 5) clear MNTK_SUSPEND2 and MNTK_SUSPENDED flags, allowing secondary 746 * writers, if requested. 747 * 6) invalidate all cached file data. 748 * 7) re-read inode data for all active vnodes. 749 */ 750 int 751 ffs_reload(struct mount *mp, int flags) 752 { 753 struct vnode *vp, *mvp, *devvp; 754 struct inode *ip; 755 void *space; 756 struct buf *bp; 757 struct fs *fs, *newfs; 758 struct ufsmount *ump; 759 ufs2_daddr_t sblockloc; 760 int i, blks, error; 761 u_long size; 762 int32_t *lp; 763 764 ump = VFSTOUFS(mp); 765 766 MNT_ILOCK(mp); 767 if ((mp->mnt_flag & MNT_RDONLY) == 0 && (flags & FFSR_FORCE) == 0) { 768 MNT_IUNLOCK(mp); 769 return (EINVAL); 770 } 771 MNT_IUNLOCK(mp); 772 773 /* 774 * Step 1: invalidate all cached meta-data. 775 */ 776 devvp = VFSTOUFS(mp)->um_devvp; 777 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY); 778 if (vinvalbuf(devvp, 0, 0, 0) != 0) 779 panic("ffs_reload: dirty1"); 780 VOP_UNLOCK(devvp); 781 782 /* 783 * Step 2: re-read superblock from disk. 784 */ 785 fs = VFSTOUFS(mp)->um_fs; 786 if ((error = bread(devvp, btodb(fs->fs_sblockloc), fs->fs_sbsize, 787 NOCRED, &bp)) != 0) 788 return (error); 789 newfs = (struct fs *)bp->b_data; 790 if ((newfs->fs_magic != FS_UFS1_MAGIC && 791 newfs->fs_magic != FS_UFS2_MAGIC) || 792 newfs->fs_bsize > MAXBSIZE || 793 newfs->fs_bsize < sizeof(struct fs)) { 794 brelse(bp); 795 return (EIO); /* XXX needs translation */ 796 } 797 /* 798 * Preserve the summary information, read-only status, and 799 * superblock location by copying these fields into our new 800 * superblock before using it to update the existing superblock. 801 */ 802 newfs->fs_si = fs->fs_si; 803 newfs->fs_ronly = fs->fs_ronly; 804 sblockloc = fs->fs_sblockloc; 805 bcopy(newfs, fs, (u_int)fs->fs_sbsize); 806 brelse(bp); 807 ump->um_maxsymlinklen = fs->fs_maxsymlinklen; 808 ffs_oldfscompat_read(fs, VFSTOUFS(mp), sblockloc); 809 UFS_LOCK(ump); 810 if (fs->fs_pendingblocks != 0 || fs->fs_pendinginodes != 0) { 811 printf("WARNING: %s: reload pending error: blocks %jd " 812 "files %d\n", fs->fs_fsmnt, (intmax_t)fs->fs_pendingblocks, 813 fs->fs_pendinginodes); 814 fs->fs_pendingblocks = 0; 815 fs->fs_pendinginodes = 0; 816 } 817 UFS_UNLOCK(ump); 818 819 /* 820 * Step 3: re-read summary information from disk. 821 */ 822 size = fs->fs_cssize; 823 blks = howmany(size, fs->fs_fsize); 824 if (fs->fs_contigsumsize > 0) 825 size += fs->fs_ncg * sizeof(int32_t); 826 size += fs->fs_ncg * sizeof(u_int8_t); 827 free(fs->fs_csp, M_UFSMNT); 828 space = malloc(size, M_UFSMNT, M_WAITOK); 829 fs->fs_csp = space; 830 for (i = 0; i < blks; i += fs->fs_frag) { 831 size = fs->fs_bsize; 832 if (i + fs->fs_frag > blks) 833 size = (blks - i) * fs->fs_fsize; 834 error = bread(devvp, fsbtodb(fs, fs->fs_csaddr + i), size, 835 NOCRED, &bp); 836 if (error) 837 return (error); 838 bcopy(bp->b_data, space, (u_int)size); 839 space = (char *)space + size; 840 brelse(bp); 841 } 842 /* 843 * We no longer know anything about clusters per cylinder group. 844 */ 845 if (fs->fs_contigsumsize > 0) { 846 fs->fs_maxcluster = lp = space; 847 for (i = 0; i < fs->fs_ncg; i++) 848 *lp++ = fs->fs_contigsumsize; 849 space = lp; 850 } 851 size = fs->fs_ncg * sizeof(u_int8_t); 852 fs->fs_contigdirs = (u_int8_t *)space; 853 bzero(fs->fs_contigdirs, size); 854 if ((flags & FFSR_UNSUSPEND) != 0) { 855 MNT_ILOCK(mp); 856 mp->mnt_kern_flag &= ~(MNTK_SUSPENDED | MNTK_SUSPEND2); 857 wakeup(&mp->mnt_flag); 858 MNT_IUNLOCK(mp); 859 } 860 861 loop: 862 MNT_VNODE_FOREACH_ALL(vp, mp, mvp) { 863 /* 864 * Skip syncer vnode. 865 */ 866 if (vp->v_type == VNON) { 867 VI_UNLOCK(vp); 868 continue; 869 } 870 /* 871 * Step 4: invalidate all cached file data. 872 */ 873 if (vget(vp, LK_EXCLUSIVE | LK_INTERLOCK)) { 874 MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp); 875 goto loop; 876 } 877 if (vinvalbuf(vp, 0, 0, 0)) 878 panic("ffs_reload: dirty2"); 879 /* 880 * Step 5: re-read inode data for all active vnodes. 881 */ 882 ip = VTOI(vp); 883 error = 884 bread(devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)), 885 (int)fs->fs_bsize, NOCRED, &bp); 886 if (error) { 887 vput(vp); 888 MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp); 889 return (error); 890 } 891 if ((error = ffs_load_inode(bp, ip, fs, ip->i_number)) != 0) { 892 brelse(bp); 893 vput(vp); 894 MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp); 895 return (error); 896 } 897 ip->i_effnlink = ip->i_nlink; 898 brelse(bp); 899 vput(vp); 900 } 901 return (0); 902 } 903 904 /* 905 * Common code for mount and mountroot 906 */ 907 static int 908 ffs_mountfs(odevvp, mp, td) 909 struct vnode *odevvp; 910 struct mount *mp; 911 struct thread *td; 912 { 913 struct ufsmount *ump; 914 struct fs *fs; 915 struct cdev *dev; 916 int error, i, len, ronly; 917 struct ucred *cred; 918 struct g_consumer *cp; 919 struct mount *nmp; 920 struct vnode *devvp; 921 int candelete, canspeedup; 922 off_t loc; 923 924 fs = NULL; 925 ump = NULL; 926 cred = td ? td->td_ucred : NOCRED; 927 ronly = (mp->mnt_flag & MNT_RDONLY) != 0; 928 929 devvp = mntfs_allocvp(mp, odevvp); 930 VOP_UNLOCK(odevvp); 931 KASSERT(devvp->v_type == VCHR, ("reclaimed devvp")); 932 dev = devvp->v_rdev; 933 KASSERT(dev->si_snapdata == NULL, ("non-NULL snapshot data")); 934 if (atomic_cmpset_acq_ptr((uintptr_t *)&dev->si_mountpt, 0, 935 (uintptr_t)mp) == 0) { 936 mntfs_freevp(devvp); 937 return (EBUSY); 938 } 939 g_topology_lock(); 940 error = g_vfs_open(devvp, &cp, "ffs", ronly ? 0 : 1); 941 g_topology_unlock(); 942 if (error != 0) { 943 atomic_store_rel_ptr((uintptr_t *)&dev->si_mountpt, 0); 944 mntfs_freevp(devvp); 945 return (error); 946 } 947 dev_ref(dev); 948 devvp->v_bufobj.bo_ops = &ffs_ops; 949 BO_LOCK(&odevvp->v_bufobj); 950 odevvp->v_bufobj.bo_flag |= BO_NOBUFS; 951 BO_UNLOCK(&odevvp->v_bufobj); 952 if (dev->si_iosize_max != 0) 953 mp->mnt_iosize_max = dev->si_iosize_max; 954 if (mp->mnt_iosize_max > maxphys) 955 mp->mnt_iosize_max = maxphys; 956 if ((SBLOCKSIZE % cp->provider->sectorsize) != 0) { 957 error = EINVAL; 958 vfs_mount_error(mp, 959 "Invalid sectorsize %d for superblock size %d", 960 cp->provider->sectorsize, SBLOCKSIZE); 961 goto out; 962 } 963 /* fetch the superblock and summary information */ 964 loc = STDSB; 965 if ((mp->mnt_flag & MNT_ROOTFS) != 0) 966 loc = STDSB_NOHASHFAIL; 967 if ((error = ffs_sbget(devvp, &fs, loc, M_UFSMNT, ffs_use_bread)) != 0) 968 goto out; 969 fs->fs_flags &= ~FS_UNCLEAN; 970 if (fs->fs_clean == 0) { 971 fs->fs_flags |= FS_UNCLEAN; 972 if (ronly || (mp->mnt_flag & MNT_FORCE) || 973 ((fs->fs_flags & (FS_SUJ | FS_NEEDSFSCK)) == 0 && 974 (fs->fs_flags & FS_DOSOFTDEP))) { 975 printf("WARNING: %s was not properly dismounted\n", 976 fs->fs_fsmnt); 977 } else { 978 vfs_mount_error(mp, "R/W mount of %s denied. %s%s", 979 fs->fs_fsmnt, "Filesystem is not clean - run fsck.", 980 (fs->fs_flags & FS_SUJ) == 0 ? "" : 981 " Forced mount will invalidate journal contents"); 982 error = EPERM; 983 goto out; 984 } 985 if ((fs->fs_pendingblocks != 0 || fs->fs_pendinginodes != 0) && 986 (mp->mnt_flag & MNT_FORCE)) { 987 printf("WARNING: %s: lost blocks %jd files %d\n", 988 fs->fs_fsmnt, (intmax_t)fs->fs_pendingblocks, 989 fs->fs_pendinginodes); 990 fs->fs_pendingblocks = 0; 991 fs->fs_pendinginodes = 0; 992 } 993 } 994 if (fs->fs_pendingblocks != 0 || fs->fs_pendinginodes != 0) { 995 printf("WARNING: %s: mount pending error: blocks %jd " 996 "files %d\n", fs->fs_fsmnt, (intmax_t)fs->fs_pendingblocks, 997 fs->fs_pendinginodes); 998 fs->fs_pendingblocks = 0; 999 fs->fs_pendinginodes = 0; 1000 } 1001 if ((fs->fs_flags & FS_GJOURNAL) != 0) { 1002 #ifdef UFS_GJOURNAL 1003 /* 1004 * Get journal provider name. 1005 */ 1006 len = 1024; 1007 mp->mnt_gjprovider = malloc((u_long)len, M_UFSMNT, M_WAITOK); 1008 if (g_io_getattr("GJOURNAL::provider", cp, &len, 1009 mp->mnt_gjprovider) == 0) { 1010 mp->mnt_gjprovider = realloc(mp->mnt_gjprovider, len, 1011 M_UFSMNT, M_WAITOK); 1012 MNT_ILOCK(mp); 1013 mp->mnt_flag |= MNT_GJOURNAL; 1014 MNT_IUNLOCK(mp); 1015 } else { 1016 printf("WARNING: %s: GJOURNAL flag on fs " 1017 "but no gjournal provider below\n", 1018 mp->mnt_stat.f_mntonname); 1019 free(mp->mnt_gjprovider, M_UFSMNT); 1020 mp->mnt_gjprovider = NULL; 1021 } 1022 #else 1023 printf("WARNING: %s: GJOURNAL flag on fs but no " 1024 "UFS_GJOURNAL support\n", mp->mnt_stat.f_mntonname); 1025 #endif 1026 } else { 1027 mp->mnt_gjprovider = NULL; 1028 } 1029 ump = malloc(sizeof *ump, M_UFSMNT, M_WAITOK | M_ZERO); 1030 ump->um_cp = cp; 1031 ump->um_bo = &devvp->v_bufobj; 1032 ump->um_fs = fs; 1033 if (fs->fs_magic == FS_UFS1_MAGIC) { 1034 ump->um_fstype = UFS1; 1035 ump->um_balloc = ffs_balloc_ufs1; 1036 } else { 1037 ump->um_fstype = UFS2; 1038 ump->um_balloc = ffs_balloc_ufs2; 1039 } 1040 ump->um_blkatoff = ffs_blkatoff; 1041 ump->um_truncate = ffs_truncate; 1042 ump->um_update = ffs_update; 1043 ump->um_valloc = ffs_valloc; 1044 ump->um_vfree = ffs_vfree; 1045 ump->um_ifree = ffs_ifree; 1046 ump->um_rdonly = ffs_rdonly; 1047 ump->um_snapgone = ffs_snapgone; 1048 if ((mp->mnt_flag & MNT_UNTRUSTED) != 0) 1049 ump->um_check_blkno = ffs_check_blkno; 1050 else 1051 ump->um_check_blkno = NULL; 1052 mtx_init(UFS_MTX(ump), "FFS", "FFS Lock", MTX_DEF); 1053 sx_init(&ump->um_checkpath_lock, "uchpth"); 1054 ffs_oldfscompat_read(fs, ump, fs->fs_sblockloc); 1055 fs->fs_ronly = ronly; 1056 fs->fs_active = NULL; 1057 mp->mnt_data = ump; 1058 mp->mnt_stat.f_fsid.val[0] = fs->fs_id[0]; 1059 mp->mnt_stat.f_fsid.val[1] = fs->fs_id[1]; 1060 nmp = NULL; 1061 if (fs->fs_id[0] == 0 || fs->fs_id[1] == 0 || 1062 (nmp = vfs_getvfs(&mp->mnt_stat.f_fsid))) { 1063 if (nmp) 1064 vfs_rel(nmp); 1065 vfs_getnewfsid(mp); 1066 } 1067 ump->um_maxsymlinklen = fs->fs_maxsymlinklen; 1068 MNT_ILOCK(mp); 1069 mp->mnt_flag |= MNT_LOCAL; 1070 MNT_IUNLOCK(mp); 1071 if ((fs->fs_flags & FS_MULTILABEL) != 0) { 1072 #ifdef MAC 1073 MNT_ILOCK(mp); 1074 mp->mnt_flag |= MNT_MULTILABEL; 1075 MNT_IUNLOCK(mp); 1076 #else 1077 printf("WARNING: %s: multilabel flag on fs but " 1078 "no MAC support\n", mp->mnt_stat.f_mntonname); 1079 #endif 1080 } 1081 if ((fs->fs_flags & FS_ACLS) != 0) { 1082 #ifdef UFS_ACL 1083 MNT_ILOCK(mp); 1084 1085 if (mp->mnt_flag & MNT_NFS4ACLS) 1086 printf("WARNING: %s: ACLs flag on fs conflicts with " 1087 "\"nfsv4acls\" mount option; option ignored\n", 1088 mp->mnt_stat.f_mntonname); 1089 mp->mnt_flag &= ~MNT_NFS4ACLS; 1090 mp->mnt_flag |= MNT_ACLS; 1091 1092 MNT_IUNLOCK(mp); 1093 #else 1094 printf("WARNING: %s: ACLs flag on fs but no ACLs support\n", 1095 mp->mnt_stat.f_mntonname); 1096 #endif 1097 } 1098 if ((fs->fs_flags & FS_NFS4ACLS) != 0) { 1099 #ifdef UFS_ACL 1100 MNT_ILOCK(mp); 1101 1102 if (mp->mnt_flag & MNT_ACLS) 1103 printf("WARNING: %s: NFSv4 ACLs flag on fs conflicts " 1104 "with \"acls\" mount option; option ignored\n", 1105 mp->mnt_stat.f_mntonname); 1106 mp->mnt_flag &= ~MNT_ACLS; 1107 mp->mnt_flag |= MNT_NFS4ACLS; 1108 1109 MNT_IUNLOCK(mp); 1110 #else 1111 printf("WARNING: %s: NFSv4 ACLs flag on fs but no " 1112 "ACLs support\n", mp->mnt_stat.f_mntonname); 1113 #endif 1114 } 1115 if ((fs->fs_flags & FS_TRIM) != 0) { 1116 len = sizeof(int); 1117 if (g_io_getattr("GEOM::candelete", cp, &len, 1118 &candelete) == 0) { 1119 if (candelete) 1120 ump->um_flags |= UM_CANDELETE; 1121 else 1122 printf("WARNING: %s: TRIM flag on fs but disk " 1123 "does not support TRIM\n", 1124 mp->mnt_stat.f_mntonname); 1125 } else { 1126 printf("WARNING: %s: TRIM flag on fs but disk does " 1127 "not confirm that it supports TRIM\n", 1128 mp->mnt_stat.f_mntonname); 1129 } 1130 if (((ump->um_flags) & UM_CANDELETE) != 0) { 1131 ump->um_trim_tq = taskqueue_create("trim", M_WAITOK, 1132 taskqueue_thread_enqueue, &ump->um_trim_tq); 1133 taskqueue_start_threads(&ump->um_trim_tq, 1, PVFS, 1134 "%s trim", mp->mnt_stat.f_mntonname); 1135 ump->um_trimhash = hashinit(MAXTRIMIO, M_TRIM, 1136 &ump->um_trimlisthashsize); 1137 } 1138 } 1139 1140 len = sizeof(int); 1141 if (g_io_getattr("GEOM::canspeedup", cp, &len, &canspeedup) == 0) { 1142 if (canspeedup) 1143 ump->um_flags |= UM_CANSPEEDUP; 1144 } 1145 1146 ump->um_mountp = mp; 1147 ump->um_dev = dev; 1148 ump->um_devvp = devvp; 1149 ump->um_odevvp = odevvp; 1150 ump->um_nindir = fs->fs_nindir; 1151 ump->um_bptrtodb = fs->fs_fsbtodb; 1152 ump->um_seqinc = fs->fs_frag; 1153 for (i = 0; i < MAXQUOTAS; i++) 1154 ump->um_quotas[i] = NULLVP; 1155 #ifdef UFS_EXTATTR 1156 ufs_extattr_uepm_init(&ump->um_extattr); 1157 #endif 1158 /* 1159 * Set FS local "last mounted on" information (NULL pad) 1160 */ 1161 bzero(fs->fs_fsmnt, MAXMNTLEN); 1162 strlcpy(fs->fs_fsmnt, mp->mnt_stat.f_mntonname, MAXMNTLEN); 1163 mp->mnt_stat.f_iosize = fs->fs_bsize; 1164 1165 if (mp->mnt_flag & MNT_ROOTFS) { 1166 /* 1167 * Root mount; update timestamp in mount structure. 1168 * this will be used by the common root mount code 1169 * to update the system clock. 1170 */ 1171 mp->mnt_time = fs->fs_time; 1172 } 1173 1174 if (ronly == 0) { 1175 fs->fs_mtime = time_second; 1176 if ((fs->fs_flags & FS_DOSOFTDEP) && 1177 (error = softdep_mount(devvp, mp, fs, cred)) != 0) { 1178 ffs_flushfiles(mp, FORCECLOSE, td); 1179 goto out; 1180 } 1181 if (fs->fs_snapinum[0] != 0) 1182 ffs_snapshot_mount(mp); 1183 fs->fs_fmod = 1; 1184 fs->fs_clean = 0; 1185 (void) ffs_sbupdate(ump, MNT_WAIT, 0); 1186 } 1187 /* 1188 * Initialize filesystem state information in mount struct. 1189 */ 1190 MNT_ILOCK(mp); 1191 mp->mnt_kern_flag |= MNTK_LOOKUP_SHARED | MNTK_EXTENDED_SHARED | 1192 MNTK_NO_IOPF | MNTK_UNMAPPED_BUFS | MNTK_USES_BCACHE; 1193 MNT_IUNLOCK(mp); 1194 #ifdef UFS_EXTATTR 1195 #ifdef UFS_EXTATTR_AUTOSTART 1196 /* 1197 * 1198 * Auto-starting does the following: 1199 * - check for /.attribute in the fs, and extattr_start if so 1200 * - for each file in .attribute, enable that file with 1201 * an attribute of the same name. 1202 * Not clear how to report errors -- probably eat them. 1203 * This would all happen while the filesystem was busy/not 1204 * available, so would effectively be "atomic". 1205 */ 1206 (void) ufs_extattr_autostart(mp, td); 1207 #endif /* !UFS_EXTATTR_AUTOSTART */ 1208 #endif /* !UFS_EXTATTR */ 1209 return (0); 1210 out: 1211 if (fs != NULL) { 1212 free(fs->fs_csp, M_UFSMNT); 1213 free(fs->fs_si, M_UFSMNT); 1214 free(fs, M_UFSMNT); 1215 } 1216 if (cp != NULL) { 1217 g_topology_lock(); 1218 g_vfs_close(cp); 1219 g_topology_unlock(); 1220 } 1221 if (ump != NULL) { 1222 mtx_destroy(UFS_MTX(ump)); 1223 sx_destroy(&ump->um_checkpath_lock); 1224 if (mp->mnt_gjprovider != NULL) { 1225 free(mp->mnt_gjprovider, M_UFSMNT); 1226 mp->mnt_gjprovider = NULL; 1227 } 1228 MPASS(ump->um_softdep == NULL); 1229 free(ump, M_UFSMNT); 1230 mp->mnt_data = NULL; 1231 } 1232 BO_LOCK(&odevvp->v_bufobj); 1233 odevvp->v_bufobj.bo_flag &= ~BO_NOBUFS; 1234 BO_UNLOCK(&odevvp->v_bufobj); 1235 atomic_store_rel_ptr((uintptr_t *)&dev->si_mountpt, 0); 1236 mntfs_freevp(devvp); 1237 dev_rel(dev); 1238 return (error); 1239 } 1240 1241 /* 1242 * A read function for use by filesystem-layer routines. 1243 */ 1244 static int 1245 ffs_use_bread(void *devfd, off_t loc, void **bufp, int size) 1246 { 1247 struct buf *bp; 1248 int error; 1249 1250 KASSERT(*bufp == NULL, ("ffs_use_bread: non-NULL *bufp %p\n", *bufp)); 1251 *bufp = malloc(size, M_UFSMNT, M_WAITOK); 1252 if ((error = bread((struct vnode *)devfd, btodb(loc), size, NOCRED, 1253 &bp)) != 0) 1254 return (error); 1255 bcopy(bp->b_data, *bufp, size); 1256 bp->b_flags |= B_INVAL | B_NOCACHE; 1257 brelse(bp); 1258 return (0); 1259 } 1260 1261 static int bigcgs = 0; 1262 SYSCTL_INT(_debug, OID_AUTO, bigcgs, CTLFLAG_RW, &bigcgs, 0, ""); 1263 1264 /* 1265 * Sanity checks for loading old filesystem superblocks. 1266 * See ffs_oldfscompat_write below for unwound actions. 1267 * 1268 * XXX - Parts get retired eventually. 1269 * Unfortunately new bits get added. 1270 */ 1271 static void 1272 ffs_oldfscompat_read(fs, ump, sblockloc) 1273 struct fs *fs; 1274 struct ufsmount *ump; 1275 ufs2_daddr_t sblockloc; 1276 { 1277 off_t maxfilesize; 1278 1279 /* 1280 * If not yet done, update fs_flags location and value of fs_sblockloc. 1281 */ 1282 if ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0) { 1283 fs->fs_flags = fs->fs_old_flags; 1284 fs->fs_old_flags |= FS_FLAGS_UPDATED; 1285 fs->fs_sblockloc = sblockloc; 1286 } 1287 /* 1288 * If not yet done, update UFS1 superblock with new wider fields. 1289 */ 1290 if (fs->fs_magic == FS_UFS1_MAGIC && fs->fs_maxbsize != fs->fs_bsize) { 1291 fs->fs_maxbsize = fs->fs_bsize; 1292 fs->fs_time = fs->fs_old_time; 1293 fs->fs_size = fs->fs_old_size; 1294 fs->fs_dsize = fs->fs_old_dsize; 1295 fs->fs_csaddr = fs->fs_old_csaddr; 1296 fs->fs_cstotal.cs_ndir = fs->fs_old_cstotal.cs_ndir; 1297 fs->fs_cstotal.cs_nbfree = fs->fs_old_cstotal.cs_nbfree; 1298 fs->fs_cstotal.cs_nifree = fs->fs_old_cstotal.cs_nifree; 1299 fs->fs_cstotal.cs_nffree = fs->fs_old_cstotal.cs_nffree; 1300 } 1301 if (fs->fs_magic == FS_UFS1_MAGIC && 1302 fs->fs_old_inodefmt < FS_44INODEFMT) { 1303 fs->fs_maxfilesize = ((uint64_t)1 << 31) - 1; 1304 fs->fs_qbmask = ~fs->fs_bmask; 1305 fs->fs_qfmask = ~fs->fs_fmask; 1306 } 1307 if (fs->fs_magic == FS_UFS1_MAGIC) { 1308 ump->um_savedmaxfilesize = fs->fs_maxfilesize; 1309 maxfilesize = (uint64_t)0x80000000 * fs->fs_bsize - 1; 1310 if (fs->fs_maxfilesize > maxfilesize) 1311 fs->fs_maxfilesize = maxfilesize; 1312 } 1313 /* Compatibility for old filesystems */ 1314 if (fs->fs_avgfilesize <= 0) 1315 fs->fs_avgfilesize = AVFILESIZ; 1316 if (fs->fs_avgfpdir <= 0) 1317 fs->fs_avgfpdir = AFPDIR; 1318 if (bigcgs) { 1319 fs->fs_save_cgsize = fs->fs_cgsize; 1320 fs->fs_cgsize = fs->fs_bsize; 1321 } 1322 } 1323 1324 /* 1325 * Unwinding superblock updates for old filesystems. 1326 * See ffs_oldfscompat_read above for details. 1327 * 1328 * XXX - Parts get retired eventually. 1329 * Unfortunately new bits get added. 1330 */ 1331 void 1332 ffs_oldfscompat_write(fs, ump) 1333 struct fs *fs; 1334 struct ufsmount *ump; 1335 { 1336 1337 /* 1338 * Copy back UFS2 updated fields that UFS1 inspects. 1339 */ 1340 if (fs->fs_magic == FS_UFS1_MAGIC) { 1341 fs->fs_old_time = fs->fs_time; 1342 fs->fs_old_cstotal.cs_ndir = fs->fs_cstotal.cs_ndir; 1343 fs->fs_old_cstotal.cs_nbfree = fs->fs_cstotal.cs_nbfree; 1344 fs->fs_old_cstotal.cs_nifree = fs->fs_cstotal.cs_nifree; 1345 fs->fs_old_cstotal.cs_nffree = fs->fs_cstotal.cs_nffree; 1346 fs->fs_maxfilesize = ump->um_savedmaxfilesize; 1347 } 1348 if (bigcgs) { 1349 fs->fs_cgsize = fs->fs_save_cgsize; 1350 fs->fs_save_cgsize = 0; 1351 } 1352 } 1353 1354 /* 1355 * unmount system call 1356 */ 1357 static int 1358 ffs_unmount(mp, mntflags) 1359 struct mount *mp; 1360 int mntflags; 1361 { 1362 struct thread *td; 1363 struct ufsmount *ump = VFSTOUFS(mp); 1364 struct fs *fs; 1365 int error, flags, susp; 1366 #ifdef UFS_EXTATTR 1367 int e_restart; 1368 #endif 1369 1370 flags = 0; 1371 td = curthread; 1372 fs = ump->um_fs; 1373 if (mntflags & MNT_FORCE) 1374 flags |= FORCECLOSE; 1375 susp = fs->fs_ronly == 0; 1376 #ifdef UFS_EXTATTR 1377 if ((error = ufs_extattr_stop(mp, td))) { 1378 if (error != EOPNOTSUPP) 1379 printf("WARNING: unmount %s: ufs_extattr_stop " 1380 "returned errno %d\n", mp->mnt_stat.f_mntonname, 1381 error); 1382 e_restart = 0; 1383 } else { 1384 ufs_extattr_uepm_destroy(&ump->um_extattr); 1385 e_restart = 1; 1386 } 1387 #endif 1388 if (susp) { 1389 error = vfs_write_suspend_umnt(mp); 1390 if (error != 0) 1391 goto fail1; 1392 } 1393 if (MOUNTEDSOFTDEP(mp)) 1394 error = softdep_flushfiles(mp, flags, td); 1395 else 1396 error = ffs_flushfiles(mp, flags, td); 1397 if (error != 0 && !ffs_fsfail_cleanup(ump, error)) 1398 goto fail; 1399 1400 UFS_LOCK(ump); 1401 if (fs->fs_pendingblocks != 0 || fs->fs_pendinginodes != 0) { 1402 printf("WARNING: unmount %s: pending error: blocks %jd " 1403 "files %d\n", fs->fs_fsmnt, (intmax_t)fs->fs_pendingblocks, 1404 fs->fs_pendinginodes); 1405 fs->fs_pendingblocks = 0; 1406 fs->fs_pendinginodes = 0; 1407 } 1408 UFS_UNLOCK(ump); 1409 if (MOUNTEDSOFTDEP(mp)) 1410 softdep_unmount(mp); 1411 MPASS(ump->um_softdep == NULL); 1412 if (fs->fs_ronly == 0) { 1413 fs->fs_clean = fs->fs_flags & (FS_UNCLEAN|FS_NEEDSFSCK) ? 0 : 1; 1414 error = ffs_sbupdate(ump, MNT_WAIT, 0); 1415 if (ffs_fsfail_cleanup(ump, error)) 1416 error = 0; 1417 if (error != 0 && !ffs_fsfail_cleanup(ump, error)) { 1418 fs->fs_clean = 0; 1419 goto fail; 1420 } 1421 } 1422 if (susp) 1423 vfs_write_resume(mp, VR_START_WRITE); 1424 if (ump->um_trim_tq != NULL) { 1425 while (ump->um_trim_inflight != 0) 1426 pause("ufsutr", hz); 1427 taskqueue_drain_all(ump->um_trim_tq); 1428 taskqueue_free(ump->um_trim_tq); 1429 free (ump->um_trimhash, M_TRIM); 1430 } 1431 g_topology_lock(); 1432 g_vfs_close(ump->um_cp); 1433 g_topology_unlock(); 1434 BO_LOCK(&ump->um_odevvp->v_bufobj); 1435 ump->um_odevvp->v_bufobj.bo_flag &= ~BO_NOBUFS; 1436 BO_UNLOCK(&ump->um_odevvp->v_bufobj); 1437 atomic_store_rel_ptr((uintptr_t *)&ump->um_dev->si_mountpt, 0); 1438 mntfs_freevp(ump->um_devvp); 1439 vrele(ump->um_odevvp); 1440 dev_rel(ump->um_dev); 1441 mtx_destroy(UFS_MTX(ump)); 1442 sx_destroy(&ump->um_checkpath_lock); 1443 if (mp->mnt_gjprovider != NULL) { 1444 free(mp->mnt_gjprovider, M_UFSMNT); 1445 mp->mnt_gjprovider = NULL; 1446 } 1447 free(fs->fs_csp, M_UFSMNT); 1448 free(fs->fs_si, M_UFSMNT); 1449 free(fs, M_UFSMNT); 1450 free(ump, M_UFSMNT); 1451 mp->mnt_data = NULL; 1452 MNT_ILOCK(mp); 1453 mp->mnt_flag &= ~MNT_LOCAL; 1454 MNT_IUNLOCK(mp); 1455 if (td->td_su == mp) { 1456 td->td_su = NULL; 1457 vfs_rel(mp); 1458 } 1459 return (error); 1460 1461 fail: 1462 if (susp) 1463 vfs_write_resume(mp, VR_START_WRITE); 1464 fail1: 1465 #ifdef UFS_EXTATTR 1466 if (e_restart) { 1467 ufs_extattr_uepm_init(&ump->um_extattr); 1468 #ifdef UFS_EXTATTR_AUTOSTART 1469 (void) ufs_extattr_autostart(mp, td); 1470 #endif 1471 } 1472 #endif 1473 1474 return (error); 1475 } 1476 1477 /* 1478 * Flush out all the files in a filesystem. 1479 */ 1480 int 1481 ffs_flushfiles(mp, flags, td) 1482 struct mount *mp; 1483 int flags; 1484 struct thread *td; 1485 { 1486 struct ufsmount *ump; 1487 int qerror, error; 1488 1489 ump = VFSTOUFS(mp); 1490 qerror = 0; 1491 #ifdef QUOTA 1492 if (mp->mnt_flag & MNT_QUOTA) { 1493 int i; 1494 error = vflush(mp, 0, SKIPSYSTEM|flags, td); 1495 if (error) 1496 return (error); 1497 for (i = 0; i < MAXQUOTAS; i++) { 1498 error = quotaoff(td, mp, i); 1499 if (error != 0) { 1500 if ((flags & EARLYFLUSH) == 0) 1501 return (error); 1502 else 1503 qerror = error; 1504 } 1505 } 1506 1507 /* 1508 * Here we fall through to vflush again to ensure that 1509 * we have gotten rid of all the system vnodes, unless 1510 * quotas must not be closed. 1511 */ 1512 } 1513 #endif 1514 ASSERT_VOP_LOCKED(ump->um_devvp, "ffs_flushfiles"); 1515 if (ump->um_devvp->v_vflag & VV_COPYONWRITE) { 1516 if ((error = vflush(mp, 0, SKIPSYSTEM | flags, td)) != 0) 1517 return (error); 1518 ffs_snapshot_unmount(mp); 1519 flags |= FORCECLOSE; 1520 /* 1521 * Here we fall through to vflush again to ensure 1522 * that we have gotten rid of all the system vnodes. 1523 */ 1524 } 1525 1526 /* 1527 * Do not close system files if quotas were not closed, to be 1528 * able to sync the remaining dquots. The freeblks softupdate 1529 * workitems might hold a reference on a dquot, preventing 1530 * quotaoff() from completing. Next round of 1531 * softdep_flushworklist() iteration should process the 1532 * blockers, allowing the next run of quotaoff() to finally 1533 * flush held dquots. 1534 * 1535 * Otherwise, flush all the files. 1536 */ 1537 if (qerror == 0 && (error = vflush(mp, 0, flags, td)) != 0) 1538 return (error); 1539 1540 /* 1541 * Flush filesystem metadata. 1542 */ 1543 vn_lock(ump->um_devvp, LK_EXCLUSIVE | LK_RETRY); 1544 error = VOP_FSYNC(ump->um_devvp, MNT_WAIT, td); 1545 VOP_UNLOCK(ump->um_devvp); 1546 return (error); 1547 } 1548 1549 /* 1550 * Get filesystem statistics. 1551 */ 1552 static int 1553 ffs_statfs(mp, sbp) 1554 struct mount *mp; 1555 struct statfs *sbp; 1556 { 1557 struct ufsmount *ump; 1558 struct fs *fs; 1559 1560 ump = VFSTOUFS(mp); 1561 fs = ump->um_fs; 1562 if (fs->fs_magic != FS_UFS1_MAGIC && fs->fs_magic != FS_UFS2_MAGIC) 1563 panic("ffs_statfs"); 1564 sbp->f_version = STATFS_VERSION; 1565 sbp->f_bsize = fs->fs_fsize; 1566 sbp->f_iosize = fs->fs_bsize; 1567 sbp->f_blocks = fs->fs_dsize; 1568 UFS_LOCK(ump); 1569 sbp->f_bfree = fs->fs_cstotal.cs_nbfree * fs->fs_frag + 1570 fs->fs_cstotal.cs_nffree + dbtofsb(fs, fs->fs_pendingblocks); 1571 sbp->f_bavail = freespace(fs, fs->fs_minfree) + 1572 dbtofsb(fs, fs->fs_pendingblocks); 1573 sbp->f_files = fs->fs_ncg * fs->fs_ipg - UFS_ROOTINO; 1574 sbp->f_ffree = fs->fs_cstotal.cs_nifree + fs->fs_pendinginodes; 1575 UFS_UNLOCK(ump); 1576 sbp->f_namemax = UFS_MAXNAMLEN; 1577 return (0); 1578 } 1579 1580 static bool 1581 sync_doupdate(struct inode *ip) 1582 { 1583 1584 return ((ip->i_flag & (IN_ACCESS | IN_CHANGE | IN_MODIFIED | 1585 IN_UPDATE)) != 0); 1586 } 1587 1588 static int 1589 ffs_sync_lazy_filter(struct vnode *vp, void *arg __unused) 1590 { 1591 struct inode *ip; 1592 1593 /* 1594 * Flags are safe to access because ->v_data invalidation 1595 * is held off by listmtx. 1596 */ 1597 if (vp->v_type == VNON) 1598 return (false); 1599 ip = VTOI(vp); 1600 if (!sync_doupdate(ip) && (vp->v_iflag & VI_OWEINACT) == 0) 1601 return (false); 1602 return (true); 1603 } 1604 1605 /* 1606 * For a lazy sync, we only care about access times, quotas and the 1607 * superblock. Other filesystem changes are already converted to 1608 * cylinder group blocks or inode blocks updates and are written to 1609 * disk by syncer. 1610 */ 1611 static int 1612 ffs_sync_lazy(mp) 1613 struct mount *mp; 1614 { 1615 struct vnode *mvp, *vp; 1616 struct inode *ip; 1617 int allerror, error; 1618 1619 allerror = 0; 1620 if ((mp->mnt_flag & MNT_NOATIME) != 0) { 1621 #ifdef QUOTA 1622 qsync(mp); 1623 #endif 1624 goto sbupdate; 1625 } 1626 MNT_VNODE_FOREACH_LAZY(vp, mp, mvp, ffs_sync_lazy_filter, NULL) { 1627 if (vp->v_type == VNON) { 1628 VI_UNLOCK(vp); 1629 continue; 1630 } 1631 ip = VTOI(vp); 1632 1633 /* 1634 * The IN_ACCESS flag is converted to IN_MODIFIED by 1635 * ufs_close() and ufs_getattr() by the calls to 1636 * ufs_itimes_locked(), without subsequent UFS_UPDATE(). 1637 * Test also all the other timestamp flags too, to pick up 1638 * any other cases that could be missed. 1639 */ 1640 if (!sync_doupdate(ip) && (vp->v_iflag & VI_OWEINACT) == 0) { 1641 VI_UNLOCK(vp); 1642 continue; 1643 } 1644 if ((error = vget(vp, LK_EXCLUSIVE | LK_NOWAIT | LK_INTERLOCK)) != 0) 1645 continue; 1646 #ifdef QUOTA 1647 qsyncvp(vp); 1648 #endif 1649 if (sync_doupdate(ip)) 1650 error = ffs_update(vp, 0); 1651 if (error != 0) 1652 allerror = error; 1653 vput(vp); 1654 } 1655 sbupdate: 1656 if (VFSTOUFS(mp)->um_fs->fs_fmod != 0 && 1657 (error = ffs_sbupdate(VFSTOUFS(mp), MNT_LAZY, 0)) != 0) 1658 allerror = error; 1659 return (allerror); 1660 } 1661 1662 /* 1663 * Go through the disk queues to initiate sandbagged IO; 1664 * go through the inodes to write those that have been modified; 1665 * initiate the writing of the super block if it has been modified. 1666 * 1667 * Note: we are always called with the filesystem marked busy using 1668 * vfs_busy(). 1669 */ 1670 static int 1671 ffs_sync(mp, waitfor) 1672 struct mount *mp; 1673 int waitfor; 1674 { 1675 struct vnode *mvp, *vp, *devvp; 1676 struct thread *td; 1677 struct inode *ip; 1678 struct ufsmount *ump = VFSTOUFS(mp); 1679 struct fs *fs; 1680 int error, count, lockreq, allerror = 0; 1681 int suspend; 1682 int suspended; 1683 int secondary_writes; 1684 int secondary_accwrites; 1685 int softdep_deps; 1686 int softdep_accdeps; 1687 struct bufobj *bo; 1688 1689 suspend = 0; 1690 suspended = 0; 1691 td = curthread; 1692 fs = ump->um_fs; 1693 if (fs->fs_fmod != 0 && fs->fs_ronly != 0) 1694 panic("%s: ffs_sync: modification on read-only filesystem", 1695 fs->fs_fsmnt); 1696 if (waitfor == MNT_LAZY) { 1697 if (!rebooting) 1698 return (ffs_sync_lazy(mp)); 1699 waitfor = MNT_NOWAIT; 1700 } 1701 1702 /* 1703 * Write back each (modified) inode. 1704 */ 1705 lockreq = LK_EXCLUSIVE | LK_NOWAIT; 1706 if (waitfor == MNT_SUSPEND) { 1707 suspend = 1; 1708 waitfor = MNT_WAIT; 1709 } 1710 if (waitfor == MNT_WAIT) 1711 lockreq = LK_EXCLUSIVE; 1712 lockreq |= LK_INTERLOCK | LK_SLEEPFAIL; 1713 loop: 1714 /* Grab snapshot of secondary write counts */ 1715 MNT_ILOCK(mp); 1716 secondary_writes = mp->mnt_secondary_writes; 1717 secondary_accwrites = mp->mnt_secondary_accwrites; 1718 MNT_IUNLOCK(mp); 1719 1720 /* Grab snapshot of softdep dependency counts */ 1721 softdep_get_depcounts(mp, &softdep_deps, &softdep_accdeps); 1722 1723 MNT_VNODE_FOREACH_ALL(vp, mp, mvp) { 1724 /* 1725 * Depend on the vnode interlock to keep things stable enough 1726 * for a quick test. Since there might be hundreds of 1727 * thousands of vnodes, we cannot afford even a subroutine 1728 * call unless there's a good chance that we have work to do. 1729 */ 1730 if (vp->v_type == VNON) { 1731 VI_UNLOCK(vp); 1732 continue; 1733 } 1734 ip = VTOI(vp); 1735 if ((ip->i_flag & 1736 (IN_ACCESS | IN_CHANGE | IN_MODIFIED | IN_UPDATE)) == 0 && 1737 vp->v_bufobj.bo_dirty.bv_cnt == 0) { 1738 VI_UNLOCK(vp); 1739 continue; 1740 } 1741 if ((error = vget(vp, lockreq)) != 0) { 1742 if (error == ENOENT || error == ENOLCK) { 1743 MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp); 1744 goto loop; 1745 } 1746 continue; 1747 } 1748 #ifdef QUOTA 1749 qsyncvp(vp); 1750 #endif 1751 for (;;) { 1752 error = ffs_syncvnode(vp, waitfor, 0); 1753 if (error == ERELOOKUP) 1754 continue; 1755 if (error != 0) 1756 allerror = error; 1757 break; 1758 } 1759 vput(vp); 1760 } 1761 /* 1762 * Force stale filesystem control information to be flushed. 1763 */ 1764 if (waitfor == MNT_WAIT || rebooting) { 1765 if ((error = softdep_flushworklist(ump->um_mountp, &count, td))) 1766 allerror = error; 1767 if (ffs_fsfail_cleanup(ump, allerror)) 1768 allerror = 0; 1769 /* Flushed work items may create new vnodes to clean */ 1770 if (allerror == 0 && count) 1771 goto loop; 1772 } 1773 1774 devvp = ump->um_devvp; 1775 bo = &devvp->v_bufobj; 1776 BO_LOCK(bo); 1777 if (bo->bo_numoutput > 0 || bo->bo_dirty.bv_cnt > 0) { 1778 BO_UNLOCK(bo); 1779 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY); 1780 error = VOP_FSYNC(devvp, waitfor, td); 1781 VOP_UNLOCK(devvp); 1782 if (MOUNTEDSOFTDEP(mp) && (error == 0 || error == EAGAIN)) 1783 error = ffs_sbupdate(ump, waitfor, 0); 1784 if (error != 0) 1785 allerror = error; 1786 if (ffs_fsfail_cleanup(ump, allerror)) 1787 allerror = 0; 1788 if (allerror == 0 && waitfor == MNT_WAIT) 1789 goto loop; 1790 } else if (suspend != 0) { 1791 if (softdep_check_suspend(mp, 1792 devvp, 1793 softdep_deps, 1794 softdep_accdeps, 1795 secondary_writes, 1796 secondary_accwrites) != 0) { 1797 MNT_IUNLOCK(mp); 1798 goto loop; /* More work needed */ 1799 } 1800 mtx_assert(MNT_MTX(mp), MA_OWNED); 1801 mp->mnt_kern_flag |= MNTK_SUSPEND2 | MNTK_SUSPENDED; 1802 MNT_IUNLOCK(mp); 1803 suspended = 1; 1804 } else 1805 BO_UNLOCK(bo); 1806 /* 1807 * Write back modified superblock. 1808 */ 1809 if (fs->fs_fmod != 0 && 1810 (error = ffs_sbupdate(ump, waitfor, suspended)) != 0) 1811 allerror = error; 1812 if (ffs_fsfail_cleanup(ump, allerror)) 1813 allerror = 0; 1814 return (allerror); 1815 } 1816 1817 int 1818 ffs_vget(mp, ino, flags, vpp) 1819 struct mount *mp; 1820 ino_t ino; 1821 int flags; 1822 struct vnode **vpp; 1823 { 1824 return (ffs_vgetf(mp, ino, flags, vpp, 0)); 1825 } 1826 1827 int 1828 ffs_vgetf(mp, ino, flags, vpp, ffs_flags) 1829 struct mount *mp; 1830 ino_t ino; 1831 int flags; 1832 struct vnode **vpp; 1833 int ffs_flags; 1834 { 1835 struct fs *fs; 1836 struct inode *ip; 1837 struct ufsmount *ump; 1838 struct buf *bp; 1839 struct vnode *vp; 1840 daddr_t dbn; 1841 int error; 1842 1843 MPASS((ffs_flags & (FFSV_REPLACE | FFSV_REPLACE_DOOMED)) == 0 || 1844 (flags & LK_EXCLUSIVE) != 0); 1845 1846 error = vfs_hash_get(mp, ino, flags, curthread, vpp, NULL, NULL); 1847 if (error != 0) 1848 return (error); 1849 if (*vpp != NULL) { 1850 if ((ffs_flags & FFSV_REPLACE) == 0 || 1851 ((ffs_flags & FFSV_REPLACE_DOOMED) == 0 || 1852 !VN_IS_DOOMED(*vpp))) 1853 return (0); 1854 vgone(*vpp); 1855 vput(*vpp); 1856 } 1857 1858 /* 1859 * We must promote to an exclusive lock for vnode creation. This 1860 * can happen if lookup is passed LOCKSHARED. 1861 */ 1862 if ((flags & LK_TYPE_MASK) == LK_SHARED) { 1863 flags &= ~LK_TYPE_MASK; 1864 flags |= LK_EXCLUSIVE; 1865 } 1866 1867 /* 1868 * We do not lock vnode creation as it is believed to be too 1869 * expensive for such rare case as simultaneous creation of vnode 1870 * for same ino by different processes. We just allow them to race 1871 * and check later to decide who wins. Let the race begin! 1872 */ 1873 1874 ump = VFSTOUFS(mp); 1875 fs = ump->um_fs; 1876 ip = uma_zalloc_smr(uma_inode, M_WAITOK | M_ZERO); 1877 1878 /* Allocate a new vnode/inode. */ 1879 error = getnewvnode("ufs", mp, fs->fs_magic == FS_UFS1_MAGIC ? 1880 &ffs_vnodeops1 : &ffs_vnodeops2, &vp); 1881 if (error) { 1882 *vpp = NULL; 1883 uma_zfree_smr(uma_inode, ip); 1884 return (error); 1885 } 1886 /* 1887 * FFS supports recursive locking. 1888 */ 1889 lockmgr(vp->v_vnlock, LK_EXCLUSIVE, NULL); 1890 VN_LOCK_AREC(vp); 1891 vp->v_data = ip; 1892 vp->v_bufobj.bo_bsize = fs->fs_bsize; 1893 ip->i_vnode = vp; 1894 ip->i_ump = ump; 1895 ip->i_number = ino; 1896 ip->i_ea_refs = 0; 1897 ip->i_nextclustercg = -1; 1898 ip->i_flag = fs->fs_magic == FS_UFS1_MAGIC ? 0 : IN_UFS2; 1899 ip->i_mode = 0; /* ensure error cases below throw away vnode */ 1900 cluster_init_vn(&ip->i_clusterw); 1901 #ifdef DIAGNOSTIC 1902 ufs_init_trackers(ip); 1903 #endif 1904 #ifdef QUOTA 1905 { 1906 int i; 1907 for (i = 0; i < MAXQUOTAS; i++) 1908 ip->i_dquot[i] = NODQUOT; 1909 } 1910 #endif 1911 1912 if (ffs_flags & FFSV_FORCEINSMQ) 1913 vp->v_vflag |= VV_FORCEINSMQ; 1914 error = insmntque(vp, mp); 1915 if (error != 0) { 1916 uma_zfree_smr(uma_inode, ip); 1917 *vpp = NULL; 1918 return (error); 1919 } 1920 vp->v_vflag &= ~VV_FORCEINSMQ; 1921 error = vfs_hash_insert(vp, ino, flags, curthread, vpp, NULL, NULL); 1922 if (error != 0) 1923 return (error); 1924 if (*vpp != NULL) { 1925 /* 1926 * Calls from ffs_valloc() (i.e. FFSV_REPLACE set) 1927 * operate on empty inode, which must not be found by 1928 * other threads until fully filled. Vnode for empty 1929 * inode must be not re-inserted on the hash by other 1930 * thread, after removal by us at the beginning. 1931 */ 1932 MPASS((ffs_flags & FFSV_REPLACE) == 0); 1933 return (0); 1934 } 1935 1936 /* Read in the disk contents for the inode, copy into the inode. */ 1937 dbn = fsbtodb(fs, ino_to_fsba(fs, ino)); 1938 error = ffs_breadz(ump, ump->um_devvp, dbn, dbn, (int)fs->fs_bsize, 1939 NULL, NULL, 0, NOCRED, 0, NULL, &bp); 1940 if (error != 0) { 1941 /* 1942 * The inode does not contain anything useful, so it would 1943 * be misleading to leave it on its hash chain. With mode 1944 * still zero, it will be unlinked and returned to the free 1945 * list by vput(). 1946 */ 1947 vgone(vp); 1948 vput(vp); 1949 *vpp = NULL; 1950 return (error); 1951 } 1952 if (I_IS_UFS1(ip)) 1953 ip->i_din1 = uma_zalloc(uma_ufs1, M_WAITOK); 1954 else 1955 ip->i_din2 = uma_zalloc(uma_ufs2, M_WAITOK); 1956 if ((error = ffs_load_inode(bp, ip, fs, ino)) != 0) { 1957 bqrelse(bp); 1958 vgone(vp); 1959 vput(vp); 1960 *vpp = NULL; 1961 return (error); 1962 } 1963 if (DOINGSOFTDEP(vp) && (!fs->fs_ronly || 1964 (ffs_flags & FFSV_FORCEINODEDEP) != 0)) 1965 softdep_load_inodeblock(ip); 1966 else 1967 ip->i_effnlink = ip->i_nlink; 1968 bqrelse(bp); 1969 1970 /* 1971 * Initialize the vnode from the inode, check for aliases. 1972 * Note that the underlying vnode may have changed. 1973 */ 1974 error = ufs_vinit(mp, I_IS_UFS1(ip) ? &ffs_fifoops1 : &ffs_fifoops2, 1975 &vp); 1976 if (error) { 1977 vgone(vp); 1978 vput(vp); 1979 *vpp = NULL; 1980 return (error); 1981 } 1982 1983 /* 1984 * Finish inode initialization. 1985 */ 1986 if (vp->v_type != VFIFO) { 1987 /* FFS supports shared locking for all files except fifos. */ 1988 VN_LOCK_ASHARE(vp); 1989 } 1990 1991 /* 1992 * Set up a generation number for this inode if it does not 1993 * already have one. This should only happen on old filesystems. 1994 */ 1995 if (ip->i_gen == 0) { 1996 while (ip->i_gen == 0) 1997 ip->i_gen = arc4random(); 1998 if ((vp->v_mount->mnt_flag & MNT_RDONLY) == 0) { 1999 UFS_INODE_SET_FLAG(ip, IN_MODIFIED); 2000 DIP_SET(ip, i_gen, ip->i_gen); 2001 } 2002 } 2003 #ifdef MAC 2004 if ((mp->mnt_flag & MNT_MULTILABEL) && ip->i_mode) { 2005 /* 2006 * If this vnode is already allocated, and we're running 2007 * multi-label, attempt to perform a label association 2008 * from the extended attributes on the inode. 2009 */ 2010 error = mac_vnode_associate_extattr(mp, vp); 2011 if (error) { 2012 /* ufs_inactive will release ip->i_devvp ref. */ 2013 vgone(vp); 2014 vput(vp); 2015 *vpp = NULL; 2016 return (error); 2017 } 2018 } 2019 #endif 2020 2021 *vpp = vp; 2022 return (0); 2023 } 2024 2025 /* 2026 * File handle to vnode 2027 * 2028 * Have to be really careful about stale file handles: 2029 * - check that the inode number is valid 2030 * - for UFS2 check that the inode number is initialized 2031 * - call ffs_vget() to get the locked inode 2032 * - check for an unallocated inode (i_mode == 0) 2033 * - check that the given client host has export rights and return 2034 * those rights via. exflagsp and credanonp 2035 */ 2036 static int 2037 ffs_fhtovp(mp, fhp, flags, vpp) 2038 struct mount *mp; 2039 struct fid *fhp; 2040 int flags; 2041 struct vnode **vpp; 2042 { 2043 struct ufid *ufhp; 2044 2045 ufhp = (struct ufid *)fhp; 2046 return (ffs_inotovp(mp, ufhp->ufid_ino, ufhp->ufid_gen, flags, 2047 vpp, 0)); 2048 } 2049 2050 int 2051 ffs_inotovp(mp, ino, gen, lflags, vpp, ffs_flags) 2052 struct mount *mp; 2053 ino_t ino; 2054 u_int64_t gen; 2055 int lflags; 2056 struct vnode **vpp; 2057 int ffs_flags; 2058 { 2059 struct ufsmount *ump; 2060 struct vnode *nvp; 2061 struct inode *ip; 2062 struct fs *fs; 2063 struct cg *cgp; 2064 struct buf *bp; 2065 u_int cg; 2066 int error; 2067 2068 ump = VFSTOUFS(mp); 2069 fs = ump->um_fs; 2070 *vpp = NULL; 2071 2072 if (ino < UFS_ROOTINO || ino >= fs->fs_ncg * fs->fs_ipg) 2073 return (ESTALE); 2074 2075 /* 2076 * Need to check if inode is initialized because UFS2 does lazy 2077 * initialization and nfs_fhtovp can offer arbitrary inode numbers. 2078 */ 2079 if (fs->fs_magic == FS_UFS2_MAGIC) { 2080 cg = ino_to_cg(fs, ino); 2081 error = ffs_getcg(fs, ump->um_devvp, cg, 0, &bp, &cgp); 2082 if (error != 0) 2083 return (error); 2084 if (ino >= cg * fs->fs_ipg + cgp->cg_initediblk) { 2085 brelse(bp); 2086 return (ESTALE); 2087 } 2088 brelse(bp); 2089 } 2090 2091 error = ffs_vgetf(mp, ino, lflags, &nvp, ffs_flags); 2092 if (error != 0) 2093 return (error); 2094 2095 ip = VTOI(nvp); 2096 if (ip->i_mode == 0 || ip->i_gen != gen || ip->i_effnlink <= 0) { 2097 if (ip->i_mode == 0) 2098 vgone(nvp); 2099 vput(nvp); 2100 return (ESTALE); 2101 } 2102 2103 vnode_create_vobject(nvp, DIP(ip, i_size), curthread); 2104 *vpp = nvp; 2105 return (0); 2106 } 2107 2108 /* 2109 * Initialize the filesystem. 2110 */ 2111 static int 2112 ffs_init(vfsp) 2113 struct vfsconf *vfsp; 2114 { 2115 2116 ffs_susp_initialize(); 2117 softdep_initialize(); 2118 return (ufs_init(vfsp)); 2119 } 2120 2121 /* 2122 * Undo the work of ffs_init(). 2123 */ 2124 static int 2125 ffs_uninit(vfsp) 2126 struct vfsconf *vfsp; 2127 { 2128 int ret; 2129 2130 ret = ufs_uninit(vfsp); 2131 softdep_uninitialize(); 2132 ffs_susp_uninitialize(); 2133 taskqueue_drain_all(taskqueue_thread); 2134 return (ret); 2135 } 2136 2137 /* 2138 * Structure used to pass information from ffs_sbupdate to its 2139 * helper routine ffs_use_bwrite. 2140 */ 2141 struct devfd { 2142 struct ufsmount *ump; 2143 struct buf *sbbp; 2144 int waitfor; 2145 int suspended; 2146 int error; 2147 }; 2148 2149 /* 2150 * Write a superblock and associated information back to disk. 2151 */ 2152 int 2153 ffs_sbupdate(ump, waitfor, suspended) 2154 struct ufsmount *ump; 2155 int waitfor; 2156 int suspended; 2157 { 2158 struct fs *fs; 2159 struct buf *sbbp; 2160 struct devfd devfd; 2161 2162 fs = ump->um_fs; 2163 if (fs->fs_ronly == 1 && 2164 (ump->um_mountp->mnt_flag & (MNT_RDONLY | MNT_UPDATE)) != 2165 (MNT_RDONLY | MNT_UPDATE)) 2166 panic("ffs_sbupdate: write read-only filesystem"); 2167 /* 2168 * We use the superblock's buf to serialize calls to ffs_sbupdate(). 2169 */ 2170 sbbp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc), 2171 (int)fs->fs_sbsize, 0, 0, 0); 2172 /* 2173 * Initialize info needed for write function. 2174 */ 2175 devfd.ump = ump; 2176 devfd.sbbp = sbbp; 2177 devfd.waitfor = waitfor; 2178 devfd.suspended = suspended; 2179 devfd.error = 0; 2180 return (ffs_sbput(&devfd, fs, fs->fs_sblockloc, ffs_use_bwrite)); 2181 } 2182 2183 /* 2184 * Write function for use by filesystem-layer routines. 2185 */ 2186 static int 2187 ffs_use_bwrite(void *devfd, off_t loc, void *buf, int size) 2188 { 2189 struct devfd *devfdp; 2190 struct ufsmount *ump; 2191 struct buf *bp; 2192 struct fs *fs; 2193 int error; 2194 2195 devfdp = devfd; 2196 ump = devfdp->ump; 2197 fs = ump->um_fs; 2198 /* 2199 * Writing the superblock summary information. 2200 */ 2201 if (loc != fs->fs_sblockloc) { 2202 bp = getblk(ump->um_devvp, btodb(loc), size, 0, 0, 0); 2203 bcopy(buf, bp->b_data, (u_int)size); 2204 if (devfdp->suspended) 2205 bp->b_flags |= B_VALIDSUSPWRT; 2206 if (devfdp->waitfor != MNT_WAIT) 2207 bawrite(bp); 2208 else if ((error = bwrite(bp)) != 0) 2209 devfdp->error = error; 2210 return (0); 2211 } 2212 /* 2213 * Writing the superblock itself. We need to do special checks for it. 2214 */ 2215 bp = devfdp->sbbp; 2216 if (ffs_fsfail_cleanup(ump, devfdp->error)) 2217 devfdp->error = 0; 2218 if (devfdp->error != 0) { 2219 brelse(bp); 2220 return (devfdp->error); 2221 } 2222 if (fs->fs_magic == FS_UFS1_MAGIC && fs->fs_sblockloc != SBLOCK_UFS1 && 2223 (fs->fs_old_flags & FS_FLAGS_UPDATED) == 0) { 2224 printf("WARNING: %s: correcting fs_sblockloc from %jd to %d\n", 2225 fs->fs_fsmnt, fs->fs_sblockloc, SBLOCK_UFS1); 2226 fs->fs_sblockloc = SBLOCK_UFS1; 2227 } 2228 if (fs->fs_magic == FS_UFS2_MAGIC && fs->fs_sblockloc != SBLOCK_UFS2 && 2229 (fs->fs_old_flags & FS_FLAGS_UPDATED) == 0) { 2230 printf("WARNING: %s: correcting fs_sblockloc from %jd to %d\n", 2231 fs->fs_fsmnt, fs->fs_sblockloc, SBLOCK_UFS2); 2232 fs->fs_sblockloc = SBLOCK_UFS2; 2233 } 2234 if (MOUNTEDSOFTDEP(ump->um_mountp)) 2235 softdep_setup_sbupdate(ump, (struct fs *)bp->b_data, bp); 2236 bcopy((caddr_t)fs, bp->b_data, (u_int)fs->fs_sbsize); 2237 fs = (struct fs *)bp->b_data; 2238 ffs_oldfscompat_write(fs, ump); 2239 fs->fs_si = NULL; 2240 /* Recalculate the superblock hash */ 2241 fs->fs_ckhash = ffs_calc_sbhash(fs); 2242 if (devfdp->suspended) 2243 bp->b_flags |= B_VALIDSUSPWRT; 2244 if (devfdp->waitfor != MNT_WAIT) 2245 bawrite(bp); 2246 else if ((error = bwrite(bp)) != 0) 2247 devfdp->error = error; 2248 return (devfdp->error); 2249 } 2250 2251 static int 2252 ffs_extattrctl(struct mount *mp, int cmd, struct vnode *filename_vp, 2253 int attrnamespace, const char *attrname) 2254 { 2255 2256 #ifdef UFS_EXTATTR 2257 return (ufs_extattrctl(mp, cmd, filename_vp, attrnamespace, 2258 attrname)); 2259 #else 2260 return (vfs_stdextattrctl(mp, cmd, filename_vp, attrnamespace, 2261 attrname)); 2262 #endif 2263 } 2264 2265 static void 2266 ffs_ifree(struct ufsmount *ump, struct inode *ip) 2267 { 2268 2269 if (ump->um_fstype == UFS1 && ip->i_din1 != NULL) 2270 uma_zfree(uma_ufs1, ip->i_din1); 2271 else if (ip->i_din2 != NULL) 2272 uma_zfree(uma_ufs2, ip->i_din2); 2273 uma_zfree_smr(uma_inode, ip); 2274 } 2275 2276 static int dobkgrdwrite = 1; 2277 SYSCTL_INT(_debug, OID_AUTO, dobkgrdwrite, CTLFLAG_RW, &dobkgrdwrite, 0, 2278 "Do background writes (honoring the BV_BKGRDWRITE flag)?"); 2279 2280 /* 2281 * Complete a background write started from bwrite. 2282 */ 2283 static void 2284 ffs_backgroundwritedone(struct buf *bp) 2285 { 2286 struct bufobj *bufobj; 2287 struct buf *origbp; 2288 2289 #ifdef SOFTUPDATES 2290 if (!LIST_EMPTY(&bp->b_dep) && (bp->b_ioflags & BIO_ERROR) != 0) 2291 softdep_handle_error(bp); 2292 #endif 2293 2294 /* 2295 * Find the original buffer that we are writing. 2296 */ 2297 bufobj = bp->b_bufobj; 2298 BO_LOCK(bufobj); 2299 if ((origbp = gbincore(bp->b_bufobj, bp->b_lblkno)) == NULL) 2300 panic("backgroundwritedone: lost buffer"); 2301 2302 /* 2303 * We should mark the cylinder group buffer origbp as 2304 * dirty, to not lose the failed write. 2305 */ 2306 if ((bp->b_ioflags & BIO_ERROR) != 0) 2307 origbp->b_vflags |= BV_BKGRDERR; 2308 BO_UNLOCK(bufobj); 2309 /* 2310 * Process dependencies then return any unfinished ones. 2311 */ 2312 if (!LIST_EMPTY(&bp->b_dep) && (bp->b_ioflags & BIO_ERROR) == 0) 2313 buf_complete(bp); 2314 #ifdef SOFTUPDATES 2315 if (!LIST_EMPTY(&bp->b_dep)) 2316 softdep_move_dependencies(bp, origbp); 2317 #endif 2318 /* 2319 * This buffer is marked B_NOCACHE so when it is released 2320 * by biodone it will be tossed. Clear B_IOSTARTED in case of error. 2321 */ 2322 bp->b_flags |= B_NOCACHE; 2323 bp->b_flags &= ~(B_CACHE | B_IOSTARTED); 2324 pbrelvp(bp); 2325 2326 /* 2327 * Prevent brelse() from trying to keep and re-dirtying bp on 2328 * errors. It causes b_bufobj dereference in 2329 * bdirty()/reassignbuf(), and b_bufobj was cleared in 2330 * pbrelvp() above. 2331 */ 2332 if ((bp->b_ioflags & BIO_ERROR) != 0) 2333 bp->b_flags |= B_INVAL; 2334 bufdone(bp); 2335 BO_LOCK(bufobj); 2336 /* 2337 * Clear the BV_BKGRDINPROG flag in the original buffer 2338 * and awaken it if it is waiting for the write to complete. 2339 * If BV_BKGRDINPROG is not set in the original buffer it must 2340 * have been released and re-instantiated - which is not legal. 2341 */ 2342 KASSERT((origbp->b_vflags & BV_BKGRDINPROG), 2343 ("backgroundwritedone: lost buffer2")); 2344 origbp->b_vflags &= ~BV_BKGRDINPROG; 2345 if (origbp->b_vflags & BV_BKGRDWAIT) { 2346 origbp->b_vflags &= ~BV_BKGRDWAIT; 2347 wakeup(&origbp->b_xflags); 2348 } 2349 BO_UNLOCK(bufobj); 2350 } 2351 2352 /* 2353 * Write, release buffer on completion. (Done by iodone 2354 * if async). Do not bother writing anything if the buffer 2355 * is invalid. 2356 * 2357 * Note that we set B_CACHE here, indicating that buffer is 2358 * fully valid and thus cacheable. This is true even of NFS 2359 * now so we set it generally. This could be set either here 2360 * or in biodone() since the I/O is synchronous. We put it 2361 * here. 2362 */ 2363 static int 2364 ffs_bufwrite(struct buf *bp) 2365 { 2366 struct buf *newbp; 2367 struct cg *cgp; 2368 2369 CTR3(KTR_BUF, "bufwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags); 2370 if (bp->b_flags & B_INVAL) { 2371 brelse(bp); 2372 return (0); 2373 } 2374 2375 if (!BUF_ISLOCKED(bp)) 2376 panic("bufwrite: buffer is not busy???"); 2377 /* 2378 * If a background write is already in progress, delay 2379 * writing this block if it is asynchronous. Otherwise 2380 * wait for the background write to complete. 2381 */ 2382 BO_LOCK(bp->b_bufobj); 2383 if (bp->b_vflags & BV_BKGRDINPROG) { 2384 if (bp->b_flags & B_ASYNC) { 2385 BO_UNLOCK(bp->b_bufobj); 2386 bdwrite(bp); 2387 return (0); 2388 } 2389 bp->b_vflags |= BV_BKGRDWAIT; 2390 msleep(&bp->b_xflags, BO_LOCKPTR(bp->b_bufobj), PRIBIO, 2391 "bwrbg", 0); 2392 if (bp->b_vflags & BV_BKGRDINPROG) 2393 panic("bufwrite: still writing"); 2394 } 2395 bp->b_vflags &= ~BV_BKGRDERR; 2396 BO_UNLOCK(bp->b_bufobj); 2397 2398 /* 2399 * If this buffer is marked for background writing and we 2400 * do not have to wait for it, make a copy and write the 2401 * copy so as to leave this buffer ready for further use. 2402 * 2403 * This optimization eats a lot of memory. If we have a page 2404 * or buffer shortfall we can't do it. 2405 */ 2406 if (dobkgrdwrite && (bp->b_xflags & BX_BKGRDWRITE) && 2407 (bp->b_flags & B_ASYNC) && 2408 !vm_page_count_severe() && 2409 !buf_dirty_count_severe()) { 2410 KASSERT(bp->b_iodone == NULL, 2411 ("bufwrite: needs chained iodone (%p)", bp->b_iodone)); 2412 2413 /* get a new block */ 2414 newbp = geteblk(bp->b_bufsize, GB_NOWAIT_BD); 2415 if (newbp == NULL) 2416 goto normal_write; 2417 2418 KASSERT(buf_mapped(bp), ("Unmapped cg")); 2419 memcpy(newbp->b_data, bp->b_data, bp->b_bufsize); 2420 BO_LOCK(bp->b_bufobj); 2421 bp->b_vflags |= BV_BKGRDINPROG; 2422 BO_UNLOCK(bp->b_bufobj); 2423 newbp->b_xflags |= 2424 (bp->b_xflags & BX_FSPRIV) | BX_BKGRDMARKER; 2425 newbp->b_lblkno = bp->b_lblkno; 2426 newbp->b_blkno = bp->b_blkno; 2427 newbp->b_offset = bp->b_offset; 2428 newbp->b_iodone = ffs_backgroundwritedone; 2429 newbp->b_flags |= B_ASYNC; 2430 newbp->b_flags &= ~B_INVAL; 2431 pbgetvp(bp->b_vp, newbp); 2432 2433 #ifdef SOFTUPDATES 2434 /* 2435 * Move over the dependencies. If there are rollbacks, 2436 * leave the parent buffer dirtied as it will need to 2437 * be written again. 2438 */ 2439 if (LIST_EMPTY(&bp->b_dep) || 2440 softdep_move_dependencies(bp, newbp) == 0) 2441 bundirty(bp); 2442 #else 2443 bundirty(bp); 2444 #endif 2445 2446 /* 2447 * Initiate write on the copy, release the original. The 2448 * BKGRDINPROG flag prevents it from going away until 2449 * the background write completes. We have to recalculate 2450 * its check hash in case the buffer gets freed and then 2451 * reconstituted from the buffer cache during a later read. 2452 */ 2453 if ((bp->b_xflags & BX_CYLGRP) != 0) { 2454 cgp = (struct cg *)bp->b_data; 2455 cgp->cg_ckhash = 0; 2456 cgp->cg_ckhash = 2457 calculate_crc32c(~0L, bp->b_data, bp->b_bcount); 2458 } 2459 bqrelse(bp); 2460 bp = newbp; 2461 } else 2462 /* Mark the buffer clean */ 2463 bundirty(bp); 2464 2465 /* Let the normal bufwrite do the rest for us */ 2466 normal_write: 2467 /* 2468 * If we are writing a cylinder group, update its time. 2469 */ 2470 if ((bp->b_xflags & BX_CYLGRP) != 0) { 2471 cgp = (struct cg *)bp->b_data; 2472 cgp->cg_old_time = cgp->cg_time = time_second; 2473 } 2474 return (bufwrite(bp)); 2475 } 2476 2477 static void 2478 ffs_geom_strategy(struct bufobj *bo, struct buf *bp) 2479 { 2480 struct vnode *vp; 2481 struct buf *tbp; 2482 int error, nocopy; 2483 2484 /* 2485 * This is the bufobj strategy for the private VCHR vnodes 2486 * used by FFS to access the underlying storage device. 2487 * We override the default bufobj strategy and thus bypass 2488 * VOP_STRATEGY() for these vnodes. 2489 */ 2490 vp = bo2vnode(bo); 2491 KASSERT(bp->b_vp == NULL || bp->b_vp->v_type != VCHR || 2492 bp->b_vp->v_rdev == NULL || 2493 bp->b_vp->v_rdev->si_mountpt == NULL || 2494 VFSTOUFS(bp->b_vp->v_rdev->si_mountpt) == NULL || 2495 vp == VFSTOUFS(bp->b_vp->v_rdev->si_mountpt)->um_devvp, 2496 ("ffs_geom_strategy() with wrong vp")); 2497 if (bp->b_iocmd == BIO_WRITE) { 2498 if ((bp->b_flags & B_VALIDSUSPWRT) == 0 && 2499 bp->b_vp != NULL && bp->b_vp->v_mount != NULL && 2500 (bp->b_vp->v_mount->mnt_kern_flag & MNTK_SUSPENDED) != 0) 2501 panic("ffs_geom_strategy: bad I/O"); 2502 nocopy = bp->b_flags & B_NOCOPY; 2503 bp->b_flags &= ~(B_VALIDSUSPWRT | B_NOCOPY); 2504 if ((vp->v_vflag & VV_COPYONWRITE) && nocopy == 0 && 2505 vp->v_rdev->si_snapdata != NULL) { 2506 if ((bp->b_flags & B_CLUSTER) != 0) { 2507 runningbufwakeup(bp); 2508 TAILQ_FOREACH(tbp, &bp->b_cluster.cluster_head, 2509 b_cluster.cluster_entry) { 2510 error = ffs_copyonwrite(vp, tbp); 2511 if (error != 0 && 2512 error != EOPNOTSUPP) { 2513 bp->b_error = error; 2514 bp->b_ioflags |= BIO_ERROR; 2515 bp->b_flags &= ~B_BARRIER; 2516 bufdone(bp); 2517 return; 2518 } 2519 } 2520 bp->b_runningbufspace = bp->b_bufsize; 2521 atomic_add_long(&runningbufspace, 2522 bp->b_runningbufspace); 2523 } else { 2524 error = ffs_copyonwrite(vp, bp); 2525 if (error != 0 && error != EOPNOTSUPP) { 2526 bp->b_error = error; 2527 bp->b_ioflags |= BIO_ERROR; 2528 bp->b_flags &= ~B_BARRIER; 2529 bufdone(bp); 2530 return; 2531 } 2532 } 2533 } 2534 #ifdef SOFTUPDATES 2535 if ((bp->b_flags & B_CLUSTER) != 0) { 2536 TAILQ_FOREACH(tbp, &bp->b_cluster.cluster_head, 2537 b_cluster.cluster_entry) { 2538 if (!LIST_EMPTY(&tbp->b_dep)) 2539 buf_start(tbp); 2540 } 2541 } else { 2542 if (!LIST_EMPTY(&bp->b_dep)) 2543 buf_start(bp); 2544 } 2545 2546 #endif 2547 /* 2548 * Check for metadata that needs check-hashes and update them. 2549 */ 2550 switch (bp->b_xflags & BX_FSPRIV) { 2551 case BX_CYLGRP: 2552 ((struct cg *)bp->b_data)->cg_ckhash = 0; 2553 ((struct cg *)bp->b_data)->cg_ckhash = 2554 calculate_crc32c(~0L, bp->b_data, bp->b_bcount); 2555 break; 2556 2557 case BX_SUPERBLOCK: 2558 case BX_INODE: 2559 case BX_INDIR: 2560 case BX_DIR: 2561 printf("Check-hash write is unimplemented!!!\n"); 2562 break; 2563 2564 case 0: 2565 break; 2566 2567 default: 2568 printf("multiple buffer types 0x%b\n", 2569 (u_int)(bp->b_xflags & BX_FSPRIV), 2570 PRINT_UFS_BUF_XFLAGS); 2571 break; 2572 } 2573 } 2574 if (bp->b_iocmd != BIO_READ && ffs_enxio_enable) 2575 bp->b_xflags |= BX_CVTENXIO; 2576 g_vfs_strategy(bo, bp); 2577 } 2578 2579 int 2580 ffs_own_mount(const struct mount *mp) 2581 { 2582 2583 if (mp->mnt_op == &ufs_vfsops) 2584 return (1); 2585 return (0); 2586 } 2587 2588 #ifdef DDB 2589 #ifdef SOFTUPDATES 2590 2591 /* defined in ffs_softdep.c */ 2592 extern void db_print_ffs(struct ufsmount *ump); 2593 2594 DB_SHOW_COMMAND(ffs, db_show_ffs) 2595 { 2596 struct mount *mp; 2597 struct ufsmount *ump; 2598 2599 if (have_addr) { 2600 ump = VFSTOUFS((struct mount *)addr); 2601 db_print_ffs(ump); 2602 return; 2603 } 2604 2605 TAILQ_FOREACH(mp, &mountlist, mnt_list) { 2606 if (!strcmp(mp->mnt_stat.f_fstypename, ufs_vfsconf.vfc_name)) 2607 db_print_ffs(VFSTOUFS(mp)); 2608 } 2609 } 2610 2611 #endif /* SOFTUPDATES */ 2612 #endif /* DDB */ 2613