1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1989, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * @(#)ffs_subr.c 8.5 (Berkeley) 3/21/95 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include <sys/param.h> 38 #include <sys/limits.h> 39 40 #ifndef _KERNEL 41 #include <stdio.h> 42 #include <string.h> 43 #include <stdlib.h> 44 #include <time.h> 45 #include <sys/errno.h> 46 #include <ufs/ufs/dinode.h> 47 #include <ufs/ffs/fs.h> 48 49 uint32_t calculate_crc32c(uint32_t, const void *, size_t); 50 uint32_t ffs_calc_sbhash(struct fs *); 51 struct malloc_type; 52 #define UFS_MALLOC(size, type, flags) malloc(size) 53 #define UFS_FREE(ptr, type) free(ptr) 54 #define maxphys MAXPHYS 55 56 #else /* _KERNEL */ 57 #include <sys/systm.h> 58 #include <sys/gsb_crc32.h> 59 #include <sys/lock.h> 60 #include <sys/malloc.h> 61 #include <sys/mount.h> 62 #include <sys/vnode.h> 63 #include <sys/bio.h> 64 #include <sys/buf.h> 65 #include <sys/ucred.h> 66 67 #include <ufs/ufs/quota.h> 68 #include <ufs/ufs/inode.h> 69 #include <ufs/ufs/extattr.h> 70 #include <ufs/ufs/ufsmount.h> 71 #include <ufs/ufs/ufs_extern.h> 72 #include <ufs/ffs/ffs_extern.h> 73 #include <ufs/ffs/fs.h> 74 75 #define UFS_MALLOC(size, type, flags) malloc(size, type, flags) 76 #define UFS_FREE(ptr, type) free(ptr, type) 77 78 #endif /* _KERNEL */ 79 80 /* 81 * Verify an inode check-hash. 82 */ 83 int 84 ffs_verify_dinode_ckhash(struct fs *fs, struct ufs2_dinode *dip) 85 { 86 uint32_t ckhash, save_ckhash; 87 88 /* 89 * Return success if unallocated or we are not doing inode check-hash. 90 */ 91 if (dip->di_mode == 0 || (fs->fs_metackhash & CK_INODE) == 0) 92 return (0); 93 /* 94 * Exclude di_ckhash from the crc32 calculation, e.g., always use 95 * a check-hash value of zero when calculating the check-hash. 96 */ 97 save_ckhash = dip->di_ckhash; 98 dip->di_ckhash = 0; 99 ckhash = calculate_crc32c(~0L, (void *)dip, sizeof(*dip)); 100 dip->di_ckhash = save_ckhash; 101 if (save_ckhash == ckhash) 102 return (0); 103 return (EINVAL); 104 } 105 106 /* 107 * Update an inode check-hash. 108 */ 109 void 110 ffs_update_dinode_ckhash(struct fs *fs, struct ufs2_dinode *dip) 111 { 112 113 if (dip->di_mode == 0 || (fs->fs_metackhash & CK_INODE) == 0) 114 return; 115 /* 116 * Exclude old di_ckhash from the crc32 calculation, e.g., always use 117 * a check-hash value of zero when calculating the new check-hash. 118 */ 119 dip->di_ckhash = 0; 120 dip->di_ckhash = calculate_crc32c(~0L, (void *)dip, sizeof(*dip)); 121 } 122 123 /* 124 * These are the low-level functions that actually read and write 125 * the superblock and its associated data. 126 */ 127 static off_t sblock_try[] = SBLOCKSEARCH; 128 static int readsuper(void *, struct fs **, off_t, int, int, 129 int (*)(void *, off_t, void **, int)); 130 static int validate_sblock(struct fs *, int); 131 132 /* 133 * Read a superblock from the devfd device. 134 * 135 * If an alternate superblock is specified, it is read. Otherwise the 136 * set of locations given in the SBLOCKSEARCH list is searched for a 137 * superblock. Memory is allocated for the superblock by the readfunc and 138 * is returned. If filltype is non-NULL, additional memory is allocated 139 * of type filltype and filled in with the superblock summary information. 140 * All memory is freed when any error is returned. 141 * 142 * If a superblock is found, zero is returned. Otherwise one of the 143 * following error values is returned: 144 * EIO: non-existent or truncated superblock. 145 * EIO: error reading summary information. 146 * ENOENT: no usable known superblock found. 147 * ENOMEM: failed to allocate space for the superblock. 148 * EINVAL: The previous newfs operation on this volume did not complete. 149 * The administrator must complete newfs before using this volume. 150 */ 151 int 152 ffs_sbget(void *devfd, struct fs **fsp, off_t altsblock, 153 struct malloc_type *filltype, 154 int (*readfunc)(void *devfd, off_t loc, void **bufp, int size)) 155 { 156 struct fs *fs; 157 struct fs_summary_info *fs_si; 158 int i, error; 159 uint64_t size, blks; 160 uint8_t *space; 161 int32_t *lp; 162 char *buf; 163 164 fs = NULL; 165 *fsp = NULL; 166 if (altsblock >= 0) { 167 if ((error = readsuper(devfd, &fs, altsblock, 1, 0, 168 readfunc)) != 0) { 169 if (fs != NULL) 170 UFS_FREE(fs, filltype); 171 return (error); 172 } 173 } else { 174 for (i = 0; sblock_try[i] != -1; i++) { 175 if ((error = readsuper(devfd, &fs, sblock_try[i], 0, 176 altsblock, readfunc)) == 0) 177 break; 178 if (fs != NULL) { 179 UFS_FREE(fs, filltype); 180 fs = NULL; 181 } 182 if (error == ENOENT) 183 continue; 184 return (error); 185 } 186 if (sblock_try[i] == -1) 187 return (ENOENT); 188 } 189 /* 190 * Read in the superblock summary information. 191 */ 192 size = fs->fs_cssize; 193 blks = howmany(size, fs->fs_fsize); 194 if (fs->fs_contigsumsize > 0) 195 size += fs->fs_ncg * sizeof(int32_t); 196 size += fs->fs_ncg * sizeof(u_int8_t); 197 if ((fs_si = UFS_MALLOC(sizeof(*fs_si), filltype, M_NOWAIT)) == NULL) { 198 UFS_FREE(fs, filltype); 199 return (ENOMEM); 200 } 201 bzero(fs_si, sizeof(*fs_si)); 202 fs->fs_si = fs_si; 203 if ((space = UFS_MALLOC(size, filltype, M_NOWAIT)) == NULL) { 204 UFS_FREE(fs->fs_si, filltype); 205 UFS_FREE(fs, filltype); 206 return (ENOMEM); 207 } 208 fs->fs_csp = (struct csum *)space; 209 for (i = 0; i < blks; i += fs->fs_frag) { 210 size = fs->fs_bsize; 211 if (i + fs->fs_frag > blks) 212 size = (blks - i) * fs->fs_fsize; 213 buf = NULL; 214 error = (*readfunc)(devfd, 215 dbtob(fsbtodb(fs, fs->fs_csaddr + i)), (void **)&buf, size); 216 if (error) { 217 if (buf != NULL) 218 UFS_FREE(buf, filltype); 219 UFS_FREE(fs->fs_csp, filltype); 220 UFS_FREE(fs->fs_si, filltype); 221 UFS_FREE(fs, filltype); 222 return (error); 223 } 224 memcpy(space, buf, size); 225 UFS_FREE(buf, filltype); 226 space += size; 227 } 228 if (fs->fs_contigsumsize > 0) { 229 fs->fs_maxcluster = lp = (int32_t *)space; 230 for (i = 0; i < fs->fs_ncg; i++) 231 *lp++ = fs->fs_contigsumsize; 232 space = (uint8_t *)lp; 233 } 234 size = fs->fs_ncg * sizeof(u_int8_t); 235 fs->fs_contigdirs = (u_int8_t *)space; 236 bzero(fs->fs_contigdirs, size); 237 *fsp = fs; 238 return (0); 239 } 240 241 /* 242 * Try to read a superblock from the location specified by sblockloc. 243 * Return zero on success or an errno on failure. 244 */ 245 static int 246 readsuper(void *devfd, struct fs **fsp, off_t sblockloc, int isaltsblk, 247 int chkhash, int (*readfunc)(void *devfd, off_t loc, void **bufp, int size)) 248 { 249 struct fs *fs; 250 int error, res; 251 uint32_t ckhash; 252 253 error = (*readfunc)(devfd, sblockloc, (void **)fsp, SBLOCKSIZE); 254 if (error != 0) 255 return (error); 256 fs = *fsp; 257 if (fs->fs_magic == FS_BAD_MAGIC) 258 return (EINVAL); 259 if ((error = validate_sblock(fs, isaltsblk)) != 0) 260 return (error); 261 /* 262 * If the filesystem has been run on a kernel without 263 * metadata check hashes, disable them. 264 */ 265 if ((fs->fs_flags & FS_METACKHASH) == 0) 266 fs->fs_metackhash = 0; 267 /* 268 * Clear any check-hashes that are not maintained 269 * by this kernel. Also clear any unsupported flags. 270 */ 271 fs->fs_metackhash &= CK_SUPPORTED; 272 fs->fs_flags &= FS_SUPPORTED; 273 if (fs->fs_ckhash != (ckhash = ffs_calc_sbhash(fs))) { 274 if (chkhash == STDSB_NOMSG) 275 return (EINTEGRITY); 276 if (chkhash == STDSB_NOHASHFAIL_NOMSG) 277 return (0); 278 #ifdef _KERNEL 279 res = uprintf("Superblock check-hash failed: recorded " 280 "check-hash 0x%x != computed check-hash 0x%x%s\n", 281 fs->fs_ckhash, ckhash, 282 chkhash == STDSB_NOHASHFAIL ? " (Ignored)" : ""); 283 #else 284 res = 0; 285 #endif 286 /* 287 * Print check-hash failure if no controlling terminal 288 * in kernel or always if in user-mode (libufs). 289 */ 290 if (res == 0) 291 printf("Superblock check-hash failed: recorded " 292 "check-hash 0x%x != computed check-hash " 293 "0x%x%s\n", fs->fs_ckhash, ckhash, 294 chkhash == STDSB_NOHASHFAIL ? 295 " (Ignored)" : ""); 296 if (chkhash == STDSB) 297 return (EINTEGRITY); 298 /* chkhash == STDSB_NOHASHFAIL */ 299 return (0); 300 } 301 /* Have to set for old filesystems that predate this field */ 302 fs->fs_sblockactualloc = sblockloc; 303 /* Not yet any summary information */ 304 fs->fs_si = NULL; 305 return (0); 306 } 307 308 /* 309 * Verify the filesystem values. 310 */ 311 #define ILOG2(num) (fls(num) - 1) 312 #undef CHK 313 #define CHK(lhs, op, rhs, fmt) \ 314 if (lhs op rhs) { \ 315 printf("UFS%d superblock failed: %s (" #fmt ") %s %s (" \ 316 #fmt ")\n", fs->fs_magic == FS_UFS1_MAGIC ? 1 : 2, \ 317 #lhs, (intmax_t)lhs, #op, #rhs, (intmax_t)rhs); \ 318 return (ENOENT); \ 319 } 320 #define CHK2(lhs1, op1, rhs1, lhs2, op2, rhs2, fmt) \ 321 if (lhs1 op1 rhs1 && lhs2 op2 rhs2) { \ 322 printf("UFS%d superblock failed: %s (" #fmt ") %s %s (" \ 323 #fmt ") && %s (" #fmt ") %s %s (" #fmt ")\n", \ 324 fs->fs_magic == FS_UFS1_MAGIC ? 1 : 2, #lhs1, \ 325 (intmax_t)lhs1, #op1, #rhs1, (intmax_t)rhs1, #lhs2, \ 326 (intmax_t)lhs2, #op2, #rhs2, (intmax_t)rhs2); \ 327 return (ENOENT); \ 328 } 329 330 static int 331 validate_sblock(struct fs *fs, int isaltsblk) 332 { 333 u_long i, sectorsize, cgnum; 334 u_int64_t maxfilesize, sizepb; 335 336 sectorsize = dbtob(1); 337 if (fs->fs_magic == FS_UFS2_MAGIC) { 338 if (!isaltsblk) { 339 CHK(fs->fs_sblockloc, !=, SBLOCK_UFS2, %#jx); 340 CHK2(fs->fs_sblockactualloc, !=, SBLOCK_UFS2, 341 fs->fs_sblockactualloc, !=, 0, %jd); 342 } 343 CHK(fs->fs_maxsymlinklen, !=, ((UFS_NDADDR + UFS_NIADDR) * 344 sizeof(ufs2_daddr_t)), %jd); 345 CHK(fs->fs_nindir, !=, fs->fs_bsize / sizeof(ufs2_daddr_t), 346 %jd); 347 CHK(fs->fs_inopb, !=, fs->fs_bsize / sizeof(struct ufs2_dinode), 348 %jd); 349 } else if (fs->fs_magic == FS_UFS1_MAGIC) { 350 if (!isaltsblk) { 351 CHK(fs->fs_sblockloc, >, SBLOCK_UFS1, %jd); 352 /* 353 * For UFS1 the with a 65536 block size, the first 354 * backup superblock is at the same location as the 355 * UFS2 superblock. Since SBLOCK_UFS2 is the first 356 * location checked, the first backup is the 357 * superblock that will be accessed. 358 */ 359 if (fs->fs_bsize == SBLOCK_UFS2) { 360 CHK(fs->fs_sblockactualloc, >, SBLOCK_UFS2, 361 %jd); 362 } else { 363 CHK2(fs->fs_sblockactualloc, !=, SBLOCK_UFS1, 364 fs->fs_sblockactualloc, !=, 0, %jd); 365 } 366 } 367 CHK(fs->fs_nindir, !=, fs->fs_bsize / sizeof(ufs1_daddr_t), 368 %jd); 369 CHK(fs->fs_inopb, !=, fs->fs_bsize / sizeof(struct ufs1_dinode), 370 %jd); 371 CHK(fs->fs_maxsymlinklen, !=, ((UFS_NDADDR + UFS_NIADDR) * 372 sizeof(ufs1_daddr_t)), %jd); 373 CHK(fs->fs_old_inodefmt, !=, FS_44INODEFMT, %jd); 374 CHK(fs->fs_old_cgoffset, !=, 0, %jd); 375 CHK(fs->fs_old_cgmask, !=, 0xffffffff, %#jx); 376 CHK(fs->fs_old_rotdelay, !=, 0, %jd); 377 CHK(fs->fs_old_rps, !=, 60, %jd); 378 CHK(fs->fs_old_nspf, !=, fs->fs_fsize / sectorsize, %jd); 379 CHK(fs->fs_old_cpg, !=, 1, %jd); 380 CHK(fs->fs_old_interleave, !=, 1, %jd); 381 CHK(fs->fs_old_trackskew, !=, 0, %jd); 382 CHK(fs->fs_old_cpc, !=, 0, %jd); 383 CHK(fs->fs_old_postblformat, !=, 1, %jd); 384 CHK(fs->fs_old_nrpos, !=, 1, %jd); 385 CHK(fs->fs_old_spc, !=, fs->fs_fpg * fs->fs_old_nspf, %jd); 386 CHK(fs->fs_old_nsect, !=, fs->fs_old_spc, %jd); 387 CHK(fs->fs_old_npsect, !=, fs->fs_old_spc, %jd); 388 CHK(fs->fs_old_ncyl, !=, fs->fs_ncg, %jd); 389 } else { 390 /* Bad magic number, so assume not a superblock */ 391 return (ENOENT); 392 } 393 CHK(fs->fs_bsize, <, MINBSIZE, %jd); 394 CHK(fs->fs_bsize, >, MAXBSIZE, %jd); 395 CHK(fs->fs_bsize, <, roundup(sizeof(struct fs), DEV_BSIZE), %jd); 396 CHK(fs->fs_sbsize, >, SBLOCKSIZE, %jd); 397 CHK(powerof2(fs->fs_bsize), ==, 0, %jd); 398 CHK(fs->fs_fsize, <, sectorsize, %jd); 399 CHK(fs->fs_fsize, >, fs->fs_bsize, %jd); 400 CHK(fs->fs_fsize * MAXFRAG, <, fs->fs_bsize, %jd); 401 CHK(powerof2(fs->fs_fsize), ==, 0, %jd); 402 CHK(fs->fs_maxbsize, <, fs->fs_bsize, %jd); 403 CHK(powerof2(fs->fs_maxbsize), ==, 0, %jd); 404 CHK(fs->fs_maxbsize, >, FS_MAXCONTIG * fs->fs_bsize, %jd); 405 CHK(fs->fs_bmask, !=, ~(fs->fs_bsize - 1), %#jx); 406 CHK(fs->fs_fmask, !=, ~(fs->fs_fsize - 1), %#jx); 407 CHK(fs->fs_qbmask, !=, ~fs->fs_bmask, %#jx); 408 CHK(fs->fs_qfmask, !=, ~fs->fs_fmask, %#jx); 409 CHK(fs->fs_bshift, !=, ILOG2(fs->fs_bsize), %jd); 410 CHK(fs->fs_fshift, !=, ILOG2(fs->fs_fsize), %jd); 411 CHK(fs->fs_frag, !=, numfrags(fs, fs->fs_bsize), %jd); 412 CHK(fs->fs_fragshift, !=, ILOG2(fs->fs_frag), %jd); 413 CHK(fs->fs_frag, >, MAXFRAG, %jd); 414 CHK(fs->fs_fsbtodb, !=, ILOG2(fs->fs_fsize / sectorsize), %jd); 415 CHK(fs->fs_sblkno, !=, roundup( 416 howmany(fs->fs_sblockloc + SBLOCKSIZE, fs->fs_fsize), 417 fs->fs_frag), %jd); 418 CHK(fs->fs_cblkno, !=, fs->fs_sblkno + 419 roundup(howmany(SBLOCKSIZE, fs->fs_fsize), fs->fs_frag), %jd); 420 CHK(fs->fs_iblkno, !=, fs->fs_cblkno + fs->fs_frag, %jd); 421 CHK(fs->fs_dblkno, !=, fs->fs_iblkno + fs->fs_ipg / INOPF(fs), %jd); 422 CHK(fs->fs_cgsize, >, fs->fs_bsize, %jd); 423 CHK(fs->fs_cssize, !=, 424 fragroundup(fs, fs->fs_ncg * sizeof(struct csum)), %jd); 425 /* 426 * This test is valid, however older versions of growfs failed 427 * to correctly update fs_dsize so will fail this test. Thus we 428 * exclude it from the requirements. 429 */ 430 #ifdef notdef 431 CHK(fs->fs_dsize, !=, fs->fs_size - fs->fs_sblkno - 432 fs->fs_ncg * (fs->fs_dblkno - fs->fs_sblkno) - 433 howmany(fs->fs_cssize, fs->fs_fsize), %jd); 434 #endif 435 CHK(fs->fs_metaspace, <, 0, %jd); 436 CHK(fs->fs_metaspace, >, fs->fs_fpg / 2, %jd); 437 CHK(fs->fs_minfree, >, 99, %jd%%); 438 maxfilesize = fs->fs_bsize * UFS_NDADDR - 1; 439 for (sizepb = fs->fs_bsize, i = 0; i < UFS_NIADDR; i++) { 440 sizepb *= NINDIR(fs); 441 maxfilesize += sizepb; 442 } 443 CHK(fs->fs_maxfilesize, !=, maxfilesize, %jd); 444 /* 445 * These values have a tight interaction with each other that 446 * makes it hard to tightly bound them. So we can only check 447 * that they are within a broader possible range. 448 * 449 * The size cannot always be accurately determined, but ensure 450 * that it is consistent with the number of cylinder groups (fs_ncg) 451 * and the number of fragments per cylinder group (fs_fpg). Ensure 452 * that the summary information size is correct and that it starts 453 * and ends in the data area of the same cylinder group. 454 */ 455 CHK(fs->fs_ncg, <, 1, %jd); 456 CHK(fs->fs_size, <, 8 * fs->fs_frag, %jd); 457 CHK(fs->fs_size, <=, (fs->fs_ncg - 1) * fs->fs_fpg, %jd); 458 CHK(fs->fs_size, >, fs->fs_ncg * fs->fs_fpg, %jd); 459 CHK(fs->fs_cssize, !=, 460 fragroundup(fs, fs->fs_ncg * sizeof(struct csum)), %jd); 461 cgnum = dtog(fs, fs->fs_csaddr); 462 CHK(fs->fs_csaddr, <, cgdmin(fs, cgnum), %jd); 463 CHK(dtog(fs, fs->fs_csaddr + howmany(fs->fs_cssize, fs->fs_fsize)), >, 464 cgnum, %jd); 465 CHK(fs->fs_ipg * fs->fs_ncg, >, (((int64_t)(1)) << 32) - INOPB(fs), 466 %jd); 467 /* 468 * With file system clustering it is possible to allocate 469 * many contiguous blocks. The kernel variable maxphys defines 470 * the maximum transfer size permitted by the controller and/or 471 * buffering. The fs_maxcontig parameter controls the maximum 472 * number of blocks that the filesystem will read or write 473 * in a single transfer. It is calculated when the filesystem 474 * is created as maxphys / fs_bsize. The loader uses a maxphys 475 * of 128K even when running on a system that supports larger 476 * values. If the filesystem was built on a system that supports 477 * a larger maxphys (1M is typical) it will have configured 478 * fs_maxcontig for that larger system. So we bound the upper 479 * allowable limit for fs_maxconfig to be able to at least 480 * work with a 1M maxphys on the smallest block size filesystem: 481 * 1M / 4096 == 256. There is no harm in allowing the mounting of 482 * filesystems that make larger than maxphys I/O requests because 483 * those (mostly 32-bit machines) can (very slowly) handle I/O 484 * requests that exceed maxphys. 485 */ 486 CHK(fs->fs_maxcontig, <, 0, %jd); 487 CHK(fs->fs_maxcontig, >, MAX(256, maxphys / fs->fs_bsize), %jd); 488 CHK2(fs->fs_maxcontig, ==, 0, fs->fs_contigsumsize, !=, 0, %jd); 489 CHK2(fs->fs_maxcontig, >, 1, fs->fs_contigsumsize, !=, 490 MIN(fs->fs_maxcontig, FS_MAXCONTIG), %jd); 491 return (0); 492 } 493 494 /* 495 * Write a superblock to the devfd device from the memory pointed to by fs. 496 * Write out the superblock summary information if it is present. 497 * 498 * If the write is successful, zero is returned. Otherwise one of the 499 * following error values is returned: 500 * EIO: failed to write superblock. 501 * EIO: failed to write superblock summary information. 502 */ 503 int 504 ffs_sbput(void *devfd, struct fs *fs, off_t loc, 505 int (*writefunc)(void *devfd, off_t loc, void *buf, int size)) 506 { 507 int i, error, blks, size; 508 uint8_t *space; 509 510 /* 511 * If there is summary information, write it first, so if there 512 * is an error, the superblock will not be marked as clean. 513 */ 514 if (fs->fs_si != NULL && fs->fs_csp != NULL) { 515 blks = howmany(fs->fs_cssize, fs->fs_fsize); 516 space = (uint8_t *)fs->fs_csp; 517 for (i = 0; i < blks; i += fs->fs_frag) { 518 size = fs->fs_bsize; 519 if (i + fs->fs_frag > blks) 520 size = (blks - i) * fs->fs_fsize; 521 if ((error = (*writefunc)(devfd, 522 dbtob(fsbtodb(fs, fs->fs_csaddr + i)), 523 space, size)) != 0) 524 return (error); 525 space += size; 526 } 527 } 528 fs->fs_fmod = 0; 529 #ifndef _KERNEL 530 { 531 struct fs_summary_info *fs_si; 532 533 fs->fs_time = time(NULL); 534 /* Clear the pointers for the duration of writing. */ 535 fs_si = fs->fs_si; 536 fs->fs_si = NULL; 537 fs->fs_ckhash = ffs_calc_sbhash(fs); 538 error = (*writefunc)(devfd, loc, fs, fs->fs_sbsize); 539 fs->fs_si = fs_si; 540 } 541 #else /* _KERNEL */ 542 fs->fs_time = time_second; 543 fs->fs_ckhash = ffs_calc_sbhash(fs); 544 error = (*writefunc)(devfd, loc, fs, fs->fs_sbsize); 545 #endif /* _KERNEL */ 546 return (error); 547 } 548 549 /* 550 * Calculate the check-hash for a superblock. 551 */ 552 uint32_t 553 ffs_calc_sbhash(struct fs *fs) 554 { 555 uint32_t ckhash, save_ckhash; 556 557 /* 558 * A filesystem that was using a superblock ckhash may be moved 559 * to an older kernel that does not support ckhashes. The 560 * older kernel will clear the FS_METACKHASH flag indicating 561 * that it does not update hashes. When the disk is moved back 562 * to a kernel capable of ckhashes it disables them on mount: 563 * 564 * if ((fs->fs_flags & FS_METACKHASH) == 0) 565 * fs->fs_metackhash = 0; 566 * 567 * This leaves (fs->fs_metackhash & CK_SUPERBLOCK) == 0) with an 568 * old stale value in the fs->fs_ckhash field. Thus the need to 569 * just accept what is there. 570 */ 571 if ((fs->fs_metackhash & CK_SUPERBLOCK) == 0) 572 return (fs->fs_ckhash); 573 574 save_ckhash = fs->fs_ckhash; 575 fs->fs_ckhash = 0; 576 /* 577 * If newly read from disk, the caller is responsible for 578 * verifying that fs->fs_sbsize <= SBLOCKSIZE. 579 */ 580 ckhash = calculate_crc32c(~0L, (void *)fs, fs->fs_sbsize); 581 fs->fs_ckhash = save_ckhash; 582 return (ckhash); 583 } 584 585 /* 586 * Update the frsum fields to reflect addition or deletion 587 * of some frags. 588 */ 589 void 590 ffs_fragacct(struct fs *fs, int fragmap, int32_t fraglist[], int cnt) 591 { 592 int inblk; 593 int field, subfield; 594 int siz, pos; 595 596 inblk = (int)(fragtbl[fs->fs_frag][fragmap]) << 1; 597 fragmap <<= 1; 598 for (siz = 1; siz < fs->fs_frag; siz++) { 599 if ((inblk & (1 << (siz + (fs->fs_frag % NBBY)))) == 0) 600 continue; 601 field = around[siz]; 602 subfield = inside[siz]; 603 for (pos = siz; pos <= fs->fs_frag; pos++) { 604 if ((fragmap & field) == subfield) { 605 fraglist[siz] += cnt; 606 pos += siz; 607 field <<= siz; 608 subfield <<= siz; 609 } 610 field <<= 1; 611 subfield <<= 1; 612 } 613 } 614 } 615 616 /* 617 * block operations 618 * 619 * check if a block is available 620 */ 621 int 622 ffs_isblock(struct fs *fs, unsigned char *cp, ufs1_daddr_t h) 623 { 624 unsigned char mask; 625 626 switch ((int)fs->fs_frag) { 627 case 8: 628 return (cp[h] == 0xff); 629 case 4: 630 mask = 0x0f << ((h & 0x1) << 2); 631 return ((cp[h >> 1] & mask) == mask); 632 case 2: 633 mask = 0x03 << ((h & 0x3) << 1); 634 return ((cp[h >> 2] & mask) == mask); 635 case 1: 636 mask = 0x01 << (h & 0x7); 637 return ((cp[h >> 3] & mask) == mask); 638 default: 639 #ifdef _KERNEL 640 panic("ffs_isblock"); 641 #endif 642 break; 643 } 644 return (0); 645 } 646 647 /* 648 * check if a block is free 649 */ 650 int 651 ffs_isfreeblock(struct fs *fs, u_char *cp, ufs1_daddr_t h) 652 { 653 654 switch ((int)fs->fs_frag) { 655 case 8: 656 return (cp[h] == 0); 657 case 4: 658 return ((cp[h >> 1] & (0x0f << ((h & 0x1) << 2))) == 0); 659 case 2: 660 return ((cp[h >> 2] & (0x03 << ((h & 0x3) << 1))) == 0); 661 case 1: 662 return ((cp[h >> 3] & (0x01 << (h & 0x7))) == 0); 663 default: 664 #ifdef _KERNEL 665 panic("ffs_isfreeblock"); 666 #endif 667 break; 668 } 669 return (0); 670 } 671 672 /* 673 * take a block out of the map 674 */ 675 void 676 ffs_clrblock(struct fs *fs, u_char *cp, ufs1_daddr_t h) 677 { 678 679 switch ((int)fs->fs_frag) { 680 case 8: 681 cp[h] = 0; 682 return; 683 case 4: 684 cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2)); 685 return; 686 case 2: 687 cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1)); 688 return; 689 case 1: 690 cp[h >> 3] &= ~(0x01 << (h & 0x7)); 691 return; 692 default: 693 #ifdef _KERNEL 694 panic("ffs_clrblock"); 695 #endif 696 break; 697 } 698 } 699 700 /* 701 * put a block into the map 702 */ 703 void 704 ffs_setblock(struct fs *fs, unsigned char *cp, ufs1_daddr_t h) 705 { 706 707 switch ((int)fs->fs_frag) { 708 case 8: 709 cp[h] = 0xff; 710 return; 711 case 4: 712 cp[h >> 1] |= (0x0f << ((h & 0x1) << 2)); 713 return; 714 case 2: 715 cp[h >> 2] |= (0x03 << ((h & 0x3) << 1)); 716 return; 717 case 1: 718 cp[h >> 3] |= (0x01 << (h & 0x7)); 719 return; 720 default: 721 #ifdef _KERNEL 722 panic("ffs_setblock"); 723 #endif 724 break; 725 } 726 } 727 728 /* 729 * Update the cluster map because of an allocation or free. 730 * 731 * Cnt == 1 means free; cnt == -1 means allocating. 732 */ 733 void 734 ffs_clusteracct(struct fs *fs, struct cg *cgp, ufs1_daddr_t blkno, int cnt) 735 { 736 int32_t *sump; 737 int32_t *lp; 738 u_char *freemapp, *mapp; 739 int i, start, end, forw, back, map; 740 u_int bit; 741 742 if (fs->fs_contigsumsize <= 0) 743 return; 744 freemapp = cg_clustersfree(cgp); 745 sump = cg_clustersum(cgp); 746 /* 747 * Allocate or clear the actual block. 748 */ 749 if (cnt > 0) 750 setbit(freemapp, blkno); 751 else 752 clrbit(freemapp, blkno); 753 /* 754 * Find the size of the cluster going forward. 755 */ 756 start = blkno + 1; 757 end = start + fs->fs_contigsumsize; 758 if (end >= cgp->cg_nclusterblks) 759 end = cgp->cg_nclusterblks; 760 mapp = &freemapp[start / NBBY]; 761 map = *mapp++; 762 bit = 1U << (start % NBBY); 763 for (i = start; i < end; i++) { 764 if ((map & bit) == 0) 765 break; 766 if ((i & (NBBY - 1)) != (NBBY - 1)) { 767 bit <<= 1; 768 } else { 769 map = *mapp++; 770 bit = 1; 771 } 772 } 773 forw = i - start; 774 /* 775 * Find the size of the cluster going backward. 776 */ 777 start = blkno - 1; 778 end = start - fs->fs_contigsumsize; 779 if (end < 0) 780 end = -1; 781 mapp = &freemapp[start / NBBY]; 782 map = *mapp--; 783 bit = 1U << (start % NBBY); 784 for (i = start; i > end; i--) { 785 if ((map & bit) == 0) 786 break; 787 if ((i & (NBBY - 1)) != 0) { 788 bit >>= 1; 789 } else { 790 map = *mapp--; 791 bit = 1U << (NBBY - 1); 792 } 793 } 794 back = start - i; 795 /* 796 * Account for old cluster and the possibly new forward and 797 * back clusters. 798 */ 799 i = back + forw + 1; 800 if (i > fs->fs_contigsumsize) 801 i = fs->fs_contigsumsize; 802 sump[i] += cnt; 803 if (back > 0) 804 sump[back] -= cnt; 805 if (forw > 0) 806 sump[forw] -= cnt; 807 /* 808 * Update cluster summary information. 809 */ 810 lp = &sump[fs->fs_contigsumsize]; 811 for (i = fs->fs_contigsumsize; i > 0; i--) 812 if (*lp-- > 0) 813 break; 814 fs->fs_maxcluster[cgp->cg_cgx] = i; 815 } 816