1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1989, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * @(#)ffs_subr.c 8.5 (Berkeley) 3/21/95 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include <sys/param.h> 38 #include <sys/limits.h> 39 40 #ifndef _KERNEL 41 #include <stdio.h> 42 #include <string.h> 43 #include <stdlib.h> 44 #include <time.h> 45 #include <sys/errno.h> 46 #include <ufs/ufs/dinode.h> 47 #include <ufs/ffs/fs.h> 48 49 uint32_t calculate_crc32c(uint32_t, const void *, size_t); 50 uint32_t ffs_calc_sbhash(struct fs *); 51 struct malloc_type; 52 #define UFS_MALLOC(size, type, flags) malloc(size) 53 #define UFS_FREE(ptr, type) free(ptr) 54 #define maxphys MAXPHYS 55 56 #else /* _KERNEL */ 57 #include <sys/systm.h> 58 #include <sys/gsb_crc32.h> 59 #include <sys/lock.h> 60 #include <sys/malloc.h> 61 #include <sys/mount.h> 62 #include <sys/vnode.h> 63 #include <sys/bio.h> 64 #include <sys/buf.h> 65 #include <sys/ucred.h> 66 67 #include <ufs/ufs/quota.h> 68 #include <ufs/ufs/inode.h> 69 #include <ufs/ufs/extattr.h> 70 #include <ufs/ufs/ufsmount.h> 71 #include <ufs/ufs/ufs_extern.h> 72 #include <ufs/ffs/ffs_extern.h> 73 #include <ufs/ffs/fs.h> 74 75 #define UFS_MALLOC(size, type, flags) malloc(size, type, flags) 76 #define UFS_FREE(ptr, type) free(ptr, type) 77 78 #endif /* _KERNEL */ 79 80 /* 81 * Verify an inode check-hash. 82 */ 83 int 84 ffs_verify_dinode_ckhash(struct fs *fs, struct ufs2_dinode *dip) 85 { 86 uint32_t ckhash, save_ckhash; 87 88 /* 89 * Return success if unallocated or we are not doing inode check-hash. 90 */ 91 if (dip->di_mode == 0 || (fs->fs_metackhash & CK_INODE) == 0) 92 return (0); 93 /* 94 * Exclude di_ckhash from the crc32 calculation, e.g., always use 95 * a check-hash value of zero when calculating the check-hash. 96 */ 97 save_ckhash = dip->di_ckhash; 98 dip->di_ckhash = 0; 99 ckhash = calculate_crc32c(~0L, (void *)dip, sizeof(*dip)); 100 dip->di_ckhash = save_ckhash; 101 if (save_ckhash == ckhash) 102 return (0); 103 return (EINVAL); 104 } 105 106 /* 107 * Update an inode check-hash. 108 */ 109 void 110 ffs_update_dinode_ckhash(struct fs *fs, struct ufs2_dinode *dip) 111 { 112 113 if (dip->di_mode == 0 || (fs->fs_metackhash & CK_INODE) == 0) 114 return; 115 /* 116 * Exclude old di_ckhash from the crc32 calculation, e.g., always use 117 * a check-hash value of zero when calculating the new check-hash. 118 */ 119 dip->di_ckhash = 0; 120 dip->di_ckhash = calculate_crc32c(~0L, (void *)dip, sizeof(*dip)); 121 } 122 123 /* 124 * These are the low-level functions that actually read and write 125 * the superblock and its associated data. 126 */ 127 static off_t sblock_try[] = SBLOCKSEARCH; 128 static int readsuper(void *, struct fs **, off_t, int, 129 int (*)(void *, off_t, void **, int)); 130 static int validate_sblock(struct fs *, int); 131 132 /* 133 * Read a superblock from the devfd device. 134 * 135 * If an alternate superblock is specified, it is read. Otherwise the 136 * set of locations given in the SBLOCKSEARCH list is searched for a 137 * superblock. Memory is allocated for the superblock by the readfunc and 138 * is returned. If filltype is non-NULL, additional memory is allocated 139 * of type filltype and filled in with the superblock summary information. 140 * All memory is freed when any error is returned. 141 * 142 * If a superblock is found, zero is returned. Otherwise one of the 143 * following error values is returned: 144 * EIO: non-existent or truncated superblock. 145 * EIO: error reading summary information. 146 * ENOENT: no usable known superblock found. 147 * ENOMEM: failed to allocate space for the superblock. 148 * EINVAL: The previous newfs operation on this volume did not complete. 149 * The administrator must complete newfs before using this volume. 150 */ 151 int 152 ffs_sbget(void *devfd, struct fs **fsp, off_t sblock, int flags, 153 struct malloc_type *filltype, 154 int (*readfunc)(void *devfd, off_t loc, void **bufp, int size)) 155 { 156 struct fs *fs; 157 struct fs_summary_info *fs_si; 158 int i, error; 159 uint64_t size, blks; 160 uint8_t *space; 161 int32_t *lp; 162 char *buf; 163 164 fs = NULL; 165 *fsp = NULL; 166 if (sblock != UFS_STDSB) { 167 if ((error = readsuper(devfd, &fs, sblock, 168 flags | UFS_ALTSBLK, readfunc)) != 0) { 169 if (fs != NULL) 170 UFS_FREE(fs, filltype); 171 return (error); 172 } 173 } else { 174 for (i = 0; sblock_try[i] != -1; i++) { 175 if ((error = readsuper(devfd, &fs, sblock_try[i], 176 flags, readfunc)) == 0) { 177 if ((flags & UFS_NOCSUM) != 0) { 178 *fsp = fs; 179 return (0); 180 } 181 break; 182 } 183 if (fs != NULL) { 184 UFS_FREE(fs, filltype); 185 fs = NULL; 186 } 187 if (error == ENOENT) 188 continue; 189 return (error); 190 } 191 if (sblock_try[i] == -1) 192 return (ENOENT); 193 } 194 /* 195 * Read in the superblock summary information. 196 */ 197 size = fs->fs_cssize; 198 blks = howmany(size, fs->fs_fsize); 199 if (fs->fs_contigsumsize > 0) 200 size += fs->fs_ncg * sizeof(int32_t); 201 size += fs->fs_ncg * sizeof(u_int8_t); 202 if ((fs_si = UFS_MALLOC(sizeof(*fs_si), filltype, M_NOWAIT)) == NULL) { 203 UFS_FREE(fs, filltype); 204 return (ENOMEM); 205 } 206 bzero(fs_si, sizeof(*fs_si)); 207 fs->fs_si = fs_si; 208 if ((space = UFS_MALLOC(size, filltype, M_NOWAIT)) == NULL) { 209 UFS_FREE(fs->fs_si, filltype); 210 UFS_FREE(fs, filltype); 211 return (ENOMEM); 212 } 213 fs->fs_csp = (struct csum *)space; 214 for (i = 0; i < blks; i += fs->fs_frag) { 215 size = fs->fs_bsize; 216 if (i + fs->fs_frag > blks) 217 size = (blks - i) * fs->fs_fsize; 218 buf = NULL; 219 error = (*readfunc)(devfd, 220 dbtob(fsbtodb(fs, fs->fs_csaddr + i)), (void **)&buf, size); 221 if (error) { 222 if (buf != NULL) 223 UFS_FREE(buf, filltype); 224 UFS_FREE(fs->fs_csp, filltype); 225 UFS_FREE(fs->fs_si, filltype); 226 UFS_FREE(fs, filltype); 227 return (error); 228 } 229 memcpy(space, buf, size); 230 UFS_FREE(buf, filltype); 231 space += size; 232 } 233 if (fs->fs_contigsumsize > 0) { 234 fs->fs_maxcluster = lp = (int32_t *)space; 235 for (i = 0; i < fs->fs_ncg; i++) 236 *lp++ = fs->fs_contigsumsize; 237 space = (uint8_t *)lp; 238 } 239 size = fs->fs_ncg * sizeof(u_int8_t); 240 fs->fs_contigdirs = (u_int8_t *)space; 241 bzero(fs->fs_contigdirs, size); 242 *fsp = fs; 243 return (0); 244 } 245 246 /* 247 * Try to read a superblock from the location specified by sblockloc. 248 * Return zero on success or an errno on failure. 249 */ 250 static int 251 readsuper(void *devfd, struct fs **fsp, off_t sblockloc, int flags, 252 int (*readfunc)(void *devfd, off_t loc, void **bufp, int size)) 253 { 254 struct fs *fs; 255 int error, res; 256 uint32_t ckhash; 257 258 error = (*readfunc)(devfd, sblockloc, (void **)fsp, SBLOCKSIZE); 259 if (error != 0) 260 return (error); 261 fs = *fsp; 262 if (fs->fs_magic == FS_BAD_MAGIC) 263 return (EINVAL); 264 /* 265 * For UFS1 with a 65536 block size, the first backup superblock 266 * is at the same location as the UFS2 superblock. Since SBLOCK_UFS2 267 * is the first location checked, the first backup is the superblock 268 * that will be accessed. Here we fail the lookup so that we can 269 * retry with the correct location for the UFS1 superblock. 270 */ 271 if (fs->fs_magic == FS_UFS1_MAGIC && (flags & UFS_ALTSBLK) == 0 && 272 fs->fs_bsize == SBLOCK_UFS2 && sblockloc == SBLOCK_UFS2) 273 return (ENOENT); 274 if ((error = validate_sblock(fs, flags)) > 0) 275 return (error); 276 /* 277 * If the filesystem has been run on a kernel without 278 * metadata check hashes, disable them. 279 */ 280 if ((fs->fs_flags & FS_METACKHASH) == 0) 281 fs->fs_metackhash = 0; 282 /* 283 * Clear any check-hashes that are not maintained 284 * by this kernel. Also clear any unsupported flags. 285 */ 286 fs->fs_metackhash &= CK_SUPPORTED; 287 fs->fs_flags &= FS_SUPPORTED; 288 if (fs->fs_ckhash != (ckhash = ffs_calc_sbhash(fs))) { 289 if ((flags & (UFS_NOMSG | UFS_NOHASHFAIL)) == 290 (UFS_NOMSG | UFS_NOHASHFAIL)) 291 return (0); 292 if ((flags & UFS_NOMSG) != 0) 293 return (EINTEGRITY); 294 #ifdef _KERNEL 295 res = uprintf("Superblock check-hash failed: recorded " 296 "check-hash 0x%x != computed check-hash 0x%x%s\n", 297 fs->fs_ckhash, ckhash, 298 (flags & UFS_NOHASHFAIL) != 0 ? " (Ignored)" : ""); 299 #else 300 res = 0; 301 #endif 302 /* 303 * Print check-hash failure if no controlling terminal 304 * in kernel or always if in user-mode (libufs). 305 */ 306 if (res == 0) 307 printf("Superblock check-hash failed: recorded " 308 "check-hash 0x%x != computed check-hash " 309 "0x%x%s\n", fs->fs_ckhash, ckhash, 310 (flags & UFS_NOHASHFAIL) ? " (Ignored)" : ""); 311 if ((flags & UFS_NOHASHFAIL) != 0) 312 return (0); 313 return (EINTEGRITY); 314 } 315 /* Have to set for old filesystems that predate this field */ 316 fs->fs_sblockactualloc = sblockloc; 317 /* Not yet any summary information */ 318 fs->fs_si = NULL; 319 return (0); 320 } 321 322 /* 323 * Verify the filesystem values. 324 */ 325 #define ILOG2(num) (fls(num) - 1) 326 #ifdef STANDALONE_SMALL 327 #define MPRINT(...) do { } while (0) 328 #else 329 #define MPRINT(...) if (prtmsg) printf(__VA_ARGS__) 330 #endif 331 #define FCHK(lhs, op, rhs, fmt) \ 332 if (lhs op rhs) { \ 333 MPRINT("UFS%d superblock failed: %s (" #fmt ") %s %s (" \ 334 #fmt ")\n", fs->fs_magic == FS_UFS1_MAGIC ? 1 : 2, \ 335 #lhs, (intmax_t)lhs, #op, #rhs, (intmax_t)rhs); \ 336 if (error == 0) \ 337 error = ENOENT; \ 338 } 339 #define WCHK(lhs, op, rhs, fmt) \ 340 if (lhs op rhs) { \ 341 MPRINT("UFS%d superblock failed: %s (" #fmt ") %s %s (" \ 342 #fmt ")%s\n", fs->fs_magic == FS_UFS1_MAGIC ? 1 : 2,\ 343 #lhs, (intmax_t)lhs, #op, #rhs, (intmax_t)rhs, wmsg);\ 344 if (error == 0) \ 345 error = warnerr; \ 346 } 347 #define FCHK2(lhs1, op1, rhs1, lhs2, op2, rhs2, fmt) \ 348 if (lhs1 op1 rhs1 && lhs2 op2 rhs2) { \ 349 MPRINT("UFS%d superblock failed: %s (" #fmt ") %s %s (" \ 350 #fmt ") && %s (" #fmt ") %s %s (" #fmt ")\n", \ 351 fs->fs_magic == FS_UFS1_MAGIC ? 1 : 2, #lhs1, \ 352 (intmax_t)lhs1, #op1, #rhs1, (intmax_t)rhs1, #lhs2, \ 353 (intmax_t)lhs2, #op2, #rhs2, (intmax_t)rhs2); \ 354 if (error == 0) \ 355 error = ENOENT; \ 356 } 357 #define WCHK2(lhs1, op1, rhs1, lhs2, op2, rhs2, fmt) \ 358 if (lhs1 op1 rhs1 && lhs2 op2 rhs2) { \ 359 MPRINT("UFS%d superblock failed: %s (" #fmt ") %s %s (" \ 360 #fmt ") && %s (" #fmt ") %s %s (" #fmt ")%s\n", \ 361 fs->fs_magic == FS_UFS1_MAGIC ? 1 : 2, #lhs1, \ 362 (intmax_t)lhs1, #op1, #rhs1, (intmax_t)rhs1, #lhs2, \ 363 (intmax_t)lhs2, #op2, #rhs2, (intmax_t)rhs2, wmsg); \ 364 if (error == 0) \ 365 error = warnerr; \ 366 } 367 368 static int 369 validate_sblock(struct fs *fs, int flags) 370 { 371 u_long i, sectorsize; 372 u_int64_t maxfilesize, sizepb; 373 int error, prtmsg, warnerr; 374 char *wmsg; 375 376 error = 0; 377 sectorsize = dbtob(1); 378 prtmsg = ((flags & UFS_NOMSG) == 0); 379 warnerr = (flags & UFS_NOWARNFAIL) == UFS_NOWARNFAIL ? 0 : ENOENT; 380 wmsg = warnerr ? "" : " (Ignored)"; 381 if (fs->fs_magic == FS_UFS2_MAGIC) { 382 if ((flags & UFS_ALTSBLK) == 0) 383 FCHK2(fs->fs_sblockactualloc, !=, SBLOCK_UFS2, 384 fs->fs_sblockactualloc, !=, 0, %jd); 385 FCHK(fs->fs_sblockloc, !=, SBLOCK_UFS2, %#jx); 386 FCHK(fs->fs_maxsymlinklen, !=, ((UFS_NDADDR + UFS_NIADDR) * 387 sizeof(ufs2_daddr_t)), %jd); 388 FCHK(fs->fs_nindir, !=, fs->fs_bsize / sizeof(ufs2_daddr_t), 389 %jd); 390 FCHK(fs->fs_inopb, !=, 391 fs->fs_bsize / sizeof(struct ufs2_dinode), %jd); 392 } else if (fs->fs_magic == FS_UFS1_MAGIC) { 393 if ((flags & UFS_ALTSBLK) == 0) 394 FCHK(fs->fs_sblockactualloc, >, SBLOCK_UFS1, %jd); 395 FCHK(fs->fs_sblockloc, <, 0, %jd); 396 FCHK(fs->fs_sblockloc, >, SBLOCK_UFS1, %jd); 397 FCHK(fs->fs_nindir, !=, fs->fs_bsize / sizeof(ufs1_daddr_t), 398 %jd); 399 FCHK(fs->fs_inopb, !=, 400 fs->fs_bsize / sizeof(struct ufs1_dinode), %jd); 401 FCHK(fs->fs_maxsymlinklen, !=, ((UFS_NDADDR + UFS_NIADDR) * 402 sizeof(ufs1_daddr_t)), %jd); 403 WCHK(fs->fs_old_inodefmt, !=, FS_44INODEFMT, %jd); 404 WCHK(fs->fs_old_rotdelay, !=, 0, %jd); 405 WCHK(fs->fs_old_rps, !=, 60, %jd); 406 WCHK(fs->fs_old_nspf, !=, fs->fs_fsize / sectorsize, %jd); 407 WCHK(fs->fs_old_cpg, !=, 1, %jd); 408 WCHK(fs->fs_old_interleave, !=, 1, %jd); 409 WCHK(fs->fs_old_trackskew, !=, 0, %jd); 410 WCHK(fs->fs_old_cpc, !=, 0, %jd); 411 WCHK(fs->fs_old_postblformat, !=, 1, %jd); 412 WCHK(fs->fs_old_nrpos, !=, 1, %jd); 413 WCHK(fs->fs_old_spc, !=, fs->fs_fpg * fs->fs_old_nspf, %jd); 414 WCHK(fs->fs_old_nsect, !=, fs->fs_old_spc, %jd); 415 WCHK(fs->fs_old_npsect, !=, fs->fs_old_spc, %jd); 416 FCHK(fs->fs_old_ncyl, !=, fs->fs_ncg, %jd); 417 } else { 418 /* Bad magic number, so assume not a superblock */ 419 return (ENOENT); 420 } 421 FCHK(fs->fs_bsize, <, MINBSIZE, %jd); 422 FCHK(fs->fs_bsize, >, MAXBSIZE, %jd); 423 FCHK(fs->fs_bsize, <, roundup(sizeof(struct fs), DEV_BSIZE), %jd); 424 FCHK(powerof2(fs->fs_bsize), ==, 0, %jd); 425 FCHK(fs->fs_frag, <, 1, %jd); 426 FCHK(fs->fs_frag, >, MAXFRAG, %jd); 427 FCHK(fs->fs_frag, !=, numfrags(fs, fs->fs_bsize), %jd); 428 FCHK(fs->fs_fsize, <, sectorsize, %jd); 429 FCHK(fs->fs_fsize * fs->fs_frag, !=, fs->fs_bsize, %jd); 430 FCHK(powerof2(fs->fs_fsize), ==, 0, %jd); 431 FCHK(fs->fs_fpg, <, 3 * fs->fs_frag, %jd); 432 FCHK(fs->fs_ncg, <, 1, %jd); 433 FCHK(fs->fs_ipg, <, 1, %jd); 434 FCHK(fs->fs_ipg * fs->fs_ncg, >, (((int64_t)(1)) << 32) - INOPB(fs), 435 %jd); 436 FCHK(fs->fs_sbsize, >, SBLOCKSIZE, %jd); 437 FCHK(fs->fs_maxbsize, <, fs->fs_bsize, %jd); 438 FCHK(powerof2(fs->fs_maxbsize), ==, 0, %jd); 439 FCHK(fs->fs_maxbsize, >, FS_MAXCONTIG * fs->fs_bsize, %jd); 440 FCHK(fs->fs_bmask, !=, ~(fs->fs_bsize - 1), %#jx); 441 FCHK(fs->fs_fmask, !=, ~(fs->fs_fsize - 1), %#jx); 442 FCHK(fs->fs_qbmask, !=, ~fs->fs_bmask, %#jx); 443 FCHK(fs->fs_qfmask, !=, ~fs->fs_fmask, %#jx); 444 FCHK(fs->fs_bshift, !=, ILOG2(fs->fs_bsize), %jd); 445 FCHK(fs->fs_fshift, !=, ILOG2(fs->fs_fsize), %jd); 446 FCHK(fs->fs_fragshift, !=, ILOG2(fs->fs_frag), %jd); 447 FCHK(fs->fs_fsbtodb, !=, ILOG2(fs->fs_fsize / sectorsize), %jd); 448 FCHK(fs->fs_old_cgoffset, <, 0, %jd); 449 FCHK2(fs->fs_old_cgoffset, >, 0, ~fs->fs_old_cgmask, <, 0, %jd); 450 FCHK(fs->fs_old_cgoffset * (~fs->fs_old_cgmask), >, fs->fs_fpg, %jd); 451 FCHK(fs->fs_sblkno, !=, roundup( 452 howmany(fs->fs_sblockloc + SBLOCKSIZE, fs->fs_fsize), 453 fs->fs_frag), %jd); 454 FCHK(fs->fs_cblkno, !=, fs->fs_sblkno + 455 roundup(howmany(SBLOCKSIZE, fs->fs_fsize), fs->fs_frag), %jd); 456 FCHK(fs->fs_iblkno, !=, fs->fs_cblkno + fs->fs_frag, %jd); 457 FCHK(fs->fs_dblkno, !=, fs->fs_iblkno + fs->fs_ipg / INOPF(fs), %jd); 458 FCHK(fs->fs_cgsize, >, fs->fs_bsize, %jd); 459 /* 460 * This test is valid, however older versions of growfs failed 461 * to correctly update fs_dsize so will fail this test. Thus we 462 * exclude it from the requirements. 463 */ 464 #ifdef notdef 465 WCHK(fs->fs_dsize, !=, fs->fs_size - fs->fs_sblkno - 466 fs->fs_ncg * (fs->fs_dblkno - fs->fs_sblkno) - 467 howmany(fs->fs_cssize, fs->fs_fsize), %jd); 468 #endif 469 WCHK(fs->fs_metaspace, <, 0, %jd); 470 WCHK(fs->fs_metaspace, >, fs->fs_fpg / 2, %jd); 471 WCHK(fs->fs_minfree, >, 99, %jd%%); 472 maxfilesize = fs->fs_bsize * UFS_NDADDR - 1; 473 for (sizepb = fs->fs_bsize, i = 0; i < UFS_NIADDR; i++) { 474 sizepb *= NINDIR(fs); 475 maxfilesize += sizepb; 476 } 477 WCHK(fs->fs_maxfilesize, !=, maxfilesize, %jd); 478 /* 479 * These values have a tight interaction with each other that 480 * makes it hard to tightly bound them. So we can only check 481 * that they are within a broader possible range. 482 * 483 * The size cannot always be accurately determined, but ensure 484 * that it is consistent with the number of cylinder groups (fs_ncg) 485 * and the number of fragments per cylinder group (fs_fpg). Ensure 486 * that the summary information size is correct and that it starts 487 * and ends in the data area of the same cylinder group. 488 */ 489 FCHK(fs->fs_size, <, 8 * fs->fs_frag, %jd); 490 WCHK(fs->fs_size, <=, (fs->fs_ncg - 1) * fs->fs_fpg, %jd); 491 WCHK(fs->fs_size, >, fs->fs_ncg * fs->fs_fpg, %jd); 492 /* 493 * If we are not requested to read in the csum data stop here 494 * as the correctness of the remaining values is only important 495 * to bound the space needed to be allocated to hold the csum data. 496 */ 497 if ((flags & UFS_NOCSUM) != 0) 498 return (error); 499 FCHK(fs->fs_csaddr, <, 0, %jd); 500 FCHK(fs->fs_cssize, !=, 501 fragroundup(fs, fs->fs_ncg * sizeof(struct csum)), %jd); 502 FCHK(dtog(fs, fs->fs_csaddr), >, fs->fs_ncg, %jd); 503 FCHK(fs->fs_csaddr, <, cgdmin(fs, dtog(fs, fs->fs_csaddr)), %jd); 504 FCHK(dtog(fs, fs->fs_csaddr + howmany(fs->fs_cssize, fs->fs_fsize)), >, 505 dtog(fs, fs->fs_csaddr), %jd); 506 /* 507 * With file system clustering it is possible to allocate 508 * many contiguous blocks. The kernel variable maxphys defines 509 * the maximum transfer size permitted by the controller and/or 510 * buffering. The fs_maxcontig parameter controls the maximum 511 * number of blocks that the filesystem will read or write 512 * in a single transfer. It is calculated when the filesystem 513 * is created as maxphys / fs_bsize. The loader uses a maxphys 514 * of 128K even when running on a system that supports larger 515 * values. If the filesystem was built on a system that supports 516 * a larger maxphys (1M is typical) it will have configured 517 * fs_maxcontig for that larger system. So we bound the upper 518 * allowable limit for fs_maxconfig to be able to at least 519 * work with a 1M maxphys on the smallest block size filesystem: 520 * 1M / 4096 == 256. There is no harm in allowing the mounting of 521 * filesystems that make larger than maxphys I/O requests because 522 * those (mostly 32-bit machines) can (very slowly) handle I/O 523 * requests that exceed maxphys. 524 */ 525 WCHK(fs->fs_maxcontig, <, 0, %jd); 526 WCHK(fs->fs_maxcontig, >, MAX(256, maxphys / fs->fs_bsize), %jd); 527 WCHK2(fs->fs_maxcontig, ==, 0, fs->fs_contigsumsize, !=, 0, %jd); 528 WCHK2(fs->fs_maxcontig, >, 1, fs->fs_contigsumsize, !=, 529 MIN(fs->fs_maxcontig, FS_MAXCONTIG), %jd); 530 return (error); 531 } 532 533 /* 534 * Write a superblock to the devfd device from the memory pointed to by fs. 535 * Write out the superblock summary information if it is present. 536 * 537 * If the write is successful, zero is returned. Otherwise one of the 538 * following error values is returned: 539 * EIO: failed to write superblock. 540 * EIO: failed to write superblock summary information. 541 */ 542 int 543 ffs_sbput(void *devfd, struct fs *fs, off_t loc, 544 int (*writefunc)(void *devfd, off_t loc, void *buf, int size)) 545 { 546 int i, error, blks, size; 547 uint8_t *space; 548 549 /* 550 * If there is summary information, write it first, so if there 551 * is an error, the superblock will not be marked as clean. 552 */ 553 if (fs->fs_si != NULL && fs->fs_csp != NULL) { 554 blks = howmany(fs->fs_cssize, fs->fs_fsize); 555 space = (uint8_t *)fs->fs_csp; 556 for (i = 0; i < blks; i += fs->fs_frag) { 557 size = fs->fs_bsize; 558 if (i + fs->fs_frag > blks) 559 size = (blks - i) * fs->fs_fsize; 560 if ((error = (*writefunc)(devfd, 561 dbtob(fsbtodb(fs, fs->fs_csaddr + i)), 562 space, size)) != 0) 563 return (error); 564 space += size; 565 } 566 } 567 fs->fs_fmod = 0; 568 #ifndef _KERNEL 569 { 570 struct fs_summary_info *fs_si; 571 572 fs->fs_time = time(NULL); 573 /* Clear the pointers for the duration of writing. */ 574 fs_si = fs->fs_si; 575 fs->fs_si = NULL; 576 fs->fs_ckhash = ffs_calc_sbhash(fs); 577 error = (*writefunc)(devfd, loc, fs, fs->fs_sbsize); 578 fs->fs_si = fs_si; 579 } 580 #else /* _KERNEL */ 581 fs->fs_time = time_second; 582 fs->fs_ckhash = ffs_calc_sbhash(fs); 583 error = (*writefunc)(devfd, loc, fs, fs->fs_sbsize); 584 #endif /* _KERNEL */ 585 return (error); 586 } 587 588 /* 589 * Calculate the check-hash for a superblock. 590 */ 591 uint32_t 592 ffs_calc_sbhash(struct fs *fs) 593 { 594 uint32_t ckhash, save_ckhash; 595 596 /* 597 * A filesystem that was using a superblock ckhash may be moved 598 * to an older kernel that does not support ckhashes. The 599 * older kernel will clear the FS_METACKHASH flag indicating 600 * that it does not update hashes. When the disk is moved back 601 * to a kernel capable of ckhashes it disables them on mount: 602 * 603 * if ((fs->fs_flags & FS_METACKHASH) == 0) 604 * fs->fs_metackhash = 0; 605 * 606 * This leaves (fs->fs_metackhash & CK_SUPERBLOCK) == 0) with an 607 * old stale value in the fs->fs_ckhash field. Thus the need to 608 * just accept what is there. 609 */ 610 if ((fs->fs_metackhash & CK_SUPERBLOCK) == 0) 611 return (fs->fs_ckhash); 612 613 save_ckhash = fs->fs_ckhash; 614 fs->fs_ckhash = 0; 615 /* 616 * If newly read from disk, the caller is responsible for 617 * verifying that fs->fs_sbsize <= SBLOCKSIZE. 618 */ 619 ckhash = calculate_crc32c(~0L, (void *)fs, fs->fs_sbsize); 620 fs->fs_ckhash = save_ckhash; 621 return (ckhash); 622 } 623 624 /* 625 * Update the frsum fields to reflect addition or deletion 626 * of some frags. 627 */ 628 void 629 ffs_fragacct(struct fs *fs, int fragmap, int32_t fraglist[], int cnt) 630 { 631 int inblk; 632 int field, subfield; 633 int siz, pos; 634 635 inblk = (int)(fragtbl[fs->fs_frag][fragmap]) << 1; 636 fragmap <<= 1; 637 for (siz = 1; siz < fs->fs_frag; siz++) { 638 if ((inblk & (1 << (siz + (fs->fs_frag % NBBY)))) == 0) 639 continue; 640 field = around[siz]; 641 subfield = inside[siz]; 642 for (pos = siz; pos <= fs->fs_frag; pos++) { 643 if ((fragmap & field) == subfield) { 644 fraglist[siz] += cnt; 645 pos += siz; 646 field <<= siz; 647 subfield <<= siz; 648 } 649 field <<= 1; 650 subfield <<= 1; 651 } 652 } 653 } 654 655 /* 656 * block operations 657 * 658 * check if a block is available 659 */ 660 int 661 ffs_isblock(struct fs *fs, unsigned char *cp, ufs1_daddr_t h) 662 { 663 unsigned char mask; 664 665 switch ((int)fs->fs_frag) { 666 case 8: 667 return (cp[h] == 0xff); 668 case 4: 669 mask = 0x0f << ((h & 0x1) << 2); 670 return ((cp[h >> 1] & mask) == mask); 671 case 2: 672 mask = 0x03 << ((h & 0x3) << 1); 673 return ((cp[h >> 2] & mask) == mask); 674 case 1: 675 mask = 0x01 << (h & 0x7); 676 return ((cp[h >> 3] & mask) == mask); 677 default: 678 #ifdef _KERNEL 679 panic("ffs_isblock"); 680 #endif 681 break; 682 } 683 return (0); 684 } 685 686 /* 687 * check if a block is free 688 */ 689 int 690 ffs_isfreeblock(struct fs *fs, u_char *cp, ufs1_daddr_t h) 691 { 692 693 switch ((int)fs->fs_frag) { 694 case 8: 695 return (cp[h] == 0); 696 case 4: 697 return ((cp[h >> 1] & (0x0f << ((h & 0x1) << 2))) == 0); 698 case 2: 699 return ((cp[h >> 2] & (0x03 << ((h & 0x3) << 1))) == 0); 700 case 1: 701 return ((cp[h >> 3] & (0x01 << (h & 0x7))) == 0); 702 default: 703 #ifdef _KERNEL 704 panic("ffs_isfreeblock"); 705 #endif 706 break; 707 } 708 return (0); 709 } 710 711 /* 712 * take a block out of the map 713 */ 714 void 715 ffs_clrblock(struct fs *fs, u_char *cp, ufs1_daddr_t h) 716 { 717 718 switch ((int)fs->fs_frag) { 719 case 8: 720 cp[h] = 0; 721 return; 722 case 4: 723 cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2)); 724 return; 725 case 2: 726 cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1)); 727 return; 728 case 1: 729 cp[h >> 3] &= ~(0x01 << (h & 0x7)); 730 return; 731 default: 732 #ifdef _KERNEL 733 panic("ffs_clrblock"); 734 #endif 735 break; 736 } 737 } 738 739 /* 740 * put a block into the map 741 */ 742 void 743 ffs_setblock(struct fs *fs, unsigned char *cp, ufs1_daddr_t h) 744 { 745 746 switch ((int)fs->fs_frag) { 747 case 8: 748 cp[h] = 0xff; 749 return; 750 case 4: 751 cp[h >> 1] |= (0x0f << ((h & 0x1) << 2)); 752 return; 753 case 2: 754 cp[h >> 2] |= (0x03 << ((h & 0x3) << 1)); 755 return; 756 case 1: 757 cp[h >> 3] |= (0x01 << (h & 0x7)); 758 return; 759 default: 760 #ifdef _KERNEL 761 panic("ffs_setblock"); 762 #endif 763 break; 764 } 765 } 766 767 /* 768 * Update the cluster map because of an allocation or free. 769 * 770 * Cnt == 1 means free; cnt == -1 means allocating. 771 */ 772 void 773 ffs_clusteracct(struct fs *fs, struct cg *cgp, ufs1_daddr_t blkno, int cnt) 774 { 775 int32_t *sump; 776 int32_t *lp; 777 u_char *freemapp, *mapp; 778 int i, start, end, forw, back, map; 779 u_int bit; 780 781 if (fs->fs_contigsumsize <= 0) 782 return; 783 freemapp = cg_clustersfree(cgp); 784 sump = cg_clustersum(cgp); 785 /* 786 * Allocate or clear the actual block. 787 */ 788 if (cnt > 0) 789 setbit(freemapp, blkno); 790 else 791 clrbit(freemapp, blkno); 792 /* 793 * Find the size of the cluster going forward. 794 */ 795 start = blkno + 1; 796 end = start + fs->fs_contigsumsize; 797 if (end >= cgp->cg_nclusterblks) 798 end = cgp->cg_nclusterblks; 799 mapp = &freemapp[start / NBBY]; 800 map = *mapp++; 801 bit = 1U << (start % NBBY); 802 for (i = start; i < end; i++) { 803 if ((map & bit) == 0) 804 break; 805 if ((i & (NBBY - 1)) != (NBBY - 1)) { 806 bit <<= 1; 807 } else { 808 map = *mapp++; 809 bit = 1; 810 } 811 } 812 forw = i - start; 813 /* 814 * Find the size of the cluster going backward. 815 */ 816 start = blkno - 1; 817 end = start - fs->fs_contigsumsize; 818 if (end < 0) 819 end = -1; 820 mapp = &freemapp[start / NBBY]; 821 map = *mapp--; 822 bit = 1U << (start % NBBY); 823 for (i = start; i > end; i--) { 824 if ((map & bit) == 0) 825 break; 826 if ((i & (NBBY - 1)) != 0) { 827 bit >>= 1; 828 } else { 829 map = *mapp--; 830 bit = 1U << (NBBY - 1); 831 } 832 } 833 back = start - i; 834 /* 835 * Account for old cluster and the possibly new forward and 836 * back clusters. 837 */ 838 i = back + forw + 1; 839 if (i > fs->fs_contigsumsize) 840 i = fs->fs_contigsumsize; 841 sump[i] += cnt; 842 if (back > 0) 843 sump[back] -= cnt; 844 if (forw > 0) 845 sump[forw] -= cnt; 846 /* 847 * Update cluster summary information. 848 */ 849 lp = &sump[fs->fs_contigsumsize]; 850 for (i = fs->fs_contigsumsize; i > 0; i--) 851 if (*lp-- > 0) 852 break; 853 fs->fs_maxcluster[cgp->cg_cgx] = i; 854 } 855