1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright 1998, 2000 Marshall Kirk McKusick. 5 * Copyright 2009, 2010 Jeffrey W. Roberson <jeff@FreeBSD.org> 6 * All rights reserved. 7 * 8 * The soft updates code is derived from the appendix of a University 9 * of Michigan technical report (Gregory R. Ganger and Yale N. Patt, 10 * "Soft Updates: A Solution to the Metadata Update Problem in File 11 * Systems", CSE-TR-254-95, August 1995). 12 * 13 * Further information about soft updates can be obtained from: 14 * 15 * Marshall Kirk McKusick http://www.mckusick.com/softdep/ 16 * 1614 Oxford Street mckusick@mckusick.com 17 * Berkeley, CA 94709-1608 +1-510-843-9542 18 * USA 19 * 20 * Redistribution and use in source and binary forms, with or without 21 * modification, are permitted provided that the following conditions 22 * are met: 23 * 24 * 1. Redistributions of source code must retain the above copyright 25 * notice, this list of conditions and the following disclaimer. 26 * 2. Redistributions in binary form must reproduce the above copyright 27 * notice, this list of conditions and the following disclaimer in the 28 * documentation and/or other materials provided with the distribution. 29 * 30 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR 31 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 32 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 33 * IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT, 34 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 35 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS 36 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND 37 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR 38 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 39 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 40 * 41 * from: @(#)ffs_softdep.c 9.59 (McKusick) 6/21/00 42 */ 43 44 #include <sys/cdefs.h> 45 __FBSDID("$FreeBSD$"); 46 47 #include "opt_ffs.h" 48 #include "opt_quota.h" 49 #include "opt_ddb.h" 50 51 #include <sys/param.h> 52 #include <sys/kernel.h> 53 #include <sys/systm.h> 54 #include <sys/bio.h> 55 #include <sys/buf.h> 56 #include <sys/kdb.h> 57 #include <sys/kthread.h> 58 #include <sys/ktr.h> 59 #include <sys/limits.h> 60 #include <sys/lock.h> 61 #include <sys/malloc.h> 62 #include <sys/mount.h> 63 #include <sys/mutex.h> 64 #include <sys/namei.h> 65 #include <sys/priv.h> 66 #include <sys/proc.h> 67 #include <sys/racct.h> 68 #include <sys/rwlock.h> 69 #include <sys/stat.h> 70 #include <sys/sysctl.h> 71 #include <sys/syslog.h> 72 #include <sys/vnode.h> 73 #include <sys/conf.h> 74 75 #include <ufs/ufs/dir.h> 76 #include <ufs/ufs/extattr.h> 77 #include <ufs/ufs/quota.h> 78 #include <ufs/ufs/inode.h> 79 #include <ufs/ufs/ufsmount.h> 80 #include <ufs/ffs/fs.h> 81 #include <ufs/ffs/softdep.h> 82 #include <ufs/ffs/ffs_extern.h> 83 #include <ufs/ufs/ufs_extern.h> 84 85 #include <vm/vm.h> 86 #include <vm/vm_extern.h> 87 #include <vm/vm_object.h> 88 89 #include <geom/geom.h> 90 #include <geom/geom_vfs.h> 91 92 #include <ddb/ddb.h> 93 94 #define KTR_SUJ 0 /* Define to KTR_SPARE. */ 95 96 #ifndef SOFTUPDATES 97 98 int 99 softdep_flushfiles(oldmnt, flags, td) 100 struct mount *oldmnt; 101 int flags; 102 struct thread *td; 103 { 104 105 panic("softdep_flushfiles called"); 106 } 107 108 int 109 softdep_mount(devvp, mp, fs, cred) 110 struct vnode *devvp; 111 struct mount *mp; 112 struct fs *fs; 113 struct ucred *cred; 114 { 115 116 return (0); 117 } 118 119 void 120 softdep_initialize() 121 { 122 123 return; 124 } 125 126 void 127 softdep_uninitialize() 128 { 129 130 return; 131 } 132 133 void 134 softdep_unmount(mp) 135 struct mount *mp; 136 { 137 138 panic("softdep_unmount called"); 139 } 140 141 void 142 softdep_setup_sbupdate(ump, fs, bp) 143 struct ufsmount *ump; 144 struct fs *fs; 145 struct buf *bp; 146 { 147 148 panic("softdep_setup_sbupdate called"); 149 } 150 151 void 152 softdep_setup_inomapdep(bp, ip, newinum, mode) 153 struct buf *bp; 154 struct inode *ip; 155 ino_t newinum; 156 int mode; 157 { 158 159 panic("softdep_setup_inomapdep called"); 160 } 161 162 void 163 softdep_setup_blkmapdep(bp, mp, newblkno, frags, oldfrags) 164 struct buf *bp; 165 struct mount *mp; 166 ufs2_daddr_t newblkno; 167 int frags; 168 int oldfrags; 169 { 170 171 panic("softdep_setup_blkmapdep called"); 172 } 173 174 void 175 softdep_setup_allocdirect(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp) 176 struct inode *ip; 177 ufs_lbn_t lbn; 178 ufs2_daddr_t newblkno; 179 ufs2_daddr_t oldblkno; 180 long newsize; 181 long oldsize; 182 struct buf *bp; 183 { 184 185 panic("softdep_setup_allocdirect called"); 186 } 187 188 void 189 softdep_setup_allocext(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp) 190 struct inode *ip; 191 ufs_lbn_t lbn; 192 ufs2_daddr_t newblkno; 193 ufs2_daddr_t oldblkno; 194 long newsize; 195 long oldsize; 196 struct buf *bp; 197 { 198 199 panic("softdep_setup_allocext called"); 200 } 201 202 void 203 softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp) 204 struct inode *ip; 205 ufs_lbn_t lbn; 206 struct buf *bp; 207 int ptrno; 208 ufs2_daddr_t newblkno; 209 ufs2_daddr_t oldblkno; 210 struct buf *nbp; 211 { 212 213 panic("softdep_setup_allocindir_page called"); 214 } 215 216 void 217 softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno) 218 struct buf *nbp; 219 struct inode *ip; 220 struct buf *bp; 221 int ptrno; 222 ufs2_daddr_t newblkno; 223 { 224 225 panic("softdep_setup_allocindir_meta called"); 226 } 227 228 void 229 softdep_journal_freeblocks(ip, cred, length, flags) 230 struct inode *ip; 231 struct ucred *cred; 232 off_t length; 233 int flags; 234 { 235 236 panic("softdep_journal_freeblocks called"); 237 } 238 239 void 240 softdep_journal_fsync(ip) 241 struct inode *ip; 242 { 243 244 panic("softdep_journal_fsync called"); 245 } 246 247 void 248 softdep_setup_freeblocks(ip, length, flags) 249 struct inode *ip; 250 off_t length; 251 int flags; 252 { 253 254 panic("softdep_setup_freeblocks called"); 255 } 256 257 void 258 softdep_freefile(pvp, ino, mode) 259 struct vnode *pvp; 260 ino_t ino; 261 int mode; 262 { 263 264 panic("softdep_freefile called"); 265 } 266 267 int 268 softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk) 269 struct buf *bp; 270 struct inode *dp; 271 off_t diroffset; 272 ino_t newinum; 273 struct buf *newdirbp; 274 int isnewblk; 275 { 276 277 panic("softdep_setup_directory_add called"); 278 } 279 280 void 281 softdep_change_directoryentry_offset(bp, dp, base, oldloc, newloc, entrysize) 282 struct buf *bp; 283 struct inode *dp; 284 caddr_t base; 285 caddr_t oldloc; 286 caddr_t newloc; 287 int entrysize; 288 { 289 290 panic("softdep_change_directoryentry_offset called"); 291 } 292 293 void 294 softdep_setup_remove(bp, dp, ip, isrmdir) 295 struct buf *bp; 296 struct inode *dp; 297 struct inode *ip; 298 int isrmdir; 299 { 300 301 panic("softdep_setup_remove called"); 302 } 303 304 void 305 softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir) 306 struct buf *bp; 307 struct inode *dp; 308 struct inode *ip; 309 ino_t newinum; 310 int isrmdir; 311 { 312 313 panic("softdep_setup_directory_change called"); 314 } 315 316 void 317 softdep_setup_blkfree(mp, bp, blkno, frags, wkhd) 318 struct mount *mp; 319 struct buf *bp; 320 ufs2_daddr_t blkno; 321 int frags; 322 struct workhead *wkhd; 323 { 324 325 panic("%s called", __FUNCTION__); 326 } 327 328 void 329 softdep_setup_inofree(mp, bp, ino, wkhd) 330 struct mount *mp; 331 struct buf *bp; 332 ino_t ino; 333 struct workhead *wkhd; 334 { 335 336 panic("%s called", __FUNCTION__); 337 } 338 339 void 340 softdep_setup_unlink(dp, ip) 341 struct inode *dp; 342 struct inode *ip; 343 { 344 345 panic("%s called", __FUNCTION__); 346 } 347 348 void 349 softdep_setup_link(dp, ip) 350 struct inode *dp; 351 struct inode *ip; 352 { 353 354 panic("%s called", __FUNCTION__); 355 } 356 357 void 358 softdep_revert_link(dp, ip) 359 struct inode *dp; 360 struct inode *ip; 361 { 362 363 panic("%s called", __FUNCTION__); 364 } 365 366 void 367 softdep_setup_rmdir(dp, ip) 368 struct inode *dp; 369 struct inode *ip; 370 { 371 372 panic("%s called", __FUNCTION__); 373 } 374 375 void 376 softdep_revert_rmdir(dp, ip) 377 struct inode *dp; 378 struct inode *ip; 379 { 380 381 panic("%s called", __FUNCTION__); 382 } 383 384 void 385 softdep_setup_create(dp, ip) 386 struct inode *dp; 387 struct inode *ip; 388 { 389 390 panic("%s called", __FUNCTION__); 391 } 392 393 void 394 softdep_revert_create(dp, ip) 395 struct inode *dp; 396 struct inode *ip; 397 { 398 399 panic("%s called", __FUNCTION__); 400 } 401 402 void 403 softdep_setup_mkdir(dp, ip) 404 struct inode *dp; 405 struct inode *ip; 406 { 407 408 panic("%s called", __FUNCTION__); 409 } 410 411 void 412 softdep_revert_mkdir(dp, ip) 413 struct inode *dp; 414 struct inode *ip; 415 { 416 417 panic("%s called", __FUNCTION__); 418 } 419 420 void 421 softdep_setup_dotdot_link(dp, ip) 422 struct inode *dp; 423 struct inode *ip; 424 { 425 426 panic("%s called", __FUNCTION__); 427 } 428 429 int 430 softdep_prealloc(vp, waitok) 431 struct vnode *vp; 432 int waitok; 433 { 434 435 panic("%s called", __FUNCTION__); 436 } 437 438 int 439 softdep_journal_lookup(mp, vpp) 440 struct mount *mp; 441 struct vnode **vpp; 442 { 443 444 return (ENOENT); 445 } 446 447 void 448 softdep_change_linkcnt(ip) 449 struct inode *ip; 450 { 451 452 panic("softdep_change_linkcnt called"); 453 } 454 455 void 456 softdep_load_inodeblock(ip) 457 struct inode *ip; 458 { 459 460 panic("softdep_load_inodeblock called"); 461 } 462 463 void 464 softdep_update_inodeblock(ip, bp, waitfor) 465 struct inode *ip; 466 struct buf *bp; 467 int waitfor; 468 { 469 470 panic("softdep_update_inodeblock called"); 471 } 472 473 int 474 softdep_fsync(vp) 475 struct vnode *vp; /* the "in_core" copy of the inode */ 476 { 477 478 return (0); 479 } 480 481 void 482 softdep_fsync_mountdev(vp) 483 struct vnode *vp; 484 { 485 486 return; 487 } 488 489 int 490 softdep_flushworklist(oldmnt, countp, td) 491 struct mount *oldmnt; 492 int *countp; 493 struct thread *td; 494 { 495 496 *countp = 0; 497 return (0); 498 } 499 500 int 501 softdep_sync_metadata(struct vnode *vp) 502 { 503 504 panic("softdep_sync_metadata called"); 505 } 506 507 int 508 softdep_sync_buf(struct vnode *vp, struct buf *bp, int waitfor) 509 { 510 511 panic("softdep_sync_buf called"); 512 } 513 514 int 515 softdep_slowdown(vp) 516 struct vnode *vp; 517 { 518 519 panic("softdep_slowdown called"); 520 } 521 522 int 523 softdep_request_cleanup(fs, vp, cred, resource) 524 struct fs *fs; 525 struct vnode *vp; 526 struct ucred *cred; 527 int resource; 528 { 529 530 return (0); 531 } 532 533 int 534 softdep_check_suspend(struct mount *mp, 535 struct vnode *devvp, 536 int softdep_depcnt, 537 int softdep_accdepcnt, 538 int secondary_writes, 539 int secondary_accwrites) 540 { 541 struct bufobj *bo; 542 int error; 543 544 (void) softdep_depcnt, 545 (void) softdep_accdepcnt; 546 547 bo = &devvp->v_bufobj; 548 ASSERT_BO_WLOCKED(bo); 549 550 MNT_ILOCK(mp); 551 while (mp->mnt_secondary_writes != 0) { 552 BO_UNLOCK(bo); 553 msleep(&mp->mnt_secondary_writes, MNT_MTX(mp), 554 (PUSER - 1) | PDROP, "secwr", 0); 555 BO_LOCK(bo); 556 MNT_ILOCK(mp); 557 } 558 559 /* 560 * Reasons for needing more work before suspend: 561 * - Dirty buffers on devvp. 562 * - Secondary writes occurred after start of vnode sync loop 563 */ 564 error = 0; 565 if (bo->bo_numoutput > 0 || 566 bo->bo_dirty.bv_cnt > 0 || 567 secondary_writes != 0 || 568 mp->mnt_secondary_writes != 0 || 569 secondary_accwrites != mp->mnt_secondary_accwrites) 570 error = EAGAIN; 571 BO_UNLOCK(bo); 572 return (error); 573 } 574 575 void 576 softdep_get_depcounts(struct mount *mp, 577 int *softdepactivep, 578 int *softdepactiveaccp) 579 { 580 (void) mp; 581 *softdepactivep = 0; 582 *softdepactiveaccp = 0; 583 } 584 585 void 586 softdep_buf_append(bp, wkhd) 587 struct buf *bp; 588 struct workhead *wkhd; 589 { 590 591 panic("softdep_buf_appendwork called"); 592 } 593 594 void 595 softdep_inode_append(ip, cred, wkhd) 596 struct inode *ip; 597 struct ucred *cred; 598 struct workhead *wkhd; 599 { 600 601 panic("softdep_inode_appendwork called"); 602 } 603 604 void 605 softdep_freework(wkhd) 606 struct workhead *wkhd; 607 { 608 609 panic("softdep_freework called"); 610 } 611 612 int 613 softdep_prerename(fdvp, fvp, tdvp, tvp) 614 struct vnode *fdvp; 615 struct vnode *fvp; 616 struct vnode *tdvp; 617 struct vnode *tvp; 618 { 619 620 panic("softdep_prerename called"); 621 } 622 623 int 624 softdep_prelink(dvp, vp) 625 struct vnode *dvp; 626 struct vnode *vp; 627 { 628 629 panic("softdep_prelink called"); 630 } 631 632 #else 633 634 FEATURE(softupdates, "FFS soft-updates support"); 635 636 static SYSCTL_NODE(_debug, OID_AUTO, softdep, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 637 "soft updates stats"); 638 static SYSCTL_NODE(_debug_softdep, OID_AUTO, total, 639 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 640 "total dependencies allocated"); 641 static SYSCTL_NODE(_debug_softdep, OID_AUTO, highuse, 642 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 643 "high use dependencies allocated"); 644 static SYSCTL_NODE(_debug_softdep, OID_AUTO, current, 645 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 646 "current dependencies allocated"); 647 static SYSCTL_NODE(_debug_softdep, OID_AUTO, write, 648 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 649 "current dependencies written"); 650 651 unsigned long dep_current[D_LAST + 1]; 652 unsigned long dep_highuse[D_LAST + 1]; 653 unsigned long dep_total[D_LAST + 1]; 654 unsigned long dep_write[D_LAST + 1]; 655 656 #define SOFTDEP_TYPE(type, str, long) \ 657 static MALLOC_DEFINE(M_ ## type, #str, long); \ 658 SYSCTL_ULONG(_debug_softdep_total, OID_AUTO, str, CTLFLAG_RD, \ 659 &dep_total[D_ ## type], 0, ""); \ 660 SYSCTL_ULONG(_debug_softdep_current, OID_AUTO, str, CTLFLAG_RD, \ 661 &dep_current[D_ ## type], 0, ""); \ 662 SYSCTL_ULONG(_debug_softdep_highuse, OID_AUTO, str, CTLFLAG_RD, \ 663 &dep_highuse[D_ ## type], 0, ""); \ 664 SYSCTL_ULONG(_debug_softdep_write, OID_AUTO, str, CTLFLAG_RD, \ 665 &dep_write[D_ ## type], 0, ""); 666 667 SOFTDEP_TYPE(PAGEDEP, pagedep, "File page dependencies"); 668 SOFTDEP_TYPE(INODEDEP, inodedep, "Inode dependencies"); 669 SOFTDEP_TYPE(BMSAFEMAP, bmsafemap, 670 "Block or frag allocated from cyl group map"); 671 SOFTDEP_TYPE(NEWBLK, newblk, "New block or frag allocation dependency"); 672 SOFTDEP_TYPE(ALLOCDIRECT, allocdirect, "Block or frag dependency for an inode"); 673 SOFTDEP_TYPE(INDIRDEP, indirdep, "Indirect block dependencies"); 674 SOFTDEP_TYPE(ALLOCINDIR, allocindir, "Block dependency for an indirect block"); 675 SOFTDEP_TYPE(FREEFRAG, freefrag, "Previously used frag for an inode"); 676 SOFTDEP_TYPE(FREEBLKS, freeblks, "Blocks freed from an inode"); 677 SOFTDEP_TYPE(FREEFILE, freefile, "Inode deallocated"); 678 SOFTDEP_TYPE(DIRADD, diradd, "New directory entry"); 679 SOFTDEP_TYPE(MKDIR, mkdir, "New directory"); 680 SOFTDEP_TYPE(DIRREM, dirrem, "Directory entry deleted"); 681 SOFTDEP_TYPE(NEWDIRBLK, newdirblk, "Unclaimed new directory block"); 682 SOFTDEP_TYPE(FREEWORK, freework, "free an inode block"); 683 SOFTDEP_TYPE(FREEDEP, freedep, "track a block free"); 684 SOFTDEP_TYPE(JADDREF, jaddref, "Journal inode ref add"); 685 SOFTDEP_TYPE(JREMREF, jremref, "Journal inode ref remove"); 686 SOFTDEP_TYPE(JMVREF, jmvref, "Journal inode ref move"); 687 SOFTDEP_TYPE(JNEWBLK, jnewblk, "Journal new block"); 688 SOFTDEP_TYPE(JFREEBLK, jfreeblk, "Journal free block"); 689 SOFTDEP_TYPE(JFREEFRAG, jfreefrag, "Journal free frag"); 690 SOFTDEP_TYPE(JSEG, jseg, "Journal segment"); 691 SOFTDEP_TYPE(JSEGDEP, jsegdep, "Journal segment complete"); 692 SOFTDEP_TYPE(SBDEP, sbdep, "Superblock write dependency"); 693 SOFTDEP_TYPE(JTRUNC, jtrunc, "Journal inode truncation"); 694 SOFTDEP_TYPE(JFSYNC, jfsync, "Journal fsync complete"); 695 696 static MALLOC_DEFINE(M_SENTINEL, "sentinel", "Worklist sentinel"); 697 698 static MALLOC_DEFINE(M_SAVEDINO, "savedino", "Saved inodes"); 699 static MALLOC_DEFINE(M_JBLOCKS, "jblocks", "Journal block locations"); 700 static MALLOC_DEFINE(M_MOUNTDATA, "softdep", "Softdep per-mount data"); 701 702 #define M_SOFTDEP_FLAGS (M_WAITOK) 703 704 /* 705 * translate from workitem type to memory type 706 * MUST match the defines above, such that memtype[D_XXX] == M_XXX 707 */ 708 static struct malloc_type *memtype[] = { 709 NULL, 710 M_PAGEDEP, 711 M_INODEDEP, 712 M_BMSAFEMAP, 713 M_NEWBLK, 714 M_ALLOCDIRECT, 715 M_INDIRDEP, 716 M_ALLOCINDIR, 717 M_FREEFRAG, 718 M_FREEBLKS, 719 M_FREEFILE, 720 M_DIRADD, 721 M_MKDIR, 722 M_DIRREM, 723 M_NEWDIRBLK, 724 M_FREEWORK, 725 M_FREEDEP, 726 M_JADDREF, 727 M_JREMREF, 728 M_JMVREF, 729 M_JNEWBLK, 730 M_JFREEBLK, 731 M_JFREEFRAG, 732 M_JSEG, 733 M_JSEGDEP, 734 M_SBDEP, 735 M_JTRUNC, 736 M_JFSYNC, 737 M_SENTINEL 738 }; 739 740 #define DtoM(type) (memtype[type]) 741 742 /* 743 * Names of malloc types. 744 */ 745 #define TYPENAME(type) \ 746 ((unsigned)(type) <= D_LAST && (unsigned)(type) >= D_FIRST ? \ 747 memtype[type]->ks_shortdesc : "???") 748 /* 749 * End system adaptation definitions. 750 */ 751 752 #define DOTDOT_OFFSET offsetof(struct dirtemplate, dotdot_ino) 753 #define DOT_OFFSET offsetof(struct dirtemplate, dot_ino) 754 755 /* 756 * Internal function prototypes. 757 */ 758 static void check_clear_deps(struct mount *); 759 static void softdep_error(char *, int); 760 static int softdep_prerename_vnode(struct ufsmount *, struct vnode *); 761 static int softdep_process_worklist(struct mount *, int); 762 static int softdep_waitidle(struct mount *, int); 763 static void drain_output(struct vnode *); 764 static struct buf *getdirtybuf(struct buf *, struct rwlock *, int); 765 static int check_inodedep_free(struct inodedep *); 766 static void clear_remove(struct mount *); 767 static void clear_inodedeps(struct mount *); 768 static void unlinked_inodedep(struct mount *, struct inodedep *); 769 static void clear_unlinked_inodedep(struct inodedep *); 770 static struct inodedep *first_unlinked_inodedep(struct ufsmount *); 771 static int flush_pagedep_deps(struct vnode *, struct mount *, 772 struct diraddhd *, struct buf *); 773 static int free_pagedep(struct pagedep *); 774 static int flush_newblk_dep(struct vnode *, struct mount *, ufs_lbn_t); 775 static int flush_inodedep_deps(struct vnode *, struct mount *, ino_t); 776 static int flush_deplist(struct allocdirectlst *, int, int *); 777 static int sync_cgs(struct mount *, int); 778 static int handle_written_filepage(struct pagedep *, struct buf *, int); 779 static int handle_written_sbdep(struct sbdep *, struct buf *); 780 static void initiate_write_sbdep(struct sbdep *); 781 static void diradd_inode_written(struct diradd *, struct inodedep *); 782 static int handle_written_indirdep(struct indirdep *, struct buf *, 783 struct buf**, int); 784 static int handle_written_inodeblock(struct inodedep *, struct buf *, int); 785 static int jnewblk_rollforward(struct jnewblk *, struct fs *, struct cg *, 786 uint8_t *); 787 static int handle_written_bmsafemap(struct bmsafemap *, struct buf *, int); 788 static void handle_written_jaddref(struct jaddref *); 789 static void handle_written_jremref(struct jremref *); 790 static void handle_written_jseg(struct jseg *, struct buf *); 791 static void handle_written_jnewblk(struct jnewblk *); 792 static void handle_written_jblkdep(struct jblkdep *); 793 static void handle_written_jfreefrag(struct jfreefrag *); 794 static void complete_jseg(struct jseg *); 795 static void complete_jsegs(struct jseg *); 796 static void jseg_write(struct ufsmount *ump, struct jseg *, uint8_t *); 797 static void jaddref_write(struct jaddref *, struct jseg *, uint8_t *); 798 static void jremref_write(struct jremref *, struct jseg *, uint8_t *); 799 static void jmvref_write(struct jmvref *, struct jseg *, uint8_t *); 800 static void jtrunc_write(struct jtrunc *, struct jseg *, uint8_t *); 801 static void jfsync_write(struct jfsync *, struct jseg *, uint8_t *data); 802 static void jnewblk_write(struct jnewblk *, struct jseg *, uint8_t *); 803 static void jfreeblk_write(struct jfreeblk *, struct jseg *, uint8_t *); 804 static void jfreefrag_write(struct jfreefrag *, struct jseg *, uint8_t *); 805 static inline void inoref_write(struct inoref *, struct jseg *, 806 struct jrefrec *); 807 static void handle_allocdirect_partdone(struct allocdirect *, 808 struct workhead *); 809 static struct jnewblk *cancel_newblk(struct newblk *, struct worklist *, 810 struct workhead *); 811 static void indirdep_complete(struct indirdep *); 812 static int indirblk_lookup(struct mount *, ufs2_daddr_t); 813 static void indirblk_insert(struct freework *); 814 static void indirblk_remove(struct freework *); 815 static void handle_allocindir_partdone(struct allocindir *); 816 static void initiate_write_filepage(struct pagedep *, struct buf *); 817 static void initiate_write_indirdep(struct indirdep*, struct buf *); 818 static void handle_written_mkdir(struct mkdir *, int); 819 static int jnewblk_rollback(struct jnewblk *, struct fs *, struct cg *, 820 uint8_t *); 821 static void initiate_write_bmsafemap(struct bmsafemap *, struct buf *); 822 static void initiate_write_inodeblock_ufs1(struct inodedep *, struct buf *); 823 static void initiate_write_inodeblock_ufs2(struct inodedep *, struct buf *); 824 static void handle_workitem_freefile(struct freefile *); 825 static int handle_workitem_remove(struct dirrem *, int); 826 static struct dirrem *newdirrem(struct buf *, struct inode *, 827 struct inode *, int, struct dirrem **); 828 static struct indirdep *indirdep_lookup(struct mount *, struct inode *, 829 struct buf *); 830 static void cancel_indirdep(struct indirdep *, struct buf *, 831 struct freeblks *); 832 static void free_indirdep(struct indirdep *); 833 static void free_diradd(struct diradd *, struct workhead *); 834 static void merge_diradd(struct inodedep *, struct diradd *); 835 static void complete_diradd(struct diradd *); 836 static struct diradd *diradd_lookup(struct pagedep *, int); 837 static struct jremref *cancel_diradd_dotdot(struct inode *, struct dirrem *, 838 struct jremref *); 839 static struct jremref *cancel_mkdir_dotdot(struct inode *, struct dirrem *, 840 struct jremref *); 841 static void cancel_diradd(struct diradd *, struct dirrem *, struct jremref *, 842 struct jremref *, struct jremref *); 843 static void dirrem_journal(struct dirrem *, struct jremref *, struct jremref *, 844 struct jremref *); 845 static void cancel_allocindir(struct allocindir *, struct buf *bp, 846 struct freeblks *, int); 847 static int setup_trunc_indir(struct freeblks *, struct inode *, 848 ufs_lbn_t, ufs_lbn_t, ufs2_daddr_t); 849 static void complete_trunc_indir(struct freework *); 850 static void trunc_indirdep(struct indirdep *, struct freeblks *, struct buf *, 851 int); 852 static void complete_mkdir(struct mkdir *); 853 static void free_newdirblk(struct newdirblk *); 854 static void free_jremref(struct jremref *); 855 static void free_jaddref(struct jaddref *); 856 static void free_jsegdep(struct jsegdep *); 857 static void free_jsegs(struct jblocks *); 858 static void rele_jseg(struct jseg *); 859 static void free_jseg(struct jseg *, struct jblocks *); 860 static void free_jnewblk(struct jnewblk *); 861 static void free_jblkdep(struct jblkdep *); 862 static void free_jfreefrag(struct jfreefrag *); 863 static void free_freedep(struct freedep *); 864 static void journal_jremref(struct dirrem *, struct jremref *, 865 struct inodedep *); 866 static void cancel_jnewblk(struct jnewblk *, struct workhead *); 867 static int cancel_jaddref(struct jaddref *, struct inodedep *, 868 struct workhead *); 869 static void cancel_jfreefrag(struct jfreefrag *); 870 static inline void setup_freedirect(struct freeblks *, struct inode *, 871 int, int); 872 static inline void setup_freeext(struct freeblks *, struct inode *, int, int); 873 static inline void setup_freeindir(struct freeblks *, struct inode *, int, 874 ufs_lbn_t, int); 875 static inline struct freeblks *newfreeblks(struct mount *, struct inode *); 876 static void freeblks_free(struct ufsmount *, struct freeblks *, int); 877 static void indir_trunc(struct freework *, ufs2_daddr_t, ufs_lbn_t); 878 static ufs2_daddr_t blkcount(struct fs *, ufs2_daddr_t, off_t); 879 static int trunc_check_buf(struct buf *, int *, ufs_lbn_t, int, int); 880 static void trunc_dependencies(struct inode *, struct freeblks *, ufs_lbn_t, 881 int, int); 882 static void trunc_pages(struct inode *, off_t, ufs2_daddr_t, int); 883 static int cancel_pagedep(struct pagedep *, struct freeblks *, int); 884 static int deallocate_dependencies(struct buf *, struct freeblks *, int); 885 static void newblk_freefrag(struct newblk*); 886 static void free_newblk(struct newblk *); 887 static void cancel_allocdirect(struct allocdirectlst *, 888 struct allocdirect *, struct freeblks *); 889 static int check_inode_unwritten(struct inodedep *); 890 static int free_inodedep(struct inodedep *); 891 static void freework_freeblock(struct freework *, u_long); 892 static void freework_enqueue(struct freework *); 893 static int handle_workitem_freeblocks(struct freeblks *, int); 894 static int handle_complete_freeblocks(struct freeblks *, int); 895 static void handle_workitem_indirblk(struct freework *); 896 static void handle_written_freework(struct freework *); 897 static void merge_inode_lists(struct allocdirectlst *,struct allocdirectlst *); 898 static struct worklist *jnewblk_merge(struct worklist *, struct worklist *, 899 struct workhead *); 900 static struct freefrag *setup_allocindir_phase2(struct buf *, struct inode *, 901 struct inodedep *, struct allocindir *, ufs_lbn_t); 902 static struct allocindir *newallocindir(struct inode *, int, ufs2_daddr_t, 903 ufs2_daddr_t, ufs_lbn_t); 904 static void handle_workitem_freefrag(struct freefrag *); 905 static struct freefrag *newfreefrag(struct inode *, ufs2_daddr_t, long, 906 ufs_lbn_t, u_long); 907 static void allocdirect_merge(struct allocdirectlst *, 908 struct allocdirect *, struct allocdirect *); 909 static struct freefrag *allocindir_merge(struct allocindir *, 910 struct allocindir *); 911 static int bmsafemap_find(struct bmsafemap_hashhead *, int, 912 struct bmsafemap **); 913 static struct bmsafemap *bmsafemap_lookup(struct mount *, struct buf *, 914 int cg, struct bmsafemap *); 915 static int newblk_find(struct newblk_hashhead *, ufs2_daddr_t, int, 916 struct newblk **); 917 static int newblk_lookup(struct mount *, ufs2_daddr_t, int, struct newblk **); 918 static int inodedep_find(struct inodedep_hashhead *, ino_t, 919 struct inodedep **); 920 static int inodedep_lookup(struct mount *, ino_t, int, struct inodedep **); 921 static int pagedep_lookup(struct mount *, struct buf *bp, ino_t, ufs_lbn_t, 922 int, struct pagedep **); 923 static int pagedep_find(struct pagedep_hashhead *, ino_t, ufs_lbn_t, 924 struct pagedep **); 925 static void pause_timer(void *); 926 static int request_cleanup(struct mount *, int); 927 static int softdep_request_cleanup_flush(struct mount *, struct ufsmount *); 928 static void schedule_cleanup(struct mount *); 929 static void softdep_ast_cleanup_proc(struct thread *); 930 static struct ufsmount *softdep_bp_to_mp(struct buf *bp); 931 static int process_worklist_item(struct mount *, int, int); 932 static void process_removes(struct vnode *); 933 static void process_truncates(struct vnode *); 934 static void jwork_move(struct workhead *, struct workhead *); 935 static void jwork_insert(struct workhead *, struct jsegdep *); 936 static void add_to_worklist(struct worklist *, int); 937 static void wake_worklist(struct worklist *); 938 static void wait_worklist(struct worklist *, char *); 939 static void remove_from_worklist(struct worklist *); 940 static void softdep_flush(void *); 941 static void softdep_flushjournal(struct mount *); 942 static int softdep_speedup(struct ufsmount *); 943 static void worklist_speedup(struct mount *); 944 static int journal_mount(struct mount *, struct fs *, struct ucred *); 945 static void journal_unmount(struct ufsmount *); 946 static int journal_space(struct ufsmount *, int); 947 static void journal_suspend(struct ufsmount *); 948 static int journal_unsuspend(struct ufsmount *ump); 949 static void add_to_journal(struct worklist *); 950 static void remove_from_journal(struct worklist *); 951 static bool softdep_excess_items(struct ufsmount *, int); 952 static void softdep_process_journal(struct mount *, struct worklist *, int); 953 static struct jremref *newjremref(struct dirrem *, struct inode *, 954 struct inode *ip, off_t, nlink_t); 955 static struct jaddref *newjaddref(struct inode *, ino_t, off_t, int16_t, 956 uint16_t); 957 static inline void newinoref(struct inoref *, ino_t, ino_t, off_t, nlink_t, 958 uint16_t); 959 static inline struct jsegdep *inoref_jseg(struct inoref *); 960 static struct jmvref *newjmvref(struct inode *, ino_t, off_t, off_t); 961 static struct jfreeblk *newjfreeblk(struct freeblks *, ufs_lbn_t, 962 ufs2_daddr_t, int); 963 static void adjust_newfreework(struct freeblks *, int); 964 static struct jtrunc *newjtrunc(struct freeblks *, off_t, int); 965 static void move_newblock_dep(struct jaddref *, struct inodedep *); 966 static void cancel_jfreeblk(struct freeblks *, ufs2_daddr_t); 967 static struct jfreefrag *newjfreefrag(struct freefrag *, struct inode *, 968 ufs2_daddr_t, long, ufs_lbn_t); 969 static struct freework *newfreework(struct ufsmount *, struct freeblks *, 970 struct freework *, ufs_lbn_t, ufs2_daddr_t, int, int, int); 971 static int jwait(struct worklist *, int); 972 static struct inodedep *inodedep_lookup_ip(struct inode *); 973 static int bmsafemap_backgroundwrite(struct bmsafemap *, struct buf *); 974 static struct freefile *handle_bufwait(struct inodedep *, struct workhead *); 975 static void handle_jwork(struct workhead *); 976 static struct mkdir *setup_newdir(struct diradd *, ino_t, ino_t, struct buf *, 977 struct mkdir **); 978 static struct jblocks *jblocks_create(void); 979 static ufs2_daddr_t jblocks_alloc(struct jblocks *, int, int *); 980 static void jblocks_free(struct jblocks *, struct mount *, int); 981 static void jblocks_destroy(struct jblocks *); 982 static void jblocks_add(struct jblocks *, ufs2_daddr_t, int); 983 984 /* 985 * Exported softdep operations. 986 */ 987 static void softdep_disk_io_initiation(struct buf *); 988 static void softdep_disk_write_complete(struct buf *); 989 static void softdep_deallocate_dependencies(struct buf *); 990 static int softdep_count_dependencies(struct buf *bp, int); 991 992 /* 993 * Global lock over all of soft updates. 994 */ 995 static struct mtx lk; 996 MTX_SYSINIT(softdep_lock, &lk, "global softdep", MTX_DEF); 997 998 #define ACQUIRE_GBLLOCK(lk) mtx_lock(lk) 999 #define FREE_GBLLOCK(lk) mtx_unlock(lk) 1000 #define GBLLOCK_OWNED(lk) mtx_assert((lk), MA_OWNED) 1001 1002 /* 1003 * Per-filesystem soft-updates locking. 1004 */ 1005 #define LOCK_PTR(ump) (&(ump)->um_softdep->sd_fslock) 1006 #define TRY_ACQUIRE_LOCK(ump) rw_try_wlock(&(ump)->um_softdep->sd_fslock) 1007 #define ACQUIRE_LOCK(ump) rw_wlock(&(ump)->um_softdep->sd_fslock) 1008 #define FREE_LOCK(ump) rw_wunlock(&(ump)->um_softdep->sd_fslock) 1009 #define LOCK_OWNED(ump) rw_assert(&(ump)->um_softdep->sd_fslock, \ 1010 RA_WLOCKED) 1011 1012 #define BUF_AREC(bp) lockallowrecurse(&(bp)->b_lock) 1013 #define BUF_NOREC(bp) lockdisablerecurse(&(bp)->b_lock) 1014 1015 /* 1016 * Worklist queue management. 1017 * These routines require that the lock be held. 1018 */ 1019 #ifndef /* NOT */ INVARIANTS 1020 #define WORKLIST_INSERT(head, item) do { \ 1021 (item)->wk_state |= ONWORKLIST; \ 1022 LIST_INSERT_HEAD(head, item, wk_list); \ 1023 } while (0) 1024 #define WORKLIST_REMOVE(item) do { \ 1025 (item)->wk_state &= ~ONWORKLIST; \ 1026 LIST_REMOVE(item, wk_list); \ 1027 } while (0) 1028 #define WORKLIST_INSERT_UNLOCKED WORKLIST_INSERT 1029 #define WORKLIST_REMOVE_UNLOCKED WORKLIST_REMOVE 1030 1031 #else /* INVARIANTS */ 1032 static void worklist_insert(struct workhead *, struct worklist *, int, 1033 const char *, int); 1034 static void worklist_remove(struct worklist *, int, const char *, int); 1035 1036 #define WORKLIST_INSERT(head, item) \ 1037 worklist_insert(head, item, 1, __func__, __LINE__) 1038 #define WORKLIST_INSERT_UNLOCKED(head, item)\ 1039 worklist_insert(head, item, 0, __func__, __LINE__) 1040 #define WORKLIST_REMOVE(item)\ 1041 worklist_remove(item, 1, __func__, __LINE__) 1042 #define WORKLIST_REMOVE_UNLOCKED(item)\ 1043 worklist_remove(item, 0, __func__, __LINE__) 1044 1045 static void 1046 worklist_insert(head, item, locked, func, line) 1047 struct workhead *head; 1048 struct worklist *item; 1049 int locked; 1050 const char *func; 1051 int line; 1052 { 1053 1054 if (locked) 1055 LOCK_OWNED(VFSTOUFS(item->wk_mp)); 1056 if (item->wk_state & ONWORKLIST) 1057 panic("worklist_insert: %p %s(0x%X) already on list, " 1058 "added in function %s at line %d", 1059 item, TYPENAME(item->wk_type), item->wk_state, 1060 item->wk_func, item->wk_line); 1061 item->wk_state |= ONWORKLIST; 1062 item->wk_func = func; 1063 item->wk_line = line; 1064 LIST_INSERT_HEAD(head, item, wk_list); 1065 } 1066 1067 static void 1068 worklist_remove(item, locked, func, line) 1069 struct worklist *item; 1070 int locked; 1071 const char *func; 1072 int line; 1073 { 1074 1075 if (locked) 1076 LOCK_OWNED(VFSTOUFS(item->wk_mp)); 1077 if ((item->wk_state & ONWORKLIST) == 0) 1078 panic("worklist_remove: %p %s(0x%X) not on list, " 1079 "removed in function %s at line %d", 1080 item, TYPENAME(item->wk_type), item->wk_state, 1081 item->wk_func, item->wk_line); 1082 item->wk_state &= ~ONWORKLIST; 1083 item->wk_func = func; 1084 item->wk_line = line; 1085 LIST_REMOVE(item, wk_list); 1086 } 1087 #endif /* INVARIANTS */ 1088 1089 /* 1090 * Merge two jsegdeps keeping only the oldest one as newer references 1091 * can't be discarded until after older references. 1092 */ 1093 static inline struct jsegdep * 1094 jsegdep_merge(struct jsegdep *one, struct jsegdep *two) 1095 { 1096 struct jsegdep *swp; 1097 1098 if (two == NULL) 1099 return (one); 1100 1101 if (one->jd_seg->js_seq > two->jd_seg->js_seq) { 1102 swp = one; 1103 one = two; 1104 two = swp; 1105 } 1106 WORKLIST_REMOVE(&two->jd_list); 1107 free_jsegdep(two); 1108 1109 return (one); 1110 } 1111 1112 /* 1113 * If two freedeps are compatible free one to reduce list size. 1114 */ 1115 static inline struct freedep * 1116 freedep_merge(struct freedep *one, struct freedep *two) 1117 { 1118 if (two == NULL) 1119 return (one); 1120 1121 if (one->fd_freework == two->fd_freework) { 1122 WORKLIST_REMOVE(&two->fd_list); 1123 free_freedep(two); 1124 } 1125 return (one); 1126 } 1127 1128 /* 1129 * Move journal work from one list to another. Duplicate freedeps and 1130 * jsegdeps are coalesced to keep the lists as small as possible. 1131 */ 1132 static void 1133 jwork_move(dst, src) 1134 struct workhead *dst; 1135 struct workhead *src; 1136 { 1137 struct freedep *freedep; 1138 struct jsegdep *jsegdep; 1139 struct worklist *wkn; 1140 struct worklist *wk; 1141 1142 KASSERT(dst != src, 1143 ("jwork_move: dst == src")); 1144 freedep = NULL; 1145 jsegdep = NULL; 1146 LIST_FOREACH_SAFE(wk, dst, wk_list, wkn) { 1147 if (wk->wk_type == D_JSEGDEP) 1148 jsegdep = jsegdep_merge(WK_JSEGDEP(wk), jsegdep); 1149 else if (wk->wk_type == D_FREEDEP) 1150 freedep = freedep_merge(WK_FREEDEP(wk), freedep); 1151 } 1152 1153 while ((wk = LIST_FIRST(src)) != NULL) { 1154 WORKLIST_REMOVE(wk); 1155 WORKLIST_INSERT(dst, wk); 1156 if (wk->wk_type == D_JSEGDEP) { 1157 jsegdep = jsegdep_merge(WK_JSEGDEP(wk), jsegdep); 1158 continue; 1159 } 1160 if (wk->wk_type == D_FREEDEP) 1161 freedep = freedep_merge(WK_FREEDEP(wk), freedep); 1162 } 1163 } 1164 1165 static void 1166 jwork_insert(dst, jsegdep) 1167 struct workhead *dst; 1168 struct jsegdep *jsegdep; 1169 { 1170 struct jsegdep *jsegdepn; 1171 struct worklist *wk; 1172 1173 LIST_FOREACH(wk, dst, wk_list) 1174 if (wk->wk_type == D_JSEGDEP) 1175 break; 1176 if (wk == NULL) { 1177 WORKLIST_INSERT(dst, &jsegdep->jd_list); 1178 return; 1179 } 1180 jsegdepn = WK_JSEGDEP(wk); 1181 if (jsegdep->jd_seg->js_seq < jsegdepn->jd_seg->js_seq) { 1182 WORKLIST_REMOVE(wk); 1183 free_jsegdep(jsegdepn); 1184 WORKLIST_INSERT(dst, &jsegdep->jd_list); 1185 } else 1186 free_jsegdep(jsegdep); 1187 } 1188 1189 /* 1190 * Routines for tracking and managing workitems. 1191 */ 1192 static void workitem_free(struct worklist *, int); 1193 static void workitem_alloc(struct worklist *, int, struct mount *); 1194 static void workitem_reassign(struct worklist *, int); 1195 1196 #define WORKITEM_FREE(item, type) \ 1197 workitem_free((struct worklist *)(item), (type)) 1198 #define WORKITEM_REASSIGN(item, type) \ 1199 workitem_reassign((struct worklist *)(item), (type)) 1200 1201 static void 1202 workitem_free(item, type) 1203 struct worklist *item; 1204 int type; 1205 { 1206 struct ufsmount *ump; 1207 1208 #ifdef INVARIANTS 1209 if (item->wk_state & ONWORKLIST) 1210 panic("workitem_free: %s(0x%X) still on list, " 1211 "added in function %s at line %d", 1212 TYPENAME(item->wk_type), item->wk_state, 1213 item->wk_func, item->wk_line); 1214 if (item->wk_type != type && type != D_NEWBLK) 1215 panic("workitem_free: type mismatch %s != %s", 1216 TYPENAME(item->wk_type), TYPENAME(type)); 1217 #endif 1218 if (item->wk_state & IOWAITING) 1219 wakeup(item); 1220 ump = VFSTOUFS(item->wk_mp); 1221 LOCK_OWNED(ump); 1222 KASSERT(ump->softdep_deps > 0, 1223 ("workitem_free: %s: softdep_deps going negative", 1224 ump->um_fs->fs_fsmnt)); 1225 if (--ump->softdep_deps == 0 && ump->softdep_req) 1226 wakeup(&ump->softdep_deps); 1227 KASSERT(dep_current[item->wk_type] > 0, 1228 ("workitem_free: %s: dep_current[%s] going negative", 1229 ump->um_fs->fs_fsmnt, TYPENAME(item->wk_type))); 1230 KASSERT(ump->softdep_curdeps[item->wk_type] > 0, 1231 ("workitem_free: %s: softdep_curdeps[%s] going negative", 1232 ump->um_fs->fs_fsmnt, TYPENAME(item->wk_type))); 1233 atomic_subtract_long(&dep_current[item->wk_type], 1); 1234 ump->softdep_curdeps[item->wk_type] -= 1; 1235 #ifdef INVARIANTS 1236 LIST_REMOVE(item, wk_all); 1237 #endif 1238 free(item, DtoM(type)); 1239 } 1240 1241 static void 1242 workitem_alloc(item, type, mp) 1243 struct worklist *item; 1244 int type; 1245 struct mount *mp; 1246 { 1247 struct ufsmount *ump; 1248 1249 item->wk_type = type; 1250 item->wk_mp = mp; 1251 item->wk_state = 0; 1252 1253 ump = VFSTOUFS(mp); 1254 ACQUIRE_GBLLOCK(&lk); 1255 dep_current[type]++; 1256 if (dep_current[type] > dep_highuse[type]) 1257 dep_highuse[type] = dep_current[type]; 1258 dep_total[type]++; 1259 FREE_GBLLOCK(&lk); 1260 ACQUIRE_LOCK(ump); 1261 ump->softdep_curdeps[type] += 1; 1262 ump->softdep_deps++; 1263 ump->softdep_accdeps++; 1264 #ifdef INVARIANTS 1265 LIST_INSERT_HEAD(&ump->softdep_alldeps[type], item, wk_all); 1266 #endif 1267 FREE_LOCK(ump); 1268 } 1269 1270 static void 1271 workitem_reassign(item, newtype) 1272 struct worklist *item; 1273 int newtype; 1274 { 1275 struct ufsmount *ump; 1276 1277 ump = VFSTOUFS(item->wk_mp); 1278 LOCK_OWNED(ump); 1279 KASSERT(ump->softdep_curdeps[item->wk_type] > 0, 1280 ("workitem_reassign: %s: softdep_curdeps[%s] going negative", 1281 VFSTOUFS(item->wk_mp)->um_fs->fs_fsmnt, TYPENAME(item->wk_type))); 1282 ump->softdep_curdeps[item->wk_type] -= 1; 1283 ump->softdep_curdeps[newtype] += 1; 1284 KASSERT(dep_current[item->wk_type] > 0, 1285 ("workitem_reassign: %s: dep_current[%s] going negative", 1286 VFSTOUFS(item->wk_mp)->um_fs->fs_fsmnt, TYPENAME(item->wk_type))); 1287 ACQUIRE_GBLLOCK(&lk); 1288 dep_current[newtype]++; 1289 dep_current[item->wk_type]--; 1290 if (dep_current[newtype] > dep_highuse[newtype]) 1291 dep_highuse[newtype] = dep_current[newtype]; 1292 dep_total[newtype]++; 1293 FREE_GBLLOCK(&lk); 1294 item->wk_type = newtype; 1295 } 1296 1297 /* 1298 * Workitem queue management 1299 */ 1300 static int max_softdeps; /* maximum number of structs before slowdown */ 1301 static int tickdelay = 2; /* number of ticks to pause during slowdown */ 1302 static int proc_waiting; /* tracks whether we have a timeout posted */ 1303 static int *stat_countp; /* statistic to count in proc_waiting timeout */ 1304 static struct callout softdep_callout; 1305 static int req_clear_inodedeps; /* syncer process flush some inodedeps */ 1306 static int req_clear_remove; /* syncer process flush some freeblks */ 1307 static int softdep_flushcache = 0; /* Should we do BIO_FLUSH? */ 1308 1309 /* 1310 * runtime statistics 1311 */ 1312 static int stat_flush_threads; /* number of softdep flushing threads */ 1313 static int stat_worklist_push; /* number of worklist cleanups */ 1314 static int stat_delayed_inact; /* number of delayed inactivation cleanups */ 1315 static int stat_blk_limit_push; /* number of times block limit neared */ 1316 static int stat_ino_limit_push; /* number of times inode limit neared */ 1317 static int stat_blk_limit_hit; /* number of times block slowdown imposed */ 1318 static int stat_ino_limit_hit; /* number of times inode slowdown imposed */ 1319 static int stat_sync_limit_hit; /* number of synchronous slowdowns imposed */ 1320 static int stat_indir_blk_ptrs; /* bufs redirtied as indir ptrs not written */ 1321 static int stat_inode_bitmap; /* bufs redirtied as inode bitmap not written */ 1322 static int stat_direct_blk_ptrs;/* bufs redirtied as direct ptrs not written */ 1323 static int stat_dir_entry; /* bufs redirtied as dir entry cannot write */ 1324 static int stat_jaddref; /* bufs redirtied as ino bitmap can not write */ 1325 static int stat_jnewblk; /* bufs redirtied as blk bitmap can not write */ 1326 static int stat_journal_min; /* Times hit journal min threshold */ 1327 static int stat_journal_low; /* Times hit journal low threshold */ 1328 static int stat_journal_wait; /* Times blocked in jwait(). */ 1329 static int stat_jwait_filepage; /* Times blocked in jwait() for filepage. */ 1330 static int stat_jwait_freeblks; /* Times blocked in jwait() for freeblks. */ 1331 static int stat_jwait_inode; /* Times blocked in jwait() for inodes. */ 1332 static int stat_jwait_newblk; /* Times blocked in jwait() for newblks. */ 1333 static int stat_cleanup_high_delay; /* Maximum cleanup delay (in ticks) */ 1334 static int stat_cleanup_blkrequests; /* Number of block cleanup requests */ 1335 static int stat_cleanup_inorequests; /* Number of inode cleanup requests */ 1336 static int stat_cleanup_retries; /* Number of cleanups that needed to flush */ 1337 static int stat_cleanup_failures; /* Number of cleanup requests that failed */ 1338 static int stat_emptyjblocks; /* Number of potentially empty journal blocks */ 1339 1340 SYSCTL_INT(_debug_softdep, OID_AUTO, max_softdeps, CTLFLAG_RW, 1341 &max_softdeps, 0, ""); 1342 SYSCTL_INT(_debug_softdep, OID_AUTO, tickdelay, CTLFLAG_RW, 1343 &tickdelay, 0, ""); 1344 SYSCTL_INT(_debug_softdep, OID_AUTO, flush_threads, CTLFLAG_RD, 1345 &stat_flush_threads, 0, ""); 1346 SYSCTL_INT(_debug_softdep, OID_AUTO, worklist_push, 1347 CTLFLAG_RW | CTLFLAG_STATS, &stat_worklist_push, 0,""); 1348 SYSCTL_INT(_debug_softdep, OID_AUTO, delayed_inactivations, CTLFLAG_RD, 1349 &stat_delayed_inact, 0, ""); 1350 SYSCTL_INT(_debug_softdep, OID_AUTO, blk_limit_push, 1351 CTLFLAG_RW | CTLFLAG_STATS, &stat_blk_limit_push, 0,""); 1352 SYSCTL_INT(_debug_softdep, OID_AUTO, ino_limit_push, 1353 CTLFLAG_RW | CTLFLAG_STATS, &stat_ino_limit_push, 0,""); 1354 SYSCTL_INT(_debug_softdep, OID_AUTO, blk_limit_hit, 1355 CTLFLAG_RW | CTLFLAG_STATS, &stat_blk_limit_hit, 0, ""); 1356 SYSCTL_INT(_debug_softdep, OID_AUTO, ino_limit_hit, 1357 CTLFLAG_RW | CTLFLAG_STATS, &stat_ino_limit_hit, 0, ""); 1358 SYSCTL_INT(_debug_softdep, OID_AUTO, sync_limit_hit, 1359 CTLFLAG_RW | CTLFLAG_STATS, &stat_sync_limit_hit, 0, ""); 1360 SYSCTL_INT(_debug_softdep, OID_AUTO, indir_blk_ptrs, 1361 CTLFLAG_RW | CTLFLAG_STATS, &stat_indir_blk_ptrs, 0, ""); 1362 SYSCTL_INT(_debug_softdep, OID_AUTO, inode_bitmap, 1363 CTLFLAG_RW | CTLFLAG_STATS, &stat_inode_bitmap, 0, ""); 1364 SYSCTL_INT(_debug_softdep, OID_AUTO, direct_blk_ptrs, 1365 CTLFLAG_RW | CTLFLAG_STATS, &stat_direct_blk_ptrs, 0, ""); 1366 SYSCTL_INT(_debug_softdep, OID_AUTO, dir_entry, 1367 CTLFLAG_RW | CTLFLAG_STATS, &stat_dir_entry, 0, ""); 1368 SYSCTL_INT(_debug_softdep, OID_AUTO, jaddref_rollback, 1369 CTLFLAG_RW | CTLFLAG_STATS, &stat_jaddref, 0, ""); 1370 SYSCTL_INT(_debug_softdep, OID_AUTO, jnewblk_rollback, 1371 CTLFLAG_RW | CTLFLAG_STATS, &stat_jnewblk, 0, ""); 1372 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_low, 1373 CTLFLAG_RW | CTLFLAG_STATS, &stat_journal_low, 0, ""); 1374 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_min, 1375 CTLFLAG_RW | CTLFLAG_STATS, &stat_journal_min, 0, ""); 1376 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_wait, 1377 CTLFLAG_RW | CTLFLAG_STATS, &stat_journal_wait, 0, ""); 1378 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_filepage, 1379 CTLFLAG_RW | CTLFLAG_STATS, &stat_jwait_filepage, 0, ""); 1380 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_freeblks, 1381 CTLFLAG_RW | CTLFLAG_STATS, &stat_jwait_freeblks, 0, ""); 1382 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_inode, 1383 CTLFLAG_RW | CTLFLAG_STATS, &stat_jwait_inode, 0, ""); 1384 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_newblk, 1385 CTLFLAG_RW | CTLFLAG_STATS, &stat_jwait_newblk, 0, ""); 1386 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_blkrequests, 1387 CTLFLAG_RW | CTLFLAG_STATS, &stat_cleanup_blkrequests, 0, ""); 1388 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_inorequests, 1389 CTLFLAG_RW | CTLFLAG_STATS, &stat_cleanup_inorequests, 0, ""); 1390 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_high_delay, 1391 CTLFLAG_RW | CTLFLAG_STATS, &stat_cleanup_high_delay, 0, ""); 1392 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_retries, 1393 CTLFLAG_RW | CTLFLAG_STATS, &stat_cleanup_retries, 0, ""); 1394 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_failures, 1395 CTLFLAG_RW | CTLFLAG_STATS, &stat_cleanup_failures, 0, ""); 1396 1397 SYSCTL_INT(_debug_softdep, OID_AUTO, flushcache, CTLFLAG_RW, 1398 &softdep_flushcache, 0, ""); 1399 SYSCTL_INT(_debug_softdep, OID_AUTO, emptyjblocks, CTLFLAG_RD, 1400 &stat_emptyjblocks, 0, ""); 1401 1402 SYSCTL_DECL(_vfs_ffs); 1403 1404 /* Whether to recompute the summary at mount time */ 1405 static int compute_summary_at_mount = 0; 1406 SYSCTL_INT(_vfs_ffs, OID_AUTO, compute_summary_at_mount, CTLFLAG_RW, 1407 &compute_summary_at_mount, 0, "Recompute summary at mount"); 1408 static int print_threads = 0; 1409 SYSCTL_INT(_debug_softdep, OID_AUTO, print_threads, CTLFLAG_RW, 1410 &print_threads, 0, "Notify flusher thread start/stop"); 1411 1412 /* List of all filesystems mounted with soft updates */ 1413 static TAILQ_HEAD(, mount_softdeps) softdepmounts; 1414 1415 static void 1416 get_parent_vp_unlock_bp(struct mount *mp, struct buf *bp, 1417 struct diraddhd *diraddhdp, struct diraddhd *unfinishedp) 1418 { 1419 struct diradd *dap; 1420 1421 /* 1422 * Requeue unfinished dependencies before 1423 * unlocking buffer, which could make 1424 * diraddhdp invalid. 1425 */ 1426 ACQUIRE_LOCK(VFSTOUFS(mp)); 1427 while ((dap = LIST_FIRST(unfinishedp)) != NULL) { 1428 LIST_REMOVE(dap, da_pdlist); 1429 LIST_INSERT_HEAD(diraddhdp, dap, da_pdlist); 1430 } 1431 FREE_LOCK(VFSTOUFS(mp)); 1432 1433 bp->b_vflags &= ~BV_SCANNED; 1434 BUF_NOREC(bp); 1435 BUF_UNLOCK(bp); 1436 } 1437 1438 /* 1439 * This function fetches inode inum on mount point mp. We already 1440 * hold a locked vnode vp, and might have a locked buffer bp belonging 1441 * to vp. 1442 1443 * We must not block on acquiring the new inode lock as we will get 1444 * into a lock-order reversal with the buffer lock and possibly get a 1445 * deadlock. Thus if we cannot instantiate the requested vnode 1446 * without sleeping on its lock, we must unlock the vnode and the 1447 * buffer before doing a blocking on the vnode lock. We return 1448 * ERELOOKUP if we have had to unlock either the vnode or the buffer so 1449 * that the caller can reassess its state. 1450 * 1451 * Top-level VFS code (for syscalls and other consumers, e.g. callers 1452 * of VOP_FSYNC() in syncer) check for ERELOOKUP and restart at safe 1453 * point. 1454 * 1455 * Since callers expect to operate on fully constructed vnode, we also 1456 * recheck v_data after relock, and return ENOENT if NULL. 1457 * 1458 * If unlocking bp, we must unroll dequeueing its unfinished 1459 * dependencies, and clear scan flag, before unlocking. If unlocking 1460 * vp while it is under deactivation, we re-queue deactivation. 1461 */ 1462 static int 1463 get_parent_vp(struct vnode *vp, struct mount *mp, ino_t inum, struct buf *bp, 1464 struct diraddhd *diraddhdp, struct diraddhd *unfinishedp, 1465 struct vnode **rvp) 1466 { 1467 struct vnode *pvp; 1468 int error; 1469 bool bplocked; 1470 1471 ASSERT_VOP_ELOCKED(vp, "child vnode must be locked"); 1472 for (bplocked = true, pvp = NULL;;) { 1473 error = ffs_vgetf(mp, inum, LK_EXCLUSIVE | LK_NOWAIT, &pvp, 1474 FFSV_FORCEINSMQ); 1475 if (error == 0) { 1476 /* 1477 * Since we could have unlocked vp, the inode 1478 * number could no longer indicate a 1479 * constructed node. In this case, we must 1480 * restart the syscall. 1481 */ 1482 if (VTOI(pvp)->i_mode == 0 || !bplocked) { 1483 if (bp != NULL && bplocked) 1484 get_parent_vp_unlock_bp(mp, bp, 1485 diraddhdp, unfinishedp); 1486 if (VTOI(pvp)->i_mode == 0) 1487 vgone(pvp); 1488 error = ERELOOKUP; 1489 goto out2; 1490 } 1491 goto out1; 1492 } 1493 if (bp != NULL && bplocked) { 1494 get_parent_vp_unlock_bp(mp, bp, diraddhdp, unfinishedp); 1495 bplocked = false; 1496 } 1497 1498 /* 1499 * Do not drop vnode lock while inactivating during 1500 * vunref. This would result in leaks of the VI flags 1501 * and reclaiming of non-truncated vnode. Instead, 1502 * re-schedule inactivation hoping that we would be 1503 * able to sync inode later. 1504 */ 1505 if ((vp->v_iflag & VI_DOINGINACT) != 0 && 1506 (vp->v_vflag & VV_UNREF) != 0) { 1507 VI_LOCK(vp); 1508 vp->v_iflag |= VI_OWEINACT; 1509 VI_UNLOCK(vp); 1510 return (ERELOOKUP); 1511 } 1512 1513 VOP_UNLOCK(vp); 1514 error = ffs_vgetf(mp, inum, LK_EXCLUSIVE, &pvp, 1515 FFSV_FORCEINSMQ); 1516 if (error != 0) { 1517 MPASS(error != ERELOOKUP); 1518 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 1519 break; 1520 } 1521 if (VTOI(pvp)->i_mode == 0) { 1522 vgone(pvp); 1523 vput(pvp); 1524 pvp = NULL; 1525 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 1526 error = ERELOOKUP; 1527 break; 1528 } 1529 error = vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT); 1530 if (error == 0) 1531 break; 1532 vput(pvp); 1533 pvp = NULL; 1534 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 1535 if (vp->v_data == NULL) { 1536 error = ENOENT; 1537 break; 1538 } 1539 } 1540 if (bp != NULL) { 1541 MPASS(!bplocked); 1542 error = ERELOOKUP; 1543 } 1544 out2: 1545 if (error != 0 && pvp != NULL) { 1546 vput(pvp); 1547 pvp = NULL; 1548 } 1549 out1: 1550 *rvp = pvp; 1551 ASSERT_VOP_ELOCKED(vp, "child vnode must be locked on return"); 1552 return (error); 1553 } 1554 1555 /* 1556 * This function cleans the worklist for a filesystem. 1557 * Each filesystem running with soft dependencies gets its own 1558 * thread to run in this function. The thread is started up in 1559 * softdep_mount and shutdown in softdep_unmount. They show up 1560 * as part of the kernel "bufdaemon" process whose process 1561 * entry is available in bufdaemonproc. 1562 */ 1563 static int searchfailed; 1564 extern struct proc *bufdaemonproc; 1565 static void 1566 softdep_flush(addr) 1567 void *addr; 1568 { 1569 struct mount *mp; 1570 struct thread *td; 1571 struct ufsmount *ump; 1572 1573 td = curthread; 1574 td->td_pflags |= TDP_NORUNNINGBUF; 1575 mp = (struct mount *)addr; 1576 ump = VFSTOUFS(mp); 1577 atomic_add_int(&stat_flush_threads, 1); 1578 ACQUIRE_LOCK(ump); 1579 ump->softdep_flags &= ~FLUSH_STARTING; 1580 wakeup(&ump->softdep_flushtd); 1581 FREE_LOCK(ump); 1582 if (print_threads) { 1583 if (stat_flush_threads == 1) 1584 printf("Running %s at pid %d\n", bufdaemonproc->p_comm, 1585 bufdaemonproc->p_pid); 1586 printf("Start thread %s\n", td->td_name); 1587 } 1588 for (;;) { 1589 while (softdep_process_worklist(mp, 0) > 0 || 1590 (MOUNTEDSUJ(mp) && 1591 VFSTOUFS(mp)->softdep_jblocks->jb_suspended)) 1592 kthread_suspend_check(); 1593 ACQUIRE_LOCK(ump); 1594 if ((ump->softdep_flags & (FLUSH_CLEANUP | FLUSH_EXIT)) == 0) 1595 msleep(&ump->softdep_flushtd, LOCK_PTR(ump), PVM, 1596 "sdflush", hz / 2); 1597 ump->softdep_flags &= ~FLUSH_CLEANUP; 1598 /* 1599 * Check to see if we are done and need to exit. 1600 */ 1601 if ((ump->softdep_flags & FLUSH_EXIT) == 0) { 1602 FREE_LOCK(ump); 1603 continue; 1604 } 1605 ump->softdep_flags &= ~FLUSH_EXIT; 1606 FREE_LOCK(ump); 1607 wakeup(&ump->softdep_flags); 1608 if (print_threads) 1609 printf("Stop thread %s: searchfailed %d, did cleanups %d\n", td->td_name, searchfailed, ump->um_softdep->sd_cleanups); 1610 atomic_subtract_int(&stat_flush_threads, 1); 1611 kthread_exit(); 1612 panic("kthread_exit failed\n"); 1613 } 1614 } 1615 1616 static void 1617 worklist_speedup(mp) 1618 struct mount *mp; 1619 { 1620 struct ufsmount *ump; 1621 1622 ump = VFSTOUFS(mp); 1623 LOCK_OWNED(ump); 1624 if ((ump->softdep_flags & (FLUSH_CLEANUP | FLUSH_EXIT)) == 0) 1625 ump->softdep_flags |= FLUSH_CLEANUP; 1626 wakeup(&ump->softdep_flushtd); 1627 } 1628 1629 static void 1630 softdep_send_speedup(struct ufsmount *ump, off_t shortage, u_int flags) 1631 { 1632 struct buf *bp; 1633 1634 if ((ump->um_flags & UM_CANSPEEDUP) == 0) 1635 return; 1636 1637 bp = malloc(sizeof(*bp), M_TRIM, M_WAITOK | M_ZERO); 1638 bp->b_iocmd = BIO_SPEEDUP; 1639 bp->b_ioflags = flags; 1640 bp->b_bcount = omin(shortage, LONG_MAX); 1641 g_vfs_strategy(ump->um_bo, bp); 1642 bufwait(bp); 1643 free(bp, M_TRIM); 1644 } 1645 1646 static int 1647 softdep_speedup(ump) 1648 struct ufsmount *ump; 1649 { 1650 struct ufsmount *altump; 1651 struct mount_softdeps *sdp; 1652 1653 LOCK_OWNED(ump); 1654 worklist_speedup(ump->um_mountp); 1655 bd_speedup(); 1656 /* 1657 * If we have global shortages, then we need other 1658 * filesystems to help with the cleanup. Here we wakeup a 1659 * flusher thread for a filesystem that is over its fair 1660 * share of resources. 1661 */ 1662 if (req_clear_inodedeps || req_clear_remove) { 1663 ACQUIRE_GBLLOCK(&lk); 1664 TAILQ_FOREACH(sdp, &softdepmounts, sd_next) { 1665 if ((altump = sdp->sd_ump) == ump) 1666 continue; 1667 if (((req_clear_inodedeps && 1668 altump->softdep_curdeps[D_INODEDEP] > 1669 max_softdeps / stat_flush_threads) || 1670 (req_clear_remove && 1671 altump->softdep_curdeps[D_DIRREM] > 1672 (max_softdeps / 2) / stat_flush_threads)) && 1673 TRY_ACQUIRE_LOCK(altump)) 1674 break; 1675 } 1676 if (sdp == NULL) { 1677 searchfailed++; 1678 FREE_GBLLOCK(&lk); 1679 } else { 1680 /* 1681 * Move to the end of the list so we pick a 1682 * different one on out next try. 1683 */ 1684 TAILQ_REMOVE(&softdepmounts, sdp, sd_next); 1685 TAILQ_INSERT_TAIL(&softdepmounts, sdp, sd_next); 1686 FREE_GBLLOCK(&lk); 1687 if ((altump->softdep_flags & 1688 (FLUSH_CLEANUP | FLUSH_EXIT)) == 0) 1689 altump->softdep_flags |= FLUSH_CLEANUP; 1690 altump->um_softdep->sd_cleanups++; 1691 wakeup(&altump->softdep_flushtd); 1692 FREE_LOCK(altump); 1693 } 1694 } 1695 return (speedup_syncer()); 1696 } 1697 1698 /* 1699 * Add an item to the end of the work queue. 1700 * This routine requires that the lock be held. 1701 * This is the only routine that adds items to the list. 1702 * The following routine is the only one that removes items 1703 * and does so in order from first to last. 1704 */ 1705 1706 #define WK_HEAD 0x0001 /* Add to HEAD. */ 1707 #define WK_NODELAY 0x0002 /* Process immediately. */ 1708 1709 static void 1710 add_to_worklist(wk, flags) 1711 struct worklist *wk; 1712 int flags; 1713 { 1714 struct ufsmount *ump; 1715 1716 ump = VFSTOUFS(wk->wk_mp); 1717 LOCK_OWNED(ump); 1718 if (wk->wk_state & ONWORKLIST) 1719 panic("add_to_worklist: %s(0x%X) already on list", 1720 TYPENAME(wk->wk_type), wk->wk_state); 1721 wk->wk_state |= ONWORKLIST; 1722 if (ump->softdep_on_worklist == 0) { 1723 LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list); 1724 ump->softdep_worklist_tail = wk; 1725 } else if (flags & WK_HEAD) { 1726 LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list); 1727 } else { 1728 LIST_INSERT_AFTER(ump->softdep_worklist_tail, wk, wk_list); 1729 ump->softdep_worklist_tail = wk; 1730 } 1731 ump->softdep_on_worklist += 1; 1732 if (flags & WK_NODELAY) 1733 worklist_speedup(wk->wk_mp); 1734 } 1735 1736 /* 1737 * Remove the item to be processed. If we are removing the last 1738 * item on the list, we need to recalculate the tail pointer. 1739 */ 1740 static void 1741 remove_from_worklist(wk) 1742 struct worklist *wk; 1743 { 1744 struct ufsmount *ump; 1745 1746 ump = VFSTOUFS(wk->wk_mp); 1747 if (ump->softdep_worklist_tail == wk) 1748 ump->softdep_worklist_tail = 1749 (struct worklist *)wk->wk_list.le_prev; 1750 WORKLIST_REMOVE(wk); 1751 ump->softdep_on_worklist -= 1; 1752 } 1753 1754 static void 1755 wake_worklist(wk) 1756 struct worklist *wk; 1757 { 1758 if (wk->wk_state & IOWAITING) { 1759 wk->wk_state &= ~IOWAITING; 1760 wakeup(wk); 1761 } 1762 } 1763 1764 static void 1765 wait_worklist(wk, wmesg) 1766 struct worklist *wk; 1767 char *wmesg; 1768 { 1769 struct ufsmount *ump; 1770 1771 ump = VFSTOUFS(wk->wk_mp); 1772 wk->wk_state |= IOWAITING; 1773 msleep(wk, LOCK_PTR(ump), PVM, wmesg, 0); 1774 } 1775 1776 /* 1777 * Process that runs once per second to handle items in the background queue. 1778 * 1779 * Note that we ensure that everything is done in the order in which they 1780 * appear in the queue. The code below depends on this property to ensure 1781 * that blocks of a file are freed before the inode itself is freed. This 1782 * ordering ensures that no new <vfsid, inum, lbn> triples will be generated 1783 * until all the old ones have been purged from the dependency lists. 1784 */ 1785 static int 1786 softdep_process_worklist(mp, full) 1787 struct mount *mp; 1788 int full; 1789 { 1790 int cnt, matchcnt; 1791 struct ufsmount *ump; 1792 long starttime; 1793 1794 KASSERT(mp != NULL, ("softdep_process_worklist: NULL mp")); 1795 if (MOUNTEDSOFTDEP(mp) == 0) 1796 return (0); 1797 matchcnt = 0; 1798 ump = VFSTOUFS(mp); 1799 ACQUIRE_LOCK(ump); 1800 starttime = time_second; 1801 softdep_process_journal(mp, NULL, full ? MNT_WAIT : 0); 1802 check_clear_deps(mp); 1803 while (ump->softdep_on_worklist > 0) { 1804 if ((cnt = process_worklist_item(mp, 10, LK_NOWAIT)) == 0) 1805 break; 1806 else 1807 matchcnt += cnt; 1808 check_clear_deps(mp); 1809 /* 1810 * We do not generally want to stop for buffer space, but if 1811 * we are really being a buffer hog, we will stop and wait. 1812 */ 1813 if (should_yield()) { 1814 FREE_LOCK(ump); 1815 kern_yield(PRI_USER); 1816 bwillwrite(); 1817 ACQUIRE_LOCK(ump); 1818 } 1819 /* 1820 * Never allow processing to run for more than one 1821 * second. This gives the syncer thread the opportunity 1822 * to pause if appropriate. 1823 */ 1824 if (!full && starttime != time_second) 1825 break; 1826 } 1827 if (full == 0) 1828 journal_unsuspend(ump); 1829 FREE_LOCK(ump); 1830 return (matchcnt); 1831 } 1832 1833 /* 1834 * Process all removes associated with a vnode if we are running out of 1835 * journal space. Any other process which attempts to flush these will 1836 * be unable as we have the vnodes locked. 1837 */ 1838 static void 1839 process_removes(vp) 1840 struct vnode *vp; 1841 { 1842 struct inodedep *inodedep; 1843 struct dirrem *dirrem; 1844 struct ufsmount *ump; 1845 struct mount *mp; 1846 ino_t inum; 1847 1848 mp = vp->v_mount; 1849 ump = VFSTOUFS(mp); 1850 LOCK_OWNED(ump); 1851 inum = VTOI(vp)->i_number; 1852 for (;;) { 1853 top: 1854 if (inodedep_lookup(mp, inum, 0, &inodedep) == 0) 1855 return; 1856 LIST_FOREACH(dirrem, &inodedep->id_dirremhd, dm_inonext) { 1857 /* 1858 * If another thread is trying to lock this vnode 1859 * it will fail but we must wait for it to do so 1860 * before we can proceed. 1861 */ 1862 if (dirrem->dm_state & INPROGRESS) { 1863 wait_worklist(&dirrem->dm_list, "pwrwait"); 1864 goto top; 1865 } 1866 if ((dirrem->dm_state & (COMPLETE | ONWORKLIST)) == 1867 (COMPLETE | ONWORKLIST)) 1868 break; 1869 } 1870 if (dirrem == NULL) 1871 return; 1872 remove_from_worklist(&dirrem->dm_list); 1873 FREE_LOCK(ump); 1874 if (vn_start_secondary_write(NULL, &mp, V_NOWAIT)) 1875 panic("process_removes: suspended filesystem"); 1876 handle_workitem_remove(dirrem, 0); 1877 vn_finished_secondary_write(mp); 1878 ACQUIRE_LOCK(ump); 1879 } 1880 } 1881 1882 /* 1883 * Process all truncations associated with a vnode if we are running out 1884 * of journal space. This is called when the vnode lock is already held 1885 * and no other process can clear the truncation. This function returns 1886 * a value greater than zero if it did any work. 1887 */ 1888 static void 1889 process_truncates(vp) 1890 struct vnode *vp; 1891 { 1892 struct inodedep *inodedep; 1893 struct freeblks *freeblks; 1894 struct ufsmount *ump; 1895 struct mount *mp; 1896 ino_t inum; 1897 int cgwait; 1898 1899 mp = vp->v_mount; 1900 ump = VFSTOUFS(mp); 1901 LOCK_OWNED(ump); 1902 inum = VTOI(vp)->i_number; 1903 for (;;) { 1904 if (inodedep_lookup(mp, inum, 0, &inodedep) == 0) 1905 return; 1906 cgwait = 0; 1907 TAILQ_FOREACH(freeblks, &inodedep->id_freeblklst, fb_next) { 1908 /* Journal entries not yet written. */ 1909 if (!LIST_EMPTY(&freeblks->fb_jblkdephd)) { 1910 jwait(&LIST_FIRST( 1911 &freeblks->fb_jblkdephd)->jb_list, 1912 MNT_WAIT); 1913 break; 1914 } 1915 /* Another thread is executing this item. */ 1916 if (freeblks->fb_state & INPROGRESS) { 1917 wait_worklist(&freeblks->fb_list, "ptrwait"); 1918 break; 1919 } 1920 /* Freeblks is waiting on a inode write. */ 1921 if ((freeblks->fb_state & COMPLETE) == 0) { 1922 FREE_LOCK(ump); 1923 ffs_update(vp, 1); 1924 ACQUIRE_LOCK(ump); 1925 break; 1926 } 1927 if ((freeblks->fb_state & (ALLCOMPLETE | ONWORKLIST)) == 1928 (ALLCOMPLETE | ONWORKLIST)) { 1929 remove_from_worklist(&freeblks->fb_list); 1930 freeblks->fb_state |= INPROGRESS; 1931 FREE_LOCK(ump); 1932 if (vn_start_secondary_write(NULL, &mp, 1933 V_NOWAIT)) 1934 panic("process_truncates: " 1935 "suspended filesystem"); 1936 handle_workitem_freeblocks(freeblks, 0); 1937 vn_finished_secondary_write(mp); 1938 ACQUIRE_LOCK(ump); 1939 break; 1940 } 1941 if (freeblks->fb_cgwait) 1942 cgwait++; 1943 } 1944 if (cgwait) { 1945 FREE_LOCK(ump); 1946 sync_cgs(mp, MNT_WAIT); 1947 ffs_sync_snap(mp, MNT_WAIT); 1948 ACQUIRE_LOCK(ump); 1949 continue; 1950 } 1951 if (freeblks == NULL) 1952 break; 1953 } 1954 return; 1955 } 1956 1957 /* 1958 * Process one item on the worklist. 1959 */ 1960 static int 1961 process_worklist_item(mp, target, flags) 1962 struct mount *mp; 1963 int target; 1964 int flags; 1965 { 1966 struct worklist sentinel; 1967 struct worklist *wk; 1968 struct ufsmount *ump; 1969 int matchcnt; 1970 int error; 1971 1972 KASSERT(mp != NULL, ("process_worklist_item: NULL mp")); 1973 /* 1974 * If we are being called because of a process doing a 1975 * copy-on-write, then it is not safe to write as we may 1976 * recurse into the copy-on-write routine. 1977 */ 1978 if (curthread->td_pflags & TDP_COWINPROGRESS) 1979 return (-1); 1980 PHOLD(curproc); /* Don't let the stack go away. */ 1981 ump = VFSTOUFS(mp); 1982 LOCK_OWNED(ump); 1983 matchcnt = 0; 1984 sentinel.wk_mp = NULL; 1985 sentinel.wk_type = D_SENTINEL; 1986 LIST_INSERT_HEAD(&ump->softdep_workitem_pending, &sentinel, wk_list); 1987 for (wk = LIST_NEXT(&sentinel, wk_list); wk != NULL; 1988 wk = LIST_NEXT(&sentinel, wk_list)) { 1989 if (wk->wk_type == D_SENTINEL) { 1990 LIST_REMOVE(&sentinel, wk_list); 1991 LIST_INSERT_AFTER(wk, &sentinel, wk_list); 1992 continue; 1993 } 1994 if (wk->wk_state & INPROGRESS) 1995 panic("process_worklist_item: %p already in progress.", 1996 wk); 1997 wk->wk_state |= INPROGRESS; 1998 remove_from_worklist(wk); 1999 FREE_LOCK(ump); 2000 if (vn_start_secondary_write(NULL, &mp, V_NOWAIT)) 2001 panic("process_worklist_item: suspended filesystem"); 2002 switch (wk->wk_type) { 2003 case D_DIRREM: 2004 /* removal of a directory entry */ 2005 error = handle_workitem_remove(WK_DIRREM(wk), flags); 2006 break; 2007 2008 case D_FREEBLKS: 2009 /* releasing blocks and/or fragments from a file */ 2010 error = handle_workitem_freeblocks(WK_FREEBLKS(wk), 2011 flags); 2012 break; 2013 2014 case D_FREEFRAG: 2015 /* releasing a fragment when replaced as a file grows */ 2016 handle_workitem_freefrag(WK_FREEFRAG(wk)); 2017 error = 0; 2018 break; 2019 2020 case D_FREEFILE: 2021 /* releasing an inode when its link count drops to 0 */ 2022 handle_workitem_freefile(WK_FREEFILE(wk)); 2023 error = 0; 2024 break; 2025 2026 default: 2027 panic("%s_process_worklist: Unknown type %s", 2028 "softdep", TYPENAME(wk->wk_type)); 2029 /* NOTREACHED */ 2030 } 2031 vn_finished_secondary_write(mp); 2032 ACQUIRE_LOCK(ump); 2033 if (error == 0) { 2034 if (++matchcnt == target) 2035 break; 2036 continue; 2037 } 2038 /* 2039 * We have to retry the worklist item later. Wake up any 2040 * waiters who may be able to complete it immediately and 2041 * add the item back to the head so we don't try to execute 2042 * it again. 2043 */ 2044 wk->wk_state &= ~INPROGRESS; 2045 wake_worklist(wk); 2046 add_to_worklist(wk, WK_HEAD); 2047 } 2048 /* Sentinal could've become the tail from remove_from_worklist. */ 2049 if (ump->softdep_worklist_tail == &sentinel) 2050 ump->softdep_worklist_tail = 2051 (struct worklist *)sentinel.wk_list.le_prev; 2052 LIST_REMOVE(&sentinel, wk_list); 2053 PRELE(curproc); 2054 return (matchcnt); 2055 } 2056 2057 /* 2058 * Move dependencies from one buffer to another. 2059 */ 2060 int 2061 softdep_move_dependencies(oldbp, newbp) 2062 struct buf *oldbp; 2063 struct buf *newbp; 2064 { 2065 struct worklist *wk, *wktail; 2066 struct ufsmount *ump; 2067 int dirty; 2068 2069 if ((wk = LIST_FIRST(&oldbp->b_dep)) == NULL) 2070 return (0); 2071 KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0, 2072 ("softdep_move_dependencies called on non-softdep filesystem")); 2073 dirty = 0; 2074 wktail = NULL; 2075 ump = VFSTOUFS(wk->wk_mp); 2076 ACQUIRE_LOCK(ump); 2077 while ((wk = LIST_FIRST(&oldbp->b_dep)) != NULL) { 2078 LIST_REMOVE(wk, wk_list); 2079 if (wk->wk_type == D_BMSAFEMAP && 2080 bmsafemap_backgroundwrite(WK_BMSAFEMAP(wk), newbp)) 2081 dirty = 1; 2082 if (wktail == NULL) 2083 LIST_INSERT_HEAD(&newbp->b_dep, wk, wk_list); 2084 else 2085 LIST_INSERT_AFTER(wktail, wk, wk_list); 2086 wktail = wk; 2087 } 2088 FREE_LOCK(ump); 2089 2090 return (dirty); 2091 } 2092 2093 /* 2094 * Purge the work list of all items associated with a particular mount point. 2095 */ 2096 int 2097 softdep_flushworklist(oldmnt, countp, td) 2098 struct mount *oldmnt; 2099 int *countp; 2100 struct thread *td; 2101 { 2102 struct vnode *devvp; 2103 struct ufsmount *ump; 2104 int count, error; 2105 2106 /* 2107 * Alternately flush the block device associated with the mount 2108 * point and process any dependencies that the flushing 2109 * creates. We continue until no more worklist dependencies 2110 * are found. 2111 */ 2112 *countp = 0; 2113 error = 0; 2114 ump = VFSTOUFS(oldmnt); 2115 devvp = ump->um_devvp; 2116 while ((count = softdep_process_worklist(oldmnt, 1)) > 0) { 2117 *countp += count; 2118 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY); 2119 error = VOP_FSYNC(devvp, MNT_WAIT, td); 2120 VOP_UNLOCK(devvp); 2121 if (error != 0) 2122 break; 2123 } 2124 return (error); 2125 } 2126 2127 #define SU_WAITIDLE_RETRIES 20 2128 static int 2129 softdep_waitidle(struct mount *mp, int flags __unused) 2130 { 2131 struct ufsmount *ump; 2132 struct vnode *devvp; 2133 struct thread *td; 2134 int error, i; 2135 2136 ump = VFSTOUFS(mp); 2137 devvp = ump->um_devvp; 2138 td = curthread; 2139 error = 0; 2140 ACQUIRE_LOCK(ump); 2141 for (i = 0; i < SU_WAITIDLE_RETRIES && ump->softdep_deps != 0; i++) { 2142 ump->softdep_req = 1; 2143 KASSERT((flags & FORCECLOSE) == 0 || 2144 ump->softdep_on_worklist == 0, 2145 ("softdep_waitidle: work added after flush")); 2146 msleep(&ump->softdep_deps, LOCK_PTR(ump), PVM | PDROP, 2147 "softdeps", 10 * hz); 2148 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY); 2149 error = VOP_FSYNC(devvp, MNT_WAIT, td); 2150 VOP_UNLOCK(devvp); 2151 ACQUIRE_LOCK(ump); 2152 if (error != 0) 2153 break; 2154 } 2155 ump->softdep_req = 0; 2156 if (i == SU_WAITIDLE_RETRIES && error == 0 && ump->softdep_deps != 0) { 2157 error = EBUSY; 2158 printf("softdep_waitidle: Failed to flush worklist for %p\n", 2159 mp); 2160 } 2161 FREE_LOCK(ump); 2162 return (error); 2163 } 2164 2165 /* 2166 * Flush all vnodes and worklist items associated with a specified mount point. 2167 */ 2168 int 2169 softdep_flushfiles(oldmnt, flags, td) 2170 struct mount *oldmnt; 2171 int flags; 2172 struct thread *td; 2173 { 2174 #ifdef QUOTA 2175 struct ufsmount *ump; 2176 int i; 2177 #endif 2178 int error, early, depcount, loopcnt, retry_flush_count, retry; 2179 int morework; 2180 2181 KASSERT(MOUNTEDSOFTDEP(oldmnt) != 0, 2182 ("softdep_flushfiles called on non-softdep filesystem")); 2183 loopcnt = 10; 2184 retry_flush_count = 3; 2185 retry_flush: 2186 error = 0; 2187 2188 /* 2189 * Alternately flush the vnodes associated with the mount 2190 * point and process any dependencies that the flushing 2191 * creates. In theory, this loop can happen at most twice, 2192 * but we give it a few extra just to be sure. 2193 */ 2194 for (; loopcnt > 0; loopcnt--) { 2195 /* 2196 * Do another flush in case any vnodes were brought in 2197 * as part of the cleanup operations. 2198 */ 2199 early = retry_flush_count == 1 || (oldmnt->mnt_kern_flag & 2200 MNTK_UNMOUNT) == 0 ? 0 : EARLYFLUSH; 2201 if ((error = ffs_flushfiles(oldmnt, flags | early, td)) != 0) 2202 break; 2203 if ((error = softdep_flushworklist(oldmnt, &depcount, td)) != 0 || 2204 depcount == 0) 2205 break; 2206 } 2207 /* 2208 * If we are unmounting then it is an error to fail. If we 2209 * are simply trying to downgrade to read-only, then filesystem 2210 * activity can keep us busy forever, so we just fail with EBUSY. 2211 */ 2212 if (loopcnt == 0) { 2213 if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT) 2214 panic("softdep_flushfiles: looping"); 2215 error = EBUSY; 2216 } 2217 if (!error) 2218 error = softdep_waitidle(oldmnt, flags); 2219 if (!error) { 2220 if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT) { 2221 retry = 0; 2222 MNT_ILOCK(oldmnt); 2223 morework = oldmnt->mnt_nvnodelistsize > 0; 2224 #ifdef QUOTA 2225 ump = VFSTOUFS(oldmnt); 2226 UFS_LOCK(ump); 2227 for (i = 0; i < MAXQUOTAS; i++) { 2228 if (ump->um_quotas[i] != NULLVP) 2229 morework = 1; 2230 } 2231 UFS_UNLOCK(ump); 2232 #endif 2233 if (morework) { 2234 if (--retry_flush_count > 0) { 2235 retry = 1; 2236 loopcnt = 3; 2237 } else 2238 error = EBUSY; 2239 } 2240 MNT_IUNLOCK(oldmnt); 2241 if (retry) 2242 goto retry_flush; 2243 } 2244 } 2245 return (error); 2246 } 2247 2248 /* 2249 * Structure hashing. 2250 * 2251 * There are four types of structures that can be looked up: 2252 * 1) pagedep structures identified by mount point, inode number, 2253 * and logical block. 2254 * 2) inodedep structures identified by mount point and inode number. 2255 * 3) newblk structures identified by mount point and 2256 * physical block number. 2257 * 4) bmsafemap structures identified by mount point and 2258 * cylinder group number. 2259 * 2260 * The "pagedep" and "inodedep" dependency structures are hashed 2261 * separately from the file blocks and inodes to which they correspond. 2262 * This separation helps when the in-memory copy of an inode or 2263 * file block must be replaced. It also obviates the need to access 2264 * an inode or file page when simply updating (or de-allocating) 2265 * dependency structures. Lookup of newblk structures is needed to 2266 * find newly allocated blocks when trying to associate them with 2267 * their allocdirect or allocindir structure. 2268 * 2269 * The lookup routines optionally create and hash a new instance when 2270 * an existing entry is not found. The bmsafemap lookup routine always 2271 * allocates a new structure if an existing one is not found. 2272 */ 2273 #define DEPALLOC 0x0001 /* allocate structure if lookup fails */ 2274 2275 /* 2276 * Structures and routines associated with pagedep caching. 2277 */ 2278 #define PAGEDEP_HASH(ump, inum, lbn) \ 2279 (&(ump)->pagedep_hashtbl[((inum) + (lbn)) & (ump)->pagedep_hash_size]) 2280 2281 static int 2282 pagedep_find(pagedephd, ino, lbn, pagedeppp) 2283 struct pagedep_hashhead *pagedephd; 2284 ino_t ino; 2285 ufs_lbn_t lbn; 2286 struct pagedep **pagedeppp; 2287 { 2288 struct pagedep *pagedep; 2289 2290 LIST_FOREACH(pagedep, pagedephd, pd_hash) { 2291 if (ino == pagedep->pd_ino && lbn == pagedep->pd_lbn) { 2292 *pagedeppp = pagedep; 2293 return (1); 2294 } 2295 } 2296 *pagedeppp = NULL; 2297 return (0); 2298 } 2299 /* 2300 * Look up a pagedep. Return 1 if found, 0 otherwise. 2301 * If not found, allocate if DEPALLOC flag is passed. 2302 * Found or allocated entry is returned in pagedeppp. 2303 */ 2304 static int 2305 pagedep_lookup(mp, bp, ino, lbn, flags, pagedeppp) 2306 struct mount *mp; 2307 struct buf *bp; 2308 ino_t ino; 2309 ufs_lbn_t lbn; 2310 int flags; 2311 struct pagedep **pagedeppp; 2312 { 2313 struct pagedep *pagedep; 2314 struct pagedep_hashhead *pagedephd; 2315 struct worklist *wk; 2316 struct ufsmount *ump; 2317 int ret; 2318 int i; 2319 2320 ump = VFSTOUFS(mp); 2321 LOCK_OWNED(ump); 2322 if (bp) { 2323 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 2324 if (wk->wk_type == D_PAGEDEP) { 2325 *pagedeppp = WK_PAGEDEP(wk); 2326 return (1); 2327 } 2328 } 2329 } 2330 pagedephd = PAGEDEP_HASH(ump, ino, lbn); 2331 ret = pagedep_find(pagedephd, ino, lbn, pagedeppp); 2332 if (ret) { 2333 if (((*pagedeppp)->pd_state & ONWORKLIST) == 0 && bp) 2334 WORKLIST_INSERT(&bp->b_dep, &(*pagedeppp)->pd_list); 2335 return (1); 2336 } 2337 if ((flags & DEPALLOC) == 0) 2338 return (0); 2339 FREE_LOCK(ump); 2340 pagedep = malloc(sizeof(struct pagedep), 2341 M_PAGEDEP, M_SOFTDEP_FLAGS|M_ZERO); 2342 workitem_alloc(&pagedep->pd_list, D_PAGEDEP, mp); 2343 ACQUIRE_LOCK(ump); 2344 ret = pagedep_find(pagedephd, ino, lbn, pagedeppp); 2345 if (*pagedeppp) { 2346 /* 2347 * This should never happen since we only create pagedeps 2348 * with the vnode lock held. Could be an assert. 2349 */ 2350 WORKITEM_FREE(pagedep, D_PAGEDEP); 2351 return (ret); 2352 } 2353 pagedep->pd_ino = ino; 2354 pagedep->pd_lbn = lbn; 2355 LIST_INIT(&pagedep->pd_dirremhd); 2356 LIST_INIT(&pagedep->pd_pendinghd); 2357 for (i = 0; i < DAHASHSZ; i++) 2358 LIST_INIT(&pagedep->pd_diraddhd[i]); 2359 LIST_INSERT_HEAD(pagedephd, pagedep, pd_hash); 2360 WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list); 2361 *pagedeppp = pagedep; 2362 return (0); 2363 } 2364 2365 /* 2366 * Structures and routines associated with inodedep caching. 2367 */ 2368 #define INODEDEP_HASH(ump, inum) \ 2369 (&(ump)->inodedep_hashtbl[(inum) & (ump)->inodedep_hash_size]) 2370 2371 static int 2372 inodedep_find(inodedephd, inum, inodedeppp) 2373 struct inodedep_hashhead *inodedephd; 2374 ino_t inum; 2375 struct inodedep **inodedeppp; 2376 { 2377 struct inodedep *inodedep; 2378 2379 LIST_FOREACH(inodedep, inodedephd, id_hash) 2380 if (inum == inodedep->id_ino) 2381 break; 2382 if (inodedep) { 2383 *inodedeppp = inodedep; 2384 return (1); 2385 } 2386 *inodedeppp = NULL; 2387 2388 return (0); 2389 } 2390 /* 2391 * Look up an inodedep. Return 1 if found, 0 if not found. 2392 * If not found, allocate if DEPALLOC flag is passed. 2393 * Found or allocated entry is returned in inodedeppp. 2394 */ 2395 static int 2396 inodedep_lookup(mp, inum, flags, inodedeppp) 2397 struct mount *mp; 2398 ino_t inum; 2399 int flags; 2400 struct inodedep **inodedeppp; 2401 { 2402 struct inodedep *inodedep; 2403 struct inodedep_hashhead *inodedephd; 2404 struct ufsmount *ump; 2405 struct fs *fs; 2406 2407 ump = VFSTOUFS(mp); 2408 LOCK_OWNED(ump); 2409 fs = ump->um_fs; 2410 inodedephd = INODEDEP_HASH(ump, inum); 2411 2412 if (inodedep_find(inodedephd, inum, inodedeppp)) 2413 return (1); 2414 if ((flags & DEPALLOC) == 0) 2415 return (0); 2416 /* 2417 * If the system is over its limit and our filesystem is 2418 * responsible for more than our share of that usage and 2419 * we are not in a rush, request some inodedep cleanup. 2420 */ 2421 if (softdep_excess_items(ump, D_INODEDEP)) 2422 schedule_cleanup(mp); 2423 else 2424 FREE_LOCK(ump); 2425 inodedep = malloc(sizeof(struct inodedep), 2426 M_INODEDEP, M_SOFTDEP_FLAGS); 2427 workitem_alloc(&inodedep->id_list, D_INODEDEP, mp); 2428 ACQUIRE_LOCK(ump); 2429 if (inodedep_find(inodedephd, inum, inodedeppp)) { 2430 WORKITEM_FREE(inodedep, D_INODEDEP); 2431 return (1); 2432 } 2433 inodedep->id_fs = fs; 2434 inodedep->id_ino = inum; 2435 inodedep->id_state = ALLCOMPLETE; 2436 inodedep->id_nlinkdelta = 0; 2437 inodedep->id_nlinkwrote = -1; 2438 inodedep->id_savedino1 = NULL; 2439 inodedep->id_savedsize = -1; 2440 inodedep->id_savedextsize = -1; 2441 inodedep->id_savednlink = -1; 2442 inodedep->id_bmsafemap = NULL; 2443 inodedep->id_mkdiradd = NULL; 2444 LIST_INIT(&inodedep->id_dirremhd); 2445 LIST_INIT(&inodedep->id_pendinghd); 2446 LIST_INIT(&inodedep->id_inowait); 2447 LIST_INIT(&inodedep->id_bufwait); 2448 TAILQ_INIT(&inodedep->id_inoreflst); 2449 TAILQ_INIT(&inodedep->id_inoupdt); 2450 TAILQ_INIT(&inodedep->id_newinoupdt); 2451 TAILQ_INIT(&inodedep->id_extupdt); 2452 TAILQ_INIT(&inodedep->id_newextupdt); 2453 TAILQ_INIT(&inodedep->id_freeblklst); 2454 LIST_INSERT_HEAD(inodedephd, inodedep, id_hash); 2455 *inodedeppp = inodedep; 2456 return (0); 2457 } 2458 2459 /* 2460 * Structures and routines associated with newblk caching. 2461 */ 2462 #define NEWBLK_HASH(ump, inum) \ 2463 (&(ump)->newblk_hashtbl[(inum) & (ump)->newblk_hash_size]) 2464 2465 static int 2466 newblk_find(newblkhd, newblkno, flags, newblkpp) 2467 struct newblk_hashhead *newblkhd; 2468 ufs2_daddr_t newblkno; 2469 int flags; 2470 struct newblk **newblkpp; 2471 { 2472 struct newblk *newblk; 2473 2474 LIST_FOREACH(newblk, newblkhd, nb_hash) { 2475 if (newblkno != newblk->nb_newblkno) 2476 continue; 2477 /* 2478 * If we're creating a new dependency don't match those that 2479 * have already been converted to allocdirects. This is for 2480 * a frag extend. 2481 */ 2482 if ((flags & DEPALLOC) && newblk->nb_list.wk_type != D_NEWBLK) 2483 continue; 2484 break; 2485 } 2486 if (newblk) { 2487 *newblkpp = newblk; 2488 return (1); 2489 } 2490 *newblkpp = NULL; 2491 return (0); 2492 } 2493 2494 /* 2495 * Look up a newblk. Return 1 if found, 0 if not found. 2496 * If not found, allocate if DEPALLOC flag is passed. 2497 * Found or allocated entry is returned in newblkpp. 2498 */ 2499 static int 2500 newblk_lookup(mp, newblkno, flags, newblkpp) 2501 struct mount *mp; 2502 ufs2_daddr_t newblkno; 2503 int flags; 2504 struct newblk **newblkpp; 2505 { 2506 struct newblk *newblk; 2507 struct newblk_hashhead *newblkhd; 2508 struct ufsmount *ump; 2509 2510 ump = VFSTOUFS(mp); 2511 LOCK_OWNED(ump); 2512 newblkhd = NEWBLK_HASH(ump, newblkno); 2513 if (newblk_find(newblkhd, newblkno, flags, newblkpp)) 2514 return (1); 2515 if ((flags & DEPALLOC) == 0) 2516 return (0); 2517 if (softdep_excess_items(ump, D_NEWBLK) || 2518 softdep_excess_items(ump, D_ALLOCDIRECT) || 2519 softdep_excess_items(ump, D_ALLOCINDIR)) 2520 schedule_cleanup(mp); 2521 else 2522 FREE_LOCK(ump); 2523 newblk = malloc(sizeof(union allblk), M_NEWBLK, 2524 M_SOFTDEP_FLAGS | M_ZERO); 2525 workitem_alloc(&newblk->nb_list, D_NEWBLK, mp); 2526 ACQUIRE_LOCK(ump); 2527 if (newblk_find(newblkhd, newblkno, flags, newblkpp)) { 2528 WORKITEM_FREE(newblk, D_NEWBLK); 2529 return (1); 2530 } 2531 newblk->nb_freefrag = NULL; 2532 LIST_INIT(&newblk->nb_indirdeps); 2533 LIST_INIT(&newblk->nb_newdirblk); 2534 LIST_INIT(&newblk->nb_jwork); 2535 newblk->nb_state = ATTACHED; 2536 newblk->nb_newblkno = newblkno; 2537 LIST_INSERT_HEAD(newblkhd, newblk, nb_hash); 2538 *newblkpp = newblk; 2539 return (0); 2540 } 2541 2542 /* 2543 * Structures and routines associated with freed indirect block caching. 2544 */ 2545 #define INDIR_HASH(ump, blkno) \ 2546 (&(ump)->indir_hashtbl[(blkno) & (ump)->indir_hash_size]) 2547 2548 /* 2549 * Lookup an indirect block in the indir hash table. The freework is 2550 * removed and potentially freed. The caller must do a blocking journal 2551 * write before writing to the blkno. 2552 */ 2553 static int 2554 indirblk_lookup(mp, blkno) 2555 struct mount *mp; 2556 ufs2_daddr_t blkno; 2557 { 2558 struct freework *freework; 2559 struct indir_hashhead *wkhd; 2560 struct ufsmount *ump; 2561 2562 ump = VFSTOUFS(mp); 2563 wkhd = INDIR_HASH(ump, blkno); 2564 TAILQ_FOREACH(freework, wkhd, fw_next) { 2565 if (freework->fw_blkno != blkno) 2566 continue; 2567 indirblk_remove(freework); 2568 return (1); 2569 } 2570 return (0); 2571 } 2572 2573 /* 2574 * Insert an indirect block represented by freework into the indirblk 2575 * hash table so that it may prevent the block from being re-used prior 2576 * to the journal being written. 2577 */ 2578 static void 2579 indirblk_insert(freework) 2580 struct freework *freework; 2581 { 2582 struct jblocks *jblocks; 2583 struct jseg *jseg; 2584 struct ufsmount *ump; 2585 2586 ump = VFSTOUFS(freework->fw_list.wk_mp); 2587 jblocks = ump->softdep_jblocks; 2588 jseg = TAILQ_LAST(&jblocks->jb_segs, jseglst); 2589 if (jseg == NULL) 2590 return; 2591 2592 LIST_INSERT_HEAD(&jseg->js_indirs, freework, fw_segs); 2593 TAILQ_INSERT_HEAD(INDIR_HASH(ump, freework->fw_blkno), freework, 2594 fw_next); 2595 freework->fw_state &= ~DEPCOMPLETE; 2596 } 2597 2598 static void 2599 indirblk_remove(freework) 2600 struct freework *freework; 2601 { 2602 struct ufsmount *ump; 2603 2604 ump = VFSTOUFS(freework->fw_list.wk_mp); 2605 LIST_REMOVE(freework, fw_segs); 2606 TAILQ_REMOVE(INDIR_HASH(ump, freework->fw_blkno), freework, fw_next); 2607 freework->fw_state |= DEPCOMPLETE; 2608 if ((freework->fw_state & ALLCOMPLETE) == ALLCOMPLETE) 2609 WORKITEM_FREE(freework, D_FREEWORK); 2610 } 2611 2612 /* 2613 * Executed during filesystem system initialization before 2614 * mounting any filesystems. 2615 */ 2616 void 2617 softdep_initialize() 2618 { 2619 2620 TAILQ_INIT(&softdepmounts); 2621 #ifdef __LP64__ 2622 max_softdeps = desiredvnodes * 4; 2623 #else 2624 max_softdeps = desiredvnodes * 2; 2625 #endif 2626 2627 /* initialise bioops hack */ 2628 bioops.io_start = softdep_disk_io_initiation; 2629 bioops.io_complete = softdep_disk_write_complete; 2630 bioops.io_deallocate = softdep_deallocate_dependencies; 2631 bioops.io_countdeps = softdep_count_dependencies; 2632 softdep_ast_cleanup = softdep_ast_cleanup_proc; 2633 2634 /* Initialize the callout with an mtx. */ 2635 callout_init_mtx(&softdep_callout, &lk, 0); 2636 } 2637 2638 /* 2639 * Executed after all filesystems have been unmounted during 2640 * filesystem module unload. 2641 */ 2642 void 2643 softdep_uninitialize() 2644 { 2645 2646 /* clear bioops hack */ 2647 bioops.io_start = NULL; 2648 bioops.io_complete = NULL; 2649 bioops.io_deallocate = NULL; 2650 bioops.io_countdeps = NULL; 2651 softdep_ast_cleanup = NULL; 2652 2653 callout_drain(&softdep_callout); 2654 } 2655 2656 /* 2657 * Called at mount time to notify the dependency code that a 2658 * filesystem wishes to use it. 2659 */ 2660 int 2661 softdep_mount(devvp, mp, fs, cred) 2662 struct vnode *devvp; 2663 struct mount *mp; 2664 struct fs *fs; 2665 struct ucred *cred; 2666 { 2667 struct csum_total cstotal; 2668 struct mount_softdeps *sdp; 2669 struct ufsmount *ump; 2670 struct cg *cgp; 2671 struct buf *bp; 2672 u_int cyl, i; 2673 int error; 2674 2675 sdp = malloc(sizeof(struct mount_softdeps), M_MOUNTDATA, 2676 M_WAITOK | M_ZERO); 2677 MNT_ILOCK(mp); 2678 mp->mnt_flag = (mp->mnt_flag & ~MNT_ASYNC) | MNT_SOFTDEP; 2679 if ((mp->mnt_kern_flag & MNTK_SOFTDEP) == 0) { 2680 mp->mnt_kern_flag = (mp->mnt_kern_flag & ~MNTK_ASYNC) | 2681 MNTK_SOFTDEP | MNTK_NOASYNC; 2682 } 2683 ump = VFSTOUFS(mp); 2684 ump->um_softdep = sdp; 2685 MNT_IUNLOCK(mp); 2686 rw_init(LOCK_PTR(ump), "per-fs softdep"); 2687 sdp->sd_ump = ump; 2688 LIST_INIT(&ump->softdep_workitem_pending); 2689 LIST_INIT(&ump->softdep_journal_pending); 2690 TAILQ_INIT(&ump->softdep_unlinked); 2691 LIST_INIT(&ump->softdep_dirtycg); 2692 ump->softdep_worklist_tail = NULL; 2693 ump->softdep_on_worklist = 0; 2694 ump->softdep_deps = 0; 2695 LIST_INIT(&ump->softdep_mkdirlisthd); 2696 ump->pagedep_hashtbl = hashinit(desiredvnodes / 5, M_PAGEDEP, 2697 &ump->pagedep_hash_size); 2698 ump->pagedep_nextclean = 0; 2699 ump->inodedep_hashtbl = hashinit(desiredvnodes, M_INODEDEP, 2700 &ump->inodedep_hash_size); 2701 ump->inodedep_nextclean = 0; 2702 ump->newblk_hashtbl = hashinit(max_softdeps / 2, M_NEWBLK, 2703 &ump->newblk_hash_size); 2704 ump->bmsafemap_hashtbl = hashinit(1024, M_BMSAFEMAP, 2705 &ump->bmsafemap_hash_size); 2706 i = 1 << (ffs(desiredvnodes / 10) - 1); 2707 ump->indir_hashtbl = malloc(i * sizeof(struct indir_hashhead), 2708 M_FREEWORK, M_WAITOK); 2709 ump->indir_hash_size = i - 1; 2710 for (i = 0; i <= ump->indir_hash_size; i++) 2711 TAILQ_INIT(&ump->indir_hashtbl[i]); 2712 #ifdef INVARIANTS 2713 for (i = 0; i <= D_LAST; i++) 2714 LIST_INIT(&ump->softdep_alldeps[i]); 2715 #endif 2716 ACQUIRE_GBLLOCK(&lk); 2717 TAILQ_INSERT_TAIL(&softdepmounts, sdp, sd_next); 2718 FREE_GBLLOCK(&lk); 2719 if ((fs->fs_flags & FS_SUJ) && 2720 (error = journal_mount(mp, fs, cred)) != 0) { 2721 printf("Failed to start journal: %d\n", error); 2722 softdep_unmount(mp); 2723 return (error); 2724 } 2725 /* 2726 * Start our flushing thread in the bufdaemon process. 2727 */ 2728 ACQUIRE_LOCK(ump); 2729 ump->softdep_flags |= FLUSH_STARTING; 2730 FREE_LOCK(ump); 2731 kproc_kthread_add(&softdep_flush, mp, &bufdaemonproc, 2732 &ump->softdep_flushtd, 0, 0, "softdepflush", "%s worker", 2733 mp->mnt_stat.f_mntonname); 2734 ACQUIRE_LOCK(ump); 2735 while ((ump->softdep_flags & FLUSH_STARTING) != 0) { 2736 msleep(&ump->softdep_flushtd, LOCK_PTR(ump), PVM, "sdstart", 2737 hz / 2); 2738 } 2739 FREE_LOCK(ump); 2740 /* 2741 * When doing soft updates, the counters in the 2742 * superblock may have gotten out of sync. Recomputation 2743 * can take a long time and can be deferred for background 2744 * fsck. However, the old behavior of scanning the cylinder 2745 * groups and recalculating them at mount time is available 2746 * by setting vfs.ffs.compute_summary_at_mount to one. 2747 */ 2748 if (compute_summary_at_mount == 0 || fs->fs_clean != 0) 2749 return (0); 2750 bzero(&cstotal, sizeof cstotal); 2751 for (cyl = 0; cyl < fs->fs_ncg; cyl++) { 2752 if ((error = bread(devvp, fsbtodb(fs, cgtod(fs, cyl)), 2753 fs->fs_cgsize, cred, &bp)) != 0) { 2754 brelse(bp); 2755 softdep_unmount(mp); 2756 return (error); 2757 } 2758 cgp = (struct cg *)bp->b_data; 2759 cstotal.cs_nffree += cgp->cg_cs.cs_nffree; 2760 cstotal.cs_nbfree += cgp->cg_cs.cs_nbfree; 2761 cstotal.cs_nifree += cgp->cg_cs.cs_nifree; 2762 cstotal.cs_ndir += cgp->cg_cs.cs_ndir; 2763 fs->fs_cs(fs, cyl) = cgp->cg_cs; 2764 brelse(bp); 2765 } 2766 #ifdef INVARIANTS 2767 if (bcmp(&cstotal, &fs->fs_cstotal, sizeof cstotal)) 2768 printf("%s: superblock summary recomputed\n", fs->fs_fsmnt); 2769 #endif 2770 bcopy(&cstotal, &fs->fs_cstotal, sizeof cstotal); 2771 return (0); 2772 } 2773 2774 void 2775 softdep_unmount(mp) 2776 struct mount *mp; 2777 { 2778 struct ufsmount *ump; 2779 #ifdef INVARIANTS 2780 int i; 2781 #endif 2782 2783 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 2784 ("softdep_unmount called on non-softdep filesystem")); 2785 ump = VFSTOUFS(mp); 2786 MNT_ILOCK(mp); 2787 mp->mnt_flag &= ~MNT_SOFTDEP; 2788 if (MOUNTEDSUJ(mp) == 0) { 2789 MNT_IUNLOCK(mp); 2790 } else { 2791 mp->mnt_flag &= ~MNT_SUJ; 2792 MNT_IUNLOCK(mp); 2793 journal_unmount(ump); 2794 } 2795 /* 2796 * Shut down our flushing thread. Check for NULL is if 2797 * softdep_mount errors out before the thread has been created. 2798 */ 2799 if (ump->softdep_flushtd != NULL) { 2800 ACQUIRE_LOCK(ump); 2801 ump->softdep_flags |= FLUSH_EXIT; 2802 wakeup(&ump->softdep_flushtd); 2803 msleep(&ump->softdep_flags, LOCK_PTR(ump), PVM | PDROP, 2804 "sdwait", 0); 2805 KASSERT((ump->softdep_flags & FLUSH_EXIT) == 0, 2806 ("Thread shutdown failed")); 2807 } 2808 /* 2809 * Free up our resources. 2810 */ 2811 ACQUIRE_GBLLOCK(&lk); 2812 TAILQ_REMOVE(&softdepmounts, ump->um_softdep, sd_next); 2813 FREE_GBLLOCK(&lk); 2814 rw_destroy(LOCK_PTR(ump)); 2815 hashdestroy(ump->pagedep_hashtbl, M_PAGEDEP, ump->pagedep_hash_size); 2816 hashdestroy(ump->inodedep_hashtbl, M_INODEDEP, ump->inodedep_hash_size); 2817 hashdestroy(ump->newblk_hashtbl, M_NEWBLK, ump->newblk_hash_size); 2818 hashdestroy(ump->bmsafemap_hashtbl, M_BMSAFEMAP, 2819 ump->bmsafemap_hash_size); 2820 free(ump->indir_hashtbl, M_FREEWORK); 2821 #ifdef INVARIANTS 2822 for (i = 0; i <= D_LAST; i++) { 2823 KASSERT(ump->softdep_curdeps[i] == 0, 2824 ("Unmount %s: Dep type %s != 0 (%ld)", ump->um_fs->fs_fsmnt, 2825 TYPENAME(i), ump->softdep_curdeps[i])); 2826 KASSERT(LIST_EMPTY(&ump->softdep_alldeps[i]), 2827 ("Unmount %s: Dep type %s not empty (%p)", ump->um_fs->fs_fsmnt, 2828 TYPENAME(i), LIST_FIRST(&ump->softdep_alldeps[i]))); 2829 } 2830 #endif 2831 free(ump->um_softdep, M_MOUNTDATA); 2832 } 2833 2834 static struct jblocks * 2835 jblocks_create(void) 2836 { 2837 struct jblocks *jblocks; 2838 2839 jblocks = malloc(sizeof(*jblocks), M_JBLOCKS, M_WAITOK | M_ZERO); 2840 TAILQ_INIT(&jblocks->jb_segs); 2841 jblocks->jb_avail = 10; 2842 jblocks->jb_extent = malloc(sizeof(struct jextent) * jblocks->jb_avail, 2843 M_JBLOCKS, M_WAITOK | M_ZERO); 2844 2845 return (jblocks); 2846 } 2847 2848 static ufs2_daddr_t 2849 jblocks_alloc(jblocks, bytes, actual) 2850 struct jblocks *jblocks; 2851 int bytes; 2852 int *actual; 2853 { 2854 ufs2_daddr_t daddr; 2855 struct jextent *jext; 2856 int freecnt; 2857 int blocks; 2858 2859 blocks = bytes / DEV_BSIZE; 2860 jext = &jblocks->jb_extent[jblocks->jb_head]; 2861 freecnt = jext->je_blocks - jblocks->jb_off; 2862 if (freecnt == 0) { 2863 jblocks->jb_off = 0; 2864 if (++jblocks->jb_head > jblocks->jb_used) 2865 jblocks->jb_head = 0; 2866 jext = &jblocks->jb_extent[jblocks->jb_head]; 2867 freecnt = jext->je_blocks; 2868 } 2869 if (freecnt > blocks) 2870 freecnt = blocks; 2871 *actual = freecnt * DEV_BSIZE; 2872 daddr = jext->je_daddr + jblocks->jb_off; 2873 jblocks->jb_off += freecnt; 2874 jblocks->jb_free -= freecnt; 2875 2876 return (daddr); 2877 } 2878 2879 static void 2880 jblocks_free(jblocks, mp, bytes) 2881 struct jblocks *jblocks; 2882 struct mount *mp; 2883 int bytes; 2884 { 2885 2886 LOCK_OWNED(VFSTOUFS(mp)); 2887 jblocks->jb_free += bytes / DEV_BSIZE; 2888 if (jblocks->jb_suspended) 2889 worklist_speedup(mp); 2890 wakeup(jblocks); 2891 } 2892 2893 static void 2894 jblocks_destroy(jblocks) 2895 struct jblocks *jblocks; 2896 { 2897 2898 if (jblocks->jb_extent) 2899 free(jblocks->jb_extent, M_JBLOCKS); 2900 free(jblocks, M_JBLOCKS); 2901 } 2902 2903 static void 2904 jblocks_add(jblocks, daddr, blocks) 2905 struct jblocks *jblocks; 2906 ufs2_daddr_t daddr; 2907 int blocks; 2908 { 2909 struct jextent *jext; 2910 2911 jblocks->jb_blocks += blocks; 2912 jblocks->jb_free += blocks; 2913 jext = &jblocks->jb_extent[jblocks->jb_used]; 2914 /* Adding the first block. */ 2915 if (jext->je_daddr == 0) { 2916 jext->je_daddr = daddr; 2917 jext->je_blocks = blocks; 2918 return; 2919 } 2920 /* Extending the last extent. */ 2921 if (jext->je_daddr + jext->je_blocks == daddr) { 2922 jext->je_blocks += blocks; 2923 return; 2924 } 2925 /* Adding a new extent. */ 2926 if (++jblocks->jb_used == jblocks->jb_avail) { 2927 jblocks->jb_avail *= 2; 2928 jext = malloc(sizeof(struct jextent) * jblocks->jb_avail, 2929 M_JBLOCKS, M_WAITOK | M_ZERO); 2930 memcpy(jext, jblocks->jb_extent, 2931 sizeof(struct jextent) * jblocks->jb_used); 2932 free(jblocks->jb_extent, M_JBLOCKS); 2933 jblocks->jb_extent = jext; 2934 } 2935 jext = &jblocks->jb_extent[jblocks->jb_used]; 2936 jext->je_daddr = daddr; 2937 jext->je_blocks = blocks; 2938 return; 2939 } 2940 2941 int 2942 softdep_journal_lookup(mp, vpp) 2943 struct mount *mp; 2944 struct vnode **vpp; 2945 { 2946 struct componentname cnp; 2947 struct vnode *dvp; 2948 ino_t sujournal; 2949 int error; 2950 2951 error = VFS_VGET(mp, UFS_ROOTINO, LK_EXCLUSIVE, &dvp); 2952 if (error) 2953 return (error); 2954 bzero(&cnp, sizeof(cnp)); 2955 cnp.cn_nameiop = LOOKUP; 2956 cnp.cn_flags = ISLASTCN; 2957 cnp.cn_thread = curthread; 2958 cnp.cn_cred = curthread->td_ucred; 2959 cnp.cn_pnbuf = SUJ_FILE; 2960 cnp.cn_nameptr = SUJ_FILE; 2961 cnp.cn_namelen = strlen(SUJ_FILE); 2962 error = ufs_lookup_ino(dvp, NULL, &cnp, &sujournal); 2963 vput(dvp); 2964 if (error != 0) 2965 return (error); 2966 error = VFS_VGET(mp, sujournal, LK_EXCLUSIVE, vpp); 2967 return (error); 2968 } 2969 2970 /* 2971 * Open and verify the journal file. 2972 */ 2973 static int 2974 journal_mount(mp, fs, cred) 2975 struct mount *mp; 2976 struct fs *fs; 2977 struct ucred *cred; 2978 { 2979 struct jblocks *jblocks; 2980 struct ufsmount *ump; 2981 struct vnode *vp; 2982 struct inode *ip; 2983 ufs2_daddr_t blkno; 2984 int bcount; 2985 int error; 2986 int i; 2987 2988 ump = VFSTOUFS(mp); 2989 ump->softdep_journal_tail = NULL; 2990 ump->softdep_on_journal = 0; 2991 ump->softdep_accdeps = 0; 2992 ump->softdep_req = 0; 2993 ump->softdep_jblocks = NULL; 2994 error = softdep_journal_lookup(mp, &vp); 2995 if (error != 0) { 2996 printf("Failed to find journal. Use tunefs to create one\n"); 2997 return (error); 2998 } 2999 ip = VTOI(vp); 3000 if (ip->i_size < SUJ_MIN) { 3001 error = ENOSPC; 3002 goto out; 3003 } 3004 bcount = lblkno(fs, ip->i_size); /* Only use whole blocks. */ 3005 jblocks = jblocks_create(); 3006 for (i = 0; i < bcount; i++) { 3007 error = ufs_bmaparray(vp, i, &blkno, NULL, NULL, NULL); 3008 if (error) 3009 break; 3010 jblocks_add(jblocks, blkno, fsbtodb(fs, fs->fs_frag)); 3011 } 3012 if (error) { 3013 jblocks_destroy(jblocks); 3014 goto out; 3015 } 3016 jblocks->jb_low = jblocks->jb_free / 3; /* Reserve 33%. */ 3017 jblocks->jb_min = jblocks->jb_free / 10; /* Suspend at 10%. */ 3018 ump->softdep_jblocks = jblocks; 3019 out: 3020 if (error == 0) { 3021 MNT_ILOCK(mp); 3022 mp->mnt_flag |= MNT_SUJ; 3023 mp->mnt_flag &= ~MNT_SOFTDEP; 3024 MNT_IUNLOCK(mp); 3025 /* 3026 * Only validate the journal contents if the 3027 * filesystem is clean, otherwise we write the logs 3028 * but they'll never be used. If the filesystem was 3029 * still dirty when we mounted it the journal is 3030 * invalid and a new journal can only be valid if it 3031 * starts from a clean mount. 3032 */ 3033 if (fs->fs_clean) { 3034 DIP_SET(ip, i_modrev, fs->fs_mtime); 3035 ip->i_flags |= IN_MODIFIED; 3036 ffs_update(vp, 1); 3037 } 3038 } 3039 vput(vp); 3040 return (error); 3041 } 3042 3043 static void 3044 journal_unmount(ump) 3045 struct ufsmount *ump; 3046 { 3047 3048 if (ump->softdep_jblocks) 3049 jblocks_destroy(ump->softdep_jblocks); 3050 ump->softdep_jblocks = NULL; 3051 } 3052 3053 /* 3054 * Called when a journal record is ready to be written. Space is allocated 3055 * and the journal entry is created when the journal is flushed to stable 3056 * store. 3057 */ 3058 static void 3059 add_to_journal(wk) 3060 struct worklist *wk; 3061 { 3062 struct ufsmount *ump; 3063 3064 ump = VFSTOUFS(wk->wk_mp); 3065 LOCK_OWNED(ump); 3066 if (wk->wk_state & ONWORKLIST) 3067 panic("add_to_journal: %s(0x%X) already on list", 3068 TYPENAME(wk->wk_type), wk->wk_state); 3069 wk->wk_state |= ONWORKLIST | DEPCOMPLETE; 3070 if (LIST_EMPTY(&ump->softdep_journal_pending)) { 3071 ump->softdep_jblocks->jb_age = ticks; 3072 LIST_INSERT_HEAD(&ump->softdep_journal_pending, wk, wk_list); 3073 } else 3074 LIST_INSERT_AFTER(ump->softdep_journal_tail, wk, wk_list); 3075 ump->softdep_journal_tail = wk; 3076 ump->softdep_on_journal += 1; 3077 } 3078 3079 /* 3080 * Remove an arbitrary item for the journal worklist maintain the tail 3081 * pointer. This happens when a new operation obviates the need to 3082 * journal an old operation. 3083 */ 3084 static void 3085 remove_from_journal(wk) 3086 struct worklist *wk; 3087 { 3088 struct ufsmount *ump; 3089 3090 ump = VFSTOUFS(wk->wk_mp); 3091 LOCK_OWNED(ump); 3092 #ifdef INVARIANTS 3093 { 3094 struct worklist *wkn; 3095 3096 LIST_FOREACH(wkn, &ump->softdep_journal_pending, wk_list) 3097 if (wkn == wk) 3098 break; 3099 if (wkn == NULL) 3100 panic("remove_from_journal: %p is not in journal", wk); 3101 } 3102 #endif 3103 /* 3104 * We emulate a TAILQ to save space in most structures which do not 3105 * require TAILQ semantics. Here we must update the tail position 3106 * when removing the tail which is not the final entry. This works 3107 * only if the worklist linkage are at the beginning of the structure. 3108 */ 3109 if (ump->softdep_journal_tail == wk) 3110 ump->softdep_journal_tail = 3111 (struct worklist *)wk->wk_list.le_prev; 3112 WORKLIST_REMOVE(wk); 3113 ump->softdep_on_journal -= 1; 3114 } 3115 3116 /* 3117 * Check for journal space as well as dependency limits so the prelink 3118 * code can throttle both journaled and non-journaled filesystems. 3119 * Threshold is 0 for low and 1 for min. 3120 */ 3121 static int 3122 journal_space(ump, thresh) 3123 struct ufsmount *ump; 3124 int thresh; 3125 { 3126 struct jblocks *jblocks; 3127 int limit, avail; 3128 3129 jblocks = ump->softdep_jblocks; 3130 if (jblocks == NULL) 3131 return (1); 3132 /* 3133 * We use a tighter restriction here to prevent request_cleanup() 3134 * running in threads from running into locks we currently hold. 3135 * We have to be over the limit and our filesystem has to be 3136 * responsible for more than our share of that usage. 3137 */ 3138 limit = (max_softdeps / 10) * 9; 3139 if (dep_current[D_INODEDEP] > limit && 3140 ump->softdep_curdeps[D_INODEDEP] > limit / stat_flush_threads) 3141 return (0); 3142 if (thresh) 3143 thresh = jblocks->jb_min; 3144 else 3145 thresh = jblocks->jb_low; 3146 avail = (ump->softdep_on_journal * JREC_SIZE) / DEV_BSIZE; 3147 avail = jblocks->jb_free - avail; 3148 3149 return (avail > thresh); 3150 } 3151 3152 static void 3153 journal_suspend(ump) 3154 struct ufsmount *ump; 3155 { 3156 struct jblocks *jblocks; 3157 struct mount *mp; 3158 bool set; 3159 3160 mp = UFSTOVFS(ump); 3161 if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) 3162 return; 3163 3164 jblocks = ump->softdep_jblocks; 3165 vfs_op_enter(mp); 3166 set = false; 3167 MNT_ILOCK(mp); 3168 if ((mp->mnt_kern_flag & MNTK_SUSPEND) == 0) { 3169 stat_journal_min++; 3170 mp->mnt_kern_flag |= MNTK_SUSPEND; 3171 mp->mnt_susp_owner = ump->softdep_flushtd; 3172 set = true; 3173 } 3174 jblocks->jb_suspended = 1; 3175 MNT_IUNLOCK(mp); 3176 if (!set) 3177 vfs_op_exit(mp); 3178 } 3179 3180 static int 3181 journal_unsuspend(struct ufsmount *ump) 3182 { 3183 struct jblocks *jblocks; 3184 struct mount *mp; 3185 3186 mp = UFSTOVFS(ump); 3187 jblocks = ump->softdep_jblocks; 3188 3189 if (jblocks != NULL && jblocks->jb_suspended && 3190 journal_space(ump, jblocks->jb_min)) { 3191 jblocks->jb_suspended = 0; 3192 FREE_LOCK(ump); 3193 mp->mnt_susp_owner = curthread; 3194 vfs_write_resume(mp, 0); 3195 ACQUIRE_LOCK(ump); 3196 return (1); 3197 } 3198 return (0); 3199 } 3200 3201 /* 3202 * Called before any allocation function to be certain that there is 3203 * sufficient space in the journal prior to creating any new records. 3204 * Since in the case of block allocation we may have multiple locked 3205 * buffers at the time of the actual allocation we can not block 3206 * when the journal records are created. Doing so would create a deadlock 3207 * if any of these buffers needed to be flushed to reclaim space. Instead 3208 * we require a sufficiently large amount of available space such that 3209 * each thread in the system could have passed this allocation check and 3210 * still have sufficient free space. With 20% of a minimum journal size 3211 * of 1MB we have 6553 records available. 3212 */ 3213 int 3214 softdep_prealloc(vp, waitok) 3215 struct vnode *vp; 3216 int waitok; 3217 { 3218 struct ufsmount *ump; 3219 3220 KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0, 3221 ("softdep_prealloc called on non-softdep filesystem")); 3222 /* 3223 * Nothing to do if we are not running journaled soft updates. 3224 * If we currently hold the snapshot lock, we must avoid 3225 * handling other resources that could cause deadlock. Do not 3226 * touch quotas vnode since it is typically recursed with 3227 * other vnode locks held. 3228 */ 3229 if (DOINGSUJ(vp) == 0 || IS_SNAPSHOT(VTOI(vp)) || 3230 (vp->v_vflag & VV_SYSTEM) != 0) 3231 return (0); 3232 ump = VFSTOUFS(vp->v_mount); 3233 ACQUIRE_LOCK(ump); 3234 if (journal_space(ump, 0)) { 3235 FREE_LOCK(ump); 3236 return (0); 3237 } 3238 stat_journal_low++; 3239 FREE_LOCK(ump); 3240 if (waitok == MNT_NOWAIT) 3241 return (ENOSPC); 3242 /* 3243 * Attempt to sync this vnode once to flush any journal 3244 * work attached to it. 3245 */ 3246 if ((curthread->td_pflags & TDP_COWINPROGRESS) == 0) 3247 ffs_syncvnode(vp, waitok, 0); 3248 ACQUIRE_LOCK(ump); 3249 process_removes(vp); 3250 process_truncates(vp); 3251 if (journal_space(ump, 0) == 0) { 3252 softdep_speedup(ump); 3253 if (journal_space(ump, 1) == 0) 3254 journal_suspend(ump); 3255 } 3256 FREE_LOCK(ump); 3257 3258 return (0); 3259 } 3260 3261 /* 3262 * Try hard to sync all data and metadata for the vnode, and workitems 3263 * flushing which might conflict with the vnode lock. This is a 3264 * helper for softdep_prerename(). 3265 */ 3266 static int 3267 softdep_prerename_vnode(ump, vp) 3268 struct ufsmount *ump; 3269 struct vnode *vp; 3270 { 3271 int error; 3272 3273 ASSERT_VOP_ELOCKED(vp, "prehandle"); 3274 if (vp->v_data == NULL) 3275 return (0); 3276 error = VOP_FSYNC(vp, MNT_WAIT, curthread); 3277 if (error != 0) 3278 return (error); 3279 ACQUIRE_LOCK(ump); 3280 process_removes(vp); 3281 process_truncates(vp); 3282 FREE_LOCK(ump); 3283 return (0); 3284 } 3285 3286 /* 3287 * Must be called from VOP_RENAME() after all vnodes are locked. 3288 * Ensures that there is enough journal space for rename. It is 3289 * sufficiently different from softdep_prelink() by having to handle 3290 * four vnodes. 3291 */ 3292 int 3293 softdep_prerename(fdvp, fvp, tdvp, tvp) 3294 struct vnode *fdvp; 3295 struct vnode *fvp; 3296 struct vnode *tdvp; 3297 struct vnode *tvp; 3298 { 3299 struct ufsmount *ump; 3300 int error; 3301 3302 ump = VFSTOUFS(fdvp->v_mount); 3303 3304 if (journal_space(ump, 0)) 3305 return (0); 3306 3307 VOP_UNLOCK(tdvp); 3308 VOP_UNLOCK(fvp); 3309 if (tvp != NULL && tvp != tdvp) 3310 VOP_UNLOCK(tvp); 3311 3312 error = softdep_prerename_vnode(ump, fdvp); 3313 VOP_UNLOCK(fdvp); 3314 if (error != 0) 3315 return (error); 3316 3317 VOP_LOCK(fvp, LK_EXCLUSIVE | LK_RETRY); 3318 error = softdep_prerename_vnode(ump, fvp); 3319 VOP_UNLOCK(fvp); 3320 if (error != 0) 3321 return (error); 3322 3323 if (tdvp != fdvp) { 3324 VOP_LOCK(tdvp, LK_EXCLUSIVE | LK_RETRY); 3325 error = softdep_prerename_vnode(ump, tdvp); 3326 VOP_UNLOCK(tdvp); 3327 if (error != 0) 3328 return (error); 3329 } 3330 3331 if (tvp != fvp && tvp != NULL) { 3332 VOP_LOCK(tvp, LK_EXCLUSIVE | LK_RETRY); 3333 error = softdep_prerename_vnode(ump, tvp); 3334 VOP_UNLOCK(tvp); 3335 if (error != 0) 3336 return (error); 3337 } 3338 3339 ACQUIRE_LOCK(ump); 3340 softdep_speedup(ump); 3341 process_worklist_item(UFSTOVFS(ump), 2, LK_NOWAIT); 3342 if (journal_space(ump, 0) == 0) { 3343 softdep_speedup(ump); 3344 if (journal_space(ump, 1) == 0) 3345 journal_suspend(ump); 3346 } 3347 FREE_LOCK(ump); 3348 return (ERELOOKUP); 3349 } 3350 3351 /* 3352 * Before adjusting a link count on a vnode verify that we have sufficient 3353 * journal space. If not, process operations that depend on the currently 3354 * locked pair of vnodes to try to flush space as the syncer, buf daemon, 3355 * and softdep flush threads can not acquire these locks to reclaim space. 3356 * 3357 * Returns 0 if all owned locks are still valid and were not dropped 3358 * in the process, in other case it returns either an error from sync, 3359 * or ERELOOKUP if any of the locks were re-acquired. In the later 3360 * case, the state of the vnodes cannot be relied upon and our VFS 3361 * syscall must be restarted at top level from the lookup. 3362 */ 3363 int 3364 softdep_prelink(dvp, vp) 3365 struct vnode *dvp; 3366 struct vnode *vp; 3367 { 3368 struct ufsmount *ump; 3369 3370 ASSERT_VOP_ELOCKED(dvp, "prelink dvp"); 3371 if (vp != NULL) 3372 ASSERT_VOP_ELOCKED(vp, "prelink vp"); 3373 ump = VFSTOUFS(dvp->v_mount); 3374 3375 /* 3376 * Nothing to do if we have sufficient journal space. We skip 3377 * flushing when vp is a snapshot to avoid deadlock where 3378 * another thread is trying to update the inodeblock for dvp 3379 * and is waiting on snaplk that vp holds. 3380 */ 3381 if (journal_space(ump, 0) || (vp != NULL && IS_SNAPSHOT(VTOI(vp)))) 3382 return (0); 3383 3384 stat_journal_low++; 3385 if (vp != NULL) { 3386 VOP_UNLOCK(dvp); 3387 ffs_syncvnode(vp, MNT_NOWAIT, 0); 3388 vn_lock_pair(dvp, false, vp, true); 3389 if (dvp->v_data == NULL) 3390 return (ERELOOKUP); 3391 } 3392 if (vp != NULL) 3393 VOP_UNLOCK(vp); 3394 ffs_syncvnode(dvp, MNT_WAIT, 0); 3395 VOP_UNLOCK(dvp); 3396 3397 /* Process vp before dvp as it may create .. removes. */ 3398 if (vp != NULL) { 3399 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 3400 if (vp->v_data == NULL) { 3401 vn_lock_pair(dvp, false, vp, true); 3402 return (ERELOOKUP); 3403 } 3404 ACQUIRE_LOCK(ump); 3405 process_removes(vp); 3406 process_truncates(vp); 3407 FREE_LOCK(ump); 3408 VOP_UNLOCK(vp); 3409 } 3410 3411 vn_lock(dvp, LK_EXCLUSIVE | LK_RETRY); 3412 if (dvp->v_data == NULL) { 3413 vn_lock_pair(dvp, true, vp, false); 3414 return (ERELOOKUP); 3415 } 3416 3417 ACQUIRE_LOCK(ump); 3418 process_removes(dvp); 3419 process_truncates(dvp); 3420 VOP_UNLOCK(dvp); 3421 softdep_speedup(ump); 3422 3423 process_worklist_item(UFSTOVFS(ump), 2, LK_NOWAIT); 3424 if (journal_space(ump, 0) == 0) { 3425 softdep_speedup(ump); 3426 if (journal_space(ump, 1) == 0) 3427 journal_suspend(ump); 3428 } 3429 FREE_LOCK(ump); 3430 3431 vn_lock_pair(dvp, false, vp, false); 3432 return (ERELOOKUP); 3433 } 3434 3435 static void 3436 jseg_write(ump, jseg, data) 3437 struct ufsmount *ump; 3438 struct jseg *jseg; 3439 uint8_t *data; 3440 { 3441 struct jsegrec *rec; 3442 3443 rec = (struct jsegrec *)data; 3444 rec->jsr_seq = jseg->js_seq; 3445 rec->jsr_oldest = jseg->js_oldseq; 3446 rec->jsr_cnt = jseg->js_cnt; 3447 rec->jsr_blocks = jseg->js_size / ump->um_devvp->v_bufobj.bo_bsize; 3448 rec->jsr_crc = 0; 3449 rec->jsr_time = ump->um_fs->fs_mtime; 3450 } 3451 3452 static inline void 3453 inoref_write(inoref, jseg, rec) 3454 struct inoref *inoref; 3455 struct jseg *jseg; 3456 struct jrefrec *rec; 3457 { 3458 3459 inoref->if_jsegdep->jd_seg = jseg; 3460 rec->jr_ino = inoref->if_ino; 3461 rec->jr_parent = inoref->if_parent; 3462 rec->jr_nlink = inoref->if_nlink; 3463 rec->jr_mode = inoref->if_mode; 3464 rec->jr_diroff = inoref->if_diroff; 3465 } 3466 3467 static void 3468 jaddref_write(jaddref, jseg, data) 3469 struct jaddref *jaddref; 3470 struct jseg *jseg; 3471 uint8_t *data; 3472 { 3473 struct jrefrec *rec; 3474 3475 rec = (struct jrefrec *)data; 3476 rec->jr_op = JOP_ADDREF; 3477 inoref_write(&jaddref->ja_ref, jseg, rec); 3478 } 3479 3480 static void 3481 jremref_write(jremref, jseg, data) 3482 struct jremref *jremref; 3483 struct jseg *jseg; 3484 uint8_t *data; 3485 { 3486 struct jrefrec *rec; 3487 3488 rec = (struct jrefrec *)data; 3489 rec->jr_op = JOP_REMREF; 3490 inoref_write(&jremref->jr_ref, jseg, rec); 3491 } 3492 3493 static void 3494 jmvref_write(jmvref, jseg, data) 3495 struct jmvref *jmvref; 3496 struct jseg *jseg; 3497 uint8_t *data; 3498 { 3499 struct jmvrec *rec; 3500 3501 rec = (struct jmvrec *)data; 3502 rec->jm_op = JOP_MVREF; 3503 rec->jm_ino = jmvref->jm_ino; 3504 rec->jm_parent = jmvref->jm_parent; 3505 rec->jm_oldoff = jmvref->jm_oldoff; 3506 rec->jm_newoff = jmvref->jm_newoff; 3507 } 3508 3509 static void 3510 jnewblk_write(jnewblk, jseg, data) 3511 struct jnewblk *jnewblk; 3512 struct jseg *jseg; 3513 uint8_t *data; 3514 { 3515 struct jblkrec *rec; 3516 3517 jnewblk->jn_jsegdep->jd_seg = jseg; 3518 rec = (struct jblkrec *)data; 3519 rec->jb_op = JOP_NEWBLK; 3520 rec->jb_ino = jnewblk->jn_ino; 3521 rec->jb_blkno = jnewblk->jn_blkno; 3522 rec->jb_lbn = jnewblk->jn_lbn; 3523 rec->jb_frags = jnewblk->jn_frags; 3524 rec->jb_oldfrags = jnewblk->jn_oldfrags; 3525 } 3526 3527 static void 3528 jfreeblk_write(jfreeblk, jseg, data) 3529 struct jfreeblk *jfreeblk; 3530 struct jseg *jseg; 3531 uint8_t *data; 3532 { 3533 struct jblkrec *rec; 3534 3535 jfreeblk->jf_dep.jb_jsegdep->jd_seg = jseg; 3536 rec = (struct jblkrec *)data; 3537 rec->jb_op = JOP_FREEBLK; 3538 rec->jb_ino = jfreeblk->jf_ino; 3539 rec->jb_blkno = jfreeblk->jf_blkno; 3540 rec->jb_lbn = jfreeblk->jf_lbn; 3541 rec->jb_frags = jfreeblk->jf_frags; 3542 rec->jb_oldfrags = 0; 3543 } 3544 3545 static void 3546 jfreefrag_write(jfreefrag, jseg, data) 3547 struct jfreefrag *jfreefrag; 3548 struct jseg *jseg; 3549 uint8_t *data; 3550 { 3551 struct jblkrec *rec; 3552 3553 jfreefrag->fr_jsegdep->jd_seg = jseg; 3554 rec = (struct jblkrec *)data; 3555 rec->jb_op = JOP_FREEBLK; 3556 rec->jb_ino = jfreefrag->fr_ino; 3557 rec->jb_blkno = jfreefrag->fr_blkno; 3558 rec->jb_lbn = jfreefrag->fr_lbn; 3559 rec->jb_frags = jfreefrag->fr_frags; 3560 rec->jb_oldfrags = 0; 3561 } 3562 3563 static void 3564 jtrunc_write(jtrunc, jseg, data) 3565 struct jtrunc *jtrunc; 3566 struct jseg *jseg; 3567 uint8_t *data; 3568 { 3569 struct jtrncrec *rec; 3570 3571 jtrunc->jt_dep.jb_jsegdep->jd_seg = jseg; 3572 rec = (struct jtrncrec *)data; 3573 rec->jt_op = JOP_TRUNC; 3574 rec->jt_ino = jtrunc->jt_ino; 3575 rec->jt_size = jtrunc->jt_size; 3576 rec->jt_extsize = jtrunc->jt_extsize; 3577 } 3578 3579 static void 3580 jfsync_write(jfsync, jseg, data) 3581 struct jfsync *jfsync; 3582 struct jseg *jseg; 3583 uint8_t *data; 3584 { 3585 struct jtrncrec *rec; 3586 3587 rec = (struct jtrncrec *)data; 3588 rec->jt_op = JOP_SYNC; 3589 rec->jt_ino = jfsync->jfs_ino; 3590 rec->jt_size = jfsync->jfs_size; 3591 rec->jt_extsize = jfsync->jfs_extsize; 3592 } 3593 3594 static void 3595 softdep_flushjournal(mp) 3596 struct mount *mp; 3597 { 3598 struct jblocks *jblocks; 3599 struct ufsmount *ump; 3600 3601 if (MOUNTEDSUJ(mp) == 0) 3602 return; 3603 ump = VFSTOUFS(mp); 3604 jblocks = ump->softdep_jblocks; 3605 ACQUIRE_LOCK(ump); 3606 while (ump->softdep_on_journal) { 3607 jblocks->jb_needseg = 1; 3608 softdep_process_journal(mp, NULL, MNT_WAIT); 3609 } 3610 FREE_LOCK(ump); 3611 } 3612 3613 static void softdep_synchronize_completed(struct bio *); 3614 static void softdep_synchronize(struct bio *, struct ufsmount *, void *); 3615 3616 static void 3617 softdep_synchronize_completed(bp) 3618 struct bio *bp; 3619 { 3620 struct jseg *oldest; 3621 struct jseg *jseg; 3622 struct ufsmount *ump; 3623 3624 /* 3625 * caller1 marks the last segment written before we issued the 3626 * synchronize cache. 3627 */ 3628 jseg = bp->bio_caller1; 3629 if (jseg == NULL) { 3630 g_destroy_bio(bp); 3631 return; 3632 } 3633 ump = VFSTOUFS(jseg->js_list.wk_mp); 3634 ACQUIRE_LOCK(ump); 3635 oldest = NULL; 3636 /* 3637 * Mark all the journal entries waiting on the synchronize cache 3638 * as completed so they may continue on. 3639 */ 3640 while (jseg != NULL && (jseg->js_state & COMPLETE) == 0) { 3641 jseg->js_state |= COMPLETE; 3642 oldest = jseg; 3643 jseg = TAILQ_PREV(jseg, jseglst, js_next); 3644 } 3645 /* 3646 * Restart deferred journal entry processing from the oldest 3647 * completed jseg. 3648 */ 3649 if (oldest) 3650 complete_jsegs(oldest); 3651 3652 FREE_LOCK(ump); 3653 g_destroy_bio(bp); 3654 } 3655 3656 /* 3657 * Send BIO_FLUSH/SYNCHRONIZE CACHE to the device to enforce write ordering 3658 * barriers. The journal must be written prior to any blocks that depend 3659 * on it and the journal can not be released until the blocks have be 3660 * written. This code handles both barriers simultaneously. 3661 */ 3662 static void 3663 softdep_synchronize(bp, ump, caller1) 3664 struct bio *bp; 3665 struct ufsmount *ump; 3666 void *caller1; 3667 { 3668 3669 bp->bio_cmd = BIO_FLUSH; 3670 bp->bio_flags |= BIO_ORDERED; 3671 bp->bio_data = NULL; 3672 bp->bio_offset = ump->um_cp->provider->mediasize; 3673 bp->bio_length = 0; 3674 bp->bio_done = softdep_synchronize_completed; 3675 bp->bio_caller1 = caller1; 3676 g_io_request(bp, ump->um_cp); 3677 } 3678 3679 /* 3680 * Flush some journal records to disk. 3681 */ 3682 static void 3683 softdep_process_journal(mp, needwk, flags) 3684 struct mount *mp; 3685 struct worklist *needwk; 3686 int flags; 3687 { 3688 struct jblocks *jblocks; 3689 struct ufsmount *ump; 3690 struct worklist *wk; 3691 struct jseg *jseg; 3692 struct buf *bp; 3693 struct bio *bio; 3694 uint8_t *data; 3695 struct fs *fs; 3696 int shouldflush; 3697 int segwritten; 3698 int jrecmin; /* Minimum records per block. */ 3699 int jrecmax; /* Maximum records per block. */ 3700 int size; 3701 int cnt; 3702 int off; 3703 int devbsize; 3704 3705 if (MOUNTEDSUJ(mp) == 0) 3706 return; 3707 shouldflush = softdep_flushcache; 3708 bio = NULL; 3709 jseg = NULL; 3710 ump = VFSTOUFS(mp); 3711 LOCK_OWNED(ump); 3712 fs = ump->um_fs; 3713 jblocks = ump->softdep_jblocks; 3714 devbsize = ump->um_devvp->v_bufobj.bo_bsize; 3715 /* 3716 * We write anywhere between a disk block and fs block. The upper 3717 * bound is picked to prevent buffer cache fragmentation and limit 3718 * processing time per I/O. 3719 */ 3720 jrecmin = (devbsize / JREC_SIZE) - 1; /* -1 for seg header */ 3721 jrecmax = (fs->fs_bsize / devbsize) * jrecmin; 3722 segwritten = 0; 3723 for (;;) { 3724 cnt = ump->softdep_on_journal; 3725 /* 3726 * Criteria for writing a segment: 3727 * 1) We have a full block. 3728 * 2) We're called from jwait() and haven't found the 3729 * journal item yet. 3730 * 3) Always write if needseg is set. 3731 * 4) If we are called from process_worklist and have 3732 * not yet written anything we write a partial block 3733 * to enforce a 1 second maximum latency on journal 3734 * entries. 3735 */ 3736 if (cnt < (jrecmax - 1) && needwk == NULL && 3737 jblocks->jb_needseg == 0 && (segwritten || cnt == 0)) 3738 break; 3739 cnt++; 3740 /* 3741 * Verify some free journal space. softdep_prealloc() should 3742 * guarantee that we don't run out so this is indicative of 3743 * a problem with the flow control. Try to recover 3744 * gracefully in any event. 3745 */ 3746 while (jblocks->jb_free == 0) { 3747 if (flags != MNT_WAIT) 3748 break; 3749 printf("softdep: Out of journal space!\n"); 3750 softdep_speedup(ump); 3751 msleep(jblocks, LOCK_PTR(ump), PRIBIO, "jblocks", hz); 3752 } 3753 FREE_LOCK(ump); 3754 jseg = malloc(sizeof(*jseg), M_JSEG, M_SOFTDEP_FLAGS); 3755 workitem_alloc(&jseg->js_list, D_JSEG, mp); 3756 LIST_INIT(&jseg->js_entries); 3757 LIST_INIT(&jseg->js_indirs); 3758 jseg->js_state = ATTACHED; 3759 if (shouldflush == 0) 3760 jseg->js_state |= COMPLETE; 3761 else if (bio == NULL) 3762 bio = g_alloc_bio(); 3763 jseg->js_jblocks = jblocks; 3764 bp = geteblk(fs->fs_bsize, 0); 3765 ACQUIRE_LOCK(ump); 3766 /* 3767 * If there was a race while we were allocating the block 3768 * and jseg the entry we care about was likely written. 3769 * We bail out in both the WAIT and NOWAIT case and assume 3770 * the caller will loop if the entry it cares about is 3771 * not written. 3772 */ 3773 cnt = ump->softdep_on_journal; 3774 if (cnt + jblocks->jb_needseg == 0 || jblocks->jb_free == 0) { 3775 bp->b_flags |= B_INVAL | B_NOCACHE; 3776 WORKITEM_FREE(jseg, D_JSEG); 3777 FREE_LOCK(ump); 3778 brelse(bp); 3779 ACQUIRE_LOCK(ump); 3780 break; 3781 } 3782 /* 3783 * Calculate the disk block size required for the available 3784 * records rounded to the min size. 3785 */ 3786 if (cnt == 0) 3787 size = devbsize; 3788 else if (cnt < jrecmax) 3789 size = howmany(cnt, jrecmin) * devbsize; 3790 else 3791 size = fs->fs_bsize; 3792 /* 3793 * Allocate a disk block for this journal data and account 3794 * for truncation of the requested size if enough contiguous 3795 * space was not available. 3796 */ 3797 bp->b_blkno = jblocks_alloc(jblocks, size, &size); 3798 bp->b_lblkno = bp->b_blkno; 3799 bp->b_offset = bp->b_blkno * DEV_BSIZE; 3800 bp->b_bcount = size; 3801 bp->b_flags &= ~B_INVAL; 3802 bp->b_flags |= B_VALIDSUSPWRT | B_NOCOPY; 3803 /* 3804 * Initialize our jseg with cnt records. Assign the next 3805 * sequence number to it and link it in-order. 3806 */ 3807 cnt = MIN(cnt, (size / devbsize) * jrecmin); 3808 jseg->js_buf = bp; 3809 jseg->js_cnt = cnt; 3810 jseg->js_refs = cnt + 1; /* Self ref. */ 3811 jseg->js_size = size; 3812 jseg->js_seq = jblocks->jb_nextseq++; 3813 if (jblocks->jb_oldestseg == NULL) 3814 jblocks->jb_oldestseg = jseg; 3815 jseg->js_oldseq = jblocks->jb_oldestseg->js_seq; 3816 TAILQ_INSERT_TAIL(&jblocks->jb_segs, jseg, js_next); 3817 if (jblocks->jb_writeseg == NULL) 3818 jblocks->jb_writeseg = jseg; 3819 /* 3820 * Start filling in records from the pending list. 3821 */ 3822 data = bp->b_data; 3823 off = 0; 3824 3825 /* 3826 * Always put a header on the first block. 3827 * XXX As with below, there might not be a chance to get 3828 * into the loop. Ensure that something valid is written. 3829 */ 3830 jseg_write(ump, jseg, data); 3831 off += JREC_SIZE; 3832 data = bp->b_data + off; 3833 3834 /* 3835 * XXX Something is wrong here. There's no work to do, 3836 * but we need to perform and I/O and allow it to complete 3837 * anyways. 3838 */ 3839 if (LIST_EMPTY(&ump->softdep_journal_pending)) 3840 stat_emptyjblocks++; 3841 3842 while ((wk = LIST_FIRST(&ump->softdep_journal_pending)) 3843 != NULL) { 3844 if (cnt == 0) 3845 break; 3846 /* Place a segment header on every device block. */ 3847 if ((off % devbsize) == 0) { 3848 jseg_write(ump, jseg, data); 3849 off += JREC_SIZE; 3850 data = bp->b_data + off; 3851 } 3852 if (wk == needwk) 3853 needwk = NULL; 3854 remove_from_journal(wk); 3855 wk->wk_state |= INPROGRESS; 3856 WORKLIST_INSERT(&jseg->js_entries, wk); 3857 switch (wk->wk_type) { 3858 case D_JADDREF: 3859 jaddref_write(WK_JADDREF(wk), jseg, data); 3860 break; 3861 case D_JREMREF: 3862 jremref_write(WK_JREMREF(wk), jseg, data); 3863 break; 3864 case D_JMVREF: 3865 jmvref_write(WK_JMVREF(wk), jseg, data); 3866 break; 3867 case D_JNEWBLK: 3868 jnewblk_write(WK_JNEWBLK(wk), jseg, data); 3869 break; 3870 case D_JFREEBLK: 3871 jfreeblk_write(WK_JFREEBLK(wk), jseg, data); 3872 break; 3873 case D_JFREEFRAG: 3874 jfreefrag_write(WK_JFREEFRAG(wk), jseg, data); 3875 break; 3876 case D_JTRUNC: 3877 jtrunc_write(WK_JTRUNC(wk), jseg, data); 3878 break; 3879 case D_JFSYNC: 3880 jfsync_write(WK_JFSYNC(wk), jseg, data); 3881 break; 3882 default: 3883 panic("process_journal: Unknown type %s", 3884 TYPENAME(wk->wk_type)); 3885 /* NOTREACHED */ 3886 } 3887 off += JREC_SIZE; 3888 data = bp->b_data + off; 3889 cnt--; 3890 } 3891 3892 /* Clear any remaining space so we don't leak kernel data */ 3893 if (size > off) 3894 bzero(data, size - off); 3895 3896 /* 3897 * Write this one buffer and continue. 3898 */ 3899 segwritten = 1; 3900 jblocks->jb_needseg = 0; 3901 WORKLIST_INSERT(&bp->b_dep, &jseg->js_list); 3902 FREE_LOCK(ump); 3903 bp->b_xflags |= BX_CVTENXIO; 3904 pbgetvp(ump->um_devvp, bp); 3905 /* 3906 * We only do the blocking wait once we find the journal 3907 * entry we're looking for. 3908 */ 3909 if (needwk == NULL && flags == MNT_WAIT) 3910 bwrite(bp); 3911 else 3912 bawrite(bp); 3913 ACQUIRE_LOCK(ump); 3914 } 3915 /* 3916 * If we wrote a segment issue a synchronize cache so the journal 3917 * is reflected on disk before the data is written. Since reclaiming 3918 * journal space also requires writing a journal record this 3919 * process also enforces a barrier before reclamation. 3920 */ 3921 if (segwritten && shouldflush) { 3922 softdep_synchronize(bio, ump, 3923 TAILQ_LAST(&jblocks->jb_segs, jseglst)); 3924 } else if (bio) 3925 g_destroy_bio(bio); 3926 /* 3927 * If we've suspended the filesystem because we ran out of journal 3928 * space either try to sync it here to make some progress or 3929 * unsuspend it if we already have. 3930 */ 3931 if (flags == 0 && jblocks->jb_suspended) { 3932 if (journal_unsuspend(ump)) 3933 return; 3934 FREE_LOCK(ump); 3935 VFS_SYNC(mp, MNT_NOWAIT); 3936 ffs_sbupdate(ump, MNT_WAIT, 0); 3937 ACQUIRE_LOCK(ump); 3938 } 3939 } 3940 3941 /* 3942 * Complete a jseg, allowing all dependencies awaiting journal writes 3943 * to proceed. Each journal dependency also attaches a jsegdep to dependent 3944 * structures so that the journal segment can be freed to reclaim space. 3945 */ 3946 static void 3947 complete_jseg(jseg) 3948 struct jseg *jseg; 3949 { 3950 struct worklist *wk; 3951 struct jmvref *jmvref; 3952 #ifdef INVARIANTS 3953 int i = 0; 3954 #endif 3955 3956 while ((wk = LIST_FIRST(&jseg->js_entries)) != NULL) { 3957 WORKLIST_REMOVE(wk); 3958 wk->wk_state &= ~INPROGRESS; 3959 wk->wk_state |= COMPLETE; 3960 KASSERT(i++ < jseg->js_cnt, 3961 ("handle_written_jseg: overflow %d >= %d", 3962 i - 1, jseg->js_cnt)); 3963 switch (wk->wk_type) { 3964 case D_JADDREF: 3965 handle_written_jaddref(WK_JADDREF(wk)); 3966 break; 3967 case D_JREMREF: 3968 handle_written_jremref(WK_JREMREF(wk)); 3969 break; 3970 case D_JMVREF: 3971 rele_jseg(jseg); /* No jsegdep. */ 3972 jmvref = WK_JMVREF(wk); 3973 LIST_REMOVE(jmvref, jm_deps); 3974 if ((jmvref->jm_pagedep->pd_state & ONWORKLIST) == 0) 3975 free_pagedep(jmvref->jm_pagedep); 3976 WORKITEM_FREE(jmvref, D_JMVREF); 3977 break; 3978 case D_JNEWBLK: 3979 handle_written_jnewblk(WK_JNEWBLK(wk)); 3980 break; 3981 case D_JFREEBLK: 3982 handle_written_jblkdep(&WK_JFREEBLK(wk)->jf_dep); 3983 break; 3984 case D_JTRUNC: 3985 handle_written_jblkdep(&WK_JTRUNC(wk)->jt_dep); 3986 break; 3987 case D_JFSYNC: 3988 rele_jseg(jseg); /* No jsegdep. */ 3989 WORKITEM_FREE(wk, D_JFSYNC); 3990 break; 3991 case D_JFREEFRAG: 3992 handle_written_jfreefrag(WK_JFREEFRAG(wk)); 3993 break; 3994 default: 3995 panic("handle_written_jseg: Unknown type %s", 3996 TYPENAME(wk->wk_type)); 3997 /* NOTREACHED */ 3998 } 3999 } 4000 /* Release the self reference so the structure may be freed. */ 4001 rele_jseg(jseg); 4002 } 4003 4004 /* 4005 * Determine which jsegs are ready for completion processing. Waits for 4006 * synchronize cache to complete as well as forcing in-order completion 4007 * of journal entries. 4008 */ 4009 static void 4010 complete_jsegs(jseg) 4011 struct jseg *jseg; 4012 { 4013 struct jblocks *jblocks; 4014 struct jseg *jsegn; 4015 4016 jblocks = jseg->js_jblocks; 4017 /* 4018 * Don't allow out of order completions. If this isn't the first 4019 * block wait for it to write before we're done. 4020 */ 4021 if (jseg != jblocks->jb_writeseg) 4022 return; 4023 /* Iterate through available jsegs processing their entries. */ 4024 while (jseg && (jseg->js_state & ALLCOMPLETE) == ALLCOMPLETE) { 4025 jblocks->jb_oldestwrseq = jseg->js_oldseq; 4026 jsegn = TAILQ_NEXT(jseg, js_next); 4027 complete_jseg(jseg); 4028 jseg = jsegn; 4029 } 4030 jblocks->jb_writeseg = jseg; 4031 /* 4032 * Attempt to free jsegs now that oldestwrseq may have advanced. 4033 */ 4034 free_jsegs(jblocks); 4035 } 4036 4037 /* 4038 * Mark a jseg as DEPCOMPLETE and throw away the buffer. Attempt to handle 4039 * the final completions. 4040 */ 4041 static void 4042 handle_written_jseg(jseg, bp) 4043 struct jseg *jseg; 4044 struct buf *bp; 4045 { 4046 4047 if (jseg->js_refs == 0) 4048 panic("handle_written_jseg: No self-reference on %p", jseg); 4049 jseg->js_state |= DEPCOMPLETE; 4050 /* 4051 * We'll never need this buffer again, set flags so it will be 4052 * discarded. 4053 */ 4054 bp->b_flags |= B_INVAL | B_NOCACHE; 4055 pbrelvp(bp); 4056 complete_jsegs(jseg); 4057 } 4058 4059 static inline struct jsegdep * 4060 inoref_jseg(inoref) 4061 struct inoref *inoref; 4062 { 4063 struct jsegdep *jsegdep; 4064 4065 jsegdep = inoref->if_jsegdep; 4066 inoref->if_jsegdep = NULL; 4067 4068 return (jsegdep); 4069 } 4070 4071 /* 4072 * Called once a jremref has made it to stable store. The jremref is marked 4073 * complete and we attempt to free it. Any pagedeps writes sleeping waiting 4074 * for the jremref to complete will be awoken by free_jremref. 4075 */ 4076 static void 4077 handle_written_jremref(jremref) 4078 struct jremref *jremref; 4079 { 4080 struct inodedep *inodedep; 4081 struct jsegdep *jsegdep; 4082 struct dirrem *dirrem; 4083 4084 /* Grab the jsegdep. */ 4085 jsegdep = inoref_jseg(&jremref->jr_ref); 4086 /* 4087 * Remove us from the inoref list. 4088 */ 4089 if (inodedep_lookup(jremref->jr_list.wk_mp, jremref->jr_ref.if_ino, 4090 0, &inodedep) == 0) 4091 panic("handle_written_jremref: Lost inodedep"); 4092 TAILQ_REMOVE(&inodedep->id_inoreflst, &jremref->jr_ref, if_deps); 4093 /* 4094 * Complete the dirrem. 4095 */ 4096 dirrem = jremref->jr_dirrem; 4097 jremref->jr_dirrem = NULL; 4098 LIST_REMOVE(jremref, jr_deps); 4099 jsegdep->jd_state |= jremref->jr_state & MKDIR_PARENT; 4100 jwork_insert(&dirrem->dm_jwork, jsegdep); 4101 if (LIST_EMPTY(&dirrem->dm_jremrefhd) && 4102 (dirrem->dm_state & COMPLETE) != 0) 4103 add_to_worklist(&dirrem->dm_list, 0); 4104 free_jremref(jremref); 4105 } 4106 4107 /* 4108 * Called once a jaddref has made it to stable store. The dependency is 4109 * marked complete and any dependent structures are added to the inode 4110 * bufwait list to be completed as soon as it is written. If a bitmap write 4111 * depends on this entry we move the inode into the inodedephd of the 4112 * bmsafemap dependency and attempt to remove the jaddref from the bmsafemap. 4113 */ 4114 static void 4115 handle_written_jaddref(jaddref) 4116 struct jaddref *jaddref; 4117 { 4118 struct jsegdep *jsegdep; 4119 struct inodedep *inodedep; 4120 struct diradd *diradd; 4121 struct mkdir *mkdir; 4122 4123 /* Grab the jsegdep. */ 4124 jsegdep = inoref_jseg(&jaddref->ja_ref); 4125 mkdir = NULL; 4126 diradd = NULL; 4127 if (inodedep_lookup(jaddref->ja_list.wk_mp, jaddref->ja_ino, 4128 0, &inodedep) == 0) 4129 panic("handle_written_jaddref: Lost inodedep."); 4130 if (jaddref->ja_diradd == NULL) 4131 panic("handle_written_jaddref: No dependency"); 4132 if (jaddref->ja_diradd->da_list.wk_type == D_DIRADD) { 4133 diradd = jaddref->ja_diradd; 4134 WORKLIST_INSERT(&inodedep->id_bufwait, &diradd->da_list); 4135 } else if (jaddref->ja_state & MKDIR_PARENT) { 4136 mkdir = jaddref->ja_mkdir; 4137 WORKLIST_INSERT(&inodedep->id_bufwait, &mkdir->md_list); 4138 } else if (jaddref->ja_state & MKDIR_BODY) 4139 mkdir = jaddref->ja_mkdir; 4140 else 4141 panic("handle_written_jaddref: Unknown dependency %p", 4142 jaddref->ja_diradd); 4143 jaddref->ja_diradd = NULL; /* also clears ja_mkdir */ 4144 /* 4145 * Remove us from the inode list. 4146 */ 4147 TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref, if_deps); 4148 /* 4149 * The mkdir may be waiting on the jaddref to clear before freeing. 4150 */ 4151 if (mkdir) { 4152 KASSERT(mkdir->md_list.wk_type == D_MKDIR, 4153 ("handle_written_jaddref: Incorrect type for mkdir %s", 4154 TYPENAME(mkdir->md_list.wk_type))); 4155 mkdir->md_jaddref = NULL; 4156 diradd = mkdir->md_diradd; 4157 mkdir->md_state |= DEPCOMPLETE; 4158 complete_mkdir(mkdir); 4159 } 4160 jwork_insert(&diradd->da_jwork, jsegdep); 4161 if (jaddref->ja_state & NEWBLOCK) { 4162 inodedep->id_state |= ONDEPLIST; 4163 LIST_INSERT_HEAD(&inodedep->id_bmsafemap->sm_inodedephd, 4164 inodedep, id_deps); 4165 } 4166 free_jaddref(jaddref); 4167 } 4168 4169 /* 4170 * Called once a jnewblk journal is written. The allocdirect or allocindir 4171 * is placed in the bmsafemap to await notification of a written bitmap. If 4172 * the operation was canceled we add the segdep to the appropriate 4173 * dependency to free the journal space once the canceling operation 4174 * completes. 4175 */ 4176 static void 4177 handle_written_jnewblk(jnewblk) 4178 struct jnewblk *jnewblk; 4179 { 4180 struct bmsafemap *bmsafemap; 4181 struct freefrag *freefrag; 4182 struct freework *freework; 4183 struct jsegdep *jsegdep; 4184 struct newblk *newblk; 4185 4186 /* Grab the jsegdep. */ 4187 jsegdep = jnewblk->jn_jsegdep; 4188 jnewblk->jn_jsegdep = NULL; 4189 if (jnewblk->jn_dep == NULL) 4190 panic("handle_written_jnewblk: No dependency for the segdep."); 4191 switch (jnewblk->jn_dep->wk_type) { 4192 case D_NEWBLK: 4193 case D_ALLOCDIRECT: 4194 case D_ALLOCINDIR: 4195 /* 4196 * Add the written block to the bmsafemap so it can 4197 * be notified when the bitmap is on disk. 4198 */ 4199 newblk = WK_NEWBLK(jnewblk->jn_dep); 4200 newblk->nb_jnewblk = NULL; 4201 if ((newblk->nb_state & GOINGAWAY) == 0) { 4202 bmsafemap = newblk->nb_bmsafemap; 4203 newblk->nb_state |= ONDEPLIST; 4204 LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, 4205 nb_deps); 4206 } 4207 jwork_insert(&newblk->nb_jwork, jsegdep); 4208 break; 4209 case D_FREEFRAG: 4210 /* 4211 * A newblock being removed by a freefrag when replaced by 4212 * frag extension. 4213 */ 4214 freefrag = WK_FREEFRAG(jnewblk->jn_dep); 4215 freefrag->ff_jdep = NULL; 4216 jwork_insert(&freefrag->ff_jwork, jsegdep); 4217 break; 4218 case D_FREEWORK: 4219 /* 4220 * A direct block was removed by truncate. 4221 */ 4222 freework = WK_FREEWORK(jnewblk->jn_dep); 4223 freework->fw_jnewblk = NULL; 4224 jwork_insert(&freework->fw_freeblks->fb_jwork, jsegdep); 4225 break; 4226 default: 4227 panic("handle_written_jnewblk: Unknown type %d.", 4228 jnewblk->jn_dep->wk_type); 4229 } 4230 jnewblk->jn_dep = NULL; 4231 free_jnewblk(jnewblk); 4232 } 4233 4234 /* 4235 * Cancel a jfreefrag that won't be needed, probably due to colliding with 4236 * an in-flight allocation that has not yet been committed. Divorce us 4237 * from the freefrag and mark it DEPCOMPLETE so that it may be added 4238 * to the worklist. 4239 */ 4240 static void 4241 cancel_jfreefrag(jfreefrag) 4242 struct jfreefrag *jfreefrag; 4243 { 4244 struct freefrag *freefrag; 4245 4246 if (jfreefrag->fr_jsegdep) { 4247 free_jsegdep(jfreefrag->fr_jsegdep); 4248 jfreefrag->fr_jsegdep = NULL; 4249 } 4250 freefrag = jfreefrag->fr_freefrag; 4251 jfreefrag->fr_freefrag = NULL; 4252 free_jfreefrag(jfreefrag); 4253 freefrag->ff_state |= DEPCOMPLETE; 4254 CTR1(KTR_SUJ, "cancel_jfreefrag: blkno %jd", freefrag->ff_blkno); 4255 } 4256 4257 /* 4258 * Free a jfreefrag when the parent freefrag is rendered obsolete. 4259 */ 4260 static void 4261 free_jfreefrag(jfreefrag) 4262 struct jfreefrag *jfreefrag; 4263 { 4264 4265 if (jfreefrag->fr_state & INPROGRESS) 4266 WORKLIST_REMOVE(&jfreefrag->fr_list); 4267 else if (jfreefrag->fr_state & ONWORKLIST) 4268 remove_from_journal(&jfreefrag->fr_list); 4269 if (jfreefrag->fr_freefrag != NULL) 4270 panic("free_jfreefrag: Still attached to a freefrag."); 4271 WORKITEM_FREE(jfreefrag, D_JFREEFRAG); 4272 } 4273 4274 /* 4275 * Called when the journal write for a jfreefrag completes. The parent 4276 * freefrag is added to the worklist if this completes its dependencies. 4277 */ 4278 static void 4279 handle_written_jfreefrag(jfreefrag) 4280 struct jfreefrag *jfreefrag; 4281 { 4282 struct jsegdep *jsegdep; 4283 struct freefrag *freefrag; 4284 4285 /* Grab the jsegdep. */ 4286 jsegdep = jfreefrag->fr_jsegdep; 4287 jfreefrag->fr_jsegdep = NULL; 4288 freefrag = jfreefrag->fr_freefrag; 4289 if (freefrag == NULL) 4290 panic("handle_written_jfreefrag: No freefrag."); 4291 freefrag->ff_state |= DEPCOMPLETE; 4292 freefrag->ff_jdep = NULL; 4293 jwork_insert(&freefrag->ff_jwork, jsegdep); 4294 if ((freefrag->ff_state & ALLCOMPLETE) == ALLCOMPLETE) 4295 add_to_worklist(&freefrag->ff_list, 0); 4296 jfreefrag->fr_freefrag = NULL; 4297 free_jfreefrag(jfreefrag); 4298 } 4299 4300 /* 4301 * Called when the journal write for a jfreeblk completes. The jfreeblk 4302 * is removed from the freeblks list of pending journal writes and the 4303 * jsegdep is moved to the freeblks jwork to be completed when all blocks 4304 * have been reclaimed. 4305 */ 4306 static void 4307 handle_written_jblkdep(jblkdep) 4308 struct jblkdep *jblkdep; 4309 { 4310 struct freeblks *freeblks; 4311 struct jsegdep *jsegdep; 4312 4313 /* Grab the jsegdep. */ 4314 jsegdep = jblkdep->jb_jsegdep; 4315 jblkdep->jb_jsegdep = NULL; 4316 freeblks = jblkdep->jb_freeblks; 4317 LIST_REMOVE(jblkdep, jb_deps); 4318 jwork_insert(&freeblks->fb_jwork, jsegdep); 4319 /* 4320 * If the freeblks is all journaled, we can add it to the worklist. 4321 */ 4322 if (LIST_EMPTY(&freeblks->fb_jblkdephd) && 4323 (freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE) 4324 add_to_worklist(&freeblks->fb_list, WK_NODELAY); 4325 4326 free_jblkdep(jblkdep); 4327 } 4328 4329 static struct jsegdep * 4330 newjsegdep(struct worklist *wk) 4331 { 4332 struct jsegdep *jsegdep; 4333 4334 jsegdep = malloc(sizeof(*jsegdep), M_JSEGDEP, M_SOFTDEP_FLAGS); 4335 workitem_alloc(&jsegdep->jd_list, D_JSEGDEP, wk->wk_mp); 4336 jsegdep->jd_seg = NULL; 4337 4338 return (jsegdep); 4339 } 4340 4341 static struct jmvref * 4342 newjmvref(dp, ino, oldoff, newoff) 4343 struct inode *dp; 4344 ino_t ino; 4345 off_t oldoff; 4346 off_t newoff; 4347 { 4348 struct jmvref *jmvref; 4349 4350 jmvref = malloc(sizeof(*jmvref), M_JMVREF, M_SOFTDEP_FLAGS); 4351 workitem_alloc(&jmvref->jm_list, D_JMVREF, ITOVFS(dp)); 4352 jmvref->jm_list.wk_state = ATTACHED | DEPCOMPLETE; 4353 jmvref->jm_parent = dp->i_number; 4354 jmvref->jm_ino = ino; 4355 jmvref->jm_oldoff = oldoff; 4356 jmvref->jm_newoff = newoff; 4357 4358 return (jmvref); 4359 } 4360 4361 /* 4362 * Allocate a new jremref that tracks the removal of ip from dp with the 4363 * directory entry offset of diroff. Mark the entry as ATTACHED and 4364 * DEPCOMPLETE as we have all the information required for the journal write 4365 * and the directory has already been removed from the buffer. The caller 4366 * is responsible for linking the jremref into the pagedep and adding it 4367 * to the journal to write. The MKDIR_PARENT flag is set if we're doing 4368 * a DOTDOT addition so handle_workitem_remove() can properly assign 4369 * the jsegdep when we're done. 4370 */ 4371 static struct jremref * 4372 newjremref(struct dirrem *dirrem, struct inode *dp, struct inode *ip, 4373 off_t diroff, nlink_t nlink) 4374 { 4375 struct jremref *jremref; 4376 4377 jremref = malloc(sizeof(*jremref), M_JREMREF, M_SOFTDEP_FLAGS); 4378 workitem_alloc(&jremref->jr_list, D_JREMREF, ITOVFS(dp)); 4379 jremref->jr_state = ATTACHED; 4380 newinoref(&jremref->jr_ref, ip->i_number, dp->i_number, diroff, 4381 nlink, ip->i_mode); 4382 jremref->jr_dirrem = dirrem; 4383 4384 return (jremref); 4385 } 4386 4387 static inline void 4388 newinoref(struct inoref *inoref, ino_t ino, ino_t parent, off_t diroff, 4389 nlink_t nlink, uint16_t mode) 4390 { 4391 4392 inoref->if_jsegdep = newjsegdep(&inoref->if_list); 4393 inoref->if_diroff = diroff; 4394 inoref->if_ino = ino; 4395 inoref->if_parent = parent; 4396 inoref->if_nlink = nlink; 4397 inoref->if_mode = mode; 4398 } 4399 4400 /* 4401 * Allocate a new jaddref to track the addition of ino to dp at diroff. The 4402 * directory offset may not be known until later. The caller is responsible 4403 * adding the entry to the journal when this information is available. nlink 4404 * should be the link count prior to the addition and mode is only required 4405 * to have the correct FMT. 4406 */ 4407 static struct jaddref * 4408 newjaddref(struct inode *dp, ino_t ino, off_t diroff, int16_t nlink, 4409 uint16_t mode) 4410 { 4411 struct jaddref *jaddref; 4412 4413 jaddref = malloc(sizeof(*jaddref), M_JADDREF, M_SOFTDEP_FLAGS); 4414 workitem_alloc(&jaddref->ja_list, D_JADDREF, ITOVFS(dp)); 4415 jaddref->ja_state = ATTACHED; 4416 jaddref->ja_mkdir = NULL; 4417 newinoref(&jaddref->ja_ref, ino, dp->i_number, diroff, nlink, mode); 4418 4419 return (jaddref); 4420 } 4421 4422 /* 4423 * Create a new free dependency for a freework. The caller is responsible 4424 * for adjusting the reference count when it has the lock held. The freedep 4425 * will track an outstanding bitmap write that will ultimately clear the 4426 * freework to continue. 4427 */ 4428 static struct freedep * 4429 newfreedep(struct freework *freework) 4430 { 4431 struct freedep *freedep; 4432 4433 freedep = malloc(sizeof(*freedep), M_FREEDEP, M_SOFTDEP_FLAGS); 4434 workitem_alloc(&freedep->fd_list, D_FREEDEP, freework->fw_list.wk_mp); 4435 freedep->fd_freework = freework; 4436 4437 return (freedep); 4438 } 4439 4440 /* 4441 * Free a freedep structure once the buffer it is linked to is written. If 4442 * this is the last reference to the freework schedule it for completion. 4443 */ 4444 static void 4445 free_freedep(freedep) 4446 struct freedep *freedep; 4447 { 4448 struct freework *freework; 4449 4450 freework = freedep->fd_freework; 4451 freework->fw_freeblks->fb_cgwait--; 4452 if (--freework->fw_ref == 0) 4453 freework_enqueue(freework); 4454 WORKITEM_FREE(freedep, D_FREEDEP); 4455 } 4456 4457 /* 4458 * Allocate a new freework structure that may be a level in an indirect 4459 * when parent is not NULL or a top level block when it is. The top level 4460 * freework structures are allocated without the per-filesystem lock held 4461 * and before the freeblks is visible outside of softdep_setup_freeblocks(). 4462 */ 4463 static struct freework * 4464 newfreework(ump, freeblks, parent, lbn, nb, frags, off, journal) 4465 struct ufsmount *ump; 4466 struct freeblks *freeblks; 4467 struct freework *parent; 4468 ufs_lbn_t lbn; 4469 ufs2_daddr_t nb; 4470 int frags; 4471 int off; 4472 int journal; 4473 { 4474 struct freework *freework; 4475 4476 freework = malloc(sizeof(*freework), M_FREEWORK, M_SOFTDEP_FLAGS); 4477 workitem_alloc(&freework->fw_list, D_FREEWORK, freeblks->fb_list.wk_mp); 4478 freework->fw_state = ATTACHED; 4479 freework->fw_jnewblk = NULL; 4480 freework->fw_freeblks = freeblks; 4481 freework->fw_parent = parent; 4482 freework->fw_lbn = lbn; 4483 freework->fw_blkno = nb; 4484 freework->fw_frags = frags; 4485 freework->fw_indir = NULL; 4486 freework->fw_ref = (MOUNTEDSUJ(UFSTOVFS(ump)) == 0 || 4487 lbn >= -UFS_NXADDR) ? 0 : NINDIR(ump->um_fs) + 1; 4488 freework->fw_start = freework->fw_off = off; 4489 if (journal) 4490 newjfreeblk(freeblks, lbn, nb, frags); 4491 if (parent == NULL) { 4492 ACQUIRE_LOCK(ump); 4493 WORKLIST_INSERT(&freeblks->fb_freeworkhd, &freework->fw_list); 4494 freeblks->fb_ref++; 4495 FREE_LOCK(ump); 4496 } 4497 4498 return (freework); 4499 } 4500 4501 /* 4502 * Eliminate a jfreeblk for a block that does not need journaling. 4503 */ 4504 static void 4505 cancel_jfreeblk(freeblks, blkno) 4506 struct freeblks *freeblks; 4507 ufs2_daddr_t blkno; 4508 { 4509 struct jfreeblk *jfreeblk; 4510 struct jblkdep *jblkdep; 4511 4512 LIST_FOREACH(jblkdep, &freeblks->fb_jblkdephd, jb_deps) { 4513 if (jblkdep->jb_list.wk_type != D_JFREEBLK) 4514 continue; 4515 jfreeblk = WK_JFREEBLK(&jblkdep->jb_list); 4516 if (jfreeblk->jf_blkno == blkno) 4517 break; 4518 } 4519 if (jblkdep == NULL) 4520 return; 4521 CTR1(KTR_SUJ, "cancel_jfreeblk: blkno %jd", blkno); 4522 free_jsegdep(jblkdep->jb_jsegdep); 4523 LIST_REMOVE(jblkdep, jb_deps); 4524 WORKITEM_FREE(jfreeblk, D_JFREEBLK); 4525 } 4526 4527 /* 4528 * Allocate a new jfreeblk to journal top level block pointer when truncating 4529 * a file. The caller must add this to the worklist when the per-filesystem 4530 * lock is held. 4531 */ 4532 static struct jfreeblk * 4533 newjfreeblk(freeblks, lbn, blkno, frags) 4534 struct freeblks *freeblks; 4535 ufs_lbn_t lbn; 4536 ufs2_daddr_t blkno; 4537 int frags; 4538 { 4539 struct jfreeblk *jfreeblk; 4540 4541 jfreeblk = malloc(sizeof(*jfreeblk), M_JFREEBLK, M_SOFTDEP_FLAGS); 4542 workitem_alloc(&jfreeblk->jf_dep.jb_list, D_JFREEBLK, 4543 freeblks->fb_list.wk_mp); 4544 jfreeblk->jf_dep.jb_jsegdep = newjsegdep(&jfreeblk->jf_dep.jb_list); 4545 jfreeblk->jf_dep.jb_freeblks = freeblks; 4546 jfreeblk->jf_ino = freeblks->fb_inum; 4547 jfreeblk->jf_lbn = lbn; 4548 jfreeblk->jf_blkno = blkno; 4549 jfreeblk->jf_frags = frags; 4550 LIST_INSERT_HEAD(&freeblks->fb_jblkdephd, &jfreeblk->jf_dep, jb_deps); 4551 4552 return (jfreeblk); 4553 } 4554 4555 /* 4556 * The journal is only prepared to handle full-size block numbers, so we 4557 * have to adjust the record to reflect the change to a full-size block. 4558 * For example, suppose we have a block made up of fragments 8-15 and 4559 * want to free its last two fragments. We are given a request that says: 4560 * FREEBLK ino=5, blkno=14, lbn=0, frags=2, oldfrags=0 4561 * where frags are the number of fragments to free and oldfrags are the 4562 * number of fragments to keep. To block align it, we have to change it to 4563 * have a valid full-size blkno, so it becomes: 4564 * FREEBLK ino=5, blkno=8, lbn=0, frags=2, oldfrags=6 4565 */ 4566 static void 4567 adjust_newfreework(freeblks, frag_offset) 4568 struct freeblks *freeblks; 4569 int frag_offset; 4570 { 4571 struct jfreeblk *jfreeblk; 4572 4573 KASSERT((LIST_FIRST(&freeblks->fb_jblkdephd) != NULL && 4574 LIST_FIRST(&freeblks->fb_jblkdephd)->jb_list.wk_type == D_JFREEBLK), 4575 ("adjust_newfreework: Missing freeblks dependency")); 4576 4577 jfreeblk = WK_JFREEBLK(LIST_FIRST(&freeblks->fb_jblkdephd)); 4578 jfreeblk->jf_blkno -= frag_offset; 4579 jfreeblk->jf_frags += frag_offset; 4580 } 4581 4582 /* 4583 * Allocate a new jtrunc to track a partial truncation. 4584 */ 4585 static struct jtrunc * 4586 newjtrunc(freeblks, size, extsize) 4587 struct freeblks *freeblks; 4588 off_t size; 4589 int extsize; 4590 { 4591 struct jtrunc *jtrunc; 4592 4593 jtrunc = malloc(sizeof(*jtrunc), M_JTRUNC, M_SOFTDEP_FLAGS); 4594 workitem_alloc(&jtrunc->jt_dep.jb_list, D_JTRUNC, 4595 freeblks->fb_list.wk_mp); 4596 jtrunc->jt_dep.jb_jsegdep = newjsegdep(&jtrunc->jt_dep.jb_list); 4597 jtrunc->jt_dep.jb_freeblks = freeblks; 4598 jtrunc->jt_ino = freeblks->fb_inum; 4599 jtrunc->jt_size = size; 4600 jtrunc->jt_extsize = extsize; 4601 LIST_INSERT_HEAD(&freeblks->fb_jblkdephd, &jtrunc->jt_dep, jb_deps); 4602 4603 return (jtrunc); 4604 } 4605 4606 /* 4607 * If we're canceling a new bitmap we have to search for another ref 4608 * to move into the bmsafemap dep. This might be better expressed 4609 * with another structure. 4610 */ 4611 static void 4612 move_newblock_dep(jaddref, inodedep) 4613 struct jaddref *jaddref; 4614 struct inodedep *inodedep; 4615 { 4616 struct inoref *inoref; 4617 struct jaddref *jaddrefn; 4618 4619 jaddrefn = NULL; 4620 for (inoref = TAILQ_NEXT(&jaddref->ja_ref, if_deps); inoref; 4621 inoref = TAILQ_NEXT(inoref, if_deps)) { 4622 if ((jaddref->ja_state & NEWBLOCK) && 4623 inoref->if_list.wk_type == D_JADDREF) { 4624 jaddrefn = (struct jaddref *)inoref; 4625 break; 4626 } 4627 } 4628 if (jaddrefn == NULL) 4629 return; 4630 jaddrefn->ja_state &= ~(ATTACHED | UNDONE); 4631 jaddrefn->ja_state |= jaddref->ja_state & 4632 (ATTACHED | UNDONE | NEWBLOCK); 4633 jaddref->ja_state &= ~(ATTACHED | UNDONE | NEWBLOCK); 4634 jaddref->ja_state |= ATTACHED; 4635 LIST_REMOVE(jaddref, ja_bmdeps); 4636 LIST_INSERT_HEAD(&inodedep->id_bmsafemap->sm_jaddrefhd, jaddrefn, 4637 ja_bmdeps); 4638 } 4639 4640 /* 4641 * Cancel a jaddref either before it has been written or while it is being 4642 * written. This happens when a link is removed before the add reaches 4643 * the disk. The jaddref dependency is kept linked into the bmsafemap 4644 * and inode to prevent the link count or bitmap from reaching the disk 4645 * until handle_workitem_remove() re-adjusts the counts and bitmaps as 4646 * required. 4647 * 4648 * Returns 1 if the canceled addref requires journaling of the remove and 4649 * 0 otherwise. 4650 */ 4651 static int 4652 cancel_jaddref(jaddref, inodedep, wkhd) 4653 struct jaddref *jaddref; 4654 struct inodedep *inodedep; 4655 struct workhead *wkhd; 4656 { 4657 struct inoref *inoref; 4658 struct jsegdep *jsegdep; 4659 int needsj; 4660 4661 KASSERT((jaddref->ja_state & COMPLETE) == 0, 4662 ("cancel_jaddref: Canceling complete jaddref")); 4663 if (jaddref->ja_state & (INPROGRESS | COMPLETE)) 4664 needsj = 1; 4665 else 4666 needsj = 0; 4667 if (inodedep == NULL) 4668 if (inodedep_lookup(jaddref->ja_list.wk_mp, jaddref->ja_ino, 4669 0, &inodedep) == 0) 4670 panic("cancel_jaddref: Lost inodedep"); 4671 /* 4672 * We must adjust the nlink of any reference operation that follows 4673 * us so that it is consistent with the in-memory reference. This 4674 * ensures that inode nlink rollbacks always have the correct link. 4675 */ 4676 if (needsj == 0) { 4677 for (inoref = TAILQ_NEXT(&jaddref->ja_ref, if_deps); inoref; 4678 inoref = TAILQ_NEXT(inoref, if_deps)) { 4679 if (inoref->if_state & GOINGAWAY) 4680 break; 4681 inoref->if_nlink--; 4682 } 4683 } 4684 jsegdep = inoref_jseg(&jaddref->ja_ref); 4685 if (jaddref->ja_state & NEWBLOCK) 4686 move_newblock_dep(jaddref, inodedep); 4687 wake_worklist(&jaddref->ja_list); 4688 jaddref->ja_mkdir = NULL; 4689 if (jaddref->ja_state & INPROGRESS) { 4690 jaddref->ja_state &= ~INPROGRESS; 4691 WORKLIST_REMOVE(&jaddref->ja_list); 4692 jwork_insert(wkhd, jsegdep); 4693 } else { 4694 free_jsegdep(jsegdep); 4695 if (jaddref->ja_state & DEPCOMPLETE) 4696 remove_from_journal(&jaddref->ja_list); 4697 } 4698 jaddref->ja_state |= (GOINGAWAY | DEPCOMPLETE); 4699 /* 4700 * Leave NEWBLOCK jaddrefs on the inodedep so handle_workitem_remove 4701 * can arrange for them to be freed with the bitmap. Otherwise we 4702 * no longer need this addref attached to the inoreflst and it 4703 * will incorrectly adjust nlink if we leave it. 4704 */ 4705 if ((jaddref->ja_state & NEWBLOCK) == 0) { 4706 TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref, 4707 if_deps); 4708 jaddref->ja_state |= COMPLETE; 4709 free_jaddref(jaddref); 4710 return (needsj); 4711 } 4712 /* 4713 * Leave the head of the list for jsegdeps for fast merging. 4714 */ 4715 if (LIST_FIRST(wkhd) != NULL) { 4716 jaddref->ja_state |= ONWORKLIST; 4717 LIST_INSERT_AFTER(LIST_FIRST(wkhd), &jaddref->ja_list, wk_list); 4718 } else 4719 WORKLIST_INSERT(wkhd, &jaddref->ja_list); 4720 4721 return (needsj); 4722 } 4723 4724 /* 4725 * Attempt to free a jaddref structure when some work completes. This 4726 * should only succeed once the entry is written and all dependencies have 4727 * been notified. 4728 */ 4729 static void 4730 free_jaddref(jaddref) 4731 struct jaddref *jaddref; 4732 { 4733 4734 if ((jaddref->ja_state & ALLCOMPLETE) != ALLCOMPLETE) 4735 return; 4736 if (jaddref->ja_ref.if_jsegdep) 4737 panic("free_jaddref: segdep attached to jaddref %p(0x%X)\n", 4738 jaddref, jaddref->ja_state); 4739 if (jaddref->ja_state & NEWBLOCK) 4740 LIST_REMOVE(jaddref, ja_bmdeps); 4741 if (jaddref->ja_state & (INPROGRESS | ONWORKLIST)) 4742 panic("free_jaddref: Bad state %p(0x%X)", 4743 jaddref, jaddref->ja_state); 4744 if (jaddref->ja_mkdir != NULL) 4745 panic("free_jaddref: Work pending, 0x%X\n", jaddref->ja_state); 4746 WORKITEM_FREE(jaddref, D_JADDREF); 4747 } 4748 4749 /* 4750 * Free a jremref structure once it has been written or discarded. 4751 */ 4752 static void 4753 free_jremref(jremref) 4754 struct jremref *jremref; 4755 { 4756 4757 if (jremref->jr_ref.if_jsegdep) 4758 free_jsegdep(jremref->jr_ref.if_jsegdep); 4759 if (jremref->jr_state & INPROGRESS) 4760 panic("free_jremref: IO still pending"); 4761 WORKITEM_FREE(jremref, D_JREMREF); 4762 } 4763 4764 /* 4765 * Free a jnewblk structure. 4766 */ 4767 static void 4768 free_jnewblk(jnewblk) 4769 struct jnewblk *jnewblk; 4770 { 4771 4772 if ((jnewblk->jn_state & ALLCOMPLETE) != ALLCOMPLETE) 4773 return; 4774 LIST_REMOVE(jnewblk, jn_deps); 4775 if (jnewblk->jn_dep != NULL) 4776 panic("free_jnewblk: Dependency still attached."); 4777 WORKITEM_FREE(jnewblk, D_JNEWBLK); 4778 } 4779 4780 /* 4781 * Cancel a jnewblk which has been been made redundant by frag extension. 4782 */ 4783 static void 4784 cancel_jnewblk(jnewblk, wkhd) 4785 struct jnewblk *jnewblk; 4786 struct workhead *wkhd; 4787 { 4788 struct jsegdep *jsegdep; 4789 4790 CTR1(KTR_SUJ, "cancel_jnewblk: blkno %jd", jnewblk->jn_blkno); 4791 jsegdep = jnewblk->jn_jsegdep; 4792 if (jnewblk->jn_jsegdep == NULL || jnewblk->jn_dep == NULL) 4793 panic("cancel_jnewblk: Invalid state"); 4794 jnewblk->jn_jsegdep = NULL; 4795 jnewblk->jn_dep = NULL; 4796 jnewblk->jn_state |= GOINGAWAY; 4797 if (jnewblk->jn_state & INPROGRESS) { 4798 jnewblk->jn_state &= ~INPROGRESS; 4799 WORKLIST_REMOVE(&jnewblk->jn_list); 4800 jwork_insert(wkhd, jsegdep); 4801 } else { 4802 free_jsegdep(jsegdep); 4803 remove_from_journal(&jnewblk->jn_list); 4804 } 4805 wake_worklist(&jnewblk->jn_list); 4806 WORKLIST_INSERT(wkhd, &jnewblk->jn_list); 4807 } 4808 4809 static void 4810 free_jblkdep(jblkdep) 4811 struct jblkdep *jblkdep; 4812 { 4813 4814 if (jblkdep->jb_list.wk_type == D_JFREEBLK) 4815 WORKITEM_FREE(jblkdep, D_JFREEBLK); 4816 else if (jblkdep->jb_list.wk_type == D_JTRUNC) 4817 WORKITEM_FREE(jblkdep, D_JTRUNC); 4818 else 4819 panic("free_jblkdep: Unexpected type %s", 4820 TYPENAME(jblkdep->jb_list.wk_type)); 4821 } 4822 4823 /* 4824 * Free a single jseg once it is no longer referenced in memory or on 4825 * disk. Reclaim journal blocks and dependencies waiting for the segment 4826 * to disappear. 4827 */ 4828 static void 4829 free_jseg(jseg, jblocks) 4830 struct jseg *jseg; 4831 struct jblocks *jblocks; 4832 { 4833 struct freework *freework; 4834 4835 /* 4836 * Free freework structures that were lingering to indicate freed 4837 * indirect blocks that forced journal write ordering on reallocate. 4838 */ 4839 while ((freework = LIST_FIRST(&jseg->js_indirs)) != NULL) 4840 indirblk_remove(freework); 4841 if (jblocks->jb_oldestseg == jseg) 4842 jblocks->jb_oldestseg = TAILQ_NEXT(jseg, js_next); 4843 TAILQ_REMOVE(&jblocks->jb_segs, jseg, js_next); 4844 jblocks_free(jblocks, jseg->js_list.wk_mp, jseg->js_size); 4845 KASSERT(LIST_EMPTY(&jseg->js_entries), 4846 ("free_jseg: Freed jseg has valid entries.")); 4847 WORKITEM_FREE(jseg, D_JSEG); 4848 } 4849 4850 /* 4851 * Free all jsegs that meet the criteria for being reclaimed and update 4852 * oldestseg. 4853 */ 4854 static void 4855 free_jsegs(jblocks) 4856 struct jblocks *jblocks; 4857 { 4858 struct jseg *jseg; 4859 4860 /* 4861 * Free only those jsegs which have none allocated before them to 4862 * preserve the journal space ordering. 4863 */ 4864 while ((jseg = TAILQ_FIRST(&jblocks->jb_segs)) != NULL) { 4865 /* 4866 * Only reclaim space when nothing depends on this journal 4867 * set and another set has written that it is no longer 4868 * valid. 4869 */ 4870 if (jseg->js_refs != 0) { 4871 jblocks->jb_oldestseg = jseg; 4872 return; 4873 } 4874 if ((jseg->js_state & ALLCOMPLETE) != ALLCOMPLETE) 4875 break; 4876 if (jseg->js_seq > jblocks->jb_oldestwrseq) 4877 break; 4878 /* 4879 * We can free jsegs that didn't write entries when 4880 * oldestwrseq == js_seq. 4881 */ 4882 if (jseg->js_seq == jblocks->jb_oldestwrseq && 4883 jseg->js_cnt != 0) 4884 break; 4885 free_jseg(jseg, jblocks); 4886 } 4887 /* 4888 * If we exited the loop above we still must discover the 4889 * oldest valid segment. 4890 */ 4891 if (jseg) 4892 for (jseg = jblocks->jb_oldestseg; jseg != NULL; 4893 jseg = TAILQ_NEXT(jseg, js_next)) 4894 if (jseg->js_refs != 0) 4895 break; 4896 jblocks->jb_oldestseg = jseg; 4897 /* 4898 * The journal has no valid records but some jsegs may still be 4899 * waiting on oldestwrseq to advance. We force a small record 4900 * out to permit these lingering records to be reclaimed. 4901 */ 4902 if (jblocks->jb_oldestseg == NULL && !TAILQ_EMPTY(&jblocks->jb_segs)) 4903 jblocks->jb_needseg = 1; 4904 } 4905 4906 /* 4907 * Release one reference to a jseg and free it if the count reaches 0. This 4908 * should eventually reclaim journal space as well. 4909 */ 4910 static void 4911 rele_jseg(jseg) 4912 struct jseg *jseg; 4913 { 4914 4915 KASSERT(jseg->js_refs > 0, 4916 ("free_jseg: Invalid refcnt %d", jseg->js_refs)); 4917 if (--jseg->js_refs != 0) 4918 return; 4919 free_jsegs(jseg->js_jblocks); 4920 } 4921 4922 /* 4923 * Release a jsegdep and decrement the jseg count. 4924 */ 4925 static void 4926 free_jsegdep(jsegdep) 4927 struct jsegdep *jsegdep; 4928 { 4929 4930 if (jsegdep->jd_seg) 4931 rele_jseg(jsegdep->jd_seg); 4932 WORKITEM_FREE(jsegdep, D_JSEGDEP); 4933 } 4934 4935 /* 4936 * Wait for a journal item to make it to disk. Initiate journal processing 4937 * if required. 4938 */ 4939 static int 4940 jwait(wk, waitfor) 4941 struct worklist *wk; 4942 int waitfor; 4943 { 4944 4945 LOCK_OWNED(VFSTOUFS(wk->wk_mp)); 4946 /* 4947 * Blocking journal waits cause slow synchronous behavior. Record 4948 * stats on the frequency of these blocking operations. 4949 */ 4950 if (waitfor == MNT_WAIT) { 4951 stat_journal_wait++; 4952 switch (wk->wk_type) { 4953 case D_JREMREF: 4954 case D_JMVREF: 4955 stat_jwait_filepage++; 4956 break; 4957 case D_JTRUNC: 4958 case D_JFREEBLK: 4959 stat_jwait_freeblks++; 4960 break; 4961 case D_JNEWBLK: 4962 stat_jwait_newblk++; 4963 break; 4964 case D_JADDREF: 4965 stat_jwait_inode++; 4966 break; 4967 default: 4968 break; 4969 } 4970 } 4971 /* 4972 * If IO has not started we process the journal. We can't mark the 4973 * worklist item as IOWAITING because we drop the lock while 4974 * processing the journal and the worklist entry may be freed after 4975 * this point. The caller may call back in and re-issue the request. 4976 */ 4977 if ((wk->wk_state & INPROGRESS) == 0) { 4978 softdep_process_journal(wk->wk_mp, wk, waitfor); 4979 if (waitfor != MNT_WAIT) 4980 return (EBUSY); 4981 return (0); 4982 } 4983 if (waitfor != MNT_WAIT) 4984 return (EBUSY); 4985 wait_worklist(wk, "jwait"); 4986 return (0); 4987 } 4988 4989 /* 4990 * Lookup an inodedep based on an inode pointer and set the nlinkdelta as 4991 * appropriate. This is a convenience function to reduce duplicate code 4992 * for the setup and revert functions below. 4993 */ 4994 static struct inodedep * 4995 inodedep_lookup_ip(ip) 4996 struct inode *ip; 4997 { 4998 struct inodedep *inodedep; 4999 5000 KASSERT(ip->i_nlink >= ip->i_effnlink, 5001 ("inodedep_lookup_ip: bad delta")); 5002 (void) inodedep_lookup(ITOVFS(ip), ip->i_number, DEPALLOC, 5003 &inodedep); 5004 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 5005 KASSERT((inodedep->id_state & UNLINKED) == 0, ("inode unlinked")); 5006 5007 return (inodedep); 5008 } 5009 5010 /* 5011 * Called prior to creating a new inode and linking it to a directory. The 5012 * jaddref structure must already be allocated by softdep_setup_inomapdep 5013 * and it is discovered here so we can initialize the mode and update 5014 * nlinkdelta. 5015 */ 5016 void 5017 softdep_setup_create(dp, ip) 5018 struct inode *dp; 5019 struct inode *ip; 5020 { 5021 struct inodedep *inodedep; 5022 struct jaddref *jaddref; 5023 struct vnode *dvp; 5024 5025 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 5026 ("softdep_setup_create called on non-softdep filesystem")); 5027 KASSERT(ip->i_nlink == 1, 5028 ("softdep_setup_create: Invalid link count.")); 5029 dvp = ITOV(dp); 5030 ACQUIRE_LOCK(ITOUMP(dp)); 5031 inodedep = inodedep_lookup_ip(ip); 5032 if (DOINGSUJ(dvp)) { 5033 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 5034 inoreflst); 5035 KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number, 5036 ("softdep_setup_create: No addref structure present.")); 5037 } 5038 FREE_LOCK(ITOUMP(dp)); 5039 } 5040 5041 /* 5042 * Create a jaddref structure to track the addition of a DOTDOT link when 5043 * we are reparenting an inode as part of a rename. This jaddref will be 5044 * found by softdep_setup_directory_change. Adjusts nlinkdelta for 5045 * non-journaling softdep. 5046 */ 5047 void 5048 softdep_setup_dotdot_link(dp, ip) 5049 struct inode *dp; 5050 struct inode *ip; 5051 { 5052 struct inodedep *inodedep; 5053 struct jaddref *jaddref; 5054 struct vnode *dvp; 5055 5056 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 5057 ("softdep_setup_dotdot_link called on non-softdep filesystem")); 5058 dvp = ITOV(dp); 5059 jaddref = NULL; 5060 /* 5061 * We don't set MKDIR_PARENT as this is not tied to a mkdir and 5062 * is used as a normal link would be. 5063 */ 5064 if (DOINGSUJ(dvp)) 5065 jaddref = newjaddref(ip, dp->i_number, DOTDOT_OFFSET, 5066 dp->i_effnlink - 1, dp->i_mode); 5067 ACQUIRE_LOCK(ITOUMP(dp)); 5068 inodedep = inodedep_lookup_ip(dp); 5069 if (jaddref) 5070 TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref, 5071 if_deps); 5072 FREE_LOCK(ITOUMP(dp)); 5073 } 5074 5075 /* 5076 * Create a jaddref structure to track a new link to an inode. The directory 5077 * offset is not known until softdep_setup_directory_add or 5078 * softdep_setup_directory_change. Adjusts nlinkdelta for non-journaling 5079 * softdep. 5080 */ 5081 void 5082 softdep_setup_link(dp, ip) 5083 struct inode *dp; 5084 struct inode *ip; 5085 { 5086 struct inodedep *inodedep; 5087 struct jaddref *jaddref; 5088 struct vnode *dvp; 5089 5090 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 5091 ("softdep_setup_link called on non-softdep filesystem")); 5092 dvp = ITOV(dp); 5093 jaddref = NULL; 5094 if (DOINGSUJ(dvp)) 5095 jaddref = newjaddref(dp, ip->i_number, 0, ip->i_effnlink - 1, 5096 ip->i_mode); 5097 ACQUIRE_LOCK(ITOUMP(dp)); 5098 inodedep = inodedep_lookup_ip(ip); 5099 if (jaddref) 5100 TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref, 5101 if_deps); 5102 FREE_LOCK(ITOUMP(dp)); 5103 } 5104 5105 /* 5106 * Called to create the jaddref structures to track . and .. references as 5107 * well as lookup and further initialize the incomplete jaddref created 5108 * by softdep_setup_inomapdep when the inode was allocated. Adjusts 5109 * nlinkdelta for non-journaling softdep. 5110 */ 5111 void 5112 softdep_setup_mkdir(dp, ip) 5113 struct inode *dp; 5114 struct inode *ip; 5115 { 5116 struct inodedep *inodedep; 5117 struct jaddref *dotdotaddref; 5118 struct jaddref *dotaddref; 5119 struct jaddref *jaddref; 5120 struct vnode *dvp; 5121 5122 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 5123 ("softdep_setup_mkdir called on non-softdep filesystem")); 5124 dvp = ITOV(dp); 5125 dotaddref = dotdotaddref = NULL; 5126 if (DOINGSUJ(dvp)) { 5127 dotaddref = newjaddref(ip, ip->i_number, DOT_OFFSET, 1, 5128 ip->i_mode); 5129 dotaddref->ja_state |= MKDIR_BODY; 5130 dotdotaddref = newjaddref(ip, dp->i_number, DOTDOT_OFFSET, 5131 dp->i_effnlink - 1, dp->i_mode); 5132 dotdotaddref->ja_state |= MKDIR_PARENT; 5133 } 5134 ACQUIRE_LOCK(ITOUMP(dp)); 5135 inodedep = inodedep_lookup_ip(ip); 5136 if (DOINGSUJ(dvp)) { 5137 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 5138 inoreflst); 5139 KASSERT(jaddref != NULL, 5140 ("softdep_setup_mkdir: No addref structure present.")); 5141 KASSERT(jaddref->ja_parent == dp->i_number, 5142 ("softdep_setup_mkdir: bad parent %ju", 5143 (uintmax_t)jaddref->ja_parent)); 5144 TAILQ_INSERT_BEFORE(&jaddref->ja_ref, &dotaddref->ja_ref, 5145 if_deps); 5146 } 5147 inodedep = inodedep_lookup_ip(dp); 5148 if (DOINGSUJ(dvp)) 5149 TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, 5150 &dotdotaddref->ja_ref, if_deps); 5151 FREE_LOCK(ITOUMP(dp)); 5152 } 5153 5154 /* 5155 * Called to track nlinkdelta of the inode and parent directories prior to 5156 * unlinking a directory. 5157 */ 5158 void 5159 softdep_setup_rmdir(dp, ip) 5160 struct inode *dp; 5161 struct inode *ip; 5162 { 5163 struct vnode *dvp; 5164 5165 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 5166 ("softdep_setup_rmdir called on non-softdep filesystem")); 5167 dvp = ITOV(dp); 5168 ACQUIRE_LOCK(ITOUMP(dp)); 5169 (void) inodedep_lookup_ip(ip); 5170 (void) inodedep_lookup_ip(dp); 5171 FREE_LOCK(ITOUMP(dp)); 5172 } 5173 5174 /* 5175 * Called to track nlinkdelta of the inode and parent directories prior to 5176 * unlink. 5177 */ 5178 void 5179 softdep_setup_unlink(dp, ip) 5180 struct inode *dp; 5181 struct inode *ip; 5182 { 5183 struct vnode *dvp; 5184 5185 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 5186 ("softdep_setup_unlink called on non-softdep filesystem")); 5187 dvp = ITOV(dp); 5188 ACQUIRE_LOCK(ITOUMP(dp)); 5189 (void) inodedep_lookup_ip(ip); 5190 (void) inodedep_lookup_ip(dp); 5191 FREE_LOCK(ITOUMP(dp)); 5192 } 5193 5194 /* 5195 * Called to release the journal structures created by a failed non-directory 5196 * creation. Adjusts nlinkdelta for non-journaling softdep. 5197 */ 5198 void 5199 softdep_revert_create(dp, ip) 5200 struct inode *dp; 5201 struct inode *ip; 5202 { 5203 struct inodedep *inodedep; 5204 struct jaddref *jaddref; 5205 struct vnode *dvp; 5206 5207 KASSERT(MOUNTEDSOFTDEP(ITOVFS((dp))) != 0, 5208 ("softdep_revert_create called on non-softdep filesystem")); 5209 dvp = ITOV(dp); 5210 ACQUIRE_LOCK(ITOUMP(dp)); 5211 inodedep = inodedep_lookup_ip(ip); 5212 if (DOINGSUJ(dvp)) { 5213 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 5214 inoreflst); 5215 KASSERT(jaddref->ja_parent == dp->i_number, 5216 ("softdep_revert_create: addref parent mismatch")); 5217 cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait); 5218 } 5219 FREE_LOCK(ITOUMP(dp)); 5220 } 5221 5222 /* 5223 * Called to release the journal structures created by a failed link 5224 * addition. Adjusts nlinkdelta for non-journaling softdep. 5225 */ 5226 void 5227 softdep_revert_link(dp, ip) 5228 struct inode *dp; 5229 struct inode *ip; 5230 { 5231 struct inodedep *inodedep; 5232 struct jaddref *jaddref; 5233 struct vnode *dvp; 5234 5235 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 5236 ("softdep_revert_link called on non-softdep filesystem")); 5237 dvp = ITOV(dp); 5238 ACQUIRE_LOCK(ITOUMP(dp)); 5239 inodedep = inodedep_lookup_ip(ip); 5240 if (DOINGSUJ(dvp)) { 5241 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 5242 inoreflst); 5243 KASSERT(jaddref->ja_parent == dp->i_number, 5244 ("softdep_revert_link: addref parent mismatch")); 5245 cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait); 5246 } 5247 FREE_LOCK(ITOUMP(dp)); 5248 } 5249 5250 /* 5251 * Called to release the journal structures created by a failed mkdir 5252 * attempt. Adjusts nlinkdelta for non-journaling softdep. 5253 */ 5254 void 5255 softdep_revert_mkdir(dp, ip) 5256 struct inode *dp; 5257 struct inode *ip; 5258 { 5259 struct inodedep *inodedep; 5260 struct jaddref *jaddref; 5261 struct jaddref *dotaddref; 5262 struct vnode *dvp; 5263 5264 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 5265 ("softdep_revert_mkdir called on non-softdep filesystem")); 5266 dvp = ITOV(dp); 5267 5268 ACQUIRE_LOCK(ITOUMP(dp)); 5269 inodedep = inodedep_lookup_ip(dp); 5270 if (DOINGSUJ(dvp)) { 5271 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 5272 inoreflst); 5273 KASSERT(jaddref->ja_parent == ip->i_number, 5274 ("softdep_revert_mkdir: dotdot addref parent mismatch")); 5275 cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait); 5276 } 5277 inodedep = inodedep_lookup_ip(ip); 5278 if (DOINGSUJ(dvp)) { 5279 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 5280 inoreflst); 5281 KASSERT(jaddref->ja_parent == dp->i_number, 5282 ("softdep_revert_mkdir: addref parent mismatch")); 5283 dotaddref = (struct jaddref *)TAILQ_PREV(&jaddref->ja_ref, 5284 inoreflst, if_deps); 5285 cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait); 5286 KASSERT(dotaddref->ja_parent == ip->i_number, 5287 ("softdep_revert_mkdir: dot addref parent mismatch")); 5288 cancel_jaddref(dotaddref, inodedep, &inodedep->id_inowait); 5289 } 5290 FREE_LOCK(ITOUMP(dp)); 5291 } 5292 5293 /* 5294 * Called to correct nlinkdelta after a failed rmdir. 5295 */ 5296 void 5297 softdep_revert_rmdir(dp, ip) 5298 struct inode *dp; 5299 struct inode *ip; 5300 { 5301 5302 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 5303 ("softdep_revert_rmdir called on non-softdep filesystem")); 5304 ACQUIRE_LOCK(ITOUMP(dp)); 5305 (void) inodedep_lookup_ip(ip); 5306 (void) inodedep_lookup_ip(dp); 5307 FREE_LOCK(ITOUMP(dp)); 5308 } 5309 5310 /* 5311 * Protecting the freemaps (or bitmaps). 5312 * 5313 * To eliminate the need to execute fsck before mounting a filesystem 5314 * after a power failure, one must (conservatively) guarantee that the 5315 * on-disk copy of the bitmaps never indicate that a live inode or block is 5316 * free. So, when a block or inode is allocated, the bitmap should be 5317 * updated (on disk) before any new pointers. When a block or inode is 5318 * freed, the bitmap should not be updated until all pointers have been 5319 * reset. The latter dependency is handled by the delayed de-allocation 5320 * approach described below for block and inode de-allocation. The former 5321 * dependency is handled by calling the following procedure when a block or 5322 * inode is allocated. When an inode is allocated an "inodedep" is created 5323 * with its DEPCOMPLETE flag cleared until its bitmap is written to disk. 5324 * Each "inodedep" is also inserted into the hash indexing structure so 5325 * that any additional link additions can be made dependent on the inode 5326 * allocation. 5327 * 5328 * The ufs filesystem maintains a number of free block counts (e.g., per 5329 * cylinder group, per cylinder and per <cylinder, rotational position> pair) 5330 * in addition to the bitmaps. These counts are used to improve efficiency 5331 * during allocation and therefore must be consistent with the bitmaps. 5332 * There is no convenient way to guarantee post-crash consistency of these 5333 * counts with simple update ordering, for two main reasons: (1) The counts 5334 * and bitmaps for a single cylinder group block are not in the same disk 5335 * sector. If a disk write is interrupted (e.g., by power failure), one may 5336 * be written and the other not. (2) Some of the counts are located in the 5337 * superblock rather than the cylinder group block. So, we focus our soft 5338 * updates implementation on protecting the bitmaps. When mounting a 5339 * filesystem, we recompute the auxiliary counts from the bitmaps. 5340 */ 5341 5342 /* 5343 * Called just after updating the cylinder group block to allocate an inode. 5344 */ 5345 void 5346 softdep_setup_inomapdep(bp, ip, newinum, mode) 5347 struct buf *bp; /* buffer for cylgroup block with inode map */ 5348 struct inode *ip; /* inode related to allocation */ 5349 ino_t newinum; /* new inode number being allocated */ 5350 int mode; 5351 { 5352 struct inodedep *inodedep; 5353 struct bmsafemap *bmsafemap; 5354 struct jaddref *jaddref; 5355 struct mount *mp; 5356 struct fs *fs; 5357 5358 mp = ITOVFS(ip); 5359 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 5360 ("softdep_setup_inomapdep called on non-softdep filesystem")); 5361 fs = VFSTOUFS(mp)->um_fs; 5362 jaddref = NULL; 5363 5364 /* 5365 * Allocate the journal reference add structure so that the bitmap 5366 * can be dependent on it. 5367 */ 5368 if (MOUNTEDSUJ(mp)) { 5369 jaddref = newjaddref(ip, newinum, 0, 0, mode); 5370 jaddref->ja_state |= NEWBLOCK; 5371 } 5372 5373 /* 5374 * Create a dependency for the newly allocated inode. 5375 * Panic if it already exists as something is seriously wrong. 5376 * Otherwise add it to the dependency list for the buffer holding 5377 * the cylinder group map from which it was allocated. 5378 * 5379 * We have to preallocate a bmsafemap entry in case it is needed 5380 * in bmsafemap_lookup since once we allocate the inodedep, we 5381 * have to finish initializing it before we can FREE_LOCK(). 5382 * By preallocating, we avoid FREE_LOCK() while doing a malloc 5383 * in bmsafemap_lookup. We cannot call bmsafemap_lookup before 5384 * creating the inodedep as it can be freed during the time 5385 * that we FREE_LOCK() while allocating the inodedep. We must 5386 * call workitem_alloc() before entering the locked section as 5387 * it also acquires the lock and we must avoid trying doing so 5388 * recursively. 5389 */ 5390 bmsafemap = malloc(sizeof(struct bmsafemap), 5391 M_BMSAFEMAP, M_SOFTDEP_FLAGS); 5392 workitem_alloc(&bmsafemap->sm_list, D_BMSAFEMAP, mp); 5393 ACQUIRE_LOCK(ITOUMP(ip)); 5394 if ((inodedep_lookup(mp, newinum, DEPALLOC, &inodedep))) 5395 panic("softdep_setup_inomapdep: dependency %p for new" 5396 "inode already exists", inodedep); 5397 bmsafemap = bmsafemap_lookup(mp, bp, ino_to_cg(fs, newinum), bmsafemap); 5398 if (jaddref) { 5399 LIST_INSERT_HEAD(&bmsafemap->sm_jaddrefhd, jaddref, ja_bmdeps); 5400 TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref, 5401 if_deps); 5402 } else { 5403 inodedep->id_state |= ONDEPLIST; 5404 LIST_INSERT_HEAD(&bmsafemap->sm_inodedephd, inodedep, id_deps); 5405 } 5406 inodedep->id_bmsafemap = bmsafemap; 5407 inodedep->id_state &= ~DEPCOMPLETE; 5408 FREE_LOCK(ITOUMP(ip)); 5409 } 5410 5411 /* 5412 * Called just after updating the cylinder group block to 5413 * allocate block or fragment. 5414 */ 5415 void 5416 softdep_setup_blkmapdep(bp, mp, newblkno, frags, oldfrags) 5417 struct buf *bp; /* buffer for cylgroup block with block map */ 5418 struct mount *mp; /* filesystem doing allocation */ 5419 ufs2_daddr_t newblkno; /* number of newly allocated block */ 5420 int frags; /* Number of fragments. */ 5421 int oldfrags; /* Previous number of fragments for extend. */ 5422 { 5423 struct newblk *newblk; 5424 struct bmsafemap *bmsafemap; 5425 struct jnewblk *jnewblk; 5426 struct ufsmount *ump; 5427 struct fs *fs; 5428 5429 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 5430 ("softdep_setup_blkmapdep called on non-softdep filesystem")); 5431 ump = VFSTOUFS(mp); 5432 fs = ump->um_fs; 5433 jnewblk = NULL; 5434 /* 5435 * Create a dependency for the newly allocated block. 5436 * Add it to the dependency list for the buffer holding 5437 * the cylinder group map from which it was allocated. 5438 */ 5439 if (MOUNTEDSUJ(mp)) { 5440 jnewblk = malloc(sizeof(*jnewblk), M_JNEWBLK, M_SOFTDEP_FLAGS); 5441 workitem_alloc(&jnewblk->jn_list, D_JNEWBLK, mp); 5442 jnewblk->jn_jsegdep = newjsegdep(&jnewblk->jn_list); 5443 jnewblk->jn_state = ATTACHED; 5444 jnewblk->jn_blkno = newblkno; 5445 jnewblk->jn_frags = frags; 5446 jnewblk->jn_oldfrags = oldfrags; 5447 #ifdef INVARIANTS 5448 { 5449 struct cg *cgp; 5450 uint8_t *blksfree; 5451 long bno; 5452 int i; 5453 5454 cgp = (struct cg *)bp->b_data; 5455 blksfree = cg_blksfree(cgp); 5456 bno = dtogd(fs, jnewblk->jn_blkno); 5457 for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; 5458 i++) { 5459 if (isset(blksfree, bno + i)) 5460 panic("softdep_setup_blkmapdep: " 5461 "free fragment %d from %d-%d " 5462 "state 0x%X dep %p", i, 5463 jnewblk->jn_oldfrags, 5464 jnewblk->jn_frags, 5465 jnewblk->jn_state, 5466 jnewblk->jn_dep); 5467 } 5468 } 5469 #endif 5470 } 5471 5472 CTR3(KTR_SUJ, 5473 "softdep_setup_blkmapdep: blkno %jd frags %d oldfrags %d", 5474 newblkno, frags, oldfrags); 5475 ACQUIRE_LOCK(ump); 5476 if (newblk_lookup(mp, newblkno, DEPALLOC, &newblk) != 0) 5477 panic("softdep_setup_blkmapdep: found block"); 5478 newblk->nb_bmsafemap = bmsafemap = bmsafemap_lookup(mp, bp, 5479 dtog(fs, newblkno), NULL); 5480 if (jnewblk) { 5481 jnewblk->jn_dep = (struct worklist *)newblk; 5482 LIST_INSERT_HEAD(&bmsafemap->sm_jnewblkhd, jnewblk, jn_deps); 5483 } else { 5484 newblk->nb_state |= ONDEPLIST; 5485 LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, nb_deps); 5486 } 5487 newblk->nb_bmsafemap = bmsafemap; 5488 newblk->nb_jnewblk = jnewblk; 5489 FREE_LOCK(ump); 5490 } 5491 5492 #define BMSAFEMAP_HASH(ump, cg) \ 5493 (&(ump)->bmsafemap_hashtbl[(cg) & (ump)->bmsafemap_hash_size]) 5494 5495 static int 5496 bmsafemap_find(bmsafemaphd, cg, bmsafemapp) 5497 struct bmsafemap_hashhead *bmsafemaphd; 5498 int cg; 5499 struct bmsafemap **bmsafemapp; 5500 { 5501 struct bmsafemap *bmsafemap; 5502 5503 LIST_FOREACH(bmsafemap, bmsafemaphd, sm_hash) 5504 if (bmsafemap->sm_cg == cg) 5505 break; 5506 if (bmsafemap) { 5507 *bmsafemapp = bmsafemap; 5508 return (1); 5509 } 5510 *bmsafemapp = NULL; 5511 5512 return (0); 5513 } 5514 5515 /* 5516 * Find the bmsafemap associated with a cylinder group buffer. 5517 * If none exists, create one. The buffer must be locked when 5518 * this routine is called and this routine must be called with 5519 * the softdep lock held. To avoid giving up the lock while 5520 * allocating a new bmsafemap, a preallocated bmsafemap may be 5521 * provided. If it is provided but not needed, it is freed. 5522 */ 5523 static struct bmsafemap * 5524 bmsafemap_lookup(mp, bp, cg, newbmsafemap) 5525 struct mount *mp; 5526 struct buf *bp; 5527 int cg; 5528 struct bmsafemap *newbmsafemap; 5529 { 5530 struct bmsafemap_hashhead *bmsafemaphd; 5531 struct bmsafemap *bmsafemap, *collision; 5532 struct worklist *wk; 5533 struct ufsmount *ump; 5534 5535 ump = VFSTOUFS(mp); 5536 LOCK_OWNED(ump); 5537 KASSERT(bp != NULL, ("bmsafemap_lookup: missing buffer")); 5538 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 5539 if (wk->wk_type == D_BMSAFEMAP) { 5540 if (newbmsafemap) 5541 WORKITEM_FREE(newbmsafemap, D_BMSAFEMAP); 5542 return (WK_BMSAFEMAP(wk)); 5543 } 5544 } 5545 bmsafemaphd = BMSAFEMAP_HASH(ump, cg); 5546 if (bmsafemap_find(bmsafemaphd, cg, &bmsafemap) == 1) { 5547 if (newbmsafemap) 5548 WORKITEM_FREE(newbmsafemap, D_BMSAFEMAP); 5549 return (bmsafemap); 5550 } 5551 if (newbmsafemap) { 5552 bmsafemap = newbmsafemap; 5553 } else { 5554 FREE_LOCK(ump); 5555 bmsafemap = malloc(sizeof(struct bmsafemap), 5556 M_BMSAFEMAP, M_SOFTDEP_FLAGS); 5557 workitem_alloc(&bmsafemap->sm_list, D_BMSAFEMAP, mp); 5558 ACQUIRE_LOCK(ump); 5559 } 5560 bmsafemap->sm_buf = bp; 5561 LIST_INIT(&bmsafemap->sm_inodedephd); 5562 LIST_INIT(&bmsafemap->sm_inodedepwr); 5563 LIST_INIT(&bmsafemap->sm_newblkhd); 5564 LIST_INIT(&bmsafemap->sm_newblkwr); 5565 LIST_INIT(&bmsafemap->sm_jaddrefhd); 5566 LIST_INIT(&bmsafemap->sm_jnewblkhd); 5567 LIST_INIT(&bmsafemap->sm_freehd); 5568 LIST_INIT(&bmsafemap->sm_freewr); 5569 if (bmsafemap_find(bmsafemaphd, cg, &collision) == 1) { 5570 WORKITEM_FREE(bmsafemap, D_BMSAFEMAP); 5571 return (collision); 5572 } 5573 bmsafemap->sm_cg = cg; 5574 LIST_INSERT_HEAD(bmsafemaphd, bmsafemap, sm_hash); 5575 LIST_INSERT_HEAD(&ump->softdep_dirtycg, bmsafemap, sm_next); 5576 WORKLIST_INSERT(&bp->b_dep, &bmsafemap->sm_list); 5577 return (bmsafemap); 5578 } 5579 5580 /* 5581 * Direct block allocation dependencies. 5582 * 5583 * When a new block is allocated, the corresponding disk locations must be 5584 * initialized (with zeros or new data) before the on-disk inode points to 5585 * them. Also, the freemap from which the block was allocated must be 5586 * updated (on disk) before the inode's pointer. These two dependencies are 5587 * independent of each other and are needed for all file blocks and indirect 5588 * blocks that are pointed to directly by the inode. Just before the 5589 * "in-core" version of the inode is updated with a newly allocated block 5590 * number, a procedure (below) is called to setup allocation dependency 5591 * structures. These structures are removed when the corresponding 5592 * dependencies are satisfied or when the block allocation becomes obsolete 5593 * (i.e., the file is deleted, the block is de-allocated, or the block is a 5594 * fragment that gets upgraded). All of these cases are handled in 5595 * procedures described later. 5596 * 5597 * When a file extension causes a fragment to be upgraded, either to a larger 5598 * fragment or to a full block, the on-disk location may change (if the 5599 * previous fragment could not simply be extended). In this case, the old 5600 * fragment must be de-allocated, but not until after the inode's pointer has 5601 * been updated. In most cases, this is handled by later procedures, which 5602 * will construct a "freefrag" structure to be added to the workitem queue 5603 * when the inode update is complete (or obsolete). The main exception to 5604 * this is when an allocation occurs while a pending allocation dependency 5605 * (for the same block pointer) remains. This case is handled in the main 5606 * allocation dependency setup procedure by immediately freeing the 5607 * unreferenced fragments. 5608 */ 5609 void 5610 softdep_setup_allocdirect(ip, off, newblkno, oldblkno, newsize, oldsize, bp) 5611 struct inode *ip; /* inode to which block is being added */ 5612 ufs_lbn_t off; /* block pointer within inode */ 5613 ufs2_daddr_t newblkno; /* disk block number being added */ 5614 ufs2_daddr_t oldblkno; /* previous block number, 0 unless frag */ 5615 long newsize; /* size of new block */ 5616 long oldsize; /* size of new block */ 5617 struct buf *bp; /* bp for allocated block */ 5618 { 5619 struct allocdirect *adp, *oldadp; 5620 struct allocdirectlst *adphead; 5621 struct freefrag *freefrag; 5622 struct inodedep *inodedep; 5623 struct pagedep *pagedep; 5624 struct jnewblk *jnewblk; 5625 struct newblk *newblk; 5626 struct mount *mp; 5627 ufs_lbn_t lbn; 5628 5629 lbn = bp->b_lblkno; 5630 mp = ITOVFS(ip); 5631 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 5632 ("softdep_setup_allocdirect called on non-softdep filesystem")); 5633 if (oldblkno && oldblkno != newblkno) 5634 /* 5635 * The usual case is that a smaller fragment that 5636 * was just allocated has been replaced with a bigger 5637 * fragment or a full-size block. If it is marked as 5638 * B_DELWRI, the current contents have not been written 5639 * to disk. It is possible that the block was written 5640 * earlier, but very uncommon. If the block has never 5641 * been written, there is no need to send a BIO_DELETE 5642 * for it when it is freed. The gain from avoiding the 5643 * TRIMs for the common case of unwritten blocks far 5644 * exceeds the cost of the write amplification for the 5645 * uncommon case of failing to send a TRIM for a block 5646 * that had been written. 5647 */ 5648 freefrag = newfreefrag(ip, oldblkno, oldsize, lbn, 5649 (bp->b_flags & B_DELWRI) != 0 ? NOTRIM_KEY : SINGLETON_KEY); 5650 else 5651 freefrag = NULL; 5652 5653 CTR6(KTR_SUJ, 5654 "softdep_setup_allocdirect: ino %d blkno %jd oldblkno %jd " 5655 "off %jd newsize %ld oldsize %d", 5656 ip->i_number, newblkno, oldblkno, off, newsize, oldsize); 5657 ACQUIRE_LOCK(ITOUMP(ip)); 5658 if (off >= UFS_NDADDR) { 5659 if (lbn > 0) 5660 panic("softdep_setup_allocdirect: bad lbn %jd, off %jd", 5661 lbn, off); 5662 /* allocating an indirect block */ 5663 if (oldblkno != 0) 5664 panic("softdep_setup_allocdirect: non-zero indir"); 5665 } else { 5666 if (off != lbn) 5667 panic("softdep_setup_allocdirect: lbn %jd != off %jd", 5668 lbn, off); 5669 /* 5670 * Allocating a direct block. 5671 * 5672 * If we are allocating a directory block, then we must 5673 * allocate an associated pagedep to track additions and 5674 * deletions. 5675 */ 5676 if ((ip->i_mode & IFMT) == IFDIR) 5677 pagedep_lookup(mp, bp, ip->i_number, off, DEPALLOC, 5678 &pagedep); 5679 } 5680 if (newblk_lookup(mp, newblkno, 0, &newblk) == 0) 5681 panic("softdep_setup_allocdirect: lost block"); 5682 KASSERT(newblk->nb_list.wk_type == D_NEWBLK, 5683 ("softdep_setup_allocdirect: newblk already initialized")); 5684 /* 5685 * Convert the newblk to an allocdirect. 5686 */ 5687 WORKITEM_REASSIGN(newblk, D_ALLOCDIRECT); 5688 adp = (struct allocdirect *)newblk; 5689 newblk->nb_freefrag = freefrag; 5690 adp->ad_offset = off; 5691 adp->ad_oldblkno = oldblkno; 5692 adp->ad_newsize = newsize; 5693 adp->ad_oldsize = oldsize; 5694 5695 /* 5696 * Finish initializing the journal. 5697 */ 5698 if ((jnewblk = newblk->nb_jnewblk) != NULL) { 5699 jnewblk->jn_ino = ip->i_number; 5700 jnewblk->jn_lbn = lbn; 5701 add_to_journal(&jnewblk->jn_list); 5702 } 5703 if (freefrag && freefrag->ff_jdep != NULL && 5704 freefrag->ff_jdep->wk_type == D_JFREEFRAG) 5705 add_to_journal(freefrag->ff_jdep); 5706 inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep); 5707 adp->ad_inodedep = inodedep; 5708 5709 WORKLIST_INSERT(&bp->b_dep, &newblk->nb_list); 5710 /* 5711 * The list of allocdirects must be kept in sorted and ascending 5712 * order so that the rollback routines can quickly determine the 5713 * first uncommitted block (the size of the file stored on disk 5714 * ends at the end of the lowest committed fragment, or if there 5715 * are no fragments, at the end of the highest committed block). 5716 * Since files generally grow, the typical case is that the new 5717 * block is to be added at the end of the list. We speed this 5718 * special case by checking against the last allocdirect in the 5719 * list before laboriously traversing the list looking for the 5720 * insertion point. 5721 */ 5722 adphead = &inodedep->id_newinoupdt; 5723 oldadp = TAILQ_LAST(adphead, allocdirectlst); 5724 if (oldadp == NULL || oldadp->ad_offset <= off) { 5725 /* insert at end of list */ 5726 TAILQ_INSERT_TAIL(adphead, adp, ad_next); 5727 if (oldadp != NULL && oldadp->ad_offset == off) 5728 allocdirect_merge(adphead, adp, oldadp); 5729 FREE_LOCK(ITOUMP(ip)); 5730 return; 5731 } 5732 TAILQ_FOREACH(oldadp, adphead, ad_next) { 5733 if (oldadp->ad_offset >= off) 5734 break; 5735 } 5736 if (oldadp == NULL) 5737 panic("softdep_setup_allocdirect: lost entry"); 5738 /* insert in middle of list */ 5739 TAILQ_INSERT_BEFORE(oldadp, adp, ad_next); 5740 if (oldadp->ad_offset == off) 5741 allocdirect_merge(adphead, adp, oldadp); 5742 5743 FREE_LOCK(ITOUMP(ip)); 5744 } 5745 5746 /* 5747 * Merge a newer and older journal record to be stored either in a 5748 * newblock or freefrag. This handles aggregating journal records for 5749 * fragment allocation into a second record as well as replacing a 5750 * journal free with an aborted journal allocation. A segment for the 5751 * oldest record will be placed on wkhd if it has been written. If not 5752 * the segment for the newer record will suffice. 5753 */ 5754 static struct worklist * 5755 jnewblk_merge(new, old, wkhd) 5756 struct worklist *new; 5757 struct worklist *old; 5758 struct workhead *wkhd; 5759 { 5760 struct jnewblk *njnewblk; 5761 struct jnewblk *jnewblk; 5762 5763 /* Handle NULLs to simplify callers. */ 5764 if (new == NULL) 5765 return (old); 5766 if (old == NULL) 5767 return (new); 5768 /* Replace a jfreefrag with a jnewblk. */ 5769 if (new->wk_type == D_JFREEFRAG) { 5770 if (WK_JNEWBLK(old)->jn_blkno != WK_JFREEFRAG(new)->fr_blkno) 5771 panic("jnewblk_merge: blkno mismatch: %p, %p", 5772 old, new); 5773 cancel_jfreefrag(WK_JFREEFRAG(new)); 5774 return (old); 5775 } 5776 if (old->wk_type != D_JNEWBLK || new->wk_type != D_JNEWBLK) 5777 panic("jnewblk_merge: Bad type: old %d new %d\n", 5778 old->wk_type, new->wk_type); 5779 /* 5780 * Handle merging of two jnewblk records that describe 5781 * different sets of fragments in the same block. 5782 */ 5783 jnewblk = WK_JNEWBLK(old); 5784 njnewblk = WK_JNEWBLK(new); 5785 if (jnewblk->jn_blkno != njnewblk->jn_blkno) 5786 panic("jnewblk_merge: Merging disparate blocks."); 5787 /* 5788 * The record may be rolled back in the cg. 5789 */ 5790 if (jnewblk->jn_state & UNDONE) { 5791 jnewblk->jn_state &= ~UNDONE; 5792 njnewblk->jn_state |= UNDONE; 5793 njnewblk->jn_state &= ~ATTACHED; 5794 } 5795 /* 5796 * We modify the newer addref and free the older so that if neither 5797 * has been written the most up-to-date copy will be on disk. If 5798 * both have been written but rolled back we only temporarily need 5799 * one of them to fix the bits when the cg write completes. 5800 */ 5801 jnewblk->jn_state |= ATTACHED | COMPLETE; 5802 njnewblk->jn_oldfrags = jnewblk->jn_oldfrags; 5803 cancel_jnewblk(jnewblk, wkhd); 5804 WORKLIST_REMOVE(&jnewblk->jn_list); 5805 free_jnewblk(jnewblk); 5806 return (new); 5807 } 5808 5809 /* 5810 * Replace an old allocdirect dependency with a newer one. 5811 */ 5812 static void 5813 allocdirect_merge(adphead, newadp, oldadp) 5814 struct allocdirectlst *adphead; /* head of list holding allocdirects */ 5815 struct allocdirect *newadp; /* allocdirect being added */ 5816 struct allocdirect *oldadp; /* existing allocdirect being checked */ 5817 { 5818 struct worklist *wk; 5819 struct freefrag *freefrag; 5820 5821 freefrag = NULL; 5822 LOCK_OWNED(VFSTOUFS(newadp->ad_list.wk_mp)); 5823 if (newadp->ad_oldblkno != oldadp->ad_newblkno || 5824 newadp->ad_oldsize != oldadp->ad_newsize || 5825 newadp->ad_offset >= UFS_NDADDR) 5826 panic("%s %jd != new %jd || old size %ld != new %ld", 5827 "allocdirect_merge: old blkno", 5828 (intmax_t)newadp->ad_oldblkno, 5829 (intmax_t)oldadp->ad_newblkno, 5830 newadp->ad_oldsize, oldadp->ad_newsize); 5831 newadp->ad_oldblkno = oldadp->ad_oldblkno; 5832 newadp->ad_oldsize = oldadp->ad_oldsize; 5833 /* 5834 * If the old dependency had a fragment to free or had never 5835 * previously had a block allocated, then the new dependency 5836 * can immediately post its freefrag and adopt the old freefrag. 5837 * This action is done by swapping the freefrag dependencies. 5838 * The new dependency gains the old one's freefrag, and the 5839 * old one gets the new one and then immediately puts it on 5840 * the worklist when it is freed by free_newblk. It is 5841 * not possible to do this swap when the old dependency had a 5842 * non-zero size but no previous fragment to free. This condition 5843 * arises when the new block is an extension of the old block. 5844 * Here, the first part of the fragment allocated to the new 5845 * dependency is part of the block currently claimed on disk by 5846 * the old dependency, so cannot legitimately be freed until the 5847 * conditions for the new dependency are fulfilled. 5848 */ 5849 freefrag = newadp->ad_freefrag; 5850 if (oldadp->ad_freefrag != NULL || oldadp->ad_oldblkno == 0) { 5851 newadp->ad_freefrag = oldadp->ad_freefrag; 5852 oldadp->ad_freefrag = freefrag; 5853 } 5854 /* 5855 * If we are tracking a new directory-block allocation, 5856 * move it from the old allocdirect to the new allocdirect. 5857 */ 5858 if ((wk = LIST_FIRST(&oldadp->ad_newdirblk)) != NULL) { 5859 WORKLIST_REMOVE(wk); 5860 if (!LIST_EMPTY(&oldadp->ad_newdirblk)) 5861 panic("allocdirect_merge: extra newdirblk"); 5862 WORKLIST_INSERT(&newadp->ad_newdirblk, wk); 5863 } 5864 TAILQ_REMOVE(adphead, oldadp, ad_next); 5865 /* 5866 * We need to move any journal dependencies over to the freefrag 5867 * that releases this block if it exists. Otherwise we are 5868 * extending an existing block and we'll wait until that is 5869 * complete to release the journal space and extend the 5870 * new journal to cover this old space as well. 5871 */ 5872 if (freefrag == NULL) { 5873 if (oldadp->ad_newblkno != newadp->ad_newblkno) 5874 panic("allocdirect_merge: %jd != %jd", 5875 oldadp->ad_newblkno, newadp->ad_newblkno); 5876 newadp->ad_block.nb_jnewblk = (struct jnewblk *) 5877 jnewblk_merge(&newadp->ad_block.nb_jnewblk->jn_list, 5878 &oldadp->ad_block.nb_jnewblk->jn_list, 5879 &newadp->ad_block.nb_jwork); 5880 oldadp->ad_block.nb_jnewblk = NULL; 5881 cancel_newblk(&oldadp->ad_block, NULL, 5882 &newadp->ad_block.nb_jwork); 5883 } else { 5884 wk = (struct worklist *) cancel_newblk(&oldadp->ad_block, 5885 &freefrag->ff_list, &freefrag->ff_jwork); 5886 freefrag->ff_jdep = jnewblk_merge(freefrag->ff_jdep, wk, 5887 &freefrag->ff_jwork); 5888 } 5889 free_newblk(&oldadp->ad_block); 5890 } 5891 5892 /* 5893 * Allocate a jfreefrag structure to journal a single block free. 5894 */ 5895 static struct jfreefrag * 5896 newjfreefrag(freefrag, ip, blkno, size, lbn) 5897 struct freefrag *freefrag; 5898 struct inode *ip; 5899 ufs2_daddr_t blkno; 5900 long size; 5901 ufs_lbn_t lbn; 5902 { 5903 struct jfreefrag *jfreefrag; 5904 struct fs *fs; 5905 5906 fs = ITOFS(ip); 5907 jfreefrag = malloc(sizeof(struct jfreefrag), M_JFREEFRAG, 5908 M_SOFTDEP_FLAGS); 5909 workitem_alloc(&jfreefrag->fr_list, D_JFREEFRAG, ITOVFS(ip)); 5910 jfreefrag->fr_jsegdep = newjsegdep(&jfreefrag->fr_list); 5911 jfreefrag->fr_state = ATTACHED | DEPCOMPLETE; 5912 jfreefrag->fr_ino = ip->i_number; 5913 jfreefrag->fr_lbn = lbn; 5914 jfreefrag->fr_blkno = blkno; 5915 jfreefrag->fr_frags = numfrags(fs, size); 5916 jfreefrag->fr_freefrag = freefrag; 5917 5918 return (jfreefrag); 5919 } 5920 5921 /* 5922 * Allocate a new freefrag structure. 5923 */ 5924 static struct freefrag * 5925 newfreefrag(ip, blkno, size, lbn, key) 5926 struct inode *ip; 5927 ufs2_daddr_t blkno; 5928 long size; 5929 ufs_lbn_t lbn; 5930 u_long key; 5931 { 5932 struct freefrag *freefrag; 5933 struct ufsmount *ump; 5934 struct fs *fs; 5935 5936 CTR4(KTR_SUJ, "newfreefrag: ino %d blkno %jd size %ld lbn %jd", 5937 ip->i_number, blkno, size, lbn); 5938 ump = ITOUMP(ip); 5939 fs = ump->um_fs; 5940 if (fragnum(fs, blkno) + numfrags(fs, size) > fs->fs_frag) 5941 panic("newfreefrag: frag size"); 5942 freefrag = malloc(sizeof(struct freefrag), 5943 M_FREEFRAG, M_SOFTDEP_FLAGS); 5944 workitem_alloc(&freefrag->ff_list, D_FREEFRAG, UFSTOVFS(ump)); 5945 freefrag->ff_state = ATTACHED; 5946 LIST_INIT(&freefrag->ff_jwork); 5947 freefrag->ff_inum = ip->i_number; 5948 freefrag->ff_vtype = ITOV(ip)->v_type; 5949 freefrag->ff_blkno = blkno; 5950 freefrag->ff_fragsize = size; 5951 freefrag->ff_key = key; 5952 5953 if (MOUNTEDSUJ(UFSTOVFS(ump))) { 5954 freefrag->ff_jdep = (struct worklist *) 5955 newjfreefrag(freefrag, ip, blkno, size, lbn); 5956 } else { 5957 freefrag->ff_state |= DEPCOMPLETE; 5958 freefrag->ff_jdep = NULL; 5959 } 5960 5961 return (freefrag); 5962 } 5963 5964 /* 5965 * This workitem de-allocates fragments that were replaced during 5966 * file block allocation. 5967 */ 5968 static void 5969 handle_workitem_freefrag(freefrag) 5970 struct freefrag *freefrag; 5971 { 5972 struct ufsmount *ump = VFSTOUFS(freefrag->ff_list.wk_mp); 5973 struct workhead wkhd; 5974 5975 CTR3(KTR_SUJ, 5976 "handle_workitem_freefrag: ino %d blkno %jd size %ld", 5977 freefrag->ff_inum, freefrag->ff_blkno, freefrag->ff_fragsize); 5978 /* 5979 * It would be illegal to add new completion items to the 5980 * freefrag after it was schedule to be done so it must be 5981 * safe to modify the list head here. 5982 */ 5983 LIST_INIT(&wkhd); 5984 ACQUIRE_LOCK(ump); 5985 LIST_SWAP(&freefrag->ff_jwork, &wkhd, worklist, wk_list); 5986 /* 5987 * If the journal has not been written we must cancel it here. 5988 */ 5989 if (freefrag->ff_jdep) { 5990 if (freefrag->ff_jdep->wk_type != D_JNEWBLK) 5991 panic("handle_workitem_freefrag: Unexpected type %d\n", 5992 freefrag->ff_jdep->wk_type); 5993 cancel_jnewblk(WK_JNEWBLK(freefrag->ff_jdep), &wkhd); 5994 } 5995 FREE_LOCK(ump); 5996 ffs_blkfree(ump, ump->um_fs, ump->um_devvp, freefrag->ff_blkno, 5997 freefrag->ff_fragsize, freefrag->ff_inum, freefrag->ff_vtype, 5998 &wkhd, freefrag->ff_key); 5999 ACQUIRE_LOCK(ump); 6000 WORKITEM_FREE(freefrag, D_FREEFRAG); 6001 FREE_LOCK(ump); 6002 } 6003 6004 /* 6005 * Set up a dependency structure for an external attributes data block. 6006 * This routine follows much of the structure of softdep_setup_allocdirect. 6007 * See the description of softdep_setup_allocdirect above for details. 6008 */ 6009 void 6010 softdep_setup_allocext(ip, off, newblkno, oldblkno, newsize, oldsize, bp) 6011 struct inode *ip; 6012 ufs_lbn_t off; 6013 ufs2_daddr_t newblkno; 6014 ufs2_daddr_t oldblkno; 6015 long newsize; 6016 long oldsize; 6017 struct buf *bp; 6018 { 6019 struct allocdirect *adp, *oldadp; 6020 struct allocdirectlst *adphead; 6021 struct freefrag *freefrag; 6022 struct inodedep *inodedep; 6023 struct jnewblk *jnewblk; 6024 struct newblk *newblk; 6025 struct mount *mp; 6026 struct ufsmount *ump; 6027 ufs_lbn_t lbn; 6028 6029 mp = ITOVFS(ip); 6030 ump = VFSTOUFS(mp); 6031 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 6032 ("softdep_setup_allocext called on non-softdep filesystem")); 6033 KASSERT(off < UFS_NXADDR, 6034 ("softdep_setup_allocext: lbn %lld > UFS_NXADDR", (long long)off)); 6035 6036 lbn = bp->b_lblkno; 6037 if (oldblkno && oldblkno != newblkno) 6038 /* 6039 * The usual case is that a smaller fragment that 6040 * was just allocated has been replaced with a bigger 6041 * fragment or a full-size block. If it is marked as 6042 * B_DELWRI, the current contents have not been written 6043 * to disk. It is possible that the block was written 6044 * earlier, but very uncommon. If the block has never 6045 * been written, there is no need to send a BIO_DELETE 6046 * for it when it is freed. The gain from avoiding the 6047 * TRIMs for the common case of unwritten blocks far 6048 * exceeds the cost of the write amplification for the 6049 * uncommon case of failing to send a TRIM for a block 6050 * that had been written. 6051 */ 6052 freefrag = newfreefrag(ip, oldblkno, oldsize, lbn, 6053 (bp->b_flags & B_DELWRI) != 0 ? NOTRIM_KEY : SINGLETON_KEY); 6054 else 6055 freefrag = NULL; 6056 6057 ACQUIRE_LOCK(ump); 6058 if (newblk_lookup(mp, newblkno, 0, &newblk) == 0) 6059 panic("softdep_setup_allocext: lost block"); 6060 KASSERT(newblk->nb_list.wk_type == D_NEWBLK, 6061 ("softdep_setup_allocext: newblk already initialized")); 6062 /* 6063 * Convert the newblk to an allocdirect. 6064 */ 6065 WORKITEM_REASSIGN(newblk, D_ALLOCDIRECT); 6066 adp = (struct allocdirect *)newblk; 6067 newblk->nb_freefrag = freefrag; 6068 adp->ad_offset = off; 6069 adp->ad_oldblkno = oldblkno; 6070 adp->ad_newsize = newsize; 6071 adp->ad_oldsize = oldsize; 6072 adp->ad_state |= EXTDATA; 6073 6074 /* 6075 * Finish initializing the journal. 6076 */ 6077 if ((jnewblk = newblk->nb_jnewblk) != NULL) { 6078 jnewblk->jn_ino = ip->i_number; 6079 jnewblk->jn_lbn = lbn; 6080 add_to_journal(&jnewblk->jn_list); 6081 } 6082 if (freefrag && freefrag->ff_jdep != NULL && 6083 freefrag->ff_jdep->wk_type == D_JFREEFRAG) 6084 add_to_journal(freefrag->ff_jdep); 6085 inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep); 6086 adp->ad_inodedep = inodedep; 6087 6088 WORKLIST_INSERT(&bp->b_dep, &newblk->nb_list); 6089 /* 6090 * The list of allocdirects must be kept in sorted and ascending 6091 * order so that the rollback routines can quickly determine the 6092 * first uncommitted block (the size of the file stored on disk 6093 * ends at the end of the lowest committed fragment, or if there 6094 * are no fragments, at the end of the highest committed block). 6095 * Since files generally grow, the typical case is that the new 6096 * block is to be added at the end of the list. We speed this 6097 * special case by checking against the last allocdirect in the 6098 * list before laboriously traversing the list looking for the 6099 * insertion point. 6100 */ 6101 adphead = &inodedep->id_newextupdt; 6102 oldadp = TAILQ_LAST(adphead, allocdirectlst); 6103 if (oldadp == NULL || oldadp->ad_offset <= off) { 6104 /* insert at end of list */ 6105 TAILQ_INSERT_TAIL(adphead, adp, ad_next); 6106 if (oldadp != NULL && oldadp->ad_offset == off) 6107 allocdirect_merge(adphead, adp, oldadp); 6108 FREE_LOCK(ump); 6109 return; 6110 } 6111 TAILQ_FOREACH(oldadp, adphead, ad_next) { 6112 if (oldadp->ad_offset >= off) 6113 break; 6114 } 6115 if (oldadp == NULL) 6116 panic("softdep_setup_allocext: lost entry"); 6117 /* insert in middle of list */ 6118 TAILQ_INSERT_BEFORE(oldadp, adp, ad_next); 6119 if (oldadp->ad_offset == off) 6120 allocdirect_merge(adphead, adp, oldadp); 6121 FREE_LOCK(ump); 6122 } 6123 6124 /* 6125 * Indirect block allocation dependencies. 6126 * 6127 * The same dependencies that exist for a direct block also exist when 6128 * a new block is allocated and pointed to by an entry in a block of 6129 * indirect pointers. The undo/redo states described above are also 6130 * used here. Because an indirect block contains many pointers that 6131 * may have dependencies, a second copy of the entire in-memory indirect 6132 * block is kept. The buffer cache copy is always completely up-to-date. 6133 * The second copy, which is used only as a source for disk writes, 6134 * contains only the safe pointers (i.e., those that have no remaining 6135 * update dependencies). The second copy is freed when all pointers 6136 * are safe. The cache is not allowed to replace indirect blocks with 6137 * pending update dependencies. If a buffer containing an indirect 6138 * block with dependencies is written, these routines will mark it 6139 * dirty again. It can only be successfully written once all the 6140 * dependencies are removed. The ffs_fsync routine in conjunction with 6141 * softdep_sync_metadata work together to get all the dependencies 6142 * removed so that a file can be successfully written to disk. Three 6143 * procedures are used when setting up indirect block pointer 6144 * dependencies. The division is necessary because of the organization 6145 * of the "balloc" routine and because of the distinction between file 6146 * pages and file metadata blocks. 6147 */ 6148 6149 /* 6150 * Allocate a new allocindir structure. 6151 */ 6152 static struct allocindir * 6153 newallocindir(ip, ptrno, newblkno, oldblkno, lbn) 6154 struct inode *ip; /* inode for file being extended */ 6155 int ptrno; /* offset of pointer in indirect block */ 6156 ufs2_daddr_t newblkno; /* disk block number being added */ 6157 ufs2_daddr_t oldblkno; /* previous block number, 0 if none */ 6158 ufs_lbn_t lbn; 6159 { 6160 struct newblk *newblk; 6161 struct allocindir *aip; 6162 struct freefrag *freefrag; 6163 struct jnewblk *jnewblk; 6164 6165 if (oldblkno) 6166 freefrag = newfreefrag(ip, oldblkno, ITOFS(ip)->fs_bsize, lbn, 6167 SINGLETON_KEY); 6168 else 6169 freefrag = NULL; 6170 ACQUIRE_LOCK(ITOUMP(ip)); 6171 if (newblk_lookup(ITOVFS(ip), newblkno, 0, &newblk) == 0) 6172 panic("new_allocindir: lost block"); 6173 KASSERT(newblk->nb_list.wk_type == D_NEWBLK, 6174 ("newallocindir: newblk already initialized")); 6175 WORKITEM_REASSIGN(newblk, D_ALLOCINDIR); 6176 newblk->nb_freefrag = freefrag; 6177 aip = (struct allocindir *)newblk; 6178 aip->ai_offset = ptrno; 6179 aip->ai_oldblkno = oldblkno; 6180 aip->ai_lbn = lbn; 6181 if ((jnewblk = newblk->nb_jnewblk) != NULL) { 6182 jnewblk->jn_ino = ip->i_number; 6183 jnewblk->jn_lbn = lbn; 6184 add_to_journal(&jnewblk->jn_list); 6185 } 6186 if (freefrag && freefrag->ff_jdep != NULL && 6187 freefrag->ff_jdep->wk_type == D_JFREEFRAG) 6188 add_to_journal(freefrag->ff_jdep); 6189 return (aip); 6190 } 6191 6192 /* 6193 * Called just before setting an indirect block pointer 6194 * to a newly allocated file page. 6195 */ 6196 void 6197 softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp) 6198 struct inode *ip; /* inode for file being extended */ 6199 ufs_lbn_t lbn; /* allocated block number within file */ 6200 struct buf *bp; /* buffer with indirect blk referencing page */ 6201 int ptrno; /* offset of pointer in indirect block */ 6202 ufs2_daddr_t newblkno; /* disk block number being added */ 6203 ufs2_daddr_t oldblkno; /* previous block number, 0 if none */ 6204 struct buf *nbp; /* buffer holding allocated page */ 6205 { 6206 struct inodedep *inodedep; 6207 struct freefrag *freefrag; 6208 struct allocindir *aip; 6209 struct pagedep *pagedep; 6210 struct mount *mp; 6211 struct ufsmount *ump; 6212 6213 mp = ITOVFS(ip); 6214 ump = VFSTOUFS(mp); 6215 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 6216 ("softdep_setup_allocindir_page called on non-softdep filesystem")); 6217 KASSERT(lbn == nbp->b_lblkno, 6218 ("softdep_setup_allocindir_page: lbn %jd != lblkno %jd", 6219 lbn, bp->b_lblkno)); 6220 CTR4(KTR_SUJ, 6221 "softdep_setup_allocindir_page: ino %d blkno %jd oldblkno %jd " 6222 "lbn %jd", ip->i_number, newblkno, oldblkno, lbn); 6223 ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_page"); 6224 aip = newallocindir(ip, ptrno, newblkno, oldblkno, lbn); 6225 (void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep); 6226 /* 6227 * If we are allocating a directory page, then we must 6228 * allocate an associated pagedep to track additions and 6229 * deletions. 6230 */ 6231 if ((ip->i_mode & IFMT) == IFDIR) 6232 pagedep_lookup(mp, nbp, ip->i_number, lbn, DEPALLOC, &pagedep); 6233 WORKLIST_INSERT(&nbp->b_dep, &aip->ai_block.nb_list); 6234 freefrag = setup_allocindir_phase2(bp, ip, inodedep, aip, lbn); 6235 FREE_LOCK(ump); 6236 if (freefrag) 6237 handle_workitem_freefrag(freefrag); 6238 } 6239 6240 /* 6241 * Called just before setting an indirect block pointer to a 6242 * newly allocated indirect block. 6243 */ 6244 void 6245 softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno) 6246 struct buf *nbp; /* newly allocated indirect block */ 6247 struct inode *ip; /* inode for file being extended */ 6248 struct buf *bp; /* indirect block referencing allocated block */ 6249 int ptrno; /* offset of pointer in indirect block */ 6250 ufs2_daddr_t newblkno; /* disk block number being added */ 6251 { 6252 struct inodedep *inodedep; 6253 struct allocindir *aip; 6254 struct ufsmount *ump; 6255 ufs_lbn_t lbn; 6256 6257 ump = ITOUMP(ip); 6258 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 6259 ("softdep_setup_allocindir_meta called on non-softdep filesystem")); 6260 CTR3(KTR_SUJ, 6261 "softdep_setup_allocindir_meta: ino %d blkno %jd ptrno %d", 6262 ip->i_number, newblkno, ptrno); 6263 lbn = nbp->b_lblkno; 6264 ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_meta"); 6265 aip = newallocindir(ip, ptrno, newblkno, 0, lbn); 6266 inodedep_lookup(UFSTOVFS(ump), ip->i_number, DEPALLOC, &inodedep); 6267 WORKLIST_INSERT(&nbp->b_dep, &aip->ai_block.nb_list); 6268 if (setup_allocindir_phase2(bp, ip, inodedep, aip, lbn)) 6269 panic("softdep_setup_allocindir_meta: Block already existed"); 6270 FREE_LOCK(ump); 6271 } 6272 6273 static void 6274 indirdep_complete(indirdep) 6275 struct indirdep *indirdep; 6276 { 6277 struct allocindir *aip; 6278 6279 LIST_REMOVE(indirdep, ir_next); 6280 indirdep->ir_state |= DEPCOMPLETE; 6281 6282 while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != NULL) { 6283 LIST_REMOVE(aip, ai_next); 6284 free_newblk(&aip->ai_block); 6285 } 6286 /* 6287 * If this indirdep is not attached to a buf it was simply waiting 6288 * on completion to clear completehd. free_indirdep() asserts 6289 * that nothing is dangling. 6290 */ 6291 if ((indirdep->ir_state & ONWORKLIST) == 0) 6292 free_indirdep(indirdep); 6293 } 6294 6295 static struct indirdep * 6296 indirdep_lookup(mp, ip, bp) 6297 struct mount *mp; 6298 struct inode *ip; 6299 struct buf *bp; 6300 { 6301 struct indirdep *indirdep, *newindirdep; 6302 struct newblk *newblk; 6303 struct ufsmount *ump; 6304 struct worklist *wk; 6305 struct fs *fs; 6306 ufs2_daddr_t blkno; 6307 6308 ump = VFSTOUFS(mp); 6309 LOCK_OWNED(ump); 6310 indirdep = NULL; 6311 newindirdep = NULL; 6312 fs = ump->um_fs; 6313 for (;;) { 6314 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 6315 if (wk->wk_type != D_INDIRDEP) 6316 continue; 6317 indirdep = WK_INDIRDEP(wk); 6318 break; 6319 } 6320 /* Found on the buffer worklist, no new structure to free. */ 6321 if (indirdep != NULL && newindirdep == NULL) 6322 return (indirdep); 6323 if (indirdep != NULL && newindirdep != NULL) 6324 panic("indirdep_lookup: simultaneous create"); 6325 /* None found on the buffer and a new structure is ready. */ 6326 if (indirdep == NULL && newindirdep != NULL) 6327 break; 6328 /* None found and no new structure available. */ 6329 FREE_LOCK(ump); 6330 newindirdep = malloc(sizeof(struct indirdep), 6331 M_INDIRDEP, M_SOFTDEP_FLAGS); 6332 workitem_alloc(&newindirdep->ir_list, D_INDIRDEP, mp); 6333 newindirdep->ir_state = ATTACHED; 6334 if (I_IS_UFS1(ip)) 6335 newindirdep->ir_state |= UFS1FMT; 6336 TAILQ_INIT(&newindirdep->ir_trunc); 6337 newindirdep->ir_saveddata = NULL; 6338 LIST_INIT(&newindirdep->ir_deplisthd); 6339 LIST_INIT(&newindirdep->ir_donehd); 6340 LIST_INIT(&newindirdep->ir_writehd); 6341 LIST_INIT(&newindirdep->ir_completehd); 6342 if (bp->b_blkno == bp->b_lblkno) { 6343 ufs_bmaparray(bp->b_vp, bp->b_lblkno, &blkno, bp, 6344 NULL, NULL); 6345 bp->b_blkno = blkno; 6346 } 6347 newindirdep->ir_freeblks = NULL; 6348 newindirdep->ir_savebp = 6349 getblk(ump->um_devvp, bp->b_blkno, bp->b_bcount, 0, 0, 0); 6350 newindirdep->ir_bp = bp; 6351 BUF_KERNPROC(newindirdep->ir_savebp); 6352 bcopy(bp->b_data, newindirdep->ir_savebp->b_data, bp->b_bcount); 6353 ACQUIRE_LOCK(ump); 6354 } 6355 indirdep = newindirdep; 6356 WORKLIST_INSERT(&bp->b_dep, &indirdep->ir_list); 6357 /* 6358 * If the block is not yet allocated we don't set DEPCOMPLETE so 6359 * that we don't free dependencies until the pointers are valid. 6360 * This could search b_dep for D_ALLOCDIRECT/D_ALLOCINDIR rather 6361 * than using the hash. 6362 */ 6363 if (newblk_lookup(mp, dbtofsb(fs, bp->b_blkno), 0, &newblk)) 6364 LIST_INSERT_HEAD(&newblk->nb_indirdeps, indirdep, ir_next); 6365 else 6366 indirdep->ir_state |= DEPCOMPLETE; 6367 return (indirdep); 6368 } 6369 6370 /* 6371 * Called to finish the allocation of the "aip" allocated 6372 * by one of the two routines above. 6373 */ 6374 static struct freefrag * 6375 setup_allocindir_phase2(bp, ip, inodedep, aip, lbn) 6376 struct buf *bp; /* in-memory copy of the indirect block */ 6377 struct inode *ip; /* inode for file being extended */ 6378 struct inodedep *inodedep; /* Inodedep for ip */ 6379 struct allocindir *aip; /* allocindir allocated by the above routines */ 6380 ufs_lbn_t lbn; /* Logical block number for this block. */ 6381 { 6382 struct fs *fs; 6383 struct indirdep *indirdep; 6384 struct allocindir *oldaip; 6385 struct freefrag *freefrag; 6386 struct mount *mp; 6387 struct ufsmount *ump; 6388 6389 mp = ITOVFS(ip); 6390 ump = VFSTOUFS(mp); 6391 LOCK_OWNED(ump); 6392 fs = ump->um_fs; 6393 if (bp->b_lblkno >= 0) 6394 panic("setup_allocindir_phase2: not indir blk"); 6395 KASSERT(aip->ai_offset >= 0 && aip->ai_offset < NINDIR(fs), 6396 ("setup_allocindir_phase2: Bad offset %d", aip->ai_offset)); 6397 indirdep = indirdep_lookup(mp, ip, bp); 6398 KASSERT(indirdep->ir_savebp != NULL, 6399 ("setup_allocindir_phase2 NULL ir_savebp")); 6400 aip->ai_indirdep = indirdep; 6401 /* 6402 * Check for an unwritten dependency for this indirect offset. If 6403 * there is, merge the old dependency into the new one. This happens 6404 * as a result of reallocblk only. 6405 */ 6406 freefrag = NULL; 6407 if (aip->ai_oldblkno != 0) { 6408 LIST_FOREACH(oldaip, &indirdep->ir_deplisthd, ai_next) { 6409 if (oldaip->ai_offset == aip->ai_offset) { 6410 freefrag = allocindir_merge(aip, oldaip); 6411 goto done; 6412 } 6413 } 6414 LIST_FOREACH(oldaip, &indirdep->ir_donehd, ai_next) { 6415 if (oldaip->ai_offset == aip->ai_offset) { 6416 freefrag = allocindir_merge(aip, oldaip); 6417 goto done; 6418 } 6419 } 6420 } 6421 done: 6422 LIST_INSERT_HEAD(&indirdep->ir_deplisthd, aip, ai_next); 6423 return (freefrag); 6424 } 6425 6426 /* 6427 * Merge two allocindirs which refer to the same block. Move newblock 6428 * dependencies and setup the freefrags appropriately. 6429 */ 6430 static struct freefrag * 6431 allocindir_merge(aip, oldaip) 6432 struct allocindir *aip; 6433 struct allocindir *oldaip; 6434 { 6435 struct freefrag *freefrag; 6436 struct worklist *wk; 6437 6438 if (oldaip->ai_newblkno != aip->ai_oldblkno) 6439 panic("allocindir_merge: blkno"); 6440 aip->ai_oldblkno = oldaip->ai_oldblkno; 6441 freefrag = aip->ai_freefrag; 6442 aip->ai_freefrag = oldaip->ai_freefrag; 6443 oldaip->ai_freefrag = NULL; 6444 KASSERT(freefrag != NULL, ("setup_allocindir_phase2: No freefrag")); 6445 /* 6446 * If we are tracking a new directory-block allocation, 6447 * move it from the old allocindir to the new allocindir. 6448 */ 6449 if ((wk = LIST_FIRST(&oldaip->ai_newdirblk)) != NULL) { 6450 WORKLIST_REMOVE(wk); 6451 if (!LIST_EMPTY(&oldaip->ai_newdirblk)) 6452 panic("allocindir_merge: extra newdirblk"); 6453 WORKLIST_INSERT(&aip->ai_newdirblk, wk); 6454 } 6455 /* 6456 * We can skip journaling for this freefrag and just complete 6457 * any pending journal work for the allocindir that is being 6458 * removed after the freefrag completes. 6459 */ 6460 if (freefrag->ff_jdep) 6461 cancel_jfreefrag(WK_JFREEFRAG(freefrag->ff_jdep)); 6462 LIST_REMOVE(oldaip, ai_next); 6463 freefrag->ff_jdep = (struct worklist *)cancel_newblk(&oldaip->ai_block, 6464 &freefrag->ff_list, &freefrag->ff_jwork); 6465 free_newblk(&oldaip->ai_block); 6466 6467 return (freefrag); 6468 } 6469 6470 static inline void 6471 setup_freedirect(freeblks, ip, i, needj) 6472 struct freeblks *freeblks; 6473 struct inode *ip; 6474 int i; 6475 int needj; 6476 { 6477 struct ufsmount *ump; 6478 ufs2_daddr_t blkno; 6479 int frags; 6480 6481 blkno = DIP(ip, i_db[i]); 6482 if (blkno == 0) 6483 return; 6484 DIP_SET(ip, i_db[i], 0); 6485 ump = ITOUMP(ip); 6486 frags = sblksize(ump->um_fs, ip->i_size, i); 6487 frags = numfrags(ump->um_fs, frags); 6488 newfreework(ump, freeblks, NULL, i, blkno, frags, 0, needj); 6489 } 6490 6491 static inline void 6492 setup_freeext(freeblks, ip, i, needj) 6493 struct freeblks *freeblks; 6494 struct inode *ip; 6495 int i; 6496 int needj; 6497 { 6498 struct ufsmount *ump; 6499 ufs2_daddr_t blkno; 6500 int frags; 6501 6502 blkno = ip->i_din2->di_extb[i]; 6503 if (blkno == 0) 6504 return; 6505 ip->i_din2->di_extb[i] = 0; 6506 ump = ITOUMP(ip); 6507 frags = sblksize(ump->um_fs, ip->i_din2->di_extsize, i); 6508 frags = numfrags(ump->um_fs, frags); 6509 newfreework(ump, freeblks, NULL, -1 - i, blkno, frags, 0, needj); 6510 } 6511 6512 static inline void 6513 setup_freeindir(freeblks, ip, i, lbn, needj) 6514 struct freeblks *freeblks; 6515 struct inode *ip; 6516 int i; 6517 ufs_lbn_t lbn; 6518 int needj; 6519 { 6520 struct ufsmount *ump; 6521 ufs2_daddr_t blkno; 6522 6523 blkno = DIP(ip, i_ib[i]); 6524 if (blkno == 0) 6525 return; 6526 DIP_SET(ip, i_ib[i], 0); 6527 ump = ITOUMP(ip); 6528 newfreework(ump, freeblks, NULL, lbn, blkno, ump->um_fs->fs_frag, 6529 0, needj); 6530 } 6531 6532 static inline struct freeblks * 6533 newfreeblks(mp, ip) 6534 struct mount *mp; 6535 struct inode *ip; 6536 { 6537 struct freeblks *freeblks; 6538 6539 freeblks = malloc(sizeof(struct freeblks), 6540 M_FREEBLKS, M_SOFTDEP_FLAGS|M_ZERO); 6541 workitem_alloc(&freeblks->fb_list, D_FREEBLKS, mp); 6542 LIST_INIT(&freeblks->fb_jblkdephd); 6543 LIST_INIT(&freeblks->fb_jwork); 6544 freeblks->fb_ref = 0; 6545 freeblks->fb_cgwait = 0; 6546 freeblks->fb_state = ATTACHED; 6547 freeblks->fb_uid = ip->i_uid; 6548 freeblks->fb_inum = ip->i_number; 6549 freeblks->fb_vtype = ITOV(ip)->v_type; 6550 freeblks->fb_modrev = DIP(ip, i_modrev); 6551 freeblks->fb_devvp = ITODEVVP(ip); 6552 freeblks->fb_chkcnt = 0; 6553 freeblks->fb_len = 0; 6554 6555 return (freeblks); 6556 } 6557 6558 static void 6559 trunc_indirdep(indirdep, freeblks, bp, off) 6560 struct indirdep *indirdep; 6561 struct freeblks *freeblks; 6562 struct buf *bp; 6563 int off; 6564 { 6565 struct allocindir *aip, *aipn; 6566 6567 /* 6568 * The first set of allocindirs won't be in savedbp. 6569 */ 6570 LIST_FOREACH_SAFE(aip, &indirdep->ir_deplisthd, ai_next, aipn) 6571 if (aip->ai_offset > off) 6572 cancel_allocindir(aip, bp, freeblks, 1); 6573 LIST_FOREACH_SAFE(aip, &indirdep->ir_donehd, ai_next, aipn) 6574 if (aip->ai_offset > off) 6575 cancel_allocindir(aip, bp, freeblks, 1); 6576 /* 6577 * These will exist in savedbp. 6578 */ 6579 LIST_FOREACH_SAFE(aip, &indirdep->ir_writehd, ai_next, aipn) 6580 if (aip->ai_offset > off) 6581 cancel_allocindir(aip, NULL, freeblks, 0); 6582 LIST_FOREACH_SAFE(aip, &indirdep->ir_completehd, ai_next, aipn) 6583 if (aip->ai_offset > off) 6584 cancel_allocindir(aip, NULL, freeblks, 0); 6585 } 6586 6587 /* 6588 * Follow the chain of indirects down to lastlbn creating a freework 6589 * structure for each. This will be used to start indir_trunc() at 6590 * the right offset and create the journal records for the parrtial 6591 * truncation. A second step will handle the truncated dependencies. 6592 */ 6593 static int 6594 setup_trunc_indir(freeblks, ip, lbn, lastlbn, blkno) 6595 struct freeblks *freeblks; 6596 struct inode *ip; 6597 ufs_lbn_t lbn; 6598 ufs_lbn_t lastlbn; 6599 ufs2_daddr_t blkno; 6600 { 6601 struct indirdep *indirdep; 6602 struct indirdep *indirn; 6603 struct freework *freework; 6604 struct newblk *newblk; 6605 struct mount *mp; 6606 struct ufsmount *ump; 6607 struct buf *bp; 6608 uint8_t *start; 6609 uint8_t *end; 6610 ufs_lbn_t lbnadd; 6611 int level; 6612 int error; 6613 int off; 6614 6615 freework = NULL; 6616 if (blkno == 0) 6617 return (0); 6618 mp = freeblks->fb_list.wk_mp; 6619 ump = VFSTOUFS(mp); 6620 /* 6621 * Here, calls to VOP_BMAP() will fail. However, we already have 6622 * the on-disk address, so we just pass it to bread() instead of 6623 * having bread() attempt to calculate it using VOP_BMAP(). 6624 */ 6625 error = ffs_breadz(ump, ITOV(ip), lbn, blkptrtodb(ump, blkno), 6626 (int)mp->mnt_stat.f_iosize, NULL, NULL, 0, NOCRED, 0, NULL, &bp); 6627 if (error) 6628 return (error); 6629 level = lbn_level(lbn); 6630 lbnadd = lbn_offset(ump->um_fs, level); 6631 /* 6632 * Compute the offset of the last block we want to keep. Store 6633 * in the freework the first block we want to completely free. 6634 */ 6635 off = (lastlbn - -(lbn + level)) / lbnadd; 6636 if (off + 1 == NINDIR(ump->um_fs)) 6637 goto nowork; 6638 freework = newfreework(ump, freeblks, NULL, lbn, blkno, 0, off + 1, 0); 6639 /* 6640 * Link the freework into the indirdep. This will prevent any new 6641 * allocations from proceeding until we are finished with the 6642 * truncate and the block is written. 6643 */ 6644 ACQUIRE_LOCK(ump); 6645 indirdep = indirdep_lookup(mp, ip, bp); 6646 if (indirdep->ir_freeblks) 6647 panic("setup_trunc_indir: indirdep already truncated."); 6648 TAILQ_INSERT_TAIL(&indirdep->ir_trunc, freework, fw_next); 6649 freework->fw_indir = indirdep; 6650 /* 6651 * Cancel any allocindirs that will not make it to disk. 6652 * We have to do this for all copies of the indirdep that 6653 * live on this newblk. 6654 */ 6655 if ((indirdep->ir_state & DEPCOMPLETE) == 0) { 6656 if (newblk_lookup(mp, dbtofsb(ump->um_fs, bp->b_blkno), 0, 6657 &newblk) == 0) 6658 panic("setup_trunc_indir: lost block"); 6659 LIST_FOREACH(indirn, &newblk->nb_indirdeps, ir_next) 6660 trunc_indirdep(indirn, freeblks, bp, off); 6661 } else 6662 trunc_indirdep(indirdep, freeblks, bp, off); 6663 FREE_LOCK(ump); 6664 /* 6665 * Creation is protected by the buf lock. The saveddata is only 6666 * needed if a full truncation follows a partial truncation but it 6667 * is difficult to allocate in that case so we fetch it anyway. 6668 */ 6669 if (indirdep->ir_saveddata == NULL) 6670 indirdep->ir_saveddata = malloc(bp->b_bcount, M_INDIRDEP, 6671 M_SOFTDEP_FLAGS); 6672 nowork: 6673 /* Fetch the blkno of the child and the zero start offset. */ 6674 if (I_IS_UFS1(ip)) { 6675 blkno = ((ufs1_daddr_t *)bp->b_data)[off]; 6676 start = (uint8_t *)&((ufs1_daddr_t *)bp->b_data)[off+1]; 6677 } else { 6678 blkno = ((ufs2_daddr_t *)bp->b_data)[off]; 6679 start = (uint8_t *)&((ufs2_daddr_t *)bp->b_data)[off+1]; 6680 } 6681 if (freework) { 6682 /* Zero the truncated pointers. */ 6683 end = bp->b_data + bp->b_bcount; 6684 bzero(start, end - start); 6685 bdwrite(bp); 6686 } else 6687 bqrelse(bp); 6688 if (level == 0) 6689 return (0); 6690 lbn++; /* adjust level */ 6691 lbn -= (off * lbnadd); 6692 return setup_trunc_indir(freeblks, ip, lbn, lastlbn, blkno); 6693 } 6694 6695 /* 6696 * Complete the partial truncation of an indirect block setup by 6697 * setup_trunc_indir(). This zeros the truncated pointers in the saved 6698 * copy and writes them to disk before the freeblks is allowed to complete. 6699 */ 6700 static void 6701 complete_trunc_indir(freework) 6702 struct freework *freework; 6703 { 6704 struct freework *fwn; 6705 struct indirdep *indirdep; 6706 struct ufsmount *ump; 6707 struct buf *bp; 6708 uintptr_t start; 6709 int count; 6710 6711 ump = VFSTOUFS(freework->fw_list.wk_mp); 6712 LOCK_OWNED(ump); 6713 indirdep = freework->fw_indir; 6714 for (;;) { 6715 bp = indirdep->ir_bp; 6716 /* See if the block was discarded. */ 6717 if (bp == NULL) 6718 break; 6719 /* Inline part of getdirtybuf(). We dont want bremfree. */ 6720 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) == 0) 6721 break; 6722 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, 6723 LOCK_PTR(ump)) == 0) 6724 BUF_UNLOCK(bp); 6725 ACQUIRE_LOCK(ump); 6726 } 6727 freework->fw_state |= DEPCOMPLETE; 6728 TAILQ_REMOVE(&indirdep->ir_trunc, freework, fw_next); 6729 /* 6730 * Zero the pointers in the saved copy. 6731 */ 6732 if (indirdep->ir_state & UFS1FMT) 6733 start = sizeof(ufs1_daddr_t); 6734 else 6735 start = sizeof(ufs2_daddr_t); 6736 start *= freework->fw_start; 6737 count = indirdep->ir_savebp->b_bcount - start; 6738 start += (uintptr_t)indirdep->ir_savebp->b_data; 6739 bzero((char *)start, count); 6740 /* 6741 * We need to start the next truncation in the list if it has not 6742 * been started yet. 6743 */ 6744 fwn = TAILQ_FIRST(&indirdep->ir_trunc); 6745 if (fwn != NULL) { 6746 if (fwn->fw_freeblks == indirdep->ir_freeblks) 6747 TAILQ_REMOVE(&indirdep->ir_trunc, fwn, fw_next); 6748 if ((fwn->fw_state & ONWORKLIST) == 0) 6749 freework_enqueue(fwn); 6750 } 6751 /* 6752 * If bp is NULL the block was fully truncated, restore 6753 * the saved block list otherwise free it if it is no 6754 * longer needed. 6755 */ 6756 if (TAILQ_EMPTY(&indirdep->ir_trunc)) { 6757 if (bp == NULL) 6758 bcopy(indirdep->ir_saveddata, 6759 indirdep->ir_savebp->b_data, 6760 indirdep->ir_savebp->b_bcount); 6761 free(indirdep->ir_saveddata, M_INDIRDEP); 6762 indirdep->ir_saveddata = NULL; 6763 } 6764 /* 6765 * When bp is NULL there is a full truncation pending. We 6766 * must wait for this full truncation to be journaled before 6767 * we can release this freework because the disk pointers will 6768 * never be written as zero. 6769 */ 6770 if (bp == NULL) { 6771 if (LIST_EMPTY(&indirdep->ir_freeblks->fb_jblkdephd)) 6772 handle_written_freework(freework); 6773 else 6774 WORKLIST_INSERT(&indirdep->ir_freeblks->fb_freeworkhd, 6775 &freework->fw_list); 6776 if (fwn == NULL) { 6777 freework->fw_indir = (void *)0x0000deadbeef0000; 6778 bp = indirdep->ir_savebp; 6779 indirdep->ir_savebp = NULL; 6780 free_indirdep(indirdep); 6781 FREE_LOCK(ump); 6782 brelse(bp); 6783 ACQUIRE_LOCK(ump); 6784 } 6785 } else { 6786 /* Complete when the real copy is written. */ 6787 WORKLIST_INSERT(&bp->b_dep, &freework->fw_list); 6788 BUF_UNLOCK(bp); 6789 } 6790 } 6791 6792 /* 6793 * Calculate the number of blocks we are going to release where datablocks 6794 * is the current total and length is the new file size. 6795 */ 6796 static ufs2_daddr_t 6797 blkcount(fs, datablocks, length) 6798 struct fs *fs; 6799 ufs2_daddr_t datablocks; 6800 off_t length; 6801 { 6802 off_t totblks, numblks; 6803 6804 totblks = 0; 6805 numblks = howmany(length, fs->fs_bsize); 6806 if (numblks <= UFS_NDADDR) { 6807 totblks = howmany(length, fs->fs_fsize); 6808 goto out; 6809 } 6810 totblks = blkstofrags(fs, numblks); 6811 numblks -= UFS_NDADDR; 6812 /* 6813 * Count all single, then double, then triple indirects required. 6814 * Subtracting one indirects worth of blocks for each pass 6815 * acknowledges one of each pointed to by the inode. 6816 */ 6817 for (;;) { 6818 totblks += blkstofrags(fs, howmany(numblks, NINDIR(fs))); 6819 numblks -= NINDIR(fs); 6820 if (numblks <= 0) 6821 break; 6822 numblks = howmany(numblks, NINDIR(fs)); 6823 } 6824 out: 6825 totblks = fsbtodb(fs, totblks); 6826 /* 6827 * Handle sparse files. We can't reclaim more blocks than the inode 6828 * references. We will correct it later in handle_complete_freeblks() 6829 * when we know the real count. 6830 */ 6831 if (totblks > datablocks) 6832 return (0); 6833 return (datablocks - totblks); 6834 } 6835 6836 /* 6837 * Handle freeblocks for journaled softupdate filesystems. 6838 * 6839 * Contrary to normal softupdates, we must preserve the block pointers in 6840 * indirects until their subordinates are free. This is to avoid journaling 6841 * every block that is freed which may consume more space than the journal 6842 * itself. The recovery program will see the free block journals at the 6843 * base of the truncated area and traverse them to reclaim space. The 6844 * pointers in the inode may be cleared immediately after the journal 6845 * records are written because each direct and indirect pointer in the 6846 * inode is recorded in a journal. This permits full truncation to proceed 6847 * asynchronously. The write order is journal -> inode -> cgs -> indirects. 6848 * 6849 * The algorithm is as follows: 6850 * 1) Traverse the in-memory state and create journal entries to release 6851 * the relevant blocks and full indirect trees. 6852 * 2) Traverse the indirect block chain adding partial truncation freework 6853 * records to indirects in the path to lastlbn. The freework will 6854 * prevent new allocation dependencies from being satisfied in this 6855 * indirect until the truncation completes. 6856 * 3) Read and lock the inode block, performing an update with the new size 6857 * and pointers. This prevents truncated data from becoming valid on 6858 * disk through step 4. 6859 * 4) Reap unsatisfied dependencies that are beyond the truncated area, 6860 * eliminate journal work for those records that do not require it. 6861 * 5) Schedule the journal records to be written followed by the inode block. 6862 * 6) Allocate any necessary frags for the end of file. 6863 * 7) Zero any partially truncated blocks. 6864 * 6865 * From this truncation proceeds asynchronously using the freework and 6866 * indir_trunc machinery. The file will not be extended again into a 6867 * partially truncated indirect block until all work is completed but 6868 * the normal dependency mechanism ensures that it is rolled back/forward 6869 * as appropriate. Further truncation may occur without delay and is 6870 * serialized in indir_trunc(). 6871 */ 6872 void 6873 softdep_journal_freeblocks(ip, cred, length, flags) 6874 struct inode *ip; /* The inode whose length is to be reduced */ 6875 struct ucred *cred; 6876 off_t length; /* The new length for the file */ 6877 int flags; /* IO_EXT and/or IO_NORMAL */ 6878 { 6879 struct freeblks *freeblks, *fbn; 6880 struct worklist *wk, *wkn; 6881 struct inodedep *inodedep; 6882 struct jblkdep *jblkdep; 6883 struct allocdirect *adp, *adpn; 6884 struct ufsmount *ump; 6885 struct fs *fs; 6886 struct buf *bp; 6887 struct vnode *vp; 6888 struct mount *mp; 6889 daddr_t dbn; 6890 ufs2_daddr_t extblocks, datablocks; 6891 ufs_lbn_t tmpval, lbn, lastlbn; 6892 int frags, lastoff, iboff, allocblock, needj, error, i; 6893 6894 ump = ITOUMP(ip); 6895 mp = UFSTOVFS(ump); 6896 fs = ump->um_fs; 6897 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 6898 ("softdep_journal_freeblocks called on non-softdep filesystem")); 6899 vp = ITOV(ip); 6900 needj = 1; 6901 iboff = -1; 6902 allocblock = 0; 6903 extblocks = 0; 6904 datablocks = 0; 6905 frags = 0; 6906 freeblks = newfreeblks(mp, ip); 6907 ACQUIRE_LOCK(ump); 6908 /* 6909 * If we're truncating a removed file that will never be written 6910 * we don't need to journal the block frees. The canceled journals 6911 * for the allocations will suffice. 6912 */ 6913 inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep); 6914 if ((inodedep->id_state & (UNLINKED | DEPCOMPLETE)) == UNLINKED && 6915 length == 0) 6916 needj = 0; 6917 CTR3(KTR_SUJ, "softdep_journal_freeblks: ip %d length %ld needj %d", 6918 ip->i_number, length, needj); 6919 FREE_LOCK(ump); 6920 /* 6921 * Calculate the lbn that we are truncating to. This results in -1 6922 * if we're truncating the 0 bytes. So it is the last lbn we want 6923 * to keep, not the first lbn we want to truncate. 6924 */ 6925 lastlbn = lblkno(fs, length + fs->fs_bsize - 1) - 1; 6926 lastoff = blkoff(fs, length); 6927 /* 6928 * Compute frags we are keeping in lastlbn. 0 means all. 6929 */ 6930 if (lastlbn >= 0 && lastlbn < UFS_NDADDR) { 6931 frags = fragroundup(fs, lastoff); 6932 /* adp offset of last valid allocdirect. */ 6933 iboff = lastlbn; 6934 } else if (lastlbn > 0) 6935 iboff = UFS_NDADDR; 6936 if (fs->fs_magic == FS_UFS2_MAGIC) 6937 extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize)); 6938 /* 6939 * Handle normal data blocks and indirects. This section saves 6940 * values used after the inode update to complete frag and indirect 6941 * truncation. 6942 */ 6943 if ((flags & IO_NORMAL) != 0) { 6944 /* 6945 * Handle truncation of whole direct and indirect blocks. 6946 */ 6947 for (i = iboff + 1; i < UFS_NDADDR; i++) 6948 setup_freedirect(freeblks, ip, i, needj); 6949 for (i = 0, tmpval = NINDIR(fs), lbn = UFS_NDADDR; 6950 i < UFS_NIADDR; 6951 i++, lbn += tmpval, tmpval *= NINDIR(fs)) { 6952 /* Release a whole indirect tree. */ 6953 if (lbn > lastlbn) { 6954 setup_freeindir(freeblks, ip, i, -lbn -i, 6955 needj); 6956 continue; 6957 } 6958 iboff = i + UFS_NDADDR; 6959 /* 6960 * Traverse partially truncated indirect tree. 6961 */ 6962 if (lbn <= lastlbn && lbn + tmpval - 1 > lastlbn) 6963 setup_trunc_indir(freeblks, ip, -lbn - i, 6964 lastlbn, DIP(ip, i_ib[i])); 6965 } 6966 /* 6967 * Handle partial truncation to a frag boundary. 6968 */ 6969 if (frags) { 6970 ufs2_daddr_t blkno; 6971 long oldfrags; 6972 6973 oldfrags = blksize(fs, ip, lastlbn); 6974 blkno = DIP(ip, i_db[lastlbn]); 6975 if (blkno && oldfrags != frags) { 6976 oldfrags -= frags; 6977 oldfrags = numfrags(fs, oldfrags); 6978 blkno += numfrags(fs, frags); 6979 newfreework(ump, freeblks, NULL, lastlbn, 6980 blkno, oldfrags, 0, needj); 6981 if (needj) 6982 adjust_newfreework(freeblks, 6983 numfrags(fs, frags)); 6984 } else if (blkno == 0) 6985 allocblock = 1; 6986 } 6987 /* 6988 * Add a journal record for partial truncate if we are 6989 * handling indirect blocks. Non-indirects need no extra 6990 * journaling. 6991 */ 6992 if (length != 0 && lastlbn >= UFS_NDADDR) { 6993 UFS_INODE_SET_FLAG(ip, IN_TRUNCATED); 6994 newjtrunc(freeblks, length, 0); 6995 } 6996 ip->i_size = length; 6997 DIP_SET(ip, i_size, ip->i_size); 6998 UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE); 6999 datablocks = DIP(ip, i_blocks) - extblocks; 7000 if (length != 0) 7001 datablocks = blkcount(fs, datablocks, length); 7002 freeblks->fb_len = length; 7003 } 7004 if ((flags & IO_EXT) != 0) { 7005 for (i = 0; i < UFS_NXADDR; i++) 7006 setup_freeext(freeblks, ip, i, needj); 7007 ip->i_din2->di_extsize = 0; 7008 datablocks += extblocks; 7009 UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE); 7010 } 7011 #ifdef QUOTA 7012 /* Reference the quotas in case the block count is wrong in the end. */ 7013 quotaref(vp, freeblks->fb_quota); 7014 (void) chkdq(ip, -datablocks, NOCRED, FORCE); 7015 #endif 7016 freeblks->fb_chkcnt = -datablocks; 7017 UFS_LOCK(ump); 7018 fs->fs_pendingblocks += datablocks; 7019 UFS_UNLOCK(ump); 7020 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - datablocks); 7021 /* 7022 * Handle truncation of incomplete alloc direct dependencies. We 7023 * hold the inode block locked to prevent incomplete dependencies 7024 * from reaching the disk while we are eliminating those that 7025 * have been truncated. This is a partially inlined ffs_update(). 7026 */ 7027 ufs_itimes(vp); 7028 ip->i_flag &= ~(IN_LAZYACCESS | IN_LAZYMOD | IN_MODIFIED); 7029 dbn = fsbtodb(fs, ino_to_fsba(fs, ip->i_number)); 7030 error = ffs_breadz(ump, ump->um_devvp, dbn, dbn, (int)fs->fs_bsize, 7031 NULL, NULL, 0, cred, 0, NULL, &bp); 7032 if (error) { 7033 softdep_error("softdep_journal_freeblocks", error); 7034 return; 7035 } 7036 if (bp->b_bufsize == fs->fs_bsize) 7037 bp->b_flags |= B_CLUSTEROK; 7038 softdep_update_inodeblock(ip, bp, 0); 7039 if (ump->um_fstype == UFS1) { 7040 *((struct ufs1_dinode *)bp->b_data + 7041 ino_to_fsbo(fs, ip->i_number)) = *ip->i_din1; 7042 } else { 7043 ffs_update_dinode_ckhash(fs, ip->i_din2); 7044 *((struct ufs2_dinode *)bp->b_data + 7045 ino_to_fsbo(fs, ip->i_number)) = *ip->i_din2; 7046 } 7047 ACQUIRE_LOCK(ump); 7048 (void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep); 7049 if ((inodedep->id_state & IOSTARTED) != 0) 7050 panic("softdep_setup_freeblocks: inode busy"); 7051 /* 7052 * Add the freeblks structure to the list of operations that 7053 * must await the zero'ed inode being written to disk. If we 7054 * still have a bitmap dependency (needj), then the inode 7055 * has never been written to disk, so we can process the 7056 * freeblks below once we have deleted the dependencies. 7057 */ 7058 if (needj) 7059 WORKLIST_INSERT(&bp->b_dep, &freeblks->fb_list); 7060 else 7061 freeblks->fb_state |= COMPLETE; 7062 if ((flags & IO_NORMAL) != 0) { 7063 TAILQ_FOREACH_SAFE(adp, &inodedep->id_inoupdt, ad_next, adpn) { 7064 if (adp->ad_offset > iboff) 7065 cancel_allocdirect(&inodedep->id_inoupdt, adp, 7066 freeblks); 7067 /* 7068 * Truncate the allocdirect. We could eliminate 7069 * or modify journal records as well. 7070 */ 7071 else if (adp->ad_offset == iboff && frags) 7072 adp->ad_newsize = frags; 7073 } 7074 } 7075 if ((flags & IO_EXT) != 0) 7076 while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL) 7077 cancel_allocdirect(&inodedep->id_extupdt, adp, 7078 freeblks); 7079 /* 7080 * Scan the bufwait list for newblock dependencies that will never 7081 * make it to disk. 7082 */ 7083 LIST_FOREACH_SAFE(wk, &inodedep->id_bufwait, wk_list, wkn) { 7084 if (wk->wk_type != D_ALLOCDIRECT) 7085 continue; 7086 adp = WK_ALLOCDIRECT(wk); 7087 if (((flags & IO_NORMAL) != 0 && (adp->ad_offset > iboff)) || 7088 ((flags & IO_EXT) != 0 && (adp->ad_state & EXTDATA))) { 7089 cancel_jfreeblk(freeblks, adp->ad_newblkno); 7090 cancel_newblk(WK_NEWBLK(wk), NULL, &freeblks->fb_jwork); 7091 WORKLIST_INSERT(&freeblks->fb_freeworkhd, wk); 7092 } 7093 } 7094 /* 7095 * Add journal work. 7096 */ 7097 LIST_FOREACH(jblkdep, &freeblks->fb_jblkdephd, jb_deps) 7098 add_to_journal(&jblkdep->jb_list); 7099 FREE_LOCK(ump); 7100 bdwrite(bp); 7101 /* 7102 * Truncate dependency structures beyond length. 7103 */ 7104 trunc_dependencies(ip, freeblks, lastlbn, frags, flags); 7105 /* 7106 * This is only set when we need to allocate a fragment because 7107 * none existed at the end of a frag-sized file. It handles only 7108 * allocating a new, zero filled block. 7109 */ 7110 if (allocblock) { 7111 ip->i_size = length - lastoff; 7112 DIP_SET(ip, i_size, ip->i_size); 7113 error = UFS_BALLOC(vp, length - 1, 1, cred, BA_CLRBUF, &bp); 7114 if (error != 0) { 7115 softdep_error("softdep_journal_freeblks", error); 7116 return; 7117 } 7118 ip->i_size = length; 7119 DIP_SET(ip, i_size, length); 7120 UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE | IN_UPDATE); 7121 allocbuf(bp, frags); 7122 ffs_update(vp, 0); 7123 bawrite(bp); 7124 } else if (lastoff != 0 && vp->v_type != VDIR) { 7125 int size; 7126 7127 /* 7128 * Zero the end of a truncated frag or block. 7129 */ 7130 size = sblksize(fs, length, lastlbn); 7131 error = bread(vp, lastlbn, size, cred, &bp); 7132 if (error == 0) { 7133 bzero((char *)bp->b_data + lastoff, size - lastoff); 7134 bawrite(bp); 7135 } else if (!ffs_fsfail_cleanup(ump, error)) { 7136 softdep_error("softdep_journal_freeblks", error); 7137 return; 7138 } 7139 } 7140 ACQUIRE_LOCK(ump); 7141 inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep); 7142 TAILQ_INSERT_TAIL(&inodedep->id_freeblklst, freeblks, fb_next); 7143 freeblks->fb_state |= DEPCOMPLETE | ONDEPLIST; 7144 /* 7145 * We zero earlier truncations so they don't erroneously 7146 * update i_blocks. 7147 */ 7148 if (freeblks->fb_len == 0 && (flags & IO_NORMAL) != 0) 7149 TAILQ_FOREACH(fbn, &inodedep->id_freeblklst, fb_next) 7150 fbn->fb_len = 0; 7151 if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE && 7152 LIST_EMPTY(&freeblks->fb_jblkdephd)) 7153 freeblks->fb_state |= INPROGRESS; 7154 else 7155 freeblks = NULL; 7156 FREE_LOCK(ump); 7157 if (freeblks) 7158 handle_workitem_freeblocks(freeblks, 0); 7159 trunc_pages(ip, length, extblocks, flags); 7160 7161 } 7162 7163 /* 7164 * Flush a JOP_SYNC to the journal. 7165 */ 7166 void 7167 softdep_journal_fsync(ip) 7168 struct inode *ip; 7169 { 7170 struct jfsync *jfsync; 7171 struct ufsmount *ump; 7172 7173 ump = ITOUMP(ip); 7174 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 7175 ("softdep_journal_fsync called on non-softdep filesystem")); 7176 if ((ip->i_flag & IN_TRUNCATED) == 0) 7177 return; 7178 ip->i_flag &= ~IN_TRUNCATED; 7179 jfsync = malloc(sizeof(*jfsync), M_JFSYNC, M_SOFTDEP_FLAGS | M_ZERO); 7180 workitem_alloc(&jfsync->jfs_list, D_JFSYNC, UFSTOVFS(ump)); 7181 jfsync->jfs_size = ip->i_size; 7182 jfsync->jfs_ino = ip->i_number; 7183 ACQUIRE_LOCK(ump); 7184 add_to_journal(&jfsync->jfs_list); 7185 jwait(&jfsync->jfs_list, MNT_WAIT); 7186 FREE_LOCK(ump); 7187 } 7188 7189 /* 7190 * Block de-allocation dependencies. 7191 * 7192 * When blocks are de-allocated, the on-disk pointers must be nullified before 7193 * the blocks are made available for use by other files. (The true 7194 * requirement is that old pointers must be nullified before new on-disk 7195 * pointers are set. We chose this slightly more stringent requirement to 7196 * reduce complexity.) Our implementation handles this dependency by updating 7197 * the inode (or indirect block) appropriately but delaying the actual block 7198 * de-allocation (i.e., freemap and free space count manipulation) until 7199 * after the updated versions reach stable storage. After the disk is 7200 * updated, the blocks can be safely de-allocated whenever it is convenient. 7201 * This implementation handles only the common case of reducing a file's 7202 * length to zero. Other cases are handled by the conventional synchronous 7203 * write approach. 7204 * 7205 * The ffs implementation with which we worked double-checks 7206 * the state of the block pointers and file size as it reduces 7207 * a file's length. Some of this code is replicated here in our 7208 * soft updates implementation. The freeblks->fb_chkcnt field is 7209 * used to transfer a part of this information to the procedure 7210 * that eventually de-allocates the blocks. 7211 * 7212 * This routine should be called from the routine that shortens 7213 * a file's length, before the inode's size or block pointers 7214 * are modified. It will save the block pointer information for 7215 * later release and zero the inode so that the calling routine 7216 * can release it. 7217 */ 7218 void 7219 softdep_setup_freeblocks(ip, length, flags) 7220 struct inode *ip; /* The inode whose length is to be reduced */ 7221 off_t length; /* The new length for the file */ 7222 int flags; /* IO_EXT and/or IO_NORMAL */ 7223 { 7224 struct ufs1_dinode *dp1; 7225 struct ufs2_dinode *dp2; 7226 struct freeblks *freeblks; 7227 struct inodedep *inodedep; 7228 struct allocdirect *adp; 7229 struct ufsmount *ump; 7230 struct buf *bp; 7231 struct fs *fs; 7232 ufs2_daddr_t extblocks, datablocks; 7233 struct mount *mp; 7234 int i, delay, error; 7235 ufs_lbn_t tmpval; 7236 ufs_lbn_t lbn; 7237 7238 ump = ITOUMP(ip); 7239 mp = UFSTOVFS(ump); 7240 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 7241 ("softdep_setup_freeblocks called on non-softdep filesystem")); 7242 CTR2(KTR_SUJ, "softdep_setup_freeblks: ip %d length %ld", 7243 ip->i_number, length); 7244 KASSERT(length == 0, ("softdep_setup_freeblocks: non-zero length")); 7245 fs = ump->um_fs; 7246 if ((error = bread(ump->um_devvp, 7247 fsbtodb(fs, ino_to_fsba(fs, ip->i_number)), 7248 (int)fs->fs_bsize, NOCRED, &bp)) != 0) { 7249 if (!ffs_fsfail_cleanup(ump, error)) 7250 softdep_error("softdep_setup_freeblocks", error); 7251 return; 7252 } 7253 freeblks = newfreeblks(mp, ip); 7254 extblocks = 0; 7255 datablocks = 0; 7256 if (fs->fs_magic == FS_UFS2_MAGIC) 7257 extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize)); 7258 if ((flags & IO_NORMAL) != 0) { 7259 for (i = 0; i < UFS_NDADDR; i++) 7260 setup_freedirect(freeblks, ip, i, 0); 7261 for (i = 0, tmpval = NINDIR(fs), lbn = UFS_NDADDR; 7262 i < UFS_NIADDR; 7263 i++, lbn += tmpval, tmpval *= NINDIR(fs)) 7264 setup_freeindir(freeblks, ip, i, -lbn -i, 0); 7265 ip->i_size = 0; 7266 DIP_SET(ip, i_size, 0); 7267 UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE); 7268 datablocks = DIP(ip, i_blocks) - extblocks; 7269 } 7270 if ((flags & IO_EXT) != 0) { 7271 for (i = 0; i < UFS_NXADDR; i++) 7272 setup_freeext(freeblks, ip, i, 0); 7273 ip->i_din2->di_extsize = 0; 7274 datablocks += extblocks; 7275 UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE); 7276 } 7277 #ifdef QUOTA 7278 /* Reference the quotas in case the block count is wrong in the end. */ 7279 quotaref(ITOV(ip), freeblks->fb_quota); 7280 (void) chkdq(ip, -datablocks, NOCRED, FORCE); 7281 #endif 7282 freeblks->fb_chkcnt = -datablocks; 7283 UFS_LOCK(ump); 7284 fs->fs_pendingblocks += datablocks; 7285 UFS_UNLOCK(ump); 7286 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - datablocks); 7287 /* 7288 * Push the zero'ed inode to its disk buffer so that we are free 7289 * to delete its dependencies below. Once the dependencies are gone 7290 * the buffer can be safely released. 7291 */ 7292 if (ump->um_fstype == UFS1) { 7293 dp1 = ((struct ufs1_dinode *)bp->b_data + 7294 ino_to_fsbo(fs, ip->i_number)); 7295 ip->i_din1->di_freelink = dp1->di_freelink; 7296 *dp1 = *ip->i_din1; 7297 } else { 7298 dp2 = ((struct ufs2_dinode *)bp->b_data + 7299 ino_to_fsbo(fs, ip->i_number)); 7300 ip->i_din2->di_freelink = dp2->di_freelink; 7301 ffs_update_dinode_ckhash(fs, ip->i_din2); 7302 *dp2 = *ip->i_din2; 7303 } 7304 /* 7305 * Find and eliminate any inode dependencies. 7306 */ 7307 ACQUIRE_LOCK(ump); 7308 (void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep); 7309 if ((inodedep->id_state & IOSTARTED) != 0) 7310 panic("softdep_setup_freeblocks: inode busy"); 7311 /* 7312 * Add the freeblks structure to the list of operations that 7313 * must await the zero'ed inode being written to disk. If we 7314 * still have a bitmap dependency (delay == 0), then the inode 7315 * has never been written to disk, so we can process the 7316 * freeblks below once we have deleted the dependencies. 7317 */ 7318 delay = (inodedep->id_state & DEPCOMPLETE); 7319 if (delay) 7320 WORKLIST_INSERT(&bp->b_dep, &freeblks->fb_list); 7321 else 7322 freeblks->fb_state |= COMPLETE; 7323 /* 7324 * Because the file length has been truncated to zero, any 7325 * pending block allocation dependency structures associated 7326 * with this inode are obsolete and can simply be de-allocated. 7327 * We must first merge the two dependency lists to get rid of 7328 * any duplicate freefrag structures, then purge the merged list. 7329 * If we still have a bitmap dependency, then the inode has never 7330 * been written to disk, so we can free any fragments without delay. 7331 */ 7332 if (flags & IO_NORMAL) { 7333 merge_inode_lists(&inodedep->id_newinoupdt, 7334 &inodedep->id_inoupdt); 7335 while ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL) 7336 cancel_allocdirect(&inodedep->id_inoupdt, adp, 7337 freeblks); 7338 } 7339 if (flags & IO_EXT) { 7340 merge_inode_lists(&inodedep->id_newextupdt, 7341 &inodedep->id_extupdt); 7342 while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL) 7343 cancel_allocdirect(&inodedep->id_extupdt, adp, 7344 freeblks); 7345 } 7346 FREE_LOCK(ump); 7347 bdwrite(bp); 7348 trunc_dependencies(ip, freeblks, -1, 0, flags); 7349 ACQUIRE_LOCK(ump); 7350 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0) 7351 (void) free_inodedep(inodedep); 7352 freeblks->fb_state |= DEPCOMPLETE; 7353 /* 7354 * If the inode with zeroed block pointers is now on disk 7355 * we can start freeing blocks. 7356 */ 7357 if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE) 7358 freeblks->fb_state |= INPROGRESS; 7359 else 7360 freeblks = NULL; 7361 FREE_LOCK(ump); 7362 if (freeblks) 7363 handle_workitem_freeblocks(freeblks, 0); 7364 trunc_pages(ip, length, extblocks, flags); 7365 } 7366 7367 /* 7368 * Eliminate pages from the page cache that back parts of this inode and 7369 * adjust the vnode pager's idea of our size. This prevents stale data 7370 * from hanging around in the page cache. 7371 */ 7372 static void 7373 trunc_pages(ip, length, extblocks, flags) 7374 struct inode *ip; 7375 off_t length; 7376 ufs2_daddr_t extblocks; 7377 int flags; 7378 { 7379 struct vnode *vp; 7380 struct fs *fs; 7381 ufs_lbn_t lbn; 7382 off_t end, extend; 7383 7384 vp = ITOV(ip); 7385 fs = ITOFS(ip); 7386 extend = OFF_TO_IDX(lblktosize(fs, -extblocks)); 7387 if ((flags & IO_EXT) != 0) 7388 vn_pages_remove(vp, extend, 0); 7389 if ((flags & IO_NORMAL) == 0) 7390 return; 7391 BO_LOCK(&vp->v_bufobj); 7392 drain_output(vp); 7393 BO_UNLOCK(&vp->v_bufobj); 7394 /* 7395 * The vnode pager eliminates file pages we eliminate indirects 7396 * below. 7397 */ 7398 vnode_pager_setsize(vp, length); 7399 /* 7400 * Calculate the end based on the last indirect we want to keep. If 7401 * the block extends into indirects we can just use the negative of 7402 * its lbn. Doubles and triples exist at lower numbers so we must 7403 * be careful not to remove those, if they exist. double and triple 7404 * indirect lbns do not overlap with others so it is not important 7405 * to verify how many levels are required. 7406 */ 7407 lbn = lblkno(fs, length); 7408 if (lbn >= UFS_NDADDR) { 7409 /* Calculate the virtual lbn of the triple indirect. */ 7410 lbn = -lbn - (UFS_NIADDR - 1); 7411 end = OFF_TO_IDX(lblktosize(fs, lbn)); 7412 } else 7413 end = extend; 7414 vn_pages_remove(vp, OFF_TO_IDX(OFF_MAX), end); 7415 } 7416 7417 /* 7418 * See if the buf bp is in the range eliminated by truncation. 7419 */ 7420 static int 7421 trunc_check_buf(bp, blkoffp, lastlbn, lastoff, flags) 7422 struct buf *bp; 7423 int *blkoffp; 7424 ufs_lbn_t lastlbn; 7425 int lastoff; 7426 int flags; 7427 { 7428 ufs_lbn_t lbn; 7429 7430 *blkoffp = 0; 7431 /* Only match ext/normal blocks as appropriate. */ 7432 if (((flags & IO_EXT) == 0 && (bp->b_xflags & BX_ALTDATA)) || 7433 ((flags & IO_NORMAL) == 0 && (bp->b_xflags & BX_ALTDATA) == 0)) 7434 return (0); 7435 /* ALTDATA is always a full truncation. */ 7436 if ((bp->b_xflags & BX_ALTDATA) != 0) 7437 return (1); 7438 /* -1 is full truncation. */ 7439 if (lastlbn == -1) 7440 return (1); 7441 /* 7442 * If this is a partial truncate we only want those 7443 * blocks and indirect blocks that cover the range 7444 * we're after. 7445 */ 7446 lbn = bp->b_lblkno; 7447 if (lbn < 0) 7448 lbn = -(lbn + lbn_level(lbn)); 7449 if (lbn < lastlbn) 7450 return (0); 7451 /* Here we only truncate lblkno if it's partial. */ 7452 if (lbn == lastlbn) { 7453 if (lastoff == 0) 7454 return (0); 7455 *blkoffp = lastoff; 7456 } 7457 return (1); 7458 } 7459 7460 /* 7461 * Eliminate any dependencies that exist in memory beyond lblkno:off 7462 */ 7463 static void 7464 trunc_dependencies(ip, freeblks, lastlbn, lastoff, flags) 7465 struct inode *ip; 7466 struct freeblks *freeblks; 7467 ufs_lbn_t lastlbn; 7468 int lastoff; 7469 int flags; 7470 { 7471 struct bufobj *bo; 7472 struct vnode *vp; 7473 struct buf *bp; 7474 int blkoff; 7475 7476 /* 7477 * We must wait for any I/O in progress to finish so that 7478 * all potential buffers on the dirty list will be visible. 7479 * Once they are all there, walk the list and get rid of 7480 * any dependencies. 7481 */ 7482 vp = ITOV(ip); 7483 bo = &vp->v_bufobj; 7484 BO_LOCK(bo); 7485 drain_output(vp); 7486 TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) 7487 bp->b_vflags &= ~BV_SCANNED; 7488 restart: 7489 TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) { 7490 if (bp->b_vflags & BV_SCANNED) 7491 continue; 7492 if (!trunc_check_buf(bp, &blkoff, lastlbn, lastoff, flags)) { 7493 bp->b_vflags |= BV_SCANNED; 7494 continue; 7495 } 7496 KASSERT(bp->b_bufobj == bo, ("Wrong object in buffer")); 7497 if ((bp = getdirtybuf(bp, BO_LOCKPTR(bo), MNT_WAIT)) == NULL) 7498 goto restart; 7499 BO_UNLOCK(bo); 7500 if (deallocate_dependencies(bp, freeblks, blkoff)) 7501 bqrelse(bp); 7502 else 7503 brelse(bp); 7504 BO_LOCK(bo); 7505 goto restart; 7506 } 7507 /* 7508 * Now do the work of vtruncbuf while also matching indirect blocks. 7509 */ 7510 TAILQ_FOREACH(bp, &bo->bo_clean.bv_hd, b_bobufs) 7511 bp->b_vflags &= ~BV_SCANNED; 7512 cleanrestart: 7513 TAILQ_FOREACH(bp, &bo->bo_clean.bv_hd, b_bobufs) { 7514 if (bp->b_vflags & BV_SCANNED) 7515 continue; 7516 if (!trunc_check_buf(bp, &blkoff, lastlbn, lastoff, flags)) { 7517 bp->b_vflags |= BV_SCANNED; 7518 continue; 7519 } 7520 if (BUF_LOCK(bp, 7521 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, 7522 BO_LOCKPTR(bo)) == ENOLCK) { 7523 BO_LOCK(bo); 7524 goto cleanrestart; 7525 } 7526 bp->b_vflags |= BV_SCANNED; 7527 bremfree(bp); 7528 if (blkoff != 0) { 7529 allocbuf(bp, blkoff); 7530 bqrelse(bp); 7531 } else { 7532 bp->b_flags |= B_INVAL | B_NOCACHE | B_RELBUF; 7533 brelse(bp); 7534 } 7535 BO_LOCK(bo); 7536 goto cleanrestart; 7537 } 7538 drain_output(vp); 7539 BO_UNLOCK(bo); 7540 } 7541 7542 static int 7543 cancel_pagedep(pagedep, freeblks, blkoff) 7544 struct pagedep *pagedep; 7545 struct freeblks *freeblks; 7546 int blkoff; 7547 { 7548 struct jremref *jremref; 7549 struct jmvref *jmvref; 7550 struct dirrem *dirrem, *tmp; 7551 int i; 7552 7553 /* 7554 * Copy any directory remove dependencies to the list 7555 * to be processed after the freeblks proceeds. If 7556 * directory entry never made it to disk they 7557 * can be dumped directly onto the work list. 7558 */ 7559 LIST_FOREACH_SAFE(dirrem, &pagedep->pd_dirremhd, dm_next, tmp) { 7560 /* Skip this directory removal if it is intended to remain. */ 7561 if (dirrem->dm_offset < blkoff) 7562 continue; 7563 /* 7564 * If there are any dirrems we wait for the journal write 7565 * to complete and then restart the buf scan as the lock 7566 * has been dropped. 7567 */ 7568 while ((jremref = LIST_FIRST(&dirrem->dm_jremrefhd)) != NULL) { 7569 jwait(&jremref->jr_list, MNT_WAIT); 7570 return (ERESTART); 7571 } 7572 LIST_REMOVE(dirrem, dm_next); 7573 dirrem->dm_dirinum = pagedep->pd_ino; 7574 WORKLIST_INSERT(&freeblks->fb_freeworkhd, &dirrem->dm_list); 7575 } 7576 while ((jmvref = LIST_FIRST(&pagedep->pd_jmvrefhd)) != NULL) { 7577 jwait(&jmvref->jm_list, MNT_WAIT); 7578 return (ERESTART); 7579 } 7580 /* 7581 * When we're partially truncating a pagedep we just want to flush 7582 * journal entries and return. There can not be any adds in the 7583 * truncated portion of the directory and newblk must remain if 7584 * part of the block remains. 7585 */ 7586 if (blkoff != 0) { 7587 struct diradd *dap; 7588 7589 LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist) 7590 if (dap->da_offset > blkoff) 7591 panic("cancel_pagedep: diradd %p off %d > %d", 7592 dap, dap->da_offset, blkoff); 7593 for (i = 0; i < DAHASHSZ; i++) 7594 LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) 7595 if (dap->da_offset > blkoff) 7596 panic("cancel_pagedep: diradd %p off %d > %d", 7597 dap, dap->da_offset, blkoff); 7598 return (0); 7599 } 7600 /* 7601 * There should be no directory add dependencies present 7602 * as the directory could not be truncated until all 7603 * children were removed. 7604 */ 7605 KASSERT(LIST_FIRST(&pagedep->pd_pendinghd) == NULL, 7606 ("deallocate_dependencies: pendinghd != NULL")); 7607 for (i = 0; i < DAHASHSZ; i++) 7608 KASSERT(LIST_FIRST(&pagedep->pd_diraddhd[i]) == NULL, 7609 ("deallocate_dependencies: diraddhd != NULL")); 7610 if ((pagedep->pd_state & NEWBLOCK) != 0) 7611 free_newdirblk(pagedep->pd_newdirblk); 7612 if (free_pagedep(pagedep) == 0) 7613 panic("Failed to free pagedep %p", pagedep); 7614 return (0); 7615 } 7616 7617 /* 7618 * Reclaim any dependency structures from a buffer that is about to 7619 * be reallocated to a new vnode. The buffer must be locked, thus, 7620 * no I/O completion operations can occur while we are manipulating 7621 * its associated dependencies. The mutex is held so that other I/O's 7622 * associated with related dependencies do not occur. 7623 */ 7624 static int 7625 deallocate_dependencies(bp, freeblks, off) 7626 struct buf *bp; 7627 struct freeblks *freeblks; 7628 int off; 7629 { 7630 struct indirdep *indirdep; 7631 struct pagedep *pagedep; 7632 struct worklist *wk, *wkn; 7633 struct ufsmount *ump; 7634 7635 ump = softdep_bp_to_mp(bp); 7636 if (ump == NULL) 7637 goto done; 7638 ACQUIRE_LOCK(ump); 7639 LIST_FOREACH_SAFE(wk, &bp->b_dep, wk_list, wkn) { 7640 switch (wk->wk_type) { 7641 case D_INDIRDEP: 7642 indirdep = WK_INDIRDEP(wk); 7643 if (bp->b_lblkno >= 0 || 7644 bp->b_blkno != indirdep->ir_savebp->b_lblkno) 7645 panic("deallocate_dependencies: not indir"); 7646 cancel_indirdep(indirdep, bp, freeblks); 7647 continue; 7648 7649 case D_PAGEDEP: 7650 pagedep = WK_PAGEDEP(wk); 7651 if (cancel_pagedep(pagedep, freeblks, off)) { 7652 FREE_LOCK(ump); 7653 return (ERESTART); 7654 } 7655 continue; 7656 7657 case D_ALLOCINDIR: 7658 /* 7659 * Simply remove the allocindir, we'll find it via 7660 * the indirdep where we can clear pointers if 7661 * needed. 7662 */ 7663 WORKLIST_REMOVE(wk); 7664 continue; 7665 7666 case D_FREEWORK: 7667 /* 7668 * A truncation is waiting for the zero'd pointers 7669 * to be written. It can be freed when the freeblks 7670 * is journaled. 7671 */ 7672 WORKLIST_REMOVE(wk); 7673 wk->wk_state |= ONDEPLIST; 7674 WORKLIST_INSERT(&freeblks->fb_freeworkhd, wk); 7675 break; 7676 7677 case D_ALLOCDIRECT: 7678 if (off != 0) 7679 continue; 7680 /* FALLTHROUGH */ 7681 default: 7682 panic("deallocate_dependencies: Unexpected type %s", 7683 TYPENAME(wk->wk_type)); 7684 /* NOTREACHED */ 7685 } 7686 } 7687 FREE_LOCK(ump); 7688 done: 7689 /* 7690 * Don't throw away this buf, we were partially truncating and 7691 * some deps may always remain. 7692 */ 7693 if (off) { 7694 allocbuf(bp, off); 7695 bp->b_vflags |= BV_SCANNED; 7696 return (EBUSY); 7697 } 7698 bp->b_flags |= B_INVAL | B_NOCACHE; 7699 7700 return (0); 7701 } 7702 7703 /* 7704 * An allocdirect is being canceled due to a truncate. We must make sure 7705 * the journal entry is released in concert with the blkfree that releases 7706 * the storage. Completed journal entries must not be released until the 7707 * space is no longer pointed to by the inode or in the bitmap. 7708 */ 7709 static void 7710 cancel_allocdirect(adphead, adp, freeblks) 7711 struct allocdirectlst *adphead; 7712 struct allocdirect *adp; 7713 struct freeblks *freeblks; 7714 { 7715 struct freework *freework; 7716 struct newblk *newblk; 7717 struct worklist *wk; 7718 7719 TAILQ_REMOVE(adphead, adp, ad_next); 7720 newblk = (struct newblk *)adp; 7721 freework = NULL; 7722 /* 7723 * Find the correct freework structure. 7724 */ 7725 LIST_FOREACH(wk, &freeblks->fb_freeworkhd, wk_list) { 7726 if (wk->wk_type != D_FREEWORK) 7727 continue; 7728 freework = WK_FREEWORK(wk); 7729 if (freework->fw_blkno == newblk->nb_newblkno) 7730 break; 7731 } 7732 if (freework == NULL) 7733 panic("cancel_allocdirect: Freework not found"); 7734 /* 7735 * If a newblk exists at all we still have the journal entry that 7736 * initiated the allocation so we do not need to journal the free. 7737 */ 7738 cancel_jfreeblk(freeblks, freework->fw_blkno); 7739 /* 7740 * If the journal hasn't been written the jnewblk must be passed 7741 * to the call to ffs_blkfree that reclaims the space. We accomplish 7742 * this by linking the journal dependency into the freework to be 7743 * freed when freework_freeblock() is called. If the journal has 7744 * been written we can simply reclaim the journal space when the 7745 * freeblks work is complete. 7746 */ 7747 freework->fw_jnewblk = cancel_newblk(newblk, &freework->fw_list, 7748 &freeblks->fb_jwork); 7749 WORKLIST_INSERT(&freeblks->fb_freeworkhd, &newblk->nb_list); 7750 } 7751 7752 /* 7753 * Cancel a new block allocation. May be an indirect or direct block. We 7754 * remove it from various lists and return any journal record that needs to 7755 * be resolved by the caller. 7756 * 7757 * A special consideration is made for indirects which were never pointed 7758 * at on disk and will never be found once this block is released. 7759 */ 7760 static struct jnewblk * 7761 cancel_newblk(newblk, wk, wkhd) 7762 struct newblk *newblk; 7763 struct worklist *wk; 7764 struct workhead *wkhd; 7765 { 7766 struct jnewblk *jnewblk; 7767 7768 CTR1(KTR_SUJ, "cancel_newblk: blkno %jd", newblk->nb_newblkno); 7769 7770 newblk->nb_state |= GOINGAWAY; 7771 /* 7772 * Previously we traversed the completedhd on each indirdep 7773 * attached to this newblk to cancel them and gather journal 7774 * work. Since we need only the oldest journal segment and 7775 * the lowest point on the tree will always have the oldest 7776 * journal segment we are free to release the segments 7777 * of any subordinates and may leave the indirdep list to 7778 * indirdep_complete() when this newblk is freed. 7779 */ 7780 if (newblk->nb_state & ONDEPLIST) { 7781 newblk->nb_state &= ~ONDEPLIST; 7782 LIST_REMOVE(newblk, nb_deps); 7783 } 7784 if (newblk->nb_state & ONWORKLIST) 7785 WORKLIST_REMOVE(&newblk->nb_list); 7786 /* 7787 * If the journal entry hasn't been written we save a pointer to 7788 * the dependency that frees it until it is written or the 7789 * superseding operation completes. 7790 */ 7791 jnewblk = newblk->nb_jnewblk; 7792 if (jnewblk != NULL && wk != NULL) { 7793 newblk->nb_jnewblk = NULL; 7794 jnewblk->jn_dep = wk; 7795 } 7796 if (!LIST_EMPTY(&newblk->nb_jwork)) 7797 jwork_move(wkhd, &newblk->nb_jwork); 7798 /* 7799 * When truncating we must free the newdirblk early to remove 7800 * the pagedep from the hash before returning. 7801 */ 7802 if ((wk = LIST_FIRST(&newblk->nb_newdirblk)) != NULL) 7803 free_newdirblk(WK_NEWDIRBLK(wk)); 7804 if (!LIST_EMPTY(&newblk->nb_newdirblk)) 7805 panic("cancel_newblk: extra newdirblk"); 7806 7807 return (jnewblk); 7808 } 7809 7810 /* 7811 * Schedule the freefrag associated with a newblk to be released once 7812 * the pointers are written and the previous block is no longer needed. 7813 */ 7814 static void 7815 newblk_freefrag(newblk) 7816 struct newblk *newblk; 7817 { 7818 struct freefrag *freefrag; 7819 7820 if (newblk->nb_freefrag == NULL) 7821 return; 7822 freefrag = newblk->nb_freefrag; 7823 newblk->nb_freefrag = NULL; 7824 freefrag->ff_state |= COMPLETE; 7825 if ((freefrag->ff_state & ALLCOMPLETE) == ALLCOMPLETE) 7826 add_to_worklist(&freefrag->ff_list, 0); 7827 } 7828 7829 /* 7830 * Free a newblk. Generate a new freefrag work request if appropriate. 7831 * This must be called after the inode pointer and any direct block pointers 7832 * are valid or fully removed via truncate or frag extension. 7833 */ 7834 static void 7835 free_newblk(newblk) 7836 struct newblk *newblk; 7837 { 7838 struct indirdep *indirdep; 7839 struct worklist *wk; 7840 7841 KASSERT(newblk->nb_jnewblk == NULL, 7842 ("free_newblk: jnewblk %p still attached", newblk->nb_jnewblk)); 7843 KASSERT(newblk->nb_list.wk_type != D_NEWBLK, 7844 ("free_newblk: unclaimed newblk")); 7845 LOCK_OWNED(VFSTOUFS(newblk->nb_list.wk_mp)); 7846 newblk_freefrag(newblk); 7847 if (newblk->nb_state & ONDEPLIST) 7848 LIST_REMOVE(newblk, nb_deps); 7849 if (newblk->nb_state & ONWORKLIST) 7850 WORKLIST_REMOVE(&newblk->nb_list); 7851 LIST_REMOVE(newblk, nb_hash); 7852 if ((wk = LIST_FIRST(&newblk->nb_newdirblk)) != NULL) 7853 free_newdirblk(WK_NEWDIRBLK(wk)); 7854 if (!LIST_EMPTY(&newblk->nb_newdirblk)) 7855 panic("free_newblk: extra newdirblk"); 7856 while ((indirdep = LIST_FIRST(&newblk->nb_indirdeps)) != NULL) 7857 indirdep_complete(indirdep); 7858 handle_jwork(&newblk->nb_jwork); 7859 WORKITEM_FREE(newblk, D_NEWBLK); 7860 } 7861 7862 /* 7863 * Free a newdirblk. Clear the NEWBLOCK flag on its associated pagedep. 7864 */ 7865 static void 7866 free_newdirblk(newdirblk) 7867 struct newdirblk *newdirblk; 7868 { 7869 struct pagedep *pagedep; 7870 struct diradd *dap; 7871 struct worklist *wk; 7872 7873 LOCK_OWNED(VFSTOUFS(newdirblk->db_list.wk_mp)); 7874 WORKLIST_REMOVE(&newdirblk->db_list); 7875 /* 7876 * If the pagedep is still linked onto the directory buffer 7877 * dependency chain, then some of the entries on the 7878 * pd_pendinghd list may not be committed to disk yet. In 7879 * this case, we will simply clear the NEWBLOCK flag and 7880 * let the pd_pendinghd list be processed when the pagedep 7881 * is next written. If the pagedep is no longer on the buffer 7882 * dependency chain, then all the entries on the pd_pending 7883 * list are committed to disk and we can free them here. 7884 */ 7885 pagedep = newdirblk->db_pagedep; 7886 pagedep->pd_state &= ~NEWBLOCK; 7887 if ((pagedep->pd_state & ONWORKLIST) == 0) { 7888 while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL) 7889 free_diradd(dap, NULL); 7890 /* 7891 * If no dependencies remain, the pagedep will be freed. 7892 */ 7893 free_pagedep(pagedep); 7894 } 7895 /* Should only ever be one item in the list. */ 7896 while ((wk = LIST_FIRST(&newdirblk->db_mkdir)) != NULL) { 7897 WORKLIST_REMOVE(wk); 7898 handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY); 7899 } 7900 WORKITEM_FREE(newdirblk, D_NEWDIRBLK); 7901 } 7902 7903 /* 7904 * Prepare an inode to be freed. The actual free operation is not 7905 * done until the zero'ed inode has been written to disk. 7906 */ 7907 void 7908 softdep_freefile(pvp, ino, mode) 7909 struct vnode *pvp; 7910 ino_t ino; 7911 int mode; 7912 { 7913 struct inode *ip = VTOI(pvp); 7914 struct inodedep *inodedep; 7915 struct freefile *freefile; 7916 struct freeblks *freeblks; 7917 struct ufsmount *ump; 7918 7919 ump = ITOUMP(ip); 7920 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 7921 ("softdep_freefile called on non-softdep filesystem")); 7922 /* 7923 * This sets up the inode de-allocation dependency. 7924 */ 7925 freefile = malloc(sizeof(struct freefile), 7926 M_FREEFILE, M_SOFTDEP_FLAGS); 7927 workitem_alloc(&freefile->fx_list, D_FREEFILE, pvp->v_mount); 7928 freefile->fx_mode = mode; 7929 freefile->fx_oldinum = ino; 7930 freefile->fx_devvp = ump->um_devvp; 7931 LIST_INIT(&freefile->fx_jwork); 7932 UFS_LOCK(ump); 7933 ump->um_fs->fs_pendinginodes += 1; 7934 UFS_UNLOCK(ump); 7935 7936 /* 7937 * If the inodedep does not exist, then the zero'ed inode has 7938 * been written to disk. If the allocated inode has never been 7939 * written to disk, then the on-disk inode is zero'ed. In either 7940 * case we can free the file immediately. If the journal was 7941 * canceled before being written the inode will never make it to 7942 * disk and we must send the canceled journal entrys to 7943 * ffs_freefile() to be cleared in conjunction with the bitmap. 7944 * Any blocks waiting on the inode to write can be safely freed 7945 * here as it will never been written. 7946 */ 7947 ACQUIRE_LOCK(ump); 7948 inodedep_lookup(pvp->v_mount, ino, 0, &inodedep); 7949 if (inodedep) { 7950 /* 7951 * Clear out freeblks that no longer need to reference 7952 * this inode. 7953 */ 7954 while ((freeblks = 7955 TAILQ_FIRST(&inodedep->id_freeblklst)) != NULL) { 7956 TAILQ_REMOVE(&inodedep->id_freeblklst, freeblks, 7957 fb_next); 7958 freeblks->fb_state &= ~ONDEPLIST; 7959 } 7960 /* 7961 * Remove this inode from the unlinked list. 7962 */ 7963 if (inodedep->id_state & UNLINKED) { 7964 /* 7965 * Save the journal work to be freed with the bitmap 7966 * before we clear UNLINKED. Otherwise it can be lost 7967 * if the inode block is written. 7968 */ 7969 handle_bufwait(inodedep, &freefile->fx_jwork); 7970 clear_unlinked_inodedep(inodedep); 7971 /* 7972 * Re-acquire inodedep as we've dropped the 7973 * per-filesystem lock in clear_unlinked_inodedep(). 7974 */ 7975 inodedep_lookup(pvp->v_mount, ino, 0, &inodedep); 7976 } 7977 } 7978 if (inodedep == NULL || check_inode_unwritten(inodedep)) { 7979 FREE_LOCK(ump); 7980 handle_workitem_freefile(freefile); 7981 return; 7982 } 7983 if ((inodedep->id_state & DEPCOMPLETE) == 0) 7984 inodedep->id_state |= GOINGAWAY; 7985 WORKLIST_INSERT(&inodedep->id_inowait, &freefile->fx_list); 7986 FREE_LOCK(ump); 7987 if (ip->i_number == ino) 7988 UFS_INODE_SET_FLAG(ip, IN_MODIFIED); 7989 } 7990 7991 /* 7992 * Check to see if an inode has never been written to disk. If 7993 * so free the inodedep and return success, otherwise return failure. 7994 * 7995 * If we still have a bitmap dependency, then the inode has never 7996 * been written to disk. Drop the dependency as it is no longer 7997 * necessary since the inode is being deallocated. We set the 7998 * ALLCOMPLETE flags since the bitmap now properly shows that the 7999 * inode is not allocated. Even if the inode is actively being 8000 * written, it has been rolled back to its zero'ed state, so we 8001 * are ensured that a zero inode is what is on the disk. For short 8002 * lived files, this change will usually result in removing all the 8003 * dependencies from the inode so that it can be freed immediately. 8004 */ 8005 static int 8006 check_inode_unwritten(inodedep) 8007 struct inodedep *inodedep; 8008 { 8009 8010 LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp)); 8011 8012 if ((inodedep->id_state & (DEPCOMPLETE | UNLINKED)) != 0 || 8013 !LIST_EMPTY(&inodedep->id_dirremhd) || 8014 !LIST_EMPTY(&inodedep->id_pendinghd) || 8015 !LIST_EMPTY(&inodedep->id_bufwait) || 8016 !LIST_EMPTY(&inodedep->id_inowait) || 8017 !TAILQ_EMPTY(&inodedep->id_inoreflst) || 8018 !TAILQ_EMPTY(&inodedep->id_inoupdt) || 8019 !TAILQ_EMPTY(&inodedep->id_newinoupdt) || 8020 !TAILQ_EMPTY(&inodedep->id_extupdt) || 8021 !TAILQ_EMPTY(&inodedep->id_newextupdt) || 8022 !TAILQ_EMPTY(&inodedep->id_freeblklst) || 8023 inodedep->id_mkdiradd != NULL || 8024 inodedep->id_nlinkdelta != 0) 8025 return (0); 8026 /* 8027 * Another process might be in initiate_write_inodeblock_ufs[12] 8028 * trying to allocate memory without holding "Softdep Lock". 8029 */ 8030 if ((inodedep->id_state & IOSTARTED) != 0 && 8031 inodedep->id_savedino1 == NULL) 8032 return (0); 8033 8034 if (inodedep->id_state & ONDEPLIST) 8035 LIST_REMOVE(inodedep, id_deps); 8036 inodedep->id_state &= ~ONDEPLIST; 8037 inodedep->id_state |= ALLCOMPLETE; 8038 inodedep->id_bmsafemap = NULL; 8039 if (inodedep->id_state & ONWORKLIST) 8040 WORKLIST_REMOVE(&inodedep->id_list); 8041 if (inodedep->id_savedino1 != NULL) { 8042 free(inodedep->id_savedino1, M_SAVEDINO); 8043 inodedep->id_savedino1 = NULL; 8044 } 8045 if (free_inodedep(inodedep) == 0) 8046 panic("check_inode_unwritten: busy inode"); 8047 return (1); 8048 } 8049 8050 static int 8051 check_inodedep_free(inodedep) 8052 struct inodedep *inodedep; 8053 { 8054 8055 LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp)); 8056 if ((inodedep->id_state & ALLCOMPLETE) != ALLCOMPLETE || 8057 !LIST_EMPTY(&inodedep->id_dirremhd) || 8058 !LIST_EMPTY(&inodedep->id_pendinghd) || 8059 !LIST_EMPTY(&inodedep->id_bufwait) || 8060 !LIST_EMPTY(&inodedep->id_inowait) || 8061 !TAILQ_EMPTY(&inodedep->id_inoreflst) || 8062 !TAILQ_EMPTY(&inodedep->id_inoupdt) || 8063 !TAILQ_EMPTY(&inodedep->id_newinoupdt) || 8064 !TAILQ_EMPTY(&inodedep->id_extupdt) || 8065 !TAILQ_EMPTY(&inodedep->id_newextupdt) || 8066 !TAILQ_EMPTY(&inodedep->id_freeblklst) || 8067 inodedep->id_mkdiradd != NULL || 8068 inodedep->id_nlinkdelta != 0 || 8069 inodedep->id_savedino1 != NULL) 8070 return (0); 8071 return (1); 8072 } 8073 8074 /* 8075 * Try to free an inodedep structure. Return 1 if it could be freed. 8076 */ 8077 static int 8078 free_inodedep(inodedep) 8079 struct inodedep *inodedep; 8080 { 8081 8082 LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp)); 8083 if ((inodedep->id_state & (ONWORKLIST | UNLINKED)) != 0 || 8084 !check_inodedep_free(inodedep)) 8085 return (0); 8086 if (inodedep->id_state & ONDEPLIST) 8087 LIST_REMOVE(inodedep, id_deps); 8088 LIST_REMOVE(inodedep, id_hash); 8089 WORKITEM_FREE(inodedep, D_INODEDEP); 8090 return (1); 8091 } 8092 8093 /* 8094 * Free the block referenced by a freework structure. The parent freeblks 8095 * structure is released and completed when the final cg bitmap reaches 8096 * the disk. This routine may be freeing a jnewblk which never made it to 8097 * disk in which case we do not have to wait as the operation is undone 8098 * in memory immediately. 8099 */ 8100 static void 8101 freework_freeblock(freework, key) 8102 struct freework *freework; 8103 u_long key; 8104 { 8105 struct freeblks *freeblks; 8106 struct jnewblk *jnewblk; 8107 struct ufsmount *ump; 8108 struct workhead wkhd; 8109 struct fs *fs; 8110 int bsize; 8111 int needj; 8112 8113 ump = VFSTOUFS(freework->fw_list.wk_mp); 8114 LOCK_OWNED(ump); 8115 /* 8116 * Handle partial truncate separately. 8117 */ 8118 if (freework->fw_indir) { 8119 complete_trunc_indir(freework); 8120 return; 8121 } 8122 freeblks = freework->fw_freeblks; 8123 fs = ump->um_fs; 8124 needj = MOUNTEDSUJ(freeblks->fb_list.wk_mp) != 0; 8125 bsize = lfragtosize(fs, freework->fw_frags); 8126 LIST_INIT(&wkhd); 8127 /* 8128 * DEPCOMPLETE is cleared in indirblk_insert() if the block lives 8129 * on the indirblk hashtable and prevents premature freeing. 8130 */ 8131 freework->fw_state |= DEPCOMPLETE; 8132 /* 8133 * SUJ needs to wait for the segment referencing freed indirect 8134 * blocks to expire so that we know the checker will not confuse 8135 * a re-allocated indirect block with its old contents. 8136 */ 8137 if (needj && freework->fw_lbn <= -UFS_NDADDR) 8138 indirblk_insert(freework); 8139 /* 8140 * If we are canceling an existing jnewblk pass it to the free 8141 * routine, otherwise pass the freeblk which will ultimately 8142 * release the freeblks. If we're not journaling, we can just 8143 * free the freeblks immediately. 8144 */ 8145 jnewblk = freework->fw_jnewblk; 8146 if (jnewblk != NULL) { 8147 cancel_jnewblk(jnewblk, &wkhd); 8148 needj = 0; 8149 } else if (needj) { 8150 freework->fw_state |= DELAYEDFREE; 8151 freeblks->fb_cgwait++; 8152 WORKLIST_INSERT(&wkhd, &freework->fw_list); 8153 } 8154 FREE_LOCK(ump); 8155 freeblks_free(ump, freeblks, btodb(bsize)); 8156 CTR4(KTR_SUJ, 8157 "freework_freeblock: ino %jd blkno %jd lbn %jd size %d", 8158 freeblks->fb_inum, freework->fw_blkno, freework->fw_lbn, bsize); 8159 ffs_blkfree(ump, fs, freeblks->fb_devvp, freework->fw_blkno, bsize, 8160 freeblks->fb_inum, freeblks->fb_vtype, &wkhd, key); 8161 ACQUIRE_LOCK(ump); 8162 /* 8163 * The jnewblk will be discarded and the bits in the map never 8164 * made it to disk. We can immediately free the freeblk. 8165 */ 8166 if (needj == 0) 8167 handle_written_freework(freework); 8168 } 8169 8170 /* 8171 * We enqueue freework items that need processing back on the freeblks and 8172 * add the freeblks to the worklist. This makes it easier to find all work 8173 * required to flush a truncation in process_truncates(). 8174 */ 8175 static void 8176 freework_enqueue(freework) 8177 struct freework *freework; 8178 { 8179 struct freeblks *freeblks; 8180 8181 freeblks = freework->fw_freeblks; 8182 if ((freework->fw_state & INPROGRESS) == 0) 8183 WORKLIST_INSERT(&freeblks->fb_freeworkhd, &freework->fw_list); 8184 if ((freeblks->fb_state & 8185 (ONWORKLIST | INPROGRESS | ALLCOMPLETE)) == ALLCOMPLETE && 8186 LIST_EMPTY(&freeblks->fb_jblkdephd)) 8187 add_to_worklist(&freeblks->fb_list, WK_NODELAY); 8188 } 8189 8190 /* 8191 * Start, continue, or finish the process of freeing an indirect block tree. 8192 * The free operation may be paused at any point with fw_off containing the 8193 * offset to restart from. This enables us to implement some flow control 8194 * for large truncates which may fan out and generate a huge number of 8195 * dependencies. 8196 */ 8197 static void 8198 handle_workitem_indirblk(freework) 8199 struct freework *freework; 8200 { 8201 struct freeblks *freeblks; 8202 struct ufsmount *ump; 8203 struct fs *fs; 8204 8205 freeblks = freework->fw_freeblks; 8206 ump = VFSTOUFS(freeblks->fb_list.wk_mp); 8207 fs = ump->um_fs; 8208 if (freework->fw_state & DEPCOMPLETE) { 8209 handle_written_freework(freework); 8210 return; 8211 } 8212 if (freework->fw_off == NINDIR(fs)) { 8213 freework_freeblock(freework, SINGLETON_KEY); 8214 return; 8215 } 8216 freework->fw_state |= INPROGRESS; 8217 FREE_LOCK(ump); 8218 indir_trunc(freework, fsbtodb(fs, freework->fw_blkno), 8219 freework->fw_lbn); 8220 ACQUIRE_LOCK(ump); 8221 } 8222 8223 /* 8224 * Called when a freework structure attached to a cg buf is written. The 8225 * ref on either the parent or the freeblks structure is released and 8226 * the freeblks is added back to the worklist if there is more work to do. 8227 */ 8228 static void 8229 handle_written_freework(freework) 8230 struct freework *freework; 8231 { 8232 struct freeblks *freeblks; 8233 struct freework *parent; 8234 8235 freeblks = freework->fw_freeblks; 8236 parent = freework->fw_parent; 8237 if (freework->fw_state & DELAYEDFREE) 8238 freeblks->fb_cgwait--; 8239 freework->fw_state |= COMPLETE; 8240 if ((freework->fw_state & ALLCOMPLETE) == ALLCOMPLETE) 8241 WORKITEM_FREE(freework, D_FREEWORK); 8242 if (parent) { 8243 if (--parent->fw_ref == 0) 8244 freework_enqueue(parent); 8245 return; 8246 } 8247 if (--freeblks->fb_ref != 0) 8248 return; 8249 if ((freeblks->fb_state & (ALLCOMPLETE | ONWORKLIST | INPROGRESS)) == 8250 ALLCOMPLETE && LIST_EMPTY(&freeblks->fb_jblkdephd)) 8251 add_to_worklist(&freeblks->fb_list, WK_NODELAY); 8252 } 8253 8254 /* 8255 * This workitem routine performs the block de-allocation. 8256 * The workitem is added to the pending list after the updated 8257 * inode block has been written to disk. As mentioned above, 8258 * checks regarding the number of blocks de-allocated (compared 8259 * to the number of blocks allocated for the file) are also 8260 * performed in this function. 8261 */ 8262 static int 8263 handle_workitem_freeblocks(freeblks, flags) 8264 struct freeblks *freeblks; 8265 int flags; 8266 { 8267 struct freework *freework; 8268 struct newblk *newblk; 8269 struct allocindir *aip; 8270 struct ufsmount *ump; 8271 struct worklist *wk; 8272 u_long key; 8273 8274 KASSERT(LIST_EMPTY(&freeblks->fb_jblkdephd), 8275 ("handle_workitem_freeblocks: Journal entries not written.")); 8276 ump = VFSTOUFS(freeblks->fb_list.wk_mp); 8277 key = ffs_blkrelease_start(ump, freeblks->fb_devvp, freeblks->fb_inum); 8278 ACQUIRE_LOCK(ump); 8279 while ((wk = LIST_FIRST(&freeblks->fb_freeworkhd)) != NULL) { 8280 WORKLIST_REMOVE(wk); 8281 switch (wk->wk_type) { 8282 case D_DIRREM: 8283 wk->wk_state |= COMPLETE; 8284 add_to_worklist(wk, 0); 8285 continue; 8286 8287 case D_ALLOCDIRECT: 8288 free_newblk(WK_NEWBLK(wk)); 8289 continue; 8290 8291 case D_ALLOCINDIR: 8292 aip = WK_ALLOCINDIR(wk); 8293 freework = NULL; 8294 if (aip->ai_state & DELAYEDFREE) { 8295 FREE_LOCK(ump); 8296 freework = newfreework(ump, freeblks, NULL, 8297 aip->ai_lbn, aip->ai_newblkno, 8298 ump->um_fs->fs_frag, 0, 0); 8299 ACQUIRE_LOCK(ump); 8300 } 8301 newblk = WK_NEWBLK(wk); 8302 if (newblk->nb_jnewblk) { 8303 freework->fw_jnewblk = newblk->nb_jnewblk; 8304 newblk->nb_jnewblk->jn_dep = &freework->fw_list; 8305 newblk->nb_jnewblk = NULL; 8306 } 8307 free_newblk(newblk); 8308 continue; 8309 8310 case D_FREEWORK: 8311 freework = WK_FREEWORK(wk); 8312 if (freework->fw_lbn <= -UFS_NDADDR) 8313 handle_workitem_indirblk(freework); 8314 else 8315 freework_freeblock(freework, key); 8316 continue; 8317 default: 8318 panic("handle_workitem_freeblocks: Unknown type %s", 8319 TYPENAME(wk->wk_type)); 8320 } 8321 } 8322 if (freeblks->fb_ref != 0) { 8323 freeblks->fb_state &= ~INPROGRESS; 8324 wake_worklist(&freeblks->fb_list); 8325 freeblks = NULL; 8326 } 8327 FREE_LOCK(ump); 8328 ffs_blkrelease_finish(ump, key); 8329 if (freeblks) 8330 return handle_complete_freeblocks(freeblks, flags); 8331 return (0); 8332 } 8333 8334 /* 8335 * Handle completion of block free via truncate. This allows fs_pending 8336 * to track the actual free block count more closely than if we only updated 8337 * it at the end. We must be careful to handle cases where the block count 8338 * on free was incorrect. 8339 */ 8340 static void 8341 freeblks_free(ump, freeblks, blocks) 8342 struct ufsmount *ump; 8343 struct freeblks *freeblks; 8344 int blocks; 8345 { 8346 struct fs *fs; 8347 ufs2_daddr_t remain; 8348 8349 UFS_LOCK(ump); 8350 remain = -freeblks->fb_chkcnt; 8351 freeblks->fb_chkcnt += blocks; 8352 if (remain > 0) { 8353 if (remain < blocks) 8354 blocks = remain; 8355 fs = ump->um_fs; 8356 fs->fs_pendingblocks -= blocks; 8357 } 8358 UFS_UNLOCK(ump); 8359 } 8360 8361 /* 8362 * Once all of the freework workitems are complete we can retire the 8363 * freeblocks dependency and any journal work awaiting completion. This 8364 * can not be called until all other dependencies are stable on disk. 8365 */ 8366 static int 8367 handle_complete_freeblocks(freeblks, flags) 8368 struct freeblks *freeblks; 8369 int flags; 8370 { 8371 struct inodedep *inodedep; 8372 struct inode *ip; 8373 struct vnode *vp; 8374 struct fs *fs; 8375 struct ufsmount *ump; 8376 ufs2_daddr_t spare; 8377 8378 ump = VFSTOUFS(freeblks->fb_list.wk_mp); 8379 fs = ump->um_fs; 8380 flags = LK_EXCLUSIVE | flags; 8381 spare = freeblks->fb_chkcnt; 8382 8383 /* 8384 * If we did not release the expected number of blocks we may have 8385 * to adjust the inode block count here. Only do so if it wasn't 8386 * a truncation to zero and the modrev still matches. 8387 */ 8388 if (spare && freeblks->fb_len != 0) { 8389 if (ffs_vgetf(freeblks->fb_list.wk_mp, freeblks->fb_inum, 8390 flags, &vp, FFSV_FORCEINSMQ) != 0) 8391 return (EBUSY); 8392 ip = VTOI(vp); 8393 if (ip->i_mode == 0) { 8394 vgone(vp); 8395 } else if (DIP(ip, i_modrev) == freeblks->fb_modrev) { 8396 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - spare); 8397 UFS_INODE_SET_FLAG(ip, IN_CHANGE); 8398 /* 8399 * We must wait so this happens before the 8400 * journal is reclaimed. 8401 */ 8402 ffs_update(vp, 1); 8403 } 8404 vput(vp); 8405 } 8406 if (spare < 0) { 8407 UFS_LOCK(ump); 8408 fs->fs_pendingblocks += spare; 8409 UFS_UNLOCK(ump); 8410 } 8411 #ifdef QUOTA 8412 /* Handle spare. */ 8413 if (spare) 8414 quotaadj(freeblks->fb_quota, ump, -spare); 8415 quotarele(freeblks->fb_quota); 8416 #endif 8417 ACQUIRE_LOCK(ump); 8418 if (freeblks->fb_state & ONDEPLIST) { 8419 inodedep_lookup(freeblks->fb_list.wk_mp, freeblks->fb_inum, 8420 0, &inodedep); 8421 TAILQ_REMOVE(&inodedep->id_freeblklst, freeblks, fb_next); 8422 freeblks->fb_state &= ~ONDEPLIST; 8423 if (TAILQ_EMPTY(&inodedep->id_freeblklst)) 8424 free_inodedep(inodedep); 8425 } 8426 /* 8427 * All of the freeblock deps must be complete prior to this call 8428 * so it's now safe to complete earlier outstanding journal entries. 8429 */ 8430 handle_jwork(&freeblks->fb_jwork); 8431 WORKITEM_FREE(freeblks, D_FREEBLKS); 8432 FREE_LOCK(ump); 8433 return (0); 8434 } 8435 8436 /* 8437 * Release blocks associated with the freeblks and stored in the indirect 8438 * block dbn. If level is greater than SINGLE, the block is an indirect block 8439 * and recursive calls to indirtrunc must be used to cleanse other indirect 8440 * blocks. 8441 * 8442 * This handles partial and complete truncation of blocks. Partial is noted 8443 * with goingaway == 0. In this case the freework is completed after the 8444 * zero'd indirects are written to disk. For full truncation the freework 8445 * is completed after the block is freed. 8446 */ 8447 static void 8448 indir_trunc(freework, dbn, lbn) 8449 struct freework *freework; 8450 ufs2_daddr_t dbn; 8451 ufs_lbn_t lbn; 8452 { 8453 struct freework *nfreework; 8454 struct workhead wkhd; 8455 struct freeblks *freeblks; 8456 struct buf *bp; 8457 struct fs *fs; 8458 struct indirdep *indirdep; 8459 struct mount *mp; 8460 struct ufsmount *ump; 8461 ufs1_daddr_t *bap1; 8462 ufs2_daddr_t nb, nnb, *bap2; 8463 ufs_lbn_t lbnadd, nlbn; 8464 u_long key; 8465 int nblocks, ufs1fmt, freedblocks; 8466 int goingaway, freedeps, needj, level, cnt, i, error; 8467 8468 freeblks = freework->fw_freeblks; 8469 mp = freeblks->fb_list.wk_mp; 8470 ump = VFSTOUFS(mp); 8471 fs = ump->um_fs; 8472 /* 8473 * Get buffer of block pointers to be freed. There are three cases: 8474 * 8475 * 1) Partial truncate caches the indirdep pointer in the freework 8476 * which provides us a back copy to the save bp which holds the 8477 * pointers we want to clear. When this completes the zero 8478 * pointers are written to the real copy. 8479 * 2) The indirect is being completely truncated, cancel_indirdep() 8480 * eliminated the real copy and placed the indirdep on the saved 8481 * copy. The indirdep and buf are discarded when this completes. 8482 * 3) The indirect was not in memory, we read a copy off of the disk 8483 * using the devvp and drop and invalidate the buffer when we're 8484 * done. 8485 */ 8486 goingaway = 1; 8487 indirdep = NULL; 8488 if (freework->fw_indir != NULL) { 8489 goingaway = 0; 8490 indirdep = freework->fw_indir; 8491 bp = indirdep->ir_savebp; 8492 if (bp == NULL || bp->b_blkno != dbn) 8493 panic("indir_trunc: Bad saved buf %p blkno %jd", 8494 bp, (intmax_t)dbn); 8495 } else if ((bp = incore(&freeblks->fb_devvp->v_bufobj, dbn)) != NULL) { 8496 /* 8497 * The lock prevents the buf dep list from changing and 8498 * indirects on devvp should only ever have one dependency. 8499 */ 8500 indirdep = WK_INDIRDEP(LIST_FIRST(&bp->b_dep)); 8501 if (indirdep == NULL || (indirdep->ir_state & GOINGAWAY) == 0) 8502 panic("indir_trunc: Bad indirdep %p from buf %p", 8503 indirdep, bp); 8504 } else { 8505 error = ffs_breadz(ump, freeblks->fb_devvp, dbn, dbn, 8506 (int)fs->fs_bsize, NULL, NULL, 0, NOCRED, 0, NULL, &bp); 8507 if (error) 8508 return; 8509 } 8510 ACQUIRE_LOCK(ump); 8511 /* Protects against a race with complete_trunc_indir(). */ 8512 freework->fw_state &= ~INPROGRESS; 8513 /* 8514 * If we have an indirdep we need to enforce the truncation order 8515 * and discard it when it is complete. 8516 */ 8517 if (indirdep) { 8518 if (freework != TAILQ_FIRST(&indirdep->ir_trunc) && 8519 !TAILQ_EMPTY(&indirdep->ir_trunc)) { 8520 /* 8521 * Add the complete truncate to the list on the 8522 * indirdep to enforce in-order processing. 8523 */ 8524 if (freework->fw_indir == NULL) 8525 TAILQ_INSERT_TAIL(&indirdep->ir_trunc, 8526 freework, fw_next); 8527 FREE_LOCK(ump); 8528 return; 8529 } 8530 /* 8531 * If we're goingaway, free the indirdep. Otherwise it will 8532 * linger until the write completes. 8533 */ 8534 if (goingaway) { 8535 KASSERT(indirdep->ir_savebp == bp, 8536 ("indir_trunc: losing ir_savebp %p", 8537 indirdep->ir_savebp)); 8538 indirdep->ir_savebp = NULL; 8539 free_indirdep(indirdep); 8540 } 8541 } 8542 FREE_LOCK(ump); 8543 /* Initialize pointers depending on block size. */ 8544 if (ump->um_fstype == UFS1) { 8545 bap1 = (ufs1_daddr_t *)bp->b_data; 8546 nb = bap1[freework->fw_off]; 8547 ufs1fmt = 1; 8548 bap2 = NULL; 8549 } else { 8550 bap2 = (ufs2_daddr_t *)bp->b_data; 8551 nb = bap2[freework->fw_off]; 8552 ufs1fmt = 0; 8553 bap1 = NULL; 8554 } 8555 level = lbn_level(lbn); 8556 needj = MOUNTEDSUJ(UFSTOVFS(ump)) != 0; 8557 lbnadd = lbn_offset(fs, level); 8558 nblocks = btodb(fs->fs_bsize); 8559 nfreework = freework; 8560 freedeps = 0; 8561 cnt = 0; 8562 /* 8563 * Reclaim blocks. Traverses into nested indirect levels and 8564 * arranges for the current level to be freed when subordinates 8565 * are free when journaling. 8566 */ 8567 key = ffs_blkrelease_start(ump, freeblks->fb_devvp, freeblks->fb_inum); 8568 for (i = freework->fw_off; i < NINDIR(fs); i++, nb = nnb) { 8569 if (UFS_CHECK_BLKNO(mp, freeblks->fb_inum, nb, 8570 fs->fs_bsize) != 0) 8571 nb = 0; 8572 if (i != NINDIR(fs) - 1) { 8573 if (ufs1fmt) 8574 nnb = bap1[i+1]; 8575 else 8576 nnb = bap2[i+1]; 8577 } else 8578 nnb = 0; 8579 if (nb == 0) 8580 continue; 8581 cnt++; 8582 if (level != 0) { 8583 nlbn = (lbn + 1) - (i * lbnadd); 8584 if (needj != 0) { 8585 nfreework = newfreework(ump, freeblks, freework, 8586 nlbn, nb, fs->fs_frag, 0, 0); 8587 freedeps++; 8588 } 8589 indir_trunc(nfreework, fsbtodb(fs, nb), nlbn); 8590 } else { 8591 struct freedep *freedep; 8592 8593 /* 8594 * Attempt to aggregate freedep dependencies for 8595 * all blocks being released to the same CG. 8596 */ 8597 LIST_INIT(&wkhd); 8598 if (needj != 0 && 8599 (nnb == 0 || (dtog(fs, nb) != dtog(fs, nnb)))) { 8600 freedep = newfreedep(freework); 8601 WORKLIST_INSERT_UNLOCKED(&wkhd, 8602 &freedep->fd_list); 8603 freedeps++; 8604 } 8605 CTR3(KTR_SUJ, 8606 "indir_trunc: ino %jd blkno %jd size %d", 8607 freeblks->fb_inum, nb, fs->fs_bsize); 8608 ffs_blkfree(ump, fs, freeblks->fb_devvp, nb, 8609 fs->fs_bsize, freeblks->fb_inum, 8610 freeblks->fb_vtype, &wkhd, key); 8611 } 8612 } 8613 ffs_blkrelease_finish(ump, key); 8614 if (goingaway) { 8615 bp->b_flags |= B_INVAL | B_NOCACHE; 8616 brelse(bp); 8617 } 8618 freedblocks = 0; 8619 if (level == 0) 8620 freedblocks = (nblocks * cnt); 8621 if (needj == 0) 8622 freedblocks += nblocks; 8623 freeblks_free(ump, freeblks, freedblocks); 8624 /* 8625 * If we are journaling set up the ref counts and offset so this 8626 * indirect can be completed when its children are free. 8627 */ 8628 if (needj) { 8629 ACQUIRE_LOCK(ump); 8630 freework->fw_off = i; 8631 freework->fw_ref += freedeps; 8632 freework->fw_ref -= NINDIR(fs) + 1; 8633 if (level == 0) 8634 freeblks->fb_cgwait += freedeps; 8635 if (freework->fw_ref == 0) 8636 freework_freeblock(freework, SINGLETON_KEY); 8637 FREE_LOCK(ump); 8638 return; 8639 } 8640 /* 8641 * If we're not journaling we can free the indirect now. 8642 */ 8643 dbn = dbtofsb(fs, dbn); 8644 CTR3(KTR_SUJ, 8645 "indir_trunc 2: ino %jd blkno %jd size %d", 8646 freeblks->fb_inum, dbn, fs->fs_bsize); 8647 ffs_blkfree(ump, fs, freeblks->fb_devvp, dbn, fs->fs_bsize, 8648 freeblks->fb_inum, freeblks->fb_vtype, NULL, SINGLETON_KEY); 8649 /* Non SUJ softdep does single-threaded truncations. */ 8650 if (freework->fw_blkno == dbn) { 8651 freework->fw_state |= ALLCOMPLETE; 8652 ACQUIRE_LOCK(ump); 8653 handle_written_freework(freework); 8654 FREE_LOCK(ump); 8655 } 8656 return; 8657 } 8658 8659 /* 8660 * Cancel an allocindir when it is removed via truncation. When bp is not 8661 * NULL the indirect never appeared on disk and is scheduled to be freed 8662 * independently of the indir so we can more easily track journal work. 8663 */ 8664 static void 8665 cancel_allocindir(aip, bp, freeblks, trunc) 8666 struct allocindir *aip; 8667 struct buf *bp; 8668 struct freeblks *freeblks; 8669 int trunc; 8670 { 8671 struct indirdep *indirdep; 8672 struct freefrag *freefrag; 8673 struct newblk *newblk; 8674 8675 newblk = (struct newblk *)aip; 8676 LIST_REMOVE(aip, ai_next); 8677 /* 8678 * We must eliminate the pointer in bp if it must be freed on its 8679 * own due to partial truncate or pending journal work. 8680 */ 8681 if (bp && (trunc || newblk->nb_jnewblk)) { 8682 /* 8683 * Clear the pointer and mark the aip to be freed 8684 * directly if it never existed on disk. 8685 */ 8686 aip->ai_state |= DELAYEDFREE; 8687 indirdep = aip->ai_indirdep; 8688 if (indirdep->ir_state & UFS1FMT) 8689 ((ufs1_daddr_t *)bp->b_data)[aip->ai_offset] = 0; 8690 else 8691 ((ufs2_daddr_t *)bp->b_data)[aip->ai_offset] = 0; 8692 } 8693 /* 8694 * When truncating the previous pointer will be freed via 8695 * savedbp. Eliminate the freefrag which would dup free. 8696 */ 8697 if (trunc && (freefrag = newblk->nb_freefrag) != NULL) { 8698 newblk->nb_freefrag = NULL; 8699 if (freefrag->ff_jdep) 8700 cancel_jfreefrag( 8701 WK_JFREEFRAG(freefrag->ff_jdep)); 8702 jwork_move(&freeblks->fb_jwork, &freefrag->ff_jwork); 8703 WORKITEM_FREE(freefrag, D_FREEFRAG); 8704 } 8705 /* 8706 * If the journal hasn't been written the jnewblk must be passed 8707 * to the call to ffs_blkfree that reclaims the space. We accomplish 8708 * this by leaving the journal dependency on the newblk to be freed 8709 * when a freework is created in handle_workitem_freeblocks(). 8710 */ 8711 cancel_newblk(newblk, NULL, &freeblks->fb_jwork); 8712 WORKLIST_INSERT(&freeblks->fb_freeworkhd, &newblk->nb_list); 8713 } 8714 8715 /* 8716 * Create the mkdir dependencies for . and .. in a new directory. Link them 8717 * in to a newdirblk so any subsequent additions are tracked properly. The 8718 * caller is responsible for adding the mkdir1 dependency to the journal 8719 * and updating id_mkdiradd. This function returns with the per-filesystem 8720 * lock held. 8721 */ 8722 static struct mkdir * 8723 setup_newdir(dap, newinum, dinum, newdirbp, mkdirp) 8724 struct diradd *dap; 8725 ino_t newinum; 8726 ino_t dinum; 8727 struct buf *newdirbp; 8728 struct mkdir **mkdirp; 8729 { 8730 struct newblk *newblk; 8731 struct pagedep *pagedep; 8732 struct inodedep *inodedep; 8733 struct newdirblk *newdirblk; 8734 struct mkdir *mkdir1, *mkdir2; 8735 struct worklist *wk; 8736 struct jaddref *jaddref; 8737 struct ufsmount *ump; 8738 struct mount *mp; 8739 8740 mp = dap->da_list.wk_mp; 8741 ump = VFSTOUFS(mp); 8742 newdirblk = malloc(sizeof(struct newdirblk), M_NEWDIRBLK, 8743 M_SOFTDEP_FLAGS); 8744 workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp); 8745 LIST_INIT(&newdirblk->db_mkdir); 8746 mkdir1 = malloc(sizeof(struct mkdir), M_MKDIR, M_SOFTDEP_FLAGS); 8747 workitem_alloc(&mkdir1->md_list, D_MKDIR, mp); 8748 mkdir1->md_state = ATTACHED | MKDIR_BODY; 8749 mkdir1->md_diradd = dap; 8750 mkdir1->md_jaddref = NULL; 8751 mkdir2 = malloc(sizeof(struct mkdir), M_MKDIR, M_SOFTDEP_FLAGS); 8752 workitem_alloc(&mkdir2->md_list, D_MKDIR, mp); 8753 mkdir2->md_state = ATTACHED | MKDIR_PARENT; 8754 mkdir2->md_diradd = dap; 8755 mkdir2->md_jaddref = NULL; 8756 if (MOUNTEDSUJ(mp) == 0) { 8757 mkdir1->md_state |= DEPCOMPLETE; 8758 mkdir2->md_state |= DEPCOMPLETE; 8759 } 8760 /* 8761 * Dependency on "." and ".." being written to disk. 8762 */ 8763 mkdir1->md_buf = newdirbp; 8764 ACQUIRE_LOCK(VFSTOUFS(mp)); 8765 LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir1, md_mkdirs); 8766 /* 8767 * We must link the pagedep, allocdirect, and newdirblk for 8768 * the initial file page so the pointer to the new directory 8769 * is not written until the directory contents are live and 8770 * any subsequent additions are not marked live until the 8771 * block is reachable via the inode. 8772 */ 8773 if (pagedep_lookup(mp, newdirbp, newinum, 0, 0, &pagedep) == 0) 8774 panic("setup_newdir: lost pagedep"); 8775 LIST_FOREACH(wk, &newdirbp->b_dep, wk_list) 8776 if (wk->wk_type == D_ALLOCDIRECT) 8777 break; 8778 if (wk == NULL) 8779 panic("setup_newdir: lost allocdirect"); 8780 if (pagedep->pd_state & NEWBLOCK) 8781 panic("setup_newdir: NEWBLOCK already set"); 8782 newblk = WK_NEWBLK(wk); 8783 pagedep->pd_state |= NEWBLOCK; 8784 pagedep->pd_newdirblk = newdirblk; 8785 newdirblk->db_pagedep = pagedep; 8786 WORKLIST_INSERT(&newblk->nb_newdirblk, &newdirblk->db_list); 8787 WORKLIST_INSERT(&newdirblk->db_mkdir, &mkdir1->md_list); 8788 /* 8789 * Look up the inodedep for the parent directory so that we 8790 * can link mkdir2 into the pending dotdot jaddref or 8791 * the inode write if there is none. If the inode is 8792 * ALLCOMPLETE and no jaddref is present all dependencies have 8793 * been satisfied and mkdir2 can be freed. 8794 */ 8795 inodedep_lookup(mp, dinum, 0, &inodedep); 8796 if (MOUNTEDSUJ(mp)) { 8797 if (inodedep == NULL) 8798 panic("setup_newdir: Lost parent."); 8799 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 8800 inoreflst); 8801 KASSERT(jaddref != NULL && jaddref->ja_parent == newinum && 8802 (jaddref->ja_state & MKDIR_PARENT), 8803 ("setup_newdir: bad dotdot jaddref %p", jaddref)); 8804 LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir2, md_mkdirs); 8805 mkdir2->md_jaddref = jaddref; 8806 jaddref->ja_mkdir = mkdir2; 8807 } else if (inodedep == NULL || 8808 (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) { 8809 dap->da_state &= ~MKDIR_PARENT; 8810 WORKITEM_FREE(mkdir2, D_MKDIR); 8811 mkdir2 = NULL; 8812 } else { 8813 LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir2, md_mkdirs); 8814 WORKLIST_INSERT(&inodedep->id_bufwait, &mkdir2->md_list); 8815 } 8816 *mkdirp = mkdir2; 8817 8818 return (mkdir1); 8819 } 8820 8821 /* 8822 * Directory entry addition dependencies. 8823 * 8824 * When adding a new directory entry, the inode (with its incremented link 8825 * count) must be written to disk before the directory entry's pointer to it. 8826 * Also, if the inode is newly allocated, the corresponding freemap must be 8827 * updated (on disk) before the directory entry's pointer. These requirements 8828 * are met via undo/redo on the directory entry's pointer, which consists 8829 * simply of the inode number. 8830 * 8831 * As directory entries are added and deleted, the free space within a 8832 * directory block can become fragmented. The ufs filesystem will compact 8833 * a fragmented directory block to make space for a new entry. When this 8834 * occurs, the offsets of previously added entries change. Any "diradd" 8835 * dependency structures corresponding to these entries must be updated with 8836 * the new offsets. 8837 */ 8838 8839 /* 8840 * This routine is called after the in-memory inode's link 8841 * count has been incremented, but before the directory entry's 8842 * pointer to the inode has been set. 8843 */ 8844 int 8845 softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk) 8846 struct buf *bp; /* buffer containing directory block */ 8847 struct inode *dp; /* inode for directory */ 8848 off_t diroffset; /* offset of new entry in directory */ 8849 ino_t newinum; /* inode referenced by new directory entry */ 8850 struct buf *newdirbp; /* non-NULL => contents of new mkdir */ 8851 int isnewblk; /* entry is in a newly allocated block */ 8852 { 8853 int offset; /* offset of new entry within directory block */ 8854 ufs_lbn_t lbn; /* block in directory containing new entry */ 8855 struct fs *fs; 8856 struct diradd *dap; 8857 struct newblk *newblk; 8858 struct pagedep *pagedep; 8859 struct inodedep *inodedep; 8860 struct newdirblk *newdirblk; 8861 struct mkdir *mkdir1, *mkdir2; 8862 struct jaddref *jaddref; 8863 struct ufsmount *ump; 8864 struct mount *mp; 8865 int isindir; 8866 8867 mp = ITOVFS(dp); 8868 ump = VFSTOUFS(mp); 8869 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 8870 ("softdep_setup_directory_add called on non-softdep filesystem")); 8871 /* 8872 * Whiteouts have no dependencies. 8873 */ 8874 if (newinum == UFS_WINO) { 8875 if (newdirbp != NULL) 8876 bdwrite(newdirbp); 8877 return (0); 8878 } 8879 jaddref = NULL; 8880 mkdir1 = mkdir2 = NULL; 8881 fs = ump->um_fs; 8882 lbn = lblkno(fs, diroffset); 8883 offset = blkoff(fs, diroffset); 8884 dap = malloc(sizeof(struct diradd), M_DIRADD, 8885 M_SOFTDEP_FLAGS|M_ZERO); 8886 workitem_alloc(&dap->da_list, D_DIRADD, mp); 8887 dap->da_offset = offset; 8888 dap->da_newinum = newinum; 8889 dap->da_state = ATTACHED; 8890 LIST_INIT(&dap->da_jwork); 8891 isindir = bp->b_lblkno >= UFS_NDADDR; 8892 newdirblk = NULL; 8893 if (isnewblk && 8894 (isindir ? blkoff(fs, diroffset) : fragoff(fs, diroffset)) == 0) { 8895 newdirblk = malloc(sizeof(struct newdirblk), 8896 M_NEWDIRBLK, M_SOFTDEP_FLAGS); 8897 workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp); 8898 LIST_INIT(&newdirblk->db_mkdir); 8899 } 8900 /* 8901 * If we're creating a new directory setup the dependencies and set 8902 * the dap state to wait for them. Otherwise it's COMPLETE and 8903 * we can move on. 8904 */ 8905 if (newdirbp == NULL) { 8906 dap->da_state |= DEPCOMPLETE; 8907 ACQUIRE_LOCK(ump); 8908 } else { 8909 dap->da_state |= MKDIR_BODY | MKDIR_PARENT; 8910 mkdir1 = setup_newdir(dap, newinum, dp->i_number, newdirbp, 8911 &mkdir2); 8912 } 8913 /* 8914 * Link into parent directory pagedep to await its being written. 8915 */ 8916 pagedep_lookup(mp, bp, dp->i_number, lbn, DEPALLOC, &pagedep); 8917 #ifdef INVARIANTS 8918 if (diradd_lookup(pagedep, offset) != NULL) 8919 panic("softdep_setup_directory_add: %p already at off %d\n", 8920 diradd_lookup(pagedep, offset), offset); 8921 #endif 8922 dap->da_pagedep = pagedep; 8923 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], dap, 8924 da_pdlist); 8925 inodedep_lookup(mp, newinum, DEPALLOC, &inodedep); 8926 /* 8927 * If we're journaling, link the diradd into the jaddref so it 8928 * may be completed after the journal entry is written. Otherwise, 8929 * link the diradd into its inodedep. If the inode is not yet 8930 * written place it on the bufwait list, otherwise do the post-inode 8931 * write processing to put it on the id_pendinghd list. 8932 */ 8933 if (MOUNTEDSUJ(mp)) { 8934 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 8935 inoreflst); 8936 KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number, 8937 ("softdep_setup_directory_add: bad jaddref %p", jaddref)); 8938 jaddref->ja_diroff = diroffset; 8939 jaddref->ja_diradd = dap; 8940 add_to_journal(&jaddref->ja_list); 8941 } else if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) 8942 diradd_inode_written(dap, inodedep); 8943 else 8944 WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list); 8945 /* 8946 * Add the journal entries for . and .. links now that the primary 8947 * link is written. 8948 */ 8949 if (mkdir1 != NULL && MOUNTEDSUJ(mp)) { 8950 jaddref = (struct jaddref *)TAILQ_PREV(&jaddref->ja_ref, 8951 inoreflst, if_deps); 8952 KASSERT(jaddref != NULL && 8953 jaddref->ja_ino == jaddref->ja_parent && 8954 (jaddref->ja_state & MKDIR_BODY), 8955 ("softdep_setup_directory_add: bad dot jaddref %p", 8956 jaddref)); 8957 mkdir1->md_jaddref = jaddref; 8958 jaddref->ja_mkdir = mkdir1; 8959 /* 8960 * It is important that the dotdot journal entry 8961 * is added prior to the dot entry since dot writes 8962 * both the dot and dotdot links. These both must 8963 * be added after the primary link for the journal 8964 * to remain consistent. 8965 */ 8966 add_to_journal(&mkdir2->md_jaddref->ja_list); 8967 add_to_journal(&jaddref->ja_list); 8968 } 8969 /* 8970 * If we are adding a new directory remember this diradd so that if 8971 * we rename it we can keep the dot and dotdot dependencies. If 8972 * we are adding a new name for an inode that has a mkdiradd we 8973 * must be in rename and we have to move the dot and dotdot 8974 * dependencies to this new name. The old name is being orphaned 8975 * soon. 8976 */ 8977 if (mkdir1 != NULL) { 8978 if (inodedep->id_mkdiradd != NULL) 8979 panic("softdep_setup_directory_add: Existing mkdir"); 8980 inodedep->id_mkdiradd = dap; 8981 } else if (inodedep->id_mkdiradd) 8982 merge_diradd(inodedep, dap); 8983 if (newdirblk != NULL) { 8984 /* 8985 * There is nothing to do if we are already tracking 8986 * this block. 8987 */ 8988 if ((pagedep->pd_state & NEWBLOCK) != 0) { 8989 WORKITEM_FREE(newdirblk, D_NEWDIRBLK); 8990 FREE_LOCK(ump); 8991 return (0); 8992 } 8993 if (newblk_lookup(mp, dbtofsb(fs, bp->b_blkno), 0, &newblk) 8994 == 0) 8995 panic("softdep_setup_directory_add: lost entry"); 8996 WORKLIST_INSERT(&newblk->nb_newdirblk, &newdirblk->db_list); 8997 pagedep->pd_state |= NEWBLOCK; 8998 pagedep->pd_newdirblk = newdirblk; 8999 newdirblk->db_pagedep = pagedep; 9000 FREE_LOCK(ump); 9001 /* 9002 * If we extended into an indirect signal direnter to sync. 9003 */ 9004 if (isindir) 9005 return (1); 9006 return (0); 9007 } 9008 FREE_LOCK(ump); 9009 return (0); 9010 } 9011 9012 /* 9013 * This procedure is called to change the offset of a directory 9014 * entry when compacting a directory block which must be owned 9015 * exclusively by the caller. Note that the actual entry movement 9016 * must be done in this procedure to ensure that no I/O completions 9017 * occur while the move is in progress. 9018 */ 9019 void 9020 softdep_change_directoryentry_offset(bp, dp, base, oldloc, newloc, entrysize) 9021 struct buf *bp; /* Buffer holding directory block. */ 9022 struct inode *dp; /* inode for directory */ 9023 caddr_t base; /* address of dp->i_offset */ 9024 caddr_t oldloc; /* address of old directory location */ 9025 caddr_t newloc; /* address of new directory location */ 9026 int entrysize; /* size of directory entry */ 9027 { 9028 int offset, oldoffset, newoffset; 9029 struct pagedep *pagedep; 9030 struct jmvref *jmvref; 9031 struct diradd *dap; 9032 struct direct *de; 9033 struct mount *mp; 9034 struct ufsmount *ump; 9035 ufs_lbn_t lbn; 9036 int flags; 9037 9038 mp = ITOVFS(dp); 9039 ump = VFSTOUFS(mp); 9040 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 9041 ("softdep_change_directoryentry_offset called on " 9042 "non-softdep filesystem")); 9043 de = (struct direct *)oldloc; 9044 jmvref = NULL; 9045 flags = 0; 9046 /* 9047 * Moves are always journaled as it would be too complex to 9048 * determine if any affected adds or removes are present in the 9049 * journal. 9050 */ 9051 if (MOUNTEDSUJ(mp)) { 9052 flags = DEPALLOC; 9053 jmvref = newjmvref(dp, de->d_ino, 9054 I_OFFSET(dp) + (oldloc - base), 9055 I_OFFSET(dp) + (newloc - base)); 9056 } 9057 lbn = lblkno(ump->um_fs, I_OFFSET(dp)); 9058 offset = blkoff(ump->um_fs, I_OFFSET(dp)); 9059 oldoffset = offset + (oldloc - base); 9060 newoffset = offset + (newloc - base); 9061 ACQUIRE_LOCK(ump); 9062 if (pagedep_lookup(mp, bp, dp->i_number, lbn, flags, &pagedep) == 0) 9063 goto done; 9064 dap = diradd_lookup(pagedep, oldoffset); 9065 if (dap) { 9066 dap->da_offset = newoffset; 9067 newoffset = DIRADDHASH(newoffset); 9068 oldoffset = DIRADDHASH(oldoffset); 9069 if ((dap->da_state & ALLCOMPLETE) != ALLCOMPLETE && 9070 newoffset != oldoffset) { 9071 LIST_REMOVE(dap, da_pdlist); 9072 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[newoffset], 9073 dap, da_pdlist); 9074 } 9075 } 9076 done: 9077 if (jmvref) { 9078 jmvref->jm_pagedep = pagedep; 9079 LIST_INSERT_HEAD(&pagedep->pd_jmvrefhd, jmvref, jm_deps); 9080 add_to_journal(&jmvref->jm_list); 9081 } 9082 bcopy(oldloc, newloc, entrysize); 9083 FREE_LOCK(ump); 9084 } 9085 9086 /* 9087 * Move the mkdir dependencies and journal work from one diradd to another 9088 * when renaming a directory. The new name must depend on the mkdir deps 9089 * completing as the old name did. Directories can only have one valid link 9090 * at a time so one must be canonical. 9091 */ 9092 static void 9093 merge_diradd(inodedep, newdap) 9094 struct inodedep *inodedep; 9095 struct diradd *newdap; 9096 { 9097 struct diradd *olddap; 9098 struct mkdir *mkdir, *nextmd; 9099 struct ufsmount *ump; 9100 short state; 9101 9102 olddap = inodedep->id_mkdiradd; 9103 inodedep->id_mkdiradd = newdap; 9104 if ((olddap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) { 9105 newdap->da_state &= ~DEPCOMPLETE; 9106 ump = VFSTOUFS(inodedep->id_list.wk_mp); 9107 for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir; 9108 mkdir = nextmd) { 9109 nextmd = LIST_NEXT(mkdir, md_mkdirs); 9110 if (mkdir->md_diradd != olddap) 9111 continue; 9112 mkdir->md_diradd = newdap; 9113 state = mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY); 9114 newdap->da_state |= state; 9115 olddap->da_state &= ~state; 9116 if ((olddap->da_state & 9117 (MKDIR_PARENT | MKDIR_BODY)) == 0) 9118 break; 9119 } 9120 if ((olddap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) 9121 panic("merge_diradd: unfound ref"); 9122 } 9123 /* 9124 * Any mkdir related journal items are not safe to be freed until 9125 * the new name is stable. 9126 */ 9127 jwork_move(&newdap->da_jwork, &olddap->da_jwork); 9128 olddap->da_state |= DEPCOMPLETE; 9129 complete_diradd(olddap); 9130 } 9131 9132 /* 9133 * Move the diradd to the pending list when all diradd dependencies are 9134 * complete. 9135 */ 9136 static void 9137 complete_diradd(dap) 9138 struct diradd *dap; 9139 { 9140 struct pagedep *pagedep; 9141 9142 if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) { 9143 if (dap->da_state & DIRCHG) 9144 pagedep = dap->da_previous->dm_pagedep; 9145 else 9146 pagedep = dap->da_pagedep; 9147 LIST_REMOVE(dap, da_pdlist); 9148 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist); 9149 } 9150 } 9151 9152 /* 9153 * Cancel a diradd when a dirrem overlaps with it. We must cancel the journal 9154 * add entries and conditonally journal the remove. 9155 */ 9156 static void 9157 cancel_diradd(dap, dirrem, jremref, dotremref, dotdotremref) 9158 struct diradd *dap; 9159 struct dirrem *dirrem; 9160 struct jremref *jremref; 9161 struct jremref *dotremref; 9162 struct jremref *dotdotremref; 9163 { 9164 struct inodedep *inodedep; 9165 struct jaddref *jaddref; 9166 struct inoref *inoref; 9167 struct ufsmount *ump; 9168 struct mkdir *mkdir; 9169 9170 /* 9171 * If no remove references were allocated we're on a non-journaled 9172 * filesystem and can skip the cancel step. 9173 */ 9174 if (jremref == NULL) { 9175 free_diradd(dap, NULL); 9176 return; 9177 } 9178 /* 9179 * Cancel the primary name an free it if it does not require 9180 * journaling. 9181 */ 9182 if (inodedep_lookup(dap->da_list.wk_mp, dap->da_newinum, 9183 0, &inodedep) != 0) { 9184 /* Abort the addref that reference this diradd. */ 9185 TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) { 9186 if (inoref->if_list.wk_type != D_JADDREF) 9187 continue; 9188 jaddref = (struct jaddref *)inoref; 9189 if (jaddref->ja_diradd != dap) 9190 continue; 9191 if (cancel_jaddref(jaddref, inodedep, 9192 &dirrem->dm_jwork) == 0) { 9193 free_jremref(jremref); 9194 jremref = NULL; 9195 } 9196 break; 9197 } 9198 } 9199 /* 9200 * Cancel subordinate names and free them if they do not require 9201 * journaling. 9202 */ 9203 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) { 9204 ump = VFSTOUFS(dap->da_list.wk_mp); 9205 LIST_FOREACH(mkdir, &ump->softdep_mkdirlisthd, md_mkdirs) { 9206 if (mkdir->md_diradd != dap) 9207 continue; 9208 if ((jaddref = mkdir->md_jaddref) == NULL) 9209 continue; 9210 mkdir->md_jaddref = NULL; 9211 if (mkdir->md_state & MKDIR_PARENT) { 9212 if (cancel_jaddref(jaddref, NULL, 9213 &dirrem->dm_jwork) == 0) { 9214 free_jremref(dotdotremref); 9215 dotdotremref = NULL; 9216 } 9217 } else { 9218 if (cancel_jaddref(jaddref, inodedep, 9219 &dirrem->dm_jwork) == 0) { 9220 free_jremref(dotremref); 9221 dotremref = NULL; 9222 } 9223 } 9224 } 9225 } 9226 9227 if (jremref) 9228 journal_jremref(dirrem, jremref, inodedep); 9229 if (dotremref) 9230 journal_jremref(dirrem, dotremref, inodedep); 9231 if (dotdotremref) 9232 journal_jremref(dirrem, dotdotremref, NULL); 9233 jwork_move(&dirrem->dm_jwork, &dap->da_jwork); 9234 free_diradd(dap, &dirrem->dm_jwork); 9235 } 9236 9237 /* 9238 * Free a diradd dependency structure. 9239 */ 9240 static void 9241 free_diradd(dap, wkhd) 9242 struct diradd *dap; 9243 struct workhead *wkhd; 9244 { 9245 struct dirrem *dirrem; 9246 struct pagedep *pagedep; 9247 struct inodedep *inodedep; 9248 struct mkdir *mkdir, *nextmd; 9249 struct ufsmount *ump; 9250 9251 ump = VFSTOUFS(dap->da_list.wk_mp); 9252 LOCK_OWNED(ump); 9253 LIST_REMOVE(dap, da_pdlist); 9254 if (dap->da_state & ONWORKLIST) 9255 WORKLIST_REMOVE(&dap->da_list); 9256 if ((dap->da_state & DIRCHG) == 0) { 9257 pagedep = dap->da_pagedep; 9258 } else { 9259 dirrem = dap->da_previous; 9260 pagedep = dirrem->dm_pagedep; 9261 dirrem->dm_dirinum = pagedep->pd_ino; 9262 dirrem->dm_state |= COMPLETE; 9263 if (LIST_EMPTY(&dirrem->dm_jremrefhd)) 9264 add_to_worklist(&dirrem->dm_list, 0); 9265 } 9266 if (inodedep_lookup(pagedep->pd_list.wk_mp, dap->da_newinum, 9267 0, &inodedep) != 0) 9268 if (inodedep->id_mkdiradd == dap) 9269 inodedep->id_mkdiradd = NULL; 9270 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) { 9271 for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir; 9272 mkdir = nextmd) { 9273 nextmd = LIST_NEXT(mkdir, md_mkdirs); 9274 if (mkdir->md_diradd != dap) 9275 continue; 9276 dap->da_state &= 9277 ~(mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY)); 9278 LIST_REMOVE(mkdir, md_mkdirs); 9279 if (mkdir->md_state & ONWORKLIST) 9280 WORKLIST_REMOVE(&mkdir->md_list); 9281 if (mkdir->md_jaddref != NULL) 9282 panic("free_diradd: Unexpected jaddref"); 9283 WORKITEM_FREE(mkdir, D_MKDIR); 9284 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0) 9285 break; 9286 } 9287 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) 9288 panic("free_diradd: unfound ref"); 9289 } 9290 if (inodedep) 9291 free_inodedep(inodedep); 9292 /* 9293 * Free any journal segments waiting for the directory write. 9294 */ 9295 handle_jwork(&dap->da_jwork); 9296 WORKITEM_FREE(dap, D_DIRADD); 9297 } 9298 9299 /* 9300 * Directory entry removal dependencies. 9301 * 9302 * When removing a directory entry, the entry's inode pointer must be 9303 * zero'ed on disk before the corresponding inode's link count is decremented 9304 * (possibly freeing the inode for re-use). This dependency is handled by 9305 * updating the directory entry but delaying the inode count reduction until 9306 * after the directory block has been written to disk. After this point, the 9307 * inode count can be decremented whenever it is convenient. 9308 */ 9309 9310 /* 9311 * This routine should be called immediately after removing 9312 * a directory entry. The inode's link count should not be 9313 * decremented by the calling procedure -- the soft updates 9314 * code will do this task when it is safe. 9315 */ 9316 void 9317 softdep_setup_remove(bp, dp, ip, isrmdir) 9318 struct buf *bp; /* buffer containing directory block */ 9319 struct inode *dp; /* inode for the directory being modified */ 9320 struct inode *ip; /* inode for directory entry being removed */ 9321 int isrmdir; /* indicates if doing RMDIR */ 9322 { 9323 struct dirrem *dirrem, *prevdirrem; 9324 struct inodedep *inodedep; 9325 struct ufsmount *ump; 9326 int direct; 9327 9328 ump = ITOUMP(ip); 9329 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 9330 ("softdep_setup_remove called on non-softdep filesystem")); 9331 /* 9332 * Allocate a new dirrem if appropriate and ACQUIRE_LOCK. We want 9333 * newdirrem() to setup the full directory remove which requires 9334 * isrmdir > 1. 9335 */ 9336 dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem); 9337 /* 9338 * Add the dirrem to the inodedep's pending remove list for quick 9339 * discovery later. 9340 */ 9341 if (inodedep_lookup(UFSTOVFS(ump), ip->i_number, 0, &inodedep) == 0) 9342 panic("softdep_setup_remove: Lost inodedep."); 9343 KASSERT((inodedep->id_state & UNLINKED) == 0, ("inode unlinked")); 9344 dirrem->dm_state |= ONDEPLIST; 9345 LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext); 9346 9347 /* 9348 * If the COMPLETE flag is clear, then there were no active 9349 * entries and we want to roll back to a zeroed entry until 9350 * the new inode is committed to disk. If the COMPLETE flag is 9351 * set then we have deleted an entry that never made it to 9352 * disk. If the entry we deleted resulted from a name change, 9353 * then the old name still resides on disk. We cannot delete 9354 * its inode (returned to us in prevdirrem) until the zeroed 9355 * directory entry gets to disk. The new inode has never been 9356 * referenced on the disk, so can be deleted immediately. 9357 */ 9358 if ((dirrem->dm_state & COMPLETE) == 0) { 9359 LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, dirrem, 9360 dm_next); 9361 FREE_LOCK(ump); 9362 } else { 9363 if (prevdirrem != NULL) 9364 LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, 9365 prevdirrem, dm_next); 9366 dirrem->dm_dirinum = dirrem->dm_pagedep->pd_ino; 9367 direct = LIST_EMPTY(&dirrem->dm_jremrefhd); 9368 FREE_LOCK(ump); 9369 if (direct) 9370 handle_workitem_remove(dirrem, 0); 9371 } 9372 } 9373 9374 /* 9375 * Check for an entry matching 'offset' on both the pd_dirraddhd list and the 9376 * pd_pendinghd list of a pagedep. 9377 */ 9378 static struct diradd * 9379 diradd_lookup(pagedep, offset) 9380 struct pagedep *pagedep; 9381 int offset; 9382 { 9383 struct diradd *dap; 9384 9385 LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(offset)], da_pdlist) 9386 if (dap->da_offset == offset) 9387 return (dap); 9388 LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist) 9389 if (dap->da_offset == offset) 9390 return (dap); 9391 return (NULL); 9392 } 9393 9394 /* 9395 * Search for a .. diradd dependency in a directory that is being removed. 9396 * If the directory was renamed to a new parent we have a diradd rather 9397 * than a mkdir for the .. entry. We need to cancel it now before 9398 * it is found in truncate(). 9399 */ 9400 static struct jremref * 9401 cancel_diradd_dotdot(ip, dirrem, jremref) 9402 struct inode *ip; 9403 struct dirrem *dirrem; 9404 struct jremref *jremref; 9405 { 9406 struct pagedep *pagedep; 9407 struct diradd *dap; 9408 struct worklist *wk; 9409 9410 if (pagedep_lookup(ITOVFS(ip), NULL, ip->i_number, 0, 0, &pagedep) == 0) 9411 return (jremref); 9412 dap = diradd_lookup(pagedep, DOTDOT_OFFSET); 9413 if (dap == NULL) 9414 return (jremref); 9415 cancel_diradd(dap, dirrem, jremref, NULL, NULL); 9416 /* 9417 * Mark any journal work as belonging to the parent so it is freed 9418 * with the .. reference. 9419 */ 9420 LIST_FOREACH(wk, &dirrem->dm_jwork, wk_list) 9421 wk->wk_state |= MKDIR_PARENT; 9422 return (NULL); 9423 } 9424 9425 /* 9426 * Cancel the MKDIR_PARENT mkdir component of a diradd when we're going to 9427 * replace it with a dirrem/diradd pair as a result of re-parenting a 9428 * directory. This ensures that we don't simultaneously have a mkdir and 9429 * a diradd for the same .. entry. 9430 */ 9431 static struct jremref * 9432 cancel_mkdir_dotdot(ip, dirrem, jremref) 9433 struct inode *ip; 9434 struct dirrem *dirrem; 9435 struct jremref *jremref; 9436 { 9437 struct inodedep *inodedep; 9438 struct jaddref *jaddref; 9439 struct ufsmount *ump; 9440 struct mkdir *mkdir; 9441 struct diradd *dap; 9442 struct mount *mp; 9443 9444 mp = ITOVFS(ip); 9445 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) 9446 return (jremref); 9447 dap = inodedep->id_mkdiradd; 9448 if (dap == NULL || (dap->da_state & MKDIR_PARENT) == 0) 9449 return (jremref); 9450 ump = VFSTOUFS(inodedep->id_list.wk_mp); 9451 for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir; 9452 mkdir = LIST_NEXT(mkdir, md_mkdirs)) 9453 if (mkdir->md_diradd == dap && mkdir->md_state & MKDIR_PARENT) 9454 break; 9455 if (mkdir == NULL) 9456 panic("cancel_mkdir_dotdot: Unable to find mkdir\n"); 9457 if ((jaddref = mkdir->md_jaddref) != NULL) { 9458 mkdir->md_jaddref = NULL; 9459 jaddref->ja_state &= ~MKDIR_PARENT; 9460 if (inodedep_lookup(mp, jaddref->ja_ino, 0, &inodedep) == 0) 9461 panic("cancel_mkdir_dotdot: Lost parent inodedep"); 9462 if (cancel_jaddref(jaddref, inodedep, &dirrem->dm_jwork)) { 9463 journal_jremref(dirrem, jremref, inodedep); 9464 jremref = NULL; 9465 } 9466 } 9467 if (mkdir->md_state & ONWORKLIST) 9468 WORKLIST_REMOVE(&mkdir->md_list); 9469 mkdir->md_state |= ALLCOMPLETE; 9470 complete_mkdir(mkdir); 9471 return (jremref); 9472 } 9473 9474 static void 9475 journal_jremref(dirrem, jremref, inodedep) 9476 struct dirrem *dirrem; 9477 struct jremref *jremref; 9478 struct inodedep *inodedep; 9479 { 9480 9481 if (inodedep == NULL) 9482 if (inodedep_lookup(jremref->jr_list.wk_mp, 9483 jremref->jr_ref.if_ino, 0, &inodedep) == 0) 9484 panic("journal_jremref: Lost inodedep"); 9485 LIST_INSERT_HEAD(&dirrem->dm_jremrefhd, jremref, jr_deps); 9486 TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jremref->jr_ref, if_deps); 9487 add_to_journal(&jremref->jr_list); 9488 } 9489 9490 static void 9491 dirrem_journal(dirrem, jremref, dotremref, dotdotremref) 9492 struct dirrem *dirrem; 9493 struct jremref *jremref; 9494 struct jremref *dotremref; 9495 struct jremref *dotdotremref; 9496 { 9497 struct inodedep *inodedep; 9498 9499 if (inodedep_lookup(jremref->jr_list.wk_mp, jremref->jr_ref.if_ino, 0, 9500 &inodedep) == 0) 9501 panic("dirrem_journal: Lost inodedep"); 9502 journal_jremref(dirrem, jremref, inodedep); 9503 if (dotremref) 9504 journal_jremref(dirrem, dotremref, inodedep); 9505 if (dotdotremref) 9506 journal_jremref(dirrem, dotdotremref, NULL); 9507 } 9508 9509 /* 9510 * Allocate a new dirrem if appropriate and return it along with 9511 * its associated pagedep. Called without a lock, returns with lock. 9512 */ 9513 static struct dirrem * 9514 newdirrem(bp, dp, ip, isrmdir, prevdirremp) 9515 struct buf *bp; /* buffer containing directory block */ 9516 struct inode *dp; /* inode for the directory being modified */ 9517 struct inode *ip; /* inode for directory entry being removed */ 9518 int isrmdir; /* indicates if doing RMDIR */ 9519 struct dirrem **prevdirremp; /* previously referenced inode, if any */ 9520 { 9521 int offset; 9522 ufs_lbn_t lbn; 9523 struct diradd *dap; 9524 struct dirrem *dirrem; 9525 struct pagedep *pagedep; 9526 struct jremref *jremref; 9527 struct jremref *dotremref; 9528 struct jremref *dotdotremref; 9529 struct vnode *dvp; 9530 struct ufsmount *ump; 9531 9532 /* 9533 * Whiteouts have no deletion dependencies. 9534 */ 9535 if (ip == NULL) 9536 panic("newdirrem: whiteout"); 9537 dvp = ITOV(dp); 9538 ump = ITOUMP(dp); 9539 9540 /* 9541 * If the system is over its limit and our filesystem is 9542 * responsible for more than our share of that usage and 9543 * we are not a snapshot, request some inodedep cleanup. 9544 * Limiting the number of dirrem structures will also limit 9545 * the number of freefile and freeblks structures. 9546 */ 9547 ACQUIRE_LOCK(ump); 9548 if (!IS_SNAPSHOT(ip) && softdep_excess_items(ump, D_DIRREM)) 9549 schedule_cleanup(UFSTOVFS(ump)); 9550 else 9551 FREE_LOCK(ump); 9552 dirrem = malloc(sizeof(struct dirrem), M_DIRREM, M_SOFTDEP_FLAGS | 9553 M_ZERO); 9554 workitem_alloc(&dirrem->dm_list, D_DIRREM, dvp->v_mount); 9555 LIST_INIT(&dirrem->dm_jremrefhd); 9556 LIST_INIT(&dirrem->dm_jwork); 9557 dirrem->dm_state = isrmdir ? RMDIR : 0; 9558 dirrem->dm_oldinum = ip->i_number; 9559 *prevdirremp = NULL; 9560 /* 9561 * Allocate remove reference structures to track journal write 9562 * dependencies. We will always have one for the link and 9563 * when doing directories we will always have one more for dot. 9564 * When renaming a directory we skip the dotdot link change so 9565 * this is not needed. 9566 */ 9567 jremref = dotremref = dotdotremref = NULL; 9568 if (DOINGSUJ(dvp)) { 9569 if (isrmdir) { 9570 jremref = newjremref(dirrem, dp, ip, I_OFFSET(dp), 9571 ip->i_effnlink + 2); 9572 dotremref = newjremref(dirrem, ip, ip, DOT_OFFSET, 9573 ip->i_effnlink + 1); 9574 dotdotremref = newjremref(dirrem, ip, dp, DOTDOT_OFFSET, 9575 dp->i_effnlink + 1); 9576 dotdotremref->jr_state |= MKDIR_PARENT; 9577 } else 9578 jremref = newjremref(dirrem, dp, ip, I_OFFSET(dp), 9579 ip->i_effnlink + 1); 9580 } 9581 ACQUIRE_LOCK(ump); 9582 lbn = lblkno(ump->um_fs, I_OFFSET(dp)); 9583 offset = blkoff(ump->um_fs, I_OFFSET(dp)); 9584 pagedep_lookup(UFSTOVFS(ump), bp, dp->i_number, lbn, DEPALLOC, 9585 &pagedep); 9586 dirrem->dm_pagedep = pagedep; 9587 dirrem->dm_offset = offset; 9588 /* 9589 * If we're renaming a .. link to a new directory, cancel any 9590 * existing MKDIR_PARENT mkdir. If it has already been canceled 9591 * the jremref is preserved for any potential diradd in this 9592 * location. This can not coincide with a rmdir. 9593 */ 9594 if (I_OFFSET(dp) == DOTDOT_OFFSET) { 9595 if (isrmdir) 9596 panic("newdirrem: .. directory change during remove?"); 9597 jremref = cancel_mkdir_dotdot(dp, dirrem, jremref); 9598 } 9599 /* 9600 * If we're removing a directory search for the .. dependency now and 9601 * cancel it. Any pending journal work will be added to the dirrem 9602 * to be completed when the workitem remove completes. 9603 */ 9604 if (isrmdir) 9605 dotdotremref = cancel_diradd_dotdot(ip, dirrem, dotdotremref); 9606 /* 9607 * Check for a diradd dependency for the same directory entry. 9608 * If present, then both dependencies become obsolete and can 9609 * be de-allocated. 9610 */ 9611 dap = diradd_lookup(pagedep, offset); 9612 if (dap == NULL) { 9613 /* 9614 * Link the jremref structures into the dirrem so they are 9615 * written prior to the pagedep. 9616 */ 9617 if (jremref) 9618 dirrem_journal(dirrem, jremref, dotremref, 9619 dotdotremref); 9620 return (dirrem); 9621 } 9622 /* 9623 * Must be ATTACHED at this point. 9624 */ 9625 if ((dap->da_state & ATTACHED) == 0) 9626 panic("newdirrem: not ATTACHED"); 9627 if (dap->da_newinum != ip->i_number) 9628 panic("newdirrem: inum %ju should be %ju", 9629 (uintmax_t)ip->i_number, (uintmax_t)dap->da_newinum); 9630 /* 9631 * If we are deleting a changed name that never made it to disk, 9632 * then return the dirrem describing the previous inode (which 9633 * represents the inode currently referenced from this entry on disk). 9634 */ 9635 if ((dap->da_state & DIRCHG) != 0) { 9636 *prevdirremp = dap->da_previous; 9637 dap->da_state &= ~DIRCHG; 9638 dap->da_pagedep = pagedep; 9639 } 9640 /* 9641 * We are deleting an entry that never made it to disk. 9642 * Mark it COMPLETE so we can delete its inode immediately. 9643 */ 9644 dirrem->dm_state |= COMPLETE; 9645 cancel_diradd(dap, dirrem, jremref, dotremref, dotdotremref); 9646 #ifdef INVARIANTS 9647 if (isrmdir == 0) { 9648 struct worklist *wk; 9649 9650 LIST_FOREACH(wk, &dirrem->dm_jwork, wk_list) 9651 if (wk->wk_state & (MKDIR_BODY | MKDIR_PARENT)) 9652 panic("bad wk %p (0x%X)\n", wk, wk->wk_state); 9653 } 9654 #endif 9655 9656 return (dirrem); 9657 } 9658 9659 /* 9660 * Directory entry change dependencies. 9661 * 9662 * Changing an existing directory entry requires that an add operation 9663 * be completed first followed by a deletion. The semantics for the addition 9664 * are identical to the description of adding a new entry above except 9665 * that the rollback is to the old inode number rather than zero. Once 9666 * the addition dependency is completed, the removal is done as described 9667 * in the removal routine above. 9668 */ 9669 9670 /* 9671 * This routine should be called immediately after changing 9672 * a directory entry. The inode's link count should not be 9673 * decremented by the calling procedure -- the soft updates 9674 * code will perform this task when it is safe. 9675 */ 9676 void 9677 softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir) 9678 struct buf *bp; /* buffer containing directory block */ 9679 struct inode *dp; /* inode for the directory being modified */ 9680 struct inode *ip; /* inode for directory entry being removed */ 9681 ino_t newinum; /* new inode number for changed entry */ 9682 int isrmdir; /* indicates if doing RMDIR */ 9683 { 9684 int offset; 9685 struct diradd *dap = NULL; 9686 struct dirrem *dirrem, *prevdirrem; 9687 struct pagedep *pagedep; 9688 struct inodedep *inodedep; 9689 struct jaddref *jaddref; 9690 struct mount *mp; 9691 struct ufsmount *ump; 9692 9693 mp = ITOVFS(dp); 9694 ump = VFSTOUFS(mp); 9695 offset = blkoff(ump->um_fs, I_OFFSET(dp)); 9696 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 9697 ("softdep_setup_directory_change called on non-softdep filesystem")); 9698 9699 /* 9700 * Whiteouts do not need diradd dependencies. 9701 */ 9702 if (newinum != UFS_WINO) { 9703 dap = malloc(sizeof(struct diradd), 9704 M_DIRADD, M_SOFTDEP_FLAGS|M_ZERO); 9705 workitem_alloc(&dap->da_list, D_DIRADD, mp); 9706 dap->da_state = DIRCHG | ATTACHED | DEPCOMPLETE; 9707 dap->da_offset = offset; 9708 dap->da_newinum = newinum; 9709 LIST_INIT(&dap->da_jwork); 9710 } 9711 9712 /* 9713 * Allocate a new dirrem and ACQUIRE_LOCK. 9714 */ 9715 dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem); 9716 pagedep = dirrem->dm_pagedep; 9717 /* 9718 * The possible values for isrmdir: 9719 * 0 - non-directory file rename 9720 * 1 - directory rename within same directory 9721 * inum - directory rename to new directory of given inode number 9722 * When renaming to a new directory, we are both deleting and 9723 * creating a new directory entry, so the link count on the new 9724 * directory should not change. Thus we do not need the followup 9725 * dirrem which is usually done in handle_workitem_remove. We set 9726 * the DIRCHG flag to tell handle_workitem_remove to skip the 9727 * followup dirrem. 9728 */ 9729 if (isrmdir > 1) 9730 dirrem->dm_state |= DIRCHG; 9731 9732 /* 9733 * Whiteouts have no additional dependencies, 9734 * so just put the dirrem on the correct list. 9735 */ 9736 if (newinum == UFS_WINO) { 9737 if ((dirrem->dm_state & COMPLETE) == 0) { 9738 LIST_INSERT_HEAD(&pagedep->pd_dirremhd, dirrem, 9739 dm_next); 9740 } else { 9741 dirrem->dm_dirinum = pagedep->pd_ino; 9742 if (LIST_EMPTY(&dirrem->dm_jremrefhd)) 9743 add_to_worklist(&dirrem->dm_list, 0); 9744 } 9745 FREE_LOCK(ump); 9746 return; 9747 } 9748 /* 9749 * Add the dirrem to the inodedep's pending remove list for quick 9750 * discovery later. A valid nlinkdelta ensures that this lookup 9751 * will not fail. 9752 */ 9753 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) 9754 panic("softdep_setup_directory_change: Lost inodedep."); 9755 dirrem->dm_state |= ONDEPLIST; 9756 LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext); 9757 9758 /* 9759 * If the COMPLETE flag is clear, then there were no active 9760 * entries and we want to roll back to the previous inode until 9761 * the new inode is committed to disk. If the COMPLETE flag is 9762 * set, then we have deleted an entry that never made it to disk. 9763 * If the entry we deleted resulted from a name change, then the old 9764 * inode reference still resides on disk. Any rollback that we do 9765 * needs to be to that old inode (returned to us in prevdirrem). If 9766 * the entry we deleted resulted from a create, then there is 9767 * no entry on the disk, so we want to roll back to zero rather 9768 * than the uncommitted inode. In either of the COMPLETE cases we 9769 * want to immediately free the unwritten and unreferenced inode. 9770 */ 9771 if ((dirrem->dm_state & COMPLETE) == 0) { 9772 dap->da_previous = dirrem; 9773 } else { 9774 if (prevdirrem != NULL) { 9775 dap->da_previous = prevdirrem; 9776 } else { 9777 dap->da_state &= ~DIRCHG; 9778 dap->da_pagedep = pagedep; 9779 } 9780 dirrem->dm_dirinum = pagedep->pd_ino; 9781 if (LIST_EMPTY(&dirrem->dm_jremrefhd)) 9782 add_to_worklist(&dirrem->dm_list, 0); 9783 } 9784 /* 9785 * Lookup the jaddref for this journal entry. We must finish 9786 * initializing it and make the diradd write dependent on it. 9787 * If we're not journaling, put it on the id_bufwait list if the 9788 * inode is not yet written. If it is written, do the post-inode 9789 * write processing to put it on the id_pendinghd list. 9790 */ 9791 inodedep_lookup(mp, newinum, DEPALLOC, &inodedep); 9792 if (MOUNTEDSUJ(mp)) { 9793 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 9794 inoreflst); 9795 KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number, 9796 ("softdep_setup_directory_change: bad jaddref %p", 9797 jaddref)); 9798 jaddref->ja_diroff = I_OFFSET(dp); 9799 jaddref->ja_diradd = dap; 9800 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], 9801 dap, da_pdlist); 9802 add_to_journal(&jaddref->ja_list); 9803 } else if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) { 9804 dap->da_state |= COMPLETE; 9805 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist); 9806 WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list); 9807 } else { 9808 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], 9809 dap, da_pdlist); 9810 WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list); 9811 } 9812 /* 9813 * If we're making a new name for a directory that has not been 9814 * committed when need to move the dot and dotdot references to 9815 * this new name. 9816 */ 9817 if (inodedep->id_mkdiradd && I_OFFSET(dp) != DOTDOT_OFFSET) 9818 merge_diradd(inodedep, dap); 9819 FREE_LOCK(ump); 9820 } 9821 9822 /* 9823 * Called whenever the link count on an inode is changed. 9824 * It creates an inode dependency so that the new reference(s) 9825 * to the inode cannot be committed to disk until the updated 9826 * inode has been written. 9827 */ 9828 void 9829 softdep_change_linkcnt(ip) 9830 struct inode *ip; /* the inode with the increased link count */ 9831 { 9832 struct inodedep *inodedep; 9833 struct ufsmount *ump; 9834 9835 ump = ITOUMP(ip); 9836 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 9837 ("softdep_change_linkcnt called on non-softdep filesystem")); 9838 ACQUIRE_LOCK(ump); 9839 inodedep_lookup(UFSTOVFS(ump), ip->i_number, DEPALLOC, &inodedep); 9840 if (ip->i_nlink < ip->i_effnlink) 9841 panic("softdep_change_linkcnt: bad delta"); 9842 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 9843 FREE_LOCK(ump); 9844 } 9845 9846 /* 9847 * Attach a sbdep dependency to the superblock buf so that we can keep 9848 * track of the head of the linked list of referenced but unlinked inodes. 9849 */ 9850 void 9851 softdep_setup_sbupdate(ump, fs, bp) 9852 struct ufsmount *ump; 9853 struct fs *fs; 9854 struct buf *bp; 9855 { 9856 struct sbdep *sbdep; 9857 struct worklist *wk; 9858 9859 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 9860 ("softdep_setup_sbupdate called on non-softdep filesystem")); 9861 LIST_FOREACH(wk, &bp->b_dep, wk_list) 9862 if (wk->wk_type == D_SBDEP) 9863 break; 9864 if (wk != NULL) 9865 return; 9866 sbdep = malloc(sizeof(struct sbdep), M_SBDEP, M_SOFTDEP_FLAGS); 9867 workitem_alloc(&sbdep->sb_list, D_SBDEP, UFSTOVFS(ump)); 9868 sbdep->sb_fs = fs; 9869 sbdep->sb_ump = ump; 9870 ACQUIRE_LOCK(ump); 9871 WORKLIST_INSERT(&bp->b_dep, &sbdep->sb_list); 9872 FREE_LOCK(ump); 9873 } 9874 9875 /* 9876 * Return the first unlinked inodedep which is ready to be the head of the 9877 * list. The inodedep and all those after it must have valid next pointers. 9878 */ 9879 static struct inodedep * 9880 first_unlinked_inodedep(ump) 9881 struct ufsmount *ump; 9882 { 9883 struct inodedep *inodedep; 9884 struct inodedep *idp; 9885 9886 LOCK_OWNED(ump); 9887 for (inodedep = TAILQ_LAST(&ump->softdep_unlinked, inodedeplst); 9888 inodedep; inodedep = idp) { 9889 if ((inodedep->id_state & UNLINKNEXT) == 0) 9890 return (NULL); 9891 idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked); 9892 if (idp == NULL || (idp->id_state & UNLINKNEXT) == 0) 9893 break; 9894 if ((inodedep->id_state & UNLINKPREV) == 0) 9895 break; 9896 } 9897 return (inodedep); 9898 } 9899 9900 /* 9901 * Set the sujfree unlinked head pointer prior to writing a superblock. 9902 */ 9903 static void 9904 initiate_write_sbdep(sbdep) 9905 struct sbdep *sbdep; 9906 { 9907 struct inodedep *inodedep; 9908 struct fs *bpfs; 9909 struct fs *fs; 9910 9911 bpfs = sbdep->sb_fs; 9912 fs = sbdep->sb_ump->um_fs; 9913 inodedep = first_unlinked_inodedep(sbdep->sb_ump); 9914 if (inodedep) { 9915 fs->fs_sujfree = inodedep->id_ino; 9916 inodedep->id_state |= UNLINKPREV; 9917 } else 9918 fs->fs_sujfree = 0; 9919 bpfs->fs_sujfree = fs->fs_sujfree; 9920 /* 9921 * Because we have made changes to the superblock, we need to 9922 * recompute its check-hash. 9923 */ 9924 bpfs->fs_ckhash = ffs_calc_sbhash(bpfs); 9925 } 9926 9927 /* 9928 * After a superblock is written determine whether it must be written again 9929 * due to a changing unlinked list head. 9930 */ 9931 static int 9932 handle_written_sbdep(sbdep, bp) 9933 struct sbdep *sbdep; 9934 struct buf *bp; 9935 { 9936 struct inodedep *inodedep; 9937 struct fs *fs; 9938 9939 LOCK_OWNED(sbdep->sb_ump); 9940 fs = sbdep->sb_fs; 9941 /* 9942 * If the superblock doesn't match the in-memory list start over. 9943 */ 9944 inodedep = first_unlinked_inodedep(sbdep->sb_ump); 9945 if ((inodedep && fs->fs_sujfree != inodedep->id_ino) || 9946 (inodedep == NULL && fs->fs_sujfree != 0)) { 9947 bdirty(bp); 9948 return (1); 9949 } 9950 WORKITEM_FREE(sbdep, D_SBDEP); 9951 if (fs->fs_sujfree == 0) 9952 return (0); 9953 /* 9954 * Now that we have a record of this inode in stable store allow it 9955 * to be written to free up pending work. Inodes may see a lot of 9956 * write activity after they are unlinked which we must not hold up. 9957 */ 9958 for (; inodedep != NULL; inodedep = TAILQ_NEXT(inodedep, id_unlinked)) { 9959 if ((inodedep->id_state & UNLINKLINKS) != UNLINKLINKS) 9960 panic("handle_written_sbdep: Bad inodedep %p (0x%X)", 9961 inodedep, inodedep->id_state); 9962 if (inodedep->id_state & UNLINKONLIST) 9963 break; 9964 inodedep->id_state |= DEPCOMPLETE | UNLINKONLIST; 9965 } 9966 9967 return (0); 9968 } 9969 9970 /* 9971 * Mark an inodedep as unlinked and insert it into the in-memory unlinked list. 9972 */ 9973 static void 9974 unlinked_inodedep(mp, inodedep) 9975 struct mount *mp; 9976 struct inodedep *inodedep; 9977 { 9978 struct ufsmount *ump; 9979 9980 ump = VFSTOUFS(mp); 9981 LOCK_OWNED(ump); 9982 if (MOUNTEDSUJ(mp) == 0) 9983 return; 9984 ump->um_fs->fs_fmod = 1; 9985 if (inodedep->id_state & UNLINKED) 9986 panic("unlinked_inodedep: %p already unlinked\n", inodedep); 9987 inodedep->id_state |= UNLINKED; 9988 TAILQ_INSERT_HEAD(&ump->softdep_unlinked, inodedep, id_unlinked); 9989 } 9990 9991 /* 9992 * Remove an inodedep from the unlinked inodedep list. This may require 9993 * disk writes if the inode has made it that far. 9994 */ 9995 static void 9996 clear_unlinked_inodedep(inodedep) 9997 struct inodedep *inodedep; 9998 { 9999 struct ufs2_dinode *dip; 10000 struct ufsmount *ump; 10001 struct inodedep *idp; 10002 struct inodedep *idn; 10003 struct fs *fs, *bpfs; 10004 struct buf *bp; 10005 daddr_t dbn; 10006 ino_t ino; 10007 ino_t nino; 10008 ino_t pino; 10009 int error; 10010 10011 ump = VFSTOUFS(inodedep->id_list.wk_mp); 10012 fs = ump->um_fs; 10013 ino = inodedep->id_ino; 10014 error = 0; 10015 for (;;) { 10016 LOCK_OWNED(ump); 10017 KASSERT((inodedep->id_state & UNLINKED) != 0, 10018 ("clear_unlinked_inodedep: inodedep %p not unlinked", 10019 inodedep)); 10020 /* 10021 * If nothing has yet been written simply remove us from 10022 * the in memory list and return. This is the most common 10023 * case where handle_workitem_remove() loses the final 10024 * reference. 10025 */ 10026 if ((inodedep->id_state & UNLINKLINKS) == 0) 10027 break; 10028 /* 10029 * If we have a NEXT pointer and no PREV pointer we can simply 10030 * clear NEXT's PREV and remove ourselves from the list. Be 10031 * careful not to clear PREV if the superblock points at 10032 * next as well. 10033 */ 10034 idn = TAILQ_NEXT(inodedep, id_unlinked); 10035 if ((inodedep->id_state & UNLINKLINKS) == UNLINKNEXT) { 10036 if (idn && fs->fs_sujfree != idn->id_ino) 10037 idn->id_state &= ~UNLINKPREV; 10038 break; 10039 } 10040 /* 10041 * Here we have an inodedep which is actually linked into 10042 * the list. We must remove it by forcing a write to the 10043 * link before us, whether it be the superblock or an inode. 10044 * Unfortunately the list may change while we're waiting 10045 * on the buf lock for either resource so we must loop until 10046 * we lock the right one. If both the superblock and an 10047 * inode point to this inode we must clear the inode first 10048 * followed by the superblock. 10049 */ 10050 idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked); 10051 pino = 0; 10052 if (idp && (idp->id_state & UNLINKNEXT)) 10053 pino = idp->id_ino; 10054 FREE_LOCK(ump); 10055 if (pino == 0) { 10056 bp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc), 10057 (int)fs->fs_sbsize, 0, 0, 0); 10058 } else { 10059 dbn = fsbtodb(fs, ino_to_fsba(fs, pino)); 10060 error = ffs_breadz(ump, ump->um_devvp, dbn, dbn, 10061 (int)fs->fs_bsize, NULL, NULL, 0, NOCRED, 0, NULL, 10062 &bp); 10063 } 10064 ACQUIRE_LOCK(ump); 10065 if (error) 10066 break; 10067 /* If the list has changed restart the loop. */ 10068 idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked); 10069 nino = 0; 10070 if (idp && (idp->id_state & UNLINKNEXT)) 10071 nino = idp->id_ino; 10072 if (nino != pino || 10073 (inodedep->id_state & UNLINKPREV) != UNLINKPREV) { 10074 FREE_LOCK(ump); 10075 brelse(bp); 10076 ACQUIRE_LOCK(ump); 10077 continue; 10078 } 10079 nino = 0; 10080 idn = TAILQ_NEXT(inodedep, id_unlinked); 10081 if (idn) 10082 nino = idn->id_ino; 10083 /* 10084 * Remove us from the in memory list. After this we cannot 10085 * access the inodedep. 10086 */ 10087 KASSERT((inodedep->id_state & UNLINKED) != 0, 10088 ("clear_unlinked_inodedep: inodedep %p not unlinked", 10089 inodedep)); 10090 inodedep->id_state &= ~(UNLINKED | UNLINKLINKS | UNLINKONLIST); 10091 TAILQ_REMOVE(&ump->softdep_unlinked, inodedep, id_unlinked); 10092 FREE_LOCK(ump); 10093 /* 10094 * The predecessor's next pointer is manually updated here 10095 * so that the NEXT flag is never cleared for an element 10096 * that is in the list. 10097 */ 10098 if (pino == 0) { 10099 bcopy((caddr_t)fs, bp->b_data, (u_int)fs->fs_sbsize); 10100 bpfs = (struct fs *)bp->b_data; 10101 ffs_oldfscompat_write(bpfs, ump); 10102 softdep_setup_sbupdate(ump, bpfs, bp); 10103 /* 10104 * Because we may have made changes to the superblock, 10105 * we need to recompute its check-hash. 10106 */ 10107 bpfs->fs_ckhash = ffs_calc_sbhash(bpfs); 10108 } else if (fs->fs_magic == FS_UFS1_MAGIC) { 10109 ((struct ufs1_dinode *)bp->b_data + 10110 ino_to_fsbo(fs, pino))->di_freelink = nino; 10111 } else { 10112 dip = (struct ufs2_dinode *)bp->b_data + 10113 ino_to_fsbo(fs, pino); 10114 dip->di_freelink = nino; 10115 ffs_update_dinode_ckhash(fs, dip); 10116 } 10117 /* 10118 * If the bwrite fails we have no recourse to recover. The 10119 * filesystem is corrupted already. 10120 */ 10121 bwrite(bp); 10122 ACQUIRE_LOCK(ump); 10123 /* 10124 * If the superblock pointer still needs to be cleared force 10125 * a write here. 10126 */ 10127 if (fs->fs_sujfree == ino) { 10128 FREE_LOCK(ump); 10129 bp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc), 10130 (int)fs->fs_sbsize, 0, 0, 0); 10131 bcopy((caddr_t)fs, bp->b_data, (u_int)fs->fs_sbsize); 10132 bpfs = (struct fs *)bp->b_data; 10133 ffs_oldfscompat_write(bpfs, ump); 10134 softdep_setup_sbupdate(ump, bpfs, bp); 10135 /* 10136 * Because we may have made changes to the superblock, 10137 * we need to recompute its check-hash. 10138 */ 10139 bpfs->fs_ckhash = ffs_calc_sbhash(bpfs); 10140 bwrite(bp); 10141 ACQUIRE_LOCK(ump); 10142 } 10143 10144 if (fs->fs_sujfree != ino) 10145 return; 10146 panic("clear_unlinked_inodedep: Failed to clear free head"); 10147 } 10148 if (inodedep->id_ino == fs->fs_sujfree) 10149 panic("clear_unlinked_inodedep: Freeing head of free list"); 10150 inodedep->id_state &= ~(UNLINKED | UNLINKLINKS | UNLINKONLIST); 10151 TAILQ_REMOVE(&ump->softdep_unlinked, inodedep, id_unlinked); 10152 return; 10153 } 10154 10155 /* 10156 * This workitem decrements the inode's link count. 10157 * If the link count reaches zero, the file is removed. 10158 */ 10159 static int 10160 handle_workitem_remove(dirrem, flags) 10161 struct dirrem *dirrem; 10162 int flags; 10163 { 10164 struct inodedep *inodedep; 10165 struct workhead dotdotwk; 10166 struct worklist *wk; 10167 struct ufsmount *ump; 10168 struct mount *mp; 10169 struct vnode *vp; 10170 struct inode *ip; 10171 ino_t oldinum; 10172 10173 if (dirrem->dm_state & ONWORKLIST) 10174 panic("handle_workitem_remove: dirrem %p still on worklist", 10175 dirrem); 10176 oldinum = dirrem->dm_oldinum; 10177 mp = dirrem->dm_list.wk_mp; 10178 ump = VFSTOUFS(mp); 10179 flags |= LK_EXCLUSIVE; 10180 if (ffs_vgetf(mp, oldinum, flags, &vp, FFSV_FORCEINSMQ) != 0) 10181 return (EBUSY); 10182 ip = VTOI(vp); 10183 MPASS(ip->i_mode != 0); 10184 ACQUIRE_LOCK(ump); 10185 if ((inodedep_lookup(mp, oldinum, 0, &inodedep)) == 0) 10186 panic("handle_workitem_remove: lost inodedep"); 10187 if (dirrem->dm_state & ONDEPLIST) 10188 LIST_REMOVE(dirrem, dm_inonext); 10189 KASSERT(LIST_EMPTY(&dirrem->dm_jremrefhd), 10190 ("handle_workitem_remove: Journal entries not written.")); 10191 10192 /* 10193 * Move all dependencies waiting on the remove to complete 10194 * from the dirrem to the inode inowait list to be completed 10195 * after the inode has been updated and written to disk. 10196 * 10197 * Any marked MKDIR_PARENT are saved to be completed when the 10198 * dotdot ref is removed unless DIRCHG is specified. For 10199 * directory change operations there will be no further 10200 * directory writes and the jsegdeps need to be moved along 10201 * with the rest to be completed when the inode is free or 10202 * stable in the inode free list. 10203 */ 10204 LIST_INIT(&dotdotwk); 10205 while ((wk = LIST_FIRST(&dirrem->dm_jwork)) != NULL) { 10206 WORKLIST_REMOVE(wk); 10207 if ((dirrem->dm_state & DIRCHG) == 0 && 10208 wk->wk_state & MKDIR_PARENT) { 10209 wk->wk_state &= ~MKDIR_PARENT; 10210 WORKLIST_INSERT(&dotdotwk, wk); 10211 continue; 10212 } 10213 WORKLIST_INSERT(&inodedep->id_inowait, wk); 10214 } 10215 LIST_SWAP(&dirrem->dm_jwork, &dotdotwk, worklist, wk_list); 10216 /* 10217 * Normal file deletion. 10218 */ 10219 if ((dirrem->dm_state & RMDIR) == 0) { 10220 ip->i_nlink--; 10221 KASSERT(ip->i_nlink >= 0, ("handle_workitem_remove: file ino " 10222 "%ju negative i_nlink %d", (intmax_t)ip->i_number, 10223 ip->i_nlink)); 10224 DIP_SET(ip, i_nlink, ip->i_nlink); 10225 UFS_INODE_SET_FLAG(ip, IN_CHANGE); 10226 if (ip->i_nlink < ip->i_effnlink) 10227 panic("handle_workitem_remove: bad file delta"); 10228 if (ip->i_nlink == 0) 10229 unlinked_inodedep(mp, inodedep); 10230 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 10231 KASSERT(LIST_EMPTY(&dirrem->dm_jwork), 10232 ("handle_workitem_remove: worklist not empty. %s", 10233 TYPENAME(LIST_FIRST(&dirrem->dm_jwork)->wk_type))); 10234 WORKITEM_FREE(dirrem, D_DIRREM); 10235 FREE_LOCK(ump); 10236 goto out; 10237 } 10238 /* 10239 * Directory deletion. Decrement reference count for both the 10240 * just deleted parent directory entry and the reference for ".". 10241 * Arrange to have the reference count on the parent decremented 10242 * to account for the loss of "..". 10243 */ 10244 ip->i_nlink -= 2; 10245 KASSERT(ip->i_nlink >= 0, ("handle_workitem_remove: directory ino " 10246 "%ju negative i_nlink %d", (intmax_t)ip->i_number, ip->i_nlink)); 10247 DIP_SET(ip, i_nlink, ip->i_nlink); 10248 UFS_INODE_SET_FLAG(ip, IN_CHANGE); 10249 if (ip->i_nlink < ip->i_effnlink) 10250 panic("handle_workitem_remove: bad dir delta"); 10251 if (ip->i_nlink == 0) 10252 unlinked_inodedep(mp, inodedep); 10253 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 10254 /* 10255 * Rename a directory to a new parent. Since, we are both deleting 10256 * and creating a new directory entry, the link count on the new 10257 * directory should not change. Thus we skip the followup dirrem. 10258 */ 10259 if (dirrem->dm_state & DIRCHG) { 10260 KASSERT(LIST_EMPTY(&dirrem->dm_jwork), 10261 ("handle_workitem_remove: DIRCHG and worklist not empty.")); 10262 WORKITEM_FREE(dirrem, D_DIRREM); 10263 FREE_LOCK(ump); 10264 goto out; 10265 } 10266 dirrem->dm_state = ONDEPLIST; 10267 dirrem->dm_oldinum = dirrem->dm_dirinum; 10268 /* 10269 * Place the dirrem on the parent's diremhd list. 10270 */ 10271 if (inodedep_lookup(mp, dirrem->dm_oldinum, 0, &inodedep) == 0) 10272 panic("handle_workitem_remove: lost dir inodedep"); 10273 LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext); 10274 /* 10275 * If the allocated inode has never been written to disk, then 10276 * the on-disk inode is zero'ed and we can remove the file 10277 * immediately. When journaling if the inode has been marked 10278 * unlinked and not DEPCOMPLETE we know it can never be written. 10279 */ 10280 inodedep_lookup(mp, oldinum, 0, &inodedep); 10281 if (inodedep == NULL || 10282 (inodedep->id_state & (DEPCOMPLETE | UNLINKED)) == UNLINKED || 10283 check_inode_unwritten(inodedep)) { 10284 FREE_LOCK(ump); 10285 vput(vp); 10286 return handle_workitem_remove(dirrem, flags); 10287 } 10288 WORKLIST_INSERT(&inodedep->id_inowait, &dirrem->dm_list); 10289 FREE_LOCK(ump); 10290 UFS_INODE_SET_FLAG(ip, IN_CHANGE); 10291 out: 10292 ffs_update(vp, 0); 10293 vput(vp); 10294 return (0); 10295 } 10296 10297 /* 10298 * Inode de-allocation dependencies. 10299 * 10300 * When an inode's link count is reduced to zero, it can be de-allocated. We 10301 * found it convenient to postpone de-allocation until after the inode is 10302 * written to disk with its new link count (zero). At this point, all of the 10303 * on-disk inode's block pointers are nullified and, with careful dependency 10304 * list ordering, all dependencies related to the inode will be satisfied and 10305 * the corresponding dependency structures de-allocated. So, if/when the 10306 * inode is reused, there will be no mixing of old dependencies with new 10307 * ones. This artificial dependency is set up by the block de-allocation 10308 * procedure above (softdep_setup_freeblocks) and completed by the 10309 * following procedure. 10310 */ 10311 static void 10312 handle_workitem_freefile(freefile) 10313 struct freefile *freefile; 10314 { 10315 struct workhead wkhd; 10316 struct fs *fs; 10317 struct ufsmount *ump; 10318 int error; 10319 #ifdef INVARIANTS 10320 struct inodedep *idp; 10321 #endif 10322 10323 ump = VFSTOUFS(freefile->fx_list.wk_mp); 10324 fs = ump->um_fs; 10325 #ifdef INVARIANTS 10326 ACQUIRE_LOCK(ump); 10327 error = inodedep_lookup(UFSTOVFS(ump), freefile->fx_oldinum, 0, &idp); 10328 FREE_LOCK(ump); 10329 if (error) 10330 panic("handle_workitem_freefile: inodedep %p survived", idp); 10331 #endif 10332 UFS_LOCK(ump); 10333 fs->fs_pendinginodes -= 1; 10334 UFS_UNLOCK(ump); 10335 LIST_INIT(&wkhd); 10336 LIST_SWAP(&freefile->fx_jwork, &wkhd, worklist, wk_list); 10337 if ((error = ffs_freefile(ump, fs, freefile->fx_devvp, 10338 freefile->fx_oldinum, freefile->fx_mode, &wkhd)) != 0) 10339 softdep_error("handle_workitem_freefile", error); 10340 ACQUIRE_LOCK(ump); 10341 WORKITEM_FREE(freefile, D_FREEFILE); 10342 FREE_LOCK(ump); 10343 } 10344 10345 /* 10346 * Helper function which unlinks marker element from work list and returns 10347 * the next element on the list. 10348 */ 10349 static __inline struct worklist * 10350 markernext(struct worklist *marker) 10351 { 10352 struct worklist *next; 10353 10354 next = LIST_NEXT(marker, wk_list); 10355 LIST_REMOVE(marker, wk_list); 10356 return next; 10357 } 10358 10359 /* 10360 * Disk writes. 10361 * 10362 * The dependency structures constructed above are most actively used when file 10363 * system blocks are written to disk. No constraints are placed on when a 10364 * block can be written, but unsatisfied update dependencies are made safe by 10365 * modifying (or replacing) the source memory for the duration of the disk 10366 * write. When the disk write completes, the memory block is again brought 10367 * up-to-date. 10368 * 10369 * In-core inode structure reclamation. 10370 * 10371 * Because there are a finite number of "in-core" inode structures, they are 10372 * reused regularly. By transferring all inode-related dependencies to the 10373 * in-memory inode block and indexing them separately (via "inodedep"s), we 10374 * can allow "in-core" inode structures to be reused at any time and avoid 10375 * any increase in contention. 10376 * 10377 * Called just before entering the device driver to initiate a new disk I/O. 10378 * The buffer must be locked, thus, no I/O completion operations can occur 10379 * while we are manipulating its associated dependencies. 10380 */ 10381 static void 10382 softdep_disk_io_initiation(bp) 10383 struct buf *bp; /* structure describing disk write to occur */ 10384 { 10385 struct worklist *wk; 10386 struct worklist marker; 10387 struct inodedep *inodedep; 10388 struct freeblks *freeblks; 10389 struct jblkdep *jblkdep; 10390 struct newblk *newblk; 10391 struct ufsmount *ump; 10392 10393 /* 10394 * We only care about write operations. There should never 10395 * be dependencies for reads. 10396 */ 10397 if (bp->b_iocmd != BIO_WRITE) 10398 panic("softdep_disk_io_initiation: not write"); 10399 10400 if (bp->b_vflags & BV_BKGRDINPROG) 10401 panic("softdep_disk_io_initiation: Writing buffer with " 10402 "background write in progress: %p", bp); 10403 10404 ump = softdep_bp_to_mp(bp); 10405 if (ump == NULL) 10406 return; 10407 10408 marker.wk_type = D_LAST + 1; /* Not a normal workitem */ 10409 PHOLD(curproc); /* Don't swap out kernel stack */ 10410 ACQUIRE_LOCK(ump); 10411 /* 10412 * Do any necessary pre-I/O processing. 10413 */ 10414 for (wk = LIST_FIRST(&bp->b_dep); wk != NULL; 10415 wk = markernext(&marker)) { 10416 LIST_INSERT_AFTER(wk, &marker, wk_list); 10417 switch (wk->wk_type) { 10418 case D_PAGEDEP: 10419 initiate_write_filepage(WK_PAGEDEP(wk), bp); 10420 continue; 10421 10422 case D_INODEDEP: 10423 inodedep = WK_INODEDEP(wk); 10424 if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC) 10425 initiate_write_inodeblock_ufs1(inodedep, bp); 10426 else 10427 initiate_write_inodeblock_ufs2(inodedep, bp); 10428 continue; 10429 10430 case D_INDIRDEP: 10431 initiate_write_indirdep(WK_INDIRDEP(wk), bp); 10432 continue; 10433 10434 case D_BMSAFEMAP: 10435 initiate_write_bmsafemap(WK_BMSAFEMAP(wk), bp); 10436 continue; 10437 10438 case D_JSEG: 10439 WK_JSEG(wk)->js_buf = NULL; 10440 continue; 10441 10442 case D_FREEBLKS: 10443 freeblks = WK_FREEBLKS(wk); 10444 jblkdep = LIST_FIRST(&freeblks->fb_jblkdephd); 10445 /* 10446 * We have to wait for the freeblks to be journaled 10447 * before we can write an inodeblock with updated 10448 * pointers. Be careful to arrange the marker so 10449 * we revisit the freeblks if it's not removed by 10450 * the first jwait(). 10451 */ 10452 if (jblkdep != NULL) { 10453 LIST_REMOVE(&marker, wk_list); 10454 LIST_INSERT_BEFORE(wk, &marker, wk_list); 10455 jwait(&jblkdep->jb_list, MNT_WAIT); 10456 } 10457 continue; 10458 case D_ALLOCDIRECT: 10459 case D_ALLOCINDIR: 10460 /* 10461 * We have to wait for the jnewblk to be journaled 10462 * before we can write to a block if the contents 10463 * may be confused with an earlier file's indirect 10464 * at recovery time. Handle the marker as described 10465 * above. 10466 */ 10467 newblk = WK_NEWBLK(wk); 10468 if (newblk->nb_jnewblk != NULL && 10469 indirblk_lookup(newblk->nb_list.wk_mp, 10470 newblk->nb_newblkno)) { 10471 LIST_REMOVE(&marker, wk_list); 10472 LIST_INSERT_BEFORE(wk, &marker, wk_list); 10473 jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT); 10474 } 10475 continue; 10476 10477 case D_SBDEP: 10478 initiate_write_sbdep(WK_SBDEP(wk)); 10479 continue; 10480 10481 case D_MKDIR: 10482 case D_FREEWORK: 10483 case D_FREEDEP: 10484 case D_JSEGDEP: 10485 continue; 10486 10487 default: 10488 panic("handle_disk_io_initiation: Unexpected type %s", 10489 TYPENAME(wk->wk_type)); 10490 /* NOTREACHED */ 10491 } 10492 } 10493 FREE_LOCK(ump); 10494 PRELE(curproc); /* Allow swapout of kernel stack */ 10495 } 10496 10497 /* 10498 * Called from within the procedure above to deal with unsatisfied 10499 * allocation dependencies in a directory. The buffer must be locked, 10500 * thus, no I/O completion operations can occur while we are 10501 * manipulating its associated dependencies. 10502 */ 10503 static void 10504 initiate_write_filepage(pagedep, bp) 10505 struct pagedep *pagedep; 10506 struct buf *bp; 10507 { 10508 struct jremref *jremref; 10509 struct jmvref *jmvref; 10510 struct dirrem *dirrem; 10511 struct diradd *dap; 10512 struct direct *ep; 10513 int i; 10514 10515 if (pagedep->pd_state & IOSTARTED) { 10516 /* 10517 * This can only happen if there is a driver that does not 10518 * understand chaining. Here biodone will reissue the call 10519 * to strategy for the incomplete buffers. 10520 */ 10521 printf("initiate_write_filepage: already started\n"); 10522 return; 10523 } 10524 pagedep->pd_state |= IOSTARTED; 10525 /* 10526 * Wait for all journal remove dependencies to hit the disk. 10527 * We can not allow any potentially conflicting directory adds 10528 * to be visible before removes and rollback is too difficult. 10529 * The per-filesystem lock may be dropped and re-acquired, however 10530 * we hold the buf locked so the dependency can not go away. 10531 */ 10532 LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next) 10533 while ((jremref = LIST_FIRST(&dirrem->dm_jremrefhd)) != NULL) 10534 jwait(&jremref->jr_list, MNT_WAIT); 10535 while ((jmvref = LIST_FIRST(&pagedep->pd_jmvrefhd)) != NULL) 10536 jwait(&jmvref->jm_list, MNT_WAIT); 10537 for (i = 0; i < DAHASHSZ; i++) { 10538 LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) { 10539 ep = (struct direct *) 10540 ((char *)bp->b_data + dap->da_offset); 10541 if (ep->d_ino != dap->da_newinum) 10542 panic("%s: dir inum %ju != new %ju", 10543 "initiate_write_filepage", 10544 (uintmax_t)ep->d_ino, 10545 (uintmax_t)dap->da_newinum); 10546 if (dap->da_state & DIRCHG) 10547 ep->d_ino = dap->da_previous->dm_oldinum; 10548 else 10549 ep->d_ino = 0; 10550 dap->da_state &= ~ATTACHED; 10551 dap->da_state |= UNDONE; 10552 } 10553 } 10554 } 10555 10556 /* 10557 * Version of initiate_write_inodeblock that handles UFS1 dinodes. 10558 * Note that any bug fixes made to this routine must be done in the 10559 * version found below. 10560 * 10561 * Called from within the procedure above to deal with unsatisfied 10562 * allocation dependencies in an inodeblock. The buffer must be 10563 * locked, thus, no I/O completion operations can occur while we 10564 * are manipulating its associated dependencies. 10565 */ 10566 static void 10567 initiate_write_inodeblock_ufs1(inodedep, bp) 10568 struct inodedep *inodedep; 10569 struct buf *bp; /* The inode block */ 10570 { 10571 struct allocdirect *adp, *lastadp; 10572 struct ufs1_dinode *dp; 10573 struct ufs1_dinode *sip; 10574 struct inoref *inoref; 10575 struct ufsmount *ump; 10576 struct fs *fs; 10577 ufs_lbn_t i; 10578 #ifdef INVARIANTS 10579 ufs_lbn_t prevlbn = 0; 10580 #endif 10581 int deplist; 10582 10583 if (inodedep->id_state & IOSTARTED) 10584 panic("initiate_write_inodeblock_ufs1: already started"); 10585 inodedep->id_state |= IOSTARTED; 10586 fs = inodedep->id_fs; 10587 ump = VFSTOUFS(inodedep->id_list.wk_mp); 10588 LOCK_OWNED(ump); 10589 dp = (struct ufs1_dinode *)bp->b_data + 10590 ino_to_fsbo(fs, inodedep->id_ino); 10591 10592 /* 10593 * If we're on the unlinked list but have not yet written our 10594 * next pointer initialize it here. 10595 */ 10596 if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) { 10597 struct inodedep *inon; 10598 10599 inon = TAILQ_NEXT(inodedep, id_unlinked); 10600 dp->di_freelink = inon ? inon->id_ino : 0; 10601 } 10602 /* 10603 * If the bitmap is not yet written, then the allocated 10604 * inode cannot be written to disk. 10605 */ 10606 if ((inodedep->id_state & DEPCOMPLETE) == 0) { 10607 if (inodedep->id_savedino1 != NULL) 10608 panic("initiate_write_inodeblock_ufs1: I/O underway"); 10609 FREE_LOCK(ump); 10610 sip = malloc(sizeof(struct ufs1_dinode), 10611 M_SAVEDINO, M_SOFTDEP_FLAGS); 10612 ACQUIRE_LOCK(ump); 10613 inodedep->id_savedino1 = sip; 10614 *inodedep->id_savedino1 = *dp; 10615 bzero((caddr_t)dp, sizeof(struct ufs1_dinode)); 10616 dp->di_gen = inodedep->id_savedino1->di_gen; 10617 dp->di_freelink = inodedep->id_savedino1->di_freelink; 10618 return; 10619 } 10620 /* 10621 * If no dependencies, then there is nothing to roll back. 10622 */ 10623 inodedep->id_savedsize = dp->di_size; 10624 inodedep->id_savedextsize = 0; 10625 inodedep->id_savednlink = dp->di_nlink; 10626 if (TAILQ_EMPTY(&inodedep->id_inoupdt) && 10627 TAILQ_EMPTY(&inodedep->id_inoreflst)) 10628 return; 10629 /* 10630 * Revert the link count to that of the first unwritten journal entry. 10631 */ 10632 inoref = TAILQ_FIRST(&inodedep->id_inoreflst); 10633 if (inoref) 10634 dp->di_nlink = inoref->if_nlink; 10635 /* 10636 * Set the dependencies to busy. 10637 */ 10638 for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 10639 adp = TAILQ_NEXT(adp, ad_next)) { 10640 #ifdef INVARIANTS 10641 if (deplist != 0 && prevlbn >= adp->ad_offset) 10642 panic("softdep_write_inodeblock: lbn order"); 10643 prevlbn = adp->ad_offset; 10644 if (adp->ad_offset < UFS_NDADDR && 10645 dp->di_db[adp->ad_offset] != adp->ad_newblkno) 10646 panic("initiate_write_inodeblock_ufs1: " 10647 "direct pointer #%jd mismatch %d != %jd", 10648 (intmax_t)adp->ad_offset, 10649 dp->di_db[adp->ad_offset], 10650 (intmax_t)adp->ad_newblkno); 10651 if (adp->ad_offset >= UFS_NDADDR && 10652 dp->di_ib[adp->ad_offset - UFS_NDADDR] != adp->ad_newblkno) 10653 panic("initiate_write_inodeblock_ufs1: " 10654 "indirect pointer #%jd mismatch %d != %jd", 10655 (intmax_t)adp->ad_offset - UFS_NDADDR, 10656 dp->di_ib[adp->ad_offset - UFS_NDADDR], 10657 (intmax_t)adp->ad_newblkno); 10658 deplist |= 1 << adp->ad_offset; 10659 if ((adp->ad_state & ATTACHED) == 0) 10660 panic("initiate_write_inodeblock_ufs1: " 10661 "Unknown state 0x%x", adp->ad_state); 10662 #endif /* INVARIANTS */ 10663 adp->ad_state &= ~ATTACHED; 10664 adp->ad_state |= UNDONE; 10665 } 10666 /* 10667 * The on-disk inode cannot claim to be any larger than the last 10668 * fragment that has been written. Otherwise, the on-disk inode 10669 * might have fragments that were not the last block in the file 10670 * which would corrupt the filesystem. 10671 */ 10672 for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 10673 lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) { 10674 if (adp->ad_offset >= UFS_NDADDR) 10675 break; 10676 dp->di_db[adp->ad_offset] = adp->ad_oldblkno; 10677 /* keep going until hitting a rollback to a frag */ 10678 if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize) 10679 continue; 10680 dp->di_size = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize; 10681 for (i = adp->ad_offset + 1; i < UFS_NDADDR; i++) { 10682 #ifdef INVARIANTS 10683 if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0) 10684 panic("initiate_write_inodeblock_ufs1: " 10685 "lost dep1"); 10686 #endif /* INVARIANTS */ 10687 dp->di_db[i] = 0; 10688 } 10689 for (i = 0; i < UFS_NIADDR; i++) { 10690 #ifdef INVARIANTS 10691 if (dp->di_ib[i] != 0 && 10692 (deplist & ((1 << UFS_NDADDR) << i)) == 0) 10693 panic("initiate_write_inodeblock_ufs1: " 10694 "lost dep2"); 10695 #endif /* INVARIANTS */ 10696 dp->di_ib[i] = 0; 10697 } 10698 return; 10699 } 10700 /* 10701 * If we have zero'ed out the last allocated block of the file, 10702 * roll back the size to the last currently allocated block. 10703 * We know that this last allocated block is a full-sized as 10704 * we already checked for fragments in the loop above. 10705 */ 10706 if (lastadp != NULL && 10707 dp->di_size <= (lastadp->ad_offset + 1) * fs->fs_bsize) { 10708 for (i = lastadp->ad_offset; i >= 0; i--) 10709 if (dp->di_db[i] != 0) 10710 break; 10711 dp->di_size = (i + 1) * fs->fs_bsize; 10712 } 10713 /* 10714 * The only dependencies are for indirect blocks. 10715 * 10716 * The file size for indirect block additions is not guaranteed. 10717 * Such a guarantee would be non-trivial to achieve. The conventional 10718 * synchronous write implementation also does not make this guarantee. 10719 * Fsck should catch and fix discrepancies. Arguably, the file size 10720 * can be over-estimated without destroying integrity when the file 10721 * moves into the indirect blocks (i.e., is large). If we want to 10722 * postpone fsck, we are stuck with this argument. 10723 */ 10724 for (; adp; adp = TAILQ_NEXT(adp, ad_next)) 10725 dp->di_ib[adp->ad_offset - UFS_NDADDR] = 0; 10726 } 10727 10728 /* 10729 * Version of initiate_write_inodeblock that handles UFS2 dinodes. 10730 * Note that any bug fixes made to this routine must be done in the 10731 * version found above. 10732 * 10733 * Called from within the procedure above to deal with unsatisfied 10734 * allocation dependencies in an inodeblock. The buffer must be 10735 * locked, thus, no I/O completion operations can occur while we 10736 * are manipulating its associated dependencies. 10737 */ 10738 static void 10739 initiate_write_inodeblock_ufs2(inodedep, bp) 10740 struct inodedep *inodedep; 10741 struct buf *bp; /* The inode block */ 10742 { 10743 struct allocdirect *adp, *lastadp; 10744 struct ufs2_dinode *dp; 10745 struct ufs2_dinode *sip; 10746 struct inoref *inoref; 10747 struct ufsmount *ump; 10748 struct fs *fs; 10749 ufs_lbn_t i; 10750 #ifdef INVARIANTS 10751 ufs_lbn_t prevlbn = 0; 10752 #endif 10753 int deplist; 10754 10755 if (inodedep->id_state & IOSTARTED) 10756 panic("initiate_write_inodeblock_ufs2: already started"); 10757 inodedep->id_state |= IOSTARTED; 10758 fs = inodedep->id_fs; 10759 ump = VFSTOUFS(inodedep->id_list.wk_mp); 10760 LOCK_OWNED(ump); 10761 dp = (struct ufs2_dinode *)bp->b_data + 10762 ino_to_fsbo(fs, inodedep->id_ino); 10763 10764 /* 10765 * If we're on the unlinked list but have not yet written our 10766 * next pointer initialize it here. 10767 */ 10768 if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) { 10769 struct inodedep *inon; 10770 10771 inon = TAILQ_NEXT(inodedep, id_unlinked); 10772 dp->di_freelink = inon ? inon->id_ino : 0; 10773 ffs_update_dinode_ckhash(fs, dp); 10774 } 10775 /* 10776 * If the bitmap is not yet written, then the allocated 10777 * inode cannot be written to disk. 10778 */ 10779 if ((inodedep->id_state & DEPCOMPLETE) == 0) { 10780 if (inodedep->id_savedino2 != NULL) 10781 panic("initiate_write_inodeblock_ufs2: I/O underway"); 10782 FREE_LOCK(ump); 10783 sip = malloc(sizeof(struct ufs2_dinode), 10784 M_SAVEDINO, M_SOFTDEP_FLAGS); 10785 ACQUIRE_LOCK(ump); 10786 inodedep->id_savedino2 = sip; 10787 *inodedep->id_savedino2 = *dp; 10788 bzero((caddr_t)dp, sizeof(struct ufs2_dinode)); 10789 dp->di_gen = inodedep->id_savedino2->di_gen; 10790 dp->di_freelink = inodedep->id_savedino2->di_freelink; 10791 return; 10792 } 10793 /* 10794 * If no dependencies, then there is nothing to roll back. 10795 */ 10796 inodedep->id_savedsize = dp->di_size; 10797 inodedep->id_savedextsize = dp->di_extsize; 10798 inodedep->id_savednlink = dp->di_nlink; 10799 if (TAILQ_EMPTY(&inodedep->id_inoupdt) && 10800 TAILQ_EMPTY(&inodedep->id_extupdt) && 10801 TAILQ_EMPTY(&inodedep->id_inoreflst)) 10802 return; 10803 /* 10804 * Revert the link count to that of the first unwritten journal entry. 10805 */ 10806 inoref = TAILQ_FIRST(&inodedep->id_inoreflst); 10807 if (inoref) 10808 dp->di_nlink = inoref->if_nlink; 10809 10810 /* 10811 * Set the ext data dependencies to busy. 10812 */ 10813 for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; 10814 adp = TAILQ_NEXT(adp, ad_next)) { 10815 #ifdef INVARIANTS 10816 if (deplist != 0 && prevlbn >= adp->ad_offset) 10817 panic("initiate_write_inodeblock_ufs2: lbn order"); 10818 prevlbn = adp->ad_offset; 10819 if (dp->di_extb[adp->ad_offset] != adp->ad_newblkno) 10820 panic("initiate_write_inodeblock_ufs2: " 10821 "ext pointer #%jd mismatch %jd != %jd", 10822 (intmax_t)adp->ad_offset, 10823 (intmax_t)dp->di_extb[adp->ad_offset], 10824 (intmax_t)adp->ad_newblkno); 10825 deplist |= 1 << adp->ad_offset; 10826 if ((adp->ad_state & ATTACHED) == 0) 10827 panic("initiate_write_inodeblock_ufs2: Unknown " 10828 "state 0x%x", adp->ad_state); 10829 #endif /* INVARIANTS */ 10830 adp->ad_state &= ~ATTACHED; 10831 adp->ad_state |= UNDONE; 10832 } 10833 /* 10834 * The on-disk inode cannot claim to be any larger than the last 10835 * fragment that has been written. Otherwise, the on-disk inode 10836 * might have fragments that were not the last block in the ext 10837 * data which would corrupt the filesystem. 10838 */ 10839 for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; 10840 lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) { 10841 dp->di_extb[adp->ad_offset] = adp->ad_oldblkno; 10842 /* keep going until hitting a rollback to a frag */ 10843 if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize) 10844 continue; 10845 dp->di_extsize = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize; 10846 for (i = adp->ad_offset + 1; i < UFS_NXADDR; i++) { 10847 #ifdef INVARIANTS 10848 if (dp->di_extb[i] != 0 && (deplist & (1 << i)) == 0) 10849 panic("initiate_write_inodeblock_ufs2: " 10850 "lost dep1"); 10851 #endif /* INVARIANTS */ 10852 dp->di_extb[i] = 0; 10853 } 10854 lastadp = NULL; 10855 break; 10856 } 10857 /* 10858 * If we have zero'ed out the last allocated block of the ext 10859 * data, roll back the size to the last currently allocated block. 10860 * We know that this last allocated block is a full-sized as 10861 * we already checked for fragments in the loop above. 10862 */ 10863 if (lastadp != NULL && 10864 dp->di_extsize <= (lastadp->ad_offset + 1) * fs->fs_bsize) { 10865 for (i = lastadp->ad_offset; i >= 0; i--) 10866 if (dp->di_extb[i] != 0) 10867 break; 10868 dp->di_extsize = (i + 1) * fs->fs_bsize; 10869 } 10870 /* 10871 * Set the file data dependencies to busy. 10872 */ 10873 for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 10874 adp = TAILQ_NEXT(adp, ad_next)) { 10875 #ifdef INVARIANTS 10876 if (deplist != 0 && prevlbn >= adp->ad_offset) 10877 panic("softdep_write_inodeblock: lbn order"); 10878 if ((adp->ad_state & ATTACHED) == 0) 10879 panic("inodedep %p and adp %p not attached", inodedep, adp); 10880 prevlbn = adp->ad_offset; 10881 if (!ffs_fsfail_cleanup(ump, 0) && 10882 adp->ad_offset < UFS_NDADDR && 10883 dp->di_db[adp->ad_offset] != adp->ad_newblkno) 10884 panic("initiate_write_inodeblock_ufs2: " 10885 "direct pointer #%jd mismatch %jd != %jd", 10886 (intmax_t)adp->ad_offset, 10887 (intmax_t)dp->di_db[adp->ad_offset], 10888 (intmax_t)adp->ad_newblkno); 10889 if (!ffs_fsfail_cleanup(ump, 0) && 10890 adp->ad_offset >= UFS_NDADDR && 10891 dp->di_ib[adp->ad_offset - UFS_NDADDR] != adp->ad_newblkno) 10892 panic("initiate_write_inodeblock_ufs2: " 10893 "indirect pointer #%jd mismatch %jd != %jd", 10894 (intmax_t)adp->ad_offset - UFS_NDADDR, 10895 (intmax_t)dp->di_ib[adp->ad_offset - UFS_NDADDR], 10896 (intmax_t)adp->ad_newblkno); 10897 deplist |= 1 << adp->ad_offset; 10898 if ((adp->ad_state & ATTACHED) == 0) 10899 panic("initiate_write_inodeblock_ufs2: Unknown " 10900 "state 0x%x", adp->ad_state); 10901 #endif /* INVARIANTS */ 10902 adp->ad_state &= ~ATTACHED; 10903 adp->ad_state |= UNDONE; 10904 } 10905 /* 10906 * The on-disk inode cannot claim to be any larger than the last 10907 * fragment that has been written. Otherwise, the on-disk inode 10908 * might have fragments that were not the last block in the file 10909 * which would corrupt the filesystem. 10910 */ 10911 for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 10912 lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) { 10913 if (adp->ad_offset >= UFS_NDADDR) 10914 break; 10915 dp->di_db[adp->ad_offset] = adp->ad_oldblkno; 10916 /* keep going until hitting a rollback to a frag */ 10917 if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize) 10918 continue; 10919 dp->di_size = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize; 10920 for (i = adp->ad_offset + 1; i < UFS_NDADDR; i++) { 10921 #ifdef INVARIANTS 10922 if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0) 10923 panic("initiate_write_inodeblock_ufs2: " 10924 "lost dep2"); 10925 #endif /* INVARIANTS */ 10926 dp->di_db[i] = 0; 10927 } 10928 for (i = 0; i < UFS_NIADDR; i++) { 10929 #ifdef INVARIANTS 10930 if (dp->di_ib[i] != 0 && 10931 (deplist & ((1 << UFS_NDADDR) << i)) == 0) 10932 panic("initiate_write_inodeblock_ufs2: " 10933 "lost dep3"); 10934 #endif /* INVARIANTS */ 10935 dp->di_ib[i] = 0; 10936 } 10937 ffs_update_dinode_ckhash(fs, dp); 10938 return; 10939 } 10940 /* 10941 * If we have zero'ed out the last allocated block of the file, 10942 * roll back the size to the last currently allocated block. 10943 * We know that this last allocated block is a full-sized as 10944 * we already checked for fragments in the loop above. 10945 */ 10946 if (lastadp != NULL && 10947 dp->di_size <= (lastadp->ad_offset + 1) * fs->fs_bsize) { 10948 for (i = lastadp->ad_offset; i >= 0; i--) 10949 if (dp->di_db[i] != 0) 10950 break; 10951 dp->di_size = (i + 1) * fs->fs_bsize; 10952 } 10953 /* 10954 * The only dependencies are for indirect blocks. 10955 * 10956 * The file size for indirect block additions is not guaranteed. 10957 * Such a guarantee would be non-trivial to achieve. The conventional 10958 * synchronous write implementation also does not make this guarantee. 10959 * Fsck should catch and fix discrepancies. Arguably, the file size 10960 * can be over-estimated without destroying integrity when the file 10961 * moves into the indirect blocks (i.e., is large). If we want to 10962 * postpone fsck, we are stuck with this argument. 10963 */ 10964 for (; adp; adp = TAILQ_NEXT(adp, ad_next)) 10965 dp->di_ib[adp->ad_offset - UFS_NDADDR] = 0; 10966 ffs_update_dinode_ckhash(fs, dp); 10967 } 10968 10969 /* 10970 * Cancel an indirdep as a result of truncation. Release all of the 10971 * children allocindirs and place their journal work on the appropriate 10972 * list. 10973 */ 10974 static void 10975 cancel_indirdep(indirdep, bp, freeblks) 10976 struct indirdep *indirdep; 10977 struct buf *bp; 10978 struct freeblks *freeblks; 10979 { 10980 struct allocindir *aip; 10981 10982 /* 10983 * None of the indirect pointers will ever be visible, 10984 * so they can simply be tossed. GOINGAWAY ensures 10985 * that allocated pointers will be saved in the buffer 10986 * cache until they are freed. Note that they will 10987 * only be able to be found by their physical address 10988 * since the inode mapping the logical address will 10989 * be gone. The save buffer used for the safe copy 10990 * was allocated in setup_allocindir_phase2 using 10991 * the physical address so it could be used for this 10992 * purpose. Hence we swap the safe copy with the real 10993 * copy, allowing the safe copy to be freed and holding 10994 * on to the real copy for later use in indir_trunc. 10995 */ 10996 if (indirdep->ir_state & GOINGAWAY) 10997 panic("cancel_indirdep: already gone"); 10998 if ((indirdep->ir_state & DEPCOMPLETE) == 0) { 10999 indirdep->ir_state |= DEPCOMPLETE; 11000 LIST_REMOVE(indirdep, ir_next); 11001 } 11002 indirdep->ir_state |= GOINGAWAY; 11003 /* 11004 * Pass in bp for blocks still have journal writes 11005 * pending so we can cancel them on their own. 11006 */ 11007 while ((aip = LIST_FIRST(&indirdep->ir_deplisthd)) != NULL) 11008 cancel_allocindir(aip, bp, freeblks, 0); 11009 while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != NULL) 11010 cancel_allocindir(aip, NULL, freeblks, 0); 11011 while ((aip = LIST_FIRST(&indirdep->ir_writehd)) != NULL) 11012 cancel_allocindir(aip, NULL, freeblks, 0); 11013 while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != NULL) 11014 cancel_allocindir(aip, NULL, freeblks, 0); 11015 /* 11016 * If there are pending partial truncations we need to keep the 11017 * old block copy around until they complete. This is because 11018 * the current b_data is not a perfect superset of the available 11019 * blocks. 11020 */ 11021 if (TAILQ_EMPTY(&indirdep->ir_trunc)) 11022 bcopy(bp->b_data, indirdep->ir_savebp->b_data, bp->b_bcount); 11023 else 11024 bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount); 11025 WORKLIST_REMOVE(&indirdep->ir_list); 11026 WORKLIST_INSERT(&indirdep->ir_savebp->b_dep, &indirdep->ir_list); 11027 indirdep->ir_bp = NULL; 11028 indirdep->ir_freeblks = freeblks; 11029 } 11030 11031 /* 11032 * Free an indirdep once it no longer has new pointers to track. 11033 */ 11034 static void 11035 free_indirdep(indirdep) 11036 struct indirdep *indirdep; 11037 { 11038 11039 KASSERT(TAILQ_EMPTY(&indirdep->ir_trunc), 11040 ("free_indirdep: Indir trunc list not empty.")); 11041 KASSERT(LIST_EMPTY(&indirdep->ir_completehd), 11042 ("free_indirdep: Complete head not empty.")); 11043 KASSERT(LIST_EMPTY(&indirdep->ir_writehd), 11044 ("free_indirdep: write head not empty.")); 11045 KASSERT(LIST_EMPTY(&indirdep->ir_donehd), 11046 ("free_indirdep: done head not empty.")); 11047 KASSERT(LIST_EMPTY(&indirdep->ir_deplisthd), 11048 ("free_indirdep: deplist head not empty.")); 11049 KASSERT((indirdep->ir_state & DEPCOMPLETE), 11050 ("free_indirdep: %p still on newblk list.", indirdep)); 11051 KASSERT(indirdep->ir_saveddata == NULL, 11052 ("free_indirdep: %p still has saved data.", indirdep)); 11053 KASSERT(indirdep->ir_savebp == NULL, 11054 ("free_indirdep: %p still has savebp buffer.", indirdep)); 11055 if (indirdep->ir_state & ONWORKLIST) 11056 WORKLIST_REMOVE(&indirdep->ir_list); 11057 WORKITEM_FREE(indirdep, D_INDIRDEP); 11058 } 11059 11060 /* 11061 * Called before a write to an indirdep. This routine is responsible for 11062 * rolling back pointers to a safe state which includes only those 11063 * allocindirs which have been completed. 11064 */ 11065 static void 11066 initiate_write_indirdep(indirdep, bp) 11067 struct indirdep *indirdep; 11068 struct buf *bp; 11069 { 11070 struct ufsmount *ump; 11071 11072 indirdep->ir_state |= IOSTARTED; 11073 if (indirdep->ir_state & GOINGAWAY) 11074 panic("disk_io_initiation: indirdep gone"); 11075 /* 11076 * If there are no remaining dependencies, this will be writing 11077 * the real pointers. 11078 */ 11079 if (LIST_EMPTY(&indirdep->ir_deplisthd) && 11080 TAILQ_EMPTY(&indirdep->ir_trunc)) 11081 return; 11082 /* 11083 * Replace up-to-date version with safe version. 11084 */ 11085 if (indirdep->ir_saveddata == NULL) { 11086 ump = VFSTOUFS(indirdep->ir_list.wk_mp); 11087 LOCK_OWNED(ump); 11088 FREE_LOCK(ump); 11089 indirdep->ir_saveddata = malloc(bp->b_bcount, M_INDIRDEP, 11090 M_SOFTDEP_FLAGS); 11091 ACQUIRE_LOCK(ump); 11092 } 11093 indirdep->ir_state &= ~ATTACHED; 11094 indirdep->ir_state |= UNDONE; 11095 bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount); 11096 bcopy(indirdep->ir_savebp->b_data, bp->b_data, 11097 bp->b_bcount); 11098 } 11099 11100 /* 11101 * Called when an inode has been cleared in a cg bitmap. This finally 11102 * eliminates any canceled jaddrefs 11103 */ 11104 void 11105 softdep_setup_inofree(mp, bp, ino, wkhd) 11106 struct mount *mp; 11107 struct buf *bp; 11108 ino_t ino; 11109 struct workhead *wkhd; 11110 { 11111 struct worklist *wk, *wkn; 11112 struct inodedep *inodedep; 11113 struct ufsmount *ump; 11114 uint8_t *inosused; 11115 struct cg *cgp; 11116 struct fs *fs; 11117 11118 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 11119 ("softdep_setup_inofree called on non-softdep filesystem")); 11120 ump = VFSTOUFS(mp); 11121 ACQUIRE_LOCK(ump); 11122 if (!ffs_fsfail_cleanup(ump, 0)) { 11123 fs = ump->um_fs; 11124 cgp = (struct cg *)bp->b_data; 11125 inosused = cg_inosused(cgp); 11126 if (isset(inosused, ino % fs->fs_ipg)) 11127 panic("softdep_setup_inofree: inode %ju not freed.", 11128 (uintmax_t)ino); 11129 } 11130 if (inodedep_lookup(mp, ino, 0, &inodedep)) 11131 panic("softdep_setup_inofree: ino %ju has existing inodedep %p", 11132 (uintmax_t)ino, inodedep); 11133 if (wkhd) { 11134 LIST_FOREACH_SAFE(wk, wkhd, wk_list, wkn) { 11135 if (wk->wk_type != D_JADDREF) 11136 continue; 11137 WORKLIST_REMOVE(wk); 11138 /* 11139 * We can free immediately even if the jaddref 11140 * isn't attached in a background write as now 11141 * the bitmaps are reconciled. 11142 */ 11143 wk->wk_state |= COMPLETE | ATTACHED; 11144 free_jaddref(WK_JADDREF(wk)); 11145 } 11146 jwork_move(&bp->b_dep, wkhd); 11147 } 11148 FREE_LOCK(ump); 11149 } 11150 11151 /* 11152 * Called via ffs_blkfree() after a set of frags has been cleared from a cg 11153 * map. Any dependencies waiting for the write to clear are added to the 11154 * buf's list and any jnewblks that are being canceled are discarded 11155 * immediately. 11156 */ 11157 void 11158 softdep_setup_blkfree(mp, bp, blkno, frags, wkhd) 11159 struct mount *mp; 11160 struct buf *bp; 11161 ufs2_daddr_t blkno; 11162 int frags; 11163 struct workhead *wkhd; 11164 { 11165 struct bmsafemap *bmsafemap; 11166 struct jnewblk *jnewblk; 11167 struct ufsmount *ump; 11168 struct worklist *wk; 11169 struct fs *fs; 11170 #ifdef INVARIANTS 11171 uint8_t *blksfree; 11172 struct cg *cgp; 11173 ufs2_daddr_t jstart; 11174 ufs2_daddr_t jend; 11175 ufs2_daddr_t end; 11176 long bno; 11177 int i; 11178 #endif 11179 11180 CTR3(KTR_SUJ, 11181 "softdep_setup_blkfree: blkno %jd frags %d wk head %p", 11182 blkno, frags, wkhd); 11183 11184 ump = VFSTOUFS(mp); 11185 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 11186 ("softdep_setup_blkfree called on non-softdep filesystem")); 11187 ACQUIRE_LOCK(ump); 11188 /* Lookup the bmsafemap so we track when it is dirty. */ 11189 fs = ump->um_fs; 11190 bmsafemap = bmsafemap_lookup(mp, bp, dtog(fs, blkno), NULL); 11191 /* 11192 * Detach any jnewblks which have been canceled. They must linger 11193 * until the bitmap is cleared again by ffs_blkfree() to prevent 11194 * an unjournaled allocation from hitting the disk. 11195 */ 11196 if (wkhd) { 11197 while ((wk = LIST_FIRST(wkhd)) != NULL) { 11198 CTR2(KTR_SUJ, 11199 "softdep_setup_blkfree: blkno %jd wk type %d", 11200 blkno, wk->wk_type); 11201 WORKLIST_REMOVE(wk); 11202 if (wk->wk_type != D_JNEWBLK) { 11203 WORKLIST_INSERT(&bmsafemap->sm_freehd, wk); 11204 continue; 11205 } 11206 jnewblk = WK_JNEWBLK(wk); 11207 KASSERT(jnewblk->jn_state & GOINGAWAY, 11208 ("softdep_setup_blkfree: jnewblk not canceled.")); 11209 #ifdef INVARIANTS 11210 /* 11211 * Assert that this block is free in the bitmap 11212 * before we discard the jnewblk. 11213 */ 11214 cgp = (struct cg *)bp->b_data; 11215 blksfree = cg_blksfree(cgp); 11216 bno = dtogd(fs, jnewblk->jn_blkno); 11217 for (i = jnewblk->jn_oldfrags; 11218 i < jnewblk->jn_frags; i++) { 11219 if (isset(blksfree, bno + i)) 11220 continue; 11221 panic("softdep_setup_blkfree: not free"); 11222 } 11223 #endif 11224 /* 11225 * Even if it's not attached we can free immediately 11226 * as the new bitmap is correct. 11227 */ 11228 wk->wk_state |= COMPLETE | ATTACHED; 11229 free_jnewblk(jnewblk); 11230 } 11231 } 11232 11233 #ifdef INVARIANTS 11234 /* 11235 * Assert that we are not freeing a block which has an outstanding 11236 * allocation dependency. 11237 */ 11238 fs = VFSTOUFS(mp)->um_fs; 11239 bmsafemap = bmsafemap_lookup(mp, bp, dtog(fs, blkno), NULL); 11240 end = blkno + frags; 11241 LIST_FOREACH(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps) { 11242 /* 11243 * Don't match against blocks that will be freed when the 11244 * background write is done. 11245 */ 11246 if ((jnewblk->jn_state & (ATTACHED | COMPLETE | DEPCOMPLETE)) == 11247 (COMPLETE | DEPCOMPLETE)) 11248 continue; 11249 jstart = jnewblk->jn_blkno + jnewblk->jn_oldfrags; 11250 jend = jnewblk->jn_blkno + jnewblk->jn_frags; 11251 if ((blkno >= jstart && blkno < jend) || 11252 (end > jstart && end <= jend)) { 11253 printf("state 0x%X %jd - %d %d dep %p\n", 11254 jnewblk->jn_state, jnewblk->jn_blkno, 11255 jnewblk->jn_oldfrags, jnewblk->jn_frags, 11256 jnewblk->jn_dep); 11257 panic("softdep_setup_blkfree: " 11258 "%jd-%jd(%d) overlaps with %jd-%jd", 11259 blkno, end, frags, jstart, jend); 11260 } 11261 } 11262 #endif 11263 FREE_LOCK(ump); 11264 } 11265 11266 /* 11267 * Revert a block allocation when the journal record that describes it 11268 * is not yet written. 11269 */ 11270 static int 11271 jnewblk_rollback(jnewblk, fs, cgp, blksfree) 11272 struct jnewblk *jnewblk; 11273 struct fs *fs; 11274 struct cg *cgp; 11275 uint8_t *blksfree; 11276 { 11277 ufs1_daddr_t fragno; 11278 long cgbno, bbase; 11279 int frags, blk; 11280 int i; 11281 11282 frags = 0; 11283 cgbno = dtogd(fs, jnewblk->jn_blkno); 11284 /* 11285 * We have to test which frags need to be rolled back. We may 11286 * be operating on a stale copy when doing background writes. 11287 */ 11288 for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; i++) 11289 if (isclr(blksfree, cgbno + i)) 11290 frags++; 11291 if (frags == 0) 11292 return (0); 11293 /* 11294 * This is mostly ffs_blkfree() sans some validation and 11295 * superblock updates. 11296 */ 11297 if (frags == fs->fs_frag) { 11298 fragno = fragstoblks(fs, cgbno); 11299 ffs_setblock(fs, blksfree, fragno); 11300 ffs_clusteracct(fs, cgp, fragno, 1); 11301 cgp->cg_cs.cs_nbfree++; 11302 } else { 11303 cgbno += jnewblk->jn_oldfrags; 11304 bbase = cgbno - fragnum(fs, cgbno); 11305 /* Decrement the old frags. */ 11306 blk = blkmap(fs, blksfree, bbase); 11307 ffs_fragacct(fs, blk, cgp->cg_frsum, -1); 11308 /* Deallocate the fragment */ 11309 for (i = 0; i < frags; i++) 11310 setbit(blksfree, cgbno + i); 11311 cgp->cg_cs.cs_nffree += frags; 11312 /* Add back in counts associated with the new frags */ 11313 blk = blkmap(fs, blksfree, bbase); 11314 ffs_fragacct(fs, blk, cgp->cg_frsum, 1); 11315 /* If a complete block has been reassembled, account for it. */ 11316 fragno = fragstoblks(fs, bbase); 11317 if (ffs_isblock(fs, blksfree, fragno)) { 11318 cgp->cg_cs.cs_nffree -= fs->fs_frag; 11319 ffs_clusteracct(fs, cgp, fragno, 1); 11320 cgp->cg_cs.cs_nbfree++; 11321 } 11322 } 11323 stat_jnewblk++; 11324 jnewblk->jn_state &= ~ATTACHED; 11325 jnewblk->jn_state |= UNDONE; 11326 11327 return (frags); 11328 } 11329 11330 static void 11331 initiate_write_bmsafemap(bmsafemap, bp) 11332 struct bmsafemap *bmsafemap; 11333 struct buf *bp; /* The cg block. */ 11334 { 11335 struct jaddref *jaddref; 11336 struct jnewblk *jnewblk; 11337 uint8_t *inosused; 11338 uint8_t *blksfree; 11339 struct cg *cgp; 11340 struct fs *fs; 11341 ino_t ino; 11342 11343 /* 11344 * If this is a background write, we did this at the time that 11345 * the copy was made, so do not need to do it again. 11346 */ 11347 if (bmsafemap->sm_state & IOSTARTED) 11348 return; 11349 bmsafemap->sm_state |= IOSTARTED; 11350 /* 11351 * Clear any inode allocations which are pending journal writes. 11352 */ 11353 if (LIST_FIRST(&bmsafemap->sm_jaddrefhd) != NULL) { 11354 cgp = (struct cg *)bp->b_data; 11355 fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs; 11356 inosused = cg_inosused(cgp); 11357 LIST_FOREACH(jaddref, &bmsafemap->sm_jaddrefhd, ja_bmdeps) { 11358 ino = jaddref->ja_ino % fs->fs_ipg; 11359 if (isset(inosused, ino)) { 11360 if ((jaddref->ja_mode & IFMT) == IFDIR) 11361 cgp->cg_cs.cs_ndir--; 11362 cgp->cg_cs.cs_nifree++; 11363 clrbit(inosused, ino); 11364 jaddref->ja_state &= ~ATTACHED; 11365 jaddref->ja_state |= UNDONE; 11366 stat_jaddref++; 11367 } else 11368 panic("initiate_write_bmsafemap: inode %ju " 11369 "marked free", (uintmax_t)jaddref->ja_ino); 11370 } 11371 } 11372 /* 11373 * Clear any block allocations which are pending journal writes. 11374 */ 11375 if (LIST_FIRST(&bmsafemap->sm_jnewblkhd) != NULL) { 11376 cgp = (struct cg *)bp->b_data; 11377 fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs; 11378 blksfree = cg_blksfree(cgp); 11379 LIST_FOREACH(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps) { 11380 if (jnewblk_rollback(jnewblk, fs, cgp, blksfree)) 11381 continue; 11382 panic("initiate_write_bmsafemap: block %jd " 11383 "marked free", jnewblk->jn_blkno); 11384 } 11385 } 11386 /* 11387 * Move allocation lists to the written lists so they can be 11388 * cleared once the block write is complete. 11389 */ 11390 LIST_SWAP(&bmsafemap->sm_inodedephd, &bmsafemap->sm_inodedepwr, 11391 inodedep, id_deps); 11392 LIST_SWAP(&bmsafemap->sm_newblkhd, &bmsafemap->sm_newblkwr, 11393 newblk, nb_deps); 11394 LIST_SWAP(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr, worklist, 11395 wk_list); 11396 } 11397 11398 void 11399 softdep_handle_error(struct buf *bp) 11400 { 11401 struct ufsmount *ump; 11402 11403 ump = softdep_bp_to_mp(bp); 11404 if (ump == NULL) 11405 return; 11406 11407 if (ffs_fsfail_cleanup(ump, bp->b_error)) { 11408 /* 11409 * No future writes will succeed, so the on-disk image is safe. 11410 * Pretend that this write succeeded so that the softdep state 11411 * will be cleaned up naturally. 11412 */ 11413 bp->b_ioflags &= ~BIO_ERROR; 11414 bp->b_error = 0; 11415 } 11416 } 11417 11418 /* 11419 * This routine is called during the completion interrupt 11420 * service routine for a disk write (from the procedure called 11421 * by the device driver to inform the filesystem caches of 11422 * a request completion). It should be called early in this 11423 * procedure, before the block is made available to other 11424 * processes or other routines are called. 11425 * 11426 */ 11427 static void 11428 softdep_disk_write_complete(bp) 11429 struct buf *bp; /* describes the completed disk write */ 11430 { 11431 struct worklist *wk; 11432 struct worklist *owk; 11433 struct ufsmount *ump; 11434 struct workhead reattach; 11435 struct freeblks *freeblks; 11436 struct buf *sbp; 11437 11438 ump = softdep_bp_to_mp(bp); 11439 KASSERT(LIST_EMPTY(&bp->b_dep) || ump != NULL, 11440 ("softdep_disk_write_complete: softdep_bp_to_mp returned NULL " 11441 "with outstanding dependencies for buffer %p", bp)); 11442 if (ump == NULL) 11443 return; 11444 if ((bp->b_ioflags & BIO_ERROR) != 0) 11445 softdep_handle_error(bp); 11446 /* 11447 * If an error occurred while doing the write, then the data 11448 * has not hit the disk and the dependencies cannot be processed. 11449 * But we do have to go through and roll forward any dependencies 11450 * that were rolled back before the disk write. 11451 */ 11452 sbp = NULL; 11453 ACQUIRE_LOCK(ump); 11454 if ((bp->b_ioflags & BIO_ERROR) != 0 && (bp->b_flags & B_INVAL) == 0) { 11455 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 11456 switch (wk->wk_type) { 11457 case D_PAGEDEP: 11458 handle_written_filepage(WK_PAGEDEP(wk), bp, 0); 11459 continue; 11460 11461 case D_INODEDEP: 11462 handle_written_inodeblock(WK_INODEDEP(wk), 11463 bp, 0); 11464 continue; 11465 11466 case D_BMSAFEMAP: 11467 handle_written_bmsafemap(WK_BMSAFEMAP(wk), 11468 bp, 0); 11469 continue; 11470 11471 case D_INDIRDEP: 11472 handle_written_indirdep(WK_INDIRDEP(wk), 11473 bp, &sbp, 0); 11474 continue; 11475 default: 11476 /* nothing to roll forward */ 11477 continue; 11478 } 11479 } 11480 FREE_LOCK(ump); 11481 if (sbp) 11482 brelse(sbp); 11483 return; 11484 } 11485 LIST_INIT(&reattach); 11486 11487 /* 11488 * Ump SU lock must not be released anywhere in this code segment. 11489 */ 11490 owk = NULL; 11491 while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) { 11492 WORKLIST_REMOVE(wk); 11493 atomic_add_long(&dep_write[wk->wk_type], 1); 11494 if (wk == owk) 11495 panic("duplicate worklist: %p\n", wk); 11496 owk = wk; 11497 switch (wk->wk_type) { 11498 case D_PAGEDEP: 11499 if (handle_written_filepage(WK_PAGEDEP(wk), bp, 11500 WRITESUCCEEDED)) 11501 WORKLIST_INSERT(&reattach, wk); 11502 continue; 11503 11504 case D_INODEDEP: 11505 if (handle_written_inodeblock(WK_INODEDEP(wk), bp, 11506 WRITESUCCEEDED)) 11507 WORKLIST_INSERT(&reattach, wk); 11508 continue; 11509 11510 case D_BMSAFEMAP: 11511 if (handle_written_bmsafemap(WK_BMSAFEMAP(wk), bp, 11512 WRITESUCCEEDED)) 11513 WORKLIST_INSERT(&reattach, wk); 11514 continue; 11515 11516 case D_MKDIR: 11517 handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY); 11518 continue; 11519 11520 case D_ALLOCDIRECT: 11521 wk->wk_state |= COMPLETE; 11522 handle_allocdirect_partdone(WK_ALLOCDIRECT(wk), NULL); 11523 continue; 11524 11525 case D_ALLOCINDIR: 11526 wk->wk_state |= COMPLETE; 11527 handle_allocindir_partdone(WK_ALLOCINDIR(wk)); 11528 continue; 11529 11530 case D_INDIRDEP: 11531 if (handle_written_indirdep(WK_INDIRDEP(wk), bp, &sbp, 11532 WRITESUCCEEDED)) 11533 WORKLIST_INSERT(&reattach, wk); 11534 continue; 11535 11536 case D_FREEBLKS: 11537 wk->wk_state |= COMPLETE; 11538 freeblks = WK_FREEBLKS(wk); 11539 if ((wk->wk_state & ALLCOMPLETE) == ALLCOMPLETE && 11540 LIST_EMPTY(&freeblks->fb_jblkdephd)) 11541 add_to_worklist(wk, WK_NODELAY); 11542 continue; 11543 11544 case D_FREEWORK: 11545 handle_written_freework(WK_FREEWORK(wk)); 11546 break; 11547 11548 case D_JSEGDEP: 11549 free_jsegdep(WK_JSEGDEP(wk)); 11550 continue; 11551 11552 case D_JSEG: 11553 handle_written_jseg(WK_JSEG(wk), bp); 11554 continue; 11555 11556 case D_SBDEP: 11557 if (handle_written_sbdep(WK_SBDEP(wk), bp)) 11558 WORKLIST_INSERT(&reattach, wk); 11559 continue; 11560 11561 case D_FREEDEP: 11562 free_freedep(WK_FREEDEP(wk)); 11563 continue; 11564 11565 default: 11566 panic("handle_disk_write_complete: Unknown type %s", 11567 TYPENAME(wk->wk_type)); 11568 /* NOTREACHED */ 11569 } 11570 } 11571 /* 11572 * Reattach any requests that must be redone. 11573 */ 11574 while ((wk = LIST_FIRST(&reattach)) != NULL) { 11575 WORKLIST_REMOVE(wk); 11576 WORKLIST_INSERT(&bp->b_dep, wk); 11577 } 11578 FREE_LOCK(ump); 11579 if (sbp) 11580 brelse(sbp); 11581 } 11582 11583 /* 11584 * Called from within softdep_disk_write_complete above. 11585 */ 11586 static void 11587 handle_allocdirect_partdone(adp, wkhd) 11588 struct allocdirect *adp; /* the completed allocdirect */ 11589 struct workhead *wkhd; /* Work to do when inode is writtne. */ 11590 { 11591 struct allocdirectlst *listhead; 11592 struct allocdirect *listadp; 11593 struct inodedep *inodedep; 11594 long bsize; 11595 11596 LOCK_OWNED(VFSTOUFS(adp->ad_block.nb_list.wk_mp)); 11597 if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE) 11598 return; 11599 /* 11600 * The on-disk inode cannot claim to be any larger than the last 11601 * fragment that has been written. Otherwise, the on-disk inode 11602 * might have fragments that were not the last block in the file 11603 * which would corrupt the filesystem. Thus, we cannot free any 11604 * allocdirects after one whose ad_oldblkno claims a fragment as 11605 * these blocks must be rolled back to zero before writing the inode. 11606 * We check the currently active set of allocdirects in id_inoupdt 11607 * or id_extupdt as appropriate. 11608 */ 11609 inodedep = adp->ad_inodedep; 11610 bsize = inodedep->id_fs->fs_bsize; 11611 if (adp->ad_state & EXTDATA) 11612 listhead = &inodedep->id_extupdt; 11613 else 11614 listhead = &inodedep->id_inoupdt; 11615 TAILQ_FOREACH(listadp, listhead, ad_next) { 11616 /* found our block */ 11617 if (listadp == adp) 11618 break; 11619 /* continue if ad_oldlbn is not a fragment */ 11620 if (listadp->ad_oldsize == 0 || 11621 listadp->ad_oldsize == bsize) 11622 continue; 11623 /* hit a fragment */ 11624 return; 11625 } 11626 /* 11627 * If we have reached the end of the current list without 11628 * finding the just finished dependency, then it must be 11629 * on the future dependency list. Future dependencies cannot 11630 * be freed until they are moved to the current list. 11631 */ 11632 if (listadp == NULL) { 11633 #ifdef INVARIANTS 11634 if (adp->ad_state & EXTDATA) 11635 listhead = &inodedep->id_newextupdt; 11636 else 11637 listhead = &inodedep->id_newinoupdt; 11638 TAILQ_FOREACH(listadp, listhead, ad_next) 11639 /* found our block */ 11640 if (listadp == adp) 11641 break; 11642 if (listadp == NULL) 11643 panic("handle_allocdirect_partdone: lost dep"); 11644 #endif /* INVARIANTS */ 11645 return; 11646 } 11647 /* 11648 * If we have found the just finished dependency, then queue 11649 * it along with anything that follows it that is complete. 11650 * Since the pointer has not yet been written in the inode 11651 * as the dependency prevents it, place the allocdirect on the 11652 * bufwait list where it will be freed once the pointer is 11653 * valid. 11654 */ 11655 if (wkhd == NULL) 11656 wkhd = &inodedep->id_bufwait; 11657 for (; adp; adp = listadp) { 11658 listadp = TAILQ_NEXT(adp, ad_next); 11659 if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE) 11660 return; 11661 TAILQ_REMOVE(listhead, adp, ad_next); 11662 WORKLIST_INSERT(wkhd, &adp->ad_block.nb_list); 11663 } 11664 } 11665 11666 /* 11667 * Called from within softdep_disk_write_complete above. This routine 11668 * completes successfully written allocindirs. 11669 */ 11670 static void 11671 handle_allocindir_partdone(aip) 11672 struct allocindir *aip; /* the completed allocindir */ 11673 { 11674 struct indirdep *indirdep; 11675 11676 if ((aip->ai_state & ALLCOMPLETE) != ALLCOMPLETE) 11677 return; 11678 indirdep = aip->ai_indirdep; 11679 LIST_REMOVE(aip, ai_next); 11680 /* 11681 * Don't set a pointer while the buffer is undergoing IO or while 11682 * we have active truncations. 11683 */ 11684 if (indirdep->ir_state & UNDONE || !TAILQ_EMPTY(&indirdep->ir_trunc)) { 11685 LIST_INSERT_HEAD(&indirdep->ir_donehd, aip, ai_next); 11686 return; 11687 } 11688 if (indirdep->ir_state & UFS1FMT) 11689 ((ufs1_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] = 11690 aip->ai_newblkno; 11691 else 11692 ((ufs2_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] = 11693 aip->ai_newblkno; 11694 /* 11695 * Await the pointer write before freeing the allocindir. 11696 */ 11697 LIST_INSERT_HEAD(&indirdep->ir_writehd, aip, ai_next); 11698 } 11699 11700 /* 11701 * Release segments held on a jwork list. 11702 */ 11703 static void 11704 handle_jwork(wkhd) 11705 struct workhead *wkhd; 11706 { 11707 struct worklist *wk; 11708 11709 while ((wk = LIST_FIRST(wkhd)) != NULL) { 11710 WORKLIST_REMOVE(wk); 11711 switch (wk->wk_type) { 11712 case D_JSEGDEP: 11713 free_jsegdep(WK_JSEGDEP(wk)); 11714 continue; 11715 case D_FREEDEP: 11716 free_freedep(WK_FREEDEP(wk)); 11717 continue; 11718 case D_FREEFRAG: 11719 rele_jseg(WK_JSEG(WK_FREEFRAG(wk)->ff_jdep)); 11720 WORKITEM_FREE(wk, D_FREEFRAG); 11721 continue; 11722 case D_FREEWORK: 11723 handle_written_freework(WK_FREEWORK(wk)); 11724 continue; 11725 default: 11726 panic("handle_jwork: Unknown type %s\n", 11727 TYPENAME(wk->wk_type)); 11728 } 11729 } 11730 } 11731 11732 /* 11733 * Handle the bufwait list on an inode when it is safe to release items 11734 * held there. This normally happens after an inode block is written but 11735 * may be delayed and handled later if there are pending journal items that 11736 * are not yet safe to be released. 11737 */ 11738 static struct freefile * 11739 handle_bufwait(inodedep, refhd) 11740 struct inodedep *inodedep; 11741 struct workhead *refhd; 11742 { 11743 struct jaddref *jaddref; 11744 struct freefile *freefile; 11745 struct worklist *wk; 11746 11747 freefile = NULL; 11748 while ((wk = LIST_FIRST(&inodedep->id_bufwait)) != NULL) { 11749 WORKLIST_REMOVE(wk); 11750 switch (wk->wk_type) { 11751 case D_FREEFILE: 11752 /* 11753 * We defer adding freefile to the worklist 11754 * until all other additions have been made to 11755 * ensure that it will be done after all the 11756 * old blocks have been freed. 11757 */ 11758 if (freefile != NULL) 11759 panic("handle_bufwait: freefile"); 11760 freefile = WK_FREEFILE(wk); 11761 continue; 11762 11763 case D_MKDIR: 11764 handle_written_mkdir(WK_MKDIR(wk), MKDIR_PARENT); 11765 continue; 11766 11767 case D_DIRADD: 11768 diradd_inode_written(WK_DIRADD(wk), inodedep); 11769 continue; 11770 11771 case D_FREEFRAG: 11772 wk->wk_state |= COMPLETE; 11773 if ((wk->wk_state & ALLCOMPLETE) == ALLCOMPLETE) 11774 add_to_worklist(wk, 0); 11775 continue; 11776 11777 case D_DIRREM: 11778 wk->wk_state |= COMPLETE; 11779 add_to_worklist(wk, 0); 11780 continue; 11781 11782 case D_ALLOCDIRECT: 11783 case D_ALLOCINDIR: 11784 free_newblk(WK_NEWBLK(wk)); 11785 continue; 11786 11787 case D_JNEWBLK: 11788 wk->wk_state |= COMPLETE; 11789 free_jnewblk(WK_JNEWBLK(wk)); 11790 continue; 11791 11792 /* 11793 * Save freed journal segments and add references on 11794 * the supplied list which will delay their release 11795 * until the cg bitmap is cleared on disk. 11796 */ 11797 case D_JSEGDEP: 11798 if (refhd == NULL) 11799 free_jsegdep(WK_JSEGDEP(wk)); 11800 else 11801 WORKLIST_INSERT(refhd, wk); 11802 continue; 11803 11804 case D_JADDREF: 11805 jaddref = WK_JADDREF(wk); 11806 TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref, 11807 if_deps); 11808 /* 11809 * Transfer any jaddrefs to the list to be freed with 11810 * the bitmap if we're handling a removed file. 11811 */ 11812 if (refhd == NULL) { 11813 wk->wk_state |= COMPLETE; 11814 free_jaddref(jaddref); 11815 } else 11816 WORKLIST_INSERT(refhd, wk); 11817 continue; 11818 11819 default: 11820 panic("handle_bufwait: Unknown type %p(%s)", 11821 wk, TYPENAME(wk->wk_type)); 11822 /* NOTREACHED */ 11823 } 11824 } 11825 return (freefile); 11826 } 11827 /* 11828 * Called from within softdep_disk_write_complete above to restore 11829 * in-memory inode block contents to their most up-to-date state. Note 11830 * that this routine is always called from interrupt level with further 11831 * interrupts from this device blocked. 11832 * 11833 * If the write did not succeed, we will do all the roll-forward 11834 * operations, but we will not take the actions that will allow its 11835 * dependencies to be processed. 11836 */ 11837 static int 11838 handle_written_inodeblock(inodedep, bp, flags) 11839 struct inodedep *inodedep; 11840 struct buf *bp; /* buffer containing the inode block */ 11841 int flags; 11842 { 11843 struct freefile *freefile; 11844 struct allocdirect *adp, *nextadp; 11845 struct ufs1_dinode *dp1 = NULL; 11846 struct ufs2_dinode *dp2 = NULL; 11847 struct workhead wkhd; 11848 int hadchanges, fstype; 11849 ino_t freelink; 11850 11851 LIST_INIT(&wkhd); 11852 hadchanges = 0; 11853 freefile = NULL; 11854 if ((inodedep->id_state & IOSTARTED) == 0) 11855 panic("handle_written_inodeblock: not started"); 11856 inodedep->id_state &= ~IOSTARTED; 11857 if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC) { 11858 fstype = UFS1; 11859 dp1 = (struct ufs1_dinode *)bp->b_data + 11860 ino_to_fsbo(inodedep->id_fs, inodedep->id_ino); 11861 freelink = dp1->di_freelink; 11862 } else { 11863 fstype = UFS2; 11864 dp2 = (struct ufs2_dinode *)bp->b_data + 11865 ino_to_fsbo(inodedep->id_fs, inodedep->id_ino); 11866 freelink = dp2->di_freelink; 11867 } 11868 /* 11869 * Leave this inodeblock dirty until it's in the list. 11870 */ 11871 if ((inodedep->id_state & (UNLINKED | UNLINKONLIST)) == UNLINKED && 11872 (flags & WRITESUCCEEDED)) { 11873 struct inodedep *inon; 11874 11875 inon = TAILQ_NEXT(inodedep, id_unlinked); 11876 if ((inon == NULL && freelink == 0) || 11877 (inon && inon->id_ino == freelink)) { 11878 if (inon) 11879 inon->id_state |= UNLINKPREV; 11880 inodedep->id_state |= UNLINKNEXT; 11881 } 11882 hadchanges = 1; 11883 } 11884 /* 11885 * If we had to rollback the inode allocation because of 11886 * bitmaps being incomplete, then simply restore it. 11887 * Keep the block dirty so that it will not be reclaimed until 11888 * all associated dependencies have been cleared and the 11889 * corresponding updates written to disk. 11890 */ 11891 if (inodedep->id_savedino1 != NULL) { 11892 hadchanges = 1; 11893 if (fstype == UFS1) 11894 *dp1 = *inodedep->id_savedino1; 11895 else 11896 *dp2 = *inodedep->id_savedino2; 11897 free(inodedep->id_savedino1, M_SAVEDINO); 11898 inodedep->id_savedino1 = NULL; 11899 if ((bp->b_flags & B_DELWRI) == 0) 11900 stat_inode_bitmap++; 11901 bdirty(bp); 11902 /* 11903 * If the inode is clear here and GOINGAWAY it will never 11904 * be written. Process the bufwait and clear any pending 11905 * work which may include the freefile. 11906 */ 11907 if (inodedep->id_state & GOINGAWAY) 11908 goto bufwait; 11909 return (1); 11910 } 11911 if (flags & WRITESUCCEEDED) 11912 inodedep->id_state |= COMPLETE; 11913 /* 11914 * Roll forward anything that had to be rolled back before 11915 * the inode could be updated. 11916 */ 11917 for (adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; adp = nextadp) { 11918 nextadp = TAILQ_NEXT(adp, ad_next); 11919 if (adp->ad_state & ATTACHED) 11920 panic("handle_written_inodeblock: new entry"); 11921 if (fstype == UFS1) { 11922 if (adp->ad_offset < UFS_NDADDR) { 11923 if (dp1->di_db[adp->ad_offset]!=adp->ad_oldblkno) 11924 panic("%s %s #%jd mismatch %d != %jd", 11925 "handle_written_inodeblock:", 11926 "direct pointer", 11927 (intmax_t)adp->ad_offset, 11928 dp1->di_db[adp->ad_offset], 11929 (intmax_t)adp->ad_oldblkno); 11930 dp1->di_db[adp->ad_offset] = adp->ad_newblkno; 11931 } else { 11932 if (dp1->di_ib[adp->ad_offset - UFS_NDADDR] != 11933 0) 11934 panic("%s: %s #%jd allocated as %d", 11935 "handle_written_inodeblock", 11936 "indirect pointer", 11937 (intmax_t)adp->ad_offset - 11938 UFS_NDADDR, 11939 dp1->di_ib[adp->ad_offset - 11940 UFS_NDADDR]); 11941 dp1->di_ib[adp->ad_offset - UFS_NDADDR] = 11942 adp->ad_newblkno; 11943 } 11944 } else { 11945 if (adp->ad_offset < UFS_NDADDR) { 11946 if (dp2->di_db[adp->ad_offset]!=adp->ad_oldblkno) 11947 panic("%s: %s #%jd %s %jd != %jd", 11948 "handle_written_inodeblock", 11949 "direct pointer", 11950 (intmax_t)adp->ad_offset, "mismatch", 11951 (intmax_t)dp2->di_db[adp->ad_offset], 11952 (intmax_t)adp->ad_oldblkno); 11953 dp2->di_db[adp->ad_offset] = adp->ad_newblkno; 11954 } else { 11955 if (dp2->di_ib[adp->ad_offset - UFS_NDADDR] != 11956 0) 11957 panic("%s: %s #%jd allocated as %jd", 11958 "handle_written_inodeblock", 11959 "indirect pointer", 11960 (intmax_t)adp->ad_offset - 11961 UFS_NDADDR, 11962 (intmax_t) 11963 dp2->di_ib[adp->ad_offset - 11964 UFS_NDADDR]); 11965 dp2->di_ib[adp->ad_offset - UFS_NDADDR] = 11966 adp->ad_newblkno; 11967 } 11968 } 11969 adp->ad_state &= ~UNDONE; 11970 adp->ad_state |= ATTACHED; 11971 hadchanges = 1; 11972 } 11973 for (adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; adp = nextadp) { 11974 nextadp = TAILQ_NEXT(adp, ad_next); 11975 if (adp->ad_state & ATTACHED) 11976 panic("handle_written_inodeblock: new entry"); 11977 if (dp2->di_extb[adp->ad_offset] != adp->ad_oldblkno) 11978 panic("%s: direct pointers #%jd %s %jd != %jd", 11979 "handle_written_inodeblock", 11980 (intmax_t)adp->ad_offset, "mismatch", 11981 (intmax_t)dp2->di_extb[adp->ad_offset], 11982 (intmax_t)adp->ad_oldblkno); 11983 dp2->di_extb[adp->ad_offset] = adp->ad_newblkno; 11984 adp->ad_state &= ~UNDONE; 11985 adp->ad_state |= ATTACHED; 11986 hadchanges = 1; 11987 } 11988 if (hadchanges && (bp->b_flags & B_DELWRI) == 0) 11989 stat_direct_blk_ptrs++; 11990 /* 11991 * Reset the file size to its most up-to-date value. 11992 */ 11993 if (inodedep->id_savedsize == -1 || inodedep->id_savedextsize == -1) 11994 panic("handle_written_inodeblock: bad size"); 11995 if (inodedep->id_savednlink > UFS_LINK_MAX) 11996 panic("handle_written_inodeblock: Invalid link count " 11997 "%jd for inodedep %p", (uintmax_t)inodedep->id_savednlink, 11998 inodedep); 11999 if (fstype == UFS1) { 12000 if (dp1->di_nlink != inodedep->id_savednlink) { 12001 dp1->di_nlink = inodedep->id_savednlink; 12002 hadchanges = 1; 12003 } 12004 if (dp1->di_size != inodedep->id_savedsize) { 12005 dp1->di_size = inodedep->id_savedsize; 12006 hadchanges = 1; 12007 } 12008 } else { 12009 if (dp2->di_nlink != inodedep->id_savednlink) { 12010 dp2->di_nlink = inodedep->id_savednlink; 12011 hadchanges = 1; 12012 } 12013 if (dp2->di_size != inodedep->id_savedsize) { 12014 dp2->di_size = inodedep->id_savedsize; 12015 hadchanges = 1; 12016 } 12017 if (dp2->di_extsize != inodedep->id_savedextsize) { 12018 dp2->di_extsize = inodedep->id_savedextsize; 12019 hadchanges = 1; 12020 } 12021 } 12022 inodedep->id_savedsize = -1; 12023 inodedep->id_savedextsize = -1; 12024 inodedep->id_savednlink = -1; 12025 /* 12026 * If there were any rollbacks in the inode block, then it must be 12027 * marked dirty so that its will eventually get written back in 12028 * its correct form. 12029 */ 12030 if (hadchanges) { 12031 if (fstype == UFS2) 12032 ffs_update_dinode_ckhash(inodedep->id_fs, dp2); 12033 bdirty(bp); 12034 } 12035 bufwait: 12036 /* 12037 * If the write did not succeed, we have done all the roll-forward 12038 * operations, but we cannot take the actions that will allow its 12039 * dependencies to be processed. 12040 */ 12041 if ((flags & WRITESUCCEEDED) == 0) 12042 return (hadchanges); 12043 /* 12044 * Process any allocdirects that completed during the update. 12045 */ 12046 if ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL) 12047 handle_allocdirect_partdone(adp, &wkhd); 12048 if ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL) 12049 handle_allocdirect_partdone(adp, &wkhd); 12050 /* 12051 * Process deallocations that were held pending until the 12052 * inode had been written to disk. Freeing of the inode 12053 * is delayed until after all blocks have been freed to 12054 * avoid creation of new <vfsid, inum, lbn> triples 12055 * before the old ones have been deleted. Completely 12056 * unlinked inodes are not processed until the unlinked 12057 * inode list is written or the last reference is removed. 12058 */ 12059 if ((inodedep->id_state & (UNLINKED | UNLINKONLIST)) != UNLINKED) { 12060 freefile = handle_bufwait(inodedep, NULL); 12061 if (freefile && !LIST_EMPTY(&wkhd)) { 12062 WORKLIST_INSERT(&wkhd, &freefile->fx_list); 12063 freefile = NULL; 12064 } 12065 } 12066 /* 12067 * Move rolled forward dependency completions to the bufwait list 12068 * now that those that were already written have been processed. 12069 */ 12070 if (!LIST_EMPTY(&wkhd) && hadchanges == 0) 12071 panic("handle_written_inodeblock: bufwait but no changes"); 12072 jwork_move(&inodedep->id_bufwait, &wkhd); 12073 12074 if (freefile != NULL) { 12075 /* 12076 * If the inode is goingaway it was never written. Fake up 12077 * the state here so free_inodedep() can succeed. 12078 */ 12079 if (inodedep->id_state & GOINGAWAY) 12080 inodedep->id_state |= COMPLETE | DEPCOMPLETE; 12081 if (free_inodedep(inodedep) == 0) 12082 panic("handle_written_inodeblock: live inodedep %p", 12083 inodedep); 12084 add_to_worklist(&freefile->fx_list, 0); 12085 return (0); 12086 } 12087 12088 /* 12089 * If no outstanding dependencies, free it. 12090 */ 12091 if (free_inodedep(inodedep) || 12092 (TAILQ_FIRST(&inodedep->id_inoreflst) == 0 && 12093 TAILQ_FIRST(&inodedep->id_inoupdt) == 0 && 12094 TAILQ_FIRST(&inodedep->id_extupdt) == 0 && 12095 LIST_FIRST(&inodedep->id_bufwait) == 0)) 12096 return (0); 12097 return (hadchanges); 12098 } 12099 12100 /* 12101 * Perform needed roll-forwards and kick off any dependencies that 12102 * can now be processed. 12103 * 12104 * If the write did not succeed, we will do all the roll-forward 12105 * operations, but we will not take the actions that will allow its 12106 * dependencies to be processed. 12107 */ 12108 static int 12109 handle_written_indirdep(indirdep, bp, bpp, flags) 12110 struct indirdep *indirdep; 12111 struct buf *bp; 12112 struct buf **bpp; 12113 int flags; 12114 { 12115 struct allocindir *aip; 12116 struct buf *sbp; 12117 int chgs; 12118 12119 if (indirdep->ir_state & GOINGAWAY) 12120 panic("handle_written_indirdep: indirdep gone"); 12121 if ((indirdep->ir_state & IOSTARTED) == 0) 12122 panic("handle_written_indirdep: IO not started"); 12123 chgs = 0; 12124 /* 12125 * If there were rollbacks revert them here. 12126 */ 12127 if (indirdep->ir_saveddata) { 12128 bcopy(indirdep->ir_saveddata, bp->b_data, bp->b_bcount); 12129 if (TAILQ_EMPTY(&indirdep->ir_trunc)) { 12130 free(indirdep->ir_saveddata, M_INDIRDEP); 12131 indirdep->ir_saveddata = NULL; 12132 } 12133 chgs = 1; 12134 } 12135 indirdep->ir_state &= ~(UNDONE | IOSTARTED); 12136 indirdep->ir_state |= ATTACHED; 12137 /* 12138 * If the write did not succeed, we have done all the roll-forward 12139 * operations, but we cannot take the actions that will allow its 12140 * dependencies to be processed. 12141 */ 12142 if ((flags & WRITESUCCEEDED) == 0) { 12143 stat_indir_blk_ptrs++; 12144 bdirty(bp); 12145 return (1); 12146 } 12147 /* 12148 * Move allocindirs with written pointers to the completehd if 12149 * the indirdep's pointer is not yet written. Otherwise 12150 * free them here. 12151 */ 12152 while ((aip = LIST_FIRST(&indirdep->ir_writehd)) != NULL) { 12153 LIST_REMOVE(aip, ai_next); 12154 if ((indirdep->ir_state & DEPCOMPLETE) == 0) { 12155 LIST_INSERT_HEAD(&indirdep->ir_completehd, aip, 12156 ai_next); 12157 newblk_freefrag(&aip->ai_block); 12158 continue; 12159 } 12160 free_newblk(&aip->ai_block); 12161 } 12162 /* 12163 * Move allocindirs that have finished dependency processing from 12164 * the done list to the write list after updating the pointers. 12165 */ 12166 if (TAILQ_EMPTY(&indirdep->ir_trunc)) { 12167 while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != NULL) { 12168 handle_allocindir_partdone(aip); 12169 if (aip == LIST_FIRST(&indirdep->ir_donehd)) 12170 panic("disk_write_complete: not gone"); 12171 chgs = 1; 12172 } 12173 } 12174 /* 12175 * Preserve the indirdep if there were any changes or if it is not 12176 * yet valid on disk. 12177 */ 12178 if (chgs) { 12179 stat_indir_blk_ptrs++; 12180 bdirty(bp); 12181 return (1); 12182 } 12183 /* 12184 * If there were no changes we can discard the savedbp and detach 12185 * ourselves from the buf. We are only carrying completed pointers 12186 * in this case. 12187 */ 12188 sbp = indirdep->ir_savebp; 12189 sbp->b_flags |= B_INVAL | B_NOCACHE; 12190 indirdep->ir_savebp = NULL; 12191 indirdep->ir_bp = NULL; 12192 if (*bpp != NULL) 12193 panic("handle_written_indirdep: bp already exists."); 12194 *bpp = sbp; 12195 /* 12196 * The indirdep may not be freed until its parent points at it. 12197 */ 12198 if (indirdep->ir_state & DEPCOMPLETE) 12199 free_indirdep(indirdep); 12200 12201 return (0); 12202 } 12203 12204 /* 12205 * Process a diradd entry after its dependent inode has been written. 12206 */ 12207 static void 12208 diradd_inode_written(dap, inodedep) 12209 struct diradd *dap; 12210 struct inodedep *inodedep; 12211 { 12212 12213 LOCK_OWNED(VFSTOUFS(dap->da_list.wk_mp)); 12214 dap->da_state |= COMPLETE; 12215 complete_diradd(dap); 12216 WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list); 12217 } 12218 12219 /* 12220 * Returns true if the bmsafemap will have rollbacks when written. Must only 12221 * be called with the per-filesystem lock and the buf lock on the cg held. 12222 */ 12223 static int 12224 bmsafemap_backgroundwrite(bmsafemap, bp) 12225 struct bmsafemap *bmsafemap; 12226 struct buf *bp; 12227 { 12228 int dirty; 12229 12230 LOCK_OWNED(VFSTOUFS(bmsafemap->sm_list.wk_mp)); 12231 dirty = !LIST_EMPTY(&bmsafemap->sm_jaddrefhd) | 12232 !LIST_EMPTY(&bmsafemap->sm_jnewblkhd); 12233 /* 12234 * If we're initiating a background write we need to process the 12235 * rollbacks as they exist now, not as they exist when IO starts. 12236 * No other consumers will look at the contents of the shadowed 12237 * buf so this is safe to do here. 12238 */ 12239 if (bp->b_xflags & BX_BKGRDMARKER) 12240 initiate_write_bmsafemap(bmsafemap, bp); 12241 12242 return (dirty); 12243 } 12244 12245 /* 12246 * Re-apply an allocation when a cg write is complete. 12247 */ 12248 static int 12249 jnewblk_rollforward(jnewblk, fs, cgp, blksfree) 12250 struct jnewblk *jnewblk; 12251 struct fs *fs; 12252 struct cg *cgp; 12253 uint8_t *blksfree; 12254 { 12255 ufs1_daddr_t fragno; 12256 ufs2_daddr_t blkno; 12257 long cgbno, bbase; 12258 int frags, blk; 12259 int i; 12260 12261 frags = 0; 12262 cgbno = dtogd(fs, jnewblk->jn_blkno); 12263 for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; i++) { 12264 if (isclr(blksfree, cgbno + i)) 12265 panic("jnewblk_rollforward: re-allocated fragment"); 12266 frags++; 12267 } 12268 if (frags == fs->fs_frag) { 12269 blkno = fragstoblks(fs, cgbno); 12270 ffs_clrblock(fs, blksfree, (long)blkno); 12271 ffs_clusteracct(fs, cgp, blkno, -1); 12272 cgp->cg_cs.cs_nbfree--; 12273 } else { 12274 bbase = cgbno - fragnum(fs, cgbno); 12275 cgbno += jnewblk->jn_oldfrags; 12276 /* If a complete block had been reassembled, account for it. */ 12277 fragno = fragstoblks(fs, bbase); 12278 if (ffs_isblock(fs, blksfree, fragno)) { 12279 cgp->cg_cs.cs_nffree += fs->fs_frag; 12280 ffs_clusteracct(fs, cgp, fragno, -1); 12281 cgp->cg_cs.cs_nbfree--; 12282 } 12283 /* Decrement the old frags. */ 12284 blk = blkmap(fs, blksfree, bbase); 12285 ffs_fragacct(fs, blk, cgp->cg_frsum, -1); 12286 /* Allocate the fragment */ 12287 for (i = 0; i < frags; i++) 12288 clrbit(blksfree, cgbno + i); 12289 cgp->cg_cs.cs_nffree -= frags; 12290 /* Add back in counts associated with the new frags */ 12291 blk = blkmap(fs, blksfree, bbase); 12292 ffs_fragacct(fs, blk, cgp->cg_frsum, 1); 12293 } 12294 return (frags); 12295 } 12296 12297 /* 12298 * Complete a write to a bmsafemap structure. Roll forward any bitmap 12299 * changes if it's not a background write. Set all written dependencies 12300 * to DEPCOMPLETE and free the structure if possible. 12301 * 12302 * If the write did not succeed, we will do all the roll-forward 12303 * operations, but we will not take the actions that will allow its 12304 * dependencies to be processed. 12305 */ 12306 static int 12307 handle_written_bmsafemap(bmsafemap, bp, flags) 12308 struct bmsafemap *bmsafemap; 12309 struct buf *bp; 12310 int flags; 12311 { 12312 struct newblk *newblk; 12313 struct inodedep *inodedep; 12314 struct jaddref *jaddref, *jatmp; 12315 struct jnewblk *jnewblk, *jntmp; 12316 struct ufsmount *ump; 12317 uint8_t *inosused; 12318 uint8_t *blksfree; 12319 struct cg *cgp; 12320 struct fs *fs; 12321 ino_t ino; 12322 int foreground; 12323 int chgs; 12324 12325 if ((bmsafemap->sm_state & IOSTARTED) == 0) 12326 panic("handle_written_bmsafemap: Not started\n"); 12327 ump = VFSTOUFS(bmsafemap->sm_list.wk_mp); 12328 chgs = 0; 12329 bmsafemap->sm_state &= ~IOSTARTED; 12330 foreground = (bp->b_xflags & BX_BKGRDMARKER) == 0; 12331 /* 12332 * If write was successful, release journal work that was waiting 12333 * on the write. Otherwise move the work back. 12334 */ 12335 if (flags & WRITESUCCEEDED) 12336 handle_jwork(&bmsafemap->sm_freewr); 12337 else 12338 LIST_CONCAT(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr, 12339 worklist, wk_list); 12340 12341 /* 12342 * Restore unwritten inode allocation pending jaddref writes. 12343 */ 12344 if (!LIST_EMPTY(&bmsafemap->sm_jaddrefhd)) { 12345 cgp = (struct cg *)bp->b_data; 12346 fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs; 12347 inosused = cg_inosused(cgp); 12348 LIST_FOREACH_SAFE(jaddref, &bmsafemap->sm_jaddrefhd, 12349 ja_bmdeps, jatmp) { 12350 if ((jaddref->ja_state & UNDONE) == 0) 12351 continue; 12352 ino = jaddref->ja_ino % fs->fs_ipg; 12353 if (isset(inosused, ino)) 12354 panic("handle_written_bmsafemap: " 12355 "re-allocated inode"); 12356 /* Do the roll-forward only if it's a real copy. */ 12357 if (foreground) { 12358 if ((jaddref->ja_mode & IFMT) == IFDIR) 12359 cgp->cg_cs.cs_ndir++; 12360 cgp->cg_cs.cs_nifree--; 12361 setbit(inosused, ino); 12362 chgs = 1; 12363 } 12364 jaddref->ja_state &= ~UNDONE; 12365 jaddref->ja_state |= ATTACHED; 12366 free_jaddref(jaddref); 12367 } 12368 } 12369 /* 12370 * Restore any block allocations which are pending journal writes. 12371 */ 12372 if (LIST_FIRST(&bmsafemap->sm_jnewblkhd) != NULL) { 12373 cgp = (struct cg *)bp->b_data; 12374 fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs; 12375 blksfree = cg_blksfree(cgp); 12376 LIST_FOREACH_SAFE(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps, 12377 jntmp) { 12378 if ((jnewblk->jn_state & UNDONE) == 0) 12379 continue; 12380 /* Do the roll-forward only if it's a real copy. */ 12381 if (foreground && 12382 jnewblk_rollforward(jnewblk, fs, cgp, blksfree)) 12383 chgs = 1; 12384 jnewblk->jn_state &= ~(UNDONE | NEWBLOCK); 12385 jnewblk->jn_state |= ATTACHED; 12386 free_jnewblk(jnewblk); 12387 } 12388 } 12389 /* 12390 * If the write did not succeed, we have done all the roll-forward 12391 * operations, but we cannot take the actions that will allow its 12392 * dependencies to be processed. 12393 */ 12394 if ((flags & WRITESUCCEEDED) == 0) { 12395 LIST_CONCAT(&bmsafemap->sm_newblkhd, &bmsafemap->sm_newblkwr, 12396 newblk, nb_deps); 12397 LIST_CONCAT(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr, 12398 worklist, wk_list); 12399 if (foreground) 12400 bdirty(bp); 12401 return (1); 12402 } 12403 while ((newblk = LIST_FIRST(&bmsafemap->sm_newblkwr))) { 12404 newblk->nb_state |= DEPCOMPLETE; 12405 newblk->nb_state &= ~ONDEPLIST; 12406 newblk->nb_bmsafemap = NULL; 12407 LIST_REMOVE(newblk, nb_deps); 12408 if (newblk->nb_list.wk_type == D_ALLOCDIRECT) 12409 handle_allocdirect_partdone( 12410 WK_ALLOCDIRECT(&newblk->nb_list), NULL); 12411 else if (newblk->nb_list.wk_type == D_ALLOCINDIR) 12412 handle_allocindir_partdone( 12413 WK_ALLOCINDIR(&newblk->nb_list)); 12414 else if (newblk->nb_list.wk_type != D_NEWBLK) 12415 panic("handle_written_bmsafemap: Unexpected type: %s", 12416 TYPENAME(newblk->nb_list.wk_type)); 12417 } 12418 while ((inodedep = LIST_FIRST(&bmsafemap->sm_inodedepwr)) != NULL) { 12419 inodedep->id_state |= DEPCOMPLETE; 12420 inodedep->id_state &= ~ONDEPLIST; 12421 LIST_REMOVE(inodedep, id_deps); 12422 inodedep->id_bmsafemap = NULL; 12423 } 12424 LIST_REMOVE(bmsafemap, sm_next); 12425 if (chgs == 0 && LIST_EMPTY(&bmsafemap->sm_jaddrefhd) && 12426 LIST_EMPTY(&bmsafemap->sm_jnewblkhd) && 12427 LIST_EMPTY(&bmsafemap->sm_newblkhd) && 12428 LIST_EMPTY(&bmsafemap->sm_inodedephd) && 12429 LIST_EMPTY(&bmsafemap->sm_freehd)) { 12430 LIST_REMOVE(bmsafemap, sm_hash); 12431 WORKITEM_FREE(bmsafemap, D_BMSAFEMAP); 12432 return (0); 12433 } 12434 LIST_INSERT_HEAD(&ump->softdep_dirtycg, bmsafemap, sm_next); 12435 if (foreground) 12436 bdirty(bp); 12437 return (1); 12438 } 12439 12440 /* 12441 * Try to free a mkdir dependency. 12442 */ 12443 static void 12444 complete_mkdir(mkdir) 12445 struct mkdir *mkdir; 12446 { 12447 struct diradd *dap; 12448 12449 if ((mkdir->md_state & ALLCOMPLETE) != ALLCOMPLETE) 12450 return; 12451 LIST_REMOVE(mkdir, md_mkdirs); 12452 dap = mkdir->md_diradd; 12453 dap->da_state &= ~(mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY)); 12454 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0) { 12455 dap->da_state |= DEPCOMPLETE; 12456 complete_diradd(dap); 12457 } 12458 WORKITEM_FREE(mkdir, D_MKDIR); 12459 } 12460 12461 /* 12462 * Handle the completion of a mkdir dependency. 12463 */ 12464 static void 12465 handle_written_mkdir(mkdir, type) 12466 struct mkdir *mkdir; 12467 int type; 12468 { 12469 12470 if ((mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY)) != type) 12471 panic("handle_written_mkdir: bad type"); 12472 mkdir->md_state |= COMPLETE; 12473 complete_mkdir(mkdir); 12474 } 12475 12476 static int 12477 free_pagedep(pagedep) 12478 struct pagedep *pagedep; 12479 { 12480 int i; 12481 12482 if (pagedep->pd_state & NEWBLOCK) 12483 return (0); 12484 if (!LIST_EMPTY(&pagedep->pd_dirremhd)) 12485 return (0); 12486 for (i = 0; i < DAHASHSZ; i++) 12487 if (!LIST_EMPTY(&pagedep->pd_diraddhd[i])) 12488 return (0); 12489 if (!LIST_EMPTY(&pagedep->pd_pendinghd)) 12490 return (0); 12491 if (!LIST_EMPTY(&pagedep->pd_jmvrefhd)) 12492 return (0); 12493 if (pagedep->pd_state & ONWORKLIST) 12494 WORKLIST_REMOVE(&pagedep->pd_list); 12495 LIST_REMOVE(pagedep, pd_hash); 12496 WORKITEM_FREE(pagedep, D_PAGEDEP); 12497 12498 return (1); 12499 } 12500 12501 /* 12502 * Called from within softdep_disk_write_complete above. 12503 * A write operation was just completed. Removed inodes can 12504 * now be freed and associated block pointers may be committed. 12505 * Note that this routine is always called from interrupt level 12506 * with further interrupts from this device blocked. 12507 * 12508 * If the write did not succeed, we will do all the roll-forward 12509 * operations, but we will not take the actions that will allow its 12510 * dependencies to be processed. 12511 */ 12512 static int 12513 handle_written_filepage(pagedep, bp, flags) 12514 struct pagedep *pagedep; 12515 struct buf *bp; /* buffer containing the written page */ 12516 int flags; 12517 { 12518 struct dirrem *dirrem; 12519 struct diradd *dap, *nextdap; 12520 struct direct *ep; 12521 int i, chgs; 12522 12523 if ((pagedep->pd_state & IOSTARTED) == 0) 12524 panic("handle_written_filepage: not started"); 12525 pagedep->pd_state &= ~IOSTARTED; 12526 if ((flags & WRITESUCCEEDED) == 0) 12527 goto rollforward; 12528 /* 12529 * Process any directory removals that have been committed. 12530 */ 12531 while ((dirrem = LIST_FIRST(&pagedep->pd_dirremhd)) != NULL) { 12532 LIST_REMOVE(dirrem, dm_next); 12533 dirrem->dm_state |= COMPLETE; 12534 dirrem->dm_dirinum = pagedep->pd_ino; 12535 KASSERT(LIST_EMPTY(&dirrem->dm_jremrefhd), 12536 ("handle_written_filepage: Journal entries not written.")); 12537 add_to_worklist(&dirrem->dm_list, 0); 12538 } 12539 /* 12540 * Free any directory additions that have been committed. 12541 * If it is a newly allocated block, we have to wait until 12542 * the on-disk directory inode claims the new block. 12543 */ 12544 if ((pagedep->pd_state & NEWBLOCK) == 0) 12545 while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL) 12546 free_diradd(dap, NULL); 12547 rollforward: 12548 /* 12549 * Uncommitted directory entries must be restored. 12550 */ 12551 for (chgs = 0, i = 0; i < DAHASHSZ; i++) { 12552 for (dap = LIST_FIRST(&pagedep->pd_diraddhd[i]); dap; 12553 dap = nextdap) { 12554 nextdap = LIST_NEXT(dap, da_pdlist); 12555 if (dap->da_state & ATTACHED) 12556 panic("handle_written_filepage: attached"); 12557 ep = (struct direct *) 12558 ((char *)bp->b_data + dap->da_offset); 12559 ep->d_ino = dap->da_newinum; 12560 dap->da_state &= ~UNDONE; 12561 dap->da_state |= ATTACHED; 12562 chgs = 1; 12563 /* 12564 * If the inode referenced by the directory has 12565 * been written out, then the dependency can be 12566 * moved to the pending list. 12567 */ 12568 if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) { 12569 LIST_REMOVE(dap, da_pdlist); 12570 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, 12571 da_pdlist); 12572 } 12573 } 12574 } 12575 /* 12576 * If there were any rollbacks in the directory, then it must be 12577 * marked dirty so that its will eventually get written back in 12578 * its correct form. 12579 */ 12580 if (chgs || (flags & WRITESUCCEEDED) == 0) { 12581 if ((bp->b_flags & B_DELWRI) == 0) 12582 stat_dir_entry++; 12583 bdirty(bp); 12584 return (1); 12585 } 12586 /* 12587 * If we are not waiting for a new directory block to be 12588 * claimed by its inode, then the pagedep will be freed. 12589 * Otherwise it will remain to track any new entries on 12590 * the page in case they are fsync'ed. 12591 */ 12592 free_pagedep(pagedep); 12593 return (0); 12594 } 12595 12596 /* 12597 * Writing back in-core inode structures. 12598 * 12599 * The filesystem only accesses an inode's contents when it occupies an 12600 * "in-core" inode structure. These "in-core" structures are separate from 12601 * the page frames used to cache inode blocks. Only the latter are 12602 * transferred to/from the disk. So, when the updated contents of the 12603 * "in-core" inode structure are copied to the corresponding in-memory inode 12604 * block, the dependencies are also transferred. The following procedure is 12605 * called when copying a dirty "in-core" inode to a cached inode block. 12606 */ 12607 12608 /* 12609 * Called when an inode is loaded from disk. If the effective link count 12610 * differed from the actual link count when it was last flushed, then we 12611 * need to ensure that the correct effective link count is put back. 12612 */ 12613 void 12614 softdep_load_inodeblock(ip) 12615 struct inode *ip; /* the "in_core" copy of the inode */ 12616 { 12617 struct inodedep *inodedep; 12618 struct ufsmount *ump; 12619 12620 ump = ITOUMP(ip); 12621 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 12622 ("softdep_load_inodeblock called on non-softdep filesystem")); 12623 /* 12624 * Check for alternate nlink count. 12625 */ 12626 ip->i_effnlink = ip->i_nlink; 12627 ACQUIRE_LOCK(ump); 12628 if (inodedep_lookup(UFSTOVFS(ump), ip->i_number, 0, &inodedep) == 0) { 12629 FREE_LOCK(ump); 12630 return; 12631 } 12632 if (ip->i_nlink != inodedep->id_nlinkwrote && 12633 inodedep->id_nlinkwrote != -1) { 12634 KASSERT(ip->i_nlink == 0 && 12635 (ump->um_flags & UM_FSFAIL_CLEANUP) != 0, 12636 ("read bad i_nlink value")); 12637 ip->i_effnlink = ip->i_nlink = inodedep->id_nlinkwrote; 12638 } 12639 ip->i_effnlink -= inodedep->id_nlinkdelta; 12640 KASSERT(ip->i_effnlink >= 0, 12641 ("softdep_load_inodeblock: negative i_effnlink")); 12642 FREE_LOCK(ump); 12643 } 12644 12645 /* 12646 * This routine is called just before the "in-core" inode 12647 * information is to be copied to the in-memory inode block. 12648 * Recall that an inode block contains several inodes. If 12649 * the force flag is set, then the dependencies will be 12650 * cleared so that the update can always be made. Note that 12651 * the buffer is locked when this routine is called, so we 12652 * will never be in the middle of writing the inode block 12653 * to disk. 12654 */ 12655 void 12656 softdep_update_inodeblock(ip, bp, waitfor) 12657 struct inode *ip; /* the "in_core" copy of the inode */ 12658 struct buf *bp; /* the buffer containing the inode block */ 12659 int waitfor; /* nonzero => update must be allowed */ 12660 { 12661 struct inodedep *inodedep; 12662 struct inoref *inoref; 12663 struct ufsmount *ump; 12664 struct worklist *wk; 12665 struct mount *mp; 12666 struct buf *ibp; 12667 struct fs *fs; 12668 int error; 12669 12670 ump = ITOUMP(ip); 12671 mp = UFSTOVFS(ump); 12672 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 12673 ("softdep_update_inodeblock called on non-softdep filesystem")); 12674 fs = ump->um_fs; 12675 /* 12676 * Preserve the freelink that is on disk. clear_unlinked_inodedep() 12677 * does not have access to the in-core ip so must write directly into 12678 * the inode block buffer when setting freelink. 12679 */ 12680 if (fs->fs_magic == FS_UFS1_MAGIC) 12681 DIP_SET(ip, i_freelink, ((struct ufs1_dinode *)bp->b_data + 12682 ino_to_fsbo(fs, ip->i_number))->di_freelink); 12683 else 12684 DIP_SET(ip, i_freelink, ((struct ufs2_dinode *)bp->b_data + 12685 ino_to_fsbo(fs, ip->i_number))->di_freelink); 12686 /* 12687 * If the effective link count is not equal to the actual link 12688 * count, then we must track the difference in an inodedep while 12689 * the inode is (potentially) tossed out of the cache. Otherwise, 12690 * if there is no existing inodedep, then there are no dependencies 12691 * to track. 12692 */ 12693 ACQUIRE_LOCK(ump); 12694 again: 12695 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) { 12696 FREE_LOCK(ump); 12697 if (ip->i_effnlink != ip->i_nlink) 12698 panic("softdep_update_inodeblock: bad link count"); 12699 return; 12700 } 12701 KASSERT(ip->i_nlink >= inodedep->id_nlinkdelta, 12702 ("softdep_update_inodeblock inconsistent ip %p i_nlink %d " 12703 "inodedep %p id_nlinkdelta %jd", 12704 ip, ip->i_nlink, inodedep, (intmax_t)inodedep->id_nlinkdelta)); 12705 inodedep->id_nlinkwrote = ip->i_nlink; 12706 if (inodedep->id_nlinkdelta != ip->i_nlink - ip->i_effnlink) 12707 panic("softdep_update_inodeblock: bad delta"); 12708 /* 12709 * If we're flushing all dependencies we must also move any waiting 12710 * for journal writes onto the bufwait list prior to I/O. 12711 */ 12712 if (waitfor) { 12713 TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) { 12714 if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY)) 12715 == DEPCOMPLETE) { 12716 jwait(&inoref->if_list, MNT_WAIT); 12717 goto again; 12718 } 12719 } 12720 } 12721 /* 12722 * Changes have been initiated. Anything depending on these 12723 * changes cannot occur until this inode has been written. 12724 */ 12725 inodedep->id_state &= ~COMPLETE; 12726 if ((inodedep->id_state & ONWORKLIST) == 0) 12727 WORKLIST_INSERT(&bp->b_dep, &inodedep->id_list); 12728 /* 12729 * Any new dependencies associated with the incore inode must 12730 * now be moved to the list associated with the buffer holding 12731 * the in-memory copy of the inode. Once merged process any 12732 * allocdirects that are completed by the merger. 12733 */ 12734 merge_inode_lists(&inodedep->id_newinoupdt, &inodedep->id_inoupdt); 12735 if (!TAILQ_EMPTY(&inodedep->id_inoupdt)) 12736 handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_inoupdt), 12737 NULL); 12738 merge_inode_lists(&inodedep->id_newextupdt, &inodedep->id_extupdt); 12739 if (!TAILQ_EMPTY(&inodedep->id_extupdt)) 12740 handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_extupdt), 12741 NULL); 12742 /* 12743 * Now that the inode has been pushed into the buffer, the 12744 * operations dependent on the inode being written to disk 12745 * can be moved to the id_bufwait so that they will be 12746 * processed when the buffer I/O completes. 12747 */ 12748 while ((wk = LIST_FIRST(&inodedep->id_inowait)) != NULL) { 12749 WORKLIST_REMOVE(wk); 12750 WORKLIST_INSERT(&inodedep->id_bufwait, wk); 12751 } 12752 /* 12753 * Newly allocated inodes cannot be written until the bitmap 12754 * that allocates them have been written (indicated by 12755 * DEPCOMPLETE being set in id_state). If we are doing a 12756 * forced sync (e.g., an fsync on a file), we force the bitmap 12757 * to be written so that the update can be done. 12758 */ 12759 if (waitfor == 0) { 12760 FREE_LOCK(ump); 12761 return; 12762 } 12763 retry: 12764 if ((inodedep->id_state & (DEPCOMPLETE | GOINGAWAY)) != 0) { 12765 FREE_LOCK(ump); 12766 return; 12767 } 12768 ibp = inodedep->id_bmsafemap->sm_buf; 12769 ibp = getdirtybuf(ibp, LOCK_PTR(ump), MNT_WAIT); 12770 if (ibp == NULL) { 12771 /* 12772 * If ibp came back as NULL, the dependency could have been 12773 * freed while we slept. Look it up again, and check to see 12774 * that it has completed. 12775 */ 12776 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0) 12777 goto retry; 12778 FREE_LOCK(ump); 12779 return; 12780 } 12781 FREE_LOCK(ump); 12782 if ((error = bwrite(ibp)) != 0) 12783 softdep_error("softdep_update_inodeblock: bwrite", error); 12784 } 12785 12786 /* 12787 * Merge the a new inode dependency list (such as id_newinoupdt) into an 12788 * old inode dependency list (such as id_inoupdt). 12789 */ 12790 static void 12791 merge_inode_lists(newlisthead, oldlisthead) 12792 struct allocdirectlst *newlisthead; 12793 struct allocdirectlst *oldlisthead; 12794 { 12795 struct allocdirect *listadp, *newadp; 12796 12797 newadp = TAILQ_FIRST(newlisthead); 12798 if (newadp != NULL) 12799 LOCK_OWNED(VFSTOUFS(newadp->ad_block.nb_list.wk_mp)); 12800 for (listadp = TAILQ_FIRST(oldlisthead); listadp && newadp;) { 12801 if (listadp->ad_offset < newadp->ad_offset) { 12802 listadp = TAILQ_NEXT(listadp, ad_next); 12803 continue; 12804 } 12805 TAILQ_REMOVE(newlisthead, newadp, ad_next); 12806 TAILQ_INSERT_BEFORE(listadp, newadp, ad_next); 12807 if (listadp->ad_offset == newadp->ad_offset) { 12808 allocdirect_merge(oldlisthead, newadp, 12809 listadp); 12810 listadp = newadp; 12811 } 12812 newadp = TAILQ_FIRST(newlisthead); 12813 } 12814 while ((newadp = TAILQ_FIRST(newlisthead)) != NULL) { 12815 TAILQ_REMOVE(newlisthead, newadp, ad_next); 12816 TAILQ_INSERT_TAIL(oldlisthead, newadp, ad_next); 12817 } 12818 } 12819 12820 /* 12821 * If we are doing an fsync, then we must ensure that any directory 12822 * entries for the inode have been written after the inode gets to disk. 12823 */ 12824 int 12825 softdep_fsync(vp) 12826 struct vnode *vp; /* the "in_core" copy of the inode */ 12827 { 12828 struct inodedep *inodedep; 12829 struct pagedep *pagedep; 12830 struct inoref *inoref; 12831 struct ufsmount *ump; 12832 struct worklist *wk; 12833 struct diradd *dap; 12834 struct mount *mp; 12835 struct vnode *pvp; 12836 struct inode *ip; 12837 struct buf *bp; 12838 struct fs *fs; 12839 struct thread *td = curthread; 12840 int error, flushparent, pagedep_new_block; 12841 ino_t parentino; 12842 ufs_lbn_t lbn; 12843 12844 ip = VTOI(vp); 12845 mp = vp->v_mount; 12846 ump = VFSTOUFS(mp); 12847 fs = ump->um_fs; 12848 if (MOUNTEDSOFTDEP(mp) == 0) 12849 return (0); 12850 ACQUIRE_LOCK(ump); 12851 restart: 12852 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) { 12853 FREE_LOCK(ump); 12854 return (0); 12855 } 12856 TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) { 12857 if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY)) 12858 == DEPCOMPLETE) { 12859 jwait(&inoref->if_list, MNT_WAIT); 12860 goto restart; 12861 } 12862 } 12863 if (!LIST_EMPTY(&inodedep->id_inowait) || 12864 !TAILQ_EMPTY(&inodedep->id_extupdt) || 12865 !TAILQ_EMPTY(&inodedep->id_newextupdt) || 12866 !TAILQ_EMPTY(&inodedep->id_inoupdt) || 12867 !TAILQ_EMPTY(&inodedep->id_newinoupdt)) 12868 panic("softdep_fsync: pending ops %p", inodedep); 12869 for (error = 0, flushparent = 0; ; ) { 12870 if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) == NULL) 12871 break; 12872 if (wk->wk_type != D_DIRADD) 12873 panic("softdep_fsync: Unexpected type %s", 12874 TYPENAME(wk->wk_type)); 12875 dap = WK_DIRADD(wk); 12876 /* 12877 * Flush our parent if this directory entry has a MKDIR_PARENT 12878 * dependency or is contained in a newly allocated block. 12879 */ 12880 if (dap->da_state & DIRCHG) 12881 pagedep = dap->da_previous->dm_pagedep; 12882 else 12883 pagedep = dap->da_pagedep; 12884 parentino = pagedep->pd_ino; 12885 lbn = pagedep->pd_lbn; 12886 if ((dap->da_state & (MKDIR_BODY | COMPLETE)) != COMPLETE) 12887 panic("softdep_fsync: dirty"); 12888 if ((dap->da_state & MKDIR_PARENT) || 12889 (pagedep->pd_state & NEWBLOCK)) 12890 flushparent = 1; 12891 else 12892 flushparent = 0; 12893 /* 12894 * If we are being fsync'ed as part of vgone'ing this vnode, 12895 * then we will not be able to release and recover the 12896 * vnode below, so we just have to give up on writing its 12897 * directory entry out. It will eventually be written, just 12898 * not now, but then the user was not asking to have it 12899 * written, so we are not breaking any promises. 12900 */ 12901 if (VN_IS_DOOMED(vp)) 12902 break; 12903 /* 12904 * We prevent deadlock by always fetching inodes from the 12905 * root, moving down the directory tree. Thus, when fetching 12906 * our parent directory, we first try to get the lock. If 12907 * that fails, we must unlock ourselves before requesting 12908 * the lock on our parent. See the comment in ufs_lookup 12909 * for details on possible races. 12910 */ 12911 FREE_LOCK(ump); 12912 error = get_parent_vp(vp, mp, parentino, NULL, NULL, NULL, 12913 &pvp); 12914 if (error == ERELOOKUP) 12915 error = 0; 12916 if (error != 0) 12917 return (error); 12918 /* 12919 * All MKDIR_PARENT dependencies and all the NEWBLOCK pagedeps 12920 * that are contained in direct blocks will be resolved by 12921 * doing a ffs_update. Pagedeps contained in indirect blocks 12922 * may require a complete sync'ing of the directory. So, we 12923 * try the cheap and fast ffs_update first, and if that fails, 12924 * then we do the slower ffs_syncvnode of the directory. 12925 */ 12926 if (flushparent) { 12927 int locked; 12928 12929 if ((error = ffs_update(pvp, 1)) != 0) { 12930 vput(pvp); 12931 return (error); 12932 } 12933 ACQUIRE_LOCK(ump); 12934 locked = 1; 12935 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0) { 12936 if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) != NULL) { 12937 if (wk->wk_type != D_DIRADD) 12938 panic("softdep_fsync: Unexpected type %s", 12939 TYPENAME(wk->wk_type)); 12940 dap = WK_DIRADD(wk); 12941 if (dap->da_state & DIRCHG) 12942 pagedep = dap->da_previous->dm_pagedep; 12943 else 12944 pagedep = dap->da_pagedep; 12945 pagedep_new_block = pagedep->pd_state & NEWBLOCK; 12946 FREE_LOCK(ump); 12947 locked = 0; 12948 if (pagedep_new_block && (error = 12949 ffs_syncvnode(pvp, MNT_WAIT, 0))) { 12950 vput(pvp); 12951 return (error); 12952 } 12953 } 12954 } 12955 if (locked) 12956 FREE_LOCK(ump); 12957 } 12958 /* 12959 * Flush directory page containing the inode's name. 12960 */ 12961 error = bread(pvp, lbn, blksize(fs, VTOI(pvp), lbn), td->td_ucred, 12962 &bp); 12963 if (error == 0) 12964 error = bwrite(bp); 12965 else 12966 brelse(bp); 12967 vput(pvp); 12968 if (!ffs_fsfail_cleanup(ump, error)) 12969 return (error); 12970 ACQUIRE_LOCK(ump); 12971 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) 12972 break; 12973 } 12974 FREE_LOCK(ump); 12975 return (0); 12976 } 12977 12978 /* 12979 * Flush all the dirty bitmaps associated with the block device 12980 * before flushing the rest of the dirty blocks so as to reduce 12981 * the number of dependencies that will have to be rolled back. 12982 * 12983 * XXX Unused? 12984 */ 12985 void 12986 softdep_fsync_mountdev(vp) 12987 struct vnode *vp; 12988 { 12989 struct buf *bp, *nbp; 12990 struct worklist *wk; 12991 struct bufobj *bo; 12992 12993 if (!vn_isdisk(vp)) 12994 panic("softdep_fsync_mountdev: vnode not a disk"); 12995 bo = &vp->v_bufobj; 12996 restart: 12997 BO_LOCK(bo); 12998 TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) { 12999 /* 13000 * If it is already scheduled, skip to the next buffer. 13001 */ 13002 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL)) 13003 continue; 13004 13005 if ((bp->b_flags & B_DELWRI) == 0) 13006 panic("softdep_fsync_mountdev: not dirty"); 13007 /* 13008 * We are only interested in bitmaps with outstanding 13009 * dependencies. 13010 */ 13011 if ((wk = LIST_FIRST(&bp->b_dep)) == NULL || 13012 wk->wk_type != D_BMSAFEMAP || 13013 (bp->b_vflags & BV_BKGRDINPROG)) { 13014 BUF_UNLOCK(bp); 13015 continue; 13016 } 13017 BO_UNLOCK(bo); 13018 bremfree(bp); 13019 (void) bawrite(bp); 13020 goto restart; 13021 } 13022 drain_output(vp); 13023 BO_UNLOCK(bo); 13024 } 13025 13026 /* 13027 * Sync all cylinder groups that were dirty at the time this function is 13028 * called. Newly dirtied cgs will be inserted before the sentinel. This 13029 * is used to flush freedep activity that may be holding up writes to a 13030 * indirect block. 13031 */ 13032 static int 13033 sync_cgs(mp, waitfor) 13034 struct mount *mp; 13035 int waitfor; 13036 { 13037 struct bmsafemap *bmsafemap; 13038 struct bmsafemap *sentinel; 13039 struct ufsmount *ump; 13040 struct buf *bp; 13041 int error; 13042 13043 sentinel = malloc(sizeof(*sentinel), M_BMSAFEMAP, M_ZERO | M_WAITOK); 13044 sentinel->sm_cg = -1; 13045 ump = VFSTOUFS(mp); 13046 error = 0; 13047 ACQUIRE_LOCK(ump); 13048 LIST_INSERT_HEAD(&ump->softdep_dirtycg, sentinel, sm_next); 13049 for (bmsafemap = LIST_NEXT(sentinel, sm_next); bmsafemap != NULL; 13050 bmsafemap = LIST_NEXT(sentinel, sm_next)) { 13051 /* Skip sentinels and cgs with no work to release. */ 13052 if (bmsafemap->sm_cg == -1 || 13053 (LIST_EMPTY(&bmsafemap->sm_freehd) && 13054 LIST_EMPTY(&bmsafemap->sm_freewr))) { 13055 LIST_REMOVE(sentinel, sm_next); 13056 LIST_INSERT_AFTER(bmsafemap, sentinel, sm_next); 13057 continue; 13058 } 13059 /* 13060 * If we don't get the lock and we're waiting try again, if 13061 * not move on to the next buf and try to sync it. 13062 */ 13063 bp = getdirtybuf(bmsafemap->sm_buf, LOCK_PTR(ump), waitfor); 13064 if (bp == NULL && waitfor == MNT_WAIT) 13065 continue; 13066 LIST_REMOVE(sentinel, sm_next); 13067 LIST_INSERT_AFTER(bmsafemap, sentinel, sm_next); 13068 if (bp == NULL) 13069 continue; 13070 FREE_LOCK(ump); 13071 if (waitfor == MNT_NOWAIT) 13072 bawrite(bp); 13073 else 13074 error = bwrite(bp); 13075 ACQUIRE_LOCK(ump); 13076 if (error) 13077 break; 13078 } 13079 LIST_REMOVE(sentinel, sm_next); 13080 FREE_LOCK(ump); 13081 free(sentinel, M_BMSAFEMAP); 13082 return (error); 13083 } 13084 13085 /* 13086 * This routine is called when we are trying to synchronously flush a 13087 * file. This routine must eliminate any filesystem metadata dependencies 13088 * so that the syncing routine can succeed. 13089 */ 13090 int 13091 softdep_sync_metadata(struct vnode *vp) 13092 { 13093 struct inode *ip; 13094 int error; 13095 13096 ip = VTOI(vp); 13097 KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0, 13098 ("softdep_sync_metadata called on non-softdep filesystem")); 13099 /* 13100 * Ensure that any direct block dependencies have been cleared, 13101 * truncations are started, and inode references are journaled. 13102 */ 13103 ACQUIRE_LOCK(VFSTOUFS(vp->v_mount)); 13104 /* 13105 * Write all journal records to prevent rollbacks on devvp. 13106 */ 13107 if (vp->v_type == VCHR) 13108 softdep_flushjournal(vp->v_mount); 13109 error = flush_inodedep_deps(vp, vp->v_mount, ip->i_number); 13110 /* 13111 * Ensure that all truncates are written so we won't find deps on 13112 * indirect blocks. 13113 */ 13114 process_truncates(vp); 13115 FREE_LOCK(VFSTOUFS(vp->v_mount)); 13116 13117 return (error); 13118 } 13119 13120 /* 13121 * This routine is called when we are attempting to sync a buf with 13122 * dependencies. If waitfor is MNT_NOWAIT it attempts to schedule any 13123 * other IO it can but returns EBUSY if the buffer is not yet able to 13124 * be written. Dependencies which will not cause rollbacks will always 13125 * return 0. 13126 */ 13127 int 13128 softdep_sync_buf(struct vnode *vp, struct buf *bp, int waitfor) 13129 { 13130 struct indirdep *indirdep; 13131 struct pagedep *pagedep; 13132 struct allocindir *aip; 13133 struct newblk *newblk; 13134 struct ufsmount *ump; 13135 struct buf *nbp; 13136 struct worklist *wk; 13137 int i, error; 13138 13139 KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0, 13140 ("softdep_sync_buf called on non-softdep filesystem")); 13141 /* 13142 * For VCHR we just don't want to force flush any dependencies that 13143 * will cause rollbacks. 13144 */ 13145 if (vp->v_type == VCHR) { 13146 if (waitfor == MNT_NOWAIT && softdep_count_dependencies(bp, 0)) 13147 return (EBUSY); 13148 return (0); 13149 } 13150 ump = VFSTOUFS(vp->v_mount); 13151 ACQUIRE_LOCK(ump); 13152 /* 13153 * As we hold the buffer locked, none of its dependencies 13154 * will disappear. 13155 */ 13156 error = 0; 13157 top: 13158 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 13159 switch (wk->wk_type) { 13160 case D_ALLOCDIRECT: 13161 case D_ALLOCINDIR: 13162 newblk = WK_NEWBLK(wk); 13163 if (newblk->nb_jnewblk != NULL) { 13164 if (waitfor == MNT_NOWAIT) { 13165 error = EBUSY; 13166 goto out_unlock; 13167 } 13168 jwait(&newblk->nb_jnewblk->jn_list, waitfor); 13169 goto top; 13170 } 13171 if (newblk->nb_state & DEPCOMPLETE || 13172 waitfor == MNT_NOWAIT) 13173 continue; 13174 nbp = newblk->nb_bmsafemap->sm_buf; 13175 nbp = getdirtybuf(nbp, LOCK_PTR(ump), waitfor); 13176 if (nbp == NULL) 13177 goto top; 13178 FREE_LOCK(ump); 13179 if ((error = bwrite(nbp)) != 0) 13180 goto out; 13181 ACQUIRE_LOCK(ump); 13182 continue; 13183 13184 case D_INDIRDEP: 13185 indirdep = WK_INDIRDEP(wk); 13186 if (waitfor == MNT_NOWAIT) { 13187 if (!TAILQ_EMPTY(&indirdep->ir_trunc) || 13188 !LIST_EMPTY(&indirdep->ir_deplisthd)) { 13189 error = EBUSY; 13190 goto out_unlock; 13191 } 13192 } 13193 if (!TAILQ_EMPTY(&indirdep->ir_trunc)) 13194 panic("softdep_sync_buf: truncation pending."); 13195 restart: 13196 LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) { 13197 newblk = (struct newblk *)aip; 13198 if (newblk->nb_jnewblk != NULL) { 13199 jwait(&newblk->nb_jnewblk->jn_list, 13200 waitfor); 13201 goto restart; 13202 } 13203 if (newblk->nb_state & DEPCOMPLETE) 13204 continue; 13205 nbp = newblk->nb_bmsafemap->sm_buf; 13206 nbp = getdirtybuf(nbp, LOCK_PTR(ump), waitfor); 13207 if (nbp == NULL) 13208 goto restart; 13209 FREE_LOCK(ump); 13210 if ((error = bwrite(nbp)) != 0) 13211 goto out; 13212 ACQUIRE_LOCK(ump); 13213 goto restart; 13214 } 13215 continue; 13216 13217 case D_PAGEDEP: 13218 /* 13219 * Only flush directory entries in synchronous passes. 13220 */ 13221 if (waitfor != MNT_WAIT) { 13222 error = EBUSY; 13223 goto out_unlock; 13224 } 13225 /* 13226 * While syncing snapshots, we must allow recursive 13227 * lookups. 13228 */ 13229 BUF_AREC(bp); 13230 /* 13231 * We are trying to sync a directory that may 13232 * have dependencies on both its own metadata 13233 * and/or dependencies on the inodes of any 13234 * recently allocated files. We walk its diradd 13235 * lists pushing out the associated inode. 13236 */ 13237 pagedep = WK_PAGEDEP(wk); 13238 for (i = 0; i < DAHASHSZ; i++) { 13239 if (LIST_FIRST(&pagedep->pd_diraddhd[i]) == 0) 13240 continue; 13241 error = flush_pagedep_deps(vp, wk->wk_mp, 13242 &pagedep->pd_diraddhd[i], bp); 13243 if (error != 0) { 13244 if (error != ERELOOKUP) 13245 BUF_NOREC(bp); 13246 goto out_unlock; 13247 } 13248 } 13249 BUF_NOREC(bp); 13250 continue; 13251 13252 case D_FREEWORK: 13253 case D_FREEDEP: 13254 case D_JSEGDEP: 13255 case D_JNEWBLK: 13256 continue; 13257 13258 default: 13259 panic("softdep_sync_buf: Unknown type %s", 13260 TYPENAME(wk->wk_type)); 13261 /* NOTREACHED */ 13262 } 13263 } 13264 out_unlock: 13265 FREE_LOCK(ump); 13266 out: 13267 return (error); 13268 } 13269 13270 /* 13271 * Flush the dependencies associated with an inodedep. 13272 */ 13273 static int 13274 flush_inodedep_deps(vp, mp, ino) 13275 struct vnode *vp; 13276 struct mount *mp; 13277 ino_t ino; 13278 { 13279 struct inodedep *inodedep; 13280 struct inoref *inoref; 13281 struct ufsmount *ump; 13282 int error, waitfor; 13283 13284 /* 13285 * This work is done in two passes. The first pass grabs most 13286 * of the buffers and begins asynchronously writing them. The 13287 * only way to wait for these asynchronous writes is to sleep 13288 * on the filesystem vnode which may stay busy for a long time 13289 * if the filesystem is active. So, instead, we make a second 13290 * pass over the dependencies blocking on each write. In the 13291 * usual case we will be blocking against a write that we 13292 * initiated, so when it is done the dependency will have been 13293 * resolved. Thus the second pass is expected to end quickly. 13294 * We give a brief window at the top of the loop to allow 13295 * any pending I/O to complete. 13296 */ 13297 ump = VFSTOUFS(mp); 13298 LOCK_OWNED(ump); 13299 for (error = 0, waitfor = MNT_NOWAIT; ; ) { 13300 if (error) 13301 return (error); 13302 FREE_LOCK(ump); 13303 ACQUIRE_LOCK(ump); 13304 restart: 13305 if (inodedep_lookup(mp, ino, 0, &inodedep) == 0) 13306 return (0); 13307 TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) { 13308 if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY)) 13309 == DEPCOMPLETE) { 13310 jwait(&inoref->if_list, MNT_WAIT); 13311 goto restart; 13312 } 13313 } 13314 if (flush_deplist(&inodedep->id_inoupdt, waitfor, &error) || 13315 flush_deplist(&inodedep->id_newinoupdt, waitfor, &error) || 13316 flush_deplist(&inodedep->id_extupdt, waitfor, &error) || 13317 flush_deplist(&inodedep->id_newextupdt, waitfor, &error)) 13318 continue; 13319 /* 13320 * If pass2, we are done, otherwise do pass 2. 13321 */ 13322 if (waitfor == MNT_WAIT) 13323 break; 13324 waitfor = MNT_WAIT; 13325 } 13326 /* 13327 * Try freeing inodedep in case all dependencies have been removed. 13328 */ 13329 if (inodedep_lookup(mp, ino, 0, &inodedep) != 0) 13330 (void) free_inodedep(inodedep); 13331 return (0); 13332 } 13333 13334 /* 13335 * Flush an inode dependency list. 13336 */ 13337 static int 13338 flush_deplist(listhead, waitfor, errorp) 13339 struct allocdirectlst *listhead; 13340 int waitfor; 13341 int *errorp; 13342 { 13343 struct allocdirect *adp; 13344 struct newblk *newblk; 13345 struct ufsmount *ump; 13346 struct buf *bp; 13347 13348 if ((adp = TAILQ_FIRST(listhead)) == NULL) 13349 return (0); 13350 ump = VFSTOUFS(adp->ad_list.wk_mp); 13351 LOCK_OWNED(ump); 13352 TAILQ_FOREACH(adp, listhead, ad_next) { 13353 newblk = (struct newblk *)adp; 13354 if (newblk->nb_jnewblk != NULL) { 13355 jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT); 13356 return (1); 13357 } 13358 if (newblk->nb_state & DEPCOMPLETE) 13359 continue; 13360 bp = newblk->nb_bmsafemap->sm_buf; 13361 bp = getdirtybuf(bp, LOCK_PTR(ump), waitfor); 13362 if (bp == NULL) { 13363 if (waitfor == MNT_NOWAIT) 13364 continue; 13365 return (1); 13366 } 13367 FREE_LOCK(ump); 13368 if (waitfor == MNT_NOWAIT) 13369 bawrite(bp); 13370 else 13371 *errorp = bwrite(bp); 13372 ACQUIRE_LOCK(ump); 13373 return (1); 13374 } 13375 return (0); 13376 } 13377 13378 /* 13379 * Flush dependencies associated with an allocdirect block. 13380 */ 13381 static int 13382 flush_newblk_dep(vp, mp, lbn) 13383 struct vnode *vp; 13384 struct mount *mp; 13385 ufs_lbn_t lbn; 13386 { 13387 struct newblk *newblk; 13388 struct ufsmount *ump; 13389 struct bufobj *bo; 13390 struct inode *ip; 13391 struct buf *bp; 13392 ufs2_daddr_t blkno; 13393 int error; 13394 13395 error = 0; 13396 bo = &vp->v_bufobj; 13397 ip = VTOI(vp); 13398 blkno = DIP(ip, i_db[lbn]); 13399 if (blkno == 0) 13400 panic("flush_newblk_dep: Missing block"); 13401 ump = VFSTOUFS(mp); 13402 ACQUIRE_LOCK(ump); 13403 /* 13404 * Loop until all dependencies related to this block are satisfied. 13405 * We must be careful to restart after each sleep in case a write 13406 * completes some part of this process for us. 13407 */ 13408 for (;;) { 13409 if (newblk_lookup(mp, blkno, 0, &newblk) == 0) { 13410 FREE_LOCK(ump); 13411 break; 13412 } 13413 if (newblk->nb_list.wk_type != D_ALLOCDIRECT) 13414 panic("flush_newblk_dep: Bad newblk %p", newblk); 13415 /* 13416 * Flush the journal. 13417 */ 13418 if (newblk->nb_jnewblk != NULL) { 13419 jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT); 13420 continue; 13421 } 13422 /* 13423 * Write the bitmap dependency. 13424 */ 13425 if ((newblk->nb_state & DEPCOMPLETE) == 0) { 13426 bp = newblk->nb_bmsafemap->sm_buf; 13427 bp = getdirtybuf(bp, LOCK_PTR(ump), MNT_WAIT); 13428 if (bp == NULL) 13429 continue; 13430 FREE_LOCK(ump); 13431 error = bwrite(bp); 13432 if (error) 13433 break; 13434 ACQUIRE_LOCK(ump); 13435 continue; 13436 } 13437 /* 13438 * Write the buffer. 13439 */ 13440 FREE_LOCK(ump); 13441 BO_LOCK(bo); 13442 bp = gbincore(bo, lbn); 13443 if (bp != NULL) { 13444 error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL | 13445 LK_INTERLOCK, BO_LOCKPTR(bo)); 13446 if (error == ENOLCK) { 13447 ACQUIRE_LOCK(ump); 13448 error = 0; 13449 continue; /* Slept, retry */ 13450 } 13451 if (error != 0) 13452 break; /* Failed */ 13453 if (bp->b_flags & B_DELWRI) { 13454 bremfree(bp); 13455 error = bwrite(bp); 13456 if (error) 13457 break; 13458 } else 13459 BUF_UNLOCK(bp); 13460 } else 13461 BO_UNLOCK(bo); 13462 /* 13463 * We have to wait for the direct pointers to 13464 * point at the newdirblk before the dependency 13465 * will go away. 13466 */ 13467 error = ffs_update(vp, 1); 13468 if (error) 13469 break; 13470 ACQUIRE_LOCK(ump); 13471 } 13472 return (error); 13473 } 13474 13475 /* 13476 * Eliminate a pagedep dependency by flushing out all its diradd dependencies. 13477 */ 13478 static int 13479 flush_pagedep_deps(pvp, mp, diraddhdp, locked_bp) 13480 struct vnode *pvp; 13481 struct mount *mp; 13482 struct diraddhd *diraddhdp; 13483 struct buf *locked_bp; 13484 { 13485 struct inodedep *inodedep; 13486 struct inoref *inoref; 13487 struct ufsmount *ump; 13488 struct diradd *dap; 13489 struct vnode *vp; 13490 int error = 0; 13491 struct buf *bp; 13492 ino_t inum; 13493 struct diraddhd unfinished; 13494 13495 LIST_INIT(&unfinished); 13496 ump = VFSTOUFS(mp); 13497 LOCK_OWNED(ump); 13498 restart: 13499 while ((dap = LIST_FIRST(diraddhdp)) != NULL) { 13500 /* 13501 * Flush ourselves if this directory entry 13502 * has a MKDIR_PARENT dependency. 13503 */ 13504 if (dap->da_state & MKDIR_PARENT) { 13505 FREE_LOCK(ump); 13506 if ((error = ffs_update(pvp, 1)) != 0) 13507 break; 13508 ACQUIRE_LOCK(ump); 13509 /* 13510 * If that cleared dependencies, go on to next. 13511 */ 13512 if (dap != LIST_FIRST(diraddhdp)) 13513 continue; 13514 /* 13515 * All MKDIR_PARENT dependencies and all the 13516 * NEWBLOCK pagedeps that are contained in direct 13517 * blocks were resolved by doing above ffs_update. 13518 * Pagedeps contained in indirect blocks may 13519 * require a complete sync'ing of the directory. 13520 * We are in the midst of doing a complete sync, 13521 * so if they are not resolved in this pass we 13522 * defer them for now as they will be sync'ed by 13523 * our caller shortly. 13524 */ 13525 LIST_REMOVE(dap, da_pdlist); 13526 LIST_INSERT_HEAD(&unfinished, dap, da_pdlist); 13527 continue; 13528 } 13529 /* 13530 * A newly allocated directory must have its "." and 13531 * ".." entries written out before its name can be 13532 * committed in its parent. 13533 */ 13534 inum = dap->da_newinum; 13535 if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0) 13536 panic("flush_pagedep_deps: lost inode1"); 13537 /* 13538 * Wait for any pending journal adds to complete so we don't 13539 * cause rollbacks while syncing. 13540 */ 13541 TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) { 13542 if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY)) 13543 == DEPCOMPLETE) { 13544 jwait(&inoref->if_list, MNT_WAIT); 13545 goto restart; 13546 } 13547 } 13548 if (dap->da_state & MKDIR_BODY) { 13549 FREE_LOCK(ump); 13550 error = get_parent_vp(pvp, mp, inum, locked_bp, 13551 diraddhdp, &unfinished, &vp); 13552 if (error != 0) 13553 break; 13554 error = flush_newblk_dep(vp, mp, 0); 13555 /* 13556 * If we still have the dependency we might need to 13557 * update the vnode to sync the new link count to 13558 * disk. 13559 */ 13560 if (error == 0 && dap == LIST_FIRST(diraddhdp)) 13561 error = ffs_update(vp, 1); 13562 vput(vp); 13563 if (error != 0) 13564 break; 13565 ACQUIRE_LOCK(ump); 13566 /* 13567 * If that cleared dependencies, go on to next. 13568 */ 13569 if (dap != LIST_FIRST(diraddhdp)) 13570 continue; 13571 if (dap->da_state & MKDIR_BODY) { 13572 inodedep_lookup(UFSTOVFS(ump), inum, 0, 13573 &inodedep); 13574 panic("flush_pagedep_deps: MKDIR_BODY " 13575 "inodedep %p dap %p vp %p", 13576 inodedep, dap, vp); 13577 } 13578 } 13579 /* 13580 * Flush the inode on which the directory entry depends. 13581 * Having accounted for MKDIR_PARENT and MKDIR_BODY above, 13582 * the only remaining dependency is that the updated inode 13583 * count must get pushed to disk. The inode has already 13584 * been pushed into its inode buffer (via VOP_UPDATE) at 13585 * the time of the reference count change. So we need only 13586 * locate that buffer, ensure that there will be no rollback 13587 * caused by a bitmap dependency, then write the inode buffer. 13588 */ 13589 retry: 13590 if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0) 13591 panic("flush_pagedep_deps: lost inode"); 13592 /* 13593 * If the inode still has bitmap dependencies, 13594 * push them to disk. 13595 */ 13596 if ((inodedep->id_state & (DEPCOMPLETE | GOINGAWAY)) == 0) { 13597 bp = inodedep->id_bmsafemap->sm_buf; 13598 bp = getdirtybuf(bp, LOCK_PTR(ump), MNT_WAIT); 13599 if (bp == NULL) 13600 goto retry; 13601 FREE_LOCK(ump); 13602 if ((error = bwrite(bp)) != 0) 13603 break; 13604 ACQUIRE_LOCK(ump); 13605 if (dap != LIST_FIRST(diraddhdp)) 13606 continue; 13607 } 13608 /* 13609 * If the inode is still sitting in a buffer waiting 13610 * to be written or waiting for the link count to be 13611 * adjusted update it here to flush it to disk. 13612 */ 13613 if (dap == LIST_FIRST(diraddhdp)) { 13614 FREE_LOCK(ump); 13615 error = get_parent_vp(pvp, mp, inum, locked_bp, 13616 diraddhdp, &unfinished, &vp); 13617 if (error != 0) 13618 break; 13619 error = ffs_update(vp, 1); 13620 vput(vp); 13621 if (error) 13622 break; 13623 ACQUIRE_LOCK(ump); 13624 } 13625 /* 13626 * If we have failed to get rid of all the dependencies 13627 * then something is seriously wrong. 13628 */ 13629 if (dap == LIST_FIRST(diraddhdp)) { 13630 inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep); 13631 panic("flush_pagedep_deps: failed to flush " 13632 "inodedep %p ino %ju dap %p", 13633 inodedep, (uintmax_t)inum, dap); 13634 } 13635 } 13636 if (error) 13637 ACQUIRE_LOCK(ump); 13638 while ((dap = LIST_FIRST(&unfinished)) != NULL) { 13639 LIST_REMOVE(dap, da_pdlist); 13640 LIST_INSERT_HEAD(diraddhdp, dap, da_pdlist); 13641 } 13642 return (error); 13643 } 13644 13645 /* 13646 * A large burst of file addition or deletion activity can drive the 13647 * memory load excessively high. First attempt to slow things down 13648 * using the techniques below. If that fails, this routine requests 13649 * the offending operations to fall back to running synchronously 13650 * until the memory load returns to a reasonable level. 13651 */ 13652 int 13653 softdep_slowdown(vp) 13654 struct vnode *vp; 13655 { 13656 struct ufsmount *ump; 13657 int jlow; 13658 int max_softdeps_hard; 13659 13660 KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0, 13661 ("softdep_slowdown called on non-softdep filesystem")); 13662 ump = VFSTOUFS(vp->v_mount); 13663 ACQUIRE_LOCK(ump); 13664 jlow = 0; 13665 /* 13666 * Check for journal space if needed. 13667 */ 13668 if (DOINGSUJ(vp)) { 13669 if (journal_space(ump, 0) == 0) 13670 jlow = 1; 13671 } 13672 /* 13673 * If the system is under its limits and our filesystem is 13674 * not responsible for more than our share of the usage and 13675 * we are not low on journal space, then no need to slow down. 13676 */ 13677 max_softdeps_hard = max_softdeps * 11 / 10; 13678 if (dep_current[D_DIRREM] < max_softdeps_hard / 2 && 13679 dep_current[D_INODEDEP] < max_softdeps_hard && 13680 dep_current[D_INDIRDEP] < max_softdeps_hard / 1000 && 13681 dep_current[D_FREEBLKS] < max_softdeps_hard && jlow == 0 && 13682 ump->softdep_curdeps[D_DIRREM] < 13683 (max_softdeps_hard / 2) / stat_flush_threads && 13684 ump->softdep_curdeps[D_INODEDEP] < 13685 max_softdeps_hard / stat_flush_threads && 13686 ump->softdep_curdeps[D_INDIRDEP] < 13687 (max_softdeps_hard / 1000) / stat_flush_threads && 13688 ump->softdep_curdeps[D_FREEBLKS] < 13689 max_softdeps_hard / stat_flush_threads) { 13690 FREE_LOCK(ump); 13691 return (0); 13692 } 13693 /* 13694 * If the journal is low or our filesystem is over its limit 13695 * then speedup the cleanup. 13696 */ 13697 if (ump->softdep_curdeps[D_INDIRDEP] < 13698 (max_softdeps_hard / 1000) / stat_flush_threads || jlow) 13699 softdep_speedup(ump); 13700 stat_sync_limit_hit += 1; 13701 FREE_LOCK(ump); 13702 /* 13703 * We only slow down the rate at which new dependencies are 13704 * generated if we are not using journaling. With journaling, 13705 * the cleanup should always be sufficient to keep things 13706 * under control. 13707 */ 13708 if (DOINGSUJ(vp)) 13709 return (0); 13710 return (1); 13711 } 13712 13713 static int 13714 softdep_request_cleanup_filter(struct vnode *vp, void *arg __unused) 13715 { 13716 return ((vp->v_iflag & VI_OWEINACT) != 0 && vp->v_usecount == 0 && 13717 ((vp->v_vflag & VV_NOSYNC) != 0 || VTOI(vp)->i_effnlink == 0)); 13718 } 13719 13720 static void 13721 softdep_request_cleanup_inactivate(struct mount *mp) 13722 { 13723 struct vnode *vp, *mvp; 13724 int error; 13725 13726 MNT_VNODE_FOREACH_LAZY(vp, mp, mvp, softdep_request_cleanup_filter, 13727 NULL) { 13728 vholdl(vp); 13729 vn_lock(vp, LK_EXCLUSIVE | LK_INTERLOCK | LK_RETRY); 13730 VI_LOCK(vp); 13731 if (vp->v_data != NULL && vp->v_usecount == 0) { 13732 while ((vp->v_iflag & VI_OWEINACT) != 0) { 13733 error = vinactive(vp); 13734 if (error != 0 && error != ERELOOKUP) 13735 break; 13736 } 13737 atomic_add_int(&stat_delayed_inact, 1); 13738 } 13739 VOP_UNLOCK(vp); 13740 vdropl(vp); 13741 } 13742 } 13743 13744 /* 13745 * Called by the allocation routines when they are about to fail 13746 * in the hope that we can free up the requested resource (inodes 13747 * or disk space). 13748 * 13749 * First check to see if the work list has anything on it. If it has, 13750 * clean up entries until we successfully free the requested resource. 13751 * Because this process holds inodes locked, we cannot handle any remove 13752 * requests that might block on a locked inode as that could lead to 13753 * deadlock. If the worklist yields none of the requested resource, 13754 * start syncing out vnodes to free up the needed space. 13755 */ 13756 int 13757 softdep_request_cleanup(fs, vp, cred, resource) 13758 struct fs *fs; 13759 struct vnode *vp; 13760 struct ucred *cred; 13761 int resource; 13762 { 13763 struct ufsmount *ump; 13764 struct mount *mp; 13765 long starttime; 13766 ufs2_daddr_t needed; 13767 int error, failed_vnode; 13768 13769 /* 13770 * If we are being called because of a process doing a 13771 * copy-on-write, then it is not safe to process any 13772 * worklist items as we will recurse into the copyonwrite 13773 * routine. This will result in an incoherent snapshot. 13774 * If the vnode that we hold is a snapshot, we must avoid 13775 * handling other resources that could cause deadlock. 13776 */ 13777 if ((curthread->td_pflags & TDP_COWINPROGRESS) || IS_SNAPSHOT(VTOI(vp))) 13778 return (0); 13779 13780 if (resource == FLUSH_BLOCKS_WAIT) 13781 stat_cleanup_blkrequests += 1; 13782 else 13783 stat_cleanup_inorequests += 1; 13784 13785 mp = vp->v_mount; 13786 ump = VFSTOUFS(mp); 13787 mtx_assert(UFS_MTX(ump), MA_OWNED); 13788 UFS_UNLOCK(ump); 13789 error = ffs_update(vp, 1); 13790 if (error != 0 || MOUNTEDSOFTDEP(mp) == 0) { 13791 UFS_LOCK(ump); 13792 return (0); 13793 } 13794 /* 13795 * If we are in need of resources, start by cleaning up 13796 * any block removals associated with our inode. 13797 */ 13798 ACQUIRE_LOCK(ump); 13799 process_removes(vp); 13800 process_truncates(vp); 13801 FREE_LOCK(ump); 13802 /* 13803 * Now clean up at least as many resources as we will need. 13804 * 13805 * When requested to clean up inodes, the number that are needed 13806 * is set by the number of simultaneous writers (mnt_writeopcount) 13807 * plus a bit of slop (2) in case some more writers show up while 13808 * we are cleaning. 13809 * 13810 * When requested to free up space, the amount of space that 13811 * we need is enough blocks to allocate a full-sized segment 13812 * (fs_contigsumsize). The number of such segments that will 13813 * be needed is set by the number of simultaneous writers 13814 * (mnt_writeopcount) plus a bit of slop (2) in case some more 13815 * writers show up while we are cleaning. 13816 * 13817 * Additionally, if we are unpriviledged and allocating space, 13818 * we need to ensure that we clean up enough blocks to get the 13819 * needed number of blocks over the threshold of the minimum 13820 * number of blocks required to be kept free by the filesystem 13821 * (fs_minfree). 13822 */ 13823 if (resource == FLUSH_INODES_WAIT) { 13824 needed = vfs_mount_fetch_counter(vp->v_mount, 13825 MNT_COUNT_WRITEOPCOUNT) + 2; 13826 } else if (resource == FLUSH_BLOCKS_WAIT) { 13827 needed = (vfs_mount_fetch_counter(vp->v_mount, 13828 MNT_COUNT_WRITEOPCOUNT) + 2) * fs->fs_contigsumsize; 13829 if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE)) 13830 needed += fragstoblks(fs, 13831 roundup((fs->fs_dsize * fs->fs_minfree / 100) - 13832 fs->fs_cstotal.cs_nffree, fs->fs_frag)); 13833 } else { 13834 printf("softdep_request_cleanup: Unknown resource type %d\n", 13835 resource); 13836 UFS_LOCK(ump); 13837 return (0); 13838 } 13839 starttime = time_second; 13840 retry: 13841 if (resource == FLUSH_BLOCKS_WAIT && 13842 fs->fs_cstotal.cs_nbfree <= needed) 13843 softdep_send_speedup(ump, needed * fs->fs_bsize, 13844 BIO_SPEEDUP_TRIM); 13845 if ((resource == FLUSH_BLOCKS_WAIT && ump->softdep_on_worklist > 0 && 13846 fs->fs_cstotal.cs_nbfree <= needed) || 13847 (resource == FLUSH_INODES_WAIT && fs->fs_pendinginodes > 0 && 13848 fs->fs_cstotal.cs_nifree <= needed)) { 13849 ACQUIRE_LOCK(ump); 13850 if (ump->softdep_on_worklist > 0 && 13851 process_worklist_item(UFSTOVFS(ump), 13852 ump->softdep_on_worklist, LK_NOWAIT) != 0) 13853 stat_worklist_push += 1; 13854 FREE_LOCK(ump); 13855 } 13856 13857 /* 13858 * Check that there are vnodes pending inactivation. As they 13859 * have been unlinked, inactivating them will free up their 13860 * inodes. 13861 */ 13862 ACQUIRE_LOCK(ump); 13863 if (resource == FLUSH_INODES_WAIT && 13864 fs->fs_cstotal.cs_nifree <= needed && 13865 fs->fs_pendinginodes <= needed) { 13866 if ((ump->um_softdep->sd_flags & FLUSH_DI_ACTIVE) == 0) { 13867 ump->um_softdep->sd_flags |= FLUSH_DI_ACTIVE; 13868 FREE_LOCK(ump); 13869 softdep_request_cleanup_inactivate(mp); 13870 ACQUIRE_LOCK(ump); 13871 ump->um_softdep->sd_flags &= ~FLUSH_DI_ACTIVE; 13872 wakeup(&ump->um_softdep->sd_flags); 13873 } else { 13874 while ((ump->um_softdep->sd_flags & 13875 FLUSH_DI_ACTIVE) != 0) { 13876 msleep(&ump->um_softdep->sd_flags, 13877 LOCK_PTR(ump), PVM, "ffsvina", hz); 13878 } 13879 } 13880 } 13881 FREE_LOCK(ump); 13882 13883 /* 13884 * If we still need resources and there are no more worklist 13885 * entries to process to obtain them, we have to start flushing 13886 * the dirty vnodes to force the release of additional requests 13887 * to the worklist that we can then process to reap addition 13888 * resources. We walk the vnodes associated with the mount point 13889 * until we get the needed worklist requests that we can reap. 13890 * 13891 * If there are several threads all needing to clean the same 13892 * mount point, only one is allowed to walk the mount list. 13893 * When several threads all try to walk the same mount list, 13894 * they end up competing with each other and often end up in 13895 * livelock. This approach ensures that forward progress is 13896 * made at the cost of occational ENOSPC errors being returned 13897 * that might otherwise have been avoided. 13898 */ 13899 error = 1; 13900 if ((resource == FLUSH_BLOCKS_WAIT && 13901 fs->fs_cstotal.cs_nbfree <= needed) || 13902 (resource == FLUSH_INODES_WAIT && fs->fs_pendinginodes > 0 && 13903 fs->fs_cstotal.cs_nifree <= needed)) { 13904 ACQUIRE_LOCK(ump); 13905 if ((ump->um_softdep->sd_flags & FLUSH_RC_ACTIVE) == 0) { 13906 ump->um_softdep->sd_flags |= FLUSH_RC_ACTIVE; 13907 FREE_LOCK(ump); 13908 failed_vnode = softdep_request_cleanup_flush(mp, ump); 13909 ACQUIRE_LOCK(ump); 13910 ump->um_softdep->sd_flags &= ~FLUSH_RC_ACTIVE; 13911 wakeup(&ump->um_softdep->sd_flags); 13912 FREE_LOCK(ump); 13913 if (ump->softdep_on_worklist > 0) { 13914 stat_cleanup_retries += 1; 13915 if (!failed_vnode) 13916 goto retry; 13917 } 13918 } else { 13919 while ((ump->um_softdep->sd_flags & 13920 FLUSH_RC_ACTIVE) != 0) { 13921 msleep(&ump->um_softdep->sd_flags, 13922 LOCK_PTR(ump), PVM, "ffsrca", hz); 13923 } 13924 FREE_LOCK(ump); 13925 error = 0; 13926 } 13927 stat_cleanup_failures += 1; 13928 } 13929 if (time_second - starttime > stat_cleanup_high_delay) 13930 stat_cleanup_high_delay = time_second - starttime; 13931 UFS_LOCK(ump); 13932 return (error); 13933 } 13934 13935 /* 13936 * Scan the vnodes for the specified mount point flushing out any 13937 * vnodes that can be locked without waiting. Finally, try to flush 13938 * the device associated with the mount point if it can be locked 13939 * without waiting. 13940 * 13941 * We return 0 if we were able to lock every vnode in our scan. 13942 * If we had to skip one or more vnodes, we return 1. 13943 */ 13944 static int 13945 softdep_request_cleanup_flush(mp, ump) 13946 struct mount *mp; 13947 struct ufsmount *ump; 13948 { 13949 struct thread *td; 13950 struct vnode *lvp, *mvp; 13951 int failed_vnode; 13952 13953 failed_vnode = 0; 13954 td = curthread; 13955 MNT_VNODE_FOREACH_ALL(lvp, mp, mvp) { 13956 if (TAILQ_FIRST(&lvp->v_bufobj.bo_dirty.bv_hd) == 0) { 13957 VI_UNLOCK(lvp); 13958 continue; 13959 } 13960 if (vget(lvp, LK_EXCLUSIVE | LK_INTERLOCK | LK_NOWAIT) != 0) { 13961 failed_vnode = 1; 13962 continue; 13963 } 13964 if (lvp->v_vflag & VV_NOSYNC) { /* unlinked */ 13965 vput(lvp); 13966 continue; 13967 } 13968 (void) ffs_syncvnode(lvp, MNT_NOWAIT, 0); 13969 vput(lvp); 13970 } 13971 lvp = ump->um_devvp; 13972 if (vn_lock(lvp, LK_EXCLUSIVE | LK_NOWAIT) == 0) { 13973 VOP_FSYNC(lvp, MNT_NOWAIT, td); 13974 VOP_UNLOCK(lvp); 13975 } 13976 return (failed_vnode); 13977 } 13978 13979 static bool 13980 softdep_excess_items(struct ufsmount *ump, int item) 13981 { 13982 13983 KASSERT(item >= 0 && item < D_LAST, ("item %d", item)); 13984 return (dep_current[item] > max_softdeps && 13985 ump->softdep_curdeps[item] > max_softdeps / 13986 stat_flush_threads); 13987 } 13988 13989 static void 13990 schedule_cleanup(struct mount *mp) 13991 { 13992 struct ufsmount *ump; 13993 struct thread *td; 13994 13995 ump = VFSTOUFS(mp); 13996 LOCK_OWNED(ump); 13997 FREE_LOCK(ump); 13998 td = curthread; 13999 if ((td->td_pflags & TDP_KTHREAD) != 0 && 14000 (td->td_proc->p_flag2 & P2_AST_SU) == 0) { 14001 /* 14002 * No ast is delivered to kernel threads, so nobody 14003 * would deref the mp. Some kernel threads 14004 * explicitely check for AST, e.g. NFS daemon does 14005 * this in the serving loop. 14006 */ 14007 return; 14008 } 14009 if (td->td_su != NULL) 14010 vfs_rel(td->td_su); 14011 vfs_ref(mp); 14012 td->td_su = mp; 14013 thread_lock(td); 14014 td->td_flags |= TDF_ASTPENDING; 14015 thread_unlock(td); 14016 } 14017 14018 static void 14019 softdep_ast_cleanup_proc(struct thread *td) 14020 { 14021 struct mount *mp; 14022 struct ufsmount *ump; 14023 int error; 14024 bool req; 14025 14026 while ((mp = td->td_su) != NULL) { 14027 td->td_su = NULL; 14028 error = vfs_busy(mp, MBF_NOWAIT); 14029 vfs_rel(mp); 14030 if (error != 0) 14031 return; 14032 if (ffs_own_mount(mp) && MOUNTEDSOFTDEP(mp)) { 14033 ump = VFSTOUFS(mp); 14034 for (;;) { 14035 req = false; 14036 ACQUIRE_LOCK(ump); 14037 if (softdep_excess_items(ump, D_INODEDEP)) { 14038 req = true; 14039 request_cleanup(mp, FLUSH_INODES); 14040 } 14041 if (softdep_excess_items(ump, D_DIRREM)) { 14042 req = true; 14043 request_cleanup(mp, FLUSH_BLOCKS); 14044 } 14045 FREE_LOCK(ump); 14046 if (softdep_excess_items(ump, D_NEWBLK) || 14047 softdep_excess_items(ump, D_ALLOCDIRECT) || 14048 softdep_excess_items(ump, D_ALLOCINDIR)) { 14049 error = vn_start_write(NULL, &mp, 14050 V_WAIT); 14051 if (error == 0) { 14052 req = true; 14053 VFS_SYNC(mp, MNT_WAIT); 14054 vn_finished_write(mp); 14055 } 14056 } 14057 if ((td->td_pflags & TDP_KTHREAD) != 0 || !req) 14058 break; 14059 } 14060 } 14061 vfs_unbusy(mp); 14062 } 14063 if ((mp = td->td_su) != NULL) { 14064 td->td_su = NULL; 14065 vfs_rel(mp); 14066 } 14067 } 14068 14069 /* 14070 * If memory utilization has gotten too high, deliberately slow things 14071 * down and speed up the I/O processing. 14072 */ 14073 static int 14074 request_cleanup(mp, resource) 14075 struct mount *mp; 14076 int resource; 14077 { 14078 struct thread *td = curthread; 14079 struct ufsmount *ump; 14080 14081 ump = VFSTOUFS(mp); 14082 LOCK_OWNED(ump); 14083 /* 14084 * We never hold up the filesystem syncer or buf daemon. 14085 */ 14086 if (td->td_pflags & (TDP_SOFTDEP|TDP_NORUNNINGBUF)) 14087 return (0); 14088 /* 14089 * First check to see if the work list has gotten backlogged. 14090 * If it has, co-opt this process to help clean up two entries. 14091 * Because this process may hold inodes locked, we cannot 14092 * handle any remove requests that might block on a locked 14093 * inode as that could lead to deadlock. We set TDP_SOFTDEP 14094 * to avoid recursively processing the worklist. 14095 */ 14096 if (ump->softdep_on_worklist > max_softdeps / 10) { 14097 td->td_pflags |= TDP_SOFTDEP; 14098 process_worklist_item(mp, 2, LK_NOWAIT); 14099 td->td_pflags &= ~TDP_SOFTDEP; 14100 stat_worklist_push += 2; 14101 return(1); 14102 } 14103 /* 14104 * Next, we attempt to speed up the syncer process. If that 14105 * is successful, then we allow the process to continue. 14106 */ 14107 if (softdep_speedup(ump) && 14108 resource != FLUSH_BLOCKS_WAIT && 14109 resource != FLUSH_INODES_WAIT) 14110 return(0); 14111 /* 14112 * If we are resource constrained on inode dependencies, try 14113 * flushing some dirty inodes. Otherwise, we are constrained 14114 * by file deletions, so try accelerating flushes of directories 14115 * with removal dependencies. We would like to do the cleanup 14116 * here, but we probably hold an inode locked at this point and 14117 * that might deadlock against one that we try to clean. So, 14118 * the best that we can do is request the syncer daemon to do 14119 * the cleanup for us. 14120 */ 14121 switch (resource) { 14122 case FLUSH_INODES: 14123 case FLUSH_INODES_WAIT: 14124 ACQUIRE_GBLLOCK(&lk); 14125 stat_ino_limit_push += 1; 14126 req_clear_inodedeps += 1; 14127 FREE_GBLLOCK(&lk); 14128 stat_countp = &stat_ino_limit_hit; 14129 break; 14130 14131 case FLUSH_BLOCKS: 14132 case FLUSH_BLOCKS_WAIT: 14133 ACQUIRE_GBLLOCK(&lk); 14134 stat_blk_limit_push += 1; 14135 req_clear_remove += 1; 14136 FREE_GBLLOCK(&lk); 14137 stat_countp = &stat_blk_limit_hit; 14138 break; 14139 14140 default: 14141 panic("request_cleanup: unknown type"); 14142 } 14143 /* 14144 * Hopefully the syncer daemon will catch up and awaken us. 14145 * We wait at most tickdelay before proceeding in any case. 14146 */ 14147 ACQUIRE_GBLLOCK(&lk); 14148 FREE_LOCK(ump); 14149 proc_waiting += 1; 14150 if (callout_pending(&softdep_callout) == FALSE) 14151 callout_reset(&softdep_callout, tickdelay > 2 ? tickdelay : 2, 14152 pause_timer, 0); 14153 14154 if ((td->td_pflags & TDP_KTHREAD) == 0) 14155 msleep((caddr_t)&proc_waiting, &lk, PPAUSE, "softupdate", 0); 14156 proc_waiting -= 1; 14157 FREE_GBLLOCK(&lk); 14158 ACQUIRE_LOCK(ump); 14159 return (1); 14160 } 14161 14162 /* 14163 * Awaken processes pausing in request_cleanup and clear proc_waiting 14164 * to indicate that there is no longer a timer running. Pause_timer 14165 * will be called with the global softdep mutex (&lk) locked. 14166 */ 14167 static void 14168 pause_timer(arg) 14169 void *arg; 14170 { 14171 14172 GBLLOCK_OWNED(&lk); 14173 /* 14174 * The callout_ API has acquired mtx and will hold it around this 14175 * function call. 14176 */ 14177 *stat_countp += proc_waiting; 14178 wakeup(&proc_waiting); 14179 } 14180 14181 /* 14182 * If requested, try removing inode or removal dependencies. 14183 */ 14184 static void 14185 check_clear_deps(mp) 14186 struct mount *mp; 14187 { 14188 struct ufsmount *ump; 14189 bool suj_susp; 14190 14191 /* 14192 * Tell the lower layers that any TRIM or WRITE transactions that have 14193 * been delayed for performance reasons should proceed to help alleviate 14194 * the shortage faster. The race between checking req_* and the softdep 14195 * mutex (lk) is fine since this is an advisory operation that at most 14196 * causes deferred work to be done sooner. 14197 */ 14198 ump = VFSTOUFS(mp); 14199 suj_susp = MOUNTEDSUJ(mp) && ump->softdep_jblocks->jb_suspended; 14200 if (req_clear_remove || req_clear_inodedeps || suj_susp) { 14201 FREE_LOCK(ump); 14202 softdep_send_speedup(ump, 0, BIO_SPEEDUP_TRIM | BIO_SPEEDUP_WRITE); 14203 ACQUIRE_LOCK(ump); 14204 } 14205 14206 /* 14207 * If we are suspended, it may be because of our using 14208 * too many inodedeps, so help clear them out. 14209 */ 14210 if (suj_susp) 14211 clear_inodedeps(mp); 14212 14213 /* 14214 * General requests for cleanup of backed up dependencies 14215 */ 14216 ACQUIRE_GBLLOCK(&lk); 14217 if (req_clear_inodedeps) { 14218 req_clear_inodedeps -= 1; 14219 FREE_GBLLOCK(&lk); 14220 clear_inodedeps(mp); 14221 ACQUIRE_GBLLOCK(&lk); 14222 wakeup(&proc_waiting); 14223 } 14224 if (req_clear_remove) { 14225 req_clear_remove -= 1; 14226 FREE_GBLLOCK(&lk); 14227 clear_remove(mp); 14228 ACQUIRE_GBLLOCK(&lk); 14229 wakeup(&proc_waiting); 14230 } 14231 FREE_GBLLOCK(&lk); 14232 } 14233 14234 /* 14235 * Flush out a directory with at least one removal dependency in an effort to 14236 * reduce the number of dirrem, freefile, and freeblks dependency structures. 14237 */ 14238 static void 14239 clear_remove(mp) 14240 struct mount *mp; 14241 { 14242 struct pagedep_hashhead *pagedephd; 14243 struct pagedep *pagedep; 14244 struct ufsmount *ump; 14245 struct vnode *vp; 14246 struct bufobj *bo; 14247 int error, cnt; 14248 ino_t ino; 14249 14250 ump = VFSTOUFS(mp); 14251 LOCK_OWNED(ump); 14252 14253 for (cnt = 0; cnt <= ump->pagedep_hash_size; cnt++) { 14254 pagedephd = &ump->pagedep_hashtbl[ump->pagedep_nextclean++]; 14255 if (ump->pagedep_nextclean > ump->pagedep_hash_size) 14256 ump->pagedep_nextclean = 0; 14257 LIST_FOREACH(pagedep, pagedephd, pd_hash) { 14258 if (LIST_EMPTY(&pagedep->pd_dirremhd)) 14259 continue; 14260 ino = pagedep->pd_ino; 14261 if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) 14262 continue; 14263 FREE_LOCK(ump); 14264 14265 /* 14266 * Let unmount clear deps 14267 */ 14268 error = vfs_busy(mp, MBF_NOWAIT); 14269 if (error != 0) 14270 goto finish_write; 14271 error = ffs_vgetf(mp, ino, LK_EXCLUSIVE, &vp, 14272 FFSV_FORCEINSMQ); 14273 vfs_unbusy(mp); 14274 if (error != 0) { 14275 softdep_error("clear_remove: vget", error); 14276 goto finish_write; 14277 } 14278 MPASS(VTOI(vp)->i_mode != 0); 14279 if ((error = ffs_syncvnode(vp, MNT_NOWAIT, 0))) 14280 softdep_error("clear_remove: fsync", error); 14281 bo = &vp->v_bufobj; 14282 BO_LOCK(bo); 14283 drain_output(vp); 14284 BO_UNLOCK(bo); 14285 vput(vp); 14286 finish_write: 14287 vn_finished_write(mp); 14288 ACQUIRE_LOCK(ump); 14289 return; 14290 } 14291 } 14292 } 14293 14294 /* 14295 * Clear out a block of dirty inodes in an effort to reduce 14296 * the number of inodedep dependency structures. 14297 */ 14298 static void 14299 clear_inodedeps(mp) 14300 struct mount *mp; 14301 { 14302 struct inodedep_hashhead *inodedephd; 14303 struct inodedep *inodedep; 14304 struct ufsmount *ump; 14305 struct vnode *vp; 14306 struct fs *fs; 14307 int error, cnt; 14308 ino_t firstino, lastino, ino; 14309 14310 ump = VFSTOUFS(mp); 14311 fs = ump->um_fs; 14312 LOCK_OWNED(ump); 14313 /* 14314 * Pick a random inode dependency to be cleared. 14315 * We will then gather up all the inodes in its block 14316 * that have dependencies and flush them out. 14317 */ 14318 for (cnt = 0; cnt <= ump->inodedep_hash_size; cnt++) { 14319 inodedephd = &ump->inodedep_hashtbl[ump->inodedep_nextclean++]; 14320 if (ump->inodedep_nextclean > ump->inodedep_hash_size) 14321 ump->inodedep_nextclean = 0; 14322 if ((inodedep = LIST_FIRST(inodedephd)) != NULL) 14323 break; 14324 } 14325 if (inodedep == NULL) 14326 return; 14327 /* 14328 * Find the last inode in the block with dependencies. 14329 */ 14330 firstino = rounddown2(inodedep->id_ino, INOPB(fs)); 14331 for (lastino = firstino + INOPB(fs) - 1; lastino > firstino; lastino--) 14332 if (inodedep_lookup(mp, lastino, 0, &inodedep) != 0) 14333 break; 14334 /* 14335 * Asynchronously push all but the last inode with dependencies. 14336 * Synchronously push the last inode with dependencies to ensure 14337 * that the inode block gets written to free up the inodedeps. 14338 */ 14339 for (ino = firstino; ino <= lastino; ino++) { 14340 if (inodedep_lookup(mp, ino, 0, &inodedep) == 0) 14341 continue; 14342 if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) 14343 continue; 14344 FREE_LOCK(ump); 14345 error = vfs_busy(mp, MBF_NOWAIT); /* Let unmount clear deps */ 14346 if (error != 0) { 14347 vn_finished_write(mp); 14348 ACQUIRE_LOCK(ump); 14349 return; 14350 } 14351 if ((error = ffs_vgetf(mp, ino, LK_EXCLUSIVE, &vp, 14352 FFSV_FORCEINSMQ)) != 0) { 14353 softdep_error("clear_inodedeps: vget", error); 14354 vfs_unbusy(mp); 14355 vn_finished_write(mp); 14356 ACQUIRE_LOCK(ump); 14357 return; 14358 } 14359 vfs_unbusy(mp); 14360 if (VTOI(vp)->i_mode == 0) { 14361 vgone(vp); 14362 } else if (ino == lastino) { 14363 do { 14364 error = ffs_syncvnode(vp, MNT_WAIT, 0); 14365 } while (error == ERELOOKUP); 14366 if (error != 0) 14367 softdep_error("clear_inodedeps: fsync1", error); 14368 } else { 14369 if ((error = ffs_syncvnode(vp, MNT_NOWAIT, 0))) 14370 softdep_error("clear_inodedeps: fsync2", error); 14371 BO_LOCK(&vp->v_bufobj); 14372 drain_output(vp); 14373 BO_UNLOCK(&vp->v_bufobj); 14374 } 14375 vput(vp); 14376 vn_finished_write(mp); 14377 ACQUIRE_LOCK(ump); 14378 } 14379 } 14380 14381 void 14382 softdep_buf_append(bp, wkhd) 14383 struct buf *bp; 14384 struct workhead *wkhd; 14385 { 14386 struct worklist *wk; 14387 struct ufsmount *ump; 14388 14389 if ((wk = LIST_FIRST(wkhd)) == NULL) 14390 return; 14391 KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0, 14392 ("softdep_buf_append called on non-softdep filesystem")); 14393 ump = VFSTOUFS(wk->wk_mp); 14394 ACQUIRE_LOCK(ump); 14395 while ((wk = LIST_FIRST(wkhd)) != NULL) { 14396 WORKLIST_REMOVE(wk); 14397 WORKLIST_INSERT(&bp->b_dep, wk); 14398 } 14399 FREE_LOCK(ump); 14400 14401 } 14402 14403 void 14404 softdep_inode_append(ip, cred, wkhd) 14405 struct inode *ip; 14406 struct ucred *cred; 14407 struct workhead *wkhd; 14408 { 14409 struct buf *bp; 14410 struct fs *fs; 14411 struct ufsmount *ump; 14412 int error; 14413 14414 ump = ITOUMP(ip); 14415 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 14416 ("softdep_inode_append called on non-softdep filesystem")); 14417 fs = ump->um_fs; 14418 error = bread(ump->um_devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)), 14419 (int)fs->fs_bsize, cred, &bp); 14420 if (error) { 14421 bqrelse(bp); 14422 softdep_freework(wkhd); 14423 return; 14424 } 14425 softdep_buf_append(bp, wkhd); 14426 bqrelse(bp); 14427 } 14428 14429 void 14430 softdep_freework(wkhd) 14431 struct workhead *wkhd; 14432 { 14433 struct worklist *wk; 14434 struct ufsmount *ump; 14435 14436 if ((wk = LIST_FIRST(wkhd)) == NULL) 14437 return; 14438 KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0, 14439 ("softdep_freework called on non-softdep filesystem")); 14440 ump = VFSTOUFS(wk->wk_mp); 14441 ACQUIRE_LOCK(ump); 14442 handle_jwork(wkhd); 14443 FREE_LOCK(ump); 14444 } 14445 14446 static struct ufsmount * 14447 softdep_bp_to_mp(bp) 14448 struct buf *bp; 14449 { 14450 struct mount *mp; 14451 struct vnode *vp; 14452 14453 if (LIST_EMPTY(&bp->b_dep)) 14454 return (NULL); 14455 vp = bp->b_vp; 14456 KASSERT(vp != NULL, 14457 ("%s, buffer with dependencies lacks vnode", __func__)); 14458 14459 /* 14460 * The ump mount point is stable after we get a correct 14461 * pointer, since bp is locked and this prevents unmount from 14462 * proceeding. But to get to it, we cannot dereference bp->b_dep 14463 * head wk_mp, because we do not yet own SU ump lock and 14464 * workitem might be freed while dereferenced. 14465 */ 14466 retry: 14467 switch (vp->v_type) { 14468 case VCHR: 14469 VI_LOCK(vp); 14470 mp = vp->v_type == VCHR ? vp->v_rdev->si_mountpt : NULL; 14471 VI_UNLOCK(vp); 14472 if (mp == NULL) 14473 goto retry; 14474 break; 14475 case VREG: 14476 case VDIR: 14477 case VLNK: 14478 case VFIFO: 14479 case VSOCK: 14480 mp = vp->v_mount; 14481 break; 14482 case VBLK: 14483 vn_printf(vp, "softdep_bp_to_mp: unexpected block device\n"); 14484 /* FALLTHROUGH */ 14485 case VNON: 14486 case VBAD: 14487 case VMARKER: 14488 mp = NULL; 14489 break; 14490 default: 14491 vn_printf(vp, "unknown vnode type"); 14492 mp = NULL; 14493 break; 14494 } 14495 return (VFSTOUFS(mp)); 14496 } 14497 14498 /* 14499 * Function to determine if the buffer has outstanding dependencies 14500 * that will cause a roll-back if the buffer is written. If wantcount 14501 * is set, return number of dependencies, otherwise just yes or no. 14502 */ 14503 static int 14504 softdep_count_dependencies(bp, wantcount) 14505 struct buf *bp; 14506 int wantcount; 14507 { 14508 struct worklist *wk; 14509 struct ufsmount *ump; 14510 struct bmsafemap *bmsafemap; 14511 struct freework *freework; 14512 struct inodedep *inodedep; 14513 struct indirdep *indirdep; 14514 struct freeblks *freeblks; 14515 struct allocindir *aip; 14516 struct pagedep *pagedep; 14517 struct dirrem *dirrem; 14518 struct newblk *newblk; 14519 struct mkdir *mkdir; 14520 struct diradd *dap; 14521 int i, retval; 14522 14523 ump = softdep_bp_to_mp(bp); 14524 if (ump == NULL) 14525 return (0); 14526 retval = 0; 14527 ACQUIRE_LOCK(ump); 14528 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 14529 switch (wk->wk_type) { 14530 case D_INODEDEP: 14531 inodedep = WK_INODEDEP(wk); 14532 if ((inodedep->id_state & DEPCOMPLETE) == 0) { 14533 /* bitmap allocation dependency */ 14534 retval += 1; 14535 if (!wantcount) 14536 goto out; 14537 } 14538 if (TAILQ_FIRST(&inodedep->id_inoupdt)) { 14539 /* direct block pointer dependency */ 14540 retval += 1; 14541 if (!wantcount) 14542 goto out; 14543 } 14544 if (TAILQ_FIRST(&inodedep->id_extupdt)) { 14545 /* direct block pointer dependency */ 14546 retval += 1; 14547 if (!wantcount) 14548 goto out; 14549 } 14550 if (TAILQ_FIRST(&inodedep->id_inoreflst)) { 14551 /* Add reference dependency. */ 14552 retval += 1; 14553 if (!wantcount) 14554 goto out; 14555 } 14556 continue; 14557 14558 case D_INDIRDEP: 14559 indirdep = WK_INDIRDEP(wk); 14560 14561 TAILQ_FOREACH(freework, &indirdep->ir_trunc, fw_next) { 14562 /* indirect truncation dependency */ 14563 retval += 1; 14564 if (!wantcount) 14565 goto out; 14566 } 14567 14568 LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) { 14569 /* indirect block pointer dependency */ 14570 retval += 1; 14571 if (!wantcount) 14572 goto out; 14573 } 14574 continue; 14575 14576 case D_PAGEDEP: 14577 pagedep = WK_PAGEDEP(wk); 14578 LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next) { 14579 if (LIST_FIRST(&dirrem->dm_jremrefhd)) { 14580 /* Journal remove ref dependency. */ 14581 retval += 1; 14582 if (!wantcount) 14583 goto out; 14584 } 14585 } 14586 for (i = 0; i < DAHASHSZ; i++) { 14587 LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) { 14588 /* directory entry dependency */ 14589 retval += 1; 14590 if (!wantcount) 14591 goto out; 14592 } 14593 } 14594 continue; 14595 14596 case D_BMSAFEMAP: 14597 bmsafemap = WK_BMSAFEMAP(wk); 14598 if (LIST_FIRST(&bmsafemap->sm_jaddrefhd)) { 14599 /* Add reference dependency. */ 14600 retval += 1; 14601 if (!wantcount) 14602 goto out; 14603 } 14604 if (LIST_FIRST(&bmsafemap->sm_jnewblkhd)) { 14605 /* Allocate block dependency. */ 14606 retval += 1; 14607 if (!wantcount) 14608 goto out; 14609 } 14610 continue; 14611 14612 case D_FREEBLKS: 14613 freeblks = WK_FREEBLKS(wk); 14614 if (LIST_FIRST(&freeblks->fb_jblkdephd)) { 14615 /* Freeblk journal dependency. */ 14616 retval += 1; 14617 if (!wantcount) 14618 goto out; 14619 } 14620 continue; 14621 14622 case D_ALLOCDIRECT: 14623 case D_ALLOCINDIR: 14624 newblk = WK_NEWBLK(wk); 14625 if (newblk->nb_jnewblk) { 14626 /* Journal allocate dependency. */ 14627 retval += 1; 14628 if (!wantcount) 14629 goto out; 14630 } 14631 continue; 14632 14633 case D_MKDIR: 14634 mkdir = WK_MKDIR(wk); 14635 if (mkdir->md_jaddref) { 14636 /* Journal reference dependency. */ 14637 retval += 1; 14638 if (!wantcount) 14639 goto out; 14640 } 14641 continue; 14642 14643 case D_FREEWORK: 14644 case D_FREEDEP: 14645 case D_JSEGDEP: 14646 case D_JSEG: 14647 case D_SBDEP: 14648 /* never a dependency on these blocks */ 14649 continue; 14650 14651 default: 14652 panic("softdep_count_dependencies: Unexpected type %s", 14653 TYPENAME(wk->wk_type)); 14654 /* NOTREACHED */ 14655 } 14656 } 14657 out: 14658 FREE_LOCK(ump); 14659 return (retval); 14660 } 14661 14662 /* 14663 * Acquire exclusive access to a buffer. 14664 * Must be called with a locked mtx parameter. 14665 * Return acquired buffer or NULL on failure. 14666 */ 14667 static struct buf * 14668 getdirtybuf(bp, lock, waitfor) 14669 struct buf *bp; 14670 struct rwlock *lock; 14671 int waitfor; 14672 { 14673 int error; 14674 14675 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0) { 14676 if (waitfor != MNT_WAIT) 14677 return (NULL); 14678 error = BUF_LOCK(bp, 14679 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, lock); 14680 /* 14681 * Even if we successfully acquire bp here, we have dropped 14682 * lock, which may violates our guarantee. 14683 */ 14684 if (error == 0) 14685 BUF_UNLOCK(bp); 14686 else if (error != ENOLCK) 14687 panic("getdirtybuf: inconsistent lock: %d", error); 14688 rw_wlock(lock); 14689 return (NULL); 14690 } 14691 if ((bp->b_vflags & BV_BKGRDINPROG) != 0) { 14692 if (lock != BO_LOCKPTR(bp->b_bufobj) && waitfor == MNT_WAIT) { 14693 rw_wunlock(lock); 14694 BO_LOCK(bp->b_bufobj); 14695 BUF_UNLOCK(bp); 14696 if ((bp->b_vflags & BV_BKGRDINPROG) != 0) { 14697 bp->b_vflags |= BV_BKGRDWAIT; 14698 msleep(&bp->b_xflags, BO_LOCKPTR(bp->b_bufobj), 14699 PRIBIO | PDROP, "getbuf", 0); 14700 } else 14701 BO_UNLOCK(bp->b_bufobj); 14702 rw_wlock(lock); 14703 return (NULL); 14704 } 14705 BUF_UNLOCK(bp); 14706 if (waitfor != MNT_WAIT) 14707 return (NULL); 14708 #ifdef DEBUG_VFS_LOCKS 14709 if (bp->b_vp->v_type != VCHR) 14710 ASSERT_BO_WLOCKED(bp->b_bufobj); 14711 #endif 14712 bp->b_vflags |= BV_BKGRDWAIT; 14713 rw_sleep(&bp->b_xflags, lock, PRIBIO, "getbuf", 0); 14714 return (NULL); 14715 } 14716 if ((bp->b_flags & B_DELWRI) == 0) { 14717 BUF_UNLOCK(bp); 14718 return (NULL); 14719 } 14720 bremfree(bp); 14721 return (bp); 14722 } 14723 14724 /* 14725 * Check if it is safe to suspend the file system now. On entry, 14726 * the vnode interlock for devvp should be held. Return 0 with 14727 * the mount interlock held if the file system can be suspended now, 14728 * otherwise return EAGAIN with the mount interlock held. 14729 */ 14730 int 14731 softdep_check_suspend(struct mount *mp, 14732 struct vnode *devvp, 14733 int softdep_depcnt, 14734 int softdep_accdepcnt, 14735 int secondary_writes, 14736 int secondary_accwrites) 14737 { 14738 struct bufobj *bo; 14739 struct ufsmount *ump; 14740 struct inodedep *inodedep; 14741 int error, unlinked; 14742 14743 bo = &devvp->v_bufobj; 14744 ASSERT_BO_WLOCKED(bo); 14745 14746 /* 14747 * If we are not running with soft updates, then we need only 14748 * deal with secondary writes as we try to suspend. 14749 */ 14750 if (MOUNTEDSOFTDEP(mp) == 0) { 14751 MNT_ILOCK(mp); 14752 while (mp->mnt_secondary_writes != 0) { 14753 BO_UNLOCK(bo); 14754 msleep(&mp->mnt_secondary_writes, MNT_MTX(mp), 14755 (PUSER - 1) | PDROP, "secwr", 0); 14756 BO_LOCK(bo); 14757 MNT_ILOCK(mp); 14758 } 14759 14760 /* 14761 * Reasons for needing more work before suspend: 14762 * - Dirty buffers on devvp. 14763 * - Secondary writes occurred after start of vnode sync loop 14764 */ 14765 error = 0; 14766 if (bo->bo_numoutput > 0 || 14767 bo->bo_dirty.bv_cnt > 0 || 14768 secondary_writes != 0 || 14769 mp->mnt_secondary_writes != 0 || 14770 secondary_accwrites != mp->mnt_secondary_accwrites) 14771 error = EAGAIN; 14772 BO_UNLOCK(bo); 14773 return (error); 14774 } 14775 14776 /* 14777 * If we are running with soft updates, then we need to coordinate 14778 * with them as we try to suspend. 14779 */ 14780 ump = VFSTOUFS(mp); 14781 for (;;) { 14782 if (!TRY_ACQUIRE_LOCK(ump)) { 14783 BO_UNLOCK(bo); 14784 ACQUIRE_LOCK(ump); 14785 FREE_LOCK(ump); 14786 BO_LOCK(bo); 14787 continue; 14788 } 14789 MNT_ILOCK(mp); 14790 if (mp->mnt_secondary_writes != 0) { 14791 FREE_LOCK(ump); 14792 BO_UNLOCK(bo); 14793 msleep(&mp->mnt_secondary_writes, 14794 MNT_MTX(mp), 14795 (PUSER - 1) | PDROP, "secwr", 0); 14796 BO_LOCK(bo); 14797 continue; 14798 } 14799 break; 14800 } 14801 14802 unlinked = 0; 14803 if (MOUNTEDSUJ(mp)) { 14804 for (inodedep = TAILQ_FIRST(&ump->softdep_unlinked); 14805 inodedep != NULL; 14806 inodedep = TAILQ_NEXT(inodedep, id_unlinked)) { 14807 if ((inodedep->id_state & (UNLINKED | UNLINKLINKS | 14808 UNLINKONLIST)) != (UNLINKED | UNLINKLINKS | 14809 UNLINKONLIST) || 14810 !check_inodedep_free(inodedep)) 14811 continue; 14812 unlinked++; 14813 } 14814 } 14815 14816 /* 14817 * Reasons for needing more work before suspend: 14818 * - Dirty buffers on devvp. 14819 * - Softdep activity occurred after start of vnode sync loop 14820 * - Secondary writes occurred after start of vnode sync loop 14821 */ 14822 error = 0; 14823 if (bo->bo_numoutput > 0 || 14824 bo->bo_dirty.bv_cnt > 0 || 14825 softdep_depcnt != unlinked || 14826 ump->softdep_deps != unlinked || 14827 softdep_accdepcnt != ump->softdep_accdeps || 14828 secondary_writes != 0 || 14829 mp->mnt_secondary_writes != 0 || 14830 secondary_accwrites != mp->mnt_secondary_accwrites) 14831 error = EAGAIN; 14832 FREE_LOCK(ump); 14833 BO_UNLOCK(bo); 14834 return (error); 14835 } 14836 14837 /* 14838 * Get the number of dependency structures for the file system, both 14839 * the current number and the total number allocated. These will 14840 * later be used to detect that softdep processing has occurred. 14841 */ 14842 void 14843 softdep_get_depcounts(struct mount *mp, 14844 int *softdep_depsp, 14845 int *softdep_accdepsp) 14846 { 14847 struct ufsmount *ump; 14848 14849 if (MOUNTEDSOFTDEP(mp) == 0) { 14850 *softdep_depsp = 0; 14851 *softdep_accdepsp = 0; 14852 return; 14853 } 14854 ump = VFSTOUFS(mp); 14855 ACQUIRE_LOCK(ump); 14856 *softdep_depsp = ump->softdep_deps; 14857 *softdep_accdepsp = ump->softdep_accdeps; 14858 FREE_LOCK(ump); 14859 } 14860 14861 /* 14862 * Wait for pending output on a vnode to complete. 14863 */ 14864 static void 14865 drain_output(vp) 14866 struct vnode *vp; 14867 { 14868 14869 ASSERT_VOP_LOCKED(vp, "drain_output"); 14870 (void)bufobj_wwait(&vp->v_bufobj, 0, 0); 14871 } 14872 14873 /* 14874 * Called whenever a buffer that is being invalidated or reallocated 14875 * contains dependencies. This should only happen if an I/O error has 14876 * occurred. The routine is called with the buffer locked. 14877 */ 14878 static void 14879 softdep_deallocate_dependencies(bp) 14880 struct buf *bp; 14881 { 14882 14883 if ((bp->b_ioflags & BIO_ERROR) == 0) 14884 panic("softdep_deallocate_dependencies: dangling deps"); 14885 if (bp->b_vp != NULL && bp->b_vp->v_mount != NULL) 14886 softdep_error(bp->b_vp->v_mount->mnt_stat.f_mntonname, bp->b_error); 14887 else 14888 printf("softdep_deallocate_dependencies: " 14889 "got error %d while accessing filesystem\n", bp->b_error); 14890 if (bp->b_error != ENXIO) 14891 panic("softdep_deallocate_dependencies: unrecovered I/O error"); 14892 } 14893 14894 /* 14895 * Function to handle asynchronous write errors in the filesystem. 14896 */ 14897 static void 14898 softdep_error(func, error) 14899 char *func; 14900 int error; 14901 { 14902 14903 /* XXX should do something better! */ 14904 printf("%s: got error %d while accessing filesystem\n", func, error); 14905 } 14906 14907 #ifdef DDB 14908 14909 /* exported to ffs_vfsops.c */ 14910 extern void db_print_ffs(struct ufsmount *ump); 14911 void 14912 db_print_ffs(struct ufsmount *ump) 14913 { 14914 db_printf("mp %p (%s) devvp %p\n", ump->um_mountp, 14915 ump->um_mountp->mnt_stat.f_mntonname, ump->um_devvp); 14916 db_printf(" fs %p su_wl %d su_deps %d su_req %d\n", 14917 ump->um_fs, ump->softdep_on_worklist, 14918 ump->softdep_deps, ump->softdep_req); 14919 } 14920 14921 static void 14922 worklist_print(struct worklist *wk, int verbose) 14923 { 14924 14925 if (!verbose) { 14926 db_printf("%s: %p state 0x%b\n", TYPENAME(wk->wk_type), wk, 14927 (u_int)wk->wk_state, PRINT_SOFTDEP_FLAGS); 14928 return; 14929 } 14930 db_printf("worklist: %p type %s state 0x%b next %p\n ", wk, 14931 TYPENAME(wk->wk_type), (u_int)wk->wk_state, PRINT_SOFTDEP_FLAGS, 14932 LIST_NEXT(wk, wk_list)); 14933 db_print_ffs(VFSTOUFS(wk->wk_mp)); 14934 } 14935 14936 static void 14937 inodedep_print(struct inodedep *inodedep, int verbose) 14938 { 14939 14940 worklist_print(&inodedep->id_list, 0); 14941 db_printf(" fs %p ino %jd inoblk %jd delta %jd nlink %jd\n", 14942 inodedep->id_fs, 14943 (intmax_t)inodedep->id_ino, 14944 (intmax_t)fsbtodb(inodedep->id_fs, 14945 ino_to_fsba(inodedep->id_fs, inodedep->id_ino)), 14946 (intmax_t)inodedep->id_nlinkdelta, 14947 (intmax_t)inodedep->id_savednlink); 14948 14949 if (verbose == 0) 14950 return; 14951 14952 db_printf(" bmsafemap %p, mkdiradd %p, inoreflst %p\n", 14953 inodedep->id_bmsafemap, 14954 inodedep->id_mkdiradd, 14955 TAILQ_FIRST(&inodedep->id_inoreflst)); 14956 db_printf(" dirremhd %p, pendinghd %p, bufwait %p\n", 14957 LIST_FIRST(&inodedep->id_dirremhd), 14958 LIST_FIRST(&inodedep->id_pendinghd), 14959 LIST_FIRST(&inodedep->id_bufwait)); 14960 db_printf(" inowait %p, inoupdt %p, newinoupdt %p\n", 14961 LIST_FIRST(&inodedep->id_inowait), 14962 TAILQ_FIRST(&inodedep->id_inoupdt), 14963 TAILQ_FIRST(&inodedep->id_newinoupdt)); 14964 db_printf(" extupdt %p, newextupdt %p, freeblklst %p\n", 14965 TAILQ_FIRST(&inodedep->id_extupdt), 14966 TAILQ_FIRST(&inodedep->id_newextupdt), 14967 TAILQ_FIRST(&inodedep->id_freeblklst)); 14968 db_printf(" saveino %p, savedsize %jd, savedextsize %jd\n", 14969 inodedep->id_savedino1, 14970 (intmax_t)inodedep->id_savedsize, 14971 (intmax_t)inodedep->id_savedextsize); 14972 } 14973 14974 static void 14975 newblk_print(struct newblk *nbp) 14976 { 14977 14978 worklist_print(&nbp->nb_list, 0); 14979 db_printf(" newblkno %jd\n", (intmax_t)nbp->nb_newblkno); 14980 db_printf(" jnewblk %p, bmsafemap %p, freefrag %p\n", 14981 &nbp->nb_jnewblk, 14982 &nbp->nb_bmsafemap, 14983 &nbp->nb_freefrag); 14984 db_printf(" indirdeps %p, newdirblk %p, jwork %p\n", 14985 LIST_FIRST(&nbp->nb_indirdeps), 14986 LIST_FIRST(&nbp->nb_newdirblk), 14987 LIST_FIRST(&nbp->nb_jwork)); 14988 } 14989 14990 static void 14991 allocdirect_print(struct allocdirect *adp) 14992 { 14993 14994 newblk_print(&adp->ad_block); 14995 db_printf(" oldblkno %jd, oldsize %ld, newsize %ld\n", 14996 adp->ad_oldblkno, adp->ad_oldsize, adp->ad_newsize); 14997 db_printf(" offset %d, inodedep %p\n", 14998 adp->ad_offset, adp->ad_inodedep); 14999 } 15000 15001 static void 15002 allocindir_print(struct allocindir *aip) 15003 { 15004 15005 newblk_print(&aip->ai_block); 15006 db_printf(" oldblkno %jd, lbn %jd\n", 15007 (intmax_t)aip->ai_oldblkno, (intmax_t)aip->ai_lbn); 15008 db_printf(" offset %d, indirdep %p\n", 15009 aip->ai_offset, aip->ai_indirdep); 15010 } 15011 15012 static void 15013 mkdir_print(struct mkdir *mkdir) 15014 { 15015 15016 worklist_print(&mkdir->md_list, 0); 15017 db_printf(" diradd %p, jaddref %p, buf %p\n", 15018 mkdir->md_diradd, mkdir->md_jaddref, mkdir->md_buf); 15019 } 15020 15021 DB_SHOW_COMMAND(sd_inodedep, db_show_sd_inodedep) 15022 { 15023 15024 if (have_addr == 0) { 15025 db_printf("inodedep address required\n"); 15026 return; 15027 } 15028 inodedep_print((struct inodedep*)addr, 1); 15029 } 15030 15031 DB_SHOW_COMMAND(sd_allinodedeps, db_show_sd_allinodedeps) 15032 { 15033 struct inodedep_hashhead *inodedephd; 15034 struct inodedep *inodedep; 15035 struct ufsmount *ump; 15036 int cnt; 15037 15038 if (have_addr == 0) { 15039 db_printf("ufsmount address required\n"); 15040 return; 15041 } 15042 ump = (struct ufsmount *)addr; 15043 for (cnt = 0; cnt < ump->inodedep_hash_size; cnt++) { 15044 inodedephd = &ump->inodedep_hashtbl[cnt]; 15045 LIST_FOREACH(inodedep, inodedephd, id_hash) { 15046 inodedep_print(inodedep, 0); 15047 } 15048 } 15049 } 15050 15051 DB_SHOW_COMMAND(sd_worklist, db_show_sd_worklist) 15052 { 15053 15054 if (have_addr == 0) { 15055 db_printf("worklist address required\n"); 15056 return; 15057 } 15058 worklist_print((struct worklist *)addr, 1); 15059 } 15060 15061 DB_SHOW_COMMAND(sd_workhead, db_show_sd_workhead) 15062 { 15063 struct worklist *wk; 15064 struct workhead *wkhd; 15065 15066 if (have_addr == 0) { 15067 db_printf("worklist address required " 15068 "(for example value in bp->b_dep)\n"); 15069 return; 15070 } 15071 /* 15072 * We often do not have the address of the worklist head but 15073 * instead a pointer to its first entry (e.g., we have the 15074 * contents of bp->b_dep rather than &bp->b_dep). But the back 15075 * pointer of bp->b_dep will point at the head of the list, so 15076 * we cheat and use that instead. If we are in the middle of 15077 * a list we will still get the same result, so nothing 15078 * unexpected will result. 15079 */ 15080 wk = (struct worklist *)addr; 15081 if (wk == NULL) 15082 return; 15083 wkhd = (struct workhead *)wk->wk_list.le_prev; 15084 LIST_FOREACH(wk, wkhd, wk_list) { 15085 switch(wk->wk_type) { 15086 case D_INODEDEP: 15087 inodedep_print(WK_INODEDEP(wk), 0); 15088 continue; 15089 case D_ALLOCDIRECT: 15090 allocdirect_print(WK_ALLOCDIRECT(wk)); 15091 continue; 15092 case D_ALLOCINDIR: 15093 allocindir_print(WK_ALLOCINDIR(wk)); 15094 continue; 15095 case D_MKDIR: 15096 mkdir_print(WK_MKDIR(wk)); 15097 continue; 15098 default: 15099 worklist_print(wk, 0); 15100 continue; 15101 } 15102 } 15103 } 15104 15105 DB_SHOW_COMMAND(sd_mkdir, db_show_sd_mkdir) 15106 { 15107 if (have_addr == 0) { 15108 db_printf("mkdir address required\n"); 15109 return; 15110 } 15111 mkdir_print((struct mkdir *)addr); 15112 } 15113 15114 DB_SHOW_COMMAND(sd_mkdir_list, db_show_sd_mkdir_list) 15115 { 15116 struct mkdirlist *mkdirlisthd; 15117 struct mkdir *mkdir; 15118 15119 if (have_addr == 0) { 15120 db_printf("mkdir listhead address required\n"); 15121 return; 15122 } 15123 mkdirlisthd = (struct mkdirlist *)addr; 15124 LIST_FOREACH(mkdir, mkdirlisthd, md_mkdirs) { 15125 mkdir_print(mkdir); 15126 if (mkdir->md_diradd != NULL) { 15127 db_printf(" "); 15128 worklist_print(&mkdir->md_diradd->da_list, 0); 15129 } 15130 if (mkdir->md_jaddref != NULL) { 15131 db_printf(" "); 15132 worklist_print(&mkdir->md_jaddref->ja_list, 0); 15133 } 15134 } 15135 } 15136 15137 DB_SHOW_COMMAND(sd_allocdirect, db_show_sd_allocdirect) 15138 { 15139 if (have_addr == 0) { 15140 db_printf("allocdirect address required\n"); 15141 return; 15142 } 15143 allocdirect_print((struct allocdirect *)addr); 15144 } 15145 15146 DB_SHOW_COMMAND(sd_allocindir, db_show_sd_allocindir) 15147 { 15148 if (have_addr == 0) { 15149 db_printf("allocindir address required\n"); 15150 return; 15151 } 15152 allocindir_print((struct allocindir *)addr); 15153 } 15154 15155 #endif /* DDB */ 15156 15157 #endif /* SOFTUPDATES */ 15158