1 /* 2 * Copyright 1998, 2000 Marshall Kirk McKusick. All Rights Reserved. 3 * 4 * The soft updates code is derived from the appendix of a University 5 * of Michigan technical report (Gregory R. Ganger and Yale N. Patt, 6 * "Soft Updates: A Solution to the Metadata Update Problem in File 7 * Systems", CSE-TR-254-95, August 1995). 8 * 9 * Further information about soft updates can be obtained from: 10 * 11 * Marshall Kirk McKusick http://www.mckusick.com/softdep/ 12 * 1614 Oxford Street mckusick@mckusick.com 13 * Berkeley, CA 94709-1608 +1-510-843-9542 14 * USA 15 * 16 * Redistribution and use in source and binary forms, with or without 17 * modification, are permitted provided that the following conditions 18 * are met: 19 * 20 * 1. Redistributions of source code must retain the above copyright 21 * notice, this list of conditions and the following disclaimer. 22 * 2. Redistributions in binary form must reproduce the above copyright 23 * notice, this list of conditions and the following disclaimer in the 24 * documentation and/or other materials provided with the distribution. 25 * 26 * THIS SOFTWARE IS PROVIDED BY MARSHALL KIRK MCKUSICK ``AS IS'' AND ANY 27 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 28 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 29 * DISCLAIMED. IN NO EVENT SHALL MARSHALL KIRK MCKUSICK BE LIABLE FOR 30 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 36 * SUCH DAMAGE. 37 * 38 * from: @(#)ffs_softdep.c 9.59 (McKusick) 6/21/00 39 */ 40 41 #include <sys/cdefs.h> 42 __FBSDID("$FreeBSD$"); 43 44 /* 45 * For now we want the safety net that the DIAGNOSTIC and DEBUG flags provide. 46 */ 47 #ifndef DIAGNOSTIC 48 #define DIAGNOSTIC 49 #endif 50 #ifndef DEBUG 51 #define DEBUG 52 #endif 53 54 #include <sys/param.h> 55 #include <sys/kernel.h> 56 #include <sys/systm.h> 57 #include <sys/stdint.h> 58 #include <sys/bio.h> 59 #include <sys/buf.h> 60 #include <sys/malloc.h> 61 #include <sys/mount.h> 62 #include <sys/proc.h> 63 #include <sys/stat.h> 64 #include <sys/syslog.h> 65 #include <sys/vnode.h> 66 #include <sys/conf.h> 67 #include <ufs/ufs/dir.h> 68 #include <ufs/ufs/extattr.h> 69 #include <ufs/ufs/quota.h> 70 #include <ufs/ufs/inode.h> 71 #include <ufs/ufs/ufsmount.h> 72 #include <ufs/ffs/fs.h> 73 #include <ufs/ffs/softdep.h> 74 #include <ufs/ffs/ffs_extern.h> 75 #include <ufs/ufs/ufs_extern.h> 76 77 /* 78 * These definitions need to be adapted to the system to which 79 * this file is being ported. 80 */ 81 /* 82 * malloc types defined for the softdep system. 83 */ 84 static MALLOC_DEFINE(M_PAGEDEP, "pagedep","File page dependencies"); 85 static MALLOC_DEFINE(M_INODEDEP, "inodedep","Inode dependencies"); 86 static MALLOC_DEFINE(M_NEWBLK, "newblk","New block allocation"); 87 static MALLOC_DEFINE(M_BMSAFEMAP, "bmsafemap","Block or frag allocated from cyl group map"); 88 static MALLOC_DEFINE(M_ALLOCDIRECT, "allocdirect","Block or frag dependency for an inode"); 89 static MALLOC_DEFINE(M_INDIRDEP, "indirdep","Indirect block dependencies"); 90 static MALLOC_DEFINE(M_ALLOCINDIR, "allocindir","Block dependency for an indirect block"); 91 static MALLOC_DEFINE(M_FREEFRAG, "freefrag","Previously used frag for an inode"); 92 static MALLOC_DEFINE(M_FREEBLKS, "freeblks","Blocks freed from an inode"); 93 static MALLOC_DEFINE(M_FREEFILE, "freefile","Inode deallocated"); 94 static MALLOC_DEFINE(M_DIRADD, "diradd","New directory entry"); 95 static MALLOC_DEFINE(M_MKDIR, "mkdir","New directory"); 96 static MALLOC_DEFINE(M_DIRREM, "dirrem","Directory entry deleted"); 97 static MALLOC_DEFINE(M_NEWDIRBLK, "newdirblk","Unclaimed new directory block"); 98 99 #define M_SOFTDEP_FLAGS (M_WAITOK | M_USE_RESERVE) 100 101 #define D_PAGEDEP 0 102 #define D_INODEDEP 1 103 #define D_NEWBLK 2 104 #define D_BMSAFEMAP 3 105 #define D_ALLOCDIRECT 4 106 #define D_INDIRDEP 5 107 #define D_ALLOCINDIR 6 108 #define D_FREEFRAG 7 109 #define D_FREEBLKS 8 110 #define D_FREEFILE 9 111 #define D_DIRADD 10 112 #define D_MKDIR 11 113 #define D_DIRREM 12 114 #define D_NEWDIRBLK 13 115 #define D_LAST D_NEWDIRBLK 116 117 /* 118 * translate from workitem type to memory type 119 * MUST match the defines above, such that memtype[D_XXX] == M_XXX 120 */ 121 static struct malloc_type *memtype[] = { 122 M_PAGEDEP, 123 M_INODEDEP, 124 M_NEWBLK, 125 M_BMSAFEMAP, 126 M_ALLOCDIRECT, 127 M_INDIRDEP, 128 M_ALLOCINDIR, 129 M_FREEFRAG, 130 M_FREEBLKS, 131 M_FREEFILE, 132 M_DIRADD, 133 M_MKDIR, 134 M_DIRREM, 135 M_NEWDIRBLK 136 }; 137 138 #define DtoM(type) (memtype[type]) 139 140 /* 141 * Names of malloc types. 142 */ 143 #define TYPENAME(type) \ 144 ((unsigned)(type) < D_LAST ? memtype[type]->ks_shortdesc : "???") 145 /* 146 * End system adaptaion definitions. 147 */ 148 149 /* 150 * Internal function prototypes. 151 */ 152 static void softdep_error(char *, int); 153 static void drain_output(struct vnode *, int); 154 static int getdirtybuf(struct buf **, int); 155 static void clear_remove(struct thread *); 156 static void clear_inodedeps(struct thread *); 157 static int flush_pagedep_deps(struct vnode *, struct mount *, 158 struct diraddhd *); 159 static int flush_inodedep_deps(struct fs *, ino_t); 160 static int flush_deplist(struct allocdirectlst *, int, int *); 161 static int handle_written_filepage(struct pagedep *, struct buf *); 162 static void diradd_inode_written(struct diradd *, struct inodedep *); 163 static int handle_written_inodeblock(struct inodedep *, struct buf *); 164 static void handle_allocdirect_partdone(struct allocdirect *); 165 static void handle_allocindir_partdone(struct allocindir *); 166 static void initiate_write_filepage(struct pagedep *, struct buf *); 167 static void handle_written_mkdir(struct mkdir *, int); 168 static void initiate_write_inodeblock_ufs1(struct inodedep *, struct buf *); 169 static void initiate_write_inodeblock_ufs2(struct inodedep *, struct buf *); 170 static void handle_workitem_freefile(struct freefile *); 171 static void handle_workitem_remove(struct dirrem *, struct vnode *); 172 static struct dirrem *newdirrem(struct buf *, struct inode *, 173 struct inode *, int, struct dirrem **); 174 static void free_diradd(struct diradd *); 175 static void free_allocindir(struct allocindir *, struct inodedep *); 176 static void free_newdirblk(struct newdirblk *); 177 static int indir_trunc(struct freeblks *, ufs2_daddr_t, int, ufs_lbn_t, 178 ufs2_daddr_t *); 179 static void deallocate_dependencies(struct buf *, struct inodedep *); 180 static void free_allocdirect(struct allocdirectlst *, 181 struct allocdirect *, int); 182 static int check_inode_unwritten(struct inodedep *); 183 static int free_inodedep(struct inodedep *); 184 static void handle_workitem_freeblocks(struct freeblks *, int); 185 static void merge_inode_lists(struct allocdirectlst *,struct allocdirectlst *); 186 static void setup_allocindir_phase2(struct buf *, struct inode *, 187 struct allocindir *); 188 static struct allocindir *newallocindir(struct inode *, int, ufs2_daddr_t, 189 ufs2_daddr_t); 190 static void handle_workitem_freefrag(struct freefrag *); 191 static struct freefrag *newfreefrag(struct inode *, ufs2_daddr_t, long); 192 static void allocdirect_merge(struct allocdirectlst *, 193 struct allocdirect *, struct allocdirect *); 194 static struct bmsafemap *bmsafemap_lookup(struct buf *); 195 static int newblk_lookup(struct fs *, ufs2_daddr_t, int, struct newblk **); 196 static int inodedep_lookup(struct fs *, ino_t, int, struct inodedep **); 197 static int pagedep_lookup(struct inode *, ufs_lbn_t, int, struct pagedep **); 198 static void pause_timer(void *); 199 static int request_cleanup(int, int); 200 static int process_worklist_item(struct mount *, int); 201 static void add_to_worklist(struct worklist *); 202 203 /* 204 * Exported softdep operations. 205 */ 206 static void softdep_disk_io_initiation(struct buf *); 207 static void softdep_disk_write_complete(struct buf *); 208 static void softdep_deallocate_dependencies(struct buf *); 209 static void softdep_move_dependencies(struct buf *, struct buf *); 210 static int softdep_count_dependencies(struct buf *bp, int); 211 212 /* 213 * Locking primitives. 214 * 215 * For a uniprocessor, all we need to do is protect against disk 216 * interrupts. For a multiprocessor, this lock would have to be 217 * a mutex. A single mutex is used throughout this file, though 218 * finer grain locking could be used if contention warranted it. 219 * 220 * For a multiprocessor, the sleep call would accept a lock and 221 * release it after the sleep processing was complete. In a uniprocessor 222 * implementation there is no such interlock, so we simple mark 223 * the places where it needs to be done with the `interlocked' form 224 * of the lock calls. Since the uniprocessor sleep already interlocks 225 * the spl, there is nothing that really needs to be done. 226 */ 227 #ifndef /* NOT */ DEBUG 228 static struct lockit { 229 int lkt_spl; 230 } lk = { 0 }; 231 #define ACQUIRE_LOCK(lk) (lk)->lkt_spl = splbio() 232 #define FREE_LOCK(lk) splx((lk)->lkt_spl) 233 234 #else /* DEBUG */ 235 #define NOHOLDER ((struct thread *)-1) 236 #define SPECIAL_FLAG ((struct thread *)-2) 237 static struct lockit { 238 int lkt_spl; 239 struct thread *lkt_held; 240 } lk = { 0, NOHOLDER }; 241 242 static void acquire_lock(struct lockit *); 243 static void free_lock(struct lockit *); 244 void softdep_panic(char *); 245 246 #define ACQUIRE_LOCK(lk) acquire_lock(lk) 247 #define FREE_LOCK(lk) free_lock(lk) 248 249 static void 250 acquire_lock(lk) 251 struct lockit *lk; 252 { 253 struct thread *holder; 254 255 if (lk->lkt_held != NOHOLDER) { 256 holder = lk->lkt_held; 257 FREE_LOCK(lk); 258 if (holder == curthread) 259 panic("softdep_lock: locking against myself"); 260 else 261 panic("softdep_lock: lock held by %p", holder); 262 } 263 lk->lkt_spl = splbio(); 264 lk->lkt_held = curthread; 265 } 266 267 static void 268 free_lock(lk) 269 struct lockit *lk; 270 { 271 272 if (lk->lkt_held == NOHOLDER) 273 panic("softdep_unlock: lock not held"); 274 lk->lkt_held = NOHOLDER; 275 splx(lk->lkt_spl); 276 } 277 278 /* 279 * Function to release soft updates lock and panic. 280 */ 281 void 282 softdep_panic(msg) 283 char *msg; 284 { 285 286 if (lk.lkt_held != NOHOLDER) 287 FREE_LOCK(&lk); 288 panic(msg); 289 } 290 #endif /* DEBUG */ 291 292 static int interlocked_sleep(struct lockit *, int, void *, struct mtx *, int, 293 const char *, int); 294 295 /* 296 * When going to sleep, we must save our SPL so that it does 297 * not get lost if some other process uses the lock while we 298 * are sleeping. We restore it after we have slept. This routine 299 * wraps the interlocking with functions that sleep. The list 300 * below enumerates the available set of operations. 301 */ 302 #define UNKNOWN 0 303 #define SLEEP 1 304 #define LOCKBUF 2 305 306 static int 307 interlocked_sleep(lk, op, ident, mtx, flags, wmesg, timo) 308 struct lockit *lk; 309 int op; 310 void *ident; 311 struct mtx *mtx; 312 int flags; 313 const char *wmesg; 314 int timo; 315 { 316 struct thread *holder; 317 int s, retval; 318 319 s = lk->lkt_spl; 320 # ifdef DEBUG 321 if (lk->lkt_held == NOHOLDER) 322 panic("interlocked_sleep: lock not held"); 323 lk->lkt_held = NOHOLDER; 324 # endif /* DEBUG */ 325 switch (op) { 326 case SLEEP: 327 retval = msleep(ident, mtx, flags, wmesg, timo); 328 break; 329 case LOCKBUF: 330 retval = BUF_LOCK((struct buf *)ident, flags, NULL); 331 break; 332 default: 333 panic("interlocked_sleep: unknown operation"); 334 } 335 # ifdef DEBUG 336 if (lk->lkt_held != NOHOLDER) { 337 holder = lk->lkt_held; 338 FREE_LOCK(lk); 339 if (holder == curthread) 340 panic("interlocked_sleep: locking against self"); 341 else 342 panic("interlocked_sleep: lock held by %p", holder); 343 } 344 lk->lkt_held = curthread; 345 # endif /* DEBUG */ 346 lk->lkt_spl = s; 347 return (retval); 348 } 349 350 /* 351 * Place holder for real semaphores. 352 */ 353 struct sema { 354 int value; 355 struct thread *holder; 356 char *name; 357 int prio; 358 int timo; 359 }; 360 static void sema_init(struct sema *, char *, int, int); 361 static int sema_get(struct sema *, struct lockit *); 362 static void sema_release(struct sema *); 363 364 static void 365 sema_init(semap, name, prio, timo) 366 struct sema *semap; 367 char *name; 368 int prio, timo; 369 { 370 371 semap->holder = NOHOLDER; 372 semap->value = 0; 373 semap->name = name; 374 semap->prio = prio; 375 semap->timo = timo; 376 } 377 378 static int 379 sema_get(semap, interlock) 380 struct sema *semap; 381 struct lockit *interlock; 382 { 383 384 if (semap->value++ > 0) { 385 if (interlock != NULL) { 386 interlocked_sleep(interlock, SLEEP, (caddr_t)semap, 387 NULL, semap->prio, semap->name, 388 semap->timo); 389 FREE_LOCK(interlock); 390 } else { 391 tsleep(semap, semap->prio, semap->name, 392 semap->timo); 393 } 394 return (0); 395 } 396 semap->holder = curthread; 397 if (interlock != NULL) 398 FREE_LOCK(interlock); 399 return (1); 400 } 401 402 static void 403 sema_release(semap) 404 struct sema *semap; 405 { 406 407 if (semap->value <= 0 || semap->holder != curthread) { 408 if (lk.lkt_held != NOHOLDER) 409 FREE_LOCK(&lk); 410 panic("sema_release: not held"); 411 } 412 if (--semap->value > 0) { 413 semap->value = 0; 414 wakeup(semap); 415 } 416 semap->holder = NOHOLDER; 417 } 418 419 /* 420 * Worklist queue management. 421 * These routines require that the lock be held. 422 */ 423 #ifndef /* NOT */ DEBUG 424 #define WORKLIST_INSERT(head, item) do { \ 425 (item)->wk_state |= ONWORKLIST; \ 426 LIST_INSERT_HEAD(head, item, wk_list); \ 427 } while (0) 428 #define WORKLIST_REMOVE(item) do { \ 429 (item)->wk_state &= ~ONWORKLIST; \ 430 LIST_REMOVE(item, wk_list); \ 431 } while (0) 432 #define WORKITEM_FREE(item, type) FREE(item, DtoM(type)) 433 434 #else /* DEBUG */ 435 static void worklist_insert(struct workhead *, struct worklist *); 436 static void worklist_remove(struct worklist *); 437 static void workitem_free(struct worklist *, int); 438 439 #define WORKLIST_INSERT(head, item) worklist_insert(head, item) 440 #define WORKLIST_REMOVE(item) worklist_remove(item) 441 #define WORKITEM_FREE(item, type) workitem_free((struct worklist *)item, type) 442 443 static void 444 worklist_insert(head, item) 445 struct workhead *head; 446 struct worklist *item; 447 { 448 449 if (lk.lkt_held == NOHOLDER) 450 panic("worklist_insert: lock not held"); 451 if (item->wk_state & ONWORKLIST) { 452 FREE_LOCK(&lk); 453 panic("worklist_insert: already on list"); 454 } 455 item->wk_state |= ONWORKLIST; 456 LIST_INSERT_HEAD(head, item, wk_list); 457 } 458 459 static void 460 worklist_remove(item) 461 struct worklist *item; 462 { 463 464 if (lk.lkt_held == NOHOLDER) 465 panic("worklist_remove: lock not held"); 466 if ((item->wk_state & ONWORKLIST) == 0) { 467 FREE_LOCK(&lk); 468 panic("worklist_remove: not on list"); 469 } 470 item->wk_state &= ~ONWORKLIST; 471 LIST_REMOVE(item, wk_list); 472 } 473 474 static void 475 workitem_free(item, type) 476 struct worklist *item; 477 int type; 478 { 479 480 if (item->wk_state & ONWORKLIST) { 481 if (lk.lkt_held != NOHOLDER) 482 FREE_LOCK(&lk); 483 panic("workitem_free: still on list"); 484 } 485 if (item->wk_type != type) { 486 if (lk.lkt_held != NOHOLDER) 487 FREE_LOCK(&lk); 488 panic("workitem_free: type mismatch"); 489 } 490 FREE(item, DtoM(type)); 491 } 492 #endif /* DEBUG */ 493 494 /* 495 * Workitem queue management 496 */ 497 static struct workhead softdep_workitem_pending; 498 static struct worklist *worklist_tail; 499 static int num_on_worklist; /* number of worklist items to be processed */ 500 static int softdep_worklist_busy; /* 1 => trying to do unmount */ 501 static int softdep_worklist_req; /* serialized waiters */ 502 static int max_softdeps; /* maximum number of structs before slowdown */ 503 static int maxindirdeps = 50; /* max number of indirdeps before slowdown */ 504 static int tickdelay = 2; /* number of ticks to pause during slowdown */ 505 static int proc_waiting; /* tracks whether we have a timeout posted */ 506 static int *stat_countp; /* statistic to count in proc_waiting timeout */ 507 static struct callout_handle handle; /* handle on posted proc_waiting timeout */ 508 static struct thread *filesys_syncer; /* proc of filesystem syncer process */ 509 static int req_clear_inodedeps; /* syncer process flush some inodedeps */ 510 #define FLUSH_INODES 1 511 static int req_clear_remove; /* syncer process flush some freeblks */ 512 #define FLUSH_REMOVE 2 513 #define FLUSH_REMOVE_WAIT 3 514 /* 515 * runtime statistics 516 */ 517 static int stat_worklist_push; /* number of worklist cleanups */ 518 static int stat_blk_limit_push; /* number of times block limit neared */ 519 static int stat_ino_limit_push; /* number of times inode limit neared */ 520 static int stat_blk_limit_hit; /* number of times block slowdown imposed */ 521 static int stat_ino_limit_hit; /* number of times inode slowdown imposed */ 522 static int stat_sync_limit_hit; /* number of synchronous slowdowns imposed */ 523 static int stat_indir_blk_ptrs; /* bufs redirtied as indir ptrs not written */ 524 static int stat_inode_bitmap; /* bufs redirtied as inode bitmap not written */ 525 static int stat_direct_blk_ptrs;/* bufs redirtied as direct ptrs not written */ 526 static int stat_dir_entry; /* bufs redirtied as dir entry cannot write */ 527 #ifdef DEBUG 528 #include <vm/vm.h> 529 #include <sys/sysctl.h> 530 SYSCTL_INT(_debug, OID_AUTO, max_softdeps, CTLFLAG_RW, &max_softdeps, 0, ""); 531 SYSCTL_INT(_debug, OID_AUTO, tickdelay, CTLFLAG_RW, &tickdelay, 0, ""); 532 SYSCTL_INT(_debug, OID_AUTO, maxindirdeps, CTLFLAG_RW, &maxindirdeps, 0, ""); 533 SYSCTL_INT(_debug, OID_AUTO, worklist_push, CTLFLAG_RW, &stat_worklist_push, 0,""); 534 SYSCTL_INT(_debug, OID_AUTO, blk_limit_push, CTLFLAG_RW, &stat_blk_limit_push, 0,""); 535 SYSCTL_INT(_debug, OID_AUTO, ino_limit_push, CTLFLAG_RW, &stat_ino_limit_push, 0,""); 536 SYSCTL_INT(_debug, OID_AUTO, blk_limit_hit, CTLFLAG_RW, &stat_blk_limit_hit, 0, ""); 537 SYSCTL_INT(_debug, OID_AUTO, ino_limit_hit, CTLFLAG_RW, &stat_ino_limit_hit, 0, ""); 538 SYSCTL_INT(_debug, OID_AUTO, sync_limit_hit, CTLFLAG_RW, &stat_sync_limit_hit, 0, ""); 539 SYSCTL_INT(_debug, OID_AUTO, indir_blk_ptrs, CTLFLAG_RW, &stat_indir_blk_ptrs, 0, ""); 540 SYSCTL_INT(_debug, OID_AUTO, inode_bitmap, CTLFLAG_RW, &stat_inode_bitmap, 0, ""); 541 SYSCTL_INT(_debug, OID_AUTO, direct_blk_ptrs, CTLFLAG_RW, &stat_direct_blk_ptrs, 0, ""); 542 SYSCTL_INT(_debug, OID_AUTO, dir_entry, CTLFLAG_RW, &stat_dir_entry, 0, ""); 543 #endif /* DEBUG */ 544 545 /* 546 * Add an item to the end of the work queue. 547 * This routine requires that the lock be held. 548 * This is the only routine that adds items to the list. 549 * The following routine is the only one that removes items 550 * and does so in order from first to last. 551 */ 552 static void 553 add_to_worklist(wk) 554 struct worklist *wk; 555 { 556 557 if (wk->wk_state & ONWORKLIST) { 558 if (lk.lkt_held != NOHOLDER) 559 FREE_LOCK(&lk); 560 panic("add_to_worklist: already on list"); 561 } 562 wk->wk_state |= ONWORKLIST; 563 if (LIST_FIRST(&softdep_workitem_pending) == NULL) 564 LIST_INSERT_HEAD(&softdep_workitem_pending, wk, wk_list); 565 else 566 LIST_INSERT_AFTER(worklist_tail, wk, wk_list); 567 worklist_tail = wk; 568 num_on_worklist += 1; 569 } 570 571 /* 572 * Process that runs once per second to handle items in the background queue. 573 * 574 * Note that we ensure that everything is done in the order in which they 575 * appear in the queue. The code below depends on this property to ensure 576 * that blocks of a file are freed before the inode itself is freed. This 577 * ordering ensures that no new <vfsid, inum, lbn> triples will be generated 578 * until all the old ones have been purged from the dependency lists. 579 */ 580 int 581 softdep_process_worklist(matchmnt) 582 struct mount *matchmnt; 583 { 584 struct thread *td = curthread; 585 int cnt, matchcnt, loopcount; 586 long starttime; 587 588 /* 589 * Record the process identifier of our caller so that we can give 590 * this process preferential treatment in request_cleanup below. 591 */ 592 filesys_syncer = td; 593 matchcnt = 0; 594 595 /* 596 * There is no danger of having multiple processes run this 597 * code, but we have to single-thread it when softdep_flushfiles() 598 * is in operation to get an accurate count of the number of items 599 * related to its mount point that are in the list. 600 */ 601 if (matchmnt == NULL) { 602 if (softdep_worklist_busy < 0) 603 return(-1); 604 softdep_worklist_busy += 1; 605 } 606 607 /* 608 * If requested, try removing inode or removal dependencies. 609 */ 610 if (req_clear_inodedeps) { 611 clear_inodedeps(td); 612 req_clear_inodedeps -= 1; 613 wakeup_one(&proc_waiting); 614 } 615 if (req_clear_remove) { 616 clear_remove(td); 617 req_clear_remove -= 1; 618 wakeup_one(&proc_waiting); 619 } 620 loopcount = 1; 621 starttime = time_second; 622 while (num_on_worklist > 0) { 623 if ((cnt = process_worklist_item(matchmnt, 0)) == -1) 624 break; 625 else 626 matchcnt += cnt; 627 628 /* 629 * If a umount operation wants to run the worklist 630 * accurately, abort. 631 */ 632 if (softdep_worklist_req && matchmnt == NULL) { 633 matchcnt = -1; 634 break; 635 } 636 637 /* 638 * If requested, try removing inode or removal dependencies. 639 */ 640 if (req_clear_inodedeps) { 641 clear_inodedeps(td); 642 req_clear_inodedeps -= 1; 643 wakeup_one(&proc_waiting); 644 } 645 if (req_clear_remove) { 646 clear_remove(td); 647 req_clear_remove -= 1; 648 wakeup_one(&proc_waiting); 649 } 650 /* 651 * We do not generally want to stop for buffer space, but if 652 * we are really being a buffer hog, we will stop and wait. 653 */ 654 if (loopcount++ % 128 == 0) 655 bwillwrite(); 656 /* 657 * Never allow processing to run for more than one 658 * second. Otherwise the other syncer tasks may get 659 * excessively backlogged. 660 */ 661 if (starttime != time_second && matchmnt == NULL) { 662 matchcnt = -1; 663 break; 664 } 665 } 666 if (matchmnt == NULL) { 667 softdep_worklist_busy -= 1; 668 if (softdep_worklist_req && softdep_worklist_busy == 0) 669 wakeup(&softdep_worklist_req); 670 } 671 return (matchcnt); 672 } 673 674 /* 675 * Process one item on the worklist. 676 */ 677 static int 678 process_worklist_item(matchmnt, flags) 679 struct mount *matchmnt; 680 int flags; 681 { 682 struct worklist *wk, *wkend; 683 struct mount *mp; 684 struct vnode *vp; 685 int matchcnt = 0; 686 687 /* 688 * If we are being called because of a process doing a 689 * copy-on-write, then it is not safe to write as we may 690 * recurse into the copy-on-write routine. 691 */ 692 if (curthread->td_proc->p_flag & P_COWINPROGRESS) 693 return (-1); 694 ACQUIRE_LOCK(&lk); 695 /* 696 * Normally we just process each item on the worklist in order. 697 * However, if we are in a situation where we cannot lock any 698 * inodes, we have to skip over any dirrem requests whose 699 * vnodes are resident and locked. 700 */ 701 vp = NULL; 702 LIST_FOREACH(wk, &softdep_workitem_pending, wk_list) { 703 if (wk->wk_state & INPROGRESS) 704 continue; 705 if ((flags & LK_NOWAIT) == 0 || wk->wk_type != D_DIRREM) 706 break; 707 wk->wk_state |= INPROGRESS; 708 FREE_LOCK(&lk); 709 VFS_VGET(WK_DIRREM(wk)->dm_mnt, WK_DIRREM(wk)->dm_oldinum, 710 LK_NOWAIT | LK_EXCLUSIVE, &vp); 711 ACQUIRE_LOCK(&lk); 712 wk->wk_state &= ~INPROGRESS; 713 if (vp != NULL) 714 break; 715 } 716 if (wk == 0) { 717 FREE_LOCK(&lk); 718 return (-1); 719 } 720 /* 721 * Remove the item to be processed. If we are removing the last 722 * item on the list, we need to recalculate the tail pointer. 723 * As this happens rarely and usually when the list is short, 724 * we just run down the list to find it rather than tracking it 725 * in the above loop. 726 */ 727 WORKLIST_REMOVE(wk); 728 if (wk == worklist_tail) { 729 LIST_FOREACH(wkend, &softdep_workitem_pending, wk_list) 730 if (LIST_NEXT(wkend, wk_list) == NULL) 731 break; 732 worklist_tail = wkend; 733 } 734 num_on_worklist -= 1; 735 FREE_LOCK(&lk); 736 switch (wk->wk_type) { 737 738 case D_DIRREM: 739 /* removal of a directory entry */ 740 mp = WK_DIRREM(wk)->dm_mnt; 741 if (vn_write_suspend_wait(NULL, mp, V_NOWAIT)) 742 panic("%s: dirrem on suspended filesystem", 743 "process_worklist_item"); 744 if (mp == matchmnt) 745 matchcnt += 1; 746 handle_workitem_remove(WK_DIRREM(wk), vp); 747 break; 748 749 case D_FREEBLKS: 750 /* releasing blocks and/or fragments from a file */ 751 mp = WK_FREEBLKS(wk)->fb_mnt; 752 if (vn_write_suspend_wait(NULL, mp, V_NOWAIT)) 753 panic("%s: freeblks on suspended filesystem", 754 "process_worklist_item"); 755 if (mp == matchmnt) 756 matchcnt += 1; 757 handle_workitem_freeblocks(WK_FREEBLKS(wk), flags & LK_NOWAIT); 758 break; 759 760 case D_FREEFRAG: 761 /* releasing a fragment when replaced as a file grows */ 762 mp = WK_FREEFRAG(wk)->ff_mnt; 763 if (vn_write_suspend_wait(NULL, mp, V_NOWAIT)) 764 panic("%s: freefrag on suspended filesystem", 765 "process_worklist_item"); 766 if (mp == matchmnt) 767 matchcnt += 1; 768 handle_workitem_freefrag(WK_FREEFRAG(wk)); 769 break; 770 771 case D_FREEFILE: 772 /* releasing an inode when its link count drops to 0 */ 773 mp = WK_FREEFILE(wk)->fx_mnt; 774 if (vn_write_suspend_wait(NULL, mp, V_NOWAIT)) 775 panic("%s: freefile on suspended filesystem", 776 "process_worklist_item"); 777 if (mp == matchmnt) 778 matchcnt += 1; 779 handle_workitem_freefile(WK_FREEFILE(wk)); 780 break; 781 782 default: 783 panic("%s_process_worklist: Unknown type %s", 784 "softdep", TYPENAME(wk->wk_type)); 785 /* NOTREACHED */ 786 } 787 return (matchcnt); 788 } 789 790 /* 791 * Move dependencies from one buffer to another. 792 */ 793 static void 794 softdep_move_dependencies(oldbp, newbp) 795 struct buf *oldbp; 796 struct buf *newbp; 797 { 798 struct worklist *wk, *wktail; 799 800 if (LIST_FIRST(&newbp->b_dep) != NULL) 801 panic("softdep_move_dependencies: need merge code"); 802 wktail = 0; 803 ACQUIRE_LOCK(&lk); 804 while ((wk = LIST_FIRST(&oldbp->b_dep)) != NULL) { 805 LIST_REMOVE(wk, wk_list); 806 if (wktail == 0) 807 LIST_INSERT_HEAD(&newbp->b_dep, wk, wk_list); 808 else 809 LIST_INSERT_AFTER(wktail, wk, wk_list); 810 wktail = wk; 811 } 812 FREE_LOCK(&lk); 813 } 814 815 /* 816 * Purge the work list of all items associated with a particular mount point. 817 */ 818 int 819 softdep_flushworklist(oldmnt, countp, td) 820 struct mount *oldmnt; 821 int *countp; 822 struct thread *td; 823 { 824 struct vnode *devvp; 825 int count, error = 0; 826 827 /* 828 * Await our turn to clear out the queue, then serialize access. 829 */ 830 while (softdep_worklist_busy) { 831 softdep_worklist_req += 1; 832 tsleep(&softdep_worklist_req, PRIBIO, "softflush", 0); 833 softdep_worklist_req -= 1; 834 } 835 softdep_worklist_busy = -1; 836 /* 837 * Alternately flush the block device associated with the mount 838 * point and process any dependencies that the flushing 839 * creates. We continue until no more worklist dependencies 840 * are found. 841 */ 842 *countp = 0; 843 devvp = VFSTOUFS(oldmnt)->um_devvp; 844 while ((count = softdep_process_worklist(oldmnt)) > 0) { 845 *countp += count; 846 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY, td); 847 error = VOP_FSYNC(devvp, td->td_ucred, MNT_WAIT, td); 848 VOP_UNLOCK(devvp, 0, td); 849 if (error) 850 break; 851 } 852 softdep_worklist_busy = 0; 853 if (softdep_worklist_req) 854 wakeup(&softdep_worklist_req); 855 return (error); 856 } 857 858 /* 859 * Flush all vnodes and worklist items associated with a specified mount point. 860 */ 861 int 862 softdep_flushfiles(oldmnt, flags, td) 863 struct mount *oldmnt; 864 int flags; 865 struct thread *td; 866 { 867 int error, count, loopcnt; 868 869 error = 0; 870 871 /* 872 * Alternately flush the vnodes associated with the mount 873 * point and process any dependencies that the flushing 874 * creates. In theory, this loop can happen at most twice, 875 * but we give it a few extra just to be sure. 876 */ 877 for (loopcnt = 10; loopcnt > 0; loopcnt--) { 878 /* 879 * Do another flush in case any vnodes were brought in 880 * as part of the cleanup operations. 881 */ 882 if ((error = ffs_flushfiles(oldmnt, flags, td)) != 0) 883 break; 884 if ((error = softdep_flushworklist(oldmnt, &count, td)) != 0 || 885 count == 0) 886 break; 887 } 888 /* 889 * If we are unmounting then it is an error to fail. If we 890 * are simply trying to downgrade to read-only, then filesystem 891 * activity can keep us busy forever, so we just fail with EBUSY. 892 */ 893 if (loopcnt == 0) { 894 if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT) 895 panic("softdep_flushfiles: looping"); 896 error = EBUSY; 897 } 898 return (error); 899 } 900 901 /* 902 * Structure hashing. 903 * 904 * There are three types of structures that can be looked up: 905 * 1) pagedep structures identified by mount point, inode number, 906 * and logical block. 907 * 2) inodedep structures identified by mount point and inode number. 908 * 3) newblk structures identified by mount point and 909 * physical block number. 910 * 911 * The "pagedep" and "inodedep" dependency structures are hashed 912 * separately from the file blocks and inodes to which they correspond. 913 * This separation helps when the in-memory copy of an inode or 914 * file block must be replaced. It also obviates the need to access 915 * an inode or file page when simply updating (or de-allocating) 916 * dependency structures. Lookup of newblk structures is needed to 917 * find newly allocated blocks when trying to associate them with 918 * their allocdirect or allocindir structure. 919 * 920 * The lookup routines optionally create and hash a new instance when 921 * an existing entry is not found. 922 */ 923 #define DEPALLOC 0x0001 /* allocate structure if lookup fails */ 924 #define NODELAY 0x0002 /* cannot do background work */ 925 926 /* 927 * Structures and routines associated with pagedep caching. 928 */ 929 LIST_HEAD(pagedep_hashhead, pagedep) *pagedep_hashtbl; 930 u_long pagedep_hash; /* size of hash table - 1 */ 931 #define PAGEDEP_HASH(mp, inum, lbn) \ 932 (&pagedep_hashtbl[((((register_t)(mp)) >> 13) + (inum) + (lbn)) & \ 933 pagedep_hash]) 934 static struct sema pagedep_in_progress; 935 936 /* 937 * Look up a pagedep. Return 1 if found, 0 if not found or found 938 * when asked to allocate but not associated with any buffer. 939 * If not found, allocate if DEPALLOC flag is passed. 940 * Found or allocated entry is returned in pagedeppp. 941 * This routine must be called with splbio interrupts blocked. 942 */ 943 static int 944 pagedep_lookup(ip, lbn, flags, pagedeppp) 945 struct inode *ip; 946 ufs_lbn_t lbn; 947 int flags; 948 struct pagedep **pagedeppp; 949 { 950 struct pagedep *pagedep; 951 struct pagedep_hashhead *pagedephd; 952 struct mount *mp; 953 int i; 954 955 #ifdef DEBUG 956 if (lk.lkt_held == NOHOLDER) 957 panic("pagedep_lookup: lock not held"); 958 #endif 959 mp = ITOV(ip)->v_mount; 960 pagedephd = PAGEDEP_HASH(mp, ip->i_number, lbn); 961 top: 962 LIST_FOREACH(pagedep, pagedephd, pd_hash) 963 if (ip->i_number == pagedep->pd_ino && 964 lbn == pagedep->pd_lbn && 965 mp == pagedep->pd_mnt) 966 break; 967 if (pagedep) { 968 *pagedeppp = pagedep; 969 if ((flags & DEPALLOC) != 0 && 970 (pagedep->pd_state & ONWORKLIST) == 0) 971 return (0); 972 return (1); 973 } 974 if ((flags & DEPALLOC) == 0) { 975 *pagedeppp = NULL; 976 return (0); 977 } 978 if (sema_get(&pagedep_in_progress, &lk) == 0) { 979 ACQUIRE_LOCK(&lk); 980 goto top; 981 } 982 MALLOC(pagedep, struct pagedep *, sizeof(struct pagedep), M_PAGEDEP, 983 M_SOFTDEP_FLAGS|M_ZERO); 984 pagedep->pd_list.wk_type = D_PAGEDEP; 985 pagedep->pd_mnt = mp; 986 pagedep->pd_ino = ip->i_number; 987 pagedep->pd_lbn = lbn; 988 LIST_INIT(&pagedep->pd_dirremhd); 989 LIST_INIT(&pagedep->pd_pendinghd); 990 for (i = 0; i < DAHASHSZ; i++) 991 LIST_INIT(&pagedep->pd_diraddhd[i]); 992 ACQUIRE_LOCK(&lk); 993 LIST_INSERT_HEAD(pagedephd, pagedep, pd_hash); 994 sema_release(&pagedep_in_progress); 995 *pagedeppp = pagedep; 996 return (0); 997 } 998 999 /* 1000 * Structures and routines associated with inodedep caching. 1001 */ 1002 LIST_HEAD(inodedep_hashhead, inodedep) *inodedep_hashtbl; 1003 static u_long inodedep_hash; /* size of hash table - 1 */ 1004 static long num_inodedep; /* number of inodedep allocated */ 1005 #define INODEDEP_HASH(fs, inum) \ 1006 (&inodedep_hashtbl[((((register_t)(fs)) >> 13) + (inum)) & inodedep_hash]) 1007 static struct sema inodedep_in_progress; 1008 1009 /* 1010 * Look up an inodedep. Return 1 if found, 0 if not found. 1011 * If not found, allocate if DEPALLOC flag is passed. 1012 * Found or allocated entry is returned in inodedeppp. 1013 * This routine must be called with splbio interrupts blocked. 1014 */ 1015 static int 1016 inodedep_lookup(fs, inum, flags, inodedeppp) 1017 struct fs *fs; 1018 ino_t inum; 1019 int flags; 1020 struct inodedep **inodedeppp; 1021 { 1022 struct inodedep *inodedep; 1023 struct inodedep_hashhead *inodedephd; 1024 int firsttry; 1025 1026 #ifdef DEBUG 1027 if (lk.lkt_held == NOHOLDER) 1028 panic("inodedep_lookup: lock not held"); 1029 #endif 1030 firsttry = 1; 1031 inodedephd = INODEDEP_HASH(fs, inum); 1032 top: 1033 LIST_FOREACH(inodedep, inodedephd, id_hash) 1034 if (inum == inodedep->id_ino && fs == inodedep->id_fs) 1035 break; 1036 if (inodedep) { 1037 *inodedeppp = inodedep; 1038 return (1); 1039 } 1040 if ((flags & DEPALLOC) == 0) { 1041 *inodedeppp = NULL; 1042 return (0); 1043 } 1044 /* 1045 * If we are over our limit, try to improve the situation. 1046 */ 1047 if (num_inodedep > max_softdeps && firsttry && (flags & NODELAY) == 0 && 1048 request_cleanup(FLUSH_INODES, 1)) { 1049 firsttry = 0; 1050 goto top; 1051 } 1052 if (sema_get(&inodedep_in_progress, &lk) == 0) { 1053 ACQUIRE_LOCK(&lk); 1054 goto top; 1055 } 1056 num_inodedep += 1; 1057 MALLOC(inodedep, struct inodedep *, sizeof(struct inodedep), 1058 M_INODEDEP, M_SOFTDEP_FLAGS); 1059 inodedep->id_list.wk_type = D_INODEDEP; 1060 inodedep->id_fs = fs; 1061 inodedep->id_ino = inum; 1062 inodedep->id_state = ALLCOMPLETE; 1063 inodedep->id_nlinkdelta = 0; 1064 inodedep->id_savedino1 = NULL; 1065 inodedep->id_savedsize = -1; 1066 inodedep->id_savedextsize = -1; 1067 inodedep->id_buf = NULL; 1068 LIST_INIT(&inodedep->id_pendinghd); 1069 LIST_INIT(&inodedep->id_inowait); 1070 LIST_INIT(&inodedep->id_bufwait); 1071 TAILQ_INIT(&inodedep->id_inoupdt); 1072 TAILQ_INIT(&inodedep->id_newinoupdt); 1073 TAILQ_INIT(&inodedep->id_extupdt); 1074 TAILQ_INIT(&inodedep->id_newextupdt); 1075 ACQUIRE_LOCK(&lk); 1076 LIST_INSERT_HEAD(inodedephd, inodedep, id_hash); 1077 sema_release(&inodedep_in_progress); 1078 *inodedeppp = inodedep; 1079 return (0); 1080 } 1081 1082 /* 1083 * Structures and routines associated with newblk caching. 1084 */ 1085 LIST_HEAD(newblk_hashhead, newblk) *newblk_hashtbl; 1086 u_long newblk_hash; /* size of hash table - 1 */ 1087 #define NEWBLK_HASH(fs, inum) \ 1088 (&newblk_hashtbl[((((register_t)(fs)) >> 13) + (inum)) & newblk_hash]) 1089 static struct sema newblk_in_progress; 1090 1091 /* 1092 * Look up a newblk. Return 1 if found, 0 if not found. 1093 * If not found, allocate if DEPALLOC flag is passed. 1094 * Found or allocated entry is returned in newblkpp. 1095 */ 1096 static int 1097 newblk_lookup(fs, newblkno, flags, newblkpp) 1098 struct fs *fs; 1099 ufs2_daddr_t newblkno; 1100 int flags; 1101 struct newblk **newblkpp; 1102 { 1103 struct newblk *newblk; 1104 struct newblk_hashhead *newblkhd; 1105 1106 newblkhd = NEWBLK_HASH(fs, newblkno); 1107 top: 1108 LIST_FOREACH(newblk, newblkhd, nb_hash) 1109 if (newblkno == newblk->nb_newblkno && fs == newblk->nb_fs) 1110 break; 1111 if (newblk) { 1112 *newblkpp = newblk; 1113 return (1); 1114 } 1115 if ((flags & DEPALLOC) == 0) { 1116 *newblkpp = NULL; 1117 return (0); 1118 } 1119 if (sema_get(&newblk_in_progress, 0) == 0) 1120 goto top; 1121 MALLOC(newblk, struct newblk *, sizeof(struct newblk), 1122 M_NEWBLK, M_SOFTDEP_FLAGS); 1123 newblk->nb_state = 0; 1124 newblk->nb_fs = fs; 1125 newblk->nb_newblkno = newblkno; 1126 LIST_INSERT_HEAD(newblkhd, newblk, nb_hash); 1127 sema_release(&newblk_in_progress); 1128 *newblkpp = newblk; 1129 return (0); 1130 } 1131 1132 /* 1133 * Executed during filesystem system initialization before 1134 * mounting any filesystems. 1135 */ 1136 void 1137 softdep_initialize() 1138 { 1139 1140 LIST_INIT(&mkdirlisthd); 1141 LIST_INIT(&softdep_workitem_pending); 1142 max_softdeps = desiredvnodes * 4; 1143 pagedep_hashtbl = hashinit(desiredvnodes / 5, M_PAGEDEP, 1144 &pagedep_hash); 1145 sema_init(&pagedep_in_progress, "pagedep", PRIBIO, 0); 1146 inodedep_hashtbl = hashinit(desiredvnodes, M_INODEDEP, &inodedep_hash); 1147 sema_init(&inodedep_in_progress, "inodedep", PRIBIO, 0); 1148 newblk_hashtbl = hashinit(64, M_NEWBLK, &newblk_hash); 1149 sema_init(&newblk_in_progress, "newblk", PRIBIO, 0); 1150 1151 /* hooks through which the main kernel code calls us */ 1152 softdep_process_worklist_hook = softdep_process_worklist; 1153 softdep_fsync_hook = softdep_fsync; 1154 1155 /* initialise bioops hack */ 1156 bioops.io_start = softdep_disk_io_initiation; 1157 bioops.io_complete = softdep_disk_write_complete; 1158 bioops.io_deallocate = softdep_deallocate_dependencies; 1159 bioops.io_movedeps = softdep_move_dependencies; 1160 bioops.io_countdeps = softdep_count_dependencies; 1161 } 1162 1163 /* 1164 * Executed after all filesystems have been unmounted during 1165 * filesystem module unload. 1166 */ 1167 void 1168 softdep_uninitialize() 1169 { 1170 1171 softdep_process_worklist_hook = NULL; 1172 softdep_fsync_hook = NULL; 1173 hashdestroy(pagedep_hashtbl, M_PAGEDEP, pagedep_hash); 1174 hashdestroy(inodedep_hashtbl, M_INODEDEP, inodedep_hash); 1175 hashdestroy(newblk_hashtbl, M_NEWBLK, newblk_hash); 1176 } 1177 1178 /* 1179 * Called at mount time to notify the dependency code that a 1180 * filesystem wishes to use it. 1181 */ 1182 int 1183 softdep_mount(devvp, mp, fs, cred) 1184 struct vnode *devvp; 1185 struct mount *mp; 1186 struct fs *fs; 1187 struct ucred *cred; 1188 { 1189 struct csum_total cstotal; 1190 struct cg *cgp; 1191 struct buf *bp; 1192 int error, cyl; 1193 1194 mp->mnt_flag &= ~MNT_ASYNC; 1195 mp->mnt_flag |= MNT_SOFTDEP; 1196 /* 1197 * When doing soft updates, the counters in the 1198 * superblock may have gotten out of sync, so we have 1199 * to scan the cylinder groups and recalculate them. 1200 */ 1201 if (fs->fs_clean != 0) 1202 return (0); 1203 bzero(&cstotal, sizeof cstotal); 1204 for (cyl = 0; cyl < fs->fs_ncg; cyl++) { 1205 if ((error = bread(devvp, fsbtodb(fs, cgtod(fs, cyl)), 1206 fs->fs_cgsize, cred, &bp)) != 0) { 1207 brelse(bp); 1208 return (error); 1209 } 1210 cgp = (struct cg *)bp->b_data; 1211 cstotal.cs_nffree += cgp->cg_cs.cs_nffree; 1212 cstotal.cs_nbfree += cgp->cg_cs.cs_nbfree; 1213 cstotal.cs_nifree += cgp->cg_cs.cs_nifree; 1214 cstotal.cs_ndir += cgp->cg_cs.cs_ndir; 1215 fs->fs_cs(fs, cyl) = cgp->cg_cs; 1216 brelse(bp); 1217 } 1218 #ifdef DEBUG 1219 if (bcmp(&cstotal, &fs->fs_cstotal, sizeof cstotal)) 1220 printf("%s: superblock summary recomputed\n", fs->fs_fsmnt); 1221 #endif 1222 bcopy(&cstotal, &fs->fs_cstotal, sizeof cstotal); 1223 return (0); 1224 } 1225 1226 /* 1227 * Protecting the freemaps (or bitmaps). 1228 * 1229 * To eliminate the need to execute fsck before mounting a filesystem 1230 * after a power failure, one must (conservatively) guarantee that the 1231 * on-disk copy of the bitmaps never indicate that a live inode or block is 1232 * free. So, when a block or inode is allocated, the bitmap should be 1233 * updated (on disk) before any new pointers. When a block or inode is 1234 * freed, the bitmap should not be updated until all pointers have been 1235 * reset. The latter dependency is handled by the delayed de-allocation 1236 * approach described below for block and inode de-allocation. The former 1237 * dependency is handled by calling the following procedure when a block or 1238 * inode is allocated. When an inode is allocated an "inodedep" is created 1239 * with its DEPCOMPLETE flag cleared until its bitmap is written to disk. 1240 * Each "inodedep" is also inserted into the hash indexing structure so 1241 * that any additional link additions can be made dependent on the inode 1242 * allocation. 1243 * 1244 * The ufs filesystem maintains a number of free block counts (e.g., per 1245 * cylinder group, per cylinder and per <cylinder, rotational position> pair) 1246 * in addition to the bitmaps. These counts are used to improve efficiency 1247 * during allocation and therefore must be consistent with the bitmaps. 1248 * There is no convenient way to guarantee post-crash consistency of these 1249 * counts with simple update ordering, for two main reasons: (1) The counts 1250 * and bitmaps for a single cylinder group block are not in the same disk 1251 * sector. If a disk write is interrupted (e.g., by power failure), one may 1252 * be written and the other not. (2) Some of the counts are located in the 1253 * superblock rather than the cylinder group block. So, we focus our soft 1254 * updates implementation on protecting the bitmaps. When mounting a 1255 * filesystem, we recompute the auxiliary counts from the bitmaps. 1256 */ 1257 1258 /* 1259 * Called just after updating the cylinder group block to allocate an inode. 1260 */ 1261 void 1262 softdep_setup_inomapdep(bp, ip, newinum) 1263 struct buf *bp; /* buffer for cylgroup block with inode map */ 1264 struct inode *ip; /* inode related to allocation */ 1265 ino_t newinum; /* new inode number being allocated */ 1266 { 1267 struct inodedep *inodedep; 1268 struct bmsafemap *bmsafemap; 1269 1270 /* 1271 * Create a dependency for the newly allocated inode. 1272 * Panic if it already exists as something is seriously wrong. 1273 * Otherwise add it to the dependency list for the buffer holding 1274 * the cylinder group map from which it was allocated. 1275 */ 1276 ACQUIRE_LOCK(&lk); 1277 if ((inodedep_lookup(ip->i_fs, newinum, DEPALLOC|NODELAY, &inodedep))) { 1278 FREE_LOCK(&lk); 1279 panic("softdep_setup_inomapdep: found inode"); 1280 } 1281 inodedep->id_buf = bp; 1282 inodedep->id_state &= ~DEPCOMPLETE; 1283 bmsafemap = bmsafemap_lookup(bp); 1284 LIST_INSERT_HEAD(&bmsafemap->sm_inodedephd, inodedep, id_deps); 1285 FREE_LOCK(&lk); 1286 } 1287 1288 /* 1289 * Called just after updating the cylinder group block to 1290 * allocate block or fragment. 1291 */ 1292 void 1293 softdep_setup_blkmapdep(bp, fs, newblkno) 1294 struct buf *bp; /* buffer for cylgroup block with block map */ 1295 struct fs *fs; /* filesystem doing allocation */ 1296 ufs2_daddr_t newblkno; /* number of newly allocated block */ 1297 { 1298 struct newblk *newblk; 1299 struct bmsafemap *bmsafemap; 1300 1301 /* 1302 * Create a dependency for the newly allocated block. 1303 * Add it to the dependency list for the buffer holding 1304 * the cylinder group map from which it was allocated. 1305 */ 1306 if (newblk_lookup(fs, newblkno, DEPALLOC, &newblk) != 0) 1307 panic("softdep_setup_blkmapdep: found block"); 1308 ACQUIRE_LOCK(&lk); 1309 newblk->nb_bmsafemap = bmsafemap = bmsafemap_lookup(bp); 1310 LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, nb_deps); 1311 FREE_LOCK(&lk); 1312 } 1313 1314 /* 1315 * Find the bmsafemap associated with a cylinder group buffer. 1316 * If none exists, create one. The buffer must be locked when 1317 * this routine is called and this routine must be called with 1318 * splbio interrupts blocked. 1319 */ 1320 static struct bmsafemap * 1321 bmsafemap_lookup(bp) 1322 struct buf *bp; 1323 { 1324 struct bmsafemap *bmsafemap; 1325 struct worklist *wk; 1326 1327 #ifdef DEBUG 1328 if (lk.lkt_held == NOHOLDER) 1329 panic("bmsafemap_lookup: lock not held"); 1330 #endif 1331 LIST_FOREACH(wk, &bp->b_dep, wk_list) 1332 if (wk->wk_type == D_BMSAFEMAP) 1333 return (WK_BMSAFEMAP(wk)); 1334 FREE_LOCK(&lk); 1335 MALLOC(bmsafemap, struct bmsafemap *, sizeof(struct bmsafemap), 1336 M_BMSAFEMAP, M_SOFTDEP_FLAGS); 1337 bmsafemap->sm_list.wk_type = D_BMSAFEMAP; 1338 bmsafemap->sm_list.wk_state = 0; 1339 bmsafemap->sm_buf = bp; 1340 LIST_INIT(&bmsafemap->sm_allocdirecthd); 1341 LIST_INIT(&bmsafemap->sm_allocindirhd); 1342 LIST_INIT(&bmsafemap->sm_inodedephd); 1343 LIST_INIT(&bmsafemap->sm_newblkhd); 1344 ACQUIRE_LOCK(&lk); 1345 WORKLIST_INSERT(&bp->b_dep, &bmsafemap->sm_list); 1346 return (bmsafemap); 1347 } 1348 1349 /* 1350 * Direct block allocation dependencies. 1351 * 1352 * When a new block is allocated, the corresponding disk locations must be 1353 * initialized (with zeros or new data) before the on-disk inode points to 1354 * them. Also, the freemap from which the block was allocated must be 1355 * updated (on disk) before the inode's pointer. These two dependencies are 1356 * independent of each other and are needed for all file blocks and indirect 1357 * blocks that are pointed to directly by the inode. Just before the 1358 * "in-core" version of the inode is updated with a newly allocated block 1359 * number, a procedure (below) is called to setup allocation dependency 1360 * structures. These structures are removed when the corresponding 1361 * dependencies are satisfied or when the block allocation becomes obsolete 1362 * (i.e., the file is deleted, the block is de-allocated, or the block is a 1363 * fragment that gets upgraded). All of these cases are handled in 1364 * procedures described later. 1365 * 1366 * When a file extension causes a fragment to be upgraded, either to a larger 1367 * fragment or to a full block, the on-disk location may change (if the 1368 * previous fragment could not simply be extended). In this case, the old 1369 * fragment must be de-allocated, but not until after the inode's pointer has 1370 * been updated. In most cases, this is handled by later procedures, which 1371 * will construct a "freefrag" structure to be added to the workitem queue 1372 * when the inode update is complete (or obsolete). The main exception to 1373 * this is when an allocation occurs while a pending allocation dependency 1374 * (for the same block pointer) remains. This case is handled in the main 1375 * allocation dependency setup procedure by immediately freeing the 1376 * unreferenced fragments. 1377 */ 1378 void 1379 softdep_setup_allocdirect(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp) 1380 struct inode *ip; /* inode to which block is being added */ 1381 ufs_lbn_t lbn; /* block pointer within inode */ 1382 ufs2_daddr_t newblkno; /* disk block number being added */ 1383 ufs2_daddr_t oldblkno; /* previous block number, 0 unless frag */ 1384 long newsize; /* size of new block */ 1385 long oldsize; /* size of new block */ 1386 struct buf *bp; /* bp for allocated block */ 1387 { 1388 struct allocdirect *adp, *oldadp; 1389 struct allocdirectlst *adphead; 1390 struct bmsafemap *bmsafemap; 1391 struct inodedep *inodedep; 1392 struct pagedep *pagedep; 1393 struct newblk *newblk; 1394 1395 MALLOC(adp, struct allocdirect *, sizeof(struct allocdirect), 1396 M_ALLOCDIRECT, M_SOFTDEP_FLAGS|M_ZERO); 1397 adp->ad_list.wk_type = D_ALLOCDIRECT; 1398 adp->ad_lbn = lbn; 1399 adp->ad_newblkno = newblkno; 1400 adp->ad_oldblkno = oldblkno; 1401 adp->ad_newsize = newsize; 1402 adp->ad_oldsize = oldsize; 1403 adp->ad_state = ATTACHED; 1404 LIST_INIT(&adp->ad_newdirblk); 1405 if (newblkno == oldblkno) 1406 adp->ad_freefrag = NULL; 1407 else 1408 adp->ad_freefrag = newfreefrag(ip, oldblkno, oldsize); 1409 1410 if (newblk_lookup(ip->i_fs, newblkno, 0, &newblk) == 0) 1411 panic("softdep_setup_allocdirect: lost block"); 1412 1413 ACQUIRE_LOCK(&lk); 1414 inodedep_lookup(ip->i_fs, ip->i_number, DEPALLOC | NODELAY, &inodedep); 1415 adp->ad_inodedep = inodedep; 1416 1417 if (newblk->nb_state == DEPCOMPLETE) { 1418 adp->ad_state |= DEPCOMPLETE; 1419 adp->ad_buf = NULL; 1420 } else { 1421 bmsafemap = newblk->nb_bmsafemap; 1422 adp->ad_buf = bmsafemap->sm_buf; 1423 LIST_REMOVE(newblk, nb_deps); 1424 LIST_INSERT_HEAD(&bmsafemap->sm_allocdirecthd, adp, ad_deps); 1425 } 1426 LIST_REMOVE(newblk, nb_hash); 1427 FREE(newblk, M_NEWBLK); 1428 1429 WORKLIST_INSERT(&bp->b_dep, &adp->ad_list); 1430 if (lbn >= NDADDR) { 1431 /* allocating an indirect block */ 1432 if (oldblkno != 0) { 1433 FREE_LOCK(&lk); 1434 panic("softdep_setup_allocdirect: non-zero indir"); 1435 } 1436 } else { 1437 /* 1438 * Allocating a direct block. 1439 * 1440 * If we are allocating a directory block, then we must 1441 * allocate an associated pagedep to track additions and 1442 * deletions. 1443 */ 1444 if ((ip->i_mode & IFMT) == IFDIR && 1445 pagedep_lookup(ip, lbn, DEPALLOC, &pagedep) == 0) 1446 WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list); 1447 } 1448 /* 1449 * The list of allocdirects must be kept in sorted and ascending 1450 * order so that the rollback routines can quickly determine the 1451 * first uncommitted block (the size of the file stored on disk 1452 * ends at the end of the lowest committed fragment, or if there 1453 * are no fragments, at the end of the highest committed block). 1454 * Since files generally grow, the typical case is that the new 1455 * block is to be added at the end of the list. We speed this 1456 * special case by checking against the last allocdirect in the 1457 * list before laboriously traversing the list looking for the 1458 * insertion point. 1459 */ 1460 adphead = &inodedep->id_newinoupdt; 1461 oldadp = TAILQ_LAST(adphead, allocdirectlst); 1462 if (oldadp == NULL || oldadp->ad_lbn <= lbn) { 1463 /* insert at end of list */ 1464 TAILQ_INSERT_TAIL(adphead, adp, ad_next); 1465 if (oldadp != NULL && oldadp->ad_lbn == lbn) 1466 allocdirect_merge(adphead, adp, oldadp); 1467 FREE_LOCK(&lk); 1468 return; 1469 } 1470 TAILQ_FOREACH(oldadp, adphead, ad_next) { 1471 if (oldadp->ad_lbn >= lbn) 1472 break; 1473 } 1474 if (oldadp == NULL) { 1475 FREE_LOCK(&lk); 1476 panic("softdep_setup_allocdirect: lost entry"); 1477 } 1478 /* insert in middle of list */ 1479 TAILQ_INSERT_BEFORE(oldadp, adp, ad_next); 1480 if (oldadp->ad_lbn == lbn) 1481 allocdirect_merge(adphead, adp, oldadp); 1482 FREE_LOCK(&lk); 1483 } 1484 1485 /* 1486 * Replace an old allocdirect dependency with a newer one. 1487 * This routine must be called with splbio interrupts blocked. 1488 */ 1489 static void 1490 allocdirect_merge(adphead, newadp, oldadp) 1491 struct allocdirectlst *adphead; /* head of list holding allocdirects */ 1492 struct allocdirect *newadp; /* allocdirect being added */ 1493 struct allocdirect *oldadp; /* existing allocdirect being checked */ 1494 { 1495 struct worklist *wk; 1496 struct freefrag *freefrag; 1497 struct newdirblk *newdirblk; 1498 1499 #ifdef DEBUG 1500 if (lk.lkt_held == NOHOLDER) 1501 panic("allocdirect_merge: lock not held"); 1502 #endif 1503 if (newadp->ad_oldblkno != oldadp->ad_newblkno || 1504 newadp->ad_oldsize != oldadp->ad_newsize || 1505 newadp->ad_lbn >= NDADDR) { 1506 FREE_LOCK(&lk); 1507 panic("%s %jd != new %jd || old size %ld != new %ld", 1508 "allocdirect_merge: old blkno", 1509 (intmax_t)newadp->ad_oldblkno, 1510 (intmax_t)oldadp->ad_newblkno, 1511 newadp->ad_oldsize, oldadp->ad_newsize); 1512 } 1513 newadp->ad_oldblkno = oldadp->ad_oldblkno; 1514 newadp->ad_oldsize = oldadp->ad_oldsize; 1515 /* 1516 * If the old dependency had a fragment to free or had never 1517 * previously had a block allocated, then the new dependency 1518 * can immediately post its freefrag and adopt the old freefrag. 1519 * This action is done by swapping the freefrag dependencies. 1520 * The new dependency gains the old one's freefrag, and the 1521 * old one gets the new one and then immediately puts it on 1522 * the worklist when it is freed by free_allocdirect. It is 1523 * not possible to do this swap when the old dependency had a 1524 * non-zero size but no previous fragment to free. This condition 1525 * arises when the new block is an extension of the old block. 1526 * Here, the first part of the fragment allocated to the new 1527 * dependency is part of the block currently claimed on disk by 1528 * the old dependency, so cannot legitimately be freed until the 1529 * conditions for the new dependency are fulfilled. 1530 */ 1531 if (oldadp->ad_freefrag != NULL || oldadp->ad_oldblkno == 0) { 1532 freefrag = newadp->ad_freefrag; 1533 newadp->ad_freefrag = oldadp->ad_freefrag; 1534 oldadp->ad_freefrag = freefrag; 1535 } 1536 /* 1537 * If we are tracking a new directory-block allocation, 1538 * move it from the old allocdirect to the new allocdirect. 1539 */ 1540 if ((wk = LIST_FIRST(&oldadp->ad_newdirblk)) != NULL) { 1541 newdirblk = WK_NEWDIRBLK(wk); 1542 WORKLIST_REMOVE(&newdirblk->db_list); 1543 if (LIST_FIRST(&oldadp->ad_newdirblk) != NULL) 1544 panic("allocdirect_merge: extra newdirblk"); 1545 WORKLIST_INSERT(&newadp->ad_newdirblk, &newdirblk->db_list); 1546 } 1547 free_allocdirect(adphead, oldadp, 0); 1548 } 1549 1550 /* 1551 * Allocate a new freefrag structure if needed. 1552 */ 1553 static struct freefrag * 1554 newfreefrag(ip, blkno, size) 1555 struct inode *ip; 1556 ufs2_daddr_t blkno; 1557 long size; 1558 { 1559 struct freefrag *freefrag; 1560 struct fs *fs; 1561 1562 if (blkno == 0) 1563 return (NULL); 1564 fs = ip->i_fs; 1565 if (fragnum(fs, blkno) + numfrags(fs, size) > fs->fs_frag) 1566 panic("newfreefrag: frag size"); 1567 MALLOC(freefrag, struct freefrag *, sizeof(struct freefrag), 1568 M_FREEFRAG, M_SOFTDEP_FLAGS); 1569 freefrag->ff_list.wk_type = D_FREEFRAG; 1570 freefrag->ff_state = 0; 1571 freefrag->ff_inum = ip->i_number; 1572 freefrag->ff_mnt = ITOV(ip)->v_mount; 1573 freefrag->ff_blkno = blkno; 1574 freefrag->ff_fragsize = size; 1575 return (freefrag); 1576 } 1577 1578 /* 1579 * This workitem de-allocates fragments that were replaced during 1580 * file block allocation. 1581 */ 1582 static void 1583 handle_workitem_freefrag(freefrag) 1584 struct freefrag *freefrag; 1585 { 1586 struct ufsmount *ump = VFSTOUFS(freefrag->ff_mnt); 1587 1588 ffs_blkfree(ump->um_fs, ump->um_devvp, freefrag->ff_blkno, 1589 freefrag->ff_fragsize, freefrag->ff_inum); 1590 FREE(freefrag, M_FREEFRAG); 1591 } 1592 1593 /* 1594 * Set up a dependency structure for an external attributes data block. 1595 * This routine follows much of the structure of softdep_setup_allocdirect. 1596 * See the description of softdep_setup_allocdirect above for details. 1597 */ 1598 void 1599 softdep_setup_allocext(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp) 1600 struct inode *ip; 1601 ufs_lbn_t lbn; 1602 ufs2_daddr_t newblkno; 1603 ufs2_daddr_t oldblkno; 1604 long newsize; 1605 long oldsize; 1606 struct buf *bp; 1607 { 1608 struct allocdirect *adp, *oldadp; 1609 struct allocdirectlst *adphead; 1610 struct bmsafemap *bmsafemap; 1611 struct inodedep *inodedep; 1612 struct newblk *newblk; 1613 1614 MALLOC(adp, struct allocdirect *, sizeof(struct allocdirect), 1615 M_ALLOCDIRECT, M_SOFTDEP_FLAGS|M_ZERO); 1616 adp->ad_list.wk_type = D_ALLOCDIRECT; 1617 adp->ad_lbn = lbn; 1618 adp->ad_newblkno = newblkno; 1619 adp->ad_oldblkno = oldblkno; 1620 adp->ad_newsize = newsize; 1621 adp->ad_oldsize = oldsize; 1622 adp->ad_state = ATTACHED | EXTDATA; 1623 LIST_INIT(&adp->ad_newdirblk); 1624 if (newblkno == oldblkno) 1625 adp->ad_freefrag = NULL; 1626 else 1627 adp->ad_freefrag = newfreefrag(ip, oldblkno, oldsize); 1628 1629 if (newblk_lookup(ip->i_fs, newblkno, 0, &newblk) == 0) 1630 panic("softdep_setup_allocext: lost block"); 1631 1632 ACQUIRE_LOCK(&lk); 1633 inodedep_lookup(ip->i_fs, ip->i_number, DEPALLOC | NODELAY, &inodedep); 1634 adp->ad_inodedep = inodedep; 1635 1636 if (newblk->nb_state == DEPCOMPLETE) { 1637 adp->ad_state |= DEPCOMPLETE; 1638 adp->ad_buf = NULL; 1639 } else { 1640 bmsafemap = newblk->nb_bmsafemap; 1641 adp->ad_buf = bmsafemap->sm_buf; 1642 LIST_REMOVE(newblk, nb_deps); 1643 LIST_INSERT_HEAD(&bmsafemap->sm_allocdirecthd, adp, ad_deps); 1644 } 1645 LIST_REMOVE(newblk, nb_hash); 1646 FREE(newblk, M_NEWBLK); 1647 1648 WORKLIST_INSERT(&bp->b_dep, &adp->ad_list); 1649 if (lbn >= NXADDR) { 1650 FREE_LOCK(&lk); 1651 panic("softdep_setup_allocext: lbn %lld > NXADDR", 1652 (long long)lbn); 1653 } 1654 /* 1655 * The list of allocdirects must be kept in sorted and ascending 1656 * order so that the rollback routines can quickly determine the 1657 * first uncommitted block (the size of the file stored on disk 1658 * ends at the end of the lowest committed fragment, or if there 1659 * are no fragments, at the end of the highest committed block). 1660 * Since files generally grow, the typical case is that the new 1661 * block is to be added at the end of the list. We speed this 1662 * special case by checking against the last allocdirect in the 1663 * list before laboriously traversing the list looking for the 1664 * insertion point. 1665 */ 1666 adphead = &inodedep->id_newextupdt; 1667 oldadp = TAILQ_LAST(adphead, allocdirectlst); 1668 if (oldadp == NULL || oldadp->ad_lbn <= lbn) { 1669 /* insert at end of list */ 1670 TAILQ_INSERT_TAIL(adphead, adp, ad_next); 1671 if (oldadp != NULL && oldadp->ad_lbn == lbn) 1672 allocdirect_merge(adphead, adp, oldadp); 1673 FREE_LOCK(&lk); 1674 return; 1675 } 1676 TAILQ_FOREACH(oldadp, adphead, ad_next) { 1677 if (oldadp->ad_lbn >= lbn) 1678 break; 1679 } 1680 if (oldadp == NULL) { 1681 FREE_LOCK(&lk); 1682 panic("softdep_setup_allocext: lost entry"); 1683 } 1684 /* insert in middle of list */ 1685 TAILQ_INSERT_BEFORE(oldadp, adp, ad_next); 1686 if (oldadp->ad_lbn == lbn) 1687 allocdirect_merge(adphead, adp, oldadp); 1688 FREE_LOCK(&lk); 1689 } 1690 1691 /* 1692 * Indirect block allocation dependencies. 1693 * 1694 * The same dependencies that exist for a direct block also exist when 1695 * a new block is allocated and pointed to by an entry in a block of 1696 * indirect pointers. The undo/redo states described above are also 1697 * used here. Because an indirect block contains many pointers that 1698 * may have dependencies, a second copy of the entire in-memory indirect 1699 * block is kept. The buffer cache copy is always completely up-to-date. 1700 * The second copy, which is used only as a source for disk writes, 1701 * contains only the safe pointers (i.e., those that have no remaining 1702 * update dependencies). The second copy is freed when all pointers 1703 * are safe. The cache is not allowed to replace indirect blocks with 1704 * pending update dependencies. If a buffer containing an indirect 1705 * block with dependencies is written, these routines will mark it 1706 * dirty again. It can only be successfully written once all the 1707 * dependencies are removed. The ffs_fsync routine in conjunction with 1708 * softdep_sync_metadata work together to get all the dependencies 1709 * removed so that a file can be successfully written to disk. Three 1710 * procedures are used when setting up indirect block pointer 1711 * dependencies. The division is necessary because of the organization 1712 * of the "balloc" routine and because of the distinction between file 1713 * pages and file metadata blocks. 1714 */ 1715 1716 /* 1717 * Allocate a new allocindir structure. 1718 */ 1719 static struct allocindir * 1720 newallocindir(ip, ptrno, newblkno, oldblkno) 1721 struct inode *ip; /* inode for file being extended */ 1722 int ptrno; /* offset of pointer in indirect block */ 1723 ufs2_daddr_t newblkno; /* disk block number being added */ 1724 ufs2_daddr_t oldblkno; /* previous block number, 0 if none */ 1725 { 1726 struct allocindir *aip; 1727 1728 MALLOC(aip, struct allocindir *, sizeof(struct allocindir), 1729 M_ALLOCINDIR, M_SOFTDEP_FLAGS|M_ZERO); 1730 aip->ai_list.wk_type = D_ALLOCINDIR; 1731 aip->ai_state = ATTACHED; 1732 aip->ai_offset = ptrno; 1733 aip->ai_newblkno = newblkno; 1734 aip->ai_oldblkno = oldblkno; 1735 aip->ai_freefrag = newfreefrag(ip, oldblkno, ip->i_fs->fs_bsize); 1736 return (aip); 1737 } 1738 1739 /* 1740 * Called just before setting an indirect block pointer 1741 * to a newly allocated file page. 1742 */ 1743 void 1744 softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp) 1745 struct inode *ip; /* inode for file being extended */ 1746 ufs_lbn_t lbn; /* allocated block number within file */ 1747 struct buf *bp; /* buffer with indirect blk referencing page */ 1748 int ptrno; /* offset of pointer in indirect block */ 1749 ufs2_daddr_t newblkno; /* disk block number being added */ 1750 ufs2_daddr_t oldblkno; /* previous block number, 0 if none */ 1751 struct buf *nbp; /* buffer holding allocated page */ 1752 { 1753 struct allocindir *aip; 1754 struct pagedep *pagedep; 1755 1756 aip = newallocindir(ip, ptrno, newblkno, oldblkno); 1757 ACQUIRE_LOCK(&lk); 1758 /* 1759 * If we are allocating a directory page, then we must 1760 * allocate an associated pagedep to track additions and 1761 * deletions. 1762 */ 1763 if ((ip->i_mode & IFMT) == IFDIR && 1764 pagedep_lookup(ip, lbn, DEPALLOC, &pagedep) == 0) 1765 WORKLIST_INSERT(&nbp->b_dep, &pagedep->pd_list); 1766 WORKLIST_INSERT(&nbp->b_dep, &aip->ai_list); 1767 FREE_LOCK(&lk); 1768 setup_allocindir_phase2(bp, ip, aip); 1769 } 1770 1771 /* 1772 * Called just before setting an indirect block pointer to a 1773 * newly allocated indirect block. 1774 */ 1775 void 1776 softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno) 1777 struct buf *nbp; /* newly allocated indirect block */ 1778 struct inode *ip; /* inode for file being extended */ 1779 struct buf *bp; /* indirect block referencing allocated block */ 1780 int ptrno; /* offset of pointer in indirect block */ 1781 ufs2_daddr_t newblkno; /* disk block number being added */ 1782 { 1783 struct allocindir *aip; 1784 1785 aip = newallocindir(ip, ptrno, newblkno, 0); 1786 ACQUIRE_LOCK(&lk); 1787 WORKLIST_INSERT(&nbp->b_dep, &aip->ai_list); 1788 FREE_LOCK(&lk); 1789 setup_allocindir_phase2(bp, ip, aip); 1790 } 1791 1792 /* 1793 * Called to finish the allocation of the "aip" allocated 1794 * by one of the two routines above. 1795 */ 1796 static void 1797 setup_allocindir_phase2(bp, ip, aip) 1798 struct buf *bp; /* in-memory copy of the indirect block */ 1799 struct inode *ip; /* inode for file being extended */ 1800 struct allocindir *aip; /* allocindir allocated by the above routines */ 1801 { 1802 struct worklist *wk; 1803 struct indirdep *indirdep, *newindirdep; 1804 struct bmsafemap *bmsafemap; 1805 struct allocindir *oldaip; 1806 struct freefrag *freefrag; 1807 struct newblk *newblk; 1808 ufs2_daddr_t blkno; 1809 1810 if (bp->b_lblkno >= 0) 1811 panic("setup_allocindir_phase2: not indir blk"); 1812 for (indirdep = NULL, newindirdep = NULL; ; ) { 1813 ACQUIRE_LOCK(&lk); 1814 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 1815 if (wk->wk_type != D_INDIRDEP) 1816 continue; 1817 indirdep = WK_INDIRDEP(wk); 1818 break; 1819 } 1820 if (indirdep == NULL && newindirdep) { 1821 indirdep = newindirdep; 1822 WORKLIST_INSERT(&bp->b_dep, &indirdep->ir_list); 1823 newindirdep = NULL; 1824 } 1825 FREE_LOCK(&lk); 1826 if (indirdep) { 1827 if (newblk_lookup(ip->i_fs, aip->ai_newblkno, 0, 1828 &newblk) == 0) 1829 panic("setup_allocindir: lost block"); 1830 ACQUIRE_LOCK(&lk); 1831 if (newblk->nb_state == DEPCOMPLETE) { 1832 aip->ai_state |= DEPCOMPLETE; 1833 aip->ai_buf = NULL; 1834 } else { 1835 bmsafemap = newblk->nb_bmsafemap; 1836 aip->ai_buf = bmsafemap->sm_buf; 1837 LIST_REMOVE(newblk, nb_deps); 1838 LIST_INSERT_HEAD(&bmsafemap->sm_allocindirhd, 1839 aip, ai_deps); 1840 } 1841 LIST_REMOVE(newblk, nb_hash); 1842 FREE(newblk, M_NEWBLK); 1843 aip->ai_indirdep = indirdep; 1844 /* 1845 * Check to see if there is an existing dependency 1846 * for this block. If there is, merge the old 1847 * dependency into the new one. 1848 */ 1849 if (aip->ai_oldblkno == 0) 1850 oldaip = NULL; 1851 else 1852 1853 LIST_FOREACH(oldaip, &indirdep->ir_deplisthd, ai_next) 1854 if (oldaip->ai_offset == aip->ai_offset) 1855 break; 1856 freefrag = NULL; 1857 if (oldaip != NULL) { 1858 if (oldaip->ai_newblkno != aip->ai_oldblkno) { 1859 FREE_LOCK(&lk); 1860 panic("setup_allocindir_phase2: blkno"); 1861 } 1862 aip->ai_oldblkno = oldaip->ai_oldblkno; 1863 freefrag = aip->ai_freefrag; 1864 aip->ai_freefrag = oldaip->ai_freefrag; 1865 oldaip->ai_freefrag = NULL; 1866 free_allocindir(oldaip, NULL); 1867 } 1868 LIST_INSERT_HEAD(&indirdep->ir_deplisthd, aip, ai_next); 1869 if (ip->i_ump->um_fstype == UFS1) 1870 ((ufs1_daddr_t *)indirdep->ir_savebp->b_data) 1871 [aip->ai_offset] = aip->ai_oldblkno; 1872 else 1873 ((ufs2_daddr_t *)indirdep->ir_savebp->b_data) 1874 [aip->ai_offset] = aip->ai_oldblkno; 1875 FREE_LOCK(&lk); 1876 if (freefrag != NULL) 1877 handle_workitem_freefrag(freefrag); 1878 } 1879 if (newindirdep) { 1880 brelse(newindirdep->ir_savebp); 1881 WORKITEM_FREE((caddr_t)newindirdep, D_INDIRDEP); 1882 } 1883 if (indirdep) 1884 break; 1885 MALLOC(newindirdep, struct indirdep *, sizeof(struct indirdep), 1886 M_INDIRDEP, M_SOFTDEP_FLAGS); 1887 newindirdep->ir_list.wk_type = D_INDIRDEP; 1888 newindirdep->ir_state = ATTACHED; 1889 if (ip->i_ump->um_fstype == UFS1) 1890 newindirdep->ir_state |= UFS1FMT; 1891 LIST_INIT(&newindirdep->ir_deplisthd); 1892 LIST_INIT(&newindirdep->ir_donehd); 1893 if (bp->b_blkno == bp->b_lblkno) { 1894 ufs_bmaparray(bp->b_vp, bp->b_lblkno, &blkno, bp, 1895 NULL, NULL); 1896 bp->b_blkno = blkno; 1897 } 1898 newindirdep->ir_savebp = 1899 getblk(ip->i_devvp, bp->b_blkno, bp->b_bcount, 0, 0); 1900 BUF_KERNPROC(newindirdep->ir_savebp); 1901 bcopy(bp->b_data, newindirdep->ir_savebp->b_data, bp->b_bcount); 1902 } 1903 } 1904 1905 /* 1906 * Block de-allocation dependencies. 1907 * 1908 * When blocks are de-allocated, the on-disk pointers must be nullified before 1909 * the blocks are made available for use by other files. (The true 1910 * requirement is that old pointers must be nullified before new on-disk 1911 * pointers are set. We chose this slightly more stringent requirement to 1912 * reduce complexity.) Our implementation handles this dependency by updating 1913 * the inode (or indirect block) appropriately but delaying the actual block 1914 * de-allocation (i.e., freemap and free space count manipulation) until 1915 * after the updated versions reach stable storage. After the disk is 1916 * updated, the blocks can be safely de-allocated whenever it is convenient. 1917 * This implementation handles only the common case of reducing a file's 1918 * length to zero. Other cases are handled by the conventional synchronous 1919 * write approach. 1920 * 1921 * The ffs implementation with which we worked double-checks 1922 * the state of the block pointers and file size as it reduces 1923 * a file's length. Some of this code is replicated here in our 1924 * soft updates implementation. The freeblks->fb_chkcnt field is 1925 * used to transfer a part of this information to the procedure 1926 * that eventually de-allocates the blocks. 1927 * 1928 * This routine should be called from the routine that shortens 1929 * a file's length, before the inode's size or block pointers 1930 * are modified. It will save the block pointer information for 1931 * later release and zero the inode so that the calling routine 1932 * can release it. 1933 */ 1934 void 1935 softdep_setup_freeblocks(ip, length, flags) 1936 struct inode *ip; /* The inode whose length is to be reduced */ 1937 off_t length; /* The new length for the file */ 1938 int flags; /* IO_EXT and/or IO_NORMAL */ 1939 { 1940 struct freeblks *freeblks; 1941 struct inodedep *inodedep; 1942 struct allocdirect *adp; 1943 struct vnode *vp; 1944 struct buf *bp; 1945 struct fs *fs; 1946 ufs2_daddr_t extblocks, datablocks; 1947 int i, delay, error; 1948 1949 fs = ip->i_fs; 1950 if (length != 0) 1951 panic("softdep_setup_freeblocks: non-zero length"); 1952 MALLOC(freeblks, struct freeblks *, sizeof(struct freeblks), 1953 M_FREEBLKS, M_SOFTDEP_FLAGS|M_ZERO); 1954 freeblks->fb_list.wk_type = D_FREEBLKS; 1955 freeblks->fb_uid = ip->i_uid; 1956 freeblks->fb_previousinum = ip->i_number; 1957 freeblks->fb_devvp = ip->i_devvp; 1958 freeblks->fb_mnt = ITOV(ip)->v_mount; 1959 extblocks = 0; 1960 if (fs->fs_magic == FS_UFS2_MAGIC) 1961 extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize)); 1962 datablocks = DIP(ip, i_blocks) - extblocks; 1963 if ((flags & IO_NORMAL) == 0) { 1964 freeblks->fb_oldsize = 0; 1965 freeblks->fb_chkcnt = 0; 1966 } else { 1967 freeblks->fb_oldsize = ip->i_size; 1968 ip->i_size = 0; 1969 DIP(ip, i_size) = 0; 1970 freeblks->fb_chkcnt = datablocks; 1971 for (i = 0; i < NDADDR; i++) { 1972 freeblks->fb_dblks[i] = DIP(ip, i_db[i]); 1973 DIP(ip, i_db[i]) = 0; 1974 } 1975 for (i = 0; i < NIADDR; i++) { 1976 freeblks->fb_iblks[i] = DIP(ip, i_ib[i]); 1977 DIP(ip, i_ib[i]) = 0; 1978 } 1979 /* 1980 * If the file was removed, then the space being freed was 1981 * accounted for then (see softdep_filereleased()). If the 1982 * file is merely being truncated, then we account for it now. 1983 */ 1984 if ((ip->i_flag & IN_SPACECOUNTED) == 0) 1985 fs->fs_pendingblocks += datablocks; 1986 } 1987 if ((flags & IO_EXT) == 0) { 1988 freeblks->fb_oldextsize = 0; 1989 } else { 1990 freeblks->fb_oldextsize = ip->i_din2->di_extsize; 1991 ip->i_din2->di_extsize = 0; 1992 freeblks->fb_chkcnt += extblocks; 1993 for (i = 0; i < NXADDR; i++) { 1994 freeblks->fb_eblks[i] = ip->i_din2->di_extb[i]; 1995 ip->i_din2->di_extb[i] = 0; 1996 } 1997 } 1998 DIP(ip, i_blocks) -= freeblks->fb_chkcnt; 1999 /* 2000 * Push the zero'ed inode to to its disk buffer so that we are free 2001 * to delete its dependencies below. Once the dependencies are gone 2002 * the buffer can be safely released. 2003 */ 2004 if ((error = bread(ip->i_devvp, 2005 fsbtodb(fs, ino_to_fsba(fs, ip->i_number)), 2006 (int)fs->fs_bsize, NOCRED, &bp)) != 0) { 2007 brelse(bp); 2008 softdep_error("softdep_setup_freeblocks", error); 2009 } 2010 if (ip->i_ump->um_fstype == UFS1) 2011 *((struct ufs1_dinode *)bp->b_data + 2012 ino_to_fsbo(fs, ip->i_number)) = *ip->i_din1; 2013 else 2014 *((struct ufs2_dinode *)bp->b_data + 2015 ino_to_fsbo(fs, ip->i_number)) = *ip->i_din2; 2016 /* 2017 * Find and eliminate any inode dependencies. 2018 */ 2019 ACQUIRE_LOCK(&lk); 2020 (void) inodedep_lookup(fs, ip->i_number, DEPALLOC, &inodedep); 2021 if ((inodedep->id_state & IOSTARTED) != 0) { 2022 FREE_LOCK(&lk); 2023 panic("softdep_setup_freeblocks: inode busy"); 2024 } 2025 /* 2026 * Add the freeblks structure to the list of operations that 2027 * must await the zero'ed inode being written to disk. If we 2028 * still have a bitmap dependency (delay == 0), then the inode 2029 * has never been written to disk, so we can process the 2030 * freeblks below once we have deleted the dependencies. 2031 */ 2032 delay = (inodedep->id_state & DEPCOMPLETE); 2033 if (delay) 2034 WORKLIST_INSERT(&inodedep->id_bufwait, &freeblks->fb_list); 2035 /* 2036 * Because the file length has been truncated to zero, any 2037 * pending block allocation dependency structures associated 2038 * with this inode are obsolete and can simply be de-allocated. 2039 * We must first merge the two dependency lists to get rid of 2040 * any duplicate freefrag structures, then purge the merged list. 2041 * If we still have a bitmap dependency, then the inode has never 2042 * been written to disk, so we can free any fragments without delay. 2043 */ 2044 if (flags & IO_NORMAL) { 2045 merge_inode_lists(&inodedep->id_newinoupdt, 2046 &inodedep->id_inoupdt); 2047 while ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != 0) 2048 free_allocdirect(&inodedep->id_inoupdt, adp, delay); 2049 } 2050 if (flags & IO_EXT) { 2051 merge_inode_lists(&inodedep->id_newextupdt, 2052 &inodedep->id_extupdt); 2053 while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != 0) 2054 free_allocdirect(&inodedep->id_extupdt, adp, delay); 2055 } 2056 FREE_LOCK(&lk); 2057 bdwrite(bp); 2058 /* 2059 * We must wait for any I/O in progress to finish so that 2060 * all potential buffers on the dirty list will be visible. 2061 * Once they are all there, walk the list and get rid of 2062 * any dependencies. 2063 */ 2064 vp = ITOV(ip); 2065 ACQUIRE_LOCK(&lk); 2066 drain_output(vp, 1); 2067 restart: 2068 VI_LOCK(vp); 2069 TAILQ_FOREACH(bp, &vp->v_dirtyblkhd, b_vnbufs) { 2070 if (((flags & IO_EXT) == 0 && (bp->b_xflags & BX_ALTDATA)) || 2071 ((flags & IO_NORMAL) == 0 && 2072 (bp->b_xflags & BX_ALTDATA) == 0)) 2073 continue; 2074 VI_UNLOCK(vp); 2075 if (getdirtybuf(&bp, MNT_WAIT) == 0) 2076 goto restart; 2077 (void) inodedep_lookup(fs, ip->i_number, 0, &inodedep); 2078 deallocate_dependencies(bp, inodedep); 2079 bp->b_flags |= B_INVAL | B_NOCACHE; 2080 FREE_LOCK(&lk); 2081 brelse(bp); 2082 ACQUIRE_LOCK(&lk); 2083 goto restart; 2084 } 2085 VI_UNLOCK(vp); 2086 if (inodedep_lookup(fs, ip->i_number, 0, &inodedep) != 0) 2087 (void) free_inodedep(inodedep); 2088 FREE_LOCK(&lk); 2089 /* 2090 * If the inode has never been written to disk (delay == 0), 2091 * then we can process the freeblks now that we have deleted 2092 * the dependencies. 2093 */ 2094 if (!delay) 2095 handle_workitem_freeblocks(freeblks, 0); 2096 } 2097 2098 /* 2099 * Reclaim any dependency structures from a buffer that is about to 2100 * be reallocated to a new vnode. The buffer must be locked, thus, 2101 * no I/O completion operations can occur while we are manipulating 2102 * its associated dependencies. The mutex is held so that other I/O's 2103 * associated with related dependencies do not occur. 2104 */ 2105 static void 2106 deallocate_dependencies(bp, inodedep) 2107 struct buf *bp; 2108 struct inodedep *inodedep; 2109 { 2110 struct worklist *wk; 2111 struct indirdep *indirdep; 2112 struct allocindir *aip; 2113 struct pagedep *pagedep; 2114 struct dirrem *dirrem; 2115 struct diradd *dap; 2116 int i; 2117 2118 while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) { 2119 switch (wk->wk_type) { 2120 2121 case D_INDIRDEP: 2122 indirdep = WK_INDIRDEP(wk); 2123 /* 2124 * None of the indirect pointers will ever be visible, 2125 * so they can simply be tossed. GOINGAWAY ensures 2126 * that allocated pointers will be saved in the buffer 2127 * cache until they are freed. Note that they will 2128 * only be able to be found by their physical address 2129 * since the inode mapping the logical address will 2130 * be gone. The save buffer used for the safe copy 2131 * was allocated in setup_allocindir_phase2 using 2132 * the physical address so it could be used for this 2133 * purpose. Hence we swap the safe copy with the real 2134 * copy, allowing the safe copy to be freed and holding 2135 * on to the real copy for later use in indir_trunc. 2136 */ 2137 if (indirdep->ir_state & GOINGAWAY) { 2138 FREE_LOCK(&lk); 2139 panic("deallocate_dependencies: already gone"); 2140 } 2141 indirdep->ir_state |= GOINGAWAY; 2142 VFSTOUFS(bp->b_vp->v_mount)->um_numindirdeps += 1; 2143 while ((aip = LIST_FIRST(&indirdep->ir_deplisthd)) != 0) 2144 free_allocindir(aip, inodedep); 2145 if (bp->b_lblkno >= 0 || 2146 bp->b_blkno != indirdep->ir_savebp->b_lblkno) { 2147 FREE_LOCK(&lk); 2148 panic("deallocate_dependencies: not indir"); 2149 } 2150 bcopy(bp->b_data, indirdep->ir_savebp->b_data, 2151 bp->b_bcount); 2152 WORKLIST_REMOVE(wk); 2153 WORKLIST_INSERT(&indirdep->ir_savebp->b_dep, wk); 2154 continue; 2155 2156 case D_PAGEDEP: 2157 pagedep = WK_PAGEDEP(wk); 2158 /* 2159 * None of the directory additions will ever be 2160 * visible, so they can simply be tossed. 2161 */ 2162 for (i = 0; i < DAHASHSZ; i++) 2163 while ((dap = 2164 LIST_FIRST(&pagedep->pd_diraddhd[i]))) 2165 free_diradd(dap); 2166 while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != 0) 2167 free_diradd(dap); 2168 /* 2169 * Copy any directory remove dependencies to the list 2170 * to be processed after the zero'ed inode is written. 2171 * If the inode has already been written, then they 2172 * can be dumped directly onto the work list. 2173 */ 2174 LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next) { 2175 LIST_REMOVE(dirrem, dm_next); 2176 dirrem->dm_dirinum = pagedep->pd_ino; 2177 if (inodedep == NULL || 2178 (inodedep->id_state & ALLCOMPLETE) == 2179 ALLCOMPLETE) 2180 add_to_worklist(&dirrem->dm_list); 2181 else 2182 WORKLIST_INSERT(&inodedep->id_bufwait, 2183 &dirrem->dm_list); 2184 } 2185 if ((pagedep->pd_state & NEWBLOCK) != 0) { 2186 LIST_FOREACH(wk, &inodedep->id_bufwait, wk_list) 2187 if (wk->wk_type == D_NEWDIRBLK && 2188 WK_NEWDIRBLK(wk)->db_pagedep == 2189 pagedep) 2190 break; 2191 if (wk != NULL) { 2192 WORKLIST_REMOVE(wk); 2193 free_newdirblk(WK_NEWDIRBLK(wk)); 2194 } else { 2195 FREE_LOCK(&lk); 2196 panic("deallocate_dependencies: " 2197 "lost pagedep"); 2198 } 2199 } 2200 WORKLIST_REMOVE(&pagedep->pd_list); 2201 LIST_REMOVE(pagedep, pd_hash); 2202 WORKITEM_FREE(pagedep, D_PAGEDEP); 2203 continue; 2204 2205 case D_ALLOCINDIR: 2206 free_allocindir(WK_ALLOCINDIR(wk), inodedep); 2207 continue; 2208 2209 case D_ALLOCDIRECT: 2210 case D_INODEDEP: 2211 FREE_LOCK(&lk); 2212 panic("deallocate_dependencies: Unexpected type %s", 2213 TYPENAME(wk->wk_type)); 2214 /* NOTREACHED */ 2215 2216 default: 2217 FREE_LOCK(&lk); 2218 panic("deallocate_dependencies: Unknown type %s", 2219 TYPENAME(wk->wk_type)); 2220 /* NOTREACHED */ 2221 } 2222 } 2223 } 2224 2225 /* 2226 * Free an allocdirect. Generate a new freefrag work request if appropriate. 2227 * This routine must be called with splbio interrupts blocked. 2228 */ 2229 static void 2230 free_allocdirect(adphead, adp, delay) 2231 struct allocdirectlst *adphead; 2232 struct allocdirect *adp; 2233 int delay; 2234 { 2235 struct newdirblk *newdirblk; 2236 struct worklist *wk; 2237 2238 #ifdef DEBUG 2239 if (lk.lkt_held == NOHOLDER) 2240 panic("free_allocdirect: lock not held"); 2241 #endif 2242 if ((adp->ad_state & DEPCOMPLETE) == 0) 2243 LIST_REMOVE(adp, ad_deps); 2244 TAILQ_REMOVE(adphead, adp, ad_next); 2245 if ((adp->ad_state & COMPLETE) == 0) 2246 WORKLIST_REMOVE(&adp->ad_list); 2247 if (adp->ad_freefrag != NULL) { 2248 if (delay) 2249 WORKLIST_INSERT(&adp->ad_inodedep->id_bufwait, 2250 &adp->ad_freefrag->ff_list); 2251 else 2252 add_to_worklist(&adp->ad_freefrag->ff_list); 2253 } 2254 if ((wk = LIST_FIRST(&adp->ad_newdirblk)) != NULL) { 2255 newdirblk = WK_NEWDIRBLK(wk); 2256 WORKLIST_REMOVE(&newdirblk->db_list); 2257 if (LIST_FIRST(&adp->ad_newdirblk) != NULL) 2258 panic("free_allocdirect: extra newdirblk"); 2259 if (delay) 2260 WORKLIST_INSERT(&adp->ad_inodedep->id_bufwait, 2261 &newdirblk->db_list); 2262 else 2263 free_newdirblk(newdirblk); 2264 } 2265 WORKITEM_FREE(adp, D_ALLOCDIRECT); 2266 } 2267 2268 /* 2269 * Free a newdirblk. Clear the NEWBLOCK flag on its associated pagedep. 2270 * This routine must be called with splbio interrupts blocked. 2271 */ 2272 static void 2273 free_newdirblk(newdirblk) 2274 struct newdirblk *newdirblk; 2275 { 2276 struct pagedep *pagedep; 2277 struct diradd *dap; 2278 int i; 2279 2280 #ifdef DEBUG 2281 if (lk.lkt_held == NOHOLDER) 2282 panic("free_newdirblk: lock not held"); 2283 #endif 2284 /* 2285 * If the pagedep is still linked onto the directory buffer 2286 * dependency chain, then some of the entries on the 2287 * pd_pendinghd list may not be committed to disk yet. In 2288 * this case, we will simply clear the NEWBLOCK flag and 2289 * let the pd_pendinghd list be processed when the pagedep 2290 * is next written. If the pagedep is no longer on the buffer 2291 * dependency chain, then all the entries on the pd_pending 2292 * list are committed to disk and we can free them here. 2293 */ 2294 pagedep = newdirblk->db_pagedep; 2295 pagedep->pd_state &= ~NEWBLOCK; 2296 if ((pagedep->pd_state & ONWORKLIST) == 0) 2297 while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL) 2298 free_diradd(dap); 2299 /* 2300 * If no dependencies remain, the pagedep will be freed. 2301 */ 2302 for (i = 0; i < DAHASHSZ; i++) 2303 if (LIST_FIRST(&pagedep->pd_diraddhd[i]) != NULL) 2304 break; 2305 if (i == DAHASHSZ && (pagedep->pd_state & ONWORKLIST) == 0) { 2306 LIST_REMOVE(pagedep, pd_hash); 2307 WORKITEM_FREE(pagedep, D_PAGEDEP); 2308 } 2309 WORKITEM_FREE(newdirblk, D_NEWDIRBLK); 2310 } 2311 2312 /* 2313 * Prepare an inode to be freed. The actual free operation is not 2314 * done until the zero'ed inode has been written to disk. 2315 */ 2316 void 2317 softdep_freefile(pvp, ino, mode) 2318 struct vnode *pvp; 2319 ino_t ino; 2320 int mode; 2321 { 2322 struct inode *ip = VTOI(pvp); 2323 struct inodedep *inodedep; 2324 struct freefile *freefile; 2325 2326 /* 2327 * This sets up the inode de-allocation dependency. 2328 */ 2329 MALLOC(freefile, struct freefile *, sizeof(struct freefile), 2330 M_FREEFILE, M_SOFTDEP_FLAGS); 2331 freefile->fx_list.wk_type = D_FREEFILE; 2332 freefile->fx_list.wk_state = 0; 2333 freefile->fx_mode = mode; 2334 freefile->fx_oldinum = ino; 2335 freefile->fx_devvp = ip->i_devvp; 2336 freefile->fx_mnt = ITOV(ip)->v_mount; 2337 if ((ip->i_flag & IN_SPACECOUNTED) == 0) 2338 ip->i_fs->fs_pendinginodes += 1; 2339 2340 /* 2341 * If the inodedep does not exist, then the zero'ed inode has 2342 * been written to disk. If the allocated inode has never been 2343 * written to disk, then the on-disk inode is zero'ed. In either 2344 * case we can free the file immediately. 2345 */ 2346 ACQUIRE_LOCK(&lk); 2347 if (inodedep_lookup(ip->i_fs, ino, 0, &inodedep) == 0 || 2348 check_inode_unwritten(inodedep)) { 2349 FREE_LOCK(&lk); 2350 handle_workitem_freefile(freefile); 2351 return; 2352 } 2353 WORKLIST_INSERT(&inodedep->id_inowait, &freefile->fx_list); 2354 FREE_LOCK(&lk); 2355 } 2356 2357 /* 2358 * Check to see if an inode has never been written to disk. If 2359 * so free the inodedep and return success, otherwise return failure. 2360 * This routine must be called with splbio interrupts blocked. 2361 * 2362 * If we still have a bitmap dependency, then the inode has never 2363 * been written to disk. Drop the dependency as it is no longer 2364 * necessary since the inode is being deallocated. We set the 2365 * ALLCOMPLETE flags since the bitmap now properly shows that the 2366 * inode is not allocated. Even if the inode is actively being 2367 * written, it has been rolled back to its zero'ed state, so we 2368 * are ensured that a zero inode is what is on the disk. For short 2369 * lived files, this change will usually result in removing all the 2370 * dependencies from the inode so that it can be freed immediately. 2371 */ 2372 static int 2373 check_inode_unwritten(inodedep) 2374 struct inodedep *inodedep; 2375 { 2376 2377 if ((inodedep->id_state & DEPCOMPLETE) != 0 || 2378 LIST_FIRST(&inodedep->id_pendinghd) != NULL || 2379 LIST_FIRST(&inodedep->id_bufwait) != NULL || 2380 LIST_FIRST(&inodedep->id_inowait) != NULL || 2381 TAILQ_FIRST(&inodedep->id_inoupdt) != NULL || 2382 TAILQ_FIRST(&inodedep->id_newinoupdt) != NULL || 2383 TAILQ_FIRST(&inodedep->id_extupdt) != NULL || 2384 TAILQ_FIRST(&inodedep->id_newextupdt) != NULL || 2385 inodedep->id_nlinkdelta != 0) 2386 return (0); 2387 inodedep->id_state |= ALLCOMPLETE; 2388 LIST_REMOVE(inodedep, id_deps); 2389 inodedep->id_buf = NULL; 2390 if (inodedep->id_state & ONWORKLIST) 2391 WORKLIST_REMOVE(&inodedep->id_list); 2392 if (inodedep->id_savedino1 != NULL) { 2393 FREE(inodedep->id_savedino1, M_INODEDEP); 2394 inodedep->id_savedino1 = NULL; 2395 } 2396 if (free_inodedep(inodedep) == 0) { 2397 FREE_LOCK(&lk); 2398 panic("check_inode_unwritten: busy inode"); 2399 } 2400 return (1); 2401 } 2402 2403 /* 2404 * Try to free an inodedep structure. Return 1 if it could be freed. 2405 */ 2406 static int 2407 free_inodedep(inodedep) 2408 struct inodedep *inodedep; 2409 { 2410 2411 if ((inodedep->id_state & ONWORKLIST) != 0 || 2412 (inodedep->id_state & ALLCOMPLETE) != ALLCOMPLETE || 2413 LIST_FIRST(&inodedep->id_pendinghd) != NULL || 2414 LIST_FIRST(&inodedep->id_bufwait) != NULL || 2415 LIST_FIRST(&inodedep->id_inowait) != NULL || 2416 TAILQ_FIRST(&inodedep->id_inoupdt) != NULL || 2417 TAILQ_FIRST(&inodedep->id_newinoupdt) != NULL || 2418 TAILQ_FIRST(&inodedep->id_extupdt) != NULL || 2419 TAILQ_FIRST(&inodedep->id_newextupdt) != NULL || 2420 inodedep->id_nlinkdelta != 0 || inodedep->id_savedino1 != NULL) 2421 return (0); 2422 LIST_REMOVE(inodedep, id_hash); 2423 WORKITEM_FREE(inodedep, D_INODEDEP); 2424 num_inodedep -= 1; 2425 return (1); 2426 } 2427 2428 /* 2429 * This workitem routine performs the block de-allocation. 2430 * The workitem is added to the pending list after the updated 2431 * inode block has been written to disk. As mentioned above, 2432 * checks regarding the number of blocks de-allocated (compared 2433 * to the number of blocks allocated for the file) are also 2434 * performed in this function. 2435 */ 2436 static void 2437 handle_workitem_freeblocks(freeblks, flags) 2438 struct freeblks *freeblks; 2439 int flags; 2440 { 2441 struct inode *ip; 2442 struct vnode *vp; 2443 struct fs *fs; 2444 int i, nblocks, level, bsize; 2445 ufs2_daddr_t bn, blocksreleased = 0; 2446 int error, allerror = 0; 2447 ufs_lbn_t baselbns[NIADDR], tmpval; 2448 2449 fs = VFSTOUFS(freeblks->fb_mnt)->um_fs; 2450 tmpval = 1; 2451 baselbns[0] = NDADDR; 2452 for (i = 1; i < NIADDR; i++) { 2453 tmpval *= NINDIR(fs); 2454 baselbns[i] = baselbns[i - 1] + tmpval; 2455 } 2456 nblocks = btodb(fs->fs_bsize); 2457 blocksreleased = 0; 2458 /* 2459 * Release all extended attribute blocks or frags. 2460 */ 2461 if (freeblks->fb_oldextsize > 0) { 2462 for (i = (NXADDR - 1); i >= 0; i--) { 2463 if ((bn = freeblks->fb_eblks[i]) == 0) 2464 continue; 2465 bsize = sblksize(fs, freeblks->fb_oldextsize, i); 2466 ffs_blkfree(fs, freeblks->fb_devvp, bn, bsize, 2467 freeblks->fb_previousinum); 2468 blocksreleased += btodb(bsize); 2469 } 2470 } 2471 /* 2472 * Release all data blocks or frags. 2473 */ 2474 if (freeblks->fb_oldsize > 0) { 2475 /* 2476 * Indirect blocks first. 2477 */ 2478 for (level = (NIADDR - 1); level >= 0; level--) { 2479 if ((bn = freeblks->fb_iblks[level]) == 0) 2480 continue; 2481 if ((error = indir_trunc(freeblks, fsbtodb(fs, bn), 2482 level, baselbns[level], &blocksreleased)) == 0) 2483 allerror = error; 2484 ffs_blkfree(fs, freeblks->fb_devvp, bn, fs->fs_bsize, 2485 freeblks->fb_previousinum); 2486 fs->fs_pendingblocks -= nblocks; 2487 blocksreleased += nblocks; 2488 } 2489 /* 2490 * All direct blocks or frags. 2491 */ 2492 for (i = (NDADDR - 1); i >= 0; i--) { 2493 if ((bn = freeblks->fb_dblks[i]) == 0) 2494 continue; 2495 bsize = sblksize(fs, freeblks->fb_oldsize, i); 2496 ffs_blkfree(fs, freeblks->fb_devvp, bn, bsize, 2497 freeblks->fb_previousinum); 2498 fs->fs_pendingblocks -= btodb(bsize); 2499 blocksreleased += btodb(bsize); 2500 } 2501 } 2502 /* 2503 * If we still have not finished background cleanup, then check 2504 * to see if the block count needs to be adjusted. 2505 */ 2506 if (freeblks->fb_chkcnt != blocksreleased && 2507 (fs->fs_flags & FS_UNCLEAN) != 0 && 2508 VFS_VGET(freeblks->fb_mnt, freeblks->fb_previousinum, 2509 (flags & LK_NOWAIT) | LK_EXCLUSIVE, &vp) == 0) { 2510 ip = VTOI(vp); 2511 DIP(ip, i_blocks) += freeblks->fb_chkcnt - blocksreleased; 2512 ip->i_flag |= IN_CHANGE; 2513 vput(vp); 2514 } 2515 2516 #ifdef DIAGNOSTIC 2517 if (freeblks->fb_chkcnt != blocksreleased && 2518 ((fs->fs_flags & FS_UNCLEAN) == 0 || (flags & LK_NOWAIT) != 0)) 2519 printf("handle_workitem_freeblocks: block count\n"); 2520 if (allerror) 2521 softdep_error("handle_workitem_freeblks", allerror); 2522 #endif /* DIAGNOSTIC */ 2523 2524 WORKITEM_FREE(freeblks, D_FREEBLKS); 2525 } 2526 2527 /* 2528 * Release blocks associated with the inode ip and stored in the indirect 2529 * block dbn. If level is greater than SINGLE, the block is an indirect block 2530 * and recursive calls to indirtrunc must be used to cleanse other indirect 2531 * blocks. 2532 */ 2533 static int 2534 indir_trunc(freeblks, dbn, level, lbn, countp) 2535 struct freeblks *freeblks; 2536 ufs2_daddr_t dbn; 2537 int level; 2538 ufs_lbn_t lbn; 2539 ufs2_daddr_t *countp; 2540 { 2541 struct buf *bp; 2542 struct fs *fs; 2543 struct worklist *wk; 2544 struct indirdep *indirdep; 2545 ufs1_daddr_t *bap1 = 0; 2546 ufs2_daddr_t nb, *bap2 = 0; 2547 ufs_lbn_t lbnadd; 2548 int i, nblocks, ufs1fmt; 2549 int error, allerror = 0; 2550 2551 fs = VFSTOUFS(freeblks->fb_mnt)->um_fs; 2552 lbnadd = 1; 2553 for (i = level; i > 0; i--) 2554 lbnadd *= NINDIR(fs); 2555 /* 2556 * Get buffer of block pointers to be freed. This routine is not 2557 * called until the zero'ed inode has been written, so it is safe 2558 * to free blocks as they are encountered. Because the inode has 2559 * been zero'ed, calls to bmap on these blocks will fail. So, we 2560 * have to use the on-disk address and the block device for the 2561 * filesystem to look them up. If the file was deleted before its 2562 * indirect blocks were all written to disk, the routine that set 2563 * us up (deallocate_dependencies) will have arranged to leave 2564 * a complete copy of the indirect block in memory for our use. 2565 * Otherwise we have to read the blocks in from the disk. 2566 */ 2567 ACQUIRE_LOCK(&lk); 2568 if ((bp = incore(freeblks->fb_devvp, dbn)) != NULL && 2569 (wk = LIST_FIRST(&bp->b_dep)) != NULL) { 2570 if (wk->wk_type != D_INDIRDEP || 2571 (indirdep = WK_INDIRDEP(wk))->ir_savebp != bp || 2572 (indirdep->ir_state & GOINGAWAY) == 0) { 2573 FREE_LOCK(&lk); 2574 panic("indir_trunc: lost indirdep"); 2575 } 2576 WORKLIST_REMOVE(wk); 2577 WORKITEM_FREE(indirdep, D_INDIRDEP); 2578 if (LIST_FIRST(&bp->b_dep) != NULL) { 2579 FREE_LOCK(&lk); 2580 panic("indir_trunc: dangling dep"); 2581 } 2582 VFSTOUFS(freeblks->fb_mnt)->um_numindirdeps -= 1; 2583 FREE_LOCK(&lk); 2584 } else { 2585 FREE_LOCK(&lk); 2586 error = bread(freeblks->fb_devvp, dbn, (int)fs->fs_bsize, 2587 NOCRED, &bp); 2588 if (error) { 2589 brelse(bp); 2590 return (error); 2591 } 2592 } 2593 /* 2594 * Recursively free indirect blocks. 2595 */ 2596 if (VFSTOUFS(freeblks->fb_mnt)->um_fstype == UFS1) { 2597 ufs1fmt = 1; 2598 bap1 = (ufs1_daddr_t *)bp->b_data; 2599 } else { 2600 ufs1fmt = 0; 2601 bap2 = (ufs2_daddr_t *)bp->b_data; 2602 } 2603 nblocks = btodb(fs->fs_bsize); 2604 for (i = NINDIR(fs) - 1; i >= 0; i--) { 2605 if (ufs1fmt) 2606 nb = bap1[i]; 2607 else 2608 nb = bap2[i]; 2609 if (nb == 0) 2610 continue; 2611 if (level != 0) { 2612 if ((error = indir_trunc(freeblks, fsbtodb(fs, nb), 2613 level - 1, lbn + (i * lbnadd), countp)) != 0) 2614 allerror = error; 2615 } 2616 ffs_blkfree(fs, freeblks->fb_devvp, nb, fs->fs_bsize, 2617 freeblks->fb_previousinum); 2618 fs->fs_pendingblocks -= nblocks; 2619 *countp += nblocks; 2620 } 2621 bp->b_flags |= B_INVAL | B_NOCACHE; 2622 brelse(bp); 2623 return (allerror); 2624 } 2625 2626 /* 2627 * Free an allocindir. 2628 * This routine must be called with splbio interrupts blocked. 2629 */ 2630 static void 2631 free_allocindir(aip, inodedep) 2632 struct allocindir *aip; 2633 struct inodedep *inodedep; 2634 { 2635 struct freefrag *freefrag; 2636 2637 #ifdef DEBUG 2638 if (lk.lkt_held == NOHOLDER) 2639 panic("free_allocindir: lock not held"); 2640 #endif 2641 if ((aip->ai_state & DEPCOMPLETE) == 0) 2642 LIST_REMOVE(aip, ai_deps); 2643 if (aip->ai_state & ONWORKLIST) 2644 WORKLIST_REMOVE(&aip->ai_list); 2645 LIST_REMOVE(aip, ai_next); 2646 if ((freefrag = aip->ai_freefrag) != NULL) { 2647 if (inodedep == NULL) 2648 add_to_worklist(&freefrag->ff_list); 2649 else 2650 WORKLIST_INSERT(&inodedep->id_bufwait, 2651 &freefrag->ff_list); 2652 } 2653 WORKITEM_FREE(aip, D_ALLOCINDIR); 2654 } 2655 2656 /* 2657 * Directory entry addition dependencies. 2658 * 2659 * When adding a new directory entry, the inode (with its incremented link 2660 * count) must be written to disk before the directory entry's pointer to it. 2661 * Also, if the inode is newly allocated, the corresponding freemap must be 2662 * updated (on disk) before the directory entry's pointer. These requirements 2663 * are met via undo/redo on the directory entry's pointer, which consists 2664 * simply of the inode number. 2665 * 2666 * As directory entries are added and deleted, the free space within a 2667 * directory block can become fragmented. The ufs filesystem will compact 2668 * a fragmented directory block to make space for a new entry. When this 2669 * occurs, the offsets of previously added entries change. Any "diradd" 2670 * dependency structures corresponding to these entries must be updated with 2671 * the new offsets. 2672 */ 2673 2674 /* 2675 * This routine is called after the in-memory inode's link 2676 * count has been incremented, but before the directory entry's 2677 * pointer to the inode has been set. 2678 */ 2679 int 2680 softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk) 2681 struct buf *bp; /* buffer containing directory block */ 2682 struct inode *dp; /* inode for directory */ 2683 off_t diroffset; /* offset of new entry in directory */ 2684 ino_t newinum; /* inode referenced by new directory entry */ 2685 struct buf *newdirbp; /* non-NULL => contents of new mkdir */ 2686 int isnewblk; /* entry is in a newly allocated block */ 2687 { 2688 int offset; /* offset of new entry within directory block */ 2689 ufs_lbn_t lbn; /* block in directory containing new entry */ 2690 struct fs *fs; 2691 struct diradd *dap; 2692 struct allocdirect *adp; 2693 struct pagedep *pagedep; 2694 struct inodedep *inodedep; 2695 struct newdirblk *newdirblk = 0; 2696 struct mkdir *mkdir1, *mkdir2; 2697 2698 /* 2699 * Whiteouts have no dependencies. 2700 */ 2701 if (newinum == WINO) { 2702 if (newdirbp != NULL) 2703 bdwrite(newdirbp); 2704 return (0); 2705 } 2706 2707 fs = dp->i_fs; 2708 lbn = lblkno(fs, diroffset); 2709 offset = blkoff(fs, diroffset); 2710 MALLOC(dap, struct diradd *, sizeof(struct diradd), M_DIRADD, 2711 M_SOFTDEP_FLAGS|M_ZERO); 2712 dap->da_list.wk_type = D_DIRADD; 2713 dap->da_offset = offset; 2714 dap->da_newinum = newinum; 2715 dap->da_state = ATTACHED; 2716 if (isnewblk && lbn < NDADDR && fragoff(fs, diroffset) == 0) { 2717 MALLOC(newdirblk, struct newdirblk *, sizeof(struct newdirblk), 2718 M_NEWDIRBLK, M_SOFTDEP_FLAGS); 2719 newdirblk->db_list.wk_type = D_NEWDIRBLK; 2720 newdirblk->db_state = 0; 2721 } 2722 if (newdirbp == NULL) { 2723 dap->da_state |= DEPCOMPLETE; 2724 ACQUIRE_LOCK(&lk); 2725 } else { 2726 dap->da_state |= MKDIR_BODY | MKDIR_PARENT; 2727 MALLOC(mkdir1, struct mkdir *, sizeof(struct mkdir), M_MKDIR, 2728 M_SOFTDEP_FLAGS); 2729 mkdir1->md_list.wk_type = D_MKDIR; 2730 mkdir1->md_state = MKDIR_BODY; 2731 mkdir1->md_diradd = dap; 2732 MALLOC(mkdir2, struct mkdir *, sizeof(struct mkdir), M_MKDIR, 2733 M_SOFTDEP_FLAGS); 2734 mkdir2->md_list.wk_type = D_MKDIR; 2735 mkdir2->md_state = MKDIR_PARENT; 2736 mkdir2->md_diradd = dap; 2737 /* 2738 * Dependency on "." and ".." being written to disk. 2739 */ 2740 mkdir1->md_buf = newdirbp; 2741 ACQUIRE_LOCK(&lk); 2742 LIST_INSERT_HEAD(&mkdirlisthd, mkdir1, md_mkdirs); 2743 WORKLIST_INSERT(&newdirbp->b_dep, &mkdir1->md_list); 2744 FREE_LOCK(&lk); 2745 bdwrite(newdirbp); 2746 /* 2747 * Dependency on link count increase for parent directory 2748 */ 2749 ACQUIRE_LOCK(&lk); 2750 if (inodedep_lookup(fs, dp->i_number, 0, &inodedep) == 0 2751 || (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) { 2752 dap->da_state &= ~MKDIR_PARENT; 2753 WORKITEM_FREE(mkdir2, D_MKDIR); 2754 } else { 2755 LIST_INSERT_HEAD(&mkdirlisthd, mkdir2, md_mkdirs); 2756 WORKLIST_INSERT(&inodedep->id_bufwait,&mkdir2->md_list); 2757 } 2758 } 2759 /* 2760 * Link into parent directory pagedep to await its being written. 2761 */ 2762 if (pagedep_lookup(dp, lbn, DEPALLOC, &pagedep) == 0) 2763 WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list); 2764 dap->da_pagedep = pagedep; 2765 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], dap, 2766 da_pdlist); 2767 /* 2768 * Link into its inodedep. Put it on the id_bufwait list if the inode 2769 * is not yet written. If it is written, do the post-inode write 2770 * processing to put it on the id_pendinghd list. 2771 */ 2772 (void) inodedep_lookup(fs, newinum, DEPALLOC, &inodedep); 2773 if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) 2774 diradd_inode_written(dap, inodedep); 2775 else 2776 WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list); 2777 if (isnewblk) { 2778 /* 2779 * Directories growing into indirect blocks are rare 2780 * enough and the frequency of new block allocation 2781 * in those cases even more rare, that we choose not 2782 * to bother tracking them. Rather we simply force the 2783 * new directory entry to disk. 2784 */ 2785 if (lbn >= NDADDR) { 2786 FREE_LOCK(&lk); 2787 /* 2788 * We only have a new allocation when at the 2789 * beginning of a new block, not when we are 2790 * expanding into an existing block. 2791 */ 2792 if (blkoff(fs, diroffset) == 0) 2793 return (1); 2794 return (0); 2795 } 2796 /* 2797 * We only have a new allocation when at the beginning 2798 * of a new fragment, not when we are expanding into an 2799 * existing fragment. Also, there is nothing to do if we 2800 * are already tracking this block. 2801 */ 2802 if (fragoff(fs, diroffset) != 0) { 2803 FREE_LOCK(&lk); 2804 return (0); 2805 } 2806 if ((pagedep->pd_state & NEWBLOCK) != 0) { 2807 WORKITEM_FREE(newdirblk, D_NEWDIRBLK); 2808 FREE_LOCK(&lk); 2809 return (0); 2810 } 2811 /* 2812 * Find our associated allocdirect and have it track us. 2813 */ 2814 if (inodedep_lookup(fs, dp->i_number, 0, &inodedep) == 0) 2815 panic("softdep_setup_directory_add: lost inodedep"); 2816 adp = TAILQ_LAST(&inodedep->id_newinoupdt, allocdirectlst); 2817 if (adp == NULL || adp->ad_lbn != lbn) { 2818 FREE_LOCK(&lk); 2819 panic("softdep_setup_directory_add: lost entry"); 2820 } 2821 pagedep->pd_state |= NEWBLOCK; 2822 newdirblk->db_pagedep = pagedep; 2823 WORKLIST_INSERT(&adp->ad_newdirblk, &newdirblk->db_list); 2824 } 2825 FREE_LOCK(&lk); 2826 return (0); 2827 } 2828 2829 /* 2830 * This procedure is called to change the offset of a directory 2831 * entry when compacting a directory block which must be owned 2832 * exclusively by the caller. Note that the actual entry movement 2833 * must be done in this procedure to ensure that no I/O completions 2834 * occur while the move is in progress. 2835 */ 2836 void 2837 softdep_change_directoryentry_offset(dp, base, oldloc, newloc, entrysize) 2838 struct inode *dp; /* inode for directory */ 2839 caddr_t base; /* address of dp->i_offset */ 2840 caddr_t oldloc; /* address of old directory location */ 2841 caddr_t newloc; /* address of new directory location */ 2842 int entrysize; /* size of directory entry */ 2843 { 2844 int offset, oldoffset, newoffset; 2845 struct pagedep *pagedep; 2846 struct diradd *dap; 2847 ufs_lbn_t lbn; 2848 2849 ACQUIRE_LOCK(&lk); 2850 lbn = lblkno(dp->i_fs, dp->i_offset); 2851 offset = blkoff(dp->i_fs, dp->i_offset); 2852 if (pagedep_lookup(dp, lbn, 0, &pagedep) == 0) 2853 goto done; 2854 oldoffset = offset + (oldloc - base); 2855 newoffset = offset + (newloc - base); 2856 2857 LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(oldoffset)], da_pdlist) { 2858 if (dap->da_offset != oldoffset) 2859 continue; 2860 dap->da_offset = newoffset; 2861 if (DIRADDHASH(newoffset) == DIRADDHASH(oldoffset)) 2862 break; 2863 LIST_REMOVE(dap, da_pdlist); 2864 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(newoffset)], 2865 dap, da_pdlist); 2866 break; 2867 } 2868 if (dap == NULL) { 2869 2870 LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist) { 2871 if (dap->da_offset == oldoffset) { 2872 dap->da_offset = newoffset; 2873 break; 2874 } 2875 } 2876 } 2877 done: 2878 bcopy(oldloc, newloc, entrysize); 2879 FREE_LOCK(&lk); 2880 } 2881 2882 /* 2883 * Free a diradd dependency structure. This routine must be called 2884 * with splbio interrupts blocked. 2885 */ 2886 static void 2887 free_diradd(dap) 2888 struct diradd *dap; 2889 { 2890 struct dirrem *dirrem; 2891 struct pagedep *pagedep; 2892 struct inodedep *inodedep; 2893 struct mkdir *mkdir, *nextmd; 2894 2895 #ifdef DEBUG 2896 if (lk.lkt_held == NOHOLDER) 2897 panic("free_diradd: lock not held"); 2898 #endif 2899 WORKLIST_REMOVE(&dap->da_list); 2900 LIST_REMOVE(dap, da_pdlist); 2901 if ((dap->da_state & DIRCHG) == 0) { 2902 pagedep = dap->da_pagedep; 2903 } else { 2904 dirrem = dap->da_previous; 2905 pagedep = dirrem->dm_pagedep; 2906 dirrem->dm_dirinum = pagedep->pd_ino; 2907 add_to_worklist(&dirrem->dm_list); 2908 } 2909 if (inodedep_lookup(VFSTOUFS(pagedep->pd_mnt)->um_fs, dap->da_newinum, 2910 0, &inodedep) != 0) 2911 (void) free_inodedep(inodedep); 2912 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) { 2913 for (mkdir = LIST_FIRST(&mkdirlisthd); mkdir; mkdir = nextmd) { 2914 nextmd = LIST_NEXT(mkdir, md_mkdirs); 2915 if (mkdir->md_diradd != dap) 2916 continue; 2917 dap->da_state &= ~mkdir->md_state; 2918 WORKLIST_REMOVE(&mkdir->md_list); 2919 LIST_REMOVE(mkdir, md_mkdirs); 2920 WORKITEM_FREE(mkdir, D_MKDIR); 2921 } 2922 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) { 2923 FREE_LOCK(&lk); 2924 panic("free_diradd: unfound ref"); 2925 } 2926 } 2927 WORKITEM_FREE(dap, D_DIRADD); 2928 } 2929 2930 /* 2931 * Directory entry removal dependencies. 2932 * 2933 * When removing a directory entry, the entry's inode pointer must be 2934 * zero'ed on disk before the corresponding inode's link count is decremented 2935 * (possibly freeing the inode for re-use). This dependency is handled by 2936 * updating the directory entry but delaying the inode count reduction until 2937 * after the directory block has been written to disk. After this point, the 2938 * inode count can be decremented whenever it is convenient. 2939 */ 2940 2941 /* 2942 * This routine should be called immediately after removing 2943 * a directory entry. The inode's link count should not be 2944 * decremented by the calling procedure -- the soft updates 2945 * code will do this task when it is safe. 2946 */ 2947 void 2948 softdep_setup_remove(bp, dp, ip, isrmdir) 2949 struct buf *bp; /* buffer containing directory block */ 2950 struct inode *dp; /* inode for the directory being modified */ 2951 struct inode *ip; /* inode for directory entry being removed */ 2952 int isrmdir; /* indicates if doing RMDIR */ 2953 { 2954 struct dirrem *dirrem, *prevdirrem; 2955 2956 /* 2957 * Allocate a new dirrem if appropriate and ACQUIRE_LOCK. 2958 */ 2959 dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem); 2960 2961 /* 2962 * If the COMPLETE flag is clear, then there were no active 2963 * entries and we want to roll back to a zeroed entry until 2964 * the new inode is committed to disk. If the COMPLETE flag is 2965 * set then we have deleted an entry that never made it to 2966 * disk. If the entry we deleted resulted from a name change, 2967 * then the old name still resides on disk. We cannot delete 2968 * its inode (returned to us in prevdirrem) until the zeroed 2969 * directory entry gets to disk. The new inode has never been 2970 * referenced on the disk, so can be deleted immediately. 2971 */ 2972 if ((dirrem->dm_state & COMPLETE) == 0) { 2973 LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, dirrem, 2974 dm_next); 2975 FREE_LOCK(&lk); 2976 } else { 2977 if (prevdirrem != NULL) 2978 LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, 2979 prevdirrem, dm_next); 2980 dirrem->dm_dirinum = dirrem->dm_pagedep->pd_ino; 2981 FREE_LOCK(&lk); 2982 handle_workitem_remove(dirrem, NULL); 2983 } 2984 } 2985 2986 /* 2987 * Allocate a new dirrem if appropriate and return it along with 2988 * its associated pagedep. Called without a lock, returns with lock. 2989 */ 2990 static long num_dirrem; /* number of dirrem allocated */ 2991 static struct dirrem * 2992 newdirrem(bp, dp, ip, isrmdir, prevdirremp) 2993 struct buf *bp; /* buffer containing directory block */ 2994 struct inode *dp; /* inode for the directory being modified */ 2995 struct inode *ip; /* inode for directory entry being removed */ 2996 int isrmdir; /* indicates if doing RMDIR */ 2997 struct dirrem **prevdirremp; /* previously referenced inode, if any */ 2998 { 2999 int offset; 3000 ufs_lbn_t lbn; 3001 struct diradd *dap; 3002 struct dirrem *dirrem; 3003 struct pagedep *pagedep; 3004 3005 /* 3006 * Whiteouts have no deletion dependencies. 3007 */ 3008 if (ip == NULL) 3009 panic("newdirrem: whiteout"); 3010 /* 3011 * If we are over our limit, try to improve the situation. 3012 * Limiting the number of dirrem structures will also limit 3013 * the number of freefile and freeblks structures. 3014 */ 3015 if (num_dirrem > max_softdeps / 2) 3016 (void) request_cleanup(FLUSH_REMOVE, 0); 3017 num_dirrem += 1; 3018 MALLOC(dirrem, struct dirrem *, sizeof(struct dirrem), 3019 M_DIRREM, M_SOFTDEP_FLAGS|M_ZERO); 3020 dirrem->dm_list.wk_type = D_DIRREM; 3021 dirrem->dm_state = isrmdir ? RMDIR : 0; 3022 dirrem->dm_mnt = ITOV(ip)->v_mount; 3023 dirrem->dm_oldinum = ip->i_number; 3024 *prevdirremp = NULL; 3025 3026 ACQUIRE_LOCK(&lk); 3027 lbn = lblkno(dp->i_fs, dp->i_offset); 3028 offset = blkoff(dp->i_fs, dp->i_offset); 3029 if (pagedep_lookup(dp, lbn, DEPALLOC, &pagedep) == 0) 3030 WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list); 3031 dirrem->dm_pagedep = pagedep; 3032 /* 3033 * Check for a diradd dependency for the same directory entry. 3034 * If present, then both dependencies become obsolete and can 3035 * be de-allocated. Check for an entry on both the pd_dirraddhd 3036 * list and the pd_pendinghd list. 3037 */ 3038 3039 LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(offset)], da_pdlist) 3040 if (dap->da_offset == offset) 3041 break; 3042 if (dap == NULL) { 3043 3044 LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist) 3045 if (dap->da_offset == offset) 3046 break; 3047 if (dap == NULL) 3048 return (dirrem); 3049 } 3050 /* 3051 * Must be ATTACHED at this point. 3052 */ 3053 if ((dap->da_state & ATTACHED) == 0) { 3054 FREE_LOCK(&lk); 3055 panic("newdirrem: not ATTACHED"); 3056 } 3057 if (dap->da_newinum != ip->i_number) { 3058 FREE_LOCK(&lk); 3059 panic("newdirrem: inum %d should be %d", 3060 ip->i_number, dap->da_newinum); 3061 } 3062 /* 3063 * If we are deleting a changed name that never made it to disk, 3064 * then return the dirrem describing the previous inode (which 3065 * represents the inode currently referenced from this entry on disk). 3066 */ 3067 if ((dap->da_state & DIRCHG) != 0) { 3068 *prevdirremp = dap->da_previous; 3069 dap->da_state &= ~DIRCHG; 3070 dap->da_pagedep = pagedep; 3071 } 3072 /* 3073 * We are deleting an entry that never made it to disk. 3074 * Mark it COMPLETE so we can delete its inode immediately. 3075 */ 3076 dirrem->dm_state |= COMPLETE; 3077 free_diradd(dap); 3078 return (dirrem); 3079 } 3080 3081 /* 3082 * Directory entry change dependencies. 3083 * 3084 * Changing an existing directory entry requires that an add operation 3085 * be completed first followed by a deletion. The semantics for the addition 3086 * are identical to the description of adding a new entry above except 3087 * that the rollback is to the old inode number rather than zero. Once 3088 * the addition dependency is completed, the removal is done as described 3089 * in the removal routine above. 3090 */ 3091 3092 /* 3093 * This routine should be called immediately after changing 3094 * a directory entry. The inode's link count should not be 3095 * decremented by the calling procedure -- the soft updates 3096 * code will perform this task when it is safe. 3097 */ 3098 void 3099 softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir) 3100 struct buf *bp; /* buffer containing directory block */ 3101 struct inode *dp; /* inode for the directory being modified */ 3102 struct inode *ip; /* inode for directory entry being removed */ 3103 ino_t newinum; /* new inode number for changed entry */ 3104 int isrmdir; /* indicates if doing RMDIR */ 3105 { 3106 int offset; 3107 struct diradd *dap = NULL; 3108 struct dirrem *dirrem, *prevdirrem; 3109 struct pagedep *pagedep; 3110 struct inodedep *inodedep; 3111 3112 offset = blkoff(dp->i_fs, dp->i_offset); 3113 3114 /* 3115 * Whiteouts do not need diradd dependencies. 3116 */ 3117 if (newinum != WINO) { 3118 MALLOC(dap, struct diradd *, sizeof(struct diradd), 3119 M_DIRADD, M_SOFTDEP_FLAGS|M_ZERO); 3120 dap->da_list.wk_type = D_DIRADD; 3121 dap->da_state = DIRCHG | ATTACHED | DEPCOMPLETE; 3122 dap->da_offset = offset; 3123 dap->da_newinum = newinum; 3124 } 3125 3126 /* 3127 * Allocate a new dirrem and ACQUIRE_LOCK. 3128 */ 3129 dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem); 3130 pagedep = dirrem->dm_pagedep; 3131 /* 3132 * The possible values for isrmdir: 3133 * 0 - non-directory file rename 3134 * 1 - directory rename within same directory 3135 * inum - directory rename to new directory of given inode number 3136 * When renaming to a new directory, we are both deleting and 3137 * creating a new directory entry, so the link count on the new 3138 * directory should not change. Thus we do not need the followup 3139 * dirrem which is usually done in handle_workitem_remove. We set 3140 * the DIRCHG flag to tell handle_workitem_remove to skip the 3141 * followup dirrem. 3142 */ 3143 if (isrmdir > 1) 3144 dirrem->dm_state |= DIRCHG; 3145 3146 /* 3147 * Whiteouts have no additional dependencies, 3148 * so just put the dirrem on the correct list. 3149 */ 3150 if (newinum == WINO) { 3151 if ((dirrem->dm_state & COMPLETE) == 0) { 3152 LIST_INSERT_HEAD(&pagedep->pd_dirremhd, dirrem, 3153 dm_next); 3154 } else { 3155 dirrem->dm_dirinum = pagedep->pd_ino; 3156 add_to_worklist(&dirrem->dm_list); 3157 } 3158 FREE_LOCK(&lk); 3159 return; 3160 } 3161 3162 /* 3163 * If the COMPLETE flag is clear, then there were no active 3164 * entries and we want to roll back to the previous inode until 3165 * the new inode is committed to disk. If the COMPLETE flag is 3166 * set, then we have deleted an entry that never made it to disk. 3167 * If the entry we deleted resulted from a name change, then the old 3168 * inode reference still resides on disk. Any rollback that we do 3169 * needs to be to that old inode (returned to us in prevdirrem). If 3170 * the entry we deleted resulted from a create, then there is 3171 * no entry on the disk, so we want to roll back to zero rather 3172 * than the uncommitted inode. In either of the COMPLETE cases we 3173 * want to immediately free the unwritten and unreferenced inode. 3174 */ 3175 if ((dirrem->dm_state & COMPLETE) == 0) { 3176 dap->da_previous = dirrem; 3177 } else { 3178 if (prevdirrem != NULL) { 3179 dap->da_previous = prevdirrem; 3180 } else { 3181 dap->da_state &= ~DIRCHG; 3182 dap->da_pagedep = pagedep; 3183 } 3184 dirrem->dm_dirinum = pagedep->pd_ino; 3185 add_to_worklist(&dirrem->dm_list); 3186 } 3187 /* 3188 * Link into its inodedep. Put it on the id_bufwait list if the inode 3189 * is not yet written. If it is written, do the post-inode write 3190 * processing to put it on the id_pendinghd list. 3191 */ 3192 if (inodedep_lookup(dp->i_fs, newinum, DEPALLOC, &inodedep) == 0 || 3193 (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) { 3194 dap->da_state |= COMPLETE; 3195 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist); 3196 WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list); 3197 } else { 3198 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], 3199 dap, da_pdlist); 3200 WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list); 3201 } 3202 FREE_LOCK(&lk); 3203 } 3204 3205 /* 3206 * Called whenever the link count on an inode is changed. 3207 * It creates an inode dependency so that the new reference(s) 3208 * to the inode cannot be committed to disk until the updated 3209 * inode has been written. 3210 */ 3211 void 3212 softdep_change_linkcnt(ip) 3213 struct inode *ip; /* the inode with the increased link count */ 3214 { 3215 struct inodedep *inodedep; 3216 3217 ACQUIRE_LOCK(&lk); 3218 (void) inodedep_lookup(ip->i_fs, ip->i_number, DEPALLOC, &inodedep); 3219 if (ip->i_nlink < ip->i_effnlink) { 3220 FREE_LOCK(&lk); 3221 panic("softdep_change_linkcnt: bad delta"); 3222 } 3223 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 3224 FREE_LOCK(&lk); 3225 } 3226 3227 /* 3228 * Called when the effective link count and the reference count 3229 * on an inode drops to zero. At this point there are no names 3230 * referencing the file in the filesystem and no active file 3231 * references. The space associated with the file will be freed 3232 * as soon as the necessary soft dependencies are cleared. 3233 */ 3234 void 3235 softdep_releasefile(ip) 3236 struct inode *ip; /* inode with the zero effective link count */ 3237 { 3238 struct inodedep *inodedep; 3239 struct fs *fs; 3240 int extblocks; 3241 3242 if (ip->i_effnlink > 0) 3243 panic("softdep_filerelease: file still referenced"); 3244 /* 3245 * We may be called several times as the real reference count 3246 * drops to zero. We only want to account for the space once. 3247 */ 3248 if (ip->i_flag & IN_SPACECOUNTED) 3249 return; 3250 /* 3251 * We have to deactivate a snapshot otherwise copyonwrites may 3252 * add blocks and the cleanup may remove blocks after we have 3253 * tried to account for them. 3254 */ 3255 if ((ip->i_flags & SF_SNAPSHOT) != 0) 3256 ffs_snapremove(ITOV(ip)); 3257 /* 3258 * If we are tracking an nlinkdelta, we have to also remember 3259 * whether we accounted for the freed space yet. 3260 */ 3261 ACQUIRE_LOCK(&lk); 3262 if ((inodedep_lookup(ip->i_fs, ip->i_number, 0, &inodedep))) 3263 inodedep->id_state |= SPACECOUNTED; 3264 FREE_LOCK(&lk); 3265 fs = ip->i_fs; 3266 extblocks = 0; 3267 if (fs->fs_magic == FS_UFS2_MAGIC) 3268 extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize)); 3269 ip->i_fs->fs_pendingblocks += DIP(ip, i_blocks) - extblocks; 3270 ip->i_fs->fs_pendinginodes += 1; 3271 ip->i_flag |= IN_SPACECOUNTED; 3272 } 3273 3274 /* 3275 * This workitem decrements the inode's link count. 3276 * If the link count reaches zero, the file is removed. 3277 */ 3278 static void 3279 handle_workitem_remove(dirrem, xp) 3280 struct dirrem *dirrem; 3281 struct vnode *xp; 3282 { 3283 struct thread *td = curthread; 3284 struct inodedep *inodedep; 3285 struct vnode *vp; 3286 struct inode *ip; 3287 ino_t oldinum; 3288 int error; 3289 3290 if ((vp = xp) == NULL && 3291 (error = VFS_VGET(dirrem->dm_mnt, dirrem->dm_oldinum, LK_EXCLUSIVE, 3292 &vp)) != 0) { 3293 softdep_error("handle_workitem_remove: vget", error); 3294 return; 3295 } 3296 ip = VTOI(vp); 3297 ACQUIRE_LOCK(&lk); 3298 if ((inodedep_lookup(ip->i_fs, dirrem->dm_oldinum, 0, &inodedep)) == 0){ 3299 FREE_LOCK(&lk); 3300 panic("handle_workitem_remove: lost inodedep"); 3301 } 3302 /* 3303 * Normal file deletion. 3304 */ 3305 if ((dirrem->dm_state & RMDIR) == 0) { 3306 ip->i_nlink--; 3307 DIP(ip, i_nlink) = ip->i_nlink; 3308 ip->i_flag |= IN_CHANGE; 3309 if (ip->i_nlink < ip->i_effnlink) { 3310 FREE_LOCK(&lk); 3311 panic("handle_workitem_remove: bad file delta"); 3312 } 3313 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 3314 FREE_LOCK(&lk); 3315 vput(vp); 3316 num_dirrem -= 1; 3317 WORKITEM_FREE(dirrem, D_DIRREM); 3318 return; 3319 } 3320 /* 3321 * Directory deletion. Decrement reference count for both the 3322 * just deleted parent directory entry and the reference for ".". 3323 * Next truncate the directory to length zero. When the 3324 * truncation completes, arrange to have the reference count on 3325 * the parent decremented to account for the loss of "..". 3326 */ 3327 ip->i_nlink -= 2; 3328 DIP(ip, i_nlink) = ip->i_nlink; 3329 ip->i_flag |= IN_CHANGE; 3330 if (ip->i_nlink < ip->i_effnlink) { 3331 FREE_LOCK(&lk); 3332 panic("handle_workitem_remove: bad dir delta"); 3333 } 3334 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 3335 FREE_LOCK(&lk); 3336 if ((error = UFS_TRUNCATE(vp, (off_t)0, 0, td->td_ucred, td)) != 0) 3337 softdep_error("handle_workitem_remove: truncate", error); 3338 /* 3339 * Rename a directory to a new parent. Since, we are both deleting 3340 * and creating a new directory entry, the link count on the new 3341 * directory should not change. Thus we skip the followup dirrem. 3342 */ 3343 if (dirrem->dm_state & DIRCHG) { 3344 vput(vp); 3345 num_dirrem -= 1; 3346 WORKITEM_FREE(dirrem, D_DIRREM); 3347 return; 3348 } 3349 /* 3350 * If the inodedep does not exist, then the zero'ed inode has 3351 * been written to disk. If the allocated inode has never been 3352 * written to disk, then the on-disk inode is zero'ed. In either 3353 * case we can remove the file immediately. 3354 */ 3355 ACQUIRE_LOCK(&lk); 3356 dirrem->dm_state = 0; 3357 oldinum = dirrem->dm_oldinum; 3358 dirrem->dm_oldinum = dirrem->dm_dirinum; 3359 if (inodedep_lookup(ip->i_fs, oldinum, 0, &inodedep) == 0 || 3360 check_inode_unwritten(inodedep)) { 3361 FREE_LOCK(&lk); 3362 vput(vp); 3363 handle_workitem_remove(dirrem, NULL); 3364 return; 3365 } 3366 WORKLIST_INSERT(&inodedep->id_inowait, &dirrem->dm_list); 3367 FREE_LOCK(&lk); 3368 vput(vp); 3369 } 3370 3371 /* 3372 * Inode de-allocation dependencies. 3373 * 3374 * When an inode's link count is reduced to zero, it can be de-allocated. We 3375 * found it convenient to postpone de-allocation until after the inode is 3376 * written to disk with its new link count (zero). At this point, all of the 3377 * on-disk inode's block pointers are nullified and, with careful dependency 3378 * list ordering, all dependencies related to the inode will be satisfied and 3379 * the corresponding dependency structures de-allocated. So, if/when the 3380 * inode is reused, there will be no mixing of old dependencies with new 3381 * ones. This artificial dependency is set up by the block de-allocation 3382 * procedure above (softdep_setup_freeblocks) and completed by the 3383 * following procedure. 3384 */ 3385 static void 3386 handle_workitem_freefile(freefile) 3387 struct freefile *freefile; 3388 { 3389 struct fs *fs; 3390 struct inodedep *idp; 3391 int error; 3392 3393 fs = VFSTOUFS(freefile->fx_mnt)->um_fs; 3394 #ifdef DEBUG 3395 ACQUIRE_LOCK(&lk); 3396 error = inodedep_lookup(fs, freefile->fx_oldinum, 0, &idp); 3397 FREE_LOCK(&lk); 3398 if (error) 3399 panic("handle_workitem_freefile: inodedep survived"); 3400 #endif 3401 fs->fs_pendinginodes -= 1; 3402 if ((error = ffs_freefile(fs, freefile->fx_devvp, freefile->fx_oldinum, 3403 freefile->fx_mode)) != 0) 3404 softdep_error("handle_workitem_freefile", error); 3405 WORKITEM_FREE(freefile, D_FREEFILE); 3406 } 3407 3408 /* 3409 * Disk writes. 3410 * 3411 * The dependency structures constructed above are most actively used when file 3412 * system blocks are written to disk. No constraints are placed on when a 3413 * block can be written, but unsatisfied update dependencies are made safe by 3414 * modifying (or replacing) the source memory for the duration of the disk 3415 * write. When the disk write completes, the memory block is again brought 3416 * up-to-date. 3417 * 3418 * In-core inode structure reclamation. 3419 * 3420 * Because there are a finite number of "in-core" inode structures, they are 3421 * reused regularly. By transferring all inode-related dependencies to the 3422 * in-memory inode block and indexing them separately (via "inodedep"s), we 3423 * can allow "in-core" inode structures to be reused at any time and avoid 3424 * any increase in contention. 3425 * 3426 * Called just before entering the device driver to initiate a new disk I/O. 3427 * The buffer must be locked, thus, no I/O completion operations can occur 3428 * while we are manipulating its associated dependencies. 3429 */ 3430 static void 3431 softdep_disk_io_initiation(bp) 3432 struct buf *bp; /* structure describing disk write to occur */ 3433 { 3434 struct worklist *wk, *nextwk; 3435 struct indirdep *indirdep; 3436 struct inodedep *inodedep; 3437 3438 /* 3439 * We only care about write operations. There should never 3440 * be dependencies for reads. 3441 */ 3442 if (bp->b_iocmd == BIO_READ) 3443 panic("softdep_disk_io_initiation: read"); 3444 /* 3445 * Do any necessary pre-I/O processing. 3446 */ 3447 for (wk = LIST_FIRST(&bp->b_dep); wk; wk = nextwk) { 3448 nextwk = LIST_NEXT(wk, wk_list); 3449 switch (wk->wk_type) { 3450 3451 case D_PAGEDEP: 3452 initiate_write_filepage(WK_PAGEDEP(wk), bp); 3453 continue; 3454 3455 case D_INODEDEP: 3456 inodedep = WK_INODEDEP(wk); 3457 if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC) 3458 initiate_write_inodeblock_ufs1(inodedep, bp); 3459 else 3460 initiate_write_inodeblock_ufs2(inodedep, bp); 3461 continue; 3462 3463 case D_INDIRDEP: 3464 indirdep = WK_INDIRDEP(wk); 3465 if (indirdep->ir_state & GOINGAWAY) 3466 panic("disk_io_initiation: indirdep gone"); 3467 /* 3468 * If there are no remaining dependencies, this 3469 * will be writing the real pointers, so the 3470 * dependency can be freed. 3471 */ 3472 if (LIST_FIRST(&indirdep->ir_deplisthd) == NULL) { 3473 indirdep->ir_savebp->b_flags |= 3474 B_INVAL | B_NOCACHE; 3475 brelse(indirdep->ir_savebp); 3476 /* inline expand WORKLIST_REMOVE(wk); */ 3477 wk->wk_state &= ~ONWORKLIST; 3478 LIST_REMOVE(wk, wk_list); 3479 WORKITEM_FREE(indirdep, D_INDIRDEP); 3480 continue; 3481 } 3482 /* 3483 * Replace up-to-date version with safe version. 3484 */ 3485 MALLOC(indirdep->ir_saveddata, caddr_t, bp->b_bcount, 3486 M_INDIRDEP, M_SOFTDEP_FLAGS); 3487 ACQUIRE_LOCK(&lk); 3488 indirdep->ir_state &= ~ATTACHED; 3489 indirdep->ir_state |= UNDONE; 3490 bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount); 3491 bcopy(indirdep->ir_savebp->b_data, bp->b_data, 3492 bp->b_bcount); 3493 FREE_LOCK(&lk); 3494 continue; 3495 3496 case D_MKDIR: 3497 case D_BMSAFEMAP: 3498 case D_ALLOCDIRECT: 3499 case D_ALLOCINDIR: 3500 continue; 3501 3502 default: 3503 panic("handle_disk_io_initiation: Unexpected type %s", 3504 TYPENAME(wk->wk_type)); 3505 /* NOTREACHED */ 3506 } 3507 } 3508 } 3509 3510 /* 3511 * Called from within the procedure above to deal with unsatisfied 3512 * allocation dependencies in a directory. The buffer must be locked, 3513 * thus, no I/O completion operations can occur while we are 3514 * manipulating its associated dependencies. 3515 */ 3516 static void 3517 initiate_write_filepage(pagedep, bp) 3518 struct pagedep *pagedep; 3519 struct buf *bp; 3520 { 3521 struct diradd *dap; 3522 struct direct *ep; 3523 int i; 3524 3525 if (pagedep->pd_state & IOSTARTED) { 3526 /* 3527 * This can only happen if there is a driver that does not 3528 * understand chaining. Here biodone will reissue the call 3529 * to strategy for the incomplete buffers. 3530 */ 3531 printf("initiate_write_filepage: already started\n"); 3532 return; 3533 } 3534 pagedep->pd_state |= IOSTARTED; 3535 ACQUIRE_LOCK(&lk); 3536 for (i = 0; i < DAHASHSZ; i++) { 3537 LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) { 3538 ep = (struct direct *) 3539 ((char *)bp->b_data + dap->da_offset); 3540 if (ep->d_ino != dap->da_newinum) { 3541 FREE_LOCK(&lk); 3542 panic("%s: dir inum %d != new %d", 3543 "initiate_write_filepage", 3544 ep->d_ino, dap->da_newinum); 3545 } 3546 if (dap->da_state & DIRCHG) 3547 ep->d_ino = dap->da_previous->dm_oldinum; 3548 else 3549 ep->d_ino = 0; 3550 dap->da_state &= ~ATTACHED; 3551 dap->da_state |= UNDONE; 3552 } 3553 } 3554 FREE_LOCK(&lk); 3555 } 3556 3557 /* 3558 * Version of initiate_write_inodeblock that handles UFS1 dinodes. 3559 * Note that any bug fixes made to this routine must be done in the 3560 * version found below. 3561 * 3562 * Called from within the procedure above to deal with unsatisfied 3563 * allocation dependencies in an inodeblock. The buffer must be 3564 * locked, thus, no I/O completion operations can occur while we 3565 * are manipulating its associated dependencies. 3566 */ 3567 static void 3568 initiate_write_inodeblock_ufs1(inodedep, bp) 3569 struct inodedep *inodedep; 3570 struct buf *bp; /* The inode block */ 3571 { 3572 struct allocdirect *adp, *lastadp; 3573 struct ufs1_dinode *dp; 3574 struct fs *fs; 3575 ufs_lbn_t i, prevlbn = 0; 3576 int deplist; 3577 3578 if (inodedep->id_state & IOSTARTED) 3579 panic("initiate_write_inodeblock_ufs1: already started"); 3580 inodedep->id_state |= IOSTARTED; 3581 fs = inodedep->id_fs; 3582 dp = (struct ufs1_dinode *)bp->b_data + 3583 ino_to_fsbo(fs, inodedep->id_ino); 3584 /* 3585 * If the bitmap is not yet written, then the allocated 3586 * inode cannot be written to disk. 3587 */ 3588 if ((inodedep->id_state & DEPCOMPLETE) == 0) { 3589 if (inodedep->id_savedino1 != NULL) 3590 panic("initiate_write_inodeblock_ufs1: I/O underway"); 3591 MALLOC(inodedep->id_savedino1, struct ufs1_dinode *, 3592 sizeof(struct ufs1_dinode), M_INODEDEP, M_SOFTDEP_FLAGS); 3593 *inodedep->id_savedino1 = *dp; 3594 bzero((caddr_t)dp, sizeof(struct ufs1_dinode)); 3595 return; 3596 } 3597 /* 3598 * If no dependencies, then there is nothing to roll back. 3599 */ 3600 inodedep->id_savedsize = dp->di_size; 3601 inodedep->id_savedextsize = 0; 3602 if (TAILQ_FIRST(&inodedep->id_inoupdt) == NULL) 3603 return; 3604 /* 3605 * Set the dependencies to busy. 3606 */ 3607 ACQUIRE_LOCK(&lk); 3608 for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 3609 adp = TAILQ_NEXT(adp, ad_next)) { 3610 #ifdef DIAGNOSTIC 3611 if (deplist != 0 && prevlbn >= adp->ad_lbn) { 3612 FREE_LOCK(&lk); 3613 panic("softdep_write_inodeblock: lbn order"); 3614 } 3615 prevlbn = adp->ad_lbn; 3616 if (adp->ad_lbn < NDADDR && 3617 dp->di_db[adp->ad_lbn] != adp->ad_newblkno) { 3618 FREE_LOCK(&lk); 3619 panic("%s: direct pointer #%jd mismatch %d != %jd", 3620 "softdep_write_inodeblock", 3621 (intmax_t)adp->ad_lbn, 3622 dp->di_db[adp->ad_lbn], 3623 (intmax_t)adp->ad_newblkno); 3624 } 3625 if (adp->ad_lbn >= NDADDR && 3626 dp->di_ib[adp->ad_lbn - NDADDR] != adp->ad_newblkno) { 3627 FREE_LOCK(&lk); 3628 panic("%s: indirect pointer #%jd mismatch %d != %jd", 3629 "softdep_write_inodeblock", 3630 (intmax_t)adp->ad_lbn - NDADDR, 3631 dp->di_ib[adp->ad_lbn - NDADDR], 3632 (intmax_t)adp->ad_newblkno); 3633 } 3634 deplist |= 1 << adp->ad_lbn; 3635 if ((adp->ad_state & ATTACHED) == 0) { 3636 FREE_LOCK(&lk); 3637 panic("softdep_write_inodeblock: Unknown state 0x%x", 3638 adp->ad_state); 3639 } 3640 #endif /* DIAGNOSTIC */ 3641 adp->ad_state &= ~ATTACHED; 3642 adp->ad_state |= UNDONE; 3643 } 3644 /* 3645 * The on-disk inode cannot claim to be any larger than the last 3646 * fragment that has been written. Otherwise, the on-disk inode 3647 * might have fragments that were not the last block in the file 3648 * which would corrupt the filesystem. 3649 */ 3650 for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 3651 lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) { 3652 if (adp->ad_lbn >= NDADDR) 3653 break; 3654 dp->di_db[adp->ad_lbn] = adp->ad_oldblkno; 3655 /* keep going until hitting a rollback to a frag */ 3656 if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize) 3657 continue; 3658 dp->di_size = fs->fs_bsize * adp->ad_lbn + adp->ad_oldsize; 3659 for (i = adp->ad_lbn + 1; i < NDADDR; i++) { 3660 #ifdef DIAGNOSTIC 3661 if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0) { 3662 FREE_LOCK(&lk); 3663 panic("softdep_write_inodeblock: lost dep1"); 3664 } 3665 #endif /* DIAGNOSTIC */ 3666 dp->di_db[i] = 0; 3667 } 3668 for (i = 0; i < NIADDR; i++) { 3669 #ifdef DIAGNOSTIC 3670 if (dp->di_ib[i] != 0 && 3671 (deplist & ((1 << NDADDR) << i)) == 0) { 3672 FREE_LOCK(&lk); 3673 panic("softdep_write_inodeblock: lost dep2"); 3674 } 3675 #endif /* DIAGNOSTIC */ 3676 dp->di_ib[i] = 0; 3677 } 3678 FREE_LOCK(&lk); 3679 return; 3680 } 3681 /* 3682 * If we have zero'ed out the last allocated block of the file, 3683 * roll back the size to the last currently allocated block. 3684 * We know that this last allocated block is a full-sized as 3685 * we already checked for fragments in the loop above. 3686 */ 3687 if (lastadp != NULL && 3688 dp->di_size <= (lastadp->ad_lbn + 1) * fs->fs_bsize) { 3689 for (i = lastadp->ad_lbn; i >= 0; i--) 3690 if (dp->di_db[i] != 0) 3691 break; 3692 dp->di_size = (i + 1) * fs->fs_bsize; 3693 } 3694 /* 3695 * The only dependencies are for indirect blocks. 3696 * 3697 * The file size for indirect block additions is not guaranteed. 3698 * Such a guarantee would be non-trivial to achieve. The conventional 3699 * synchronous write implementation also does not make this guarantee. 3700 * Fsck should catch and fix discrepancies. Arguably, the file size 3701 * can be over-estimated without destroying integrity when the file 3702 * moves into the indirect blocks (i.e., is large). If we want to 3703 * postpone fsck, we are stuck with this argument. 3704 */ 3705 for (; adp; adp = TAILQ_NEXT(adp, ad_next)) 3706 dp->di_ib[adp->ad_lbn - NDADDR] = 0; 3707 FREE_LOCK(&lk); 3708 } 3709 3710 /* 3711 * Version of initiate_write_inodeblock that handles UFS2 dinodes. 3712 * Note that any bug fixes made to this routine must be done in the 3713 * version found above. 3714 * 3715 * Called from within the procedure above to deal with unsatisfied 3716 * allocation dependencies in an inodeblock. The buffer must be 3717 * locked, thus, no I/O completion operations can occur while we 3718 * are manipulating its associated dependencies. 3719 */ 3720 static void 3721 initiate_write_inodeblock_ufs2(inodedep, bp) 3722 struct inodedep *inodedep; 3723 struct buf *bp; /* The inode block */ 3724 { 3725 struct allocdirect *adp, *lastadp; 3726 struct ufs2_dinode *dp; 3727 struct fs *fs; 3728 ufs_lbn_t i, prevlbn = 0; 3729 int deplist; 3730 3731 if (inodedep->id_state & IOSTARTED) 3732 panic("initiate_write_inodeblock_ufs2: already started"); 3733 inodedep->id_state |= IOSTARTED; 3734 fs = inodedep->id_fs; 3735 dp = (struct ufs2_dinode *)bp->b_data + 3736 ino_to_fsbo(fs, inodedep->id_ino); 3737 /* 3738 * If the bitmap is not yet written, then the allocated 3739 * inode cannot be written to disk. 3740 */ 3741 if ((inodedep->id_state & DEPCOMPLETE) == 0) { 3742 if (inodedep->id_savedino2 != NULL) 3743 panic("initiate_write_inodeblock_ufs2: I/O underway"); 3744 MALLOC(inodedep->id_savedino2, struct ufs2_dinode *, 3745 sizeof(struct ufs2_dinode), M_INODEDEP, M_SOFTDEP_FLAGS); 3746 *inodedep->id_savedino2 = *dp; 3747 bzero((caddr_t)dp, sizeof(struct ufs2_dinode)); 3748 return; 3749 } 3750 /* 3751 * If no dependencies, then there is nothing to roll back. 3752 */ 3753 inodedep->id_savedsize = dp->di_size; 3754 inodedep->id_savedextsize = dp->di_extsize; 3755 if (TAILQ_FIRST(&inodedep->id_inoupdt) == NULL && 3756 TAILQ_FIRST(&inodedep->id_extupdt) == NULL) 3757 return; 3758 /* 3759 * Set the ext data dependencies to busy. 3760 */ 3761 ACQUIRE_LOCK(&lk); 3762 for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; 3763 adp = TAILQ_NEXT(adp, ad_next)) { 3764 #ifdef DIAGNOSTIC 3765 if (deplist != 0 && prevlbn >= adp->ad_lbn) { 3766 FREE_LOCK(&lk); 3767 panic("softdep_write_inodeblock: lbn order"); 3768 } 3769 prevlbn = adp->ad_lbn; 3770 if (dp->di_extb[adp->ad_lbn] != adp->ad_newblkno) { 3771 FREE_LOCK(&lk); 3772 panic("%s: direct pointer #%jd mismatch %jd != %jd", 3773 "softdep_write_inodeblock", 3774 (intmax_t)adp->ad_lbn, 3775 (intmax_t)dp->di_extb[adp->ad_lbn], 3776 (intmax_t)adp->ad_newblkno); 3777 } 3778 deplist |= 1 << adp->ad_lbn; 3779 if ((adp->ad_state & ATTACHED) == 0) { 3780 FREE_LOCK(&lk); 3781 panic("softdep_write_inodeblock: Unknown state 0x%x", 3782 adp->ad_state); 3783 } 3784 #endif /* DIAGNOSTIC */ 3785 adp->ad_state &= ~ATTACHED; 3786 adp->ad_state |= UNDONE; 3787 } 3788 /* 3789 * The on-disk inode cannot claim to be any larger than the last 3790 * fragment that has been written. Otherwise, the on-disk inode 3791 * might have fragments that were not the last block in the ext 3792 * data which would corrupt the filesystem. 3793 */ 3794 for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; 3795 lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) { 3796 dp->di_extb[adp->ad_lbn] = adp->ad_oldblkno; 3797 /* keep going until hitting a rollback to a frag */ 3798 if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize) 3799 continue; 3800 dp->di_extsize = fs->fs_bsize * adp->ad_lbn + adp->ad_oldsize; 3801 for (i = adp->ad_lbn + 1; i < NXADDR; i++) { 3802 #ifdef DIAGNOSTIC 3803 if (dp->di_extb[i] != 0 && (deplist & (1 << i)) == 0) { 3804 FREE_LOCK(&lk); 3805 panic("softdep_write_inodeblock: lost dep1"); 3806 } 3807 #endif /* DIAGNOSTIC */ 3808 dp->di_extb[i] = 0; 3809 } 3810 lastadp = NULL; 3811 break; 3812 } 3813 /* 3814 * If we have zero'ed out the last allocated block of the ext 3815 * data, roll back the size to the last currently allocated block. 3816 * We know that this last allocated block is a full-sized as 3817 * we already checked for fragments in the loop above. 3818 */ 3819 if (lastadp != NULL && 3820 dp->di_extsize <= (lastadp->ad_lbn + 1) * fs->fs_bsize) { 3821 for (i = lastadp->ad_lbn; i >= 0; i--) 3822 if (dp->di_extb[i] != 0) 3823 break; 3824 dp->di_extsize = (i + 1) * fs->fs_bsize; 3825 } 3826 /* 3827 * Set the file data dependencies to busy. 3828 */ 3829 for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 3830 adp = TAILQ_NEXT(adp, ad_next)) { 3831 #ifdef DIAGNOSTIC 3832 if (deplist != 0 && prevlbn >= adp->ad_lbn) { 3833 FREE_LOCK(&lk); 3834 panic("softdep_write_inodeblock: lbn order"); 3835 } 3836 prevlbn = adp->ad_lbn; 3837 if (adp->ad_lbn < NDADDR && 3838 dp->di_db[adp->ad_lbn] != adp->ad_newblkno) { 3839 FREE_LOCK(&lk); 3840 panic("%s: direct pointer #%jd mismatch %jd != %jd", 3841 "softdep_write_inodeblock", 3842 (intmax_t)adp->ad_lbn, 3843 (intmax_t)dp->di_db[adp->ad_lbn], 3844 (intmax_t)adp->ad_newblkno); 3845 } 3846 if (adp->ad_lbn >= NDADDR && 3847 dp->di_ib[adp->ad_lbn - NDADDR] != adp->ad_newblkno) { 3848 FREE_LOCK(&lk); 3849 panic("%s indirect pointer #%jd mismatch %jd != %jd", 3850 "softdep_write_inodeblock:", 3851 (intmax_t)adp->ad_lbn - NDADDR, 3852 (intmax_t)dp->di_ib[adp->ad_lbn - NDADDR], 3853 (intmax_t)adp->ad_newblkno); 3854 } 3855 deplist |= 1 << adp->ad_lbn; 3856 if ((adp->ad_state & ATTACHED) == 0) { 3857 FREE_LOCK(&lk); 3858 panic("softdep_write_inodeblock: Unknown state 0x%x", 3859 adp->ad_state); 3860 } 3861 #endif /* DIAGNOSTIC */ 3862 adp->ad_state &= ~ATTACHED; 3863 adp->ad_state |= UNDONE; 3864 } 3865 /* 3866 * The on-disk inode cannot claim to be any larger than the last 3867 * fragment that has been written. Otherwise, the on-disk inode 3868 * might have fragments that were not the last block in the file 3869 * which would corrupt the filesystem. 3870 */ 3871 for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 3872 lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) { 3873 if (adp->ad_lbn >= NDADDR) 3874 break; 3875 dp->di_db[adp->ad_lbn] = adp->ad_oldblkno; 3876 /* keep going until hitting a rollback to a frag */ 3877 if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize) 3878 continue; 3879 dp->di_size = fs->fs_bsize * adp->ad_lbn + adp->ad_oldsize; 3880 for (i = adp->ad_lbn + 1; i < NDADDR; i++) { 3881 #ifdef DIAGNOSTIC 3882 if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0) { 3883 FREE_LOCK(&lk); 3884 panic("softdep_write_inodeblock: lost dep2"); 3885 } 3886 #endif /* DIAGNOSTIC */ 3887 dp->di_db[i] = 0; 3888 } 3889 for (i = 0; i < NIADDR; i++) { 3890 #ifdef DIAGNOSTIC 3891 if (dp->di_ib[i] != 0 && 3892 (deplist & ((1 << NDADDR) << i)) == 0) { 3893 FREE_LOCK(&lk); 3894 panic("softdep_write_inodeblock: lost dep3"); 3895 } 3896 #endif /* DIAGNOSTIC */ 3897 dp->di_ib[i] = 0; 3898 } 3899 FREE_LOCK(&lk); 3900 return; 3901 } 3902 /* 3903 * If we have zero'ed out the last allocated block of the file, 3904 * roll back the size to the last currently allocated block. 3905 * We know that this last allocated block is a full-sized as 3906 * we already checked for fragments in the loop above. 3907 */ 3908 if (lastadp != NULL && 3909 dp->di_size <= (lastadp->ad_lbn + 1) * fs->fs_bsize) { 3910 for (i = lastadp->ad_lbn; i >= 0; i--) 3911 if (dp->di_db[i] != 0) 3912 break; 3913 dp->di_size = (i + 1) * fs->fs_bsize; 3914 } 3915 /* 3916 * The only dependencies are for indirect blocks. 3917 * 3918 * The file size for indirect block additions is not guaranteed. 3919 * Such a guarantee would be non-trivial to achieve. The conventional 3920 * synchronous write implementation also does not make this guarantee. 3921 * Fsck should catch and fix discrepancies. Arguably, the file size 3922 * can be over-estimated without destroying integrity when the file 3923 * moves into the indirect blocks (i.e., is large). If we want to 3924 * postpone fsck, we are stuck with this argument. 3925 */ 3926 for (; adp; adp = TAILQ_NEXT(adp, ad_next)) 3927 dp->di_ib[adp->ad_lbn - NDADDR] = 0; 3928 FREE_LOCK(&lk); 3929 } 3930 3931 /* 3932 * This routine is called during the completion interrupt 3933 * service routine for a disk write (from the procedure called 3934 * by the device driver to inform the filesystem caches of 3935 * a request completion). It should be called early in this 3936 * procedure, before the block is made available to other 3937 * processes or other routines are called. 3938 */ 3939 static void 3940 softdep_disk_write_complete(bp) 3941 struct buf *bp; /* describes the completed disk write */ 3942 { 3943 struct worklist *wk; 3944 struct workhead reattach; 3945 struct newblk *newblk; 3946 struct allocindir *aip; 3947 struct allocdirect *adp; 3948 struct indirdep *indirdep; 3949 struct inodedep *inodedep; 3950 struct bmsafemap *bmsafemap; 3951 3952 /* 3953 * If an error occurred while doing the write, then the data 3954 * has not hit the disk and the dependencies cannot be unrolled. 3955 */ 3956 if ((bp->b_ioflags & BIO_ERROR) != 0 && (bp->b_flags & B_INVAL) == 0) 3957 return; 3958 #ifdef DEBUG 3959 if (lk.lkt_held != NOHOLDER) 3960 panic("softdep_disk_write_complete: lock is held"); 3961 lk.lkt_held = SPECIAL_FLAG; 3962 #endif 3963 LIST_INIT(&reattach); 3964 while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) { 3965 WORKLIST_REMOVE(wk); 3966 switch (wk->wk_type) { 3967 3968 case D_PAGEDEP: 3969 if (handle_written_filepage(WK_PAGEDEP(wk), bp)) 3970 WORKLIST_INSERT(&reattach, wk); 3971 continue; 3972 3973 case D_INODEDEP: 3974 if (handle_written_inodeblock(WK_INODEDEP(wk), bp)) 3975 WORKLIST_INSERT(&reattach, wk); 3976 continue; 3977 3978 case D_BMSAFEMAP: 3979 bmsafemap = WK_BMSAFEMAP(wk); 3980 while ((newblk = LIST_FIRST(&bmsafemap->sm_newblkhd))) { 3981 newblk->nb_state |= DEPCOMPLETE; 3982 newblk->nb_bmsafemap = NULL; 3983 LIST_REMOVE(newblk, nb_deps); 3984 } 3985 while ((adp = 3986 LIST_FIRST(&bmsafemap->sm_allocdirecthd))) { 3987 adp->ad_state |= DEPCOMPLETE; 3988 adp->ad_buf = NULL; 3989 LIST_REMOVE(adp, ad_deps); 3990 handle_allocdirect_partdone(adp); 3991 } 3992 while ((aip = 3993 LIST_FIRST(&bmsafemap->sm_allocindirhd))) { 3994 aip->ai_state |= DEPCOMPLETE; 3995 aip->ai_buf = NULL; 3996 LIST_REMOVE(aip, ai_deps); 3997 handle_allocindir_partdone(aip); 3998 } 3999 while ((inodedep = 4000 LIST_FIRST(&bmsafemap->sm_inodedephd)) != NULL) { 4001 inodedep->id_state |= DEPCOMPLETE; 4002 LIST_REMOVE(inodedep, id_deps); 4003 inodedep->id_buf = NULL; 4004 } 4005 WORKITEM_FREE(bmsafemap, D_BMSAFEMAP); 4006 continue; 4007 4008 case D_MKDIR: 4009 handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY); 4010 continue; 4011 4012 case D_ALLOCDIRECT: 4013 adp = WK_ALLOCDIRECT(wk); 4014 adp->ad_state |= COMPLETE; 4015 handle_allocdirect_partdone(adp); 4016 continue; 4017 4018 case D_ALLOCINDIR: 4019 aip = WK_ALLOCINDIR(wk); 4020 aip->ai_state |= COMPLETE; 4021 handle_allocindir_partdone(aip); 4022 continue; 4023 4024 case D_INDIRDEP: 4025 indirdep = WK_INDIRDEP(wk); 4026 if (indirdep->ir_state & GOINGAWAY) { 4027 lk.lkt_held = NOHOLDER; 4028 panic("disk_write_complete: indirdep gone"); 4029 } 4030 bcopy(indirdep->ir_saveddata, bp->b_data, bp->b_bcount); 4031 FREE(indirdep->ir_saveddata, M_INDIRDEP); 4032 indirdep->ir_saveddata = 0; 4033 indirdep->ir_state &= ~UNDONE; 4034 indirdep->ir_state |= ATTACHED; 4035 while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != 0) { 4036 handle_allocindir_partdone(aip); 4037 if (aip == LIST_FIRST(&indirdep->ir_donehd)) { 4038 lk.lkt_held = NOHOLDER; 4039 panic("disk_write_complete: not gone"); 4040 } 4041 } 4042 WORKLIST_INSERT(&reattach, wk); 4043 if ((bp->b_flags & B_DELWRI) == 0) 4044 stat_indir_blk_ptrs++; 4045 bdirty(bp); 4046 continue; 4047 4048 default: 4049 lk.lkt_held = NOHOLDER; 4050 panic("handle_disk_write_complete: Unknown type %s", 4051 TYPENAME(wk->wk_type)); 4052 /* NOTREACHED */ 4053 } 4054 } 4055 /* 4056 * Reattach any requests that must be redone. 4057 */ 4058 while ((wk = LIST_FIRST(&reattach)) != NULL) { 4059 WORKLIST_REMOVE(wk); 4060 WORKLIST_INSERT(&bp->b_dep, wk); 4061 } 4062 #ifdef DEBUG 4063 if (lk.lkt_held != SPECIAL_FLAG) 4064 panic("softdep_disk_write_complete: lock lost"); 4065 lk.lkt_held = NOHOLDER; 4066 #endif 4067 } 4068 4069 /* 4070 * Called from within softdep_disk_write_complete above. Note that 4071 * this routine is always called from interrupt level with further 4072 * splbio interrupts blocked. 4073 */ 4074 static void 4075 handle_allocdirect_partdone(adp) 4076 struct allocdirect *adp; /* the completed allocdirect */ 4077 { 4078 struct allocdirectlst *listhead; 4079 struct allocdirect *listadp; 4080 struct inodedep *inodedep; 4081 long bsize, delay; 4082 4083 if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE) 4084 return; 4085 if (adp->ad_buf != NULL) { 4086 lk.lkt_held = NOHOLDER; 4087 panic("handle_allocdirect_partdone: dangling dep"); 4088 } 4089 /* 4090 * The on-disk inode cannot claim to be any larger than the last 4091 * fragment that has been written. Otherwise, the on-disk inode 4092 * might have fragments that were not the last block in the file 4093 * which would corrupt the filesystem. Thus, we cannot free any 4094 * allocdirects after one whose ad_oldblkno claims a fragment as 4095 * these blocks must be rolled back to zero before writing the inode. 4096 * We check the currently active set of allocdirects in id_inoupdt 4097 * or id_extupdt as appropriate. 4098 */ 4099 inodedep = adp->ad_inodedep; 4100 bsize = inodedep->id_fs->fs_bsize; 4101 if (adp->ad_state & EXTDATA) 4102 listhead = &inodedep->id_extupdt; 4103 else 4104 listhead = &inodedep->id_inoupdt; 4105 TAILQ_FOREACH(listadp, listhead, ad_next) { 4106 /* found our block */ 4107 if (listadp == adp) 4108 break; 4109 /* continue if ad_oldlbn is not a fragment */ 4110 if (listadp->ad_oldsize == 0 || 4111 listadp->ad_oldsize == bsize) 4112 continue; 4113 /* hit a fragment */ 4114 return; 4115 } 4116 /* 4117 * If we have reached the end of the current list without 4118 * finding the just finished dependency, then it must be 4119 * on the future dependency list. Future dependencies cannot 4120 * be freed until they are moved to the current list. 4121 */ 4122 if (listadp == NULL) { 4123 #ifdef DEBUG 4124 if (adp->ad_state & EXTDATA) 4125 listhead = &inodedep->id_newextupdt; 4126 else 4127 listhead = &inodedep->id_newinoupdt; 4128 TAILQ_FOREACH(listadp, listhead, ad_next) 4129 /* found our block */ 4130 if (listadp == adp) 4131 break; 4132 if (listadp == NULL) { 4133 lk.lkt_held = NOHOLDER; 4134 panic("handle_allocdirect_partdone: lost dep"); 4135 } 4136 #endif /* DEBUG */ 4137 return; 4138 } 4139 /* 4140 * If we have found the just finished dependency, then free 4141 * it along with anything that follows it that is complete. 4142 * If the inode still has a bitmap dependency, then it has 4143 * never been written to disk, hence the on-disk inode cannot 4144 * reference the old fragment so we can free it without delay. 4145 */ 4146 delay = (inodedep->id_state & DEPCOMPLETE); 4147 for (; adp; adp = listadp) { 4148 listadp = TAILQ_NEXT(adp, ad_next); 4149 if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE) 4150 return; 4151 free_allocdirect(listhead, adp, delay); 4152 } 4153 } 4154 4155 /* 4156 * Called from within softdep_disk_write_complete above. Note that 4157 * this routine is always called from interrupt level with further 4158 * splbio interrupts blocked. 4159 */ 4160 static void 4161 handle_allocindir_partdone(aip) 4162 struct allocindir *aip; /* the completed allocindir */ 4163 { 4164 struct indirdep *indirdep; 4165 4166 if ((aip->ai_state & ALLCOMPLETE) != ALLCOMPLETE) 4167 return; 4168 if (aip->ai_buf != NULL) { 4169 lk.lkt_held = NOHOLDER; 4170 panic("handle_allocindir_partdone: dangling dependency"); 4171 } 4172 indirdep = aip->ai_indirdep; 4173 if (indirdep->ir_state & UNDONE) { 4174 LIST_REMOVE(aip, ai_next); 4175 LIST_INSERT_HEAD(&indirdep->ir_donehd, aip, ai_next); 4176 return; 4177 } 4178 if (indirdep->ir_state & UFS1FMT) 4179 ((ufs1_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] = 4180 aip->ai_newblkno; 4181 else 4182 ((ufs2_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] = 4183 aip->ai_newblkno; 4184 LIST_REMOVE(aip, ai_next); 4185 if (aip->ai_freefrag != NULL) 4186 add_to_worklist(&aip->ai_freefrag->ff_list); 4187 WORKITEM_FREE(aip, D_ALLOCINDIR); 4188 } 4189 4190 /* 4191 * Called from within softdep_disk_write_complete above to restore 4192 * in-memory inode block contents to their most up-to-date state. Note 4193 * that this routine is always called from interrupt level with further 4194 * splbio interrupts blocked. 4195 */ 4196 static int 4197 handle_written_inodeblock(inodedep, bp) 4198 struct inodedep *inodedep; 4199 struct buf *bp; /* buffer containing the inode block */ 4200 { 4201 struct worklist *wk, *filefree; 4202 struct allocdirect *adp, *nextadp; 4203 struct ufs1_dinode *dp1 = NULL; 4204 struct ufs2_dinode *dp2 = NULL; 4205 int hadchanges, fstype; 4206 4207 if ((inodedep->id_state & IOSTARTED) == 0) { 4208 lk.lkt_held = NOHOLDER; 4209 panic("handle_written_inodeblock: not started"); 4210 } 4211 inodedep->id_state &= ~IOSTARTED; 4212 inodedep->id_state |= COMPLETE; 4213 if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC) { 4214 fstype = UFS1; 4215 dp1 = (struct ufs1_dinode *)bp->b_data + 4216 ino_to_fsbo(inodedep->id_fs, inodedep->id_ino); 4217 } else { 4218 fstype = UFS2; 4219 dp2 = (struct ufs2_dinode *)bp->b_data + 4220 ino_to_fsbo(inodedep->id_fs, inodedep->id_ino); 4221 } 4222 /* 4223 * If we had to rollback the inode allocation because of 4224 * bitmaps being incomplete, then simply restore it. 4225 * Keep the block dirty so that it will not be reclaimed until 4226 * all associated dependencies have been cleared and the 4227 * corresponding updates written to disk. 4228 */ 4229 if (inodedep->id_savedino1 != NULL) { 4230 if (fstype == UFS1) 4231 *dp1 = *inodedep->id_savedino1; 4232 else 4233 *dp2 = *inodedep->id_savedino2; 4234 FREE(inodedep->id_savedino1, M_INODEDEP); 4235 inodedep->id_savedino1 = NULL; 4236 if ((bp->b_flags & B_DELWRI) == 0) 4237 stat_inode_bitmap++; 4238 bdirty(bp); 4239 return (1); 4240 } 4241 /* 4242 * Roll forward anything that had to be rolled back before 4243 * the inode could be updated. 4244 */ 4245 hadchanges = 0; 4246 for (adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; adp = nextadp) { 4247 nextadp = TAILQ_NEXT(adp, ad_next); 4248 if (adp->ad_state & ATTACHED) { 4249 lk.lkt_held = NOHOLDER; 4250 panic("handle_written_inodeblock: new entry"); 4251 } 4252 if (fstype == UFS1) { 4253 if (adp->ad_lbn < NDADDR) { 4254 if (dp1->di_db[adp->ad_lbn]!=adp->ad_oldblkno) { 4255 lk.lkt_held = NOHOLDER; 4256 panic("%s %s #%jd mismatch %d != %jd", 4257 "handle_written_inodeblock:", 4258 "direct pointer", 4259 (intmax_t)adp->ad_lbn, 4260 dp1->di_db[adp->ad_lbn], 4261 (intmax_t)adp->ad_oldblkno); 4262 } 4263 dp1->di_db[adp->ad_lbn] = adp->ad_newblkno; 4264 } else { 4265 if (dp1->di_ib[adp->ad_lbn - NDADDR] != 0) { 4266 lk.lkt_held = NOHOLDER; 4267 panic("%s: %s #%jd allocated as %d", 4268 "handle_written_inodeblock", 4269 "indirect pointer", 4270 (intmax_t)adp->ad_lbn - NDADDR, 4271 dp1->di_ib[adp->ad_lbn - NDADDR]); 4272 } 4273 dp1->di_ib[adp->ad_lbn - NDADDR] = 4274 adp->ad_newblkno; 4275 } 4276 } else { 4277 if (adp->ad_lbn < NDADDR) { 4278 if (dp2->di_db[adp->ad_lbn]!=adp->ad_oldblkno) { 4279 lk.lkt_held = NOHOLDER; 4280 panic("%s: %s #%jd %s %jd != %jd", 4281 "handle_written_inodeblock", 4282 "direct pointer", 4283 (intmax_t)adp->ad_lbn, "mismatch", 4284 (intmax_t)dp2->di_db[adp->ad_lbn], 4285 (intmax_t)adp->ad_oldblkno); 4286 } 4287 dp2->di_db[adp->ad_lbn] = adp->ad_newblkno; 4288 } else { 4289 if (dp2->di_ib[adp->ad_lbn - NDADDR] != 0) { 4290 lk.lkt_held = NOHOLDER; 4291 panic("%s: %s #%jd allocated as %jd", 4292 "handle_written_inodeblock", 4293 "indirect pointer", 4294 (intmax_t)adp->ad_lbn - NDADDR, 4295 (intmax_t) 4296 dp2->di_ib[adp->ad_lbn - NDADDR]); 4297 } 4298 dp2->di_ib[adp->ad_lbn - NDADDR] = 4299 adp->ad_newblkno; 4300 } 4301 } 4302 adp->ad_state &= ~UNDONE; 4303 adp->ad_state |= ATTACHED; 4304 hadchanges = 1; 4305 } 4306 for (adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; adp = nextadp) { 4307 nextadp = TAILQ_NEXT(adp, ad_next); 4308 if (adp->ad_state & ATTACHED) { 4309 lk.lkt_held = NOHOLDER; 4310 panic("handle_written_inodeblock: new entry"); 4311 } 4312 if (dp2->di_extb[adp->ad_lbn] != adp->ad_oldblkno) { 4313 lk.lkt_held = NOHOLDER; 4314 panic("%s: direct pointers #%jd %s %jd != %jd", 4315 "handle_written_inodeblock", 4316 (intmax_t)adp->ad_lbn, "mismatch", 4317 (intmax_t)dp2->di_extb[adp->ad_lbn], 4318 (intmax_t)adp->ad_oldblkno); 4319 } 4320 dp2->di_extb[adp->ad_lbn] = adp->ad_newblkno; 4321 adp->ad_state &= ~UNDONE; 4322 adp->ad_state |= ATTACHED; 4323 hadchanges = 1; 4324 } 4325 if (hadchanges && (bp->b_flags & B_DELWRI) == 0) 4326 stat_direct_blk_ptrs++; 4327 /* 4328 * Reset the file size to its most up-to-date value. 4329 */ 4330 if (inodedep->id_savedsize == -1 || inodedep->id_savedextsize == -1) { 4331 lk.lkt_held = NOHOLDER; 4332 panic("handle_written_inodeblock: bad size"); 4333 } 4334 if (fstype == UFS1) { 4335 if (dp1->di_size != inodedep->id_savedsize) { 4336 dp1->di_size = inodedep->id_savedsize; 4337 hadchanges = 1; 4338 } 4339 } else { 4340 if (dp2->di_size != inodedep->id_savedsize) { 4341 dp2->di_size = inodedep->id_savedsize; 4342 hadchanges = 1; 4343 } 4344 if (dp2->di_extsize != inodedep->id_savedextsize) { 4345 dp2->di_extsize = inodedep->id_savedextsize; 4346 hadchanges = 1; 4347 } 4348 } 4349 inodedep->id_savedsize = -1; 4350 inodedep->id_savedextsize = -1; 4351 /* 4352 * If there were any rollbacks in the inode block, then it must be 4353 * marked dirty so that its will eventually get written back in 4354 * its correct form. 4355 */ 4356 if (hadchanges) 4357 bdirty(bp); 4358 /* 4359 * Process any allocdirects that completed during the update. 4360 */ 4361 if ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL) 4362 handle_allocdirect_partdone(adp); 4363 if ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL) 4364 handle_allocdirect_partdone(adp); 4365 /* 4366 * Process deallocations that were held pending until the 4367 * inode had been written to disk. Freeing of the inode 4368 * is delayed until after all blocks have been freed to 4369 * avoid creation of new <vfsid, inum, lbn> triples 4370 * before the old ones have been deleted. 4371 */ 4372 filefree = NULL; 4373 while ((wk = LIST_FIRST(&inodedep->id_bufwait)) != NULL) { 4374 WORKLIST_REMOVE(wk); 4375 switch (wk->wk_type) { 4376 4377 case D_FREEFILE: 4378 /* 4379 * We defer adding filefree to the worklist until 4380 * all other additions have been made to ensure 4381 * that it will be done after all the old blocks 4382 * have been freed. 4383 */ 4384 if (filefree != NULL) { 4385 lk.lkt_held = NOHOLDER; 4386 panic("handle_written_inodeblock: filefree"); 4387 } 4388 filefree = wk; 4389 continue; 4390 4391 case D_MKDIR: 4392 handle_written_mkdir(WK_MKDIR(wk), MKDIR_PARENT); 4393 continue; 4394 4395 case D_DIRADD: 4396 diradd_inode_written(WK_DIRADD(wk), inodedep); 4397 continue; 4398 4399 case D_FREEBLKS: 4400 case D_FREEFRAG: 4401 case D_DIRREM: 4402 add_to_worklist(wk); 4403 continue; 4404 4405 case D_NEWDIRBLK: 4406 free_newdirblk(WK_NEWDIRBLK(wk)); 4407 continue; 4408 4409 default: 4410 lk.lkt_held = NOHOLDER; 4411 panic("handle_written_inodeblock: Unknown type %s", 4412 TYPENAME(wk->wk_type)); 4413 /* NOTREACHED */ 4414 } 4415 } 4416 if (filefree != NULL) { 4417 if (free_inodedep(inodedep) == 0) { 4418 lk.lkt_held = NOHOLDER; 4419 panic("handle_written_inodeblock: live inodedep"); 4420 } 4421 add_to_worklist(filefree); 4422 return (0); 4423 } 4424 4425 /* 4426 * If no outstanding dependencies, free it. 4427 */ 4428 if (free_inodedep(inodedep) || 4429 (TAILQ_FIRST(&inodedep->id_inoupdt) == 0 && 4430 TAILQ_FIRST(&inodedep->id_extupdt) == 0)) 4431 return (0); 4432 return (hadchanges); 4433 } 4434 4435 /* 4436 * Process a diradd entry after its dependent inode has been written. 4437 * This routine must be called with splbio interrupts blocked. 4438 */ 4439 static void 4440 diradd_inode_written(dap, inodedep) 4441 struct diradd *dap; 4442 struct inodedep *inodedep; 4443 { 4444 struct pagedep *pagedep; 4445 4446 dap->da_state |= COMPLETE; 4447 if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) { 4448 if (dap->da_state & DIRCHG) 4449 pagedep = dap->da_previous->dm_pagedep; 4450 else 4451 pagedep = dap->da_pagedep; 4452 LIST_REMOVE(dap, da_pdlist); 4453 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist); 4454 } 4455 WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list); 4456 } 4457 4458 /* 4459 * Handle the completion of a mkdir dependency. 4460 */ 4461 static void 4462 handle_written_mkdir(mkdir, type) 4463 struct mkdir *mkdir; 4464 int type; 4465 { 4466 struct diradd *dap; 4467 struct pagedep *pagedep; 4468 4469 if (mkdir->md_state != type) { 4470 lk.lkt_held = NOHOLDER; 4471 panic("handle_written_mkdir: bad type"); 4472 } 4473 dap = mkdir->md_diradd; 4474 dap->da_state &= ~type; 4475 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0) 4476 dap->da_state |= DEPCOMPLETE; 4477 if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) { 4478 if (dap->da_state & DIRCHG) 4479 pagedep = dap->da_previous->dm_pagedep; 4480 else 4481 pagedep = dap->da_pagedep; 4482 LIST_REMOVE(dap, da_pdlist); 4483 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist); 4484 } 4485 LIST_REMOVE(mkdir, md_mkdirs); 4486 WORKITEM_FREE(mkdir, D_MKDIR); 4487 } 4488 4489 /* 4490 * Called from within softdep_disk_write_complete above. 4491 * A write operation was just completed. Removed inodes can 4492 * now be freed and associated block pointers may be committed. 4493 * Note that this routine is always called from interrupt level 4494 * with further splbio interrupts blocked. 4495 */ 4496 static int 4497 handle_written_filepage(pagedep, bp) 4498 struct pagedep *pagedep; 4499 struct buf *bp; /* buffer containing the written page */ 4500 { 4501 struct dirrem *dirrem; 4502 struct diradd *dap, *nextdap; 4503 struct direct *ep; 4504 int i, chgs; 4505 4506 if ((pagedep->pd_state & IOSTARTED) == 0) { 4507 lk.lkt_held = NOHOLDER; 4508 panic("handle_written_filepage: not started"); 4509 } 4510 pagedep->pd_state &= ~IOSTARTED; 4511 /* 4512 * Process any directory removals that have been committed. 4513 */ 4514 while ((dirrem = LIST_FIRST(&pagedep->pd_dirremhd)) != NULL) { 4515 LIST_REMOVE(dirrem, dm_next); 4516 dirrem->dm_dirinum = pagedep->pd_ino; 4517 add_to_worklist(&dirrem->dm_list); 4518 } 4519 /* 4520 * Free any directory additions that have been committed. 4521 * If it is a newly allocated block, we have to wait until 4522 * the on-disk directory inode claims the new block. 4523 */ 4524 if ((pagedep->pd_state & NEWBLOCK) == 0) 4525 while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL) 4526 free_diradd(dap); 4527 /* 4528 * Uncommitted directory entries must be restored. 4529 */ 4530 for (chgs = 0, i = 0; i < DAHASHSZ; i++) { 4531 for (dap = LIST_FIRST(&pagedep->pd_diraddhd[i]); dap; 4532 dap = nextdap) { 4533 nextdap = LIST_NEXT(dap, da_pdlist); 4534 if (dap->da_state & ATTACHED) { 4535 lk.lkt_held = NOHOLDER; 4536 panic("handle_written_filepage: attached"); 4537 } 4538 ep = (struct direct *) 4539 ((char *)bp->b_data + dap->da_offset); 4540 ep->d_ino = dap->da_newinum; 4541 dap->da_state &= ~UNDONE; 4542 dap->da_state |= ATTACHED; 4543 chgs = 1; 4544 /* 4545 * If the inode referenced by the directory has 4546 * been written out, then the dependency can be 4547 * moved to the pending list. 4548 */ 4549 if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) { 4550 LIST_REMOVE(dap, da_pdlist); 4551 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, 4552 da_pdlist); 4553 } 4554 } 4555 } 4556 /* 4557 * If there were any rollbacks in the directory, then it must be 4558 * marked dirty so that its will eventually get written back in 4559 * its correct form. 4560 */ 4561 if (chgs) { 4562 if ((bp->b_flags & B_DELWRI) == 0) 4563 stat_dir_entry++; 4564 bdirty(bp); 4565 return (1); 4566 } 4567 /* 4568 * If we are not waiting for a new directory block to be 4569 * claimed by its inode, then the pagedep will be freed. 4570 * Otherwise it will remain to track any new entries on 4571 * the page in case they are fsync'ed. 4572 */ 4573 if ((pagedep->pd_state & NEWBLOCK) == 0) { 4574 LIST_REMOVE(pagedep, pd_hash); 4575 WORKITEM_FREE(pagedep, D_PAGEDEP); 4576 } 4577 return (0); 4578 } 4579 4580 /* 4581 * Writing back in-core inode structures. 4582 * 4583 * The filesystem only accesses an inode's contents when it occupies an 4584 * "in-core" inode structure. These "in-core" structures are separate from 4585 * the page frames used to cache inode blocks. Only the latter are 4586 * transferred to/from the disk. So, when the updated contents of the 4587 * "in-core" inode structure are copied to the corresponding in-memory inode 4588 * block, the dependencies are also transferred. The following procedure is 4589 * called when copying a dirty "in-core" inode to a cached inode block. 4590 */ 4591 4592 /* 4593 * Called when an inode is loaded from disk. If the effective link count 4594 * differed from the actual link count when it was last flushed, then we 4595 * need to ensure that the correct effective link count is put back. 4596 */ 4597 void 4598 softdep_load_inodeblock(ip) 4599 struct inode *ip; /* the "in_core" copy of the inode */ 4600 { 4601 struct inodedep *inodedep; 4602 4603 /* 4604 * Check for alternate nlink count. 4605 */ 4606 ip->i_effnlink = ip->i_nlink; 4607 ACQUIRE_LOCK(&lk); 4608 if (inodedep_lookup(ip->i_fs, ip->i_number, 0, &inodedep) == 0) { 4609 FREE_LOCK(&lk); 4610 return; 4611 } 4612 ip->i_effnlink -= inodedep->id_nlinkdelta; 4613 if (inodedep->id_state & SPACECOUNTED) 4614 ip->i_flag |= IN_SPACECOUNTED; 4615 FREE_LOCK(&lk); 4616 } 4617 4618 /* 4619 * This routine is called just before the "in-core" inode 4620 * information is to be copied to the in-memory inode block. 4621 * Recall that an inode block contains several inodes. If 4622 * the force flag is set, then the dependencies will be 4623 * cleared so that the update can always be made. Note that 4624 * the buffer is locked when this routine is called, so we 4625 * will never be in the middle of writing the inode block 4626 * to disk. 4627 */ 4628 void 4629 softdep_update_inodeblock(ip, bp, waitfor) 4630 struct inode *ip; /* the "in_core" copy of the inode */ 4631 struct buf *bp; /* the buffer containing the inode block */ 4632 int waitfor; /* nonzero => update must be allowed */ 4633 { 4634 struct inodedep *inodedep; 4635 struct worklist *wk; 4636 int error, gotit; 4637 4638 /* 4639 * If the effective link count is not equal to the actual link 4640 * count, then we must track the difference in an inodedep while 4641 * the inode is (potentially) tossed out of the cache. Otherwise, 4642 * if there is no existing inodedep, then there are no dependencies 4643 * to track. 4644 */ 4645 ACQUIRE_LOCK(&lk); 4646 if (inodedep_lookup(ip->i_fs, ip->i_number, 0, &inodedep) == 0) { 4647 FREE_LOCK(&lk); 4648 if (ip->i_effnlink != ip->i_nlink) 4649 panic("softdep_update_inodeblock: bad link count"); 4650 return; 4651 } 4652 if (inodedep->id_nlinkdelta != ip->i_nlink - ip->i_effnlink) { 4653 FREE_LOCK(&lk); 4654 panic("softdep_update_inodeblock: bad delta"); 4655 } 4656 /* 4657 * Changes have been initiated. Anything depending on these 4658 * changes cannot occur until this inode has been written. 4659 */ 4660 inodedep->id_state &= ~COMPLETE; 4661 if ((inodedep->id_state & ONWORKLIST) == 0) 4662 WORKLIST_INSERT(&bp->b_dep, &inodedep->id_list); 4663 /* 4664 * Any new dependencies associated with the incore inode must 4665 * now be moved to the list associated with the buffer holding 4666 * the in-memory copy of the inode. Once merged process any 4667 * allocdirects that are completed by the merger. 4668 */ 4669 merge_inode_lists(&inodedep->id_newinoupdt, &inodedep->id_inoupdt); 4670 if (TAILQ_FIRST(&inodedep->id_inoupdt) != NULL) 4671 handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_inoupdt)); 4672 merge_inode_lists(&inodedep->id_newextupdt, &inodedep->id_extupdt); 4673 if (TAILQ_FIRST(&inodedep->id_extupdt) != NULL) 4674 handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_extupdt)); 4675 /* 4676 * Now that the inode has been pushed into the buffer, the 4677 * operations dependent on the inode being written to disk 4678 * can be moved to the id_bufwait so that they will be 4679 * processed when the buffer I/O completes. 4680 */ 4681 while ((wk = LIST_FIRST(&inodedep->id_inowait)) != NULL) { 4682 WORKLIST_REMOVE(wk); 4683 WORKLIST_INSERT(&inodedep->id_bufwait, wk); 4684 } 4685 /* 4686 * Newly allocated inodes cannot be written until the bitmap 4687 * that allocates them have been written (indicated by 4688 * DEPCOMPLETE being set in id_state). If we are doing a 4689 * forced sync (e.g., an fsync on a file), we force the bitmap 4690 * to be written so that the update can be done. 4691 */ 4692 if ((inodedep->id_state & DEPCOMPLETE) != 0 || waitfor == 0) { 4693 FREE_LOCK(&lk); 4694 return; 4695 } 4696 gotit = getdirtybuf(&inodedep->id_buf, MNT_WAIT); 4697 FREE_LOCK(&lk); 4698 if (gotit && 4699 (error = BUF_WRITE(inodedep->id_buf)) != 0) 4700 softdep_error("softdep_update_inodeblock: bwrite", error); 4701 if ((inodedep->id_state & DEPCOMPLETE) == 0) 4702 panic("softdep_update_inodeblock: update failed"); 4703 } 4704 4705 /* 4706 * Merge the a new inode dependency list (such as id_newinoupdt) into an 4707 * old inode dependency list (such as id_inoupdt). This routine must be 4708 * called with splbio interrupts blocked. 4709 */ 4710 static void 4711 merge_inode_lists(newlisthead, oldlisthead) 4712 struct allocdirectlst *newlisthead; 4713 struct allocdirectlst *oldlisthead; 4714 { 4715 struct allocdirect *listadp, *newadp; 4716 4717 newadp = TAILQ_FIRST(newlisthead); 4718 for (listadp = TAILQ_FIRST(oldlisthead); listadp && newadp;) { 4719 if (listadp->ad_lbn < newadp->ad_lbn) { 4720 listadp = TAILQ_NEXT(listadp, ad_next); 4721 continue; 4722 } 4723 TAILQ_REMOVE(newlisthead, newadp, ad_next); 4724 TAILQ_INSERT_BEFORE(listadp, newadp, ad_next); 4725 if (listadp->ad_lbn == newadp->ad_lbn) { 4726 allocdirect_merge(oldlisthead, newadp, 4727 listadp); 4728 listadp = newadp; 4729 } 4730 newadp = TAILQ_FIRST(newlisthead); 4731 } 4732 while ((newadp = TAILQ_FIRST(newlisthead)) != NULL) { 4733 TAILQ_REMOVE(newlisthead, newadp, ad_next); 4734 TAILQ_INSERT_TAIL(oldlisthead, newadp, ad_next); 4735 } 4736 } 4737 4738 /* 4739 * If we are doing an fsync, then we must ensure that any directory 4740 * entries for the inode have been written after the inode gets to disk. 4741 */ 4742 int 4743 softdep_fsync(vp) 4744 struct vnode *vp; /* the "in_core" copy of the inode */ 4745 { 4746 struct inodedep *inodedep; 4747 struct pagedep *pagedep; 4748 struct worklist *wk; 4749 struct diradd *dap; 4750 struct mount *mnt; 4751 struct vnode *pvp; 4752 struct inode *ip; 4753 struct buf *bp; 4754 struct fs *fs; 4755 struct thread *td = curthread; 4756 int error, flushparent; 4757 ino_t parentino; 4758 ufs_lbn_t lbn; 4759 4760 ip = VTOI(vp); 4761 fs = ip->i_fs; 4762 ACQUIRE_LOCK(&lk); 4763 if (inodedep_lookup(fs, ip->i_number, 0, &inodedep) == 0) { 4764 FREE_LOCK(&lk); 4765 return (0); 4766 } 4767 if (LIST_FIRST(&inodedep->id_inowait) != NULL || 4768 LIST_FIRST(&inodedep->id_bufwait) != NULL || 4769 TAILQ_FIRST(&inodedep->id_extupdt) != NULL || 4770 TAILQ_FIRST(&inodedep->id_newextupdt) != NULL || 4771 TAILQ_FIRST(&inodedep->id_inoupdt) != NULL || 4772 TAILQ_FIRST(&inodedep->id_newinoupdt) != NULL) { 4773 FREE_LOCK(&lk); 4774 panic("softdep_fsync: pending ops"); 4775 } 4776 for (error = 0, flushparent = 0; ; ) { 4777 if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) == NULL) 4778 break; 4779 if (wk->wk_type != D_DIRADD) { 4780 FREE_LOCK(&lk); 4781 panic("softdep_fsync: Unexpected type %s", 4782 TYPENAME(wk->wk_type)); 4783 } 4784 dap = WK_DIRADD(wk); 4785 /* 4786 * Flush our parent if this directory entry has a MKDIR_PARENT 4787 * dependency or is contained in a newly allocated block. 4788 */ 4789 if (dap->da_state & DIRCHG) 4790 pagedep = dap->da_previous->dm_pagedep; 4791 else 4792 pagedep = dap->da_pagedep; 4793 mnt = pagedep->pd_mnt; 4794 parentino = pagedep->pd_ino; 4795 lbn = pagedep->pd_lbn; 4796 if ((dap->da_state & (MKDIR_BODY | COMPLETE)) != COMPLETE) { 4797 FREE_LOCK(&lk); 4798 panic("softdep_fsync: dirty"); 4799 } 4800 if ((dap->da_state & MKDIR_PARENT) || 4801 (pagedep->pd_state & NEWBLOCK)) 4802 flushparent = 1; 4803 else 4804 flushparent = 0; 4805 /* 4806 * If we are being fsync'ed as part of vgone'ing this vnode, 4807 * then we will not be able to release and recover the 4808 * vnode below, so we just have to give up on writing its 4809 * directory entry out. It will eventually be written, just 4810 * not now, but then the user was not asking to have it 4811 * written, so we are not breaking any promises. 4812 */ 4813 mp_fixme("This operation is not atomic wrt the rest of the code"); 4814 VI_LOCK(vp); 4815 if (vp->v_iflag & VI_XLOCK) { 4816 VI_UNLOCK(vp); 4817 break; 4818 } else 4819 VI_UNLOCK(vp); 4820 /* 4821 * We prevent deadlock by always fetching inodes from the 4822 * root, moving down the directory tree. Thus, when fetching 4823 * our parent directory, we first try to get the lock. If 4824 * that fails, we must unlock ourselves before requesting 4825 * the lock on our parent. See the comment in ufs_lookup 4826 * for details on possible races. 4827 */ 4828 FREE_LOCK(&lk); 4829 if (VFS_VGET(mnt, parentino, LK_NOWAIT | LK_EXCLUSIVE, &pvp)) { 4830 VOP_UNLOCK(vp, 0, td); 4831 error = VFS_VGET(mnt, parentino, LK_EXCLUSIVE, &pvp); 4832 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, td); 4833 if (error != 0) 4834 return (error); 4835 } 4836 /* 4837 * All MKDIR_PARENT dependencies and all the NEWBLOCK pagedeps 4838 * that are contained in direct blocks will be resolved by 4839 * doing a UFS_UPDATE. Pagedeps contained in indirect blocks 4840 * may require a complete sync'ing of the directory. So, we 4841 * try the cheap and fast UFS_UPDATE first, and if that fails, 4842 * then we do the slower VOP_FSYNC of the directory. 4843 */ 4844 if (flushparent) { 4845 if ((error = UFS_UPDATE(pvp, 1)) != 0) { 4846 vput(pvp); 4847 return (error); 4848 } 4849 if ((pagedep->pd_state & NEWBLOCK) && 4850 (error = VOP_FSYNC(pvp, td->td_ucred, MNT_WAIT, td))) { 4851 vput(pvp); 4852 return (error); 4853 } 4854 } 4855 /* 4856 * Flush directory page containing the inode's name. 4857 */ 4858 error = bread(pvp, lbn, blksize(fs, VTOI(pvp), lbn), td->td_ucred, 4859 &bp); 4860 if (error == 0) 4861 error = BUF_WRITE(bp); 4862 else 4863 brelse(bp); 4864 vput(pvp); 4865 if (error != 0) 4866 return (error); 4867 ACQUIRE_LOCK(&lk); 4868 if (inodedep_lookup(fs, ip->i_number, 0, &inodedep) == 0) 4869 break; 4870 } 4871 FREE_LOCK(&lk); 4872 return (0); 4873 } 4874 4875 /* 4876 * Flush all the dirty bitmaps associated with the block device 4877 * before flushing the rest of the dirty blocks so as to reduce 4878 * the number of dependencies that will have to be rolled back. 4879 */ 4880 void 4881 softdep_fsync_mountdev(vp) 4882 struct vnode *vp; 4883 { 4884 struct buf *bp, *nbp; 4885 struct worklist *wk; 4886 4887 if (!vn_isdisk(vp, NULL)) 4888 panic("softdep_fsync_mountdev: vnode not a disk"); 4889 ACQUIRE_LOCK(&lk); 4890 VI_LOCK(vp); 4891 for (bp = TAILQ_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) { 4892 nbp = TAILQ_NEXT(bp, b_vnbufs); 4893 /* 4894 * If it is already scheduled, skip to the next buffer. 4895 */ 4896 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT | LK_INTERLOCK, 4897 VI_MTX(vp))) { 4898 VI_LOCK(vp); 4899 continue; 4900 } 4901 if ((bp->b_flags & B_DELWRI) == 0) { 4902 FREE_LOCK(&lk); 4903 panic("softdep_fsync_mountdev: not dirty"); 4904 } 4905 /* 4906 * We are only interested in bitmaps with outstanding 4907 * dependencies. 4908 */ 4909 if ((wk = LIST_FIRST(&bp->b_dep)) == NULL || 4910 wk->wk_type != D_BMSAFEMAP || 4911 (bp->b_xflags & BX_BKGRDINPROG)) { 4912 BUF_UNLOCK(bp); 4913 VI_LOCK(vp); 4914 continue; 4915 } 4916 bremfree(bp); 4917 FREE_LOCK(&lk); 4918 (void) bawrite(bp); 4919 ACQUIRE_LOCK(&lk); 4920 /* 4921 * Since we may have slept during the I/O, we need 4922 * to start from a known point. 4923 */ 4924 VI_LOCK(vp); 4925 nbp = TAILQ_FIRST(&vp->v_dirtyblkhd); 4926 } 4927 VI_UNLOCK(vp); 4928 drain_output(vp, 1); 4929 FREE_LOCK(&lk); 4930 } 4931 4932 /* 4933 * This routine is called when we are trying to synchronously flush a 4934 * file. This routine must eliminate any filesystem metadata dependencies 4935 * so that the syncing routine can succeed by pushing the dirty blocks 4936 * associated with the file. If any I/O errors occur, they are returned. 4937 */ 4938 int 4939 softdep_sync_metadata(ap) 4940 struct vop_fsync_args /* { 4941 struct vnode *a_vp; 4942 struct ucred *a_cred; 4943 int a_waitfor; 4944 struct thread *a_td; 4945 } */ *ap; 4946 { 4947 struct vnode *vp = ap->a_vp; 4948 struct pagedep *pagedep; 4949 struct allocdirect *adp; 4950 struct allocindir *aip; 4951 struct buf *bp, *nbp; 4952 struct worklist *wk; 4953 int i, error, waitfor; 4954 4955 /* 4956 * Check whether this vnode is involved in a filesystem 4957 * that is doing soft dependency processing. 4958 */ 4959 if (!vn_isdisk(vp, NULL)) { 4960 if (!DOINGSOFTDEP(vp)) 4961 return (0); 4962 } else 4963 if (vp->v_rdev->si_mountpoint == NULL || 4964 (vp->v_rdev->si_mountpoint->mnt_flag & MNT_SOFTDEP) == 0) 4965 return (0); 4966 /* 4967 * Ensure that any direct block dependencies have been cleared. 4968 */ 4969 ACQUIRE_LOCK(&lk); 4970 if ((error = flush_inodedep_deps(VTOI(vp)->i_fs, VTOI(vp)->i_number))) { 4971 FREE_LOCK(&lk); 4972 return (error); 4973 } 4974 /* 4975 * For most files, the only metadata dependencies are the 4976 * cylinder group maps that allocate their inode or blocks. 4977 * The block allocation dependencies can be found by traversing 4978 * the dependency lists for any buffers that remain on their 4979 * dirty buffer list. The inode allocation dependency will 4980 * be resolved when the inode is updated with MNT_WAIT. 4981 * This work is done in two passes. The first pass grabs most 4982 * of the buffers and begins asynchronously writing them. The 4983 * only way to wait for these asynchronous writes is to sleep 4984 * on the filesystem vnode which may stay busy for a long time 4985 * if the filesystem is active. So, instead, we make a second 4986 * pass over the dependencies blocking on each write. In the 4987 * usual case we will be blocking against a write that we 4988 * initiated, so when it is done the dependency will have been 4989 * resolved. Thus the second pass is expected to end quickly. 4990 */ 4991 waitfor = MNT_NOWAIT; 4992 top: 4993 /* 4994 * We must wait for any I/O in progress to finish so that 4995 * all potential buffers on the dirty list will be visible. 4996 */ 4997 drain_output(vp, 1); 4998 if (getdirtybuf(&TAILQ_FIRST(&vp->v_dirtyblkhd), MNT_WAIT) == 0) { 4999 FREE_LOCK(&lk); 5000 return (0); 5001 } 5002 mp_fixme("The locking is somewhat complicated nonexistant here."); 5003 bp = TAILQ_FIRST(&vp->v_dirtyblkhd); 5004 /* While syncing snapshots, we must allow recursive lookups */ 5005 bp->b_lock.lk_flags |= LK_CANRECURSE; 5006 loop: 5007 /* 5008 * As we hold the buffer locked, none of its dependencies 5009 * will disappear. 5010 */ 5011 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 5012 switch (wk->wk_type) { 5013 5014 case D_ALLOCDIRECT: 5015 adp = WK_ALLOCDIRECT(wk); 5016 if (adp->ad_state & DEPCOMPLETE) 5017 continue; 5018 nbp = adp->ad_buf; 5019 if (getdirtybuf(&nbp, waitfor) == 0) 5020 continue; 5021 FREE_LOCK(&lk); 5022 if (waitfor == MNT_NOWAIT) { 5023 bawrite(nbp); 5024 } else if ((error = BUF_WRITE(nbp)) != 0) { 5025 break; 5026 } 5027 ACQUIRE_LOCK(&lk); 5028 continue; 5029 5030 case D_ALLOCINDIR: 5031 aip = WK_ALLOCINDIR(wk); 5032 if (aip->ai_state & DEPCOMPLETE) 5033 continue; 5034 nbp = aip->ai_buf; 5035 if (getdirtybuf(&nbp, waitfor) == 0) 5036 continue; 5037 FREE_LOCK(&lk); 5038 if (waitfor == MNT_NOWAIT) { 5039 bawrite(nbp); 5040 } else if ((error = BUF_WRITE(nbp)) != 0) { 5041 break; 5042 } 5043 ACQUIRE_LOCK(&lk); 5044 continue; 5045 5046 case D_INDIRDEP: 5047 restart: 5048 5049 LIST_FOREACH(aip, &WK_INDIRDEP(wk)->ir_deplisthd, ai_next) { 5050 if (aip->ai_state & DEPCOMPLETE) 5051 continue; 5052 nbp = aip->ai_buf; 5053 if (getdirtybuf(&nbp, MNT_WAIT) == 0) 5054 goto restart; 5055 FREE_LOCK(&lk); 5056 if ((error = BUF_WRITE(nbp)) != 0) { 5057 break; 5058 } 5059 ACQUIRE_LOCK(&lk); 5060 goto restart; 5061 } 5062 continue; 5063 5064 case D_INODEDEP: 5065 if ((error = flush_inodedep_deps(WK_INODEDEP(wk)->id_fs, 5066 WK_INODEDEP(wk)->id_ino)) != 0) { 5067 FREE_LOCK(&lk); 5068 break; 5069 } 5070 continue; 5071 5072 case D_PAGEDEP: 5073 /* 5074 * We are trying to sync a directory that may 5075 * have dependencies on both its own metadata 5076 * and/or dependencies on the inodes of any 5077 * recently allocated files. We walk its diradd 5078 * lists pushing out the associated inode. 5079 */ 5080 pagedep = WK_PAGEDEP(wk); 5081 for (i = 0; i < DAHASHSZ; i++) { 5082 if (LIST_FIRST(&pagedep->pd_diraddhd[i]) == 0) 5083 continue; 5084 if ((error = 5085 flush_pagedep_deps(vp, pagedep->pd_mnt, 5086 &pagedep->pd_diraddhd[i]))) { 5087 FREE_LOCK(&lk); 5088 break; 5089 } 5090 } 5091 continue; 5092 5093 case D_MKDIR: 5094 /* 5095 * This case should never happen if the vnode has 5096 * been properly sync'ed. However, if this function 5097 * is used at a place where the vnode has not yet 5098 * been sync'ed, this dependency can show up. So, 5099 * rather than panic, just flush it. 5100 */ 5101 nbp = WK_MKDIR(wk)->md_buf; 5102 if (getdirtybuf(&nbp, waitfor) == 0) 5103 continue; 5104 FREE_LOCK(&lk); 5105 if (waitfor == MNT_NOWAIT) { 5106 bawrite(nbp); 5107 } else if ((error = BUF_WRITE(nbp)) != 0) { 5108 break; 5109 } 5110 ACQUIRE_LOCK(&lk); 5111 continue; 5112 5113 case D_BMSAFEMAP: 5114 /* 5115 * This case should never happen if the vnode has 5116 * been properly sync'ed. However, if this function 5117 * is used at a place where the vnode has not yet 5118 * been sync'ed, this dependency can show up. So, 5119 * rather than panic, just flush it. 5120 */ 5121 nbp = WK_BMSAFEMAP(wk)->sm_buf; 5122 if (getdirtybuf(&nbp, waitfor) == 0) 5123 continue; 5124 FREE_LOCK(&lk); 5125 if (waitfor == MNT_NOWAIT) { 5126 bawrite(nbp); 5127 } else if ((error = BUF_WRITE(nbp)) != 0) { 5128 break; 5129 } 5130 ACQUIRE_LOCK(&lk); 5131 continue; 5132 5133 default: 5134 FREE_LOCK(&lk); 5135 panic("softdep_sync_metadata: Unknown type %s", 5136 TYPENAME(wk->wk_type)); 5137 /* NOTREACHED */ 5138 } 5139 /* We reach here only in error and unlocked */ 5140 if (error == 0) 5141 panic("softdep_sync_metadata: zero error"); 5142 bp->b_lock.lk_flags &= ~LK_CANRECURSE; 5143 bawrite(bp); 5144 return (error); 5145 } 5146 (void) getdirtybuf(&TAILQ_NEXT(bp, b_vnbufs), MNT_WAIT); 5147 nbp = TAILQ_NEXT(bp, b_vnbufs); 5148 FREE_LOCK(&lk); 5149 bp->b_lock.lk_flags &= ~LK_CANRECURSE; 5150 bawrite(bp); 5151 ACQUIRE_LOCK(&lk); 5152 if (nbp != NULL) { 5153 bp = nbp; 5154 goto loop; 5155 } 5156 /* 5157 * The brief unlock is to allow any pent up dependency 5158 * processing to be done. Then proceed with the second pass. 5159 */ 5160 if (waitfor == MNT_NOWAIT) { 5161 waitfor = MNT_WAIT; 5162 FREE_LOCK(&lk); 5163 ACQUIRE_LOCK(&lk); 5164 goto top; 5165 } 5166 5167 /* 5168 * If we have managed to get rid of all the dirty buffers, 5169 * then we are done. For certain directories and block 5170 * devices, we may need to do further work. 5171 * 5172 * We must wait for any I/O in progress to finish so that 5173 * all potential buffers on the dirty list will be visible. 5174 */ 5175 drain_output(vp, 1); 5176 if (TAILQ_FIRST(&vp->v_dirtyblkhd) == NULL) { 5177 FREE_LOCK(&lk); 5178 return (0); 5179 } 5180 5181 FREE_LOCK(&lk); 5182 /* 5183 * If we are trying to sync a block device, some of its buffers may 5184 * contain metadata that cannot be written until the contents of some 5185 * partially written files have been written to disk. The only easy 5186 * way to accomplish this is to sync the entire filesystem (luckily 5187 * this happens rarely). 5188 */ 5189 if (vn_isdisk(vp, NULL) && 5190 vp->v_rdev->si_mountpoint && !VOP_ISLOCKED(vp, NULL) && 5191 (error = VFS_SYNC(vp->v_rdev->si_mountpoint, MNT_WAIT, ap->a_cred, 5192 ap->a_td)) != 0) 5193 return (error); 5194 return (0); 5195 } 5196 5197 /* 5198 * Flush the dependencies associated with an inodedep. 5199 * Called with splbio blocked. 5200 */ 5201 static int 5202 flush_inodedep_deps(fs, ino) 5203 struct fs *fs; 5204 ino_t ino; 5205 { 5206 struct inodedep *inodedep; 5207 int error, waitfor; 5208 5209 /* 5210 * This work is done in two passes. The first pass grabs most 5211 * of the buffers and begins asynchronously writing them. The 5212 * only way to wait for these asynchronous writes is to sleep 5213 * on the filesystem vnode which may stay busy for a long time 5214 * if the filesystem is active. So, instead, we make a second 5215 * pass over the dependencies blocking on each write. In the 5216 * usual case we will be blocking against a write that we 5217 * initiated, so when it is done the dependency will have been 5218 * resolved. Thus the second pass is expected to end quickly. 5219 * We give a brief window at the top of the loop to allow 5220 * any pending I/O to complete. 5221 */ 5222 for (error = 0, waitfor = MNT_NOWAIT; ; ) { 5223 if (error) 5224 return (error); 5225 FREE_LOCK(&lk); 5226 ACQUIRE_LOCK(&lk); 5227 if (inodedep_lookup(fs, ino, 0, &inodedep) == 0) 5228 return (0); 5229 if (flush_deplist(&inodedep->id_inoupdt, waitfor, &error) || 5230 flush_deplist(&inodedep->id_newinoupdt, waitfor, &error) || 5231 flush_deplist(&inodedep->id_extupdt, waitfor, &error) || 5232 flush_deplist(&inodedep->id_newextupdt, waitfor, &error)) 5233 continue; 5234 /* 5235 * If pass2, we are done, otherwise do pass 2. 5236 */ 5237 if (waitfor == MNT_WAIT) 5238 break; 5239 waitfor = MNT_WAIT; 5240 } 5241 /* 5242 * Try freeing inodedep in case all dependencies have been removed. 5243 */ 5244 if (inodedep_lookup(fs, ino, 0, &inodedep) != 0) 5245 (void) free_inodedep(inodedep); 5246 return (0); 5247 } 5248 5249 /* 5250 * Flush an inode dependency list. 5251 * Called with splbio blocked. 5252 */ 5253 static int 5254 flush_deplist(listhead, waitfor, errorp) 5255 struct allocdirectlst *listhead; 5256 int waitfor; 5257 int *errorp; 5258 { 5259 struct allocdirect *adp; 5260 struct buf *bp; 5261 5262 TAILQ_FOREACH(adp, listhead, ad_next) { 5263 if (adp->ad_state & DEPCOMPLETE) 5264 continue; 5265 bp = adp->ad_buf; 5266 if (getdirtybuf(&bp, waitfor) == 0) { 5267 if (waitfor == MNT_NOWAIT) 5268 continue; 5269 return (1); 5270 } 5271 FREE_LOCK(&lk); 5272 if (waitfor == MNT_NOWAIT) { 5273 bawrite(bp); 5274 } else if ((*errorp = BUF_WRITE(bp)) != 0) { 5275 ACQUIRE_LOCK(&lk); 5276 return (1); 5277 } 5278 ACQUIRE_LOCK(&lk); 5279 return (1); 5280 } 5281 return (0); 5282 } 5283 5284 /* 5285 * Eliminate a pagedep dependency by flushing out all its diradd dependencies. 5286 * Called with splbio blocked. 5287 */ 5288 static int 5289 flush_pagedep_deps(pvp, mp, diraddhdp) 5290 struct vnode *pvp; 5291 struct mount *mp; 5292 struct diraddhd *diraddhdp; 5293 { 5294 struct thread *td = curthread; 5295 struct inodedep *inodedep; 5296 struct ufsmount *ump; 5297 struct diradd *dap; 5298 struct vnode *vp; 5299 int gotit, error = 0; 5300 struct buf *bp; 5301 ino_t inum; 5302 5303 ump = VFSTOUFS(mp); 5304 while ((dap = LIST_FIRST(diraddhdp)) != NULL) { 5305 /* 5306 * Flush ourselves if this directory entry 5307 * has a MKDIR_PARENT dependency. 5308 */ 5309 if (dap->da_state & MKDIR_PARENT) { 5310 FREE_LOCK(&lk); 5311 if ((error = UFS_UPDATE(pvp, 1)) != 0) 5312 break; 5313 ACQUIRE_LOCK(&lk); 5314 /* 5315 * If that cleared dependencies, go on to next. 5316 */ 5317 if (dap != LIST_FIRST(diraddhdp)) 5318 continue; 5319 if (dap->da_state & MKDIR_PARENT) { 5320 FREE_LOCK(&lk); 5321 panic("flush_pagedep_deps: MKDIR_PARENT"); 5322 } 5323 } 5324 /* 5325 * A newly allocated directory must have its "." and 5326 * ".." entries written out before its name can be 5327 * committed in its parent. We do not want or need 5328 * the full semantics of a synchronous VOP_FSYNC as 5329 * that may end up here again, once for each directory 5330 * level in the filesystem. Instead, we push the blocks 5331 * and wait for them to clear. We have to fsync twice 5332 * because the first call may choose to defer blocks 5333 * that still have dependencies, but deferral will 5334 * happen at most once. 5335 */ 5336 inum = dap->da_newinum; 5337 if (dap->da_state & MKDIR_BODY) { 5338 FREE_LOCK(&lk); 5339 if ((error = VFS_VGET(mp, inum, LK_EXCLUSIVE, &vp))) 5340 break; 5341 if ((error=VOP_FSYNC(vp, td->td_ucred, MNT_NOWAIT, td)) || 5342 (error=VOP_FSYNC(vp, td->td_ucred, MNT_NOWAIT, td))) { 5343 vput(vp); 5344 break; 5345 } 5346 drain_output(vp, 0); 5347 vput(vp); 5348 ACQUIRE_LOCK(&lk); 5349 /* 5350 * If that cleared dependencies, go on to next. 5351 */ 5352 if (dap != LIST_FIRST(diraddhdp)) 5353 continue; 5354 if (dap->da_state & MKDIR_BODY) { 5355 FREE_LOCK(&lk); 5356 panic("flush_pagedep_deps: MKDIR_BODY"); 5357 } 5358 } 5359 /* 5360 * Flush the inode on which the directory entry depends. 5361 * Having accounted for MKDIR_PARENT and MKDIR_BODY above, 5362 * the only remaining dependency is that the updated inode 5363 * count must get pushed to disk. The inode has already 5364 * been pushed into its inode buffer (via VOP_UPDATE) at 5365 * the time of the reference count change. So we need only 5366 * locate that buffer, ensure that there will be no rollback 5367 * caused by a bitmap dependency, then write the inode buffer. 5368 */ 5369 if (inodedep_lookup(ump->um_fs, inum, 0, &inodedep) == 0) { 5370 FREE_LOCK(&lk); 5371 panic("flush_pagedep_deps: lost inode"); 5372 } 5373 /* 5374 * If the inode still has bitmap dependencies, 5375 * push them to disk. 5376 */ 5377 if ((inodedep->id_state & DEPCOMPLETE) == 0) { 5378 gotit = getdirtybuf(&inodedep->id_buf, MNT_WAIT); 5379 FREE_LOCK(&lk); 5380 if (gotit && 5381 (error = BUF_WRITE(inodedep->id_buf)) != 0) 5382 break; 5383 ACQUIRE_LOCK(&lk); 5384 if (dap != LIST_FIRST(diraddhdp)) 5385 continue; 5386 } 5387 /* 5388 * If the inode is still sitting in a buffer waiting 5389 * to be written, push it to disk. 5390 */ 5391 FREE_LOCK(&lk); 5392 if ((error = bread(ump->um_devvp, 5393 fsbtodb(ump->um_fs, ino_to_fsba(ump->um_fs, inum)), 5394 (int)ump->um_fs->fs_bsize, NOCRED, &bp)) != 0) { 5395 brelse(bp); 5396 break; 5397 } 5398 if ((error = BUF_WRITE(bp)) != 0) 5399 break; 5400 ACQUIRE_LOCK(&lk); 5401 /* 5402 * If we have failed to get rid of all the dependencies 5403 * then something is seriously wrong. 5404 */ 5405 if (dap == LIST_FIRST(diraddhdp)) { 5406 FREE_LOCK(&lk); 5407 panic("flush_pagedep_deps: flush failed"); 5408 } 5409 } 5410 if (error) 5411 ACQUIRE_LOCK(&lk); 5412 return (error); 5413 } 5414 5415 /* 5416 * A large burst of file addition or deletion activity can drive the 5417 * memory load excessively high. First attempt to slow things down 5418 * using the techniques below. If that fails, this routine requests 5419 * the offending operations to fall back to running synchronously 5420 * until the memory load returns to a reasonable level. 5421 */ 5422 int 5423 softdep_slowdown(vp) 5424 struct vnode *vp; 5425 { 5426 int max_softdeps_hard; 5427 5428 max_softdeps_hard = max_softdeps * 11 / 10; 5429 if (num_dirrem < max_softdeps_hard / 2 && 5430 num_inodedep < max_softdeps_hard && 5431 VFSTOUFS(vp->v_mount)->um_numindirdeps < maxindirdeps) 5432 return (0); 5433 if (VFSTOUFS(vp->v_mount)->um_numindirdeps >= maxindirdeps) 5434 speedup_syncer(); 5435 stat_sync_limit_hit += 1; 5436 return (1); 5437 } 5438 5439 /* 5440 * Called by the allocation routines when they are about to fail 5441 * in the hope that we can free up some disk space. 5442 * 5443 * First check to see if the work list has anything on it. If it has, 5444 * clean up entries until we successfully free some space. Because this 5445 * process holds inodes locked, we cannot handle any remove requests 5446 * that might block on a locked inode as that could lead to deadlock. 5447 * If the worklist yields no free space, encourage the syncer daemon 5448 * to help us. In no event will we try for longer than tickdelay seconds. 5449 */ 5450 int 5451 softdep_request_cleanup(fs, vp) 5452 struct fs *fs; 5453 struct vnode *vp; 5454 { 5455 long starttime; 5456 ufs2_daddr_t needed; 5457 5458 needed = fs->fs_cstotal.cs_nbfree + fs->fs_contigsumsize; 5459 starttime = time_second + tickdelay; 5460 /* 5461 * If we are being called because of a process doing a 5462 * copy-on-write, then it is not safe to update the vnode 5463 * as we may recurse into the copy-on-write routine. 5464 */ 5465 if ((curthread->td_proc->p_flag & P_COWINPROGRESS) == 0 && 5466 UFS_UPDATE(vp, 1) != 0) 5467 return (0); 5468 while (fs->fs_pendingblocks > 0 && fs->fs_cstotal.cs_nbfree <= needed) { 5469 if (time_second > starttime) 5470 return (0); 5471 if (num_on_worklist > 0 && 5472 process_worklist_item(NULL, LK_NOWAIT) != -1) { 5473 stat_worklist_push += 1; 5474 continue; 5475 } 5476 request_cleanup(FLUSH_REMOVE_WAIT, 0); 5477 } 5478 return (1); 5479 } 5480 5481 /* 5482 * If memory utilization has gotten too high, deliberately slow things 5483 * down and speed up the I/O processing. 5484 */ 5485 static int 5486 request_cleanup(resource, islocked) 5487 int resource; 5488 int islocked; 5489 { 5490 struct thread *td = curthread; 5491 5492 /* 5493 * We never hold up the filesystem syncer process. 5494 */ 5495 if (td == filesys_syncer) 5496 return (0); 5497 /* 5498 * First check to see if the work list has gotten backlogged. 5499 * If it has, co-opt this process to help clean up two entries. 5500 * Because this process may hold inodes locked, we cannot 5501 * handle any remove requests that might block on a locked 5502 * inode as that could lead to deadlock. 5503 */ 5504 if (num_on_worklist > max_softdeps / 10) { 5505 if (islocked) 5506 FREE_LOCK(&lk); 5507 process_worklist_item(NULL, LK_NOWAIT); 5508 process_worklist_item(NULL, LK_NOWAIT); 5509 stat_worklist_push += 2; 5510 if (islocked) 5511 ACQUIRE_LOCK(&lk); 5512 return(1); 5513 } 5514 /* 5515 * Next, we attempt to speed up the syncer process. If that 5516 * is successful, then we allow the process to continue. 5517 */ 5518 if (speedup_syncer() && resource != FLUSH_REMOVE_WAIT) 5519 return(0); 5520 /* 5521 * If we are resource constrained on inode dependencies, try 5522 * flushing some dirty inodes. Otherwise, we are constrained 5523 * by file deletions, so try accelerating flushes of directories 5524 * with removal dependencies. We would like to do the cleanup 5525 * here, but we probably hold an inode locked at this point and 5526 * that might deadlock against one that we try to clean. So, 5527 * the best that we can do is request the syncer daemon to do 5528 * the cleanup for us. 5529 */ 5530 switch (resource) { 5531 5532 case FLUSH_INODES: 5533 stat_ino_limit_push += 1; 5534 req_clear_inodedeps += 1; 5535 stat_countp = &stat_ino_limit_hit; 5536 break; 5537 5538 case FLUSH_REMOVE: 5539 case FLUSH_REMOVE_WAIT: 5540 stat_blk_limit_push += 1; 5541 req_clear_remove += 1; 5542 stat_countp = &stat_blk_limit_hit; 5543 break; 5544 5545 default: 5546 if (islocked) 5547 FREE_LOCK(&lk); 5548 panic("request_cleanup: unknown type"); 5549 } 5550 /* 5551 * Hopefully the syncer daemon will catch up and awaken us. 5552 * We wait at most tickdelay before proceeding in any case. 5553 */ 5554 if (islocked == 0) 5555 ACQUIRE_LOCK(&lk); 5556 proc_waiting += 1; 5557 if (handle.callout == NULL) 5558 handle = timeout(pause_timer, 0, tickdelay > 2 ? tickdelay : 2); 5559 interlocked_sleep(&lk, SLEEP, (caddr_t)&proc_waiting, NULL, PPAUSE, 5560 "softupdate", 0); 5561 proc_waiting -= 1; 5562 if (islocked == 0) 5563 FREE_LOCK(&lk); 5564 return (1); 5565 } 5566 5567 /* 5568 * Awaken processes pausing in request_cleanup and clear proc_waiting 5569 * to indicate that there is no longer a timer running. 5570 */ 5571 static void 5572 pause_timer(arg) 5573 void *arg; 5574 { 5575 5576 *stat_countp += 1; 5577 wakeup_one(&proc_waiting); 5578 if (proc_waiting > 0) 5579 handle = timeout(pause_timer, 0, tickdelay > 2 ? tickdelay : 2); 5580 else 5581 handle.callout = NULL; 5582 } 5583 5584 /* 5585 * Flush out a directory with at least one removal dependency in an effort to 5586 * reduce the number of dirrem, freefile, and freeblks dependency structures. 5587 */ 5588 static void 5589 clear_remove(td) 5590 struct thread *td; 5591 { 5592 struct pagedep_hashhead *pagedephd; 5593 struct pagedep *pagedep; 5594 static int next = 0; 5595 struct mount *mp; 5596 struct vnode *vp; 5597 int error, cnt; 5598 ino_t ino; 5599 5600 ACQUIRE_LOCK(&lk); 5601 for (cnt = 0; cnt < pagedep_hash; cnt++) { 5602 pagedephd = &pagedep_hashtbl[next++]; 5603 if (next >= pagedep_hash) 5604 next = 0; 5605 LIST_FOREACH(pagedep, pagedephd, pd_hash) { 5606 if (LIST_FIRST(&pagedep->pd_dirremhd) == NULL) 5607 continue; 5608 mp = pagedep->pd_mnt; 5609 ino = pagedep->pd_ino; 5610 if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) 5611 continue; 5612 FREE_LOCK(&lk); 5613 if ((error = VFS_VGET(mp, ino, LK_EXCLUSIVE, &vp))) { 5614 softdep_error("clear_remove: vget", error); 5615 vn_finished_write(mp); 5616 return; 5617 } 5618 if ((error = VOP_FSYNC(vp, td->td_ucred, MNT_NOWAIT, td))) 5619 softdep_error("clear_remove: fsync", error); 5620 drain_output(vp, 0); 5621 vput(vp); 5622 vn_finished_write(mp); 5623 return; 5624 } 5625 } 5626 FREE_LOCK(&lk); 5627 } 5628 5629 /* 5630 * Clear out a block of dirty inodes in an effort to reduce 5631 * the number of inodedep dependency structures. 5632 */ 5633 static void 5634 clear_inodedeps(td) 5635 struct thread *td; 5636 { 5637 struct inodedep_hashhead *inodedephd; 5638 struct inodedep *inodedep; 5639 static int next = 0; 5640 struct mount *mp; 5641 struct vnode *vp; 5642 struct fs *fs; 5643 int error, cnt; 5644 ino_t firstino, lastino, ino; 5645 5646 ACQUIRE_LOCK(&lk); 5647 /* 5648 * Pick a random inode dependency to be cleared. 5649 * We will then gather up all the inodes in its block 5650 * that have dependencies and flush them out. 5651 */ 5652 for (cnt = 0; cnt < inodedep_hash; cnt++) { 5653 inodedephd = &inodedep_hashtbl[next++]; 5654 if (next >= inodedep_hash) 5655 next = 0; 5656 if ((inodedep = LIST_FIRST(inodedephd)) != NULL) 5657 break; 5658 } 5659 if (inodedep == NULL) 5660 return; 5661 /* 5662 * Ugly code to find mount point given pointer to superblock. 5663 */ 5664 fs = inodedep->id_fs; 5665 TAILQ_FOREACH(mp, &mountlist, mnt_list) 5666 if ((mp->mnt_flag & MNT_SOFTDEP) && fs == VFSTOUFS(mp)->um_fs) 5667 break; 5668 /* 5669 * Find the last inode in the block with dependencies. 5670 */ 5671 firstino = inodedep->id_ino & ~(INOPB(fs) - 1); 5672 for (lastino = firstino + INOPB(fs) - 1; lastino > firstino; lastino--) 5673 if (inodedep_lookup(fs, lastino, 0, &inodedep) != 0) 5674 break; 5675 /* 5676 * Asynchronously push all but the last inode with dependencies. 5677 * Synchronously push the last inode with dependencies to ensure 5678 * that the inode block gets written to free up the inodedeps. 5679 */ 5680 for (ino = firstino; ino <= lastino; ino++) { 5681 if (inodedep_lookup(fs, ino, 0, &inodedep) == 0) 5682 continue; 5683 FREE_LOCK(&lk); 5684 if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) 5685 continue; 5686 if ((error = VFS_VGET(mp, ino, LK_EXCLUSIVE, &vp)) != 0) { 5687 softdep_error("clear_inodedeps: vget", error); 5688 vn_finished_write(mp); 5689 return; 5690 } 5691 if (ino == lastino) { 5692 if ((error = VOP_FSYNC(vp, td->td_ucred, MNT_WAIT, td))) 5693 softdep_error("clear_inodedeps: fsync1", error); 5694 } else { 5695 if ((error = VOP_FSYNC(vp, td->td_ucred, MNT_NOWAIT, td))) 5696 softdep_error("clear_inodedeps: fsync2", error); 5697 drain_output(vp, 0); 5698 } 5699 vput(vp); 5700 vn_finished_write(mp); 5701 ACQUIRE_LOCK(&lk); 5702 } 5703 FREE_LOCK(&lk); 5704 } 5705 5706 /* 5707 * Function to determine if the buffer has outstanding dependencies 5708 * that will cause a roll-back if the buffer is written. If wantcount 5709 * is set, return number of dependencies, otherwise just yes or no. 5710 */ 5711 static int 5712 softdep_count_dependencies(bp, wantcount) 5713 struct buf *bp; 5714 int wantcount; 5715 { 5716 struct worklist *wk; 5717 struct inodedep *inodedep; 5718 struct indirdep *indirdep; 5719 struct allocindir *aip; 5720 struct pagedep *pagedep; 5721 struct diradd *dap; 5722 int i, retval; 5723 5724 retval = 0; 5725 ACQUIRE_LOCK(&lk); 5726 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 5727 switch (wk->wk_type) { 5728 5729 case D_INODEDEP: 5730 inodedep = WK_INODEDEP(wk); 5731 if ((inodedep->id_state & DEPCOMPLETE) == 0) { 5732 /* bitmap allocation dependency */ 5733 retval += 1; 5734 if (!wantcount) 5735 goto out; 5736 } 5737 if (TAILQ_FIRST(&inodedep->id_inoupdt)) { 5738 /* direct block pointer dependency */ 5739 retval += 1; 5740 if (!wantcount) 5741 goto out; 5742 } 5743 if (TAILQ_FIRST(&inodedep->id_extupdt)) { 5744 /* direct block pointer dependency */ 5745 retval += 1; 5746 if (!wantcount) 5747 goto out; 5748 } 5749 continue; 5750 5751 case D_INDIRDEP: 5752 indirdep = WK_INDIRDEP(wk); 5753 5754 LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) { 5755 /* indirect block pointer dependency */ 5756 retval += 1; 5757 if (!wantcount) 5758 goto out; 5759 } 5760 continue; 5761 5762 case D_PAGEDEP: 5763 pagedep = WK_PAGEDEP(wk); 5764 for (i = 0; i < DAHASHSZ; i++) { 5765 5766 LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) { 5767 /* directory entry dependency */ 5768 retval += 1; 5769 if (!wantcount) 5770 goto out; 5771 } 5772 } 5773 continue; 5774 5775 case D_BMSAFEMAP: 5776 case D_ALLOCDIRECT: 5777 case D_ALLOCINDIR: 5778 case D_MKDIR: 5779 /* never a dependency on these blocks */ 5780 continue; 5781 5782 default: 5783 FREE_LOCK(&lk); 5784 panic("softdep_check_for_rollback: Unexpected type %s", 5785 TYPENAME(wk->wk_type)); 5786 /* NOTREACHED */ 5787 } 5788 } 5789 out: 5790 FREE_LOCK(&lk); 5791 return retval; 5792 } 5793 5794 /* 5795 * Acquire exclusive access to a buffer. 5796 * Must be called with splbio blocked. 5797 * Return 1 if buffer was acquired. 5798 */ 5799 static int 5800 getdirtybuf(bpp, waitfor) 5801 struct buf **bpp; 5802 int waitfor; 5803 { 5804 struct buf *bp; 5805 int error; 5806 5807 for (;;) { 5808 if ((bp = *bpp) == NULL) 5809 return (0); 5810 /* XXX Probably needs interlock */ 5811 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) == 0) { 5812 if ((bp->b_xflags & BX_BKGRDINPROG) == 0) 5813 break; 5814 BUF_UNLOCK(bp); 5815 if (waitfor != MNT_WAIT) 5816 return (0); 5817 bp->b_xflags |= BX_BKGRDWAIT; 5818 interlocked_sleep(&lk, SLEEP, &bp->b_xflags, NULL, 5819 PRIBIO, "getbuf", 0); 5820 continue; 5821 } 5822 if (waitfor != MNT_WAIT) 5823 return (0); 5824 error = interlocked_sleep(&lk, LOCKBUF, bp, NULL, 5825 LK_EXCLUSIVE | LK_SLEEPFAIL, 0, 0); 5826 if (error != ENOLCK) { 5827 FREE_LOCK(&lk); 5828 panic("getdirtybuf: inconsistent lock"); 5829 } 5830 } 5831 if ((bp->b_flags & B_DELWRI) == 0) { 5832 BUF_UNLOCK(bp); 5833 return (0); 5834 } 5835 bremfree(bp); 5836 return (1); 5837 } 5838 5839 /* 5840 * Wait for pending output on a vnode to complete. 5841 * Must be called with vnode locked. 5842 */ 5843 static void 5844 drain_output(vp, islocked) 5845 struct vnode *vp; 5846 int islocked; 5847 { 5848 5849 if (!islocked) 5850 ACQUIRE_LOCK(&lk); 5851 VI_LOCK(vp); 5852 while (vp->v_numoutput) { 5853 vp->v_iflag |= VI_BWAIT; 5854 interlocked_sleep(&lk, SLEEP, (caddr_t)&vp->v_numoutput, 5855 VI_MTX(vp), PRIBIO + 1, "drainvp", 0); 5856 } 5857 VI_UNLOCK(vp); 5858 if (!islocked) 5859 FREE_LOCK(&lk); 5860 } 5861 5862 /* 5863 * Called whenever a buffer that is being invalidated or reallocated 5864 * contains dependencies. This should only happen if an I/O error has 5865 * occurred. The routine is called with the buffer locked. 5866 */ 5867 static void 5868 softdep_deallocate_dependencies(bp) 5869 struct buf *bp; 5870 { 5871 5872 if ((bp->b_ioflags & BIO_ERROR) == 0) 5873 panic("softdep_deallocate_dependencies: dangling deps"); 5874 softdep_error(bp->b_vp->v_mount->mnt_stat.f_mntonname, bp->b_error); 5875 panic("softdep_deallocate_dependencies: unrecovered I/O error"); 5876 } 5877 5878 /* 5879 * Function to handle asynchronous write errors in the filesystem. 5880 */ 5881 static void 5882 softdep_error(func, error) 5883 char *func; 5884 int error; 5885 { 5886 5887 /* XXX should do something better! */ 5888 printf("%s: got error %d while accessing filesystem\n", func, error); 5889 } 5890