1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1989, 1991, 1993, 1994 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * @(#)ffs_vfsops.c 8.31 (Berkeley) 5/20/95 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include "opt_quota.h" 38 #include "opt_ufs.h" 39 #include "opt_ffs.h" 40 #include "opt_ddb.h" 41 42 #include <sys/param.h> 43 #include <sys/gsb_crc32.h> 44 #include <sys/systm.h> 45 #include <sys/namei.h> 46 #include <sys/priv.h> 47 #include <sys/proc.h> 48 #include <sys/taskqueue.h> 49 #include <sys/kernel.h> 50 #include <sys/ktr.h> 51 #include <sys/vnode.h> 52 #include <sys/mount.h> 53 #include <sys/bio.h> 54 #include <sys/buf.h> 55 #include <sys/conf.h> 56 #include <sys/fcntl.h> 57 #include <sys/ioccom.h> 58 #include <sys/malloc.h> 59 #include <sys/mutex.h> 60 #include <sys/rwlock.h> 61 #include <sys/sysctl.h> 62 #include <sys/vmmeter.h> 63 64 #include <security/mac/mac_framework.h> 65 66 #include <ufs/ufs/dir.h> 67 #include <ufs/ufs/extattr.h> 68 #include <ufs/ufs/gjournal.h> 69 #include <ufs/ufs/quota.h> 70 #include <ufs/ufs/ufsmount.h> 71 #include <ufs/ufs/inode.h> 72 #include <ufs/ufs/ufs_extern.h> 73 74 #include <ufs/ffs/fs.h> 75 #include <ufs/ffs/ffs_extern.h> 76 77 #include <vm/vm.h> 78 #include <vm/uma.h> 79 #include <vm/vm_page.h> 80 81 #include <geom/geom.h> 82 #include <geom/geom_vfs.h> 83 84 #include <ddb/ddb.h> 85 86 static uma_zone_t uma_inode, uma_ufs1, uma_ufs2; 87 VFS_SMR_DECLARE; 88 89 static int ffs_mountfs(struct vnode *, struct mount *, struct thread *); 90 static void ffs_oldfscompat_read(struct fs *, struct ufsmount *, 91 ufs2_daddr_t); 92 static void ffs_ifree(struct ufsmount *ump, struct inode *ip); 93 static int ffs_sync_lazy(struct mount *mp); 94 static int ffs_use_bread(void *devfd, off_t loc, void **bufp, int size); 95 static int ffs_use_bwrite(void *devfd, off_t loc, void *buf, int size); 96 97 static vfs_init_t ffs_init; 98 static vfs_uninit_t ffs_uninit; 99 static vfs_extattrctl_t ffs_extattrctl; 100 static vfs_cmount_t ffs_cmount; 101 static vfs_unmount_t ffs_unmount; 102 static vfs_mount_t ffs_mount; 103 static vfs_statfs_t ffs_statfs; 104 static vfs_fhtovp_t ffs_fhtovp; 105 static vfs_sync_t ffs_sync; 106 107 static struct vfsops ufs_vfsops = { 108 .vfs_extattrctl = ffs_extattrctl, 109 .vfs_fhtovp = ffs_fhtovp, 110 .vfs_init = ffs_init, 111 .vfs_mount = ffs_mount, 112 .vfs_cmount = ffs_cmount, 113 .vfs_quotactl = ufs_quotactl, 114 .vfs_root = vfs_cache_root, 115 .vfs_cachedroot = ufs_root, 116 .vfs_statfs = ffs_statfs, 117 .vfs_sync = ffs_sync, 118 .vfs_uninit = ffs_uninit, 119 .vfs_unmount = ffs_unmount, 120 .vfs_vget = ffs_vget, 121 .vfs_susp_clean = process_deferred_inactive, 122 }; 123 124 VFS_SET(ufs_vfsops, ufs, 0); 125 MODULE_VERSION(ufs, 1); 126 127 static b_strategy_t ffs_geom_strategy; 128 static b_write_t ffs_bufwrite; 129 130 static struct buf_ops ffs_ops = { 131 .bop_name = "FFS", 132 .bop_write = ffs_bufwrite, 133 .bop_strategy = ffs_geom_strategy, 134 .bop_sync = bufsync, 135 #ifdef NO_FFS_SNAPSHOT 136 .bop_bdflush = bufbdflush, 137 #else 138 .bop_bdflush = ffs_bdflush, 139 #endif 140 }; 141 142 /* 143 * Note that userquota and groupquota options are not currently used 144 * by UFS/FFS code and generally mount(8) does not pass those options 145 * from userland, but they can be passed by loader(8) via 146 * vfs.root.mountfrom.options. 147 */ 148 static const char *ffs_opts[] = { "acls", "async", "noatime", "noclusterr", 149 "noclusterw", "noexec", "export", "force", "from", "groupquota", 150 "multilabel", "nfsv4acls", "fsckpid", "snapshot", "nosuid", "suiddir", 151 "nosymfollow", "sync", "union", "userquota", "untrusted", NULL }; 152 153 static int ffs_enxio_enable = 1; 154 SYSCTL_DECL(_vfs_ffs); 155 SYSCTL_INT(_vfs_ffs, OID_AUTO, enxio_enable, CTLFLAG_RWTUN, 156 &ffs_enxio_enable, 0, 157 "enable mapping of other disk I/O errors to ENXIO"); 158 159 /* 160 * Return buffer with the contents of block "offset" from the beginning of 161 * directory "ip". If "res" is non-zero, fill it in with a pointer to the 162 * remaining space in the directory. 163 */ 164 static int 165 ffs_blkatoff(struct vnode *vp, off_t offset, char **res, struct buf **bpp) 166 { 167 struct inode *ip; 168 struct fs *fs; 169 struct buf *bp; 170 ufs_lbn_t lbn; 171 int bsize, error; 172 173 ip = VTOI(vp); 174 fs = ITOFS(ip); 175 lbn = lblkno(fs, offset); 176 bsize = blksize(fs, ip, lbn); 177 178 *bpp = NULL; 179 error = bread(vp, lbn, bsize, NOCRED, &bp); 180 if (error) { 181 return (error); 182 } 183 if (res) 184 *res = (char *)bp->b_data + blkoff(fs, offset); 185 *bpp = bp; 186 return (0); 187 } 188 189 /* 190 * Load up the contents of an inode and copy the appropriate pieces 191 * to the incore copy. 192 */ 193 static int 194 ffs_load_inode(struct buf *bp, struct inode *ip, struct fs *fs, ino_t ino) 195 { 196 struct ufs1_dinode *dip1; 197 struct ufs2_dinode *dip2; 198 int error; 199 200 if (I_IS_UFS1(ip)) { 201 dip1 = ip->i_din1; 202 *dip1 = 203 *((struct ufs1_dinode *)bp->b_data + ino_to_fsbo(fs, ino)); 204 ip->i_mode = dip1->di_mode; 205 ip->i_nlink = dip1->di_nlink; 206 ip->i_effnlink = dip1->di_nlink; 207 ip->i_size = dip1->di_size; 208 ip->i_flags = dip1->di_flags; 209 ip->i_gen = dip1->di_gen; 210 ip->i_uid = dip1->di_uid; 211 ip->i_gid = dip1->di_gid; 212 return (0); 213 } 214 dip2 = ((struct ufs2_dinode *)bp->b_data + ino_to_fsbo(fs, ino)); 215 if ((error = ffs_verify_dinode_ckhash(fs, dip2)) != 0 && 216 !ffs_fsfail_cleanup(ITOUMP(ip), error)) { 217 printf("%s: inode %jd: check-hash failed\n", fs->fs_fsmnt, 218 (intmax_t)ino); 219 return (error); 220 } 221 *ip->i_din2 = *dip2; 222 dip2 = ip->i_din2; 223 ip->i_mode = dip2->di_mode; 224 ip->i_nlink = dip2->di_nlink; 225 ip->i_effnlink = dip2->di_nlink; 226 ip->i_size = dip2->di_size; 227 ip->i_flags = dip2->di_flags; 228 ip->i_gen = dip2->di_gen; 229 ip->i_uid = dip2->di_uid; 230 ip->i_gid = dip2->di_gid; 231 return (0); 232 } 233 234 /* 235 * Verify that a filesystem block number is a valid data block. 236 * This routine is only called on untrusted filesystems. 237 */ 238 static int 239 ffs_check_blkno(struct mount *mp, ino_t inum, ufs2_daddr_t daddr, int blksize) 240 { 241 struct fs *fs; 242 struct ufsmount *ump; 243 ufs2_daddr_t end_daddr; 244 int cg, havemtx; 245 246 KASSERT((mp->mnt_flag & MNT_UNTRUSTED) != 0, 247 ("ffs_check_blkno called on a trusted file system")); 248 ump = VFSTOUFS(mp); 249 fs = ump->um_fs; 250 cg = dtog(fs, daddr); 251 end_daddr = daddr + numfrags(fs, blksize); 252 /* 253 * Verify that the block number is a valid data block. Also check 254 * that it does not point to an inode block or a superblock. Accept 255 * blocks that are unalloacted (0) or part of snapshot metadata 256 * (BLK_NOCOPY or BLK_SNAP). 257 * 258 * Thus, the block must be in a valid range for the filesystem and 259 * either in the space before a backup superblock (except the first 260 * cylinder group where that space is used by the bootstrap code) or 261 * after the inode blocks and before the end of the cylinder group. 262 */ 263 if ((uint64_t)daddr <= BLK_SNAP || 264 ((uint64_t)end_daddr <= fs->fs_size && 265 ((cg > 0 && end_daddr <= cgsblock(fs, cg)) || 266 (daddr >= cgdmin(fs, cg) && 267 end_daddr <= cgbase(fs, cg) + fs->fs_fpg)))) 268 return (0); 269 if ((havemtx = mtx_owned(UFS_MTX(ump))) == 0) 270 UFS_LOCK(ump); 271 if (ppsratecheck(&ump->um_last_integritymsg, 272 &ump->um_secs_integritymsg, 1)) { 273 UFS_UNLOCK(ump); 274 uprintf("\n%s: inode %jd, out-of-range indirect block " 275 "number %jd\n", mp->mnt_stat.f_mntonname, inum, daddr); 276 if (havemtx) 277 UFS_LOCK(ump); 278 } else if (!havemtx) 279 UFS_UNLOCK(ump); 280 return (EINTEGRITY); 281 } 282 283 /* 284 * On first ENXIO error, initiate an asynchronous forcible unmount. 285 * Used to unmount filesystems whose underlying media has gone away. 286 * 287 * Return true if a cleanup is in progress. 288 */ 289 int 290 ffs_fsfail_cleanup(struct ufsmount *ump, int error) 291 { 292 int retval; 293 294 UFS_LOCK(ump); 295 retval = ffs_fsfail_cleanup_locked(ump, error); 296 UFS_UNLOCK(ump); 297 return (retval); 298 } 299 300 int 301 ffs_fsfail_cleanup_locked(struct ufsmount *ump, int error) 302 { 303 mtx_assert(UFS_MTX(ump), MA_OWNED); 304 if (error == ENXIO && (ump->um_flags & UM_FSFAIL_CLEANUP) == 0) { 305 ump->um_flags |= UM_FSFAIL_CLEANUP; 306 /* 307 * Queue an async forced unmount. 308 */ 309 vfs_ref(ump->um_mountp); 310 dounmount(ump->um_mountp, 311 MNT_FORCE | MNT_RECURSE | MNT_DEFERRED, curthread); 312 printf("UFS: forcibly unmounting %s from %s\n", 313 ump->um_mountp->mnt_stat.f_mntfromname, 314 ump->um_mountp->mnt_stat.f_mntonname); 315 } 316 return ((ump->um_flags & UM_FSFAIL_CLEANUP) != 0); 317 } 318 319 /* 320 * Wrapper used during ENXIO cleanup to allocate empty buffers when 321 * the kernel is unable to read the real one. They are needed so that 322 * the soft updates code can use them to unwind its dependencies. 323 */ 324 int 325 ffs_breadz(struct ufsmount *ump, struct vnode *vp, daddr_t lblkno, 326 daddr_t dblkno, int size, daddr_t *rablkno, int *rabsize, int cnt, 327 struct ucred *cred, int flags, void (*ckhashfunc)(struct buf *), 328 struct buf **bpp) 329 { 330 int error; 331 332 flags |= GB_CVTENXIO; 333 error = breadn_flags(vp, lblkno, dblkno, size, rablkno, rabsize, cnt, 334 cred, flags, ckhashfunc, bpp); 335 if (error != 0 && ffs_fsfail_cleanup(ump, error)) { 336 error = getblkx(vp, lblkno, dblkno, size, 0, 0, flags, bpp); 337 KASSERT(error == 0, ("getblkx failed")); 338 vfs_bio_bzero_buf(*bpp, 0, size); 339 } 340 return (error); 341 } 342 343 static int 344 ffs_mount(struct mount *mp) 345 { 346 struct vnode *devvp, *odevvp; 347 struct thread *td; 348 struct ufsmount *ump = NULL; 349 struct fs *fs; 350 pid_t fsckpid = 0; 351 int error, error1, flags; 352 uint64_t mntorflags, saved_mnt_flag; 353 accmode_t accmode; 354 struct nameidata ndp; 355 char *fspec; 356 bool mounted_softdep; 357 358 td = curthread; 359 if (vfs_filteropt(mp->mnt_optnew, ffs_opts)) 360 return (EINVAL); 361 if (uma_inode == NULL) { 362 uma_inode = uma_zcreate("FFS inode", 363 sizeof(struct inode), NULL, NULL, NULL, NULL, 364 UMA_ALIGN_PTR, 0); 365 uma_ufs1 = uma_zcreate("FFS1 dinode", 366 sizeof(struct ufs1_dinode), NULL, NULL, NULL, NULL, 367 UMA_ALIGN_PTR, 0); 368 uma_ufs2 = uma_zcreate("FFS2 dinode", 369 sizeof(struct ufs2_dinode), NULL, NULL, NULL, NULL, 370 UMA_ALIGN_PTR, 0); 371 VFS_SMR_ZONE_SET(uma_inode); 372 } 373 374 vfs_deleteopt(mp->mnt_optnew, "groupquota"); 375 vfs_deleteopt(mp->mnt_optnew, "userquota"); 376 377 fspec = vfs_getopts(mp->mnt_optnew, "from", &error); 378 if (error) 379 return (error); 380 381 mntorflags = 0; 382 if (vfs_getopt(mp->mnt_optnew, "untrusted", NULL, NULL) == 0) 383 mntorflags |= MNT_UNTRUSTED; 384 385 if (vfs_getopt(mp->mnt_optnew, "acls", NULL, NULL) == 0) 386 mntorflags |= MNT_ACLS; 387 388 if (vfs_getopt(mp->mnt_optnew, "snapshot", NULL, NULL) == 0) { 389 mntorflags |= MNT_SNAPSHOT; 390 /* 391 * Once we have set the MNT_SNAPSHOT flag, do not 392 * persist "snapshot" in the options list. 393 */ 394 vfs_deleteopt(mp->mnt_optnew, "snapshot"); 395 vfs_deleteopt(mp->mnt_opt, "snapshot"); 396 } 397 398 if (vfs_getopt(mp->mnt_optnew, "fsckpid", NULL, NULL) == 0 && 399 vfs_scanopt(mp->mnt_optnew, "fsckpid", "%d", &fsckpid) == 1) { 400 /* 401 * Once we have set the restricted PID, do not 402 * persist "fsckpid" in the options list. 403 */ 404 vfs_deleteopt(mp->mnt_optnew, "fsckpid"); 405 vfs_deleteopt(mp->mnt_opt, "fsckpid"); 406 if (mp->mnt_flag & MNT_UPDATE) { 407 if (VFSTOUFS(mp)->um_fs->fs_ronly == 0 && 408 vfs_flagopt(mp->mnt_optnew, "ro", NULL, 0) == 0) { 409 vfs_mount_error(mp, 410 "Checker enable: Must be read-only"); 411 return (EINVAL); 412 } 413 } else if (vfs_flagopt(mp->mnt_optnew, "ro", NULL, 0) == 0) { 414 vfs_mount_error(mp, 415 "Checker enable: Must be read-only"); 416 return (EINVAL); 417 } 418 /* Set to -1 if we are done */ 419 if (fsckpid == 0) 420 fsckpid = -1; 421 } 422 423 if (vfs_getopt(mp->mnt_optnew, "nfsv4acls", NULL, NULL) == 0) { 424 if (mntorflags & MNT_ACLS) { 425 vfs_mount_error(mp, 426 "\"acls\" and \"nfsv4acls\" options " 427 "are mutually exclusive"); 428 return (EINVAL); 429 } 430 mntorflags |= MNT_NFS4ACLS; 431 } 432 433 MNT_ILOCK(mp); 434 mp->mnt_kern_flag &= ~MNTK_FPLOOKUP; 435 mp->mnt_flag |= mntorflags; 436 MNT_IUNLOCK(mp); 437 /* 438 * If updating, check whether changing from read-only to 439 * read/write; if there is no device name, that's all we do. 440 */ 441 if (mp->mnt_flag & MNT_UPDATE) { 442 ump = VFSTOUFS(mp); 443 fs = ump->um_fs; 444 odevvp = ump->um_odevvp; 445 devvp = ump->um_devvp; 446 if (fsckpid == -1 && ump->um_fsckpid > 0) { 447 if ((error = ffs_flushfiles(mp, WRITECLOSE, td)) != 0 || 448 (error = ffs_sbupdate(ump, MNT_WAIT, 0)) != 0) 449 return (error); 450 g_topology_lock(); 451 /* 452 * Return to normal read-only mode. 453 */ 454 error = g_access(ump->um_cp, 0, -1, 0); 455 g_topology_unlock(); 456 ump->um_fsckpid = 0; 457 } 458 if (fs->fs_ronly == 0 && 459 vfs_flagopt(mp->mnt_optnew, "ro", NULL, 0)) { 460 /* 461 * Flush any dirty data and suspend filesystem. 462 */ 463 if ((error = vn_start_write(NULL, &mp, V_WAIT)) != 0) 464 return (error); 465 error = vfs_write_suspend_umnt(mp); 466 if (error != 0) 467 return (error); 468 469 fs->fs_ronly = 1; 470 if (MOUNTEDSOFTDEP(mp)) { 471 MNT_ILOCK(mp); 472 mp->mnt_flag &= ~MNT_SOFTDEP; 473 MNT_IUNLOCK(mp); 474 mounted_softdep = true; 475 } else 476 mounted_softdep = false; 477 478 /* 479 * Check for and optionally get rid of files open 480 * for writing. 481 */ 482 flags = WRITECLOSE; 483 if (mp->mnt_flag & MNT_FORCE) 484 flags |= FORCECLOSE; 485 if (mounted_softdep) { 486 error = softdep_flushfiles(mp, flags, td); 487 } else { 488 error = ffs_flushfiles(mp, flags, td); 489 } 490 if (error) { 491 fs->fs_ronly = 0; 492 if (mounted_softdep) { 493 MNT_ILOCK(mp); 494 mp->mnt_flag |= MNT_SOFTDEP; 495 MNT_IUNLOCK(mp); 496 } 497 vfs_write_resume(mp, 0); 498 return (error); 499 } 500 501 if (fs->fs_pendingblocks != 0 || 502 fs->fs_pendinginodes != 0) { 503 printf("WARNING: %s Update error: blocks %jd " 504 "files %d\n", fs->fs_fsmnt, 505 (intmax_t)fs->fs_pendingblocks, 506 fs->fs_pendinginodes); 507 fs->fs_pendingblocks = 0; 508 fs->fs_pendinginodes = 0; 509 } 510 if ((fs->fs_flags & (FS_UNCLEAN | FS_NEEDSFSCK)) == 0) 511 fs->fs_clean = 1; 512 if ((error = ffs_sbupdate(ump, MNT_WAIT, 0)) != 0) { 513 fs->fs_ronly = 0; 514 fs->fs_clean = 0; 515 if (mounted_softdep) { 516 MNT_ILOCK(mp); 517 mp->mnt_flag |= MNT_SOFTDEP; 518 MNT_IUNLOCK(mp); 519 } 520 vfs_write_resume(mp, 0); 521 return (error); 522 } 523 if (mounted_softdep) 524 softdep_unmount(mp); 525 g_topology_lock(); 526 /* 527 * Drop our write and exclusive access. 528 */ 529 g_access(ump->um_cp, 0, -1, -1); 530 g_topology_unlock(); 531 MNT_ILOCK(mp); 532 mp->mnt_flag |= MNT_RDONLY; 533 MNT_IUNLOCK(mp); 534 /* 535 * Allow the writers to note that filesystem 536 * is ro now. 537 */ 538 vfs_write_resume(mp, 0); 539 } 540 if ((mp->mnt_flag & MNT_RELOAD) && 541 (error = ffs_reload(mp, td, 0)) != 0) 542 return (error); 543 if (fs->fs_ronly && 544 !vfs_flagopt(mp->mnt_optnew, "ro", NULL, 0)) { 545 /* 546 * If we are running a checker, do not allow upgrade. 547 */ 548 if (ump->um_fsckpid > 0) { 549 vfs_mount_error(mp, 550 "Active checker, cannot upgrade to write"); 551 return (EINVAL); 552 } 553 /* 554 * If upgrade to read-write by non-root, then verify 555 * that user has necessary permissions on the device. 556 */ 557 vn_lock(odevvp, LK_EXCLUSIVE | LK_RETRY); 558 error = VOP_ACCESS(odevvp, VREAD | VWRITE, 559 td->td_ucred, td); 560 if (error) 561 error = priv_check(td, PRIV_VFS_MOUNT_PERM); 562 VOP_UNLOCK(odevvp); 563 if (error) { 564 return (error); 565 } 566 fs->fs_flags &= ~FS_UNCLEAN; 567 if (fs->fs_clean == 0) { 568 fs->fs_flags |= FS_UNCLEAN; 569 if ((mp->mnt_flag & MNT_FORCE) || 570 ((fs->fs_flags & 571 (FS_SUJ | FS_NEEDSFSCK)) == 0 && 572 (fs->fs_flags & FS_DOSOFTDEP))) { 573 printf("WARNING: %s was not properly " 574 "dismounted\n", fs->fs_fsmnt); 575 } else { 576 vfs_mount_error(mp, 577 "R/W mount of %s denied. %s.%s", 578 fs->fs_fsmnt, 579 "Filesystem is not clean - run fsck", 580 (fs->fs_flags & FS_SUJ) == 0 ? "" : 581 " Forced mount will invalidate" 582 " journal contents"); 583 return (EPERM); 584 } 585 } 586 g_topology_lock(); 587 /* 588 * Request exclusive write access. 589 */ 590 error = g_access(ump->um_cp, 0, 1, 1); 591 g_topology_unlock(); 592 if (error) 593 return (error); 594 if ((error = vn_start_write(NULL, &mp, V_WAIT)) != 0) 595 return (error); 596 error = vfs_write_suspend_umnt(mp); 597 if (error != 0) 598 return (error); 599 fs->fs_ronly = 0; 600 MNT_ILOCK(mp); 601 saved_mnt_flag = MNT_RDONLY; 602 if (MOUNTEDSOFTDEP(mp) && (mp->mnt_flag & 603 MNT_ASYNC) != 0) 604 saved_mnt_flag |= MNT_ASYNC; 605 mp->mnt_flag &= ~saved_mnt_flag; 606 MNT_IUNLOCK(mp); 607 fs->fs_mtime = time_second; 608 /* check to see if we need to start softdep */ 609 if ((fs->fs_flags & FS_DOSOFTDEP) && 610 (error = softdep_mount(devvp, mp, fs, td->td_ucred))){ 611 fs->fs_ronly = 1; 612 MNT_ILOCK(mp); 613 mp->mnt_flag |= saved_mnt_flag; 614 MNT_IUNLOCK(mp); 615 vfs_write_resume(mp, 0); 616 return (error); 617 } 618 fs->fs_clean = 0; 619 if ((error = ffs_sbupdate(ump, MNT_WAIT, 0)) != 0) { 620 fs->fs_ronly = 1; 621 if ((fs->fs_flags & FS_DOSOFTDEP) != 0) 622 softdep_unmount(mp); 623 MNT_ILOCK(mp); 624 mp->mnt_flag |= saved_mnt_flag; 625 MNT_IUNLOCK(mp); 626 vfs_write_resume(mp, 0); 627 return (error); 628 } 629 if (fs->fs_snapinum[0] != 0) 630 ffs_snapshot_mount(mp); 631 vfs_write_resume(mp, 0); 632 } 633 /* 634 * Soft updates is incompatible with "async", 635 * so if we are doing softupdates stop the user 636 * from setting the async flag in an update. 637 * Softdep_mount() clears it in an initial mount 638 * or ro->rw remount. 639 */ 640 if (MOUNTEDSOFTDEP(mp)) { 641 /* XXX: Reset too late ? */ 642 MNT_ILOCK(mp); 643 mp->mnt_flag &= ~MNT_ASYNC; 644 MNT_IUNLOCK(mp); 645 } 646 /* 647 * Keep MNT_ACLS flag if it is stored in superblock. 648 */ 649 if ((fs->fs_flags & FS_ACLS) != 0) { 650 /* XXX: Set too late ? */ 651 MNT_ILOCK(mp); 652 mp->mnt_flag |= MNT_ACLS; 653 MNT_IUNLOCK(mp); 654 } 655 656 if ((fs->fs_flags & FS_NFS4ACLS) != 0) { 657 /* XXX: Set too late ? */ 658 MNT_ILOCK(mp); 659 mp->mnt_flag |= MNT_NFS4ACLS; 660 MNT_IUNLOCK(mp); 661 } 662 /* 663 * If this is a request from fsck to clean up the filesystem, 664 * then allow the specified pid to proceed. 665 */ 666 if (fsckpid > 0) { 667 if (ump->um_fsckpid != 0) { 668 vfs_mount_error(mp, 669 "Active checker already running on %s", 670 fs->fs_fsmnt); 671 return (EINVAL); 672 } 673 KASSERT(MOUNTEDSOFTDEP(mp) == 0, 674 ("soft updates enabled on read-only file system")); 675 g_topology_lock(); 676 /* 677 * Request write access. 678 */ 679 error = g_access(ump->um_cp, 0, 1, 0); 680 g_topology_unlock(); 681 if (error) { 682 vfs_mount_error(mp, 683 "Checker activation failed on %s", 684 fs->fs_fsmnt); 685 return (error); 686 } 687 ump->um_fsckpid = fsckpid; 688 if (fs->fs_snapinum[0] != 0) 689 ffs_snapshot_mount(mp); 690 fs->fs_mtime = time_second; 691 fs->fs_fmod = 1; 692 fs->fs_clean = 0; 693 (void) ffs_sbupdate(ump, MNT_WAIT, 0); 694 } 695 696 /* 697 * If this is a snapshot request, take the snapshot. 698 */ 699 if (mp->mnt_flag & MNT_SNAPSHOT) 700 return (ffs_snapshot(mp, fspec)); 701 702 /* 703 * Must not call namei() while owning busy ref. 704 */ 705 vfs_unbusy(mp); 706 } 707 708 /* 709 * Not an update, or updating the name: look up the name 710 * and verify that it refers to a sensible disk device. 711 */ 712 NDINIT(&ndp, LOOKUP, FOLLOW | LOCKLEAF, UIO_SYSSPACE, fspec, td); 713 error = namei(&ndp); 714 if ((mp->mnt_flag & MNT_UPDATE) != 0) { 715 /* 716 * Unmount does not start if MNT_UPDATE is set. Mount 717 * update busies mp before setting MNT_UPDATE. We 718 * must be able to retain our busy ref succesfully, 719 * without sleep. 720 */ 721 error1 = vfs_busy(mp, MBF_NOWAIT); 722 MPASS(error1 == 0); 723 } 724 if (error != 0) 725 return (error); 726 NDFREE(&ndp, NDF_ONLY_PNBUF); 727 devvp = ndp.ni_vp; 728 if (!vn_isdisk_error(devvp, &error)) { 729 vput(devvp); 730 return (error); 731 } 732 733 /* 734 * If mount by non-root, then verify that user has necessary 735 * permissions on the device. 736 */ 737 accmode = VREAD; 738 if ((mp->mnt_flag & MNT_RDONLY) == 0) 739 accmode |= VWRITE; 740 error = VOP_ACCESS(devvp, accmode, td->td_ucred, td); 741 if (error) 742 error = priv_check(td, PRIV_VFS_MOUNT_PERM); 743 if (error) { 744 vput(devvp); 745 return (error); 746 } 747 748 if (mp->mnt_flag & MNT_UPDATE) { 749 /* 750 * Update only 751 * 752 * If it's not the same vnode, or at least the same device 753 * then it's not correct. 754 */ 755 756 if (devvp->v_rdev != ump->um_devvp->v_rdev) 757 error = EINVAL; /* needs translation */ 758 vput(devvp); 759 if (error) 760 return (error); 761 } else { 762 /* 763 * New mount 764 * 765 * We need the name for the mount point (also used for 766 * "last mounted on") copied in. If an error occurs, 767 * the mount point is discarded by the upper level code. 768 * Note that vfs_mount_alloc() populates f_mntonname for us. 769 */ 770 if ((error = ffs_mountfs(devvp, mp, td)) != 0) { 771 vrele(devvp); 772 return (error); 773 } 774 if (fsckpid > 0) { 775 KASSERT(MOUNTEDSOFTDEP(mp) == 0, 776 ("soft updates enabled on read-only file system")); 777 ump = VFSTOUFS(mp); 778 fs = ump->um_fs; 779 g_topology_lock(); 780 /* 781 * Request write access. 782 */ 783 error = g_access(ump->um_cp, 0, 1, 0); 784 g_topology_unlock(); 785 if (error) { 786 printf("WARNING: %s: Checker activation " 787 "failed\n", fs->fs_fsmnt); 788 } else { 789 ump->um_fsckpid = fsckpid; 790 if (fs->fs_snapinum[0] != 0) 791 ffs_snapshot_mount(mp); 792 fs->fs_mtime = time_second; 793 fs->fs_clean = 0; 794 (void) ffs_sbupdate(ump, MNT_WAIT, 0); 795 } 796 } 797 } 798 799 MNT_ILOCK(mp); 800 /* 801 * This is racy versus lookup, see ufs_fplookup_vexec for details. 802 */ 803 if ((mp->mnt_kern_flag & MNTK_FPLOOKUP) != 0) 804 panic("MNTK_FPLOOKUP set on mount %p when it should not be", mp); 805 if ((mp->mnt_flag & (MNT_ACLS | MNT_NFS4ACLS | MNT_UNION)) == 0) 806 mp->mnt_kern_flag |= MNTK_FPLOOKUP; 807 MNT_IUNLOCK(mp); 808 809 vfs_mountedfrom(mp, fspec); 810 return (0); 811 } 812 813 /* 814 * Compatibility with old mount system call. 815 */ 816 817 static int 818 ffs_cmount(struct mntarg *ma, void *data, uint64_t flags) 819 { 820 struct ufs_args args; 821 int error; 822 823 if (data == NULL) 824 return (EINVAL); 825 error = copyin(data, &args, sizeof args); 826 if (error) 827 return (error); 828 829 ma = mount_argsu(ma, "from", args.fspec, MAXPATHLEN); 830 ma = mount_arg(ma, "export", &args.export, sizeof(args.export)); 831 error = kernel_mount(ma, flags); 832 833 return (error); 834 } 835 836 /* 837 * Reload all incore data for a filesystem (used after running fsck on 838 * the root filesystem and finding things to fix). If the 'force' flag 839 * is 0, the filesystem must be mounted read-only. 840 * 841 * Things to do to update the mount: 842 * 1) invalidate all cached meta-data. 843 * 2) re-read superblock from disk. 844 * 3) re-read summary information from disk. 845 * 4) invalidate all inactive vnodes. 846 * 5) clear MNTK_SUSPEND2 and MNTK_SUSPENDED flags, allowing secondary 847 * writers, if requested. 848 * 6) invalidate all cached file data. 849 * 7) re-read inode data for all active vnodes. 850 */ 851 int 852 ffs_reload(struct mount *mp, struct thread *td, int flags) 853 { 854 struct vnode *vp, *mvp, *devvp; 855 struct inode *ip; 856 void *space; 857 struct buf *bp; 858 struct fs *fs, *newfs; 859 struct ufsmount *ump; 860 ufs2_daddr_t sblockloc; 861 int i, blks, error; 862 u_long size; 863 int32_t *lp; 864 865 ump = VFSTOUFS(mp); 866 867 MNT_ILOCK(mp); 868 if ((mp->mnt_flag & MNT_RDONLY) == 0 && (flags & FFSR_FORCE) == 0) { 869 MNT_IUNLOCK(mp); 870 return (EINVAL); 871 } 872 MNT_IUNLOCK(mp); 873 874 /* 875 * Step 1: invalidate all cached meta-data. 876 */ 877 devvp = VFSTOUFS(mp)->um_devvp; 878 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY); 879 if (vinvalbuf(devvp, 0, 0, 0) != 0) 880 panic("ffs_reload: dirty1"); 881 VOP_UNLOCK(devvp); 882 883 /* 884 * Step 2: re-read superblock from disk. 885 */ 886 fs = VFSTOUFS(mp)->um_fs; 887 if ((error = bread(devvp, btodb(fs->fs_sblockloc), fs->fs_sbsize, 888 NOCRED, &bp)) != 0) 889 return (error); 890 newfs = (struct fs *)bp->b_data; 891 if ((newfs->fs_magic != FS_UFS1_MAGIC && 892 newfs->fs_magic != FS_UFS2_MAGIC) || 893 newfs->fs_bsize > MAXBSIZE || 894 newfs->fs_bsize < sizeof(struct fs)) { 895 brelse(bp); 896 return (EIO); /* XXX needs translation */ 897 } 898 /* 899 * Preserve the summary information, read-only status, and 900 * superblock location by copying these fields into our new 901 * superblock before using it to update the existing superblock. 902 */ 903 newfs->fs_si = fs->fs_si; 904 newfs->fs_ronly = fs->fs_ronly; 905 sblockloc = fs->fs_sblockloc; 906 bcopy(newfs, fs, (u_int)fs->fs_sbsize); 907 brelse(bp); 908 ump->um_maxsymlinklen = fs->fs_maxsymlinklen; 909 ffs_oldfscompat_read(fs, VFSTOUFS(mp), sblockloc); 910 UFS_LOCK(ump); 911 if (fs->fs_pendingblocks != 0 || fs->fs_pendinginodes != 0) { 912 printf("WARNING: %s: reload pending error: blocks %jd " 913 "files %d\n", fs->fs_fsmnt, (intmax_t)fs->fs_pendingblocks, 914 fs->fs_pendinginodes); 915 fs->fs_pendingblocks = 0; 916 fs->fs_pendinginodes = 0; 917 } 918 UFS_UNLOCK(ump); 919 920 /* 921 * Step 3: re-read summary information from disk. 922 */ 923 size = fs->fs_cssize; 924 blks = howmany(size, fs->fs_fsize); 925 if (fs->fs_contigsumsize > 0) 926 size += fs->fs_ncg * sizeof(int32_t); 927 size += fs->fs_ncg * sizeof(u_int8_t); 928 free(fs->fs_csp, M_UFSMNT); 929 space = malloc(size, M_UFSMNT, M_WAITOK); 930 fs->fs_csp = space; 931 for (i = 0; i < blks; i += fs->fs_frag) { 932 size = fs->fs_bsize; 933 if (i + fs->fs_frag > blks) 934 size = (blks - i) * fs->fs_fsize; 935 error = bread(devvp, fsbtodb(fs, fs->fs_csaddr + i), size, 936 NOCRED, &bp); 937 if (error) 938 return (error); 939 bcopy(bp->b_data, space, (u_int)size); 940 space = (char *)space + size; 941 brelse(bp); 942 } 943 /* 944 * We no longer know anything about clusters per cylinder group. 945 */ 946 if (fs->fs_contigsumsize > 0) { 947 fs->fs_maxcluster = lp = space; 948 for (i = 0; i < fs->fs_ncg; i++) 949 *lp++ = fs->fs_contigsumsize; 950 space = lp; 951 } 952 size = fs->fs_ncg * sizeof(u_int8_t); 953 fs->fs_contigdirs = (u_int8_t *)space; 954 bzero(fs->fs_contigdirs, size); 955 if ((flags & FFSR_UNSUSPEND) != 0) { 956 MNT_ILOCK(mp); 957 mp->mnt_kern_flag &= ~(MNTK_SUSPENDED | MNTK_SUSPEND2); 958 wakeup(&mp->mnt_flag); 959 MNT_IUNLOCK(mp); 960 } 961 962 loop: 963 MNT_VNODE_FOREACH_ALL(vp, mp, mvp) { 964 /* 965 * Skip syncer vnode. 966 */ 967 if (vp->v_type == VNON) { 968 VI_UNLOCK(vp); 969 continue; 970 } 971 /* 972 * Step 4: invalidate all cached file data. 973 */ 974 if (vget(vp, LK_EXCLUSIVE | LK_INTERLOCK)) { 975 MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp); 976 goto loop; 977 } 978 if (vinvalbuf(vp, 0, 0, 0)) 979 panic("ffs_reload: dirty2"); 980 /* 981 * Step 5: re-read inode data for all active vnodes. 982 */ 983 ip = VTOI(vp); 984 error = 985 bread(devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)), 986 (int)fs->fs_bsize, NOCRED, &bp); 987 if (error) { 988 vput(vp); 989 MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp); 990 return (error); 991 } 992 if ((error = ffs_load_inode(bp, ip, fs, ip->i_number)) != 0) { 993 brelse(bp); 994 vput(vp); 995 MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp); 996 return (error); 997 } 998 ip->i_effnlink = ip->i_nlink; 999 brelse(bp); 1000 vput(vp); 1001 } 1002 return (0); 1003 } 1004 1005 /* 1006 * Common code for mount and mountroot 1007 */ 1008 static int 1009 ffs_mountfs(odevvp, mp, td) 1010 struct vnode *odevvp; 1011 struct mount *mp; 1012 struct thread *td; 1013 { 1014 struct ufsmount *ump; 1015 struct fs *fs; 1016 struct cdev *dev; 1017 int error, i, len, ronly; 1018 struct ucred *cred; 1019 struct g_consumer *cp; 1020 struct mount *nmp; 1021 struct vnode *devvp; 1022 int candelete, canspeedup; 1023 off_t loc; 1024 1025 fs = NULL; 1026 ump = NULL; 1027 cred = td ? td->td_ucred : NOCRED; 1028 ronly = (mp->mnt_flag & MNT_RDONLY) != 0; 1029 1030 devvp = mntfs_allocvp(mp, odevvp); 1031 VOP_UNLOCK(odevvp); 1032 KASSERT(devvp->v_type == VCHR, ("reclaimed devvp")); 1033 dev = devvp->v_rdev; 1034 KASSERT(dev->si_snapdata == NULL, ("non-NULL snapshot data")); 1035 if (atomic_cmpset_acq_ptr((uintptr_t *)&dev->si_mountpt, 0, 1036 (uintptr_t)mp) == 0) { 1037 mntfs_freevp(devvp); 1038 return (EBUSY); 1039 } 1040 g_topology_lock(); 1041 error = g_vfs_open(devvp, &cp, "ffs", ronly ? 0 : 1); 1042 g_topology_unlock(); 1043 if (error != 0) { 1044 atomic_store_rel_ptr((uintptr_t *)&dev->si_mountpt, 0); 1045 mntfs_freevp(devvp); 1046 return (error); 1047 } 1048 dev_ref(dev); 1049 devvp->v_bufobj.bo_ops = &ffs_ops; 1050 BO_LOCK(&odevvp->v_bufobj); 1051 odevvp->v_bufobj.bo_flag |= BO_NOBUFS; 1052 BO_UNLOCK(&odevvp->v_bufobj); 1053 if (dev->si_iosize_max != 0) 1054 mp->mnt_iosize_max = dev->si_iosize_max; 1055 if (mp->mnt_iosize_max > maxphys) 1056 mp->mnt_iosize_max = maxphys; 1057 if ((SBLOCKSIZE % cp->provider->sectorsize) != 0) { 1058 error = EINVAL; 1059 vfs_mount_error(mp, 1060 "Invalid sectorsize %d for superblock size %d", 1061 cp->provider->sectorsize, SBLOCKSIZE); 1062 goto out; 1063 } 1064 /* fetch the superblock and summary information */ 1065 loc = STDSB; 1066 if ((mp->mnt_flag & MNT_ROOTFS) != 0) 1067 loc = STDSB_NOHASHFAIL; 1068 if ((error = ffs_sbget(devvp, &fs, loc, M_UFSMNT, ffs_use_bread)) != 0) 1069 goto out; 1070 fs->fs_flags &= ~FS_UNCLEAN; 1071 if (fs->fs_clean == 0) { 1072 fs->fs_flags |= FS_UNCLEAN; 1073 if (ronly || (mp->mnt_flag & MNT_FORCE) || 1074 ((fs->fs_flags & (FS_SUJ | FS_NEEDSFSCK)) == 0 && 1075 (fs->fs_flags & FS_DOSOFTDEP))) { 1076 printf("WARNING: %s was not properly dismounted\n", 1077 fs->fs_fsmnt); 1078 } else { 1079 vfs_mount_error(mp, "R/W mount of %s denied. %s%s", 1080 fs->fs_fsmnt, "Filesystem is not clean - run fsck.", 1081 (fs->fs_flags & FS_SUJ) == 0 ? "" : 1082 " Forced mount will invalidate journal contents"); 1083 error = EPERM; 1084 goto out; 1085 } 1086 if ((fs->fs_pendingblocks != 0 || fs->fs_pendinginodes != 0) && 1087 (mp->mnt_flag & MNT_FORCE)) { 1088 printf("WARNING: %s: lost blocks %jd files %d\n", 1089 fs->fs_fsmnt, (intmax_t)fs->fs_pendingblocks, 1090 fs->fs_pendinginodes); 1091 fs->fs_pendingblocks = 0; 1092 fs->fs_pendinginodes = 0; 1093 } 1094 } 1095 if (fs->fs_pendingblocks != 0 || fs->fs_pendinginodes != 0) { 1096 printf("WARNING: %s: mount pending error: blocks %jd " 1097 "files %d\n", fs->fs_fsmnt, (intmax_t)fs->fs_pendingblocks, 1098 fs->fs_pendinginodes); 1099 fs->fs_pendingblocks = 0; 1100 fs->fs_pendinginodes = 0; 1101 } 1102 if ((fs->fs_flags & FS_GJOURNAL) != 0) { 1103 #ifdef UFS_GJOURNAL 1104 /* 1105 * Get journal provider name. 1106 */ 1107 len = 1024; 1108 mp->mnt_gjprovider = malloc((u_long)len, M_UFSMNT, M_WAITOK); 1109 if (g_io_getattr("GJOURNAL::provider", cp, &len, 1110 mp->mnt_gjprovider) == 0) { 1111 mp->mnt_gjprovider = realloc(mp->mnt_gjprovider, len, 1112 M_UFSMNT, M_WAITOK); 1113 MNT_ILOCK(mp); 1114 mp->mnt_flag |= MNT_GJOURNAL; 1115 MNT_IUNLOCK(mp); 1116 } else { 1117 printf("WARNING: %s: GJOURNAL flag on fs " 1118 "but no gjournal provider below\n", 1119 mp->mnt_stat.f_mntonname); 1120 free(mp->mnt_gjprovider, M_UFSMNT); 1121 mp->mnt_gjprovider = NULL; 1122 } 1123 #else 1124 printf("WARNING: %s: GJOURNAL flag on fs but no " 1125 "UFS_GJOURNAL support\n", mp->mnt_stat.f_mntonname); 1126 #endif 1127 } else { 1128 mp->mnt_gjprovider = NULL; 1129 } 1130 ump = malloc(sizeof *ump, M_UFSMNT, M_WAITOK | M_ZERO); 1131 ump->um_cp = cp; 1132 ump->um_bo = &devvp->v_bufobj; 1133 ump->um_fs = fs; 1134 if (fs->fs_magic == FS_UFS1_MAGIC) { 1135 ump->um_fstype = UFS1; 1136 ump->um_balloc = ffs_balloc_ufs1; 1137 } else { 1138 ump->um_fstype = UFS2; 1139 ump->um_balloc = ffs_balloc_ufs2; 1140 } 1141 ump->um_blkatoff = ffs_blkatoff; 1142 ump->um_truncate = ffs_truncate; 1143 ump->um_update = ffs_update; 1144 ump->um_valloc = ffs_valloc; 1145 ump->um_vfree = ffs_vfree; 1146 ump->um_ifree = ffs_ifree; 1147 ump->um_rdonly = ffs_rdonly; 1148 ump->um_snapgone = ffs_snapgone; 1149 if ((mp->mnt_flag & MNT_UNTRUSTED) != 0) 1150 ump->um_check_blkno = ffs_check_blkno; 1151 else 1152 ump->um_check_blkno = NULL; 1153 mtx_init(UFS_MTX(ump), "FFS", "FFS Lock", MTX_DEF); 1154 ffs_oldfscompat_read(fs, ump, fs->fs_sblockloc); 1155 fs->fs_ronly = ronly; 1156 fs->fs_active = NULL; 1157 mp->mnt_data = ump; 1158 mp->mnt_stat.f_fsid.val[0] = fs->fs_id[0]; 1159 mp->mnt_stat.f_fsid.val[1] = fs->fs_id[1]; 1160 nmp = NULL; 1161 if (fs->fs_id[0] == 0 || fs->fs_id[1] == 0 || 1162 (nmp = vfs_getvfs(&mp->mnt_stat.f_fsid))) { 1163 if (nmp) 1164 vfs_rel(nmp); 1165 vfs_getnewfsid(mp); 1166 } 1167 ump->um_maxsymlinklen = fs->fs_maxsymlinklen; 1168 MNT_ILOCK(mp); 1169 mp->mnt_flag |= MNT_LOCAL; 1170 MNT_IUNLOCK(mp); 1171 if ((fs->fs_flags & FS_MULTILABEL) != 0) { 1172 #ifdef MAC 1173 MNT_ILOCK(mp); 1174 mp->mnt_flag |= MNT_MULTILABEL; 1175 MNT_IUNLOCK(mp); 1176 #else 1177 printf("WARNING: %s: multilabel flag on fs but " 1178 "no MAC support\n", mp->mnt_stat.f_mntonname); 1179 #endif 1180 } 1181 if ((fs->fs_flags & FS_ACLS) != 0) { 1182 #ifdef UFS_ACL 1183 MNT_ILOCK(mp); 1184 1185 if (mp->mnt_flag & MNT_NFS4ACLS) 1186 printf("WARNING: %s: ACLs flag on fs conflicts with " 1187 "\"nfsv4acls\" mount option; option ignored\n", 1188 mp->mnt_stat.f_mntonname); 1189 mp->mnt_flag &= ~MNT_NFS4ACLS; 1190 mp->mnt_flag |= MNT_ACLS; 1191 1192 MNT_IUNLOCK(mp); 1193 #else 1194 printf("WARNING: %s: ACLs flag on fs but no ACLs support\n", 1195 mp->mnt_stat.f_mntonname); 1196 #endif 1197 } 1198 if ((fs->fs_flags & FS_NFS4ACLS) != 0) { 1199 #ifdef UFS_ACL 1200 MNT_ILOCK(mp); 1201 1202 if (mp->mnt_flag & MNT_ACLS) 1203 printf("WARNING: %s: NFSv4 ACLs flag on fs conflicts " 1204 "with \"acls\" mount option; option ignored\n", 1205 mp->mnt_stat.f_mntonname); 1206 mp->mnt_flag &= ~MNT_ACLS; 1207 mp->mnt_flag |= MNT_NFS4ACLS; 1208 1209 MNT_IUNLOCK(mp); 1210 #else 1211 printf("WARNING: %s: NFSv4 ACLs flag on fs but no " 1212 "ACLs support\n", mp->mnt_stat.f_mntonname); 1213 #endif 1214 } 1215 if ((fs->fs_flags & FS_TRIM) != 0) { 1216 len = sizeof(int); 1217 if (g_io_getattr("GEOM::candelete", cp, &len, 1218 &candelete) == 0) { 1219 if (candelete) 1220 ump->um_flags |= UM_CANDELETE; 1221 else 1222 printf("WARNING: %s: TRIM flag on fs but disk " 1223 "does not support TRIM\n", 1224 mp->mnt_stat.f_mntonname); 1225 } else { 1226 printf("WARNING: %s: TRIM flag on fs but disk does " 1227 "not confirm that it supports TRIM\n", 1228 mp->mnt_stat.f_mntonname); 1229 } 1230 if (((ump->um_flags) & UM_CANDELETE) != 0) { 1231 ump->um_trim_tq = taskqueue_create("trim", M_WAITOK, 1232 taskqueue_thread_enqueue, &ump->um_trim_tq); 1233 taskqueue_start_threads(&ump->um_trim_tq, 1, PVFS, 1234 "%s trim", mp->mnt_stat.f_mntonname); 1235 ump->um_trimhash = hashinit(MAXTRIMIO, M_TRIM, 1236 &ump->um_trimlisthashsize); 1237 } 1238 } 1239 1240 len = sizeof(int); 1241 if (g_io_getattr("GEOM::canspeedup", cp, &len, &canspeedup) == 0) { 1242 if (canspeedup) 1243 ump->um_flags |= UM_CANSPEEDUP; 1244 } 1245 1246 ump->um_mountp = mp; 1247 ump->um_dev = dev; 1248 ump->um_devvp = devvp; 1249 ump->um_odevvp = odevvp; 1250 ump->um_nindir = fs->fs_nindir; 1251 ump->um_bptrtodb = fs->fs_fsbtodb; 1252 ump->um_seqinc = fs->fs_frag; 1253 for (i = 0; i < MAXQUOTAS; i++) 1254 ump->um_quotas[i] = NULLVP; 1255 #ifdef UFS_EXTATTR 1256 ufs_extattr_uepm_init(&ump->um_extattr); 1257 #endif 1258 /* 1259 * Set FS local "last mounted on" information (NULL pad) 1260 */ 1261 bzero(fs->fs_fsmnt, MAXMNTLEN); 1262 strlcpy(fs->fs_fsmnt, mp->mnt_stat.f_mntonname, MAXMNTLEN); 1263 mp->mnt_stat.f_iosize = fs->fs_bsize; 1264 1265 if (mp->mnt_flag & MNT_ROOTFS) { 1266 /* 1267 * Root mount; update timestamp in mount structure. 1268 * this will be used by the common root mount code 1269 * to update the system clock. 1270 */ 1271 mp->mnt_time = fs->fs_time; 1272 } 1273 1274 if (ronly == 0) { 1275 fs->fs_mtime = time_second; 1276 if ((fs->fs_flags & FS_DOSOFTDEP) && 1277 (error = softdep_mount(devvp, mp, fs, cred)) != 0) { 1278 ffs_flushfiles(mp, FORCECLOSE, td); 1279 goto out; 1280 } 1281 if (fs->fs_snapinum[0] != 0) 1282 ffs_snapshot_mount(mp); 1283 fs->fs_fmod = 1; 1284 fs->fs_clean = 0; 1285 (void) ffs_sbupdate(ump, MNT_WAIT, 0); 1286 } 1287 /* 1288 * Initialize filesystem state information in mount struct. 1289 */ 1290 MNT_ILOCK(mp); 1291 mp->mnt_kern_flag |= MNTK_LOOKUP_SHARED | MNTK_EXTENDED_SHARED | 1292 MNTK_NO_IOPF | MNTK_UNMAPPED_BUFS | MNTK_USES_BCACHE; 1293 MNT_IUNLOCK(mp); 1294 #ifdef UFS_EXTATTR 1295 #ifdef UFS_EXTATTR_AUTOSTART 1296 /* 1297 * 1298 * Auto-starting does the following: 1299 * - check for /.attribute in the fs, and extattr_start if so 1300 * - for each file in .attribute, enable that file with 1301 * an attribute of the same name. 1302 * Not clear how to report errors -- probably eat them. 1303 * This would all happen while the filesystem was busy/not 1304 * available, so would effectively be "atomic". 1305 */ 1306 (void) ufs_extattr_autostart(mp, td); 1307 #endif /* !UFS_EXTATTR_AUTOSTART */ 1308 #endif /* !UFS_EXTATTR */ 1309 return (0); 1310 out: 1311 if (fs != NULL) { 1312 free(fs->fs_csp, M_UFSMNT); 1313 free(fs->fs_si, M_UFSMNT); 1314 free(fs, M_UFSMNT); 1315 } 1316 if (cp != NULL) { 1317 g_topology_lock(); 1318 g_vfs_close(cp); 1319 g_topology_unlock(); 1320 } 1321 if (ump) { 1322 mtx_destroy(UFS_MTX(ump)); 1323 if (mp->mnt_gjprovider != NULL) { 1324 free(mp->mnt_gjprovider, M_UFSMNT); 1325 mp->mnt_gjprovider = NULL; 1326 } 1327 MPASS(ump->um_softdep == NULL); 1328 free(ump, M_UFSMNT); 1329 mp->mnt_data = NULL; 1330 } 1331 BO_LOCK(&odevvp->v_bufobj); 1332 odevvp->v_bufobj.bo_flag &= ~BO_NOBUFS; 1333 BO_UNLOCK(&odevvp->v_bufobj); 1334 atomic_store_rel_ptr((uintptr_t *)&dev->si_mountpt, 0); 1335 mntfs_freevp(devvp); 1336 dev_rel(dev); 1337 return (error); 1338 } 1339 1340 /* 1341 * A read function for use by filesystem-layer routines. 1342 */ 1343 static int 1344 ffs_use_bread(void *devfd, off_t loc, void **bufp, int size) 1345 { 1346 struct buf *bp; 1347 int error; 1348 1349 KASSERT(*bufp == NULL, ("ffs_use_bread: non-NULL *bufp %p\n", *bufp)); 1350 *bufp = malloc(size, M_UFSMNT, M_WAITOK); 1351 if ((error = bread((struct vnode *)devfd, btodb(loc), size, NOCRED, 1352 &bp)) != 0) 1353 return (error); 1354 bcopy(bp->b_data, *bufp, size); 1355 bp->b_flags |= B_INVAL | B_NOCACHE; 1356 brelse(bp); 1357 return (0); 1358 } 1359 1360 static int bigcgs = 0; 1361 SYSCTL_INT(_debug, OID_AUTO, bigcgs, CTLFLAG_RW, &bigcgs, 0, ""); 1362 1363 /* 1364 * Sanity checks for loading old filesystem superblocks. 1365 * See ffs_oldfscompat_write below for unwound actions. 1366 * 1367 * XXX - Parts get retired eventually. 1368 * Unfortunately new bits get added. 1369 */ 1370 static void 1371 ffs_oldfscompat_read(fs, ump, sblockloc) 1372 struct fs *fs; 1373 struct ufsmount *ump; 1374 ufs2_daddr_t sblockloc; 1375 { 1376 off_t maxfilesize; 1377 1378 /* 1379 * If not yet done, update fs_flags location and value of fs_sblockloc. 1380 */ 1381 if ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0) { 1382 fs->fs_flags = fs->fs_old_flags; 1383 fs->fs_old_flags |= FS_FLAGS_UPDATED; 1384 fs->fs_sblockloc = sblockloc; 1385 } 1386 /* 1387 * If not yet done, update UFS1 superblock with new wider fields. 1388 */ 1389 if (fs->fs_magic == FS_UFS1_MAGIC && fs->fs_maxbsize != fs->fs_bsize) { 1390 fs->fs_maxbsize = fs->fs_bsize; 1391 fs->fs_time = fs->fs_old_time; 1392 fs->fs_size = fs->fs_old_size; 1393 fs->fs_dsize = fs->fs_old_dsize; 1394 fs->fs_csaddr = fs->fs_old_csaddr; 1395 fs->fs_cstotal.cs_ndir = fs->fs_old_cstotal.cs_ndir; 1396 fs->fs_cstotal.cs_nbfree = fs->fs_old_cstotal.cs_nbfree; 1397 fs->fs_cstotal.cs_nifree = fs->fs_old_cstotal.cs_nifree; 1398 fs->fs_cstotal.cs_nffree = fs->fs_old_cstotal.cs_nffree; 1399 } 1400 if (fs->fs_magic == FS_UFS1_MAGIC && 1401 fs->fs_old_inodefmt < FS_44INODEFMT) { 1402 fs->fs_maxfilesize = ((uint64_t)1 << 31) - 1; 1403 fs->fs_qbmask = ~fs->fs_bmask; 1404 fs->fs_qfmask = ~fs->fs_fmask; 1405 } 1406 if (fs->fs_magic == FS_UFS1_MAGIC) { 1407 ump->um_savedmaxfilesize = fs->fs_maxfilesize; 1408 maxfilesize = (uint64_t)0x80000000 * fs->fs_bsize - 1; 1409 if (fs->fs_maxfilesize > maxfilesize) 1410 fs->fs_maxfilesize = maxfilesize; 1411 } 1412 /* Compatibility for old filesystems */ 1413 if (fs->fs_avgfilesize <= 0) 1414 fs->fs_avgfilesize = AVFILESIZ; 1415 if (fs->fs_avgfpdir <= 0) 1416 fs->fs_avgfpdir = AFPDIR; 1417 if (bigcgs) { 1418 fs->fs_save_cgsize = fs->fs_cgsize; 1419 fs->fs_cgsize = fs->fs_bsize; 1420 } 1421 } 1422 1423 /* 1424 * Unwinding superblock updates for old filesystems. 1425 * See ffs_oldfscompat_read above for details. 1426 * 1427 * XXX - Parts get retired eventually. 1428 * Unfortunately new bits get added. 1429 */ 1430 void 1431 ffs_oldfscompat_write(fs, ump) 1432 struct fs *fs; 1433 struct ufsmount *ump; 1434 { 1435 1436 /* 1437 * Copy back UFS2 updated fields that UFS1 inspects. 1438 */ 1439 if (fs->fs_magic == FS_UFS1_MAGIC) { 1440 fs->fs_old_time = fs->fs_time; 1441 fs->fs_old_cstotal.cs_ndir = fs->fs_cstotal.cs_ndir; 1442 fs->fs_old_cstotal.cs_nbfree = fs->fs_cstotal.cs_nbfree; 1443 fs->fs_old_cstotal.cs_nifree = fs->fs_cstotal.cs_nifree; 1444 fs->fs_old_cstotal.cs_nffree = fs->fs_cstotal.cs_nffree; 1445 fs->fs_maxfilesize = ump->um_savedmaxfilesize; 1446 } 1447 if (bigcgs) { 1448 fs->fs_cgsize = fs->fs_save_cgsize; 1449 fs->fs_save_cgsize = 0; 1450 } 1451 } 1452 1453 /* 1454 * unmount system call 1455 */ 1456 static int 1457 ffs_unmount(mp, mntflags) 1458 struct mount *mp; 1459 int mntflags; 1460 { 1461 struct thread *td; 1462 struct ufsmount *ump = VFSTOUFS(mp); 1463 struct fs *fs; 1464 int error, flags, susp; 1465 #ifdef UFS_EXTATTR 1466 int e_restart; 1467 #endif 1468 1469 flags = 0; 1470 td = curthread; 1471 fs = ump->um_fs; 1472 if (mntflags & MNT_FORCE) 1473 flags |= FORCECLOSE; 1474 susp = fs->fs_ronly == 0; 1475 #ifdef UFS_EXTATTR 1476 if ((error = ufs_extattr_stop(mp, td))) { 1477 if (error != EOPNOTSUPP) 1478 printf("WARNING: unmount %s: ufs_extattr_stop " 1479 "returned errno %d\n", mp->mnt_stat.f_mntonname, 1480 error); 1481 e_restart = 0; 1482 } else { 1483 ufs_extattr_uepm_destroy(&ump->um_extattr); 1484 e_restart = 1; 1485 } 1486 #endif 1487 if (susp) { 1488 error = vfs_write_suspend_umnt(mp); 1489 if (error != 0) 1490 goto fail1; 1491 } 1492 if (MOUNTEDSOFTDEP(mp)) 1493 error = softdep_flushfiles(mp, flags, td); 1494 else 1495 error = ffs_flushfiles(mp, flags, td); 1496 if (error != 0 && !ffs_fsfail_cleanup(ump, error)) 1497 goto fail; 1498 1499 UFS_LOCK(ump); 1500 if (fs->fs_pendingblocks != 0 || fs->fs_pendinginodes != 0) { 1501 printf("WARNING: unmount %s: pending error: blocks %jd " 1502 "files %d\n", fs->fs_fsmnt, (intmax_t)fs->fs_pendingblocks, 1503 fs->fs_pendinginodes); 1504 fs->fs_pendingblocks = 0; 1505 fs->fs_pendinginodes = 0; 1506 } 1507 UFS_UNLOCK(ump); 1508 if (MOUNTEDSOFTDEP(mp)) 1509 softdep_unmount(mp); 1510 MPASS(ump->um_softdep == NULL); 1511 if (fs->fs_ronly == 0 || ump->um_fsckpid > 0) { 1512 fs->fs_clean = fs->fs_flags & (FS_UNCLEAN|FS_NEEDSFSCK) ? 0 : 1; 1513 error = ffs_sbupdate(ump, MNT_WAIT, 0); 1514 if (ffs_fsfail_cleanup(ump, error)) 1515 error = 0; 1516 if (error != 0 && !ffs_fsfail_cleanup(ump, error)) { 1517 fs->fs_clean = 0; 1518 goto fail; 1519 } 1520 } 1521 if (susp) 1522 vfs_write_resume(mp, VR_START_WRITE); 1523 if (ump->um_trim_tq != NULL) { 1524 while (ump->um_trim_inflight != 0) 1525 pause("ufsutr", hz); 1526 taskqueue_drain_all(ump->um_trim_tq); 1527 taskqueue_free(ump->um_trim_tq); 1528 free (ump->um_trimhash, M_TRIM); 1529 } 1530 g_topology_lock(); 1531 if (ump->um_fsckpid > 0) { 1532 /* 1533 * Return to normal read-only mode. 1534 */ 1535 error = g_access(ump->um_cp, 0, -1, 0); 1536 ump->um_fsckpid = 0; 1537 } 1538 g_vfs_close(ump->um_cp); 1539 g_topology_unlock(); 1540 BO_LOCK(&ump->um_odevvp->v_bufobj); 1541 ump->um_odevvp->v_bufobj.bo_flag &= ~BO_NOBUFS; 1542 BO_UNLOCK(&ump->um_odevvp->v_bufobj); 1543 atomic_store_rel_ptr((uintptr_t *)&ump->um_dev->si_mountpt, 0); 1544 mntfs_freevp(ump->um_devvp); 1545 vrele(ump->um_odevvp); 1546 dev_rel(ump->um_dev); 1547 mtx_destroy(UFS_MTX(ump)); 1548 if (mp->mnt_gjprovider != NULL) { 1549 free(mp->mnt_gjprovider, M_UFSMNT); 1550 mp->mnt_gjprovider = NULL; 1551 } 1552 free(fs->fs_csp, M_UFSMNT); 1553 free(fs->fs_si, M_UFSMNT); 1554 free(fs, M_UFSMNT); 1555 free(ump, M_UFSMNT); 1556 mp->mnt_data = NULL; 1557 MNT_ILOCK(mp); 1558 mp->mnt_flag &= ~MNT_LOCAL; 1559 MNT_IUNLOCK(mp); 1560 if (td->td_su == mp) { 1561 td->td_su = NULL; 1562 vfs_rel(mp); 1563 } 1564 return (error); 1565 1566 fail: 1567 if (susp) 1568 vfs_write_resume(mp, VR_START_WRITE); 1569 fail1: 1570 #ifdef UFS_EXTATTR 1571 if (e_restart) { 1572 ufs_extattr_uepm_init(&ump->um_extattr); 1573 #ifdef UFS_EXTATTR_AUTOSTART 1574 (void) ufs_extattr_autostart(mp, td); 1575 #endif 1576 } 1577 #endif 1578 1579 return (error); 1580 } 1581 1582 /* 1583 * Flush out all the files in a filesystem. 1584 */ 1585 int 1586 ffs_flushfiles(mp, flags, td) 1587 struct mount *mp; 1588 int flags; 1589 struct thread *td; 1590 { 1591 struct ufsmount *ump; 1592 int qerror, error; 1593 1594 ump = VFSTOUFS(mp); 1595 qerror = 0; 1596 #ifdef QUOTA 1597 if (mp->mnt_flag & MNT_QUOTA) { 1598 int i; 1599 error = vflush(mp, 0, SKIPSYSTEM|flags, td); 1600 if (error) 1601 return (error); 1602 for (i = 0; i < MAXQUOTAS; i++) { 1603 error = quotaoff(td, mp, i); 1604 if (error != 0) { 1605 if ((flags & EARLYFLUSH) == 0) 1606 return (error); 1607 else 1608 qerror = error; 1609 } 1610 } 1611 1612 /* 1613 * Here we fall through to vflush again to ensure that 1614 * we have gotten rid of all the system vnodes, unless 1615 * quotas must not be closed. 1616 */ 1617 } 1618 #endif 1619 ASSERT_VOP_LOCKED(ump->um_devvp, "ffs_flushfiles"); 1620 if (ump->um_devvp->v_vflag & VV_COPYONWRITE) { 1621 if ((error = vflush(mp, 0, SKIPSYSTEM | flags, td)) != 0) 1622 return (error); 1623 ffs_snapshot_unmount(mp); 1624 flags |= FORCECLOSE; 1625 /* 1626 * Here we fall through to vflush again to ensure 1627 * that we have gotten rid of all the system vnodes. 1628 */ 1629 } 1630 1631 /* 1632 * Do not close system files if quotas were not closed, to be 1633 * able to sync the remaining dquots. The freeblks softupdate 1634 * workitems might hold a reference on a dquot, preventing 1635 * quotaoff() from completing. Next round of 1636 * softdep_flushworklist() iteration should process the 1637 * blockers, allowing the next run of quotaoff() to finally 1638 * flush held dquots. 1639 * 1640 * Otherwise, flush all the files. 1641 */ 1642 if (qerror == 0 && (error = vflush(mp, 0, flags, td)) != 0) 1643 return (error); 1644 1645 /* 1646 * Flush filesystem metadata. 1647 */ 1648 vn_lock(ump->um_devvp, LK_EXCLUSIVE | LK_RETRY); 1649 error = VOP_FSYNC(ump->um_devvp, MNT_WAIT, td); 1650 VOP_UNLOCK(ump->um_devvp); 1651 return (error); 1652 } 1653 1654 /* 1655 * Get filesystem statistics. 1656 */ 1657 static int 1658 ffs_statfs(mp, sbp) 1659 struct mount *mp; 1660 struct statfs *sbp; 1661 { 1662 struct ufsmount *ump; 1663 struct fs *fs; 1664 1665 ump = VFSTOUFS(mp); 1666 fs = ump->um_fs; 1667 if (fs->fs_magic != FS_UFS1_MAGIC && fs->fs_magic != FS_UFS2_MAGIC) 1668 panic("ffs_statfs"); 1669 sbp->f_version = STATFS_VERSION; 1670 sbp->f_bsize = fs->fs_fsize; 1671 sbp->f_iosize = fs->fs_bsize; 1672 sbp->f_blocks = fs->fs_dsize; 1673 UFS_LOCK(ump); 1674 sbp->f_bfree = fs->fs_cstotal.cs_nbfree * fs->fs_frag + 1675 fs->fs_cstotal.cs_nffree + dbtofsb(fs, fs->fs_pendingblocks); 1676 sbp->f_bavail = freespace(fs, fs->fs_minfree) + 1677 dbtofsb(fs, fs->fs_pendingblocks); 1678 sbp->f_files = fs->fs_ncg * fs->fs_ipg - UFS_ROOTINO; 1679 sbp->f_ffree = fs->fs_cstotal.cs_nifree + fs->fs_pendinginodes; 1680 UFS_UNLOCK(ump); 1681 sbp->f_namemax = UFS_MAXNAMLEN; 1682 return (0); 1683 } 1684 1685 static bool 1686 sync_doupdate(struct inode *ip) 1687 { 1688 1689 return ((ip->i_flag & (IN_ACCESS | IN_CHANGE | IN_MODIFIED | 1690 IN_UPDATE)) != 0); 1691 } 1692 1693 static int 1694 ffs_sync_lazy_filter(struct vnode *vp, void *arg __unused) 1695 { 1696 struct inode *ip; 1697 1698 /* 1699 * Flags are safe to access because ->v_data invalidation 1700 * is held off by listmtx. 1701 */ 1702 if (vp->v_type == VNON) 1703 return (false); 1704 ip = VTOI(vp); 1705 if (!sync_doupdate(ip) && (vp->v_iflag & VI_OWEINACT) == 0) 1706 return (false); 1707 return (true); 1708 } 1709 1710 /* 1711 * For a lazy sync, we only care about access times, quotas and the 1712 * superblock. Other filesystem changes are already converted to 1713 * cylinder group blocks or inode blocks updates and are written to 1714 * disk by syncer. 1715 */ 1716 static int 1717 ffs_sync_lazy(mp) 1718 struct mount *mp; 1719 { 1720 struct vnode *mvp, *vp; 1721 struct inode *ip; 1722 struct thread *td; 1723 int allerror, error; 1724 1725 allerror = 0; 1726 td = curthread; 1727 if ((mp->mnt_flag & MNT_NOATIME) != 0) { 1728 #ifdef QUOTA 1729 qsync(mp); 1730 #endif 1731 goto sbupdate; 1732 } 1733 MNT_VNODE_FOREACH_LAZY(vp, mp, mvp, ffs_sync_lazy_filter, NULL) { 1734 if (vp->v_type == VNON) { 1735 VI_UNLOCK(vp); 1736 continue; 1737 } 1738 ip = VTOI(vp); 1739 1740 /* 1741 * The IN_ACCESS flag is converted to IN_MODIFIED by 1742 * ufs_close() and ufs_getattr() by the calls to 1743 * ufs_itimes_locked(), without subsequent UFS_UPDATE(). 1744 * Test also all the other timestamp flags too, to pick up 1745 * any other cases that could be missed. 1746 */ 1747 if (!sync_doupdate(ip) && (vp->v_iflag & VI_OWEINACT) == 0) { 1748 VI_UNLOCK(vp); 1749 continue; 1750 } 1751 if ((error = vget(vp, LK_EXCLUSIVE | LK_NOWAIT | LK_INTERLOCK)) != 0) 1752 continue; 1753 #ifdef QUOTA 1754 qsyncvp(vp); 1755 #endif 1756 if (sync_doupdate(ip)) 1757 error = ffs_update(vp, 0); 1758 if (error != 0) 1759 allerror = error; 1760 vput(vp); 1761 } 1762 sbupdate: 1763 if (VFSTOUFS(mp)->um_fs->fs_fmod != 0 && 1764 (error = ffs_sbupdate(VFSTOUFS(mp), MNT_LAZY, 0)) != 0) 1765 allerror = error; 1766 return (allerror); 1767 } 1768 1769 /* 1770 * Go through the disk queues to initiate sandbagged IO; 1771 * go through the inodes to write those that have been modified; 1772 * initiate the writing of the super block if it has been modified. 1773 * 1774 * Note: we are always called with the filesystem marked busy using 1775 * vfs_busy(). 1776 */ 1777 static int 1778 ffs_sync(mp, waitfor) 1779 struct mount *mp; 1780 int waitfor; 1781 { 1782 struct vnode *mvp, *vp, *devvp; 1783 struct thread *td; 1784 struct inode *ip; 1785 struct ufsmount *ump = VFSTOUFS(mp); 1786 struct fs *fs; 1787 int error, count, lockreq, allerror = 0; 1788 int suspend; 1789 int suspended; 1790 int secondary_writes; 1791 int secondary_accwrites; 1792 int softdep_deps; 1793 int softdep_accdeps; 1794 struct bufobj *bo; 1795 1796 suspend = 0; 1797 suspended = 0; 1798 td = curthread; 1799 fs = ump->um_fs; 1800 if (fs->fs_fmod != 0 && fs->fs_ronly != 0 && ump->um_fsckpid == 0) 1801 panic("%s: ffs_sync: modification on read-only filesystem", 1802 fs->fs_fsmnt); 1803 if (waitfor == MNT_LAZY) { 1804 if (!rebooting) 1805 return (ffs_sync_lazy(mp)); 1806 waitfor = MNT_NOWAIT; 1807 } 1808 1809 /* 1810 * Write back each (modified) inode. 1811 */ 1812 lockreq = LK_EXCLUSIVE | LK_NOWAIT; 1813 if (waitfor == MNT_SUSPEND) { 1814 suspend = 1; 1815 waitfor = MNT_WAIT; 1816 } 1817 if (waitfor == MNT_WAIT) 1818 lockreq = LK_EXCLUSIVE; 1819 lockreq |= LK_INTERLOCK | LK_SLEEPFAIL; 1820 loop: 1821 /* Grab snapshot of secondary write counts */ 1822 MNT_ILOCK(mp); 1823 secondary_writes = mp->mnt_secondary_writes; 1824 secondary_accwrites = mp->mnt_secondary_accwrites; 1825 MNT_IUNLOCK(mp); 1826 1827 /* Grab snapshot of softdep dependency counts */ 1828 softdep_get_depcounts(mp, &softdep_deps, &softdep_accdeps); 1829 1830 MNT_VNODE_FOREACH_ALL(vp, mp, mvp) { 1831 /* 1832 * Depend on the vnode interlock to keep things stable enough 1833 * for a quick test. Since there might be hundreds of 1834 * thousands of vnodes, we cannot afford even a subroutine 1835 * call unless there's a good chance that we have work to do. 1836 */ 1837 if (vp->v_type == VNON) { 1838 VI_UNLOCK(vp); 1839 continue; 1840 } 1841 ip = VTOI(vp); 1842 if ((ip->i_flag & 1843 (IN_ACCESS | IN_CHANGE | IN_MODIFIED | IN_UPDATE)) == 0 && 1844 vp->v_bufobj.bo_dirty.bv_cnt == 0) { 1845 VI_UNLOCK(vp); 1846 continue; 1847 } 1848 if ((error = vget(vp, lockreq)) != 0) { 1849 if (error == ENOENT || error == ENOLCK) { 1850 MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp); 1851 goto loop; 1852 } 1853 continue; 1854 } 1855 #ifdef QUOTA 1856 qsyncvp(vp); 1857 #endif 1858 for (;;) { 1859 error = ffs_syncvnode(vp, waitfor, 0); 1860 if (error == ERELOOKUP) 1861 continue; 1862 if (error != 0) 1863 allerror = error; 1864 break; 1865 } 1866 vput(vp); 1867 } 1868 /* 1869 * Force stale filesystem control information to be flushed. 1870 */ 1871 if (waitfor == MNT_WAIT || rebooting) { 1872 if ((error = softdep_flushworklist(ump->um_mountp, &count, td))) 1873 allerror = error; 1874 if (ffs_fsfail_cleanup(ump, allerror)) 1875 allerror = 0; 1876 /* Flushed work items may create new vnodes to clean */ 1877 if (allerror == 0 && count) 1878 goto loop; 1879 } 1880 1881 devvp = ump->um_devvp; 1882 bo = &devvp->v_bufobj; 1883 BO_LOCK(bo); 1884 if (bo->bo_numoutput > 0 || bo->bo_dirty.bv_cnt > 0) { 1885 BO_UNLOCK(bo); 1886 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY); 1887 error = VOP_FSYNC(devvp, waitfor, td); 1888 VOP_UNLOCK(devvp); 1889 if (MOUNTEDSOFTDEP(mp) && (error == 0 || error == EAGAIN)) 1890 error = ffs_sbupdate(ump, waitfor, 0); 1891 if (error != 0) 1892 allerror = error; 1893 if (ffs_fsfail_cleanup(ump, allerror)) 1894 allerror = 0; 1895 if (allerror == 0 && waitfor == MNT_WAIT) 1896 goto loop; 1897 } else if (suspend != 0) { 1898 if (softdep_check_suspend(mp, 1899 devvp, 1900 softdep_deps, 1901 softdep_accdeps, 1902 secondary_writes, 1903 secondary_accwrites) != 0) { 1904 MNT_IUNLOCK(mp); 1905 goto loop; /* More work needed */ 1906 } 1907 mtx_assert(MNT_MTX(mp), MA_OWNED); 1908 mp->mnt_kern_flag |= MNTK_SUSPEND2 | MNTK_SUSPENDED; 1909 MNT_IUNLOCK(mp); 1910 suspended = 1; 1911 } else 1912 BO_UNLOCK(bo); 1913 /* 1914 * Write back modified superblock. 1915 */ 1916 if (fs->fs_fmod != 0 && 1917 (error = ffs_sbupdate(ump, waitfor, suspended)) != 0) 1918 allerror = error; 1919 if (ffs_fsfail_cleanup(ump, allerror)) 1920 allerror = 0; 1921 return (allerror); 1922 } 1923 1924 int 1925 ffs_vget(mp, ino, flags, vpp) 1926 struct mount *mp; 1927 ino_t ino; 1928 int flags; 1929 struct vnode **vpp; 1930 { 1931 return (ffs_vgetf(mp, ino, flags, vpp, 0)); 1932 } 1933 1934 int 1935 ffs_vgetf(mp, ino, flags, vpp, ffs_flags) 1936 struct mount *mp; 1937 ino_t ino; 1938 int flags; 1939 struct vnode **vpp; 1940 int ffs_flags; 1941 { 1942 struct fs *fs; 1943 struct inode *ip; 1944 struct ufsmount *ump; 1945 struct buf *bp; 1946 struct vnode *vp; 1947 daddr_t dbn; 1948 int error; 1949 1950 MPASS((ffs_flags & (FFSV_REPLACE | FFSV_REPLACE_DOOMED)) == 0 || 1951 (flags & LK_EXCLUSIVE) != 0); 1952 1953 error = vfs_hash_get(mp, ino, flags, curthread, vpp, NULL, NULL); 1954 if (error != 0) 1955 return (error); 1956 if (*vpp != NULL) { 1957 if ((ffs_flags & FFSV_REPLACE) == 0 || 1958 ((ffs_flags & FFSV_REPLACE_DOOMED) == 0 || 1959 !VN_IS_DOOMED(*vpp))) 1960 return (0); 1961 vgone(*vpp); 1962 vput(*vpp); 1963 } 1964 1965 /* 1966 * We must promote to an exclusive lock for vnode creation. This 1967 * can happen if lookup is passed LOCKSHARED. 1968 */ 1969 if ((flags & LK_TYPE_MASK) == LK_SHARED) { 1970 flags &= ~LK_TYPE_MASK; 1971 flags |= LK_EXCLUSIVE; 1972 } 1973 1974 /* 1975 * We do not lock vnode creation as it is believed to be too 1976 * expensive for such rare case as simultaneous creation of vnode 1977 * for same ino by different processes. We just allow them to race 1978 * and check later to decide who wins. Let the race begin! 1979 */ 1980 1981 ump = VFSTOUFS(mp); 1982 fs = ump->um_fs; 1983 ip = uma_zalloc_smr(uma_inode, M_WAITOK | M_ZERO); 1984 1985 /* Allocate a new vnode/inode. */ 1986 error = getnewvnode("ufs", mp, fs->fs_magic == FS_UFS1_MAGIC ? 1987 &ffs_vnodeops1 : &ffs_vnodeops2, &vp); 1988 if (error) { 1989 *vpp = NULL; 1990 uma_zfree_smr(uma_inode, ip); 1991 return (error); 1992 } 1993 /* 1994 * FFS supports recursive locking. 1995 */ 1996 lockmgr(vp->v_vnlock, LK_EXCLUSIVE, NULL); 1997 VN_LOCK_AREC(vp); 1998 vp->v_data = ip; 1999 vp->v_bufobj.bo_bsize = fs->fs_bsize; 2000 ip->i_vnode = vp; 2001 ip->i_ump = ump; 2002 ip->i_number = ino; 2003 ip->i_ea_refs = 0; 2004 ip->i_nextclustercg = -1; 2005 ip->i_flag = fs->fs_magic == FS_UFS1_MAGIC ? 0 : IN_UFS2; 2006 ip->i_mode = 0; /* ensure error cases below throw away vnode */ 2007 cluster_init_vn(&ip->i_clusterw); 2008 #ifdef DIAGNOSTIC 2009 ufs_init_trackers(ip); 2010 #endif 2011 #ifdef QUOTA 2012 { 2013 int i; 2014 for (i = 0; i < MAXQUOTAS; i++) 2015 ip->i_dquot[i] = NODQUOT; 2016 } 2017 #endif 2018 2019 if (ffs_flags & FFSV_FORCEINSMQ) 2020 vp->v_vflag |= VV_FORCEINSMQ; 2021 error = insmntque(vp, mp); 2022 if (error != 0) { 2023 uma_zfree_smr(uma_inode, ip); 2024 *vpp = NULL; 2025 return (error); 2026 } 2027 vp->v_vflag &= ~VV_FORCEINSMQ; 2028 error = vfs_hash_insert(vp, ino, flags, curthread, vpp, NULL, NULL); 2029 if (error != 0) 2030 return (error); 2031 if (*vpp != NULL) { 2032 /* 2033 * Calls from ffs_valloc() (i.e. FFSV_REPLACE set) 2034 * operate on empty inode, which must not be found by 2035 * other threads until fully filled. Vnode for empty 2036 * inode must be not re-inserted on the hash by other 2037 * thread, after removal by us at the beginning. 2038 */ 2039 MPASS((ffs_flags & FFSV_REPLACE) == 0); 2040 return (0); 2041 } 2042 2043 /* Read in the disk contents for the inode, copy into the inode. */ 2044 dbn = fsbtodb(fs, ino_to_fsba(fs, ino)); 2045 error = ffs_breadz(ump, ump->um_devvp, dbn, dbn, (int)fs->fs_bsize, 2046 NULL, NULL, 0, NOCRED, 0, NULL, &bp); 2047 if (error != 0) { 2048 /* 2049 * The inode does not contain anything useful, so it would 2050 * be misleading to leave it on its hash chain. With mode 2051 * still zero, it will be unlinked and returned to the free 2052 * list by vput(). 2053 */ 2054 vgone(vp); 2055 vput(vp); 2056 *vpp = NULL; 2057 return (error); 2058 } 2059 if (I_IS_UFS1(ip)) 2060 ip->i_din1 = uma_zalloc(uma_ufs1, M_WAITOK); 2061 else 2062 ip->i_din2 = uma_zalloc(uma_ufs2, M_WAITOK); 2063 if ((error = ffs_load_inode(bp, ip, fs, ino)) != 0) { 2064 bqrelse(bp); 2065 vgone(vp); 2066 vput(vp); 2067 *vpp = NULL; 2068 return (error); 2069 } 2070 if (DOINGSOFTDEP(vp) && (!fs->fs_ronly || 2071 (ffs_flags & FFSV_FORCEINODEDEP) != 0)) 2072 softdep_load_inodeblock(ip); 2073 else 2074 ip->i_effnlink = ip->i_nlink; 2075 bqrelse(bp); 2076 2077 /* 2078 * Initialize the vnode from the inode, check for aliases. 2079 * Note that the underlying vnode may have changed. 2080 */ 2081 error = ufs_vinit(mp, I_IS_UFS1(ip) ? &ffs_fifoops1 : &ffs_fifoops2, 2082 &vp); 2083 if (error) { 2084 vgone(vp); 2085 vput(vp); 2086 *vpp = NULL; 2087 return (error); 2088 } 2089 2090 /* 2091 * Finish inode initialization. 2092 */ 2093 if (vp->v_type != VFIFO) { 2094 /* FFS supports shared locking for all files except fifos. */ 2095 VN_LOCK_ASHARE(vp); 2096 } 2097 2098 /* 2099 * Set up a generation number for this inode if it does not 2100 * already have one. This should only happen on old filesystems. 2101 */ 2102 if (ip->i_gen == 0) { 2103 while (ip->i_gen == 0) 2104 ip->i_gen = arc4random(); 2105 if ((vp->v_mount->mnt_flag & MNT_RDONLY) == 0) { 2106 UFS_INODE_SET_FLAG(ip, IN_MODIFIED); 2107 DIP_SET(ip, i_gen, ip->i_gen); 2108 } 2109 } 2110 #ifdef MAC 2111 if ((mp->mnt_flag & MNT_MULTILABEL) && ip->i_mode) { 2112 /* 2113 * If this vnode is already allocated, and we're running 2114 * multi-label, attempt to perform a label association 2115 * from the extended attributes on the inode. 2116 */ 2117 error = mac_vnode_associate_extattr(mp, vp); 2118 if (error) { 2119 /* ufs_inactive will release ip->i_devvp ref. */ 2120 vgone(vp); 2121 vput(vp); 2122 *vpp = NULL; 2123 return (error); 2124 } 2125 } 2126 #endif 2127 2128 *vpp = vp; 2129 return (0); 2130 } 2131 2132 /* 2133 * File handle to vnode 2134 * 2135 * Have to be really careful about stale file handles: 2136 * - check that the inode number is valid 2137 * - for UFS2 check that the inode number is initialized 2138 * - call ffs_vget() to get the locked inode 2139 * - check for an unallocated inode (i_mode == 0) 2140 * - check that the given client host has export rights and return 2141 * those rights via. exflagsp and credanonp 2142 */ 2143 static int 2144 ffs_fhtovp(mp, fhp, flags, vpp) 2145 struct mount *mp; 2146 struct fid *fhp; 2147 int flags; 2148 struct vnode **vpp; 2149 { 2150 struct ufid *ufhp; 2151 2152 ufhp = (struct ufid *)fhp; 2153 return (ffs_inotovp(mp, ufhp->ufid_ino, ufhp->ufid_gen, flags, 2154 vpp, 0)); 2155 } 2156 2157 int 2158 ffs_inotovp(mp, ino, gen, lflags, vpp, ffs_flags) 2159 struct mount *mp; 2160 ino_t ino; 2161 u_int64_t gen; 2162 int lflags; 2163 struct vnode **vpp; 2164 int ffs_flags; 2165 { 2166 struct ufsmount *ump; 2167 struct vnode *nvp; 2168 struct inode *ip; 2169 struct fs *fs; 2170 struct cg *cgp; 2171 struct buf *bp; 2172 u_int cg; 2173 int error; 2174 2175 ump = VFSTOUFS(mp); 2176 fs = ump->um_fs; 2177 *vpp = NULL; 2178 2179 if (ino < UFS_ROOTINO || ino >= fs->fs_ncg * fs->fs_ipg) 2180 return (ESTALE); 2181 2182 /* 2183 * Need to check if inode is initialized because UFS2 does lazy 2184 * initialization and nfs_fhtovp can offer arbitrary inode numbers. 2185 */ 2186 if (fs->fs_magic == FS_UFS2_MAGIC) { 2187 cg = ino_to_cg(fs, ino); 2188 error = ffs_getcg(fs, ump->um_devvp, cg, 0, &bp, &cgp); 2189 if (error != 0) 2190 return (error); 2191 if (ino >= cg * fs->fs_ipg + cgp->cg_initediblk) { 2192 brelse(bp); 2193 return (ESTALE); 2194 } 2195 brelse(bp); 2196 } 2197 2198 error = ffs_vgetf(mp, ino, lflags, &nvp, ffs_flags); 2199 if (error != 0) 2200 return (error); 2201 2202 ip = VTOI(nvp); 2203 if (ip->i_mode == 0 || ip->i_gen != gen || ip->i_effnlink <= 0) { 2204 if (ip->i_mode == 0) 2205 vgone(nvp); 2206 vput(nvp); 2207 return (ESTALE); 2208 } 2209 2210 vnode_create_vobject(nvp, DIP(ip, i_size), curthread); 2211 *vpp = nvp; 2212 return (0); 2213 } 2214 2215 /* 2216 * Initialize the filesystem. 2217 */ 2218 static int 2219 ffs_init(vfsp) 2220 struct vfsconf *vfsp; 2221 { 2222 2223 ffs_susp_initialize(); 2224 softdep_initialize(); 2225 return (ufs_init(vfsp)); 2226 } 2227 2228 /* 2229 * Undo the work of ffs_init(). 2230 */ 2231 static int 2232 ffs_uninit(vfsp) 2233 struct vfsconf *vfsp; 2234 { 2235 int ret; 2236 2237 ret = ufs_uninit(vfsp); 2238 softdep_uninitialize(); 2239 ffs_susp_uninitialize(); 2240 taskqueue_drain_all(taskqueue_thread); 2241 return (ret); 2242 } 2243 2244 /* 2245 * Structure used to pass information from ffs_sbupdate to its 2246 * helper routine ffs_use_bwrite. 2247 */ 2248 struct devfd { 2249 struct ufsmount *ump; 2250 struct buf *sbbp; 2251 int waitfor; 2252 int suspended; 2253 int error; 2254 }; 2255 2256 /* 2257 * Write a superblock and associated information back to disk. 2258 */ 2259 int 2260 ffs_sbupdate(ump, waitfor, suspended) 2261 struct ufsmount *ump; 2262 int waitfor; 2263 int suspended; 2264 { 2265 struct fs *fs; 2266 struct buf *sbbp; 2267 struct devfd devfd; 2268 2269 fs = ump->um_fs; 2270 if (fs->fs_ronly == 1 && 2271 (ump->um_mountp->mnt_flag & (MNT_RDONLY | MNT_UPDATE)) != 2272 (MNT_RDONLY | MNT_UPDATE) && ump->um_fsckpid == 0) 2273 panic("ffs_sbupdate: write read-only filesystem"); 2274 /* 2275 * We use the superblock's buf to serialize calls to ffs_sbupdate(). 2276 */ 2277 sbbp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc), 2278 (int)fs->fs_sbsize, 0, 0, 0); 2279 /* 2280 * Initialize info needed for write function. 2281 */ 2282 devfd.ump = ump; 2283 devfd.sbbp = sbbp; 2284 devfd.waitfor = waitfor; 2285 devfd.suspended = suspended; 2286 devfd.error = 0; 2287 return (ffs_sbput(&devfd, fs, fs->fs_sblockloc, ffs_use_bwrite)); 2288 } 2289 2290 /* 2291 * Write function for use by filesystem-layer routines. 2292 */ 2293 static int 2294 ffs_use_bwrite(void *devfd, off_t loc, void *buf, int size) 2295 { 2296 struct devfd *devfdp; 2297 struct ufsmount *ump; 2298 struct buf *bp; 2299 struct fs *fs; 2300 int error; 2301 2302 devfdp = devfd; 2303 ump = devfdp->ump; 2304 fs = ump->um_fs; 2305 /* 2306 * Writing the superblock summary information. 2307 */ 2308 if (loc != fs->fs_sblockloc) { 2309 bp = getblk(ump->um_devvp, btodb(loc), size, 0, 0, 0); 2310 bcopy(buf, bp->b_data, (u_int)size); 2311 if (devfdp->suspended) 2312 bp->b_flags |= B_VALIDSUSPWRT; 2313 if (devfdp->waitfor != MNT_WAIT) 2314 bawrite(bp); 2315 else if ((error = bwrite(bp)) != 0) 2316 devfdp->error = error; 2317 return (0); 2318 } 2319 /* 2320 * Writing the superblock itself. We need to do special checks for it. 2321 */ 2322 bp = devfdp->sbbp; 2323 if (ffs_fsfail_cleanup(ump, devfdp->error)) 2324 devfdp->error = 0; 2325 if (devfdp->error != 0) { 2326 brelse(bp); 2327 return (devfdp->error); 2328 } 2329 if (fs->fs_magic == FS_UFS1_MAGIC && fs->fs_sblockloc != SBLOCK_UFS1 && 2330 (fs->fs_old_flags & FS_FLAGS_UPDATED) == 0) { 2331 printf("WARNING: %s: correcting fs_sblockloc from %jd to %d\n", 2332 fs->fs_fsmnt, fs->fs_sblockloc, SBLOCK_UFS1); 2333 fs->fs_sblockloc = SBLOCK_UFS1; 2334 } 2335 if (fs->fs_magic == FS_UFS2_MAGIC && fs->fs_sblockloc != SBLOCK_UFS2 && 2336 (fs->fs_old_flags & FS_FLAGS_UPDATED) == 0) { 2337 printf("WARNING: %s: correcting fs_sblockloc from %jd to %d\n", 2338 fs->fs_fsmnt, fs->fs_sblockloc, SBLOCK_UFS2); 2339 fs->fs_sblockloc = SBLOCK_UFS2; 2340 } 2341 if (MOUNTEDSOFTDEP(ump->um_mountp)) 2342 softdep_setup_sbupdate(ump, (struct fs *)bp->b_data, bp); 2343 bcopy((caddr_t)fs, bp->b_data, (u_int)fs->fs_sbsize); 2344 fs = (struct fs *)bp->b_data; 2345 ffs_oldfscompat_write(fs, ump); 2346 fs->fs_si = NULL; 2347 /* Recalculate the superblock hash */ 2348 fs->fs_ckhash = ffs_calc_sbhash(fs); 2349 if (devfdp->suspended) 2350 bp->b_flags |= B_VALIDSUSPWRT; 2351 if (devfdp->waitfor != MNT_WAIT) 2352 bawrite(bp); 2353 else if ((error = bwrite(bp)) != 0) 2354 devfdp->error = error; 2355 return (devfdp->error); 2356 } 2357 2358 static int 2359 ffs_extattrctl(struct mount *mp, int cmd, struct vnode *filename_vp, 2360 int attrnamespace, const char *attrname) 2361 { 2362 2363 #ifdef UFS_EXTATTR 2364 return (ufs_extattrctl(mp, cmd, filename_vp, attrnamespace, 2365 attrname)); 2366 #else 2367 return (vfs_stdextattrctl(mp, cmd, filename_vp, attrnamespace, 2368 attrname)); 2369 #endif 2370 } 2371 2372 static void 2373 ffs_ifree(struct ufsmount *ump, struct inode *ip) 2374 { 2375 2376 if (ump->um_fstype == UFS1 && ip->i_din1 != NULL) 2377 uma_zfree(uma_ufs1, ip->i_din1); 2378 else if (ip->i_din2 != NULL) 2379 uma_zfree(uma_ufs2, ip->i_din2); 2380 uma_zfree_smr(uma_inode, ip); 2381 } 2382 2383 static int dobkgrdwrite = 1; 2384 SYSCTL_INT(_debug, OID_AUTO, dobkgrdwrite, CTLFLAG_RW, &dobkgrdwrite, 0, 2385 "Do background writes (honoring the BV_BKGRDWRITE flag)?"); 2386 2387 /* 2388 * Complete a background write started from bwrite. 2389 */ 2390 static void 2391 ffs_backgroundwritedone(struct buf *bp) 2392 { 2393 struct bufobj *bufobj; 2394 struct buf *origbp; 2395 2396 #ifdef SOFTUPDATES 2397 if (!LIST_EMPTY(&bp->b_dep) && (bp->b_ioflags & BIO_ERROR) != 0) 2398 softdep_handle_error(bp); 2399 #endif 2400 2401 /* 2402 * Find the original buffer that we are writing. 2403 */ 2404 bufobj = bp->b_bufobj; 2405 BO_LOCK(bufobj); 2406 if ((origbp = gbincore(bp->b_bufobj, bp->b_lblkno)) == NULL) 2407 panic("backgroundwritedone: lost buffer"); 2408 2409 /* 2410 * We should mark the cylinder group buffer origbp as 2411 * dirty, to not lose the failed write. 2412 */ 2413 if ((bp->b_ioflags & BIO_ERROR) != 0) 2414 origbp->b_vflags |= BV_BKGRDERR; 2415 BO_UNLOCK(bufobj); 2416 /* 2417 * Process dependencies then return any unfinished ones. 2418 */ 2419 if (!LIST_EMPTY(&bp->b_dep) && (bp->b_ioflags & BIO_ERROR) == 0) 2420 buf_complete(bp); 2421 #ifdef SOFTUPDATES 2422 if (!LIST_EMPTY(&bp->b_dep)) 2423 softdep_move_dependencies(bp, origbp); 2424 #endif 2425 /* 2426 * This buffer is marked B_NOCACHE so when it is released 2427 * by biodone it will be tossed. Clear B_IOSTARTED in case of error. 2428 */ 2429 bp->b_flags |= B_NOCACHE; 2430 bp->b_flags &= ~(B_CACHE | B_IOSTARTED); 2431 pbrelvp(bp); 2432 2433 /* 2434 * Prevent brelse() from trying to keep and re-dirtying bp on 2435 * errors. It causes b_bufobj dereference in 2436 * bdirty()/reassignbuf(), and b_bufobj was cleared in 2437 * pbrelvp() above. 2438 */ 2439 if ((bp->b_ioflags & BIO_ERROR) != 0) 2440 bp->b_flags |= B_INVAL; 2441 bufdone(bp); 2442 BO_LOCK(bufobj); 2443 /* 2444 * Clear the BV_BKGRDINPROG flag in the original buffer 2445 * and awaken it if it is waiting for the write to complete. 2446 * If BV_BKGRDINPROG is not set in the original buffer it must 2447 * have been released and re-instantiated - which is not legal. 2448 */ 2449 KASSERT((origbp->b_vflags & BV_BKGRDINPROG), 2450 ("backgroundwritedone: lost buffer2")); 2451 origbp->b_vflags &= ~BV_BKGRDINPROG; 2452 if (origbp->b_vflags & BV_BKGRDWAIT) { 2453 origbp->b_vflags &= ~BV_BKGRDWAIT; 2454 wakeup(&origbp->b_xflags); 2455 } 2456 BO_UNLOCK(bufobj); 2457 } 2458 2459 /* 2460 * Write, release buffer on completion. (Done by iodone 2461 * if async). Do not bother writing anything if the buffer 2462 * is invalid. 2463 * 2464 * Note that we set B_CACHE here, indicating that buffer is 2465 * fully valid and thus cacheable. This is true even of NFS 2466 * now so we set it generally. This could be set either here 2467 * or in biodone() since the I/O is synchronous. We put it 2468 * here. 2469 */ 2470 static int 2471 ffs_bufwrite(struct buf *bp) 2472 { 2473 struct buf *newbp; 2474 struct cg *cgp; 2475 2476 CTR3(KTR_BUF, "bufwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags); 2477 if (bp->b_flags & B_INVAL) { 2478 brelse(bp); 2479 return (0); 2480 } 2481 2482 if (!BUF_ISLOCKED(bp)) 2483 panic("bufwrite: buffer is not busy???"); 2484 /* 2485 * If a background write is already in progress, delay 2486 * writing this block if it is asynchronous. Otherwise 2487 * wait for the background write to complete. 2488 */ 2489 BO_LOCK(bp->b_bufobj); 2490 if (bp->b_vflags & BV_BKGRDINPROG) { 2491 if (bp->b_flags & B_ASYNC) { 2492 BO_UNLOCK(bp->b_bufobj); 2493 bdwrite(bp); 2494 return (0); 2495 } 2496 bp->b_vflags |= BV_BKGRDWAIT; 2497 msleep(&bp->b_xflags, BO_LOCKPTR(bp->b_bufobj), PRIBIO, 2498 "bwrbg", 0); 2499 if (bp->b_vflags & BV_BKGRDINPROG) 2500 panic("bufwrite: still writing"); 2501 } 2502 bp->b_vflags &= ~BV_BKGRDERR; 2503 BO_UNLOCK(bp->b_bufobj); 2504 2505 /* 2506 * If this buffer is marked for background writing and we 2507 * do not have to wait for it, make a copy and write the 2508 * copy so as to leave this buffer ready for further use. 2509 * 2510 * This optimization eats a lot of memory. If we have a page 2511 * or buffer shortfall we can't do it. 2512 */ 2513 if (dobkgrdwrite && (bp->b_xflags & BX_BKGRDWRITE) && 2514 (bp->b_flags & B_ASYNC) && 2515 !vm_page_count_severe() && 2516 !buf_dirty_count_severe()) { 2517 KASSERT(bp->b_iodone == NULL, 2518 ("bufwrite: needs chained iodone (%p)", bp->b_iodone)); 2519 2520 /* get a new block */ 2521 newbp = geteblk(bp->b_bufsize, GB_NOWAIT_BD); 2522 if (newbp == NULL) 2523 goto normal_write; 2524 2525 KASSERT(buf_mapped(bp), ("Unmapped cg")); 2526 memcpy(newbp->b_data, bp->b_data, bp->b_bufsize); 2527 BO_LOCK(bp->b_bufobj); 2528 bp->b_vflags |= BV_BKGRDINPROG; 2529 BO_UNLOCK(bp->b_bufobj); 2530 newbp->b_xflags |= 2531 (bp->b_xflags & BX_FSPRIV) | BX_BKGRDMARKER; 2532 newbp->b_lblkno = bp->b_lblkno; 2533 newbp->b_blkno = bp->b_blkno; 2534 newbp->b_offset = bp->b_offset; 2535 newbp->b_iodone = ffs_backgroundwritedone; 2536 newbp->b_flags |= B_ASYNC; 2537 newbp->b_flags &= ~B_INVAL; 2538 pbgetvp(bp->b_vp, newbp); 2539 2540 #ifdef SOFTUPDATES 2541 /* 2542 * Move over the dependencies. If there are rollbacks, 2543 * leave the parent buffer dirtied as it will need to 2544 * be written again. 2545 */ 2546 if (LIST_EMPTY(&bp->b_dep) || 2547 softdep_move_dependencies(bp, newbp) == 0) 2548 bundirty(bp); 2549 #else 2550 bundirty(bp); 2551 #endif 2552 2553 /* 2554 * Initiate write on the copy, release the original. The 2555 * BKGRDINPROG flag prevents it from going away until 2556 * the background write completes. We have to recalculate 2557 * its check hash in case the buffer gets freed and then 2558 * reconstituted from the buffer cache during a later read. 2559 */ 2560 if ((bp->b_xflags & BX_CYLGRP) != 0) { 2561 cgp = (struct cg *)bp->b_data; 2562 cgp->cg_ckhash = 0; 2563 cgp->cg_ckhash = 2564 calculate_crc32c(~0L, bp->b_data, bp->b_bcount); 2565 } 2566 bqrelse(bp); 2567 bp = newbp; 2568 } else 2569 /* Mark the buffer clean */ 2570 bundirty(bp); 2571 2572 /* Let the normal bufwrite do the rest for us */ 2573 normal_write: 2574 /* 2575 * If we are writing a cylinder group, update its time. 2576 */ 2577 if ((bp->b_xflags & BX_CYLGRP) != 0) { 2578 cgp = (struct cg *)bp->b_data; 2579 cgp->cg_old_time = cgp->cg_time = time_second; 2580 } 2581 return (bufwrite(bp)); 2582 } 2583 2584 static void 2585 ffs_geom_strategy(struct bufobj *bo, struct buf *bp) 2586 { 2587 struct vnode *vp; 2588 struct buf *tbp; 2589 int error, nocopy; 2590 2591 /* 2592 * This is the bufobj strategy for the private VCHR vnodes 2593 * used by FFS to access the underlying storage device. 2594 * We override the default bufobj strategy and thus bypass 2595 * VOP_STRATEGY() for these vnodes. 2596 */ 2597 vp = bo2vnode(bo); 2598 KASSERT(bp->b_vp == NULL || bp->b_vp->v_type != VCHR || 2599 bp->b_vp->v_rdev == NULL || 2600 bp->b_vp->v_rdev->si_mountpt == NULL || 2601 VFSTOUFS(bp->b_vp->v_rdev->si_mountpt) == NULL || 2602 vp == VFSTOUFS(bp->b_vp->v_rdev->si_mountpt)->um_devvp, 2603 ("ffs_geom_strategy() with wrong vp")); 2604 if (bp->b_iocmd == BIO_WRITE) { 2605 if ((bp->b_flags & B_VALIDSUSPWRT) == 0 && 2606 bp->b_vp != NULL && bp->b_vp->v_mount != NULL && 2607 (bp->b_vp->v_mount->mnt_kern_flag & MNTK_SUSPENDED) != 0) 2608 panic("ffs_geom_strategy: bad I/O"); 2609 nocopy = bp->b_flags & B_NOCOPY; 2610 bp->b_flags &= ~(B_VALIDSUSPWRT | B_NOCOPY); 2611 if ((vp->v_vflag & VV_COPYONWRITE) && nocopy == 0 && 2612 vp->v_rdev->si_snapdata != NULL) { 2613 if ((bp->b_flags & B_CLUSTER) != 0) { 2614 runningbufwakeup(bp); 2615 TAILQ_FOREACH(tbp, &bp->b_cluster.cluster_head, 2616 b_cluster.cluster_entry) { 2617 error = ffs_copyonwrite(vp, tbp); 2618 if (error != 0 && 2619 error != EOPNOTSUPP) { 2620 bp->b_error = error; 2621 bp->b_ioflags |= BIO_ERROR; 2622 bp->b_flags &= ~B_BARRIER; 2623 bufdone(bp); 2624 return; 2625 } 2626 } 2627 bp->b_runningbufspace = bp->b_bufsize; 2628 atomic_add_long(&runningbufspace, 2629 bp->b_runningbufspace); 2630 } else { 2631 error = ffs_copyonwrite(vp, bp); 2632 if (error != 0 && error != EOPNOTSUPP) { 2633 bp->b_error = error; 2634 bp->b_ioflags |= BIO_ERROR; 2635 bp->b_flags &= ~B_BARRIER; 2636 bufdone(bp); 2637 return; 2638 } 2639 } 2640 } 2641 #ifdef SOFTUPDATES 2642 if ((bp->b_flags & B_CLUSTER) != 0) { 2643 TAILQ_FOREACH(tbp, &bp->b_cluster.cluster_head, 2644 b_cluster.cluster_entry) { 2645 if (!LIST_EMPTY(&tbp->b_dep)) 2646 buf_start(tbp); 2647 } 2648 } else { 2649 if (!LIST_EMPTY(&bp->b_dep)) 2650 buf_start(bp); 2651 } 2652 2653 #endif 2654 /* 2655 * Check for metadata that needs check-hashes and update them. 2656 */ 2657 switch (bp->b_xflags & BX_FSPRIV) { 2658 case BX_CYLGRP: 2659 ((struct cg *)bp->b_data)->cg_ckhash = 0; 2660 ((struct cg *)bp->b_data)->cg_ckhash = 2661 calculate_crc32c(~0L, bp->b_data, bp->b_bcount); 2662 break; 2663 2664 case BX_SUPERBLOCK: 2665 case BX_INODE: 2666 case BX_INDIR: 2667 case BX_DIR: 2668 printf("Check-hash write is unimplemented!!!\n"); 2669 break; 2670 2671 case 0: 2672 break; 2673 2674 default: 2675 printf("multiple buffer types 0x%b\n", 2676 (u_int)(bp->b_xflags & BX_FSPRIV), 2677 PRINT_UFS_BUF_XFLAGS); 2678 break; 2679 } 2680 } 2681 if (bp->b_iocmd != BIO_READ && ffs_enxio_enable) 2682 bp->b_xflags |= BX_CVTENXIO; 2683 g_vfs_strategy(bo, bp); 2684 } 2685 2686 int 2687 ffs_own_mount(const struct mount *mp) 2688 { 2689 2690 if (mp->mnt_op == &ufs_vfsops) 2691 return (1); 2692 return (0); 2693 } 2694 2695 #ifdef DDB 2696 #ifdef SOFTUPDATES 2697 2698 /* defined in ffs_softdep.c */ 2699 extern void db_print_ffs(struct ufsmount *ump); 2700 2701 DB_SHOW_COMMAND(ffs, db_show_ffs) 2702 { 2703 struct mount *mp; 2704 struct ufsmount *ump; 2705 2706 if (have_addr) { 2707 ump = VFSTOUFS((struct mount *)addr); 2708 db_print_ffs(ump); 2709 return; 2710 } 2711 2712 TAILQ_FOREACH(mp, &mountlist, mnt_list) { 2713 if (!strcmp(mp->mnt_stat.f_fstypename, ufs_vfsconf.vfc_name)) 2714 db_print_ffs(VFSTOUFS(mp)); 2715 } 2716 } 2717 2718 #endif /* SOFTUPDATES */ 2719 #endif /* DDB */ 2720