1 /*- 2 * Copyright 1998, 2000 Marshall Kirk McKusick. 3 * Copyright 2009, 2010 Jeffrey W. Roberson <jeff@FreeBSD.org> 4 * All rights reserved. 5 * 6 * The soft updates code is derived from the appendix of a University 7 * of Michigan technical report (Gregory R. Ganger and Yale N. Patt, 8 * "Soft Updates: A Solution to the Metadata Update Problem in File 9 * Systems", CSE-TR-254-95, August 1995). 10 * 11 * Further information about soft updates can be obtained from: 12 * 13 * Marshall Kirk McKusick http://www.mckusick.com/softdep/ 14 * 1614 Oxford Street mckusick@mckusick.com 15 * Berkeley, CA 94709-1608 +1-510-843-9542 16 * USA 17 * 18 * Redistribution and use in source and binary forms, with or without 19 * modification, are permitted provided that the following conditions 20 * are met: 21 * 22 * 1. Redistributions of source code must retain the above copyright 23 * notice, this list of conditions and the following disclaimer. 24 * 2. Redistributions in binary form must reproduce the above copyright 25 * notice, this list of conditions and the following disclaimer in the 26 * documentation and/or other materials provided with the distribution. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR 29 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 30 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 31 * IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT, 32 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 33 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS 34 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND 35 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR 36 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 37 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 38 * 39 * from: @(#)ffs_softdep.c 9.59 (McKusick) 6/21/00 40 */ 41 42 #include <sys/cdefs.h> 43 __FBSDID("$FreeBSD$"); 44 45 #include "opt_ffs.h" 46 #include "opt_quota.h" 47 #include "opt_ddb.h" 48 49 /* 50 * For now we want the safety net that the DEBUG flag provides. 51 */ 52 #ifndef DEBUG 53 #define DEBUG 54 #endif 55 56 #include <sys/param.h> 57 #include <sys/kernel.h> 58 #include <sys/systm.h> 59 #include <sys/bio.h> 60 #include <sys/buf.h> 61 #include <sys/kdb.h> 62 #include <sys/kthread.h> 63 #include <sys/ktr.h> 64 #include <sys/limits.h> 65 #include <sys/lock.h> 66 #include <sys/malloc.h> 67 #include <sys/mount.h> 68 #include <sys/mutex.h> 69 #include <sys/namei.h> 70 #include <sys/priv.h> 71 #include <sys/proc.h> 72 #include <sys/racct.h> 73 #include <sys/rwlock.h> 74 #include <sys/stat.h> 75 #include <sys/sysctl.h> 76 #include <sys/syslog.h> 77 #include <sys/vnode.h> 78 #include <sys/conf.h> 79 80 #include <ufs/ufs/dir.h> 81 #include <ufs/ufs/extattr.h> 82 #include <ufs/ufs/quota.h> 83 #include <ufs/ufs/inode.h> 84 #include <ufs/ufs/ufsmount.h> 85 #include <ufs/ffs/fs.h> 86 #include <ufs/ffs/softdep.h> 87 #include <ufs/ffs/ffs_extern.h> 88 #include <ufs/ufs/ufs_extern.h> 89 90 #include <vm/vm.h> 91 #include <vm/vm_extern.h> 92 #include <vm/vm_object.h> 93 94 #include <geom/geom.h> 95 96 #include <ddb/ddb.h> 97 98 #define KTR_SUJ 0 /* Define to KTR_SPARE. */ 99 100 #ifndef SOFTUPDATES 101 102 int 103 softdep_flushfiles(oldmnt, flags, td) 104 struct mount *oldmnt; 105 int flags; 106 struct thread *td; 107 { 108 109 panic("softdep_flushfiles called"); 110 } 111 112 int 113 softdep_mount(devvp, mp, fs, cred) 114 struct vnode *devvp; 115 struct mount *mp; 116 struct fs *fs; 117 struct ucred *cred; 118 { 119 120 return (0); 121 } 122 123 void 124 softdep_initialize() 125 { 126 127 return; 128 } 129 130 void 131 softdep_uninitialize() 132 { 133 134 return; 135 } 136 137 void 138 softdep_unmount(mp) 139 struct mount *mp; 140 { 141 142 panic("softdep_unmount called"); 143 } 144 145 void 146 softdep_setup_sbupdate(ump, fs, bp) 147 struct ufsmount *ump; 148 struct fs *fs; 149 struct buf *bp; 150 { 151 152 panic("softdep_setup_sbupdate called"); 153 } 154 155 void 156 softdep_setup_inomapdep(bp, ip, newinum, mode) 157 struct buf *bp; 158 struct inode *ip; 159 ino_t newinum; 160 int mode; 161 { 162 163 panic("softdep_setup_inomapdep called"); 164 } 165 166 void 167 softdep_setup_blkmapdep(bp, mp, newblkno, frags, oldfrags) 168 struct buf *bp; 169 struct mount *mp; 170 ufs2_daddr_t newblkno; 171 int frags; 172 int oldfrags; 173 { 174 175 panic("softdep_setup_blkmapdep called"); 176 } 177 178 void 179 softdep_setup_allocdirect(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp) 180 struct inode *ip; 181 ufs_lbn_t lbn; 182 ufs2_daddr_t newblkno; 183 ufs2_daddr_t oldblkno; 184 long newsize; 185 long oldsize; 186 struct buf *bp; 187 { 188 189 panic("softdep_setup_allocdirect called"); 190 } 191 192 void 193 softdep_setup_allocext(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp) 194 struct inode *ip; 195 ufs_lbn_t lbn; 196 ufs2_daddr_t newblkno; 197 ufs2_daddr_t oldblkno; 198 long newsize; 199 long oldsize; 200 struct buf *bp; 201 { 202 203 panic("softdep_setup_allocext called"); 204 } 205 206 void 207 softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp) 208 struct inode *ip; 209 ufs_lbn_t lbn; 210 struct buf *bp; 211 int ptrno; 212 ufs2_daddr_t newblkno; 213 ufs2_daddr_t oldblkno; 214 struct buf *nbp; 215 { 216 217 panic("softdep_setup_allocindir_page called"); 218 } 219 220 void 221 softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno) 222 struct buf *nbp; 223 struct inode *ip; 224 struct buf *bp; 225 int ptrno; 226 ufs2_daddr_t newblkno; 227 { 228 229 panic("softdep_setup_allocindir_meta called"); 230 } 231 232 void 233 softdep_journal_freeblocks(ip, cred, length, flags) 234 struct inode *ip; 235 struct ucred *cred; 236 off_t length; 237 int flags; 238 { 239 240 panic("softdep_journal_freeblocks called"); 241 } 242 243 void 244 softdep_journal_fsync(ip) 245 struct inode *ip; 246 { 247 248 panic("softdep_journal_fsync called"); 249 } 250 251 void 252 softdep_setup_freeblocks(ip, length, flags) 253 struct inode *ip; 254 off_t length; 255 int flags; 256 { 257 258 panic("softdep_setup_freeblocks called"); 259 } 260 261 void 262 softdep_freefile(pvp, ino, mode) 263 struct vnode *pvp; 264 ino_t ino; 265 int mode; 266 { 267 268 panic("softdep_freefile called"); 269 } 270 271 int 272 softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk) 273 struct buf *bp; 274 struct inode *dp; 275 off_t diroffset; 276 ino_t newinum; 277 struct buf *newdirbp; 278 int isnewblk; 279 { 280 281 panic("softdep_setup_directory_add called"); 282 } 283 284 void 285 softdep_change_directoryentry_offset(bp, dp, base, oldloc, newloc, entrysize) 286 struct buf *bp; 287 struct inode *dp; 288 caddr_t base; 289 caddr_t oldloc; 290 caddr_t newloc; 291 int entrysize; 292 { 293 294 panic("softdep_change_directoryentry_offset called"); 295 } 296 297 void 298 softdep_setup_remove(bp, dp, ip, isrmdir) 299 struct buf *bp; 300 struct inode *dp; 301 struct inode *ip; 302 int isrmdir; 303 { 304 305 panic("softdep_setup_remove called"); 306 } 307 308 void 309 softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir) 310 struct buf *bp; 311 struct inode *dp; 312 struct inode *ip; 313 ino_t newinum; 314 int isrmdir; 315 { 316 317 panic("softdep_setup_directory_change called"); 318 } 319 320 void 321 softdep_setup_blkfree(mp, bp, blkno, frags, wkhd) 322 struct mount *mp; 323 struct buf *bp; 324 ufs2_daddr_t blkno; 325 int frags; 326 struct workhead *wkhd; 327 { 328 329 panic("%s called", __FUNCTION__); 330 } 331 332 void 333 softdep_setup_inofree(mp, bp, ino, wkhd) 334 struct mount *mp; 335 struct buf *bp; 336 ino_t ino; 337 struct workhead *wkhd; 338 { 339 340 panic("%s called", __FUNCTION__); 341 } 342 343 void 344 softdep_setup_unlink(dp, ip) 345 struct inode *dp; 346 struct inode *ip; 347 { 348 349 panic("%s called", __FUNCTION__); 350 } 351 352 void 353 softdep_setup_link(dp, ip) 354 struct inode *dp; 355 struct inode *ip; 356 { 357 358 panic("%s called", __FUNCTION__); 359 } 360 361 void 362 softdep_revert_link(dp, ip) 363 struct inode *dp; 364 struct inode *ip; 365 { 366 367 panic("%s called", __FUNCTION__); 368 } 369 370 void 371 softdep_setup_rmdir(dp, ip) 372 struct inode *dp; 373 struct inode *ip; 374 { 375 376 panic("%s called", __FUNCTION__); 377 } 378 379 void 380 softdep_revert_rmdir(dp, ip) 381 struct inode *dp; 382 struct inode *ip; 383 { 384 385 panic("%s called", __FUNCTION__); 386 } 387 388 void 389 softdep_setup_create(dp, ip) 390 struct inode *dp; 391 struct inode *ip; 392 { 393 394 panic("%s called", __FUNCTION__); 395 } 396 397 void 398 softdep_revert_create(dp, ip) 399 struct inode *dp; 400 struct inode *ip; 401 { 402 403 panic("%s called", __FUNCTION__); 404 } 405 406 void 407 softdep_setup_mkdir(dp, ip) 408 struct inode *dp; 409 struct inode *ip; 410 { 411 412 panic("%s called", __FUNCTION__); 413 } 414 415 void 416 softdep_revert_mkdir(dp, ip) 417 struct inode *dp; 418 struct inode *ip; 419 { 420 421 panic("%s called", __FUNCTION__); 422 } 423 424 void 425 softdep_setup_dotdot_link(dp, ip) 426 struct inode *dp; 427 struct inode *ip; 428 { 429 430 panic("%s called", __FUNCTION__); 431 } 432 433 int 434 softdep_prealloc(vp, waitok) 435 struct vnode *vp; 436 int waitok; 437 { 438 439 panic("%s called", __FUNCTION__); 440 } 441 442 int 443 softdep_journal_lookup(mp, vpp) 444 struct mount *mp; 445 struct vnode **vpp; 446 { 447 448 return (ENOENT); 449 } 450 451 void 452 softdep_change_linkcnt(ip) 453 struct inode *ip; 454 { 455 456 panic("softdep_change_linkcnt called"); 457 } 458 459 void 460 softdep_load_inodeblock(ip) 461 struct inode *ip; 462 { 463 464 panic("softdep_load_inodeblock called"); 465 } 466 467 void 468 softdep_update_inodeblock(ip, bp, waitfor) 469 struct inode *ip; 470 struct buf *bp; 471 int waitfor; 472 { 473 474 panic("softdep_update_inodeblock called"); 475 } 476 477 int 478 softdep_fsync(vp) 479 struct vnode *vp; /* the "in_core" copy of the inode */ 480 { 481 482 return (0); 483 } 484 485 void 486 softdep_fsync_mountdev(vp) 487 struct vnode *vp; 488 { 489 490 return; 491 } 492 493 int 494 softdep_flushworklist(oldmnt, countp, td) 495 struct mount *oldmnt; 496 int *countp; 497 struct thread *td; 498 { 499 500 *countp = 0; 501 return (0); 502 } 503 504 int 505 softdep_sync_metadata(struct vnode *vp) 506 { 507 508 panic("softdep_sync_metadata called"); 509 } 510 511 int 512 softdep_sync_buf(struct vnode *vp, struct buf *bp, int waitfor) 513 { 514 515 panic("softdep_sync_buf called"); 516 } 517 518 int 519 softdep_slowdown(vp) 520 struct vnode *vp; 521 { 522 523 panic("softdep_slowdown called"); 524 } 525 526 int 527 softdep_request_cleanup(fs, vp, cred, resource) 528 struct fs *fs; 529 struct vnode *vp; 530 struct ucred *cred; 531 int resource; 532 { 533 534 return (0); 535 } 536 537 int 538 softdep_check_suspend(struct mount *mp, 539 struct vnode *devvp, 540 int softdep_depcnt, 541 int softdep_accdepcnt, 542 int secondary_writes, 543 int secondary_accwrites) 544 { 545 struct bufobj *bo; 546 int error; 547 548 (void) softdep_depcnt, 549 (void) softdep_accdepcnt; 550 551 bo = &devvp->v_bufobj; 552 ASSERT_BO_WLOCKED(bo); 553 554 MNT_ILOCK(mp); 555 while (mp->mnt_secondary_writes != 0) { 556 BO_UNLOCK(bo); 557 msleep(&mp->mnt_secondary_writes, MNT_MTX(mp), 558 (PUSER - 1) | PDROP, "secwr", 0); 559 BO_LOCK(bo); 560 MNT_ILOCK(mp); 561 } 562 563 /* 564 * Reasons for needing more work before suspend: 565 * - Dirty buffers on devvp. 566 * - Secondary writes occurred after start of vnode sync loop 567 */ 568 error = 0; 569 if (bo->bo_numoutput > 0 || 570 bo->bo_dirty.bv_cnt > 0 || 571 secondary_writes != 0 || 572 mp->mnt_secondary_writes != 0 || 573 secondary_accwrites != mp->mnt_secondary_accwrites) 574 error = EAGAIN; 575 BO_UNLOCK(bo); 576 return (error); 577 } 578 579 void 580 softdep_get_depcounts(struct mount *mp, 581 int *softdepactivep, 582 int *softdepactiveaccp) 583 { 584 (void) mp; 585 *softdepactivep = 0; 586 *softdepactiveaccp = 0; 587 } 588 589 void 590 softdep_buf_append(bp, wkhd) 591 struct buf *bp; 592 struct workhead *wkhd; 593 { 594 595 panic("softdep_buf_appendwork called"); 596 } 597 598 void 599 softdep_inode_append(ip, cred, wkhd) 600 struct inode *ip; 601 struct ucred *cred; 602 struct workhead *wkhd; 603 { 604 605 panic("softdep_inode_appendwork called"); 606 } 607 608 void 609 softdep_freework(wkhd) 610 struct workhead *wkhd; 611 { 612 613 panic("softdep_freework called"); 614 } 615 616 #else 617 618 FEATURE(softupdates, "FFS soft-updates support"); 619 620 static SYSCTL_NODE(_debug, OID_AUTO, softdep, CTLFLAG_RW, 0, 621 "soft updates stats"); 622 static SYSCTL_NODE(_debug_softdep, OID_AUTO, total, CTLFLAG_RW, 0, 623 "total dependencies allocated"); 624 static SYSCTL_NODE(_debug_softdep, OID_AUTO, highuse, CTLFLAG_RW, 0, 625 "high use dependencies allocated"); 626 static SYSCTL_NODE(_debug_softdep, OID_AUTO, current, CTLFLAG_RW, 0, 627 "current dependencies allocated"); 628 static SYSCTL_NODE(_debug_softdep, OID_AUTO, write, CTLFLAG_RW, 0, 629 "current dependencies written"); 630 631 unsigned long dep_current[D_LAST + 1]; 632 unsigned long dep_highuse[D_LAST + 1]; 633 unsigned long dep_total[D_LAST + 1]; 634 unsigned long dep_write[D_LAST + 1]; 635 636 #define SOFTDEP_TYPE(type, str, long) \ 637 static MALLOC_DEFINE(M_ ## type, #str, long); \ 638 SYSCTL_ULONG(_debug_softdep_total, OID_AUTO, str, CTLFLAG_RD, \ 639 &dep_total[D_ ## type], 0, ""); \ 640 SYSCTL_ULONG(_debug_softdep_current, OID_AUTO, str, CTLFLAG_RD, \ 641 &dep_current[D_ ## type], 0, ""); \ 642 SYSCTL_ULONG(_debug_softdep_highuse, OID_AUTO, str, CTLFLAG_RD, \ 643 &dep_highuse[D_ ## type], 0, ""); \ 644 SYSCTL_ULONG(_debug_softdep_write, OID_AUTO, str, CTLFLAG_RD, \ 645 &dep_write[D_ ## type], 0, ""); 646 647 SOFTDEP_TYPE(PAGEDEP, pagedep, "File page dependencies"); 648 SOFTDEP_TYPE(INODEDEP, inodedep, "Inode dependencies"); 649 SOFTDEP_TYPE(BMSAFEMAP, bmsafemap, 650 "Block or frag allocated from cyl group map"); 651 SOFTDEP_TYPE(NEWBLK, newblk, "New block or frag allocation dependency"); 652 SOFTDEP_TYPE(ALLOCDIRECT, allocdirect, "Block or frag dependency for an inode"); 653 SOFTDEP_TYPE(INDIRDEP, indirdep, "Indirect block dependencies"); 654 SOFTDEP_TYPE(ALLOCINDIR, allocindir, "Block dependency for an indirect block"); 655 SOFTDEP_TYPE(FREEFRAG, freefrag, "Previously used frag for an inode"); 656 SOFTDEP_TYPE(FREEBLKS, freeblks, "Blocks freed from an inode"); 657 SOFTDEP_TYPE(FREEFILE, freefile, "Inode deallocated"); 658 SOFTDEP_TYPE(DIRADD, diradd, "New directory entry"); 659 SOFTDEP_TYPE(MKDIR, mkdir, "New directory"); 660 SOFTDEP_TYPE(DIRREM, dirrem, "Directory entry deleted"); 661 SOFTDEP_TYPE(NEWDIRBLK, newdirblk, "Unclaimed new directory block"); 662 SOFTDEP_TYPE(FREEWORK, freework, "free an inode block"); 663 SOFTDEP_TYPE(FREEDEP, freedep, "track a block free"); 664 SOFTDEP_TYPE(JADDREF, jaddref, "Journal inode ref add"); 665 SOFTDEP_TYPE(JREMREF, jremref, "Journal inode ref remove"); 666 SOFTDEP_TYPE(JMVREF, jmvref, "Journal inode ref move"); 667 SOFTDEP_TYPE(JNEWBLK, jnewblk, "Journal new block"); 668 SOFTDEP_TYPE(JFREEBLK, jfreeblk, "Journal free block"); 669 SOFTDEP_TYPE(JFREEFRAG, jfreefrag, "Journal free frag"); 670 SOFTDEP_TYPE(JSEG, jseg, "Journal segment"); 671 SOFTDEP_TYPE(JSEGDEP, jsegdep, "Journal segment complete"); 672 SOFTDEP_TYPE(SBDEP, sbdep, "Superblock write dependency"); 673 SOFTDEP_TYPE(JTRUNC, jtrunc, "Journal inode truncation"); 674 SOFTDEP_TYPE(JFSYNC, jfsync, "Journal fsync complete"); 675 676 static MALLOC_DEFINE(M_SENTINEL, "sentinel", "Worklist sentinel"); 677 678 static MALLOC_DEFINE(M_SAVEDINO, "savedino", "Saved inodes"); 679 static MALLOC_DEFINE(M_JBLOCKS, "jblocks", "Journal block locations"); 680 static MALLOC_DEFINE(M_MOUNTDATA, "softdep", "Softdep per-mount data"); 681 682 #define M_SOFTDEP_FLAGS (M_WAITOK) 683 684 /* 685 * translate from workitem type to memory type 686 * MUST match the defines above, such that memtype[D_XXX] == M_XXX 687 */ 688 static struct malloc_type *memtype[] = { 689 M_PAGEDEP, 690 M_INODEDEP, 691 M_BMSAFEMAP, 692 M_NEWBLK, 693 M_ALLOCDIRECT, 694 M_INDIRDEP, 695 M_ALLOCINDIR, 696 M_FREEFRAG, 697 M_FREEBLKS, 698 M_FREEFILE, 699 M_DIRADD, 700 M_MKDIR, 701 M_DIRREM, 702 M_NEWDIRBLK, 703 M_FREEWORK, 704 M_FREEDEP, 705 M_JADDREF, 706 M_JREMREF, 707 M_JMVREF, 708 M_JNEWBLK, 709 M_JFREEBLK, 710 M_JFREEFRAG, 711 M_JSEG, 712 M_JSEGDEP, 713 M_SBDEP, 714 M_JTRUNC, 715 M_JFSYNC, 716 M_SENTINEL 717 }; 718 719 #define DtoM(type) (memtype[type]) 720 721 /* 722 * Names of malloc types. 723 */ 724 #define TYPENAME(type) \ 725 ((unsigned)(type) <= D_LAST ? memtype[type]->ks_shortdesc : "???") 726 /* 727 * End system adaptation definitions. 728 */ 729 730 #define DOTDOT_OFFSET offsetof(struct dirtemplate, dotdot_ino) 731 #define DOT_OFFSET offsetof(struct dirtemplate, dot_ino) 732 733 /* 734 * Internal function prototypes. 735 */ 736 static void check_clear_deps(struct mount *); 737 static void softdep_error(char *, int); 738 static int softdep_process_worklist(struct mount *, int); 739 static int softdep_waitidle(struct mount *, int); 740 static void drain_output(struct vnode *); 741 static struct buf *getdirtybuf(struct buf *, struct rwlock *, int); 742 static int check_inodedep_free(struct inodedep *); 743 static void clear_remove(struct mount *); 744 static void clear_inodedeps(struct mount *); 745 static void unlinked_inodedep(struct mount *, struct inodedep *); 746 static void clear_unlinked_inodedep(struct inodedep *); 747 static struct inodedep *first_unlinked_inodedep(struct ufsmount *); 748 static int flush_pagedep_deps(struct vnode *, struct mount *, 749 struct diraddhd *); 750 static int free_pagedep(struct pagedep *); 751 static int flush_newblk_dep(struct vnode *, struct mount *, ufs_lbn_t); 752 static int flush_inodedep_deps(struct vnode *, struct mount *, ino_t); 753 static int flush_deplist(struct allocdirectlst *, int, int *); 754 static int sync_cgs(struct mount *, int); 755 static int handle_written_filepage(struct pagedep *, struct buf *, int); 756 static int handle_written_sbdep(struct sbdep *, struct buf *); 757 static void initiate_write_sbdep(struct sbdep *); 758 static void diradd_inode_written(struct diradd *, struct inodedep *); 759 static int handle_written_indirdep(struct indirdep *, struct buf *, 760 struct buf**, int); 761 static int handle_written_inodeblock(struct inodedep *, struct buf *, int); 762 static int jnewblk_rollforward(struct jnewblk *, struct fs *, struct cg *, 763 uint8_t *); 764 static int handle_written_bmsafemap(struct bmsafemap *, struct buf *, int); 765 static void handle_written_jaddref(struct jaddref *); 766 static void handle_written_jremref(struct jremref *); 767 static void handle_written_jseg(struct jseg *, struct buf *); 768 static void handle_written_jnewblk(struct jnewblk *); 769 static void handle_written_jblkdep(struct jblkdep *); 770 static void handle_written_jfreefrag(struct jfreefrag *); 771 static void complete_jseg(struct jseg *); 772 static void complete_jsegs(struct jseg *); 773 static void jseg_write(struct ufsmount *ump, struct jseg *, uint8_t *); 774 static void jaddref_write(struct jaddref *, struct jseg *, uint8_t *); 775 static void jremref_write(struct jremref *, struct jseg *, uint8_t *); 776 static void jmvref_write(struct jmvref *, struct jseg *, uint8_t *); 777 static void jtrunc_write(struct jtrunc *, struct jseg *, uint8_t *); 778 static void jfsync_write(struct jfsync *, struct jseg *, uint8_t *data); 779 static void jnewblk_write(struct jnewblk *, struct jseg *, uint8_t *); 780 static void jfreeblk_write(struct jfreeblk *, struct jseg *, uint8_t *); 781 static void jfreefrag_write(struct jfreefrag *, struct jseg *, uint8_t *); 782 static inline void inoref_write(struct inoref *, struct jseg *, 783 struct jrefrec *); 784 static void handle_allocdirect_partdone(struct allocdirect *, 785 struct workhead *); 786 static struct jnewblk *cancel_newblk(struct newblk *, struct worklist *, 787 struct workhead *); 788 static void indirdep_complete(struct indirdep *); 789 static int indirblk_lookup(struct mount *, ufs2_daddr_t); 790 static void indirblk_insert(struct freework *); 791 static void indirblk_remove(struct freework *); 792 static void handle_allocindir_partdone(struct allocindir *); 793 static void initiate_write_filepage(struct pagedep *, struct buf *); 794 static void initiate_write_indirdep(struct indirdep*, struct buf *); 795 static void handle_written_mkdir(struct mkdir *, int); 796 static int jnewblk_rollback(struct jnewblk *, struct fs *, struct cg *, 797 uint8_t *); 798 static void initiate_write_bmsafemap(struct bmsafemap *, struct buf *); 799 static void initiate_write_inodeblock_ufs1(struct inodedep *, struct buf *); 800 static void initiate_write_inodeblock_ufs2(struct inodedep *, struct buf *); 801 static void handle_workitem_freefile(struct freefile *); 802 static int handle_workitem_remove(struct dirrem *, int); 803 static struct dirrem *newdirrem(struct buf *, struct inode *, 804 struct inode *, int, struct dirrem **); 805 static struct indirdep *indirdep_lookup(struct mount *, struct inode *, 806 struct buf *); 807 static void cancel_indirdep(struct indirdep *, struct buf *, 808 struct freeblks *); 809 static void free_indirdep(struct indirdep *); 810 static void free_diradd(struct diradd *, struct workhead *); 811 static void merge_diradd(struct inodedep *, struct diradd *); 812 static void complete_diradd(struct diradd *); 813 static struct diradd *diradd_lookup(struct pagedep *, int); 814 static struct jremref *cancel_diradd_dotdot(struct inode *, struct dirrem *, 815 struct jremref *); 816 static struct jremref *cancel_mkdir_dotdot(struct inode *, struct dirrem *, 817 struct jremref *); 818 static void cancel_diradd(struct diradd *, struct dirrem *, struct jremref *, 819 struct jremref *, struct jremref *); 820 static void dirrem_journal(struct dirrem *, struct jremref *, struct jremref *, 821 struct jremref *); 822 static void cancel_allocindir(struct allocindir *, struct buf *bp, 823 struct freeblks *, int); 824 static int setup_trunc_indir(struct freeblks *, struct inode *, 825 ufs_lbn_t, ufs_lbn_t, ufs2_daddr_t); 826 static void complete_trunc_indir(struct freework *); 827 static void trunc_indirdep(struct indirdep *, struct freeblks *, struct buf *, 828 int); 829 static void complete_mkdir(struct mkdir *); 830 static void free_newdirblk(struct newdirblk *); 831 static void free_jremref(struct jremref *); 832 static void free_jaddref(struct jaddref *); 833 static void free_jsegdep(struct jsegdep *); 834 static void free_jsegs(struct jblocks *); 835 static void rele_jseg(struct jseg *); 836 static void free_jseg(struct jseg *, struct jblocks *); 837 static void free_jnewblk(struct jnewblk *); 838 static void free_jblkdep(struct jblkdep *); 839 static void free_jfreefrag(struct jfreefrag *); 840 static void free_freedep(struct freedep *); 841 static void journal_jremref(struct dirrem *, struct jremref *, 842 struct inodedep *); 843 static void cancel_jnewblk(struct jnewblk *, struct workhead *); 844 static int cancel_jaddref(struct jaddref *, struct inodedep *, 845 struct workhead *); 846 static void cancel_jfreefrag(struct jfreefrag *); 847 static inline void setup_freedirect(struct freeblks *, struct inode *, 848 int, int); 849 static inline void setup_freeext(struct freeblks *, struct inode *, int, int); 850 static inline void setup_freeindir(struct freeblks *, struct inode *, int, 851 ufs_lbn_t, int); 852 static inline struct freeblks *newfreeblks(struct mount *, struct inode *); 853 static void freeblks_free(struct ufsmount *, struct freeblks *, int); 854 static void indir_trunc(struct freework *, ufs2_daddr_t, ufs_lbn_t); 855 static ufs2_daddr_t blkcount(struct fs *, ufs2_daddr_t, off_t); 856 static int trunc_check_buf(struct buf *, int *, ufs_lbn_t, int, int); 857 static void trunc_dependencies(struct inode *, struct freeblks *, ufs_lbn_t, 858 int, int); 859 static void trunc_pages(struct inode *, off_t, ufs2_daddr_t, int); 860 static int cancel_pagedep(struct pagedep *, struct freeblks *, int); 861 static int deallocate_dependencies(struct buf *, struct freeblks *, int); 862 static void newblk_freefrag(struct newblk*); 863 static void free_newblk(struct newblk *); 864 static void cancel_allocdirect(struct allocdirectlst *, 865 struct allocdirect *, struct freeblks *); 866 static int check_inode_unwritten(struct inodedep *); 867 static int free_inodedep(struct inodedep *); 868 static void freework_freeblock(struct freework *); 869 static void freework_enqueue(struct freework *); 870 static int handle_workitem_freeblocks(struct freeblks *, int); 871 static int handle_complete_freeblocks(struct freeblks *, int); 872 static void handle_workitem_indirblk(struct freework *); 873 static void handle_written_freework(struct freework *); 874 static void merge_inode_lists(struct allocdirectlst *,struct allocdirectlst *); 875 static struct worklist *jnewblk_merge(struct worklist *, struct worklist *, 876 struct workhead *); 877 static struct freefrag *setup_allocindir_phase2(struct buf *, struct inode *, 878 struct inodedep *, struct allocindir *, ufs_lbn_t); 879 static struct allocindir *newallocindir(struct inode *, int, ufs2_daddr_t, 880 ufs2_daddr_t, ufs_lbn_t); 881 static void handle_workitem_freefrag(struct freefrag *); 882 static struct freefrag *newfreefrag(struct inode *, ufs2_daddr_t, long, 883 ufs_lbn_t); 884 static void allocdirect_merge(struct allocdirectlst *, 885 struct allocdirect *, struct allocdirect *); 886 static struct freefrag *allocindir_merge(struct allocindir *, 887 struct allocindir *); 888 static int bmsafemap_find(struct bmsafemap_hashhead *, int, 889 struct bmsafemap **); 890 static struct bmsafemap *bmsafemap_lookup(struct mount *, struct buf *, 891 int cg, struct bmsafemap *); 892 static int newblk_find(struct newblk_hashhead *, ufs2_daddr_t, int, 893 struct newblk **); 894 static int newblk_lookup(struct mount *, ufs2_daddr_t, int, struct newblk **); 895 static int inodedep_find(struct inodedep_hashhead *, ino_t, 896 struct inodedep **); 897 static int inodedep_lookup(struct mount *, ino_t, int, struct inodedep **); 898 static int pagedep_lookup(struct mount *, struct buf *bp, ino_t, ufs_lbn_t, 899 int, struct pagedep **); 900 static int pagedep_find(struct pagedep_hashhead *, ino_t, ufs_lbn_t, 901 struct pagedep **); 902 static void pause_timer(void *); 903 static int request_cleanup(struct mount *, int); 904 static int softdep_request_cleanup_flush(struct mount *, struct ufsmount *); 905 static void schedule_cleanup(struct mount *); 906 static void softdep_ast_cleanup_proc(struct thread *); 907 static int process_worklist_item(struct mount *, int, int); 908 static void process_removes(struct vnode *); 909 static void process_truncates(struct vnode *); 910 static void jwork_move(struct workhead *, struct workhead *); 911 static void jwork_insert(struct workhead *, struct jsegdep *); 912 static void add_to_worklist(struct worklist *, int); 913 static void wake_worklist(struct worklist *); 914 static void wait_worklist(struct worklist *, char *); 915 static void remove_from_worklist(struct worklist *); 916 static void softdep_flush(void *); 917 static void softdep_flushjournal(struct mount *); 918 static int softdep_speedup(struct ufsmount *); 919 static void worklist_speedup(struct mount *); 920 static int journal_mount(struct mount *, struct fs *, struct ucred *); 921 static void journal_unmount(struct ufsmount *); 922 static int journal_space(struct ufsmount *, int); 923 static void journal_suspend(struct ufsmount *); 924 static int journal_unsuspend(struct ufsmount *ump); 925 static void softdep_prelink(struct vnode *, struct vnode *); 926 static void add_to_journal(struct worklist *); 927 static void remove_from_journal(struct worklist *); 928 static bool softdep_excess_items(struct ufsmount *, int); 929 static void softdep_process_journal(struct mount *, struct worklist *, int); 930 static struct jremref *newjremref(struct dirrem *, struct inode *, 931 struct inode *ip, off_t, nlink_t); 932 static struct jaddref *newjaddref(struct inode *, ino_t, off_t, int16_t, 933 uint16_t); 934 static inline void newinoref(struct inoref *, ino_t, ino_t, off_t, nlink_t, 935 uint16_t); 936 static inline struct jsegdep *inoref_jseg(struct inoref *); 937 static struct jmvref *newjmvref(struct inode *, ino_t, off_t, off_t); 938 static struct jfreeblk *newjfreeblk(struct freeblks *, ufs_lbn_t, 939 ufs2_daddr_t, int); 940 static void adjust_newfreework(struct freeblks *, int); 941 static struct jtrunc *newjtrunc(struct freeblks *, off_t, int); 942 static void move_newblock_dep(struct jaddref *, struct inodedep *); 943 static void cancel_jfreeblk(struct freeblks *, ufs2_daddr_t); 944 static struct jfreefrag *newjfreefrag(struct freefrag *, struct inode *, 945 ufs2_daddr_t, long, ufs_lbn_t); 946 static struct freework *newfreework(struct ufsmount *, struct freeblks *, 947 struct freework *, ufs_lbn_t, ufs2_daddr_t, int, int, int); 948 static int jwait(struct worklist *, int); 949 static struct inodedep *inodedep_lookup_ip(struct inode *); 950 static int bmsafemap_backgroundwrite(struct bmsafemap *, struct buf *); 951 static struct freefile *handle_bufwait(struct inodedep *, struct workhead *); 952 static void handle_jwork(struct workhead *); 953 static struct mkdir *setup_newdir(struct diradd *, ino_t, ino_t, struct buf *, 954 struct mkdir **); 955 static struct jblocks *jblocks_create(void); 956 static ufs2_daddr_t jblocks_alloc(struct jblocks *, int, int *); 957 static void jblocks_free(struct jblocks *, struct mount *, int); 958 static void jblocks_destroy(struct jblocks *); 959 static void jblocks_add(struct jblocks *, ufs2_daddr_t, int); 960 961 /* 962 * Exported softdep operations. 963 */ 964 static void softdep_disk_io_initiation(struct buf *); 965 static void softdep_disk_write_complete(struct buf *); 966 static void softdep_deallocate_dependencies(struct buf *); 967 static int softdep_count_dependencies(struct buf *bp, int); 968 969 /* 970 * Global lock over all of soft updates. 971 */ 972 static struct mtx lk; 973 MTX_SYSINIT(softdep_lock, &lk, "Global Softdep Lock", MTX_DEF); 974 975 #define ACQUIRE_GBLLOCK(lk) mtx_lock(lk) 976 #define FREE_GBLLOCK(lk) mtx_unlock(lk) 977 #define GBLLOCK_OWNED(lk) mtx_assert((lk), MA_OWNED) 978 979 /* 980 * Per-filesystem soft-updates locking. 981 */ 982 #define LOCK_PTR(ump) (&(ump)->um_softdep->sd_fslock) 983 #define TRY_ACQUIRE_LOCK(ump) rw_try_wlock(&(ump)->um_softdep->sd_fslock) 984 #define ACQUIRE_LOCK(ump) rw_wlock(&(ump)->um_softdep->sd_fslock) 985 #define FREE_LOCK(ump) rw_wunlock(&(ump)->um_softdep->sd_fslock) 986 #define LOCK_OWNED(ump) rw_assert(&(ump)->um_softdep->sd_fslock, \ 987 RA_WLOCKED) 988 989 #define BUF_AREC(bp) lockallowrecurse(&(bp)->b_lock) 990 #define BUF_NOREC(bp) lockdisablerecurse(&(bp)->b_lock) 991 992 /* 993 * Worklist queue management. 994 * These routines require that the lock be held. 995 */ 996 #ifndef /* NOT */ DEBUG 997 #define WORKLIST_INSERT(head, item) do { \ 998 (item)->wk_state |= ONWORKLIST; \ 999 LIST_INSERT_HEAD(head, item, wk_list); \ 1000 } while (0) 1001 #define WORKLIST_REMOVE(item) do { \ 1002 (item)->wk_state &= ~ONWORKLIST; \ 1003 LIST_REMOVE(item, wk_list); \ 1004 } while (0) 1005 #define WORKLIST_INSERT_UNLOCKED WORKLIST_INSERT 1006 #define WORKLIST_REMOVE_UNLOCKED WORKLIST_REMOVE 1007 1008 #else /* DEBUG */ 1009 static void worklist_insert(struct workhead *, struct worklist *, int); 1010 static void worklist_remove(struct worklist *, int); 1011 1012 #define WORKLIST_INSERT(head, item) worklist_insert(head, item, 1) 1013 #define WORKLIST_INSERT_UNLOCKED(head, item) worklist_insert(head, item, 0) 1014 #define WORKLIST_REMOVE(item) worklist_remove(item, 1) 1015 #define WORKLIST_REMOVE_UNLOCKED(item) worklist_remove(item, 0) 1016 1017 static void 1018 worklist_insert(head, item, locked) 1019 struct workhead *head; 1020 struct worklist *item; 1021 int locked; 1022 { 1023 1024 if (locked) 1025 LOCK_OWNED(VFSTOUFS(item->wk_mp)); 1026 if (item->wk_state & ONWORKLIST) 1027 panic("worklist_insert: %p %s(0x%X) already on list", 1028 item, TYPENAME(item->wk_type), item->wk_state); 1029 item->wk_state |= ONWORKLIST; 1030 LIST_INSERT_HEAD(head, item, wk_list); 1031 } 1032 1033 static void 1034 worklist_remove(item, locked) 1035 struct worklist *item; 1036 int locked; 1037 { 1038 1039 if (locked) 1040 LOCK_OWNED(VFSTOUFS(item->wk_mp)); 1041 if ((item->wk_state & ONWORKLIST) == 0) 1042 panic("worklist_remove: %p %s(0x%X) not on list", 1043 item, TYPENAME(item->wk_type), item->wk_state); 1044 item->wk_state &= ~ONWORKLIST; 1045 LIST_REMOVE(item, wk_list); 1046 } 1047 #endif /* DEBUG */ 1048 1049 /* 1050 * Merge two jsegdeps keeping only the oldest one as newer references 1051 * can't be discarded until after older references. 1052 */ 1053 static inline struct jsegdep * 1054 jsegdep_merge(struct jsegdep *one, struct jsegdep *two) 1055 { 1056 struct jsegdep *swp; 1057 1058 if (two == NULL) 1059 return (one); 1060 1061 if (one->jd_seg->js_seq > two->jd_seg->js_seq) { 1062 swp = one; 1063 one = two; 1064 two = swp; 1065 } 1066 WORKLIST_REMOVE(&two->jd_list); 1067 free_jsegdep(two); 1068 1069 return (one); 1070 } 1071 1072 /* 1073 * If two freedeps are compatible free one to reduce list size. 1074 */ 1075 static inline struct freedep * 1076 freedep_merge(struct freedep *one, struct freedep *two) 1077 { 1078 if (two == NULL) 1079 return (one); 1080 1081 if (one->fd_freework == two->fd_freework) { 1082 WORKLIST_REMOVE(&two->fd_list); 1083 free_freedep(two); 1084 } 1085 return (one); 1086 } 1087 1088 /* 1089 * Move journal work from one list to another. Duplicate freedeps and 1090 * jsegdeps are coalesced to keep the lists as small as possible. 1091 */ 1092 static void 1093 jwork_move(dst, src) 1094 struct workhead *dst; 1095 struct workhead *src; 1096 { 1097 struct freedep *freedep; 1098 struct jsegdep *jsegdep; 1099 struct worklist *wkn; 1100 struct worklist *wk; 1101 1102 KASSERT(dst != src, 1103 ("jwork_move: dst == src")); 1104 freedep = NULL; 1105 jsegdep = NULL; 1106 LIST_FOREACH_SAFE(wk, dst, wk_list, wkn) { 1107 if (wk->wk_type == D_JSEGDEP) 1108 jsegdep = jsegdep_merge(WK_JSEGDEP(wk), jsegdep); 1109 else if (wk->wk_type == D_FREEDEP) 1110 freedep = freedep_merge(WK_FREEDEP(wk), freedep); 1111 } 1112 1113 while ((wk = LIST_FIRST(src)) != NULL) { 1114 WORKLIST_REMOVE(wk); 1115 WORKLIST_INSERT(dst, wk); 1116 if (wk->wk_type == D_JSEGDEP) { 1117 jsegdep = jsegdep_merge(WK_JSEGDEP(wk), jsegdep); 1118 continue; 1119 } 1120 if (wk->wk_type == D_FREEDEP) 1121 freedep = freedep_merge(WK_FREEDEP(wk), freedep); 1122 } 1123 } 1124 1125 static void 1126 jwork_insert(dst, jsegdep) 1127 struct workhead *dst; 1128 struct jsegdep *jsegdep; 1129 { 1130 struct jsegdep *jsegdepn; 1131 struct worklist *wk; 1132 1133 LIST_FOREACH(wk, dst, wk_list) 1134 if (wk->wk_type == D_JSEGDEP) 1135 break; 1136 if (wk == NULL) { 1137 WORKLIST_INSERT(dst, &jsegdep->jd_list); 1138 return; 1139 } 1140 jsegdepn = WK_JSEGDEP(wk); 1141 if (jsegdep->jd_seg->js_seq < jsegdepn->jd_seg->js_seq) { 1142 WORKLIST_REMOVE(wk); 1143 free_jsegdep(jsegdepn); 1144 WORKLIST_INSERT(dst, &jsegdep->jd_list); 1145 } else 1146 free_jsegdep(jsegdep); 1147 } 1148 1149 /* 1150 * Routines for tracking and managing workitems. 1151 */ 1152 static void workitem_free(struct worklist *, int); 1153 static void workitem_alloc(struct worklist *, int, struct mount *); 1154 static void workitem_reassign(struct worklist *, int); 1155 1156 #define WORKITEM_FREE(item, type) \ 1157 workitem_free((struct worklist *)(item), (type)) 1158 #define WORKITEM_REASSIGN(item, type) \ 1159 workitem_reassign((struct worklist *)(item), (type)) 1160 1161 static void 1162 workitem_free(item, type) 1163 struct worklist *item; 1164 int type; 1165 { 1166 struct ufsmount *ump; 1167 1168 #ifdef DEBUG 1169 if (item->wk_state & ONWORKLIST) 1170 panic("workitem_free: %s(0x%X) still on list", 1171 TYPENAME(item->wk_type), item->wk_state); 1172 if (item->wk_type != type && type != D_NEWBLK) 1173 panic("workitem_free: type mismatch %s != %s", 1174 TYPENAME(item->wk_type), TYPENAME(type)); 1175 #endif 1176 if (item->wk_state & IOWAITING) 1177 wakeup(item); 1178 ump = VFSTOUFS(item->wk_mp); 1179 LOCK_OWNED(ump); 1180 KASSERT(ump->softdep_deps > 0, 1181 ("workitem_free: %s: softdep_deps going negative", 1182 ump->um_fs->fs_fsmnt)); 1183 if (--ump->softdep_deps == 0 && ump->softdep_req) 1184 wakeup(&ump->softdep_deps); 1185 KASSERT(dep_current[item->wk_type] > 0, 1186 ("workitem_free: %s: dep_current[%s] going negative", 1187 ump->um_fs->fs_fsmnt, TYPENAME(item->wk_type))); 1188 KASSERT(ump->softdep_curdeps[item->wk_type] > 0, 1189 ("workitem_free: %s: softdep_curdeps[%s] going negative", 1190 ump->um_fs->fs_fsmnt, TYPENAME(item->wk_type))); 1191 atomic_subtract_long(&dep_current[item->wk_type], 1); 1192 ump->softdep_curdeps[item->wk_type] -= 1; 1193 free(item, DtoM(type)); 1194 } 1195 1196 static void 1197 workitem_alloc(item, type, mp) 1198 struct worklist *item; 1199 int type; 1200 struct mount *mp; 1201 { 1202 struct ufsmount *ump; 1203 1204 item->wk_type = type; 1205 item->wk_mp = mp; 1206 item->wk_state = 0; 1207 1208 ump = VFSTOUFS(mp); 1209 ACQUIRE_GBLLOCK(&lk); 1210 dep_current[type]++; 1211 if (dep_current[type] > dep_highuse[type]) 1212 dep_highuse[type] = dep_current[type]; 1213 dep_total[type]++; 1214 FREE_GBLLOCK(&lk); 1215 ACQUIRE_LOCK(ump); 1216 ump->softdep_curdeps[type] += 1; 1217 ump->softdep_deps++; 1218 ump->softdep_accdeps++; 1219 FREE_LOCK(ump); 1220 } 1221 1222 static void 1223 workitem_reassign(item, newtype) 1224 struct worklist *item; 1225 int newtype; 1226 { 1227 struct ufsmount *ump; 1228 1229 ump = VFSTOUFS(item->wk_mp); 1230 LOCK_OWNED(ump); 1231 KASSERT(ump->softdep_curdeps[item->wk_type] > 0, 1232 ("workitem_reassign: %s: softdep_curdeps[%s] going negative", 1233 VFSTOUFS(item->wk_mp)->um_fs->fs_fsmnt, TYPENAME(item->wk_type))); 1234 ump->softdep_curdeps[item->wk_type] -= 1; 1235 ump->softdep_curdeps[newtype] += 1; 1236 KASSERT(dep_current[item->wk_type] > 0, 1237 ("workitem_reassign: %s: dep_current[%s] going negative", 1238 VFSTOUFS(item->wk_mp)->um_fs->fs_fsmnt, TYPENAME(item->wk_type))); 1239 ACQUIRE_GBLLOCK(&lk); 1240 dep_current[newtype]++; 1241 dep_current[item->wk_type]--; 1242 if (dep_current[newtype] > dep_highuse[newtype]) 1243 dep_highuse[newtype] = dep_current[newtype]; 1244 dep_total[newtype]++; 1245 FREE_GBLLOCK(&lk); 1246 item->wk_type = newtype; 1247 } 1248 1249 /* 1250 * Workitem queue management 1251 */ 1252 static int max_softdeps; /* maximum number of structs before slowdown */ 1253 static int tickdelay = 2; /* number of ticks to pause during slowdown */ 1254 static int proc_waiting; /* tracks whether we have a timeout posted */ 1255 static int *stat_countp; /* statistic to count in proc_waiting timeout */ 1256 static struct callout softdep_callout; 1257 static int req_clear_inodedeps; /* syncer process flush some inodedeps */ 1258 static int req_clear_remove; /* syncer process flush some freeblks */ 1259 static int softdep_flushcache = 0; /* Should we do BIO_FLUSH? */ 1260 1261 /* 1262 * runtime statistics 1263 */ 1264 static int stat_flush_threads; /* number of softdep flushing threads */ 1265 static int stat_worklist_push; /* number of worklist cleanups */ 1266 static int stat_blk_limit_push; /* number of times block limit neared */ 1267 static int stat_ino_limit_push; /* number of times inode limit neared */ 1268 static int stat_blk_limit_hit; /* number of times block slowdown imposed */ 1269 static int stat_ino_limit_hit; /* number of times inode slowdown imposed */ 1270 static int stat_sync_limit_hit; /* number of synchronous slowdowns imposed */ 1271 static int stat_indir_blk_ptrs; /* bufs redirtied as indir ptrs not written */ 1272 static int stat_inode_bitmap; /* bufs redirtied as inode bitmap not written */ 1273 static int stat_direct_blk_ptrs;/* bufs redirtied as direct ptrs not written */ 1274 static int stat_dir_entry; /* bufs redirtied as dir entry cannot write */ 1275 static int stat_jaddref; /* bufs redirtied as ino bitmap can not write */ 1276 static int stat_jnewblk; /* bufs redirtied as blk bitmap can not write */ 1277 static int stat_journal_min; /* Times hit journal min threshold */ 1278 static int stat_journal_low; /* Times hit journal low threshold */ 1279 static int stat_journal_wait; /* Times blocked in jwait(). */ 1280 static int stat_jwait_filepage; /* Times blocked in jwait() for filepage. */ 1281 static int stat_jwait_freeblks; /* Times blocked in jwait() for freeblks. */ 1282 static int stat_jwait_inode; /* Times blocked in jwait() for inodes. */ 1283 static int stat_jwait_newblk; /* Times blocked in jwait() for newblks. */ 1284 static int stat_cleanup_high_delay; /* Maximum cleanup delay (in ticks) */ 1285 static int stat_cleanup_blkrequests; /* Number of block cleanup requests */ 1286 static int stat_cleanup_inorequests; /* Number of inode cleanup requests */ 1287 static int stat_cleanup_retries; /* Number of cleanups that needed to flush */ 1288 static int stat_cleanup_failures; /* Number of cleanup requests that failed */ 1289 static int stat_emptyjblocks; /* Number of potentially empty journal blocks */ 1290 1291 SYSCTL_INT(_debug_softdep, OID_AUTO, max_softdeps, CTLFLAG_RW, 1292 &max_softdeps, 0, ""); 1293 SYSCTL_INT(_debug_softdep, OID_AUTO, tickdelay, CTLFLAG_RW, 1294 &tickdelay, 0, ""); 1295 SYSCTL_INT(_debug_softdep, OID_AUTO, flush_threads, CTLFLAG_RD, 1296 &stat_flush_threads, 0, ""); 1297 SYSCTL_INT(_debug_softdep, OID_AUTO, worklist_push, CTLFLAG_RW, 1298 &stat_worklist_push, 0,""); 1299 SYSCTL_INT(_debug_softdep, OID_AUTO, blk_limit_push, CTLFLAG_RW, 1300 &stat_blk_limit_push, 0,""); 1301 SYSCTL_INT(_debug_softdep, OID_AUTO, ino_limit_push, CTLFLAG_RW, 1302 &stat_ino_limit_push, 0,""); 1303 SYSCTL_INT(_debug_softdep, OID_AUTO, blk_limit_hit, CTLFLAG_RW, 1304 &stat_blk_limit_hit, 0, ""); 1305 SYSCTL_INT(_debug_softdep, OID_AUTO, ino_limit_hit, CTLFLAG_RW, 1306 &stat_ino_limit_hit, 0, ""); 1307 SYSCTL_INT(_debug_softdep, OID_AUTO, sync_limit_hit, CTLFLAG_RW, 1308 &stat_sync_limit_hit, 0, ""); 1309 SYSCTL_INT(_debug_softdep, OID_AUTO, indir_blk_ptrs, CTLFLAG_RW, 1310 &stat_indir_blk_ptrs, 0, ""); 1311 SYSCTL_INT(_debug_softdep, OID_AUTO, inode_bitmap, CTLFLAG_RW, 1312 &stat_inode_bitmap, 0, ""); 1313 SYSCTL_INT(_debug_softdep, OID_AUTO, direct_blk_ptrs, CTLFLAG_RW, 1314 &stat_direct_blk_ptrs, 0, ""); 1315 SYSCTL_INT(_debug_softdep, OID_AUTO, dir_entry, CTLFLAG_RW, 1316 &stat_dir_entry, 0, ""); 1317 SYSCTL_INT(_debug_softdep, OID_AUTO, jaddref_rollback, CTLFLAG_RW, 1318 &stat_jaddref, 0, ""); 1319 SYSCTL_INT(_debug_softdep, OID_AUTO, jnewblk_rollback, CTLFLAG_RW, 1320 &stat_jnewblk, 0, ""); 1321 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_low, CTLFLAG_RW, 1322 &stat_journal_low, 0, ""); 1323 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_min, CTLFLAG_RW, 1324 &stat_journal_min, 0, ""); 1325 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_wait, CTLFLAG_RW, 1326 &stat_journal_wait, 0, ""); 1327 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_filepage, CTLFLAG_RW, 1328 &stat_jwait_filepage, 0, ""); 1329 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_freeblks, CTLFLAG_RW, 1330 &stat_jwait_freeblks, 0, ""); 1331 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_inode, CTLFLAG_RW, 1332 &stat_jwait_inode, 0, ""); 1333 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_newblk, CTLFLAG_RW, 1334 &stat_jwait_newblk, 0, ""); 1335 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_blkrequests, CTLFLAG_RW, 1336 &stat_cleanup_blkrequests, 0, ""); 1337 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_inorequests, CTLFLAG_RW, 1338 &stat_cleanup_inorequests, 0, ""); 1339 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_high_delay, CTLFLAG_RW, 1340 &stat_cleanup_high_delay, 0, ""); 1341 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_retries, CTLFLAG_RW, 1342 &stat_cleanup_retries, 0, ""); 1343 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_failures, CTLFLAG_RW, 1344 &stat_cleanup_failures, 0, ""); 1345 SYSCTL_INT(_debug_softdep, OID_AUTO, flushcache, CTLFLAG_RW, 1346 &softdep_flushcache, 0, ""); 1347 SYSCTL_INT(_debug_softdep, OID_AUTO, emptyjblocks, CTLFLAG_RD, 1348 &stat_emptyjblocks, 0, ""); 1349 1350 SYSCTL_DECL(_vfs_ffs); 1351 1352 /* Whether to recompute the summary at mount time */ 1353 static int compute_summary_at_mount = 0; 1354 SYSCTL_INT(_vfs_ffs, OID_AUTO, compute_summary_at_mount, CTLFLAG_RW, 1355 &compute_summary_at_mount, 0, "Recompute summary at mount"); 1356 static int print_threads = 0; 1357 SYSCTL_INT(_debug_softdep, OID_AUTO, print_threads, CTLFLAG_RW, 1358 &print_threads, 0, "Notify flusher thread start/stop"); 1359 1360 /* List of all filesystems mounted with soft updates */ 1361 static TAILQ_HEAD(, mount_softdeps) softdepmounts; 1362 1363 /* 1364 * This function cleans the worklist for a filesystem. 1365 * Each filesystem running with soft dependencies gets its own 1366 * thread to run in this function. The thread is started up in 1367 * softdep_mount and shutdown in softdep_unmount. They show up 1368 * as part of the kernel "bufdaemon" process whose process 1369 * entry is available in bufdaemonproc. 1370 */ 1371 static int searchfailed; 1372 extern struct proc *bufdaemonproc; 1373 static void 1374 softdep_flush(addr) 1375 void *addr; 1376 { 1377 struct mount *mp; 1378 struct thread *td; 1379 struct ufsmount *ump; 1380 1381 td = curthread; 1382 td->td_pflags |= TDP_NORUNNINGBUF; 1383 mp = (struct mount *)addr; 1384 ump = VFSTOUFS(mp); 1385 atomic_add_int(&stat_flush_threads, 1); 1386 ACQUIRE_LOCK(ump); 1387 ump->softdep_flags &= ~FLUSH_STARTING; 1388 wakeup(&ump->softdep_flushtd); 1389 FREE_LOCK(ump); 1390 if (print_threads) { 1391 if (stat_flush_threads == 1) 1392 printf("Running %s at pid %d\n", bufdaemonproc->p_comm, 1393 bufdaemonproc->p_pid); 1394 printf("Start thread %s\n", td->td_name); 1395 } 1396 for (;;) { 1397 while (softdep_process_worklist(mp, 0) > 0 || 1398 (MOUNTEDSUJ(mp) && 1399 VFSTOUFS(mp)->softdep_jblocks->jb_suspended)) 1400 kthread_suspend_check(); 1401 ACQUIRE_LOCK(ump); 1402 if ((ump->softdep_flags & (FLUSH_CLEANUP | FLUSH_EXIT)) == 0) 1403 msleep(&ump->softdep_flushtd, LOCK_PTR(ump), PVM, 1404 "sdflush", hz / 2); 1405 ump->softdep_flags &= ~FLUSH_CLEANUP; 1406 /* 1407 * Check to see if we are done and need to exit. 1408 */ 1409 if ((ump->softdep_flags & FLUSH_EXIT) == 0) { 1410 FREE_LOCK(ump); 1411 continue; 1412 } 1413 ump->softdep_flags &= ~FLUSH_EXIT; 1414 FREE_LOCK(ump); 1415 wakeup(&ump->softdep_flags); 1416 if (print_threads) 1417 printf("Stop thread %s: searchfailed %d, did cleanups %d\n", td->td_name, searchfailed, ump->um_softdep->sd_cleanups); 1418 atomic_subtract_int(&stat_flush_threads, 1); 1419 kthread_exit(); 1420 panic("kthread_exit failed\n"); 1421 } 1422 } 1423 1424 static void 1425 worklist_speedup(mp) 1426 struct mount *mp; 1427 { 1428 struct ufsmount *ump; 1429 1430 ump = VFSTOUFS(mp); 1431 LOCK_OWNED(ump); 1432 if ((ump->softdep_flags & (FLUSH_CLEANUP | FLUSH_EXIT)) == 0) 1433 ump->softdep_flags |= FLUSH_CLEANUP; 1434 wakeup(&ump->softdep_flushtd); 1435 } 1436 1437 static int 1438 softdep_speedup(ump) 1439 struct ufsmount *ump; 1440 { 1441 struct ufsmount *altump; 1442 struct mount_softdeps *sdp; 1443 1444 LOCK_OWNED(ump); 1445 worklist_speedup(ump->um_mountp); 1446 bd_speedup(); 1447 /* 1448 * If we have global shortages, then we need other 1449 * filesystems to help with the cleanup. Here we wakeup a 1450 * flusher thread for a filesystem that is over its fair 1451 * share of resources. 1452 */ 1453 if (req_clear_inodedeps || req_clear_remove) { 1454 ACQUIRE_GBLLOCK(&lk); 1455 TAILQ_FOREACH(sdp, &softdepmounts, sd_next) { 1456 if ((altump = sdp->sd_ump) == ump) 1457 continue; 1458 if (((req_clear_inodedeps && 1459 altump->softdep_curdeps[D_INODEDEP] > 1460 max_softdeps / stat_flush_threads) || 1461 (req_clear_remove && 1462 altump->softdep_curdeps[D_DIRREM] > 1463 (max_softdeps / 2) / stat_flush_threads)) && 1464 TRY_ACQUIRE_LOCK(altump)) 1465 break; 1466 } 1467 if (sdp == NULL) { 1468 searchfailed++; 1469 FREE_GBLLOCK(&lk); 1470 } else { 1471 /* 1472 * Move to the end of the list so we pick a 1473 * different one on out next try. 1474 */ 1475 TAILQ_REMOVE(&softdepmounts, sdp, sd_next); 1476 TAILQ_INSERT_TAIL(&softdepmounts, sdp, sd_next); 1477 FREE_GBLLOCK(&lk); 1478 if ((altump->softdep_flags & 1479 (FLUSH_CLEANUP | FLUSH_EXIT)) == 0) 1480 altump->softdep_flags |= FLUSH_CLEANUP; 1481 altump->um_softdep->sd_cleanups++; 1482 wakeup(&altump->softdep_flushtd); 1483 FREE_LOCK(altump); 1484 } 1485 } 1486 return (speedup_syncer()); 1487 } 1488 1489 /* 1490 * Add an item to the end of the work queue. 1491 * This routine requires that the lock be held. 1492 * This is the only routine that adds items to the list. 1493 * The following routine is the only one that removes items 1494 * and does so in order from first to last. 1495 */ 1496 1497 #define WK_HEAD 0x0001 /* Add to HEAD. */ 1498 #define WK_NODELAY 0x0002 /* Process immediately. */ 1499 1500 static void 1501 add_to_worklist(wk, flags) 1502 struct worklist *wk; 1503 int flags; 1504 { 1505 struct ufsmount *ump; 1506 1507 ump = VFSTOUFS(wk->wk_mp); 1508 LOCK_OWNED(ump); 1509 if (wk->wk_state & ONWORKLIST) 1510 panic("add_to_worklist: %s(0x%X) already on list", 1511 TYPENAME(wk->wk_type), wk->wk_state); 1512 wk->wk_state |= ONWORKLIST; 1513 if (ump->softdep_on_worklist == 0) { 1514 LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list); 1515 ump->softdep_worklist_tail = wk; 1516 } else if (flags & WK_HEAD) { 1517 LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list); 1518 } else { 1519 LIST_INSERT_AFTER(ump->softdep_worklist_tail, wk, wk_list); 1520 ump->softdep_worklist_tail = wk; 1521 } 1522 ump->softdep_on_worklist += 1; 1523 if (flags & WK_NODELAY) 1524 worklist_speedup(wk->wk_mp); 1525 } 1526 1527 /* 1528 * Remove the item to be processed. If we are removing the last 1529 * item on the list, we need to recalculate the tail pointer. 1530 */ 1531 static void 1532 remove_from_worklist(wk) 1533 struct worklist *wk; 1534 { 1535 struct ufsmount *ump; 1536 1537 ump = VFSTOUFS(wk->wk_mp); 1538 WORKLIST_REMOVE(wk); 1539 if (ump->softdep_worklist_tail == wk) 1540 ump->softdep_worklist_tail = 1541 (struct worklist *)wk->wk_list.le_prev; 1542 ump->softdep_on_worklist -= 1; 1543 } 1544 1545 static void 1546 wake_worklist(wk) 1547 struct worklist *wk; 1548 { 1549 if (wk->wk_state & IOWAITING) { 1550 wk->wk_state &= ~IOWAITING; 1551 wakeup(wk); 1552 } 1553 } 1554 1555 static void 1556 wait_worklist(wk, wmesg) 1557 struct worklist *wk; 1558 char *wmesg; 1559 { 1560 struct ufsmount *ump; 1561 1562 ump = VFSTOUFS(wk->wk_mp); 1563 wk->wk_state |= IOWAITING; 1564 msleep(wk, LOCK_PTR(ump), PVM, wmesg, 0); 1565 } 1566 1567 /* 1568 * Process that runs once per second to handle items in the background queue. 1569 * 1570 * Note that we ensure that everything is done in the order in which they 1571 * appear in the queue. The code below depends on this property to ensure 1572 * that blocks of a file are freed before the inode itself is freed. This 1573 * ordering ensures that no new <vfsid, inum, lbn> triples will be generated 1574 * until all the old ones have been purged from the dependency lists. 1575 */ 1576 static int 1577 softdep_process_worklist(mp, full) 1578 struct mount *mp; 1579 int full; 1580 { 1581 int cnt, matchcnt; 1582 struct ufsmount *ump; 1583 long starttime; 1584 1585 KASSERT(mp != NULL, ("softdep_process_worklist: NULL mp")); 1586 if (MOUNTEDSOFTDEP(mp) == 0) 1587 return (0); 1588 matchcnt = 0; 1589 ump = VFSTOUFS(mp); 1590 ACQUIRE_LOCK(ump); 1591 starttime = time_second; 1592 softdep_process_journal(mp, NULL, full ? MNT_WAIT : 0); 1593 check_clear_deps(mp); 1594 while (ump->softdep_on_worklist > 0) { 1595 if ((cnt = process_worklist_item(mp, 10, LK_NOWAIT)) == 0) 1596 break; 1597 else 1598 matchcnt += cnt; 1599 check_clear_deps(mp); 1600 /* 1601 * We do not generally want to stop for buffer space, but if 1602 * we are really being a buffer hog, we will stop and wait. 1603 */ 1604 if (should_yield()) { 1605 FREE_LOCK(ump); 1606 kern_yield(PRI_USER); 1607 bwillwrite(); 1608 ACQUIRE_LOCK(ump); 1609 } 1610 /* 1611 * Never allow processing to run for more than one 1612 * second. This gives the syncer thread the opportunity 1613 * to pause if appropriate. 1614 */ 1615 if (!full && starttime != time_second) 1616 break; 1617 } 1618 if (full == 0) 1619 journal_unsuspend(ump); 1620 FREE_LOCK(ump); 1621 return (matchcnt); 1622 } 1623 1624 /* 1625 * Process all removes associated with a vnode if we are running out of 1626 * journal space. Any other process which attempts to flush these will 1627 * be unable as we have the vnodes locked. 1628 */ 1629 static void 1630 process_removes(vp) 1631 struct vnode *vp; 1632 { 1633 struct inodedep *inodedep; 1634 struct dirrem *dirrem; 1635 struct ufsmount *ump; 1636 struct mount *mp; 1637 ino_t inum; 1638 1639 mp = vp->v_mount; 1640 ump = VFSTOUFS(mp); 1641 LOCK_OWNED(ump); 1642 inum = VTOI(vp)->i_number; 1643 for (;;) { 1644 top: 1645 if (inodedep_lookup(mp, inum, 0, &inodedep) == 0) 1646 return; 1647 LIST_FOREACH(dirrem, &inodedep->id_dirremhd, dm_inonext) { 1648 /* 1649 * If another thread is trying to lock this vnode 1650 * it will fail but we must wait for it to do so 1651 * before we can proceed. 1652 */ 1653 if (dirrem->dm_state & INPROGRESS) { 1654 wait_worklist(&dirrem->dm_list, "pwrwait"); 1655 goto top; 1656 } 1657 if ((dirrem->dm_state & (COMPLETE | ONWORKLIST)) == 1658 (COMPLETE | ONWORKLIST)) 1659 break; 1660 } 1661 if (dirrem == NULL) 1662 return; 1663 remove_from_worklist(&dirrem->dm_list); 1664 FREE_LOCK(ump); 1665 if (vn_start_secondary_write(NULL, &mp, V_NOWAIT)) 1666 panic("process_removes: suspended filesystem"); 1667 handle_workitem_remove(dirrem, 0); 1668 vn_finished_secondary_write(mp); 1669 ACQUIRE_LOCK(ump); 1670 } 1671 } 1672 1673 /* 1674 * Process all truncations associated with a vnode if we are running out 1675 * of journal space. This is called when the vnode lock is already held 1676 * and no other process can clear the truncation. This function returns 1677 * a value greater than zero if it did any work. 1678 */ 1679 static void 1680 process_truncates(vp) 1681 struct vnode *vp; 1682 { 1683 struct inodedep *inodedep; 1684 struct freeblks *freeblks; 1685 struct ufsmount *ump; 1686 struct mount *mp; 1687 ino_t inum; 1688 int cgwait; 1689 1690 mp = vp->v_mount; 1691 ump = VFSTOUFS(mp); 1692 LOCK_OWNED(ump); 1693 inum = VTOI(vp)->i_number; 1694 for (;;) { 1695 if (inodedep_lookup(mp, inum, 0, &inodedep) == 0) 1696 return; 1697 cgwait = 0; 1698 TAILQ_FOREACH(freeblks, &inodedep->id_freeblklst, fb_next) { 1699 /* Journal entries not yet written. */ 1700 if (!LIST_EMPTY(&freeblks->fb_jblkdephd)) { 1701 jwait(&LIST_FIRST( 1702 &freeblks->fb_jblkdephd)->jb_list, 1703 MNT_WAIT); 1704 break; 1705 } 1706 /* Another thread is executing this item. */ 1707 if (freeblks->fb_state & INPROGRESS) { 1708 wait_worklist(&freeblks->fb_list, "ptrwait"); 1709 break; 1710 } 1711 /* Freeblks is waiting on a inode write. */ 1712 if ((freeblks->fb_state & COMPLETE) == 0) { 1713 FREE_LOCK(ump); 1714 ffs_update(vp, 1); 1715 ACQUIRE_LOCK(ump); 1716 break; 1717 } 1718 if ((freeblks->fb_state & (ALLCOMPLETE | ONWORKLIST)) == 1719 (ALLCOMPLETE | ONWORKLIST)) { 1720 remove_from_worklist(&freeblks->fb_list); 1721 freeblks->fb_state |= INPROGRESS; 1722 FREE_LOCK(ump); 1723 if (vn_start_secondary_write(NULL, &mp, 1724 V_NOWAIT)) 1725 panic("process_truncates: " 1726 "suspended filesystem"); 1727 handle_workitem_freeblocks(freeblks, 0); 1728 vn_finished_secondary_write(mp); 1729 ACQUIRE_LOCK(ump); 1730 break; 1731 } 1732 if (freeblks->fb_cgwait) 1733 cgwait++; 1734 } 1735 if (cgwait) { 1736 FREE_LOCK(ump); 1737 sync_cgs(mp, MNT_WAIT); 1738 ffs_sync_snap(mp, MNT_WAIT); 1739 ACQUIRE_LOCK(ump); 1740 continue; 1741 } 1742 if (freeblks == NULL) 1743 break; 1744 } 1745 return; 1746 } 1747 1748 /* 1749 * Process one item on the worklist. 1750 */ 1751 static int 1752 process_worklist_item(mp, target, flags) 1753 struct mount *mp; 1754 int target; 1755 int flags; 1756 { 1757 struct worklist sentinel; 1758 struct worklist *wk; 1759 struct ufsmount *ump; 1760 int matchcnt; 1761 int error; 1762 1763 KASSERT(mp != NULL, ("process_worklist_item: NULL mp")); 1764 /* 1765 * If we are being called because of a process doing a 1766 * copy-on-write, then it is not safe to write as we may 1767 * recurse into the copy-on-write routine. 1768 */ 1769 if (curthread->td_pflags & TDP_COWINPROGRESS) 1770 return (-1); 1771 PHOLD(curproc); /* Don't let the stack go away. */ 1772 ump = VFSTOUFS(mp); 1773 LOCK_OWNED(ump); 1774 matchcnt = 0; 1775 sentinel.wk_mp = NULL; 1776 sentinel.wk_type = D_SENTINEL; 1777 LIST_INSERT_HEAD(&ump->softdep_workitem_pending, &sentinel, wk_list); 1778 for (wk = LIST_NEXT(&sentinel, wk_list); wk != NULL; 1779 wk = LIST_NEXT(&sentinel, wk_list)) { 1780 if (wk->wk_type == D_SENTINEL) { 1781 LIST_REMOVE(&sentinel, wk_list); 1782 LIST_INSERT_AFTER(wk, &sentinel, wk_list); 1783 continue; 1784 } 1785 if (wk->wk_state & INPROGRESS) 1786 panic("process_worklist_item: %p already in progress.", 1787 wk); 1788 wk->wk_state |= INPROGRESS; 1789 remove_from_worklist(wk); 1790 FREE_LOCK(ump); 1791 if (vn_start_secondary_write(NULL, &mp, V_NOWAIT)) 1792 panic("process_worklist_item: suspended filesystem"); 1793 switch (wk->wk_type) { 1794 case D_DIRREM: 1795 /* removal of a directory entry */ 1796 error = handle_workitem_remove(WK_DIRREM(wk), flags); 1797 break; 1798 1799 case D_FREEBLKS: 1800 /* releasing blocks and/or fragments from a file */ 1801 error = handle_workitem_freeblocks(WK_FREEBLKS(wk), 1802 flags); 1803 break; 1804 1805 case D_FREEFRAG: 1806 /* releasing a fragment when replaced as a file grows */ 1807 handle_workitem_freefrag(WK_FREEFRAG(wk)); 1808 error = 0; 1809 break; 1810 1811 case D_FREEFILE: 1812 /* releasing an inode when its link count drops to 0 */ 1813 handle_workitem_freefile(WK_FREEFILE(wk)); 1814 error = 0; 1815 break; 1816 1817 default: 1818 panic("%s_process_worklist: Unknown type %s", 1819 "softdep", TYPENAME(wk->wk_type)); 1820 /* NOTREACHED */ 1821 } 1822 vn_finished_secondary_write(mp); 1823 ACQUIRE_LOCK(ump); 1824 if (error == 0) { 1825 if (++matchcnt == target) 1826 break; 1827 continue; 1828 } 1829 /* 1830 * We have to retry the worklist item later. Wake up any 1831 * waiters who may be able to complete it immediately and 1832 * add the item back to the head so we don't try to execute 1833 * it again. 1834 */ 1835 wk->wk_state &= ~INPROGRESS; 1836 wake_worklist(wk); 1837 add_to_worklist(wk, WK_HEAD); 1838 } 1839 LIST_REMOVE(&sentinel, wk_list); 1840 /* Sentinal could've become the tail from remove_from_worklist. */ 1841 if (ump->softdep_worklist_tail == &sentinel) 1842 ump->softdep_worklist_tail = 1843 (struct worklist *)sentinel.wk_list.le_prev; 1844 PRELE(curproc); 1845 return (matchcnt); 1846 } 1847 1848 /* 1849 * Move dependencies from one buffer to another. 1850 */ 1851 int 1852 softdep_move_dependencies(oldbp, newbp) 1853 struct buf *oldbp; 1854 struct buf *newbp; 1855 { 1856 struct worklist *wk, *wktail; 1857 struct ufsmount *ump; 1858 int dirty; 1859 1860 if ((wk = LIST_FIRST(&oldbp->b_dep)) == NULL) 1861 return (0); 1862 KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0, 1863 ("softdep_move_dependencies called on non-softdep filesystem")); 1864 dirty = 0; 1865 wktail = NULL; 1866 ump = VFSTOUFS(wk->wk_mp); 1867 ACQUIRE_LOCK(ump); 1868 while ((wk = LIST_FIRST(&oldbp->b_dep)) != NULL) { 1869 LIST_REMOVE(wk, wk_list); 1870 if (wk->wk_type == D_BMSAFEMAP && 1871 bmsafemap_backgroundwrite(WK_BMSAFEMAP(wk), newbp)) 1872 dirty = 1; 1873 if (wktail == NULL) 1874 LIST_INSERT_HEAD(&newbp->b_dep, wk, wk_list); 1875 else 1876 LIST_INSERT_AFTER(wktail, wk, wk_list); 1877 wktail = wk; 1878 } 1879 FREE_LOCK(ump); 1880 1881 return (dirty); 1882 } 1883 1884 /* 1885 * Purge the work list of all items associated with a particular mount point. 1886 */ 1887 int 1888 softdep_flushworklist(oldmnt, countp, td) 1889 struct mount *oldmnt; 1890 int *countp; 1891 struct thread *td; 1892 { 1893 struct vnode *devvp; 1894 struct ufsmount *ump; 1895 int count, error; 1896 1897 /* 1898 * Alternately flush the block device associated with the mount 1899 * point and process any dependencies that the flushing 1900 * creates. We continue until no more worklist dependencies 1901 * are found. 1902 */ 1903 *countp = 0; 1904 error = 0; 1905 ump = VFSTOUFS(oldmnt); 1906 devvp = ump->um_devvp; 1907 while ((count = softdep_process_worklist(oldmnt, 1)) > 0) { 1908 *countp += count; 1909 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY); 1910 error = VOP_FSYNC(devvp, MNT_WAIT, td); 1911 VOP_UNLOCK(devvp, 0); 1912 if (error != 0) 1913 break; 1914 } 1915 return (error); 1916 } 1917 1918 #define SU_WAITIDLE_RETRIES 20 1919 static int 1920 softdep_waitidle(struct mount *mp, int flags __unused) 1921 { 1922 struct ufsmount *ump; 1923 struct vnode *devvp; 1924 struct thread *td; 1925 int error, i; 1926 1927 ump = VFSTOUFS(mp); 1928 devvp = ump->um_devvp; 1929 td = curthread; 1930 error = 0; 1931 ACQUIRE_LOCK(ump); 1932 for (i = 0; i < SU_WAITIDLE_RETRIES && ump->softdep_deps != 0; i++) { 1933 ump->softdep_req = 1; 1934 KASSERT((flags & FORCECLOSE) == 0 || 1935 ump->softdep_on_worklist == 0, 1936 ("softdep_waitidle: work added after flush")); 1937 msleep(&ump->softdep_deps, LOCK_PTR(ump), PVM | PDROP, 1938 "softdeps", 10 * hz); 1939 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY); 1940 error = VOP_FSYNC(devvp, MNT_WAIT, td); 1941 VOP_UNLOCK(devvp, 0); 1942 ACQUIRE_LOCK(ump); 1943 if (error != 0) 1944 break; 1945 } 1946 ump->softdep_req = 0; 1947 if (i == SU_WAITIDLE_RETRIES && error == 0 && ump->softdep_deps != 0) { 1948 error = EBUSY; 1949 printf("softdep_waitidle: Failed to flush worklist for %p\n", 1950 mp); 1951 } 1952 FREE_LOCK(ump); 1953 return (error); 1954 } 1955 1956 /* 1957 * Flush all vnodes and worklist items associated with a specified mount point. 1958 */ 1959 int 1960 softdep_flushfiles(oldmnt, flags, td) 1961 struct mount *oldmnt; 1962 int flags; 1963 struct thread *td; 1964 { 1965 #ifdef QUOTA 1966 struct ufsmount *ump; 1967 int i; 1968 #endif 1969 int error, early, depcount, loopcnt, retry_flush_count, retry; 1970 int morework; 1971 1972 KASSERT(MOUNTEDSOFTDEP(oldmnt) != 0, 1973 ("softdep_flushfiles called on non-softdep filesystem")); 1974 loopcnt = 10; 1975 retry_flush_count = 3; 1976 retry_flush: 1977 error = 0; 1978 1979 /* 1980 * Alternately flush the vnodes associated with the mount 1981 * point and process any dependencies that the flushing 1982 * creates. In theory, this loop can happen at most twice, 1983 * but we give it a few extra just to be sure. 1984 */ 1985 for (; loopcnt > 0; loopcnt--) { 1986 /* 1987 * Do another flush in case any vnodes were brought in 1988 * as part of the cleanup operations. 1989 */ 1990 early = retry_flush_count == 1 || (oldmnt->mnt_kern_flag & 1991 MNTK_UNMOUNT) == 0 ? 0 : EARLYFLUSH; 1992 if ((error = ffs_flushfiles(oldmnt, flags | early, td)) != 0) 1993 break; 1994 if ((error = softdep_flushworklist(oldmnt, &depcount, td)) != 0 || 1995 depcount == 0) 1996 break; 1997 } 1998 /* 1999 * If we are unmounting then it is an error to fail. If we 2000 * are simply trying to downgrade to read-only, then filesystem 2001 * activity can keep us busy forever, so we just fail with EBUSY. 2002 */ 2003 if (loopcnt == 0) { 2004 if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT) 2005 panic("softdep_flushfiles: looping"); 2006 error = EBUSY; 2007 } 2008 if (!error) 2009 error = softdep_waitidle(oldmnt, flags); 2010 if (!error) { 2011 if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT) { 2012 retry = 0; 2013 MNT_ILOCK(oldmnt); 2014 KASSERT((oldmnt->mnt_kern_flag & MNTK_NOINSMNTQ) != 0, 2015 ("softdep_flushfiles: !MNTK_NOINSMNTQ")); 2016 morework = oldmnt->mnt_nvnodelistsize > 0; 2017 #ifdef QUOTA 2018 ump = VFSTOUFS(oldmnt); 2019 UFS_LOCK(ump); 2020 for (i = 0; i < MAXQUOTAS; i++) { 2021 if (ump->um_quotas[i] != NULLVP) 2022 morework = 1; 2023 } 2024 UFS_UNLOCK(ump); 2025 #endif 2026 if (morework) { 2027 if (--retry_flush_count > 0) { 2028 retry = 1; 2029 loopcnt = 3; 2030 } else 2031 error = EBUSY; 2032 } 2033 MNT_IUNLOCK(oldmnt); 2034 if (retry) 2035 goto retry_flush; 2036 } 2037 } 2038 return (error); 2039 } 2040 2041 /* 2042 * Structure hashing. 2043 * 2044 * There are four types of structures that can be looked up: 2045 * 1) pagedep structures identified by mount point, inode number, 2046 * and logical block. 2047 * 2) inodedep structures identified by mount point and inode number. 2048 * 3) newblk structures identified by mount point and 2049 * physical block number. 2050 * 4) bmsafemap structures identified by mount point and 2051 * cylinder group number. 2052 * 2053 * The "pagedep" and "inodedep" dependency structures are hashed 2054 * separately from the file blocks and inodes to which they correspond. 2055 * This separation helps when the in-memory copy of an inode or 2056 * file block must be replaced. It also obviates the need to access 2057 * an inode or file page when simply updating (or de-allocating) 2058 * dependency structures. Lookup of newblk structures is needed to 2059 * find newly allocated blocks when trying to associate them with 2060 * their allocdirect or allocindir structure. 2061 * 2062 * The lookup routines optionally create and hash a new instance when 2063 * an existing entry is not found. The bmsafemap lookup routine always 2064 * allocates a new structure if an existing one is not found. 2065 */ 2066 #define DEPALLOC 0x0001 /* allocate structure if lookup fails */ 2067 2068 /* 2069 * Structures and routines associated with pagedep caching. 2070 */ 2071 #define PAGEDEP_HASH(ump, inum, lbn) \ 2072 (&(ump)->pagedep_hashtbl[((inum) + (lbn)) & (ump)->pagedep_hash_size]) 2073 2074 static int 2075 pagedep_find(pagedephd, ino, lbn, pagedeppp) 2076 struct pagedep_hashhead *pagedephd; 2077 ino_t ino; 2078 ufs_lbn_t lbn; 2079 struct pagedep **pagedeppp; 2080 { 2081 struct pagedep *pagedep; 2082 2083 LIST_FOREACH(pagedep, pagedephd, pd_hash) { 2084 if (ino == pagedep->pd_ino && lbn == pagedep->pd_lbn) { 2085 *pagedeppp = pagedep; 2086 return (1); 2087 } 2088 } 2089 *pagedeppp = NULL; 2090 return (0); 2091 } 2092 /* 2093 * Look up a pagedep. Return 1 if found, 0 otherwise. 2094 * If not found, allocate if DEPALLOC flag is passed. 2095 * Found or allocated entry is returned in pagedeppp. 2096 * This routine must be called with splbio interrupts blocked. 2097 */ 2098 static int 2099 pagedep_lookup(mp, bp, ino, lbn, flags, pagedeppp) 2100 struct mount *mp; 2101 struct buf *bp; 2102 ino_t ino; 2103 ufs_lbn_t lbn; 2104 int flags; 2105 struct pagedep **pagedeppp; 2106 { 2107 struct pagedep *pagedep; 2108 struct pagedep_hashhead *pagedephd; 2109 struct worklist *wk; 2110 struct ufsmount *ump; 2111 int ret; 2112 int i; 2113 2114 ump = VFSTOUFS(mp); 2115 LOCK_OWNED(ump); 2116 if (bp) { 2117 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 2118 if (wk->wk_type == D_PAGEDEP) { 2119 *pagedeppp = WK_PAGEDEP(wk); 2120 return (1); 2121 } 2122 } 2123 } 2124 pagedephd = PAGEDEP_HASH(ump, ino, lbn); 2125 ret = pagedep_find(pagedephd, ino, lbn, pagedeppp); 2126 if (ret) { 2127 if (((*pagedeppp)->pd_state & ONWORKLIST) == 0 && bp) 2128 WORKLIST_INSERT(&bp->b_dep, &(*pagedeppp)->pd_list); 2129 return (1); 2130 } 2131 if ((flags & DEPALLOC) == 0) 2132 return (0); 2133 FREE_LOCK(ump); 2134 pagedep = malloc(sizeof(struct pagedep), 2135 M_PAGEDEP, M_SOFTDEP_FLAGS|M_ZERO); 2136 workitem_alloc(&pagedep->pd_list, D_PAGEDEP, mp); 2137 ACQUIRE_LOCK(ump); 2138 ret = pagedep_find(pagedephd, ino, lbn, pagedeppp); 2139 if (*pagedeppp) { 2140 /* 2141 * This should never happen since we only create pagedeps 2142 * with the vnode lock held. Could be an assert. 2143 */ 2144 WORKITEM_FREE(pagedep, D_PAGEDEP); 2145 return (ret); 2146 } 2147 pagedep->pd_ino = ino; 2148 pagedep->pd_lbn = lbn; 2149 LIST_INIT(&pagedep->pd_dirremhd); 2150 LIST_INIT(&pagedep->pd_pendinghd); 2151 for (i = 0; i < DAHASHSZ; i++) 2152 LIST_INIT(&pagedep->pd_diraddhd[i]); 2153 LIST_INSERT_HEAD(pagedephd, pagedep, pd_hash); 2154 WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list); 2155 *pagedeppp = pagedep; 2156 return (0); 2157 } 2158 2159 /* 2160 * Structures and routines associated with inodedep caching. 2161 */ 2162 #define INODEDEP_HASH(ump, inum) \ 2163 (&(ump)->inodedep_hashtbl[(inum) & (ump)->inodedep_hash_size]) 2164 2165 static int 2166 inodedep_find(inodedephd, inum, inodedeppp) 2167 struct inodedep_hashhead *inodedephd; 2168 ino_t inum; 2169 struct inodedep **inodedeppp; 2170 { 2171 struct inodedep *inodedep; 2172 2173 LIST_FOREACH(inodedep, inodedephd, id_hash) 2174 if (inum == inodedep->id_ino) 2175 break; 2176 if (inodedep) { 2177 *inodedeppp = inodedep; 2178 return (1); 2179 } 2180 *inodedeppp = NULL; 2181 2182 return (0); 2183 } 2184 /* 2185 * Look up an inodedep. Return 1 if found, 0 if not found. 2186 * If not found, allocate if DEPALLOC flag is passed. 2187 * Found or allocated entry is returned in inodedeppp. 2188 * This routine must be called with splbio interrupts blocked. 2189 */ 2190 static int 2191 inodedep_lookup(mp, inum, flags, inodedeppp) 2192 struct mount *mp; 2193 ino_t inum; 2194 int flags; 2195 struct inodedep **inodedeppp; 2196 { 2197 struct inodedep *inodedep; 2198 struct inodedep_hashhead *inodedephd; 2199 struct ufsmount *ump; 2200 struct fs *fs; 2201 2202 ump = VFSTOUFS(mp); 2203 LOCK_OWNED(ump); 2204 fs = ump->um_fs; 2205 inodedephd = INODEDEP_HASH(ump, inum); 2206 2207 if (inodedep_find(inodedephd, inum, inodedeppp)) 2208 return (1); 2209 if ((flags & DEPALLOC) == 0) 2210 return (0); 2211 /* 2212 * If the system is over its limit and our filesystem is 2213 * responsible for more than our share of that usage and 2214 * we are not in a rush, request some inodedep cleanup. 2215 */ 2216 if (softdep_excess_items(ump, D_INODEDEP)) 2217 schedule_cleanup(mp); 2218 else 2219 FREE_LOCK(ump); 2220 inodedep = malloc(sizeof(struct inodedep), 2221 M_INODEDEP, M_SOFTDEP_FLAGS); 2222 workitem_alloc(&inodedep->id_list, D_INODEDEP, mp); 2223 ACQUIRE_LOCK(ump); 2224 if (inodedep_find(inodedephd, inum, inodedeppp)) { 2225 WORKITEM_FREE(inodedep, D_INODEDEP); 2226 return (1); 2227 } 2228 inodedep->id_fs = fs; 2229 inodedep->id_ino = inum; 2230 inodedep->id_state = ALLCOMPLETE; 2231 inodedep->id_nlinkdelta = 0; 2232 inodedep->id_savedino1 = NULL; 2233 inodedep->id_savedsize = -1; 2234 inodedep->id_savedextsize = -1; 2235 inodedep->id_savednlink = -1; 2236 inodedep->id_bmsafemap = NULL; 2237 inodedep->id_mkdiradd = NULL; 2238 LIST_INIT(&inodedep->id_dirremhd); 2239 LIST_INIT(&inodedep->id_pendinghd); 2240 LIST_INIT(&inodedep->id_inowait); 2241 LIST_INIT(&inodedep->id_bufwait); 2242 TAILQ_INIT(&inodedep->id_inoreflst); 2243 TAILQ_INIT(&inodedep->id_inoupdt); 2244 TAILQ_INIT(&inodedep->id_newinoupdt); 2245 TAILQ_INIT(&inodedep->id_extupdt); 2246 TAILQ_INIT(&inodedep->id_newextupdt); 2247 TAILQ_INIT(&inodedep->id_freeblklst); 2248 LIST_INSERT_HEAD(inodedephd, inodedep, id_hash); 2249 *inodedeppp = inodedep; 2250 return (0); 2251 } 2252 2253 /* 2254 * Structures and routines associated with newblk caching. 2255 */ 2256 #define NEWBLK_HASH(ump, inum) \ 2257 (&(ump)->newblk_hashtbl[(inum) & (ump)->newblk_hash_size]) 2258 2259 static int 2260 newblk_find(newblkhd, newblkno, flags, newblkpp) 2261 struct newblk_hashhead *newblkhd; 2262 ufs2_daddr_t newblkno; 2263 int flags; 2264 struct newblk **newblkpp; 2265 { 2266 struct newblk *newblk; 2267 2268 LIST_FOREACH(newblk, newblkhd, nb_hash) { 2269 if (newblkno != newblk->nb_newblkno) 2270 continue; 2271 /* 2272 * If we're creating a new dependency don't match those that 2273 * have already been converted to allocdirects. This is for 2274 * a frag extend. 2275 */ 2276 if ((flags & DEPALLOC) && newblk->nb_list.wk_type != D_NEWBLK) 2277 continue; 2278 break; 2279 } 2280 if (newblk) { 2281 *newblkpp = newblk; 2282 return (1); 2283 } 2284 *newblkpp = NULL; 2285 return (0); 2286 } 2287 2288 /* 2289 * Look up a newblk. Return 1 if found, 0 if not found. 2290 * If not found, allocate if DEPALLOC flag is passed. 2291 * Found or allocated entry is returned in newblkpp. 2292 */ 2293 static int 2294 newblk_lookup(mp, newblkno, flags, newblkpp) 2295 struct mount *mp; 2296 ufs2_daddr_t newblkno; 2297 int flags; 2298 struct newblk **newblkpp; 2299 { 2300 struct newblk *newblk; 2301 struct newblk_hashhead *newblkhd; 2302 struct ufsmount *ump; 2303 2304 ump = VFSTOUFS(mp); 2305 LOCK_OWNED(ump); 2306 newblkhd = NEWBLK_HASH(ump, newblkno); 2307 if (newblk_find(newblkhd, newblkno, flags, newblkpp)) 2308 return (1); 2309 if ((flags & DEPALLOC) == 0) 2310 return (0); 2311 if (softdep_excess_items(ump, D_NEWBLK) || 2312 softdep_excess_items(ump, D_ALLOCDIRECT) || 2313 softdep_excess_items(ump, D_ALLOCINDIR)) 2314 schedule_cleanup(mp); 2315 else 2316 FREE_LOCK(ump); 2317 newblk = malloc(sizeof(union allblk), M_NEWBLK, 2318 M_SOFTDEP_FLAGS | M_ZERO); 2319 workitem_alloc(&newblk->nb_list, D_NEWBLK, mp); 2320 ACQUIRE_LOCK(ump); 2321 if (newblk_find(newblkhd, newblkno, flags, newblkpp)) { 2322 WORKITEM_FREE(newblk, D_NEWBLK); 2323 return (1); 2324 } 2325 newblk->nb_freefrag = NULL; 2326 LIST_INIT(&newblk->nb_indirdeps); 2327 LIST_INIT(&newblk->nb_newdirblk); 2328 LIST_INIT(&newblk->nb_jwork); 2329 newblk->nb_state = ATTACHED; 2330 newblk->nb_newblkno = newblkno; 2331 LIST_INSERT_HEAD(newblkhd, newblk, nb_hash); 2332 *newblkpp = newblk; 2333 return (0); 2334 } 2335 2336 /* 2337 * Structures and routines associated with freed indirect block caching. 2338 */ 2339 #define INDIR_HASH(ump, blkno) \ 2340 (&(ump)->indir_hashtbl[(blkno) & (ump)->indir_hash_size]) 2341 2342 /* 2343 * Lookup an indirect block in the indir hash table. The freework is 2344 * removed and potentially freed. The caller must do a blocking journal 2345 * write before writing to the blkno. 2346 */ 2347 static int 2348 indirblk_lookup(mp, blkno) 2349 struct mount *mp; 2350 ufs2_daddr_t blkno; 2351 { 2352 struct freework *freework; 2353 struct indir_hashhead *wkhd; 2354 struct ufsmount *ump; 2355 2356 ump = VFSTOUFS(mp); 2357 wkhd = INDIR_HASH(ump, blkno); 2358 TAILQ_FOREACH(freework, wkhd, fw_next) { 2359 if (freework->fw_blkno != blkno) 2360 continue; 2361 indirblk_remove(freework); 2362 return (1); 2363 } 2364 return (0); 2365 } 2366 2367 /* 2368 * Insert an indirect block represented by freework into the indirblk 2369 * hash table so that it may prevent the block from being re-used prior 2370 * to the journal being written. 2371 */ 2372 static void 2373 indirblk_insert(freework) 2374 struct freework *freework; 2375 { 2376 struct jblocks *jblocks; 2377 struct jseg *jseg; 2378 struct ufsmount *ump; 2379 2380 ump = VFSTOUFS(freework->fw_list.wk_mp); 2381 jblocks = ump->softdep_jblocks; 2382 jseg = TAILQ_LAST(&jblocks->jb_segs, jseglst); 2383 if (jseg == NULL) 2384 return; 2385 2386 LIST_INSERT_HEAD(&jseg->js_indirs, freework, fw_segs); 2387 TAILQ_INSERT_HEAD(INDIR_HASH(ump, freework->fw_blkno), freework, 2388 fw_next); 2389 freework->fw_state &= ~DEPCOMPLETE; 2390 } 2391 2392 static void 2393 indirblk_remove(freework) 2394 struct freework *freework; 2395 { 2396 struct ufsmount *ump; 2397 2398 ump = VFSTOUFS(freework->fw_list.wk_mp); 2399 LIST_REMOVE(freework, fw_segs); 2400 TAILQ_REMOVE(INDIR_HASH(ump, freework->fw_blkno), freework, fw_next); 2401 freework->fw_state |= DEPCOMPLETE; 2402 if ((freework->fw_state & ALLCOMPLETE) == ALLCOMPLETE) 2403 WORKITEM_FREE(freework, D_FREEWORK); 2404 } 2405 2406 /* 2407 * Executed during filesystem system initialization before 2408 * mounting any filesystems. 2409 */ 2410 void 2411 softdep_initialize() 2412 { 2413 2414 TAILQ_INIT(&softdepmounts); 2415 #ifdef __LP64__ 2416 max_softdeps = desiredvnodes * 4; 2417 #else 2418 max_softdeps = desiredvnodes * 2; 2419 #endif 2420 2421 /* initialise bioops hack */ 2422 bioops.io_start = softdep_disk_io_initiation; 2423 bioops.io_complete = softdep_disk_write_complete; 2424 bioops.io_deallocate = softdep_deallocate_dependencies; 2425 bioops.io_countdeps = softdep_count_dependencies; 2426 softdep_ast_cleanup = softdep_ast_cleanup_proc; 2427 2428 /* Initialize the callout with an mtx. */ 2429 callout_init_mtx(&softdep_callout, &lk, 0); 2430 } 2431 2432 /* 2433 * Executed after all filesystems have been unmounted during 2434 * filesystem module unload. 2435 */ 2436 void 2437 softdep_uninitialize() 2438 { 2439 2440 /* clear bioops hack */ 2441 bioops.io_start = NULL; 2442 bioops.io_complete = NULL; 2443 bioops.io_deallocate = NULL; 2444 bioops.io_countdeps = NULL; 2445 softdep_ast_cleanup = NULL; 2446 2447 callout_drain(&softdep_callout); 2448 } 2449 2450 /* 2451 * Called at mount time to notify the dependency code that a 2452 * filesystem wishes to use it. 2453 */ 2454 int 2455 softdep_mount(devvp, mp, fs, cred) 2456 struct vnode *devvp; 2457 struct mount *mp; 2458 struct fs *fs; 2459 struct ucred *cred; 2460 { 2461 struct csum_total cstotal; 2462 struct mount_softdeps *sdp; 2463 struct ufsmount *ump; 2464 struct cg *cgp; 2465 struct buf *bp; 2466 int i, error, cyl; 2467 2468 sdp = malloc(sizeof(struct mount_softdeps), M_MOUNTDATA, 2469 M_WAITOK | M_ZERO); 2470 MNT_ILOCK(mp); 2471 mp->mnt_flag = (mp->mnt_flag & ~MNT_ASYNC) | MNT_SOFTDEP; 2472 if ((mp->mnt_kern_flag & MNTK_SOFTDEP) == 0) { 2473 mp->mnt_kern_flag = (mp->mnt_kern_flag & ~MNTK_ASYNC) | 2474 MNTK_SOFTDEP | MNTK_NOASYNC; 2475 } 2476 ump = VFSTOUFS(mp); 2477 ump->um_softdep = sdp; 2478 MNT_IUNLOCK(mp); 2479 rw_init(LOCK_PTR(ump), "Per-Filesystem Softdep Lock"); 2480 sdp->sd_ump = ump; 2481 LIST_INIT(&ump->softdep_workitem_pending); 2482 LIST_INIT(&ump->softdep_journal_pending); 2483 TAILQ_INIT(&ump->softdep_unlinked); 2484 LIST_INIT(&ump->softdep_dirtycg); 2485 ump->softdep_worklist_tail = NULL; 2486 ump->softdep_on_worklist = 0; 2487 ump->softdep_deps = 0; 2488 LIST_INIT(&ump->softdep_mkdirlisthd); 2489 ump->pagedep_hashtbl = hashinit(desiredvnodes / 5, M_PAGEDEP, 2490 &ump->pagedep_hash_size); 2491 ump->pagedep_nextclean = 0; 2492 ump->inodedep_hashtbl = hashinit(desiredvnodes, M_INODEDEP, 2493 &ump->inodedep_hash_size); 2494 ump->inodedep_nextclean = 0; 2495 ump->newblk_hashtbl = hashinit(max_softdeps / 2, M_NEWBLK, 2496 &ump->newblk_hash_size); 2497 ump->bmsafemap_hashtbl = hashinit(1024, M_BMSAFEMAP, 2498 &ump->bmsafemap_hash_size); 2499 i = 1 << (ffs(desiredvnodes / 10) - 1); 2500 ump->indir_hashtbl = malloc(i * sizeof(struct indir_hashhead), 2501 M_FREEWORK, M_WAITOK); 2502 ump->indir_hash_size = i - 1; 2503 for (i = 0; i <= ump->indir_hash_size; i++) 2504 TAILQ_INIT(&ump->indir_hashtbl[i]); 2505 ACQUIRE_GBLLOCK(&lk); 2506 TAILQ_INSERT_TAIL(&softdepmounts, sdp, sd_next); 2507 FREE_GBLLOCK(&lk); 2508 if ((fs->fs_flags & FS_SUJ) && 2509 (error = journal_mount(mp, fs, cred)) != 0) { 2510 printf("Failed to start journal: %d\n", error); 2511 softdep_unmount(mp); 2512 return (error); 2513 } 2514 /* 2515 * Start our flushing thread in the bufdaemon process. 2516 */ 2517 ACQUIRE_LOCK(ump); 2518 ump->softdep_flags |= FLUSH_STARTING; 2519 FREE_LOCK(ump); 2520 kproc_kthread_add(&softdep_flush, mp, &bufdaemonproc, 2521 &ump->softdep_flushtd, 0, 0, "softdepflush", "%s worker", 2522 mp->mnt_stat.f_mntonname); 2523 ACQUIRE_LOCK(ump); 2524 while ((ump->softdep_flags & FLUSH_STARTING) != 0) { 2525 msleep(&ump->softdep_flushtd, LOCK_PTR(ump), PVM, "sdstart", 2526 hz / 2); 2527 } 2528 FREE_LOCK(ump); 2529 /* 2530 * When doing soft updates, the counters in the 2531 * superblock may have gotten out of sync. Recomputation 2532 * can take a long time and can be deferred for background 2533 * fsck. However, the old behavior of scanning the cylinder 2534 * groups and recalculating them at mount time is available 2535 * by setting vfs.ffs.compute_summary_at_mount to one. 2536 */ 2537 if (compute_summary_at_mount == 0 || fs->fs_clean != 0) 2538 return (0); 2539 bzero(&cstotal, sizeof cstotal); 2540 for (cyl = 0; cyl < fs->fs_ncg; cyl++) { 2541 if ((error = bread(devvp, fsbtodb(fs, cgtod(fs, cyl)), 2542 fs->fs_cgsize, cred, &bp)) != 0) { 2543 brelse(bp); 2544 softdep_unmount(mp); 2545 return (error); 2546 } 2547 cgp = (struct cg *)bp->b_data; 2548 cstotal.cs_nffree += cgp->cg_cs.cs_nffree; 2549 cstotal.cs_nbfree += cgp->cg_cs.cs_nbfree; 2550 cstotal.cs_nifree += cgp->cg_cs.cs_nifree; 2551 cstotal.cs_ndir += cgp->cg_cs.cs_ndir; 2552 fs->fs_cs(fs, cyl) = cgp->cg_cs; 2553 brelse(bp); 2554 } 2555 #ifdef DEBUG 2556 if (bcmp(&cstotal, &fs->fs_cstotal, sizeof cstotal)) 2557 printf("%s: superblock summary recomputed\n", fs->fs_fsmnt); 2558 #endif 2559 bcopy(&cstotal, &fs->fs_cstotal, sizeof cstotal); 2560 return (0); 2561 } 2562 2563 void 2564 softdep_unmount(mp) 2565 struct mount *mp; 2566 { 2567 struct ufsmount *ump; 2568 #ifdef INVARIANTS 2569 int i; 2570 #endif 2571 2572 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 2573 ("softdep_unmount called on non-softdep filesystem")); 2574 ump = VFSTOUFS(mp); 2575 MNT_ILOCK(mp); 2576 mp->mnt_flag &= ~MNT_SOFTDEP; 2577 if (MOUNTEDSUJ(mp) == 0) { 2578 MNT_IUNLOCK(mp); 2579 } else { 2580 mp->mnt_flag &= ~MNT_SUJ; 2581 MNT_IUNLOCK(mp); 2582 journal_unmount(ump); 2583 } 2584 /* 2585 * Shut down our flushing thread. Check for NULL is if 2586 * softdep_mount errors out before the thread has been created. 2587 */ 2588 if (ump->softdep_flushtd != NULL) { 2589 ACQUIRE_LOCK(ump); 2590 ump->softdep_flags |= FLUSH_EXIT; 2591 wakeup(&ump->softdep_flushtd); 2592 msleep(&ump->softdep_flags, LOCK_PTR(ump), PVM | PDROP, 2593 "sdwait", 0); 2594 KASSERT((ump->softdep_flags & FLUSH_EXIT) == 0, 2595 ("Thread shutdown failed")); 2596 } 2597 /* 2598 * Free up our resources. 2599 */ 2600 ACQUIRE_GBLLOCK(&lk); 2601 TAILQ_REMOVE(&softdepmounts, ump->um_softdep, sd_next); 2602 FREE_GBLLOCK(&lk); 2603 rw_destroy(LOCK_PTR(ump)); 2604 hashdestroy(ump->pagedep_hashtbl, M_PAGEDEP, ump->pagedep_hash_size); 2605 hashdestroy(ump->inodedep_hashtbl, M_INODEDEP, ump->inodedep_hash_size); 2606 hashdestroy(ump->newblk_hashtbl, M_NEWBLK, ump->newblk_hash_size); 2607 hashdestroy(ump->bmsafemap_hashtbl, M_BMSAFEMAP, 2608 ump->bmsafemap_hash_size); 2609 free(ump->indir_hashtbl, M_FREEWORK); 2610 #ifdef INVARIANTS 2611 for (i = 0; i <= D_LAST; i++) 2612 KASSERT(ump->softdep_curdeps[i] == 0, 2613 ("Unmount %s: Dep type %s != 0 (%ld)", ump->um_fs->fs_fsmnt, 2614 TYPENAME(i), ump->softdep_curdeps[i])); 2615 #endif 2616 free(ump->um_softdep, M_MOUNTDATA); 2617 } 2618 2619 static struct jblocks * 2620 jblocks_create(void) 2621 { 2622 struct jblocks *jblocks; 2623 2624 jblocks = malloc(sizeof(*jblocks), M_JBLOCKS, M_WAITOK | M_ZERO); 2625 TAILQ_INIT(&jblocks->jb_segs); 2626 jblocks->jb_avail = 10; 2627 jblocks->jb_extent = malloc(sizeof(struct jextent) * jblocks->jb_avail, 2628 M_JBLOCKS, M_WAITOK | M_ZERO); 2629 2630 return (jblocks); 2631 } 2632 2633 static ufs2_daddr_t 2634 jblocks_alloc(jblocks, bytes, actual) 2635 struct jblocks *jblocks; 2636 int bytes; 2637 int *actual; 2638 { 2639 ufs2_daddr_t daddr; 2640 struct jextent *jext; 2641 int freecnt; 2642 int blocks; 2643 2644 blocks = bytes / DEV_BSIZE; 2645 jext = &jblocks->jb_extent[jblocks->jb_head]; 2646 freecnt = jext->je_blocks - jblocks->jb_off; 2647 if (freecnt == 0) { 2648 jblocks->jb_off = 0; 2649 if (++jblocks->jb_head > jblocks->jb_used) 2650 jblocks->jb_head = 0; 2651 jext = &jblocks->jb_extent[jblocks->jb_head]; 2652 freecnt = jext->je_blocks; 2653 } 2654 if (freecnt > blocks) 2655 freecnt = blocks; 2656 *actual = freecnt * DEV_BSIZE; 2657 daddr = jext->je_daddr + jblocks->jb_off; 2658 jblocks->jb_off += freecnt; 2659 jblocks->jb_free -= freecnt; 2660 2661 return (daddr); 2662 } 2663 2664 static void 2665 jblocks_free(jblocks, mp, bytes) 2666 struct jblocks *jblocks; 2667 struct mount *mp; 2668 int bytes; 2669 { 2670 2671 LOCK_OWNED(VFSTOUFS(mp)); 2672 jblocks->jb_free += bytes / DEV_BSIZE; 2673 if (jblocks->jb_suspended) 2674 worklist_speedup(mp); 2675 wakeup(jblocks); 2676 } 2677 2678 static void 2679 jblocks_destroy(jblocks) 2680 struct jblocks *jblocks; 2681 { 2682 2683 if (jblocks->jb_extent) 2684 free(jblocks->jb_extent, M_JBLOCKS); 2685 free(jblocks, M_JBLOCKS); 2686 } 2687 2688 static void 2689 jblocks_add(jblocks, daddr, blocks) 2690 struct jblocks *jblocks; 2691 ufs2_daddr_t daddr; 2692 int blocks; 2693 { 2694 struct jextent *jext; 2695 2696 jblocks->jb_blocks += blocks; 2697 jblocks->jb_free += blocks; 2698 jext = &jblocks->jb_extent[jblocks->jb_used]; 2699 /* Adding the first block. */ 2700 if (jext->je_daddr == 0) { 2701 jext->je_daddr = daddr; 2702 jext->je_blocks = blocks; 2703 return; 2704 } 2705 /* Extending the last extent. */ 2706 if (jext->je_daddr + jext->je_blocks == daddr) { 2707 jext->je_blocks += blocks; 2708 return; 2709 } 2710 /* Adding a new extent. */ 2711 if (++jblocks->jb_used == jblocks->jb_avail) { 2712 jblocks->jb_avail *= 2; 2713 jext = malloc(sizeof(struct jextent) * jblocks->jb_avail, 2714 M_JBLOCKS, M_WAITOK | M_ZERO); 2715 memcpy(jext, jblocks->jb_extent, 2716 sizeof(struct jextent) * jblocks->jb_used); 2717 free(jblocks->jb_extent, M_JBLOCKS); 2718 jblocks->jb_extent = jext; 2719 } 2720 jext = &jblocks->jb_extent[jblocks->jb_used]; 2721 jext->je_daddr = daddr; 2722 jext->je_blocks = blocks; 2723 return; 2724 } 2725 2726 int 2727 softdep_journal_lookup(mp, vpp) 2728 struct mount *mp; 2729 struct vnode **vpp; 2730 { 2731 struct componentname cnp; 2732 struct vnode *dvp; 2733 ino_t sujournal; 2734 int error; 2735 2736 error = VFS_VGET(mp, UFS_ROOTINO, LK_EXCLUSIVE, &dvp); 2737 if (error) 2738 return (error); 2739 bzero(&cnp, sizeof(cnp)); 2740 cnp.cn_nameiop = LOOKUP; 2741 cnp.cn_flags = ISLASTCN; 2742 cnp.cn_thread = curthread; 2743 cnp.cn_cred = curthread->td_ucred; 2744 cnp.cn_pnbuf = SUJ_FILE; 2745 cnp.cn_nameptr = SUJ_FILE; 2746 cnp.cn_namelen = strlen(SUJ_FILE); 2747 error = ufs_lookup_ino(dvp, NULL, &cnp, &sujournal); 2748 vput(dvp); 2749 if (error != 0) 2750 return (error); 2751 error = VFS_VGET(mp, sujournal, LK_EXCLUSIVE, vpp); 2752 return (error); 2753 } 2754 2755 /* 2756 * Open and verify the journal file. 2757 */ 2758 static int 2759 journal_mount(mp, fs, cred) 2760 struct mount *mp; 2761 struct fs *fs; 2762 struct ucred *cred; 2763 { 2764 struct jblocks *jblocks; 2765 struct ufsmount *ump; 2766 struct vnode *vp; 2767 struct inode *ip; 2768 ufs2_daddr_t blkno; 2769 int bcount; 2770 int error; 2771 int i; 2772 2773 ump = VFSTOUFS(mp); 2774 ump->softdep_journal_tail = NULL; 2775 ump->softdep_on_journal = 0; 2776 ump->softdep_accdeps = 0; 2777 ump->softdep_req = 0; 2778 ump->softdep_jblocks = NULL; 2779 error = softdep_journal_lookup(mp, &vp); 2780 if (error != 0) { 2781 printf("Failed to find journal. Use tunefs to create one\n"); 2782 return (error); 2783 } 2784 ip = VTOI(vp); 2785 if (ip->i_size < SUJ_MIN) { 2786 error = ENOSPC; 2787 goto out; 2788 } 2789 bcount = lblkno(fs, ip->i_size); /* Only use whole blocks. */ 2790 jblocks = jblocks_create(); 2791 for (i = 0; i < bcount; i++) { 2792 error = ufs_bmaparray(vp, i, &blkno, NULL, NULL, NULL); 2793 if (error) 2794 break; 2795 jblocks_add(jblocks, blkno, fsbtodb(fs, fs->fs_frag)); 2796 } 2797 if (error) { 2798 jblocks_destroy(jblocks); 2799 goto out; 2800 } 2801 jblocks->jb_low = jblocks->jb_free / 3; /* Reserve 33%. */ 2802 jblocks->jb_min = jblocks->jb_free / 10; /* Suspend at 10%. */ 2803 ump->softdep_jblocks = jblocks; 2804 out: 2805 if (error == 0) { 2806 MNT_ILOCK(mp); 2807 mp->mnt_flag |= MNT_SUJ; 2808 mp->mnt_flag &= ~MNT_SOFTDEP; 2809 MNT_IUNLOCK(mp); 2810 /* 2811 * Only validate the journal contents if the 2812 * filesystem is clean, otherwise we write the logs 2813 * but they'll never be used. If the filesystem was 2814 * still dirty when we mounted it the journal is 2815 * invalid and a new journal can only be valid if it 2816 * starts from a clean mount. 2817 */ 2818 if (fs->fs_clean) { 2819 DIP_SET(ip, i_modrev, fs->fs_mtime); 2820 ip->i_flags |= IN_MODIFIED; 2821 ffs_update(vp, 1); 2822 } 2823 } 2824 vput(vp); 2825 return (error); 2826 } 2827 2828 static void 2829 journal_unmount(ump) 2830 struct ufsmount *ump; 2831 { 2832 2833 if (ump->softdep_jblocks) 2834 jblocks_destroy(ump->softdep_jblocks); 2835 ump->softdep_jblocks = NULL; 2836 } 2837 2838 /* 2839 * Called when a journal record is ready to be written. Space is allocated 2840 * and the journal entry is created when the journal is flushed to stable 2841 * store. 2842 */ 2843 static void 2844 add_to_journal(wk) 2845 struct worklist *wk; 2846 { 2847 struct ufsmount *ump; 2848 2849 ump = VFSTOUFS(wk->wk_mp); 2850 LOCK_OWNED(ump); 2851 if (wk->wk_state & ONWORKLIST) 2852 panic("add_to_journal: %s(0x%X) already on list", 2853 TYPENAME(wk->wk_type), wk->wk_state); 2854 wk->wk_state |= ONWORKLIST | DEPCOMPLETE; 2855 if (LIST_EMPTY(&ump->softdep_journal_pending)) { 2856 ump->softdep_jblocks->jb_age = ticks; 2857 LIST_INSERT_HEAD(&ump->softdep_journal_pending, wk, wk_list); 2858 } else 2859 LIST_INSERT_AFTER(ump->softdep_journal_tail, wk, wk_list); 2860 ump->softdep_journal_tail = wk; 2861 ump->softdep_on_journal += 1; 2862 } 2863 2864 /* 2865 * Remove an arbitrary item for the journal worklist maintain the tail 2866 * pointer. This happens when a new operation obviates the need to 2867 * journal an old operation. 2868 */ 2869 static void 2870 remove_from_journal(wk) 2871 struct worklist *wk; 2872 { 2873 struct ufsmount *ump; 2874 2875 ump = VFSTOUFS(wk->wk_mp); 2876 LOCK_OWNED(ump); 2877 #ifdef SUJ_DEBUG 2878 { 2879 struct worklist *wkn; 2880 2881 LIST_FOREACH(wkn, &ump->softdep_journal_pending, wk_list) 2882 if (wkn == wk) 2883 break; 2884 if (wkn == NULL) 2885 panic("remove_from_journal: %p is not in journal", wk); 2886 } 2887 #endif 2888 /* 2889 * We emulate a TAILQ to save space in most structures which do not 2890 * require TAILQ semantics. Here we must update the tail position 2891 * when removing the tail which is not the final entry. This works 2892 * only if the worklist linkage are at the beginning of the structure. 2893 */ 2894 if (ump->softdep_journal_tail == wk) 2895 ump->softdep_journal_tail = 2896 (struct worklist *)wk->wk_list.le_prev; 2897 2898 WORKLIST_REMOVE(wk); 2899 ump->softdep_on_journal -= 1; 2900 } 2901 2902 /* 2903 * Check for journal space as well as dependency limits so the prelink 2904 * code can throttle both journaled and non-journaled filesystems. 2905 * Threshold is 0 for low and 1 for min. 2906 */ 2907 static int 2908 journal_space(ump, thresh) 2909 struct ufsmount *ump; 2910 int thresh; 2911 { 2912 struct jblocks *jblocks; 2913 int limit, avail; 2914 2915 jblocks = ump->softdep_jblocks; 2916 if (jblocks == NULL) 2917 return (1); 2918 /* 2919 * We use a tighter restriction here to prevent request_cleanup() 2920 * running in threads from running into locks we currently hold. 2921 * We have to be over the limit and our filesystem has to be 2922 * responsible for more than our share of that usage. 2923 */ 2924 limit = (max_softdeps / 10) * 9; 2925 if (dep_current[D_INODEDEP] > limit && 2926 ump->softdep_curdeps[D_INODEDEP] > limit / stat_flush_threads) 2927 return (0); 2928 if (thresh) 2929 thresh = jblocks->jb_min; 2930 else 2931 thresh = jblocks->jb_low; 2932 avail = (ump->softdep_on_journal * JREC_SIZE) / DEV_BSIZE; 2933 avail = jblocks->jb_free - avail; 2934 2935 return (avail > thresh); 2936 } 2937 2938 static void 2939 journal_suspend(ump) 2940 struct ufsmount *ump; 2941 { 2942 struct jblocks *jblocks; 2943 struct mount *mp; 2944 2945 mp = UFSTOVFS(ump); 2946 jblocks = ump->softdep_jblocks; 2947 MNT_ILOCK(mp); 2948 if ((mp->mnt_kern_flag & MNTK_SUSPEND) == 0) { 2949 stat_journal_min++; 2950 mp->mnt_kern_flag |= MNTK_SUSPEND; 2951 mp->mnt_susp_owner = ump->softdep_flushtd; 2952 } 2953 jblocks->jb_suspended = 1; 2954 MNT_IUNLOCK(mp); 2955 } 2956 2957 static int 2958 journal_unsuspend(struct ufsmount *ump) 2959 { 2960 struct jblocks *jblocks; 2961 struct mount *mp; 2962 2963 mp = UFSTOVFS(ump); 2964 jblocks = ump->softdep_jblocks; 2965 2966 if (jblocks != NULL && jblocks->jb_suspended && 2967 journal_space(ump, jblocks->jb_min)) { 2968 jblocks->jb_suspended = 0; 2969 FREE_LOCK(ump); 2970 mp->mnt_susp_owner = curthread; 2971 vfs_write_resume(mp, 0); 2972 ACQUIRE_LOCK(ump); 2973 return (1); 2974 } 2975 return (0); 2976 } 2977 2978 /* 2979 * Called before any allocation function to be certain that there is 2980 * sufficient space in the journal prior to creating any new records. 2981 * Since in the case of block allocation we may have multiple locked 2982 * buffers at the time of the actual allocation we can not block 2983 * when the journal records are created. Doing so would create a deadlock 2984 * if any of these buffers needed to be flushed to reclaim space. Instead 2985 * we require a sufficiently large amount of available space such that 2986 * each thread in the system could have passed this allocation check and 2987 * still have sufficient free space. With 20% of a minimum journal size 2988 * of 1MB we have 6553 records available. 2989 */ 2990 int 2991 softdep_prealloc(vp, waitok) 2992 struct vnode *vp; 2993 int waitok; 2994 { 2995 struct ufsmount *ump; 2996 2997 KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0, 2998 ("softdep_prealloc called on non-softdep filesystem")); 2999 /* 3000 * Nothing to do if we are not running journaled soft updates. 3001 * If we currently hold the snapshot lock, we must avoid 3002 * handling other resources that could cause deadlock. Do not 3003 * touch quotas vnode since it is typically recursed with 3004 * other vnode locks held. 3005 */ 3006 if (DOINGSUJ(vp) == 0 || IS_SNAPSHOT(VTOI(vp)) || 3007 (vp->v_vflag & VV_SYSTEM) != 0) 3008 return (0); 3009 ump = VFSTOUFS(vp->v_mount); 3010 ACQUIRE_LOCK(ump); 3011 if (journal_space(ump, 0)) { 3012 FREE_LOCK(ump); 3013 return (0); 3014 } 3015 stat_journal_low++; 3016 FREE_LOCK(ump); 3017 if (waitok == MNT_NOWAIT) 3018 return (ENOSPC); 3019 /* 3020 * Attempt to sync this vnode once to flush any journal 3021 * work attached to it. 3022 */ 3023 if ((curthread->td_pflags & TDP_COWINPROGRESS) == 0) 3024 ffs_syncvnode(vp, waitok, 0); 3025 ACQUIRE_LOCK(ump); 3026 process_removes(vp); 3027 process_truncates(vp); 3028 if (journal_space(ump, 0) == 0) { 3029 softdep_speedup(ump); 3030 if (journal_space(ump, 1) == 0) 3031 journal_suspend(ump); 3032 } 3033 FREE_LOCK(ump); 3034 3035 return (0); 3036 } 3037 3038 /* 3039 * Before adjusting a link count on a vnode verify that we have sufficient 3040 * journal space. If not, process operations that depend on the currently 3041 * locked pair of vnodes to try to flush space as the syncer, buf daemon, 3042 * and softdep flush threads can not acquire these locks to reclaim space. 3043 */ 3044 static void 3045 softdep_prelink(dvp, vp) 3046 struct vnode *dvp; 3047 struct vnode *vp; 3048 { 3049 struct ufsmount *ump; 3050 3051 ump = VFSTOUFS(dvp->v_mount); 3052 LOCK_OWNED(ump); 3053 /* 3054 * Nothing to do if we have sufficient journal space. 3055 * If we currently hold the snapshot lock, we must avoid 3056 * handling other resources that could cause deadlock. 3057 */ 3058 if (journal_space(ump, 0) || (vp && IS_SNAPSHOT(VTOI(vp)))) 3059 return; 3060 stat_journal_low++; 3061 FREE_LOCK(ump); 3062 if (vp) 3063 ffs_syncvnode(vp, MNT_NOWAIT, 0); 3064 ffs_syncvnode(dvp, MNT_WAIT, 0); 3065 ACQUIRE_LOCK(ump); 3066 /* Process vp before dvp as it may create .. removes. */ 3067 if (vp) { 3068 process_removes(vp); 3069 process_truncates(vp); 3070 } 3071 process_removes(dvp); 3072 process_truncates(dvp); 3073 softdep_speedup(ump); 3074 process_worklist_item(UFSTOVFS(ump), 2, LK_NOWAIT); 3075 if (journal_space(ump, 0) == 0) { 3076 softdep_speedup(ump); 3077 if (journal_space(ump, 1) == 0) 3078 journal_suspend(ump); 3079 } 3080 } 3081 3082 static void 3083 jseg_write(ump, jseg, data) 3084 struct ufsmount *ump; 3085 struct jseg *jseg; 3086 uint8_t *data; 3087 { 3088 struct jsegrec *rec; 3089 3090 rec = (struct jsegrec *)data; 3091 rec->jsr_seq = jseg->js_seq; 3092 rec->jsr_oldest = jseg->js_oldseq; 3093 rec->jsr_cnt = jseg->js_cnt; 3094 rec->jsr_blocks = jseg->js_size / ump->um_devvp->v_bufobj.bo_bsize; 3095 rec->jsr_crc = 0; 3096 rec->jsr_time = ump->um_fs->fs_mtime; 3097 } 3098 3099 static inline void 3100 inoref_write(inoref, jseg, rec) 3101 struct inoref *inoref; 3102 struct jseg *jseg; 3103 struct jrefrec *rec; 3104 { 3105 3106 inoref->if_jsegdep->jd_seg = jseg; 3107 rec->jr_ino = inoref->if_ino; 3108 rec->jr_parent = inoref->if_parent; 3109 rec->jr_nlink = inoref->if_nlink; 3110 rec->jr_mode = inoref->if_mode; 3111 rec->jr_diroff = inoref->if_diroff; 3112 } 3113 3114 static void 3115 jaddref_write(jaddref, jseg, data) 3116 struct jaddref *jaddref; 3117 struct jseg *jseg; 3118 uint8_t *data; 3119 { 3120 struct jrefrec *rec; 3121 3122 rec = (struct jrefrec *)data; 3123 rec->jr_op = JOP_ADDREF; 3124 inoref_write(&jaddref->ja_ref, jseg, rec); 3125 } 3126 3127 static void 3128 jremref_write(jremref, jseg, data) 3129 struct jremref *jremref; 3130 struct jseg *jseg; 3131 uint8_t *data; 3132 { 3133 struct jrefrec *rec; 3134 3135 rec = (struct jrefrec *)data; 3136 rec->jr_op = JOP_REMREF; 3137 inoref_write(&jremref->jr_ref, jseg, rec); 3138 } 3139 3140 static void 3141 jmvref_write(jmvref, jseg, data) 3142 struct jmvref *jmvref; 3143 struct jseg *jseg; 3144 uint8_t *data; 3145 { 3146 struct jmvrec *rec; 3147 3148 rec = (struct jmvrec *)data; 3149 rec->jm_op = JOP_MVREF; 3150 rec->jm_ino = jmvref->jm_ino; 3151 rec->jm_parent = jmvref->jm_parent; 3152 rec->jm_oldoff = jmvref->jm_oldoff; 3153 rec->jm_newoff = jmvref->jm_newoff; 3154 } 3155 3156 static void 3157 jnewblk_write(jnewblk, jseg, data) 3158 struct jnewblk *jnewblk; 3159 struct jseg *jseg; 3160 uint8_t *data; 3161 { 3162 struct jblkrec *rec; 3163 3164 jnewblk->jn_jsegdep->jd_seg = jseg; 3165 rec = (struct jblkrec *)data; 3166 rec->jb_op = JOP_NEWBLK; 3167 rec->jb_ino = jnewblk->jn_ino; 3168 rec->jb_blkno = jnewblk->jn_blkno; 3169 rec->jb_lbn = jnewblk->jn_lbn; 3170 rec->jb_frags = jnewblk->jn_frags; 3171 rec->jb_oldfrags = jnewblk->jn_oldfrags; 3172 } 3173 3174 static void 3175 jfreeblk_write(jfreeblk, jseg, data) 3176 struct jfreeblk *jfreeblk; 3177 struct jseg *jseg; 3178 uint8_t *data; 3179 { 3180 struct jblkrec *rec; 3181 3182 jfreeblk->jf_dep.jb_jsegdep->jd_seg = jseg; 3183 rec = (struct jblkrec *)data; 3184 rec->jb_op = JOP_FREEBLK; 3185 rec->jb_ino = jfreeblk->jf_ino; 3186 rec->jb_blkno = jfreeblk->jf_blkno; 3187 rec->jb_lbn = jfreeblk->jf_lbn; 3188 rec->jb_frags = jfreeblk->jf_frags; 3189 rec->jb_oldfrags = 0; 3190 } 3191 3192 static void 3193 jfreefrag_write(jfreefrag, jseg, data) 3194 struct jfreefrag *jfreefrag; 3195 struct jseg *jseg; 3196 uint8_t *data; 3197 { 3198 struct jblkrec *rec; 3199 3200 jfreefrag->fr_jsegdep->jd_seg = jseg; 3201 rec = (struct jblkrec *)data; 3202 rec->jb_op = JOP_FREEBLK; 3203 rec->jb_ino = jfreefrag->fr_ino; 3204 rec->jb_blkno = jfreefrag->fr_blkno; 3205 rec->jb_lbn = jfreefrag->fr_lbn; 3206 rec->jb_frags = jfreefrag->fr_frags; 3207 rec->jb_oldfrags = 0; 3208 } 3209 3210 static void 3211 jtrunc_write(jtrunc, jseg, data) 3212 struct jtrunc *jtrunc; 3213 struct jseg *jseg; 3214 uint8_t *data; 3215 { 3216 struct jtrncrec *rec; 3217 3218 jtrunc->jt_dep.jb_jsegdep->jd_seg = jseg; 3219 rec = (struct jtrncrec *)data; 3220 rec->jt_op = JOP_TRUNC; 3221 rec->jt_ino = jtrunc->jt_ino; 3222 rec->jt_size = jtrunc->jt_size; 3223 rec->jt_extsize = jtrunc->jt_extsize; 3224 } 3225 3226 static void 3227 jfsync_write(jfsync, jseg, data) 3228 struct jfsync *jfsync; 3229 struct jseg *jseg; 3230 uint8_t *data; 3231 { 3232 struct jtrncrec *rec; 3233 3234 rec = (struct jtrncrec *)data; 3235 rec->jt_op = JOP_SYNC; 3236 rec->jt_ino = jfsync->jfs_ino; 3237 rec->jt_size = jfsync->jfs_size; 3238 rec->jt_extsize = jfsync->jfs_extsize; 3239 } 3240 3241 static void 3242 softdep_flushjournal(mp) 3243 struct mount *mp; 3244 { 3245 struct jblocks *jblocks; 3246 struct ufsmount *ump; 3247 3248 if (MOUNTEDSUJ(mp) == 0) 3249 return; 3250 ump = VFSTOUFS(mp); 3251 jblocks = ump->softdep_jblocks; 3252 ACQUIRE_LOCK(ump); 3253 while (ump->softdep_on_journal) { 3254 jblocks->jb_needseg = 1; 3255 softdep_process_journal(mp, NULL, MNT_WAIT); 3256 } 3257 FREE_LOCK(ump); 3258 } 3259 3260 static void softdep_synchronize_completed(struct bio *); 3261 static void softdep_synchronize(struct bio *, struct ufsmount *, void *); 3262 3263 static void 3264 softdep_synchronize_completed(bp) 3265 struct bio *bp; 3266 { 3267 struct jseg *oldest; 3268 struct jseg *jseg; 3269 struct ufsmount *ump; 3270 3271 /* 3272 * caller1 marks the last segment written before we issued the 3273 * synchronize cache. 3274 */ 3275 jseg = bp->bio_caller1; 3276 if (jseg == NULL) { 3277 g_destroy_bio(bp); 3278 return; 3279 } 3280 ump = VFSTOUFS(jseg->js_list.wk_mp); 3281 ACQUIRE_LOCK(ump); 3282 oldest = NULL; 3283 /* 3284 * Mark all the journal entries waiting on the synchronize cache 3285 * as completed so they may continue on. 3286 */ 3287 while (jseg != NULL && (jseg->js_state & COMPLETE) == 0) { 3288 jseg->js_state |= COMPLETE; 3289 oldest = jseg; 3290 jseg = TAILQ_PREV(jseg, jseglst, js_next); 3291 } 3292 /* 3293 * Restart deferred journal entry processing from the oldest 3294 * completed jseg. 3295 */ 3296 if (oldest) 3297 complete_jsegs(oldest); 3298 3299 FREE_LOCK(ump); 3300 g_destroy_bio(bp); 3301 } 3302 3303 /* 3304 * Send BIO_FLUSH/SYNCHRONIZE CACHE to the device to enforce write ordering 3305 * barriers. The journal must be written prior to any blocks that depend 3306 * on it and the journal can not be released until the blocks have be 3307 * written. This code handles both barriers simultaneously. 3308 */ 3309 static void 3310 softdep_synchronize(bp, ump, caller1) 3311 struct bio *bp; 3312 struct ufsmount *ump; 3313 void *caller1; 3314 { 3315 3316 bp->bio_cmd = BIO_FLUSH; 3317 bp->bio_flags |= BIO_ORDERED; 3318 bp->bio_data = NULL; 3319 bp->bio_offset = ump->um_cp->provider->mediasize; 3320 bp->bio_length = 0; 3321 bp->bio_done = softdep_synchronize_completed; 3322 bp->bio_caller1 = caller1; 3323 g_io_request(bp, 3324 (struct g_consumer *)ump->um_devvp->v_bufobj.bo_private); 3325 } 3326 3327 /* 3328 * Flush some journal records to disk. 3329 */ 3330 static void 3331 softdep_process_journal(mp, needwk, flags) 3332 struct mount *mp; 3333 struct worklist *needwk; 3334 int flags; 3335 { 3336 struct jblocks *jblocks; 3337 struct ufsmount *ump; 3338 struct worklist *wk; 3339 struct jseg *jseg; 3340 struct buf *bp; 3341 struct bio *bio; 3342 uint8_t *data; 3343 struct fs *fs; 3344 int shouldflush; 3345 int segwritten; 3346 int jrecmin; /* Minimum records per block. */ 3347 int jrecmax; /* Maximum records per block. */ 3348 int size; 3349 int cnt; 3350 int off; 3351 int devbsize; 3352 3353 if (MOUNTEDSUJ(mp) == 0) 3354 return; 3355 shouldflush = softdep_flushcache; 3356 bio = NULL; 3357 jseg = NULL; 3358 ump = VFSTOUFS(mp); 3359 LOCK_OWNED(ump); 3360 fs = ump->um_fs; 3361 jblocks = ump->softdep_jblocks; 3362 devbsize = ump->um_devvp->v_bufobj.bo_bsize; 3363 /* 3364 * We write anywhere between a disk block and fs block. The upper 3365 * bound is picked to prevent buffer cache fragmentation and limit 3366 * processing time per I/O. 3367 */ 3368 jrecmin = (devbsize / JREC_SIZE) - 1; /* -1 for seg header */ 3369 jrecmax = (fs->fs_bsize / devbsize) * jrecmin; 3370 segwritten = 0; 3371 for (;;) { 3372 cnt = ump->softdep_on_journal; 3373 /* 3374 * Criteria for writing a segment: 3375 * 1) We have a full block. 3376 * 2) We're called from jwait() and haven't found the 3377 * journal item yet. 3378 * 3) Always write if needseg is set. 3379 * 4) If we are called from process_worklist and have 3380 * not yet written anything we write a partial block 3381 * to enforce a 1 second maximum latency on journal 3382 * entries. 3383 */ 3384 if (cnt < (jrecmax - 1) && needwk == NULL && 3385 jblocks->jb_needseg == 0 && (segwritten || cnt == 0)) 3386 break; 3387 cnt++; 3388 /* 3389 * Verify some free journal space. softdep_prealloc() should 3390 * guarantee that we don't run out so this is indicative of 3391 * a problem with the flow control. Try to recover 3392 * gracefully in any event. 3393 */ 3394 while (jblocks->jb_free == 0) { 3395 if (flags != MNT_WAIT) 3396 break; 3397 printf("softdep: Out of journal space!\n"); 3398 softdep_speedup(ump); 3399 msleep(jblocks, LOCK_PTR(ump), PRIBIO, "jblocks", hz); 3400 } 3401 FREE_LOCK(ump); 3402 jseg = malloc(sizeof(*jseg), M_JSEG, M_SOFTDEP_FLAGS); 3403 workitem_alloc(&jseg->js_list, D_JSEG, mp); 3404 LIST_INIT(&jseg->js_entries); 3405 LIST_INIT(&jseg->js_indirs); 3406 jseg->js_state = ATTACHED; 3407 if (shouldflush == 0) 3408 jseg->js_state |= COMPLETE; 3409 else if (bio == NULL) 3410 bio = g_alloc_bio(); 3411 jseg->js_jblocks = jblocks; 3412 bp = geteblk(fs->fs_bsize, 0); 3413 ACQUIRE_LOCK(ump); 3414 /* 3415 * If there was a race while we were allocating the block 3416 * and jseg the entry we care about was likely written. 3417 * We bail out in both the WAIT and NOWAIT case and assume 3418 * the caller will loop if the entry it cares about is 3419 * not written. 3420 */ 3421 cnt = ump->softdep_on_journal; 3422 if (cnt + jblocks->jb_needseg == 0 || jblocks->jb_free == 0) { 3423 bp->b_flags |= B_INVAL | B_NOCACHE; 3424 WORKITEM_FREE(jseg, D_JSEG); 3425 FREE_LOCK(ump); 3426 brelse(bp); 3427 ACQUIRE_LOCK(ump); 3428 break; 3429 } 3430 /* 3431 * Calculate the disk block size required for the available 3432 * records rounded to the min size. 3433 */ 3434 if (cnt == 0) 3435 size = devbsize; 3436 else if (cnt < jrecmax) 3437 size = howmany(cnt, jrecmin) * devbsize; 3438 else 3439 size = fs->fs_bsize; 3440 /* 3441 * Allocate a disk block for this journal data and account 3442 * for truncation of the requested size if enough contiguous 3443 * space was not available. 3444 */ 3445 bp->b_blkno = jblocks_alloc(jblocks, size, &size); 3446 bp->b_lblkno = bp->b_blkno; 3447 bp->b_offset = bp->b_blkno * DEV_BSIZE; 3448 bp->b_bcount = size; 3449 bp->b_flags &= ~B_INVAL; 3450 bp->b_flags |= B_VALIDSUSPWRT | B_NOCOPY; 3451 /* 3452 * Initialize our jseg with cnt records. Assign the next 3453 * sequence number to it and link it in-order. 3454 */ 3455 cnt = MIN(cnt, (size / devbsize) * jrecmin); 3456 jseg->js_buf = bp; 3457 jseg->js_cnt = cnt; 3458 jseg->js_refs = cnt + 1; /* Self ref. */ 3459 jseg->js_size = size; 3460 jseg->js_seq = jblocks->jb_nextseq++; 3461 if (jblocks->jb_oldestseg == NULL) 3462 jblocks->jb_oldestseg = jseg; 3463 jseg->js_oldseq = jblocks->jb_oldestseg->js_seq; 3464 TAILQ_INSERT_TAIL(&jblocks->jb_segs, jseg, js_next); 3465 if (jblocks->jb_writeseg == NULL) 3466 jblocks->jb_writeseg = jseg; 3467 /* 3468 * Start filling in records from the pending list. 3469 */ 3470 data = bp->b_data; 3471 off = 0; 3472 3473 /* 3474 * Always put a header on the first block. 3475 * XXX As with below, there might not be a chance to get 3476 * into the loop. Ensure that something valid is written. 3477 */ 3478 jseg_write(ump, jseg, data); 3479 off += JREC_SIZE; 3480 data = bp->b_data + off; 3481 3482 /* 3483 * XXX Something is wrong here. There's no work to do, 3484 * but we need to perform and I/O and allow it to complete 3485 * anyways. 3486 */ 3487 if (LIST_EMPTY(&ump->softdep_journal_pending)) 3488 stat_emptyjblocks++; 3489 3490 while ((wk = LIST_FIRST(&ump->softdep_journal_pending)) 3491 != NULL) { 3492 if (cnt == 0) 3493 break; 3494 /* Place a segment header on every device block. */ 3495 if ((off % devbsize) == 0) { 3496 jseg_write(ump, jseg, data); 3497 off += JREC_SIZE; 3498 data = bp->b_data + off; 3499 } 3500 if (wk == needwk) 3501 needwk = NULL; 3502 remove_from_journal(wk); 3503 wk->wk_state |= INPROGRESS; 3504 WORKLIST_INSERT(&jseg->js_entries, wk); 3505 switch (wk->wk_type) { 3506 case D_JADDREF: 3507 jaddref_write(WK_JADDREF(wk), jseg, data); 3508 break; 3509 case D_JREMREF: 3510 jremref_write(WK_JREMREF(wk), jseg, data); 3511 break; 3512 case D_JMVREF: 3513 jmvref_write(WK_JMVREF(wk), jseg, data); 3514 break; 3515 case D_JNEWBLK: 3516 jnewblk_write(WK_JNEWBLK(wk), jseg, data); 3517 break; 3518 case D_JFREEBLK: 3519 jfreeblk_write(WK_JFREEBLK(wk), jseg, data); 3520 break; 3521 case D_JFREEFRAG: 3522 jfreefrag_write(WK_JFREEFRAG(wk), jseg, data); 3523 break; 3524 case D_JTRUNC: 3525 jtrunc_write(WK_JTRUNC(wk), jseg, data); 3526 break; 3527 case D_JFSYNC: 3528 jfsync_write(WK_JFSYNC(wk), jseg, data); 3529 break; 3530 default: 3531 panic("process_journal: Unknown type %s", 3532 TYPENAME(wk->wk_type)); 3533 /* NOTREACHED */ 3534 } 3535 off += JREC_SIZE; 3536 data = bp->b_data + off; 3537 cnt--; 3538 } 3539 3540 /* Clear any remaining space so we don't leak kernel data */ 3541 if (size > off) 3542 bzero(data, size - off); 3543 3544 /* 3545 * Write this one buffer and continue. 3546 */ 3547 segwritten = 1; 3548 jblocks->jb_needseg = 0; 3549 WORKLIST_INSERT(&bp->b_dep, &jseg->js_list); 3550 FREE_LOCK(ump); 3551 pbgetvp(ump->um_devvp, bp); 3552 /* 3553 * We only do the blocking wait once we find the journal 3554 * entry we're looking for. 3555 */ 3556 if (needwk == NULL && flags == MNT_WAIT) 3557 bwrite(bp); 3558 else 3559 bawrite(bp); 3560 ACQUIRE_LOCK(ump); 3561 } 3562 /* 3563 * If we wrote a segment issue a synchronize cache so the journal 3564 * is reflected on disk before the data is written. Since reclaiming 3565 * journal space also requires writing a journal record this 3566 * process also enforces a barrier before reclamation. 3567 */ 3568 if (segwritten && shouldflush) { 3569 softdep_synchronize(bio, ump, 3570 TAILQ_LAST(&jblocks->jb_segs, jseglst)); 3571 } else if (bio) 3572 g_destroy_bio(bio); 3573 /* 3574 * If we've suspended the filesystem because we ran out of journal 3575 * space either try to sync it here to make some progress or 3576 * unsuspend it if we already have. 3577 */ 3578 if (flags == 0 && jblocks->jb_suspended) { 3579 if (journal_unsuspend(ump)) 3580 return; 3581 FREE_LOCK(ump); 3582 VFS_SYNC(mp, MNT_NOWAIT); 3583 ffs_sbupdate(ump, MNT_WAIT, 0); 3584 ACQUIRE_LOCK(ump); 3585 } 3586 } 3587 3588 /* 3589 * Complete a jseg, allowing all dependencies awaiting journal writes 3590 * to proceed. Each journal dependency also attaches a jsegdep to dependent 3591 * structures so that the journal segment can be freed to reclaim space. 3592 */ 3593 static void 3594 complete_jseg(jseg) 3595 struct jseg *jseg; 3596 { 3597 struct worklist *wk; 3598 struct jmvref *jmvref; 3599 int waiting; 3600 #ifdef INVARIANTS 3601 int i = 0; 3602 #endif 3603 3604 while ((wk = LIST_FIRST(&jseg->js_entries)) != NULL) { 3605 WORKLIST_REMOVE(wk); 3606 waiting = wk->wk_state & IOWAITING; 3607 wk->wk_state &= ~(INPROGRESS | IOWAITING); 3608 wk->wk_state |= COMPLETE; 3609 KASSERT(i++ < jseg->js_cnt, 3610 ("handle_written_jseg: overflow %d >= %d", 3611 i - 1, jseg->js_cnt)); 3612 switch (wk->wk_type) { 3613 case D_JADDREF: 3614 handle_written_jaddref(WK_JADDREF(wk)); 3615 break; 3616 case D_JREMREF: 3617 handle_written_jremref(WK_JREMREF(wk)); 3618 break; 3619 case D_JMVREF: 3620 rele_jseg(jseg); /* No jsegdep. */ 3621 jmvref = WK_JMVREF(wk); 3622 LIST_REMOVE(jmvref, jm_deps); 3623 if ((jmvref->jm_pagedep->pd_state & ONWORKLIST) == 0) 3624 free_pagedep(jmvref->jm_pagedep); 3625 WORKITEM_FREE(jmvref, D_JMVREF); 3626 break; 3627 case D_JNEWBLK: 3628 handle_written_jnewblk(WK_JNEWBLK(wk)); 3629 break; 3630 case D_JFREEBLK: 3631 handle_written_jblkdep(&WK_JFREEBLK(wk)->jf_dep); 3632 break; 3633 case D_JTRUNC: 3634 handle_written_jblkdep(&WK_JTRUNC(wk)->jt_dep); 3635 break; 3636 case D_JFSYNC: 3637 rele_jseg(jseg); /* No jsegdep. */ 3638 WORKITEM_FREE(wk, D_JFSYNC); 3639 break; 3640 case D_JFREEFRAG: 3641 handle_written_jfreefrag(WK_JFREEFRAG(wk)); 3642 break; 3643 default: 3644 panic("handle_written_jseg: Unknown type %s", 3645 TYPENAME(wk->wk_type)); 3646 /* NOTREACHED */ 3647 } 3648 if (waiting) 3649 wakeup(wk); 3650 } 3651 /* Release the self reference so the structure may be freed. */ 3652 rele_jseg(jseg); 3653 } 3654 3655 /* 3656 * Determine which jsegs are ready for completion processing. Waits for 3657 * synchronize cache to complete as well as forcing in-order completion 3658 * of journal entries. 3659 */ 3660 static void 3661 complete_jsegs(jseg) 3662 struct jseg *jseg; 3663 { 3664 struct jblocks *jblocks; 3665 struct jseg *jsegn; 3666 3667 jblocks = jseg->js_jblocks; 3668 /* 3669 * Don't allow out of order completions. If this isn't the first 3670 * block wait for it to write before we're done. 3671 */ 3672 if (jseg != jblocks->jb_writeseg) 3673 return; 3674 /* Iterate through available jsegs processing their entries. */ 3675 while (jseg && (jseg->js_state & ALLCOMPLETE) == ALLCOMPLETE) { 3676 jblocks->jb_oldestwrseq = jseg->js_oldseq; 3677 jsegn = TAILQ_NEXT(jseg, js_next); 3678 complete_jseg(jseg); 3679 jseg = jsegn; 3680 } 3681 jblocks->jb_writeseg = jseg; 3682 /* 3683 * Attempt to free jsegs now that oldestwrseq may have advanced. 3684 */ 3685 free_jsegs(jblocks); 3686 } 3687 3688 /* 3689 * Mark a jseg as DEPCOMPLETE and throw away the buffer. Attempt to handle 3690 * the final completions. 3691 */ 3692 static void 3693 handle_written_jseg(jseg, bp) 3694 struct jseg *jseg; 3695 struct buf *bp; 3696 { 3697 3698 if (jseg->js_refs == 0) 3699 panic("handle_written_jseg: No self-reference on %p", jseg); 3700 jseg->js_state |= DEPCOMPLETE; 3701 /* 3702 * We'll never need this buffer again, set flags so it will be 3703 * discarded. 3704 */ 3705 bp->b_flags |= B_INVAL | B_NOCACHE; 3706 pbrelvp(bp); 3707 complete_jsegs(jseg); 3708 } 3709 3710 static inline struct jsegdep * 3711 inoref_jseg(inoref) 3712 struct inoref *inoref; 3713 { 3714 struct jsegdep *jsegdep; 3715 3716 jsegdep = inoref->if_jsegdep; 3717 inoref->if_jsegdep = NULL; 3718 3719 return (jsegdep); 3720 } 3721 3722 /* 3723 * Called once a jremref has made it to stable store. The jremref is marked 3724 * complete and we attempt to free it. Any pagedeps writes sleeping waiting 3725 * for the jremref to complete will be awoken by free_jremref. 3726 */ 3727 static void 3728 handle_written_jremref(jremref) 3729 struct jremref *jremref; 3730 { 3731 struct inodedep *inodedep; 3732 struct jsegdep *jsegdep; 3733 struct dirrem *dirrem; 3734 3735 /* Grab the jsegdep. */ 3736 jsegdep = inoref_jseg(&jremref->jr_ref); 3737 /* 3738 * Remove us from the inoref list. 3739 */ 3740 if (inodedep_lookup(jremref->jr_list.wk_mp, jremref->jr_ref.if_ino, 3741 0, &inodedep) == 0) 3742 panic("handle_written_jremref: Lost inodedep"); 3743 TAILQ_REMOVE(&inodedep->id_inoreflst, &jremref->jr_ref, if_deps); 3744 /* 3745 * Complete the dirrem. 3746 */ 3747 dirrem = jremref->jr_dirrem; 3748 jremref->jr_dirrem = NULL; 3749 LIST_REMOVE(jremref, jr_deps); 3750 jsegdep->jd_state |= jremref->jr_state & MKDIR_PARENT; 3751 jwork_insert(&dirrem->dm_jwork, jsegdep); 3752 if (LIST_EMPTY(&dirrem->dm_jremrefhd) && 3753 (dirrem->dm_state & COMPLETE) != 0) 3754 add_to_worklist(&dirrem->dm_list, 0); 3755 free_jremref(jremref); 3756 } 3757 3758 /* 3759 * Called once a jaddref has made it to stable store. The dependency is 3760 * marked complete and any dependent structures are added to the inode 3761 * bufwait list to be completed as soon as it is written. If a bitmap write 3762 * depends on this entry we move the inode into the inodedephd of the 3763 * bmsafemap dependency and attempt to remove the jaddref from the bmsafemap. 3764 */ 3765 static void 3766 handle_written_jaddref(jaddref) 3767 struct jaddref *jaddref; 3768 { 3769 struct jsegdep *jsegdep; 3770 struct inodedep *inodedep; 3771 struct diradd *diradd; 3772 struct mkdir *mkdir; 3773 3774 /* Grab the jsegdep. */ 3775 jsegdep = inoref_jseg(&jaddref->ja_ref); 3776 mkdir = NULL; 3777 diradd = NULL; 3778 if (inodedep_lookup(jaddref->ja_list.wk_mp, jaddref->ja_ino, 3779 0, &inodedep) == 0) 3780 panic("handle_written_jaddref: Lost inodedep."); 3781 if (jaddref->ja_diradd == NULL) 3782 panic("handle_written_jaddref: No dependency"); 3783 if (jaddref->ja_diradd->da_list.wk_type == D_DIRADD) { 3784 diradd = jaddref->ja_diradd; 3785 WORKLIST_INSERT(&inodedep->id_bufwait, &diradd->da_list); 3786 } else if (jaddref->ja_state & MKDIR_PARENT) { 3787 mkdir = jaddref->ja_mkdir; 3788 WORKLIST_INSERT(&inodedep->id_bufwait, &mkdir->md_list); 3789 } else if (jaddref->ja_state & MKDIR_BODY) 3790 mkdir = jaddref->ja_mkdir; 3791 else 3792 panic("handle_written_jaddref: Unknown dependency %p", 3793 jaddref->ja_diradd); 3794 jaddref->ja_diradd = NULL; /* also clears ja_mkdir */ 3795 /* 3796 * Remove us from the inode list. 3797 */ 3798 TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref, if_deps); 3799 /* 3800 * The mkdir may be waiting on the jaddref to clear before freeing. 3801 */ 3802 if (mkdir) { 3803 KASSERT(mkdir->md_list.wk_type == D_MKDIR, 3804 ("handle_written_jaddref: Incorrect type for mkdir %s", 3805 TYPENAME(mkdir->md_list.wk_type))); 3806 mkdir->md_jaddref = NULL; 3807 diradd = mkdir->md_diradd; 3808 mkdir->md_state |= DEPCOMPLETE; 3809 complete_mkdir(mkdir); 3810 } 3811 jwork_insert(&diradd->da_jwork, jsegdep); 3812 if (jaddref->ja_state & NEWBLOCK) { 3813 inodedep->id_state |= ONDEPLIST; 3814 LIST_INSERT_HEAD(&inodedep->id_bmsafemap->sm_inodedephd, 3815 inodedep, id_deps); 3816 } 3817 free_jaddref(jaddref); 3818 } 3819 3820 /* 3821 * Called once a jnewblk journal is written. The allocdirect or allocindir 3822 * is placed in the bmsafemap to await notification of a written bitmap. If 3823 * the operation was canceled we add the segdep to the appropriate 3824 * dependency to free the journal space once the canceling operation 3825 * completes. 3826 */ 3827 static void 3828 handle_written_jnewblk(jnewblk) 3829 struct jnewblk *jnewblk; 3830 { 3831 struct bmsafemap *bmsafemap; 3832 struct freefrag *freefrag; 3833 struct freework *freework; 3834 struct jsegdep *jsegdep; 3835 struct newblk *newblk; 3836 3837 /* Grab the jsegdep. */ 3838 jsegdep = jnewblk->jn_jsegdep; 3839 jnewblk->jn_jsegdep = NULL; 3840 if (jnewblk->jn_dep == NULL) 3841 panic("handle_written_jnewblk: No dependency for the segdep."); 3842 switch (jnewblk->jn_dep->wk_type) { 3843 case D_NEWBLK: 3844 case D_ALLOCDIRECT: 3845 case D_ALLOCINDIR: 3846 /* 3847 * Add the written block to the bmsafemap so it can 3848 * be notified when the bitmap is on disk. 3849 */ 3850 newblk = WK_NEWBLK(jnewblk->jn_dep); 3851 newblk->nb_jnewblk = NULL; 3852 if ((newblk->nb_state & GOINGAWAY) == 0) { 3853 bmsafemap = newblk->nb_bmsafemap; 3854 newblk->nb_state |= ONDEPLIST; 3855 LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, 3856 nb_deps); 3857 } 3858 jwork_insert(&newblk->nb_jwork, jsegdep); 3859 break; 3860 case D_FREEFRAG: 3861 /* 3862 * A newblock being removed by a freefrag when replaced by 3863 * frag extension. 3864 */ 3865 freefrag = WK_FREEFRAG(jnewblk->jn_dep); 3866 freefrag->ff_jdep = NULL; 3867 jwork_insert(&freefrag->ff_jwork, jsegdep); 3868 break; 3869 case D_FREEWORK: 3870 /* 3871 * A direct block was removed by truncate. 3872 */ 3873 freework = WK_FREEWORK(jnewblk->jn_dep); 3874 freework->fw_jnewblk = NULL; 3875 jwork_insert(&freework->fw_freeblks->fb_jwork, jsegdep); 3876 break; 3877 default: 3878 panic("handle_written_jnewblk: Unknown type %d.", 3879 jnewblk->jn_dep->wk_type); 3880 } 3881 jnewblk->jn_dep = NULL; 3882 free_jnewblk(jnewblk); 3883 } 3884 3885 /* 3886 * Cancel a jfreefrag that won't be needed, probably due to colliding with 3887 * an in-flight allocation that has not yet been committed. Divorce us 3888 * from the freefrag and mark it DEPCOMPLETE so that it may be added 3889 * to the worklist. 3890 */ 3891 static void 3892 cancel_jfreefrag(jfreefrag) 3893 struct jfreefrag *jfreefrag; 3894 { 3895 struct freefrag *freefrag; 3896 3897 if (jfreefrag->fr_jsegdep) { 3898 free_jsegdep(jfreefrag->fr_jsegdep); 3899 jfreefrag->fr_jsegdep = NULL; 3900 } 3901 freefrag = jfreefrag->fr_freefrag; 3902 jfreefrag->fr_freefrag = NULL; 3903 free_jfreefrag(jfreefrag); 3904 freefrag->ff_state |= DEPCOMPLETE; 3905 CTR1(KTR_SUJ, "cancel_jfreefrag: blkno %jd", freefrag->ff_blkno); 3906 } 3907 3908 /* 3909 * Free a jfreefrag when the parent freefrag is rendered obsolete. 3910 */ 3911 static void 3912 free_jfreefrag(jfreefrag) 3913 struct jfreefrag *jfreefrag; 3914 { 3915 3916 if (jfreefrag->fr_state & INPROGRESS) 3917 WORKLIST_REMOVE(&jfreefrag->fr_list); 3918 else if (jfreefrag->fr_state & ONWORKLIST) 3919 remove_from_journal(&jfreefrag->fr_list); 3920 if (jfreefrag->fr_freefrag != NULL) 3921 panic("free_jfreefrag: Still attached to a freefrag."); 3922 WORKITEM_FREE(jfreefrag, D_JFREEFRAG); 3923 } 3924 3925 /* 3926 * Called when the journal write for a jfreefrag completes. The parent 3927 * freefrag is added to the worklist if this completes its dependencies. 3928 */ 3929 static void 3930 handle_written_jfreefrag(jfreefrag) 3931 struct jfreefrag *jfreefrag; 3932 { 3933 struct jsegdep *jsegdep; 3934 struct freefrag *freefrag; 3935 3936 /* Grab the jsegdep. */ 3937 jsegdep = jfreefrag->fr_jsegdep; 3938 jfreefrag->fr_jsegdep = NULL; 3939 freefrag = jfreefrag->fr_freefrag; 3940 if (freefrag == NULL) 3941 panic("handle_written_jfreefrag: No freefrag."); 3942 freefrag->ff_state |= DEPCOMPLETE; 3943 freefrag->ff_jdep = NULL; 3944 jwork_insert(&freefrag->ff_jwork, jsegdep); 3945 if ((freefrag->ff_state & ALLCOMPLETE) == ALLCOMPLETE) 3946 add_to_worklist(&freefrag->ff_list, 0); 3947 jfreefrag->fr_freefrag = NULL; 3948 free_jfreefrag(jfreefrag); 3949 } 3950 3951 /* 3952 * Called when the journal write for a jfreeblk completes. The jfreeblk 3953 * is removed from the freeblks list of pending journal writes and the 3954 * jsegdep is moved to the freeblks jwork to be completed when all blocks 3955 * have been reclaimed. 3956 */ 3957 static void 3958 handle_written_jblkdep(jblkdep) 3959 struct jblkdep *jblkdep; 3960 { 3961 struct freeblks *freeblks; 3962 struct jsegdep *jsegdep; 3963 3964 /* Grab the jsegdep. */ 3965 jsegdep = jblkdep->jb_jsegdep; 3966 jblkdep->jb_jsegdep = NULL; 3967 freeblks = jblkdep->jb_freeblks; 3968 LIST_REMOVE(jblkdep, jb_deps); 3969 jwork_insert(&freeblks->fb_jwork, jsegdep); 3970 /* 3971 * If the freeblks is all journaled, we can add it to the worklist. 3972 */ 3973 if (LIST_EMPTY(&freeblks->fb_jblkdephd) && 3974 (freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE) 3975 add_to_worklist(&freeblks->fb_list, WK_NODELAY); 3976 3977 free_jblkdep(jblkdep); 3978 } 3979 3980 static struct jsegdep * 3981 newjsegdep(struct worklist *wk) 3982 { 3983 struct jsegdep *jsegdep; 3984 3985 jsegdep = malloc(sizeof(*jsegdep), M_JSEGDEP, M_SOFTDEP_FLAGS); 3986 workitem_alloc(&jsegdep->jd_list, D_JSEGDEP, wk->wk_mp); 3987 jsegdep->jd_seg = NULL; 3988 3989 return (jsegdep); 3990 } 3991 3992 static struct jmvref * 3993 newjmvref(dp, ino, oldoff, newoff) 3994 struct inode *dp; 3995 ino_t ino; 3996 off_t oldoff; 3997 off_t newoff; 3998 { 3999 struct jmvref *jmvref; 4000 4001 jmvref = malloc(sizeof(*jmvref), M_JMVREF, M_SOFTDEP_FLAGS); 4002 workitem_alloc(&jmvref->jm_list, D_JMVREF, ITOVFS(dp)); 4003 jmvref->jm_list.wk_state = ATTACHED | DEPCOMPLETE; 4004 jmvref->jm_parent = dp->i_number; 4005 jmvref->jm_ino = ino; 4006 jmvref->jm_oldoff = oldoff; 4007 jmvref->jm_newoff = newoff; 4008 4009 return (jmvref); 4010 } 4011 4012 /* 4013 * Allocate a new jremref that tracks the removal of ip from dp with the 4014 * directory entry offset of diroff. Mark the entry as ATTACHED and 4015 * DEPCOMPLETE as we have all the information required for the journal write 4016 * and the directory has already been removed from the buffer. The caller 4017 * is responsible for linking the jremref into the pagedep and adding it 4018 * to the journal to write. The MKDIR_PARENT flag is set if we're doing 4019 * a DOTDOT addition so handle_workitem_remove() can properly assign 4020 * the jsegdep when we're done. 4021 */ 4022 static struct jremref * 4023 newjremref(struct dirrem *dirrem, struct inode *dp, struct inode *ip, 4024 off_t diroff, nlink_t nlink) 4025 { 4026 struct jremref *jremref; 4027 4028 jremref = malloc(sizeof(*jremref), M_JREMREF, M_SOFTDEP_FLAGS); 4029 workitem_alloc(&jremref->jr_list, D_JREMREF, ITOVFS(dp)); 4030 jremref->jr_state = ATTACHED; 4031 newinoref(&jremref->jr_ref, ip->i_number, dp->i_number, diroff, 4032 nlink, ip->i_mode); 4033 jremref->jr_dirrem = dirrem; 4034 4035 return (jremref); 4036 } 4037 4038 static inline void 4039 newinoref(struct inoref *inoref, ino_t ino, ino_t parent, off_t diroff, 4040 nlink_t nlink, uint16_t mode) 4041 { 4042 4043 inoref->if_jsegdep = newjsegdep(&inoref->if_list); 4044 inoref->if_diroff = diroff; 4045 inoref->if_ino = ino; 4046 inoref->if_parent = parent; 4047 inoref->if_nlink = nlink; 4048 inoref->if_mode = mode; 4049 } 4050 4051 /* 4052 * Allocate a new jaddref to track the addition of ino to dp at diroff. The 4053 * directory offset may not be known until later. The caller is responsible 4054 * adding the entry to the journal when this information is available. nlink 4055 * should be the link count prior to the addition and mode is only required 4056 * to have the correct FMT. 4057 */ 4058 static struct jaddref * 4059 newjaddref(struct inode *dp, ino_t ino, off_t diroff, int16_t nlink, 4060 uint16_t mode) 4061 { 4062 struct jaddref *jaddref; 4063 4064 jaddref = malloc(sizeof(*jaddref), M_JADDREF, M_SOFTDEP_FLAGS); 4065 workitem_alloc(&jaddref->ja_list, D_JADDREF, ITOVFS(dp)); 4066 jaddref->ja_state = ATTACHED; 4067 jaddref->ja_mkdir = NULL; 4068 newinoref(&jaddref->ja_ref, ino, dp->i_number, diroff, nlink, mode); 4069 4070 return (jaddref); 4071 } 4072 4073 /* 4074 * Create a new free dependency for a freework. The caller is responsible 4075 * for adjusting the reference count when it has the lock held. The freedep 4076 * will track an outstanding bitmap write that will ultimately clear the 4077 * freework to continue. 4078 */ 4079 static struct freedep * 4080 newfreedep(struct freework *freework) 4081 { 4082 struct freedep *freedep; 4083 4084 freedep = malloc(sizeof(*freedep), M_FREEDEP, M_SOFTDEP_FLAGS); 4085 workitem_alloc(&freedep->fd_list, D_FREEDEP, freework->fw_list.wk_mp); 4086 freedep->fd_freework = freework; 4087 4088 return (freedep); 4089 } 4090 4091 /* 4092 * Free a freedep structure once the buffer it is linked to is written. If 4093 * this is the last reference to the freework schedule it for completion. 4094 */ 4095 static void 4096 free_freedep(freedep) 4097 struct freedep *freedep; 4098 { 4099 struct freework *freework; 4100 4101 freework = freedep->fd_freework; 4102 freework->fw_freeblks->fb_cgwait--; 4103 if (--freework->fw_ref == 0) 4104 freework_enqueue(freework); 4105 WORKITEM_FREE(freedep, D_FREEDEP); 4106 } 4107 4108 /* 4109 * Allocate a new freework structure that may be a level in an indirect 4110 * when parent is not NULL or a top level block when it is. The top level 4111 * freework structures are allocated without the per-filesystem lock held 4112 * and before the freeblks is visible outside of softdep_setup_freeblocks(). 4113 */ 4114 static struct freework * 4115 newfreework(ump, freeblks, parent, lbn, nb, frags, off, journal) 4116 struct ufsmount *ump; 4117 struct freeblks *freeblks; 4118 struct freework *parent; 4119 ufs_lbn_t lbn; 4120 ufs2_daddr_t nb; 4121 int frags; 4122 int off; 4123 int journal; 4124 { 4125 struct freework *freework; 4126 4127 freework = malloc(sizeof(*freework), M_FREEWORK, M_SOFTDEP_FLAGS); 4128 workitem_alloc(&freework->fw_list, D_FREEWORK, freeblks->fb_list.wk_mp); 4129 freework->fw_state = ATTACHED; 4130 freework->fw_jnewblk = NULL; 4131 freework->fw_freeblks = freeblks; 4132 freework->fw_parent = parent; 4133 freework->fw_lbn = lbn; 4134 freework->fw_blkno = nb; 4135 freework->fw_frags = frags; 4136 freework->fw_indir = NULL; 4137 freework->fw_ref = (MOUNTEDSUJ(UFSTOVFS(ump)) == 0 || 4138 lbn >= -UFS_NXADDR) ? 0 : NINDIR(ump->um_fs) + 1; 4139 freework->fw_start = freework->fw_off = off; 4140 if (journal) 4141 newjfreeblk(freeblks, lbn, nb, frags); 4142 if (parent == NULL) { 4143 ACQUIRE_LOCK(ump); 4144 WORKLIST_INSERT(&freeblks->fb_freeworkhd, &freework->fw_list); 4145 freeblks->fb_ref++; 4146 FREE_LOCK(ump); 4147 } 4148 4149 return (freework); 4150 } 4151 4152 /* 4153 * Eliminate a jfreeblk for a block that does not need journaling. 4154 */ 4155 static void 4156 cancel_jfreeblk(freeblks, blkno) 4157 struct freeblks *freeblks; 4158 ufs2_daddr_t blkno; 4159 { 4160 struct jfreeblk *jfreeblk; 4161 struct jblkdep *jblkdep; 4162 4163 LIST_FOREACH(jblkdep, &freeblks->fb_jblkdephd, jb_deps) { 4164 if (jblkdep->jb_list.wk_type != D_JFREEBLK) 4165 continue; 4166 jfreeblk = WK_JFREEBLK(&jblkdep->jb_list); 4167 if (jfreeblk->jf_blkno == blkno) 4168 break; 4169 } 4170 if (jblkdep == NULL) 4171 return; 4172 CTR1(KTR_SUJ, "cancel_jfreeblk: blkno %jd", blkno); 4173 free_jsegdep(jblkdep->jb_jsegdep); 4174 LIST_REMOVE(jblkdep, jb_deps); 4175 WORKITEM_FREE(jfreeblk, D_JFREEBLK); 4176 } 4177 4178 /* 4179 * Allocate a new jfreeblk to journal top level block pointer when truncating 4180 * a file. The caller must add this to the worklist when the per-filesystem 4181 * lock is held. 4182 */ 4183 static struct jfreeblk * 4184 newjfreeblk(freeblks, lbn, blkno, frags) 4185 struct freeblks *freeblks; 4186 ufs_lbn_t lbn; 4187 ufs2_daddr_t blkno; 4188 int frags; 4189 { 4190 struct jfreeblk *jfreeblk; 4191 4192 jfreeblk = malloc(sizeof(*jfreeblk), M_JFREEBLK, M_SOFTDEP_FLAGS); 4193 workitem_alloc(&jfreeblk->jf_dep.jb_list, D_JFREEBLK, 4194 freeblks->fb_list.wk_mp); 4195 jfreeblk->jf_dep.jb_jsegdep = newjsegdep(&jfreeblk->jf_dep.jb_list); 4196 jfreeblk->jf_dep.jb_freeblks = freeblks; 4197 jfreeblk->jf_ino = freeblks->fb_inum; 4198 jfreeblk->jf_lbn = lbn; 4199 jfreeblk->jf_blkno = blkno; 4200 jfreeblk->jf_frags = frags; 4201 LIST_INSERT_HEAD(&freeblks->fb_jblkdephd, &jfreeblk->jf_dep, jb_deps); 4202 4203 return (jfreeblk); 4204 } 4205 4206 /* 4207 * The journal is only prepared to handle full-size block numbers, so we 4208 * have to adjust the record to reflect the change to a full-size block. 4209 * For example, suppose we have a block made up of fragments 8-15 and 4210 * want to free its last two fragments. We are given a request that says: 4211 * FREEBLK ino=5, blkno=14, lbn=0, frags=2, oldfrags=0 4212 * where frags are the number of fragments to free and oldfrags are the 4213 * number of fragments to keep. To block align it, we have to change it to 4214 * have a valid full-size blkno, so it becomes: 4215 * FREEBLK ino=5, blkno=8, lbn=0, frags=2, oldfrags=6 4216 */ 4217 static void 4218 adjust_newfreework(freeblks, frag_offset) 4219 struct freeblks *freeblks; 4220 int frag_offset; 4221 { 4222 struct jfreeblk *jfreeblk; 4223 4224 KASSERT((LIST_FIRST(&freeblks->fb_jblkdephd) != NULL && 4225 LIST_FIRST(&freeblks->fb_jblkdephd)->jb_list.wk_type == D_JFREEBLK), 4226 ("adjust_newfreework: Missing freeblks dependency")); 4227 4228 jfreeblk = WK_JFREEBLK(LIST_FIRST(&freeblks->fb_jblkdephd)); 4229 jfreeblk->jf_blkno -= frag_offset; 4230 jfreeblk->jf_frags += frag_offset; 4231 } 4232 4233 /* 4234 * Allocate a new jtrunc to track a partial truncation. 4235 */ 4236 static struct jtrunc * 4237 newjtrunc(freeblks, size, extsize) 4238 struct freeblks *freeblks; 4239 off_t size; 4240 int extsize; 4241 { 4242 struct jtrunc *jtrunc; 4243 4244 jtrunc = malloc(sizeof(*jtrunc), M_JTRUNC, M_SOFTDEP_FLAGS); 4245 workitem_alloc(&jtrunc->jt_dep.jb_list, D_JTRUNC, 4246 freeblks->fb_list.wk_mp); 4247 jtrunc->jt_dep.jb_jsegdep = newjsegdep(&jtrunc->jt_dep.jb_list); 4248 jtrunc->jt_dep.jb_freeblks = freeblks; 4249 jtrunc->jt_ino = freeblks->fb_inum; 4250 jtrunc->jt_size = size; 4251 jtrunc->jt_extsize = extsize; 4252 LIST_INSERT_HEAD(&freeblks->fb_jblkdephd, &jtrunc->jt_dep, jb_deps); 4253 4254 return (jtrunc); 4255 } 4256 4257 /* 4258 * If we're canceling a new bitmap we have to search for another ref 4259 * to move into the bmsafemap dep. This might be better expressed 4260 * with another structure. 4261 */ 4262 static void 4263 move_newblock_dep(jaddref, inodedep) 4264 struct jaddref *jaddref; 4265 struct inodedep *inodedep; 4266 { 4267 struct inoref *inoref; 4268 struct jaddref *jaddrefn; 4269 4270 jaddrefn = NULL; 4271 for (inoref = TAILQ_NEXT(&jaddref->ja_ref, if_deps); inoref; 4272 inoref = TAILQ_NEXT(inoref, if_deps)) { 4273 if ((jaddref->ja_state & NEWBLOCK) && 4274 inoref->if_list.wk_type == D_JADDREF) { 4275 jaddrefn = (struct jaddref *)inoref; 4276 break; 4277 } 4278 } 4279 if (jaddrefn == NULL) 4280 return; 4281 jaddrefn->ja_state &= ~(ATTACHED | UNDONE); 4282 jaddrefn->ja_state |= jaddref->ja_state & 4283 (ATTACHED | UNDONE | NEWBLOCK); 4284 jaddref->ja_state &= ~(ATTACHED | UNDONE | NEWBLOCK); 4285 jaddref->ja_state |= ATTACHED; 4286 LIST_REMOVE(jaddref, ja_bmdeps); 4287 LIST_INSERT_HEAD(&inodedep->id_bmsafemap->sm_jaddrefhd, jaddrefn, 4288 ja_bmdeps); 4289 } 4290 4291 /* 4292 * Cancel a jaddref either before it has been written or while it is being 4293 * written. This happens when a link is removed before the add reaches 4294 * the disk. The jaddref dependency is kept linked into the bmsafemap 4295 * and inode to prevent the link count or bitmap from reaching the disk 4296 * until handle_workitem_remove() re-adjusts the counts and bitmaps as 4297 * required. 4298 * 4299 * Returns 1 if the canceled addref requires journaling of the remove and 4300 * 0 otherwise. 4301 */ 4302 static int 4303 cancel_jaddref(jaddref, inodedep, wkhd) 4304 struct jaddref *jaddref; 4305 struct inodedep *inodedep; 4306 struct workhead *wkhd; 4307 { 4308 struct inoref *inoref; 4309 struct jsegdep *jsegdep; 4310 int needsj; 4311 4312 KASSERT((jaddref->ja_state & COMPLETE) == 0, 4313 ("cancel_jaddref: Canceling complete jaddref")); 4314 if (jaddref->ja_state & (INPROGRESS | COMPLETE)) 4315 needsj = 1; 4316 else 4317 needsj = 0; 4318 if (inodedep == NULL) 4319 if (inodedep_lookup(jaddref->ja_list.wk_mp, jaddref->ja_ino, 4320 0, &inodedep) == 0) 4321 panic("cancel_jaddref: Lost inodedep"); 4322 /* 4323 * We must adjust the nlink of any reference operation that follows 4324 * us so that it is consistent with the in-memory reference. This 4325 * ensures that inode nlink rollbacks always have the correct link. 4326 */ 4327 if (needsj == 0) { 4328 for (inoref = TAILQ_NEXT(&jaddref->ja_ref, if_deps); inoref; 4329 inoref = TAILQ_NEXT(inoref, if_deps)) { 4330 if (inoref->if_state & GOINGAWAY) 4331 break; 4332 inoref->if_nlink--; 4333 } 4334 } 4335 jsegdep = inoref_jseg(&jaddref->ja_ref); 4336 if (jaddref->ja_state & NEWBLOCK) 4337 move_newblock_dep(jaddref, inodedep); 4338 wake_worklist(&jaddref->ja_list); 4339 jaddref->ja_mkdir = NULL; 4340 if (jaddref->ja_state & INPROGRESS) { 4341 jaddref->ja_state &= ~INPROGRESS; 4342 WORKLIST_REMOVE(&jaddref->ja_list); 4343 jwork_insert(wkhd, jsegdep); 4344 } else { 4345 free_jsegdep(jsegdep); 4346 if (jaddref->ja_state & DEPCOMPLETE) 4347 remove_from_journal(&jaddref->ja_list); 4348 } 4349 jaddref->ja_state |= (GOINGAWAY | DEPCOMPLETE); 4350 /* 4351 * Leave NEWBLOCK jaddrefs on the inodedep so handle_workitem_remove 4352 * can arrange for them to be freed with the bitmap. Otherwise we 4353 * no longer need this addref attached to the inoreflst and it 4354 * will incorrectly adjust nlink if we leave it. 4355 */ 4356 if ((jaddref->ja_state & NEWBLOCK) == 0) { 4357 TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref, 4358 if_deps); 4359 jaddref->ja_state |= COMPLETE; 4360 free_jaddref(jaddref); 4361 return (needsj); 4362 } 4363 /* 4364 * Leave the head of the list for jsegdeps for fast merging. 4365 */ 4366 if (LIST_FIRST(wkhd) != NULL) { 4367 jaddref->ja_state |= ONWORKLIST; 4368 LIST_INSERT_AFTER(LIST_FIRST(wkhd), &jaddref->ja_list, wk_list); 4369 } else 4370 WORKLIST_INSERT(wkhd, &jaddref->ja_list); 4371 4372 return (needsj); 4373 } 4374 4375 /* 4376 * Attempt to free a jaddref structure when some work completes. This 4377 * should only succeed once the entry is written and all dependencies have 4378 * been notified. 4379 */ 4380 static void 4381 free_jaddref(jaddref) 4382 struct jaddref *jaddref; 4383 { 4384 4385 if ((jaddref->ja_state & ALLCOMPLETE) != ALLCOMPLETE) 4386 return; 4387 if (jaddref->ja_ref.if_jsegdep) 4388 panic("free_jaddref: segdep attached to jaddref %p(0x%X)\n", 4389 jaddref, jaddref->ja_state); 4390 if (jaddref->ja_state & NEWBLOCK) 4391 LIST_REMOVE(jaddref, ja_bmdeps); 4392 if (jaddref->ja_state & (INPROGRESS | ONWORKLIST)) 4393 panic("free_jaddref: Bad state %p(0x%X)", 4394 jaddref, jaddref->ja_state); 4395 if (jaddref->ja_mkdir != NULL) 4396 panic("free_jaddref: Work pending, 0x%X\n", jaddref->ja_state); 4397 WORKITEM_FREE(jaddref, D_JADDREF); 4398 } 4399 4400 /* 4401 * Free a jremref structure once it has been written or discarded. 4402 */ 4403 static void 4404 free_jremref(jremref) 4405 struct jremref *jremref; 4406 { 4407 4408 if (jremref->jr_ref.if_jsegdep) 4409 free_jsegdep(jremref->jr_ref.if_jsegdep); 4410 if (jremref->jr_state & INPROGRESS) 4411 panic("free_jremref: IO still pending"); 4412 WORKITEM_FREE(jremref, D_JREMREF); 4413 } 4414 4415 /* 4416 * Free a jnewblk structure. 4417 */ 4418 static void 4419 free_jnewblk(jnewblk) 4420 struct jnewblk *jnewblk; 4421 { 4422 4423 if ((jnewblk->jn_state & ALLCOMPLETE) != ALLCOMPLETE) 4424 return; 4425 LIST_REMOVE(jnewblk, jn_deps); 4426 if (jnewblk->jn_dep != NULL) 4427 panic("free_jnewblk: Dependency still attached."); 4428 WORKITEM_FREE(jnewblk, D_JNEWBLK); 4429 } 4430 4431 /* 4432 * Cancel a jnewblk which has been been made redundant by frag extension. 4433 */ 4434 static void 4435 cancel_jnewblk(jnewblk, wkhd) 4436 struct jnewblk *jnewblk; 4437 struct workhead *wkhd; 4438 { 4439 struct jsegdep *jsegdep; 4440 4441 CTR1(KTR_SUJ, "cancel_jnewblk: blkno %jd", jnewblk->jn_blkno); 4442 jsegdep = jnewblk->jn_jsegdep; 4443 if (jnewblk->jn_jsegdep == NULL || jnewblk->jn_dep == NULL) 4444 panic("cancel_jnewblk: Invalid state"); 4445 jnewblk->jn_jsegdep = NULL; 4446 jnewblk->jn_dep = NULL; 4447 jnewblk->jn_state |= GOINGAWAY; 4448 if (jnewblk->jn_state & INPROGRESS) { 4449 jnewblk->jn_state &= ~INPROGRESS; 4450 WORKLIST_REMOVE(&jnewblk->jn_list); 4451 jwork_insert(wkhd, jsegdep); 4452 } else { 4453 free_jsegdep(jsegdep); 4454 remove_from_journal(&jnewblk->jn_list); 4455 } 4456 wake_worklist(&jnewblk->jn_list); 4457 WORKLIST_INSERT(wkhd, &jnewblk->jn_list); 4458 } 4459 4460 static void 4461 free_jblkdep(jblkdep) 4462 struct jblkdep *jblkdep; 4463 { 4464 4465 if (jblkdep->jb_list.wk_type == D_JFREEBLK) 4466 WORKITEM_FREE(jblkdep, D_JFREEBLK); 4467 else if (jblkdep->jb_list.wk_type == D_JTRUNC) 4468 WORKITEM_FREE(jblkdep, D_JTRUNC); 4469 else 4470 panic("free_jblkdep: Unexpected type %s", 4471 TYPENAME(jblkdep->jb_list.wk_type)); 4472 } 4473 4474 /* 4475 * Free a single jseg once it is no longer referenced in memory or on 4476 * disk. Reclaim journal blocks and dependencies waiting for the segment 4477 * to disappear. 4478 */ 4479 static void 4480 free_jseg(jseg, jblocks) 4481 struct jseg *jseg; 4482 struct jblocks *jblocks; 4483 { 4484 struct freework *freework; 4485 4486 /* 4487 * Free freework structures that were lingering to indicate freed 4488 * indirect blocks that forced journal write ordering on reallocate. 4489 */ 4490 while ((freework = LIST_FIRST(&jseg->js_indirs)) != NULL) 4491 indirblk_remove(freework); 4492 if (jblocks->jb_oldestseg == jseg) 4493 jblocks->jb_oldestseg = TAILQ_NEXT(jseg, js_next); 4494 TAILQ_REMOVE(&jblocks->jb_segs, jseg, js_next); 4495 jblocks_free(jblocks, jseg->js_list.wk_mp, jseg->js_size); 4496 KASSERT(LIST_EMPTY(&jseg->js_entries), 4497 ("free_jseg: Freed jseg has valid entries.")); 4498 WORKITEM_FREE(jseg, D_JSEG); 4499 } 4500 4501 /* 4502 * Free all jsegs that meet the criteria for being reclaimed and update 4503 * oldestseg. 4504 */ 4505 static void 4506 free_jsegs(jblocks) 4507 struct jblocks *jblocks; 4508 { 4509 struct jseg *jseg; 4510 4511 /* 4512 * Free only those jsegs which have none allocated before them to 4513 * preserve the journal space ordering. 4514 */ 4515 while ((jseg = TAILQ_FIRST(&jblocks->jb_segs)) != NULL) { 4516 /* 4517 * Only reclaim space when nothing depends on this journal 4518 * set and another set has written that it is no longer 4519 * valid. 4520 */ 4521 if (jseg->js_refs != 0) { 4522 jblocks->jb_oldestseg = jseg; 4523 return; 4524 } 4525 if ((jseg->js_state & ALLCOMPLETE) != ALLCOMPLETE) 4526 break; 4527 if (jseg->js_seq > jblocks->jb_oldestwrseq) 4528 break; 4529 /* 4530 * We can free jsegs that didn't write entries when 4531 * oldestwrseq == js_seq. 4532 */ 4533 if (jseg->js_seq == jblocks->jb_oldestwrseq && 4534 jseg->js_cnt != 0) 4535 break; 4536 free_jseg(jseg, jblocks); 4537 } 4538 /* 4539 * If we exited the loop above we still must discover the 4540 * oldest valid segment. 4541 */ 4542 if (jseg) 4543 for (jseg = jblocks->jb_oldestseg; jseg != NULL; 4544 jseg = TAILQ_NEXT(jseg, js_next)) 4545 if (jseg->js_refs != 0) 4546 break; 4547 jblocks->jb_oldestseg = jseg; 4548 /* 4549 * The journal has no valid records but some jsegs may still be 4550 * waiting on oldestwrseq to advance. We force a small record 4551 * out to permit these lingering records to be reclaimed. 4552 */ 4553 if (jblocks->jb_oldestseg == NULL && !TAILQ_EMPTY(&jblocks->jb_segs)) 4554 jblocks->jb_needseg = 1; 4555 } 4556 4557 /* 4558 * Release one reference to a jseg and free it if the count reaches 0. This 4559 * should eventually reclaim journal space as well. 4560 */ 4561 static void 4562 rele_jseg(jseg) 4563 struct jseg *jseg; 4564 { 4565 4566 KASSERT(jseg->js_refs > 0, 4567 ("free_jseg: Invalid refcnt %d", jseg->js_refs)); 4568 if (--jseg->js_refs != 0) 4569 return; 4570 free_jsegs(jseg->js_jblocks); 4571 } 4572 4573 /* 4574 * Release a jsegdep and decrement the jseg count. 4575 */ 4576 static void 4577 free_jsegdep(jsegdep) 4578 struct jsegdep *jsegdep; 4579 { 4580 4581 if (jsegdep->jd_seg) 4582 rele_jseg(jsegdep->jd_seg); 4583 WORKITEM_FREE(jsegdep, D_JSEGDEP); 4584 } 4585 4586 /* 4587 * Wait for a journal item to make it to disk. Initiate journal processing 4588 * if required. 4589 */ 4590 static int 4591 jwait(wk, waitfor) 4592 struct worklist *wk; 4593 int waitfor; 4594 { 4595 4596 LOCK_OWNED(VFSTOUFS(wk->wk_mp)); 4597 /* 4598 * Blocking journal waits cause slow synchronous behavior. Record 4599 * stats on the frequency of these blocking operations. 4600 */ 4601 if (waitfor == MNT_WAIT) { 4602 stat_journal_wait++; 4603 switch (wk->wk_type) { 4604 case D_JREMREF: 4605 case D_JMVREF: 4606 stat_jwait_filepage++; 4607 break; 4608 case D_JTRUNC: 4609 case D_JFREEBLK: 4610 stat_jwait_freeblks++; 4611 break; 4612 case D_JNEWBLK: 4613 stat_jwait_newblk++; 4614 break; 4615 case D_JADDREF: 4616 stat_jwait_inode++; 4617 break; 4618 default: 4619 break; 4620 } 4621 } 4622 /* 4623 * If IO has not started we process the journal. We can't mark the 4624 * worklist item as IOWAITING because we drop the lock while 4625 * processing the journal and the worklist entry may be freed after 4626 * this point. The caller may call back in and re-issue the request. 4627 */ 4628 if ((wk->wk_state & INPROGRESS) == 0) { 4629 softdep_process_journal(wk->wk_mp, wk, waitfor); 4630 if (waitfor != MNT_WAIT) 4631 return (EBUSY); 4632 return (0); 4633 } 4634 if (waitfor != MNT_WAIT) 4635 return (EBUSY); 4636 wait_worklist(wk, "jwait"); 4637 return (0); 4638 } 4639 4640 /* 4641 * Lookup an inodedep based on an inode pointer and set the nlinkdelta as 4642 * appropriate. This is a convenience function to reduce duplicate code 4643 * for the setup and revert functions below. 4644 */ 4645 static struct inodedep * 4646 inodedep_lookup_ip(ip) 4647 struct inode *ip; 4648 { 4649 struct inodedep *inodedep; 4650 4651 KASSERT(ip->i_nlink >= ip->i_effnlink, 4652 ("inodedep_lookup_ip: bad delta")); 4653 (void) inodedep_lookup(ITOVFS(ip), ip->i_number, DEPALLOC, 4654 &inodedep); 4655 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 4656 KASSERT((inodedep->id_state & UNLINKED) == 0, ("inode unlinked")); 4657 4658 return (inodedep); 4659 } 4660 4661 /* 4662 * Called prior to creating a new inode and linking it to a directory. The 4663 * jaddref structure must already be allocated by softdep_setup_inomapdep 4664 * and it is discovered here so we can initialize the mode and update 4665 * nlinkdelta. 4666 */ 4667 void 4668 softdep_setup_create(dp, ip) 4669 struct inode *dp; 4670 struct inode *ip; 4671 { 4672 struct inodedep *inodedep; 4673 struct jaddref *jaddref; 4674 struct vnode *dvp; 4675 4676 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 4677 ("softdep_setup_create called on non-softdep filesystem")); 4678 KASSERT(ip->i_nlink == 1, 4679 ("softdep_setup_create: Invalid link count.")); 4680 dvp = ITOV(dp); 4681 ACQUIRE_LOCK(ITOUMP(dp)); 4682 inodedep = inodedep_lookup_ip(ip); 4683 if (DOINGSUJ(dvp)) { 4684 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 4685 inoreflst); 4686 KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number, 4687 ("softdep_setup_create: No addref structure present.")); 4688 } 4689 softdep_prelink(dvp, NULL); 4690 FREE_LOCK(ITOUMP(dp)); 4691 } 4692 4693 /* 4694 * Create a jaddref structure to track the addition of a DOTDOT link when 4695 * we are reparenting an inode as part of a rename. This jaddref will be 4696 * found by softdep_setup_directory_change. Adjusts nlinkdelta for 4697 * non-journaling softdep. 4698 */ 4699 void 4700 softdep_setup_dotdot_link(dp, ip) 4701 struct inode *dp; 4702 struct inode *ip; 4703 { 4704 struct inodedep *inodedep; 4705 struct jaddref *jaddref; 4706 struct vnode *dvp; 4707 4708 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 4709 ("softdep_setup_dotdot_link called on non-softdep filesystem")); 4710 dvp = ITOV(dp); 4711 jaddref = NULL; 4712 /* 4713 * We don't set MKDIR_PARENT as this is not tied to a mkdir and 4714 * is used as a normal link would be. 4715 */ 4716 if (DOINGSUJ(dvp)) 4717 jaddref = newjaddref(ip, dp->i_number, DOTDOT_OFFSET, 4718 dp->i_effnlink - 1, dp->i_mode); 4719 ACQUIRE_LOCK(ITOUMP(dp)); 4720 inodedep = inodedep_lookup_ip(dp); 4721 if (jaddref) 4722 TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref, 4723 if_deps); 4724 softdep_prelink(dvp, ITOV(ip)); 4725 FREE_LOCK(ITOUMP(dp)); 4726 } 4727 4728 /* 4729 * Create a jaddref structure to track a new link to an inode. The directory 4730 * offset is not known until softdep_setup_directory_add or 4731 * softdep_setup_directory_change. Adjusts nlinkdelta for non-journaling 4732 * softdep. 4733 */ 4734 void 4735 softdep_setup_link(dp, ip) 4736 struct inode *dp; 4737 struct inode *ip; 4738 { 4739 struct inodedep *inodedep; 4740 struct jaddref *jaddref; 4741 struct vnode *dvp; 4742 4743 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 4744 ("softdep_setup_link called on non-softdep filesystem")); 4745 dvp = ITOV(dp); 4746 jaddref = NULL; 4747 if (DOINGSUJ(dvp)) 4748 jaddref = newjaddref(dp, ip->i_number, 0, ip->i_effnlink - 1, 4749 ip->i_mode); 4750 ACQUIRE_LOCK(ITOUMP(dp)); 4751 inodedep = inodedep_lookup_ip(ip); 4752 if (jaddref) 4753 TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref, 4754 if_deps); 4755 softdep_prelink(dvp, ITOV(ip)); 4756 FREE_LOCK(ITOUMP(dp)); 4757 } 4758 4759 /* 4760 * Called to create the jaddref structures to track . and .. references as 4761 * well as lookup and further initialize the incomplete jaddref created 4762 * by softdep_setup_inomapdep when the inode was allocated. Adjusts 4763 * nlinkdelta for non-journaling softdep. 4764 */ 4765 void 4766 softdep_setup_mkdir(dp, ip) 4767 struct inode *dp; 4768 struct inode *ip; 4769 { 4770 struct inodedep *inodedep; 4771 struct jaddref *dotdotaddref; 4772 struct jaddref *dotaddref; 4773 struct jaddref *jaddref; 4774 struct vnode *dvp; 4775 4776 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 4777 ("softdep_setup_mkdir called on non-softdep filesystem")); 4778 dvp = ITOV(dp); 4779 dotaddref = dotdotaddref = NULL; 4780 if (DOINGSUJ(dvp)) { 4781 dotaddref = newjaddref(ip, ip->i_number, DOT_OFFSET, 1, 4782 ip->i_mode); 4783 dotaddref->ja_state |= MKDIR_BODY; 4784 dotdotaddref = newjaddref(ip, dp->i_number, DOTDOT_OFFSET, 4785 dp->i_effnlink - 1, dp->i_mode); 4786 dotdotaddref->ja_state |= MKDIR_PARENT; 4787 } 4788 ACQUIRE_LOCK(ITOUMP(dp)); 4789 inodedep = inodedep_lookup_ip(ip); 4790 if (DOINGSUJ(dvp)) { 4791 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 4792 inoreflst); 4793 KASSERT(jaddref != NULL, 4794 ("softdep_setup_mkdir: No addref structure present.")); 4795 KASSERT(jaddref->ja_parent == dp->i_number, 4796 ("softdep_setup_mkdir: bad parent %ju", 4797 (uintmax_t)jaddref->ja_parent)); 4798 TAILQ_INSERT_BEFORE(&jaddref->ja_ref, &dotaddref->ja_ref, 4799 if_deps); 4800 } 4801 inodedep = inodedep_lookup_ip(dp); 4802 if (DOINGSUJ(dvp)) 4803 TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, 4804 &dotdotaddref->ja_ref, if_deps); 4805 softdep_prelink(ITOV(dp), NULL); 4806 FREE_LOCK(ITOUMP(dp)); 4807 } 4808 4809 /* 4810 * Called to track nlinkdelta of the inode and parent directories prior to 4811 * unlinking a directory. 4812 */ 4813 void 4814 softdep_setup_rmdir(dp, ip) 4815 struct inode *dp; 4816 struct inode *ip; 4817 { 4818 struct vnode *dvp; 4819 4820 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 4821 ("softdep_setup_rmdir called on non-softdep filesystem")); 4822 dvp = ITOV(dp); 4823 ACQUIRE_LOCK(ITOUMP(dp)); 4824 (void) inodedep_lookup_ip(ip); 4825 (void) inodedep_lookup_ip(dp); 4826 softdep_prelink(dvp, ITOV(ip)); 4827 FREE_LOCK(ITOUMP(dp)); 4828 } 4829 4830 /* 4831 * Called to track nlinkdelta of the inode and parent directories prior to 4832 * unlink. 4833 */ 4834 void 4835 softdep_setup_unlink(dp, ip) 4836 struct inode *dp; 4837 struct inode *ip; 4838 { 4839 struct vnode *dvp; 4840 4841 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 4842 ("softdep_setup_unlink called on non-softdep filesystem")); 4843 dvp = ITOV(dp); 4844 ACQUIRE_LOCK(ITOUMP(dp)); 4845 (void) inodedep_lookup_ip(ip); 4846 (void) inodedep_lookup_ip(dp); 4847 softdep_prelink(dvp, ITOV(ip)); 4848 FREE_LOCK(ITOUMP(dp)); 4849 } 4850 4851 /* 4852 * Called to release the journal structures created by a failed non-directory 4853 * creation. Adjusts nlinkdelta for non-journaling softdep. 4854 */ 4855 void 4856 softdep_revert_create(dp, ip) 4857 struct inode *dp; 4858 struct inode *ip; 4859 { 4860 struct inodedep *inodedep; 4861 struct jaddref *jaddref; 4862 struct vnode *dvp; 4863 4864 KASSERT(MOUNTEDSOFTDEP(ITOVFS((dp))) != 0, 4865 ("softdep_revert_create called on non-softdep filesystem")); 4866 dvp = ITOV(dp); 4867 ACQUIRE_LOCK(ITOUMP(dp)); 4868 inodedep = inodedep_lookup_ip(ip); 4869 if (DOINGSUJ(dvp)) { 4870 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 4871 inoreflst); 4872 KASSERT(jaddref->ja_parent == dp->i_number, 4873 ("softdep_revert_create: addref parent mismatch")); 4874 cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait); 4875 } 4876 FREE_LOCK(ITOUMP(dp)); 4877 } 4878 4879 /* 4880 * Called to release the journal structures created by a failed link 4881 * addition. Adjusts nlinkdelta for non-journaling softdep. 4882 */ 4883 void 4884 softdep_revert_link(dp, ip) 4885 struct inode *dp; 4886 struct inode *ip; 4887 { 4888 struct inodedep *inodedep; 4889 struct jaddref *jaddref; 4890 struct vnode *dvp; 4891 4892 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 4893 ("softdep_revert_link called on non-softdep filesystem")); 4894 dvp = ITOV(dp); 4895 ACQUIRE_LOCK(ITOUMP(dp)); 4896 inodedep = inodedep_lookup_ip(ip); 4897 if (DOINGSUJ(dvp)) { 4898 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 4899 inoreflst); 4900 KASSERT(jaddref->ja_parent == dp->i_number, 4901 ("softdep_revert_link: addref parent mismatch")); 4902 cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait); 4903 } 4904 FREE_LOCK(ITOUMP(dp)); 4905 } 4906 4907 /* 4908 * Called to release the journal structures created by a failed mkdir 4909 * attempt. Adjusts nlinkdelta for non-journaling softdep. 4910 */ 4911 void 4912 softdep_revert_mkdir(dp, ip) 4913 struct inode *dp; 4914 struct inode *ip; 4915 { 4916 struct inodedep *inodedep; 4917 struct jaddref *jaddref; 4918 struct jaddref *dotaddref; 4919 struct vnode *dvp; 4920 4921 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 4922 ("softdep_revert_mkdir called on non-softdep filesystem")); 4923 dvp = ITOV(dp); 4924 4925 ACQUIRE_LOCK(ITOUMP(dp)); 4926 inodedep = inodedep_lookup_ip(dp); 4927 if (DOINGSUJ(dvp)) { 4928 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 4929 inoreflst); 4930 KASSERT(jaddref->ja_parent == ip->i_number, 4931 ("softdep_revert_mkdir: dotdot addref parent mismatch")); 4932 cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait); 4933 } 4934 inodedep = inodedep_lookup_ip(ip); 4935 if (DOINGSUJ(dvp)) { 4936 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 4937 inoreflst); 4938 KASSERT(jaddref->ja_parent == dp->i_number, 4939 ("softdep_revert_mkdir: addref parent mismatch")); 4940 dotaddref = (struct jaddref *)TAILQ_PREV(&jaddref->ja_ref, 4941 inoreflst, if_deps); 4942 cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait); 4943 KASSERT(dotaddref->ja_parent == ip->i_number, 4944 ("softdep_revert_mkdir: dot addref parent mismatch")); 4945 cancel_jaddref(dotaddref, inodedep, &inodedep->id_inowait); 4946 } 4947 FREE_LOCK(ITOUMP(dp)); 4948 } 4949 4950 /* 4951 * Called to correct nlinkdelta after a failed rmdir. 4952 */ 4953 void 4954 softdep_revert_rmdir(dp, ip) 4955 struct inode *dp; 4956 struct inode *ip; 4957 { 4958 4959 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 4960 ("softdep_revert_rmdir called on non-softdep filesystem")); 4961 ACQUIRE_LOCK(ITOUMP(dp)); 4962 (void) inodedep_lookup_ip(ip); 4963 (void) inodedep_lookup_ip(dp); 4964 FREE_LOCK(ITOUMP(dp)); 4965 } 4966 4967 /* 4968 * Protecting the freemaps (or bitmaps). 4969 * 4970 * To eliminate the need to execute fsck before mounting a filesystem 4971 * after a power failure, one must (conservatively) guarantee that the 4972 * on-disk copy of the bitmaps never indicate that a live inode or block is 4973 * free. So, when a block or inode is allocated, the bitmap should be 4974 * updated (on disk) before any new pointers. When a block or inode is 4975 * freed, the bitmap should not be updated until all pointers have been 4976 * reset. The latter dependency is handled by the delayed de-allocation 4977 * approach described below for block and inode de-allocation. The former 4978 * dependency is handled by calling the following procedure when a block or 4979 * inode is allocated. When an inode is allocated an "inodedep" is created 4980 * with its DEPCOMPLETE flag cleared until its bitmap is written to disk. 4981 * Each "inodedep" is also inserted into the hash indexing structure so 4982 * that any additional link additions can be made dependent on the inode 4983 * allocation. 4984 * 4985 * The ufs filesystem maintains a number of free block counts (e.g., per 4986 * cylinder group, per cylinder and per <cylinder, rotational position> pair) 4987 * in addition to the bitmaps. These counts are used to improve efficiency 4988 * during allocation and therefore must be consistent with the bitmaps. 4989 * There is no convenient way to guarantee post-crash consistency of these 4990 * counts with simple update ordering, for two main reasons: (1) The counts 4991 * and bitmaps for a single cylinder group block are not in the same disk 4992 * sector. If a disk write is interrupted (e.g., by power failure), one may 4993 * be written and the other not. (2) Some of the counts are located in the 4994 * superblock rather than the cylinder group block. So, we focus our soft 4995 * updates implementation on protecting the bitmaps. When mounting a 4996 * filesystem, we recompute the auxiliary counts from the bitmaps. 4997 */ 4998 4999 /* 5000 * Called just after updating the cylinder group block to allocate an inode. 5001 */ 5002 void 5003 softdep_setup_inomapdep(bp, ip, newinum, mode) 5004 struct buf *bp; /* buffer for cylgroup block with inode map */ 5005 struct inode *ip; /* inode related to allocation */ 5006 ino_t newinum; /* new inode number being allocated */ 5007 int mode; 5008 { 5009 struct inodedep *inodedep; 5010 struct bmsafemap *bmsafemap; 5011 struct jaddref *jaddref; 5012 struct mount *mp; 5013 struct fs *fs; 5014 5015 mp = ITOVFS(ip); 5016 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 5017 ("softdep_setup_inomapdep called on non-softdep filesystem")); 5018 fs = VFSTOUFS(mp)->um_fs; 5019 jaddref = NULL; 5020 5021 /* 5022 * Allocate the journal reference add structure so that the bitmap 5023 * can be dependent on it. 5024 */ 5025 if (MOUNTEDSUJ(mp)) { 5026 jaddref = newjaddref(ip, newinum, 0, 0, mode); 5027 jaddref->ja_state |= NEWBLOCK; 5028 } 5029 5030 /* 5031 * Create a dependency for the newly allocated inode. 5032 * Panic if it already exists as something is seriously wrong. 5033 * Otherwise add it to the dependency list for the buffer holding 5034 * the cylinder group map from which it was allocated. 5035 * 5036 * We have to preallocate a bmsafemap entry in case it is needed 5037 * in bmsafemap_lookup since once we allocate the inodedep, we 5038 * have to finish initializing it before we can FREE_LOCK(). 5039 * By preallocating, we avoid FREE_LOCK() while doing a malloc 5040 * in bmsafemap_lookup. We cannot call bmsafemap_lookup before 5041 * creating the inodedep as it can be freed during the time 5042 * that we FREE_LOCK() while allocating the inodedep. We must 5043 * call workitem_alloc() before entering the locked section as 5044 * it also acquires the lock and we must avoid trying doing so 5045 * recursively. 5046 */ 5047 bmsafemap = malloc(sizeof(struct bmsafemap), 5048 M_BMSAFEMAP, M_SOFTDEP_FLAGS); 5049 workitem_alloc(&bmsafemap->sm_list, D_BMSAFEMAP, mp); 5050 ACQUIRE_LOCK(ITOUMP(ip)); 5051 if ((inodedep_lookup(mp, newinum, DEPALLOC, &inodedep))) 5052 panic("softdep_setup_inomapdep: dependency %p for new" 5053 "inode already exists", inodedep); 5054 bmsafemap = bmsafemap_lookup(mp, bp, ino_to_cg(fs, newinum), bmsafemap); 5055 if (jaddref) { 5056 LIST_INSERT_HEAD(&bmsafemap->sm_jaddrefhd, jaddref, ja_bmdeps); 5057 TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref, 5058 if_deps); 5059 } else { 5060 inodedep->id_state |= ONDEPLIST; 5061 LIST_INSERT_HEAD(&bmsafemap->sm_inodedephd, inodedep, id_deps); 5062 } 5063 inodedep->id_bmsafemap = bmsafemap; 5064 inodedep->id_state &= ~DEPCOMPLETE; 5065 FREE_LOCK(ITOUMP(ip)); 5066 } 5067 5068 /* 5069 * Called just after updating the cylinder group block to 5070 * allocate block or fragment. 5071 */ 5072 void 5073 softdep_setup_blkmapdep(bp, mp, newblkno, frags, oldfrags) 5074 struct buf *bp; /* buffer for cylgroup block with block map */ 5075 struct mount *mp; /* filesystem doing allocation */ 5076 ufs2_daddr_t newblkno; /* number of newly allocated block */ 5077 int frags; /* Number of fragments. */ 5078 int oldfrags; /* Previous number of fragments for extend. */ 5079 { 5080 struct newblk *newblk; 5081 struct bmsafemap *bmsafemap; 5082 struct jnewblk *jnewblk; 5083 struct ufsmount *ump; 5084 struct fs *fs; 5085 5086 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 5087 ("softdep_setup_blkmapdep called on non-softdep filesystem")); 5088 ump = VFSTOUFS(mp); 5089 fs = ump->um_fs; 5090 jnewblk = NULL; 5091 /* 5092 * Create a dependency for the newly allocated block. 5093 * Add it to the dependency list for the buffer holding 5094 * the cylinder group map from which it was allocated. 5095 */ 5096 if (MOUNTEDSUJ(mp)) { 5097 jnewblk = malloc(sizeof(*jnewblk), M_JNEWBLK, M_SOFTDEP_FLAGS); 5098 workitem_alloc(&jnewblk->jn_list, D_JNEWBLK, mp); 5099 jnewblk->jn_jsegdep = newjsegdep(&jnewblk->jn_list); 5100 jnewblk->jn_state = ATTACHED; 5101 jnewblk->jn_blkno = newblkno; 5102 jnewblk->jn_frags = frags; 5103 jnewblk->jn_oldfrags = oldfrags; 5104 #ifdef SUJ_DEBUG 5105 { 5106 struct cg *cgp; 5107 uint8_t *blksfree; 5108 long bno; 5109 int i; 5110 5111 cgp = (struct cg *)bp->b_data; 5112 blksfree = cg_blksfree(cgp); 5113 bno = dtogd(fs, jnewblk->jn_blkno); 5114 for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; 5115 i++) { 5116 if (isset(blksfree, bno + i)) 5117 panic("softdep_setup_blkmapdep: " 5118 "free fragment %d from %d-%d " 5119 "state 0x%X dep %p", i, 5120 jnewblk->jn_oldfrags, 5121 jnewblk->jn_frags, 5122 jnewblk->jn_state, 5123 jnewblk->jn_dep); 5124 } 5125 } 5126 #endif 5127 } 5128 5129 CTR3(KTR_SUJ, 5130 "softdep_setup_blkmapdep: blkno %jd frags %d oldfrags %d", 5131 newblkno, frags, oldfrags); 5132 ACQUIRE_LOCK(ump); 5133 if (newblk_lookup(mp, newblkno, DEPALLOC, &newblk) != 0) 5134 panic("softdep_setup_blkmapdep: found block"); 5135 newblk->nb_bmsafemap = bmsafemap = bmsafemap_lookup(mp, bp, 5136 dtog(fs, newblkno), NULL); 5137 if (jnewblk) { 5138 jnewblk->jn_dep = (struct worklist *)newblk; 5139 LIST_INSERT_HEAD(&bmsafemap->sm_jnewblkhd, jnewblk, jn_deps); 5140 } else { 5141 newblk->nb_state |= ONDEPLIST; 5142 LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, nb_deps); 5143 } 5144 newblk->nb_bmsafemap = bmsafemap; 5145 newblk->nb_jnewblk = jnewblk; 5146 FREE_LOCK(ump); 5147 } 5148 5149 #define BMSAFEMAP_HASH(ump, cg) \ 5150 (&(ump)->bmsafemap_hashtbl[(cg) & (ump)->bmsafemap_hash_size]) 5151 5152 static int 5153 bmsafemap_find(bmsafemaphd, cg, bmsafemapp) 5154 struct bmsafemap_hashhead *bmsafemaphd; 5155 int cg; 5156 struct bmsafemap **bmsafemapp; 5157 { 5158 struct bmsafemap *bmsafemap; 5159 5160 LIST_FOREACH(bmsafemap, bmsafemaphd, sm_hash) 5161 if (bmsafemap->sm_cg == cg) 5162 break; 5163 if (bmsafemap) { 5164 *bmsafemapp = bmsafemap; 5165 return (1); 5166 } 5167 *bmsafemapp = NULL; 5168 5169 return (0); 5170 } 5171 5172 /* 5173 * Find the bmsafemap associated with a cylinder group buffer. 5174 * If none exists, create one. The buffer must be locked when 5175 * this routine is called and this routine must be called with 5176 * the softdep lock held. To avoid giving up the lock while 5177 * allocating a new bmsafemap, a preallocated bmsafemap may be 5178 * provided. If it is provided but not needed, it is freed. 5179 */ 5180 static struct bmsafemap * 5181 bmsafemap_lookup(mp, bp, cg, newbmsafemap) 5182 struct mount *mp; 5183 struct buf *bp; 5184 int cg; 5185 struct bmsafemap *newbmsafemap; 5186 { 5187 struct bmsafemap_hashhead *bmsafemaphd; 5188 struct bmsafemap *bmsafemap, *collision; 5189 struct worklist *wk; 5190 struct ufsmount *ump; 5191 5192 ump = VFSTOUFS(mp); 5193 LOCK_OWNED(ump); 5194 KASSERT(bp != NULL, ("bmsafemap_lookup: missing buffer")); 5195 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 5196 if (wk->wk_type == D_BMSAFEMAP) { 5197 if (newbmsafemap) 5198 WORKITEM_FREE(newbmsafemap, D_BMSAFEMAP); 5199 return (WK_BMSAFEMAP(wk)); 5200 } 5201 } 5202 bmsafemaphd = BMSAFEMAP_HASH(ump, cg); 5203 if (bmsafemap_find(bmsafemaphd, cg, &bmsafemap) == 1) { 5204 if (newbmsafemap) 5205 WORKITEM_FREE(newbmsafemap, D_BMSAFEMAP); 5206 return (bmsafemap); 5207 } 5208 if (newbmsafemap) { 5209 bmsafemap = newbmsafemap; 5210 } else { 5211 FREE_LOCK(ump); 5212 bmsafemap = malloc(sizeof(struct bmsafemap), 5213 M_BMSAFEMAP, M_SOFTDEP_FLAGS); 5214 workitem_alloc(&bmsafemap->sm_list, D_BMSAFEMAP, mp); 5215 ACQUIRE_LOCK(ump); 5216 } 5217 bmsafemap->sm_buf = bp; 5218 LIST_INIT(&bmsafemap->sm_inodedephd); 5219 LIST_INIT(&bmsafemap->sm_inodedepwr); 5220 LIST_INIT(&bmsafemap->sm_newblkhd); 5221 LIST_INIT(&bmsafemap->sm_newblkwr); 5222 LIST_INIT(&bmsafemap->sm_jaddrefhd); 5223 LIST_INIT(&bmsafemap->sm_jnewblkhd); 5224 LIST_INIT(&bmsafemap->sm_freehd); 5225 LIST_INIT(&bmsafemap->sm_freewr); 5226 if (bmsafemap_find(bmsafemaphd, cg, &collision) == 1) { 5227 WORKITEM_FREE(bmsafemap, D_BMSAFEMAP); 5228 return (collision); 5229 } 5230 bmsafemap->sm_cg = cg; 5231 LIST_INSERT_HEAD(bmsafemaphd, bmsafemap, sm_hash); 5232 LIST_INSERT_HEAD(&ump->softdep_dirtycg, bmsafemap, sm_next); 5233 WORKLIST_INSERT(&bp->b_dep, &bmsafemap->sm_list); 5234 return (bmsafemap); 5235 } 5236 5237 /* 5238 * Direct block allocation dependencies. 5239 * 5240 * When a new block is allocated, the corresponding disk locations must be 5241 * initialized (with zeros or new data) before the on-disk inode points to 5242 * them. Also, the freemap from which the block was allocated must be 5243 * updated (on disk) before the inode's pointer. These two dependencies are 5244 * independent of each other and are needed for all file blocks and indirect 5245 * blocks that are pointed to directly by the inode. Just before the 5246 * "in-core" version of the inode is updated with a newly allocated block 5247 * number, a procedure (below) is called to setup allocation dependency 5248 * structures. These structures are removed when the corresponding 5249 * dependencies are satisfied or when the block allocation becomes obsolete 5250 * (i.e., the file is deleted, the block is de-allocated, or the block is a 5251 * fragment that gets upgraded). All of these cases are handled in 5252 * procedures described later. 5253 * 5254 * When a file extension causes a fragment to be upgraded, either to a larger 5255 * fragment or to a full block, the on-disk location may change (if the 5256 * previous fragment could not simply be extended). In this case, the old 5257 * fragment must be de-allocated, but not until after the inode's pointer has 5258 * been updated. In most cases, this is handled by later procedures, which 5259 * will construct a "freefrag" structure to be added to the workitem queue 5260 * when the inode update is complete (or obsolete). The main exception to 5261 * this is when an allocation occurs while a pending allocation dependency 5262 * (for the same block pointer) remains. This case is handled in the main 5263 * allocation dependency setup procedure by immediately freeing the 5264 * unreferenced fragments. 5265 */ 5266 void 5267 softdep_setup_allocdirect(ip, off, newblkno, oldblkno, newsize, oldsize, bp) 5268 struct inode *ip; /* inode to which block is being added */ 5269 ufs_lbn_t off; /* block pointer within inode */ 5270 ufs2_daddr_t newblkno; /* disk block number being added */ 5271 ufs2_daddr_t oldblkno; /* previous block number, 0 unless frag */ 5272 long newsize; /* size of new block */ 5273 long oldsize; /* size of new block */ 5274 struct buf *bp; /* bp for allocated block */ 5275 { 5276 struct allocdirect *adp, *oldadp; 5277 struct allocdirectlst *adphead; 5278 struct freefrag *freefrag; 5279 struct inodedep *inodedep; 5280 struct pagedep *pagedep; 5281 struct jnewblk *jnewblk; 5282 struct newblk *newblk; 5283 struct mount *mp; 5284 ufs_lbn_t lbn; 5285 5286 lbn = bp->b_lblkno; 5287 mp = ITOVFS(ip); 5288 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 5289 ("softdep_setup_allocdirect called on non-softdep filesystem")); 5290 if (oldblkno && oldblkno != newblkno) 5291 freefrag = newfreefrag(ip, oldblkno, oldsize, lbn); 5292 else 5293 freefrag = NULL; 5294 5295 CTR6(KTR_SUJ, 5296 "softdep_setup_allocdirect: ino %d blkno %jd oldblkno %jd " 5297 "off %jd newsize %ld oldsize %d", 5298 ip->i_number, newblkno, oldblkno, off, newsize, oldsize); 5299 ACQUIRE_LOCK(ITOUMP(ip)); 5300 if (off >= UFS_NDADDR) { 5301 if (lbn > 0) 5302 panic("softdep_setup_allocdirect: bad lbn %jd, off %jd", 5303 lbn, off); 5304 /* allocating an indirect block */ 5305 if (oldblkno != 0) 5306 panic("softdep_setup_allocdirect: non-zero indir"); 5307 } else { 5308 if (off != lbn) 5309 panic("softdep_setup_allocdirect: lbn %jd != off %jd", 5310 lbn, off); 5311 /* 5312 * Allocating a direct block. 5313 * 5314 * If we are allocating a directory block, then we must 5315 * allocate an associated pagedep to track additions and 5316 * deletions. 5317 */ 5318 if ((ip->i_mode & IFMT) == IFDIR) 5319 pagedep_lookup(mp, bp, ip->i_number, off, DEPALLOC, 5320 &pagedep); 5321 } 5322 if (newblk_lookup(mp, newblkno, 0, &newblk) == 0) 5323 panic("softdep_setup_allocdirect: lost block"); 5324 KASSERT(newblk->nb_list.wk_type == D_NEWBLK, 5325 ("softdep_setup_allocdirect: newblk already initialized")); 5326 /* 5327 * Convert the newblk to an allocdirect. 5328 */ 5329 WORKITEM_REASSIGN(newblk, D_ALLOCDIRECT); 5330 adp = (struct allocdirect *)newblk; 5331 newblk->nb_freefrag = freefrag; 5332 adp->ad_offset = off; 5333 adp->ad_oldblkno = oldblkno; 5334 adp->ad_newsize = newsize; 5335 adp->ad_oldsize = oldsize; 5336 5337 /* 5338 * Finish initializing the journal. 5339 */ 5340 if ((jnewblk = newblk->nb_jnewblk) != NULL) { 5341 jnewblk->jn_ino = ip->i_number; 5342 jnewblk->jn_lbn = lbn; 5343 add_to_journal(&jnewblk->jn_list); 5344 } 5345 if (freefrag && freefrag->ff_jdep != NULL && 5346 freefrag->ff_jdep->wk_type == D_JFREEFRAG) 5347 add_to_journal(freefrag->ff_jdep); 5348 inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep); 5349 adp->ad_inodedep = inodedep; 5350 5351 WORKLIST_INSERT(&bp->b_dep, &newblk->nb_list); 5352 /* 5353 * The list of allocdirects must be kept in sorted and ascending 5354 * order so that the rollback routines can quickly determine the 5355 * first uncommitted block (the size of the file stored on disk 5356 * ends at the end of the lowest committed fragment, or if there 5357 * are no fragments, at the end of the highest committed block). 5358 * Since files generally grow, the typical case is that the new 5359 * block is to be added at the end of the list. We speed this 5360 * special case by checking against the last allocdirect in the 5361 * list before laboriously traversing the list looking for the 5362 * insertion point. 5363 */ 5364 adphead = &inodedep->id_newinoupdt; 5365 oldadp = TAILQ_LAST(adphead, allocdirectlst); 5366 if (oldadp == NULL || oldadp->ad_offset <= off) { 5367 /* insert at end of list */ 5368 TAILQ_INSERT_TAIL(adphead, adp, ad_next); 5369 if (oldadp != NULL && oldadp->ad_offset == off) 5370 allocdirect_merge(adphead, adp, oldadp); 5371 FREE_LOCK(ITOUMP(ip)); 5372 return; 5373 } 5374 TAILQ_FOREACH(oldadp, adphead, ad_next) { 5375 if (oldadp->ad_offset >= off) 5376 break; 5377 } 5378 if (oldadp == NULL) 5379 panic("softdep_setup_allocdirect: lost entry"); 5380 /* insert in middle of list */ 5381 TAILQ_INSERT_BEFORE(oldadp, adp, ad_next); 5382 if (oldadp->ad_offset == off) 5383 allocdirect_merge(adphead, adp, oldadp); 5384 5385 FREE_LOCK(ITOUMP(ip)); 5386 } 5387 5388 /* 5389 * Merge a newer and older journal record to be stored either in a 5390 * newblock or freefrag. This handles aggregating journal records for 5391 * fragment allocation into a second record as well as replacing a 5392 * journal free with an aborted journal allocation. A segment for the 5393 * oldest record will be placed on wkhd if it has been written. If not 5394 * the segment for the newer record will suffice. 5395 */ 5396 static struct worklist * 5397 jnewblk_merge(new, old, wkhd) 5398 struct worklist *new; 5399 struct worklist *old; 5400 struct workhead *wkhd; 5401 { 5402 struct jnewblk *njnewblk; 5403 struct jnewblk *jnewblk; 5404 5405 /* Handle NULLs to simplify callers. */ 5406 if (new == NULL) 5407 return (old); 5408 if (old == NULL) 5409 return (new); 5410 /* Replace a jfreefrag with a jnewblk. */ 5411 if (new->wk_type == D_JFREEFRAG) { 5412 if (WK_JNEWBLK(old)->jn_blkno != WK_JFREEFRAG(new)->fr_blkno) 5413 panic("jnewblk_merge: blkno mismatch: %p, %p", 5414 old, new); 5415 cancel_jfreefrag(WK_JFREEFRAG(new)); 5416 return (old); 5417 } 5418 if (old->wk_type != D_JNEWBLK || new->wk_type != D_JNEWBLK) 5419 panic("jnewblk_merge: Bad type: old %d new %d\n", 5420 old->wk_type, new->wk_type); 5421 /* 5422 * Handle merging of two jnewblk records that describe 5423 * different sets of fragments in the same block. 5424 */ 5425 jnewblk = WK_JNEWBLK(old); 5426 njnewblk = WK_JNEWBLK(new); 5427 if (jnewblk->jn_blkno != njnewblk->jn_blkno) 5428 panic("jnewblk_merge: Merging disparate blocks."); 5429 /* 5430 * The record may be rolled back in the cg. 5431 */ 5432 if (jnewblk->jn_state & UNDONE) { 5433 jnewblk->jn_state &= ~UNDONE; 5434 njnewblk->jn_state |= UNDONE; 5435 njnewblk->jn_state &= ~ATTACHED; 5436 } 5437 /* 5438 * We modify the newer addref and free the older so that if neither 5439 * has been written the most up-to-date copy will be on disk. If 5440 * both have been written but rolled back we only temporarily need 5441 * one of them to fix the bits when the cg write completes. 5442 */ 5443 jnewblk->jn_state |= ATTACHED | COMPLETE; 5444 njnewblk->jn_oldfrags = jnewblk->jn_oldfrags; 5445 cancel_jnewblk(jnewblk, wkhd); 5446 WORKLIST_REMOVE(&jnewblk->jn_list); 5447 free_jnewblk(jnewblk); 5448 return (new); 5449 } 5450 5451 /* 5452 * Replace an old allocdirect dependency with a newer one. 5453 * This routine must be called with splbio interrupts blocked. 5454 */ 5455 static void 5456 allocdirect_merge(adphead, newadp, oldadp) 5457 struct allocdirectlst *adphead; /* head of list holding allocdirects */ 5458 struct allocdirect *newadp; /* allocdirect being added */ 5459 struct allocdirect *oldadp; /* existing allocdirect being checked */ 5460 { 5461 struct worklist *wk; 5462 struct freefrag *freefrag; 5463 5464 freefrag = NULL; 5465 LOCK_OWNED(VFSTOUFS(newadp->ad_list.wk_mp)); 5466 if (newadp->ad_oldblkno != oldadp->ad_newblkno || 5467 newadp->ad_oldsize != oldadp->ad_newsize || 5468 newadp->ad_offset >= UFS_NDADDR) 5469 panic("%s %jd != new %jd || old size %ld != new %ld", 5470 "allocdirect_merge: old blkno", 5471 (intmax_t)newadp->ad_oldblkno, 5472 (intmax_t)oldadp->ad_newblkno, 5473 newadp->ad_oldsize, oldadp->ad_newsize); 5474 newadp->ad_oldblkno = oldadp->ad_oldblkno; 5475 newadp->ad_oldsize = oldadp->ad_oldsize; 5476 /* 5477 * If the old dependency had a fragment to free or had never 5478 * previously had a block allocated, then the new dependency 5479 * can immediately post its freefrag and adopt the old freefrag. 5480 * This action is done by swapping the freefrag dependencies. 5481 * The new dependency gains the old one's freefrag, and the 5482 * old one gets the new one and then immediately puts it on 5483 * the worklist when it is freed by free_newblk. It is 5484 * not possible to do this swap when the old dependency had a 5485 * non-zero size but no previous fragment to free. This condition 5486 * arises when the new block is an extension of the old block. 5487 * Here, the first part of the fragment allocated to the new 5488 * dependency is part of the block currently claimed on disk by 5489 * the old dependency, so cannot legitimately be freed until the 5490 * conditions for the new dependency are fulfilled. 5491 */ 5492 freefrag = newadp->ad_freefrag; 5493 if (oldadp->ad_freefrag != NULL || oldadp->ad_oldblkno == 0) { 5494 newadp->ad_freefrag = oldadp->ad_freefrag; 5495 oldadp->ad_freefrag = freefrag; 5496 } 5497 /* 5498 * If we are tracking a new directory-block allocation, 5499 * move it from the old allocdirect to the new allocdirect. 5500 */ 5501 if ((wk = LIST_FIRST(&oldadp->ad_newdirblk)) != NULL) { 5502 WORKLIST_REMOVE(wk); 5503 if (!LIST_EMPTY(&oldadp->ad_newdirblk)) 5504 panic("allocdirect_merge: extra newdirblk"); 5505 WORKLIST_INSERT(&newadp->ad_newdirblk, wk); 5506 } 5507 TAILQ_REMOVE(adphead, oldadp, ad_next); 5508 /* 5509 * We need to move any journal dependencies over to the freefrag 5510 * that releases this block if it exists. Otherwise we are 5511 * extending an existing block and we'll wait until that is 5512 * complete to release the journal space and extend the 5513 * new journal to cover this old space as well. 5514 */ 5515 if (freefrag == NULL) { 5516 if (oldadp->ad_newblkno != newadp->ad_newblkno) 5517 panic("allocdirect_merge: %jd != %jd", 5518 oldadp->ad_newblkno, newadp->ad_newblkno); 5519 newadp->ad_block.nb_jnewblk = (struct jnewblk *) 5520 jnewblk_merge(&newadp->ad_block.nb_jnewblk->jn_list, 5521 &oldadp->ad_block.nb_jnewblk->jn_list, 5522 &newadp->ad_block.nb_jwork); 5523 oldadp->ad_block.nb_jnewblk = NULL; 5524 cancel_newblk(&oldadp->ad_block, NULL, 5525 &newadp->ad_block.nb_jwork); 5526 } else { 5527 wk = (struct worklist *) cancel_newblk(&oldadp->ad_block, 5528 &freefrag->ff_list, &freefrag->ff_jwork); 5529 freefrag->ff_jdep = jnewblk_merge(freefrag->ff_jdep, wk, 5530 &freefrag->ff_jwork); 5531 } 5532 free_newblk(&oldadp->ad_block); 5533 } 5534 5535 /* 5536 * Allocate a jfreefrag structure to journal a single block free. 5537 */ 5538 static struct jfreefrag * 5539 newjfreefrag(freefrag, ip, blkno, size, lbn) 5540 struct freefrag *freefrag; 5541 struct inode *ip; 5542 ufs2_daddr_t blkno; 5543 long size; 5544 ufs_lbn_t lbn; 5545 { 5546 struct jfreefrag *jfreefrag; 5547 struct fs *fs; 5548 5549 fs = ITOFS(ip); 5550 jfreefrag = malloc(sizeof(struct jfreefrag), M_JFREEFRAG, 5551 M_SOFTDEP_FLAGS); 5552 workitem_alloc(&jfreefrag->fr_list, D_JFREEFRAG, ITOVFS(ip)); 5553 jfreefrag->fr_jsegdep = newjsegdep(&jfreefrag->fr_list); 5554 jfreefrag->fr_state = ATTACHED | DEPCOMPLETE; 5555 jfreefrag->fr_ino = ip->i_number; 5556 jfreefrag->fr_lbn = lbn; 5557 jfreefrag->fr_blkno = blkno; 5558 jfreefrag->fr_frags = numfrags(fs, size); 5559 jfreefrag->fr_freefrag = freefrag; 5560 5561 return (jfreefrag); 5562 } 5563 5564 /* 5565 * Allocate a new freefrag structure. 5566 */ 5567 static struct freefrag * 5568 newfreefrag(ip, blkno, size, lbn) 5569 struct inode *ip; 5570 ufs2_daddr_t blkno; 5571 long size; 5572 ufs_lbn_t lbn; 5573 { 5574 struct freefrag *freefrag; 5575 struct ufsmount *ump; 5576 struct fs *fs; 5577 5578 CTR4(KTR_SUJ, "newfreefrag: ino %d blkno %jd size %ld lbn %jd", 5579 ip->i_number, blkno, size, lbn); 5580 ump = ITOUMP(ip); 5581 fs = ump->um_fs; 5582 if (fragnum(fs, blkno) + numfrags(fs, size) > fs->fs_frag) 5583 panic("newfreefrag: frag size"); 5584 freefrag = malloc(sizeof(struct freefrag), 5585 M_FREEFRAG, M_SOFTDEP_FLAGS); 5586 workitem_alloc(&freefrag->ff_list, D_FREEFRAG, UFSTOVFS(ump)); 5587 freefrag->ff_state = ATTACHED; 5588 LIST_INIT(&freefrag->ff_jwork); 5589 freefrag->ff_inum = ip->i_number; 5590 freefrag->ff_vtype = ITOV(ip)->v_type; 5591 freefrag->ff_blkno = blkno; 5592 freefrag->ff_fragsize = size; 5593 5594 if (MOUNTEDSUJ(UFSTOVFS(ump))) { 5595 freefrag->ff_jdep = (struct worklist *) 5596 newjfreefrag(freefrag, ip, blkno, size, lbn); 5597 } else { 5598 freefrag->ff_state |= DEPCOMPLETE; 5599 freefrag->ff_jdep = NULL; 5600 } 5601 5602 return (freefrag); 5603 } 5604 5605 /* 5606 * This workitem de-allocates fragments that were replaced during 5607 * file block allocation. 5608 */ 5609 static void 5610 handle_workitem_freefrag(freefrag) 5611 struct freefrag *freefrag; 5612 { 5613 struct ufsmount *ump = VFSTOUFS(freefrag->ff_list.wk_mp); 5614 struct workhead wkhd; 5615 5616 CTR3(KTR_SUJ, 5617 "handle_workitem_freefrag: ino %d blkno %jd size %ld", 5618 freefrag->ff_inum, freefrag->ff_blkno, freefrag->ff_fragsize); 5619 /* 5620 * It would be illegal to add new completion items to the 5621 * freefrag after it was schedule to be done so it must be 5622 * safe to modify the list head here. 5623 */ 5624 LIST_INIT(&wkhd); 5625 ACQUIRE_LOCK(ump); 5626 LIST_SWAP(&freefrag->ff_jwork, &wkhd, worklist, wk_list); 5627 /* 5628 * If the journal has not been written we must cancel it here. 5629 */ 5630 if (freefrag->ff_jdep) { 5631 if (freefrag->ff_jdep->wk_type != D_JNEWBLK) 5632 panic("handle_workitem_freefrag: Unexpected type %d\n", 5633 freefrag->ff_jdep->wk_type); 5634 cancel_jnewblk(WK_JNEWBLK(freefrag->ff_jdep), &wkhd); 5635 } 5636 FREE_LOCK(ump); 5637 ffs_blkfree(ump, ump->um_fs, ump->um_devvp, freefrag->ff_blkno, 5638 freefrag->ff_fragsize, freefrag->ff_inum, freefrag->ff_vtype, &wkhd); 5639 ACQUIRE_LOCK(ump); 5640 WORKITEM_FREE(freefrag, D_FREEFRAG); 5641 FREE_LOCK(ump); 5642 } 5643 5644 /* 5645 * Set up a dependency structure for an external attributes data block. 5646 * This routine follows much of the structure of softdep_setup_allocdirect. 5647 * See the description of softdep_setup_allocdirect above for details. 5648 */ 5649 void 5650 softdep_setup_allocext(ip, off, newblkno, oldblkno, newsize, oldsize, bp) 5651 struct inode *ip; 5652 ufs_lbn_t off; 5653 ufs2_daddr_t newblkno; 5654 ufs2_daddr_t oldblkno; 5655 long newsize; 5656 long oldsize; 5657 struct buf *bp; 5658 { 5659 struct allocdirect *adp, *oldadp; 5660 struct allocdirectlst *adphead; 5661 struct freefrag *freefrag; 5662 struct inodedep *inodedep; 5663 struct jnewblk *jnewblk; 5664 struct newblk *newblk; 5665 struct mount *mp; 5666 struct ufsmount *ump; 5667 ufs_lbn_t lbn; 5668 5669 mp = ITOVFS(ip); 5670 ump = VFSTOUFS(mp); 5671 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 5672 ("softdep_setup_allocext called on non-softdep filesystem")); 5673 KASSERT(off < UFS_NXADDR, 5674 ("softdep_setup_allocext: lbn %lld > UFS_NXADDR", (long long)off)); 5675 5676 lbn = bp->b_lblkno; 5677 if (oldblkno && oldblkno != newblkno) 5678 freefrag = newfreefrag(ip, oldblkno, oldsize, lbn); 5679 else 5680 freefrag = NULL; 5681 5682 ACQUIRE_LOCK(ump); 5683 if (newblk_lookup(mp, newblkno, 0, &newblk) == 0) 5684 panic("softdep_setup_allocext: lost block"); 5685 KASSERT(newblk->nb_list.wk_type == D_NEWBLK, 5686 ("softdep_setup_allocext: newblk already initialized")); 5687 /* 5688 * Convert the newblk to an allocdirect. 5689 */ 5690 WORKITEM_REASSIGN(newblk, D_ALLOCDIRECT); 5691 adp = (struct allocdirect *)newblk; 5692 newblk->nb_freefrag = freefrag; 5693 adp->ad_offset = off; 5694 adp->ad_oldblkno = oldblkno; 5695 adp->ad_newsize = newsize; 5696 adp->ad_oldsize = oldsize; 5697 adp->ad_state |= EXTDATA; 5698 5699 /* 5700 * Finish initializing the journal. 5701 */ 5702 if ((jnewblk = newblk->nb_jnewblk) != NULL) { 5703 jnewblk->jn_ino = ip->i_number; 5704 jnewblk->jn_lbn = lbn; 5705 add_to_journal(&jnewblk->jn_list); 5706 } 5707 if (freefrag && freefrag->ff_jdep != NULL && 5708 freefrag->ff_jdep->wk_type == D_JFREEFRAG) 5709 add_to_journal(freefrag->ff_jdep); 5710 inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep); 5711 adp->ad_inodedep = inodedep; 5712 5713 WORKLIST_INSERT(&bp->b_dep, &newblk->nb_list); 5714 /* 5715 * The list of allocdirects must be kept in sorted and ascending 5716 * order so that the rollback routines can quickly determine the 5717 * first uncommitted block (the size of the file stored on disk 5718 * ends at the end of the lowest committed fragment, or if there 5719 * are no fragments, at the end of the highest committed block). 5720 * Since files generally grow, the typical case is that the new 5721 * block is to be added at the end of the list. We speed this 5722 * special case by checking against the last allocdirect in the 5723 * list before laboriously traversing the list looking for the 5724 * insertion point. 5725 */ 5726 adphead = &inodedep->id_newextupdt; 5727 oldadp = TAILQ_LAST(adphead, allocdirectlst); 5728 if (oldadp == NULL || oldadp->ad_offset <= off) { 5729 /* insert at end of list */ 5730 TAILQ_INSERT_TAIL(adphead, adp, ad_next); 5731 if (oldadp != NULL && oldadp->ad_offset == off) 5732 allocdirect_merge(adphead, adp, oldadp); 5733 FREE_LOCK(ump); 5734 return; 5735 } 5736 TAILQ_FOREACH(oldadp, adphead, ad_next) { 5737 if (oldadp->ad_offset >= off) 5738 break; 5739 } 5740 if (oldadp == NULL) 5741 panic("softdep_setup_allocext: lost entry"); 5742 /* insert in middle of list */ 5743 TAILQ_INSERT_BEFORE(oldadp, adp, ad_next); 5744 if (oldadp->ad_offset == off) 5745 allocdirect_merge(adphead, adp, oldadp); 5746 FREE_LOCK(ump); 5747 } 5748 5749 /* 5750 * Indirect block allocation dependencies. 5751 * 5752 * The same dependencies that exist for a direct block also exist when 5753 * a new block is allocated and pointed to by an entry in a block of 5754 * indirect pointers. The undo/redo states described above are also 5755 * used here. Because an indirect block contains many pointers that 5756 * may have dependencies, a second copy of the entire in-memory indirect 5757 * block is kept. The buffer cache copy is always completely up-to-date. 5758 * The second copy, which is used only as a source for disk writes, 5759 * contains only the safe pointers (i.e., those that have no remaining 5760 * update dependencies). The second copy is freed when all pointers 5761 * are safe. The cache is not allowed to replace indirect blocks with 5762 * pending update dependencies. If a buffer containing an indirect 5763 * block with dependencies is written, these routines will mark it 5764 * dirty again. It can only be successfully written once all the 5765 * dependencies are removed. The ffs_fsync routine in conjunction with 5766 * softdep_sync_metadata work together to get all the dependencies 5767 * removed so that a file can be successfully written to disk. Three 5768 * procedures are used when setting up indirect block pointer 5769 * dependencies. The division is necessary because of the organization 5770 * of the "balloc" routine and because of the distinction between file 5771 * pages and file metadata blocks. 5772 */ 5773 5774 /* 5775 * Allocate a new allocindir structure. 5776 */ 5777 static struct allocindir * 5778 newallocindir(ip, ptrno, newblkno, oldblkno, lbn) 5779 struct inode *ip; /* inode for file being extended */ 5780 int ptrno; /* offset of pointer in indirect block */ 5781 ufs2_daddr_t newblkno; /* disk block number being added */ 5782 ufs2_daddr_t oldblkno; /* previous block number, 0 if none */ 5783 ufs_lbn_t lbn; 5784 { 5785 struct newblk *newblk; 5786 struct allocindir *aip; 5787 struct freefrag *freefrag; 5788 struct jnewblk *jnewblk; 5789 5790 if (oldblkno) 5791 freefrag = newfreefrag(ip, oldblkno, ITOFS(ip)->fs_bsize, lbn); 5792 else 5793 freefrag = NULL; 5794 ACQUIRE_LOCK(ITOUMP(ip)); 5795 if (newblk_lookup(ITOVFS(ip), newblkno, 0, &newblk) == 0) 5796 panic("new_allocindir: lost block"); 5797 KASSERT(newblk->nb_list.wk_type == D_NEWBLK, 5798 ("newallocindir: newblk already initialized")); 5799 WORKITEM_REASSIGN(newblk, D_ALLOCINDIR); 5800 newblk->nb_freefrag = freefrag; 5801 aip = (struct allocindir *)newblk; 5802 aip->ai_offset = ptrno; 5803 aip->ai_oldblkno = oldblkno; 5804 aip->ai_lbn = lbn; 5805 if ((jnewblk = newblk->nb_jnewblk) != NULL) { 5806 jnewblk->jn_ino = ip->i_number; 5807 jnewblk->jn_lbn = lbn; 5808 add_to_journal(&jnewblk->jn_list); 5809 } 5810 if (freefrag && freefrag->ff_jdep != NULL && 5811 freefrag->ff_jdep->wk_type == D_JFREEFRAG) 5812 add_to_journal(freefrag->ff_jdep); 5813 return (aip); 5814 } 5815 5816 /* 5817 * Called just before setting an indirect block pointer 5818 * to a newly allocated file page. 5819 */ 5820 void 5821 softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp) 5822 struct inode *ip; /* inode for file being extended */ 5823 ufs_lbn_t lbn; /* allocated block number within file */ 5824 struct buf *bp; /* buffer with indirect blk referencing page */ 5825 int ptrno; /* offset of pointer in indirect block */ 5826 ufs2_daddr_t newblkno; /* disk block number being added */ 5827 ufs2_daddr_t oldblkno; /* previous block number, 0 if none */ 5828 struct buf *nbp; /* buffer holding allocated page */ 5829 { 5830 struct inodedep *inodedep; 5831 struct freefrag *freefrag; 5832 struct allocindir *aip; 5833 struct pagedep *pagedep; 5834 struct mount *mp; 5835 struct ufsmount *ump; 5836 5837 mp = ITOVFS(ip); 5838 ump = VFSTOUFS(mp); 5839 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 5840 ("softdep_setup_allocindir_page called on non-softdep filesystem")); 5841 KASSERT(lbn == nbp->b_lblkno, 5842 ("softdep_setup_allocindir_page: lbn %jd != lblkno %jd", 5843 lbn, bp->b_lblkno)); 5844 CTR4(KTR_SUJ, 5845 "softdep_setup_allocindir_page: ino %d blkno %jd oldblkno %jd " 5846 "lbn %jd", ip->i_number, newblkno, oldblkno, lbn); 5847 ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_page"); 5848 aip = newallocindir(ip, ptrno, newblkno, oldblkno, lbn); 5849 (void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep); 5850 /* 5851 * If we are allocating a directory page, then we must 5852 * allocate an associated pagedep to track additions and 5853 * deletions. 5854 */ 5855 if ((ip->i_mode & IFMT) == IFDIR) 5856 pagedep_lookup(mp, nbp, ip->i_number, lbn, DEPALLOC, &pagedep); 5857 WORKLIST_INSERT(&nbp->b_dep, &aip->ai_block.nb_list); 5858 freefrag = setup_allocindir_phase2(bp, ip, inodedep, aip, lbn); 5859 FREE_LOCK(ump); 5860 if (freefrag) 5861 handle_workitem_freefrag(freefrag); 5862 } 5863 5864 /* 5865 * Called just before setting an indirect block pointer to a 5866 * newly allocated indirect block. 5867 */ 5868 void 5869 softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno) 5870 struct buf *nbp; /* newly allocated indirect block */ 5871 struct inode *ip; /* inode for file being extended */ 5872 struct buf *bp; /* indirect block referencing allocated block */ 5873 int ptrno; /* offset of pointer in indirect block */ 5874 ufs2_daddr_t newblkno; /* disk block number being added */ 5875 { 5876 struct inodedep *inodedep; 5877 struct allocindir *aip; 5878 struct ufsmount *ump; 5879 ufs_lbn_t lbn; 5880 5881 ump = ITOUMP(ip); 5882 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 5883 ("softdep_setup_allocindir_meta called on non-softdep filesystem")); 5884 CTR3(KTR_SUJ, 5885 "softdep_setup_allocindir_meta: ino %d blkno %jd ptrno %d", 5886 ip->i_number, newblkno, ptrno); 5887 lbn = nbp->b_lblkno; 5888 ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_meta"); 5889 aip = newallocindir(ip, ptrno, newblkno, 0, lbn); 5890 inodedep_lookup(UFSTOVFS(ump), ip->i_number, DEPALLOC, &inodedep); 5891 WORKLIST_INSERT(&nbp->b_dep, &aip->ai_block.nb_list); 5892 if (setup_allocindir_phase2(bp, ip, inodedep, aip, lbn)) 5893 panic("softdep_setup_allocindir_meta: Block already existed"); 5894 FREE_LOCK(ump); 5895 } 5896 5897 static void 5898 indirdep_complete(indirdep) 5899 struct indirdep *indirdep; 5900 { 5901 struct allocindir *aip; 5902 5903 LIST_REMOVE(indirdep, ir_next); 5904 indirdep->ir_state |= DEPCOMPLETE; 5905 5906 while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != NULL) { 5907 LIST_REMOVE(aip, ai_next); 5908 free_newblk(&aip->ai_block); 5909 } 5910 /* 5911 * If this indirdep is not attached to a buf it was simply waiting 5912 * on completion to clear completehd. free_indirdep() asserts 5913 * that nothing is dangling. 5914 */ 5915 if ((indirdep->ir_state & ONWORKLIST) == 0) 5916 free_indirdep(indirdep); 5917 } 5918 5919 static struct indirdep * 5920 indirdep_lookup(mp, ip, bp) 5921 struct mount *mp; 5922 struct inode *ip; 5923 struct buf *bp; 5924 { 5925 struct indirdep *indirdep, *newindirdep; 5926 struct newblk *newblk; 5927 struct ufsmount *ump; 5928 struct worklist *wk; 5929 struct fs *fs; 5930 ufs2_daddr_t blkno; 5931 5932 ump = VFSTOUFS(mp); 5933 LOCK_OWNED(ump); 5934 indirdep = NULL; 5935 newindirdep = NULL; 5936 fs = ump->um_fs; 5937 for (;;) { 5938 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 5939 if (wk->wk_type != D_INDIRDEP) 5940 continue; 5941 indirdep = WK_INDIRDEP(wk); 5942 break; 5943 } 5944 /* Found on the buffer worklist, no new structure to free. */ 5945 if (indirdep != NULL && newindirdep == NULL) 5946 return (indirdep); 5947 if (indirdep != NULL && newindirdep != NULL) 5948 panic("indirdep_lookup: simultaneous create"); 5949 /* None found on the buffer and a new structure is ready. */ 5950 if (indirdep == NULL && newindirdep != NULL) 5951 break; 5952 /* None found and no new structure available. */ 5953 FREE_LOCK(ump); 5954 newindirdep = malloc(sizeof(struct indirdep), 5955 M_INDIRDEP, M_SOFTDEP_FLAGS); 5956 workitem_alloc(&newindirdep->ir_list, D_INDIRDEP, mp); 5957 newindirdep->ir_state = ATTACHED; 5958 if (I_IS_UFS1(ip)) 5959 newindirdep->ir_state |= UFS1FMT; 5960 TAILQ_INIT(&newindirdep->ir_trunc); 5961 newindirdep->ir_saveddata = NULL; 5962 LIST_INIT(&newindirdep->ir_deplisthd); 5963 LIST_INIT(&newindirdep->ir_donehd); 5964 LIST_INIT(&newindirdep->ir_writehd); 5965 LIST_INIT(&newindirdep->ir_completehd); 5966 if (bp->b_blkno == bp->b_lblkno) { 5967 ufs_bmaparray(bp->b_vp, bp->b_lblkno, &blkno, bp, 5968 NULL, NULL); 5969 bp->b_blkno = blkno; 5970 } 5971 newindirdep->ir_freeblks = NULL; 5972 newindirdep->ir_savebp = 5973 getblk(ump->um_devvp, bp->b_blkno, bp->b_bcount, 0, 0, 0); 5974 newindirdep->ir_bp = bp; 5975 BUF_KERNPROC(newindirdep->ir_savebp); 5976 bcopy(bp->b_data, newindirdep->ir_savebp->b_data, bp->b_bcount); 5977 ACQUIRE_LOCK(ump); 5978 } 5979 indirdep = newindirdep; 5980 WORKLIST_INSERT(&bp->b_dep, &indirdep->ir_list); 5981 /* 5982 * If the block is not yet allocated we don't set DEPCOMPLETE so 5983 * that we don't free dependencies until the pointers are valid. 5984 * This could search b_dep for D_ALLOCDIRECT/D_ALLOCINDIR rather 5985 * than using the hash. 5986 */ 5987 if (newblk_lookup(mp, dbtofsb(fs, bp->b_blkno), 0, &newblk)) 5988 LIST_INSERT_HEAD(&newblk->nb_indirdeps, indirdep, ir_next); 5989 else 5990 indirdep->ir_state |= DEPCOMPLETE; 5991 return (indirdep); 5992 } 5993 5994 /* 5995 * Called to finish the allocation of the "aip" allocated 5996 * by one of the two routines above. 5997 */ 5998 static struct freefrag * 5999 setup_allocindir_phase2(bp, ip, inodedep, aip, lbn) 6000 struct buf *bp; /* in-memory copy of the indirect block */ 6001 struct inode *ip; /* inode for file being extended */ 6002 struct inodedep *inodedep; /* Inodedep for ip */ 6003 struct allocindir *aip; /* allocindir allocated by the above routines */ 6004 ufs_lbn_t lbn; /* Logical block number for this block. */ 6005 { 6006 struct fs *fs; 6007 struct indirdep *indirdep; 6008 struct allocindir *oldaip; 6009 struct freefrag *freefrag; 6010 struct mount *mp; 6011 struct ufsmount *ump; 6012 6013 mp = ITOVFS(ip); 6014 ump = VFSTOUFS(mp); 6015 LOCK_OWNED(ump); 6016 fs = ump->um_fs; 6017 if (bp->b_lblkno >= 0) 6018 panic("setup_allocindir_phase2: not indir blk"); 6019 KASSERT(aip->ai_offset >= 0 && aip->ai_offset < NINDIR(fs), 6020 ("setup_allocindir_phase2: Bad offset %d", aip->ai_offset)); 6021 indirdep = indirdep_lookup(mp, ip, bp); 6022 KASSERT(indirdep->ir_savebp != NULL, 6023 ("setup_allocindir_phase2 NULL ir_savebp")); 6024 aip->ai_indirdep = indirdep; 6025 /* 6026 * Check for an unwritten dependency for this indirect offset. If 6027 * there is, merge the old dependency into the new one. This happens 6028 * as a result of reallocblk only. 6029 */ 6030 freefrag = NULL; 6031 if (aip->ai_oldblkno != 0) { 6032 LIST_FOREACH(oldaip, &indirdep->ir_deplisthd, ai_next) { 6033 if (oldaip->ai_offset == aip->ai_offset) { 6034 freefrag = allocindir_merge(aip, oldaip); 6035 goto done; 6036 } 6037 } 6038 LIST_FOREACH(oldaip, &indirdep->ir_donehd, ai_next) { 6039 if (oldaip->ai_offset == aip->ai_offset) { 6040 freefrag = allocindir_merge(aip, oldaip); 6041 goto done; 6042 } 6043 } 6044 } 6045 done: 6046 LIST_INSERT_HEAD(&indirdep->ir_deplisthd, aip, ai_next); 6047 return (freefrag); 6048 } 6049 6050 /* 6051 * Merge two allocindirs which refer to the same block. Move newblock 6052 * dependencies and setup the freefrags appropriately. 6053 */ 6054 static struct freefrag * 6055 allocindir_merge(aip, oldaip) 6056 struct allocindir *aip; 6057 struct allocindir *oldaip; 6058 { 6059 struct freefrag *freefrag; 6060 struct worklist *wk; 6061 6062 if (oldaip->ai_newblkno != aip->ai_oldblkno) 6063 panic("allocindir_merge: blkno"); 6064 aip->ai_oldblkno = oldaip->ai_oldblkno; 6065 freefrag = aip->ai_freefrag; 6066 aip->ai_freefrag = oldaip->ai_freefrag; 6067 oldaip->ai_freefrag = NULL; 6068 KASSERT(freefrag != NULL, ("setup_allocindir_phase2: No freefrag")); 6069 /* 6070 * If we are tracking a new directory-block allocation, 6071 * move it from the old allocindir to the new allocindir. 6072 */ 6073 if ((wk = LIST_FIRST(&oldaip->ai_newdirblk)) != NULL) { 6074 WORKLIST_REMOVE(wk); 6075 if (!LIST_EMPTY(&oldaip->ai_newdirblk)) 6076 panic("allocindir_merge: extra newdirblk"); 6077 WORKLIST_INSERT(&aip->ai_newdirblk, wk); 6078 } 6079 /* 6080 * We can skip journaling for this freefrag and just complete 6081 * any pending journal work for the allocindir that is being 6082 * removed after the freefrag completes. 6083 */ 6084 if (freefrag->ff_jdep) 6085 cancel_jfreefrag(WK_JFREEFRAG(freefrag->ff_jdep)); 6086 LIST_REMOVE(oldaip, ai_next); 6087 freefrag->ff_jdep = (struct worklist *)cancel_newblk(&oldaip->ai_block, 6088 &freefrag->ff_list, &freefrag->ff_jwork); 6089 free_newblk(&oldaip->ai_block); 6090 6091 return (freefrag); 6092 } 6093 6094 static inline void 6095 setup_freedirect(freeblks, ip, i, needj) 6096 struct freeblks *freeblks; 6097 struct inode *ip; 6098 int i; 6099 int needj; 6100 { 6101 struct ufsmount *ump; 6102 ufs2_daddr_t blkno; 6103 int frags; 6104 6105 blkno = DIP(ip, i_db[i]); 6106 if (blkno == 0) 6107 return; 6108 DIP_SET(ip, i_db[i], 0); 6109 ump = ITOUMP(ip); 6110 frags = sblksize(ump->um_fs, ip->i_size, i); 6111 frags = numfrags(ump->um_fs, frags); 6112 newfreework(ump, freeblks, NULL, i, blkno, frags, 0, needj); 6113 } 6114 6115 static inline void 6116 setup_freeext(freeblks, ip, i, needj) 6117 struct freeblks *freeblks; 6118 struct inode *ip; 6119 int i; 6120 int needj; 6121 { 6122 struct ufsmount *ump; 6123 ufs2_daddr_t blkno; 6124 int frags; 6125 6126 blkno = ip->i_din2->di_extb[i]; 6127 if (blkno == 0) 6128 return; 6129 ip->i_din2->di_extb[i] = 0; 6130 ump = ITOUMP(ip); 6131 frags = sblksize(ump->um_fs, ip->i_din2->di_extsize, i); 6132 frags = numfrags(ump->um_fs, frags); 6133 newfreework(ump, freeblks, NULL, -1 - i, blkno, frags, 0, needj); 6134 } 6135 6136 static inline void 6137 setup_freeindir(freeblks, ip, i, lbn, needj) 6138 struct freeblks *freeblks; 6139 struct inode *ip; 6140 int i; 6141 ufs_lbn_t lbn; 6142 int needj; 6143 { 6144 struct ufsmount *ump; 6145 ufs2_daddr_t blkno; 6146 6147 blkno = DIP(ip, i_ib[i]); 6148 if (blkno == 0) 6149 return; 6150 DIP_SET(ip, i_ib[i], 0); 6151 ump = ITOUMP(ip); 6152 newfreework(ump, freeblks, NULL, lbn, blkno, ump->um_fs->fs_frag, 6153 0, needj); 6154 } 6155 6156 static inline struct freeblks * 6157 newfreeblks(mp, ip) 6158 struct mount *mp; 6159 struct inode *ip; 6160 { 6161 struct freeblks *freeblks; 6162 6163 freeblks = malloc(sizeof(struct freeblks), 6164 M_FREEBLKS, M_SOFTDEP_FLAGS|M_ZERO); 6165 workitem_alloc(&freeblks->fb_list, D_FREEBLKS, mp); 6166 LIST_INIT(&freeblks->fb_jblkdephd); 6167 LIST_INIT(&freeblks->fb_jwork); 6168 freeblks->fb_ref = 0; 6169 freeblks->fb_cgwait = 0; 6170 freeblks->fb_state = ATTACHED; 6171 freeblks->fb_uid = ip->i_uid; 6172 freeblks->fb_inum = ip->i_number; 6173 freeblks->fb_vtype = ITOV(ip)->v_type; 6174 freeblks->fb_modrev = DIP(ip, i_modrev); 6175 freeblks->fb_devvp = ITODEVVP(ip); 6176 freeblks->fb_chkcnt = 0; 6177 freeblks->fb_len = 0; 6178 6179 return (freeblks); 6180 } 6181 6182 static void 6183 trunc_indirdep(indirdep, freeblks, bp, off) 6184 struct indirdep *indirdep; 6185 struct freeblks *freeblks; 6186 struct buf *bp; 6187 int off; 6188 { 6189 struct allocindir *aip, *aipn; 6190 6191 /* 6192 * The first set of allocindirs won't be in savedbp. 6193 */ 6194 LIST_FOREACH_SAFE(aip, &indirdep->ir_deplisthd, ai_next, aipn) 6195 if (aip->ai_offset > off) 6196 cancel_allocindir(aip, bp, freeblks, 1); 6197 LIST_FOREACH_SAFE(aip, &indirdep->ir_donehd, ai_next, aipn) 6198 if (aip->ai_offset > off) 6199 cancel_allocindir(aip, bp, freeblks, 1); 6200 /* 6201 * These will exist in savedbp. 6202 */ 6203 LIST_FOREACH_SAFE(aip, &indirdep->ir_writehd, ai_next, aipn) 6204 if (aip->ai_offset > off) 6205 cancel_allocindir(aip, NULL, freeblks, 0); 6206 LIST_FOREACH_SAFE(aip, &indirdep->ir_completehd, ai_next, aipn) 6207 if (aip->ai_offset > off) 6208 cancel_allocindir(aip, NULL, freeblks, 0); 6209 } 6210 6211 /* 6212 * Follow the chain of indirects down to lastlbn creating a freework 6213 * structure for each. This will be used to start indir_trunc() at 6214 * the right offset and create the journal records for the parrtial 6215 * truncation. A second step will handle the truncated dependencies. 6216 */ 6217 static int 6218 setup_trunc_indir(freeblks, ip, lbn, lastlbn, blkno) 6219 struct freeblks *freeblks; 6220 struct inode *ip; 6221 ufs_lbn_t lbn; 6222 ufs_lbn_t lastlbn; 6223 ufs2_daddr_t blkno; 6224 { 6225 struct indirdep *indirdep; 6226 struct indirdep *indirn; 6227 struct freework *freework; 6228 struct newblk *newblk; 6229 struct mount *mp; 6230 struct ufsmount *ump; 6231 struct buf *bp; 6232 uint8_t *start; 6233 uint8_t *end; 6234 ufs_lbn_t lbnadd; 6235 int level; 6236 int error; 6237 int off; 6238 6239 6240 freework = NULL; 6241 if (blkno == 0) 6242 return (0); 6243 mp = freeblks->fb_list.wk_mp; 6244 ump = VFSTOUFS(mp); 6245 bp = getblk(ITOV(ip), lbn, mp->mnt_stat.f_iosize, 0, 0, 0); 6246 if ((bp->b_flags & B_CACHE) == 0) { 6247 bp->b_blkno = blkptrtodb(VFSTOUFS(mp), blkno); 6248 bp->b_iocmd = BIO_READ; 6249 bp->b_flags &= ~B_INVAL; 6250 bp->b_ioflags &= ~BIO_ERROR; 6251 vfs_busy_pages(bp, 0); 6252 bp->b_iooffset = dbtob(bp->b_blkno); 6253 bstrategy(bp); 6254 #ifdef RACCT 6255 if (racct_enable) { 6256 PROC_LOCK(curproc); 6257 racct_add_buf(curproc, bp, 0); 6258 PROC_UNLOCK(curproc); 6259 } 6260 #endif /* RACCT */ 6261 curthread->td_ru.ru_inblock++; 6262 error = bufwait(bp); 6263 if (error) { 6264 brelse(bp); 6265 return (error); 6266 } 6267 } 6268 level = lbn_level(lbn); 6269 lbnadd = lbn_offset(ump->um_fs, level); 6270 /* 6271 * Compute the offset of the last block we want to keep. Store 6272 * in the freework the first block we want to completely free. 6273 */ 6274 off = (lastlbn - -(lbn + level)) / lbnadd; 6275 if (off + 1 == NINDIR(ump->um_fs)) 6276 goto nowork; 6277 freework = newfreework(ump, freeblks, NULL, lbn, blkno, 0, off + 1, 0); 6278 /* 6279 * Link the freework into the indirdep. This will prevent any new 6280 * allocations from proceeding until we are finished with the 6281 * truncate and the block is written. 6282 */ 6283 ACQUIRE_LOCK(ump); 6284 indirdep = indirdep_lookup(mp, ip, bp); 6285 if (indirdep->ir_freeblks) 6286 panic("setup_trunc_indir: indirdep already truncated."); 6287 TAILQ_INSERT_TAIL(&indirdep->ir_trunc, freework, fw_next); 6288 freework->fw_indir = indirdep; 6289 /* 6290 * Cancel any allocindirs that will not make it to disk. 6291 * We have to do this for all copies of the indirdep that 6292 * live on this newblk. 6293 */ 6294 if ((indirdep->ir_state & DEPCOMPLETE) == 0) { 6295 newblk_lookup(mp, dbtofsb(ump->um_fs, bp->b_blkno), 0, &newblk); 6296 LIST_FOREACH(indirn, &newblk->nb_indirdeps, ir_next) 6297 trunc_indirdep(indirn, freeblks, bp, off); 6298 } else 6299 trunc_indirdep(indirdep, freeblks, bp, off); 6300 FREE_LOCK(ump); 6301 /* 6302 * Creation is protected by the buf lock. The saveddata is only 6303 * needed if a full truncation follows a partial truncation but it 6304 * is difficult to allocate in that case so we fetch it anyway. 6305 */ 6306 if (indirdep->ir_saveddata == NULL) 6307 indirdep->ir_saveddata = malloc(bp->b_bcount, M_INDIRDEP, 6308 M_SOFTDEP_FLAGS); 6309 nowork: 6310 /* Fetch the blkno of the child and the zero start offset. */ 6311 if (I_IS_UFS1(ip)) { 6312 blkno = ((ufs1_daddr_t *)bp->b_data)[off]; 6313 start = (uint8_t *)&((ufs1_daddr_t *)bp->b_data)[off+1]; 6314 } else { 6315 blkno = ((ufs2_daddr_t *)bp->b_data)[off]; 6316 start = (uint8_t *)&((ufs2_daddr_t *)bp->b_data)[off+1]; 6317 } 6318 if (freework) { 6319 /* Zero the truncated pointers. */ 6320 end = bp->b_data + bp->b_bcount; 6321 bzero(start, end - start); 6322 bdwrite(bp); 6323 } else 6324 bqrelse(bp); 6325 if (level == 0) 6326 return (0); 6327 lbn++; /* adjust level */ 6328 lbn -= (off * lbnadd); 6329 return setup_trunc_indir(freeblks, ip, lbn, lastlbn, blkno); 6330 } 6331 6332 /* 6333 * Complete the partial truncation of an indirect block setup by 6334 * setup_trunc_indir(). This zeros the truncated pointers in the saved 6335 * copy and writes them to disk before the freeblks is allowed to complete. 6336 */ 6337 static void 6338 complete_trunc_indir(freework) 6339 struct freework *freework; 6340 { 6341 struct freework *fwn; 6342 struct indirdep *indirdep; 6343 struct ufsmount *ump; 6344 struct buf *bp; 6345 uintptr_t start; 6346 int count; 6347 6348 ump = VFSTOUFS(freework->fw_list.wk_mp); 6349 LOCK_OWNED(ump); 6350 indirdep = freework->fw_indir; 6351 for (;;) { 6352 bp = indirdep->ir_bp; 6353 /* See if the block was discarded. */ 6354 if (bp == NULL) 6355 break; 6356 /* Inline part of getdirtybuf(). We dont want bremfree. */ 6357 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) == 0) 6358 break; 6359 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, 6360 LOCK_PTR(ump)) == 0) 6361 BUF_UNLOCK(bp); 6362 ACQUIRE_LOCK(ump); 6363 } 6364 freework->fw_state |= DEPCOMPLETE; 6365 TAILQ_REMOVE(&indirdep->ir_trunc, freework, fw_next); 6366 /* 6367 * Zero the pointers in the saved copy. 6368 */ 6369 if (indirdep->ir_state & UFS1FMT) 6370 start = sizeof(ufs1_daddr_t); 6371 else 6372 start = sizeof(ufs2_daddr_t); 6373 start *= freework->fw_start; 6374 count = indirdep->ir_savebp->b_bcount - start; 6375 start += (uintptr_t)indirdep->ir_savebp->b_data; 6376 bzero((char *)start, count); 6377 /* 6378 * We need to start the next truncation in the list if it has not 6379 * been started yet. 6380 */ 6381 fwn = TAILQ_FIRST(&indirdep->ir_trunc); 6382 if (fwn != NULL) { 6383 if (fwn->fw_freeblks == indirdep->ir_freeblks) 6384 TAILQ_REMOVE(&indirdep->ir_trunc, fwn, fw_next); 6385 if ((fwn->fw_state & ONWORKLIST) == 0) 6386 freework_enqueue(fwn); 6387 } 6388 /* 6389 * If bp is NULL the block was fully truncated, restore 6390 * the saved block list otherwise free it if it is no 6391 * longer needed. 6392 */ 6393 if (TAILQ_EMPTY(&indirdep->ir_trunc)) { 6394 if (bp == NULL) 6395 bcopy(indirdep->ir_saveddata, 6396 indirdep->ir_savebp->b_data, 6397 indirdep->ir_savebp->b_bcount); 6398 free(indirdep->ir_saveddata, M_INDIRDEP); 6399 indirdep->ir_saveddata = NULL; 6400 } 6401 /* 6402 * When bp is NULL there is a full truncation pending. We 6403 * must wait for this full truncation to be journaled before 6404 * we can release this freework because the disk pointers will 6405 * never be written as zero. 6406 */ 6407 if (bp == NULL) { 6408 if (LIST_EMPTY(&indirdep->ir_freeblks->fb_jblkdephd)) 6409 handle_written_freework(freework); 6410 else 6411 WORKLIST_INSERT(&indirdep->ir_freeblks->fb_freeworkhd, 6412 &freework->fw_list); 6413 } else { 6414 /* Complete when the real copy is written. */ 6415 WORKLIST_INSERT(&bp->b_dep, &freework->fw_list); 6416 BUF_UNLOCK(bp); 6417 } 6418 } 6419 6420 /* 6421 * Calculate the number of blocks we are going to release where datablocks 6422 * is the current total and length is the new file size. 6423 */ 6424 static ufs2_daddr_t 6425 blkcount(fs, datablocks, length) 6426 struct fs *fs; 6427 ufs2_daddr_t datablocks; 6428 off_t length; 6429 { 6430 off_t totblks, numblks; 6431 6432 totblks = 0; 6433 numblks = howmany(length, fs->fs_bsize); 6434 if (numblks <= UFS_NDADDR) { 6435 totblks = howmany(length, fs->fs_fsize); 6436 goto out; 6437 } 6438 totblks = blkstofrags(fs, numblks); 6439 numblks -= UFS_NDADDR; 6440 /* 6441 * Count all single, then double, then triple indirects required. 6442 * Subtracting one indirects worth of blocks for each pass 6443 * acknowledges one of each pointed to by the inode. 6444 */ 6445 for (;;) { 6446 totblks += blkstofrags(fs, howmany(numblks, NINDIR(fs))); 6447 numblks -= NINDIR(fs); 6448 if (numblks <= 0) 6449 break; 6450 numblks = howmany(numblks, NINDIR(fs)); 6451 } 6452 out: 6453 totblks = fsbtodb(fs, totblks); 6454 /* 6455 * Handle sparse files. We can't reclaim more blocks than the inode 6456 * references. We will correct it later in handle_complete_freeblks() 6457 * when we know the real count. 6458 */ 6459 if (totblks > datablocks) 6460 return (0); 6461 return (datablocks - totblks); 6462 } 6463 6464 /* 6465 * Handle freeblocks for journaled softupdate filesystems. 6466 * 6467 * Contrary to normal softupdates, we must preserve the block pointers in 6468 * indirects until their subordinates are free. This is to avoid journaling 6469 * every block that is freed which may consume more space than the journal 6470 * itself. The recovery program will see the free block journals at the 6471 * base of the truncated area and traverse them to reclaim space. The 6472 * pointers in the inode may be cleared immediately after the journal 6473 * records are written because each direct and indirect pointer in the 6474 * inode is recorded in a journal. This permits full truncation to proceed 6475 * asynchronously. The write order is journal -> inode -> cgs -> indirects. 6476 * 6477 * The algorithm is as follows: 6478 * 1) Traverse the in-memory state and create journal entries to release 6479 * the relevant blocks and full indirect trees. 6480 * 2) Traverse the indirect block chain adding partial truncation freework 6481 * records to indirects in the path to lastlbn. The freework will 6482 * prevent new allocation dependencies from being satisfied in this 6483 * indirect until the truncation completes. 6484 * 3) Read and lock the inode block, performing an update with the new size 6485 * and pointers. This prevents truncated data from becoming valid on 6486 * disk through step 4. 6487 * 4) Reap unsatisfied dependencies that are beyond the truncated area, 6488 * eliminate journal work for those records that do not require it. 6489 * 5) Schedule the journal records to be written followed by the inode block. 6490 * 6) Allocate any necessary frags for the end of file. 6491 * 7) Zero any partially truncated blocks. 6492 * 6493 * From this truncation proceeds asynchronously using the freework and 6494 * indir_trunc machinery. The file will not be extended again into a 6495 * partially truncated indirect block until all work is completed but 6496 * the normal dependency mechanism ensures that it is rolled back/forward 6497 * as appropriate. Further truncation may occur without delay and is 6498 * serialized in indir_trunc(). 6499 */ 6500 void 6501 softdep_journal_freeblocks(ip, cred, length, flags) 6502 struct inode *ip; /* The inode whose length is to be reduced */ 6503 struct ucred *cred; 6504 off_t length; /* The new length for the file */ 6505 int flags; /* IO_EXT and/or IO_NORMAL */ 6506 { 6507 struct freeblks *freeblks, *fbn; 6508 struct worklist *wk, *wkn; 6509 struct inodedep *inodedep; 6510 struct jblkdep *jblkdep; 6511 struct allocdirect *adp, *adpn; 6512 struct ufsmount *ump; 6513 struct fs *fs; 6514 struct buf *bp; 6515 struct vnode *vp; 6516 struct mount *mp; 6517 ufs2_daddr_t extblocks, datablocks; 6518 ufs_lbn_t tmpval, lbn, lastlbn; 6519 int frags, lastoff, iboff, allocblock, needj, error, i; 6520 6521 ump = ITOUMP(ip); 6522 mp = UFSTOVFS(ump); 6523 fs = ump->um_fs; 6524 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 6525 ("softdep_journal_freeblocks called on non-softdep filesystem")); 6526 vp = ITOV(ip); 6527 needj = 1; 6528 iboff = -1; 6529 allocblock = 0; 6530 extblocks = 0; 6531 datablocks = 0; 6532 frags = 0; 6533 freeblks = newfreeblks(mp, ip); 6534 ACQUIRE_LOCK(ump); 6535 /* 6536 * If we're truncating a removed file that will never be written 6537 * we don't need to journal the block frees. The canceled journals 6538 * for the allocations will suffice. 6539 */ 6540 inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep); 6541 if ((inodedep->id_state & (UNLINKED | DEPCOMPLETE)) == UNLINKED && 6542 length == 0) 6543 needj = 0; 6544 CTR3(KTR_SUJ, "softdep_journal_freeblks: ip %d length %ld needj %d", 6545 ip->i_number, length, needj); 6546 FREE_LOCK(ump); 6547 /* 6548 * Calculate the lbn that we are truncating to. This results in -1 6549 * if we're truncating the 0 bytes. So it is the last lbn we want 6550 * to keep, not the first lbn we want to truncate. 6551 */ 6552 lastlbn = lblkno(fs, length + fs->fs_bsize - 1) - 1; 6553 lastoff = blkoff(fs, length); 6554 /* 6555 * Compute frags we are keeping in lastlbn. 0 means all. 6556 */ 6557 if (lastlbn >= 0 && lastlbn < UFS_NDADDR) { 6558 frags = fragroundup(fs, lastoff); 6559 /* adp offset of last valid allocdirect. */ 6560 iboff = lastlbn; 6561 } else if (lastlbn > 0) 6562 iboff = UFS_NDADDR; 6563 if (fs->fs_magic == FS_UFS2_MAGIC) 6564 extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize)); 6565 /* 6566 * Handle normal data blocks and indirects. This section saves 6567 * values used after the inode update to complete frag and indirect 6568 * truncation. 6569 */ 6570 if ((flags & IO_NORMAL) != 0) { 6571 /* 6572 * Handle truncation of whole direct and indirect blocks. 6573 */ 6574 for (i = iboff + 1; i < UFS_NDADDR; i++) 6575 setup_freedirect(freeblks, ip, i, needj); 6576 for (i = 0, tmpval = NINDIR(fs), lbn = UFS_NDADDR; 6577 i < UFS_NIADDR; 6578 i++, lbn += tmpval, tmpval *= NINDIR(fs)) { 6579 /* Release a whole indirect tree. */ 6580 if (lbn > lastlbn) { 6581 setup_freeindir(freeblks, ip, i, -lbn -i, 6582 needj); 6583 continue; 6584 } 6585 iboff = i + UFS_NDADDR; 6586 /* 6587 * Traverse partially truncated indirect tree. 6588 */ 6589 if (lbn <= lastlbn && lbn + tmpval - 1 > lastlbn) 6590 setup_trunc_indir(freeblks, ip, -lbn - i, 6591 lastlbn, DIP(ip, i_ib[i])); 6592 } 6593 /* 6594 * Handle partial truncation to a frag boundary. 6595 */ 6596 if (frags) { 6597 ufs2_daddr_t blkno; 6598 long oldfrags; 6599 6600 oldfrags = blksize(fs, ip, lastlbn); 6601 blkno = DIP(ip, i_db[lastlbn]); 6602 if (blkno && oldfrags != frags) { 6603 oldfrags -= frags; 6604 oldfrags = numfrags(fs, oldfrags); 6605 blkno += numfrags(fs, frags); 6606 newfreework(ump, freeblks, NULL, lastlbn, 6607 blkno, oldfrags, 0, needj); 6608 if (needj) 6609 adjust_newfreework(freeblks, 6610 numfrags(fs, frags)); 6611 } else if (blkno == 0) 6612 allocblock = 1; 6613 } 6614 /* 6615 * Add a journal record for partial truncate if we are 6616 * handling indirect blocks. Non-indirects need no extra 6617 * journaling. 6618 */ 6619 if (length != 0 && lastlbn >= UFS_NDADDR) { 6620 ip->i_flag |= IN_TRUNCATED; 6621 newjtrunc(freeblks, length, 0); 6622 } 6623 ip->i_size = length; 6624 DIP_SET(ip, i_size, ip->i_size); 6625 datablocks = DIP(ip, i_blocks) - extblocks; 6626 if (length != 0) 6627 datablocks = blkcount(fs, datablocks, length); 6628 freeblks->fb_len = length; 6629 } 6630 if ((flags & IO_EXT) != 0) { 6631 for (i = 0; i < UFS_NXADDR; i++) 6632 setup_freeext(freeblks, ip, i, needj); 6633 ip->i_din2->di_extsize = 0; 6634 datablocks += extblocks; 6635 } 6636 #ifdef QUOTA 6637 /* Reference the quotas in case the block count is wrong in the end. */ 6638 quotaref(vp, freeblks->fb_quota); 6639 (void) chkdq(ip, -datablocks, NOCRED, 0); 6640 #endif 6641 freeblks->fb_chkcnt = -datablocks; 6642 UFS_LOCK(ump); 6643 fs->fs_pendingblocks += datablocks; 6644 UFS_UNLOCK(ump); 6645 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - datablocks); 6646 /* 6647 * Handle truncation of incomplete alloc direct dependencies. We 6648 * hold the inode block locked to prevent incomplete dependencies 6649 * from reaching the disk while we are eliminating those that 6650 * have been truncated. This is a partially inlined ffs_update(). 6651 */ 6652 ufs_itimes(vp); 6653 ip->i_flag &= ~(IN_LAZYACCESS | IN_LAZYMOD | IN_MODIFIED); 6654 error = bread(ump->um_devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)), 6655 (int)fs->fs_bsize, cred, &bp); 6656 if (error) { 6657 brelse(bp); 6658 softdep_error("softdep_journal_freeblocks", error); 6659 return; 6660 } 6661 if (bp->b_bufsize == fs->fs_bsize) 6662 bp->b_flags |= B_CLUSTEROK; 6663 softdep_update_inodeblock(ip, bp, 0); 6664 if (ump->um_fstype == UFS1) 6665 *((struct ufs1_dinode *)bp->b_data + 6666 ino_to_fsbo(fs, ip->i_number)) = *ip->i_din1; 6667 else 6668 *((struct ufs2_dinode *)bp->b_data + 6669 ino_to_fsbo(fs, ip->i_number)) = *ip->i_din2; 6670 ACQUIRE_LOCK(ump); 6671 (void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep); 6672 if ((inodedep->id_state & IOSTARTED) != 0) 6673 panic("softdep_setup_freeblocks: inode busy"); 6674 /* 6675 * Add the freeblks structure to the list of operations that 6676 * must await the zero'ed inode being written to disk. If we 6677 * still have a bitmap dependency (needj), then the inode 6678 * has never been written to disk, so we can process the 6679 * freeblks below once we have deleted the dependencies. 6680 */ 6681 if (needj) 6682 WORKLIST_INSERT(&bp->b_dep, &freeblks->fb_list); 6683 else 6684 freeblks->fb_state |= COMPLETE; 6685 if ((flags & IO_NORMAL) != 0) { 6686 TAILQ_FOREACH_SAFE(adp, &inodedep->id_inoupdt, ad_next, adpn) { 6687 if (adp->ad_offset > iboff) 6688 cancel_allocdirect(&inodedep->id_inoupdt, adp, 6689 freeblks); 6690 /* 6691 * Truncate the allocdirect. We could eliminate 6692 * or modify journal records as well. 6693 */ 6694 else if (adp->ad_offset == iboff && frags) 6695 adp->ad_newsize = frags; 6696 } 6697 } 6698 if ((flags & IO_EXT) != 0) 6699 while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL) 6700 cancel_allocdirect(&inodedep->id_extupdt, adp, 6701 freeblks); 6702 /* 6703 * Scan the bufwait list for newblock dependencies that will never 6704 * make it to disk. 6705 */ 6706 LIST_FOREACH_SAFE(wk, &inodedep->id_bufwait, wk_list, wkn) { 6707 if (wk->wk_type != D_ALLOCDIRECT) 6708 continue; 6709 adp = WK_ALLOCDIRECT(wk); 6710 if (((flags & IO_NORMAL) != 0 && (adp->ad_offset > iboff)) || 6711 ((flags & IO_EXT) != 0 && (adp->ad_state & EXTDATA))) { 6712 cancel_jfreeblk(freeblks, adp->ad_newblkno); 6713 cancel_newblk(WK_NEWBLK(wk), NULL, &freeblks->fb_jwork); 6714 WORKLIST_INSERT(&freeblks->fb_freeworkhd, wk); 6715 } 6716 } 6717 /* 6718 * Add journal work. 6719 */ 6720 LIST_FOREACH(jblkdep, &freeblks->fb_jblkdephd, jb_deps) 6721 add_to_journal(&jblkdep->jb_list); 6722 FREE_LOCK(ump); 6723 bdwrite(bp); 6724 /* 6725 * Truncate dependency structures beyond length. 6726 */ 6727 trunc_dependencies(ip, freeblks, lastlbn, frags, flags); 6728 /* 6729 * This is only set when we need to allocate a fragment because 6730 * none existed at the end of a frag-sized file. It handles only 6731 * allocating a new, zero filled block. 6732 */ 6733 if (allocblock) { 6734 ip->i_size = length - lastoff; 6735 DIP_SET(ip, i_size, ip->i_size); 6736 error = UFS_BALLOC(vp, length - 1, 1, cred, BA_CLRBUF, &bp); 6737 if (error != 0) { 6738 softdep_error("softdep_journal_freeblks", error); 6739 return; 6740 } 6741 ip->i_size = length; 6742 DIP_SET(ip, i_size, length); 6743 ip->i_flag |= IN_CHANGE | IN_UPDATE; 6744 allocbuf(bp, frags); 6745 ffs_update(vp, 0); 6746 bawrite(bp); 6747 } else if (lastoff != 0 && vp->v_type != VDIR) { 6748 int size; 6749 6750 /* 6751 * Zero the end of a truncated frag or block. 6752 */ 6753 size = sblksize(fs, length, lastlbn); 6754 error = bread(vp, lastlbn, size, cred, &bp); 6755 if (error) { 6756 softdep_error("softdep_journal_freeblks", error); 6757 return; 6758 } 6759 bzero((char *)bp->b_data + lastoff, size - lastoff); 6760 bawrite(bp); 6761 6762 } 6763 ACQUIRE_LOCK(ump); 6764 inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep); 6765 TAILQ_INSERT_TAIL(&inodedep->id_freeblklst, freeblks, fb_next); 6766 freeblks->fb_state |= DEPCOMPLETE | ONDEPLIST; 6767 /* 6768 * We zero earlier truncations so they don't erroneously 6769 * update i_blocks. 6770 */ 6771 if (freeblks->fb_len == 0 && (flags & IO_NORMAL) != 0) 6772 TAILQ_FOREACH(fbn, &inodedep->id_freeblklst, fb_next) 6773 fbn->fb_len = 0; 6774 if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE && 6775 LIST_EMPTY(&freeblks->fb_jblkdephd)) 6776 freeblks->fb_state |= INPROGRESS; 6777 else 6778 freeblks = NULL; 6779 FREE_LOCK(ump); 6780 if (freeblks) 6781 handle_workitem_freeblocks(freeblks, 0); 6782 trunc_pages(ip, length, extblocks, flags); 6783 6784 } 6785 6786 /* 6787 * Flush a JOP_SYNC to the journal. 6788 */ 6789 void 6790 softdep_journal_fsync(ip) 6791 struct inode *ip; 6792 { 6793 struct jfsync *jfsync; 6794 struct ufsmount *ump; 6795 6796 ump = ITOUMP(ip); 6797 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 6798 ("softdep_journal_fsync called on non-softdep filesystem")); 6799 if ((ip->i_flag & IN_TRUNCATED) == 0) 6800 return; 6801 ip->i_flag &= ~IN_TRUNCATED; 6802 jfsync = malloc(sizeof(*jfsync), M_JFSYNC, M_SOFTDEP_FLAGS | M_ZERO); 6803 workitem_alloc(&jfsync->jfs_list, D_JFSYNC, UFSTOVFS(ump)); 6804 jfsync->jfs_size = ip->i_size; 6805 jfsync->jfs_ino = ip->i_number; 6806 ACQUIRE_LOCK(ump); 6807 add_to_journal(&jfsync->jfs_list); 6808 jwait(&jfsync->jfs_list, MNT_WAIT); 6809 FREE_LOCK(ump); 6810 } 6811 6812 /* 6813 * Block de-allocation dependencies. 6814 * 6815 * When blocks are de-allocated, the on-disk pointers must be nullified before 6816 * the blocks are made available for use by other files. (The true 6817 * requirement is that old pointers must be nullified before new on-disk 6818 * pointers are set. We chose this slightly more stringent requirement to 6819 * reduce complexity.) Our implementation handles this dependency by updating 6820 * the inode (or indirect block) appropriately but delaying the actual block 6821 * de-allocation (i.e., freemap and free space count manipulation) until 6822 * after the updated versions reach stable storage. After the disk is 6823 * updated, the blocks can be safely de-allocated whenever it is convenient. 6824 * This implementation handles only the common case of reducing a file's 6825 * length to zero. Other cases are handled by the conventional synchronous 6826 * write approach. 6827 * 6828 * The ffs implementation with which we worked double-checks 6829 * the state of the block pointers and file size as it reduces 6830 * a file's length. Some of this code is replicated here in our 6831 * soft updates implementation. The freeblks->fb_chkcnt field is 6832 * used to transfer a part of this information to the procedure 6833 * that eventually de-allocates the blocks. 6834 * 6835 * This routine should be called from the routine that shortens 6836 * a file's length, before the inode's size or block pointers 6837 * are modified. It will save the block pointer information for 6838 * later release and zero the inode so that the calling routine 6839 * can release it. 6840 */ 6841 void 6842 softdep_setup_freeblocks(ip, length, flags) 6843 struct inode *ip; /* The inode whose length is to be reduced */ 6844 off_t length; /* The new length for the file */ 6845 int flags; /* IO_EXT and/or IO_NORMAL */ 6846 { 6847 struct ufs1_dinode *dp1; 6848 struct ufs2_dinode *dp2; 6849 struct freeblks *freeblks; 6850 struct inodedep *inodedep; 6851 struct allocdirect *adp; 6852 struct ufsmount *ump; 6853 struct buf *bp; 6854 struct fs *fs; 6855 ufs2_daddr_t extblocks, datablocks; 6856 struct mount *mp; 6857 int i, delay, error; 6858 ufs_lbn_t tmpval; 6859 ufs_lbn_t lbn; 6860 6861 ump = ITOUMP(ip); 6862 mp = UFSTOVFS(ump); 6863 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 6864 ("softdep_setup_freeblocks called on non-softdep filesystem")); 6865 CTR2(KTR_SUJ, "softdep_setup_freeblks: ip %d length %ld", 6866 ip->i_number, length); 6867 KASSERT(length == 0, ("softdep_setup_freeblocks: non-zero length")); 6868 fs = ump->um_fs; 6869 if ((error = bread(ump->um_devvp, 6870 fsbtodb(fs, ino_to_fsba(fs, ip->i_number)), 6871 (int)fs->fs_bsize, NOCRED, &bp)) != 0) { 6872 brelse(bp); 6873 softdep_error("softdep_setup_freeblocks", error); 6874 return; 6875 } 6876 freeblks = newfreeblks(mp, ip); 6877 extblocks = 0; 6878 datablocks = 0; 6879 if (fs->fs_magic == FS_UFS2_MAGIC) 6880 extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize)); 6881 if ((flags & IO_NORMAL) != 0) { 6882 for (i = 0; i < UFS_NDADDR; i++) 6883 setup_freedirect(freeblks, ip, i, 0); 6884 for (i = 0, tmpval = NINDIR(fs), lbn = UFS_NDADDR; 6885 i < UFS_NIADDR; 6886 i++, lbn += tmpval, tmpval *= NINDIR(fs)) 6887 setup_freeindir(freeblks, ip, i, -lbn -i, 0); 6888 ip->i_size = 0; 6889 DIP_SET(ip, i_size, 0); 6890 datablocks = DIP(ip, i_blocks) - extblocks; 6891 } 6892 if ((flags & IO_EXT) != 0) { 6893 for (i = 0; i < UFS_NXADDR; i++) 6894 setup_freeext(freeblks, ip, i, 0); 6895 ip->i_din2->di_extsize = 0; 6896 datablocks += extblocks; 6897 } 6898 #ifdef QUOTA 6899 /* Reference the quotas in case the block count is wrong in the end. */ 6900 quotaref(ITOV(ip), freeblks->fb_quota); 6901 (void) chkdq(ip, -datablocks, NOCRED, 0); 6902 #endif 6903 freeblks->fb_chkcnt = -datablocks; 6904 UFS_LOCK(ump); 6905 fs->fs_pendingblocks += datablocks; 6906 UFS_UNLOCK(ump); 6907 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - datablocks); 6908 /* 6909 * Push the zero'ed inode to to its disk buffer so that we are free 6910 * to delete its dependencies below. Once the dependencies are gone 6911 * the buffer can be safely released. 6912 */ 6913 if (ump->um_fstype == UFS1) { 6914 dp1 = ((struct ufs1_dinode *)bp->b_data + 6915 ino_to_fsbo(fs, ip->i_number)); 6916 ip->i_din1->di_freelink = dp1->di_freelink; 6917 *dp1 = *ip->i_din1; 6918 } else { 6919 dp2 = ((struct ufs2_dinode *)bp->b_data + 6920 ino_to_fsbo(fs, ip->i_number)); 6921 ip->i_din2->di_freelink = dp2->di_freelink; 6922 *dp2 = *ip->i_din2; 6923 } 6924 /* 6925 * Find and eliminate any inode dependencies. 6926 */ 6927 ACQUIRE_LOCK(ump); 6928 (void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep); 6929 if ((inodedep->id_state & IOSTARTED) != 0) 6930 panic("softdep_setup_freeblocks: inode busy"); 6931 /* 6932 * Add the freeblks structure to the list of operations that 6933 * must await the zero'ed inode being written to disk. If we 6934 * still have a bitmap dependency (delay == 0), then the inode 6935 * has never been written to disk, so we can process the 6936 * freeblks below once we have deleted the dependencies. 6937 */ 6938 delay = (inodedep->id_state & DEPCOMPLETE); 6939 if (delay) 6940 WORKLIST_INSERT(&bp->b_dep, &freeblks->fb_list); 6941 else 6942 freeblks->fb_state |= COMPLETE; 6943 /* 6944 * Because the file length has been truncated to zero, any 6945 * pending block allocation dependency structures associated 6946 * with this inode are obsolete and can simply be de-allocated. 6947 * We must first merge the two dependency lists to get rid of 6948 * any duplicate freefrag structures, then purge the merged list. 6949 * If we still have a bitmap dependency, then the inode has never 6950 * been written to disk, so we can free any fragments without delay. 6951 */ 6952 if (flags & IO_NORMAL) { 6953 merge_inode_lists(&inodedep->id_newinoupdt, 6954 &inodedep->id_inoupdt); 6955 while ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL) 6956 cancel_allocdirect(&inodedep->id_inoupdt, adp, 6957 freeblks); 6958 } 6959 if (flags & IO_EXT) { 6960 merge_inode_lists(&inodedep->id_newextupdt, 6961 &inodedep->id_extupdt); 6962 while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL) 6963 cancel_allocdirect(&inodedep->id_extupdt, adp, 6964 freeblks); 6965 } 6966 FREE_LOCK(ump); 6967 bdwrite(bp); 6968 trunc_dependencies(ip, freeblks, -1, 0, flags); 6969 ACQUIRE_LOCK(ump); 6970 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0) 6971 (void) free_inodedep(inodedep); 6972 freeblks->fb_state |= DEPCOMPLETE; 6973 /* 6974 * If the inode with zeroed block pointers is now on disk 6975 * we can start freeing blocks. 6976 */ 6977 if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE) 6978 freeblks->fb_state |= INPROGRESS; 6979 else 6980 freeblks = NULL; 6981 FREE_LOCK(ump); 6982 if (freeblks) 6983 handle_workitem_freeblocks(freeblks, 0); 6984 trunc_pages(ip, length, extblocks, flags); 6985 } 6986 6987 /* 6988 * Eliminate pages from the page cache that back parts of this inode and 6989 * adjust the vnode pager's idea of our size. This prevents stale data 6990 * from hanging around in the page cache. 6991 */ 6992 static void 6993 trunc_pages(ip, length, extblocks, flags) 6994 struct inode *ip; 6995 off_t length; 6996 ufs2_daddr_t extblocks; 6997 int flags; 6998 { 6999 struct vnode *vp; 7000 struct fs *fs; 7001 ufs_lbn_t lbn; 7002 off_t end, extend; 7003 7004 vp = ITOV(ip); 7005 fs = ITOFS(ip); 7006 extend = OFF_TO_IDX(lblktosize(fs, -extblocks)); 7007 if ((flags & IO_EXT) != 0) 7008 vn_pages_remove(vp, extend, 0); 7009 if ((flags & IO_NORMAL) == 0) 7010 return; 7011 BO_LOCK(&vp->v_bufobj); 7012 drain_output(vp); 7013 BO_UNLOCK(&vp->v_bufobj); 7014 /* 7015 * The vnode pager eliminates file pages we eliminate indirects 7016 * below. 7017 */ 7018 vnode_pager_setsize(vp, length); 7019 /* 7020 * Calculate the end based on the last indirect we want to keep. If 7021 * the block extends into indirects we can just use the negative of 7022 * its lbn. Doubles and triples exist at lower numbers so we must 7023 * be careful not to remove those, if they exist. double and triple 7024 * indirect lbns do not overlap with others so it is not important 7025 * to verify how many levels are required. 7026 */ 7027 lbn = lblkno(fs, length); 7028 if (lbn >= UFS_NDADDR) { 7029 /* Calculate the virtual lbn of the triple indirect. */ 7030 lbn = -lbn - (UFS_NIADDR - 1); 7031 end = OFF_TO_IDX(lblktosize(fs, lbn)); 7032 } else 7033 end = extend; 7034 vn_pages_remove(vp, OFF_TO_IDX(OFF_MAX), end); 7035 } 7036 7037 /* 7038 * See if the buf bp is in the range eliminated by truncation. 7039 */ 7040 static int 7041 trunc_check_buf(bp, blkoffp, lastlbn, lastoff, flags) 7042 struct buf *bp; 7043 int *blkoffp; 7044 ufs_lbn_t lastlbn; 7045 int lastoff; 7046 int flags; 7047 { 7048 ufs_lbn_t lbn; 7049 7050 *blkoffp = 0; 7051 /* Only match ext/normal blocks as appropriate. */ 7052 if (((flags & IO_EXT) == 0 && (bp->b_xflags & BX_ALTDATA)) || 7053 ((flags & IO_NORMAL) == 0 && (bp->b_xflags & BX_ALTDATA) == 0)) 7054 return (0); 7055 /* ALTDATA is always a full truncation. */ 7056 if ((bp->b_xflags & BX_ALTDATA) != 0) 7057 return (1); 7058 /* -1 is full truncation. */ 7059 if (lastlbn == -1) 7060 return (1); 7061 /* 7062 * If this is a partial truncate we only want those 7063 * blocks and indirect blocks that cover the range 7064 * we're after. 7065 */ 7066 lbn = bp->b_lblkno; 7067 if (lbn < 0) 7068 lbn = -(lbn + lbn_level(lbn)); 7069 if (lbn < lastlbn) 7070 return (0); 7071 /* Here we only truncate lblkno if it's partial. */ 7072 if (lbn == lastlbn) { 7073 if (lastoff == 0) 7074 return (0); 7075 *blkoffp = lastoff; 7076 } 7077 return (1); 7078 } 7079 7080 /* 7081 * Eliminate any dependencies that exist in memory beyond lblkno:off 7082 */ 7083 static void 7084 trunc_dependencies(ip, freeblks, lastlbn, lastoff, flags) 7085 struct inode *ip; 7086 struct freeblks *freeblks; 7087 ufs_lbn_t lastlbn; 7088 int lastoff; 7089 int flags; 7090 { 7091 struct bufobj *bo; 7092 struct vnode *vp; 7093 struct buf *bp; 7094 int blkoff; 7095 7096 /* 7097 * We must wait for any I/O in progress to finish so that 7098 * all potential buffers on the dirty list will be visible. 7099 * Once they are all there, walk the list and get rid of 7100 * any dependencies. 7101 */ 7102 vp = ITOV(ip); 7103 bo = &vp->v_bufobj; 7104 BO_LOCK(bo); 7105 drain_output(vp); 7106 TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) 7107 bp->b_vflags &= ~BV_SCANNED; 7108 restart: 7109 TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) { 7110 if (bp->b_vflags & BV_SCANNED) 7111 continue; 7112 if (!trunc_check_buf(bp, &blkoff, lastlbn, lastoff, flags)) { 7113 bp->b_vflags |= BV_SCANNED; 7114 continue; 7115 } 7116 KASSERT(bp->b_bufobj == bo, ("Wrong object in buffer")); 7117 if ((bp = getdirtybuf(bp, BO_LOCKPTR(bo), MNT_WAIT)) == NULL) 7118 goto restart; 7119 BO_UNLOCK(bo); 7120 if (deallocate_dependencies(bp, freeblks, blkoff)) 7121 bqrelse(bp); 7122 else 7123 brelse(bp); 7124 BO_LOCK(bo); 7125 goto restart; 7126 } 7127 /* 7128 * Now do the work of vtruncbuf while also matching indirect blocks. 7129 */ 7130 TAILQ_FOREACH(bp, &bo->bo_clean.bv_hd, b_bobufs) 7131 bp->b_vflags &= ~BV_SCANNED; 7132 cleanrestart: 7133 TAILQ_FOREACH(bp, &bo->bo_clean.bv_hd, b_bobufs) { 7134 if (bp->b_vflags & BV_SCANNED) 7135 continue; 7136 if (!trunc_check_buf(bp, &blkoff, lastlbn, lastoff, flags)) { 7137 bp->b_vflags |= BV_SCANNED; 7138 continue; 7139 } 7140 if (BUF_LOCK(bp, 7141 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, 7142 BO_LOCKPTR(bo)) == ENOLCK) { 7143 BO_LOCK(bo); 7144 goto cleanrestart; 7145 } 7146 bp->b_vflags |= BV_SCANNED; 7147 bremfree(bp); 7148 if (blkoff != 0) { 7149 allocbuf(bp, blkoff); 7150 bqrelse(bp); 7151 } else { 7152 bp->b_flags |= B_INVAL | B_NOCACHE | B_RELBUF; 7153 brelse(bp); 7154 } 7155 BO_LOCK(bo); 7156 goto cleanrestart; 7157 } 7158 drain_output(vp); 7159 BO_UNLOCK(bo); 7160 } 7161 7162 static int 7163 cancel_pagedep(pagedep, freeblks, blkoff) 7164 struct pagedep *pagedep; 7165 struct freeblks *freeblks; 7166 int blkoff; 7167 { 7168 struct jremref *jremref; 7169 struct jmvref *jmvref; 7170 struct dirrem *dirrem, *tmp; 7171 int i; 7172 7173 /* 7174 * Copy any directory remove dependencies to the list 7175 * to be processed after the freeblks proceeds. If 7176 * directory entry never made it to disk they 7177 * can be dumped directly onto the work list. 7178 */ 7179 LIST_FOREACH_SAFE(dirrem, &pagedep->pd_dirremhd, dm_next, tmp) { 7180 /* Skip this directory removal if it is intended to remain. */ 7181 if (dirrem->dm_offset < blkoff) 7182 continue; 7183 /* 7184 * If there are any dirrems we wait for the journal write 7185 * to complete and then restart the buf scan as the lock 7186 * has been dropped. 7187 */ 7188 while ((jremref = LIST_FIRST(&dirrem->dm_jremrefhd)) != NULL) { 7189 jwait(&jremref->jr_list, MNT_WAIT); 7190 return (ERESTART); 7191 } 7192 LIST_REMOVE(dirrem, dm_next); 7193 dirrem->dm_dirinum = pagedep->pd_ino; 7194 WORKLIST_INSERT(&freeblks->fb_freeworkhd, &dirrem->dm_list); 7195 } 7196 while ((jmvref = LIST_FIRST(&pagedep->pd_jmvrefhd)) != NULL) { 7197 jwait(&jmvref->jm_list, MNT_WAIT); 7198 return (ERESTART); 7199 } 7200 /* 7201 * When we're partially truncating a pagedep we just want to flush 7202 * journal entries and return. There can not be any adds in the 7203 * truncated portion of the directory and newblk must remain if 7204 * part of the block remains. 7205 */ 7206 if (blkoff != 0) { 7207 struct diradd *dap; 7208 7209 LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist) 7210 if (dap->da_offset > blkoff) 7211 panic("cancel_pagedep: diradd %p off %d > %d", 7212 dap, dap->da_offset, blkoff); 7213 for (i = 0; i < DAHASHSZ; i++) 7214 LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) 7215 if (dap->da_offset > blkoff) 7216 panic("cancel_pagedep: diradd %p off %d > %d", 7217 dap, dap->da_offset, blkoff); 7218 return (0); 7219 } 7220 /* 7221 * There should be no directory add dependencies present 7222 * as the directory could not be truncated until all 7223 * children were removed. 7224 */ 7225 KASSERT(LIST_FIRST(&pagedep->pd_pendinghd) == NULL, 7226 ("deallocate_dependencies: pendinghd != NULL")); 7227 for (i = 0; i < DAHASHSZ; i++) 7228 KASSERT(LIST_FIRST(&pagedep->pd_diraddhd[i]) == NULL, 7229 ("deallocate_dependencies: diraddhd != NULL")); 7230 if ((pagedep->pd_state & NEWBLOCK) != 0) 7231 free_newdirblk(pagedep->pd_newdirblk); 7232 if (free_pagedep(pagedep) == 0) 7233 panic("Failed to free pagedep %p", pagedep); 7234 return (0); 7235 } 7236 7237 /* 7238 * Reclaim any dependency structures from a buffer that is about to 7239 * be reallocated to a new vnode. The buffer must be locked, thus, 7240 * no I/O completion operations can occur while we are manipulating 7241 * its associated dependencies. The mutex is held so that other I/O's 7242 * associated with related dependencies do not occur. 7243 */ 7244 static int 7245 deallocate_dependencies(bp, freeblks, off) 7246 struct buf *bp; 7247 struct freeblks *freeblks; 7248 int off; 7249 { 7250 struct indirdep *indirdep; 7251 struct pagedep *pagedep; 7252 struct worklist *wk, *wkn; 7253 struct ufsmount *ump; 7254 7255 if ((wk = LIST_FIRST(&bp->b_dep)) == NULL) 7256 goto done; 7257 ump = VFSTOUFS(wk->wk_mp); 7258 ACQUIRE_LOCK(ump); 7259 LIST_FOREACH_SAFE(wk, &bp->b_dep, wk_list, wkn) { 7260 switch (wk->wk_type) { 7261 case D_INDIRDEP: 7262 indirdep = WK_INDIRDEP(wk); 7263 if (bp->b_lblkno >= 0 || 7264 bp->b_blkno != indirdep->ir_savebp->b_lblkno) 7265 panic("deallocate_dependencies: not indir"); 7266 cancel_indirdep(indirdep, bp, freeblks); 7267 continue; 7268 7269 case D_PAGEDEP: 7270 pagedep = WK_PAGEDEP(wk); 7271 if (cancel_pagedep(pagedep, freeblks, off)) { 7272 FREE_LOCK(ump); 7273 return (ERESTART); 7274 } 7275 continue; 7276 7277 case D_ALLOCINDIR: 7278 /* 7279 * Simply remove the allocindir, we'll find it via 7280 * the indirdep where we can clear pointers if 7281 * needed. 7282 */ 7283 WORKLIST_REMOVE(wk); 7284 continue; 7285 7286 case D_FREEWORK: 7287 /* 7288 * A truncation is waiting for the zero'd pointers 7289 * to be written. It can be freed when the freeblks 7290 * is journaled. 7291 */ 7292 WORKLIST_REMOVE(wk); 7293 wk->wk_state |= ONDEPLIST; 7294 WORKLIST_INSERT(&freeblks->fb_freeworkhd, wk); 7295 break; 7296 7297 case D_ALLOCDIRECT: 7298 if (off != 0) 7299 continue; 7300 /* FALLTHROUGH */ 7301 default: 7302 panic("deallocate_dependencies: Unexpected type %s", 7303 TYPENAME(wk->wk_type)); 7304 /* NOTREACHED */ 7305 } 7306 } 7307 FREE_LOCK(ump); 7308 done: 7309 /* 7310 * Don't throw away this buf, we were partially truncating and 7311 * some deps may always remain. 7312 */ 7313 if (off) { 7314 allocbuf(bp, off); 7315 bp->b_vflags |= BV_SCANNED; 7316 return (EBUSY); 7317 } 7318 bp->b_flags |= B_INVAL | B_NOCACHE; 7319 7320 return (0); 7321 } 7322 7323 /* 7324 * An allocdirect is being canceled due to a truncate. We must make sure 7325 * the journal entry is released in concert with the blkfree that releases 7326 * the storage. Completed journal entries must not be released until the 7327 * space is no longer pointed to by the inode or in the bitmap. 7328 */ 7329 static void 7330 cancel_allocdirect(adphead, adp, freeblks) 7331 struct allocdirectlst *adphead; 7332 struct allocdirect *adp; 7333 struct freeblks *freeblks; 7334 { 7335 struct freework *freework; 7336 struct newblk *newblk; 7337 struct worklist *wk; 7338 7339 TAILQ_REMOVE(adphead, adp, ad_next); 7340 newblk = (struct newblk *)adp; 7341 freework = NULL; 7342 /* 7343 * Find the correct freework structure. 7344 */ 7345 LIST_FOREACH(wk, &freeblks->fb_freeworkhd, wk_list) { 7346 if (wk->wk_type != D_FREEWORK) 7347 continue; 7348 freework = WK_FREEWORK(wk); 7349 if (freework->fw_blkno == newblk->nb_newblkno) 7350 break; 7351 } 7352 if (freework == NULL) 7353 panic("cancel_allocdirect: Freework not found"); 7354 /* 7355 * If a newblk exists at all we still have the journal entry that 7356 * initiated the allocation so we do not need to journal the free. 7357 */ 7358 cancel_jfreeblk(freeblks, freework->fw_blkno); 7359 /* 7360 * If the journal hasn't been written the jnewblk must be passed 7361 * to the call to ffs_blkfree that reclaims the space. We accomplish 7362 * this by linking the journal dependency into the freework to be 7363 * freed when freework_freeblock() is called. If the journal has 7364 * been written we can simply reclaim the journal space when the 7365 * freeblks work is complete. 7366 */ 7367 freework->fw_jnewblk = cancel_newblk(newblk, &freework->fw_list, 7368 &freeblks->fb_jwork); 7369 WORKLIST_INSERT(&freeblks->fb_freeworkhd, &newblk->nb_list); 7370 } 7371 7372 7373 /* 7374 * Cancel a new block allocation. May be an indirect or direct block. We 7375 * remove it from various lists and return any journal record that needs to 7376 * be resolved by the caller. 7377 * 7378 * A special consideration is made for indirects which were never pointed 7379 * at on disk and will never be found once this block is released. 7380 */ 7381 static struct jnewblk * 7382 cancel_newblk(newblk, wk, wkhd) 7383 struct newblk *newblk; 7384 struct worklist *wk; 7385 struct workhead *wkhd; 7386 { 7387 struct jnewblk *jnewblk; 7388 7389 CTR1(KTR_SUJ, "cancel_newblk: blkno %jd", newblk->nb_newblkno); 7390 7391 newblk->nb_state |= GOINGAWAY; 7392 /* 7393 * Previously we traversed the completedhd on each indirdep 7394 * attached to this newblk to cancel them and gather journal 7395 * work. Since we need only the oldest journal segment and 7396 * the lowest point on the tree will always have the oldest 7397 * journal segment we are free to release the segments 7398 * of any subordinates and may leave the indirdep list to 7399 * indirdep_complete() when this newblk is freed. 7400 */ 7401 if (newblk->nb_state & ONDEPLIST) { 7402 newblk->nb_state &= ~ONDEPLIST; 7403 LIST_REMOVE(newblk, nb_deps); 7404 } 7405 if (newblk->nb_state & ONWORKLIST) 7406 WORKLIST_REMOVE(&newblk->nb_list); 7407 /* 7408 * If the journal entry hasn't been written we save a pointer to 7409 * the dependency that frees it until it is written or the 7410 * superseding operation completes. 7411 */ 7412 jnewblk = newblk->nb_jnewblk; 7413 if (jnewblk != NULL && wk != NULL) { 7414 newblk->nb_jnewblk = NULL; 7415 jnewblk->jn_dep = wk; 7416 } 7417 if (!LIST_EMPTY(&newblk->nb_jwork)) 7418 jwork_move(wkhd, &newblk->nb_jwork); 7419 /* 7420 * When truncating we must free the newdirblk early to remove 7421 * the pagedep from the hash before returning. 7422 */ 7423 if ((wk = LIST_FIRST(&newblk->nb_newdirblk)) != NULL) 7424 free_newdirblk(WK_NEWDIRBLK(wk)); 7425 if (!LIST_EMPTY(&newblk->nb_newdirblk)) 7426 panic("cancel_newblk: extra newdirblk"); 7427 7428 return (jnewblk); 7429 } 7430 7431 /* 7432 * Schedule the freefrag associated with a newblk to be released once 7433 * the pointers are written and the previous block is no longer needed. 7434 */ 7435 static void 7436 newblk_freefrag(newblk) 7437 struct newblk *newblk; 7438 { 7439 struct freefrag *freefrag; 7440 7441 if (newblk->nb_freefrag == NULL) 7442 return; 7443 freefrag = newblk->nb_freefrag; 7444 newblk->nb_freefrag = NULL; 7445 freefrag->ff_state |= COMPLETE; 7446 if ((freefrag->ff_state & ALLCOMPLETE) == ALLCOMPLETE) 7447 add_to_worklist(&freefrag->ff_list, 0); 7448 } 7449 7450 /* 7451 * Free a newblk. Generate a new freefrag work request if appropriate. 7452 * This must be called after the inode pointer and any direct block pointers 7453 * are valid or fully removed via truncate or frag extension. 7454 */ 7455 static void 7456 free_newblk(newblk) 7457 struct newblk *newblk; 7458 { 7459 struct indirdep *indirdep; 7460 struct worklist *wk; 7461 7462 KASSERT(newblk->nb_jnewblk == NULL, 7463 ("free_newblk: jnewblk %p still attached", newblk->nb_jnewblk)); 7464 KASSERT(newblk->nb_list.wk_type != D_NEWBLK, 7465 ("free_newblk: unclaimed newblk")); 7466 LOCK_OWNED(VFSTOUFS(newblk->nb_list.wk_mp)); 7467 newblk_freefrag(newblk); 7468 if (newblk->nb_state & ONDEPLIST) 7469 LIST_REMOVE(newblk, nb_deps); 7470 if (newblk->nb_state & ONWORKLIST) 7471 WORKLIST_REMOVE(&newblk->nb_list); 7472 LIST_REMOVE(newblk, nb_hash); 7473 if ((wk = LIST_FIRST(&newblk->nb_newdirblk)) != NULL) 7474 free_newdirblk(WK_NEWDIRBLK(wk)); 7475 if (!LIST_EMPTY(&newblk->nb_newdirblk)) 7476 panic("free_newblk: extra newdirblk"); 7477 while ((indirdep = LIST_FIRST(&newblk->nb_indirdeps)) != NULL) 7478 indirdep_complete(indirdep); 7479 handle_jwork(&newblk->nb_jwork); 7480 WORKITEM_FREE(newblk, D_NEWBLK); 7481 } 7482 7483 /* 7484 * Free a newdirblk. Clear the NEWBLOCK flag on its associated pagedep. 7485 * This routine must be called with splbio interrupts blocked. 7486 */ 7487 static void 7488 free_newdirblk(newdirblk) 7489 struct newdirblk *newdirblk; 7490 { 7491 struct pagedep *pagedep; 7492 struct diradd *dap; 7493 struct worklist *wk; 7494 7495 LOCK_OWNED(VFSTOUFS(newdirblk->db_list.wk_mp)); 7496 WORKLIST_REMOVE(&newdirblk->db_list); 7497 /* 7498 * If the pagedep is still linked onto the directory buffer 7499 * dependency chain, then some of the entries on the 7500 * pd_pendinghd list may not be committed to disk yet. In 7501 * this case, we will simply clear the NEWBLOCK flag and 7502 * let the pd_pendinghd list be processed when the pagedep 7503 * is next written. If the pagedep is no longer on the buffer 7504 * dependency chain, then all the entries on the pd_pending 7505 * list are committed to disk and we can free them here. 7506 */ 7507 pagedep = newdirblk->db_pagedep; 7508 pagedep->pd_state &= ~NEWBLOCK; 7509 if ((pagedep->pd_state & ONWORKLIST) == 0) { 7510 while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL) 7511 free_diradd(dap, NULL); 7512 /* 7513 * If no dependencies remain, the pagedep will be freed. 7514 */ 7515 free_pagedep(pagedep); 7516 } 7517 /* Should only ever be one item in the list. */ 7518 while ((wk = LIST_FIRST(&newdirblk->db_mkdir)) != NULL) { 7519 WORKLIST_REMOVE(wk); 7520 handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY); 7521 } 7522 WORKITEM_FREE(newdirblk, D_NEWDIRBLK); 7523 } 7524 7525 /* 7526 * Prepare an inode to be freed. The actual free operation is not 7527 * done until the zero'ed inode has been written to disk. 7528 */ 7529 void 7530 softdep_freefile(pvp, ino, mode) 7531 struct vnode *pvp; 7532 ino_t ino; 7533 int mode; 7534 { 7535 struct inode *ip = VTOI(pvp); 7536 struct inodedep *inodedep; 7537 struct freefile *freefile; 7538 struct freeblks *freeblks; 7539 struct ufsmount *ump; 7540 7541 ump = ITOUMP(ip); 7542 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 7543 ("softdep_freefile called on non-softdep filesystem")); 7544 /* 7545 * This sets up the inode de-allocation dependency. 7546 */ 7547 freefile = malloc(sizeof(struct freefile), 7548 M_FREEFILE, M_SOFTDEP_FLAGS); 7549 workitem_alloc(&freefile->fx_list, D_FREEFILE, pvp->v_mount); 7550 freefile->fx_mode = mode; 7551 freefile->fx_oldinum = ino; 7552 freefile->fx_devvp = ump->um_devvp; 7553 LIST_INIT(&freefile->fx_jwork); 7554 UFS_LOCK(ump); 7555 ump->um_fs->fs_pendinginodes += 1; 7556 UFS_UNLOCK(ump); 7557 7558 /* 7559 * If the inodedep does not exist, then the zero'ed inode has 7560 * been written to disk. If the allocated inode has never been 7561 * written to disk, then the on-disk inode is zero'ed. In either 7562 * case we can free the file immediately. If the journal was 7563 * canceled before being written the inode will never make it to 7564 * disk and we must send the canceled journal entrys to 7565 * ffs_freefile() to be cleared in conjunction with the bitmap. 7566 * Any blocks waiting on the inode to write can be safely freed 7567 * here as it will never been written. 7568 */ 7569 ACQUIRE_LOCK(ump); 7570 inodedep_lookup(pvp->v_mount, ino, 0, &inodedep); 7571 if (inodedep) { 7572 /* 7573 * Clear out freeblks that no longer need to reference 7574 * this inode. 7575 */ 7576 while ((freeblks = 7577 TAILQ_FIRST(&inodedep->id_freeblklst)) != NULL) { 7578 TAILQ_REMOVE(&inodedep->id_freeblklst, freeblks, 7579 fb_next); 7580 freeblks->fb_state &= ~ONDEPLIST; 7581 } 7582 /* 7583 * Remove this inode from the unlinked list. 7584 */ 7585 if (inodedep->id_state & UNLINKED) { 7586 /* 7587 * Save the journal work to be freed with the bitmap 7588 * before we clear UNLINKED. Otherwise it can be lost 7589 * if the inode block is written. 7590 */ 7591 handle_bufwait(inodedep, &freefile->fx_jwork); 7592 clear_unlinked_inodedep(inodedep); 7593 /* 7594 * Re-acquire inodedep as we've dropped the 7595 * per-filesystem lock in clear_unlinked_inodedep(). 7596 */ 7597 inodedep_lookup(pvp->v_mount, ino, 0, &inodedep); 7598 } 7599 } 7600 if (inodedep == NULL || check_inode_unwritten(inodedep)) { 7601 FREE_LOCK(ump); 7602 handle_workitem_freefile(freefile); 7603 return; 7604 } 7605 if ((inodedep->id_state & DEPCOMPLETE) == 0) 7606 inodedep->id_state |= GOINGAWAY; 7607 WORKLIST_INSERT(&inodedep->id_inowait, &freefile->fx_list); 7608 FREE_LOCK(ump); 7609 if (ip->i_number == ino) 7610 ip->i_flag |= IN_MODIFIED; 7611 } 7612 7613 /* 7614 * Check to see if an inode has never been written to disk. If 7615 * so free the inodedep and return success, otherwise return failure. 7616 * This routine must be called with splbio interrupts blocked. 7617 * 7618 * If we still have a bitmap dependency, then the inode has never 7619 * been written to disk. Drop the dependency as it is no longer 7620 * necessary since the inode is being deallocated. We set the 7621 * ALLCOMPLETE flags since the bitmap now properly shows that the 7622 * inode is not allocated. Even if the inode is actively being 7623 * written, it has been rolled back to its zero'ed state, so we 7624 * are ensured that a zero inode is what is on the disk. For short 7625 * lived files, this change will usually result in removing all the 7626 * dependencies from the inode so that it can be freed immediately. 7627 */ 7628 static int 7629 check_inode_unwritten(inodedep) 7630 struct inodedep *inodedep; 7631 { 7632 7633 LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp)); 7634 7635 if ((inodedep->id_state & (DEPCOMPLETE | UNLINKED)) != 0 || 7636 !LIST_EMPTY(&inodedep->id_dirremhd) || 7637 !LIST_EMPTY(&inodedep->id_pendinghd) || 7638 !LIST_EMPTY(&inodedep->id_bufwait) || 7639 !LIST_EMPTY(&inodedep->id_inowait) || 7640 !TAILQ_EMPTY(&inodedep->id_inoreflst) || 7641 !TAILQ_EMPTY(&inodedep->id_inoupdt) || 7642 !TAILQ_EMPTY(&inodedep->id_newinoupdt) || 7643 !TAILQ_EMPTY(&inodedep->id_extupdt) || 7644 !TAILQ_EMPTY(&inodedep->id_newextupdt) || 7645 !TAILQ_EMPTY(&inodedep->id_freeblklst) || 7646 inodedep->id_mkdiradd != NULL || 7647 inodedep->id_nlinkdelta != 0) 7648 return (0); 7649 /* 7650 * Another process might be in initiate_write_inodeblock_ufs[12] 7651 * trying to allocate memory without holding "Softdep Lock". 7652 */ 7653 if ((inodedep->id_state & IOSTARTED) != 0 && 7654 inodedep->id_savedino1 == NULL) 7655 return (0); 7656 7657 if (inodedep->id_state & ONDEPLIST) 7658 LIST_REMOVE(inodedep, id_deps); 7659 inodedep->id_state &= ~ONDEPLIST; 7660 inodedep->id_state |= ALLCOMPLETE; 7661 inodedep->id_bmsafemap = NULL; 7662 if (inodedep->id_state & ONWORKLIST) 7663 WORKLIST_REMOVE(&inodedep->id_list); 7664 if (inodedep->id_savedino1 != NULL) { 7665 free(inodedep->id_savedino1, M_SAVEDINO); 7666 inodedep->id_savedino1 = NULL; 7667 } 7668 if (free_inodedep(inodedep) == 0) 7669 panic("check_inode_unwritten: busy inode"); 7670 return (1); 7671 } 7672 7673 static int 7674 check_inodedep_free(inodedep) 7675 struct inodedep *inodedep; 7676 { 7677 7678 LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp)); 7679 if ((inodedep->id_state & ALLCOMPLETE) != ALLCOMPLETE || 7680 !LIST_EMPTY(&inodedep->id_dirremhd) || 7681 !LIST_EMPTY(&inodedep->id_pendinghd) || 7682 !LIST_EMPTY(&inodedep->id_bufwait) || 7683 !LIST_EMPTY(&inodedep->id_inowait) || 7684 !TAILQ_EMPTY(&inodedep->id_inoreflst) || 7685 !TAILQ_EMPTY(&inodedep->id_inoupdt) || 7686 !TAILQ_EMPTY(&inodedep->id_newinoupdt) || 7687 !TAILQ_EMPTY(&inodedep->id_extupdt) || 7688 !TAILQ_EMPTY(&inodedep->id_newextupdt) || 7689 !TAILQ_EMPTY(&inodedep->id_freeblklst) || 7690 inodedep->id_mkdiradd != NULL || 7691 inodedep->id_nlinkdelta != 0 || 7692 inodedep->id_savedino1 != NULL) 7693 return (0); 7694 return (1); 7695 } 7696 7697 /* 7698 * Try to free an inodedep structure. Return 1 if it could be freed. 7699 */ 7700 static int 7701 free_inodedep(inodedep) 7702 struct inodedep *inodedep; 7703 { 7704 7705 LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp)); 7706 if ((inodedep->id_state & (ONWORKLIST | UNLINKED)) != 0 || 7707 !check_inodedep_free(inodedep)) 7708 return (0); 7709 if (inodedep->id_state & ONDEPLIST) 7710 LIST_REMOVE(inodedep, id_deps); 7711 LIST_REMOVE(inodedep, id_hash); 7712 WORKITEM_FREE(inodedep, D_INODEDEP); 7713 return (1); 7714 } 7715 7716 /* 7717 * Free the block referenced by a freework structure. The parent freeblks 7718 * structure is released and completed when the final cg bitmap reaches 7719 * the disk. This routine may be freeing a jnewblk which never made it to 7720 * disk in which case we do not have to wait as the operation is undone 7721 * in memory immediately. 7722 */ 7723 static void 7724 freework_freeblock(freework) 7725 struct freework *freework; 7726 { 7727 struct freeblks *freeblks; 7728 struct jnewblk *jnewblk; 7729 struct ufsmount *ump; 7730 struct workhead wkhd; 7731 struct fs *fs; 7732 int bsize; 7733 int needj; 7734 7735 ump = VFSTOUFS(freework->fw_list.wk_mp); 7736 LOCK_OWNED(ump); 7737 /* 7738 * Handle partial truncate separately. 7739 */ 7740 if (freework->fw_indir) { 7741 complete_trunc_indir(freework); 7742 return; 7743 } 7744 freeblks = freework->fw_freeblks; 7745 fs = ump->um_fs; 7746 needj = MOUNTEDSUJ(freeblks->fb_list.wk_mp) != 0; 7747 bsize = lfragtosize(fs, freework->fw_frags); 7748 LIST_INIT(&wkhd); 7749 /* 7750 * DEPCOMPLETE is cleared in indirblk_insert() if the block lives 7751 * on the indirblk hashtable and prevents premature freeing. 7752 */ 7753 freework->fw_state |= DEPCOMPLETE; 7754 /* 7755 * SUJ needs to wait for the segment referencing freed indirect 7756 * blocks to expire so that we know the checker will not confuse 7757 * a re-allocated indirect block with its old contents. 7758 */ 7759 if (needj && freework->fw_lbn <= -UFS_NDADDR) 7760 indirblk_insert(freework); 7761 /* 7762 * If we are canceling an existing jnewblk pass it to the free 7763 * routine, otherwise pass the freeblk which will ultimately 7764 * release the freeblks. If we're not journaling, we can just 7765 * free the freeblks immediately. 7766 */ 7767 jnewblk = freework->fw_jnewblk; 7768 if (jnewblk != NULL) { 7769 cancel_jnewblk(jnewblk, &wkhd); 7770 needj = 0; 7771 } else if (needj) { 7772 freework->fw_state |= DELAYEDFREE; 7773 freeblks->fb_cgwait++; 7774 WORKLIST_INSERT(&wkhd, &freework->fw_list); 7775 } 7776 FREE_LOCK(ump); 7777 freeblks_free(ump, freeblks, btodb(bsize)); 7778 CTR4(KTR_SUJ, 7779 "freework_freeblock: ino %d blkno %jd lbn %jd size %ld", 7780 freeblks->fb_inum, freework->fw_blkno, freework->fw_lbn, bsize); 7781 ffs_blkfree(ump, fs, freeblks->fb_devvp, freework->fw_blkno, bsize, 7782 freeblks->fb_inum, freeblks->fb_vtype, &wkhd); 7783 ACQUIRE_LOCK(ump); 7784 /* 7785 * The jnewblk will be discarded and the bits in the map never 7786 * made it to disk. We can immediately free the freeblk. 7787 */ 7788 if (needj == 0) 7789 handle_written_freework(freework); 7790 } 7791 7792 /* 7793 * We enqueue freework items that need processing back on the freeblks and 7794 * add the freeblks to the worklist. This makes it easier to find all work 7795 * required to flush a truncation in process_truncates(). 7796 */ 7797 static void 7798 freework_enqueue(freework) 7799 struct freework *freework; 7800 { 7801 struct freeblks *freeblks; 7802 7803 freeblks = freework->fw_freeblks; 7804 if ((freework->fw_state & INPROGRESS) == 0) 7805 WORKLIST_INSERT(&freeblks->fb_freeworkhd, &freework->fw_list); 7806 if ((freeblks->fb_state & 7807 (ONWORKLIST | INPROGRESS | ALLCOMPLETE)) == ALLCOMPLETE && 7808 LIST_EMPTY(&freeblks->fb_jblkdephd)) 7809 add_to_worklist(&freeblks->fb_list, WK_NODELAY); 7810 } 7811 7812 /* 7813 * Start, continue, or finish the process of freeing an indirect block tree. 7814 * The free operation may be paused at any point with fw_off containing the 7815 * offset to restart from. This enables us to implement some flow control 7816 * for large truncates which may fan out and generate a huge number of 7817 * dependencies. 7818 */ 7819 static void 7820 handle_workitem_indirblk(freework) 7821 struct freework *freework; 7822 { 7823 struct freeblks *freeblks; 7824 struct ufsmount *ump; 7825 struct fs *fs; 7826 7827 freeblks = freework->fw_freeblks; 7828 ump = VFSTOUFS(freeblks->fb_list.wk_mp); 7829 fs = ump->um_fs; 7830 if (freework->fw_state & DEPCOMPLETE) { 7831 handle_written_freework(freework); 7832 return; 7833 } 7834 if (freework->fw_off == NINDIR(fs)) { 7835 freework_freeblock(freework); 7836 return; 7837 } 7838 freework->fw_state |= INPROGRESS; 7839 FREE_LOCK(ump); 7840 indir_trunc(freework, fsbtodb(fs, freework->fw_blkno), 7841 freework->fw_lbn); 7842 ACQUIRE_LOCK(ump); 7843 } 7844 7845 /* 7846 * Called when a freework structure attached to a cg buf is written. The 7847 * ref on either the parent or the freeblks structure is released and 7848 * the freeblks is added back to the worklist if there is more work to do. 7849 */ 7850 static void 7851 handle_written_freework(freework) 7852 struct freework *freework; 7853 { 7854 struct freeblks *freeblks; 7855 struct freework *parent; 7856 7857 freeblks = freework->fw_freeblks; 7858 parent = freework->fw_parent; 7859 if (freework->fw_state & DELAYEDFREE) 7860 freeblks->fb_cgwait--; 7861 freework->fw_state |= COMPLETE; 7862 if ((freework->fw_state & ALLCOMPLETE) == ALLCOMPLETE) 7863 WORKITEM_FREE(freework, D_FREEWORK); 7864 if (parent) { 7865 if (--parent->fw_ref == 0) 7866 freework_enqueue(parent); 7867 return; 7868 } 7869 if (--freeblks->fb_ref != 0) 7870 return; 7871 if ((freeblks->fb_state & (ALLCOMPLETE | ONWORKLIST | INPROGRESS)) == 7872 ALLCOMPLETE && LIST_EMPTY(&freeblks->fb_jblkdephd)) 7873 add_to_worklist(&freeblks->fb_list, WK_NODELAY); 7874 } 7875 7876 /* 7877 * This workitem routine performs the block de-allocation. 7878 * The workitem is added to the pending list after the updated 7879 * inode block has been written to disk. As mentioned above, 7880 * checks regarding the number of blocks de-allocated (compared 7881 * to the number of blocks allocated for the file) are also 7882 * performed in this function. 7883 */ 7884 static int 7885 handle_workitem_freeblocks(freeblks, flags) 7886 struct freeblks *freeblks; 7887 int flags; 7888 { 7889 struct freework *freework; 7890 struct newblk *newblk; 7891 struct allocindir *aip; 7892 struct ufsmount *ump; 7893 struct worklist *wk; 7894 7895 KASSERT(LIST_EMPTY(&freeblks->fb_jblkdephd), 7896 ("handle_workitem_freeblocks: Journal entries not written.")); 7897 ump = VFSTOUFS(freeblks->fb_list.wk_mp); 7898 ACQUIRE_LOCK(ump); 7899 while ((wk = LIST_FIRST(&freeblks->fb_freeworkhd)) != NULL) { 7900 WORKLIST_REMOVE(wk); 7901 switch (wk->wk_type) { 7902 case D_DIRREM: 7903 wk->wk_state |= COMPLETE; 7904 add_to_worklist(wk, 0); 7905 continue; 7906 7907 case D_ALLOCDIRECT: 7908 free_newblk(WK_NEWBLK(wk)); 7909 continue; 7910 7911 case D_ALLOCINDIR: 7912 aip = WK_ALLOCINDIR(wk); 7913 freework = NULL; 7914 if (aip->ai_state & DELAYEDFREE) { 7915 FREE_LOCK(ump); 7916 freework = newfreework(ump, freeblks, NULL, 7917 aip->ai_lbn, aip->ai_newblkno, 7918 ump->um_fs->fs_frag, 0, 0); 7919 ACQUIRE_LOCK(ump); 7920 } 7921 newblk = WK_NEWBLK(wk); 7922 if (newblk->nb_jnewblk) { 7923 freework->fw_jnewblk = newblk->nb_jnewblk; 7924 newblk->nb_jnewblk->jn_dep = &freework->fw_list; 7925 newblk->nb_jnewblk = NULL; 7926 } 7927 free_newblk(newblk); 7928 continue; 7929 7930 case D_FREEWORK: 7931 freework = WK_FREEWORK(wk); 7932 if (freework->fw_lbn <= -UFS_NDADDR) 7933 handle_workitem_indirblk(freework); 7934 else 7935 freework_freeblock(freework); 7936 continue; 7937 default: 7938 panic("handle_workitem_freeblocks: Unknown type %s", 7939 TYPENAME(wk->wk_type)); 7940 } 7941 } 7942 if (freeblks->fb_ref != 0) { 7943 freeblks->fb_state &= ~INPROGRESS; 7944 wake_worklist(&freeblks->fb_list); 7945 freeblks = NULL; 7946 } 7947 FREE_LOCK(ump); 7948 if (freeblks) 7949 return handle_complete_freeblocks(freeblks, flags); 7950 return (0); 7951 } 7952 7953 /* 7954 * Handle completion of block free via truncate. This allows fs_pending 7955 * to track the actual free block count more closely than if we only updated 7956 * it at the end. We must be careful to handle cases where the block count 7957 * on free was incorrect. 7958 */ 7959 static void 7960 freeblks_free(ump, freeblks, blocks) 7961 struct ufsmount *ump; 7962 struct freeblks *freeblks; 7963 int blocks; 7964 { 7965 struct fs *fs; 7966 ufs2_daddr_t remain; 7967 7968 UFS_LOCK(ump); 7969 remain = -freeblks->fb_chkcnt; 7970 freeblks->fb_chkcnt += blocks; 7971 if (remain > 0) { 7972 if (remain < blocks) 7973 blocks = remain; 7974 fs = ump->um_fs; 7975 fs->fs_pendingblocks -= blocks; 7976 } 7977 UFS_UNLOCK(ump); 7978 } 7979 7980 /* 7981 * Once all of the freework workitems are complete we can retire the 7982 * freeblocks dependency and any journal work awaiting completion. This 7983 * can not be called until all other dependencies are stable on disk. 7984 */ 7985 static int 7986 handle_complete_freeblocks(freeblks, flags) 7987 struct freeblks *freeblks; 7988 int flags; 7989 { 7990 struct inodedep *inodedep; 7991 struct inode *ip; 7992 struct vnode *vp; 7993 struct fs *fs; 7994 struct ufsmount *ump; 7995 ufs2_daddr_t spare; 7996 7997 ump = VFSTOUFS(freeblks->fb_list.wk_mp); 7998 fs = ump->um_fs; 7999 flags = LK_EXCLUSIVE | flags; 8000 spare = freeblks->fb_chkcnt; 8001 8002 /* 8003 * If we did not release the expected number of blocks we may have 8004 * to adjust the inode block count here. Only do so if it wasn't 8005 * a truncation to zero and the modrev still matches. 8006 */ 8007 if (spare && freeblks->fb_len != 0) { 8008 if (ffs_vgetf(freeblks->fb_list.wk_mp, freeblks->fb_inum, 8009 flags, &vp, FFSV_FORCEINSMQ) != 0) 8010 return (EBUSY); 8011 ip = VTOI(vp); 8012 if (DIP(ip, i_modrev) == freeblks->fb_modrev) { 8013 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - spare); 8014 ip->i_flag |= IN_CHANGE; 8015 /* 8016 * We must wait so this happens before the 8017 * journal is reclaimed. 8018 */ 8019 ffs_update(vp, 1); 8020 } 8021 vput(vp); 8022 } 8023 if (spare < 0) { 8024 UFS_LOCK(ump); 8025 fs->fs_pendingblocks += spare; 8026 UFS_UNLOCK(ump); 8027 } 8028 #ifdef QUOTA 8029 /* Handle spare. */ 8030 if (spare) 8031 quotaadj(freeblks->fb_quota, ump, -spare); 8032 quotarele(freeblks->fb_quota); 8033 #endif 8034 ACQUIRE_LOCK(ump); 8035 if (freeblks->fb_state & ONDEPLIST) { 8036 inodedep_lookup(freeblks->fb_list.wk_mp, freeblks->fb_inum, 8037 0, &inodedep); 8038 TAILQ_REMOVE(&inodedep->id_freeblklst, freeblks, fb_next); 8039 freeblks->fb_state &= ~ONDEPLIST; 8040 if (TAILQ_EMPTY(&inodedep->id_freeblklst)) 8041 free_inodedep(inodedep); 8042 } 8043 /* 8044 * All of the freeblock deps must be complete prior to this call 8045 * so it's now safe to complete earlier outstanding journal entries. 8046 */ 8047 handle_jwork(&freeblks->fb_jwork); 8048 WORKITEM_FREE(freeblks, D_FREEBLKS); 8049 FREE_LOCK(ump); 8050 return (0); 8051 } 8052 8053 /* 8054 * Release blocks associated with the freeblks and stored in the indirect 8055 * block dbn. If level is greater than SINGLE, the block is an indirect block 8056 * and recursive calls to indirtrunc must be used to cleanse other indirect 8057 * blocks. 8058 * 8059 * This handles partial and complete truncation of blocks. Partial is noted 8060 * with goingaway == 0. In this case the freework is completed after the 8061 * zero'd indirects are written to disk. For full truncation the freework 8062 * is completed after the block is freed. 8063 */ 8064 static void 8065 indir_trunc(freework, dbn, lbn) 8066 struct freework *freework; 8067 ufs2_daddr_t dbn; 8068 ufs_lbn_t lbn; 8069 { 8070 struct freework *nfreework; 8071 struct workhead wkhd; 8072 struct freeblks *freeblks; 8073 struct buf *bp; 8074 struct fs *fs; 8075 struct indirdep *indirdep; 8076 struct ufsmount *ump; 8077 ufs1_daddr_t *bap1; 8078 ufs2_daddr_t nb, nnb, *bap2; 8079 ufs_lbn_t lbnadd, nlbn; 8080 int i, nblocks, ufs1fmt; 8081 int freedblocks; 8082 int goingaway; 8083 int freedeps; 8084 int needj; 8085 int level; 8086 int cnt; 8087 8088 freeblks = freework->fw_freeblks; 8089 ump = VFSTOUFS(freeblks->fb_list.wk_mp); 8090 fs = ump->um_fs; 8091 /* 8092 * Get buffer of block pointers to be freed. There are three cases: 8093 * 8094 * 1) Partial truncate caches the indirdep pointer in the freework 8095 * which provides us a back copy to the save bp which holds the 8096 * pointers we want to clear. When this completes the zero 8097 * pointers are written to the real copy. 8098 * 2) The indirect is being completely truncated, cancel_indirdep() 8099 * eliminated the real copy and placed the indirdep on the saved 8100 * copy. The indirdep and buf are discarded when this completes. 8101 * 3) The indirect was not in memory, we read a copy off of the disk 8102 * using the devvp and drop and invalidate the buffer when we're 8103 * done. 8104 */ 8105 goingaway = 1; 8106 indirdep = NULL; 8107 if (freework->fw_indir != NULL) { 8108 goingaway = 0; 8109 indirdep = freework->fw_indir; 8110 bp = indirdep->ir_savebp; 8111 if (bp == NULL || bp->b_blkno != dbn) 8112 panic("indir_trunc: Bad saved buf %p blkno %jd", 8113 bp, (intmax_t)dbn); 8114 } else if ((bp = incore(&freeblks->fb_devvp->v_bufobj, dbn)) != NULL) { 8115 /* 8116 * The lock prevents the buf dep list from changing and 8117 * indirects on devvp should only ever have one dependency. 8118 */ 8119 indirdep = WK_INDIRDEP(LIST_FIRST(&bp->b_dep)); 8120 if (indirdep == NULL || (indirdep->ir_state & GOINGAWAY) == 0) 8121 panic("indir_trunc: Bad indirdep %p from buf %p", 8122 indirdep, bp); 8123 } else if (bread(freeblks->fb_devvp, dbn, (int)fs->fs_bsize, 8124 NOCRED, &bp) != 0) { 8125 brelse(bp); 8126 return; 8127 } 8128 ACQUIRE_LOCK(ump); 8129 /* Protects against a race with complete_trunc_indir(). */ 8130 freework->fw_state &= ~INPROGRESS; 8131 /* 8132 * If we have an indirdep we need to enforce the truncation order 8133 * and discard it when it is complete. 8134 */ 8135 if (indirdep) { 8136 if (freework != TAILQ_FIRST(&indirdep->ir_trunc) && 8137 !TAILQ_EMPTY(&indirdep->ir_trunc)) { 8138 /* 8139 * Add the complete truncate to the list on the 8140 * indirdep to enforce in-order processing. 8141 */ 8142 if (freework->fw_indir == NULL) 8143 TAILQ_INSERT_TAIL(&indirdep->ir_trunc, 8144 freework, fw_next); 8145 FREE_LOCK(ump); 8146 return; 8147 } 8148 /* 8149 * If we're goingaway, free the indirdep. Otherwise it will 8150 * linger until the write completes. 8151 */ 8152 if (goingaway) 8153 free_indirdep(indirdep); 8154 } 8155 FREE_LOCK(ump); 8156 /* Initialize pointers depending on block size. */ 8157 if (ump->um_fstype == UFS1) { 8158 bap1 = (ufs1_daddr_t *)bp->b_data; 8159 nb = bap1[freework->fw_off]; 8160 ufs1fmt = 1; 8161 bap2 = NULL; 8162 } else { 8163 bap2 = (ufs2_daddr_t *)bp->b_data; 8164 nb = bap2[freework->fw_off]; 8165 ufs1fmt = 0; 8166 bap1 = NULL; 8167 } 8168 level = lbn_level(lbn); 8169 needj = MOUNTEDSUJ(UFSTOVFS(ump)) != 0; 8170 lbnadd = lbn_offset(fs, level); 8171 nblocks = btodb(fs->fs_bsize); 8172 nfreework = freework; 8173 freedeps = 0; 8174 cnt = 0; 8175 /* 8176 * Reclaim blocks. Traverses into nested indirect levels and 8177 * arranges for the current level to be freed when subordinates 8178 * are free when journaling. 8179 */ 8180 for (i = freework->fw_off; i < NINDIR(fs); i++, nb = nnb) { 8181 if (i != NINDIR(fs) - 1) { 8182 if (ufs1fmt) 8183 nnb = bap1[i+1]; 8184 else 8185 nnb = bap2[i+1]; 8186 } else 8187 nnb = 0; 8188 if (nb == 0) 8189 continue; 8190 cnt++; 8191 if (level != 0) { 8192 nlbn = (lbn + 1) - (i * lbnadd); 8193 if (needj != 0) { 8194 nfreework = newfreework(ump, freeblks, freework, 8195 nlbn, nb, fs->fs_frag, 0, 0); 8196 freedeps++; 8197 } 8198 indir_trunc(nfreework, fsbtodb(fs, nb), nlbn); 8199 } else { 8200 struct freedep *freedep; 8201 8202 /* 8203 * Attempt to aggregate freedep dependencies for 8204 * all blocks being released to the same CG. 8205 */ 8206 LIST_INIT(&wkhd); 8207 if (needj != 0 && 8208 (nnb == 0 || (dtog(fs, nb) != dtog(fs, nnb)))) { 8209 freedep = newfreedep(freework); 8210 WORKLIST_INSERT_UNLOCKED(&wkhd, 8211 &freedep->fd_list); 8212 freedeps++; 8213 } 8214 CTR3(KTR_SUJ, 8215 "indir_trunc: ino %d blkno %jd size %ld", 8216 freeblks->fb_inum, nb, fs->fs_bsize); 8217 ffs_blkfree(ump, fs, freeblks->fb_devvp, nb, 8218 fs->fs_bsize, freeblks->fb_inum, 8219 freeblks->fb_vtype, &wkhd); 8220 } 8221 } 8222 if (goingaway) { 8223 bp->b_flags |= B_INVAL | B_NOCACHE; 8224 brelse(bp); 8225 } 8226 freedblocks = 0; 8227 if (level == 0) 8228 freedblocks = (nblocks * cnt); 8229 if (needj == 0) 8230 freedblocks += nblocks; 8231 freeblks_free(ump, freeblks, freedblocks); 8232 /* 8233 * If we are journaling set up the ref counts and offset so this 8234 * indirect can be completed when its children are free. 8235 */ 8236 if (needj) { 8237 ACQUIRE_LOCK(ump); 8238 freework->fw_off = i; 8239 freework->fw_ref += freedeps; 8240 freework->fw_ref -= NINDIR(fs) + 1; 8241 if (level == 0) 8242 freeblks->fb_cgwait += freedeps; 8243 if (freework->fw_ref == 0) 8244 freework_freeblock(freework); 8245 FREE_LOCK(ump); 8246 return; 8247 } 8248 /* 8249 * If we're not journaling we can free the indirect now. 8250 */ 8251 dbn = dbtofsb(fs, dbn); 8252 CTR3(KTR_SUJ, 8253 "indir_trunc 2: ino %d blkno %jd size %ld", 8254 freeblks->fb_inum, dbn, fs->fs_bsize); 8255 ffs_blkfree(ump, fs, freeblks->fb_devvp, dbn, fs->fs_bsize, 8256 freeblks->fb_inum, freeblks->fb_vtype, NULL); 8257 /* Non SUJ softdep does single-threaded truncations. */ 8258 if (freework->fw_blkno == dbn) { 8259 freework->fw_state |= ALLCOMPLETE; 8260 ACQUIRE_LOCK(ump); 8261 handle_written_freework(freework); 8262 FREE_LOCK(ump); 8263 } 8264 return; 8265 } 8266 8267 /* 8268 * Cancel an allocindir when it is removed via truncation. When bp is not 8269 * NULL the indirect never appeared on disk and is scheduled to be freed 8270 * independently of the indir so we can more easily track journal work. 8271 */ 8272 static void 8273 cancel_allocindir(aip, bp, freeblks, trunc) 8274 struct allocindir *aip; 8275 struct buf *bp; 8276 struct freeblks *freeblks; 8277 int trunc; 8278 { 8279 struct indirdep *indirdep; 8280 struct freefrag *freefrag; 8281 struct newblk *newblk; 8282 8283 newblk = (struct newblk *)aip; 8284 LIST_REMOVE(aip, ai_next); 8285 /* 8286 * We must eliminate the pointer in bp if it must be freed on its 8287 * own due to partial truncate or pending journal work. 8288 */ 8289 if (bp && (trunc || newblk->nb_jnewblk)) { 8290 /* 8291 * Clear the pointer and mark the aip to be freed 8292 * directly if it never existed on disk. 8293 */ 8294 aip->ai_state |= DELAYEDFREE; 8295 indirdep = aip->ai_indirdep; 8296 if (indirdep->ir_state & UFS1FMT) 8297 ((ufs1_daddr_t *)bp->b_data)[aip->ai_offset] = 0; 8298 else 8299 ((ufs2_daddr_t *)bp->b_data)[aip->ai_offset] = 0; 8300 } 8301 /* 8302 * When truncating the previous pointer will be freed via 8303 * savedbp. Eliminate the freefrag which would dup free. 8304 */ 8305 if (trunc && (freefrag = newblk->nb_freefrag) != NULL) { 8306 newblk->nb_freefrag = NULL; 8307 if (freefrag->ff_jdep) 8308 cancel_jfreefrag( 8309 WK_JFREEFRAG(freefrag->ff_jdep)); 8310 jwork_move(&freeblks->fb_jwork, &freefrag->ff_jwork); 8311 WORKITEM_FREE(freefrag, D_FREEFRAG); 8312 } 8313 /* 8314 * If the journal hasn't been written the jnewblk must be passed 8315 * to the call to ffs_blkfree that reclaims the space. We accomplish 8316 * this by leaving the journal dependency on the newblk to be freed 8317 * when a freework is created in handle_workitem_freeblocks(). 8318 */ 8319 cancel_newblk(newblk, NULL, &freeblks->fb_jwork); 8320 WORKLIST_INSERT(&freeblks->fb_freeworkhd, &newblk->nb_list); 8321 } 8322 8323 /* 8324 * Create the mkdir dependencies for . and .. in a new directory. Link them 8325 * in to a newdirblk so any subsequent additions are tracked properly. The 8326 * caller is responsible for adding the mkdir1 dependency to the journal 8327 * and updating id_mkdiradd. This function returns with the per-filesystem 8328 * lock held. 8329 */ 8330 static struct mkdir * 8331 setup_newdir(dap, newinum, dinum, newdirbp, mkdirp) 8332 struct diradd *dap; 8333 ino_t newinum; 8334 ino_t dinum; 8335 struct buf *newdirbp; 8336 struct mkdir **mkdirp; 8337 { 8338 struct newblk *newblk; 8339 struct pagedep *pagedep; 8340 struct inodedep *inodedep; 8341 struct newdirblk *newdirblk; 8342 struct mkdir *mkdir1, *mkdir2; 8343 struct worklist *wk; 8344 struct jaddref *jaddref; 8345 struct ufsmount *ump; 8346 struct mount *mp; 8347 8348 mp = dap->da_list.wk_mp; 8349 ump = VFSTOUFS(mp); 8350 newdirblk = malloc(sizeof(struct newdirblk), M_NEWDIRBLK, 8351 M_SOFTDEP_FLAGS); 8352 workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp); 8353 LIST_INIT(&newdirblk->db_mkdir); 8354 mkdir1 = malloc(sizeof(struct mkdir), M_MKDIR, M_SOFTDEP_FLAGS); 8355 workitem_alloc(&mkdir1->md_list, D_MKDIR, mp); 8356 mkdir1->md_state = ATTACHED | MKDIR_BODY; 8357 mkdir1->md_diradd = dap; 8358 mkdir1->md_jaddref = NULL; 8359 mkdir2 = malloc(sizeof(struct mkdir), M_MKDIR, M_SOFTDEP_FLAGS); 8360 workitem_alloc(&mkdir2->md_list, D_MKDIR, mp); 8361 mkdir2->md_state = ATTACHED | MKDIR_PARENT; 8362 mkdir2->md_diradd = dap; 8363 mkdir2->md_jaddref = NULL; 8364 if (MOUNTEDSUJ(mp) == 0) { 8365 mkdir1->md_state |= DEPCOMPLETE; 8366 mkdir2->md_state |= DEPCOMPLETE; 8367 } 8368 /* 8369 * Dependency on "." and ".." being written to disk. 8370 */ 8371 mkdir1->md_buf = newdirbp; 8372 ACQUIRE_LOCK(VFSTOUFS(mp)); 8373 LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir1, md_mkdirs); 8374 /* 8375 * We must link the pagedep, allocdirect, and newdirblk for 8376 * the initial file page so the pointer to the new directory 8377 * is not written until the directory contents are live and 8378 * any subsequent additions are not marked live until the 8379 * block is reachable via the inode. 8380 */ 8381 if (pagedep_lookup(mp, newdirbp, newinum, 0, 0, &pagedep) == 0) 8382 panic("setup_newdir: lost pagedep"); 8383 LIST_FOREACH(wk, &newdirbp->b_dep, wk_list) 8384 if (wk->wk_type == D_ALLOCDIRECT) 8385 break; 8386 if (wk == NULL) 8387 panic("setup_newdir: lost allocdirect"); 8388 if (pagedep->pd_state & NEWBLOCK) 8389 panic("setup_newdir: NEWBLOCK already set"); 8390 newblk = WK_NEWBLK(wk); 8391 pagedep->pd_state |= NEWBLOCK; 8392 pagedep->pd_newdirblk = newdirblk; 8393 newdirblk->db_pagedep = pagedep; 8394 WORKLIST_INSERT(&newblk->nb_newdirblk, &newdirblk->db_list); 8395 WORKLIST_INSERT(&newdirblk->db_mkdir, &mkdir1->md_list); 8396 /* 8397 * Look up the inodedep for the parent directory so that we 8398 * can link mkdir2 into the pending dotdot jaddref or 8399 * the inode write if there is none. If the inode is 8400 * ALLCOMPLETE and no jaddref is present all dependencies have 8401 * been satisfied and mkdir2 can be freed. 8402 */ 8403 inodedep_lookup(mp, dinum, 0, &inodedep); 8404 if (MOUNTEDSUJ(mp)) { 8405 if (inodedep == NULL) 8406 panic("setup_newdir: Lost parent."); 8407 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 8408 inoreflst); 8409 KASSERT(jaddref != NULL && jaddref->ja_parent == newinum && 8410 (jaddref->ja_state & MKDIR_PARENT), 8411 ("setup_newdir: bad dotdot jaddref %p", jaddref)); 8412 LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir2, md_mkdirs); 8413 mkdir2->md_jaddref = jaddref; 8414 jaddref->ja_mkdir = mkdir2; 8415 } else if (inodedep == NULL || 8416 (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) { 8417 dap->da_state &= ~MKDIR_PARENT; 8418 WORKITEM_FREE(mkdir2, D_MKDIR); 8419 mkdir2 = NULL; 8420 } else { 8421 LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir2, md_mkdirs); 8422 WORKLIST_INSERT(&inodedep->id_bufwait, &mkdir2->md_list); 8423 } 8424 *mkdirp = mkdir2; 8425 8426 return (mkdir1); 8427 } 8428 8429 /* 8430 * Directory entry addition dependencies. 8431 * 8432 * When adding a new directory entry, the inode (with its incremented link 8433 * count) must be written to disk before the directory entry's pointer to it. 8434 * Also, if the inode is newly allocated, the corresponding freemap must be 8435 * updated (on disk) before the directory entry's pointer. These requirements 8436 * are met via undo/redo on the directory entry's pointer, which consists 8437 * simply of the inode number. 8438 * 8439 * As directory entries are added and deleted, the free space within a 8440 * directory block can become fragmented. The ufs filesystem will compact 8441 * a fragmented directory block to make space for a new entry. When this 8442 * occurs, the offsets of previously added entries change. Any "diradd" 8443 * dependency structures corresponding to these entries must be updated with 8444 * the new offsets. 8445 */ 8446 8447 /* 8448 * This routine is called after the in-memory inode's link 8449 * count has been incremented, but before the directory entry's 8450 * pointer to the inode has been set. 8451 */ 8452 int 8453 softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk) 8454 struct buf *bp; /* buffer containing directory block */ 8455 struct inode *dp; /* inode for directory */ 8456 off_t diroffset; /* offset of new entry in directory */ 8457 ino_t newinum; /* inode referenced by new directory entry */ 8458 struct buf *newdirbp; /* non-NULL => contents of new mkdir */ 8459 int isnewblk; /* entry is in a newly allocated block */ 8460 { 8461 int offset; /* offset of new entry within directory block */ 8462 ufs_lbn_t lbn; /* block in directory containing new entry */ 8463 struct fs *fs; 8464 struct diradd *dap; 8465 struct newblk *newblk; 8466 struct pagedep *pagedep; 8467 struct inodedep *inodedep; 8468 struct newdirblk *newdirblk; 8469 struct mkdir *mkdir1, *mkdir2; 8470 struct jaddref *jaddref; 8471 struct ufsmount *ump; 8472 struct mount *mp; 8473 int isindir; 8474 8475 mp = ITOVFS(dp); 8476 ump = VFSTOUFS(mp); 8477 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 8478 ("softdep_setup_directory_add called on non-softdep filesystem")); 8479 /* 8480 * Whiteouts have no dependencies. 8481 */ 8482 if (newinum == UFS_WINO) { 8483 if (newdirbp != NULL) 8484 bdwrite(newdirbp); 8485 return (0); 8486 } 8487 jaddref = NULL; 8488 mkdir1 = mkdir2 = NULL; 8489 fs = ump->um_fs; 8490 lbn = lblkno(fs, diroffset); 8491 offset = blkoff(fs, diroffset); 8492 dap = malloc(sizeof(struct diradd), M_DIRADD, 8493 M_SOFTDEP_FLAGS|M_ZERO); 8494 workitem_alloc(&dap->da_list, D_DIRADD, mp); 8495 dap->da_offset = offset; 8496 dap->da_newinum = newinum; 8497 dap->da_state = ATTACHED; 8498 LIST_INIT(&dap->da_jwork); 8499 isindir = bp->b_lblkno >= UFS_NDADDR; 8500 newdirblk = NULL; 8501 if (isnewblk && 8502 (isindir ? blkoff(fs, diroffset) : fragoff(fs, diroffset)) == 0) { 8503 newdirblk = malloc(sizeof(struct newdirblk), 8504 M_NEWDIRBLK, M_SOFTDEP_FLAGS); 8505 workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp); 8506 LIST_INIT(&newdirblk->db_mkdir); 8507 } 8508 /* 8509 * If we're creating a new directory setup the dependencies and set 8510 * the dap state to wait for them. Otherwise it's COMPLETE and 8511 * we can move on. 8512 */ 8513 if (newdirbp == NULL) { 8514 dap->da_state |= DEPCOMPLETE; 8515 ACQUIRE_LOCK(ump); 8516 } else { 8517 dap->da_state |= MKDIR_BODY | MKDIR_PARENT; 8518 mkdir1 = setup_newdir(dap, newinum, dp->i_number, newdirbp, 8519 &mkdir2); 8520 } 8521 /* 8522 * Link into parent directory pagedep to await its being written. 8523 */ 8524 pagedep_lookup(mp, bp, dp->i_number, lbn, DEPALLOC, &pagedep); 8525 #ifdef DEBUG 8526 if (diradd_lookup(pagedep, offset) != NULL) 8527 panic("softdep_setup_directory_add: %p already at off %d\n", 8528 diradd_lookup(pagedep, offset), offset); 8529 #endif 8530 dap->da_pagedep = pagedep; 8531 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], dap, 8532 da_pdlist); 8533 inodedep_lookup(mp, newinum, DEPALLOC, &inodedep); 8534 /* 8535 * If we're journaling, link the diradd into the jaddref so it 8536 * may be completed after the journal entry is written. Otherwise, 8537 * link the diradd into its inodedep. If the inode is not yet 8538 * written place it on the bufwait list, otherwise do the post-inode 8539 * write processing to put it on the id_pendinghd list. 8540 */ 8541 if (MOUNTEDSUJ(mp)) { 8542 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 8543 inoreflst); 8544 KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number, 8545 ("softdep_setup_directory_add: bad jaddref %p", jaddref)); 8546 jaddref->ja_diroff = diroffset; 8547 jaddref->ja_diradd = dap; 8548 add_to_journal(&jaddref->ja_list); 8549 } else if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) 8550 diradd_inode_written(dap, inodedep); 8551 else 8552 WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list); 8553 /* 8554 * Add the journal entries for . and .. links now that the primary 8555 * link is written. 8556 */ 8557 if (mkdir1 != NULL && MOUNTEDSUJ(mp)) { 8558 jaddref = (struct jaddref *)TAILQ_PREV(&jaddref->ja_ref, 8559 inoreflst, if_deps); 8560 KASSERT(jaddref != NULL && 8561 jaddref->ja_ino == jaddref->ja_parent && 8562 (jaddref->ja_state & MKDIR_BODY), 8563 ("softdep_setup_directory_add: bad dot jaddref %p", 8564 jaddref)); 8565 mkdir1->md_jaddref = jaddref; 8566 jaddref->ja_mkdir = mkdir1; 8567 /* 8568 * It is important that the dotdot journal entry 8569 * is added prior to the dot entry since dot writes 8570 * both the dot and dotdot links. These both must 8571 * be added after the primary link for the journal 8572 * to remain consistent. 8573 */ 8574 add_to_journal(&mkdir2->md_jaddref->ja_list); 8575 add_to_journal(&jaddref->ja_list); 8576 } 8577 /* 8578 * If we are adding a new directory remember this diradd so that if 8579 * we rename it we can keep the dot and dotdot dependencies. If 8580 * we are adding a new name for an inode that has a mkdiradd we 8581 * must be in rename and we have to move the dot and dotdot 8582 * dependencies to this new name. The old name is being orphaned 8583 * soon. 8584 */ 8585 if (mkdir1 != NULL) { 8586 if (inodedep->id_mkdiradd != NULL) 8587 panic("softdep_setup_directory_add: Existing mkdir"); 8588 inodedep->id_mkdiradd = dap; 8589 } else if (inodedep->id_mkdiradd) 8590 merge_diradd(inodedep, dap); 8591 if (newdirblk != NULL) { 8592 /* 8593 * There is nothing to do if we are already tracking 8594 * this block. 8595 */ 8596 if ((pagedep->pd_state & NEWBLOCK) != 0) { 8597 WORKITEM_FREE(newdirblk, D_NEWDIRBLK); 8598 FREE_LOCK(ump); 8599 return (0); 8600 } 8601 if (newblk_lookup(mp, dbtofsb(fs, bp->b_blkno), 0, &newblk) 8602 == 0) 8603 panic("softdep_setup_directory_add: lost entry"); 8604 WORKLIST_INSERT(&newblk->nb_newdirblk, &newdirblk->db_list); 8605 pagedep->pd_state |= NEWBLOCK; 8606 pagedep->pd_newdirblk = newdirblk; 8607 newdirblk->db_pagedep = pagedep; 8608 FREE_LOCK(ump); 8609 /* 8610 * If we extended into an indirect signal direnter to sync. 8611 */ 8612 if (isindir) 8613 return (1); 8614 return (0); 8615 } 8616 FREE_LOCK(ump); 8617 return (0); 8618 } 8619 8620 /* 8621 * This procedure is called to change the offset of a directory 8622 * entry when compacting a directory block which must be owned 8623 * exclusively by the caller. Note that the actual entry movement 8624 * must be done in this procedure to ensure that no I/O completions 8625 * occur while the move is in progress. 8626 */ 8627 void 8628 softdep_change_directoryentry_offset(bp, dp, base, oldloc, newloc, entrysize) 8629 struct buf *bp; /* Buffer holding directory block. */ 8630 struct inode *dp; /* inode for directory */ 8631 caddr_t base; /* address of dp->i_offset */ 8632 caddr_t oldloc; /* address of old directory location */ 8633 caddr_t newloc; /* address of new directory location */ 8634 int entrysize; /* size of directory entry */ 8635 { 8636 int offset, oldoffset, newoffset; 8637 struct pagedep *pagedep; 8638 struct jmvref *jmvref; 8639 struct diradd *dap; 8640 struct direct *de; 8641 struct mount *mp; 8642 struct ufsmount *ump; 8643 ufs_lbn_t lbn; 8644 int flags; 8645 8646 mp = ITOVFS(dp); 8647 ump = VFSTOUFS(mp); 8648 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 8649 ("softdep_change_directoryentry_offset called on " 8650 "non-softdep filesystem")); 8651 de = (struct direct *)oldloc; 8652 jmvref = NULL; 8653 flags = 0; 8654 /* 8655 * Moves are always journaled as it would be too complex to 8656 * determine if any affected adds or removes are present in the 8657 * journal. 8658 */ 8659 if (MOUNTEDSUJ(mp)) { 8660 flags = DEPALLOC; 8661 jmvref = newjmvref(dp, de->d_ino, 8662 dp->i_offset + (oldloc - base), 8663 dp->i_offset + (newloc - base)); 8664 } 8665 lbn = lblkno(ump->um_fs, dp->i_offset); 8666 offset = blkoff(ump->um_fs, dp->i_offset); 8667 oldoffset = offset + (oldloc - base); 8668 newoffset = offset + (newloc - base); 8669 ACQUIRE_LOCK(ump); 8670 if (pagedep_lookup(mp, bp, dp->i_number, lbn, flags, &pagedep) == 0) 8671 goto done; 8672 dap = diradd_lookup(pagedep, oldoffset); 8673 if (dap) { 8674 dap->da_offset = newoffset; 8675 newoffset = DIRADDHASH(newoffset); 8676 oldoffset = DIRADDHASH(oldoffset); 8677 if ((dap->da_state & ALLCOMPLETE) != ALLCOMPLETE && 8678 newoffset != oldoffset) { 8679 LIST_REMOVE(dap, da_pdlist); 8680 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[newoffset], 8681 dap, da_pdlist); 8682 } 8683 } 8684 done: 8685 if (jmvref) { 8686 jmvref->jm_pagedep = pagedep; 8687 LIST_INSERT_HEAD(&pagedep->pd_jmvrefhd, jmvref, jm_deps); 8688 add_to_journal(&jmvref->jm_list); 8689 } 8690 bcopy(oldloc, newloc, entrysize); 8691 FREE_LOCK(ump); 8692 } 8693 8694 /* 8695 * Move the mkdir dependencies and journal work from one diradd to another 8696 * when renaming a directory. The new name must depend on the mkdir deps 8697 * completing as the old name did. Directories can only have one valid link 8698 * at a time so one must be canonical. 8699 */ 8700 static void 8701 merge_diradd(inodedep, newdap) 8702 struct inodedep *inodedep; 8703 struct diradd *newdap; 8704 { 8705 struct diradd *olddap; 8706 struct mkdir *mkdir, *nextmd; 8707 struct ufsmount *ump; 8708 short state; 8709 8710 olddap = inodedep->id_mkdiradd; 8711 inodedep->id_mkdiradd = newdap; 8712 if ((olddap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) { 8713 newdap->da_state &= ~DEPCOMPLETE; 8714 ump = VFSTOUFS(inodedep->id_list.wk_mp); 8715 for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir; 8716 mkdir = nextmd) { 8717 nextmd = LIST_NEXT(mkdir, md_mkdirs); 8718 if (mkdir->md_diradd != olddap) 8719 continue; 8720 mkdir->md_diradd = newdap; 8721 state = mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY); 8722 newdap->da_state |= state; 8723 olddap->da_state &= ~state; 8724 if ((olddap->da_state & 8725 (MKDIR_PARENT | MKDIR_BODY)) == 0) 8726 break; 8727 } 8728 if ((olddap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) 8729 panic("merge_diradd: unfound ref"); 8730 } 8731 /* 8732 * Any mkdir related journal items are not safe to be freed until 8733 * the new name is stable. 8734 */ 8735 jwork_move(&newdap->da_jwork, &olddap->da_jwork); 8736 olddap->da_state |= DEPCOMPLETE; 8737 complete_diradd(olddap); 8738 } 8739 8740 /* 8741 * Move the diradd to the pending list when all diradd dependencies are 8742 * complete. 8743 */ 8744 static void 8745 complete_diradd(dap) 8746 struct diradd *dap; 8747 { 8748 struct pagedep *pagedep; 8749 8750 if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) { 8751 if (dap->da_state & DIRCHG) 8752 pagedep = dap->da_previous->dm_pagedep; 8753 else 8754 pagedep = dap->da_pagedep; 8755 LIST_REMOVE(dap, da_pdlist); 8756 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist); 8757 } 8758 } 8759 8760 /* 8761 * Cancel a diradd when a dirrem overlaps with it. We must cancel the journal 8762 * add entries and conditonally journal the remove. 8763 */ 8764 static void 8765 cancel_diradd(dap, dirrem, jremref, dotremref, dotdotremref) 8766 struct diradd *dap; 8767 struct dirrem *dirrem; 8768 struct jremref *jremref; 8769 struct jremref *dotremref; 8770 struct jremref *dotdotremref; 8771 { 8772 struct inodedep *inodedep; 8773 struct jaddref *jaddref; 8774 struct inoref *inoref; 8775 struct ufsmount *ump; 8776 struct mkdir *mkdir; 8777 8778 /* 8779 * If no remove references were allocated we're on a non-journaled 8780 * filesystem and can skip the cancel step. 8781 */ 8782 if (jremref == NULL) { 8783 free_diradd(dap, NULL); 8784 return; 8785 } 8786 /* 8787 * Cancel the primary name an free it if it does not require 8788 * journaling. 8789 */ 8790 if (inodedep_lookup(dap->da_list.wk_mp, dap->da_newinum, 8791 0, &inodedep) != 0) { 8792 /* Abort the addref that reference this diradd. */ 8793 TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) { 8794 if (inoref->if_list.wk_type != D_JADDREF) 8795 continue; 8796 jaddref = (struct jaddref *)inoref; 8797 if (jaddref->ja_diradd != dap) 8798 continue; 8799 if (cancel_jaddref(jaddref, inodedep, 8800 &dirrem->dm_jwork) == 0) { 8801 free_jremref(jremref); 8802 jremref = NULL; 8803 } 8804 break; 8805 } 8806 } 8807 /* 8808 * Cancel subordinate names and free them if they do not require 8809 * journaling. 8810 */ 8811 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) { 8812 ump = VFSTOUFS(dap->da_list.wk_mp); 8813 LIST_FOREACH(mkdir, &ump->softdep_mkdirlisthd, md_mkdirs) { 8814 if (mkdir->md_diradd != dap) 8815 continue; 8816 if ((jaddref = mkdir->md_jaddref) == NULL) 8817 continue; 8818 mkdir->md_jaddref = NULL; 8819 if (mkdir->md_state & MKDIR_PARENT) { 8820 if (cancel_jaddref(jaddref, NULL, 8821 &dirrem->dm_jwork) == 0) { 8822 free_jremref(dotdotremref); 8823 dotdotremref = NULL; 8824 } 8825 } else { 8826 if (cancel_jaddref(jaddref, inodedep, 8827 &dirrem->dm_jwork) == 0) { 8828 free_jremref(dotremref); 8829 dotremref = NULL; 8830 } 8831 } 8832 } 8833 } 8834 8835 if (jremref) 8836 journal_jremref(dirrem, jremref, inodedep); 8837 if (dotremref) 8838 journal_jremref(dirrem, dotremref, inodedep); 8839 if (dotdotremref) 8840 journal_jremref(dirrem, dotdotremref, NULL); 8841 jwork_move(&dirrem->dm_jwork, &dap->da_jwork); 8842 free_diradd(dap, &dirrem->dm_jwork); 8843 } 8844 8845 /* 8846 * Free a diradd dependency structure. This routine must be called 8847 * with splbio interrupts blocked. 8848 */ 8849 static void 8850 free_diradd(dap, wkhd) 8851 struct diradd *dap; 8852 struct workhead *wkhd; 8853 { 8854 struct dirrem *dirrem; 8855 struct pagedep *pagedep; 8856 struct inodedep *inodedep; 8857 struct mkdir *mkdir, *nextmd; 8858 struct ufsmount *ump; 8859 8860 ump = VFSTOUFS(dap->da_list.wk_mp); 8861 LOCK_OWNED(ump); 8862 LIST_REMOVE(dap, da_pdlist); 8863 if (dap->da_state & ONWORKLIST) 8864 WORKLIST_REMOVE(&dap->da_list); 8865 if ((dap->da_state & DIRCHG) == 0) { 8866 pagedep = dap->da_pagedep; 8867 } else { 8868 dirrem = dap->da_previous; 8869 pagedep = dirrem->dm_pagedep; 8870 dirrem->dm_dirinum = pagedep->pd_ino; 8871 dirrem->dm_state |= COMPLETE; 8872 if (LIST_EMPTY(&dirrem->dm_jremrefhd)) 8873 add_to_worklist(&dirrem->dm_list, 0); 8874 } 8875 if (inodedep_lookup(pagedep->pd_list.wk_mp, dap->da_newinum, 8876 0, &inodedep) != 0) 8877 if (inodedep->id_mkdiradd == dap) 8878 inodedep->id_mkdiradd = NULL; 8879 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) { 8880 for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir; 8881 mkdir = nextmd) { 8882 nextmd = LIST_NEXT(mkdir, md_mkdirs); 8883 if (mkdir->md_diradd != dap) 8884 continue; 8885 dap->da_state &= 8886 ~(mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY)); 8887 LIST_REMOVE(mkdir, md_mkdirs); 8888 if (mkdir->md_state & ONWORKLIST) 8889 WORKLIST_REMOVE(&mkdir->md_list); 8890 if (mkdir->md_jaddref != NULL) 8891 panic("free_diradd: Unexpected jaddref"); 8892 WORKITEM_FREE(mkdir, D_MKDIR); 8893 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0) 8894 break; 8895 } 8896 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) 8897 panic("free_diradd: unfound ref"); 8898 } 8899 if (inodedep) 8900 free_inodedep(inodedep); 8901 /* 8902 * Free any journal segments waiting for the directory write. 8903 */ 8904 handle_jwork(&dap->da_jwork); 8905 WORKITEM_FREE(dap, D_DIRADD); 8906 } 8907 8908 /* 8909 * Directory entry removal dependencies. 8910 * 8911 * When removing a directory entry, the entry's inode pointer must be 8912 * zero'ed on disk before the corresponding inode's link count is decremented 8913 * (possibly freeing the inode for re-use). This dependency is handled by 8914 * updating the directory entry but delaying the inode count reduction until 8915 * after the directory block has been written to disk. After this point, the 8916 * inode count can be decremented whenever it is convenient. 8917 */ 8918 8919 /* 8920 * This routine should be called immediately after removing 8921 * a directory entry. The inode's link count should not be 8922 * decremented by the calling procedure -- the soft updates 8923 * code will do this task when it is safe. 8924 */ 8925 void 8926 softdep_setup_remove(bp, dp, ip, isrmdir) 8927 struct buf *bp; /* buffer containing directory block */ 8928 struct inode *dp; /* inode for the directory being modified */ 8929 struct inode *ip; /* inode for directory entry being removed */ 8930 int isrmdir; /* indicates if doing RMDIR */ 8931 { 8932 struct dirrem *dirrem, *prevdirrem; 8933 struct inodedep *inodedep; 8934 struct ufsmount *ump; 8935 int direct; 8936 8937 ump = ITOUMP(ip); 8938 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 8939 ("softdep_setup_remove called on non-softdep filesystem")); 8940 /* 8941 * Allocate a new dirrem if appropriate and ACQUIRE_LOCK. We want 8942 * newdirrem() to setup the full directory remove which requires 8943 * isrmdir > 1. 8944 */ 8945 dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem); 8946 /* 8947 * Add the dirrem to the inodedep's pending remove list for quick 8948 * discovery later. 8949 */ 8950 if (inodedep_lookup(UFSTOVFS(ump), ip->i_number, 0, &inodedep) == 0) 8951 panic("softdep_setup_remove: Lost inodedep."); 8952 KASSERT((inodedep->id_state & UNLINKED) == 0, ("inode unlinked")); 8953 dirrem->dm_state |= ONDEPLIST; 8954 LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext); 8955 8956 /* 8957 * If the COMPLETE flag is clear, then there were no active 8958 * entries and we want to roll back to a zeroed entry until 8959 * the new inode is committed to disk. If the COMPLETE flag is 8960 * set then we have deleted an entry that never made it to 8961 * disk. If the entry we deleted resulted from a name change, 8962 * then the old name still resides on disk. We cannot delete 8963 * its inode (returned to us in prevdirrem) until the zeroed 8964 * directory entry gets to disk. The new inode has never been 8965 * referenced on the disk, so can be deleted immediately. 8966 */ 8967 if ((dirrem->dm_state & COMPLETE) == 0) { 8968 LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, dirrem, 8969 dm_next); 8970 FREE_LOCK(ump); 8971 } else { 8972 if (prevdirrem != NULL) 8973 LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, 8974 prevdirrem, dm_next); 8975 dirrem->dm_dirinum = dirrem->dm_pagedep->pd_ino; 8976 direct = LIST_EMPTY(&dirrem->dm_jremrefhd); 8977 FREE_LOCK(ump); 8978 if (direct) 8979 handle_workitem_remove(dirrem, 0); 8980 } 8981 } 8982 8983 /* 8984 * Check for an entry matching 'offset' on both the pd_dirraddhd list and the 8985 * pd_pendinghd list of a pagedep. 8986 */ 8987 static struct diradd * 8988 diradd_lookup(pagedep, offset) 8989 struct pagedep *pagedep; 8990 int offset; 8991 { 8992 struct diradd *dap; 8993 8994 LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(offset)], da_pdlist) 8995 if (dap->da_offset == offset) 8996 return (dap); 8997 LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist) 8998 if (dap->da_offset == offset) 8999 return (dap); 9000 return (NULL); 9001 } 9002 9003 /* 9004 * Search for a .. diradd dependency in a directory that is being removed. 9005 * If the directory was renamed to a new parent we have a diradd rather 9006 * than a mkdir for the .. entry. We need to cancel it now before 9007 * it is found in truncate(). 9008 */ 9009 static struct jremref * 9010 cancel_diradd_dotdot(ip, dirrem, jremref) 9011 struct inode *ip; 9012 struct dirrem *dirrem; 9013 struct jremref *jremref; 9014 { 9015 struct pagedep *pagedep; 9016 struct diradd *dap; 9017 struct worklist *wk; 9018 9019 if (pagedep_lookup(ITOVFS(ip), NULL, ip->i_number, 0, 0, &pagedep) == 0) 9020 return (jremref); 9021 dap = diradd_lookup(pagedep, DOTDOT_OFFSET); 9022 if (dap == NULL) 9023 return (jremref); 9024 cancel_diradd(dap, dirrem, jremref, NULL, NULL); 9025 /* 9026 * Mark any journal work as belonging to the parent so it is freed 9027 * with the .. reference. 9028 */ 9029 LIST_FOREACH(wk, &dirrem->dm_jwork, wk_list) 9030 wk->wk_state |= MKDIR_PARENT; 9031 return (NULL); 9032 } 9033 9034 /* 9035 * Cancel the MKDIR_PARENT mkdir component of a diradd when we're going to 9036 * replace it with a dirrem/diradd pair as a result of re-parenting a 9037 * directory. This ensures that we don't simultaneously have a mkdir and 9038 * a diradd for the same .. entry. 9039 */ 9040 static struct jremref * 9041 cancel_mkdir_dotdot(ip, dirrem, jremref) 9042 struct inode *ip; 9043 struct dirrem *dirrem; 9044 struct jremref *jremref; 9045 { 9046 struct inodedep *inodedep; 9047 struct jaddref *jaddref; 9048 struct ufsmount *ump; 9049 struct mkdir *mkdir; 9050 struct diradd *dap; 9051 struct mount *mp; 9052 9053 mp = ITOVFS(ip); 9054 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) 9055 return (jremref); 9056 dap = inodedep->id_mkdiradd; 9057 if (dap == NULL || (dap->da_state & MKDIR_PARENT) == 0) 9058 return (jremref); 9059 ump = VFSTOUFS(inodedep->id_list.wk_mp); 9060 for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir; 9061 mkdir = LIST_NEXT(mkdir, md_mkdirs)) 9062 if (mkdir->md_diradd == dap && mkdir->md_state & MKDIR_PARENT) 9063 break; 9064 if (mkdir == NULL) 9065 panic("cancel_mkdir_dotdot: Unable to find mkdir\n"); 9066 if ((jaddref = mkdir->md_jaddref) != NULL) { 9067 mkdir->md_jaddref = NULL; 9068 jaddref->ja_state &= ~MKDIR_PARENT; 9069 if (inodedep_lookup(mp, jaddref->ja_ino, 0, &inodedep) == 0) 9070 panic("cancel_mkdir_dotdot: Lost parent inodedep"); 9071 if (cancel_jaddref(jaddref, inodedep, &dirrem->dm_jwork)) { 9072 journal_jremref(dirrem, jremref, inodedep); 9073 jremref = NULL; 9074 } 9075 } 9076 if (mkdir->md_state & ONWORKLIST) 9077 WORKLIST_REMOVE(&mkdir->md_list); 9078 mkdir->md_state |= ALLCOMPLETE; 9079 complete_mkdir(mkdir); 9080 return (jremref); 9081 } 9082 9083 static void 9084 journal_jremref(dirrem, jremref, inodedep) 9085 struct dirrem *dirrem; 9086 struct jremref *jremref; 9087 struct inodedep *inodedep; 9088 { 9089 9090 if (inodedep == NULL) 9091 if (inodedep_lookup(jremref->jr_list.wk_mp, 9092 jremref->jr_ref.if_ino, 0, &inodedep) == 0) 9093 panic("journal_jremref: Lost inodedep"); 9094 LIST_INSERT_HEAD(&dirrem->dm_jremrefhd, jremref, jr_deps); 9095 TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jremref->jr_ref, if_deps); 9096 add_to_journal(&jremref->jr_list); 9097 } 9098 9099 static void 9100 dirrem_journal(dirrem, jremref, dotremref, dotdotremref) 9101 struct dirrem *dirrem; 9102 struct jremref *jremref; 9103 struct jremref *dotremref; 9104 struct jremref *dotdotremref; 9105 { 9106 struct inodedep *inodedep; 9107 9108 9109 if (inodedep_lookup(jremref->jr_list.wk_mp, jremref->jr_ref.if_ino, 0, 9110 &inodedep) == 0) 9111 panic("dirrem_journal: Lost inodedep"); 9112 journal_jremref(dirrem, jremref, inodedep); 9113 if (dotremref) 9114 journal_jremref(dirrem, dotremref, inodedep); 9115 if (dotdotremref) 9116 journal_jremref(dirrem, dotdotremref, NULL); 9117 } 9118 9119 /* 9120 * Allocate a new dirrem if appropriate and return it along with 9121 * its associated pagedep. Called without a lock, returns with lock. 9122 */ 9123 static struct dirrem * 9124 newdirrem(bp, dp, ip, isrmdir, prevdirremp) 9125 struct buf *bp; /* buffer containing directory block */ 9126 struct inode *dp; /* inode for the directory being modified */ 9127 struct inode *ip; /* inode for directory entry being removed */ 9128 int isrmdir; /* indicates if doing RMDIR */ 9129 struct dirrem **prevdirremp; /* previously referenced inode, if any */ 9130 { 9131 int offset; 9132 ufs_lbn_t lbn; 9133 struct diradd *dap; 9134 struct dirrem *dirrem; 9135 struct pagedep *pagedep; 9136 struct jremref *jremref; 9137 struct jremref *dotremref; 9138 struct jremref *dotdotremref; 9139 struct vnode *dvp; 9140 struct ufsmount *ump; 9141 9142 /* 9143 * Whiteouts have no deletion dependencies. 9144 */ 9145 if (ip == NULL) 9146 panic("newdirrem: whiteout"); 9147 dvp = ITOV(dp); 9148 ump = ITOUMP(dp); 9149 9150 /* 9151 * If the system is over its limit and our filesystem is 9152 * responsible for more than our share of that usage and 9153 * we are not a snapshot, request some inodedep cleanup. 9154 * Limiting the number of dirrem structures will also limit 9155 * the number of freefile and freeblks structures. 9156 */ 9157 ACQUIRE_LOCK(ump); 9158 if (!IS_SNAPSHOT(ip) && softdep_excess_items(ump, D_DIRREM)) 9159 schedule_cleanup(UFSTOVFS(ump)); 9160 else 9161 FREE_LOCK(ump); 9162 dirrem = malloc(sizeof(struct dirrem), M_DIRREM, M_SOFTDEP_FLAGS | 9163 M_ZERO); 9164 workitem_alloc(&dirrem->dm_list, D_DIRREM, dvp->v_mount); 9165 LIST_INIT(&dirrem->dm_jremrefhd); 9166 LIST_INIT(&dirrem->dm_jwork); 9167 dirrem->dm_state = isrmdir ? RMDIR : 0; 9168 dirrem->dm_oldinum = ip->i_number; 9169 *prevdirremp = NULL; 9170 /* 9171 * Allocate remove reference structures to track journal write 9172 * dependencies. We will always have one for the link and 9173 * when doing directories we will always have one more for dot. 9174 * When renaming a directory we skip the dotdot link change so 9175 * this is not needed. 9176 */ 9177 jremref = dotremref = dotdotremref = NULL; 9178 if (DOINGSUJ(dvp)) { 9179 if (isrmdir) { 9180 jremref = newjremref(dirrem, dp, ip, dp->i_offset, 9181 ip->i_effnlink + 2); 9182 dotremref = newjremref(dirrem, ip, ip, DOT_OFFSET, 9183 ip->i_effnlink + 1); 9184 dotdotremref = newjremref(dirrem, ip, dp, DOTDOT_OFFSET, 9185 dp->i_effnlink + 1); 9186 dotdotremref->jr_state |= MKDIR_PARENT; 9187 } else 9188 jremref = newjremref(dirrem, dp, ip, dp->i_offset, 9189 ip->i_effnlink + 1); 9190 } 9191 ACQUIRE_LOCK(ump); 9192 lbn = lblkno(ump->um_fs, dp->i_offset); 9193 offset = blkoff(ump->um_fs, dp->i_offset); 9194 pagedep_lookup(UFSTOVFS(ump), bp, dp->i_number, lbn, DEPALLOC, 9195 &pagedep); 9196 dirrem->dm_pagedep = pagedep; 9197 dirrem->dm_offset = offset; 9198 /* 9199 * If we're renaming a .. link to a new directory, cancel any 9200 * existing MKDIR_PARENT mkdir. If it has already been canceled 9201 * the jremref is preserved for any potential diradd in this 9202 * location. This can not coincide with a rmdir. 9203 */ 9204 if (dp->i_offset == DOTDOT_OFFSET) { 9205 if (isrmdir) 9206 panic("newdirrem: .. directory change during remove?"); 9207 jremref = cancel_mkdir_dotdot(dp, dirrem, jremref); 9208 } 9209 /* 9210 * If we're removing a directory search for the .. dependency now and 9211 * cancel it. Any pending journal work will be added to the dirrem 9212 * to be completed when the workitem remove completes. 9213 */ 9214 if (isrmdir) 9215 dotdotremref = cancel_diradd_dotdot(ip, dirrem, dotdotremref); 9216 /* 9217 * Check for a diradd dependency for the same directory entry. 9218 * If present, then both dependencies become obsolete and can 9219 * be de-allocated. 9220 */ 9221 dap = diradd_lookup(pagedep, offset); 9222 if (dap == NULL) { 9223 /* 9224 * Link the jremref structures into the dirrem so they are 9225 * written prior to the pagedep. 9226 */ 9227 if (jremref) 9228 dirrem_journal(dirrem, jremref, dotremref, 9229 dotdotremref); 9230 return (dirrem); 9231 } 9232 /* 9233 * Must be ATTACHED at this point. 9234 */ 9235 if ((dap->da_state & ATTACHED) == 0) 9236 panic("newdirrem: not ATTACHED"); 9237 if (dap->da_newinum != ip->i_number) 9238 panic("newdirrem: inum %ju should be %ju", 9239 (uintmax_t)ip->i_number, (uintmax_t)dap->da_newinum); 9240 /* 9241 * If we are deleting a changed name that never made it to disk, 9242 * then return the dirrem describing the previous inode (which 9243 * represents the inode currently referenced from this entry on disk). 9244 */ 9245 if ((dap->da_state & DIRCHG) != 0) { 9246 *prevdirremp = dap->da_previous; 9247 dap->da_state &= ~DIRCHG; 9248 dap->da_pagedep = pagedep; 9249 } 9250 /* 9251 * We are deleting an entry that never made it to disk. 9252 * Mark it COMPLETE so we can delete its inode immediately. 9253 */ 9254 dirrem->dm_state |= COMPLETE; 9255 cancel_diradd(dap, dirrem, jremref, dotremref, dotdotremref); 9256 #ifdef SUJ_DEBUG 9257 if (isrmdir == 0) { 9258 struct worklist *wk; 9259 9260 LIST_FOREACH(wk, &dirrem->dm_jwork, wk_list) 9261 if (wk->wk_state & (MKDIR_BODY | MKDIR_PARENT)) 9262 panic("bad wk %p (0x%X)\n", wk, wk->wk_state); 9263 } 9264 #endif 9265 9266 return (dirrem); 9267 } 9268 9269 /* 9270 * Directory entry change dependencies. 9271 * 9272 * Changing an existing directory entry requires that an add operation 9273 * be completed first followed by a deletion. The semantics for the addition 9274 * are identical to the description of adding a new entry above except 9275 * that the rollback is to the old inode number rather than zero. Once 9276 * the addition dependency is completed, the removal is done as described 9277 * in the removal routine above. 9278 */ 9279 9280 /* 9281 * This routine should be called immediately after changing 9282 * a directory entry. The inode's link count should not be 9283 * decremented by the calling procedure -- the soft updates 9284 * code will perform this task when it is safe. 9285 */ 9286 void 9287 softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir) 9288 struct buf *bp; /* buffer containing directory block */ 9289 struct inode *dp; /* inode for the directory being modified */ 9290 struct inode *ip; /* inode for directory entry being removed */ 9291 ino_t newinum; /* new inode number for changed entry */ 9292 int isrmdir; /* indicates if doing RMDIR */ 9293 { 9294 int offset; 9295 struct diradd *dap = NULL; 9296 struct dirrem *dirrem, *prevdirrem; 9297 struct pagedep *pagedep; 9298 struct inodedep *inodedep; 9299 struct jaddref *jaddref; 9300 struct mount *mp; 9301 struct ufsmount *ump; 9302 9303 mp = ITOVFS(dp); 9304 ump = VFSTOUFS(mp); 9305 offset = blkoff(ump->um_fs, dp->i_offset); 9306 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 9307 ("softdep_setup_directory_change called on non-softdep filesystem")); 9308 9309 /* 9310 * Whiteouts do not need diradd dependencies. 9311 */ 9312 if (newinum != UFS_WINO) { 9313 dap = malloc(sizeof(struct diradd), 9314 M_DIRADD, M_SOFTDEP_FLAGS|M_ZERO); 9315 workitem_alloc(&dap->da_list, D_DIRADD, mp); 9316 dap->da_state = DIRCHG | ATTACHED | DEPCOMPLETE; 9317 dap->da_offset = offset; 9318 dap->da_newinum = newinum; 9319 LIST_INIT(&dap->da_jwork); 9320 } 9321 9322 /* 9323 * Allocate a new dirrem and ACQUIRE_LOCK. 9324 */ 9325 dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem); 9326 pagedep = dirrem->dm_pagedep; 9327 /* 9328 * The possible values for isrmdir: 9329 * 0 - non-directory file rename 9330 * 1 - directory rename within same directory 9331 * inum - directory rename to new directory of given inode number 9332 * When renaming to a new directory, we are both deleting and 9333 * creating a new directory entry, so the link count on the new 9334 * directory should not change. Thus we do not need the followup 9335 * dirrem which is usually done in handle_workitem_remove. We set 9336 * the DIRCHG flag to tell handle_workitem_remove to skip the 9337 * followup dirrem. 9338 */ 9339 if (isrmdir > 1) 9340 dirrem->dm_state |= DIRCHG; 9341 9342 /* 9343 * Whiteouts have no additional dependencies, 9344 * so just put the dirrem on the correct list. 9345 */ 9346 if (newinum == UFS_WINO) { 9347 if ((dirrem->dm_state & COMPLETE) == 0) { 9348 LIST_INSERT_HEAD(&pagedep->pd_dirremhd, dirrem, 9349 dm_next); 9350 } else { 9351 dirrem->dm_dirinum = pagedep->pd_ino; 9352 if (LIST_EMPTY(&dirrem->dm_jremrefhd)) 9353 add_to_worklist(&dirrem->dm_list, 0); 9354 } 9355 FREE_LOCK(ump); 9356 return; 9357 } 9358 /* 9359 * Add the dirrem to the inodedep's pending remove list for quick 9360 * discovery later. A valid nlinkdelta ensures that this lookup 9361 * will not fail. 9362 */ 9363 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) 9364 panic("softdep_setup_directory_change: Lost inodedep."); 9365 dirrem->dm_state |= ONDEPLIST; 9366 LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext); 9367 9368 /* 9369 * If the COMPLETE flag is clear, then there were no active 9370 * entries and we want to roll back to the previous inode until 9371 * the new inode is committed to disk. If the COMPLETE flag is 9372 * set, then we have deleted an entry that never made it to disk. 9373 * If the entry we deleted resulted from a name change, then the old 9374 * inode reference still resides on disk. Any rollback that we do 9375 * needs to be to that old inode (returned to us in prevdirrem). If 9376 * the entry we deleted resulted from a create, then there is 9377 * no entry on the disk, so we want to roll back to zero rather 9378 * than the uncommitted inode. In either of the COMPLETE cases we 9379 * want to immediately free the unwritten and unreferenced inode. 9380 */ 9381 if ((dirrem->dm_state & COMPLETE) == 0) { 9382 dap->da_previous = dirrem; 9383 } else { 9384 if (prevdirrem != NULL) { 9385 dap->da_previous = prevdirrem; 9386 } else { 9387 dap->da_state &= ~DIRCHG; 9388 dap->da_pagedep = pagedep; 9389 } 9390 dirrem->dm_dirinum = pagedep->pd_ino; 9391 if (LIST_EMPTY(&dirrem->dm_jremrefhd)) 9392 add_to_worklist(&dirrem->dm_list, 0); 9393 } 9394 /* 9395 * Lookup the jaddref for this journal entry. We must finish 9396 * initializing it and make the diradd write dependent on it. 9397 * If we're not journaling, put it on the id_bufwait list if the 9398 * inode is not yet written. If it is written, do the post-inode 9399 * write processing to put it on the id_pendinghd list. 9400 */ 9401 inodedep_lookup(mp, newinum, DEPALLOC, &inodedep); 9402 if (MOUNTEDSUJ(mp)) { 9403 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 9404 inoreflst); 9405 KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number, 9406 ("softdep_setup_directory_change: bad jaddref %p", 9407 jaddref)); 9408 jaddref->ja_diroff = dp->i_offset; 9409 jaddref->ja_diradd = dap; 9410 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], 9411 dap, da_pdlist); 9412 add_to_journal(&jaddref->ja_list); 9413 } else if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) { 9414 dap->da_state |= COMPLETE; 9415 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist); 9416 WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list); 9417 } else { 9418 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], 9419 dap, da_pdlist); 9420 WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list); 9421 } 9422 /* 9423 * If we're making a new name for a directory that has not been 9424 * committed when need to move the dot and dotdot references to 9425 * this new name. 9426 */ 9427 if (inodedep->id_mkdiradd && dp->i_offset != DOTDOT_OFFSET) 9428 merge_diradd(inodedep, dap); 9429 FREE_LOCK(ump); 9430 } 9431 9432 /* 9433 * Called whenever the link count on an inode is changed. 9434 * It creates an inode dependency so that the new reference(s) 9435 * to the inode cannot be committed to disk until the updated 9436 * inode has been written. 9437 */ 9438 void 9439 softdep_change_linkcnt(ip) 9440 struct inode *ip; /* the inode with the increased link count */ 9441 { 9442 struct inodedep *inodedep; 9443 struct ufsmount *ump; 9444 9445 ump = ITOUMP(ip); 9446 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 9447 ("softdep_change_linkcnt called on non-softdep filesystem")); 9448 ACQUIRE_LOCK(ump); 9449 inodedep_lookup(UFSTOVFS(ump), ip->i_number, DEPALLOC, &inodedep); 9450 if (ip->i_nlink < ip->i_effnlink) 9451 panic("softdep_change_linkcnt: bad delta"); 9452 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 9453 FREE_LOCK(ump); 9454 } 9455 9456 /* 9457 * Attach a sbdep dependency to the superblock buf so that we can keep 9458 * track of the head of the linked list of referenced but unlinked inodes. 9459 */ 9460 void 9461 softdep_setup_sbupdate(ump, fs, bp) 9462 struct ufsmount *ump; 9463 struct fs *fs; 9464 struct buf *bp; 9465 { 9466 struct sbdep *sbdep; 9467 struct worklist *wk; 9468 9469 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 9470 ("softdep_setup_sbupdate called on non-softdep filesystem")); 9471 LIST_FOREACH(wk, &bp->b_dep, wk_list) 9472 if (wk->wk_type == D_SBDEP) 9473 break; 9474 if (wk != NULL) 9475 return; 9476 sbdep = malloc(sizeof(struct sbdep), M_SBDEP, M_SOFTDEP_FLAGS); 9477 workitem_alloc(&sbdep->sb_list, D_SBDEP, UFSTOVFS(ump)); 9478 sbdep->sb_fs = fs; 9479 sbdep->sb_ump = ump; 9480 ACQUIRE_LOCK(ump); 9481 WORKLIST_INSERT(&bp->b_dep, &sbdep->sb_list); 9482 FREE_LOCK(ump); 9483 } 9484 9485 /* 9486 * Return the first unlinked inodedep which is ready to be the head of the 9487 * list. The inodedep and all those after it must have valid next pointers. 9488 */ 9489 static struct inodedep * 9490 first_unlinked_inodedep(ump) 9491 struct ufsmount *ump; 9492 { 9493 struct inodedep *inodedep; 9494 struct inodedep *idp; 9495 9496 LOCK_OWNED(ump); 9497 for (inodedep = TAILQ_LAST(&ump->softdep_unlinked, inodedeplst); 9498 inodedep; inodedep = idp) { 9499 if ((inodedep->id_state & UNLINKNEXT) == 0) 9500 return (NULL); 9501 idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked); 9502 if (idp == NULL || (idp->id_state & UNLINKNEXT) == 0) 9503 break; 9504 if ((inodedep->id_state & UNLINKPREV) == 0) 9505 break; 9506 } 9507 return (inodedep); 9508 } 9509 9510 /* 9511 * Set the sujfree unlinked head pointer prior to writing a superblock. 9512 */ 9513 static void 9514 initiate_write_sbdep(sbdep) 9515 struct sbdep *sbdep; 9516 { 9517 struct inodedep *inodedep; 9518 struct fs *bpfs; 9519 struct fs *fs; 9520 9521 bpfs = sbdep->sb_fs; 9522 fs = sbdep->sb_ump->um_fs; 9523 inodedep = first_unlinked_inodedep(sbdep->sb_ump); 9524 if (inodedep) { 9525 fs->fs_sujfree = inodedep->id_ino; 9526 inodedep->id_state |= UNLINKPREV; 9527 } else 9528 fs->fs_sujfree = 0; 9529 bpfs->fs_sujfree = fs->fs_sujfree; 9530 } 9531 9532 /* 9533 * After a superblock is written determine whether it must be written again 9534 * due to a changing unlinked list head. 9535 */ 9536 static int 9537 handle_written_sbdep(sbdep, bp) 9538 struct sbdep *sbdep; 9539 struct buf *bp; 9540 { 9541 struct inodedep *inodedep; 9542 struct fs *fs; 9543 9544 LOCK_OWNED(sbdep->sb_ump); 9545 fs = sbdep->sb_fs; 9546 /* 9547 * If the superblock doesn't match the in-memory list start over. 9548 */ 9549 inodedep = first_unlinked_inodedep(sbdep->sb_ump); 9550 if ((inodedep && fs->fs_sujfree != inodedep->id_ino) || 9551 (inodedep == NULL && fs->fs_sujfree != 0)) { 9552 bdirty(bp); 9553 return (1); 9554 } 9555 WORKITEM_FREE(sbdep, D_SBDEP); 9556 if (fs->fs_sujfree == 0) 9557 return (0); 9558 /* 9559 * Now that we have a record of this inode in stable store allow it 9560 * to be written to free up pending work. Inodes may see a lot of 9561 * write activity after they are unlinked which we must not hold up. 9562 */ 9563 for (; inodedep != NULL; inodedep = TAILQ_NEXT(inodedep, id_unlinked)) { 9564 if ((inodedep->id_state & UNLINKLINKS) != UNLINKLINKS) 9565 panic("handle_written_sbdep: Bad inodedep %p (0x%X)", 9566 inodedep, inodedep->id_state); 9567 if (inodedep->id_state & UNLINKONLIST) 9568 break; 9569 inodedep->id_state |= DEPCOMPLETE | UNLINKONLIST; 9570 } 9571 9572 return (0); 9573 } 9574 9575 /* 9576 * Mark an inodedep as unlinked and insert it into the in-memory unlinked list. 9577 */ 9578 static void 9579 unlinked_inodedep(mp, inodedep) 9580 struct mount *mp; 9581 struct inodedep *inodedep; 9582 { 9583 struct ufsmount *ump; 9584 9585 ump = VFSTOUFS(mp); 9586 LOCK_OWNED(ump); 9587 if (MOUNTEDSUJ(mp) == 0) 9588 return; 9589 ump->um_fs->fs_fmod = 1; 9590 if (inodedep->id_state & UNLINKED) 9591 panic("unlinked_inodedep: %p already unlinked\n", inodedep); 9592 inodedep->id_state |= UNLINKED; 9593 TAILQ_INSERT_HEAD(&ump->softdep_unlinked, inodedep, id_unlinked); 9594 } 9595 9596 /* 9597 * Remove an inodedep from the unlinked inodedep list. This may require 9598 * disk writes if the inode has made it that far. 9599 */ 9600 static void 9601 clear_unlinked_inodedep(inodedep) 9602 struct inodedep *inodedep; 9603 { 9604 struct ufsmount *ump; 9605 struct inodedep *idp; 9606 struct inodedep *idn; 9607 struct fs *fs; 9608 struct buf *bp; 9609 ino_t ino; 9610 ino_t nino; 9611 ino_t pino; 9612 int error; 9613 9614 ump = VFSTOUFS(inodedep->id_list.wk_mp); 9615 fs = ump->um_fs; 9616 ino = inodedep->id_ino; 9617 error = 0; 9618 for (;;) { 9619 LOCK_OWNED(ump); 9620 KASSERT((inodedep->id_state & UNLINKED) != 0, 9621 ("clear_unlinked_inodedep: inodedep %p not unlinked", 9622 inodedep)); 9623 /* 9624 * If nothing has yet been written simply remove us from 9625 * the in memory list and return. This is the most common 9626 * case where handle_workitem_remove() loses the final 9627 * reference. 9628 */ 9629 if ((inodedep->id_state & UNLINKLINKS) == 0) 9630 break; 9631 /* 9632 * If we have a NEXT pointer and no PREV pointer we can simply 9633 * clear NEXT's PREV and remove ourselves from the list. Be 9634 * careful not to clear PREV if the superblock points at 9635 * next as well. 9636 */ 9637 idn = TAILQ_NEXT(inodedep, id_unlinked); 9638 if ((inodedep->id_state & UNLINKLINKS) == UNLINKNEXT) { 9639 if (idn && fs->fs_sujfree != idn->id_ino) 9640 idn->id_state &= ~UNLINKPREV; 9641 break; 9642 } 9643 /* 9644 * Here we have an inodedep which is actually linked into 9645 * the list. We must remove it by forcing a write to the 9646 * link before us, whether it be the superblock or an inode. 9647 * Unfortunately the list may change while we're waiting 9648 * on the buf lock for either resource so we must loop until 9649 * we lock the right one. If both the superblock and an 9650 * inode point to this inode we must clear the inode first 9651 * followed by the superblock. 9652 */ 9653 idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked); 9654 pino = 0; 9655 if (idp && (idp->id_state & UNLINKNEXT)) 9656 pino = idp->id_ino; 9657 FREE_LOCK(ump); 9658 if (pino == 0) { 9659 bp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc), 9660 (int)fs->fs_sbsize, 0, 0, 0); 9661 } else { 9662 error = bread(ump->um_devvp, 9663 fsbtodb(fs, ino_to_fsba(fs, pino)), 9664 (int)fs->fs_bsize, NOCRED, &bp); 9665 if (error) 9666 brelse(bp); 9667 } 9668 ACQUIRE_LOCK(ump); 9669 if (error) 9670 break; 9671 /* If the list has changed restart the loop. */ 9672 idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked); 9673 nino = 0; 9674 if (idp && (idp->id_state & UNLINKNEXT)) 9675 nino = idp->id_ino; 9676 if (nino != pino || 9677 (inodedep->id_state & UNLINKPREV) != UNLINKPREV) { 9678 FREE_LOCK(ump); 9679 brelse(bp); 9680 ACQUIRE_LOCK(ump); 9681 continue; 9682 } 9683 nino = 0; 9684 idn = TAILQ_NEXT(inodedep, id_unlinked); 9685 if (idn) 9686 nino = idn->id_ino; 9687 /* 9688 * Remove us from the in memory list. After this we cannot 9689 * access the inodedep. 9690 */ 9691 KASSERT((inodedep->id_state & UNLINKED) != 0, 9692 ("clear_unlinked_inodedep: inodedep %p not unlinked", 9693 inodedep)); 9694 inodedep->id_state &= ~(UNLINKED | UNLINKLINKS | UNLINKONLIST); 9695 TAILQ_REMOVE(&ump->softdep_unlinked, inodedep, id_unlinked); 9696 FREE_LOCK(ump); 9697 /* 9698 * The predecessor's next pointer is manually updated here 9699 * so that the NEXT flag is never cleared for an element 9700 * that is in the list. 9701 */ 9702 if (pino == 0) { 9703 bcopy((caddr_t)fs, bp->b_data, (u_int)fs->fs_sbsize); 9704 ffs_oldfscompat_write((struct fs *)bp->b_data, ump); 9705 softdep_setup_sbupdate(ump, (struct fs *)bp->b_data, 9706 bp); 9707 } else if (fs->fs_magic == FS_UFS1_MAGIC) 9708 ((struct ufs1_dinode *)bp->b_data + 9709 ino_to_fsbo(fs, pino))->di_freelink = nino; 9710 else 9711 ((struct ufs2_dinode *)bp->b_data + 9712 ino_to_fsbo(fs, pino))->di_freelink = nino; 9713 /* 9714 * If the bwrite fails we have no recourse to recover. The 9715 * filesystem is corrupted already. 9716 */ 9717 bwrite(bp); 9718 ACQUIRE_LOCK(ump); 9719 /* 9720 * If the superblock pointer still needs to be cleared force 9721 * a write here. 9722 */ 9723 if (fs->fs_sujfree == ino) { 9724 FREE_LOCK(ump); 9725 bp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc), 9726 (int)fs->fs_sbsize, 0, 0, 0); 9727 bcopy((caddr_t)fs, bp->b_data, (u_int)fs->fs_sbsize); 9728 ffs_oldfscompat_write((struct fs *)bp->b_data, ump); 9729 softdep_setup_sbupdate(ump, (struct fs *)bp->b_data, 9730 bp); 9731 bwrite(bp); 9732 ACQUIRE_LOCK(ump); 9733 } 9734 9735 if (fs->fs_sujfree != ino) 9736 return; 9737 panic("clear_unlinked_inodedep: Failed to clear free head"); 9738 } 9739 if (inodedep->id_ino == fs->fs_sujfree) 9740 panic("clear_unlinked_inodedep: Freeing head of free list"); 9741 inodedep->id_state &= ~(UNLINKED | UNLINKLINKS | UNLINKONLIST); 9742 TAILQ_REMOVE(&ump->softdep_unlinked, inodedep, id_unlinked); 9743 return; 9744 } 9745 9746 /* 9747 * This workitem decrements the inode's link count. 9748 * If the link count reaches zero, the file is removed. 9749 */ 9750 static int 9751 handle_workitem_remove(dirrem, flags) 9752 struct dirrem *dirrem; 9753 int flags; 9754 { 9755 struct inodedep *inodedep; 9756 struct workhead dotdotwk; 9757 struct worklist *wk; 9758 struct ufsmount *ump; 9759 struct mount *mp; 9760 struct vnode *vp; 9761 struct inode *ip; 9762 ino_t oldinum; 9763 9764 if (dirrem->dm_state & ONWORKLIST) 9765 panic("handle_workitem_remove: dirrem %p still on worklist", 9766 dirrem); 9767 oldinum = dirrem->dm_oldinum; 9768 mp = dirrem->dm_list.wk_mp; 9769 ump = VFSTOUFS(mp); 9770 flags |= LK_EXCLUSIVE; 9771 if (ffs_vgetf(mp, oldinum, flags, &vp, FFSV_FORCEINSMQ) != 0) 9772 return (EBUSY); 9773 ip = VTOI(vp); 9774 ACQUIRE_LOCK(ump); 9775 if ((inodedep_lookup(mp, oldinum, 0, &inodedep)) == 0) 9776 panic("handle_workitem_remove: lost inodedep"); 9777 if (dirrem->dm_state & ONDEPLIST) 9778 LIST_REMOVE(dirrem, dm_inonext); 9779 KASSERT(LIST_EMPTY(&dirrem->dm_jremrefhd), 9780 ("handle_workitem_remove: Journal entries not written.")); 9781 9782 /* 9783 * Move all dependencies waiting on the remove to complete 9784 * from the dirrem to the inode inowait list to be completed 9785 * after the inode has been updated and written to disk. Any 9786 * marked MKDIR_PARENT are saved to be completed when the .. ref 9787 * is removed. 9788 */ 9789 LIST_INIT(&dotdotwk); 9790 while ((wk = LIST_FIRST(&dirrem->dm_jwork)) != NULL) { 9791 WORKLIST_REMOVE(wk); 9792 if (wk->wk_state & MKDIR_PARENT) { 9793 wk->wk_state &= ~MKDIR_PARENT; 9794 WORKLIST_INSERT(&dotdotwk, wk); 9795 continue; 9796 } 9797 WORKLIST_INSERT(&inodedep->id_inowait, wk); 9798 } 9799 LIST_SWAP(&dirrem->dm_jwork, &dotdotwk, worklist, wk_list); 9800 /* 9801 * Normal file deletion. 9802 */ 9803 if ((dirrem->dm_state & RMDIR) == 0) { 9804 ip->i_nlink--; 9805 DIP_SET(ip, i_nlink, ip->i_nlink); 9806 ip->i_flag |= IN_CHANGE; 9807 if (ip->i_nlink < ip->i_effnlink) 9808 panic("handle_workitem_remove: bad file delta"); 9809 if (ip->i_nlink == 0) 9810 unlinked_inodedep(mp, inodedep); 9811 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 9812 KASSERT(LIST_EMPTY(&dirrem->dm_jwork), 9813 ("handle_workitem_remove: worklist not empty. %s", 9814 TYPENAME(LIST_FIRST(&dirrem->dm_jwork)->wk_type))); 9815 WORKITEM_FREE(dirrem, D_DIRREM); 9816 FREE_LOCK(ump); 9817 goto out; 9818 } 9819 /* 9820 * Directory deletion. Decrement reference count for both the 9821 * just deleted parent directory entry and the reference for ".". 9822 * Arrange to have the reference count on the parent decremented 9823 * to account for the loss of "..". 9824 */ 9825 ip->i_nlink -= 2; 9826 DIP_SET(ip, i_nlink, ip->i_nlink); 9827 ip->i_flag |= IN_CHANGE; 9828 if (ip->i_nlink < ip->i_effnlink) 9829 panic("handle_workitem_remove: bad dir delta"); 9830 if (ip->i_nlink == 0) 9831 unlinked_inodedep(mp, inodedep); 9832 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 9833 /* 9834 * Rename a directory to a new parent. Since, we are both deleting 9835 * and creating a new directory entry, the link count on the new 9836 * directory should not change. Thus we skip the followup dirrem. 9837 */ 9838 if (dirrem->dm_state & DIRCHG) { 9839 KASSERT(LIST_EMPTY(&dirrem->dm_jwork), 9840 ("handle_workitem_remove: DIRCHG and worklist not empty.")); 9841 WORKITEM_FREE(dirrem, D_DIRREM); 9842 FREE_LOCK(ump); 9843 goto out; 9844 } 9845 dirrem->dm_state = ONDEPLIST; 9846 dirrem->dm_oldinum = dirrem->dm_dirinum; 9847 /* 9848 * Place the dirrem on the parent's diremhd list. 9849 */ 9850 if (inodedep_lookup(mp, dirrem->dm_oldinum, 0, &inodedep) == 0) 9851 panic("handle_workitem_remove: lost dir inodedep"); 9852 LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext); 9853 /* 9854 * If the allocated inode has never been written to disk, then 9855 * the on-disk inode is zero'ed and we can remove the file 9856 * immediately. When journaling if the inode has been marked 9857 * unlinked and not DEPCOMPLETE we know it can never be written. 9858 */ 9859 inodedep_lookup(mp, oldinum, 0, &inodedep); 9860 if (inodedep == NULL || 9861 (inodedep->id_state & (DEPCOMPLETE | UNLINKED)) == UNLINKED || 9862 check_inode_unwritten(inodedep)) { 9863 FREE_LOCK(ump); 9864 vput(vp); 9865 return handle_workitem_remove(dirrem, flags); 9866 } 9867 WORKLIST_INSERT(&inodedep->id_inowait, &dirrem->dm_list); 9868 FREE_LOCK(ump); 9869 ip->i_flag |= IN_CHANGE; 9870 out: 9871 ffs_update(vp, 0); 9872 vput(vp); 9873 return (0); 9874 } 9875 9876 /* 9877 * Inode de-allocation dependencies. 9878 * 9879 * When an inode's link count is reduced to zero, it can be de-allocated. We 9880 * found it convenient to postpone de-allocation until after the inode is 9881 * written to disk with its new link count (zero). At this point, all of the 9882 * on-disk inode's block pointers are nullified and, with careful dependency 9883 * list ordering, all dependencies related to the inode will be satisfied and 9884 * the corresponding dependency structures de-allocated. So, if/when the 9885 * inode is reused, there will be no mixing of old dependencies with new 9886 * ones. This artificial dependency is set up by the block de-allocation 9887 * procedure above (softdep_setup_freeblocks) and completed by the 9888 * following procedure. 9889 */ 9890 static void 9891 handle_workitem_freefile(freefile) 9892 struct freefile *freefile; 9893 { 9894 struct workhead wkhd; 9895 struct fs *fs; 9896 struct inodedep *idp; 9897 struct ufsmount *ump; 9898 int error; 9899 9900 ump = VFSTOUFS(freefile->fx_list.wk_mp); 9901 fs = ump->um_fs; 9902 #ifdef DEBUG 9903 ACQUIRE_LOCK(ump); 9904 error = inodedep_lookup(UFSTOVFS(ump), freefile->fx_oldinum, 0, &idp); 9905 FREE_LOCK(ump); 9906 if (error) 9907 panic("handle_workitem_freefile: inodedep %p survived", idp); 9908 #endif 9909 UFS_LOCK(ump); 9910 fs->fs_pendinginodes -= 1; 9911 UFS_UNLOCK(ump); 9912 LIST_INIT(&wkhd); 9913 LIST_SWAP(&freefile->fx_jwork, &wkhd, worklist, wk_list); 9914 if ((error = ffs_freefile(ump, fs, freefile->fx_devvp, 9915 freefile->fx_oldinum, freefile->fx_mode, &wkhd)) != 0) 9916 softdep_error("handle_workitem_freefile", error); 9917 ACQUIRE_LOCK(ump); 9918 WORKITEM_FREE(freefile, D_FREEFILE); 9919 FREE_LOCK(ump); 9920 } 9921 9922 9923 /* 9924 * Helper function which unlinks marker element from work list and returns 9925 * the next element on the list. 9926 */ 9927 static __inline struct worklist * 9928 markernext(struct worklist *marker) 9929 { 9930 struct worklist *next; 9931 9932 next = LIST_NEXT(marker, wk_list); 9933 LIST_REMOVE(marker, wk_list); 9934 return next; 9935 } 9936 9937 /* 9938 * Disk writes. 9939 * 9940 * The dependency structures constructed above are most actively used when file 9941 * system blocks are written to disk. No constraints are placed on when a 9942 * block can be written, but unsatisfied update dependencies are made safe by 9943 * modifying (or replacing) the source memory for the duration of the disk 9944 * write. When the disk write completes, the memory block is again brought 9945 * up-to-date. 9946 * 9947 * In-core inode structure reclamation. 9948 * 9949 * Because there are a finite number of "in-core" inode structures, they are 9950 * reused regularly. By transferring all inode-related dependencies to the 9951 * in-memory inode block and indexing them separately (via "inodedep"s), we 9952 * can allow "in-core" inode structures to be reused at any time and avoid 9953 * any increase in contention. 9954 * 9955 * Called just before entering the device driver to initiate a new disk I/O. 9956 * The buffer must be locked, thus, no I/O completion operations can occur 9957 * while we are manipulating its associated dependencies. 9958 */ 9959 static void 9960 softdep_disk_io_initiation(bp) 9961 struct buf *bp; /* structure describing disk write to occur */ 9962 { 9963 struct worklist *wk; 9964 struct worklist marker; 9965 struct inodedep *inodedep; 9966 struct freeblks *freeblks; 9967 struct jblkdep *jblkdep; 9968 struct newblk *newblk; 9969 struct ufsmount *ump; 9970 9971 /* 9972 * We only care about write operations. There should never 9973 * be dependencies for reads. 9974 */ 9975 if (bp->b_iocmd != BIO_WRITE) 9976 panic("softdep_disk_io_initiation: not write"); 9977 9978 if (bp->b_vflags & BV_BKGRDINPROG) 9979 panic("softdep_disk_io_initiation: Writing buffer with " 9980 "background write in progress: %p", bp); 9981 9982 if ((wk = LIST_FIRST(&bp->b_dep)) == NULL) 9983 return; 9984 ump = VFSTOUFS(wk->wk_mp); 9985 9986 marker.wk_type = D_LAST + 1; /* Not a normal workitem */ 9987 PHOLD(curproc); /* Don't swap out kernel stack */ 9988 ACQUIRE_LOCK(ump); 9989 /* 9990 * Do any necessary pre-I/O processing. 9991 */ 9992 for (wk = LIST_FIRST(&bp->b_dep); wk != NULL; 9993 wk = markernext(&marker)) { 9994 LIST_INSERT_AFTER(wk, &marker, wk_list); 9995 switch (wk->wk_type) { 9996 9997 case D_PAGEDEP: 9998 initiate_write_filepage(WK_PAGEDEP(wk), bp); 9999 continue; 10000 10001 case D_INODEDEP: 10002 inodedep = WK_INODEDEP(wk); 10003 if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC) 10004 initiate_write_inodeblock_ufs1(inodedep, bp); 10005 else 10006 initiate_write_inodeblock_ufs2(inodedep, bp); 10007 continue; 10008 10009 case D_INDIRDEP: 10010 initiate_write_indirdep(WK_INDIRDEP(wk), bp); 10011 continue; 10012 10013 case D_BMSAFEMAP: 10014 initiate_write_bmsafemap(WK_BMSAFEMAP(wk), bp); 10015 continue; 10016 10017 case D_JSEG: 10018 WK_JSEG(wk)->js_buf = NULL; 10019 continue; 10020 10021 case D_FREEBLKS: 10022 freeblks = WK_FREEBLKS(wk); 10023 jblkdep = LIST_FIRST(&freeblks->fb_jblkdephd); 10024 /* 10025 * We have to wait for the freeblks to be journaled 10026 * before we can write an inodeblock with updated 10027 * pointers. Be careful to arrange the marker so 10028 * we revisit the freeblks if it's not removed by 10029 * the first jwait(). 10030 */ 10031 if (jblkdep != NULL) { 10032 LIST_REMOVE(&marker, wk_list); 10033 LIST_INSERT_BEFORE(wk, &marker, wk_list); 10034 jwait(&jblkdep->jb_list, MNT_WAIT); 10035 } 10036 continue; 10037 case D_ALLOCDIRECT: 10038 case D_ALLOCINDIR: 10039 /* 10040 * We have to wait for the jnewblk to be journaled 10041 * before we can write to a block if the contents 10042 * may be confused with an earlier file's indirect 10043 * at recovery time. Handle the marker as described 10044 * above. 10045 */ 10046 newblk = WK_NEWBLK(wk); 10047 if (newblk->nb_jnewblk != NULL && 10048 indirblk_lookup(newblk->nb_list.wk_mp, 10049 newblk->nb_newblkno)) { 10050 LIST_REMOVE(&marker, wk_list); 10051 LIST_INSERT_BEFORE(wk, &marker, wk_list); 10052 jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT); 10053 } 10054 continue; 10055 10056 case D_SBDEP: 10057 initiate_write_sbdep(WK_SBDEP(wk)); 10058 continue; 10059 10060 case D_MKDIR: 10061 case D_FREEWORK: 10062 case D_FREEDEP: 10063 case D_JSEGDEP: 10064 continue; 10065 10066 default: 10067 panic("handle_disk_io_initiation: Unexpected type %s", 10068 TYPENAME(wk->wk_type)); 10069 /* NOTREACHED */ 10070 } 10071 } 10072 FREE_LOCK(ump); 10073 PRELE(curproc); /* Allow swapout of kernel stack */ 10074 } 10075 10076 /* 10077 * Called from within the procedure above to deal with unsatisfied 10078 * allocation dependencies in a directory. The buffer must be locked, 10079 * thus, no I/O completion operations can occur while we are 10080 * manipulating its associated dependencies. 10081 */ 10082 static void 10083 initiate_write_filepage(pagedep, bp) 10084 struct pagedep *pagedep; 10085 struct buf *bp; 10086 { 10087 struct jremref *jremref; 10088 struct jmvref *jmvref; 10089 struct dirrem *dirrem; 10090 struct diradd *dap; 10091 struct direct *ep; 10092 int i; 10093 10094 if (pagedep->pd_state & IOSTARTED) { 10095 /* 10096 * This can only happen if there is a driver that does not 10097 * understand chaining. Here biodone will reissue the call 10098 * to strategy for the incomplete buffers. 10099 */ 10100 printf("initiate_write_filepage: already started\n"); 10101 return; 10102 } 10103 pagedep->pd_state |= IOSTARTED; 10104 /* 10105 * Wait for all journal remove dependencies to hit the disk. 10106 * We can not allow any potentially conflicting directory adds 10107 * to be visible before removes and rollback is too difficult. 10108 * The per-filesystem lock may be dropped and re-acquired, however 10109 * we hold the buf locked so the dependency can not go away. 10110 */ 10111 LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next) 10112 while ((jremref = LIST_FIRST(&dirrem->dm_jremrefhd)) != NULL) 10113 jwait(&jremref->jr_list, MNT_WAIT); 10114 while ((jmvref = LIST_FIRST(&pagedep->pd_jmvrefhd)) != NULL) 10115 jwait(&jmvref->jm_list, MNT_WAIT); 10116 for (i = 0; i < DAHASHSZ; i++) { 10117 LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) { 10118 ep = (struct direct *) 10119 ((char *)bp->b_data + dap->da_offset); 10120 if (ep->d_ino != dap->da_newinum) 10121 panic("%s: dir inum %ju != new %ju", 10122 "initiate_write_filepage", 10123 (uintmax_t)ep->d_ino, 10124 (uintmax_t)dap->da_newinum); 10125 if (dap->da_state & DIRCHG) 10126 ep->d_ino = dap->da_previous->dm_oldinum; 10127 else 10128 ep->d_ino = 0; 10129 dap->da_state &= ~ATTACHED; 10130 dap->da_state |= UNDONE; 10131 } 10132 } 10133 } 10134 10135 /* 10136 * Version of initiate_write_inodeblock that handles UFS1 dinodes. 10137 * Note that any bug fixes made to this routine must be done in the 10138 * version found below. 10139 * 10140 * Called from within the procedure above to deal with unsatisfied 10141 * allocation dependencies in an inodeblock. The buffer must be 10142 * locked, thus, no I/O completion operations can occur while we 10143 * are manipulating its associated dependencies. 10144 */ 10145 static void 10146 initiate_write_inodeblock_ufs1(inodedep, bp) 10147 struct inodedep *inodedep; 10148 struct buf *bp; /* The inode block */ 10149 { 10150 struct allocdirect *adp, *lastadp; 10151 struct ufs1_dinode *dp; 10152 struct ufs1_dinode *sip; 10153 struct inoref *inoref; 10154 struct ufsmount *ump; 10155 struct fs *fs; 10156 ufs_lbn_t i; 10157 #ifdef INVARIANTS 10158 ufs_lbn_t prevlbn = 0; 10159 #endif 10160 int deplist; 10161 10162 if (inodedep->id_state & IOSTARTED) 10163 panic("initiate_write_inodeblock_ufs1: already started"); 10164 inodedep->id_state |= IOSTARTED; 10165 fs = inodedep->id_fs; 10166 ump = VFSTOUFS(inodedep->id_list.wk_mp); 10167 LOCK_OWNED(ump); 10168 dp = (struct ufs1_dinode *)bp->b_data + 10169 ino_to_fsbo(fs, inodedep->id_ino); 10170 10171 /* 10172 * If we're on the unlinked list but have not yet written our 10173 * next pointer initialize it here. 10174 */ 10175 if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) { 10176 struct inodedep *inon; 10177 10178 inon = TAILQ_NEXT(inodedep, id_unlinked); 10179 dp->di_freelink = inon ? inon->id_ino : 0; 10180 } 10181 /* 10182 * If the bitmap is not yet written, then the allocated 10183 * inode cannot be written to disk. 10184 */ 10185 if ((inodedep->id_state & DEPCOMPLETE) == 0) { 10186 if (inodedep->id_savedino1 != NULL) 10187 panic("initiate_write_inodeblock_ufs1: I/O underway"); 10188 FREE_LOCK(ump); 10189 sip = malloc(sizeof(struct ufs1_dinode), 10190 M_SAVEDINO, M_SOFTDEP_FLAGS); 10191 ACQUIRE_LOCK(ump); 10192 inodedep->id_savedino1 = sip; 10193 *inodedep->id_savedino1 = *dp; 10194 bzero((caddr_t)dp, sizeof(struct ufs1_dinode)); 10195 dp->di_gen = inodedep->id_savedino1->di_gen; 10196 dp->di_freelink = inodedep->id_savedino1->di_freelink; 10197 return; 10198 } 10199 /* 10200 * If no dependencies, then there is nothing to roll back. 10201 */ 10202 inodedep->id_savedsize = dp->di_size; 10203 inodedep->id_savedextsize = 0; 10204 inodedep->id_savednlink = dp->di_nlink; 10205 if (TAILQ_EMPTY(&inodedep->id_inoupdt) && 10206 TAILQ_EMPTY(&inodedep->id_inoreflst)) 10207 return; 10208 /* 10209 * Revert the link count to that of the first unwritten journal entry. 10210 */ 10211 inoref = TAILQ_FIRST(&inodedep->id_inoreflst); 10212 if (inoref) 10213 dp->di_nlink = inoref->if_nlink; 10214 /* 10215 * Set the dependencies to busy. 10216 */ 10217 for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 10218 adp = TAILQ_NEXT(adp, ad_next)) { 10219 #ifdef INVARIANTS 10220 if (deplist != 0 && prevlbn >= adp->ad_offset) 10221 panic("softdep_write_inodeblock: lbn order"); 10222 prevlbn = adp->ad_offset; 10223 if (adp->ad_offset < UFS_NDADDR && 10224 dp->di_db[adp->ad_offset] != adp->ad_newblkno) 10225 panic("%s: direct pointer #%jd mismatch %d != %jd", 10226 "softdep_write_inodeblock", 10227 (intmax_t)adp->ad_offset, 10228 dp->di_db[adp->ad_offset], 10229 (intmax_t)adp->ad_newblkno); 10230 if (adp->ad_offset >= UFS_NDADDR && 10231 dp->di_ib[adp->ad_offset - UFS_NDADDR] != adp->ad_newblkno) 10232 panic("%s: indirect pointer #%jd mismatch %d != %jd", 10233 "softdep_write_inodeblock", 10234 (intmax_t)adp->ad_offset - UFS_NDADDR, 10235 dp->di_ib[adp->ad_offset - UFS_NDADDR], 10236 (intmax_t)adp->ad_newblkno); 10237 deplist |= 1 << adp->ad_offset; 10238 if ((adp->ad_state & ATTACHED) == 0) 10239 panic("softdep_write_inodeblock: Unknown state 0x%x", 10240 adp->ad_state); 10241 #endif /* INVARIANTS */ 10242 adp->ad_state &= ~ATTACHED; 10243 adp->ad_state |= UNDONE; 10244 } 10245 /* 10246 * The on-disk inode cannot claim to be any larger than the last 10247 * fragment that has been written. Otherwise, the on-disk inode 10248 * might have fragments that were not the last block in the file 10249 * which would corrupt the filesystem. 10250 */ 10251 for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 10252 lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) { 10253 if (adp->ad_offset >= UFS_NDADDR) 10254 break; 10255 dp->di_db[adp->ad_offset] = adp->ad_oldblkno; 10256 /* keep going until hitting a rollback to a frag */ 10257 if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize) 10258 continue; 10259 dp->di_size = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize; 10260 for (i = adp->ad_offset + 1; i < UFS_NDADDR; i++) { 10261 #ifdef INVARIANTS 10262 if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0) 10263 panic("softdep_write_inodeblock: lost dep1"); 10264 #endif /* INVARIANTS */ 10265 dp->di_db[i] = 0; 10266 } 10267 for (i = 0; i < UFS_NIADDR; i++) { 10268 #ifdef INVARIANTS 10269 if (dp->di_ib[i] != 0 && 10270 (deplist & ((1 << UFS_NDADDR) << i)) == 0) 10271 panic("softdep_write_inodeblock: lost dep2"); 10272 #endif /* INVARIANTS */ 10273 dp->di_ib[i] = 0; 10274 } 10275 return; 10276 } 10277 /* 10278 * If we have zero'ed out the last allocated block of the file, 10279 * roll back the size to the last currently allocated block. 10280 * We know that this last allocated block is a full-sized as 10281 * we already checked for fragments in the loop above. 10282 */ 10283 if (lastadp != NULL && 10284 dp->di_size <= (lastadp->ad_offset + 1) * fs->fs_bsize) { 10285 for (i = lastadp->ad_offset; i >= 0; i--) 10286 if (dp->di_db[i] != 0) 10287 break; 10288 dp->di_size = (i + 1) * fs->fs_bsize; 10289 } 10290 /* 10291 * The only dependencies are for indirect blocks. 10292 * 10293 * The file size for indirect block additions is not guaranteed. 10294 * Such a guarantee would be non-trivial to achieve. The conventional 10295 * synchronous write implementation also does not make this guarantee. 10296 * Fsck should catch and fix discrepancies. Arguably, the file size 10297 * can be over-estimated without destroying integrity when the file 10298 * moves into the indirect blocks (i.e., is large). If we want to 10299 * postpone fsck, we are stuck with this argument. 10300 */ 10301 for (; adp; adp = TAILQ_NEXT(adp, ad_next)) 10302 dp->di_ib[adp->ad_offset - UFS_NDADDR] = 0; 10303 } 10304 10305 /* 10306 * Version of initiate_write_inodeblock that handles UFS2 dinodes. 10307 * Note that any bug fixes made to this routine must be done in the 10308 * version found above. 10309 * 10310 * Called from within the procedure above to deal with unsatisfied 10311 * allocation dependencies in an inodeblock. The buffer must be 10312 * locked, thus, no I/O completion operations can occur while we 10313 * are manipulating its associated dependencies. 10314 */ 10315 static void 10316 initiate_write_inodeblock_ufs2(inodedep, bp) 10317 struct inodedep *inodedep; 10318 struct buf *bp; /* The inode block */ 10319 { 10320 struct allocdirect *adp, *lastadp; 10321 struct ufs2_dinode *dp; 10322 struct ufs2_dinode *sip; 10323 struct inoref *inoref; 10324 struct ufsmount *ump; 10325 struct fs *fs; 10326 ufs_lbn_t i; 10327 #ifdef INVARIANTS 10328 ufs_lbn_t prevlbn = 0; 10329 #endif 10330 int deplist; 10331 10332 if (inodedep->id_state & IOSTARTED) 10333 panic("initiate_write_inodeblock_ufs2: already started"); 10334 inodedep->id_state |= IOSTARTED; 10335 fs = inodedep->id_fs; 10336 ump = VFSTOUFS(inodedep->id_list.wk_mp); 10337 LOCK_OWNED(ump); 10338 dp = (struct ufs2_dinode *)bp->b_data + 10339 ino_to_fsbo(fs, inodedep->id_ino); 10340 10341 /* 10342 * If we're on the unlinked list but have not yet written our 10343 * next pointer initialize it here. 10344 */ 10345 if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) { 10346 struct inodedep *inon; 10347 10348 inon = TAILQ_NEXT(inodedep, id_unlinked); 10349 dp->di_freelink = inon ? inon->id_ino : 0; 10350 } 10351 /* 10352 * If the bitmap is not yet written, then the allocated 10353 * inode cannot be written to disk. 10354 */ 10355 if ((inodedep->id_state & DEPCOMPLETE) == 0) { 10356 if (inodedep->id_savedino2 != NULL) 10357 panic("initiate_write_inodeblock_ufs2: I/O underway"); 10358 FREE_LOCK(ump); 10359 sip = malloc(sizeof(struct ufs2_dinode), 10360 M_SAVEDINO, M_SOFTDEP_FLAGS); 10361 ACQUIRE_LOCK(ump); 10362 inodedep->id_savedino2 = sip; 10363 *inodedep->id_savedino2 = *dp; 10364 bzero((caddr_t)dp, sizeof(struct ufs2_dinode)); 10365 dp->di_gen = inodedep->id_savedino2->di_gen; 10366 dp->di_freelink = inodedep->id_savedino2->di_freelink; 10367 return; 10368 } 10369 /* 10370 * If no dependencies, then there is nothing to roll back. 10371 */ 10372 inodedep->id_savedsize = dp->di_size; 10373 inodedep->id_savedextsize = dp->di_extsize; 10374 inodedep->id_savednlink = dp->di_nlink; 10375 if (TAILQ_EMPTY(&inodedep->id_inoupdt) && 10376 TAILQ_EMPTY(&inodedep->id_extupdt) && 10377 TAILQ_EMPTY(&inodedep->id_inoreflst)) 10378 return; 10379 /* 10380 * Revert the link count to that of the first unwritten journal entry. 10381 */ 10382 inoref = TAILQ_FIRST(&inodedep->id_inoreflst); 10383 if (inoref) 10384 dp->di_nlink = inoref->if_nlink; 10385 10386 /* 10387 * Set the ext data dependencies to busy. 10388 */ 10389 for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; 10390 adp = TAILQ_NEXT(adp, ad_next)) { 10391 #ifdef INVARIANTS 10392 if (deplist != 0 && prevlbn >= adp->ad_offset) 10393 panic("softdep_write_inodeblock: lbn order"); 10394 prevlbn = adp->ad_offset; 10395 if (dp->di_extb[adp->ad_offset] != adp->ad_newblkno) 10396 panic("%s: direct pointer #%jd mismatch %jd != %jd", 10397 "softdep_write_inodeblock", 10398 (intmax_t)adp->ad_offset, 10399 (intmax_t)dp->di_extb[adp->ad_offset], 10400 (intmax_t)adp->ad_newblkno); 10401 deplist |= 1 << adp->ad_offset; 10402 if ((adp->ad_state & ATTACHED) == 0) 10403 panic("softdep_write_inodeblock: Unknown state 0x%x", 10404 adp->ad_state); 10405 #endif /* INVARIANTS */ 10406 adp->ad_state &= ~ATTACHED; 10407 adp->ad_state |= UNDONE; 10408 } 10409 /* 10410 * The on-disk inode cannot claim to be any larger than the last 10411 * fragment that has been written. Otherwise, the on-disk inode 10412 * might have fragments that were not the last block in the ext 10413 * data which would corrupt the filesystem. 10414 */ 10415 for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; 10416 lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) { 10417 dp->di_extb[adp->ad_offset] = adp->ad_oldblkno; 10418 /* keep going until hitting a rollback to a frag */ 10419 if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize) 10420 continue; 10421 dp->di_extsize = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize; 10422 for (i = adp->ad_offset + 1; i < UFS_NXADDR; i++) { 10423 #ifdef INVARIANTS 10424 if (dp->di_extb[i] != 0 && (deplist & (1 << i)) == 0) 10425 panic("softdep_write_inodeblock: lost dep1"); 10426 #endif /* INVARIANTS */ 10427 dp->di_extb[i] = 0; 10428 } 10429 lastadp = NULL; 10430 break; 10431 } 10432 /* 10433 * If we have zero'ed out the last allocated block of the ext 10434 * data, roll back the size to the last currently allocated block. 10435 * We know that this last allocated block is a full-sized as 10436 * we already checked for fragments in the loop above. 10437 */ 10438 if (lastadp != NULL && 10439 dp->di_extsize <= (lastadp->ad_offset + 1) * fs->fs_bsize) { 10440 for (i = lastadp->ad_offset; i >= 0; i--) 10441 if (dp->di_extb[i] != 0) 10442 break; 10443 dp->di_extsize = (i + 1) * fs->fs_bsize; 10444 } 10445 /* 10446 * Set the file data dependencies to busy. 10447 */ 10448 for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 10449 adp = TAILQ_NEXT(adp, ad_next)) { 10450 #ifdef INVARIANTS 10451 if (deplist != 0 && prevlbn >= adp->ad_offset) 10452 panic("softdep_write_inodeblock: lbn order"); 10453 if ((adp->ad_state & ATTACHED) == 0) 10454 panic("inodedep %p and adp %p not attached", inodedep, adp); 10455 prevlbn = adp->ad_offset; 10456 if (adp->ad_offset < UFS_NDADDR && 10457 dp->di_db[adp->ad_offset] != adp->ad_newblkno) 10458 panic("%s: direct pointer #%jd mismatch %jd != %jd", 10459 "softdep_write_inodeblock", 10460 (intmax_t)adp->ad_offset, 10461 (intmax_t)dp->di_db[adp->ad_offset], 10462 (intmax_t)adp->ad_newblkno); 10463 if (adp->ad_offset >= UFS_NDADDR && 10464 dp->di_ib[adp->ad_offset - UFS_NDADDR] != adp->ad_newblkno) 10465 panic("%s indirect pointer #%jd mismatch %jd != %jd", 10466 "softdep_write_inodeblock:", 10467 (intmax_t)adp->ad_offset - UFS_NDADDR, 10468 (intmax_t)dp->di_ib[adp->ad_offset - UFS_NDADDR], 10469 (intmax_t)adp->ad_newblkno); 10470 deplist |= 1 << adp->ad_offset; 10471 if ((adp->ad_state & ATTACHED) == 0) 10472 panic("softdep_write_inodeblock: Unknown state 0x%x", 10473 adp->ad_state); 10474 #endif /* INVARIANTS */ 10475 adp->ad_state &= ~ATTACHED; 10476 adp->ad_state |= UNDONE; 10477 } 10478 /* 10479 * The on-disk inode cannot claim to be any larger than the last 10480 * fragment that has been written. Otherwise, the on-disk inode 10481 * might have fragments that were not the last block in the file 10482 * which would corrupt the filesystem. 10483 */ 10484 for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 10485 lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) { 10486 if (adp->ad_offset >= UFS_NDADDR) 10487 break; 10488 dp->di_db[adp->ad_offset] = adp->ad_oldblkno; 10489 /* keep going until hitting a rollback to a frag */ 10490 if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize) 10491 continue; 10492 dp->di_size = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize; 10493 for (i = adp->ad_offset + 1; i < UFS_NDADDR; i++) { 10494 #ifdef INVARIANTS 10495 if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0) 10496 panic("softdep_write_inodeblock: lost dep2"); 10497 #endif /* INVARIANTS */ 10498 dp->di_db[i] = 0; 10499 } 10500 for (i = 0; i < UFS_NIADDR; i++) { 10501 #ifdef INVARIANTS 10502 if (dp->di_ib[i] != 0 && 10503 (deplist & ((1 << UFS_NDADDR) << i)) == 0) 10504 panic("softdep_write_inodeblock: lost dep3"); 10505 #endif /* INVARIANTS */ 10506 dp->di_ib[i] = 0; 10507 } 10508 return; 10509 } 10510 /* 10511 * If we have zero'ed out the last allocated block of the file, 10512 * roll back the size to the last currently allocated block. 10513 * We know that this last allocated block is a full-sized as 10514 * we already checked for fragments in the loop above. 10515 */ 10516 if (lastadp != NULL && 10517 dp->di_size <= (lastadp->ad_offset + 1) * fs->fs_bsize) { 10518 for (i = lastadp->ad_offset; i >= 0; i--) 10519 if (dp->di_db[i] != 0) 10520 break; 10521 dp->di_size = (i + 1) * fs->fs_bsize; 10522 } 10523 /* 10524 * The only dependencies are for indirect blocks. 10525 * 10526 * The file size for indirect block additions is not guaranteed. 10527 * Such a guarantee would be non-trivial to achieve. The conventional 10528 * synchronous write implementation also does not make this guarantee. 10529 * Fsck should catch and fix discrepancies. Arguably, the file size 10530 * can be over-estimated without destroying integrity when the file 10531 * moves into the indirect blocks (i.e., is large). If we want to 10532 * postpone fsck, we are stuck with this argument. 10533 */ 10534 for (; adp; adp = TAILQ_NEXT(adp, ad_next)) 10535 dp->di_ib[adp->ad_offset - UFS_NDADDR] = 0; 10536 } 10537 10538 /* 10539 * Cancel an indirdep as a result of truncation. Release all of the 10540 * children allocindirs and place their journal work on the appropriate 10541 * list. 10542 */ 10543 static void 10544 cancel_indirdep(indirdep, bp, freeblks) 10545 struct indirdep *indirdep; 10546 struct buf *bp; 10547 struct freeblks *freeblks; 10548 { 10549 struct allocindir *aip; 10550 10551 /* 10552 * None of the indirect pointers will ever be visible, 10553 * so they can simply be tossed. GOINGAWAY ensures 10554 * that allocated pointers will be saved in the buffer 10555 * cache until they are freed. Note that they will 10556 * only be able to be found by their physical address 10557 * since the inode mapping the logical address will 10558 * be gone. The save buffer used for the safe copy 10559 * was allocated in setup_allocindir_phase2 using 10560 * the physical address so it could be used for this 10561 * purpose. Hence we swap the safe copy with the real 10562 * copy, allowing the safe copy to be freed and holding 10563 * on to the real copy for later use in indir_trunc. 10564 */ 10565 if (indirdep->ir_state & GOINGAWAY) 10566 panic("cancel_indirdep: already gone"); 10567 if ((indirdep->ir_state & DEPCOMPLETE) == 0) { 10568 indirdep->ir_state |= DEPCOMPLETE; 10569 LIST_REMOVE(indirdep, ir_next); 10570 } 10571 indirdep->ir_state |= GOINGAWAY; 10572 /* 10573 * Pass in bp for blocks still have journal writes 10574 * pending so we can cancel them on their own. 10575 */ 10576 while ((aip = LIST_FIRST(&indirdep->ir_deplisthd)) != NULL) 10577 cancel_allocindir(aip, bp, freeblks, 0); 10578 while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != NULL) 10579 cancel_allocindir(aip, NULL, freeblks, 0); 10580 while ((aip = LIST_FIRST(&indirdep->ir_writehd)) != NULL) 10581 cancel_allocindir(aip, NULL, freeblks, 0); 10582 while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != NULL) 10583 cancel_allocindir(aip, NULL, freeblks, 0); 10584 /* 10585 * If there are pending partial truncations we need to keep the 10586 * old block copy around until they complete. This is because 10587 * the current b_data is not a perfect superset of the available 10588 * blocks. 10589 */ 10590 if (TAILQ_EMPTY(&indirdep->ir_trunc)) 10591 bcopy(bp->b_data, indirdep->ir_savebp->b_data, bp->b_bcount); 10592 else 10593 bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount); 10594 WORKLIST_REMOVE(&indirdep->ir_list); 10595 WORKLIST_INSERT(&indirdep->ir_savebp->b_dep, &indirdep->ir_list); 10596 indirdep->ir_bp = NULL; 10597 indirdep->ir_freeblks = freeblks; 10598 } 10599 10600 /* 10601 * Free an indirdep once it no longer has new pointers to track. 10602 */ 10603 static void 10604 free_indirdep(indirdep) 10605 struct indirdep *indirdep; 10606 { 10607 10608 KASSERT(TAILQ_EMPTY(&indirdep->ir_trunc), 10609 ("free_indirdep: Indir trunc list not empty.")); 10610 KASSERT(LIST_EMPTY(&indirdep->ir_completehd), 10611 ("free_indirdep: Complete head not empty.")); 10612 KASSERT(LIST_EMPTY(&indirdep->ir_writehd), 10613 ("free_indirdep: write head not empty.")); 10614 KASSERT(LIST_EMPTY(&indirdep->ir_donehd), 10615 ("free_indirdep: done head not empty.")); 10616 KASSERT(LIST_EMPTY(&indirdep->ir_deplisthd), 10617 ("free_indirdep: deplist head not empty.")); 10618 KASSERT((indirdep->ir_state & DEPCOMPLETE), 10619 ("free_indirdep: %p still on newblk list.", indirdep)); 10620 KASSERT(indirdep->ir_saveddata == NULL, 10621 ("free_indirdep: %p still has saved data.", indirdep)); 10622 if (indirdep->ir_state & ONWORKLIST) 10623 WORKLIST_REMOVE(&indirdep->ir_list); 10624 WORKITEM_FREE(indirdep, D_INDIRDEP); 10625 } 10626 10627 /* 10628 * Called before a write to an indirdep. This routine is responsible for 10629 * rolling back pointers to a safe state which includes only those 10630 * allocindirs which have been completed. 10631 */ 10632 static void 10633 initiate_write_indirdep(indirdep, bp) 10634 struct indirdep *indirdep; 10635 struct buf *bp; 10636 { 10637 struct ufsmount *ump; 10638 10639 indirdep->ir_state |= IOSTARTED; 10640 if (indirdep->ir_state & GOINGAWAY) 10641 panic("disk_io_initiation: indirdep gone"); 10642 /* 10643 * If there are no remaining dependencies, this will be writing 10644 * the real pointers. 10645 */ 10646 if (LIST_EMPTY(&indirdep->ir_deplisthd) && 10647 TAILQ_EMPTY(&indirdep->ir_trunc)) 10648 return; 10649 /* 10650 * Replace up-to-date version with safe version. 10651 */ 10652 if (indirdep->ir_saveddata == NULL) { 10653 ump = VFSTOUFS(indirdep->ir_list.wk_mp); 10654 LOCK_OWNED(ump); 10655 FREE_LOCK(ump); 10656 indirdep->ir_saveddata = malloc(bp->b_bcount, M_INDIRDEP, 10657 M_SOFTDEP_FLAGS); 10658 ACQUIRE_LOCK(ump); 10659 } 10660 indirdep->ir_state &= ~ATTACHED; 10661 indirdep->ir_state |= UNDONE; 10662 bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount); 10663 bcopy(indirdep->ir_savebp->b_data, bp->b_data, 10664 bp->b_bcount); 10665 } 10666 10667 /* 10668 * Called when an inode has been cleared in a cg bitmap. This finally 10669 * eliminates any canceled jaddrefs 10670 */ 10671 void 10672 softdep_setup_inofree(mp, bp, ino, wkhd) 10673 struct mount *mp; 10674 struct buf *bp; 10675 ino_t ino; 10676 struct workhead *wkhd; 10677 { 10678 struct worklist *wk, *wkn; 10679 struct inodedep *inodedep; 10680 struct ufsmount *ump; 10681 uint8_t *inosused; 10682 struct cg *cgp; 10683 struct fs *fs; 10684 10685 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 10686 ("softdep_setup_inofree called on non-softdep filesystem")); 10687 ump = VFSTOUFS(mp); 10688 ACQUIRE_LOCK(ump); 10689 fs = ump->um_fs; 10690 cgp = (struct cg *)bp->b_data; 10691 inosused = cg_inosused(cgp); 10692 if (isset(inosused, ino % fs->fs_ipg)) 10693 panic("softdep_setup_inofree: inode %ju not freed.", 10694 (uintmax_t)ino); 10695 if (inodedep_lookup(mp, ino, 0, &inodedep)) 10696 panic("softdep_setup_inofree: ino %ju has existing inodedep %p", 10697 (uintmax_t)ino, inodedep); 10698 if (wkhd) { 10699 LIST_FOREACH_SAFE(wk, wkhd, wk_list, wkn) { 10700 if (wk->wk_type != D_JADDREF) 10701 continue; 10702 WORKLIST_REMOVE(wk); 10703 /* 10704 * We can free immediately even if the jaddref 10705 * isn't attached in a background write as now 10706 * the bitmaps are reconciled. 10707 */ 10708 wk->wk_state |= COMPLETE | ATTACHED; 10709 free_jaddref(WK_JADDREF(wk)); 10710 } 10711 jwork_move(&bp->b_dep, wkhd); 10712 } 10713 FREE_LOCK(ump); 10714 } 10715 10716 10717 /* 10718 * Called via ffs_blkfree() after a set of frags has been cleared from a cg 10719 * map. Any dependencies waiting for the write to clear are added to the 10720 * buf's list and any jnewblks that are being canceled are discarded 10721 * immediately. 10722 */ 10723 void 10724 softdep_setup_blkfree(mp, bp, blkno, frags, wkhd) 10725 struct mount *mp; 10726 struct buf *bp; 10727 ufs2_daddr_t blkno; 10728 int frags; 10729 struct workhead *wkhd; 10730 { 10731 struct bmsafemap *bmsafemap; 10732 struct jnewblk *jnewblk; 10733 struct ufsmount *ump; 10734 struct worklist *wk; 10735 struct fs *fs; 10736 #ifdef SUJ_DEBUG 10737 uint8_t *blksfree; 10738 struct cg *cgp; 10739 ufs2_daddr_t jstart; 10740 ufs2_daddr_t jend; 10741 ufs2_daddr_t end; 10742 long bno; 10743 int i; 10744 #endif 10745 10746 CTR3(KTR_SUJ, 10747 "softdep_setup_blkfree: blkno %jd frags %d wk head %p", 10748 blkno, frags, wkhd); 10749 10750 ump = VFSTOUFS(mp); 10751 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 10752 ("softdep_setup_blkfree called on non-softdep filesystem")); 10753 ACQUIRE_LOCK(ump); 10754 /* Lookup the bmsafemap so we track when it is dirty. */ 10755 fs = ump->um_fs; 10756 bmsafemap = bmsafemap_lookup(mp, bp, dtog(fs, blkno), NULL); 10757 /* 10758 * Detach any jnewblks which have been canceled. They must linger 10759 * until the bitmap is cleared again by ffs_blkfree() to prevent 10760 * an unjournaled allocation from hitting the disk. 10761 */ 10762 if (wkhd) { 10763 while ((wk = LIST_FIRST(wkhd)) != NULL) { 10764 CTR2(KTR_SUJ, 10765 "softdep_setup_blkfree: blkno %jd wk type %d", 10766 blkno, wk->wk_type); 10767 WORKLIST_REMOVE(wk); 10768 if (wk->wk_type != D_JNEWBLK) { 10769 WORKLIST_INSERT(&bmsafemap->sm_freehd, wk); 10770 continue; 10771 } 10772 jnewblk = WK_JNEWBLK(wk); 10773 KASSERT(jnewblk->jn_state & GOINGAWAY, 10774 ("softdep_setup_blkfree: jnewblk not canceled.")); 10775 #ifdef SUJ_DEBUG 10776 /* 10777 * Assert that this block is free in the bitmap 10778 * before we discard the jnewblk. 10779 */ 10780 cgp = (struct cg *)bp->b_data; 10781 blksfree = cg_blksfree(cgp); 10782 bno = dtogd(fs, jnewblk->jn_blkno); 10783 for (i = jnewblk->jn_oldfrags; 10784 i < jnewblk->jn_frags; i++) { 10785 if (isset(blksfree, bno + i)) 10786 continue; 10787 panic("softdep_setup_blkfree: not free"); 10788 } 10789 #endif 10790 /* 10791 * Even if it's not attached we can free immediately 10792 * as the new bitmap is correct. 10793 */ 10794 wk->wk_state |= COMPLETE | ATTACHED; 10795 free_jnewblk(jnewblk); 10796 } 10797 } 10798 10799 #ifdef SUJ_DEBUG 10800 /* 10801 * Assert that we are not freeing a block which has an outstanding 10802 * allocation dependency. 10803 */ 10804 fs = VFSTOUFS(mp)->um_fs; 10805 bmsafemap = bmsafemap_lookup(mp, bp, dtog(fs, blkno), NULL); 10806 end = blkno + frags; 10807 LIST_FOREACH(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps) { 10808 /* 10809 * Don't match against blocks that will be freed when the 10810 * background write is done. 10811 */ 10812 if ((jnewblk->jn_state & (ATTACHED | COMPLETE | DEPCOMPLETE)) == 10813 (COMPLETE | DEPCOMPLETE)) 10814 continue; 10815 jstart = jnewblk->jn_blkno + jnewblk->jn_oldfrags; 10816 jend = jnewblk->jn_blkno + jnewblk->jn_frags; 10817 if ((blkno >= jstart && blkno < jend) || 10818 (end > jstart && end <= jend)) { 10819 printf("state 0x%X %jd - %d %d dep %p\n", 10820 jnewblk->jn_state, jnewblk->jn_blkno, 10821 jnewblk->jn_oldfrags, jnewblk->jn_frags, 10822 jnewblk->jn_dep); 10823 panic("softdep_setup_blkfree: " 10824 "%jd-%jd(%d) overlaps with %jd-%jd", 10825 blkno, end, frags, jstart, jend); 10826 } 10827 } 10828 #endif 10829 FREE_LOCK(ump); 10830 } 10831 10832 /* 10833 * Revert a block allocation when the journal record that describes it 10834 * is not yet written. 10835 */ 10836 static int 10837 jnewblk_rollback(jnewblk, fs, cgp, blksfree) 10838 struct jnewblk *jnewblk; 10839 struct fs *fs; 10840 struct cg *cgp; 10841 uint8_t *blksfree; 10842 { 10843 ufs1_daddr_t fragno; 10844 long cgbno, bbase; 10845 int frags, blk; 10846 int i; 10847 10848 frags = 0; 10849 cgbno = dtogd(fs, jnewblk->jn_blkno); 10850 /* 10851 * We have to test which frags need to be rolled back. We may 10852 * be operating on a stale copy when doing background writes. 10853 */ 10854 for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; i++) 10855 if (isclr(blksfree, cgbno + i)) 10856 frags++; 10857 if (frags == 0) 10858 return (0); 10859 /* 10860 * This is mostly ffs_blkfree() sans some validation and 10861 * superblock updates. 10862 */ 10863 if (frags == fs->fs_frag) { 10864 fragno = fragstoblks(fs, cgbno); 10865 ffs_setblock(fs, blksfree, fragno); 10866 ffs_clusteracct(fs, cgp, fragno, 1); 10867 cgp->cg_cs.cs_nbfree++; 10868 } else { 10869 cgbno += jnewblk->jn_oldfrags; 10870 bbase = cgbno - fragnum(fs, cgbno); 10871 /* Decrement the old frags. */ 10872 blk = blkmap(fs, blksfree, bbase); 10873 ffs_fragacct(fs, blk, cgp->cg_frsum, -1); 10874 /* Deallocate the fragment */ 10875 for (i = 0; i < frags; i++) 10876 setbit(blksfree, cgbno + i); 10877 cgp->cg_cs.cs_nffree += frags; 10878 /* Add back in counts associated with the new frags */ 10879 blk = blkmap(fs, blksfree, bbase); 10880 ffs_fragacct(fs, blk, cgp->cg_frsum, 1); 10881 /* If a complete block has been reassembled, account for it. */ 10882 fragno = fragstoblks(fs, bbase); 10883 if (ffs_isblock(fs, blksfree, fragno)) { 10884 cgp->cg_cs.cs_nffree -= fs->fs_frag; 10885 ffs_clusteracct(fs, cgp, fragno, 1); 10886 cgp->cg_cs.cs_nbfree++; 10887 } 10888 } 10889 stat_jnewblk++; 10890 jnewblk->jn_state &= ~ATTACHED; 10891 jnewblk->jn_state |= UNDONE; 10892 10893 return (frags); 10894 } 10895 10896 static void 10897 initiate_write_bmsafemap(bmsafemap, bp) 10898 struct bmsafemap *bmsafemap; 10899 struct buf *bp; /* The cg block. */ 10900 { 10901 struct jaddref *jaddref; 10902 struct jnewblk *jnewblk; 10903 uint8_t *inosused; 10904 uint8_t *blksfree; 10905 struct cg *cgp; 10906 struct fs *fs; 10907 ino_t ino; 10908 10909 /* 10910 * If this is a background write, we did this at the time that 10911 * the copy was made, so do not need to do it again. 10912 */ 10913 if (bmsafemap->sm_state & IOSTARTED) 10914 return; 10915 bmsafemap->sm_state |= IOSTARTED; 10916 /* 10917 * Clear any inode allocations which are pending journal writes. 10918 */ 10919 if (LIST_FIRST(&bmsafemap->sm_jaddrefhd) != NULL) { 10920 cgp = (struct cg *)bp->b_data; 10921 fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs; 10922 inosused = cg_inosused(cgp); 10923 LIST_FOREACH(jaddref, &bmsafemap->sm_jaddrefhd, ja_bmdeps) { 10924 ino = jaddref->ja_ino % fs->fs_ipg; 10925 if (isset(inosused, ino)) { 10926 if ((jaddref->ja_mode & IFMT) == IFDIR) 10927 cgp->cg_cs.cs_ndir--; 10928 cgp->cg_cs.cs_nifree++; 10929 clrbit(inosused, ino); 10930 jaddref->ja_state &= ~ATTACHED; 10931 jaddref->ja_state |= UNDONE; 10932 stat_jaddref++; 10933 } else 10934 panic("initiate_write_bmsafemap: inode %ju " 10935 "marked free", (uintmax_t)jaddref->ja_ino); 10936 } 10937 } 10938 /* 10939 * Clear any block allocations which are pending journal writes. 10940 */ 10941 if (LIST_FIRST(&bmsafemap->sm_jnewblkhd) != NULL) { 10942 cgp = (struct cg *)bp->b_data; 10943 fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs; 10944 blksfree = cg_blksfree(cgp); 10945 LIST_FOREACH(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps) { 10946 if (jnewblk_rollback(jnewblk, fs, cgp, blksfree)) 10947 continue; 10948 panic("initiate_write_bmsafemap: block %jd " 10949 "marked free", jnewblk->jn_blkno); 10950 } 10951 } 10952 /* 10953 * Move allocation lists to the written lists so they can be 10954 * cleared once the block write is complete. 10955 */ 10956 LIST_SWAP(&bmsafemap->sm_inodedephd, &bmsafemap->sm_inodedepwr, 10957 inodedep, id_deps); 10958 LIST_SWAP(&bmsafemap->sm_newblkhd, &bmsafemap->sm_newblkwr, 10959 newblk, nb_deps); 10960 LIST_SWAP(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr, worklist, 10961 wk_list); 10962 } 10963 10964 /* 10965 * This routine is called during the completion interrupt 10966 * service routine for a disk write (from the procedure called 10967 * by the device driver to inform the filesystem caches of 10968 * a request completion). It should be called early in this 10969 * procedure, before the block is made available to other 10970 * processes or other routines are called. 10971 * 10972 */ 10973 static void 10974 softdep_disk_write_complete(bp) 10975 struct buf *bp; /* describes the completed disk write */ 10976 { 10977 struct worklist *wk; 10978 struct worklist *owk; 10979 struct ufsmount *ump; 10980 struct workhead reattach; 10981 struct freeblks *freeblks; 10982 struct buf *sbp; 10983 10984 /* 10985 * If an error occurred while doing the write, then the data 10986 * has not hit the disk and the dependencies cannot be processed. 10987 * But we do have to go through and roll forward any dependencies 10988 * that were rolled back before the disk write. 10989 */ 10990 if ((bp->b_ioflags & BIO_ERROR) != 0 && (bp->b_flags & B_INVAL) == 0) { 10991 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 10992 switch (wk->wk_type) { 10993 10994 case D_PAGEDEP: 10995 handle_written_filepage(WK_PAGEDEP(wk), bp, 0); 10996 continue; 10997 10998 case D_INODEDEP: 10999 handle_written_inodeblock(WK_INODEDEP(wk), 11000 bp, 0); 11001 continue; 11002 11003 case D_BMSAFEMAP: 11004 handle_written_bmsafemap(WK_BMSAFEMAP(wk), 11005 bp, 0); 11006 continue; 11007 11008 case D_INDIRDEP: 11009 handle_written_indirdep(WK_INDIRDEP(wk), 11010 bp, &sbp, 0); 11011 continue; 11012 default: 11013 /* nothing to roll forward */ 11014 continue; 11015 } 11016 } 11017 return; 11018 } 11019 if ((wk = LIST_FIRST(&bp->b_dep)) == NULL) 11020 return; 11021 ump = VFSTOUFS(wk->wk_mp); 11022 LIST_INIT(&reattach); 11023 /* 11024 * This lock must not be released anywhere in this code segment. 11025 */ 11026 sbp = NULL; 11027 owk = NULL; 11028 ACQUIRE_LOCK(ump); 11029 while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) { 11030 WORKLIST_REMOVE(wk); 11031 atomic_add_long(&dep_write[wk->wk_type], 1); 11032 if (wk == owk) 11033 panic("duplicate worklist: %p\n", wk); 11034 owk = wk; 11035 switch (wk->wk_type) { 11036 11037 case D_PAGEDEP: 11038 if (handle_written_filepage(WK_PAGEDEP(wk), bp, 11039 WRITESUCCEEDED)) 11040 WORKLIST_INSERT(&reattach, wk); 11041 continue; 11042 11043 case D_INODEDEP: 11044 if (handle_written_inodeblock(WK_INODEDEP(wk), bp, 11045 WRITESUCCEEDED)) 11046 WORKLIST_INSERT(&reattach, wk); 11047 continue; 11048 11049 case D_BMSAFEMAP: 11050 if (handle_written_bmsafemap(WK_BMSAFEMAP(wk), bp, 11051 WRITESUCCEEDED)) 11052 WORKLIST_INSERT(&reattach, wk); 11053 continue; 11054 11055 case D_MKDIR: 11056 handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY); 11057 continue; 11058 11059 case D_ALLOCDIRECT: 11060 wk->wk_state |= COMPLETE; 11061 handle_allocdirect_partdone(WK_ALLOCDIRECT(wk), NULL); 11062 continue; 11063 11064 case D_ALLOCINDIR: 11065 wk->wk_state |= COMPLETE; 11066 handle_allocindir_partdone(WK_ALLOCINDIR(wk)); 11067 continue; 11068 11069 case D_INDIRDEP: 11070 if (handle_written_indirdep(WK_INDIRDEP(wk), bp, &sbp, 11071 WRITESUCCEEDED)) 11072 WORKLIST_INSERT(&reattach, wk); 11073 continue; 11074 11075 case D_FREEBLKS: 11076 wk->wk_state |= COMPLETE; 11077 freeblks = WK_FREEBLKS(wk); 11078 if ((wk->wk_state & ALLCOMPLETE) == ALLCOMPLETE && 11079 LIST_EMPTY(&freeblks->fb_jblkdephd)) 11080 add_to_worklist(wk, WK_NODELAY); 11081 continue; 11082 11083 case D_FREEWORK: 11084 handle_written_freework(WK_FREEWORK(wk)); 11085 break; 11086 11087 case D_JSEGDEP: 11088 free_jsegdep(WK_JSEGDEP(wk)); 11089 continue; 11090 11091 case D_JSEG: 11092 handle_written_jseg(WK_JSEG(wk), bp); 11093 continue; 11094 11095 case D_SBDEP: 11096 if (handle_written_sbdep(WK_SBDEP(wk), bp)) 11097 WORKLIST_INSERT(&reattach, wk); 11098 continue; 11099 11100 case D_FREEDEP: 11101 free_freedep(WK_FREEDEP(wk)); 11102 continue; 11103 11104 default: 11105 panic("handle_disk_write_complete: Unknown type %s", 11106 TYPENAME(wk->wk_type)); 11107 /* NOTREACHED */ 11108 } 11109 } 11110 /* 11111 * Reattach any requests that must be redone. 11112 */ 11113 while ((wk = LIST_FIRST(&reattach)) != NULL) { 11114 WORKLIST_REMOVE(wk); 11115 WORKLIST_INSERT(&bp->b_dep, wk); 11116 } 11117 FREE_LOCK(ump); 11118 if (sbp) 11119 brelse(sbp); 11120 } 11121 11122 /* 11123 * Called from within softdep_disk_write_complete above. Note that 11124 * this routine is always called from interrupt level with further 11125 * splbio interrupts blocked. 11126 */ 11127 static void 11128 handle_allocdirect_partdone(adp, wkhd) 11129 struct allocdirect *adp; /* the completed allocdirect */ 11130 struct workhead *wkhd; /* Work to do when inode is writtne. */ 11131 { 11132 struct allocdirectlst *listhead; 11133 struct allocdirect *listadp; 11134 struct inodedep *inodedep; 11135 long bsize; 11136 11137 if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE) 11138 return; 11139 /* 11140 * The on-disk inode cannot claim to be any larger than the last 11141 * fragment that has been written. Otherwise, the on-disk inode 11142 * might have fragments that were not the last block in the file 11143 * which would corrupt the filesystem. Thus, we cannot free any 11144 * allocdirects after one whose ad_oldblkno claims a fragment as 11145 * these blocks must be rolled back to zero before writing the inode. 11146 * We check the currently active set of allocdirects in id_inoupdt 11147 * or id_extupdt as appropriate. 11148 */ 11149 inodedep = adp->ad_inodedep; 11150 bsize = inodedep->id_fs->fs_bsize; 11151 if (adp->ad_state & EXTDATA) 11152 listhead = &inodedep->id_extupdt; 11153 else 11154 listhead = &inodedep->id_inoupdt; 11155 TAILQ_FOREACH(listadp, listhead, ad_next) { 11156 /* found our block */ 11157 if (listadp == adp) 11158 break; 11159 /* continue if ad_oldlbn is not a fragment */ 11160 if (listadp->ad_oldsize == 0 || 11161 listadp->ad_oldsize == bsize) 11162 continue; 11163 /* hit a fragment */ 11164 return; 11165 } 11166 /* 11167 * If we have reached the end of the current list without 11168 * finding the just finished dependency, then it must be 11169 * on the future dependency list. Future dependencies cannot 11170 * be freed until they are moved to the current list. 11171 */ 11172 if (listadp == NULL) { 11173 #ifdef DEBUG 11174 if (adp->ad_state & EXTDATA) 11175 listhead = &inodedep->id_newextupdt; 11176 else 11177 listhead = &inodedep->id_newinoupdt; 11178 TAILQ_FOREACH(listadp, listhead, ad_next) 11179 /* found our block */ 11180 if (listadp == adp) 11181 break; 11182 if (listadp == NULL) 11183 panic("handle_allocdirect_partdone: lost dep"); 11184 #endif /* DEBUG */ 11185 return; 11186 } 11187 /* 11188 * If we have found the just finished dependency, then queue 11189 * it along with anything that follows it that is complete. 11190 * Since the pointer has not yet been written in the inode 11191 * as the dependency prevents it, place the allocdirect on the 11192 * bufwait list where it will be freed once the pointer is 11193 * valid. 11194 */ 11195 if (wkhd == NULL) 11196 wkhd = &inodedep->id_bufwait; 11197 for (; adp; adp = listadp) { 11198 listadp = TAILQ_NEXT(adp, ad_next); 11199 if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE) 11200 return; 11201 TAILQ_REMOVE(listhead, adp, ad_next); 11202 WORKLIST_INSERT(wkhd, &adp->ad_block.nb_list); 11203 } 11204 } 11205 11206 /* 11207 * Called from within softdep_disk_write_complete above. This routine 11208 * completes successfully written allocindirs. 11209 */ 11210 static void 11211 handle_allocindir_partdone(aip) 11212 struct allocindir *aip; /* the completed allocindir */ 11213 { 11214 struct indirdep *indirdep; 11215 11216 if ((aip->ai_state & ALLCOMPLETE) != ALLCOMPLETE) 11217 return; 11218 indirdep = aip->ai_indirdep; 11219 LIST_REMOVE(aip, ai_next); 11220 /* 11221 * Don't set a pointer while the buffer is undergoing IO or while 11222 * we have active truncations. 11223 */ 11224 if (indirdep->ir_state & UNDONE || !TAILQ_EMPTY(&indirdep->ir_trunc)) { 11225 LIST_INSERT_HEAD(&indirdep->ir_donehd, aip, ai_next); 11226 return; 11227 } 11228 if (indirdep->ir_state & UFS1FMT) 11229 ((ufs1_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] = 11230 aip->ai_newblkno; 11231 else 11232 ((ufs2_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] = 11233 aip->ai_newblkno; 11234 /* 11235 * Await the pointer write before freeing the allocindir. 11236 */ 11237 LIST_INSERT_HEAD(&indirdep->ir_writehd, aip, ai_next); 11238 } 11239 11240 /* 11241 * Release segments held on a jwork list. 11242 */ 11243 static void 11244 handle_jwork(wkhd) 11245 struct workhead *wkhd; 11246 { 11247 struct worklist *wk; 11248 11249 while ((wk = LIST_FIRST(wkhd)) != NULL) { 11250 WORKLIST_REMOVE(wk); 11251 switch (wk->wk_type) { 11252 case D_JSEGDEP: 11253 free_jsegdep(WK_JSEGDEP(wk)); 11254 continue; 11255 case D_FREEDEP: 11256 free_freedep(WK_FREEDEP(wk)); 11257 continue; 11258 case D_FREEFRAG: 11259 rele_jseg(WK_JSEG(WK_FREEFRAG(wk)->ff_jdep)); 11260 WORKITEM_FREE(wk, D_FREEFRAG); 11261 continue; 11262 case D_FREEWORK: 11263 handle_written_freework(WK_FREEWORK(wk)); 11264 continue; 11265 default: 11266 panic("handle_jwork: Unknown type %s\n", 11267 TYPENAME(wk->wk_type)); 11268 } 11269 } 11270 } 11271 11272 /* 11273 * Handle the bufwait list on an inode when it is safe to release items 11274 * held there. This normally happens after an inode block is written but 11275 * may be delayed and handled later if there are pending journal items that 11276 * are not yet safe to be released. 11277 */ 11278 static struct freefile * 11279 handle_bufwait(inodedep, refhd) 11280 struct inodedep *inodedep; 11281 struct workhead *refhd; 11282 { 11283 struct jaddref *jaddref; 11284 struct freefile *freefile; 11285 struct worklist *wk; 11286 11287 freefile = NULL; 11288 while ((wk = LIST_FIRST(&inodedep->id_bufwait)) != NULL) { 11289 WORKLIST_REMOVE(wk); 11290 switch (wk->wk_type) { 11291 case D_FREEFILE: 11292 /* 11293 * We defer adding freefile to the worklist 11294 * until all other additions have been made to 11295 * ensure that it will be done after all the 11296 * old blocks have been freed. 11297 */ 11298 if (freefile != NULL) 11299 panic("handle_bufwait: freefile"); 11300 freefile = WK_FREEFILE(wk); 11301 continue; 11302 11303 case D_MKDIR: 11304 handle_written_mkdir(WK_MKDIR(wk), MKDIR_PARENT); 11305 continue; 11306 11307 case D_DIRADD: 11308 diradd_inode_written(WK_DIRADD(wk), inodedep); 11309 continue; 11310 11311 case D_FREEFRAG: 11312 wk->wk_state |= COMPLETE; 11313 if ((wk->wk_state & ALLCOMPLETE) == ALLCOMPLETE) 11314 add_to_worklist(wk, 0); 11315 continue; 11316 11317 case D_DIRREM: 11318 wk->wk_state |= COMPLETE; 11319 add_to_worklist(wk, 0); 11320 continue; 11321 11322 case D_ALLOCDIRECT: 11323 case D_ALLOCINDIR: 11324 free_newblk(WK_NEWBLK(wk)); 11325 continue; 11326 11327 case D_JNEWBLK: 11328 wk->wk_state |= COMPLETE; 11329 free_jnewblk(WK_JNEWBLK(wk)); 11330 continue; 11331 11332 /* 11333 * Save freed journal segments and add references on 11334 * the supplied list which will delay their release 11335 * until the cg bitmap is cleared on disk. 11336 */ 11337 case D_JSEGDEP: 11338 if (refhd == NULL) 11339 free_jsegdep(WK_JSEGDEP(wk)); 11340 else 11341 WORKLIST_INSERT(refhd, wk); 11342 continue; 11343 11344 case D_JADDREF: 11345 jaddref = WK_JADDREF(wk); 11346 TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref, 11347 if_deps); 11348 /* 11349 * Transfer any jaddrefs to the list to be freed with 11350 * the bitmap if we're handling a removed file. 11351 */ 11352 if (refhd == NULL) { 11353 wk->wk_state |= COMPLETE; 11354 free_jaddref(jaddref); 11355 } else 11356 WORKLIST_INSERT(refhd, wk); 11357 continue; 11358 11359 default: 11360 panic("handle_bufwait: Unknown type %p(%s)", 11361 wk, TYPENAME(wk->wk_type)); 11362 /* NOTREACHED */ 11363 } 11364 } 11365 return (freefile); 11366 } 11367 /* 11368 * Called from within softdep_disk_write_complete above to restore 11369 * in-memory inode block contents to their most up-to-date state. Note 11370 * that this routine is always called from interrupt level with further 11371 * interrupts from this device blocked. 11372 * 11373 * If the write did not succeed, we will do all the roll-forward 11374 * operations, but we will not take the actions that will allow its 11375 * dependencies to be processed. 11376 */ 11377 static int 11378 handle_written_inodeblock(inodedep, bp, flags) 11379 struct inodedep *inodedep; 11380 struct buf *bp; /* buffer containing the inode block */ 11381 int flags; 11382 { 11383 struct freefile *freefile; 11384 struct allocdirect *adp, *nextadp; 11385 struct ufs1_dinode *dp1 = NULL; 11386 struct ufs2_dinode *dp2 = NULL; 11387 struct workhead wkhd; 11388 int hadchanges, fstype; 11389 ino_t freelink; 11390 11391 LIST_INIT(&wkhd); 11392 hadchanges = 0; 11393 freefile = NULL; 11394 if ((inodedep->id_state & IOSTARTED) == 0) 11395 panic("handle_written_inodeblock: not started"); 11396 inodedep->id_state &= ~IOSTARTED; 11397 if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC) { 11398 fstype = UFS1; 11399 dp1 = (struct ufs1_dinode *)bp->b_data + 11400 ino_to_fsbo(inodedep->id_fs, inodedep->id_ino); 11401 freelink = dp1->di_freelink; 11402 } else { 11403 fstype = UFS2; 11404 dp2 = (struct ufs2_dinode *)bp->b_data + 11405 ino_to_fsbo(inodedep->id_fs, inodedep->id_ino); 11406 freelink = dp2->di_freelink; 11407 } 11408 /* 11409 * Leave this inodeblock dirty until it's in the list. 11410 */ 11411 if ((inodedep->id_state & (UNLINKED | UNLINKONLIST)) == UNLINKED && 11412 (flags & WRITESUCCEEDED)) { 11413 struct inodedep *inon; 11414 11415 inon = TAILQ_NEXT(inodedep, id_unlinked); 11416 if ((inon == NULL && freelink == 0) || 11417 (inon && inon->id_ino == freelink)) { 11418 if (inon) 11419 inon->id_state |= UNLINKPREV; 11420 inodedep->id_state |= UNLINKNEXT; 11421 } 11422 hadchanges = 1; 11423 } 11424 /* 11425 * If we had to rollback the inode allocation because of 11426 * bitmaps being incomplete, then simply restore it. 11427 * Keep the block dirty so that it will not be reclaimed until 11428 * all associated dependencies have been cleared and the 11429 * corresponding updates written to disk. 11430 */ 11431 if (inodedep->id_savedino1 != NULL) { 11432 hadchanges = 1; 11433 if (fstype == UFS1) 11434 *dp1 = *inodedep->id_savedino1; 11435 else 11436 *dp2 = *inodedep->id_savedino2; 11437 free(inodedep->id_savedino1, M_SAVEDINO); 11438 inodedep->id_savedino1 = NULL; 11439 if ((bp->b_flags & B_DELWRI) == 0) 11440 stat_inode_bitmap++; 11441 bdirty(bp); 11442 /* 11443 * If the inode is clear here and GOINGAWAY it will never 11444 * be written. Process the bufwait and clear any pending 11445 * work which may include the freefile. 11446 */ 11447 if (inodedep->id_state & GOINGAWAY) 11448 goto bufwait; 11449 return (1); 11450 } 11451 if (flags & WRITESUCCEEDED) 11452 inodedep->id_state |= COMPLETE; 11453 /* 11454 * Roll forward anything that had to be rolled back before 11455 * the inode could be updated. 11456 */ 11457 for (adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; adp = nextadp) { 11458 nextadp = TAILQ_NEXT(adp, ad_next); 11459 if (adp->ad_state & ATTACHED) 11460 panic("handle_written_inodeblock: new entry"); 11461 if (fstype == UFS1) { 11462 if (adp->ad_offset < UFS_NDADDR) { 11463 if (dp1->di_db[adp->ad_offset]!=adp->ad_oldblkno) 11464 panic("%s %s #%jd mismatch %d != %jd", 11465 "handle_written_inodeblock:", 11466 "direct pointer", 11467 (intmax_t)adp->ad_offset, 11468 dp1->di_db[adp->ad_offset], 11469 (intmax_t)adp->ad_oldblkno); 11470 dp1->di_db[adp->ad_offset] = adp->ad_newblkno; 11471 } else { 11472 if (dp1->di_ib[adp->ad_offset - UFS_NDADDR] != 11473 0) 11474 panic("%s: %s #%jd allocated as %d", 11475 "handle_written_inodeblock", 11476 "indirect pointer", 11477 (intmax_t)adp->ad_offset - 11478 UFS_NDADDR, 11479 dp1->di_ib[adp->ad_offset - 11480 UFS_NDADDR]); 11481 dp1->di_ib[adp->ad_offset - UFS_NDADDR] = 11482 adp->ad_newblkno; 11483 } 11484 } else { 11485 if (adp->ad_offset < UFS_NDADDR) { 11486 if (dp2->di_db[adp->ad_offset]!=adp->ad_oldblkno) 11487 panic("%s: %s #%jd %s %jd != %jd", 11488 "handle_written_inodeblock", 11489 "direct pointer", 11490 (intmax_t)adp->ad_offset, "mismatch", 11491 (intmax_t)dp2->di_db[adp->ad_offset], 11492 (intmax_t)adp->ad_oldblkno); 11493 dp2->di_db[adp->ad_offset] = adp->ad_newblkno; 11494 } else { 11495 if (dp2->di_ib[adp->ad_offset - UFS_NDADDR] != 11496 0) 11497 panic("%s: %s #%jd allocated as %jd", 11498 "handle_written_inodeblock", 11499 "indirect pointer", 11500 (intmax_t)adp->ad_offset - 11501 UFS_NDADDR, 11502 (intmax_t) 11503 dp2->di_ib[adp->ad_offset - 11504 UFS_NDADDR]); 11505 dp2->di_ib[adp->ad_offset - UFS_NDADDR] = 11506 adp->ad_newblkno; 11507 } 11508 } 11509 adp->ad_state &= ~UNDONE; 11510 adp->ad_state |= ATTACHED; 11511 hadchanges = 1; 11512 } 11513 for (adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; adp = nextadp) { 11514 nextadp = TAILQ_NEXT(adp, ad_next); 11515 if (adp->ad_state & ATTACHED) 11516 panic("handle_written_inodeblock: new entry"); 11517 if (dp2->di_extb[adp->ad_offset] != adp->ad_oldblkno) 11518 panic("%s: direct pointers #%jd %s %jd != %jd", 11519 "handle_written_inodeblock", 11520 (intmax_t)adp->ad_offset, "mismatch", 11521 (intmax_t)dp2->di_extb[adp->ad_offset], 11522 (intmax_t)adp->ad_oldblkno); 11523 dp2->di_extb[adp->ad_offset] = adp->ad_newblkno; 11524 adp->ad_state &= ~UNDONE; 11525 adp->ad_state |= ATTACHED; 11526 hadchanges = 1; 11527 } 11528 if (hadchanges && (bp->b_flags & B_DELWRI) == 0) 11529 stat_direct_blk_ptrs++; 11530 /* 11531 * Reset the file size to its most up-to-date value. 11532 */ 11533 if (inodedep->id_savedsize == -1 || inodedep->id_savedextsize == -1) 11534 panic("handle_written_inodeblock: bad size"); 11535 if (inodedep->id_savednlink > LINK_MAX) 11536 panic("handle_written_inodeblock: Invalid link count " 11537 "%jd for inodedep %p", (uintmax_t)inodedep->id_savednlink, 11538 inodedep); 11539 if (fstype == UFS1) { 11540 if (dp1->di_nlink != inodedep->id_savednlink) { 11541 dp1->di_nlink = inodedep->id_savednlink; 11542 hadchanges = 1; 11543 } 11544 if (dp1->di_size != inodedep->id_savedsize) { 11545 dp1->di_size = inodedep->id_savedsize; 11546 hadchanges = 1; 11547 } 11548 } else { 11549 if (dp2->di_nlink != inodedep->id_savednlink) { 11550 dp2->di_nlink = inodedep->id_savednlink; 11551 hadchanges = 1; 11552 } 11553 if (dp2->di_size != inodedep->id_savedsize) { 11554 dp2->di_size = inodedep->id_savedsize; 11555 hadchanges = 1; 11556 } 11557 if (dp2->di_extsize != inodedep->id_savedextsize) { 11558 dp2->di_extsize = inodedep->id_savedextsize; 11559 hadchanges = 1; 11560 } 11561 } 11562 inodedep->id_savedsize = -1; 11563 inodedep->id_savedextsize = -1; 11564 inodedep->id_savednlink = -1; 11565 /* 11566 * If there were any rollbacks in the inode block, then it must be 11567 * marked dirty so that its will eventually get written back in 11568 * its correct form. 11569 */ 11570 if (hadchanges) 11571 bdirty(bp); 11572 bufwait: 11573 /* 11574 * If the write did not succeed, we have done all the roll-forward 11575 * operations, but we cannot take the actions that will allow its 11576 * dependencies to be processed. 11577 */ 11578 if ((flags & WRITESUCCEEDED) == 0) 11579 return (hadchanges); 11580 /* 11581 * Process any allocdirects that completed during the update. 11582 */ 11583 if ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL) 11584 handle_allocdirect_partdone(adp, &wkhd); 11585 if ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL) 11586 handle_allocdirect_partdone(adp, &wkhd); 11587 /* 11588 * Process deallocations that were held pending until the 11589 * inode had been written to disk. Freeing of the inode 11590 * is delayed until after all blocks have been freed to 11591 * avoid creation of new <vfsid, inum, lbn> triples 11592 * before the old ones have been deleted. Completely 11593 * unlinked inodes are not processed until the unlinked 11594 * inode list is written or the last reference is removed. 11595 */ 11596 if ((inodedep->id_state & (UNLINKED | UNLINKONLIST)) != UNLINKED) { 11597 freefile = handle_bufwait(inodedep, NULL); 11598 if (freefile && !LIST_EMPTY(&wkhd)) { 11599 WORKLIST_INSERT(&wkhd, &freefile->fx_list); 11600 freefile = NULL; 11601 } 11602 } 11603 /* 11604 * Move rolled forward dependency completions to the bufwait list 11605 * now that those that were already written have been processed. 11606 */ 11607 if (!LIST_EMPTY(&wkhd) && hadchanges == 0) 11608 panic("handle_written_inodeblock: bufwait but no changes"); 11609 jwork_move(&inodedep->id_bufwait, &wkhd); 11610 11611 if (freefile != NULL) { 11612 /* 11613 * If the inode is goingaway it was never written. Fake up 11614 * the state here so free_inodedep() can succeed. 11615 */ 11616 if (inodedep->id_state & GOINGAWAY) 11617 inodedep->id_state |= COMPLETE | DEPCOMPLETE; 11618 if (free_inodedep(inodedep) == 0) 11619 panic("handle_written_inodeblock: live inodedep %p", 11620 inodedep); 11621 add_to_worklist(&freefile->fx_list, 0); 11622 return (0); 11623 } 11624 11625 /* 11626 * If no outstanding dependencies, free it. 11627 */ 11628 if (free_inodedep(inodedep) || 11629 (TAILQ_FIRST(&inodedep->id_inoreflst) == 0 && 11630 TAILQ_FIRST(&inodedep->id_inoupdt) == 0 && 11631 TAILQ_FIRST(&inodedep->id_extupdt) == 0 && 11632 LIST_FIRST(&inodedep->id_bufwait) == 0)) 11633 return (0); 11634 return (hadchanges); 11635 } 11636 11637 /* 11638 * Perform needed roll-forwards and kick off any dependencies that 11639 * can now be processed. 11640 * 11641 * If the write did not succeed, we will do all the roll-forward 11642 * operations, but we will not take the actions that will allow its 11643 * dependencies to be processed. 11644 */ 11645 static int 11646 handle_written_indirdep(indirdep, bp, bpp, flags) 11647 struct indirdep *indirdep; 11648 struct buf *bp; 11649 struct buf **bpp; 11650 int flags; 11651 { 11652 struct allocindir *aip; 11653 struct buf *sbp; 11654 int chgs; 11655 11656 if (indirdep->ir_state & GOINGAWAY) 11657 panic("handle_written_indirdep: indirdep gone"); 11658 if ((indirdep->ir_state & IOSTARTED) == 0) 11659 panic("handle_written_indirdep: IO not started"); 11660 chgs = 0; 11661 /* 11662 * If there were rollbacks revert them here. 11663 */ 11664 if (indirdep->ir_saveddata) { 11665 bcopy(indirdep->ir_saveddata, bp->b_data, bp->b_bcount); 11666 if (TAILQ_EMPTY(&indirdep->ir_trunc)) { 11667 free(indirdep->ir_saveddata, M_INDIRDEP); 11668 indirdep->ir_saveddata = NULL; 11669 } 11670 chgs = 1; 11671 } 11672 indirdep->ir_state &= ~(UNDONE | IOSTARTED); 11673 indirdep->ir_state |= ATTACHED; 11674 /* 11675 * If the write did not succeed, we have done all the roll-forward 11676 * operations, but we cannot take the actions that will allow its 11677 * dependencies to be processed. 11678 */ 11679 if ((flags & WRITESUCCEEDED) == 0) { 11680 stat_indir_blk_ptrs++; 11681 bdirty(bp); 11682 return (1); 11683 } 11684 /* 11685 * Move allocindirs with written pointers to the completehd if 11686 * the indirdep's pointer is not yet written. Otherwise 11687 * free them here. 11688 */ 11689 while ((aip = LIST_FIRST(&indirdep->ir_writehd)) != NULL) { 11690 LIST_REMOVE(aip, ai_next); 11691 if ((indirdep->ir_state & DEPCOMPLETE) == 0) { 11692 LIST_INSERT_HEAD(&indirdep->ir_completehd, aip, 11693 ai_next); 11694 newblk_freefrag(&aip->ai_block); 11695 continue; 11696 } 11697 free_newblk(&aip->ai_block); 11698 } 11699 /* 11700 * Move allocindirs that have finished dependency processing from 11701 * the done list to the write list after updating the pointers. 11702 */ 11703 if (TAILQ_EMPTY(&indirdep->ir_trunc)) { 11704 while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != NULL) { 11705 handle_allocindir_partdone(aip); 11706 if (aip == LIST_FIRST(&indirdep->ir_donehd)) 11707 panic("disk_write_complete: not gone"); 11708 chgs = 1; 11709 } 11710 } 11711 /* 11712 * Preserve the indirdep if there were any changes or if it is not 11713 * yet valid on disk. 11714 */ 11715 if (chgs) { 11716 stat_indir_blk_ptrs++; 11717 bdirty(bp); 11718 return (1); 11719 } 11720 /* 11721 * If there were no changes we can discard the savedbp and detach 11722 * ourselves from the buf. We are only carrying completed pointers 11723 * in this case. 11724 */ 11725 sbp = indirdep->ir_savebp; 11726 sbp->b_flags |= B_INVAL | B_NOCACHE; 11727 indirdep->ir_savebp = NULL; 11728 indirdep->ir_bp = NULL; 11729 if (*bpp != NULL) 11730 panic("handle_written_indirdep: bp already exists."); 11731 *bpp = sbp; 11732 /* 11733 * The indirdep may not be freed until its parent points at it. 11734 */ 11735 if (indirdep->ir_state & DEPCOMPLETE) 11736 free_indirdep(indirdep); 11737 11738 return (0); 11739 } 11740 11741 /* 11742 * Process a diradd entry after its dependent inode has been written. 11743 * This routine must be called with splbio interrupts blocked. 11744 */ 11745 static void 11746 diradd_inode_written(dap, inodedep) 11747 struct diradd *dap; 11748 struct inodedep *inodedep; 11749 { 11750 11751 dap->da_state |= COMPLETE; 11752 complete_diradd(dap); 11753 WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list); 11754 } 11755 11756 /* 11757 * Returns true if the bmsafemap will have rollbacks when written. Must only 11758 * be called with the per-filesystem lock and the buf lock on the cg held. 11759 */ 11760 static int 11761 bmsafemap_backgroundwrite(bmsafemap, bp) 11762 struct bmsafemap *bmsafemap; 11763 struct buf *bp; 11764 { 11765 int dirty; 11766 11767 LOCK_OWNED(VFSTOUFS(bmsafemap->sm_list.wk_mp)); 11768 dirty = !LIST_EMPTY(&bmsafemap->sm_jaddrefhd) | 11769 !LIST_EMPTY(&bmsafemap->sm_jnewblkhd); 11770 /* 11771 * If we're initiating a background write we need to process the 11772 * rollbacks as they exist now, not as they exist when IO starts. 11773 * No other consumers will look at the contents of the shadowed 11774 * buf so this is safe to do here. 11775 */ 11776 if (bp->b_xflags & BX_BKGRDMARKER) 11777 initiate_write_bmsafemap(bmsafemap, bp); 11778 11779 return (dirty); 11780 } 11781 11782 /* 11783 * Re-apply an allocation when a cg write is complete. 11784 */ 11785 static int 11786 jnewblk_rollforward(jnewblk, fs, cgp, blksfree) 11787 struct jnewblk *jnewblk; 11788 struct fs *fs; 11789 struct cg *cgp; 11790 uint8_t *blksfree; 11791 { 11792 ufs1_daddr_t fragno; 11793 ufs2_daddr_t blkno; 11794 long cgbno, bbase; 11795 int frags, blk; 11796 int i; 11797 11798 frags = 0; 11799 cgbno = dtogd(fs, jnewblk->jn_blkno); 11800 for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; i++) { 11801 if (isclr(blksfree, cgbno + i)) 11802 panic("jnewblk_rollforward: re-allocated fragment"); 11803 frags++; 11804 } 11805 if (frags == fs->fs_frag) { 11806 blkno = fragstoblks(fs, cgbno); 11807 ffs_clrblock(fs, blksfree, (long)blkno); 11808 ffs_clusteracct(fs, cgp, blkno, -1); 11809 cgp->cg_cs.cs_nbfree--; 11810 } else { 11811 bbase = cgbno - fragnum(fs, cgbno); 11812 cgbno += jnewblk->jn_oldfrags; 11813 /* If a complete block had been reassembled, account for it. */ 11814 fragno = fragstoblks(fs, bbase); 11815 if (ffs_isblock(fs, blksfree, fragno)) { 11816 cgp->cg_cs.cs_nffree += fs->fs_frag; 11817 ffs_clusteracct(fs, cgp, fragno, -1); 11818 cgp->cg_cs.cs_nbfree--; 11819 } 11820 /* Decrement the old frags. */ 11821 blk = blkmap(fs, blksfree, bbase); 11822 ffs_fragacct(fs, blk, cgp->cg_frsum, -1); 11823 /* Allocate the fragment */ 11824 for (i = 0; i < frags; i++) 11825 clrbit(blksfree, cgbno + i); 11826 cgp->cg_cs.cs_nffree -= frags; 11827 /* Add back in counts associated with the new frags */ 11828 blk = blkmap(fs, blksfree, bbase); 11829 ffs_fragacct(fs, blk, cgp->cg_frsum, 1); 11830 } 11831 return (frags); 11832 } 11833 11834 /* 11835 * Complete a write to a bmsafemap structure. Roll forward any bitmap 11836 * changes if it's not a background write. Set all written dependencies 11837 * to DEPCOMPLETE and free the structure if possible. 11838 * 11839 * If the write did not succeed, we will do all the roll-forward 11840 * operations, but we will not take the actions that will allow its 11841 * dependencies to be processed. 11842 */ 11843 static int 11844 handle_written_bmsafemap(bmsafemap, bp, flags) 11845 struct bmsafemap *bmsafemap; 11846 struct buf *bp; 11847 int flags; 11848 { 11849 struct newblk *newblk; 11850 struct inodedep *inodedep; 11851 struct jaddref *jaddref, *jatmp; 11852 struct jnewblk *jnewblk, *jntmp; 11853 struct ufsmount *ump; 11854 uint8_t *inosused; 11855 uint8_t *blksfree; 11856 struct cg *cgp; 11857 struct fs *fs; 11858 ino_t ino; 11859 int foreground; 11860 int chgs; 11861 11862 if ((bmsafemap->sm_state & IOSTARTED) == 0) 11863 panic("handle_written_bmsafemap: Not started\n"); 11864 ump = VFSTOUFS(bmsafemap->sm_list.wk_mp); 11865 chgs = 0; 11866 bmsafemap->sm_state &= ~IOSTARTED; 11867 foreground = (bp->b_xflags & BX_BKGRDMARKER) == 0; 11868 /* 11869 * If write was successful, release journal work that was waiting 11870 * on the write. Otherwise move the work back. 11871 */ 11872 if (flags & WRITESUCCEEDED) 11873 handle_jwork(&bmsafemap->sm_freewr); 11874 else 11875 LIST_CONCAT(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr, 11876 worklist, wk_list); 11877 11878 /* 11879 * Restore unwritten inode allocation pending jaddref writes. 11880 */ 11881 if (!LIST_EMPTY(&bmsafemap->sm_jaddrefhd)) { 11882 cgp = (struct cg *)bp->b_data; 11883 fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs; 11884 inosused = cg_inosused(cgp); 11885 LIST_FOREACH_SAFE(jaddref, &bmsafemap->sm_jaddrefhd, 11886 ja_bmdeps, jatmp) { 11887 if ((jaddref->ja_state & UNDONE) == 0) 11888 continue; 11889 ino = jaddref->ja_ino % fs->fs_ipg; 11890 if (isset(inosused, ino)) 11891 panic("handle_written_bmsafemap: " 11892 "re-allocated inode"); 11893 /* Do the roll-forward only if it's a real copy. */ 11894 if (foreground) { 11895 if ((jaddref->ja_mode & IFMT) == IFDIR) 11896 cgp->cg_cs.cs_ndir++; 11897 cgp->cg_cs.cs_nifree--; 11898 setbit(inosused, ino); 11899 chgs = 1; 11900 } 11901 jaddref->ja_state &= ~UNDONE; 11902 jaddref->ja_state |= ATTACHED; 11903 free_jaddref(jaddref); 11904 } 11905 } 11906 /* 11907 * Restore any block allocations which are pending journal writes. 11908 */ 11909 if (LIST_FIRST(&bmsafemap->sm_jnewblkhd) != NULL) { 11910 cgp = (struct cg *)bp->b_data; 11911 fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs; 11912 blksfree = cg_blksfree(cgp); 11913 LIST_FOREACH_SAFE(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps, 11914 jntmp) { 11915 if ((jnewblk->jn_state & UNDONE) == 0) 11916 continue; 11917 /* Do the roll-forward only if it's a real copy. */ 11918 if (foreground && 11919 jnewblk_rollforward(jnewblk, fs, cgp, blksfree)) 11920 chgs = 1; 11921 jnewblk->jn_state &= ~(UNDONE | NEWBLOCK); 11922 jnewblk->jn_state |= ATTACHED; 11923 free_jnewblk(jnewblk); 11924 } 11925 } 11926 /* 11927 * If the write did not succeed, we have done all the roll-forward 11928 * operations, but we cannot take the actions that will allow its 11929 * dependencies to be processed. 11930 */ 11931 if ((flags & WRITESUCCEEDED) == 0) { 11932 LIST_CONCAT(&bmsafemap->sm_newblkhd, &bmsafemap->sm_newblkwr, 11933 newblk, nb_deps); 11934 LIST_CONCAT(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr, 11935 worklist, wk_list); 11936 if (foreground) 11937 bdirty(bp); 11938 return (1); 11939 } 11940 while ((newblk = LIST_FIRST(&bmsafemap->sm_newblkwr))) { 11941 newblk->nb_state |= DEPCOMPLETE; 11942 newblk->nb_state &= ~ONDEPLIST; 11943 newblk->nb_bmsafemap = NULL; 11944 LIST_REMOVE(newblk, nb_deps); 11945 if (newblk->nb_list.wk_type == D_ALLOCDIRECT) 11946 handle_allocdirect_partdone( 11947 WK_ALLOCDIRECT(&newblk->nb_list), NULL); 11948 else if (newblk->nb_list.wk_type == D_ALLOCINDIR) 11949 handle_allocindir_partdone( 11950 WK_ALLOCINDIR(&newblk->nb_list)); 11951 else if (newblk->nb_list.wk_type != D_NEWBLK) 11952 panic("handle_written_bmsafemap: Unexpected type: %s", 11953 TYPENAME(newblk->nb_list.wk_type)); 11954 } 11955 while ((inodedep = LIST_FIRST(&bmsafemap->sm_inodedepwr)) != NULL) { 11956 inodedep->id_state |= DEPCOMPLETE; 11957 inodedep->id_state &= ~ONDEPLIST; 11958 LIST_REMOVE(inodedep, id_deps); 11959 inodedep->id_bmsafemap = NULL; 11960 } 11961 LIST_REMOVE(bmsafemap, sm_next); 11962 if (chgs == 0 && LIST_EMPTY(&bmsafemap->sm_jaddrefhd) && 11963 LIST_EMPTY(&bmsafemap->sm_jnewblkhd) && 11964 LIST_EMPTY(&bmsafemap->sm_newblkhd) && 11965 LIST_EMPTY(&bmsafemap->sm_inodedephd) && 11966 LIST_EMPTY(&bmsafemap->sm_freehd)) { 11967 LIST_REMOVE(bmsafemap, sm_hash); 11968 WORKITEM_FREE(bmsafemap, D_BMSAFEMAP); 11969 return (0); 11970 } 11971 LIST_INSERT_HEAD(&ump->softdep_dirtycg, bmsafemap, sm_next); 11972 if (foreground) 11973 bdirty(bp); 11974 return (1); 11975 } 11976 11977 /* 11978 * Try to free a mkdir dependency. 11979 */ 11980 static void 11981 complete_mkdir(mkdir) 11982 struct mkdir *mkdir; 11983 { 11984 struct diradd *dap; 11985 11986 if ((mkdir->md_state & ALLCOMPLETE) != ALLCOMPLETE) 11987 return; 11988 LIST_REMOVE(mkdir, md_mkdirs); 11989 dap = mkdir->md_diradd; 11990 dap->da_state &= ~(mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY)); 11991 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0) { 11992 dap->da_state |= DEPCOMPLETE; 11993 complete_diradd(dap); 11994 } 11995 WORKITEM_FREE(mkdir, D_MKDIR); 11996 } 11997 11998 /* 11999 * Handle the completion of a mkdir dependency. 12000 */ 12001 static void 12002 handle_written_mkdir(mkdir, type) 12003 struct mkdir *mkdir; 12004 int type; 12005 { 12006 12007 if ((mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY)) != type) 12008 panic("handle_written_mkdir: bad type"); 12009 mkdir->md_state |= COMPLETE; 12010 complete_mkdir(mkdir); 12011 } 12012 12013 static int 12014 free_pagedep(pagedep) 12015 struct pagedep *pagedep; 12016 { 12017 int i; 12018 12019 if (pagedep->pd_state & NEWBLOCK) 12020 return (0); 12021 if (!LIST_EMPTY(&pagedep->pd_dirremhd)) 12022 return (0); 12023 for (i = 0; i < DAHASHSZ; i++) 12024 if (!LIST_EMPTY(&pagedep->pd_diraddhd[i])) 12025 return (0); 12026 if (!LIST_EMPTY(&pagedep->pd_pendinghd)) 12027 return (0); 12028 if (!LIST_EMPTY(&pagedep->pd_jmvrefhd)) 12029 return (0); 12030 if (pagedep->pd_state & ONWORKLIST) 12031 WORKLIST_REMOVE(&pagedep->pd_list); 12032 LIST_REMOVE(pagedep, pd_hash); 12033 WORKITEM_FREE(pagedep, D_PAGEDEP); 12034 12035 return (1); 12036 } 12037 12038 /* 12039 * Called from within softdep_disk_write_complete above. 12040 * A write operation was just completed. Removed inodes can 12041 * now be freed and associated block pointers may be committed. 12042 * Note that this routine is always called from interrupt level 12043 * with further interrupts from this device blocked. 12044 * 12045 * If the write did not succeed, we will do all the roll-forward 12046 * operations, but we will not take the actions that will allow its 12047 * dependencies to be processed. 12048 */ 12049 static int 12050 handle_written_filepage(pagedep, bp, flags) 12051 struct pagedep *pagedep; 12052 struct buf *bp; /* buffer containing the written page */ 12053 int flags; 12054 { 12055 struct dirrem *dirrem; 12056 struct diradd *dap, *nextdap; 12057 struct direct *ep; 12058 int i, chgs; 12059 12060 if ((pagedep->pd_state & IOSTARTED) == 0) 12061 panic("handle_written_filepage: not started"); 12062 pagedep->pd_state &= ~IOSTARTED; 12063 if ((flags & WRITESUCCEEDED) == 0) 12064 goto rollforward; 12065 /* 12066 * Process any directory removals that have been committed. 12067 */ 12068 while ((dirrem = LIST_FIRST(&pagedep->pd_dirremhd)) != NULL) { 12069 LIST_REMOVE(dirrem, dm_next); 12070 dirrem->dm_state |= COMPLETE; 12071 dirrem->dm_dirinum = pagedep->pd_ino; 12072 KASSERT(LIST_EMPTY(&dirrem->dm_jremrefhd), 12073 ("handle_written_filepage: Journal entries not written.")); 12074 add_to_worklist(&dirrem->dm_list, 0); 12075 } 12076 /* 12077 * Free any directory additions that have been committed. 12078 * If it is a newly allocated block, we have to wait until 12079 * the on-disk directory inode claims the new block. 12080 */ 12081 if ((pagedep->pd_state & NEWBLOCK) == 0) 12082 while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL) 12083 free_diradd(dap, NULL); 12084 rollforward: 12085 /* 12086 * Uncommitted directory entries must be restored. 12087 */ 12088 for (chgs = 0, i = 0; i < DAHASHSZ; i++) { 12089 for (dap = LIST_FIRST(&pagedep->pd_diraddhd[i]); dap; 12090 dap = nextdap) { 12091 nextdap = LIST_NEXT(dap, da_pdlist); 12092 if (dap->da_state & ATTACHED) 12093 panic("handle_written_filepage: attached"); 12094 ep = (struct direct *) 12095 ((char *)bp->b_data + dap->da_offset); 12096 ep->d_ino = dap->da_newinum; 12097 dap->da_state &= ~UNDONE; 12098 dap->da_state |= ATTACHED; 12099 chgs = 1; 12100 /* 12101 * If the inode referenced by the directory has 12102 * been written out, then the dependency can be 12103 * moved to the pending list. 12104 */ 12105 if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) { 12106 LIST_REMOVE(dap, da_pdlist); 12107 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, 12108 da_pdlist); 12109 } 12110 } 12111 } 12112 /* 12113 * If there were any rollbacks in the directory, then it must be 12114 * marked dirty so that its will eventually get written back in 12115 * its correct form. 12116 */ 12117 if (chgs || (flags & WRITESUCCEEDED) == 0) { 12118 if ((bp->b_flags & B_DELWRI) == 0) 12119 stat_dir_entry++; 12120 bdirty(bp); 12121 return (1); 12122 } 12123 /* 12124 * If we are not waiting for a new directory block to be 12125 * claimed by its inode, then the pagedep will be freed. 12126 * Otherwise it will remain to track any new entries on 12127 * the page in case they are fsync'ed. 12128 */ 12129 free_pagedep(pagedep); 12130 return (0); 12131 } 12132 12133 /* 12134 * Writing back in-core inode structures. 12135 * 12136 * The filesystem only accesses an inode's contents when it occupies an 12137 * "in-core" inode structure. These "in-core" structures are separate from 12138 * the page frames used to cache inode blocks. Only the latter are 12139 * transferred to/from the disk. So, when the updated contents of the 12140 * "in-core" inode structure are copied to the corresponding in-memory inode 12141 * block, the dependencies are also transferred. The following procedure is 12142 * called when copying a dirty "in-core" inode to a cached inode block. 12143 */ 12144 12145 /* 12146 * Called when an inode is loaded from disk. If the effective link count 12147 * differed from the actual link count when it was last flushed, then we 12148 * need to ensure that the correct effective link count is put back. 12149 */ 12150 void 12151 softdep_load_inodeblock(ip) 12152 struct inode *ip; /* the "in_core" copy of the inode */ 12153 { 12154 struct inodedep *inodedep; 12155 struct ufsmount *ump; 12156 12157 ump = ITOUMP(ip); 12158 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 12159 ("softdep_load_inodeblock called on non-softdep filesystem")); 12160 /* 12161 * Check for alternate nlink count. 12162 */ 12163 ip->i_effnlink = ip->i_nlink; 12164 ACQUIRE_LOCK(ump); 12165 if (inodedep_lookup(UFSTOVFS(ump), ip->i_number, 0, &inodedep) == 0) { 12166 FREE_LOCK(ump); 12167 return; 12168 } 12169 ip->i_effnlink -= inodedep->id_nlinkdelta; 12170 FREE_LOCK(ump); 12171 } 12172 12173 /* 12174 * This routine is called just before the "in-core" inode 12175 * information is to be copied to the in-memory inode block. 12176 * Recall that an inode block contains several inodes. If 12177 * the force flag is set, then the dependencies will be 12178 * cleared so that the update can always be made. Note that 12179 * the buffer is locked when this routine is called, so we 12180 * will never be in the middle of writing the inode block 12181 * to disk. 12182 */ 12183 void 12184 softdep_update_inodeblock(ip, bp, waitfor) 12185 struct inode *ip; /* the "in_core" copy of the inode */ 12186 struct buf *bp; /* the buffer containing the inode block */ 12187 int waitfor; /* nonzero => update must be allowed */ 12188 { 12189 struct inodedep *inodedep; 12190 struct inoref *inoref; 12191 struct ufsmount *ump; 12192 struct worklist *wk; 12193 struct mount *mp; 12194 struct buf *ibp; 12195 struct fs *fs; 12196 int error; 12197 12198 ump = ITOUMP(ip); 12199 mp = UFSTOVFS(ump); 12200 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 12201 ("softdep_update_inodeblock called on non-softdep filesystem")); 12202 fs = ump->um_fs; 12203 /* 12204 * Preserve the freelink that is on disk. clear_unlinked_inodedep() 12205 * does not have access to the in-core ip so must write directly into 12206 * the inode block buffer when setting freelink. 12207 */ 12208 if (fs->fs_magic == FS_UFS1_MAGIC) 12209 DIP_SET(ip, i_freelink, ((struct ufs1_dinode *)bp->b_data + 12210 ino_to_fsbo(fs, ip->i_number))->di_freelink); 12211 else 12212 DIP_SET(ip, i_freelink, ((struct ufs2_dinode *)bp->b_data + 12213 ino_to_fsbo(fs, ip->i_number))->di_freelink); 12214 /* 12215 * If the effective link count is not equal to the actual link 12216 * count, then we must track the difference in an inodedep while 12217 * the inode is (potentially) tossed out of the cache. Otherwise, 12218 * if there is no existing inodedep, then there are no dependencies 12219 * to track. 12220 */ 12221 ACQUIRE_LOCK(ump); 12222 again: 12223 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) { 12224 FREE_LOCK(ump); 12225 if (ip->i_effnlink != ip->i_nlink) 12226 panic("softdep_update_inodeblock: bad link count"); 12227 return; 12228 } 12229 if (inodedep->id_nlinkdelta != ip->i_nlink - ip->i_effnlink) 12230 panic("softdep_update_inodeblock: bad delta"); 12231 /* 12232 * If we're flushing all dependencies we must also move any waiting 12233 * for journal writes onto the bufwait list prior to I/O. 12234 */ 12235 if (waitfor) { 12236 TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) { 12237 if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY)) 12238 == DEPCOMPLETE) { 12239 jwait(&inoref->if_list, MNT_WAIT); 12240 goto again; 12241 } 12242 } 12243 } 12244 /* 12245 * Changes have been initiated. Anything depending on these 12246 * changes cannot occur until this inode has been written. 12247 */ 12248 inodedep->id_state &= ~COMPLETE; 12249 if ((inodedep->id_state & ONWORKLIST) == 0) 12250 WORKLIST_INSERT(&bp->b_dep, &inodedep->id_list); 12251 /* 12252 * Any new dependencies associated with the incore inode must 12253 * now be moved to the list associated with the buffer holding 12254 * the in-memory copy of the inode. Once merged process any 12255 * allocdirects that are completed by the merger. 12256 */ 12257 merge_inode_lists(&inodedep->id_newinoupdt, &inodedep->id_inoupdt); 12258 if (!TAILQ_EMPTY(&inodedep->id_inoupdt)) 12259 handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_inoupdt), 12260 NULL); 12261 merge_inode_lists(&inodedep->id_newextupdt, &inodedep->id_extupdt); 12262 if (!TAILQ_EMPTY(&inodedep->id_extupdt)) 12263 handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_extupdt), 12264 NULL); 12265 /* 12266 * Now that the inode has been pushed into the buffer, the 12267 * operations dependent on the inode being written to disk 12268 * can be moved to the id_bufwait so that they will be 12269 * processed when the buffer I/O completes. 12270 */ 12271 while ((wk = LIST_FIRST(&inodedep->id_inowait)) != NULL) { 12272 WORKLIST_REMOVE(wk); 12273 WORKLIST_INSERT(&inodedep->id_bufwait, wk); 12274 } 12275 /* 12276 * Newly allocated inodes cannot be written until the bitmap 12277 * that allocates them have been written (indicated by 12278 * DEPCOMPLETE being set in id_state). If we are doing a 12279 * forced sync (e.g., an fsync on a file), we force the bitmap 12280 * to be written so that the update can be done. 12281 */ 12282 if (waitfor == 0) { 12283 FREE_LOCK(ump); 12284 return; 12285 } 12286 retry: 12287 if ((inodedep->id_state & (DEPCOMPLETE | GOINGAWAY)) != 0) { 12288 FREE_LOCK(ump); 12289 return; 12290 } 12291 ibp = inodedep->id_bmsafemap->sm_buf; 12292 ibp = getdirtybuf(ibp, LOCK_PTR(ump), MNT_WAIT); 12293 if (ibp == NULL) { 12294 /* 12295 * If ibp came back as NULL, the dependency could have been 12296 * freed while we slept. Look it up again, and check to see 12297 * that it has completed. 12298 */ 12299 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0) 12300 goto retry; 12301 FREE_LOCK(ump); 12302 return; 12303 } 12304 FREE_LOCK(ump); 12305 if ((error = bwrite(ibp)) != 0) 12306 softdep_error("softdep_update_inodeblock: bwrite", error); 12307 } 12308 12309 /* 12310 * Merge the a new inode dependency list (such as id_newinoupdt) into an 12311 * old inode dependency list (such as id_inoupdt). This routine must be 12312 * called with splbio interrupts blocked. 12313 */ 12314 static void 12315 merge_inode_lists(newlisthead, oldlisthead) 12316 struct allocdirectlst *newlisthead; 12317 struct allocdirectlst *oldlisthead; 12318 { 12319 struct allocdirect *listadp, *newadp; 12320 12321 newadp = TAILQ_FIRST(newlisthead); 12322 for (listadp = TAILQ_FIRST(oldlisthead); listadp && newadp;) { 12323 if (listadp->ad_offset < newadp->ad_offset) { 12324 listadp = TAILQ_NEXT(listadp, ad_next); 12325 continue; 12326 } 12327 TAILQ_REMOVE(newlisthead, newadp, ad_next); 12328 TAILQ_INSERT_BEFORE(listadp, newadp, ad_next); 12329 if (listadp->ad_offset == newadp->ad_offset) { 12330 allocdirect_merge(oldlisthead, newadp, 12331 listadp); 12332 listadp = newadp; 12333 } 12334 newadp = TAILQ_FIRST(newlisthead); 12335 } 12336 while ((newadp = TAILQ_FIRST(newlisthead)) != NULL) { 12337 TAILQ_REMOVE(newlisthead, newadp, ad_next); 12338 TAILQ_INSERT_TAIL(oldlisthead, newadp, ad_next); 12339 } 12340 } 12341 12342 /* 12343 * If we are doing an fsync, then we must ensure that any directory 12344 * entries for the inode have been written after the inode gets to disk. 12345 */ 12346 int 12347 softdep_fsync(vp) 12348 struct vnode *vp; /* the "in_core" copy of the inode */ 12349 { 12350 struct inodedep *inodedep; 12351 struct pagedep *pagedep; 12352 struct inoref *inoref; 12353 struct ufsmount *ump; 12354 struct worklist *wk; 12355 struct diradd *dap; 12356 struct mount *mp; 12357 struct vnode *pvp; 12358 struct inode *ip; 12359 struct buf *bp; 12360 struct fs *fs; 12361 struct thread *td = curthread; 12362 int error, flushparent, pagedep_new_block; 12363 ino_t parentino; 12364 ufs_lbn_t lbn; 12365 12366 ip = VTOI(vp); 12367 mp = vp->v_mount; 12368 ump = VFSTOUFS(mp); 12369 fs = ump->um_fs; 12370 if (MOUNTEDSOFTDEP(mp) == 0) 12371 return (0); 12372 ACQUIRE_LOCK(ump); 12373 restart: 12374 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) { 12375 FREE_LOCK(ump); 12376 return (0); 12377 } 12378 TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) { 12379 if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY)) 12380 == DEPCOMPLETE) { 12381 jwait(&inoref->if_list, MNT_WAIT); 12382 goto restart; 12383 } 12384 } 12385 if (!LIST_EMPTY(&inodedep->id_inowait) || 12386 !TAILQ_EMPTY(&inodedep->id_extupdt) || 12387 !TAILQ_EMPTY(&inodedep->id_newextupdt) || 12388 !TAILQ_EMPTY(&inodedep->id_inoupdt) || 12389 !TAILQ_EMPTY(&inodedep->id_newinoupdt)) 12390 panic("softdep_fsync: pending ops %p", inodedep); 12391 for (error = 0, flushparent = 0; ; ) { 12392 if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) == NULL) 12393 break; 12394 if (wk->wk_type != D_DIRADD) 12395 panic("softdep_fsync: Unexpected type %s", 12396 TYPENAME(wk->wk_type)); 12397 dap = WK_DIRADD(wk); 12398 /* 12399 * Flush our parent if this directory entry has a MKDIR_PARENT 12400 * dependency or is contained in a newly allocated block. 12401 */ 12402 if (dap->da_state & DIRCHG) 12403 pagedep = dap->da_previous->dm_pagedep; 12404 else 12405 pagedep = dap->da_pagedep; 12406 parentino = pagedep->pd_ino; 12407 lbn = pagedep->pd_lbn; 12408 if ((dap->da_state & (MKDIR_BODY | COMPLETE)) != COMPLETE) 12409 panic("softdep_fsync: dirty"); 12410 if ((dap->da_state & MKDIR_PARENT) || 12411 (pagedep->pd_state & NEWBLOCK)) 12412 flushparent = 1; 12413 else 12414 flushparent = 0; 12415 /* 12416 * If we are being fsync'ed as part of vgone'ing this vnode, 12417 * then we will not be able to release and recover the 12418 * vnode below, so we just have to give up on writing its 12419 * directory entry out. It will eventually be written, just 12420 * not now, but then the user was not asking to have it 12421 * written, so we are not breaking any promises. 12422 */ 12423 if (vp->v_iflag & VI_DOOMED) 12424 break; 12425 /* 12426 * We prevent deadlock by always fetching inodes from the 12427 * root, moving down the directory tree. Thus, when fetching 12428 * our parent directory, we first try to get the lock. If 12429 * that fails, we must unlock ourselves before requesting 12430 * the lock on our parent. See the comment in ufs_lookup 12431 * for details on possible races. 12432 */ 12433 FREE_LOCK(ump); 12434 if (ffs_vgetf(mp, parentino, LK_NOWAIT | LK_EXCLUSIVE, &pvp, 12435 FFSV_FORCEINSMQ)) { 12436 error = vfs_busy(mp, MBF_NOWAIT); 12437 if (error != 0) { 12438 vfs_ref(mp); 12439 VOP_UNLOCK(vp, 0); 12440 error = vfs_busy(mp, 0); 12441 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 12442 vfs_rel(mp); 12443 if (error != 0) 12444 return (ENOENT); 12445 if (vp->v_iflag & VI_DOOMED) { 12446 vfs_unbusy(mp); 12447 return (ENOENT); 12448 } 12449 } 12450 VOP_UNLOCK(vp, 0); 12451 error = ffs_vgetf(mp, parentino, LK_EXCLUSIVE, 12452 &pvp, FFSV_FORCEINSMQ); 12453 vfs_unbusy(mp); 12454 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 12455 if (vp->v_iflag & VI_DOOMED) { 12456 if (error == 0) 12457 vput(pvp); 12458 error = ENOENT; 12459 } 12460 if (error != 0) 12461 return (error); 12462 } 12463 /* 12464 * All MKDIR_PARENT dependencies and all the NEWBLOCK pagedeps 12465 * that are contained in direct blocks will be resolved by 12466 * doing a ffs_update. Pagedeps contained in indirect blocks 12467 * may require a complete sync'ing of the directory. So, we 12468 * try the cheap and fast ffs_update first, and if that fails, 12469 * then we do the slower ffs_syncvnode of the directory. 12470 */ 12471 if (flushparent) { 12472 int locked; 12473 12474 if ((error = ffs_update(pvp, 1)) != 0) { 12475 vput(pvp); 12476 return (error); 12477 } 12478 ACQUIRE_LOCK(ump); 12479 locked = 1; 12480 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0) { 12481 if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) != NULL) { 12482 if (wk->wk_type != D_DIRADD) 12483 panic("softdep_fsync: Unexpected type %s", 12484 TYPENAME(wk->wk_type)); 12485 dap = WK_DIRADD(wk); 12486 if (dap->da_state & DIRCHG) 12487 pagedep = dap->da_previous->dm_pagedep; 12488 else 12489 pagedep = dap->da_pagedep; 12490 pagedep_new_block = pagedep->pd_state & NEWBLOCK; 12491 FREE_LOCK(ump); 12492 locked = 0; 12493 if (pagedep_new_block && (error = 12494 ffs_syncvnode(pvp, MNT_WAIT, 0))) { 12495 vput(pvp); 12496 return (error); 12497 } 12498 } 12499 } 12500 if (locked) 12501 FREE_LOCK(ump); 12502 } 12503 /* 12504 * Flush directory page containing the inode's name. 12505 */ 12506 error = bread(pvp, lbn, blksize(fs, VTOI(pvp), lbn), td->td_ucred, 12507 &bp); 12508 if (error == 0) 12509 error = bwrite(bp); 12510 else 12511 brelse(bp); 12512 vput(pvp); 12513 if (error != 0) 12514 return (error); 12515 ACQUIRE_LOCK(ump); 12516 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) 12517 break; 12518 } 12519 FREE_LOCK(ump); 12520 return (0); 12521 } 12522 12523 /* 12524 * Flush all the dirty bitmaps associated with the block device 12525 * before flushing the rest of the dirty blocks so as to reduce 12526 * the number of dependencies that will have to be rolled back. 12527 * 12528 * XXX Unused? 12529 */ 12530 void 12531 softdep_fsync_mountdev(vp) 12532 struct vnode *vp; 12533 { 12534 struct buf *bp, *nbp; 12535 struct worklist *wk; 12536 struct bufobj *bo; 12537 12538 if (!vn_isdisk(vp, NULL)) 12539 panic("softdep_fsync_mountdev: vnode not a disk"); 12540 bo = &vp->v_bufobj; 12541 restart: 12542 BO_LOCK(bo); 12543 TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) { 12544 /* 12545 * If it is already scheduled, skip to the next buffer. 12546 */ 12547 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL)) 12548 continue; 12549 12550 if ((bp->b_flags & B_DELWRI) == 0) 12551 panic("softdep_fsync_mountdev: not dirty"); 12552 /* 12553 * We are only interested in bitmaps with outstanding 12554 * dependencies. 12555 */ 12556 if ((wk = LIST_FIRST(&bp->b_dep)) == NULL || 12557 wk->wk_type != D_BMSAFEMAP || 12558 (bp->b_vflags & BV_BKGRDINPROG)) { 12559 BUF_UNLOCK(bp); 12560 continue; 12561 } 12562 BO_UNLOCK(bo); 12563 bremfree(bp); 12564 (void) bawrite(bp); 12565 goto restart; 12566 } 12567 drain_output(vp); 12568 BO_UNLOCK(bo); 12569 } 12570 12571 /* 12572 * Sync all cylinder groups that were dirty at the time this function is 12573 * called. Newly dirtied cgs will be inserted before the sentinel. This 12574 * is used to flush freedep activity that may be holding up writes to a 12575 * indirect block. 12576 */ 12577 static int 12578 sync_cgs(mp, waitfor) 12579 struct mount *mp; 12580 int waitfor; 12581 { 12582 struct bmsafemap *bmsafemap; 12583 struct bmsafemap *sentinel; 12584 struct ufsmount *ump; 12585 struct buf *bp; 12586 int error; 12587 12588 sentinel = malloc(sizeof(*sentinel), M_BMSAFEMAP, M_ZERO | M_WAITOK); 12589 sentinel->sm_cg = -1; 12590 ump = VFSTOUFS(mp); 12591 error = 0; 12592 ACQUIRE_LOCK(ump); 12593 LIST_INSERT_HEAD(&ump->softdep_dirtycg, sentinel, sm_next); 12594 for (bmsafemap = LIST_NEXT(sentinel, sm_next); bmsafemap != NULL; 12595 bmsafemap = LIST_NEXT(sentinel, sm_next)) { 12596 /* Skip sentinels and cgs with no work to release. */ 12597 if (bmsafemap->sm_cg == -1 || 12598 (LIST_EMPTY(&bmsafemap->sm_freehd) && 12599 LIST_EMPTY(&bmsafemap->sm_freewr))) { 12600 LIST_REMOVE(sentinel, sm_next); 12601 LIST_INSERT_AFTER(bmsafemap, sentinel, sm_next); 12602 continue; 12603 } 12604 /* 12605 * If we don't get the lock and we're waiting try again, if 12606 * not move on to the next buf and try to sync it. 12607 */ 12608 bp = getdirtybuf(bmsafemap->sm_buf, LOCK_PTR(ump), waitfor); 12609 if (bp == NULL && waitfor == MNT_WAIT) 12610 continue; 12611 LIST_REMOVE(sentinel, sm_next); 12612 LIST_INSERT_AFTER(bmsafemap, sentinel, sm_next); 12613 if (bp == NULL) 12614 continue; 12615 FREE_LOCK(ump); 12616 if (waitfor == MNT_NOWAIT) 12617 bawrite(bp); 12618 else 12619 error = bwrite(bp); 12620 ACQUIRE_LOCK(ump); 12621 if (error) 12622 break; 12623 } 12624 LIST_REMOVE(sentinel, sm_next); 12625 FREE_LOCK(ump); 12626 free(sentinel, M_BMSAFEMAP); 12627 return (error); 12628 } 12629 12630 /* 12631 * This routine is called when we are trying to synchronously flush a 12632 * file. This routine must eliminate any filesystem metadata dependencies 12633 * so that the syncing routine can succeed. 12634 */ 12635 int 12636 softdep_sync_metadata(struct vnode *vp) 12637 { 12638 struct inode *ip; 12639 int error; 12640 12641 ip = VTOI(vp); 12642 KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0, 12643 ("softdep_sync_metadata called on non-softdep filesystem")); 12644 /* 12645 * Ensure that any direct block dependencies have been cleared, 12646 * truncations are started, and inode references are journaled. 12647 */ 12648 ACQUIRE_LOCK(VFSTOUFS(vp->v_mount)); 12649 /* 12650 * Write all journal records to prevent rollbacks on devvp. 12651 */ 12652 if (vp->v_type == VCHR) 12653 softdep_flushjournal(vp->v_mount); 12654 error = flush_inodedep_deps(vp, vp->v_mount, ip->i_number); 12655 /* 12656 * Ensure that all truncates are written so we won't find deps on 12657 * indirect blocks. 12658 */ 12659 process_truncates(vp); 12660 FREE_LOCK(VFSTOUFS(vp->v_mount)); 12661 12662 return (error); 12663 } 12664 12665 /* 12666 * This routine is called when we are attempting to sync a buf with 12667 * dependencies. If waitfor is MNT_NOWAIT it attempts to schedule any 12668 * other IO it can but returns EBUSY if the buffer is not yet able to 12669 * be written. Dependencies which will not cause rollbacks will always 12670 * return 0. 12671 */ 12672 int 12673 softdep_sync_buf(struct vnode *vp, struct buf *bp, int waitfor) 12674 { 12675 struct indirdep *indirdep; 12676 struct pagedep *pagedep; 12677 struct allocindir *aip; 12678 struct newblk *newblk; 12679 struct ufsmount *ump; 12680 struct buf *nbp; 12681 struct worklist *wk; 12682 int i, error; 12683 12684 KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0, 12685 ("softdep_sync_buf called on non-softdep filesystem")); 12686 /* 12687 * For VCHR we just don't want to force flush any dependencies that 12688 * will cause rollbacks. 12689 */ 12690 if (vp->v_type == VCHR) { 12691 if (waitfor == MNT_NOWAIT && softdep_count_dependencies(bp, 0)) 12692 return (EBUSY); 12693 return (0); 12694 } 12695 ump = VFSTOUFS(vp->v_mount); 12696 ACQUIRE_LOCK(ump); 12697 /* 12698 * As we hold the buffer locked, none of its dependencies 12699 * will disappear. 12700 */ 12701 error = 0; 12702 top: 12703 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 12704 switch (wk->wk_type) { 12705 12706 case D_ALLOCDIRECT: 12707 case D_ALLOCINDIR: 12708 newblk = WK_NEWBLK(wk); 12709 if (newblk->nb_jnewblk != NULL) { 12710 if (waitfor == MNT_NOWAIT) { 12711 error = EBUSY; 12712 goto out_unlock; 12713 } 12714 jwait(&newblk->nb_jnewblk->jn_list, waitfor); 12715 goto top; 12716 } 12717 if (newblk->nb_state & DEPCOMPLETE || 12718 waitfor == MNT_NOWAIT) 12719 continue; 12720 nbp = newblk->nb_bmsafemap->sm_buf; 12721 nbp = getdirtybuf(nbp, LOCK_PTR(ump), waitfor); 12722 if (nbp == NULL) 12723 goto top; 12724 FREE_LOCK(ump); 12725 if ((error = bwrite(nbp)) != 0) 12726 goto out; 12727 ACQUIRE_LOCK(ump); 12728 continue; 12729 12730 case D_INDIRDEP: 12731 indirdep = WK_INDIRDEP(wk); 12732 if (waitfor == MNT_NOWAIT) { 12733 if (!TAILQ_EMPTY(&indirdep->ir_trunc) || 12734 !LIST_EMPTY(&indirdep->ir_deplisthd)) { 12735 error = EBUSY; 12736 goto out_unlock; 12737 } 12738 } 12739 if (!TAILQ_EMPTY(&indirdep->ir_trunc)) 12740 panic("softdep_sync_buf: truncation pending."); 12741 restart: 12742 LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) { 12743 newblk = (struct newblk *)aip; 12744 if (newblk->nb_jnewblk != NULL) { 12745 jwait(&newblk->nb_jnewblk->jn_list, 12746 waitfor); 12747 goto restart; 12748 } 12749 if (newblk->nb_state & DEPCOMPLETE) 12750 continue; 12751 nbp = newblk->nb_bmsafemap->sm_buf; 12752 nbp = getdirtybuf(nbp, LOCK_PTR(ump), waitfor); 12753 if (nbp == NULL) 12754 goto restart; 12755 FREE_LOCK(ump); 12756 if ((error = bwrite(nbp)) != 0) 12757 goto out; 12758 ACQUIRE_LOCK(ump); 12759 goto restart; 12760 } 12761 continue; 12762 12763 case D_PAGEDEP: 12764 /* 12765 * Only flush directory entries in synchronous passes. 12766 */ 12767 if (waitfor != MNT_WAIT) { 12768 error = EBUSY; 12769 goto out_unlock; 12770 } 12771 /* 12772 * While syncing snapshots, we must allow recursive 12773 * lookups. 12774 */ 12775 BUF_AREC(bp); 12776 /* 12777 * We are trying to sync a directory that may 12778 * have dependencies on both its own metadata 12779 * and/or dependencies on the inodes of any 12780 * recently allocated files. We walk its diradd 12781 * lists pushing out the associated inode. 12782 */ 12783 pagedep = WK_PAGEDEP(wk); 12784 for (i = 0; i < DAHASHSZ; i++) { 12785 if (LIST_FIRST(&pagedep->pd_diraddhd[i]) == 0) 12786 continue; 12787 if ((error = flush_pagedep_deps(vp, wk->wk_mp, 12788 &pagedep->pd_diraddhd[i]))) { 12789 BUF_NOREC(bp); 12790 goto out_unlock; 12791 } 12792 } 12793 BUF_NOREC(bp); 12794 continue; 12795 12796 case D_FREEWORK: 12797 case D_FREEDEP: 12798 case D_JSEGDEP: 12799 case D_JNEWBLK: 12800 continue; 12801 12802 default: 12803 panic("softdep_sync_buf: Unknown type %s", 12804 TYPENAME(wk->wk_type)); 12805 /* NOTREACHED */ 12806 } 12807 } 12808 out_unlock: 12809 FREE_LOCK(ump); 12810 out: 12811 return (error); 12812 } 12813 12814 /* 12815 * Flush the dependencies associated with an inodedep. 12816 * Called with splbio blocked. 12817 */ 12818 static int 12819 flush_inodedep_deps(vp, mp, ino) 12820 struct vnode *vp; 12821 struct mount *mp; 12822 ino_t ino; 12823 { 12824 struct inodedep *inodedep; 12825 struct inoref *inoref; 12826 struct ufsmount *ump; 12827 int error, waitfor; 12828 12829 /* 12830 * This work is done in two passes. The first pass grabs most 12831 * of the buffers and begins asynchronously writing them. The 12832 * only way to wait for these asynchronous writes is to sleep 12833 * on the filesystem vnode which may stay busy for a long time 12834 * if the filesystem is active. So, instead, we make a second 12835 * pass over the dependencies blocking on each write. In the 12836 * usual case we will be blocking against a write that we 12837 * initiated, so when it is done the dependency will have been 12838 * resolved. Thus the second pass is expected to end quickly. 12839 * We give a brief window at the top of the loop to allow 12840 * any pending I/O to complete. 12841 */ 12842 ump = VFSTOUFS(mp); 12843 LOCK_OWNED(ump); 12844 for (error = 0, waitfor = MNT_NOWAIT; ; ) { 12845 if (error) 12846 return (error); 12847 FREE_LOCK(ump); 12848 ACQUIRE_LOCK(ump); 12849 restart: 12850 if (inodedep_lookup(mp, ino, 0, &inodedep) == 0) 12851 return (0); 12852 TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) { 12853 if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY)) 12854 == DEPCOMPLETE) { 12855 jwait(&inoref->if_list, MNT_WAIT); 12856 goto restart; 12857 } 12858 } 12859 if (flush_deplist(&inodedep->id_inoupdt, waitfor, &error) || 12860 flush_deplist(&inodedep->id_newinoupdt, waitfor, &error) || 12861 flush_deplist(&inodedep->id_extupdt, waitfor, &error) || 12862 flush_deplist(&inodedep->id_newextupdt, waitfor, &error)) 12863 continue; 12864 /* 12865 * If pass2, we are done, otherwise do pass 2. 12866 */ 12867 if (waitfor == MNT_WAIT) 12868 break; 12869 waitfor = MNT_WAIT; 12870 } 12871 /* 12872 * Try freeing inodedep in case all dependencies have been removed. 12873 */ 12874 if (inodedep_lookup(mp, ino, 0, &inodedep) != 0) 12875 (void) free_inodedep(inodedep); 12876 return (0); 12877 } 12878 12879 /* 12880 * Flush an inode dependency list. 12881 * Called with splbio blocked. 12882 */ 12883 static int 12884 flush_deplist(listhead, waitfor, errorp) 12885 struct allocdirectlst *listhead; 12886 int waitfor; 12887 int *errorp; 12888 { 12889 struct allocdirect *adp; 12890 struct newblk *newblk; 12891 struct ufsmount *ump; 12892 struct buf *bp; 12893 12894 if ((adp = TAILQ_FIRST(listhead)) == NULL) 12895 return (0); 12896 ump = VFSTOUFS(adp->ad_list.wk_mp); 12897 LOCK_OWNED(ump); 12898 TAILQ_FOREACH(adp, listhead, ad_next) { 12899 newblk = (struct newblk *)adp; 12900 if (newblk->nb_jnewblk != NULL) { 12901 jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT); 12902 return (1); 12903 } 12904 if (newblk->nb_state & DEPCOMPLETE) 12905 continue; 12906 bp = newblk->nb_bmsafemap->sm_buf; 12907 bp = getdirtybuf(bp, LOCK_PTR(ump), waitfor); 12908 if (bp == NULL) { 12909 if (waitfor == MNT_NOWAIT) 12910 continue; 12911 return (1); 12912 } 12913 FREE_LOCK(ump); 12914 if (waitfor == MNT_NOWAIT) 12915 bawrite(bp); 12916 else 12917 *errorp = bwrite(bp); 12918 ACQUIRE_LOCK(ump); 12919 return (1); 12920 } 12921 return (0); 12922 } 12923 12924 /* 12925 * Flush dependencies associated with an allocdirect block. 12926 */ 12927 static int 12928 flush_newblk_dep(vp, mp, lbn) 12929 struct vnode *vp; 12930 struct mount *mp; 12931 ufs_lbn_t lbn; 12932 { 12933 struct newblk *newblk; 12934 struct ufsmount *ump; 12935 struct bufobj *bo; 12936 struct inode *ip; 12937 struct buf *bp; 12938 ufs2_daddr_t blkno; 12939 int error; 12940 12941 error = 0; 12942 bo = &vp->v_bufobj; 12943 ip = VTOI(vp); 12944 blkno = DIP(ip, i_db[lbn]); 12945 if (blkno == 0) 12946 panic("flush_newblk_dep: Missing block"); 12947 ump = VFSTOUFS(mp); 12948 ACQUIRE_LOCK(ump); 12949 /* 12950 * Loop until all dependencies related to this block are satisfied. 12951 * We must be careful to restart after each sleep in case a write 12952 * completes some part of this process for us. 12953 */ 12954 for (;;) { 12955 if (newblk_lookup(mp, blkno, 0, &newblk) == 0) { 12956 FREE_LOCK(ump); 12957 break; 12958 } 12959 if (newblk->nb_list.wk_type != D_ALLOCDIRECT) 12960 panic("flush_newblk_deps: Bad newblk %p", newblk); 12961 /* 12962 * Flush the journal. 12963 */ 12964 if (newblk->nb_jnewblk != NULL) { 12965 jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT); 12966 continue; 12967 } 12968 /* 12969 * Write the bitmap dependency. 12970 */ 12971 if ((newblk->nb_state & DEPCOMPLETE) == 0) { 12972 bp = newblk->nb_bmsafemap->sm_buf; 12973 bp = getdirtybuf(bp, LOCK_PTR(ump), MNT_WAIT); 12974 if (bp == NULL) 12975 continue; 12976 FREE_LOCK(ump); 12977 error = bwrite(bp); 12978 if (error) 12979 break; 12980 ACQUIRE_LOCK(ump); 12981 continue; 12982 } 12983 /* 12984 * Write the buffer. 12985 */ 12986 FREE_LOCK(ump); 12987 BO_LOCK(bo); 12988 bp = gbincore(bo, lbn); 12989 if (bp != NULL) { 12990 error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL | 12991 LK_INTERLOCK, BO_LOCKPTR(bo)); 12992 if (error == ENOLCK) { 12993 ACQUIRE_LOCK(ump); 12994 error = 0; 12995 continue; /* Slept, retry */ 12996 } 12997 if (error != 0) 12998 break; /* Failed */ 12999 if (bp->b_flags & B_DELWRI) { 13000 bremfree(bp); 13001 error = bwrite(bp); 13002 if (error) 13003 break; 13004 } else 13005 BUF_UNLOCK(bp); 13006 } else 13007 BO_UNLOCK(bo); 13008 /* 13009 * We have to wait for the direct pointers to 13010 * point at the newdirblk before the dependency 13011 * will go away. 13012 */ 13013 error = ffs_update(vp, 1); 13014 if (error) 13015 break; 13016 ACQUIRE_LOCK(ump); 13017 } 13018 return (error); 13019 } 13020 13021 /* 13022 * Eliminate a pagedep dependency by flushing out all its diradd dependencies. 13023 * Called with splbio blocked. 13024 */ 13025 static int 13026 flush_pagedep_deps(pvp, mp, diraddhdp) 13027 struct vnode *pvp; 13028 struct mount *mp; 13029 struct diraddhd *diraddhdp; 13030 { 13031 struct inodedep *inodedep; 13032 struct inoref *inoref; 13033 struct ufsmount *ump; 13034 struct diradd *dap; 13035 struct vnode *vp; 13036 int error = 0; 13037 struct buf *bp; 13038 ino_t inum; 13039 struct diraddhd unfinished; 13040 13041 LIST_INIT(&unfinished); 13042 ump = VFSTOUFS(mp); 13043 LOCK_OWNED(ump); 13044 restart: 13045 while ((dap = LIST_FIRST(diraddhdp)) != NULL) { 13046 /* 13047 * Flush ourselves if this directory entry 13048 * has a MKDIR_PARENT dependency. 13049 */ 13050 if (dap->da_state & MKDIR_PARENT) { 13051 FREE_LOCK(ump); 13052 if ((error = ffs_update(pvp, 1)) != 0) 13053 break; 13054 ACQUIRE_LOCK(ump); 13055 /* 13056 * If that cleared dependencies, go on to next. 13057 */ 13058 if (dap != LIST_FIRST(diraddhdp)) 13059 continue; 13060 /* 13061 * All MKDIR_PARENT dependencies and all the 13062 * NEWBLOCK pagedeps that are contained in direct 13063 * blocks were resolved by doing above ffs_update. 13064 * Pagedeps contained in indirect blocks may 13065 * require a complete sync'ing of the directory. 13066 * We are in the midst of doing a complete sync, 13067 * so if they are not resolved in this pass we 13068 * defer them for now as they will be sync'ed by 13069 * our caller shortly. 13070 */ 13071 LIST_REMOVE(dap, da_pdlist); 13072 LIST_INSERT_HEAD(&unfinished, dap, da_pdlist); 13073 continue; 13074 } 13075 /* 13076 * A newly allocated directory must have its "." and 13077 * ".." entries written out before its name can be 13078 * committed in its parent. 13079 */ 13080 inum = dap->da_newinum; 13081 if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0) 13082 panic("flush_pagedep_deps: lost inode1"); 13083 /* 13084 * Wait for any pending journal adds to complete so we don't 13085 * cause rollbacks while syncing. 13086 */ 13087 TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) { 13088 if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY)) 13089 == DEPCOMPLETE) { 13090 jwait(&inoref->if_list, MNT_WAIT); 13091 goto restart; 13092 } 13093 } 13094 if (dap->da_state & MKDIR_BODY) { 13095 FREE_LOCK(ump); 13096 if ((error = ffs_vgetf(mp, inum, LK_EXCLUSIVE, &vp, 13097 FFSV_FORCEINSMQ))) 13098 break; 13099 error = flush_newblk_dep(vp, mp, 0); 13100 /* 13101 * If we still have the dependency we might need to 13102 * update the vnode to sync the new link count to 13103 * disk. 13104 */ 13105 if (error == 0 && dap == LIST_FIRST(diraddhdp)) 13106 error = ffs_update(vp, 1); 13107 vput(vp); 13108 if (error != 0) 13109 break; 13110 ACQUIRE_LOCK(ump); 13111 /* 13112 * If that cleared dependencies, go on to next. 13113 */ 13114 if (dap != LIST_FIRST(diraddhdp)) 13115 continue; 13116 if (dap->da_state & MKDIR_BODY) { 13117 inodedep_lookup(UFSTOVFS(ump), inum, 0, 13118 &inodedep); 13119 panic("flush_pagedep_deps: MKDIR_BODY " 13120 "inodedep %p dap %p vp %p", 13121 inodedep, dap, vp); 13122 } 13123 } 13124 /* 13125 * Flush the inode on which the directory entry depends. 13126 * Having accounted for MKDIR_PARENT and MKDIR_BODY above, 13127 * the only remaining dependency is that the updated inode 13128 * count must get pushed to disk. The inode has already 13129 * been pushed into its inode buffer (via VOP_UPDATE) at 13130 * the time of the reference count change. So we need only 13131 * locate that buffer, ensure that there will be no rollback 13132 * caused by a bitmap dependency, then write the inode buffer. 13133 */ 13134 retry: 13135 if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0) 13136 panic("flush_pagedep_deps: lost inode"); 13137 /* 13138 * If the inode still has bitmap dependencies, 13139 * push them to disk. 13140 */ 13141 if ((inodedep->id_state & (DEPCOMPLETE | GOINGAWAY)) == 0) { 13142 bp = inodedep->id_bmsafemap->sm_buf; 13143 bp = getdirtybuf(bp, LOCK_PTR(ump), MNT_WAIT); 13144 if (bp == NULL) 13145 goto retry; 13146 FREE_LOCK(ump); 13147 if ((error = bwrite(bp)) != 0) 13148 break; 13149 ACQUIRE_LOCK(ump); 13150 if (dap != LIST_FIRST(diraddhdp)) 13151 continue; 13152 } 13153 /* 13154 * If the inode is still sitting in a buffer waiting 13155 * to be written or waiting for the link count to be 13156 * adjusted update it here to flush it to disk. 13157 */ 13158 if (dap == LIST_FIRST(diraddhdp)) { 13159 FREE_LOCK(ump); 13160 if ((error = ffs_vgetf(mp, inum, LK_EXCLUSIVE, &vp, 13161 FFSV_FORCEINSMQ))) 13162 break; 13163 error = ffs_update(vp, 1); 13164 vput(vp); 13165 if (error) 13166 break; 13167 ACQUIRE_LOCK(ump); 13168 } 13169 /* 13170 * If we have failed to get rid of all the dependencies 13171 * then something is seriously wrong. 13172 */ 13173 if (dap == LIST_FIRST(diraddhdp)) { 13174 inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep); 13175 panic("flush_pagedep_deps: failed to flush " 13176 "inodedep %p ino %ju dap %p", 13177 inodedep, (uintmax_t)inum, dap); 13178 } 13179 } 13180 if (error) 13181 ACQUIRE_LOCK(ump); 13182 while ((dap = LIST_FIRST(&unfinished)) != NULL) { 13183 LIST_REMOVE(dap, da_pdlist); 13184 LIST_INSERT_HEAD(diraddhdp, dap, da_pdlist); 13185 } 13186 return (error); 13187 } 13188 13189 /* 13190 * A large burst of file addition or deletion activity can drive the 13191 * memory load excessively high. First attempt to slow things down 13192 * using the techniques below. If that fails, this routine requests 13193 * the offending operations to fall back to running synchronously 13194 * until the memory load returns to a reasonable level. 13195 */ 13196 int 13197 softdep_slowdown(vp) 13198 struct vnode *vp; 13199 { 13200 struct ufsmount *ump; 13201 int jlow; 13202 int max_softdeps_hard; 13203 13204 KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0, 13205 ("softdep_slowdown called on non-softdep filesystem")); 13206 ump = VFSTOUFS(vp->v_mount); 13207 ACQUIRE_LOCK(ump); 13208 jlow = 0; 13209 /* 13210 * Check for journal space if needed. 13211 */ 13212 if (DOINGSUJ(vp)) { 13213 if (journal_space(ump, 0) == 0) 13214 jlow = 1; 13215 } 13216 /* 13217 * If the system is under its limits and our filesystem is 13218 * not responsible for more than our share of the usage and 13219 * we are not low on journal space, then no need to slow down. 13220 */ 13221 max_softdeps_hard = max_softdeps * 11 / 10; 13222 if (dep_current[D_DIRREM] < max_softdeps_hard / 2 && 13223 dep_current[D_INODEDEP] < max_softdeps_hard && 13224 dep_current[D_INDIRDEP] < max_softdeps_hard / 1000 && 13225 dep_current[D_FREEBLKS] < max_softdeps_hard && jlow == 0 && 13226 ump->softdep_curdeps[D_DIRREM] < 13227 (max_softdeps_hard / 2) / stat_flush_threads && 13228 ump->softdep_curdeps[D_INODEDEP] < 13229 max_softdeps_hard / stat_flush_threads && 13230 ump->softdep_curdeps[D_INDIRDEP] < 13231 (max_softdeps_hard / 1000) / stat_flush_threads && 13232 ump->softdep_curdeps[D_FREEBLKS] < 13233 max_softdeps_hard / stat_flush_threads) { 13234 FREE_LOCK(ump); 13235 return (0); 13236 } 13237 /* 13238 * If the journal is low or our filesystem is over its limit 13239 * then speedup the cleanup. 13240 */ 13241 if (ump->softdep_curdeps[D_INDIRDEP] < 13242 (max_softdeps_hard / 1000) / stat_flush_threads || jlow) 13243 softdep_speedup(ump); 13244 stat_sync_limit_hit += 1; 13245 FREE_LOCK(ump); 13246 /* 13247 * We only slow down the rate at which new dependencies are 13248 * generated if we are not using journaling. With journaling, 13249 * the cleanup should always be sufficient to keep things 13250 * under control. 13251 */ 13252 if (DOINGSUJ(vp)) 13253 return (0); 13254 return (1); 13255 } 13256 13257 /* 13258 * Called by the allocation routines when they are about to fail 13259 * in the hope that we can free up the requested resource (inodes 13260 * or disk space). 13261 * 13262 * First check to see if the work list has anything on it. If it has, 13263 * clean up entries until we successfully free the requested resource. 13264 * Because this process holds inodes locked, we cannot handle any remove 13265 * requests that might block on a locked inode as that could lead to 13266 * deadlock. If the worklist yields none of the requested resource, 13267 * start syncing out vnodes to free up the needed space. 13268 */ 13269 int 13270 softdep_request_cleanup(fs, vp, cred, resource) 13271 struct fs *fs; 13272 struct vnode *vp; 13273 struct ucred *cred; 13274 int resource; 13275 { 13276 struct ufsmount *ump; 13277 struct mount *mp; 13278 long starttime; 13279 ufs2_daddr_t needed; 13280 int error, failed_vnode; 13281 13282 /* 13283 * If we are being called because of a process doing a 13284 * copy-on-write, then it is not safe to process any 13285 * worklist items as we will recurse into the copyonwrite 13286 * routine. This will result in an incoherent snapshot. 13287 * If the vnode that we hold is a snapshot, we must avoid 13288 * handling other resources that could cause deadlock. 13289 */ 13290 if ((curthread->td_pflags & TDP_COWINPROGRESS) || IS_SNAPSHOT(VTOI(vp))) 13291 return (0); 13292 13293 if (resource == FLUSH_BLOCKS_WAIT) 13294 stat_cleanup_blkrequests += 1; 13295 else 13296 stat_cleanup_inorequests += 1; 13297 13298 mp = vp->v_mount; 13299 ump = VFSTOUFS(mp); 13300 mtx_assert(UFS_MTX(ump), MA_OWNED); 13301 UFS_UNLOCK(ump); 13302 error = ffs_update(vp, 1); 13303 if (error != 0 || MOUNTEDSOFTDEP(mp) == 0) { 13304 UFS_LOCK(ump); 13305 return (0); 13306 } 13307 /* 13308 * If we are in need of resources, start by cleaning up 13309 * any block removals associated with our inode. 13310 */ 13311 ACQUIRE_LOCK(ump); 13312 process_removes(vp); 13313 process_truncates(vp); 13314 FREE_LOCK(ump); 13315 /* 13316 * Now clean up at least as many resources as we will need. 13317 * 13318 * When requested to clean up inodes, the number that are needed 13319 * is set by the number of simultaneous writers (mnt_writeopcount) 13320 * plus a bit of slop (2) in case some more writers show up while 13321 * we are cleaning. 13322 * 13323 * When requested to free up space, the amount of space that 13324 * we need is enough blocks to allocate a full-sized segment 13325 * (fs_contigsumsize). The number of such segments that will 13326 * be needed is set by the number of simultaneous writers 13327 * (mnt_writeopcount) plus a bit of slop (2) in case some more 13328 * writers show up while we are cleaning. 13329 * 13330 * Additionally, if we are unpriviledged and allocating space, 13331 * we need to ensure that we clean up enough blocks to get the 13332 * needed number of blocks over the threshold of the minimum 13333 * number of blocks required to be kept free by the filesystem 13334 * (fs_minfree). 13335 */ 13336 if (resource == FLUSH_INODES_WAIT) { 13337 needed = vp->v_mount->mnt_writeopcount + 2; 13338 } else if (resource == FLUSH_BLOCKS_WAIT) { 13339 needed = (vp->v_mount->mnt_writeopcount + 2) * 13340 fs->fs_contigsumsize; 13341 if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE, 0)) 13342 needed += fragstoblks(fs, 13343 roundup((fs->fs_dsize * fs->fs_minfree / 100) - 13344 fs->fs_cstotal.cs_nffree, fs->fs_frag)); 13345 } else { 13346 UFS_LOCK(ump); 13347 printf("softdep_request_cleanup: Unknown resource type %d\n", 13348 resource); 13349 return (0); 13350 } 13351 starttime = time_second; 13352 retry: 13353 if ((resource == FLUSH_BLOCKS_WAIT && ump->softdep_on_worklist > 0 && 13354 fs->fs_cstotal.cs_nbfree <= needed) || 13355 (resource == FLUSH_INODES_WAIT && fs->fs_pendinginodes > 0 && 13356 fs->fs_cstotal.cs_nifree <= needed)) { 13357 ACQUIRE_LOCK(ump); 13358 if (ump->softdep_on_worklist > 0 && 13359 process_worklist_item(UFSTOVFS(ump), 13360 ump->softdep_on_worklist, LK_NOWAIT) != 0) 13361 stat_worklist_push += 1; 13362 FREE_LOCK(ump); 13363 } 13364 /* 13365 * If we still need resources and there are no more worklist 13366 * entries to process to obtain them, we have to start flushing 13367 * the dirty vnodes to force the release of additional requests 13368 * to the worklist that we can then process to reap addition 13369 * resources. We walk the vnodes associated with the mount point 13370 * until we get the needed worklist requests that we can reap. 13371 * 13372 * If there are several threads all needing to clean the same 13373 * mount point, only one is allowed to walk the mount list. 13374 * When several threads all try to walk the same mount list, 13375 * they end up competing with each other and often end up in 13376 * livelock. This approach ensures that forward progress is 13377 * made at the cost of occational ENOSPC errors being returned 13378 * that might otherwise have been avoided. 13379 */ 13380 error = 1; 13381 if ((resource == FLUSH_BLOCKS_WAIT && 13382 fs->fs_cstotal.cs_nbfree <= needed) || 13383 (resource == FLUSH_INODES_WAIT && fs->fs_pendinginodes > 0 && 13384 fs->fs_cstotal.cs_nifree <= needed)) { 13385 ACQUIRE_LOCK(ump); 13386 if ((ump->um_softdep->sd_flags & FLUSH_RC_ACTIVE) == 0) { 13387 ump->um_softdep->sd_flags |= FLUSH_RC_ACTIVE; 13388 FREE_LOCK(ump); 13389 failed_vnode = softdep_request_cleanup_flush(mp, ump); 13390 ACQUIRE_LOCK(ump); 13391 ump->um_softdep->sd_flags &= ~FLUSH_RC_ACTIVE; 13392 FREE_LOCK(ump); 13393 if (ump->softdep_on_worklist > 0) { 13394 stat_cleanup_retries += 1; 13395 if (!failed_vnode) 13396 goto retry; 13397 } 13398 } else { 13399 FREE_LOCK(ump); 13400 error = 0; 13401 } 13402 stat_cleanup_failures += 1; 13403 } 13404 if (time_second - starttime > stat_cleanup_high_delay) 13405 stat_cleanup_high_delay = time_second - starttime; 13406 UFS_LOCK(ump); 13407 return (error); 13408 } 13409 13410 /* 13411 * Scan the vnodes for the specified mount point flushing out any 13412 * vnodes that can be locked without waiting. Finally, try to flush 13413 * the device associated with the mount point if it can be locked 13414 * without waiting. 13415 * 13416 * We return 0 if we were able to lock every vnode in our scan. 13417 * If we had to skip one or more vnodes, we return 1. 13418 */ 13419 static int 13420 softdep_request_cleanup_flush(mp, ump) 13421 struct mount *mp; 13422 struct ufsmount *ump; 13423 { 13424 struct thread *td; 13425 struct vnode *lvp, *mvp; 13426 int failed_vnode; 13427 13428 failed_vnode = 0; 13429 td = curthread; 13430 MNT_VNODE_FOREACH_ALL(lvp, mp, mvp) { 13431 if (TAILQ_FIRST(&lvp->v_bufobj.bo_dirty.bv_hd) == 0) { 13432 VI_UNLOCK(lvp); 13433 continue; 13434 } 13435 if (vget(lvp, LK_EXCLUSIVE | LK_INTERLOCK | LK_NOWAIT, 13436 td) != 0) { 13437 failed_vnode = 1; 13438 continue; 13439 } 13440 if (lvp->v_vflag & VV_NOSYNC) { /* unlinked */ 13441 vput(lvp); 13442 continue; 13443 } 13444 (void) ffs_syncvnode(lvp, MNT_NOWAIT, 0); 13445 vput(lvp); 13446 } 13447 lvp = ump->um_devvp; 13448 if (vn_lock(lvp, LK_EXCLUSIVE | LK_NOWAIT) == 0) { 13449 VOP_FSYNC(lvp, MNT_NOWAIT, td); 13450 VOP_UNLOCK(lvp, 0); 13451 } 13452 return (failed_vnode); 13453 } 13454 13455 static bool 13456 softdep_excess_items(struct ufsmount *ump, int item) 13457 { 13458 13459 KASSERT(item >= 0 && item < D_LAST, ("item %d", item)); 13460 return (dep_current[item] > max_softdeps && 13461 ump->softdep_curdeps[item] > max_softdeps / 13462 stat_flush_threads); 13463 } 13464 13465 static void 13466 schedule_cleanup(struct mount *mp) 13467 { 13468 struct ufsmount *ump; 13469 struct thread *td; 13470 13471 ump = VFSTOUFS(mp); 13472 LOCK_OWNED(ump); 13473 FREE_LOCK(ump); 13474 td = curthread; 13475 if ((td->td_pflags & TDP_KTHREAD) != 0 && 13476 (td->td_proc->p_flag2 & P2_AST_SU) == 0) { 13477 /* 13478 * No ast is delivered to kernel threads, so nobody 13479 * would deref the mp. Some kernel threads 13480 * explicitely check for AST, e.g. NFS daemon does 13481 * this in the serving loop. 13482 */ 13483 return; 13484 } 13485 if (td->td_su != NULL) 13486 vfs_rel(td->td_su); 13487 vfs_ref(mp); 13488 td->td_su = mp; 13489 thread_lock(td); 13490 td->td_flags |= TDF_ASTPENDING; 13491 thread_unlock(td); 13492 } 13493 13494 static void 13495 softdep_ast_cleanup_proc(struct thread *td) 13496 { 13497 struct mount *mp; 13498 struct ufsmount *ump; 13499 int error; 13500 bool req; 13501 13502 while ((mp = td->td_su) != NULL) { 13503 td->td_su = NULL; 13504 error = vfs_busy(mp, MBF_NOWAIT); 13505 vfs_rel(mp); 13506 if (error != 0) 13507 return; 13508 if (ffs_own_mount(mp) && MOUNTEDSOFTDEP(mp)) { 13509 ump = VFSTOUFS(mp); 13510 for (;;) { 13511 req = false; 13512 ACQUIRE_LOCK(ump); 13513 if (softdep_excess_items(ump, D_INODEDEP)) { 13514 req = true; 13515 request_cleanup(mp, FLUSH_INODES); 13516 } 13517 if (softdep_excess_items(ump, D_DIRREM)) { 13518 req = true; 13519 request_cleanup(mp, FLUSH_BLOCKS); 13520 } 13521 FREE_LOCK(ump); 13522 if (softdep_excess_items(ump, D_NEWBLK) || 13523 softdep_excess_items(ump, D_ALLOCDIRECT) || 13524 softdep_excess_items(ump, D_ALLOCINDIR)) { 13525 error = vn_start_write(NULL, &mp, 13526 V_WAIT); 13527 if (error == 0) { 13528 req = true; 13529 VFS_SYNC(mp, MNT_WAIT); 13530 vn_finished_write(mp); 13531 } 13532 } 13533 if ((td->td_pflags & TDP_KTHREAD) != 0 || !req) 13534 break; 13535 } 13536 } 13537 vfs_unbusy(mp); 13538 } 13539 if ((mp = td->td_su) != NULL) { 13540 td->td_su = NULL; 13541 vfs_rel(mp); 13542 } 13543 } 13544 13545 /* 13546 * If memory utilization has gotten too high, deliberately slow things 13547 * down and speed up the I/O processing. 13548 */ 13549 static int 13550 request_cleanup(mp, resource) 13551 struct mount *mp; 13552 int resource; 13553 { 13554 struct thread *td = curthread; 13555 struct ufsmount *ump; 13556 13557 ump = VFSTOUFS(mp); 13558 LOCK_OWNED(ump); 13559 /* 13560 * We never hold up the filesystem syncer or buf daemon. 13561 */ 13562 if (td->td_pflags & (TDP_SOFTDEP|TDP_NORUNNINGBUF)) 13563 return (0); 13564 /* 13565 * First check to see if the work list has gotten backlogged. 13566 * If it has, co-opt this process to help clean up two entries. 13567 * Because this process may hold inodes locked, we cannot 13568 * handle any remove requests that might block on a locked 13569 * inode as that could lead to deadlock. We set TDP_SOFTDEP 13570 * to avoid recursively processing the worklist. 13571 */ 13572 if (ump->softdep_on_worklist > max_softdeps / 10) { 13573 td->td_pflags |= TDP_SOFTDEP; 13574 process_worklist_item(mp, 2, LK_NOWAIT); 13575 td->td_pflags &= ~TDP_SOFTDEP; 13576 stat_worklist_push += 2; 13577 return(1); 13578 } 13579 /* 13580 * Next, we attempt to speed up the syncer process. If that 13581 * is successful, then we allow the process to continue. 13582 */ 13583 if (softdep_speedup(ump) && 13584 resource != FLUSH_BLOCKS_WAIT && 13585 resource != FLUSH_INODES_WAIT) 13586 return(0); 13587 /* 13588 * If we are resource constrained on inode dependencies, try 13589 * flushing some dirty inodes. Otherwise, we are constrained 13590 * by file deletions, so try accelerating flushes of directories 13591 * with removal dependencies. We would like to do the cleanup 13592 * here, but we probably hold an inode locked at this point and 13593 * that might deadlock against one that we try to clean. So, 13594 * the best that we can do is request the syncer daemon to do 13595 * the cleanup for us. 13596 */ 13597 switch (resource) { 13598 13599 case FLUSH_INODES: 13600 case FLUSH_INODES_WAIT: 13601 ACQUIRE_GBLLOCK(&lk); 13602 stat_ino_limit_push += 1; 13603 req_clear_inodedeps += 1; 13604 FREE_GBLLOCK(&lk); 13605 stat_countp = &stat_ino_limit_hit; 13606 break; 13607 13608 case FLUSH_BLOCKS: 13609 case FLUSH_BLOCKS_WAIT: 13610 ACQUIRE_GBLLOCK(&lk); 13611 stat_blk_limit_push += 1; 13612 req_clear_remove += 1; 13613 FREE_GBLLOCK(&lk); 13614 stat_countp = &stat_blk_limit_hit; 13615 break; 13616 13617 default: 13618 panic("request_cleanup: unknown type"); 13619 } 13620 /* 13621 * Hopefully the syncer daemon will catch up and awaken us. 13622 * We wait at most tickdelay before proceeding in any case. 13623 */ 13624 ACQUIRE_GBLLOCK(&lk); 13625 FREE_LOCK(ump); 13626 proc_waiting += 1; 13627 if (callout_pending(&softdep_callout) == FALSE) 13628 callout_reset(&softdep_callout, tickdelay > 2 ? tickdelay : 2, 13629 pause_timer, 0); 13630 13631 if ((td->td_pflags & TDP_KTHREAD) == 0) 13632 msleep((caddr_t)&proc_waiting, &lk, PPAUSE, "softupdate", 0); 13633 proc_waiting -= 1; 13634 FREE_GBLLOCK(&lk); 13635 ACQUIRE_LOCK(ump); 13636 return (1); 13637 } 13638 13639 /* 13640 * Awaken processes pausing in request_cleanup and clear proc_waiting 13641 * to indicate that there is no longer a timer running. Pause_timer 13642 * will be called with the global softdep mutex (&lk) locked. 13643 */ 13644 static void 13645 pause_timer(arg) 13646 void *arg; 13647 { 13648 13649 GBLLOCK_OWNED(&lk); 13650 /* 13651 * The callout_ API has acquired mtx and will hold it around this 13652 * function call. 13653 */ 13654 *stat_countp += proc_waiting; 13655 wakeup(&proc_waiting); 13656 } 13657 13658 /* 13659 * If requested, try removing inode or removal dependencies. 13660 */ 13661 static void 13662 check_clear_deps(mp) 13663 struct mount *mp; 13664 { 13665 13666 /* 13667 * If we are suspended, it may be because of our using 13668 * too many inodedeps, so help clear them out. 13669 */ 13670 if (MOUNTEDSUJ(mp) && VFSTOUFS(mp)->softdep_jblocks->jb_suspended) 13671 clear_inodedeps(mp); 13672 /* 13673 * General requests for cleanup of backed up dependencies 13674 */ 13675 ACQUIRE_GBLLOCK(&lk); 13676 if (req_clear_inodedeps) { 13677 req_clear_inodedeps -= 1; 13678 FREE_GBLLOCK(&lk); 13679 clear_inodedeps(mp); 13680 ACQUIRE_GBLLOCK(&lk); 13681 wakeup(&proc_waiting); 13682 } 13683 if (req_clear_remove) { 13684 req_clear_remove -= 1; 13685 FREE_GBLLOCK(&lk); 13686 clear_remove(mp); 13687 ACQUIRE_GBLLOCK(&lk); 13688 wakeup(&proc_waiting); 13689 } 13690 FREE_GBLLOCK(&lk); 13691 } 13692 13693 /* 13694 * Flush out a directory with at least one removal dependency in an effort to 13695 * reduce the number of dirrem, freefile, and freeblks dependency structures. 13696 */ 13697 static void 13698 clear_remove(mp) 13699 struct mount *mp; 13700 { 13701 struct pagedep_hashhead *pagedephd; 13702 struct pagedep *pagedep; 13703 struct ufsmount *ump; 13704 struct vnode *vp; 13705 struct bufobj *bo; 13706 int error, cnt; 13707 ino_t ino; 13708 13709 ump = VFSTOUFS(mp); 13710 LOCK_OWNED(ump); 13711 13712 for (cnt = 0; cnt <= ump->pagedep_hash_size; cnt++) { 13713 pagedephd = &ump->pagedep_hashtbl[ump->pagedep_nextclean++]; 13714 if (ump->pagedep_nextclean > ump->pagedep_hash_size) 13715 ump->pagedep_nextclean = 0; 13716 LIST_FOREACH(pagedep, pagedephd, pd_hash) { 13717 if (LIST_EMPTY(&pagedep->pd_dirremhd)) 13718 continue; 13719 ino = pagedep->pd_ino; 13720 if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) 13721 continue; 13722 FREE_LOCK(ump); 13723 13724 /* 13725 * Let unmount clear deps 13726 */ 13727 error = vfs_busy(mp, MBF_NOWAIT); 13728 if (error != 0) 13729 goto finish_write; 13730 error = ffs_vgetf(mp, ino, LK_EXCLUSIVE, &vp, 13731 FFSV_FORCEINSMQ); 13732 vfs_unbusy(mp); 13733 if (error != 0) { 13734 softdep_error("clear_remove: vget", error); 13735 goto finish_write; 13736 } 13737 if ((error = ffs_syncvnode(vp, MNT_NOWAIT, 0))) 13738 softdep_error("clear_remove: fsync", error); 13739 bo = &vp->v_bufobj; 13740 BO_LOCK(bo); 13741 drain_output(vp); 13742 BO_UNLOCK(bo); 13743 vput(vp); 13744 finish_write: 13745 vn_finished_write(mp); 13746 ACQUIRE_LOCK(ump); 13747 return; 13748 } 13749 } 13750 } 13751 13752 /* 13753 * Clear out a block of dirty inodes in an effort to reduce 13754 * the number of inodedep dependency structures. 13755 */ 13756 static void 13757 clear_inodedeps(mp) 13758 struct mount *mp; 13759 { 13760 struct inodedep_hashhead *inodedephd; 13761 struct inodedep *inodedep; 13762 struct ufsmount *ump; 13763 struct vnode *vp; 13764 struct fs *fs; 13765 int error, cnt; 13766 ino_t firstino, lastino, ino; 13767 13768 ump = VFSTOUFS(mp); 13769 fs = ump->um_fs; 13770 LOCK_OWNED(ump); 13771 /* 13772 * Pick a random inode dependency to be cleared. 13773 * We will then gather up all the inodes in its block 13774 * that have dependencies and flush them out. 13775 */ 13776 for (cnt = 0; cnt <= ump->inodedep_hash_size; cnt++) { 13777 inodedephd = &ump->inodedep_hashtbl[ump->inodedep_nextclean++]; 13778 if (ump->inodedep_nextclean > ump->inodedep_hash_size) 13779 ump->inodedep_nextclean = 0; 13780 if ((inodedep = LIST_FIRST(inodedephd)) != NULL) 13781 break; 13782 } 13783 if (inodedep == NULL) 13784 return; 13785 /* 13786 * Find the last inode in the block with dependencies. 13787 */ 13788 firstino = rounddown2(inodedep->id_ino, INOPB(fs)); 13789 for (lastino = firstino + INOPB(fs) - 1; lastino > firstino; lastino--) 13790 if (inodedep_lookup(mp, lastino, 0, &inodedep) != 0) 13791 break; 13792 /* 13793 * Asynchronously push all but the last inode with dependencies. 13794 * Synchronously push the last inode with dependencies to ensure 13795 * that the inode block gets written to free up the inodedeps. 13796 */ 13797 for (ino = firstino; ino <= lastino; ino++) { 13798 if (inodedep_lookup(mp, ino, 0, &inodedep) == 0) 13799 continue; 13800 if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) 13801 continue; 13802 FREE_LOCK(ump); 13803 error = vfs_busy(mp, MBF_NOWAIT); /* Let unmount clear deps */ 13804 if (error != 0) { 13805 vn_finished_write(mp); 13806 ACQUIRE_LOCK(ump); 13807 return; 13808 } 13809 if ((error = ffs_vgetf(mp, ino, LK_EXCLUSIVE, &vp, 13810 FFSV_FORCEINSMQ)) != 0) { 13811 softdep_error("clear_inodedeps: vget", error); 13812 vfs_unbusy(mp); 13813 vn_finished_write(mp); 13814 ACQUIRE_LOCK(ump); 13815 return; 13816 } 13817 vfs_unbusy(mp); 13818 if (ino == lastino) { 13819 if ((error = ffs_syncvnode(vp, MNT_WAIT, 0))) 13820 softdep_error("clear_inodedeps: fsync1", error); 13821 } else { 13822 if ((error = ffs_syncvnode(vp, MNT_NOWAIT, 0))) 13823 softdep_error("clear_inodedeps: fsync2", error); 13824 BO_LOCK(&vp->v_bufobj); 13825 drain_output(vp); 13826 BO_UNLOCK(&vp->v_bufobj); 13827 } 13828 vput(vp); 13829 vn_finished_write(mp); 13830 ACQUIRE_LOCK(ump); 13831 } 13832 } 13833 13834 void 13835 softdep_buf_append(bp, wkhd) 13836 struct buf *bp; 13837 struct workhead *wkhd; 13838 { 13839 struct worklist *wk; 13840 struct ufsmount *ump; 13841 13842 if ((wk = LIST_FIRST(wkhd)) == NULL) 13843 return; 13844 KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0, 13845 ("softdep_buf_append called on non-softdep filesystem")); 13846 ump = VFSTOUFS(wk->wk_mp); 13847 ACQUIRE_LOCK(ump); 13848 while ((wk = LIST_FIRST(wkhd)) != NULL) { 13849 WORKLIST_REMOVE(wk); 13850 WORKLIST_INSERT(&bp->b_dep, wk); 13851 } 13852 FREE_LOCK(ump); 13853 13854 } 13855 13856 void 13857 softdep_inode_append(ip, cred, wkhd) 13858 struct inode *ip; 13859 struct ucred *cred; 13860 struct workhead *wkhd; 13861 { 13862 struct buf *bp; 13863 struct fs *fs; 13864 struct ufsmount *ump; 13865 int error; 13866 13867 ump = ITOUMP(ip); 13868 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 13869 ("softdep_inode_append called on non-softdep filesystem")); 13870 fs = ump->um_fs; 13871 error = bread(ump->um_devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)), 13872 (int)fs->fs_bsize, cred, &bp); 13873 if (error) { 13874 bqrelse(bp); 13875 softdep_freework(wkhd); 13876 return; 13877 } 13878 softdep_buf_append(bp, wkhd); 13879 bqrelse(bp); 13880 } 13881 13882 void 13883 softdep_freework(wkhd) 13884 struct workhead *wkhd; 13885 { 13886 struct worklist *wk; 13887 struct ufsmount *ump; 13888 13889 if ((wk = LIST_FIRST(wkhd)) == NULL) 13890 return; 13891 KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0, 13892 ("softdep_freework called on non-softdep filesystem")); 13893 ump = VFSTOUFS(wk->wk_mp); 13894 ACQUIRE_LOCK(ump); 13895 handle_jwork(wkhd); 13896 FREE_LOCK(ump); 13897 } 13898 13899 /* 13900 * Function to determine if the buffer has outstanding dependencies 13901 * that will cause a roll-back if the buffer is written. If wantcount 13902 * is set, return number of dependencies, otherwise just yes or no. 13903 */ 13904 static int 13905 softdep_count_dependencies(bp, wantcount) 13906 struct buf *bp; 13907 int wantcount; 13908 { 13909 struct worklist *wk; 13910 struct ufsmount *ump; 13911 struct bmsafemap *bmsafemap; 13912 struct freework *freework; 13913 struct inodedep *inodedep; 13914 struct indirdep *indirdep; 13915 struct freeblks *freeblks; 13916 struct allocindir *aip; 13917 struct pagedep *pagedep; 13918 struct dirrem *dirrem; 13919 struct newblk *newblk; 13920 struct mkdir *mkdir; 13921 struct diradd *dap; 13922 int i, retval; 13923 13924 retval = 0; 13925 if ((wk = LIST_FIRST(&bp->b_dep)) == NULL) 13926 return (0); 13927 ump = VFSTOUFS(wk->wk_mp); 13928 ACQUIRE_LOCK(ump); 13929 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 13930 switch (wk->wk_type) { 13931 13932 case D_INODEDEP: 13933 inodedep = WK_INODEDEP(wk); 13934 if ((inodedep->id_state & DEPCOMPLETE) == 0) { 13935 /* bitmap allocation dependency */ 13936 retval += 1; 13937 if (!wantcount) 13938 goto out; 13939 } 13940 if (TAILQ_FIRST(&inodedep->id_inoupdt)) { 13941 /* direct block pointer dependency */ 13942 retval += 1; 13943 if (!wantcount) 13944 goto out; 13945 } 13946 if (TAILQ_FIRST(&inodedep->id_extupdt)) { 13947 /* direct block pointer dependency */ 13948 retval += 1; 13949 if (!wantcount) 13950 goto out; 13951 } 13952 if (TAILQ_FIRST(&inodedep->id_inoreflst)) { 13953 /* Add reference dependency. */ 13954 retval += 1; 13955 if (!wantcount) 13956 goto out; 13957 } 13958 continue; 13959 13960 case D_INDIRDEP: 13961 indirdep = WK_INDIRDEP(wk); 13962 13963 TAILQ_FOREACH(freework, &indirdep->ir_trunc, fw_next) { 13964 /* indirect truncation dependency */ 13965 retval += 1; 13966 if (!wantcount) 13967 goto out; 13968 } 13969 13970 LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) { 13971 /* indirect block pointer dependency */ 13972 retval += 1; 13973 if (!wantcount) 13974 goto out; 13975 } 13976 continue; 13977 13978 case D_PAGEDEP: 13979 pagedep = WK_PAGEDEP(wk); 13980 LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next) { 13981 if (LIST_FIRST(&dirrem->dm_jremrefhd)) { 13982 /* Journal remove ref dependency. */ 13983 retval += 1; 13984 if (!wantcount) 13985 goto out; 13986 } 13987 } 13988 for (i = 0; i < DAHASHSZ; i++) { 13989 13990 LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) { 13991 /* directory entry dependency */ 13992 retval += 1; 13993 if (!wantcount) 13994 goto out; 13995 } 13996 } 13997 continue; 13998 13999 case D_BMSAFEMAP: 14000 bmsafemap = WK_BMSAFEMAP(wk); 14001 if (LIST_FIRST(&bmsafemap->sm_jaddrefhd)) { 14002 /* Add reference dependency. */ 14003 retval += 1; 14004 if (!wantcount) 14005 goto out; 14006 } 14007 if (LIST_FIRST(&bmsafemap->sm_jnewblkhd)) { 14008 /* Allocate block dependency. */ 14009 retval += 1; 14010 if (!wantcount) 14011 goto out; 14012 } 14013 continue; 14014 14015 case D_FREEBLKS: 14016 freeblks = WK_FREEBLKS(wk); 14017 if (LIST_FIRST(&freeblks->fb_jblkdephd)) { 14018 /* Freeblk journal dependency. */ 14019 retval += 1; 14020 if (!wantcount) 14021 goto out; 14022 } 14023 continue; 14024 14025 case D_ALLOCDIRECT: 14026 case D_ALLOCINDIR: 14027 newblk = WK_NEWBLK(wk); 14028 if (newblk->nb_jnewblk) { 14029 /* Journal allocate dependency. */ 14030 retval += 1; 14031 if (!wantcount) 14032 goto out; 14033 } 14034 continue; 14035 14036 case D_MKDIR: 14037 mkdir = WK_MKDIR(wk); 14038 if (mkdir->md_jaddref) { 14039 /* Journal reference dependency. */ 14040 retval += 1; 14041 if (!wantcount) 14042 goto out; 14043 } 14044 continue; 14045 14046 case D_FREEWORK: 14047 case D_FREEDEP: 14048 case D_JSEGDEP: 14049 case D_JSEG: 14050 case D_SBDEP: 14051 /* never a dependency on these blocks */ 14052 continue; 14053 14054 default: 14055 panic("softdep_count_dependencies: Unexpected type %s", 14056 TYPENAME(wk->wk_type)); 14057 /* NOTREACHED */ 14058 } 14059 } 14060 out: 14061 FREE_LOCK(ump); 14062 return retval; 14063 } 14064 14065 /* 14066 * Acquire exclusive access to a buffer. 14067 * Must be called with a locked mtx parameter. 14068 * Return acquired buffer or NULL on failure. 14069 */ 14070 static struct buf * 14071 getdirtybuf(bp, lock, waitfor) 14072 struct buf *bp; 14073 struct rwlock *lock; 14074 int waitfor; 14075 { 14076 int error; 14077 14078 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0) { 14079 if (waitfor != MNT_WAIT) 14080 return (NULL); 14081 error = BUF_LOCK(bp, 14082 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, lock); 14083 /* 14084 * Even if we successfully acquire bp here, we have dropped 14085 * lock, which may violates our guarantee. 14086 */ 14087 if (error == 0) 14088 BUF_UNLOCK(bp); 14089 else if (error != ENOLCK) 14090 panic("getdirtybuf: inconsistent lock: %d", error); 14091 rw_wlock(lock); 14092 return (NULL); 14093 } 14094 if ((bp->b_vflags & BV_BKGRDINPROG) != 0) { 14095 if (lock != BO_LOCKPTR(bp->b_bufobj) && waitfor == MNT_WAIT) { 14096 rw_wunlock(lock); 14097 BO_LOCK(bp->b_bufobj); 14098 BUF_UNLOCK(bp); 14099 if ((bp->b_vflags & BV_BKGRDINPROG) != 0) { 14100 bp->b_vflags |= BV_BKGRDWAIT; 14101 msleep(&bp->b_xflags, BO_LOCKPTR(bp->b_bufobj), 14102 PRIBIO | PDROP, "getbuf", 0); 14103 } else 14104 BO_UNLOCK(bp->b_bufobj); 14105 rw_wlock(lock); 14106 return (NULL); 14107 } 14108 BUF_UNLOCK(bp); 14109 if (waitfor != MNT_WAIT) 14110 return (NULL); 14111 /* 14112 * The lock argument must be bp->b_vp's mutex in 14113 * this case. 14114 */ 14115 #ifdef DEBUG_VFS_LOCKS 14116 if (bp->b_vp->v_type != VCHR) 14117 ASSERT_BO_WLOCKED(bp->b_bufobj); 14118 #endif 14119 bp->b_vflags |= BV_BKGRDWAIT; 14120 rw_sleep(&bp->b_xflags, lock, PRIBIO, "getbuf", 0); 14121 return (NULL); 14122 } 14123 if ((bp->b_flags & B_DELWRI) == 0) { 14124 BUF_UNLOCK(bp); 14125 return (NULL); 14126 } 14127 bremfree(bp); 14128 return (bp); 14129 } 14130 14131 14132 /* 14133 * Check if it is safe to suspend the file system now. On entry, 14134 * the vnode interlock for devvp should be held. Return 0 with 14135 * the mount interlock held if the file system can be suspended now, 14136 * otherwise return EAGAIN with the mount interlock held. 14137 */ 14138 int 14139 softdep_check_suspend(struct mount *mp, 14140 struct vnode *devvp, 14141 int softdep_depcnt, 14142 int softdep_accdepcnt, 14143 int secondary_writes, 14144 int secondary_accwrites) 14145 { 14146 struct bufobj *bo; 14147 struct ufsmount *ump; 14148 struct inodedep *inodedep; 14149 int error, unlinked; 14150 14151 bo = &devvp->v_bufobj; 14152 ASSERT_BO_WLOCKED(bo); 14153 14154 /* 14155 * If we are not running with soft updates, then we need only 14156 * deal with secondary writes as we try to suspend. 14157 */ 14158 if (MOUNTEDSOFTDEP(mp) == 0) { 14159 MNT_ILOCK(mp); 14160 while (mp->mnt_secondary_writes != 0) { 14161 BO_UNLOCK(bo); 14162 msleep(&mp->mnt_secondary_writes, MNT_MTX(mp), 14163 (PUSER - 1) | PDROP, "secwr", 0); 14164 BO_LOCK(bo); 14165 MNT_ILOCK(mp); 14166 } 14167 14168 /* 14169 * Reasons for needing more work before suspend: 14170 * - Dirty buffers on devvp. 14171 * - Secondary writes occurred after start of vnode sync loop 14172 */ 14173 error = 0; 14174 if (bo->bo_numoutput > 0 || 14175 bo->bo_dirty.bv_cnt > 0 || 14176 secondary_writes != 0 || 14177 mp->mnt_secondary_writes != 0 || 14178 secondary_accwrites != mp->mnt_secondary_accwrites) 14179 error = EAGAIN; 14180 BO_UNLOCK(bo); 14181 return (error); 14182 } 14183 14184 /* 14185 * If we are running with soft updates, then we need to coordinate 14186 * with them as we try to suspend. 14187 */ 14188 ump = VFSTOUFS(mp); 14189 for (;;) { 14190 if (!TRY_ACQUIRE_LOCK(ump)) { 14191 BO_UNLOCK(bo); 14192 ACQUIRE_LOCK(ump); 14193 FREE_LOCK(ump); 14194 BO_LOCK(bo); 14195 continue; 14196 } 14197 MNT_ILOCK(mp); 14198 if (mp->mnt_secondary_writes != 0) { 14199 FREE_LOCK(ump); 14200 BO_UNLOCK(bo); 14201 msleep(&mp->mnt_secondary_writes, 14202 MNT_MTX(mp), 14203 (PUSER - 1) | PDROP, "secwr", 0); 14204 BO_LOCK(bo); 14205 continue; 14206 } 14207 break; 14208 } 14209 14210 unlinked = 0; 14211 if (MOUNTEDSUJ(mp)) { 14212 for (inodedep = TAILQ_FIRST(&ump->softdep_unlinked); 14213 inodedep != NULL; 14214 inodedep = TAILQ_NEXT(inodedep, id_unlinked)) { 14215 if ((inodedep->id_state & (UNLINKED | UNLINKLINKS | 14216 UNLINKONLIST)) != (UNLINKED | UNLINKLINKS | 14217 UNLINKONLIST) || 14218 !check_inodedep_free(inodedep)) 14219 continue; 14220 unlinked++; 14221 } 14222 } 14223 14224 /* 14225 * Reasons for needing more work before suspend: 14226 * - Dirty buffers on devvp. 14227 * - Softdep activity occurred after start of vnode sync loop 14228 * - Secondary writes occurred after start of vnode sync loop 14229 */ 14230 error = 0; 14231 if (bo->bo_numoutput > 0 || 14232 bo->bo_dirty.bv_cnt > 0 || 14233 softdep_depcnt != unlinked || 14234 ump->softdep_deps != unlinked || 14235 softdep_accdepcnt != ump->softdep_accdeps || 14236 secondary_writes != 0 || 14237 mp->mnt_secondary_writes != 0 || 14238 secondary_accwrites != mp->mnt_secondary_accwrites) 14239 error = EAGAIN; 14240 FREE_LOCK(ump); 14241 BO_UNLOCK(bo); 14242 return (error); 14243 } 14244 14245 14246 /* 14247 * Get the number of dependency structures for the file system, both 14248 * the current number and the total number allocated. These will 14249 * later be used to detect that softdep processing has occurred. 14250 */ 14251 void 14252 softdep_get_depcounts(struct mount *mp, 14253 int *softdep_depsp, 14254 int *softdep_accdepsp) 14255 { 14256 struct ufsmount *ump; 14257 14258 if (MOUNTEDSOFTDEP(mp) == 0) { 14259 *softdep_depsp = 0; 14260 *softdep_accdepsp = 0; 14261 return; 14262 } 14263 ump = VFSTOUFS(mp); 14264 ACQUIRE_LOCK(ump); 14265 *softdep_depsp = ump->softdep_deps; 14266 *softdep_accdepsp = ump->softdep_accdeps; 14267 FREE_LOCK(ump); 14268 } 14269 14270 /* 14271 * Wait for pending output on a vnode to complete. 14272 * Must be called with vnode lock and interlock locked. 14273 * 14274 * XXX: Should just be a call to bufobj_wwait(). 14275 */ 14276 static void 14277 drain_output(vp) 14278 struct vnode *vp; 14279 { 14280 struct bufobj *bo; 14281 14282 bo = &vp->v_bufobj; 14283 ASSERT_VOP_LOCKED(vp, "drain_output"); 14284 ASSERT_BO_WLOCKED(bo); 14285 14286 while (bo->bo_numoutput) { 14287 bo->bo_flag |= BO_WWAIT; 14288 msleep((caddr_t)&bo->bo_numoutput, 14289 BO_LOCKPTR(bo), PRIBIO + 1, "drainvp", 0); 14290 } 14291 } 14292 14293 /* 14294 * Called whenever a buffer that is being invalidated or reallocated 14295 * contains dependencies. This should only happen if an I/O error has 14296 * occurred. The routine is called with the buffer locked. 14297 */ 14298 static void 14299 softdep_deallocate_dependencies(bp) 14300 struct buf *bp; 14301 { 14302 14303 if ((bp->b_ioflags & BIO_ERROR) == 0) 14304 panic("softdep_deallocate_dependencies: dangling deps"); 14305 if (bp->b_vp != NULL && bp->b_vp->v_mount != NULL) 14306 softdep_error(bp->b_vp->v_mount->mnt_stat.f_mntonname, bp->b_error); 14307 else 14308 printf("softdep_deallocate_dependencies: " 14309 "got error %d while accessing filesystem\n", bp->b_error); 14310 if (bp->b_error != ENXIO) 14311 panic("softdep_deallocate_dependencies: unrecovered I/O error"); 14312 } 14313 14314 /* 14315 * Function to handle asynchronous write errors in the filesystem. 14316 */ 14317 static void 14318 softdep_error(func, error) 14319 char *func; 14320 int error; 14321 { 14322 14323 /* XXX should do something better! */ 14324 printf("%s: got error %d while accessing filesystem\n", func, error); 14325 } 14326 14327 #ifdef DDB 14328 14329 static void 14330 inodedep_print(struct inodedep *inodedep, int verbose) 14331 { 14332 db_printf("%p fs %p st %x ino %jd inoblk %jd delta %jd nlink %jd" 14333 " saveino %p\n", 14334 inodedep, inodedep->id_fs, inodedep->id_state, 14335 (intmax_t)inodedep->id_ino, 14336 (intmax_t)fsbtodb(inodedep->id_fs, 14337 ino_to_fsba(inodedep->id_fs, inodedep->id_ino)), 14338 (intmax_t)inodedep->id_nlinkdelta, 14339 (intmax_t)inodedep->id_savednlink, 14340 inodedep->id_savedino1); 14341 14342 if (verbose == 0) 14343 return; 14344 14345 db_printf("\tpendinghd %p, bufwait %p, inowait %p, inoreflst %p, " 14346 "mkdiradd %p\n", 14347 LIST_FIRST(&inodedep->id_pendinghd), 14348 LIST_FIRST(&inodedep->id_bufwait), 14349 LIST_FIRST(&inodedep->id_inowait), 14350 TAILQ_FIRST(&inodedep->id_inoreflst), 14351 inodedep->id_mkdiradd); 14352 db_printf("\tinoupdt %p, newinoupdt %p, extupdt %p, newextupdt %p\n", 14353 TAILQ_FIRST(&inodedep->id_inoupdt), 14354 TAILQ_FIRST(&inodedep->id_newinoupdt), 14355 TAILQ_FIRST(&inodedep->id_extupdt), 14356 TAILQ_FIRST(&inodedep->id_newextupdt)); 14357 } 14358 14359 DB_SHOW_COMMAND(inodedep, db_show_inodedep) 14360 { 14361 14362 if (have_addr == 0) { 14363 db_printf("Address required\n"); 14364 return; 14365 } 14366 inodedep_print((struct inodedep*)addr, 1); 14367 } 14368 14369 DB_SHOW_COMMAND(inodedeps, db_show_inodedeps) 14370 { 14371 struct inodedep_hashhead *inodedephd; 14372 struct inodedep *inodedep; 14373 struct ufsmount *ump; 14374 int cnt; 14375 14376 if (have_addr == 0) { 14377 db_printf("Address required\n"); 14378 return; 14379 } 14380 ump = (struct ufsmount *)addr; 14381 for (cnt = 0; cnt < ump->inodedep_hash_size; cnt++) { 14382 inodedephd = &ump->inodedep_hashtbl[cnt]; 14383 LIST_FOREACH(inodedep, inodedephd, id_hash) { 14384 inodedep_print(inodedep, 0); 14385 } 14386 } 14387 } 14388 14389 DB_SHOW_COMMAND(worklist, db_show_worklist) 14390 { 14391 struct worklist *wk; 14392 14393 if (have_addr == 0) { 14394 db_printf("Address required\n"); 14395 return; 14396 } 14397 wk = (struct worklist *)addr; 14398 printf("worklist: %p type %s state 0x%X\n", 14399 wk, TYPENAME(wk->wk_type), wk->wk_state); 14400 } 14401 14402 DB_SHOW_COMMAND(workhead, db_show_workhead) 14403 { 14404 struct workhead *wkhd; 14405 struct worklist *wk; 14406 int i; 14407 14408 if (have_addr == 0) { 14409 db_printf("Address required\n"); 14410 return; 14411 } 14412 wkhd = (struct workhead *)addr; 14413 wk = LIST_FIRST(wkhd); 14414 for (i = 0; i < 100 && wk != NULL; i++, wk = LIST_NEXT(wk, wk_list)) 14415 db_printf("worklist: %p type %s state 0x%X", 14416 wk, TYPENAME(wk->wk_type), wk->wk_state); 14417 if (i == 100) 14418 db_printf("workhead overflow"); 14419 printf("\n"); 14420 } 14421 14422 14423 DB_SHOW_COMMAND(mkdirs, db_show_mkdirs) 14424 { 14425 struct mkdirlist *mkdirlisthd; 14426 struct jaddref *jaddref; 14427 struct diradd *diradd; 14428 struct mkdir *mkdir; 14429 14430 if (have_addr == 0) { 14431 db_printf("Address required\n"); 14432 return; 14433 } 14434 mkdirlisthd = (struct mkdirlist *)addr; 14435 LIST_FOREACH(mkdir, mkdirlisthd, md_mkdirs) { 14436 diradd = mkdir->md_diradd; 14437 db_printf("mkdir: %p state 0x%X dap %p state 0x%X", 14438 mkdir, mkdir->md_state, diradd, diradd->da_state); 14439 if ((jaddref = mkdir->md_jaddref) != NULL) 14440 db_printf(" jaddref %p jaddref state 0x%X", 14441 jaddref, jaddref->ja_state); 14442 db_printf("\n"); 14443 } 14444 } 14445 14446 /* exported to ffs_vfsops.c */ 14447 extern void db_print_ffs(struct ufsmount *ump); 14448 void 14449 db_print_ffs(struct ufsmount *ump) 14450 { 14451 db_printf("mp %p %s devvp %p fs %p su_wl %d su_deps %d su_req %d\n", 14452 ump->um_mountp, ump->um_mountp->mnt_stat.f_mntonname, 14453 ump->um_devvp, ump->um_fs, ump->softdep_on_worklist, 14454 ump->softdep_deps, ump->softdep_req); 14455 } 14456 14457 #endif /* DDB */ 14458 14459 #endif /* SOFTUPDATES */ 14460