1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1989, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * @(#)ffs_subr.c 8.5 (Berkeley) 3/21/95 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include <sys/param.h> 38 #include <sys/limits.h> 39 40 #ifndef _KERNEL 41 #include <stdio.h> 42 #include <string.h> 43 #include <stdlib.h> 44 #include <time.h> 45 #include <sys/errno.h> 46 #include <ufs/ufs/dinode.h> 47 #include <ufs/ffs/fs.h> 48 49 uint32_t calculate_crc32c(uint32_t, const void *, size_t); 50 uint32_t ffs_calc_sbhash(struct fs *); 51 struct malloc_type; 52 #define UFS_MALLOC(size, type, flags) malloc(size) 53 #define UFS_FREE(ptr, type) free(ptr) 54 #define maxphys MAXPHYS 55 56 #else /* _KERNEL */ 57 #include <sys/systm.h> 58 #include <sys/gsb_crc32.h> 59 #include <sys/lock.h> 60 #include <sys/malloc.h> 61 #include <sys/mount.h> 62 #include <sys/vnode.h> 63 #include <sys/bio.h> 64 #include <sys/buf.h> 65 #include <sys/ucred.h> 66 67 #include <ufs/ufs/quota.h> 68 #include <ufs/ufs/inode.h> 69 #include <ufs/ufs/extattr.h> 70 #include <ufs/ufs/ufsmount.h> 71 #include <ufs/ufs/ufs_extern.h> 72 #include <ufs/ffs/ffs_extern.h> 73 #include <ufs/ffs/fs.h> 74 75 #define UFS_MALLOC(size, type, flags) malloc(size, type, flags) 76 #define UFS_FREE(ptr, type) free(ptr, type) 77 78 #endif /* _KERNEL */ 79 80 /* 81 * Verify an inode check-hash. 82 */ 83 int 84 ffs_verify_dinode_ckhash(struct fs *fs, struct ufs2_dinode *dip) 85 { 86 uint32_t ckhash, save_ckhash; 87 88 /* 89 * Return success if unallocated or we are not doing inode check-hash. 90 */ 91 if (dip->di_mode == 0 || (fs->fs_metackhash & CK_INODE) == 0) 92 return (0); 93 /* 94 * Exclude di_ckhash from the crc32 calculation, e.g., always use 95 * a check-hash value of zero when calculating the check-hash. 96 */ 97 save_ckhash = dip->di_ckhash; 98 dip->di_ckhash = 0; 99 ckhash = calculate_crc32c(~0L, (void *)dip, sizeof(*dip)); 100 dip->di_ckhash = save_ckhash; 101 if (save_ckhash == ckhash) 102 return (0); 103 return (EINVAL); 104 } 105 106 /* 107 * Update an inode check-hash. 108 */ 109 void 110 ffs_update_dinode_ckhash(struct fs *fs, struct ufs2_dinode *dip) 111 { 112 113 if (dip->di_mode == 0 || (fs->fs_metackhash & CK_INODE) == 0) 114 return; 115 /* 116 * Exclude old di_ckhash from the crc32 calculation, e.g., always use 117 * a check-hash value of zero when calculating the new check-hash. 118 */ 119 dip->di_ckhash = 0; 120 dip->di_ckhash = calculate_crc32c(~0L, (void *)dip, sizeof(*dip)); 121 } 122 123 /* 124 * These are the low-level functions that actually read and write 125 * the superblock and its associated data. 126 */ 127 static off_t sblock_try[] = SBLOCKSEARCH; 128 static int readsuper(void *, struct fs **, off_t, int, 129 int (*)(void *, off_t, void **, int)); 130 static int validate_sblock(struct fs *, int); 131 132 /* 133 * Read a superblock from the devfd device. 134 * 135 * If an alternate superblock is specified, it is read. Otherwise the 136 * set of locations given in the SBLOCKSEARCH list is searched for a 137 * superblock. Memory is allocated for the superblock by the readfunc and 138 * is returned. If filltype is non-NULL, additional memory is allocated 139 * of type filltype and filled in with the superblock summary information. 140 * All memory is freed when any error is returned. 141 * 142 * If a superblock is found, zero is returned. Otherwise one of the 143 * following error values is returned: 144 * EIO: non-existent or truncated superblock. 145 * EIO: error reading summary information. 146 * ENOENT: no usable known superblock found. 147 * ENOMEM: failed to allocate space for the superblock. 148 * EINVAL: The previous newfs operation on this volume did not complete. 149 * The administrator must complete newfs before using this volume. 150 */ 151 int 152 ffs_sbget(void *devfd, struct fs **fsp, off_t sblock, int flags, 153 struct malloc_type *filltype, 154 int (*readfunc)(void *devfd, off_t loc, void **bufp, int size)) 155 { 156 struct fs *fs; 157 struct fs_summary_info *fs_si; 158 int i, error; 159 uint64_t size, blks; 160 uint8_t *space; 161 int32_t *lp; 162 char *buf; 163 164 fs = NULL; 165 *fsp = NULL; 166 if (sblock != UFS_STDSB) { 167 if ((error = readsuper(devfd, &fs, sblock, 168 flags | UFS_ALTSBLK, readfunc)) != 0) { 169 if (fs != NULL) 170 UFS_FREE(fs, filltype); 171 return (error); 172 } 173 } else { 174 for (i = 0; sblock_try[i] != -1; i++) { 175 if ((error = readsuper(devfd, &fs, sblock_try[i], 176 flags, readfunc)) == 0) { 177 if ((flags & UFS_NOCSUM) != 0) { 178 *fsp = fs; 179 return (0); 180 } 181 break; 182 } 183 if (fs != NULL) { 184 UFS_FREE(fs, filltype); 185 fs = NULL; 186 } 187 if (error == ENOENT) 188 continue; 189 return (error); 190 } 191 if (sblock_try[i] == -1) 192 return (ENOENT); 193 } 194 /* 195 * Read in the superblock summary information. 196 */ 197 size = fs->fs_cssize; 198 blks = howmany(size, fs->fs_fsize); 199 if (fs->fs_contigsumsize > 0) 200 size += fs->fs_ncg * sizeof(int32_t); 201 size += fs->fs_ncg * sizeof(u_int8_t); 202 if ((fs_si = UFS_MALLOC(sizeof(*fs_si), filltype, M_NOWAIT)) == NULL) { 203 UFS_FREE(fs, filltype); 204 return (ENOMEM); 205 } 206 bzero(fs_si, sizeof(*fs_si)); 207 fs->fs_si = fs_si; 208 if ((space = UFS_MALLOC(size, filltype, M_NOWAIT)) == NULL) { 209 UFS_FREE(fs->fs_si, filltype); 210 UFS_FREE(fs, filltype); 211 return (ENOMEM); 212 } 213 fs->fs_csp = (struct csum *)space; 214 for (i = 0; i < blks; i += fs->fs_frag) { 215 size = fs->fs_bsize; 216 if (i + fs->fs_frag > blks) 217 size = (blks - i) * fs->fs_fsize; 218 buf = NULL; 219 error = (*readfunc)(devfd, 220 dbtob(fsbtodb(fs, fs->fs_csaddr + i)), (void **)&buf, size); 221 if (error) { 222 if (buf != NULL) 223 UFS_FREE(buf, filltype); 224 UFS_FREE(fs->fs_csp, filltype); 225 UFS_FREE(fs->fs_si, filltype); 226 UFS_FREE(fs, filltype); 227 return (error); 228 } 229 memcpy(space, buf, size); 230 UFS_FREE(buf, filltype); 231 space += size; 232 } 233 if (fs->fs_contigsumsize > 0) { 234 fs->fs_maxcluster = lp = (int32_t *)space; 235 for (i = 0; i < fs->fs_ncg; i++) 236 *lp++ = fs->fs_contigsumsize; 237 space = (uint8_t *)lp; 238 } 239 size = fs->fs_ncg * sizeof(u_int8_t); 240 fs->fs_contigdirs = (u_int8_t *)space; 241 bzero(fs->fs_contigdirs, size); 242 *fsp = fs; 243 return (0); 244 } 245 246 /* 247 * Try to read a superblock from the location specified by sblockloc. 248 * Return zero on success or an errno on failure. 249 */ 250 static int 251 readsuper(void *devfd, struct fs **fsp, off_t sblockloc, int flags, 252 int (*readfunc)(void *devfd, off_t loc, void **bufp, int size)) 253 { 254 struct fs *fs; 255 int error, res; 256 uint32_t ckhash; 257 258 error = (*readfunc)(devfd, sblockloc, (void **)fsp, SBLOCKSIZE); 259 if (error != 0) 260 return (error); 261 fs = *fsp; 262 if (fs->fs_magic == FS_BAD_MAGIC) 263 return (EINVAL); 264 /* 265 * For UFS1 with a 65536 block size, the first backup superblock 266 * is at the same location as the UFS2 superblock. Since SBLOCK_UFS2 267 * is the first location checked, the first backup is the superblock 268 * that will be accessed. Here we fail the lookup so that we can 269 * retry with the correct location for the UFS1 superblock. 270 */ 271 if (fs->fs_magic == FS_UFS1_MAGIC && (flags & UFS_ALTSBLK) == 0 && 272 fs->fs_bsize == SBLOCK_UFS2 && sblockloc == SBLOCK_UFS2) 273 return (ENOENT); 274 if ((error = validate_sblock(fs, flags)) > 0) 275 return (error); 276 /* 277 * If the filesystem has been run on a kernel without 278 * metadata check hashes, disable them. 279 */ 280 if ((fs->fs_flags & FS_METACKHASH) == 0) 281 fs->fs_metackhash = 0; 282 /* 283 * Clear any check-hashes that are not maintained 284 * by this kernel. Also clear any unsupported flags. 285 */ 286 fs->fs_metackhash &= CK_SUPPORTED; 287 fs->fs_flags &= FS_SUPPORTED; 288 if (fs->fs_ckhash != (ckhash = ffs_calc_sbhash(fs))) { 289 if ((flags & (UFS_NOMSG | UFS_NOHASHFAIL)) == 290 (UFS_NOMSG | UFS_NOHASHFAIL)) 291 return (0); 292 if ((flags & UFS_NOMSG) != 0) 293 return (EINTEGRITY); 294 #ifdef _KERNEL 295 res = uprintf("Superblock check-hash failed: recorded " 296 "check-hash 0x%x != computed check-hash 0x%x%s\n", 297 fs->fs_ckhash, ckhash, 298 (flags & UFS_NOHASHFAIL) != 0 ? " (Ignored)" : ""); 299 #else 300 res = 0; 301 #endif 302 /* 303 * Print check-hash failure if no controlling terminal 304 * in kernel or always if in user-mode (libufs). 305 */ 306 if (res == 0) 307 printf("Superblock check-hash failed: recorded " 308 "check-hash 0x%x != computed check-hash " 309 "0x%x%s\n", fs->fs_ckhash, ckhash, 310 (flags & UFS_NOHASHFAIL) ? " (Ignored)" : ""); 311 if ((flags & UFS_NOHASHFAIL) != 0) 312 return (0); 313 return (EINTEGRITY); 314 } 315 /* Have to set for old filesystems that predate this field */ 316 fs->fs_sblockactualloc = sblockloc; 317 /* Not yet any summary information */ 318 fs->fs_si = NULL; 319 return (0); 320 } 321 322 /* 323 * Verify the filesystem values. 324 */ 325 #define ILOG2(num) (fls(num) - 1) 326 #define MPRINT if (prtmsg) printf 327 #define FCHK(lhs, op, rhs, fmt) \ 328 if (lhs op rhs) { \ 329 MPRINT("UFS%d superblock failed: %s (" #fmt ") %s %s (" \ 330 #fmt ")\n", fs->fs_magic == FS_UFS1_MAGIC ? 1 : 2, \ 331 #lhs, (intmax_t)lhs, #op, #rhs, (intmax_t)rhs); \ 332 if (error == 0) \ 333 error = ENOENT; \ 334 } 335 #define WCHK(lhs, op, rhs, fmt) \ 336 if (lhs op rhs) { \ 337 MPRINT("UFS%d superblock failed: %s (" #fmt ") %s %s (" \ 338 #fmt ")%s\n", fs->fs_magic == FS_UFS1_MAGIC ? 1 : 2,\ 339 #lhs, (intmax_t)lhs, #op, #rhs, (intmax_t)rhs, wmsg);\ 340 if (error == 0) \ 341 error = warnerr; \ 342 } 343 #define FCHK2(lhs1, op1, rhs1, lhs2, op2, rhs2, fmt) \ 344 if (lhs1 op1 rhs1 && lhs2 op2 rhs2) { \ 345 MPRINT("UFS%d superblock failed: %s (" #fmt ") %s %s (" \ 346 #fmt ") && %s (" #fmt ") %s %s (" #fmt ")\n", \ 347 fs->fs_magic == FS_UFS1_MAGIC ? 1 : 2, #lhs1, \ 348 (intmax_t)lhs1, #op1, #rhs1, (intmax_t)rhs1, #lhs2, \ 349 (intmax_t)lhs2, #op2, #rhs2, (intmax_t)rhs2); \ 350 if (error == 0) \ 351 error = ENOENT; \ 352 } 353 #define WCHK2(lhs1, op1, rhs1, lhs2, op2, rhs2, fmt) \ 354 if (lhs1 op1 rhs1 && lhs2 op2 rhs2) { \ 355 MPRINT("UFS%d superblock failed: %s (" #fmt ") %s %s (" \ 356 #fmt ") && %s (" #fmt ") %s %s (" #fmt ")%s\n", \ 357 fs->fs_magic == FS_UFS1_MAGIC ? 1 : 2, #lhs1, \ 358 (intmax_t)lhs1, #op1, #rhs1, (intmax_t)rhs1, #lhs2, \ 359 (intmax_t)lhs2, #op2, #rhs2, (intmax_t)rhs2, wmsg); \ 360 if (error == 0) \ 361 error = warnerr; \ 362 } 363 364 static int 365 validate_sblock(struct fs *fs, int flags) 366 { 367 u_long i, sectorsize; 368 u_int64_t maxfilesize, sizepb; 369 int error, prtmsg, warnerr; 370 char *wmsg; 371 372 error = 0; 373 sectorsize = dbtob(1); 374 prtmsg = ((flags & UFS_NOMSG) == 0); 375 warnerr = (flags & UFS_NOWARNFAIL) == UFS_NOWARNFAIL ? 0 : ENOENT; 376 wmsg = warnerr ? "" : " (Ignored)"; 377 if (fs->fs_magic == FS_UFS2_MAGIC) { 378 if ((flags & UFS_ALTSBLK) == 0) 379 FCHK2(fs->fs_sblockactualloc, !=, SBLOCK_UFS2, 380 fs->fs_sblockactualloc, !=, 0, %jd); 381 FCHK(fs->fs_sblockloc, !=, SBLOCK_UFS2, %#jx); 382 FCHK(fs->fs_maxsymlinklen, !=, ((UFS_NDADDR + UFS_NIADDR) * 383 sizeof(ufs2_daddr_t)), %jd); 384 FCHK(fs->fs_nindir, !=, fs->fs_bsize / sizeof(ufs2_daddr_t), 385 %jd); 386 FCHK(fs->fs_inopb, !=, 387 fs->fs_bsize / sizeof(struct ufs2_dinode), %jd); 388 } else if (fs->fs_magic == FS_UFS1_MAGIC) { 389 if ((flags & UFS_ALTSBLK) == 0) 390 FCHK(fs->fs_sblockactualloc, >, SBLOCK_UFS1, %jd); 391 FCHK(fs->fs_sblockloc, <, 0, %jd); 392 FCHK(fs->fs_sblockloc, >, SBLOCK_UFS1, %jd); 393 FCHK(fs->fs_nindir, !=, fs->fs_bsize / sizeof(ufs1_daddr_t), 394 %jd); 395 FCHK(fs->fs_inopb, !=, 396 fs->fs_bsize / sizeof(struct ufs1_dinode), %jd); 397 FCHK(fs->fs_maxsymlinklen, !=, ((UFS_NDADDR + UFS_NIADDR) * 398 sizeof(ufs1_daddr_t)), %jd); 399 WCHK(fs->fs_old_inodefmt, !=, FS_44INODEFMT, %jd); 400 WCHK(fs->fs_old_rotdelay, !=, 0, %jd); 401 WCHK(fs->fs_old_rps, !=, 60, %jd); 402 WCHK(fs->fs_old_nspf, !=, fs->fs_fsize / sectorsize, %jd); 403 WCHK(fs->fs_old_cpg, !=, 1, %jd); 404 WCHK(fs->fs_old_interleave, !=, 1, %jd); 405 WCHK(fs->fs_old_trackskew, !=, 0, %jd); 406 WCHK(fs->fs_old_cpc, !=, 0, %jd); 407 WCHK(fs->fs_old_postblformat, !=, 1, %jd); 408 WCHK(fs->fs_old_nrpos, !=, 1, %jd); 409 WCHK(fs->fs_old_spc, !=, fs->fs_fpg * fs->fs_old_nspf, %jd); 410 WCHK(fs->fs_old_nsect, !=, fs->fs_old_spc, %jd); 411 WCHK(fs->fs_old_npsect, !=, fs->fs_old_spc, %jd); 412 FCHK(fs->fs_old_ncyl, !=, fs->fs_ncg, %jd); 413 } else { 414 /* Bad magic number, so assume not a superblock */ 415 return (ENOENT); 416 } 417 FCHK(fs->fs_bsize, <, MINBSIZE, %jd); 418 FCHK(fs->fs_bsize, >, MAXBSIZE, %jd); 419 FCHK(fs->fs_bsize, <, roundup(sizeof(struct fs), DEV_BSIZE), %jd); 420 FCHK(powerof2(fs->fs_bsize), ==, 0, %jd); 421 FCHK(fs->fs_frag, <, 1, %jd); 422 FCHK(fs->fs_frag, >, MAXFRAG, %jd); 423 FCHK(fs->fs_frag, !=, numfrags(fs, fs->fs_bsize), %jd); 424 FCHK(fs->fs_fsize, <, sectorsize, %jd); 425 FCHK(fs->fs_fsize * fs->fs_frag, !=, fs->fs_bsize, %jd); 426 FCHK(powerof2(fs->fs_fsize), ==, 0, %jd); 427 FCHK(fs->fs_fpg, <, 3 * fs->fs_frag, %jd); 428 FCHK(fs->fs_ncg, <, 1, %jd); 429 FCHK(fs->fs_ipg, <, 1, %jd); 430 FCHK(fs->fs_ipg * fs->fs_ncg, >, (((int64_t)(1)) << 32) - INOPB(fs), 431 %jd); 432 FCHK(fs->fs_sbsize, >, SBLOCKSIZE, %jd); 433 FCHK(fs->fs_maxbsize, <, fs->fs_bsize, %jd); 434 FCHK(powerof2(fs->fs_maxbsize), ==, 0, %jd); 435 FCHK(fs->fs_maxbsize, >, FS_MAXCONTIG * fs->fs_bsize, %jd); 436 FCHK(fs->fs_bmask, !=, ~(fs->fs_bsize - 1), %#jx); 437 FCHK(fs->fs_fmask, !=, ~(fs->fs_fsize - 1), %#jx); 438 FCHK(fs->fs_qbmask, !=, ~fs->fs_bmask, %#jx); 439 FCHK(fs->fs_qfmask, !=, ~fs->fs_fmask, %#jx); 440 FCHK(fs->fs_bshift, !=, ILOG2(fs->fs_bsize), %jd); 441 FCHK(fs->fs_fshift, !=, ILOG2(fs->fs_fsize), %jd); 442 FCHK(fs->fs_fragshift, !=, ILOG2(fs->fs_frag), %jd); 443 FCHK(fs->fs_fsbtodb, !=, ILOG2(fs->fs_fsize / sectorsize), %jd); 444 FCHK(fs->fs_old_cgoffset, <, 0, %jd); 445 FCHK2(fs->fs_old_cgoffset, >, 0, ~fs->fs_old_cgmask, <, 0, %jd); 446 FCHK(fs->fs_old_cgoffset * (~fs->fs_old_cgmask), >, fs->fs_fpg, %jd); 447 FCHK(fs->fs_sblkno, !=, roundup( 448 howmany(fs->fs_sblockloc + SBLOCKSIZE, fs->fs_fsize), 449 fs->fs_frag), %jd); 450 FCHK(fs->fs_cblkno, !=, fs->fs_sblkno + 451 roundup(howmany(SBLOCKSIZE, fs->fs_fsize), fs->fs_frag), %jd); 452 FCHK(fs->fs_iblkno, !=, fs->fs_cblkno + fs->fs_frag, %jd); 453 FCHK(fs->fs_dblkno, !=, fs->fs_iblkno + fs->fs_ipg / INOPF(fs), %jd); 454 FCHK(fs->fs_cgsize, >, fs->fs_bsize, %jd); 455 /* 456 * This test is valid, however older versions of growfs failed 457 * to correctly update fs_dsize so will fail this test. Thus we 458 * exclude it from the requirements. 459 */ 460 #ifdef notdef 461 WCHK(fs->fs_dsize, !=, fs->fs_size - fs->fs_sblkno - 462 fs->fs_ncg * (fs->fs_dblkno - fs->fs_sblkno) - 463 howmany(fs->fs_cssize, fs->fs_fsize), %jd); 464 #endif 465 WCHK(fs->fs_metaspace, <, 0, %jd); 466 WCHK(fs->fs_metaspace, >, fs->fs_fpg / 2, %jd); 467 WCHK(fs->fs_minfree, >, 99, %jd%%); 468 maxfilesize = fs->fs_bsize * UFS_NDADDR - 1; 469 for (sizepb = fs->fs_bsize, i = 0; i < UFS_NIADDR; i++) { 470 sizepb *= NINDIR(fs); 471 maxfilesize += sizepb; 472 } 473 WCHK(fs->fs_maxfilesize, !=, maxfilesize, %jd); 474 /* 475 * These values have a tight interaction with each other that 476 * makes it hard to tightly bound them. So we can only check 477 * that they are within a broader possible range. 478 * 479 * The size cannot always be accurately determined, but ensure 480 * that it is consistent with the number of cylinder groups (fs_ncg) 481 * and the number of fragments per cylinder group (fs_fpg). Ensure 482 * that the summary information size is correct and that it starts 483 * and ends in the data area of the same cylinder group. 484 */ 485 FCHK(fs->fs_size, <, 8 * fs->fs_frag, %jd); 486 WCHK(fs->fs_size, <=, (fs->fs_ncg - 1) * fs->fs_fpg, %jd); 487 WCHK(fs->fs_size, >, fs->fs_ncg * fs->fs_fpg, %jd); 488 /* 489 * If we are not requested to read in the csum data stop here 490 * as the correctness of the remaining values is only important 491 * to bound the space needed to be allocated to hold the csum data. 492 */ 493 if ((flags & UFS_NOCSUM) != 0) 494 return (error); 495 FCHK(fs->fs_csaddr, <, 0, %jd); 496 FCHK(fs->fs_cssize, !=, 497 fragroundup(fs, fs->fs_ncg * sizeof(struct csum)), %jd); 498 FCHK(dtog(fs, fs->fs_csaddr), >, fs->fs_ncg, %jd); 499 FCHK(fs->fs_csaddr, <, cgdmin(fs, dtog(fs, fs->fs_csaddr)), %jd); 500 FCHK(dtog(fs, fs->fs_csaddr + howmany(fs->fs_cssize, fs->fs_fsize)), >, 501 dtog(fs, fs->fs_csaddr), %jd); 502 /* 503 * With file system clustering it is possible to allocate 504 * many contiguous blocks. The kernel variable maxphys defines 505 * the maximum transfer size permitted by the controller and/or 506 * buffering. The fs_maxcontig parameter controls the maximum 507 * number of blocks that the filesystem will read or write 508 * in a single transfer. It is calculated when the filesystem 509 * is created as maxphys / fs_bsize. The loader uses a maxphys 510 * of 128K even when running on a system that supports larger 511 * values. If the filesystem was built on a system that supports 512 * a larger maxphys (1M is typical) it will have configured 513 * fs_maxcontig for that larger system. So we bound the upper 514 * allowable limit for fs_maxconfig to be able to at least 515 * work with a 1M maxphys on the smallest block size filesystem: 516 * 1M / 4096 == 256. There is no harm in allowing the mounting of 517 * filesystems that make larger than maxphys I/O requests because 518 * those (mostly 32-bit machines) can (very slowly) handle I/O 519 * requests that exceed maxphys. 520 */ 521 WCHK(fs->fs_maxcontig, <, 0, %jd); 522 WCHK(fs->fs_maxcontig, >, MAX(256, maxphys / fs->fs_bsize), %jd); 523 WCHK2(fs->fs_maxcontig, ==, 0, fs->fs_contigsumsize, !=, 0, %jd); 524 WCHK2(fs->fs_maxcontig, >, 1, fs->fs_contigsumsize, !=, 525 MIN(fs->fs_maxcontig, FS_MAXCONTIG), %jd); 526 return (error); 527 } 528 529 /* 530 * Write a superblock to the devfd device from the memory pointed to by fs. 531 * Write out the superblock summary information if it is present. 532 * 533 * If the write is successful, zero is returned. Otherwise one of the 534 * following error values is returned: 535 * EIO: failed to write superblock. 536 * EIO: failed to write superblock summary information. 537 */ 538 int 539 ffs_sbput(void *devfd, struct fs *fs, off_t loc, 540 int (*writefunc)(void *devfd, off_t loc, void *buf, int size)) 541 { 542 int i, error, blks, size; 543 uint8_t *space; 544 545 /* 546 * If there is summary information, write it first, so if there 547 * is an error, the superblock will not be marked as clean. 548 */ 549 if (fs->fs_si != NULL && fs->fs_csp != NULL) { 550 blks = howmany(fs->fs_cssize, fs->fs_fsize); 551 space = (uint8_t *)fs->fs_csp; 552 for (i = 0; i < blks; i += fs->fs_frag) { 553 size = fs->fs_bsize; 554 if (i + fs->fs_frag > blks) 555 size = (blks - i) * fs->fs_fsize; 556 if ((error = (*writefunc)(devfd, 557 dbtob(fsbtodb(fs, fs->fs_csaddr + i)), 558 space, size)) != 0) 559 return (error); 560 space += size; 561 } 562 } 563 fs->fs_fmod = 0; 564 #ifndef _KERNEL 565 { 566 struct fs_summary_info *fs_si; 567 568 fs->fs_time = time(NULL); 569 /* Clear the pointers for the duration of writing. */ 570 fs_si = fs->fs_si; 571 fs->fs_si = NULL; 572 fs->fs_ckhash = ffs_calc_sbhash(fs); 573 error = (*writefunc)(devfd, loc, fs, fs->fs_sbsize); 574 fs->fs_si = fs_si; 575 } 576 #else /* _KERNEL */ 577 fs->fs_time = time_second; 578 fs->fs_ckhash = ffs_calc_sbhash(fs); 579 error = (*writefunc)(devfd, loc, fs, fs->fs_sbsize); 580 #endif /* _KERNEL */ 581 return (error); 582 } 583 584 /* 585 * Calculate the check-hash for a superblock. 586 */ 587 uint32_t 588 ffs_calc_sbhash(struct fs *fs) 589 { 590 uint32_t ckhash, save_ckhash; 591 592 /* 593 * A filesystem that was using a superblock ckhash may be moved 594 * to an older kernel that does not support ckhashes. The 595 * older kernel will clear the FS_METACKHASH flag indicating 596 * that it does not update hashes. When the disk is moved back 597 * to a kernel capable of ckhashes it disables them on mount: 598 * 599 * if ((fs->fs_flags & FS_METACKHASH) == 0) 600 * fs->fs_metackhash = 0; 601 * 602 * This leaves (fs->fs_metackhash & CK_SUPERBLOCK) == 0) with an 603 * old stale value in the fs->fs_ckhash field. Thus the need to 604 * just accept what is there. 605 */ 606 if ((fs->fs_metackhash & CK_SUPERBLOCK) == 0) 607 return (fs->fs_ckhash); 608 609 save_ckhash = fs->fs_ckhash; 610 fs->fs_ckhash = 0; 611 /* 612 * If newly read from disk, the caller is responsible for 613 * verifying that fs->fs_sbsize <= SBLOCKSIZE. 614 */ 615 ckhash = calculate_crc32c(~0L, (void *)fs, fs->fs_sbsize); 616 fs->fs_ckhash = save_ckhash; 617 return (ckhash); 618 } 619 620 /* 621 * Update the frsum fields to reflect addition or deletion 622 * of some frags. 623 */ 624 void 625 ffs_fragacct(struct fs *fs, int fragmap, int32_t fraglist[], int cnt) 626 { 627 int inblk; 628 int field, subfield; 629 int siz, pos; 630 631 inblk = (int)(fragtbl[fs->fs_frag][fragmap]) << 1; 632 fragmap <<= 1; 633 for (siz = 1; siz < fs->fs_frag; siz++) { 634 if ((inblk & (1 << (siz + (fs->fs_frag % NBBY)))) == 0) 635 continue; 636 field = around[siz]; 637 subfield = inside[siz]; 638 for (pos = siz; pos <= fs->fs_frag; pos++) { 639 if ((fragmap & field) == subfield) { 640 fraglist[siz] += cnt; 641 pos += siz; 642 field <<= siz; 643 subfield <<= siz; 644 } 645 field <<= 1; 646 subfield <<= 1; 647 } 648 } 649 } 650 651 /* 652 * block operations 653 * 654 * check if a block is available 655 */ 656 int 657 ffs_isblock(struct fs *fs, unsigned char *cp, ufs1_daddr_t h) 658 { 659 unsigned char mask; 660 661 switch ((int)fs->fs_frag) { 662 case 8: 663 return (cp[h] == 0xff); 664 case 4: 665 mask = 0x0f << ((h & 0x1) << 2); 666 return ((cp[h >> 1] & mask) == mask); 667 case 2: 668 mask = 0x03 << ((h & 0x3) << 1); 669 return ((cp[h >> 2] & mask) == mask); 670 case 1: 671 mask = 0x01 << (h & 0x7); 672 return ((cp[h >> 3] & mask) == mask); 673 default: 674 #ifdef _KERNEL 675 panic("ffs_isblock"); 676 #endif 677 break; 678 } 679 return (0); 680 } 681 682 /* 683 * check if a block is free 684 */ 685 int 686 ffs_isfreeblock(struct fs *fs, u_char *cp, ufs1_daddr_t h) 687 { 688 689 switch ((int)fs->fs_frag) { 690 case 8: 691 return (cp[h] == 0); 692 case 4: 693 return ((cp[h >> 1] & (0x0f << ((h & 0x1) << 2))) == 0); 694 case 2: 695 return ((cp[h >> 2] & (0x03 << ((h & 0x3) << 1))) == 0); 696 case 1: 697 return ((cp[h >> 3] & (0x01 << (h & 0x7))) == 0); 698 default: 699 #ifdef _KERNEL 700 panic("ffs_isfreeblock"); 701 #endif 702 break; 703 } 704 return (0); 705 } 706 707 /* 708 * take a block out of the map 709 */ 710 void 711 ffs_clrblock(struct fs *fs, u_char *cp, ufs1_daddr_t h) 712 { 713 714 switch ((int)fs->fs_frag) { 715 case 8: 716 cp[h] = 0; 717 return; 718 case 4: 719 cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2)); 720 return; 721 case 2: 722 cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1)); 723 return; 724 case 1: 725 cp[h >> 3] &= ~(0x01 << (h & 0x7)); 726 return; 727 default: 728 #ifdef _KERNEL 729 panic("ffs_clrblock"); 730 #endif 731 break; 732 } 733 } 734 735 /* 736 * put a block into the map 737 */ 738 void 739 ffs_setblock(struct fs *fs, unsigned char *cp, ufs1_daddr_t h) 740 { 741 742 switch ((int)fs->fs_frag) { 743 case 8: 744 cp[h] = 0xff; 745 return; 746 case 4: 747 cp[h >> 1] |= (0x0f << ((h & 0x1) << 2)); 748 return; 749 case 2: 750 cp[h >> 2] |= (0x03 << ((h & 0x3) << 1)); 751 return; 752 case 1: 753 cp[h >> 3] |= (0x01 << (h & 0x7)); 754 return; 755 default: 756 #ifdef _KERNEL 757 panic("ffs_setblock"); 758 #endif 759 break; 760 } 761 } 762 763 /* 764 * Update the cluster map because of an allocation or free. 765 * 766 * Cnt == 1 means free; cnt == -1 means allocating. 767 */ 768 void 769 ffs_clusteracct(struct fs *fs, struct cg *cgp, ufs1_daddr_t blkno, int cnt) 770 { 771 int32_t *sump; 772 int32_t *lp; 773 u_char *freemapp, *mapp; 774 int i, start, end, forw, back, map; 775 u_int bit; 776 777 if (fs->fs_contigsumsize <= 0) 778 return; 779 freemapp = cg_clustersfree(cgp); 780 sump = cg_clustersum(cgp); 781 /* 782 * Allocate or clear the actual block. 783 */ 784 if (cnt > 0) 785 setbit(freemapp, blkno); 786 else 787 clrbit(freemapp, blkno); 788 /* 789 * Find the size of the cluster going forward. 790 */ 791 start = blkno + 1; 792 end = start + fs->fs_contigsumsize; 793 if (end >= cgp->cg_nclusterblks) 794 end = cgp->cg_nclusterblks; 795 mapp = &freemapp[start / NBBY]; 796 map = *mapp++; 797 bit = 1U << (start % NBBY); 798 for (i = start; i < end; i++) { 799 if ((map & bit) == 0) 800 break; 801 if ((i & (NBBY - 1)) != (NBBY - 1)) { 802 bit <<= 1; 803 } else { 804 map = *mapp++; 805 bit = 1; 806 } 807 } 808 forw = i - start; 809 /* 810 * Find the size of the cluster going backward. 811 */ 812 start = blkno - 1; 813 end = start - fs->fs_contigsumsize; 814 if (end < 0) 815 end = -1; 816 mapp = &freemapp[start / NBBY]; 817 map = *mapp--; 818 bit = 1U << (start % NBBY); 819 for (i = start; i > end; i--) { 820 if ((map & bit) == 0) 821 break; 822 if ((i & (NBBY - 1)) != 0) { 823 bit >>= 1; 824 } else { 825 map = *mapp--; 826 bit = 1U << (NBBY - 1); 827 } 828 } 829 back = start - i; 830 /* 831 * Account for old cluster and the possibly new forward and 832 * back clusters. 833 */ 834 i = back + forw + 1; 835 if (i > fs->fs_contigsumsize) 836 i = fs->fs_contigsumsize; 837 sump[i] += cnt; 838 if (back > 0) 839 sump[back] -= cnt; 840 if (forw > 0) 841 sump[forw] -= cnt; 842 /* 843 * Update cluster summary information. 844 */ 845 lp = &sump[fs->fs_contigsumsize]; 846 for (i = fs->fs_contigsumsize; i > 0; i--) 847 if (*lp-- > 0) 848 break; 849 fs->fs_maxcluster[cgp->cg_cgx] = i; 850 } 851