xref: /freebsd/sys/ufs/ffs/ffs_subr.c (revision 07c17b2b00d8c1c8a2d58d4d8f99e64ec1182476)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1989, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *	@(#)ffs_subr.c	8.5 (Berkeley) 3/21/95
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 #include <sys/param.h>
38 
39 #ifndef _KERNEL
40 #include <stdio.h>
41 #include <string.h>
42 #include <stdlib.h>
43 #include <time.h>
44 #include <sys/errno.h>
45 #include <ufs/ufs/dinode.h>
46 #include <ufs/ffs/fs.h>
47 
48 struct malloc_type;
49 #define UFS_MALLOC(size, type, flags) malloc(size)
50 #define UFS_FREE(ptr, type) free(ptr)
51 #define UFS_TIME time(NULL)
52 
53 #else /* _KERNEL */
54 #include <sys/systm.h>
55 #include <sys/lock.h>
56 #include <sys/malloc.h>
57 #include <sys/mount.h>
58 #include <sys/vnode.h>
59 #include <sys/bio.h>
60 #include <sys/buf.h>
61 #include <sys/ucred.h>
62 
63 #include <ufs/ufs/quota.h>
64 #include <ufs/ufs/inode.h>
65 #include <ufs/ufs/extattr.h>
66 #include <ufs/ufs/ufsmount.h>
67 #include <ufs/ufs/ufs_extern.h>
68 #include <ufs/ffs/ffs_extern.h>
69 #include <ufs/ffs/fs.h>
70 
71 #define UFS_MALLOC(size, type, flags) malloc(size, type, flags)
72 #define UFS_FREE(ptr, type) free(ptr, type)
73 #define UFS_TIME time_second
74 
75 /*
76  * Return buffer with the contents of block "offset" from the beginning of
77  * directory "ip".  If "res" is non-zero, fill it in with a pointer to the
78  * remaining space in the directory.
79  */
80 int
81 ffs_blkatoff(struct vnode *vp, off_t offset, char **res, struct buf **bpp)
82 {
83 	struct inode *ip;
84 	struct fs *fs;
85 	struct buf *bp;
86 	ufs_lbn_t lbn;
87 	int bsize, error;
88 
89 	ip = VTOI(vp);
90 	fs = ITOFS(ip);
91 	lbn = lblkno(fs, offset);
92 	bsize = blksize(fs, ip, lbn);
93 
94 	*bpp = NULL;
95 	error = bread(vp, lbn, bsize, NOCRED, &bp);
96 	if (error) {
97 		brelse(bp);
98 		return (error);
99 	}
100 	if (res)
101 		*res = (char *)bp->b_data + blkoff(fs, offset);
102 	*bpp = bp;
103 	return (0);
104 }
105 
106 /*
107  * Load up the contents of an inode and copy the appropriate pieces
108  * to the incore copy.
109  */
110 void
111 ffs_load_inode(struct buf *bp, struct inode *ip, struct fs *fs, ino_t ino)
112 {
113 
114 	if (I_IS_UFS1(ip)) {
115 		*ip->i_din1 =
116 		    *((struct ufs1_dinode *)bp->b_data + ino_to_fsbo(fs, ino));
117 		ip->i_mode = ip->i_din1->di_mode;
118 		ip->i_nlink = ip->i_din1->di_nlink;
119 		ip->i_size = ip->i_din1->di_size;
120 		ip->i_flags = ip->i_din1->di_flags;
121 		ip->i_gen = ip->i_din1->di_gen;
122 		ip->i_uid = ip->i_din1->di_uid;
123 		ip->i_gid = ip->i_din1->di_gid;
124 	} else {
125 		*ip->i_din2 =
126 		    *((struct ufs2_dinode *)bp->b_data + ino_to_fsbo(fs, ino));
127 		ip->i_mode = ip->i_din2->di_mode;
128 		ip->i_nlink = ip->i_din2->di_nlink;
129 		ip->i_size = ip->i_din2->di_size;
130 		ip->i_flags = ip->i_din2->di_flags;
131 		ip->i_gen = ip->i_din2->di_gen;
132 		ip->i_uid = ip->i_din2->di_uid;
133 		ip->i_gid = ip->i_din2->di_gid;
134 	}
135 }
136 #endif /* KERNEL */
137 
138 /*
139  * These are the low-level functions that actually read and write
140  * the superblock and its associated data.
141  */
142 static off_t sblock_try[] = SBLOCKSEARCH;
143 static int readsuper(void *, struct fs **, off_t,
144 	int (*)(void *, off_t, void **, int));
145 
146 /*
147  * Read a superblock from the devfd device.
148  *
149  * If an alternate superblock is specified, it is read. Otherwise the
150  * set of locations given in the SBLOCKSEARCH list is searched for a
151  * superblock. Memory is allocated for the superblock by the readfunc and
152  * is returned. If filltype is non-NULL, additional memory is allocated
153  * of type filltype and filled in with the superblock summary information.
154  *
155  * If a superblock is found, zero is returned. Otherwise one of the
156  * following error values is returned:
157  *     EIO: non-existent or truncated superblock.
158  *     EIO: error reading summary information.
159  *     ENOENT: no usable known superblock found.
160  *     ENOSPC: failed to allocate space for the superblock.
161  *     EINVAL: The previous newfs operation on this volume did not complete.
162  *         The administrator must complete newfs before using this volume.
163  */
164 int
165 ffs_sbget(void *devfd, struct fs **fsp, off_t altsuperblock,
166     struct malloc_type *filltype,
167     int (*readfunc)(void *devfd, off_t loc, void **bufp, int size))
168 {
169 	struct fs *fs;
170 	int i, ret, size, blks;
171 	uint8_t *space;
172 	int32_t *lp;
173 	char *buf;
174 
175 	*fsp = NULL;
176 	if (altsuperblock != -1) {
177 		if ((ret = readsuper(devfd, fsp, altsuperblock, readfunc)) != 0)
178 			return (ret);
179 	} else {
180 		for (i = 0; sblock_try[i] != -1; i++) {
181 			if ((ret = readsuper(devfd, fsp, sblock_try[i],
182 			     readfunc)) == 0)
183 				break;
184 			if (ret == ENOENT)
185 				continue;
186 			return (ret);
187 		}
188 		if (sblock_try[i] == -1)
189 			return (ENOENT);
190 	}
191 	/*
192 	 * If not filling in summary information, return.
193 	 */
194 	if (filltype == NULL)
195 		return (0);
196 	/*
197 	 * Read in the superblock summary information.
198 	 */
199 	fs = *fsp;
200 	size = fs->fs_cssize;
201 	blks = howmany(size, fs->fs_fsize);
202 	if (fs->fs_contigsumsize > 0)
203 		size += fs->fs_ncg * sizeof(int32_t);
204 	size += fs->fs_ncg * sizeof(u_int8_t);
205 	space = UFS_MALLOC(size, filltype, M_WAITOK);
206 	fs->fs_csp = (struct csum *)space;
207 	for (i = 0; i < blks; i += fs->fs_frag) {
208 		size = fs->fs_bsize;
209 		if (i + fs->fs_frag > blks)
210 			size = (blks - i) * fs->fs_fsize;
211 		buf = NULL;
212 		ret = (*readfunc)(devfd,
213 		    dbtob(fsbtodb(fs, fs->fs_csaddr + i)), (void **)&buf, size);
214 		if (ret) {
215 			UFS_FREE(buf, filltype);
216 			UFS_FREE(fs->fs_csp, filltype);
217 			fs->fs_csp = NULL;
218 			return (ret);
219 		}
220 		memcpy(space, buf, size);
221 		UFS_FREE(buf, filltype);
222 		space += size;
223 	}
224 	if (fs->fs_contigsumsize > 0) {
225 		fs->fs_maxcluster = lp = (int32_t *)space;
226 		for (i = 0; i < fs->fs_ncg; i++)
227 			*lp++ = fs->fs_contigsumsize;
228 		space = (uint8_t *)lp;
229 	}
230 	size = fs->fs_ncg * sizeof(u_int8_t);
231 	fs->fs_contigdirs = (u_int8_t *)space;
232 	bzero(fs->fs_contigdirs, size);
233 	return (0);
234 }
235 
236 /*
237  * Try to read a superblock from the location specified by sblockloc.
238  * Return zero on success or an errno on failure.
239  */
240 static int
241 readsuper(void *devfd, struct fs **fsp, off_t sblockloc,
242     int (*readfunc)(void *devfd, off_t loc, void **bufp, int size))
243 {
244 	struct fs *fs;
245 	int error;
246 
247 	error = (*readfunc)(devfd, sblockloc, (void **)fsp, SBLOCKSIZE);
248 	if (*fsp != NULL)
249 		(*fsp)->fs_csp = NULL;	/* Not yet any summary information */
250 	if (error != 0)
251 		return (error);
252 	fs = *fsp;
253 	if (fs->fs_magic == FS_BAD_MAGIC)
254 		return (EINVAL);
255 	if (((fs->fs_magic == FS_UFS1_MAGIC && sblockloc <= SBLOCK_UFS1) ||
256 	     (fs->fs_magic == FS_UFS2_MAGIC &&
257 	      sblockloc == fs->fs_sblockloc)) &&
258 	    fs->fs_ncg >= 1 &&
259 	    fs->fs_bsize >= MINBSIZE &&
260 	    fs->fs_bsize <= MAXBSIZE &&
261 	    fs->fs_bsize >= roundup(sizeof(struct fs), DEV_BSIZE)) {
262 		/* Have to set for old filesystems that predate this field */
263 		fs->fs_sblockactualloc = sblockloc;
264 		return (0);
265 	}
266 	return (ENOENT);
267 }
268 
269 /*
270  * Write a superblock to the devfd device from the memory pointed to by fs.
271  * Write out the superblock summary information if it is present.
272  *
273  * If the write is successful, zero is returned. Otherwise one of the
274  * following error values is returned:
275  *     EIO: failed to write superblock.
276  *     EIO: failed to write superblock summary information.
277  */
278 int
279 ffs_sbput(void *devfd, struct fs *fs, off_t loc,
280     int (*writefunc)(void *devfd, off_t loc, void *buf, int size))
281 {
282 	int i, error, blks, size;
283 	uint8_t *space;
284 
285 	/*
286 	 * If there is summary information, write it first, so if there
287 	 * is an error, the superblock will not be marked as clean.
288 	 */
289 	if (fs->fs_csp != NULL) {
290 		blks = howmany(fs->fs_cssize, fs->fs_fsize);
291 		space = (uint8_t *)fs->fs_csp;
292 		for (i = 0; i < blks; i += fs->fs_frag) {
293 			size = fs->fs_bsize;
294 			if (i + fs->fs_frag > blks)
295 				size = (blks - i) * fs->fs_fsize;
296 			if ((error = (*writefunc)(devfd,
297 			     dbtob(fsbtodb(fs, fs->fs_csaddr + i)),
298 			     space, size)) != 0)
299 				return (error);
300 			space += size;
301 		}
302 	}
303 	fs->fs_fmod = 0;
304 	fs->fs_time = UFS_TIME;
305 	if ((error = (*writefunc)(devfd, loc, fs, fs->fs_sbsize)) != 0)
306 		return (error);
307 	return (0);
308 }
309 
310 /*
311  * Update the frsum fields to reflect addition or deletion
312  * of some frags.
313  */
314 void
315 ffs_fragacct(struct fs *fs, int fragmap, int32_t fraglist[], int cnt)
316 {
317 	int inblk;
318 	int field, subfield;
319 	int siz, pos;
320 
321 	inblk = (int)(fragtbl[fs->fs_frag][fragmap]) << 1;
322 	fragmap <<= 1;
323 	for (siz = 1; siz < fs->fs_frag; siz++) {
324 		if ((inblk & (1 << (siz + (fs->fs_frag % NBBY)))) == 0)
325 			continue;
326 		field = around[siz];
327 		subfield = inside[siz];
328 		for (pos = siz; pos <= fs->fs_frag; pos++) {
329 			if ((fragmap & field) == subfield) {
330 				fraglist[siz] += cnt;
331 				pos += siz;
332 				field <<= siz;
333 				subfield <<= siz;
334 			}
335 			field <<= 1;
336 			subfield <<= 1;
337 		}
338 	}
339 }
340 
341 /*
342  * block operations
343  *
344  * check if a block is available
345  */
346 int
347 ffs_isblock(struct fs *fs, unsigned char *cp, ufs1_daddr_t h)
348 {
349 	unsigned char mask;
350 
351 	switch ((int)fs->fs_frag) {
352 	case 8:
353 		return (cp[h] == 0xff);
354 	case 4:
355 		mask = 0x0f << ((h & 0x1) << 2);
356 		return ((cp[h >> 1] & mask) == mask);
357 	case 2:
358 		mask = 0x03 << ((h & 0x3) << 1);
359 		return ((cp[h >> 2] & mask) == mask);
360 	case 1:
361 		mask = 0x01 << (h & 0x7);
362 		return ((cp[h >> 3] & mask) == mask);
363 	default:
364 #ifdef _KERNEL
365 		panic("ffs_isblock");
366 #endif
367 		break;
368 	}
369 	return (0);
370 }
371 
372 /*
373  * check if a block is free
374  */
375 int
376 ffs_isfreeblock(struct fs *fs, u_char *cp, ufs1_daddr_t h)
377 {
378 
379 	switch ((int)fs->fs_frag) {
380 	case 8:
381 		return (cp[h] == 0);
382 	case 4:
383 		return ((cp[h >> 1] & (0x0f << ((h & 0x1) << 2))) == 0);
384 	case 2:
385 		return ((cp[h >> 2] & (0x03 << ((h & 0x3) << 1))) == 0);
386 	case 1:
387 		return ((cp[h >> 3] & (0x01 << (h & 0x7))) == 0);
388 	default:
389 #ifdef _KERNEL
390 		panic("ffs_isfreeblock");
391 #endif
392 		break;
393 	}
394 	return (0);
395 }
396 
397 /*
398  * take a block out of the map
399  */
400 void
401 ffs_clrblock(struct fs *fs, u_char *cp, ufs1_daddr_t h)
402 {
403 
404 	switch ((int)fs->fs_frag) {
405 	case 8:
406 		cp[h] = 0;
407 		return;
408 	case 4:
409 		cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2));
410 		return;
411 	case 2:
412 		cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1));
413 		return;
414 	case 1:
415 		cp[h >> 3] &= ~(0x01 << (h & 0x7));
416 		return;
417 	default:
418 #ifdef _KERNEL
419 		panic("ffs_clrblock");
420 #endif
421 		break;
422 	}
423 }
424 
425 /*
426  * put a block into the map
427  */
428 void
429 ffs_setblock(struct fs *fs, unsigned char *cp, ufs1_daddr_t h)
430 {
431 
432 	switch ((int)fs->fs_frag) {
433 
434 	case 8:
435 		cp[h] = 0xff;
436 		return;
437 	case 4:
438 		cp[h >> 1] |= (0x0f << ((h & 0x1) << 2));
439 		return;
440 	case 2:
441 		cp[h >> 2] |= (0x03 << ((h & 0x3) << 1));
442 		return;
443 	case 1:
444 		cp[h >> 3] |= (0x01 << (h & 0x7));
445 		return;
446 	default:
447 #ifdef _KERNEL
448 		panic("ffs_setblock");
449 #endif
450 		break;
451 	}
452 }
453 
454 /*
455  * Update the cluster map because of an allocation or free.
456  *
457  * Cnt == 1 means free; cnt == -1 means allocating.
458  */
459 void
460 ffs_clusteracct(struct fs *fs, struct cg *cgp, ufs1_daddr_t blkno, int cnt)
461 {
462 	int32_t *sump;
463 	int32_t *lp;
464 	u_char *freemapp, *mapp;
465 	int i, start, end, forw, back, map, bit;
466 
467 	if (fs->fs_contigsumsize <= 0)
468 		return;
469 	freemapp = cg_clustersfree(cgp);
470 	sump = cg_clustersum(cgp);
471 	/*
472 	 * Allocate or clear the actual block.
473 	 */
474 	if (cnt > 0)
475 		setbit(freemapp, blkno);
476 	else
477 		clrbit(freemapp, blkno);
478 	/*
479 	 * Find the size of the cluster going forward.
480 	 */
481 	start = blkno + 1;
482 	end = start + fs->fs_contigsumsize;
483 	if (end >= cgp->cg_nclusterblks)
484 		end = cgp->cg_nclusterblks;
485 	mapp = &freemapp[start / NBBY];
486 	map = *mapp++;
487 	bit = 1 << (start % NBBY);
488 	for (i = start; i < end; i++) {
489 		if ((map & bit) == 0)
490 			break;
491 		if ((i & (NBBY - 1)) != (NBBY - 1)) {
492 			bit <<= 1;
493 		} else {
494 			map = *mapp++;
495 			bit = 1;
496 		}
497 	}
498 	forw = i - start;
499 	/*
500 	 * Find the size of the cluster going backward.
501 	 */
502 	start = blkno - 1;
503 	end = start - fs->fs_contigsumsize;
504 	if (end < 0)
505 		end = -1;
506 	mapp = &freemapp[start / NBBY];
507 	map = *mapp--;
508 	bit = 1 << (start % NBBY);
509 	for (i = start; i > end; i--) {
510 		if ((map & bit) == 0)
511 			break;
512 		if ((i & (NBBY - 1)) != 0) {
513 			bit >>= 1;
514 		} else {
515 			map = *mapp--;
516 			bit = 1 << (NBBY - 1);
517 		}
518 	}
519 	back = start - i;
520 	/*
521 	 * Account for old cluster and the possibly new forward and
522 	 * back clusters.
523 	 */
524 	i = back + forw + 1;
525 	if (i > fs->fs_contigsumsize)
526 		i = fs->fs_contigsumsize;
527 	sump[i] += cnt;
528 	if (back > 0)
529 		sump[back] -= cnt;
530 	if (forw > 0)
531 		sump[forw] -= cnt;
532 	/*
533 	 * Update cluster summary information.
534 	 */
535 	lp = &sump[fs->fs_contigsumsize];
536 	for (i = fs->fs_contigsumsize; i > 0; i--)
537 		if (*lp-- > 0)
538 			break;
539 	fs->fs_maxcluster[cgp->cg_cgx] = i;
540 }
541