xref: /freebsd/sys/ufs/ffs/ffs_softdep.c (revision fed1ca4b719c56c930f2259d80663cd34be812bb)
1 /*-
2  * Copyright 1998, 2000 Marshall Kirk McKusick.
3  * Copyright 2009, 2010 Jeffrey W. Roberson <jeff@FreeBSD.org>
4  * All rights reserved.
5  *
6  * The soft updates code is derived from the appendix of a University
7  * of Michigan technical report (Gregory R. Ganger and Yale N. Patt,
8  * "Soft Updates: A Solution to the Metadata Update Problem in File
9  * Systems", CSE-TR-254-95, August 1995).
10  *
11  * Further information about soft updates can be obtained from:
12  *
13  *	Marshall Kirk McKusick		http://www.mckusick.com/softdep/
14  *	1614 Oxford Street		mckusick@mckusick.com
15  *	Berkeley, CA 94709-1608		+1-510-843-9542
16  *	USA
17  *
18  * Redistribution and use in source and binary forms, with or without
19  * modification, are permitted provided that the following conditions
20  * are met:
21  *
22  * 1. Redistributions of source code must retain the above copyright
23  *    notice, this list of conditions and the following disclaimer.
24  * 2. Redistributions in binary form must reproduce the above copyright
25  *    notice, this list of conditions and the following disclaimer in the
26  *    documentation and/or other materials provided with the distribution.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR
29  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
30  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
31  * IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT,
32  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
33  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
34  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
35  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
36  * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
37  * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
38  *
39  *	from: @(#)ffs_softdep.c	9.59 (McKusick) 6/21/00
40  */
41 
42 #include <sys/cdefs.h>
43 __FBSDID("$FreeBSD$");
44 
45 #include "opt_ffs.h"
46 #include "opt_quota.h"
47 #include "opt_ddb.h"
48 
49 /*
50  * For now we want the safety net that the DEBUG flag provides.
51  */
52 #ifndef DEBUG
53 #define DEBUG
54 #endif
55 
56 #include <sys/param.h>
57 #include <sys/kernel.h>
58 #include <sys/systm.h>
59 #include <sys/bio.h>
60 #include <sys/buf.h>
61 #include <sys/kdb.h>
62 #include <sys/kthread.h>
63 #include <sys/ktr.h>
64 #include <sys/limits.h>
65 #include <sys/lock.h>
66 #include <sys/malloc.h>
67 #include <sys/mount.h>
68 #include <sys/mutex.h>
69 #include <sys/namei.h>
70 #include <sys/priv.h>
71 #include <sys/proc.h>
72 #include <sys/racct.h>
73 #include <sys/rwlock.h>
74 #include <sys/stat.h>
75 #include <sys/sysctl.h>
76 #include <sys/syslog.h>
77 #include <sys/vnode.h>
78 #include <sys/conf.h>
79 
80 #include <ufs/ufs/dir.h>
81 #include <ufs/ufs/extattr.h>
82 #include <ufs/ufs/quota.h>
83 #include <ufs/ufs/inode.h>
84 #include <ufs/ufs/ufsmount.h>
85 #include <ufs/ffs/fs.h>
86 #include <ufs/ffs/softdep.h>
87 #include <ufs/ffs/ffs_extern.h>
88 #include <ufs/ufs/ufs_extern.h>
89 
90 #include <vm/vm.h>
91 #include <vm/vm_extern.h>
92 #include <vm/vm_object.h>
93 
94 #include <geom/geom.h>
95 
96 #include <ddb/ddb.h>
97 
98 #define	KTR_SUJ	0	/* Define to KTR_SPARE. */
99 
100 #ifndef SOFTUPDATES
101 
102 int
103 softdep_flushfiles(oldmnt, flags, td)
104 	struct mount *oldmnt;
105 	int flags;
106 	struct thread *td;
107 {
108 
109 	panic("softdep_flushfiles called");
110 }
111 
112 int
113 softdep_mount(devvp, mp, fs, cred)
114 	struct vnode *devvp;
115 	struct mount *mp;
116 	struct fs *fs;
117 	struct ucred *cred;
118 {
119 
120 	return (0);
121 }
122 
123 void
124 softdep_initialize()
125 {
126 
127 	return;
128 }
129 
130 void
131 softdep_uninitialize()
132 {
133 
134 	return;
135 }
136 
137 void
138 softdep_unmount(mp)
139 	struct mount *mp;
140 {
141 
142 	panic("softdep_unmount called");
143 }
144 
145 void
146 softdep_setup_sbupdate(ump, fs, bp)
147 	struct ufsmount *ump;
148 	struct fs *fs;
149 	struct buf *bp;
150 {
151 
152 	panic("softdep_setup_sbupdate called");
153 }
154 
155 void
156 softdep_setup_inomapdep(bp, ip, newinum, mode)
157 	struct buf *bp;
158 	struct inode *ip;
159 	ino_t newinum;
160 	int mode;
161 {
162 
163 	panic("softdep_setup_inomapdep called");
164 }
165 
166 void
167 softdep_setup_blkmapdep(bp, mp, newblkno, frags, oldfrags)
168 	struct buf *bp;
169 	struct mount *mp;
170 	ufs2_daddr_t newblkno;
171 	int frags;
172 	int oldfrags;
173 {
174 
175 	panic("softdep_setup_blkmapdep called");
176 }
177 
178 void
179 softdep_setup_allocdirect(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp)
180 	struct inode *ip;
181 	ufs_lbn_t lbn;
182 	ufs2_daddr_t newblkno;
183 	ufs2_daddr_t oldblkno;
184 	long newsize;
185 	long oldsize;
186 	struct buf *bp;
187 {
188 
189 	panic("softdep_setup_allocdirect called");
190 }
191 
192 void
193 softdep_setup_allocext(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp)
194 	struct inode *ip;
195 	ufs_lbn_t lbn;
196 	ufs2_daddr_t newblkno;
197 	ufs2_daddr_t oldblkno;
198 	long newsize;
199 	long oldsize;
200 	struct buf *bp;
201 {
202 
203 	panic("softdep_setup_allocext called");
204 }
205 
206 void
207 softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp)
208 	struct inode *ip;
209 	ufs_lbn_t lbn;
210 	struct buf *bp;
211 	int ptrno;
212 	ufs2_daddr_t newblkno;
213 	ufs2_daddr_t oldblkno;
214 	struct buf *nbp;
215 {
216 
217 	panic("softdep_setup_allocindir_page called");
218 }
219 
220 void
221 softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno)
222 	struct buf *nbp;
223 	struct inode *ip;
224 	struct buf *bp;
225 	int ptrno;
226 	ufs2_daddr_t newblkno;
227 {
228 
229 	panic("softdep_setup_allocindir_meta called");
230 }
231 
232 void
233 softdep_journal_freeblocks(ip, cred, length, flags)
234 	struct inode *ip;
235 	struct ucred *cred;
236 	off_t length;
237 	int flags;
238 {
239 
240 	panic("softdep_journal_freeblocks called");
241 }
242 
243 void
244 softdep_journal_fsync(ip)
245 	struct inode *ip;
246 {
247 
248 	panic("softdep_journal_fsync called");
249 }
250 
251 void
252 softdep_setup_freeblocks(ip, length, flags)
253 	struct inode *ip;
254 	off_t length;
255 	int flags;
256 {
257 
258 	panic("softdep_setup_freeblocks called");
259 }
260 
261 void
262 softdep_freefile(pvp, ino, mode)
263 		struct vnode *pvp;
264 		ino_t ino;
265 		int mode;
266 {
267 
268 	panic("softdep_freefile called");
269 }
270 
271 int
272 softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk)
273 	struct buf *bp;
274 	struct inode *dp;
275 	off_t diroffset;
276 	ino_t newinum;
277 	struct buf *newdirbp;
278 	int isnewblk;
279 {
280 
281 	panic("softdep_setup_directory_add called");
282 }
283 
284 void
285 softdep_change_directoryentry_offset(bp, dp, base, oldloc, newloc, entrysize)
286 	struct buf *bp;
287 	struct inode *dp;
288 	caddr_t base;
289 	caddr_t oldloc;
290 	caddr_t newloc;
291 	int entrysize;
292 {
293 
294 	panic("softdep_change_directoryentry_offset called");
295 }
296 
297 void
298 softdep_setup_remove(bp, dp, ip, isrmdir)
299 	struct buf *bp;
300 	struct inode *dp;
301 	struct inode *ip;
302 	int isrmdir;
303 {
304 
305 	panic("softdep_setup_remove called");
306 }
307 
308 void
309 softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir)
310 	struct buf *bp;
311 	struct inode *dp;
312 	struct inode *ip;
313 	ino_t newinum;
314 	int isrmdir;
315 {
316 
317 	panic("softdep_setup_directory_change called");
318 }
319 
320 void
321 softdep_setup_blkfree(mp, bp, blkno, frags, wkhd)
322 	struct mount *mp;
323 	struct buf *bp;
324 	ufs2_daddr_t blkno;
325 	int frags;
326 	struct workhead *wkhd;
327 {
328 
329 	panic("%s called", __FUNCTION__);
330 }
331 
332 void
333 softdep_setup_inofree(mp, bp, ino, wkhd)
334 	struct mount *mp;
335 	struct buf *bp;
336 	ino_t ino;
337 	struct workhead *wkhd;
338 {
339 
340 	panic("%s called", __FUNCTION__);
341 }
342 
343 void
344 softdep_setup_unlink(dp, ip)
345 	struct inode *dp;
346 	struct inode *ip;
347 {
348 
349 	panic("%s called", __FUNCTION__);
350 }
351 
352 void
353 softdep_setup_link(dp, ip)
354 	struct inode *dp;
355 	struct inode *ip;
356 {
357 
358 	panic("%s called", __FUNCTION__);
359 }
360 
361 void
362 softdep_revert_link(dp, ip)
363 	struct inode *dp;
364 	struct inode *ip;
365 {
366 
367 	panic("%s called", __FUNCTION__);
368 }
369 
370 void
371 softdep_setup_rmdir(dp, ip)
372 	struct inode *dp;
373 	struct inode *ip;
374 {
375 
376 	panic("%s called", __FUNCTION__);
377 }
378 
379 void
380 softdep_revert_rmdir(dp, ip)
381 	struct inode *dp;
382 	struct inode *ip;
383 {
384 
385 	panic("%s called", __FUNCTION__);
386 }
387 
388 void
389 softdep_setup_create(dp, ip)
390 	struct inode *dp;
391 	struct inode *ip;
392 {
393 
394 	panic("%s called", __FUNCTION__);
395 }
396 
397 void
398 softdep_revert_create(dp, ip)
399 	struct inode *dp;
400 	struct inode *ip;
401 {
402 
403 	panic("%s called", __FUNCTION__);
404 }
405 
406 void
407 softdep_setup_mkdir(dp, ip)
408 	struct inode *dp;
409 	struct inode *ip;
410 {
411 
412 	panic("%s called", __FUNCTION__);
413 }
414 
415 void
416 softdep_revert_mkdir(dp, ip)
417 	struct inode *dp;
418 	struct inode *ip;
419 {
420 
421 	panic("%s called", __FUNCTION__);
422 }
423 
424 void
425 softdep_setup_dotdot_link(dp, ip)
426 	struct inode *dp;
427 	struct inode *ip;
428 {
429 
430 	panic("%s called", __FUNCTION__);
431 }
432 
433 int
434 softdep_prealloc(vp, waitok)
435 	struct vnode *vp;
436 	int waitok;
437 {
438 
439 	panic("%s called", __FUNCTION__);
440 }
441 
442 int
443 softdep_journal_lookup(mp, vpp)
444 	struct mount *mp;
445 	struct vnode **vpp;
446 {
447 
448 	return (ENOENT);
449 }
450 
451 void
452 softdep_change_linkcnt(ip)
453 	struct inode *ip;
454 {
455 
456 	panic("softdep_change_linkcnt called");
457 }
458 
459 void
460 softdep_load_inodeblock(ip)
461 	struct inode *ip;
462 {
463 
464 	panic("softdep_load_inodeblock called");
465 }
466 
467 void
468 softdep_update_inodeblock(ip, bp, waitfor)
469 	struct inode *ip;
470 	struct buf *bp;
471 	int waitfor;
472 {
473 
474 	panic("softdep_update_inodeblock called");
475 }
476 
477 int
478 softdep_fsync(vp)
479 	struct vnode *vp;	/* the "in_core" copy of the inode */
480 {
481 
482 	return (0);
483 }
484 
485 void
486 softdep_fsync_mountdev(vp)
487 	struct vnode *vp;
488 {
489 
490 	return;
491 }
492 
493 int
494 softdep_flushworklist(oldmnt, countp, td)
495 	struct mount *oldmnt;
496 	int *countp;
497 	struct thread *td;
498 {
499 
500 	*countp = 0;
501 	return (0);
502 }
503 
504 int
505 softdep_sync_metadata(struct vnode *vp)
506 {
507 
508 	panic("softdep_sync_metadata called");
509 }
510 
511 int
512 softdep_sync_buf(struct vnode *vp, struct buf *bp, int waitfor)
513 {
514 
515 	panic("softdep_sync_buf called");
516 }
517 
518 int
519 softdep_slowdown(vp)
520 	struct vnode *vp;
521 {
522 
523 	panic("softdep_slowdown called");
524 }
525 
526 int
527 softdep_request_cleanup(fs, vp, cred, resource)
528 	struct fs *fs;
529 	struct vnode *vp;
530 	struct ucred *cred;
531 	int resource;
532 {
533 
534 	return (0);
535 }
536 
537 int
538 softdep_check_suspend(struct mount *mp,
539 		      struct vnode *devvp,
540 		      int softdep_depcnt,
541 		      int softdep_accdepcnt,
542 		      int secondary_writes,
543 		      int secondary_accwrites)
544 {
545 	struct bufobj *bo;
546 	int error;
547 
548 	(void) softdep_depcnt,
549 	(void) softdep_accdepcnt;
550 
551 	bo = &devvp->v_bufobj;
552 	ASSERT_BO_WLOCKED(bo);
553 
554 	MNT_ILOCK(mp);
555 	while (mp->mnt_secondary_writes != 0) {
556 		BO_UNLOCK(bo);
557 		msleep(&mp->mnt_secondary_writes, MNT_MTX(mp),
558 		    (PUSER - 1) | PDROP, "secwr", 0);
559 		BO_LOCK(bo);
560 		MNT_ILOCK(mp);
561 	}
562 
563 	/*
564 	 * Reasons for needing more work before suspend:
565 	 * - Dirty buffers on devvp.
566 	 * - Secondary writes occurred after start of vnode sync loop
567 	 */
568 	error = 0;
569 	if (bo->bo_numoutput > 0 ||
570 	    bo->bo_dirty.bv_cnt > 0 ||
571 	    secondary_writes != 0 ||
572 	    mp->mnt_secondary_writes != 0 ||
573 	    secondary_accwrites != mp->mnt_secondary_accwrites)
574 		error = EAGAIN;
575 	BO_UNLOCK(bo);
576 	return (error);
577 }
578 
579 void
580 softdep_get_depcounts(struct mount *mp,
581 		      int *softdepactivep,
582 		      int *softdepactiveaccp)
583 {
584 	(void) mp;
585 	*softdepactivep = 0;
586 	*softdepactiveaccp = 0;
587 }
588 
589 void
590 softdep_buf_append(bp, wkhd)
591 	struct buf *bp;
592 	struct workhead *wkhd;
593 {
594 
595 	panic("softdep_buf_appendwork called");
596 }
597 
598 void
599 softdep_inode_append(ip, cred, wkhd)
600 	struct inode *ip;
601 	struct ucred *cred;
602 	struct workhead *wkhd;
603 {
604 
605 	panic("softdep_inode_appendwork called");
606 }
607 
608 void
609 softdep_freework(wkhd)
610 	struct workhead *wkhd;
611 {
612 
613 	panic("softdep_freework called");
614 }
615 
616 #else
617 
618 FEATURE(softupdates, "FFS soft-updates support");
619 
620 static SYSCTL_NODE(_debug, OID_AUTO, softdep, CTLFLAG_RW, 0,
621     "soft updates stats");
622 static SYSCTL_NODE(_debug_softdep, OID_AUTO, total, CTLFLAG_RW, 0,
623     "total dependencies allocated");
624 static SYSCTL_NODE(_debug_softdep, OID_AUTO, highuse, CTLFLAG_RW, 0,
625     "high use dependencies allocated");
626 static SYSCTL_NODE(_debug_softdep, OID_AUTO, current, CTLFLAG_RW, 0,
627     "current dependencies allocated");
628 static SYSCTL_NODE(_debug_softdep, OID_AUTO, write, CTLFLAG_RW, 0,
629     "current dependencies written");
630 
631 unsigned long dep_current[D_LAST + 1];
632 unsigned long dep_highuse[D_LAST + 1];
633 unsigned long dep_total[D_LAST + 1];
634 unsigned long dep_write[D_LAST + 1];
635 
636 #define	SOFTDEP_TYPE(type, str, long)					\
637     static MALLOC_DEFINE(M_ ## type, #str, long);			\
638     SYSCTL_ULONG(_debug_softdep_total, OID_AUTO, str, CTLFLAG_RD,	\
639 	&dep_total[D_ ## type], 0, "");					\
640     SYSCTL_ULONG(_debug_softdep_current, OID_AUTO, str, CTLFLAG_RD, 	\
641 	&dep_current[D_ ## type], 0, "");				\
642     SYSCTL_ULONG(_debug_softdep_highuse, OID_AUTO, str, CTLFLAG_RD, 	\
643 	&dep_highuse[D_ ## type], 0, "");				\
644     SYSCTL_ULONG(_debug_softdep_write, OID_AUTO, str, CTLFLAG_RD, 	\
645 	&dep_write[D_ ## type], 0, "");
646 
647 SOFTDEP_TYPE(PAGEDEP, pagedep, "File page dependencies");
648 SOFTDEP_TYPE(INODEDEP, inodedep, "Inode dependencies");
649 SOFTDEP_TYPE(BMSAFEMAP, bmsafemap,
650     "Block or frag allocated from cyl group map");
651 SOFTDEP_TYPE(NEWBLK, newblk, "New block or frag allocation dependency");
652 SOFTDEP_TYPE(ALLOCDIRECT, allocdirect, "Block or frag dependency for an inode");
653 SOFTDEP_TYPE(INDIRDEP, indirdep, "Indirect block dependencies");
654 SOFTDEP_TYPE(ALLOCINDIR, allocindir, "Block dependency for an indirect block");
655 SOFTDEP_TYPE(FREEFRAG, freefrag, "Previously used frag for an inode");
656 SOFTDEP_TYPE(FREEBLKS, freeblks, "Blocks freed from an inode");
657 SOFTDEP_TYPE(FREEFILE, freefile, "Inode deallocated");
658 SOFTDEP_TYPE(DIRADD, diradd, "New directory entry");
659 SOFTDEP_TYPE(MKDIR, mkdir, "New directory");
660 SOFTDEP_TYPE(DIRREM, dirrem, "Directory entry deleted");
661 SOFTDEP_TYPE(NEWDIRBLK, newdirblk, "Unclaimed new directory block");
662 SOFTDEP_TYPE(FREEWORK, freework, "free an inode block");
663 SOFTDEP_TYPE(FREEDEP, freedep, "track a block free");
664 SOFTDEP_TYPE(JADDREF, jaddref, "Journal inode ref add");
665 SOFTDEP_TYPE(JREMREF, jremref, "Journal inode ref remove");
666 SOFTDEP_TYPE(JMVREF, jmvref, "Journal inode ref move");
667 SOFTDEP_TYPE(JNEWBLK, jnewblk, "Journal new block");
668 SOFTDEP_TYPE(JFREEBLK, jfreeblk, "Journal free block");
669 SOFTDEP_TYPE(JFREEFRAG, jfreefrag, "Journal free frag");
670 SOFTDEP_TYPE(JSEG, jseg, "Journal segment");
671 SOFTDEP_TYPE(JSEGDEP, jsegdep, "Journal segment complete");
672 SOFTDEP_TYPE(SBDEP, sbdep, "Superblock write dependency");
673 SOFTDEP_TYPE(JTRUNC, jtrunc, "Journal inode truncation");
674 SOFTDEP_TYPE(JFSYNC, jfsync, "Journal fsync complete");
675 
676 static MALLOC_DEFINE(M_SENTINEL, "sentinel", "Worklist sentinel");
677 
678 static MALLOC_DEFINE(M_SAVEDINO, "savedino", "Saved inodes");
679 static MALLOC_DEFINE(M_JBLOCKS, "jblocks", "Journal block locations");
680 static MALLOC_DEFINE(M_MOUNTDATA, "softdep", "Softdep per-mount data");
681 
682 #define M_SOFTDEP_FLAGS	(M_WAITOK)
683 
684 /*
685  * translate from workitem type to memory type
686  * MUST match the defines above, such that memtype[D_XXX] == M_XXX
687  */
688 static struct malloc_type *memtype[] = {
689 	M_PAGEDEP,
690 	M_INODEDEP,
691 	M_BMSAFEMAP,
692 	M_NEWBLK,
693 	M_ALLOCDIRECT,
694 	M_INDIRDEP,
695 	M_ALLOCINDIR,
696 	M_FREEFRAG,
697 	M_FREEBLKS,
698 	M_FREEFILE,
699 	M_DIRADD,
700 	M_MKDIR,
701 	M_DIRREM,
702 	M_NEWDIRBLK,
703 	M_FREEWORK,
704 	M_FREEDEP,
705 	M_JADDREF,
706 	M_JREMREF,
707 	M_JMVREF,
708 	M_JNEWBLK,
709 	M_JFREEBLK,
710 	M_JFREEFRAG,
711 	M_JSEG,
712 	M_JSEGDEP,
713 	M_SBDEP,
714 	M_JTRUNC,
715 	M_JFSYNC,
716 	M_SENTINEL
717 };
718 
719 #define DtoM(type) (memtype[type])
720 
721 /*
722  * Names of malloc types.
723  */
724 #define TYPENAME(type)  \
725 	((unsigned)(type) <= D_LAST ? memtype[type]->ks_shortdesc : "???")
726 /*
727  * End system adaptation definitions.
728  */
729 
730 #define	DOTDOT_OFFSET	offsetof(struct dirtemplate, dotdot_ino)
731 #define	DOT_OFFSET	offsetof(struct dirtemplate, dot_ino)
732 
733 /*
734  * Internal function prototypes.
735  */
736 static	void check_clear_deps(struct mount *);
737 static	void softdep_error(char *, int);
738 static	int softdep_process_worklist(struct mount *, int);
739 static	int softdep_waitidle(struct mount *, int);
740 static	void drain_output(struct vnode *);
741 static	struct buf *getdirtybuf(struct buf *, struct rwlock *, int);
742 static	int check_inodedep_free(struct inodedep *);
743 static	void clear_remove(struct mount *);
744 static	void clear_inodedeps(struct mount *);
745 static	void unlinked_inodedep(struct mount *, struct inodedep *);
746 static	void clear_unlinked_inodedep(struct inodedep *);
747 static	struct inodedep *first_unlinked_inodedep(struct ufsmount *);
748 static	int flush_pagedep_deps(struct vnode *, struct mount *,
749 	    struct diraddhd *);
750 static	int free_pagedep(struct pagedep *);
751 static	int flush_newblk_dep(struct vnode *, struct mount *, ufs_lbn_t);
752 static	int flush_inodedep_deps(struct vnode *, struct mount *, ino_t);
753 static	int flush_deplist(struct allocdirectlst *, int, int *);
754 static	int sync_cgs(struct mount *, int);
755 static	int handle_written_filepage(struct pagedep *, struct buf *);
756 static	int handle_written_sbdep(struct sbdep *, struct buf *);
757 static	void initiate_write_sbdep(struct sbdep *);
758 static	void diradd_inode_written(struct diradd *, struct inodedep *);
759 static	int handle_written_indirdep(struct indirdep *, struct buf *,
760 	    struct buf**);
761 static	int handle_written_inodeblock(struct inodedep *, struct buf *);
762 static	int jnewblk_rollforward(struct jnewblk *, struct fs *, struct cg *,
763 	    uint8_t *);
764 static	int handle_written_bmsafemap(struct bmsafemap *, struct buf *);
765 static	void handle_written_jaddref(struct jaddref *);
766 static	void handle_written_jremref(struct jremref *);
767 static	void handle_written_jseg(struct jseg *, struct buf *);
768 static	void handle_written_jnewblk(struct jnewblk *);
769 static	void handle_written_jblkdep(struct jblkdep *);
770 static	void handle_written_jfreefrag(struct jfreefrag *);
771 static	void complete_jseg(struct jseg *);
772 static	void complete_jsegs(struct jseg *);
773 static	void jseg_write(struct ufsmount *ump, struct jseg *, uint8_t *);
774 static	void jaddref_write(struct jaddref *, struct jseg *, uint8_t *);
775 static	void jremref_write(struct jremref *, struct jseg *, uint8_t *);
776 static	void jmvref_write(struct jmvref *, struct jseg *, uint8_t *);
777 static	void jtrunc_write(struct jtrunc *, struct jseg *, uint8_t *);
778 static	void jfsync_write(struct jfsync *, struct jseg *, uint8_t *data);
779 static	void jnewblk_write(struct jnewblk *, struct jseg *, uint8_t *);
780 static	void jfreeblk_write(struct jfreeblk *, struct jseg *, uint8_t *);
781 static	void jfreefrag_write(struct jfreefrag *, struct jseg *, uint8_t *);
782 static	inline void inoref_write(struct inoref *, struct jseg *,
783 	    struct jrefrec *);
784 static	void handle_allocdirect_partdone(struct allocdirect *,
785 	    struct workhead *);
786 static	struct jnewblk *cancel_newblk(struct newblk *, struct worklist *,
787 	    struct workhead *);
788 static	void indirdep_complete(struct indirdep *);
789 static	int indirblk_lookup(struct mount *, ufs2_daddr_t);
790 static	void indirblk_insert(struct freework *);
791 static	void indirblk_remove(struct freework *);
792 static	void handle_allocindir_partdone(struct allocindir *);
793 static	void initiate_write_filepage(struct pagedep *, struct buf *);
794 static	void initiate_write_indirdep(struct indirdep*, struct buf *);
795 static	void handle_written_mkdir(struct mkdir *, int);
796 static	int jnewblk_rollback(struct jnewblk *, struct fs *, struct cg *,
797 	    uint8_t *);
798 static	void initiate_write_bmsafemap(struct bmsafemap *, struct buf *);
799 static	void initiate_write_inodeblock_ufs1(struct inodedep *, struct buf *);
800 static	void initiate_write_inodeblock_ufs2(struct inodedep *, struct buf *);
801 static	void handle_workitem_freefile(struct freefile *);
802 static	int handle_workitem_remove(struct dirrem *, int);
803 static	struct dirrem *newdirrem(struct buf *, struct inode *,
804 	    struct inode *, int, struct dirrem **);
805 static	struct indirdep *indirdep_lookup(struct mount *, struct inode *,
806 	    struct buf *);
807 static	void cancel_indirdep(struct indirdep *, struct buf *,
808 	    struct freeblks *);
809 static	void free_indirdep(struct indirdep *);
810 static	void free_diradd(struct diradd *, struct workhead *);
811 static	void merge_diradd(struct inodedep *, struct diradd *);
812 static	void complete_diradd(struct diradd *);
813 static	struct diradd *diradd_lookup(struct pagedep *, int);
814 static	struct jremref *cancel_diradd_dotdot(struct inode *, struct dirrem *,
815 	    struct jremref *);
816 static	struct jremref *cancel_mkdir_dotdot(struct inode *, struct dirrem *,
817 	    struct jremref *);
818 static	void cancel_diradd(struct diradd *, struct dirrem *, struct jremref *,
819 	    struct jremref *, struct jremref *);
820 static	void dirrem_journal(struct dirrem *, struct jremref *, struct jremref *,
821 	    struct jremref *);
822 static	void cancel_allocindir(struct allocindir *, struct buf *bp,
823 	    struct freeblks *, int);
824 static	int setup_trunc_indir(struct freeblks *, struct inode *,
825 	    ufs_lbn_t, ufs_lbn_t, ufs2_daddr_t);
826 static	void complete_trunc_indir(struct freework *);
827 static	void trunc_indirdep(struct indirdep *, struct freeblks *, struct buf *,
828 	    int);
829 static	void complete_mkdir(struct mkdir *);
830 static	void free_newdirblk(struct newdirblk *);
831 static	void free_jremref(struct jremref *);
832 static	void free_jaddref(struct jaddref *);
833 static	void free_jsegdep(struct jsegdep *);
834 static	void free_jsegs(struct jblocks *);
835 static	void rele_jseg(struct jseg *);
836 static	void free_jseg(struct jseg *, struct jblocks *);
837 static	void free_jnewblk(struct jnewblk *);
838 static	void free_jblkdep(struct jblkdep *);
839 static	void free_jfreefrag(struct jfreefrag *);
840 static	void free_freedep(struct freedep *);
841 static	void journal_jremref(struct dirrem *, struct jremref *,
842 	    struct inodedep *);
843 static	void cancel_jnewblk(struct jnewblk *, struct workhead *);
844 static	int cancel_jaddref(struct jaddref *, struct inodedep *,
845 	    struct workhead *);
846 static	void cancel_jfreefrag(struct jfreefrag *);
847 static	inline void setup_freedirect(struct freeblks *, struct inode *,
848 	    int, int);
849 static	inline void setup_freeext(struct freeblks *, struct inode *, int, int);
850 static	inline void setup_freeindir(struct freeblks *, struct inode *, int,
851 	    ufs_lbn_t, int);
852 static	inline struct freeblks *newfreeblks(struct mount *, struct inode *);
853 static	void freeblks_free(struct ufsmount *, struct freeblks *, int);
854 static	void indir_trunc(struct freework *, ufs2_daddr_t, ufs_lbn_t);
855 static	ufs2_daddr_t blkcount(struct fs *, ufs2_daddr_t, off_t);
856 static	int trunc_check_buf(struct buf *, int *, ufs_lbn_t, int, int);
857 static	void trunc_dependencies(struct inode *, struct freeblks *, ufs_lbn_t,
858 	    int, int);
859 static	void trunc_pages(struct inode *, off_t, ufs2_daddr_t, int);
860 static 	int cancel_pagedep(struct pagedep *, struct freeblks *, int);
861 static	int deallocate_dependencies(struct buf *, struct freeblks *, int);
862 static	void newblk_freefrag(struct newblk*);
863 static	void free_newblk(struct newblk *);
864 static	void cancel_allocdirect(struct allocdirectlst *,
865 	    struct allocdirect *, struct freeblks *);
866 static	int check_inode_unwritten(struct inodedep *);
867 static	int free_inodedep(struct inodedep *);
868 static	void freework_freeblock(struct freework *);
869 static	void freework_enqueue(struct freework *);
870 static	int handle_workitem_freeblocks(struct freeblks *, int);
871 static	int handle_complete_freeblocks(struct freeblks *, int);
872 static	void handle_workitem_indirblk(struct freework *);
873 static	void handle_written_freework(struct freework *);
874 static	void merge_inode_lists(struct allocdirectlst *,struct allocdirectlst *);
875 static	struct worklist *jnewblk_merge(struct worklist *, struct worklist *,
876 	    struct workhead *);
877 static	struct freefrag *setup_allocindir_phase2(struct buf *, struct inode *,
878 	    struct inodedep *, struct allocindir *, ufs_lbn_t);
879 static	struct allocindir *newallocindir(struct inode *, int, ufs2_daddr_t,
880 	    ufs2_daddr_t, ufs_lbn_t);
881 static	void handle_workitem_freefrag(struct freefrag *);
882 static	struct freefrag *newfreefrag(struct inode *, ufs2_daddr_t, long,
883 	    ufs_lbn_t);
884 static	void allocdirect_merge(struct allocdirectlst *,
885 	    struct allocdirect *, struct allocdirect *);
886 static	struct freefrag *allocindir_merge(struct allocindir *,
887 	    struct allocindir *);
888 static	int bmsafemap_find(struct bmsafemap_hashhead *, int,
889 	    struct bmsafemap **);
890 static	struct bmsafemap *bmsafemap_lookup(struct mount *, struct buf *,
891 	    int cg, struct bmsafemap *);
892 static	int newblk_find(struct newblk_hashhead *, ufs2_daddr_t, int,
893 	    struct newblk **);
894 static	int newblk_lookup(struct mount *, ufs2_daddr_t, int, struct newblk **);
895 static	int inodedep_find(struct inodedep_hashhead *, ino_t,
896 	    struct inodedep **);
897 static	int inodedep_lookup(struct mount *, ino_t, int, struct inodedep **);
898 static	int pagedep_lookup(struct mount *, struct buf *bp, ino_t, ufs_lbn_t,
899 	    int, struct pagedep **);
900 static	int pagedep_find(struct pagedep_hashhead *, ino_t, ufs_lbn_t,
901 	    struct pagedep **);
902 static	void pause_timer(void *);
903 static	int request_cleanup(struct mount *, int);
904 static	void schedule_cleanup(struct mount *);
905 static void softdep_ast_cleanup_proc(void);
906 static	int process_worklist_item(struct mount *, int, int);
907 static	void process_removes(struct vnode *);
908 static	void process_truncates(struct vnode *);
909 static	void jwork_move(struct workhead *, struct workhead *);
910 static	void jwork_insert(struct workhead *, struct jsegdep *);
911 static	void add_to_worklist(struct worklist *, int);
912 static	void wake_worklist(struct worklist *);
913 static	void wait_worklist(struct worklist *, char *);
914 static	void remove_from_worklist(struct worklist *);
915 static	void softdep_flush(void *);
916 static	void softdep_flushjournal(struct mount *);
917 static	int softdep_speedup(struct ufsmount *);
918 static	void worklist_speedup(struct mount *);
919 static	int journal_mount(struct mount *, struct fs *, struct ucred *);
920 static	void journal_unmount(struct ufsmount *);
921 static	int journal_space(struct ufsmount *, int);
922 static	void journal_suspend(struct ufsmount *);
923 static	int journal_unsuspend(struct ufsmount *ump);
924 static	void softdep_prelink(struct vnode *, struct vnode *);
925 static	void add_to_journal(struct worklist *);
926 static	void remove_from_journal(struct worklist *);
927 static	bool softdep_excess_items(struct ufsmount *, int);
928 static	void softdep_process_journal(struct mount *, struct worklist *, int);
929 static	struct jremref *newjremref(struct dirrem *, struct inode *,
930 	    struct inode *ip, off_t, nlink_t);
931 static	struct jaddref *newjaddref(struct inode *, ino_t, off_t, int16_t,
932 	    uint16_t);
933 static	inline void newinoref(struct inoref *, ino_t, ino_t, off_t, nlink_t,
934 	    uint16_t);
935 static	inline struct jsegdep *inoref_jseg(struct inoref *);
936 static	struct jmvref *newjmvref(struct inode *, ino_t, off_t, off_t);
937 static	struct jfreeblk *newjfreeblk(struct freeblks *, ufs_lbn_t,
938 	    ufs2_daddr_t, int);
939 static	void adjust_newfreework(struct freeblks *, int);
940 static	struct jtrunc *newjtrunc(struct freeblks *, off_t, int);
941 static	void move_newblock_dep(struct jaddref *, struct inodedep *);
942 static	void cancel_jfreeblk(struct freeblks *, ufs2_daddr_t);
943 static	struct jfreefrag *newjfreefrag(struct freefrag *, struct inode *,
944 	    ufs2_daddr_t, long, ufs_lbn_t);
945 static	struct freework *newfreework(struct ufsmount *, struct freeblks *,
946 	    struct freework *, ufs_lbn_t, ufs2_daddr_t, int, int, int);
947 static	int jwait(struct worklist *, int);
948 static	struct inodedep *inodedep_lookup_ip(struct inode *);
949 static	int bmsafemap_backgroundwrite(struct bmsafemap *, struct buf *);
950 static	struct freefile *handle_bufwait(struct inodedep *, struct workhead *);
951 static	void handle_jwork(struct workhead *);
952 static	struct mkdir *setup_newdir(struct diradd *, ino_t, ino_t, struct buf *,
953 	    struct mkdir **);
954 static	struct jblocks *jblocks_create(void);
955 static	ufs2_daddr_t jblocks_alloc(struct jblocks *, int, int *);
956 static	void jblocks_free(struct jblocks *, struct mount *, int);
957 static	void jblocks_destroy(struct jblocks *);
958 static	void jblocks_add(struct jblocks *, ufs2_daddr_t, int);
959 
960 /*
961  * Exported softdep operations.
962  */
963 static	void softdep_disk_io_initiation(struct buf *);
964 static	void softdep_disk_write_complete(struct buf *);
965 static	void softdep_deallocate_dependencies(struct buf *);
966 static	int softdep_count_dependencies(struct buf *bp, int);
967 
968 /*
969  * Global lock over all of soft updates.
970  */
971 static struct mtx lk;
972 MTX_SYSINIT(softdep_lock, &lk, "Global Softdep Lock", MTX_DEF);
973 
974 #define ACQUIRE_GBLLOCK(lk)	mtx_lock(lk)
975 #define FREE_GBLLOCK(lk)	mtx_unlock(lk)
976 #define GBLLOCK_OWNED(lk)	mtx_assert((lk), MA_OWNED)
977 
978 /*
979  * Per-filesystem soft-updates locking.
980  */
981 #define LOCK_PTR(ump)		(&(ump)->um_softdep->sd_fslock)
982 #define TRY_ACQUIRE_LOCK(ump)	rw_try_wlock(&(ump)->um_softdep->sd_fslock)
983 #define ACQUIRE_LOCK(ump)	rw_wlock(&(ump)->um_softdep->sd_fslock)
984 #define FREE_LOCK(ump)		rw_wunlock(&(ump)->um_softdep->sd_fslock)
985 #define LOCK_OWNED(ump)		rw_assert(&(ump)->um_softdep->sd_fslock, \
986 				    RA_WLOCKED)
987 
988 #define	BUF_AREC(bp)		lockallowrecurse(&(bp)->b_lock)
989 #define	BUF_NOREC(bp)		lockdisablerecurse(&(bp)->b_lock)
990 
991 /*
992  * Worklist queue management.
993  * These routines require that the lock be held.
994  */
995 #ifndef /* NOT */ DEBUG
996 #define WORKLIST_INSERT(head, item) do {	\
997 	(item)->wk_state |= ONWORKLIST;		\
998 	LIST_INSERT_HEAD(head, item, wk_list);	\
999 } while (0)
1000 #define WORKLIST_REMOVE(item) do {		\
1001 	(item)->wk_state &= ~ONWORKLIST;	\
1002 	LIST_REMOVE(item, wk_list);		\
1003 } while (0)
1004 #define WORKLIST_INSERT_UNLOCKED	WORKLIST_INSERT
1005 #define WORKLIST_REMOVE_UNLOCKED	WORKLIST_REMOVE
1006 
1007 #else /* DEBUG */
1008 static	void worklist_insert(struct workhead *, struct worklist *, int);
1009 static	void worklist_remove(struct worklist *, int);
1010 
1011 #define WORKLIST_INSERT(head, item) worklist_insert(head, item, 1)
1012 #define WORKLIST_INSERT_UNLOCKED(head, item) worklist_insert(head, item, 0)
1013 #define WORKLIST_REMOVE(item) worklist_remove(item, 1)
1014 #define WORKLIST_REMOVE_UNLOCKED(item) worklist_remove(item, 0)
1015 
1016 static void
1017 worklist_insert(head, item, locked)
1018 	struct workhead *head;
1019 	struct worklist *item;
1020 	int locked;
1021 {
1022 
1023 	if (locked)
1024 		LOCK_OWNED(VFSTOUFS(item->wk_mp));
1025 	if (item->wk_state & ONWORKLIST)
1026 		panic("worklist_insert: %p %s(0x%X) already on list",
1027 		    item, TYPENAME(item->wk_type), item->wk_state);
1028 	item->wk_state |= ONWORKLIST;
1029 	LIST_INSERT_HEAD(head, item, wk_list);
1030 }
1031 
1032 static void
1033 worklist_remove(item, locked)
1034 	struct worklist *item;
1035 	int locked;
1036 {
1037 
1038 	if (locked)
1039 		LOCK_OWNED(VFSTOUFS(item->wk_mp));
1040 	if ((item->wk_state & ONWORKLIST) == 0)
1041 		panic("worklist_remove: %p %s(0x%X) not on list",
1042 		    item, TYPENAME(item->wk_type), item->wk_state);
1043 	item->wk_state &= ~ONWORKLIST;
1044 	LIST_REMOVE(item, wk_list);
1045 }
1046 #endif /* DEBUG */
1047 
1048 /*
1049  * Merge two jsegdeps keeping only the oldest one as newer references
1050  * can't be discarded until after older references.
1051  */
1052 static inline struct jsegdep *
1053 jsegdep_merge(struct jsegdep *one, struct jsegdep *two)
1054 {
1055 	struct jsegdep *swp;
1056 
1057 	if (two == NULL)
1058 		return (one);
1059 
1060 	if (one->jd_seg->js_seq > two->jd_seg->js_seq) {
1061 		swp = one;
1062 		one = two;
1063 		two = swp;
1064 	}
1065 	WORKLIST_REMOVE(&two->jd_list);
1066 	free_jsegdep(two);
1067 
1068 	return (one);
1069 }
1070 
1071 /*
1072  * If two freedeps are compatible free one to reduce list size.
1073  */
1074 static inline struct freedep *
1075 freedep_merge(struct freedep *one, struct freedep *two)
1076 {
1077 	if (two == NULL)
1078 		return (one);
1079 
1080 	if (one->fd_freework == two->fd_freework) {
1081 		WORKLIST_REMOVE(&two->fd_list);
1082 		free_freedep(two);
1083 	}
1084 	return (one);
1085 }
1086 
1087 /*
1088  * Move journal work from one list to another.  Duplicate freedeps and
1089  * jsegdeps are coalesced to keep the lists as small as possible.
1090  */
1091 static void
1092 jwork_move(dst, src)
1093 	struct workhead *dst;
1094 	struct workhead *src;
1095 {
1096 	struct freedep *freedep;
1097 	struct jsegdep *jsegdep;
1098 	struct worklist *wkn;
1099 	struct worklist *wk;
1100 
1101 	KASSERT(dst != src,
1102 	    ("jwork_move: dst == src"));
1103 	freedep = NULL;
1104 	jsegdep = NULL;
1105 	LIST_FOREACH_SAFE(wk, dst, wk_list, wkn) {
1106 		if (wk->wk_type == D_JSEGDEP)
1107 			jsegdep = jsegdep_merge(WK_JSEGDEP(wk), jsegdep);
1108 		else if (wk->wk_type == D_FREEDEP)
1109 			freedep = freedep_merge(WK_FREEDEP(wk), freedep);
1110 	}
1111 
1112 	while ((wk = LIST_FIRST(src)) != NULL) {
1113 		WORKLIST_REMOVE(wk);
1114 		WORKLIST_INSERT(dst, wk);
1115 		if (wk->wk_type == D_JSEGDEP) {
1116 			jsegdep = jsegdep_merge(WK_JSEGDEP(wk), jsegdep);
1117 			continue;
1118 		}
1119 		if (wk->wk_type == D_FREEDEP)
1120 			freedep = freedep_merge(WK_FREEDEP(wk), freedep);
1121 	}
1122 }
1123 
1124 static void
1125 jwork_insert(dst, jsegdep)
1126 	struct workhead *dst;
1127 	struct jsegdep *jsegdep;
1128 {
1129 	struct jsegdep *jsegdepn;
1130 	struct worklist *wk;
1131 
1132 	LIST_FOREACH(wk, dst, wk_list)
1133 		if (wk->wk_type == D_JSEGDEP)
1134 			break;
1135 	if (wk == NULL) {
1136 		WORKLIST_INSERT(dst, &jsegdep->jd_list);
1137 		return;
1138 	}
1139 	jsegdepn = WK_JSEGDEP(wk);
1140 	if (jsegdep->jd_seg->js_seq < jsegdepn->jd_seg->js_seq) {
1141 		WORKLIST_REMOVE(wk);
1142 		free_jsegdep(jsegdepn);
1143 		WORKLIST_INSERT(dst, &jsegdep->jd_list);
1144 	} else
1145 		free_jsegdep(jsegdep);
1146 }
1147 
1148 /*
1149  * Routines for tracking and managing workitems.
1150  */
1151 static	void workitem_free(struct worklist *, int);
1152 static	void workitem_alloc(struct worklist *, int, struct mount *);
1153 static	void workitem_reassign(struct worklist *, int);
1154 
1155 #define	WORKITEM_FREE(item, type) \
1156 	workitem_free((struct worklist *)(item), (type))
1157 #define	WORKITEM_REASSIGN(item, type) \
1158 	workitem_reassign((struct worklist *)(item), (type))
1159 
1160 static void
1161 workitem_free(item, type)
1162 	struct worklist *item;
1163 	int type;
1164 {
1165 	struct ufsmount *ump;
1166 
1167 #ifdef DEBUG
1168 	if (item->wk_state & ONWORKLIST)
1169 		panic("workitem_free: %s(0x%X) still on list",
1170 		    TYPENAME(item->wk_type), item->wk_state);
1171 	if (item->wk_type != type && type != D_NEWBLK)
1172 		panic("workitem_free: type mismatch %s != %s",
1173 		    TYPENAME(item->wk_type), TYPENAME(type));
1174 #endif
1175 	if (item->wk_state & IOWAITING)
1176 		wakeup(item);
1177 	ump = VFSTOUFS(item->wk_mp);
1178 	LOCK_OWNED(ump);
1179 	KASSERT(ump->softdep_deps > 0,
1180 	    ("workitem_free: %s: softdep_deps going negative",
1181 	    ump->um_fs->fs_fsmnt));
1182 	if (--ump->softdep_deps == 0 && ump->softdep_req)
1183 		wakeup(&ump->softdep_deps);
1184 	KASSERT(dep_current[item->wk_type] > 0,
1185 	    ("workitem_free: %s: dep_current[%s] going negative",
1186 	    ump->um_fs->fs_fsmnt, TYPENAME(item->wk_type)));
1187 	KASSERT(ump->softdep_curdeps[item->wk_type] > 0,
1188 	    ("workitem_free: %s: softdep_curdeps[%s] going negative",
1189 	    ump->um_fs->fs_fsmnt, TYPENAME(item->wk_type)));
1190 	atomic_subtract_long(&dep_current[item->wk_type], 1);
1191 	ump->softdep_curdeps[item->wk_type] -= 1;
1192 	free(item, DtoM(type));
1193 }
1194 
1195 static void
1196 workitem_alloc(item, type, mp)
1197 	struct worklist *item;
1198 	int type;
1199 	struct mount *mp;
1200 {
1201 	struct ufsmount *ump;
1202 
1203 	item->wk_type = type;
1204 	item->wk_mp = mp;
1205 	item->wk_state = 0;
1206 
1207 	ump = VFSTOUFS(mp);
1208 	ACQUIRE_GBLLOCK(&lk);
1209 	dep_current[type]++;
1210 	if (dep_current[type] > dep_highuse[type])
1211 		dep_highuse[type] = dep_current[type];
1212 	dep_total[type]++;
1213 	FREE_GBLLOCK(&lk);
1214 	ACQUIRE_LOCK(ump);
1215 	ump->softdep_curdeps[type] += 1;
1216 	ump->softdep_deps++;
1217 	ump->softdep_accdeps++;
1218 	FREE_LOCK(ump);
1219 }
1220 
1221 static void
1222 workitem_reassign(item, newtype)
1223 	struct worklist *item;
1224 	int newtype;
1225 {
1226 	struct ufsmount *ump;
1227 
1228 	ump = VFSTOUFS(item->wk_mp);
1229 	LOCK_OWNED(ump);
1230 	KASSERT(ump->softdep_curdeps[item->wk_type] > 0,
1231 	    ("workitem_reassign: %s: softdep_curdeps[%s] going negative",
1232 	    VFSTOUFS(item->wk_mp)->um_fs->fs_fsmnt, TYPENAME(item->wk_type)));
1233 	ump->softdep_curdeps[item->wk_type] -= 1;
1234 	ump->softdep_curdeps[newtype] += 1;
1235 	KASSERT(dep_current[item->wk_type] > 0,
1236 	    ("workitem_reassign: %s: dep_current[%s] going negative",
1237 	    VFSTOUFS(item->wk_mp)->um_fs->fs_fsmnt, TYPENAME(item->wk_type)));
1238 	ACQUIRE_GBLLOCK(&lk);
1239 	dep_current[newtype]++;
1240 	dep_current[item->wk_type]--;
1241 	if (dep_current[newtype] > dep_highuse[newtype])
1242 		dep_highuse[newtype] = dep_current[newtype];
1243 	dep_total[newtype]++;
1244 	FREE_GBLLOCK(&lk);
1245 	item->wk_type = newtype;
1246 }
1247 
1248 /*
1249  * Workitem queue management
1250  */
1251 static int max_softdeps;	/* maximum number of structs before slowdown */
1252 static int tickdelay = 2;	/* number of ticks to pause during slowdown */
1253 static int proc_waiting;	/* tracks whether we have a timeout posted */
1254 static int *stat_countp;	/* statistic to count in proc_waiting timeout */
1255 static struct callout softdep_callout;
1256 static int req_clear_inodedeps;	/* syncer process flush some inodedeps */
1257 static int req_clear_remove;	/* syncer process flush some freeblks */
1258 static int softdep_flushcache = 0; /* Should we do BIO_FLUSH? */
1259 
1260 /*
1261  * runtime statistics
1262  */
1263 static int stat_flush_threads;	/* number of softdep flushing threads */
1264 static int stat_worklist_push;	/* number of worklist cleanups */
1265 static int stat_blk_limit_push;	/* number of times block limit neared */
1266 static int stat_ino_limit_push;	/* number of times inode limit neared */
1267 static int stat_blk_limit_hit;	/* number of times block slowdown imposed */
1268 static int stat_ino_limit_hit;	/* number of times inode slowdown imposed */
1269 static int stat_sync_limit_hit;	/* number of synchronous slowdowns imposed */
1270 static int stat_indir_blk_ptrs;	/* bufs redirtied as indir ptrs not written */
1271 static int stat_inode_bitmap;	/* bufs redirtied as inode bitmap not written */
1272 static int stat_direct_blk_ptrs;/* bufs redirtied as direct ptrs not written */
1273 static int stat_dir_entry;	/* bufs redirtied as dir entry cannot write */
1274 static int stat_jaddref;	/* bufs redirtied as ino bitmap can not write */
1275 static int stat_jnewblk;	/* bufs redirtied as blk bitmap can not write */
1276 static int stat_journal_min;	/* Times hit journal min threshold */
1277 static int stat_journal_low;	/* Times hit journal low threshold */
1278 static int stat_journal_wait;	/* Times blocked in jwait(). */
1279 static int stat_jwait_filepage;	/* Times blocked in jwait() for filepage. */
1280 static int stat_jwait_freeblks;	/* Times blocked in jwait() for freeblks. */
1281 static int stat_jwait_inode;	/* Times blocked in jwait() for inodes. */
1282 static int stat_jwait_newblk;	/* Times blocked in jwait() for newblks. */
1283 static int stat_cleanup_high_delay; /* Maximum cleanup delay (in ticks) */
1284 static int stat_cleanup_blkrequests; /* Number of block cleanup requests */
1285 static int stat_cleanup_inorequests; /* Number of inode cleanup requests */
1286 static int stat_cleanup_retries; /* Number of cleanups that needed to flush */
1287 static int stat_cleanup_failures; /* Number of cleanup requests that failed */
1288 static int stat_emptyjblocks; /* Number of potentially empty journal blocks */
1289 
1290 SYSCTL_INT(_debug_softdep, OID_AUTO, max_softdeps, CTLFLAG_RW,
1291     &max_softdeps, 0, "");
1292 SYSCTL_INT(_debug_softdep, OID_AUTO, tickdelay, CTLFLAG_RW,
1293     &tickdelay, 0, "");
1294 SYSCTL_INT(_debug_softdep, OID_AUTO, flush_threads, CTLFLAG_RD,
1295     &stat_flush_threads, 0, "");
1296 SYSCTL_INT(_debug_softdep, OID_AUTO, worklist_push, CTLFLAG_RW,
1297     &stat_worklist_push, 0,"");
1298 SYSCTL_INT(_debug_softdep, OID_AUTO, blk_limit_push, CTLFLAG_RW,
1299     &stat_blk_limit_push, 0,"");
1300 SYSCTL_INT(_debug_softdep, OID_AUTO, ino_limit_push, CTLFLAG_RW,
1301     &stat_ino_limit_push, 0,"");
1302 SYSCTL_INT(_debug_softdep, OID_AUTO, blk_limit_hit, CTLFLAG_RW,
1303     &stat_blk_limit_hit, 0, "");
1304 SYSCTL_INT(_debug_softdep, OID_AUTO, ino_limit_hit, CTLFLAG_RW,
1305     &stat_ino_limit_hit, 0, "");
1306 SYSCTL_INT(_debug_softdep, OID_AUTO, sync_limit_hit, CTLFLAG_RW,
1307     &stat_sync_limit_hit, 0, "");
1308 SYSCTL_INT(_debug_softdep, OID_AUTO, indir_blk_ptrs, CTLFLAG_RW,
1309     &stat_indir_blk_ptrs, 0, "");
1310 SYSCTL_INT(_debug_softdep, OID_AUTO, inode_bitmap, CTLFLAG_RW,
1311     &stat_inode_bitmap, 0, "");
1312 SYSCTL_INT(_debug_softdep, OID_AUTO, direct_blk_ptrs, CTLFLAG_RW,
1313     &stat_direct_blk_ptrs, 0, "");
1314 SYSCTL_INT(_debug_softdep, OID_AUTO, dir_entry, CTLFLAG_RW,
1315     &stat_dir_entry, 0, "");
1316 SYSCTL_INT(_debug_softdep, OID_AUTO, jaddref_rollback, CTLFLAG_RW,
1317     &stat_jaddref, 0, "");
1318 SYSCTL_INT(_debug_softdep, OID_AUTO, jnewblk_rollback, CTLFLAG_RW,
1319     &stat_jnewblk, 0, "");
1320 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_low, CTLFLAG_RW,
1321     &stat_journal_low, 0, "");
1322 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_min, CTLFLAG_RW,
1323     &stat_journal_min, 0, "");
1324 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_wait, CTLFLAG_RW,
1325     &stat_journal_wait, 0, "");
1326 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_filepage, CTLFLAG_RW,
1327     &stat_jwait_filepage, 0, "");
1328 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_freeblks, CTLFLAG_RW,
1329     &stat_jwait_freeblks, 0, "");
1330 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_inode, CTLFLAG_RW,
1331     &stat_jwait_inode, 0, "");
1332 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_newblk, CTLFLAG_RW,
1333     &stat_jwait_newblk, 0, "");
1334 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_blkrequests, CTLFLAG_RW,
1335     &stat_cleanup_blkrequests, 0, "");
1336 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_inorequests, CTLFLAG_RW,
1337     &stat_cleanup_inorequests, 0, "");
1338 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_high_delay, CTLFLAG_RW,
1339     &stat_cleanup_high_delay, 0, "");
1340 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_retries, CTLFLAG_RW,
1341     &stat_cleanup_retries, 0, "");
1342 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_failures, CTLFLAG_RW,
1343     &stat_cleanup_failures, 0, "");
1344 SYSCTL_INT(_debug_softdep, OID_AUTO, flushcache, CTLFLAG_RW,
1345     &softdep_flushcache, 0, "");
1346 SYSCTL_INT(_debug_softdep, OID_AUTO, emptyjblocks, CTLFLAG_RD,
1347     &stat_emptyjblocks, 0, "");
1348 
1349 SYSCTL_DECL(_vfs_ffs);
1350 
1351 /* Whether to recompute the summary at mount time */
1352 static int compute_summary_at_mount = 0;
1353 SYSCTL_INT(_vfs_ffs, OID_AUTO, compute_summary_at_mount, CTLFLAG_RW,
1354 	   &compute_summary_at_mount, 0, "Recompute summary at mount");
1355 static int print_threads = 0;
1356 SYSCTL_INT(_debug_softdep, OID_AUTO, print_threads, CTLFLAG_RW,
1357     &print_threads, 0, "Notify flusher thread start/stop");
1358 
1359 /* List of all filesystems mounted with soft updates */
1360 static TAILQ_HEAD(, mount_softdeps) softdepmounts;
1361 
1362 /*
1363  * This function cleans the worklist for a filesystem.
1364  * Each filesystem running with soft dependencies gets its own
1365  * thread to run in this function. The thread is started up in
1366  * softdep_mount and shutdown in softdep_unmount. They show up
1367  * as part of the kernel "bufdaemon" process whose process
1368  * entry is available in bufdaemonproc.
1369  */
1370 static int searchfailed;
1371 extern struct proc *bufdaemonproc;
1372 static void
1373 softdep_flush(addr)
1374 	void *addr;
1375 {
1376 	struct mount *mp;
1377 	struct thread *td;
1378 	struct ufsmount *ump;
1379 
1380 	td = curthread;
1381 	td->td_pflags |= TDP_NORUNNINGBUF;
1382 	mp = (struct mount *)addr;
1383 	ump = VFSTOUFS(mp);
1384 	atomic_add_int(&stat_flush_threads, 1);
1385 	ACQUIRE_LOCK(ump);
1386 	ump->softdep_flags &= ~FLUSH_STARTING;
1387 	wakeup(&ump->softdep_flushtd);
1388 	FREE_LOCK(ump);
1389 	if (print_threads) {
1390 		if (stat_flush_threads == 1)
1391 			printf("Running %s at pid %d\n", bufdaemonproc->p_comm,
1392 			    bufdaemonproc->p_pid);
1393 		printf("Start thread %s\n", td->td_name);
1394 	}
1395 	for (;;) {
1396 		while (softdep_process_worklist(mp, 0) > 0 ||
1397 		    (MOUNTEDSUJ(mp) &&
1398 		    VFSTOUFS(mp)->softdep_jblocks->jb_suspended))
1399 			kthread_suspend_check();
1400 		ACQUIRE_LOCK(ump);
1401 		if ((ump->softdep_flags & (FLUSH_CLEANUP | FLUSH_EXIT)) == 0)
1402 			msleep(&ump->softdep_flushtd, LOCK_PTR(ump), PVM,
1403 			    "sdflush", hz / 2);
1404 		ump->softdep_flags &= ~FLUSH_CLEANUP;
1405 		/*
1406 		 * Check to see if we are done and need to exit.
1407 		 */
1408 		if ((ump->softdep_flags & FLUSH_EXIT) == 0) {
1409 			FREE_LOCK(ump);
1410 			continue;
1411 		}
1412 		ump->softdep_flags &= ~FLUSH_EXIT;
1413 		FREE_LOCK(ump);
1414 		wakeup(&ump->softdep_flags);
1415 		if (print_threads)
1416 			printf("Stop thread %s: searchfailed %d, did cleanups %d\n", td->td_name, searchfailed, ump->um_softdep->sd_cleanups);
1417 		atomic_subtract_int(&stat_flush_threads, 1);
1418 		kthread_exit();
1419 		panic("kthread_exit failed\n");
1420 	}
1421 }
1422 
1423 static void
1424 worklist_speedup(mp)
1425 	struct mount *mp;
1426 {
1427 	struct ufsmount *ump;
1428 
1429 	ump = VFSTOUFS(mp);
1430 	LOCK_OWNED(ump);
1431 	if ((ump->softdep_flags & (FLUSH_CLEANUP | FLUSH_EXIT)) == 0)
1432 		ump->softdep_flags |= FLUSH_CLEANUP;
1433 	wakeup(&ump->softdep_flushtd);
1434 }
1435 
1436 static int
1437 softdep_speedup(ump)
1438 	struct ufsmount *ump;
1439 {
1440 	struct ufsmount *altump;
1441 	struct mount_softdeps *sdp;
1442 
1443 	LOCK_OWNED(ump);
1444 	worklist_speedup(ump->um_mountp);
1445 	bd_speedup();
1446 	/*
1447 	 * If we have global shortages, then we need other
1448 	 * filesystems to help with the cleanup. Here we wakeup a
1449 	 * flusher thread for a filesystem that is over its fair
1450 	 * share of resources.
1451 	 */
1452 	if (req_clear_inodedeps || req_clear_remove) {
1453 		ACQUIRE_GBLLOCK(&lk);
1454 		TAILQ_FOREACH(sdp, &softdepmounts, sd_next) {
1455 			if ((altump = sdp->sd_ump) == ump)
1456 				continue;
1457 			if (((req_clear_inodedeps &&
1458 			    altump->softdep_curdeps[D_INODEDEP] >
1459 			    max_softdeps / stat_flush_threads) ||
1460 			    (req_clear_remove &&
1461 			    altump->softdep_curdeps[D_DIRREM] >
1462 			    (max_softdeps / 2) / stat_flush_threads)) &&
1463 			    TRY_ACQUIRE_LOCK(altump))
1464 				break;
1465 		}
1466 		if (sdp == NULL) {
1467 			searchfailed++;
1468 			FREE_GBLLOCK(&lk);
1469 		} else {
1470 			/*
1471 			 * Move to the end of the list so we pick a
1472 			 * different one on out next try.
1473 			 */
1474 			TAILQ_REMOVE(&softdepmounts, sdp, sd_next);
1475 			TAILQ_INSERT_TAIL(&softdepmounts, sdp, sd_next);
1476 			FREE_GBLLOCK(&lk);
1477 			if ((altump->softdep_flags &
1478 			    (FLUSH_CLEANUP | FLUSH_EXIT)) == 0)
1479 				altump->softdep_flags |= FLUSH_CLEANUP;
1480 			altump->um_softdep->sd_cleanups++;
1481 			wakeup(&altump->softdep_flushtd);
1482 			FREE_LOCK(altump);
1483 		}
1484 	}
1485 	return (speedup_syncer());
1486 }
1487 
1488 /*
1489  * Add an item to the end of the work queue.
1490  * This routine requires that the lock be held.
1491  * This is the only routine that adds items to the list.
1492  * The following routine is the only one that removes items
1493  * and does so in order from first to last.
1494  */
1495 
1496 #define	WK_HEAD		0x0001	/* Add to HEAD. */
1497 #define	WK_NODELAY	0x0002	/* Process immediately. */
1498 
1499 static void
1500 add_to_worklist(wk, flags)
1501 	struct worklist *wk;
1502 	int flags;
1503 {
1504 	struct ufsmount *ump;
1505 
1506 	ump = VFSTOUFS(wk->wk_mp);
1507 	LOCK_OWNED(ump);
1508 	if (wk->wk_state & ONWORKLIST)
1509 		panic("add_to_worklist: %s(0x%X) already on list",
1510 		    TYPENAME(wk->wk_type), wk->wk_state);
1511 	wk->wk_state |= ONWORKLIST;
1512 	if (ump->softdep_on_worklist == 0) {
1513 		LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list);
1514 		ump->softdep_worklist_tail = wk;
1515 	} else if (flags & WK_HEAD) {
1516 		LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list);
1517 	} else {
1518 		LIST_INSERT_AFTER(ump->softdep_worklist_tail, wk, wk_list);
1519 		ump->softdep_worklist_tail = wk;
1520 	}
1521 	ump->softdep_on_worklist += 1;
1522 	if (flags & WK_NODELAY)
1523 		worklist_speedup(wk->wk_mp);
1524 }
1525 
1526 /*
1527  * Remove the item to be processed. If we are removing the last
1528  * item on the list, we need to recalculate the tail pointer.
1529  */
1530 static void
1531 remove_from_worklist(wk)
1532 	struct worklist *wk;
1533 {
1534 	struct ufsmount *ump;
1535 
1536 	ump = VFSTOUFS(wk->wk_mp);
1537 	WORKLIST_REMOVE(wk);
1538 	if (ump->softdep_worklist_tail == wk)
1539 		ump->softdep_worklist_tail =
1540 		    (struct worklist *)wk->wk_list.le_prev;
1541 	ump->softdep_on_worklist -= 1;
1542 }
1543 
1544 static void
1545 wake_worklist(wk)
1546 	struct worklist *wk;
1547 {
1548 	if (wk->wk_state & IOWAITING) {
1549 		wk->wk_state &= ~IOWAITING;
1550 		wakeup(wk);
1551 	}
1552 }
1553 
1554 static void
1555 wait_worklist(wk, wmesg)
1556 	struct worklist *wk;
1557 	char *wmesg;
1558 {
1559 	struct ufsmount *ump;
1560 
1561 	ump = VFSTOUFS(wk->wk_mp);
1562 	wk->wk_state |= IOWAITING;
1563 	msleep(wk, LOCK_PTR(ump), PVM, wmesg, 0);
1564 }
1565 
1566 /*
1567  * Process that runs once per second to handle items in the background queue.
1568  *
1569  * Note that we ensure that everything is done in the order in which they
1570  * appear in the queue. The code below depends on this property to ensure
1571  * that blocks of a file are freed before the inode itself is freed. This
1572  * ordering ensures that no new <vfsid, inum, lbn> triples will be generated
1573  * until all the old ones have been purged from the dependency lists.
1574  */
1575 static int
1576 softdep_process_worklist(mp, full)
1577 	struct mount *mp;
1578 	int full;
1579 {
1580 	int cnt, matchcnt;
1581 	struct ufsmount *ump;
1582 	long starttime;
1583 
1584 	KASSERT(mp != NULL, ("softdep_process_worklist: NULL mp"));
1585 	if (MOUNTEDSOFTDEP(mp) == 0)
1586 		return (0);
1587 	matchcnt = 0;
1588 	ump = VFSTOUFS(mp);
1589 	ACQUIRE_LOCK(ump);
1590 	starttime = time_second;
1591 	softdep_process_journal(mp, NULL, full ? MNT_WAIT : 0);
1592 	check_clear_deps(mp);
1593 	while (ump->softdep_on_worklist > 0) {
1594 		if ((cnt = process_worklist_item(mp, 10, LK_NOWAIT)) == 0)
1595 			break;
1596 		else
1597 			matchcnt += cnt;
1598 		check_clear_deps(mp);
1599 		/*
1600 		 * We do not generally want to stop for buffer space, but if
1601 		 * we are really being a buffer hog, we will stop and wait.
1602 		 */
1603 		if (should_yield()) {
1604 			FREE_LOCK(ump);
1605 			kern_yield(PRI_USER);
1606 			bwillwrite();
1607 			ACQUIRE_LOCK(ump);
1608 		}
1609 		/*
1610 		 * Never allow processing to run for more than one
1611 		 * second. This gives the syncer thread the opportunity
1612 		 * to pause if appropriate.
1613 		 */
1614 		if (!full && starttime != time_second)
1615 			break;
1616 	}
1617 	if (full == 0)
1618 		journal_unsuspend(ump);
1619 	FREE_LOCK(ump);
1620 	return (matchcnt);
1621 }
1622 
1623 /*
1624  * Process all removes associated with a vnode if we are running out of
1625  * journal space.  Any other process which attempts to flush these will
1626  * be unable as we have the vnodes locked.
1627  */
1628 static void
1629 process_removes(vp)
1630 	struct vnode *vp;
1631 {
1632 	struct inodedep *inodedep;
1633 	struct dirrem *dirrem;
1634 	struct ufsmount *ump;
1635 	struct mount *mp;
1636 	ino_t inum;
1637 
1638 	mp = vp->v_mount;
1639 	ump = VFSTOUFS(mp);
1640 	LOCK_OWNED(ump);
1641 	inum = VTOI(vp)->i_number;
1642 	for (;;) {
1643 top:
1644 		if (inodedep_lookup(mp, inum, 0, &inodedep) == 0)
1645 			return;
1646 		LIST_FOREACH(dirrem, &inodedep->id_dirremhd, dm_inonext) {
1647 			/*
1648 			 * If another thread is trying to lock this vnode
1649 			 * it will fail but we must wait for it to do so
1650 			 * before we can proceed.
1651 			 */
1652 			if (dirrem->dm_state & INPROGRESS) {
1653 				wait_worklist(&dirrem->dm_list, "pwrwait");
1654 				goto top;
1655 			}
1656 			if ((dirrem->dm_state & (COMPLETE | ONWORKLIST)) ==
1657 			    (COMPLETE | ONWORKLIST))
1658 				break;
1659 		}
1660 		if (dirrem == NULL)
1661 			return;
1662 		remove_from_worklist(&dirrem->dm_list);
1663 		FREE_LOCK(ump);
1664 		if (vn_start_secondary_write(NULL, &mp, V_NOWAIT))
1665 			panic("process_removes: suspended filesystem");
1666 		handle_workitem_remove(dirrem, 0);
1667 		vn_finished_secondary_write(mp);
1668 		ACQUIRE_LOCK(ump);
1669 	}
1670 }
1671 
1672 /*
1673  * Process all truncations associated with a vnode if we are running out
1674  * of journal space.  This is called when the vnode lock is already held
1675  * and no other process can clear the truncation.  This function returns
1676  * a value greater than zero if it did any work.
1677  */
1678 static void
1679 process_truncates(vp)
1680 	struct vnode *vp;
1681 {
1682 	struct inodedep *inodedep;
1683 	struct freeblks *freeblks;
1684 	struct ufsmount *ump;
1685 	struct mount *mp;
1686 	ino_t inum;
1687 	int cgwait;
1688 
1689 	mp = vp->v_mount;
1690 	ump = VFSTOUFS(mp);
1691 	LOCK_OWNED(ump);
1692 	inum = VTOI(vp)->i_number;
1693 	for (;;) {
1694 		if (inodedep_lookup(mp, inum, 0, &inodedep) == 0)
1695 			return;
1696 		cgwait = 0;
1697 		TAILQ_FOREACH(freeblks, &inodedep->id_freeblklst, fb_next) {
1698 			/* Journal entries not yet written.  */
1699 			if (!LIST_EMPTY(&freeblks->fb_jblkdephd)) {
1700 				jwait(&LIST_FIRST(
1701 				    &freeblks->fb_jblkdephd)->jb_list,
1702 				    MNT_WAIT);
1703 				break;
1704 			}
1705 			/* Another thread is executing this item. */
1706 			if (freeblks->fb_state & INPROGRESS) {
1707 				wait_worklist(&freeblks->fb_list, "ptrwait");
1708 				break;
1709 			}
1710 			/* Freeblks is waiting on a inode write. */
1711 			if ((freeblks->fb_state & COMPLETE) == 0) {
1712 				FREE_LOCK(ump);
1713 				ffs_update(vp, 1);
1714 				ACQUIRE_LOCK(ump);
1715 				break;
1716 			}
1717 			if ((freeblks->fb_state & (ALLCOMPLETE | ONWORKLIST)) ==
1718 			    (ALLCOMPLETE | ONWORKLIST)) {
1719 				remove_from_worklist(&freeblks->fb_list);
1720 				freeblks->fb_state |= INPROGRESS;
1721 				FREE_LOCK(ump);
1722 				if (vn_start_secondary_write(NULL, &mp,
1723 				    V_NOWAIT))
1724 					panic("process_truncates: "
1725 					    "suspended filesystem");
1726 				handle_workitem_freeblocks(freeblks, 0);
1727 				vn_finished_secondary_write(mp);
1728 				ACQUIRE_LOCK(ump);
1729 				break;
1730 			}
1731 			if (freeblks->fb_cgwait)
1732 				cgwait++;
1733 		}
1734 		if (cgwait) {
1735 			FREE_LOCK(ump);
1736 			sync_cgs(mp, MNT_WAIT);
1737 			ffs_sync_snap(mp, MNT_WAIT);
1738 			ACQUIRE_LOCK(ump);
1739 			continue;
1740 		}
1741 		if (freeblks == NULL)
1742 			break;
1743 	}
1744 	return;
1745 }
1746 
1747 /*
1748  * Process one item on the worklist.
1749  */
1750 static int
1751 process_worklist_item(mp, target, flags)
1752 	struct mount *mp;
1753 	int target;
1754 	int flags;
1755 {
1756 	struct worklist sentinel;
1757 	struct worklist *wk;
1758 	struct ufsmount *ump;
1759 	int matchcnt;
1760 	int error;
1761 
1762 	KASSERT(mp != NULL, ("process_worklist_item: NULL mp"));
1763 	/*
1764 	 * If we are being called because of a process doing a
1765 	 * copy-on-write, then it is not safe to write as we may
1766 	 * recurse into the copy-on-write routine.
1767 	 */
1768 	if (curthread->td_pflags & TDP_COWINPROGRESS)
1769 		return (-1);
1770 	PHOLD(curproc);	/* Don't let the stack go away. */
1771 	ump = VFSTOUFS(mp);
1772 	LOCK_OWNED(ump);
1773 	matchcnt = 0;
1774 	sentinel.wk_mp = NULL;
1775 	sentinel.wk_type = D_SENTINEL;
1776 	LIST_INSERT_HEAD(&ump->softdep_workitem_pending, &sentinel, wk_list);
1777 	for (wk = LIST_NEXT(&sentinel, wk_list); wk != NULL;
1778 	    wk = LIST_NEXT(&sentinel, wk_list)) {
1779 		if (wk->wk_type == D_SENTINEL) {
1780 			LIST_REMOVE(&sentinel, wk_list);
1781 			LIST_INSERT_AFTER(wk, &sentinel, wk_list);
1782 			continue;
1783 		}
1784 		if (wk->wk_state & INPROGRESS)
1785 			panic("process_worklist_item: %p already in progress.",
1786 			    wk);
1787 		wk->wk_state |= INPROGRESS;
1788 		remove_from_worklist(wk);
1789 		FREE_LOCK(ump);
1790 		if (vn_start_secondary_write(NULL, &mp, V_NOWAIT))
1791 			panic("process_worklist_item: suspended filesystem");
1792 		switch (wk->wk_type) {
1793 		case D_DIRREM:
1794 			/* removal of a directory entry */
1795 			error = handle_workitem_remove(WK_DIRREM(wk), flags);
1796 			break;
1797 
1798 		case D_FREEBLKS:
1799 			/* releasing blocks and/or fragments from a file */
1800 			error = handle_workitem_freeblocks(WK_FREEBLKS(wk),
1801 			    flags);
1802 			break;
1803 
1804 		case D_FREEFRAG:
1805 			/* releasing a fragment when replaced as a file grows */
1806 			handle_workitem_freefrag(WK_FREEFRAG(wk));
1807 			error = 0;
1808 			break;
1809 
1810 		case D_FREEFILE:
1811 			/* releasing an inode when its link count drops to 0 */
1812 			handle_workitem_freefile(WK_FREEFILE(wk));
1813 			error = 0;
1814 			break;
1815 
1816 		default:
1817 			panic("%s_process_worklist: Unknown type %s",
1818 			    "softdep", TYPENAME(wk->wk_type));
1819 			/* NOTREACHED */
1820 		}
1821 		vn_finished_secondary_write(mp);
1822 		ACQUIRE_LOCK(ump);
1823 		if (error == 0) {
1824 			if (++matchcnt == target)
1825 				break;
1826 			continue;
1827 		}
1828 		/*
1829 		 * We have to retry the worklist item later.  Wake up any
1830 		 * waiters who may be able to complete it immediately and
1831 		 * add the item back to the head so we don't try to execute
1832 		 * it again.
1833 		 */
1834 		wk->wk_state &= ~INPROGRESS;
1835 		wake_worklist(wk);
1836 		add_to_worklist(wk, WK_HEAD);
1837 	}
1838 	LIST_REMOVE(&sentinel, wk_list);
1839 	/* Sentinal could've become the tail from remove_from_worklist. */
1840 	if (ump->softdep_worklist_tail == &sentinel)
1841 		ump->softdep_worklist_tail =
1842 		    (struct worklist *)sentinel.wk_list.le_prev;
1843 	PRELE(curproc);
1844 	return (matchcnt);
1845 }
1846 
1847 /*
1848  * Move dependencies from one buffer to another.
1849  */
1850 int
1851 softdep_move_dependencies(oldbp, newbp)
1852 	struct buf *oldbp;
1853 	struct buf *newbp;
1854 {
1855 	struct worklist *wk, *wktail;
1856 	struct ufsmount *ump;
1857 	int dirty;
1858 
1859 	if ((wk = LIST_FIRST(&oldbp->b_dep)) == NULL)
1860 		return (0);
1861 	KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0,
1862 	    ("softdep_move_dependencies called on non-softdep filesystem"));
1863 	dirty = 0;
1864 	wktail = NULL;
1865 	ump = VFSTOUFS(wk->wk_mp);
1866 	ACQUIRE_LOCK(ump);
1867 	while ((wk = LIST_FIRST(&oldbp->b_dep)) != NULL) {
1868 		LIST_REMOVE(wk, wk_list);
1869 		if (wk->wk_type == D_BMSAFEMAP &&
1870 		    bmsafemap_backgroundwrite(WK_BMSAFEMAP(wk), newbp))
1871 			dirty = 1;
1872 		if (wktail == NULL)
1873 			LIST_INSERT_HEAD(&newbp->b_dep, wk, wk_list);
1874 		else
1875 			LIST_INSERT_AFTER(wktail, wk, wk_list);
1876 		wktail = wk;
1877 	}
1878 	FREE_LOCK(ump);
1879 
1880 	return (dirty);
1881 }
1882 
1883 /*
1884  * Purge the work list of all items associated with a particular mount point.
1885  */
1886 int
1887 softdep_flushworklist(oldmnt, countp, td)
1888 	struct mount *oldmnt;
1889 	int *countp;
1890 	struct thread *td;
1891 {
1892 	struct vnode *devvp;
1893 	struct ufsmount *ump;
1894 	int count, error;
1895 
1896 	/*
1897 	 * Alternately flush the block device associated with the mount
1898 	 * point and process any dependencies that the flushing
1899 	 * creates. We continue until no more worklist dependencies
1900 	 * are found.
1901 	 */
1902 	*countp = 0;
1903 	error = 0;
1904 	ump = VFSTOUFS(oldmnt);
1905 	devvp = ump->um_devvp;
1906 	while ((count = softdep_process_worklist(oldmnt, 1)) > 0) {
1907 		*countp += count;
1908 		vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
1909 		error = VOP_FSYNC(devvp, MNT_WAIT, td);
1910 		VOP_UNLOCK(devvp, 0);
1911 		if (error != 0)
1912 			break;
1913 	}
1914 	return (error);
1915 }
1916 
1917 #define	SU_WAITIDLE_RETRIES	20
1918 static int
1919 softdep_waitidle(struct mount *mp, int flags __unused)
1920 {
1921 	struct ufsmount *ump;
1922 	struct vnode *devvp;
1923 	struct thread *td;
1924 	int error, i;
1925 
1926 	ump = VFSTOUFS(mp);
1927 	devvp = ump->um_devvp;
1928 	td = curthread;
1929 	error = 0;
1930 	ACQUIRE_LOCK(ump);
1931 	for (i = 0; i < SU_WAITIDLE_RETRIES && ump->softdep_deps != 0; i++) {
1932 		ump->softdep_req = 1;
1933 		KASSERT((flags & FORCECLOSE) == 0 ||
1934 		    ump->softdep_on_worklist == 0,
1935 		    ("softdep_waitidle: work added after flush"));
1936 		msleep(&ump->softdep_deps, LOCK_PTR(ump), PVM | PDROP,
1937 		    "softdeps", 10 * hz);
1938 		vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
1939 		error = VOP_FSYNC(devvp, MNT_WAIT, td);
1940 		VOP_UNLOCK(devvp, 0);
1941 		ACQUIRE_LOCK(ump);
1942 		if (error != 0)
1943 			break;
1944 	}
1945 	ump->softdep_req = 0;
1946 	if (i == SU_WAITIDLE_RETRIES && error == 0 && ump->softdep_deps != 0) {
1947 		error = EBUSY;
1948 		printf("softdep_waitidle: Failed to flush worklist for %p\n",
1949 		    mp);
1950 	}
1951 	FREE_LOCK(ump);
1952 	return (error);
1953 }
1954 
1955 /*
1956  * Flush all vnodes and worklist items associated with a specified mount point.
1957  */
1958 int
1959 softdep_flushfiles(oldmnt, flags, td)
1960 	struct mount *oldmnt;
1961 	int flags;
1962 	struct thread *td;
1963 {
1964 #ifdef QUOTA
1965 	struct ufsmount *ump;
1966 	int i;
1967 #endif
1968 	int error, early, depcount, loopcnt, retry_flush_count, retry;
1969 	int morework;
1970 
1971 	KASSERT(MOUNTEDSOFTDEP(oldmnt) != 0,
1972 	    ("softdep_flushfiles called on non-softdep filesystem"));
1973 	loopcnt = 10;
1974 	retry_flush_count = 3;
1975 retry_flush:
1976 	error = 0;
1977 
1978 	/*
1979 	 * Alternately flush the vnodes associated with the mount
1980 	 * point and process any dependencies that the flushing
1981 	 * creates. In theory, this loop can happen at most twice,
1982 	 * but we give it a few extra just to be sure.
1983 	 */
1984 	for (; loopcnt > 0; loopcnt--) {
1985 		/*
1986 		 * Do another flush in case any vnodes were brought in
1987 		 * as part of the cleanup operations.
1988 		 */
1989 		early = retry_flush_count == 1 || (oldmnt->mnt_kern_flag &
1990 		    MNTK_UNMOUNT) == 0 ? 0 : EARLYFLUSH;
1991 		if ((error = ffs_flushfiles(oldmnt, flags | early, td)) != 0)
1992 			break;
1993 		if ((error = softdep_flushworklist(oldmnt, &depcount, td)) != 0 ||
1994 		    depcount == 0)
1995 			break;
1996 	}
1997 	/*
1998 	 * If we are unmounting then it is an error to fail. If we
1999 	 * are simply trying to downgrade to read-only, then filesystem
2000 	 * activity can keep us busy forever, so we just fail with EBUSY.
2001 	 */
2002 	if (loopcnt == 0) {
2003 		if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT)
2004 			panic("softdep_flushfiles: looping");
2005 		error = EBUSY;
2006 	}
2007 	if (!error)
2008 		error = softdep_waitidle(oldmnt, flags);
2009 	if (!error) {
2010 		if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT) {
2011 			retry = 0;
2012 			MNT_ILOCK(oldmnt);
2013 			KASSERT((oldmnt->mnt_kern_flag & MNTK_NOINSMNTQ) != 0,
2014 			    ("softdep_flushfiles: !MNTK_NOINSMNTQ"));
2015 			morework = oldmnt->mnt_nvnodelistsize > 0;
2016 #ifdef QUOTA
2017 			ump = VFSTOUFS(oldmnt);
2018 			UFS_LOCK(ump);
2019 			for (i = 0; i < MAXQUOTAS; i++) {
2020 				if (ump->um_quotas[i] != NULLVP)
2021 					morework = 1;
2022 			}
2023 			UFS_UNLOCK(ump);
2024 #endif
2025 			if (morework) {
2026 				if (--retry_flush_count > 0) {
2027 					retry = 1;
2028 					loopcnt = 3;
2029 				} else
2030 					error = EBUSY;
2031 			}
2032 			MNT_IUNLOCK(oldmnt);
2033 			if (retry)
2034 				goto retry_flush;
2035 		}
2036 	}
2037 	return (error);
2038 }
2039 
2040 /*
2041  * Structure hashing.
2042  *
2043  * There are four types of structures that can be looked up:
2044  *	1) pagedep structures identified by mount point, inode number,
2045  *	   and logical block.
2046  *	2) inodedep structures identified by mount point and inode number.
2047  *	3) newblk structures identified by mount point and
2048  *	   physical block number.
2049  *	4) bmsafemap structures identified by mount point and
2050  *	   cylinder group number.
2051  *
2052  * The "pagedep" and "inodedep" dependency structures are hashed
2053  * separately from the file blocks and inodes to which they correspond.
2054  * This separation helps when the in-memory copy of an inode or
2055  * file block must be replaced. It also obviates the need to access
2056  * an inode or file page when simply updating (or de-allocating)
2057  * dependency structures. Lookup of newblk structures is needed to
2058  * find newly allocated blocks when trying to associate them with
2059  * their allocdirect or allocindir structure.
2060  *
2061  * The lookup routines optionally create and hash a new instance when
2062  * an existing entry is not found. The bmsafemap lookup routine always
2063  * allocates a new structure if an existing one is not found.
2064  */
2065 #define DEPALLOC	0x0001	/* allocate structure if lookup fails */
2066 
2067 /*
2068  * Structures and routines associated with pagedep caching.
2069  */
2070 #define	PAGEDEP_HASH(ump, inum, lbn) \
2071 	(&(ump)->pagedep_hashtbl[((inum) + (lbn)) & (ump)->pagedep_hash_size])
2072 
2073 static int
2074 pagedep_find(pagedephd, ino, lbn, pagedeppp)
2075 	struct pagedep_hashhead *pagedephd;
2076 	ino_t ino;
2077 	ufs_lbn_t lbn;
2078 	struct pagedep **pagedeppp;
2079 {
2080 	struct pagedep *pagedep;
2081 
2082 	LIST_FOREACH(pagedep, pagedephd, pd_hash) {
2083 		if (ino == pagedep->pd_ino && lbn == pagedep->pd_lbn) {
2084 			*pagedeppp = pagedep;
2085 			return (1);
2086 		}
2087 	}
2088 	*pagedeppp = NULL;
2089 	return (0);
2090 }
2091 /*
2092  * Look up a pagedep. Return 1 if found, 0 otherwise.
2093  * If not found, allocate if DEPALLOC flag is passed.
2094  * Found or allocated entry is returned in pagedeppp.
2095  * This routine must be called with splbio interrupts blocked.
2096  */
2097 static int
2098 pagedep_lookup(mp, bp, ino, lbn, flags, pagedeppp)
2099 	struct mount *mp;
2100 	struct buf *bp;
2101 	ino_t ino;
2102 	ufs_lbn_t lbn;
2103 	int flags;
2104 	struct pagedep **pagedeppp;
2105 {
2106 	struct pagedep *pagedep;
2107 	struct pagedep_hashhead *pagedephd;
2108 	struct worklist *wk;
2109 	struct ufsmount *ump;
2110 	int ret;
2111 	int i;
2112 
2113 	ump = VFSTOUFS(mp);
2114 	LOCK_OWNED(ump);
2115 	if (bp) {
2116 		LIST_FOREACH(wk, &bp->b_dep, wk_list) {
2117 			if (wk->wk_type == D_PAGEDEP) {
2118 				*pagedeppp = WK_PAGEDEP(wk);
2119 				return (1);
2120 			}
2121 		}
2122 	}
2123 	pagedephd = PAGEDEP_HASH(ump, ino, lbn);
2124 	ret = pagedep_find(pagedephd, ino, lbn, pagedeppp);
2125 	if (ret) {
2126 		if (((*pagedeppp)->pd_state & ONWORKLIST) == 0 && bp)
2127 			WORKLIST_INSERT(&bp->b_dep, &(*pagedeppp)->pd_list);
2128 		return (1);
2129 	}
2130 	if ((flags & DEPALLOC) == 0)
2131 		return (0);
2132 	FREE_LOCK(ump);
2133 	pagedep = malloc(sizeof(struct pagedep),
2134 	    M_PAGEDEP, M_SOFTDEP_FLAGS|M_ZERO);
2135 	workitem_alloc(&pagedep->pd_list, D_PAGEDEP, mp);
2136 	ACQUIRE_LOCK(ump);
2137 	ret = pagedep_find(pagedephd, ino, lbn, pagedeppp);
2138 	if (*pagedeppp) {
2139 		/*
2140 		 * This should never happen since we only create pagedeps
2141 		 * with the vnode lock held.  Could be an assert.
2142 		 */
2143 		WORKITEM_FREE(pagedep, D_PAGEDEP);
2144 		return (ret);
2145 	}
2146 	pagedep->pd_ino = ino;
2147 	pagedep->pd_lbn = lbn;
2148 	LIST_INIT(&pagedep->pd_dirremhd);
2149 	LIST_INIT(&pagedep->pd_pendinghd);
2150 	for (i = 0; i < DAHASHSZ; i++)
2151 		LIST_INIT(&pagedep->pd_diraddhd[i]);
2152 	LIST_INSERT_HEAD(pagedephd, pagedep, pd_hash);
2153 	WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list);
2154 	*pagedeppp = pagedep;
2155 	return (0);
2156 }
2157 
2158 /*
2159  * Structures and routines associated with inodedep caching.
2160  */
2161 #define	INODEDEP_HASH(ump, inum) \
2162       (&(ump)->inodedep_hashtbl[(inum) & (ump)->inodedep_hash_size])
2163 
2164 static int
2165 inodedep_find(inodedephd, inum, inodedeppp)
2166 	struct inodedep_hashhead *inodedephd;
2167 	ino_t inum;
2168 	struct inodedep **inodedeppp;
2169 {
2170 	struct inodedep *inodedep;
2171 
2172 	LIST_FOREACH(inodedep, inodedephd, id_hash)
2173 		if (inum == inodedep->id_ino)
2174 			break;
2175 	if (inodedep) {
2176 		*inodedeppp = inodedep;
2177 		return (1);
2178 	}
2179 	*inodedeppp = NULL;
2180 
2181 	return (0);
2182 }
2183 /*
2184  * Look up an inodedep. Return 1 if found, 0 if not found.
2185  * If not found, allocate if DEPALLOC flag is passed.
2186  * Found or allocated entry is returned in inodedeppp.
2187  * This routine must be called with splbio interrupts blocked.
2188  */
2189 static int
2190 inodedep_lookup(mp, inum, flags, inodedeppp)
2191 	struct mount *mp;
2192 	ino_t inum;
2193 	int flags;
2194 	struct inodedep **inodedeppp;
2195 {
2196 	struct inodedep *inodedep;
2197 	struct inodedep_hashhead *inodedephd;
2198 	struct ufsmount *ump;
2199 	struct fs *fs;
2200 
2201 	ump = VFSTOUFS(mp);
2202 	LOCK_OWNED(ump);
2203 	fs = ump->um_fs;
2204 	inodedephd = INODEDEP_HASH(ump, inum);
2205 
2206 	if (inodedep_find(inodedephd, inum, inodedeppp))
2207 		return (1);
2208 	if ((flags & DEPALLOC) == 0)
2209 		return (0);
2210 	/*
2211 	 * If the system is over its limit and our filesystem is
2212 	 * responsible for more than our share of that usage and
2213 	 * we are not in a rush, request some inodedep cleanup.
2214 	 */
2215 	if (softdep_excess_items(ump, D_INODEDEP))
2216 		schedule_cleanup(mp);
2217 	else
2218 		FREE_LOCK(ump);
2219 	inodedep = malloc(sizeof(struct inodedep),
2220 		M_INODEDEP, M_SOFTDEP_FLAGS);
2221 	workitem_alloc(&inodedep->id_list, D_INODEDEP, mp);
2222 	ACQUIRE_LOCK(ump);
2223 	if (inodedep_find(inodedephd, inum, inodedeppp)) {
2224 		WORKITEM_FREE(inodedep, D_INODEDEP);
2225 		return (1);
2226 	}
2227 	inodedep->id_fs = fs;
2228 	inodedep->id_ino = inum;
2229 	inodedep->id_state = ALLCOMPLETE;
2230 	inodedep->id_nlinkdelta = 0;
2231 	inodedep->id_savedino1 = NULL;
2232 	inodedep->id_savedsize = -1;
2233 	inodedep->id_savedextsize = -1;
2234 	inodedep->id_savednlink = -1;
2235 	inodedep->id_bmsafemap = NULL;
2236 	inodedep->id_mkdiradd = NULL;
2237 	LIST_INIT(&inodedep->id_dirremhd);
2238 	LIST_INIT(&inodedep->id_pendinghd);
2239 	LIST_INIT(&inodedep->id_inowait);
2240 	LIST_INIT(&inodedep->id_bufwait);
2241 	TAILQ_INIT(&inodedep->id_inoreflst);
2242 	TAILQ_INIT(&inodedep->id_inoupdt);
2243 	TAILQ_INIT(&inodedep->id_newinoupdt);
2244 	TAILQ_INIT(&inodedep->id_extupdt);
2245 	TAILQ_INIT(&inodedep->id_newextupdt);
2246 	TAILQ_INIT(&inodedep->id_freeblklst);
2247 	LIST_INSERT_HEAD(inodedephd, inodedep, id_hash);
2248 	*inodedeppp = inodedep;
2249 	return (0);
2250 }
2251 
2252 /*
2253  * Structures and routines associated with newblk caching.
2254  */
2255 #define	NEWBLK_HASH(ump, inum) \
2256 	(&(ump)->newblk_hashtbl[(inum) & (ump)->newblk_hash_size])
2257 
2258 static int
2259 newblk_find(newblkhd, newblkno, flags, newblkpp)
2260 	struct newblk_hashhead *newblkhd;
2261 	ufs2_daddr_t newblkno;
2262 	int flags;
2263 	struct newblk **newblkpp;
2264 {
2265 	struct newblk *newblk;
2266 
2267 	LIST_FOREACH(newblk, newblkhd, nb_hash) {
2268 		if (newblkno != newblk->nb_newblkno)
2269 			continue;
2270 		/*
2271 		 * If we're creating a new dependency don't match those that
2272 		 * have already been converted to allocdirects.  This is for
2273 		 * a frag extend.
2274 		 */
2275 		if ((flags & DEPALLOC) && newblk->nb_list.wk_type != D_NEWBLK)
2276 			continue;
2277 		break;
2278 	}
2279 	if (newblk) {
2280 		*newblkpp = newblk;
2281 		return (1);
2282 	}
2283 	*newblkpp = NULL;
2284 	return (0);
2285 }
2286 
2287 /*
2288  * Look up a newblk. Return 1 if found, 0 if not found.
2289  * If not found, allocate if DEPALLOC flag is passed.
2290  * Found or allocated entry is returned in newblkpp.
2291  */
2292 static int
2293 newblk_lookup(mp, newblkno, flags, newblkpp)
2294 	struct mount *mp;
2295 	ufs2_daddr_t newblkno;
2296 	int flags;
2297 	struct newblk **newblkpp;
2298 {
2299 	struct newblk *newblk;
2300 	struct newblk_hashhead *newblkhd;
2301 	struct ufsmount *ump;
2302 
2303 	ump = VFSTOUFS(mp);
2304 	LOCK_OWNED(ump);
2305 	newblkhd = NEWBLK_HASH(ump, newblkno);
2306 	if (newblk_find(newblkhd, newblkno, flags, newblkpp))
2307 		return (1);
2308 	if ((flags & DEPALLOC) == 0)
2309 		return (0);
2310 	if (softdep_excess_items(ump, D_NEWBLK) ||
2311 	    softdep_excess_items(ump, D_ALLOCDIRECT) ||
2312 	    softdep_excess_items(ump, D_ALLOCINDIR))
2313 		schedule_cleanup(mp);
2314 	else
2315 		FREE_LOCK(ump);
2316 	newblk = malloc(sizeof(union allblk), M_NEWBLK,
2317 	    M_SOFTDEP_FLAGS | M_ZERO);
2318 	workitem_alloc(&newblk->nb_list, D_NEWBLK, mp);
2319 	ACQUIRE_LOCK(ump);
2320 	if (newblk_find(newblkhd, newblkno, flags, newblkpp)) {
2321 		WORKITEM_FREE(newblk, D_NEWBLK);
2322 		return (1);
2323 	}
2324 	newblk->nb_freefrag = NULL;
2325 	LIST_INIT(&newblk->nb_indirdeps);
2326 	LIST_INIT(&newblk->nb_newdirblk);
2327 	LIST_INIT(&newblk->nb_jwork);
2328 	newblk->nb_state = ATTACHED;
2329 	newblk->nb_newblkno = newblkno;
2330 	LIST_INSERT_HEAD(newblkhd, newblk, nb_hash);
2331 	*newblkpp = newblk;
2332 	return (0);
2333 }
2334 
2335 /*
2336  * Structures and routines associated with freed indirect block caching.
2337  */
2338 #define	INDIR_HASH(ump, blkno) \
2339 	(&(ump)->indir_hashtbl[(blkno) & (ump)->indir_hash_size])
2340 
2341 /*
2342  * Lookup an indirect block in the indir hash table.  The freework is
2343  * removed and potentially freed.  The caller must do a blocking journal
2344  * write before writing to the blkno.
2345  */
2346 static int
2347 indirblk_lookup(mp, blkno)
2348 	struct mount *mp;
2349 	ufs2_daddr_t blkno;
2350 {
2351 	struct freework *freework;
2352 	struct indir_hashhead *wkhd;
2353 	struct ufsmount *ump;
2354 
2355 	ump = VFSTOUFS(mp);
2356 	wkhd = INDIR_HASH(ump, blkno);
2357 	TAILQ_FOREACH(freework, wkhd, fw_next) {
2358 		if (freework->fw_blkno != blkno)
2359 			continue;
2360 		indirblk_remove(freework);
2361 		return (1);
2362 	}
2363 	return (0);
2364 }
2365 
2366 /*
2367  * Insert an indirect block represented by freework into the indirblk
2368  * hash table so that it may prevent the block from being re-used prior
2369  * to the journal being written.
2370  */
2371 static void
2372 indirblk_insert(freework)
2373 	struct freework *freework;
2374 {
2375 	struct jblocks *jblocks;
2376 	struct jseg *jseg;
2377 	struct ufsmount *ump;
2378 
2379 	ump = VFSTOUFS(freework->fw_list.wk_mp);
2380 	jblocks = ump->softdep_jblocks;
2381 	jseg = TAILQ_LAST(&jblocks->jb_segs, jseglst);
2382 	if (jseg == NULL)
2383 		return;
2384 
2385 	LIST_INSERT_HEAD(&jseg->js_indirs, freework, fw_segs);
2386 	TAILQ_INSERT_HEAD(INDIR_HASH(ump, freework->fw_blkno), freework,
2387 	    fw_next);
2388 	freework->fw_state &= ~DEPCOMPLETE;
2389 }
2390 
2391 static void
2392 indirblk_remove(freework)
2393 	struct freework *freework;
2394 {
2395 	struct ufsmount *ump;
2396 
2397 	ump = VFSTOUFS(freework->fw_list.wk_mp);
2398 	LIST_REMOVE(freework, fw_segs);
2399 	TAILQ_REMOVE(INDIR_HASH(ump, freework->fw_blkno), freework, fw_next);
2400 	freework->fw_state |= DEPCOMPLETE;
2401 	if ((freework->fw_state & ALLCOMPLETE) == ALLCOMPLETE)
2402 		WORKITEM_FREE(freework, D_FREEWORK);
2403 }
2404 
2405 /*
2406  * Executed during filesystem system initialization before
2407  * mounting any filesystems.
2408  */
2409 void
2410 softdep_initialize()
2411 {
2412 
2413 	TAILQ_INIT(&softdepmounts);
2414 #ifdef __LP64__
2415 	max_softdeps = desiredvnodes * 4;
2416 #else
2417 	max_softdeps = desiredvnodes * 2;
2418 #endif
2419 
2420 	/* initialise bioops hack */
2421 	bioops.io_start = softdep_disk_io_initiation;
2422 	bioops.io_complete = softdep_disk_write_complete;
2423 	bioops.io_deallocate = softdep_deallocate_dependencies;
2424 	bioops.io_countdeps = softdep_count_dependencies;
2425 	softdep_ast_cleanup = softdep_ast_cleanup_proc;
2426 
2427 	/* Initialize the callout with an mtx. */
2428 	callout_init_mtx(&softdep_callout, &lk, 0);
2429 }
2430 
2431 /*
2432  * Executed after all filesystems have been unmounted during
2433  * filesystem module unload.
2434  */
2435 void
2436 softdep_uninitialize()
2437 {
2438 
2439 	/* clear bioops hack */
2440 	bioops.io_start = NULL;
2441 	bioops.io_complete = NULL;
2442 	bioops.io_deallocate = NULL;
2443 	bioops.io_countdeps = NULL;
2444 	softdep_ast_cleanup = NULL;
2445 
2446 	callout_drain(&softdep_callout);
2447 }
2448 
2449 /*
2450  * Called at mount time to notify the dependency code that a
2451  * filesystem wishes to use it.
2452  */
2453 int
2454 softdep_mount(devvp, mp, fs, cred)
2455 	struct vnode *devvp;
2456 	struct mount *mp;
2457 	struct fs *fs;
2458 	struct ucred *cred;
2459 {
2460 	struct csum_total cstotal;
2461 	struct mount_softdeps *sdp;
2462 	struct ufsmount *ump;
2463 	struct cg *cgp;
2464 	struct buf *bp;
2465 	int i, error, cyl;
2466 
2467 	sdp = malloc(sizeof(struct mount_softdeps), M_MOUNTDATA,
2468 	    M_WAITOK | M_ZERO);
2469 	MNT_ILOCK(mp);
2470 	mp->mnt_flag = (mp->mnt_flag & ~MNT_ASYNC) | MNT_SOFTDEP;
2471 	if ((mp->mnt_kern_flag & MNTK_SOFTDEP) == 0) {
2472 		mp->mnt_kern_flag = (mp->mnt_kern_flag & ~MNTK_ASYNC) |
2473 			MNTK_SOFTDEP | MNTK_NOASYNC;
2474 	}
2475 	ump = VFSTOUFS(mp);
2476 	ump->um_softdep = sdp;
2477 	MNT_IUNLOCK(mp);
2478 	rw_init(LOCK_PTR(ump), "Per-Filesystem Softdep Lock");
2479 	sdp->sd_ump = ump;
2480 	LIST_INIT(&ump->softdep_workitem_pending);
2481 	LIST_INIT(&ump->softdep_journal_pending);
2482 	TAILQ_INIT(&ump->softdep_unlinked);
2483 	LIST_INIT(&ump->softdep_dirtycg);
2484 	ump->softdep_worklist_tail = NULL;
2485 	ump->softdep_on_worklist = 0;
2486 	ump->softdep_deps = 0;
2487 	LIST_INIT(&ump->softdep_mkdirlisthd);
2488 	ump->pagedep_hashtbl = hashinit(desiredvnodes / 5, M_PAGEDEP,
2489 	    &ump->pagedep_hash_size);
2490 	ump->pagedep_nextclean = 0;
2491 	ump->inodedep_hashtbl = hashinit(desiredvnodes, M_INODEDEP,
2492 	    &ump->inodedep_hash_size);
2493 	ump->inodedep_nextclean = 0;
2494 	ump->newblk_hashtbl = hashinit(max_softdeps / 2,  M_NEWBLK,
2495 	    &ump->newblk_hash_size);
2496 	ump->bmsafemap_hashtbl = hashinit(1024, M_BMSAFEMAP,
2497 	    &ump->bmsafemap_hash_size);
2498 	i = 1 << (ffs(desiredvnodes / 10) - 1);
2499 	ump->indir_hashtbl = malloc(i * sizeof(struct indir_hashhead),
2500 	    M_FREEWORK, M_WAITOK);
2501 	ump->indir_hash_size = i - 1;
2502 	for (i = 0; i <= ump->indir_hash_size; i++)
2503 		TAILQ_INIT(&ump->indir_hashtbl[i]);
2504 	ACQUIRE_GBLLOCK(&lk);
2505 	TAILQ_INSERT_TAIL(&softdepmounts, sdp, sd_next);
2506 	FREE_GBLLOCK(&lk);
2507 	if ((fs->fs_flags & FS_SUJ) &&
2508 	    (error = journal_mount(mp, fs, cred)) != 0) {
2509 		printf("Failed to start journal: %d\n", error);
2510 		softdep_unmount(mp);
2511 		return (error);
2512 	}
2513 	/*
2514 	 * Start our flushing thread in the bufdaemon process.
2515 	 */
2516 	ACQUIRE_LOCK(ump);
2517 	ump->softdep_flags |= FLUSH_STARTING;
2518 	FREE_LOCK(ump);
2519 	kproc_kthread_add(&softdep_flush, mp, &bufdaemonproc,
2520 	    &ump->softdep_flushtd, 0, 0, "softdepflush", "%s worker",
2521 	    mp->mnt_stat.f_mntonname);
2522 	ACQUIRE_LOCK(ump);
2523 	while ((ump->softdep_flags & FLUSH_STARTING) != 0) {
2524 		msleep(&ump->softdep_flushtd, LOCK_PTR(ump), PVM, "sdstart",
2525 		    hz / 2);
2526 	}
2527 	FREE_LOCK(ump);
2528 	/*
2529 	 * When doing soft updates, the counters in the
2530 	 * superblock may have gotten out of sync. Recomputation
2531 	 * can take a long time and can be deferred for background
2532 	 * fsck.  However, the old behavior of scanning the cylinder
2533 	 * groups and recalculating them at mount time is available
2534 	 * by setting vfs.ffs.compute_summary_at_mount to one.
2535 	 */
2536 	if (compute_summary_at_mount == 0 || fs->fs_clean != 0)
2537 		return (0);
2538 	bzero(&cstotal, sizeof cstotal);
2539 	for (cyl = 0; cyl < fs->fs_ncg; cyl++) {
2540 		if ((error = bread(devvp, fsbtodb(fs, cgtod(fs, cyl)),
2541 		    fs->fs_cgsize, cred, &bp)) != 0) {
2542 			brelse(bp);
2543 			softdep_unmount(mp);
2544 			return (error);
2545 		}
2546 		cgp = (struct cg *)bp->b_data;
2547 		cstotal.cs_nffree += cgp->cg_cs.cs_nffree;
2548 		cstotal.cs_nbfree += cgp->cg_cs.cs_nbfree;
2549 		cstotal.cs_nifree += cgp->cg_cs.cs_nifree;
2550 		cstotal.cs_ndir += cgp->cg_cs.cs_ndir;
2551 		fs->fs_cs(fs, cyl) = cgp->cg_cs;
2552 		brelse(bp);
2553 	}
2554 #ifdef DEBUG
2555 	if (bcmp(&cstotal, &fs->fs_cstotal, sizeof cstotal))
2556 		printf("%s: superblock summary recomputed\n", fs->fs_fsmnt);
2557 #endif
2558 	bcopy(&cstotal, &fs->fs_cstotal, sizeof cstotal);
2559 	return (0);
2560 }
2561 
2562 void
2563 softdep_unmount(mp)
2564 	struct mount *mp;
2565 {
2566 	struct ufsmount *ump;
2567 #ifdef INVARIANTS
2568 	int i;
2569 #endif
2570 
2571 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
2572 	    ("softdep_unmount called on non-softdep filesystem"));
2573 	ump = VFSTOUFS(mp);
2574 	MNT_ILOCK(mp);
2575 	mp->mnt_flag &= ~MNT_SOFTDEP;
2576 	if (MOUNTEDSUJ(mp) == 0) {
2577 		MNT_IUNLOCK(mp);
2578 	} else {
2579 		mp->mnt_flag &= ~MNT_SUJ;
2580 		MNT_IUNLOCK(mp);
2581 		journal_unmount(ump);
2582 	}
2583 	/*
2584 	 * Shut down our flushing thread. Check for NULL is if
2585 	 * softdep_mount errors out before the thread has been created.
2586 	 */
2587 	if (ump->softdep_flushtd != NULL) {
2588 		ACQUIRE_LOCK(ump);
2589 		ump->softdep_flags |= FLUSH_EXIT;
2590 		wakeup(&ump->softdep_flushtd);
2591 		msleep(&ump->softdep_flags, LOCK_PTR(ump), PVM | PDROP,
2592 		    "sdwait", 0);
2593 		KASSERT((ump->softdep_flags & FLUSH_EXIT) == 0,
2594 		    ("Thread shutdown failed"));
2595 	}
2596 	/*
2597 	 * Free up our resources.
2598 	 */
2599 	ACQUIRE_GBLLOCK(&lk);
2600 	TAILQ_REMOVE(&softdepmounts, ump->um_softdep, sd_next);
2601 	FREE_GBLLOCK(&lk);
2602 	rw_destroy(LOCK_PTR(ump));
2603 	hashdestroy(ump->pagedep_hashtbl, M_PAGEDEP, ump->pagedep_hash_size);
2604 	hashdestroy(ump->inodedep_hashtbl, M_INODEDEP, ump->inodedep_hash_size);
2605 	hashdestroy(ump->newblk_hashtbl, M_NEWBLK, ump->newblk_hash_size);
2606 	hashdestroy(ump->bmsafemap_hashtbl, M_BMSAFEMAP,
2607 	    ump->bmsafemap_hash_size);
2608 	free(ump->indir_hashtbl, M_FREEWORK);
2609 #ifdef INVARIANTS
2610 	for (i = 0; i <= D_LAST; i++)
2611 		KASSERT(ump->softdep_curdeps[i] == 0,
2612 		    ("Unmount %s: Dep type %s != 0 (%ld)", ump->um_fs->fs_fsmnt,
2613 		    TYPENAME(i), ump->softdep_curdeps[i]));
2614 #endif
2615 	free(ump->um_softdep, M_MOUNTDATA);
2616 }
2617 
2618 static struct jblocks *
2619 jblocks_create(void)
2620 {
2621 	struct jblocks *jblocks;
2622 
2623 	jblocks = malloc(sizeof(*jblocks), M_JBLOCKS, M_WAITOK | M_ZERO);
2624 	TAILQ_INIT(&jblocks->jb_segs);
2625 	jblocks->jb_avail = 10;
2626 	jblocks->jb_extent = malloc(sizeof(struct jextent) * jblocks->jb_avail,
2627 	    M_JBLOCKS, M_WAITOK | M_ZERO);
2628 
2629 	return (jblocks);
2630 }
2631 
2632 static ufs2_daddr_t
2633 jblocks_alloc(jblocks, bytes, actual)
2634 	struct jblocks *jblocks;
2635 	int bytes;
2636 	int *actual;
2637 {
2638 	ufs2_daddr_t daddr;
2639 	struct jextent *jext;
2640 	int freecnt;
2641 	int blocks;
2642 
2643 	blocks = bytes / DEV_BSIZE;
2644 	jext = &jblocks->jb_extent[jblocks->jb_head];
2645 	freecnt = jext->je_blocks - jblocks->jb_off;
2646 	if (freecnt == 0) {
2647 		jblocks->jb_off = 0;
2648 		if (++jblocks->jb_head > jblocks->jb_used)
2649 			jblocks->jb_head = 0;
2650 		jext = &jblocks->jb_extent[jblocks->jb_head];
2651 		freecnt = jext->je_blocks;
2652 	}
2653 	if (freecnt > blocks)
2654 		freecnt = blocks;
2655 	*actual = freecnt * DEV_BSIZE;
2656 	daddr = jext->je_daddr + jblocks->jb_off;
2657 	jblocks->jb_off += freecnt;
2658 	jblocks->jb_free -= freecnt;
2659 
2660 	return (daddr);
2661 }
2662 
2663 static void
2664 jblocks_free(jblocks, mp, bytes)
2665 	struct jblocks *jblocks;
2666 	struct mount *mp;
2667 	int bytes;
2668 {
2669 
2670 	LOCK_OWNED(VFSTOUFS(mp));
2671 	jblocks->jb_free += bytes / DEV_BSIZE;
2672 	if (jblocks->jb_suspended)
2673 		worklist_speedup(mp);
2674 	wakeup(jblocks);
2675 }
2676 
2677 static void
2678 jblocks_destroy(jblocks)
2679 	struct jblocks *jblocks;
2680 {
2681 
2682 	if (jblocks->jb_extent)
2683 		free(jblocks->jb_extent, M_JBLOCKS);
2684 	free(jblocks, M_JBLOCKS);
2685 }
2686 
2687 static void
2688 jblocks_add(jblocks, daddr, blocks)
2689 	struct jblocks *jblocks;
2690 	ufs2_daddr_t daddr;
2691 	int blocks;
2692 {
2693 	struct jextent *jext;
2694 
2695 	jblocks->jb_blocks += blocks;
2696 	jblocks->jb_free += blocks;
2697 	jext = &jblocks->jb_extent[jblocks->jb_used];
2698 	/* Adding the first block. */
2699 	if (jext->je_daddr == 0) {
2700 		jext->je_daddr = daddr;
2701 		jext->je_blocks = blocks;
2702 		return;
2703 	}
2704 	/* Extending the last extent. */
2705 	if (jext->je_daddr + jext->je_blocks == daddr) {
2706 		jext->je_blocks += blocks;
2707 		return;
2708 	}
2709 	/* Adding a new extent. */
2710 	if (++jblocks->jb_used == jblocks->jb_avail) {
2711 		jblocks->jb_avail *= 2;
2712 		jext = malloc(sizeof(struct jextent) * jblocks->jb_avail,
2713 		    M_JBLOCKS, M_WAITOK | M_ZERO);
2714 		memcpy(jext, jblocks->jb_extent,
2715 		    sizeof(struct jextent) * jblocks->jb_used);
2716 		free(jblocks->jb_extent, M_JBLOCKS);
2717 		jblocks->jb_extent = jext;
2718 	}
2719 	jext = &jblocks->jb_extent[jblocks->jb_used];
2720 	jext->je_daddr = daddr;
2721 	jext->je_blocks = blocks;
2722 	return;
2723 }
2724 
2725 int
2726 softdep_journal_lookup(mp, vpp)
2727 	struct mount *mp;
2728 	struct vnode **vpp;
2729 {
2730 	struct componentname cnp;
2731 	struct vnode *dvp;
2732 	ino_t sujournal;
2733 	int error;
2734 
2735 	error = VFS_VGET(mp, ROOTINO, LK_EXCLUSIVE, &dvp);
2736 	if (error)
2737 		return (error);
2738 	bzero(&cnp, sizeof(cnp));
2739 	cnp.cn_nameiop = LOOKUP;
2740 	cnp.cn_flags = ISLASTCN;
2741 	cnp.cn_thread = curthread;
2742 	cnp.cn_cred = curthread->td_ucred;
2743 	cnp.cn_pnbuf = SUJ_FILE;
2744 	cnp.cn_nameptr = SUJ_FILE;
2745 	cnp.cn_namelen = strlen(SUJ_FILE);
2746 	error = ufs_lookup_ino(dvp, NULL, &cnp, &sujournal);
2747 	vput(dvp);
2748 	if (error != 0)
2749 		return (error);
2750 	error = VFS_VGET(mp, sujournal, LK_EXCLUSIVE, vpp);
2751 	return (error);
2752 }
2753 
2754 /*
2755  * Open and verify the journal file.
2756  */
2757 static int
2758 journal_mount(mp, fs, cred)
2759 	struct mount *mp;
2760 	struct fs *fs;
2761 	struct ucred *cred;
2762 {
2763 	struct jblocks *jblocks;
2764 	struct ufsmount *ump;
2765 	struct vnode *vp;
2766 	struct inode *ip;
2767 	ufs2_daddr_t blkno;
2768 	int bcount;
2769 	int error;
2770 	int i;
2771 
2772 	ump = VFSTOUFS(mp);
2773 	ump->softdep_journal_tail = NULL;
2774 	ump->softdep_on_journal = 0;
2775 	ump->softdep_accdeps = 0;
2776 	ump->softdep_req = 0;
2777 	ump->softdep_jblocks = NULL;
2778 	error = softdep_journal_lookup(mp, &vp);
2779 	if (error != 0) {
2780 		printf("Failed to find journal.  Use tunefs to create one\n");
2781 		return (error);
2782 	}
2783 	ip = VTOI(vp);
2784 	if (ip->i_size < SUJ_MIN) {
2785 		error = ENOSPC;
2786 		goto out;
2787 	}
2788 	bcount = lblkno(fs, ip->i_size);	/* Only use whole blocks. */
2789 	jblocks = jblocks_create();
2790 	for (i = 0; i < bcount; i++) {
2791 		error = ufs_bmaparray(vp, i, &blkno, NULL, NULL, NULL);
2792 		if (error)
2793 			break;
2794 		jblocks_add(jblocks, blkno, fsbtodb(fs, fs->fs_frag));
2795 	}
2796 	if (error) {
2797 		jblocks_destroy(jblocks);
2798 		goto out;
2799 	}
2800 	jblocks->jb_low = jblocks->jb_free / 3;	/* Reserve 33%. */
2801 	jblocks->jb_min = jblocks->jb_free / 10; /* Suspend at 10%. */
2802 	ump->softdep_jblocks = jblocks;
2803 out:
2804 	if (error == 0) {
2805 		MNT_ILOCK(mp);
2806 		mp->mnt_flag |= MNT_SUJ;
2807 		mp->mnt_flag &= ~MNT_SOFTDEP;
2808 		MNT_IUNLOCK(mp);
2809 		/*
2810 		 * Only validate the journal contents if the
2811 		 * filesystem is clean, otherwise we write the logs
2812 		 * but they'll never be used.  If the filesystem was
2813 		 * still dirty when we mounted it the journal is
2814 		 * invalid and a new journal can only be valid if it
2815 		 * starts from a clean mount.
2816 		 */
2817 		if (fs->fs_clean) {
2818 			DIP_SET(ip, i_modrev, fs->fs_mtime);
2819 			ip->i_flags |= IN_MODIFIED;
2820 			ffs_update(vp, 1);
2821 		}
2822 	}
2823 	vput(vp);
2824 	return (error);
2825 }
2826 
2827 static void
2828 journal_unmount(ump)
2829 	struct ufsmount *ump;
2830 {
2831 
2832 	if (ump->softdep_jblocks)
2833 		jblocks_destroy(ump->softdep_jblocks);
2834 	ump->softdep_jblocks = NULL;
2835 }
2836 
2837 /*
2838  * Called when a journal record is ready to be written.  Space is allocated
2839  * and the journal entry is created when the journal is flushed to stable
2840  * store.
2841  */
2842 static void
2843 add_to_journal(wk)
2844 	struct worklist *wk;
2845 {
2846 	struct ufsmount *ump;
2847 
2848 	ump = VFSTOUFS(wk->wk_mp);
2849 	LOCK_OWNED(ump);
2850 	if (wk->wk_state & ONWORKLIST)
2851 		panic("add_to_journal: %s(0x%X) already on list",
2852 		    TYPENAME(wk->wk_type), wk->wk_state);
2853 	wk->wk_state |= ONWORKLIST | DEPCOMPLETE;
2854 	if (LIST_EMPTY(&ump->softdep_journal_pending)) {
2855 		ump->softdep_jblocks->jb_age = ticks;
2856 		LIST_INSERT_HEAD(&ump->softdep_journal_pending, wk, wk_list);
2857 	} else
2858 		LIST_INSERT_AFTER(ump->softdep_journal_tail, wk, wk_list);
2859 	ump->softdep_journal_tail = wk;
2860 	ump->softdep_on_journal += 1;
2861 }
2862 
2863 /*
2864  * Remove an arbitrary item for the journal worklist maintain the tail
2865  * pointer.  This happens when a new operation obviates the need to
2866  * journal an old operation.
2867  */
2868 static void
2869 remove_from_journal(wk)
2870 	struct worklist *wk;
2871 {
2872 	struct ufsmount *ump;
2873 
2874 	ump = VFSTOUFS(wk->wk_mp);
2875 	LOCK_OWNED(ump);
2876 #ifdef SUJ_DEBUG
2877 	{
2878 		struct worklist *wkn;
2879 
2880 		LIST_FOREACH(wkn, &ump->softdep_journal_pending, wk_list)
2881 			if (wkn == wk)
2882 				break;
2883 		if (wkn == NULL)
2884 			panic("remove_from_journal: %p is not in journal", wk);
2885 	}
2886 #endif
2887 	/*
2888 	 * We emulate a TAILQ to save space in most structures which do not
2889 	 * require TAILQ semantics.  Here we must update the tail position
2890 	 * when removing the tail which is not the final entry. This works
2891 	 * only if the worklist linkage are at the beginning of the structure.
2892 	 */
2893 	if (ump->softdep_journal_tail == wk)
2894 		ump->softdep_journal_tail =
2895 		    (struct worklist *)wk->wk_list.le_prev;
2896 
2897 	WORKLIST_REMOVE(wk);
2898 	ump->softdep_on_journal -= 1;
2899 }
2900 
2901 /*
2902  * Check for journal space as well as dependency limits so the prelink
2903  * code can throttle both journaled and non-journaled filesystems.
2904  * Threshold is 0 for low and 1 for min.
2905  */
2906 static int
2907 journal_space(ump, thresh)
2908 	struct ufsmount *ump;
2909 	int thresh;
2910 {
2911 	struct jblocks *jblocks;
2912 	int limit, avail;
2913 
2914 	jblocks = ump->softdep_jblocks;
2915 	if (jblocks == NULL)
2916 		return (1);
2917 	/*
2918 	 * We use a tighter restriction here to prevent request_cleanup()
2919 	 * running in threads from running into locks we currently hold.
2920 	 * We have to be over the limit and our filesystem has to be
2921 	 * responsible for more than our share of that usage.
2922 	 */
2923 	limit = (max_softdeps / 10) * 9;
2924 	if (dep_current[D_INODEDEP] > limit &&
2925 	    ump->softdep_curdeps[D_INODEDEP] > limit / stat_flush_threads)
2926 		return (0);
2927 	if (thresh)
2928 		thresh = jblocks->jb_min;
2929 	else
2930 		thresh = jblocks->jb_low;
2931 	avail = (ump->softdep_on_journal * JREC_SIZE) / DEV_BSIZE;
2932 	avail = jblocks->jb_free - avail;
2933 
2934 	return (avail > thresh);
2935 }
2936 
2937 static void
2938 journal_suspend(ump)
2939 	struct ufsmount *ump;
2940 {
2941 	struct jblocks *jblocks;
2942 	struct mount *mp;
2943 
2944 	mp = UFSTOVFS(ump);
2945 	jblocks = ump->softdep_jblocks;
2946 	MNT_ILOCK(mp);
2947 	if ((mp->mnt_kern_flag & MNTK_SUSPEND) == 0) {
2948 		stat_journal_min++;
2949 		mp->mnt_kern_flag |= MNTK_SUSPEND;
2950 		mp->mnt_susp_owner = ump->softdep_flushtd;
2951 	}
2952 	jblocks->jb_suspended = 1;
2953 	MNT_IUNLOCK(mp);
2954 }
2955 
2956 static int
2957 journal_unsuspend(struct ufsmount *ump)
2958 {
2959 	struct jblocks *jblocks;
2960 	struct mount *mp;
2961 
2962 	mp = UFSTOVFS(ump);
2963 	jblocks = ump->softdep_jblocks;
2964 
2965 	if (jblocks != NULL && jblocks->jb_suspended &&
2966 	    journal_space(ump, jblocks->jb_min)) {
2967 		jblocks->jb_suspended = 0;
2968 		FREE_LOCK(ump);
2969 		mp->mnt_susp_owner = curthread;
2970 		vfs_write_resume(mp, 0);
2971 		ACQUIRE_LOCK(ump);
2972 		return (1);
2973 	}
2974 	return (0);
2975 }
2976 
2977 /*
2978  * Called before any allocation function to be certain that there is
2979  * sufficient space in the journal prior to creating any new records.
2980  * Since in the case of block allocation we may have multiple locked
2981  * buffers at the time of the actual allocation we can not block
2982  * when the journal records are created.  Doing so would create a deadlock
2983  * if any of these buffers needed to be flushed to reclaim space.  Instead
2984  * we require a sufficiently large amount of available space such that
2985  * each thread in the system could have passed this allocation check and
2986  * still have sufficient free space.  With 20% of a minimum journal size
2987  * of 1MB we have 6553 records available.
2988  */
2989 int
2990 softdep_prealloc(vp, waitok)
2991 	struct vnode *vp;
2992 	int waitok;
2993 {
2994 	struct ufsmount *ump;
2995 
2996 	KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0,
2997 	    ("softdep_prealloc called on non-softdep filesystem"));
2998 	/*
2999 	 * Nothing to do if we are not running journaled soft updates.
3000 	 * If we currently hold the snapshot lock, we must avoid handling
3001 	 * other resources that could cause deadlock.
3002 	 */
3003 	if (DOINGSUJ(vp) == 0 || IS_SNAPSHOT(VTOI(vp)))
3004 		return (0);
3005 	ump = VFSTOUFS(vp->v_mount);
3006 	ACQUIRE_LOCK(ump);
3007 	if (journal_space(ump, 0)) {
3008 		FREE_LOCK(ump);
3009 		return (0);
3010 	}
3011 	stat_journal_low++;
3012 	FREE_LOCK(ump);
3013 	if (waitok == MNT_NOWAIT)
3014 		return (ENOSPC);
3015 	/*
3016 	 * Attempt to sync this vnode once to flush any journal
3017 	 * work attached to it.
3018 	 */
3019 	if ((curthread->td_pflags & TDP_COWINPROGRESS) == 0)
3020 		ffs_syncvnode(vp, waitok, 0);
3021 	ACQUIRE_LOCK(ump);
3022 	process_removes(vp);
3023 	process_truncates(vp);
3024 	if (journal_space(ump, 0) == 0) {
3025 		softdep_speedup(ump);
3026 		if (journal_space(ump, 1) == 0)
3027 			journal_suspend(ump);
3028 	}
3029 	FREE_LOCK(ump);
3030 
3031 	return (0);
3032 }
3033 
3034 /*
3035  * Before adjusting a link count on a vnode verify that we have sufficient
3036  * journal space.  If not, process operations that depend on the currently
3037  * locked pair of vnodes to try to flush space as the syncer, buf daemon,
3038  * and softdep flush threads can not acquire these locks to reclaim space.
3039  */
3040 static void
3041 softdep_prelink(dvp, vp)
3042 	struct vnode *dvp;
3043 	struct vnode *vp;
3044 {
3045 	struct ufsmount *ump;
3046 
3047 	ump = VFSTOUFS(dvp->v_mount);
3048 	LOCK_OWNED(ump);
3049 	/*
3050 	 * Nothing to do if we have sufficient journal space.
3051 	 * If we currently hold the snapshot lock, we must avoid
3052 	 * handling other resources that could cause deadlock.
3053 	 */
3054 	if (journal_space(ump, 0) || (vp && IS_SNAPSHOT(VTOI(vp))))
3055 		return;
3056 	stat_journal_low++;
3057 	FREE_LOCK(ump);
3058 	if (vp)
3059 		ffs_syncvnode(vp, MNT_NOWAIT, 0);
3060 	ffs_syncvnode(dvp, MNT_WAIT, 0);
3061 	ACQUIRE_LOCK(ump);
3062 	/* Process vp before dvp as it may create .. removes. */
3063 	if (vp) {
3064 		process_removes(vp);
3065 		process_truncates(vp);
3066 	}
3067 	process_removes(dvp);
3068 	process_truncates(dvp);
3069 	softdep_speedup(ump);
3070 	process_worklist_item(UFSTOVFS(ump), 2, LK_NOWAIT);
3071 	if (journal_space(ump, 0) == 0) {
3072 		softdep_speedup(ump);
3073 		if (journal_space(ump, 1) == 0)
3074 			journal_suspend(ump);
3075 	}
3076 }
3077 
3078 static void
3079 jseg_write(ump, jseg, data)
3080 	struct ufsmount *ump;
3081 	struct jseg *jseg;
3082 	uint8_t *data;
3083 {
3084 	struct jsegrec *rec;
3085 
3086 	rec = (struct jsegrec *)data;
3087 	rec->jsr_seq = jseg->js_seq;
3088 	rec->jsr_oldest = jseg->js_oldseq;
3089 	rec->jsr_cnt = jseg->js_cnt;
3090 	rec->jsr_blocks = jseg->js_size / ump->um_devvp->v_bufobj.bo_bsize;
3091 	rec->jsr_crc = 0;
3092 	rec->jsr_time = ump->um_fs->fs_mtime;
3093 }
3094 
3095 static inline void
3096 inoref_write(inoref, jseg, rec)
3097 	struct inoref *inoref;
3098 	struct jseg *jseg;
3099 	struct jrefrec *rec;
3100 {
3101 
3102 	inoref->if_jsegdep->jd_seg = jseg;
3103 	rec->jr_ino = inoref->if_ino;
3104 	rec->jr_parent = inoref->if_parent;
3105 	rec->jr_nlink = inoref->if_nlink;
3106 	rec->jr_mode = inoref->if_mode;
3107 	rec->jr_diroff = inoref->if_diroff;
3108 }
3109 
3110 static void
3111 jaddref_write(jaddref, jseg, data)
3112 	struct jaddref *jaddref;
3113 	struct jseg *jseg;
3114 	uint8_t *data;
3115 {
3116 	struct jrefrec *rec;
3117 
3118 	rec = (struct jrefrec *)data;
3119 	rec->jr_op = JOP_ADDREF;
3120 	inoref_write(&jaddref->ja_ref, jseg, rec);
3121 }
3122 
3123 static void
3124 jremref_write(jremref, jseg, data)
3125 	struct jremref *jremref;
3126 	struct jseg *jseg;
3127 	uint8_t *data;
3128 {
3129 	struct jrefrec *rec;
3130 
3131 	rec = (struct jrefrec *)data;
3132 	rec->jr_op = JOP_REMREF;
3133 	inoref_write(&jremref->jr_ref, jseg, rec);
3134 }
3135 
3136 static void
3137 jmvref_write(jmvref, jseg, data)
3138 	struct jmvref *jmvref;
3139 	struct jseg *jseg;
3140 	uint8_t *data;
3141 {
3142 	struct jmvrec *rec;
3143 
3144 	rec = (struct jmvrec *)data;
3145 	rec->jm_op = JOP_MVREF;
3146 	rec->jm_ino = jmvref->jm_ino;
3147 	rec->jm_parent = jmvref->jm_parent;
3148 	rec->jm_oldoff = jmvref->jm_oldoff;
3149 	rec->jm_newoff = jmvref->jm_newoff;
3150 }
3151 
3152 static void
3153 jnewblk_write(jnewblk, jseg, data)
3154 	struct jnewblk *jnewblk;
3155 	struct jseg *jseg;
3156 	uint8_t *data;
3157 {
3158 	struct jblkrec *rec;
3159 
3160 	jnewblk->jn_jsegdep->jd_seg = jseg;
3161 	rec = (struct jblkrec *)data;
3162 	rec->jb_op = JOP_NEWBLK;
3163 	rec->jb_ino = jnewblk->jn_ino;
3164 	rec->jb_blkno = jnewblk->jn_blkno;
3165 	rec->jb_lbn = jnewblk->jn_lbn;
3166 	rec->jb_frags = jnewblk->jn_frags;
3167 	rec->jb_oldfrags = jnewblk->jn_oldfrags;
3168 }
3169 
3170 static void
3171 jfreeblk_write(jfreeblk, jseg, data)
3172 	struct jfreeblk *jfreeblk;
3173 	struct jseg *jseg;
3174 	uint8_t *data;
3175 {
3176 	struct jblkrec *rec;
3177 
3178 	jfreeblk->jf_dep.jb_jsegdep->jd_seg = jseg;
3179 	rec = (struct jblkrec *)data;
3180 	rec->jb_op = JOP_FREEBLK;
3181 	rec->jb_ino = jfreeblk->jf_ino;
3182 	rec->jb_blkno = jfreeblk->jf_blkno;
3183 	rec->jb_lbn = jfreeblk->jf_lbn;
3184 	rec->jb_frags = jfreeblk->jf_frags;
3185 	rec->jb_oldfrags = 0;
3186 }
3187 
3188 static void
3189 jfreefrag_write(jfreefrag, jseg, data)
3190 	struct jfreefrag *jfreefrag;
3191 	struct jseg *jseg;
3192 	uint8_t *data;
3193 {
3194 	struct jblkrec *rec;
3195 
3196 	jfreefrag->fr_jsegdep->jd_seg = jseg;
3197 	rec = (struct jblkrec *)data;
3198 	rec->jb_op = JOP_FREEBLK;
3199 	rec->jb_ino = jfreefrag->fr_ino;
3200 	rec->jb_blkno = jfreefrag->fr_blkno;
3201 	rec->jb_lbn = jfreefrag->fr_lbn;
3202 	rec->jb_frags = jfreefrag->fr_frags;
3203 	rec->jb_oldfrags = 0;
3204 }
3205 
3206 static void
3207 jtrunc_write(jtrunc, jseg, data)
3208 	struct jtrunc *jtrunc;
3209 	struct jseg *jseg;
3210 	uint8_t *data;
3211 {
3212 	struct jtrncrec *rec;
3213 
3214 	jtrunc->jt_dep.jb_jsegdep->jd_seg = jseg;
3215 	rec = (struct jtrncrec *)data;
3216 	rec->jt_op = JOP_TRUNC;
3217 	rec->jt_ino = jtrunc->jt_ino;
3218 	rec->jt_size = jtrunc->jt_size;
3219 	rec->jt_extsize = jtrunc->jt_extsize;
3220 }
3221 
3222 static void
3223 jfsync_write(jfsync, jseg, data)
3224 	struct jfsync *jfsync;
3225 	struct jseg *jseg;
3226 	uint8_t *data;
3227 {
3228 	struct jtrncrec *rec;
3229 
3230 	rec = (struct jtrncrec *)data;
3231 	rec->jt_op = JOP_SYNC;
3232 	rec->jt_ino = jfsync->jfs_ino;
3233 	rec->jt_size = jfsync->jfs_size;
3234 	rec->jt_extsize = jfsync->jfs_extsize;
3235 }
3236 
3237 static void
3238 softdep_flushjournal(mp)
3239 	struct mount *mp;
3240 {
3241 	struct jblocks *jblocks;
3242 	struct ufsmount *ump;
3243 
3244 	if (MOUNTEDSUJ(mp) == 0)
3245 		return;
3246 	ump = VFSTOUFS(mp);
3247 	jblocks = ump->softdep_jblocks;
3248 	ACQUIRE_LOCK(ump);
3249 	while (ump->softdep_on_journal) {
3250 		jblocks->jb_needseg = 1;
3251 		softdep_process_journal(mp, NULL, MNT_WAIT);
3252 	}
3253 	FREE_LOCK(ump);
3254 }
3255 
3256 static void softdep_synchronize_completed(struct bio *);
3257 static void softdep_synchronize(struct bio *, struct ufsmount *, void *);
3258 
3259 static void
3260 softdep_synchronize_completed(bp)
3261         struct bio *bp;
3262 {
3263 	struct jseg *oldest;
3264 	struct jseg *jseg;
3265 	struct ufsmount *ump;
3266 
3267 	/*
3268 	 * caller1 marks the last segment written before we issued the
3269 	 * synchronize cache.
3270 	 */
3271 	jseg = bp->bio_caller1;
3272 	if (jseg == NULL) {
3273 		g_destroy_bio(bp);
3274 		return;
3275 	}
3276 	ump = VFSTOUFS(jseg->js_list.wk_mp);
3277 	ACQUIRE_LOCK(ump);
3278 	oldest = NULL;
3279 	/*
3280 	 * Mark all the journal entries waiting on the synchronize cache
3281 	 * as completed so they may continue on.
3282 	 */
3283 	while (jseg != NULL && (jseg->js_state & COMPLETE) == 0) {
3284 		jseg->js_state |= COMPLETE;
3285 		oldest = jseg;
3286 		jseg = TAILQ_PREV(jseg, jseglst, js_next);
3287 	}
3288 	/*
3289 	 * Restart deferred journal entry processing from the oldest
3290 	 * completed jseg.
3291 	 */
3292 	if (oldest)
3293 		complete_jsegs(oldest);
3294 
3295 	FREE_LOCK(ump);
3296 	g_destroy_bio(bp);
3297 }
3298 
3299 /*
3300  * Send BIO_FLUSH/SYNCHRONIZE CACHE to the device to enforce write ordering
3301  * barriers.  The journal must be written prior to any blocks that depend
3302  * on it and the journal can not be released until the blocks have be
3303  * written.  This code handles both barriers simultaneously.
3304  */
3305 static void
3306 softdep_synchronize(bp, ump, caller1)
3307 	struct bio *bp;
3308 	struct ufsmount *ump;
3309 	void *caller1;
3310 {
3311 
3312 	bp->bio_cmd = BIO_FLUSH;
3313 	bp->bio_flags |= BIO_ORDERED;
3314 	bp->bio_data = NULL;
3315 	bp->bio_offset = ump->um_cp->provider->mediasize;
3316 	bp->bio_length = 0;
3317 	bp->bio_done = softdep_synchronize_completed;
3318 	bp->bio_caller1 = caller1;
3319 	g_io_request(bp,
3320 	    (struct g_consumer *)ump->um_devvp->v_bufobj.bo_private);
3321 }
3322 
3323 /*
3324  * Flush some journal records to disk.
3325  */
3326 static void
3327 softdep_process_journal(mp, needwk, flags)
3328 	struct mount *mp;
3329 	struct worklist *needwk;
3330 	int flags;
3331 {
3332 	struct jblocks *jblocks;
3333 	struct ufsmount *ump;
3334 	struct worklist *wk;
3335 	struct jseg *jseg;
3336 	struct buf *bp;
3337 	struct bio *bio;
3338 	uint8_t *data;
3339 	struct fs *fs;
3340 	int shouldflush;
3341 	int segwritten;
3342 	int jrecmin;	/* Minimum records per block. */
3343 	int jrecmax;	/* Maximum records per block. */
3344 	int size;
3345 	int cnt;
3346 	int off;
3347 	int devbsize;
3348 
3349 	if (MOUNTEDSUJ(mp) == 0)
3350 		return;
3351 	shouldflush = softdep_flushcache;
3352 	bio = NULL;
3353 	jseg = NULL;
3354 	ump = VFSTOUFS(mp);
3355 	LOCK_OWNED(ump);
3356 	fs = ump->um_fs;
3357 	jblocks = ump->softdep_jblocks;
3358 	devbsize = ump->um_devvp->v_bufobj.bo_bsize;
3359 	/*
3360 	 * We write anywhere between a disk block and fs block.  The upper
3361 	 * bound is picked to prevent buffer cache fragmentation and limit
3362 	 * processing time per I/O.
3363 	 */
3364 	jrecmin = (devbsize / JREC_SIZE) - 1; /* -1 for seg header */
3365 	jrecmax = (fs->fs_bsize / devbsize) * jrecmin;
3366 	segwritten = 0;
3367 	for (;;) {
3368 		cnt = ump->softdep_on_journal;
3369 		/*
3370 		 * Criteria for writing a segment:
3371 		 * 1) We have a full block.
3372 		 * 2) We're called from jwait() and haven't found the
3373 		 *    journal item yet.
3374 		 * 3) Always write if needseg is set.
3375 		 * 4) If we are called from process_worklist and have
3376 		 *    not yet written anything we write a partial block
3377 		 *    to enforce a 1 second maximum latency on journal
3378 		 *    entries.
3379 		 */
3380 		if (cnt < (jrecmax - 1) && needwk == NULL &&
3381 		    jblocks->jb_needseg == 0 && (segwritten || cnt == 0))
3382 			break;
3383 		cnt++;
3384 		/*
3385 		 * Verify some free journal space.  softdep_prealloc() should
3386 		 * guarantee that we don't run out so this is indicative of
3387 		 * a problem with the flow control.  Try to recover
3388 		 * gracefully in any event.
3389 		 */
3390 		while (jblocks->jb_free == 0) {
3391 			if (flags != MNT_WAIT)
3392 				break;
3393 			printf("softdep: Out of journal space!\n");
3394 			softdep_speedup(ump);
3395 			msleep(jblocks, LOCK_PTR(ump), PRIBIO, "jblocks", hz);
3396 		}
3397 		FREE_LOCK(ump);
3398 		jseg = malloc(sizeof(*jseg), M_JSEG, M_SOFTDEP_FLAGS);
3399 		workitem_alloc(&jseg->js_list, D_JSEG, mp);
3400 		LIST_INIT(&jseg->js_entries);
3401 		LIST_INIT(&jseg->js_indirs);
3402 		jseg->js_state = ATTACHED;
3403 		if (shouldflush == 0)
3404 			jseg->js_state |= COMPLETE;
3405 		else if (bio == NULL)
3406 			bio = g_alloc_bio();
3407 		jseg->js_jblocks = jblocks;
3408 		bp = geteblk(fs->fs_bsize, 0);
3409 		ACQUIRE_LOCK(ump);
3410 		/*
3411 		 * If there was a race while we were allocating the block
3412 		 * and jseg the entry we care about was likely written.
3413 		 * We bail out in both the WAIT and NOWAIT case and assume
3414 		 * the caller will loop if the entry it cares about is
3415 		 * not written.
3416 		 */
3417 		cnt = ump->softdep_on_journal;
3418 		if (cnt + jblocks->jb_needseg == 0 || jblocks->jb_free == 0) {
3419 			bp->b_flags |= B_INVAL | B_NOCACHE;
3420 			WORKITEM_FREE(jseg, D_JSEG);
3421 			FREE_LOCK(ump);
3422 			brelse(bp);
3423 			ACQUIRE_LOCK(ump);
3424 			break;
3425 		}
3426 		/*
3427 		 * Calculate the disk block size required for the available
3428 		 * records rounded to the min size.
3429 		 */
3430 		if (cnt == 0)
3431 			size = devbsize;
3432 		else if (cnt < jrecmax)
3433 			size = howmany(cnt, jrecmin) * devbsize;
3434 		else
3435 			size = fs->fs_bsize;
3436 		/*
3437 		 * Allocate a disk block for this journal data and account
3438 		 * for truncation of the requested size if enough contiguous
3439 		 * space was not available.
3440 		 */
3441 		bp->b_blkno = jblocks_alloc(jblocks, size, &size);
3442 		bp->b_lblkno = bp->b_blkno;
3443 		bp->b_offset = bp->b_blkno * DEV_BSIZE;
3444 		bp->b_bcount = size;
3445 		bp->b_flags &= ~B_INVAL;
3446 		bp->b_flags |= B_VALIDSUSPWRT | B_NOCOPY;
3447 		/*
3448 		 * Initialize our jseg with cnt records.  Assign the next
3449 		 * sequence number to it and link it in-order.
3450 		 */
3451 		cnt = MIN(cnt, (size / devbsize) * jrecmin);
3452 		jseg->js_buf = bp;
3453 		jseg->js_cnt = cnt;
3454 		jseg->js_refs = cnt + 1;	/* Self ref. */
3455 		jseg->js_size = size;
3456 		jseg->js_seq = jblocks->jb_nextseq++;
3457 		if (jblocks->jb_oldestseg == NULL)
3458 			jblocks->jb_oldestseg = jseg;
3459 		jseg->js_oldseq = jblocks->jb_oldestseg->js_seq;
3460 		TAILQ_INSERT_TAIL(&jblocks->jb_segs, jseg, js_next);
3461 		if (jblocks->jb_writeseg == NULL)
3462 			jblocks->jb_writeseg = jseg;
3463 		/*
3464 		 * Start filling in records from the pending list.
3465 		 */
3466 		data = bp->b_data;
3467 		off = 0;
3468 
3469 		/*
3470 		 * Always put a header on the first block.
3471 		 * XXX As with below, there might not be a chance to get
3472 		 * into the loop.  Ensure that something valid is written.
3473 		 */
3474 		jseg_write(ump, jseg, data);
3475 		off += JREC_SIZE;
3476 		data = bp->b_data + off;
3477 
3478 		/*
3479 		 * XXX Something is wrong here.  There's no work to do,
3480 		 * but we need to perform and I/O and allow it to complete
3481 		 * anyways.
3482 		 */
3483 		if (LIST_EMPTY(&ump->softdep_journal_pending))
3484 			stat_emptyjblocks++;
3485 
3486 		while ((wk = LIST_FIRST(&ump->softdep_journal_pending))
3487 		    != NULL) {
3488 			if (cnt == 0)
3489 				break;
3490 			/* Place a segment header on every device block. */
3491 			if ((off % devbsize) == 0) {
3492 				jseg_write(ump, jseg, data);
3493 				off += JREC_SIZE;
3494 				data = bp->b_data + off;
3495 			}
3496 			if (wk == needwk)
3497 				needwk = NULL;
3498 			remove_from_journal(wk);
3499 			wk->wk_state |= INPROGRESS;
3500 			WORKLIST_INSERT(&jseg->js_entries, wk);
3501 			switch (wk->wk_type) {
3502 			case D_JADDREF:
3503 				jaddref_write(WK_JADDREF(wk), jseg, data);
3504 				break;
3505 			case D_JREMREF:
3506 				jremref_write(WK_JREMREF(wk), jseg, data);
3507 				break;
3508 			case D_JMVREF:
3509 				jmvref_write(WK_JMVREF(wk), jseg, data);
3510 				break;
3511 			case D_JNEWBLK:
3512 				jnewblk_write(WK_JNEWBLK(wk), jseg, data);
3513 				break;
3514 			case D_JFREEBLK:
3515 				jfreeblk_write(WK_JFREEBLK(wk), jseg, data);
3516 				break;
3517 			case D_JFREEFRAG:
3518 				jfreefrag_write(WK_JFREEFRAG(wk), jseg, data);
3519 				break;
3520 			case D_JTRUNC:
3521 				jtrunc_write(WK_JTRUNC(wk), jseg, data);
3522 				break;
3523 			case D_JFSYNC:
3524 				jfsync_write(WK_JFSYNC(wk), jseg, data);
3525 				break;
3526 			default:
3527 				panic("process_journal: Unknown type %s",
3528 				    TYPENAME(wk->wk_type));
3529 				/* NOTREACHED */
3530 			}
3531 			off += JREC_SIZE;
3532 			data = bp->b_data + off;
3533 			cnt--;
3534 		}
3535 
3536 		/* Clear any remaining space so we don't leak kernel data */
3537 		if (size > off)
3538 			bzero(data, size - off);
3539 
3540 		/*
3541 		 * Write this one buffer and continue.
3542 		 */
3543 		segwritten = 1;
3544 		jblocks->jb_needseg = 0;
3545 		WORKLIST_INSERT(&bp->b_dep, &jseg->js_list);
3546 		FREE_LOCK(ump);
3547 		pbgetvp(ump->um_devvp, bp);
3548 		/*
3549 		 * We only do the blocking wait once we find the journal
3550 		 * entry we're looking for.
3551 		 */
3552 		if (needwk == NULL && flags == MNT_WAIT)
3553 			bwrite(bp);
3554 		else
3555 			bawrite(bp);
3556 		ACQUIRE_LOCK(ump);
3557 	}
3558 	/*
3559 	 * If we wrote a segment issue a synchronize cache so the journal
3560 	 * is reflected on disk before the data is written.  Since reclaiming
3561 	 * journal space also requires writing a journal record this
3562 	 * process also enforces a barrier before reclamation.
3563 	 */
3564 	if (segwritten && shouldflush) {
3565 		softdep_synchronize(bio, ump,
3566 		    TAILQ_LAST(&jblocks->jb_segs, jseglst));
3567 	} else if (bio)
3568 		g_destroy_bio(bio);
3569 	/*
3570 	 * If we've suspended the filesystem because we ran out of journal
3571 	 * space either try to sync it here to make some progress or
3572 	 * unsuspend it if we already have.
3573 	 */
3574 	if (flags == 0 && jblocks->jb_suspended) {
3575 		if (journal_unsuspend(ump))
3576 			return;
3577 		FREE_LOCK(ump);
3578 		VFS_SYNC(mp, MNT_NOWAIT);
3579 		ffs_sbupdate(ump, MNT_WAIT, 0);
3580 		ACQUIRE_LOCK(ump);
3581 	}
3582 }
3583 
3584 /*
3585  * Complete a jseg, allowing all dependencies awaiting journal writes
3586  * to proceed.  Each journal dependency also attaches a jsegdep to dependent
3587  * structures so that the journal segment can be freed to reclaim space.
3588  */
3589 static void
3590 complete_jseg(jseg)
3591 	struct jseg *jseg;
3592 {
3593 	struct worklist *wk;
3594 	struct jmvref *jmvref;
3595 	int waiting;
3596 #ifdef INVARIANTS
3597 	int i = 0;
3598 #endif
3599 
3600 	while ((wk = LIST_FIRST(&jseg->js_entries)) != NULL) {
3601 		WORKLIST_REMOVE(wk);
3602 		waiting = wk->wk_state & IOWAITING;
3603 		wk->wk_state &= ~(INPROGRESS | IOWAITING);
3604 		wk->wk_state |= COMPLETE;
3605 		KASSERT(i++ < jseg->js_cnt,
3606 		    ("handle_written_jseg: overflow %d >= %d",
3607 		    i - 1, jseg->js_cnt));
3608 		switch (wk->wk_type) {
3609 		case D_JADDREF:
3610 			handle_written_jaddref(WK_JADDREF(wk));
3611 			break;
3612 		case D_JREMREF:
3613 			handle_written_jremref(WK_JREMREF(wk));
3614 			break;
3615 		case D_JMVREF:
3616 			rele_jseg(jseg);	/* No jsegdep. */
3617 			jmvref = WK_JMVREF(wk);
3618 			LIST_REMOVE(jmvref, jm_deps);
3619 			if ((jmvref->jm_pagedep->pd_state & ONWORKLIST) == 0)
3620 				free_pagedep(jmvref->jm_pagedep);
3621 			WORKITEM_FREE(jmvref, D_JMVREF);
3622 			break;
3623 		case D_JNEWBLK:
3624 			handle_written_jnewblk(WK_JNEWBLK(wk));
3625 			break;
3626 		case D_JFREEBLK:
3627 			handle_written_jblkdep(&WK_JFREEBLK(wk)->jf_dep);
3628 			break;
3629 		case D_JTRUNC:
3630 			handle_written_jblkdep(&WK_JTRUNC(wk)->jt_dep);
3631 			break;
3632 		case D_JFSYNC:
3633 			rele_jseg(jseg);	/* No jsegdep. */
3634 			WORKITEM_FREE(wk, D_JFSYNC);
3635 			break;
3636 		case D_JFREEFRAG:
3637 			handle_written_jfreefrag(WK_JFREEFRAG(wk));
3638 			break;
3639 		default:
3640 			panic("handle_written_jseg: Unknown type %s",
3641 			    TYPENAME(wk->wk_type));
3642 			/* NOTREACHED */
3643 		}
3644 		if (waiting)
3645 			wakeup(wk);
3646 	}
3647 	/* Release the self reference so the structure may be freed. */
3648 	rele_jseg(jseg);
3649 }
3650 
3651 /*
3652  * Determine which jsegs are ready for completion processing.  Waits for
3653  * synchronize cache to complete as well as forcing in-order completion
3654  * of journal entries.
3655  */
3656 static void
3657 complete_jsegs(jseg)
3658 	struct jseg *jseg;
3659 {
3660 	struct jblocks *jblocks;
3661 	struct jseg *jsegn;
3662 
3663 	jblocks = jseg->js_jblocks;
3664 	/*
3665 	 * Don't allow out of order completions.  If this isn't the first
3666 	 * block wait for it to write before we're done.
3667 	 */
3668 	if (jseg != jblocks->jb_writeseg)
3669 		return;
3670 	/* Iterate through available jsegs processing their entries. */
3671 	while (jseg && (jseg->js_state & ALLCOMPLETE) == ALLCOMPLETE) {
3672 		jblocks->jb_oldestwrseq = jseg->js_oldseq;
3673 		jsegn = TAILQ_NEXT(jseg, js_next);
3674 		complete_jseg(jseg);
3675 		jseg = jsegn;
3676 	}
3677 	jblocks->jb_writeseg = jseg;
3678 	/*
3679 	 * Attempt to free jsegs now that oldestwrseq may have advanced.
3680 	 */
3681 	free_jsegs(jblocks);
3682 }
3683 
3684 /*
3685  * Mark a jseg as DEPCOMPLETE and throw away the buffer.  Attempt to handle
3686  * the final completions.
3687  */
3688 static void
3689 handle_written_jseg(jseg, bp)
3690 	struct jseg *jseg;
3691 	struct buf *bp;
3692 {
3693 
3694 	if (jseg->js_refs == 0)
3695 		panic("handle_written_jseg: No self-reference on %p", jseg);
3696 	jseg->js_state |= DEPCOMPLETE;
3697 	/*
3698 	 * We'll never need this buffer again, set flags so it will be
3699 	 * discarded.
3700 	 */
3701 	bp->b_flags |= B_INVAL | B_NOCACHE;
3702 	pbrelvp(bp);
3703 	complete_jsegs(jseg);
3704 }
3705 
3706 static inline struct jsegdep *
3707 inoref_jseg(inoref)
3708 	struct inoref *inoref;
3709 {
3710 	struct jsegdep *jsegdep;
3711 
3712 	jsegdep = inoref->if_jsegdep;
3713 	inoref->if_jsegdep = NULL;
3714 
3715 	return (jsegdep);
3716 }
3717 
3718 /*
3719  * Called once a jremref has made it to stable store.  The jremref is marked
3720  * complete and we attempt to free it.  Any pagedeps writes sleeping waiting
3721  * for the jremref to complete will be awoken by free_jremref.
3722  */
3723 static void
3724 handle_written_jremref(jremref)
3725 	struct jremref *jremref;
3726 {
3727 	struct inodedep *inodedep;
3728 	struct jsegdep *jsegdep;
3729 	struct dirrem *dirrem;
3730 
3731 	/* Grab the jsegdep. */
3732 	jsegdep = inoref_jseg(&jremref->jr_ref);
3733 	/*
3734 	 * Remove us from the inoref list.
3735 	 */
3736 	if (inodedep_lookup(jremref->jr_list.wk_mp, jremref->jr_ref.if_ino,
3737 	    0, &inodedep) == 0)
3738 		panic("handle_written_jremref: Lost inodedep");
3739 	TAILQ_REMOVE(&inodedep->id_inoreflst, &jremref->jr_ref, if_deps);
3740 	/*
3741 	 * Complete the dirrem.
3742 	 */
3743 	dirrem = jremref->jr_dirrem;
3744 	jremref->jr_dirrem = NULL;
3745 	LIST_REMOVE(jremref, jr_deps);
3746 	jsegdep->jd_state |= jremref->jr_state & MKDIR_PARENT;
3747 	jwork_insert(&dirrem->dm_jwork, jsegdep);
3748 	if (LIST_EMPTY(&dirrem->dm_jremrefhd) &&
3749 	    (dirrem->dm_state & COMPLETE) != 0)
3750 		add_to_worklist(&dirrem->dm_list, 0);
3751 	free_jremref(jremref);
3752 }
3753 
3754 /*
3755  * Called once a jaddref has made it to stable store.  The dependency is
3756  * marked complete and any dependent structures are added to the inode
3757  * bufwait list to be completed as soon as it is written.  If a bitmap write
3758  * depends on this entry we move the inode into the inodedephd of the
3759  * bmsafemap dependency and attempt to remove the jaddref from the bmsafemap.
3760  */
3761 static void
3762 handle_written_jaddref(jaddref)
3763 	struct jaddref *jaddref;
3764 {
3765 	struct jsegdep *jsegdep;
3766 	struct inodedep *inodedep;
3767 	struct diradd *diradd;
3768 	struct mkdir *mkdir;
3769 
3770 	/* Grab the jsegdep. */
3771 	jsegdep = inoref_jseg(&jaddref->ja_ref);
3772 	mkdir = NULL;
3773 	diradd = NULL;
3774 	if (inodedep_lookup(jaddref->ja_list.wk_mp, jaddref->ja_ino,
3775 	    0, &inodedep) == 0)
3776 		panic("handle_written_jaddref: Lost inodedep.");
3777 	if (jaddref->ja_diradd == NULL)
3778 		panic("handle_written_jaddref: No dependency");
3779 	if (jaddref->ja_diradd->da_list.wk_type == D_DIRADD) {
3780 		diradd = jaddref->ja_diradd;
3781 		WORKLIST_INSERT(&inodedep->id_bufwait, &diradd->da_list);
3782 	} else if (jaddref->ja_state & MKDIR_PARENT) {
3783 		mkdir = jaddref->ja_mkdir;
3784 		WORKLIST_INSERT(&inodedep->id_bufwait, &mkdir->md_list);
3785 	} else if (jaddref->ja_state & MKDIR_BODY)
3786 		mkdir = jaddref->ja_mkdir;
3787 	else
3788 		panic("handle_written_jaddref: Unknown dependency %p",
3789 		    jaddref->ja_diradd);
3790 	jaddref->ja_diradd = NULL;	/* also clears ja_mkdir */
3791 	/*
3792 	 * Remove us from the inode list.
3793 	 */
3794 	TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref, if_deps);
3795 	/*
3796 	 * The mkdir may be waiting on the jaddref to clear before freeing.
3797 	 */
3798 	if (mkdir) {
3799 		KASSERT(mkdir->md_list.wk_type == D_MKDIR,
3800 		    ("handle_written_jaddref: Incorrect type for mkdir %s",
3801 		    TYPENAME(mkdir->md_list.wk_type)));
3802 		mkdir->md_jaddref = NULL;
3803 		diradd = mkdir->md_diradd;
3804 		mkdir->md_state |= DEPCOMPLETE;
3805 		complete_mkdir(mkdir);
3806 	}
3807 	jwork_insert(&diradd->da_jwork, jsegdep);
3808 	if (jaddref->ja_state & NEWBLOCK) {
3809 		inodedep->id_state |= ONDEPLIST;
3810 		LIST_INSERT_HEAD(&inodedep->id_bmsafemap->sm_inodedephd,
3811 		    inodedep, id_deps);
3812 	}
3813 	free_jaddref(jaddref);
3814 }
3815 
3816 /*
3817  * Called once a jnewblk journal is written.  The allocdirect or allocindir
3818  * is placed in the bmsafemap to await notification of a written bitmap.  If
3819  * the operation was canceled we add the segdep to the appropriate
3820  * dependency to free the journal space once the canceling operation
3821  * completes.
3822  */
3823 static void
3824 handle_written_jnewblk(jnewblk)
3825 	struct jnewblk *jnewblk;
3826 {
3827 	struct bmsafemap *bmsafemap;
3828 	struct freefrag *freefrag;
3829 	struct freework *freework;
3830 	struct jsegdep *jsegdep;
3831 	struct newblk *newblk;
3832 
3833 	/* Grab the jsegdep. */
3834 	jsegdep = jnewblk->jn_jsegdep;
3835 	jnewblk->jn_jsegdep = NULL;
3836 	if (jnewblk->jn_dep == NULL)
3837 		panic("handle_written_jnewblk: No dependency for the segdep.");
3838 	switch (jnewblk->jn_dep->wk_type) {
3839 	case D_NEWBLK:
3840 	case D_ALLOCDIRECT:
3841 	case D_ALLOCINDIR:
3842 		/*
3843 		 * Add the written block to the bmsafemap so it can
3844 		 * be notified when the bitmap is on disk.
3845 		 */
3846 		newblk = WK_NEWBLK(jnewblk->jn_dep);
3847 		newblk->nb_jnewblk = NULL;
3848 		if ((newblk->nb_state & GOINGAWAY) == 0) {
3849 			bmsafemap = newblk->nb_bmsafemap;
3850 			newblk->nb_state |= ONDEPLIST;
3851 			LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk,
3852 			    nb_deps);
3853 		}
3854 		jwork_insert(&newblk->nb_jwork, jsegdep);
3855 		break;
3856 	case D_FREEFRAG:
3857 		/*
3858 		 * A newblock being removed by a freefrag when replaced by
3859 		 * frag extension.
3860 		 */
3861 		freefrag = WK_FREEFRAG(jnewblk->jn_dep);
3862 		freefrag->ff_jdep = NULL;
3863 		jwork_insert(&freefrag->ff_jwork, jsegdep);
3864 		break;
3865 	case D_FREEWORK:
3866 		/*
3867 		 * A direct block was removed by truncate.
3868 		 */
3869 		freework = WK_FREEWORK(jnewblk->jn_dep);
3870 		freework->fw_jnewblk = NULL;
3871 		jwork_insert(&freework->fw_freeblks->fb_jwork, jsegdep);
3872 		break;
3873 	default:
3874 		panic("handle_written_jnewblk: Unknown type %d.",
3875 		    jnewblk->jn_dep->wk_type);
3876 	}
3877 	jnewblk->jn_dep = NULL;
3878 	free_jnewblk(jnewblk);
3879 }
3880 
3881 /*
3882  * Cancel a jfreefrag that won't be needed, probably due to colliding with
3883  * an in-flight allocation that has not yet been committed.  Divorce us
3884  * from the freefrag and mark it DEPCOMPLETE so that it may be added
3885  * to the worklist.
3886  */
3887 static void
3888 cancel_jfreefrag(jfreefrag)
3889 	struct jfreefrag *jfreefrag;
3890 {
3891 	struct freefrag *freefrag;
3892 
3893 	if (jfreefrag->fr_jsegdep) {
3894 		free_jsegdep(jfreefrag->fr_jsegdep);
3895 		jfreefrag->fr_jsegdep = NULL;
3896 	}
3897 	freefrag = jfreefrag->fr_freefrag;
3898 	jfreefrag->fr_freefrag = NULL;
3899 	free_jfreefrag(jfreefrag);
3900 	freefrag->ff_state |= DEPCOMPLETE;
3901 	CTR1(KTR_SUJ, "cancel_jfreefrag: blkno %jd", freefrag->ff_blkno);
3902 }
3903 
3904 /*
3905  * Free a jfreefrag when the parent freefrag is rendered obsolete.
3906  */
3907 static void
3908 free_jfreefrag(jfreefrag)
3909 	struct jfreefrag *jfreefrag;
3910 {
3911 
3912 	if (jfreefrag->fr_state & INPROGRESS)
3913 		WORKLIST_REMOVE(&jfreefrag->fr_list);
3914 	else if (jfreefrag->fr_state & ONWORKLIST)
3915 		remove_from_journal(&jfreefrag->fr_list);
3916 	if (jfreefrag->fr_freefrag != NULL)
3917 		panic("free_jfreefrag:  Still attached to a freefrag.");
3918 	WORKITEM_FREE(jfreefrag, D_JFREEFRAG);
3919 }
3920 
3921 /*
3922  * Called when the journal write for a jfreefrag completes.  The parent
3923  * freefrag is added to the worklist if this completes its dependencies.
3924  */
3925 static void
3926 handle_written_jfreefrag(jfreefrag)
3927 	struct jfreefrag *jfreefrag;
3928 {
3929 	struct jsegdep *jsegdep;
3930 	struct freefrag *freefrag;
3931 
3932 	/* Grab the jsegdep. */
3933 	jsegdep = jfreefrag->fr_jsegdep;
3934 	jfreefrag->fr_jsegdep = NULL;
3935 	freefrag = jfreefrag->fr_freefrag;
3936 	if (freefrag == NULL)
3937 		panic("handle_written_jfreefrag: No freefrag.");
3938 	freefrag->ff_state |= DEPCOMPLETE;
3939 	freefrag->ff_jdep = NULL;
3940 	jwork_insert(&freefrag->ff_jwork, jsegdep);
3941 	if ((freefrag->ff_state & ALLCOMPLETE) == ALLCOMPLETE)
3942 		add_to_worklist(&freefrag->ff_list, 0);
3943 	jfreefrag->fr_freefrag = NULL;
3944 	free_jfreefrag(jfreefrag);
3945 }
3946 
3947 /*
3948  * Called when the journal write for a jfreeblk completes.  The jfreeblk
3949  * is removed from the freeblks list of pending journal writes and the
3950  * jsegdep is moved to the freeblks jwork to be completed when all blocks
3951  * have been reclaimed.
3952  */
3953 static void
3954 handle_written_jblkdep(jblkdep)
3955 	struct jblkdep *jblkdep;
3956 {
3957 	struct freeblks *freeblks;
3958 	struct jsegdep *jsegdep;
3959 
3960 	/* Grab the jsegdep. */
3961 	jsegdep = jblkdep->jb_jsegdep;
3962 	jblkdep->jb_jsegdep = NULL;
3963 	freeblks = jblkdep->jb_freeblks;
3964 	LIST_REMOVE(jblkdep, jb_deps);
3965 	jwork_insert(&freeblks->fb_jwork, jsegdep);
3966 	/*
3967 	 * If the freeblks is all journaled, we can add it to the worklist.
3968 	 */
3969 	if (LIST_EMPTY(&freeblks->fb_jblkdephd) &&
3970 	    (freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE)
3971 		add_to_worklist(&freeblks->fb_list, WK_NODELAY);
3972 
3973 	free_jblkdep(jblkdep);
3974 }
3975 
3976 static struct jsegdep *
3977 newjsegdep(struct worklist *wk)
3978 {
3979 	struct jsegdep *jsegdep;
3980 
3981 	jsegdep = malloc(sizeof(*jsegdep), M_JSEGDEP, M_SOFTDEP_FLAGS);
3982 	workitem_alloc(&jsegdep->jd_list, D_JSEGDEP, wk->wk_mp);
3983 	jsegdep->jd_seg = NULL;
3984 
3985 	return (jsegdep);
3986 }
3987 
3988 static struct jmvref *
3989 newjmvref(dp, ino, oldoff, newoff)
3990 	struct inode *dp;
3991 	ino_t ino;
3992 	off_t oldoff;
3993 	off_t newoff;
3994 {
3995 	struct jmvref *jmvref;
3996 
3997 	jmvref = malloc(sizeof(*jmvref), M_JMVREF, M_SOFTDEP_FLAGS);
3998 	workitem_alloc(&jmvref->jm_list, D_JMVREF, UFSTOVFS(dp->i_ump));
3999 	jmvref->jm_list.wk_state = ATTACHED | DEPCOMPLETE;
4000 	jmvref->jm_parent = dp->i_number;
4001 	jmvref->jm_ino = ino;
4002 	jmvref->jm_oldoff = oldoff;
4003 	jmvref->jm_newoff = newoff;
4004 
4005 	return (jmvref);
4006 }
4007 
4008 /*
4009  * Allocate a new jremref that tracks the removal of ip from dp with the
4010  * directory entry offset of diroff.  Mark the entry as ATTACHED and
4011  * DEPCOMPLETE as we have all the information required for the journal write
4012  * and the directory has already been removed from the buffer.  The caller
4013  * is responsible for linking the jremref into the pagedep and adding it
4014  * to the journal to write.  The MKDIR_PARENT flag is set if we're doing
4015  * a DOTDOT addition so handle_workitem_remove() can properly assign
4016  * the jsegdep when we're done.
4017  */
4018 static struct jremref *
4019 newjremref(struct dirrem *dirrem, struct inode *dp, struct inode *ip,
4020     off_t diroff, nlink_t nlink)
4021 {
4022 	struct jremref *jremref;
4023 
4024 	jremref = malloc(sizeof(*jremref), M_JREMREF, M_SOFTDEP_FLAGS);
4025 	workitem_alloc(&jremref->jr_list, D_JREMREF, UFSTOVFS(dp->i_ump));
4026 	jremref->jr_state = ATTACHED;
4027 	newinoref(&jremref->jr_ref, ip->i_number, dp->i_number, diroff,
4028 	   nlink, ip->i_mode);
4029 	jremref->jr_dirrem = dirrem;
4030 
4031 	return (jremref);
4032 }
4033 
4034 static inline void
4035 newinoref(struct inoref *inoref, ino_t ino, ino_t parent, off_t diroff,
4036     nlink_t nlink, uint16_t mode)
4037 {
4038 
4039 	inoref->if_jsegdep = newjsegdep(&inoref->if_list);
4040 	inoref->if_diroff = diroff;
4041 	inoref->if_ino = ino;
4042 	inoref->if_parent = parent;
4043 	inoref->if_nlink = nlink;
4044 	inoref->if_mode = mode;
4045 }
4046 
4047 /*
4048  * Allocate a new jaddref to track the addition of ino to dp at diroff.  The
4049  * directory offset may not be known until later.  The caller is responsible
4050  * adding the entry to the journal when this information is available.  nlink
4051  * should be the link count prior to the addition and mode is only required
4052  * to have the correct FMT.
4053  */
4054 static struct jaddref *
4055 newjaddref(struct inode *dp, ino_t ino, off_t diroff, int16_t nlink,
4056     uint16_t mode)
4057 {
4058 	struct jaddref *jaddref;
4059 
4060 	jaddref = malloc(sizeof(*jaddref), M_JADDREF, M_SOFTDEP_FLAGS);
4061 	workitem_alloc(&jaddref->ja_list, D_JADDREF, UFSTOVFS(dp->i_ump));
4062 	jaddref->ja_state = ATTACHED;
4063 	jaddref->ja_mkdir = NULL;
4064 	newinoref(&jaddref->ja_ref, ino, dp->i_number, diroff, nlink, mode);
4065 
4066 	return (jaddref);
4067 }
4068 
4069 /*
4070  * Create a new free dependency for a freework.  The caller is responsible
4071  * for adjusting the reference count when it has the lock held.  The freedep
4072  * will track an outstanding bitmap write that will ultimately clear the
4073  * freework to continue.
4074  */
4075 static struct freedep *
4076 newfreedep(struct freework *freework)
4077 {
4078 	struct freedep *freedep;
4079 
4080 	freedep = malloc(sizeof(*freedep), M_FREEDEP, M_SOFTDEP_FLAGS);
4081 	workitem_alloc(&freedep->fd_list, D_FREEDEP, freework->fw_list.wk_mp);
4082 	freedep->fd_freework = freework;
4083 
4084 	return (freedep);
4085 }
4086 
4087 /*
4088  * Free a freedep structure once the buffer it is linked to is written.  If
4089  * this is the last reference to the freework schedule it for completion.
4090  */
4091 static void
4092 free_freedep(freedep)
4093 	struct freedep *freedep;
4094 {
4095 	struct freework *freework;
4096 
4097 	freework = freedep->fd_freework;
4098 	freework->fw_freeblks->fb_cgwait--;
4099 	if (--freework->fw_ref == 0)
4100 		freework_enqueue(freework);
4101 	WORKITEM_FREE(freedep, D_FREEDEP);
4102 }
4103 
4104 /*
4105  * Allocate a new freework structure that may be a level in an indirect
4106  * when parent is not NULL or a top level block when it is.  The top level
4107  * freework structures are allocated without the per-filesystem lock held
4108  * and before the freeblks is visible outside of softdep_setup_freeblocks().
4109  */
4110 static struct freework *
4111 newfreework(ump, freeblks, parent, lbn, nb, frags, off, journal)
4112 	struct ufsmount *ump;
4113 	struct freeblks *freeblks;
4114 	struct freework *parent;
4115 	ufs_lbn_t lbn;
4116 	ufs2_daddr_t nb;
4117 	int frags;
4118 	int off;
4119 	int journal;
4120 {
4121 	struct freework *freework;
4122 
4123 	freework = malloc(sizeof(*freework), M_FREEWORK, M_SOFTDEP_FLAGS);
4124 	workitem_alloc(&freework->fw_list, D_FREEWORK, freeblks->fb_list.wk_mp);
4125 	freework->fw_state = ATTACHED;
4126 	freework->fw_jnewblk = NULL;
4127 	freework->fw_freeblks = freeblks;
4128 	freework->fw_parent = parent;
4129 	freework->fw_lbn = lbn;
4130 	freework->fw_blkno = nb;
4131 	freework->fw_frags = frags;
4132 	freework->fw_indir = NULL;
4133 	freework->fw_ref = (MOUNTEDSUJ(UFSTOVFS(ump)) == 0 || lbn >= -NXADDR)
4134 		? 0 : NINDIR(ump->um_fs) + 1;
4135 	freework->fw_start = freework->fw_off = off;
4136 	if (journal)
4137 		newjfreeblk(freeblks, lbn, nb, frags);
4138 	if (parent == NULL) {
4139 		ACQUIRE_LOCK(ump);
4140 		WORKLIST_INSERT(&freeblks->fb_freeworkhd, &freework->fw_list);
4141 		freeblks->fb_ref++;
4142 		FREE_LOCK(ump);
4143 	}
4144 
4145 	return (freework);
4146 }
4147 
4148 /*
4149  * Eliminate a jfreeblk for a block that does not need journaling.
4150  */
4151 static void
4152 cancel_jfreeblk(freeblks, blkno)
4153 	struct freeblks *freeblks;
4154 	ufs2_daddr_t blkno;
4155 {
4156 	struct jfreeblk *jfreeblk;
4157 	struct jblkdep *jblkdep;
4158 
4159 	LIST_FOREACH(jblkdep, &freeblks->fb_jblkdephd, jb_deps) {
4160 		if (jblkdep->jb_list.wk_type != D_JFREEBLK)
4161 			continue;
4162 		jfreeblk = WK_JFREEBLK(&jblkdep->jb_list);
4163 		if (jfreeblk->jf_blkno == blkno)
4164 			break;
4165 	}
4166 	if (jblkdep == NULL)
4167 		return;
4168 	CTR1(KTR_SUJ, "cancel_jfreeblk: blkno %jd", blkno);
4169 	free_jsegdep(jblkdep->jb_jsegdep);
4170 	LIST_REMOVE(jblkdep, jb_deps);
4171 	WORKITEM_FREE(jfreeblk, D_JFREEBLK);
4172 }
4173 
4174 /*
4175  * Allocate a new jfreeblk to journal top level block pointer when truncating
4176  * a file.  The caller must add this to the worklist when the per-filesystem
4177  * lock is held.
4178  */
4179 static struct jfreeblk *
4180 newjfreeblk(freeblks, lbn, blkno, frags)
4181 	struct freeblks *freeblks;
4182 	ufs_lbn_t lbn;
4183 	ufs2_daddr_t blkno;
4184 	int frags;
4185 {
4186 	struct jfreeblk *jfreeblk;
4187 
4188 	jfreeblk = malloc(sizeof(*jfreeblk), M_JFREEBLK, M_SOFTDEP_FLAGS);
4189 	workitem_alloc(&jfreeblk->jf_dep.jb_list, D_JFREEBLK,
4190 	    freeblks->fb_list.wk_mp);
4191 	jfreeblk->jf_dep.jb_jsegdep = newjsegdep(&jfreeblk->jf_dep.jb_list);
4192 	jfreeblk->jf_dep.jb_freeblks = freeblks;
4193 	jfreeblk->jf_ino = freeblks->fb_inum;
4194 	jfreeblk->jf_lbn = lbn;
4195 	jfreeblk->jf_blkno = blkno;
4196 	jfreeblk->jf_frags = frags;
4197 	LIST_INSERT_HEAD(&freeblks->fb_jblkdephd, &jfreeblk->jf_dep, jb_deps);
4198 
4199 	return (jfreeblk);
4200 }
4201 
4202 /*
4203  * The journal is only prepared to handle full-size block numbers, so we
4204  * have to adjust the record to reflect the change to a full-size block.
4205  * For example, suppose we have a block made up of fragments 8-15 and
4206  * want to free its last two fragments. We are given a request that says:
4207  *     FREEBLK ino=5, blkno=14, lbn=0, frags=2, oldfrags=0
4208  * where frags are the number of fragments to free and oldfrags are the
4209  * number of fragments to keep. To block align it, we have to change it to
4210  * have a valid full-size blkno, so it becomes:
4211  *     FREEBLK ino=5, blkno=8, lbn=0, frags=2, oldfrags=6
4212  */
4213 static void
4214 adjust_newfreework(freeblks, frag_offset)
4215 	struct freeblks *freeblks;
4216 	int frag_offset;
4217 {
4218 	struct jfreeblk *jfreeblk;
4219 
4220 	KASSERT((LIST_FIRST(&freeblks->fb_jblkdephd) != NULL &&
4221 	    LIST_FIRST(&freeblks->fb_jblkdephd)->jb_list.wk_type == D_JFREEBLK),
4222 	    ("adjust_newfreework: Missing freeblks dependency"));
4223 
4224 	jfreeblk = WK_JFREEBLK(LIST_FIRST(&freeblks->fb_jblkdephd));
4225 	jfreeblk->jf_blkno -= frag_offset;
4226 	jfreeblk->jf_frags += frag_offset;
4227 }
4228 
4229 /*
4230  * Allocate a new jtrunc to track a partial truncation.
4231  */
4232 static struct jtrunc *
4233 newjtrunc(freeblks, size, extsize)
4234 	struct freeblks *freeblks;
4235 	off_t size;
4236 	int extsize;
4237 {
4238 	struct jtrunc *jtrunc;
4239 
4240 	jtrunc = malloc(sizeof(*jtrunc), M_JTRUNC, M_SOFTDEP_FLAGS);
4241 	workitem_alloc(&jtrunc->jt_dep.jb_list, D_JTRUNC,
4242 	    freeblks->fb_list.wk_mp);
4243 	jtrunc->jt_dep.jb_jsegdep = newjsegdep(&jtrunc->jt_dep.jb_list);
4244 	jtrunc->jt_dep.jb_freeblks = freeblks;
4245 	jtrunc->jt_ino = freeblks->fb_inum;
4246 	jtrunc->jt_size = size;
4247 	jtrunc->jt_extsize = extsize;
4248 	LIST_INSERT_HEAD(&freeblks->fb_jblkdephd, &jtrunc->jt_dep, jb_deps);
4249 
4250 	return (jtrunc);
4251 }
4252 
4253 /*
4254  * If we're canceling a new bitmap we have to search for another ref
4255  * to move into the bmsafemap dep.  This might be better expressed
4256  * with another structure.
4257  */
4258 static void
4259 move_newblock_dep(jaddref, inodedep)
4260 	struct jaddref *jaddref;
4261 	struct inodedep *inodedep;
4262 {
4263 	struct inoref *inoref;
4264 	struct jaddref *jaddrefn;
4265 
4266 	jaddrefn = NULL;
4267 	for (inoref = TAILQ_NEXT(&jaddref->ja_ref, if_deps); inoref;
4268 	    inoref = TAILQ_NEXT(inoref, if_deps)) {
4269 		if ((jaddref->ja_state & NEWBLOCK) &&
4270 		    inoref->if_list.wk_type == D_JADDREF) {
4271 			jaddrefn = (struct jaddref *)inoref;
4272 			break;
4273 		}
4274 	}
4275 	if (jaddrefn == NULL)
4276 		return;
4277 	jaddrefn->ja_state &= ~(ATTACHED | UNDONE);
4278 	jaddrefn->ja_state |= jaddref->ja_state &
4279 	    (ATTACHED | UNDONE | NEWBLOCK);
4280 	jaddref->ja_state &= ~(ATTACHED | UNDONE | NEWBLOCK);
4281 	jaddref->ja_state |= ATTACHED;
4282 	LIST_REMOVE(jaddref, ja_bmdeps);
4283 	LIST_INSERT_HEAD(&inodedep->id_bmsafemap->sm_jaddrefhd, jaddrefn,
4284 	    ja_bmdeps);
4285 }
4286 
4287 /*
4288  * Cancel a jaddref either before it has been written or while it is being
4289  * written.  This happens when a link is removed before the add reaches
4290  * the disk.  The jaddref dependency is kept linked into the bmsafemap
4291  * and inode to prevent the link count or bitmap from reaching the disk
4292  * until handle_workitem_remove() re-adjusts the counts and bitmaps as
4293  * required.
4294  *
4295  * Returns 1 if the canceled addref requires journaling of the remove and
4296  * 0 otherwise.
4297  */
4298 static int
4299 cancel_jaddref(jaddref, inodedep, wkhd)
4300 	struct jaddref *jaddref;
4301 	struct inodedep *inodedep;
4302 	struct workhead *wkhd;
4303 {
4304 	struct inoref *inoref;
4305 	struct jsegdep *jsegdep;
4306 	int needsj;
4307 
4308 	KASSERT((jaddref->ja_state & COMPLETE) == 0,
4309 	    ("cancel_jaddref: Canceling complete jaddref"));
4310 	if (jaddref->ja_state & (INPROGRESS | COMPLETE))
4311 		needsj = 1;
4312 	else
4313 		needsj = 0;
4314 	if (inodedep == NULL)
4315 		if (inodedep_lookup(jaddref->ja_list.wk_mp, jaddref->ja_ino,
4316 		    0, &inodedep) == 0)
4317 			panic("cancel_jaddref: Lost inodedep");
4318 	/*
4319 	 * We must adjust the nlink of any reference operation that follows
4320 	 * us so that it is consistent with the in-memory reference.  This
4321 	 * ensures that inode nlink rollbacks always have the correct link.
4322 	 */
4323 	if (needsj == 0) {
4324 		for (inoref = TAILQ_NEXT(&jaddref->ja_ref, if_deps); inoref;
4325 		    inoref = TAILQ_NEXT(inoref, if_deps)) {
4326 			if (inoref->if_state & GOINGAWAY)
4327 				break;
4328 			inoref->if_nlink--;
4329 		}
4330 	}
4331 	jsegdep = inoref_jseg(&jaddref->ja_ref);
4332 	if (jaddref->ja_state & NEWBLOCK)
4333 		move_newblock_dep(jaddref, inodedep);
4334 	wake_worklist(&jaddref->ja_list);
4335 	jaddref->ja_mkdir = NULL;
4336 	if (jaddref->ja_state & INPROGRESS) {
4337 		jaddref->ja_state &= ~INPROGRESS;
4338 		WORKLIST_REMOVE(&jaddref->ja_list);
4339 		jwork_insert(wkhd, jsegdep);
4340 	} else {
4341 		free_jsegdep(jsegdep);
4342 		if (jaddref->ja_state & DEPCOMPLETE)
4343 			remove_from_journal(&jaddref->ja_list);
4344 	}
4345 	jaddref->ja_state |= (GOINGAWAY | DEPCOMPLETE);
4346 	/*
4347 	 * Leave NEWBLOCK jaddrefs on the inodedep so handle_workitem_remove
4348 	 * can arrange for them to be freed with the bitmap.  Otherwise we
4349 	 * no longer need this addref attached to the inoreflst and it
4350 	 * will incorrectly adjust nlink if we leave it.
4351 	 */
4352 	if ((jaddref->ja_state & NEWBLOCK) == 0) {
4353 		TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref,
4354 		    if_deps);
4355 		jaddref->ja_state |= COMPLETE;
4356 		free_jaddref(jaddref);
4357 		return (needsj);
4358 	}
4359 	/*
4360 	 * Leave the head of the list for jsegdeps for fast merging.
4361 	 */
4362 	if (LIST_FIRST(wkhd) != NULL) {
4363 		jaddref->ja_state |= ONWORKLIST;
4364 		LIST_INSERT_AFTER(LIST_FIRST(wkhd), &jaddref->ja_list, wk_list);
4365 	} else
4366 		WORKLIST_INSERT(wkhd, &jaddref->ja_list);
4367 
4368 	return (needsj);
4369 }
4370 
4371 /*
4372  * Attempt to free a jaddref structure when some work completes.  This
4373  * should only succeed once the entry is written and all dependencies have
4374  * been notified.
4375  */
4376 static void
4377 free_jaddref(jaddref)
4378 	struct jaddref *jaddref;
4379 {
4380 
4381 	if ((jaddref->ja_state & ALLCOMPLETE) != ALLCOMPLETE)
4382 		return;
4383 	if (jaddref->ja_ref.if_jsegdep)
4384 		panic("free_jaddref: segdep attached to jaddref %p(0x%X)\n",
4385 		    jaddref, jaddref->ja_state);
4386 	if (jaddref->ja_state & NEWBLOCK)
4387 		LIST_REMOVE(jaddref, ja_bmdeps);
4388 	if (jaddref->ja_state & (INPROGRESS | ONWORKLIST))
4389 		panic("free_jaddref: Bad state %p(0x%X)",
4390 		    jaddref, jaddref->ja_state);
4391 	if (jaddref->ja_mkdir != NULL)
4392 		panic("free_jaddref: Work pending, 0x%X\n", jaddref->ja_state);
4393 	WORKITEM_FREE(jaddref, D_JADDREF);
4394 }
4395 
4396 /*
4397  * Free a jremref structure once it has been written or discarded.
4398  */
4399 static void
4400 free_jremref(jremref)
4401 	struct jremref *jremref;
4402 {
4403 
4404 	if (jremref->jr_ref.if_jsegdep)
4405 		free_jsegdep(jremref->jr_ref.if_jsegdep);
4406 	if (jremref->jr_state & INPROGRESS)
4407 		panic("free_jremref: IO still pending");
4408 	WORKITEM_FREE(jremref, D_JREMREF);
4409 }
4410 
4411 /*
4412  * Free a jnewblk structure.
4413  */
4414 static void
4415 free_jnewblk(jnewblk)
4416 	struct jnewblk *jnewblk;
4417 {
4418 
4419 	if ((jnewblk->jn_state & ALLCOMPLETE) != ALLCOMPLETE)
4420 		return;
4421 	LIST_REMOVE(jnewblk, jn_deps);
4422 	if (jnewblk->jn_dep != NULL)
4423 		panic("free_jnewblk: Dependency still attached.");
4424 	WORKITEM_FREE(jnewblk, D_JNEWBLK);
4425 }
4426 
4427 /*
4428  * Cancel a jnewblk which has been been made redundant by frag extension.
4429  */
4430 static void
4431 cancel_jnewblk(jnewblk, wkhd)
4432 	struct jnewblk *jnewblk;
4433 	struct workhead *wkhd;
4434 {
4435 	struct jsegdep *jsegdep;
4436 
4437 	CTR1(KTR_SUJ, "cancel_jnewblk: blkno %jd", jnewblk->jn_blkno);
4438 	jsegdep = jnewblk->jn_jsegdep;
4439 	if (jnewblk->jn_jsegdep == NULL || jnewblk->jn_dep == NULL)
4440 		panic("cancel_jnewblk: Invalid state");
4441 	jnewblk->jn_jsegdep  = NULL;
4442 	jnewblk->jn_dep = NULL;
4443 	jnewblk->jn_state |= GOINGAWAY;
4444 	if (jnewblk->jn_state & INPROGRESS) {
4445 		jnewblk->jn_state &= ~INPROGRESS;
4446 		WORKLIST_REMOVE(&jnewblk->jn_list);
4447 		jwork_insert(wkhd, jsegdep);
4448 	} else {
4449 		free_jsegdep(jsegdep);
4450 		remove_from_journal(&jnewblk->jn_list);
4451 	}
4452 	wake_worklist(&jnewblk->jn_list);
4453 	WORKLIST_INSERT(wkhd, &jnewblk->jn_list);
4454 }
4455 
4456 static void
4457 free_jblkdep(jblkdep)
4458 	struct jblkdep *jblkdep;
4459 {
4460 
4461 	if (jblkdep->jb_list.wk_type == D_JFREEBLK)
4462 		WORKITEM_FREE(jblkdep, D_JFREEBLK);
4463 	else if (jblkdep->jb_list.wk_type == D_JTRUNC)
4464 		WORKITEM_FREE(jblkdep, D_JTRUNC);
4465 	else
4466 		panic("free_jblkdep: Unexpected type %s",
4467 		    TYPENAME(jblkdep->jb_list.wk_type));
4468 }
4469 
4470 /*
4471  * Free a single jseg once it is no longer referenced in memory or on
4472  * disk.  Reclaim journal blocks and dependencies waiting for the segment
4473  * to disappear.
4474  */
4475 static void
4476 free_jseg(jseg, jblocks)
4477 	struct jseg *jseg;
4478 	struct jblocks *jblocks;
4479 {
4480 	struct freework *freework;
4481 
4482 	/*
4483 	 * Free freework structures that were lingering to indicate freed
4484 	 * indirect blocks that forced journal write ordering on reallocate.
4485 	 */
4486 	while ((freework = LIST_FIRST(&jseg->js_indirs)) != NULL)
4487 		indirblk_remove(freework);
4488 	if (jblocks->jb_oldestseg == jseg)
4489 		jblocks->jb_oldestseg = TAILQ_NEXT(jseg, js_next);
4490 	TAILQ_REMOVE(&jblocks->jb_segs, jseg, js_next);
4491 	jblocks_free(jblocks, jseg->js_list.wk_mp, jseg->js_size);
4492 	KASSERT(LIST_EMPTY(&jseg->js_entries),
4493 	    ("free_jseg: Freed jseg has valid entries."));
4494 	WORKITEM_FREE(jseg, D_JSEG);
4495 }
4496 
4497 /*
4498  * Free all jsegs that meet the criteria for being reclaimed and update
4499  * oldestseg.
4500  */
4501 static void
4502 free_jsegs(jblocks)
4503 	struct jblocks *jblocks;
4504 {
4505 	struct jseg *jseg;
4506 
4507 	/*
4508 	 * Free only those jsegs which have none allocated before them to
4509 	 * preserve the journal space ordering.
4510 	 */
4511 	while ((jseg = TAILQ_FIRST(&jblocks->jb_segs)) != NULL) {
4512 		/*
4513 		 * Only reclaim space when nothing depends on this journal
4514 		 * set and another set has written that it is no longer
4515 		 * valid.
4516 		 */
4517 		if (jseg->js_refs != 0) {
4518 			jblocks->jb_oldestseg = jseg;
4519 			return;
4520 		}
4521 		if ((jseg->js_state & ALLCOMPLETE) != ALLCOMPLETE)
4522 			break;
4523 		if (jseg->js_seq > jblocks->jb_oldestwrseq)
4524 			break;
4525 		/*
4526 		 * We can free jsegs that didn't write entries when
4527 		 * oldestwrseq == js_seq.
4528 		 */
4529 		if (jseg->js_seq == jblocks->jb_oldestwrseq &&
4530 		    jseg->js_cnt != 0)
4531 			break;
4532 		free_jseg(jseg, jblocks);
4533 	}
4534 	/*
4535 	 * If we exited the loop above we still must discover the
4536 	 * oldest valid segment.
4537 	 */
4538 	if (jseg)
4539 		for (jseg = jblocks->jb_oldestseg; jseg != NULL;
4540 		     jseg = TAILQ_NEXT(jseg, js_next))
4541 			if (jseg->js_refs != 0)
4542 				break;
4543 	jblocks->jb_oldestseg = jseg;
4544 	/*
4545 	 * The journal has no valid records but some jsegs may still be
4546 	 * waiting on oldestwrseq to advance.  We force a small record
4547 	 * out to permit these lingering records to be reclaimed.
4548 	 */
4549 	if (jblocks->jb_oldestseg == NULL && !TAILQ_EMPTY(&jblocks->jb_segs))
4550 		jblocks->jb_needseg = 1;
4551 }
4552 
4553 /*
4554  * Release one reference to a jseg and free it if the count reaches 0.  This
4555  * should eventually reclaim journal space as well.
4556  */
4557 static void
4558 rele_jseg(jseg)
4559 	struct jseg *jseg;
4560 {
4561 
4562 	KASSERT(jseg->js_refs > 0,
4563 	    ("free_jseg: Invalid refcnt %d", jseg->js_refs));
4564 	if (--jseg->js_refs != 0)
4565 		return;
4566 	free_jsegs(jseg->js_jblocks);
4567 }
4568 
4569 /*
4570  * Release a jsegdep and decrement the jseg count.
4571  */
4572 static void
4573 free_jsegdep(jsegdep)
4574 	struct jsegdep *jsegdep;
4575 {
4576 
4577 	if (jsegdep->jd_seg)
4578 		rele_jseg(jsegdep->jd_seg);
4579 	WORKITEM_FREE(jsegdep, D_JSEGDEP);
4580 }
4581 
4582 /*
4583  * Wait for a journal item to make it to disk.  Initiate journal processing
4584  * if required.
4585  */
4586 static int
4587 jwait(wk, waitfor)
4588 	struct worklist *wk;
4589 	int waitfor;
4590 {
4591 
4592 	LOCK_OWNED(VFSTOUFS(wk->wk_mp));
4593 	/*
4594 	 * Blocking journal waits cause slow synchronous behavior.  Record
4595 	 * stats on the frequency of these blocking operations.
4596 	 */
4597 	if (waitfor == MNT_WAIT) {
4598 		stat_journal_wait++;
4599 		switch (wk->wk_type) {
4600 		case D_JREMREF:
4601 		case D_JMVREF:
4602 			stat_jwait_filepage++;
4603 			break;
4604 		case D_JTRUNC:
4605 		case D_JFREEBLK:
4606 			stat_jwait_freeblks++;
4607 			break;
4608 		case D_JNEWBLK:
4609 			stat_jwait_newblk++;
4610 			break;
4611 		case D_JADDREF:
4612 			stat_jwait_inode++;
4613 			break;
4614 		default:
4615 			break;
4616 		}
4617 	}
4618 	/*
4619 	 * If IO has not started we process the journal.  We can't mark the
4620 	 * worklist item as IOWAITING because we drop the lock while
4621 	 * processing the journal and the worklist entry may be freed after
4622 	 * this point.  The caller may call back in and re-issue the request.
4623 	 */
4624 	if ((wk->wk_state & INPROGRESS) == 0) {
4625 		softdep_process_journal(wk->wk_mp, wk, waitfor);
4626 		if (waitfor != MNT_WAIT)
4627 			return (EBUSY);
4628 		return (0);
4629 	}
4630 	if (waitfor != MNT_WAIT)
4631 		return (EBUSY);
4632 	wait_worklist(wk, "jwait");
4633 	return (0);
4634 }
4635 
4636 /*
4637  * Lookup an inodedep based on an inode pointer and set the nlinkdelta as
4638  * appropriate.  This is a convenience function to reduce duplicate code
4639  * for the setup and revert functions below.
4640  */
4641 static struct inodedep *
4642 inodedep_lookup_ip(ip)
4643 	struct inode *ip;
4644 {
4645 	struct inodedep *inodedep;
4646 
4647 	KASSERT(ip->i_nlink >= ip->i_effnlink,
4648 	    ("inodedep_lookup_ip: bad delta"));
4649 	(void) inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, DEPALLOC,
4650 	    &inodedep);
4651 	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
4652 	KASSERT((inodedep->id_state & UNLINKED) == 0, ("inode unlinked"));
4653 
4654 	return (inodedep);
4655 }
4656 
4657 /*
4658  * Called prior to creating a new inode and linking it to a directory.  The
4659  * jaddref structure must already be allocated by softdep_setup_inomapdep
4660  * and it is discovered here so we can initialize the mode and update
4661  * nlinkdelta.
4662  */
4663 void
4664 softdep_setup_create(dp, ip)
4665 	struct inode *dp;
4666 	struct inode *ip;
4667 {
4668 	struct inodedep *inodedep;
4669 	struct jaddref *jaddref;
4670 	struct vnode *dvp;
4671 
4672 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0,
4673 	    ("softdep_setup_create called on non-softdep filesystem"));
4674 	KASSERT(ip->i_nlink == 1,
4675 	    ("softdep_setup_create: Invalid link count."));
4676 	dvp = ITOV(dp);
4677 	ACQUIRE_LOCK(dp->i_ump);
4678 	inodedep = inodedep_lookup_ip(ip);
4679 	if (DOINGSUJ(dvp)) {
4680 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4681 		    inoreflst);
4682 		KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number,
4683 		    ("softdep_setup_create: No addref structure present."));
4684 	}
4685 	softdep_prelink(dvp, NULL);
4686 	FREE_LOCK(dp->i_ump);
4687 }
4688 
4689 /*
4690  * Create a jaddref structure to track the addition of a DOTDOT link when
4691  * we are reparenting an inode as part of a rename.  This jaddref will be
4692  * found by softdep_setup_directory_change.  Adjusts nlinkdelta for
4693  * non-journaling softdep.
4694  */
4695 void
4696 softdep_setup_dotdot_link(dp, ip)
4697 	struct inode *dp;
4698 	struct inode *ip;
4699 {
4700 	struct inodedep *inodedep;
4701 	struct jaddref *jaddref;
4702 	struct vnode *dvp;
4703 
4704 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0,
4705 	    ("softdep_setup_dotdot_link called on non-softdep filesystem"));
4706 	dvp = ITOV(dp);
4707 	jaddref = NULL;
4708 	/*
4709 	 * We don't set MKDIR_PARENT as this is not tied to a mkdir and
4710 	 * is used as a normal link would be.
4711 	 */
4712 	if (DOINGSUJ(dvp))
4713 		jaddref = newjaddref(ip, dp->i_number, DOTDOT_OFFSET,
4714 		    dp->i_effnlink - 1, dp->i_mode);
4715 	ACQUIRE_LOCK(dp->i_ump);
4716 	inodedep = inodedep_lookup_ip(dp);
4717 	if (jaddref)
4718 		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref,
4719 		    if_deps);
4720 	softdep_prelink(dvp, ITOV(ip));
4721 	FREE_LOCK(dp->i_ump);
4722 }
4723 
4724 /*
4725  * Create a jaddref structure to track a new link to an inode.  The directory
4726  * offset is not known until softdep_setup_directory_add or
4727  * softdep_setup_directory_change.  Adjusts nlinkdelta for non-journaling
4728  * softdep.
4729  */
4730 void
4731 softdep_setup_link(dp, ip)
4732 	struct inode *dp;
4733 	struct inode *ip;
4734 {
4735 	struct inodedep *inodedep;
4736 	struct jaddref *jaddref;
4737 	struct vnode *dvp;
4738 
4739 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0,
4740 	    ("softdep_setup_link called on non-softdep filesystem"));
4741 	dvp = ITOV(dp);
4742 	jaddref = NULL;
4743 	if (DOINGSUJ(dvp))
4744 		jaddref = newjaddref(dp, ip->i_number, 0, ip->i_effnlink - 1,
4745 		    ip->i_mode);
4746 	ACQUIRE_LOCK(dp->i_ump);
4747 	inodedep = inodedep_lookup_ip(ip);
4748 	if (jaddref)
4749 		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref,
4750 		    if_deps);
4751 	softdep_prelink(dvp, ITOV(ip));
4752 	FREE_LOCK(dp->i_ump);
4753 }
4754 
4755 /*
4756  * Called to create the jaddref structures to track . and .. references as
4757  * well as lookup and further initialize the incomplete jaddref created
4758  * by softdep_setup_inomapdep when the inode was allocated.  Adjusts
4759  * nlinkdelta for non-journaling softdep.
4760  */
4761 void
4762 softdep_setup_mkdir(dp, ip)
4763 	struct inode *dp;
4764 	struct inode *ip;
4765 {
4766 	struct inodedep *inodedep;
4767 	struct jaddref *dotdotaddref;
4768 	struct jaddref *dotaddref;
4769 	struct jaddref *jaddref;
4770 	struct vnode *dvp;
4771 
4772 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0,
4773 	    ("softdep_setup_mkdir called on non-softdep filesystem"));
4774 	dvp = ITOV(dp);
4775 	dotaddref = dotdotaddref = NULL;
4776 	if (DOINGSUJ(dvp)) {
4777 		dotaddref = newjaddref(ip, ip->i_number, DOT_OFFSET, 1,
4778 		    ip->i_mode);
4779 		dotaddref->ja_state |= MKDIR_BODY;
4780 		dotdotaddref = newjaddref(ip, dp->i_number, DOTDOT_OFFSET,
4781 		    dp->i_effnlink - 1, dp->i_mode);
4782 		dotdotaddref->ja_state |= MKDIR_PARENT;
4783 	}
4784 	ACQUIRE_LOCK(dp->i_ump);
4785 	inodedep = inodedep_lookup_ip(ip);
4786 	if (DOINGSUJ(dvp)) {
4787 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4788 		    inoreflst);
4789 		KASSERT(jaddref != NULL,
4790 		    ("softdep_setup_mkdir: No addref structure present."));
4791 		KASSERT(jaddref->ja_parent == dp->i_number,
4792 		    ("softdep_setup_mkdir: bad parent %ju",
4793 		    (uintmax_t)jaddref->ja_parent));
4794 		TAILQ_INSERT_BEFORE(&jaddref->ja_ref, &dotaddref->ja_ref,
4795 		    if_deps);
4796 	}
4797 	inodedep = inodedep_lookup_ip(dp);
4798 	if (DOINGSUJ(dvp))
4799 		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst,
4800 		    &dotdotaddref->ja_ref, if_deps);
4801 	softdep_prelink(ITOV(dp), NULL);
4802 	FREE_LOCK(dp->i_ump);
4803 }
4804 
4805 /*
4806  * Called to track nlinkdelta of the inode and parent directories prior to
4807  * unlinking a directory.
4808  */
4809 void
4810 softdep_setup_rmdir(dp, ip)
4811 	struct inode *dp;
4812 	struct inode *ip;
4813 {
4814 	struct vnode *dvp;
4815 
4816 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0,
4817 	    ("softdep_setup_rmdir called on non-softdep filesystem"));
4818 	dvp = ITOV(dp);
4819 	ACQUIRE_LOCK(dp->i_ump);
4820 	(void) inodedep_lookup_ip(ip);
4821 	(void) inodedep_lookup_ip(dp);
4822 	softdep_prelink(dvp, ITOV(ip));
4823 	FREE_LOCK(dp->i_ump);
4824 }
4825 
4826 /*
4827  * Called to track nlinkdelta of the inode and parent directories prior to
4828  * unlink.
4829  */
4830 void
4831 softdep_setup_unlink(dp, ip)
4832 	struct inode *dp;
4833 	struct inode *ip;
4834 {
4835 	struct vnode *dvp;
4836 
4837 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0,
4838 	    ("softdep_setup_unlink called on non-softdep filesystem"));
4839 	dvp = ITOV(dp);
4840 	ACQUIRE_LOCK(dp->i_ump);
4841 	(void) inodedep_lookup_ip(ip);
4842 	(void) inodedep_lookup_ip(dp);
4843 	softdep_prelink(dvp, ITOV(ip));
4844 	FREE_LOCK(dp->i_ump);
4845 }
4846 
4847 /*
4848  * Called to release the journal structures created by a failed non-directory
4849  * creation.  Adjusts nlinkdelta for non-journaling softdep.
4850  */
4851 void
4852 softdep_revert_create(dp, ip)
4853 	struct inode *dp;
4854 	struct inode *ip;
4855 {
4856 	struct inodedep *inodedep;
4857 	struct jaddref *jaddref;
4858 	struct vnode *dvp;
4859 
4860 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0,
4861 	    ("softdep_revert_create called on non-softdep filesystem"));
4862 	dvp = ITOV(dp);
4863 	ACQUIRE_LOCK(dp->i_ump);
4864 	inodedep = inodedep_lookup_ip(ip);
4865 	if (DOINGSUJ(dvp)) {
4866 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4867 		    inoreflst);
4868 		KASSERT(jaddref->ja_parent == dp->i_number,
4869 		    ("softdep_revert_create: addref parent mismatch"));
4870 		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4871 	}
4872 	FREE_LOCK(dp->i_ump);
4873 }
4874 
4875 /*
4876  * Called to release the journal structures created by a failed link
4877  * addition.  Adjusts nlinkdelta for non-journaling softdep.
4878  */
4879 void
4880 softdep_revert_link(dp, ip)
4881 	struct inode *dp;
4882 	struct inode *ip;
4883 {
4884 	struct inodedep *inodedep;
4885 	struct jaddref *jaddref;
4886 	struct vnode *dvp;
4887 
4888 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0,
4889 	    ("softdep_revert_link called on non-softdep filesystem"));
4890 	dvp = ITOV(dp);
4891 	ACQUIRE_LOCK(dp->i_ump);
4892 	inodedep = inodedep_lookup_ip(ip);
4893 	if (DOINGSUJ(dvp)) {
4894 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4895 		    inoreflst);
4896 		KASSERT(jaddref->ja_parent == dp->i_number,
4897 		    ("softdep_revert_link: addref parent mismatch"));
4898 		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4899 	}
4900 	FREE_LOCK(dp->i_ump);
4901 }
4902 
4903 /*
4904  * Called to release the journal structures created by a failed mkdir
4905  * attempt.  Adjusts nlinkdelta for non-journaling softdep.
4906  */
4907 void
4908 softdep_revert_mkdir(dp, ip)
4909 	struct inode *dp;
4910 	struct inode *ip;
4911 {
4912 	struct inodedep *inodedep;
4913 	struct jaddref *jaddref;
4914 	struct jaddref *dotaddref;
4915 	struct vnode *dvp;
4916 
4917 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0,
4918 	    ("softdep_revert_mkdir called on non-softdep filesystem"));
4919 	dvp = ITOV(dp);
4920 
4921 	ACQUIRE_LOCK(dp->i_ump);
4922 	inodedep = inodedep_lookup_ip(dp);
4923 	if (DOINGSUJ(dvp)) {
4924 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4925 		    inoreflst);
4926 		KASSERT(jaddref->ja_parent == ip->i_number,
4927 		    ("softdep_revert_mkdir: dotdot addref parent mismatch"));
4928 		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4929 	}
4930 	inodedep = inodedep_lookup_ip(ip);
4931 	if (DOINGSUJ(dvp)) {
4932 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4933 		    inoreflst);
4934 		KASSERT(jaddref->ja_parent == dp->i_number,
4935 		    ("softdep_revert_mkdir: addref parent mismatch"));
4936 		dotaddref = (struct jaddref *)TAILQ_PREV(&jaddref->ja_ref,
4937 		    inoreflst, if_deps);
4938 		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4939 		KASSERT(dotaddref->ja_parent == ip->i_number,
4940 		    ("softdep_revert_mkdir: dot addref parent mismatch"));
4941 		cancel_jaddref(dotaddref, inodedep, &inodedep->id_inowait);
4942 	}
4943 	FREE_LOCK(dp->i_ump);
4944 }
4945 
4946 /*
4947  * Called to correct nlinkdelta after a failed rmdir.
4948  */
4949 void
4950 softdep_revert_rmdir(dp, ip)
4951 	struct inode *dp;
4952 	struct inode *ip;
4953 {
4954 
4955 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(dp->i_ump)) != 0,
4956 	    ("softdep_revert_rmdir called on non-softdep filesystem"));
4957 	ACQUIRE_LOCK(dp->i_ump);
4958 	(void) inodedep_lookup_ip(ip);
4959 	(void) inodedep_lookup_ip(dp);
4960 	FREE_LOCK(dp->i_ump);
4961 }
4962 
4963 /*
4964  * Protecting the freemaps (or bitmaps).
4965  *
4966  * To eliminate the need to execute fsck before mounting a filesystem
4967  * after a power failure, one must (conservatively) guarantee that the
4968  * on-disk copy of the bitmaps never indicate that a live inode or block is
4969  * free.  So, when a block or inode is allocated, the bitmap should be
4970  * updated (on disk) before any new pointers.  When a block or inode is
4971  * freed, the bitmap should not be updated until all pointers have been
4972  * reset.  The latter dependency is handled by the delayed de-allocation
4973  * approach described below for block and inode de-allocation.  The former
4974  * dependency is handled by calling the following procedure when a block or
4975  * inode is allocated. When an inode is allocated an "inodedep" is created
4976  * with its DEPCOMPLETE flag cleared until its bitmap is written to disk.
4977  * Each "inodedep" is also inserted into the hash indexing structure so
4978  * that any additional link additions can be made dependent on the inode
4979  * allocation.
4980  *
4981  * The ufs filesystem maintains a number of free block counts (e.g., per
4982  * cylinder group, per cylinder and per <cylinder, rotational position> pair)
4983  * in addition to the bitmaps.  These counts are used to improve efficiency
4984  * during allocation and therefore must be consistent with the bitmaps.
4985  * There is no convenient way to guarantee post-crash consistency of these
4986  * counts with simple update ordering, for two main reasons: (1) The counts
4987  * and bitmaps for a single cylinder group block are not in the same disk
4988  * sector.  If a disk write is interrupted (e.g., by power failure), one may
4989  * be written and the other not.  (2) Some of the counts are located in the
4990  * superblock rather than the cylinder group block. So, we focus our soft
4991  * updates implementation on protecting the bitmaps. When mounting a
4992  * filesystem, we recompute the auxiliary counts from the bitmaps.
4993  */
4994 
4995 /*
4996  * Called just after updating the cylinder group block to allocate an inode.
4997  */
4998 void
4999 softdep_setup_inomapdep(bp, ip, newinum, mode)
5000 	struct buf *bp;		/* buffer for cylgroup block with inode map */
5001 	struct inode *ip;	/* inode related to allocation */
5002 	ino_t newinum;		/* new inode number being allocated */
5003 	int mode;
5004 {
5005 	struct inodedep *inodedep;
5006 	struct bmsafemap *bmsafemap;
5007 	struct jaddref *jaddref;
5008 	struct mount *mp;
5009 	struct fs *fs;
5010 
5011 	mp = UFSTOVFS(ip->i_ump);
5012 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
5013 	    ("softdep_setup_inomapdep called on non-softdep filesystem"));
5014 	fs = ip->i_ump->um_fs;
5015 	jaddref = NULL;
5016 
5017 	/*
5018 	 * Allocate the journal reference add structure so that the bitmap
5019 	 * can be dependent on it.
5020 	 */
5021 	if (MOUNTEDSUJ(mp)) {
5022 		jaddref = newjaddref(ip, newinum, 0, 0, mode);
5023 		jaddref->ja_state |= NEWBLOCK;
5024 	}
5025 
5026 	/*
5027 	 * Create a dependency for the newly allocated inode.
5028 	 * Panic if it already exists as something is seriously wrong.
5029 	 * Otherwise add it to the dependency list for the buffer holding
5030 	 * the cylinder group map from which it was allocated.
5031 	 *
5032 	 * We have to preallocate a bmsafemap entry in case it is needed
5033 	 * in bmsafemap_lookup since once we allocate the inodedep, we
5034 	 * have to finish initializing it before we can FREE_LOCK().
5035 	 * By preallocating, we avoid FREE_LOCK() while doing a malloc
5036 	 * in bmsafemap_lookup. We cannot call bmsafemap_lookup before
5037 	 * creating the inodedep as it can be freed during the time
5038 	 * that we FREE_LOCK() while allocating the inodedep. We must
5039 	 * call workitem_alloc() before entering the locked section as
5040 	 * it also acquires the lock and we must avoid trying doing so
5041 	 * recursively.
5042 	 */
5043 	bmsafemap = malloc(sizeof(struct bmsafemap),
5044 	    M_BMSAFEMAP, M_SOFTDEP_FLAGS);
5045 	workitem_alloc(&bmsafemap->sm_list, D_BMSAFEMAP, mp);
5046 	ACQUIRE_LOCK(ip->i_ump);
5047 	if ((inodedep_lookup(mp, newinum, DEPALLOC, &inodedep)))
5048 		panic("softdep_setup_inomapdep: dependency %p for new"
5049 		    "inode already exists", inodedep);
5050 	bmsafemap = bmsafemap_lookup(mp, bp, ino_to_cg(fs, newinum), bmsafemap);
5051 	if (jaddref) {
5052 		LIST_INSERT_HEAD(&bmsafemap->sm_jaddrefhd, jaddref, ja_bmdeps);
5053 		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref,
5054 		    if_deps);
5055 	} else {
5056 		inodedep->id_state |= ONDEPLIST;
5057 		LIST_INSERT_HEAD(&bmsafemap->sm_inodedephd, inodedep, id_deps);
5058 	}
5059 	inodedep->id_bmsafemap = bmsafemap;
5060 	inodedep->id_state &= ~DEPCOMPLETE;
5061 	FREE_LOCK(ip->i_ump);
5062 }
5063 
5064 /*
5065  * Called just after updating the cylinder group block to
5066  * allocate block or fragment.
5067  */
5068 void
5069 softdep_setup_blkmapdep(bp, mp, newblkno, frags, oldfrags)
5070 	struct buf *bp;		/* buffer for cylgroup block with block map */
5071 	struct mount *mp;	/* filesystem doing allocation */
5072 	ufs2_daddr_t newblkno;	/* number of newly allocated block */
5073 	int frags;		/* Number of fragments. */
5074 	int oldfrags;		/* Previous number of fragments for extend. */
5075 {
5076 	struct newblk *newblk;
5077 	struct bmsafemap *bmsafemap;
5078 	struct jnewblk *jnewblk;
5079 	struct ufsmount *ump;
5080 	struct fs *fs;
5081 
5082 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
5083 	    ("softdep_setup_blkmapdep called on non-softdep filesystem"));
5084 	ump = VFSTOUFS(mp);
5085 	fs = ump->um_fs;
5086 	jnewblk = NULL;
5087 	/*
5088 	 * Create a dependency for the newly allocated block.
5089 	 * Add it to the dependency list for the buffer holding
5090 	 * the cylinder group map from which it was allocated.
5091 	 */
5092 	if (MOUNTEDSUJ(mp)) {
5093 		jnewblk = malloc(sizeof(*jnewblk), M_JNEWBLK, M_SOFTDEP_FLAGS);
5094 		workitem_alloc(&jnewblk->jn_list, D_JNEWBLK, mp);
5095 		jnewblk->jn_jsegdep = newjsegdep(&jnewblk->jn_list);
5096 		jnewblk->jn_state = ATTACHED;
5097 		jnewblk->jn_blkno = newblkno;
5098 		jnewblk->jn_frags = frags;
5099 		jnewblk->jn_oldfrags = oldfrags;
5100 #ifdef SUJ_DEBUG
5101 		{
5102 			struct cg *cgp;
5103 			uint8_t *blksfree;
5104 			long bno;
5105 			int i;
5106 
5107 			cgp = (struct cg *)bp->b_data;
5108 			blksfree = cg_blksfree(cgp);
5109 			bno = dtogd(fs, jnewblk->jn_blkno);
5110 			for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags;
5111 			    i++) {
5112 				if (isset(blksfree, bno + i))
5113 					panic("softdep_setup_blkmapdep: "
5114 					    "free fragment %d from %d-%d "
5115 					    "state 0x%X dep %p", i,
5116 					    jnewblk->jn_oldfrags,
5117 					    jnewblk->jn_frags,
5118 					    jnewblk->jn_state,
5119 					    jnewblk->jn_dep);
5120 			}
5121 		}
5122 #endif
5123 	}
5124 
5125 	CTR3(KTR_SUJ,
5126 	    "softdep_setup_blkmapdep: blkno %jd frags %d oldfrags %d",
5127 	    newblkno, frags, oldfrags);
5128 	ACQUIRE_LOCK(ump);
5129 	if (newblk_lookup(mp, newblkno, DEPALLOC, &newblk) != 0)
5130 		panic("softdep_setup_blkmapdep: found block");
5131 	newblk->nb_bmsafemap = bmsafemap = bmsafemap_lookup(mp, bp,
5132 	    dtog(fs, newblkno), NULL);
5133 	if (jnewblk) {
5134 		jnewblk->jn_dep = (struct worklist *)newblk;
5135 		LIST_INSERT_HEAD(&bmsafemap->sm_jnewblkhd, jnewblk, jn_deps);
5136 	} else {
5137 		newblk->nb_state |= ONDEPLIST;
5138 		LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, nb_deps);
5139 	}
5140 	newblk->nb_bmsafemap = bmsafemap;
5141 	newblk->nb_jnewblk = jnewblk;
5142 	FREE_LOCK(ump);
5143 }
5144 
5145 #define	BMSAFEMAP_HASH(ump, cg) \
5146       (&(ump)->bmsafemap_hashtbl[(cg) & (ump)->bmsafemap_hash_size])
5147 
5148 static int
5149 bmsafemap_find(bmsafemaphd, cg, bmsafemapp)
5150 	struct bmsafemap_hashhead *bmsafemaphd;
5151 	int cg;
5152 	struct bmsafemap **bmsafemapp;
5153 {
5154 	struct bmsafemap *bmsafemap;
5155 
5156 	LIST_FOREACH(bmsafemap, bmsafemaphd, sm_hash)
5157 		if (bmsafemap->sm_cg == cg)
5158 			break;
5159 	if (bmsafemap) {
5160 		*bmsafemapp = bmsafemap;
5161 		return (1);
5162 	}
5163 	*bmsafemapp = NULL;
5164 
5165 	return (0);
5166 }
5167 
5168 /*
5169  * Find the bmsafemap associated with a cylinder group buffer.
5170  * If none exists, create one. The buffer must be locked when
5171  * this routine is called and this routine must be called with
5172  * the softdep lock held. To avoid giving up the lock while
5173  * allocating a new bmsafemap, a preallocated bmsafemap may be
5174  * provided. If it is provided but not needed, it is freed.
5175  */
5176 static struct bmsafemap *
5177 bmsafemap_lookup(mp, bp, cg, newbmsafemap)
5178 	struct mount *mp;
5179 	struct buf *bp;
5180 	int cg;
5181 	struct bmsafemap *newbmsafemap;
5182 {
5183 	struct bmsafemap_hashhead *bmsafemaphd;
5184 	struct bmsafemap *bmsafemap, *collision;
5185 	struct worklist *wk;
5186 	struct ufsmount *ump;
5187 
5188 	ump = VFSTOUFS(mp);
5189 	LOCK_OWNED(ump);
5190 	KASSERT(bp != NULL, ("bmsafemap_lookup: missing buffer"));
5191 	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
5192 		if (wk->wk_type == D_BMSAFEMAP) {
5193 			if (newbmsafemap)
5194 				WORKITEM_FREE(newbmsafemap, D_BMSAFEMAP);
5195 			return (WK_BMSAFEMAP(wk));
5196 		}
5197 	}
5198 	bmsafemaphd = BMSAFEMAP_HASH(ump, cg);
5199 	if (bmsafemap_find(bmsafemaphd, cg, &bmsafemap) == 1) {
5200 		if (newbmsafemap)
5201 			WORKITEM_FREE(newbmsafemap, D_BMSAFEMAP);
5202 		return (bmsafemap);
5203 	}
5204 	if (newbmsafemap) {
5205 		bmsafemap = newbmsafemap;
5206 	} else {
5207 		FREE_LOCK(ump);
5208 		bmsafemap = malloc(sizeof(struct bmsafemap),
5209 			M_BMSAFEMAP, M_SOFTDEP_FLAGS);
5210 		workitem_alloc(&bmsafemap->sm_list, D_BMSAFEMAP, mp);
5211 		ACQUIRE_LOCK(ump);
5212 	}
5213 	bmsafemap->sm_buf = bp;
5214 	LIST_INIT(&bmsafemap->sm_inodedephd);
5215 	LIST_INIT(&bmsafemap->sm_inodedepwr);
5216 	LIST_INIT(&bmsafemap->sm_newblkhd);
5217 	LIST_INIT(&bmsafemap->sm_newblkwr);
5218 	LIST_INIT(&bmsafemap->sm_jaddrefhd);
5219 	LIST_INIT(&bmsafemap->sm_jnewblkhd);
5220 	LIST_INIT(&bmsafemap->sm_freehd);
5221 	LIST_INIT(&bmsafemap->sm_freewr);
5222 	if (bmsafemap_find(bmsafemaphd, cg, &collision) == 1) {
5223 		WORKITEM_FREE(bmsafemap, D_BMSAFEMAP);
5224 		return (collision);
5225 	}
5226 	bmsafemap->sm_cg = cg;
5227 	LIST_INSERT_HEAD(bmsafemaphd, bmsafemap, sm_hash);
5228 	LIST_INSERT_HEAD(&ump->softdep_dirtycg, bmsafemap, sm_next);
5229 	WORKLIST_INSERT(&bp->b_dep, &bmsafemap->sm_list);
5230 	return (bmsafemap);
5231 }
5232 
5233 /*
5234  * Direct block allocation dependencies.
5235  *
5236  * When a new block is allocated, the corresponding disk locations must be
5237  * initialized (with zeros or new data) before the on-disk inode points to
5238  * them.  Also, the freemap from which the block was allocated must be
5239  * updated (on disk) before the inode's pointer. These two dependencies are
5240  * independent of each other and are needed for all file blocks and indirect
5241  * blocks that are pointed to directly by the inode.  Just before the
5242  * "in-core" version of the inode is updated with a newly allocated block
5243  * number, a procedure (below) is called to setup allocation dependency
5244  * structures.  These structures are removed when the corresponding
5245  * dependencies are satisfied or when the block allocation becomes obsolete
5246  * (i.e., the file is deleted, the block is de-allocated, or the block is a
5247  * fragment that gets upgraded).  All of these cases are handled in
5248  * procedures described later.
5249  *
5250  * When a file extension causes a fragment to be upgraded, either to a larger
5251  * fragment or to a full block, the on-disk location may change (if the
5252  * previous fragment could not simply be extended). In this case, the old
5253  * fragment must be de-allocated, but not until after the inode's pointer has
5254  * been updated. In most cases, this is handled by later procedures, which
5255  * will construct a "freefrag" structure to be added to the workitem queue
5256  * when the inode update is complete (or obsolete).  The main exception to
5257  * this is when an allocation occurs while a pending allocation dependency
5258  * (for the same block pointer) remains.  This case is handled in the main
5259  * allocation dependency setup procedure by immediately freeing the
5260  * unreferenced fragments.
5261  */
5262 void
5263 softdep_setup_allocdirect(ip, off, newblkno, oldblkno, newsize, oldsize, bp)
5264 	struct inode *ip;	/* inode to which block is being added */
5265 	ufs_lbn_t off;		/* block pointer within inode */
5266 	ufs2_daddr_t newblkno;	/* disk block number being added */
5267 	ufs2_daddr_t oldblkno;	/* previous block number, 0 unless frag */
5268 	long newsize;		/* size of new block */
5269 	long oldsize;		/* size of new block */
5270 	struct buf *bp;		/* bp for allocated block */
5271 {
5272 	struct allocdirect *adp, *oldadp;
5273 	struct allocdirectlst *adphead;
5274 	struct freefrag *freefrag;
5275 	struct inodedep *inodedep;
5276 	struct pagedep *pagedep;
5277 	struct jnewblk *jnewblk;
5278 	struct newblk *newblk;
5279 	struct mount *mp;
5280 	ufs_lbn_t lbn;
5281 
5282 	lbn = bp->b_lblkno;
5283 	mp = UFSTOVFS(ip->i_ump);
5284 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
5285 	    ("softdep_setup_allocdirect called on non-softdep filesystem"));
5286 	if (oldblkno && oldblkno != newblkno)
5287 		freefrag = newfreefrag(ip, oldblkno, oldsize, lbn);
5288 	else
5289 		freefrag = NULL;
5290 
5291 	CTR6(KTR_SUJ,
5292 	    "softdep_setup_allocdirect: ino %d blkno %jd oldblkno %jd "
5293 	    "off %jd newsize %ld oldsize %d",
5294 	    ip->i_number, newblkno, oldblkno, off, newsize, oldsize);
5295 	ACQUIRE_LOCK(ip->i_ump);
5296 	if (off >= NDADDR) {
5297 		if (lbn > 0)
5298 			panic("softdep_setup_allocdirect: bad lbn %jd, off %jd",
5299 			    lbn, off);
5300 		/* allocating an indirect block */
5301 		if (oldblkno != 0)
5302 			panic("softdep_setup_allocdirect: non-zero indir");
5303 	} else {
5304 		if (off != lbn)
5305 			panic("softdep_setup_allocdirect: lbn %jd != off %jd",
5306 			    lbn, off);
5307 		/*
5308 		 * Allocating a direct block.
5309 		 *
5310 		 * If we are allocating a directory block, then we must
5311 		 * allocate an associated pagedep to track additions and
5312 		 * deletions.
5313 		 */
5314 		if ((ip->i_mode & IFMT) == IFDIR)
5315 			pagedep_lookup(mp, bp, ip->i_number, off, DEPALLOC,
5316 			    &pagedep);
5317 	}
5318 	if (newblk_lookup(mp, newblkno, 0, &newblk) == 0)
5319 		panic("softdep_setup_allocdirect: lost block");
5320 	KASSERT(newblk->nb_list.wk_type == D_NEWBLK,
5321 	    ("softdep_setup_allocdirect: newblk already initialized"));
5322 	/*
5323 	 * Convert the newblk to an allocdirect.
5324 	 */
5325 	WORKITEM_REASSIGN(newblk, D_ALLOCDIRECT);
5326 	adp = (struct allocdirect *)newblk;
5327 	newblk->nb_freefrag = freefrag;
5328 	adp->ad_offset = off;
5329 	adp->ad_oldblkno = oldblkno;
5330 	adp->ad_newsize = newsize;
5331 	adp->ad_oldsize = oldsize;
5332 
5333 	/*
5334 	 * Finish initializing the journal.
5335 	 */
5336 	if ((jnewblk = newblk->nb_jnewblk) != NULL) {
5337 		jnewblk->jn_ino = ip->i_number;
5338 		jnewblk->jn_lbn = lbn;
5339 		add_to_journal(&jnewblk->jn_list);
5340 	}
5341 	if (freefrag && freefrag->ff_jdep != NULL &&
5342 	    freefrag->ff_jdep->wk_type == D_JFREEFRAG)
5343 		add_to_journal(freefrag->ff_jdep);
5344 	inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
5345 	adp->ad_inodedep = inodedep;
5346 
5347 	WORKLIST_INSERT(&bp->b_dep, &newblk->nb_list);
5348 	/*
5349 	 * The list of allocdirects must be kept in sorted and ascending
5350 	 * order so that the rollback routines can quickly determine the
5351 	 * first uncommitted block (the size of the file stored on disk
5352 	 * ends at the end of the lowest committed fragment, or if there
5353 	 * are no fragments, at the end of the highest committed block).
5354 	 * Since files generally grow, the typical case is that the new
5355 	 * block is to be added at the end of the list. We speed this
5356 	 * special case by checking against the last allocdirect in the
5357 	 * list before laboriously traversing the list looking for the
5358 	 * insertion point.
5359 	 */
5360 	adphead = &inodedep->id_newinoupdt;
5361 	oldadp = TAILQ_LAST(adphead, allocdirectlst);
5362 	if (oldadp == NULL || oldadp->ad_offset <= off) {
5363 		/* insert at end of list */
5364 		TAILQ_INSERT_TAIL(adphead, adp, ad_next);
5365 		if (oldadp != NULL && oldadp->ad_offset == off)
5366 			allocdirect_merge(adphead, adp, oldadp);
5367 		FREE_LOCK(ip->i_ump);
5368 		return;
5369 	}
5370 	TAILQ_FOREACH(oldadp, adphead, ad_next) {
5371 		if (oldadp->ad_offset >= off)
5372 			break;
5373 	}
5374 	if (oldadp == NULL)
5375 		panic("softdep_setup_allocdirect: lost entry");
5376 	/* insert in middle of list */
5377 	TAILQ_INSERT_BEFORE(oldadp, adp, ad_next);
5378 	if (oldadp->ad_offset == off)
5379 		allocdirect_merge(adphead, adp, oldadp);
5380 
5381 	FREE_LOCK(ip->i_ump);
5382 }
5383 
5384 /*
5385  * Merge a newer and older journal record to be stored either in a
5386  * newblock or freefrag.  This handles aggregating journal records for
5387  * fragment allocation into a second record as well as replacing a
5388  * journal free with an aborted journal allocation.  A segment for the
5389  * oldest record will be placed on wkhd if it has been written.  If not
5390  * the segment for the newer record will suffice.
5391  */
5392 static struct worklist *
5393 jnewblk_merge(new, old, wkhd)
5394 	struct worklist *new;
5395 	struct worklist *old;
5396 	struct workhead *wkhd;
5397 {
5398 	struct jnewblk *njnewblk;
5399 	struct jnewblk *jnewblk;
5400 
5401 	/* Handle NULLs to simplify callers. */
5402 	if (new == NULL)
5403 		return (old);
5404 	if (old == NULL)
5405 		return (new);
5406 	/* Replace a jfreefrag with a jnewblk. */
5407 	if (new->wk_type == D_JFREEFRAG) {
5408 		if (WK_JNEWBLK(old)->jn_blkno != WK_JFREEFRAG(new)->fr_blkno)
5409 			panic("jnewblk_merge: blkno mismatch: %p, %p",
5410 			    old, new);
5411 		cancel_jfreefrag(WK_JFREEFRAG(new));
5412 		return (old);
5413 	}
5414 	if (old->wk_type != D_JNEWBLK || new->wk_type != D_JNEWBLK)
5415 		panic("jnewblk_merge: Bad type: old %d new %d\n",
5416 		    old->wk_type, new->wk_type);
5417 	/*
5418 	 * Handle merging of two jnewblk records that describe
5419 	 * different sets of fragments in the same block.
5420 	 */
5421 	jnewblk = WK_JNEWBLK(old);
5422 	njnewblk = WK_JNEWBLK(new);
5423 	if (jnewblk->jn_blkno != njnewblk->jn_blkno)
5424 		panic("jnewblk_merge: Merging disparate blocks.");
5425 	/*
5426 	 * The record may be rolled back in the cg.
5427 	 */
5428 	if (jnewblk->jn_state & UNDONE) {
5429 		jnewblk->jn_state &= ~UNDONE;
5430 		njnewblk->jn_state |= UNDONE;
5431 		njnewblk->jn_state &= ~ATTACHED;
5432 	}
5433 	/*
5434 	 * We modify the newer addref and free the older so that if neither
5435 	 * has been written the most up-to-date copy will be on disk.  If
5436 	 * both have been written but rolled back we only temporarily need
5437 	 * one of them to fix the bits when the cg write completes.
5438 	 */
5439 	jnewblk->jn_state |= ATTACHED | COMPLETE;
5440 	njnewblk->jn_oldfrags = jnewblk->jn_oldfrags;
5441 	cancel_jnewblk(jnewblk, wkhd);
5442 	WORKLIST_REMOVE(&jnewblk->jn_list);
5443 	free_jnewblk(jnewblk);
5444 	return (new);
5445 }
5446 
5447 /*
5448  * Replace an old allocdirect dependency with a newer one.
5449  * This routine must be called with splbio interrupts blocked.
5450  */
5451 static void
5452 allocdirect_merge(adphead, newadp, oldadp)
5453 	struct allocdirectlst *adphead;	/* head of list holding allocdirects */
5454 	struct allocdirect *newadp;	/* allocdirect being added */
5455 	struct allocdirect *oldadp;	/* existing allocdirect being checked */
5456 {
5457 	struct worklist *wk;
5458 	struct freefrag *freefrag;
5459 
5460 	freefrag = NULL;
5461 	LOCK_OWNED(VFSTOUFS(newadp->ad_list.wk_mp));
5462 	if (newadp->ad_oldblkno != oldadp->ad_newblkno ||
5463 	    newadp->ad_oldsize != oldadp->ad_newsize ||
5464 	    newadp->ad_offset >= NDADDR)
5465 		panic("%s %jd != new %jd || old size %ld != new %ld",
5466 		    "allocdirect_merge: old blkno",
5467 		    (intmax_t)newadp->ad_oldblkno,
5468 		    (intmax_t)oldadp->ad_newblkno,
5469 		    newadp->ad_oldsize, oldadp->ad_newsize);
5470 	newadp->ad_oldblkno = oldadp->ad_oldblkno;
5471 	newadp->ad_oldsize = oldadp->ad_oldsize;
5472 	/*
5473 	 * If the old dependency had a fragment to free or had never
5474 	 * previously had a block allocated, then the new dependency
5475 	 * can immediately post its freefrag and adopt the old freefrag.
5476 	 * This action is done by swapping the freefrag dependencies.
5477 	 * The new dependency gains the old one's freefrag, and the
5478 	 * old one gets the new one and then immediately puts it on
5479 	 * the worklist when it is freed by free_newblk. It is
5480 	 * not possible to do this swap when the old dependency had a
5481 	 * non-zero size but no previous fragment to free. This condition
5482 	 * arises when the new block is an extension of the old block.
5483 	 * Here, the first part of the fragment allocated to the new
5484 	 * dependency is part of the block currently claimed on disk by
5485 	 * the old dependency, so cannot legitimately be freed until the
5486 	 * conditions for the new dependency are fulfilled.
5487 	 */
5488 	freefrag = newadp->ad_freefrag;
5489 	if (oldadp->ad_freefrag != NULL || oldadp->ad_oldblkno == 0) {
5490 		newadp->ad_freefrag = oldadp->ad_freefrag;
5491 		oldadp->ad_freefrag = freefrag;
5492 	}
5493 	/*
5494 	 * If we are tracking a new directory-block allocation,
5495 	 * move it from the old allocdirect to the new allocdirect.
5496 	 */
5497 	if ((wk = LIST_FIRST(&oldadp->ad_newdirblk)) != NULL) {
5498 		WORKLIST_REMOVE(wk);
5499 		if (!LIST_EMPTY(&oldadp->ad_newdirblk))
5500 			panic("allocdirect_merge: extra newdirblk");
5501 		WORKLIST_INSERT(&newadp->ad_newdirblk, wk);
5502 	}
5503 	TAILQ_REMOVE(adphead, oldadp, ad_next);
5504 	/*
5505 	 * We need to move any journal dependencies over to the freefrag
5506 	 * that releases this block if it exists.  Otherwise we are
5507 	 * extending an existing block and we'll wait until that is
5508 	 * complete to release the journal space and extend the
5509 	 * new journal to cover this old space as well.
5510 	 */
5511 	if (freefrag == NULL) {
5512 		if (oldadp->ad_newblkno != newadp->ad_newblkno)
5513 			panic("allocdirect_merge: %jd != %jd",
5514 			    oldadp->ad_newblkno, newadp->ad_newblkno);
5515 		newadp->ad_block.nb_jnewblk = (struct jnewblk *)
5516 		    jnewblk_merge(&newadp->ad_block.nb_jnewblk->jn_list,
5517 		    &oldadp->ad_block.nb_jnewblk->jn_list,
5518 		    &newadp->ad_block.nb_jwork);
5519 		oldadp->ad_block.nb_jnewblk = NULL;
5520 		cancel_newblk(&oldadp->ad_block, NULL,
5521 		    &newadp->ad_block.nb_jwork);
5522 	} else {
5523 		wk = (struct worklist *) cancel_newblk(&oldadp->ad_block,
5524 		    &freefrag->ff_list, &freefrag->ff_jwork);
5525 		freefrag->ff_jdep = jnewblk_merge(freefrag->ff_jdep, wk,
5526 		    &freefrag->ff_jwork);
5527 	}
5528 	free_newblk(&oldadp->ad_block);
5529 }
5530 
5531 /*
5532  * Allocate a jfreefrag structure to journal a single block free.
5533  */
5534 static struct jfreefrag *
5535 newjfreefrag(freefrag, ip, blkno, size, lbn)
5536 	struct freefrag *freefrag;
5537 	struct inode *ip;
5538 	ufs2_daddr_t blkno;
5539 	long size;
5540 	ufs_lbn_t lbn;
5541 {
5542 	struct jfreefrag *jfreefrag;
5543 	struct fs *fs;
5544 
5545 	fs = ip->i_fs;
5546 	jfreefrag = malloc(sizeof(struct jfreefrag), M_JFREEFRAG,
5547 	    M_SOFTDEP_FLAGS);
5548 	workitem_alloc(&jfreefrag->fr_list, D_JFREEFRAG, UFSTOVFS(ip->i_ump));
5549 	jfreefrag->fr_jsegdep = newjsegdep(&jfreefrag->fr_list);
5550 	jfreefrag->fr_state = ATTACHED | DEPCOMPLETE;
5551 	jfreefrag->fr_ino = ip->i_number;
5552 	jfreefrag->fr_lbn = lbn;
5553 	jfreefrag->fr_blkno = blkno;
5554 	jfreefrag->fr_frags = numfrags(fs, size);
5555 	jfreefrag->fr_freefrag = freefrag;
5556 
5557 	return (jfreefrag);
5558 }
5559 
5560 /*
5561  * Allocate a new freefrag structure.
5562  */
5563 static struct freefrag *
5564 newfreefrag(ip, blkno, size, lbn)
5565 	struct inode *ip;
5566 	ufs2_daddr_t blkno;
5567 	long size;
5568 	ufs_lbn_t lbn;
5569 {
5570 	struct freefrag *freefrag;
5571 	struct fs *fs;
5572 
5573 	CTR4(KTR_SUJ, "newfreefrag: ino %d blkno %jd size %ld lbn %jd",
5574 	    ip->i_number, blkno, size, lbn);
5575 	fs = ip->i_fs;
5576 	if (fragnum(fs, blkno) + numfrags(fs, size) > fs->fs_frag)
5577 		panic("newfreefrag: frag size");
5578 	freefrag = malloc(sizeof(struct freefrag),
5579 	    M_FREEFRAG, M_SOFTDEP_FLAGS);
5580 	workitem_alloc(&freefrag->ff_list, D_FREEFRAG, UFSTOVFS(ip->i_ump));
5581 	freefrag->ff_state = ATTACHED;
5582 	LIST_INIT(&freefrag->ff_jwork);
5583 	freefrag->ff_inum = ip->i_number;
5584 	freefrag->ff_vtype = ITOV(ip)->v_type;
5585 	freefrag->ff_blkno = blkno;
5586 	freefrag->ff_fragsize = size;
5587 
5588 	if (MOUNTEDSUJ(UFSTOVFS(ip->i_ump))) {
5589 		freefrag->ff_jdep = (struct worklist *)
5590 		    newjfreefrag(freefrag, ip, blkno, size, lbn);
5591 	} else {
5592 		freefrag->ff_state |= DEPCOMPLETE;
5593 		freefrag->ff_jdep = NULL;
5594 	}
5595 
5596 	return (freefrag);
5597 }
5598 
5599 /*
5600  * This workitem de-allocates fragments that were replaced during
5601  * file block allocation.
5602  */
5603 static void
5604 handle_workitem_freefrag(freefrag)
5605 	struct freefrag *freefrag;
5606 {
5607 	struct ufsmount *ump = VFSTOUFS(freefrag->ff_list.wk_mp);
5608 	struct workhead wkhd;
5609 
5610 	CTR3(KTR_SUJ,
5611 	    "handle_workitem_freefrag: ino %d blkno %jd size %ld",
5612 	    freefrag->ff_inum, freefrag->ff_blkno, freefrag->ff_fragsize);
5613 	/*
5614 	 * It would be illegal to add new completion items to the
5615 	 * freefrag after it was schedule to be done so it must be
5616 	 * safe to modify the list head here.
5617 	 */
5618 	LIST_INIT(&wkhd);
5619 	ACQUIRE_LOCK(ump);
5620 	LIST_SWAP(&freefrag->ff_jwork, &wkhd, worklist, wk_list);
5621 	/*
5622 	 * If the journal has not been written we must cancel it here.
5623 	 */
5624 	if (freefrag->ff_jdep) {
5625 		if (freefrag->ff_jdep->wk_type != D_JNEWBLK)
5626 			panic("handle_workitem_freefrag: Unexpected type %d\n",
5627 			    freefrag->ff_jdep->wk_type);
5628 		cancel_jnewblk(WK_JNEWBLK(freefrag->ff_jdep), &wkhd);
5629 	}
5630 	FREE_LOCK(ump);
5631 	ffs_blkfree(ump, ump->um_fs, ump->um_devvp, freefrag->ff_blkno,
5632 	   freefrag->ff_fragsize, freefrag->ff_inum, freefrag->ff_vtype, &wkhd);
5633 	ACQUIRE_LOCK(ump);
5634 	WORKITEM_FREE(freefrag, D_FREEFRAG);
5635 	FREE_LOCK(ump);
5636 }
5637 
5638 /*
5639  * Set up a dependency structure for an external attributes data block.
5640  * This routine follows much of the structure of softdep_setup_allocdirect.
5641  * See the description of softdep_setup_allocdirect above for details.
5642  */
5643 void
5644 softdep_setup_allocext(ip, off, newblkno, oldblkno, newsize, oldsize, bp)
5645 	struct inode *ip;
5646 	ufs_lbn_t off;
5647 	ufs2_daddr_t newblkno;
5648 	ufs2_daddr_t oldblkno;
5649 	long newsize;
5650 	long oldsize;
5651 	struct buf *bp;
5652 {
5653 	struct allocdirect *adp, *oldadp;
5654 	struct allocdirectlst *adphead;
5655 	struct freefrag *freefrag;
5656 	struct inodedep *inodedep;
5657 	struct jnewblk *jnewblk;
5658 	struct newblk *newblk;
5659 	struct mount *mp;
5660 	ufs_lbn_t lbn;
5661 
5662 	mp = UFSTOVFS(ip->i_ump);
5663 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
5664 	    ("softdep_setup_allocext called on non-softdep filesystem"));
5665 	KASSERT(off < NXADDR, ("softdep_setup_allocext: lbn %lld > NXADDR",
5666 		    (long long)off));
5667 
5668 	lbn = bp->b_lblkno;
5669 	if (oldblkno && oldblkno != newblkno)
5670 		freefrag = newfreefrag(ip, oldblkno, oldsize, lbn);
5671 	else
5672 		freefrag = NULL;
5673 
5674 	ACQUIRE_LOCK(ip->i_ump);
5675 	if (newblk_lookup(mp, newblkno, 0, &newblk) == 0)
5676 		panic("softdep_setup_allocext: lost block");
5677 	KASSERT(newblk->nb_list.wk_type == D_NEWBLK,
5678 	    ("softdep_setup_allocext: newblk already initialized"));
5679 	/*
5680 	 * Convert the newblk to an allocdirect.
5681 	 */
5682 	WORKITEM_REASSIGN(newblk, D_ALLOCDIRECT);
5683 	adp = (struct allocdirect *)newblk;
5684 	newblk->nb_freefrag = freefrag;
5685 	adp->ad_offset = off;
5686 	adp->ad_oldblkno = oldblkno;
5687 	adp->ad_newsize = newsize;
5688 	adp->ad_oldsize = oldsize;
5689 	adp->ad_state |=  EXTDATA;
5690 
5691 	/*
5692 	 * Finish initializing the journal.
5693 	 */
5694 	if ((jnewblk = newblk->nb_jnewblk) != NULL) {
5695 		jnewblk->jn_ino = ip->i_number;
5696 		jnewblk->jn_lbn = lbn;
5697 		add_to_journal(&jnewblk->jn_list);
5698 	}
5699 	if (freefrag && freefrag->ff_jdep != NULL &&
5700 	    freefrag->ff_jdep->wk_type == D_JFREEFRAG)
5701 		add_to_journal(freefrag->ff_jdep);
5702 	inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
5703 	adp->ad_inodedep = inodedep;
5704 
5705 	WORKLIST_INSERT(&bp->b_dep, &newblk->nb_list);
5706 	/*
5707 	 * The list of allocdirects must be kept in sorted and ascending
5708 	 * order so that the rollback routines can quickly determine the
5709 	 * first uncommitted block (the size of the file stored on disk
5710 	 * ends at the end of the lowest committed fragment, or if there
5711 	 * are no fragments, at the end of the highest committed block).
5712 	 * Since files generally grow, the typical case is that the new
5713 	 * block is to be added at the end of the list. We speed this
5714 	 * special case by checking against the last allocdirect in the
5715 	 * list before laboriously traversing the list looking for the
5716 	 * insertion point.
5717 	 */
5718 	adphead = &inodedep->id_newextupdt;
5719 	oldadp = TAILQ_LAST(adphead, allocdirectlst);
5720 	if (oldadp == NULL || oldadp->ad_offset <= off) {
5721 		/* insert at end of list */
5722 		TAILQ_INSERT_TAIL(adphead, adp, ad_next);
5723 		if (oldadp != NULL && oldadp->ad_offset == off)
5724 			allocdirect_merge(adphead, adp, oldadp);
5725 		FREE_LOCK(ip->i_ump);
5726 		return;
5727 	}
5728 	TAILQ_FOREACH(oldadp, adphead, ad_next) {
5729 		if (oldadp->ad_offset >= off)
5730 			break;
5731 	}
5732 	if (oldadp == NULL)
5733 		panic("softdep_setup_allocext: lost entry");
5734 	/* insert in middle of list */
5735 	TAILQ_INSERT_BEFORE(oldadp, adp, ad_next);
5736 	if (oldadp->ad_offset == off)
5737 		allocdirect_merge(adphead, adp, oldadp);
5738 	FREE_LOCK(ip->i_ump);
5739 }
5740 
5741 /*
5742  * Indirect block allocation dependencies.
5743  *
5744  * The same dependencies that exist for a direct block also exist when
5745  * a new block is allocated and pointed to by an entry in a block of
5746  * indirect pointers. The undo/redo states described above are also
5747  * used here. Because an indirect block contains many pointers that
5748  * may have dependencies, a second copy of the entire in-memory indirect
5749  * block is kept. The buffer cache copy is always completely up-to-date.
5750  * The second copy, which is used only as a source for disk writes,
5751  * contains only the safe pointers (i.e., those that have no remaining
5752  * update dependencies). The second copy is freed when all pointers
5753  * are safe. The cache is not allowed to replace indirect blocks with
5754  * pending update dependencies. If a buffer containing an indirect
5755  * block with dependencies is written, these routines will mark it
5756  * dirty again. It can only be successfully written once all the
5757  * dependencies are removed. The ffs_fsync routine in conjunction with
5758  * softdep_sync_metadata work together to get all the dependencies
5759  * removed so that a file can be successfully written to disk. Three
5760  * procedures are used when setting up indirect block pointer
5761  * dependencies. The division is necessary because of the organization
5762  * of the "balloc" routine and because of the distinction between file
5763  * pages and file metadata blocks.
5764  */
5765 
5766 /*
5767  * Allocate a new allocindir structure.
5768  */
5769 static struct allocindir *
5770 newallocindir(ip, ptrno, newblkno, oldblkno, lbn)
5771 	struct inode *ip;	/* inode for file being extended */
5772 	int ptrno;		/* offset of pointer in indirect block */
5773 	ufs2_daddr_t newblkno;	/* disk block number being added */
5774 	ufs2_daddr_t oldblkno;	/* previous block number, 0 if none */
5775 	ufs_lbn_t lbn;
5776 {
5777 	struct newblk *newblk;
5778 	struct allocindir *aip;
5779 	struct freefrag *freefrag;
5780 	struct jnewblk *jnewblk;
5781 
5782 	if (oldblkno)
5783 		freefrag = newfreefrag(ip, oldblkno, ip->i_fs->fs_bsize, lbn);
5784 	else
5785 		freefrag = NULL;
5786 	ACQUIRE_LOCK(ip->i_ump);
5787 	if (newblk_lookup(UFSTOVFS(ip->i_ump), newblkno, 0, &newblk) == 0)
5788 		panic("new_allocindir: lost block");
5789 	KASSERT(newblk->nb_list.wk_type == D_NEWBLK,
5790 	    ("newallocindir: newblk already initialized"));
5791 	WORKITEM_REASSIGN(newblk, D_ALLOCINDIR);
5792 	newblk->nb_freefrag = freefrag;
5793 	aip = (struct allocindir *)newblk;
5794 	aip->ai_offset = ptrno;
5795 	aip->ai_oldblkno = oldblkno;
5796 	aip->ai_lbn = lbn;
5797 	if ((jnewblk = newblk->nb_jnewblk) != NULL) {
5798 		jnewblk->jn_ino = ip->i_number;
5799 		jnewblk->jn_lbn = lbn;
5800 		add_to_journal(&jnewblk->jn_list);
5801 	}
5802 	if (freefrag && freefrag->ff_jdep != NULL &&
5803 	    freefrag->ff_jdep->wk_type == D_JFREEFRAG)
5804 		add_to_journal(freefrag->ff_jdep);
5805 	return (aip);
5806 }
5807 
5808 /*
5809  * Called just before setting an indirect block pointer
5810  * to a newly allocated file page.
5811  */
5812 void
5813 softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp)
5814 	struct inode *ip;	/* inode for file being extended */
5815 	ufs_lbn_t lbn;		/* allocated block number within file */
5816 	struct buf *bp;		/* buffer with indirect blk referencing page */
5817 	int ptrno;		/* offset of pointer in indirect block */
5818 	ufs2_daddr_t newblkno;	/* disk block number being added */
5819 	ufs2_daddr_t oldblkno;	/* previous block number, 0 if none */
5820 	struct buf *nbp;	/* buffer holding allocated page */
5821 {
5822 	struct inodedep *inodedep;
5823 	struct freefrag *freefrag;
5824 	struct allocindir *aip;
5825 	struct pagedep *pagedep;
5826 	struct mount *mp;
5827 
5828 	mp = UFSTOVFS(ip->i_ump);
5829 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
5830 	    ("softdep_setup_allocindir_page called on non-softdep filesystem"));
5831 	KASSERT(lbn == nbp->b_lblkno,
5832 	    ("softdep_setup_allocindir_page: lbn %jd != lblkno %jd",
5833 	    lbn, bp->b_lblkno));
5834 	CTR4(KTR_SUJ,
5835 	    "softdep_setup_allocindir_page: ino %d blkno %jd oldblkno %jd "
5836 	    "lbn %jd", ip->i_number, newblkno, oldblkno, lbn);
5837 	ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_page");
5838 	aip = newallocindir(ip, ptrno, newblkno, oldblkno, lbn);
5839 	(void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
5840 	/*
5841 	 * If we are allocating a directory page, then we must
5842 	 * allocate an associated pagedep to track additions and
5843 	 * deletions.
5844 	 */
5845 	if ((ip->i_mode & IFMT) == IFDIR)
5846 		pagedep_lookup(mp, nbp, ip->i_number, lbn, DEPALLOC, &pagedep);
5847 	WORKLIST_INSERT(&nbp->b_dep, &aip->ai_block.nb_list);
5848 	freefrag = setup_allocindir_phase2(bp, ip, inodedep, aip, lbn);
5849 	FREE_LOCK(ip->i_ump);
5850 	if (freefrag)
5851 		handle_workitem_freefrag(freefrag);
5852 }
5853 
5854 /*
5855  * Called just before setting an indirect block pointer to a
5856  * newly allocated indirect block.
5857  */
5858 void
5859 softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno)
5860 	struct buf *nbp;	/* newly allocated indirect block */
5861 	struct inode *ip;	/* inode for file being extended */
5862 	struct buf *bp;		/* indirect block referencing allocated block */
5863 	int ptrno;		/* offset of pointer in indirect block */
5864 	ufs2_daddr_t newblkno;	/* disk block number being added */
5865 {
5866 	struct inodedep *inodedep;
5867 	struct allocindir *aip;
5868 	ufs_lbn_t lbn;
5869 
5870 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ip->i_ump)) != 0,
5871 	    ("softdep_setup_allocindir_meta called on non-softdep filesystem"));
5872 	CTR3(KTR_SUJ,
5873 	    "softdep_setup_allocindir_meta: ino %d blkno %jd ptrno %d",
5874 	    ip->i_number, newblkno, ptrno);
5875 	lbn = nbp->b_lblkno;
5876 	ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_meta");
5877 	aip = newallocindir(ip, ptrno, newblkno, 0, lbn);
5878 	inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, DEPALLOC,
5879 	    &inodedep);
5880 	WORKLIST_INSERT(&nbp->b_dep, &aip->ai_block.nb_list);
5881 	if (setup_allocindir_phase2(bp, ip, inodedep, aip, lbn))
5882 		panic("softdep_setup_allocindir_meta: Block already existed");
5883 	FREE_LOCK(ip->i_ump);
5884 }
5885 
5886 static void
5887 indirdep_complete(indirdep)
5888 	struct indirdep *indirdep;
5889 {
5890 	struct allocindir *aip;
5891 
5892 	LIST_REMOVE(indirdep, ir_next);
5893 	indirdep->ir_state |= DEPCOMPLETE;
5894 
5895 	while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != NULL) {
5896 		LIST_REMOVE(aip, ai_next);
5897 		free_newblk(&aip->ai_block);
5898 	}
5899 	/*
5900 	 * If this indirdep is not attached to a buf it was simply waiting
5901 	 * on completion to clear completehd.  free_indirdep() asserts
5902 	 * that nothing is dangling.
5903 	 */
5904 	if ((indirdep->ir_state & ONWORKLIST) == 0)
5905 		free_indirdep(indirdep);
5906 }
5907 
5908 static struct indirdep *
5909 indirdep_lookup(mp, ip, bp)
5910 	struct mount *mp;
5911 	struct inode *ip;
5912 	struct buf *bp;
5913 {
5914 	struct indirdep *indirdep, *newindirdep;
5915 	struct newblk *newblk;
5916 	struct ufsmount *ump;
5917 	struct worklist *wk;
5918 	struct fs *fs;
5919 	ufs2_daddr_t blkno;
5920 
5921 	ump = VFSTOUFS(mp);
5922 	LOCK_OWNED(ump);
5923 	indirdep = NULL;
5924 	newindirdep = NULL;
5925 	fs = ip->i_fs;
5926 	for (;;) {
5927 		LIST_FOREACH(wk, &bp->b_dep, wk_list) {
5928 			if (wk->wk_type != D_INDIRDEP)
5929 				continue;
5930 			indirdep = WK_INDIRDEP(wk);
5931 			break;
5932 		}
5933 		/* Found on the buffer worklist, no new structure to free. */
5934 		if (indirdep != NULL && newindirdep == NULL)
5935 			return (indirdep);
5936 		if (indirdep != NULL && newindirdep != NULL)
5937 			panic("indirdep_lookup: simultaneous create");
5938 		/* None found on the buffer and a new structure is ready. */
5939 		if (indirdep == NULL && newindirdep != NULL)
5940 			break;
5941 		/* None found and no new structure available. */
5942 		FREE_LOCK(ump);
5943 		newindirdep = malloc(sizeof(struct indirdep),
5944 		    M_INDIRDEP, M_SOFTDEP_FLAGS);
5945 		workitem_alloc(&newindirdep->ir_list, D_INDIRDEP, mp);
5946 		newindirdep->ir_state = ATTACHED;
5947 		if (ip->i_ump->um_fstype == UFS1)
5948 			newindirdep->ir_state |= UFS1FMT;
5949 		TAILQ_INIT(&newindirdep->ir_trunc);
5950 		newindirdep->ir_saveddata = NULL;
5951 		LIST_INIT(&newindirdep->ir_deplisthd);
5952 		LIST_INIT(&newindirdep->ir_donehd);
5953 		LIST_INIT(&newindirdep->ir_writehd);
5954 		LIST_INIT(&newindirdep->ir_completehd);
5955 		if (bp->b_blkno == bp->b_lblkno) {
5956 			ufs_bmaparray(bp->b_vp, bp->b_lblkno, &blkno, bp,
5957 			    NULL, NULL);
5958 			bp->b_blkno = blkno;
5959 		}
5960 		newindirdep->ir_freeblks = NULL;
5961 		newindirdep->ir_savebp =
5962 		    getblk(ip->i_devvp, bp->b_blkno, bp->b_bcount, 0, 0, 0);
5963 		newindirdep->ir_bp = bp;
5964 		BUF_KERNPROC(newindirdep->ir_savebp);
5965 		bcopy(bp->b_data, newindirdep->ir_savebp->b_data, bp->b_bcount);
5966 		ACQUIRE_LOCK(ump);
5967 	}
5968 	indirdep = newindirdep;
5969 	WORKLIST_INSERT(&bp->b_dep, &indirdep->ir_list);
5970 	/*
5971 	 * If the block is not yet allocated we don't set DEPCOMPLETE so
5972 	 * that we don't free dependencies until the pointers are valid.
5973 	 * This could search b_dep for D_ALLOCDIRECT/D_ALLOCINDIR rather
5974 	 * than using the hash.
5975 	 */
5976 	if (newblk_lookup(mp, dbtofsb(fs, bp->b_blkno), 0, &newblk))
5977 		LIST_INSERT_HEAD(&newblk->nb_indirdeps, indirdep, ir_next);
5978 	else
5979 		indirdep->ir_state |= DEPCOMPLETE;
5980 	return (indirdep);
5981 }
5982 
5983 /*
5984  * Called to finish the allocation of the "aip" allocated
5985  * by one of the two routines above.
5986  */
5987 static struct freefrag *
5988 setup_allocindir_phase2(bp, ip, inodedep, aip, lbn)
5989 	struct buf *bp;		/* in-memory copy of the indirect block */
5990 	struct inode *ip;	/* inode for file being extended */
5991 	struct inodedep *inodedep; /* Inodedep for ip */
5992 	struct allocindir *aip;	/* allocindir allocated by the above routines */
5993 	ufs_lbn_t lbn;		/* Logical block number for this block. */
5994 {
5995 	struct fs *fs;
5996 	struct indirdep *indirdep;
5997 	struct allocindir *oldaip;
5998 	struct freefrag *freefrag;
5999 	struct mount *mp;
6000 
6001 	LOCK_OWNED(ip->i_ump);
6002 	mp = UFSTOVFS(ip->i_ump);
6003 	fs = ip->i_fs;
6004 	if (bp->b_lblkno >= 0)
6005 		panic("setup_allocindir_phase2: not indir blk");
6006 	KASSERT(aip->ai_offset >= 0 && aip->ai_offset < NINDIR(fs),
6007 	    ("setup_allocindir_phase2: Bad offset %d", aip->ai_offset));
6008 	indirdep = indirdep_lookup(mp, ip, bp);
6009 	KASSERT(indirdep->ir_savebp != NULL,
6010 	    ("setup_allocindir_phase2 NULL ir_savebp"));
6011 	aip->ai_indirdep = indirdep;
6012 	/*
6013 	 * Check for an unwritten dependency for this indirect offset.  If
6014 	 * there is, merge the old dependency into the new one.  This happens
6015 	 * as a result of reallocblk only.
6016 	 */
6017 	freefrag = NULL;
6018 	if (aip->ai_oldblkno != 0) {
6019 		LIST_FOREACH(oldaip, &indirdep->ir_deplisthd, ai_next) {
6020 			if (oldaip->ai_offset == aip->ai_offset) {
6021 				freefrag = allocindir_merge(aip, oldaip);
6022 				goto done;
6023 			}
6024 		}
6025 		LIST_FOREACH(oldaip, &indirdep->ir_donehd, ai_next) {
6026 			if (oldaip->ai_offset == aip->ai_offset) {
6027 				freefrag = allocindir_merge(aip, oldaip);
6028 				goto done;
6029 			}
6030 		}
6031 	}
6032 done:
6033 	LIST_INSERT_HEAD(&indirdep->ir_deplisthd, aip, ai_next);
6034 	return (freefrag);
6035 }
6036 
6037 /*
6038  * Merge two allocindirs which refer to the same block.  Move newblock
6039  * dependencies and setup the freefrags appropriately.
6040  */
6041 static struct freefrag *
6042 allocindir_merge(aip, oldaip)
6043 	struct allocindir *aip;
6044 	struct allocindir *oldaip;
6045 {
6046 	struct freefrag *freefrag;
6047 	struct worklist *wk;
6048 
6049 	if (oldaip->ai_newblkno != aip->ai_oldblkno)
6050 		panic("allocindir_merge: blkno");
6051 	aip->ai_oldblkno = oldaip->ai_oldblkno;
6052 	freefrag = aip->ai_freefrag;
6053 	aip->ai_freefrag = oldaip->ai_freefrag;
6054 	oldaip->ai_freefrag = NULL;
6055 	KASSERT(freefrag != NULL, ("setup_allocindir_phase2: No freefrag"));
6056 	/*
6057 	 * If we are tracking a new directory-block allocation,
6058 	 * move it from the old allocindir to the new allocindir.
6059 	 */
6060 	if ((wk = LIST_FIRST(&oldaip->ai_newdirblk)) != NULL) {
6061 		WORKLIST_REMOVE(wk);
6062 		if (!LIST_EMPTY(&oldaip->ai_newdirblk))
6063 			panic("allocindir_merge: extra newdirblk");
6064 		WORKLIST_INSERT(&aip->ai_newdirblk, wk);
6065 	}
6066 	/*
6067 	 * We can skip journaling for this freefrag and just complete
6068 	 * any pending journal work for the allocindir that is being
6069 	 * removed after the freefrag completes.
6070 	 */
6071 	if (freefrag->ff_jdep)
6072 		cancel_jfreefrag(WK_JFREEFRAG(freefrag->ff_jdep));
6073 	LIST_REMOVE(oldaip, ai_next);
6074 	freefrag->ff_jdep = (struct worklist *)cancel_newblk(&oldaip->ai_block,
6075 	    &freefrag->ff_list, &freefrag->ff_jwork);
6076 	free_newblk(&oldaip->ai_block);
6077 
6078 	return (freefrag);
6079 }
6080 
6081 static inline void
6082 setup_freedirect(freeblks, ip, i, needj)
6083 	struct freeblks *freeblks;
6084 	struct inode *ip;
6085 	int i;
6086 	int needj;
6087 {
6088 	ufs2_daddr_t blkno;
6089 	int frags;
6090 
6091 	blkno = DIP(ip, i_db[i]);
6092 	if (blkno == 0)
6093 		return;
6094 	DIP_SET(ip, i_db[i], 0);
6095 	frags = sblksize(ip->i_fs, ip->i_size, i);
6096 	frags = numfrags(ip->i_fs, frags);
6097 	newfreework(ip->i_ump, freeblks, NULL, i, blkno, frags, 0, needj);
6098 }
6099 
6100 static inline void
6101 setup_freeext(freeblks, ip, i, needj)
6102 	struct freeblks *freeblks;
6103 	struct inode *ip;
6104 	int i;
6105 	int needj;
6106 {
6107 	ufs2_daddr_t blkno;
6108 	int frags;
6109 
6110 	blkno = ip->i_din2->di_extb[i];
6111 	if (blkno == 0)
6112 		return;
6113 	ip->i_din2->di_extb[i] = 0;
6114 	frags = sblksize(ip->i_fs, ip->i_din2->di_extsize, i);
6115 	frags = numfrags(ip->i_fs, frags);
6116 	newfreework(ip->i_ump, freeblks, NULL, -1 - i, blkno, frags, 0, needj);
6117 }
6118 
6119 static inline void
6120 setup_freeindir(freeblks, ip, i, lbn, needj)
6121 	struct freeblks *freeblks;
6122 	struct inode *ip;
6123 	int i;
6124 	ufs_lbn_t lbn;
6125 	int needj;
6126 {
6127 	ufs2_daddr_t blkno;
6128 
6129 	blkno = DIP(ip, i_ib[i]);
6130 	if (blkno == 0)
6131 		return;
6132 	DIP_SET(ip, i_ib[i], 0);
6133 	newfreework(ip->i_ump, freeblks, NULL, lbn, blkno, ip->i_fs->fs_frag,
6134 	    0, needj);
6135 }
6136 
6137 static inline struct freeblks *
6138 newfreeblks(mp, ip)
6139 	struct mount *mp;
6140 	struct inode *ip;
6141 {
6142 	struct freeblks *freeblks;
6143 
6144 	freeblks = malloc(sizeof(struct freeblks),
6145 		M_FREEBLKS, M_SOFTDEP_FLAGS|M_ZERO);
6146 	workitem_alloc(&freeblks->fb_list, D_FREEBLKS, mp);
6147 	LIST_INIT(&freeblks->fb_jblkdephd);
6148 	LIST_INIT(&freeblks->fb_jwork);
6149 	freeblks->fb_ref = 0;
6150 	freeblks->fb_cgwait = 0;
6151 	freeblks->fb_state = ATTACHED;
6152 	freeblks->fb_uid = ip->i_uid;
6153 	freeblks->fb_inum = ip->i_number;
6154 	freeblks->fb_vtype = ITOV(ip)->v_type;
6155 	freeblks->fb_modrev = DIP(ip, i_modrev);
6156 	freeblks->fb_devvp = ip->i_devvp;
6157 	freeblks->fb_chkcnt = 0;
6158 	freeblks->fb_len = 0;
6159 
6160 	return (freeblks);
6161 }
6162 
6163 static void
6164 trunc_indirdep(indirdep, freeblks, bp, off)
6165 	struct indirdep *indirdep;
6166 	struct freeblks *freeblks;
6167 	struct buf *bp;
6168 	int off;
6169 {
6170 	struct allocindir *aip, *aipn;
6171 
6172 	/*
6173 	 * The first set of allocindirs won't be in savedbp.
6174 	 */
6175 	LIST_FOREACH_SAFE(aip, &indirdep->ir_deplisthd, ai_next, aipn)
6176 		if (aip->ai_offset > off)
6177 			cancel_allocindir(aip, bp, freeblks, 1);
6178 	LIST_FOREACH_SAFE(aip, &indirdep->ir_donehd, ai_next, aipn)
6179 		if (aip->ai_offset > off)
6180 			cancel_allocindir(aip, bp, freeblks, 1);
6181 	/*
6182 	 * These will exist in savedbp.
6183 	 */
6184 	LIST_FOREACH_SAFE(aip, &indirdep->ir_writehd, ai_next, aipn)
6185 		if (aip->ai_offset > off)
6186 			cancel_allocindir(aip, NULL, freeblks, 0);
6187 	LIST_FOREACH_SAFE(aip, &indirdep->ir_completehd, ai_next, aipn)
6188 		if (aip->ai_offset > off)
6189 			cancel_allocindir(aip, NULL, freeblks, 0);
6190 }
6191 
6192 /*
6193  * Follow the chain of indirects down to lastlbn creating a freework
6194  * structure for each.  This will be used to start indir_trunc() at
6195  * the right offset and create the journal records for the parrtial
6196  * truncation.  A second step will handle the truncated dependencies.
6197  */
6198 static int
6199 setup_trunc_indir(freeblks, ip, lbn, lastlbn, blkno)
6200 	struct freeblks *freeblks;
6201 	struct inode *ip;
6202 	ufs_lbn_t lbn;
6203 	ufs_lbn_t lastlbn;
6204 	ufs2_daddr_t blkno;
6205 {
6206 	struct indirdep *indirdep;
6207 	struct indirdep *indirn;
6208 	struct freework *freework;
6209 	struct newblk *newblk;
6210 	struct mount *mp;
6211 	struct buf *bp;
6212 	uint8_t *start;
6213 	uint8_t *end;
6214 	ufs_lbn_t lbnadd;
6215 	int level;
6216 	int error;
6217 	int off;
6218 
6219 
6220 	freework = NULL;
6221 	if (blkno == 0)
6222 		return (0);
6223 	mp = freeblks->fb_list.wk_mp;
6224 	bp = getblk(ITOV(ip), lbn, mp->mnt_stat.f_iosize, 0, 0, 0);
6225 	if ((bp->b_flags & B_CACHE) == 0) {
6226 		bp->b_blkno = blkptrtodb(VFSTOUFS(mp), blkno);
6227 		bp->b_iocmd = BIO_READ;
6228 		bp->b_flags &= ~B_INVAL;
6229 		bp->b_ioflags &= ~BIO_ERROR;
6230 		vfs_busy_pages(bp, 0);
6231 		bp->b_iooffset = dbtob(bp->b_blkno);
6232 		bstrategy(bp);
6233 #ifdef RACCT
6234 		if (racct_enable) {
6235 			PROC_LOCK(curproc);
6236 			racct_add_buf(curproc, bp, 0);
6237 			PROC_UNLOCK(curproc);
6238 		}
6239 #endif /* RACCT */
6240 		curthread->td_ru.ru_inblock++;
6241 		error = bufwait(bp);
6242 		if (error) {
6243 			brelse(bp);
6244 			return (error);
6245 		}
6246 	}
6247 	level = lbn_level(lbn);
6248 	lbnadd = lbn_offset(ip->i_fs, level);
6249 	/*
6250 	 * Compute the offset of the last block we want to keep.  Store
6251 	 * in the freework the first block we want to completely free.
6252 	 */
6253 	off = (lastlbn - -(lbn + level)) / lbnadd;
6254 	if (off + 1 == NINDIR(ip->i_fs))
6255 		goto nowork;
6256 	freework = newfreework(ip->i_ump, freeblks, NULL, lbn, blkno, 0, off+1,
6257 	    0);
6258 	/*
6259 	 * Link the freework into the indirdep.  This will prevent any new
6260 	 * allocations from proceeding until we are finished with the
6261 	 * truncate and the block is written.
6262 	 */
6263 	ACQUIRE_LOCK(ip->i_ump);
6264 	indirdep = indirdep_lookup(mp, ip, bp);
6265 	if (indirdep->ir_freeblks)
6266 		panic("setup_trunc_indir: indirdep already truncated.");
6267 	TAILQ_INSERT_TAIL(&indirdep->ir_trunc, freework, fw_next);
6268 	freework->fw_indir = indirdep;
6269 	/*
6270 	 * Cancel any allocindirs that will not make it to disk.
6271 	 * We have to do this for all copies of the indirdep that
6272 	 * live on this newblk.
6273 	 */
6274 	if ((indirdep->ir_state & DEPCOMPLETE) == 0) {
6275 		newblk_lookup(mp, dbtofsb(ip->i_fs, bp->b_blkno), 0, &newblk);
6276 		LIST_FOREACH(indirn, &newblk->nb_indirdeps, ir_next)
6277 			trunc_indirdep(indirn, freeblks, bp, off);
6278 	} else
6279 		trunc_indirdep(indirdep, freeblks, bp, off);
6280 	FREE_LOCK(ip->i_ump);
6281 	/*
6282 	 * Creation is protected by the buf lock. The saveddata is only
6283 	 * needed if a full truncation follows a partial truncation but it
6284 	 * is difficult to allocate in that case so we fetch it anyway.
6285 	 */
6286 	if (indirdep->ir_saveddata == NULL)
6287 		indirdep->ir_saveddata = malloc(bp->b_bcount, M_INDIRDEP,
6288 		    M_SOFTDEP_FLAGS);
6289 nowork:
6290 	/* Fetch the blkno of the child and the zero start offset. */
6291 	if (ip->i_ump->um_fstype == UFS1) {
6292 		blkno = ((ufs1_daddr_t *)bp->b_data)[off];
6293 		start = (uint8_t *)&((ufs1_daddr_t *)bp->b_data)[off+1];
6294 	} else {
6295 		blkno = ((ufs2_daddr_t *)bp->b_data)[off];
6296 		start = (uint8_t *)&((ufs2_daddr_t *)bp->b_data)[off+1];
6297 	}
6298 	if (freework) {
6299 		/* Zero the truncated pointers. */
6300 		end = bp->b_data + bp->b_bcount;
6301 		bzero(start, end - start);
6302 		bdwrite(bp);
6303 	} else
6304 		bqrelse(bp);
6305 	if (level == 0)
6306 		return (0);
6307 	lbn++; /* adjust level */
6308 	lbn -= (off * lbnadd);
6309 	return setup_trunc_indir(freeblks, ip, lbn, lastlbn, blkno);
6310 }
6311 
6312 /*
6313  * Complete the partial truncation of an indirect block setup by
6314  * setup_trunc_indir().  This zeros the truncated pointers in the saved
6315  * copy and writes them to disk before the freeblks is allowed to complete.
6316  */
6317 static void
6318 complete_trunc_indir(freework)
6319 	struct freework *freework;
6320 {
6321 	struct freework *fwn;
6322 	struct indirdep *indirdep;
6323 	struct ufsmount *ump;
6324 	struct buf *bp;
6325 	uintptr_t start;
6326 	int count;
6327 
6328 	ump = VFSTOUFS(freework->fw_list.wk_mp);
6329 	LOCK_OWNED(ump);
6330 	indirdep = freework->fw_indir;
6331 	for (;;) {
6332 		bp = indirdep->ir_bp;
6333 		/* See if the block was discarded. */
6334 		if (bp == NULL)
6335 			break;
6336 		/* Inline part of getdirtybuf().  We dont want bremfree. */
6337 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) == 0)
6338 			break;
6339 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
6340 		    LOCK_PTR(ump)) == 0)
6341 			BUF_UNLOCK(bp);
6342 		ACQUIRE_LOCK(ump);
6343 	}
6344 	freework->fw_state |= DEPCOMPLETE;
6345 	TAILQ_REMOVE(&indirdep->ir_trunc, freework, fw_next);
6346 	/*
6347 	 * Zero the pointers in the saved copy.
6348 	 */
6349 	if (indirdep->ir_state & UFS1FMT)
6350 		start = sizeof(ufs1_daddr_t);
6351 	else
6352 		start = sizeof(ufs2_daddr_t);
6353 	start *= freework->fw_start;
6354 	count = indirdep->ir_savebp->b_bcount - start;
6355 	start += (uintptr_t)indirdep->ir_savebp->b_data;
6356 	bzero((char *)start, count);
6357 	/*
6358 	 * We need to start the next truncation in the list if it has not
6359 	 * been started yet.
6360 	 */
6361 	fwn = TAILQ_FIRST(&indirdep->ir_trunc);
6362 	if (fwn != NULL) {
6363 		if (fwn->fw_freeblks == indirdep->ir_freeblks)
6364 			TAILQ_REMOVE(&indirdep->ir_trunc, fwn, fw_next);
6365 		if ((fwn->fw_state & ONWORKLIST) == 0)
6366 			freework_enqueue(fwn);
6367 	}
6368 	/*
6369 	 * If bp is NULL the block was fully truncated, restore
6370 	 * the saved block list otherwise free it if it is no
6371 	 * longer needed.
6372 	 */
6373 	if (TAILQ_EMPTY(&indirdep->ir_trunc)) {
6374 		if (bp == NULL)
6375 			bcopy(indirdep->ir_saveddata,
6376 			    indirdep->ir_savebp->b_data,
6377 			    indirdep->ir_savebp->b_bcount);
6378 		free(indirdep->ir_saveddata, M_INDIRDEP);
6379 		indirdep->ir_saveddata = NULL;
6380 	}
6381 	/*
6382 	 * When bp is NULL there is a full truncation pending.  We
6383 	 * must wait for this full truncation to be journaled before
6384 	 * we can release this freework because the disk pointers will
6385 	 * never be written as zero.
6386 	 */
6387 	if (bp == NULL)  {
6388 		if (LIST_EMPTY(&indirdep->ir_freeblks->fb_jblkdephd))
6389 			handle_written_freework(freework);
6390 		else
6391 			WORKLIST_INSERT(&indirdep->ir_freeblks->fb_freeworkhd,
6392 			   &freework->fw_list);
6393 	} else {
6394 		/* Complete when the real copy is written. */
6395 		WORKLIST_INSERT(&bp->b_dep, &freework->fw_list);
6396 		BUF_UNLOCK(bp);
6397 	}
6398 }
6399 
6400 /*
6401  * Calculate the number of blocks we are going to release where datablocks
6402  * is the current total and length is the new file size.
6403  */
6404 static ufs2_daddr_t
6405 blkcount(fs, datablocks, length)
6406 	struct fs *fs;
6407 	ufs2_daddr_t datablocks;
6408 	off_t length;
6409 {
6410 	off_t totblks, numblks;
6411 
6412 	totblks = 0;
6413 	numblks = howmany(length, fs->fs_bsize);
6414 	if (numblks <= NDADDR) {
6415 		totblks = howmany(length, fs->fs_fsize);
6416 		goto out;
6417 	}
6418         totblks = blkstofrags(fs, numblks);
6419 	numblks -= NDADDR;
6420 	/*
6421 	 * Count all single, then double, then triple indirects required.
6422 	 * Subtracting one indirects worth of blocks for each pass
6423 	 * acknowledges one of each pointed to by the inode.
6424 	 */
6425 	for (;;) {
6426 		totblks += blkstofrags(fs, howmany(numblks, NINDIR(fs)));
6427 		numblks -= NINDIR(fs);
6428 		if (numblks <= 0)
6429 			break;
6430 		numblks = howmany(numblks, NINDIR(fs));
6431 	}
6432 out:
6433 	totblks = fsbtodb(fs, totblks);
6434 	/*
6435 	 * Handle sparse files.  We can't reclaim more blocks than the inode
6436 	 * references.  We will correct it later in handle_complete_freeblks()
6437 	 * when we know the real count.
6438 	 */
6439 	if (totblks > datablocks)
6440 		return (0);
6441 	return (datablocks - totblks);
6442 }
6443 
6444 /*
6445  * Handle freeblocks for journaled softupdate filesystems.
6446  *
6447  * Contrary to normal softupdates, we must preserve the block pointers in
6448  * indirects until their subordinates are free.  This is to avoid journaling
6449  * every block that is freed which may consume more space than the journal
6450  * itself.  The recovery program will see the free block journals at the
6451  * base of the truncated area and traverse them to reclaim space.  The
6452  * pointers in the inode may be cleared immediately after the journal
6453  * records are written because each direct and indirect pointer in the
6454  * inode is recorded in a journal.  This permits full truncation to proceed
6455  * asynchronously.  The write order is journal -> inode -> cgs -> indirects.
6456  *
6457  * The algorithm is as follows:
6458  * 1) Traverse the in-memory state and create journal entries to release
6459  *    the relevant blocks and full indirect trees.
6460  * 2) Traverse the indirect block chain adding partial truncation freework
6461  *    records to indirects in the path to lastlbn.  The freework will
6462  *    prevent new allocation dependencies from being satisfied in this
6463  *    indirect until the truncation completes.
6464  * 3) Read and lock the inode block, performing an update with the new size
6465  *    and pointers.  This prevents truncated data from becoming valid on
6466  *    disk through step 4.
6467  * 4) Reap unsatisfied dependencies that are beyond the truncated area,
6468  *    eliminate journal work for those records that do not require it.
6469  * 5) Schedule the journal records to be written followed by the inode block.
6470  * 6) Allocate any necessary frags for the end of file.
6471  * 7) Zero any partially truncated blocks.
6472  *
6473  * From this truncation proceeds asynchronously using the freework and
6474  * indir_trunc machinery.  The file will not be extended again into a
6475  * partially truncated indirect block until all work is completed but
6476  * the normal dependency mechanism ensures that it is rolled back/forward
6477  * as appropriate.  Further truncation may occur without delay and is
6478  * serialized in indir_trunc().
6479  */
6480 void
6481 softdep_journal_freeblocks(ip, cred, length, flags)
6482 	struct inode *ip;	/* The inode whose length is to be reduced */
6483 	struct ucred *cred;
6484 	off_t length;		/* The new length for the file */
6485 	int flags;		/* IO_EXT and/or IO_NORMAL */
6486 {
6487 	struct freeblks *freeblks, *fbn;
6488 	struct worklist *wk, *wkn;
6489 	struct inodedep *inodedep;
6490 	struct jblkdep *jblkdep;
6491 	struct allocdirect *adp, *adpn;
6492 	struct ufsmount *ump;
6493 	struct fs *fs;
6494 	struct buf *bp;
6495 	struct vnode *vp;
6496 	struct mount *mp;
6497 	ufs2_daddr_t extblocks, datablocks;
6498 	ufs_lbn_t tmpval, lbn, lastlbn;
6499 	int frags, lastoff, iboff, allocblock, needj, error, i;
6500 
6501 	fs = ip->i_fs;
6502 	ump = ip->i_ump;
6503 	mp = UFSTOVFS(ump);
6504 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
6505 	    ("softdep_journal_freeblocks called on non-softdep filesystem"));
6506 	vp = ITOV(ip);
6507 	needj = 1;
6508 	iboff = -1;
6509 	allocblock = 0;
6510 	extblocks = 0;
6511 	datablocks = 0;
6512 	frags = 0;
6513 	freeblks = newfreeblks(mp, ip);
6514 	ACQUIRE_LOCK(ump);
6515 	/*
6516 	 * If we're truncating a removed file that will never be written
6517 	 * we don't need to journal the block frees.  The canceled journals
6518 	 * for the allocations will suffice.
6519 	 */
6520 	inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
6521 	if ((inodedep->id_state & (UNLINKED | DEPCOMPLETE)) == UNLINKED &&
6522 	    length == 0)
6523 		needj = 0;
6524 	CTR3(KTR_SUJ, "softdep_journal_freeblks: ip %d length %ld needj %d",
6525 	    ip->i_number, length, needj);
6526 	FREE_LOCK(ump);
6527 	/*
6528 	 * Calculate the lbn that we are truncating to.  This results in -1
6529 	 * if we're truncating the 0 bytes.  So it is the last lbn we want
6530 	 * to keep, not the first lbn we want to truncate.
6531 	 */
6532 	lastlbn = lblkno(fs, length + fs->fs_bsize - 1) - 1;
6533 	lastoff = blkoff(fs, length);
6534 	/*
6535 	 * Compute frags we are keeping in lastlbn.  0 means all.
6536 	 */
6537 	if (lastlbn >= 0 && lastlbn < NDADDR) {
6538 		frags = fragroundup(fs, lastoff);
6539 		/* adp offset of last valid allocdirect. */
6540 		iboff = lastlbn;
6541 	} else if (lastlbn > 0)
6542 		iboff = NDADDR;
6543 	if (fs->fs_magic == FS_UFS2_MAGIC)
6544 		extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize));
6545 	/*
6546 	 * Handle normal data blocks and indirects.  This section saves
6547 	 * values used after the inode update to complete frag and indirect
6548 	 * truncation.
6549 	 */
6550 	if ((flags & IO_NORMAL) != 0) {
6551 		/*
6552 		 * Handle truncation of whole direct and indirect blocks.
6553 		 */
6554 		for (i = iboff + 1; i < NDADDR; i++)
6555 			setup_freedirect(freeblks, ip, i, needj);
6556 		for (i = 0, tmpval = NINDIR(fs), lbn = NDADDR; i < NIADDR;
6557 		    i++, lbn += tmpval, tmpval *= NINDIR(fs)) {
6558 			/* Release a whole indirect tree. */
6559 			if (lbn > lastlbn) {
6560 				setup_freeindir(freeblks, ip, i, -lbn -i,
6561 				    needj);
6562 				continue;
6563 			}
6564 			iboff = i + NDADDR;
6565 			/*
6566 			 * Traverse partially truncated indirect tree.
6567 			 */
6568 			if (lbn <= lastlbn && lbn + tmpval - 1 > lastlbn)
6569 				setup_trunc_indir(freeblks, ip, -lbn - i,
6570 				    lastlbn, DIP(ip, i_ib[i]));
6571 		}
6572 		/*
6573 		 * Handle partial truncation to a frag boundary.
6574 		 */
6575 		if (frags) {
6576 			ufs2_daddr_t blkno;
6577 			long oldfrags;
6578 
6579 			oldfrags = blksize(fs, ip, lastlbn);
6580 			blkno = DIP(ip, i_db[lastlbn]);
6581 			if (blkno && oldfrags != frags) {
6582 				oldfrags -= frags;
6583 				oldfrags = numfrags(ip->i_fs, oldfrags);
6584 				blkno += numfrags(ip->i_fs, frags);
6585 				newfreework(ump, freeblks, NULL, lastlbn,
6586 				    blkno, oldfrags, 0, needj);
6587 				if (needj)
6588 					adjust_newfreework(freeblks,
6589 					    numfrags(ip->i_fs, frags));
6590 			} else if (blkno == 0)
6591 				allocblock = 1;
6592 		}
6593 		/*
6594 		 * Add a journal record for partial truncate if we are
6595 		 * handling indirect blocks.  Non-indirects need no extra
6596 		 * journaling.
6597 		 */
6598 		if (length != 0 && lastlbn >= NDADDR) {
6599 			ip->i_flag |= IN_TRUNCATED;
6600 			newjtrunc(freeblks, length, 0);
6601 		}
6602 		ip->i_size = length;
6603 		DIP_SET(ip, i_size, ip->i_size);
6604 		datablocks = DIP(ip, i_blocks) - extblocks;
6605 		if (length != 0)
6606 			datablocks = blkcount(ip->i_fs, datablocks, length);
6607 		freeblks->fb_len = length;
6608 	}
6609 	if ((flags & IO_EXT) != 0) {
6610 		for (i = 0; i < NXADDR; i++)
6611 			setup_freeext(freeblks, ip, i, needj);
6612 		ip->i_din2->di_extsize = 0;
6613 		datablocks += extblocks;
6614 	}
6615 #ifdef QUOTA
6616 	/* Reference the quotas in case the block count is wrong in the end. */
6617 	quotaref(vp, freeblks->fb_quota);
6618 	(void) chkdq(ip, -datablocks, NOCRED, 0);
6619 #endif
6620 	freeblks->fb_chkcnt = -datablocks;
6621 	UFS_LOCK(ump);
6622 	fs->fs_pendingblocks += datablocks;
6623 	UFS_UNLOCK(ump);
6624 	DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - datablocks);
6625 	/*
6626 	 * Handle truncation of incomplete alloc direct dependencies.  We
6627 	 * hold the inode block locked to prevent incomplete dependencies
6628 	 * from reaching the disk while we are eliminating those that
6629 	 * have been truncated.  This is a partially inlined ffs_update().
6630 	 */
6631 	ufs_itimes(vp);
6632 	ip->i_flag &= ~(IN_LAZYACCESS | IN_LAZYMOD | IN_MODIFIED);
6633 	error = bread(ip->i_devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
6634 	    (int)fs->fs_bsize, cred, &bp);
6635 	if (error) {
6636 		brelse(bp);
6637 		softdep_error("softdep_journal_freeblocks", error);
6638 		return;
6639 	}
6640 	if (bp->b_bufsize == fs->fs_bsize)
6641 		bp->b_flags |= B_CLUSTEROK;
6642 	softdep_update_inodeblock(ip, bp, 0);
6643 	if (ump->um_fstype == UFS1)
6644 		*((struct ufs1_dinode *)bp->b_data +
6645 		    ino_to_fsbo(fs, ip->i_number)) = *ip->i_din1;
6646 	else
6647 		*((struct ufs2_dinode *)bp->b_data +
6648 		    ino_to_fsbo(fs, ip->i_number)) = *ip->i_din2;
6649 	ACQUIRE_LOCK(ump);
6650 	(void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
6651 	if ((inodedep->id_state & IOSTARTED) != 0)
6652 		panic("softdep_setup_freeblocks: inode busy");
6653 	/*
6654 	 * Add the freeblks structure to the list of operations that
6655 	 * must await the zero'ed inode being written to disk. If we
6656 	 * still have a bitmap dependency (needj), then the inode
6657 	 * has never been written to disk, so we can process the
6658 	 * freeblks below once we have deleted the dependencies.
6659 	 */
6660 	if (needj)
6661 		WORKLIST_INSERT(&bp->b_dep, &freeblks->fb_list);
6662 	else
6663 		freeblks->fb_state |= COMPLETE;
6664 	if ((flags & IO_NORMAL) != 0) {
6665 		TAILQ_FOREACH_SAFE(adp, &inodedep->id_inoupdt, ad_next, adpn) {
6666 			if (adp->ad_offset > iboff)
6667 				cancel_allocdirect(&inodedep->id_inoupdt, adp,
6668 				    freeblks);
6669 			/*
6670 			 * Truncate the allocdirect.  We could eliminate
6671 			 * or modify journal records as well.
6672 			 */
6673 			else if (adp->ad_offset == iboff && frags)
6674 				adp->ad_newsize = frags;
6675 		}
6676 	}
6677 	if ((flags & IO_EXT) != 0)
6678 		while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL)
6679 			cancel_allocdirect(&inodedep->id_extupdt, adp,
6680 			    freeblks);
6681 	/*
6682 	 * Scan the bufwait list for newblock dependencies that will never
6683 	 * make it to disk.
6684 	 */
6685 	LIST_FOREACH_SAFE(wk, &inodedep->id_bufwait, wk_list, wkn) {
6686 		if (wk->wk_type != D_ALLOCDIRECT)
6687 			continue;
6688 		adp = WK_ALLOCDIRECT(wk);
6689 		if (((flags & IO_NORMAL) != 0 && (adp->ad_offset > iboff)) ||
6690 		    ((flags & IO_EXT) != 0 && (adp->ad_state & EXTDATA))) {
6691 			cancel_jfreeblk(freeblks, adp->ad_newblkno);
6692 			cancel_newblk(WK_NEWBLK(wk), NULL, &freeblks->fb_jwork);
6693 			WORKLIST_INSERT(&freeblks->fb_freeworkhd, wk);
6694 		}
6695 	}
6696 	/*
6697 	 * Add journal work.
6698 	 */
6699 	LIST_FOREACH(jblkdep, &freeblks->fb_jblkdephd, jb_deps)
6700 		add_to_journal(&jblkdep->jb_list);
6701 	FREE_LOCK(ump);
6702 	bdwrite(bp);
6703 	/*
6704 	 * Truncate dependency structures beyond length.
6705 	 */
6706 	trunc_dependencies(ip, freeblks, lastlbn, frags, flags);
6707 	/*
6708 	 * This is only set when we need to allocate a fragment because
6709 	 * none existed at the end of a frag-sized file.  It handles only
6710 	 * allocating a new, zero filled block.
6711 	 */
6712 	if (allocblock) {
6713 		ip->i_size = length - lastoff;
6714 		DIP_SET(ip, i_size, ip->i_size);
6715 		error = UFS_BALLOC(vp, length - 1, 1, cred, BA_CLRBUF, &bp);
6716 		if (error != 0) {
6717 			softdep_error("softdep_journal_freeblks", error);
6718 			return;
6719 		}
6720 		ip->i_size = length;
6721 		DIP_SET(ip, i_size, length);
6722 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
6723 		allocbuf(bp, frags);
6724 		ffs_update(vp, 0);
6725 		bawrite(bp);
6726 	} else if (lastoff != 0 && vp->v_type != VDIR) {
6727 		int size;
6728 
6729 		/*
6730 		 * Zero the end of a truncated frag or block.
6731 		 */
6732 		size = sblksize(fs, length, lastlbn);
6733 		error = bread(vp, lastlbn, size, cred, &bp);
6734 		if (error) {
6735 			softdep_error("softdep_journal_freeblks", error);
6736 			return;
6737 		}
6738 		bzero((char *)bp->b_data + lastoff, size - lastoff);
6739 		bawrite(bp);
6740 
6741 	}
6742 	ACQUIRE_LOCK(ump);
6743 	inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
6744 	TAILQ_INSERT_TAIL(&inodedep->id_freeblklst, freeblks, fb_next);
6745 	freeblks->fb_state |= DEPCOMPLETE | ONDEPLIST;
6746 	/*
6747 	 * We zero earlier truncations so they don't erroneously
6748 	 * update i_blocks.
6749 	 */
6750 	if (freeblks->fb_len == 0 && (flags & IO_NORMAL) != 0)
6751 		TAILQ_FOREACH(fbn, &inodedep->id_freeblklst, fb_next)
6752 			fbn->fb_len = 0;
6753 	if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE &&
6754 	    LIST_EMPTY(&freeblks->fb_jblkdephd))
6755 		freeblks->fb_state |= INPROGRESS;
6756 	else
6757 		freeblks = NULL;
6758 	FREE_LOCK(ump);
6759 	if (freeblks)
6760 		handle_workitem_freeblocks(freeblks, 0);
6761 	trunc_pages(ip, length, extblocks, flags);
6762 
6763 }
6764 
6765 /*
6766  * Flush a JOP_SYNC to the journal.
6767  */
6768 void
6769 softdep_journal_fsync(ip)
6770 	struct inode *ip;
6771 {
6772 	struct jfsync *jfsync;
6773 
6774 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ip->i_ump)) != 0,
6775 	    ("softdep_journal_fsync called on non-softdep filesystem"));
6776 	if ((ip->i_flag & IN_TRUNCATED) == 0)
6777 		return;
6778 	ip->i_flag &= ~IN_TRUNCATED;
6779 	jfsync = malloc(sizeof(*jfsync), M_JFSYNC, M_SOFTDEP_FLAGS | M_ZERO);
6780 	workitem_alloc(&jfsync->jfs_list, D_JFSYNC, UFSTOVFS(ip->i_ump));
6781 	jfsync->jfs_size = ip->i_size;
6782 	jfsync->jfs_ino = ip->i_number;
6783 	ACQUIRE_LOCK(ip->i_ump);
6784 	add_to_journal(&jfsync->jfs_list);
6785 	jwait(&jfsync->jfs_list, MNT_WAIT);
6786 	FREE_LOCK(ip->i_ump);
6787 }
6788 
6789 /*
6790  * Block de-allocation dependencies.
6791  *
6792  * When blocks are de-allocated, the on-disk pointers must be nullified before
6793  * the blocks are made available for use by other files.  (The true
6794  * requirement is that old pointers must be nullified before new on-disk
6795  * pointers are set.  We chose this slightly more stringent requirement to
6796  * reduce complexity.) Our implementation handles this dependency by updating
6797  * the inode (or indirect block) appropriately but delaying the actual block
6798  * de-allocation (i.e., freemap and free space count manipulation) until
6799  * after the updated versions reach stable storage.  After the disk is
6800  * updated, the blocks can be safely de-allocated whenever it is convenient.
6801  * This implementation handles only the common case of reducing a file's
6802  * length to zero. Other cases are handled by the conventional synchronous
6803  * write approach.
6804  *
6805  * The ffs implementation with which we worked double-checks
6806  * the state of the block pointers and file size as it reduces
6807  * a file's length.  Some of this code is replicated here in our
6808  * soft updates implementation.  The freeblks->fb_chkcnt field is
6809  * used to transfer a part of this information to the procedure
6810  * that eventually de-allocates the blocks.
6811  *
6812  * This routine should be called from the routine that shortens
6813  * a file's length, before the inode's size or block pointers
6814  * are modified. It will save the block pointer information for
6815  * later release and zero the inode so that the calling routine
6816  * can release it.
6817  */
6818 void
6819 softdep_setup_freeblocks(ip, length, flags)
6820 	struct inode *ip;	/* The inode whose length is to be reduced */
6821 	off_t length;		/* The new length for the file */
6822 	int flags;		/* IO_EXT and/or IO_NORMAL */
6823 {
6824 	struct ufs1_dinode *dp1;
6825 	struct ufs2_dinode *dp2;
6826 	struct freeblks *freeblks;
6827 	struct inodedep *inodedep;
6828 	struct allocdirect *adp;
6829 	struct ufsmount *ump;
6830 	struct buf *bp;
6831 	struct fs *fs;
6832 	ufs2_daddr_t extblocks, datablocks;
6833 	struct mount *mp;
6834 	int i, delay, error;
6835 	ufs_lbn_t tmpval;
6836 	ufs_lbn_t lbn;
6837 
6838 	ump = ip->i_ump;
6839 	mp = UFSTOVFS(ump);
6840 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
6841 	    ("softdep_setup_freeblocks called on non-softdep filesystem"));
6842 	CTR2(KTR_SUJ, "softdep_setup_freeblks: ip %d length %ld",
6843 	    ip->i_number, length);
6844 	KASSERT(length == 0, ("softdep_setup_freeblocks: non-zero length"));
6845 	fs = ip->i_fs;
6846 	if ((error = bread(ip->i_devvp,
6847 	    fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
6848 	    (int)fs->fs_bsize, NOCRED, &bp)) != 0) {
6849 		brelse(bp);
6850 		softdep_error("softdep_setup_freeblocks", error);
6851 		return;
6852 	}
6853 	freeblks = newfreeblks(mp, ip);
6854 	extblocks = 0;
6855 	datablocks = 0;
6856 	if (fs->fs_magic == FS_UFS2_MAGIC)
6857 		extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize));
6858 	if ((flags & IO_NORMAL) != 0) {
6859 		for (i = 0; i < NDADDR; i++)
6860 			setup_freedirect(freeblks, ip, i, 0);
6861 		for (i = 0, tmpval = NINDIR(fs), lbn = NDADDR; i < NIADDR;
6862 		    i++, lbn += tmpval, tmpval *= NINDIR(fs))
6863 			setup_freeindir(freeblks, ip, i, -lbn -i, 0);
6864 		ip->i_size = 0;
6865 		DIP_SET(ip, i_size, 0);
6866 		datablocks = DIP(ip, i_blocks) - extblocks;
6867 	}
6868 	if ((flags & IO_EXT) != 0) {
6869 		for (i = 0; i < NXADDR; i++)
6870 			setup_freeext(freeblks, ip, i, 0);
6871 		ip->i_din2->di_extsize = 0;
6872 		datablocks += extblocks;
6873 	}
6874 #ifdef QUOTA
6875 	/* Reference the quotas in case the block count is wrong in the end. */
6876 	quotaref(ITOV(ip), freeblks->fb_quota);
6877 	(void) chkdq(ip, -datablocks, NOCRED, 0);
6878 #endif
6879 	freeblks->fb_chkcnt = -datablocks;
6880 	UFS_LOCK(ump);
6881 	fs->fs_pendingblocks += datablocks;
6882 	UFS_UNLOCK(ump);
6883 	DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - datablocks);
6884 	/*
6885 	 * Push the zero'ed inode to to its disk buffer so that we are free
6886 	 * to delete its dependencies below. Once the dependencies are gone
6887 	 * the buffer can be safely released.
6888 	 */
6889 	if (ump->um_fstype == UFS1) {
6890 		dp1 = ((struct ufs1_dinode *)bp->b_data +
6891 		    ino_to_fsbo(fs, ip->i_number));
6892 		ip->i_din1->di_freelink = dp1->di_freelink;
6893 		*dp1 = *ip->i_din1;
6894 	} else {
6895 		dp2 = ((struct ufs2_dinode *)bp->b_data +
6896 		    ino_to_fsbo(fs, ip->i_number));
6897 		ip->i_din2->di_freelink = dp2->di_freelink;
6898 		*dp2 = *ip->i_din2;
6899 	}
6900 	/*
6901 	 * Find and eliminate any inode dependencies.
6902 	 */
6903 	ACQUIRE_LOCK(ump);
6904 	(void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
6905 	if ((inodedep->id_state & IOSTARTED) != 0)
6906 		panic("softdep_setup_freeblocks: inode busy");
6907 	/*
6908 	 * Add the freeblks structure to the list of operations that
6909 	 * must await the zero'ed inode being written to disk. If we
6910 	 * still have a bitmap dependency (delay == 0), then the inode
6911 	 * has never been written to disk, so we can process the
6912 	 * freeblks below once we have deleted the dependencies.
6913 	 */
6914 	delay = (inodedep->id_state & DEPCOMPLETE);
6915 	if (delay)
6916 		WORKLIST_INSERT(&bp->b_dep, &freeblks->fb_list);
6917 	else
6918 		freeblks->fb_state |= COMPLETE;
6919 	/*
6920 	 * Because the file length has been truncated to zero, any
6921 	 * pending block allocation dependency structures associated
6922 	 * with this inode are obsolete and can simply be de-allocated.
6923 	 * We must first merge the two dependency lists to get rid of
6924 	 * any duplicate freefrag structures, then purge the merged list.
6925 	 * If we still have a bitmap dependency, then the inode has never
6926 	 * been written to disk, so we can free any fragments without delay.
6927 	 */
6928 	if (flags & IO_NORMAL) {
6929 		merge_inode_lists(&inodedep->id_newinoupdt,
6930 		    &inodedep->id_inoupdt);
6931 		while ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL)
6932 			cancel_allocdirect(&inodedep->id_inoupdt, adp,
6933 			    freeblks);
6934 	}
6935 	if (flags & IO_EXT) {
6936 		merge_inode_lists(&inodedep->id_newextupdt,
6937 		    &inodedep->id_extupdt);
6938 		while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL)
6939 			cancel_allocdirect(&inodedep->id_extupdt, adp,
6940 			    freeblks);
6941 	}
6942 	FREE_LOCK(ump);
6943 	bdwrite(bp);
6944 	trunc_dependencies(ip, freeblks, -1, 0, flags);
6945 	ACQUIRE_LOCK(ump);
6946 	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0)
6947 		(void) free_inodedep(inodedep);
6948 	freeblks->fb_state |= DEPCOMPLETE;
6949 	/*
6950 	 * If the inode with zeroed block pointers is now on disk
6951 	 * we can start freeing blocks.
6952 	 */
6953 	if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE)
6954 		freeblks->fb_state |= INPROGRESS;
6955 	else
6956 		freeblks = NULL;
6957 	FREE_LOCK(ump);
6958 	if (freeblks)
6959 		handle_workitem_freeblocks(freeblks, 0);
6960 	trunc_pages(ip, length, extblocks, flags);
6961 }
6962 
6963 /*
6964  * Eliminate pages from the page cache that back parts of this inode and
6965  * adjust the vnode pager's idea of our size.  This prevents stale data
6966  * from hanging around in the page cache.
6967  */
6968 static void
6969 trunc_pages(ip, length, extblocks, flags)
6970 	struct inode *ip;
6971 	off_t length;
6972 	ufs2_daddr_t extblocks;
6973 	int flags;
6974 {
6975 	struct vnode *vp;
6976 	struct fs *fs;
6977 	ufs_lbn_t lbn;
6978 	off_t end, extend;
6979 
6980 	vp = ITOV(ip);
6981 	fs = ip->i_fs;
6982 	extend = OFF_TO_IDX(lblktosize(fs, -extblocks));
6983 	if ((flags & IO_EXT) != 0)
6984 		vn_pages_remove(vp, extend, 0);
6985 	if ((flags & IO_NORMAL) == 0)
6986 		return;
6987 	BO_LOCK(&vp->v_bufobj);
6988 	drain_output(vp);
6989 	BO_UNLOCK(&vp->v_bufobj);
6990 	/*
6991 	 * The vnode pager eliminates file pages we eliminate indirects
6992 	 * below.
6993 	 */
6994 	vnode_pager_setsize(vp, length);
6995 	/*
6996 	 * Calculate the end based on the last indirect we want to keep.  If
6997 	 * the block extends into indirects we can just use the negative of
6998 	 * its lbn.  Doubles and triples exist at lower numbers so we must
6999 	 * be careful not to remove those, if they exist.  double and triple
7000 	 * indirect lbns do not overlap with others so it is not important
7001 	 * to verify how many levels are required.
7002 	 */
7003 	lbn = lblkno(fs, length);
7004 	if (lbn >= NDADDR) {
7005 		/* Calculate the virtual lbn of the triple indirect. */
7006 		lbn = -lbn - (NIADDR - 1);
7007 		end = OFF_TO_IDX(lblktosize(fs, lbn));
7008 	} else
7009 		end = extend;
7010 	vn_pages_remove(vp, OFF_TO_IDX(OFF_MAX), end);
7011 }
7012 
7013 /*
7014  * See if the buf bp is in the range eliminated by truncation.
7015  */
7016 static int
7017 trunc_check_buf(bp, blkoffp, lastlbn, lastoff, flags)
7018 	struct buf *bp;
7019 	int *blkoffp;
7020 	ufs_lbn_t lastlbn;
7021 	int lastoff;
7022 	int flags;
7023 {
7024 	ufs_lbn_t lbn;
7025 
7026 	*blkoffp = 0;
7027 	/* Only match ext/normal blocks as appropriate. */
7028 	if (((flags & IO_EXT) == 0 && (bp->b_xflags & BX_ALTDATA)) ||
7029 	    ((flags & IO_NORMAL) == 0 && (bp->b_xflags & BX_ALTDATA) == 0))
7030 		return (0);
7031 	/* ALTDATA is always a full truncation. */
7032 	if ((bp->b_xflags & BX_ALTDATA) != 0)
7033 		return (1);
7034 	/* -1 is full truncation. */
7035 	if (lastlbn == -1)
7036 		return (1);
7037 	/*
7038 	 * If this is a partial truncate we only want those
7039 	 * blocks and indirect blocks that cover the range
7040 	 * we're after.
7041 	 */
7042 	lbn = bp->b_lblkno;
7043 	if (lbn < 0)
7044 		lbn = -(lbn + lbn_level(lbn));
7045 	if (lbn < lastlbn)
7046 		return (0);
7047 	/* Here we only truncate lblkno if it's partial. */
7048 	if (lbn == lastlbn) {
7049 		if (lastoff == 0)
7050 			return (0);
7051 		*blkoffp = lastoff;
7052 	}
7053 	return (1);
7054 }
7055 
7056 /*
7057  * Eliminate any dependencies that exist in memory beyond lblkno:off
7058  */
7059 static void
7060 trunc_dependencies(ip, freeblks, lastlbn, lastoff, flags)
7061 	struct inode *ip;
7062 	struct freeblks *freeblks;
7063 	ufs_lbn_t lastlbn;
7064 	int lastoff;
7065 	int flags;
7066 {
7067 	struct bufobj *bo;
7068 	struct vnode *vp;
7069 	struct buf *bp;
7070 	int blkoff;
7071 
7072 	/*
7073 	 * We must wait for any I/O in progress to finish so that
7074 	 * all potential buffers on the dirty list will be visible.
7075 	 * Once they are all there, walk the list and get rid of
7076 	 * any dependencies.
7077 	 */
7078 	vp = ITOV(ip);
7079 	bo = &vp->v_bufobj;
7080 	BO_LOCK(bo);
7081 	drain_output(vp);
7082 	TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs)
7083 		bp->b_vflags &= ~BV_SCANNED;
7084 restart:
7085 	TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) {
7086 		if (bp->b_vflags & BV_SCANNED)
7087 			continue;
7088 		if (!trunc_check_buf(bp, &blkoff, lastlbn, lastoff, flags)) {
7089 			bp->b_vflags |= BV_SCANNED;
7090 			continue;
7091 		}
7092 		KASSERT(bp->b_bufobj == bo, ("Wrong object in buffer"));
7093 		if ((bp = getdirtybuf(bp, BO_LOCKPTR(bo), MNT_WAIT)) == NULL)
7094 			goto restart;
7095 		BO_UNLOCK(bo);
7096 		if (deallocate_dependencies(bp, freeblks, blkoff))
7097 			bqrelse(bp);
7098 		else
7099 			brelse(bp);
7100 		BO_LOCK(bo);
7101 		goto restart;
7102 	}
7103 	/*
7104 	 * Now do the work of vtruncbuf while also matching indirect blocks.
7105 	 */
7106 	TAILQ_FOREACH(bp, &bo->bo_clean.bv_hd, b_bobufs)
7107 		bp->b_vflags &= ~BV_SCANNED;
7108 cleanrestart:
7109 	TAILQ_FOREACH(bp, &bo->bo_clean.bv_hd, b_bobufs) {
7110 		if (bp->b_vflags & BV_SCANNED)
7111 			continue;
7112 		if (!trunc_check_buf(bp, &blkoff, lastlbn, lastoff, flags)) {
7113 			bp->b_vflags |= BV_SCANNED;
7114 			continue;
7115 		}
7116 		if (BUF_LOCK(bp,
7117 		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
7118 		    BO_LOCKPTR(bo)) == ENOLCK) {
7119 			BO_LOCK(bo);
7120 			goto cleanrestart;
7121 		}
7122 		bp->b_vflags |= BV_SCANNED;
7123 		bremfree(bp);
7124 		if (blkoff != 0) {
7125 			allocbuf(bp, blkoff);
7126 			bqrelse(bp);
7127 		} else {
7128 			bp->b_flags |= B_INVAL | B_NOCACHE | B_RELBUF;
7129 			brelse(bp);
7130 		}
7131 		BO_LOCK(bo);
7132 		goto cleanrestart;
7133 	}
7134 	drain_output(vp);
7135 	BO_UNLOCK(bo);
7136 }
7137 
7138 static int
7139 cancel_pagedep(pagedep, freeblks, blkoff)
7140 	struct pagedep *pagedep;
7141 	struct freeblks *freeblks;
7142 	int blkoff;
7143 {
7144 	struct jremref *jremref;
7145 	struct jmvref *jmvref;
7146 	struct dirrem *dirrem, *tmp;
7147 	int i;
7148 
7149 	/*
7150 	 * Copy any directory remove dependencies to the list
7151 	 * to be processed after the freeblks proceeds.  If
7152 	 * directory entry never made it to disk they
7153 	 * can be dumped directly onto the work list.
7154 	 */
7155 	LIST_FOREACH_SAFE(dirrem, &pagedep->pd_dirremhd, dm_next, tmp) {
7156 		/* Skip this directory removal if it is intended to remain. */
7157 		if (dirrem->dm_offset < blkoff)
7158 			continue;
7159 		/*
7160 		 * If there are any dirrems we wait for the journal write
7161 		 * to complete and then restart the buf scan as the lock
7162 		 * has been dropped.
7163 		 */
7164 		while ((jremref = LIST_FIRST(&dirrem->dm_jremrefhd)) != NULL) {
7165 			jwait(&jremref->jr_list, MNT_WAIT);
7166 			return (ERESTART);
7167 		}
7168 		LIST_REMOVE(dirrem, dm_next);
7169 		dirrem->dm_dirinum = pagedep->pd_ino;
7170 		WORKLIST_INSERT(&freeblks->fb_freeworkhd, &dirrem->dm_list);
7171 	}
7172 	while ((jmvref = LIST_FIRST(&pagedep->pd_jmvrefhd)) != NULL) {
7173 		jwait(&jmvref->jm_list, MNT_WAIT);
7174 		return (ERESTART);
7175 	}
7176 	/*
7177 	 * When we're partially truncating a pagedep we just want to flush
7178 	 * journal entries and return.  There can not be any adds in the
7179 	 * truncated portion of the directory and newblk must remain if
7180 	 * part of the block remains.
7181 	 */
7182 	if (blkoff != 0) {
7183 		struct diradd *dap;
7184 
7185 		LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist)
7186 			if (dap->da_offset > blkoff)
7187 				panic("cancel_pagedep: diradd %p off %d > %d",
7188 				    dap, dap->da_offset, blkoff);
7189 		for (i = 0; i < DAHASHSZ; i++)
7190 			LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist)
7191 				if (dap->da_offset > blkoff)
7192 					panic("cancel_pagedep: diradd %p off %d > %d",
7193 					    dap, dap->da_offset, blkoff);
7194 		return (0);
7195 	}
7196 	/*
7197 	 * There should be no directory add dependencies present
7198 	 * as the directory could not be truncated until all
7199 	 * children were removed.
7200 	 */
7201 	KASSERT(LIST_FIRST(&pagedep->pd_pendinghd) == NULL,
7202 	    ("deallocate_dependencies: pendinghd != NULL"));
7203 	for (i = 0; i < DAHASHSZ; i++)
7204 		KASSERT(LIST_FIRST(&pagedep->pd_diraddhd[i]) == NULL,
7205 		    ("deallocate_dependencies: diraddhd != NULL"));
7206 	if ((pagedep->pd_state & NEWBLOCK) != 0)
7207 		free_newdirblk(pagedep->pd_newdirblk);
7208 	if (free_pagedep(pagedep) == 0)
7209 		panic("Failed to free pagedep %p", pagedep);
7210 	return (0);
7211 }
7212 
7213 /*
7214  * Reclaim any dependency structures from a buffer that is about to
7215  * be reallocated to a new vnode. The buffer must be locked, thus,
7216  * no I/O completion operations can occur while we are manipulating
7217  * its associated dependencies. The mutex is held so that other I/O's
7218  * associated with related dependencies do not occur.
7219  */
7220 static int
7221 deallocate_dependencies(bp, freeblks, off)
7222 	struct buf *bp;
7223 	struct freeblks *freeblks;
7224 	int off;
7225 {
7226 	struct indirdep *indirdep;
7227 	struct pagedep *pagedep;
7228 	struct worklist *wk, *wkn;
7229 	struct ufsmount *ump;
7230 
7231 	if ((wk = LIST_FIRST(&bp->b_dep)) == NULL)
7232 		goto done;
7233 	ump = VFSTOUFS(wk->wk_mp);
7234 	ACQUIRE_LOCK(ump);
7235 	LIST_FOREACH_SAFE(wk, &bp->b_dep, wk_list, wkn) {
7236 		switch (wk->wk_type) {
7237 		case D_INDIRDEP:
7238 			indirdep = WK_INDIRDEP(wk);
7239 			if (bp->b_lblkno >= 0 ||
7240 			    bp->b_blkno != indirdep->ir_savebp->b_lblkno)
7241 				panic("deallocate_dependencies: not indir");
7242 			cancel_indirdep(indirdep, bp, freeblks);
7243 			continue;
7244 
7245 		case D_PAGEDEP:
7246 			pagedep = WK_PAGEDEP(wk);
7247 			if (cancel_pagedep(pagedep, freeblks, off)) {
7248 				FREE_LOCK(ump);
7249 				return (ERESTART);
7250 			}
7251 			continue;
7252 
7253 		case D_ALLOCINDIR:
7254 			/*
7255 			 * Simply remove the allocindir, we'll find it via
7256 			 * the indirdep where we can clear pointers if
7257 			 * needed.
7258 			 */
7259 			WORKLIST_REMOVE(wk);
7260 			continue;
7261 
7262 		case D_FREEWORK:
7263 			/*
7264 			 * A truncation is waiting for the zero'd pointers
7265 			 * to be written.  It can be freed when the freeblks
7266 			 * is journaled.
7267 			 */
7268 			WORKLIST_REMOVE(wk);
7269 			wk->wk_state |= ONDEPLIST;
7270 			WORKLIST_INSERT(&freeblks->fb_freeworkhd, wk);
7271 			break;
7272 
7273 		case D_ALLOCDIRECT:
7274 			if (off != 0)
7275 				continue;
7276 			/* FALLTHROUGH */
7277 		default:
7278 			panic("deallocate_dependencies: Unexpected type %s",
7279 			    TYPENAME(wk->wk_type));
7280 			/* NOTREACHED */
7281 		}
7282 	}
7283 	FREE_LOCK(ump);
7284 done:
7285 	/*
7286 	 * Don't throw away this buf, we were partially truncating and
7287 	 * some deps may always remain.
7288 	 */
7289 	if (off) {
7290 		allocbuf(bp, off);
7291 		bp->b_vflags |= BV_SCANNED;
7292 		return (EBUSY);
7293 	}
7294 	bp->b_flags |= B_INVAL | B_NOCACHE;
7295 
7296 	return (0);
7297 }
7298 
7299 /*
7300  * An allocdirect is being canceled due to a truncate.  We must make sure
7301  * the journal entry is released in concert with the blkfree that releases
7302  * the storage.  Completed journal entries must not be released until the
7303  * space is no longer pointed to by the inode or in the bitmap.
7304  */
7305 static void
7306 cancel_allocdirect(adphead, adp, freeblks)
7307 	struct allocdirectlst *adphead;
7308 	struct allocdirect *adp;
7309 	struct freeblks *freeblks;
7310 {
7311 	struct freework *freework;
7312 	struct newblk *newblk;
7313 	struct worklist *wk;
7314 
7315 	TAILQ_REMOVE(adphead, adp, ad_next);
7316 	newblk = (struct newblk *)adp;
7317 	freework = NULL;
7318 	/*
7319 	 * Find the correct freework structure.
7320 	 */
7321 	LIST_FOREACH(wk, &freeblks->fb_freeworkhd, wk_list) {
7322 		if (wk->wk_type != D_FREEWORK)
7323 			continue;
7324 		freework = WK_FREEWORK(wk);
7325 		if (freework->fw_blkno == newblk->nb_newblkno)
7326 			break;
7327 	}
7328 	if (freework == NULL)
7329 		panic("cancel_allocdirect: Freework not found");
7330 	/*
7331 	 * If a newblk exists at all we still have the journal entry that
7332 	 * initiated the allocation so we do not need to journal the free.
7333 	 */
7334 	cancel_jfreeblk(freeblks, freework->fw_blkno);
7335 	/*
7336 	 * If the journal hasn't been written the jnewblk must be passed
7337 	 * to the call to ffs_blkfree that reclaims the space.  We accomplish
7338 	 * this by linking the journal dependency into the freework to be
7339 	 * freed when freework_freeblock() is called.  If the journal has
7340 	 * been written we can simply reclaim the journal space when the
7341 	 * freeblks work is complete.
7342 	 */
7343 	freework->fw_jnewblk = cancel_newblk(newblk, &freework->fw_list,
7344 	    &freeblks->fb_jwork);
7345 	WORKLIST_INSERT(&freeblks->fb_freeworkhd, &newblk->nb_list);
7346 }
7347 
7348 
7349 /*
7350  * Cancel a new block allocation.  May be an indirect or direct block.  We
7351  * remove it from various lists and return any journal record that needs to
7352  * be resolved by the caller.
7353  *
7354  * A special consideration is made for indirects which were never pointed
7355  * at on disk and will never be found once this block is released.
7356  */
7357 static struct jnewblk *
7358 cancel_newblk(newblk, wk, wkhd)
7359 	struct newblk *newblk;
7360 	struct worklist *wk;
7361 	struct workhead *wkhd;
7362 {
7363 	struct jnewblk *jnewblk;
7364 
7365 	CTR1(KTR_SUJ, "cancel_newblk: blkno %jd", newblk->nb_newblkno);
7366 
7367 	newblk->nb_state |= GOINGAWAY;
7368 	/*
7369 	 * Previously we traversed the completedhd on each indirdep
7370 	 * attached to this newblk to cancel them and gather journal
7371 	 * work.  Since we need only the oldest journal segment and
7372 	 * the lowest point on the tree will always have the oldest
7373 	 * journal segment we are free to release the segments
7374 	 * of any subordinates and may leave the indirdep list to
7375 	 * indirdep_complete() when this newblk is freed.
7376 	 */
7377 	if (newblk->nb_state & ONDEPLIST) {
7378 		newblk->nb_state &= ~ONDEPLIST;
7379 		LIST_REMOVE(newblk, nb_deps);
7380 	}
7381 	if (newblk->nb_state & ONWORKLIST)
7382 		WORKLIST_REMOVE(&newblk->nb_list);
7383 	/*
7384 	 * If the journal entry hasn't been written we save a pointer to
7385 	 * the dependency that frees it until it is written or the
7386 	 * superseding operation completes.
7387 	 */
7388 	jnewblk = newblk->nb_jnewblk;
7389 	if (jnewblk != NULL && wk != NULL) {
7390 		newblk->nb_jnewblk = NULL;
7391 		jnewblk->jn_dep = wk;
7392 	}
7393 	if (!LIST_EMPTY(&newblk->nb_jwork))
7394 		jwork_move(wkhd, &newblk->nb_jwork);
7395 	/*
7396 	 * When truncating we must free the newdirblk early to remove
7397 	 * the pagedep from the hash before returning.
7398 	 */
7399 	if ((wk = LIST_FIRST(&newblk->nb_newdirblk)) != NULL)
7400 		free_newdirblk(WK_NEWDIRBLK(wk));
7401 	if (!LIST_EMPTY(&newblk->nb_newdirblk))
7402 		panic("cancel_newblk: extra newdirblk");
7403 
7404 	return (jnewblk);
7405 }
7406 
7407 /*
7408  * Schedule the freefrag associated with a newblk to be released once
7409  * the pointers are written and the previous block is no longer needed.
7410  */
7411 static void
7412 newblk_freefrag(newblk)
7413 	struct newblk *newblk;
7414 {
7415 	struct freefrag *freefrag;
7416 
7417 	if (newblk->nb_freefrag == NULL)
7418 		return;
7419 	freefrag = newblk->nb_freefrag;
7420 	newblk->nb_freefrag = NULL;
7421 	freefrag->ff_state |= COMPLETE;
7422 	if ((freefrag->ff_state & ALLCOMPLETE) == ALLCOMPLETE)
7423 		add_to_worklist(&freefrag->ff_list, 0);
7424 }
7425 
7426 /*
7427  * Free a newblk. Generate a new freefrag work request if appropriate.
7428  * This must be called after the inode pointer and any direct block pointers
7429  * are valid or fully removed via truncate or frag extension.
7430  */
7431 static void
7432 free_newblk(newblk)
7433 	struct newblk *newblk;
7434 {
7435 	struct indirdep *indirdep;
7436 	struct worklist *wk;
7437 
7438 	KASSERT(newblk->nb_jnewblk == NULL,
7439 	    ("free_newblk: jnewblk %p still attached", newblk->nb_jnewblk));
7440 	KASSERT(newblk->nb_list.wk_type != D_NEWBLK,
7441 	    ("free_newblk: unclaimed newblk"));
7442 	LOCK_OWNED(VFSTOUFS(newblk->nb_list.wk_mp));
7443 	newblk_freefrag(newblk);
7444 	if (newblk->nb_state & ONDEPLIST)
7445 		LIST_REMOVE(newblk, nb_deps);
7446 	if (newblk->nb_state & ONWORKLIST)
7447 		WORKLIST_REMOVE(&newblk->nb_list);
7448 	LIST_REMOVE(newblk, nb_hash);
7449 	if ((wk = LIST_FIRST(&newblk->nb_newdirblk)) != NULL)
7450 		free_newdirblk(WK_NEWDIRBLK(wk));
7451 	if (!LIST_EMPTY(&newblk->nb_newdirblk))
7452 		panic("free_newblk: extra newdirblk");
7453 	while ((indirdep = LIST_FIRST(&newblk->nb_indirdeps)) != NULL)
7454 		indirdep_complete(indirdep);
7455 	handle_jwork(&newblk->nb_jwork);
7456 	WORKITEM_FREE(newblk, D_NEWBLK);
7457 }
7458 
7459 /*
7460  * Free a newdirblk. Clear the NEWBLOCK flag on its associated pagedep.
7461  * This routine must be called with splbio interrupts blocked.
7462  */
7463 static void
7464 free_newdirblk(newdirblk)
7465 	struct newdirblk *newdirblk;
7466 {
7467 	struct pagedep *pagedep;
7468 	struct diradd *dap;
7469 	struct worklist *wk;
7470 
7471 	LOCK_OWNED(VFSTOUFS(newdirblk->db_list.wk_mp));
7472 	WORKLIST_REMOVE(&newdirblk->db_list);
7473 	/*
7474 	 * If the pagedep is still linked onto the directory buffer
7475 	 * dependency chain, then some of the entries on the
7476 	 * pd_pendinghd list may not be committed to disk yet. In
7477 	 * this case, we will simply clear the NEWBLOCK flag and
7478 	 * let the pd_pendinghd list be processed when the pagedep
7479 	 * is next written. If the pagedep is no longer on the buffer
7480 	 * dependency chain, then all the entries on the pd_pending
7481 	 * list are committed to disk and we can free them here.
7482 	 */
7483 	pagedep = newdirblk->db_pagedep;
7484 	pagedep->pd_state &= ~NEWBLOCK;
7485 	if ((pagedep->pd_state & ONWORKLIST) == 0) {
7486 		while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL)
7487 			free_diradd(dap, NULL);
7488 		/*
7489 		 * If no dependencies remain, the pagedep will be freed.
7490 		 */
7491 		free_pagedep(pagedep);
7492 	}
7493 	/* Should only ever be one item in the list. */
7494 	while ((wk = LIST_FIRST(&newdirblk->db_mkdir)) != NULL) {
7495 		WORKLIST_REMOVE(wk);
7496 		handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY);
7497 	}
7498 	WORKITEM_FREE(newdirblk, D_NEWDIRBLK);
7499 }
7500 
7501 /*
7502  * Prepare an inode to be freed. The actual free operation is not
7503  * done until the zero'ed inode has been written to disk.
7504  */
7505 void
7506 softdep_freefile(pvp, ino, mode)
7507 	struct vnode *pvp;
7508 	ino_t ino;
7509 	int mode;
7510 {
7511 	struct inode *ip = VTOI(pvp);
7512 	struct inodedep *inodedep;
7513 	struct freefile *freefile;
7514 	struct freeblks *freeblks;
7515 	struct ufsmount *ump;
7516 
7517 	ump = ip->i_ump;
7518 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
7519 	    ("softdep_freefile called on non-softdep filesystem"));
7520 	/*
7521 	 * This sets up the inode de-allocation dependency.
7522 	 */
7523 	freefile = malloc(sizeof(struct freefile),
7524 		M_FREEFILE, M_SOFTDEP_FLAGS);
7525 	workitem_alloc(&freefile->fx_list, D_FREEFILE, pvp->v_mount);
7526 	freefile->fx_mode = mode;
7527 	freefile->fx_oldinum = ino;
7528 	freefile->fx_devvp = ip->i_devvp;
7529 	LIST_INIT(&freefile->fx_jwork);
7530 	UFS_LOCK(ump);
7531 	ip->i_fs->fs_pendinginodes += 1;
7532 	UFS_UNLOCK(ump);
7533 
7534 	/*
7535 	 * If the inodedep does not exist, then the zero'ed inode has
7536 	 * been written to disk. If the allocated inode has never been
7537 	 * written to disk, then the on-disk inode is zero'ed. In either
7538 	 * case we can free the file immediately.  If the journal was
7539 	 * canceled before being written the inode will never make it to
7540 	 * disk and we must send the canceled journal entrys to
7541 	 * ffs_freefile() to be cleared in conjunction with the bitmap.
7542 	 * Any blocks waiting on the inode to write can be safely freed
7543 	 * here as it will never been written.
7544 	 */
7545 	ACQUIRE_LOCK(ump);
7546 	inodedep_lookup(pvp->v_mount, ino, 0, &inodedep);
7547 	if (inodedep) {
7548 		/*
7549 		 * Clear out freeblks that no longer need to reference
7550 		 * this inode.
7551 		 */
7552 		while ((freeblks =
7553 		    TAILQ_FIRST(&inodedep->id_freeblklst)) != NULL) {
7554 			TAILQ_REMOVE(&inodedep->id_freeblklst, freeblks,
7555 			    fb_next);
7556 			freeblks->fb_state &= ~ONDEPLIST;
7557 		}
7558 		/*
7559 		 * Remove this inode from the unlinked list.
7560 		 */
7561 		if (inodedep->id_state & UNLINKED) {
7562 			/*
7563 			 * Save the journal work to be freed with the bitmap
7564 			 * before we clear UNLINKED.  Otherwise it can be lost
7565 			 * if the inode block is written.
7566 			 */
7567 			handle_bufwait(inodedep, &freefile->fx_jwork);
7568 			clear_unlinked_inodedep(inodedep);
7569 			/*
7570 			 * Re-acquire inodedep as we've dropped the
7571 			 * per-filesystem lock in clear_unlinked_inodedep().
7572 			 */
7573 			inodedep_lookup(pvp->v_mount, ino, 0, &inodedep);
7574 		}
7575 	}
7576 	if (inodedep == NULL || check_inode_unwritten(inodedep)) {
7577 		FREE_LOCK(ump);
7578 		handle_workitem_freefile(freefile);
7579 		return;
7580 	}
7581 	if ((inodedep->id_state & DEPCOMPLETE) == 0)
7582 		inodedep->id_state |= GOINGAWAY;
7583 	WORKLIST_INSERT(&inodedep->id_inowait, &freefile->fx_list);
7584 	FREE_LOCK(ump);
7585 	if (ip->i_number == ino)
7586 		ip->i_flag |= IN_MODIFIED;
7587 }
7588 
7589 /*
7590  * Check to see if an inode has never been written to disk. If
7591  * so free the inodedep and return success, otherwise return failure.
7592  * This routine must be called with splbio interrupts blocked.
7593  *
7594  * If we still have a bitmap dependency, then the inode has never
7595  * been written to disk. Drop the dependency as it is no longer
7596  * necessary since the inode is being deallocated. We set the
7597  * ALLCOMPLETE flags since the bitmap now properly shows that the
7598  * inode is not allocated. Even if the inode is actively being
7599  * written, it has been rolled back to its zero'ed state, so we
7600  * are ensured that a zero inode is what is on the disk. For short
7601  * lived files, this change will usually result in removing all the
7602  * dependencies from the inode so that it can be freed immediately.
7603  */
7604 static int
7605 check_inode_unwritten(inodedep)
7606 	struct inodedep *inodedep;
7607 {
7608 
7609 	LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp));
7610 
7611 	if ((inodedep->id_state & (DEPCOMPLETE | UNLINKED)) != 0 ||
7612 	    !LIST_EMPTY(&inodedep->id_dirremhd) ||
7613 	    !LIST_EMPTY(&inodedep->id_pendinghd) ||
7614 	    !LIST_EMPTY(&inodedep->id_bufwait) ||
7615 	    !LIST_EMPTY(&inodedep->id_inowait) ||
7616 	    !TAILQ_EMPTY(&inodedep->id_inoreflst) ||
7617 	    !TAILQ_EMPTY(&inodedep->id_inoupdt) ||
7618 	    !TAILQ_EMPTY(&inodedep->id_newinoupdt) ||
7619 	    !TAILQ_EMPTY(&inodedep->id_extupdt) ||
7620 	    !TAILQ_EMPTY(&inodedep->id_newextupdt) ||
7621 	    !TAILQ_EMPTY(&inodedep->id_freeblklst) ||
7622 	    inodedep->id_mkdiradd != NULL ||
7623 	    inodedep->id_nlinkdelta != 0)
7624 		return (0);
7625 	/*
7626 	 * Another process might be in initiate_write_inodeblock_ufs[12]
7627 	 * trying to allocate memory without holding "Softdep Lock".
7628 	 */
7629 	if ((inodedep->id_state & IOSTARTED) != 0 &&
7630 	    inodedep->id_savedino1 == NULL)
7631 		return (0);
7632 
7633 	if (inodedep->id_state & ONDEPLIST)
7634 		LIST_REMOVE(inodedep, id_deps);
7635 	inodedep->id_state &= ~ONDEPLIST;
7636 	inodedep->id_state |= ALLCOMPLETE;
7637 	inodedep->id_bmsafemap = NULL;
7638 	if (inodedep->id_state & ONWORKLIST)
7639 		WORKLIST_REMOVE(&inodedep->id_list);
7640 	if (inodedep->id_savedino1 != NULL) {
7641 		free(inodedep->id_savedino1, M_SAVEDINO);
7642 		inodedep->id_savedino1 = NULL;
7643 	}
7644 	if (free_inodedep(inodedep) == 0)
7645 		panic("check_inode_unwritten: busy inode");
7646 	return (1);
7647 }
7648 
7649 static int
7650 check_inodedep_free(inodedep)
7651 	struct inodedep *inodedep;
7652 {
7653 
7654 	LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp));
7655 	if ((inodedep->id_state & ALLCOMPLETE) != ALLCOMPLETE ||
7656 	    !LIST_EMPTY(&inodedep->id_dirremhd) ||
7657 	    !LIST_EMPTY(&inodedep->id_pendinghd) ||
7658 	    !LIST_EMPTY(&inodedep->id_bufwait) ||
7659 	    !LIST_EMPTY(&inodedep->id_inowait) ||
7660 	    !TAILQ_EMPTY(&inodedep->id_inoreflst) ||
7661 	    !TAILQ_EMPTY(&inodedep->id_inoupdt) ||
7662 	    !TAILQ_EMPTY(&inodedep->id_newinoupdt) ||
7663 	    !TAILQ_EMPTY(&inodedep->id_extupdt) ||
7664 	    !TAILQ_EMPTY(&inodedep->id_newextupdt) ||
7665 	    !TAILQ_EMPTY(&inodedep->id_freeblklst) ||
7666 	    inodedep->id_mkdiradd != NULL ||
7667 	    inodedep->id_nlinkdelta != 0 ||
7668 	    inodedep->id_savedino1 != NULL)
7669 		return (0);
7670 	return (1);
7671 }
7672 
7673 /*
7674  * Try to free an inodedep structure. Return 1 if it could be freed.
7675  */
7676 static int
7677 free_inodedep(inodedep)
7678 	struct inodedep *inodedep;
7679 {
7680 
7681 	LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp));
7682 	if ((inodedep->id_state & (ONWORKLIST | UNLINKED)) != 0 ||
7683 	    !check_inodedep_free(inodedep))
7684 		return (0);
7685 	if (inodedep->id_state & ONDEPLIST)
7686 		LIST_REMOVE(inodedep, id_deps);
7687 	LIST_REMOVE(inodedep, id_hash);
7688 	WORKITEM_FREE(inodedep, D_INODEDEP);
7689 	return (1);
7690 }
7691 
7692 /*
7693  * Free the block referenced by a freework structure.  The parent freeblks
7694  * structure is released and completed when the final cg bitmap reaches
7695  * the disk.  This routine may be freeing a jnewblk which never made it to
7696  * disk in which case we do not have to wait as the operation is undone
7697  * in memory immediately.
7698  */
7699 static void
7700 freework_freeblock(freework)
7701 	struct freework *freework;
7702 {
7703 	struct freeblks *freeblks;
7704 	struct jnewblk *jnewblk;
7705 	struct ufsmount *ump;
7706 	struct workhead wkhd;
7707 	struct fs *fs;
7708 	int bsize;
7709 	int needj;
7710 
7711 	ump = VFSTOUFS(freework->fw_list.wk_mp);
7712 	LOCK_OWNED(ump);
7713 	/*
7714 	 * Handle partial truncate separately.
7715 	 */
7716 	if (freework->fw_indir) {
7717 		complete_trunc_indir(freework);
7718 		return;
7719 	}
7720 	freeblks = freework->fw_freeblks;
7721 	fs = ump->um_fs;
7722 	needj = MOUNTEDSUJ(freeblks->fb_list.wk_mp) != 0;
7723 	bsize = lfragtosize(fs, freework->fw_frags);
7724 	LIST_INIT(&wkhd);
7725 	/*
7726 	 * DEPCOMPLETE is cleared in indirblk_insert() if the block lives
7727 	 * on the indirblk hashtable and prevents premature freeing.
7728 	 */
7729 	freework->fw_state |= DEPCOMPLETE;
7730 	/*
7731 	 * SUJ needs to wait for the segment referencing freed indirect
7732 	 * blocks to expire so that we know the checker will not confuse
7733 	 * a re-allocated indirect block with its old contents.
7734 	 */
7735 	if (needj && freework->fw_lbn <= -NDADDR)
7736 		indirblk_insert(freework);
7737 	/*
7738 	 * If we are canceling an existing jnewblk pass it to the free
7739 	 * routine, otherwise pass the freeblk which will ultimately
7740 	 * release the freeblks.  If we're not journaling, we can just
7741 	 * free the freeblks immediately.
7742 	 */
7743 	jnewblk = freework->fw_jnewblk;
7744 	if (jnewblk != NULL) {
7745 		cancel_jnewblk(jnewblk, &wkhd);
7746 		needj = 0;
7747 	} else if (needj) {
7748 		freework->fw_state |= DELAYEDFREE;
7749 		freeblks->fb_cgwait++;
7750 		WORKLIST_INSERT(&wkhd, &freework->fw_list);
7751 	}
7752 	FREE_LOCK(ump);
7753 	freeblks_free(ump, freeblks, btodb(bsize));
7754 	CTR4(KTR_SUJ,
7755 	    "freework_freeblock: ino %d blkno %jd lbn %jd size %ld",
7756 	    freeblks->fb_inum, freework->fw_blkno, freework->fw_lbn, bsize);
7757 	ffs_blkfree(ump, fs, freeblks->fb_devvp, freework->fw_blkno, bsize,
7758 	    freeblks->fb_inum, freeblks->fb_vtype, &wkhd);
7759 	ACQUIRE_LOCK(ump);
7760 	/*
7761 	 * The jnewblk will be discarded and the bits in the map never
7762 	 * made it to disk.  We can immediately free the freeblk.
7763 	 */
7764 	if (needj == 0)
7765 		handle_written_freework(freework);
7766 }
7767 
7768 /*
7769  * We enqueue freework items that need processing back on the freeblks and
7770  * add the freeblks to the worklist.  This makes it easier to find all work
7771  * required to flush a truncation in process_truncates().
7772  */
7773 static void
7774 freework_enqueue(freework)
7775 	struct freework *freework;
7776 {
7777 	struct freeblks *freeblks;
7778 
7779 	freeblks = freework->fw_freeblks;
7780 	if ((freework->fw_state & INPROGRESS) == 0)
7781 		WORKLIST_INSERT(&freeblks->fb_freeworkhd, &freework->fw_list);
7782 	if ((freeblks->fb_state &
7783 	    (ONWORKLIST | INPROGRESS | ALLCOMPLETE)) == ALLCOMPLETE &&
7784 	    LIST_EMPTY(&freeblks->fb_jblkdephd))
7785 		add_to_worklist(&freeblks->fb_list, WK_NODELAY);
7786 }
7787 
7788 /*
7789  * Start, continue, or finish the process of freeing an indirect block tree.
7790  * The free operation may be paused at any point with fw_off containing the
7791  * offset to restart from.  This enables us to implement some flow control
7792  * for large truncates which may fan out and generate a huge number of
7793  * dependencies.
7794  */
7795 static void
7796 handle_workitem_indirblk(freework)
7797 	struct freework *freework;
7798 {
7799 	struct freeblks *freeblks;
7800 	struct ufsmount *ump;
7801 	struct fs *fs;
7802 
7803 	freeblks = freework->fw_freeblks;
7804 	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
7805 	fs = ump->um_fs;
7806 	if (freework->fw_state & DEPCOMPLETE) {
7807 		handle_written_freework(freework);
7808 		return;
7809 	}
7810 	if (freework->fw_off == NINDIR(fs)) {
7811 		freework_freeblock(freework);
7812 		return;
7813 	}
7814 	freework->fw_state |= INPROGRESS;
7815 	FREE_LOCK(ump);
7816 	indir_trunc(freework, fsbtodb(fs, freework->fw_blkno),
7817 	    freework->fw_lbn);
7818 	ACQUIRE_LOCK(ump);
7819 }
7820 
7821 /*
7822  * Called when a freework structure attached to a cg buf is written.  The
7823  * ref on either the parent or the freeblks structure is released and
7824  * the freeblks is added back to the worklist if there is more work to do.
7825  */
7826 static void
7827 handle_written_freework(freework)
7828 	struct freework *freework;
7829 {
7830 	struct freeblks *freeblks;
7831 	struct freework *parent;
7832 
7833 	freeblks = freework->fw_freeblks;
7834 	parent = freework->fw_parent;
7835 	if (freework->fw_state & DELAYEDFREE)
7836 		freeblks->fb_cgwait--;
7837 	freework->fw_state |= COMPLETE;
7838 	if ((freework->fw_state & ALLCOMPLETE) == ALLCOMPLETE)
7839 		WORKITEM_FREE(freework, D_FREEWORK);
7840 	if (parent) {
7841 		if (--parent->fw_ref == 0)
7842 			freework_enqueue(parent);
7843 		return;
7844 	}
7845 	if (--freeblks->fb_ref != 0)
7846 		return;
7847 	if ((freeblks->fb_state & (ALLCOMPLETE | ONWORKLIST | INPROGRESS)) ==
7848 	    ALLCOMPLETE && LIST_EMPTY(&freeblks->fb_jblkdephd))
7849 		add_to_worklist(&freeblks->fb_list, WK_NODELAY);
7850 }
7851 
7852 /*
7853  * This workitem routine performs the block de-allocation.
7854  * The workitem is added to the pending list after the updated
7855  * inode block has been written to disk.  As mentioned above,
7856  * checks regarding the number of blocks de-allocated (compared
7857  * to the number of blocks allocated for the file) are also
7858  * performed in this function.
7859  */
7860 static int
7861 handle_workitem_freeblocks(freeblks, flags)
7862 	struct freeblks *freeblks;
7863 	int flags;
7864 {
7865 	struct freework *freework;
7866 	struct newblk *newblk;
7867 	struct allocindir *aip;
7868 	struct ufsmount *ump;
7869 	struct worklist *wk;
7870 
7871 	KASSERT(LIST_EMPTY(&freeblks->fb_jblkdephd),
7872 	    ("handle_workitem_freeblocks: Journal entries not written."));
7873 	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
7874 	ACQUIRE_LOCK(ump);
7875 	while ((wk = LIST_FIRST(&freeblks->fb_freeworkhd)) != NULL) {
7876 		WORKLIST_REMOVE(wk);
7877 		switch (wk->wk_type) {
7878 		case D_DIRREM:
7879 			wk->wk_state |= COMPLETE;
7880 			add_to_worklist(wk, 0);
7881 			continue;
7882 
7883 		case D_ALLOCDIRECT:
7884 			free_newblk(WK_NEWBLK(wk));
7885 			continue;
7886 
7887 		case D_ALLOCINDIR:
7888 			aip = WK_ALLOCINDIR(wk);
7889 			freework = NULL;
7890 			if (aip->ai_state & DELAYEDFREE) {
7891 				FREE_LOCK(ump);
7892 				freework = newfreework(ump, freeblks, NULL,
7893 				    aip->ai_lbn, aip->ai_newblkno,
7894 				    ump->um_fs->fs_frag, 0, 0);
7895 				ACQUIRE_LOCK(ump);
7896 			}
7897 			newblk = WK_NEWBLK(wk);
7898 			if (newblk->nb_jnewblk) {
7899 				freework->fw_jnewblk = newblk->nb_jnewblk;
7900 				newblk->nb_jnewblk->jn_dep = &freework->fw_list;
7901 				newblk->nb_jnewblk = NULL;
7902 			}
7903 			free_newblk(newblk);
7904 			continue;
7905 
7906 		case D_FREEWORK:
7907 			freework = WK_FREEWORK(wk);
7908 			if (freework->fw_lbn <= -NDADDR)
7909 				handle_workitem_indirblk(freework);
7910 			else
7911 				freework_freeblock(freework);
7912 			continue;
7913 		default:
7914 			panic("handle_workitem_freeblocks: Unknown type %s",
7915 			    TYPENAME(wk->wk_type));
7916 		}
7917 	}
7918 	if (freeblks->fb_ref != 0) {
7919 		freeblks->fb_state &= ~INPROGRESS;
7920 		wake_worklist(&freeblks->fb_list);
7921 		freeblks = NULL;
7922 	}
7923 	FREE_LOCK(ump);
7924 	if (freeblks)
7925 		return handle_complete_freeblocks(freeblks, flags);
7926 	return (0);
7927 }
7928 
7929 /*
7930  * Handle completion of block free via truncate.  This allows fs_pending
7931  * to track the actual free block count more closely than if we only updated
7932  * it at the end.  We must be careful to handle cases where the block count
7933  * on free was incorrect.
7934  */
7935 static void
7936 freeblks_free(ump, freeblks, blocks)
7937 	struct ufsmount *ump;
7938 	struct freeblks *freeblks;
7939 	int blocks;
7940 {
7941 	struct fs *fs;
7942 	ufs2_daddr_t remain;
7943 
7944 	UFS_LOCK(ump);
7945 	remain = -freeblks->fb_chkcnt;
7946 	freeblks->fb_chkcnt += blocks;
7947 	if (remain > 0) {
7948 		if (remain < blocks)
7949 			blocks = remain;
7950 		fs = ump->um_fs;
7951 		fs->fs_pendingblocks -= blocks;
7952 	}
7953 	UFS_UNLOCK(ump);
7954 }
7955 
7956 /*
7957  * Once all of the freework workitems are complete we can retire the
7958  * freeblocks dependency and any journal work awaiting completion.  This
7959  * can not be called until all other dependencies are stable on disk.
7960  */
7961 static int
7962 handle_complete_freeblocks(freeblks, flags)
7963 	struct freeblks *freeblks;
7964 	int flags;
7965 {
7966 	struct inodedep *inodedep;
7967 	struct inode *ip;
7968 	struct vnode *vp;
7969 	struct fs *fs;
7970 	struct ufsmount *ump;
7971 	ufs2_daddr_t spare;
7972 
7973 	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
7974 	fs = ump->um_fs;
7975 	flags = LK_EXCLUSIVE | flags;
7976 	spare = freeblks->fb_chkcnt;
7977 
7978 	/*
7979 	 * If we did not release the expected number of blocks we may have
7980 	 * to adjust the inode block count here.  Only do so if it wasn't
7981 	 * a truncation to zero and the modrev still matches.
7982 	 */
7983 	if (spare && freeblks->fb_len != 0) {
7984 		if (ffs_vgetf(freeblks->fb_list.wk_mp, freeblks->fb_inum,
7985 		    flags, &vp, FFSV_FORCEINSMQ) != 0)
7986 			return (EBUSY);
7987 		ip = VTOI(vp);
7988 		if (DIP(ip, i_modrev) == freeblks->fb_modrev) {
7989 			DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - spare);
7990 			ip->i_flag |= IN_CHANGE;
7991 			/*
7992 			 * We must wait so this happens before the
7993 			 * journal is reclaimed.
7994 			 */
7995 			ffs_update(vp, 1);
7996 		}
7997 		vput(vp);
7998 	}
7999 	if (spare < 0) {
8000 		UFS_LOCK(ump);
8001 		fs->fs_pendingblocks += spare;
8002 		UFS_UNLOCK(ump);
8003 	}
8004 #ifdef QUOTA
8005 	/* Handle spare. */
8006 	if (spare)
8007 		quotaadj(freeblks->fb_quota, ump, -spare);
8008 	quotarele(freeblks->fb_quota);
8009 #endif
8010 	ACQUIRE_LOCK(ump);
8011 	if (freeblks->fb_state & ONDEPLIST) {
8012 		inodedep_lookup(freeblks->fb_list.wk_mp, freeblks->fb_inum,
8013 		    0, &inodedep);
8014 		TAILQ_REMOVE(&inodedep->id_freeblklst, freeblks, fb_next);
8015 		freeblks->fb_state &= ~ONDEPLIST;
8016 		if (TAILQ_EMPTY(&inodedep->id_freeblklst))
8017 			free_inodedep(inodedep);
8018 	}
8019 	/*
8020 	 * All of the freeblock deps must be complete prior to this call
8021 	 * so it's now safe to complete earlier outstanding journal entries.
8022 	 */
8023 	handle_jwork(&freeblks->fb_jwork);
8024 	WORKITEM_FREE(freeblks, D_FREEBLKS);
8025 	FREE_LOCK(ump);
8026 	return (0);
8027 }
8028 
8029 /*
8030  * Release blocks associated with the freeblks and stored in the indirect
8031  * block dbn. If level is greater than SINGLE, the block is an indirect block
8032  * and recursive calls to indirtrunc must be used to cleanse other indirect
8033  * blocks.
8034  *
8035  * This handles partial and complete truncation of blocks.  Partial is noted
8036  * with goingaway == 0.  In this case the freework is completed after the
8037  * zero'd indirects are written to disk.  For full truncation the freework
8038  * is completed after the block is freed.
8039  */
8040 static void
8041 indir_trunc(freework, dbn, lbn)
8042 	struct freework *freework;
8043 	ufs2_daddr_t dbn;
8044 	ufs_lbn_t lbn;
8045 {
8046 	struct freework *nfreework;
8047 	struct workhead wkhd;
8048 	struct freeblks *freeblks;
8049 	struct buf *bp;
8050 	struct fs *fs;
8051 	struct indirdep *indirdep;
8052 	struct ufsmount *ump;
8053 	ufs1_daddr_t *bap1;
8054 	ufs2_daddr_t nb, nnb, *bap2;
8055 	ufs_lbn_t lbnadd, nlbn;
8056 	int i, nblocks, ufs1fmt;
8057 	int freedblocks;
8058 	int goingaway;
8059 	int freedeps;
8060 	int needj;
8061 	int level;
8062 	int cnt;
8063 
8064 	freeblks = freework->fw_freeblks;
8065 	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
8066 	fs = ump->um_fs;
8067 	/*
8068 	 * Get buffer of block pointers to be freed.  There are three cases:
8069 	 *
8070 	 * 1) Partial truncate caches the indirdep pointer in the freework
8071 	 *    which provides us a back copy to the save bp which holds the
8072 	 *    pointers we want to clear.  When this completes the zero
8073 	 *    pointers are written to the real copy.
8074 	 * 2) The indirect is being completely truncated, cancel_indirdep()
8075 	 *    eliminated the real copy and placed the indirdep on the saved
8076 	 *    copy.  The indirdep and buf are discarded when this completes.
8077 	 * 3) The indirect was not in memory, we read a copy off of the disk
8078 	 *    using the devvp and drop and invalidate the buffer when we're
8079 	 *    done.
8080 	 */
8081 	goingaway = 1;
8082 	indirdep = NULL;
8083 	if (freework->fw_indir != NULL) {
8084 		goingaway = 0;
8085 		indirdep = freework->fw_indir;
8086 		bp = indirdep->ir_savebp;
8087 		if (bp == NULL || bp->b_blkno != dbn)
8088 			panic("indir_trunc: Bad saved buf %p blkno %jd",
8089 			    bp, (intmax_t)dbn);
8090 	} else if ((bp = incore(&freeblks->fb_devvp->v_bufobj, dbn)) != NULL) {
8091 		/*
8092 		 * The lock prevents the buf dep list from changing and
8093 	 	 * indirects on devvp should only ever have one dependency.
8094 		 */
8095 		indirdep = WK_INDIRDEP(LIST_FIRST(&bp->b_dep));
8096 		if (indirdep == NULL || (indirdep->ir_state & GOINGAWAY) == 0)
8097 			panic("indir_trunc: Bad indirdep %p from buf %p",
8098 			    indirdep, bp);
8099 	} else if (bread(freeblks->fb_devvp, dbn, (int)fs->fs_bsize,
8100 	    NOCRED, &bp) != 0) {
8101 		brelse(bp);
8102 		return;
8103 	}
8104 	ACQUIRE_LOCK(ump);
8105 	/* Protects against a race with complete_trunc_indir(). */
8106 	freework->fw_state &= ~INPROGRESS;
8107 	/*
8108 	 * If we have an indirdep we need to enforce the truncation order
8109 	 * and discard it when it is complete.
8110 	 */
8111 	if (indirdep) {
8112 		if (freework != TAILQ_FIRST(&indirdep->ir_trunc) &&
8113 		    !TAILQ_EMPTY(&indirdep->ir_trunc)) {
8114 			/*
8115 			 * Add the complete truncate to the list on the
8116 			 * indirdep to enforce in-order processing.
8117 			 */
8118 			if (freework->fw_indir == NULL)
8119 				TAILQ_INSERT_TAIL(&indirdep->ir_trunc,
8120 				    freework, fw_next);
8121 			FREE_LOCK(ump);
8122 			return;
8123 		}
8124 		/*
8125 		 * If we're goingaway, free the indirdep.  Otherwise it will
8126 		 * linger until the write completes.
8127 		 */
8128 		if (goingaway)
8129 			free_indirdep(indirdep);
8130 	}
8131 	FREE_LOCK(ump);
8132 	/* Initialize pointers depending on block size. */
8133 	if (ump->um_fstype == UFS1) {
8134 		bap1 = (ufs1_daddr_t *)bp->b_data;
8135 		nb = bap1[freework->fw_off];
8136 		ufs1fmt = 1;
8137 		bap2 = NULL;
8138 	} else {
8139 		bap2 = (ufs2_daddr_t *)bp->b_data;
8140 		nb = bap2[freework->fw_off];
8141 		ufs1fmt = 0;
8142 		bap1 = NULL;
8143 	}
8144 	level = lbn_level(lbn);
8145 	needj = MOUNTEDSUJ(UFSTOVFS(ump)) != 0;
8146 	lbnadd = lbn_offset(fs, level);
8147 	nblocks = btodb(fs->fs_bsize);
8148 	nfreework = freework;
8149 	freedeps = 0;
8150 	cnt = 0;
8151 	/*
8152 	 * Reclaim blocks.  Traverses into nested indirect levels and
8153 	 * arranges for the current level to be freed when subordinates
8154 	 * are free when journaling.
8155 	 */
8156 	for (i = freework->fw_off; i < NINDIR(fs); i++, nb = nnb) {
8157 		if (i != NINDIR(fs) - 1) {
8158 			if (ufs1fmt)
8159 				nnb = bap1[i+1];
8160 			else
8161 				nnb = bap2[i+1];
8162 		} else
8163 			nnb = 0;
8164 		if (nb == 0)
8165 			continue;
8166 		cnt++;
8167 		if (level != 0) {
8168 			nlbn = (lbn + 1) - (i * lbnadd);
8169 			if (needj != 0) {
8170 				nfreework = newfreework(ump, freeblks, freework,
8171 				    nlbn, nb, fs->fs_frag, 0, 0);
8172 				freedeps++;
8173 			}
8174 			indir_trunc(nfreework, fsbtodb(fs, nb), nlbn);
8175 		} else {
8176 			struct freedep *freedep;
8177 
8178 			/*
8179 			 * Attempt to aggregate freedep dependencies for
8180 			 * all blocks being released to the same CG.
8181 			 */
8182 			LIST_INIT(&wkhd);
8183 			if (needj != 0 &&
8184 			    (nnb == 0 || (dtog(fs, nb) != dtog(fs, nnb)))) {
8185 				freedep = newfreedep(freework);
8186 				WORKLIST_INSERT_UNLOCKED(&wkhd,
8187 				    &freedep->fd_list);
8188 				freedeps++;
8189 			}
8190 			CTR3(KTR_SUJ,
8191 			    "indir_trunc: ino %d blkno %jd size %ld",
8192 			    freeblks->fb_inum, nb, fs->fs_bsize);
8193 			ffs_blkfree(ump, fs, freeblks->fb_devvp, nb,
8194 			    fs->fs_bsize, freeblks->fb_inum,
8195 			    freeblks->fb_vtype, &wkhd);
8196 		}
8197 	}
8198 	if (goingaway) {
8199 		bp->b_flags |= B_INVAL | B_NOCACHE;
8200 		brelse(bp);
8201 	}
8202 	freedblocks = 0;
8203 	if (level == 0)
8204 		freedblocks = (nblocks * cnt);
8205 	if (needj == 0)
8206 		freedblocks += nblocks;
8207 	freeblks_free(ump, freeblks, freedblocks);
8208 	/*
8209 	 * If we are journaling set up the ref counts and offset so this
8210 	 * indirect can be completed when its children are free.
8211 	 */
8212 	if (needj) {
8213 		ACQUIRE_LOCK(ump);
8214 		freework->fw_off = i;
8215 		freework->fw_ref += freedeps;
8216 		freework->fw_ref -= NINDIR(fs) + 1;
8217 		if (level == 0)
8218 			freeblks->fb_cgwait += freedeps;
8219 		if (freework->fw_ref == 0)
8220 			freework_freeblock(freework);
8221 		FREE_LOCK(ump);
8222 		return;
8223 	}
8224 	/*
8225 	 * If we're not journaling we can free the indirect now.
8226 	 */
8227 	dbn = dbtofsb(fs, dbn);
8228 	CTR3(KTR_SUJ,
8229 	    "indir_trunc 2: ino %d blkno %jd size %ld",
8230 	    freeblks->fb_inum, dbn, fs->fs_bsize);
8231 	ffs_blkfree(ump, fs, freeblks->fb_devvp, dbn, fs->fs_bsize,
8232 	    freeblks->fb_inum, freeblks->fb_vtype, NULL);
8233 	/* Non SUJ softdep does single-threaded truncations. */
8234 	if (freework->fw_blkno == dbn) {
8235 		freework->fw_state |= ALLCOMPLETE;
8236 		ACQUIRE_LOCK(ump);
8237 		handle_written_freework(freework);
8238 		FREE_LOCK(ump);
8239 	}
8240 	return;
8241 }
8242 
8243 /*
8244  * Cancel an allocindir when it is removed via truncation.  When bp is not
8245  * NULL the indirect never appeared on disk and is scheduled to be freed
8246  * independently of the indir so we can more easily track journal work.
8247  */
8248 static void
8249 cancel_allocindir(aip, bp, freeblks, trunc)
8250 	struct allocindir *aip;
8251 	struct buf *bp;
8252 	struct freeblks *freeblks;
8253 	int trunc;
8254 {
8255 	struct indirdep *indirdep;
8256 	struct freefrag *freefrag;
8257 	struct newblk *newblk;
8258 
8259 	newblk = (struct newblk *)aip;
8260 	LIST_REMOVE(aip, ai_next);
8261 	/*
8262 	 * We must eliminate the pointer in bp if it must be freed on its
8263 	 * own due to partial truncate or pending journal work.
8264 	 */
8265 	if (bp && (trunc || newblk->nb_jnewblk)) {
8266 		/*
8267 		 * Clear the pointer and mark the aip to be freed
8268 		 * directly if it never existed on disk.
8269 		 */
8270 		aip->ai_state |= DELAYEDFREE;
8271 		indirdep = aip->ai_indirdep;
8272 		if (indirdep->ir_state & UFS1FMT)
8273 			((ufs1_daddr_t *)bp->b_data)[aip->ai_offset] = 0;
8274 		else
8275 			((ufs2_daddr_t *)bp->b_data)[aip->ai_offset] = 0;
8276 	}
8277 	/*
8278 	 * When truncating the previous pointer will be freed via
8279 	 * savedbp.  Eliminate the freefrag which would dup free.
8280 	 */
8281 	if (trunc && (freefrag = newblk->nb_freefrag) != NULL) {
8282 		newblk->nb_freefrag = NULL;
8283 		if (freefrag->ff_jdep)
8284 			cancel_jfreefrag(
8285 			    WK_JFREEFRAG(freefrag->ff_jdep));
8286 		jwork_move(&freeblks->fb_jwork, &freefrag->ff_jwork);
8287 		WORKITEM_FREE(freefrag, D_FREEFRAG);
8288 	}
8289 	/*
8290 	 * If the journal hasn't been written the jnewblk must be passed
8291 	 * to the call to ffs_blkfree that reclaims the space.  We accomplish
8292 	 * this by leaving the journal dependency on the newblk to be freed
8293 	 * when a freework is created in handle_workitem_freeblocks().
8294 	 */
8295 	cancel_newblk(newblk, NULL, &freeblks->fb_jwork);
8296 	WORKLIST_INSERT(&freeblks->fb_freeworkhd, &newblk->nb_list);
8297 }
8298 
8299 /*
8300  * Create the mkdir dependencies for . and .. in a new directory.  Link them
8301  * in to a newdirblk so any subsequent additions are tracked properly.  The
8302  * caller is responsible for adding the mkdir1 dependency to the journal
8303  * and updating id_mkdiradd.  This function returns with the per-filesystem
8304  * lock held.
8305  */
8306 static struct mkdir *
8307 setup_newdir(dap, newinum, dinum, newdirbp, mkdirp)
8308 	struct diradd *dap;
8309 	ino_t newinum;
8310 	ino_t dinum;
8311 	struct buf *newdirbp;
8312 	struct mkdir **mkdirp;
8313 {
8314 	struct newblk *newblk;
8315 	struct pagedep *pagedep;
8316 	struct inodedep *inodedep;
8317 	struct newdirblk *newdirblk;
8318 	struct mkdir *mkdir1, *mkdir2;
8319 	struct worklist *wk;
8320 	struct jaddref *jaddref;
8321 	struct ufsmount *ump;
8322 	struct mount *mp;
8323 
8324 	mp = dap->da_list.wk_mp;
8325 	ump = VFSTOUFS(mp);
8326 	newdirblk = malloc(sizeof(struct newdirblk), M_NEWDIRBLK,
8327 	    M_SOFTDEP_FLAGS);
8328 	workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp);
8329 	LIST_INIT(&newdirblk->db_mkdir);
8330 	mkdir1 = malloc(sizeof(struct mkdir), M_MKDIR, M_SOFTDEP_FLAGS);
8331 	workitem_alloc(&mkdir1->md_list, D_MKDIR, mp);
8332 	mkdir1->md_state = ATTACHED | MKDIR_BODY;
8333 	mkdir1->md_diradd = dap;
8334 	mkdir1->md_jaddref = NULL;
8335 	mkdir2 = malloc(sizeof(struct mkdir), M_MKDIR, M_SOFTDEP_FLAGS);
8336 	workitem_alloc(&mkdir2->md_list, D_MKDIR, mp);
8337 	mkdir2->md_state = ATTACHED | MKDIR_PARENT;
8338 	mkdir2->md_diradd = dap;
8339 	mkdir2->md_jaddref = NULL;
8340 	if (MOUNTEDSUJ(mp) == 0) {
8341 		mkdir1->md_state |= DEPCOMPLETE;
8342 		mkdir2->md_state |= DEPCOMPLETE;
8343 	}
8344 	/*
8345 	 * Dependency on "." and ".." being written to disk.
8346 	 */
8347 	mkdir1->md_buf = newdirbp;
8348 	ACQUIRE_LOCK(VFSTOUFS(mp));
8349 	LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir1, md_mkdirs);
8350 	/*
8351 	 * We must link the pagedep, allocdirect, and newdirblk for
8352 	 * the initial file page so the pointer to the new directory
8353 	 * is not written until the directory contents are live and
8354 	 * any subsequent additions are not marked live until the
8355 	 * block is reachable via the inode.
8356 	 */
8357 	if (pagedep_lookup(mp, newdirbp, newinum, 0, 0, &pagedep) == 0)
8358 		panic("setup_newdir: lost pagedep");
8359 	LIST_FOREACH(wk, &newdirbp->b_dep, wk_list)
8360 		if (wk->wk_type == D_ALLOCDIRECT)
8361 			break;
8362 	if (wk == NULL)
8363 		panic("setup_newdir: lost allocdirect");
8364 	if (pagedep->pd_state & NEWBLOCK)
8365 		panic("setup_newdir: NEWBLOCK already set");
8366 	newblk = WK_NEWBLK(wk);
8367 	pagedep->pd_state |= NEWBLOCK;
8368 	pagedep->pd_newdirblk = newdirblk;
8369 	newdirblk->db_pagedep = pagedep;
8370 	WORKLIST_INSERT(&newblk->nb_newdirblk, &newdirblk->db_list);
8371 	WORKLIST_INSERT(&newdirblk->db_mkdir, &mkdir1->md_list);
8372 	/*
8373 	 * Look up the inodedep for the parent directory so that we
8374 	 * can link mkdir2 into the pending dotdot jaddref or
8375 	 * the inode write if there is none.  If the inode is
8376 	 * ALLCOMPLETE and no jaddref is present all dependencies have
8377 	 * been satisfied and mkdir2 can be freed.
8378 	 */
8379 	inodedep_lookup(mp, dinum, 0, &inodedep);
8380 	if (MOUNTEDSUJ(mp)) {
8381 		if (inodedep == NULL)
8382 			panic("setup_newdir: Lost parent.");
8383 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
8384 		    inoreflst);
8385 		KASSERT(jaddref != NULL && jaddref->ja_parent == newinum &&
8386 		    (jaddref->ja_state & MKDIR_PARENT),
8387 		    ("setup_newdir: bad dotdot jaddref %p", jaddref));
8388 		LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir2, md_mkdirs);
8389 		mkdir2->md_jaddref = jaddref;
8390 		jaddref->ja_mkdir = mkdir2;
8391 	} else if (inodedep == NULL ||
8392 	    (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) {
8393 		dap->da_state &= ~MKDIR_PARENT;
8394 		WORKITEM_FREE(mkdir2, D_MKDIR);
8395 		mkdir2 = NULL;
8396 	} else {
8397 		LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir2, md_mkdirs);
8398 		WORKLIST_INSERT(&inodedep->id_bufwait, &mkdir2->md_list);
8399 	}
8400 	*mkdirp = mkdir2;
8401 
8402 	return (mkdir1);
8403 }
8404 
8405 /*
8406  * Directory entry addition dependencies.
8407  *
8408  * When adding a new directory entry, the inode (with its incremented link
8409  * count) must be written to disk before the directory entry's pointer to it.
8410  * Also, if the inode is newly allocated, the corresponding freemap must be
8411  * updated (on disk) before the directory entry's pointer. These requirements
8412  * are met via undo/redo on the directory entry's pointer, which consists
8413  * simply of the inode number.
8414  *
8415  * As directory entries are added and deleted, the free space within a
8416  * directory block can become fragmented.  The ufs filesystem will compact
8417  * a fragmented directory block to make space for a new entry. When this
8418  * occurs, the offsets of previously added entries change. Any "diradd"
8419  * dependency structures corresponding to these entries must be updated with
8420  * the new offsets.
8421  */
8422 
8423 /*
8424  * This routine is called after the in-memory inode's link
8425  * count has been incremented, but before the directory entry's
8426  * pointer to the inode has been set.
8427  */
8428 int
8429 softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk)
8430 	struct buf *bp;		/* buffer containing directory block */
8431 	struct inode *dp;	/* inode for directory */
8432 	off_t diroffset;	/* offset of new entry in directory */
8433 	ino_t newinum;		/* inode referenced by new directory entry */
8434 	struct buf *newdirbp;	/* non-NULL => contents of new mkdir */
8435 	int isnewblk;		/* entry is in a newly allocated block */
8436 {
8437 	int offset;		/* offset of new entry within directory block */
8438 	ufs_lbn_t lbn;		/* block in directory containing new entry */
8439 	struct fs *fs;
8440 	struct diradd *dap;
8441 	struct newblk *newblk;
8442 	struct pagedep *pagedep;
8443 	struct inodedep *inodedep;
8444 	struct newdirblk *newdirblk;
8445 	struct mkdir *mkdir1, *mkdir2;
8446 	struct jaddref *jaddref;
8447 	struct ufsmount *ump;
8448 	struct mount *mp;
8449 	int isindir;
8450 
8451 	ump = dp->i_ump;
8452 	mp = UFSTOVFS(ump);
8453 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
8454 	    ("softdep_setup_directory_add called on non-softdep filesystem"));
8455 	/*
8456 	 * Whiteouts have no dependencies.
8457 	 */
8458 	if (newinum == WINO) {
8459 		if (newdirbp != NULL)
8460 			bdwrite(newdirbp);
8461 		return (0);
8462 	}
8463 	jaddref = NULL;
8464 	mkdir1 = mkdir2 = NULL;
8465 	fs = dp->i_fs;
8466 	lbn = lblkno(fs, diroffset);
8467 	offset = blkoff(fs, diroffset);
8468 	dap = malloc(sizeof(struct diradd), M_DIRADD,
8469 		M_SOFTDEP_FLAGS|M_ZERO);
8470 	workitem_alloc(&dap->da_list, D_DIRADD, mp);
8471 	dap->da_offset = offset;
8472 	dap->da_newinum = newinum;
8473 	dap->da_state = ATTACHED;
8474 	LIST_INIT(&dap->da_jwork);
8475 	isindir = bp->b_lblkno >= NDADDR;
8476 	newdirblk = NULL;
8477 	if (isnewblk &&
8478 	    (isindir ? blkoff(fs, diroffset) : fragoff(fs, diroffset)) == 0) {
8479 		newdirblk = malloc(sizeof(struct newdirblk),
8480 		    M_NEWDIRBLK, M_SOFTDEP_FLAGS);
8481 		workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp);
8482 		LIST_INIT(&newdirblk->db_mkdir);
8483 	}
8484 	/*
8485 	 * If we're creating a new directory setup the dependencies and set
8486 	 * the dap state to wait for them.  Otherwise it's COMPLETE and
8487 	 * we can move on.
8488 	 */
8489 	if (newdirbp == NULL) {
8490 		dap->da_state |= DEPCOMPLETE;
8491 		ACQUIRE_LOCK(ump);
8492 	} else {
8493 		dap->da_state |= MKDIR_BODY | MKDIR_PARENT;
8494 		mkdir1 = setup_newdir(dap, newinum, dp->i_number, newdirbp,
8495 		    &mkdir2);
8496 	}
8497 	/*
8498 	 * Link into parent directory pagedep to await its being written.
8499 	 */
8500 	pagedep_lookup(mp, bp, dp->i_number, lbn, DEPALLOC, &pagedep);
8501 #ifdef DEBUG
8502 	if (diradd_lookup(pagedep, offset) != NULL)
8503 		panic("softdep_setup_directory_add: %p already at off %d\n",
8504 		    diradd_lookup(pagedep, offset), offset);
8505 #endif
8506 	dap->da_pagedep = pagedep;
8507 	LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], dap,
8508 	    da_pdlist);
8509 	inodedep_lookup(mp, newinum, DEPALLOC, &inodedep);
8510 	/*
8511 	 * If we're journaling, link the diradd into the jaddref so it
8512 	 * may be completed after the journal entry is written.  Otherwise,
8513 	 * link the diradd into its inodedep.  If the inode is not yet
8514 	 * written place it on the bufwait list, otherwise do the post-inode
8515 	 * write processing to put it on the id_pendinghd list.
8516 	 */
8517 	if (MOUNTEDSUJ(mp)) {
8518 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
8519 		    inoreflst);
8520 		KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number,
8521 		    ("softdep_setup_directory_add: bad jaddref %p", jaddref));
8522 		jaddref->ja_diroff = diroffset;
8523 		jaddref->ja_diradd = dap;
8524 		add_to_journal(&jaddref->ja_list);
8525 	} else if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE)
8526 		diradd_inode_written(dap, inodedep);
8527 	else
8528 		WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list);
8529 	/*
8530 	 * Add the journal entries for . and .. links now that the primary
8531 	 * link is written.
8532 	 */
8533 	if (mkdir1 != NULL && MOUNTEDSUJ(mp)) {
8534 		jaddref = (struct jaddref *)TAILQ_PREV(&jaddref->ja_ref,
8535 		    inoreflst, if_deps);
8536 		KASSERT(jaddref != NULL &&
8537 		    jaddref->ja_ino == jaddref->ja_parent &&
8538 		    (jaddref->ja_state & MKDIR_BODY),
8539 		    ("softdep_setup_directory_add: bad dot jaddref %p",
8540 		    jaddref));
8541 		mkdir1->md_jaddref = jaddref;
8542 		jaddref->ja_mkdir = mkdir1;
8543 		/*
8544 		 * It is important that the dotdot journal entry
8545 		 * is added prior to the dot entry since dot writes
8546 		 * both the dot and dotdot links.  These both must
8547 		 * be added after the primary link for the journal
8548 		 * to remain consistent.
8549 		 */
8550 		add_to_journal(&mkdir2->md_jaddref->ja_list);
8551 		add_to_journal(&jaddref->ja_list);
8552 	}
8553 	/*
8554 	 * If we are adding a new directory remember this diradd so that if
8555 	 * we rename it we can keep the dot and dotdot dependencies.  If
8556 	 * we are adding a new name for an inode that has a mkdiradd we
8557 	 * must be in rename and we have to move the dot and dotdot
8558 	 * dependencies to this new name.  The old name is being orphaned
8559 	 * soon.
8560 	 */
8561 	if (mkdir1 != NULL) {
8562 		if (inodedep->id_mkdiradd != NULL)
8563 			panic("softdep_setup_directory_add: Existing mkdir");
8564 		inodedep->id_mkdiradd = dap;
8565 	} else if (inodedep->id_mkdiradd)
8566 		merge_diradd(inodedep, dap);
8567 	if (newdirblk != NULL) {
8568 		/*
8569 		 * There is nothing to do if we are already tracking
8570 		 * this block.
8571 		 */
8572 		if ((pagedep->pd_state & NEWBLOCK) != 0) {
8573 			WORKITEM_FREE(newdirblk, D_NEWDIRBLK);
8574 			FREE_LOCK(ump);
8575 			return (0);
8576 		}
8577 		if (newblk_lookup(mp, dbtofsb(fs, bp->b_blkno), 0, &newblk)
8578 		    == 0)
8579 			panic("softdep_setup_directory_add: lost entry");
8580 		WORKLIST_INSERT(&newblk->nb_newdirblk, &newdirblk->db_list);
8581 		pagedep->pd_state |= NEWBLOCK;
8582 		pagedep->pd_newdirblk = newdirblk;
8583 		newdirblk->db_pagedep = pagedep;
8584 		FREE_LOCK(ump);
8585 		/*
8586 		 * If we extended into an indirect signal direnter to sync.
8587 		 */
8588 		if (isindir)
8589 			return (1);
8590 		return (0);
8591 	}
8592 	FREE_LOCK(ump);
8593 	return (0);
8594 }
8595 
8596 /*
8597  * This procedure is called to change the offset of a directory
8598  * entry when compacting a directory block which must be owned
8599  * exclusively by the caller. Note that the actual entry movement
8600  * must be done in this procedure to ensure that no I/O completions
8601  * occur while the move is in progress.
8602  */
8603 void
8604 softdep_change_directoryentry_offset(bp, dp, base, oldloc, newloc, entrysize)
8605 	struct buf *bp;		/* Buffer holding directory block. */
8606 	struct inode *dp;	/* inode for directory */
8607 	caddr_t base;		/* address of dp->i_offset */
8608 	caddr_t oldloc;		/* address of old directory location */
8609 	caddr_t newloc;		/* address of new directory location */
8610 	int entrysize;		/* size of directory entry */
8611 {
8612 	int offset, oldoffset, newoffset;
8613 	struct pagedep *pagedep;
8614 	struct jmvref *jmvref;
8615 	struct diradd *dap;
8616 	struct direct *de;
8617 	struct mount *mp;
8618 	ufs_lbn_t lbn;
8619 	int flags;
8620 
8621 	mp = UFSTOVFS(dp->i_ump);
8622 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
8623 	    ("softdep_change_directoryentry_offset called on "
8624 	     "non-softdep filesystem"));
8625 	de = (struct direct *)oldloc;
8626 	jmvref = NULL;
8627 	flags = 0;
8628 	/*
8629 	 * Moves are always journaled as it would be too complex to
8630 	 * determine if any affected adds or removes are present in the
8631 	 * journal.
8632 	 */
8633 	if (MOUNTEDSUJ(mp)) {
8634 		flags = DEPALLOC;
8635 		jmvref = newjmvref(dp, de->d_ino,
8636 		    dp->i_offset + (oldloc - base),
8637 		    dp->i_offset + (newloc - base));
8638 	}
8639 	lbn = lblkno(dp->i_fs, dp->i_offset);
8640 	offset = blkoff(dp->i_fs, dp->i_offset);
8641 	oldoffset = offset + (oldloc - base);
8642 	newoffset = offset + (newloc - base);
8643 	ACQUIRE_LOCK(dp->i_ump);
8644 	if (pagedep_lookup(mp, bp, dp->i_number, lbn, flags, &pagedep) == 0)
8645 		goto done;
8646 	dap = diradd_lookup(pagedep, oldoffset);
8647 	if (dap) {
8648 		dap->da_offset = newoffset;
8649 		newoffset = DIRADDHASH(newoffset);
8650 		oldoffset = DIRADDHASH(oldoffset);
8651 		if ((dap->da_state & ALLCOMPLETE) != ALLCOMPLETE &&
8652 		    newoffset != oldoffset) {
8653 			LIST_REMOVE(dap, da_pdlist);
8654 			LIST_INSERT_HEAD(&pagedep->pd_diraddhd[newoffset],
8655 			    dap, da_pdlist);
8656 		}
8657 	}
8658 done:
8659 	if (jmvref) {
8660 		jmvref->jm_pagedep = pagedep;
8661 		LIST_INSERT_HEAD(&pagedep->pd_jmvrefhd, jmvref, jm_deps);
8662 		add_to_journal(&jmvref->jm_list);
8663 	}
8664 	bcopy(oldloc, newloc, entrysize);
8665 	FREE_LOCK(dp->i_ump);
8666 }
8667 
8668 /*
8669  * Move the mkdir dependencies and journal work from one diradd to another
8670  * when renaming a directory.  The new name must depend on the mkdir deps
8671  * completing as the old name did.  Directories can only have one valid link
8672  * at a time so one must be canonical.
8673  */
8674 static void
8675 merge_diradd(inodedep, newdap)
8676 	struct inodedep *inodedep;
8677 	struct diradd *newdap;
8678 {
8679 	struct diradd *olddap;
8680 	struct mkdir *mkdir, *nextmd;
8681 	struct ufsmount *ump;
8682 	short state;
8683 
8684 	olddap = inodedep->id_mkdiradd;
8685 	inodedep->id_mkdiradd = newdap;
8686 	if ((olddap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
8687 		newdap->da_state &= ~DEPCOMPLETE;
8688 		ump = VFSTOUFS(inodedep->id_list.wk_mp);
8689 		for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir;
8690 		     mkdir = nextmd) {
8691 			nextmd = LIST_NEXT(mkdir, md_mkdirs);
8692 			if (mkdir->md_diradd != olddap)
8693 				continue;
8694 			mkdir->md_diradd = newdap;
8695 			state = mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY);
8696 			newdap->da_state |= state;
8697 			olddap->da_state &= ~state;
8698 			if ((olddap->da_state &
8699 			    (MKDIR_PARENT | MKDIR_BODY)) == 0)
8700 				break;
8701 		}
8702 		if ((olddap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0)
8703 			panic("merge_diradd: unfound ref");
8704 	}
8705 	/*
8706 	 * Any mkdir related journal items are not safe to be freed until
8707 	 * the new name is stable.
8708 	 */
8709 	jwork_move(&newdap->da_jwork, &olddap->da_jwork);
8710 	olddap->da_state |= DEPCOMPLETE;
8711 	complete_diradd(olddap);
8712 }
8713 
8714 /*
8715  * Move the diradd to the pending list when all diradd dependencies are
8716  * complete.
8717  */
8718 static void
8719 complete_diradd(dap)
8720 	struct diradd *dap;
8721 {
8722 	struct pagedep *pagedep;
8723 
8724 	if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
8725 		if (dap->da_state & DIRCHG)
8726 			pagedep = dap->da_previous->dm_pagedep;
8727 		else
8728 			pagedep = dap->da_pagedep;
8729 		LIST_REMOVE(dap, da_pdlist);
8730 		LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
8731 	}
8732 }
8733 
8734 /*
8735  * Cancel a diradd when a dirrem overlaps with it.  We must cancel the journal
8736  * add entries and conditonally journal the remove.
8737  */
8738 static void
8739 cancel_diradd(dap, dirrem, jremref, dotremref, dotdotremref)
8740 	struct diradd *dap;
8741 	struct dirrem *dirrem;
8742 	struct jremref *jremref;
8743 	struct jremref *dotremref;
8744 	struct jremref *dotdotremref;
8745 {
8746 	struct inodedep *inodedep;
8747 	struct jaddref *jaddref;
8748 	struct inoref *inoref;
8749 	struct ufsmount *ump;
8750 	struct mkdir *mkdir;
8751 
8752 	/*
8753 	 * If no remove references were allocated we're on a non-journaled
8754 	 * filesystem and can skip the cancel step.
8755 	 */
8756 	if (jremref == NULL) {
8757 		free_diradd(dap, NULL);
8758 		return;
8759 	}
8760 	/*
8761 	 * Cancel the primary name an free it if it does not require
8762 	 * journaling.
8763 	 */
8764 	if (inodedep_lookup(dap->da_list.wk_mp, dap->da_newinum,
8765 	    0, &inodedep) != 0) {
8766 		/* Abort the addref that reference this diradd.  */
8767 		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
8768 			if (inoref->if_list.wk_type != D_JADDREF)
8769 				continue;
8770 			jaddref = (struct jaddref *)inoref;
8771 			if (jaddref->ja_diradd != dap)
8772 				continue;
8773 			if (cancel_jaddref(jaddref, inodedep,
8774 			    &dirrem->dm_jwork) == 0) {
8775 				free_jremref(jremref);
8776 				jremref = NULL;
8777 			}
8778 			break;
8779 		}
8780 	}
8781 	/*
8782 	 * Cancel subordinate names and free them if they do not require
8783 	 * journaling.
8784 	 */
8785 	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
8786 		ump = VFSTOUFS(dap->da_list.wk_mp);
8787 		LIST_FOREACH(mkdir, &ump->softdep_mkdirlisthd, md_mkdirs) {
8788 			if (mkdir->md_diradd != dap)
8789 				continue;
8790 			if ((jaddref = mkdir->md_jaddref) == NULL)
8791 				continue;
8792 			mkdir->md_jaddref = NULL;
8793 			if (mkdir->md_state & MKDIR_PARENT) {
8794 				if (cancel_jaddref(jaddref, NULL,
8795 				    &dirrem->dm_jwork) == 0) {
8796 					free_jremref(dotdotremref);
8797 					dotdotremref = NULL;
8798 				}
8799 			} else {
8800 				if (cancel_jaddref(jaddref, inodedep,
8801 				    &dirrem->dm_jwork) == 0) {
8802 					free_jremref(dotremref);
8803 					dotremref = NULL;
8804 				}
8805 			}
8806 		}
8807 	}
8808 
8809 	if (jremref)
8810 		journal_jremref(dirrem, jremref, inodedep);
8811 	if (dotremref)
8812 		journal_jremref(dirrem, dotremref, inodedep);
8813 	if (dotdotremref)
8814 		journal_jremref(dirrem, dotdotremref, NULL);
8815 	jwork_move(&dirrem->dm_jwork, &dap->da_jwork);
8816 	free_diradd(dap, &dirrem->dm_jwork);
8817 }
8818 
8819 /*
8820  * Free a diradd dependency structure. This routine must be called
8821  * with splbio interrupts blocked.
8822  */
8823 static void
8824 free_diradd(dap, wkhd)
8825 	struct diradd *dap;
8826 	struct workhead *wkhd;
8827 {
8828 	struct dirrem *dirrem;
8829 	struct pagedep *pagedep;
8830 	struct inodedep *inodedep;
8831 	struct mkdir *mkdir, *nextmd;
8832 	struct ufsmount *ump;
8833 
8834 	ump = VFSTOUFS(dap->da_list.wk_mp);
8835 	LOCK_OWNED(ump);
8836 	LIST_REMOVE(dap, da_pdlist);
8837 	if (dap->da_state & ONWORKLIST)
8838 		WORKLIST_REMOVE(&dap->da_list);
8839 	if ((dap->da_state & DIRCHG) == 0) {
8840 		pagedep = dap->da_pagedep;
8841 	} else {
8842 		dirrem = dap->da_previous;
8843 		pagedep = dirrem->dm_pagedep;
8844 		dirrem->dm_dirinum = pagedep->pd_ino;
8845 		dirrem->dm_state |= COMPLETE;
8846 		if (LIST_EMPTY(&dirrem->dm_jremrefhd))
8847 			add_to_worklist(&dirrem->dm_list, 0);
8848 	}
8849 	if (inodedep_lookup(pagedep->pd_list.wk_mp, dap->da_newinum,
8850 	    0, &inodedep) != 0)
8851 		if (inodedep->id_mkdiradd == dap)
8852 			inodedep->id_mkdiradd = NULL;
8853 	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
8854 		for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir;
8855 		     mkdir = nextmd) {
8856 			nextmd = LIST_NEXT(mkdir, md_mkdirs);
8857 			if (mkdir->md_diradd != dap)
8858 				continue;
8859 			dap->da_state &=
8860 			    ~(mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY));
8861 			LIST_REMOVE(mkdir, md_mkdirs);
8862 			if (mkdir->md_state & ONWORKLIST)
8863 				WORKLIST_REMOVE(&mkdir->md_list);
8864 			if (mkdir->md_jaddref != NULL)
8865 				panic("free_diradd: Unexpected jaddref");
8866 			WORKITEM_FREE(mkdir, D_MKDIR);
8867 			if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0)
8868 				break;
8869 		}
8870 		if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0)
8871 			panic("free_diradd: unfound ref");
8872 	}
8873 	if (inodedep)
8874 		free_inodedep(inodedep);
8875 	/*
8876 	 * Free any journal segments waiting for the directory write.
8877 	 */
8878 	handle_jwork(&dap->da_jwork);
8879 	WORKITEM_FREE(dap, D_DIRADD);
8880 }
8881 
8882 /*
8883  * Directory entry removal dependencies.
8884  *
8885  * When removing a directory entry, the entry's inode pointer must be
8886  * zero'ed on disk before the corresponding inode's link count is decremented
8887  * (possibly freeing the inode for re-use). This dependency is handled by
8888  * updating the directory entry but delaying the inode count reduction until
8889  * after the directory block has been written to disk. After this point, the
8890  * inode count can be decremented whenever it is convenient.
8891  */
8892 
8893 /*
8894  * This routine should be called immediately after removing
8895  * a directory entry.  The inode's link count should not be
8896  * decremented by the calling procedure -- the soft updates
8897  * code will do this task when it is safe.
8898  */
8899 void
8900 softdep_setup_remove(bp, dp, ip, isrmdir)
8901 	struct buf *bp;		/* buffer containing directory block */
8902 	struct inode *dp;	/* inode for the directory being modified */
8903 	struct inode *ip;	/* inode for directory entry being removed */
8904 	int isrmdir;		/* indicates if doing RMDIR */
8905 {
8906 	struct dirrem *dirrem, *prevdirrem;
8907 	struct inodedep *inodedep;
8908 	int direct;
8909 
8910 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ip->i_ump)) != 0,
8911 	    ("softdep_setup_remove called on non-softdep filesystem"));
8912 	/*
8913 	 * Allocate a new dirrem if appropriate and ACQUIRE_LOCK.  We want
8914 	 * newdirrem() to setup the full directory remove which requires
8915 	 * isrmdir > 1.
8916 	 */
8917 	dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem);
8918 	/*
8919 	 * Add the dirrem to the inodedep's pending remove list for quick
8920 	 * discovery later.
8921 	 */
8922 	if (inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, 0,
8923 	    &inodedep) == 0)
8924 		panic("softdep_setup_remove: Lost inodedep.");
8925 	KASSERT((inodedep->id_state & UNLINKED) == 0, ("inode unlinked"));
8926 	dirrem->dm_state |= ONDEPLIST;
8927 	LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext);
8928 
8929 	/*
8930 	 * If the COMPLETE flag is clear, then there were no active
8931 	 * entries and we want to roll back to a zeroed entry until
8932 	 * the new inode is committed to disk. If the COMPLETE flag is
8933 	 * set then we have deleted an entry that never made it to
8934 	 * disk. If the entry we deleted resulted from a name change,
8935 	 * then the old name still resides on disk. We cannot delete
8936 	 * its inode (returned to us in prevdirrem) until the zeroed
8937 	 * directory entry gets to disk. The new inode has never been
8938 	 * referenced on the disk, so can be deleted immediately.
8939 	 */
8940 	if ((dirrem->dm_state & COMPLETE) == 0) {
8941 		LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, dirrem,
8942 		    dm_next);
8943 		FREE_LOCK(ip->i_ump);
8944 	} else {
8945 		if (prevdirrem != NULL)
8946 			LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd,
8947 			    prevdirrem, dm_next);
8948 		dirrem->dm_dirinum = dirrem->dm_pagedep->pd_ino;
8949 		direct = LIST_EMPTY(&dirrem->dm_jremrefhd);
8950 		FREE_LOCK(ip->i_ump);
8951 		if (direct)
8952 			handle_workitem_remove(dirrem, 0);
8953 	}
8954 }
8955 
8956 /*
8957  * Check for an entry matching 'offset' on both the pd_dirraddhd list and the
8958  * pd_pendinghd list of a pagedep.
8959  */
8960 static struct diradd *
8961 diradd_lookup(pagedep, offset)
8962 	struct pagedep *pagedep;
8963 	int offset;
8964 {
8965 	struct diradd *dap;
8966 
8967 	LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(offset)], da_pdlist)
8968 		if (dap->da_offset == offset)
8969 			return (dap);
8970 	LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist)
8971 		if (dap->da_offset == offset)
8972 			return (dap);
8973 	return (NULL);
8974 }
8975 
8976 /*
8977  * Search for a .. diradd dependency in a directory that is being removed.
8978  * If the directory was renamed to a new parent we have a diradd rather
8979  * than a mkdir for the .. entry.  We need to cancel it now before
8980  * it is found in truncate().
8981  */
8982 static struct jremref *
8983 cancel_diradd_dotdot(ip, dirrem, jremref)
8984 	struct inode *ip;
8985 	struct dirrem *dirrem;
8986 	struct jremref *jremref;
8987 {
8988 	struct pagedep *pagedep;
8989 	struct diradd *dap;
8990 	struct worklist *wk;
8991 
8992 	if (pagedep_lookup(UFSTOVFS(ip->i_ump), NULL, ip->i_number, 0, 0,
8993 	    &pagedep) == 0)
8994 		return (jremref);
8995 	dap = diradd_lookup(pagedep, DOTDOT_OFFSET);
8996 	if (dap == NULL)
8997 		return (jremref);
8998 	cancel_diradd(dap, dirrem, jremref, NULL, NULL);
8999 	/*
9000 	 * Mark any journal work as belonging to the parent so it is freed
9001 	 * with the .. reference.
9002 	 */
9003 	LIST_FOREACH(wk, &dirrem->dm_jwork, wk_list)
9004 		wk->wk_state |= MKDIR_PARENT;
9005 	return (NULL);
9006 }
9007 
9008 /*
9009  * Cancel the MKDIR_PARENT mkdir component of a diradd when we're going to
9010  * replace it with a dirrem/diradd pair as a result of re-parenting a
9011  * directory.  This ensures that we don't simultaneously have a mkdir and
9012  * a diradd for the same .. entry.
9013  */
9014 static struct jremref *
9015 cancel_mkdir_dotdot(ip, dirrem, jremref)
9016 	struct inode *ip;
9017 	struct dirrem *dirrem;
9018 	struct jremref *jremref;
9019 {
9020 	struct inodedep *inodedep;
9021 	struct jaddref *jaddref;
9022 	struct ufsmount *ump;
9023 	struct mkdir *mkdir;
9024 	struct diradd *dap;
9025 
9026 	if (inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, 0,
9027 	    &inodedep) == 0)
9028 		return (jremref);
9029 	dap = inodedep->id_mkdiradd;
9030 	if (dap == NULL || (dap->da_state & MKDIR_PARENT) == 0)
9031 		return (jremref);
9032 	ump = VFSTOUFS(inodedep->id_list.wk_mp);
9033 	for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir;
9034 	    mkdir = LIST_NEXT(mkdir, md_mkdirs))
9035 		if (mkdir->md_diradd == dap && mkdir->md_state & MKDIR_PARENT)
9036 			break;
9037 	if (mkdir == NULL)
9038 		panic("cancel_mkdir_dotdot: Unable to find mkdir\n");
9039 	if ((jaddref = mkdir->md_jaddref) != NULL) {
9040 		mkdir->md_jaddref = NULL;
9041 		jaddref->ja_state &= ~MKDIR_PARENT;
9042 		if (inodedep_lookup(UFSTOVFS(ip->i_ump), jaddref->ja_ino, 0,
9043 		    &inodedep) == 0)
9044 			panic("cancel_mkdir_dotdot: Lost parent inodedep");
9045 		if (cancel_jaddref(jaddref, inodedep, &dirrem->dm_jwork)) {
9046 			journal_jremref(dirrem, jremref, inodedep);
9047 			jremref = NULL;
9048 		}
9049 	}
9050 	if (mkdir->md_state & ONWORKLIST)
9051 		WORKLIST_REMOVE(&mkdir->md_list);
9052 	mkdir->md_state |= ALLCOMPLETE;
9053 	complete_mkdir(mkdir);
9054 	return (jremref);
9055 }
9056 
9057 static void
9058 journal_jremref(dirrem, jremref, inodedep)
9059 	struct dirrem *dirrem;
9060 	struct jremref *jremref;
9061 	struct inodedep *inodedep;
9062 {
9063 
9064 	if (inodedep == NULL)
9065 		if (inodedep_lookup(jremref->jr_list.wk_mp,
9066 		    jremref->jr_ref.if_ino, 0, &inodedep) == 0)
9067 			panic("journal_jremref: Lost inodedep");
9068 	LIST_INSERT_HEAD(&dirrem->dm_jremrefhd, jremref, jr_deps);
9069 	TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jremref->jr_ref, if_deps);
9070 	add_to_journal(&jremref->jr_list);
9071 }
9072 
9073 static void
9074 dirrem_journal(dirrem, jremref, dotremref, dotdotremref)
9075 	struct dirrem *dirrem;
9076 	struct jremref *jremref;
9077 	struct jremref *dotremref;
9078 	struct jremref *dotdotremref;
9079 {
9080 	struct inodedep *inodedep;
9081 
9082 
9083 	if (inodedep_lookup(jremref->jr_list.wk_mp, jremref->jr_ref.if_ino, 0,
9084 	    &inodedep) == 0)
9085 		panic("dirrem_journal: Lost inodedep");
9086 	journal_jremref(dirrem, jremref, inodedep);
9087 	if (dotremref)
9088 		journal_jremref(dirrem, dotremref, inodedep);
9089 	if (dotdotremref)
9090 		journal_jremref(dirrem, dotdotremref, NULL);
9091 }
9092 
9093 /*
9094  * Allocate a new dirrem if appropriate and return it along with
9095  * its associated pagedep. Called without a lock, returns with lock.
9096  */
9097 static struct dirrem *
9098 newdirrem(bp, dp, ip, isrmdir, prevdirremp)
9099 	struct buf *bp;		/* buffer containing directory block */
9100 	struct inode *dp;	/* inode for the directory being modified */
9101 	struct inode *ip;	/* inode for directory entry being removed */
9102 	int isrmdir;		/* indicates if doing RMDIR */
9103 	struct dirrem **prevdirremp; /* previously referenced inode, if any */
9104 {
9105 	int offset;
9106 	ufs_lbn_t lbn;
9107 	struct diradd *dap;
9108 	struct dirrem *dirrem;
9109 	struct pagedep *pagedep;
9110 	struct jremref *jremref;
9111 	struct jremref *dotremref;
9112 	struct jremref *dotdotremref;
9113 	struct vnode *dvp;
9114 
9115 	/*
9116 	 * Whiteouts have no deletion dependencies.
9117 	 */
9118 	if (ip == NULL)
9119 		panic("newdirrem: whiteout");
9120 	dvp = ITOV(dp);
9121 	/*
9122 	 * If the system is over its limit and our filesystem is
9123 	 * responsible for more than our share of that usage and
9124 	 * we are not a snapshot, request some inodedep cleanup.
9125 	 * Limiting the number of dirrem structures will also limit
9126 	 * the number of freefile and freeblks structures.
9127 	 */
9128 	ACQUIRE_LOCK(ip->i_ump);
9129 	if (!IS_SNAPSHOT(ip) && softdep_excess_items(ip->i_ump, D_DIRREM))
9130 		schedule_cleanup(ITOV(dp)->v_mount);
9131 	else
9132 		FREE_LOCK(ip->i_ump);
9133 	dirrem = malloc(sizeof(struct dirrem), M_DIRREM, M_SOFTDEP_FLAGS |
9134 	    M_ZERO);
9135 	workitem_alloc(&dirrem->dm_list, D_DIRREM, dvp->v_mount);
9136 	LIST_INIT(&dirrem->dm_jremrefhd);
9137 	LIST_INIT(&dirrem->dm_jwork);
9138 	dirrem->dm_state = isrmdir ? RMDIR : 0;
9139 	dirrem->dm_oldinum = ip->i_number;
9140 	*prevdirremp = NULL;
9141 	/*
9142 	 * Allocate remove reference structures to track journal write
9143 	 * dependencies.  We will always have one for the link and
9144 	 * when doing directories we will always have one more for dot.
9145 	 * When renaming a directory we skip the dotdot link change so
9146 	 * this is not needed.
9147 	 */
9148 	jremref = dotremref = dotdotremref = NULL;
9149 	if (DOINGSUJ(dvp)) {
9150 		if (isrmdir) {
9151 			jremref = newjremref(dirrem, dp, ip, dp->i_offset,
9152 			    ip->i_effnlink + 2);
9153 			dotremref = newjremref(dirrem, ip, ip, DOT_OFFSET,
9154 			    ip->i_effnlink + 1);
9155 			dotdotremref = newjremref(dirrem, ip, dp, DOTDOT_OFFSET,
9156 			    dp->i_effnlink + 1);
9157 			dotdotremref->jr_state |= MKDIR_PARENT;
9158 		} else
9159 			jremref = newjremref(dirrem, dp, ip, dp->i_offset,
9160 			    ip->i_effnlink + 1);
9161 	}
9162 	ACQUIRE_LOCK(ip->i_ump);
9163 	lbn = lblkno(dp->i_fs, dp->i_offset);
9164 	offset = blkoff(dp->i_fs, dp->i_offset);
9165 	pagedep_lookup(UFSTOVFS(dp->i_ump), bp, dp->i_number, lbn, DEPALLOC,
9166 	    &pagedep);
9167 	dirrem->dm_pagedep = pagedep;
9168 	dirrem->dm_offset = offset;
9169 	/*
9170 	 * If we're renaming a .. link to a new directory, cancel any
9171 	 * existing MKDIR_PARENT mkdir.  If it has already been canceled
9172 	 * the jremref is preserved for any potential diradd in this
9173 	 * location.  This can not coincide with a rmdir.
9174 	 */
9175 	if (dp->i_offset == DOTDOT_OFFSET) {
9176 		if (isrmdir)
9177 			panic("newdirrem: .. directory change during remove?");
9178 		jremref = cancel_mkdir_dotdot(dp, dirrem, jremref);
9179 	}
9180 	/*
9181 	 * If we're removing a directory search for the .. dependency now and
9182 	 * cancel it.  Any pending journal work will be added to the dirrem
9183 	 * to be completed when the workitem remove completes.
9184 	 */
9185 	if (isrmdir)
9186 		dotdotremref = cancel_diradd_dotdot(ip, dirrem, dotdotremref);
9187 	/*
9188 	 * Check for a diradd dependency for the same directory entry.
9189 	 * If present, then both dependencies become obsolete and can
9190 	 * be de-allocated.
9191 	 */
9192 	dap = diradd_lookup(pagedep, offset);
9193 	if (dap == NULL) {
9194 		/*
9195 		 * Link the jremref structures into the dirrem so they are
9196 		 * written prior to the pagedep.
9197 		 */
9198 		if (jremref)
9199 			dirrem_journal(dirrem, jremref, dotremref,
9200 			    dotdotremref);
9201 		return (dirrem);
9202 	}
9203 	/*
9204 	 * Must be ATTACHED at this point.
9205 	 */
9206 	if ((dap->da_state & ATTACHED) == 0)
9207 		panic("newdirrem: not ATTACHED");
9208 	if (dap->da_newinum != ip->i_number)
9209 		panic("newdirrem: inum %ju should be %ju",
9210 		    (uintmax_t)ip->i_number, (uintmax_t)dap->da_newinum);
9211 	/*
9212 	 * If we are deleting a changed name that never made it to disk,
9213 	 * then return the dirrem describing the previous inode (which
9214 	 * represents the inode currently referenced from this entry on disk).
9215 	 */
9216 	if ((dap->da_state & DIRCHG) != 0) {
9217 		*prevdirremp = dap->da_previous;
9218 		dap->da_state &= ~DIRCHG;
9219 		dap->da_pagedep = pagedep;
9220 	}
9221 	/*
9222 	 * We are deleting an entry that never made it to disk.
9223 	 * Mark it COMPLETE so we can delete its inode immediately.
9224 	 */
9225 	dirrem->dm_state |= COMPLETE;
9226 	cancel_diradd(dap, dirrem, jremref, dotremref, dotdotremref);
9227 #ifdef SUJ_DEBUG
9228 	if (isrmdir == 0) {
9229 		struct worklist *wk;
9230 
9231 		LIST_FOREACH(wk, &dirrem->dm_jwork, wk_list)
9232 			if (wk->wk_state & (MKDIR_BODY | MKDIR_PARENT))
9233 				panic("bad wk %p (0x%X)\n", wk, wk->wk_state);
9234 	}
9235 #endif
9236 
9237 	return (dirrem);
9238 }
9239 
9240 /*
9241  * Directory entry change dependencies.
9242  *
9243  * Changing an existing directory entry requires that an add operation
9244  * be completed first followed by a deletion. The semantics for the addition
9245  * are identical to the description of adding a new entry above except
9246  * that the rollback is to the old inode number rather than zero. Once
9247  * the addition dependency is completed, the removal is done as described
9248  * in the removal routine above.
9249  */
9250 
9251 /*
9252  * This routine should be called immediately after changing
9253  * a directory entry.  The inode's link count should not be
9254  * decremented by the calling procedure -- the soft updates
9255  * code will perform this task when it is safe.
9256  */
9257 void
9258 softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir)
9259 	struct buf *bp;		/* buffer containing directory block */
9260 	struct inode *dp;	/* inode for the directory being modified */
9261 	struct inode *ip;	/* inode for directory entry being removed */
9262 	ino_t newinum;		/* new inode number for changed entry */
9263 	int isrmdir;		/* indicates if doing RMDIR */
9264 {
9265 	int offset;
9266 	struct diradd *dap = NULL;
9267 	struct dirrem *dirrem, *prevdirrem;
9268 	struct pagedep *pagedep;
9269 	struct inodedep *inodedep;
9270 	struct jaddref *jaddref;
9271 	struct mount *mp;
9272 
9273 	offset = blkoff(dp->i_fs, dp->i_offset);
9274 	mp = UFSTOVFS(dp->i_ump);
9275 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
9276 	   ("softdep_setup_directory_change called on non-softdep filesystem"));
9277 
9278 	/*
9279 	 * Whiteouts do not need diradd dependencies.
9280 	 */
9281 	if (newinum != WINO) {
9282 		dap = malloc(sizeof(struct diradd),
9283 		    M_DIRADD, M_SOFTDEP_FLAGS|M_ZERO);
9284 		workitem_alloc(&dap->da_list, D_DIRADD, mp);
9285 		dap->da_state = DIRCHG | ATTACHED | DEPCOMPLETE;
9286 		dap->da_offset = offset;
9287 		dap->da_newinum = newinum;
9288 		LIST_INIT(&dap->da_jwork);
9289 	}
9290 
9291 	/*
9292 	 * Allocate a new dirrem and ACQUIRE_LOCK.
9293 	 */
9294 	dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem);
9295 	pagedep = dirrem->dm_pagedep;
9296 	/*
9297 	 * The possible values for isrmdir:
9298 	 *	0 - non-directory file rename
9299 	 *	1 - directory rename within same directory
9300 	 *   inum - directory rename to new directory of given inode number
9301 	 * When renaming to a new directory, we are both deleting and
9302 	 * creating a new directory entry, so the link count on the new
9303 	 * directory should not change. Thus we do not need the followup
9304 	 * dirrem which is usually done in handle_workitem_remove. We set
9305 	 * the DIRCHG flag to tell handle_workitem_remove to skip the
9306 	 * followup dirrem.
9307 	 */
9308 	if (isrmdir > 1)
9309 		dirrem->dm_state |= DIRCHG;
9310 
9311 	/*
9312 	 * Whiteouts have no additional dependencies,
9313 	 * so just put the dirrem on the correct list.
9314 	 */
9315 	if (newinum == WINO) {
9316 		if ((dirrem->dm_state & COMPLETE) == 0) {
9317 			LIST_INSERT_HEAD(&pagedep->pd_dirremhd, dirrem,
9318 			    dm_next);
9319 		} else {
9320 			dirrem->dm_dirinum = pagedep->pd_ino;
9321 			if (LIST_EMPTY(&dirrem->dm_jremrefhd))
9322 				add_to_worklist(&dirrem->dm_list, 0);
9323 		}
9324 		FREE_LOCK(dp->i_ump);
9325 		return;
9326 	}
9327 	/*
9328 	 * Add the dirrem to the inodedep's pending remove list for quick
9329 	 * discovery later.  A valid nlinkdelta ensures that this lookup
9330 	 * will not fail.
9331 	 */
9332 	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0)
9333 		panic("softdep_setup_directory_change: Lost inodedep.");
9334 	dirrem->dm_state |= ONDEPLIST;
9335 	LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext);
9336 
9337 	/*
9338 	 * If the COMPLETE flag is clear, then there were no active
9339 	 * entries and we want to roll back to the previous inode until
9340 	 * the new inode is committed to disk. If the COMPLETE flag is
9341 	 * set, then we have deleted an entry that never made it to disk.
9342 	 * If the entry we deleted resulted from a name change, then the old
9343 	 * inode reference still resides on disk. Any rollback that we do
9344 	 * needs to be to that old inode (returned to us in prevdirrem). If
9345 	 * the entry we deleted resulted from a create, then there is
9346 	 * no entry on the disk, so we want to roll back to zero rather
9347 	 * than the uncommitted inode. In either of the COMPLETE cases we
9348 	 * want to immediately free the unwritten and unreferenced inode.
9349 	 */
9350 	if ((dirrem->dm_state & COMPLETE) == 0) {
9351 		dap->da_previous = dirrem;
9352 	} else {
9353 		if (prevdirrem != NULL) {
9354 			dap->da_previous = prevdirrem;
9355 		} else {
9356 			dap->da_state &= ~DIRCHG;
9357 			dap->da_pagedep = pagedep;
9358 		}
9359 		dirrem->dm_dirinum = pagedep->pd_ino;
9360 		if (LIST_EMPTY(&dirrem->dm_jremrefhd))
9361 			add_to_worklist(&dirrem->dm_list, 0);
9362 	}
9363 	/*
9364 	 * Lookup the jaddref for this journal entry.  We must finish
9365 	 * initializing it and make the diradd write dependent on it.
9366 	 * If we're not journaling, put it on the id_bufwait list if the
9367 	 * inode is not yet written. If it is written, do the post-inode
9368 	 * write processing to put it on the id_pendinghd list.
9369 	 */
9370 	inodedep_lookup(mp, newinum, DEPALLOC, &inodedep);
9371 	if (MOUNTEDSUJ(mp)) {
9372 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
9373 		    inoreflst);
9374 		KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number,
9375 		    ("softdep_setup_directory_change: bad jaddref %p",
9376 		    jaddref));
9377 		jaddref->ja_diroff = dp->i_offset;
9378 		jaddref->ja_diradd = dap;
9379 		LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)],
9380 		    dap, da_pdlist);
9381 		add_to_journal(&jaddref->ja_list);
9382 	} else if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) {
9383 		dap->da_state |= COMPLETE;
9384 		LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
9385 		WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list);
9386 	} else {
9387 		LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)],
9388 		    dap, da_pdlist);
9389 		WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list);
9390 	}
9391 	/*
9392 	 * If we're making a new name for a directory that has not been
9393 	 * committed when need to move the dot and dotdot references to
9394 	 * this new name.
9395 	 */
9396 	if (inodedep->id_mkdiradd && dp->i_offset != DOTDOT_OFFSET)
9397 		merge_diradd(inodedep, dap);
9398 	FREE_LOCK(dp->i_ump);
9399 }
9400 
9401 /*
9402  * Called whenever the link count on an inode is changed.
9403  * It creates an inode dependency so that the new reference(s)
9404  * to the inode cannot be committed to disk until the updated
9405  * inode has been written.
9406  */
9407 void
9408 softdep_change_linkcnt(ip)
9409 	struct inode *ip;	/* the inode with the increased link count */
9410 {
9411 	struct inodedep *inodedep;
9412 
9413 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ip->i_ump)) != 0,
9414 	    ("softdep_change_linkcnt called on non-softdep filesystem"));
9415 	ACQUIRE_LOCK(ip->i_ump);
9416 	inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, DEPALLOC,
9417 	    &inodedep);
9418 	if (ip->i_nlink < ip->i_effnlink)
9419 		panic("softdep_change_linkcnt: bad delta");
9420 	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
9421 	FREE_LOCK(ip->i_ump);
9422 }
9423 
9424 /*
9425  * Attach a sbdep dependency to the superblock buf so that we can keep
9426  * track of the head of the linked list of referenced but unlinked inodes.
9427  */
9428 void
9429 softdep_setup_sbupdate(ump, fs, bp)
9430 	struct ufsmount *ump;
9431 	struct fs *fs;
9432 	struct buf *bp;
9433 {
9434 	struct sbdep *sbdep;
9435 	struct worklist *wk;
9436 
9437 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
9438 	    ("softdep_setup_sbupdate called on non-softdep filesystem"));
9439 	LIST_FOREACH(wk, &bp->b_dep, wk_list)
9440 		if (wk->wk_type == D_SBDEP)
9441 			break;
9442 	if (wk != NULL)
9443 		return;
9444 	sbdep = malloc(sizeof(struct sbdep), M_SBDEP, M_SOFTDEP_FLAGS);
9445 	workitem_alloc(&sbdep->sb_list, D_SBDEP, UFSTOVFS(ump));
9446 	sbdep->sb_fs = fs;
9447 	sbdep->sb_ump = ump;
9448 	ACQUIRE_LOCK(ump);
9449 	WORKLIST_INSERT(&bp->b_dep, &sbdep->sb_list);
9450 	FREE_LOCK(ump);
9451 }
9452 
9453 /*
9454  * Return the first unlinked inodedep which is ready to be the head of the
9455  * list.  The inodedep and all those after it must have valid next pointers.
9456  */
9457 static struct inodedep *
9458 first_unlinked_inodedep(ump)
9459 	struct ufsmount *ump;
9460 {
9461 	struct inodedep *inodedep;
9462 	struct inodedep *idp;
9463 
9464 	LOCK_OWNED(ump);
9465 	for (inodedep = TAILQ_LAST(&ump->softdep_unlinked, inodedeplst);
9466 	    inodedep; inodedep = idp) {
9467 		if ((inodedep->id_state & UNLINKNEXT) == 0)
9468 			return (NULL);
9469 		idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked);
9470 		if (idp == NULL || (idp->id_state & UNLINKNEXT) == 0)
9471 			break;
9472 		if ((inodedep->id_state & UNLINKPREV) == 0)
9473 			break;
9474 	}
9475 	return (inodedep);
9476 }
9477 
9478 /*
9479  * Set the sujfree unlinked head pointer prior to writing a superblock.
9480  */
9481 static void
9482 initiate_write_sbdep(sbdep)
9483 	struct sbdep *sbdep;
9484 {
9485 	struct inodedep *inodedep;
9486 	struct fs *bpfs;
9487 	struct fs *fs;
9488 
9489 	bpfs = sbdep->sb_fs;
9490 	fs = sbdep->sb_ump->um_fs;
9491 	inodedep = first_unlinked_inodedep(sbdep->sb_ump);
9492 	if (inodedep) {
9493 		fs->fs_sujfree = inodedep->id_ino;
9494 		inodedep->id_state |= UNLINKPREV;
9495 	} else
9496 		fs->fs_sujfree = 0;
9497 	bpfs->fs_sujfree = fs->fs_sujfree;
9498 }
9499 
9500 /*
9501  * After a superblock is written determine whether it must be written again
9502  * due to a changing unlinked list head.
9503  */
9504 static int
9505 handle_written_sbdep(sbdep, bp)
9506 	struct sbdep *sbdep;
9507 	struct buf *bp;
9508 {
9509 	struct inodedep *inodedep;
9510 	struct fs *fs;
9511 
9512 	LOCK_OWNED(sbdep->sb_ump);
9513 	fs = sbdep->sb_fs;
9514 	/*
9515 	 * If the superblock doesn't match the in-memory list start over.
9516 	 */
9517 	inodedep = first_unlinked_inodedep(sbdep->sb_ump);
9518 	if ((inodedep && fs->fs_sujfree != inodedep->id_ino) ||
9519 	    (inodedep == NULL && fs->fs_sujfree != 0)) {
9520 		bdirty(bp);
9521 		return (1);
9522 	}
9523 	WORKITEM_FREE(sbdep, D_SBDEP);
9524 	if (fs->fs_sujfree == 0)
9525 		return (0);
9526 	/*
9527 	 * Now that we have a record of this inode in stable store allow it
9528 	 * to be written to free up pending work.  Inodes may see a lot of
9529 	 * write activity after they are unlinked which we must not hold up.
9530 	 */
9531 	for (; inodedep != NULL; inodedep = TAILQ_NEXT(inodedep, id_unlinked)) {
9532 		if ((inodedep->id_state & UNLINKLINKS) != UNLINKLINKS)
9533 			panic("handle_written_sbdep: Bad inodedep %p (0x%X)",
9534 			    inodedep, inodedep->id_state);
9535 		if (inodedep->id_state & UNLINKONLIST)
9536 			break;
9537 		inodedep->id_state |= DEPCOMPLETE | UNLINKONLIST;
9538 	}
9539 
9540 	return (0);
9541 }
9542 
9543 /*
9544  * Mark an inodedep as unlinked and insert it into the in-memory unlinked list.
9545  */
9546 static void
9547 unlinked_inodedep(mp, inodedep)
9548 	struct mount *mp;
9549 	struct inodedep *inodedep;
9550 {
9551 	struct ufsmount *ump;
9552 
9553 	ump = VFSTOUFS(mp);
9554 	LOCK_OWNED(ump);
9555 	if (MOUNTEDSUJ(mp) == 0)
9556 		return;
9557 	ump->um_fs->fs_fmod = 1;
9558 	if (inodedep->id_state & UNLINKED)
9559 		panic("unlinked_inodedep: %p already unlinked\n", inodedep);
9560 	inodedep->id_state |= UNLINKED;
9561 	TAILQ_INSERT_HEAD(&ump->softdep_unlinked, inodedep, id_unlinked);
9562 }
9563 
9564 /*
9565  * Remove an inodedep from the unlinked inodedep list.  This may require
9566  * disk writes if the inode has made it that far.
9567  */
9568 static void
9569 clear_unlinked_inodedep(inodedep)
9570 	struct inodedep *inodedep;
9571 {
9572 	struct ufsmount *ump;
9573 	struct inodedep *idp;
9574 	struct inodedep *idn;
9575 	struct fs *fs;
9576 	struct buf *bp;
9577 	ino_t ino;
9578 	ino_t nino;
9579 	ino_t pino;
9580 	int error;
9581 
9582 	ump = VFSTOUFS(inodedep->id_list.wk_mp);
9583 	fs = ump->um_fs;
9584 	ino = inodedep->id_ino;
9585 	error = 0;
9586 	for (;;) {
9587 		LOCK_OWNED(ump);
9588 		KASSERT((inodedep->id_state & UNLINKED) != 0,
9589 		    ("clear_unlinked_inodedep: inodedep %p not unlinked",
9590 		    inodedep));
9591 		/*
9592 		 * If nothing has yet been written simply remove us from
9593 		 * the in memory list and return.  This is the most common
9594 		 * case where handle_workitem_remove() loses the final
9595 		 * reference.
9596 		 */
9597 		if ((inodedep->id_state & UNLINKLINKS) == 0)
9598 			break;
9599 		/*
9600 		 * If we have a NEXT pointer and no PREV pointer we can simply
9601 		 * clear NEXT's PREV and remove ourselves from the list.  Be
9602 		 * careful not to clear PREV if the superblock points at
9603 		 * next as well.
9604 		 */
9605 		idn = TAILQ_NEXT(inodedep, id_unlinked);
9606 		if ((inodedep->id_state & UNLINKLINKS) == UNLINKNEXT) {
9607 			if (idn && fs->fs_sujfree != idn->id_ino)
9608 				idn->id_state &= ~UNLINKPREV;
9609 			break;
9610 		}
9611 		/*
9612 		 * Here we have an inodedep which is actually linked into
9613 		 * the list.  We must remove it by forcing a write to the
9614 		 * link before us, whether it be the superblock or an inode.
9615 		 * Unfortunately the list may change while we're waiting
9616 		 * on the buf lock for either resource so we must loop until
9617 		 * we lock the right one.  If both the superblock and an
9618 		 * inode point to this inode we must clear the inode first
9619 		 * followed by the superblock.
9620 		 */
9621 		idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked);
9622 		pino = 0;
9623 		if (idp && (idp->id_state & UNLINKNEXT))
9624 			pino = idp->id_ino;
9625 		FREE_LOCK(ump);
9626 		if (pino == 0) {
9627 			bp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc),
9628 			    (int)fs->fs_sbsize, 0, 0, 0);
9629 		} else {
9630 			error = bread(ump->um_devvp,
9631 			    fsbtodb(fs, ino_to_fsba(fs, pino)),
9632 			    (int)fs->fs_bsize, NOCRED, &bp);
9633 			if (error)
9634 				brelse(bp);
9635 		}
9636 		ACQUIRE_LOCK(ump);
9637 		if (error)
9638 			break;
9639 		/* If the list has changed restart the loop. */
9640 		idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked);
9641 		nino = 0;
9642 		if (idp && (idp->id_state & UNLINKNEXT))
9643 			nino = idp->id_ino;
9644 		if (nino != pino ||
9645 		    (inodedep->id_state & UNLINKPREV) != UNLINKPREV) {
9646 			FREE_LOCK(ump);
9647 			brelse(bp);
9648 			ACQUIRE_LOCK(ump);
9649 			continue;
9650 		}
9651 		nino = 0;
9652 		idn = TAILQ_NEXT(inodedep, id_unlinked);
9653 		if (idn)
9654 			nino = idn->id_ino;
9655 		/*
9656 		 * Remove us from the in memory list.  After this we cannot
9657 		 * access the inodedep.
9658 		 */
9659 		KASSERT((inodedep->id_state & UNLINKED) != 0,
9660 		    ("clear_unlinked_inodedep: inodedep %p not unlinked",
9661 		    inodedep));
9662 		inodedep->id_state &= ~(UNLINKED | UNLINKLINKS | UNLINKONLIST);
9663 		TAILQ_REMOVE(&ump->softdep_unlinked, inodedep, id_unlinked);
9664 		FREE_LOCK(ump);
9665 		/*
9666 		 * The predecessor's next pointer is manually updated here
9667 		 * so that the NEXT flag is never cleared for an element
9668 		 * that is in the list.
9669 		 */
9670 		if (pino == 0) {
9671 			bcopy((caddr_t)fs, bp->b_data, (u_int)fs->fs_sbsize);
9672 			ffs_oldfscompat_write((struct fs *)bp->b_data, ump);
9673 			softdep_setup_sbupdate(ump, (struct fs *)bp->b_data,
9674 			    bp);
9675 		} else if (fs->fs_magic == FS_UFS1_MAGIC)
9676 			((struct ufs1_dinode *)bp->b_data +
9677 			    ino_to_fsbo(fs, pino))->di_freelink = nino;
9678 		else
9679 			((struct ufs2_dinode *)bp->b_data +
9680 			    ino_to_fsbo(fs, pino))->di_freelink = nino;
9681 		/*
9682 		 * If the bwrite fails we have no recourse to recover.  The
9683 		 * filesystem is corrupted already.
9684 		 */
9685 		bwrite(bp);
9686 		ACQUIRE_LOCK(ump);
9687 		/*
9688 		 * If the superblock pointer still needs to be cleared force
9689 		 * a write here.
9690 		 */
9691 		if (fs->fs_sujfree == ino) {
9692 			FREE_LOCK(ump);
9693 			bp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc),
9694 			    (int)fs->fs_sbsize, 0, 0, 0);
9695 			bcopy((caddr_t)fs, bp->b_data, (u_int)fs->fs_sbsize);
9696 			ffs_oldfscompat_write((struct fs *)bp->b_data, ump);
9697 			softdep_setup_sbupdate(ump, (struct fs *)bp->b_data,
9698 			    bp);
9699 			bwrite(bp);
9700 			ACQUIRE_LOCK(ump);
9701 		}
9702 
9703 		if (fs->fs_sujfree != ino)
9704 			return;
9705 		panic("clear_unlinked_inodedep: Failed to clear free head");
9706 	}
9707 	if (inodedep->id_ino == fs->fs_sujfree)
9708 		panic("clear_unlinked_inodedep: Freeing head of free list");
9709 	inodedep->id_state &= ~(UNLINKED | UNLINKLINKS | UNLINKONLIST);
9710 	TAILQ_REMOVE(&ump->softdep_unlinked, inodedep, id_unlinked);
9711 	return;
9712 }
9713 
9714 /*
9715  * This workitem decrements the inode's link count.
9716  * If the link count reaches zero, the file is removed.
9717  */
9718 static int
9719 handle_workitem_remove(dirrem, flags)
9720 	struct dirrem *dirrem;
9721 	int flags;
9722 {
9723 	struct inodedep *inodedep;
9724 	struct workhead dotdotwk;
9725 	struct worklist *wk;
9726 	struct ufsmount *ump;
9727 	struct mount *mp;
9728 	struct vnode *vp;
9729 	struct inode *ip;
9730 	ino_t oldinum;
9731 
9732 	if (dirrem->dm_state & ONWORKLIST)
9733 		panic("handle_workitem_remove: dirrem %p still on worklist",
9734 		    dirrem);
9735 	oldinum = dirrem->dm_oldinum;
9736 	mp = dirrem->dm_list.wk_mp;
9737 	ump = VFSTOUFS(mp);
9738 	flags |= LK_EXCLUSIVE;
9739 	if (ffs_vgetf(mp, oldinum, flags, &vp, FFSV_FORCEINSMQ) != 0)
9740 		return (EBUSY);
9741 	ip = VTOI(vp);
9742 	ACQUIRE_LOCK(ump);
9743 	if ((inodedep_lookup(mp, oldinum, 0, &inodedep)) == 0)
9744 		panic("handle_workitem_remove: lost inodedep");
9745 	if (dirrem->dm_state & ONDEPLIST)
9746 		LIST_REMOVE(dirrem, dm_inonext);
9747 	KASSERT(LIST_EMPTY(&dirrem->dm_jremrefhd),
9748 	    ("handle_workitem_remove:  Journal entries not written."));
9749 
9750 	/*
9751 	 * Move all dependencies waiting on the remove to complete
9752 	 * from the dirrem to the inode inowait list to be completed
9753 	 * after the inode has been updated and written to disk.  Any
9754 	 * marked MKDIR_PARENT are saved to be completed when the .. ref
9755 	 * is removed.
9756 	 */
9757 	LIST_INIT(&dotdotwk);
9758 	while ((wk = LIST_FIRST(&dirrem->dm_jwork)) != NULL) {
9759 		WORKLIST_REMOVE(wk);
9760 		if (wk->wk_state & MKDIR_PARENT) {
9761 			wk->wk_state &= ~MKDIR_PARENT;
9762 			WORKLIST_INSERT(&dotdotwk, wk);
9763 			continue;
9764 		}
9765 		WORKLIST_INSERT(&inodedep->id_inowait, wk);
9766 	}
9767 	LIST_SWAP(&dirrem->dm_jwork, &dotdotwk, worklist, wk_list);
9768 	/*
9769 	 * Normal file deletion.
9770 	 */
9771 	if ((dirrem->dm_state & RMDIR) == 0) {
9772 		ip->i_nlink--;
9773 		DIP_SET(ip, i_nlink, ip->i_nlink);
9774 		ip->i_flag |= IN_CHANGE;
9775 		if (ip->i_nlink < ip->i_effnlink)
9776 			panic("handle_workitem_remove: bad file delta");
9777 		if (ip->i_nlink == 0)
9778 			unlinked_inodedep(mp, inodedep);
9779 		inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
9780 		KASSERT(LIST_EMPTY(&dirrem->dm_jwork),
9781 		    ("handle_workitem_remove: worklist not empty. %s",
9782 		    TYPENAME(LIST_FIRST(&dirrem->dm_jwork)->wk_type)));
9783 		WORKITEM_FREE(dirrem, D_DIRREM);
9784 		FREE_LOCK(ump);
9785 		goto out;
9786 	}
9787 	/*
9788 	 * Directory deletion. Decrement reference count for both the
9789 	 * just deleted parent directory entry and the reference for ".".
9790 	 * Arrange to have the reference count on the parent decremented
9791 	 * to account for the loss of "..".
9792 	 */
9793 	ip->i_nlink -= 2;
9794 	DIP_SET(ip, i_nlink, ip->i_nlink);
9795 	ip->i_flag |= IN_CHANGE;
9796 	if (ip->i_nlink < ip->i_effnlink)
9797 		panic("handle_workitem_remove: bad dir delta");
9798 	if (ip->i_nlink == 0)
9799 		unlinked_inodedep(mp, inodedep);
9800 	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
9801 	/*
9802 	 * Rename a directory to a new parent. Since, we are both deleting
9803 	 * and creating a new directory entry, the link count on the new
9804 	 * directory should not change. Thus we skip the followup dirrem.
9805 	 */
9806 	if (dirrem->dm_state & DIRCHG) {
9807 		KASSERT(LIST_EMPTY(&dirrem->dm_jwork),
9808 		    ("handle_workitem_remove: DIRCHG and worklist not empty."));
9809 		WORKITEM_FREE(dirrem, D_DIRREM);
9810 		FREE_LOCK(ump);
9811 		goto out;
9812 	}
9813 	dirrem->dm_state = ONDEPLIST;
9814 	dirrem->dm_oldinum = dirrem->dm_dirinum;
9815 	/*
9816 	 * Place the dirrem on the parent's diremhd list.
9817 	 */
9818 	if (inodedep_lookup(mp, dirrem->dm_oldinum, 0, &inodedep) == 0)
9819 		panic("handle_workitem_remove: lost dir inodedep");
9820 	LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext);
9821 	/*
9822 	 * If the allocated inode has never been written to disk, then
9823 	 * the on-disk inode is zero'ed and we can remove the file
9824 	 * immediately.  When journaling if the inode has been marked
9825 	 * unlinked and not DEPCOMPLETE we know it can never be written.
9826 	 */
9827 	inodedep_lookup(mp, oldinum, 0, &inodedep);
9828 	if (inodedep == NULL ||
9829 	    (inodedep->id_state & (DEPCOMPLETE | UNLINKED)) == UNLINKED ||
9830 	    check_inode_unwritten(inodedep)) {
9831 		FREE_LOCK(ump);
9832 		vput(vp);
9833 		return handle_workitem_remove(dirrem, flags);
9834 	}
9835 	WORKLIST_INSERT(&inodedep->id_inowait, &dirrem->dm_list);
9836 	FREE_LOCK(ump);
9837 	ip->i_flag |= IN_CHANGE;
9838 out:
9839 	ffs_update(vp, 0);
9840 	vput(vp);
9841 	return (0);
9842 }
9843 
9844 /*
9845  * Inode de-allocation dependencies.
9846  *
9847  * When an inode's link count is reduced to zero, it can be de-allocated. We
9848  * found it convenient to postpone de-allocation until after the inode is
9849  * written to disk with its new link count (zero).  At this point, all of the
9850  * on-disk inode's block pointers are nullified and, with careful dependency
9851  * list ordering, all dependencies related to the inode will be satisfied and
9852  * the corresponding dependency structures de-allocated.  So, if/when the
9853  * inode is reused, there will be no mixing of old dependencies with new
9854  * ones.  This artificial dependency is set up by the block de-allocation
9855  * procedure above (softdep_setup_freeblocks) and completed by the
9856  * following procedure.
9857  */
9858 static void
9859 handle_workitem_freefile(freefile)
9860 	struct freefile *freefile;
9861 {
9862 	struct workhead wkhd;
9863 	struct fs *fs;
9864 	struct inodedep *idp;
9865 	struct ufsmount *ump;
9866 	int error;
9867 
9868 	ump = VFSTOUFS(freefile->fx_list.wk_mp);
9869 	fs = ump->um_fs;
9870 #ifdef DEBUG
9871 	ACQUIRE_LOCK(ump);
9872 	error = inodedep_lookup(UFSTOVFS(ump), freefile->fx_oldinum, 0, &idp);
9873 	FREE_LOCK(ump);
9874 	if (error)
9875 		panic("handle_workitem_freefile: inodedep %p survived", idp);
9876 #endif
9877 	UFS_LOCK(ump);
9878 	fs->fs_pendinginodes -= 1;
9879 	UFS_UNLOCK(ump);
9880 	LIST_INIT(&wkhd);
9881 	LIST_SWAP(&freefile->fx_jwork, &wkhd, worklist, wk_list);
9882 	if ((error = ffs_freefile(ump, fs, freefile->fx_devvp,
9883 	    freefile->fx_oldinum, freefile->fx_mode, &wkhd)) != 0)
9884 		softdep_error("handle_workitem_freefile", error);
9885 	ACQUIRE_LOCK(ump);
9886 	WORKITEM_FREE(freefile, D_FREEFILE);
9887 	FREE_LOCK(ump);
9888 }
9889 
9890 
9891 /*
9892  * Helper function which unlinks marker element from work list and returns
9893  * the next element on the list.
9894  */
9895 static __inline struct worklist *
9896 markernext(struct worklist *marker)
9897 {
9898 	struct worklist *next;
9899 
9900 	next = LIST_NEXT(marker, wk_list);
9901 	LIST_REMOVE(marker, wk_list);
9902 	return next;
9903 }
9904 
9905 /*
9906  * Disk writes.
9907  *
9908  * The dependency structures constructed above are most actively used when file
9909  * system blocks are written to disk.  No constraints are placed on when a
9910  * block can be written, but unsatisfied update dependencies are made safe by
9911  * modifying (or replacing) the source memory for the duration of the disk
9912  * write.  When the disk write completes, the memory block is again brought
9913  * up-to-date.
9914  *
9915  * In-core inode structure reclamation.
9916  *
9917  * Because there are a finite number of "in-core" inode structures, they are
9918  * reused regularly.  By transferring all inode-related dependencies to the
9919  * in-memory inode block and indexing them separately (via "inodedep"s), we
9920  * can allow "in-core" inode structures to be reused at any time and avoid
9921  * any increase in contention.
9922  *
9923  * Called just before entering the device driver to initiate a new disk I/O.
9924  * The buffer must be locked, thus, no I/O completion operations can occur
9925  * while we are manipulating its associated dependencies.
9926  */
9927 static void
9928 softdep_disk_io_initiation(bp)
9929 	struct buf *bp;		/* structure describing disk write to occur */
9930 {
9931 	struct worklist *wk;
9932 	struct worklist marker;
9933 	struct inodedep *inodedep;
9934 	struct freeblks *freeblks;
9935 	struct jblkdep *jblkdep;
9936 	struct newblk *newblk;
9937 	struct ufsmount *ump;
9938 
9939 	/*
9940 	 * We only care about write operations. There should never
9941 	 * be dependencies for reads.
9942 	 */
9943 	if (bp->b_iocmd != BIO_WRITE)
9944 		panic("softdep_disk_io_initiation: not write");
9945 
9946 	if (bp->b_vflags & BV_BKGRDINPROG)
9947 		panic("softdep_disk_io_initiation: Writing buffer with "
9948 		    "background write in progress: %p", bp);
9949 
9950 	if ((wk = LIST_FIRST(&bp->b_dep)) == NULL)
9951 		return;
9952 	ump = VFSTOUFS(wk->wk_mp);
9953 
9954 	marker.wk_type = D_LAST + 1;	/* Not a normal workitem */
9955 	PHOLD(curproc);			/* Don't swap out kernel stack */
9956 	ACQUIRE_LOCK(ump);
9957 	/*
9958 	 * Do any necessary pre-I/O processing.
9959 	 */
9960 	for (wk = LIST_FIRST(&bp->b_dep); wk != NULL;
9961 	     wk = markernext(&marker)) {
9962 		LIST_INSERT_AFTER(wk, &marker, wk_list);
9963 		switch (wk->wk_type) {
9964 
9965 		case D_PAGEDEP:
9966 			initiate_write_filepage(WK_PAGEDEP(wk), bp);
9967 			continue;
9968 
9969 		case D_INODEDEP:
9970 			inodedep = WK_INODEDEP(wk);
9971 			if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC)
9972 				initiate_write_inodeblock_ufs1(inodedep, bp);
9973 			else
9974 				initiate_write_inodeblock_ufs2(inodedep, bp);
9975 			continue;
9976 
9977 		case D_INDIRDEP:
9978 			initiate_write_indirdep(WK_INDIRDEP(wk), bp);
9979 			continue;
9980 
9981 		case D_BMSAFEMAP:
9982 			initiate_write_bmsafemap(WK_BMSAFEMAP(wk), bp);
9983 			continue;
9984 
9985 		case D_JSEG:
9986 			WK_JSEG(wk)->js_buf = NULL;
9987 			continue;
9988 
9989 		case D_FREEBLKS:
9990 			freeblks = WK_FREEBLKS(wk);
9991 			jblkdep = LIST_FIRST(&freeblks->fb_jblkdephd);
9992 			/*
9993 			 * We have to wait for the freeblks to be journaled
9994 			 * before we can write an inodeblock with updated
9995 			 * pointers.  Be careful to arrange the marker so
9996 			 * we revisit the freeblks if it's not removed by
9997 			 * the first jwait().
9998 			 */
9999 			if (jblkdep != NULL) {
10000 				LIST_REMOVE(&marker, wk_list);
10001 				LIST_INSERT_BEFORE(wk, &marker, wk_list);
10002 				jwait(&jblkdep->jb_list, MNT_WAIT);
10003 			}
10004 			continue;
10005 		case D_ALLOCDIRECT:
10006 		case D_ALLOCINDIR:
10007 			/*
10008 			 * We have to wait for the jnewblk to be journaled
10009 			 * before we can write to a block if the contents
10010 			 * may be confused with an earlier file's indirect
10011 			 * at recovery time.  Handle the marker as described
10012 			 * above.
10013 			 */
10014 			newblk = WK_NEWBLK(wk);
10015 			if (newblk->nb_jnewblk != NULL &&
10016 			    indirblk_lookup(newblk->nb_list.wk_mp,
10017 			    newblk->nb_newblkno)) {
10018 				LIST_REMOVE(&marker, wk_list);
10019 				LIST_INSERT_BEFORE(wk, &marker, wk_list);
10020 				jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT);
10021 			}
10022 			continue;
10023 
10024 		case D_SBDEP:
10025 			initiate_write_sbdep(WK_SBDEP(wk));
10026 			continue;
10027 
10028 		case D_MKDIR:
10029 		case D_FREEWORK:
10030 		case D_FREEDEP:
10031 		case D_JSEGDEP:
10032 			continue;
10033 
10034 		default:
10035 			panic("handle_disk_io_initiation: Unexpected type %s",
10036 			    TYPENAME(wk->wk_type));
10037 			/* NOTREACHED */
10038 		}
10039 	}
10040 	FREE_LOCK(ump);
10041 	PRELE(curproc);			/* Allow swapout of kernel stack */
10042 }
10043 
10044 /*
10045  * Called from within the procedure above to deal with unsatisfied
10046  * allocation dependencies in a directory. The buffer must be locked,
10047  * thus, no I/O completion operations can occur while we are
10048  * manipulating its associated dependencies.
10049  */
10050 static void
10051 initiate_write_filepage(pagedep, bp)
10052 	struct pagedep *pagedep;
10053 	struct buf *bp;
10054 {
10055 	struct jremref *jremref;
10056 	struct jmvref *jmvref;
10057 	struct dirrem *dirrem;
10058 	struct diradd *dap;
10059 	struct direct *ep;
10060 	int i;
10061 
10062 	if (pagedep->pd_state & IOSTARTED) {
10063 		/*
10064 		 * This can only happen if there is a driver that does not
10065 		 * understand chaining. Here biodone will reissue the call
10066 		 * to strategy for the incomplete buffers.
10067 		 */
10068 		printf("initiate_write_filepage: already started\n");
10069 		return;
10070 	}
10071 	pagedep->pd_state |= IOSTARTED;
10072 	/*
10073 	 * Wait for all journal remove dependencies to hit the disk.
10074 	 * We can not allow any potentially conflicting directory adds
10075 	 * to be visible before removes and rollback is too difficult.
10076 	 * The per-filesystem lock may be dropped and re-acquired, however
10077 	 * we hold the buf locked so the dependency can not go away.
10078 	 */
10079 	LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next)
10080 		while ((jremref = LIST_FIRST(&dirrem->dm_jremrefhd)) != NULL)
10081 			jwait(&jremref->jr_list, MNT_WAIT);
10082 	while ((jmvref = LIST_FIRST(&pagedep->pd_jmvrefhd)) != NULL)
10083 		jwait(&jmvref->jm_list, MNT_WAIT);
10084 	for (i = 0; i < DAHASHSZ; i++) {
10085 		LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) {
10086 			ep = (struct direct *)
10087 			    ((char *)bp->b_data + dap->da_offset);
10088 			if (ep->d_ino != dap->da_newinum)
10089 				panic("%s: dir inum %ju != new %ju",
10090 				    "initiate_write_filepage",
10091 				    (uintmax_t)ep->d_ino,
10092 				    (uintmax_t)dap->da_newinum);
10093 			if (dap->da_state & DIRCHG)
10094 				ep->d_ino = dap->da_previous->dm_oldinum;
10095 			else
10096 				ep->d_ino = 0;
10097 			dap->da_state &= ~ATTACHED;
10098 			dap->da_state |= UNDONE;
10099 		}
10100 	}
10101 }
10102 
10103 /*
10104  * Version of initiate_write_inodeblock that handles UFS1 dinodes.
10105  * Note that any bug fixes made to this routine must be done in the
10106  * version found below.
10107  *
10108  * Called from within the procedure above to deal with unsatisfied
10109  * allocation dependencies in an inodeblock. The buffer must be
10110  * locked, thus, no I/O completion operations can occur while we
10111  * are manipulating its associated dependencies.
10112  */
10113 static void
10114 initiate_write_inodeblock_ufs1(inodedep, bp)
10115 	struct inodedep *inodedep;
10116 	struct buf *bp;			/* The inode block */
10117 {
10118 	struct allocdirect *adp, *lastadp;
10119 	struct ufs1_dinode *dp;
10120 	struct ufs1_dinode *sip;
10121 	struct inoref *inoref;
10122 	struct ufsmount *ump;
10123 	struct fs *fs;
10124 	ufs_lbn_t i;
10125 #ifdef INVARIANTS
10126 	ufs_lbn_t prevlbn = 0;
10127 #endif
10128 	int deplist;
10129 
10130 	if (inodedep->id_state & IOSTARTED)
10131 		panic("initiate_write_inodeblock_ufs1: already started");
10132 	inodedep->id_state |= IOSTARTED;
10133 	fs = inodedep->id_fs;
10134 	ump = VFSTOUFS(inodedep->id_list.wk_mp);
10135 	LOCK_OWNED(ump);
10136 	dp = (struct ufs1_dinode *)bp->b_data +
10137 	    ino_to_fsbo(fs, inodedep->id_ino);
10138 
10139 	/*
10140 	 * If we're on the unlinked list but have not yet written our
10141 	 * next pointer initialize it here.
10142 	 */
10143 	if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) {
10144 		struct inodedep *inon;
10145 
10146 		inon = TAILQ_NEXT(inodedep, id_unlinked);
10147 		dp->di_freelink = inon ? inon->id_ino : 0;
10148 	}
10149 	/*
10150 	 * If the bitmap is not yet written, then the allocated
10151 	 * inode cannot be written to disk.
10152 	 */
10153 	if ((inodedep->id_state & DEPCOMPLETE) == 0) {
10154 		if (inodedep->id_savedino1 != NULL)
10155 			panic("initiate_write_inodeblock_ufs1: I/O underway");
10156 		FREE_LOCK(ump);
10157 		sip = malloc(sizeof(struct ufs1_dinode),
10158 		    M_SAVEDINO, M_SOFTDEP_FLAGS);
10159 		ACQUIRE_LOCK(ump);
10160 		inodedep->id_savedino1 = sip;
10161 		*inodedep->id_savedino1 = *dp;
10162 		bzero((caddr_t)dp, sizeof(struct ufs1_dinode));
10163 		dp->di_gen = inodedep->id_savedino1->di_gen;
10164 		dp->di_freelink = inodedep->id_savedino1->di_freelink;
10165 		return;
10166 	}
10167 	/*
10168 	 * If no dependencies, then there is nothing to roll back.
10169 	 */
10170 	inodedep->id_savedsize = dp->di_size;
10171 	inodedep->id_savedextsize = 0;
10172 	inodedep->id_savednlink = dp->di_nlink;
10173 	if (TAILQ_EMPTY(&inodedep->id_inoupdt) &&
10174 	    TAILQ_EMPTY(&inodedep->id_inoreflst))
10175 		return;
10176 	/*
10177 	 * Revert the link count to that of the first unwritten journal entry.
10178 	 */
10179 	inoref = TAILQ_FIRST(&inodedep->id_inoreflst);
10180 	if (inoref)
10181 		dp->di_nlink = inoref->if_nlink;
10182 	/*
10183 	 * Set the dependencies to busy.
10184 	 */
10185 	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
10186 	     adp = TAILQ_NEXT(adp, ad_next)) {
10187 #ifdef INVARIANTS
10188 		if (deplist != 0 && prevlbn >= adp->ad_offset)
10189 			panic("softdep_write_inodeblock: lbn order");
10190 		prevlbn = adp->ad_offset;
10191 		if (adp->ad_offset < NDADDR &&
10192 		    dp->di_db[adp->ad_offset] != adp->ad_newblkno)
10193 			panic("%s: direct pointer #%jd mismatch %d != %jd",
10194 			    "softdep_write_inodeblock",
10195 			    (intmax_t)adp->ad_offset,
10196 			    dp->di_db[adp->ad_offset],
10197 			    (intmax_t)adp->ad_newblkno);
10198 		if (adp->ad_offset >= NDADDR &&
10199 		    dp->di_ib[adp->ad_offset - NDADDR] != adp->ad_newblkno)
10200 			panic("%s: indirect pointer #%jd mismatch %d != %jd",
10201 			    "softdep_write_inodeblock",
10202 			    (intmax_t)adp->ad_offset - NDADDR,
10203 			    dp->di_ib[adp->ad_offset - NDADDR],
10204 			    (intmax_t)adp->ad_newblkno);
10205 		deplist |= 1 << adp->ad_offset;
10206 		if ((adp->ad_state & ATTACHED) == 0)
10207 			panic("softdep_write_inodeblock: Unknown state 0x%x",
10208 			    adp->ad_state);
10209 #endif /* INVARIANTS */
10210 		adp->ad_state &= ~ATTACHED;
10211 		adp->ad_state |= UNDONE;
10212 	}
10213 	/*
10214 	 * The on-disk inode cannot claim to be any larger than the last
10215 	 * fragment that has been written. Otherwise, the on-disk inode
10216 	 * might have fragments that were not the last block in the file
10217 	 * which would corrupt the filesystem.
10218 	 */
10219 	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
10220 	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
10221 		if (adp->ad_offset >= NDADDR)
10222 			break;
10223 		dp->di_db[adp->ad_offset] = adp->ad_oldblkno;
10224 		/* keep going until hitting a rollback to a frag */
10225 		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
10226 			continue;
10227 		dp->di_size = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize;
10228 		for (i = adp->ad_offset + 1; i < NDADDR; i++) {
10229 #ifdef INVARIANTS
10230 			if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0)
10231 				panic("softdep_write_inodeblock: lost dep1");
10232 #endif /* INVARIANTS */
10233 			dp->di_db[i] = 0;
10234 		}
10235 		for (i = 0; i < NIADDR; i++) {
10236 #ifdef INVARIANTS
10237 			if (dp->di_ib[i] != 0 &&
10238 			    (deplist & ((1 << NDADDR) << i)) == 0)
10239 				panic("softdep_write_inodeblock: lost dep2");
10240 #endif /* INVARIANTS */
10241 			dp->di_ib[i] = 0;
10242 		}
10243 		return;
10244 	}
10245 	/*
10246 	 * If we have zero'ed out the last allocated block of the file,
10247 	 * roll back the size to the last currently allocated block.
10248 	 * We know that this last allocated block is a full-sized as
10249 	 * we already checked for fragments in the loop above.
10250 	 */
10251 	if (lastadp != NULL &&
10252 	    dp->di_size <= (lastadp->ad_offset + 1) * fs->fs_bsize) {
10253 		for (i = lastadp->ad_offset; i >= 0; i--)
10254 			if (dp->di_db[i] != 0)
10255 				break;
10256 		dp->di_size = (i + 1) * fs->fs_bsize;
10257 	}
10258 	/*
10259 	 * The only dependencies are for indirect blocks.
10260 	 *
10261 	 * The file size for indirect block additions is not guaranteed.
10262 	 * Such a guarantee would be non-trivial to achieve. The conventional
10263 	 * synchronous write implementation also does not make this guarantee.
10264 	 * Fsck should catch and fix discrepancies. Arguably, the file size
10265 	 * can be over-estimated without destroying integrity when the file
10266 	 * moves into the indirect blocks (i.e., is large). If we want to
10267 	 * postpone fsck, we are stuck with this argument.
10268 	 */
10269 	for (; adp; adp = TAILQ_NEXT(adp, ad_next))
10270 		dp->di_ib[adp->ad_offset - NDADDR] = 0;
10271 }
10272 
10273 /*
10274  * Version of initiate_write_inodeblock that handles UFS2 dinodes.
10275  * Note that any bug fixes made to this routine must be done in the
10276  * version found above.
10277  *
10278  * Called from within the procedure above to deal with unsatisfied
10279  * allocation dependencies in an inodeblock. The buffer must be
10280  * locked, thus, no I/O completion operations can occur while we
10281  * are manipulating its associated dependencies.
10282  */
10283 static void
10284 initiate_write_inodeblock_ufs2(inodedep, bp)
10285 	struct inodedep *inodedep;
10286 	struct buf *bp;			/* The inode block */
10287 {
10288 	struct allocdirect *adp, *lastadp;
10289 	struct ufs2_dinode *dp;
10290 	struct ufs2_dinode *sip;
10291 	struct inoref *inoref;
10292 	struct ufsmount *ump;
10293 	struct fs *fs;
10294 	ufs_lbn_t i;
10295 #ifdef INVARIANTS
10296 	ufs_lbn_t prevlbn = 0;
10297 #endif
10298 	int deplist;
10299 
10300 	if (inodedep->id_state & IOSTARTED)
10301 		panic("initiate_write_inodeblock_ufs2: already started");
10302 	inodedep->id_state |= IOSTARTED;
10303 	fs = inodedep->id_fs;
10304 	ump = VFSTOUFS(inodedep->id_list.wk_mp);
10305 	LOCK_OWNED(ump);
10306 	dp = (struct ufs2_dinode *)bp->b_data +
10307 	    ino_to_fsbo(fs, inodedep->id_ino);
10308 
10309 	/*
10310 	 * If we're on the unlinked list but have not yet written our
10311 	 * next pointer initialize it here.
10312 	 */
10313 	if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) {
10314 		struct inodedep *inon;
10315 
10316 		inon = TAILQ_NEXT(inodedep, id_unlinked);
10317 		dp->di_freelink = inon ? inon->id_ino : 0;
10318 	}
10319 	/*
10320 	 * If the bitmap is not yet written, then the allocated
10321 	 * inode cannot be written to disk.
10322 	 */
10323 	if ((inodedep->id_state & DEPCOMPLETE) == 0) {
10324 		if (inodedep->id_savedino2 != NULL)
10325 			panic("initiate_write_inodeblock_ufs2: I/O underway");
10326 		FREE_LOCK(ump);
10327 		sip = malloc(sizeof(struct ufs2_dinode),
10328 		    M_SAVEDINO, M_SOFTDEP_FLAGS);
10329 		ACQUIRE_LOCK(ump);
10330 		inodedep->id_savedino2 = sip;
10331 		*inodedep->id_savedino2 = *dp;
10332 		bzero((caddr_t)dp, sizeof(struct ufs2_dinode));
10333 		dp->di_gen = inodedep->id_savedino2->di_gen;
10334 		dp->di_freelink = inodedep->id_savedino2->di_freelink;
10335 		return;
10336 	}
10337 	/*
10338 	 * If no dependencies, then there is nothing to roll back.
10339 	 */
10340 	inodedep->id_savedsize = dp->di_size;
10341 	inodedep->id_savedextsize = dp->di_extsize;
10342 	inodedep->id_savednlink = dp->di_nlink;
10343 	if (TAILQ_EMPTY(&inodedep->id_inoupdt) &&
10344 	    TAILQ_EMPTY(&inodedep->id_extupdt) &&
10345 	    TAILQ_EMPTY(&inodedep->id_inoreflst))
10346 		return;
10347 	/*
10348 	 * Revert the link count to that of the first unwritten journal entry.
10349 	 */
10350 	inoref = TAILQ_FIRST(&inodedep->id_inoreflst);
10351 	if (inoref)
10352 		dp->di_nlink = inoref->if_nlink;
10353 
10354 	/*
10355 	 * Set the ext data dependencies to busy.
10356 	 */
10357 	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp;
10358 	     adp = TAILQ_NEXT(adp, ad_next)) {
10359 #ifdef INVARIANTS
10360 		if (deplist != 0 && prevlbn >= adp->ad_offset)
10361 			panic("softdep_write_inodeblock: lbn order");
10362 		prevlbn = adp->ad_offset;
10363 		if (dp->di_extb[adp->ad_offset] != adp->ad_newblkno)
10364 			panic("%s: direct pointer #%jd mismatch %jd != %jd",
10365 			    "softdep_write_inodeblock",
10366 			    (intmax_t)adp->ad_offset,
10367 			    (intmax_t)dp->di_extb[adp->ad_offset],
10368 			    (intmax_t)adp->ad_newblkno);
10369 		deplist |= 1 << adp->ad_offset;
10370 		if ((adp->ad_state & ATTACHED) == 0)
10371 			panic("softdep_write_inodeblock: Unknown state 0x%x",
10372 			    adp->ad_state);
10373 #endif /* INVARIANTS */
10374 		adp->ad_state &= ~ATTACHED;
10375 		adp->ad_state |= UNDONE;
10376 	}
10377 	/*
10378 	 * The on-disk inode cannot claim to be any larger than the last
10379 	 * fragment that has been written. Otherwise, the on-disk inode
10380 	 * might have fragments that were not the last block in the ext
10381 	 * data which would corrupt the filesystem.
10382 	 */
10383 	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp;
10384 	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
10385 		dp->di_extb[adp->ad_offset] = adp->ad_oldblkno;
10386 		/* keep going until hitting a rollback to a frag */
10387 		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
10388 			continue;
10389 		dp->di_extsize = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize;
10390 		for (i = adp->ad_offset + 1; i < NXADDR; i++) {
10391 #ifdef INVARIANTS
10392 			if (dp->di_extb[i] != 0 && (deplist & (1 << i)) == 0)
10393 				panic("softdep_write_inodeblock: lost dep1");
10394 #endif /* INVARIANTS */
10395 			dp->di_extb[i] = 0;
10396 		}
10397 		lastadp = NULL;
10398 		break;
10399 	}
10400 	/*
10401 	 * If we have zero'ed out the last allocated block of the ext
10402 	 * data, roll back the size to the last currently allocated block.
10403 	 * We know that this last allocated block is a full-sized as
10404 	 * we already checked for fragments in the loop above.
10405 	 */
10406 	if (lastadp != NULL &&
10407 	    dp->di_extsize <= (lastadp->ad_offset + 1) * fs->fs_bsize) {
10408 		for (i = lastadp->ad_offset; i >= 0; i--)
10409 			if (dp->di_extb[i] != 0)
10410 				break;
10411 		dp->di_extsize = (i + 1) * fs->fs_bsize;
10412 	}
10413 	/*
10414 	 * Set the file data dependencies to busy.
10415 	 */
10416 	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
10417 	     adp = TAILQ_NEXT(adp, ad_next)) {
10418 #ifdef INVARIANTS
10419 		if (deplist != 0 && prevlbn >= adp->ad_offset)
10420 			panic("softdep_write_inodeblock: lbn order");
10421 		if ((adp->ad_state & ATTACHED) == 0)
10422 			panic("inodedep %p and adp %p not attached", inodedep, adp);
10423 		prevlbn = adp->ad_offset;
10424 		if (adp->ad_offset < NDADDR &&
10425 		    dp->di_db[adp->ad_offset] != adp->ad_newblkno)
10426 			panic("%s: direct pointer #%jd mismatch %jd != %jd",
10427 			    "softdep_write_inodeblock",
10428 			    (intmax_t)adp->ad_offset,
10429 			    (intmax_t)dp->di_db[adp->ad_offset],
10430 			    (intmax_t)adp->ad_newblkno);
10431 		if (adp->ad_offset >= NDADDR &&
10432 		    dp->di_ib[adp->ad_offset - NDADDR] != adp->ad_newblkno)
10433 			panic("%s indirect pointer #%jd mismatch %jd != %jd",
10434 			    "softdep_write_inodeblock:",
10435 			    (intmax_t)adp->ad_offset - NDADDR,
10436 			    (intmax_t)dp->di_ib[adp->ad_offset - NDADDR],
10437 			    (intmax_t)adp->ad_newblkno);
10438 		deplist |= 1 << adp->ad_offset;
10439 		if ((adp->ad_state & ATTACHED) == 0)
10440 			panic("softdep_write_inodeblock: Unknown state 0x%x",
10441 			    adp->ad_state);
10442 #endif /* INVARIANTS */
10443 		adp->ad_state &= ~ATTACHED;
10444 		adp->ad_state |= UNDONE;
10445 	}
10446 	/*
10447 	 * The on-disk inode cannot claim to be any larger than the last
10448 	 * fragment that has been written. Otherwise, the on-disk inode
10449 	 * might have fragments that were not the last block in the file
10450 	 * which would corrupt the filesystem.
10451 	 */
10452 	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
10453 	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
10454 		if (adp->ad_offset >= NDADDR)
10455 			break;
10456 		dp->di_db[adp->ad_offset] = adp->ad_oldblkno;
10457 		/* keep going until hitting a rollback to a frag */
10458 		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
10459 			continue;
10460 		dp->di_size = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize;
10461 		for (i = adp->ad_offset + 1; i < NDADDR; i++) {
10462 #ifdef INVARIANTS
10463 			if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0)
10464 				panic("softdep_write_inodeblock: lost dep2");
10465 #endif /* INVARIANTS */
10466 			dp->di_db[i] = 0;
10467 		}
10468 		for (i = 0; i < NIADDR; i++) {
10469 #ifdef INVARIANTS
10470 			if (dp->di_ib[i] != 0 &&
10471 			    (deplist & ((1 << NDADDR) << i)) == 0)
10472 				panic("softdep_write_inodeblock: lost dep3");
10473 #endif /* INVARIANTS */
10474 			dp->di_ib[i] = 0;
10475 		}
10476 		return;
10477 	}
10478 	/*
10479 	 * If we have zero'ed out the last allocated block of the file,
10480 	 * roll back the size to the last currently allocated block.
10481 	 * We know that this last allocated block is a full-sized as
10482 	 * we already checked for fragments in the loop above.
10483 	 */
10484 	if (lastadp != NULL &&
10485 	    dp->di_size <= (lastadp->ad_offset + 1) * fs->fs_bsize) {
10486 		for (i = lastadp->ad_offset; i >= 0; i--)
10487 			if (dp->di_db[i] != 0)
10488 				break;
10489 		dp->di_size = (i + 1) * fs->fs_bsize;
10490 	}
10491 	/*
10492 	 * The only dependencies are for indirect blocks.
10493 	 *
10494 	 * The file size for indirect block additions is not guaranteed.
10495 	 * Such a guarantee would be non-trivial to achieve. The conventional
10496 	 * synchronous write implementation also does not make this guarantee.
10497 	 * Fsck should catch and fix discrepancies. Arguably, the file size
10498 	 * can be over-estimated without destroying integrity when the file
10499 	 * moves into the indirect blocks (i.e., is large). If we want to
10500 	 * postpone fsck, we are stuck with this argument.
10501 	 */
10502 	for (; adp; adp = TAILQ_NEXT(adp, ad_next))
10503 		dp->di_ib[adp->ad_offset - NDADDR] = 0;
10504 }
10505 
10506 /*
10507  * Cancel an indirdep as a result of truncation.  Release all of the
10508  * children allocindirs and place their journal work on the appropriate
10509  * list.
10510  */
10511 static void
10512 cancel_indirdep(indirdep, bp, freeblks)
10513 	struct indirdep *indirdep;
10514 	struct buf *bp;
10515 	struct freeblks *freeblks;
10516 {
10517 	struct allocindir *aip;
10518 
10519 	/*
10520 	 * None of the indirect pointers will ever be visible,
10521 	 * so they can simply be tossed. GOINGAWAY ensures
10522 	 * that allocated pointers will be saved in the buffer
10523 	 * cache until they are freed. Note that they will
10524 	 * only be able to be found by their physical address
10525 	 * since the inode mapping the logical address will
10526 	 * be gone. The save buffer used for the safe copy
10527 	 * was allocated in setup_allocindir_phase2 using
10528 	 * the physical address so it could be used for this
10529 	 * purpose. Hence we swap the safe copy with the real
10530 	 * copy, allowing the safe copy to be freed and holding
10531 	 * on to the real copy for later use in indir_trunc.
10532 	 */
10533 	if (indirdep->ir_state & GOINGAWAY)
10534 		panic("cancel_indirdep: already gone");
10535 	if ((indirdep->ir_state & DEPCOMPLETE) == 0) {
10536 		indirdep->ir_state |= DEPCOMPLETE;
10537 		LIST_REMOVE(indirdep, ir_next);
10538 	}
10539 	indirdep->ir_state |= GOINGAWAY;
10540 	/*
10541 	 * Pass in bp for blocks still have journal writes
10542 	 * pending so we can cancel them on their own.
10543 	 */
10544 	while ((aip = LIST_FIRST(&indirdep->ir_deplisthd)) != NULL)
10545 		cancel_allocindir(aip, bp, freeblks, 0);
10546 	while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != NULL)
10547 		cancel_allocindir(aip, NULL, freeblks, 0);
10548 	while ((aip = LIST_FIRST(&indirdep->ir_writehd)) != NULL)
10549 		cancel_allocindir(aip, NULL, freeblks, 0);
10550 	while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != NULL)
10551 		cancel_allocindir(aip, NULL, freeblks, 0);
10552 	/*
10553 	 * If there are pending partial truncations we need to keep the
10554 	 * old block copy around until they complete.  This is because
10555 	 * the current b_data is not a perfect superset of the available
10556 	 * blocks.
10557 	 */
10558 	if (TAILQ_EMPTY(&indirdep->ir_trunc))
10559 		bcopy(bp->b_data, indirdep->ir_savebp->b_data, bp->b_bcount);
10560 	else
10561 		bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount);
10562 	WORKLIST_REMOVE(&indirdep->ir_list);
10563 	WORKLIST_INSERT(&indirdep->ir_savebp->b_dep, &indirdep->ir_list);
10564 	indirdep->ir_bp = NULL;
10565 	indirdep->ir_freeblks = freeblks;
10566 }
10567 
10568 /*
10569  * Free an indirdep once it no longer has new pointers to track.
10570  */
10571 static void
10572 free_indirdep(indirdep)
10573 	struct indirdep *indirdep;
10574 {
10575 
10576 	KASSERT(TAILQ_EMPTY(&indirdep->ir_trunc),
10577 	    ("free_indirdep: Indir trunc list not empty."));
10578 	KASSERT(LIST_EMPTY(&indirdep->ir_completehd),
10579 	    ("free_indirdep: Complete head not empty."));
10580 	KASSERT(LIST_EMPTY(&indirdep->ir_writehd),
10581 	    ("free_indirdep: write head not empty."));
10582 	KASSERT(LIST_EMPTY(&indirdep->ir_donehd),
10583 	    ("free_indirdep: done head not empty."));
10584 	KASSERT(LIST_EMPTY(&indirdep->ir_deplisthd),
10585 	    ("free_indirdep: deplist head not empty."));
10586 	KASSERT((indirdep->ir_state & DEPCOMPLETE),
10587 	    ("free_indirdep: %p still on newblk list.", indirdep));
10588 	KASSERT(indirdep->ir_saveddata == NULL,
10589 	    ("free_indirdep: %p still has saved data.", indirdep));
10590 	if (indirdep->ir_state & ONWORKLIST)
10591 		WORKLIST_REMOVE(&indirdep->ir_list);
10592 	WORKITEM_FREE(indirdep, D_INDIRDEP);
10593 }
10594 
10595 /*
10596  * Called before a write to an indirdep.  This routine is responsible for
10597  * rolling back pointers to a safe state which includes only those
10598  * allocindirs which have been completed.
10599  */
10600 static void
10601 initiate_write_indirdep(indirdep, bp)
10602 	struct indirdep *indirdep;
10603 	struct buf *bp;
10604 {
10605 	struct ufsmount *ump;
10606 
10607 	indirdep->ir_state |= IOSTARTED;
10608 	if (indirdep->ir_state & GOINGAWAY)
10609 		panic("disk_io_initiation: indirdep gone");
10610 	/*
10611 	 * If there are no remaining dependencies, this will be writing
10612 	 * the real pointers.
10613 	 */
10614 	if (LIST_EMPTY(&indirdep->ir_deplisthd) &&
10615 	    TAILQ_EMPTY(&indirdep->ir_trunc))
10616 		return;
10617 	/*
10618 	 * Replace up-to-date version with safe version.
10619 	 */
10620 	if (indirdep->ir_saveddata == NULL) {
10621 		ump = VFSTOUFS(indirdep->ir_list.wk_mp);
10622 		LOCK_OWNED(ump);
10623 		FREE_LOCK(ump);
10624 		indirdep->ir_saveddata = malloc(bp->b_bcount, M_INDIRDEP,
10625 		    M_SOFTDEP_FLAGS);
10626 		ACQUIRE_LOCK(ump);
10627 	}
10628 	indirdep->ir_state &= ~ATTACHED;
10629 	indirdep->ir_state |= UNDONE;
10630 	bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount);
10631 	bcopy(indirdep->ir_savebp->b_data, bp->b_data,
10632 	    bp->b_bcount);
10633 }
10634 
10635 /*
10636  * Called when an inode has been cleared in a cg bitmap.  This finally
10637  * eliminates any canceled jaddrefs
10638  */
10639 void
10640 softdep_setup_inofree(mp, bp, ino, wkhd)
10641 	struct mount *mp;
10642 	struct buf *bp;
10643 	ino_t ino;
10644 	struct workhead *wkhd;
10645 {
10646 	struct worklist *wk, *wkn;
10647 	struct inodedep *inodedep;
10648 	struct ufsmount *ump;
10649 	uint8_t *inosused;
10650 	struct cg *cgp;
10651 	struct fs *fs;
10652 
10653 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
10654 	    ("softdep_setup_inofree called on non-softdep filesystem"));
10655 	ump = VFSTOUFS(mp);
10656 	ACQUIRE_LOCK(ump);
10657 	fs = ump->um_fs;
10658 	cgp = (struct cg *)bp->b_data;
10659 	inosused = cg_inosused(cgp);
10660 	if (isset(inosused, ino % fs->fs_ipg))
10661 		panic("softdep_setup_inofree: inode %ju not freed.",
10662 		    (uintmax_t)ino);
10663 	if (inodedep_lookup(mp, ino, 0, &inodedep))
10664 		panic("softdep_setup_inofree: ino %ju has existing inodedep %p",
10665 		    (uintmax_t)ino, inodedep);
10666 	if (wkhd) {
10667 		LIST_FOREACH_SAFE(wk, wkhd, wk_list, wkn) {
10668 			if (wk->wk_type != D_JADDREF)
10669 				continue;
10670 			WORKLIST_REMOVE(wk);
10671 			/*
10672 			 * We can free immediately even if the jaddref
10673 			 * isn't attached in a background write as now
10674 			 * the bitmaps are reconciled.
10675 			 */
10676 			wk->wk_state |= COMPLETE | ATTACHED;
10677 			free_jaddref(WK_JADDREF(wk));
10678 		}
10679 		jwork_move(&bp->b_dep, wkhd);
10680 	}
10681 	FREE_LOCK(ump);
10682 }
10683 
10684 
10685 /*
10686  * Called via ffs_blkfree() after a set of frags has been cleared from a cg
10687  * map.  Any dependencies waiting for the write to clear are added to the
10688  * buf's list and any jnewblks that are being canceled are discarded
10689  * immediately.
10690  */
10691 void
10692 softdep_setup_blkfree(mp, bp, blkno, frags, wkhd)
10693 	struct mount *mp;
10694 	struct buf *bp;
10695 	ufs2_daddr_t blkno;
10696 	int frags;
10697 	struct workhead *wkhd;
10698 {
10699 	struct bmsafemap *bmsafemap;
10700 	struct jnewblk *jnewblk;
10701 	struct ufsmount *ump;
10702 	struct worklist *wk;
10703 	struct fs *fs;
10704 #ifdef SUJ_DEBUG
10705 	uint8_t *blksfree;
10706 	struct cg *cgp;
10707 	ufs2_daddr_t jstart;
10708 	ufs2_daddr_t jend;
10709 	ufs2_daddr_t end;
10710 	long bno;
10711 	int i;
10712 #endif
10713 
10714 	CTR3(KTR_SUJ,
10715 	    "softdep_setup_blkfree: blkno %jd frags %d wk head %p",
10716 	    blkno, frags, wkhd);
10717 
10718 	ump = VFSTOUFS(mp);
10719 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
10720 	    ("softdep_setup_blkfree called on non-softdep filesystem"));
10721 	ACQUIRE_LOCK(ump);
10722 	/* Lookup the bmsafemap so we track when it is dirty. */
10723 	fs = ump->um_fs;
10724 	bmsafemap = bmsafemap_lookup(mp, bp, dtog(fs, blkno), NULL);
10725 	/*
10726 	 * Detach any jnewblks which have been canceled.  They must linger
10727 	 * until the bitmap is cleared again by ffs_blkfree() to prevent
10728 	 * an unjournaled allocation from hitting the disk.
10729 	 */
10730 	if (wkhd) {
10731 		while ((wk = LIST_FIRST(wkhd)) != NULL) {
10732 			CTR2(KTR_SUJ,
10733 			    "softdep_setup_blkfree: blkno %jd wk type %d",
10734 			    blkno, wk->wk_type);
10735 			WORKLIST_REMOVE(wk);
10736 			if (wk->wk_type != D_JNEWBLK) {
10737 				WORKLIST_INSERT(&bmsafemap->sm_freehd, wk);
10738 				continue;
10739 			}
10740 			jnewblk = WK_JNEWBLK(wk);
10741 			KASSERT(jnewblk->jn_state & GOINGAWAY,
10742 			    ("softdep_setup_blkfree: jnewblk not canceled."));
10743 #ifdef SUJ_DEBUG
10744 			/*
10745 			 * Assert that this block is free in the bitmap
10746 			 * before we discard the jnewblk.
10747 			 */
10748 			cgp = (struct cg *)bp->b_data;
10749 			blksfree = cg_blksfree(cgp);
10750 			bno = dtogd(fs, jnewblk->jn_blkno);
10751 			for (i = jnewblk->jn_oldfrags;
10752 			    i < jnewblk->jn_frags; i++) {
10753 				if (isset(blksfree, bno + i))
10754 					continue;
10755 				panic("softdep_setup_blkfree: not free");
10756 			}
10757 #endif
10758 			/*
10759 			 * Even if it's not attached we can free immediately
10760 			 * as the new bitmap is correct.
10761 			 */
10762 			wk->wk_state |= COMPLETE | ATTACHED;
10763 			free_jnewblk(jnewblk);
10764 		}
10765 	}
10766 
10767 #ifdef SUJ_DEBUG
10768 	/*
10769 	 * Assert that we are not freeing a block which has an outstanding
10770 	 * allocation dependency.
10771 	 */
10772 	fs = VFSTOUFS(mp)->um_fs;
10773 	bmsafemap = bmsafemap_lookup(mp, bp, dtog(fs, blkno), NULL);
10774 	end = blkno + frags;
10775 	LIST_FOREACH(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps) {
10776 		/*
10777 		 * Don't match against blocks that will be freed when the
10778 		 * background write is done.
10779 		 */
10780 		if ((jnewblk->jn_state & (ATTACHED | COMPLETE | DEPCOMPLETE)) ==
10781 		    (COMPLETE | DEPCOMPLETE))
10782 			continue;
10783 		jstart = jnewblk->jn_blkno + jnewblk->jn_oldfrags;
10784 		jend = jnewblk->jn_blkno + jnewblk->jn_frags;
10785 		if ((blkno >= jstart && blkno < jend) ||
10786 		    (end > jstart && end <= jend)) {
10787 			printf("state 0x%X %jd - %d %d dep %p\n",
10788 			    jnewblk->jn_state, jnewblk->jn_blkno,
10789 			    jnewblk->jn_oldfrags, jnewblk->jn_frags,
10790 			    jnewblk->jn_dep);
10791 			panic("softdep_setup_blkfree: "
10792 			    "%jd-%jd(%d) overlaps with %jd-%jd",
10793 			    blkno, end, frags, jstart, jend);
10794 		}
10795 	}
10796 #endif
10797 	FREE_LOCK(ump);
10798 }
10799 
10800 /*
10801  * Revert a block allocation when the journal record that describes it
10802  * is not yet written.
10803  */
10804 static int
10805 jnewblk_rollback(jnewblk, fs, cgp, blksfree)
10806 	struct jnewblk *jnewblk;
10807 	struct fs *fs;
10808 	struct cg *cgp;
10809 	uint8_t *blksfree;
10810 {
10811 	ufs1_daddr_t fragno;
10812 	long cgbno, bbase;
10813 	int frags, blk;
10814 	int i;
10815 
10816 	frags = 0;
10817 	cgbno = dtogd(fs, jnewblk->jn_blkno);
10818 	/*
10819 	 * We have to test which frags need to be rolled back.  We may
10820 	 * be operating on a stale copy when doing background writes.
10821 	 */
10822 	for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; i++)
10823 		if (isclr(blksfree, cgbno + i))
10824 			frags++;
10825 	if (frags == 0)
10826 		return (0);
10827 	/*
10828 	 * This is mostly ffs_blkfree() sans some validation and
10829 	 * superblock updates.
10830 	 */
10831 	if (frags == fs->fs_frag) {
10832 		fragno = fragstoblks(fs, cgbno);
10833 		ffs_setblock(fs, blksfree, fragno);
10834 		ffs_clusteracct(fs, cgp, fragno, 1);
10835 		cgp->cg_cs.cs_nbfree++;
10836 	} else {
10837 		cgbno += jnewblk->jn_oldfrags;
10838 		bbase = cgbno - fragnum(fs, cgbno);
10839 		/* Decrement the old frags.  */
10840 		blk = blkmap(fs, blksfree, bbase);
10841 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
10842 		/* Deallocate the fragment */
10843 		for (i = 0; i < frags; i++)
10844 			setbit(blksfree, cgbno + i);
10845 		cgp->cg_cs.cs_nffree += frags;
10846 		/* Add back in counts associated with the new frags */
10847 		blk = blkmap(fs, blksfree, bbase);
10848 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
10849 		/* If a complete block has been reassembled, account for it. */
10850 		fragno = fragstoblks(fs, bbase);
10851 		if (ffs_isblock(fs, blksfree, fragno)) {
10852 			cgp->cg_cs.cs_nffree -= fs->fs_frag;
10853 			ffs_clusteracct(fs, cgp, fragno, 1);
10854 			cgp->cg_cs.cs_nbfree++;
10855 		}
10856 	}
10857 	stat_jnewblk++;
10858 	jnewblk->jn_state &= ~ATTACHED;
10859 	jnewblk->jn_state |= UNDONE;
10860 
10861 	return (frags);
10862 }
10863 
10864 static void
10865 initiate_write_bmsafemap(bmsafemap, bp)
10866 	struct bmsafemap *bmsafemap;
10867 	struct buf *bp;			/* The cg block. */
10868 {
10869 	struct jaddref *jaddref;
10870 	struct jnewblk *jnewblk;
10871 	uint8_t *inosused;
10872 	uint8_t *blksfree;
10873 	struct cg *cgp;
10874 	struct fs *fs;
10875 	ino_t ino;
10876 
10877 	if (bmsafemap->sm_state & IOSTARTED)
10878 		return;
10879 	bmsafemap->sm_state |= IOSTARTED;
10880 	/*
10881 	 * Clear any inode allocations which are pending journal writes.
10882 	 */
10883 	if (LIST_FIRST(&bmsafemap->sm_jaddrefhd) != NULL) {
10884 		cgp = (struct cg *)bp->b_data;
10885 		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
10886 		inosused = cg_inosused(cgp);
10887 		LIST_FOREACH(jaddref, &bmsafemap->sm_jaddrefhd, ja_bmdeps) {
10888 			ino = jaddref->ja_ino % fs->fs_ipg;
10889 			if (isset(inosused, ino)) {
10890 				if ((jaddref->ja_mode & IFMT) == IFDIR)
10891 					cgp->cg_cs.cs_ndir--;
10892 				cgp->cg_cs.cs_nifree++;
10893 				clrbit(inosused, ino);
10894 				jaddref->ja_state &= ~ATTACHED;
10895 				jaddref->ja_state |= UNDONE;
10896 				stat_jaddref++;
10897 			} else
10898 				panic("initiate_write_bmsafemap: inode %ju "
10899 				    "marked free", (uintmax_t)jaddref->ja_ino);
10900 		}
10901 	}
10902 	/*
10903 	 * Clear any block allocations which are pending journal writes.
10904 	 */
10905 	if (LIST_FIRST(&bmsafemap->sm_jnewblkhd) != NULL) {
10906 		cgp = (struct cg *)bp->b_data;
10907 		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
10908 		blksfree = cg_blksfree(cgp);
10909 		LIST_FOREACH(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps) {
10910 			if (jnewblk_rollback(jnewblk, fs, cgp, blksfree))
10911 				continue;
10912 			panic("initiate_write_bmsafemap: block %jd "
10913 			    "marked free", jnewblk->jn_blkno);
10914 		}
10915 	}
10916 	/*
10917 	 * Move allocation lists to the written lists so they can be
10918 	 * cleared once the block write is complete.
10919 	 */
10920 	LIST_SWAP(&bmsafemap->sm_inodedephd, &bmsafemap->sm_inodedepwr,
10921 	    inodedep, id_deps);
10922 	LIST_SWAP(&bmsafemap->sm_newblkhd, &bmsafemap->sm_newblkwr,
10923 	    newblk, nb_deps);
10924 	LIST_SWAP(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr, worklist,
10925 	    wk_list);
10926 }
10927 
10928 /*
10929  * This routine is called during the completion interrupt
10930  * service routine for a disk write (from the procedure called
10931  * by the device driver to inform the filesystem caches of
10932  * a request completion).  It should be called early in this
10933  * procedure, before the block is made available to other
10934  * processes or other routines are called.
10935  *
10936  */
10937 static void
10938 softdep_disk_write_complete(bp)
10939 	struct buf *bp;		/* describes the completed disk write */
10940 {
10941 	struct worklist *wk;
10942 	struct worklist *owk;
10943 	struct ufsmount *ump;
10944 	struct workhead reattach;
10945 	struct freeblks *freeblks;
10946 	struct buf *sbp;
10947 
10948 	/*
10949 	 * If an error occurred while doing the write, then the data
10950 	 * has not hit the disk and the dependencies cannot be unrolled.
10951 	 */
10952 	if ((bp->b_ioflags & BIO_ERROR) != 0 && (bp->b_flags & B_INVAL) == 0)
10953 		return;
10954 	if ((wk = LIST_FIRST(&bp->b_dep)) == NULL)
10955 		return;
10956 	ump = VFSTOUFS(wk->wk_mp);
10957 	LIST_INIT(&reattach);
10958 	/*
10959 	 * This lock must not be released anywhere in this code segment.
10960 	 */
10961 	sbp = NULL;
10962 	owk = NULL;
10963 	ACQUIRE_LOCK(ump);
10964 	while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) {
10965 		WORKLIST_REMOVE(wk);
10966 		atomic_add_long(&dep_write[wk->wk_type], 1);
10967 		if (wk == owk)
10968 			panic("duplicate worklist: %p\n", wk);
10969 		owk = wk;
10970 		switch (wk->wk_type) {
10971 
10972 		case D_PAGEDEP:
10973 			if (handle_written_filepage(WK_PAGEDEP(wk), bp))
10974 				WORKLIST_INSERT(&reattach, wk);
10975 			continue;
10976 
10977 		case D_INODEDEP:
10978 			if (handle_written_inodeblock(WK_INODEDEP(wk), bp))
10979 				WORKLIST_INSERT(&reattach, wk);
10980 			continue;
10981 
10982 		case D_BMSAFEMAP:
10983 			if (handle_written_bmsafemap(WK_BMSAFEMAP(wk), bp))
10984 				WORKLIST_INSERT(&reattach, wk);
10985 			continue;
10986 
10987 		case D_MKDIR:
10988 			handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY);
10989 			continue;
10990 
10991 		case D_ALLOCDIRECT:
10992 			wk->wk_state |= COMPLETE;
10993 			handle_allocdirect_partdone(WK_ALLOCDIRECT(wk), NULL);
10994 			continue;
10995 
10996 		case D_ALLOCINDIR:
10997 			wk->wk_state |= COMPLETE;
10998 			handle_allocindir_partdone(WK_ALLOCINDIR(wk));
10999 			continue;
11000 
11001 		case D_INDIRDEP:
11002 			if (handle_written_indirdep(WK_INDIRDEP(wk), bp, &sbp))
11003 				WORKLIST_INSERT(&reattach, wk);
11004 			continue;
11005 
11006 		case D_FREEBLKS:
11007 			wk->wk_state |= COMPLETE;
11008 			freeblks = WK_FREEBLKS(wk);
11009 			if ((wk->wk_state & ALLCOMPLETE) == ALLCOMPLETE &&
11010 			    LIST_EMPTY(&freeblks->fb_jblkdephd))
11011 				add_to_worklist(wk, WK_NODELAY);
11012 			continue;
11013 
11014 		case D_FREEWORK:
11015 			handle_written_freework(WK_FREEWORK(wk));
11016 			break;
11017 
11018 		case D_JSEGDEP:
11019 			free_jsegdep(WK_JSEGDEP(wk));
11020 			continue;
11021 
11022 		case D_JSEG:
11023 			handle_written_jseg(WK_JSEG(wk), bp);
11024 			continue;
11025 
11026 		case D_SBDEP:
11027 			if (handle_written_sbdep(WK_SBDEP(wk), bp))
11028 				WORKLIST_INSERT(&reattach, wk);
11029 			continue;
11030 
11031 		case D_FREEDEP:
11032 			free_freedep(WK_FREEDEP(wk));
11033 			continue;
11034 
11035 		default:
11036 			panic("handle_disk_write_complete: Unknown type %s",
11037 			    TYPENAME(wk->wk_type));
11038 			/* NOTREACHED */
11039 		}
11040 	}
11041 	/*
11042 	 * Reattach any requests that must be redone.
11043 	 */
11044 	while ((wk = LIST_FIRST(&reattach)) != NULL) {
11045 		WORKLIST_REMOVE(wk);
11046 		WORKLIST_INSERT(&bp->b_dep, wk);
11047 	}
11048 	FREE_LOCK(ump);
11049 	if (sbp)
11050 		brelse(sbp);
11051 }
11052 
11053 /*
11054  * Called from within softdep_disk_write_complete above. Note that
11055  * this routine is always called from interrupt level with further
11056  * splbio interrupts blocked.
11057  */
11058 static void
11059 handle_allocdirect_partdone(adp, wkhd)
11060 	struct allocdirect *adp;	/* the completed allocdirect */
11061 	struct workhead *wkhd;		/* Work to do when inode is writtne. */
11062 {
11063 	struct allocdirectlst *listhead;
11064 	struct allocdirect *listadp;
11065 	struct inodedep *inodedep;
11066 	long bsize;
11067 
11068 	if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE)
11069 		return;
11070 	/*
11071 	 * The on-disk inode cannot claim to be any larger than the last
11072 	 * fragment that has been written. Otherwise, the on-disk inode
11073 	 * might have fragments that were not the last block in the file
11074 	 * which would corrupt the filesystem. Thus, we cannot free any
11075 	 * allocdirects after one whose ad_oldblkno claims a fragment as
11076 	 * these blocks must be rolled back to zero before writing the inode.
11077 	 * We check the currently active set of allocdirects in id_inoupdt
11078 	 * or id_extupdt as appropriate.
11079 	 */
11080 	inodedep = adp->ad_inodedep;
11081 	bsize = inodedep->id_fs->fs_bsize;
11082 	if (adp->ad_state & EXTDATA)
11083 		listhead = &inodedep->id_extupdt;
11084 	else
11085 		listhead = &inodedep->id_inoupdt;
11086 	TAILQ_FOREACH(listadp, listhead, ad_next) {
11087 		/* found our block */
11088 		if (listadp == adp)
11089 			break;
11090 		/* continue if ad_oldlbn is not a fragment */
11091 		if (listadp->ad_oldsize == 0 ||
11092 		    listadp->ad_oldsize == bsize)
11093 			continue;
11094 		/* hit a fragment */
11095 		return;
11096 	}
11097 	/*
11098 	 * If we have reached the end of the current list without
11099 	 * finding the just finished dependency, then it must be
11100 	 * on the future dependency list. Future dependencies cannot
11101 	 * be freed until they are moved to the current list.
11102 	 */
11103 	if (listadp == NULL) {
11104 #ifdef DEBUG
11105 		if (adp->ad_state & EXTDATA)
11106 			listhead = &inodedep->id_newextupdt;
11107 		else
11108 			listhead = &inodedep->id_newinoupdt;
11109 		TAILQ_FOREACH(listadp, listhead, ad_next)
11110 			/* found our block */
11111 			if (listadp == adp)
11112 				break;
11113 		if (listadp == NULL)
11114 			panic("handle_allocdirect_partdone: lost dep");
11115 #endif /* DEBUG */
11116 		return;
11117 	}
11118 	/*
11119 	 * If we have found the just finished dependency, then queue
11120 	 * it along with anything that follows it that is complete.
11121 	 * Since the pointer has not yet been written in the inode
11122 	 * as the dependency prevents it, place the allocdirect on the
11123 	 * bufwait list where it will be freed once the pointer is
11124 	 * valid.
11125 	 */
11126 	if (wkhd == NULL)
11127 		wkhd = &inodedep->id_bufwait;
11128 	for (; adp; adp = listadp) {
11129 		listadp = TAILQ_NEXT(adp, ad_next);
11130 		if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE)
11131 			return;
11132 		TAILQ_REMOVE(listhead, adp, ad_next);
11133 		WORKLIST_INSERT(wkhd, &adp->ad_block.nb_list);
11134 	}
11135 }
11136 
11137 /*
11138  * Called from within softdep_disk_write_complete above.  This routine
11139  * completes successfully written allocindirs.
11140  */
11141 static void
11142 handle_allocindir_partdone(aip)
11143 	struct allocindir *aip;		/* the completed allocindir */
11144 {
11145 	struct indirdep *indirdep;
11146 
11147 	if ((aip->ai_state & ALLCOMPLETE) != ALLCOMPLETE)
11148 		return;
11149 	indirdep = aip->ai_indirdep;
11150 	LIST_REMOVE(aip, ai_next);
11151 	/*
11152 	 * Don't set a pointer while the buffer is undergoing IO or while
11153 	 * we have active truncations.
11154 	 */
11155 	if (indirdep->ir_state & UNDONE || !TAILQ_EMPTY(&indirdep->ir_trunc)) {
11156 		LIST_INSERT_HEAD(&indirdep->ir_donehd, aip, ai_next);
11157 		return;
11158 	}
11159 	if (indirdep->ir_state & UFS1FMT)
11160 		((ufs1_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] =
11161 		    aip->ai_newblkno;
11162 	else
11163 		((ufs2_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] =
11164 		    aip->ai_newblkno;
11165 	/*
11166 	 * Await the pointer write before freeing the allocindir.
11167 	 */
11168 	LIST_INSERT_HEAD(&indirdep->ir_writehd, aip, ai_next);
11169 }
11170 
11171 /*
11172  * Release segments held on a jwork list.
11173  */
11174 static void
11175 handle_jwork(wkhd)
11176 	struct workhead *wkhd;
11177 {
11178 	struct worklist *wk;
11179 
11180 	while ((wk = LIST_FIRST(wkhd)) != NULL) {
11181 		WORKLIST_REMOVE(wk);
11182 		switch (wk->wk_type) {
11183 		case D_JSEGDEP:
11184 			free_jsegdep(WK_JSEGDEP(wk));
11185 			continue;
11186 		case D_FREEDEP:
11187 			free_freedep(WK_FREEDEP(wk));
11188 			continue;
11189 		case D_FREEFRAG:
11190 			rele_jseg(WK_JSEG(WK_FREEFRAG(wk)->ff_jdep));
11191 			WORKITEM_FREE(wk, D_FREEFRAG);
11192 			continue;
11193 		case D_FREEWORK:
11194 			handle_written_freework(WK_FREEWORK(wk));
11195 			continue;
11196 		default:
11197 			panic("handle_jwork: Unknown type %s\n",
11198 			    TYPENAME(wk->wk_type));
11199 		}
11200 	}
11201 }
11202 
11203 /*
11204  * Handle the bufwait list on an inode when it is safe to release items
11205  * held there.  This normally happens after an inode block is written but
11206  * may be delayed and handled later if there are pending journal items that
11207  * are not yet safe to be released.
11208  */
11209 static struct freefile *
11210 handle_bufwait(inodedep, refhd)
11211 	struct inodedep *inodedep;
11212 	struct workhead *refhd;
11213 {
11214 	struct jaddref *jaddref;
11215 	struct freefile *freefile;
11216 	struct worklist *wk;
11217 
11218 	freefile = NULL;
11219 	while ((wk = LIST_FIRST(&inodedep->id_bufwait)) != NULL) {
11220 		WORKLIST_REMOVE(wk);
11221 		switch (wk->wk_type) {
11222 		case D_FREEFILE:
11223 			/*
11224 			 * We defer adding freefile to the worklist
11225 			 * until all other additions have been made to
11226 			 * ensure that it will be done after all the
11227 			 * old blocks have been freed.
11228 			 */
11229 			if (freefile != NULL)
11230 				panic("handle_bufwait: freefile");
11231 			freefile = WK_FREEFILE(wk);
11232 			continue;
11233 
11234 		case D_MKDIR:
11235 			handle_written_mkdir(WK_MKDIR(wk), MKDIR_PARENT);
11236 			continue;
11237 
11238 		case D_DIRADD:
11239 			diradd_inode_written(WK_DIRADD(wk), inodedep);
11240 			continue;
11241 
11242 		case D_FREEFRAG:
11243 			wk->wk_state |= COMPLETE;
11244 			if ((wk->wk_state & ALLCOMPLETE) == ALLCOMPLETE)
11245 				add_to_worklist(wk, 0);
11246 			continue;
11247 
11248 		case D_DIRREM:
11249 			wk->wk_state |= COMPLETE;
11250 			add_to_worklist(wk, 0);
11251 			continue;
11252 
11253 		case D_ALLOCDIRECT:
11254 		case D_ALLOCINDIR:
11255 			free_newblk(WK_NEWBLK(wk));
11256 			continue;
11257 
11258 		case D_JNEWBLK:
11259 			wk->wk_state |= COMPLETE;
11260 			free_jnewblk(WK_JNEWBLK(wk));
11261 			continue;
11262 
11263 		/*
11264 		 * Save freed journal segments and add references on
11265 		 * the supplied list which will delay their release
11266 		 * until the cg bitmap is cleared on disk.
11267 		 */
11268 		case D_JSEGDEP:
11269 			if (refhd == NULL)
11270 				free_jsegdep(WK_JSEGDEP(wk));
11271 			else
11272 				WORKLIST_INSERT(refhd, wk);
11273 			continue;
11274 
11275 		case D_JADDREF:
11276 			jaddref = WK_JADDREF(wk);
11277 			TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref,
11278 			    if_deps);
11279 			/*
11280 			 * Transfer any jaddrefs to the list to be freed with
11281 			 * the bitmap if we're handling a removed file.
11282 			 */
11283 			if (refhd == NULL) {
11284 				wk->wk_state |= COMPLETE;
11285 				free_jaddref(jaddref);
11286 			} else
11287 				WORKLIST_INSERT(refhd, wk);
11288 			continue;
11289 
11290 		default:
11291 			panic("handle_bufwait: Unknown type %p(%s)",
11292 			    wk, TYPENAME(wk->wk_type));
11293 			/* NOTREACHED */
11294 		}
11295 	}
11296 	return (freefile);
11297 }
11298 /*
11299  * Called from within softdep_disk_write_complete above to restore
11300  * in-memory inode block contents to their most up-to-date state. Note
11301  * that this routine is always called from interrupt level with further
11302  * splbio interrupts blocked.
11303  */
11304 static int
11305 handle_written_inodeblock(inodedep, bp)
11306 	struct inodedep *inodedep;
11307 	struct buf *bp;		/* buffer containing the inode block */
11308 {
11309 	struct freefile *freefile;
11310 	struct allocdirect *adp, *nextadp;
11311 	struct ufs1_dinode *dp1 = NULL;
11312 	struct ufs2_dinode *dp2 = NULL;
11313 	struct workhead wkhd;
11314 	int hadchanges, fstype;
11315 	ino_t freelink;
11316 
11317 	LIST_INIT(&wkhd);
11318 	hadchanges = 0;
11319 	freefile = NULL;
11320 	if ((inodedep->id_state & IOSTARTED) == 0)
11321 		panic("handle_written_inodeblock: not started");
11322 	inodedep->id_state &= ~IOSTARTED;
11323 	if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC) {
11324 		fstype = UFS1;
11325 		dp1 = (struct ufs1_dinode *)bp->b_data +
11326 		    ino_to_fsbo(inodedep->id_fs, inodedep->id_ino);
11327 		freelink = dp1->di_freelink;
11328 	} else {
11329 		fstype = UFS2;
11330 		dp2 = (struct ufs2_dinode *)bp->b_data +
11331 		    ino_to_fsbo(inodedep->id_fs, inodedep->id_ino);
11332 		freelink = dp2->di_freelink;
11333 	}
11334 	/*
11335 	 * Leave this inodeblock dirty until it's in the list.
11336 	 */
11337 	if ((inodedep->id_state & (UNLINKED | UNLINKONLIST)) == UNLINKED) {
11338 		struct inodedep *inon;
11339 
11340 		inon = TAILQ_NEXT(inodedep, id_unlinked);
11341 		if ((inon == NULL && freelink == 0) ||
11342 		    (inon && inon->id_ino == freelink)) {
11343 			if (inon)
11344 				inon->id_state |= UNLINKPREV;
11345 			inodedep->id_state |= UNLINKNEXT;
11346 		}
11347 		hadchanges = 1;
11348 	}
11349 	/*
11350 	 * If we had to rollback the inode allocation because of
11351 	 * bitmaps being incomplete, then simply restore it.
11352 	 * Keep the block dirty so that it will not be reclaimed until
11353 	 * all associated dependencies have been cleared and the
11354 	 * corresponding updates written to disk.
11355 	 */
11356 	if (inodedep->id_savedino1 != NULL) {
11357 		hadchanges = 1;
11358 		if (fstype == UFS1)
11359 			*dp1 = *inodedep->id_savedino1;
11360 		else
11361 			*dp2 = *inodedep->id_savedino2;
11362 		free(inodedep->id_savedino1, M_SAVEDINO);
11363 		inodedep->id_savedino1 = NULL;
11364 		if ((bp->b_flags & B_DELWRI) == 0)
11365 			stat_inode_bitmap++;
11366 		bdirty(bp);
11367 		/*
11368 		 * If the inode is clear here and GOINGAWAY it will never
11369 		 * be written.  Process the bufwait and clear any pending
11370 		 * work which may include the freefile.
11371 		 */
11372 		if (inodedep->id_state & GOINGAWAY)
11373 			goto bufwait;
11374 		return (1);
11375 	}
11376 	inodedep->id_state |= COMPLETE;
11377 	/*
11378 	 * Roll forward anything that had to be rolled back before
11379 	 * the inode could be updated.
11380 	 */
11381 	for (adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; adp = nextadp) {
11382 		nextadp = TAILQ_NEXT(adp, ad_next);
11383 		if (adp->ad_state & ATTACHED)
11384 			panic("handle_written_inodeblock: new entry");
11385 		if (fstype == UFS1) {
11386 			if (adp->ad_offset < NDADDR) {
11387 				if (dp1->di_db[adp->ad_offset]!=adp->ad_oldblkno)
11388 					panic("%s %s #%jd mismatch %d != %jd",
11389 					    "handle_written_inodeblock:",
11390 					    "direct pointer",
11391 					    (intmax_t)adp->ad_offset,
11392 					    dp1->di_db[adp->ad_offset],
11393 					    (intmax_t)adp->ad_oldblkno);
11394 				dp1->di_db[adp->ad_offset] = adp->ad_newblkno;
11395 			} else {
11396 				if (dp1->di_ib[adp->ad_offset - NDADDR] != 0)
11397 					panic("%s: %s #%jd allocated as %d",
11398 					    "handle_written_inodeblock",
11399 					    "indirect pointer",
11400 					    (intmax_t)adp->ad_offset - NDADDR,
11401 					    dp1->di_ib[adp->ad_offset - NDADDR]);
11402 				dp1->di_ib[adp->ad_offset - NDADDR] =
11403 				    adp->ad_newblkno;
11404 			}
11405 		} else {
11406 			if (adp->ad_offset < NDADDR) {
11407 				if (dp2->di_db[adp->ad_offset]!=adp->ad_oldblkno)
11408 					panic("%s: %s #%jd %s %jd != %jd",
11409 					    "handle_written_inodeblock",
11410 					    "direct pointer",
11411 					    (intmax_t)adp->ad_offset, "mismatch",
11412 					    (intmax_t)dp2->di_db[adp->ad_offset],
11413 					    (intmax_t)adp->ad_oldblkno);
11414 				dp2->di_db[adp->ad_offset] = adp->ad_newblkno;
11415 			} else {
11416 				if (dp2->di_ib[adp->ad_offset - NDADDR] != 0)
11417 					panic("%s: %s #%jd allocated as %jd",
11418 					    "handle_written_inodeblock",
11419 					    "indirect pointer",
11420 					    (intmax_t)adp->ad_offset - NDADDR,
11421 					    (intmax_t)
11422 					    dp2->di_ib[adp->ad_offset - NDADDR]);
11423 				dp2->di_ib[adp->ad_offset - NDADDR] =
11424 				    adp->ad_newblkno;
11425 			}
11426 		}
11427 		adp->ad_state &= ~UNDONE;
11428 		adp->ad_state |= ATTACHED;
11429 		hadchanges = 1;
11430 	}
11431 	for (adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; adp = nextadp) {
11432 		nextadp = TAILQ_NEXT(adp, ad_next);
11433 		if (adp->ad_state & ATTACHED)
11434 			panic("handle_written_inodeblock: new entry");
11435 		if (dp2->di_extb[adp->ad_offset] != adp->ad_oldblkno)
11436 			panic("%s: direct pointers #%jd %s %jd != %jd",
11437 			    "handle_written_inodeblock",
11438 			    (intmax_t)adp->ad_offset, "mismatch",
11439 			    (intmax_t)dp2->di_extb[adp->ad_offset],
11440 			    (intmax_t)adp->ad_oldblkno);
11441 		dp2->di_extb[adp->ad_offset] = adp->ad_newblkno;
11442 		adp->ad_state &= ~UNDONE;
11443 		adp->ad_state |= ATTACHED;
11444 		hadchanges = 1;
11445 	}
11446 	if (hadchanges && (bp->b_flags & B_DELWRI) == 0)
11447 		stat_direct_blk_ptrs++;
11448 	/*
11449 	 * Reset the file size to its most up-to-date value.
11450 	 */
11451 	if (inodedep->id_savedsize == -1 || inodedep->id_savedextsize == -1)
11452 		panic("handle_written_inodeblock: bad size");
11453 	if (inodedep->id_savednlink > LINK_MAX)
11454 		panic("handle_written_inodeblock: Invalid link count "
11455 		    "%d for inodedep %p", inodedep->id_savednlink, inodedep);
11456 	if (fstype == UFS1) {
11457 		if (dp1->di_nlink != inodedep->id_savednlink) {
11458 			dp1->di_nlink = inodedep->id_savednlink;
11459 			hadchanges = 1;
11460 		}
11461 		if (dp1->di_size != inodedep->id_savedsize) {
11462 			dp1->di_size = inodedep->id_savedsize;
11463 			hadchanges = 1;
11464 		}
11465 	} else {
11466 		if (dp2->di_nlink != inodedep->id_savednlink) {
11467 			dp2->di_nlink = inodedep->id_savednlink;
11468 			hadchanges = 1;
11469 		}
11470 		if (dp2->di_size != inodedep->id_savedsize) {
11471 			dp2->di_size = inodedep->id_savedsize;
11472 			hadchanges = 1;
11473 		}
11474 		if (dp2->di_extsize != inodedep->id_savedextsize) {
11475 			dp2->di_extsize = inodedep->id_savedextsize;
11476 			hadchanges = 1;
11477 		}
11478 	}
11479 	inodedep->id_savedsize = -1;
11480 	inodedep->id_savedextsize = -1;
11481 	inodedep->id_savednlink = -1;
11482 	/*
11483 	 * If there were any rollbacks in the inode block, then it must be
11484 	 * marked dirty so that its will eventually get written back in
11485 	 * its correct form.
11486 	 */
11487 	if (hadchanges)
11488 		bdirty(bp);
11489 bufwait:
11490 	/*
11491 	 * Process any allocdirects that completed during the update.
11492 	 */
11493 	if ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL)
11494 		handle_allocdirect_partdone(adp, &wkhd);
11495 	if ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL)
11496 		handle_allocdirect_partdone(adp, &wkhd);
11497 	/*
11498 	 * Process deallocations that were held pending until the
11499 	 * inode had been written to disk. Freeing of the inode
11500 	 * is delayed until after all blocks have been freed to
11501 	 * avoid creation of new <vfsid, inum, lbn> triples
11502 	 * before the old ones have been deleted.  Completely
11503 	 * unlinked inodes are not processed until the unlinked
11504 	 * inode list is written or the last reference is removed.
11505 	 */
11506 	if ((inodedep->id_state & (UNLINKED | UNLINKONLIST)) != UNLINKED) {
11507 		freefile = handle_bufwait(inodedep, NULL);
11508 		if (freefile && !LIST_EMPTY(&wkhd)) {
11509 			WORKLIST_INSERT(&wkhd, &freefile->fx_list);
11510 			freefile = NULL;
11511 		}
11512 	}
11513 	/*
11514 	 * Move rolled forward dependency completions to the bufwait list
11515 	 * now that those that were already written have been processed.
11516 	 */
11517 	if (!LIST_EMPTY(&wkhd) && hadchanges == 0)
11518 		panic("handle_written_inodeblock: bufwait but no changes");
11519 	jwork_move(&inodedep->id_bufwait, &wkhd);
11520 
11521 	if (freefile != NULL) {
11522 		/*
11523 		 * If the inode is goingaway it was never written.  Fake up
11524 		 * the state here so free_inodedep() can succeed.
11525 		 */
11526 		if (inodedep->id_state & GOINGAWAY)
11527 			inodedep->id_state |= COMPLETE | DEPCOMPLETE;
11528 		if (free_inodedep(inodedep) == 0)
11529 			panic("handle_written_inodeblock: live inodedep %p",
11530 			    inodedep);
11531 		add_to_worklist(&freefile->fx_list, 0);
11532 		return (0);
11533 	}
11534 
11535 	/*
11536 	 * If no outstanding dependencies, free it.
11537 	 */
11538 	if (free_inodedep(inodedep) ||
11539 	    (TAILQ_FIRST(&inodedep->id_inoreflst) == 0 &&
11540 	     TAILQ_FIRST(&inodedep->id_inoupdt) == 0 &&
11541 	     TAILQ_FIRST(&inodedep->id_extupdt) == 0 &&
11542 	     LIST_FIRST(&inodedep->id_bufwait) == 0))
11543 		return (0);
11544 	return (hadchanges);
11545 }
11546 
11547 static int
11548 handle_written_indirdep(indirdep, bp, bpp)
11549 	struct indirdep *indirdep;
11550 	struct buf *bp;
11551 	struct buf **bpp;
11552 {
11553 	struct allocindir *aip;
11554 	struct buf *sbp;
11555 	int chgs;
11556 
11557 	if (indirdep->ir_state & GOINGAWAY)
11558 		panic("handle_written_indirdep: indirdep gone");
11559 	if ((indirdep->ir_state & IOSTARTED) == 0)
11560 		panic("handle_written_indirdep: IO not started");
11561 	chgs = 0;
11562 	/*
11563 	 * If there were rollbacks revert them here.
11564 	 */
11565 	if (indirdep->ir_saveddata) {
11566 		bcopy(indirdep->ir_saveddata, bp->b_data, bp->b_bcount);
11567 		if (TAILQ_EMPTY(&indirdep->ir_trunc)) {
11568 			free(indirdep->ir_saveddata, M_INDIRDEP);
11569 			indirdep->ir_saveddata = NULL;
11570 		}
11571 		chgs = 1;
11572 	}
11573 	indirdep->ir_state &= ~(UNDONE | IOSTARTED);
11574 	indirdep->ir_state |= ATTACHED;
11575 	/*
11576 	 * Move allocindirs with written pointers to the completehd if
11577 	 * the indirdep's pointer is not yet written.  Otherwise
11578 	 * free them here.
11579 	 */
11580 	while ((aip = LIST_FIRST(&indirdep->ir_writehd)) != NULL) {
11581 		LIST_REMOVE(aip, ai_next);
11582 		if ((indirdep->ir_state & DEPCOMPLETE) == 0) {
11583 			LIST_INSERT_HEAD(&indirdep->ir_completehd, aip,
11584 			    ai_next);
11585 			newblk_freefrag(&aip->ai_block);
11586 			continue;
11587 		}
11588 		free_newblk(&aip->ai_block);
11589 	}
11590 	/*
11591 	 * Move allocindirs that have finished dependency processing from
11592 	 * the done list to the write list after updating the pointers.
11593 	 */
11594 	if (TAILQ_EMPTY(&indirdep->ir_trunc)) {
11595 		while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != NULL) {
11596 			handle_allocindir_partdone(aip);
11597 			if (aip == LIST_FIRST(&indirdep->ir_donehd))
11598 				panic("disk_write_complete: not gone");
11599 			chgs = 1;
11600 		}
11601 	}
11602 	/*
11603 	 * Preserve the indirdep if there were any changes or if it is not
11604 	 * yet valid on disk.
11605 	 */
11606 	if (chgs) {
11607 		stat_indir_blk_ptrs++;
11608 		bdirty(bp);
11609 		return (1);
11610 	}
11611 	/*
11612 	 * If there were no changes we can discard the savedbp and detach
11613 	 * ourselves from the buf.  We are only carrying completed pointers
11614 	 * in this case.
11615 	 */
11616 	sbp = indirdep->ir_savebp;
11617 	sbp->b_flags |= B_INVAL | B_NOCACHE;
11618 	indirdep->ir_savebp = NULL;
11619 	indirdep->ir_bp = NULL;
11620 	if (*bpp != NULL)
11621 		panic("handle_written_indirdep: bp already exists.");
11622 	*bpp = sbp;
11623 	/*
11624 	 * The indirdep may not be freed until its parent points at it.
11625 	 */
11626 	if (indirdep->ir_state & DEPCOMPLETE)
11627 		free_indirdep(indirdep);
11628 
11629 	return (0);
11630 }
11631 
11632 /*
11633  * Process a diradd entry after its dependent inode has been written.
11634  * This routine must be called with splbio interrupts blocked.
11635  */
11636 static void
11637 diradd_inode_written(dap, inodedep)
11638 	struct diradd *dap;
11639 	struct inodedep *inodedep;
11640 {
11641 
11642 	dap->da_state |= COMPLETE;
11643 	complete_diradd(dap);
11644 	WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list);
11645 }
11646 
11647 /*
11648  * Returns true if the bmsafemap will have rollbacks when written.  Must only
11649  * be called with the per-filesystem lock and the buf lock on the cg held.
11650  */
11651 static int
11652 bmsafemap_backgroundwrite(bmsafemap, bp)
11653 	struct bmsafemap *bmsafemap;
11654 	struct buf *bp;
11655 {
11656 	int dirty;
11657 
11658 	LOCK_OWNED(VFSTOUFS(bmsafemap->sm_list.wk_mp));
11659 	dirty = !LIST_EMPTY(&bmsafemap->sm_jaddrefhd) |
11660 	    !LIST_EMPTY(&bmsafemap->sm_jnewblkhd);
11661 	/*
11662 	 * If we're initiating a background write we need to process the
11663 	 * rollbacks as they exist now, not as they exist when IO starts.
11664 	 * No other consumers will look at the contents of the shadowed
11665 	 * buf so this is safe to do here.
11666 	 */
11667 	if (bp->b_xflags & BX_BKGRDMARKER)
11668 		initiate_write_bmsafemap(bmsafemap, bp);
11669 
11670 	return (dirty);
11671 }
11672 
11673 /*
11674  * Re-apply an allocation when a cg write is complete.
11675  */
11676 static int
11677 jnewblk_rollforward(jnewblk, fs, cgp, blksfree)
11678 	struct jnewblk *jnewblk;
11679 	struct fs *fs;
11680 	struct cg *cgp;
11681 	uint8_t *blksfree;
11682 {
11683 	ufs1_daddr_t fragno;
11684 	ufs2_daddr_t blkno;
11685 	long cgbno, bbase;
11686 	int frags, blk;
11687 	int i;
11688 
11689 	frags = 0;
11690 	cgbno = dtogd(fs, jnewblk->jn_blkno);
11691 	for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; i++) {
11692 		if (isclr(blksfree, cgbno + i))
11693 			panic("jnewblk_rollforward: re-allocated fragment");
11694 		frags++;
11695 	}
11696 	if (frags == fs->fs_frag) {
11697 		blkno = fragstoblks(fs, cgbno);
11698 		ffs_clrblock(fs, blksfree, (long)blkno);
11699 		ffs_clusteracct(fs, cgp, blkno, -1);
11700 		cgp->cg_cs.cs_nbfree--;
11701 	} else {
11702 		bbase = cgbno - fragnum(fs, cgbno);
11703 		cgbno += jnewblk->jn_oldfrags;
11704                 /* If a complete block had been reassembled, account for it. */
11705 		fragno = fragstoblks(fs, bbase);
11706 		if (ffs_isblock(fs, blksfree, fragno)) {
11707 			cgp->cg_cs.cs_nffree += fs->fs_frag;
11708 			ffs_clusteracct(fs, cgp, fragno, -1);
11709 			cgp->cg_cs.cs_nbfree--;
11710 		}
11711 		/* Decrement the old frags.  */
11712 		blk = blkmap(fs, blksfree, bbase);
11713 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
11714 		/* Allocate the fragment */
11715 		for (i = 0; i < frags; i++)
11716 			clrbit(blksfree, cgbno + i);
11717 		cgp->cg_cs.cs_nffree -= frags;
11718 		/* Add back in counts associated with the new frags */
11719 		blk = blkmap(fs, blksfree, bbase);
11720 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
11721 	}
11722 	return (frags);
11723 }
11724 
11725 /*
11726  * Complete a write to a bmsafemap structure.  Roll forward any bitmap
11727  * changes if it's not a background write.  Set all written dependencies
11728  * to DEPCOMPLETE and free the structure if possible.
11729  */
11730 static int
11731 handle_written_bmsafemap(bmsafemap, bp)
11732 	struct bmsafemap *bmsafemap;
11733 	struct buf *bp;
11734 {
11735 	struct newblk *newblk;
11736 	struct inodedep *inodedep;
11737 	struct jaddref *jaddref, *jatmp;
11738 	struct jnewblk *jnewblk, *jntmp;
11739 	struct ufsmount *ump;
11740 	uint8_t *inosused;
11741 	uint8_t *blksfree;
11742 	struct cg *cgp;
11743 	struct fs *fs;
11744 	ino_t ino;
11745 	int foreground;
11746 	int chgs;
11747 
11748 	if ((bmsafemap->sm_state & IOSTARTED) == 0)
11749 		panic("initiate_write_bmsafemap: Not started\n");
11750 	ump = VFSTOUFS(bmsafemap->sm_list.wk_mp);
11751 	chgs = 0;
11752 	bmsafemap->sm_state &= ~IOSTARTED;
11753 	foreground = (bp->b_xflags & BX_BKGRDMARKER) == 0;
11754 	/*
11755 	 * Release journal work that was waiting on the write.
11756 	 */
11757 	handle_jwork(&bmsafemap->sm_freewr);
11758 
11759 	/*
11760 	 * Restore unwritten inode allocation pending jaddref writes.
11761 	 */
11762 	if (!LIST_EMPTY(&bmsafemap->sm_jaddrefhd)) {
11763 		cgp = (struct cg *)bp->b_data;
11764 		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
11765 		inosused = cg_inosused(cgp);
11766 		LIST_FOREACH_SAFE(jaddref, &bmsafemap->sm_jaddrefhd,
11767 		    ja_bmdeps, jatmp) {
11768 			if ((jaddref->ja_state & UNDONE) == 0)
11769 				continue;
11770 			ino = jaddref->ja_ino % fs->fs_ipg;
11771 			if (isset(inosused, ino))
11772 				panic("handle_written_bmsafemap: "
11773 				    "re-allocated inode");
11774 			/* Do the roll-forward only if it's a real copy. */
11775 			if (foreground) {
11776 				if ((jaddref->ja_mode & IFMT) == IFDIR)
11777 					cgp->cg_cs.cs_ndir++;
11778 				cgp->cg_cs.cs_nifree--;
11779 				setbit(inosused, ino);
11780 				chgs = 1;
11781 			}
11782 			jaddref->ja_state &= ~UNDONE;
11783 			jaddref->ja_state |= ATTACHED;
11784 			free_jaddref(jaddref);
11785 		}
11786 	}
11787 	/*
11788 	 * Restore any block allocations which are pending journal writes.
11789 	 */
11790 	if (LIST_FIRST(&bmsafemap->sm_jnewblkhd) != NULL) {
11791 		cgp = (struct cg *)bp->b_data;
11792 		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
11793 		blksfree = cg_blksfree(cgp);
11794 		LIST_FOREACH_SAFE(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps,
11795 		    jntmp) {
11796 			if ((jnewblk->jn_state & UNDONE) == 0)
11797 				continue;
11798 			/* Do the roll-forward only if it's a real copy. */
11799 			if (foreground &&
11800 			    jnewblk_rollforward(jnewblk, fs, cgp, blksfree))
11801 				chgs = 1;
11802 			jnewblk->jn_state &= ~(UNDONE | NEWBLOCK);
11803 			jnewblk->jn_state |= ATTACHED;
11804 			free_jnewblk(jnewblk);
11805 		}
11806 	}
11807 	while ((newblk = LIST_FIRST(&bmsafemap->sm_newblkwr))) {
11808 		newblk->nb_state |= DEPCOMPLETE;
11809 		newblk->nb_state &= ~ONDEPLIST;
11810 		newblk->nb_bmsafemap = NULL;
11811 		LIST_REMOVE(newblk, nb_deps);
11812 		if (newblk->nb_list.wk_type == D_ALLOCDIRECT)
11813 			handle_allocdirect_partdone(
11814 			    WK_ALLOCDIRECT(&newblk->nb_list), NULL);
11815 		else if (newblk->nb_list.wk_type == D_ALLOCINDIR)
11816 			handle_allocindir_partdone(
11817 			    WK_ALLOCINDIR(&newblk->nb_list));
11818 		else if (newblk->nb_list.wk_type != D_NEWBLK)
11819 			panic("handle_written_bmsafemap: Unexpected type: %s",
11820 			    TYPENAME(newblk->nb_list.wk_type));
11821 	}
11822 	while ((inodedep = LIST_FIRST(&bmsafemap->sm_inodedepwr)) != NULL) {
11823 		inodedep->id_state |= DEPCOMPLETE;
11824 		inodedep->id_state &= ~ONDEPLIST;
11825 		LIST_REMOVE(inodedep, id_deps);
11826 		inodedep->id_bmsafemap = NULL;
11827 	}
11828 	LIST_REMOVE(bmsafemap, sm_next);
11829 	if (chgs == 0 && LIST_EMPTY(&bmsafemap->sm_jaddrefhd) &&
11830 	    LIST_EMPTY(&bmsafemap->sm_jnewblkhd) &&
11831 	    LIST_EMPTY(&bmsafemap->sm_newblkhd) &&
11832 	    LIST_EMPTY(&bmsafemap->sm_inodedephd) &&
11833 	    LIST_EMPTY(&bmsafemap->sm_freehd)) {
11834 		LIST_REMOVE(bmsafemap, sm_hash);
11835 		WORKITEM_FREE(bmsafemap, D_BMSAFEMAP);
11836 		return (0);
11837 	}
11838 	LIST_INSERT_HEAD(&ump->softdep_dirtycg, bmsafemap, sm_next);
11839 	if (foreground)
11840 		bdirty(bp);
11841 	return (1);
11842 }
11843 
11844 /*
11845  * Try to free a mkdir dependency.
11846  */
11847 static void
11848 complete_mkdir(mkdir)
11849 	struct mkdir *mkdir;
11850 {
11851 	struct diradd *dap;
11852 
11853 	if ((mkdir->md_state & ALLCOMPLETE) != ALLCOMPLETE)
11854 		return;
11855 	LIST_REMOVE(mkdir, md_mkdirs);
11856 	dap = mkdir->md_diradd;
11857 	dap->da_state &= ~(mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY));
11858 	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0) {
11859 		dap->da_state |= DEPCOMPLETE;
11860 		complete_diradd(dap);
11861 	}
11862 	WORKITEM_FREE(mkdir, D_MKDIR);
11863 }
11864 
11865 /*
11866  * Handle the completion of a mkdir dependency.
11867  */
11868 static void
11869 handle_written_mkdir(mkdir, type)
11870 	struct mkdir *mkdir;
11871 	int type;
11872 {
11873 
11874 	if ((mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY)) != type)
11875 		panic("handle_written_mkdir: bad type");
11876 	mkdir->md_state |= COMPLETE;
11877 	complete_mkdir(mkdir);
11878 }
11879 
11880 static int
11881 free_pagedep(pagedep)
11882 	struct pagedep *pagedep;
11883 {
11884 	int i;
11885 
11886 	if (pagedep->pd_state & NEWBLOCK)
11887 		return (0);
11888 	if (!LIST_EMPTY(&pagedep->pd_dirremhd))
11889 		return (0);
11890 	for (i = 0; i < DAHASHSZ; i++)
11891 		if (!LIST_EMPTY(&pagedep->pd_diraddhd[i]))
11892 			return (0);
11893 	if (!LIST_EMPTY(&pagedep->pd_pendinghd))
11894 		return (0);
11895 	if (!LIST_EMPTY(&pagedep->pd_jmvrefhd))
11896 		return (0);
11897 	if (pagedep->pd_state & ONWORKLIST)
11898 		WORKLIST_REMOVE(&pagedep->pd_list);
11899 	LIST_REMOVE(pagedep, pd_hash);
11900 	WORKITEM_FREE(pagedep, D_PAGEDEP);
11901 
11902 	return (1);
11903 }
11904 
11905 /*
11906  * Called from within softdep_disk_write_complete above.
11907  * A write operation was just completed. Removed inodes can
11908  * now be freed and associated block pointers may be committed.
11909  * Note that this routine is always called from interrupt level
11910  * with further splbio interrupts blocked.
11911  */
11912 static int
11913 handle_written_filepage(pagedep, bp)
11914 	struct pagedep *pagedep;
11915 	struct buf *bp;		/* buffer containing the written page */
11916 {
11917 	struct dirrem *dirrem;
11918 	struct diradd *dap, *nextdap;
11919 	struct direct *ep;
11920 	int i, chgs;
11921 
11922 	if ((pagedep->pd_state & IOSTARTED) == 0)
11923 		panic("handle_written_filepage: not started");
11924 	pagedep->pd_state &= ~IOSTARTED;
11925 	/*
11926 	 * Process any directory removals that have been committed.
11927 	 */
11928 	while ((dirrem = LIST_FIRST(&pagedep->pd_dirremhd)) != NULL) {
11929 		LIST_REMOVE(dirrem, dm_next);
11930 		dirrem->dm_state |= COMPLETE;
11931 		dirrem->dm_dirinum = pagedep->pd_ino;
11932 		KASSERT(LIST_EMPTY(&dirrem->dm_jremrefhd),
11933 		    ("handle_written_filepage: Journal entries not written."));
11934 		add_to_worklist(&dirrem->dm_list, 0);
11935 	}
11936 	/*
11937 	 * Free any directory additions that have been committed.
11938 	 * If it is a newly allocated block, we have to wait until
11939 	 * the on-disk directory inode claims the new block.
11940 	 */
11941 	if ((pagedep->pd_state & NEWBLOCK) == 0)
11942 		while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL)
11943 			free_diradd(dap, NULL);
11944 	/*
11945 	 * Uncommitted directory entries must be restored.
11946 	 */
11947 	for (chgs = 0, i = 0; i < DAHASHSZ; i++) {
11948 		for (dap = LIST_FIRST(&pagedep->pd_diraddhd[i]); dap;
11949 		     dap = nextdap) {
11950 			nextdap = LIST_NEXT(dap, da_pdlist);
11951 			if (dap->da_state & ATTACHED)
11952 				panic("handle_written_filepage: attached");
11953 			ep = (struct direct *)
11954 			    ((char *)bp->b_data + dap->da_offset);
11955 			ep->d_ino = dap->da_newinum;
11956 			dap->da_state &= ~UNDONE;
11957 			dap->da_state |= ATTACHED;
11958 			chgs = 1;
11959 			/*
11960 			 * If the inode referenced by the directory has
11961 			 * been written out, then the dependency can be
11962 			 * moved to the pending list.
11963 			 */
11964 			if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
11965 				LIST_REMOVE(dap, da_pdlist);
11966 				LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap,
11967 				    da_pdlist);
11968 			}
11969 		}
11970 	}
11971 	/*
11972 	 * If there were any rollbacks in the directory, then it must be
11973 	 * marked dirty so that its will eventually get written back in
11974 	 * its correct form.
11975 	 */
11976 	if (chgs) {
11977 		if ((bp->b_flags & B_DELWRI) == 0)
11978 			stat_dir_entry++;
11979 		bdirty(bp);
11980 		return (1);
11981 	}
11982 	/*
11983 	 * If we are not waiting for a new directory block to be
11984 	 * claimed by its inode, then the pagedep will be freed.
11985 	 * Otherwise it will remain to track any new entries on
11986 	 * the page in case they are fsync'ed.
11987 	 */
11988 	free_pagedep(pagedep);
11989 	return (0);
11990 }
11991 
11992 /*
11993  * Writing back in-core inode structures.
11994  *
11995  * The filesystem only accesses an inode's contents when it occupies an
11996  * "in-core" inode structure.  These "in-core" structures are separate from
11997  * the page frames used to cache inode blocks.  Only the latter are
11998  * transferred to/from the disk.  So, when the updated contents of the
11999  * "in-core" inode structure are copied to the corresponding in-memory inode
12000  * block, the dependencies are also transferred.  The following procedure is
12001  * called when copying a dirty "in-core" inode to a cached inode block.
12002  */
12003 
12004 /*
12005  * Called when an inode is loaded from disk. If the effective link count
12006  * differed from the actual link count when it was last flushed, then we
12007  * need to ensure that the correct effective link count is put back.
12008  */
12009 void
12010 softdep_load_inodeblock(ip)
12011 	struct inode *ip;	/* the "in_core" copy of the inode */
12012 {
12013 	struct inodedep *inodedep;
12014 
12015 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ip->i_ump)) != 0,
12016 	    ("softdep_load_inodeblock called on non-softdep filesystem"));
12017 	/*
12018 	 * Check for alternate nlink count.
12019 	 */
12020 	ip->i_effnlink = ip->i_nlink;
12021 	ACQUIRE_LOCK(ip->i_ump);
12022 	if (inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, 0,
12023 	    &inodedep) == 0) {
12024 		FREE_LOCK(ip->i_ump);
12025 		return;
12026 	}
12027 	ip->i_effnlink -= inodedep->id_nlinkdelta;
12028 	FREE_LOCK(ip->i_ump);
12029 }
12030 
12031 /*
12032  * This routine is called just before the "in-core" inode
12033  * information is to be copied to the in-memory inode block.
12034  * Recall that an inode block contains several inodes. If
12035  * the force flag is set, then the dependencies will be
12036  * cleared so that the update can always be made. Note that
12037  * the buffer is locked when this routine is called, so we
12038  * will never be in the middle of writing the inode block
12039  * to disk.
12040  */
12041 void
12042 softdep_update_inodeblock(ip, bp, waitfor)
12043 	struct inode *ip;	/* the "in_core" copy of the inode */
12044 	struct buf *bp;		/* the buffer containing the inode block */
12045 	int waitfor;		/* nonzero => update must be allowed */
12046 {
12047 	struct inodedep *inodedep;
12048 	struct inoref *inoref;
12049 	struct ufsmount *ump;
12050 	struct worklist *wk;
12051 	struct mount *mp;
12052 	struct buf *ibp;
12053 	struct fs *fs;
12054 	int error;
12055 
12056 	ump = ip->i_ump;
12057 	mp = UFSTOVFS(ump);
12058 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
12059 	    ("softdep_update_inodeblock called on non-softdep filesystem"));
12060 	fs = ip->i_fs;
12061 	/*
12062 	 * Preserve the freelink that is on disk.  clear_unlinked_inodedep()
12063 	 * does not have access to the in-core ip so must write directly into
12064 	 * the inode block buffer when setting freelink.
12065 	 */
12066 	if (fs->fs_magic == FS_UFS1_MAGIC)
12067 		DIP_SET(ip, i_freelink, ((struct ufs1_dinode *)bp->b_data +
12068 		    ino_to_fsbo(fs, ip->i_number))->di_freelink);
12069 	else
12070 		DIP_SET(ip, i_freelink, ((struct ufs2_dinode *)bp->b_data +
12071 		    ino_to_fsbo(fs, ip->i_number))->di_freelink);
12072 	/*
12073 	 * If the effective link count is not equal to the actual link
12074 	 * count, then we must track the difference in an inodedep while
12075 	 * the inode is (potentially) tossed out of the cache. Otherwise,
12076 	 * if there is no existing inodedep, then there are no dependencies
12077 	 * to track.
12078 	 */
12079 	ACQUIRE_LOCK(ump);
12080 again:
12081 	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) {
12082 		FREE_LOCK(ump);
12083 		if (ip->i_effnlink != ip->i_nlink)
12084 			panic("softdep_update_inodeblock: bad link count");
12085 		return;
12086 	}
12087 	if (inodedep->id_nlinkdelta != ip->i_nlink - ip->i_effnlink)
12088 		panic("softdep_update_inodeblock: bad delta");
12089 	/*
12090 	 * If we're flushing all dependencies we must also move any waiting
12091 	 * for journal writes onto the bufwait list prior to I/O.
12092 	 */
12093 	if (waitfor) {
12094 		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
12095 			if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
12096 			    == DEPCOMPLETE) {
12097 				jwait(&inoref->if_list, MNT_WAIT);
12098 				goto again;
12099 			}
12100 		}
12101 	}
12102 	/*
12103 	 * Changes have been initiated. Anything depending on these
12104 	 * changes cannot occur until this inode has been written.
12105 	 */
12106 	inodedep->id_state &= ~COMPLETE;
12107 	if ((inodedep->id_state & ONWORKLIST) == 0)
12108 		WORKLIST_INSERT(&bp->b_dep, &inodedep->id_list);
12109 	/*
12110 	 * Any new dependencies associated with the incore inode must
12111 	 * now be moved to the list associated with the buffer holding
12112 	 * the in-memory copy of the inode. Once merged process any
12113 	 * allocdirects that are completed by the merger.
12114 	 */
12115 	merge_inode_lists(&inodedep->id_newinoupdt, &inodedep->id_inoupdt);
12116 	if (!TAILQ_EMPTY(&inodedep->id_inoupdt))
12117 		handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_inoupdt),
12118 		    NULL);
12119 	merge_inode_lists(&inodedep->id_newextupdt, &inodedep->id_extupdt);
12120 	if (!TAILQ_EMPTY(&inodedep->id_extupdt))
12121 		handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_extupdt),
12122 		    NULL);
12123 	/*
12124 	 * Now that the inode has been pushed into the buffer, the
12125 	 * operations dependent on the inode being written to disk
12126 	 * can be moved to the id_bufwait so that they will be
12127 	 * processed when the buffer I/O completes.
12128 	 */
12129 	while ((wk = LIST_FIRST(&inodedep->id_inowait)) != NULL) {
12130 		WORKLIST_REMOVE(wk);
12131 		WORKLIST_INSERT(&inodedep->id_bufwait, wk);
12132 	}
12133 	/*
12134 	 * Newly allocated inodes cannot be written until the bitmap
12135 	 * that allocates them have been written (indicated by
12136 	 * DEPCOMPLETE being set in id_state). If we are doing a
12137 	 * forced sync (e.g., an fsync on a file), we force the bitmap
12138 	 * to be written so that the update can be done.
12139 	 */
12140 	if (waitfor == 0) {
12141 		FREE_LOCK(ump);
12142 		return;
12143 	}
12144 retry:
12145 	if ((inodedep->id_state & (DEPCOMPLETE | GOINGAWAY)) != 0) {
12146 		FREE_LOCK(ump);
12147 		return;
12148 	}
12149 	ibp = inodedep->id_bmsafemap->sm_buf;
12150 	ibp = getdirtybuf(ibp, LOCK_PTR(ump), MNT_WAIT);
12151 	if (ibp == NULL) {
12152 		/*
12153 		 * If ibp came back as NULL, the dependency could have been
12154 		 * freed while we slept.  Look it up again, and check to see
12155 		 * that it has completed.
12156 		 */
12157 		if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0)
12158 			goto retry;
12159 		FREE_LOCK(ump);
12160 		return;
12161 	}
12162 	FREE_LOCK(ump);
12163 	if ((error = bwrite(ibp)) != 0)
12164 		softdep_error("softdep_update_inodeblock: bwrite", error);
12165 }
12166 
12167 /*
12168  * Merge the a new inode dependency list (such as id_newinoupdt) into an
12169  * old inode dependency list (such as id_inoupdt). This routine must be
12170  * called with splbio interrupts blocked.
12171  */
12172 static void
12173 merge_inode_lists(newlisthead, oldlisthead)
12174 	struct allocdirectlst *newlisthead;
12175 	struct allocdirectlst *oldlisthead;
12176 {
12177 	struct allocdirect *listadp, *newadp;
12178 
12179 	newadp = TAILQ_FIRST(newlisthead);
12180 	for (listadp = TAILQ_FIRST(oldlisthead); listadp && newadp;) {
12181 		if (listadp->ad_offset < newadp->ad_offset) {
12182 			listadp = TAILQ_NEXT(listadp, ad_next);
12183 			continue;
12184 		}
12185 		TAILQ_REMOVE(newlisthead, newadp, ad_next);
12186 		TAILQ_INSERT_BEFORE(listadp, newadp, ad_next);
12187 		if (listadp->ad_offset == newadp->ad_offset) {
12188 			allocdirect_merge(oldlisthead, newadp,
12189 			    listadp);
12190 			listadp = newadp;
12191 		}
12192 		newadp = TAILQ_FIRST(newlisthead);
12193 	}
12194 	while ((newadp = TAILQ_FIRST(newlisthead)) != NULL) {
12195 		TAILQ_REMOVE(newlisthead, newadp, ad_next);
12196 		TAILQ_INSERT_TAIL(oldlisthead, newadp, ad_next);
12197 	}
12198 }
12199 
12200 /*
12201  * If we are doing an fsync, then we must ensure that any directory
12202  * entries for the inode have been written after the inode gets to disk.
12203  */
12204 int
12205 softdep_fsync(vp)
12206 	struct vnode *vp;	/* the "in_core" copy of the inode */
12207 {
12208 	struct inodedep *inodedep;
12209 	struct pagedep *pagedep;
12210 	struct inoref *inoref;
12211 	struct ufsmount *ump;
12212 	struct worklist *wk;
12213 	struct diradd *dap;
12214 	struct mount *mp;
12215 	struct vnode *pvp;
12216 	struct inode *ip;
12217 	struct buf *bp;
12218 	struct fs *fs;
12219 	struct thread *td = curthread;
12220 	int error, flushparent, pagedep_new_block;
12221 	ino_t parentino;
12222 	ufs_lbn_t lbn;
12223 
12224 	ip = VTOI(vp);
12225 	fs = ip->i_fs;
12226 	ump = ip->i_ump;
12227 	mp = vp->v_mount;
12228 	if (MOUNTEDSOFTDEP(mp) == 0)
12229 		return (0);
12230 	ACQUIRE_LOCK(ump);
12231 restart:
12232 	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) {
12233 		FREE_LOCK(ump);
12234 		return (0);
12235 	}
12236 	TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
12237 		if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
12238 		    == DEPCOMPLETE) {
12239 			jwait(&inoref->if_list, MNT_WAIT);
12240 			goto restart;
12241 		}
12242 	}
12243 	if (!LIST_EMPTY(&inodedep->id_inowait) ||
12244 	    !TAILQ_EMPTY(&inodedep->id_extupdt) ||
12245 	    !TAILQ_EMPTY(&inodedep->id_newextupdt) ||
12246 	    !TAILQ_EMPTY(&inodedep->id_inoupdt) ||
12247 	    !TAILQ_EMPTY(&inodedep->id_newinoupdt))
12248 		panic("softdep_fsync: pending ops %p", inodedep);
12249 	for (error = 0, flushparent = 0; ; ) {
12250 		if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) == NULL)
12251 			break;
12252 		if (wk->wk_type != D_DIRADD)
12253 			panic("softdep_fsync: Unexpected type %s",
12254 			    TYPENAME(wk->wk_type));
12255 		dap = WK_DIRADD(wk);
12256 		/*
12257 		 * Flush our parent if this directory entry has a MKDIR_PARENT
12258 		 * dependency or is contained in a newly allocated block.
12259 		 */
12260 		if (dap->da_state & DIRCHG)
12261 			pagedep = dap->da_previous->dm_pagedep;
12262 		else
12263 			pagedep = dap->da_pagedep;
12264 		parentino = pagedep->pd_ino;
12265 		lbn = pagedep->pd_lbn;
12266 		if ((dap->da_state & (MKDIR_BODY | COMPLETE)) != COMPLETE)
12267 			panic("softdep_fsync: dirty");
12268 		if ((dap->da_state & MKDIR_PARENT) ||
12269 		    (pagedep->pd_state & NEWBLOCK))
12270 			flushparent = 1;
12271 		else
12272 			flushparent = 0;
12273 		/*
12274 		 * If we are being fsync'ed as part of vgone'ing this vnode,
12275 		 * then we will not be able to release and recover the
12276 		 * vnode below, so we just have to give up on writing its
12277 		 * directory entry out. It will eventually be written, just
12278 		 * not now, but then the user was not asking to have it
12279 		 * written, so we are not breaking any promises.
12280 		 */
12281 		if (vp->v_iflag & VI_DOOMED)
12282 			break;
12283 		/*
12284 		 * We prevent deadlock by always fetching inodes from the
12285 		 * root, moving down the directory tree. Thus, when fetching
12286 		 * our parent directory, we first try to get the lock. If
12287 		 * that fails, we must unlock ourselves before requesting
12288 		 * the lock on our parent. See the comment in ufs_lookup
12289 		 * for details on possible races.
12290 		 */
12291 		FREE_LOCK(ump);
12292 		if (ffs_vgetf(mp, parentino, LK_NOWAIT | LK_EXCLUSIVE, &pvp,
12293 		    FFSV_FORCEINSMQ)) {
12294 			error = vfs_busy(mp, MBF_NOWAIT);
12295 			if (error != 0) {
12296 				vfs_ref(mp);
12297 				VOP_UNLOCK(vp, 0);
12298 				error = vfs_busy(mp, 0);
12299 				vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
12300 				vfs_rel(mp);
12301 				if (error != 0)
12302 					return (ENOENT);
12303 				if (vp->v_iflag & VI_DOOMED) {
12304 					vfs_unbusy(mp);
12305 					return (ENOENT);
12306 				}
12307 			}
12308 			VOP_UNLOCK(vp, 0);
12309 			error = ffs_vgetf(mp, parentino, LK_EXCLUSIVE,
12310 			    &pvp, FFSV_FORCEINSMQ);
12311 			vfs_unbusy(mp);
12312 			vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
12313 			if (vp->v_iflag & VI_DOOMED) {
12314 				if (error == 0)
12315 					vput(pvp);
12316 				error = ENOENT;
12317 			}
12318 			if (error != 0)
12319 				return (error);
12320 		}
12321 		/*
12322 		 * All MKDIR_PARENT dependencies and all the NEWBLOCK pagedeps
12323 		 * that are contained in direct blocks will be resolved by
12324 		 * doing a ffs_update. Pagedeps contained in indirect blocks
12325 		 * may require a complete sync'ing of the directory. So, we
12326 		 * try the cheap and fast ffs_update first, and if that fails,
12327 		 * then we do the slower ffs_syncvnode of the directory.
12328 		 */
12329 		if (flushparent) {
12330 			int locked;
12331 
12332 			if ((error = ffs_update(pvp, 1)) != 0) {
12333 				vput(pvp);
12334 				return (error);
12335 			}
12336 			ACQUIRE_LOCK(ump);
12337 			locked = 1;
12338 			if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0) {
12339 				if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) != NULL) {
12340 					if (wk->wk_type != D_DIRADD)
12341 						panic("softdep_fsync: Unexpected type %s",
12342 						      TYPENAME(wk->wk_type));
12343 					dap = WK_DIRADD(wk);
12344 					if (dap->da_state & DIRCHG)
12345 						pagedep = dap->da_previous->dm_pagedep;
12346 					else
12347 						pagedep = dap->da_pagedep;
12348 					pagedep_new_block = pagedep->pd_state & NEWBLOCK;
12349 					FREE_LOCK(ump);
12350 					locked = 0;
12351 					if (pagedep_new_block && (error =
12352 					    ffs_syncvnode(pvp, MNT_WAIT, 0))) {
12353 						vput(pvp);
12354 						return (error);
12355 					}
12356 				}
12357 			}
12358 			if (locked)
12359 				FREE_LOCK(ump);
12360 		}
12361 		/*
12362 		 * Flush directory page containing the inode's name.
12363 		 */
12364 		error = bread(pvp, lbn, blksize(fs, VTOI(pvp), lbn), td->td_ucred,
12365 		    &bp);
12366 		if (error == 0)
12367 			error = bwrite(bp);
12368 		else
12369 			brelse(bp);
12370 		vput(pvp);
12371 		if (error != 0)
12372 			return (error);
12373 		ACQUIRE_LOCK(ump);
12374 		if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0)
12375 			break;
12376 	}
12377 	FREE_LOCK(ump);
12378 	return (0);
12379 }
12380 
12381 /*
12382  * Flush all the dirty bitmaps associated with the block device
12383  * before flushing the rest of the dirty blocks so as to reduce
12384  * the number of dependencies that will have to be rolled back.
12385  *
12386  * XXX Unused?
12387  */
12388 void
12389 softdep_fsync_mountdev(vp)
12390 	struct vnode *vp;
12391 {
12392 	struct buf *bp, *nbp;
12393 	struct worklist *wk;
12394 	struct bufobj *bo;
12395 
12396 	if (!vn_isdisk(vp, NULL))
12397 		panic("softdep_fsync_mountdev: vnode not a disk");
12398 	bo = &vp->v_bufobj;
12399 restart:
12400 	BO_LOCK(bo);
12401 	TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
12402 		/*
12403 		 * If it is already scheduled, skip to the next buffer.
12404 		 */
12405 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL))
12406 			continue;
12407 
12408 		if ((bp->b_flags & B_DELWRI) == 0)
12409 			panic("softdep_fsync_mountdev: not dirty");
12410 		/*
12411 		 * We are only interested in bitmaps with outstanding
12412 		 * dependencies.
12413 		 */
12414 		if ((wk = LIST_FIRST(&bp->b_dep)) == NULL ||
12415 		    wk->wk_type != D_BMSAFEMAP ||
12416 		    (bp->b_vflags & BV_BKGRDINPROG)) {
12417 			BUF_UNLOCK(bp);
12418 			continue;
12419 		}
12420 		BO_UNLOCK(bo);
12421 		bremfree(bp);
12422 		(void) bawrite(bp);
12423 		goto restart;
12424 	}
12425 	drain_output(vp);
12426 	BO_UNLOCK(bo);
12427 }
12428 
12429 /*
12430  * Sync all cylinder groups that were dirty at the time this function is
12431  * called.  Newly dirtied cgs will be inserted before the sentinel.  This
12432  * is used to flush freedep activity that may be holding up writes to a
12433  * indirect block.
12434  */
12435 static int
12436 sync_cgs(mp, waitfor)
12437 	struct mount *mp;
12438 	int waitfor;
12439 {
12440 	struct bmsafemap *bmsafemap;
12441 	struct bmsafemap *sentinel;
12442 	struct ufsmount *ump;
12443 	struct buf *bp;
12444 	int error;
12445 
12446 	sentinel = malloc(sizeof(*sentinel), M_BMSAFEMAP, M_ZERO | M_WAITOK);
12447 	sentinel->sm_cg = -1;
12448 	ump = VFSTOUFS(mp);
12449 	error = 0;
12450 	ACQUIRE_LOCK(ump);
12451 	LIST_INSERT_HEAD(&ump->softdep_dirtycg, sentinel, sm_next);
12452 	for (bmsafemap = LIST_NEXT(sentinel, sm_next); bmsafemap != NULL;
12453 	    bmsafemap = LIST_NEXT(sentinel, sm_next)) {
12454 		/* Skip sentinels and cgs with no work to release. */
12455 		if (bmsafemap->sm_cg == -1 ||
12456 		    (LIST_EMPTY(&bmsafemap->sm_freehd) &&
12457 		    LIST_EMPTY(&bmsafemap->sm_freewr))) {
12458 			LIST_REMOVE(sentinel, sm_next);
12459 			LIST_INSERT_AFTER(bmsafemap, sentinel, sm_next);
12460 			continue;
12461 		}
12462 		/*
12463 		 * If we don't get the lock and we're waiting try again, if
12464 		 * not move on to the next buf and try to sync it.
12465 		 */
12466 		bp = getdirtybuf(bmsafemap->sm_buf, LOCK_PTR(ump), waitfor);
12467 		if (bp == NULL && waitfor == MNT_WAIT)
12468 			continue;
12469 		LIST_REMOVE(sentinel, sm_next);
12470 		LIST_INSERT_AFTER(bmsafemap, sentinel, sm_next);
12471 		if (bp == NULL)
12472 			continue;
12473 		FREE_LOCK(ump);
12474 		if (waitfor == MNT_NOWAIT)
12475 			bawrite(bp);
12476 		else
12477 			error = bwrite(bp);
12478 		ACQUIRE_LOCK(ump);
12479 		if (error)
12480 			break;
12481 	}
12482 	LIST_REMOVE(sentinel, sm_next);
12483 	FREE_LOCK(ump);
12484 	free(sentinel, M_BMSAFEMAP);
12485 	return (error);
12486 }
12487 
12488 /*
12489  * This routine is called when we are trying to synchronously flush a
12490  * file. This routine must eliminate any filesystem metadata dependencies
12491  * so that the syncing routine can succeed.
12492  */
12493 int
12494 softdep_sync_metadata(struct vnode *vp)
12495 {
12496 	struct inode *ip;
12497 	int error;
12498 
12499 	ip = VTOI(vp);
12500 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ip->i_ump)) != 0,
12501 	    ("softdep_sync_metadata called on non-softdep filesystem"));
12502 	/*
12503 	 * Ensure that any direct block dependencies have been cleared,
12504 	 * truncations are started, and inode references are journaled.
12505 	 */
12506 	ACQUIRE_LOCK(ip->i_ump);
12507 	/*
12508 	 * Write all journal records to prevent rollbacks on devvp.
12509 	 */
12510 	if (vp->v_type == VCHR)
12511 		softdep_flushjournal(vp->v_mount);
12512 	error = flush_inodedep_deps(vp, vp->v_mount, ip->i_number);
12513 	/*
12514 	 * Ensure that all truncates are written so we won't find deps on
12515 	 * indirect blocks.
12516 	 */
12517 	process_truncates(vp);
12518 	FREE_LOCK(ip->i_ump);
12519 
12520 	return (error);
12521 }
12522 
12523 /*
12524  * This routine is called when we are attempting to sync a buf with
12525  * dependencies.  If waitfor is MNT_NOWAIT it attempts to schedule any
12526  * other IO it can but returns EBUSY if the buffer is not yet able to
12527  * be written.  Dependencies which will not cause rollbacks will always
12528  * return 0.
12529  */
12530 int
12531 softdep_sync_buf(struct vnode *vp, struct buf *bp, int waitfor)
12532 {
12533 	struct indirdep *indirdep;
12534 	struct pagedep *pagedep;
12535 	struct allocindir *aip;
12536 	struct newblk *newblk;
12537 	struct ufsmount *ump;
12538 	struct buf *nbp;
12539 	struct worklist *wk;
12540 	int i, error;
12541 
12542 	KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0,
12543 	    ("softdep_sync_buf called on non-softdep filesystem"));
12544 	/*
12545 	 * For VCHR we just don't want to force flush any dependencies that
12546 	 * will cause rollbacks.
12547 	 */
12548 	if (vp->v_type == VCHR) {
12549 		if (waitfor == MNT_NOWAIT && softdep_count_dependencies(bp, 0))
12550 			return (EBUSY);
12551 		return (0);
12552 	}
12553 	ump = VTOI(vp)->i_ump;
12554 	ACQUIRE_LOCK(ump);
12555 	/*
12556 	 * As we hold the buffer locked, none of its dependencies
12557 	 * will disappear.
12558 	 */
12559 	error = 0;
12560 top:
12561 	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
12562 		switch (wk->wk_type) {
12563 
12564 		case D_ALLOCDIRECT:
12565 		case D_ALLOCINDIR:
12566 			newblk = WK_NEWBLK(wk);
12567 			if (newblk->nb_jnewblk != NULL) {
12568 				if (waitfor == MNT_NOWAIT) {
12569 					error = EBUSY;
12570 					goto out_unlock;
12571 				}
12572 				jwait(&newblk->nb_jnewblk->jn_list, waitfor);
12573 				goto top;
12574 			}
12575 			if (newblk->nb_state & DEPCOMPLETE ||
12576 			    waitfor == MNT_NOWAIT)
12577 				continue;
12578 			nbp = newblk->nb_bmsafemap->sm_buf;
12579 			nbp = getdirtybuf(nbp, LOCK_PTR(ump), waitfor);
12580 			if (nbp == NULL)
12581 				goto top;
12582 			FREE_LOCK(ump);
12583 			if ((error = bwrite(nbp)) != 0)
12584 				goto out;
12585 			ACQUIRE_LOCK(ump);
12586 			continue;
12587 
12588 		case D_INDIRDEP:
12589 			indirdep = WK_INDIRDEP(wk);
12590 			if (waitfor == MNT_NOWAIT) {
12591 				if (!TAILQ_EMPTY(&indirdep->ir_trunc) ||
12592 				    !LIST_EMPTY(&indirdep->ir_deplisthd)) {
12593 					error = EBUSY;
12594 					goto out_unlock;
12595 				}
12596 			}
12597 			if (!TAILQ_EMPTY(&indirdep->ir_trunc))
12598 				panic("softdep_sync_buf: truncation pending.");
12599 		restart:
12600 			LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) {
12601 				newblk = (struct newblk *)aip;
12602 				if (newblk->nb_jnewblk != NULL) {
12603 					jwait(&newblk->nb_jnewblk->jn_list,
12604 					    waitfor);
12605 					goto restart;
12606 				}
12607 				if (newblk->nb_state & DEPCOMPLETE)
12608 					continue;
12609 				nbp = newblk->nb_bmsafemap->sm_buf;
12610 				nbp = getdirtybuf(nbp, LOCK_PTR(ump), waitfor);
12611 				if (nbp == NULL)
12612 					goto restart;
12613 				FREE_LOCK(ump);
12614 				if ((error = bwrite(nbp)) != 0)
12615 					goto out;
12616 				ACQUIRE_LOCK(ump);
12617 				goto restart;
12618 			}
12619 			continue;
12620 
12621 		case D_PAGEDEP:
12622 			/*
12623 			 * Only flush directory entries in synchronous passes.
12624 			 */
12625 			if (waitfor != MNT_WAIT) {
12626 				error = EBUSY;
12627 				goto out_unlock;
12628 			}
12629 			/*
12630 			 * While syncing snapshots, we must allow recursive
12631 			 * lookups.
12632 			 */
12633 			BUF_AREC(bp);
12634 			/*
12635 			 * We are trying to sync a directory that may
12636 			 * have dependencies on both its own metadata
12637 			 * and/or dependencies on the inodes of any
12638 			 * recently allocated files. We walk its diradd
12639 			 * lists pushing out the associated inode.
12640 			 */
12641 			pagedep = WK_PAGEDEP(wk);
12642 			for (i = 0; i < DAHASHSZ; i++) {
12643 				if (LIST_FIRST(&pagedep->pd_diraddhd[i]) == 0)
12644 					continue;
12645 				if ((error = flush_pagedep_deps(vp, wk->wk_mp,
12646 				    &pagedep->pd_diraddhd[i]))) {
12647 					BUF_NOREC(bp);
12648 					goto out_unlock;
12649 				}
12650 			}
12651 			BUF_NOREC(bp);
12652 			continue;
12653 
12654 		case D_FREEWORK:
12655 		case D_FREEDEP:
12656 		case D_JSEGDEP:
12657 		case D_JNEWBLK:
12658 			continue;
12659 
12660 		default:
12661 			panic("softdep_sync_buf: Unknown type %s",
12662 			    TYPENAME(wk->wk_type));
12663 			/* NOTREACHED */
12664 		}
12665 	}
12666 out_unlock:
12667 	FREE_LOCK(ump);
12668 out:
12669 	return (error);
12670 }
12671 
12672 /*
12673  * Flush the dependencies associated with an inodedep.
12674  * Called with splbio blocked.
12675  */
12676 static int
12677 flush_inodedep_deps(vp, mp, ino)
12678 	struct vnode *vp;
12679 	struct mount *mp;
12680 	ino_t ino;
12681 {
12682 	struct inodedep *inodedep;
12683 	struct inoref *inoref;
12684 	struct ufsmount *ump;
12685 	int error, waitfor;
12686 
12687 	/*
12688 	 * This work is done in two passes. The first pass grabs most
12689 	 * of the buffers and begins asynchronously writing them. The
12690 	 * only way to wait for these asynchronous writes is to sleep
12691 	 * on the filesystem vnode which may stay busy for a long time
12692 	 * if the filesystem is active. So, instead, we make a second
12693 	 * pass over the dependencies blocking on each write. In the
12694 	 * usual case we will be blocking against a write that we
12695 	 * initiated, so when it is done the dependency will have been
12696 	 * resolved. Thus the second pass is expected to end quickly.
12697 	 * We give a brief window at the top of the loop to allow
12698 	 * any pending I/O to complete.
12699 	 */
12700 	ump = VFSTOUFS(mp);
12701 	LOCK_OWNED(ump);
12702 	for (error = 0, waitfor = MNT_NOWAIT; ; ) {
12703 		if (error)
12704 			return (error);
12705 		FREE_LOCK(ump);
12706 		ACQUIRE_LOCK(ump);
12707 restart:
12708 		if (inodedep_lookup(mp, ino, 0, &inodedep) == 0)
12709 			return (0);
12710 		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
12711 			if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
12712 			    == DEPCOMPLETE) {
12713 				jwait(&inoref->if_list, MNT_WAIT);
12714 				goto restart;
12715 			}
12716 		}
12717 		if (flush_deplist(&inodedep->id_inoupdt, waitfor, &error) ||
12718 		    flush_deplist(&inodedep->id_newinoupdt, waitfor, &error) ||
12719 		    flush_deplist(&inodedep->id_extupdt, waitfor, &error) ||
12720 		    flush_deplist(&inodedep->id_newextupdt, waitfor, &error))
12721 			continue;
12722 		/*
12723 		 * If pass2, we are done, otherwise do pass 2.
12724 		 */
12725 		if (waitfor == MNT_WAIT)
12726 			break;
12727 		waitfor = MNT_WAIT;
12728 	}
12729 	/*
12730 	 * Try freeing inodedep in case all dependencies have been removed.
12731 	 */
12732 	if (inodedep_lookup(mp, ino, 0, &inodedep) != 0)
12733 		(void) free_inodedep(inodedep);
12734 	return (0);
12735 }
12736 
12737 /*
12738  * Flush an inode dependency list.
12739  * Called with splbio blocked.
12740  */
12741 static int
12742 flush_deplist(listhead, waitfor, errorp)
12743 	struct allocdirectlst *listhead;
12744 	int waitfor;
12745 	int *errorp;
12746 {
12747 	struct allocdirect *adp;
12748 	struct newblk *newblk;
12749 	struct ufsmount *ump;
12750 	struct buf *bp;
12751 
12752 	if ((adp = TAILQ_FIRST(listhead)) == NULL)
12753 		return (0);
12754 	ump = VFSTOUFS(adp->ad_list.wk_mp);
12755 	LOCK_OWNED(ump);
12756 	TAILQ_FOREACH(adp, listhead, ad_next) {
12757 		newblk = (struct newblk *)adp;
12758 		if (newblk->nb_jnewblk != NULL) {
12759 			jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT);
12760 			return (1);
12761 		}
12762 		if (newblk->nb_state & DEPCOMPLETE)
12763 			continue;
12764 		bp = newblk->nb_bmsafemap->sm_buf;
12765 		bp = getdirtybuf(bp, LOCK_PTR(ump), waitfor);
12766 		if (bp == NULL) {
12767 			if (waitfor == MNT_NOWAIT)
12768 				continue;
12769 			return (1);
12770 		}
12771 		FREE_LOCK(ump);
12772 		if (waitfor == MNT_NOWAIT)
12773 			bawrite(bp);
12774 		else
12775 			*errorp = bwrite(bp);
12776 		ACQUIRE_LOCK(ump);
12777 		return (1);
12778 	}
12779 	return (0);
12780 }
12781 
12782 /*
12783  * Flush dependencies associated with an allocdirect block.
12784  */
12785 static int
12786 flush_newblk_dep(vp, mp, lbn)
12787 	struct vnode *vp;
12788 	struct mount *mp;
12789 	ufs_lbn_t lbn;
12790 {
12791 	struct newblk *newblk;
12792 	struct ufsmount *ump;
12793 	struct bufobj *bo;
12794 	struct inode *ip;
12795 	struct buf *bp;
12796 	ufs2_daddr_t blkno;
12797 	int error;
12798 
12799 	error = 0;
12800 	bo = &vp->v_bufobj;
12801 	ip = VTOI(vp);
12802 	blkno = DIP(ip, i_db[lbn]);
12803 	if (blkno == 0)
12804 		panic("flush_newblk_dep: Missing block");
12805 	ump = VFSTOUFS(mp);
12806 	ACQUIRE_LOCK(ump);
12807 	/*
12808 	 * Loop until all dependencies related to this block are satisfied.
12809 	 * We must be careful to restart after each sleep in case a write
12810 	 * completes some part of this process for us.
12811 	 */
12812 	for (;;) {
12813 		if (newblk_lookup(mp, blkno, 0, &newblk) == 0) {
12814 			FREE_LOCK(ump);
12815 			break;
12816 		}
12817 		if (newblk->nb_list.wk_type != D_ALLOCDIRECT)
12818 			panic("flush_newblk_deps: Bad newblk %p", newblk);
12819 		/*
12820 		 * Flush the journal.
12821 		 */
12822 		if (newblk->nb_jnewblk != NULL) {
12823 			jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT);
12824 			continue;
12825 		}
12826 		/*
12827 		 * Write the bitmap dependency.
12828 		 */
12829 		if ((newblk->nb_state & DEPCOMPLETE) == 0) {
12830 			bp = newblk->nb_bmsafemap->sm_buf;
12831 			bp = getdirtybuf(bp, LOCK_PTR(ump), MNT_WAIT);
12832 			if (bp == NULL)
12833 				continue;
12834 			FREE_LOCK(ump);
12835 			error = bwrite(bp);
12836 			if (error)
12837 				break;
12838 			ACQUIRE_LOCK(ump);
12839 			continue;
12840 		}
12841 		/*
12842 		 * Write the buffer.
12843 		 */
12844 		FREE_LOCK(ump);
12845 		BO_LOCK(bo);
12846 		bp = gbincore(bo, lbn);
12847 		if (bp != NULL) {
12848 			error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL |
12849 			    LK_INTERLOCK, BO_LOCKPTR(bo));
12850 			if (error == ENOLCK) {
12851 				ACQUIRE_LOCK(ump);
12852 				continue; /* Slept, retry */
12853 			}
12854 			if (error != 0)
12855 				break;	/* Failed */
12856 			if (bp->b_flags & B_DELWRI) {
12857 				bremfree(bp);
12858 				error = bwrite(bp);
12859 				if (error)
12860 					break;
12861 			} else
12862 				BUF_UNLOCK(bp);
12863 		} else
12864 			BO_UNLOCK(bo);
12865 		/*
12866 		 * We have to wait for the direct pointers to
12867 		 * point at the newdirblk before the dependency
12868 		 * will go away.
12869 		 */
12870 		error = ffs_update(vp, 1);
12871 		if (error)
12872 			break;
12873 		ACQUIRE_LOCK(ump);
12874 	}
12875 	return (error);
12876 }
12877 
12878 /*
12879  * Eliminate a pagedep dependency by flushing out all its diradd dependencies.
12880  * Called with splbio blocked.
12881  */
12882 static int
12883 flush_pagedep_deps(pvp, mp, diraddhdp)
12884 	struct vnode *pvp;
12885 	struct mount *mp;
12886 	struct diraddhd *diraddhdp;
12887 {
12888 	struct inodedep *inodedep;
12889 	struct inoref *inoref;
12890 	struct ufsmount *ump;
12891 	struct diradd *dap;
12892 	struct vnode *vp;
12893 	int error = 0;
12894 	struct buf *bp;
12895 	ino_t inum;
12896 	struct diraddhd unfinished;
12897 
12898 	LIST_INIT(&unfinished);
12899 	ump = VFSTOUFS(mp);
12900 	LOCK_OWNED(ump);
12901 restart:
12902 	while ((dap = LIST_FIRST(diraddhdp)) != NULL) {
12903 		/*
12904 		 * Flush ourselves if this directory entry
12905 		 * has a MKDIR_PARENT dependency.
12906 		 */
12907 		if (dap->da_state & MKDIR_PARENT) {
12908 			FREE_LOCK(ump);
12909 			if ((error = ffs_update(pvp, 1)) != 0)
12910 				break;
12911 			ACQUIRE_LOCK(ump);
12912 			/*
12913 			 * If that cleared dependencies, go on to next.
12914 			 */
12915 			if (dap != LIST_FIRST(diraddhdp))
12916 				continue;
12917 			/*
12918 			 * All MKDIR_PARENT dependencies and all the
12919 			 * NEWBLOCK pagedeps that are contained in direct
12920 			 * blocks were resolved by doing above ffs_update.
12921 			 * Pagedeps contained in indirect blocks may
12922 			 * require a complete sync'ing of the directory.
12923 			 * We are in the midst of doing a complete sync,
12924 			 * so if they are not resolved in this pass we
12925 			 * defer them for now as they will be sync'ed by
12926 			 * our caller shortly.
12927 			 */
12928 			LIST_REMOVE(dap, da_pdlist);
12929 			LIST_INSERT_HEAD(&unfinished, dap, da_pdlist);
12930 			continue;
12931 		}
12932 		/*
12933 		 * A newly allocated directory must have its "." and
12934 		 * ".." entries written out before its name can be
12935 		 * committed in its parent.
12936 		 */
12937 		inum = dap->da_newinum;
12938 		if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0)
12939 			panic("flush_pagedep_deps: lost inode1");
12940 		/*
12941 		 * Wait for any pending journal adds to complete so we don't
12942 		 * cause rollbacks while syncing.
12943 		 */
12944 		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
12945 			if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
12946 			    == DEPCOMPLETE) {
12947 				jwait(&inoref->if_list, MNT_WAIT);
12948 				goto restart;
12949 			}
12950 		}
12951 		if (dap->da_state & MKDIR_BODY) {
12952 			FREE_LOCK(ump);
12953 			if ((error = ffs_vgetf(mp, inum, LK_EXCLUSIVE, &vp,
12954 			    FFSV_FORCEINSMQ)))
12955 				break;
12956 			error = flush_newblk_dep(vp, mp, 0);
12957 			/*
12958 			 * If we still have the dependency we might need to
12959 			 * update the vnode to sync the new link count to
12960 			 * disk.
12961 			 */
12962 			if (error == 0 && dap == LIST_FIRST(diraddhdp))
12963 				error = ffs_update(vp, 1);
12964 			vput(vp);
12965 			if (error != 0)
12966 				break;
12967 			ACQUIRE_LOCK(ump);
12968 			/*
12969 			 * If that cleared dependencies, go on to next.
12970 			 */
12971 			if (dap != LIST_FIRST(diraddhdp))
12972 				continue;
12973 			if (dap->da_state & MKDIR_BODY) {
12974 				inodedep_lookup(UFSTOVFS(ump), inum, 0,
12975 				    &inodedep);
12976 				panic("flush_pagedep_deps: MKDIR_BODY "
12977 				    "inodedep %p dap %p vp %p",
12978 				    inodedep, dap, vp);
12979 			}
12980 		}
12981 		/*
12982 		 * Flush the inode on which the directory entry depends.
12983 		 * Having accounted for MKDIR_PARENT and MKDIR_BODY above,
12984 		 * the only remaining dependency is that the updated inode
12985 		 * count must get pushed to disk. The inode has already
12986 		 * been pushed into its inode buffer (via VOP_UPDATE) at
12987 		 * the time of the reference count change. So we need only
12988 		 * locate that buffer, ensure that there will be no rollback
12989 		 * caused by a bitmap dependency, then write the inode buffer.
12990 		 */
12991 retry:
12992 		if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0)
12993 			panic("flush_pagedep_deps: lost inode");
12994 		/*
12995 		 * If the inode still has bitmap dependencies,
12996 		 * push them to disk.
12997 		 */
12998 		if ((inodedep->id_state & (DEPCOMPLETE | GOINGAWAY)) == 0) {
12999 			bp = inodedep->id_bmsafemap->sm_buf;
13000 			bp = getdirtybuf(bp, LOCK_PTR(ump), MNT_WAIT);
13001 			if (bp == NULL)
13002 				goto retry;
13003 			FREE_LOCK(ump);
13004 			if ((error = bwrite(bp)) != 0)
13005 				break;
13006 			ACQUIRE_LOCK(ump);
13007 			if (dap != LIST_FIRST(diraddhdp))
13008 				continue;
13009 		}
13010 		/*
13011 		 * If the inode is still sitting in a buffer waiting
13012 		 * to be written or waiting for the link count to be
13013 		 * adjusted update it here to flush it to disk.
13014 		 */
13015 		if (dap == LIST_FIRST(diraddhdp)) {
13016 			FREE_LOCK(ump);
13017 			if ((error = ffs_vgetf(mp, inum, LK_EXCLUSIVE, &vp,
13018 			    FFSV_FORCEINSMQ)))
13019 				break;
13020 			error = ffs_update(vp, 1);
13021 			vput(vp);
13022 			if (error)
13023 				break;
13024 			ACQUIRE_LOCK(ump);
13025 		}
13026 		/*
13027 		 * If we have failed to get rid of all the dependencies
13028 		 * then something is seriously wrong.
13029 		 */
13030 		if (dap == LIST_FIRST(diraddhdp)) {
13031 			inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep);
13032 			panic("flush_pagedep_deps: failed to flush "
13033 			    "inodedep %p ino %ju dap %p",
13034 			    inodedep, (uintmax_t)inum, dap);
13035 		}
13036 	}
13037 	if (error)
13038 		ACQUIRE_LOCK(ump);
13039 	while ((dap = LIST_FIRST(&unfinished)) != NULL) {
13040 		LIST_REMOVE(dap, da_pdlist);
13041 		LIST_INSERT_HEAD(diraddhdp, dap, da_pdlist);
13042 	}
13043 	return (error);
13044 }
13045 
13046 /*
13047  * A large burst of file addition or deletion activity can drive the
13048  * memory load excessively high. First attempt to slow things down
13049  * using the techniques below. If that fails, this routine requests
13050  * the offending operations to fall back to running synchronously
13051  * until the memory load returns to a reasonable level.
13052  */
13053 int
13054 softdep_slowdown(vp)
13055 	struct vnode *vp;
13056 {
13057 	struct ufsmount *ump;
13058 	int jlow;
13059 	int max_softdeps_hard;
13060 
13061 	KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0,
13062 	    ("softdep_slowdown called on non-softdep filesystem"));
13063 	ump = VFSTOUFS(vp->v_mount);
13064 	ACQUIRE_LOCK(ump);
13065 	jlow = 0;
13066 	/*
13067 	 * Check for journal space if needed.
13068 	 */
13069 	if (DOINGSUJ(vp)) {
13070 		if (journal_space(ump, 0) == 0)
13071 			jlow = 1;
13072 	}
13073 	/*
13074 	 * If the system is under its limits and our filesystem is
13075 	 * not responsible for more than our share of the usage and
13076 	 * we are not low on journal space, then no need to slow down.
13077 	 */
13078 	max_softdeps_hard = max_softdeps * 11 / 10;
13079 	if (dep_current[D_DIRREM] < max_softdeps_hard / 2 &&
13080 	    dep_current[D_INODEDEP] < max_softdeps_hard &&
13081 	    dep_current[D_INDIRDEP] < max_softdeps_hard / 1000 &&
13082 	    dep_current[D_FREEBLKS] < max_softdeps_hard && jlow == 0 &&
13083 	    ump->softdep_curdeps[D_DIRREM] <
13084 	    (max_softdeps_hard / 2) / stat_flush_threads &&
13085 	    ump->softdep_curdeps[D_INODEDEP] <
13086 	    max_softdeps_hard / stat_flush_threads &&
13087 	    ump->softdep_curdeps[D_INDIRDEP] <
13088 	    (max_softdeps_hard / 1000) / stat_flush_threads &&
13089 	    ump->softdep_curdeps[D_FREEBLKS] <
13090 	    max_softdeps_hard / stat_flush_threads) {
13091 		FREE_LOCK(ump);
13092   		return (0);
13093 	}
13094 	/*
13095 	 * If the journal is low or our filesystem is over its limit
13096 	 * then speedup the cleanup.
13097 	 */
13098 	if (ump->softdep_curdeps[D_INDIRDEP] <
13099 	    (max_softdeps_hard / 1000) / stat_flush_threads || jlow)
13100 		softdep_speedup(ump);
13101 	stat_sync_limit_hit += 1;
13102 	FREE_LOCK(ump);
13103 	/*
13104 	 * We only slow down the rate at which new dependencies are
13105 	 * generated if we are not using journaling. With journaling,
13106 	 * the cleanup should always be sufficient to keep things
13107 	 * under control.
13108 	 */
13109 	if (DOINGSUJ(vp))
13110 		return (0);
13111 	return (1);
13112 }
13113 
13114 /*
13115  * Called by the allocation routines when they are about to fail
13116  * in the hope that we can free up the requested resource (inodes
13117  * or disk space).
13118  *
13119  * First check to see if the work list has anything on it. If it has,
13120  * clean up entries until we successfully free the requested resource.
13121  * Because this process holds inodes locked, we cannot handle any remove
13122  * requests that might block on a locked inode as that could lead to
13123  * deadlock. If the worklist yields none of the requested resource,
13124  * start syncing out vnodes to free up the needed space.
13125  */
13126 int
13127 softdep_request_cleanup(fs, vp, cred, resource)
13128 	struct fs *fs;
13129 	struct vnode *vp;
13130 	struct ucred *cred;
13131 	int resource;
13132 {
13133 	struct ufsmount *ump;
13134 	struct mount *mp;
13135 	struct vnode *lvp, *mvp;
13136 	long starttime;
13137 	ufs2_daddr_t needed;
13138 	int error;
13139 
13140 	/*
13141 	 * If we are being called because of a process doing a
13142 	 * copy-on-write, then it is not safe to process any
13143 	 * worklist items as we will recurse into the copyonwrite
13144 	 * routine.  This will result in an incoherent snapshot.
13145 	 * If the vnode that we hold is a snapshot, we must avoid
13146 	 * handling other resources that could cause deadlock.
13147 	 */
13148 	if ((curthread->td_pflags & TDP_COWINPROGRESS) || IS_SNAPSHOT(VTOI(vp)))
13149 		return (0);
13150 
13151 	if (resource == FLUSH_BLOCKS_WAIT)
13152 		stat_cleanup_blkrequests += 1;
13153 	else
13154 		stat_cleanup_inorequests += 1;
13155 
13156 	mp = vp->v_mount;
13157 	ump = VFSTOUFS(mp);
13158 	mtx_assert(UFS_MTX(ump), MA_OWNED);
13159 	UFS_UNLOCK(ump);
13160 	error = ffs_update(vp, 1);
13161 	if (error != 0 || MOUNTEDSOFTDEP(mp) == 0) {
13162 		UFS_LOCK(ump);
13163 		return (0);
13164 	}
13165 	/*
13166 	 * If we are in need of resources, start by cleaning up
13167 	 * any block removals associated with our inode.
13168 	 */
13169 	ACQUIRE_LOCK(ump);
13170 	process_removes(vp);
13171 	process_truncates(vp);
13172 	FREE_LOCK(ump);
13173 	/*
13174 	 * Now clean up at least as many resources as we will need.
13175 	 *
13176 	 * When requested to clean up inodes, the number that are needed
13177 	 * is set by the number of simultaneous writers (mnt_writeopcount)
13178 	 * plus a bit of slop (2) in case some more writers show up while
13179 	 * we are cleaning.
13180 	 *
13181 	 * When requested to free up space, the amount of space that
13182 	 * we need is enough blocks to allocate a full-sized segment
13183 	 * (fs_contigsumsize). The number of such segments that will
13184 	 * be needed is set by the number of simultaneous writers
13185 	 * (mnt_writeopcount) plus a bit of slop (2) in case some more
13186 	 * writers show up while we are cleaning.
13187 	 *
13188 	 * Additionally, if we are unpriviledged and allocating space,
13189 	 * we need to ensure that we clean up enough blocks to get the
13190 	 * needed number of blocks over the threshold of the minimum
13191 	 * number of blocks required to be kept free by the filesystem
13192 	 * (fs_minfree).
13193 	 */
13194 	if (resource == FLUSH_INODES_WAIT) {
13195 		needed = vp->v_mount->mnt_writeopcount + 2;
13196 	} else if (resource == FLUSH_BLOCKS_WAIT) {
13197 		needed = (vp->v_mount->mnt_writeopcount + 2) *
13198 		    fs->fs_contigsumsize;
13199 		if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE, 0))
13200 			needed += fragstoblks(fs,
13201 			    roundup((fs->fs_dsize * fs->fs_minfree / 100) -
13202 			    fs->fs_cstotal.cs_nffree, fs->fs_frag));
13203 	} else {
13204 		UFS_LOCK(ump);
13205 		printf("softdep_request_cleanup: Unknown resource type %d\n",
13206 		    resource);
13207 		return (0);
13208 	}
13209 	starttime = time_second;
13210 retry:
13211 	if ((resource == FLUSH_BLOCKS_WAIT && ump->softdep_on_worklist > 0 &&
13212 	    fs->fs_cstotal.cs_nbfree <= needed) ||
13213 	    (resource == FLUSH_INODES_WAIT && fs->fs_pendinginodes > 0 &&
13214 	    fs->fs_cstotal.cs_nifree <= needed)) {
13215 		ACQUIRE_LOCK(ump);
13216 		if (ump->softdep_on_worklist > 0 &&
13217 		    process_worklist_item(UFSTOVFS(ump),
13218 		    ump->softdep_on_worklist, LK_NOWAIT) != 0)
13219 			stat_worklist_push += 1;
13220 		FREE_LOCK(ump);
13221 	}
13222 	/*
13223 	 * If we still need resources and there are no more worklist
13224 	 * entries to process to obtain them, we have to start flushing
13225 	 * the dirty vnodes to force the release of additional requests
13226 	 * to the worklist that we can then process to reap addition
13227 	 * resources. We walk the vnodes associated with the mount point
13228 	 * until we get the needed worklist requests that we can reap.
13229 	 */
13230 	if ((resource == FLUSH_BLOCKS_WAIT &&
13231 	     fs->fs_cstotal.cs_nbfree <= needed) ||
13232 	    (resource == FLUSH_INODES_WAIT && fs->fs_pendinginodes > 0 &&
13233 	     fs->fs_cstotal.cs_nifree <= needed)) {
13234 		MNT_VNODE_FOREACH_ALL(lvp, mp, mvp) {
13235 			if (TAILQ_FIRST(&lvp->v_bufobj.bo_dirty.bv_hd) == 0) {
13236 				VI_UNLOCK(lvp);
13237 				continue;
13238 			}
13239 			if (vget(lvp, LK_EXCLUSIVE | LK_INTERLOCK | LK_NOWAIT,
13240 			    curthread))
13241 				continue;
13242 			if (lvp->v_vflag & VV_NOSYNC) {	/* unlinked */
13243 				vput(lvp);
13244 				continue;
13245 			}
13246 			(void) ffs_syncvnode(lvp, MNT_NOWAIT, 0);
13247 			vput(lvp);
13248 		}
13249 		lvp = ump->um_devvp;
13250 		if (vn_lock(lvp, LK_EXCLUSIVE | LK_NOWAIT) == 0) {
13251 			VOP_FSYNC(lvp, MNT_NOWAIT, curthread);
13252 			VOP_UNLOCK(lvp, 0);
13253 		}
13254 		if (ump->softdep_on_worklist > 0) {
13255 			stat_cleanup_retries += 1;
13256 			goto retry;
13257 		}
13258 		stat_cleanup_failures += 1;
13259 	}
13260 	if (time_second - starttime > stat_cleanup_high_delay)
13261 		stat_cleanup_high_delay = time_second - starttime;
13262 	UFS_LOCK(ump);
13263 	return (1);
13264 }
13265 
13266 static bool
13267 softdep_excess_items(struct ufsmount *ump, int item)
13268 {
13269 
13270 	KASSERT(item >= 0 && item < D_LAST, ("item %d", item));
13271 	return (dep_current[item] > max_softdeps &&
13272 	    ump->softdep_curdeps[item] > max_softdeps /
13273 	    stat_flush_threads);
13274 }
13275 
13276 static void
13277 schedule_cleanup(struct mount *mp)
13278 {
13279 	struct ufsmount *ump;
13280 	struct thread *td;
13281 
13282 	ump = VFSTOUFS(mp);
13283 	LOCK_OWNED(ump);
13284 	FREE_LOCK(ump);
13285 	td = curthread;
13286 	if ((td->td_pflags & TDP_KTHREAD) != 0 &&
13287 	    (td->td_proc->p_flag2 & P2_AST_SU) == 0) {
13288 		/*
13289 		 * No ast is delivered to kernel threads, so nobody
13290 		 * would deref the mp.  Some kernel threads
13291 		 * explicitely check for AST, e.g. NFS daemon does
13292 		 * this in the serving loop.
13293 		 */
13294 		return;
13295 	}
13296 	if (td->td_su != NULL)
13297 		vfs_rel(td->td_su);
13298 	vfs_ref(mp);
13299 	td->td_su = mp;
13300 	thread_lock(td);
13301 	td->td_flags |= TDF_ASTPENDING;
13302 	thread_unlock(td);
13303 }
13304 
13305 static void
13306 softdep_ast_cleanup_proc(void)
13307 {
13308 	struct thread *td;
13309 	struct mount *mp;
13310 	struct ufsmount *ump;
13311 	int error;
13312 	bool req;
13313 
13314 	td = curthread;
13315 	while ((mp = td->td_su) != NULL) {
13316 		td->td_su = NULL;
13317 		error = vfs_busy(mp, MBF_NOWAIT);
13318 		vfs_rel(mp);
13319 		if (error != 0)
13320 			return;
13321 		if (ffs_own_mount(mp) && MOUNTEDSOFTDEP(mp)) {
13322 			ump = VFSTOUFS(mp);
13323 			for (;;) {
13324 				req = false;
13325 				ACQUIRE_LOCK(ump);
13326 				if (softdep_excess_items(ump, D_INODEDEP)) {
13327 					req = true;
13328 					request_cleanup(mp, FLUSH_INODES);
13329 				}
13330 				if (softdep_excess_items(ump, D_DIRREM)) {
13331 					req = true;
13332 					request_cleanup(mp, FLUSH_BLOCKS);
13333 				}
13334 				FREE_LOCK(ump);
13335 				if (softdep_excess_items(ump, D_NEWBLK) ||
13336 				    softdep_excess_items(ump, D_ALLOCDIRECT) ||
13337 				    softdep_excess_items(ump, D_ALLOCINDIR)) {
13338 					error = vn_start_write(NULL, &mp,
13339 					    V_WAIT);
13340 					if (error == 0) {
13341 						req = true;
13342 						VFS_SYNC(mp, MNT_WAIT);
13343 						vn_finished_write(mp);
13344 					}
13345 				}
13346 				if ((td->td_pflags & TDP_KTHREAD) != 0 || !req)
13347 					break;
13348 			}
13349 		}
13350 		vfs_unbusy(mp);
13351 	}
13352 }
13353 
13354 /*
13355  * If memory utilization has gotten too high, deliberately slow things
13356  * down and speed up the I/O processing.
13357  */
13358 static int
13359 request_cleanup(mp, resource)
13360 	struct mount *mp;
13361 	int resource;
13362 {
13363 	struct thread *td = curthread;
13364 	struct ufsmount *ump;
13365 
13366 	ump = VFSTOUFS(mp);
13367 	LOCK_OWNED(ump);
13368 	/*
13369 	 * We never hold up the filesystem syncer or buf daemon.
13370 	 */
13371 	if (td->td_pflags & (TDP_SOFTDEP|TDP_NORUNNINGBUF))
13372 		return (0);
13373 	/*
13374 	 * First check to see if the work list has gotten backlogged.
13375 	 * If it has, co-opt this process to help clean up two entries.
13376 	 * Because this process may hold inodes locked, we cannot
13377 	 * handle any remove requests that might block on a locked
13378 	 * inode as that could lead to deadlock.  We set TDP_SOFTDEP
13379 	 * to avoid recursively processing the worklist.
13380 	 */
13381 	if (ump->softdep_on_worklist > max_softdeps / 10) {
13382 		td->td_pflags |= TDP_SOFTDEP;
13383 		process_worklist_item(mp, 2, LK_NOWAIT);
13384 		td->td_pflags &= ~TDP_SOFTDEP;
13385 		stat_worklist_push += 2;
13386 		return(1);
13387 	}
13388 	/*
13389 	 * Next, we attempt to speed up the syncer process. If that
13390 	 * is successful, then we allow the process to continue.
13391 	 */
13392 	if (softdep_speedup(ump) &&
13393 	    resource != FLUSH_BLOCKS_WAIT &&
13394 	    resource != FLUSH_INODES_WAIT)
13395 		return(0);
13396 	/*
13397 	 * If we are resource constrained on inode dependencies, try
13398 	 * flushing some dirty inodes. Otherwise, we are constrained
13399 	 * by file deletions, so try accelerating flushes of directories
13400 	 * with removal dependencies. We would like to do the cleanup
13401 	 * here, but we probably hold an inode locked at this point and
13402 	 * that might deadlock against one that we try to clean. So,
13403 	 * the best that we can do is request the syncer daemon to do
13404 	 * the cleanup for us.
13405 	 */
13406 	switch (resource) {
13407 
13408 	case FLUSH_INODES:
13409 	case FLUSH_INODES_WAIT:
13410 		ACQUIRE_GBLLOCK(&lk);
13411 		stat_ino_limit_push += 1;
13412 		req_clear_inodedeps += 1;
13413 		FREE_GBLLOCK(&lk);
13414 		stat_countp = &stat_ino_limit_hit;
13415 		break;
13416 
13417 	case FLUSH_BLOCKS:
13418 	case FLUSH_BLOCKS_WAIT:
13419 		ACQUIRE_GBLLOCK(&lk);
13420 		stat_blk_limit_push += 1;
13421 		req_clear_remove += 1;
13422 		FREE_GBLLOCK(&lk);
13423 		stat_countp = &stat_blk_limit_hit;
13424 		break;
13425 
13426 	default:
13427 		panic("request_cleanup: unknown type");
13428 	}
13429 	/*
13430 	 * Hopefully the syncer daemon will catch up and awaken us.
13431 	 * We wait at most tickdelay before proceeding in any case.
13432 	 */
13433 	ACQUIRE_GBLLOCK(&lk);
13434 	FREE_LOCK(ump);
13435 	proc_waiting += 1;
13436 	if (callout_pending(&softdep_callout) == FALSE)
13437 		callout_reset(&softdep_callout, tickdelay > 2 ? tickdelay : 2,
13438 		    pause_timer, 0);
13439 
13440 	if ((td->td_pflags & TDP_KTHREAD) == 0)
13441 		msleep((caddr_t)&proc_waiting, &lk, PPAUSE, "softupdate", 0);
13442 	proc_waiting -= 1;
13443 	FREE_GBLLOCK(&lk);
13444 	ACQUIRE_LOCK(ump);
13445 	return (1);
13446 }
13447 
13448 /*
13449  * Awaken processes pausing in request_cleanup and clear proc_waiting
13450  * to indicate that there is no longer a timer running. Pause_timer
13451  * will be called with the global softdep mutex (&lk) locked.
13452  */
13453 static void
13454 pause_timer(arg)
13455 	void *arg;
13456 {
13457 
13458 	GBLLOCK_OWNED(&lk);
13459 	/*
13460 	 * The callout_ API has acquired mtx and will hold it around this
13461 	 * function call.
13462 	 */
13463 	*stat_countp += proc_waiting;
13464 	wakeup(&proc_waiting);
13465 }
13466 
13467 /*
13468  * If requested, try removing inode or removal dependencies.
13469  */
13470 static void
13471 check_clear_deps(mp)
13472 	struct mount *mp;
13473 {
13474 
13475 	/*
13476 	 * If we are suspended, it may be because of our using
13477 	 * too many inodedeps, so help clear them out.
13478 	 */
13479 	if (MOUNTEDSUJ(mp) && VFSTOUFS(mp)->softdep_jblocks->jb_suspended)
13480 		clear_inodedeps(mp);
13481 	/*
13482 	 * General requests for cleanup of backed up dependencies
13483 	 */
13484 	ACQUIRE_GBLLOCK(&lk);
13485 	if (req_clear_inodedeps) {
13486 		req_clear_inodedeps -= 1;
13487 		FREE_GBLLOCK(&lk);
13488 		clear_inodedeps(mp);
13489 		ACQUIRE_GBLLOCK(&lk);
13490 		wakeup(&proc_waiting);
13491 	}
13492 	if (req_clear_remove) {
13493 		req_clear_remove -= 1;
13494 		FREE_GBLLOCK(&lk);
13495 		clear_remove(mp);
13496 		ACQUIRE_GBLLOCK(&lk);
13497 		wakeup(&proc_waiting);
13498 	}
13499 	FREE_GBLLOCK(&lk);
13500 }
13501 
13502 /*
13503  * Flush out a directory with at least one removal dependency in an effort to
13504  * reduce the number of dirrem, freefile, and freeblks dependency structures.
13505  */
13506 static void
13507 clear_remove(mp)
13508 	struct mount *mp;
13509 {
13510 	struct pagedep_hashhead *pagedephd;
13511 	struct pagedep *pagedep;
13512 	struct ufsmount *ump;
13513 	struct vnode *vp;
13514 	struct bufobj *bo;
13515 	int error, cnt;
13516 	ino_t ino;
13517 
13518 	ump = VFSTOUFS(mp);
13519 	LOCK_OWNED(ump);
13520 
13521 	for (cnt = 0; cnt <= ump->pagedep_hash_size; cnt++) {
13522 		pagedephd = &ump->pagedep_hashtbl[ump->pagedep_nextclean++];
13523 		if (ump->pagedep_nextclean > ump->pagedep_hash_size)
13524 			ump->pagedep_nextclean = 0;
13525 		LIST_FOREACH(pagedep, pagedephd, pd_hash) {
13526 			if (LIST_EMPTY(&pagedep->pd_dirremhd))
13527 				continue;
13528 			ino = pagedep->pd_ino;
13529 			if (vn_start_write(NULL, &mp, V_NOWAIT) != 0)
13530 				continue;
13531 			FREE_LOCK(ump);
13532 
13533 			/*
13534 			 * Let unmount clear deps
13535 			 */
13536 			error = vfs_busy(mp, MBF_NOWAIT);
13537 			if (error != 0)
13538 				goto finish_write;
13539 			error = ffs_vgetf(mp, ino, LK_EXCLUSIVE, &vp,
13540 			     FFSV_FORCEINSMQ);
13541 			vfs_unbusy(mp);
13542 			if (error != 0) {
13543 				softdep_error("clear_remove: vget", error);
13544 				goto finish_write;
13545 			}
13546 			if ((error = ffs_syncvnode(vp, MNT_NOWAIT, 0)))
13547 				softdep_error("clear_remove: fsync", error);
13548 			bo = &vp->v_bufobj;
13549 			BO_LOCK(bo);
13550 			drain_output(vp);
13551 			BO_UNLOCK(bo);
13552 			vput(vp);
13553 		finish_write:
13554 			vn_finished_write(mp);
13555 			ACQUIRE_LOCK(ump);
13556 			return;
13557 		}
13558 	}
13559 }
13560 
13561 /*
13562  * Clear out a block of dirty inodes in an effort to reduce
13563  * the number of inodedep dependency structures.
13564  */
13565 static void
13566 clear_inodedeps(mp)
13567 	struct mount *mp;
13568 {
13569 	struct inodedep_hashhead *inodedephd;
13570 	struct inodedep *inodedep;
13571 	struct ufsmount *ump;
13572 	struct vnode *vp;
13573 	struct fs *fs;
13574 	int error, cnt;
13575 	ino_t firstino, lastino, ino;
13576 
13577 	ump = VFSTOUFS(mp);
13578 	fs = ump->um_fs;
13579 	LOCK_OWNED(ump);
13580 	/*
13581 	 * Pick a random inode dependency to be cleared.
13582 	 * We will then gather up all the inodes in its block
13583 	 * that have dependencies and flush them out.
13584 	 */
13585 	for (cnt = 0; cnt <= ump->inodedep_hash_size; cnt++) {
13586 		inodedephd = &ump->inodedep_hashtbl[ump->inodedep_nextclean++];
13587 		if (ump->inodedep_nextclean > ump->inodedep_hash_size)
13588 			ump->inodedep_nextclean = 0;
13589 		if ((inodedep = LIST_FIRST(inodedephd)) != NULL)
13590 			break;
13591 	}
13592 	if (inodedep == NULL)
13593 		return;
13594 	/*
13595 	 * Find the last inode in the block with dependencies.
13596 	 */
13597 	firstino = rounddown2(inodedep->id_ino, INOPB(fs));
13598 	for (lastino = firstino + INOPB(fs) - 1; lastino > firstino; lastino--)
13599 		if (inodedep_lookup(mp, lastino, 0, &inodedep) != 0)
13600 			break;
13601 	/*
13602 	 * Asynchronously push all but the last inode with dependencies.
13603 	 * Synchronously push the last inode with dependencies to ensure
13604 	 * that the inode block gets written to free up the inodedeps.
13605 	 */
13606 	for (ino = firstino; ino <= lastino; ino++) {
13607 		if (inodedep_lookup(mp, ino, 0, &inodedep) == 0)
13608 			continue;
13609 		if (vn_start_write(NULL, &mp, V_NOWAIT) != 0)
13610 			continue;
13611 		FREE_LOCK(ump);
13612 		error = vfs_busy(mp, MBF_NOWAIT); /* Let unmount clear deps */
13613 		if (error != 0) {
13614 			vn_finished_write(mp);
13615 			ACQUIRE_LOCK(ump);
13616 			return;
13617 		}
13618 		if ((error = ffs_vgetf(mp, ino, LK_EXCLUSIVE, &vp,
13619 		    FFSV_FORCEINSMQ)) != 0) {
13620 			softdep_error("clear_inodedeps: vget", error);
13621 			vfs_unbusy(mp);
13622 			vn_finished_write(mp);
13623 			ACQUIRE_LOCK(ump);
13624 			return;
13625 		}
13626 		vfs_unbusy(mp);
13627 		if (ino == lastino) {
13628 			if ((error = ffs_syncvnode(vp, MNT_WAIT, 0)))
13629 				softdep_error("clear_inodedeps: fsync1", error);
13630 		} else {
13631 			if ((error = ffs_syncvnode(vp, MNT_NOWAIT, 0)))
13632 				softdep_error("clear_inodedeps: fsync2", error);
13633 			BO_LOCK(&vp->v_bufobj);
13634 			drain_output(vp);
13635 			BO_UNLOCK(&vp->v_bufobj);
13636 		}
13637 		vput(vp);
13638 		vn_finished_write(mp);
13639 		ACQUIRE_LOCK(ump);
13640 	}
13641 }
13642 
13643 void
13644 softdep_buf_append(bp, wkhd)
13645 	struct buf *bp;
13646 	struct workhead *wkhd;
13647 {
13648 	struct worklist *wk;
13649 	struct ufsmount *ump;
13650 
13651 	if ((wk = LIST_FIRST(wkhd)) == NULL)
13652 		return;
13653 	KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0,
13654 	    ("softdep_buf_append called on non-softdep filesystem"));
13655 	ump = VFSTOUFS(wk->wk_mp);
13656 	ACQUIRE_LOCK(ump);
13657 	while ((wk = LIST_FIRST(wkhd)) != NULL) {
13658 		WORKLIST_REMOVE(wk);
13659 		WORKLIST_INSERT(&bp->b_dep, wk);
13660 	}
13661 	FREE_LOCK(ump);
13662 
13663 }
13664 
13665 void
13666 softdep_inode_append(ip, cred, wkhd)
13667 	struct inode *ip;
13668 	struct ucred *cred;
13669 	struct workhead *wkhd;
13670 {
13671 	struct buf *bp;
13672 	struct fs *fs;
13673 	int error;
13674 
13675 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ip->i_ump)) != 0,
13676 	    ("softdep_inode_append called on non-softdep filesystem"));
13677 	fs = ip->i_fs;
13678 	error = bread(ip->i_devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
13679 	    (int)fs->fs_bsize, cred, &bp);
13680 	if (error) {
13681 		bqrelse(bp);
13682 		softdep_freework(wkhd);
13683 		return;
13684 	}
13685 	softdep_buf_append(bp, wkhd);
13686 	bqrelse(bp);
13687 }
13688 
13689 void
13690 softdep_freework(wkhd)
13691 	struct workhead *wkhd;
13692 {
13693 	struct worklist *wk;
13694 	struct ufsmount *ump;
13695 
13696 	if ((wk = LIST_FIRST(wkhd)) == NULL)
13697 		return;
13698 	KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0,
13699 	    ("softdep_freework called on non-softdep filesystem"));
13700 	ump = VFSTOUFS(wk->wk_mp);
13701 	ACQUIRE_LOCK(ump);
13702 	handle_jwork(wkhd);
13703 	FREE_LOCK(ump);
13704 }
13705 
13706 /*
13707  * Function to determine if the buffer has outstanding dependencies
13708  * that will cause a roll-back if the buffer is written. If wantcount
13709  * is set, return number of dependencies, otherwise just yes or no.
13710  */
13711 static int
13712 softdep_count_dependencies(bp, wantcount)
13713 	struct buf *bp;
13714 	int wantcount;
13715 {
13716 	struct worklist *wk;
13717 	struct ufsmount *ump;
13718 	struct bmsafemap *bmsafemap;
13719 	struct freework *freework;
13720 	struct inodedep *inodedep;
13721 	struct indirdep *indirdep;
13722 	struct freeblks *freeblks;
13723 	struct allocindir *aip;
13724 	struct pagedep *pagedep;
13725 	struct dirrem *dirrem;
13726 	struct newblk *newblk;
13727 	struct mkdir *mkdir;
13728 	struct diradd *dap;
13729 	int i, retval;
13730 
13731 	retval = 0;
13732 	if ((wk = LIST_FIRST(&bp->b_dep)) == NULL)
13733 		return (0);
13734 	ump = VFSTOUFS(wk->wk_mp);
13735 	ACQUIRE_LOCK(ump);
13736 	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
13737 		switch (wk->wk_type) {
13738 
13739 		case D_INODEDEP:
13740 			inodedep = WK_INODEDEP(wk);
13741 			if ((inodedep->id_state & DEPCOMPLETE) == 0) {
13742 				/* bitmap allocation dependency */
13743 				retval += 1;
13744 				if (!wantcount)
13745 					goto out;
13746 			}
13747 			if (TAILQ_FIRST(&inodedep->id_inoupdt)) {
13748 				/* direct block pointer dependency */
13749 				retval += 1;
13750 				if (!wantcount)
13751 					goto out;
13752 			}
13753 			if (TAILQ_FIRST(&inodedep->id_extupdt)) {
13754 				/* direct block pointer dependency */
13755 				retval += 1;
13756 				if (!wantcount)
13757 					goto out;
13758 			}
13759 			if (TAILQ_FIRST(&inodedep->id_inoreflst)) {
13760 				/* Add reference dependency. */
13761 				retval += 1;
13762 				if (!wantcount)
13763 					goto out;
13764 			}
13765 			continue;
13766 
13767 		case D_INDIRDEP:
13768 			indirdep = WK_INDIRDEP(wk);
13769 
13770 			TAILQ_FOREACH(freework, &indirdep->ir_trunc, fw_next) {
13771 				/* indirect truncation dependency */
13772 				retval += 1;
13773 				if (!wantcount)
13774 					goto out;
13775 			}
13776 
13777 			LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) {
13778 				/* indirect block pointer dependency */
13779 				retval += 1;
13780 				if (!wantcount)
13781 					goto out;
13782 			}
13783 			continue;
13784 
13785 		case D_PAGEDEP:
13786 			pagedep = WK_PAGEDEP(wk);
13787 			LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next) {
13788 				if (LIST_FIRST(&dirrem->dm_jremrefhd)) {
13789 					/* Journal remove ref dependency. */
13790 					retval += 1;
13791 					if (!wantcount)
13792 						goto out;
13793 				}
13794 			}
13795 			for (i = 0; i < DAHASHSZ; i++) {
13796 
13797 				LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) {
13798 					/* directory entry dependency */
13799 					retval += 1;
13800 					if (!wantcount)
13801 						goto out;
13802 				}
13803 			}
13804 			continue;
13805 
13806 		case D_BMSAFEMAP:
13807 			bmsafemap = WK_BMSAFEMAP(wk);
13808 			if (LIST_FIRST(&bmsafemap->sm_jaddrefhd)) {
13809 				/* Add reference dependency. */
13810 				retval += 1;
13811 				if (!wantcount)
13812 					goto out;
13813 			}
13814 			if (LIST_FIRST(&bmsafemap->sm_jnewblkhd)) {
13815 				/* Allocate block dependency. */
13816 				retval += 1;
13817 				if (!wantcount)
13818 					goto out;
13819 			}
13820 			continue;
13821 
13822 		case D_FREEBLKS:
13823 			freeblks = WK_FREEBLKS(wk);
13824 			if (LIST_FIRST(&freeblks->fb_jblkdephd)) {
13825 				/* Freeblk journal dependency. */
13826 				retval += 1;
13827 				if (!wantcount)
13828 					goto out;
13829 			}
13830 			continue;
13831 
13832 		case D_ALLOCDIRECT:
13833 		case D_ALLOCINDIR:
13834 			newblk = WK_NEWBLK(wk);
13835 			if (newblk->nb_jnewblk) {
13836 				/* Journal allocate dependency. */
13837 				retval += 1;
13838 				if (!wantcount)
13839 					goto out;
13840 			}
13841 			continue;
13842 
13843 		case D_MKDIR:
13844 			mkdir = WK_MKDIR(wk);
13845 			if (mkdir->md_jaddref) {
13846 				/* Journal reference dependency. */
13847 				retval += 1;
13848 				if (!wantcount)
13849 					goto out;
13850 			}
13851 			continue;
13852 
13853 		case D_FREEWORK:
13854 		case D_FREEDEP:
13855 		case D_JSEGDEP:
13856 		case D_JSEG:
13857 		case D_SBDEP:
13858 			/* never a dependency on these blocks */
13859 			continue;
13860 
13861 		default:
13862 			panic("softdep_count_dependencies: Unexpected type %s",
13863 			    TYPENAME(wk->wk_type));
13864 			/* NOTREACHED */
13865 		}
13866 	}
13867 out:
13868 	FREE_LOCK(ump);
13869 	return retval;
13870 }
13871 
13872 /*
13873  * Acquire exclusive access to a buffer.
13874  * Must be called with a locked mtx parameter.
13875  * Return acquired buffer or NULL on failure.
13876  */
13877 static struct buf *
13878 getdirtybuf(bp, lock, waitfor)
13879 	struct buf *bp;
13880 	struct rwlock *lock;
13881 	int waitfor;
13882 {
13883 	int error;
13884 
13885 	if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0) {
13886 		if (waitfor != MNT_WAIT)
13887 			return (NULL);
13888 		error = BUF_LOCK(bp,
13889 		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, lock);
13890 		/*
13891 		 * Even if we successfully acquire bp here, we have dropped
13892 		 * lock, which may violates our guarantee.
13893 		 */
13894 		if (error == 0)
13895 			BUF_UNLOCK(bp);
13896 		else if (error != ENOLCK)
13897 			panic("getdirtybuf: inconsistent lock: %d", error);
13898 		rw_wlock(lock);
13899 		return (NULL);
13900 	}
13901 	if ((bp->b_vflags & BV_BKGRDINPROG) != 0) {
13902 		if (lock != BO_LOCKPTR(bp->b_bufobj) && waitfor == MNT_WAIT) {
13903 			rw_wunlock(lock);
13904 			BO_LOCK(bp->b_bufobj);
13905 			BUF_UNLOCK(bp);
13906 			if ((bp->b_vflags & BV_BKGRDINPROG) != 0) {
13907 				bp->b_vflags |= BV_BKGRDWAIT;
13908 				msleep(&bp->b_xflags, BO_LOCKPTR(bp->b_bufobj),
13909 				       PRIBIO | PDROP, "getbuf", 0);
13910 			} else
13911 				BO_UNLOCK(bp->b_bufobj);
13912 			rw_wlock(lock);
13913 			return (NULL);
13914 		}
13915 		BUF_UNLOCK(bp);
13916 		if (waitfor != MNT_WAIT)
13917 			return (NULL);
13918 		/*
13919 		 * The lock argument must be bp->b_vp's mutex in
13920 		 * this case.
13921 		 */
13922 #ifdef	DEBUG_VFS_LOCKS
13923 		if (bp->b_vp->v_type != VCHR)
13924 			ASSERT_BO_WLOCKED(bp->b_bufobj);
13925 #endif
13926 		bp->b_vflags |= BV_BKGRDWAIT;
13927 		rw_sleep(&bp->b_xflags, lock, PRIBIO, "getbuf", 0);
13928 		return (NULL);
13929 	}
13930 	if ((bp->b_flags & B_DELWRI) == 0) {
13931 		BUF_UNLOCK(bp);
13932 		return (NULL);
13933 	}
13934 	bremfree(bp);
13935 	return (bp);
13936 }
13937 
13938 
13939 /*
13940  * Check if it is safe to suspend the file system now.  On entry,
13941  * the vnode interlock for devvp should be held.  Return 0 with
13942  * the mount interlock held if the file system can be suspended now,
13943  * otherwise return EAGAIN with the mount interlock held.
13944  */
13945 int
13946 softdep_check_suspend(struct mount *mp,
13947 		      struct vnode *devvp,
13948 		      int softdep_depcnt,
13949 		      int softdep_accdepcnt,
13950 		      int secondary_writes,
13951 		      int secondary_accwrites)
13952 {
13953 	struct bufobj *bo;
13954 	struct ufsmount *ump;
13955 	struct inodedep *inodedep;
13956 	int error, unlinked;
13957 
13958 	bo = &devvp->v_bufobj;
13959 	ASSERT_BO_WLOCKED(bo);
13960 
13961 	/*
13962 	 * If we are not running with soft updates, then we need only
13963 	 * deal with secondary writes as we try to suspend.
13964 	 */
13965 	if (MOUNTEDSOFTDEP(mp) == 0) {
13966 		MNT_ILOCK(mp);
13967 		while (mp->mnt_secondary_writes != 0) {
13968 			BO_UNLOCK(bo);
13969 			msleep(&mp->mnt_secondary_writes, MNT_MTX(mp),
13970 			    (PUSER - 1) | PDROP, "secwr", 0);
13971 			BO_LOCK(bo);
13972 			MNT_ILOCK(mp);
13973 		}
13974 
13975 		/*
13976 		 * Reasons for needing more work before suspend:
13977 		 * - Dirty buffers on devvp.
13978 		 * - Secondary writes occurred after start of vnode sync loop
13979 		 */
13980 		error = 0;
13981 		if (bo->bo_numoutput > 0 ||
13982 		    bo->bo_dirty.bv_cnt > 0 ||
13983 		    secondary_writes != 0 ||
13984 		    mp->mnt_secondary_writes != 0 ||
13985 		    secondary_accwrites != mp->mnt_secondary_accwrites)
13986 			error = EAGAIN;
13987 		BO_UNLOCK(bo);
13988 		return (error);
13989 	}
13990 
13991 	/*
13992 	 * If we are running with soft updates, then we need to coordinate
13993 	 * with them as we try to suspend.
13994 	 */
13995 	ump = VFSTOUFS(mp);
13996 	for (;;) {
13997 		if (!TRY_ACQUIRE_LOCK(ump)) {
13998 			BO_UNLOCK(bo);
13999 			ACQUIRE_LOCK(ump);
14000 			FREE_LOCK(ump);
14001 			BO_LOCK(bo);
14002 			continue;
14003 		}
14004 		MNT_ILOCK(mp);
14005 		if (mp->mnt_secondary_writes != 0) {
14006 			FREE_LOCK(ump);
14007 			BO_UNLOCK(bo);
14008 			msleep(&mp->mnt_secondary_writes,
14009 			       MNT_MTX(mp),
14010 			       (PUSER - 1) | PDROP, "secwr", 0);
14011 			BO_LOCK(bo);
14012 			continue;
14013 		}
14014 		break;
14015 	}
14016 
14017 	unlinked = 0;
14018 	if (MOUNTEDSUJ(mp)) {
14019 		for (inodedep = TAILQ_FIRST(&ump->softdep_unlinked);
14020 		    inodedep != NULL;
14021 		    inodedep = TAILQ_NEXT(inodedep, id_unlinked)) {
14022 			if ((inodedep->id_state & (UNLINKED | UNLINKLINKS |
14023 			    UNLINKONLIST)) != (UNLINKED | UNLINKLINKS |
14024 			    UNLINKONLIST) ||
14025 			    !check_inodedep_free(inodedep))
14026 				continue;
14027 			unlinked++;
14028 		}
14029 	}
14030 
14031 	/*
14032 	 * Reasons for needing more work before suspend:
14033 	 * - Dirty buffers on devvp.
14034 	 * - Softdep activity occurred after start of vnode sync loop
14035 	 * - Secondary writes occurred after start of vnode sync loop
14036 	 */
14037 	error = 0;
14038 	if (bo->bo_numoutput > 0 ||
14039 	    bo->bo_dirty.bv_cnt > 0 ||
14040 	    softdep_depcnt != unlinked ||
14041 	    ump->softdep_deps != unlinked ||
14042 	    softdep_accdepcnt != ump->softdep_accdeps ||
14043 	    secondary_writes != 0 ||
14044 	    mp->mnt_secondary_writes != 0 ||
14045 	    secondary_accwrites != mp->mnt_secondary_accwrites)
14046 		error = EAGAIN;
14047 	FREE_LOCK(ump);
14048 	BO_UNLOCK(bo);
14049 	return (error);
14050 }
14051 
14052 
14053 /*
14054  * Get the number of dependency structures for the file system, both
14055  * the current number and the total number allocated.  These will
14056  * later be used to detect that softdep processing has occurred.
14057  */
14058 void
14059 softdep_get_depcounts(struct mount *mp,
14060 		      int *softdep_depsp,
14061 		      int *softdep_accdepsp)
14062 {
14063 	struct ufsmount *ump;
14064 
14065 	if (MOUNTEDSOFTDEP(mp) == 0) {
14066 		*softdep_depsp = 0;
14067 		*softdep_accdepsp = 0;
14068 		return;
14069 	}
14070 	ump = VFSTOUFS(mp);
14071 	ACQUIRE_LOCK(ump);
14072 	*softdep_depsp = ump->softdep_deps;
14073 	*softdep_accdepsp = ump->softdep_accdeps;
14074 	FREE_LOCK(ump);
14075 }
14076 
14077 /*
14078  * Wait for pending output on a vnode to complete.
14079  * Must be called with vnode lock and interlock locked.
14080  *
14081  * XXX: Should just be a call to bufobj_wwait().
14082  */
14083 static void
14084 drain_output(vp)
14085 	struct vnode *vp;
14086 {
14087 	struct bufobj *bo;
14088 
14089 	bo = &vp->v_bufobj;
14090 	ASSERT_VOP_LOCKED(vp, "drain_output");
14091 	ASSERT_BO_WLOCKED(bo);
14092 
14093 	while (bo->bo_numoutput) {
14094 		bo->bo_flag |= BO_WWAIT;
14095 		msleep((caddr_t)&bo->bo_numoutput,
14096 		    BO_LOCKPTR(bo), PRIBIO + 1, "drainvp", 0);
14097 	}
14098 }
14099 
14100 /*
14101  * Called whenever a buffer that is being invalidated or reallocated
14102  * contains dependencies. This should only happen if an I/O error has
14103  * occurred. The routine is called with the buffer locked.
14104  */
14105 static void
14106 softdep_deallocate_dependencies(bp)
14107 	struct buf *bp;
14108 {
14109 
14110 	if ((bp->b_ioflags & BIO_ERROR) == 0)
14111 		panic("softdep_deallocate_dependencies: dangling deps");
14112 	if (bp->b_vp != NULL && bp->b_vp->v_mount != NULL)
14113 		softdep_error(bp->b_vp->v_mount->mnt_stat.f_mntonname, bp->b_error);
14114 	else
14115 		printf("softdep_deallocate_dependencies: "
14116 		    "got error %d while accessing filesystem\n", bp->b_error);
14117 	if (bp->b_error != ENXIO)
14118 		panic("softdep_deallocate_dependencies: unrecovered I/O error");
14119 }
14120 
14121 /*
14122  * Function to handle asynchronous write errors in the filesystem.
14123  */
14124 static void
14125 softdep_error(func, error)
14126 	char *func;
14127 	int error;
14128 {
14129 
14130 	/* XXX should do something better! */
14131 	printf("%s: got error %d while accessing filesystem\n", func, error);
14132 }
14133 
14134 #ifdef DDB
14135 
14136 static void
14137 inodedep_print(struct inodedep *inodedep, int verbose)
14138 {
14139 	db_printf("%p fs %p st %x ino %jd inoblk %jd delta %d nlink %d"
14140 	    " saveino %p\n",
14141 	    inodedep, inodedep->id_fs, inodedep->id_state,
14142 	    (intmax_t)inodedep->id_ino,
14143 	    (intmax_t)fsbtodb(inodedep->id_fs,
14144 	    ino_to_fsba(inodedep->id_fs, inodedep->id_ino)),
14145 	    inodedep->id_nlinkdelta, inodedep->id_savednlink,
14146 	    inodedep->id_savedino1);
14147 
14148 	if (verbose == 0)
14149 		return;
14150 
14151 	db_printf("\tpendinghd %p, bufwait %p, inowait %p, inoreflst %p, "
14152 	    "mkdiradd %p\n",
14153 	    LIST_FIRST(&inodedep->id_pendinghd),
14154 	    LIST_FIRST(&inodedep->id_bufwait),
14155 	    LIST_FIRST(&inodedep->id_inowait),
14156 	    TAILQ_FIRST(&inodedep->id_inoreflst),
14157 	    inodedep->id_mkdiradd);
14158 	db_printf("\tinoupdt %p, newinoupdt %p, extupdt %p, newextupdt %p\n",
14159 	    TAILQ_FIRST(&inodedep->id_inoupdt),
14160 	    TAILQ_FIRST(&inodedep->id_newinoupdt),
14161 	    TAILQ_FIRST(&inodedep->id_extupdt),
14162 	    TAILQ_FIRST(&inodedep->id_newextupdt));
14163 }
14164 
14165 DB_SHOW_COMMAND(inodedep, db_show_inodedep)
14166 {
14167 
14168 	if (have_addr == 0) {
14169 		db_printf("Address required\n");
14170 		return;
14171 	}
14172 	inodedep_print((struct inodedep*)addr, 1);
14173 }
14174 
14175 DB_SHOW_COMMAND(inodedeps, db_show_inodedeps)
14176 {
14177 	struct inodedep_hashhead *inodedephd;
14178 	struct inodedep *inodedep;
14179 	struct ufsmount *ump;
14180 	int cnt;
14181 
14182 	if (have_addr == 0) {
14183 		db_printf("Address required\n");
14184 		return;
14185 	}
14186 	ump = (struct ufsmount *)addr;
14187 	for (cnt = 0; cnt < ump->inodedep_hash_size; cnt++) {
14188 		inodedephd = &ump->inodedep_hashtbl[cnt];
14189 		LIST_FOREACH(inodedep, inodedephd, id_hash) {
14190 			inodedep_print(inodedep, 0);
14191 		}
14192 	}
14193 }
14194 
14195 DB_SHOW_COMMAND(worklist, db_show_worklist)
14196 {
14197 	struct worklist *wk;
14198 
14199 	if (have_addr == 0) {
14200 		db_printf("Address required\n");
14201 		return;
14202 	}
14203 	wk = (struct worklist *)addr;
14204 	printf("worklist: %p type %s state 0x%X\n",
14205 	    wk, TYPENAME(wk->wk_type), wk->wk_state);
14206 }
14207 
14208 DB_SHOW_COMMAND(workhead, db_show_workhead)
14209 {
14210 	struct workhead *wkhd;
14211 	struct worklist *wk;
14212 	int i;
14213 
14214 	if (have_addr == 0) {
14215 		db_printf("Address required\n");
14216 		return;
14217 	}
14218 	wkhd = (struct workhead *)addr;
14219 	wk = LIST_FIRST(wkhd);
14220 	for (i = 0; i < 100 && wk != NULL; i++, wk = LIST_NEXT(wk, wk_list))
14221 		db_printf("worklist: %p type %s state 0x%X",
14222 		    wk, TYPENAME(wk->wk_type), wk->wk_state);
14223 	if (i == 100)
14224 		db_printf("workhead overflow");
14225 	printf("\n");
14226 }
14227 
14228 
14229 DB_SHOW_COMMAND(mkdirs, db_show_mkdirs)
14230 {
14231 	struct mkdirlist *mkdirlisthd;
14232 	struct jaddref *jaddref;
14233 	struct diradd *diradd;
14234 	struct mkdir *mkdir;
14235 
14236 	if (have_addr == 0) {
14237 		db_printf("Address required\n");
14238 		return;
14239 	}
14240 	mkdirlisthd = (struct mkdirlist *)addr;
14241 	LIST_FOREACH(mkdir, mkdirlisthd, md_mkdirs) {
14242 		diradd = mkdir->md_diradd;
14243 		db_printf("mkdir: %p state 0x%X dap %p state 0x%X",
14244 		    mkdir, mkdir->md_state, diradd, diradd->da_state);
14245 		if ((jaddref = mkdir->md_jaddref) != NULL)
14246 			db_printf(" jaddref %p jaddref state 0x%X",
14247 			    jaddref, jaddref->ja_state);
14248 		db_printf("\n");
14249 	}
14250 }
14251 
14252 /* exported to ffs_vfsops.c */
14253 extern void db_print_ffs(struct ufsmount *ump);
14254 void
14255 db_print_ffs(struct ufsmount *ump)
14256 {
14257 	db_printf("mp %p %s devvp %p fs %p su_wl %d su_deps %d su_req %d\n",
14258 	    ump->um_mountp, ump->um_mountp->mnt_stat.f_mntonname,
14259 	    ump->um_devvp, ump->um_fs, ump->softdep_on_worklist,
14260 	    ump->softdep_deps, ump->softdep_req);
14261 }
14262 
14263 #endif /* DDB */
14264 
14265 #endif /* SOFTUPDATES */
14266