xref: /freebsd/sys/ufs/ffs/ffs_subr.c (revision af23369a6deaaeb612ab266eb88b8bb8d560c322)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1989, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *	@(#)ffs_subr.c	8.5 (Berkeley) 3/21/95
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 #include <sys/param.h>
38 #include <sys/endian.h>
39 #include <sys/limits.h>
40 
41 #ifndef _KERNEL
42 #include <stdio.h>
43 #include <string.h>
44 #include <stdlib.h>
45 #include <time.h>
46 #include <sys/errno.h>
47 #include <ufs/ufs/dinode.h>
48 #include <ufs/ffs/fs.h>
49 
50 uint32_t calculate_crc32c(uint32_t, const void *, size_t);
51 uint32_t ffs_calc_sbhash(struct fs *);
52 struct malloc_type;
53 #define UFS_MALLOC(size, type, flags) malloc(size)
54 #define UFS_FREE(ptr, type) free(ptr)
55 #define maxphys MAXPHYS
56 
57 #else /* _KERNEL */
58 #include <sys/systm.h>
59 #include <sys/gsb_crc32.h>
60 #include <sys/lock.h>
61 #include <sys/malloc.h>
62 #include <sys/mount.h>
63 #include <sys/vnode.h>
64 #include <sys/bio.h>
65 #include <sys/buf.h>
66 #include <sys/ucred.h>
67 
68 #include <ufs/ufs/quota.h>
69 #include <ufs/ufs/inode.h>
70 #include <ufs/ufs/extattr.h>
71 #include <ufs/ufs/ufsmount.h>
72 #include <ufs/ufs/ufs_extern.h>
73 #include <ufs/ffs/ffs_extern.h>
74 #include <ufs/ffs/fs.h>
75 
76 #define UFS_MALLOC(size, type, flags) malloc(size, type, flags)
77 #define UFS_FREE(ptr, type) free(ptr, type)
78 
79 #endif /* _KERNEL */
80 
81 /*
82  * Verify an inode check-hash.
83  */
84 int
85 ffs_verify_dinode_ckhash(struct fs *fs, struct ufs2_dinode *dip)
86 {
87 	uint32_t ckhash, save_ckhash;
88 
89 	/*
90 	 * Return success if unallocated or we are not doing inode check-hash.
91 	 */
92 	if (dip->di_mode == 0 || (fs->fs_metackhash & CK_INODE) == 0)
93 		return (0);
94 	/*
95 	 * Exclude di_ckhash from the crc32 calculation, e.g., always use
96 	 * a check-hash value of zero when calculating the check-hash.
97 	 */
98 	save_ckhash = dip->di_ckhash;
99 	dip->di_ckhash = 0;
100 	ckhash = calculate_crc32c(~0L, (void *)dip, sizeof(*dip));
101 	dip->di_ckhash = save_ckhash;
102 	if (save_ckhash == ckhash)
103 		return (0);
104 	return (EINVAL);
105 }
106 
107 /*
108  * Update an inode check-hash.
109  */
110 void
111 ffs_update_dinode_ckhash(struct fs *fs, struct ufs2_dinode *dip)
112 {
113 
114 	if (dip->di_mode == 0 || (fs->fs_metackhash & CK_INODE) == 0)
115 		return;
116 	/*
117 	 * Exclude old di_ckhash from the crc32 calculation, e.g., always use
118 	 * a check-hash value of zero when calculating the new check-hash.
119 	 */
120 	dip->di_ckhash = 0;
121 	dip->di_ckhash = calculate_crc32c(~0L, (void *)dip, sizeof(*dip));
122 }
123 
124 /*
125  * These are the low-level functions that actually read and write
126  * the superblock and its associated data.
127  */
128 static off_t sblock_try[] = SBLOCKSEARCH;
129 static int readsuper(void *, struct fs **, off_t, int,
130 	int (*)(void *, off_t, void **, int));
131 static int validate_sblock(struct fs *, int);
132 
133 /*
134  * Read a superblock from the devfd device.
135  *
136  * If an alternate superblock is specified, it is read. Otherwise the
137  * set of locations given in the SBLOCKSEARCH list is searched for a
138  * superblock. Memory is allocated for the superblock by the readfunc and
139  * is returned. If filltype is non-NULL, additional memory is allocated
140  * of type filltype and filled in with the superblock summary information.
141  * All memory is freed when any error is returned.
142  *
143  * If a superblock is found, zero is returned. Otherwise one of the
144  * following error values is returned:
145  *     EIO: non-existent or truncated superblock.
146  *     EIO: error reading summary information.
147  *     ENOENT: no usable known superblock found.
148  *     EILSEQ: filesystem with wrong byte order found.
149  *     ENOMEM: failed to allocate space for the superblock.
150  *     EINVAL: The previous newfs operation on this volume did not complete.
151  *         The administrator must complete newfs before using this volume.
152  */
153 int
154 ffs_sbget(void *devfd, struct fs **fsp, off_t sblock, int flags,
155     struct malloc_type *filltype,
156     int (*readfunc)(void *devfd, off_t loc, void **bufp, int size))
157 {
158 	struct fs *fs;
159 	struct fs_summary_info *fs_si;
160 	int i, error;
161 	uint64_t size, blks;
162 	uint8_t *space;
163 	int32_t *lp;
164 	char *buf;
165 
166 	fs = NULL;
167 	*fsp = NULL;
168 	if (sblock != UFS_STDSB) {
169 		if ((error = readsuper(devfd, &fs, sblock,
170 		    flags | UFS_ALTSBLK, readfunc)) != 0) {
171 			if (fs != NULL)
172 				UFS_FREE(fs, filltype);
173 			return (error);
174 		}
175 	} else {
176 		for (i = 0; sblock_try[i] != -1; i++) {
177 			if ((error = readsuper(devfd, &fs, sblock_try[i],
178 			     flags, readfunc)) == 0) {
179 				if ((flags & UFS_NOCSUM) != 0) {
180 					*fsp = fs;
181 					return (0);
182 				}
183 				break;
184 			}
185 			if (fs != NULL) {
186 				UFS_FREE(fs, filltype);
187 				fs = NULL;
188 			}
189 			if (error == ENOENT)
190 				continue;
191 			return (error);
192 		}
193 		if (sblock_try[i] == -1)
194 			return (ENOENT);
195 	}
196 	/*
197 	 * Read in the superblock summary information.
198 	 */
199 	size = fs->fs_cssize;
200 	blks = howmany(size, fs->fs_fsize);
201 	if (fs->fs_contigsumsize > 0)
202 		size += fs->fs_ncg * sizeof(int32_t);
203 	size += fs->fs_ncg * sizeof(u_int8_t);
204 	if ((fs_si = UFS_MALLOC(sizeof(*fs_si), filltype, M_NOWAIT)) == NULL) {
205 		UFS_FREE(fs, filltype);
206 		return (ENOMEM);
207 	}
208 	bzero(fs_si, sizeof(*fs_si));
209 	fs->fs_si = fs_si;
210 	if ((space = UFS_MALLOC(size, filltype, M_NOWAIT)) == NULL) {
211 		UFS_FREE(fs->fs_si, filltype);
212 		UFS_FREE(fs, filltype);
213 		return (ENOMEM);
214 	}
215 	fs->fs_csp = (struct csum *)space;
216 	for (i = 0; i < blks; i += fs->fs_frag) {
217 		size = fs->fs_bsize;
218 		if (i + fs->fs_frag > blks)
219 			size = (blks - i) * fs->fs_fsize;
220 		buf = NULL;
221 		error = (*readfunc)(devfd,
222 		    dbtob(fsbtodb(fs, fs->fs_csaddr + i)), (void **)&buf, size);
223 		if (error) {
224 			if (buf != NULL)
225 				UFS_FREE(buf, filltype);
226 			UFS_FREE(fs->fs_csp, filltype);
227 			UFS_FREE(fs->fs_si, filltype);
228 			UFS_FREE(fs, filltype);
229 			return (error);
230 		}
231 		memcpy(space, buf, size);
232 		UFS_FREE(buf, filltype);
233 		space += size;
234 	}
235 	if (fs->fs_contigsumsize > 0) {
236 		fs->fs_maxcluster = lp = (int32_t *)space;
237 		for (i = 0; i < fs->fs_ncg; i++)
238 			*lp++ = fs->fs_contigsumsize;
239 		space = (uint8_t *)lp;
240 	}
241 	size = fs->fs_ncg * sizeof(u_int8_t);
242 	fs->fs_contigdirs = (u_int8_t *)space;
243 	bzero(fs->fs_contigdirs, size);
244 	*fsp = fs;
245 	return (0);
246 }
247 
248 /*
249  * Try to read a superblock from the location specified by sblockloc.
250  * Return zero on success or an errno on failure.
251  */
252 static int
253 readsuper(void *devfd, struct fs **fsp, off_t sblockloc, int flags,
254     int (*readfunc)(void *devfd, off_t loc, void **bufp, int size))
255 {
256 	struct fs *fs;
257 	int error, res;
258 	uint32_t ckhash;
259 
260 	error = (*readfunc)(devfd, sblockloc, (void **)fsp, SBLOCKSIZE);
261 	if (error != 0)
262 		return (error);
263 	fs = *fsp;
264 	if (fs->fs_magic == FS_BAD_MAGIC)
265 		return (EINVAL);
266 	/*
267 	 * For UFS1 with a 65536 block size, the first backup superblock
268 	 * is at the same location as the UFS2 superblock. Since SBLOCK_UFS2
269 	 * is the first location checked, the first backup is the superblock
270 	 * that will be accessed. Here we fail the lookup so that we can
271 	 * retry with the correct location for the UFS1 superblock.
272 	 */
273 	if (fs->fs_magic == FS_UFS1_MAGIC && (flags & UFS_ALTSBLK) == 0 &&
274 	    fs->fs_bsize == SBLOCK_UFS2 && sblockloc == SBLOCK_UFS2)
275 		return (ENOENT);
276 	if ((error = validate_sblock(fs, flags)) > 0)
277 		return (error);
278 	/*
279 	 * If the filesystem has been run on a kernel without
280 	 * metadata check hashes, disable them.
281 	 */
282 	if ((fs->fs_flags & FS_METACKHASH) == 0)
283 		fs->fs_metackhash = 0;
284 	/*
285 	 * Clear any check-hashes that are not maintained
286 	 * by this kernel. Also clear any unsupported flags.
287 	 */
288 	fs->fs_metackhash &= CK_SUPPORTED;
289 	fs->fs_flags &= FS_SUPPORTED;
290 	if (fs->fs_ckhash != (ckhash = ffs_calc_sbhash(fs))) {
291 		if ((flags & (UFS_NOMSG | UFS_NOHASHFAIL)) ==
292 		    (UFS_NOMSG | UFS_NOHASHFAIL))
293 			return (0);
294 		if ((flags & UFS_NOMSG) != 0)
295 			return (EINTEGRITY);
296 #ifdef _KERNEL
297 		res = uprintf("Superblock check-hash failed: recorded "
298 		    "check-hash 0x%x != computed check-hash 0x%x%s\n",
299 		    fs->fs_ckhash, ckhash,
300 		    (flags & UFS_NOHASHFAIL) != 0 ? " (Ignored)" : "");
301 #else
302 		res = 0;
303 #endif
304 		/*
305 		 * Print check-hash failure if no controlling terminal
306 		 * in kernel or always if in user-mode (libufs).
307 		 */
308 		if (res == 0)
309 			printf("Superblock check-hash failed: recorded "
310 			    "check-hash 0x%x != computed check-hash "
311 			    "0x%x%s\n", fs->fs_ckhash, ckhash,
312 			    (flags & UFS_NOHASHFAIL) ? " (Ignored)" : "");
313 		if ((flags & UFS_NOHASHFAIL) != 0)
314 			return (0);
315 		return (EINTEGRITY);
316 	}
317 	/* Have to set for old filesystems that predate this field */
318 	fs->fs_sblockactualloc = sblockloc;
319 	/* Not yet any summary information */
320 	fs->fs_si = NULL;
321 	return (0);
322 }
323 
324 /*
325  * Verify the filesystem values.
326  */
327 #define ILOG2(num)	(fls(num) - 1)
328 #ifdef STANDALONE_SMALL
329 #define MPRINT(...)	do { } while (0)
330 #else
331 #define MPRINT(...)	if (prtmsg) printf(__VA_ARGS__)
332 #endif
333 #define FCHK(lhs, op, rhs, fmt)						\
334 	if (lhs op rhs) {						\
335 		MPRINT("UFS%d superblock failed: %s (" #fmt ") %s %s ("	\
336 		    #fmt ")\n", fs->fs_magic == FS_UFS1_MAGIC ? 1 : 2,	\
337 		    #lhs, (intmax_t)lhs, #op, #rhs, (intmax_t)rhs);	\
338 		if (error < 0)						\
339 			return (ENOENT);				\
340 		if (error == 0)						\
341 			error = ENOENT;					\
342 	}
343 #define WCHK(lhs, op, rhs, fmt)						\
344 	if (lhs op rhs) {						\
345 		MPRINT("UFS%d superblock failed: %s (" #fmt ") %s %s ("	\
346 		    #fmt ")%s\n", fs->fs_magic == FS_UFS1_MAGIC ? 1 : 2,\
347 		    #lhs, (intmax_t)lhs, #op, #rhs, (intmax_t)rhs, wmsg);\
348 		if (error == 0)						\
349 			error = warnerr;				\
350 	}
351 #define FCHK2(lhs1, op1, rhs1, lhs2, op2, rhs2, fmt)			\
352 	if (lhs1 op1 rhs1 && lhs2 op2 rhs2) {				\
353 		MPRINT("UFS%d superblock failed: %s (" #fmt ") %s %s ("	\
354 		    #fmt ") && %s (" #fmt ") %s %s (" #fmt ")\n",	\
355 		    fs->fs_magic == FS_UFS1_MAGIC ? 1 : 2, #lhs1,	\
356 		    (intmax_t)lhs1, #op1, #rhs1, (intmax_t)rhs1, #lhs2,	\
357 		    (intmax_t)lhs2, #op2, #rhs2, (intmax_t)rhs2);	\
358 		if (error < 0)						\
359 			return (ENOENT);				\
360 		if (error == 0)						\
361 			error = ENOENT;					\
362 	}
363 #define WCHK2(lhs1, op1, rhs1, lhs2, op2, rhs2, fmt)			\
364 	if (lhs1 op1 rhs1 && lhs2 op2 rhs2) {				\
365 		MPRINT("UFS%d superblock failed: %s (" #fmt ") %s %s ("	\
366 		    #fmt ") && %s (" #fmt ") %s %s (" #fmt ")%s\n",	\
367 		    fs->fs_magic == FS_UFS1_MAGIC ? 1 : 2, #lhs1,	\
368 		    (intmax_t)lhs1, #op1, #rhs1, (intmax_t)rhs1, #lhs2,	\
369 		    (intmax_t)lhs2, #op2, #rhs2, (intmax_t)rhs2, wmsg);	\
370 		if (error == 0)						\
371 			error = warnerr;				\
372 	}
373 
374 static int
375 validate_sblock(struct fs *fs, int flags)
376 {
377 	u_long i, sectorsize;
378 	u_int64_t maxfilesize, sizepb;
379 	int error, prtmsg, warnerr;
380 	char *wmsg;
381 
382 	error = 0;
383 	sectorsize = dbtob(1);
384 	prtmsg = ((flags & UFS_NOMSG) == 0);
385 	warnerr = (flags & UFS_NOWARNFAIL) == UFS_NOWARNFAIL ? 0 : ENOENT;
386 	wmsg = warnerr ? "" : " (Ignored)";
387 	/*
388 	 * Check for endian mismatch between machine and filesystem.
389 	 */
390 	if (((fs->fs_magic != FS_UFS2_MAGIC) &&
391 	    (bswap32(fs->fs_magic) == FS_UFS2_MAGIC)) ||
392 	    ((fs->fs_magic != FS_UFS1_MAGIC) &&
393 	    (bswap32(fs->fs_magic) == FS_UFS1_MAGIC))) {
394 		MPRINT("UFS superblock failed due to endian mismatch "
395 		    "between machine and filesystem\n");
396 		return(EILSEQ);
397 	}
398 	/*
399 	 * If just validating for recovery, then do just the minimal
400 	 * checks needed for the superblock fields needed to find
401 	 * alternate superblocks.
402 	 */
403 	if ((flags & UFS_FSRONLY) == UFS_FSRONLY &&
404 	    (fs->fs_magic == FS_UFS1_MAGIC || fs->fs_magic == FS_UFS2_MAGIC)) {
405 		error = -1; /* fail on first error */
406 		if (fs->fs_magic == FS_UFS2_MAGIC) {
407 			FCHK(fs->fs_sblockloc, !=, SBLOCK_UFS2, %#jx);
408 		} else if (fs->fs_magic == FS_UFS1_MAGIC) {
409 			FCHK(fs->fs_sblockloc, <, 0, %jd);
410 			FCHK(fs->fs_sblockloc, >, SBLOCK_UFS1, %jd);
411 		}
412 		FCHK(fs->fs_frag, <, 1, %jd);
413 		FCHK(fs->fs_frag, >, MAXFRAG, %jd);
414 		FCHK(fs->fs_bsize, <, MINBSIZE, %jd);
415 		FCHK(fs->fs_bsize, >, MAXBSIZE, %jd);
416 		FCHK(fs->fs_bsize, <, roundup(sizeof(struct fs), DEV_BSIZE),
417 		    %jd);
418 		FCHK(fs->fs_fsize, <, sectorsize, %jd);
419 		FCHK(fs->fs_fsize * fs->fs_frag, !=, fs->fs_bsize, %jd);
420 		FCHK(powerof2(fs->fs_fsize), ==, 0, %jd);
421 		FCHK(fs->fs_sbsize, >, SBLOCKSIZE, %jd);
422 		FCHK(fs->fs_sbsize, <, (signed)sizeof(struct fs), %jd);
423 		FCHK(fs->fs_sbsize % sectorsize, !=, 0, %jd);
424 		FCHK(fs->fs_fpg, <, 3 * fs->fs_frag, %jd);
425 		FCHK(fs->fs_ncg, <, 1, %jd);
426 		FCHK(fs->fs_fsbtodb, !=, ILOG2(fs->fs_fsize / sectorsize), %jd);
427 		FCHK(fs->fs_old_cgoffset, <, 0, %jd);
428 		FCHK2(fs->fs_old_cgoffset, >, 0, ~fs->fs_old_cgmask, <, 0, %jd);
429 		FCHK(fs->fs_old_cgoffset * (~fs->fs_old_cgmask), >, fs->fs_fpg,
430 		    %jd);
431 		FCHK(fs->fs_sblkno, !=, roundup(
432 		    howmany(fs->fs_sblockloc + SBLOCKSIZE, fs->fs_fsize),
433 		    fs->fs_frag), %jd);
434 		return (error);
435 	}
436 	if (fs->fs_magic == FS_UFS2_MAGIC) {
437 		if ((flags & UFS_ALTSBLK) == 0)
438 			FCHK2(fs->fs_sblockactualloc, !=, SBLOCK_UFS2,
439 			    fs->fs_sblockactualloc, !=, 0, %jd);
440 		FCHK(fs->fs_sblockloc, !=, SBLOCK_UFS2, %#jx);
441 		FCHK(fs->fs_maxsymlinklen, !=, ((UFS_NDADDR + UFS_NIADDR) *
442 			sizeof(ufs2_daddr_t)), %jd);
443 		FCHK(fs->fs_nindir, !=, fs->fs_bsize / sizeof(ufs2_daddr_t),
444 		    %jd);
445 		FCHK(fs->fs_inopb, !=,
446 		    fs->fs_bsize / sizeof(struct ufs2_dinode), %jd);
447 	} else if (fs->fs_magic == FS_UFS1_MAGIC) {
448 		if ((flags & UFS_ALTSBLK) == 0)
449 			FCHK(fs->fs_sblockactualloc, >, SBLOCK_UFS1, %jd);
450 		FCHK(fs->fs_sblockloc, <, 0, %jd);
451 		FCHK(fs->fs_sblockloc, >, SBLOCK_UFS1, %jd);
452 		FCHK(fs->fs_nindir, !=, fs->fs_bsize / sizeof(ufs1_daddr_t),
453 		    %jd);
454 		FCHK(fs->fs_inopb, !=,
455 		    fs->fs_bsize / sizeof(struct ufs1_dinode), %jd);
456 		FCHK(fs->fs_maxsymlinklen, !=, ((UFS_NDADDR + UFS_NIADDR) *
457 			sizeof(ufs1_daddr_t)), %jd);
458 		WCHK(fs->fs_old_inodefmt, !=, FS_44INODEFMT, %jd);
459 		WCHK(fs->fs_old_rotdelay, !=, 0, %jd);
460 		WCHK(fs->fs_old_rps, !=, 60, %jd);
461 		WCHK(fs->fs_old_nspf, !=, fs->fs_fsize / sectorsize, %jd);
462 		FCHK(fs->fs_old_cpg, !=, 1, %jd);
463 		WCHK(fs->fs_old_interleave, !=, 1, %jd);
464 		WCHK(fs->fs_old_trackskew, !=, 0, %jd);
465 		WCHK(fs->fs_old_cpc, !=, 0, %jd);
466 		WCHK(fs->fs_old_postblformat, !=, 1, %jd);
467 		FCHK(fs->fs_old_nrpos, !=, 1, %jd);
468 		WCHK(fs->fs_old_spc, !=, fs->fs_fpg * fs->fs_old_nspf, %jd);
469 		WCHK(fs->fs_old_nsect, !=, fs->fs_old_spc, %jd);
470 		WCHK(fs->fs_old_npsect, !=, fs->fs_old_spc, %jd);
471 		FCHK(fs->fs_old_ncyl, !=, fs->fs_ncg, %jd);
472 	} else {
473 		/* Bad magic number, so assume not a superblock */
474 		return (ENOENT);
475 	}
476 	FCHK(fs->fs_bsize, <, MINBSIZE, %jd);
477 	FCHK(fs->fs_bsize, >, MAXBSIZE, %jd);
478 	FCHK(fs->fs_bsize, <, roundup(sizeof(struct fs), DEV_BSIZE), %jd);
479 	FCHK(powerof2(fs->fs_bsize), ==, 0, %jd);
480 	FCHK(fs->fs_frag, <, 1, %jd);
481 	FCHK(fs->fs_frag, >, MAXFRAG, %jd);
482 	FCHK(fs->fs_frag, !=, numfrags(fs, fs->fs_bsize), %jd);
483 	FCHK(fs->fs_fsize, <, sectorsize, %jd);
484 	FCHK(fs->fs_fsize * fs->fs_frag, !=, fs->fs_bsize, %jd);
485 	FCHK(powerof2(fs->fs_fsize), ==, 0, %jd);
486 	FCHK(fs->fs_fpg, <, 3 * fs->fs_frag, %jd);
487 	FCHK(fs->fs_ncg, <, 1, %jd);
488 	FCHK(fs->fs_ipg, <, fs->fs_inopb, %jd);
489 	FCHK((u_int64_t)fs->fs_ipg * fs->fs_ncg, >,
490 	    (((int64_t)(1)) << 32) - INOPB(fs), %jd);
491 	FCHK(fs->fs_cstotal.cs_nifree, <, 0, %jd);
492 	FCHK(fs->fs_cstotal.cs_nifree, >, (u_int64_t)fs->fs_ipg * fs->fs_ncg,
493 	    %jd);
494 	FCHK(fs->fs_cstotal.cs_ndir, <, 0, %jd);
495 	FCHK(fs->fs_cstotal.cs_ndir, >,
496 	    ((u_int64_t)fs->fs_ipg * fs->fs_ncg) - fs->fs_cstotal.cs_nifree,
497 	    %jd);
498 	FCHK(fs->fs_sbsize, >, SBLOCKSIZE, %jd);
499 	FCHK(fs->fs_sbsize, <, (signed)sizeof(struct fs), %jd);
500 	FCHK(fs->fs_maxbsize, <, fs->fs_bsize, %jd);
501 	FCHK(powerof2(fs->fs_maxbsize), ==, 0, %jd);
502 	FCHK(fs->fs_maxbsize, >, FS_MAXCONTIG * fs->fs_bsize, %jd);
503 	FCHK(fs->fs_bmask, !=, ~(fs->fs_bsize - 1), %#jx);
504 	FCHK(fs->fs_fmask, !=, ~(fs->fs_fsize - 1), %#jx);
505 	FCHK(fs->fs_qbmask, !=, ~fs->fs_bmask, %#jx);
506 	FCHK(fs->fs_qfmask, !=, ~fs->fs_fmask, %#jx);
507 	FCHK(fs->fs_bshift, !=, ILOG2(fs->fs_bsize), %jd);
508 	FCHK(fs->fs_fshift, !=, ILOG2(fs->fs_fsize), %jd);
509 	FCHK(fs->fs_fragshift, !=, ILOG2(fs->fs_frag), %jd);
510 	FCHK(fs->fs_fsbtodb, !=, ILOG2(fs->fs_fsize / sectorsize), %jd);
511 	FCHK(fs->fs_old_cgoffset, <, 0, %jd);
512 	FCHK2(fs->fs_old_cgoffset, >, 0, ~fs->fs_old_cgmask, <, 0, %jd);
513 	FCHK(fs->fs_old_cgoffset * (~fs->fs_old_cgmask), >, fs->fs_fpg, %jd);
514 	/*
515 	 * If anything has failed up to this point, it is usafe to proceed
516 	 * as checks below may divide by zero or make other fatal calculations.
517 	 * So if we have any errors at this point, give up.
518 	 */
519 	if (error)
520 		return (error);
521 	FCHK(fs->fs_sbsize % sectorsize, !=, 0, %jd);
522 	FCHK(fs->fs_ipg % fs->fs_inopb, !=, 0, %jd);
523 	FCHK(fs->fs_sblkno, !=, roundup(
524 	    howmany(fs->fs_sblockloc + SBLOCKSIZE, fs->fs_fsize),
525 	    fs->fs_frag), %jd);
526 	FCHK(fs->fs_cblkno, !=, fs->fs_sblkno +
527 	    roundup(howmany(SBLOCKSIZE, fs->fs_fsize), fs->fs_frag), %jd);
528 	FCHK(fs->fs_iblkno, !=, fs->fs_cblkno + fs->fs_frag, %jd);
529 	FCHK(fs->fs_dblkno, !=, fs->fs_iblkno + fs->fs_ipg / INOPF(fs), %jd);
530 	FCHK(fs->fs_cgsize, >, fs->fs_bsize, %jd);
531 	FCHK(fs->fs_cgsize, <, fs->fs_fsize, %jd);
532 	FCHK(fs->fs_cgsize % fs->fs_fsize, !=, 0, %jd);
533 	/*
534 	 * This test is valid, however older versions of growfs failed
535 	 * to correctly update fs_dsize so will fail this test. Thus we
536 	 * exclude it from the requirements.
537 	 */
538 #ifdef notdef
539 	WCHK(fs->fs_dsize, !=, fs->fs_size - fs->fs_sblkno -
540 		fs->fs_ncg * (fs->fs_dblkno - fs->fs_sblkno) -
541 		howmany(fs->fs_cssize, fs->fs_fsize), %jd);
542 #endif
543 	WCHK(fs->fs_metaspace, <, 0, %jd);
544 	WCHK(fs->fs_metaspace, >, fs->fs_fpg / 2, %jd);
545 	WCHK(fs->fs_minfree, >, 99, %jd%%);
546 	maxfilesize = fs->fs_bsize * UFS_NDADDR - 1;
547 	for (sizepb = fs->fs_bsize, i = 0; i < UFS_NIADDR; i++) {
548 		sizepb *= NINDIR(fs);
549 		maxfilesize += sizepb;
550 	}
551 	WCHK(fs->fs_maxfilesize, !=, maxfilesize, %jd);
552 	/*
553 	 * These values have a tight interaction with each other that
554 	 * makes it hard to tightly bound them. So we can only check
555 	 * that they are within a broader possible range.
556 	 *
557 	 * The size cannot always be accurately determined, but ensure
558 	 * that it is consistent with the number of cylinder groups (fs_ncg)
559 	 * and the number of fragments per cylinder group (fs_fpg). Ensure
560 	 * that the summary information size is correct and that it starts
561 	 * and ends in the data area of the same cylinder group.
562 	 */
563 	FCHK(fs->fs_size, <, 8 * fs->fs_frag, %jd);
564 	FCHK(fs->fs_size, <=, ((int64_t)fs->fs_ncg - 1) * fs->fs_fpg, %jd);
565 	FCHK(fs->fs_size, >, (int64_t)fs->fs_ncg * fs->fs_fpg, %jd);
566 	/*
567 	 * If we are not requested to read in the csum data stop here
568 	 * as the correctness of the remaining values is only important
569 	 * to bound the space needed to be allocated to hold the csum data.
570 	 */
571 	if ((flags & UFS_NOCSUM) != 0)
572 		return (error);
573 	FCHK(fs->fs_csaddr, <, 0, %jd);
574 	FCHK(fs->fs_cssize, !=,
575 	    fragroundup(fs, fs->fs_ncg * sizeof(struct csum)), %jd);
576 	FCHK(dtog(fs, fs->fs_csaddr), >, fs->fs_ncg, %jd);
577 	FCHK(fs->fs_csaddr, <, cgdmin(fs, dtog(fs, fs->fs_csaddr)), %jd);
578 	FCHK(dtog(fs, fs->fs_csaddr + howmany(fs->fs_cssize, fs->fs_fsize)), >,
579 	    dtog(fs, fs->fs_csaddr), %jd);
580 	/*
581 	 * With file system clustering it is possible to allocate
582 	 * many contiguous blocks. The kernel variable maxphys defines
583 	 * the maximum transfer size permitted by the controller and/or
584 	 * buffering. The fs_maxcontig parameter controls the maximum
585 	 * number of blocks that the filesystem will read or write
586 	 * in a single transfer. It is calculated when the filesystem
587 	 * is created as maxphys / fs_bsize. The loader uses a maxphys
588 	 * of 128K even when running on a system that supports larger
589 	 * values. If the filesystem was built on a system that supports
590 	 * a larger maxphys (1M is typical) it will have configured
591 	 * fs_maxcontig for that larger system. So we bound the upper
592 	 * allowable limit for fs_maxconfig to be able to at least
593 	 * work with a 1M maxphys on the smallest block size filesystem:
594 	 * 1M / 4096 == 256. There is no harm in allowing the mounting of
595 	 * filesystems that make larger than maxphys I/O requests because
596 	 * those (mostly 32-bit machines) can (very slowly) handle I/O
597 	 * requests that exceed maxphys.
598 	 */
599 	WCHK(fs->fs_maxcontig, <, 0, %jd);
600 	WCHK(fs->fs_maxcontig, >, MAX(256, maxphys / fs->fs_bsize), %jd);
601 	FCHK2(fs->fs_maxcontig, ==, 0, fs->fs_contigsumsize, !=, 0, %jd);
602 	FCHK2(fs->fs_maxcontig, >, 1, fs->fs_contigsumsize, !=,
603 	    MIN(fs->fs_maxcontig, FS_MAXCONTIG), %jd);
604 	return (error);
605 }
606 
607 /*
608  * Make an extensive search to find a superblock. If the superblock
609  * in the standard place cannot be used, try looking for one of the
610  * backup superblocks.
611  *
612  * Flags are made up of the following or'ed together options:
613  *
614  * UFS_NOMSG indicates that superblock inconsistency error messages
615  *    should not be printed.
616  *
617  * UFS_NOCSUM causes only the superblock itself to be returned, but does
618  *    not read in any auxillary data structures like the cylinder group
619  *    summary information.
620  */
621 int
622 ffs_sbsearch(void *devfd, struct fs **fsp, int reqflags,
623     struct malloc_type *filltype,
624     int (*readfunc)(void *devfd, off_t loc, void **bufp, int size))
625 {
626 	struct fsrecovery *fsr;
627 	struct fs *protofs;
628 	void *fsrbuf;
629 	char *cp;
630 	long nocsum, flags, msg, cg;
631 	off_t sblk, secsize;
632 	int error;
633 
634 	msg = (reqflags & UFS_NOMSG) == 0;
635 	nocsum = reqflags & UFS_NOCSUM;
636 	/*
637 	 * Try normal superblock read and return it if it works.
638 	 *
639 	 * Suppress messages if it fails until we find out if
640 	 * failure can be avoided.
641 	 */
642 	flags = UFS_NOMSG | nocsum;
643 	error = ffs_sbget(devfd, fsp, UFS_STDSB, flags, filltype, readfunc);
644 	/*
645 	 * If successful or endian error, no need to try further.
646 	 */
647 	if (error == 0 || error == EILSEQ) {
648 		if (msg && error == EILSEQ)
649 			printf("UFS superblock failed due to endian mismatch "
650 			    "between machine and filesystem\n");
651 		return (error);
652 	}
653 	/*
654 	 * First try: ignoring hash failures.
655 	 */
656 	flags |= UFS_NOHASHFAIL;
657 	if (msg)
658 		flags &= ~UFS_NOMSG;
659 	if (ffs_sbget(devfd, fsp, UFS_STDSB, flags, filltype, readfunc) == 0)
660 		return (0);
661 	/*
662 	 * Next up is to check if fields of the superblock that are
663 	 * needed to find backup superblocks are usable.
664 	 */
665 	if (msg)
666 		printf("Attempted recovery for standard superblock: failed\n");
667 	flags = UFS_FSRONLY | UFS_NOHASHFAIL | UFS_NOMSG;
668 	if (ffs_sbget(devfd, &protofs, UFS_STDSB, flags, filltype,
669 	    readfunc) == 0) {
670 		if (msg)
671 			printf("Attempt extraction of recovery data from "
672 			    "standard superblock.\n");
673 	} else {
674 		/*
675 		 * Final desperation is to see if alternate superblock
676 		 * parameters have been saved in the boot area.
677 		 */
678 		if (msg)
679 			printf("Attempted extraction of recovery data from "
680 			    "standard superblock: failed\nAttempt to find "
681 			    "boot zone recovery data.\n");
682 		/*
683 		 * Look to see if recovery information has been saved.
684 		 * If so we can generate a prototype superblock based
685 		 * on that information.
686 		 *
687 		 * We need fragments-per-group, number of cylinder groups,
688 		 * location of the superblock within the cylinder group, and
689 		 * the conversion from filesystem fragments to disk blocks.
690 		 *
691 		 * When building a UFS2 filesystem, newfs(8) stores these
692 		 * details at the end of the boot block area at the start
693 		 * of the filesystem partition. If they have been overwritten
694 		 * by a boot block, we fail.  But usually they are there
695 		 * and we can use them.
696 		 *
697 		 * We could ask the underlying device for its sector size,
698 		 * but some devices lie. So we just try a plausible range.
699 		 */
700 		error = ENOENT;
701 		fsrbuf = NULL;
702 		for (secsize = dbtob(1); secsize <= SBLOCKSIZE; secsize *= 2)
703 			if ((error = (*readfunc)(devfd, (SBLOCK_UFS2 - secsize),
704 			    &fsrbuf, secsize)) == 0)
705 				break;
706 		if (error != 0)
707 			goto trynowarn;
708 		cp = fsrbuf; /* type change to keep compiler happy */
709 		fsr = (struct fsrecovery *)&cp[secsize - sizeof *fsr];
710 		if (fsr->fsr_magic != FS_UFS2_MAGIC ||
711 		    (protofs = UFS_MALLOC(SBLOCKSIZE, filltype, M_NOWAIT))
712 		    == NULL) {
713 			UFS_FREE(fsrbuf, filltype);
714 			goto trynowarn;
715 		}
716 		memset(protofs, 0, sizeof(struct fs));
717 		protofs->fs_fpg = fsr->fsr_fpg;
718 		protofs->fs_fsbtodb = fsr->fsr_fsbtodb;
719 		protofs->fs_sblkno = fsr->fsr_sblkno;
720 		protofs->fs_magic = fsr->fsr_magic;
721 		protofs->fs_ncg = fsr->fsr_ncg;
722 		UFS_FREE(fsrbuf, filltype);
723 	}
724 	/*
725 	 * Scan looking for alternative superblocks.
726 	 */
727 	flags = nocsum;
728 	if (!msg)
729 		flags |= UFS_NOMSG;
730 	for (cg = 0; cg < protofs->fs_ncg; cg++) {
731 		sblk = fsbtodb(protofs, cgsblock(protofs, cg));
732 		if (msg)
733 			printf("Try cg %ld at sblock loc %jd\n", cg,
734 			    (intmax_t)sblk);
735 		if (ffs_sbget(devfd, fsp, dbtob(sblk), flags, filltype,
736 		    readfunc) == 0) {
737 			if (msg)
738 				printf("Succeeded with alternate superblock "
739 				    "at %jd\n", (intmax_t)sblk);
740 			UFS_FREE(protofs, filltype);
741 			return (0);
742 		}
743 	}
744 	UFS_FREE(protofs, filltype);
745 	/*
746 	 * Our alternate superblock strategies failed. Our last ditch effort
747 	 * is to see if the standard superblock has only non-critical errors.
748 	 */
749 trynowarn:
750 	flags = UFS_NOWARNFAIL | UFS_NOMSG | nocsum;
751 	if (msg) {
752 		printf("Finding an alternate superblock failed.\nCheck for "
753 		    "only non-critical errors in standard superblock\n");
754 		flags &= ~UFS_NOMSG;
755 	}
756 	if (ffs_sbget(devfd, fsp, UFS_STDSB, flags, filltype, readfunc) != 0) {
757 		if (msg)
758 			printf("Failed, superblock has critical errors\n");
759 		return (ENOENT);
760 	}
761 	if (msg)
762 		printf("Success, using standard superblock with "
763 		    "non-critical errors.\n");
764 	return (0);
765 }
766 
767 /*
768  * Write a superblock to the devfd device from the memory pointed to by fs.
769  * Write out the superblock summary information if it is present.
770  *
771  * If the write is successful, zero is returned. Otherwise one of the
772  * following error values is returned:
773  *     EIO: failed to write superblock.
774  *     EIO: failed to write superblock summary information.
775  */
776 int
777 ffs_sbput(void *devfd, struct fs *fs, off_t loc,
778     int (*writefunc)(void *devfd, off_t loc, void *buf, int size))
779 {
780 	int i, error, blks, size;
781 	uint8_t *space;
782 
783 	/*
784 	 * If there is summary information, write it first, so if there
785 	 * is an error, the superblock will not be marked as clean.
786 	 */
787 	if (fs->fs_si != NULL && fs->fs_csp != NULL) {
788 		blks = howmany(fs->fs_cssize, fs->fs_fsize);
789 		space = (uint8_t *)fs->fs_csp;
790 		for (i = 0; i < blks; i += fs->fs_frag) {
791 			size = fs->fs_bsize;
792 			if (i + fs->fs_frag > blks)
793 				size = (blks - i) * fs->fs_fsize;
794 			if ((error = (*writefunc)(devfd,
795 			     dbtob(fsbtodb(fs, fs->fs_csaddr + i)),
796 			     space, size)) != 0)
797 				return (error);
798 			space += size;
799 		}
800 	}
801 	fs->fs_fmod = 0;
802 #ifndef _KERNEL
803 	{
804 		struct fs_summary_info *fs_si;
805 
806 		fs->fs_time = time(NULL);
807 		/* Clear the pointers for the duration of writing. */
808 		fs_si = fs->fs_si;
809 		fs->fs_si = NULL;
810 		fs->fs_ckhash = ffs_calc_sbhash(fs);
811 		error = (*writefunc)(devfd, loc, fs, fs->fs_sbsize);
812 		fs->fs_si = fs_si;
813 	}
814 #else /* _KERNEL */
815 	fs->fs_time = time_second;
816 	fs->fs_ckhash = ffs_calc_sbhash(fs);
817 	error = (*writefunc)(devfd, loc, fs, fs->fs_sbsize);
818 #endif /* _KERNEL */
819 	return (error);
820 }
821 
822 /*
823  * Calculate the check-hash for a superblock.
824  */
825 uint32_t
826 ffs_calc_sbhash(struct fs *fs)
827 {
828 	uint32_t ckhash, save_ckhash;
829 
830 	/*
831 	 * A filesystem that was using a superblock ckhash may be moved
832 	 * to an older kernel that does not support ckhashes. The
833 	 * older kernel will clear the FS_METACKHASH flag indicating
834 	 * that it does not update hashes. When the disk is moved back
835 	 * to a kernel capable of ckhashes it disables them on mount:
836 	 *
837 	 *	if ((fs->fs_flags & FS_METACKHASH) == 0)
838 	 *		fs->fs_metackhash = 0;
839 	 *
840 	 * This leaves (fs->fs_metackhash & CK_SUPERBLOCK) == 0) with an
841 	 * old stale value in the fs->fs_ckhash field. Thus the need to
842 	 * just accept what is there.
843 	 */
844 	if ((fs->fs_metackhash & CK_SUPERBLOCK) == 0)
845 		return (fs->fs_ckhash);
846 
847 	save_ckhash = fs->fs_ckhash;
848 	fs->fs_ckhash = 0;
849 	/*
850 	 * If newly read from disk, the caller is responsible for
851 	 * verifying that fs->fs_sbsize <= SBLOCKSIZE.
852 	 */
853 	ckhash = calculate_crc32c(~0L, (void *)fs, fs->fs_sbsize);
854 	fs->fs_ckhash = save_ckhash;
855 	return (ckhash);
856 }
857 
858 /*
859  * Update the frsum fields to reflect addition or deletion
860  * of some frags.
861  */
862 void
863 ffs_fragacct(struct fs *fs, int fragmap, int32_t fraglist[], int cnt)
864 {
865 	int inblk;
866 	int field, subfield;
867 	int siz, pos;
868 
869 	inblk = (int)(fragtbl[fs->fs_frag][fragmap]) << 1;
870 	fragmap <<= 1;
871 	for (siz = 1; siz < fs->fs_frag; siz++) {
872 		if ((inblk & (1 << (siz + (fs->fs_frag % NBBY)))) == 0)
873 			continue;
874 		field = around[siz];
875 		subfield = inside[siz];
876 		for (pos = siz; pos <= fs->fs_frag; pos++) {
877 			if ((fragmap & field) == subfield) {
878 				fraglist[siz] += cnt;
879 				pos += siz;
880 				field <<= siz;
881 				subfield <<= siz;
882 			}
883 			field <<= 1;
884 			subfield <<= 1;
885 		}
886 	}
887 }
888 
889 /*
890  * block operations
891  *
892  * check if a block is available
893  */
894 int
895 ffs_isblock(struct fs *fs, unsigned char *cp, ufs1_daddr_t h)
896 {
897 	unsigned char mask;
898 
899 	switch ((int)fs->fs_frag) {
900 	case 8:
901 		return (cp[h] == 0xff);
902 	case 4:
903 		mask = 0x0f << ((h & 0x1) << 2);
904 		return ((cp[h >> 1] & mask) == mask);
905 	case 2:
906 		mask = 0x03 << ((h & 0x3) << 1);
907 		return ((cp[h >> 2] & mask) == mask);
908 	case 1:
909 		mask = 0x01 << (h & 0x7);
910 		return ((cp[h >> 3] & mask) == mask);
911 	default:
912 #ifdef _KERNEL
913 		panic("ffs_isblock");
914 #endif
915 		break;
916 	}
917 	return (0);
918 }
919 
920 /*
921  * check if a block is free
922  */
923 int
924 ffs_isfreeblock(struct fs *fs, u_char *cp, ufs1_daddr_t h)
925 {
926 
927 	switch ((int)fs->fs_frag) {
928 	case 8:
929 		return (cp[h] == 0);
930 	case 4:
931 		return ((cp[h >> 1] & (0x0f << ((h & 0x1) << 2))) == 0);
932 	case 2:
933 		return ((cp[h >> 2] & (0x03 << ((h & 0x3) << 1))) == 0);
934 	case 1:
935 		return ((cp[h >> 3] & (0x01 << (h & 0x7))) == 0);
936 	default:
937 #ifdef _KERNEL
938 		panic("ffs_isfreeblock");
939 #endif
940 		break;
941 	}
942 	return (0);
943 }
944 
945 /*
946  * take a block out of the map
947  */
948 void
949 ffs_clrblock(struct fs *fs, u_char *cp, ufs1_daddr_t h)
950 {
951 
952 	switch ((int)fs->fs_frag) {
953 	case 8:
954 		cp[h] = 0;
955 		return;
956 	case 4:
957 		cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2));
958 		return;
959 	case 2:
960 		cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1));
961 		return;
962 	case 1:
963 		cp[h >> 3] &= ~(0x01 << (h & 0x7));
964 		return;
965 	default:
966 #ifdef _KERNEL
967 		panic("ffs_clrblock");
968 #endif
969 		break;
970 	}
971 }
972 
973 /*
974  * put a block into the map
975  */
976 void
977 ffs_setblock(struct fs *fs, unsigned char *cp, ufs1_daddr_t h)
978 {
979 
980 	switch ((int)fs->fs_frag) {
981 	case 8:
982 		cp[h] = 0xff;
983 		return;
984 	case 4:
985 		cp[h >> 1] |= (0x0f << ((h & 0x1) << 2));
986 		return;
987 	case 2:
988 		cp[h >> 2] |= (0x03 << ((h & 0x3) << 1));
989 		return;
990 	case 1:
991 		cp[h >> 3] |= (0x01 << (h & 0x7));
992 		return;
993 	default:
994 #ifdef _KERNEL
995 		panic("ffs_setblock");
996 #endif
997 		break;
998 	}
999 }
1000 
1001 /*
1002  * Update the cluster map because of an allocation or free.
1003  *
1004  * Cnt == 1 means free; cnt == -1 means allocating.
1005  */
1006 void
1007 ffs_clusteracct(struct fs *fs, struct cg *cgp, ufs1_daddr_t blkno, int cnt)
1008 {
1009 	int32_t *sump;
1010 	int32_t *lp;
1011 	u_char *freemapp, *mapp;
1012 	int i, start, end, forw, back, map;
1013 	u_int bit;
1014 
1015 	if (fs->fs_contigsumsize <= 0)
1016 		return;
1017 	freemapp = cg_clustersfree(cgp);
1018 	sump = cg_clustersum(cgp);
1019 	/*
1020 	 * Allocate or clear the actual block.
1021 	 */
1022 	if (cnt > 0)
1023 		setbit(freemapp, blkno);
1024 	else
1025 		clrbit(freemapp, blkno);
1026 	/*
1027 	 * Find the size of the cluster going forward.
1028 	 */
1029 	start = blkno + 1;
1030 	end = start + fs->fs_contigsumsize;
1031 	if (end >= cgp->cg_nclusterblks)
1032 		end = cgp->cg_nclusterblks;
1033 	mapp = &freemapp[start / NBBY];
1034 	map = *mapp++;
1035 	bit = 1U << (start % NBBY);
1036 	for (i = start; i < end; i++) {
1037 		if ((map & bit) == 0)
1038 			break;
1039 		if ((i & (NBBY - 1)) != (NBBY - 1)) {
1040 			bit <<= 1;
1041 		} else {
1042 			map = *mapp++;
1043 			bit = 1;
1044 		}
1045 	}
1046 	forw = i - start;
1047 	/*
1048 	 * Find the size of the cluster going backward.
1049 	 */
1050 	start = blkno - 1;
1051 	end = start - fs->fs_contigsumsize;
1052 	if (end < 0)
1053 		end = -1;
1054 	mapp = &freemapp[start / NBBY];
1055 	map = *mapp--;
1056 	bit = 1U << (start % NBBY);
1057 	for (i = start; i > end; i--) {
1058 		if ((map & bit) == 0)
1059 			break;
1060 		if ((i & (NBBY - 1)) != 0) {
1061 			bit >>= 1;
1062 		} else {
1063 			map = *mapp--;
1064 			bit = 1U << (NBBY - 1);
1065 		}
1066 	}
1067 	back = start - i;
1068 	/*
1069 	 * Account for old cluster and the possibly new forward and
1070 	 * back clusters.
1071 	 */
1072 	i = back + forw + 1;
1073 	if (i > fs->fs_contigsumsize)
1074 		i = fs->fs_contigsumsize;
1075 	sump[i] += cnt;
1076 	if (back > 0)
1077 		sump[back] -= cnt;
1078 	if (forw > 0)
1079 		sump[forw] -= cnt;
1080 	/*
1081 	 * Update cluster summary information.
1082 	 */
1083 	lp = &sump[fs->fs_contigsumsize];
1084 	for (i = fs->fs_contigsumsize; i > 0; i--)
1085 		if (*lp-- > 0)
1086 			break;
1087 	fs->fs_maxcluster[cgp->cg_cgx] = i;
1088 }
1089