xref: /freebsd/sys/ufs/ffs/ffs_softdep.c (revision f5f7c05209ca2c3748fd8b27c5e80ffad49120eb)
1 /*-
2  * Copyright 1998, 2000 Marshall Kirk McKusick.
3  * Copyright 2009, 2010 Jeffrey W. Roberson <jeff@FreeBSD.org>
4  * All rights reserved.
5  *
6  * The soft updates code is derived from the appendix of a University
7  * of Michigan technical report (Gregory R. Ganger and Yale N. Patt,
8  * "Soft Updates: A Solution to the Metadata Update Problem in File
9  * Systems", CSE-TR-254-95, August 1995).
10  *
11  * Further information about soft updates can be obtained from:
12  *
13  *	Marshall Kirk McKusick		http://www.mckusick.com/softdep/
14  *	1614 Oxford Street		mckusick@mckusick.com
15  *	Berkeley, CA 94709-1608		+1-510-843-9542
16  *	USA
17  *
18  * Redistribution and use in source and binary forms, with or without
19  * modification, are permitted provided that the following conditions
20  * are met:
21  *
22  * 1. Redistributions of source code must retain the above copyright
23  *    notice, this list of conditions and the following disclaimer.
24  * 2. Redistributions in binary form must reproduce the above copyright
25  *    notice, this list of conditions and the following disclaimer in the
26  *    documentation and/or other materials provided with the distribution.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR
29  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
30  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
31  * IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT,
32  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
33  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
34  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
35  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
36  * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
37  * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
38  *
39  *	from: @(#)ffs_softdep.c	9.59 (McKusick) 6/21/00
40  */
41 
42 #include <sys/cdefs.h>
43 __FBSDID("$FreeBSD$");
44 
45 #include "opt_ffs.h"
46 #include "opt_quota.h"
47 #include "opt_ddb.h"
48 
49 /*
50  * For now we want the safety net that the DEBUG flag provides.
51  */
52 #ifndef DEBUG
53 #define DEBUG
54 #endif
55 
56 #include <sys/param.h>
57 #include <sys/kernel.h>
58 #include <sys/systm.h>
59 #include <sys/bio.h>
60 #include <sys/buf.h>
61 #include <sys/kdb.h>
62 #include <sys/kthread.h>
63 #include <sys/ktr.h>
64 #include <sys/limits.h>
65 #include <sys/lock.h>
66 #include <sys/malloc.h>
67 #include <sys/mount.h>
68 #include <sys/mutex.h>
69 #include <sys/namei.h>
70 #include <sys/priv.h>
71 #include <sys/proc.h>
72 #include <sys/stat.h>
73 #include <sys/sysctl.h>
74 #include <sys/syslog.h>
75 #include <sys/vnode.h>
76 #include <sys/conf.h>
77 
78 #include <ufs/ufs/dir.h>
79 #include <ufs/ufs/extattr.h>
80 #include <ufs/ufs/quota.h>
81 #include <ufs/ufs/inode.h>
82 #include <ufs/ufs/ufsmount.h>
83 #include <ufs/ffs/fs.h>
84 #include <ufs/ffs/softdep.h>
85 #include <ufs/ffs/ffs_extern.h>
86 #include <ufs/ufs/ufs_extern.h>
87 
88 #include <vm/vm.h>
89 #include <vm/vm_extern.h>
90 #include <vm/vm_object.h>
91 
92 #include <geom/geom.h>
93 
94 #include <ddb/ddb.h>
95 
96 #define	KTR_SUJ	0	/* Define to KTR_SPARE. */
97 
98 #ifndef SOFTUPDATES
99 
100 int
101 softdep_flushfiles(oldmnt, flags, td)
102 	struct mount *oldmnt;
103 	int flags;
104 	struct thread *td;
105 {
106 
107 	panic("softdep_flushfiles called");
108 }
109 
110 int
111 softdep_mount(devvp, mp, fs, cred)
112 	struct vnode *devvp;
113 	struct mount *mp;
114 	struct fs *fs;
115 	struct ucred *cred;
116 {
117 
118 	return (0);
119 }
120 
121 void
122 softdep_initialize()
123 {
124 
125 	return;
126 }
127 
128 void
129 softdep_uninitialize()
130 {
131 
132 	return;
133 }
134 
135 void
136 softdep_unmount(mp)
137 	struct mount *mp;
138 {
139 
140 }
141 
142 void
143 softdep_setup_sbupdate(ump, fs, bp)
144 	struct ufsmount *ump;
145 	struct fs *fs;
146 	struct buf *bp;
147 {
148 }
149 
150 void
151 softdep_setup_inomapdep(bp, ip, newinum, mode)
152 	struct buf *bp;
153 	struct inode *ip;
154 	ino_t newinum;
155 	int mode;
156 {
157 
158 	panic("softdep_setup_inomapdep called");
159 }
160 
161 void
162 softdep_setup_blkmapdep(bp, mp, newblkno, frags, oldfrags)
163 	struct buf *bp;
164 	struct mount *mp;
165 	ufs2_daddr_t newblkno;
166 	int frags;
167 	int oldfrags;
168 {
169 
170 	panic("softdep_setup_blkmapdep called");
171 }
172 
173 void
174 softdep_setup_allocdirect(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp)
175 	struct inode *ip;
176 	ufs_lbn_t lbn;
177 	ufs2_daddr_t newblkno;
178 	ufs2_daddr_t oldblkno;
179 	long newsize;
180 	long oldsize;
181 	struct buf *bp;
182 {
183 
184 	panic("softdep_setup_allocdirect called");
185 }
186 
187 void
188 softdep_setup_allocext(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp)
189 	struct inode *ip;
190 	ufs_lbn_t lbn;
191 	ufs2_daddr_t newblkno;
192 	ufs2_daddr_t oldblkno;
193 	long newsize;
194 	long oldsize;
195 	struct buf *bp;
196 {
197 
198 	panic("softdep_setup_allocext called");
199 }
200 
201 void
202 softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp)
203 	struct inode *ip;
204 	ufs_lbn_t lbn;
205 	struct buf *bp;
206 	int ptrno;
207 	ufs2_daddr_t newblkno;
208 	ufs2_daddr_t oldblkno;
209 	struct buf *nbp;
210 {
211 
212 	panic("softdep_setup_allocindir_page called");
213 }
214 
215 void
216 softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno)
217 	struct buf *nbp;
218 	struct inode *ip;
219 	struct buf *bp;
220 	int ptrno;
221 	ufs2_daddr_t newblkno;
222 {
223 
224 	panic("softdep_setup_allocindir_meta called");
225 }
226 
227 void
228 softdep_journal_freeblocks(ip, cred, length, flags)
229 	struct inode *ip;
230 	struct ucred *cred;
231 	off_t length;
232 	int flags;
233 {
234 
235 	panic("softdep_journal_freeblocks called");
236 }
237 
238 void
239 softdep_journal_fsync(ip)
240 	struct inode *ip;
241 {
242 
243 	panic("softdep_journal_fsync called");
244 }
245 
246 void
247 softdep_setup_freeblocks(ip, length, flags)
248 	struct inode *ip;
249 	off_t length;
250 	int flags;
251 {
252 
253 	panic("softdep_setup_freeblocks called");
254 }
255 
256 void
257 softdep_freefile(pvp, ino, mode)
258 		struct vnode *pvp;
259 		ino_t ino;
260 		int mode;
261 {
262 
263 	panic("softdep_freefile called");
264 }
265 
266 int
267 softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk)
268 	struct buf *bp;
269 	struct inode *dp;
270 	off_t diroffset;
271 	ino_t newinum;
272 	struct buf *newdirbp;
273 	int isnewblk;
274 {
275 
276 	panic("softdep_setup_directory_add called");
277 }
278 
279 void
280 softdep_change_directoryentry_offset(bp, dp, base, oldloc, newloc, entrysize)
281 	struct buf *bp;
282 	struct inode *dp;
283 	caddr_t base;
284 	caddr_t oldloc;
285 	caddr_t newloc;
286 	int entrysize;
287 {
288 
289 	panic("softdep_change_directoryentry_offset called");
290 }
291 
292 void
293 softdep_setup_remove(bp, dp, ip, isrmdir)
294 	struct buf *bp;
295 	struct inode *dp;
296 	struct inode *ip;
297 	int isrmdir;
298 {
299 
300 	panic("softdep_setup_remove called");
301 }
302 
303 void
304 softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir)
305 	struct buf *bp;
306 	struct inode *dp;
307 	struct inode *ip;
308 	ino_t newinum;
309 	int isrmdir;
310 {
311 
312 	panic("softdep_setup_directory_change called");
313 }
314 
315 void
316 softdep_setup_blkfree(mp, bp, blkno, frags, wkhd)
317 	struct mount *mp;
318 	struct buf *bp;
319 	ufs2_daddr_t blkno;
320 	int frags;
321 	struct workhead *wkhd;
322 {
323 
324 	panic("%s called", __FUNCTION__);
325 }
326 
327 void
328 softdep_setup_inofree(mp, bp, ino, wkhd)
329 	struct mount *mp;
330 	struct buf *bp;
331 	ino_t ino;
332 	struct workhead *wkhd;
333 {
334 
335 	panic("%s called", __FUNCTION__);
336 }
337 
338 void
339 softdep_setup_unlink(dp, ip)
340 	struct inode *dp;
341 	struct inode *ip;
342 {
343 
344 	panic("%s called", __FUNCTION__);
345 }
346 
347 void
348 softdep_setup_link(dp, ip)
349 	struct inode *dp;
350 	struct inode *ip;
351 {
352 
353 	panic("%s called", __FUNCTION__);
354 }
355 
356 void
357 softdep_revert_link(dp, ip)
358 	struct inode *dp;
359 	struct inode *ip;
360 {
361 
362 	panic("%s called", __FUNCTION__);
363 }
364 
365 void
366 softdep_setup_rmdir(dp, ip)
367 	struct inode *dp;
368 	struct inode *ip;
369 {
370 
371 	panic("%s called", __FUNCTION__);
372 }
373 
374 void
375 softdep_revert_rmdir(dp, ip)
376 	struct inode *dp;
377 	struct inode *ip;
378 {
379 
380 	panic("%s called", __FUNCTION__);
381 }
382 
383 void
384 softdep_setup_create(dp, ip)
385 	struct inode *dp;
386 	struct inode *ip;
387 {
388 
389 	panic("%s called", __FUNCTION__);
390 }
391 
392 void
393 softdep_revert_create(dp, ip)
394 	struct inode *dp;
395 	struct inode *ip;
396 {
397 
398 	panic("%s called", __FUNCTION__);
399 }
400 
401 void
402 softdep_setup_mkdir(dp, ip)
403 	struct inode *dp;
404 	struct inode *ip;
405 {
406 
407 	panic("%s called", __FUNCTION__);
408 }
409 
410 void
411 softdep_revert_mkdir(dp, ip)
412 	struct inode *dp;
413 	struct inode *ip;
414 {
415 
416 	panic("%s called", __FUNCTION__);
417 }
418 
419 void
420 softdep_setup_dotdot_link(dp, ip)
421 	struct inode *dp;
422 	struct inode *ip;
423 {
424 
425 	panic("%s called", __FUNCTION__);
426 }
427 
428 int
429 softdep_prealloc(vp, waitok)
430 	struct vnode *vp;
431 	int waitok;
432 {
433 
434 	panic("%s called", __FUNCTION__);
435 
436 	return (0);
437 }
438 
439 int
440 softdep_journal_lookup(mp, vpp)
441 	struct mount *mp;
442 	struct vnode **vpp;
443 {
444 
445 	return (ENOENT);
446 }
447 
448 void
449 softdep_change_linkcnt(ip)
450 	struct inode *ip;
451 {
452 
453 	panic("softdep_change_linkcnt called");
454 }
455 
456 void
457 softdep_load_inodeblock(ip)
458 	struct inode *ip;
459 {
460 
461 	panic("softdep_load_inodeblock called");
462 }
463 
464 void
465 softdep_update_inodeblock(ip, bp, waitfor)
466 	struct inode *ip;
467 	struct buf *bp;
468 	int waitfor;
469 {
470 
471 	panic("softdep_update_inodeblock called");
472 }
473 
474 int
475 softdep_fsync(vp)
476 	struct vnode *vp;	/* the "in_core" copy of the inode */
477 {
478 
479 	return (0);
480 }
481 
482 void
483 softdep_fsync_mountdev(vp)
484 	struct vnode *vp;
485 {
486 
487 	return;
488 }
489 
490 int
491 softdep_flushworklist(oldmnt, countp, td)
492 	struct mount *oldmnt;
493 	int *countp;
494 	struct thread *td;
495 {
496 
497 	*countp = 0;
498 	return (0);
499 }
500 
501 int
502 softdep_sync_metadata(struct vnode *vp)
503 {
504 
505 	return (0);
506 }
507 
508 int
509 softdep_sync_buf(struct vnode *vp, struct buf *bp, int waitfor)
510 {
511 
512 	return (0);
513 }
514 
515 int
516 softdep_slowdown(vp)
517 	struct vnode *vp;
518 {
519 
520 	panic("softdep_slowdown called");
521 }
522 
523 void
524 softdep_releasefile(ip)
525 	struct inode *ip;	/* inode with the zero effective link count */
526 {
527 
528 	panic("softdep_releasefile called");
529 }
530 
531 int
532 softdep_request_cleanup(fs, vp, cred, resource)
533 	struct fs *fs;
534 	struct vnode *vp;
535 	struct ucred *cred;
536 	int resource;
537 {
538 
539 	return (0);
540 }
541 
542 int
543 softdep_check_suspend(struct mount *mp,
544 		      struct vnode *devvp,
545 		      int softdep_deps,
546 		      int softdep_accdeps,
547 		      int secondary_writes,
548 		      int secondary_accwrites)
549 {
550 	struct bufobj *bo;
551 	int error;
552 
553 	(void) softdep_deps,
554 	(void) softdep_accdeps;
555 
556 	bo = &devvp->v_bufobj;
557 	ASSERT_BO_LOCKED(bo);
558 
559 	MNT_ILOCK(mp);
560 	while (mp->mnt_secondary_writes != 0) {
561 		BO_UNLOCK(bo);
562 		msleep(&mp->mnt_secondary_writes, MNT_MTX(mp),
563 		    (PUSER - 1) | PDROP, "secwr", 0);
564 		BO_LOCK(bo);
565 		MNT_ILOCK(mp);
566 	}
567 
568 	/*
569 	 * Reasons for needing more work before suspend:
570 	 * - Dirty buffers on devvp.
571 	 * - Secondary writes occurred after start of vnode sync loop
572 	 */
573 	error = 0;
574 	if (bo->bo_numoutput > 0 ||
575 	    bo->bo_dirty.bv_cnt > 0 ||
576 	    secondary_writes != 0 ||
577 	    mp->mnt_secondary_writes != 0 ||
578 	    secondary_accwrites != mp->mnt_secondary_accwrites)
579 		error = EAGAIN;
580 	BO_UNLOCK(bo);
581 	return (error);
582 }
583 
584 void
585 softdep_get_depcounts(struct mount *mp,
586 		      int *softdepactivep,
587 		      int *softdepactiveaccp)
588 {
589 	(void) mp;
590 	*softdepactivep = 0;
591 	*softdepactiveaccp = 0;
592 }
593 
594 void
595 softdep_buf_append(bp, wkhd)
596 	struct buf *bp;
597 	struct workhead *wkhd;
598 {
599 
600 	panic("softdep_buf_appendwork called");
601 }
602 
603 void
604 softdep_inode_append(ip, cred, wkhd)
605 	struct inode *ip;
606 	struct ucred *cred;
607 	struct workhead *wkhd;
608 {
609 
610 	panic("softdep_inode_appendwork called");
611 }
612 
613 void
614 softdep_freework(wkhd)
615 	struct workhead *wkhd;
616 {
617 
618 	panic("softdep_freework called");
619 }
620 
621 #else
622 
623 FEATURE(softupdates, "FFS soft-updates support");
624 
625 /*
626  * These definitions need to be adapted to the system to which
627  * this file is being ported.
628  */
629 
630 #define M_SOFTDEP_FLAGS	(M_WAITOK)
631 
632 #define	D_PAGEDEP	0
633 #define	D_INODEDEP	1
634 #define	D_BMSAFEMAP	2
635 #define	D_NEWBLK	3
636 #define	D_ALLOCDIRECT	4
637 #define	D_INDIRDEP	5
638 #define	D_ALLOCINDIR	6
639 #define	D_FREEFRAG	7
640 #define	D_FREEBLKS	8
641 #define	D_FREEFILE	9
642 #define	D_DIRADD	10
643 #define	D_MKDIR		11
644 #define	D_DIRREM	12
645 #define	D_NEWDIRBLK	13
646 #define	D_FREEWORK	14
647 #define	D_FREEDEP	15
648 #define	D_JADDREF	16
649 #define	D_JREMREF	17
650 #define	D_JMVREF	18
651 #define	D_JNEWBLK	19
652 #define	D_JFREEBLK	20
653 #define	D_JFREEFRAG	21
654 #define	D_JSEG		22
655 #define	D_JSEGDEP	23
656 #define	D_SBDEP		24
657 #define	D_JTRUNC	25
658 #define	D_JFSYNC	26
659 #define	D_SENTINAL	27
660 #define	D_LAST		D_SENTINAL
661 
662 unsigned long dep_current[D_LAST + 1];
663 unsigned long dep_total[D_LAST + 1];
664 unsigned long dep_write[D_LAST + 1];
665 
666 
667 static SYSCTL_NODE(_debug, OID_AUTO, softdep, CTLFLAG_RW, 0,
668     "soft updates stats");
669 static SYSCTL_NODE(_debug_softdep, OID_AUTO, total, CTLFLAG_RW, 0,
670     "total dependencies allocated");
671 static SYSCTL_NODE(_debug_softdep, OID_AUTO, current, CTLFLAG_RW, 0,
672     "current dependencies allocated");
673 static SYSCTL_NODE(_debug_softdep, OID_AUTO, write, CTLFLAG_RW, 0,
674     "current dependencies written");
675 
676 #define	SOFTDEP_TYPE(type, str, long)					\
677     static MALLOC_DEFINE(M_ ## type, #str, long);			\
678     SYSCTL_ULONG(_debug_softdep_total, OID_AUTO, str, CTLFLAG_RD,	\
679 	&dep_total[D_ ## type], 0, "");					\
680     SYSCTL_ULONG(_debug_softdep_current, OID_AUTO, str, CTLFLAG_RD, 	\
681 	&dep_current[D_ ## type], 0, "");				\
682     SYSCTL_ULONG(_debug_softdep_write, OID_AUTO, str, CTLFLAG_RD, 	\
683 	&dep_write[D_ ## type], 0, "");
684 
685 SOFTDEP_TYPE(PAGEDEP, pagedep, "File page dependencies");
686 SOFTDEP_TYPE(INODEDEP, inodedep, "Inode dependencies");
687 SOFTDEP_TYPE(BMSAFEMAP, bmsafemap,
688     "Block or frag allocated from cyl group map");
689 SOFTDEP_TYPE(NEWBLK, newblk, "New block or frag allocation dependency");
690 SOFTDEP_TYPE(ALLOCDIRECT, allocdirect, "Block or frag dependency for an inode");
691 SOFTDEP_TYPE(INDIRDEP, indirdep, "Indirect block dependencies");
692 SOFTDEP_TYPE(ALLOCINDIR, allocindir, "Block dependency for an indirect block");
693 SOFTDEP_TYPE(FREEFRAG, freefrag, "Previously used frag for an inode");
694 SOFTDEP_TYPE(FREEBLKS, freeblks, "Blocks freed from an inode");
695 SOFTDEP_TYPE(FREEFILE, freefile, "Inode deallocated");
696 SOFTDEP_TYPE(DIRADD, diradd, "New directory entry");
697 SOFTDEP_TYPE(MKDIR, mkdir, "New directory");
698 SOFTDEP_TYPE(DIRREM, dirrem, "Directory entry deleted");
699 SOFTDEP_TYPE(NEWDIRBLK, newdirblk, "Unclaimed new directory block");
700 SOFTDEP_TYPE(FREEWORK, freework, "free an inode block");
701 SOFTDEP_TYPE(FREEDEP, freedep, "track a block free");
702 SOFTDEP_TYPE(JADDREF, jaddref, "Journal inode ref add");
703 SOFTDEP_TYPE(JREMREF, jremref, "Journal inode ref remove");
704 SOFTDEP_TYPE(JMVREF, jmvref, "Journal inode ref move");
705 SOFTDEP_TYPE(JNEWBLK, jnewblk, "Journal new block");
706 SOFTDEP_TYPE(JFREEBLK, jfreeblk, "Journal free block");
707 SOFTDEP_TYPE(JFREEFRAG, jfreefrag, "Journal free frag");
708 SOFTDEP_TYPE(JSEG, jseg, "Journal segment");
709 SOFTDEP_TYPE(JSEGDEP, jsegdep, "Journal segment complete");
710 SOFTDEP_TYPE(SBDEP, sbdep, "Superblock write dependency");
711 SOFTDEP_TYPE(JTRUNC, jtrunc, "Journal inode truncation");
712 SOFTDEP_TYPE(JFSYNC, jfsync, "Journal fsync complete");
713 
714 static MALLOC_DEFINE(M_SAVEDINO, "savedino", "Saved inodes");
715 static MALLOC_DEFINE(M_JBLOCKS, "jblocks", "Journal block locations");
716 
717 /*
718  * translate from workitem type to memory type
719  * MUST match the defines above, such that memtype[D_XXX] == M_XXX
720  */
721 static struct malloc_type *memtype[] = {
722 	M_PAGEDEP,
723 	M_INODEDEP,
724 	M_BMSAFEMAP,
725 	M_NEWBLK,
726 	M_ALLOCDIRECT,
727 	M_INDIRDEP,
728 	M_ALLOCINDIR,
729 	M_FREEFRAG,
730 	M_FREEBLKS,
731 	M_FREEFILE,
732 	M_DIRADD,
733 	M_MKDIR,
734 	M_DIRREM,
735 	M_NEWDIRBLK,
736 	M_FREEWORK,
737 	M_FREEDEP,
738 	M_JADDREF,
739 	M_JREMREF,
740 	M_JMVREF,
741 	M_JNEWBLK,
742 	M_JFREEBLK,
743 	M_JFREEFRAG,
744 	M_JSEG,
745 	M_JSEGDEP,
746 	M_SBDEP,
747 	M_JTRUNC,
748 	M_JFSYNC
749 };
750 
751 static LIST_HEAD(mkdirlist, mkdir) mkdirlisthd;
752 
753 #define DtoM(type) (memtype[type])
754 
755 /*
756  * Names of malloc types.
757  */
758 #define TYPENAME(type)  \
759 	((unsigned)(type) <= D_LAST ? memtype[type]->ks_shortdesc : "???")
760 /*
761  * End system adaptation definitions.
762  */
763 
764 #define	DOTDOT_OFFSET	offsetof(struct dirtemplate, dotdot_ino)
765 #define	DOT_OFFSET	offsetof(struct dirtemplate, dot_ino)
766 
767 /*
768  * Forward declarations.
769  */
770 struct inodedep_hashhead;
771 struct newblk_hashhead;
772 struct pagedep_hashhead;
773 struct bmsafemap_hashhead;
774 
775 /*
776  * Private journaling structures.
777  */
778 struct jblocks {
779 	struct jseglst	jb_segs;	/* TAILQ of current segments. */
780 	struct jseg	*jb_writeseg;	/* Next write to complete. */
781 	struct jseg	*jb_oldestseg;	/* Oldest segment with valid entries. */
782 	struct jextent	*jb_extent;	/* Extent array. */
783 	uint64_t	jb_nextseq;	/* Next sequence number. */
784 	uint64_t	jb_oldestwrseq;	/* Oldest written sequence number. */
785 	uint8_t		jb_needseg;	/* Need a forced segment. */
786 	uint8_t		jb_suspended;	/* Did journal suspend writes? */
787 	int		jb_avail;	/* Available extents. */
788 	int		jb_used;	/* Last used extent. */
789 	int		jb_head;	/* Allocator head. */
790 	int		jb_off;		/* Allocator extent offset. */
791 	int		jb_blocks;	/* Total disk blocks covered. */
792 	int		jb_free;	/* Total disk blocks free. */
793 	int		jb_min;		/* Minimum free space. */
794 	int		jb_low;		/* Low on space. */
795 	int		jb_age;		/* Insertion time of oldest rec. */
796 };
797 
798 struct jextent {
799 	ufs2_daddr_t	je_daddr;	/* Disk block address. */
800 	int		je_blocks;	/* Disk block count. */
801 };
802 
803 /*
804  * Internal function prototypes.
805  */
806 static	void softdep_error(char *, int);
807 static	void drain_output(struct vnode *);
808 static	struct buf *getdirtybuf(struct buf *, struct mtx *, int);
809 static	void clear_remove(void);
810 static	void clear_inodedeps(void);
811 static	void unlinked_inodedep(struct mount *, struct inodedep *);
812 static	void clear_unlinked_inodedep(struct inodedep *);
813 static	struct inodedep *first_unlinked_inodedep(struct ufsmount *);
814 static	int flush_pagedep_deps(struct vnode *, struct mount *,
815 	    struct diraddhd *);
816 static	int free_pagedep(struct pagedep *);
817 static	int flush_newblk_dep(struct vnode *, struct mount *, ufs_lbn_t);
818 static	int flush_inodedep_deps(struct vnode *, struct mount *, ino_t);
819 static	int flush_deplist(struct allocdirectlst *, int, int *);
820 static	int sync_cgs(struct mount *, int);
821 static	int handle_written_filepage(struct pagedep *, struct buf *);
822 static	int handle_written_sbdep(struct sbdep *, struct buf *);
823 static	void initiate_write_sbdep(struct sbdep *);
824 static  void diradd_inode_written(struct diradd *, struct inodedep *);
825 static	int handle_written_indirdep(struct indirdep *, struct buf *,
826 	    struct buf**);
827 static	int handle_written_inodeblock(struct inodedep *, struct buf *);
828 static	int jnewblk_rollforward(struct jnewblk *, struct fs *, struct cg *,
829 	    uint8_t *);
830 static	int handle_written_bmsafemap(struct bmsafemap *, struct buf *);
831 static	void handle_written_jaddref(struct jaddref *);
832 static	void handle_written_jremref(struct jremref *);
833 static	void handle_written_jseg(struct jseg *, struct buf *);
834 static	void handle_written_jnewblk(struct jnewblk *);
835 static	void handle_written_jblkdep(struct jblkdep *);
836 static	void handle_written_jfreefrag(struct jfreefrag *);
837 static	void complete_jseg(struct jseg *);
838 static	void complete_jsegs(struct jseg *);
839 static	void jseg_write(struct ufsmount *ump, struct jseg *, uint8_t *);
840 static	void jaddref_write(struct jaddref *, struct jseg *, uint8_t *);
841 static	void jremref_write(struct jremref *, struct jseg *, uint8_t *);
842 static	void jmvref_write(struct jmvref *, struct jseg *, uint8_t *);
843 static	void jtrunc_write(struct jtrunc *, struct jseg *, uint8_t *);
844 static	void jfsync_write(struct jfsync *, struct jseg *, uint8_t *data);
845 static	void jnewblk_write(struct jnewblk *, struct jseg *, uint8_t *);
846 static	void jfreeblk_write(struct jfreeblk *, struct jseg *, uint8_t *);
847 static	void jfreefrag_write(struct jfreefrag *, struct jseg *, uint8_t *);
848 static	inline void inoref_write(struct inoref *, struct jseg *,
849 	    struct jrefrec *);
850 static	void handle_allocdirect_partdone(struct allocdirect *,
851 	    struct workhead *);
852 static	struct jnewblk *cancel_newblk(struct newblk *, struct worklist *,
853 	    struct workhead *);
854 static	void indirdep_complete(struct indirdep *);
855 static	int indirblk_lookup(struct mount *, ufs2_daddr_t);
856 static	void indirblk_insert(struct freework *);
857 static	void indirblk_remove(struct freework *);
858 static	void handle_allocindir_partdone(struct allocindir *);
859 static	void initiate_write_filepage(struct pagedep *, struct buf *);
860 static	void initiate_write_indirdep(struct indirdep*, struct buf *);
861 static	void handle_written_mkdir(struct mkdir *, int);
862 static	int jnewblk_rollback(struct jnewblk *, struct fs *, struct cg *,
863 	    uint8_t *);
864 static	void initiate_write_bmsafemap(struct bmsafemap *, struct buf *);
865 static	void initiate_write_inodeblock_ufs1(struct inodedep *, struct buf *);
866 static	void initiate_write_inodeblock_ufs2(struct inodedep *, struct buf *);
867 static	void handle_workitem_freefile(struct freefile *);
868 static	int handle_workitem_remove(struct dirrem *, int);
869 static	struct dirrem *newdirrem(struct buf *, struct inode *,
870 	    struct inode *, int, struct dirrem **);
871 static	struct indirdep *indirdep_lookup(struct mount *, struct inode *,
872 	    struct buf *);
873 static	void cancel_indirdep(struct indirdep *, struct buf *,
874 	    struct freeblks *);
875 static	void free_indirdep(struct indirdep *);
876 static	void free_diradd(struct diradd *, struct workhead *);
877 static	void merge_diradd(struct inodedep *, struct diradd *);
878 static	void complete_diradd(struct diradd *);
879 static	struct diradd *diradd_lookup(struct pagedep *, int);
880 static	struct jremref *cancel_diradd_dotdot(struct inode *, struct dirrem *,
881 	    struct jremref *);
882 static	struct jremref *cancel_mkdir_dotdot(struct inode *, struct dirrem *,
883 	    struct jremref *);
884 static	void cancel_diradd(struct diradd *, struct dirrem *, struct jremref *,
885 	    struct jremref *, struct jremref *);
886 static	void dirrem_journal(struct dirrem *, struct jremref *, struct jremref *,
887 	    struct jremref *);
888 static	void cancel_allocindir(struct allocindir *, struct buf *bp,
889 	    struct freeblks *, int);
890 static	int setup_trunc_indir(struct freeblks *, struct inode *,
891 	    ufs_lbn_t, ufs_lbn_t, ufs2_daddr_t);
892 static	void complete_trunc_indir(struct freework *);
893 static	void trunc_indirdep(struct indirdep *, struct freeblks *, struct buf *,
894 	    int);
895 static	void complete_mkdir(struct mkdir *);
896 static	void free_newdirblk(struct newdirblk *);
897 static	void free_jremref(struct jremref *);
898 static	void free_jaddref(struct jaddref *);
899 static	void free_jsegdep(struct jsegdep *);
900 static	void free_jsegs(struct jblocks *);
901 static	void rele_jseg(struct jseg *);
902 static	void free_jseg(struct jseg *, struct jblocks *);
903 static	void free_jnewblk(struct jnewblk *);
904 static	void free_jblkdep(struct jblkdep *);
905 static	void free_jfreefrag(struct jfreefrag *);
906 static	void free_freedep(struct freedep *);
907 static	void journal_jremref(struct dirrem *, struct jremref *,
908 	    struct inodedep *);
909 static	void cancel_jnewblk(struct jnewblk *, struct workhead *);
910 static	int cancel_jaddref(struct jaddref *, struct inodedep *,
911 	    struct workhead *);
912 static	void cancel_jfreefrag(struct jfreefrag *);
913 static	inline void setup_freedirect(struct freeblks *, struct inode *,
914 	    int, int);
915 static	inline void setup_freeext(struct freeblks *, struct inode *, int, int);
916 static	inline void setup_freeindir(struct freeblks *, struct inode *, int,
917 	    ufs_lbn_t, int);
918 static	inline struct freeblks *newfreeblks(struct mount *, struct inode *);
919 static	void freeblks_free(struct ufsmount *, struct freeblks *, int);
920 static	void indir_trunc(struct freework *, ufs2_daddr_t, ufs_lbn_t);
921 ufs2_daddr_t blkcount(struct fs *, ufs2_daddr_t, off_t);
922 static	int trunc_check_buf(struct buf *, int *, ufs_lbn_t, int, int);
923 static	void trunc_dependencies(struct inode *, struct freeblks *, ufs_lbn_t,
924 	    int, int);
925 static	void trunc_pages(struct inode *, off_t, ufs2_daddr_t, int);
926 static 	int cancel_pagedep(struct pagedep *, struct freeblks *, int);
927 static	int deallocate_dependencies(struct buf *, struct freeblks *, int);
928 static	void newblk_freefrag(struct newblk*);
929 static	void free_newblk(struct newblk *);
930 static	void cancel_allocdirect(struct allocdirectlst *,
931 	    struct allocdirect *, struct freeblks *);
932 static	int check_inode_unwritten(struct inodedep *);
933 static	int free_inodedep(struct inodedep *);
934 static	void freework_freeblock(struct freework *);
935 static	void freework_enqueue(struct freework *);
936 static	int handle_workitem_freeblocks(struct freeblks *, int);
937 static	int handle_complete_freeblocks(struct freeblks *, int);
938 static	void handle_workitem_indirblk(struct freework *);
939 static	void handle_written_freework(struct freework *);
940 static	void merge_inode_lists(struct allocdirectlst *,struct allocdirectlst *);
941 static	struct worklist *jnewblk_merge(struct worklist *, struct worklist *,
942 	    struct workhead *);
943 static	struct freefrag *setup_allocindir_phase2(struct buf *, struct inode *,
944 	    struct inodedep *, struct allocindir *, ufs_lbn_t);
945 static	struct allocindir *newallocindir(struct inode *, int, ufs2_daddr_t,
946 	    ufs2_daddr_t, ufs_lbn_t);
947 static	void handle_workitem_freefrag(struct freefrag *);
948 static	struct freefrag *newfreefrag(struct inode *, ufs2_daddr_t, long,
949 	    ufs_lbn_t);
950 static	void allocdirect_merge(struct allocdirectlst *,
951 	    struct allocdirect *, struct allocdirect *);
952 static	struct freefrag *allocindir_merge(struct allocindir *,
953 	    struct allocindir *);
954 static	int bmsafemap_find(struct bmsafemap_hashhead *, struct mount *, int,
955 	    struct bmsafemap **);
956 static	struct bmsafemap *bmsafemap_lookup(struct mount *, struct buf *,
957 	    int cg, struct bmsafemap *);
958 static	int newblk_find(struct newblk_hashhead *, struct mount *, ufs2_daddr_t,
959 	    int, struct newblk **);
960 static	int newblk_lookup(struct mount *, ufs2_daddr_t, int, struct newblk **);
961 static	int inodedep_find(struct inodedep_hashhead *, struct fs *, ino_t,
962 	    struct inodedep **);
963 static	int inodedep_lookup(struct mount *, ino_t, int, struct inodedep **);
964 static	int pagedep_lookup(struct mount *, struct buf *bp, ino_t, ufs_lbn_t,
965 	    int, struct pagedep **);
966 static	int pagedep_find(struct pagedep_hashhead *, ino_t, ufs_lbn_t,
967 	    struct mount *mp, int, struct pagedep **);
968 static	void pause_timer(void *);
969 static	int request_cleanup(struct mount *, int);
970 static	int process_worklist_item(struct mount *, int, int);
971 static	void process_removes(struct vnode *);
972 static	void process_truncates(struct vnode *);
973 static	void jwork_move(struct workhead *, struct workhead *);
974 static	void jwork_insert(struct workhead *, struct jsegdep *);
975 static	void add_to_worklist(struct worklist *, int);
976 static	void wake_worklist(struct worklist *);
977 static	void wait_worklist(struct worklist *, char *);
978 static	void remove_from_worklist(struct worklist *);
979 static	void softdep_flush(void);
980 static	void softdep_flushjournal(struct mount *);
981 static	int softdep_speedup(void);
982 static	void worklist_speedup(void);
983 static	int journal_mount(struct mount *, struct fs *, struct ucred *);
984 static	void journal_unmount(struct mount *);
985 static	int journal_space(struct ufsmount *, int);
986 static	void journal_suspend(struct ufsmount *);
987 static	int journal_unsuspend(struct ufsmount *ump);
988 static	void softdep_prelink(struct vnode *, struct vnode *);
989 static	void add_to_journal(struct worklist *);
990 static	void remove_from_journal(struct worklist *);
991 static	void softdep_process_journal(struct mount *, struct worklist *, int);
992 static	struct jremref *newjremref(struct dirrem *, struct inode *,
993 	    struct inode *ip, off_t, nlink_t);
994 static	struct jaddref *newjaddref(struct inode *, ino_t, off_t, int16_t,
995 	    uint16_t);
996 static	inline void newinoref(struct inoref *, ino_t, ino_t, off_t, nlink_t,
997 	    uint16_t);
998 static	inline struct jsegdep *inoref_jseg(struct inoref *);
999 static	struct jmvref *newjmvref(struct inode *, ino_t, off_t, off_t);
1000 static	struct jfreeblk *newjfreeblk(struct freeblks *, ufs_lbn_t,
1001 	    ufs2_daddr_t, int);
1002 static	struct jtrunc *newjtrunc(struct freeblks *, off_t, int);
1003 static	void move_newblock_dep(struct jaddref *, struct inodedep *);
1004 static	void cancel_jfreeblk(struct freeblks *, ufs2_daddr_t);
1005 static	struct jfreefrag *newjfreefrag(struct freefrag *, struct inode *,
1006 	    ufs2_daddr_t, long, ufs_lbn_t);
1007 static	struct freework *newfreework(struct ufsmount *, struct freeblks *,
1008 	    struct freework *, ufs_lbn_t, ufs2_daddr_t, int, int, int);
1009 static	int jwait(struct worklist *, int);
1010 static	struct inodedep *inodedep_lookup_ip(struct inode *);
1011 static	int bmsafemap_backgroundwrite(struct bmsafemap *, struct buf *);
1012 static	struct freefile *handle_bufwait(struct inodedep *, struct workhead *);
1013 static	void handle_jwork(struct workhead *);
1014 static	struct mkdir *setup_newdir(struct diradd *, ino_t, ino_t, struct buf *,
1015 	    struct mkdir **);
1016 static	struct jblocks *jblocks_create(void);
1017 static	ufs2_daddr_t jblocks_alloc(struct jblocks *, int, int *);
1018 static	void jblocks_free(struct jblocks *, struct mount *, int);
1019 static	void jblocks_destroy(struct jblocks *);
1020 static	void jblocks_add(struct jblocks *, ufs2_daddr_t, int);
1021 
1022 /*
1023  * Exported softdep operations.
1024  */
1025 static	void softdep_disk_io_initiation(struct buf *);
1026 static	void softdep_disk_write_complete(struct buf *);
1027 static	void softdep_deallocate_dependencies(struct buf *);
1028 static	int softdep_count_dependencies(struct buf *bp, int);
1029 
1030 static struct mtx lk;
1031 MTX_SYSINIT(softdep_lock, &lk, "Softdep Lock", MTX_DEF);
1032 
1033 #define TRY_ACQUIRE_LOCK(lk)		mtx_trylock(lk)
1034 #define ACQUIRE_LOCK(lk)		mtx_lock(lk)
1035 #define FREE_LOCK(lk)			mtx_unlock(lk)
1036 
1037 #define	BUF_AREC(bp)			lockallowrecurse(&(bp)->b_lock)
1038 #define	BUF_NOREC(bp)			lockdisablerecurse(&(bp)->b_lock)
1039 
1040 /*
1041  * Worklist queue management.
1042  * These routines require that the lock be held.
1043  */
1044 #ifndef /* NOT */ DEBUG
1045 #define WORKLIST_INSERT(head, item) do {	\
1046 	(item)->wk_state |= ONWORKLIST;		\
1047 	LIST_INSERT_HEAD(head, item, wk_list);	\
1048 } while (0)
1049 #define WORKLIST_REMOVE(item) do {		\
1050 	(item)->wk_state &= ~ONWORKLIST;	\
1051 	LIST_REMOVE(item, wk_list);		\
1052 } while (0)
1053 #define WORKLIST_INSERT_UNLOCKED	WORKLIST_INSERT
1054 #define WORKLIST_REMOVE_UNLOCKED	WORKLIST_REMOVE
1055 
1056 #else /* DEBUG */
1057 static	void worklist_insert(struct workhead *, struct worklist *, int);
1058 static	void worklist_remove(struct worklist *, int);
1059 
1060 #define WORKLIST_INSERT(head, item) worklist_insert(head, item, 1)
1061 #define WORKLIST_INSERT_UNLOCKED(head, item) worklist_insert(head, item, 0)
1062 #define WORKLIST_REMOVE(item) worklist_remove(item, 1)
1063 #define WORKLIST_REMOVE_UNLOCKED(item) worklist_remove(item, 0)
1064 
1065 static void
1066 worklist_insert(head, item, locked)
1067 	struct workhead *head;
1068 	struct worklist *item;
1069 	int locked;
1070 {
1071 
1072 	if (locked)
1073 		mtx_assert(&lk, MA_OWNED);
1074 	if (item->wk_state & ONWORKLIST)
1075 		panic("worklist_insert: %p %s(0x%X) already on list",
1076 		    item, TYPENAME(item->wk_type), item->wk_state);
1077 	item->wk_state |= ONWORKLIST;
1078 	LIST_INSERT_HEAD(head, item, wk_list);
1079 }
1080 
1081 static void
1082 worklist_remove(item, locked)
1083 	struct worklist *item;
1084 	int locked;
1085 {
1086 
1087 	if (locked)
1088 		mtx_assert(&lk, MA_OWNED);
1089 	if ((item->wk_state & ONWORKLIST) == 0)
1090 		panic("worklist_remove: %p %s(0x%X) not on list",
1091 		    item, TYPENAME(item->wk_type), item->wk_state);
1092 	item->wk_state &= ~ONWORKLIST;
1093 	LIST_REMOVE(item, wk_list);
1094 }
1095 #endif /* DEBUG */
1096 
1097 /*
1098  * Merge two jsegdeps keeping only the oldest one as newer references
1099  * can't be discarded until after older references.
1100  */
1101 static inline struct jsegdep *
1102 jsegdep_merge(struct jsegdep *one, struct jsegdep *two)
1103 {
1104 	struct jsegdep *swp;
1105 
1106 	if (two == NULL)
1107 		return (one);
1108 
1109 	if (one->jd_seg->js_seq > two->jd_seg->js_seq) {
1110 		swp = one;
1111 		one = two;
1112 		two = swp;
1113 	}
1114 	WORKLIST_REMOVE(&two->jd_list);
1115 	free_jsegdep(two);
1116 
1117 	return (one);
1118 }
1119 
1120 /*
1121  * If two freedeps are compatible free one to reduce list size.
1122  */
1123 static inline struct freedep *
1124 freedep_merge(struct freedep *one, struct freedep *two)
1125 {
1126 	if (two == NULL)
1127 		return (one);
1128 
1129 	if (one->fd_freework == two->fd_freework) {
1130 		WORKLIST_REMOVE(&two->fd_list);
1131 		free_freedep(two);
1132 	}
1133 	return (one);
1134 }
1135 
1136 /*
1137  * Move journal work from one list to another.  Duplicate freedeps and
1138  * jsegdeps are coalesced to keep the lists as small as possible.
1139  */
1140 static void
1141 jwork_move(dst, src)
1142 	struct workhead *dst;
1143 	struct workhead *src;
1144 {
1145 	struct freedep *freedep;
1146 	struct jsegdep *jsegdep;
1147 	struct worklist *wkn;
1148 	struct worklist *wk;
1149 
1150 	KASSERT(dst != src,
1151 	    ("jwork_move: dst == src"));
1152 	freedep = NULL;
1153 	jsegdep = NULL;
1154 	LIST_FOREACH_SAFE(wk, dst, wk_list, wkn) {
1155 		if (wk->wk_type == D_JSEGDEP)
1156 			jsegdep = jsegdep_merge(WK_JSEGDEP(wk), jsegdep);
1157 		if (wk->wk_type == D_FREEDEP)
1158 			freedep = freedep_merge(WK_FREEDEP(wk), freedep);
1159 	}
1160 
1161 	mtx_assert(&lk, MA_OWNED);
1162 	while ((wk = LIST_FIRST(src)) != NULL) {
1163 		WORKLIST_REMOVE(wk);
1164 		WORKLIST_INSERT(dst, wk);
1165 		if (wk->wk_type == D_JSEGDEP) {
1166 			jsegdep = jsegdep_merge(WK_JSEGDEP(wk), jsegdep);
1167 			continue;
1168 		}
1169 		if (wk->wk_type == D_FREEDEP)
1170 			freedep = freedep_merge(WK_FREEDEP(wk), freedep);
1171 	}
1172 }
1173 
1174 static void
1175 jwork_insert(dst, jsegdep)
1176 	struct workhead *dst;
1177 	struct jsegdep *jsegdep;
1178 {
1179 	struct jsegdep *jsegdepn;
1180 	struct worklist *wk;
1181 
1182 	LIST_FOREACH(wk, dst, wk_list)
1183 		if (wk->wk_type == D_JSEGDEP)
1184 			break;
1185 	if (wk == NULL) {
1186 		WORKLIST_INSERT(dst, &jsegdep->jd_list);
1187 		return;
1188 	}
1189 	jsegdepn = WK_JSEGDEP(wk);
1190 	if (jsegdep->jd_seg->js_seq < jsegdepn->jd_seg->js_seq) {
1191 		WORKLIST_REMOVE(wk);
1192 		free_jsegdep(jsegdepn);
1193 		WORKLIST_INSERT(dst, &jsegdep->jd_list);
1194 	} else
1195 		free_jsegdep(jsegdep);
1196 }
1197 
1198 /*
1199  * Routines for tracking and managing workitems.
1200  */
1201 static	void workitem_free(struct worklist *, int);
1202 static	void workitem_alloc(struct worklist *, int, struct mount *);
1203 
1204 #define	WORKITEM_FREE(item, type) workitem_free((struct worklist *)(item), (type))
1205 
1206 static void
1207 workitem_free(item, type)
1208 	struct worklist *item;
1209 	int type;
1210 {
1211 	struct ufsmount *ump;
1212 	mtx_assert(&lk, MA_OWNED);
1213 
1214 #ifdef DEBUG
1215 	if (item->wk_state & ONWORKLIST)
1216 		panic("workitem_free: %s(0x%X) still on list",
1217 		    TYPENAME(item->wk_type), item->wk_state);
1218 	if (item->wk_type != type)
1219 		panic("workitem_free: type mismatch %s != %s",
1220 		    TYPENAME(item->wk_type), TYPENAME(type));
1221 #endif
1222 	if (item->wk_state & IOWAITING)
1223 		wakeup(item);
1224 	ump = VFSTOUFS(item->wk_mp);
1225 	if (--ump->softdep_deps == 0 && ump->softdep_req)
1226 		wakeup(&ump->softdep_deps);
1227 	dep_current[type]--;
1228 	free(item, DtoM(type));
1229 }
1230 
1231 static void
1232 workitem_alloc(item, type, mp)
1233 	struct worklist *item;
1234 	int type;
1235 	struct mount *mp;
1236 {
1237 	struct ufsmount *ump;
1238 
1239 	item->wk_type = type;
1240 	item->wk_mp = mp;
1241 	item->wk_state = 0;
1242 
1243 	ump = VFSTOUFS(mp);
1244 	ACQUIRE_LOCK(&lk);
1245 	dep_current[type]++;
1246 	dep_total[type]++;
1247 	ump->softdep_deps++;
1248 	ump->softdep_accdeps++;
1249 	FREE_LOCK(&lk);
1250 }
1251 
1252 /*
1253  * Workitem queue management
1254  */
1255 static int max_softdeps;	/* maximum number of structs before slowdown */
1256 static int maxindirdeps = 50;	/* max number of indirdeps before slowdown */
1257 static int tickdelay = 2;	/* number of ticks to pause during slowdown */
1258 static int proc_waiting;	/* tracks whether we have a timeout posted */
1259 static int *stat_countp;	/* statistic to count in proc_waiting timeout */
1260 static struct callout softdep_callout;
1261 static int req_pending;
1262 static int req_clear_inodedeps;	/* syncer process flush some inodedeps */
1263 static int req_clear_remove;	/* syncer process flush some freeblks */
1264 static int softdep_flushcache = 0; /* Should we do BIO_FLUSH? */
1265 
1266 /*
1267  * runtime statistics
1268  */
1269 static int stat_worklist_push;	/* number of worklist cleanups */
1270 static int stat_blk_limit_push;	/* number of times block limit neared */
1271 static int stat_ino_limit_push;	/* number of times inode limit neared */
1272 static int stat_blk_limit_hit;	/* number of times block slowdown imposed */
1273 static int stat_ino_limit_hit;	/* number of times inode slowdown imposed */
1274 static int stat_sync_limit_hit;	/* number of synchronous slowdowns imposed */
1275 static int stat_indir_blk_ptrs;	/* bufs redirtied as indir ptrs not written */
1276 static int stat_inode_bitmap;	/* bufs redirtied as inode bitmap not written */
1277 static int stat_direct_blk_ptrs;/* bufs redirtied as direct ptrs not written */
1278 static int stat_dir_entry;	/* bufs redirtied as dir entry cannot write */
1279 static int stat_jaddref;	/* bufs redirtied as ino bitmap can not write */
1280 static int stat_jnewblk;	/* bufs redirtied as blk bitmap can not write */
1281 static int stat_journal_min;	/* Times hit journal min threshold */
1282 static int stat_journal_low;	/* Times hit journal low threshold */
1283 static int stat_journal_wait;	/* Times blocked in jwait(). */
1284 static int stat_jwait_filepage;	/* Times blocked in jwait() for filepage. */
1285 static int stat_jwait_freeblks;	/* Times blocked in jwait() for freeblks. */
1286 static int stat_jwait_inode;	/* Times blocked in jwait() for inodes. */
1287 static int stat_jwait_newblk;	/* Times blocked in jwait() for newblks. */
1288 static int stat_cleanup_high_delay; /* Maximum cleanup delay (in ticks) */
1289 static int stat_cleanup_blkrequests; /* Number of block cleanup requests */
1290 static int stat_cleanup_inorequests; /* Number of inode cleanup requests */
1291 static int stat_cleanup_retries; /* Number of cleanups that needed to flush */
1292 static int stat_cleanup_failures; /* Number of cleanup requests that failed */
1293 
1294 SYSCTL_INT(_debug_softdep, OID_AUTO, max_softdeps, CTLFLAG_RW,
1295     &max_softdeps, 0, "");
1296 SYSCTL_INT(_debug_softdep, OID_AUTO, tickdelay, CTLFLAG_RW,
1297     &tickdelay, 0, "");
1298 SYSCTL_INT(_debug_softdep, OID_AUTO, maxindirdeps, CTLFLAG_RW,
1299     &maxindirdeps, 0, "");
1300 SYSCTL_INT(_debug_softdep, OID_AUTO, worklist_push, CTLFLAG_RW,
1301     &stat_worklist_push, 0,"");
1302 SYSCTL_INT(_debug_softdep, OID_AUTO, blk_limit_push, CTLFLAG_RW,
1303     &stat_blk_limit_push, 0,"");
1304 SYSCTL_INT(_debug_softdep, OID_AUTO, ino_limit_push, CTLFLAG_RW,
1305     &stat_ino_limit_push, 0,"");
1306 SYSCTL_INT(_debug_softdep, OID_AUTO, blk_limit_hit, CTLFLAG_RW,
1307     &stat_blk_limit_hit, 0, "");
1308 SYSCTL_INT(_debug_softdep, OID_AUTO, ino_limit_hit, CTLFLAG_RW,
1309     &stat_ino_limit_hit, 0, "");
1310 SYSCTL_INT(_debug_softdep, OID_AUTO, sync_limit_hit, CTLFLAG_RW,
1311     &stat_sync_limit_hit, 0, "");
1312 SYSCTL_INT(_debug_softdep, OID_AUTO, indir_blk_ptrs, CTLFLAG_RW,
1313     &stat_indir_blk_ptrs, 0, "");
1314 SYSCTL_INT(_debug_softdep, OID_AUTO, inode_bitmap, CTLFLAG_RW,
1315     &stat_inode_bitmap, 0, "");
1316 SYSCTL_INT(_debug_softdep, OID_AUTO, direct_blk_ptrs, CTLFLAG_RW,
1317     &stat_direct_blk_ptrs, 0, "");
1318 SYSCTL_INT(_debug_softdep, OID_AUTO, dir_entry, CTLFLAG_RW,
1319     &stat_dir_entry, 0, "");
1320 SYSCTL_INT(_debug_softdep, OID_AUTO, jaddref_rollback, CTLFLAG_RW,
1321     &stat_jaddref, 0, "");
1322 SYSCTL_INT(_debug_softdep, OID_AUTO, jnewblk_rollback, CTLFLAG_RW,
1323     &stat_jnewblk, 0, "");
1324 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_low, CTLFLAG_RW,
1325     &stat_journal_low, 0, "");
1326 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_min, CTLFLAG_RW,
1327     &stat_journal_min, 0, "");
1328 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_wait, CTLFLAG_RW,
1329     &stat_journal_wait, 0, "");
1330 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_filepage, CTLFLAG_RW,
1331     &stat_jwait_filepage, 0, "");
1332 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_freeblks, CTLFLAG_RW,
1333     &stat_jwait_freeblks, 0, "");
1334 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_inode, CTLFLAG_RW,
1335     &stat_jwait_inode, 0, "");
1336 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_newblk, CTLFLAG_RW,
1337     &stat_jwait_newblk, 0, "");
1338 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_blkrequests, CTLFLAG_RW,
1339     &stat_cleanup_blkrequests, 0, "");
1340 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_inorequests, CTLFLAG_RW,
1341     &stat_cleanup_inorequests, 0, "");
1342 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_high_delay, CTLFLAG_RW,
1343     &stat_cleanup_high_delay, 0, "");
1344 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_retries, CTLFLAG_RW,
1345     &stat_cleanup_retries, 0, "");
1346 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_failures, CTLFLAG_RW,
1347     &stat_cleanup_failures, 0, "");
1348 SYSCTL_INT(_debug_softdep, OID_AUTO, flushcache, CTLFLAG_RW,
1349     &softdep_flushcache, 0, "");
1350 
1351 SYSCTL_DECL(_vfs_ffs);
1352 
1353 LIST_HEAD(bmsafemap_hashhead, bmsafemap) *bmsafemap_hashtbl;
1354 static u_long	bmsafemap_hash;	/* size of hash table - 1 */
1355 
1356 static int compute_summary_at_mount = 0;	/* Whether to recompute the summary at mount time */
1357 SYSCTL_INT(_vfs_ffs, OID_AUTO, compute_summary_at_mount, CTLFLAG_RW,
1358 	   &compute_summary_at_mount, 0, "Recompute summary at mount");
1359 
1360 static struct proc *softdepproc;
1361 static struct kproc_desc softdep_kp = {
1362 	"softdepflush",
1363 	softdep_flush,
1364 	&softdepproc
1365 };
1366 SYSINIT(sdproc, SI_SUB_KTHREAD_UPDATE, SI_ORDER_ANY, kproc_start,
1367     &softdep_kp);
1368 
1369 static void
1370 softdep_flush(void)
1371 {
1372 	struct mount *nmp;
1373 	struct mount *mp;
1374 	struct ufsmount *ump;
1375 	struct thread *td;
1376 	int remaining;
1377 	int progress;
1378 
1379 	td = curthread;
1380 	td->td_pflags |= TDP_NORUNNINGBUF;
1381 
1382 	for (;;) {
1383 		kproc_suspend_check(softdepproc);
1384 		ACQUIRE_LOCK(&lk);
1385 		/*
1386 		 * If requested, try removing inode or removal dependencies.
1387 		 */
1388 		if (req_clear_inodedeps) {
1389 			clear_inodedeps();
1390 			req_clear_inodedeps -= 1;
1391 			wakeup_one(&proc_waiting);
1392 		}
1393 		if (req_clear_remove) {
1394 			clear_remove();
1395 			req_clear_remove -= 1;
1396 			wakeup_one(&proc_waiting);
1397 		}
1398 		FREE_LOCK(&lk);
1399 		remaining = progress = 0;
1400 		mtx_lock(&mountlist_mtx);
1401 		for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp)  {
1402 			nmp = TAILQ_NEXT(mp, mnt_list);
1403 			if (MOUNTEDSOFTDEP(mp) == 0)
1404 				continue;
1405 			if (vfs_busy(mp, MBF_NOWAIT | MBF_MNTLSTLOCK))
1406 				continue;
1407 			progress += softdep_process_worklist(mp, 0);
1408 			ump = VFSTOUFS(mp);
1409 			remaining += ump->softdep_on_worklist;
1410 			mtx_lock(&mountlist_mtx);
1411 			nmp = TAILQ_NEXT(mp, mnt_list);
1412 			vfs_unbusy(mp);
1413 		}
1414 		mtx_unlock(&mountlist_mtx);
1415 		if (remaining && progress)
1416 			continue;
1417 		ACQUIRE_LOCK(&lk);
1418 		if (!req_pending)
1419 			msleep(&req_pending, &lk, PVM, "sdflush", hz);
1420 		req_pending = 0;
1421 		FREE_LOCK(&lk);
1422 	}
1423 }
1424 
1425 static void
1426 worklist_speedup(void)
1427 {
1428 	mtx_assert(&lk, MA_OWNED);
1429 	if (req_pending == 0) {
1430 		req_pending = 1;
1431 		wakeup(&req_pending);
1432 	}
1433 }
1434 
1435 static int
1436 softdep_speedup(void)
1437 {
1438 
1439 	worklist_speedup();
1440 	bd_speedup();
1441 	return speedup_syncer();
1442 }
1443 
1444 /*
1445  * Add an item to the end of the work queue.
1446  * This routine requires that the lock be held.
1447  * This is the only routine that adds items to the list.
1448  * The following routine is the only one that removes items
1449  * and does so in order from first to last.
1450  */
1451 
1452 #define	WK_HEAD		0x0001	/* Add to HEAD. */
1453 #define	WK_NODELAY	0x0002	/* Process immediately. */
1454 
1455 static void
1456 add_to_worklist(wk, flags)
1457 	struct worklist *wk;
1458 	int flags;
1459 {
1460 	struct ufsmount *ump;
1461 
1462 	mtx_assert(&lk, MA_OWNED);
1463 	ump = VFSTOUFS(wk->wk_mp);
1464 	if (wk->wk_state & ONWORKLIST)
1465 		panic("add_to_worklist: %s(0x%X) already on list",
1466 		    TYPENAME(wk->wk_type), wk->wk_state);
1467 	wk->wk_state |= ONWORKLIST;
1468 	if (ump->softdep_on_worklist == 0) {
1469 		LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list);
1470 		ump->softdep_worklist_tail = wk;
1471 	} else if (flags & WK_HEAD) {
1472 		LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list);
1473 	} else {
1474 		LIST_INSERT_AFTER(ump->softdep_worklist_tail, wk, wk_list);
1475 		ump->softdep_worklist_tail = wk;
1476 	}
1477 	ump->softdep_on_worklist += 1;
1478 	if (flags & WK_NODELAY)
1479 		worklist_speedup();
1480 }
1481 
1482 /*
1483  * Remove the item to be processed. If we are removing the last
1484  * item on the list, we need to recalculate the tail pointer.
1485  */
1486 static void
1487 remove_from_worklist(wk)
1488 	struct worklist *wk;
1489 {
1490 	struct ufsmount *ump;
1491 
1492 	ump = VFSTOUFS(wk->wk_mp);
1493 	WORKLIST_REMOVE(wk);
1494 	if (ump->softdep_worklist_tail == wk)
1495 		ump->softdep_worklist_tail =
1496 		    (struct worklist *)wk->wk_list.le_prev;
1497 	ump->softdep_on_worklist -= 1;
1498 }
1499 
1500 static void
1501 wake_worklist(wk)
1502 	struct worklist *wk;
1503 {
1504 	if (wk->wk_state & IOWAITING) {
1505 		wk->wk_state &= ~IOWAITING;
1506 		wakeup(wk);
1507 	}
1508 }
1509 
1510 static void
1511 wait_worklist(wk, wmesg)
1512 	struct worklist *wk;
1513 	char *wmesg;
1514 {
1515 
1516 	wk->wk_state |= IOWAITING;
1517 	msleep(wk, &lk, PVM, wmesg, 0);
1518 }
1519 
1520 /*
1521  * Process that runs once per second to handle items in the background queue.
1522  *
1523  * Note that we ensure that everything is done in the order in which they
1524  * appear in the queue. The code below depends on this property to ensure
1525  * that blocks of a file are freed before the inode itself is freed. This
1526  * ordering ensures that no new <vfsid, inum, lbn> triples will be generated
1527  * until all the old ones have been purged from the dependency lists.
1528  */
1529 int
1530 softdep_process_worklist(mp, full)
1531 	struct mount *mp;
1532 	int full;
1533 {
1534 	int cnt, matchcnt;
1535 	struct ufsmount *ump;
1536 	long starttime;
1537 
1538 	KASSERT(mp != NULL, ("softdep_process_worklist: NULL mp"));
1539 	/*
1540 	 * Record the process identifier of our caller so that we can give
1541 	 * this process preferential treatment in request_cleanup below.
1542 	 */
1543 	matchcnt = 0;
1544 	ump = VFSTOUFS(mp);
1545 	ACQUIRE_LOCK(&lk);
1546 	starttime = time_second;
1547 	softdep_process_journal(mp, NULL, full?MNT_WAIT:0);
1548 	while (ump->softdep_on_worklist > 0) {
1549 		if ((cnt = process_worklist_item(mp, 10, LK_NOWAIT)) == 0)
1550 			break;
1551 		else
1552 			matchcnt += cnt;
1553 		/*
1554 		 * If requested, try removing inode or removal dependencies.
1555 		 */
1556 		if (req_clear_inodedeps) {
1557 			clear_inodedeps();
1558 			req_clear_inodedeps -= 1;
1559 			wakeup_one(&proc_waiting);
1560 		}
1561 		if (req_clear_remove) {
1562 			clear_remove();
1563 			req_clear_remove -= 1;
1564 			wakeup_one(&proc_waiting);
1565 		}
1566 		/*
1567 		 * We do not generally want to stop for buffer space, but if
1568 		 * we are really being a buffer hog, we will stop and wait.
1569 		 */
1570 		if (should_yield()) {
1571 			FREE_LOCK(&lk);
1572 			kern_yield(PRI_USER);
1573 			bwillwrite();
1574 			ACQUIRE_LOCK(&lk);
1575 		}
1576 		/*
1577 		 * Never allow processing to run for more than one
1578 		 * second. Otherwise the other mountpoints may get
1579 		 * excessively backlogged.
1580 		 */
1581 		if (!full && starttime != time_second)
1582 			break;
1583 	}
1584 	if (full == 0)
1585 		journal_unsuspend(ump);
1586 	FREE_LOCK(&lk);
1587 	return (matchcnt);
1588 }
1589 
1590 /*
1591  * Process all removes associated with a vnode if we are running out of
1592  * journal space.  Any other process which attempts to flush these will
1593  * be unable as we have the vnodes locked.
1594  */
1595 static void
1596 process_removes(vp)
1597 	struct vnode *vp;
1598 {
1599 	struct inodedep *inodedep;
1600 	struct dirrem *dirrem;
1601 	struct mount *mp;
1602 	ino_t inum;
1603 
1604 	mtx_assert(&lk, MA_OWNED);
1605 
1606 	mp = vp->v_mount;
1607 	inum = VTOI(vp)->i_number;
1608 	for (;;) {
1609 top:
1610 		if (inodedep_lookup(mp, inum, 0, &inodedep) == 0)
1611 			return;
1612 		LIST_FOREACH(dirrem, &inodedep->id_dirremhd, dm_inonext) {
1613 			/*
1614 			 * If another thread is trying to lock this vnode
1615 			 * it will fail but we must wait for it to do so
1616 			 * before we can proceed.
1617 			 */
1618 			if (dirrem->dm_state & INPROGRESS) {
1619 				wait_worklist(&dirrem->dm_list, "pwrwait");
1620 				goto top;
1621 			}
1622 			if ((dirrem->dm_state & (COMPLETE | ONWORKLIST)) ==
1623 			    (COMPLETE | ONWORKLIST))
1624 				break;
1625 		}
1626 		if (dirrem == NULL)
1627 			return;
1628 		remove_from_worklist(&dirrem->dm_list);
1629 		FREE_LOCK(&lk);
1630 		if (vn_start_secondary_write(NULL, &mp, V_NOWAIT))
1631 			panic("process_removes: suspended filesystem");
1632 		handle_workitem_remove(dirrem, 0);
1633 		vn_finished_secondary_write(mp);
1634 		ACQUIRE_LOCK(&lk);
1635 	}
1636 }
1637 
1638 /*
1639  * Process all truncations associated with a vnode if we are running out
1640  * of journal space.  This is called when the vnode lock is already held
1641  * and no other process can clear the truncation.  This function returns
1642  * a value greater than zero if it did any work.
1643  */
1644 static void
1645 process_truncates(vp)
1646 	struct vnode *vp;
1647 {
1648 	struct inodedep *inodedep;
1649 	struct freeblks *freeblks;
1650 	struct mount *mp;
1651 	ino_t inum;
1652 	int cgwait;
1653 
1654 	mtx_assert(&lk, MA_OWNED);
1655 
1656 	mp = vp->v_mount;
1657 	inum = VTOI(vp)->i_number;
1658 	for (;;) {
1659 		if (inodedep_lookup(mp, inum, 0, &inodedep) == 0)
1660 			return;
1661 		cgwait = 0;
1662 		TAILQ_FOREACH(freeblks, &inodedep->id_freeblklst, fb_next) {
1663 			/* Journal entries not yet written.  */
1664 			if (!LIST_EMPTY(&freeblks->fb_jblkdephd)) {
1665 				jwait(&LIST_FIRST(
1666 				    &freeblks->fb_jblkdephd)->jb_list,
1667 				    MNT_WAIT);
1668 				break;
1669 			}
1670 			/* Another thread is executing this item. */
1671 			if (freeblks->fb_state & INPROGRESS) {
1672 				wait_worklist(&freeblks->fb_list, "ptrwait");
1673 				break;
1674 			}
1675 			/* Freeblks is waiting on a inode write. */
1676 			if ((freeblks->fb_state & COMPLETE) == 0) {
1677 				FREE_LOCK(&lk);
1678 				ffs_update(vp, 1);
1679 				ACQUIRE_LOCK(&lk);
1680 				break;
1681 			}
1682 			if ((freeblks->fb_state & (ALLCOMPLETE | ONWORKLIST)) ==
1683 			    (ALLCOMPLETE | ONWORKLIST)) {
1684 				remove_from_worklist(&freeblks->fb_list);
1685 				freeblks->fb_state |= INPROGRESS;
1686 				FREE_LOCK(&lk);
1687 				if (vn_start_secondary_write(NULL, &mp,
1688 				    V_NOWAIT))
1689 					panic("process_truncates: "
1690 					    "suspended filesystem");
1691 				handle_workitem_freeblocks(freeblks, 0);
1692 				vn_finished_secondary_write(mp);
1693 				ACQUIRE_LOCK(&lk);
1694 				break;
1695 			}
1696 			if (freeblks->fb_cgwait)
1697 				cgwait++;
1698 		}
1699 		if (cgwait) {
1700 			FREE_LOCK(&lk);
1701 			sync_cgs(mp, MNT_WAIT);
1702 			ffs_sync_snap(mp, MNT_WAIT);
1703 			ACQUIRE_LOCK(&lk);
1704 			continue;
1705 		}
1706 		if (freeblks == NULL)
1707 			break;
1708 	}
1709 	return;
1710 }
1711 
1712 /*
1713  * Process one item on the worklist.
1714  */
1715 static int
1716 process_worklist_item(mp, target, flags)
1717 	struct mount *mp;
1718 	int target;
1719 	int flags;
1720 {
1721 	struct worklist sintenel;
1722 	struct worklist *wk;
1723 	struct ufsmount *ump;
1724 	int matchcnt;
1725 	int error;
1726 
1727 	mtx_assert(&lk, MA_OWNED);
1728 	KASSERT(mp != NULL, ("process_worklist_item: NULL mp"));
1729 	/*
1730 	 * If we are being called because of a process doing a
1731 	 * copy-on-write, then it is not safe to write as we may
1732 	 * recurse into the copy-on-write routine.
1733 	 */
1734 	if (curthread->td_pflags & TDP_COWINPROGRESS)
1735 		return (-1);
1736 	PHOLD(curproc);	/* Don't let the stack go away. */
1737 	ump = VFSTOUFS(mp);
1738 	matchcnt = 0;
1739 	sintenel.wk_mp = NULL;
1740 	sintenel.wk_type = D_SENTINAL;
1741 	LIST_INSERT_HEAD(&ump->softdep_workitem_pending, &sintenel, wk_list);
1742 	for (wk = LIST_NEXT(&sintenel, wk_list); wk != NULL;
1743 	    wk = LIST_NEXT(&sintenel, wk_list)) {
1744 		if (wk->wk_type == D_SENTINAL) {
1745 			LIST_REMOVE(&sintenel, wk_list);
1746 			LIST_INSERT_AFTER(wk, &sintenel, wk_list);
1747 			continue;
1748 		}
1749 		if (wk->wk_state & INPROGRESS)
1750 			panic("process_worklist_item: %p already in progress.",
1751 			    wk);
1752 		wk->wk_state |= INPROGRESS;
1753 		remove_from_worklist(wk);
1754 		FREE_LOCK(&lk);
1755 		if (vn_start_secondary_write(NULL, &mp, V_NOWAIT))
1756 			panic("process_worklist_item: suspended filesystem");
1757 		switch (wk->wk_type) {
1758 		case D_DIRREM:
1759 			/* removal of a directory entry */
1760 			error = handle_workitem_remove(WK_DIRREM(wk), flags);
1761 			break;
1762 
1763 		case D_FREEBLKS:
1764 			/* releasing blocks and/or fragments from a file */
1765 			error = handle_workitem_freeblocks(WK_FREEBLKS(wk),
1766 			    flags);
1767 			break;
1768 
1769 		case D_FREEFRAG:
1770 			/* releasing a fragment when replaced as a file grows */
1771 			handle_workitem_freefrag(WK_FREEFRAG(wk));
1772 			error = 0;
1773 			break;
1774 
1775 		case D_FREEFILE:
1776 			/* releasing an inode when its link count drops to 0 */
1777 			handle_workitem_freefile(WK_FREEFILE(wk));
1778 			error = 0;
1779 			break;
1780 
1781 		default:
1782 			panic("%s_process_worklist: Unknown type %s",
1783 			    "softdep", TYPENAME(wk->wk_type));
1784 			/* NOTREACHED */
1785 		}
1786 		vn_finished_secondary_write(mp);
1787 		ACQUIRE_LOCK(&lk);
1788 		if (error == 0) {
1789 			if (++matchcnt == target)
1790 				break;
1791 			continue;
1792 		}
1793 		/*
1794 		 * We have to retry the worklist item later.  Wake up any
1795 		 * waiters who may be able to complete it immediately and
1796 		 * add the item back to the head so we don't try to execute
1797 		 * it again.
1798 		 */
1799 		wk->wk_state &= ~INPROGRESS;
1800 		wake_worklist(wk);
1801 		add_to_worklist(wk, WK_HEAD);
1802 	}
1803 	LIST_REMOVE(&sintenel, wk_list);
1804 	/* Sentinal could've become the tail from remove_from_worklist. */
1805 	if (ump->softdep_worklist_tail == &sintenel)
1806 		ump->softdep_worklist_tail =
1807 		    (struct worklist *)sintenel.wk_list.le_prev;
1808 	PRELE(curproc);
1809 	return (matchcnt);
1810 }
1811 
1812 /*
1813  * Move dependencies from one buffer to another.
1814  */
1815 int
1816 softdep_move_dependencies(oldbp, newbp)
1817 	struct buf *oldbp;
1818 	struct buf *newbp;
1819 {
1820 	struct worklist *wk, *wktail;
1821 	int dirty;
1822 
1823 	dirty = 0;
1824 	wktail = NULL;
1825 	ACQUIRE_LOCK(&lk);
1826 	while ((wk = LIST_FIRST(&oldbp->b_dep)) != NULL) {
1827 		LIST_REMOVE(wk, wk_list);
1828 		if (wk->wk_type == D_BMSAFEMAP &&
1829 		    bmsafemap_backgroundwrite(WK_BMSAFEMAP(wk), newbp))
1830 			dirty = 1;
1831 		if (wktail == 0)
1832 			LIST_INSERT_HEAD(&newbp->b_dep, wk, wk_list);
1833 		else
1834 			LIST_INSERT_AFTER(wktail, wk, wk_list);
1835 		wktail = wk;
1836 	}
1837 	FREE_LOCK(&lk);
1838 
1839 	return (dirty);
1840 }
1841 
1842 /*
1843  * Purge the work list of all items associated with a particular mount point.
1844  */
1845 int
1846 softdep_flushworklist(oldmnt, countp, td)
1847 	struct mount *oldmnt;
1848 	int *countp;
1849 	struct thread *td;
1850 {
1851 	struct vnode *devvp;
1852 	int count, error = 0;
1853 	struct ufsmount *ump;
1854 
1855 	/*
1856 	 * Alternately flush the block device associated with the mount
1857 	 * point and process any dependencies that the flushing
1858 	 * creates. We continue until no more worklist dependencies
1859 	 * are found.
1860 	 */
1861 	*countp = 0;
1862 	ump = VFSTOUFS(oldmnt);
1863 	devvp = ump->um_devvp;
1864 	while ((count = softdep_process_worklist(oldmnt, 1)) > 0) {
1865 		*countp += count;
1866 		vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
1867 		error = VOP_FSYNC(devvp, MNT_WAIT, td);
1868 		VOP_UNLOCK(devvp, 0);
1869 		if (error)
1870 			break;
1871 	}
1872 	return (error);
1873 }
1874 
1875 int
1876 softdep_waitidle(struct mount *mp)
1877 {
1878 	struct ufsmount *ump;
1879 	int error;
1880 	int i;
1881 
1882 	ump = VFSTOUFS(mp);
1883 	ACQUIRE_LOCK(&lk);
1884 	for (i = 0; i < 10 && ump->softdep_deps; i++) {
1885 		ump->softdep_req = 1;
1886 		if (ump->softdep_on_worklist)
1887 			panic("softdep_waitidle: work added after flush.");
1888 		msleep(&ump->softdep_deps, &lk, PVM, "softdeps", 1);
1889 	}
1890 	ump->softdep_req = 0;
1891 	FREE_LOCK(&lk);
1892 	error = 0;
1893 	if (i == 10) {
1894 		error = EBUSY;
1895 		printf("softdep_waitidle: Failed to flush worklist for %p\n",
1896 		    mp);
1897 	}
1898 
1899 	return (error);
1900 }
1901 
1902 /*
1903  * Flush all vnodes and worklist items associated with a specified mount point.
1904  */
1905 int
1906 softdep_flushfiles(oldmnt, flags, td)
1907 	struct mount *oldmnt;
1908 	int flags;
1909 	struct thread *td;
1910 {
1911 	int error, depcount, loopcnt, retry_flush_count, retry;
1912 
1913 	loopcnt = 10;
1914 	retry_flush_count = 3;
1915 retry_flush:
1916 	error = 0;
1917 
1918 	/*
1919 	 * Alternately flush the vnodes associated with the mount
1920 	 * point and process any dependencies that the flushing
1921 	 * creates. In theory, this loop can happen at most twice,
1922 	 * but we give it a few extra just to be sure.
1923 	 */
1924 	for (; loopcnt > 0; loopcnt--) {
1925 		/*
1926 		 * Do another flush in case any vnodes were brought in
1927 		 * as part of the cleanup operations.
1928 		 */
1929 		if ((error = ffs_flushfiles(oldmnt, flags, td)) != 0)
1930 			break;
1931 		if ((error = softdep_flushworklist(oldmnt, &depcount, td)) != 0 ||
1932 		    depcount == 0)
1933 			break;
1934 	}
1935 	/*
1936 	 * If we are unmounting then it is an error to fail. If we
1937 	 * are simply trying to downgrade to read-only, then filesystem
1938 	 * activity can keep us busy forever, so we just fail with EBUSY.
1939 	 */
1940 	if (loopcnt == 0) {
1941 		if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT)
1942 			panic("softdep_flushfiles: looping");
1943 		error = EBUSY;
1944 	}
1945 	if (!error)
1946 		error = softdep_waitidle(oldmnt);
1947 	if (!error) {
1948 		if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT) {
1949 			retry = 0;
1950 			MNT_ILOCK(oldmnt);
1951 			KASSERT((oldmnt->mnt_kern_flag & MNTK_NOINSMNTQ) != 0,
1952 			    ("softdep_flushfiles: !MNTK_NOINSMNTQ"));
1953 			if (oldmnt->mnt_nvnodelistsize > 0) {
1954 				if (--retry_flush_count > 0) {
1955 					retry = 1;
1956 					loopcnt = 3;
1957 				} else
1958 					error = EBUSY;
1959 			}
1960 			MNT_IUNLOCK(oldmnt);
1961 			if (retry)
1962 				goto retry_flush;
1963 		}
1964 	}
1965 	return (error);
1966 }
1967 
1968 /*
1969  * Structure hashing.
1970  *
1971  * There are three types of structures that can be looked up:
1972  *	1) pagedep structures identified by mount point, inode number,
1973  *	   and logical block.
1974  *	2) inodedep structures identified by mount point and inode number.
1975  *	3) newblk structures identified by mount point and
1976  *	   physical block number.
1977  *
1978  * The "pagedep" and "inodedep" dependency structures are hashed
1979  * separately from the file blocks and inodes to which they correspond.
1980  * This separation helps when the in-memory copy of an inode or
1981  * file block must be replaced. It also obviates the need to access
1982  * an inode or file page when simply updating (or de-allocating)
1983  * dependency structures. Lookup of newblk structures is needed to
1984  * find newly allocated blocks when trying to associate them with
1985  * their allocdirect or allocindir structure.
1986  *
1987  * The lookup routines optionally create and hash a new instance when
1988  * an existing entry is not found.
1989  */
1990 #define DEPALLOC	0x0001	/* allocate structure if lookup fails */
1991 #define NODELAY		0x0002	/* cannot do background work */
1992 
1993 /*
1994  * Structures and routines associated with pagedep caching.
1995  */
1996 LIST_HEAD(pagedep_hashhead, pagedep) *pagedep_hashtbl;
1997 u_long	pagedep_hash;		/* size of hash table - 1 */
1998 #define	PAGEDEP_HASH(mp, inum, lbn) \
1999 	(&pagedep_hashtbl[((((register_t)(mp)) >> 13) + (inum) + (lbn)) & \
2000 	    pagedep_hash])
2001 
2002 static int
2003 pagedep_find(pagedephd, ino, lbn, mp, flags, pagedeppp)
2004 	struct pagedep_hashhead *pagedephd;
2005 	ino_t ino;
2006 	ufs_lbn_t lbn;
2007 	struct mount *mp;
2008 	int flags;
2009 	struct pagedep **pagedeppp;
2010 {
2011 	struct pagedep *pagedep;
2012 
2013 	LIST_FOREACH(pagedep, pagedephd, pd_hash) {
2014 		if (ino == pagedep->pd_ino && lbn == pagedep->pd_lbn &&
2015 		    mp == pagedep->pd_list.wk_mp) {
2016 			*pagedeppp = pagedep;
2017 			return (1);
2018 		}
2019 	}
2020 	*pagedeppp = NULL;
2021 	return (0);
2022 }
2023 /*
2024  * Look up a pagedep. Return 1 if found, 0 otherwise.
2025  * If not found, allocate if DEPALLOC flag is passed.
2026  * Found or allocated entry is returned in pagedeppp.
2027  * This routine must be called with splbio interrupts blocked.
2028  */
2029 static int
2030 pagedep_lookup(mp, bp, ino, lbn, flags, pagedeppp)
2031 	struct mount *mp;
2032 	struct buf *bp;
2033 	ino_t ino;
2034 	ufs_lbn_t lbn;
2035 	int flags;
2036 	struct pagedep **pagedeppp;
2037 {
2038 	struct pagedep *pagedep;
2039 	struct pagedep_hashhead *pagedephd;
2040 	struct worklist *wk;
2041 	int ret;
2042 	int i;
2043 
2044 	mtx_assert(&lk, MA_OWNED);
2045 	if (bp) {
2046 		LIST_FOREACH(wk, &bp->b_dep, wk_list) {
2047 			if (wk->wk_type == D_PAGEDEP) {
2048 				*pagedeppp = WK_PAGEDEP(wk);
2049 				return (1);
2050 			}
2051 		}
2052 	}
2053 	pagedephd = PAGEDEP_HASH(mp, ino, lbn);
2054 	ret = pagedep_find(pagedephd, ino, lbn, mp, flags, pagedeppp);
2055 	if (ret) {
2056 		if (((*pagedeppp)->pd_state & ONWORKLIST) == 0 && bp)
2057 			WORKLIST_INSERT(&bp->b_dep, &(*pagedeppp)->pd_list);
2058 		return (1);
2059 	}
2060 	if ((flags & DEPALLOC) == 0)
2061 		return (0);
2062 	FREE_LOCK(&lk);
2063 	pagedep = malloc(sizeof(struct pagedep),
2064 	    M_PAGEDEP, M_SOFTDEP_FLAGS|M_ZERO);
2065 	workitem_alloc(&pagedep->pd_list, D_PAGEDEP, mp);
2066 	ACQUIRE_LOCK(&lk);
2067 	ret = pagedep_find(pagedephd, ino, lbn, mp, flags, pagedeppp);
2068 	if (*pagedeppp) {
2069 		/*
2070 		 * This should never happen since we only create pagedeps
2071 		 * with the vnode lock held.  Could be an assert.
2072 		 */
2073 		WORKITEM_FREE(pagedep, D_PAGEDEP);
2074 		return (ret);
2075 	}
2076 	pagedep->pd_ino = ino;
2077 	pagedep->pd_lbn = lbn;
2078 	LIST_INIT(&pagedep->pd_dirremhd);
2079 	LIST_INIT(&pagedep->pd_pendinghd);
2080 	for (i = 0; i < DAHASHSZ; i++)
2081 		LIST_INIT(&pagedep->pd_diraddhd[i]);
2082 	LIST_INSERT_HEAD(pagedephd, pagedep, pd_hash);
2083 	WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list);
2084 	*pagedeppp = pagedep;
2085 	return (0);
2086 }
2087 
2088 /*
2089  * Structures and routines associated with inodedep caching.
2090  */
2091 LIST_HEAD(inodedep_hashhead, inodedep) *inodedep_hashtbl;
2092 static u_long	inodedep_hash;	/* size of hash table - 1 */
2093 #define	INODEDEP_HASH(fs, inum) \
2094       (&inodedep_hashtbl[((((register_t)(fs)) >> 13) + (inum)) & inodedep_hash])
2095 
2096 static int
2097 inodedep_find(inodedephd, fs, inum, inodedeppp)
2098 	struct inodedep_hashhead *inodedephd;
2099 	struct fs *fs;
2100 	ino_t inum;
2101 	struct inodedep **inodedeppp;
2102 {
2103 	struct inodedep *inodedep;
2104 
2105 	LIST_FOREACH(inodedep, inodedephd, id_hash)
2106 		if (inum == inodedep->id_ino && fs == inodedep->id_fs)
2107 			break;
2108 	if (inodedep) {
2109 		*inodedeppp = inodedep;
2110 		return (1);
2111 	}
2112 	*inodedeppp = NULL;
2113 
2114 	return (0);
2115 }
2116 /*
2117  * Look up an inodedep. Return 1 if found, 0 if not found.
2118  * If not found, allocate if DEPALLOC flag is passed.
2119  * Found or allocated entry is returned in inodedeppp.
2120  * This routine must be called with splbio interrupts blocked.
2121  */
2122 static int
2123 inodedep_lookup(mp, inum, flags, inodedeppp)
2124 	struct mount *mp;
2125 	ino_t inum;
2126 	int flags;
2127 	struct inodedep **inodedeppp;
2128 {
2129 	struct inodedep *inodedep;
2130 	struct inodedep_hashhead *inodedephd;
2131 	struct fs *fs;
2132 
2133 	mtx_assert(&lk, MA_OWNED);
2134 	fs = VFSTOUFS(mp)->um_fs;
2135 	inodedephd = INODEDEP_HASH(fs, inum);
2136 
2137 	if (inodedep_find(inodedephd, fs, inum, inodedeppp))
2138 		return (1);
2139 	if ((flags & DEPALLOC) == 0)
2140 		return (0);
2141 	/*
2142 	 * If we are over our limit, try to improve the situation.
2143 	 */
2144 	if (dep_current[D_INODEDEP] > max_softdeps && (flags & NODELAY) == 0)
2145 		request_cleanup(mp, FLUSH_INODES);
2146 	FREE_LOCK(&lk);
2147 	inodedep = malloc(sizeof(struct inodedep),
2148 		M_INODEDEP, M_SOFTDEP_FLAGS);
2149 	workitem_alloc(&inodedep->id_list, D_INODEDEP, mp);
2150 	ACQUIRE_LOCK(&lk);
2151 	if (inodedep_find(inodedephd, fs, inum, inodedeppp)) {
2152 		WORKITEM_FREE(inodedep, D_INODEDEP);
2153 		return (1);
2154 	}
2155 	inodedep->id_fs = fs;
2156 	inodedep->id_ino = inum;
2157 	inodedep->id_state = ALLCOMPLETE;
2158 	inodedep->id_nlinkdelta = 0;
2159 	inodedep->id_savedino1 = NULL;
2160 	inodedep->id_savedsize = -1;
2161 	inodedep->id_savedextsize = -1;
2162 	inodedep->id_savednlink = -1;
2163 	inodedep->id_bmsafemap = NULL;
2164 	inodedep->id_mkdiradd = NULL;
2165 	LIST_INIT(&inodedep->id_dirremhd);
2166 	LIST_INIT(&inodedep->id_pendinghd);
2167 	LIST_INIT(&inodedep->id_inowait);
2168 	LIST_INIT(&inodedep->id_bufwait);
2169 	TAILQ_INIT(&inodedep->id_inoreflst);
2170 	TAILQ_INIT(&inodedep->id_inoupdt);
2171 	TAILQ_INIT(&inodedep->id_newinoupdt);
2172 	TAILQ_INIT(&inodedep->id_extupdt);
2173 	TAILQ_INIT(&inodedep->id_newextupdt);
2174 	TAILQ_INIT(&inodedep->id_freeblklst);
2175 	LIST_INSERT_HEAD(inodedephd, inodedep, id_hash);
2176 	*inodedeppp = inodedep;
2177 	return (0);
2178 }
2179 
2180 /*
2181  * Structures and routines associated with newblk caching.
2182  */
2183 LIST_HEAD(newblk_hashhead, newblk) *newblk_hashtbl;
2184 u_long	newblk_hash;		/* size of hash table - 1 */
2185 #define	NEWBLK_HASH(fs, inum) \
2186 	(&newblk_hashtbl[((((register_t)(fs)) >> 13) + (inum)) & newblk_hash])
2187 
2188 static int
2189 newblk_find(newblkhd, mp, newblkno, flags, newblkpp)
2190 	struct newblk_hashhead *newblkhd;
2191 	struct mount *mp;
2192 	ufs2_daddr_t newblkno;
2193 	int flags;
2194 	struct newblk **newblkpp;
2195 {
2196 	struct newblk *newblk;
2197 
2198 	LIST_FOREACH(newblk, newblkhd, nb_hash) {
2199 		if (newblkno != newblk->nb_newblkno)
2200 			continue;
2201 		if (mp != newblk->nb_list.wk_mp)
2202 			continue;
2203 		/*
2204 		 * If we're creating a new dependency don't match those that
2205 		 * have already been converted to allocdirects.  This is for
2206 		 * a frag extend.
2207 		 */
2208 		if ((flags & DEPALLOC) && newblk->nb_list.wk_type != D_NEWBLK)
2209 			continue;
2210 		break;
2211 	}
2212 	if (newblk) {
2213 		*newblkpp = newblk;
2214 		return (1);
2215 	}
2216 	*newblkpp = NULL;
2217 	return (0);
2218 }
2219 
2220 /*
2221  * Look up a newblk. Return 1 if found, 0 if not found.
2222  * If not found, allocate if DEPALLOC flag is passed.
2223  * Found or allocated entry is returned in newblkpp.
2224  */
2225 static int
2226 newblk_lookup(mp, newblkno, flags, newblkpp)
2227 	struct mount *mp;
2228 	ufs2_daddr_t newblkno;
2229 	int flags;
2230 	struct newblk **newblkpp;
2231 {
2232 	struct newblk *newblk;
2233 	struct newblk_hashhead *newblkhd;
2234 
2235 	newblkhd = NEWBLK_HASH(VFSTOUFS(mp)->um_fs, newblkno);
2236 	if (newblk_find(newblkhd, mp, newblkno, flags, newblkpp))
2237 		return (1);
2238 	if ((flags & DEPALLOC) == 0)
2239 		return (0);
2240 	FREE_LOCK(&lk);
2241 	newblk = malloc(sizeof(union allblk), M_NEWBLK,
2242 	    M_SOFTDEP_FLAGS | M_ZERO);
2243 	workitem_alloc(&newblk->nb_list, D_NEWBLK, mp);
2244 	ACQUIRE_LOCK(&lk);
2245 	if (newblk_find(newblkhd, mp, newblkno, flags, newblkpp)) {
2246 		WORKITEM_FREE(newblk, D_NEWBLK);
2247 		return (1);
2248 	}
2249 	newblk->nb_freefrag = NULL;
2250 	LIST_INIT(&newblk->nb_indirdeps);
2251 	LIST_INIT(&newblk->nb_newdirblk);
2252 	LIST_INIT(&newblk->nb_jwork);
2253 	newblk->nb_state = ATTACHED;
2254 	newblk->nb_newblkno = newblkno;
2255 	LIST_INSERT_HEAD(newblkhd, newblk, nb_hash);
2256 	*newblkpp = newblk;
2257 	return (0);
2258 }
2259 
2260 /*
2261  * Structures and routines associated with freed indirect block caching.
2262  */
2263 struct freeworklst *indir_hashtbl;
2264 u_long	indir_hash;		/* size of hash table - 1 */
2265 #define	INDIR_HASH(mp, blkno) \
2266 	(&indir_hashtbl[((((register_t)(mp)) >> 13) + (blkno)) & indir_hash])
2267 
2268 /*
2269  * Lookup an indirect block in the indir hash table.  The freework is
2270  * removed and potentially freed.  The caller must do a blocking journal
2271  * write before writing to the blkno.
2272  */
2273 static int
2274 indirblk_lookup(mp, blkno)
2275 	struct mount *mp;
2276 	ufs2_daddr_t blkno;
2277 {
2278 	struct freework *freework;
2279 	struct freeworklst *wkhd;
2280 
2281 	wkhd = INDIR_HASH(mp, blkno);
2282 	TAILQ_FOREACH(freework, wkhd, fw_next) {
2283 		if (freework->fw_blkno != blkno)
2284 			continue;
2285 		if (freework->fw_list.wk_mp != mp)
2286 			continue;
2287 		indirblk_remove(freework);
2288 		return (1);
2289 	}
2290 	return (0);
2291 }
2292 
2293 /*
2294  * Insert an indirect block represented by freework into the indirblk
2295  * hash table so that it may prevent the block from being re-used prior
2296  * to the journal being written.
2297  */
2298 static void
2299 indirblk_insert(freework)
2300 	struct freework *freework;
2301 {
2302 	struct jblocks *jblocks;
2303 	struct jseg *jseg;
2304 
2305 	jblocks = VFSTOUFS(freework->fw_list.wk_mp)->softdep_jblocks;
2306 	jseg = TAILQ_LAST(&jblocks->jb_segs, jseglst);
2307 	if (jseg == NULL)
2308 		return;
2309 
2310 	LIST_INSERT_HEAD(&jseg->js_indirs, freework, fw_segs);
2311 	TAILQ_INSERT_HEAD(INDIR_HASH(freework->fw_list.wk_mp,
2312 	    freework->fw_blkno), freework, fw_next);
2313 	freework->fw_state &= ~DEPCOMPLETE;
2314 }
2315 
2316 static void
2317 indirblk_remove(freework)
2318 	struct freework *freework;
2319 {
2320 
2321 	LIST_REMOVE(freework, fw_segs);
2322 	TAILQ_REMOVE(INDIR_HASH(freework->fw_list.wk_mp,
2323 	    freework->fw_blkno), freework, fw_next);
2324 	freework->fw_state |= DEPCOMPLETE;
2325 	if ((freework->fw_state & ALLCOMPLETE) == ALLCOMPLETE)
2326 		WORKITEM_FREE(freework, D_FREEWORK);
2327 }
2328 
2329 /*
2330  * Executed during filesystem system initialization before
2331  * mounting any filesystems.
2332  */
2333 void
2334 softdep_initialize()
2335 {
2336 	int i;
2337 
2338 	LIST_INIT(&mkdirlisthd);
2339 	max_softdeps = desiredvnodes * 4;
2340 	pagedep_hashtbl = hashinit(desiredvnodes / 5, M_PAGEDEP, &pagedep_hash);
2341 	inodedep_hashtbl = hashinit(desiredvnodes, M_INODEDEP, &inodedep_hash);
2342 	newblk_hashtbl = hashinit(desiredvnodes / 5,  M_NEWBLK, &newblk_hash);
2343 	bmsafemap_hashtbl = hashinit(1024, M_BMSAFEMAP, &bmsafemap_hash);
2344 	i = 1 << (ffs(desiredvnodes / 10) - 1);
2345 	indir_hashtbl = malloc(i * sizeof(indir_hashtbl[0]), M_FREEWORK,
2346 	    M_WAITOK);
2347 	indir_hash = i - 1;
2348 	for (i = 0; i <= indir_hash; i++)
2349 		TAILQ_INIT(&indir_hashtbl[i]);
2350 
2351 	/* initialise bioops hack */
2352 	bioops.io_start = softdep_disk_io_initiation;
2353 	bioops.io_complete = softdep_disk_write_complete;
2354 	bioops.io_deallocate = softdep_deallocate_dependencies;
2355 	bioops.io_countdeps = softdep_count_dependencies;
2356 
2357 	/* Initialize the callout with an mtx. */
2358 	callout_init_mtx(&softdep_callout, &lk, 0);
2359 }
2360 
2361 /*
2362  * Executed after all filesystems have been unmounted during
2363  * filesystem module unload.
2364  */
2365 void
2366 softdep_uninitialize()
2367 {
2368 
2369 	callout_drain(&softdep_callout);
2370 	hashdestroy(pagedep_hashtbl, M_PAGEDEP, pagedep_hash);
2371 	hashdestroy(inodedep_hashtbl, M_INODEDEP, inodedep_hash);
2372 	hashdestroy(newblk_hashtbl, M_NEWBLK, newblk_hash);
2373 	hashdestroy(bmsafemap_hashtbl, M_BMSAFEMAP, bmsafemap_hash);
2374 	free(indir_hashtbl, M_FREEWORK);
2375 }
2376 
2377 /*
2378  * Called at mount time to notify the dependency code that a
2379  * filesystem wishes to use it.
2380  */
2381 int
2382 softdep_mount(devvp, mp, fs, cred)
2383 	struct vnode *devvp;
2384 	struct mount *mp;
2385 	struct fs *fs;
2386 	struct ucred *cred;
2387 {
2388 	struct csum_total cstotal;
2389 	struct ufsmount *ump;
2390 	struct cg *cgp;
2391 	struct buf *bp;
2392 	int error, cyl;
2393 
2394 	MNT_ILOCK(mp);
2395 	mp->mnt_flag = (mp->mnt_flag & ~MNT_ASYNC) | MNT_SOFTDEP;
2396 	if ((mp->mnt_kern_flag & MNTK_SOFTDEP) == 0) {
2397 		mp->mnt_kern_flag = (mp->mnt_kern_flag & ~MNTK_ASYNC) |
2398 			MNTK_SOFTDEP | MNTK_NOASYNC;
2399 	}
2400 	MNT_IUNLOCK(mp);
2401 	ump = VFSTOUFS(mp);
2402 	LIST_INIT(&ump->softdep_workitem_pending);
2403 	LIST_INIT(&ump->softdep_journal_pending);
2404 	TAILQ_INIT(&ump->softdep_unlinked);
2405 	LIST_INIT(&ump->softdep_dirtycg);
2406 	ump->softdep_worklist_tail = NULL;
2407 	ump->softdep_on_worklist = 0;
2408 	ump->softdep_deps = 0;
2409 	if ((fs->fs_flags & FS_SUJ) &&
2410 	    (error = journal_mount(mp, fs, cred)) != 0) {
2411 		printf("Failed to start journal: %d\n", error);
2412 		return (error);
2413 	}
2414 	/*
2415 	 * When doing soft updates, the counters in the
2416 	 * superblock may have gotten out of sync. Recomputation
2417 	 * can take a long time and can be deferred for background
2418 	 * fsck.  However, the old behavior of scanning the cylinder
2419 	 * groups and recalculating them at mount time is available
2420 	 * by setting vfs.ffs.compute_summary_at_mount to one.
2421 	 */
2422 	if (compute_summary_at_mount == 0 || fs->fs_clean != 0)
2423 		return (0);
2424 	bzero(&cstotal, sizeof cstotal);
2425 	for (cyl = 0; cyl < fs->fs_ncg; cyl++) {
2426 		if ((error = bread(devvp, fsbtodb(fs, cgtod(fs, cyl)),
2427 		    fs->fs_cgsize, cred, &bp)) != 0) {
2428 			brelse(bp);
2429 			return (error);
2430 		}
2431 		cgp = (struct cg *)bp->b_data;
2432 		cstotal.cs_nffree += cgp->cg_cs.cs_nffree;
2433 		cstotal.cs_nbfree += cgp->cg_cs.cs_nbfree;
2434 		cstotal.cs_nifree += cgp->cg_cs.cs_nifree;
2435 		cstotal.cs_ndir += cgp->cg_cs.cs_ndir;
2436 		fs->fs_cs(fs, cyl) = cgp->cg_cs;
2437 		brelse(bp);
2438 	}
2439 #ifdef DEBUG
2440 	if (bcmp(&cstotal, &fs->fs_cstotal, sizeof cstotal))
2441 		printf("%s: superblock summary recomputed\n", fs->fs_fsmnt);
2442 #endif
2443 	bcopy(&cstotal, &fs->fs_cstotal, sizeof cstotal);
2444 	return (0);
2445 }
2446 
2447 void
2448 softdep_unmount(mp)
2449 	struct mount *mp;
2450 {
2451 
2452 	MNT_ILOCK(mp);
2453 	mp->mnt_flag &= ~MNT_SOFTDEP;
2454 	if (MOUNTEDSUJ(mp) == 0) {
2455 		MNT_IUNLOCK(mp);
2456 		return;
2457 	}
2458 	mp->mnt_flag &= ~MNT_SUJ;
2459 	MNT_IUNLOCK(mp);
2460 	journal_unmount(mp);
2461 }
2462 
2463 static struct jblocks *
2464 jblocks_create(void)
2465 {
2466 	struct jblocks *jblocks;
2467 
2468 	jblocks = malloc(sizeof(*jblocks), M_JBLOCKS, M_WAITOK | M_ZERO);
2469 	TAILQ_INIT(&jblocks->jb_segs);
2470 	jblocks->jb_avail = 10;
2471 	jblocks->jb_extent = malloc(sizeof(struct jextent) * jblocks->jb_avail,
2472 	    M_JBLOCKS, M_WAITOK | M_ZERO);
2473 
2474 	return (jblocks);
2475 }
2476 
2477 static ufs2_daddr_t
2478 jblocks_alloc(jblocks, bytes, actual)
2479 	struct jblocks *jblocks;
2480 	int bytes;
2481 	int *actual;
2482 {
2483 	ufs2_daddr_t daddr;
2484 	struct jextent *jext;
2485 	int freecnt;
2486 	int blocks;
2487 
2488 	blocks = bytes / DEV_BSIZE;
2489 	jext = &jblocks->jb_extent[jblocks->jb_head];
2490 	freecnt = jext->je_blocks - jblocks->jb_off;
2491 	if (freecnt == 0) {
2492 		jblocks->jb_off = 0;
2493 		if (++jblocks->jb_head > jblocks->jb_used)
2494 			jblocks->jb_head = 0;
2495 		jext = &jblocks->jb_extent[jblocks->jb_head];
2496 		freecnt = jext->je_blocks;
2497 	}
2498 	if (freecnt > blocks)
2499 		freecnt = blocks;
2500 	*actual = freecnt * DEV_BSIZE;
2501 	daddr = jext->je_daddr + jblocks->jb_off;
2502 	jblocks->jb_off += freecnt;
2503 	jblocks->jb_free -= freecnt;
2504 
2505 	return (daddr);
2506 }
2507 
2508 static void
2509 jblocks_free(jblocks, mp, bytes)
2510 	struct jblocks *jblocks;
2511 	struct mount *mp;
2512 	int bytes;
2513 {
2514 
2515 	jblocks->jb_free += bytes / DEV_BSIZE;
2516 	if (jblocks->jb_suspended)
2517 		worklist_speedup();
2518 	wakeup(jblocks);
2519 }
2520 
2521 static void
2522 jblocks_destroy(jblocks)
2523 	struct jblocks *jblocks;
2524 {
2525 
2526 	if (jblocks->jb_extent)
2527 		free(jblocks->jb_extent, M_JBLOCKS);
2528 	free(jblocks, M_JBLOCKS);
2529 }
2530 
2531 static void
2532 jblocks_add(jblocks, daddr, blocks)
2533 	struct jblocks *jblocks;
2534 	ufs2_daddr_t daddr;
2535 	int blocks;
2536 {
2537 	struct jextent *jext;
2538 
2539 	jblocks->jb_blocks += blocks;
2540 	jblocks->jb_free += blocks;
2541 	jext = &jblocks->jb_extent[jblocks->jb_used];
2542 	/* Adding the first block. */
2543 	if (jext->je_daddr == 0) {
2544 		jext->je_daddr = daddr;
2545 		jext->je_blocks = blocks;
2546 		return;
2547 	}
2548 	/* Extending the last extent. */
2549 	if (jext->je_daddr + jext->je_blocks == daddr) {
2550 		jext->je_blocks += blocks;
2551 		return;
2552 	}
2553 	/* Adding a new extent. */
2554 	if (++jblocks->jb_used == jblocks->jb_avail) {
2555 		jblocks->jb_avail *= 2;
2556 		jext = malloc(sizeof(struct jextent) * jblocks->jb_avail,
2557 		    M_JBLOCKS, M_WAITOK | M_ZERO);
2558 		memcpy(jext, jblocks->jb_extent,
2559 		    sizeof(struct jextent) * jblocks->jb_used);
2560 		free(jblocks->jb_extent, M_JBLOCKS);
2561 		jblocks->jb_extent = jext;
2562 	}
2563 	jext = &jblocks->jb_extent[jblocks->jb_used];
2564 	jext->je_daddr = daddr;
2565 	jext->je_blocks = blocks;
2566 	return;
2567 }
2568 
2569 int
2570 softdep_journal_lookup(mp, vpp)
2571 	struct mount *mp;
2572 	struct vnode **vpp;
2573 {
2574 	struct componentname cnp;
2575 	struct vnode *dvp;
2576 	ino_t sujournal;
2577 	int error;
2578 
2579 	error = VFS_VGET(mp, ROOTINO, LK_EXCLUSIVE, &dvp);
2580 	if (error)
2581 		return (error);
2582 	bzero(&cnp, sizeof(cnp));
2583 	cnp.cn_nameiop = LOOKUP;
2584 	cnp.cn_flags = ISLASTCN;
2585 	cnp.cn_thread = curthread;
2586 	cnp.cn_cred = curthread->td_ucred;
2587 	cnp.cn_pnbuf = SUJ_FILE;
2588 	cnp.cn_nameptr = SUJ_FILE;
2589 	cnp.cn_namelen = strlen(SUJ_FILE);
2590 	error = ufs_lookup_ino(dvp, NULL, &cnp, &sujournal);
2591 	vput(dvp);
2592 	if (error != 0)
2593 		return (error);
2594 	error = VFS_VGET(mp, sujournal, LK_EXCLUSIVE, vpp);
2595 	return (error);
2596 }
2597 
2598 /*
2599  * Open and verify the journal file.
2600  */
2601 static int
2602 journal_mount(mp, fs, cred)
2603 	struct mount *mp;
2604 	struct fs *fs;
2605 	struct ucred *cred;
2606 {
2607 	struct jblocks *jblocks;
2608 	struct vnode *vp;
2609 	struct inode *ip;
2610 	ufs2_daddr_t blkno;
2611 	int bcount;
2612 	int error;
2613 	int i;
2614 
2615 	error = softdep_journal_lookup(mp, &vp);
2616 	if (error != 0) {
2617 		printf("Failed to find journal.  Use tunefs to create one\n");
2618 		return (error);
2619 	}
2620 	ip = VTOI(vp);
2621 	if (ip->i_size < SUJ_MIN) {
2622 		error = ENOSPC;
2623 		goto out;
2624 	}
2625 	bcount = lblkno(fs, ip->i_size);	/* Only use whole blocks. */
2626 	jblocks = jblocks_create();
2627 	for (i = 0; i < bcount; i++) {
2628 		error = ufs_bmaparray(vp, i, &blkno, NULL, NULL, NULL);
2629 		if (error)
2630 			break;
2631 		jblocks_add(jblocks, blkno, fsbtodb(fs, fs->fs_frag));
2632 	}
2633 	if (error) {
2634 		jblocks_destroy(jblocks);
2635 		goto out;
2636 	}
2637 	jblocks->jb_low = jblocks->jb_free / 3;	/* Reserve 33%. */
2638 	jblocks->jb_min = jblocks->jb_free / 10; /* Suspend at 10%. */
2639 	VFSTOUFS(mp)->softdep_jblocks = jblocks;
2640 out:
2641 	if (error == 0) {
2642 		MNT_ILOCK(mp);
2643 		mp->mnt_flag |= MNT_SUJ;
2644 		mp->mnt_flag &= ~MNT_SOFTDEP;
2645 		MNT_IUNLOCK(mp);
2646 		/*
2647 		 * Only validate the journal contents if the
2648 		 * filesystem is clean, otherwise we write the logs
2649 		 * but they'll never be used.  If the filesystem was
2650 		 * still dirty when we mounted it the journal is
2651 		 * invalid and a new journal can only be valid if it
2652 		 * starts from a clean mount.
2653 		 */
2654 		if (fs->fs_clean) {
2655 			DIP_SET(ip, i_modrev, fs->fs_mtime);
2656 			ip->i_flags |= IN_MODIFIED;
2657 			ffs_update(vp, 1);
2658 		}
2659 	}
2660 	vput(vp);
2661 	return (error);
2662 }
2663 
2664 static void
2665 journal_unmount(mp)
2666 	struct mount *mp;
2667 {
2668 	struct ufsmount *ump;
2669 
2670 	ump = VFSTOUFS(mp);
2671 	if (ump->softdep_jblocks)
2672 		jblocks_destroy(ump->softdep_jblocks);
2673 	ump->softdep_jblocks = NULL;
2674 }
2675 
2676 /*
2677  * Called when a journal record is ready to be written.  Space is allocated
2678  * and the journal entry is created when the journal is flushed to stable
2679  * store.
2680  */
2681 static void
2682 add_to_journal(wk)
2683 	struct worklist *wk;
2684 {
2685 	struct ufsmount *ump;
2686 
2687 	mtx_assert(&lk, MA_OWNED);
2688 	ump = VFSTOUFS(wk->wk_mp);
2689 	if (wk->wk_state & ONWORKLIST)
2690 		panic("add_to_journal: %s(0x%X) already on list",
2691 		    TYPENAME(wk->wk_type), wk->wk_state);
2692 	wk->wk_state |= ONWORKLIST | DEPCOMPLETE;
2693 	if (LIST_EMPTY(&ump->softdep_journal_pending)) {
2694 		ump->softdep_jblocks->jb_age = ticks;
2695 		LIST_INSERT_HEAD(&ump->softdep_journal_pending, wk, wk_list);
2696 	} else
2697 		LIST_INSERT_AFTER(ump->softdep_journal_tail, wk, wk_list);
2698 	ump->softdep_journal_tail = wk;
2699 	ump->softdep_on_journal += 1;
2700 }
2701 
2702 /*
2703  * Remove an arbitrary item for the journal worklist maintain the tail
2704  * pointer.  This happens when a new operation obviates the need to
2705  * journal an old operation.
2706  */
2707 static void
2708 remove_from_journal(wk)
2709 	struct worklist *wk;
2710 {
2711 	struct ufsmount *ump;
2712 
2713 	mtx_assert(&lk, MA_OWNED);
2714 	ump = VFSTOUFS(wk->wk_mp);
2715 #ifdef SUJ_DEBUG
2716 	{
2717 		struct worklist *wkn;
2718 
2719 		LIST_FOREACH(wkn, &ump->softdep_journal_pending, wk_list)
2720 			if (wkn == wk)
2721 				break;
2722 		if (wkn == NULL)
2723 			panic("remove_from_journal: %p is not in journal", wk);
2724 	}
2725 #endif
2726 	/*
2727 	 * We emulate a TAILQ to save space in most structures which do not
2728 	 * require TAILQ semantics.  Here we must update the tail position
2729 	 * when removing the tail which is not the final entry. This works
2730 	 * only if the worklist linkage are at the beginning of the structure.
2731 	 */
2732 	if (ump->softdep_journal_tail == wk)
2733 		ump->softdep_journal_tail =
2734 		    (struct worklist *)wk->wk_list.le_prev;
2735 
2736 	WORKLIST_REMOVE(wk);
2737 	ump->softdep_on_journal -= 1;
2738 }
2739 
2740 /*
2741  * Check for journal space as well as dependency limits so the prelink
2742  * code can throttle both journaled and non-journaled filesystems.
2743  * Threshold is 0 for low and 1 for min.
2744  */
2745 static int
2746 journal_space(ump, thresh)
2747 	struct ufsmount *ump;
2748 	int thresh;
2749 {
2750 	struct jblocks *jblocks;
2751 	int avail;
2752 
2753 	jblocks = ump->softdep_jblocks;
2754 	if (jblocks == NULL)
2755 		return (1);
2756 	/*
2757 	 * We use a tighter restriction here to prevent request_cleanup()
2758 	 * running in threads from running into locks we currently hold.
2759 	 */
2760 	if (dep_current[D_INODEDEP] > (max_softdeps / 10) * 9)
2761 		return (0);
2762 	if (thresh)
2763 		thresh = jblocks->jb_min;
2764 	else
2765 		thresh = jblocks->jb_low;
2766 	avail = (ump->softdep_on_journal * JREC_SIZE) / DEV_BSIZE;
2767 	avail = jblocks->jb_free - avail;
2768 
2769 	return (avail > thresh);
2770 }
2771 
2772 static void
2773 journal_suspend(ump)
2774 	struct ufsmount *ump;
2775 {
2776 	struct jblocks *jblocks;
2777 	struct mount *mp;
2778 
2779 	mp = UFSTOVFS(ump);
2780 	jblocks = ump->softdep_jblocks;
2781 	MNT_ILOCK(mp);
2782 	if ((mp->mnt_kern_flag & MNTK_SUSPEND) == 0) {
2783 		stat_journal_min++;
2784 		mp->mnt_kern_flag |= MNTK_SUSPEND;
2785 		mp->mnt_susp_owner = FIRST_THREAD_IN_PROC(softdepproc);
2786 	}
2787 	jblocks->jb_suspended = 1;
2788 	MNT_IUNLOCK(mp);
2789 }
2790 
2791 static int
2792 journal_unsuspend(struct ufsmount *ump)
2793 {
2794 	struct jblocks *jblocks;
2795 	struct mount *mp;
2796 
2797 	mp = UFSTOVFS(ump);
2798 	jblocks = ump->softdep_jblocks;
2799 
2800 	if (jblocks != NULL && jblocks->jb_suspended &&
2801 	    journal_space(ump, jblocks->jb_min)) {
2802 		jblocks->jb_suspended = 0;
2803 		FREE_LOCK(&lk);
2804 		mp->mnt_susp_owner = curthread;
2805 		vfs_write_resume(mp, 0);
2806 		ACQUIRE_LOCK(&lk);
2807 		return (1);
2808 	}
2809 	return (0);
2810 }
2811 
2812 /*
2813  * Called before any allocation function to be certain that there is
2814  * sufficient space in the journal prior to creating any new records.
2815  * Since in the case of block allocation we may have multiple locked
2816  * buffers at the time of the actual allocation we can not block
2817  * when the journal records are created.  Doing so would create a deadlock
2818  * if any of these buffers needed to be flushed to reclaim space.  Instead
2819  * we require a sufficiently large amount of available space such that
2820  * each thread in the system could have passed this allocation check and
2821  * still have sufficient free space.  With 20% of a minimum journal size
2822  * of 1MB we have 6553 records available.
2823  */
2824 int
2825 softdep_prealloc(vp, waitok)
2826 	struct vnode *vp;
2827 	int waitok;
2828 {
2829 	struct ufsmount *ump;
2830 
2831 	/*
2832 	 * Nothing to do if we are not running journaled soft updates.
2833 	 * If we currently hold the snapshot lock, we must avoid handling
2834 	 * other resources that could cause deadlock.
2835 	 */
2836 	if (DOINGSUJ(vp) == 0 || IS_SNAPSHOT(VTOI(vp)))
2837 		return (0);
2838 	ump = VFSTOUFS(vp->v_mount);
2839 	ACQUIRE_LOCK(&lk);
2840 	if (journal_space(ump, 0)) {
2841 		FREE_LOCK(&lk);
2842 		return (0);
2843 	}
2844 	stat_journal_low++;
2845 	FREE_LOCK(&lk);
2846 	if (waitok == MNT_NOWAIT)
2847 		return (ENOSPC);
2848 	/*
2849 	 * Attempt to sync this vnode once to flush any journal
2850 	 * work attached to it.
2851 	 */
2852 	if ((curthread->td_pflags & TDP_COWINPROGRESS) == 0)
2853 		ffs_syncvnode(vp, waitok, 0);
2854 	ACQUIRE_LOCK(&lk);
2855 	process_removes(vp);
2856 	process_truncates(vp);
2857 	if (journal_space(ump, 0) == 0) {
2858 		softdep_speedup();
2859 		if (journal_space(ump, 1) == 0)
2860 			journal_suspend(ump);
2861 	}
2862 	FREE_LOCK(&lk);
2863 
2864 	return (0);
2865 }
2866 
2867 /*
2868  * Before adjusting a link count on a vnode verify that we have sufficient
2869  * journal space.  If not, process operations that depend on the currently
2870  * locked pair of vnodes to try to flush space as the syncer, buf daemon,
2871  * and softdep flush threads can not acquire these locks to reclaim space.
2872  */
2873 static void
2874 softdep_prelink(dvp, vp)
2875 	struct vnode *dvp;
2876 	struct vnode *vp;
2877 {
2878 	struct ufsmount *ump;
2879 
2880 	ump = VFSTOUFS(dvp->v_mount);
2881 	mtx_assert(&lk, MA_OWNED);
2882 	/*
2883 	 * Nothing to do if we have sufficient journal space.
2884 	 * If we currently hold the snapshot lock, we must avoid
2885 	 * handling other resources that could cause deadlock.
2886 	 */
2887 	if (journal_space(ump, 0) || (vp && IS_SNAPSHOT(VTOI(vp))))
2888 		return;
2889 	stat_journal_low++;
2890 	FREE_LOCK(&lk);
2891 	if (vp)
2892 		ffs_syncvnode(vp, MNT_NOWAIT, 0);
2893 	ffs_syncvnode(dvp, MNT_WAIT, 0);
2894 	ACQUIRE_LOCK(&lk);
2895 	/* Process vp before dvp as it may create .. removes. */
2896 	if (vp) {
2897 		process_removes(vp);
2898 		process_truncates(vp);
2899 	}
2900 	process_removes(dvp);
2901 	process_truncates(dvp);
2902 	softdep_speedup();
2903 	process_worklist_item(UFSTOVFS(ump), 2, LK_NOWAIT);
2904 	if (journal_space(ump, 0) == 0) {
2905 		softdep_speedup();
2906 		if (journal_space(ump, 1) == 0)
2907 			journal_suspend(ump);
2908 	}
2909 }
2910 
2911 static void
2912 jseg_write(ump, jseg, data)
2913 	struct ufsmount *ump;
2914 	struct jseg *jseg;
2915 	uint8_t *data;
2916 {
2917 	struct jsegrec *rec;
2918 
2919 	rec = (struct jsegrec *)data;
2920 	rec->jsr_seq = jseg->js_seq;
2921 	rec->jsr_oldest = jseg->js_oldseq;
2922 	rec->jsr_cnt = jseg->js_cnt;
2923 	rec->jsr_blocks = jseg->js_size / ump->um_devvp->v_bufobj.bo_bsize;
2924 	rec->jsr_crc = 0;
2925 	rec->jsr_time = ump->um_fs->fs_mtime;
2926 }
2927 
2928 static inline void
2929 inoref_write(inoref, jseg, rec)
2930 	struct inoref *inoref;
2931 	struct jseg *jseg;
2932 	struct jrefrec *rec;
2933 {
2934 
2935 	inoref->if_jsegdep->jd_seg = jseg;
2936 	rec->jr_ino = inoref->if_ino;
2937 	rec->jr_parent = inoref->if_parent;
2938 	rec->jr_nlink = inoref->if_nlink;
2939 	rec->jr_mode = inoref->if_mode;
2940 	rec->jr_diroff = inoref->if_diroff;
2941 }
2942 
2943 static void
2944 jaddref_write(jaddref, jseg, data)
2945 	struct jaddref *jaddref;
2946 	struct jseg *jseg;
2947 	uint8_t *data;
2948 {
2949 	struct jrefrec *rec;
2950 
2951 	rec = (struct jrefrec *)data;
2952 	rec->jr_op = JOP_ADDREF;
2953 	inoref_write(&jaddref->ja_ref, jseg, rec);
2954 }
2955 
2956 static void
2957 jremref_write(jremref, jseg, data)
2958 	struct jremref *jremref;
2959 	struct jseg *jseg;
2960 	uint8_t *data;
2961 {
2962 	struct jrefrec *rec;
2963 
2964 	rec = (struct jrefrec *)data;
2965 	rec->jr_op = JOP_REMREF;
2966 	inoref_write(&jremref->jr_ref, jseg, rec);
2967 }
2968 
2969 static void
2970 jmvref_write(jmvref, jseg, data)
2971 	struct jmvref *jmvref;
2972 	struct jseg *jseg;
2973 	uint8_t *data;
2974 {
2975 	struct jmvrec *rec;
2976 
2977 	rec = (struct jmvrec *)data;
2978 	rec->jm_op = JOP_MVREF;
2979 	rec->jm_ino = jmvref->jm_ino;
2980 	rec->jm_parent = jmvref->jm_parent;
2981 	rec->jm_oldoff = jmvref->jm_oldoff;
2982 	rec->jm_newoff = jmvref->jm_newoff;
2983 }
2984 
2985 static void
2986 jnewblk_write(jnewblk, jseg, data)
2987 	struct jnewblk *jnewblk;
2988 	struct jseg *jseg;
2989 	uint8_t *data;
2990 {
2991 	struct jblkrec *rec;
2992 
2993 	jnewblk->jn_jsegdep->jd_seg = jseg;
2994 	rec = (struct jblkrec *)data;
2995 	rec->jb_op = JOP_NEWBLK;
2996 	rec->jb_ino = jnewblk->jn_ino;
2997 	rec->jb_blkno = jnewblk->jn_blkno;
2998 	rec->jb_lbn = jnewblk->jn_lbn;
2999 	rec->jb_frags = jnewblk->jn_frags;
3000 	rec->jb_oldfrags = jnewblk->jn_oldfrags;
3001 }
3002 
3003 static void
3004 jfreeblk_write(jfreeblk, jseg, data)
3005 	struct jfreeblk *jfreeblk;
3006 	struct jseg *jseg;
3007 	uint8_t *data;
3008 {
3009 	struct jblkrec *rec;
3010 
3011 	jfreeblk->jf_dep.jb_jsegdep->jd_seg = jseg;
3012 	rec = (struct jblkrec *)data;
3013 	rec->jb_op = JOP_FREEBLK;
3014 	rec->jb_ino = jfreeblk->jf_ino;
3015 	rec->jb_blkno = jfreeblk->jf_blkno;
3016 	rec->jb_lbn = jfreeblk->jf_lbn;
3017 	rec->jb_frags = jfreeblk->jf_frags;
3018 	rec->jb_oldfrags = 0;
3019 }
3020 
3021 static void
3022 jfreefrag_write(jfreefrag, jseg, data)
3023 	struct jfreefrag *jfreefrag;
3024 	struct jseg *jseg;
3025 	uint8_t *data;
3026 {
3027 	struct jblkrec *rec;
3028 
3029 	jfreefrag->fr_jsegdep->jd_seg = jseg;
3030 	rec = (struct jblkrec *)data;
3031 	rec->jb_op = JOP_FREEBLK;
3032 	rec->jb_ino = jfreefrag->fr_ino;
3033 	rec->jb_blkno = jfreefrag->fr_blkno;
3034 	rec->jb_lbn = jfreefrag->fr_lbn;
3035 	rec->jb_frags = jfreefrag->fr_frags;
3036 	rec->jb_oldfrags = 0;
3037 }
3038 
3039 static void
3040 jtrunc_write(jtrunc, jseg, data)
3041 	struct jtrunc *jtrunc;
3042 	struct jseg *jseg;
3043 	uint8_t *data;
3044 {
3045 	struct jtrncrec *rec;
3046 
3047 	jtrunc->jt_dep.jb_jsegdep->jd_seg = jseg;
3048 	rec = (struct jtrncrec *)data;
3049 	rec->jt_op = JOP_TRUNC;
3050 	rec->jt_ino = jtrunc->jt_ino;
3051 	rec->jt_size = jtrunc->jt_size;
3052 	rec->jt_extsize = jtrunc->jt_extsize;
3053 }
3054 
3055 static void
3056 jfsync_write(jfsync, jseg, data)
3057 	struct jfsync *jfsync;
3058 	struct jseg *jseg;
3059 	uint8_t *data;
3060 {
3061 	struct jtrncrec *rec;
3062 
3063 	rec = (struct jtrncrec *)data;
3064 	rec->jt_op = JOP_SYNC;
3065 	rec->jt_ino = jfsync->jfs_ino;
3066 	rec->jt_size = jfsync->jfs_size;
3067 	rec->jt_extsize = jfsync->jfs_extsize;
3068 }
3069 
3070 static void
3071 softdep_flushjournal(mp)
3072 	struct mount *mp;
3073 {
3074 	struct jblocks *jblocks;
3075 	struct ufsmount *ump;
3076 
3077 	if (MOUNTEDSUJ(mp) == 0)
3078 		return;
3079 	ump = VFSTOUFS(mp);
3080 	jblocks = ump->softdep_jblocks;
3081 	ACQUIRE_LOCK(&lk);
3082 	while (ump->softdep_on_journal) {
3083 		jblocks->jb_needseg = 1;
3084 		softdep_process_journal(mp, NULL, MNT_WAIT);
3085 	}
3086 	FREE_LOCK(&lk);
3087 }
3088 
3089 static void softdep_synchronize_completed(struct bio *);
3090 static void softdep_synchronize(struct bio *, struct ufsmount *, void *);
3091 
3092 static void
3093 softdep_synchronize_completed(bp)
3094         struct bio *bp;
3095 {
3096 	struct jseg *oldest;
3097 	struct jseg *jseg;
3098 
3099 	/*
3100 	 * caller1 marks the last segment written before we issued the
3101 	 * synchronize cache.
3102 	 */
3103 	jseg = bp->bio_caller1;
3104 	oldest = NULL;
3105 	ACQUIRE_LOCK(&lk);
3106 	/*
3107 	 * Mark all the journal entries waiting on the synchronize cache
3108 	 * as completed so they may continue on.
3109 	 */
3110 	while (jseg != NULL && (jseg->js_state & COMPLETE) == 0) {
3111 		jseg->js_state |= COMPLETE;
3112 		oldest = jseg;
3113 		jseg = TAILQ_PREV(jseg, jseglst, js_next);
3114 	}
3115 	/*
3116 	 * Restart deferred journal entry processing from the oldest
3117 	 * completed jseg.
3118 	 */
3119 	if (oldest)
3120 		complete_jsegs(oldest);
3121 
3122 	FREE_LOCK(&lk);
3123 	g_destroy_bio(bp);
3124 }
3125 
3126 /*
3127  * Send BIO_FLUSH/SYNCHRONIZE CACHE to the device to enforce write ordering
3128  * barriers.  The journal must be written prior to any blocks that depend
3129  * on it and the journal can not be released until the blocks have be
3130  * written.  This code handles both barriers simultaneously.
3131  */
3132 static void
3133 softdep_synchronize(bp, ump, caller1)
3134 	struct bio *bp;
3135 	struct ufsmount *ump;
3136 	void *caller1;
3137 {
3138 
3139 	bp->bio_cmd = BIO_FLUSH;
3140 	bp->bio_flags |= BIO_ORDERED;
3141 	bp->bio_data = NULL;
3142 	bp->bio_offset = ump->um_cp->provider->mediasize;
3143 	bp->bio_length = 0;
3144 	bp->bio_done = softdep_synchronize_completed;
3145 	bp->bio_caller1 = caller1;
3146 	g_io_request(bp,
3147 	    (struct g_consumer *)ump->um_devvp->v_bufobj.bo_private);
3148 }
3149 
3150 /*
3151  * Flush some journal records to disk.
3152  */
3153 static void
3154 softdep_process_journal(mp, needwk, flags)
3155 	struct mount *mp;
3156 	struct worklist *needwk;
3157 	int flags;
3158 {
3159 	struct jblocks *jblocks;
3160 	struct ufsmount *ump;
3161 	struct worklist *wk;
3162 	struct jseg *jseg;
3163 	struct buf *bp;
3164 	struct bio *bio;
3165 	uint8_t *data;
3166 	struct fs *fs;
3167 	int shouldflush;
3168 	int segwritten;
3169 	int jrecmin;	/* Minimum records per block. */
3170 	int jrecmax;	/* Maximum records per block. */
3171 	int size;
3172 	int cnt;
3173 	int off;
3174 	int devbsize;
3175 
3176 	if (MOUNTEDSUJ(mp) == 0)
3177 		return;
3178 	shouldflush = softdep_flushcache;
3179 	bio = NULL;
3180 	jseg = NULL;
3181 	ump = VFSTOUFS(mp);
3182 	fs = ump->um_fs;
3183 	jblocks = ump->softdep_jblocks;
3184 	devbsize = ump->um_devvp->v_bufobj.bo_bsize;
3185 	/*
3186 	 * We write anywhere between a disk block and fs block.  The upper
3187 	 * bound is picked to prevent buffer cache fragmentation and limit
3188 	 * processing time per I/O.
3189 	 */
3190 	jrecmin = (devbsize / JREC_SIZE) - 1; /* -1 for seg header */
3191 	jrecmax = (fs->fs_bsize / devbsize) * jrecmin;
3192 	segwritten = 0;
3193 	for (;;) {
3194 		cnt = ump->softdep_on_journal;
3195 		/*
3196 		 * Criteria for writing a segment:
3197 		 * 1) We have a full block.
3198 		 * 2) We're called from jwait() and haven't found the
3199 		 *    journal item yet.
3200 		 * 3) Always write if needseg is set.
3201 		 * 4) If we are called from process_worklist and have
3202 		 *    not yet written anything we write a partial block
3203 		 *    to enforce a 1 second maximum latency on journal
3204 		 *    entries.
3205 		 */
3206 		if (cnt < (jrecmax - 1) && needwk == NULL &&
3207 		    jblocks->jb_needseg == 0 && (segwritten || cnt == 0))
3208 			break;
3209 		cnt++;
3210 		/*
3211 		 * Verify some free journal space.  softdep_prealloc() should
3212 	 	 * guarantee that we don't run out so this is indicative of
3213 		 * a problem with the flow control.  Try to recover
3214 		 * gracefully in any event.
3215 		 */
3216 		while (jblocks->jb_free == 0) {
3217 			if (flags != MNT_WAIT)
3218 				break;
3219 			printf("softdep: Out of journal space!\n");
3220 			softdep_speedup();
3221 			msleep(jblocks, &lk, PRIBIO, "jblocks", hz);
3222 		}
3223 		FREE_LOCK(&lk);
3224 		jseg = malloc(sizeof(*jseg), M_JSEG, M_SOFTDEP_FLAGS);
3225 		workitem_alloc(&jseg->js_list, D_JSEG, mp);
3226 		LIST_INIT(&jseg->js_entries);
3227 		LIST_INIT(&jseg->js_indirs);
3228 		jseg->js_state = ATTACHED;
3229 		if (shouldflush == 0)
3230 			jseg->js_state |= COMPLETE;
3231 		else if (bio == NULL)
3232 			bio = g_alloc_bio();
3233 		jseg->js_jblocks = jblocks;
3234 		bp = geteblk(fs->fs_bsize, 0);
3235 		ACQUIRE_LOCK(&lk);
3236 		/*
3237 		 * If there was a race while we were allocating the block
3238 		 * and jseg the entry we care about was likely written.
3239 		 * We bail out in both the WAIT and NOWAIT case and assume
3240 		 * the caller will loop if the entry it cares about is
3241 		 * not written.
3242 		 */
3243 		cnt = ump->softdep_on_journal;
3244 		if (cnt + jblocks->jb_needseg == 0 || jblocks->jb_free == 0) {
3245 			bp->b_flags |= B_INVAL | B_NOCACHE;
3246 			WORKITEM_FREE(jseg, D_JSEG);
3247 			FREE_LOCK(&lk);
3248 			brelse(bp);
3249 			ACQUIRE_LOCK(&lk);
3250 			break;
3251 		}
3252 		/*
3253 		 * Calculate the disk block size required for the available
3254 		 * records rounded to the min size.
3255 		 */
3256 		if (cnt == 0)
3257 			size = devbsize;
3258 		else if (cnt < jrecmax)
3259 			size = howmany(cnt, jrecmin) * devbsize;
3260 		else
3261 			size = fs->fs_bsize;
3262 		/*
3263 		 * Allocate a disk block for this journal data and account
3264 		 * for truncation of the requested size if enough contiguous
3265 		 * space was not available.
3266 		 */
3267 		bp->b_blkno = jblocks_alloc(jblocks, size, &size);
3268 		bp->b_lblkno = bp->b_blkno;
3269 		bp->b_offset = bp->b_blkno * DEV_BSIZE;
3270 		bp->b_bcount = size;
3271 		bp->b_bufobj = &ump->um_devvp->v_bufobj;
3272 		bp->b_flags &= ~B_INVAL;
3273 		bp->b_flags |= B_VALIDSUSPWRT | B_NOCOPY;
3274 		/*
3275 		 * Initialize our jseg with cnt records.  Assign the next
3276 		 * sequence number to it and link it in-order.
3277 		 */
3278 		cnt = MIN(cnt, (size / devbsize) * jrecmin);
3279 		jseg->js_buf = bp;
3280 		jseg->js_cnt = cnt;
3281 		jseg->js_refs = cnt + 1;	/* Self ref. */
3282 		jseg->js_size = size;
3283 		jseg->js_seq = jblocks->jb_nextseq++;
3284 		if (jblocks->jb_oldestseg == NULL)
3285 			jblocks->jb_oldestseg = jseg;
3286 		jseg->js_oldseq = jblocks->jb_oldestseg->js_seq;
3287 		TAILQ_INSERT_TAIL(&jblocks->jb_segs, jseg, js_next);
3288 		if (jblocks->jb_writeseg == NULL)
3289 			jblocks->jb_writeseg = jseg;
3290 		/*
3291 		 * Start filling in records from the pending list.
3292 		 */
3293 		data = bp->b_data;
3294 		off = 0;
3295 		while ((wk = LIST_FIRST(&ump->softdep_journal_pending))
3296 		    != NULL) {
3297 			if (cnt == 0)
3298 				break;
3299 			/* Place a segment header on every device block. */
3300 			if ((off % devbsize) == 0) {
3301 				jseg_write(ump, jseg, data);
3302 				off += JREC_SIZE;
3303 				data = bp->b_data + off;
3304 			}
3305 			if (wk == needwk)
3306 				needwk = NULL;
3307 			remove_from_journal(wk);
3308 			wk->wk_state |= INPROGRESS;
3309 			WORKLIST_INSERT(&jseg->js_entries, wk);
3310 			switch (wk->wk_type) {
3311 			case D_JADDREF:
3312 				jaddref_write(WK_JADDREF(wk), jseg, data);
3313 				break;
3314 			case D_JREMREF:
3315 				jremref_write(WK_JREMREF(wk), jseg, data);
3316 				break;
3317 			case D_JMVREF:
3318 				jmvref_write(WK_JMVREF(wk), jseg, data);
3319 				break;
3320 			case D_JNEWBLK:
3321 				jnewblk_write(WK_JNEWBLK(wk), jseg, data);
3322 				break;
3323 			case D_JFREEBLK:
3324 				jfreeblk_write(WK_JFREEBLK(wk), jseg, data);
3325 				break;
3326 			case D_JFREEFRAG:
3327 				jfreefrag_write(WK_JFREEFRAG(wk), jseg, data);
3328 				break;
3329 			case D_JTRUNC:
3330 				jtrunc_write(WK_JTRUNC(wk), jseg, data);
3331 				break;
3332 			case D_JFSYNC:
3333 				jfsync_write(WK_JFSYNC(wk), jseg, data);
3334 				break;
3335 			default:
3336 				panic("process_journal: Unknown type %s",
3337 				    TYPENAME(wk->wk_type));
3338 				/* NOTREACHED */
3339 			}
3340 			off += JREC_SIZE;
3341 			data = bp->b_data + off;
3342 			cnt--;
3343 		}
3344 		/*
3345 		 * Write this one buffer and continue.
3346 		 */
3347 		segwritten = 1;
3348 		jblocks->jb_needseg = 0;
3349 		WORKLIST_INSERT(&bp->b_dep, &jseg->js_list);
3350 		FREE_LOCK(&lk);
3351 		BO_LOCK(bp->b_bufobj);
3352 		bgetvp(ump->um_devvp, bp);
3353 		BO_UNLOCK(bp->b_bufobj);
3354 		/*
3355 		 * We only do the blocking wait once we find the journal
3356 		 * entry we're looking for.
3357 		 */
3358 		if (needwk == NULL && flags == MNT_WAIT)
3359 			bwrite(bp);
3360 		else
3361 			bawrite(bp);
3362 		ACQUIRE_LOCK(&lk);
3363 	}
3364 	/*
3365 	 * If we wrote a segment issue a synchronize cache so the journal
3366 	 * is reflected on disk before the data is written.  Since reclaiming
3367 	 * journal space also requires writing a journal record this
3368 	 * process also enforces a barrier before reclamation.
3369 	 */
3370 	if (segwritten && shouldflush) {
3371 		softdep_synchronize(bio, ump,
3372 		    TAILQ_LAST(&jblocks->jb_segs, jseglst));
3373 	} else if (bio)
3374 		g_destroy_bio(bio);
3375 	/*
3376 	 * If we've suspended the filesystem because we ran out of journal
3377 	 * space either try to sync it here to make some progress or
3378 	 * unsuspend it if we already have.
3379 	 */
3380 	if (flags == 0 && jblocks->jb_suspended) {
3381 		if (journal_unsuspend(ump))
3382 			return;
3383 		FREE_LOCK(&lk);
3384 		VFS_SYNC(mp, MNT_NOWAIT);
3385 		ffs_sbupdate(ump, MNT_WAIT, 0);
3386 		ACQUIRE_LOCK(&lk);
3387 	}
3388 }
3389 
3390 /*
3391  * Complete a jseg, allowing all dependencies awaiting journal writes
3392  * to proceed.  Each journal dependency also attaches a jsegdep to dependent
3393  * structures so that the journal segment can be freed to reclaim space.
3394  */
3395 static void
3396 complete_jseg(jseg)
3397 	struct jseg *jseg;
3398 {
3399 	struct worklist *wk;
3400 	struct jmvref *jmvref;
3401 	int waiting;
3402 #ifdef INVARIANTS
3403 	int i = 0;
3404 #endif
3405 
3406 	while ((wk = LIST_FIRST(&jseg->js_entries)) != NULL) {
3407 		WORKLIST_REMOVE(wk);
3408 		waiting = wk->wk_state & IOWAITING;
3409 		wk->wk_state &= ~(INPROGRESS | IOWAITING);
3410 		wk->wk_state |= COMPLETE;
3411 		KASSERT(i++ < jseg->js_cnt,
3412 		    ("handle_written_jseg: overflow %d >= %d",
3413 		    i - 1, jseg->js_cnt));
3414 		switch (wk->wk_type) {
3415 		case D_JADDREF:
3416 			handle_written_jaddref(WK_JADDREF(wk));
3417 			break;
3418 		case D_JREMREF:
3419 			handle_written_jremref(WK_JREMREF(wk));
3420 			break;
3421 		case D_JMVREF:
3422 			rele_jseg(jseg);	/* No jsegdep. */
3423 			jmvref = WK_JMVREF(wk);
3424 			LIST_REMOVE(jmvref, jm_deps);
3425 			if ((jmvref->jm_pagedep->pd_state & ONWORKLIST) == 0)
3426 				free_pagedep(jmvref->jm_pagedep);
3427 			WORKITEM_FREE(jmvref, D_JMVREF);
3428 			break;
3429 		case D_JNEWBLK:
3430 			handle_written_jnewblk(WK_JNEWBLK(wk));
3431 			break;
3432 		case D_JFREEBLK:
3433 			handle_written_jblkdep(&WK_JFREEBLK(wk)->jf_dep);
3434 			break;
3435 		case D_JTRUNC:
3436 			handle_written_jblkdep(&WK_JTRUNC(wk)->jt_dep);
3437 			break;
3438 		case D_JFSYNC:
3439 			rele_jseg(jseg);	/* No jsegdep. */
3440 			WORKITEM_FREE(wk, D_JFSYNC);
3441 			break;
3442 		case D_JFREEFRAG:
3443 			handle_written_jfreefrag(WK_JFREEFRAG(wk));
3444 			break;
3445 		default:
3446 			panic("handle_written_jseg: Unknown type %s",
3447 			    TYPENAME(wk->wk_type));
3448 			/* NOTREACHED */
3449 		}
3450 		if (waiting)
3451 			wakeup(wk);
3452 	}
3453 	/* Release the self reference so the structure may be freed. */
3454 	rele_jseg(jseg);
3455 }
3456 
3457 /*
3458  * Determine which jsegs are ready for completion processing.  Waits for
3459  * synchronize cache to complete as well as forcing in-order completion
3460  * of journal entries.
3461  */
3462 static void
3463 complete_jsegs(jseg)
3464 	struct jseg *jseg;
3465 {
3466 	struct jblocks *jblocks;
3467 	struct jseg *jsegn;
3468 
3469 	jblocks = jseg->js_jblocks;
3470 	/*
3471 	 * Don't allow out of order completions.  If this isn't the first
3472 	 * block wait for it to write before we're done.
3473 	 */
3474 	if (jseg != jblocks->jb_writeseg)
3475 		return;
3476 	/* Iterate through available jsegs processing their entries. */
3477 	while (jseg && (jseg->js_state & ALLCOMPLETE) == ALLCOMPLETE) {
3478 		jblocks->jb_oldestwrseq = jseg->js_oldseq;
3479 		jsegn = TAILQ_NEXT(jseg, js_next);
3480 		complete_jseg(jseg);
3481 		jseg = jsegn;
3482 	}
3483 	jblocks->jb_writeseg = jseg;
3484 	/*
3485 	 * Attempt to free jsegs now that oldestwrseq may have advanced.
3486 	 */
3487 	free_jsegs(jblocks);
3488 }
3489 
3490 /*
3491  * Mark a jseg as DEPCOMPLETE and throw away the buffer.  Attempt to handle
3492  * the final completions.
3493  */
3494 static void
3495 handle_written_jseg(jseg, bp)
3496 	struct jseg *jseg;
3497 	struct buf *bp;
3498 {
3499 
3500 	if (jseg->js_refs == 0)
3501 		panic("handle_written_jseg: No self-reference on %p", jseg);
3502 	jseg->js_state |= DEPCOMPLETE;
3503 	/*
3504 	 * We'll never need this buffer again, set flags so it will be
3505 	 * discarded.
3506 	 */
3507 	bp->b_flags |= B_INVAL | B_NOCACHE;
3508 	complete_jsegs(jseg);
3509 }
3510 
3511 static inline struct jsegdep *
3512 inoref_jseg(inoref)
3513 	struct inoref *inoref;
3514 {
3515 	struct jsegdep *jsegdep;
3516 
3517 	jsegdep = inoref->if_jsegdep;
3518 	inoref->if_jsegdep = NULL;
3519 
3520 	return (jsegdep);
3521 }
3522 
3523 /*
3524  * Called once a jremref has made it to stable store.  The jremref is marked
3525  * complete and we attempt to free it.  Any pagedeps writes sleeping waiting
3526  * for the jremref to complete will be awoken by free_jremref.
3527  */
3528 static void
3529 handle_written_jremref(jremref)
3530 	struct jremref *jremref;
3531 {
3532 	struct inodedep *inodedep;
3533 	struct jsegdep *jsegdep;
3534 	struct dirrem *dirrem;
3535 
3536 	/* Grab the jsegdep. */
3537 	jsegdep = inoref_jseg(&jremref->jr_ref);
3538 	/*
3539 	 * Remove us from the inoref list.
3540 	 */
3541 	if (inodedep_lookup(jremref->jr_list.wk_mp, jremref->jr_ref.if_ino,
3542 	    0, &inodedep) == 0)
3543 		panic("handle_written_jremref: Lost inodedep");
3544 	TAILQ_REMOVE(&inodedep->id_inoreflst, &jremref->jr_ref, if_deps);
3545 	/*
3546 	 * Complete the dirrem.
3547 	 */
3548 	dirrem = jremref->jr_dirrem;
3549 	jremref->jr_dirrem = NULL;
3550 	LIST_REMOVE(jremref, jr_deps);
3551 	jsegdep->jd_state |= jremref->jr_state & MKDIR_PARENT;
3552 	jwork_insert(&dirrem->dm_jwork, jsegdep);
3553 	if (LIST_EMPTY(&dirrem->dm_jremrefhd) &&
3554 	    (dirrem->dm_state & COMPLETE) != 0)
3555 		add_to_worklist(&dirrem->dm_list, 0);
3556 	free_jremref(jremref);
3557 }
3558 
3559 /*
3560  * Called once a jaddref has made it to stable store.  The dependency is
3561  * marked complete and any dependent structures are added to the inode
3562  * bufwait list to be completed as soon as it is written.  If a bitmap write
3563  * depends on this entry we move the inode into the inodedephd of the
3564  * bmsafemap dependency and attempt to remove the jaddref from the bmsafemap.
3565  */
3566 static void
3567 handle_written_jaddref(jaddref)
3568 	struct jaddref *jaddref;
3569 {
3570 	struct jsegdep *jsegdep;
3571 	struct inodedep *inodedep;
3572 	struct diradd *diradd;
3573 	struct mkdir *mkdir;
3574 
3575 	/* Grab the jsegdep. */
3576 	jsegdep = inoref_jseg(&jaddref->ja_ref);
3577 	mkdir = NULL;
3578 	diradd = NULL;
3579 	if (inodedep_lookup(jaddref->ja_list.wk_mp, jaddref->ja_ino,
3580 	    0, &inodedep) == 0)
3581 		panic("handle_written_jaddref: Lost inodedep.");
3582 	if (jaddref->ja_diradd == NULL)
3583 		panic("handle_written_jaddref: No dependency");
3584 	if (jaddref->ja_diradd->da_list.wk_type == D_DIRADD) {
3585 		diradd = jaddref->ja_diradd;
3586 		WORKLIST_INSERT(&inodedep->id_bufwait, &diradd->da_list);
3587 	} else if (jaddref->ja_state & MKDIR_PARENT) {
3588 		mkdir = jaddref->ja_mkdir;
3589 		WORKLIST_INSERT(&inodedep->id_bufwait, &mkdir->md_list);
3590 	} else if (jaddref->ja_state & MKDIR_BODY)
3591 		mkdir = jaddref->ja_mkdir;
3592 	else
3593 		panic("handle_written_jaddref: Unknown dependency %p",
3594 		    jaddref->ja_diradd);
3595 	jaddref->ja_diradd = NULL;	/* also clears ja_mkdir */
3596 	/*
3597 	 * Remove us from the inode list.
3598 	 */
3599 	TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref, if_deps);
3600 	/*
3601 	 * The mkdir may be waiting on the jaddref to clear before freeing.
3602 	 */
3603 	if (mkdir) {
3604 		KASSERT(mkdir->md_list.wk_type == D_MKDIR,
3605 		    ("handle_written_jaddref: Incorrect type for mkdir %s",
3606 		    TYPENAME(mkdir->md_list.wk_type)));
3607 		mkdir->md_jaddref = NULL;
3608 		diradd = mkdir->md_diradd;
3609 		mkdir->md_state |= DEPCOMPLETE;
3610 		complete_mkdir(mkdir);
3611 	}
3612 	jwork_insert(&diradd->da_jwork, jsegdep);
3613 	if (jaddref->ja_state & NEWBLOCK) {
3614 		inodedep->id_state |= ONDEPLIST;
3615 		LIST_INSERT_HEAD(&inodedep->id_bmsafemap->sm_inodedephd,
3616 		    inodedep, id_deps);
3617 	}
3618 	free_jaddref(jaddref);
3619 }
3620 
3621 /*
3622  * Called once a jnewblk journal is written.  The allocdirect or allocindir
3623  * is placed in the bmsafemap to await notification of a written bitmap.  If
3624  * the operation was canceled we add the segdep to the appropriate
3625  * dependency to free the journal space once the canceling operation
3626  * completes.
3627  */
3628 static void
3629 handle_written_jnewblk(jnewblk)
3630 	struct jnewblk *jnewblk;
3631 {
3632 	struct bmsafemap *bmsafemap;
3633 	struct freefrag *freefrag;
3634 	struct freework *freework;
3635 	struct jsegdep *jsegdep;
3636 	struct newblk *newblk;
3637 
3638 	/* Grab the jsegdep. */
3639 	jsegdep = jnewblk->jn_jsegdep;
3640 	jnewblk->jn_jsegdep = NULL;
3641 	if (jnewblk->jn_dep == NULL)
3642 		panic("handle_written_jnewblk: No dependency for the segdep.");
3643 	switch (jnewblk->jn_dep->wk_type) {
3644 	case D_NEWBLK:
3645 	case D_ALLOCDIRECT:
3646 	case D_ALLOCINDIR:
3647 		/*
3648 		 * Add the written block to the bmsafemap so it can
3649 		 * be notified when the bitmap is on disk.
3650 		 */
3651 		newblk = WK_NEWBLK(jnewblk->jn_dep);
3652 		newblk->nb_jnewblk = NULL;
3653 		if ((newblk->nb_state & GOINGAWAY) == 0) {
3654 			bmsafemap = newblk->nb_bmsafemap;
3655 			newblk->nb_state |= ONDEPLIST;
3656 			LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk,
3657 			    nb_deps);
3658 		}
3659 		jwork_insert(&newblk->nb_jwork, jsegdep);
3660 		break;
3661 	case D_FREEFRAG:
3662 		/*
3663 		 * A newblock being removed by a freefrag when replaced by
3664 		 * frag extension.
3665 		 */
3666 		freefrag = WK_FREEFRAG(jnewblk->jn_dep);
3667 		freefrag->ff_jdep = NULL;
3668 		jwork_insert(&freefrag->ff_jwork, jsegdep);
3669 		break;
3670 	case D_FREEWORK:
3671 		/*
3672 		 * A direct block was removed by truncate.
3673 		 */
3674 		freework = WK_FREEWORK(jnewblk->jn_dep);
3675 		freework->fw_jnewblk = NULL;
3676 		jwork_insert(&freework->fw_freeblks->fb_jwork, jsegdep);
3677 		break;
3678 	default:
3679 		panic("handle_written_jnewblk: Unknown type %d.",
3680 		    jnewblk->jn_dep->wk_type);
3681 	}
3682 	jnewblk->jn_dep = NULL;
3683 	free_jnewblk(jnewblk);
3684 }
3685 
3686 /*
3687  * Cancel a jfreefrag that won't be needed, probably due to colliding with
3688  * an in-flight allocation that has not yet been committed.  Divorce us
3689  * from the freefrag and mark it DEPCOMPLETE so that it may be added
3690  * to the worklist.
3691  */
3692 static void
3693 cancel_jfreefrag(jfreefrag)
3694 	struct jfreefrag *jfreefrag;
3695 {
3696 	struct freefrag *freefrag;
3697 
3698 	if (jfreefrag->fr_jsegdep) {
3699 		free_jsegdep(jfreefrag->fr_jsegdep);
3700 		jfreefrag->fr_jsegdep = NULL;
3701 	}
3702 	freefrag = jfreefrag->fr_freefrag;
3703 	jfreefrag->fr_freefrag = NULL;
3704 	free_jfreefrag(jfreefrag);
3705 	freefrag->ff_state |= DEPCOMPLETE;
3706 	CTR1(KTR_SUJ, "cancel_jfreefrag: blkno %jd", freefrag->ff_blkno);
3707 }
3708 
3709 /*
3710  * Free a jfreefrag when the parent freefrag is rendered obsolete.
3711  */
3712 static void
3713 free_jfreefrag(jfreefrag)
3714 	struct jfreefrag *jfreefrag;
3715 {
3716 
3717 	if (jfreefrag->fr_state & INPROGRESS)
3718 		WORKLIST_REMOVE(&jfreefrag->fr_list);
3719 	else if (jfreefrag->fr_state & ONWORKLIST)
3720 		remove_from_journal(&jfreefrag->fr_list);
3721 	if (jfreefrag->fr_freefrag != NULL)
3722 		panic("free_jfreefrag:  Still attached to a freefrag.");
3723 	WORKITEM_FREE(jfreefrag, D_JFREEFRAG);
3724 }
3725 
3726 /*
3727  * Called when the journal write for a jfreefrag completes.  The parent
3728  * freefrag is added to the worklist if this completes its dependencies.
3729  */
3730 static void
3731 handle_written_jfreefrag(jfreefrag)
3732 	struct jfreefrag *jfreefrag;
3733 {
3734 	struct jsegdep *jsegdep;
3735 	struct freefrag *freefrag;
3736 
3737 	/* Grab the jsegdep. */
3738 	jsegdep = jfreefrag->fr_jsegdep;
3739 	jfreefrag->fr_jsegdep = NULL;
3740 	freefrag = jfreefrag->fr_freefrag;
3741 	if (freefrag == NULL)
3742 		panic("handle_written_jfreefrag: No freefrag.");
3743 	freefrag->ff_state |= DEPCOMPLETE;
3744 	freefrag->ff_jdep = NULL;
3745 	jwork_insert(&freefrag->ff_jwork, jsegdep);
3746 	if ((freefrag->ff_state & ALLCOMPLETE) == ALLCOMPLETE)
3747 		add_to_worklist(&freefrag->ff_list, 0);
3748 	jfreefrag->fr_freefrag = NULL;
3749 	free_jfreefrag(jfreefrag);
3750 }
3751 
3752 /*
3753  * Called when the journal write for a jfreeblk completes.  The jfreeblk
3754  * is removed from the freeblks list of pending journal writes and the
3755  * jsegdep is moved to the freeblks jwork to be completed when all blocks
3756  * have been reclaimed.
3757  */
3758 static void
3759 handle_written_jblkdep(jblkdep)
3760 	struct jblkdep *jblkdep;
3761 {
3762 	struct freeblks *freeblks;
3763 	struct jsegdep *jsegdep;
3764 
3765 	/* Grab the jsegdep. */
3766 	jsegdep = jblkdep->jb_jsegdep;
3767 	jblkdep->jb_jsegdep = NULL;
3768 	freeblks = jblkdep->jb_freeblks;
3769 	LIST_REMOVE(jblkdep, jb_deps);
3770 	jwork_insert(&freeblks->fb_jwork, jsegdep);
3771 	/*
3772 	 * If the freeblks is all journaled, we can add it to the worklist.
3773 	 */
3774 	if (LIST_EMPTY(&freeblks->fb_jblkdephd) &&
3775 	    (freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE)
3776 		add_to_worklist(&freeblks->fb_list, WK_NODELAY);
3777 
3778 	free_jblkdep(jblkdep);
3779 }
3780 
3781 static struct jsegdep *
3782 newjsegdep(struct worklist *wk)
3783 {
3784 	struct jsegdep *jsegdep;
3785 
3786 	jsegdep = malloc(sizeof(*jsegdep), M_JSEGDEP, M_SOFTDEP_FLAGS);
3787 	workitem_alloc(&jsegdep->jd_list, D_JSEGDEP, wk->wk_mp);
3788 	jsegdep->jd_seg = NULL;
3789 
3790 	return (jsegdep);
3791 }
3792 
3793 static struct jmvref *
3794 newjmvref(dp, ino, oldoff, newoff)
3795 	struct inode *dp;
3796 	ino_t ino;
3797 	off_t oldoff;
3798 	off_t newoff;
3799 {
3800 	struct jmvref *jmvref;
3801 
3802 	jmvref = malloc(sizeof(*jmvref), M_JMVREF, M_SOFTDEP_FLAGS);
3803 	workitem_alloc(&jmvref->jm_list, D_JMVREF, UFSTOVFS(dp->i_ump));
3804 	jmvref->jm_list.wk_state = ATTACHED | DEPCOMPLETE;
3805 	jmvref->jm_parent = dp->i_number;
3806 	jmvref->jm_ino = ino;
3807 	jmvref->jm_oldoff = oldoff;
3808 	jmvref->jm_newoff = newoff;
3809 
3810 	return (jmvref);
3811 }
3812 
3813 /*
3814  * Allocate a new jremref that tracks the removal of ip from dp with the
3815  * directory entry offset of diroff.  Mark the entry as ATTACHED and
3816  * DEPCOMPLETE as we have all the information required for the journal write
3817  * and the directory has already been removed from the buffer.  The caller
3818  * is responsible for linking the jremref into the pagedep and adding it
3819  * to the journal to write.  The MKDIR_PARENT flag is set if we're doing
3820  * a DOTDOT addition so handle_workitem_remove() can properly assign
3821  * the jsegdep when we're done.
3822  */
3823 static struct jremref *
3824 newjremref(struct dirrem *dirrem, struct inode *dp, struct inode *ip,
3825     off_t diroff, nlink_t nlink)
3826 {
3827 	struct jremref *jremref;
3828 
3829 	jremref = malloc(sizeof(*jremref), M_JREMREF, M_SOFTDEP_FLAGS);
3830 	workitem_alloc(&jremref->jr_list, D_JREMREF, UFSTOVFS(dp->i_ump));
3831 	jremref->jr_state = ATTACHED;
3832 	newinoref(&jremref->jr_ref, ip->i_number, dp->i_number, diroff,
3833 	   nlink, ip->i_mode);
3834 	jremref->jr_dirrem = dirrem;
3835 
3836 	return (jremref);
3837 }
3838 
3839 static inline void
3840 newinoref(struct inoref *inoref, ino_t ino, ino_t parent, off_t diroff,
3841     nlink_t nlink, uint16_t mode)
3842 {
3843 
3844 	inoref->if_jsegdep = newjsegdep(&inoref->if_list);
3845 	inoref->if_diroff = diroff;
3846 	inoref->if_ino = ino;
3847 	inoref->if_parent = parent;
3848 	inoref->if_nlink = nlink;
3849 	inoref->if_mode = mode;
3850 }
3851 
3852 /*
3853  * Allocate a new jaddref to track the addition of ino to dp at diroff.  The
3854  * directory offset may not be known until later.  The caller is responsible
3855  * adding the entry to the journal when this information is available.  nlink
3856  * should be the link count prior to the addition and mode is only required
3857  * to have the correct FMT.
3858  */
3859 static struct jaddref *
3860 newjaddref(struct inode *dp, ino_t ino, off_t diroff, int16_t nlink,
3861     uint16_t mode)
3862 {
3863 	struct jaddref *jaddref;
3864 
3865 	jaddref = malloc(sizeof(*jaddref), M_JADDREF, M_SOFTDEP_FLAGS);
3866 	workitem_alloc(&jaddref->ja_list, D_JADDREF, UFSTOVFS(dp->i_ump));
3867 	jaddref->ja_state = ATTACHED;
3868 	jaddref->ja_mkdir = NULL;
3869 	newinoref(&jaddref->ja_ref, ino, dp->i_number, diroff, nlink, mode);
3870 
3871 	return (jaddref);
3872 }
3873 
3874 /*
3875  * Create a new free dependency for a freework.  The caller is responsible
3876  * for adjusting the reference count when it has the lock held.  The freedep
3877  * will track an outstanding bitmap write that will ultimately clear the
3878  * freework to continue.
3879  */
3880 static struct freedep *
3881 newfreedep(struct freework *freework)
3882 {
3883 	struct freedep *freedep;
3884 
3885 	freedep = malloc(sizeof(*freedep), M_FREEDEP, M_SOFTDEP_FLAGS);
3886 	workitem_alloc(&freedep->fd_list, D_FREEDEP, freework->fw_list.wk_mp);
3887 	freedep->fd_freework = freework;
3888 
3889 	return (freedep);
3890 }
3891 
3892 /*
3893  * Free a freedep structure once the buffer it is linked to is written.  If
3894  * this is the last reference to the freework schedule it for completion.
3895  */
3896 static void
3897 free_freedep(freedep)
3898 	struct freedep *freedep;
3899 {
3900 	struct freework *freework;
3901 
3902 	freework = freedep->fd_freework;
3903 	freework->fw_freeblks->fb_cgwait--;
3904 	if (--freework->fw_ref == 0)
3905 		freework_enqueue(freework);
3906 	WORKITEM_FREE(freedep, D_FREEDEP);
3907 }
3908 
3909 /*
3910  * Allocate a new freework structure that may be a level in an indirect
3911  * when parent is not NULL or a top level block when it is.  The top level
3912  * freework structures are allocated without lk held and before the freeblks
3913  * is visible outside of softdep_setup_freeblocks().
3914  */
3915 static struct freework *
3916 newfreework(ump, freeblks, parent, lbn, nb, frags, off, journal)
3917 	struct ufsmount *ump;
3918 	struct freeblks *freeblks;
3919 	struct freework *parent;
3920 	ufs_lbn_t lbn;
3921 	ufs2_daddr_t nb;
3922 	int frags;
3923 	int off;
3924 	int journal;
3925 {
3926 	struct freework *freework;
3927 
3928 	freework = malloc(sizeof(*freework), M_FREEWORK, M_SOFTDEP_FLAGS);
3929 	workitem_alloc(&freework->fw_list, D_FREEWORK, freeblks->fb_list.wk_mp);
3930 	freework->fw_state = ATTACHED;
3931 	freework->fw_jnewblk = NULL;
3932 	freework->fw_freeblks = freeblks;
3933 	freework->fw_parent = parent;
3934 	freework->fw_lbn = lbn;
3935 	freework->fw_blkno = nb;
3936 	freework->fw_frags = frags;
3937 	freework->fw_indir = NULL;
3938 	freework->fw_ref = (MOUNTEDSUJ(UFSTOVFS(ump)) == 0 || lbn >= -NXADDR)
3939 		? 0 : NINDIR(ump->um_fs) + 1;
3940 	freework->fw_start = freework->fw_off = off;
3941 	if (journal)
3942 		newjfreeblk(freeblks, lbn, nb, frags);
3943 	if (parent == NULL) {
3944 		ACQUIRE_LOCK(&lk);
3945 		WORKLIST_INSERT(&freeblks->fb_freeworkhd, &freework->fw_list);
3946 		freeblks->fb_ref++;
3947 		FREE_LOCK(&lk);
3948 	}
3949 
3950 	return (freework);
3951 }
3952 
3953 /*
3954  * Eliminate a jfreeblk for a block that does not need journaling.
3955  */
3956 static void
3957 cancel_jfreeblk(freeblks, blkno)
3958 	struct freeblks *freeblks;
3959 	ufs2_daddr_t blkno;
3960 {
3961 	struct jfreeblk *jfreeblk;
3962 	struct jblkdep *jblkdep;
3963 
3964 	LIST_FOREACH(jblkdep, &freeblks->fb_jblkdephd, jb_deps) {
3965 		if (jblkdep->jb_list.wk_type != D_JFREEBLK)
3966 			continue;
3967 		jfreeblk = WK_JFREEBLK(&jblkdep->jb_list);
3968 		if (jfreeblk->jf_blkno == blkno)
3969 			break;
3970 	}
3971 	if (jblkdep == NULL)
3972 		return;
3973 	CTR1(KTR_SUJ, "cancel_jfreeblk: blkno %jd", blkno);
3974 	free_jsegdep(jblkdep->jb_jsegdep);
3975 	LIST_REMOVE(jblkdep, jb_deps);
3976 	WORKITEM_FREE(jfreeblk, D_JFREEBLK);
3977 }
3978 
3979 /*
3980  * Allocate a new jfreeblk to journal top level block pointer when truncating
3981  * a file.  The caller must add this to the worklist when lk is held.
3982  */
3983 static struct jfreeblk *
3984 newjfreeblk(freeblks, lbn, blkno, frags)
3985 	struct freeblks *freeblks;
3986 	ufs_lbn_t lbn;
3987 	ufs2_daddr_t blkno;
3988 	int frags;
3989 {
3990 	struct jfreeblk *jfreeblk;
3991 
3992 	jfreeblk = malloc(sizeof(*jfreeblk), M_JFREEBLK, M_SOFTDEP_FLAGS);
3993 	workitem_alloc(&jfreeblk->jf_dep.jb_list, D_JFREEBLK,
3994 	    freeblks->fb_list.wk_mp);
3995 	jfreeblk->jf_dep.jb_jsegdep = newjsegdep(&jfreeblk->jf_dep.jb_list);
3996 	jfreeblk->jf_dep.jb_freeblks = freeblks;
3997 	jfreeblk->jf_ino = freeblks->fb_inum;
3998 	jfreeblk->jf_lbn = lbn;
3999 	jfreeblk->jf_blkno = blkno;
4000 	jfreeblk->jf_frags = frags;
4001 	LIST_INSERT_HEAD(&freeblks->fb_jblkdephd, &jfreeblk->jf_dep, jb_deps);
4002 
4003 	return (jfreeblk);
4004 }
4005 
4006 /*
4007  * Allocate a new jtrunc to track a partial truncation.
4008  */
4009 static struct jtrunc *
4010 newjtrunc(freeblks, size, extsize)
4011 	struct freeblks *freeblks;
4012 	off_t size;
4013 	int extsize;
4014 {
4015 	struct jtrunc *jtrunc;
4016 
4017 	jtrunc = malloc(sizeof(*jtrunc), M_JTRUNC, M_SOFTDEP_FLAGS);
4018 	workitem_alloc(&jtrunc->jt_dep.jb_list, D_JTRUNC,
4019 	    freeblks->fb_list.wk_mp);
4020 	jtrunc->jt_dep.jb_jsegdep = newjsegdep(&jtrunc->jt_dep.jb_list);
4021 	jtrunc->jt_dep.jb_freeblks = freeblks;
4022 	jtrunc->jt_ino = freeblks->fb_inum;
4023 	jtrunc->jt_size = size;
4024 	jtrunc->jt_extsize = extsize;
4025 	LIST_INSERT_HEAD(&freeblks->fb_jblkdephd, &jtrunc->jt_dep, jb_deps);
4026 
4027 	return (jtrunc);
4028 }
4029 
4030 /*
4031  * If we're canceling a new bitmap we have to search for another ref
4032  * to move into the bmsafemap dep.  This might be better expressed
4033  * with another structure.
4034  */
4035 static void
4036 move_newblock_dep(jaddref, inodedep)
4037 	struct jaddref *jaddref;
4038 	struct inodedep *inodedep;
4039 {
4040 	struct inoref *inoref;
4041 	struct jaddref *jaddrefn;
4042 
4043 	jaddrefn = NULL;
4044 	for (inoref = TAILQ_NEXT(&jaddref->ja_ref, if_deps); inoref;
4045 	    inoref = TAILQ_NEXT(inoref, if_deps)) {
4046 		if ((jaddref->ja_state & NEWBLOCK) &&
4047 		    inoref->if_list.wk_type == D_JADDREF) {
4048 			jaddrefn = (struct jaddref *)inoref;
4049 			break;
4050 		}
4051 	}
4052 	if (jaddrefn == NULL)
4053 		return;
4054 	jaddrefn->ja_state &= ~(ATTACHED | UNDONE);
4055 	jaddrefn->ja_state |= jaddref->ja_state &
4056 	    (ATTACHED | UNDONE | NEWBLOCK);
4057 	jaddref->ja_state &= ~(ATTACHED | UNDONE | NEWBLOCK);
4058 	jaddref->ja_state |= ATTACHED;
4059 	LIST_REMOVE(jaddref, ja_bmdeps);
4060 	LIST_INSERT_HEAD(&inodedep->id_bmsafemap->sm_jaddrefhd, jaddrefn,
4061 	    ja_bmdeps);
4062 }
4063 
4064 /*
4065  * Cancel a jaddref either before it has been written or while it is being
4066  * written.  This happens when a link is removed before the add reaches
4067  * the disk.  The jaddref dependency is kept linked into the bmsafemap
4068  * and inode to prevent the link count or bitmap from reaching the disk
4069  * until handle_workitem_remove() re-adjusts the counts and bitmaps as
4070  * required.
4071  *
4072  * Returns 1 if the canceled addref requires journaling of the remove and
4073  * 0 otherwise.
4074  */
4075 static int
4076 cancel_jaddref(jaddref, inodedep, wkhd)
4077 	struct jaddref *jaddref;
4078 	struct inodedep *inodedep;
4079 	struct workhead *wkhd;
4080 {
4081 	struct inoref *inoref;
4082 	struct jsegdep *jsegdep;
4083 	int needsj;
4084 
4085 	KASSERT((jaddref->ja_state & COMPLETE) == 0,
4086 	    ("cancel_jaddref: Canceling complete jaddref"));
4087 	if (jaddref->ja_state & (INPROGRESS | COMPLETE))
4088 		needsj = 1;
4089 	else
4090 		needsj = 0;
4091 	if (inodedep == NULL)
4092 		if (inodedep_lookup(jaddref->ja_list.wk_mp, jaddref->ja_ino,
4093 		    0, &inodedep) == 0)
4094 			panic("cancel_jaddref: Lost inodedep");
4095 	/*
4096 	 * We must adjust the nlink of any reference operation that follows
4097 	 * us so that it is consistent with the in-memory reference.  This
4098 	 * ensures that inode nlink rollbacks always have the correct link.
4099 	 */
4100 	if (needsj == 0) {
4101 		for (inoref = TAILQ_NEXT(&jaddref->ja_ref, if_deps); inoref;
4102 		    inoref = TAILQ_NEXT(inoref, if_deps)) {
4103 			if (inoref->if_state & GOINGAWAY)
4104 				break;
4105 			inoref->if_nlink--;
4106 		}
4107 	}
4108 	jsegdep = inoref_jseg(&jaddref->ja_ref);
4109 	if (jaddref->ja_state & NEWBLOCK)
4110 		move_newblock_dep(jaddref, inodedep);
4111 	wake_worklist(&jaddref->ja_list);
4112 	jaddref->ja_mkdir = NULL;
4113 	if (jaddref->ja_state & INPROGRESS) {
4114 		jaddref->ja_state &= ~INPROGRESS;
4115 		WORKLIST_REMOVE(&jaddref->ja_list);
4116 		jwork_insert(wkhd, jsegdep);
4117 	} else {
4118 		free_jsegdep(jsegdep);
4119 		if (jaddref->ja_state & DEPCOMPLETE)
4120 			remove_from_journal(&jaddref->ja_list);
4121 	}
4122 	jaddref->ja_state |= (GOINGAWAY | DEPCOMPLETE);
4123 	/*
4124 	 * Leave NEWBLOCK jaddrefs on the inodedep so handle_workitem_remove
4125 	 * can arrange for them to be freed with the bitmap.  Otherwise we
4126 	 * no longer need this addref attached to the inoreflst and it
4127 	 * will incorrectly adjust nlink if we leave it.
4128 	 */
4129 	if ((jaddref->ja_state & NEWBLOCK) == 0) {
4130 		TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref,
4131 		    if_deps);
4132 		jaddref->ja_state |= COMPLETE;
4133 		free_jaddref(jaddref);
4134 		return (needsj);
4135 	}
4136 	/*
4137 	 * Leave the head of the list for jsegdeps for fast merging.
4138 	 */
4139 	if (LIST_FIRST(wkhd) != NULL) {
4140 		jaddref->ja_state |= ONWORKLIST;
4141 		LIST_INSERT_AFTER(LIST_FIRST(wkhd), &jaddref->ja_list, wk_list);
4142 	} else
4143 		WORKLIST_INSERT(wkhd, &jaddref->ja_list);
4144 
4145 	return (needsj);
4146 }
4147 
4148 /*
4149  * Attempt to free a jaddref structure when some work completes.  This
4150  * should only succeed once the entry is written and all dependencies have
4151  * been notified.
4152  */
4153 static void
4154 free_jaddref(jaddref)
4155 	struct jaddref *jaddref;
4156 {
4157 
4158 	if ((jaddref->ja_state & ALLCOMPLETE) != ALLCOMPLETE)
4159 		return;
4160 	if (jaddref->ja_ref.if_jsegdep)
4161 		panic("free_jaddref: segdep attached to jaddref %p(0x%X)\n",
4162 		    jaddref, jaddref->ja_state);
4163 	if (jaddref->ja_state & NEWBLOCK)
4164 		LIST_REMOVE(jaddref, ja_bmdeps);
4165 	if (jaddref->ja_state & (INPROGRESS | ONWORKLIST))
4166 		panic("free_jaddref: Bad state %p(0x%X)",
4167 		    jaddref, jaddref->ja_state);
4168 	if (jaddref->ja_mkdir != NULL)
4169 		panic("free_jaddref: Work pending, 0x%X\n", jaddref->ja_state);
4170 	WORKITEM_FREE(jaddref, D_JADDREF);
4171 }
4172 
4173 /*
4174  * Free a jremref structure once it has been written or discarded.
4175  */
4176 static void
4177 free_jremref(jremref)
4178 	struct jremref *jremref;
4179 {
4180 
4181 	if (jremref->jr_ref.if_jsegdep)
4182 		free_jsegdep(jremref->jr_ref.if_jsegdep);
4183 	if (jremref->jr_state & INPROGRESS)
4184 		panic("free_jremref: IO still pending");
4185 	WORKITEM_FREE(jremref, D_JREMREF);
4186 }
4187 
4188 /*
4189  * Free a jnewblk structure.
4190  */
4191 static void
4192 free_jnewblk(jnewblk)
4193 	struct jnewblk *jnewblk;
4194 {
4195 
4196 	if ((jnewblk->jn_state & ALLCOMPLETE) != ALLCOMPLETE)
4197 		return;
4198 	LIST_REMOVE(jnewblk, jn_deps);
4199 	if (jnewblk->jn_dep != NULL)
4200 		panic("free_jnewblk: Dependency still attached.");
4201 	WORKITEM_FREE(jnewblk, D_JNEWBLK);
4202 }
4203 
4204 /*
4205  * Cancel a jnewblk which has been been made redundant by frag extension.
4206  */
4207 static void
4208 cancel_jnewblk(jnewblk, wkhd)
4209 	struct jnewblk *jnewblk;
4210 	struct workhead *wkhd;
4211 {
4212 	struct jsegdep *jsegdep;
4213 
4214 	CTR1(KTR_SUJ, "cancel_jnewblk: blkno %jd", jnewblk->jn_blkno);
4215 	jsegdep = jnewblk->jn_jsegdep;
4216 	if (jnewblk->jn_jsegdep == NULL || jnewblk->jn_dep == NULL)
4217 		panic("cancel_jnewblk: Invalid state");
4218 	jnewblk->jn_jsegdep  = NULL;
4219 	jnewblk->jn_dep = NULL;
4220 	jnewblk->jn_state |= GOINGAWAY;
4221 	if (jnewblk->jn_state & INPROGRESS) {
4222 		jnewblk->jn_state &= ~INPROGRESS;
4223 		WORKLIST_REMOVE(&jnewblk->jn_list);
4224 		jwork_insert(wkhd, jsegdep);
4225 	} else {
4226 		free_jsegdep(jsegdep);
4227 		remove_from_journal(&jnewblk->jn_list);
4228 	}
4229 	wake_worklist(&jnewblk->jn_list);
4230 	WORKLIST_INSERT(wkhd, &jnewblk->jn_list);
4231 }
4232 
4233 static void
4234 free_jblkdep(jblkdep)
4235 	struct jblkdep *jblkdep;
4236 {
4237 
4238 	if (jblkdep->jb_list.wk_type == D_JFREEBLK)
4239 		WORKITEM_FREE(jblkdep, D_JFREEBLK);
4240 	else if (jblkdep->jb_list.wk_type == D_JTRUNC)
4241 		WORKITEM_FREE(jblkdep, D_JTRUNC);
4242 	else
4243 		panic("free_jblkdep: Unexpected type %s",
4244 		    TYPENAME(jblkdep->jb_list.wk_type));
4245 }
4246 
4247 /*
4248  * Free a single jseg once it is no longer referenced in memory or on
4249  * disk.  Reclaim journal blocks and dependencies waiting for the segment
4250  * to disappear.
4251  */
4252 static void
4253 free_jseg(jseg, jblocks)
4254 	struct jseg *jseg;
4255 	struct jblocks *jblocks;
4256 {
4257 	struct freework *freework;
4258 
4259 	/*
4260 	 * Free freework structures that were lingering to indicate freed
4261 	 * indirect blocks that forced journal write ordering on reallocate.
4262 	 */
4263 	while ((freework = LIST_FIRST(&jseg->js_indirs)) != NULL)
4264 		indirblk_remove(freework);
4265 	if (jblocks->jb_oldestseg == jseg)
4266 		jblocks->jb_oldestseg = TAILQ_NEXT(jseg, js_next);
4267 	TAILQ_REMOVE(&jblocks->jb_segs, jseg, js_next);
4268 	jblocks_free(jblocks, jseg->js_list.wk_mp, jseg->js_size);
4269 	KASSERT(LIST_EMPTY(&jseg->js_entries),
4270 	    ("free_jseg: Freed jseg has valid entries."));
4271 	WORKITEM_FREE(jseg, D_JSEG);
4272 }
4273 
4274 /*
4275  * Free all jsegs that meet the criteria for being reclaimed and update
4276  * oldestseg.
4277  */
4278 static void
4279 free_jsegs(jblocks)
4280 	struct jblocks *jblocks;
4281 {
4282 	struct jseg *jseg;
4283 
4284 	/*
4285 	 * Free only those jsegs which have none allocated before them to
4286 	 * preserve the journal space ordering.
4287 	 */
4288 	while ((jseg = TAILQ_FIRST(&jblocks->jb_segs)) != NULL) {
4289 		/*
4290 		 * Only reclaim space when nothing depends on this journal
4291 		 * set and another set has written that it is no longer
4292 		 * valid.
4293 		 */
4294 		if (jseg->js_refs != 0) {
4295 			jblocks->jb_oldestseg = jseg;
4296 			return;
4297 		}
4298 		if ((jseg->js_state & ALLCOMPLETE) != ALLCOMPLETE)
4299 			break;
4300 		if (jseg->js_seq > jblocks->jb_oldestwrseq)
4301 			break;
4302 		/*
4303 		 * We can free jsegs that didn't write entries when
4304 		 * oldestwrseq == js_seq.
4305 		 */
4306 		if (jseg->js_seq == jblocks->jb_oldestwrseq &&
4307 		    jseg->js_cnt != 0)
4308 			break;
4309 		free_jseg(jseg, jblocks);
4310 	}
4311 	/*
4312 	 * If we exited the loop above we still must discover the
4313 	 * oldest valid segment.
4314 	 */
4315 	if (jseg)
4316 		for (jseg = jblocks->jb_oldestseg; jseg != NULL;
4317 		     jseg = TAILQ_NEXT(jseg, js_next))
4318 			if (jseg->js_refs != 0)
4319 				break;
4320 	jblocks->jb_oldestseg = jseg;
4321 	/*
4322 	 * The journal has no valid records but some jsegs may still be
4323 	 * waiting on oldestwrseq to advance.  We force a small record
4324 	 * out to permit these lingering records to be reclaimed.
4325 	 */
4326 	if (jblocks->jb_oldestseg == NULL && !TAILQ_EMPTY(&jblocks->jb_segs))
4327 		jblocks->jb_needseg = 1;
4328 }
4329 
4330 /*
4331  * Release one reference to a jseg and free it if the count reaches 0.  This
4332  * should eventually reclaim journal space as well.
4333  */
4334 static void
4335 rele_jseg(jseg)
4336 	struct jseg *jseg;
4337 {
4338 
4339 	KASSERT(jseg->js_refs > 0,
4340 	    ("free_jseg: Invalid refcnt %d", jseg->js_refs));
4341 	if (--jseg->js_refs != 0)
4342 		return;
4343 	free_jsegs(jseg->js_jblocks);
4344 }
4345 
4346 /*
4347  * Release a jsegdep and decrement the jseg count.
4348  */
4349 static void
4350 free_jsegdep(jsegdep)
4351 	struct jsegdep *jsegdep;
4352 {
4353 
4354 	if (jsegdep->jd_seg)
4355 		rele_jseg(jsegdep->jd_seg);
4356 	WORKITEM_FREE(jsegdep, D_JSEGDEP);
4357 }
4358 
4359 /*
4360  * Wait for a journal item to make it to disk.  Initiate journal processing
4361  * if required.
4362  */
4363 static int
4364 jwait(wk, waitfor)
4365 	struct worklist *wk;
4366 	int waitfor;
4367 {
4368 
4369 	/*
4370 	 * Blocking journal waits cause slow synchronous behavior.  Record
4371 	 * stats on the frequency of these blocking operations.
4372 	 */
4373 	if (waitfor == MNT_WAIT) {
4374 		stat_journal_wait++;
4375 		switch (wk->wk_type) {
4376 		case D_JREMREF:
4377 		case D_JMVREF:
4378 			stat_jwait_filepage++;
4379 			break;
4380 		case D_JTRUNC:
4381 		case D_JFREEBLK:
4382 			stat_jwait_freeblks++;
4383 			break;
4384 		case D_JNEWBLK:
4385 			stat_jwait_newblk++;
4386 			break;
4387 		case D_JADDREF:
4388 			stat_jwait_inode++;
4389 			break;
4390 		default:
4391 			break;
4392 		}
4393 	}
4394 	/*
4395 	 * If IO has not started we process the journal.  We can't mark the
4396 	 * worklist item as IOWAITING because we drop the lock while
4397 	 * processing the journal and the worklist entry may be freed after
4398 	 * this point.  The caller may call back in and re-issue the request.
4399 	 */
4400 	if ((wk->wk_state & INPROGRESS) == 0) {
4401 		softdep_process_journal(wk->wk_mp, wk, waitfor);
4402 		if (waitfor != MNT_WAIT)
4403 			return (EBUSY);
4404 		return (0);
4405 	}
4406 	if (waitfor != MNT_WAIT)
4407 		return (EBUSY);
4408 	wait_worklist(wk, "jwait");
4409 	return (0);
4410 }
4411 
4412 /*
4413  * Lookup an inodedep based on an inode pointer and set the nlinkdelta as
4414  * appropriate.  This is a convenience function to reduce duplicate code
4415  * for the setup and revert functions below.
4416  */
4417 static struct inodedep *
4418 inodedep_lookup_ip(ip)
4419 	struct inode *ip;
4420 {
4421 	struct inodedep *inodedep;
4422 	int dflags;
4423 
4424 	KASSERT(ip->i_nlink >= ip->i_effnlink,
4425 	    ("inodedep_lookup_ip: bad delta"));
4426 	dflags = DEPALLOC;
4427 	if (IS_SNAPSHOT(ip))
4428 		dflags |= NODELAY;
4429 	(void) inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, dflags,
4430 	    &inodedep);
4431 	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
4432 	KASSERT((inodedep->id_state & UNLINKED) == 0, ("inode unlinked"));
4433 
4434 	return (inodedep);
4435 }
4436 
4437 /*
4438  * Called prior to creating a new inode and linking it to a directory.  The
4439  * jaddref structure must already be allocated by softdep_setup_inomapdep
4440  * and it is discovered here so we can initialize the mode and update
4441  * nlinkdelta.
4442  */
4443 void
4444 softdep_setup_create(dp, ip)
4445 	struct inode *dp;
4446 	struct inode *ip;
4447 {
4448 	struct inodedep *inodedep;
4449 	struct jaddref *jaddref;
4450 	struct vnode *dvp;
4451 
4452 	KASSERT(ip->i_nlink == 1,
4453 	    ("softdep_setup_create: Invalid link count."));
4454 	dvp = ITOV(dp);
4455 	ACQUIRE_LOCK(&lk);
4456 	inodedep = inodedep_lookup_ip(ip);
4457 	if (DOINGSUJ(dvp)) {
4458 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4459 		    inoreflst);
4460 		KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number,
4461 		    ("softdep_setup_create: No addref structure present."));
4462 	}
4463 	softdep_prelink(dvp, NULL);
4464 	FREE_LOCK(&lk);
4465 }
4466 
4467 /*
4468  * Create a jaddref structure to track the addition of a DOTDOT link when
4469  * we are reparenting an inode as part of a rename.  This jaddref will be
4470  * found by softdep_setup_directory_change.  Adjusts nlinkdelta for
4471  * non-journaling softdep.
4472  */
4473 void
4474 softdep_setup_dotdot_link(dp, ip)
4475 	struct inode *dp;
4476 	struct inode *ip;
4477 {
4478 	struct inodedep *inodedep;
4479 	struct jaddref *jaddref;
4480 	struct vnode *dvp;
4481 	struct vnode *vp;
4482 
4483 	dvp = ITOV(dp);
4484 	vp = ITOV(ip);
4485 	jaddref = NULL;
4486 	/*
4487 	 * We don't set MKDIR_PARENT as this is not tied to a mkdir and
4488 	 * is used as a normal link would be.
4489 	 */
4490 	if (DOINGSUJ(dvp))
4491 		jaddref = newjaddref(ip, dp->i_number, DOTDOT_OFFSET,
4492 		    dp->i_effnlink - 1, dp->i_mode);
4493 	ACQUIRE_LOCK(&lk);
4494 	inodedep = inodedep_lookup_ip(dp);
4495 	if (jaddref)
4496 		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref,
4497 		    if_deps);
4498 	softdep_prelink(dvp, ITOV(ip));
4499 	FREE_LOCK(&lk);
4500 }
4501 
4502 /*
4503  * Create a jaddref structure to track a new link to an inode.  The directory
4504  * offset is not known until softdep_setup_directory_add or
4505  * softdep_setup_directory_change.  Adjusts nlinkdelta for non-journaling
4506  * softdep.
4507  */
4508 void
4509 softdep_setup_link(dp, ip)
4510 	struct inode *dp;
4511 	struct inode *ip;
4512 {
4513 	struct inodedep *inodedep;
4514 	struct jaddref *jaddref;
4515 	struct vnode *dvp;
4516 
4517 	dvp = ITOV(dp);
4518 	jaddref = NULL;
4519 	if (DOINGSUJ(dvp))
4520 		jaddref = newjaddref(dp, ip->i_number, 0, ip->i_effnlink - 1,
4521 		    ip->i_mode);
4522 	ACQUIRE_LOCK(&lk);
4523 	inodedep = inodedep_lookup_ip(ip);
4524 	if (jaddref)
4525 		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref,
4526 		    if_deps);
4527 	softdep_prelink(dvp, ITOV(ip));
4528 	FREE_LOCK(&lk);
4529 }
4530 
4531 /*
4532  * Called to create the jaddref structures to track . and .. references as
4533  * well as lookup and further initialize the incomplete jaddref created
4534  * by softdep_setup_inomapdep when the inode was allocated.  Adjusts
4535  * nlinkdelta for non-journaling softdep.
4536  */
4537 void
4538 softdep_setup_mkdir(dp, ip)
4539 	struct inode *dp;
4540 	struct inode *ip;
4541 {
4542 	struct inodedep *inodedep;
4543 	struct jaddref *dotdotaddref;
4544 	struct jaddref *dotaddref;
4545 	struct jaddref *jaddref;
4546 	struct vnode *dvp;
4547 
4548 	dvp = ITOV(dp);
4549 	dotaddref = dotdotaddref = NULL;
4550 	if (DOINGSUJ(dvp)) {
4551 		dotaddref = newjaddref(ip, ip->i_number, DOT_OFFSET, 1,
4552 		    ip->i_mode);
4553 		dotaddref->ja_state |= MKDIR_BODY;
4554 		dotdotaddref = newjaddref(ip, dp->i_number, DOTDOT_OFFSET,
4555 		    dp->i_effnlink - 1, dp->i_mode);
4556 		dotdotaddref->ja_state |= MKDIR_PARENT;
4557 	}
4558 	ACQUIRE_LOCK(&lk);
4559 	inodedep = inodedep_lookup_ip(ip);
4560 	if (DOINGSUJ(dvp)) {
4561 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4562 		    inoreflst);
4563 		KASSERT(jaddref != NULL,
4564 		    ("softdep_setup_mkdir: No addref structure present."));
4565 		KASSERT(jaddref->ja_parent == dp->i_number,
4566 		    ("softdep_setup_mkdir: bad parent %ju",
4567 		    (uintmax_t)jaddref->ja_parent));
4568 		TAILQ_INSERT_BEFORE(&jaddref->ja_ref, &dotaddref->ja_ref,
4569 		    if_deps);
4570 	}
4571 	inodedep = inodedep_lookup_ip(dp);
4572 	if (DOINGSUJ(dvp))
4573 		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst,
4574 		    &dotdotaddref->ja_ref, if_deps);
4575 	softdep_prelink(ITOV(dp), NULL);
4576 	FREE_LOCK(&lk);
4577 }
4578 
4579 /*
4580  * Called to track nlinkdelta of the inode and parent directories prior to
4581  * unlinking a directory.
4582  */
4583 void
4584 softdep_setup_rmdir(dp, ip)
4585 	struct inode *dp;
4586 	struct inode *ip;
4587 {
4588 	struct vnode *dvp;
4589 
4590 	dvp = ITOV(dp);
4591 	ACQUIRE_LOCK(&lk);
4592 	(void) inodedep_lookup_ip(ip);
4593 	(void) inodedep_lookup_ip(dp);
4594 	softdep_prelink(dvp, ITOV(ip));
4595 	FREE_LOCK(&lk);
4596 }
4597 
4598 /*
4599  * Called to track nlinkdelta of the inode and parent directories prior to
4600  * unlink.
4601  */
4602 void
4603 softdep_setup_unlink(dp, ip)
4604 	struct inode *dp;
4605 	struct inode *ip;
4606 {
4607 	struct vnode *dvp;
4608 
4609 	dvp = ITOV(dp);
4610 	ACQUIRE_LOCK(&lk);
4611 	(void) inodedep_lookup_ip(ip);
4612 	(void) inodedep_lookup_ip(dp);
4613 	softdep_prelink(dvp, ITOV(ip));
4614 	FREE_LOCK(&lk);
4615 }
4616 
4617 /*
4618  * Called to release the journal structures created by a failed non-directory
4619  * creation.  Adjusts nlinkdelta for non-journaling softdep.
4620  */
4621 void
4622 softdep_revert_create(dp, ip)
4623 	struct inode *dp;
4624 	struct inode *ip;
4625 {
4626 	struct inodedep *inodedep;
4627 	struct jaddref *jaddref;
4628 	struct vnode *dvp;
4629 
4630 	dvp = ITOV(dp);
4631 	ACQUIRE_LOCK(&lk);
4632 	inodedep = inodedep_lookup_ip(ip);
4633 	if (DOINGSUJ(dvp)) {
4634 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4635 		    inoreflst);
4636 		KASSERT(jaddref->ja_parent == dp->i_number,
4637 		    ("softdep_revert_create: addref parent mismatch"));
4638 		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4639 	}
4640 	FREE_LOCK(&lk);
4641 }
4642 
4643 /*
4644  * Called to release the journal structures created by a failed dotdot link
4645  * creation.  Adjusts nlinkdelta for non-journaling softdep.
4646  */
4647 void
4648 softdep_revert_dotdot_link(dp, ip)
4649 	struct inode *dp;
4650 	struct inode *ip;
4651 {
4652 	struct inodedep *inodedep;
4653 	struct jaddref *jaddref;
4654 	struct vnode *dvp;
4655 
4656 	dvp = ITOV(dp);
4657 	ACQUIRE_LOCK(&lk);
4658 	inodedep = inodedep_lookup_ip(dp);
4659 	if (DOINGSUJ(dvp)) {
4660 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4661 		    inoreflst);
4662 		KASSERT(jaddref->ja_parent == ip->i_number,
4663 		    ("softdep_revert_dotdot_link: addref parent mismatch"));
4664 		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4665 	}
4666 	FREE_LOCK(&lk);
4667 }
4668 
4669 /*
4670  * Called to release the journal structures created by a failed link
4671  * addition.  Adjusts nlinkdelta for non-journaling softdep.
4672  */
4673 void
4674 softdep_revert_link(dp, ip)
4675 	struct inode *dp;
4676 	struct inode *ip;
4677 {
4678 	struct inodedep *inodedep;
4679 	struct jaddref *jaddref;
4680 	struct vnode *dvp;
4681 
4682 	dvp = ITOV(dp);
4683 	ACQUIRE_LOCK(&lk);
4684 	inodedep = inodedep_lookup_ip(ip);
4685 	if (DOINGSUJ(dvp)) {
4686 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4687 		    inoreflst);
4688 		KASSERT(jaddref->ja_parent == dp->i_number,
4689 		    ("softdep_revert_link: addref parent mismatch"));
4690 		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4691 	}
4692 	FREE_LOCK(&lk);
4693 }
4694 
4695 /*
4696  * Called to release the journal structures created by a failed mkdir
4697  * attempt.  Adjusts nlinkdelta for non-journaling softdep.
4698  */
4699 void
4700 softdep_revert_mkdir(dp, ip)
4701 	struct inode *dp;
4702 	struct inode *ip;
4703 {
4704 	struct inodedep *inodedep;
4705 	struct jaddref *jaddref;
4706 	struct jaddref *dotaddref;
4707 	struct vnode *dvp;
4708 
4709 	dvp = ITOV(dp);
4710 
4711 	ACQUIRE_LOCK(&lk);
4712 	inodedep = inodedep_lookup_ip(dp);
4713 	if (DOINGSUJ(dvp)) {
4714 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4715 		    inoreflst);
4716 		KASSERT(jaddref->ja_parent == ip->i_number,
4717 		    ("softdep_revert_mkdir: dotdot addref parent mismatch"));
4718 		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4719 	}
4720 	inodedep = inodedep_lookup_ip(ip);
4721 	if (DOINGSUJ(dvp)) {
4722 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4723 		    inoreflst);
4724 		KASSERT(jaddref->ja_parent == dp->i_number,
4725 		    ("softdep_revert_mkdir: addref parent mismatch"));
4726 		dotaddref = (struct jaddref *)TAILQ_PREV(&jaddref->ja_ref,
4727 		    inoreflst, if_deps);
4728 		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4729 		KASSERT(dotaddref->ja_parent == ip->i_number,
4730 		    ("softdep_revert_mkdir: dot addref parent mismatch"));
4731 		cancel_jaddref(dotaddref, inodedep, &inodedep->id_inowait);
4732 	}
4733 	FREE_LOCK(&lk);
4734 }
4735 
4736 /*
4737  * Called to correct nlinkdelta after a failed rmdir.
4738  */
4739 void
4740 softdep_revert_rmdir(dp, ip)
4741 	struct inode *dp;
4742 	struct inode *ip;
4743 {
4744 
4745 	ACQUIRE_LOCK(&lk);
4746 	(void) inodedep_lookup_ip(ip);
4747 	(void) inodedep_lookup_ip(dp);
4748 	FREE_LOCK(&lk);
4749 }
4750 
4751 /*
4752  * Protecting the freemaps (or bitmaps).
4753  *
4754  * To eliminate the need to execute fsck before mounting a filesystem
4755  * after a power failure, one must (conservatively) guarantee that the
4756  * on-disk copy of the bitmaps never indicate that a live inode or block is
4757  * free.  So, when a block or inode is allocated, the bitmap should be
4758  * updated (on disk) before any new pointers.  When a block or inode is
4759  * freed, the bitmap should not be updated until all pointers have been
4760  * reset.  The latter dependency is handled by the delayed de-allocation
4761  * approach described below for block and inode de-allocation.  The former
4762  * dependency is handled by calling the following procedure when a block or
4763  * inode is allocated. When an inode is allocated an "inodedep" is created
4764  * with its DEPCOMPLETE flag cleared until its bitmap is written to disk.
4765  * Each "inodedep" is also inserted into the hash indexing structure so
4766  * that any additional link additions can be made dependent on the inode
4767  * allocation.
4768  *
4769  * The ufs filesystem maintains a number of free block counts (e.g., per
4770  * cylinder group, per cylinder and per <cylinder, rotational position> pair)
4771  * in addition to the bitmaps.  These counts are used to improve efficiency
4772  * during allocation and therefore must be consistent with the bitmaps.
4773  * There is no convenient way to guarantee post-crash consistency of these
4774  * counts with simple update ordering, for two main reasons: (1) The counts
4775  * and bitmaps for a single cylinder group block are not in the same disk
4776  * sector.  If a disk write is interrupted (e.g., by power failure), one may
4777  * be written and the other not.  (2) Some of the counts are located in the
4778  * superblock rather than the cylinder group block. So, we focus our soft
4779  * updates implementation on protecting the bitmaps. When mounting a
4780  * filesystem, we recompute the auxiliary counts from the bitmaps.
4781  */
4782 
4783 /*
4784  * Called just after updating the cylinder group block to allocate an inode.
4785  */
4786 void
4787 softdep_setup_inomapdep(bp, ip, newinum, mode)
4788 	struct buf *bp;		/* buffer for cylgroup block with inode map */
4789 	struct inode *ip;	/* inode related to allocation */
4790 	ino_t newinum;		/* new inode number being allocated */
4791 	int mode;
4792 {
4793 	struct inodedep *inodedep;
4794 	struct bmsafemap *bmsafemap;
4795 	struct jaddref *jaddref;
4796 	struct mount *mp;
4797 	struct fs *fs;
4798 
4799 	mp = UFSTOVFS(ip->i_ump);
4800 	fs = ip->i_ump->um_fs;
4801 	jaddref = NULL;
4802 
4803 	/*
4804 	 * Allocate the journal reference add structure so that the bitmap
4805 	 * can be dependent on it.
4806 	 */
4807 	if (MOUNTEDSUJ(mp)) {
4808 		jaddref = newjaddref(ip, newinum, 0, 0, mode);
4809 		jaddref->ja_state |= NEWBLOCK;
4810 	}
4811 
4812 	/*
4813 	 * Create a dependency for the newly allocated inode.
4814 	 * Panic if it already exists as something is seriously wrong.
4815 	 * Otherwise add it to the dependency list for the buffer holding
4816 	 * the cylinder group map from which it was allocated.
4817 	 *
4818 	 * We have to preallocate a bmsafemap entry in case it is needed
4819 	 * in bmsafemap_lookup since once we allocate the inodedep, we
4820 	 * have to finish initializing it before we can FREE_LOCK().
4821 	 * By preallocating, we avoid FREE_LOCK() while doing a malloc
4822 	 * in bmsafemap_lookup. We cannot call bmsafemap_lookup before
4823 	 * creating the inodedep as it can be freed during the time
4824 	 * that we FREE_LOCK() while allocating the inodedep. We must
4825 	 * call workitem_alloc() before entering the locked section as
4826 	 * it also acquires the lock and we must avoid trying doing so
4827 	 * recursively.
4828 	 */
4829 	bmsafemap = malloc(sizeof(struct bmsafemap),
4830 	    M_BMSAFEMAP, M_SOFTDEP_FLAGS);
4831 	workitem_alloc(&bmsafemap->sm_list, D_BMSAFEMAP, mp);
4832 	ACQUIRE_LOCK(&lk);
4833 	if ((inodedep_lookup(mp, newinum, DEPALLOC | NODELAY, &inodedep)))
4834 		panic("softdep_setup_inomapdep: dependency %p for new"
4835 		    "inode already exists", inodedep);
4836 	bmsafemap = bmsafemap_lookup(mp, bp, ino_to_cg(fs, newinum), bmsafemap);
4837 	if (jaddref) {
4838 		LIST_INSERT_HEAD(&bmsafemap->sm_jaddrefhd, jaddref, ja_bmdeps);
4839 		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref,
4840 		    if_deps);
4841 	} else {
4842 		inodedep->id_state |= ONDEPLIST;
4843 		LIST_INSERT_HEAD(&bmsafemap->sm_inodedephd, inodedep, id_deps);
4844 	}
4845 	inodedep->id_bmsafemap = bmsafemap;
4846 	inodedep->id_state &= ~DEPCOMPLETE;
4847 	FREE_LOCK(&lk);
4848 }
4849 
4850 /*
4851  * Called just after updating the cylinder group block to
4852  * allocate block or fragment.
4853  */
4854 void
4855 softdep_setup_blkmapdep(bp, mp, newblkno, frags, oldfrags)
4856 	struct buf *bp;		/* buffer for cylgroup block with block map */
4857 	struct mount *mp;	/* filesystem doing allocation */
4858 	ufs2_daddr_t newblkno;	/* number of newly allocated block */
4859 	int frags;		/* Number of fragments. */
4860 	int oldfrags;		/* Previous number of fragments for extend. */
4861 {
4862 	struct newblk *newblk;
4863 	struct bmsafemap *bmsafemap;
4864 	struct jnewblk *jnewblk;
4865 	struct fs *fs;
4866 
4867 	fs = VFSTOUFS(mp)->um_fs;
4868 	jnewblk = NULL;
4869 	/*
4870 	 * Create a dependency for the newly allocated block.
4871 	 * Add it to the dependency list for the buffer holding
4872 	 * the cylinder group map from which it was allocated.
4873 	 */
4874 	if (MOUNTEDSUJ(mp)) {
4875 		jnewblk = malloc(sizeof(*jnewblk), M_JNEWBLK, M_SOFTDEP_FLAGS);
4876 		workitem_alloc(&jnewblk->jn_list, D_JNEWBLK, mp);
4877 		jnewblk->jn_jsegdep = newjsegdep(&jnewblk->jn_list);
4878 		jnewblk->jn_state = ATTACHED;
4879 		jnewblk->jn_blkno = newblkno;
4880 		jnewblk->jn_frags = frags;
4881 		jnewblk->jn_oldfrags = oldfrags;
4882 #ifdef SUJ_DEBUG
4883 		{
4884 			struct cg *cgp;
4885 			uint8_t *blksfree;
4886 			long bno;
4887 			int i;
4888 
4889 			cgp = (struct cg *)bp->b_data;
4890 			blksfree = cg_blksfree(cgp);
4891 			bno = dtogd(fs, jnewblk->jn_blkno);
4892 			for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags;
4893 			    i++) {
4894 				if (isset(blksfree, bno + i))
4895 					panic("softdep_setup_blkmapdep: "
4896 					    "free fragment %d from %d-%d "
4897 					    "state 0x%X dep %p", i,
4898 					    jnewblk->jn_oldfrags,
4899 					    jnewblk->jn_frags,
4900 					    jnewblk->jn_state,
4901 					    jnewblk->jn_dep);
4902 			}
4903 		}
4904 #endif
4905 	}
4906 
4907 	CTR3(KTR_SUJ,
4908 	    "softdep_setup_blkmapdep: blkno %jd frags %d oldfrags %d",
4909 	    newblkno, frags, oldfrags);
4910 	ACQUIRE_LOCK(&lk);
4911 	if (newblk_lookup(mp, newblkno, DEPALLOC, &newblk) != 0)
4912 		panic("softdep_setup_blkmapdep: found block");
4913 	newblk->nb_bmsafemap = bmsafemap = bmsafemap_lookup(mp, bp,
4914 	    dtog(fs, newblkno), NULL);
4915 	if (jnewblk) {
4916 		jnewblk->jn_dep = (struct worklist *)newblk;
4917 		LIST_INSERT_HEAD(&bmsafemap->sm_jnewblkhd, jnewblk, jn_deps);
4918 	} else {
4919 		newblk->nb_state |= ONDEPLIST;
4920 		LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, nb_deps);
4921 	}
4922 	newblk->nb_bmsafemap = bmsafemap;
4923 	newblk->nb_jnewblk = jnewblk;
4924 	FREE_LOCK(&lk);
4925 }
4926 
4927 #define	BMSAFEMAP_HASH(fs, cg) \
4928       (&bmsafemap_hashtbl[((((register_t)(fs)) >> 13) + (cg)) & bmsafemap_hash])
4929 
4930 static int
4931 bmsafemap_find(bmsafemaphd, mp, cg, bmsafemapp)
4932 	struct bmsafemap_hashhead *bmsafemaphd;
4933 	struct mount *mp;
4934 	int cg;
4935 	struct bmsafemap **bmsafemapp;
4936 {
4937 	struct bmsafemap *bmsafemap;
4938 
4939 	LIST_FOREACH(bmsafemap, bmsafemaphd, sm_hash)
4940 		if (bmsafemap->sm_list.wk_mp == mp && bmsafemap->sm_cg == cg)
4941 			break;
4942 	if (bmsafemap) {
4943 		*bmsafemapp = bmsafemap;
4944 		return (1);
4945 	}
4946 	*bmsafemapp = NULL;
4947 
4948 	return (0);
4949 }
4950 
4951 /*
4952  * Find the bmsafemap associated with a cylinder group buffer.
4953  * If none exists, create one. The buffer must be locked when
4954  * this routine is called and this routine must be called with
4955  * the softdep lock held. To avoid giving up the lock while
4956  * allocating a new bmsafemap, a preallocated bmsafemap may be
4957  * provided. If it is provided but not needed, it is freed.
4958  */
4959 static struct bmsafemap *
4960 bmsafemap_lookup(mp, bp, cg, newbmsafemap)
4961 	struct mount *mp;
4962 	struct buf *bp;
4963 	int cg;
4964 	struct bmsafemap *newbmsafemap;
4965 {
4966 	struct bmsafemap_hashhead *bmsafemaphd;
4967 	struct bmsafemap *bmsafemap, *collision;
4968 	struct worklist *wk;
4969 	struct fs *fs;
4970 
4971 	mtx_assert(&lk, MA_OWNED);
4972 	if (bp)
4973 		LIST_FOREACH(wk, &bp->b_dep, wk_list)
4974 			if (wk->wk_type == D_BMSAFEMAP) {
4975 				if (newbmsafemap)
4976 					WORKITEM_FREE(newbmsafemap,D_BMSAFEMAP);
4977 				return (WK_BMSAFEMAP(wk));
4978 			}
4979 	fs = VFSTOUFS(mp)->um_fs;
4980 	bmsafemaphd = BMSAFEMAP_HASH(fs, cg);
4981 	if (bmsafemap_find(bmsafemaphd, mp, cg, &bmsafemap) == 1) {
4982 		if (newbmsafemap)
4983 			WORKITEM_FREE(newbmsafemap, D_BMSAFEMAP);
4984 		return (bmsafemap);
4985 	}
4986 	if (newbmsafemap) {
4987 		bmsafemap = newbmsafemap;
4988 	} else {
4989 		FREE_LOCK(&lk);
4990 		bmsafemap = malloc(sizeof(struct bmsafemap),
4991 			M_BMSAFEMAP, M_SOFTDEP_FLAGS);
4992 		workitem_alloc(&bmsafemap->sm_list, D_BMSAFEMAP, mp);
4993 		ACQUIRE_LOCK(&lk);
4994 	}
4995 	bmsafemap->sm_buf = bp;
4996 	LIST_INIT(&bmsafemap->sm_inodedephd);
4997 	LIST_INIT(&bmsafemap->sm_inodedepwr);
4998 	LIST_INIT(&bmsafemap->sm_newblkhd);
4999 	LIST_INIT(&bmsafemap->sm_newblkwr);
5000 	LIST_INIT(&bmsafemap->sm_jaddrefhd);
5001 	LIST_INIT(&bmsafemap->sm_jnewblkhd);
5002 	LIST_INIT(&bmsafemap->sm_freehd);
5003 	LIST_INIT(&bmsafemap->sm_freewr);
5004 	if (bmsafemap_find(bmsafemaphd, mp, cg, &collision) == 1) {
5005 		WORKITEM_FREE(bmsafemap, D_BMSAFEMAP);
5006 		return (collision);
5007 	}
5008 	bmsafemap->sm_cg = cg;
5009 	LIST_INSERT_HEAD(bmsafemaphd, bmsafemap, sm_hash);
5010 	LIST_INSERT_HEAD(&VFSTOUFS(mp)->softdep_dirtycg, bmsafemap, sm_next);
5011 	WORKLIST_INSERT(&bp->b_dep, &bmsafemap->sm_list);
5012 	return (bmsafemap);
5013 }
5014 
5015 /*
5016  * Direct block allocation dependencies.
5017  *
5018  * When a new block is allocated, the corresponding disk locations must be
5019  * initialized (with zeros or new data) before the on-disk inode points to
5020  * them.  Also, the freemap from which the block was allocated must be
5021  * updated (on disk) before the inode's pointer. These two dependencies are
5022  * independent of each other and are needed for all file blocks and indirect
5023  * blocks that are pointed to directly by the inode.  Just before the
5024  * "in-core" version of the inode is updated with a newly allocated block
5025  * number, a procedure (below) is called to setup allocation dependency
5026  * structures.  These structures are removed when the corresponding
5027  * dependencies are satisfied or when the block allocation becomes obsolete
5028  * (i.e., the file is deleted, the block is de-allocated, or the block is a
5029  * fragment that gets upgraded).  All of these cases are handled in
5030  * procedures described later.
5031  *
5032  * When a file extension causes a fragment to be upgraded, either to a larger
5033  * fragment or to a full block, the on-disk location may change (if the
5034  * previous fragment could not simply be extended). In this case, the old
5035  * fragment must be de-allocated, but not until after the inode's pointer has
5036  * been updated. In most cases, this is handled by later procedures, which
5037  * will construct a "freefrag" structure to be added to the workitem queue
5038  * when the inode update is complete (or obsolete).  The main exception to
5039  * this is when an allocation occurs while a pending allocation dependency
5040  * (for the same block pointer) remains.  This case is handled in the main
5041  * allocation dependency setup procedure by immediately freeing the
5042  * unreferenced fragments.
5043  */
5044 void
5045 softdep_setup_allocdirect(ip, off, newblkno, oldblkno, newsize, oldsize, bp)
5046 	struct inode *ip;	/* inode to which block is being added */
5047 	ufs_lbn_t off;		/* block pointer within inode */
5048 	ufs2_daddr_t newblkno;	/* disk block number being added */
5049 	ufs2_daddr_t oldblkno;	/* previous block number, 0 unless frag */
5050 	long newsize;		/* size of new block */
5051 	long oldsize;		/* size of new block */
5052 	struct buf *bp;		/* bp for allocated block */
5053 {
5054 	struct allocdirect *adp, *oldadp;
5055 	struct allocdirectlst *adphead;
5056 	struct freefrag *freefrag;
5057 	struct inodedep *inodedep;
5058 	struct pagedep *pagedep;
5059 	struct jnewblk *jnewblk;
5060 	struct newblk *newblk;
5061 	struct mount *mp;
5062 	ufs_lbn_t lbn;
5063 
5064 	lbn = bp->b_lblkno;
5065 	mp = UFSTOVFS(ip->i_ump);
5066 	if (oldblkno && oldblkno != newblkno)
5067 		freefrag = newfreefrag(ip, oldblkno, oldsize, lbn);
5068 	else
5069 		freefrag = NULL;
5070 
5071 	CTR6(KTR_SUJ,
5072 	    "softdep_setup_allocdirect: ino %d blkno %jd oldblkno %jd "
5073 	    "off %jd newsize %ld oldsize %d",
5074 	    ip->i_number, newblkno, oldblkno, off, newsize, oldsize);
5075 	ACQUIRE_LOCK(&lk);
5076 	if (off >= NDADDR) {
5077 		if (lbn > 0)
5078 			panic("softdep_setup_allocdirect: bad lbn %jd, off %jd",
5079 			    lbn, off);
5080 		/* allocating an indirect block */
5081 		if (oldblkno != 0)
5082 			panic("softdep_setup_allocdirect: non-zero indir");
5083 	} else {
5084 		if (off != lbn)
5085 			panic("softdep_setup_allocdirect: lbn %jd != off %jd",
5086 			    lbn, off);
5087 		/*
5088 		 * Allocating a direct block.
5089 		 *
5090 		 * If we are allocating a directory block, then we must
5091 		 * allocate an associated pagedep to track additions and
5092 		 * deletions.
5093 		 */
5094 		if ((ip->i_mode & IFMT) == IFDIR)
5095 			pagedep_lookup(mp, bp, ip->i_number, off, DEPALLOC,
5096 			    &pagedep);
5097 	}
5098 	if (newblk_lookup(mp, newblkno, 0, &newblk) == 0)
5099 		panic("softdep_setup_allocdirect: lost block");
5100 	KASSERT(newblk->nb_list.wk_type == D_NEWBLK,
5101 	    ("softdep_setup_allocdirect: newblk already initialized"));
5102 	/*
5103 	 * Convert the newblk to an allocdirect.
5104 	 */
5105 	newblk->nb_list.wk_type = D_ALLOCDIRECT;
5106 	adp = (struct allocdirect *)newblk;
5107 	newblk->nb_freefrag = freefrag;
5108 	adp->ad_offset = off;
5109 	adp->ad_oldblkno = oldblkno;
5110 	adp->ad_newsize = newsize;
5111 	adp->ad_oldsize = oldsize;
5112 
5113 	/*
5114 	 * Finish initializing the journal.
5115 	 */
5116 	if ((jnewblk = newblk->nb_jnewblk) != NULL) {
5117 		jnewblk->jn_ino = ip->i_number;
5118 		jnewblk->jn_lbn = lbn;
5119 		add_to_journal(&jnewblk->jn_list);
5120 	}
5121 	if (freefrag && freefrag->ff_jdep != NULL &&
5122 	    freefrag->ff_jdep->wk_type == D_JFREEFRAG)
5123 		add_to_journal(freefrag->ff_jdep);
5124 	inodedep_lookup(mp, ip->i_number, DEPALLOC | NODELAY, &inodedep);
5125 	adp->ad_inodedep = inodedep;
5126 
5127 	WORKLIST_INSERT(&bp->b_dep, &newblk->nb_list);
5128 	/*
5129 	 * The list of allocdirects must be kept in sorted and ascending
5130 	 * order so that the rollback routines can quickly determine the
5131 	 * first uncommitted block (the size of the file stored on disk
5132 	 * ends at the end of the lowest committed fragment, or if there
5133 	 * are no fragments, at the end of the highest committed block).
5134 	 * Since files generally grow, the typical case is that the new
5135 	 * block is to be added at the end of the list. We speed this
5136 	 * special case by checking against the last allocdirect in the
5137 	 * list before laboriously traversing the list looking for the
5138 	 * insertion point.
5139 	 */
5140 	adphead = &inodedep->id_newinoupdt;
5141 	oldadp = TAILQ_LAST(adphead, allocdirectlst);
5142 	if (oldadp == NULL || oldadp->ad_offset <= off) {
5143 		/* insert at end of list */
5144 		TAILQ_INSERT_TAIL(adphead, adp, ad_next);
5145 		if (oldadp != NULL && oldadp->ad_offset == off)
5146 			allocdirect_merge(adphead, adp, oldadp);
5147 		FREE_LOCK(&lk);
5148 		return;
5149 	}
5150 	TAILQ_FOREACH(oldadp, adphead, ad_next) {
5151 		if (oldadp->ad_offset >= off)
5152 			break;
5153 	}
5154 	if (oldadp == NULL)
5155 		panic("softdep_setup_allocdirect: lost entry");
5156 	/* insert in middle of list */
5157 	TAILQ_INSERT_BEFORE(oldadp, adp, ad_next);
5158 	if (oldadp->ad_offset == off)
5159 		allocdirect_merge(adphead, adp, oldadp);
5160 
5161 	FREE_LOCK(&lk);
5162 }
5163 
5164 /*
5165  * Merge a newer and older journal record to be stored either in a
5166  * newblock or freefrag.  This handles aggregating journal records for
5167  * fragment allocation into a second record as well as replacing a
5168  * journal free with an aborted journal allocation.  A segment for the
5169  * oldest record will be placed on wkhd if it has been written.  If not
5170  * the segment for the newer record will suffice.
5171  */
5172 static struct worklist *
5173 jnewblk_merge(new, old, wkhd)
5174 	struct worklist *new;
5175 	struct worklist *old;
5176 	struct workhead *wkhd;
5177 {
5178 	struct jnewblk *njnewblk;
5179 	struct jnewblk *jnewblk;
5180 
5181 	/* Handle NULLs to simplify callers. */
5182 	if (new == NULL)
5183 		return (old);
5184 	if (old == NULL)
5185 		return (new);
5186 	/* Replace a jfreefrag with a jnewblk. */
5187 	if (new->wk_type == D_JFREEFRAG) {
5188 		if (WK_JNEWBLK(old)->jn_blkno != WK_JFREEFRAG(new)->fr_blkno)
5189 			panic("jnewblk_merge: blkno mismatch: %p, %p",
5190 			    old, new);
5191 		cancel_jfreefrag(WK_JFREEFRAG(new));
5192 		return (old);
5193 	}
5194 	if (old->wk_type != D_JNEWBLK || new->wk_type != D_JNEWBLK)
5195 		panic("jnewblk_merge: Bad type: old %d new %d\n",
5196 		    old->wk_type, new->wk_type);
5197 	/*
5198 	 * Handle merging of two jnewblk records that describe
5199 	 * different sets of fragments in the same block.
5200 	 */
5201 	jnewblk = WK_JNEWBLK(old);
5202 	njnewblk = WK_JNEWBLK(new);
5203 	if (jnewblk->jn_blkno != njnewblk->jn_blkno)
5204 		panic("jnewblk_merge: Merging disparate blocks.");
5205 	/*
5206 	 * The record may be rolled back in the cg.
5207 	 */
5208 	if (jnewblk->jn_state & UNDONE) {
5209 		jnewblk->jn_state &= ~UNDONE;
5210 		njnewblk->jn_state |= UNDONE;
5211 		njnewblk->jn_state &= ~ATTACHED;
5212 	}
5213 	/*
5214 	 * We modify the newer addref and free the older so that if neither
5215 	 * has been written the most up-to-date copy will be on disk.  If
5216 	 * both have been written but rolled back we only temporarily need
5217 	 * one of them to fix the bits when the cg write completes.
5218 	 */
5219 	jnewblk->jn_state |= ATTACHED | COMPLETE;
5220 	njnewblk->jn_oldfrags = jnewblk->jn_oldfrags;
5221 	cancel_jnewblk(jnewblk, wkhd);
5222 	WORKLIST_REMOVE(&jnewblk->jn_list);
5223 	free_jnewblk(jnewblk);
5224 	return (new);
5225 }
5226 
5227 /*
5228  * Replace an old allocdirect dependency with a newer one.
5229  * This routine must be called with splbio interrupts blocked.
5230  */
5231 static void
5232 allocdirect_merge(adphead, newadp, oldadp)
5233 	struct allocdirectlst *adphead;	/* head of list holding allocdirects */
5234 	struct allocdirect *newadp;	/* allocdirect being added */
5235 	struct allocdirect *oldadp;	/* existing allocdirect being checked */
5236 {
5237 	struct worklist *wk;
5238 	struct freefrag *freefrag;
5239 
5240 	freefrag = NULL;
5241 	mtx_assert(&lk, MA_OWNED);
5242 	if (newadp->ad_oldblkno != oldadp->ad_newblkno ||
5243 	    newadp->ad_oldsize != oldadp->ad_newsize ||
5244 	    newadp->ad_offset >= NDADDR)
5245 		panic("%s %jd != new %jd || old size %ld != new %ld",
5246 		    "allocdirect_merge: old blkno",
5247 		    (intmax_t)newadp->ad_oldblkno,
5248 		    (intmax_t)oldadp->ad_newblkno,
5249 		    newadp->ad_oldsize, oldadp->ad_newsize);
5250 	newadp->ad_oldblkno = oldadp->ad_oldblkno;
5251 	newadp->ad_oldsize = oldadp->ad_oldsize;
5252 	/*
5253 	 * If the old dependency had a fragment to free or had never
5254 	 * previously had a block allocated, then the new dependency
5255 	 * can immediately post its freefrag and adopt the old freefrag.
5256 	 * This action is done by swapping the freefrag dependencies.
5257 	 * The new dependency gains the old one's freefrag, and the
5258 	 * old one gets the new one and then immediately puts it on
5259 	 * the worklist when it is freed by free_newblk. It is
5260 	 * not possible to do this swap when the old dependency had a
5261 	 * non-zero size but no previous fragment to free. This condition
5262 	 * arises when the new block is an extension of the old block.
5263 	 * Here, the first part of the fragment allocated to the new
5264 	 * dependency is part of the block currently claimed on disk by
5265 	 * the old dependency, so cannot legitimately be freed until the
5266 	 * conditions for the new dependency are fulfilled.
5267 	 */
5268 	freefrag = newadp->ad_freefrag;
5269 	if (oldadp->ad_freefrag != NULL || oldadp->ad_oldblkno == 0) {
5270 		newadp->ad_freefrag = oldadp->ad_freefrag;
5271 		oldadp->ad_freefrag = freefrag;
5272 	}
5273 	/*
5274 	 * If we are tracking a new directory-block allocation,
5275 	 * move it from the old allocdirect to the new allocdirect.
5276 	 */
5277 	if ((wk = LIST_FIRST(&oldadp->ad_newdirblk)) != NULL) {
5278 		WORKLIST_REMOVE(wk);
5279 		if (!LIST_EMPTY(&oldadp->ad_newdirblk))
5280 			panic("allocdirect_merge: extra newdirblk");
5281 		WORKLIST_INSERT(&newadp->ad_newdirblk, wk);
5282 	}
5283 	TAILQ_REMOVE(adphead, oldadp, ad_next);
5284 	/*
5285 	 * We need to move any journal dependencies over to the freefrag
5286 	 * that releases this block if it exists.  Otherwise we are
5287 	 * extending an existing block and we'll wait until that is
5288 	 * complete to release the journal space and extend the
5289 	 * new journal to cover this old space as well.
5290 	 */
5291 	if (freefrag == NULL) {
5292 		if (oldadp->ad_newblkno != newadp->ad_newblkno)
5293 			panic("allocdirect_merge: %jd != %jd",
5294 			    oldadp->ad_newblkno, newadp->ad_newblkno);
5295 		newadp->ad_block.nb_jnewblk = (struct jnewblk *)
5296 		    jnewblk_merge(&newadp->ad_block.nb_jnewblk->jn_list,
5297 		    &oldadp->ad_block.nb_jnewblk->jn_list,
5298 		    &newadp->ad_block.nb_jwork);
5299 		oldadp->ad_block.nb_jnewblk = NULL;
5300 		cancel_newblk(&oldadp->ad_block, NULL,
5301 		    &newadp->ad_block.nb_jwork);
5302 	} else {
5303 		wk = (struct worklist *) cancel_newblk(&oldadp->ad_block,
5304 		    &freefrag->ff_list, &freefrag->ff_jwork);
5305 		freefrag->ff_jdep = jnewblk_merge(freefrag->ff_jdep, wk,
5306 		    &freefrag->ff_jwork);
5307 	}
5308 	free_newblk(&oldadp->ad_block);
5309 }
5310 
5311 /*
5312  * Allocate a jfreefrag structure to journal a single block free.
5313  */
5314 static struct jfreefrag *
5315 newjfreefrag(freefrag, ip, blkno, size, lbn)
5316 	struct freefrag *freefrag;
5317 	struct inode *ip;
5318 	ufs2_daddr_t blkno;
5319 	long size;
5320 	ufs_lbn_t lbn;
5321 {
5322 	struct jfreefrag *jfreefrag;
5323 	struct fs *fs;
5324 
5325 	fs = ip->i_fs;
5326 	jfreefrag = malloc(sizeof(struct jfreefrag), M_JFREEFRAG,
5327 	    M_SOFTDEP_FLAGS);
5328 	workitem_alloc(&jfreefrag->fr_list, D_JFREEFRAG, UFSTOVFS(ip->i_ump));
5329 	jfreefrag->fr_jsegdep = newjsegdep(&jfreefrag->fr_list);
5330 	jfreefrag->fr_state = ATTACHED | DEPCOMPLETE;
5331 	jfreefrag->fr_ino = ip->i_number;
5332 	jfreefrag->fr_lbn = lbn;
5333 	jfreefrag->fr_blkno = blkno;
5334 	jfreefrag->fr_frags = numfrags(fs, size);
5335 	jfreefrag->fr_freefrag = freefrag;
5336 
5337 	return (jfreefrag);
5338 }
5339 
5340 /*
5341  * Allocate a new freefrag structure.
5342  */
5343 static struct freefrag *
5344 newfreefrag(ip, blkno, size, lbn)
5345 	struct inode *ip;
5346 	ufs2_daddr_t blkno;
5347 	long size;
5348 	ufs_lbn_t lbn;
5349 {
5350 	struct freefrag *freefrag;
5351 	struct fs *fs;
5352 
5353 	CTR4(KTR_SUJ, "newfreefrag: ino %d blkno %jd size %ld lbn %jd",
5354 	    ip->i_number, blkno, size, lbn);
5355 	fs = ip->i_fs;
5356 	if (fragnum(fs, blkno) + numfrags(fs, size) > fs->fs_frag)
5357 		panic("newfreefrag: frag size");
5358 	freefrag = malloc(sizeof(struct freefrag),
5359 	    M_FREEFRAG, M_SOFTDEP_FLAGS);
5360 	workitem_alloc(&freefrag->ff_list, D_FREEFRAG, UFSTOVFS(ip->i_ump));
5361 	freefrag->ff_state = ATTACHED;
5362 	LIST_INIT(&freefrag->ff_jwork);
5363 	freefrag->ff_inum = ip->i_number;
5364 	freefrag->ff_vtype = ITOV(ip)->v_type;
5365 	freefrag->ff_blkno = blkno;
5366 	freefrag->ff_fragsize = size;
5367 
5368 	if (MOUNTEDSUJ(UFSTOVFS(ip->i_ump))) {
5369 		freefrag->ff_jdep = (struct worklist *)
5370 		    newjfreefrag(freefrag, ip, blkno, size, lbn);
5371 	} else {
5372 		freefrag->ff_state |= DEPCOMPLETE;
5373 		freefrag->ff_jdep = NULL;
5374 	}
5375 
5376 	return (freefrag);
5377 }
5378 
5379 /*
5380  * This workitem de-allocates fragments that were replaced during
5381  * file block allocation.
5382  */
5383 static void
5384 handle_workitem_freefrag(freefrag)
5385 	struct freefrag *freefrag;
5386 {
5387 	struct ufsmount *ump = VFSTOUFS(freefrag->ff_list.wk_mp);
5388 	struct workhead wkhd;
5389 
5390 	CTR3(KTR_SUJ,
5391 	    "handle_workitem_freefrag: ino %d blkno %jd size %ld",
5392 	    freefrag->ff_inum, freefrag->ff_blkno, freefrag->ff_fragsize);
5393 	/*
5394 	 * It would be illegal to add new completion items to the
5395 	 * freefrag after it was schedule to be done so it must be
5396 	 * safe to modify the list head here.
5397 	 */
5398 	LIST_INIT(&wkhd);
5399 	ACQUIRE_LOCK(&lk);
5400 	LIST_SWAP(&freefrag->ff_jwork, &wkhd, worklist, wk_list);
5401 	/*
5402 	 * If the journal has not been written we must cancel it here.
5403 	 */
5404 	if (freefrag->ff_jdep) {
5405 		if (freefrag->ff_jdep->wk_type != D_JNEWBLK)
5406 			panic("handle_workitem_freefrag: Unexpected type %d\n",
5407 			    freefrag->ff_jdep->wk_type);
5408 		cancel_jnewblk(WK_JNEWBLK(freefrag->ff_jdep), &wkhd);
5409 	}
5410 	FREE_LOCK(&lk);
5411 	ffs_blkfree(ump, ump->um_fs, ump->um_devvp, freefrag->ff_blkno,
5412 	   freefrag->ff_fragsize, freefrag->ff_inum, freefrag->ff_vtype, &wkhd);
5413 	ACQUIRE_LOCK(&lk);
5414 	WORKITEM_FREE(freefrag, D_FREEFRAG);
5415 	FREE_LOCK(&lk);
5416 }
5417 
5418 /*
5419  * Set up a dependency structure for an external attributes data block.
5420  * This routine follows much of the structure of softdep_setup_allocdirect.
5421  * See the description of softdep_setup_allocdirect above for details.
5422  */
5423 void
5424 softdep_setup_allocext(ip, off, newblkno, oldblkno, newsize, oldsize, bp)
5425 	struct inode *ip;
5426 	ufs_lbn_t off;
5427 	ufs2_daddr_t newblkno;
5428 	ufs2_daddr_t oldblkno;
5429 	long newsize;
5430 	long oldsize;
5431 	struct buf *bp;
5432 {
5433 	struct allocdirect *adp, *oldadp;
5434 	struct allocdirectlst *adphead;
5435 	struct freefrag *freefrag;
5436 	struct inodedep *inodedep;
5437 	struct jnewblk *jnewblk;
5438 	struct newblk *newblk;
5439 	struct mount *mp;
5440 	ufs_lbn_t lbn;
5441 
5442 	if (off >= NXADDR)
5443 		panic("softdep_setup_allocext: lbn %lld > NXADDR",
5444 		    (long long)off);
5445 
5446 	lbn = bp->b_lblkno;
5447 	mp = UFSTOVFS(ip->i_ump);
5448 	if (oldblkno && oldblkno != newblkno)
5449 		freefrag = newfreefrag(ip, oldblkno, oldsize, lbn);
5450 	else
5451 		freefrag = NULL;
5452 
5453 	ACQUIRE_LOCK(&lk);
5454 	if (newblk_lookup(mp, newblkno, 0, &newblk) == 0)
5455 		panic("softdep_setup_allocext: lost block");
5456 	KASSERT(newblk->nb_list.wk_type == D_NEWBLK,
5457 	    ("softdep_setup_allocext: newblk already initialized"));
5458 	/*
5459 	 * Convert the newblk to an allocdirect.
5460 	 */
5461 	newblk->nb_list.wk_type = D_ALLOCDIRECT;
5462 	adp = (struct allocdirect *)newblk;
5463 	newblk->nb_freefrag = freefrag;
5464 	adp->ad_offset = off;
5465 	adp->ad_oldblkno = oldblkno;
5466 	adp->ad_newsize = newsize;
5467 	adp->ad_oldsize = oldsize;
5468 	adp->ad_state |=  EXTDATA;
5469 
5470 	/*
5471 	 * Finish initializing the journal.
5472 	 */
5473 	if ((jnewblk = newblk->nb_jnewblk) != NULL) {
5474 		jnewblk->jn_ino = ip->i_number;
5475 		jnewblk->jn_lbn = lbn;
5476 		add_to_journal(&jnewblk->jn_list);
5477 	}
5478 	if (freefrag && freefrag->ff_jdep != NULL &&
5479 	    freefrag->ff_jdep->wk_type == D_JFREEFRAG)
5480 		add_to_journal(freefrag->ff_jdep);
5481 	inodedep_lookup(mp, ip->i_number, DEPALLOC | NODELAY, &inodedep);
5482 	adp->ad_inodedep = inodedep;
5483 
5484 	WORKLIST_INSERT(&bp->b_dep, &newblk->nb_list);
5485 	/*
5486 	 * The list of allocdirects must be kept in sorted and ascending
5487 	 * order so that the rollback routines can quickly determine the
5488 	 * first uncommitted block (the size of the file stored on disk
5489 	 * ends at the end of the lowest committed fragment, or if there
5490 	 * are no fragments, at the end of the highest committed block).
5491 	 * Since files generally grow, the typical case is that the new
5492 	 * block is to be added at the end of the list. We speed this
5493 	 * special case by checking against the last allocdirect in the
5494 	 * list before laboriously traversing the list looking for the
5495 	 * insertion point.
5496 	 */
5497 	adphead = &inodedep->id_newextupdt;
5498 	oldadp = TAILQ_LAST(adphead, allocdirectlst);
5499 	if (oldadp == NULL || oldadp->ad_offset <= off) {
5500 		/* insert at end of list */
5501 		TAILQ_INSERT_TAIL(adphead, adp, ad_next);
5502 		if (oldadp != NULL && oldadp->ad_offset == off)
5503 			allocdirect_merge(adphead, adp, oldadp);
5504 		FREE_LOCK(&lk);
5505 		return;
5506 	}
5507 	TAILQ_FOREACH(oldadp, adphead, ad_next) {
5508 		if (oldadp->ad_offset >= off)
5509 			break;
5510 	}
5511 	if (oldadp == NULL)
5512 		panic("softdep_setup_allocext: lost entry");
5513 	/* insert in middle of list */
5514 	TAILQ_INSERT_BEFORE(oldadp, adp, ad_next);
5515 	if (oldadp->ad_offset == off)
5516 		allocdirect_merge(adphead, adp, oldadp);
5517 	FREE_LOCK(&lk);
5518 }
5519 
5520 /*
5521  * Indirect block allocation dependencies.
5522  *
5523  * The same dependencies that exist for a direct block also exist when
5524  * a new block is allocated and pointed to by an entry in a block of
5525  * indirect pointers. The undo/redo states described above are also
5526  * used here. Because an indirect block contains many pointers that
5527  * may have dependencies, a second copy of the entire in-memory indirect
5528  * block is kept. The buffer cache copy is always completely up-to-date.
5529  * The second copy, which is used only as a source for disk writes,
5530  * contains only the safe pointers (i.e., those that have no remaining
5531  * update dependencies). The second copy is freed when all pointers
5532  * are safe. The cache is not allowed to replace indirect blocks with
5533  * pending update dependencies. If a buffer containing an indirect
5534  * block with dependencies is written, these routines will mark it
5535  * dirty again. It can only be successfully written once all the
5536  * dependencies are removed. The ffs_fsync routine in conjunction with
5537  * softdep_sync_metadata work together to get all the dependencies
5538  * removed so that a file can be successfully written to disk. Three
5539  * procedures are used when setting up indirect block pointer
5540  * dependencies. The division is necessary because of the organization
5541  * of the "balloc" routine and because of the distinction between file
5542  * pages and file metadata blocks.
5543  */
5544 
5545 /*
5546  * Allocate a new allocindir structure.
5547  */
5548 static struct allocindir *
5549 newallocindir(ip, ptrno, newblkno, oldblkno, lbn)
5550 	struct inode *ip;	/* inode for file being extended */
5551 	int ptrno;		/* offset of pointer in indirect block */
5552 	ufs2_daddr_t newblkno;	/* disk block number being added */
5553 	ufs2_daddr_t oldblkno;	/* previous block number, 0 if none */
5554 	ufs_lbn_t lbn;
5555 {
5556 	struct newblk *newblk;
5557 	struct allocindir *aip;
5558 	struct freefrag *freefrag;
5559 	struct jnewblk *jnewblk;
5560 
5561 	if (oldblkno)
5562 		freefrag = newfreefrag(ip, oldblkno, ip->i_fs->fs_bsize, lbn);
5563 	else
5564 		freefrag = NULL;
5565 	ACQUIRE_LOCK(&lk);
5566 	if (newblk_lookup(UFSTOVFS(ip->i_ump), newblkno, 0, &newblk) == 0)
5567 		panic("new_allocindir: lost block");
5568 	KASSERT(newblk->nb_list.wk_type == D_NEWBLK,
5569 	    ("newallocindir: newblk already initialized"));
5570 	newblk->nb_list.wk_type = D_ALLOCINDIR;
5571 	newblk->nb_freefrag = freefrag;
5572 	aip = (struct allocindir *)newblk;
5573 	aip->ai_offset = ptrno;
5574 	aip->ai_oldblkno = oldblkno;
5575 	aip->ai_lbn = lbn;
5576 	if ((jnewblk = newblk->nb_jnewblk) != NULL) {
5577 		jnewblk->jn_ino = ip->i_number;
5578 		jnewblk->jn_lbn = lbn;
5579 		add_to_journal(&jnewblk->jn_list);
5580 	}
5581 	if (freefrag && freefrag->ff_jdep != NULL &&
5582 	    freefrag->ff_jdep->wk_type == D_JFREEFRAG)
5583 		add_to_journal(freefrag->ff_jdep);
5584 	return (aip);
5585 }
5586 
5587 /*
5588  * Called just before setting an indirect block pointer
5589  * to a newly allocated file page.
5590  */
5591 void
5592 softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp)
5593 	struct inode *ip;	/* inode for file being extended */
5594 	ufs_lbn_t lbn;		/* allocated block number within file */
5595 	struct buf *bp;		/* buffer with indirect blk referencing page */
5596 	int ptrno;		/* offset of pointer in indirect block */
5597 	ufs2_daddr_t newblkno;	/* disk block number being added */
5598 	ufs2_daddr_t oldblkno;	/* previous block number, 0 if none */
5599 	struct buf *nbp;	/* buffer holding allocated page */
5600 {
5601 	struct inodedep *inodedep;
5602 	struct freefrag *freefrag;
5603 	struct allocindir *aip;
5604 	struct pagedep *pagedep;
5605 	struct mount *mp;
5606 	int dflags;
5607 
5608 	if (lbn != nbp->b_lblkno)
5609 		panic("softdep_setup_allocindir_page: lbn %jd != lblkno %jd",
5610 		    lbn, bp->b_lblkno);
5611 	CTR4(KTR_SUJ,
5612 	    "softdep_setup_allocindir_page: ino %d blkno %jd oldblkno %jd "
5613 	    "lbn %jd", ip->i_number, newblkno, oldblkno, lbn);
5614 	ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_page");
5615 	mp = UFSTOVFS(ip->i_ump);
5616 	aip = newallocindir(ip, ptrno, newblkno, oldblkno, lbn);
5617 	dflags = DEPALLOC;
5618 	if (IS_SNAPSHOT(ip))
5619 		dflags |= NODELAY;
5620 	(void) inodedep_lookup(mp, ip->i_number, dflags, &inodedep);
5621 	/*
5622 	 * If we are allocating a directory page, then we must
5623 	 * allocate an associated pagedep to track additions and
5624 	 * deletions.
5625 	 */
5626 	if ((ip->i_mode & IFMT) == IFDIR)
5627 		pagedep_lookup(mp, nbp, ip->i_number, lbn, DEPALLOC, &pagedep);
5628 	WORKLIST_INSERT(&nbp->b_dep, &aip->ai_block.nb_list);
5629 	freefrag = setup_allocindir_phase2(bp, ip, inodedep, aip, lbn);
5630 	FREE_LOCK(&lk);
5631 	if (freefrag)
5632 		handle_workitem_freefrag(freefrag);
5633 }
5634 
5635 /*
5636  * Called just before setting an indirect block pointer to a
5637  * newly allocated indirect block.
5638  */
5639 void
5640 softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno)
5641 	struct buf *nbp;	/* newly allocated indirect block */
5642 	struct inode *ip;	/* inode for file being extended */
5643 	struct buf *bp;		/* indirect block referencing allocated block */
5644 	int ptrno;		/* offset of pointer in indirect block */
5645 	ufs2_daddr_t newblkno;	/* disk block number being added */
5646 {
5647 	struct inodedep *inodedep;
5648 	struct allocindir *aip;
5649 	ufs_lbn_t lbn;
5650 	int dflags;
5651 
5652 	CTR3(KTR_SUJ,
5653 	    "softdep_setup_allocindir_meta: ino %d blkno %jd ptrno %d",
5654 	    ip->i_number, newblkno, ptrno);
5655 	lbn = nbp->b_lblkno;
5656 	ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_meta");
5657 	aip = newallocindir(ip, ptrno, newblkno, 0, lbn);
5658 	dflags = DEPALLOC;
5659 	if (IS_SNAPSHOT(ip))
5660 		dflags |= NODELAY;
5661 	inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, dflags, &inodedep);
5662 	WORKLIST_INSERT(&nbp->b_dep, &aip->ai_block.nb_list);
5663 	if (setup_allocindir_phase2(bp, ip, inodedep, aip, lbn))
5664 		panic("softdep_setup_allocindir_meta: Block already existed");
5665 	FREE_LOCK(&lk);
5666 }
5667 
5668 static void
5669 indirdep_complete(indirdep)
5670 	struct indirdep *indirdep;
5671 {
5672 	struct allocindir *aip;
5673 
5674 	LIST_REMOVE(indirdep, ir_next);
5675 	indirdep->ir_state |= DEPCOMPLETE;
5676 
5677 	while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != NULL) {
5678 		LIST_REMOVE(aip, ai_next);
5679 		free_newblk(&aip->ai_block);
5680 	}
5681 	/*
5682 	 * If this indirdep is not attached to a buf it was simply waiting
5683 	 * on completion to clear completehd.  free_indirdep() asserts
5684 	 * that nothing is dangling.
5685 	 */
5686 	if ((indirdep->ir_state & ONWORKLIST) == 0)
5687 		free_indirdep(indirdep);
5688 }
5689 
5690 static struct indirdep *
5691 indirdep_lookup(mp, ip, bp)
5692 	struct mount *mp;
5693 	struct inode *ip;
5694 	struct buf *bp;
5695 {
5696 	struct indirdep *indirdep, *newindirdep;
5697 	struct newblk *newblk;
5698 	struct worklist *wk;
5699 	struct fs *fs;
5700 	ufs2_daddr_t blkno;
5701 
5702 	mtx_assert(&lk, MA_OWNED);
5703 	indirdep = NULL;
5704 	newindirdep = NULL;
5705 	fs = ip->i_fs;
5706 	for (;;) {
5707 		LIST_FOREACH(wk, &bp->b_dep, wk_list) {
5708 			if (wk->wk_type != D_INDIRDEP)
5709 				continue;
5710 			indirdep = WK_INDIRDEP(wk);
5711 			break;
5712 		}
5713 		/* Found on the buffer worklist, no new structure to free. */
5714 		if (indirdep != NULL && newindirdep == NULL)
5715 			return (indirdep);
5716 		if (indirdep != NULL && newindirdep != NULL)
5717 			panic("indirdep_lookup: simultaneous create");
5718 		/* None found on the buffer and a new structure is ready. */
5719 		if (indirdep == NULL && newindirdep != NULL)
5720 			break;
5721 		/* None found and no new structure available. */
5722 		FREE_LOCK(&lk);
5723 		newindirdep = malloc(sizeof(struct indirdep),
5724 		    M_INDIRDEP, M_SOFTDEP_FLAGS);
5725 		workitem_alloc(&newindirdep->ir_list, D_INDIRDEP, mp);
5726 		newindirdep->ir_state = ATTACHED;
5727 		if (ip->i_ump->um_fstype == UFS1)
5728 			newindirdep->ir_state |= UFS1FMT;
5729 		TAILQ_INIT(&newindirdep->ir_trunc);
5730 		newindirdep->ir_saveddata = NULL;
5731 		LIST_INIT(&newindirdep->ir_deplisthd);
5732 		LIST_INIT(&newindirdep->ir_donehd);
5733 		LIST_INIT(&newindirdep->ir_writehd);
5734 		LIST_INIT(&newindirdep->ir_completehd);
5735 		if (bp->b_blkno == bp->b_lblkno) {
5736 			ufs_bmaparray(bp->b_vp, bp->b_lblkno, &blkno, bp,
5737 			    NULL, NULL);
5738 			bp->b_blkno = blkno;
5739 		}
5740 		newindirdep->ir_freeblks = NULL;
5741 		newindirdep->ir_savebp =
5742 		    getblk(ip->i_devvp, bp->b_blkno, bp->b_bcount, 0, 0, 0);
5743 		newindirdep->ir_bp = bp;
5744 		BUF_KERNPROC(newindirdep->ir_savebp);
5745 		bcopy(bp->b_data, newindirdep->ir_savebp->b_data, bp->b_bcount);
5746 		ACQUIRE_LOCK(&lk);
5747 	}
5748 	indirdep = newindirdep;
5749 	WORKLIST_INSERT(&bp->b_dep, &indirdep->ir_list);
5750 	/*
5751 	 * If the block is not yet allocated we don't set DEPCOMPLETE so
5752 	 * that we don't free dependencies until the pointers are valid.
5753 	 * This could search b_dep for D_ALLOCDIRECT/D_ALLOCINDIR rather
5754 	 * than using the hash.
5755 	 */
5756 	if (newblk_lookup(mp, dbtofsb(fs, bp->b_blkno), 0, &newblk))
5757 		LIST_INSERT_HEAD(&newblk->nb_indirdeps, indirdep, ir_next);
5758 	else
5759 		indirdep->ir_state |= DEPCOMPLETE;
5760 	return (indirdep);
5761 }
5762 
5763 /*
5764  * Called to finish the allocation of the "aip" allocated
5765  * by one of the two routines above.
5766  */
5767 static struct freefrag *
5768 setup_allocindir_phase2(bp, ip, inodedep, aip, lbn)
5769 	struct buf *bp;		/* in-memory copy of the indirect block */
5770 	struct inode *ip;	/* inode for file being extended */
5771 	struct inodedep *inodedep; /* Inodedep for ip */
5772 	struct allocindir *aip;	/* allocindir allocated by the above routines */
5773 	ufs_lbn_t lbn;		/* Logical block number for this block. */
5774 {
5775 	struct fs *fs;
5776 	struct indirdep *indirdep;
5777 	struct allocindir *oldaip;
5778 	struct freefrag *freefrag;
5779 	struct mount *mp;
5780 
5781 	mtx_assert(&lk, MA_OWNED);
5782 	mp = UFSTOVFS(ip->i_ump);
5783 	fs = ip->i_fs;
5784 	if (bp->b_lblkno >= 0)
5785 		panic("setup_allocindir_phase2: not indir blk");
5786 	KASSERT(aip->ai_offset >= 0 && aip->ai_offset < NINDIR(fs),
5787 	    ("setup_allocindir_phase2: Bad offset %d", aip->ai_offset));
5788 	indirdep = indirdep_lookup(mp, ip, bp);
5789 	KASSERT(indirdep->ir_savebp != NULL,
5790 	    ("setup_allocindir_phase2 NULL ir_savebp"));
5791 	aip->ai_indirdep = indirdep;
5792 	/*
5793 	 * Check for an unwritten dependency for this indirect offset.  If
5794 	 * there is, merge the old dependency into the new one.  This happens
5795 	 * as a result of reallocblk only.
5796 	 */
5797 	freefrag = NULL;
5798 	if (aip->ai_oldblkno != 0) {
5799 		LIST_FOREACH(oldaip, &indirdep->ir_deplisthd, ai_next) {
5800 			if (oldaip->ai_offset == aip->ai_offset) {
5801 				freefrag = allocindir_merge(aip, oldaip);
5802 				goto done;
5803 			}
5804 		}
5805 		LIST_FOREACH(oldaip, &indirdep->ir_donehd, ai_next) {
5806 			if (oldaip->ai_offset == aip->ai_offset) {
5807 				freefrag = allocindir_merge(aip, oldaip);
5808 				goto done;
5809 			}
5810 		}
5811 	}
5812 done:
5813 	LIST_INSERT_HEAD(&indirdep->ir_deplisthd, aip, ai_next);
5814 	return (freefrag);
5815 }
5816 
5817 /*
5818  * Merge two allocindirs which refer to the same block.  Move newblock
5819  * dependencies and setup the freefrags appropriately.
5820  */
5821 static struct freefrag *
5822 allocindir_merge(aip, oldaip)
5823 	struct allocindir *aip;
5824 	struct allocindir *oldaip;
5825 {
5826 	struct freefrag *freefrag;
5827 	struct worklist *wk;
5828 
5829 	if (oldaip->ai_newblkno != aip->ai_oldblkno)
5830 		panic("allocindir_merge: blkno");
5831 	aip->ai_oldblkno = oldaip->ai_oldblkno;
5832 	freefrag = aip->ai_freefrag;
5833 	aip->ai_freefrag = oldaip->ai_freefrag;
5834 	oldaip->ai_freefrag = NULL;
5835 	KASSERT(freefrag != NULL, ("setup_allocindir_phase2: No freefrag"));
5836 	/*
5837 	 * If we are tracking a new directory-block allocation,
5838 	 * move it from the old allocindir to the new allocindir.
5839 	 */
5840 	if ((wk = LIST_FIRST(&oldaip->ai_newdirblk)) != NULL) {
5841 		WORKLIST_REMOVE(wk);
5842 		if (!LIST_EMPTY(&oldaip->ai_newdirblk))
5843 			panic("allocindir_merge: extra newdirblk");
5844 		WORKLIST_INSERT(&aip->ai_newdirblk, wk);
5845 	}
5846 	/*
5847 	 * We can skip journaling for this freefrag and just complete
5848 	 * any pending journal work for the allocindir that is being
5849 	 * removed after the freefrag completes.
5850 	 */
5851 	if (freefrag->ff_jdep)
5852 		cancel_jfreefrag(WK_JFREEFRAG(freefrag->ff_jdep));
5853 	LIST_REMOVE(oldaip, ai_next);
5854 	freefrag->ff_jdep = (struct worklist *)cancel_newblk(&oldaip->ai_block,
5855 	    &freefrag->ff_list, &freefrag->ff_jwork);
5856 	free_newblk(&oldaip->ai_block);
5857 
5858 	return (freefrag);
5859 }
5860 
5861 static inline void
5862 setup_freedirect(freeblks, ip, i, needj)
5863 	struct freeblks *freeblks;
5864 	struct inode *ip;
5865 	int i;
5866 	int needj;
5867 {
5868 	ufs2_daddr_t blkno;
5869 	int frags;
5870 
5871 	blkno = DIP(ip, i_db[i]);
5872 	if (blkno == 0)
5873 		return;
5874 	DIP_SET(ip, i_db[i], 0);
5875 	frags = sblksize(ip->i_fs, ip->i_size, i);
5876 	frags = numfrags(ip->i_fs, frags);
5877 	newfreework(ip->i_ump, freeblks, NULL, i, blkno, frags, 0, needj);
5878 }
5879 
5880 static inline void
5881 setup_freeext(freeblks, ip, i, needj)
5882 	struct freeblks *freeblks;
5883 	struct inode *ip;
5884 	int i;
5885 	int needj;
5886 {
5887 	ufs2_daddr_t blkno;
5888 	int frags;
5889 
5890 	blkno = ip->i_din2->di_extb[i];
5891 	if (blkno == 0)
5892 		return;
5893 	ip->i_din2->di_extb[i] = 0;
5894 	frags = sblksize(ip->i_fs, ip->i_din2->di_extsize, i);
5895 	frags = numfrags(ip->i_fs, frags);
5896 	newfreework(ip->i_ump, freeblks, NULL, -1 - i, blkno, frags, 0, needj);
5897 }
5898 
5899 static inline void
5900 setup_freeindir(freeblks, ip, i, lbn, needj)
5901 	struct freeblks *freeblks;
5902 	struct inode *ip;
5903 	int i;
5904 	ufs_lbn_t lbn;
5905 	int needj;
5906 {
5907 	ufs2_daddr_t blkno;
5908 
5909 	blkno = DIP(ip, i_ib[i]);
5910 	if (blkno == 0)
5911 		return;
5912 	DIP_SET(ip, i_ib[i], 0);
5913 	newfreework(ip->i_ump, freeblks, NULL, lbn, blkno, ip->i_fs->fs_frag,
5914 	    0, needj);
5915 }
5916 
5917 static inline struct freeblks *
5918 newfreeblks(mp, ip)
5919 	struct mount *mp;
5920 	struct inode *ip;
5921 {
5922 	struct freeblks *freeblks;
5923 
5924 	freeblks = malloc(sizeof(struct freeblks),
5925 		M_FREEBLKS, M_SOFTDEP_FLAGS|M_ZERO);
5926 	workitem_alloc(&freeblks->fb_list, D_FREEBLKS, mp);
5927 	LIST_INIT(&freeblks->fb_jblkdephd);
5928 	LIST_INIT(&freeblks->fb_jwork);
5929 	freeblks->fb_ref = 0;
5930 	freeblks->fb_cgwait = 0;
5931 	freeblks->fb_state = ATTACHED;
5932 	freeblks->fb_uid = ip->i_uid;
5933 	freeblks->fb_inum = ip->i_number;
5934 	freeblks->fb_vtype = ITOV(ip)->v_type;
5935 	freeblks->fb_modrev = DIP(ip, i_modrev);
5936 	freeblks->fb_devvp = ip->i_devvp;
5937 	freeblks->fb_chkcnt = 0;
5938 	freeblks->fb_len = 0;
5939 
5940 	return (freeblks);
5941 }
5942 
5943 static void
5944 trunc_indirdep(indirdep, freeblks, bp, off)
5945 	struct indirdep *indirdep;
5946 	struct freeblks *freeblks;
5947 	struct buf *bp;
5948 	int off;
5949 {
5950 	struct allocindir *aip, *aipn;
5951 
5952 	/*
5953 	 * The first set of allocindirs won't be in savedbp.
5954 	 */
5955 	LIST_FOREACH_SAFE(aip, &indirdep->ir_deplisthd, ai_next, aipn)
5956 		if (aip->ai_offset > off)
5957 			cancel_allocindir(aip, bp, freeblks, 1);
5958 	LIST_FOREACH_SAFE(aip, &indirdep->ir_donehd, ai_next, aipn)
5959 		if (aip->ai_offset > off)
5960 			cancel_allocindir(aip, bp, freeblks, 1);
5961 	/*
5962 	 * These will exist in savedbp.
5963 	 */
5964 	LIST_FOREACH_SAFE(aip, &indirdep->ir_writehd, ai_next, aipn)
5965 		if (aip->ai_offset > off)
5966 			cancel_allocindir(aip, NULL, freeblks, 0);
5967 	LIST_FOREACH_SAFE(aip, &indirdep->ir_completehd, ai_next, aipn)
5968 		if (aip->ai_offset > off)
5969 			cancel_allocindir(aip, NULL, freeblks, 0);
5970 }
5971 
5972 /*
5973  * Follow the chain of indirects down to lastlbn creating a freework
5974  * structure for each.  This will be used to start indir_trunc() at
5975  * the right offset and create the journal records for the parrtial
5976  * truncation.  A second step will handle the truncated dependencies.
5977  */
5978 static int
5979 setup_trunc_indir(freeblks, ip, lbn, lastlbn, blkno)
5980 	struct freeblks *freeblks;
5981 	struct inode *ip;
5982 	ufs_lbn_t lbn;
5983 	ufs_lbn_t lastlbn;
5984 	ufs2_daddr_t blkno;
5985 {
5986 	struct indirdep *indirdep;
5987 	struct indirdep *indirn;
5988 	struct freework *freework;
5989 	struct newblk *newblk;
5990 	struct mount *mp;
5991 	struct buf *bp;
5992 	uint8_t *start;
5993 	uint8_t *end;
5994 	ufs_lbn_t lbnadd;
5995 	int level;
5996 	int error;
5997 	int off;
5998 
5999 
6000 	freework = NULL;
6001 	if (blkno == 0)
6002 		return (0);
6003 	mp = freeblks->fb_list.wk_mp;
6004 	bp = getblk(ITOV(ip), lbn, mp->mnt_stat.f_iosize, 0, 0, 0);
6005 	if ((bp->b_flags & B_CACHE) == 0) {
6006 		bp->b_blkno = blkptrtodb(VFSTOUFS(mp), blkno);
6007 		bp->b_iocmd = BIO_READ;
6008 		bp->b_flags &= ~B_INVAL;
6009 		bp->b_ioflags &= ~BIO_ERROR;
6010 		vfs_busy_pages(bp, 0);
6011 		bp->b_iooffset = dbtob(bp->b_blkno);
6012 		bstrategy(bp);
6013 		curthread->td_ru.ru_inblock++;
6014 		error = bufwait(bp);
6015 		if (error) {
6016 			brelse(bp);
6017 			return (error);
6018 		}
6019 	}
6020 	level = lbn_level(lbn);
6021 	lbnadd = lbn_offset(ip->i_fs, level);
6022 	/*
6023 	 * Compute the offset of the last block we want to keep.  Store
6024 	 * in the freework the first block we want to completely free.
6025 	 */
6026 	off = (lastlbn - -(lbn + level)) / lbnadd;
6027 	if (off + 1 == NINDIR(ip->i_fs))
6028 		goto nowork;
6029 	freework = newfreework(ip->i_ump, freeblks, NULL, lbn, blkno, 0, off+1,
6030 	    0);
6031 	/*
6032 	 * Link the freework into the indirdep.  This will prevent any new
6033 	 * allocations from proceeding until we are finished with the
6034 	 * truncate and the block is written.
6035 	 */
6036 	ACQUIRE_LOCK(&lk);
6037 	indirdep = indirdep_lookup(mp, ip, bp);
6038 	if (indirdep->ir_freeblks)
6039 		panic("setup_trunc_indir: indirdep already truncated.");
6040 	TAILQ_INSERT_TAIL(&indirdep->ir_trunc, freework, fw_next);
6041 	freework->fw_indir = indirdep;
6042 	/*
6043 	 * Cancel any allocindirs that will not make it to disk.
6044 	 * We have to do this for all copies of the indirdep that
6045 	 * live on this newblk.
6046 	 */
6047 	if ((indirdep->ir_state & DEPCOMPLETE) == 0) {
6048 		newblk_lookup(mp, dbtofsb(ip->i_fs, bp->b_blkno), 0, &newblk);
6049 		LIST_FOREACH(indirn, &newblk->nb_indirdeps, ir_next)
6050 			trunc_indirdep(indirn, freeblks, bp, off);
6051 	} else
6052 		trunc_indirdep(indirdep, freeblks, bp, off);
6053 	FREE_LOCK(&lk);
6054 	/*
6055 	 * Creation is protected by the buf lock. The saveddata is only
6056 	 * needed if a full truncation follows a partial truncation but it
6057 	 * is difficult to allocate in that case so we fetch it anyway.
6058 	 */
6059 	if (indirdep->ir_saveddata == NULL)
6060 		indirdep->ir_saveddata = malloc(bp->b_bcount, M_INDIRDEP,
6061 		    M_SOFTDEP_FLAGS);
6062 nowork:
6063 	/* Fetch the blkno of the child and the zero start offset. */
6064 	if (ip->i_ump->um_fstype == UFS1) {
6065 		blkno = ((ufs1_daddr_t *)bp->b_data)[off];
6066 		start = (uint8_t *)&((ufs1_daddr_t *)bp->b_data)[off+1];
6067 	} else {
6068 		blkno = ((ufs2_daddr_t *)bp->b_data)[off];
6069 		start = (uint8_t *)&((ufs2_daddr_t *)bp->b_data)[off+1];
6070 	}
6071 	if (freework) {
6072 		/* Zero the truncated pointers. */
6073 		end = bp->b_data + bp->b_bcount;
6074 		bzero(start, end - start);
6075 		bdwrite(bp);
6076 	} else
6077 		bqrelse(bp);
6078 	if (level == 0)
6079 		return (0);
6080 	lbn++; /* adjust level */
6081 	lbn -= (off * lbnadd);
6082 	return setup_trunc_indir(freeblks, ip, lbn, lastlbn, blkno);
6083 }
6084 
6085 /*
6086  * Complete the partial truncation of an indirect block setup by
6087  * setup_trunc_indir().  This zeros the truncated pointers in the saved
6088  * copy and writes them to disk before the freeblks is allowed to complete.
6089  */
6090 static void
6091 complete_trunc_indir(freework)
6092 	struct freework *freework;
6093 {
6094 	struct freework *fwn;
6095 	struct indirdep *indirdep;
6096 	struct buf *bp;
6097 	uintptr_t start;
6098 	int count;
6099 
6100 	indirdep = freework->fw_indir;
6101 	for (;;) {
6102 		bp = indirdep->ir_bp;
6103 		/* See if the block was discarded. */
6104 		if (bp == NULL)
6105 			break;
6106 		/* Inline part of getdirtybuf().  We dont want bremfree. */
6107 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) == 0)
6108 			break;
6109 		if (BUF_LOCK(bp,
6110 		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, &lk) == 0)
6111 			BUF_UNLOCK(bp);
6112 		ACQUIRE_LOCK(&lk);
6113 	}
6114 	mtx_assert(&lk, MA_OWNED);
6115 	freework->fw_state |= DEPCOMPLETE;
6116 	TAILQ_REMOVE(&indirdep->ir_trunc, freework, fw_next);
6117 	/*
6118 	 * Zero the pointers in the saved copy.
6119 	 */
6120 	if (indirdep->ir_state & UFS1FMT)
6121 		start = sizeof(ufs1_daddr_t);
6122 	else
6123 		start = sizeof(ufs2_daddr_t);
6124 	start *= freework->fw_start;
6125 	count = indirdep->ir_savebp->b_bcount - start;
6126 	start += (uintptr_t)indirdep->ir_savebp->b_data;
6127 	bzero((char *)start, count);
6128 	/*
6129 	 * We need to start the next truncation in the list if it has not
6130 	 * been started yet.
6131 	 */
6132 	fwn = TAILQ_FIRST(&indirdep->ir_trunc);
6133 	if (fwn != NULL) {
6134 		if (fwn->fw_freeblks == indirdep->ir_freeblks)
6135 			TAILQ_REMOVE(&indirdep->ir_trunc, fwn, fw_next);
6136 		if ((fwn->fw_state & ONWORKLIST) == 0)
6137 			freework_enqueue(fwn);
6138 	}
6139 	/*
6140 	 * If bp is NULL the block was fully truncated, restore
6141 	 * the saved block list otherwise free it if it is no
6142 	 * longer needed.
6143 	 */
6144 	if (TAILQ_EMPTY(&indirdep->ir_trunc)) {
6145 		if (bp == NULL)
6146 			bcopy(indirdep->ir_saveddata,
6147 			    indirdep->ir_savebp->b_data,
6148 			    indirdep->ir_savebp->b_bcount);
6149 		free(indirdep->ir_saveddata, M_INDIRDEP);
6150 		indirdep->ir_saveddata = NULL;
6151 	}
6152 	/*
6153 	 * When bp is NULL there is a full truncation pending.  We
6154 	 * must wait for this full truncation to be journaled before
6155 	 * we can release this freework because the disk pointers will
6156 	 * never be written as zero.
6157 	 */
6158 	if (bp == NULL)  {
6159 		if (LIST_EMPTY(&indirdep->ir_freeblks->fb_jblkdephd))
6160 			handle_written_freework(freework);
6161 		else
6162 			WORKLIST_INSERT(&indirdep->ir_freeblks->fb_freeworkhd,
6163 			   &freework->fw_list);
6164 	} else {
6165 		/* Complete when the real copy is written. */
6166 		WORKLIST_INSERT(&bp->b_dep, &freework->fw_list);
6167 		BUF_UNLOCK(bp);
6168 	}
6169 }
6170 
6171 /*
6172  * Calculate the number of blocks we are going to release where datablocks
6173  * is the current total and length is the new file size.
6174  */
6175 ufs2_daddr_t
6176 blkcount(fs, datablocks, length)
6177 	struct fs *fs;
6178 	ufs2_daddr_t datablocks;
6179 	off_t length;
6180 {
6181 	off_t totblks, numblks;
6182 
6183 	totblks = 0;
6184 	numblks = howmany(length, fs->fs_bsize);
6185 	if (numblks <= NDADDR) {
6186 		totblks = howmany(length, fs->fs_fsize);
6187 		goto out;
6188 	}
6189         totblks = blkstofrags(fs, numblks);
6190 	numblks -= NDADDR;
6191 	/*
6192 	 * Count all single, then double, then triple indirects required.
6193 	 * Subtracting one indirects worth of blocks for each pass
6194 	 * acknowledges one of each pointed to by the inode.
6195 	 */
6196 	for (;;) {
6197 		totblks += blkstofrags(fs, howmany(numblks, NINDIR(fs)));
6198 		numblks -= NINDIR(fs);
6199 		if (numblks <= 0)
6200 			break;
6201 		numblks = howmany(numblks, NINDIR(fs));
6202 	}
6203 out:
6204 	totblks = fsbtodb(fs, totblks);
6205 	/*
6206 	 * Handle sparse files.  We can't reclaim more blocks than the inode
6207 	 * references.  We will correct it later in handle_complete_freeblks()
6208 	 * when we know the real count.
6209 	 */
6210 	if (totblks > datablocks)
6211 		return (0);
6212 	return (datablocks - totblks);
6213 }
6214 
6215 /*
6216  * Handle freeblocks for journaled softupdate filesystems.
6217  *
6218  * Contrary to normal softupdates, we must preserve the block pointers in
6219  * indirects until their subordinates are free.  This is to avoid journaling
6220  * every block that is freed which may consume more space than the journal
6221  * itself.  The recovery program will see the free block journals at the
6222  * base of the truncated area and traverse them to reclaim space.  The
6223  * pointers in the inode may be cleared immediately after the journal
6224  * records are written because each direct and indirect pointer in the
6225  * inode is recorded in a journal.  This permits full truncation to proceed
6226  * asynchronously.  The write order is journal -> inode -> cgs -> indirects.
6227  *
6228  * The algorithm is as follows:
6229  * 1) Traverse the in-memory state and create journal entries to release
6230  *    the relevant blocks and full indirect trees.
6231  * 2) Traverse the indirect block chain adding partial truncation freework
6232  *    records to indirects in the path to lastlbn.  The freework will
6233  *    prevent new allocation dependencies from being satisfied in this
6234  *    indirect until the truncation completes.
6235  * 3) Read and lock the inode block, performing an update with the new size
6236  *    and pointers.  This prevents truncated data from becoming valid on
6237  *    disk through step 4.
6238  * 4) Reap unsatisfied dependencies that are beyond the truncated area,
6239  *    eliminate journal work for those records that do not require it.
6240  * 5) Schedule the journal records to be written followed by the inode block.
6241  * 6) Allocate any necessary frags for the end of file.
6242  * 7) Zero any partially truncated blocks.
6243  *
6244  * From this truncation proceeds asynchronously using the freework and
6245  * indir_trunc machinery.  The file will not be extended again into a
6246  * partially truncated indirect block until all work is completed but
6247  * the normal dependency mechanism ensures that it is rolled back/forward
6248  * as appropriate.  Further truncation may occur without delay and is
6249  * serialized in indir_trunc().
6250  */
6251 void
6252 softdep_journal_freeblocks(ip, cred, length, flags)
6253 	struct inode *ip;	/* The inode whose length is to be reduced */
6254 	struct ucred *cred;
6255 	off_t length;		/* The new length for the file */
6256 	int flags;		/* IO_EXT and/or IO_NORMAL */
6257 {
6258 	struct freeblks *freeblks, *fbn;
6259 	struct worklist *wk, *wkn;
6260 	struct inodedep *inodedep;
6261 	struct jblkdep *jblkdep;
6262 	struct allocdirect *adp, *adpn;
6263 	struct fs *fs;
6264 	struct buf *bp;
6265 	struct vnode *vp;
6266 	struct mount *mp;
6267 	ufs2_daddr_t extblocks, datablocks;
6268 	ufs_lbn_t tmpval, lbn, lastlbn;
6269 	int frags, lastoff, iboff, allocblock, needj, dflags, error, i;
6270 
6271 	fs = ip->i_fs;
6272 	mp = UFSTOVFS(ip->i_ump);
6273 	vp = ITOV(ip);
6274 	needj = 1;
6275 	iboff = -1;
6276 	allocblock = 0;
6277 	extblocks = 0;
6278 	datablocks = 0;
6279 	frags = 0;
6280 	freeblks = newfreeblks(mp, ip);
6281 	ACQUIRE_LOCK(&lk);
6282 	/*
6283 	 * If we're truncating a removed file that will never be written
6284 	 * we don't need to journal the block frees.  The canceled journals
6285 	 * for the allocations will suffice.
6286 	 */
6287 	dflags = DEPALLOC;
6288 	if (IS_SNAPSHOT(ip))
6289 		dflags |= NODELAY;
6290 	inodedep_lookup(mp, ip->i_number, dflags, &inodedep);
6291 	if ((inodedep->id_state & (UNLINKED | DEPCOMPLETE)) == UNLINKED &&
6292 	    length == 0)
6293 		needj = 0;
6294 	CTR3(KTR_SUJ, "softdep_journal_freeblks: ip %d length %ld needj %d",
6295 	    ip->i_number, length, needj);
6296 	FREE_LOCK(&lk);
6297 	/*
6298 	 * Calculate the lbn that we are truncating to.  This results in -1
6299 	 * if we're truncating the 0 bytes.  So it is the last lbn we want
6300 	 * to keep, not the first lbn we want to truncate.
6301 	 */
6302 	lastlbn = lblkno(fs, length + fs->fs_bsize - 1) - 1;
6303 	lastoff = blkoff(fs, length);
6304 	/*
6305 	 * Compute frags we are keeping in lastlbn.  0 means all.
6306 	 */
6307 	if (lastlbn >= 0 && lastlbn < NDADDR) {
6308 		frags = fragroundup(fs, lastoff);
6309 		/* adp offset of last valid allocdirect. */
6310 		iboff = lastlbn;
6311 	} else if (lastlbn > 0)
6312 		iboff = NDADDR;
6313 	if (fs->fs_magic == FS_UFS2_MAGIC)
6314 		extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize));
6315 	/*
6316 	 * Handle normal data blocks and indirects.  This section saves
6317 	 * values used after the inode update to complete frag and indirect
6318 	 * truncation.
6319 	 */
6320 	if ((flags & IO_NORMAL) != 0) {
6321 		/*
6322 		 * Handle truncation of whole direct and indirect blocks.
6323 		 */
6324 		for (i = iboff + 1; i < NDADDR; i++)
6325 			setup_freedirect(freeblks, ip, i, needj);
6326 		for (i = 0, tmpval = NINDIR(fs), lbn = NDADDR; i < NIADDR;
6327 		    i++, lbn += tmpval, tmpval *= NINDIR(fs)) {
6328 			/* Release a whole indirect tree. */
6329 			if (lbn > lastlbn) {
6330 				setup_freeindir(freeblks, ip, i, -lbn -i,
6331 				    needj);
6332 				continue;
6333 			}
6334 			iboff = i + NDADDR;
6335 			/*
6336 			 * Traverse partially truncated indirect tree.
6337 			 */
6338 			if (lbn <= lastlbn && lbn + tmpval - 1 > lastlbn)
6339 				setup_trunc_indir(freeblks, ip, -lbn - i,
6340 				    lastlbn, DIP(ip, i_ib[i]));
6341 		}
6342 		/*
6343 		 * Handle partial truncation to a frag boundary.
6344 		 */
6345 		if (frags) {
6346 			ufs2_daddr_t blkno;
6347 			long oldfrags;
6348 
6349 			oldfrags = blksize(fs, ip, lastlbn);
6350 			blkno = DIP(ip, i_db[lastlbn]);
6351 			if (blkno && oldfrags != frags) {
6352 				oldfrags -= frags;
6353 				oldfrags = numfrags(ip->i_fs, oldfrags);
6354 				blkno += numfrags(ip->i_fs, frags);
6355 				newfreework(ip->i_ump, freeblks, NULL, lastlbn,
6356 				    blkno, oldfrags, 0, needj);
6357 			} else if (blkno == 0)
6358 				allocblock = 1;
6359 		}
6360 		/*
6361 		 * Add a journal record for partial truncate if we are
6362 		 * handling indirect blocks.  Non-indirects need no extra
6363 		 * journaling.
6364 		 */
6365 		if (length != 0 && lastlbn >= NDADDR) {
6366 			ip->i_flag |= IN_TRUNCATED;
6367 			newjtrunc(freeblks, length, 0);
6368 		}
6369 		ip->i_size = length;
6370 		DIP_SET(ip, i_size, ip->i_size);
6371 		datablocks = DIP(ip, i_blocks) - extblocks;
6372 		if (length != 0)
6373 			datablocks = blkcount(ip->i_fs, datablocks, length);
6374 		freeblks->fb_len = length;
6375 	}
6376 	if ((flags & IO_EXT) != 0) {
6377 		for (i = 0; i < NXADDR; i++)
6378 			setup_freeext(freeblks, ip, i, needj);
6379 		ip->i_din2->di_extsize = 0;
6380 		datablocks += extblocks;
6381 	}
6382 #ifdef QUOTA
6383 	/* Reference the quotas in case the block count is wrong in the end. */
6384 	quotaref(vp, freeblks->fb_quota);
6385 	(void) chkdq(ip, -datablocks, NOCRED, 0);
6386 #endif
6387 	freeblks->fb_chkcnt = -datablocks;
6388 	UFS_LOCK(ip->i_ump);
6389 	fs->fs_pendingblocks += datablocks;
6390 	UFS_UNLOCK(ip->i_ump);
6391 	DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - datablocks);
6392 	/*
6393 	 * Handle truncation of incomplete alloc direct dependencies.  We
6394 	 * hold the inode block locked to prevent incomplete dependencies
6395 	 * from reaching the disk while we are eliminating those that
6396 	 * have been truncated.  This is a partially inlined ffs_update().
6397 	 */
6398 	ufs_itimes(vp);
6399 	ip->i_flag &= ~(IN_LAZYACCESS | IN_LAZYMOD | IN_MODIFIED);
6400 	error = bread(ip->i_devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
6401 	    (int)fs->fs_bsize, cred, &bp);
6402 	if (error) {
6403 		brelse(bp);
6404 		softdep_error("softdep_journal_freeblocks", error);
6405 		return;
6406 	}
6407 	if (bp->b_bufsize == fs->fs_bsize)
6408 		bp->b_flags |= B_CLUSTEROK;
6409 	softdep_update_inodeblock(ip, bp, 0);
6410 	if (ip->i_ump->um_fstype == UFS1)
6411 		*((struct ufs1_dinode *)bp->b_data +
6412 		    ino_to_fsbo(fs, ip->i_number)) = *ip->i_din1;
6413 	else
6414 		*((struct ufs2_dinode *)bp->b_data +
6415 		    ino_to_fsbo(fs, ip->i_number)) = *ip->i_din2;
6416 	ACQUIRE_LOCK(&lk);
6417 	(void) inodedep_lookup(mp, ip->i_number, dflags, &inodedep);
6418 	if ((inodedep->id_state & IOSTARTED) != 0)
6419 		panic("softdep_setup_freeblocks: inode busy");
6420 	/*
6421 	 * Add the freeblks structure to the list of operations that
6422 	 * must await the zero'ed inode being written to disk. If we
6423 	 * still have a bitmap dependency (needj), then the inode
6424 	 * has never been written to disk, so we can process the
6425 	 * freeblks below once we have deleted the dependencies.
6426 	 */
6427 	if (needj)
6428 		WORKLIST_INSERT(&bp->b_dep, &freeblks->fb_list);
6429 	else
6430 		freeblks->fb_state |= COMPLETE;
6431 	if ((flags & IO_NORMAL) != 0) {
6432 		TAILQ_FOREACH_SAFE(adp, &inodedep->id_inoupdt, ad_next, adpn) {
6433 			if (adp->ad_offset > iboff)
6434 				cancel_allocdirect(&inodedep->id_inoupdt, adp,
6435 				    freeblks);
6436 			/*
6437 			 * Truncate the allocdirect.  We could eliminate
6438 			 * or modify journal records as well.
6439 			 */
6440 			else if (adp->ad_offset == iboff && frags)
6441 				adp->ad_newsize = frags;
6442 		}
6443 	}
6444 	if ((flags & IO_EXT) != 0)
6445 		while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != 0)
6446 			cancel_allocdirect(&inodedep->id_extupdt, adp,
6447 			    freeblks);
6448 	/*
6449 	 * Scan the bufwait list for newblock dependencies that will never
6450 	 * make it to disk.
6451 	 */
6452 	LIST_FOREACH_SAFE(wk, &inodedep->id_bufwait, wk_list, wkn) {
6453 		if (wk->wk_type != D_ALLOCDIRECT)
6454 			continue;
6455 		adp = WK_ALLOCDIRECT(wk);
6456 		if (((flags & IO_NORMAL) != 0 && (adp->ad_offset > iboff)) ||
6457 		    ((flags & IO_EXT) != 0 && (adp->ad_state & EXTDATA))) {
6458 			cancel_jfreeblk(freeblks, adp->ad_newblkno);
6459 			cancel_newblk(WK_NEWBLK(wk), NULL, &freeblks->fb_jwork);
6460 			WORKLIST_INSERT(&freeblks->fb_freeworkhd, wk);
6461 		}
6462 	}
6463 	/*
6464 	 * Add journal work.
6465 	 */
6466 	LIST_FOREACH(jblkdep, &freeblks->fb_jblkdephd, jb_deps)
6467 		add_to_journal(&jblkdep->jb_list);
6468 	FREE_LOCK(&lk);
6469 	bdwrite(bp);
6470 	/*
6471 	 * Truncate dependency structures beyond length.
6472 	 */
6473 	trunc_dependencies(ip, freeblks, lastlbn, frags, flags);
6474 	/*
6475 	 * This is only set when we need to allocate a fragment because
6476 	 * none existed at the end of a frag-sized file.  It handles only
6477 	 * allocating a new, zero filled block.
6478 	 */
6479 	if (allocblock) {
6480 		ip->i_size = length - lastoff;
6481 		DIP_SET(ip, i_size, ip->i_size);
6482 		error = UFS_BALLOC(vp, length - 1, 1, cred, BA_CLRBUF, &bp);
6483 		if (error != 0) {
6484 			softdep_error("softdep_journal_freeblks", error);
6485 			return;
6486 		}
6487 		ip->i_size = length;
6488 		DIP_SET(ip, i_size, length);
6489 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
6490 		allocbuf(bp, frags);
6491 		ffs_update(vp, 0);
6492 		bawrite(bp);
6493 	} else if (lastoff != 0 && vp->v_type != VDIR) {
6494 		int size;
6495 
6496 		/*
6497 		 * Zero the end of a truncated frag or block.
6498 		 */
6499 		size = sblksize(fs, length, lastlbn);
6500 		error = bread(vp, lastlbn, size, cred, &bp);
6501 		if (error) {
6502 			softdep_error("softdep_journal_freeblks", error);
6503 			return;
6504 		}
6505 		bzero((char *)bp->b_data + lastoff, size - lastoff);
6506 		bawrite(bp);
6507 
6508 	}
6509 	ACQUIRE_LOCK(&lk);
6510 	inodedep_lookup(mp, ip->i_number, dflags, &inodedep);
6511 	TAILQ_INSERT_TAIL(&inodedep->id_freeblklst, freeblks, fb_next);
6512 	freeblks->fb_state |= DEPCOMPLETE | ONDEPLIST;
6513 	/*
6514 	 * We zero earlier truncations so they don't erroneously
6515 	 * update i_blocks.
6516 	 */
6517 	if (freeblks->fb_len == 0 && (flags & IO_NORMAL) != 0)
6518 		TAILQ_FOREACH(fbn, &inodedep->id_freeblklst, fb_next)
6519 			fbn->fb_len = 0;
6520 	if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE &&
6521 	    LIST_EMPTY(&freeblks->fb_jblkdephd))
6522 		freeblks->fb_state |= INPROGRESS;
6523 	else
6524 		freeblks = NULL;
6525 	FREE_LOCK(&lk);
6526 	if (freeblks)
6527 		handle_workitem_freeblocks(freeblks, 0);
6528 	trunc_pages(ip, length, extblocks, flags);
6529 
6530 }
6531 
6532 /*
6533  * Flush a JOP_SYNC to the journal.
6534  */
6535 void
6536 softdep_journal_fsync(ip)
6537 	struct inode *ip;
6538 {
6539 	struct jfsync *jfsync;
6540 
6541 	if ((ip->i_flag & IN_TRUNCATED) == 0)
6542 		return;
6543 	ip->i_flag &= ~IN_TRUNCATED;
6544 	jfsync = malloc(sizeof(*jfsync), M_JFSYNC, M_SOFTDEP_FLAGS | M_ZERO);
6545 	workitem_alloc(&jfsync->jfs_list, D_JFSYNC, UFSTOVFS(ip->i_ump));
6546 	jfsync->jfs_size = ip->i_size;
6547 	jfsync->jfs_ino = ip->i_number;
6548 	ACQUIRE_LOCK(&lk);
6549 	add_to_journal(&jfsync->jfs_list);
6550 	jwait(&jfsync->jfs_list, MNT_WAIT);
6551 	FREE_LOCK(&lk);
6552 }
6553 
6554 /*
6555  * Block de-allocation dependencies.
6556  *
6557  * When blocks are de-allocated, the on-disk pointers must be nullified before
6558  * the blocks are made available for use by other files.  (The true
6559  * requirement is that old pointers must be nullified before new on-disk
6560  * pointers are set.  We chose this slightly more stringent requirement to
6561  * reduce complexity.) Our implementation handles this dependency by updating
6562  * the inode (or indirect block) appropriately but delaying the actual block
6563  * de-allocation (i.e., freemap and free space count manipulation) until
6564  * after the updated versions reach stable storage.  After the disk is
6565  * updated, the blocks can be safely de-allocated whenever it is convenient.
6566  * This implementation handles only the common case of reducing a file's
6567  * length to zero. Other cases are handled by the conventional synchronous
6568  * write approach.
6569  *
6570  * The ffs implementation with which we worked double-checks
6571  * the state of the block pointers and file size as it reduces
6572  * a file's length.  Some of this code is replicated here in our
6573  * soft updates implementation.  The freeblks->fb_chkcnt field is
6574  * used to transfer a part of this information to the procedure
6575  * that eventually de-allocates the blocks.
6576  *
6577  * This routine should be called from the routine that shortens
6578  * a file's length, before the inode's size or block pointers
6579  * are modified. It will save the block pointer information for
6580  * later release and zero the inode so that the calling routine
6581  * can release it.
6582  */
6583 void
6584 softdep_setup_freeblocks(ip, length, flags)
6585 	struct inode *ip;	/* The inode whose length is to be reduced */
6586 	off_t length;		/* The new length for the file */
6587 	int flags;		/* IO_EXT and/or IO_NORMAL */
6588 {
6589 	struct ufs1_dinode *dp1;
6590 	struct ufs2_dinode *dp2;
6591 	struct freeblks *freeblks;
6592 	struct inodedep *inodedep;
6593 	struct allocdirect *adp;
6594 	struct buf *bp;
6595 	struct fs *fs;
6596 	ufs2_daddr_t extblocks, datablocks;
6597 	struct mount *mp;
6598 	int i, delay, error, dflags;
6599 	ufs_lbn_t tmpval;
6600 	ufs_lbn_t lbn;
6601 
6602 	CTR2(KTR_SUJ, "softdep_setup_freeblks: ip %d length %ld",
6603 	    ip->i_number, length);
6604 	fs = ip->i_fs;
6605 	mp = UFSTOVFS(ip->i_ump);
6606 	if (length != 0)
6607 		panic("softdep_setup_freeblocks: non-zero length");
6608 	freeblks = newfreeblks(mp, ip);
6609 	extblocks = 0;
6610 	datablocks = 0;
6611 	if (fs->fs_magic == FS_UFS2_MAGIC)
6612 		extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize));
6613 	if ((flags & IO_NORMAL) != 0) {
6614 		for (i = 0; i < NDADDR; i++)
6615 			setup_freedirect(freeblks, ip, i, 0);
6616 		for (i = 0, tmpval = NINDIR(fs), lbn = NDADDR; i < NIADDR;
6617 		    i++, lbn += tmpval, tmpval *= NINDIR(fs))
6618 			setup_freeindir(freeblks, ip, i, -lbn -i, 0);
6619 		ip->i_size = 0;
6620 		DIP_SET(ip, i_size, 0);
6621 		datablocks = DIP(ip, i_blocks) - extblocks;
6622 	}
6623 	if ((flags & IO_EXT) != 0) {
6624 		for (i = 0; i < NXADDR; i++)
6625 			setup_freeext(freeblks, ip, i, 0);
6626 		ip->i_din2->di_extsize = 0;
6627 		datablocks += extblocks;
6628 	}
6629 #ifdef QUOTA
6630 	/* Reference the quotas in case the block count is wrong in the end. */
6631 	quotaref(ITOV(ip), freeblks->fb_quota);
6632 	(void) chkdq(ip, -datablocks, NOCRED, 0);
6633 #endif
6634 	freeblks->fb_chkcnt = -datablocks;
6635 	UFS_LOCK(ip->i_ump);
6636 	fs->fs_pendingblocks += datablocks;
6637 	UFS_UNLOCK(ip->i_ump);
6638 	DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - datablocks);
6639 	/*
6640 	 * Push the zero'ed inode to to its disk buffer so that we are free
6641 	 * to delete its dependencies below. Once the dependencies are gone
6642 	 * the buffer can be safely released.
6643 	 */
6644 	if ((error = bread(ip->i_devvp,
6645 	    fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
6646 	    (int)fs->fs_bsize, NOCRED, &bp)) != 0) {
6647 		brelse(bp);
6648 		softdep_error("softdep_setup_freeblocks", error);
6649 	}
6650 	if (ip->i_ump->um_fstype == UFS1) {
6651 		dp1 = ((struct ufs1_dinode *)bp->b_data +
6652 		    ino_to_fsbo(fs, ip->i_number));
6653 		ip->i_din1->di_freelink = dp1->di_freelink;
6654 		*dp1 = *ip->i_din1;
6655 	} else {
6656 		dp2 = ((struct ufs2_dinode *)bp->b_data +
6657 		    ino_to_fsbo(fs, ip->i_number));
6658 		ip->i_din2->di_freelink = dp2->di_freelink;
6659 		*dp2 = *ip->i_din2;
6660 	}
6661 	/*
6662 	 * Find and eliminate any inode dependencies.
6663 	 */
6664 	ACQUIRE_LOCK(&lk);
6665 	dflags = DEPALLOC;
6666 	if (IS_SNAPSHOT(ip))
6667 		dflags |= NODELAY;
6668 	(void) inodedep_lookup(mp, ip->i_number, dflags, &inodedep);
6669 	if ((inodedep->id_state & IOSTARTED) != 0)
6670 		panic("softdep_setup_freeblocks: inode busy");
6671 	/*
6672 	 * Add the freeblks structure to the list of operations that
6673 	 * must await the zero'ed inode being written to disk. If we
6674 	 * still have a bitmap dependency (delay == 0), then the inode
6675 	 * has never been written to disk, so we can process the
6676 	 * freeblks below once we have deleted the dependencies.
6677 	 */
6678 	delay = (inodedep->id_state & DEPCOMPLETE);
6679 	if (delay)
6680 		WORKLIST_INSERT(&bp->b_dep, &freeblks->fb_list);
6681 	else
6682 		freeblks->fb_state |= COMPLETE;
6683 	/*
6684 	 * Because the file length has been truncated to zero, any
6685 	 * pending block allocation dependency structures associated
6686 	 * with this inode are obsolete and can simply be de-allocated.
6687 	 * We must first merge the two dependency lists to get rid of
6688 	 * any duplicate freefrag structures, then purge the merged list.
6689 	 * If we still have a bitmap dependency, then the inode has never
6690 	 * been written to disk, so we can free any fragments without delay.
6691 	 */
6692 	if (flags & IO_NORMAL) {
6693 		merge_inode_lists(&inodedep->id_newinoupdt,
6694 		    &inodedep->id_inoupdt);
6695 		while ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != 0)
6696 			cancel_allocdirect(&inodedep->id_inoupdt, adp,
6697 			    freeblks);
6698 	}
6699 	if (flags & IO_EXT) {
6700 		merge_inode_lists(&inodedep->id_newextupdt,
6701 		    &inodedep->id_extupdt);
6702 		while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != 0)
6703 			cancel_allocdirect(&inodedep->id_extupdt, adp,
6704 			    freeblks);
6705 	}
6706 	FREE_LOCK(&lk);
6707 	bdwrite(bp);
6708 	trunc_dependencies(ip, freeblks, -1, 0, flags);
6709 	ACQUIRE_LOCK(&lk);
6710 	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0)
6711 		(void) free_inodedep(inodedep);
6712 	freeblks->fb_state |= DEPCOMPLETE;
6713 	/*
6714 	 * If the inode with zeroed block pointers is now on disk
6715 	 * we can start freeing blocks.
6716 	 */
6717 	if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE)
6718 		freeblks->fb_state |= INPROGRESS;
6719 	else
6720 		freeblks = NULL;
6721 	FREE_LOCK(&lk);
6722 	if (freeblks)
6723 		handle_workitem_freeblocks(freeblks, 0);
6724 	trunc_pages(ip, length, extblocks, flags);
6725 }
6726 
6727 /*
6728  * Eliminate pages from the page cache that back parts of this inode and
6729  * adjust the vnode pager's idea of our size.  This prevents stale data
6730  * from hanging around in the page cache.
6731  */
6732 static void
6733 trunc_pages(ip, length, extblocks, flags)
6734 	struct inode *ip;
6735 	off_t length;
6736 	ufs2_daddr_t extblocks;
6737 	int flags;
6738 {
6739 	struct vnode *vp;
6740 	struct fs *fs;
6741 	ufs_lbn_t lbn;
6742 	off_t end, extend;
6743 
6744 	vp = ITOV(ip);
6745 	fs = ip->i_fs;
6746 	extend = OFF_TO_IDX(lblktosize(fs, -extblocks));
6747 	if ((flags & IO_EXT) != 0)
6748 		vn_pages_remove(vp, extend, 0);
6749 	if ((flags & IO_NORMAL) == 0)
6750 		return;
6751 	BO_LOCK(&vp->v_bufobj);
6752 	drain_output(vp);
6753 	BO_UNLOCK(&vp->v_bufobj);
6754 	/*
6755 	 * The vnode pager eliminates file pages we eliminate indirects
6756 	 * below.
6757 	 */
6758 	vnode_pager_setsize(vp, length);
6759 	/*
6760 	 * Calculate the end based on the last indirect we want to keep.  If
6761 	 * the block extends into indirects we can just use the negative of
6762 	 * its lbn.  Doubles and triples exist at lower numbers so we must
6763 	 * be careful not to remove those, if they exist.  double and triple
6764 	 * indirect lbns do not overlap with others so it is not important
6765 	 * to verify how many levels are required.
6766 	 */
6767 	lbn = lblkno(fs, length);
6768 	if (lbn >= NDADDR) {
6769 		/* Calculate the virtual lbn of the triple indirect. */
6770 		lbn = -lbn - (NIADDR - 1);
6771 		end = OFF_TO_IDX(lblktosize(fs, lbn));
6772 	} else
6773 		end = extend;
6774 	vn_pages_remove(vp, OFF_TO_IDX(OFF_MAX), end);
6775 }
6776 
6777 /*
6778  * See if the buf bp is in the range eliminated by truncation.
6779  */
6780 static int
6781 trunc_check_buf(bp, blkoffp, lastlbn, lastoff, flags)
6782 	struct buf *bp;
6783 	int *blkoffp;
6784 	ufs_lbn_t lastlbn;
6785 	int lastoff;
6786 	int flags;
6787 {
6788 	ufs_lbn_t lbn;
6789 
6790 	*blkoffp = 0;
6791 	/* Only match ext/normal blocks as appropriate. */
6792 	if (((flags & IO_EXT) == 0 && (bp->b_xflags & BX_ALTDATA)) ||
6793 	    ((flags & IO_NORMAL) == 0 && (bp->b_xflags & BX_ALTDATA) == 0))
6794 		return (0);
6795 	/* ALTDATA is always a full truncation. */
6796 	if ((bp->b_xflags & BX_ALTDATA) != 0)
6797 		return (1);
6798 	/* -1 is full truncation. */
6799 	if (lastlbn == -1)
6800 		return (1);
6801 	/*
6802 	 * If this is a partial truncate we only want those
6803 	 * blocks and indirect blocks that cover the range
6804 	 * we're after.
6805 	 */
6806 	lbn = bp->b_lblkno;
6807 	if (lbn < 0)
6808 		lbn = -(lbn + lbn_level(lbn));
6809 	if (lbn < lastlbn)
6810 		return (0);
6811 	/* Here we only truncate lblkno if it's partial. */
6812 	if (lbn == lastlbn) {
6813 		if (lastoff == 0)
6814 			return (0);
6815 		*blkoffp = lastoff;
6816 	}
6817 	return (1);
6818 }
6819 
6820 /*
6821  * Eliminate any dependencies that exist in memory beyond lblkno:off
6822  */
6823 static void
6824 trunc_dependencies(ip, freeblks, lastlbn, lastoff, flags)
6825 	struct inode *ip;
6826 	struct freeblks *freeblks;
6827 	ufs_lbn_t lastlbn;
6828 	int lastoff;
6829 	int flags;
6830 {
6831 	struct bufobj *bo;
6832 	struct vnode *vp;
6833 	struct buf *bp;
6834 	struct fs *fs;
6835 	int blkoff;
6836 
6837 	/*
6838 	 * We must wait for any I/O in progress to finish so that
6839 	 * all potential buffers on the dirty list will be visible.
6840 	 * Once they are all there, walk the list and get rid of
6841 	 * any dependencies.
6842 	 */
6843 	fs = ip->i_fs;
6844 	vp = ITOV(ip);
6845 	bo = &vp->v_bufobj;
6846 	BO_LOCK(bo);
6847 	drain_output(vp);
6848 	TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs)
6849 		bp->b_vflags &= ~BV_SCANNED;
6850 restart:
6851 	TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) {
6852 		if (bp->b_vflags & BV_SCANNED)
6853 			continue;
6854 		if (!trunc_check_buf(bp, &blkoff, lastlbn, lastoff, flags)) {
6855 			bp->b_vflags |= BV_SCANNED;
6856 			continue;
6857 		}
6858 		if ((bp = getdirtybuf(bp, BO_MTX(bo), MNT_WAIT)) == NULL)
6859 			goto restart;
6860 		BO_UNLOCK(bo);
6861 		if (deallocate_dependencies(bp, freeblks, blkoff))
6862 			bqrelse(bp);
6863 		else
6864 			brelse(bp);
6865 		BO_LOCK(bo);
6866 		goto restart;
6867 	}
6868 	/*
6869 	 * Now do the work of vtruncbuf while also matching indirect blocks.
6870 	 */
6871 	TAILQ_FOREACH(bp, &bo->bo_clean.bv_hd, b_bobufs)
6872 		bp->b_vflags &= ~BV_SCANNED;
6873 cleanrestart:
6874 	TAILQ_FOREACH(bp, &bo->bo_clean.bv_hd, b_bobufs) {
6875 		if (bp->b_vflags & BV_SCANNED)
6876 			continue;
6877 		if (!trunc_check_buf(bp, &blkoff, lastlbn, lastoff, flags)) {
6878 			bp->b_vflags |= BV_SCANNED;
6879 			continue;
6880 		}
6881 		if (BUF_LOCK(bp,
6882 		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
6883 		    BO_MTX(bo)) == ENOLCK) {
6884 			BO_LOCK(bo);
6885 			goto cleanrestart;
6886 		}
6887 		bp->b_vflags |= BV_SCANNED;
6888 		BO_LOCK(bo);
6889 		bremfree(bp);
6890 		BO_UNLOCK(bo);
6891 		if (blkoff != 0) {
6892 			allocbuf(bp, blkoff);
6893 			bqrelse(bp);
6894 		} else {
6895 			bp->b_flags |= B_INVAL | B_NOCACHE | B_RELBUF;
6896 			brelse(bp);
6897 		}
6898 		BO_LOCK(bo);
6899 		goto cleanrestart;
6900 	}
6901 	drain_output(vp);
6902 	BO_UNLOCK(bo);
6903 }
6904 
6905 static int
6906 cancel_pagedep(pagedep, freeblks, blkoff)
6907 	struct pagedep *pagedep;
6908 	struct freeblks *freeblks;
6909 	int blkoff;
6910 {
6911 	struct jremref *jremref;
6912 	struct jmvref *jmvref;
6913 	struct dirrem *dirrem, *tmp;
6914 	int i;
6915 
6916 	/*
6917 	 * Copy any directory remove dependencies to the list
6918 	 * to be processed after the freeblks proceeds.  If
6919 	 * directory entry never made it to disk they
6920 	 * can be dumped directly onto the work list.
6921 	 */
6922 	LIST_FOREACH_SAFE(dirrem, &pagedep->pd_dirremhd, dm_next, tmp) {
6923 		/* Skip this directory removal if it is intended to remain. */
6924 		if (dirrem->dm_offset < blkoff)
6925 			continue;
6926 		/*
6927 		 * If there are any dirrems we wait for the journal write
6928 		 * to complete and then restart the buf scan as the lock
6929 		 * has been dropped.
6930 		 */
6931 		while ((jremref = LIST_FIRST(&dirrem->dm_jremrefhd)) != NULL) {
6932 			jwait(&jremref->jr_list, MNT_WAIT);
6933 			return (ERESTART);
6934 		}
6935 		LIST_REMOVE(dirrem, dm_next);
6936 		dirrem->dm_dirinum = pagedep->pd_ino;
6937 		WORKLIST_INSERT(&freeblks->fb_freeworkhd, &dirrem->dm_list);
6938 	}
6939 	while ((jmvref = LIST_FIRST(&pagedep->pd_jmvrefhd)) != NULL) {
6940 		jwait(&jmvref->jm_list, MNT_WAIT);
6941 		return (ERESTART);
6942 	}
6943 	/*
6944 	 * When we're partially truncating a pagedep we just want to flush
6945 	 * journal entries and return.  There can not be any adds in the
6946 	 * truncated portion of the directory and newblk must remain if
6947 	 * part of the block remains.
6948 	 */
6949 	if (blkoff != 0) {
6950 		struct diradd *dap;
6951 
6952 		LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist)
6953 			if (dap->da_offset > blkoff)
6954 				panic("cancel_pagedep: diradd %p off %d > %d",
6955 				    dap, dap->da_offset, blkoff);
6956 		for (i = 0; i < DAHASHSZ; i++)
6957 			LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist)
6958 				if (dap->da_offset > blkoff)
6959 					panic("cancel_pagedep: diradd %p off %d > %d",
6960 					    dap, dap->da_offset, blkoff);
6961 		return (0);
6962 	}
6963 	/*
6964 	 * There should be no directory add dependencies present
6965 	 * as the directory could not be truncated until all
6966 	 * children were removed.
6967 	 */
6968 	KASSERT(LIST_FIRST(&pagedep->pd_pendinghd) == NULL,
6969 	    ("deallocate_dependencies: pendinghd != NULL"));
6970 	for (i = 0; i < DAHASHSZ; i++)
6971 		KASSERT(LIST_FIRST(&pagedep->pd_diraddhd[i]) == NULL,
6972 		    ("deallocate_dependencies: diraddhd != NULL"));
6973 	if ((pagedep->pd_state & NEWBLOCK) != 0)
6974 		free_newdirblk(pagedep->pd_newdirblk);
6975 	if (free_pagedep(pagedep) == 0)
6976 		panic("Failed to free pagedep %p", pagedep);
6977 	return (0);
6978 }
6979 
6980 /*
6981  * Reclaim any dependency structures from a buffer that is about to
6982  * be reallocated to a new vnode. The buffer must be locked, thus,
6983  * no I/O completion operations can occur while we are manipulating
6984  * its associated dependencies. The mutex is held so that other I/O's
6985  * associated with related dependencies do not occur.
6986  */
6987 static int
6988 deallocate_dependencies(bp, freeblks, off)
6989 	struct buf *bp;
6990 	struct freeblks *freeblks;
6991 	int off;
6992 {
6993 	struct indirdep *indirdep;
6994 	struct pagedep *pagedep;
6995 	struct allocdirect *adp;
6996 	struct worklist *wk, *wkn;
6997 
6998 	ACQUIRE_LOCK(&lk);
6999 	LIST_FOREACH_SAFE(wk, &bp->b_dep, wk_list, wkn) {
7000 		switch (wk->wk_type) {
7001 		case D_INDIRDEP:
7002 			indirdep = WK_INDIRDEP(wk);
7003 			if (bp->b_lblkno >= 0 ||
7004 			    bp->b_blkno != indirdep->ir_savebp->b_lblkno)
7005 				panic("deallocate_dependencies: not indir");
7006 			cancel_indirdep(indirdep, bp, freeblks);
7007 			continue;
7008 
7009 		case D_PAGEDEP:
7010 			pagedep = WK_PAGEDEP(wk);
7011 			if (cancel_pagedep(pagedep, freeblks, off)) {
7012 				FREE_LOCK(&lk);
7013 				return (ERESTART);
7014 			}
7015 			continue;
7016 
7017 		case D_ALLOCINDIR:
7018 			/*
7019 			 * Simply remove the allocindir, we'll find it via
7020 			 * the indirdep where we can clear pointers if
7021 			 * needed.
7022 			 */
7023 			WORKLIST_REMOVE(wk);
7024 			continue;
7025 
7026 		case D_FREEWORK:
7027 			/*
7028 			 * A truncation is waiting for the zero'd pointers
7029 			 * to be written.  It can be freed when the freeblks
7030 			 * is journaled.
7031 			 */
7032 			WORKLIST_REMOVE(wk);
7033 			wk->wk_state |= ONDEPLIST;
7034 			WORKLIST_INSERT(&freeblks->fb_freeworkhd, wk);
7035 			break;
7036 
7037 		case D_ALLOCDIRECT:
7038 			adp = WK_ALLOCDIRECT(wk);
7039 			if (off != 0)
7040 				continue;
7041 			/* FALLTHROUGH */
7042 		default:
7043 			panic("deallocate_dependencies: Unexpected type %s",
7044 			    TYPENAME(wk->wk_type));
7045 			/* NOTREACHED */
7046 		}
7047 	}
7048 	FREE_LOCK(&lk);
7049 	/*
7050 	 * Don't throw away this buf, we were partially truncating and
7051 	 * some deps may always remain.
7052 	 */
7053 	if (off) {
7054 		allocbuf(bp, off);
7055 		bp->b_vflags |= BV_SCANNED;
7056 		return (EBUSY);
7057 	}
7058 	bp->b_flags |= B_INVAL | B_NOCACHE;
7059 
7060 	return (0);
7061 }
7062 
7063 /*
7064  * An allocdirect is being canceled due to a truncate.  We must make sure
7065  * the journal entry is released in concert with the blkfree that releases
7066  * the storage.  Completed journal entries must not be released until the
7067  * space is no longer pointed to by the inode or in the bitmap.
7068  */
7069 static void
7070 cancel_allocdirect(adphead, adp, freeblks)
7071 	struct allocdirectlst *adphead;
7072 	struct allocdirect *adp;
7073 	struct freeblks *freeblks;
7074 {
7075 	struct freework *freework;
7076 	struct newblk *newblk;
7077 	struct worklist *wk;
7078 
7079 	TAILQ_REMOVE(adphead, adp, ad_next);
7080 	newblk = (struct newblk *)adp;
7081 	freework = NULL;
7082 	/*
7083 	 * Find the correct freework structure.
7084 	 */
7085 	LIST_FOREACH(wk, &freeblks->fb_freeworkhd, wk_list) {
7086 		if (wk->wk_type != D_FREEWORK)
7087 			continue;
7088 		freework = WK_FREEWORK(wk);
7089 		if (freework->fw_blkno == newblk->nb_newblkno)
7090 			break;
7091 	}
7092 	if (freework == NULL)
7093 		panic("cancel_allocdirect: Freework not found");
7094 	/*
7095 	 * If a newblk exists at all we still have the journal entry that
7096 	 * initiated the allocation so we do not need to journal the free.
7097 	 */
7098 	cancel_jfreeblk(freeblks, freework->fw_blkno);
7099 	/*
7100 	 * If the journal hasn't been written the jnewblk must be passed
7101 	 * to the call to ffs_blkfree that reclaims the space.  We accomplish
7102 	 * this by linking the journal dependency into the freework to be
7103 	 * freed when freework_freeblock() is called.  If the journal has
7104 	 * been written we can simply reclaim the journal space when the
7105 	 * freeblks work is complete.
7106 	 */
7107 	freework->fw_jnewblk = cancel_newblk(newblk, &freework->fw_list,
7108 	    &freeblks->fb_jwork);
7109 	WORKLIST_INSERT(&freeblks->fb_freeworkhd, &newblk->nb_list);
7110 }
7111 
7112 
7113 /*
7114  * Cancel a new block allocation.  May be an indirect or direct block.  We
7115  * remove it from various lists and return any journal record that needs to
7116  * be resolved by the caller.
7117  *
7118  * A special consideration is made for indirects which were never pointed
7119  * at on disk and will never be found once this block is released.
7120  */
7121 static struct jnewblk *
7122 cancel_newblk(newblk, wk, wkhd)
7123 	struct newblk *newblk;
7124 	struct worklist *wk;
7125 	struct workhead *wkhd;
7126 {
7127 	struct jnewblk *jnewblk;
7128 
7129 	CTR1(KTR_SUJ, "cancel_newblk: blkno %jd", newblk->nb_newblkno);
7130 
7131 	newblk->nb_state |= GOINGAWAY;
7132 	/*
7133 	 * Previously we traversed the completedhd on each indirdep
7134 	 * attached to this newblk to cancel them and gather journal
7135 	 * work.  Since we need only the oldest journal segment and
7136 	 * the lowest point on the tree will always have the oldest
7137 	 * journal segment we are free to release the segments
7138 	 * of any subordinates and may leave the indirdep list to
7139 	 * indirdep_complete() when this newblk is freed.
7140 	 */
7141 	if (newblk->nb_state & ONDEPLIST) {
7142 		newblk->nb_state &= ~ONDEPLIST;
7143 		LIST_REMOVE(newblk, nb_deps);
7144 	}
7145 	if (newblk->nb_state & ONWORKLIST)
7146 		WORKLIST_REMOVE(&newblk->nb_list);
7147 	/*
7148 	 * If the journal entry hasn't been written we save a pointer to
7149 	 * the dependency that frees it until it is written or the
7150 	 * superseding operation completes.
7151 	 */
7152 	jnewblk = newblk->nb_jnewblk;
7153 	if (jnewblk != NULL && wk != NULL) {
7154 		newblk->nb_jnewblk = NULL;
7155 		jnewblk->jn_dep = wk;
7156 	}
7157 	if (!LIST_EMPTY(&newblk->nb_jwork))
7158 		jwork_move(wkhd, &newblk->nb_jwork);
7159 	/*
7160 	 * When truncating we must free the newdirblk early to remove
7161 	 * the pagedep from the hash before returning.
7162 	 */
7163 	if ((wk = LIST_FIRST(&newblk->nb_newdirblk)) != NULL)
7164 		free_newdirblk(WK_NEWDIRBLK(wk));
7165 	if (!LIST_EMPTY(&newblk->nb_newdirblk))
7166 		panic("cancel_newblk: extra newdirblk");
7167 
7168 	return (jnewblk);
7169 }
7170 
7171 /*
7172  * Schedule the freefrag associated with a newblk to be released once
7173  * the pointers are written and the previous block is no longer needed.
7174  */
7175 static void
7176 newblk_freefrag(newblk)
7177 	struct newblk *newblk;
7178 {
7179 	struct freefrag *freefrag;
7180 
7181 	if (newblk->nb_freefrag == NULL)
7182 		return;
7183 	freefrag = newblk->nb_freefrag;
7184 	newblk->nb_freefrag = NULL;
7185 	freefrag->ff_state |= COMPLETE;
7186 	if ((freefrag->ff_state & ALLCOMPLETE) == ALLCOMPLETE)
7187 		add_to_worklist(&freefrag->ff_list, 0);
7188 }
7189 
7190 /*
7191  * Free a newblk. Generate a new freefrag work request if appropriate.
7192  * This must be called after the inode pointer and any direct block pointers
7193  * are valid or fully removed via truncate or frag extension.
7194  */
7195 static void
7196 free_newblk(newblk)
7197 	struct newblk *newblk;
7198 {
7199 	struct indirdep *indirdep;
7200 	struct worklist *wk;
7201 
7202 	KASSERT(newblk->nb_jnewblk == NULL,
7203 	    ("free_newblk; jnewblk %p still attached", newblk->nb_jnewblk));
7204 	mtx_assert(&lk, MA_OWNED);
7205 	newblk_freefrag(newblk);
7206 	if (newblk->nb_state & ONDEPLIST)
7207 		LIST_REMOVE(newblk, nb_deps);
7208 	if (newblk->nb_state & ONWORKLIST)
7209 		WORKLIST_REMOVE(&newblk->nb_list);
7210 	LIST_REMOVE(newblk, nb_hash);
7211 	if ((wk = LIST_FIRST(&newblk->nb_newdirblk)) != NULL)
7212 		free_newdirblk(WK_NEWDIRBLK(wk));
7213 	if (!LIST_EMPTY(&newblk->nb_newdirblk))
7214 		panic("free_newblk: extra newdirblk");
7215 	while ((indirdep = LIST_FIRST(&newblk->nb_indirdeps)) != NULL)
7216 		indirdep_complete(indirdep);
7217 	handle_jwork(&newblk->nb_jwork);
7218 	newblk->nb_list.wk_type = D_NEWBLK;
7219 	WORKITEM_FREE(newblk, D_NEWBLK);
7220 }
7221 
7222 /*
7223  * Free a newdirblk. Clear the NEWBLOCK flag on its associated pagedep.
7224  * This routine must be called with splbio interrupts blocked.
7225  */
7226 static void
7227 free_newdirblk(newdirblk)
7228 	struct newdirblk *newdirblk;
7229 {
7230 	struct pagedep *pagedep;
7231 	struct diradd *dap;
7232 	struct worklist *wk;
7233 
7234 	mtx_assert(&lk, MA_OWNED);
7235 	WORKLIST_REMOVE(&newdirblk->db_list);
7236 	/*
7237 	 * If the pagedep is still linked onto the directory buffer
7238 	 * dependency chain, then some of the entries on the
7239 	 * pd_pendinghd list may not be committed to disk yet. In
7240 	 * this case, we will simply clear the NEWBLOCK flag and
7241 	 * let the pd_pendinghd list be processed when the pagedep
7242 	 * is next written. If the pagedep is no longer on the buffer
7243 	 * dependency chain, then all the entries on the pd_pending
7244 	 * list are committed to disk and we can free them here.
7245 	 */
7246 	pagedep = newdirblk->db_pagedep;
7247 	pagedep->pd_state &= ~NEWBLOCK;
7248 	if ((pagedep->pd_state & ONWORKLIST) == 0) {
7249 		while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL)
7250 			free_diradd(dap, NULL);
7251 		/*
7252 		 * If no dependencies remain, the pagedep will be freed.
7253 		 */
7254 		free_pagedep(pagedep);
7255 	}
7256 	/* Should only ever be one item in the list. */
7257 	while ((wk = LIST_FIRST(&newdirblk->db_mkdir)) != NULL) {
7258 		WORKLIST_REMOVE(wk);
7259 		handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY);
7260 	}
7261 	WORKITEM_FREE(newdirblk, D_NEWDIRBLK);
7262 }
7263 
7264 /*
7265  * Prepare an inode to be freed. The actual free operation is not
7266  * done until the zero'ed inode has been written to disk.
7267  */
7268 void
7269 softdep_freefile(pvp, ino, mode)
7270 	struct vnode *pvp;
7271 	ino_t ino;
7272 	int mode;
7273 {
7274 	struct inode *ip = VTOI(pvp);
7275 	struct inodedep *inodedep;
7276 	struct freefile *freefile;
7277 	struct freeblks *freeblks;
7278 
7279 	/*
7280 	 * This sets up the inode de-allocation dependency.
7281 	 */
7282 	freefile = malloc(sizeof(struct freefile),
7283 		M_FREEFILE, M_SOFTDEP_FLAGS);
7284 	workitem_alloc(&freefile->fx_list, D_FREEFILE, pvp->v_mount);
7285 	freefile->fx_mode = mode;
7286 	freefile->fx_oldinum = ino;
7287 	freefile->fx_devvp = ip->i_devvp;
7288 	LIST_INIT(&freefile->fx_jwork);
7289 	UFS_LOCK(ip->i_ump);
7290 	ip->i_fs->fs_pendinginodes += 1;
7291 	UFS_UNLOCK(ip->i_ump);
7292 
7293 	/*
7294 	 * If the inodedep does not exist, then the zero'ed inode has
7295 	 * been written to disk. If the allocated inode has never been
7296 	 * written to disk, then the on-disk inode is zero'ed. In either
7297 	 * case we can free the file immediately.  If the journal was
7298 	 * canceled before being written the inode will never make it to
7299 	 * disk and we must send the canceled journal entrys to
7300 	 * ffs_freefile() to be cleared in conjunction with the bitmap.
7301 	 * Any blocks waiting on the inode to write can be safely freed
7302 	 * here as it will never been written.
7303 	 */
7304 	ACQUIRE_LOCK(&lk);
7305 	inodedep_lookup(pvp->v_mount, ino, 0, &inodedep);
7306 	if (inodedep) {
7307 		/*
7308 		 * Clear out freeblks that no longer need to reference
7309 		 * this inode.
7310 		 */
7311 		while ((freeblks =
7312 		    TAILQ_FIRST(&inodedep->id_freeblklst)) != NULL) {
7313 			TAILQ_REMOVE(&inodedep->id_freeblklst, freeblks,
7314 			    fb_next);
7315 			freeblks->fb_state &= ~ONDEPLIST;
7316 		}
7317 		/*
7318 		 * Remove this inode from the unlinked list.
7319 		 */
7320 		if (inodedep->id_state & UNLINKED) {
7321 			/*
7322 			 * Save the journal work to be freed with the bitmap
7323 			 * before we clear UNLINKED.  Otherwise it can be lost
7324 			 * if the inode block is written.
7325 			 */
7326 			handle_bufwait(inodedep, &freefile->fx_jwork);
7327 			clear_unlinked_inodedep(inodedep);
7328 			/* Re-acquire inodedep as we've dropped lk. */
7329 			inodedep_lookup(pvp->v_mount, ino, 0, &inodedep);
7330 		}
7331 	}
7332 	if (inodedep == NULL || check_inode_unwritten(inodedep)) {
7333 		FREE_LOCK(&lk);
7334 		handle_workitem_freefile(freefile);
7335 		return;
7336 	}
7337 	if ((inodedep->id_state & DEPCOMPLETE) == 0)
7338 		inodedep->id_state |= GOINGAWAY;
7339 	WORKLIST_INSERT(&inodedep->id_inowait, &freefile->fx_list);
7340 	FREE_LOCK(&lk);
7341 	if (ip->i_number == ino)
7342 		ip->i_flag |= IN_MODIFIED;
7343 }
7344 
7345 /*
7346  * Check to see if an inode has never been written to disk. If
7347  * so free the inodedep and return success, otherwise return failure.
7348  * This routine must be called with splbio interrupts blocked.
7349  *
7350  * If we still have a bitmap dependency, then the inode has never
7351  * been written to disk. Drop the dependency as it is no longer
7352  * necessary since the inode is being deallocated. We set the
7353  * ALLCOMPLETE flags since the bitmap now properly shows that the
7354  * inode is not allocated. Even if the inode is actively being
7355  * written, it has been rolled back to its zero'ed state, so we
7356  * are ensured that a zero inode is what is on the disk. For short
7357  * lived files, this change will usually result in removing all the
7358  * dependencies from the inode so that it can be freed immediately.
7359  */
7360 static int
7361 check_inode_unwritten(inodedep)
7362 	struct inodedep *inodedep;
7363 {
7364 
7365 	mtx_assert(&lk, MA_OWNED);
7366 
7367 	if ((inodedep->id_state & (DEPCOMPLETE | UNLINKED)) != 0 ||
7368 	    !LIST_EMPTY(&inodedep->id_dirremhd) ||
7369 	    !LIST_EMPTY(&inodedep->id_pendinghd) ||
7370 	    !LIST_EMPTY(&inodedep->id_bufwait) ||
7371 	    !LIST_EMPTY(&inodedep->id_inowait) ||
7372 	    !TAILQ_EMPTY(&inodedep->id_inoreflst) ||
7373 	    !TAILQ_EMPTY(&inodedep->id_inoupdt) ||
7374 	    !TAILQ_EMPTY(&inodedep->id_newinoupdt) ||
7375 	    !TAILQ_EMPTY(&inodedep->id_extupdt) ||
7376 	    !TAILQ_EMPTY(&inodedep->id_newextupdt) ||
7377 	    !TAILQ_EMPTY(&inodedep->id_freeblklst) ||
7378 	    inodedep->id_mkdiradd != NULL ||
7379 	    inodedep->id_nlinkdelta != 0)
7380 		return (0);
7381 	/*
7382 	 * Another process might be in initiate_write_inodeblock_ufs[12]
7383 	 * trying to allocate memory without holding "Softdep Lock".
7384 	 */
7385 	if ((inodedep->id_state & IOSTARTED) != 0 &&
7386 	    inodedep->id_savedino1 == NULL)
7387 		return (0);
7388 
7389 	if (inodedep->id_state & ONDEPLIST)
7390 		LIST_REMOVE(inodedep, id_deps);
7391 	inodedep->id_state &= ~ONDEPLIST;
7392 	inodedep->id_state |= ALLCOMPLETE;
7393 	inodedep->id_bmsafemap = NULL;
7394 	if (inodedep->id_state & ONWORKLIST)
7395 		WORKLIST_REMOVE(&inodedep->id_list);
7396 	if (inodedep->id_savedino1 != NULL) {
7397 		free(inodedep->id_savedino1, M_SAVEDINO);
7398 		inodedep->id_savedino1 = NULL;
7399 	}
7400 	if (free_inodedep(inodedep) == 0)
7401 		panic("check_inode_unwritten: busy inode");
7402 	return (1);
7403 }
7404 
7405 /*
7406  * Try to free an inodedep structure. Return 1 if it could be freed.
7407  */
7408 static int
7409 free_inodedep(inodedep)
7410 	struct inodedep *inodedep;
7411 {
7412 
7413 	mtx_assert(&lk, MA_OWNED);
7414 	if ((inodedep->id_state & (ONWORKLIST | UNLINKED)) != 0 ||
7415 	    (inodedep->id_state & ALLCOMPLETE) != ALLCOMPLETE ||
7416 	    !LIST_EMPTY(&inodedep->id_dirremhd) ||
7417 	    !LIST_EMPTY(&inodedep->id_pendinghd) ||
7418 	    !LIST_EMPTY(&inodedep->id_bufwait) ||
7419 	    !LIST_EMPTY(&inodedep->id_inowait) ||
7420 	    !TAILQ_EMPTY(&inodedep->id_inoreflst) ||
7421 	    !TAILQ_EMPTY(&inodedep->id_inoupdt) ||
7422 	    !TAILQ_EMPTY(&inodedep->id_newinoupdt) ||
7423 	    !TAILQ_EMPTY(&inodedep->id_extupdt) ||
7424 	    !TAILQ_EMPTY(&inodedep->id_newextupdt) ||
7425 	    !TAILQ_EMPTY(&inodedep->id_freeblklst) ||
7426 	    inodedep->id_mkdiradd != NULL ||
7427 	    inodedep->id_nlinkdelta != 0 ||
7428 	    inodedep->id_savedino1 != NULL)
7429 		return (0);
7430 	if (inodedep->id_state & ONDEPLIST)
7431 		LIST_REMOVE(inodedep, id_deps);
7432 	LIST_REMOVE(inodedep, id_hash);
7433 	WORKITEM_FREE(inodedep, D_INODEDEP);
7434 	return (1);
7435 }
7436 
7437 /*
7438  * Free the block referenced by a freework structure.  The parent freeblks
7439  * structure is released and completed when the final cg bitmap reaches
7440  * the disk.  This routine may be freeing a jnewblk which never made it to
7441  * disk in which case we do not have to wait as the operation is undone
7442  * in memory immediately.
7443  */
7444 static void
7445 freework_freeblock(freework)
7446 	struct freework *freework;
7447 {
7448 	struct freeblks *freeblks;
7449 	struct jnewblk *jnewblk;
7450 	struct ufsmount *ump;
7451 	struct workhead wkhd;
7452 	struct fs *fs;
7453 	int bsize;
7454 	int needj;
7455 
7456 	mtx_assert(&lk, MA_OWNED);
7457 	/*
7458 	 * Handle partial truncate separately.
7459 	 */
7460 	if (freework->fw_indir) {
7461 		complete_trunc_indir(freework);
7462 		return;
7463 	}
7464 	freeblks = freework->fw_freeblks;
7465 	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
7466 	fs = ump->um_fs;
7467 	needj = MOUNTEDSUJ(freeblks->fb_list.wk_mp) != 0;
7468 	bsize = lfragtosize(fs, freework->fw_frags);
7469 	LIST_INIT(&wkhd);
7470 	/*
7471 	 * DEPCOMPLETE is cleared in indirblk_insert() if the block lives
7472 	 * on the indirblk hashtable and prevents premature freeing.
7473 	 */
7474 	freework->fw_state |= DEPCOMPLETE;
7475 	/*
7476 	 * SUJ needs to wait for the segment referencing freed indirect
7477 	 * blocks to expire so that we know the checker will not confuse
7478 	 * a re-allocated indirect block with its old contents.
7479 	 */
7480 	if (needj && freework->fw_lbn <= -NDADDR)
7481 		indirblk_insert(freework);
7482 	/*
7483 	 * If we are canceling an existing jnewblk pass it to the free
7484 	 * routine, otherwise pass the freeblk which will ultimately
7485 	 * release the freeblks.  If we're not journaling, we can just
7486 	 * free the freeblks immediately.
7487 	 */
7488 	jnewblk = freework->fw_jnewblk;
7489 	if (jnewblk != NULL) {
7490 		cancel_jnewblk(jnewblk, &wkhd);
7491 		needj = 0;
7492 	} else if (needj) {
7493 		freework->fw_state |= DELAYEDFREE;
7494 		freeblks->fb_cgwait++;
7495 		WORKLIST_INSERT(&wkhd, &freework->fw_list);
7496 	}
7497 	FREE_LOCK(&lk);
7498 	freeblks_free(ump, freeblks, btodb(bsize));
7499 	CTR4(KTR_SUJ,
7500 	    "freework_freeblock: ino %d blkno %jd lbn %jd size %ld",
7501 	    freeblks->fb_inum, freework->fw_blkno, freework->fw_lbn, bsize);
7502 	ffs_blkfree(ump, fs, freeblks->fb_devvp, freework->fw_blkno, bsize,
7503 	    freeblks->fb_inum, freeblks->fb_vtype, &wkhd);
7504 	ACQUIRE_LOCK(&lk);
7505 	/*
7506 	 * The jnewblk will be discarded and the bits in the map never
7507 	 * made it to disk.  We can immediately free the freeblk.
7508 	 */
7509 	if (needj == 0)
7510 		handle_written_freework(freework);
7511 }
7512 
7513 /*
7514  * We enqueue freework items that need processing back on the freeblks and
7515  * add the freeblks to the worklist.  This makes it easier to find all work
7516  * required to flush a truncation in process_truncates().
7517  */
7518 static void
7519 freework_enqueue(freework)
7520 	struct freework *freework;
7521 {
7522 	struct freeblks *freeblks;
7523 
7524 	freeblks = freework->fw_freeblks;
7525 	if ((freework->fw_state & INPROGRESS) == 0)
7526 		WORKLIST_INSERT(&freeblks->fb_freeworkhd, &freework->fw_list);
7527 	if ((freeblks->fb_state &
7528 	    (ONWORKLIST | INPROGRESS | ALLCOMPLETE)) == ALLCOMPLETE &&
7529 	    LIST_EMPTY(&freeblks->fb_jblkdephd))
7530 		add_to_worklist(&freeblks->fb_list, WK_NODELAY);
7531 }
7532 
7533 /*
7534  * Start, continue, or finish the process of freeing an indirect block tree.
7535  * The free operation may be paused at any point with fw_off containing the
7536  * offset to restart from.  This enables us to implement some flow control
7537  * for large truncates which may fan out and generate a huge number of
7538  * dependencies.
7539  */
7540 static void
7541 handle_workitem_indirblk(freework)
7542 	struct freework *freework;
7543 {
7544 	struct freeblks *freeblks;
7545 	struct ufsmount *ump;
7546 	struct fs *fs;
7547 
7548 	freeblks = freework->fw_freeblks;
7549 	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
7550 	fs = ump->um_fs;
7551 	if (freework->fw_state & DEPCOMPLETE) {
7552 		handle_written_freework(freework);
7553 		return;
7554 	}
7555 	if (freework->fw_off == NINDIR(fs)) {
7556 		freework_freeblock(freework);
7557 		return;
7558 	}
7559 	freework->fw_state |= INPROGRESS;
7560 	FREE_LOCK(&lk);
7561 	indir_trunc(freework, fsbtodb(fs, freework->fw_blkno),
7562 	    freework->fw_lbn);
7563 	ACQUIRE_LOCK(&lk);
7564 }
7565 
7566 /*
7567  * Called when a freework structure attached to a cg buf is written.  The
7568  * ref on either the parent or the freeblks structure is released and
7569  * the freeblks is added back to the worklist if there is more work to do.
7570  */
7571 static void
7572 handle_written_freework(freework)
7573 	struct freework *freework;
7574 {
7575 	struct freeblks *freeblks;
7576 	struct freework *parent;
7577 
7578 	freeblks = freework->fw_freeblks;
7579 	parent = freework->fw_parent;
7580 	if (freework->fw_state & DELAYEDFREE)
7581 		freeblks->fb_cgwait--;
7582 	freework->fw_state |= COMPLETE;
7583 	if ((freework->fw_state & ALLCOMPLETE) == ALLCOMPLETE)
7584 		WORKITEM_FREE(freework, D_FREEWORK);
7585 	if (parent) {
7586 		if (--parent->fw_ref == 0)
7587 			freework_enqueue(parent);
7588 		return;
7589 	}
7590 	if (--freeblks->fb_ref != 0)
7591 		return;
7592 	if ((freeblks->fb_state & (ALLCOMPLETE | ONWORKLIST | INPROGRESS)) ==
7593 	    ALLCOMPLETE && LIST_EMPTY(&freeblks->fb_jblkdephd))
7594 		add_to_worklist(&freeblks->fb_list, WK_NODELAY);
7595 }
7596 
7597 /*
7598  * This workitem routine performs the block de-allocation.
7599  * The workitem is added to the pending list after the updated
7600  * inode block has been written to disk.  As mentioned above,
7601  * checks regarding the number of blocks de-allocated (compared
7602  * to the number of blocks allocated for the file) are also
7603  * performed in this function.
7604  */
7605 static int
7606 handle_workitem_freeblocks(freeblks, flags)
7607 	struct freeblks *freeblks;
7608 	int flags;
7609 {
7610 	struct freework *freework;
7611 	struct newblk *newblk;
7612 	struct allocindir *aip;
7613 	struct ufsmount *ump;
7614 	struct worklist *wk;
7615 
7616 	KASSERT(LIST_EMPTY(&freeblks->fb_jblkdephd),
7617 	    ("handle_workitem_freeblocks: Journal entries not written."));
7618 	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
7619 	ACQUIRE_LOCK(&lk);
7620 	while ((wk = LIST_FIRST(&freeblks->fb_freeworkhd)) != NULL) {
7621 		WORKLIST_REMOVE(wk);
7622 		switch (wk->wk_type) {
7623 		case D_DIRREM:
7624 			wk->wk_state |= COMPLETE;
7625 			add_to_worklist(wk, 0);
7626 			continue;
7627 
7628 		case D_ALLOCDIRECT:
7629 			free_newblk(WK_NEWBLK(wk));
7630 			continue;
7631 
7632 		case D_ALLOCINDIR:
7633 			aip = WK_ALLOCINDIR(wk);
7634 			freework = NULL;
7635 			if (aip->ai_state & DELAYEDFREE) {
7636 				FREE_LOCK(&lk);
7637 				freework = newfreework(ump, freeblks, NULL,
7638 				    aip->ai_lbn, aip->ai_newblkno,
7639 				    ump->um_fs->fs_frag, 0, 0);
7640 				ACQUIRE_LOCK(&lk);
7641 			}
7642 			newblk = WK_NEWBLK(wk);
7643 			if (newblk->nb_jnewblk) {
7644 				freework->fw_jnewblk = newblk->nb_jnewblk;
7645 				newblk->nb_jnewblk->jn_dep = &freework->fw_list;
7646 				newblk->nb_jnewblk = NULL;
7647 			}
7648 			free_newblk(newblk);
7649 			continue;
7650 
7651 		case D_FREEWORK:
7652 			freework = WK_FREEWORK(wk);
7653 			if (freework->fw_lbn <= -NDADDR)
7654 				handle_workitem_indirblk(freework);
7655 			else
7656 				freework_freeblock(freework);
7657 			continue;
7658 		default:
7659 			panic("handle_workitem_freeblocks: Unknown type %s",
7660 			    TYPENAME(wk->wk_type));
7661 		}
7662 	}
7663 	if (freeblks->fb_ref != 0) {
7664 		freeblks->fb_state &= ~INPROGRESS;
7665 		wake_worklist(&freeblks->fb_list);
7666 		freeblks = NULL;
7667 	}
7668 	FREE_LOCK(&lk);
7669 	if (freeblks)
7670 		return handle_complete_freeblocks(freeblks, flags);
7671 	return (0);
7672 }
7673 
7674 /*
7675  * Handle completion of block free via truncate.  This allows fs_pending
7676  * to track the actual free block count more closely than if we only updated
7677  * it at the end.  We must be careful to handle cases where the block count
7678  * on free was incorrect.
7679  */
7680 static void
7681 freeblks_free(ump, freeblks, blocks)
7682 	struct ufsmount *ump;
7683 	struct freeblks *freeblks;
7684 	int blocks;
7685 {
7686 	struct fs *fs;
7687 	ufs2_daddr_t remain;
7688 
7689 	UFS_LOCK(ump);
7690 	remain = -freeblks->fb_chkcnt;
7691 	freeblks->fb_chkcnt += blocks;
7692 	if (remain > 0) {
7693 		if (remain < blocks)
7694 			blocks = remain;
7695 		fs = ump->um_fs;
7696 		fs->fs_pendingblocks -= blocks;
7697 	}
7698 	UFS_UNLOCK(ump);
7699 }
7700 
7701 /*
7702  * Once all of the freework workitems are complete we can retire the
7703  * freeblocks dependency and any journal work awaiting completion.  This
7704  * can not be called until all other dependencies are stable on disk.
7705  */
7706 static int
7707 handle_complete_freeblocks(freeblks, flags)
7708 	struct freeblks *freeblks;
7709 	int flags;
7710 {
7711 	struct inodedep *inodedep;
7712 	struct inode *ip;
7713 	struct vnode *vp;
7714 	struct fs *fs;
7715 	struct ufsmount *ump;
7716 	ufs2_daddr_t spare;
7717 
7718 	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
7719 	fs = ump->um_fs;
7720 	flags = LK_EXCLUSIVE | flags;
7721 	spare = freeblks->fb_chkcnt;
7722 
7723 	/*
7724 	 * If we did not release the expected number of blocks we may have
7725 	 * to adjust the inode block count here.  Only do so if it wasn't
7726 	 * a truncation to zero and the modrev still matches.
7727 	 */
7728 	if (spare && freeblks->fb_len != 0) {
7729 		if (ffs_vgetf(freeblks->fb_list.wk_mp, freeblks->fb_inum,
7730 		    flags, &vp, FFSV_FORCEINSMQ) != 0)
7731 			return (EBUSY);
7732 		ip = VTOI(vp);
7733 		if (DIP(ip, i_modrev) == freeblks->fb_modrev) {
7734 			DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - spare);
7735 			ip->i_flag |= IN_CHANGE;
7736 			/*
7737 			 * We must wait so this happens before the
7738 			 * journal is reclaimed.
7739 			 */
7740 			ffs_update(vp, 1);
7741 		}
7742 		vput(vp);
7743 	}
7744 	if (spare < 0) {
7745 		UFS_LOCK(ump);
7746 		fs->fs_pendingblocks += spare;
7747 		UFS_UNLOCK(ump);
7748 	}
7749 #ifdef QUOTA
7750 	/* Handle spare. */
7751 	if (spare)
7752 		quotaadj(freeblks->fb_quota, ump, -spare);
7753 	quotarele(freeblks->fb_quota);
7754 #endif
7755 	ACQUIRE_LOCK(&lk);
7756 	if (freeblks->fb_state & ONDEPLIST) {
7757 		inodedep_lookup(freeblks->fb_list.wk_mp, freeblks->fb_inum,
7758 		    0, &inodedep);
7759 		TAILQ_REMOVE(&inodedep->id_freeblklst, freeblks, fb_next);
7760 		freeblks->fb_state &= ~ONDEPLIST;
7761 		if (TAILQ_EMPTY(&inodedep->id_freeblklst))
7762 			free_inodedep(inodedep);
7763 	}
7764 	/*
7765 	 * All of the freeblock deps must be complete prior to this call
7766 	 * so it's now safe to complete earlier outstanding journal entries.
7767 	 */
7768 	handle_jwork(&freeblks->fb_jwork);
7769 	WORKITEM_FREE(freeblks, D_FREEBLKS);
7770 	FREE_LOCK(&lk);
7771 	return (0);
7772 }
7773 
7774 /*
7775  * Release blocks associated with the freeblks and stored in the indirect
7776  * block dbn. If level is greater than SINGLE, the block is an indirect block
7777  * and recursive calls to indirtrunc must be used to cleanse other indirect
7778  * blocks.
7779  *
7780  * This handles partial and complete truncation of blocks.  Partial is noted
7781  * with goingaway == 0.  In this case the freework is completed after the
7782  * zero'd indirects are written to disk.  For full truncation the freework
7783  * is completed after the block is freed.
7784  */
7785 static void
7786 indir_trunc(freework, dbn, lbn)
7787 	struct freework *freework;
7788 	ufs2_daddr_t dbn;
7789 	ufs_lbn_t lbn;
7790 {
7791 	struct freework *nfreework;
7792 	struct workhead wkhd;
7793 	struct freeblks *freeblks;
7794 	struct buf *bp;
7795 	struct fs *fs;
7796 	struct indirdep *indirdep;
7797 	struct ufsmount *ump;
7798 	ufs1_daddr_t *bap1 = 0;
7799 	ufs2_daddr_t nb, nnb, *bap2 = 0;
7800 	ufs_lbn_t lbnadd, nlbn;
7801 	int i, nblocks, ufs1fmt;
7802 	int freedblocks;
7803 	int goingaway;
7804 	int freedeps;
7805 	int needj;
7806 	int level;
7807 	int cnt;
7808 
7809 	freeblks = freework->fw_freeblks;
7810 	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
7811 	fs = ump->um_fs;
7812 	/*
7813 	 * Get buffer of block pointers to be freed.  There are three cases:
7814 	 *
7815 	 * 1) Partial truncate caches the indirdep pointer in the freework
7816 	 *    which provides us a back copy to the save bp which holds the
7817 	 *    pointers we want to clear.  When this completes the zero
7818 	 *    pointers are written to the real copy.
7819 	 * 2) The indirect is being completely truncated, cancel_indirdep()
7820 	 *    eliminated the real copy and placed the indirdep on the saved
7821 	 *    copy.  The indirdep and buf are discarded when this completes.
7822 	 * 3) The indirect was not in memory, we read a copy off of the disk
7823 	 *    using the devvp and drop and invalidate the buffer when we're
7824 	 *    done.
7825 	 */
7826 	goingaway = 1;
7827 	indirdep = NULL;
7828 	if (freework->fw_indir != NULL) {
7829 		goingaway = 0;
7830 		indirdep = freework->fw_indir;
7831 		bp = indirdep->ir_savebp;
7832 		if (bp == NULL || bp->b_blkno != dbn)
7833 			panic("indir_trunc: Bad saved buf %p blkno %jd",
7834 			    bp, (intmax_t)dbn);
7835 	} else if ((bp = incore(&freeblks->fb_devvp->v_bufobj, dbn)) != NULL) {
7836 		/*
7837 		 * The lock prevents the buf dep list from changing and
7838 	 	 * indirects on devvp should only ever have one dependency.
7839 		 */
7840 		indirdep = WK_INDIRDEP(LIST_FIRST(&bp->b_dep));
7841 		if (indirdep == NULL || (indirdep->ir_state & GOINGAWAY) == 0)
7842 			panic("indir_trunc: Bad indirdep %p from buf %p",
7843 			    indirdep, bp);
7844 	} else if (bread(freeblks->fb_devvp, dbn, (int)fs->fs_bsize,
7845 	    NOCRED, &bp) != 0) {
7846 		brelse(bp);
7847 		return;
7848 	}
7849 	ACQUIRE_LOCK(&lk);
7850 	/* Protects against a race with complete_trunc_indir(). */
7851 	freework->fw_state &= ~INPROGRESS;
7852 	/*
7853 	 * If we have an indirdep we need to enforce the truncation order
7854 	 * and discard it when it is complete.
7855 	 */
7856 	if (indirdep) {
7857 		if (freework != TAILQ_FIRST(&indirdep->ir_trunc) &&
7858 		    !TAILQ_EMPTY(&indirdep->ir_trunc)) {
7859 			/*
7860 			 * Add the complete truncate to the list on the
7861 			 * indirdep to enforce in-order processing.
7862 			 */
7863 			if (freework->fw_indir == NULL)
7864 				TAILQ_INSERT_TAIL(&indirdep->ir_trunc,
7865 				    freework, fw_next);
7866 			FREE_LOCK(&lk);
7867 			return;
7868 		}
7869 		/*
7870 		 * If we're goingaway, free the indirdep.  Otherwise it will
7871 		 * linger until the write completes.
7872 		 */
7873 		if (goingaway) {
7874 			free_indirdep(indirdep);
7875 			ump->um_numindirdeps -= 1;
7876 		}
7877 	}
7878 	FREE_LOCK(&lk);
7879 	/* Initialize pointers depending on block size. */
7880 	if (ump->um_fstype == UFS1) {
7881 		bap1 = (ufs1_daddr_t *)bp->b_data;
7882 		nb = bap1[freework->fw_off];
7883 		ufs1fmt = 1;
7884 	} else {
7885 		bap2 = (ufs2_daddr_t *)bp->b_data;
7886 		nb = bap2[freework->fw_off];
7887 		ufs1fmt = 0;
7888 	}
7889 	level = lbn_level(lbn);
7890 	needj = MOUNTEDSUJ(UFSTOVFS(ump)) != 0;
7891 	lbnadd = lbn_offset(fs, level);
7892 	nblocks = btodb(fs->fs_bsize);
7893 	nfreework = freework;
7894 	freedeps = 0;
7895 	cnt = 0;
7896 	/*
7897 	 * Reclaim blocks.  Traverses into nested indirect levels and
7898 	 * arranges for the current level to be freed when subordinates
7899 	 * are free when journaling.
7900 	 */
7901 	for (i = freework->fw_off; i < NINDIR(fs); i++, nb = nnb) {
7902 		if (i != NINDIR(fs) - 1) {
7903 			if (ufs1fmt)
7904 				nnb = bap1[i+1];
7905 			else
7906 				nnb = bap2[i+1];
7907 		} else
7908 			nnb = 0;
7909 		if (nb == 0)
7910 			continue;
7911 		cnt++;
7912 		if (level != 0) {
7913 			nlbn = (lbn + 1) - (i * lbnadd);
7914 			if (needj != 0) {
7915 				nfreework = newfreework(ump, freeblks, freework,
7916 				    nlbn, nb, fs->fs_frag, 0, 0);
7917 				freedeps++;
7918 			}
7919 			indir_trunc(nfreework, fsbtodb(fs, nb), nlbn);
7920 		} else {
7921 			struct freedep *freedep;
7922 
7923 			/*
7924 			 * Attempt to aggregate freedep dependencies for
7925 			 * all blocks being released to the same CG.
7926 			 */
7927 			LIST_INIT(&wkhd);
7928 			if (needj != 0 &&
7929 			    (nnb == 0 || (dtog(fs, nb) != dtog(fs, nnb)))) {
7930 				freedep = newfreedep(freework);
7931 				WORKLIST_INSERT_UNLOCKED(&wkhd,
7932 				    &freedep->fd_list);
7933 				freedeps++;
7934 			}
7935 			CTR3(KTR_SUJ,
7936 			    "indir_trunc: ino %d blkno %jd size %ld",
7937 			    freeblks->fb_inum, nb, fs->fs_bsize);
7938 			ffs_blkfree(ump, fs, freeblks->fb_devvp, nb,
7939 			    fs->fs_bsize, freeblks->fb_inum,
7940 			    freeblks->fb_vtype, &wkhd);
7941 		}
7942 	}
7943 	if (goingaway) {
7944 		bp->b_flags |= B_INVAL | B_NOCACHE;
7945 		brelse(bp);
7946 	}
7947 	freedblocks = 0;
7948 	if (level == 0)
7949 		freedblocks = (nblocks * cnt);
7950 	if (needj == 0)
7951 		freedblocks += nblocks;
7952 	freeblks_free(ump, freeblks, freedblocks);
7953 	/*
7954 	 * If we are journaling set up the ref counts and offset so this
7955 	 * indirect can be completed when its children are free.
7956 	 */
7957 	if (needj) {
7958 		ACQUIRE_LOCK(&lk);
7959 		freework->fw_off = i;
7960 		freework->fw_ref += freedeps;
7961 		freework->fw_ref -= NINDIR(fs) + 1;
7962 		if (level == 0)
7963 			freeblks->fb_cgwait += freedeps;
7964 		if (freework->fw_ref == 0)
7965 			freework_freeblock(freework);
7966 		FREE_LOCK(&lk);
7967 		return;
7968 	}
7969 	/*
7970 	 * If we're not journaling we can free the indirect now.
7971 	 */
7972 	dbn = dbtofsb(fs, dbn);
7973 	CTR3(KTR_SUJ,
7974 	    "indir_trunc 2: ino %d blkno %jd size %ld",
7975 	    freeblks->fb_inum, dbn, fs->fs_bsize);
7976 	ffs_blkfree(ump, fs, freeblks->fb_devvp, dbn, fs->fs_bsize,
7977 	    freeblks->fb_inum, freeblks->fb_vtype, NULL);
7978 	/* Non SUJ softdep does single-threaded truncations. */
7979 	if (freework->fw_blkno == dbn) {
7980 		freework->fw_state |= ALLCOMPLETE;
7981 		ACQUIRE_LOCK(&lk);
7982 		handle_written_freework(freework);
7983 		FREE_LOCK(&lk);
7984 	}
7985 	return;
7986 }
7987 
7988 /*
7989  * Cancel an allocindir when it is removed via truncation.  When bp is not
7990  * NULL the indirect never appeared on disk and is scheduled to be freed
7991  * independently of the indir so we can more easily track journal work.
7992  */
7993 static void
7994 cancel_allocindir(aip, bp, freeblks, trunc)
7995 	struct allocindir *aip;
7996 	struct buf *bp;
7997 	struct freeblks *freeblks;
7998 	int trunc;
7999 {
8000 	struct indirdep *indirdep;
8001 	struct freefrag *freefrag;
8002 	struct newblk *newblk;
8003 
8004 	newblk = (struct newblk *)aip;
8005 	LIST_REMOVE(aip, ai_next);
8006 	/*
8007 	 * We must eliminate the pointer in bp if it must be freed on its
8008 	 * own due to partial truncate or pending journal work.
8009 	 */
8010 	if (bp && (trunc || newblk->nb_jnewblk)) {
8011 		/*
8012 		 * Clear the pointer and mark the aip to be freed
8013 		 * directly if it never existed on disk.
8014 		 */
8015 		aip->ai_state |= DELAYEDFREE;
8016 		indirdep = aip->ai_indirdep;
8017 		if (indirdep->ir_state & UFS1FMT)
8018 			((ufs1_daddr_t *)bp->b_data)[aip->ai_offset] = 0;
8019 		else
8020 			((ufs2_daddr_t *)bp->b_data)[aip->ai_offset] = 0;
8021 	}
8022 	/*
8023 	 * When truncating the previous pointer will be freed via
8024 	 * savedbp.  Eliminate the freefrag which would dup free.
8025 	 */
8026 	if (trunc && (freefrag = newblk->nb_freefrag) != NULL) {
8027 		newblk->nb_freefrag = NULL;
8028 		if (freefrag->ff_jdep)
8029 			cancel_jfreefrag(
8030 			    WK_JFREEFRAG(freefrag->ff_jdep));
8031 		jwork_move(&freeblks->fb_jwork, &freefrag->ff_jwork);
8032 		WORKITEM_FREE(freefrag, D_FREEFRAG);
8033 	}
8034 	/*
8035 	 * If the journal hasn't been written the jnewblk must be passed
8036 	 * to the call to ffs_blkfree that reclaims the space.  We accomplish
8037 	 * this by leaving the journal dependency on the newblk to be freed
8038 	 * when a freework is created in handle_workitem_freeblocks().
8039 	 */
8040 	cancel_newblk(newblk, NULL, &freeblks->fb_jwork);
8041 	WORKLIST_INSERT(&freeblks->fb_freeworkhd, &newblk->nb_list);
8042 }
8043 
8044 /*
8045  * Create the mkdir dependencies for . and .. in a new directory.  Link them
8046  * in to a newdirblk so any subsequent additions are tracked properly.  The
8047  * caller is responsible for adding the mkdir1 dependency to the journal
8048  * and updating id_mkdiradd.  This function returns with lk held.
8049  */
8050 static struct mkdir *
8051 setup_newdir(dap, newinum, dinum, newdirbp, mkdirp)
8052 	struct diradd *dap;
8053 	ino_t newinum;
8054 	ino_t dinum;
8055 	struct buf *newdirbp;
8056 	struct mkdir **mkdirp;
8057 {
8058 	struct newblk *newblk;
8059 	struct pagedep *pagedep;
8060 	struct inodedep *inodedep;
8061 	struct newdirblk *newdirblk = 0;
8062 	struct mkdir *mkdir1, *mkdir2;
8063 	struct worklist *wk;
8064 	struct jaddref *jaddref;
8065 	struct mount *mp;
8066 
8067 	mp = dap->da_list.wk_mp;
8068 	newdirblk = malloc(sizeof(struct newdirblk), M_NEWDIRBLK,
8069 	    M_SOFTDEP_FLAGS);
8070 	workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp);
8071 	LIST_INIT(&newdirblk->db_mkdir);
8072 	mkdir1 = malloc(sizeof(struct mkdir), M_MKDIR, M_SOFTDEP_FLAGS);
8073 	workitem_alloc(&mkdir1->md_list, D_MKDIR, mp);
8074 	mkdir1->md_state = ATTACHED | MKDIR_BODY;
8075 	mkdir1->md_diradd = dap;
8076 	mkdir1->md_jaddref = NULL;
8077 	mkdir2 = malloc(sizeof(struct mkdir), M_MKDIR, M_SOFTDEP_FLAGS);
8078 	workitem_alloc(&mkdir2->md_list, D_MKDIR, mp);
8079 	mkdir2->md_state = ATTACHED | MKDIR_PARENT;
8080 	mkdir2->md_diradd = dap;
8081 	mkdir2->md_jaddref = NULL;
8082 	if (MOUNTEDSUJ(mp) == 0) {
8083 		mkdir1->md_state |= DEPCOMPLETE;
8084 		mkdir2->md_state |= DEPCOMPLETE;
8085 	}
8086 	/*
8087 	 * Dependency on "." and ".." being written to disk.
8088 	 */
8089 	mkdir1->md_buf = newdirbp;
8090 	ACQUIRE_LOCK(&lk);
8091 	LIST_INSERT_HEAD(&mkdirlisthd, mkdir1, md_mkdirs);
8092 	/*
8093 	 * We must link the pagedep, allocdirect, and newdirblk for
8094 	 * the initial file page so the pointer to the new directory
8095 	 * is not written until the directory contents are live and
8096 	 * any subsequent additions are not marked live until the
8097 	 * block is reachable via the inode.
8098 	 */
8099 	if (pagedep_lookup(mp, newdirbp, newinum, 0, 0, &pagedep) == 0)
8100 		panic("setup_newdir: lost pagedep");
8101 	LIST_FOREACH(wk, &newdirbp->b_dep, wk_list)
8102 		if (wk->wk_type == D_ALLOCDIRECT)
8103 			break;
8104 	if (wk == NULL)
8105 		panic("setup_newdir: lost allocdirect");
8106 	if (pagedep->pd_state & NEWBLOCK)
8107 		panic("setup_newdir: NEWBLOCK already set");
8108 	newblk = WK_NEWBLK(wk);
8109 	pagedep->pd_state |= NEWBLOCK;
8110 	pagedep->pd_newdirblk = newdirblk;
8111 	newdirblk->db_pagedep = pagedep;
8112 	WORKLIST_INSERT(&newblk->nb_newdirblk, &newdirblk->db_list);
8113 	WORKLIST_INSERT(&newdirblk->db_mkdir, &mkdir1->md_list);
8114 	/*
8115 	 * Look up the inodedep for the parent directory so that we
8116 	 * can link mkdir2 into the pending dotdot jaddref or
8117 	 * the inode write if there is none.  If the inode is
8118 	 * ALLCOMPLETE and no jaddref is present all dependencies have
8119 	 * been satisfied and mkdir2 can be freed.
8120 	 */
8121 	inodedep_lookup(mp, dinum, 0, &inodedep);
8122 	if (MOUNTEDSUJ(mp)) {
8123 		if (inodedep == NULL)
8124 			panic("setup_newdir: Lost parent.");
8125 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
8126 		    inoreflst);
8127 		KASSERT(jaddref != NULL && jaddref->ja_parent == newinum &&
8128 		    (jaddref->ja_state & MKDIR_PARENT),
8129 		    ("setup_newdir: bad dotdot jaddref %p", jaddref));
8130 		LIST_INSERT_HEAD(&mkdirlisthd, mkdir2, md_mkdirs);
8131 		mkdir2->md_jaddref = jaddref;
8132 		jaddref->ja_mkdir = mkdir2;
8133 	} else if (inodedep == NULL ||
8134 	    (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) {
8135 		dap->da_state &= ~MKDIR_PARENT;
8136 		WORKITEM_FREE(mkdir2, D_MKDIR);
8137 	} else {
8138 		LIST_INSERT_HEAD(&mkdirlisthd, mkdir2, md_mkdirs);
8139 		WORKLIST_INSERT(&inodedep->id_bufwait, &mkdir2->md_list);
8140 	}
8141 	*mkdirp = mkdir2;
8142 
8143 	return (mkdir1);
8144 }
8145 
8146 /*
8147  * Directory entry addition dependencies.
8148  *
8149  * When adding a new directory entry, the inode (with its incremented link
8150  * count) must be written to disk before the directory entry's pointer to it.
8151  * Also, if the inode is newly allocated, the corresponding freemap must be
8152  * updated (on disk) before the directory entry's pointer. These requirements
8153  * are met via undo/redo on the directory entry's pointer, which consists
8154  * simply of the inode number.
8155  *
8156  * As directory entries are added and deleted, the free space within a
8157  * directory block can become fragmented.  The ufs filesystem will compact
8158  * a fragmented directory block to make space for a new entry. When this
8159  * occurs, the offsets of previously added entries change. Any "diradd"
8160  * dependency structures corresponding to these entries must be updated with
8161  * the new offsets.
8162  */
8163 
8164 /*
8165  * This routine is called after the in-memory inode's link
8166  * count has been incremented, but before the directory entry's
8167  * pointer to the inode has been set.
8168  */
8169 int
8170 softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk)
8171 	struct buf *bp;		/* buffer containing directory block */
8172 	struct inode *dp;	/* inode for directory */
8173 	off_t diroffset;	/* offset of new entry in directory */
8174 	ino_t newinum;		/* inode referenced by new directory entry */
8175 	struct buf *newdirbp;	/* non-NULL => contents of new mkdir */
8176 	int isnewblk;		/* entry is in a newly allocated block */
8177 {
8178 	int offset;		/* offset of new entry within directory block */
8179 	ufs_lbn_t lbn;		/* block in directory containing new entry */
8180 	struct fs *fs;
8181 	struct diradd *dap;
8182 	struct newblk *newblk;
8183 	struct pagedep *pagedep;
8184 	struct inodedep *inodedep;
8185 	struct newdirblk *newdirblk = 0;
8186 	struct mkdir *mkdir1, *mkdir2;
8187 	struct jaddref *jaddref;
8188 	struct mount *mp;
8189 	int isindir;
8190 
8191 	/*
8192 	 * Whiteouts have no dependencies.
8193 	 */
8194 	if (newinum == WINO) {
8195 		if (newdirbp != NULL)
8196 			bdwrite(newdirbp);
8197 		return (0);
8198 	}
8199 	jaddref = NULL;
8200 	mkdir1 = mkdir2 = NULL;
8201 	mp = UFSTOVFS(dp->i_ump);
8202 	fs = dp->i_fs;
8203 	lbn = lblkno(fs, diroffset);
8204 	offset = blkoff(fs, diroffset);
8205 	dap = malloc(sizeof(struct diradd), M_DIRADD,
8206 		M_SOFTDEP_FLAGS|M_ZERO);
8207 	workitem_alloc(&dap->da_list, D_DIRADD, mp);
8208 	dap->da_offset = offset;
8209 	dap->da_newinum = newinum;
8210 	dap->da_state = ATTACHED;
8211 	LIST_INIT(&dap->da_jwork);
8212 	isindir = bp->b_lblkno >= NDADDR;
8213 	if (isnewblk &&
8214 	    (isindir ? blkoff(fs, diroffset) : fragoff(fs, diroffset)) == 0) {
8215 		newdirblk = malloc(sizeof(struct newdirblk),
8216 		    M_NEWDIRBLK, M_SOFTDEP_FLAGS);
8217 		workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp);
8218 		LIST_INIT(&newdirblk->db_mkdir);
8219 	}
8220 	/*
8221 	 * If we're creating a new directory setup the dependencies and set
8222 	 * the dap state to wait for them.  Otherwise it's COMPLETE and
8223 	 * we can move on.
8224 	 */
8225 	if (newdirbp == NULL) {
8226 		dap->da_state |= DEPCOMPLETE;
8227 		ACQUIRE_LOCK(&lk);
8228 	} else {
8229 		dap->da_state |= MKDIR_BODY | MKDIR_PARENT;
8230 		mkdir1 = setup_newdir(dap, newinum, dp->i_number, newdirbp,
8231 		    &mkdir2);
8232 	}
8233 	/*
8234 	 * Link into parent directory pagedep to await its being written.
8235 	 */
8236 	pagedep_lookup(mp, bp, dp->i_number, lbn, DEPALLOC, &pagedep);
8237 #ifdef DEBUG
8238 	if (diradd_lookup(pagedep, offset) != NULL)
8239 		panic("softdep_setup_directory_add: %p already at off %d\n",
8240 		    diradd_lookup(pagedep, offset), offset);
8241 #endif
8242 	dap->da_pagedep = pagedep;
8243 	LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], dap,
8244 	    da_pdlist);
8245 	inodedep_lookup(mp, newinum, DEPALLOC | NODELAY, &inodedep);
8246 	/*
8247 	 * If we're journaling, link the diradd into the jaddref so it
8248 	 * may be completed after the journal entry is written.  Otherwise,
8249 	 * link the diradd into its inodedep.  If the inode is not yet
8250 	 * written place it on the bufwait list, otherwise do the post-inode
8251 	 * write processing to put it on the id_pendinghd list.
8252 	 */
8253 	if (MOUNTEDSUJ(mp)) {
8254 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
8255 		    inoreflst);
8256 		KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number,
8257 		    ("softdep_setup_directory_add: bad jaddref %p", jaddref));
8258 		jaddref->ja_diroff = diroffset;
8259 		jaddref->ja_diradd = dap;
8260 		add_to_journal(&jaddref->ja_list);
8261 	} else if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE)
8262 		diradd_inode_written(dap, inodedep);
8263 	else
8264 		WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list);
8265 	/*
8266 	 * Add the journal entries for . and .. links now that the primary
8267 	 * link is written.
8268 	 */
8269 	if (mkdir1 != NULL && MOUNTEDSUJ(mp)) {
8270 		jaddref = (struct jaddref *)TAILQ_PREV(&jaddref->ja_ref,
8271 		    inoreflst, if_deps);
8272 		KASSERT(jaddref != NULL &&
8273 		    jaddref->ja_ino == jaddref->ja_parent &&
8274 		    (jaddref->ja_state & MKDIR_BODY),
8275 		    ("softdep_setup_directory_add: bad dot jaddref %p",
8276 		    jaddref));
8277 		mkdir1->md_jaddref = jaddref;
8278 		jaddref->ja_mkdir = mkdir1;
8279 		/*
8280 		 * It is important that the dotdot journal entry
8281 		 * is added prior to the dot entry since dot writes
8282 		 * both the dot and dotdot links.  These both must
8283 		 * be added after the primary link for the journal
8284 		 * to remain consistent.
8285 		 */
8286 		add_to_journal(&mkdir2->md_jaddref->ja_list);
8287 		add_to_journal(&jaddref->ja_list);
8288 	}
8289 	/*
8290 	 * If we are adding a new directory remember this diradd so that if
8291 	 * we rename it we can keep the dot and dotdot dependencies.  If
8292 	 * we are adding a new name for an inode that has a mkdiradd we
8293 	 * must be in rename and we have to move the dot and dotdot
8294 	 * dependencies to this new name.  The old name is being orphaned
8295 	 * soon.
8296 	 */
8297 	if (mkdir1 != NULL) {
8298 		if (inodedep->id_mkdiradd != NULL)
8299 			panic("softdep_setup_directory_add: Existing mkdir");
8300 		inodedep->id_mkdiradd = dap;
8301 	} else if (inodedep->id_mkdiradd)
8302 		merge_diradd(inodedep, dap);
8303 	if (newdirblk) {
8304 		/*
8305 		 * There is nothing to do if we are already tracking
8306 		 * this block.
8307 		 */
8308 		if ((pagedep->pd_state & NEWBLOCK) != 0) {
8309 			WORKITEM_FREE(newdirblk, D_NEWDIRBLK);
8310 			FREE_LOCK(&lk);
8311 			return (0);
8312 		}
8313 		if (newblk_lookup(mp, dbtofsb(fs, bp->b_blkno), 0, &newblk)
8314 		    == 0)
8315 			panic("softdep_setup_directory_add: lost entry");
8316 		WORKLIST_INSERT(&newblk->nb_newdirblk, &newdirblk->db_list);
8317 		pagedep->pd_state |= NEWBLOCK;
8318 		pagedep->pd_newdirblk = newdirblk;
8319 		newdirblk->db_pagedep = pagedep;
8320 		FREE_LOCK(&lk);
8321 		/*
8322 		 * If we extended into an indirect signal direnter to sync.
8323 		 */
8324 		if (isindir)
8325 			return (1);
8326 		return (0);
8327 	}
8328 	FREE_LOCK(&lk);
8329 	return (0);
8330 }
8331 
8332 /*
8333  * This procedure is called to change the offset of a directory
8334  * entry when compacting a directory block which must be owned
8335  * exclusively by the caller. Note that the actual entry movement
8336  * must be done in this procedure to ensure that no I/O completions
8337  * occur while the move is in progress.
8338  */
8339 void
8340 softdep_change_directoryentry_offset(bp, dp, base, oldloc, newloc, entrysize)
8341 	struct buf *bp;		/* Buffer holding directory block. */
8342 	struct inode *dp;	/* inode for directory */
8343 	caddr_t base;		/* address of dp->i_offset */
8344 	caddr_t oldloc;		/* address of old directory location */
8345 	caddr_t newloc;		/* address of new directory location */
8346 	int entrysize;		/* size of directory entry */
8347 {
8348 	int offset, oldoffset, newoffset;
8349 	struct pagedep *pagedep;
8350 	struct jmvref *jmvref;
8351 	struct diradd *dap;
8352 	struct direct *de;
8353 	struct mount *mp;
8354 	ufs_lbn_t lbn;
8355 	int flags;
8356 
8357 	mp = UFSTOVFS(dp->i_ump);
8358 	de = (struct direct *)oldloc;
8359 	jmvref = NULL;
8360 	flags = 0;
8361 	/*
8362 	 * Moves are always journaled as it would be too complex to
8363 	 * determine if any affected adds or removes are present in the
8364 	 * journal.
8365 	 */
8366 	if (MOUNTEDSUJ(mp)) {
8367 		flags = DEPALLOC;
8368 		jmvref = newjmvref(dp, de->d_ino,
8369 		    dp->i_offset + (oldloc - base),
8370 		    dp->i_offset + (newloc - base));
8371 	}
8372 	lbn = lblkno(dp->i_fs, dp->i_offset);
8373 	offset = blkoff(dp->i_fs, dp->i_offset);
8374 	oldoffset = offset + (oldloc - base);
8375 	newoffset = offset + (newloc - base);
8376 	ACQUIRE_LOCK(&lk);
8377 	if (pagedep_lookup(mp, bp, dp->i_number, lbn, flags, &pagedep) == 0)
8378 		goto done;
8379 	dap = diradd_lookup(pagedep, oldoffset);
8380 	if (dap) {
8381 		dap->da_offset = newoffset;
8382 		newoffset = DIRADDHASH(newoffset);
8383 		oldoffset = DIRADDHASH(oldoffset);
8384 		if ((dap->da_state & ALLCOMPLETE) != ALLCOMPLETE &&
8385 		    newoffset != oldoffset) {
8386 			LIST_REMOVE(dap, da_pdlist);
8387 			LIST_INSERT_HEAD(&pagedep->pd_diraddhd[newoffset],
8388 			    dap, da_pdlist);
8389 		}
8390 	}
8391 done:
8392 	if (jmvref) {
8393 		jmvref->jm_pagedep = pagedep;
8394 		LIST_INSERT_HEAD(&pagedep->pd_jmvrefhd, jmvref, jm_deps);
8395 		add_to_journal(&jmvref->jm_list);
8396 	}
8397 	bcopy(oldloc, newloc, entrysize);
8398 	FREE_LOCK(&lk);
8399 }
8400 
8401 /*
8402  * Move the mkdir dependencies and journal work from one diradd to another
8403  * when renaming a directory.  The new name must depend on the mkdir deps
8404  * completing as the old name did.  Directories can only have one valid link
8405  * at a time so one must be canonical.
8406  */
8407 static void
8408 merge_diradd(inodedep, newdap)
8409 	struct inodedep *inodedep;
8410 	struct diradd *newdap;
8411 {
8412 	struct diradd *olddap;
8413 	struct mkdir *mkdir, *nextmd;
8414 	short state;
8415 
8416 	olddap = inodedep->id_mkdiradd;
8417 	inodedep->id_mkdiradd = newdap;
8418 	if ((olddap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
8419 		newdap->da_state &= ~DEPCOMPLETE;
8420 		for (mkdir = LIST_FIRST(&mkdirlisthd); mkdir; mkdir = nextmd) {
8421 			nextmd = LIST_NEXT(mkdir, md_mkdirs);
8422 			if (mkdir->md_diradd != olddap)
8423 				continue;
8424 			mkdir->md_diradd = newdap;
8425 			state = mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY);
8426 			newdap->da_state |= state;
8427 			olddap->da_state &= ~state;
8428 			if ((olddap->da_state &
8429 			    (MKDIR_PARENT | MKDIR_BODY)) == 0)
8430 				break;
8431 		}
8432 		if ((olddap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0)
8433 			panic("merge_diradd: unfound ref");
8434 	}
8435 	/*
8436 	 * Any mkdir related journal items are not safe to be freed until
8437 	 * the new name is stable.
8438 	 */
8439 	jwork_move(&newdap->da_jwork, &olddap->da_jwork);
8440 	olddap->da_state |= DEPCOMPLETE;
8441 	complete_diradd(olddap);
8442 }
8443 
8444 /*
8445  * Move the diradd to the pending list when all diradd dependencies are
8446  * complete.
8447  */
8448 static void
8449 complete_diradd(dap)
8450 	struct diradd *dap;
8451 {
8452 	struct pagedep *pagedep;
8453 
8454 	if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
8455 		if (dap->da_state & DIRCHG)
8456 			pagedep = dap->da_previous->dm_pagedep;
8457 		else
8458 			pagedep = dap->da_pagedep;
8459 		LIST_REMOVE(dap, da_pdlist);
8460 		LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
8461 	}
8462 }
8463 
8464 /*
8465  * Cancel a diradd when a dirrem overlaps with it.  We must cancel the journal
8466  * add entries and conditonally journal the remove.
8467  */
8468 static void
8469 cancel_diradd(dap, dirrem, jremref, dotremref, dotdotremref)
8470 	struct diradd *dap;
8471 	struct dirrem *dirrem;
8472 	struct jremref *jremref;
8473 	struct jremref *dotremref;
8474 	struct jremref *dotdotremref;
8475 {
8476 	struct inodedep *inodedep;
8477 	struct jaddref *jaddref;
8478 	struct inoref *inoref;
8479 	struct mkdir *mkdir;
8480 
8481 	/*
8482 	 * If no remove references were allocated we're on a non-journaled
8483 	 * filesystem and can skip the cancel step.
8484 	 */
8485 	if (jremref == NULL) {
8486 		free_diradd(dap, NULL);
8487 		return;
8488 	}
8489 	/*
8490 	 * Cancel the primary name an free it if it does not require
8491 	 * journaling.
8492 	 */
8493 	if (inodedep_lookup(dap->da_list.wk_mp, dap->da_newinum,
8494 	    0, &inodedep) != 0) {
8495 		/* Abort the addref that reference this diradd.  */
8496 		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
8497 			if (inoref->if_list.wk_type != D_JADDREF)
8498 				continue;
8499 			jaddref = (struct jaddref *)inoref;
8500 			if (jaddref->ja_diradd != dap)
8501 				continue;
8502 			if (cancel_jaddref(jaddref, inodedep,
8503 			    &dirrem->dm_jwork) == 0) {
8504 				free_jremref(jremref);
8505 				jremref = NULL;
8506 			}
8507 			break;
8508 		}
8509 	}
8510 	/*
8511 	 * Cancel subordinate names and free them if they do not require
8512 	 * journaling.
8513 	 */
8514 	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
8515 		LIST_FOREACH(mkdir, &mkdirlisthd, md_mkdirs) {
8516 			if (mkdir->md_diradd != dap)
8517 				continue;
8518 			if ((jaddref = mkdir->md_jaddref) == NULL)
8519 				continue;
8520 			mkdir->md_jaddref = NULL;
8521 			if (mkdir->md_state & MKDIR_PARENT) {
8522 				if (cancel_jaddref(jaddref, NULL,
8523 				    &dirrem->dm_jwork) == 0) {
8524 					free_jremref(dotdotremref);
8525 					dotdotremref = NULL;
8526 				}
8527 			} else {
8528 				if (cancel_jaddref(jaddref, inodedep,
8529 				    &dirrem->dm_jwork) == 0) {
8530 					free_jremref(dotremref);
8531 					dotremref = NULL;
8532 				}
8533 			}
8534 		}
8535 	}
8536 
8537 	if (jremref)
8538 		journal_jremref(dirrem, jremref, inodedep);
8539 	if (dotremref)
8540 		journal_jremref(dirrem, dotremref, inodedep);
8541 	if (dotdotremref)
8542 		journal_jremref(dirrem, dotdotremref, NULL);
8543 	jwork_move(&dirrem->dm_jwork, &dap->da_jwork);
8544 	free_diradd(dap, &dirrem->dm_jwork);
8545 }
8546 
8547 /*
8548  * Free a diradd dependency structure. This routine must be called
8549  * with splbio interrupts blocked.
8550  */
8551 static void
8552 free_diradd(dap, wkhd)
8553 	struct diradd *dap;
8554 	struct workhead *wkhd;
8555 {
8556 	struct dirrem *dirrem;
8557 	struct pagedep *pagedep;
8558 	struct inodedep *inodedep;
8559 	struct mkdir *mkdir, *nextmd;
8560 
8561 	mtx_assert(&lk, MA_OWNED);
8562 	LIST_REMOVE(dap, da_pdlist);
8563 	if (dap->da_state & ONWORKLIST)
8564 		WORKLIST_REMOVE(&dap->da_list);
8565 	if ((dap->da_state & DIRCHG) == 0) {
8566 		pagedep = dap->da_pagedep;
8567 	} else {
8568 		dirrem = dap->da_previous;
8569 		pagedep = dirrem->dm_pagedep;
8570 		dirrem->dm_dirinum = pagedep->pd_ino;
8571 		dirrem->dm_state |= COMPLETE;
8572 		if (LIST_EMPTY(&dirrem->dm_jremrefhd))
8573 			add_to_worklist(&dirrem->dm_list, 0);
8574 	}
8575 	if (inodedep_lookup(pagedep->pd_list.wk_mp, dap->da_newinum,
8576 	    0, &inodedep) != 0)
8577 		if (inodedep->id_mkdiradd == dap)
8578 			inodedep->id_mkdiradd = NULL;
8579 	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
8580 		for (mkdir = LIST_FIRST(&mkdirlisthd); mkdir; mkdir = nextmd) {
8581 			nextmd = LIST_NEXT(mkdir, md_mkdirs);
8582 			if (mkdir->md_diradd != dap)
8583 				continue;
8584 			dap->da_state &=
8585 			    ~(mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY));
8586 			LIST_REMOVE(mkdir, md_mkdirs);
8587 			if (mkdir->md_state & ONWORKLIST)
8588 				WORKLIST_REMOVE(&mkdir->md_list);
8589 			if (mkdir->md_jaddref != NULL)
8590 				panic("free_diradd: Unexpected jaddref");
8591 			WORKITEM_FREE(mkdir, D_MKDIR);
8592 			if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0)
8593 				break;
8594 		}
8595 		if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0)
8596 			panic("free_diradd: unfound ref");
8597 	}
8598 	if (inodedep)
8599 		free_inodedep(inodedep);
8600 	/*
8601 	 * Free any journal segments waiting for the directory write.
8602 	 */
8603 	handle_jwork(&dap->da_jwork);
8604 	WORKITEM_FREE(dap, D_DIRADD);
8605 }
8606 
8607 /*
8608  * Directory entry removal dependencies.
8609  *
8610  * When removing a directory entry, the entry's inode pointer must be
8611  * zero'ed on disk before the corresponding inode's link count is decremented
8612  * (possibly freeing the inode for re-use). This dependency is handled by
8613  * updating the directory entry but delaying the inode count reduction until
8614  * after the directory block has been written to disk. After this point, the
8615  * inode count can be decremented whenever it is convenient.
8616  */
8617 
8618 /*
8619  * This routine should be called immediately after removing
8620  * a directory entry.  The inode's link count should not be
8621  * decremented by the calling procedure -- the soft updates
8622  * code will do this task when it is safe.
8623  */
8624 void
8625 softdep_setup_remove(bp, dp, ip, isrmdir)
8626 	struct buf *bp;		/* buffer containing directory block */
8627 	struct inode *dp;	/* inode for the directory being modified */
8628 	struct inode *ip;	/* inode for directory entry being removed */
8629 	int isrmdir;		/* indicates if doing RMDIR */
8630 {
8631 	struct dirrem *dirrem, *prevdirrem;
8632 	struct inodedep *inodedep;
8633 	int direct;
8634 
8635 	/*
8636 	 * Allocate a new dirrem if appropriate and ACQUIRE_LOCK.  We want
8637 	 * newdirrem() to setup the full directory remove which requires
8638 	 * isrmdir > 1.
8639 	 */
8640 	dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem);
8641 	/*
8642 	 * Add the dirrem to the inodedep's pending remove list for quick
8643 	 * discovery later.
8644 	 */
8645 	if (inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, 0,
8646 	    &inodedep) == 0)
8647 		panic("softdep_setup_remove: Lost inodedep.");
8648 	KASSERT((inodedep->id_state & UNLINKED) == 0, ("inode unlinked"));
8649 	dirrem->dm_state |= ONDEPLIST;
8650 	LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext);
8651 
8652 	/*
8653 	 * If the COMPLETE flag is clear, then there were no active
8654 	 * entries and we want to roll back to a zeroed entry until
8655 	 * the new inode is committed to disk. If the COMPLETE flag is
8656 	 * set then we have deleted an entry that never made it to
8657 	 * disk. If the entry we deleted resulted from a name change,
8658 	 * then the old name still resides on disk. We cannot delete
8659 	 * its inode (returned to us in prevdirrem) until the zeroed
8660 	 * directory entry gets to disk. The new inode has never been
8661 	 * referenced on the disk, so can be deleted immediately.
8662 	 */
8663 	if ((dirrem->dm_state & COMPLETE) == 0) {
8664 		LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, dirrem,
8665 		    dm_next);
8666 		FREE_LOCK(&lk);
8667 	} else {
8668 		if (prevdirrem != NULL)
8669 			LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd,
8670 			    prevdirrem, dm_next);
8671 		dirrem->dm_dirinum = dirrem->dm_pagedep->pd_ino;
8672 		direct = LIST_EMPTY(&dirrem->dm_jremrefhd);
8673 		FREE_LOCK(&lk);
8674 		if (direct)
8675 			handle_workitem_remove(dirrem, 0);
8676 	}
8677 }
8678 
8679 /*
8680  * Check for an entry matching 'offset' on both the pd_dirraddhd list and the
8681  * pd_pendinghd list of a pagedep.
8682  */
8683 static struct diradd *
8684 diradd_lookup(pagedep, offset)
8685 	struct pagedep *pagedep;
8686 	int offset;
8687 {
8688 	struct diradd *dap;
8689 
8690 	LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(offset)], da_pdlist)
8691 		if (dap->da_offset == offset)
8692 			return (dap);
8693 	LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist)
8694 		if (dap->da_offset == offset)
8695 			return (dap);
8696 	return (NULL);
8697 }
8698 
8699 /*
8700  * Search for a .. diradd dependency in a directory that is being removed.
8701  * If the directory was renamed to a new parent we have a diradd rather
8702  * than a mkdir for the .. entry.  We need to cancel it now before
8703  * it is found in truncate().
8704  */
8705 static struct jremref *
8706 cancel_diradd_dotdot(ip, dirrem, jremref)
8707 	struct inode *ip;
8708 	struct dirrem *dirrem;
8709 	struct jremref *jremref;
8710 {
8711 	struct pagedep *pagedep;
8712 	struct diradd *dap;
8713 	struct worklist *wk;
8714 
8715 	if (pagedep_lookup(UFSTOVFS(ip->i_ump), NULL, ip->i_number, 0, 0,
8716 	    &pagedep) == 0)
8717 		return (jremref);
8718 	dap = diradd_lookup(pagedep, DOTDOT_OFFSET);
8719 	if (dap == NULL)
8720 		return (jremref);
8721 	cancel_diradd(dap, dirrem, jremref, NULL, NULL);
8722 	/*
8723 	 * Mark any journal work as belonging to the parent so it is freed
8724 	 * with the .. reference.
8725 	 */
8726 	LIST_FOREACH(wk, &dirrem->dm_jwork, wk_list)
8727 		wk->wk_state |= MKDIR_PARENT;
8728 	return (NULL);
8729 }
8730 
8731 /*
8732  * Cancel the MKDIR_PARENT mkdir component of a diradd when we're going to
8733  * replace it with a dirrem/diradd pair as a result of re-parenting a
8734  * directory.  This ensures that we don't simultaneously have a mkdir and
8735  * a diradd for the same .. entry.
8736  */
8737 static struct jremref *
8738 cancel_mkdir_dotdot(ip, dirrem, jremref)
8739 	struct inode *ip;
8740 	struct dirrem *dirrem;
8741 	struct jremref *jremref;
8742 {
8743 	struct inodedep *inodedep;
8744 	struct jaddref *jaddref;
8745 	struct mkdir *mkdir;
8746 	struct diradd *dap;
8747 
8748 	if (inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, 0,
8749 	    &inodedep) == 0)
8750 		return (jremref);
8751 	dap = inodedep->id_mkdiradd;
8752 	if (dap == NULL || (dap->da_state & MKDIR_PARENT) == 0)
8753 		return (jremref);
8754 	for (mkdir = LIST_FIRST(&mkdirlisthd); mkdir;
8755 	    mkdir = LIST_NEXT(mkdir, md_mkdirs))
8756 		if (mkdir->md_diradd == dap && mkdir->md_state & MKDIR_PARENT)
8757 			break;
8758 	if (mkdir == NULL)
8759 		panic("cancel_mkdir_dotdot: Unable to find mkdir\n");
8760 	if ((jaddref = mkdir->md_jaddref) != NULL) {
8761 		mkdir->md_jaddref = NULL;
8762 		jaddref->ja_state &= ~MKDIR_PARENT;
8763 		if (inodedep_lookup(UFSTOVFS(ip->i_ump), jaddref->ja_ino, 0,
8764 		    &inodedep) == 0)
8765 			panic("cancel_mkdir_dotdot: Lost parent inodedep");
8766 		if (cancel_jaddref(jaddref, inodedep, &dirrem->dm_jwork)) {
8767 			journal_jremref(dirrem, jremref, inodedep);
8768 			jremref = NULL;
8769 		}
8770 	}
8771 	if (mkdir->md_state & ONWORKLIST)
8772 		WORKLIST_REMOVE(&mkdir->md_list);
8773 	mkdir->md_state |= ALLCOMPLETE;
8774 	complete_mkdir(mkdir);
8775 	return (jremref);
8776 }
8777 
8778 static void
8779 journal_jremref(dirrem, jremref, inodedep)
8780 	struct dirrem *dirrem;
8781 	struct jremref *jremref;
8782 	struct inodedep *inodedep;
8783 {
8784 
8785 	if (inodedep == NULL)
8786 		if (inodedep_lookup(jremref->jr_list.wk_mp,
8787 		    jremref->jr_ref.if_ino, 0, &inodedep) == 0)
8788 			panic("journal_jremref: Lost inodedep");
8789 	LIST_INSERT_HEAD(&dirrem->dm_jremrefhd, jremref, jr_deps);
8790 	TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jremref->jr_ref, if_deps);
8791 	add_to_journal(&jremref->jr_list);
8792 }
8793 
8794 static void
8795 dirrem_journal(dirrem, jremref, dotremref, dotdotremref)
8796 	struct dirrem *dirrem;
8797 	struct jremref *jremref;
8798 	struct jremref *dotremref;
8799 	struct jremref *dotdotremref;
8800 {
8801 	struct inodedep *inodedep;
8802 
8803 
8804 	if (inodedep_lookup(jremref->jr_list.wk_mp, jremref->jr_ref.if_ino, 0,
8805 	    &inodedep) == 0)
8806 		panic("dirrem_journal: Lost inodedep");
8807 	journal_jremref(dirrem, jremref, inodedep);
8808 	if (dotremref)
8809 		journal_jremref(dirrem, dotremref, inodedep);
8810 	if (dotdotremref)
8811 		journal_jremref(dirrem, dotdotremref, NULL);
8812 }
8813 
8814 /*
8815  * Allocate a new dirrem if appropriate and return it along with
8816  * its associated pagedep. Called without a lock, returns with lock.
8817  */
8818 static struct dirrem *
8819 newdirrem(bp, dp, ip, isrmdir, prevdirremp)
8820 	struct buf *bp;		/* buffer containing directory block */
8821 	struct inode *dp;	/* inode for the directory being modified */
8822 	struct inode *ip;	/* inode for directory entry being removed */
8823 	int isrmdir;		/* indicates if doing RMDIR */
8824 	struct dirrem **prevdirremp; /* previously referenced inode, if any */
8825 {
8826 	int offset;
8827 	ufs_lbn_t lbn;
8828 	struct diradd *dap;
8829 	struct dirrem *dirrem;
8830 	struct pagedep *pagedep;
8831 	struct jremref *jremref;
8832 	struct jremref *dotremref;
8833 	struct jremref *dotdotremref;
8834 	struct vnode *dvp;
8835 
8836 	/*
8837 	 * Whiteouts have no deletion dependencies.
8838 	 */
8839 	if (ip == NULL)
8840 		panic("newdirrem: whiteout");
8841 	dvp = ITOV(dp);
8842 	/*
8843 	 * If we are over our limit, try to improve the situation.
8844 	 * Limiting the number of dirrem structures will also limit
8845 	 * the number of freefile and freeblks structures.
8846 	 */
8847 	ACQUIRE_LOCK(&lk);
8848 	if (!IS_SNAPSHOT(ip) && dep_current[D_DIRREM] > max_softdeps / 2)
8849 		(void) request_cleanup(ITOV(dp)->v_mount, FLUSH_BLOCKS);
8850 	FREE_LOCK(&lk);
8851 	dirrem = malloc(sizeof(struct dirrem),
8852 		M_DIRREM, M_SOFTDEP_FLAGS|M_ZERO);
8853 	workitem_alloc(&dirrem->dm_list, D_DIRREM, dvp->v_mount);
8854 	LIST_INIT(&dirrem->dm_jremrefhd);
8855 	LIST_INIT(&dirrem->dm_jwork);
8856 	dirrem->dm_state = isrmdir ? RMDIR : 0;
8857 	dirrem->dm_oldinum = ip->i_number;
8858 	*prevdirremp = NULL;
8859 	/*
8860 	 * Allocate remove reference structures to track journal write
8861 	 * dependencies.  We will always have one for the link and
8862 	 * when doing directories we will always have one more for dot.
8863 	 * When renaming a directory we skip the dotdot link change so
8864 	 * this is not needed.
8865 	 */
8866 	jremref = dotremref = dotdotremref = NULL;
8867 	if (DOINGSUJ(dvp)) {
8868 		if (isrmdir) {
8869 			jremref = newjremref(dirrem, dp, ip, dp->i_offset,
8870 			    ip->i_effnlink + 2);
8871 			dotremref = newjremref(dirrem, ip, ip, DOT_OFFSET,
8872 			    ip->i_effnlink + 1);
8873 			dotdotremref = newjremref(dirrem, ip, dp, DOTDOT_OFFSET,
8874 			    dp->i_effnlink + 1);
8875 			dotdotremref->jr_state |= MKDIR_PARENT;
8876 		} else
8877 			jremref = newjremref(dirrem, dp, ip, dp->i_offset,
8878 			    ip->i_effnlink + 1);
8879 	}
8880 	ACQUIRE_LOCK(&lk);
8881 	lbn = lblkno(dp->i_fs, dp->i_offset);
8882 	offset = blkoff(dp->i_fs, dp->i_offset);
8883 	pagedep_lookup(UFSTOVFS(dp->i_ump), bp, dp->i_number, lbn, DEPALLOC,
8884 	    &pagedep);
8885 	dirrem->dm_pagedep = pagedep;
8886 	dirrem->dm_offset = offset;
8887 	/*
8888 	 * If we're renaming a .. link to a new directory, cancel any
8889 	 * existing MKDIR_PARENT mkdir.  If it has already been canceled
8890 	 * the jremref is preserved for any potential diradd in this
8891 	 * location.  This can not coincide with a rmdir.
8892 	 */
8893 	if (dp->i_offset == DOTDOT_OFFSET) {
8894 		if (isrmdir)
8895 			panic("newdirrem: .. directory change during remove?");
8896 		jremref = cancel_mkdir_dotdot(dp, dirrem, jremref);
8897 	}
8898 	/*
8899 	 * If we're removing a directory search for the .. dependency now and
8900 	 * cancel it.  Any pending journal work will be added to the dirrem
8901 	 * to be completed when the workitem remove completes.
8902 	 */
8903 	if (isrmdir)
8904 		dotdotremref = cancel_diradd_dotdot(ip, dirrem, dotdotremref);
8905 	/*
8906 	 * Check for a diradd dependency for the same directory entry.
8907 	 * If present, then both dependencies become obsolete and can
8908 	 * be de-allocated.
8909 	 */
8910 	dap = diradd_lookup(pagedep, offset);
8911 	if (dap == NULL) {
8912 		/*
8913 		 * Link the jremref structures into the dirrem so they are
8914 		 * written prior to the pagedep.
8915 		 */
8916 		if (jremref)
8917 			dirrem_journal(dirrem, jremref, dotremref,
8918 			    dotdotremref);
8919 		return (dirrem);
8920 	}
8921 	/*
8922 	 * Must be ATTACHED at this point.
8923 	 */
8924 	if ((dap->da_state & ATTACHED) == 0)
8925 		panic("newdirrem: not ATTACHED");
8926 	if (dap->da_newinum != ip->i_number)
8927 		panic("newdirrem: inum %ju should be %ju",
8928 		    (uintmax_t)ip->i_number, (uintmax_t)dap->da_newinum);
8929 	/*
8930 	 * If we are deleting a changed name that never made it to disk,
8931 	 * then return the dirrem describing the previous inode (which
8932 	 * represents the inode currently referenced from this entry on disk).
8933 	 */
8934 	if ((dap->da_state & DIRCHG) != 0) {
8935 		*prevdirremp = dap->da_previous;
8936 		dap->da_state &= ~DIRCHG;
8937 		dap->da_pagedep = pagedep;
8938 	}
8939 	/*
8940 	 * We are deleting an entry that never made it to disk.
8941 	 * Mark it COMPLETE so we can delete its inode immediately.
8942 	 */
8943 	dirrem->dm_state |= COMPLETE;
8944 	cancel_diradd(dap, dirrem, jremref, dotremref, dotdotremref);
8945 #ifdef SUJ_DEBUG
8946 	if (isrmdir == 0) {
8947 		struct worklist *wk;
8948 
8949 		LIST_FOREACH(wk, &dirrem->dm_jwork, wk_list)
8950 			if (wk->wk_state & (MKDIR_BODY | MKDIR_PARENT))
8951 				panic("bad wk %p (0x%X)\n", wk, wk->wk_state);
8952 	}
8953 #endif
8954 
8955 	return (dirrem);
8956 }
8957 
8958 /*
8959  * Directory entry change dependencies.
8960  *
8961  * Changing an existing directory entry requires that an add operation
8962  * be completed first followed by a deletion. The semantics for the addition
8963  * are identical to the description of adding a new entry above except
8964  * that the rollback is to the old inode number rather than zero. Once
8965  * the addition dependency is completed, the removal is done as described
8966  * in the removal routine above.
8967  */
8968 
8969 /*
8970  * This routine should be called immediately after changing
8971  * a directory entry.  The inode's link count should not be
8972  * decremented by the calling procedure -- the soft updates
8973  * code will perform this task when it is safe.
8974  */
8975 void
8976 softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir)
8977 	struct buf *bp;		/* buffer containing directory block */
8978 	struct inode *dp;	/* inode for the directory being modified */
8979 	struct inode *ip;	/* inode for directory entry being removed */
8980 	ino_t newinum;		/* new inode number for changed entry */
8981 	int isrmdir;		/* indicates if doing RMDIR */
8982 {
8983 	int offset;
8984 	struct diradd *dap = NULL;
8985 	struct dirrem *dirrem, *prevdirrem;
8986 	struct pagedep *pagedep;
8987 	struct inodedep *inodedep;
8988 	struct jaddref *jaddref;
8989 	struct mount *mp;
8990 
8991 	offset = blkoff(dp->i_fs, dp->i_offset);
8992 	mp = UFSTOVFS(dp->i_ump);
8993 
8994 	/*
8995 	 * Whiteouts do not need diradd dependencies.
8996 	 */
8997 	if (newinum != WINO) {
8998 		dap = malloc(sizeof(struct diradd),
8999 		    M_DIRADD, M_SOFTDEP_FLAGS|M_ZERO);
9000 		workitem_alloc(&dap->da_list, D_DIRADD, mp);
9001 		dap->da_state = DIRCHG | ATTACHED | DEPCOMPLETE;
9002 		dap->da_offset = offset;
9003 		dap->da_newinum = newinum;
9004 		LIST_INIT(&dap->da_jwork);
9005 	}
9006 
9007 	/*
9008 	 * Allocate a new dirrem and ACQUIRE_LOCK.
9009 	 */
9010 	dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem);
9011 	pagedep = dirrem->dm_pagedep;
9012 	/*
9013 	 * The possible values for isrmdir:
9014 	 *	0 - non-directory file rename
9015 	 *	1 - directory rename within same directory
9016 	 *   inum - directory rename to new directory of given inode number
9017 	 * When renaming to a new directory, we are both deleting and
9018 	 * creating a new directory entry, so the link count on the new
9019 	 * directory should not change. Thus we do not need the followup
9020 	 * dirrem which is usually done in handle_workitem_remove. We set
9021 	 * the DIRCHG flag to tell handle_workitem_remove to skip the
9022 	 * followup dirrem.
9023 	 */
9024 	if (isrmdir > 1)
9025 		dirrem->dm_state |= DIRCHG;
9026 
9027 	/*
9028 	 * Whiteouts have no additional dependencies,
9029 	 * so just put the dirrem on the correct list.
9030 	 */
9031 	if (newinum == WINO) {
9032 		if ((dirrem->dm_state & COMPLETE) == 0) {
9033 			LIST_INSERT_HEAD(&pagedep->pd_dirremhd, dirrem,
9034 			    dm_next);
9035 		} else {
9036 			dirrem->dm_dirinum = pagedep->pd_ino;
9037 			if (LIST_EMPTY(&dirrem->dm_jremrefhd))
9038 				add_to_worklist(&dirrem->dm_list, 0);
9039 		}
9040 		FREE_LOCK(&lk);
9041 		return;
9042 	}
9043 	/*
9044 	 * Add the dirrem to the inodedep's pending remove list for quick
9045 	 * discovery later.  A valid nlinkdelta ensures that this lookup
9046 	 * will not fail.
9047 	 */
9048 	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0)
9049 		panic("softdep_setup_directory_change: Lost inodedep.");
9050 	dirrem->dm_state |= ONDEPLIST;
9051 	LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext);
9052 
9053 	/*
9054 	 * If the COMPLETE flag is clear, then there were no active
9055 	 * entries and we want to roll back to the previous inode until
9056 	 * the new inode is committed to disk. If the COMPLETE flag is
9057 	 * set, then we have deleted an entry that never made it to disk.
9058 	 * If the entry we deleted resulted from a name change, then the old
9059 	 * inode reference still resides on disk. Any rollback that we do
9060 	 * needs to be to that old inode (returned to us in prevdirrem). If
9061 	 * the entry we deleted resulted from a create, then there is
9062 	 * no entry on the disk, so we want to roll back to zero rather
9063 	 * than the uncommitted inode. In either of the COMPLETE cases we
9064 	 * want to immediately free the unwritten and unreferenced inode.
9065 	 */
9066 	if ((dirrem->dm_state & COMPLETE) == 0) {
9067 		dap->da_previous = dirrem;
9068 	} else {
9069 		if (prevdirrem != NULL) {
9070 			dap->da_previous = prevdirrem;
9071 		} else {
9072 			dap->da_state &= ~DIRCHG;
9073 			dap->da_pagedep = pagedep;
9074 		}
9075 		dirrem->dm_dirinum = pagedep->pd_ino;
9076 		if (LIST_EMPTY(&dirrem->dm_jremrefhd))
9077 			add_to_worklist(&dirrem->dm_list, 0);
9078 	}
9079 	/*
9080 	 * Lookup the jaddref for this journal entry.  We must finish
9081 	 * initializing it and make the diradd write dependent on it.
9082 	 * If we're not journaling, put it on the id_bufwait list if the
9083 	 * inode is not yet written. If it is written, do the post-inode
9084 	 * write processing to put it on the id_pendinghd list.
9085 	 */
9086 	inodedep_lookup(mp, newinum, DEPALLOC | NODELAY, &inodedep);
9087 	if (MOUNTEDSUJ(mp)) {
9088 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
9089 		    inoreflst);
9090 		KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number,
9091 		    ("softdep_setup_directory_change: bad jaddref %p",
9092 		    jaddref));
9093 		jaddref->ja_diroff = dp->i_offset;
9094 		jaddref->ja_diradd = dap;
9095 		LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)],
9096 		    dap, da_pdlist);
9097 		add_to_journal(&jaddref->ja_list);
9098 	} else if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) {
9099 		dap->da_state |= COMPLETE;
9100 		LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
9101 		WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list);
9102 	} else {
9103 		LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)],
9104 		    dap, da_pdlist);
9105 		WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list);
9106 	}
9107 	/*
9108 	 * If we're making a new name for a directory that has not been
9109 	 * committed when need to move the dot and dotdot references to
9110 	 * this new name.
9111 	 */
9112 	if (inodedep->id_mkdiradd && dp->i_offset != DOTDOT_OFFSET)
9113 		merge_diradd(inodedep, dap);
9114 	FREE_LOCK(&lk);
9115 }
9116 
9117 /*
9118  * Called whenever the link count on an inode is changed.
9119  * It creates an inode dependency so that the new reference(s)
9120  * to the inode cannot be committed to disk until the updated
9121  * inode has been written.
9122  */
9123 void
9124 softdep_change_linkcnt(ip)
9125 	struct inode *ip;	/* the inode with the increased link count */
9126 {
9127 	struct inodedep *inodedep;
9128 	int dflags;
9129 
9130 	ACQUIRE_LOCK(&lk);
9131 	dflags = DEPALLOC;
9132 	if (IS_SNAPSHOT(ip))
9133 		dflags |= NODELAY;
9134 	inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, dflags, &inodedep);
9135 	if (ip->i_nlink < ip->i_effnlink)
9136 		panic("softdep_change_linkcnt: bad delta");
9137 	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
9138 	FREE_LOCK(&lk);
9139 }
9140 
9141 /*
9142  * Attach a sbdep dependency to the superblock buf so that we can keep
9143  * track of the head of the linked list of referenced but unlinked inodes.
9144  */
9145 void
9146 softdep_setup_sbupdate(ump, fs, bp)
9147 	struct ufsmount *ump;
9148 	struct fs *fs;
9149 	struct buf *bp;
9150 {
9151 	struct sbdep *sbdep;
9152 	struct worklist *wk;
9153 
9154 	if (MOUNTEDSUJ(UFSTOVFS(ump)) == 0)
9155 		return;
9156 	LIST_FOREACH(wk, &bp->b_dep, wk_list)
9157 		if (wk->wk_type == D_SBDEP)
9158 			break;
9159 	if (wk != NULL)
9160 		return;
9161 	sbdep = malloc(sizeof(struct sbdep), M_SBDEP, M_SOFTDEP_FLAGS);
9162 	workitem_alloc(&sbdep->sb_list, D_SBDEP, UFSTOVFS(ump));
9163 	sbdep->sb_fs = fs;
9164 	sbdep->sb_ump = ump;
9165 	ACQUIRE_LOCK(&lk);
9166 	WORKLIST_INSERT(&bp->b_dep, &sbdep->sb_list);
9167 	FREE_LOCK(&lk);
9168 }
9169 
9170 /*
9171  * Return the first unlinked inodedep which is ready to be the head of the
9172  * list.  The inodedep and all those after it must have valid next pointers.
9173  */
9174 static struct inodedep *
9175 first_unlinked_inodedep(ump)
9176 	struct ufsmount *ump;
9177 {
9178 	struct inodedep *inodedep;
9179 	struct inodedep *idp;
9180 
9181 	mtx_assert(&lk, MA_OWNED);
9182 	for (inodedep = TAILQ_LAST(&ump->softdep_unlinked, inodedeplst);
9183 	    inodedep; inodedep = idp) {
9184 		if ((inodedep->id_state & UNLINKNEXT) == 0)
9185 			return (NULL);
9186 		idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked);
9187 		if (idp == NULL || (idp->id_state & UNLINKNEXT) == 0)
9188 			break;
9189 		if ((inodedep->id_state & UNLINKPREV) == 0)
9190 			break;
9191 	}
9192 	return (inodedep);
9193 }
9194 
9195 /*
9196  * Set the sujfree unlinked head pointer prior to writing a superblock.
9197  */
9198 static void
9199 initiate_write_sbdep(sbdep)
9200 	struct sbdep *sbdep;
9201 {
9202 	struct inodedep *inodedep;
9203 	struct fs *bpfs;
9204 	struct fs *fs;
9205 
9206 	bpfs = sbdep->sb_fs;
9207 	fs = sbdep->sb_ump->um_fs;
9208 	inodedep = first_unlinked_inodedep(sbdep->sb_ump);
9209 	if (inodedep) {
9210 		fs->fs_sujfree = inodedep->id_ino;
9211 		inodedep->id_state |= UNLINKPREV;
9212 	} else
9213 		fs->fs_sujfree = 0;
9214 	bpfs->fs_sujfree = fs->fs_sujfree;
9215 }
9216 
9217 /*
9218  * After a superblock is written determine whether it must be written again
9219  * due to a changing unlinked list head.
9220  */
9221 static int
9222 handle_written_sbdep(sbdep, bp)
9223 	struct sbdep *sbdep;
9224 	struct buf *bp;
9225 {
9226 	struct inodedep *inodedep;
9227 	struct mount *mp;
9228 	struct fs *fs;
9229 
9230 	mtx_assert(&lk, MA_OWNED);
9231 	fs = sbdep->sb_fs;
9232 	mp = UFSTOVFS(sbdep->sb_ump);
9233 	/*
9234 	 * If the superblock doesn't match the in-memory list start over.
9235 	 */
9236 	inodedep = first_unlinked_inodedep(sbdep->sb_ump);
9237 	if ((inodedep && fs->fs_sujfree != inodedep->id_ino) ||
9238 	    (inodedep == NULL && fs->fs_sujfree != 0)) {
9239 		bdirty(bp);
9240 		return (1);
9241 	}
9242 	WORKITEM_FREE(sbdep, D_SBDEP);
9243 	if (fs->fs_sujfree == 0)
9244 		return (0);
9245 	/*
9246 	 * Now that we have a record of this inode in stable store allow it
9247 	 * to be written to free up pending work.  Inodes may see a lot of
9248 	 * write activity after they are unlinked which we must not hold up.
9249 	 */
9250 	for (; inodedep != NULL; inodedep = TAILQ_NEXT(inodedep, id_unlinked)) {
9251 		if ((inodedep->id_state & UNLINKLINKS) != UNLINKLINKS)
9252 			panic("handle_written_sbdep: Bad inodedep %p (0x%X)",
9253 			    inodedep, inodedep->id_state);
9254 		if (inodedep->id_state & UNLINKONLIST)
9255 			break;
9256 		inodedep->id_state |= DEPCOMPLETE | UNLINKONLIST;
9257 	}
9258 
9259 	return (0);
9260 }
9261 
9262 /*
9263  * Mark an inodedep as unlinked and insert it into the in-memory unlinked list.
9264  */
9265 static void
9266 unlinked_inodedep(mp, inodedep)
9267 	struct mount *mp;
9268 	struct inodedep *inodedep;
9269 {
9270 	struct ufsmount *ump;
9271 
9272 	mtx_assert(&lk, MA_OWNED);
9273 	if (MOUNTEDSUJ(mp) == 0)
9274 		return;
9275 	ump = VFSTOUFS(mp);
9276 	ump->um_fs->fs_fmod = 1;
9277 	if (inodedep->id_state & UNLINKED)
9278 		panic("unlinked_inodedep: %p already unlinked\n", inodedep);
9279 	inodedep->id_state |= UNLINKED;
9280 	TAILQ_INSERT_HEAD(&ump->softdep_unlinked, inodedep, id_unlinked);
9281 }
9282 
9283 /*
9284  * Remove an inodedep from the unlinked inodedep list.  This may require
9285  * disk writes if the inode has made it that far.
9286  */
9287 static void
9288 clear_unlinked_inodedep(inodedep)
9289 	struct inodedep *inodedep;
9290 {
9291 	struct ufsmount *ump;
9292 	struct inodedep *idp;
9293 	struct inodedep *idn;
9294 	struct fs *fs;
9295 	struct buf *bp;
9296 	ino_t ino;
9297 	ino_t nino;
9298 	ino_t pino;
9299 	int error;
9300 
9301 	ump = VFSTOUFS(inodedep->id_list.wk_mp);
9302 	fs = ump->um_fs;
9303 	ino = inodedep->id_ino;
9304 	error = 0;
9305 	for (;;) {
9306 		mtx_assert(&lk, MA_OWNED);
9307 		KASSERT((inodedep->id_state & UNLINKED) != 0,
9308 		    ("clear_unlinked_inodedep: inodedep %p not unlinked",
9309 		    inodedep));
9310 		/*
9311 		 * If nothing has yet been written simply remove us from
9312 		 * the in memory list and return.  This is the most common
9313 		 * case where handle_workitem_remove() loses the final
9314 		 * reference.
9315 		 */
9316 		if ((inodedep->id_state & UNLINKLINKS) == 0)
9317 			break;
9318 		/*
9319 		 * If we have a NEXT pointer and no PREV pointer we can simply
9320 		 * clear NEXT's PREV and remove ourselves from the list.  Be
9321 		 * careful not to clear PREV if the superblock points at
9322 		 * next as well.
9323 		 */
9324 		idn = TAILQ_NEXT(inodedep, id_unlinked);
9325 		if ((inodedep->id_state & UNLINKLINKS) == UNLINKNEXT) {
9326 			if (idn && fs->fs_sujfree != idn->id_ino)
9327 				idn->id_state &= ~UNLINKPREV;
9328 			break;
9329 		}
9330 		/*
9331 		 * Here we have an inodedep which is actually linked into
9332 		 * the list.  We must remove it by forcing a write to the
9333 		 * link before us, whether it be the superblock or an inode.
9334 		 * Unfortunately the list may change while we're waiting
9335 		 * on the buf lock for either resource so we must loop until
9336 		 * we lock the right one.  If both the superblock and an
9337 		 * inode point to this inode we must clear the inode first
9338 		 * followed by the superblock.
9339 		 */
9340 		idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked);
9341 		pino = 0;
9342 		if (idp && (idp->id_state & UNLINKNEXT))
9343 			pino = idp->id_ino;
9344 		FREE_LOCK(&lk);
9345 		if (pino == 0)
9346 			bp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc),
9347 			    (int)fs->fs_sbsize, 0, 0, 0);
9348 		else
9349 			error = bread(ump->um_devvp,
9350 			    fsbtodb(fs, ino_to_fsba(fs, pino)),
9351 			    (int)fs->fs_bsize, NOCRED, &bp);
9352 		ACQUIRE_LOCK(&lk);
9353 		if (error)
9354 			break;
9355 		/* If the list has changed restart the loop. */
9356 		idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked);
9357 		nino = 0;
9358 		if (idp && (idp->id_state & UNLINKNEXT))
9359 			nino = idp->id_ino;
9360 		if (nino != pino ||
9361 		    (inodedep->id_state & UNLINKPREV) != UNLINKPREV) {
9362 			FREE_LOCK(&lk);
9363 			brelse(bp);
9364 			ACQUIRE_LOCK(&lk);
9365 			continue;
9366 		}
9367 		nino = 0;
9368 		idn = TAILQ_NEXT(inodedep, id_unlinked);
9369 		if (idn)
9370 			nino = idn->id_ino;
9371 		/*
9372 		 * Remove us from the in memory list.  After this we cannot
9373 		 * access the inodedep.
9374 		 */
9375 		KASSERT((inodedep->id_state & UNLINKED) != 0,
9376 		    ("clear_unlinked_inodedep: inodedep %p not unlinked",
9377 		    inodedep));
9378 		inodedep->id_state &= ~(UNLINKED | UNLINKLINKS | UNLINKONLIST);
9379 		TAILQ_REMOVE(&ump->softdep_unlinked, inodedep, id_unlinked);
9380 		FREE_LOCK(&lk);
9381 		/*
9382 		 * The predecessor's next pointer is manually updated here
9383 		 * so that the NEXT flag is never cleared for an element
9384 		 * that is in the list.
9385 		 */
9386 		if (pino == 0) {
9387 			bcopy((caddr_t)fs, bp->b_data, (u_int)fs->fs_sbsize);
9388 			ffs_oldfscompat_write((struct fs *)bp->b_data, ump);
9389 			softdep_setup_sbupdate(ump, (struct fs *)bp->b_data,
9390 			    bp);
9391 		} else if (fs->fs_magic == FS_UFS1_MAGIC)
9392 			((struct ufs1_dinode *)bp->b_data +
9393 			    ino_to_fsbo(fs, pino))->di_freelink = nino;
9394 		else
9395 			((struct ufs2_dinode *)bp->b_data +
9396 			    ino_to_fsbo(fs, pino))->di_freelink = nino;
9397 		/*
9398 		 * If the bwrite fails we have no recourse to recover.  The
9399 		 * filesystem is corrupted already.
9400 		 */
9401 		bwrite(bp);
9402 		ACQUIRE_LOCK(&lk);
9403 		/*
9404 		 * If the superblock pointer still needs to be cleared force
9405 		 * a write here.
9406 		 */
9407 		if (fs->fs_sujfree == ino) {
9408 			FREE_LOCK(&lk);
9409 			bp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc),
9410 			    (int)fs->fs_sbsize, 0, 0, 0);
9411 			bcopy((caddr_t)fs, bp->b_data, (u_int)fs->fs_sbsize);
9412 			ffs_oldfscompat_write((struct fs *)bp->b_data, ump);
9413 			softdep_setup_sbupdate(ump, (struct fs *)bp->b_data,
9414 			    bp);
9415 			bwrite(bp);
9416 			ACQUIRE_LOCK(&lk);
9417 		}
9418 
9419 		if (fs->fs_sujfree != ino)
9420 			return;
9421 		panic("clear_unlinked_inodedep: Failed to clear free head");
9422 	}
9423 	if (inodedep->id_ino == fs->fs_sujfree)
9424 		panic("clear_unlinked_inodedep: Freeing head of free list");
9425 	inodedep->id_state &= ~(UNLINKED | UNLINKLINKS | UNLINKONLIST);
9426 	TAILQ_REMOVE(&ump->softdep_unlinked, inodedep, id_unlinked);
9427 	return;
9428 }
9429 
9430 /*
9431  * This workitem decrements the inode's link count.
9432  * If the link count reaches zero, the file is removed.
9433  */
9434 static int
9435 handle_workitem_remove(dirrem, flags)
9436 	struct dirrem *dirrem;
9437 	int flags;
9438 {
9439 	struct inodedep *inodedep;
9440 	struct workhead dotdotwk;
9441 	struct worklist *wk;
9442 	struct ufsmount *ump;
9443 	struct mount *mp;
9444 	struct vnode *vp;
9445 	struct inode *ip;
9446 	ino_t oldinum;
9447 
9448 	if (dirrem->dm_state & ONWORKLIST)
9449 		panic("handle_workitem_remove: dirrem %p still on worklist",
9450 		    dirrem);
9451 	oldinum = dirrem->dm_oldinum;
9452 	mp = dirrem->dm_list.wk_mp;
9453 	ump = VFSTOUFS(mp);
9454 	flags |= LK_EXCLUSIVE;
9455 	if (ffs_vgetf(mp, oldinum, flags, &vp, FFSV_FORCEINSMQ) != 0)
9456 		return (EBUSY);
9457 	ip = VTOI(vp);
9458 	ACQUIRE_LOCK(&lk);
9459 	if ((inodedep_lookup(mp, oldinum, 0, &inodedep)) == 0)
9460 		panic("handle_workitem_remove: lost inodedep");
9461 	if (dirrem->dm_state & ONDEPLIST)
9462 		LIST_REMOVE(dirrem, dm_inonext);
9463 	KASSERT(LIST_EMPTY(&dirrem->dm_jremrefhd),
9464 	    ("handle_workitem_remove:  Journal entries not written."));
9465 
9466 	/*
9467 	 * Move all dependencies waiting on the remove to complete
9468 	 * from the dirrem to the inode inowait list to be completed
9469 	 * after the inode has been updated and written to disk.  Any
9470 	 * marked MKDIR_PARENT are saved to be completed when the .. ref
9471 	 * is removed.
9472 	 */
9473 	LIST_INIT(&dotdotwk);
9474 	while ((wk = LIST_FIRST(&dirrem->dm_jwork)) != NULL) {
9475 		WORKLIST_REMOVE(wk);
9476 		if (wk->wk_state & MKDIR_PARENT) {
9477 			wk->wk_state &= ~MKDIR_PARENT;
9478 			WORKLIST_INSERT(&dotdotwk, wk);
9479 			continue;
9480 		}
9481 		WORKLIST_INSERT(&inodedep->id_inowait, wk);
9482 	}
9483 	LIST_SWAP(&dirrem->dm_jwork, &dotdotwk, worklist, wk_list);
9484 	/*
9485 	 * Normal file deletion.
9486 	 */
9487 	if ((dirrem->dm_state & RMDIR) == 0) {
9488 		ip->i_nlink--;
9489 		DIP_SET(ip, i_nlink, ip->i_nlink);
9490 		ip->i_flag |= IN_CHANGE;
9491 		if (ip->i_nlink < ip->i_effnlink)
9492 			panic("handle_workitem_remove: bad file delta");
9493 		if (ip->i_nlink == 0)
9494 			unlinked_inodedep(mp, inodedep);
9495 		inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
9496 		KASSERT(LIST_EMPTY(&dirrem->dm_jwork),
9497 		    ("handle_workitem_remove: worklist not empty. %s",
9498 		    TYPENAME(LIST_FIRST(&dirrem->dm_jwork)->wk_type)));
9499 		WORKITEM_FREE(dirrem, D_DIRREM);
9500 		FREE_LOCK(&lk);
9501 		goto out;
9502 	}
9503 	/*
9504 	 * Directory deletion. Decrement reference count for both the
9505 	 * just deleted parent directory entry and the reference for ".".
9506 	 * Arrange to have the reference count on the parent decremented
9507 	 * to account for the loss of "..".
9508 	 */
9509 	ip->i_nlink -= 2;
9510 	DIP_SET(ip, i_nlink, ip->i_nlink);
9511 	ip->i_flag |= IN_CHANGE;
9512 	if (ip->i_nlink < ip->i_effnlink)
9513 		panic("handle_workitem_remove: bad dir delta");
9514 	if (ip->i_nlink == 0)
9515 		unlinked_inodedep(mp, inodedep);
9516 	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
9517 	/*
9518 	 * Rename a directory to a new parent. Since, we are both deleting
9519 	 * and creating a new directory entry, the link count on the new
9520 	 * directory should not change. Thus we skip the followup dirrem.
9521 	 */
9522 	if (dirrem->dm_state & DIRCHG) {
9523 		KASSERT(LIST_EMPTY(&dirrem->dm_jwork),
9524 		    ("handle_workitem_remove: DIRCHG and worklist not empty."));
9525 		WORKITEM_FREE(dirrem, D_DIRREM);
9526 		FREE_LOCK(&lk);
9527 		goto out;
9528 	}
9529 	dirrem->dm_state = ONDEPLIST;
9530 	dirrem->dm_oldinum = dirrem->dm_dirinum;
9531 	/*
9532 	 * Place the dirrem on the parent's diremhd list.
9533 	 */
9534 	if (inodedep_lookup(mp, dirrem->dm_oldinum, 0, &inodedep) == 0)
9535 		panic("handle_workitem_remove: lost dir inodedep");
9536 	LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext);
9537 	/*
9538 	 * If the allocated inode has never been written to disk, then
9539 	 * the on-disk inode is zero'ed and we can remove the file
9540 	 * immediately.  When journaling if the inode has been marked
9541 	 * unlinked and not DEPCOMPLETE we know it can never be written.
9542 	 */
9543 	inodedep_lookup(mp, oldinum, 0, &inodedep);
9544 	if (inodedep == NULL ||
9545 	    (inodedep->id_state & (DEPCOMPLETE | UNLINKED)) == UNLINKED ||
9546 	    check_inode_unwritten(inodedep)) {
9547 		FREE_LOCK(&lk);
9548 		vput(vp);
9549 		return handle_workitem_remove(dirrem, flags);
9550 	}
9551 	WORKLIST_INSERT(&inodedep->id_inowait, &dirrem->dm_list);
9552 	FREE_LOCK(&lk);
9553 	ip->i_flag |= IN_CHANGE;
9554 out:
9555 	ffs_update(vp, 0);
9556 	vput(vp);
9557 	return (0);
9558 }
9559 
9560 /*
9561  * Inode de-allocation dependencies.
9562  *
9563  * When an inode's link count is reduced to zero, it can be de-allocated. We
9564  * found it convenient to postpone de-allocation until after the inode is
9565  * written to disk with its new link count (zero).  At this point, all of the
9566  * on-disk inode's block pointers are nullified and, with careful dependency
9567  * list ordering, all dependencies related to the inode will be satisfied and
9568  * the corresponding dependency structures de-allocated.  So, if/when the
9569  * inode is reused, there will be no mixing of old dependencies with new
9570  * ones.  This artificial dependency is set up by the block de-allocation
9571  * procedure above (softdep_setup_freeblocks) and completed by the
9572  * following procedure.
9573  */
9574 static void
9575 handle_workitem_freefile(freefile)
9576 	struct freefile *freefile;
9577 {
9578 	struct workhead wkhd;
9579 	struct fs *fs;
9580 	struct inodedep *idp;
9581 	struct ufsmount *ump;
9582 	int error;
9583 
9584 	ump = VFSTOUFS(freefile->fx_list.wk_mp);
9585 	fs = ump->um_fs;
9586 #ifdef DEBUG
9587 	ACQUIRE_LOCK(&lk);
9588 	error = inodedep_lookup(UFSTOVFS(ump), freefile->fx_oldinum, 0, &idp);
9589 	FREE_LOCK(&lk);
9590 	if (error)
9591 		panic("handle_workitem_freefile: inodedep %p survived", idp);
9592 #endif
9593 	UFS_LOCK(ump);
9594 	fs->fs_pendinginodes -= 1;
9595 	UFS_UNLOCK(ump);
9596 	LIST_INIT(&wkhd);
9597 	LIST_SWAP(&freefile->fx_jwork, &wkhd, worklist, wk_list);
9598 	if ((error = ffs_freefile(ump, fs, freefile->fx_devvp,
9599 	    freefile->fx_oldinum, freefile->fx_mode, &wkhd)) != 0)
9600 		softdep_error("handle_workitem_freefile", error);
9601 	ACQUIRE_LOCK(&lk);
9602 	WORKITEM_FREE(freefile, D_FREEFILE);
9603 	FREE_LOCK(&lk);
9604 }
9605 
9606 
9607 /*
9608  * Helper function which unlinks marker element from work list and returns
9609  * the next element on the list.
9610  */
9611 static __inline struct worklist *
9612 markernext(struct worklist *marker)
9613 {
9614 	struct worklist *next;
9615 
9616 	next = LIST_NEXT(marker, wk_list);
9617 	LIST_REMOVE(marker, wk_list);
9618 	return next;
9619 }
9620 
9621 /*
9622  * Disk writes.
9623  *
9624  * The dependency structures constructed above are most actively used when file
9625  * system blocks are written to disk.  No constraints are placed on when a
9626  * block can be written, but unsatisfied update dependencies are made safe by
9627  * modifying (or replacing) the source memory for the duration of the disk
9628  * write.  When the disk write completes, the memory block is again brought
9629  * up-to-date.
9630  *
9631  * In-core inode structure reclamation.
9632  *
9633  * Because there are a finite number of "in-core" inode structures, they are
9634  * reused regularly.  By transferring all inode-related dependencies to the
9635  * in-memory inode block and indexing them separately (via "inodedep"s), we
9636  * can allow "in-core" inode structures to be reused at any time and avoid
9637  * any increase in contention.
9638  *
9639  * Called just before entering the device driver to initiate a new disk I/O.
9640  * The buffer must be locked, thus, no I/O completion operations can occur
9641  * while we are manipulating its associated dependencies.
9642  */
9643 static void
9644 softdep_disk_io_initiation(bp)
9645 	struct buf *bp;		/* structure describing disk write to occur */
9646 {
9647 	struct worklist *wk;
9648 	struct worklist marker;
9649 	struct inodedep *inodedep;
9650 	struct freeblks *freeblks;
9651 	struct jblkdep *jblkdep;
9652 	struct newblk *newblk;
9653 
9654 	/*
9655 	 * We only care about write operations. There should never
9656 	 * be dependencies for reads.
9657 	 */
9658 	if (bp->b_iocmd != BIO_WRITE)
9659 		panic("softdep_disk_io_initiation: not write");
9660 
9661 	if (bp->b_vflags & BV_BKGRDINPROG)
9662 		panic("softdep_disk_io_initiation: Writing buffer with "
9663 		    "background write in progress: %p", bp);
9664 
9665 	marker.wk_type = D_LAST + 1;	/* Not a normal workitem */
9666 	PHOLD(curproc);			/* Don't swap out kernel stack */
9667 
9668 	ACQUIRE_LOCK(&lk);
9669 	/*
9670 	 * Do any necessary pre-I/O processing.
9671 	 */
9672 	for (wk = LIST_FIRST(&bp->b_dep); wk != NULL;
9673 	     wk = markernext(&marker)) {
9674 		LIST_INSERT_AFTER(wk, &marker, wk_list);
9675 		switch (wk->wk_type) {
9676 
9677 		case D_PAGEDEP:
9678 			initiate_write_filepage(WK_PAGEDEP(wk), bp);
9679 			continue;
9680 
9681 		case D_INODEDEP:
9682 			inodedep = WK_INODEDEP(wk);
9683 			if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC)
9684 				initiate_write_inodeblock_ufs1(inodedep, bp);
9685 			else
9686 				initiate_write_inodeblock_ufs2(inodedep, bp);
9687 			continue;
9688 
9689 		case D_INDIRDEP:
9690 			initiate_write_indirdep(WK_INDIRDEP(wk), bp);
9691 			continue;
9692 
9693 		case D_BMSAFEMAP:
9694 			initiate_write_bmsafemap(WK_BMSAFEMAP(wk), bp);
9695 			continue;
9696 
9697 		case D_JSEG:
9698 			WK_JSEG(wk)->js_buf = NULL;
9699 			continue;
9700 
9701 		case D_FREEBLKS:
9702 			freeblks = WK_FREEBLKS(wk);
9703 			jblkdep = LIST_FIRST(&freeblks->fb_jblkdephd);
9704 			/*
9705 			 * We have to wait for the freeblks to be journaled
9706 			 * before we can write an inodeblock with updated
9707 			 * pointers.  Be careful to arrange the marker so
9708 			 * we revisit the freeblks if it's not removed by
9709 			 * the first jwait().
9710 			 */
9711 			if (jblkdep != NULL) {
9712 				LIST_REMOVE(&marker, wk_list);
9713 				LIST_INSERT_BEFORE(wk, &marker, wk_list);
9714 				jwait(&jblkdep->jb_list, MNT_WAIT);
9715 			}
9716 			continue;
9717 		case D_ALLOCDIRECT:
9718 		case D_ALLOCINDIR:
9719 			/*
9720 			 * We have to wait for the jnewblk to be journaled
9721 			 * before we can write to a block if the contents
9722 			 * may be confused with an earlier file's indirect
9723 			 * at recovery time.  Handle the marker as described
9724 			 * above.
9725 			 */
9726 			newblk = WK_NEWBLK(wk);
9727 			if (newblk->nb_jnewblk != NULL &&
9728 			    indirblk_lookup(newblk->nb_list.wk_mp,
9729 			    newblk->nb_newblkno)) {
9730 				LIST_REMOVE(&marker, wk_list);
9731 				LIST_INSERT_BEFORE(wk, &marker, wk_list);
9732 				jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT);
9733 			}
9734 			continue;
9735 
9736 		case D_SBDEP:
9737 			initiate_write_sbdep(WK_SBDEP(wk));
9738 			continue;
9739 
9740 		case D_MKDIR:
9741 		case D_FREEWORK:
9742 		case D_FREEDEP:
9743 		case D_JSEGDEP:
9744 			continue;
9745 
9746 		default:
9747 			panic("handle_disk_io_initiation: Unexpected type %s",
9748 			    TYPENAME(wk->wk_type));
9749 			/* NOTREACHED */
9750 		}
9751 	}
9752 	FREE_LOCK(&lk);
9753 	PRELE(curproc);			/* Allow swapout of kernel stack */
9754 }
9755 
9756 /*
9757  * Called from within the procedure above to deal with unsatisfied
9758  * allocation dependencies in a directory. The buffer must be locked,
9759  * thus, no I/O completion operations can occur while we are
9760  * manipulating its associated dependencies.
9761  */
9762 static void
9763 initiate_write_filepage(pagedep, bp)
9764 	struct pagedep *pagedep;
9765 	struct buf *bp;
9766 {
9767 	struct jremref *jremref;
9768 	struct jmvref *jmvref;
9769 	struct dirrem *dirrem;
9770 	struct diradd *dap;
9771 	struct direct *ep;
9772 	int i;
9773 
9774 	if (pagedep->pd_state & IOSTARTED) {
9775 		/*
9776 		 * This can only happen if there is a driver that does not
9777 		 * understand chaining. Here biodone will reissue the call
9778 		 * to strategy for the incomplete buffers.
9779 		 */
9780 		printf("initiate_write_filepage: already started\n");
9781 		return;
9782 	}
9783 	pagedep->pd_state |= IOSTARTED;
9784 	/*
9785 	 * Wait for all journal remove dependencies to hit the disk.
9786 	 * We can not allow any potentially conflicting directory adds
9787 	 * to be visible before removes and rollback is too difficult.
9788 	 * lk may be dropped and re-acquired, however we hold the buf
9789 	 * locked so the dependency can not go away.
9790 	 */
9791 	LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next)
9792 		while ((jremref = LIST_FIRST(&dirrem->dm_jremrefhd)) != NULL)
9793 			jwait(&jremref->jr_list, MNT_WAIT);
9794 	while ((jmvref = LIST_FIRST(&pagedep->pd_jmvrefhd)) != NULL)
9795 		jwait(&jmvref->jm_list, MNT_WAIT);
9796 	for (i = 0; i < DAHASHSZ; i++) {
9797 		LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) {
9798 			ep = (struct direct *)
9799 			    ((char *)bp->b_data + dap->da_offset);
9800 			if (ep->d_ino != dap->da_newinum)
9801 				panic("%s: dir inum %ju != new %ju",
9802 				    "initiate_write_filepage",
9803 				    (uintmax_t)ep->d_ino,
9804 				    (uintmax_t)dap->da_newinum);
9805 			if (dap->da_state & DIRCHG)
9806 				ep->d_ino = dap->da_previous->dm_oldinum;
9807 			else
9808 				ep->d_ino = 0;
9809 			dap->da_state &= ~ATTACHED;
9810 			dap->da_state |= UNDONE;
9811 		}
9812 	}
9813 }
9814 
9815 /*
9816  * Version of initiate_write_inodeblock that handles UFS1 dinodes.
9817  * Note that any bug fixes made to this routine must be done in the
9818  * version found below.
9819  *
9820  * Called from within the procedure above to deal with unsatisfied
9821  * allocation dependencies in an inodeblock. The buffer must be
9822  * locked, thus, no I/O completion operations can occur while we
9823  * are manipulating its associated dependencies.
9824  */
9825 static void
9826 initiate_write_inodeblock_ufs1(inodedep, bp)
9827 	struct inodedep *inodedep;
9828 	struct buf *bp;			/* The inode block */
9829 {
9830 	struct allocdirect *adp, *lastadp;
9831 	struct ufs1_dinode *dp;
9832 	struct ufs1_dinode *sip;
9833 	struct inoref *inoref;
9834 	struct fs *fs;
9835 	ufs_lbn_t i;
9836 #ifdef INVARIANTS
9837 	ufs_lbn_t prevlbn = 0;
9838 #endif
9839 	int deplist;
9840 
9841 	if (inodedep->id_state & IOSTARTED)
9842 		panic("initiate_write_inodeblock_ufs1: already started");
9843 	inodedep->id_state |= IOSTARTED;
9844 	fs = inodedep->id_fs;
9845 	dp = (struct ufs1_dinode *)bp->b_data +
9846 	    ino_to_fsbo(fs, inodedep->id_ino);
9847 
9848 	/*
9849 	 * If we're on the unlinked list but have not yet written our
9850 	 * next pointer initialize it here.
9851 	 */
9852 	if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) {
9853 		struct inodedep *inon;
9854 
9855 		inon = TAILQ_NEXT(inodedep, id_unlinked);
9856 		dp->di_freelink = inon ? inon->id_ino : 0;
9857 	}
9858 	/*
9859 	 * If the bitmap is not yet written, then the allocated
9860 	 * inode cannot be written to disk.
9861 	 */
9862 	if ((inodedep->id_state & DEPCOMPLETE) == 0) {
9863 		if (inodedep->id_savedino1 != NULL)
9864 			panic("initiate_write_inodeblock_ufs1: I/O underway");
9865 		FREE_LOCK(&lk);
9866 		sip = malloc(sizeof(struct ufs1_dinode),
9867 		    M_SAVEDINO, M_SOFTDEP_FLAGS);
9868 		ACQUIRE_LOCK(&lk);
9869 		inodedep->id_savedino1 = sip;
9870 		*inodedep->id_savedino1 = *dp;
9871 		bzero((caddr_t)dp, sizeof(struct ufs1_dinode));
9872 		dp->di_gen = inodedep->id_savedino1->di_gen;
9873 		dp->di_freelink = inodedep->id_savedino1->di_freelink;
9874 		return;
9875 	}
9876 	/*
9877 	 * If no dependencies, then there is nothing to roll back.
9878 	 */
9879 	inodedep->id_savedsize = dp->di_size;
9880 	inodedep->id_savedextsize = 0;
9881 	inodedep->id_savednlink = dp->di_nlink;
9882 	if (TAILQ_EMPTY(&inodedep->id_inoupdt) &&
9883 	    TAILQ_EMPTY(&inodedep->id_inoreflst))
9884 		return;
9885 	/*
9886 	 * Revert the link count to that of the first unwritten journal entry.
9887 	 */
9888 	inoref = TAILQ_FIRST(&inodedep->id_inoreflst);
9889 	if (inoref)
9890 		dp->di_nlink = inoref->if_nlink;
9891 	/*
9892 	 * Set the dependencies to busy.
9893 	 */
9894 	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
9895 	     adp = TAILQ_NEXT(adp, ad_next)) {
9896 #ifdef INVARIANTS
9897 		if (deplist != 0 && prevlbn >= adp->ad_offset)
9898 			panic("softdep_write_inodeblock: lbn order");
9899 		prevlbn = adp->ad_offset;
9900 		if (adp->ad_offset < NDADDR &&
9901 		    dp->di_db[adp->ad_offset] != adp->ad_newblkno)
9902 			panic("%s: direct pointer #%jd mismatch %d != %jd",
9903 			    "softdep_write_inodeblock",
9904 			    (intmax_t)adp->ad_offset,
9905 			    dp->di_db[adp->ad_offset],
9906 			    (intmax_t)adp->ad_newblkno);
9907 		if (adp->ad_offset >= NDADDR &&
9908 		    dp->di_ib[adp->ad_offset - NDADDR] != adp->ad_newblkno)
9909 			panic("%s: indirect pointer #%jd mismatch %d != %jd",
9910 			    "softdep_write_inodeblock",
9911 			    (intmax_t)adp->ad_offset - NDADDR,
9912 			    dp->di_ib[adp->ad_offset - NDADDR],
9913 			    (intmax_t)adp->ad_newblkno);
9914 		deplist |= 1 << adp->ad_offset;
9915 		if ((adp->ad_state & ATTACHED) == 0)
9916 			panic("softdep_write_inodeblock: Unknown state 0x%x",
9917 			    adp->ad_state);
9918 #endif /* INVARIANTS */
9919 		adp->ad_state &= ~ATTACHED;
9920 		adp->ad_state |= UNDONE;
9921 	}
9922 	/*
9923 	 * The on-disk inode cannot claim to be any larger than the last
9924 	 * fragment that has been written. Otherwise, the on-disk inode
9925 	 * might have fragments that were not the last block in the file
9926 	 * which would corrupt the filesystem.
9927 	 */
9928 	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
9929 	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
9930 		if (adp->ad_offset >= NDADDR)
9931 			break;
9932 		dp->di_db[adp->ad_offset] = adp->ad_oldblkno;
9933 		/* keep going until hitting a rollback to a frag */
9934 		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
9935 			continue;
9936 		dp->di_size = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize;
9937 		for (i = adp->ad_offset + 1; i < NDADDR; i++) {
9938 #ifdef INVARIANTS
9939 			if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0)
9940 				panic("softdep_write_inodeblock: lost dep1");
9941 #endif /* INVARIANTS */
9942 			dp->di_db[i] = 0;
9943 		}
9944 		for (i = 0; i < NIADDR; i++) {
9945 #ifdef INVARIANTS
9946 			if (dp->di_ib[i] != 0 &&
9947 			    (deplist & ((1 << NDADDR) << i)) == 0)
9948 				panic("softdep_write_inodeblock: lost dep2");
9949 #endif /* INVARIANTS */
9950 			dp->di_ib[i] = 0;
9951 		}
9952 		return;
9953 	}
9954 	/*
9955 	 * If we have zero'ed out the last allocated block of the file,
9956 	 * roll back the size to the last currently allocated block.
9957 	 * We know that this last allocated block is a full-sized as
9958 	 * we already checked for fragments in the loop above.
9959 	 */
9960 	if (lastadp != NULL &&
9961 	    dp->di_size <= (lastadp->ad_offset + 1) * fs->fs_bsize) {
9962 		for (i = lastadp->ad_offset; i >= 0; i--)
9963 			if (dp->di_db[i] != 0)
9964 				break;
9965 		dp->di_size = (i + 1) * fs->fs_bsize;
9966 	}
9967 	/*
9968 	 * The only dependencies are for indirect blocks.
9969 	 *
9970 	 * The file size for indirect block additions is not guaranteed.
9971 	 * Such a guarantee would be non-trivial to achieve. The conventional
9972 	 * synchronous write implementation also does not make this guarantee.
9973 	 * Fsck should catch and fix discrepancies. Arguably, the file size
9974 	 * can be over-estimated without destroying integrity when the file
9975 	 * moves into the indirect blocks (i.e., is large). If we want to
9976 	 * postpone fsck, we are stuck with this argument.
9977 	 */
9978 	for (; adp; adp = TAILQ_NEXT(adp, ad_next))
9979 		dp->di_ib[adp->ad_offset - NDADDR] = 0;
9980 }
9981 
9982 /*
9983  * Version of initiate_write_inodeblock that handles UFS2 dinodes.
9984  * Note that any bug fixes made to this routine must be done in the
9985  * version found above.
9986  *
9987  * Called from within the procedure above to deal with unsatisfied
9988  * allocation dependencies in an inodeblock. The buffer must be
9989  * locked, thus, no I/O completion operations can occur while we
9990  * are manipulating its associated dependencies.
9991  */
9992 static void
9993 initiate_write_inodeblock_ufs2(inodedep, bp)
9994 	struct inodedep *inodedep;
9995 	struct buf *bp;			/* The inode block */
9996 {
9997 	struct allocdirect *adp, *lastadp;
9998 	struct ufs2_dinode *dp;
9999 	struct ufs2_dinode *sip;
10000 	struct inoref *inoref;
10001 	struct fs *fs;
10002 	ufs_lbn_t i;
10003 #ifdef INVARIANTS
10004 	ufs_lbn_t prevlbn = 0;
10005 #endif
10006 	int deplist;
10007 
10008 	if (inodedep->id_state & IOSTARTED)
10009 		panic("initiate_write_inodeblock_ufs2: already started");
10010 	inodedep->id_state |= IOSTARTED;
10011 	fs = inodedep->id_fs;
10012 	dp = (struct ufs2_dinode *)bp->b_data +
10013 	    ino_to_fsbo(fs, inodedep->id_ino);
10014 
10015 	/*
10016 	 * If we're on the unlinked list but have not yet written our
10017 	 * next pointer initialize it here.
10018 	 */
10019 	if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) {
10020 		struct inodedep *inon;
10021 
10022 		inon = TAILQ_NEXT(inodedep, id_unlinked);
10023 		dp->di_freelink = inon ? inon->id_ino : 0;
10024 	}
10025 	/*
10026 	 * If the bitmap is not yet written, then the allocated
10027 	 * inode cannot be written to disk.
10028 	 */
10029 	if ((inodedep->id_state & DEPCOMPLETE) == 0) {
10030 		if (inodedep->id_savedino2 != NULL)
10031 			panic("initiate_write_inodeblock_ufs2: I/O underway");
10032 		FREE_LOCK(&lk);
10033 		sip = malloc(sizeof(struct ufs2_dinode),
10034 		    M_SAVEDINO, M_SOFTDEP_FLAGS);
10035 		ACQUIRE_LOCK(&lk);
10036 		inodedep->id_savedino2 = sip;
10037 		*inodedep->id_savedino2 = *dp;
10038 		bzero((caddr_t)dp, sizeof(struct ufs2_dinode));
10039 		dp->di_gen = inodedep->id_savedino2->di_gen;
10040 		dp->di_freelink = inodedep->id_savedino2->di_freelink;
10041 		return;
10042 	}
10043 	/*
10044 	 * If no dependencies, then there is nothing to roll back.
10045 	 */
10046 	inodedep->id_savedsize = dp->di_size;
10047 	inodedep->id_savedextsize = dp->di_extsize;
10048 	inodedep->id_savednlink = dp->di_nlink;
10049 	if (TAILQ_EMPTY(&inodedep->id_inoupdt) &&
10050 	    TAILQ_EMPTY(&inodedep->id_extupdt) &&
10051 	    TAILQ_EMPTY(&inodedep->id_inoreflst))
10052 		return;
10053 	/*
10054 	 * Revert the link count to that of the first unwritten journal entry.
10055 	 */
10056 	inoref = TAILQ_FIRST(&inodedep->id_inoreflst);
10057 	if (inoref)
10058 		dp->di_nlink = inoref->if_nlink;
10059 
10060 	/*
10061 	 * Set the ext data dependencies to busy.
10062 	 */
10063 	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp;
10064 	     adp = TAILQ_NEXT(adp, ad_next)) {
10065 #ifdef INVARIANTS
10066 		if (deplist != 0 && prevlbn >= adp->ad_offset)
10067 			panic("softdep_write_inodeblock: lbn order");
10068 		prevlbn = adp->ad_offset;
10069 		if (dp->di_extb[adp->ad_offset] != adp->ad_newblkno)
10070 			panic("%s: direct pointer #%jd mismatch %jd != %jd",
10071 			    "softdep_write_inodeblock",
10072 			    (intmax_t)adp->ad_offset,
10073 			    (intmax_t)dp->di_extb[adp->ad_offset],
10074 			    (intmax_t)adp->ad_newblkno);
10075 		deplist |= 1 << adp->ad_offset;
10076 		if ((adp->ad_state & ATTACHED) == 0)
10077 			panic("softdep_write_inodeblock: Unknown state 0x%x",
10078 			    adp->ad_state);
10079 #endif /* INVARIANTS */
10080 		adp->ad_state &= ~ATTACHED;
10081 		adp->ad_state |= UNDONE;
10082 	}
10083 	/*
10084 	 * The on-disk inode cannot claim to be any larger than the last
10085 	 * fragment that has been written. Otherwise, the on-disk inode
10086 	 * might have fragments that were not the last block in the ext
10087 	 * data which would corrupt the filesystem.
10088 	 */
10089 	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp;
10090 	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
10091 		dp->di_extb[adp->ad_offset] = adp->ad_oldblkno;
10092 		/* keep going until hitting a rollback to a frag */
10093 		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
10094 			continue;
10095 		dp->di_extsize = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize;
10096 		for (i = adp->ad_offset + 1; i < NXADDR; i++) {
10097 #ifdef INVARIANTS
10098 			if (dp->di_extb[i] != 0 && (deplist & (1 << i)) == 0)
10099 				panic("softdep_write_inodeblock: lost dep1");
10100 #endif /* INVARIANTS */
10101 			dp->di_extb[i] = 0;
10102 		}
10103 		lastadp = NULL;
10104 		break;
10105 	}
10106 	/*
10107 	 * If we have zero'ed out the last allocated block of the ext
10108 	 * data, roll back the size to the last currently allocated block.
10109 	 * We know that this last allocated block is a full-sized as
10110 	 * we already checked for fragments in the loop above.
10111 	 */
10112 	if (lastadp != NULL &&
10113 	    dp->di_extsize <= (lastadp->ad_offset + 1) * fs->fs_bsize) {
10114 		for (i = lastadp->ad_offset; i >= 0; i--)
10115 			if (dp->di_extb[i] != 0)
10116 				break;
10117 		dp->di_extsize = (i + 1) * fs->fs_bsize;
10118 	}
10119 	/*
10120 	 * Set the file data dependencies to busy.
10121 	 */
10122 	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
10123 	     adp = TAILQ_NEXT(adp, ad_next)) {
10124 #ifdef INVARIANTS
10125 		if (deplist != 0 && prevlbn >= adp->ad_offset)
10126 			panic("softdep_write_inodeblock: lbn order");
10127 		if ((adp->ad_state & ATTACHED) == 0)
10128 			panic("inodedep %p and adp %p not attached", inodedep, adp);
10129 		prevlbn = adp->ad_offset;
10130 		if (adp->ad_offset < NDADDR &&
10131 		    dp->di_db[adp->ad_offset] != adp->ad_newblkno)
10132 			panic("%s: direct pointer #%jd mismatch %jd != %jd",
10133 			    "softdep_write_inodeblock",
10134 			    (intmax_t)adp->ad_offset,
10135 			    (intmax_t)dp->di_db[adp->ad_offset],
10136 			    (intmax_t)adp->ad_newblkno);
10137 		if (adp->ad_offset >= NDADDR &&
10138 		    dp->di_ib[adp->ad_offset - NDADDR] != adp->ad_newblkno)
10139 			panic("%s indirect pointer #%jd mismatch %jd != %jd",
10140 			    "softdep_write_inodeblock:",
10141 			    (intmax_t)adp->ad_offset - NDADDR,
10142 			    (intmax_t)dp->di_ib[adp->ad_offset - NDADDR],
10143 			    (intmax_t)adp->ad_newblkno);
10144 		deplist |= 1 << adp->ad_offset;
10145 		if ((adp->ad_state & ATTACHED) == 0)
10146 			panic("softdep_write_inodeblock: Unknown state 0x%x",
10147 			    adp->ad_state);
10148 #endif /* INVARIANTS */
10149 		adp->ad_state &= ~ATTACHED;
10150 		adp->ad_state |= UNDONE;
10151 	}
10152 	/*
10153 	 * The on-disk inode cannot claim to be any larger than the last
10154 	 * fragment that has been written. Otherwise, the on-disk inode
10155 	 * might have fragments that were not the last block in the file
10156 	 * which would corrupt the filesystem.
10157 	 */
10158 	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
10159 	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
10160 		if (adp->ad_offset >= NDADDR)
10161 			break;
10162 		dp->di_db[adp->ad_offset] = adp->ad_oldblkno;
10163 		/* keep going until hitting a rollback to a frag */
10164 		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
10165 			continue;
10166 		dp->di_size = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize;
10167 		for (i = adp->ad_offset + 1; i < NDADDR; i++) {
10168 #ifdef INVARIANTS
10169 			if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0)
10170 				panic("softdep_write_inodeblock: lost dep2");
10171 #endif /* INVARIANTS */
10172 			dp->di_db[i] = 0;
10173 		}
10174 		for (i = 0; i < NIADDR; i++) {
10175 #ifdef INVARIANTS
10176 			if (dp->di_ib[i] != 0 &&
10177 			    (deplist & ((1 << NDADDR) << i)) == 0)
10178 				panic("softdep_write_inodeblock: lost dep3");
10179 #endif /* INVARIANTS */
10180 			dp->di_ib[i] = 0;
10181 		}
10182 		return;
10183 	}
10184 	/*
10185 	 * If we have zero'ed out the last allocated block of the file,
10186 	 * roll back the size to the last currently allocated block.
10187 	 * We know that this last allocated block is a full-sized as
10188 	 * we already checked for fragments in the loop above.
10189 	 */
10190 	if (lastadp != NULL &&
10191 	    dp->di_size <= (lastadp->ad_offset + 1) * fs->fs_bsize) {
10192 		for (i = lastadp->ad_offset; i >= 0; i--)
10193 			if (dp->di_db[i] != 0)
10194 				break;
10195 		dp->di_size = (i + 1) * fs->fs_bsize;
10196 	}
10197 	/*
10198 	 * The only dependencies are for indirect blocks.
10199 	 *
10200 	 * The file size for indirect block additions is not guaranteed.
10201 	 * Such a guarantee would be non-trivial to achieve. The conventional
10202 	 * synchronous write implementation also does not make this guarantee.
10203 	 * Fsck should catch and fix discrepancies. Arguably, the file size
10204 	 * can be over-estimated without destroying integrity when the file
10205 	 * moves into the indirect blocks (i.e., is large). If we want to
10206 	 * postpone fsck, we are stuck with this argument.
10207 	 */
10208 	for (; adp; adp = TAILQ_NEXT(adp, ad_next))
10209 		dp->di_ib[adp->ad_offset - NDADDR] = 0;
10210 }
10211 
10212 /*
10213  * Cancel an indirdep as a result of truncation.  Release all of the
10214  * children allocindirs and place their journal work on the appropriate
10215  * list.
10216  */
10217 static void
10218 cancel_indirdep(indirdep, bp, freeblks)
10219 	struct indirdep *indirdep;
10220 	struct buf *bp;
10221 	struct freeblks *freeblks;
10222 {
10223 	struct allocindir *aip;
10224 
10225 	/*
10226 	 * None of the indirect pointers will ever be visible,
10227 	 * so they can simply be tossed. GOINGAWAY ensures
10228 	 * that allocated pointers will be saved in the buffer
10229 	 * cache until they are freed. Note that they will
10230 	 * only be able to be found by their physical address
10231 	 * since the inode mapping the logical address will
10232 	 * be gone. The save buffer used for the safe copy
10233 	 * was allocated in setup_allocindir_phase2 using
10234 	 * the physical address so it could be used for this
10235 	 * purpose. Hence we swap the safe copy with the real
10236 	 * copy, allowing the safe copy to be freed and holding
10237 	 * on to the real copy for later use in indir_trunc.
10238 	 */
10239 	if (indirdep->ir_state & GOINGAWAY)
10240 		panic("cancel_indirdep: already gone");
10241 	if ((indirdep->ir_state & DEPCOMPLETE) == 0) {
10242 		indirdep->ir_state |= DEPCOMPLETE;
10243 		LIST_REMOVE(indirdep, ir_next);
10244 	}
10245 	indirdep->ir_state |= GOINGAWAY;
10246 	VFSTOUFS(indirdep->ir_list.wk_mp)->um_numindirdeps += 1;
10247 	/*
10248 	 * Pass in bp for blocks still have journal writes
10249 	 * pending so we can cancel them on their own.
10250 	 */
10251 	while ((aip = LIST_FIRST(&indirdep->ir_deplisthd)) != 0)
10252 		cancel_allocindir(aip, bp, freeblks, 0);
10253 	while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != 0)
10254 		cancel_allocindir(aip, NULL, freeblks, 0);
10255 	while ((aip = LIST_FIRST(&indirdep->ir_writehd)) != 0)
10256 		cancel_allocindir(aip, NULL, freeblks, 0);
10257 	while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != 0)
10258 		cancel_allocindir(aip, NULL, freeblks, 0);
10259 	/*
10260 	 * If there are pending partial truncations we need to keep the
10261 	 * old block copy around until they complete.  This is because
10262 	 * the current b_data is not a perfect superset of the available
10263 	 * blocks.
10264 	 */
10265 	if (TAILQ_EMPTY(&indirdep->ir_trunc))
10266 		bcopy(bp->b_data, indirdep->ir_savebp->b_data, bp->b_bcount);
10267 	else
10268 		bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount);
10269 	WORKLIST_REMOVE(&indirdep->ir_list);
10270 	WORKLIST_INSERT(&indirdep->ir_savebp->b_dep, &indirdep->ir_list);
10271 	indirdep->ir_bp = NULL;
10272 	indirdep->ir_freeblks = freeblks;
10273 }
10274 
10275 /*
10276  * Free an indirdep once it no longer has new pointers to track.
10277  */
10278 static void
10279 free_indirdep(indirdep)
10280 	struct indirdep *indirdep;
10281 {
10282 
10283 	KASSERT(TAILQ_EMPTY(&indirdep->ir_trunc),
10284 	    ("free_indirdep: Indir trunc list not empty."));
10285 	KASSERT(LIST_EMPTY(&indirdep->ir_completehd),
10286 	    ("free_indirdep: Complete head not empty."));
10287 	KASSERT(LIST_EMPTY(&indirdep->ir_writehd),
10288 	    ("free_indirdep: write head not empty."));
10289 	KASSERT(LIST_EMPTY(&indirdep->ir_donehd),
10290 	    ("free_indirdep: done head not empty."));
10291 	KASSERT(LIST_EMPTY(&indirdep->ir_deplisthd),
10292 	    ("free_indirdep: deplist head not empty."));
10293 	KASSERT((indirdep->ir_state & DEPCOMPLETE),
10294 	    ("free_indirdep: %p still on newblk list.", indirdep));
10295 	KASSERT(indirdep->ir_saveddata == NULL,
10296 	    ("free_indirdep: %p still has saved data.", indirdep));
10297 	if (indirdep->ir_state & ONWORKLIST)
10298 		WORKLIST_REMOVE(&indirdep->ir_list);
10299 	WORKITEM_FREE(indirdep, D_INDIRDEP);
10300 }
10301 
10302 /*
10303  * Called before a write to an indirdep.  This routine is responsible for
10304  * rolling back pointers to a safe state which includes only those
10305  * allocindirs which have been completed.
10306  */
10307 static void
10308 initiate_write_indirdep(indirdep, bp)
10309 	struct indirdep *indirdep;
10310 	struct buf *bp;
10311 {
10312 
10313 	indirdep->ir_state |= IOSTARTED;
10314 	if (indirdep->ir_state & GOINGAWAY)
10315 		panic("disk_io_initiation: indirdep gone");
10316 	/*
10317 	 * If there are no remaining dependencies, this will be writing
10318 	 * the real pointers.
10319 	 */
10320 	if (LIST_EMPTY(&indirdep->ir_deplisthd) &&
10321 	    TAILQ_EMPTY(&indirdep->ir_trunc))
10322 		return;
10323 	/*
10324 	 * Replace up-to-date version with safe version.
10325 	 */
10326 	if (indirdep->ir_saveddata == NULL) {
10327 		FREE_LOCK(&lk);
10328 		indirdep->ir_saveddata = malloc(bp->b_bcount, M_INDIRDEP,
10329 		    M_SOFTDEP_FLAGS);
10330 		ACQUIRE_LOCK(&lk);
10331 	}
10332 	indirdep->ir_state &= ~ATTACHED;
10333 	indirdep->ir_state |= UNDONE;
10334 	bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount);
10335 	bcopy(indirdep->ir_savebp->b_data, bp->b_data,
10336 	    bp->b_bcount);
10337 }
10338 
10339 /*
10340  * Called when an inode has been cleared in a cg bitmap.  This finally
10341  * eliminates any canceled jaddrefs
10342  */
10343 void
10344 softdep_setup_inofree(mp, bp, ino, wkhd)
10345 	struct mount *mp;
10346 	struct buf *bp;
10347 	ino_t ino;
10348 	struct workhead *wkhd;
10349 {
10350 	struct worklist *wk, *wkn;
10351 	struct inodedep *inodedep;
10352 	uint8_t *inosused;
10353 	struct cg *cgp;
10354 	struct fs *fs;
10355 
10356 	ACQUIRE_LOCK(&lk);
10357 	fs = VFSTOUFS(mp)->um_fs;
10358 	cgp = (struct cg *)bp->b_data;
10359 	inosused = cg_inosused(cgp);
10360 	if (isset(inosused, ino % fs->fs_ipg))
10361 		panic("softdep_setup_inofree: inode %ju not freed.",
10362 		    (uintmax_t)ino);
10363 	if (inodedep_lookup(mp, ino, 0, &inodedep))
10364 		panic("softdep_setup_inofree: ino %ju has existing inodedep %p",
10365 		    (uintmax_t)ino, inodedep);
10366 	if (wkhd) {
10367 		LIST_FOREACH_SAFE(wk, wkhd, wk_list, wkn) {
10368 			if (wk->wk_type != D_JADDREF)
10369 				continue;
10370 			WORKLIST_REMOVE(wk);
10371 			/*
10372 			 * We can free immediately even if the jaddref
10373 			 * isn't attached in a background write as now
10374 			 * the bitmaps are reconciled.
10375 		 	 */
10376 			wk->wk_state |= COMPLETE | ATTACHED;
10377 			free_jaddref(WK_JADDREF(wk));
10378 		}
10379 		jwork_move(&bp->b_dep, wkhd);
10380 	}
10381 	FREE_LOCK(&lk);
10382 }
10383 
10384 
10385 /*
10386  * Called via ffs_blkfree() after a set of frags has been cleared from a cg
10387  * map.  Any dependencies waiting for the write to clear are added to the
10388  * buf's list and any jnewblks that are being canceled are discarded
10389  * immediately.
10390  */
10391 void
10392 softdep_setup_blkfree(mp, bp, blkno, frags, wkhd)
10393 	struct mount *mp;
10394 	struct buf *bp;
10395 	ufs2_daddr_t blkno;
10396 	int frags;
10397 	struct workhead *wkhd;
10398 {
10399 	struct bmsafemap *bmsafemap;
10400 	struct jnewblk *jnewblk;
10401 	struct worklist *wk;
10402 	struct fs *fs;
10403 #ifdef SUJ_DEBUG
10404 	uint8_t *blksfree;
10405 	struct cg *cgp;
10406 	ufs2_daddr_t jstart;
10407 	ufs2_daddr_t jend;
10408 	ufs2_daddr_t end;
10409 	long bno;
10410 	int i;
10411 #endif
10412 
10413 	CTR3(KTR_SUJ,
10414 	    "softdep_setup_blkfree: blkno %jd frags %d wk head %p",
10415 	    blkno, frags, wkhd);
10416 
10417 	ACQUIRE_LOCK(&lk);
10418 	/* Lookup the bmsafemap so we track when it is dirty. */
10419 	fs = VFSTOUFS(mp)->um_fs;
10420 	bmsafemap = bmsafemap_lookup(mp, bp, dtog(fs, blkno), NULL);
10421 	/*
10422 	 * Detach any jnewblks which have been canceled.  They must linger
10423 	 * until the bitmap is cleared again by ffs_blkfree() to prevent
10424 	 * an unjournaled allocation from hitting the disk.
10425 	 */
10426 	if (wkhd) {
10427 		while ((wk = LIST_FIRST(wkhd)) != NULL) {
10428 			CTR2(KTR_SUJ,
10429 			    "softdep_setup_blkfree: blkno %jd wk type %d",
10430 			    blkno, wk->wk_type);
10431 			WORKLIST_REMOVE(wk);
10432 			if (wk->wk_type != D_JNEWBLK) {
10433 				WORKLIST_INSERT(&bmsafemap->sm_freehd, wk);
10434 				continue;
10435 			}
10436 			jnewblk = WK_JNEWBLK(wk);
10437 			KASSERT(jnewblk->jn_state & GOINGAWAY,
10438 			    ("softdep_setup_blkfree: jnewblk not canceled."));
10439 #ifdef SUJ_DEBUG
10440 			/*
10441 			 * Assert that this block is free in the bitmap
10442 			 * before we discard the jnewblk.
10443 			 */
10444 			cgp = (struct cg *)bp->b_data;
10445 			blksfree = cg_blksfree(cgp);
10446 			bno = dtogd(fs, jnewblk->jn_blkno);
10447 			for (i = jnewblk->jn_oldfrags;
10448 			    i < jnewblk->jn_frags; i++) {
10449 				if (isset(blksfree, bno + i))
10450 					continue;
10451 				panic("softdep_setup_blkfree: not free");
10452 			}
10453 #endif
10454 			/*
10455 			 * Even if it's not attached we can free immediately
10456 			 * as the new bitmap is correct.
10457 			 */
10458 			wk->wk_state |= COMPLETE | ATTACHED;
10459 			free_jnewblk(jnewblk);
10460 		}
10461 	}
10462 
10463 #ifdef SUJ_DEBUG
10464 	/*
10465 	 * Assert that we are not freeing a block which has an outstanding
10466 	 * allocation dependency.
10467 	 */
10468 	fs = VFSTOUFS(mp)->um_fs;
10469 	bmsafemap = bmsafemap_lookup(mp, bp, dtog(fs, blkno), NULL);
10470 	end = blkno + frags;
10471 	LIST_FOREACH(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps) {
10472 		/*
10473 		 * Don't match against blocks that will be freed when the
10474 		 * background write is done.
10475 		 */
10476 		if ((jnewblk->jn_state & (ATTACHED | COMPLETE | DEPCOMPLETE)) ==
10477 		    (COMPLETE | DEPCOMPLETE))
10478 			continue;
10479 		jstart = jnewblk->jn_blkno + jnewblk->jn_oldfrags;
10480 		jend = jnewblk->jn_blkno + jnewblk->jn_frags;
10481 		if ((blkno >= jstart && blkno < jend) ||
10482 		    (end > jstart && end <= jend)) {
10483 			printf("state 0x%X %jd - %d %d dep %p\n",
10484 			    jnewblk->jn_state, jnewblk->jn_blkno,
10485 			    jnewblk->jn_oldfrags, jnewblk->jn_frags,
10486 			    jnewblk->jn_dep);
10487 			panic("softdep_setup_blkfree: "
10488 			    "%jd-%jd(%d) overlaps with %jd-%jd",
10489 			    blkno, end, frags, jstart, jend);
10490 		}
10491 	}
10492 #endif
10493 	FREE_LOCK(&lk);
10494 }
10495 
10496 /*
10497  * Revert a block allocation when the journal record that describes it
10498  * is not yet written.
10499  */
10500 int
10501 jnewblk_rollback(jnewblk, fs, cgp, blksfree)
10502 	struct jnewblk *jnewblk;
10503 	struct fs *fs;
10504 	struct cg *cgp;
10505 	uint8_t *blksfree;
10506 {
10507 	ufs1_daddr_t fragno;
10508 	long cgbno, bbase;
10509 	int frags, blk;
10510 	int i;
10511 
10512 	frags = 0;
10513 	cgbno = dtogd(fs, jnewblk->jn_blkno);
10514 	/*
10515 	 * We have to test which frags need to be rolled back.  We may
10516 	 * be operating on a stale copy when doing background writes.
10517 	 */
10518 	for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; i++)
10519 		if (isclr(blksfree, cgbno + i))
10520 			frags++;
10521 	if (frags == 0)
10522 		return (0);
10523 	/*
10524 	 * This is mostly ffs_blkfree() sans some validation and
10525 	 * superblock updates.
10526 	 */
10527 	if (frags == fs->fs_frag) {
10528 		fragno = fragstoblks(fs, cgbno);
10529 		ffs_setblock(fs, blksfree, fragno);
10530 		ffs_clusteracct(fs, cgp, fragno, 1);
10531 		cgp->cg_cs.cs_nbfree++;
10532 	} else {
10533 		cgbno += jnewblk->jn_oldfrags;
10534 		bbase = cgbno - fragnum(fs, cgbno);
10535 		/* Decrement the old frags.  */
10536 		blk = blkmap(fs, blksfree, bbase);
10537 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
10538 		/* Deallocate the fragment */
10539 		for (i = 0; i < frags; i++)
10540 			setbit(blksfree, cgbno + i);
10541 		cgp->cg_cs.cs_nffree += frags;
10542 		/* Add back in counts associated with the new frags */
10543 		blk = blkmap(fs, blksfree, bbase);
10544 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
10545                 /* If a complete block has been reassembled, account for it. */
10546 		fragno = fragstoblks(fs, bbase);
10547 		if (ffs_isblock(fs, blksfree, fragno)) {
10548 			cgp->cg_cs.cs_nffree -= fs->fs_frag;
10549 			ffs_clusteracct(fs, cgp, fragno, 1);
10550 			cgp->cg_cs.cs_nbfree++;
10551 		}
10552 	}
10553 	stat_jnewblk++;
10554 	jnewblk->jn_state &= ~ATTACHED;
10555 	jnewblk->jn_state |= UNDONE;
10556 
10557 	return (frags);
10558 }
10559 
10560 static void
10561 initiate_write_bmsafemap(bmsafemap, bp)
10562 	struct bmsafemap *bmsafemap;
10563 	struct buf *bp;			/* The cg block. */
10564 {
10565 	struct jaddref *jaddref;
10566 	struct jnewblk *jnewblk;
10567 	uint8_t *inosused;
10568 	uint8_t *blksfree;
10569 	struct cg *cgp;
10570 	struct fs *fs;
10571 	ino_t ino;
10572 
10573 	if (bmsafemap->sm_state & IOSTARTED)
10574 		return;
10575 	bmsafemap->sm_state |= IOSTARTED;
10576 	/*
10577 	 * Clear any inode allocations which are pending journal writes.
10578 	 */
10579 	if (LIST_FIRST(&bmsafemap->sm_jaddrefhd) != NULL) {
10580 		cgp = (struct cg *)bp->b_data;
10581 		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
10582 		inosused = cg_inosused(cgp);
10583 		LIST_FOREACH(jaddref, &bmsafemap->sm_jaddrefhd, ja_bmdeps) {
10584 			ino = jaddref->ja_ino % fs->fs_ipg;
10585 			if (isset(inosused, ino)) {
10586 				if ((jaddref->ja_mode & IFMT) == IFDIR)
10587 					cgp->cg_cs.cs_ndir--;
10588 				cgp->cg_cs.cs_nifree++;
10589 				clrbit(inosused, ino);
10590 				jaddref->ja_state &= ~ATTACHED;
10591 				jaddref->ja_state |= UNDONE;
10592 				stat_jaddref++;
10593 			} else
10594 				panic("initiate_write_bmsafemap: inode %ju "
10595 				    "marked free", (uintmax_t)jaddref->ja_ino);
10596 		}
10597 	}
10598 	/*
10599 	 * Clear any block allocations which are pending journal writes.
10600 	 */
10601 	if (LIST_FIRST(&bmsafemap->sm_jnewblkhd) != NULL) {
10602 		cgp = (struct cg *)bp->b_data;
10603 		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
10604 		blksfree = cg_blksfree(cgp);
10605 		LIST_FOREACH(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps) {
10606 			if (jnewblk_rollback(jnewblk, fs, cgp, blksfree))
10607 				continue;
10608 			panic("initiate_write_bmsafemap: block %jd "
10609 			    "marked free", jnewblk->jn_blkno);
10610 		}
10611 	}
10612 	/*
10613 	 * Move allocation lists to the written lists so they can be
10614 	 * cleared once the block write is complete.
10615 	 */
10616 	LIST_SWAP(&bmsafemap->sm_inodedephd, &bmsafemap->sm_inodedepwr,
10617 	    inodedep, id_deps);
10618 	LIST_SWAP(&bmsafemap->sm_newblkhd, &bmsafemap->sm_newblkwr,
10619 	    newblk, nb_deps);
10620 	LIST_SWAP(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr, worklist,
10621 	    wk_list);
10622 }
10623 
10624 /*
10625  * This routine is called during the completion interrupt
10626  * service routine for a disk write (from the procedure called
10627  * by the device driver to inform the filesystem caches of
10628  * a request completion).  It should be called early in this
10629  * procedure, before the block is made available to other
10630  * processes or other routines are called.
10631  *
10632  */
10633 static void
10634 softdep_disk_write_complete(bp)
10635 	struct buf *bp;		/* describes the completed disk write */
10636 {
10637 	struct worklist *wk;
10638 	struct worklist *owk;
10639 	struct workhead reattach;
10640 	struct freeblks *freeblks;
10641 	struct buf *sbp;
10642 
10643 	/*
10644 	 * If an error occurred while doing the write, then the data
10645 	 * has not hit the disk and the dependencies cannot be unrolled.
10646 	 */
10647 	if ((bp->b_ioflags & BIO_ERROR) != 0 && (bp->b_flags & B_INVAL) == 0)
10648 		return;
10649 	LIST_INIT(&reattach);
10650 	/*
10651 	 * This lock must not be released anywhere in this code segment.
10652 	 */
10653 	sbp = NULL;
10654 	owk = NULL;
10655 	ACQUIRE_LOCK(&lk);
10656 	while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) {
10657 		WORKLIST_REMOVE(wk);
10658 		dep_write[wk->wk_type]++;
10659 		if (wk == owk)
10660 			panic("duplicate worklist: %p\n", wk);
10661 		owk = wk;
10662 		switch (wk->wk_type) {
10663 
10664 		case D_PAGEDEP:
10665 			if (handle_written_filepage(WK_PAGEDEP(wk), bp))
10666 				WORKLIST_INSERT(&reattach, wk);
10667 			continue;
10668 
10669 		case D_INODEDEP:
10670 			if (handle_written_inodeblock(WK_INODEDEP(wk), bp))
10671 				WORKLIST_INSERT(&reattach, wk);
10672 			continue;
10673 
10674 		case D_BMSAFEMAP:
10675 			if (handle_written_bmsafemap(WK_BMSAFEMAP(wk), bp))
10676 				WORKLIST_INSERT(&reattach, wk);
10677 			continue;
10678 
10679 		case D_MKDIR:
10680 			handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY);
10681 			continue;
10682 
10683 		case D_ALLOCDIRECT:
10684 			wk->wk_state |= COMPLETE;
10685 			handle_allocdirect_partdone(WK_ALLOCDIRECT(wk), NULL);
10686 			continue;
10687 
10688 		case D_ALLOCINDIR:
10689 			wk->wk_state |= COMPLETE;
10690 			handle_allocindir_partdone(WK_ALLOCINDIR(wk));
10691 			continue;
10692 
10693 		case D_INDIRDEP:
10694 			if (handle_written_indirdep(WK_INDIRDEP(wk), bp, &sbp))
10695 				WORKLIST_INSERT(&reattach, wk);
10696 			continue;
10697 
10698 		case D_FREEBLKS:
10699 			wk->wk_state |= COMPLETE;
10700 			freeblks = WK_FREEBLKS(wk);
10701 			if ((wk->wk_state & ALLCOMPLETE) == ALLCOMPLETE &&
10702 			    LIST_EMPTY(&freeblks->fb_jblkdephd))
10703 				add_to_worklist(wk, WK_NODELAY);
10704 			continue;
10705 
10706 		case D_FREEWORK:
10707 			handle_written_freework(WK_FREEWORK(wk));
10708 			break;
10709 
10710 		case D_JSEGDEP:
10711 			free_jsegdep(WK_JSEGDEP(wk));
10712 			continue;
10713 
10714 		case D_JSEG:
10715 			handle_written_jseg(WK_JSEG(wk), bp);
10716 			continue;
10717 
10718 		case D_SBDEP:
10719 			if (handle_written_sbdep(WK_SBDEP(wk), bp))
10720 				WORKLIST_INSERT(&reattach, wk);
10721 			continue;
10722 
10723 		case D_FREEDEP:
10724 			free_freedep(WK_FREEDEP(wk));
10725 			continue;
10726 
10727 		default:
10728 			panic("handle_disk_write_complete: Unknown type %s",
10729 			    TYPENAME(wk->wk_type));
10730 			/* NOTREACHED */
10731 		}
10732 	}
10733 	/*
10734 	 * Reattach any requests that must be redone.
10735 	 */
10736 	while ((wk = LIST_FIRST(&reattach)) != NULL) {
10737 		WORKLIST_REMOVE(wk);
10738 		WORKLIST_INSERT(&bp->b_dep, wk);
10739 	}
10740 	FREE_LOCK(&lk);
10741 	if (sbp)
10742 		brelse(sbp);
10743 }
10744 
10745 /*
10746  * Called from within softdep_disk_write_complete above. Note that
10747  * this routine is always called from interrupt level with further
10748  * splbio interrupts blocked.
10749  */
10750 static void
10751 handle_allocdirect_partdone(adp, wkhd)
10752 	struct allocdirect *adp;	/* the completed allocdirect */
10753 	struct workhead *wkhd;		/* Work to do when inode is writtne. */
10754 {
10755 	struct allocdirectlst *listhead;
10756 	struct allocdirect *listadp;
10757 	struct inodedep *inodedep;
10758 	long bsize;
10759 
10760 	if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE)
10761 		return;
10762 	/*
10763 	 * The on-disk inode cannot claim to be any larger than the last
10764 	 * fragment that has been written. Otherwise, the on-disk inode
10765 	 * might have fragments that were not the last block in the file
10766 	 * which would corrupt the filesystem. Thus, we cannot free any
10767 	 * allocdirects after one whose ad_oldblkno claims a fragment as
10768 	 * these blocks must be rolled back to zero before writing the inode.
10769 	 * We check the currently active set of allocdirects in id_inoupdt
10770 	 * or id_extupdt as appropriate.
10771 	 */
10772 	inodedep = adp->ad_inodedep;
10773 	bsize = inodedep->id_fs->fs_bsize;
10774 	if (adp->ad_state & EXTDATA)
10775 		listhead = &inodedep->id_extupdt;
10776 	else
10777 		listhead = &inodedep->id_inoupdt;
10778 	TAILQ_FOREACH(listadp, listhead, ad_next) {
10779 		/* found our block */
10780 		if (listadp == adp)
10781 			break;
10782 		/* continue if ad_oldlbn is not a fragment */
10783 		if (listadp->ad_oldsize == 0 ||
10784 		    listadp->ad_oldsize == bsize)
10785 			continue;
10786 		/* hit a fragment */
10787 		return;
10788 	}
10789 	/*
10790 	 * If we have reached the end of the current list without
10791 	 * finding the just finished dependency, then it must be
10792 	 * on the future dependency list. Future dependencies cannot
10793 	 * be freed until they are moved to the current list.
10794 	 */
10795 	if (listadp == NULL) {
10796 #ifdef DEBUG
10797 		if (adp->ad_state & EXTDATA)
10798 			listhead = &inodedep->id_newextupdt;
10799 		else
10800 			listhead = &inodedep->id_newinoupdt;
10801 		TAILQ_FOREACH(listadp, listhead, ad_next)
10802 			/* found our block */
10803 			if (listadp == adp)
10804 				break;
10805 		if (listadp == NULL)
10806 			panic("handle_allocdirect_partdone: lost dep");
10807 #endif /* DEBUG */
10808 		return;
10809 	}
10810 	/*
10811 	 * If we have found the just finished dependency, then queue
10812 	 * it along with anything that follows it that is complete.
10813 	 * Since the pointer has not yet been written in the inode
10814 	 * as the dependency prevents it, place the allocdirect on the
10815 	 * bufwait list where it will be freed once the pointer is
10816 	 * valid.
10817 	 */
10818 	if (wkhd == NULL)
10819 		wkhd = &inodedep->id_bufwait;
10820 	for (; adp; adp = listadp) {
10821 		listadp = TAILQ_NEXT(adp, ad_next);
10822 		if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE)
10823 			return;
10824 		TAILQ_REMOVE(listhead, adp, ad_next);
10825 		WORKLIST_INSERT(wkhd, &adp->ad_block.nb_list);
10826 	}
10827 }
10828 
10829 /*
10830  * Called from within softdep_disk_write_complete above.  This routine
10831  * completes successfully written allocindirs.
10832  */
10833 static void
10834 handle_allocindir_partdone(aip)
10835 	struct allocindir *aip;		/* the completed allocindir */
10836 {
10837 	struct indirdep *indirdep;
10838 
10839 	if ((aip->ai_state & ALLCOMPLETE) != ALLCOMPLETE)
10840 		return;
10841 	indirdep = aip->ai_indirdep;
10842 	LIST_REMOVE(aip, ai_next);
10843 	/*
10844 	 * Don't set a pointer while the buffer is undergoing IO or while
10845 	 * we have active truncations.
10846 	 */
10847 	if (indirdep->ir_state & UNDONE || !TAILQ_EMPTY(&indirdep->ir_trunc)) {
10848 		LIST_INSERT_HEAD(&indirdep->ir_donehd, aip, ai_next);
10849 		return;
10850 	}
10851 	if (indirdep->ir_state & UFS1FMT)
10852 		((ufs1_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] =
10853 		    aip->ai_newblkno;
10854 	else
10855 		((ufs2_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] =
10856 		    aip->ai_newblkno;
10857 	/*
10858 	 * Await the pointer write before freeing the allocindir.
10859 	 */
10860 	LIST_INSERT_HEAD(&indirdep->ir_writehd, aip, ai_next);
10861 }
10862 
10863 /*
10864  * Release segments held on a jwork list.
10865  */
10866 static void
10867 handle_jwork(wkhd)
10868 	struct workhead *wkhd;
10869 {
10870 	struct worklist *wk;
10871 
10872 	while ((wk = LIST_FIRST(wkhd)) != NULL) {
10873 		WORKLIST_REMOVE(wk);
10874 		switch (wk->wk_type) {
10875 		case D_JSEGDEP:
10876 			free_jsegdep(WK_JSEGDEP(wk));
10877 			continue;
10878 		case D_FREEDEP:
10879 			free_freedep(WK_FREEDEP(wk));
10880 			continue;
10881 		case D_FREEFRAG:
10882 			rele_jseg(WK_JSEG(WK_FREEFRAG(wk)->ff_jdep));
10883 			WORKITEM_FREE(wk, D_FREEFRAG);
10884 			continue;
10885 		case D_FREEWORK:
10886 			handle_written_freework(WK_FREEWORK(wk));
10887 			continue;
10888 		default:
10889 			panic("handle_jwork: Unknown type %s\n",
10890 			    TYPENAME(wk->wk_type));
10891 		}
10892 	}
10893 }
10894 
10895 /*
10896  * Handle the bufwait list on an inode when it is safe to release items
10897  * held there.  This normally happens after an inode block is written but
10898  * may be delayed and handled later if there are pending journal items that
10899  * are not yet safe to be released.
10900  */
10901 static struct freefile *
10902 handle_bufwait(inodedep, refhd)
10903 	struct inodedep *inodedep;
10904 	struct workhead *refhd;
10905 {
10906 	struct jaddref *jaddref;
10907 	struct freefile *freefile;
10908 	struct worklist *wk;
10909 
10910 	freefile = NULL;
10911 	while ((wk = LIST_FIRST(&inodedep->id_bufwait)) != NULL) {
10912 		WORKLIST_REMOVE(wk);
10913 		switch (wk->wk_type) {
10914 		case D_FREEFILE:
10915 			/*
10916 			 * We defer adding freefile to the worklist
10917 			 * until all other additions have been made to
10918 			 * ensure that it will be done after all the
10919 			 * old blocks have been freed.
10920 			 */
10921 			if (freefile != NULL)
10922 				panic("handle_bufwait: freefile");
10923 			freefile = WK_FREEFILE(wk);
10924 			continue;
10925 
10926 		case D_MKDIR:
10927 			handle_written_mkdir(WK_MKDIR(wk), MKDIR_PARENT);
10928 			continue;
10929 
10930 		case D_DIRADD:
10931 			diradd_inode_written(WK_DIRADD(wk), inodedep);
10932 			continue;
10933 
10934 		case D_FREEFRAG:
10935 			wk->wk_state |= COMPLETE;
10936 			if ((wk->wk_state & ALLCOMPLETE) == ALLCOMPLETE)
10937 				add_to_worklist(wk, 0);
10938 			continue;
10939 
10940 		case D_DIRREM:
10941 			wk->wk_state |= COMPLETE;
10942 			add_to_worklist(wk, 0);
10943 			continue;
10944 
10945 		case D_ALLOCDIRECT:
10946 		case D_ALLOCINDIR:
10947 			free_newblk(WK_NEWBLK(wk));
10948 			continue;
10949 
10950 		case D_JNEWBLK:
10951 			wk->wk_state |= COMPLETE;
10952 			free_jnewblk(WK_JNEWBLK(wk));
10953 			continue;
10954 
10955 		/*
10956 		 * Save freed journal segments and add references on
10957 		 * the supplied list which will delay their release
10958 		 * until the cg bitmap is cleared on disk.
10959 		 */
10960 		case D_JSEGDEP:
10961 			if (refhd == NULL)
10962 				free_jsegdep(WK_JSEGDEP(wk));
10963 			else
10964 				WORKLIST_INSERT(refhd, wk);
10965 			continue;
10966 
10967 		case D_JADDREF:
10968 			jaddref = WK_JADDREF(wk);
10969 			TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref,
10970 			    if_deps);
10971 			/*
10972 			 * Transfer any jaddrefs to the list to be freed with
10973 			 * the bitmap if we're handling a removed file.
10974 			 */
10975 			if (refhd == NULL) {
10976 				wk->wk_state |= COMPLETE;
10977 				free_jaddref(jaddref);
10978 			} else
10979 				WORKLIST_INSERT(refhd, wk);
10980 			continue;
10981 
10982 		default:
10983 			panic("handle_bufwait: Unknown type %p(%s)",
10984 			    wk, TYPENAME(wk->wk_type));
10985 			/* NOTREACHED */
10986 		}
10987 	}
10988 	return (freefile);
10989 }
10990 /*
10991  * Called from within softdep_disk_write_complete above to restore
10992  * in-memory inode block contents to their most up-to-date state. Note
10993  * that this routine is always called from interrupt level with further
10994  * splbio interrupts blocked.
10995  */
10996 static int
10997 handle_written_inodeblock(inodedep, bp)
10998 	struct inodedep *inodedep;
10999 	struct buf *bp;		/* buffer containing the inode block */
11000 {
11001 	struct freefile *freefile;
11002 	struct allocdirect *adp, *nextadp;
11003 	struct ufs1_dinode *dp1 = NULL;
11004 	struct ufs2_dinode *dp2 = NULL;
11005 	struct workhead wkhd;
11006 	int hadchanges, fstype;
11007 	ino_t freelink;
11008 
11009 	LIST_INIT(&wkhd);
11010 	hadchanges = 0;
11011 	freefile = NULL;
11012 	if ((inodedep->id_state & IOSTARTED) == 0)
11013 		panic("handle_written_inodeblock: not started");
11014 	inodedep->id_state &= ~IOSTARTED;
11015 	if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC) {
11016 		fstype = UFS1;
11017 		dp1 = (struct ufs1_dinode *)bp->b_data +
11018 		    ino_to_fsbo(inodedep->id_fs, inodedep->id_ino);
11019 		freelink = dp1->di_freelink;
11020 	} else {
11021 		fstype = UFS2;
11022 		dp2 = (struct ufs2_dinode *)bp->b_data +
11023 		    ino_to_fsbo(inodedep->id_fs, inodedep->id_ino);
11024 		freelink = dp2->di_freelink;
11025 	}
11026 	/*
11027 	 * Leave this inodeblock dirty until it's in the list.
11028 	 */
11029 	if ((inodedep->id_state & (UNLINKED | UNLINKONLIST)) == UNLINKED) {
11030 		struct inodedep *inon;
11031 
11032 		inon = TAILQ_NEXT(inodedep, id_unlinked);
11033 		if ((inon == NULL && freelink == 0) ||
11034 		    (inon && inon->id_ino == freelink)) {
11035 			if (inon)
11036 				inon->id_state |= UNLINKPREV;
11037 			inodedep->id_state |= UNLINKNEXT;
11038 		}
11039 		hadchanges = 1;
11040 	}
11041 	/*
11042 	 * If we had to rollback the inode allocation because of
11043 	 * bitmaps being incomplete, then simply restore it.
11044 	 * Keep the block dirty so that it will not be reclaimed until
11045 	 * all associated dependencies have been cleared and the
11046 	 * corresponding updates written to disk.
11047 	 */
11048 	if (inodedep->id_savedino1 != NULL) {
11049 		hadchanges = 1;
11050 		if (fstype == UFS1)
11051 			*dp1 = *inodedep->id_savedino1;
11052 		else
11053 			*dp2 = *inodedep->id_savedino2;
11054 		free(inodedep->id_savedino1, M_SAVEDINO);
11055 		inodedep->id_savedino1 = NULL;
11056 		if ((bp->b_flags & B_DELWRI) == 0)
11057 			stat_inode_bitmap++;
11058 		bdirty(bp);
11059 		/*
11060 		 * If the inode is clear here and GOINGAWAY it will never
11061 		 * be written.  Process the bufwait and clear any pending
11062 		 * work which may include the freefile.
11063 		 */
11064 		if (inodedep->id_state & GOINGAWAY)
11065 			goto bufwait;
11066 		return (1);
11067 	}
11068 	inodedep->id_state |= COMPLETE;
11069 	/*
11070 	 * Roll forward anything that had to be rolled back before
11071 	 * the inode could be updated.
11072 	 */
11073 	for (adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; adp = nextadp) {
11074 		nextadp = TAILQ_NEXT(adp, ad_next);
11075 		if (adp->ad_state & ATTACHED)
11076 			panic("handle_written_inodeblock: new entry");
11077 		if (fstype == UFS1) {
11078 			if (adp->ad_offset < NDADDR) {
11079 				if (dp1->di_db[adp->ad_offset]!=adp->ad_oldblkno)
11080 					panic("%s %s #%jd mismatch %d != %jd",
11081 					    "handle_written_inodeblock:",
11082 					    "direct pointer",
11083 					    (intmax_t)adp->ad_offset,
11084 					    dp1->di_db[adp->ad_offset],
11085 					    (intmax_t)adp->ad_oldblkno);
11086 				dp1->di_db[adp->ad_offset] = adp->ad_newblkno;
11087 			} else {
11088 				if (dp1->di_ib[adp->ad_offset - NDADDR] != 0)
11089 					panic("%s: %s #%jd allocated as %d",
11090 					    "handle_written_inodeblock",
11091 					    "indirect pointer",
11092 					    (intmax_t)adp->ad_offset - NDADDR,
11093 					    dp1->di_ib[adp->ad_offset - NDADDR]);
11094 				dp1->di_ib[adp->ad_offset - NDADDR] =
11095 				    adp->ad_newblkno;
11096 			}
11097 		} else {
11098 			if (adp->ad_offset < NDADDR) {
11099 				if (dp2->di_db[adp->ad_offset]!=adp->ad_oldblkno)
11100 					panic("%s: %s #%jd %s %jd != %jd",
11101 					    "handle_written_inodeblock",
11102 					    "direct pointer",
11103 					    (intmax_t)adp->ad_offset, "mismatch",
11104 					    (intmax_t)dp2->di_db[adp->ad_offset],
11105 					    (intmax_t)adp->ad_oldblkno);
11106 				dp2->di_db[adp->ad_offset] = adp->ad_newblkno;
11107 			} else {
11108 				if (dp2->di_ib[adp->ad_offset - NDADDR] != 0)
11109 					panic("%s: %s #%jd allocated as %jd",
11110 					    "handle_written_inodeblock",
11111 					    "indirect pointer",
11112 					    (intmax_t)adp->ad_offset - NDADDR,
11113 					    (intmax_t)
11114 					    dp2->di_ib[adp->ad_offset - NDADDR]);
11115 				dp2->di_ib[adp->ad_offset - NDADDR] =
11116 				    adp->ad_newblkno;
11117 			}
11118 		}
11119 		adp->ad_state &= ~UNDONE;
11120 		adp->ad_state |= ATTACHED;
11121 		hadchanges = 1;
11122 	}
11123 	for (adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; adp = nextadp) {
11124 		nextadp = TAILQ_NEXT(adp, ad_next);
11125 		if (adp->ad_state & ATTACHED)
11126 			panic("handle_written_inodeblock: new entry");
11127 		if (dp2->di_extb[adp->ad_offset] != adp->ad_oldblkno)
11128 			panic("%s: direct pointers #%jd %s %jd != %jd",
11129 			    "handle_written_inodeblock",
11130 			    (intmax_t)adp->ad_offset, "mismatch",
11131 			    (intmax_t)dp2->di_extb[adp->ad_offset],
11132 			    (intmax_t)adp->ad_oldblkno);
11133 		dp2->di_extb[adp->ad_offset] = adp->ad_newblkno;
11134 		adp->ad_state &= ~UNDONE;
11135 		adp->ad_state |= ATTACHED;
11136 		hadchanges = 1;
11137 	}
11138 	if (hadchanges && (bp->b_flags & B_DELWRI) == 0)
11139 		stat_direct_blk_ptrs++;
11140 	/*
11141 	 * Reset the file size to its most up-to-date value.
11142 	 */
11143 	if (inodedep->id_savedsize == -1 || inodedep->id_savedextsize == -1)
11144 		panic("handle_written_inodeblock: bad size");
11145 	if (inodedep->id_savednlink > LINK_MAX)
11146 		panic("handle_written_inodeblock: Invalid link count "
11147 		    "%d for inodedep %p", inodedep->id_savednlink, inodedep);
11148 	if (fstype == UFS1) {
11149 		if (dp1->di_nlink != inodedep->id_savednlink) {
11150 			dp1->di_nlink = inodedep->id_savednlink;
11151 			hadchanges = 1;
11152 		}
11153 		if (dp1->di_size != inodedep->id_savedsize) {
11154 			dp1->di_size = inodedep->id_savedsize;
11155 			hadchanges = 1;
11156 		}
11157 	} else {
11158 		if (dp2->di_nlink != inodedep->id_savednlink) {
11159 			dp2->di_nlink = inodedep->id_savednlink;
11160 			hadchanges = 1;
11161 		}
11162 		if (dp2->di_size != inodedep->id_savedsize) {
11163 			dp2->di_size = inodedep->id_savedsize;
11164 			hadchanges = 1;
11165 		}
11166 		if (dp2->di_extsize != inodedep->id_savedextsize) {
11167 			dp2->di_extsize = inodedep->id_savedextsize;
11168 			hadchanges = 1;
11169 		}
11170 	}
11171 	inodedep->id_savedsize = -1;
11172 	inodedep->id_savedextsize = -1;
11173 	inodedep->id_savednlink = -1;
11174 	/*
11175 	 * If there were any rollbacks in the inode block, then it must be
11176 	 * marked dirty so that its will eventually get written back in
11177 	 * its correct form.
11178 	 */
11179 	if (hadchanges)
11180 		bdirty(bp);
11181 bufwait:
11182 	/*
11183 	 * Process any allocdirects that completed during the update.
11184 	 */
11185 	if ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL)
11186 		handle_allocdirect_partdone(adp, &wkhd);
11187 	if ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL)
11188 		handle_allocdirect_partdone(adp, &wkhd);
11189 	/*
11190 	 * Process deallocations that were held pending until the
11191 	 * inode had been written to disk. Freeing of the inode
11192 	 * is delayed until after all blocks have been freed to
11193 	 * avoid creation of new <vfsid, inum, lbn> triples
11194 	 * before the old ones have been deleted.  Completely
11195 	 * unlinked inodes are not processed until the unlinked
11196 	 * inode list is written or the last reference is removed.
11197 	 */
11198 	if ((inodedep->id_state & (UNLINKED | UNLINKONLIST)) != UNLINKED) {
11199 		freefile = handle_bufwait(inodedep, NULL);
11200 		if (freefile && !LIST_EMPTY(&wkhd)) {
11201 			WORKLIST_INSERT(&wkhd, &freefile->fx_list);
11202 			freefile = NULL;
11203 		}
11204 	}
11205 	/*
11206 	 * Move rolled forward dependency completions to the bufwait list
11207 	 * now that those that were already written have been processed.
11208 	 */
11209 	if (!LIST_EMPTY(&wkhd) && hadchanges == 0)
11210 		panic("handle_written_inodeblock: bufwait but no changes");
11211 	jwork_move(&inodedep->id_bufwait, &wkhd);
11212 
11213 	if (freefile != NULL) {
11214 		/*
11215 		 * If the inode is goingaway it was never written.  Fake up
11216 		 * the state here so free_inodedep() can succeed.
11217 		 */
11218 		if (inodedep->id_state & GOINGAWAY)
11219 			inodedep->id_state |= COMPLETE | DEPCOMPLETE;
11220 		if (free_inodedep(inodedep) == 0)
11221 			panic("handle_written_inodeblock: live inodedep %p",
11222 			    inodedep);
11223 		add_to_worklist(&freefile->fx_list, 0);
11224 		return (0);
11225 	}
11226 
11227 	/*
11228 	 * If no outstanding dependencies, free it.
11229 	 */
11230 	if (free_inodedep(inodedep) ||
11231 	    (TAILQ_FIRST(&inodedep->id_inoreflst) == 0 &&
11232 	     TAILQ_FIRST(&inodedep->id_inoupdt) == 0 &&
11233 	     TAILQ_FIRST(&inodedep->id_extupdt) == 0 &&
11234 	     LIST_FIRST(&inodedep->id_bufwait) == 0))
11235 		return (0);
11236 	return (hadchanges);
11237 }
11238 
11239 static int
11240 handle_written_indirdep(indirdep, bp, bpp)
11241 	struct indirdep *indirdep;
11242 	struct buf *bp;
11243 	struct buf **bpp;
11244 {
11245 	struct allocindir *aip;
11246 	struct buf *sbp;
11247 	int chgs;
11248 
11249 	if (indirdep->ir_state & GOINGAWAY)
11250 		panic("handle_written_indirdep: indirdep gone");
11251 	if ((indirdep->ir_state & IOSTARTED) == 0)
11252 		panic("handle_written_indirdep: IO not started");
11253 	chgs = 0;
11254 	/*
11255 	 * If there were rollbacks revert them here.
11256 	 */
11257 	if (indirdep->ir_saveddata) {
11258 		bcopy(indirdep->ir_saveddata, bp->b_data, bp->b_bcount);
11259 		if (TAILQ_EMPTY(&indirdep->ir_trunc)) {
11260 			free(indirdep->ir_saveddata, M_INDIRDEP);
11261 			indirdep->ir_saveddata = NULL;
11262 		}
11263 		chgs = 1;
11264 	}
11265 	indirdep->ir_state &= ~(UNDONE | IOSTARTED);
11266 	indirdep->ir_state |= ATTACHED;
11267 	/*
11268 	 * Move allocindirs with written pointers to the completehd if
11269 	 * the indirdep's pointer is not yet written.  Otherwise
11270 	 * free them here.
11271 	 */
11272 	while ((aip = LIST_FIRST(&indirdep->ir_writehd)) != 0) {
11273 		LIST_REMOVE(aip, ai_next);
11274 		if ((indirdep->ir_state & DEPCOMPLETE) == 0) {
11275 			LIST_INSERT_HEAD(&indirdep->ir_completehd, aip,
11276 			    ai_next);
11277 			newblk_freefrag(&aip->ai_block);
11278 			continue;
11279 		}
11280 		free_newblk(&aip->ai_block);
11281 	}
11282 	/*
11283 	 * Move allocindirs that have finished dependency processing from
11284 	 * the done list to the write list after updating the pointers.
11285 	 */
11286 	if (TAILQ_EMPTY(&indirdep->ir_trunc)) {
11287 		while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != 0) {
11288 			handle_allocindir_partdone(aip);
11289 			if (aip == LIST_FIRST(&indirdep->ir_donehd))
11290 				panic("disk_write_complete: not gone");
11291 			chgs = 1;
11292 		}
11293 	}
11294 	/*
11295 	 * Preserve the indirdep if there were any changes or if it is not
11296 	 * yet valid on disk.
11297 	 */
11298 	if (chgs) {
11299 		stat_indir_blk_ptrs++;
11300 		bdirty(bp);
11301 		return (1);
11302 	}
11303 	/*
11304 	 * If there were no changes we can discard the savedbp and detach
11305 	 * ourselves from the buf.  We are only carrying completed pointers
11306 	 * in this case.
11307 	 */
11308 	sbp = indirdep->ir_savebp;
11309 	sbp->b_flags |= B_INVAL | B_NOCACHE;
11310 	indirdep->ir_savebp = NULL;
11311 	indirdep->ir_bp = NULL;
11312 	if (*bpp != NULL)
11313 		panic("handle_written_indirdep: bp already exists.");
11314 	*bpp = sbp;
11315 	/*
11316 	 * The indirdep may not be freed until its parent points at it.
11317 	 */
11318 	if (indirdep->ir_state & DEPCOMPLETE)
11319 		free_indirdep(indirdep);
11320 
11321 	return (0);
11322 }
11323 
11324 /*
11325  * Process a diradd entry after its dependent inode has been written.
11326  * This routine must be called with splbio interrupts blocked.
11327  */
11328 static void
11329 diradd_inode_written(dap, inodedep)
11330 	struct diradd *dap;
11331 	struct inodedep *inodedep;
11332 {
11333 
11334 	dap->da_state |= COMPLETE;
11335 	complete_diradd(dap);
11336 	WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list);
11337 }
11338 
11339 /*
11340  * Returns true if the bmsafemap will have rollbacks when written.  Must
11341  * only be called with lk and the buf lock on the cg held.
11342  */
11343 static int
11344 bmsafemap_backgroundwrite(bmsafemap, bp)
11345 	struct bmsafemap *bmsafemap;
11346 	struct buf *bp;
11347 {
11348 	int dirty;
11349 
11350 	dirty = !LIST_EMPTY(&bmsafemap->sm_jaddrefhd) |
11351 	    !LIST_EMPTY(&bmsafemap->sm_jnewblkhd);
11352 	/*
11353 	 * If we're initiating a background write we need to process the
11354 	 * rollbacks as they exist now, not as they exist when IO starts.
11355 	 * No other consumers will look at the contents of the shadowed
11356 	 * buf so this is safe to do here.
11357 	 */
11358 	if (bp->b_xflags & BX_BKGRDMARKER)
11359 		initiate_write_bmsafemap(bmsafemap, bp);
11360 
11361 	return (dirty);
11362 }
11363 
11364 /*
11365  * Re-apply an allocation when a cg write is complete.
11366  */
11367 static int
11368 jnewblk_rollforward(jnewblk, fs, cgp, blksfree)
11369 	struct jnewblk *jnewblk;
11370 	struct fs *fs;
11371 	struct cg *cgp;
11372 	uint8_t *blksfree;
11373 {
11374 	ufs1_daddr_t fragno;
11375 	ufs2_daddr_t blkno;
11376 	long cgbno, bbase;
11377 	int frags, blk;
11378 	int i;
11379 
11380 	frags = 0;
11381 	cgbno = dtogd(fs, jnewblk->jn_blkno);
11382 	for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; i++) {
11383 		if (isclr(blksfree, cgbno + i))
11384 			panic("jnewblk_rollforward: re-allocated fragment");
11385 		frags++;
11386 	}
11387 	if (frags == fs->fs_frag) {
11388 		blkno = fragstoblks(fs, cgbno);
11389 		ffs_clrblock(fs, blksfree, (long)blkno);
11390 		ffs_clusteracct(fs, cgp, blkno, -1);
11391 		cgp->cg_cs.cs_nbfree--;
11392 	} else {
11393 		bbase = cgbno - fragnum(fs, cgbno);
11394 		cgbno += jnewblk->jn_oldfrags;
11395                 /* If a complete block had been reassembled, account for it. */
11396 		fragno = fragstoblks(fs, bbase);
11397 		if (ffs_isblock(fs, blksfree, fragno)) {
11398 			cgp->cg_cs.cs_nffree += fs->fs_frag;
11399 			ffs_clusteracct(fs, cgp, fragno, -1);
11400 			cgp->cg_cs.cs_nbfree--;
11401 		}
11402 		/* Decrement the old frags.  */
11403 		blk = blkmap(fs, blksfree, bbase);
11404 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
11405 		/* Allocate the fragment */
11406 		for (i = 0; i < frags; i++)
11407 			clrbit(blksfree, cgbno + i);
11408 		cgp->cg_cs.cs_nffree -= frags;
11409 		/* Add back in counts associated with the new frags */
11410 		blk = blkmap(fs, blksfree, bbase);
11411 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
11412 	}
11413 	return (frags);
11414 }
11415 
11416 /*
11417  * Complete a write to a bmsafemap structure.  Roll forward any bitmap
11418  * changes if it's not a background write.  Set all written dependencies
11419  * to DEPCOMPLETE and free the structure if possible.
11420  */
11421 static int
11422 handle_written_bmsafemap(bmsafemap, bp)
11423 	struct bmsafemap *bmsafemap;
11424 	struct buf *bp;
11425 {
11426 	struct newblk *newblk;
11427 	struct inodedep *inodedep;
11428 	struct jaddref *jaddref, *jatmp;
11429 	struct jnewblk *jnewblk, *jntmp;
11430 	struct ufsmount *ump;
11431 	uint8_t *inosused;
11432 	uint8_t *blksfree;
11433 	struct cg *cgp;
11434 	struct fs *fs;
11435 	ino_t ino;
11436 	int chgs;
11437 
11438 	if ((bmsafemap->sm_state & IOSTARTED) == 0)
11439 		panic("initiate_write_bmsafemap: Not started\n");
11440 	ump = VFSTOUFS(bmsafemap->sm_list.wk_mp);
11441 	chgs = 0;
11442 	bmsafemap->sm_state &= ~IOSTARTED;
11443 	/*
11444 	 * Release journal work that was waiting on the write.
11445 	 */
11446 	handle_jwork(&bmsafemap->sm_freewr);
11447 
11448 	/*
11449 	 * Restore unwritten inode allocation pending jaddref writes.
11450 	 */
11451 	if (!LIST_EMPTY(&bmsafemap->sm_jaddrefhd)) {
11452 		cgp = (struct cg *)bp->b_data;
11453 		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
11454 		inosused = cg_inosused(cgp);
11455 		LIST_FOREACH_SAFE(jaddref, &bmsafemap->sm_jaddrefhd,
11456 		    ja_bmdeps, jatmp) {
11457 			if ((jaddref->ja_state & UNDONE) == 0)
11458 				continue;
11459 			ino = jaddref->ja_ino % fs->fs_ipg;
11460 			if (isset(inosused, ino))
11461 				panic("handle_written_bmsafemap: "
11462 				    "re-allocated inode");
11463 			if ((bp->b_xflags & BX_BKGRDMARKER) == 0) {
11464 				if ((jaddref->ja_mode & IFMT) == IFDIR)
11465 					cgp->cg_cs.cs_ndir++;
11466 				cgp->cg_cs.cs_nifree--;
11467 				setbit(inosused, ino);
11468 				chgs = 1;
11469 			}
11470 			jaddref->ja_state &= ~UNDONE;
11471 			jaddref->ja_state |= ATTACHED;
11472 			free_jaddref(jaddref);
11473 		}
11474 	}
11475 	/*
11476 	 * Restore any block allocations which are pending journal writes.
11477 	 */
11478 	if (LIST_FIRST(&bmsafemap->sm_jnewblkhd) != NULL) {
11479 		cgp = (struct cg *)bp->b_data;
11480 		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
11481 		blksfree = cg_blksfree(cgp);
11482 		LIST_FOREACH_SAFE(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps,
11483 		    jntmp) {
11484 			if ((jnewblk->jn_state & UNDONE) == 0)
11485 				continue;
11486 			if ((bp->b_xflags & BX_BKGRDMARKER) == 0 &&
11487 			    jnewblk_rollforward(jnewblk, fs, cgp, blksfree))
11488 				chgs = 1;
11489 			jnewblk->jn_state &= ~(UNDONE | NEWBLOCK);
11490 			jnewblk->jn_state |= ATTACHED;
11491 			free_jnewblk(jnewblk);
11492 		}
11493 	}
11494 	while ((newblk = LIST_FIRST(&bmsafemap->sm_newblkwr))) {
11495 		newblk->nb_state |= DEPCOMPLETE;
11496 		newblk->nb_state &= ~ONDEPLIST;
11497 		newblk->nb_bmsafemap = NULL;
11498 		LIST_REMOVE(newblk, nb_deps);
11499 		if (newblk->nb_list.wk_type == D_ALLOCDIRECT)
11500 			handle_allocdirect_partdone(
11501 			    WK_ALLOCDIRECT(&newblk->nb_list), NULL);
11502 		else if (newblk->nb_list.wk_type == D_ALLOCINDIR)
11503 			handle_allocindir_partdone(
11504 			    WK_ALLOCINDIR(&newblk->nb_list));
11505 		else if (newblk->nb_list.wk_type != D_NEWBLK)
11506 			panic("handle_written_bmsafemap: Unexpected type: %s",
11507 			    TYPENAME(newblk->nb_list.wk_type));
11508 	}
11509 	while ((inodedep = LIST_FIRST(&bmsafemap->sm_inodedepwr)) != NULL) {
11510 		inodedep->id_state |= DEPCOMPLETE;
11511 		inodedep->id_state &= ~ONDEPLIST;
11512 		LIST_REMOVE(inodedep, id_deps);
11513 		inodedep->id_bmsafemap = NULL;
11514 	}
11515 	LIST_REMOVE(bmsafemap, sm_next);
11516 	if (chgs == 0 && LIST_EMPTY(&bmsafemap->sm_jaddrefhd) &&
11517 	    LIST_EMPTY(&bmsafemap->sm_jnewblkhd) &&
11518 	    LIST_EMPTY(&bmsafemap->sm_newblkhd) &&
11519 	    LIST_EMPTY(&bmsafemap->sm_inodedephd) &&
11520 	    LIST_EMPTY(&bmsafemap->sm_freehd)) {
11521 		LIST_REMOVE(bmsafemap, sm_hash);
11522 		WORKITEM_FREE(bmsafemap, D_BMSAFEMAP);
11523 		return (0);
11524 	}
11525 	LIST_INSERT_HEAD(&ump->softdep_dirtycg, bmsafemap, sm_next);
11526 	bdirty(bp);
11527 	return (1);
11528 }
11529 
11530 /*
11531  * Try to free a mkdir dependency.
11532  */
11533 static void
11534 complete_mkdir(mkdir)
11535 	struct mkdir *mkdir;
11536 {
11537 	struct diradd *dap;
11538 
11539 	if ((mkdir->md_state & ALLCOMPLETE) != ALLCOMPLETE)
11540 		return;
11541 	LIST_REMOVE(mkdir, md_mkdirs);
11542 	dap = mkdir->md_diradd;
11543 	dap->da_state &= ~(mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY));
11544 	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0) {
11545 		dap->da_state |= DEPCOMPLETE;
11546 		complete_diradd(dap);
11547 	}
11548 	WORKITEM_FREE(mkdir, D_MKDIR);
11549 }
11550 
11551 /*
11552  * Handle the completion of a mkdir dependency.
11553  */
11554 static void
11555 handle_written_mkdir(mkdir, type)
11556 	struct mkdir *mkdir;
11557 	int type;
11558 {
11559 
11560 	if ((mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY)) != type)
11561 		panic("handle_written_mkdir: bad type");
11562 	mkdir->md_state |= COMPLETE;
11563 	complete_mkdir(mkdir);
11564 }
11565 
11566 static int
11567 free_pagedep(pagedep)
11568 	struct pagedep *pagedep;
11569 {
11570 	int i;
11571 
11572 	if (pagedep->pd_state & NEWBLOCK)
11573 		return (0);
11574 	if (!LIST_EMPTY(&pagedep->pd_dirremhd))
11575 		return (0);
11576 	for (i = 0; i < DAHASHSZ; i++)
11577 		if (!LIST_EMPTY(&pagedep->pd_diraddhd[i]))
11578 			return (0);
11579 	if (!LIST_EMPTY(&pagedep->pd_pendinghd))
11580 		return (0);
11581 	if (!LIST_EMPTY(&pagedep->pd_jmvrefhd))
11582 		return (0);
11583 	if (pagedep->pd_state & ONWORKLIST)
11584 		WORKLIST_REMOVE(&pagedep->pd_list);
11585 	LIST_REMOVE(pagedep, pd_hash);
11586 	WORKITEM_FREE(pagedep, D_PAGEDEP);
11587 
11588 	return (1);
11589 }
11590 
11591 /*
11592  * Called from within softdep_disk_write_complete above.
11593  * A write operation was just completed. Removed inodes can
11594  * now be freed and associated block pointers may be committed.
11595  * Note that this routine is always called from interrupt level
11596  * with further splbio interrupts blocked.
11597  */
11598 static int
11599 handle_written_filepage(pagedep, bp)
11600 	struct pagedep *pagedep;
11601 	struct buf *bp;		/* buffer containing the written page */
11602 {
11603 	struct dirrem *dirrem;
11604 	struct diradd *dap, *nextdap;
11605 	struct direct *ep;
11606 	int i, chgs;
11607 
11608 	if ((pagedep->pd_state & IOSTARTED) == 0)
11609 		panic("handle_written_filepage: not started");
11610 	pagedep->pd_state &= ~IOSTARTED;
11611 	/*
11612 	 * Process any directory removals that have been committed.
11613 	 */
11614 	while ((dirrem = LIST_FIRST(&pagedep->pd_dirremhd)) != NULL) {
11615 		LIST_REMOVE(dirrem, dm_next);
11616 		dirrem->dm_state |= COMPLETE;
11617 		dirrem->dm_dirinum = pagedep->pd_ino;
11618 		KASSERT(LIST_EMPTY(&dirrem->dm_jremrefhd),
11619 		    ("handle_written_filepage: Journal entries not written."));
11620 		add_to_worklist(&dirrem->dm_list, 0);
11621 	}
11622 	/*
11623 	 * Free any directory additions that have been committed.
11624 	 * If it is a newly allocated block, we have to wait until
11625 	 * the on-disk directory inode claims the new block.
11626 	 */
11627 	if ((pagedep->pd_state & NEWBLOCK) == 0)
11628 		while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL)
11629 			free_diradd(dap, NULL);
11630 	/*
11631 	 * Uncommitted directory entries must be restored.
11632 	 */
11633 	for (chgs = 0, i = 0; i < DAHASHSZ; i++) {
11634 		for (dap = LIST_FIRST(&pagedep->pd_diraddhd[i]); dap;
11635 		     dap = nextdap) {
11636 			nextdap = LIST_NEXT(dap, da_pdlist);
11637 			if (dap->da_state & ATTACHED)
11638 				panic("handle_written_filepage: attached");
11639 			ep = (struct direct *)
11640 			    ((char *)bp->b_data + dap->da_offset);
11641 			ep->d_ino = dap->da_newinum;
11642 			dap->da_state &= ~UNDONE;
11643 			dap->da_state |= ATTACHED;
11644 			chgs = 1;
11645 			/*
11646 			 * If the inode referenced by the directory has
11647 			 * been written out, then the dependency can be
11648 			 * moved to the pending list.
11649 			 */
11650 			if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
11651 				LIST_REMOVE(dap, da_pdlist);
11652 				LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap,
11653 				    da_pdlist);
11654 			}
11655 		}
11656 	}
11657 	/*
11658 	 * If there were any rollbacks in the directory, then it must be
11659 	 * marked dirty so that its will eventually get written back in
11660 	 * its correct form.
11661 	 */
11662 	if (chgs) {
11663 		if ((bp->b_flags & B_DELWRI) == 0)
11664 			stat_dir_entry++;
11665 		bdirty(bp);
11666 		return (1);
11667 	}
11668 	/*
11669 	 * If we are not waiting for a new directory block to be
11670 	 * claimed by its inode, then the pagedep will be freed.
11671 	 * Otherwise it will remain to track any new entries on
11672 	 * the page in case they are fsync'ed.
11673 	 */
11674 	free_pagedep(pagedep);
11675 	return (0);
11676 }
11677 
11678 /*
11679  * Writing back in-core inode structures.
11680  *
11681  * The filesystem only accesses an inode's contents when it occupies an
11682  * "in-core" inode structure.  These "in-core" structures are separate from
11683  * the page frames used to cache inode blocks.  Only the latter are
11684  * transferred to/from the disk.  So, when the updated contents of the
11685  * "in-core" inode structure are copied to the corresponding in-memory inode
11686  * block, the dependencies are also transferred.  The following procedure is
11687  * called when copying a dirty "in-core" inode to a cached inode block.
11688  */
11689 
11690 /*
11691  * Called when an inode is loaded from disk. If the effective link count
11692  * differed from the actual link count when it was last flushed, then we
11693  * need to ensure that the correct effective link count is put back.
11694  */
11695 void
11696 softdep_load_inodeblock(ip)
11697 	struct inode *ip;	/* the "in_core" copy of the inode */
11698 {
11699 	struct inodedep *inodedep;
11700 
11701 	/*
11702 	 * Check for alternate nlink count.
11703 	 */
11704 	ip->i_effnlink = ip->i_nlink;
11705 	ACQUIRE_LOCK(&lk);
11706 	if (inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, 0,
11707 	    &inodedep) == 0) {
11708 		FREE_LOCK(&lk);
11709 		return;
11710 	}
11711 	ip->i_effnlink -= inodedep->id_nlinkdelta;
11712 	FREE_LOCK(&lk);
11713 }
11714 
11715 /*
11716  * This routine is called just before the "in-core" inode
11717  * information is to be copied to the in-memory inode block.
11718  * Recall that an inode block contains several inodes. If
11719  * the force flag is set, then the dependencies will be
11720  * cleared so that the update can always be made. Note that
11721  * the buffer is locked when this routine is called, so we
11722  * will never be in the middle of writing the inode block
11723  * to disk.
11724  */
11725 void
11726 softdep_update_inodeblock(ip, bp, waitfor)
11727 	struct inode *ip;	/* the "in_core" copy of the inode */
11728 	struct buf *bp;		/* the buffer containing the inode block */
11729 	int waitfor;		/* nonzero => update must be allowed */
11730 {
11731 	struct inodedep *inodedep;
11732 	struct inoref *inoref;
11733 	struct worklist *wk;
11734 	struct mount *mp;
11735 	struct buf *ibp;
11736 	struct fs *fs;
11737 	int error;
11738 
11739 	mp = UFSTOVFS(ip->i_ump);
11740 	fs = ip->i_fs;
11741 	/*
11742 	 * Preserve the freelink that is on disk.  clear_unlinked_inodedep()
11743 	 * does not have access to the in-core ip so must write directly into
11744 	 * the inode block buffer when setting freelink.
11745 	 */
11746 	if (fs->fs_magic == FS_UFS1_MAGIC)
11747 		DIP_SET(ip, i_freelink, ((struct ufs1_dinode *)bp->b_data +
11748 		    ino_to_fsbo(fs, ip->i_number))->di_freelink);
11749 	else
11750 		DIP_SET(ip, i_freelink, ((struct ufs2_dinode *)bp->b_data +
11751 		    ino_to_fsbo(fs, ip->i_number))->di_freelink);
11752 	/*
11753 	 * If the effective link count is not equal to the actual link
11754 	 * count, then we must track the difference in an inodedep while
11755 	 * the inode is (potentially) tossed out of the cache. Otherwise,
11756 	 * if there is no existing inodedep, then there are no dependencies
11757 	 * to track.
11758 	 */
11759 	ACQUIRE_LOCK(&lk);
11760 again:
11761 	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) {
11762 		FREE_LOCK(&lk);
11763 		if (ip->i_effnlink != ip->i_nlink)
11764 			panic("softdep_update_inodeblock: bad link count");
11765 		return;
11766 	}
11767 	if (inodedep->id_nlinkdelta != ip->i_nlink - ip->i_effnlink)
11768 		panic("softdep_update_inodeblock: bad delta");
11769 	/*
11770 	 * If we're flushing all dependencies we must also move any waiting
11771 	 * for journal writes onto the bufwait list prior to I/O.
11772 	 */
11773 	if (waitfor) {
11774 		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
11775 			if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
11776 			    == DEPCOMPLETE) {
11777 				jwait(&inoref->if_list, MNT_WAIT);
11778 				goto again;
11779 			}
11780 		}
11781 	}
11782 	/*
11783 	 * Changes have been initiated. Anything depending on these
11784 	 * changes cannot occur until this inode has been written.
11785 	 */
11786 	inodedep->id_state &= ~COMPLETE;
11787 	if ((inodedep->id_state & ONWORKLIST) == 0)
11788 		WORKLIST_INSERT(&bp->b_dep, &inodedep->id_list);
11789 	/*
11790 	 * Any new dependencies associated with the incore inode must
11791 	 * now be moved to the list associated with the buffer holding
11792 	 * the in-memory copy of the inode. Once merged process any
11793 	 * allocdirects that are completed by the merger.
11794 	 */
11795 	merge_inode_lists(&inodedep->id_newinoupdt, &inodedep->id_inoupdt);
11796 	if (!TAILQ_EMPTY(&inodedep->id_inoupdt))
11797 		handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_inoupdt),
11798 		    NULL);
11799 	merge_inode_lists(&inodedep->id_newextupdt, &inodedep->id_extupdt);
11800 	if (!TAILQ_EMPTY(&inodedep->id_extupdt))
11801 		handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_extupdt),
11802 		    NULL);
11803 	/*
11804 	 * Now that the inode has been pushed into the buffer, the
11805 	 * operations dependent on the inode being written to disk
11806 	 * can be moved to the id_bufwait so that they will be
11807 	 * processed when the buffer I/O completes.
11808 	 */
11809 	while ((wk = LIST_FIRST(&inodedep->id_inowait)) != NULL) {
11810 		WORKLIST_REMOVE(wk);
11811 		WORKLIST_INSERT(&inodedep->id_bufwait, wk);
11812 	}
11813 	/*
11814 	 * Newly allocated inodes cannot be written until the bitmap
11815 	 * that allocates them have been written (indicated by
11816 	 * DEPCOMPLETE being set in id_state). If we are doing a
11817 	 * forced sync (e.g., an fsync on a file), we force the bitmap
11818 	 * to be written so that the update can be done.
11819 	 */
11820 	if (waitfor == 0) {
11821 		FREE_LOCK(&lk);
11822 		return;
11823 	}
11824 retry:
11825 	if ((inodedep->id_state & (DEPCOMPLETE | GOINGAWAY)) != 0) {
11826 		FREE_LOCK(&lk);
11827 		return;
11828 	}
11829 	ibp = inodedep->id_bmsafemap->sm_buf;
11830 	ibp = getdirtybuf(ibp, &lk, MNT_WAIT);
11831 	if (ibp == NULL) {
11832 		/*
11833 		 * If ibp came back as NULL, the dependency could have been
11834 		 * freed while we slept.  Look it up again, and check to see
11835 		 * that it has completed.
11836 		 */
11837 		if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0)
11838 			goto retry;
11839 		FREE_LOCK(&lk);
11840 		return;
11841 	}
11842 	FREE_LOCK(&lk);
11843 	if ((error = bwrite(ibp)) != 0)
11844 		softdep_error("softdep_update_inodeblock: bwrite", error);
11845 }
11846 
11847 /*
11848  * Merge the a new inode dependency list (such as id_newinoupdt) into an
11849  * old inode dependency list (such as id_inoupdt). This routine must be
11850  * called with splbio interrupts blocked.
11851  */
11852 static void
11853 merge_inode_lists(newlisthead, oldlisthead)
11854 	struct allocdirectlst *newlisthead;
11855 	struct allocdirectlst *oldlisthead;
11856 {
11857 	struct allocdirect *listadp, *newadp;
11858 
11859 	newadp = TAILQ_FIRST(newlisthead);
11860 	for (listadp = TAILQ_FIRST(oldlisthead); listadp && newadp;) {
11861 		if (listadp->ad_offset < newadp->ad_offset) {
11862 			listadp = TAILQ_NEXT(listadp, ad_next);
11863 			continue;
11864 		}
11865 		TAILQ_REMOVE(newlisthead, newadp, ad_next);
11866 		TAILQ_INSERT_BEFORE(listadp, newadp, ad_next);
11867 		if (listadp->ad_offset == newadp->ad_offset) {
11868 			allocdirect_merge(oldlisthead, newadp,
11869 			    listadp);
11870 			listadp = newadp;
11871 		}
11872 		newadp = TAILQ_FIRST(newlisthead);
11873 	}
11874 	while ((newadp = TAILQ_FIRST(newlisthead)) != NULL) {
11875 		TAILQ_REMOVE(newlisthead, newadp, ad_next);
11876 		TAILQ_INSERT_TAIL(oldlisthead, newadp, ad_next);
11877 	}
11878 }
11879 
11880 /*
11881  * If we are doing an fsync, then we must ensure that any directory
11882  * entries for the inode have been written after the inode gets to disk.
11883  */
11884 int
11885 softdep_fsync(vp)
11886 	struct vnode *vp;	/* the "in_core" copy of the inode */
11887 {
11888 	struct inodedep *inodedep;
11889 	struct pagedep *pagedep;
11890 	struct inoref *inoref;
11891 	struct worklist *wk;
11892 	struct diradd *dap;
11893 	struct mount *mp;
11894 	struct vnode *pvp;
11895 	struct inode *ip;
11896 	struct buf *bp;
11897 	struct fs *fs;
11898 	struct thread *td = curthread;
11899 	int error, flushparent, pagedep_new_block;
11900 	ino_t parentino;
11901 	ufs_lbn_t lbn;
11902 
11903 	ip = VTOI(vp);
11904 	fs = ip->i_fs;
11905 	mp = vp->v_mount;
11906 	ACQUIRE_LOCK(&lk);
11907 restart:
11908 	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) {
11909 		FREE_LOCK(&lk);
11910 		return (0);
11911 	}
11912 	TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
11913 		if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
11914 		    == DEPCOMPLETE) {
11915 			jwait(&inoref->if_list, MNT_WAIT);
11916 			goto restart;
11917 		}
11918 	}
11919 	if (!LIST_EMPTY(&inodedep->id_inowait) ||
11920 	    !TAILQ_EMPTY(&inodedep->id_extupdt) ||
11921 	    !TAILQ_EMPTY(&inodedep->id_newextupdt) ||
11922 	    !TAILQ_EMPTY(&inodedep->id_inoupdt) ||
11923 	    !TAILQ_EMPTY(&inodedep->id_newinoupdt))
11924 		panic("softdep_fsync: pending ops %p", inodedep);
11925 	for (error = 0, flushparent = 0; ; ) {
11926 		if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) == NULL)
11927 			break;
11928 		if (wk->wk_type != D_DIRADD)
11929 			panic("softdep_fsync: Unexpected type %s",
11930 			    TYPENAME(wk->wk_type));
11931 		dap = WK_DIRADD(wk);
11932 		/*
11933 		 * Flush our parent if this directory entry has a MKDIR_PARENT
11934 		 * dependency or is contained in a newly allocated block.
11935 		 */
11936 		if (dap->da_state & DIRCHG)
11937 			pagedep = dap->da_previous->dm_pagedep;
11938 		else
11939 			pagedep = dap->da_pagedep;
11940 		parentino = pagedep->pd_ino;
11941 		lbn = pagedep->pd_lbn;
11942 		if ((dap->da_state & (MKDIR_BODY | COMPLETE)) != COMPLETE)
11943 			panic("softdep_fsync: dirty");
11944 		if ((dap->da_state & MKDIR_PARENT) ||
11945 		    (pagedep->pd_state & NEWBLOCK))
11946 			flushparent = 1;
11947 		else
11948 			flushparent = 0;
11949 		/*
11950 		 * If we are being fsync'ed as part of vgone'ing this vnode,
11951 		 * then we will not be able to release and recover the
11952 		 * vnode below, so we just have to give up on writing its
11953 		 * directory entry out. It will eventually be written, just
11954 		 * not now, but then the user was not asking to have it
11955 		 * written, so we are not breaking any promises.
11956 		 */
11957 		if (vp->v_iflag & VI_DOOMED)
11958 			break;
11959 		/*
11960 		 * We prevent deadlock by always fetching inodes from the
11961 		 * root, moving down the directory tree. Thus, when fetching
11962 		 * our parent directory, we first try to get the lock. If
11963 		 * that fails, we must unlock ourselves before requesting
11964 		 * the lock on our parent. See the comment in ufs_lookup
11965 		 * for details on possible races.
11966 		 */
11967 		FREE_LOCK(&lk);
11968 		if (ffs_vgetf(mp, parentino, LK_NOWAIT | LK_EXCLUSIVE, &pvp,
11969 		    FFSV_FORCEINSMQ)) {
11970 			error = vfs_busy(mp, MBF_NOWAIT);
11971 			if (error != 0) {
11972 				vfs_ref(mp);
11973 				VOP_UNLOCK(vp, 0);
11974 				error = vfs_busy(mp, 0);
11975 				vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
11976 				vfs_rel(mp);
11977 				if (error != 0)
11978 					return (ENOENT);
11979 				if (vp->v_iflag & VI_DOOMED) {
11980 					vfs_unbusy(mp);
11981 					return (ENOENT);
11982 				}
11983 			}
11984 			VOP_UNLOCK(vp, 0);
11985 			error = ffs_vgetf(mp, parentino, LK_EXCLUSIVE,
11986 			    &pvp, FFSV_FORCEINSMQ);
11987 			vfs_unbusy(mp);
11988 			vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
11989 			if (vp->v_iflag & VI_DOOMED) {
11990 				if (error == 0)
11991 					vput(pvp);
11992 				error = ENOENT;
11993 			}
11994 			if (error != 0)
11995 				return (error);
11996 		}
11997 		/*
11998 		 * All MKDIR_PARENT dependencies and all the NEWBLOCK pagedeps
11999 		 * that are contained in direct blocks will be resolved by
12000 		 * doing a ffs_update. Pagedeps contained in indirect blocks
12001 		 * may require a complete sync'ing of the directory. So, we
12002 		 * try the cheap and fast ffs_update first, and if that fails,
12003 		 * then we do the slower ffs_syncvnode of the directory.
12004 		 */
12005 		if (flushparent) {
12006 			int locked;
12007 
12008 			if ((error = ffs_update(pvp, 1)) != 0) {
12009 				vput(pvp);
12010 				return (error);
12011 			}
12012 			ACQUIRE_LOCK(&lk);
12013 			locked = 1;
12014 			if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0) {
12015 				if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) != NULL) {
12016 					if (wk->wk_type != D_DIRADD)
12017 						panic("softdep_fsync: Unexpected type %s",
12018 						      TYPENAME(wk->wk_type));
12019 					dap = WK_DIRADD(wk);
12020 					if (dap->da_state & DIRCHG)
12021 						pagedep = dap->da_previous->dm_pagedep;
12022 					else
12023 						pagedep = dap->da_pagedep;
12024 					pagedep_new_block = pagedep->pd_state & NEWBLOCK;
12025 					FREE_LOCK(&lk);
12026 					locked = 0;
12027 					if (pagedep_new_block && (error =
12028 					    ffs_syncvnode(pvp, MNT_WAIT, 0))) {
12029 						vput(pvp);
12030 						return (error);
12031 					}
12032 				}
12033 			}
12034 			if (locked)
12035 				FREE_LOCK(&lk);
12036 		}
12037 		/*
12038 		 * Flush directory page containing the inode's name.
12039 		 */
12040 		error = bread(pvp, lbn, blksize(fs, VTOI(pvp), lbn), td->td_ucred,
12041 		    &bp);
12042 		if (error == 0)
12043 			error = bwrite(bp);
12044 		else
12045 			brelse(bp);
12046 		vput(pvp);
12047 		if (error != 0)
12048 			return (error);
12049 		ACQUIRE_LOCK(&lk);
12050 		if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0)
12051 			break;
12052 	}
12053 	FREE_LOCK(&lk);
12054 	return (0);
12055 }
12056 
12057 /*
12058  * Flush all the dirty bitmaps associated with the block device
12059  * before flushing the rest of the dirty blocks so as to reduce
12060  * the number of dependencies that will have to be rolled back.
12061  *
12062  * XXX Unused?
12063  */
12064 void
12065 softdep_fsync_mountdev(vp)
12066 	struct vnode *vp;
12067 {
12068 	struct buf *bp, *nbp;
12069 	struct worklist *wk;
12070 	struct bufobj *bo;
12071 
12072 	if (!vn_isdisk(vp, NULL))
12073 		panic("softdep_fsync_mountdev: vnode not a disk");
12074 	bo = &vp->v_bufobj;
12075 restart:
12076 	BO_LOCK(bo);
12077 	ACQUIRE_LOCK(&lk);
12078 	TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
12079 		/*
12080 		 * If it is already scheduled, skip to the next buffer.
12081 		 */
12082 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL))
12083 			continue;
12084 
12085 		if ((bp->b_flags & B_DELWRI) == 0)
12086 			panic("softdep_fsync_mountdev: not dirty");
12087 		/*
12088 		 * We are only interested in bitmaps with outstanding
12089 		 * dependencies.
12090 		 */
12091 		if ((wk = LIST_FIRST(&bp->b_dep)) == NULL ||
12092 		    wk->wk_type != D_BMSAFEMAP ||
12093 		    (bp->b_vflags & BV_BKGRDINPROG)) {
12094 			BUF_UNLOCK(bp);
12095 			continue;
12096 		}
12097 		FREE_LOCK(&lk);
12098 		BO_UNLOCK(bo);
12099 		bremfree(bp);
12100 		(void) bawrite(bp);
12101 		goto restart;
12102 	}
12103 	FREE_LOCK(&lk);
12104 	drain_output(vp);
12105 	BO_UNLOCK(bo);
12106 }
12107 
12108 /*
12109  * Sync all cylinder groups that were dirty at the time this function is
12110  * called.  Newly dirtied cgs will be inserted before the sintenel.  This
12111  * is used to flush freedep activity that may be holding up writes to a
12112  * indirect block.
12113  */
12114 static int
12115 sync_cgs(mp, waitfor)
12116 	struct mount *mp;
12117 	int waitfor;
12118 {
12119 	struct bmsafemap *bmsafemap;
12120 	struct bmsafemap *sintenel;
12121 	struct ufsmount *ump;
12122 	struct buf *bp;
12123 	int error;
12124 
12125 	sintenel = malloc(sizeof(*sintenel), M_BMSAFEMAP, M_ZERO | M_WAITOK);
12126 	sintenel->sm_cg = -1;
12127 	ump = VFSTOUFS(mp);
12128 	error = 0;
12129 	ACQUIRE_LOCK(&lk);
12130 	LIST_INSERT_HEAD(&ump->softdep_dirtycg, sintenel, sm_next);
12131 	for (bmsafemap = LIST_NEXT(sintenel, sm_next); bmsafemap != NULL;
12132 	    bmsafemap = LIST_NEXT(sintenel, sm_next)) {
12133 		/* Skip sintenels and cgs with no work to release. */
12134 		if (bmsafemap->sm_cg == -1 ||
12135 		    (LIST_EMPTY(&bmsafemap->sm_freehd) &&
12136 		    LIST_EMPTY(&bmsafemap->sm_freewr))) {
12137 			LIST_REMOVE(sintenel, sm_next);
12138 			LIST_INSERT_AFTER(bmsafemap, sintenel, sm_next);
12139 			continue;
12140 		}
12141 		/*
12142 		 * If we don't get the lock and we're waiting try again, if
12143 		 * not move on to the next buf and try to sync it.
12144 		 */
12145 		bp = getdirtybuf(bmsafemap->sm_buf, &lk, waitfor);
12146 		if (bp == NULL && waitfor == MNT_WAIT)
12147 			continue;
12148 		LIST_REMOVE(sintenel, sm_next);
12149 		LIST_INSERT_AFTER(bmsafemap, sintenel, sm_next);
12150 		if (bp == NULL)
12151 			continue;
12152 		FREE_LOCK(&lk);
12153 		if (waitfor == MNT_NOWAIT)
12154 			bawrite(bp);
12155 		else
12156 			error = bwrite(bp);
12157 		ACQUIRE_LOCK(&lk);
12158 		if (error)
12159 			break;
12160 	}
12161 	LIST_REMOVE(sintenel, sm_next);
12162 	FREE_LOCK(&lk);
12163 	free(sintenel, M_BMSAFEMAP);
12164 	return (error);
12165 }
12166 
12167 /*
12168  * This routine is called when we are trying to synchronously flush a
12169  * file. This routine must eliminate any filesystem metadata dependencies
12170  * so that the syncing routine can succeed.
12171  */
12172 int
12173 softdep_sync_metadata(struct vnode *vp)
12174 {
12175 	int error;
12176 
12177 	/*
12178 	 * Ensure that any direct block dependencies have been cleared,
12179 	 * truncations are started, and inode references are journaled.
12180 	 */
12181 	ACQUIRE_LOCK(&lk);
12182 	/*
12183 	 * Write all journal records to prevent rollbacks on devvp.
12184 	 */
12185 	if (vp->v_type == VCHR)
12186 		softdep_flushjournal(vp->v_mount);
12187 	error = flush_inodedep_deps(vp, vp->v_mount, VTOI(vp)->i_number);
12188 	/*
12189 	 * Ensure that all truncates are written so we won't find deps on
12190 	 * indirect blocks.
12191 	 */
12192 	process_truncates(vp);
12193 	FREE_LOCK(&lk);
12194 
12195 	return (error);
12196 }
12197 
12198 /*
12199  * This routine is called when we are attempting to sync a buf with
12200  * dependencies.  If waitfor is MNT_NOWAIT it attempts to schedule any
12201  * other IO it can but returns EBUSY if the buffer is not yet able to
12202  * be written.  Dependencies which will not cause rollbacks will always
12203  * return 0.
12204  */
12205 int
12206 softdep_sync_buf(struct vnode *vp, struct buf *bp, int waitfor)
12207 {
12208 	struct indirdep *indirdep;
12209 	struct pagedep *pagedep;
12210 	struct allocindir *aip;
12211 	struct newblk *newblk;
12212 	struct buf *nbp;
12213 	struct worklist *wk;
12214 	int i, error;
12215 
12216 	/*
12217 	 * For VCHR we just don't want to force flush any dependencies that
12218 	 * will cause rollbacks.
12219 	 */
12220 	if (vp->v_type == VCHR) {
12221 		if (waitfor == MNT_NOWAIT && softdep_count_dependencies(bp, 0))
12222 			return (EBUSY);
12223 		return (0);
12224 	}
12225 	ACQUIRE_LOCK(&lk);
12226 	/*
12227 	 * As we hold the buffer locked, none of its dependencies
12228 	 * will disappear.
12229 	 */
12230 	error = 0;
12231 top:
12232 	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
12233 		switch (wk->wk_type) {
12234 
12235 		case D_ALLOCDIRECT:
12236 		case D_ALLOCINDIR:
12237 			newblk = WK_NEWBLK(wk);
12238 			if (newblk->nb_jnewblk != NULL) {
12239 				if (waitfor == MNT_NOWAIT) {
12240 					error = EBUSY;
12241 					goto out_unlock;
12242 				}
12243 				jwait(&newblk->nb_jnewblk->jn_list, waitfor);
12244 				goto top;
12245 			}
12246 			if (newblk->nb_state & DEPCOMPLETE ||
12247 			    waitfor == MNT_NOWAIT)
12248 				continue;
12249 			nbp = newblk->nb_bmsafemap->sm_buf;
12250 			nbp = getdirtybuf(nbp, &lk, waitfor);
12251 			if (nbp == NULL)
12252 				goto top;
12253 			FREE_LOCK(&lk);
12254 			if ((error = bwrite(nbp)) != 0)
12255 				goto out;
12256 			ACQUIRE_LOCK(&lk);
12257 			continue;
12258 
12259 		case D_INDIRDEP:
12260 			indirdep = WK_INDIRDEP(wk);
12261 			if (waitfor == MNT_NOWAIT) {
12262 				if (!TAILQ_EMPTY(&indirdep->ir_trunc) ||
12263 				    !LIST_EMPTY(&indirdep->ir_deplisthd)) {
12264 					error = EBUSY;
12265 					goto out_unlock;
12266 				}
12267 			}
12268 			if (!TAILQ_EMPTY(&indirdep->ir_trunc))
12269 				panic("softdep_sync_buf: truncation pending.");
12270 		restart:
12271 			LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) {
12272 				newblk = (struct newblk *)aip;
12273 				if (newblk->nb_jnewblk != NULL) {
12274 					jwait(&newblk->nb_jnewblk->jn_list,
12275 					    waitfor);
12276 					goto restart;
12277 				}
12278 				if (newblk->nb_state & DEPCOMPLETE)
12279 					continue;
12280 				nbp = newblk->nb_bmsafemap->sm_buf;
12281 				nbp = getdirtybuf(nbp, &lk, waitfor);
12282 				if (nbp == NULL)
12283 					goto restart;
12284 				FREE_LOCK(&lk);
12285 				if ((error = bwrite(nbp)) != 0)
12286 					goto out;
12287 				ACQUIRE_LOCK(&lk);
12288 				goto restart;
12289 			}
12290 			continue;
12291 
12292 		case D_PAGEDEP:
12293 			/*
12294 			 * Only flush directory entries in synchronous passes.
12295 			 */
12296 			if (waitfor != MNT_WAIT) {
12297 				error = EBUSY;
12298 				goto out_unlock;
12299 			}
12300 			/*
12301 			 * While syncing snapshots, we must allow recursive
12302 			 * lookups.
12303 			 */
12304 			BUF_AREC(bp);
12305 			/*
12306 			 * We are trying to sync a directory that may
12307 			 * have dependencies on both its own metadata
12308 			 * and/or dependencies on the inodes of any
12309 			 * recently allocated files. We walk its diradd
12310 			 * lists pushing out the associated inode.
12311 			 */
12312 			pagedep = WK_PAGEDEP(wk);
12313 			for (i = 0; i < DAHASHSZ; i++) {
12314 				if (LIST_FIRST(&pagedep->pd_diraddhd[i]) == 0)
12315 					continue;
12316 				if ((error = flush_pagedep_deps(vp, wk->wk_mp,
12317 				    &pagedep->pd_diraddhd[i]))) {
12318 					BUF_NOREC(bp);
12319 					goto out_unlock;
12320 				}
12321 			}
12322 			BUF_NOREC(bp);
12323 			continue;
12324 
12325 		case D_FREEWORK:
12326 		case D_FREEDEP:
12327 		case D_JSEGDEP:
12328 		case D_JNEWBLK:
12329 			continue;
12330 
12331 		default:
12332 			panic("softdep_sync_buf: Unknown type %s",
12333 			    TYPENAME(wk->wk_type));
12334 			/* NOTREACHED */
12335 		}
12336 	}
12337 out_unlock:
12338 	FREE_LOCK(&lk);
12339 out:
12340 	return (error);
12341 }
12342 
12343 /*
12344  * Flush the dependencies associated with an inodedep.
12345  * Called with splbio blocked.
12346  */
12347 static int
12348 flush_inodedep_deps(vp, mp, ino)
12349 	struct vnode *vp;
12350 	struct mount *mp;
12351 	ino_t ino;
12352 {
12353 	struct inodedep *inodedep;
12354 	struct inoref *inoref;
12355 	int error, waitfor;
12356 
12357 	/*
12358 	 * This work is done in two passes. The first pass grabs most
12359 	 * of the buffers and begins asynchronously writing them. The
12360 	 * only way to wait for these asynchronous writes is to sleep
12361 	 * on the filesystem vnode which may stay busy for a long time
12362 	 * if the filesystem is active. So, instead, we make a second
12363 	 * pass over the dependencies blocking on each write. In the
12364 	 * usual case we will be blocking against a write that we
12365 	 * initiated, so when it is done the dependency will have been
12366 	 * resolved. Thus the second pass is expected to end quickly.
12367 	 * We give a brief window at the top of the loop to allow
12368 	 * any pending I/O to complete.
12369 	 */
12370 	for (error = 0, waitfor = MNT_NOWAIT; ; ) {
12371 		if (error)
12372 			return (error);
12373 		FREE_LOCK(&lk);
12374 		ACQUIRE_LOCK(&lk);
12375 restart:
12376 		if (inodedep_lookup(mp, ino, 0, &inodedep) == 0)
12377 			return (0);
12378 		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
12379 			if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
12380 			    == DEPCOMPLETE) {
12381 				jwait(&inoref->if_list, MNT_WAIT);
12382 				goto restart;
12383 			}
12384 		}
12385 		if (flush_deplist(&inodedep->id_inoupdt, waitfor, &error) ||
12386 		    flush_deplist(&inodedep->id_newinoupdt, waitfor, &error) ||
12387 		    flush_deplist(&inodedep->id_extupdt, waitfor, &error) ||
12388 		    flush_deplist(&inodedep->id_newextupdt, waitfor, &error))
12389 			continue;
12390 		/*
12391 		 * If pass2, we are done, otherwise do pass 2.
12392 		 */
12393 		if (waitfor == MNT_WAIT)
12394 			break;
12395 		waitfor = MNT_WAIT;
12396 	}
12397 	/*
12398 	 * Try freeing inodedep in case all dependencies have been removed.
12399 	 */
12400 	if (inodedep_lookup(mp, ino, 0, &inodedep) != 0)
12401 		(void) free_inodedep(inodedep);
12402 	return (0);
12403 }
12404 
12405 /*
12406  * Flush an inode dependency list.
12407  * Called with splbio blocked.
12408  */
12409 static int
12410 flush_deplist(listhead, waitfor, errorp)
12411 	struct allocdirectlst *listhead;
12412 	int waitfor;
12413 	int *errorp;
12414 {
12415 	struct allocdirect *adp;
12416 	struct newblk *newblk;
12417 	struct buf *bp;
12418 
12419 	mtx_assert(&lk, MA_OWNED);
12420 	TAILQ_FOREACH(adp, listhead, ad_next) {
12421 		newblk = (struct newblk *)adp;
12422 		if (newblk->nb_jnewblk != NULL) {
12423 			jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT);
12424 			return (1);
12425 		}
12426 		if (newblk->nb_state & DEPCOMPLETE)
12427 			continue;
12428 		bp = newblk->nb_bmsafemap->sm_buf;
12429 		bp = getdirtybuf(bp, &lk, waitfor);
12430 		if (bp == NULL) {
12431 			if (waitfor == MNT_NOWAIT)
12432 				continue;
12433 			return (1);
12434 		}
12435 		FREE_LOCK(&lk);
12436 		if (waitfor == MNT_NOWAIT)
12437 			bawrite(bp);
12438 		else
12439 			*errorp = bwrite(bp);
12440 		ACQUIRE_LOCK(&lk);
12441 		return (1);
12442 	}
12443 	return (0);
12444 }
12445 
12446 /*
12447  * Flush dependencies associated with an allocdirect block.
12448  */
12449 static int
12450 flush_newblk_dep(vp, mp, lbn)
12451 	struct vnode *vp;
12452 	struct mount *mp;
12453 	ufs_lbn_t lbn;
12454 {
12455 	struct newblk *newblk;
12456 	struct bufobj *bo;
12457 	struct inode *ip;
12458 	struct buf *bp;
12459 	ufs2_daddr_t blkno;
12460 	int error;
12461 
12462 	error = 0;
12463 	bo = &vp->v_bufobj;
12464 	ip = VTOI(vp);
12465 	blkno = DIP(ip, i_db[lbn]);
12466 	if (blkno == 0)
12467 		panic("flush_newblk_dep: Missing block");
12468 	ACQUIRE_LOCK(&lk);
12469 	/*
12470 	 * Loop until all dependencies related to this block are satisfied.
12471 	 * We must be careful to restart after each sleep in case a write
12472 	 * completes some part of this process for us.
12473 	 */
12474 	for (;;) {
12475 		if (newblk_lookup(mp, blkno, 0, &newblk) == 0) {
12476 			FREE_LOCK(&lk);
12477 			break;
12478 		}
12479 		if (newblk->nb_list.wk_type != D_ALLOCDIRECT)
12480 			panic("flush_newblk_deps: Bad newblk %p", newblk);
12481 		/*
12482 		 * Flush the journal.
12483 		 */
12484 		if (newblk->nb_jnewblk != NULL) {
12485 			jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT);
12486 			continue;
12487 		}
12488 		/*
12489 		 * Write the bitmap dependency.
12490 		 */
12491 		if ((newblk->nb_state & DEPCOMPLETE) == 0) {
12492 			bp = newblk->nb_bmsafemap->sm_buf;
12493 			bp = getdirtybuf(bp, &lk, MNT_WAIT);
12494 			if (bp == NULL)
12495 				continue;
12496 			FREE_LOCK(&lk);
12497 			error = bwrite(bp);
12498 			if (error)
12499 				break;
12500 			ACQUIRE_LOCK(&lk);
12501 			continue;
12502 		}
12503 		/*
12504 		 * Write the buffer.
12505 		 */
12506 		FREE_LOCK(&lk);
12507 		BO_LOCK(bo);
12508 		bp = gbincore(bo, lbn);
12509 		if (bp != NULL) {
12510 			error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL |
12511 			    LK_INTERLOCK, BO_MTX(bo));
12512 			if (error == ENOLCK) {
12513 				ACQUIRE_LOCK(&lk);
12514 				continue; /* Slept, retry */
12515 			}
12516 			if (error != 0)
12517 				break;	/* Failed */
12518 			if (bp->b_flags & B_DELWRI) {
12519 				bremfree(bp);
12520 				error = bwrite(bp);
12521 				if (error)
12522 					break;
12523 			} else
12524 				BUF_UNLOCK(bp);
12525 		} else
12526 			BO_UNLOCK(bo);
12527 		/*
12528 		 * We have to wait for the direct pointers to
12529 		 * point at the newdirblk before the dependency
12530 		 * will go away.
12531 		 */
12532 		error = ffs_update(vp, 1);
12533 		if (error)
12534 			break;
12535 		ACQUIRE_LOCK(&lk);
12536 	}
12537 	return (error);
12538 }
12539 
12540 /*
12541  * Eliminate a pagedep dependency by flushing out all its diradd dependencies.
12542  * Called with splbio blocked.
12543  */
12544 static int
12545 flush_pagedep_deps(pvp, mp, diraddhdp)
12546 	struct vnode *pvp;
12547 	struct mount *mp;
12548 	struct diraddhd *diraddhdp;
12549 {
12550 	struct inodedep *inodedep;
12551 	struct inoref *inoref;
12552 	struct ufsmount *ump;
12553 	struct diradd *dap;
12554 	struct vnode *vp;
12555 	int error = 0;
12556 	struct buf *bp;
12557 	ino_t inum;
12558 
12559 	ump = VFSTOUFS(mp);
12560 restart:
12561 	while ((dap = LIST_FIRST(diraddhdp)) != NULL) {
12562 		/*
12563 		 * Flush ourselves if this directory entry
12564 		 * has a MKDIR_PARENT dependency.
12565 		 */
12566 		if (dap->da_state & MKDIR_PARENT) {
12567 			FREE_LOCK(&lk);
12568 			if ((error = ffs_update(pvp, 1)) != 0)
12569 				break;
12570 			ACQUIRE_LOCK(&lk);
12571 			/*
12572 			 * If that cleared dependencies, go on to next.
12573 			 */
12574 			if (dap != LIST_FIRST(diraddhdp))
12575 				continue;
12576 			if (dap->da_state & MKDIR_PARENT)
12577 				panic("flush_pagedep_deps: MKDIR_PARENT");
12578 		}
12579 		/*
12580 		 * A newly allocated directory must have its "." and
12581 		 * ".." entries written out before its name can be
12582 		 * committed in its parent.
12583 		 */
12584 		inum = dap->da_newinum;
12585 		if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0)
12586 			panic("flush_pagedep_deps: lost inode1");
12587 		/*
12588 		 * Wait for any pending journal adds to complete so we don't
12589 		 * cause rollbacks while syncing.
12590 		 */
12591 		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
12592 			if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
12593 			    == DEPCOMPLETE) {
12594 				jwait(&inoref->if_list, MNT_WAIT);
12595 				goto restart;
12596 			}
12597 		}
12598 		if (dap->da_state & MKDIR_BODY) {
12599 			FREE_LOCK(&lk);
12600 			if ((error = ffs_vgetf(mp, inum, LK_EXCLUSIVE, &vp,
12601 			    FFSV_FORCEINSMQ)))
12602 				break;
12603 			error = flush_newblk_dep(vp, mp, 0);
12604 			/*
12605 			 * If we still have the dependency we might need to
12606 			 * update the vnode to sync the new link count to
12607 			 * disk.
12608 			 */
12609 			if (error == 0 && dap == LIST_FIRST(diraddhdp))
12610 				error = ffs_update(vp, 1);
12611 			vput(vp);
12612 			if (error != 0)
12613 				break;
12614 			ACQUIRE_LOCK(&lk);
12615 			/*
12616 			 * If that cleared dependencies, go on to next.
12617 			 */
12618 			if (dap != LIST_FIRST(diraddhdp))
12619 				continue;
12620 			if (dap->da_state & MKDIR_BODY) {
12621 				inodedep_lookup(UFSTOVFS(ump), inum, 0,
12622 				    &inodedep);
12623 				panic("flush_pagedep_deps: MKDIR_BODY "
12624 				    "inodedep %p dap %p vp %p",
12625 				    inodedep, dap, vp);
12626 			}
12627 		}
12628 		/*
12629 		 * Flush the inode on which the directory entry depends.
12630 		 * Having accounted for MKDIR_PARENT and MKDIR_BODY above,
12631 		 * the only remaining dependency is that the updated inode
12632 		 * count must get pushed to disk. The inode has already
12633 		 * been pushed into its inode buffer (via VOP_UPDATE) at
12634 		 * the time of the reference count change. So we need only
12635 		 * locate that buffer, ensure that there will be no rollback
12636 		 * caused by a bitmap dependency, then write the inode buffer.
12637 		 */
12638 retry:
12639 		if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0)
12640 			panic("flush_pagedep_deps: lost inode");
12641 		/*
12642 		 * If the inode still has bitmap dependencies,
12643 		 * push them to disk.
12644 		 */
12645 		if ((inodedep->id_state & (DEPCOMPLETE | GOINGAWAY)) == 0) {
12646 			bp = inodedep->id_bmsafemap->sm_buf;
12647 			bp = getdirtybuf(bp, &lk, MNT_WAIT);
12648 			if (bp == NULL)
12649 				goto retry;
12650 			FREE_LOCK(&lk);
12651 			if ((error = bwrite(bp)) != 0)
12652 				break;
12653 			ACQUIRE_LOCK(&lk);
12654 			if (dap != LIST_FIRST(diraddhdp))
12655 				continue;
12656 		}
12657 		/*
12658 		 * If the inode is still sitting in a buffer waiting
12659 		 * to be written or waiting for the link count to be
12660 		 * adjusted update it here to flush it to disk.
12661 		 */
12662 		if (dap == LIST_FIRST(diraddhdp)) {
12663 			FREE_LOCK(&lk);
12664 			if ((error = ffs_vgetf(mp, inum, LK_EXCLUSIVE, &vp,
12665 			    FFSV_FORCEINSMQ)))
12666 				break;
12667 			error = ffs_update(vp, 1);
12668 			vput(vp);
12669 			if (error)
12670 				break;
12671 			ACQUIRE_LOCK(&lk);
12672 		}
12673 		/*
12674 		 * If we have failed to get rid of all the dependencies
12675 		 * then something is seriously wrong.
12676 		 */
12677 		if (dap == LIST_FIRST(diraddhdp)) {
12678 			inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep);
12679 			panic("flush_pagedep_deps: failed to flush "
12680 			    "inodedep %p ino %ju dap %p",
12681 			    inodedep, (uintmax_t)inum, dap);
12682 		}
12683 	}
12684 	if (error)
12685 		ACQUIRE_LOCK(&lk);
12686 	return (error);
12687 }
12688 
12689 /*
12690  * A large burst of file addition or deletion activity can drive the
12691  * memory load excessively high. First attempt to slow things down
12692  * using the techniques below. If that fails, this routine requests
12693  * the offending operations to fall back to running synchronously
12694  * until the memory load returns to a reasonable level.
12695  */
12696 int
12697 softdep_slowdown(vp)
12698 	struct vnode *vp;
12699 {
12700 	struct ufsmount *ump;
12701 	int jlow;
12702 	int max_softdeps_hard;
12703 
12704 	ACQUIRE_LOCK(&lk);
12705 	jlow = 0;
12706 	/*
12707 	 * Check for journal space if needed.
12708 	 */
12709 	if (DOINGSUJ(vp)) {
12710 		ump = VFSTOUFS(vp->v_mount);
12711 		if (journal_space(ump, 0) == 0)
12712 			jlow = 1;
12713 	}
12714 	max_softdeps_hard = max_softdeps * 11 / 10;
12715 	if (dep_current[D_DIRREM] < max_softdeps_hard / 2 &&
12716 	    dep_current[D_INODEDEP] < max_softdeps_hard &&
12717 	    VFSTOUFS(vp->v_mount)->um_numindirdeps < maxindirdeps &&
12718 	    dep_current[D_FREEBLKS] < max_softdeps_hard && jlow == 0) {
12719 		FREE_LOCK(&lk);
12720   		return (0);
12721 	}
12722 	if (VFSTOUFS(vp->v_mount)->um_numindirdeps >= maxindirdeps || jlow)
12723 		softdep_speedup();
12724 	stat_sync_limit_hit += 1;
12725 	FREE_LOCK(&lk);
12726 	if (DOINGSUJ(vp))
12727 		return (0);
12728 	return (1);
12729 }
12730 
12731 /*
12732  * Called by the allocation routines when they are about to fail
12733  * in the hope that we can free up the requested resource (inodes
12734  * or disk space).
12735  *
12736  * First check to see if the work list has anything on it. If it has,
12737  * clean up entries until we successfully free the requested resource.
12738  * Because this process holds inodes locked, we cannot handle any remove
12739  * requests that might block on a locked inode as that could lead to
12740  * deadlock. If the worklist yields none of the requested resource,
12741  * start syncing out vnodes to free up the needed space.
12742  */
12743 int
12744 softdep_request_cleanup(fs, vp, cred, resource)
12745 	struct fs *fs;
12746 	struct vnode *vp;
12747 	struct ucred *cred;
12748 	int resource;
12749 {
12750 	struct ufsmount *ump;
12751 	struct mount *mp;
12752 	struct vnode *lvp, *mvp;
12753 	long starttime;
12754 	ufs2_daddr_t needed;
12755 	int error;
12756 
12757 	/*
12758 	 * If we are being called because of a process doing a
12759 	 * copy-on-write, then it is not safe to process any
12760 	 * worklist items as we will recurse into the copyonwrite
12761 	 * routine.  This will result in an incoherent snapshot.
12762 	 * If the vnode that we hold is a snapshot, we must avoid
12763 	 * handling other resources that could cause deadlock.
12764 	 */
12765 	if ((curthread->td_pflags & TDP_COWINPROGRESS) || IS_SNAPSHOT(VTOI(vp)))
12766 		return (0);
12767 
12768 	if (resource == FLUSH_BLOCKS_WAIT)
12769 		stat_cleanup_blkrequests += 1;
12770 	else
12771 		stat_cleanup_inorequests += 1;
12772 
12773 	mp = vp->v_mount;
12774 	ump = VFSTOUFS(mp);
12775 	mtx_assert(UFS_MTX(ump), MA_OWNED);
12776 	UFS_UNLOCK(ump);
12777 	error = ffs_update(vp, 1);
12778 	if (error != 0) {
12779 		UFS_LOCK(ump);
12780 		return (0);
12781 	}
12782 	/*
12783 	 * If we are in need of resources, consider pausing for
12784 	 * tickdelay to give ourselves some breathing room.
12785 	 */
12786 	ACQUIRE_LOCK(&lk);
12787 	process_removes(vp);
12788 	process_truncates(vp);
12789 	request_cleanup(UFSTOVFS(ump), resource);
12790 	FREE_LOCK(&lk);
12791 	/*
12792 	 * Now clean up at least as many resources as we will need.
12793 	 *
12794 	 * When requested to clean up inodes, the number that are needed
12795 	 * is set by the number of simultaneous writers (mnt_writeopcount)
12796 	 * plus a bit of slop (2) in case some more writers show up while
12797 	 * we are cleaning.
12798 	 *
12799 	 * When requested to free up space, the amount of space that
12800 	 * we need is enough blocks to allocate a full-sized segment
12801 	 * (fs_contigsumsize). The number of such segments that will
12802 	 * be needed is set by the number of simultaneous writers
12803 	 * (mnt_writeopcount) plus a bit of slop (2) in case some more
12804 	 * writers show up while we are cleaning.
12805 	 *
12806 	 * Additionally, if we are unpriviledged and allocating space,
12807 	 * we need to ensure that we clean up enough blocks to get the
12808 	 * needed number of blocks over the threshhold of the minimum
12809 	 * number of blocks required to be kept free by the filesystem
12810 	 * (fs_minfree).
12811 	 */
12812 	if (resource == FLUSH_INODES_WAIT) {
12813 		needed = vp->v_mount->mnt_writeopcount + 2;
12814 	} else if (resource == FLUSH_BLOCKS_WAIT) {
12815 		needed = (vp->v_mount->mnt_writeopcount + 2) *
12816 		    fs->fs_contigsumsize;
12817 		if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE, 0))
12818 			needed += fragstoblks(fs,
12819 			    roundup((fs->fs_dsize * fs->fs_minfree / 100) -
12820 			    fs->fs_cstotal.cs_nffree, fs->fs_frag));
12821 	} else {
12822 		UFS_LOCK(ump);
12823 		printf("softdep_request_cleanup: Unknown resource type %d\n",
12824 		    resource);
12825 		return (0);
12826 	}
12827 	starttime = time_second;
12828 retry:
12829 	if ((resource == FLUSH_BLOCKS_WAIT && ump->softdep_on_worklist > 0 &&
12830 	    fs->fs_cstotal.cs_nbfree <= needed) ||
12831 	    (resource == FLUSH_INODES_WAIT && fs->fs_pendinginodes > 0 &&
12832 	    fs->fs_cstotal.cs_nifree <= needed)) {
12833 		ACQUIRE_LOCK(&lk);
12834 		if (ump->softdep_on_worklist > 0 &&
12835 		    process_worklist_item(UFSTOVFS(ump),
12836 		    ump->softdep_on_worklist, LK_NOWAIT) != 0)
12837 			stat_worklist_push += 1;
12838 		FREE_LOCK(&lk);
12839 	}
12840 	/*
12841 	 * If we still need resources and there are no more worklist
12842 	 * entries to process to obtain them, we have to start flushing
12843 	 * the dirty vnodes to force the release of additional requests
12844 	 * to the worklist that we can then process to reap addition
12845 	 * resources. We walk the vnodes associated with the mount point
12846 	 * until we get the needed worklist requests that we can reap.
12847 	 */
12848 	if ((resource == FLUSH_BLOCKS_WAIT &&
12849 	     fs->fs_cstotal.cs_nbfree <= needed) ||
12850 	    (resource == FLUSH_INODES_WAIT && fs->fs_pendinginodes > 0 &&
12851 	     fs->fs_cstotal.cs_nifree <= needed)) {
12852 		MNT_VNODE_FOREACH_ALL(lvp, mp, mvp) {
12853 			if (TAILQ_FIRST(&lvp->v_bufobj.bo_dirty.bv_hd) == 0) {
12854 				VI_UNLOCK(lvp);
12855 				continue;
12856 			}
12857 			if (vget(lvp, LK_EXCLUSIVE | LK_INTERLOCK | LK_NOWAIT,
12858 			    curthread))
12859 				continue;
12860 			if (lvp->v_vflag & VV_NOSYNC) {	/* unlinked */
12861 				vput(lvp);
12862 				continue;
12863 			}
12864 			(void) ffs_syncvnode(lvp, MNT_NOWAIT, 0);
12865 			vput(lvp);
12866 		}
12867 		lvp = ump->um_devvp;
12868 		if (vn_lock(lvp, LK_EXCLUSIVE | LK_NOWAIT) == 0) {
12869 			VOP_FSYNC(lvp, MNT_NOWAIT, curthread);
12870 			VOP_UNLOCK(lvp, 0);
12871 		}
12872 		if (ump->softdep_on_worklist > 0) {
12873 			stat_cleanup_retries += 1;
12874 			goto retry;
12875 		}
12876 		stat_cleanup_failures += 1;
12877 	}
12878 	if (time_second - starttime > stat_cleanup_high_delay)
12879 		stat_cleanup_high_delay = time_second - starttime;
12880 	UFS_LOCK(ump);
12881 	return (1);
12882 }
12883 
12884 /*
12885  * If memory utilization has gotten too high, deliberately slow things
12886  * down and speed up the I/O processing.
12887  */
12888 extern struct thread *syncertd;
12889 static int
12890 request_cleanup(mp, resource)
12891 	struct mount *mp;
12892 	int resource;
12893 {
12894 	struct thread *td = curthread;
12895 	struct ufsmount *ump;
12896 
12897 	mtx_assert(&lk, MA_OWNED);
12898 	/*
12899 	 * We never hold up the filesystem syncer or buf daemon.
12900 	 */
12901 	if (td->td_pflags & (TDP_SOFTDEP|TDP_NORUNNINGBUF))
12902 		return (0);
12903 	ump = VFSTOUFS(mp);
12904 	/*
12905 	 * First check to see if the work list has gotten backlogged.
12906 	 * If it has, co-opt this process to help clean up two entries.
12907 	 * Because this process may hold inodes locked, we cannot
12908 	 * handle any remove requests that might block on a locked
12909 	 * inode as that could lead to deadlock.  We set TDP_SOFTDEP
12910 	 * to avoid recursively processing the worklist.
12911 	 */
12912 	if (ump->softdep_on_worklist > max_softdeps / 10) {
12913 		td->td_pflags |= TDP_SOFTDEP;
12914 		process_worklist_item(mp, 2, LK_NOWAIT);
12915 		td->td_pflags &= ~TDP_SOFTDEP;
12916 		stat_worklist_push += 2;
12917 		return(1);
12918 	}
12919 	/*
12920 	 * Next, we attempt to speed up the syncer process. If that
12921 	 * is successful, then we allow the process to continue.
12922 	 */
12923 	if (softdep_speedup() &&
12924 	    resource != FLUSH_BLOCKS_WAIT &&
12925 	    resource != FLUSH_INODES_WAIT)
12926 		return(0);
12927 	/*
12928 	 * If we are resource constrained on inode dependencies, try
12929 	 * flushing some dirty inodes. Otherwise, we are constrained
12930 	 * by file deletions, so try accelerating flushes of directories
12931 	 * with removal dependencies. We would like to do the cleanup
12932 	 * here, but we probably hold an inode locked at this point and
12933 	 * that might deadlock against one that we try to clean. So,
12934 	 * the best that we can do is request the syncer daemon to do
12935 	 * the cleanup for us.
12936 	 */
12937 	switch (resource) {
12938 
12939 	case FLUSH_INODES:
12940 	case FLUSH_INODES_WAIT:
12941 		stat_ino_limit_push += 1;
12942 		req_clear_inodedeps += 1;
12943 		stat_countp = &stat_ino_limit_hit;
12944 		break;
12945 
12946 	case FLUSH_BLOCKS:
12947 	case FLUSH_BLOCKS_WAIT:
12948 		stat_blk_limit_push += 1;
12949 		req_clear_remove += 1;
12950 		stat_countp = &stat_blk_limit_hit;
12951 		break;
12952 
12953 	default:
12954 		panic("request_cleanup: unknown type");
12955 	}
12956 	/*
12957 	 * Hopefully the syncer daemon will catch up and awaken us.
12958 	 * We wait at most tickdelay before proceeding in any case.
12959 	 */
12960 	proc_waiting += 1;
12961 	if (callout_pending(&softdep_callout) == FALSE)
12962 		callout_reset(&softdep_callout, tickdelay > 2 ? tickdelay : 2,
12963 		    pause_timer, 0);
12964 
12965 	msleep((caddr_t)&proc_waiting, &lk, PPAUSE, "softupdate", 0);
12966 	proc_waiting -= 1;
12967 	return (1);
12968 }
12969 
12970 /*
12971  * Awaken processes pausing in request_cleanup and clear proc_waiting
12972  * to indicate that there is no longer a timer running.
12973  */
12974 static void
12975 pause_timer(arg)
12976 	void *arg;
12977 {
12978 
12979 	/*
12980 	 * The callout_ API has acquired mtx and will hold it around this
12981 	 * function call.
12982 	 */
12983 	*stat_countp += 1;
12984 	wakeup_one(&proc_waiting);
12985 	if (proc_waiting > 0)
12986 		callout_reset(&softdep_callout, tickdelay > 2 ? tickdelay : 2,
12987 		    pause_timer, 0);
12988 }
12989 
12990 /*
12991  * Flush out a directory with at least one removal dependency in an effort to
12992  * reduce the number of dirrem, freefile, and freeblks dependency structures.
12993  */
12994 static void
12995 clear_remove(void)
12996 {
12997 	struct pagedep_hashhead *pagedephd;
12998 	struct pagedep *pagedep;
12999 	static int next = 0;
13000 	struct mount *mp;
13001 	struct vnode *vp;
13002 	struct bufobj *bo;
13003 	int error, cnt;
13004 	ino_t ino;
13005 
13006 	mtx_assert(&lk, MA_OWNED);
13007 
13008 	for (cnt = 0; cnt < pagedep_hash; cnt++) {
13009 		pagedephd = &pagedep_hashtbl[next++];
13010 		if (next >= pagedep_hash)
13011 			next = 0;
13012 		LIST_FOREACH(pagedep, pagedephd, pd_hash) {
13013 			if (LIST_EMPTY(&pagedep->pd_dirremhd))
13014 				continue;
13015 			mp = pagedep->pd_list.wk_mp;
13016 			ino = pagedep->pd_ino;
13017 			if (vn_start_write(NULL, &mp, V_NOWAIT) != 0)
13018 				continue;
13019 			FREE_LOCK(&lk);
13020 
13021 			/*
13022 			 * Let unmount clear deps
13023 			 */
13024 			error = vfs_busy(mp, MBF_NOWAIT);
13025 			if (error != 0)
13026 				goto finish_write;
13027 			error = ffs_vgetf(mp, ino, LK_EXCLUSIVE, &vp,
13028 			     FFSV_FORCEINSMQ);
13029 			vfs_unbusy(mp);
13030 			if (error != 0) {
13031 				softdep_error("clear_remove: vget", error);
13032 				goto finish_write;
13033 			}
13034 			if ((error = ffs_syncvnode(vp, MNT_NOWAIT, 0)))
13035 				softdep_error("clear_remove: fsync", error);
13036 			bo = &vp->v_bufobj;
13037 			BO_LOCK(bo);
13038 			drain_output(vp);
13039 			BO_UNLOCK(bo);
13040 			vput(vp);
13041 		finish_write:
13042 			vn_finished_write(mp);
13043 			ACQUIRE_LOCK(&lk);
13044 			return;
13045 		}
13046 	}
13047 }
13048 
13049 /*
13050  * Clear out a block of dirty inodes in an effort to reduce
13051  * the number of inodedep dependency structures.
13052  */
13053 static void
13054 clear_inodedeps(void)
13055 {
13056 	struct inodedep_hashhead *inodedephd;
13057 	struct inodedep *inodedep;
13058 	static int next = 0;
13059 	struct mount *mp;
13060 	struct vnode *vp;
13061 	struct fs *fs;
13062 	int error, cnt;
13063 	ino_t firstino, lastino, ino;
13064 
13065 	mtx_assert(&lk, MA_OWNED);
13066 	/*
13067 	 * Pick a random inode dependency to be cleared.
13068 	 * We will then gather up all the inodes in its block
13069 	 * that have dependencies and flush them out.
13070 	 */
13071 	for (cnt = 0; cnt < inodedep_hash; cnt++) {
13072 		inodedephd = &inodedep_hashtbl[next++];
13073 		if (next >= inodedep_hash)
13074 			next = 0;
13075 		if ((inodedep = LIST_FIRST(inodedephd)) != NULL)
13076 			break;
13077 	}
13078 	if (inodedep == NULL)
13079 		return;
13080 	fs = inodedep->id_fs;
13081 	mp = inodedep->id_list.wk_mp;
13082 	/*
13083 	 * Find the last inode in the block with dependencies.
13084 	 */
13085 	firstino = inodedep->id_ino & ~(INOPB(fs) - 1);
13086 	for (lastino = firstino + INOPB(fs) - 1; lastino > firstino; lastino--)
13087 		if (inodedep_lookup(mp, lastino, 0, &inodedep) != 0)
13088 			break;
13089 	/*
13090 	 * Asynchronously push all but the last inode with dependencies.
13091 	 * Synchronously push the last inode with dependencies to ensure
13092 	 * that the inode block gets written to free up the inodedeps.
13093 	 */
13094 	for (ino = firstino; ino <= lastino; ino++) {
13095 		if (inodedep_lookup(mp, ino, 0, &inodedep) == 0)
13096 			continue;
13097 		if (vn_start_write(NULL, &mp, V_NOWAIT) != 0)
13098 			continue;
13099 		FREE_LOCK(&lk);
13100 		error = vfs_busy(mp, MBF_NOWAIT); /* Let unmount clear deps */
13101 		if (error != 0) {
13102 			vn_finished_write(mp);
13103 			ACQUIRE_LOCK(&lk);
13104 			return;
13105 		}
13106 		if ((error = ffs_vgetf(mp, ino, LK_EXCLUSIVE, &vp,
13107 		    FFSV_FORCEINSMQ)) != 0) {
13108 			softdep_error("clear_inodedeps: vget", error);
13109 			vfs_unbusy(mp);
13110 			vn_finished_write(mp);
13111 			ACQUIRE_LOCK(&lk);
13112 			return;
13113 		}
13114 		vfs_unbusy(mp);
13115 		if (ino == lastino) {
13116 			if ((error = ffs_syncvnode(vp, MNT_WAIT, 0)))
13117 				softdep_error("clear_inodedeps: fsync1", error);
13118 		} else {
13119 			if ((error = ffs_syncvnode(vp, MNT_NOWAIT, 0)))
13120 				softdep_error("clear_inodedeps: fsync2", error);
13121 			BO_LOCK(&vp->v_bufobj);
13122 			drain_output(vp);
13123 			BO_UNLOCK(&vp->v_bufobj);
13124 		}
13125 		vput(vp);
13126 		vn_finished_write(mp);
13127 		ACQUIRE_LOCK(&lk);
13128 	}
13129 }
13130 
13131 void
13132 softdep_buf_append(bp, wkhd)
13133 	struct buf *bp;
13134 	struct workhead *wkhd;
13135 {
13136 	struct worklist *wk;
13137 
13138 	ACQUIRE_LOCK(&lk);
13139 	while ((wk = LIST_FIRST(wkhd)) != NULL) {
13140 		WORKLIST_REMOVE(wk);
13141 		WORKLIST_INSERT(&bp->b_dep, wk);
13142 	}
13143 	FREE_LOCK(&lk);
13144 
13145 }
13146 
13147 void
13148 softdep_inode_append(ip, cred, wkhd)
13149 	struct inode *ip;
13150 	struct ucred *cred;
13151 	struct workhead *wkhd;
13152 {
13153 	struct buf *bp;
13154 	struct fs *fs;
13155 	int error;
13156 
13157 	fs = ip->i_fs;
13158 	error = bread(ip->i_devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
13159 	    (int)fs->fs_bsize, cred, &bp);
13160 	if (error) {
13161 		softdep_freework(wkhd);
13162 		return;
13163 	}
13164 	softdep_buf_append(bp, wkhd);
13165 	bqrelse(bp);
13166 }
13167 
13168 void
13169 softdep_freework(wkhd)
13170 	struct workhead *wkhd;
13171 {
13172 
13173 	ACQUIRE_LOCK(&lk);
13174 	handle_jwork(wkhd);
13175 	FREE_LOCK(&lk);
13176 }
13177 
13178 /*
13179  * Function to determine if the buffer has outstanding dependencies
13180  * that will cause a roll-back if the buffer is written. If wantcount
13181  * is set, return number of dependencies, otherwise just yes or no.
13182  */
13183 static int
13184 softdep_count_dependencies(bp, wantcount)
13185 	struct buf *bp;
13186 	int wantcount;
13187 {
13188 	struct worklist *wk;
13189 	struct bmsafemap *bmsafemap;
13190 	struct freework *freework;
13191 	struct inodedep *inodedep;
13192 	struct indirdep *indirdep;
13193 	struct freeblks *freeblks;
13194 	struct allocindir *aip;
13195 	struct pagedep *pagedep;
13196 	struct dirrem *dirrem;
13197 	struct newblk *newblk;
13198 	struct mkdir *mkdir;
13199 	struct diradd *dap;
13200 	int i, retval;
13201 
13202 	retval = 0;
13203 	ACQUIRE_LOCK(&lk);
13204 	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
13205 		switch (wk->wk_type) {
13206 
13207 		case D_INODEDEP:
13208 			inodedep = WK_INODEDEP(wk);
13209 			if ((inodedep->id_state & DEPCOMPLETE) == 0) {
13210 				/* bitmap allocation dependency */
13211 				retval += 1;
13212 				if (!wantcount)
13213 					goto out;
13214 			}
13215 			if (TAILQ_FIRST(&inodedep->id_inoupdt)) {
13216 				/* direct block pointer dependency */
13217 				retval += 1;
13218 				if (!wantcount)
13219 					goto out;
13220 			}
13221 			if (TAILQ_FIRST(&inodedep->id_extupdt)) {
13222 				/* direct block pointer dependency */
13223 				retval += 1;
13224 				if (!wantcount)
13225 					goto out;
13226 			}
13227 			if (TAILQ_FIRST(&inodedep->id_inoreflst)) {
13228 				/* Add reference dependency. */
13229 				retval += 1;
13230 				if (!wantcount)
13231 					goto out;
13232 			}
13233 			continue;
13234 
13235 		case D_INDIRDEP:
13236 			indirdep = WK_INDIRDEP(wk);
13237 
13238 			TAILQ_FOREACH(freework, &indirdep->ir_trunc, fw_next) {
13239 				/* indirect truncation dependency */
13240 				retval += 1;
13241 				if (!wantcount)
13242 					goto out;
13243 			}
13244 
13245 			LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) {
13246 				/* indirect block pointer dependency */
13247 				retval += 1;
13248 				if (!wantcount)
13249 					goto out;
13250 			}
13251 			continue;
13252 
13253 		case D_PAGEDEP:
13254 			pagedep = WK_PAGEDEP(wk);
13255 			LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next) {
13256 				if (LIST_FIRST(&dirrem->dm_jremrefhd)) {
13257 					/* Journal remove ref dependency. */
13258 					retval += 1;
13259 					if (!wantcount)
13260 						goto out;
13261 				}
13262 			}
13263 			for (i = 0; i < DAHASHSZ; i++) {
13264 
13265 				LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) {
13266 					/* directory entry dependency */
13267 					retval += 1;
13268 					if (!wantcount)
13269 						goto out;
13270 				}
13271 			}
13272 			continue;
13273 
13274 		case D_BMSAFEMAP:
13275 			bmsafemap = WK_BMSAFEMAP(wk);
13276 			if (LIST_FIRST(&bmsafemap->sm_jaddrefhd)) {
13277 				/* Add reference dependency. */
13278 				retval += 1;
13279 				if (!wantcount)
13280 					goto out;
13281 			}
13282 			if (LIST_FIRST(&bmsafemap->sm_jnewblkhd)) {
13283 				/* Allocate block dependency. */
13284 				retval += 1;
13285 				if (!wantcount)
13286 					goto out;
13287 			}
13288 			continue;
13289 
13290 		case D_FREEBLKS:
13291 			freeblks = WK_FREEBLKS(wk);
13292 			if (LIST_FIRST(&freeblks->fb_jblkdephd)) {
13293 				/* Freeblk journal dependency. */
13294 				retval += 1;
13295 				if (!wantcount)
13296 					goto out;
13297 			}
13298 			continue;
13299 
13300 		case D_ALLOCDIRECT:
13301 		case D_ALLOCINDIR:
13302 			newblk = WK_NEWBLK(wk);
13303 			if (newblk->nb_jnewblk) {
13304 				/* Journal allocate dependency. */
13305 				retval += 1;
13306 				if (!wantcount)
13307 					goto out;
13308 			}
13309 			continue;
13310 
13311 		case D_MKDIR:
13312 			mkdir = WK_MKDIR(wk);
13313 			if (mkdir->md_jaddref) {
13314 				/* Journal reference dependency. */
13315 				retval += 1;
13316 				if (!wantcount)
13317 					goto out;
13318 			}
13319 			continue;
13320 
13321 		case D_FREEWORK:
13322 		case D_FREEDEP:
13323 		case D_JSEGDEP:
13324 		case D_JSEG:
13325 		case D_SBDEP:
13326 			/* never a dependency on these blocks */
13327 			continue;
13328 
13329 		default:
13330 			panic("softdep_count_dependencies: Unexpected type %s",
13331 			    TYPENAME(wk->wk_type));
13332 			/* NOTREACHED */
13333 		}
13334 	}
13335 out:
13336 	FREE_LOCK(&lk);
13337 	return retval;
13338 }
13339 
13340 /*
13341  * Acquire exclusive access to a buffer.
13342  * Must be called with a locked mtx parameter.
13343  * Return acquired buffer or NULL on failure.
13344  */
13345 static struct buf *
13346 getdirtybuf(bp, mtx, waitfor)
13347 	struct buf *bp;
13348 	struct mtx *mtx;
13349 	int waitfor;
13350 {
13351 	int error;
13352 
13353 	mtx_assert(mtx, MA_OWNED);
13354 	if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0) {
13355 		if (waitfor != MNT_WAIT)
13356 			return (NULL);
13357 		error = BUF_LOCK(bp,
13358 		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, mtx);
13359 		/*
13360 		 * Even if we sucessfully acquire bp here, we have dropped
13361 		 * mtx, which may violates our guarantee.
13362 		 */
13363 		if (error == 0)
13364 			BUF_UNLOCK(bp);
13365 		else if (error != ENOLCK)
13366 			panic("getdirtybuf: inconsistent lock: %d", error);
13367 		mtx_lock(mtx);
13368 		return (NULL);
13369 	}
13370 	if ((bp->b_vflags & BV_BKGRDINPROG) != 0) {
13371 		if (mtx == &lk && waitfor == MNT_WAIT) {
13372 			mtx_unlock(mtx);
13373 			BO_LOCK(bp->b_bufobj);
13374 			BUF_UNLOCK(bp);
13375 			if ((bp->b_vflags & BV_BKGRDINPROG) != 0) {
13376 				bp->b_vflags |= BV_BKGRDWAIT;
13377 				msleep(&bp->b_xflags, BO_MTX(bp->b_bufobj),
13378 				       PRIBIO | PDROP, "getbuf", 0);
13379 			} else
13380 				BO_UNLOCK(bp->b_bufobj);
13381 			mtx_lock(mtx);
13382 			return (NULL);
13383 		}
13384 		BUF_UNLOCK(bp);
13385 		if (waitfor != MNT_WAIT)
13386 			return (NULL);
13387 		/*
13388 		 * The mtx argument must be bp->b_vp's mutex in
13389 		 * this case.
13390 		 */
13391 #ifdef	DEBUG_VFS_LOCKS
13392 		if (bp->b_vp->v_type != VCHR)
13393 			ASSERT_BO_LOCKED(bp->b_bufobj);
13394 #endif
13395 		bp->b_vflags |= BV_BKGRDWAIT;
13396 		msleep(&bp->b_xflags, mtx, PRIBIO, "getbuf", 0);
13397 		return (NULL);
13398 	}
13399 	if ((bp->b_flags & B_DELWRI) == 0) {
13400 		BUF_UNLOCK(bp);
13401 		return (NULL);
13402 	}
13403 	bremfree(bp);
13404 	return (bp);
13405 }
13406 
13407 
13408 /*
13409  * Check if it is safe to suspend the file system now.  On entry,
13410  * the vnode interlock for devvp should be held.  Return 0 with
13411  * the mount interlock held if the file system can be suspended now,
13412  * otherwise return EAGAIN with the mount interlock held.
13413  */
13414 int
13415 softdep_check_suspend(struct mount *mp,
13416 		      struct vnode *devvp,
13417 		      int softdep_deps,
13418 		      int softdep_accdeps,
13419 		      int secondary_writes,
13420 		      int secondary_accwrites)
13421 {
13422 	struct bufobj *bo;
13423 	struct ufsmount *ump;
13424 	int error;
13425 
13426 	ump = VFSTOUFS(mp);
13427 	bo = &devvp->v_bufobj;
13428 	ASSERT_BO_LOCKED(bo);
13429 
13430 	for (;;) {
13431 		if (!TRY_ACQUIRE_LOCK(&lk)) {
13432 			BO_UNLOCK(bo);
13433 			ACQUIRE_LOCK(&lk);
13434 			FREE_LOCK(&lk);
13435 			BO_LOCK(bo);
13436 			continue;
13437 		}
13438 		MNT_ILOCK(mp);
13439 		if (mp->mnt_secondary_writes != 0) {
13440 			FREE_LOCK(&lk);
13441 			BO_UNLOCK(bo);
13442 			msleep(&mp->mnt_secondary_writes,
13443 			       MNT_MTX(mp),
13444 			       (PUSER - 1) | PDROP, "secwr", 0);
13445 			BO_LOCK(bo);
13446 			continue;
13447 		}
13448 		break;
13449 	}
13450 
13451 	/*
13452 	 * Reasons for needing more work before suspend:
13453 	 * - Dirty buffers on devvp.
13454 	 * - Softdep activity occurred after start of vnode sync loop
13455 	 * - Secondary writes occurred after start of vnode sync loop
13456 	 */
13457 	error = 0;
13458 	if (bo->bo_numoutput > 0 ||
13459 	    bo->bo_dirty.bv_cnt > 0 ||
13460 	    softdep_deps != 0 ||
13461 	    ump->softdep_deps != 0 ||
13462 	    softdep_accdeps != ump->softdep_accdeps ||
13463 	    secondary_writes != 0 ||
13464 	    mp->mnt_secondary_writes != 0 ||
13465 	    secondary_accwrites != mp->mnt_secondary_accwrites)
13466 		error = EAGAIN;
13467 	FREE_LOCK(&lk);
13468 	BO_UNLOCK(bo);
13469 	return (error);
13470 }
13471 
13472 
13473 /*
13474  * Get the number of dependency structures for the file system, both
13475  * the current number and the total number allocated.  These will
13476  * later be used to detect that softdep processing has occurred.
13477  */
13478 void
13479 softdep_get_depcounts(struct mount *mp,
13480 		      int *softdep_depsp,
13481 		      int *softdep_accdepsp)
13482 {
13483 	struct ufsmount *ump;
13484 
13485 	ump = VFSTOUFS(mp);
13486 	ACQUIRE_LOCK(&lk);
13487 	*softdep_depsp = ump->softdep_deps;
13488 	*softdep_accdepsp = ump->softdep_accdeps;
13489 	FREE_LOCK(&lk);
13490 }
13491 
13492 /*
13493  * Wait for pending output on a vnode to complete.
13494  * Must be called with vnode lock and interlock locked.
13495  *
13496  * XXX: Should just be a call to bufobj_wwait().
13497  */
13498 static void
13499 drain_output(vp)
13500 	struct vnode *vp;
13501 {
13502 	struct bufobj *bo;
13503 
13504 	bo = &vp->v_bufobj;
13505 	ASSERT_VOP_LOCKED(vp, "drain_output");
13506 	ASSERT_BO_LOCKED(bo);
13507 
13508 	while (bo->bo_numoutput) {
13509 		bo->bo_flag |= BO_WWAIT;
13510 		msleep((caddr_t)&bo->bo_numoutput,
13511 		    BO_MTX(bo), PRIBIO + 1, "drainvp", 0);
13512 	}
13513 }
13514 
13515 /*
13516  * Called whenever a buffer that is being invalidated or reallocated
13517  * contains dependencies. This should only happen if an I/O error has
13518  * occurred. The routine is called with the buffer locked.
13519  */
13520 static void
13521 softdep_deallocate_dependencies(bp)
13522 	struct buf *bp;
13523 {
13524 
13525 	if ((bp->b_ioflags & BIO_ERROR) == 0)
13526 		panic("softdep_deallocate_dependencies: dangling deps");
13527 	if (bp->b_vp != NULL && bp->b_vp->v_mount != NULL)
13528 		softdep_error(bp->b_vp->v_mount->mnt_stat.f_mntonname, bp->b_error);
13529 	else
13530 		printf("softdep_deallocate_dependencies: "
13531 		    "got error %d while accessing filesystem\n", bp->b_error);
13532 	if (bp->b_error != ENXIO)
13533 		panic("softdep_deallocate_dependencies: unrecovered I/O error");
13534 }
13535 
13536 /*
13537  * Function to handle asynchronous write errors in the filesystem.
13538  */
13539 static void
13540 softdep_error(func, error)
13541 	char *func;
13542 	int error;
13543 {
13544 
13545 	/* XXX should do something better! */
13546 	printf("%s: got error %d while accessing filesystem\n", func, error);
13547 }
13548 
13549 #ifdef DDB
13550 
13551 static void
13552 inodedep_print(struct inodedep *inodedep, int verbose)
13553 {
13554 	db_printf("%p fs %p st %x ino %jd inoblk %jd delta %d nlink %d"
13555 	    " saveino %p\n",
13556 	    inodedep, inodedep->id_fs, inodedep->id_state,
13557 	    (intmax_t)inodedep->id_ino,
13558 	    (intmax_t)fsbtodb(inodedep->id_fs,
13559 	    ino_to_fsba(inodedep->id_fs, inodedep->id_ino)),
13560 	    inodedep->id_nlinkdelta, inodedep->id_savednlink,
13561 	    inodedep->id_savedino1);
13562 
13563 	if (verbose == 0)
13564 		return;
13565 
13566 	db_printf("\tpendinghd %p, bufwait %p, inowait %p, inoreflst %p, "
13567 	    "mkdiradd %p\n",
13568 	    LIST_FIRST(&inodedep->id_pendinghd),
13569 	    LIST_FIRST(&inodedep->id_bufwait),
13570 	    LIST_FIRST(&inodedep->id_inowait),
13571 	    TAILQ_FIRST(&inodedep->id_inoreflst),
13572 	    inodedep->id_mkdiradd);
13573 	db_printf("\tinoupdt %p, newinoupdt %p, extupdt %p, newextupdt %p\n",
13574 	    TAILQ_FIRST(&inodedep->id_inoupdt),
13575 	    TAILQ_FIRST(&inodedep->id_newinoupdt),
13576 	    TAILQ_FIRST(&inodedep->id_extupdt),
13577 	    TAILQ_FIRST(&inodedep->id_newextupdt));
13578 }
13579 
13580 DB_SHOW_COMMAND(inodedep, db_show_inodedep)
13581 {
13582 
13583 	if (have_addr == 0) {
13584 		db_printf("Address required\n");
13585 		return;
13586 	}
13587 	inodedep_print((struct inodedep*)addr, 1);
13588 }
13589 
13590 DB_SHOW_COMMAND(inodedeps, db_show_inodedeps)
13591 {
13592 	struct inodedep_hashhead *inodedephd;
13593 	struct inodedep *inodedep;
13594 	struct fs *fs;
13595 	int cnt;
13596 
13597 	fs = have_addr ? (struct fs *)addr : NULL;
13598 	for (cnt = 0; cnt < inodedep_hash; cnt++) {
13599 		inodedephd = &inodedep_hashtbl[cnt];
13600 		LIST_FOREACH(inodedep, inodedephd, id_hash) {
13601 			if (fs != NULL && fs != inodedep->id_fs)
13602 				continue;
13603 			inodedep_print(inodedep, 0);
13604 		}
13605 	}
13606 }
13607 
13608 DB_SHOW_COMMAND(worklist, db_show_worklist)
13609 {
13610 	struct worklist *wk;
13611 
13612 	if (have_addr == 0) {
13613 		db_printf("Address required\n");
13614 		return;
13615 	}
13616 	wk = (struct worklist *)addr;
13617 	printf("worklist: %p type %s state 0x%X\n",
13618 	    wk, TYPENAME(wk->wk_type), wk->wk_state);
13619 }
13620 
13621 DB_SHOW_COMMAND(workhead, db_show_workhead)
13622 {
13623 	struct workhead *wkhd;
13624 	struct worklist *wk;
13625 	int i;
13626 
13627 	if (have_addr == 0) {
13628 		db_printf("Address required\n");
13629 		return;
13630 	}
13631 	wkhd = (struct workhead *)addr;
13632 	wk = LIST_FIRST(wkhd);
13633 	for (i = 0; i < 100 && wk != NULL; i++, wk = LIST_NEXT(wk, wk_list))
13634 		db_printf("worklist: %p type %s state 0x%X",
13635 		    wk, TYPENAME(wk->wk_type), wk->wk_state);
13636 	if (i == 100)
13637 		db_printf("workhead overflow");
13638 	printf("\n");
13639 }
13640 
13641 
13642 DB_SHOW_COMMAND(mkdirs, db_show_mkdirs)
13643 {
13644 	struct jaddref *jaddref;
13645 	struct diradd *diradd;
13646 	struct mkdir *mkdir;
13647 
13648 	LIST_FOREACH(mkdir, &mkdirlisthd, md_mkdirs) {
13649 		diradd = mkdir->md_diradd;
13650 		db_printf("mkdir: %p state 0x%X dap %p state 0x%X",
13651 		    mkdir, mkdir->md_state, diradd, diradd->da_state);
13652 		if ((jaddref = mkdir->md_jaddref) != NULL)
13653 			db_printf(" jaddref %p jaddref state 0x%X",
13654 			    jaddref, jaddref->ja_state);
13655 		db_printf("\n");
13656 	}
13657 }
13658 
13659 #endif /* DDB */
13660 
13661 #endif /* SOFTUPDATES */
13662