1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright 1998, 2000 Marshall Kirk McKusick. 5 * Copyright 2009, 2010 Jeffrey W. Roberson <jeff@FreeBSD.org> 6 * All rights reserved. 7 * 8 * The soft updates code is derived from the appendix of a University 9 * of Michigan technical report (Gregory R. Ganger and Yale N. Patt, 10 * "Soft Updates: A Solution to the Metadata Update Problem in File 11 * Systems", CSE-TR-254-95, August 1995). 12 * 13 * Further information about soft updates can be obtained from: 14 * 15 * Marshall Kirk McKusick http://www.mckusick.com/softdep/ 16 * 1614 Oxford Street mckusick@mckusick.com 17 * Berkeley, CA 94709-1608 +1-510-843-9542 18 * USA 19 * 20 * Redistribution and use in source and binary forms, with or without 21 * modification, are permitted provided that the following conditions 22 * are met: 23 * 24 * 1. Redistributions of source code must retain the above copyright 25 * notice, this list of conditions and the following disclaimer. 26 * 2. Redistributions in binary form must reproduce the above copyright 27 * notice, this list of conditions and the following disclaimer in the 28 * documentation and/or other materials provided with the distribution. 29 * 30 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR 31 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 32 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 33 * IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT, 34 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 35 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS 36 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND 37 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR 38 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 39 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 40 * 41 * from: @(#)ffs_softdep.c 9.59 (McKusick) 6/21/00 42 */ 43 44 #include <sys/cdefs.h> 45 __FBSDID("$FreeBSD$"); 46 47 #include "opt_ffs.h" 48 #include "opt_quota.h" 49 #include "opt_ddb.h" 50 51 /* 52 * For now we want the safety net that the DEBUG flag provides. 53 */ 54 #ifndef DEBUG 55 #define DEBUG 56 #endif 57 58 #include <sys/param.h> 59 #include <sys/kernel.h> 60 #include <sys/systm.h> 61 #include <sys/bio.h> 62 #include <sys/buf.h> 63 #include <sys/kdb.h> 64 #include <sys/kthread.h> 65 #include <sys/ktr.h> 66 #include <sys/limits.h> 67 #include <sys/lock.h> 68 #include <sys/malloc.h> 69 #include <sys/mount.h> 70 #include <sys/mutex.h> 71 #include <sys/namei.h> 72 #include <sys/priv.h> 73 #include <sys/proc.h> 74 #include <sys/racct.h> 75 #include <sys/rwlock.h> 76 #include <sys/stat.h> 77 #include <sys/sysctl.h> 78 #include <sys/syslog.h> 79 #include <sys/vnode.h> 80 #include <sys/conf.h> 81 82 #include <ufs/ufs/dir.h> 83 #include <ufs/ufs/extattr.h> 84 #include <ufs/ufs/quota.h> 85 #include <ufs/ufs/inode.h> 86 #include <ufs/ufs/ufsmount.h> 87 #include <ufs/ffs/fs.h> 88 #include <ufs/ffs/softdep.h> 89 #include <ufs/ffs/ffs_extern.h> 90 #include <ufs/ufs/ufs_extern.h> 91 92 #include <vm/vm.h> 93 #include <vm/vm_extern.h> 94 #include <vm/vm_object.h> 95 96 #include <geom/geom.h> 97 98 #include <ddb/ddb.h> 99 100 #define KTR_SUJ 0 /* Define to KTR_SPARE. */ 101 102 #ifndef SOFTUPDATES 103 104 int 105 softdep_flushfiles(oldmnt, flags, td) 106 struct mount *oldmnt; 107 int flags; 108 struct thread *td; 109 { 110 111 panic("softdep_flushfiles called"); 112 } 113 114 int 115 softdep_mount(devvp, mp, fs, cred) 116 struct vnode *devvp; 117 struct mount *mp; 118 struct fs *fs; 119 struct ucred *cred; 120 { 121 122 return (0); 123 } 124 125 void 126 softdep_initialize() 127 { 128 129 return; 130 } 131 132 void 133 softdep_uninitialize() 134 { 135 136 return; 137 } 138 139 void 140 softdep_unmount(mp) 141 struct mount *mp; 142 { 143 144 panic("softdep_unmount called"); 145 } 146 147 void 148 softdep_setup_sbupdate(ump, fs, bp) 149 struct ufsmount *ump; 150 struct fs *fs; 151 struct buf *bp; 152 { 153 154 panic("softdep_setup_sbupdate called"); 155 } 156 157 void 158 softdep_setup_inomapdep(bp, ip, newinum, mode) 159 struct buf *bp; 160 struct inode *ip; 161 ino_t newinum; 162 int mode; 163 { 164 165 panic("softdep_setup_inomapdep called"); 166 } 167 168 void 169 softdep_setup_blkmapdep(bp, mp, newblkno, frags, oldfrags) 170 struct buf *bp; 171 struct mount *mp; 172 ufs2_daddr_t newblkno; 173 int frags; 174 int oldfrags; 175 { 176 177 panic("softdep_setup_blkmapdep called"); 178 } 179 180 void 181 softdep_setup_allocdirect(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp) 182 struct inode *ip; 183 ufs_lbn_t lbn; 184 ufs2_daddr_t newblkno; 185 ufs2_daddr_t oldblkno; 186 long newsize; 187 long oldsize; 188 struct buf *bp; 189 { 190 191 panic("softdep_setup_allocdirect called"); 192 } 193 194 void 195 softdep_setup_allocext(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp) 196 struct inode *ip; 197 ufs_lbn_t lbn; 198 ufs2_daddr_t newblkno; 199 ufs2_daddr_t oldblkno; 200 long newsize; 201 long oldsize; 202 struct buf *bp; 203 { 204 205 panic("softdep_setup_allocext called"); 206 } 207 208 void 209 softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp) 210 struct inode *ip; 211 ufs_lbn_t lbn; 212 struct buf *bp; 213 int ptrno; 214 ufs2_daddr_t newblkno; 215 ufs2_daddr_t oldblkno; 216 struct buf *nbp; 217 { 218 219 panic("softdep_setup_allocindir_page called"); 220 } 221 222 void 223 softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno) 224 struct buf *nbp; 225 struct inode *ip; 226 struct buf *bp; 227 int ptrno; 228 ufs2_daddr_t newblkno; 229 { 230 231 panic("softdep_setup_allocindir_meta called"); 232 } 233 234 void 235 softdep_journal_freeblocks(ip, cred, length, flags) 236 struct inode *ip; 237 struct ucred *cred; 238 off_t length; 239 int flags; 240 { 241 242 panic("softdep_journal_freeblocks called"); 243 } 244 245 void 246 softdep_journal_fsync(ip) 247 struct inode *ip; 248 { 249 250 panic("softdep_journal_fsync called"); 251 } 252 253 void 254 softdep_setup_freeblocks(ip, length, flags) 255 struct inode *ip; 256 off_t length; 257 int flags; 258 { 259 260 panic("softdep_setup_freeblocks called"); 261 } 262 263 void 264 softdep_freefile(pvp, ino, mode) 265 struct vnode *pvp; 266 ino_t ino; 267 int mode; 268 { 269 270 panic("softdep_freefile called"); 271 } 272 273 int 274 softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk) 275 struct buf *bp; 276 struct inode *dp; 277 off_t diroffset; 278 ino_t newinum; 279 struct buf *newdirbp; 280 int isnewblk; 281 { 282 283 panic("softdep_setup_directory_add called"); 284 } 285 286 void 287 softdep_change_directoryentry_offset(bp, dp, base, oldloc, newloc, entrysize) 288 struct buf *bp; 289 struct inode *dp; 290 caddr_t base; 291 caddr_t oldloc; 292 caddr_t newloc; 293 int entrysize; 294 { 295 296 panic("softdep_change_directoryentry_offset called"); 297 } 298 299 void 300 softdep_setup_remove(bp, dp, ip, isrmdir) 301 struct buf *bp; 302 struct inode *dp; 303 struct inode *ip; 304 int isrmdir; 305 { 306 307 panic("softdep_setup_remove called"); 308 } 309 310 void 311 softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir) 312 struct buf *bp; 313 struct inode *dp; 314 struct inode *ip; 315 ino_t newinum; 316 int isrmdir; 317 { 318 319 panic("softdep_setup_directory_change called"); 320 } 321 322 void 323 softdep_setup_blkfree(mp, bp, blkno, frags, wkhd) 324 struct mount *mp; 325 struct buf *bp; 326 ufs2_daddr_t blkno; 327 int frags; 328 struct workhead *wkhd; 329 { 330 331 panic("%s called", __FUNCTION__); 332 } 333 334 void 335 softdep_setup_inofree(mp, bp, ino, wkhd) 336 struct mount *mp; 337 struct buf *bp; 338 ino_t ino; 339 struct workhead *wkhd; 340 { 341 342 panic("%s called", __FUNCTION__); 343 } 344 345 void 346 softdep_setup_unlink(dp, ip) 347 struct inode *dp; 348 struct inode *ip; 349 { 350 351 panic("%s called", __FUNCTION__); 352 } 353 354 void 355 softdep_setup_link(dp, ip) 356 struct inode *dp; 357 struct inode *ip; 358 { 359 360 panic("%s called", __FUNCTION__); 361 } 362 363 void 364 softdep_revert_link(dp, ip) 365 struct inode *dp; 366 struct inode *ip; 367 { 368 369 panic("%s called", __FUNCTION__); 370 } 371 372 void 373 softdep_setup_rmdir(dp, ip) 374 struct inode *dp; 375 struct inode *ip; 376 { 377 378 panic("%s called", __FUNCTION__); 379 } 380 381 void 382 softdep_revert_rmdir(dp, ip) 383 struct inode *dp; 384 struct inode *ip; 385 { 386 387 panic("%s called", __FUNCTION__); 388 } 389 390 void 391 softdep_setup_create(dp, ip) 392 struct inode *dp; 393 struct inode *ip; 394 { 395 396 panic("%s called", __FUNCTION__); 397 } 398 399 void 400 softdep_revert_create(dp, ip) 401 struct inode *dp; 402 struct inode *ip; 403 { 404 405 panic("%s called", __FUNCTION__); 406 } 407 408 void 409 softdep_setup_mkdir(dp, ip) 410 struct inode *dp; 411 struct inode *ip; 412 { 413 414 panic("%s called", __FUNCTION__); 415 } 416 417 void 418 softdep_revert_mkdir(dp, ip) 419 struct inode *dp; 420 struct inode *ip; 421 { 422 423 panic("%s called", __FUNCTION__); 424 } 425 426 void 427 softdep_setup_dotdot_link(dp, ip) 428 struct inode *dp; 429 struct inode *ip; 430 { 431 432 panic("%s called", __FUNCTION__); 433 } 434 435 int 436 softdep_prealloc(vp, waitok) 437 struct vnode *vp; 438 int waitok; 439 { 440 441 panic("%s called", __FUNCTION__); 442 } 443 444 int 445 softdep_journal_lookup(mp, vpp) 446 struct mount *mp; 447 struct vnode **vpp; 448 { 449 450 return (ENOENT); 451 } 452 453 void 454 softdep_change_linkcnt(ip) 455 struct inode *ip; 456 { 457 458 panic("softdep_change_linkcnt called"); 459 } 460 461 void 462 softdep_load_inodeblock(ip) 463 struct inode *ip; 464 { 465 466 panic("softdep_load_inodeblock called"); 467 } 468 469 void 470 softdep_update_inodeblock(ip, bp, waitfor) 471 struct inode *ip; 472 struct buf *bp; 473 int waitfor; 474 { 475 476 panic("softdep_update_inodeblock called"); 477 } 478 479 int 480 softdep_fsync(vp) 481 struct vnode *vp; /* the "in_core" copy of the inode */ 482 { 483 484 return (0); 485 } 486 487 void 488 softdep_fsync_mountdev(vp) 489 struct vnode *vp; 490 { 491 492 return; 493 } 494 495 int 496 softdep_flushworklist(oldmnt, countp, td) 497 struct mount *oldmnt; 498 int *countp; 499 struct thread *td; 500 { 501 502 *countp = 0; 503 return (0); 504 } 505 506 int 507 softdep_sync_metadata(struct vnode *vp) 508 { 509 510 panic("softdep_sync_metadata called"); 511 } 512 513 int 514 softdep_sync_buf(struct vnode *vp, struct buf *bp, int waitfor) 515 { 516 517 panic("softdep_sync_buf called"); 518 } 519 520 int 521 softdep_slowdown(vp) 522 struct vnode *vp; 523 { 524 525 panic("softdep_slowdown called"); 526 } 527 528 int 529 softdep_request_cleanup(fs, vp, cred, resource) 530 struct fs *fs; 531 struct vnode *vp; 532 struct ucred *cred; 533 int resource; 534 { 535 536 return (0); 537 } 538 539 int 540 softdep_check_suspend(struct mount *mp, 541 struct vnode *devvp, 542 int softdep_depcnt, 543 int softdep_accdepcnt, 544 int secondary_writes, 545 int secondary_accwrites) 546 { 547 struct bufobj *bo; 548 int error; 549 550 (void) softdep_depcnt, 551 (void) softdep_accdepcnt; 552 553 bo = &devvp->v_bufobj; 554 ASSERT_BO_WLOCKED(bo); 555 556 MNT_ILOCK(mp); 557 while (mp->mnt_secondary_writes != 0) { 558 BO_UNLOCK(bo); 559 msleep(&mp->mnt_secondary_writes, MNT_MTX(mp), 560 (PUSER - 1) | PDROP, "secwr", 0); 561 BO_LOCK(bo); 562 MNT_ILOCK(mp); 563 } 564 565 /* 566 * Reasons for needing more work before suspend: 567 * - Dirty buffers on devvp. 568 * - Secondary writes occurred after start of vnode sync loop 569 */ 570 error = 0; 571 if (bo->bo_numoutput > 0 || 572 bo->bo_dirty.bv_cnt > 0 || 573 secondary_writes != 0 || 574 mp->mnt_secondary_writes != 0 || 575 secondary_accwrites != mp->mnt_secondary_accwrites) 576 error = EAGAIN; 577 BO_UNLOCK(bo); 578 return (error); 579 } 580 581 void 582 softdep_get_depcounts(struct mount *mp, 583 int *softdepactivep, 584 int *softdepactiveaccp) 585 { 586 (void) mp; 587 *softdepactivep = 0; 588 *softdepactiveaccp = 0; 589 } 590 591 void 592 softdep_buf_append(bp, wkhd) 593 struct buf *bp; 594 struct workhead *wkhd; 595 { 596 597 panic("softdep_buf_appendwork called"); 598 } 599 600 void 601 softdep_inode_append(ip, cred, wkhd) 602 struct inode *ip; 603 struct ucred *cred; 604 struct workhead *wkhd; 605 { 606 607 panic("softdep_inode_appendwork called"); 608 } 609 610 void 611 softdep_freework(wkhd) 612 struct workhead *wkhd; 613 { 614 615 panic("softdep_freework called"); 616 } 617 618 #else 619 620 FEATURE(softupdates, "FFS soft-updates support"); 621 622 static SYSCTL_NODE(_debug, OID_AUTO, softdep, CTLFLAG_RW, 0, 623 "soft updates stats"); 624 static SYSCTL_NODE(_debug_softdep, OID_AUTO, total, CTLFLAG_RW, 0, 625 "total dependencies allocated"); 626 static SYSCTL_NODE(_debug_softdep, OID_AUTO, highuse, CTLFLAG_RW, 0, 627 "high use dependencies allocated"); 628 static SYSCTL_NODE(_debug_softdep, OID_AUTO, current, CTLFLAG_RW, 0, 629 "current dependencies allocated"); 630 static SYSCTL_NODE(_debug_softdep, OID_AUTO, write, CTLFLAG_RW, 0, 631 "current dependencies written"); 632 633 unsigned long dep_current[D_LAST + 1]; 634 unsigned long dep_highuse[D_LAST + 1]; 635 unsigned long dep_total[D_LAST + 1]; 636 unsigned long dep_write[D_LAST + 1]; 637 638 #define SOFTDEP_TYPE(type, str, long) \ 639 static MALLOC_DEFINE(M_ ## type, #str, long); \ 640 SYSCTL_ULONG(_debug_softdep_total, OID_AUTO, str, CTLFLAG_RD, \ 641 &dep_total[D_ ## type], 0, ""); \ 642 SYSCTL_ULONG(_debug_softdep_current, OID_AUTO, str, CTLFLAG_RD, \ 643 &dep_current[D_ ## type], 0, ""); \ 644 SYSCTL_ULONG(_debug_softdep_highuse, OID_AUTO, str, CTLFLAG_RD, \ 645 &dep_highuse[D_ ## type], 0, ""); \ 646 SYSCTL_ULONG(_debug_softdep_write, OID_AUTO, str, CTLFLAG_RD, \ 647 &dep_write[D_ ## type], 0, ""); 648 649 SOFTDEP_TYPE(PAGEDEP, pagedep, "File page dependencies"); 650 SOFTDEP_TYPE(INODEDEP, inodedep, "Inode dependencies"); 651 SOFTDEP_TYPE(BMSAFEMAP, bmsafemap, 652 "Block or frag allocated from cyl group map"); 653 SOFTDEP_TYPE(NEWBLK, newblk, "New block or frag allocation dependency"); 654 SOFTDEP_TYPE(ALLOCDIRECT, allocdirect, "Block or frag dependency for an inode"); 655 SOFTDEP_TYPE(INDIRDEP, indirdep, "Indirect block dependencies"); 656 SOFTDEP_TYPE(ALLOCINDIR, allocindir, "Block dependency for an indirect block"); 657 SOFTDEP_TYPE(FREEFRAG, freefrag, "Previously used frag for an inode"); 658 SOFTDEP_TYPE(FREEBLKS, freeblks, "Blocks freed from an inode"); 659 SOFTDEP_TYPE(FREEFILE, freefile, "Inode deallocated"); 660 SOFTDEP_TYPE(DIRADD, diradd, "New directory entry"); 661 SOFTDEP_TYPE(MKDIR, mkdir, "New directory"); 662 SOFTDEP_TYPE(DIRREM, dirrem, "Directory entry deleted"); 663 SOFTDEP_TYPE(NEWDIRBLK, newdirblk, "Unclaimed new directory block"); 664 SOFTDEP_TYPE(FREEWORK, freework, "free an inode block"); 665 SOFTDEP_TYPE(FREEDEP, freedep, "track a block free"); 666 SOFTDEP_TYPE(JADDREF, jaddref, "Journal inode ref add"); 667 SOFTDEP_TYPE(JREMREF, jremref, "Journal inode ref remove"); 668 SOFTDEP_TYPE(JMVREF, jmvref, "Journal inode ref move"); 669 SOFTDEP_TYPE(JNEWBLK, jnewblk, "Journal new block"); 670 SOFTDEP_TYPE(JFREEBLK, jfreeblk, "Journal free block"); 671 SOFTDEP_TYPE(JFREEFRAG, jfreefrag, "Journal free frag"); 672 SOFTDEP_TYPE(JSEG, jseg, "Journal segment"); 673 SOFTDEP_TYPE(JSEGDEP, jsegdep, "Journal segment complete"); 674 SOFTDEP_TYPE(SBDEP, sbdep, "Superblock write dependency"); 675 SOFTDEP_TYPE(JTRUNC, jtrunc, "Journal inode truncation"); 676 SOFTDEP_TYPE(JFSYNC, jfsync, "Journal fsync complete"); 677 678 static MALLOC_DEFINE(M_SENTINEL, "sentinel", "Worklist sentinel"); 679 680 static MALLOC_DEFINE(M_SAVEDINO, "savedino", "Saved inodes"); 681 static MALLOC_DEFINE(M_JBLOCKS, "jblocks", "Journal block locations"); 682 static MALLOC_DEFINE(M_MOUNTDATA, "softdep", "Softdep per-mount data"); 683 684 #define M_SOFTDEP_FLAGS (M_WAITOK) 685 686 /* 687 * translate from workitem type to memory type 688 * MUST match the defines above, such that memtype[D_XXX] == M_XXX 689 */ 690 static struct malloc_type *memtype[] = { 691 M_PAGEDEP, 692 M_INODEDEP, 693 M_BMSAFEMAP, 694 M_NEWBLK, 695 M_ALLOCDIRECT, 696 M_INDIRDEP, 697 M_ALLOCINDIR, 698 M_FREEFRAG, 699 M_FREEBLKS, 700 M_FREEFILE, 701 M_DIRADD, 702 M_MKDIR, 703 M_DIRREM, 704 M_NEWDIRBLK, 705 M_FREEWORK, 706 M_FREEDEP, 707 M_JADDREF, 708 M_JREMREF, 709 M_JMVREF, 710 M_JNEWBLK, 711 M_JFREEBLK, 712 M_JFREEFRAG, 713 M_JSEG, 714 M_JSEGDEP, 715 M_SBDEP, 716 M_JTRUNC, 717 M_JFSYNC, 718 M_SENTINEL 719 }; 720 721 #define DtoM(type) (memtype[type]) 722 723 /* 724 * Names of malloc types. 725 */ 726 #define TYPENAME(type) \ 727 ((unsigned)(type) <= D_LAST ? memtype[type]->ks_shortdesc : "???") 728 /* 729 * End system adaptation definitions. 730 */ 731 732 #define DOTDOT_OFFSET offsetof(struct dirtemplate, dotdot_ino) 733 #define DOT_OFFSET offsetof(struct dirtemplate, dot_ino) 734 735 /* 736 * Internal function prototypes. 737 */ 738 static void check_clear_deps(struct mount *); 739 static void softdep_error(char *, int); 740 static int softdep_process_worklist(struct mount *, int); 741 static int softdep_waitidle(struct mount *, int); 742 static void drain_output(struct vnode *); 743 static struct buf *getdirtybuf(struct buf *, struct rwlock *, int); 744 static int check_inodedep_free(struct inodedep *); 745 static void clear_remove(struct mount *); 746 static void clear_inodedeps(struct mount *); 747 static void unlinked_inodedep(struct mount *, struct inodedep *); 748 static void clear_unlinked_inodedep(struct inodedep *); 749 static struct inodedep *first_unlinked_inodedep(struct ufsmount *); 750 static int flush_pagedep_deps(struct vnode *, struct mount *, 751 struct diraddhd *); 752 static int free_pagedep(struct pagedep *); 753 static int flush_newblk_dep(struct vnode *, struct mount *, ufs_lbn_t); 754 static int flush_inodedep_deps(struct vnode *, struct mount *, ino_t); 755 static int flush_deplist(struct allocdirectlst *, int, int *); 756 static int sync_cgs(struct mount *, int); 757 static int handle_written_filepage(struct pagedep *, struct buf *, int); 758 static int handle_written_sbdep(struct sbdep *, struct buf *); 759 static void initiate_write_sbdep(struct sbdep *); 760 static void diradd_inode_written(struct diradd *, struct inodedep *); 761 static int handle_written_indirdep(struct indirdep *, struct buf *, 762 struct buf**, int); 763 static int handle_written_inodeblock(struct inodedep *, struct buf *, int); 764 static int jnewblk_rollforward(struct jnewblk *, struct fs *, struct cg *, 765 uint8_t *); 766 static int handle_written_bmsafemap(struct bmsafemap *, struct buf *, int); 767 static void handle_written_jaddref(struct jaddref *); 768 static void handle_written_jremref(struct jremref *); 769 static void handle_written_jseg(struct jseg *, struct buf *); 770 static void handle_written_jnewblk(struct jnewblk *); 771 static void handle_written_jblkdep(struct jblkdep *); 772 static void handle_written_jfreefrag(struct jfreefrag *); 773 static void complete_jseg(struct jseg *); 774 static void complete_jsegs(struct jseg *); 775 static void jseg_write(struct ufsmount *ump, struct jseg *, uint8_t *); 776 static void jaddref_write(struct jaddref *, struct jseg *, uint8_t *); 777 static void jremref_write(struct jremref *, struct jseg *, uint8_t *); 778 static void jmvref_write(struct jmvref *, struct jseg *, uint8_t *); 779 static void jtrunc_write(struct jtrunc *, struct jseg *, uint8_t *); 780 static void jfsync_write(struct jfsync *, struct jseg *, uint8_t *data); 781 static void jnewblk_write(struct jnewblk *, struct jseg *, uint8_t *); 782 static void jfreeblk_write(struct jfreeblk *, struct jseg *, uint8_t *); 783 static void jfreefrag_write(struct jfreefrag *, struct jseg *, uint8_t *); 784 static inline void inoref_write(struct inoref *, struct jseg *, 785 struct jrefrec *); 786 static void handle_allocdirect_partdone(struct allocdirect *, 787 struct workhead *); 788 static struct jnewblk *cancel_newblk(struct newblk *, struct worklist *, 789 struct workhead *); 790 static void indirdep_complete(struct indirdep *); 791 static int indirblk_lookup(struct mount *, ufs2_daddr_t); 792 static void indirblk_insert(struct freework *); 793 static void indirblk_remove(struct freework *); 794 static void handle_allocindir_partdone(struct allocindir *); 795 static void initiate_write_filepage(struct pagedep *, struct buf *); 796 static void initiate_write_indirdep(struct indirdep*, struct buf *); 797 static void handle_written_mkdir(struct mkdir *, int); 798 static int jnewblk_rollback(struct jnewblk *, struct fs *, struct cg *, 799 uint8_t *); 800 static void initiate_write_bmsafemap(struct bmsafemap *, struct buf *); 801 static void initiate_write_inodeblock_ufs1(struct inodedep *, struct buf *); 802 static void initiate_write_inodeblock_ufs2(struct inodedep *, struct buf *); 803 static void handle_workitem_freefile(struct freefile *); 804 static int handle_workitem_remove(struct dirrem *, int); 805 static struct dirrem *newdirrem(struct buf *, struct inode *, 806 struct inode *, int, struct dirrem **); 807 static struct indirdep *indirdep_lookup(struct mount *, struct inode *, 808 struct buf *); 809 static void cancel_indirdep(struct indirdep *, struct buf *, 810 struct freeblks *); 811 static void free_indirdep(struct indirdep *); 812 static void free_diradd(struct diradd *, struct workhead *); 813 static void merge_diradd(struct inodedep *, struct diradd *); 814 static void complete_diradd(struct diradd *); 815 static struct diradd *diradd_lookup(struct pagedep *, int); 816 static struct jremref *cancel_diradd_dotdot(struct inode *, struct dirrem *, 817 struct jremref *); 818 static struct jremref *cancel_mkdir_dotdot(struct inode *, struct dirrem *, 819 struct jremref *); 820 static void cancel_diradd(struct diradd *, struct dirrem *, struct jremref *, 821 struct jremref *, struct jremref *); 822 static void dirrem_journal(struct dirrem *, struct jremref *, struct jremref *, 823 struct jremref *); 824 static void cancel_allocindir(struct allocindir *, struct buf *bp, 825 struct freeblks *, int); 826 static int setup_trunc_indir(struct freeblks *, struct inode *, 827 ufs_lbn_t, ufs_lbn_t, ufs2_daddr_t); 828 static void complete_trunc_indir(struct freework *); 829 static void trunc_indirdep(struct indirdep *, struct freeblks *, struct buf *, 830 int); 831 static void complete_mkdir(struct mkdir *); 832 static void free_newdirblk(struct newdirblk *); 833 static void free_jremref(struct jremref *); 834 static void free_jaddref(struct jaddref *); 835 static void free_jsegdep(struct jsegdep *); 836 static void free_jsegs(struct jblocks *); 837 static void rele_jseg(struct jseg *); 838 static void free_jseg(struct jseg *, struct jblocks *); 839 static void free_jnewblk(struct jnewblk *); 840 static void free_jblkdep(struct jblkdep *); 841 static void free_jfreefrag(struct jfreefrag *); 842 static void free_freedep(struct freedep *); 843 static void journal_jremref(struct dirrem *, struct jremref *, 844 struct inodedep *); 845 static void cancel_jnewblk(struct jnewblk *, struct workhead *); 846 static int cancel_jaddref(struct jaddref *, struct inodedep *, 847 struct workhead *); 848 static void cancel_jfreefrag(struct jfreefrag *); 849 static inline void setup_freedirect(struct freeblks *, struct inode *, 850 int, int); 851 static inline void setup_freeext(struct freeblks *, struct inode *, int, int); 852 static inline void setup_freeindir(struct freeblks *, struct inode *, int, 853 ufs_lbn_t, int); 854 static inline struct freeblks *newfreeblks(struct mount *, struct inode *); 855 static void freeblks_free(struct ufsmount *, struct freeblks *, int); 856 static void indir_trunc(struct freework *, ufs2_daddr_t, ufs_lbn_t); 857 static ufs2_daddr_t blkcount(struct fs *, ufs2_daddr_t, off_t); 858 static int trunc_check_buf(struct buf *, int *, ufs_lbn_t, int, int); 859 static void trunc_dependencies(struct inode *, struct freeblks *, ufs_lbn_t, 860 int, int); 861 static void trunc_pages(struct inode *, off_t, ufs2_daddr_t, int); 862 static int cancel_pagedep(struct pagedep *, struct freeblks *, int); 863 static int deallocate_dependencies(struct buf *, struct freeblks *, int); 864 static void newblk_freefrag(struct newblk*); 865 static void free_newblk(struct newblk *); 866 static void cancel_allocdirect(struct allocdirectlst *, 867 struct allocdirect *, struct freeblks *); 868 static int check_inode_unwritten(struct inodedep *); 869 static int free_inodedep(struct inodedep *); 870 static void freework_freeblock(struct freework *); 871 static void freework_enqueue(struct freework *); 872 static int handle_workitem_freeblocks(struct freeblks *, int); 873 static int handle_complete_freeblocks(struct freeblks *, int); 874 static void handle_workitem_indirblk(struct freework *); 875 static void handle_written_freework(struct freework *); 876 static void merge_inode_lists(struct allocdirectlst *,struct allocdirectlst *); 877 static struct worklist *jnewblk_merge(struct worklist *, struct worklist *, 878 struct workhead *); 879 static struct freefrag *setup_allocindir_phase2(struct buf *, struct inode *, 880 struct inodedep *, struct allocindir *, ufs_lbn_t); 881 static struct allocindir *newallocindir(struct inode *, int, ufs2_daddr_t, 882 ufs2_daddr_t, ufs_lbn_t); 883 static void handle_workitem_freefrag(struct freefrag *); 884 static struct freefrag *newfreefrag(struct inode *, ufs2_daddr_t, long, 885 ufs_lbn_t); 886 static void allocdirect_merge(struct allocdirectlst *, 887 struct allocdirect *, struct allocdirect *); 888 static struct freefrag *allocindir_merge(struct allocindir *, 889 struct allocindir *); 890 static int bmsafemap_find(struct bmsafemap_hashhead *, int, 891 struct bmsafemap **); 892 static struct bmsafemap *bmsafemap_lookup(struct mount *, struct buf *, 893 int cg, struct bmsafemap *); 894 static int newblk_find(struct newblk_hashhead *, ufs2_daddr_t, int, 895 struct newblk **); 896 static int newblk_lookup(struct mount *, ufs2_daddr_t, int, struct newblk **); 897 static int inodedep_find(struct inodedep_hashhead *, ino_t, 898 struct inodedep **); 899 static int inodedep_lookup(struct mount *, ino_t, int, struct inodedep **); 900 static int pagedep_lookup(struct mount *, struct buf *bp, ino_t, ufs_lbn_t, 901 int, struct pagedep **); 902 static int pagedep_find(struct pagedep_hashhead *, ino_t, ufs_lbn_t, 903 struct pagedep **); 904 static void pause_timer(void *); 905 static int request_cleanup(struct mount *, int); 906 static int softdep_request_cleanup_flush(struct mount *, struct ufsmount *); 907 static void schedule_cleanup(struct mount *); 908 static void softdep_ast_cleanup_proc(struct thread *); 909 static struct ufsmount *softdep_bp_to_mp(struct buf *bp); 910 static int process_worklist_item(struct mount *, int, int); 911 static void process_removes(struct vnode *); 912 static void process_truncates(struct vnode *); 913 static void jwork_move(struct workhead *, struct workhead *); 914 static void jwork_insert(struct workhead *, struct jsegdep *); 915 static void add_to_worklist(struct worklist *, int); 916 static void wake_worklist(struct worklist *); 917 static void wait_worklist(struct worklist *, char *); 918 static void remove_from_worklist(struct worklist *); 919 static void softdep_flush(void *); 920 static void softdep_flushjournal(struct mount *); 921 static int softdep_speedup(struct ufsmount *); 922 static void worklist_speedup(struct mount *); 923 static int journal_mount(struct mount *, struct fs *, struct ucred *); 924 static void journal_unmount(struct ufsmount *); 925 static int journal_space(struct ufsmount *, int); 926 static void journal_suspend(struct ufsmount *); 927 static int journal_unsuspend(struct ufsmount *ump); 928 static void softdep_prelink(struct vnode *, struct vnode *); 929 static void add_to_journal(struct worklist *); 930 static void remove_from_journal(struct worklist *); 931 static bool softdep_excess_items(struct ufsmount *, int); 932 static void softdep_process_journal(struct mount *, struct worklist *, int); 933 static struct jremref *newjremref(struct dirrem *, struct inode *, 934 struct inode *ip, off_t, nlink_t); 935 static struct jaddref *newjaddref(struct inode *, ino_t, off_t, int16_t, 936 uint16_t); 937 static inline void newinoref(struct inoref *, ino_t, ino_t, off_t, nlink_t, 938 uint16_t); 939 static inline struct jsegdep *inoref_jseg(struct inoref *); 940 static struct jmvref *newjmvref(struct inode *, ino_t, off_t, off_t); 941 static struct jfreeblk *newjfreeblk(struct freeblks *, ufs_lbn_t, 942 ufs2_daddr_t, int); 943 static void adjust_newfreework(struct freeblks *, int); 944 static struct jtrunc *newjtrunc(struct freeblks *, off_t, int); 945 static void move_newblock_dep(struct jaddref *, struct inodedep *); 946 static void cancel_jfreeblk(struct freeblks *, ufs2_daddr_t); 947 static struct jfreefrag *newjfreefrag(struct freefrag *, struct inode *, 948 ufs2_daddr_t, long, ufs_lbn_t); 949 static struct freework *newfreework(struct ufsmount *, struct freeblks *, 950 struct freework *, ufs_lbn_t, ufs2_daddr_t, int, int, int); 951 static int jwait(struct worklist *, int); 952 static struct inodedep *inodedep_lookup_ip(struct inode *); 953 static int bmsafemap_backgroundwrite(struct bmsafemap *, struct buf *); 954 static struct freefile *handle_bufwait(struct inodedep *, struct workhead *); 955 static void handle_jwork(struct workhead *); 956 static struct mkdir *setup_newdir(struct diradd *, ino_t, ino_t, struct buf *, 957 struct mkdir **); 958 static struct jblocks *jblocks_create(void); 959 static ufs2_daddr_t jblocks_alloc(struct jblocks *, int, int *); 960 static void jblocks_free(struct jblocks *, struct mount *, int); 961 static void jblocks_destroy(struct jblocks *); 962 static void jblocks_add(struct jblocks *, ufs2_daddr_t, int); 963 964 /* 965 * Exported softdep operations. 966 */ 967 static void softdep_disk_io_initiation(struct buf *); 968 static void softdep_disk_write_complete(struct buf *); 969 static void softdep_deallocate_dependencies(struct buf *); 970 static int softdep_count_dependencies(struct buf *bp, int); 971 972 /* 973 * Global lock over all of soft updates. 974 */ 975 static struct mtx lk; 976 MTX_SYSINIT(softdep_lock, &lk, "Global Softdep Lock", MTX_DEF); 977 978 #define ACQUIRE_GBLLOCK(lk) mtx_lock(lk) 979 #define FREE_GBLLOCK(lk) mtx_unlock(lk) 980 #define GBLLOCK_OWNED(lk) mtx_assert((lk), MA_OWNED) 981 982 /* 983 * Per-filesystem soft-updates locking. 984 */ 985 #define LOCK_PTR(ump) (&(ump)->um_softdep->sd_fslock) 986 #define TRY_ACQUIRE_LOCK(ump) rw_try_wlock(&(ump)->um_softdep->sd_fslock) 987 #define ACQUIRE_LOCK(ump) rw_wlock(&(ump)->um_softdep->sd_fslock) 988 #define FREE_LOCK(ump) rw_wunlock(&(ump)->um_softdep->sd_fslock) 989 #define LOCK_OWNED(ump) rw_assert(&(ump)->um_softdep->sd_fslock, \ 990 RA_WLOCKED) 991 992 #define BUF_AREC(bp) lockallowrecurse(&(bp)->b_lock) 993 #define BUF_NOREC(bp) lockdisablerecurse(&(bp)->b_lock) 994 995 /* 996 * Worklist queue management. 997 * These routines require that the lock be held. 998 */ 999 #ifndef /* NOT */ DEBUG 1000 #define WORKLIST_INSERT(head, item) do { \ 1001 (item)->wk_state |= ONWORKLIST; \ 1002 LIST_INSERT_HEAD(head, item, wk_list); \ 1003 } while (0) 1004 #define WORKLIST_REMOVE(item) do { \ 1005 (item)->wk_state &= ~ONWORKLIST; \ 1006 LIST_REMOVE(item, wk_list); \ 1007 } while (0) 1008 #define WORKLIST_INSERT_UNLOCKED WORKLIST_INSERT 1009 #define WORKLIST_REMOVE_UNLOCKED WORKLIST_REMOVE 1010 1011 #else /* DEBUG */ 1012 static void worklist_insert(struct workhead *, struct worklist *, int); 1013 static void worklist_remove(struct worklist *, int); 1014 1015 #define WORKLIST_INSERT(head, item) worklist_insert(head, item, 1) 1016 #define WORKLIST_INSERT_UNLOCKED(head, item) worklist_insert(head, item, 0) 1017 #define WORKLIST_REMOVE(item) worklist_remove(item, 1) 1018 #define WORKLIST_REMOVE_UNLOCKED(item) worklist_remove(item, 0) 1019 1020 static void 1021 worklist_insert(head, item, locked) 1022 struct workhead *head; 1023 struct worklist *item; 1024 int locked; 1025 { 1026 1027 if (locked) 1028 LOCK_OWNED(VFSTOUFS(item->wk_mp)); 1029 if (item->wk_state & ONWORKLIST) 1030 panic("worklist_insert: %p %s(0x%X) already on list", 1031 item, TYPENAME(item->wk_type), item->wk_state); 1032 item->wk_state |= ONWORKLIST; 1033 LIST_INSERT_HEAD(head, item, wk_list); 1034 } 1035 1036 static void 1037 worklist_remove(item, locked) 1038 struct worklist *item; 1039 int locked; 1040 { 1041 1042 if (locked) 1043 LOCK_OWNED(VFSTOUFS(item->wk_mp)); 1044 if ((item->wk_state & ONWORKLIST) == 0) 1045 panic("worklist_remove: %p %s(0x%X) not on list", 1046 item, TYPENAME(item->wk_type), item->wk_state); 1047 item->wk_state &= ~ONWORKLIST; 1048 LIST_REMOVE(item, wk_list); 1049 } 1050 #endif /* DEBUG */ 1051 1052 /* 1053 * Merge two jsegdeps keeping only the oldest one as newer references 1054 * can't be discarded until after older references. 1055 */ 1056 static inline struct jsegdep * 1057 jsegdep_merge(struct jsegdep *one, struct jsegdep *two) 1058 { 1059 struct jsegdep *swp; 1060 1061 if (two == NULL) 1062 return (one); 1063 1064 if (one->jd_seg->js_seq > two->jd_seg->js_seq) { 1065 swp = one; 1066 one = two; 1067 two = swp; 1068 } 1069 WORKLIST_REMOVE(&two->jd_list); 1070 free_jsegdep(two); 1071 1072 return (one); 1073 } 1074 1075 /* 1076 * If two freedeps are compatible free one to reduce list size. 1077 */ 1078 static inline struct freedep * 1079 freedep_merge(struct freedep *one, struct freedep *two) 1080 { 1081 if (two == NULL) 1082 return (one); 1083 1084 if (one->fd_freework == two->fd_freework) { 1085 WORKLIST_REMOVE(&two->fd_list); 1086 free_freedep(two); 1087 } 1088 return (one); 1089 } 1090 1091 /* 1092 * Move journal work from one list to another. Duplicate freedeps and 1093 * jsegdeps are coalesced to keep the lists as small as possible. 1094 */ 1095 static void 1096 jwork_move(dst, src) 1097 struct workhead *dst; 1098 struct workhead *src; 1099 { 1100 struct freedep *freedep; 1101 struct jsegdep *jsegdep; 1102 struct worklist *wkn; 1103 struct worklist *wk; 1104 1105 KASSERT(dst != src, 1106 ("jwork_move: dst == src")); 1107 freedep = NULL; 1108 jsegdep = NULL; 1109 LIST_FOREACH_SAFE(wk, dst, wk_list, wkn) { 1110 if (wk->wk_type == D_JSEGDEP) 1111 jsegdep = jsegdep_merge(WK_JSEGDEP(wk), jsegdep); 1112 else if (wk->wk_type == D_FREEDEP) 1113 freedep = freedep_merge(WK_FREEDEP(wk), freedep); 1114 } 1115 1116 while ((wk = LIST_FIRST(src)) != NULL) { 1117 WORKLIST_REMOVE(wk); 1118 WORKLIST_INSERT(dst, wk); 1119 if (wk->wk_type == D_JSEGDEP) { 1120 jsegdep = jsegdep_merge(WK_JSEGDEP(wk), jsegdep); 1121 continue; 1122 } 1123 if (wk->wk_type == D_FREEDEP) 1124 freedep = freedep_merge(WK_FREEDEP(wk), freedep); 1125 } 1126 } 1127 1128 static void 1129 jwork_insert(dst, jsegdep) 1130 struct workhead *dst; 1131 struct jsegdep *jsegdep; 1132 { 1133 struct jsegdep *jsegdepn; 1134 struct worklist *wk; 1135 1136 LIST_FOREACH(wk, dst, wk_list) 1137 if (wk->wk_type == D_JSEGDEP) 1138 break; 1139 if (wk == NULL) { 1140 WORKLIST_INSERT(dst, &jsegdep->jd_list); 1141 return; 1142 } 1143 jsegdepn = WK_JSEGDEP(wk); 1144 if (jsegdep->jd_seg->js_seq < jsegdepn->jd_seg->js_seq) { 1145 WORKLIST_REMOVE(wk); 1146 free_jsegdep(jsegdepn); 1147 WORKLIST_INSERT(dst, &jsegdep->jd_list); 1148 } else 1149 free_jsegdep(jsegdep); 1150 } 1151 1152 /* 1153 * Routines for tracking and managing workitems. 1154 */ 1155 static void workitem_free(struct worklist *, int); 1156 static void workitem_alloc(struct worklist *, int, struct mount *); 1157 static void workitem_reassign(struct worklist *, int); 1158 1159 #define WORKITEM_FREE(item, type) \ 1160 workitem_free((struct worklist *)(item), (type)) 1161 #define WORKITEM_REASSIGN(item, type) \ 1162 workitem_reassign((struct worklist *)(item), (type)) 1163 1164 static void 1165 workitem_free(item, type) 1166 struct worklist *item; 1167 int type; 1168 { 1169 struct ufsmount *ump; 1170 1171 #ifdef DEBUG 1172 if (item->wk_state & ONWORKLIST) 1173 panic("workitem_free: %s(0x%X) still on list", 1174 TYPENAME(item->wk_type), item->wk_state); 1175 if (item->wk_type != type && type != D_NEWBLK) 1176 panic("workitem_free: type mismatch %s != %s", 1177 TYPENAME(item->wk_type), TYPENAME(type)); 1178 #endif 1179 if (item->wk_state & IOWAITING) 1180 wakeup(item); 1181 ump = VFSTOUFS(item->wk_mp); 1182 LOCK_OWNED(ump); 1183 KASSERT(ump->softdep_deps > 0, 1184 ("workitem_free: %s: softdep_deps going negative", 1185 ump->um_fs->fs_fsmnt)); 1186 if (--ump->softdep_deps == 0 && ump->softdep_req) 1187 wakeup(&ump->softdep_deps); 1188 KASSERT(dep_current[item->wk_type] > 0, 1189 ("workitem_free: %s: dep_current[%s] going negative", 1190 ump->um_fs->fs_fsmnt, TYPENAME(item->wk_type))); 1191 KASSERT(ump->softdep_curdeps[item->wk_type] > 0, 1192 ("workitem_free: %s: softdep_curdeps[%s] going negative", 1193 ump->um_fs->fs_fsmnt, TYPENAME(item->wk_type))); 1194 atomic_subtract_long(&dep_current[item->wk_type], 1); 1195 ump->softdep_curdeps[item->wk_type] -= 1; 1196 free(item, DtoM(type)); 1197 } 1198 1199 static void 1200 workitem_alloc(item, type, mp) 1201 struct worklist *item; 1202 int type; 1203 struct mount *mp; 1204 { 1205 struct ufsmount *ump; 1206 1207 item->wk_type = type; 1208 item->wk_mp = mp; 1209 item->wk_state = 0; 1210 1211 ump = VFSTOUFS(mp); 1212 ACQUIRE_GBLLOCK(&lk); 1213 dep_current[type]++; 1214 if (dep_current[type] > dep_highuse[type]) 1215 dep_highuse[type] = dep_current[type]; 1216 dep_total[type]++; 1217 FREE_GBLLOCK(&lk); 1218 ACQUIRE_LOCK(ump); 1219 ump->softdep_curdeps[type] += 1; 1220 ump->softdep_deps++; 1221 ump->softdep_accdeps++; 1222 FREE_LOCK(ump); 1223 } 1224 1225 static void 1226 workitem_reassign(item, newtype) 1227 struct worklist *item; 1228 int newtype; 1229 { 1230 struct ufsmount *ump; 1231 1232 ump = VFSTOUFS(item->wk_mp); 1233 LOCK_OWNED(ump); 1234 KASSERT(ump->softdep_curdeps[item->wk_type] > 0, 1235 ("workitem_reassign: %s: softdep_curdeps[%s] going negative", 1236 VFSTOUFS(item->wk_mp)->um_fs->fs_fsmnt, TYPENAME(item->wk_type))); 1237 ump->softdep_curdeps[item->wk_type] -= 1; 1238 ump->softdep_curdeps[newtype] += 1; 1239 KASSERT(dep_current[item->wk_type] > 0, 1240 ("workitem_reassign: %s: dep_current[%s] going negative", 1241 VFSTOUFS(item->wk_mp)->um_fs->fs_fsmnt, TYPENAME(item->wk_type))); 1242 ACQUIRE_GBLLOCK(&lk); 1243 dep_current[newtype]++; 1244 dep_current[item->wk_type]--; 1245 if (dep_current[newtype] > dep_highuse[newtype]) 1246 dep_highuse[newtype] = dep_current[newtype]; 1247 dep_total[newtype]++; 1248 FREE_GBLLOCK(&lk); 1249 item->wk_type = newtype; 1250 } 1251 1252 /* 1253 * Workitem queue management 1254 */ 1255 static int max_softdeps; /* maximum number of structs before slowdown */ 1256 static int tickdelay = 2; /* number of ticks to pause during slowdown */ 1257 static int proc_waiting; /* tracks whether we have a timeout posted */ 1258 static int *stat_countp; /* statistic to count in proc_waiting timeout */ 1259 static struct callout softdep_callout; 1260 static int req_clear_inodedeps; /* syncer process flush some inodedeps */ 1261 static int req_clear_remove; /* syncer process flush some freeblks */ 1262 static int softdep_flushcache = 0; /* Should we do BIO_FLUSH? */ 1263 1264 /* 1265 * runtime statistics 1266 */ 1267 static int stat_flush_threads; /* number of softdep flushing threads */ 1268 static int stat_worklist_push; /* number of worklist cleanups */ 1269 static int stat_blk_limit_push; /* number of times block limit neared */ 1270 static int stat_ino_limit_push; /* number of times inode limit neared */ 1271 static int stat_blk_limit_hit; /* number of times block slowdown imposed */ 1272 static int stat_ino_limit_hit; /* number of times inode slowdown imposed */ 1273 static int stat_sync_limit_hit; /* number of synchronous slowdowns imposed */ 1274 static int stat_indir_blk_ptrs; /* bufs redirtied as indir ptrs not written */ 1275 static int stat_inode_bitmap; /* bufs redirtied as inode bitmap not written */ 1276 static int stat_direct_blk_ptrs;/* bufs redirtied as direct ptrs not written */ 1277 static int stat_dir_entry; /* bufs redirtied as dir entry cannot write */ 1278 static int stat_jaddref; /* bufs redirtied as ino bitmap can not write */ 1279 static int stat_jnewblk; /* bufs redirtied as blk bitmap can not write */ 1280 static int stat_journal_min; /* Times hit journal min threshold */ 1281 static int stat_journal_low; /* Times hit journal low threshold */ 1282 static int stat_journal_wait; /* Times blocked in jwait(). */ 1283 static int stat_jwait_filepage; /* Times blocked in jwait() for filepage. */ 1284 static int stat_jwait_freeblks; /* Times blocked in jwait() for freeblks. */ 1285 static int stat_jwait_inode; /* Times blocked in jwait() for inodes. */ 1286 static int stat_jwait_newblk; /* Times blocked in jwait() for newblks. */ 1287 static int stat_cleanup_high_delay; /* Maximum cleanup delay (in ticks) */ 1288 static int stat_cleanup_blkrequests; /* Number of block cleanup requests */ 1289 static int stat_cleanup_inorequests; /* Number of inode cleanup requests */ 1290 static int stat_cleanup_retries; /* Number of cleanups that needed to flush */ 1291 static int stat_cleanup_failures; /* Number of cleanup requests that failed */ 1292 static int stat_emptyjblocks; /* Number of potentially empty journal blocks */ 1293 1294 SYSCTL_INT(_debug_softdep, OID_AUTO, max_softdeps, CTLFLAG_RW, 1295 &max_softdeps, 0, ""); 1296 SYSCTL_INT(_debug_softdep, OID_AUTO, tickdelay, CTLFLAG_RW, 1297 &tickdelay, 0, ""); 1298 SYSCTL_INT(_debug_softdep, OID_AUTO, flush_threads, CTLFLAG_RD, 1299 &stat_flush_threads, 0, ""); 1300 SYSCTL_INT(_debug_softdep, OID_AUTO, worklist_push, CTLFLAG_RW, 1301 &stat_worklist_push, 0,""); 1302 SYSCTL_INT(_debug_softdep, OID_AUTO, blk_limit_push, CTLFLAG_RW, 1303 &stat_blk_limit_push, 0,""); 1304 SYSCTL_INT(_debug_softdep, OID_AUTO, ino_limit_push, CTLFLAG_RW, 1305 &stat_ino_limit_push, 0,""); 1306 SYSCTL_INT(_debug_softdep, OID_AUTO, blk_limit_hit, CTLFLAG_RW, 1307 &stat_blk_limit_hit, 0, ""); 1308 SYSCTL_INT(_debug_softdep, OID_AUTO, ino_limit_hit, CTLFLAG_RW, 1309 &stat_ino_limit_hit, 0, ""); 1310 SYSCTL_INT(_debug_softdep, OID_AUTO, sync_limit_hit, CTLFLAG_RW, 1311 &stat_sync_limit_hit, 0, ""); 1312 SYSCTL_INT(_debug_softdep, OID_AUTO, indir_blk_ptrs, CTLFLAG_RW, 1313 &stat_indir_blk_ptrs, 0, ""); 1314 SYSCTL_INT(_debug_softdep, OID_AUTO, inode_bitmap, CTLFLAG_RW, 1315 &stat_inode_bitmap, 0, ""); 1316 SYSCTL_INT(_debug_softdep, OID_AUTO, direct_blk_ptrs, CTLFLAG_RW, 1317 &stat_direct_blk_ptrs, 0, ""); 1318 SYSCTL_INT(_debug_softdep, OID_AUTO, dir_entry, CTLFLAG_RW, 1319 &stat_dir_entry, 0, ""); 1320 SYSCTL_INT(_debug_softdep, OID_AUTO, jaddref_rollback, CTLFLAG_RW, 1321 &stat_jaddref, 0, ""); 1322 SYSCTL_INT(_debug_softdep, OID_AUTO, jnewblk_rollback, CTLFLAG_RW, 1323 &stat_jnewblk, 0, ""); 1324 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_low, CTLFLAG_RW, 1325 &stat_journal_low, 0, ""); 1326 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_min, CTLFLAG_RW, 1327 &stat_journal_min, 0, ""); 1328 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_wait, CTLFLAG_RW, 1329 &stat_journal_wait, 0, ""); 1330 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_filepage, CTLFLAG_RW, 1331 &stat_jwait_filepage, 0, ""); 1332 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_freeblks, CTLFLAG_RW, 1333 &stat_jwait_freeblks, 0, ""); 1334 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_inode, CTLFLAG_RW, 1335 &stat_jwait_inode, 0, ""); 1336 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_newblk, CTLFLAG_RW, 1337 &stat_jwait_newblk, 0, ""); 1338 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_blkrequests, CTLFLAG_RW, 1339 &stat_cleanup_blkrequests, 0, ""); 1340 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_inorequests, CTLFLAG_RW, 1341 &stat_cleanup_inorequests, 0, ""); 1342 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_high_delay, CTLFLAG_RW, 1343 &stat_cleanup_high_delay, 0, ""); 1344 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_retries, CTLFLAG_RW, 1345 &stat_cleanup_retries, 0, ""); 1346 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_failures, CTLFLAG_RW, 1347 &stat_cleanup_failures, 0, ""); 1348 SYSCTL_INT(_debug_softdep, OID_AUTO, flushcache, CTLFLAG_RW, 1349 &softdep_flushcache, 0, ""); 1350 SYSCTL_INT(_debug_softdep, OID_AUTO, emptyjblocks, CTLFLAG_RD, 1351 &stat_emptyjblocks, 0, ""); 1352 1353 SYSCTL_DECL(_vfs_ffs); 1354 1355 /* Whether to recompute the summary at mount time */ 1356 static int compute_summary_at_mount = 0; 1357 SYSCTL_INT(_vfs_ffs, OID_AUTO, compute_summary_at_mount, CTLFLAG_RW, 1358 &compute_summary_at_mount, 0, "Recompute summary at mount"); 1359 static int print_threads = 0; 1360 SYSCTL_INT(_debug_softdep, OID_AUTO, print_threads, CTLFLAG_RW, 1361 &print_threads, 0, "Notify flusher thread start/stop"); 1362 1363 /* List of all filesystems mounted with soft updates */ 1364 static TAILQ_HEAD(, mount_softdeps) softdepmounts; 1365 1366 /* 1367 * This function cleans the worklist for a filesystem. 1368 * Each filesystem running with soft dependencies gets its own 1369 * thread to run in this function. The thread is started up in 1370 * softdep_mount and shutdown in softdep_unmount. They show up 1371 * as part of the kernel "bufdaemon" process whose process 1372 * entry is available in bufdaemonproc. 1373 */ 1374 static int searchfailed; 1375 extern struct proc *bufdaemonproc; 1376 static void 1377 softdep_flush(addr) 1378 void *addr; 1379 { 1380 struct mount *mp; 1381 struct thread *td; 1382 struct ufsmount *ump; 1383 1384 td = curthread; 1385 td->td_pflags |= TDP_NORUNNINGBUF; 1386 mp = (struct mount *)addr; 1387 ump = VFSTOUFS(mp); 1388 atomic_add_int(&stat_flush_threads, 1); 1389 ACQUIRE_LOCK(ump); 1390 ump->softdep_flags &= ~FLUSH_STARTING; 1391 wakeup(&ump->softdep_flushtd); 1392 FREE_LOCK(ump); 1393 if (print_threads) { 1394 if (stat_flush_threads == 1) 1395 printf("Running %s at pid %d\n", bufdaemonproc->p_comm, 1396 bufdaemonproc->p_pid); 1397 printf("Start thread %s\n", td->td_name); 1398 } 1399 for (;;) { 1400 while (softdep_process_worklist(mp, 0) > 0 || 1401 (MOUNTEDSUJ(mp) && 1402 VFSTOUFS(mp)->softdep_jblocks->jb_suspended)) 1403 kthread_suspend_check(); 1404 ACQUIRE_LOCK(ump); 1405 if ((ump->softdep_flags & (FLUSH_CLEANUP | FLUSH_EXIT)) == 0) 1406 msleep(&ump->softdep_flushtd, LOCK_PTR(ump), PVM, 1407 "sdflush", hz / 2); 1408 ump->softdep_flags &= ~FLUSH_CLEANUP; 1409 /* 1410 * Check to see if we are done and need to exit. 1411 */ 1412 if ((ump->softdep_flags & FLUSH_EXIT) == 0) { 1413 FREE_LOCK(ump); 1414 continue; 1415 } 1416 ump->softdep_flags &= ~FLUSH_EXIT; 1417 FREE_LOCK(ump); 1418 wakeup(&ump->softdep_flags); 1419 if (print_threads) 1420 printf("Stop thread %s: searchfailed %d, did cleanups %d\n", td->td_name, searchfailed, ump->um_softdep->sd_cleanups); 1421 atomic_subtract_int(&stat_flush_threads, 1); 1422 kthread_exit(); 1423 panic("kthread_exit failed\n"); 1424 } 1425 } 1426 1427 static void 1428 worklist_speedup(mp) 1429 struct mount *mp; 1430 { 1431 struct ufsmount *ump; 1432 1433 ump = VFSTOUFS(mp); 1434 LOCK_OWNED(ump); 1435 if ((ump->softdep_flags & (FLUSH_CLEANUP | FLUSH_EXIT)) == 0) 1436 ump->softdep_flags |= FLUSH_CLEANUP; 1437 wakeup(&ump->softdep_flushtd); 1438 } 1439 1440 static int 1441 softdep_speedup(ump) 1442 struct ufsmount *ump; 1443 { 1444 struct ufsmount *altump; 1445 struct mount_softdeps *sdp; 1446 1447 LOCK_OWNED(ump); 1448 worklist_speedup(ump->um_mountp); 1449 bd_speedup(); 1450 /* 1451 * If we have global shortages, then we need other 1452 * filesystems to help with the cleanup. Here we wakeup a 1453 * flusher thread for a filesystem that is over its fair 1454 * share of resources. 1455 */ 1456 if (req_clear_inodedeps || req_clear_remove) { 1457 ACQUIRE_GBLLOCK(&lk); 1458 TAILQ_FOREACH(sdp, &softdepmounts, sd_next) { 1459 if ((altump = sdp->sd_ump) == ump) 1460 continue; 1461 if (((req_clear_inodedeps && 1462 altump->softdep_curdeps[D_INODEDEP] > 1463 max_softdeps / stat_flush_threads) || 1464 (req_clear_remove && 1465 altump->softdep_curdeps[D_DIRREM] > 1466 (max_softdeps / 2) / stat_flush_threads)) && 1467 TRY_ACQUIRE_LOCK(altump)) 1468 break; 1469 } 1470 if (sdp == NULL) { 1471 searchfailed++; 1472 FREE_GBLLOCK(&lk); 1473 } else { 1474 /* 1475 * Move to the end of the list so we pick a 1476 * different one on out next try. 1477 */ 1478 TAILQ_REMOVE(&softdepmounts, sdp, sd_next); 1479 TAILQ_INSERT_TAIL(&softdepmounts, sdp, sd_next); 1480 FREE_GBLLOCK(&lk); 1481 if ((altump->softdep_flags & 1482 (FLUSH_CLEANUP | FLUSH_EXIT)) == 0) 1483 altump->softdep_flags |= FLUSH_CLEANUP; 1484 altump->um_softdep->sd_cleanups++; 1485 wakeup(&altump->softdep_flushtd); 1486 FREE_LOCK(altump); 1487 } 1488 } 1489 return (speedup_syncer()); 1490 } 1491 1492 /* 1493 * Add an item to the end of the work queue. 1494 * This routine requires that the lock be held. 1495 * This is the only routine that adds items to the list. 1496 * The following routine is the only one that removes items 1497 * and does so in order from first to last. 1498 */ 1499 1500 #define WK_HEAD 0x0001 /* Add to HEAD. */ 1501 #define WK_NODELAY 0x0002 /* Process immediately. */ 1502 1503 static void 1504 add_to_worklist(wk, flags) 1505 struct worklist *wk; 1506 int flags; 1507 { 1508 struct ufsmount *ump; 1509 1510 ump = VFSTOUFS(wk->wk_mp); 1511 LOCK_OWNED(ump); 1512 if (wk->wk_state & ONWORKLIST) 1513 panic("add_to_worklist: %s(0x%X) already on list", 1514 TYPENAME(wk->wk_type), wk->wk_state); 1515 wk->wk_state |= ONWORKLIST; 1516 if (ump->softdep_on_worklist == 0) { 1517 LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list); 1518 ump->softdep_worklist_tail = wk; 1519 } else if (flags & WK_HEAD) { 1520 LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list); 1521 } else { 1522 LIST_INSERT_AFTER(ump->softdep_worklist_tail, wk, wk_list); 1523 ump->softdep_worklist_tail = wk; 1524 } 1525 ump->softdep_on_worklist += 1; 1526 if (flags & WK_NODELAY) 1527 worklist_speedup(wk->wk_mp); 1528 } 1529 1530 /* 1531 * Remove the item to be processed. If we are removing the last 1532 * item on the list, we need to recalculate the tail pointer. 1533 */ 1534 static void 1535 remove_from_worklist(wk) 1536 struct worklist *wk; 1537 { 1538 struct ufsmount *ump; 1539 1540 ump = VFSTOUFS(wk->wk_mp); 1541 if (ump->softdep_worklist_tail == wk) 1542 ump->softdep_worklist_tail = 1543 (struct worklist *)wk->wk_list.le_prev; 1544 WORKLIST_REMOVE(wk); 1545 ump->softdep_on_worklist -= 1; 1546 } 1547 1548 static void 1549 wake_worklist(wk) 1550 struct worklist *wk; 1551 { 1552 if (wk->wk_state & IOWAITING) { 1553 wk->wk_state &= ~IOWAITING; 1554 wakeup(wk); 1555 } 1556 } 1557 1558 static void 1559 wait_worklist(wk, wmesg) 1560 struct worklist *wk; 1561 char *wmesg; 1562 { 1563 struct ufsmount *ump; 1564 1565 ump = VFSTOUFS(wk->wk_mp); 1566 wk->wk_state |= IOWAITING; 1567 msleep(wk, LOCK_PTR(ump), PVM, wmesg, 0); 1568 } 1569 1570 /* 1571 * Process that runs once per second to handle items in the background queue. 1572 * 1573 * Note that we ensure that everything is done in the order in which they 1574 * appear in the queue. The code below depends on this property to ensure 1575 * that blocks of a file are freed before the inode itself is freed. This 1576 * ordering ensures that no new <vfsid, inum, lbn> triples will be generated 1577 * until all the old ones have been purged from the dependency lists. 1578 */ 1579 static int 1580 softdep_process_worklist(mp, full) 1581 struct mount *mp; 1582 int full; 1583 { 1584 int cnt, matchcnt; 1585 struct ufsmount *ump; 1586 long starttime; 1587 1588 KASSERT(mp != NULL, ("softdep_process_worklist: NULL mp")); 1589 if (MOUNTEDSOFTDEP(mp) == 0) 1590 return (0); 1591 matchcnt = 0; 1592 ump = VFSTOUFS(mp); 1593 ACQUIRE_LOCK(ump); 1594 starttime = time_second; 1595 softdep_process_journal(mp, NULL, full ? MNT_WAIT : 0); 1596 check_clear_deps(mp); 1597 while (ump->softdep_on_worklist > 0) { 1598 if ((cnt = process_worklist_item(mp, 10, LK_NOWAIT)) == 0) 1599 break; 1600 else 1601 matchcnt += cnt; 1602 check_clear_deps(mp); 1603 /* 1604 * We do not generally want to stop for buffer space, but if 1605 * we are really being a buffer hog, we will stop and wait. 1606 */ 1607 if (should_yield()) { 1608 FREE_LOCK(ump); 1609 kern_yield(PRI_USER); 1610 bwillwrite(); 1611 ACQUIRE_LOCK(ump); 1612 } 1613 /* 1614 * Never allow processing to run for more than one 1615 * second. This gives the syncer thread the opportunity 1616 * to pause if appropriate. 1617 */ 1618 if (!full && starttime != time_second) 1619 break; 1620 } 1621 if (full == 0) 1622 journal_unsuspend(ump); 1623 FREE_LOCK(ump); 1624 return (matchcnt); 1625 } 1626 1627 /* 1628 * Process all removes associated with a vnode if we are running out of 1629 * journal space. Any other process which attempts to flush these will 1630 * be unable as we have the vnodes locked. 1631 */ 1632 static void 1633 process_removes(vp) 1634 struct vnode *vp; 1635 { 1636 struct inodedep *inodedep; 1637 struct dirrem *dirrem; 1638 struct ufsmount *ump; 1639 struct mount *mp; 1640 ino_t inum; 1641 1642 mp = vp->v_mount; 1643 ump = VFSTOUFS(mp); 1644 LOCK_OWNED(ump); 1645 inum = VTOI(vp)->i_number; 1646 for (;;) { 1647 top: 1648 if (inodedep_lookup(mp, inum, 0, &inodedep) == 0) 1649 return; 1650 LIST_FOREACH(dirrem, &inodedep->id_dirremhd, dm_inonext) { 1651 /* 1652 * If another thread is trying to lock this vnode 1653 * it will fail but we must wait for it to do so 1654 * before we can proceed. 1655 */ 1656 if (dirrem->dm_state & INPROGRESS) { 1657 wait_worklist(&dirrem->dm_list, "pwrwait"); 1658 goto top; 1659 } 1660 if ((dirrem->dm_state & (COMPLETE | ONWORKLIST)) == 1661 (COMPLETE | ONWORKLIST)) 1662 break; 1663 } 1664 if (dirrem == NULL) 1665 return; 1666 remove_from_worklist(&dirrem->dm_list); 1667 FREE_LOCK(ump); 1668 if (vn_start_secondary_write(NULL, &mp, V_NOWAIT)) 1669 panic("process_removes: suspended filesystem"); 1670 handle_workitem_remove(dirrem, 0); 1671 vn_finished_secondary_write(mp); 1672 ACQUIRE_LOCK(ump); 1673 } 1674 } 1675 1676 /* 1677 * Process all truncations associated with a vnode if we are running out 1678 * of journal space. This is called when the vnode lock is already held 1679 * and no other process can clear the truncation. This function returns 1680 * a value greater than zero if it did any work. 1681 */ 1682 static void 1683 process_truncates(vp) 1684 struct vnode *vp; 1685 { 1686 struct inodedep *inodedep; 1687 struct freeblks *freeblks; 1688 struct ufsmount *ump; 1689 struct mount *mp; 1690 ino_t inum; 1691 int cgwait; 1692 1693 mp = vp->v_mount; 1694 ump = VFSTOUFS(mp); 1695 LOCK_OWNED(ump); 1696 inum = VTOI(vp)->i_number; 1697 for (;;) { 1698 if (inodedep_lookup(mp, inum, 0, &inodedep) == 0) 1699 return; 1700 cgwait = 0; 1701 TAILQ_FOREACH(freeblks, &inodedep->id_freeblklst, fb_next) { 1702 /* Journal entries not yet written. */ 1703 if (!LIST_EMPTY(&freeblks->fb_jblkdephd)) { 1704 jwait(&LIST_FIRST( 1705 &freeblks->fb_jblkdephd)->jb_list, 1706 MNT_WAIT); 1707 break; 1708 } 1709 /* Another thread is executing this item. */ 1710 if (freeblks->fb_state & INPROGRESS) { 1711 wait_worklist(&freeblks->fb_list, "ptrwait"); 1712 break; 1713 } 1714 /* Freeblks is waiting on a inode write. */ 1715 if ((freeblks->fb_state & COMPLETE) == 0) { 1716 FREE_LOCK(ump); 1717 ffs_update(vp, 1); 1718 ACQUIRE_LOCK(ump); 1719 break; 1720 } 1721 if ((freeblks->fb_state & (ALLCOMPLETE | ONWORKLIST)) == 1722 (ALLCOMPLETE | ONWORKLIST)) { 1723 remove_from_worklist(&freeblks->fb_list); 1724 freeblks->fb_state |= INPROGRESS; 1725 FREE_LOCK(ump); 1726 if (vn_start_secondary_write(NULL, &mp, 1727 V_NOWAIT)) 1728 panic("process_truncates: " 1729 "suspended filesystem"); 1730 handle_workitem_freeblocks(freeblks, 0); 1731 vn_finished_secondary_write(mp); 1732 ACQUIRE_LOCK(ump); 1733 break; 1734 } 1735 if (freeblks->fb_cgwait) 1736 cgwait++; 1737 } 1738 if (cgwait) { 1739 FREE_LOCK(ump); 1740 sync_cgs(mp, MNT_WAIT); 1741 ffs_sync_snap(mp, MNT_WAIT); 1742 ACQUIRE_LOCK(ump); 1743 continue; 1744 } 1745 if (freeblks == NULL) 1746 break; 1747 } 1748 return; 1749 } 1750 1751 /* 1752 * Process one item on the worklist. 1753 */ 1754 static int 1755 process_worklist_item(mp, target, flags) 1756 struct mount *mp; 1757 int target; 1758 int flags; 1759 { 1760 struct worklist sentinel; 1761 struct worklist *wk; 1762 struct ufsmount *ump; 1763 int matchcnt; 1764 int error; 1765 1766 KASSERT(mp != NULL, ("process_worklist_item: NULL mp")); 1767 /* 1768 * If we are being called because of a process doing a 1769 * copy-on-write, then it is not safe to write as we may 1770 * recurse into the copy-on-write routine. 1771 */ 1772 if (curthread->td_pflags & TDP_COWINPROGRESS) 1773 return (-1); 1774 PHOLD(curproc); /* Don't let the stack go away. */ 1775 ump = VFSTOUFS(mp); 1776 LOCK_OWNED(ump); 1777 matchcnt = 0; 1778 sentinel.wk_mp = NULL; 1779 sentinel.wk_type = D_SENTINEL; 1780 LIST_INSERT_HEAD(&ump->softdep_workitem_pending, &sentinel, wk_list); 1781 for (wk = LIST_NEXT(&sentinel, wk_list); wk != NULL; 1782 wk = LIST_NEXT(&sentinel, wk_list)) { 1783 if (wk->wk_type == D_SENTINEL) { 1784 LIST_REMOVE(&sentinel, wk_list); 1785 LIST_INSERT_AFTER(wk, &sentinel, wk_list); 1786 continue; 1787 } 1788 if (wk->wk_state & INPROGRESS) 1789 panic("process_worklist_item: %p already in progress.", 1790 wk); 1791 wk->wk_state |= INPROGRESS; 1792 remove_from_worklist(wk); 1793 FREE_LOCK(ump); 1794 if (vn_start_secondary_write(NULL, &mp, V_NOWAIT)) 1795 panic("process_worklist_item: suspended filesystem"); 1796 switch (wk->wk_type) { 1797 case D_DIRREM: 1798 /* removal of a directory entry */ 1799 error = handle_workitem_remove(WK_DIRREM(wk), flags); 1800 break; 1801 1802 case D_FREEBLKS: 1803 /* releasing blocks and/or fragments from a file */ 1804 error = handle_workitem_freeblocks(WK_FREEBLKS(wk), 1805 flags); 1806 break; 1807 1808 case D_FREEFRAG: 1809 /* releasing a fragment when replaced as a file grows */ 1810 handle_workitem_freefrag(WK_FREEFRAG(wk)); 1811 error = 0; 1812 break; 1813 1814 case D_FREEFILE: 1815 /* releasing an inode when its link count drops to 0 */ 1816 handle_workitem_freefile(WK_FREEFILE(wk)); 1817 error = 0; 1818 break; 1819 1820 default: 1821 panic("%s_process_worklist: Unknown type %s", 1822 "softdep", TYPENAME(wk->wk_type)); 1823 /* NOTREACHED */ 1824 } 1825 vn_finished_secondary_write(mp); 1826 ACQUIRE_LOCK(ump); 1827 if (error == 0) { 1828 if (++matchcnt == target) 1829 break; 1830 continue; 1831 } 1832 /* 1833 * We have to retry the worklist item later. Wake up any 1834 * waiters who may be able to complete it immediately and 1835 * add the item back to the head so we don't try to execute 1836 * it again. 1837 */ 1838 wk->wk_state &= ~INPROGRESS; 1839 wake_worklist(wk); 1840 add_to_worklist(wk, WK_HEAD); 1841 } 1842 /* Sentinal could've become the tail from remove_from_worklist. */ 1843 if (ump->softdep_worklist_tail == &sentinel) 1844 ump->softdep_worklist_tail = 1845 (struct worklist *)sentinel.wk_list.le_prev; 1846 LIST_REMOVE(&sentinel, wk_list); 1847 PRELE(curproc); 1848 return (matchcnt); 1849 } 1850 1851 /* 1852 * Move dependencies from one buffer to another. 1853 */ 1854 int 1855 softdep_move_dependencies(oldbp, newbp) 1856 struct buf *oldbp; 1857 struct buf *newbp; 1858 { 1859 struct worklist *wk, *wktail; 1860 struct ufsmount *ump; 1861 int dirty; 1862 1863 if ((wk = LIST_FIRST(&oldbp->b_dep)) == NULL) 1864 return (0); 1865 KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0, 1866 ("softdep_move_dependencies called on non-softdep filesystem")); 1867 dirty = 0; 1868 wktail = NULL; 1869 ump = VFSTOUFS(wk->wk_mp); 1870 ACQUIRE_LOCK(ump); 1871 while ((wk = LIST_FIRST(&oldbp->b_dep)) != NULL) { 1872 LIST_REMOVE(wk, wk_list); 1873 if (wk->wk_type == D_BMSAFEMAP && 1874 bmsafemap_backgroundwrite(WK_BMSAFEMAP(wk), newbp)) 1875 dirty = 1; 1876 if (wktail == NULL) 1877 LIST_INSERT_HEAD(&newbp->b_dep, wk, wk_list); 1878 else 1879 LIST_INSERT_AFTER(wktail, wk, wk_list); 1880 wktail = wk; 1881 } 1882 FREE_LOCK(ump); 1883 1884 return (dirty); 1885 } 1886 1887 /* 1888 * Purge the work list of all items associated with a particular mount point. 1889 */ 1890 int 1891 softdep_flushworklist(oldmnt, countp, td) 1892 struct mount *oldmnt; 1893 int *countp; 1894 struct thread *td; 1895 { 1896 struct vnode *devvp; 1897 struct ufsmount *ump; 1898 int count, error; 1899 1900 /* 1901 * Alternately flush the block device associated with the mount 1902 * point and process any dependencies that the flushing 1903 * creates. We continue until no more worklist dependencies 1904 * are found. 1905 */ 1906 *countp = 0; 1907 error = 0; 1908 ump = VFSTOUFS(oldmnt); 1909 devvp = ump->um_devvp; 1910 while ((count = softdep_process_worklist(oldmnt, 1)) > 0) { 1911 *countp += count; 1912 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY); 1913 error = VOP_FSYNC(devvp, MNT_WAIT, td); 1914 VOP_UNLOCK(devvp, 0); 1915 if (error != 0) 1916 break; 1917 } 1918 return (error); 1919 } 1920 1921 #define SU_WAITIDLE_RETRIES 20 1922 static int 1923 softdep_waitidle(struct mount *mp, int flags __unused) 1924 { 1925 struct ufsmount *ump; 1926 struct vnode *devvp; 1927 struct thread *td; 1928 int error, i; 1929 1930 ump = VFSTOUFS(mp); 1931 devvp = ump->um_devvp; 1932 td = curthread; 1933 error = 0; 1934 ACQUIRE_LOCK(ump); 1935 for (i = 0; i < SU_WAITIDLE_RETRIES && ump->softdep_deps != 0; i++) { 1936 ump->softdep_req = 1; 1937 KASSERT((flags & FORCECLOSE) == 0 || 1938 ump->softdep_on_worklist == 0, 1939 ("softdep_waitidle: work added after flush")); 1940 msleep(&ump->softdep_deps, LOCK_PTR(ump), PVM | PDROP, 1941 "softdeps", 10 * hz); 1942 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY); 1943 error = VOP_FSYNC(devvp, MNT_WAIT, td); 1944 VOP_UNLOCK(devvp, 0); 1945 ACQUIRE_LOCK(ump); 1946 if (error != 0) 1947 break; 1948 } 1949 ump->softdep_req = 0; 1950 if (i == SU_WAITIDLE_RETRIES && error == 0 && ump->softdep_deps != 0) { 1951 error = EBUSY; 1952 printf("softdep_waitidle: Failed to flush worklist for %p\n", 1953 mp); 1954 } 1955 FREE_LOCK(ump); 1956 return (error); 1957 } 1958 1959 /* 1960 * Flush all vnodes and worklist items associated with a specified mount point. 1961 */ 1962 int 1963 softdep_flushfiles(oldmnt, flags, td) 1964 struct mount *oldmnt; 1965 int flags; 1966 struct thread *td; 1967 { 1968 #ifdef QUOTA 1969 struct ufsmount *ump; 1970 int i; 1971 #endif 1972 int error, early, depcount, loopcnt, retry_flush_count, retry; 1973 int morework; 1974 1975 KASSERT(MOUNTEDSOFTDEP(oldmnt) != 0, 1976 ("softdep_flushfiles called on non-softdep filesystem")); 1977 loopcnt = 10; 1978 retry_flush_count = 3; 1979 retry_flush: 1980 error = 0; 1981 1982 /* 1983 * Alternately flush the vnodes associated with the mount 1984 * point and process any dependencies that the flushing 1985 * creates. In theory, this loop can happen at most twice, 1986 * but we give it a few extra just to be sure. 1987 */ 1988 for (; loopcnt > 0; loopcnt--) { 1989 /* 1990 * Do another flush in case any vnodes were brought in 1991 * as part of the cleanup operations. 1992 */ 1993 early = retry_flush_count == 1 || (oldmnt->mnt_kern_flag & 1994 MNTK_UNMOUNT) == 0 ? 0 : EARLYFLUSH; 1995 if ((error = ffs_flushfiles(oldmnt, flags | early, td)) != 0) 1996 break; 1997 if ((error = softdep_flushworklist(oldmnt, &depcount, td)) != 0 || 1998 depcount == 0) 1999 break; 2000 } 2001 /* 2002 * If we are unmounting then it is an error to fail. If we 2003 * are simply trying to downgrade to read-only, then filesystem 2004 * activity can keep us busy forever, so we just fail with EBUSY. 2005 */ 2006 if (loopcnt == 0) { 2007 if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT) 2008 panic("softdep_flushfiles: looping"); 2009 error = EBUSY; 2010 } 2011 if (!error) 2012 error = softdep_waitidle(oldmnt, flags); 2013 if (!error) { 2014 if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT) { 2015 retry = 0; 2016 MNT_ILOCK(oldmnt); 2017 KASSERT((oldmnt->mnt_kern_flag & MNTK_NOINSMNTQ) != 0, 2018 ("softdep_flushfiles: !MNTK_NOINSMNTQ")); 2019 morework = oldmnt->mnt_nvnodelistsize > 0; 2020 #ifdef QUOTA 2021 ump = VFSTOUFS(oldmnt); 2022 UFS_LOCK(ump); 2023 for (i = 0; i < MAXQUOTAS; i++) { 2024 if (ump->um_quotas[i] != NULLVP) 2025 morework = 1; 2026 } 2027 UFS_UNLOCK(ump); 2028 #endif 2029 if (morework) { 2030 if (--retry_flush_count > 0) { 2031 retry = 1; 2032 loopcnt = 3; 2033 } else 2034 error = EBUSY; 2035 } 2036 MNT_IUNLOCK(oldmnt); 2037 if (retry) 2038 goto retry_flush; 2039 } 2040 } 2041 return (error); 2042 } 2043 2044 /* 2045 * Structure hashing. 2046 * 2047 * There are four types of structures that can be looked up: 2048 * 1) pagedep structures identified by mount point, inode number, 2049 * and logical block. 2050 * 2) inodedep structures identified by mount point and inode number. 2051 * 3) newblk structures identified by mount point and 2052 * physical block number. 2053 * 4) bmsafemap structures identified by mount point and 2054 * cylinder group number. 2055 * 2056 * The "pagedep" and "inodedep" dependency structures are hashed 2057 * separately from the file blocks and inodes to which they correspond. 2058 * This separation helps when the in-memory copy of an inode or 2059 * file block must be replaced. It also obviates the need to access 2060 * an inode or file page when simply updating (or de-allocating) 2061 * dependency structures. Lookup of newblk structures is needed to 2062 * find newly allocated blocks when trying to associate them with 2063 * their allocdirect or allocindir structure. 2064 * 2065 * The lookup routines optionally create and hash a new instance when 2066 * an existing entry is not found. The bmsafemap lookup routine always 2067 * allocates a new structure if an existing one is not found. 2068 */ 2069 #define DEPALLOC 0x0001 /* allocate structure if lookup fails */ 2070 2071 /* 2072 * Structures and routines associated with pagedep caching. 2073 */ 2074 #define PAGEDEP_HASH(ump, inum, lbn) \ 2075 (&(ump)->pagedep_hashtbl[((inum) + (lbn)) & (ump)->pagedep_hash_size]) 2076 2077 static int 2078 pagedep_find(pagedephd, ino, lbn, pagedeppp) 2079 struct pagedep_hashhead *pagedephd; 2080 ino_t ino; 2081 ufs_lbn_t lbn; 2082 struct pagedep **pagedeppp; 2083 { 2084 struct pagedep *pagedep; 2085 2086 LIST_FOREACH(pagedep, pagedephd, pd_hash) { 2087 if (ino == pagedep->pd_ino && lbn == pagedep->pd_lbn) { 2088 *pagedeppp = pagedep; 2089 return (1); 2090 } 2091 } 2092 *pagedeppp = NULL; 2093 return (0); 2094 } 2095 /* 2096 * Look up a pagedep. Return 1 if found, 0 otherwise. 2097 * If not found, allocate if DEPALLOC flag is passed. 2098 * Found or allocated entry is returned in pagedeppp. 2099 * This routine must be called with splbio interrupts blocked. 2100 */ 2101 static int 2102 pagedep_lookup(mp, bp, ino, lbn, flags, pagedeppp) 2103 struct mount *mp; 2104 struct buf *bp; 2105 ino_t ino; 2106 ufs_lbn_t lbn; 2107 int flags; 2108 struct pagedep **pagedeppp; 2109 { 2110 struct pagedep *pagedep; 2111 struct pagedep_hashhead *pagedephd; 2112 struct worklist *wk; 2113 struct ufsmount *ump; 2114 int ret; 2115 int i; 2116 2117 ump = VFSTOUFS(mp); 2118 LOCK_OWNED(ump); 2119 if (bp) { 2120 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 2121 if (wk->wk_type == D_PAGEDEP) { 2122 *pagedeppp = WK_PAGEDEP(wk); 2123 return (1); 2124 } 2125 } 2126 } 2127 pagedephd = PAGEDEP_HASH(ump, ino, lbn); 2128 ret = pagedep_find(pagedephd, ino, lbn, pagedeppp); 2129 if (ret) { 2130 if (((*pagedeppp)->pd_state & ONWORKLIST) == 0 && bp) 2131 WORKLIST_INSERT(&bp->b_dep, &(*pagedeppp)->pd_list); 2132 return (1); 2133 } 2134 if ((flags & DEPALLOC) == 0) 2135 return (0); 2136 FREE_LOCK(ump); 2137 pagedep = malloc(sizeof(struct pagedep), 2138 M_PAGEDEP, M_SOFTDEP_FLAGS|M_ZERO); 2139 workitem_alloc(&pagedep->pd_list, D_PAGEDEP, mp); 2140 ACQUIRE_LOCK(ump); 2141 ret = pagedep_find(pagedephd, ino, lbn, pagedeppp); 2142 if (*pagedeppp) { 2143 /* 2144 * This should never happen since we only create pagedeps 2145 * with the vnode lock held. Could be an assert. 2146 */ 2147 WORKITEM_FREE(pagedep, D_PAGEDEP); 2148 return (ret); 2149 } 2150 pagedep->pd_ino = ino; 2151 pagedep->pd_lbn = lbn; 2152 LIST_INIT(&pagedep->pd_dirremhd); 2153 LIST_INIT(&pagedep->pd_pendinghd); 2154 for (i = 0; i < DAHASHSZ; i++) 2155 LIST_INIT(&pagedep->pd_diraddhd[i]); 2156 LIST_INSERT_HEAD(pagedephd, pagedep, pd_hash); 2157 WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list); 2158 *pagedeppp = pagedep; 2159 return (0); 2160 } 2161 2162 /* 2163 * Structures and routines associated with inodedep caching. 2164 */ 2165 #define INODEDEP_HASH(ump, inum) \ 2166 (&(ump)->inodedep_hashtbl[(inum) & (ump)->inodedep_hash_size]) 2167 2168 static int 2169 inodedep_find(inodedephd, inum, inodedeppp) 2170 struct inodedep_hashhead *inodedephd; 2171 ino_t inum; 2172 struct inodedep **inodedeppp; 2173 { 2174 struct inodedep *inodedep; 2175 2176 LIST_FOREACH(inodedep, inodedephd, id_hash) 2177 if (inum == inodedep->id_ino) 2178 break; 2179 if (inodedep) { 2180 *inodedeppp = inodedep; 2181 return (1); 2182 } 2183 *inodedeppp = NULL; 2184 2185 return (0); 2186 } 2187 /* 2188 * Look up an inodedep. Return 1 if found, 0 if not found. 2189 * If not found, allocate if DEPALLOC flag is passed. 2190 * Found or allocated entry is returned in inodedeppp. 2191 * This routine must be called with splbio interrupts blocked. 2192 */ 2193 static int 2194 inodedep_lookup(mp, inum, flags, inodedeppp) 2195 struct mount *mp; 2196 ino_t inum; 2197 int flags; 2198 struct inodedep **inodedeppp; 2199 { 2200 struct inodedep *inodedep; 2201 struct inodedep_hashhead *inodedephd; 2202 struct ufsmount *ump; 2203 struct fs *fs; 2204 2205 ump = VFSTOUFS(mp); 2206 LOCK_OWNED(ump); 2207 fs = ump->um_fs; 2208 inodedephd = INODEDEP_HASH(ump, inum); 2209 2210 if (inodedep_find(inodedephd, inum, inodedeppp)) 2211 return (1); 2212 if ((flags & DEPALLOC) == 0) 2213 return (0); 2214 /* 2215 * If the system is over its limit and our filesystem is 2216 * responsible for more than our share of that usage and 2217 * we are not in a rush, request some inodedep cleanup. 2218 */ 2219 if (softdep_excess_items(ump, D_INODEDEP)) 2220 schedule_cleanup(mp); 2221 else 2222 FREE_LOCK(ump); 2223 inodedep = malloc(sizeof(struct inodedep), 2224 M_INODEDEP, M_SOFTDEP_FLAGS); 2225 workitem_alloc(&inodedep->id_list, D_INODEDEP, mp); 2226 ACQUIRE_LOCK(ump); 2227 if (inodedep_find(inodedephd, inum, inodedeppp)) { 2228 WORKITEM_FREE(inodedep, D_INODEDEP); 2229 return (1); 2230 } 2231 inodedep->id_fs = fs; 2232 inodedep->id_ino = inum; 2233 inodedep->id_state = ALLCOMPLETE; 2234 inodedep->id_nlinkdelta = 0; 2235 inodedep->id_savedino1 = NULL; 2236 inodedep->id_savedsize = -1; 2237 inodedep->id_savedextsize = -1; 2238 inodedep->id_savednlink = -1; 2239 inodedep->id_bmsafemap = NULL; 2240 inodedep->id_mkdiradd = NULL; 2241 LIST_INIT(&inodedep->id_dirremhd); 2242 LIST_INIT(&inodedep->id_pendinghd); 2243 LIST_INIT(&inodedep->id_inowait); 2244 LIST_INIT(&inodedep->id_bufwait); 2245 TAILQ_INIT(&inodedep->id_inoreflst); 2246 TAILQ_INIT(&inodedep->id_inoupdt); 2247 TAILQ_INIT(&inodedep->id_newinoupdt); 2248 TAILQ_INIT(&inodedep->id_extupdt); 2249 TAILQ_INIT(&inodedep->id_newextupdt); 2250 TAILQ_INIT(&inodedep->id_freeblklst); 2251 LIST_INSERT_HEAD(inodedephd, inodedep, id_hash); 2252 *inodedeppp = inodedep; 2253 return (0); 2254 } 2255 2256 /* 2257 * Structures and routines associated with newblk caching. 2258 */ 2259 #define NEWBLK_HASH(ump, inum) \ 2260 (&(ump)->newblk_hashtbl[(inum) & (ump)->newblk_hash_size]) 2261 2262 static int 2263 newblk_find(newblkhd, newblkno, flags, newblkpp) 2264 struct newblk_hashhead *newblkhd; 2265 ufs2_daddr_t newblkno; 2266 int flags; 2267 struct newblk **newblkpp; 2268 { 2269 struct newblk *newblk; 2270 2271 LIST_FOREACH(newblk, newblkhd, nb_hash) { 2272 if (newblkno != newblk->nb_newblkno) 2273 continue; 2274 /* 2275 * If we're creating a new dependency don't match those that 2276 * have already been converted to allocdirects. This is for 2277 * a frag extend. 2278 */ 2279 if ((flags & DEPALLOC) && newblk->nb_list.wk_type != D_NEWBLK) 2280 continue; 2281 break; 2282 } 2283 if (newblk) { 2284 *newblkpp = newblk; 2285 return (1); 2286 } 2287 *newblkpp = NULL; 2288 return (0); 2289 } 2290 2291 /* 2292 * Look up a newblk. Return 1 if found, 0 if not found. 2293 * If not found, allocate if DEPALLOC flag is passed. 2294 * Found or allocated entry is returned in newblkpp. 2295 */ 2296 static int 2297 newblk_lookup(mp, newblkno, flags, newblkpp) 2298 struct mount *mp; 2299 ufs2_daddr_t newblkno; 2300 int flags; 2301 struct newblk **newblkpp; 2302 { 2303 struct newblk *newblk; 2304 struct newblk_hashhead *newblkhd; 2305 struct ufsmount *ump; 2306 2307 ump = VFSTOUFS(mp); 2308 LOCK_OWNED(ump); 2309 newblkhd = NEWBLK_HASH(ump, newblkno); 2310 if (newblk_find(newblkhd, newblkno, flags, newblkpp)) 2311 return (1); 2312 if ((flags & DEPALLOC) == 0) 2313 return (0); 2314 if (softdep_excess_items(ump, D_NEWBLK) || 2315 softdep_excess_items(ump, D_ALLOCDIRECT) || 2316 softdep_excess_items(ump, D_ALLOCINDIR)) 2317 schedule_cleanup(mp); 2318 else 2319 FREE_LOCK(ump); 2320 newblk = malloc(sizeof(union allblk), M_NEWBLK, 2321 M_SOFTDEP_FLAGS | M_ZERO); 2322 workitem_alloc(&newblk->nb_list, D_NEWBLK, mp); 2323 ACQUIRE_LOCK(ump); 2324 if (newblk_find(newblkhd, newblkno, flags, newblkpp)) { 2325 WORKITEM_FREE(newblk, D_NEWBLK); 2326 return (1); 2327 } 2328 newblk->nb_freefrag = NULL; 2329 LIST_INIT(&newblk->nb_indirdeps); 2330 LIST_INIT(&newblk->nb_newdirblk); 2331 LIST_INIT(&newblk->nb_jwork); 2332 newblk->nb_state = ATTACHED; 2333 newblk->nb_newblkno = newblkno; 2334 LIST_INSERT_HEAD(newblkhd, newblk, nb_hash); 2335 *newblkpp = newblk; 2336 return (0); 2337 } 2338 2339 /* 2340 * Structures and routines associated with freed indirect block caching. 2341 */ 2342 #define INDIR_HASH(ump, blkno) \ 2343 (&(ump)->indir_hashtbl[(blkno) & (ump)->indir_hash_size]) 2344 2345 /* 2346 * Lookup an indirect block in the indir hash table. The freework is 2347 * removed and potentially freed. The caller must do a blocking journal 2348 * write before writing to the blkno. 2349 */ 2350 static int 2351 indirblk_lookup(mp, blkno) 2352 struct mount *mp; 2353 ufs2_daddr_t blkno; 2354 { 2355 struct freework *freework; 2356 struct indir_hashhead *wkhd; 2357 struct ufsmount *ump; 2358 2359 ump = VFSTOUFS(mp); 2360 wkhd = INDIR_HASH(ump, blkno); 2361 TAILQ_FOREACH(freework, wkhd, fw_next) { 2362 if (freework->fw_blkno != blkno) 2363 continue; 2364 indirblk_remove(freework); 2365 return (1); 2366 } 2367 return (0); 2368 } 2369 2370 /* 2371 * Insert an indirect block represented by freework into the indirblk 2372 * hash table so that it may prevent the block from being re-used prior 2373 * to the journal being written. 2374 */ 2375 static void 2376 indirblk_insert(freework) 2377 struct freework *freework; 2378 { 2379 struct jblocks *jblocks; 2380 struct jseg *jseg; 2381 struct ufsmount *ump; 2382 2383 ump = VFSTOUFS(freework->fw_list.wk_mp); 2384 jblocks = ump->softdep_jblocks; 2385 jseg = TAILQ_LAST(&jblocks->jb_segs, jseglst); 2386 if (jseg == NULL) 2387 return; 2388 2389 LIST_INSERT_HEAD(&jseg->js_indirs, freework, fw_segs); 2390 TAILQ_INSERT_HEAD(INDIR_HASH(ump, freework->fw_blkno), freework, 2391 fw_next); 2392 freework->fw_state &= ~DEPCOMPLETE; 2393 } 2394 2395 static void 2396 indirblk_remove(freework) 2397 struct freework *freework; 2398 { 2399 struct ufsmount *ump; 2400 2401 ump = VFSTOUFS(freework->fw_list.wk_mp); 2402 LIST_REMOVE(freework, fw_segs); 2403 TAILQ_REMOVE(INDIR_HASH(ump, freework->fw_blkno), freework, fw_next); 2404 freework->fw_state |= DEPCOMPLETE; 2405 if ((freework->fw_state & ALLCOMPLETE) == ALLCOMPLETE) 2406 WORKITEM_FREE(freework, D_FREEWORK); 2407 } 2408 2409 /* 2410 * Executed during filesystem system initialization before 2411 * mounting any filesystems. 2412 */ 2413 void 2414 softdep_initialize() 2415 { 2416 2417 TAILQ_INIT(&softdepmounts); 2418 #ifdef __LP64__ 2419 max_softdeps = desiredvnodes * 4; 2420 #else 2421 max_softdeps = desiredvnodes * 2; 2422 #endif 2423 2424 /* initialise bioops hack */ 2425 bioops.io_start = softdep_disk_io_initiation; 2426 bioops.io_complete = softdep_disk_write_complete; 2427 bioops.io_deallocate = softdep_deallocate_dependencies; 2428 bioops.io_countdeps = softdep_count_dependencies; 2429 softdep_ast_cleanup = softdep_ast_cleanup_proc; 2430 2431 /* Initialize the callout with an mtx. */ 2432 callout_init_mtx(&softdep_callout, &lk, 0); 2433 } 2434 2435 /* 2436 * Executed after all filesystems have been unmounted during 2437 * filesystem module unload. 2438 */ 2439 void 2440 softdep_uninitialize() 2441 { 2442 2443 /* clear bioops hack */ 2444 bioops.io_start = NULL; 2445 bioops.io_complete = NULL; 2446 bioops.io_deallocate = NULL; 2447 bioops.io_countdeps = NULL; 2448 softdep_ast_cleanup = NULL; 2449 2450 callout_drain(&softdep_callout); 2451 } 2452 2453 /* 2454 * Called at mount time to notify the dependency code that a 2455 * filesystem wishes to use it. 2456 */ 2457 int 2458 softdep_mount(devvp, mp, fs, cred) 2459 struct vnode *devvp; 2460 struct mount *mp; 2461 struct fs *fs; 2462 struct ucred *cred; 2463 { 2464 struct csum_total cstotal; 2465 struct mount_softdeps *sdp; 2466 struct ufsmount *ump; 2467 struct cg *cgp; 2468 struct buf *bp; 2469 u_int cyl, i; 2470 int error; 2471 2472 sdp = malloc(sizeof(struct mount_softdeps), M_MOUNTDATA, 2473 M_WAITOK | M_ZERO); 2474 MNT_ILOCK(mp); 2475 mp->mnt_flag = (mp->mnt_flag & ~MNT_ASYNC) | MNT_SOFTDEP; 2476 if ((mp->mnt_kern_flag & MNTK_SOFTDEP) == 0) { 2477 mp->mnt_kern_flag = (mp->mnt_kern_flag & ~MNTK_ASYNC) | 2478 MNTK_SOFTDEP | MNTK_NOASYNC; 2479 } 2480 ump = VFSTOUFS(mp); 2481 ump->um_softdep = sdp; 2482 MNT_IUNLOCK(mp); 2483 rw_init(LOCK_PTR(ump), "Per-Filesystem Softdep Lock"); 2484 sdp->sd_ump = ump; 2485 LIST_INIT(&ump->softdep_workitem_pending); 2486 LIST_INIT(&ump->softdep_journal_pending); 2487 TAILQ_INIT(&ump->softdep_unlinked); 2488 LIST_INIT(&ump->softdep_dirtycg); 2489 ump->softdep_worklist_tail = NULL; 2490 ump->softdep_on_worklist = 0; 2491 ump->softdep_deps = 0; 2492 LIST_INIT(&ump->softdep_mkdirlisthd); 2493 ump->pagedep_hashtbl = hashinit(desiredvnodes / 5, M_PAGEDEP, 2494 &ump->pagedep_hash_size); 2495 ump->pagedep_nextclean = 0; 2496 ump->inodedep_hashtbl = hashinit(desiredvnodes, M_INODEDEP, 2497 &ump->inodedep_hash_size); 2498 ump->inodedep_nextclean = 0; 2499 ump->newblk_hashtbl = hashinit(max_softdeps / 2, M_NEWBLK, 2500 &ump->newblk_hash_size); 2501 ump->bmsafemap_hashtbl = hashinit(1024, M_BMSAFEMAP, 2502 &ump->bmsafemap_hash_size); 2503 i = 1 << (ffs(desiredvnodes / 10) - 1); 2504 ump->indir_hashtbl = malloc(i * sizeof(struct indir_hashhead), 2505 M_FREEWORK, M_WAITOK); 2506 ump->indir_hash_size = i - 1; 2507 for (i = 0; i <= ump->indir_hash_size; i++) 2508 TAILQ_INIT(&ump->indir_hashtbl[i]); 2509 ACQUIRE_GBLLOCK(&lk); 2510 TAILQ_INSERT_TAIL(&softdepmounts, sdp, sd_next); 2511 FREE_GBLLOCK(&lk); 2512 if ((fs->fs_flags & FS_SUJ) && 2513 (error = journal_mount(mp, fs, cred)) != 0) { 2514 printf("Failed to start journal: %d\n", error); 2515 softdep_unmount(mp); 2516 return (error); 2517 } 2518 /* 2519 * Start our flushing thread in the bufdaemon process. 2520 */ 2521 ACQUIRE_LOCK(ump); 2522 ump->softdep_flags |= FLUSH_STARTING; 2523 FREE_LOCK(ump); 2524 kproc_kthread_add(&softdep_flush, mp, &bufdaemonproc, 2525 &ump->softdep_flushtd, 0, 0, "softdepflush", "%s worker", 2526 mp->mnt_stat.f_mntonname); 2527 ACQUIRE_LOCK(ump); 2528 while ((ump->softdep_flags & FLUSH_STARTING) != 0) { 2529 msleep(&ump->softdep_flushtd, LOCK_PTR(ump), PVM, "sdstart", 2530 hz / 2); 2531 } 2532 FREE_LOCK(ump); 2533 /* 2534 * When doing soft updates, the counters in the 2535 * superblock may have gotten out of sync. Recomputation 2536 * can take a long time and can be deferred for background 2537 * fsck. However, the old behavior of scanning the cylinder 2538 * groups and recalculating them at mount time is available 2539 * by setting vfs.ffs.compute_summary_at_mount to one. 2540 */ 2541 if (compute_summary_at_mount == 0 || fs->fs_clean != 0) 2542 return (0); 2543 bzero(&cstotal, sizeof cstotal); 2544 for (cyl = 0; cyl < fs->fs_ncg; cyl++) { 2545 if ((error = bread(devvp, fsbtodb(fs, cgtod(fs, cyl)), 2546 fs->fs_cgsize, cred, &bp)) != 0) { 2547 brelse(bp); 2548 softdep_unmount(mp); 2549 return (error); 2550 } 2551 cgp = (struct cg *)bp->b_data; 2552 cstotal.cs_nffree += cgp->cg_cs.cs_nffree; 2553 cstotal.cs_nbfree += cgp->cg_cs.cs_nbfree; 2554 cstotal.cs_nifree += cgp->cg_cs.cs_nifree; 2555 cstotal.cs_ndir += cgp->cg_cs.cs_ndir; 2556 fs->fs_cs(fs, cyl) = cgp->cg_cs; 2557 brelse(bp); 2558 } 2559 #ifdef DEBUG 2560 if (bcmp(&cstotal, &fs->fs_cstotal, sizeof cstotal)) 2561 printf("%s: superblock summary recomputed\n", fs->fs_fsmnt); 2562 #endif 2563 bcopy(&cstotal, &fs->fs_cstotal, sizeof cstotal); 2564 return (0); 2565 } 2566 2567 void 2568 softdep_unmount(mp) 2569 struct mount *mp; 2570 { 2571 struct ufsmount *ump; 2572 #ifdef INVARIANTS 2573 int i; 2574 #endif 2575 2576 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 2577 ("softdep_unmount called on non-softdep filesystem")); 2578 ump = VFSTOUFS(mp); 2579 MNT_ILOCK(mp); 2580 mp->mnt_flag &= ~MNT_SOFTDEP; 2581 if (MOUNTEDSUJ(mp) == 0) { 2582 MNT_IUNLOCK(mp); 2583 } else { 2584 mp->mnt_flag &= ~MNT_SUJ; 2585 MNT_IUNLOCK(mp); 2586 journal_unmount(ump); 2587 } 2588 /* 2589 * Shut down our flushing thread. Check for NULL is if 2590 * softdep_mount errors out before the thread has been created. 2591 */ 2592 if (ump->softdep_flushtd != NULL) { 2593 ACQUIRE_LOCK(ump); 2594 ump->softdep_flags |= FLUSH_EXIT; 2595 wakeup(&ump->softdep_flushtd); 2596 msleep(&ump->softdep_flags, LOCK_PTR(ump), PVM | PDROP, 2597 "sdwait", 0); 2598 KASSERT((ump->softdep_flags & FLUSH_EXIT) == 0, 2599 ("Thread shutdown failed")); 2600 } 2601 /* 2602 * Free up our resources. 2603 */ 2604 ACQUIRE_GBLLOCK(&lk); 2605 TAILQ_REMOVE(&softdepmounts, ump->um_softdep, sd_next); 2606 FREE_GBLLOCK(&lk); 2607 rw_destroy(LOCK_PTR(ump)); 2608 hashdestroy(ump->pagedep_hashtbl, M_PAGEDEP, ump->pagedep_hash_size); 2609 hashdestroy(ump->inodedep_hashtbl, M_INODEDEP, ump->inodedep_hash_size); 2610 hashdestroy(ump->newblk_hashtbl, M_NEWBLK, ump->newblk_hash_size); 2611 hashdestroy(ump->bmsafemap_hashtbl, M_BMSAFEMAP, 2612 ump->bmsafemap_hash_size); 2613 free(ump->indir_hashtbl, M_FREEWORK); 2614 #ifdef INVARIANTS 2615 for (i = 0; i <= D_LAST; i++) 2616 KASSERT(ump->softdep_curdeps[i] == 0, 2617 ("Unmount %s: Dep type %s != 0 (%ld)", ump->um_fs->fs_fsmnt, 2618 TYPENAME(i), ump->softdep_curdeps[i])); 2619 #endif 2620 free(ump->um_softdep, M_MOUNTDATA); 2621 } 2622 2623 static struct jblocks * 2624 jblocks_create(void) 2625 { 2626 struct jblocks *jblocks; 2627 2628 jblocks = malloc(sizeof(*jblocks), M_JBLOCKS, M_WAITOK | M_ZERO); 2629 TAILQ_INIT(&jblocks->jb_segs); 2630 jblocks->jb_avail = 10; 2631 jblocks->jb_extent = malloc(sizeof(struct jextent) * jblocks->jb_avail, 2632 M_JBLOCKS, M_WAITOK | M_ZERO); 2633 2634 return (jblocks); 2635 } 2636 2637 static ufs2_daddr_t 2638 jblocks_alloc(jblocks, bytes, actual) 2639 struct jblocks *jblocks; 2640 int bytes; 2641 int *actual; 2642 { 2643 ufs2_daddr_t daddr; 2644 struct jextent *jext; 2645 int freecnt; 2646 int blocks; 2647 2648 blocks = bytes / DEV_BSIZE; 2649 jext = &jblocks->jb_extent[jblocks->jb_head]; 2650 freecnt = jext->je_blocks - jblocks->jb_off; 2651 if (freecnt == 0) { 2652 jblocks->jb_off = 0; 2653 if (++jblocks->jb_head > jblocks->jb_used) 2654 jblocks->jb_head = 0; 2655 jext = &jblocks->jb_extent[jblocks->jb_head]; 2656 freecnt = jext->je_blocks; 2657 } 2658 if (freecnt > blocks) 2659 freecnt = blocks; 2660 *actual = freecnt * DEV_BSIZE; 2661 daddr = jext->je_daddr + jblocks->jb_off; 2662 jblocks->jb_off += freecnt; 2663 jblocks->jb_free -= freecnt; 2664 2665 return (daddr); 2666 } 2667 2668 static void 2669 jblocks_free(jblocks, mp, bytes) 2670 struct jblocks *jblocks; 2671 struct mount *mp; 2672 int bytes; 2673 { 2674 2675 LOCK_OWNED(VFSTOUFS(mp)); 2676 jblocks->jb_free += bytes / DEV_BSIZE; 2677 if (jblocks->jb_suspended) 2678 worklist_speedup(mp); 2679 wakeup(jblocks); 2680 } 2681 2682 static void 2683 jblocks_destroy(jblocks) 2684 struct jblocks *jblocks; 2685 { 2686 2687 if (jblocks->jb_extent) 2688 free(jblocks->jb_extent, M_JBLOCKS); 2689 free(jblocks, M_JBLOCKS); 2690 } 2691 2692 static void 2693 jblocks_add(jblocks, daddr, blocks) 2694 struct jblocks *jblocks; 2695 ufs2_daddr_t daddr; 2696 int blocks; 2697 { 2698 struct jextent *jext; 2699 2700 jblocks->jb_blocks += blocks; 2701 jblocks->jb_free += blocks; 2702 jext = &jblocks->jb_extent[jblocks->jb_used]; 2703 /* Adding the first block. */ 2704 if (jext->je_daddr == 0) { 2705 jext->je_daddr = daddr; 2706 jext->je_blocks = blocks; 2707 return; 2708 } 2709 /* Extending the last extent. */ 2710 if (jext->je_daddr + jext->je_blocks == daddr) { 2711 jext->je_blocks += blocks; 2712 return; 2713 } 2714 /* Adding a new extent. */ 2715 if (++jblocks->jb_used == jblocks->jb_avail) { 2716 jblocks->jb_avail *= 2; 2717 jext = malloc(sizeof(struct jextent) * jblocks->jb_avail, 2718 M_JBLOCKS, M_WAITOK | M_ZERO); 2719 memcpy(jext, jblocks->jb_extent, 2720 sizeof(struct jextent) * jblocks->jb_used); 2721 free(jblocks->jb_extent, M_JBLOCKS); 2722 jblocks->jb_extent = jext; 2723 } 2724 jext = &jblocks->jb_extent[jblocks->jb_used]; 2725 jext->je_daddr = daddr; 2726 jext->je_blocks = blocks; 2727 return; 2728 } 2729 2730 int 2731 softdep_journal_lookup(mp, vpp) 2732 struct mount *mp; 2733 struct vnode **vpp; 2734 { 2735 struct componentname cnp; 2736 struct vnode *dvp; 2737 ino_t sujournal; 2738 int error; 2739 2740 error = VFS_VGET(mp, UFS_ROOTINO, LK_EXCLUSIVE, &dvp); 2741 if (error) 2742 return (error); 2743 bzero(&cnp, sizeof(cnp)); 2744 cnp.cn_nameiop = LOOKUP; 2745 cnp.cn_flags = ISLASTCN; 2746 cnp.cn_thread = curthread; 2747 cnp.cn_cred = curthread->td_ucred; 2748 cnp.cn_pnbuf = SUJ_FILE; 2749 cnp.cn_nameptr = SUJ_FILE; 2750 cnp.cn_namelen = strlen(SUJ_FILE); 2751 error = ufs_lookup_ino(dvp, NULL, &cnp, &sujournal); 2752 vput(dvp); 2753 if (error != 0) 2754 return (error); 2755 error = VFS_VGET(mp, sujournal, LK_EXCLUSIVE, vpp); 2756 return (error); 2757 } 2758 2759 /* 2760 * Open and verify the journal file. 2761 */ 2762 static int 2763 journal_mount(mp, fs, cred) 2764 struct mount *mp; 2765 struct fs *fs; 2766 struct ucred *cred; 2767 { 2768 struct jblocks *jblocks; 2769 struct ufsmount *ump; 2770 struct vnode *vp; 2771 struct inode *ip; 2772 ufs2_daddr_t blkno; 2773 int bcount; 2774 int error; 2775 int i; 2776 2777 ump = VFSTOUFS(mp); 2778 ump->softdep_journal_tail = NULL; 2779 ump->softdep_on_journal = 0; 2780 ump->softdep_accdeps = 0; 2781 ump->softdep_req = 0; 2782 ump->softdep_jblocks = NULL; 2783 error = softdep_journal_lookup(mp, &vp); 2784 if (error != 0) { 2785 printf("Failed to find journal. Use tunefs to create one\n"); 2786 return (error); 2787 } 2788 ip = VTOI(vp); 2789 if (ip->i_size < SUJ_MIN) { 2790 error = ENOSPC; 2791 goto out; 2792 } 2793 bcount = lblkno(fs, ip->i_size); /* Only use whole blocks. */ 2794 jblocks = jblocks_create(); 2795 for (i = 0; i < bcount; i++) { 2796 error = ufs_bmaparray(vp, i, &blkno, NULL, NULL, NULL); 2797 if (error) 2798 break; 2799 jblocks_add(jblocks, blkno, fsbtodb(fs, fs->fs_frag)); 2800 } 2801 if (error) { 2802 jblocks_destroy(jblocks); 2803 goto out; 2804 } 2805 jblocks->jb_low = jblocks->jb_free / 3; /* Reserve 33%. */ 2806 jblocks->jb_min = jblocks->jb_free / 10; /* Suspend at 10%. */ 2807 ump->softdep_jblocks = jblocks; 2808 out: 2809 if (error == 0) { 2810 MNT_ILOCK(mp); 2811 mp->mnt_flag |= MNT_SUJ; 2812 mp->mnt_flag &= ~MNT_SOFTDEP; 2813 MNT_IUNLOCK(mp); 2814 /* 2815 * Only validate the journal contents if the 2816 * filesystem is clean, otherwise we write the logs 2817 * but they'll never be used. If the filesystem was 2818 * still dirty when we mounted it the journal is 2819 * invalid and a new journal can only be valid if it 2820 * starts from a clean mount. 2821 */ 2822 if (fs->fs_clean) { 2823 DIP_SET(ip, i_modrev, fs->fs_mtime); 2824 ip->i_flags |= IN_MODIFIED; 2825 ffs_update(vp, 1); 2826 } 2827 } 2828 vput(vp); 2829 return (error); 2830 } 2831 2832 static void 2833 journal_unmount(ump) 2834 struct ufsmount *ump; 2835 { 2836 2837 if (ump->softdep_jblocks) 2838 jblocks_destroy(ump->softdep_jblocks); 2839 ump->softdep_jblocks = NULL; 2840 } 2841 2842 /* 2843 * Called when a journal record is ready to be written. Space is allocated 2844 * and the journal entry is created when the journal is flushed to stable 2845 * store. 2846 */ 2847 static void 2848 add_to_journal(wk) 2849 struct worklist *wk; 2850 { 2851 struct ufsmount *ump; 2852 2853 ump = VFSTOUFS(wk->wk_mp); 2854 LOCK_OWNED(ump); 2855 if (wk->wk_state & ONWORKLIST) 2856 panic("add_to_journal: %s(0x%X) already on list", 2857 TYPENAME(wk->wk_type), wk->wk_state); 2858 wk->wk_state |= ONWORKLIST | DEPCOMPLETE; 2859 if (LIST_EMPTY(&ump->softdep_journal_pending)) { 2860 ump->softdep_jblocks->jb_age = ticks; 2861 LIST_INSERT_HEAD(&ump->softdep_journal_pending, wk, wk_list); 2862 } else 2863 LIST_INSERT_AFTER(ump->softdep_journal_tail, wk, wk_list); 2864 ump->softdep_journal_tail = wk; 2865 ump->softdep_on_journal += 1; 2866 } 2867 2868 /* 2869 * Remove an arbitrary item for the journal worklist maintain the tail 2870 * pointer. This happens when a new operation obviates the need to 2871 * journal an old operation. 2872 */ 2873 static void 2874 remove_from_journal(wk) 2875 struct worklist *wk; 2876 { 2877 struct ufsmount *ump; 2878 2879 ump = VFSTOUFS(wk->wk_mp); 2880 LOCK_OWNED(ump); 2881 #ifdef SUJ_DEBUG 2882 { 2883 struct worklist *wkn; 2884 2885 LIST_FOREACH(wkn, &ump->softdep_journal_pending, wk_list) 2886 if (wkn == wk) 2887 break; 2888 if (wkn == NULL) 2889 panic("remove_from_journal: %p is not in journal", wk); 2890 } 2891 #endif 2892 /* 2893 * We emulate a TAILQ to save space in most structures which do not 2894 * require TAILQ semantics. Here we must update the tail position 2895 * when removing the tail which is not the final entry. This works 2896 * only if the worklist linkage are at the beginning of the structure. 2897 */ 2898 if (ump->softdep_journal_tail == wk) 2899 ump->softdep_journal_tail = 2900 (struct worklist *)wk->wk_list.le_prev; 2901 WORKLIST_REMOVE(wk); 2902 ump->softdep_on_journal -= 1; 2903 } 2904 2905 /* 2906 * Check for journal space as well as dependency limits so the prelink 2907 * code can throttle both journaled and non-journaled filesystems. 2908 * Threshold is 0 for low and 1 for min. 2909 */ 2910 static int 2911 journal_space(ump, thresh) 2912 struct ufsmount *ump; 2913 int thresh; 2914 { 2915 struct jblocks *jblocks; 2916 int limit, avail; 2917 2918 jblocks = ump->softdep_jblocks; 2919 if (jblocks == NULL) 2920 return (1); 2921 /* 2922 * We use a tighter restriction here to prevent request_cleanup() 2923 * running in threads from running into locks we currently hold. 2924 * We have to be over the limit and our filesystem has to be 2925 * responsible for more than our share of that usage. 2926 */ 2927 limit = (max_softdeps / 10) * 9; 2928 if (dep_current[D_INODEDEP] > limit && 2929 ump->softdep_curdeps[D_INODEDEP] > limit / stat_flush_threads) 2930 return (0); 2931 if (thresh) 2932 thresh = jblocks->jb_min; 2933 else 2934 thresh = jblocks->jb_low; 2935 avail = (ump->softdep_on_journal * JREC_SIZE) / DEV_BSIZE; 2936 avail = jblocks->jb_free - avail; 2937 2938 return (avail > thresh); 2939 } 2940 2941 static void 2942 journal_suspend(ump) 2943 struct ufsmount *ump; 2944 { 2945 struct jblocks *jblocks; 2946 struct mount *mp; 2947 2948 mp = UFSTOVFS(ump); 2949 jblocks = ump->softdep_jblocks; 2950 MNT_ILOCK(mp); 2951 if ((mp->mnt_kern_flag & MNTK_SUSPEND) == 0) { 2952 stat_journal_min++; 2953 mp->mnt_kern_flag |= MNTK_SUSPEND; 2954 mp->mnt_susp_owner = ump->softdep_flushtd; 2955 } 2956 jblocks->jb_suspended = 1; 2957 MNT_IUNLOCK(mp); 2958 } 2959 2960 static int 2961 journal_unsuspend(struct ufsmount *ump) 2962 { 2963 struct jblocks *jblocks; 2964 struct mount *mp; 2965 2966 mp = UFSTOVFS(ump); 2967 jblocks = ump->softdep_jblocks; 2968 2969 if (jblocks != NULL && jblocks->jb_suspended && 2970 journal_space(ump, jblocks->jb_min)) { 2971 jblocks->jb_suspended = 0; 2972 FREE_LOCK(ump); 2973 mp->mnt_susp_owner = curthread; 2974 vfs_write_resume(mp, 0); 2975 ACQUIRE_LOCK(ump); 2976 return (1); 2977 } 2978 return (0); 2979 } 2980 2981 /* 2982 * Called before any allocation function to be certain that there is 2983 * sufficient space in the journal prior to creating any new records. 2984 * Since in the case of block allocation we may have multiple locked 2985 * buffers at the time of the actual allocation we can not block 2986 * when the journal records are created. Doing so would create a deadlock 2987 * if any of these buffers needed to be flushed to reclaim space. Instead 2988 * we require a sufficiently large amount of available space such that 2989 * each thread in the system could have passed this allocation check and 2990 * still have sufficient free space. With 20% of a minimum journal size 2991 * of 1MB we have 6553 records available. 2992 */ 2993 int 2994 softdep_prealloc(vp, waitok) 2995 struct vnode *vp; 2996 int waitok; 2997 { 2998 struct ufsmount *ump; 2999 3000 KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0, 3001 ("softdep_prealloc called on non-softdep filesystem")); 3002 /* 3003 * Nothing to do if we are not running journaled soft updates. 3004 * If we currently hold the snapshot lock, we must avoid 3005 * handling other resources that could cause deadlock. Do not 3006 * touch quotas vnode since it is typically recursed with 3007 * other vnode locks held. 3008 */ 3009 if (DOINGSUJ(vp) == 0 || IS_SNAPSHOT(VTOI(vp)) || 3010 (vp->v_vflag & VV_SYSTEM) != 0) 3011 return (0); 3012 ump = VFSTOUFS(vp->v_mount); 3013 ACQUIRE_LOCK(ump); 3014 if (journal_space(ump, 0)) { 3015 FREE_LOCK(ump); 3016 return (0); 3017 } 3018 stat_journal_low++; 3019 FREE_LOCK(ump); 3020 if (waitok == MNT_NOWAIT) 3021 return (ENOSPC); 3022 /* 3023 * Attempt to sync this vnode once to flush any journal 3024 * work attached to it. 3025 */ 3026 if ((curthread->td_pflags & TDP_COWINPROGRESS) == 0) 3027 ffs_syncvnode(vp, waitok, 0); 3028 ACQUIRE_LOCK(ump); 3029 process_removes(vp); 3030 process_truncates(vp); 3031 if (journal_space(ump, 0) == 0) { 3032 softdep_speedup(ump); 3033 if (journal_space(ump, 1) == 0) 3034 journal_suspend(ump); 3035 } 3036 FREE_LOCK(ump); 3037 3038 return (0); 3039 } 3040 3041 /* 3042 * Before adjusting a link count on a vnode verify that we have sufficient 3043 * journal space. If not, process operations that depend on the currently 3044 * locked pair of vnodes to try to flush space as the syncer, buf daemon, 3045 * and softdep flush threads can not acquire these locks to reclaim space. 3046 */ 3047 static void 3048 softdep_prelink(dvp, vp) 3049 struct vnode *dvp; 3050 struct vnode *vp; 3051 { 3052 struct ufsmount *ump; 3053 3054 ump = VFSTOUFS(dvp->v_mount); 3055 LOCK_OWNED(ump); 3056 /* 3057 * Nothing to do if we have sufficient journal space. 3058 * If we currently hold the snapshot lock, we must avoid 3059 * handling other resources that could cause deadlock. 3060 */ 3061 if (journal_space(ump, 0) || (vp && IS_SNAPSHOT(VTOI(vp)))) 3062 return; 3063 stat_journal_low++; 3064 FREE_LOCK(ump); 3065 if (vp) 3066 ffs_syncvnode(vp, MNT_NOWAIT, 0); 3067 ffs_syncvnode(dvp, MNT_WAIT, 0); 3068 ACQUIRE_LOCK(ump); 3069 /* Process vp before dvp as it may create .. removes. */ 3070 if (vp) { 3071 process_removes(vp); 3072 process_truncates(vp); 3073 } 3074 process_removes(dvp); 3075 process_truncates(dvp); 3076 softdep_speedup(ump); 3077 process_worklist_item(UFSTOVFS(ump), 2, LK_NOWAIT); 3078 if (journal_space(ump, 0) == 0) { 3079 softdep_speedup(ump); 3080 if (journal_space(ump, 1) == 0) 3081 journal_suspend(ump); 3082 } 3083 } 3084 3085 static void 3086 jseg_write(ump, jseg, data) 3087 struct ufsmount *ump; 3088 struct jseg *jseg; 3089 uint8_t *data; 3090 { 3091 struct jsegrec *rec; 3092 3093 rec = (struct jsegrec *)data; 3094 rec->jsr_seq = jseg->js_seq; 3095 rec->jsr_oldest = jseg->js_oldseq; 3096 rec->jsr_cnt = jseg->js_cnt; 3097 rec->jsr_blocks = jseg->js_size / ump->um_devvp->v_bufobj.bo_bsize; 3098 rec->jsr_crc = 0; 3099 rec->jsr_time = ump->um_fs->fs_mtime; 3100 } 3101 3102 static inline void 3103 inoref_write(inoref, jseg, rec) 3104 struct inoref *inoref; 3105 struct jseg *jseg; 3106 struct jrefrec *rec; 3107 { 3108 3109 inoref->if_jsegdep->jd_seg = jseg; 3110 rec->jr_ino = inoref->if_ino; 3111 rec->jr_parent = inoref->if_parent; 3112 rec->jr_nlink = inoref->if_nlink; 3113 rec->jr_mode = inoref->if_mode; 3114 rec->jr_diroff = inoref->if_diroff; 3115 } 3116 3117 static void 3118 jaddref_write(jaddref, jseg, data) 3119 struct jaddref *jaddref; 3120 struct jseg *jseg; 3121 uint8_t *data; 3122 { 3123 struct jrefrec *rec; 3124 3125 rec = (struct jrefrec *)data; 3126 rec->jr_op = JOP_ADDREF; 3127 inoref_write(&jaddref->ja_ref, jseg, rec); 3128 } 3129 3130 static void 3131 jremref_write(jremref, jseg, data) 3132 struct jremref *jremref; 3133 struct jseg *jseg; 3134 uint8_t *data; 3135 { 3136 struct jrefrec *rec; 3137 3138 rec = (struct jrefrec *)data; 3139 rec->jr_op = JOP_REMREF; 3140 inoref_write(&jremref->jr_ref, jseg, rec); 3141 } 3142 3143 static void 3144 jmvref_write(jmvref, jseg, data) 3145 struct jmvref *jmvref; 3146 struct jseg *jseg; 3147 uint8_t *data; 3148 { 3149 struct jmvrec *rec; 3150 3151 rec = (struct jmvrec *)data; 3152 rec->jm_op = JOP_MVREF; 3153 rec->jm_ino = jmvref->jm_ino; 3154 rec->jm_parent = jmvref->jm_parent; 3155 rec->jm_oldoff = jmvref->jm_oldoff; 3156 rec->jm_newoff = jmvref->jm_newoff; 3157 } 3158 3159 static void 3160 jnewblk_write(jnewblk, jseg, data) 3161 struct jnewblk *jnewblk; 3162 struct jseg *jseg; 3163 uint8_t *data; 3164 { 3165 struct jblkrec *rec; 3166 3167 jnewblk->jn_jsegdep->jd_seg = jseg; 3168 rec = (struct jblkrec *)data; 3169 rec->jb_op = JOP_NEWBLK; 3170 rec->jb_ino = jnewblk->jn_ino; 3171 rec->jb_blkno = jnewblk->jn_blkno; 3172 rec->jb_lbn = jnewblk->jn_lbn; 3173 rec->jb_frags = jnewblk->jn_frags; 3174 rec->jb_oldfrags = jnewblk->jn_oldfrags; 3175 } 3176 3177 static void 3178 jfreeblk_write(jfreeblk, jseg, data) 3179 struct jfreeblk *jfreeblk; 3180 struct jseg *jseg; 3181 uint8_t *data; 3182 { 3183 struct jblkrec *rec; 3184 3185 jfreeblk->jf_dep.jb_jsegdep->jd_seg = jseg; 3186 rec = (struct jblkrec *)data; 3187 rec->jb_op = JOP_FREEBLK; 3188 rec->jb_ino = jfreeblk->jf_ino; 3189 rec->jb_blkno = jfreeblk->jf_blkno; 3190 rec->jb_lbn = jfreeblk->jf_lbn; 3191 rec->jb_frags = jfreeblk->jf_frags; 3192 rec->jb_oldfrags = 0; 3193 } 3194 3195 static void 3196 jfreefrag_write(jfreefrag, jseg, data) 3197 struct jfreefrag *jfreefrag; 3198 struct jseg *jseg; 3199 uint8_t *data; 3200 { 3201 struct jblkrec *rec; 3202 3203 jfreefrag->fr_jsegdep->jd_seg = jseg; 3204 rec = (struct jblkrec *)data; 3205 rec->jb_op = JOP_FREEBLK; 3206 rec->jb_ino = jfreefrag->fr_ino; 3207 rec->jb_blkno = jfreefrag->fr_blkno; 3208 rec->jb_lbn = jfreefrag->fr_lbn; 3209 rec->jb_frags = jfreefrag->fr_frags; 3210 rec->jb_oldfrags = 0; 3211 } 3212 3213 static void 3214 jtrunc_write(jtrunc, jseg, data) 3215 struct jtrunc *jtrunc; 3216 struct jseg *jseg; 3217 uint8_t *data; 3218 { 3219 struct jtrncrec *rec; 3220 3221 jtrunc->jt_dep.jb_jsegdep->jd_seg = jseg; 3222 rec = (struct jtrncrec *)data; 3223 rec->jt_op = JOP_TRUNC; 3224 rec->jt_ino = jtrunc->jt_ino; 3225 rec->jt_size = jtrunc->jt_size; 3226 rec->jt_extsize = jtrunc->jt_extsize; 3227 } 3228 3229 static void 3230 jfsync_write(jfsync, jseg, data) 3231 struct jfsync *jfsync; 3232 struct jseg *jseg; 3233 uint8_t *data; 3234 { 3235 struct jtrncrec *rec; 3236 3237 rec = (struct jtrncrec *)data; 3238 rec->jt_op = JOP_SYNC; 3239 rec->jt_ino = jfsync->jfs_ino; 3240 rec->jt_size = jfsync->jfs_size; 3241 rec->jt_extsize = jfsync->jfs_extsize; 3242 } 3243 3244 static void 3245 softdep_flushjournal(mp) 3246 struct mount *mp; 3247 { 3248 struct jblocks *jblocks; 3249 struct ufsmount *ump; 3250 3251 if (MOUNTEDSUJ(mp) == 0) 3252 return; 3253 ump = VFSTOUFS(mp); 3254 jblocks = ump->softdep_jblocks; 3255 ACQUIRE_LOCK(ump); 3256 while (ump->softdep_on_journal) { 3257 jblocks->jb_needseg = 1; 3258 softdep_process_journal(mp, NULL, MNT_WAIT); 3259 } 3260 FREE_LOCK(ump); 3261 } 3262 3263 static void softdep_synchronize_completed(struct bio *); 3264 static void softdep_synchronize(struct bio *, struct ufsmount *, void *); 3265 3266 static void 3267 softdep_synchronize_completed(bp) 3268 struct bio *bp; 3269 { 3270 struct jseg *oldest; 3271 struct jseg *jseg; 3272 struct ufsmount *ump; 3273 3274 /* 3275 * caller1 marks the last segment written before we issued the 3276 * synchronize cache. 3277 */ 3278 jseg = bp->bio_caller1; 3279 if (jseg == NULL) { 3280 g_destroy_bio(bp); 3281 return; 3282 } 3283 ump = VFSTOUFS(jseg->js_list.wk_mp); 3284 ACQUIRE_LOCK(ump); 3285 oldest = NULL; 3286 /* 3287 * Mark all the journal entries waiting on the synchronize cache 3288 * as completed so they may continue on. 3289 */ 3290 while (jseg != NULL && (jseg->js_state & COMPLETE) == 0) { 3291 jseg->js_state |= COMPLETE; 3292 oldest = jseg; 3293 jseg = TAILQ_PREV(jseg, jseglst, js_next); 3294 } 3295 /* 3296 * Restart deferred journal entry processing from the oldest 3297 * completed jseg. 3298 */ 3299 if (oldest) 3300 complete_jsegs(oldest); 3301 3302 FREE_LOCK(ump); 3303 g_destroy_bio(bp); 3304 } 3305 3306 /* 3307 * Send BIO_FLUSH/SYNCHRONIZE CACHE to the device to enforce write ordering 3308 * barriers. The journal must be written prior to any blocks that depend 3309 * on it and the journal can not be released until the blocks have be 3310 * written. This code handles both barriers simultaneously. 3311 */ 3312 static void 3313 softdep_synchronize(bp, ump, caller1) 3314 struct bio *bp; 3315 struct ufsmount *ump; 3316 void *caller1; 3317 { 3318 3319 bp->bio_cmd = BIO_FLUSH; 3320 bp->bio_flags |= BIO_ORDERED; 3321 bp->bio_data = NULL; 3322 bp->bio_offset = ump->um_cp->provider->mediasize; 3323 bp->bio_length = 0; 3324 bp->bio_done = softdep_synchronize_completed; 3325 bp->bio_caller1 = caller1; 3326 g_io_request(bp, 3327 (struct g_consumer *)ump->um_devvp->v_bufobj.bo_private); 3328 } 3329 3330 /* 3331 * Flush some journal records to disk. 3332 */ 3333 static void 3334 softdep_process_journal(mp, needwk, flags) 3335 struct mount *mp; 3336 struct worklist *needwk; 3337 int flags; 3338 { 3339 struct jblocks *jblocks; 3340 struct ufsmount *ump; 3341 struct worklist *wk; 3342 struct jseg *jseg; 3343 struct buf *bp; 3344 struct bio *bio; 3345 uint8_t *data; 3346 struct fs *fs; 3347 int shouldflush; 3348 int segwritten; 3349 int jrecmin; /* Minimum records per block. */ 3350 int jrecmax; /* Maximum records per block. */ 3351 int size; 3352 int cnt; 3353 int off; 3354 int devbsize; 3355 3356 if (MOUNTEDSUJ(mp) == 0) 3357 return; 3358 shouldflush = softdep_flushcache; 3359 bio = NULL; 3360 jseg = NULL; 3361 ump = VFSTOUFS(mp); 3362 LOCK_OWNED(ump); 3363 fs = ump->um_fs; 3364 jblocks = ump->softdep_jblocks; 3365 devbsize = ump->um_devvp->v_bufobj.bo_bsize; 3366 /* 3367 * We write anywhere between a disk block and fs block. The upper 3368 * bound is picked to prevent buffer cache fragmentation and limit 3369 * processing time per I/O. 3370 */ 3371 jrecmin = (devbsize / JREC_SIZE) - 1; /* -1 for seg header */ 3372 jrecmax = (fs->fs_bsize / devbsize) * jrecmin; 3373 segwritten = 0; 3374 for (;;) { 3375 cnt = ump->softdep_on_journal; 3376 /* 3377 * Criteria for writing a segment: 3378 * 1) We have a full block. 3379 * 2) We're called from jwait() and haven't found the 3380 * journal item yet. 3381 * 3) Always write if needseg is set. 3382 * 4) If we are called from process_worklist and have 3383 * not yet written anything we write a partial block 3384 * to enforce a 1 second maximum latency on journal 3385 * entries. 3386 */ 3387 if (cnt < (jrecmax - 1) && needwk == NULL && 3388 jblocks->jb_needseg == 0 && (segwritten || cnt == 0)) 3389 break; 3390 cnt++; 3391 /* 3392 * Verify some free journal space. softdep_prealloc() should 3393 * guarantee that we don't run out so this is indicative of 3394 * a problem with the flow control. Try to recover 3395 * gracefully in any event. 3396 */ 3397 while (jblocks->jb_free == 0) { 3398 if (flags != MNT_WAIT) 3399 break; 3400 printf("softdep: Out of journal space!\n"); 3401 softdep_speedup(ump); 3402 msleep(jblocks, LOCK_PTR(ump), PRIBIO, "jblocks", hz); 3403 } 3404 FREE_LOCK(ump); 3405 jseg = malloc(sizeof(*jseg), M_JSEG, M_SOFTDEP_FLAGS); 3406 workitem_alloc(&jseg->js_list, D_JSEG, mp); 3407 LIST_INIT(&jseg->js_entries); 3408 LIST_INIT(&jseg->js_indirs); 3409 jseg->js_state = ATTACHED; 3410 if (shouldflush == 0) 3411 jseg->js_state |= COMPLETE; 3412 else if (bio == NULL) 3413 bio = g_alloc_bio(); 3414 jseg->js_jblocks = jblocks; 3415 bp = geteblk(fs->fs_bsize, 0); 3416 ACQUIRE_LOCK(ump); 3417 /* 3418 * If there was a race while we were allocating the block 3419 * and jseg the entry we care about was likely written. 3420 * We bail out in both the WAIT and NOWAIT case and assume 3421 * the caller will loop if the entry it cares about is 3422 * not written. 3423 */ 3424 cnt = ump->softdep_on_journal; 3425 if (cnt + jblocks->jb_needseg == 0 || jblocks->jb_free == 0) { 3426 bp->b_flags |= B_INVAL | B_NOCACHE; 3427 WORKITEM_FREE(jseg, D_JSEG); 3428 FREE_LOCK(ump); 3429 brelse(bp); 3430 ACQUIRE_LOCK(ump); 3431 break; 3432 } 3433 /* 3434 * Calculate the disk block size required for the available 3435 * records rounded to the min size. 3436 */ 3437 if (cnt == 0) 3438 size = devbsize; 3439 else if (cnt < jrecmax) 3440 size = howmany(cnt, jrecmin) * devbsize; 3441 else 3442 size = fs->fs_bsize; 3443 /* 3444 * Allocate a disk block for this journal data and account 3445 * for truncation of the requested size if enough contiguous 3446 * space was not available. 3447 */ 3448 bp->b_blkno = jblocks_alloc(jblocks, size, &size); 3449 bp->b_lblkno = bp->b_blkno; 3450 bp->b_offset = bp->b_blkno * DEV_BSIZE; 3451 bp->b_bcount = size; 3452 bp->b_flags &= ~B_INVAL; 3453 bp->b_flags |= B_VALIDSUSPWRT | B_NOCOPY; 3454 /* 3455 * Initialize our jseg with cnt records. Assign the next 3456 * sequence number to it and link it in-order. 3457 */ 3458 cnt = MIN(cnt, (size / devbsize) * jrecmin); 3459 jseg->js_buf = bp; 3460 jseg->js_cnt = cnt; 3461 jseg->js_refs = cnt + 1; /* Self ref. */ 3462 jseg->js_size = size; 3463 jseg->js_seq = jblocks->jb_nextseq++; 3464 if (jblocks->jb_oldestseg == NULL) 3465 jblocks->jb_oldestseg = jseg; 3466 jseg->js_oldseq = jblocks->jb_oldestseg->js_seq; 3467 TAILQ_INSERT_TAIL(&jblocks->jb_segs, jseg, js_next); 3468 if (jblocks->jb_writeseg == NULL) 3469 jblocks->jb_writeseg = jseg; 3470 /* 3471 * Start filling in records from the pending list. 3472 */ 3473 data = bp->b_data; 3474 off = 0; 3475 3476 /* 3477 * Always put a header on the first block. 3478 * XXX As with below, there might not be a chance to get 3479 * into the loop. Ensure that something valid is written. 3480 */ 3481 jseg_write(ump, jseg, data); 3482 off += JREC_SIZE; 3483 data = bp->b_data + off; 3484 3485 /* 3486 * XXX Something is wrong here. There's no work to do, 3487 * but we need to perform and I/O and allow it to complete 3488 * anyways. 3489 */ 3490 if (LIST_EMPTY(&ump->softdep_journal_pending)) 3491 stat_emptyjblocks++; 3492 3493 while ((wk = LIST_FIRST(&ump->softdep_journal_pending)) 3494 != NULL) { 3495 if (cnt == 0) 3496 break; 3497 /* Place a segment header on every device block. */ 3498 if ((off % devbsize) == 0) { 3499 jseg_write(ump, jseg, data); 3500 off += JREC_SIZE; 3501 data = bp->b_data + off; 3502 } 3503 if (wk == needwk) 3504 needwk = NULL; 3505 remove_from_journal(wk); 3506 wk->wk_state |= INPROGRESS; 3507 WORKLIST_INSERT(&jseg->js_entries, wk); 3508 switch (wk->wk_type) { 3509 case D_JADDREF: 3510 jaddref_write(WK_JADDREF(wk), jseg, data); 3511 break; 3512 case D_JREMREF: 3513 jremref_write(WK_JREMREF(wk), jseg, data); 3514 break; 3515 case D_JMVREF: 3516 jmvref_write(WK_JMVREF(wk), jseg, data); 3517 break; 3518 case D_JNEWBLK: 3519 jnewblk_write(WK_JNEWBLK(wk), jseg, data); 3520 break; 3521 case D_JFREEBLK: 3522 jfreeblk_write(WK_JFREEBLK(wk), jseg, data); 3523 break; 3524 case D_JFREEFRAG: 3525 jfreefrag_write(WK_JFREEFRAG(wk), jseg, data); 3526 break; 3527 case D_JTRUNC: 3528 jtrunc_write(WK_JTRUNC(wk), jseg, data); 3529 break; 3530 case D_JFSYNC: 3531 jfsync_write(WK_JFSYNC(wk), jseg, data); 3532 break; 3533 default: 3534 panic("process_journal: Unknown type %s", 3535 TYPENAME(wk->wk_type)); 3536 /* NOTREACHED */ 3537 } 3538 off += JREC_SIZE; 3539 data = bp->b_data + off; 3540 cnt--; 3541 } 3542 3543 /* Clear any remaining space so we don't leak kernel data */ 3544 if (size > off) 3545 bzero(data, size - off); 3546 3547 /* 3548 * Write this one buffer and continue. 3549 */ 3550 segwritten = 1; 3551 jblocks->jb_needseg = 0; 3552 WORKLIST_INSERT(&bp->b_dep, &jseg->js_list); 3553 FREE_LOCK(ump); 3554 pbgetvp(ump->um_devvp, bp); 3555 /* 3556 * We only do the blocking wait once we find the journal 3557 * entry we're looking for. 3558 */ 3559 if (needwk == NULL && flags == MNT_WAIT) 3560 bwrite(bp); 3561 else 3562 bawrite(bp); 3563 ACQUIRE_LOCK(ump); 3564 } 3565 /* 3566 * If we wrote a segment issue a synchronize cache so the journal 3567 * is reflected on disk before the data is written. Since reclaiming 3568 * journal space also requires writing a journal record this 3569 * process also enforces a barrier before reclamation. 3570 */ 3571 if (segwritten && shouldflush) { 3572 softdep_synchronize(bio, ump, 3573 TAILQ_LAST(&jblocks->jb_segs, jseglst)); 3574 } else if (bio) 3575 g_destroy_bio(bio); 3576 /* 3577 * If we've suspended the filesystem because we ran out of journal 3578 * space either try to sync it here to make some progress or 3579 * unsuspend it if we already have. 3580 */ 3581 if (flags == 0 && jblocks->jb_suspended) { 3582 if (journal_unsuspend(ump)) 3583 return; 3584 FREE_LOCK(ump); 3585 VFS_SYNC(mp, MNT_NOWAIT); 3586 ffs_sbupdate(ump, MNT_WAIT, 0); 3587 ACQUIRE_LOCK(ump); 3588 } 3589 } 3590 3591 /* 3592 * Complete a jseg, allowing all dependencies awaiting journal writes 3593 * to proceed. Each journal dependency also attaches a jsegdep to dependent 3594 * structures so that the journal segment can be freed to reclaim space. 3595 */ 3596 static void 3597 complete_jseg(jseg) 3598 struct jseg *jseg; 3599 { 3600 struct worklist *wk; 3601 struct jmvref *jmvref; 3602 #ifdef INVARIANTS 3603 int i = 0; 3604 #endif 3605 3606 while ((wk = LIST_FIRST(&jseg->js_entries)) != NULL) { 3607 WORKLIST_REMOVE(wk); 3608 wk->wk_state &= ~INPROGRESS; 3609 wk->wk_state |= COMPLETE; 3610 KASSERT(i++ < jseg->js_cnt, 3611 ("handle_written_jseg: overflow %d >= %d", 3612 i - 1, jseg->js_cnt)); 3613 switch (wk->wk_type) { 3614 case D_JADDREF: 3615 handle_written_jaddref(WK_JADDREF(wk)); 3616 break; 3617 case D_JREMREF: 3618 handle_written_jremref(WK_JREMREF(wk)); 3619 break; 3620 case D_JMVREF: 3621 rele_jseg(jseg); /* No jsegdep. */ 3622 jmvref = WK_JMVREF(wk); 3623 LIST_REMOVE(jmvref, jm_deps); 3624 if ((jmvref->jm_pagedep->pd_state & ONWORKLIST) == 0) 3625 free_pagedep(jmvref->jm_pagedep); 3626 WORKITEM_FREE(jmvref, D_JMVREF); 3627 break; 3628 case D_JNEWBLK: 3629 handle_written_jnewblk(WK_JNEWBLK(wk)); 3630 break; 3631 case D_JFREEBLK: 3632 handle_written_jblkdep(&WK_JFREEBLK(wk)->jf_dep); 3633 break; 3634 case D_JTRUNC: 3635 handle_written_jblkdep(&WK_JTRUNC(wk)->jt_dep); 3636 break; 3637 case D_JFSYNC: 3638 rele_jseg(jseg); /* No jsegdep. */ 3639 WORKITEM_FREE(wk, D_JFSYNC); 3640 break; 3641 case D_JFREEFRAG: 3642 handle_written_jfreefrag(WK_JFREEFRAG(wk)); 3643 break; 3644 default: 3645 panic("handle_written_jseg: Unknown type %s", 3646 TYPENAME(wk->wk_type)); 3647 /* NOTREACHED */ 3648 } 3649 } 3650 /* Release the self reference so the structure may be freed. */ 3651 rele_jseg(jseg); 3652 } 3653 3654 /* 3655 * Determine which jsegs are ready for completion processing. Waits for 3656 * synchronize cache to complete as well as forcing in-order completion 3657 * of journal entries. 3658 */ 3659 static void 3660 complete_jsegs(jseg) 3661 struct jseg *jseg; 3662 { 3663 struct jblocks *jblocks; 3664 struct jseg *jsegn; 3665 3666 jblocks = jseg->js_jblocks; 3667 /* 3668 * Don't allow out of order completions. If this isn't the first 3669 * block wait for it to write before we're done. 3670 */ 3671 if (jseg != jblocks->jb_writeseg) 3672 return; 3673 /* Iterate through available jsegs processing their entries. */ 3674 while (jseg && (jseg->js_state & ALLCOMPLETE) == ALLCOMPLETE) { 3675 jblocks->jb_oldestwrseq = jseg->js_oldseq; 3676 jsegn = TAILQ_NEXT(jseg, js_next); 3677 complete_jseg(jseg); 3678 jseg = jsegn; 3679 } 3680 jblocks->jb_writeseg = jseg; 3681 /* 3682 * Attempt to free jsegs now that oldestwrseq may have advanced. 3683 */ 3684 free_jsegs(jblocks); 3685 } 3686 3687 /* 3688 * Mark a jseg as DEPCOMPLETE and throw away the buffer. Attempt to handle 3689 * the final completions. 3690 */ 3691 static void 3692 handle_written_jseg(jseg, bp) 3693 struct jseg *jseg; 3694 struct buf *bp; 3695 { 3696 3697 if (jseg->js_refs == 0) 3698 panic("handle_written_jseg: No self-reference on %p", jseg); 3699 jseg->js_state |= DEPCOMPLETE; 3700 /* 3701 * We'll never need this buffer again, set flags so it will be 3702 * discarded. 3703 */ 3704 bp->b_flags |= B_INVAL | B_NOCACHE; 3705 pbrelvp(bp); 3706 complete_jsegs(jseg); 3707 } 3708 3709 static inline struct jsegdep * 3710 inoref_jseg(inoref) 3711 struct inoref *inoref; 3712 { 3713 struct jsegdep *jsegdep; 3714 3715 jsegdep = inoref->if_jsegdep; 3716 inoref->if_jsegdep = NULL; 3717 3718 return (jsegdep); 3719 } 3720 3721 /* 3722 * Called once a jremref has made it to stable store. The jremref is marked 3723 * complete and we attempt to free it. Any pagedeps writes sleeping waiting 3724 * for the jremref to complete will be awoken by free_jremref. 3725 */ 3726 static void 3727 handle_written_jremref(jremref) 3728 struct jremref *jremref; 3729 { 3730 struct inodedep *inodedep; 3731 struct jsegdep *jsegdep; 3732 struct dirrem *dirrem; 3733 3734 /* Grab the jsegdep. */ 3735 jsegdep = inoref_jseg(&jremref->jr_ref); 3736 /* 3737 * Remove us from the inoref list. 3738 */ 3739 if (inodedep_lookup(jremref->jr_list.wk_mp, jremref->jr_ref.if_ino, 3740 0, &inodedep) == 0) 3741 panic("handle_written_jremref: Lost inodedep"); 3742 TAILQ_REMOVE(&inodedep->id_inoreflst, &jremref->jr_ref, if_deps); 3743 /* 3744 * Complete the dirrem. 3745 */ 3746 dirrem = jremref->jr_dirrem; 3747 jremref->jr_dirrem = NULL; 3748 LIST_REMOVE(jremref, jr_deps); 3749 jsegdep->jd_state |= jremref->jr_state & MKDIR_PARENT; 3750 jwork_insert(&dirrem->dm_jwork, jsegdep); 3751 if (LIST_EMPTY(&dirrem->dm_jremrefhd) && 3752 (dirrem->dm_state & COMPLETE) != 0) 3753 add_to_worklist(&dirrem->dm_list, 0); 3754 free_jremref(jremref); 3755 } 3756 3757 /* 3758 * Called once a jaddref has made it to stable store. The dependency is 3759 * marked complete and any dependent structures are added to the inode 3760 * bufwait list to be completed as soon as it is written. If a bitmap write 3761 * depends on this entry we move the inode into the inodedephd of the 3762 * bmsafemap dependency and attempt to remove the jaddref from the bmsafemap. 3763 */ 3764 static void 3765 handle_written_jaddref(jaddref) 3766 struct jaddref *jaddref; 3767 { 3768 struct jsegdep *jsegdep; 3769 struct inodedep *inodedep; 3770 struct diradd *diradd; 3771 struct mkdir *mkdir; 3772 3773 /* Grab the jsegdep. */ 3774 jsegdep = inoref_jseg(&jaddref->ja_ref); 3775 mkdir = NULL; 3776 diradd = NULL; 3777 if (inodedep_lookup(jaddref->ja_list.wk_mp, jaddref->ja_ino, 3778 0, &inodedep) == 0) 3779 panic("handle_written_jaddref: Lost inodedep."); 3780 if (jaddref->ja_diradd == NULL) 3781 panic("handle_written_jaddref: No dependency"); 3782 if (jaddref->ja_diradd->da_list.wk_type == D_DIRADD) { 3783 diradd = jaddref->ja_diradd; 3784 WORKLIST_INSERT(&inodedep->id_bufwait, &diradd->da_list); 3785 } else if (jaddref->ja_state & MKDIR_PARENT) { 3786 mkdir = jaddref->ja_mkdir; 3787 WORKLIST_INSERT(&inodedep->id_bufwait, &mkdir->md_list); 3788 } else if (jaddref->ja_state & MKDIR_BODY) 3789 mkdir = jaddref->ja_mkdir; 3790 else 3791 panic("handle_written_jaddref: Unknown dependency %p", 3792 jaddref->ja_diradd); 3793 jaddref->ja_diradd = NULL; /* also clears ja_mkdir */ 3794 /* 3795 * Remove us from the inode list. 3796 */ 3797 TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref, if_deps); 3798 /* 3799 * The mkdir may be waiting on the jaddref to clear before freeing. 3800 */ 3801 if (mkdir) { 3802 KASSERT(mkdir->md_list.wk_type == D_MKDIR, 3803 ("handle_written_jaddref: Incorrect type for mkdir %s", 3804 TYPENAME(mkdir->md_list.wk_type))); 3805 mkdir->md_jaddref = NULL; 3806 diradd = mkdir->md_diradd; 3807 mkdir->md_state |= DEPCOMPLETE; 3808 complete_mkdir(mkdir); 3809 } 3810 jwork_insert(&diradd->da_jwork, jsegdep); 3811 if (jaddref->ja_state & NEWBLOCK) { 3812 inodedep->id_state |= ONDEPLIST; 3813 LIST_INSERT_HEAD(&inodedep->id_bmsafemap->sm_inodedephd, 3814 inodedep, id_deps); 3815 } 3816 free_jaddref(jaddref); 3817 } 3818 3819 /* 3820 * Called once a jnewblk journal is written. The allocdirect or allocindir 3821 * is placed in the bmsafemap to await notification of a written bitmap. If 3822 * the operation was canceled we add the segdep to the appropriate 3823 * dependency to free the journal space once the canceling operation 3824 * completes. 3825 */ 3826 static void 3827 handle_written_jnewblk(jnewblk) 3828 struct jnewblk *jnewblk; 3829 { 3830 struct bmsafemap *bmsafemap; 3831 struct freefrag *freefrag; 3832 struct freework *freework; 3833 struct jsegdep *jsegdep; 3834 struct newblk *newblk; 3835 3836 /* Grab the jsegdep. */ 3837 jsegdep = jnewblk->jn_jsegdep; 3838 jnewblk->jn_jsegdep = NULL; 3839 if (jnewblk->jn_dep == NULL) 3840 panic("handle_written_jnewblk: No dependency for the segdep."); 3841 switch (jnewblk->jn_dep->wk_type) { 3842 case D_NEWBLK: 3843 case D_ALLOCDIRECT: 3844 case D_ALLOCINDIR: 3845 /* 3846 * Add the written block to the bmsafemap so it can 3847 * be notified when the bitmap is on disk. 3848 */ 3849 newblk = WK_NEWBLK(jnewblk->jn_dep); 3850 newblk->nb_jnewblk = NULL; 3851 if ((newblk->nb_state & GOINGAWAY) == 0) { 3852 bmsafemap = newblk->nb_bmsafemap; 3853 newblk->nb_state |= ONDEPLIST; 3854 LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, 3855 nb_deps); 3856 } 3857 jwork_insert(&newblk->nb_jwork, jsegdep); 3858 break; 3859 case D_FREEFRAG: 3860 /* 3861 * A newblock being removed by a freefrag when replaced by 3862 * frag extension. 3863 */ 3864 freefrag = WK_FREEFRAG(jnewblk->jn_dep); 3865 freefrag->ff_jdep = NULL; 3866 jwork_insert(&freefrag->ff_jwork, jsegdep); 3867 break; 3868 case D_FREEWORK: 3869 /* 3870 * A direct block was removed by truncate. 3871 */ 3872 freework = WK_FREEWORK(jnewblk->jn_dep); 3873 freework->fw_jnewblk = NULL; 3874 jwork_insert(&freework->fw_freeblks->fb_jwork, jsegdep); 3875 break; 3876 default: 3877 panic("handle_written_jnewblk: Unknown type %d.", 3878 jnewblk->jn_dep->wk_type); 3879 } 3880 jnewblk->jn_dep = NULL; 3881 free_jnewblk(jnewblk); 3882 } 3883 3884 /* 3885 * Cancel a jfreefrag that won't be needed, probably due to colliding with 3886 * an in-flight allocation that has not yet been committed. Divorce us 3887 * from the freefrag and mark it DEPCOMPLETE so that it may be added 3888 * to the worklist. 3889 */ 3890 static void 3891 cancel_jfreefrag(jfreefrag) 3892 struct jfreefrag *jfreefrag; 3893 { 3894 struct freefrag *freefrag; 3895 3896 if (jfreefrag->fr_jsegdep) { 3897 free_jsegdep(jfreefrag->fr_jsegdep); 3898 jfreefrag->fr_jsegdep = NULL; 3899 } 3900 freefrag = jfreefrag->fr_freefrag; 3901 jfreefrag->fr_freefrag = NULL; 3902 free_jfreefrag(jfreefrag); 3903 freefrag->ff_state |= DEPCOMPLETE; 3904 CTR1(KTR_SUJ, "cancel_jfreefrag: blkno %jd", freefrag->ff_blkno); 3905 } 3906 3907 /* 3908 * Free a jfreefrag when the parent freefrag is rendered obsolete. 3909 */ 3910 static void 3911 free_jfreefrag(jfreefrag) 3912 struct jfreefrag *jfreefrag; 3913 { 3914 3915 if (jfreefrag->fr_state & INPROGRESS) 3916 WORKLIST_REMOVE(&jfreefrag->fr_list); 3917 else if (jfreefrag->fr_state & ONWORKLIST) 3918 remove_from_journal(&jfreefrag->fr_list); 3919 if (jfreefrag->fr_freefrag != NULL) 3920 panic("free_jfreefrag: Still attached to a freefrag."); 3921 WORKITEM_FREE(jfreefrag, D_JFREEFRAG); 3922 } 3923 3924 /* 3925 * Called when the journal write for a jfreefrag completes. The parent 3926 * freefrag is added to the worklist if this completes its dependencies. 3927 */ 3928 static void 3929 handle_written_jfreefrag(jfreefrag) 3930 struct jfreefrag *jfreefrag; 3931 { 3932 struct jsegdep *jsegdep; 3933 struct freefrag *freefrag; 3934 3935 /* Grab the jsegdep. */ 3936 jsegdep = jfreefrag->fr_jsegdep; 3937 jfreefrag->fr_jsegdep = NULL; 3938 freefrag = jfreefrag->fr_freefrag; 3939 if (freefrag == NULL) 3940 panic("handle_written_jfreefrag: No freefrag."); 3941 freefrag->ff_state |= DEPCOMPLETE; 3942 freefrag->ff_jdep = NULL; 3943 jwork_insert(&freefrag->ff_jwork, jsegdep); 3944 if ((freefrag->ff_state & ALLCOMPLETE) == ALLCOMPLETE) 3945 add_to_worklist(&freefrag->ff_list, 0); 3946 jfreefrag->fr_freefrag = NULL; 3947 free_jfreefrag(jfreefrag); 3948 } 3949 3950 /* 3951 * Called when the journal write for a jfreeblk completes. The jfreeblk 3952 * is removed from the freeblks list of pending journal writes and the 3953 * jsegdep is moved to the freeblks jwork to be completed when all blocks 3954 * have been reclaimed. 3955 */ 3956 static void 3957 handle_written_jblkdep(jblkdep) 3958 struct jblkdep *jblkdep; 3959 { 3960 struct freeblks *freeblks; 3961 struct jsegdep *jsegdep; 3962 3963 /* Grab the jsegdep. */ 3964 jsegdep = jblkdep->jb_jsegdep; 3965 jblkdep->jb_jsegdep = NULL; 3966 freeblks = jblkdep->jb_freeblks; 3967 LIST_REMOVE(jblkdep, jb_deps); 3968 jwork_insert(&freeblks->fb_jwork, jsegdep); 3969 /* 3970 * If the freeblks is all journaled, we can add it to the worklist. 3971 */ 3972 if (LIST_EMPTY(&freeblks->fb_jblkdephd) && 3973 (freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE) 3974 add_to_worklist(&freeblks->fb_list, WK_NODELAY); 3975 3976 free_jblkdep(jblkdep); 3977 } 3978 3979 static struct jsegdep * 3980 newjsegdep(struct worklist *wk) 3981 { 3982 struct jsegdep *jsegdep; 3983 3984 jsegdep = malloc(sizeof(*jsegdep), M_JSEGDEP, M_SOFTDEP_FLAGS); 3985 workitem_alloc(&jsegdep->jd_list, D_JSEGDEP, wk->wk_mp); 3986 jsegdep->jd_seg = NULL; 3987 3988 return (jsegdep); 3989 } 3990 3991 static struct jmvref * 3992 newjmvref(dp, ino, oldoff, newoff) 3993 struct inode *dp; 3994 ino_t ino; 3995 off_t oldoff; 3996 off_t newoff; 3997 { 3998 struct jmvref *jmvref; 3999 4000 jmvref = malloc(sizeof(*jmvref), M_JMVREF, M_SOFTDEP_FLAGS); 4001 workitem_alloc(&jmvref->jm_list, D_JMVREF, ITOVFS(dp)); 4002 jmvref->jm_list.wk_state = ATTACHED | DEPCOMPLETE; 4003 jmvref->jm_parent = dp->i_number; 4004 jmvref->jm_ino = ino; 4005 jmvref->jm_oldoff = oldoff; 4006 jmvref->jm_newoff = newoff; 4007 4008 return (jmvref); 4009 } 4010 4011 /* 4012 * Allocate a new jremref that tracks the removal of ip from dp with the 4013 * directory entry offset of diroff. Mark the entry as ATTACHED and 4014 * DEPCOMPLETE as we have all the information required for the journal write 4015 * and the directory has already been removed from the buffer. The caller 4016 * is responsible for linking the jremref into the pagedep and adding it 4017 * to the journal to write. The MKDIR_PARENT flag is set if we're doing 4018 * a DOTDOT addition so handle_workitem_remove() can properly assign 4019 * the jsegdep when we're done. 4020 */ 4021 static struct jremref * 4022 newjremref(struct dirrem *dirrem, struct inode *dp, struct inode *ip, 4023 off_t diroff, nlink_t nlink) 4024 { 4025 struct jremref *jremref; 4026 4027 jremref = malloc(sizeof(*jremref), M_JREMREF, M_SOFTDEP_FLAGS); 4028 workitem_alloc(&jremref->jr_list, D_JREMREF, ITOVFS(dp)); 4029 jremref->jr_state = ATTACHED; 4030 newinoref(&jremref->jr_ref, ip->i_number, dp->i_number, diroff, 4031 nlink, ip->i_mode); 4032 jremref->jr_dirrem = dirrem; 4033 4034 return (jremref); 4035 } 4036 4037 static inline void 4038 newinoref(struct inoref *inoref, ino_t ino, ino_t parent, off_t diroff, 4039 nlink_t nlink, uint16_t mode) 4040 { 4041 4042 inoref->if_jsegdep = newjsegdep(&inoref->if_list); 4043 inoref->if_diroff = diroff; 4044 inoref->if_ino = ino; 4045 inoref->if_parent = parent; 4046 inoref->if_nlink = nlink; 4047 inoref->if_mode = mode; 4048 } 4049 4050 /* 4051 * Allocate a new jaddref to track the addition of ino to dp at diroff. The 4052 * directory offset may not be known until later. The caller is responsible 4053 * adding the entry to the journal when this information is available. nlink 4054 * should be the link count prior to the addition and mode is only required 4055 * to have the correct FMT. 4056 */ 4057 static struct jaddref * 4058 newjaddref(struct inode *dp, ino_t ino, off_t diroff, int16_t nlink, 4059 uint16_t mode) 4060 { 4061 struct jaddref *jaddref; 4062 4063 jaddref = malloc(sizeof(*jaddref), M_JADDREF, M_SOFTDEP_FLAGS); 4064 workitem_alloc(&jaddref->ja_list, D_JADDREF, ITOVFS(dp)); 4065 jaddref->ja_state = ATTACHED; 4066 jaddref->ja_mkdir = NULL; 4067 newinoref(&jaddref->ja_ref, ino, dp->i_number, diroff, nlink, mode); 4068 4069 return (jaddref); 4070 } 4071 4072 /* 4073 * Create a new free dependency for a freework. The caller is responsible 4074 * for adjusting the reference count when it has the lock held. The freedep 4075 * will track an outstanding bitmap write that will ultimately clear the 4076 * freework to continue. 4077 */ 4078 static struct freedep * 4079 newfreedep(struct freework *freework) 4080 { 4081 struct freedep *freedep; 4082 4083 freedep = malloc(sizeof(*freedep), M_FREEDEP, M_SOFTDEP_FLAGS); 4084 workitem_alloc(&freedep->fd_list, D_FREEDEP, freework->fw_list.wk_mp); 4085 freedep->fd_freework = freework; 4086 4087 return (freedep); 4088 } 4089 4090 /* 4091 * Free a freedep structure once the buffer it is linked to is written. If 4092 * this is the last reference to the freework schedule it for completion. 4093 */ 4094 static void 4095 free_freedep(freedep) 4096 struct freedep *freedep; 4097 { 4098 struct freework *freework; 4099 4100 freework = freedep->fd_freework; 4101 freework->fw_freeblks->fb_cgwait--; 4102 if (--freework->fw_ref == 0) 4103 freework_enqueue(freework); 4104 WORKITEM_FREE(freedep, D_FREEDEP); 4105 } 4106 4107 /* 4108 * Allocate a new freework structure that may be a level in an indirect 4109 * when parent is not NULL or a top level block when it is. The top level 4110 * freework structures are allocated without the per-filesystem lock held 4111 * and before the freeblks is visible outside of softdep_setup_freeblocks(). 4112 */ 4113 static struct freework * 4114 newfreework(ump, freeblks, parent, lbn, nb, frags, off, journal) 4115 struct ufsmount *ump; 4116 struct freeblks *freeblks; 4117 struct freework *parent; 4118 ufs_lbn_t lbn; 4119 ufs2_daddr_t nb; 4120 int frags; 4121 int off; 4122 int journal; 4123 { 4124 struct freework *freework; 4125 4126 freework = malloc(sizeof(*freework), M_FREEWORK, M_SOFTDEP_FLAGS); 4127 workitem_alloc(&freework->fw_list, D_FREEWORK, freeblks->fb_list.wk_mp); 4128 freework->fw_state = ATTACHED; 4129 freework->fw_jnewblk = NULL; 4130 freework->fw_freeblks = freeblks; 4131 freework->fw_parent = parent; 4132 freework->fw_lbn = lbn; 4133 freework->fw_blkno = nb; 4134 freework->fw_frags = frags; 4135 freework->fw_indir = NULL; 4136 freework->fw_ref = (MOUNTEDSUJ(UFSTOVFS(ump)) == 0 || 4137 lbn >= -UFS_NXADDR) ? 0 : NINDIR(ump->um_fs) + 1; 4138 freework->fw_start = freework->fw_off = off; 4139 if (journal) 4140 newjfreeblk(freeblks, lbn, nb, frags); 4141 if (parent == NULL) { 4142 ACQUIRE_LOCK(ump); 4143 WORKLIST_INSERT(&freeblks->fb_freeworkhd, &freework->fw_list); 4144 freeblks->fb_ref++; 4145 FREE_LOCK(ump); 4146 } 4147 4148 return (freework); 4149 } 4150 4151 /* 4152 * Eliminate a jfreeblk for a block that does not need journaling. 4153 */ 4154 static void 4155 cancel_jfreeblk(freeblks, blkno) 4156 struct freeblks *freeblks; 4157 ufs2_daddr_t blkno; 4158 { 4159 struct jfreeblk *jfreeblk; 4160 struct jblkdep *jblkdep; 4161 4162 LIST_FOREACH(jblkdep, &freeblks->fb_jblkdephd, jb_deps) { 4163 if (jblkdep->jb_list.wk_type != D_JFREEBLK) 4164 continue; 4165 jfreeblk = WK_JFREEBLK(&jblkdep->jb_list); 4166 if (jfreeblk->jf_blkno == blkno) 4167 break; 4168 } 4169 if (jblkdep == NULL) 4170 return; 4171 CTR1(KTR_SUJ, "cancel_jfreeblk: blkno %jd", blkno); 4172 free_jsegdep(jblkdep->jb_jsegdep); 4173 LIST_REMOVE(jblkdep, jb_deps); 4174 WORKITEM_FREE(jfreeblk, D_JFREEBLK); 4175 } 4176 4177 /* 4178 * Allocate a new jfreeblk to journal top level block pointer when truncating 4179 * a file. The caller must add this to the worklist when the per-filesystem 4180 * lock is held. 4181 */ 4182 static struct jfreeblk * 4183 newjfreeblk(freeblks, lbn, blkno, frags) 4184 struct freeblks *freeblks; 4185 ufs_lbn_t lbn; 4186 ufs2_daddr_t blkno; 4187 int frags; 4188 { 4189 struct jfreeblk *jfreeblk; 4190 4191 jfreeblk = malloc(sizeof(*jfreeblk), M_JFREEBLK, M_SOFTDEP_FLAGS); 4192 workitem_alloc(&jfreeblk->jf_dep.jb_list, D_JFREEBLK, 4193 freeblks->fb_list.wk_mp); 4194 jfreeblk->jf_dep.jb_jsegdep = newjsegdep(&jfreeblk->jf_dep.jb_list); 4195 jfreeblk->jf_dep.jb_freeblks = freeblks; 4196 jfreeblk->jf_ino = freeblks->fb_inum; 4197 jfreeblk->jf_lbn = lbn; 4198 jfreeblk->jf_blkno = blkno; 4199 jfreeblk->jf_frags = frags; 4200 LIST_INSERT_HEAD(&freeblks->fb_jblkdephd, &jfreeblk->jf_dep, jb_deps); 4201 4202 return (jfreeblk); 4203 } 4204 4205 /* 4206 * The journal is only prepared to handle full-size block numbers, so we 4207 * have to adjust the record to reflect the change to a full-size block. 4208 * For example, suppose we have a block made up of fragments 8-15 and 4209 * want to free its last two fragments. We are given a request that says: 4210 * FREEBLK ino=5, blkno=14, lbn=0, frags=2, oldfrags=0 4211 * where frags are the number of fragments to free and oldfrags are the 4212 * number of fragments to keep. To block align it, we have to change it to 4213 * have a valid full-size blkno, so it becomes: 4214 * FREEBLK ino=5, blkno=8, lbn=0, frags=2, oldfrags=6 4215 */ 4216 static void 4217 adjust_newfreework(freeblks, frag_offset) 4218 struct freeblks *freeblks; 4219 int frag_offset; 4220 { 4221 struct jfreeblk *jfreeblk; 4222 4223 KASSERT((LIST_FIRST(&freeblks->fb_jblkdephd) != NULL && 4224 LIST_FIRST(&freeblks->fb_jblkdephd)->jb_list.wk_type == D_JFREEBLK), 4225 ("adjust_newfreework: Missing freeblks dependency")); 4226 4227 jfreeblk = WK_JFREEBLK(LIST_FIRST(&freeblks->fb_jblkdephd)); 4228 jfreeblk->jf_blkno -= frag_offset; 4229 jfreeblk->jf_frags += frag_offset; 4230 } 4231 4232 /* 4233 * Allocate a new jtrunc to track a partial truncation. 4234 */ 4235 static struct jtrunc * 4236 newjtrunc(freeblks, size, extsize) 4237 struct freeblks *freeblks; 4238 off_t size; 4239 int extsize; 4240 { 4241 struct jtrunc *jtrunc; 4242 4243 jtrunc = malloc(sizeof(*jtrunc), M_JTRUNC, M_SOFTDEP_FLAGS); 4244 workitem_alloc(&jtrunc->jt_dep.jb_list, D_JTRUNC, 4245 freeblks->fb_list.wk_mp); 4246 jtrunc->jt_dep.jb_jsegdep = newjsegdep(&jtrunc->jt_dep.jb_list); 4247 jtrunc->jt_dep.jb_freeblks = freeblks; 4248 jtrunc->jt_ino = freeblks->fb_inum; 4249 jtrunc->jt_size = size; 4250 jtrunc->jt_extsize = extsize; 4251 LIST_INSERT_HEAD(&freeblks->fb_jblkdephd, &jtrunc->jt_dep, jb_deps); 4252 4253 return (jtrunc); 4254 } 4255 4256 /* 4257 * If we're canceling a new bitmap we have to search for another ref 4258 * to move into the bmsafemap dep. This might be better expressed 4259 * with another structure. 4260 */ 4261 static void 4262 move_newblock_dep(jaddref, inodedep) 4263 struct jaddref *jaddref; 4264 struct inodedep *inodedep; 4265 { 4266 struct inoref *inoref; 4267 struct jaddref *jaddrefn; 4268 4269 jaddrefn = NULL; 4270 for (inoref = TAILQ_NEXT(&jaddref->ja_ref, if_deps); inoref; 4271 inoref = TAILQ_NEXT(inoref, if_deps)) { 4272 if ((jaddref->ja_state & NEWBLOCK) && 4273 inoref->if_list.wk_type == D_JADDREF) { 4274 jaddrefn = (struct jaddref *)inoref; 4275 break; 4276 } 4277 } 4278 if (jaddrefn == NULL) 4279 return; 4280 jaddrefn->ja_state &= ~(ATTACHED | UNDONE); 4281 jaddrefn->ja_state |= jaddref->ja_state & 4282 (ATTACHED | UNDONE | NEWBLOCK); 4283 jaddref->ja_state &= ~(ATTACHED | UNDONE | NEWBLOCK); 4284 jaddref->ja_state |= ATTACHED; 4285 LIST_REMOVE(jaddref, ja_bmdeps); 4286 LIST_INSERT_HEAD(&inodedep->id_bmsafemap->sm_jaddrefhd, jaddrefn, 4287 ja_bmdeps); 4288 } 4289 4290 /* 4291 * Cancel a jaddref either before it has been written or while it is being 4292 * written. This happens when a link is removed before the add reaches 4293 * the disk. The jaddref dependency is kept linked into the bmsafemap 4294 * and inode to prevent the link count or bitmap from reaching the disk 4295 * until handle_workitem_remove() re-adjusts the counts and bitmaps as 4296 * required. 4297 * 4298 * Returns 1 if the canceled addref requires journaling of the remove and 4299 * 0 otherwise. 4300 */ 4301 static int 4302 cancel_jaddref(jaddref, inodedep, wkhd) 4303 struct jaddref *jaddref; 4304 struct inodedep *inodedep; 4305 struct workhead *wkhd; 4306 { 4307 struct inoref *inoref; 4308 struct jsegdep *jsegdep; 4309 int needsj; 4310 4311 KASSERT((jaddref->ja_state & COMPLETE) == 0, 4312 ("cancel_jaddref: Canceling complete jaddref")); 4313 if (jaddref->ja_state & (INPROGRESS | COMPLETE)) 4314 needsj = 1; 4315 else 4316 needsj = 0; 4317 if (inodedep == NULL) 4318 if (inodedep_lookup(jaddref->ja_list.wk_mp, jaddref->ja_ino, 4319 0, &inodedep) == 0) 4320 panic("cancel_jaddref: Lost inodedep"); 4321 /* 4322 * We must adjust the nlink of any reference operation that follows 4323 * us so that it is consistent with the in-memory reference. This 4324 * ensures that inode nlink rollbacks always have the correct link. 4325 */ 4326 if (needsj == 0) { 4327 for (inoref = TAILQ_NEXT(&jaddref->ja_ref, if_deps); inoref; 4328 inoref = TAILQ_NEXT(inoref, if_deps)) { 4329 if (inoref->if_state & GOINGAWAY) 4330 break; 4331 inoref->if_nlink--; 4332 } 4333 } 4334 jsegdep = inoref_jseg(&jaddref->ja_ref); 4335 if (jaddref->ja_state & NEWBLOCK) 4336 move_newblock_dep(jaddref, inodedep); 4337 wake_worklist(&jaddref->ja_list); 4338 jaddref->ja_mkdir = NULL; 4339 if (jaddref->ja_state & INPROGRESS) { 4340 jaddref->ja_state &= ~INPROGRESS; 4341 WORKLIST_REMOVE(&jaddref->ja_list); 4342 jwork_insert(wkhd, jsegdep); 4343 } else { 4344 free_jsegdep(jsegdep); 4345 if (jaddref->ja_state & DEPCOMPLETE) 4346 remove_from_journal(&jaddref->ja_list); 4347 } 4348 jaddref->ja_state |= (GOINGAWAY | DEPCOMPLETE); 4349 /* 4350 * Leave NEWBLOCK jaddrefs on the inodedep so handle_workitem_remove 4351 * can arrange for them to be freed with the bitmap. Otherwise we 4352 * no longer need this addref attached to the inoreflst and it 4353 * will incorrectly adjust nlink if we leave it. 4354 */ 4355 if ((jaddref->ja_state & NEWBLOCK) == 0) { 4356 TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref, 4357 if_deps); 4358 jaddref->ja_state |= COMPLETE; 4359 free_jaddref(jaddref); 4360 return (needsj); 4361 } 4362 /* 4363 * Leave the head of the list for jsegdeps for fast merging. 4364 */ 4365 if (LIST_FIRST(wkhd) != NULL) { 4366 jaddref->ja_state |= ONWORKLIST; 4367 LIST_INSERT_AFTER(LIST_FIRST(wkhd), &jaddref->ja_list, wk_list); 4368 } else 4369 WORKLIST_INSERT(wkhd, &jaddref->ja_list); 4370 4371 return (needsj); 4372 } 4373 4374 /* 4375 * Attempt to free a jaddref structure when some work completes. This 4376 * should only succeed once the entry is written and all dependencies have 4377 * been notified. 4378 */ 4379 static void 4380 free_jaddref(jaddref) 4381 struct jaddref *jaddref; 4382 { 4383 4384 if ((jaddref->ja_state & ALLCOMPLETE) != ALLCOMPLETE) 4385 return; 4386 if (jaddref->ja_ref.if_jsegdep) 4387 panic("free_jaddref: segdep attached to jaddref %p(0x%X)\n", 4388 jaddref, jaddref->ja_state); 4389 if (jaddref->ja_state & NEWBLOCK) 4390 LIST_REMOVE(jaddref, ja_bmdeps); 4391 if (jaddref->ja_state & (INPROGRESS | ONWORKLIST)) 4392 panic("free_jaddref: Bad state %p(0x%X)", 4393 jaddref, jaddref->ja_state); 4394 if (jaddref->ja_mkdir != NULL) 4395 panic("free_jaddref: Work pending, 0x%X\n", jaddref->ja_state); 4396 WORKITEM_FREE(jaddref, D_JADDREF); 4397 } 4398 4399 /* 4400 * Free a jremref structure once it has been written or discarded. 4401 */ 4402 static void 4403 free_jremref(jremref) 4404 struct jremref *jremref; 4405 { 4406 4407 if (jremref->jr_ref.if_jsegdep) 4408 free_jsegdep(jremref->jr_ref.if_jsegdep); 4409 if (jremref->jr_state & INPROGRESS) 4410 panic("free_jremref: IO still pending"); 4411 WORKITEM_FREE(jremref, D_JREMREF); 4412 } 4413 4414 /* 4415 * Free a jnewblk structure. 4416 */ 4417 static void 4418 free_jnewblk(jnewblk) 4419 struct jnewblk *jnewblk; 4420 { 4421 4422 if ((jnewblk->jn_state & ALLCOMPLETE) != ALLCOMPLETE) 4423 return; 4424 LIST_REMOVE(jnewblk, jn_deps); 4425 if (jnewblk->jn_dep != NULL) 4426 panic("free_jnewblk: Dependency still attached."); 4427 WORKITEM_FREE(jnewblk, D_JNEWBLK); 4428 } 4429 4430 /* 4431 * Cancel a jnewblk which has been been made redundant by frag extension. 4432 */ 4433 static void 4434 cancel_jnewblk(jnewblk, wkhd) 4435 struct jnewblk *jnewblk; 4436 struct workhead *wkhd; 4437 { 4438 struct jsegdep *jsegdep; 4439 4440 CTR1(KTR_SUJ, "cancel_jnewblk: blkno %jd", jnewblk->jn_blkno); 4441 jsegdep = jnewblk->jn_jsegdep; 4442 if (jnewblk->jn_jsegdep == NULL || jnewblk->jn_dep == NULL) 4443 panic("cancel_jnewblk: Invalid state"); 4444 jnewblk->jn_jsegdep = NULL; 4445 jnewblk->jn_dep = NULL; 4446 jnewblk->jn_state |= GOINGAWAY; 4447 if (jnewblk->jn_state & INPROGRESS) { 4448 jnewblk->jn_state &= ~INPROGRESS; 4449 WORKLIST_REMOVE(&jnewblk->jn_list); 4450 jwork_insert(wkhd, jsegdep); 4451 } else { 4452 free_jsegdep(jsegdep); 4453 remove_from_journal(&jnewblk->jn_list); 4454 } 4455 wake_worklist(&jnewblk->jn_list); 4456 WORKLIST_INSERT(wkhd, &jnewblk->jn_list); 4457 } 4458 4459 static void 4460 free_jblkdep(jblkdep) 4461 struct jblkdep *jblkdep; 4462 { 4463 4464 if (jblkdep->jb_list.wk_type == D_JFREEBLK) 4465 WORKITEM_FREE(jblkdep, D_JFREEBLK); 4466 else if (jblkdep->jb_list.wk_type == D_JTRUNC) 4467 WORKITEM_FREE(jblkdep, D_JTRUNC); 4468 else 4469 panic("free_jblkdep: Unexpected type %s", 4470 TYPENAME(jblkdep->jb_list.wk_type)); 4471 } 4472 4473 /* 4474 * Free a single jseg once it is no longer referenced in memory or on 4475 * disk. Reclaim journal blocks and dependencies waiting for the segment 4476 * to disappear. 4477 */ 4478 static void 4479 free_jseg(jseg, jblocks) 4480 struct jseg *jseg; 4481 struct jblocks *jblocks; 4482 { 4483 struct freework *freework; 4484 4485 /* 4486 * Free freework structures that were lingering to indicate freed 4487 * indirect blocks that forced journal write ordering on reallocate. 4488 */ 4489 while ((freework = LIST_FIRST(&jseg->js_indirs)) != NULL) 4490 indirblk_remove(freework); 4491 if (jblocks->jb_oldestseg == jseg) 4492 jblocks->jb_oldestseg = TAILQ_NEXT(jseg, js_next); 4493 TAILQ_REMOVE(&jblocks->jb_segs, jseg, js_next); 4494 jblocks_free(jblocks, jseg->js_list.wk_mp, jseg->js_size); 4495 KASSERT(LIST_EMPTY(&jseg->js_entries), 4496 ("free_jseg: Freed jseg has valid entries.")); 4497 WORKITEM_FREE(jseg, D_JSEG); 4498 } 4499 4500 /* 4501 * Free all jsegs that meet the criteria for being reclaimed and update 4502 * oldestseg. 4503 */ 4504 static void 4505 free_jsegs(jblocks) 4506 struct jblocks *jblocks; 4507 { 4508 struct jseg *jseg; 4509 4510 /* 4511 * Free only those jsegs which have none allocated before them to 4512 * preserve the journal space ordering. 4513 */ 4514 while ((jseg = TAILQ_FIRST(&jblocks->jb_segs)) != NULL) { 4515 /* 4516 * Only reclaim space when nothing depends on this journal 4517 * set and another set has written that it is no longer 4518 * valid. 4519 */ 4520 if (jseg->js_refs != 0) { 4521 jblocks->jb_oldestseg = jseg; 4522 return; 4523 } 4524 if ((jseg->js_state & ALLCOMPLETE) != ALLCOMPLETE) 4525 break; 4526 if (jseg->js_seq > jblocks->jb_oldestwrseq) 4527 break; 4528 /* 4529 * We can free jsegs that didn't write entries when 4530 * oldestwrseq == js_seq. 4531 */ 4532 if (jseg->js_seq == jblocks->jb_oldestwrseq && 4533 jseg->js_cnt != 0) 4534 break; 4535 free_jseg(jseg, jblocks); 4536 } 4537 /* 4538 * If we exited the loop above we still must discover the 4539 * oldest valid segment. 4540 */ 4541 if (jseg) 4542 for (jseg = jblocks->jb_oldestseg; jseg != NULL; 4543 jseg = TAILQ_NEXT(jseg, js_next)) 4544 if (jseg->js_refs != 0) 4545 break; 4546 jblocks->jb_oldestseg = jseg; 4547 /* 4548 * The journal has no valid records but some jsegs may still be 4549 * waiting on oldestwrseq to advance. We force a small record 4550 * out to permit these lingering records to be reclaimed. 4551 */ 4552 if (jblocks->jb_oldestseg == NULL && !TAILQ_EMPTY(&jblocks->jb_segs)) 4553 jblocks->jb_needseg = 1; 4554 } 4555 4556 /* 4557 * Release one reference to a jseg and free it if the count reaches 0. This 4558 * should eventually reclaim journal space as well. 4559 */ 4560 static void 4561 rele_jseg(jseg) 4562 struct jseg *jseg; 4563 { 4564 4565 KASSERT(jseg->js_refs > 0, 4566 ("free_jseg: Invalid refcnt %d", jseg->js_refs)); 4567 if (--jseg->js_refs != 0) 4568 return; 4569 free_jsegs(jseg->js_jblocks); 4570 } 4571 4572 /* 4573 * Release a jsegdep and decrement the jseg count. 4574 */ 4575 static void 4576 free_jsegdep(jsegdep) 4577 struct jsegdep *jsegdep; 4578 { 4579 4580 if (jsegdep->jd_seg) 4581 rele_jseg(jsegdep->jd_seg); 4582 WORKITEM_FREE(jsegdep, D_JSEGDEP); 4583 } 4584 4585 /* 4586 * Wait for a journal item to make it to disk. Initiate journal processing 4587 * if required. 4588 */ 4589 static int 4590 jwait(wk, waitfor) 4591 struct worklist *wk; 4592 int waitfor; 4593 { 4594 4595 LOCK_OWNED(VFSTOUFS(wk->wk_mp)); 4596 /* 4597 * Blocking journal waits cause slow synchronous behavior. Record 4598 * stats on the frequency of these blocking operations. 4599 */ 4600 if (waitfor == MNT_WAIT) { 4601 stat_journal_wait++; 4602 switch (wk->wk_type) { 4603 case D_JREMREF: 4604 case D_JMVREF: 4605 stat_jwait_filepage++; 4606 break; 4607 case D_JTRUNC: 4608 case D_JFREEBLK: 4609 stat_jwait_freeblks++; 4610 break; 4611 case D_JNEWBLK: 4612 stat_jwait_newblk++; 4613 break; 4614 case D_JADDREF: 4615 stat_jwait_inode++; 4616 break; 4617 default: 4618 break; 4619 } 4620 } 4621 /* 4622 * If IO has not started we process the journal. We can't mark the 4623 * worklist item as IOWAITING because we drop the lock while 4624 * processing the journal and the worklist entry may be freed after 4625 * this point. The caller may call back in and re-issue the request. 4626 */ 4627 if ((wk->wk_state & INPROGRESS) == 0) { 4628 softdep_process_journal(wk->wk_mp, wk, waitfor); 4629 if (waitfor != MNT_WAIT) 4630 return (EBUSY); 4631 return (0); 4632 } 4633 if (waitfor != MNT_WAIT) 4634 return (EBUSY); 4635 wait_worklist(wk, "jwait"); 4636 return (0); 4637 } 4638 4639 /* 4640 * Lookup an inodedep based on an inode pointer and set the nlinkdelta as 4641 * appropriate. This is a convenience function to reduce duplicate code 4642 * for the setup and revert functions below. 4643 */ 4644 static struct inodedep * 4645 inodedep_lookup_ip(ip) 4646 struct inode *ip; 4647 { 4648 struct inodedep *inodedep; 4649 4650 KASSERT(ip->i_nlink >= ip->i_effnlink, 4651 ("inodedep_lookup_ip: bad delta")); 4652 (void) inodedep_lookup(ITOVFS(ip), ip->i_number, DEPALLOC, 4653 &inodedep); 4654 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 4655 KASSERT((inodedep->id_state & UNLINKED) == 0, ("inode unlinked")); 4656 4657 return (inodedep); 4658 } 4659 4660 /* 4661 * Called prior to creating a new inode and linking it to a directory. The 4662 * jaddref structure must already be allocated by softdep_setup_inomapdep 4663 * and it is discovered here so we can initialize the mode and update 4664 * nlinkdelta. 4665 */ 4666 void 4667 softdep_setup_create(dp, ip) 4668 struct inode *dp; 4669 struct inode *ip; 4670 { 4671 struct inodedep *inodedep; 4672 struct jaddref *jaddref; 4673 struct vnode *dvp; 4674 4675 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 4676 ("softdep_setup_create called on non-softdep filesystem")); 4677 KASSERT(ip->i_nlink == 1, 4678 ("softdep_setup_create: Invalid link count.")); 4679 dvp = ITOV(dp); 4680 ACQUIRE_LOCK(ITOUMP(dp)); 4681 inodedep = inodedep_lookup_ip(ip); 4682 if (DOINGSUJ(dvp)) { 4683 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 4684 inoreflst); 4685 KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number, 4686 ("softdep_setup_create: No addref structure present.")); 4687 } 4688 softdep_prelink(dvp, NULL); 4689 FREE_LOCK(ITOUMP(dp)); 4690 } 4691 4692 /* 4693 * Create a jaddref structure to track the addition of a DOTDOT link when 4694 * we are reparenting an inode as part of a rename. This jaddref will be 4695 * found by softdep_setup_directory_change. Adjusts nlinkdelta for 4696 * non-journaling softdep. 4697 */ 4698 void 4699 softdep_setup_dotdot_link(dp, ip) 4700 struct inode *dp; 4701 struct inode *ip; 4702 { 4703 struct inodedep *inodedep; 4704 struct jaddref *jaddref; 4705 struct vnode *dvp; 4706 4707 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 4708 ("softdep_setup_dotdot_link called on non-softdep filesystem")); 4709 dvp = ITOV(dp); 4710 jaddref = NULL; 4711 /* 4712 * We don't set MKDIR_PARENT as this is not tied to a mkdir and 4713 * is used as a normal link would be. 4714 */ 4715 if (DOINGSUJ(dvp)) 4716 jaddref = newjaddref(ip, dp->i_number, DOTDOT_OFFSET, 4717 dp->i_effnlink - 1, dp->i_mode); 4718 ACQUIRE_LOCK(ITOUMP(dp)); 4719 inodedep = inodedep_lookup_ip(dp); 4720 if (jaddref) 4721 TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref, 4722 if_deps); 4723 softdep_prelink(dvp, ITOV(ip)); 4724 FREE_LOCK(ITOUMP(dp)); 4725 } 4726 4727 /* 4728 * Create a jaddref structure to track a new link to an inode. The directory 4729 * offset is not known until softdep_setup_directory_add or 4730 * softdep_setup_directory_change. Adjusts nlinkdelta for non-journaling 4731 * softdep. 4732 */ 4733 void 4734 softdep_setup_link(dp, ip) 4735 struct inode *dp; 4736 struct inode *ip; 4737 { 4738 struct inodedep *inodedep; 4739 struct jaddref *jaddref; 4740 struct vnode *dvp; 4741 4742 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 4743 ("softdep_setup_link called on non-softdep filesystem")); 4744 dvp = ITOV(dp); 4745 jaddref = NULL; 4746 if (DOINGSUJ(dvp)) 4747 jaddref = newjaddref(dp, ip->i_number, 0, ip->i_effnlink - 1, 4748 ip->i_mode); 4749 ACQUIRE_LOCK(ITOUMP(dp)); 4750 inodedep = inodedep_lookup_ip(ip); 4751 if (jaddref) 4752 TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref, 4753 if_deps); 4754 softdep_prelink(dvp, ITOV(ip)); 4755 FREE_LOCK(ITOUMP(dp)); 4756 } 4757 4758 /* 4759 * Called to create the jaddref structures to track . and .. references as 4760 * well as lookup and further initialize the incomplete jaddref created 4761 * by softdep_setup_inomapdep when the inode was allocated. Adjusts 4762 * nlinkdelta for non-journaling softdep. 4763 */ 4764 void 4765 softdep_setup_mkdir(dp, ip) 4766 struct inode *dp; 4767 struct inode *ip; 4768 { 4769 struct inodedep *inodedep; 4770 struct jaddref *dotdotaddref; 4771 struct jaddref *dotaddref; 4772 struct jaddref *jaddref; 4773 struct vnode *dvp; 4774 4775 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 4776 ("softdep_setup_mkdir called on non-softdep filesystem")); 4777 dvp = ITOV(dp); 4778 dotaddref = dotdotaddref = NULL; 4779 if (DOINGSUJ(dvp)) { 4780 dotaddref = newjaddref(ip, ip->i_number, DOT_OFFSET, 1, 4781 ip->i_mode); 4782 dotaddref->ja_state |= MKDIR_BODY; 4783 dotdotaddref = newjaddref(ip, dp->i_number, DOTDOT_OFFSET, 4784 dp->i_effnlink - 1, dp->i_mode); 4785 dotdotaddref->ja_state |= MKDIR_PARENT; 4786 } 4787 ACQUIRE_LOCK(ITOUMP(dp)); 4788 inodedep = inodedep_lookup_ip(ip); 4789 if (DOINGSUJ(dvp)) { 4790 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 4791 inoreflst); 4792 KASSERT(jaddref != NULL, 4793 ("softdep_setup_mkdir: No addref structure present.")); 4794 KASSERT(jaddref->ja_parent == dp->i_number, 4795 ("softdep_setup_mkdir: bad parent %ju", 4796 (uintmax_t)jaddref->ja_parent)); 4797 TAILQ_INSERT_BEFORE(&jaddref->ja_ref, &dotaddref->ja_ref, 4798 if_deps); 4799 } 4800 inodedep = inodedep_lookup_ip(dp); 4801 if (DOINGSUJ(dvp)) 4802 TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, 4803 &dotdotaddref->ja_ref, if_deps); 4804 softdep_prelink(ITOV(dp), NULL); 4805 FREE_LOCK(ITOUMP(dp)); 4806 } 4807 4808 /* 4809 * Called to track nlinkdelta of the inode and parent directories prior to 4810 * unlinking a directory. 4811 */ 4812 void 4813 softdep_setup_rmdir(dp, ip) 4814 struct inode *dp; 4815 struct inode *ip; 4816 { 4817 struct vnode *dvp; 4818 4819 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 4820 ("softdep_setup_rmdir called on non-softdep filesystem")); 4821 dvp = ITOV(dp); 4822 ACQUIRE_LOCK(ITOUMP(dp)); 4823 (void) inodedep_lookup_ip(ip); 4824 (void) inodedep_lookup_ip(dp); 4825 softdep_prelink(dvp, ITOV(ip)); 4826 FREE_LOCK(ITOUMP(dp)); 4827 } 4828 4829 /* 4830 * Called to track nlinkdelta of the inode and parent directories prior to 4831 * unlink. 4832 */ 4833 void 4834 softdep_setup_unlink(dp, ip) 4835 struct inode *dp; 4836 struct inode *ip; 4837 { 4838 struct vnode *dvp; 4839 4840 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 4841 ("softdep_setup_unlink called on non-softdep filesystem")); 4842 dvp = ITOV(dp); 4843 ACQUIRE_LOCK(ITOUMP(dp)); 4844 (void) inodedep_lookup_ip(ip); 4845 (void) inodedep_lookup_ip(dp); 4846 softdep_prelink(dvp, ITOV(ip)); 4847 FREE_LOCK(ITOUMP(dp)); 4848 } 4849 4850 /* 4851 * Called to release the journal structures created by a failed non-directory 4852 * creation. Adjusts nlinkdelta for non-journaling softdep. 4853 */ 4854 void 4855 softdep_revert_create(dp, ip) 4856 struct inode *dp; 4857 struct inode *ip; 4858 { 4859 struct inodedep *inodedep; 4860 struct jaddref *jaddref; 4861 struct vnode *dvp; 4862 4863 KASSERT(MOUNTEDSOFTDEP(ITOVFS((dp))) != 0, 4864 ("softdep_revert_create called on non-softdep filesystem")); 4865 dvp = ITOV(dp); 4866 ACQUIRE_LOCK(ITOUMP(dp)); 4867 inodedep = inodedep_lookup_ip(ip); 4868 if (DOINGSUJ(dvp)) { 4869 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 4870 inoreflst); 4871 KASSERT(jaddref->ja_parent == dp->i_number, 4872 ("softdep_revert_create: addref parent mismatch")); 4873 cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait); 4874 } 4875 FREE_LOCK(ITOUMP(dp)); 4876 } 4877 4878 /* 4879 * Called to release the journal structures created by a failed link 4880 * addition. Adjusts nlinkdelta for non-journaling softdep. 4881 */ 4882 void 4883 softdep_revert_link(dp, ip) 4884 struct inode *dp; 4885 struct inode *ip; 4886 { 4887 struct inodedep *inodedep; 4888 struct jaddref *jaddref; 4889 struct vnode *dvp; 4890 4891 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 4892 ("softdep_revert_link called on non-softdep filesystem")); 4893 dvp = ITOV(dp); 4894 ACQUIRE_LOCK(ITOUMP(dp)); 4895 inodedep = inodedep_lookup_ip(ip); 4896 if (DOINGSUJ(dvp)) { 4897 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 4898 inoreflst); 4899 KASSERT(jaddref->ja_parent == dp->i_number, 4900 ("softdep_revert_link: addref parent mismatch")); 4901 cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait); 4902 } 4903 FREE_LOCK(ITOUMP(dp)); 4904 } 4905 4906 /* 4907 * Called to release the journal structures created by a failed mkdir 4908 * attempt. Adjusts nlinkdelta for non-journaling softdep. 4909 */ 4910 void 4911 softdep_revert_mkdir(dp, ip) 4912 struct inode *dp; 4913 struct inode *ip; 4914 { 4915 struct inodedep *inodedep; 4916 struct jaddref *jaddref; 4917 struct jaddref *dotaddref; 4918 struct vnode *dvp; 4919 4920 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 4921 ("softdep_revert_mkdir called on non-softdep filesystem")); 4922 dvp = ITOV(dp); 4923 4924 ACQUIRE_LOCK(ITOUMP(dp)); 4925 inodedep = inodedep_lookup_ip(dp); 4926 if (DOINGSUJ(dvp)) { 4927 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 4928 inoreflst); 4929 KASSERT(jaddref->ja_parent == ip->i_number, 4930 ("softdep_revert_mkdir: dotdot addref parent mismatch")); 4931 cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait); 4932 } 4933 inodedep = inodedep_lookup_ip(ip); 4934 if (DOINGSUJ(dvp)) { 4935 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 4936 inoreflst); 4937 KASSERT(jaddref->ja_parent == dp->i_number, 4938 ("softdep_revert_mkdir: addref parent mismatch")); 4939 dotaddref = (struct jaddref *)TAILQ_PREV(&jaddref->ja_ref, 4940 inoreflst, if_deps); 4941 cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait); 4942 KASSERT(dotaddref->ja_parent == ip->i_number, 4943 ("softdep_revert_mkdir: dot addref parent mismatch")); 4944 cancel_jaddref(dotaddref, inodedep, &inodedep->id_inowait); 4945 } 4946 FREE_LOCK(ITOUMP(dp)); 4947 } 4948 4949 /* 4950 * Called to correct nlinkdelta after a failed rmdir. 4951 */ 4952 void 4953 softdep_revert_rmdir(dp, ip) 4954 struct inode *dp; 4955 struct inode *ip; 4956 { 4957 4958 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 4959 ("softdep_revert_rmdir called on non-softdep filesystem")); 4960 ACQUIRE_LOCK(ITOUMP(dp)); 4961 (void) inodedep_lookup_ip(ip); 4962 (void) inodedep_lookup_ip(dp); 4963 FREE_LOCK(ITOUMP(dp)); 4964 } 4965 4966 /* 4967 * Protecting the freemaps (or bitmaps). 4968 * 4969 * To eliminate the need to execute fsck before mounting a filesystem 4970 * after a power failure, one must (conservatively) guarantee that the 4971 * on-disk copy of the bitmaps never indicate that a live inode or block is 4972 * free. So, when a block or inode is allocated, the bitmap should be 4973 * updated (on disk) before any new pointers. When a block or inode is 4974 * freed, the bitmap should not be updated until all pointers have been 4975 * reset. The latter dependency is handled by the delayed de-allocation 4976 * approach described below for block and inode de-allocation. The former 4977 * dependency is handled by calling the following procedure when a block or 4978 * inode is allocated. When an inode is allocated an "inodedep" is created 4979 * with its DEPCOMPLETE flag cleared until its bitmap is written to disk. 4980 * Each "inodedep" is also inserted into the hash indexing structure so 4981 * that any additional link additions can be made dependent on the inode 4982 * allocation. 4983 * 4984 * The ufs filesystem maintains a number of free block counts (e.g., per 4985 * cylinder group, per cylinder and per <cylinder, rotational position> pair) 4986 * in addition to the bitmaps. These counts are used to improve efficiency 4987 * during allocation and therefore must be consistent with the bitmaps. 4988 * There is no convenient way to guarantee post-crash consistency of these 4989 * counts with simple update ordering, for two main reasons: (1) The counts 4990 * and bitmaps for a single cylinder group block are not in the same disk 4991 * sector. If a disk write is interrupted (e.g., by power failure), one may 4992 * be written and the other not. (2) Some of the counts are located in the 4993 * superblock rather than the cylinder group block. So, we focus our soft 4994 * updates implementation on protecting the bitmaps. When mounting a 4995 * filesystem, we recompute the auxiliary counts from the bitmaps. 4996 */ 4997 4998 /* 4999 * Called just after updating the cylinder group block to allocate an inode. 5000 */ 5001 void 5002 softdep_setup_inomapdep(bp, ip, newinum, mode) 5003 struct buf *bp; /* buffer for cylgroup block with inode map */ 5004 struct inode *ip; /* inode related to allocation */ 5005 ino_t newinum; /* new inode number being allocated */ 5006 int mode; 5007 { 5008 struct inodedep *inodedep; 5009 struct bmsafemap *bmsafemap; 5010 struct jaddref *jaddref; 5011 struct mount *mp; 5012 struct fs *fs; 5013 5014 mp = ITOVFS(ip); 5015 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 5016 ("softdep_setup_inomapdep called on non-softdep filesystem")); 5017 fs = VFSTOUFS(mp)->um_fs; 5018 jaddref = NULL; 5019 5020 /* 5021 * Allocate the journal reference add structure so that the bitmap 5022 * can be dependent on it. 5023 */ 5024 if (MOUNTEDSUJ(mp)) { 5025 jaddref = newjaddref(ip, newinum, 0, 0, mode); 5026 jaddref->ja_state |= NEWBLOCK; 5027 } 5028 5029 /* 5030 * Create a dependency for the newly allocated inode. 5031 * Panic if it already exists as something is seriously wrong. 5032 * Otherwise add it to the dependency list for the buffer holding 5033 * the cylinder group map from which it was allocated. 5034 * 5035 * We have to preallocate a bmsafemap entry in case it is needed 5036 * in bmsafemap_lookup since once we allocate the inodedep, we 5037 * have to finish initializing it before we can FREE_LOCK(). 5038 * By preallocating, we avoid FREE_LOCK() while doing a malloc 5039 * in bmsafemap_lookup. We cannot call bmsafemap_lookup before 5040 * creating the inodedep as it can be freed during the time 5041 * that we FREE_LOCK() while allocating the inodedep. We must 5042 * call workitem_alloc() before entering the locked section as 5043 * it also acquires the lock and we must avoid trying doing so 5044 * recursively. 5045 */ 5046 bmsafemap = malloc(sizeof(struct bmsafemap), 5047 M_BMSAFEMAP, M_SOFTDEP_FLAGS); 5048 workitem_alloc(&bmsafemap->sm_list, D_BMSAFEMAP, mp); 5049 ACQUIRE_LOCK(ITOUMP(ip)); 5050 if ((inodedep_lookup(mp, newinum, DEPALLOC, &inodedep))) 5051 panic("softdep_setup_inomapdep: dependency %p for new" 5052 "inode already exists", inodedep); 5053 bmsafemap = bmsafemap_lookup(mp, bp, ino_to_cg(fs, newinum), bmsafemap); 5054 if (jaddref) { 5055 LIST_INSERT_HEAD(&bmsafemap->sm_jaddrefhd, jaddref, ja_bmdeps); 5056 TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref, 5057 if_deps); 5058 } else { 5059 inodedep->id_state |= ONDEPLIST; 5060 LIST_INSERT_HEAD(&bmsafemap->sm_inodedephd, inodedep, id_deps); 5061 } 5062 inodedep->id_bmsafemap = bmsafemap; 5063 inodedep->id_state &= ~DEPCOMPLETE; 5064 FREE_LOCK(ITOUMP(ip)); 5065 } 5066 5067 /* 5068 * Called just after updating the cylinder group block to 5069 * allocate block or fragment. 5070 */ 5071 void 5072 softdep_setup_blkmapdep(bp, mp, newblkno, frags, oldfrags) 5073 struct buf *bp; /* buffer for cylgroup block with block map */ 5074 struct mount *mp; /* filesystem doing allocation */ 5075 ufs2_daddr_t newblkno; /* number of newly allocated block */ 5076 int frags; /* Number of fragments. */ 5077 int oldfrags; /* Previous number of fragments for extend. */ 5078 { 5079 struct newblk *newblk; 5080 struct bmsafemap *bmsafemap; 5081 struct jnewblk *jnewblk; 5082 struct ufsmount *ump; 5083 struct fs *fs; 5084 5085 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 5086 ("softdep_setup_blkmapdep called on non-softdep filesystem")); 5087 ump = VFSTOUFS(mp); 5088 fs = ump->um_fs; 5089 jnewblk = NULL; 5090 /* 5091 * Create a dependency for the newly allocated block. 5092 * Add it to the dependency list for the buffer holding 5093 * the cylinder group map from which it was allocated. 5094 */ 5095 if (MOUNTEDSUJ(mp)) { 5096 jnewblk = malloc(sizeof(*jnewblk), M_JNEWBLK, M_SOFTDEP_FLAGS); 5097 workitem_alloc(&jnewblk->jn_list, D_JNEWBLK, mp); 5098 jnewblk->jn_jsegdep = newjsegdep(&jnewblk->jn_list); 5099 jnewblk->jn_state = ATTACHED; 5100 jnewblk->jn_blkno = newblkno; 5101 jnewblk->jn_frags = frags; 5102 jnewblk->jn_oldfrags = oldfrags; 5103 #ifdef SUJ_DEBUG 5104 { 5105 struct cg *cgp; 5106 uint8_t *blksfree; 5107 long bno; 5108 int i; 5109 5110 cgp = (struct cg *)bp->b_data; 5111 blksfree = cg_blksfree(cgp); 5112 bno = dtogd(fs, jnewblk->jn_blkno); 5113 for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; 5114 i++) { 5115 if (isset(blksfree, bno + i)) 5116 panic("softdep_setup_blkmapdep: " 5117 "free fragment %d from %d-%d " 5118 "state 0x%X dep %p", i, 5119 jnewblk->jn_oldfrags, 5120 jnewblk->jn_frags, 5121 jnewblk->jn_state, 5122 jnewblk->jn_dep); 5123 } 5124 } 5125 #endif 5126 } 5127 5128 CTR3(KTR_SUJ, 5129 "softdep_setup_blkmapdep: blkno %jd frags %d oldfrags %d", 5130 newblkno, frags, oldfrags); 5131 ACQUIRE_LOCK(ump); 5132 if (newblk_lookup(mp, newblkno, DEPALLOC, &newblk) != 0) 5133 panic("softdep_setup_blkmapdep: found block"); 5134 newblk->nb_bmsafemap = bmsafemap = bmsafemap_lookup(mp, bp, 5135 dtog(fs, newblkno), NULL); 5136 if (jnewblk) { 5137 jnewblk->jn_dep = (struct worklist *)newblk; 5138 LIST_INSERT_HEAD(&bmsafemap->sm_jnewblkhd, jnewblk, jn_deps); 5139 } else { 5140 newblk->nb_state |= ONDEPLIST; 5141 LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, nb_deps); 5142 } 5143 newblk->nb_bmsafemap = bmsafemap; 5144 newblk->nb_jnewblk = jnewblk; 5145 FREE_LOCK(ump); 5146 } 5147 5148 #define BMSAFEMAP_HASH(ump, cg) \ 5149 (&(ump)->bmsafemap_hashtbl[(cg) & (ump)->bmsafemap_hash_size]) 5150 5151 static int 5152 bmsafemap_find(bmsafemaphd, cg, bmsafemapp) 5153 struct bmsafemap_hashhead *bmsafemaphd; 5154 int cg; 5155 struct bmsafemap **bmsafemapp; 5156 { 5157 struct bmsafemap *bmsafemap; 5158 5159 LIST_FOREACH(bmsafemap, bmsafemaphd, sm_hash) 5160 if (bmsafemap->sm_cg == cg) 5161 break; 5162 if (bmsafemap) { 5163 *bmsafemapp = bmsafemap; 5164 return (1); 5165 } 5166 *bmsafemapp = NULL; 5167 5168 return (0); 5169 } 5170 5171 /* 5172 * Find the bmsafemap associated with a cylinder group buffer. 5173 * If none exists, create one. The buffer must be locked when 5174 * this routine is called and this routine must be called with 5175 * the softdep lock held. To avoid giving up the lock while 5176 * allocating a new bmsafemap, a preallocated bmsafemap may be 5177 * provided. If it is provided but not needed, it is freed. 5178 */ 5179 static struct bmsafemap * 5180 bmsafemap_lookup(mp, bp, cg, newbmsafemap) 5181 struct mount *mp; 5182 struct buf *bp; 5183 int cg; 5184 struct bmsafemap *newbmsafemap; 5185 { 5186 struct bmsafemap_hashhead *bmsafemaphd; 5187 struct bmsafemap *bmsafemap, *collision; 5188 struct worklist *wk; 5189 struct ufsmount *ump; 5190 5191 ump = VFSTOUFS(mp); 5192 LOCK_OWNED(ump); 5193 KASSERT(bp != NULL, ("bmsafemap_lookup: missing buffer")); 5194 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 5195 if (wk->wk_type == D_BMSAFEMAP) { 5196 if (newbmsafemap) 5197 WORKITEM_FREE(newbmsafemap, D_BMSAFEMAP); 5198 return (WK_BMSAFEMAP(wk)); 5199 } 5200 } 5201 bmsafemaphd = BMSAFEMAP_HASH(ump, cg); 5202 if (bmsafemap_find(bmsafemaphd, cg, &bmsafemap) == 1) { 5203 if (newbmsafemap) 5204 WORKITEM_FREE(newbmsafemap, D_BMSAFEMAP); 5205 return (bmsafemap); 5206 } 5207 if (newbmsafemap) { 5208 bmsafemap = newbmsafemap; 5209 } else { 5210 FREE_LOCK(ump); 5211 bmsafemap = malloc(sizeof(struct bmsafemap), 5212 M_BMSAFEMAP, M_SOFTDEP_FLAGS); 5213 workitem_alloc(&bmsafemap->sm_list, D_BMSAFEMAP, mp); 5214 ACQUIRE_LOCK(ump); 5215 } 5216 bmsafemap->sm_buf = bp; 5217 LIST_INIT(&bmsafemap->sm_inodedephd); 5218 LIST_INIT(&bmsafemap->sm_inodedepwr); 5219 LIST_INIT(&bmsafemap->sm_newblkhd); 5220 LIST_INIT(&bmsafemap->sm_newblkwr); 5221 LIST_INIT(&bmsafemap->sm_jaddrefhd); 5222 LIST_INIT(&bmsafemap->sm_jnewblkhd); 5223 LIST_INIT(&bmsafemap->sm_freehd); 5224 LIST_INIT(&bmsafemap->sm_freewr); 5225 if (bmsafemap_find(bmsafemaphd, cg, &collision) == 1) { 5226 WORKITEM_FREE(bmsafemap, D_BMSAFEMAP); 5227 return (collision); 5228 } 5229 bmsafemap->sm_cg = cg; 5230 LIST_INSERT_HEAD(bmsafemaphd, bmsafemap, sm_hash); 5231 LIST_INSERT_HEAD(&ump->softdep_dirtycg, bmsafemap, sm_next); 5232 WORKLIST_INSERT(&bp->b_dep, &bmsafemap->sm_list); 5233 return (bmsafemap); 5234 } 5235 5236 /* 5237 * Direct block allocation dependencies. 5238 * 5239 * When a new block is allocated, the corresponding disk locations must be 5240 * initialized (with zeros or new data) before the on-disk inode points to 5241 * them. Also, the freemap from which the block was allocated must be 5242 * updated (on disk) before the inode's pointer. These two dependencies are 5243 * independent of each other and are needed for all file blocks and indirect 5244 * blocks that are pointed to directly by the inode. Just before the 5245 * "in-core" version of the inode is updated with a newly allocated block 5246 * number, a procedure (below) is called to setup allocation dependency 5247 * structures. These structures are removed when the corresponding 5248 * dependencies are satisfied or when the block allocation becomes obsolete 5249 * (i.e., the file is deleted, the block is de-allocated, or the block is a 5250 * fragment that gets upgraded). All of these cases are handled in 5251 * procedures described later. 5252 * 5253 * When a file extension causes a fragment to be upgraded, either to a larger 5254 * fragment or to a full block, the on-disk location may change (if the 5255 * previous fragment could not simply be extended). In this case, the old 5256 * fragment must be de-allocated, but not until after the inode's pointer has 5257 * been updated. In most cases, this is handled by later procedures, which 5258 * will construct a "freefrag" structure to be added to the workitem queue 5259 * when the inode update is complete (or obsolete). The main exception to 5260 * this is when an allocation occurs while a pending allocation dependency 5261 * (for the same block pointer) remains. This case is handled in the main 5262 * allocation dependency setup procedure by immediately freeing the 5263 * unreferenced fragments. 5264 */ 5265 void 5266 softdep_setup_allocdirect(ip, off, newblkno, oldblkno, newsize, oldsize, bp) 5267 struct inode *ip; /* inode to which block is being added */ 5268 ufs_lbn_t off; /* block pointer within inode */ 5269 ufs2_daddr_t newblkno; /* disk block number being added */ 5270 ufs2_daddr_t oldblkno; /* previous block number, 0 unless frag */ 5271 long newsize; /* size of new block */ 5272 long oldsize; /* size of new block */ 5273 struct buf *bp; /* bp for allocated block */ 5274 { 5275 struct allocdirect *adp, *oldadp; 5276 struct allocdirectlst *adphead; 5277 struct freefrag *freefrag; 5278 struct inodedep *inodedep; 5279 struct pagedep *pagedep; 5280 struct jnewblk *jnewblk; 5281 struct newblk *newblk; 5282 struct mount *mp; 5283 ufs_lbn_t lbn; 5284 5285 lbn = bp->b_lblkno; 5286 mp = ITOVFS(ip); 5287 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 5288 ("softdep_setup_allocdirect called on non-softdep filesystem")); 5289 if (oldblkno && oldblkno != newblkno) 5290 freefrag = newfreefrag(ip, oldblkno, oldsize, lbn); 5291 else 5292 freefrag = NULL; 5293 5294 CTR6(KTR_SUJ, 5295 "softdep_setup_allocdirect: ino %d blkno %jd oldblkno %jd " 5296 "off %jd newsize %ld oldsize %d", 5297 ip->i_number, newblkno, oldblkno, off, newsize, oldsize); 5298 ACQUIRE_LOCK(ITOUMP(ip)); 5299 if (off >= UFS_NDADDR) { 5300 if (lbn > 0) 5301 panic("softdep_setup_allocdirect: bad lbn %jd, off %jd", 5302 lbn, off); 5303 /* allocating an indirect block */ 5304 if (oldblkno != 0) 5305 panic("softdep_setup_allocdirect: non-zero indir"); 5306 } else { 5307 if (off != lbn) 5308 panic("softdep_setup_allocdirect: lbn %jd != off %jd", 5309 lbn, off); 5310 /* 5311 * Allocating a direct block. 5312 * 5313 * If we are allocating a directory block, then we must 5314 * allocate an associated pagedep to track additions and 5315 * deletions. 5316 */ 5317 if ((ip->i_mode & IFMT) == IFDIR) 5318 pagedep_lookup(mp, bp, ip->i_number, off, DEPALLOC, 5319 &pagedep); 5320 } 5321 if (newblk_lookup(mp, newblkno, 0, &newblk) == 0) 5322 panic("softdep_setup_allocdirect: lost block"); 5323 KASSERT(newblk->nb_list.wk_type == D_NEWBLK, 5324 ("softdep_setup_allocdirect: newblk already initialized")); 5325 /* 5326 * Convert the newblk to an allocdirect. 5327 */ 5328 WORKITEM_REASSIGN(newblk, D_ALLOCDIRECT); 5329 adp = (struct allocdirect *)newblk; 5330 newblk->nb_freefrag = freefrag; 5331 adp->ad_offset = off; 5332 adp->ad_oldblkno = oldblkno; 5333 adp->ad_newsize = newsize; 5334 adp->ad_oldsize = oldsize; 5335 5336 /* 5337 * Finish initializing the journal. 5338 */ 5339 if ((jnewblk = newblk->nb_jnewblk) != NULL) { 5340 jnewblk->jn_ino = ip->i_number; 5341 jnewblk->jn_lbn = lbn; 5342 add_to_journal(&jnewblk->jn_list); 5343 } 5344 if (freefrag && freefrag->ff_jdep != NULL && 5345 freefrag->ff_jdep->wk_type == D_JFREEFRAG) 5346 add_to_journal(freefrag->ff_jdep); 5347 inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep); 5348 adp->ad_inodedep = inodedep; 5349 5350 WORKLIST_INSERT(&bp->b_dep, &newblk->nb_list); 5351 /* 5352 * The list of allocdirects must be kept in sorted and ascending 5353 * order so that the rollback routines can quickly determine the 5354 * first uncommitted block (the size of the file stored on disk 5355 * ends at the end of the lowest committed fragment, or if there 5356 * are no fragments, at the end of the highest committed block). 5357 * Since files generally grow, the typical case is that the new 5358 * block is to be added at the end of the list. We speed this 5359 * special case by checking against the last allocdirect in the 5360 * list before laboriously traversing the list looking for the 5361 * insertion point. 5362 */ 5363 adphead = &inodedep->id_newinoupdt; 5364 oldadp = TAILQ_LAST(adphead, allocdirectlst); 5365 if (oldadp == NULL || oldadp->ad_offset <= off) { 5366 /* insert at end of list */ 5367 TAILQ_INSERT_TAIL(adphead, adp, ad_next); 5368 if (oldadp != NULL && oldadp->ad_offset == off) 5369 allocdirect_merge(adphead, adp, oldadp); 5370 FREE_LOCK(ITOUMP(ip)); 5371 return; 5372 } 5373 TAILQ_FOREACH(oldadp, adphead, ad_next) { 5374 if (oldadp->ad_offset >= off) 5375 break; 5376 } 5377 if (oldadp == NULL) 5378 panic("softdep_setup_allocdirect: lost entry"); 5379 /* insert in middle of list */ 5380 TAILQ_INSERT_BEFORE(oldadp, adp, ad_next); 5381 if (oldadp->ad_offset == off) 5382 allocdirect_merge(adphead, adp, oldadp); 5383 5384 FREE_LOCK(ITOUMP(ip)); 5385 } 5386 5387 /* 5388 * Merge a newer and older journal record to be stored either in a 5389 * newblock or freefrag. This handles aggregating journal records for 5390 * fragment allocation into a second record as well as replacing a 5391 * journal free with an aborted journal allocation. A segment for the 5392 * oldest record will be placed on wkhd if it has been written. If not 5393 * the segment for the newer record will suffice. 5394 */ 5395 static struct worklist * 5396 jnewblk_merge(new, old, wkhd) 5397 struct worklist *new; 5398 struct worklist *old; 5399 struct workhead *wkhd; 5400 { 5401 struct jnewblk *njnewblk; 5402 struct jnewblk *jnewblk; 5403 5404 /* Handle NULLs to simplify callers. */ 5405 if (new == NULL) 5406 return (old); 5407 if (old == NULL) 5408 return (new); 5409 /* Replace a jfreefrag with a jnewblk. */ 5410 if (new->wk_type == D_JFREEFRAG) { 5411 if (WK_JNEWBLK(old)->jn_blkno != WK_JFREEFRAG(new)->fr_blkno) 5412 panic("jnewblk_merge: blkno mismatch: %p, %p", 5413 old, new); 5414 cancel_jfreefrag(WK_JFREEFRAG(new)); 5415 return (old); 5416 } 5417 if (old->wk_type != D_JNEWBLK || new->wk_type != D_JNEWBLK) 5418 panic("jnewblk_merge: Bad type: old %d new %d\n", 5419 old->wk_type, new->wk_type); 5420 /* 5421 * Handle merging of two jnewblk records that describe 5422 * different sets of fragments in the same block. 5423 */ 5424 jnewblk = WK_JNEWBLK(old); 5425 njnewblk = WK_JNEWBLK(new); 5426 if (jnewblk->jn_blkno != njnewblk->jn_blkno) 5427 panic("jnewblk_merge: Merging disparate blocks."); 5428 /* 5429 * The record may be rolled back in the cg. 5430 */ 5431 if (jnewblk->jn_state & UNDONE) { 5432 jnewblk->jn_state &= ~UNDONE; 5433 njnewblk->jn_state |= UNDONE; 5434 njnewblk->jn_state &= ~ATTACHED; 5435 } 5436 /* 5437 * We modify the newer addref and free the older so that if neither 5438 * has been written the most up-to-date copy will be on disk. If 5439 * both have been written but rolled back we only temporarily need 5440 * one of them to fix the bits when the cg write completes. 5441 */ 5442 jnewblk->jn_state |= ATTACHED | COMPLETE; 5443 njnewblk->jn_oldfrags = jnewblk->jn_oldfrags; 5444 cancel_jnewblk(jnewblk, wkhd); 5445 WORKLIST_REMOVE(&jnewblk->jn_list); 5446 free_jnewblk(jnewblk); 5447 return (new); 5448 } 5449 5450 /* 5451 * Replace an old allocdirect dependency with a newer one. 5452 * This routine must be called with splbio interrupts blocked. 5453 */ 5454 static void 5455 allocdirect_merge(adphead, newadp, oldadp) 5456 struct allocdirectlst *adphead; /* head of list holding allocdirects */ 5457 struct allocdirect *newadp; /* allocdirect being added */ 5458 struct allocdirect *oldadp; /* existing allocdirect being checked */ 5459 { 5460 struct worklist *wk; 5461 struct freefrag *freefrag; 5462 5463 freefrag = NULL; 5464 LOCK_OWNED(VFSTOUFS(newadp->ad_list.wk_mp)); 5465 if (newadp->ad_oldblkno != oldadp->ad_newblkno || 5466 newadp->ad_oldsize != oldadp->ad_newsize || 5467 newadp->ad_offset >= UFS_NDADDR) 5468 panic("%s %jd != new %jd || old size %ld != new %ld", 5469 "allocdirect_merge: old blkno", 5470 (intmax_t)newadp->ad_oldblkno, 5471 (intmax_t)oldadp->ad_newblkno, 5472 newadp->ad_oldsize, oldadp->ad_newsize); 5473 newadp->ad_oldblkno = oldadp->ad_oldblkno; 5474 newadp->ad_oldsize = oldadp->ad_oldsize; 5475 /* 5476 * If the old dependency had a fragment to free or had never 5477 * previously had a block allocated, then the new dependency 5478 * can immediately post its freefrag and adopt the old freefrag. 5479 * This action is done by swapping the freefrag dependencies. 5480 * The new dependency gains the old one's freefrag, and the 5481 * old one gets the new one and then immediately puts it on 5482 * the worklist when it is freed by free_newblk. It is 5483 * not possible to do this swap when the old dependency had a 5484 * non-zero size but no previous fragment to free. This condition 5485 * arises when the new block is an extension of the old block. 5486 * Here, the first part of the fragment allocated to the new 5487 * dependency is part of the block currently claimed on disk by 5488 * the old dependency, so cannot legitimately be freed until the 5489 * conditions for the new dependency are fulfilled. 5490 */ 5491 freefrag = newadp->ad_freefrag; 5492 if (oldadp->ad_freefrag != NULL || oldadp->ad_oldblkno == 0) { 5493 newadp->ad_freefrag = oldadp->ad_freefrag; 5494 oldadp->ad_freefrag = freefrag; 5495 } 5496 /* 5497 * If we are tracking a new directory-block allocation, 5498 * move it from the old allocdirect to the new allocdirect. 5499 */ 5500 if ((wk = LIST_FIRST(&oldadp->ad_newdirblk)) != NULL) { 5501 WORKLIST_REMOVE(wk); 5502 if (!LIST_EMPTY(&oldadp->ad_newdirblk)) 5503 panic("allocdirect_merge: extra newdirblk"); 5504 WORKLIST_INSERT(&newadp->ad_newdirblk, wk); 5505 } 5506 TAILQ_REMOVE(adphead, oldadp, ad_next); 5507 /* 5508 * We need to move any journal dependencies over to the freefrag 5509 * that releases this block if it exists. Otherwise we are 5510 * extending an existing block and we'll wait until that is 5511 * complete to release the journal space and extend the 5512 * new journal to cover this old space as well. 5513 */ 5514 if (freefrag == NULL) { 5515 if (oldadp->ad_newblkno != newadp->ad_newblkno) 5516 panic("allocdirect_merge: %jd != %jd", 5517 oldadp->ad_newblkno, newadp->ad_newblkno); 5518 newadp->ad_block.nb_jnewblk = (struct jnewblk *) 5519 jnewblk_merge(&newadp->ad_block.nb_jnewblk->jn_list, 5520 &oldadp->ad_block.nb_jnewblk->jn_list, 5521 &newadp->ad_block.nb_jwork); 5522 oldadp->ad_block.nb_jnewblk = NULL; 5523 cancel_newblk(&oldadp->ad_block, NULL, 5524 &newadp->ad_block.nb_jwork); 5525 } else { 5526 wk = (struct worklist *) cancel_newblk(&oldadp->ad_block, 5527 &freefrag->ff_list, &freefrag->ff_jwork); 5528 freefrag->ff_jdep = jnewblk_merge(freefrag->ff_jdep, wk, 5529 &freefrag->ff_jwork); 5530 } 5531 free_newblk(&oldadp->ad_block); 5532 } 5533 5534 /* 5535 * Allocate a jfreefrag structure to journal a single block free. 5536 */ 5537 static struct jfreefrag * 5538 newjfreefrag(freefrag, ip, blkno, size, lbn) 5539 struct freefrag *freefrag; 5540 struct inode *ip; 5541 ufs2_daddr_t blkno; 5542 long size; 5543 ufs_lbn_t lbn; 5544 { 5545 struct jfreefrag *jfreefrag; 5546 struct fs *fs; 5547 5548 fs = ITOFS(ip); 5549 jfreefrag = malloc(sizeof(struct jfreefrag), M_JFREEFRAG, 5550 M_SOFTDEP_FLAGS); 5551 workitem_alloc(&jfreefrag->fr_list, D_JFREEFRAG, ITOVFS(ip)); 5552 jfreefrag->fr_jsegdep = newjsegdep(&jfreefrag->fr_list); 5553 jfreefrag->fr_state = ATTACHED | DEPCOMPLETE; 5554 jfreefrag->fr_ino = ip->i_number; 5555 jfreefrag->fr_lbn = lbn; 5556 jfreefrag->fr_blkno = blkno; 5557 jfreefrag->fr_frags = numfrags(fs, size); 5558 jfreefrag->fr_freefrag = freefrag; 5559 5560 return (jfreefrag); 5561 } 5562 5563 /* 5564 * Allocate a new freefrag structure. 5565 */ 5566 static struct freefrag * 5567 newfreefrag(ip, blkno, size, lbn) 5568 struct inode *ip; 5569 ufs2_daddr_t blkno; 5570 long size; 5571 ufs_lbn_t lbn; 5572 { 5573 struct freefrag *freefrag; 5574 struct ufsmount *ump; 5575 struct fs *fs; 5576 5577 CTR4(KTR_SUJ, "newfreefrag: ino %d blkno %jd size %ld lbn %jd", 5578 ip->i_number, blkno, size, lbn); 5579 ump = ITOUMP(ip); 5580 fs = ump->um_fs; 5581 if (fragnum(fs, blkno) + numfrags(fs, size) > fs->fs_frag) 5582 panic("newfreefrag: frag size"); 5583 freefrag = malloc(sizeof(struct freefrag), 5584 M_FREEFRAG, M_SOFTDEP_FLAGS); 5585 workitem_alloc(&freefrag->ff_list, D_FREEFRAG, UFSTOVFS(ump)); 5586 freefrag->ff_state = ATTACHED; 5587 LIST_INIT(&freefrag->ff_jwork); 5588 freefrag->ff_inum = ip->i_number; 5589 freefrag->ff_vtype = ITOV(ip)->v_type; 5590 freefrag->ff_blkno = blkno; 5591 freefrag->ff_fragsize = size; 5592 5593 if (MOUNTEDSUJ(UFSTOVFS(ump))) { 5594 freefrag->ff_jdep = (struct worklist *) 5595 newjfreefrag(freefrag, ip, blkno, size, lbn); 5596 } else { 5597 freefrag->ff_state |= DEPCOMPLETE; 5598 freefrag->ff_jdep = NULL; 5599 } 5600 5601 return (freefrag); 5602 } 5603 5604 /* 5605 * This workitem de-allocates fragments that were replaced during 5606 * file block allocation. 5607 */ 5608 static void 5609 handle_workitem_freefrag(freefrag) 5610 struct freefrag *freefrag; 5611 { 5612 struct ufsmount *ump = VFSTOUFS(freefrag->ff_list.wk_mp); 5613 struct workhead wkhd; 5614 5615 CTR3(KTR_SUJ, 5616 "handle_workitem_freefrag: ino %d blkno %jd size %ld", 5617 freefrag->ff_inum, freefrag->ff_blkno, freefrag->ff_fragsize); 5618 /* 5619 * It would be illegal to add new completion items to the 5620 * freefrag after it was schedule to be done so it must be 5621 * safe to modify the list head here. 5622 */ 5623 LIST_INIT(&wkhd); 5624 ACQUIRE_LOCK(ump); 5625 LIST_SWAP(&freefrag->ff_jwork, &wkhd, worklist, wk_list); 5626 /* 5627 * If the journal has not been written we must cancel it here. 5628 */ 5629 if (freefrag->ff_jdep) { 5630 if (freefrag->ff_jdep->wk_type != D_JNEWBLK) 5631 panic("handle_workitem_freefrag: Unexpected type %d\n", 5632 freefrag->ff_jdep->wk_type); 5633 cancel_jnewblk(WK_JNEWBLK(freefrag->ff_jdep), &wkhd); 5634 } 5635 FREE_LOCK(ump); 5636 ffs_blkfree(ump, ump->um_fs, ump->um_devvp, freefrag->ff_blkno, 5637 freefrag->ff_fragsize, freefrag->ff_inum, freefrag->ff_vtype, &wkhd); 5638 ACQUIRE_LOCK(ump); 5639 WORKITEM_FREE(freefrag, D_FREEFRAG); 5640 FREE_LOCK(ump); 5641 } 5642 5643 /* 5644 * Set up a dependency structure for an external attributes data block. 5645 * This routine follows much of the structure of softdep_setup_allocdirect. 5646 * See the description of softdep_setup_allocdirect above for details. 5647 */ 5648 void 5649 softdep_setup_allocext(ip, off, newblkno, oldblkno, newsize, oldsize, bp) 5650 struct inode *ip; 5651 ufs_lbn_t off; 5652 ufs2_daddr_t newblkno; 5653 ufs2_daddr_t oldblkno; 5654 long newsize; 5655 long oldsize; 5656 struct buf *bp; 5657 { 5658 struct allocdirect *adp, *oldadp; 5659 struct allocdirectlst *adphead; 5660 struct freefrag *freefrag; 5661 struct inodedep *inodedep; 5662 struct jnewblk *jnewblk; 5663 struct newblk *newblk; 5664 struct mount *mp; 5665 struct ufsmount *ump; 5666 ufs_lbn_t lbn; 5667 5668 mp = ITOVFS(ip); 5669 ump = VFSTOUFS(mp); 5670 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 5671 ("softdep_setup_allocext called on non-softdep filesystem")); 5672 KASSERT(off < UFS_NXADDR, 5673 ("softdep_setup_allocext: lbn %lld > UFS_NXADDR", (long long)off)); 5674 5675 lbn = bp->b_lblkno; 5676 if (oldblkno && oldblkno != newblkno) 5677 freefrag = newfreefrag(ip, oldblkno, oldsize, lbn); 5678 else 5679 freefrag = NULL; 5680 5681 ACQUIRE_LOCK(ump); 5682 if (newblk_lookup(mp, newblkno, 0, &newblk) == 0) 5683 panic("softdep_setup_allocext: lost block"); 5684 KASSERT(newblk->nb_list.wk_type == D_NEWBLK, 5685 ("softdep_setup_allocext: newblk already initialized")); 5686 /* 5687 * Convert the newblk to an allocdirect. 5688 */ 5689 WORKITEM_REASSIGN(newblk, D_ALLOCDIRECT); 5690 adp = (struct allocdirect *)newblk; 5691 newblk->nb_freefrag = freefrag; 5692 adp->ad_offset = off; 5693 adp->ad_oldblkno = oldblkno; 5694 adp->ad_newsize = newsize; 5695 adp->ad_oldsize = oldsize; 5696 adp->ad_state |= EXTDATA; 5697 5698 /* 5699 * Finish initializing the journal. 5700 */ 5701 if ((jnewblk = newblk->nb_jnewblk) != NULL) { 5702 jnewblk->jn_ino = ip->i_number; 5703 jnewblk->jn_lbn = lbn; 5704 add_to_journal(&jnewblk->jn_list); 5705 } 5706 if (freefrag && freefrag->ff_jdep != NULL && 5707 freefrag->ff_jdep->wk_type == D_JFREEFRAG) 5708 add_to_journal(freefrag->ff_jdep); 5709 inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep); 5710 adp->ad_inodedep = inodedep; 5711 5712 WORKLIST_INSERT(&bp->b_dep, &newblk->nb_list); 5713 /* 5714 * The list of allocdirects must be kept in sorted and ascending 5715 * order so that the rollback routines can quickly determine the 5716 * first uncommitted block (the size of the file stored on disk 5717 * ends at the end of the lowest committed fragment, or if there 5718 * are no fragments, at the end of the highest committed block). 5719 * Since files generally grow, the typical case is that the new 5720 * block is to be added at the end of the list. We speed this 5721 * special case by checking against the last allocdirect in the 5722 * list before laboriously traversing the list looking for the 5723 * insertion point. 5724 */ 5725 adphead = &inodedep->id_newextupdt; 5726 oldadp = TAILQ_LAST(adphead, allocdirectlst); 5727 if (oldadp == NULL || oldadp->ad_offset <= off) { 5728 /* insert at end of list */ 5729 TAILQ_INSERT_TAIL(adphead, adp, ad_next); 5730 if (oldadp != NULL && oldadp->ad_offset == off) 5731 allocdirect_merge(adphead, adp, oldadp); 5732 FREE_LOCK(ump); 5733 return; 5734 } 5735 TAILQ_FOREACH(oldadp, adphead, ad_next) { 5736 if (oldadp->ad_offset >= off) 5737 break; 5738 } 5739 if (oldadp == NULL) 5740 panic("softdep_setup_allocext: lost entry"); 5741 /* insert in middle of list */ 5742 TAILQ_INSERT_BEFORE(oldadp, adp, ad_next); 5743 if (oldadp->ad_offset == off) 5744 allocdirect_merge(adphead, adp, oldadp); 5745 FREE_LOCK(ump); 5746 } 5747 5748 /* 5749 * Indirect block allocation dependencies. 5750 * 5751 * The same dependencies that exist for a direct block also exist when 5752 * a new block is allocated and pointed to by an entry in a block of 5753 * indirect pointers. The undo/redo states described above are also 5754 * used here. Because an indirect block contains many pointers that 5755 * may have dependencies, a second copy of the entire in-memory indirect 5756 * block is kept. The buffer cache copy is always completely up-to-date. 5757 * The second copy, which is used only as a source for disk writes, 5758 * contains only the safe pointers (i.e., those that have no remaining 5759 * update dependencies). The second copy is freed when all pointers 5760 * are safe. The cache is not allowed to replace indirect blocks with 5761 * pending update dependencies. If a buffer containing an indirect 5762 * block with dependencies is written, these routines will mark it 5763 * dirty again. It can only be successfully written once all the 5764 * dependencies are removed. The ffs_fsync routine in conjunction with 5765 * softdep_sync_metadata work together to get all the dependencies 5766 * removed so that a file can be successfully written to disk. Three 5767 * procedures are used when setting up indirect block pointer 5768 * dependencies. The division is necessary because of the organization 5769 * of the "balloc" routine and because of the distinction between file 5770 * pages and file metadata blocks. 5771 */ 5772 5773 /* 5774 * Allocate a new allocindir structure. 5775 */ 5776 static struct allocindir * 5777 newallocindir(ip, ptrno, newblkno, oldblkno, lbn) 5778 struct inode *ip; /* inode for file being extended */ 5779 int ptrno; /* offset of pointer in indirect block */ 5780 ufs2_daddr_t newblkno; /* disk block number being added */ 5781 ufs2_daddr_t oldblkno; /* previous block number, 0 if none */ 5782 ufs_lbn_t lbn; 5783 { 5784 struct newblk *newblk; 5785 struct allocindir *aip; 5786 struct freefrag *freefrag; 5787 struct jnewblk *jnewblk; 5788 5789 if (oldblkno) 5790 freefrag = newfreefrag(ip, oldblkno, ITOFS(ip)->fs_bsize, lbn); 5791 else 5792 freefrag = NULL; 5793 ACQUIRE_LOCK(ITOUMP(ip)); 5794 if (newblk_lookup(ITOVFS(ip), newblkno, 0, &newblk) == 0) 5795 panic("new_allocindir: lost block"); 5796 KASSERT(newblk->nb_list.wk_type == D_NEWBLK, 5797 ("newallocindir: newblk already initialized")); 5798 WORKITEM_REASSIGN(newblk, D_ALLOCINDIR); 5799 newblk->nb_freefrag = freefrag; 5800 aip = (struct allocindir *)newblk; 5801 aip->ai_offset = ptrno; 5802 aip->ai_oldblkno = oldblkno; 5803 aip->ai_lbn = lbn; 5804 if ((jnewblk = newblk->nb_jnewblk) != NULL) { 5805 jnewblk->jn_ino = ip->i_number; 5806 jnewblk->jn_lbn = lbn; 5807 add_to_journal(&jnewblk->jn_list); 5808 } 5809 if (freefrag && freefrag->ff_jdep != NULL && 5810 freefrag->ff_jdep->wk_type == D_JFREEFRAG) 5811 add_to_journal(freefrag->ff_jdep); 5812 return (aip); 5813 } 5814 5815 /* 5816 * Called just before setting an indirect block pointer 5817 * to a newly allocated file page. 5818 */ 5819 void 5820 softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp) 5821 struct inode *ip; /* inode for file being extended */ 5822 ufs_lbn_t lbn; /* allocated block number within file */ 5823 struct buf *bp; /* buffer with indirect blk referencing page */ 5824 int ptrno; /* offset of pointer in indirect block */ 5825 ufs2_daddr_t newblkno; /* disk block number being added */ 5826 ufs2_daddr_t oldblkno; /* previous block number, 0 if none */ 5827 struct buf *nbp; /* buffer holding allocated page */ 5828 { 5829 struct inodedep *inodedep; 5830 struct freefrag *freefrag; 5831 struct allocindir *aip; 5832 struct pagedep *pagedep; 5833 struct mount *mp; 5834 struct ufsmount *ump; 5835 5836 mp = ITOVFS(ip); 5837 ump = VFSTOUFS(mp); 5838 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 5839 ("softdep_setup_allocindir_page called on non-softdep filesystem")); 5840 KASSERT(lbn == nbp->b_lblkno, 5841 ("softdep_setup_allocindir_page: lbn %jd != lblkno %jd", 5842 lbn, bp->b_lblkno)); 5843 CTR4(KTR_SUJ, 5844 "softdep_setup_allocindir_page: ino %d blkno %jd oldblkno %jd " 5845 "lbn %jd", ip->i_number, newblkno, oldblkno, lbn); 5846 ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_page"); 5847 aip = newallocindir(ip, ptrno, newblkno, oldblkno, lbn); 5848 (void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep); 5849 /* 5850 * If we are allocating a directory page, then we must 5851 * allocate an associated pagedep to track additions and 5852 * deletions. 5853 */ 5854 if ((ip->i_mode & IFMT) == IFDIR) 5855 pagedep_lookup(mp, nbp, ip->i_number, lbn, DEPALLOC, &pagedep); 5856 WORKLIST_INSERT(&nbp->b_dep, &aip->ai_block.nb_list); 5857 freefrag = setup_allocindir_phase2(bp, ip, inodedep, aip, lbn); 5858 FREE_LOCK(ump); 5859 if (freefrag) 5860 handle_workitem_freefrag(freefrag); 5861 } 5862 5863 /* 5864 * Called just before setting an indirect block pointer to a 5865 * newly allocated indirect block. 5866 */ 5867 void 5868 softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno) 5869 struct buf *nbp; /* newly allocated indirect block */ 5870 struct inode *ip; /* inode for file being extended */ 5871 struct buf *bp; /* indirect block referencing allocated block */ 5872 int ptrno; /* offset of pointer in indirect block */ 5873 ufs2_daddr_t newblkno; /* disk block number being added */ 5874 { 5875 struct inodedep *inodedep; 5876 struct allocindir *aip; 5877 struct ufsmount *ump; 5878 ufs_lbn_t lbn; 5879 5880 ump = ITOUMP(ip); 5881 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 5882 ("softdep_setup_allocindir_meta called on non-softdep filesystem")); 5883 CTR3(KTR_SUJ, 5884 "softdep_setup_allocindir_meta: ino %d blkno %jd ptrno %d", 5885 ip->i_number, newblkno, ptrno); 5886 lbn = nbp->b_lblkno; 5887 ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_meta"); 5888 aip = newallocindir(ip, ptrno, newblkno, 0, lbn); 5889 inodedep_lookup(UFSTOVFS(ump), ip->i_number, DEPALLOC, &inodedep); 5890 WORKLIST_INSERT(&nbp->b_dep, &aip->ai_block.nb_list); 5891 if (setup_allocindir_phase2(bp, ip, inodedep, aip, lbn)) 5892 panic("softdep_setup_allocindir_meta: Block already existed"); 5893 FREE_LOCK(ump); 5894 } 5895 5896 static void 5897 indirdep_complete(indirdep) 5898 struct indirdep *indirdep; 5899 { 5900 struct allocindir *aip; 5901 5902 LIST_REMOVE(indirdep, ir_next); 5903 indirdep->ir_state |= DEPCOMPLETE; 5904 5905 while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != NULL) { 5906 LIST_REMOVE(aip, ai_next); 5907 free_newblk(&aip->ai_block); 5908 } 5909 /* 5910 * If this indirdep is not attached to a buf it was simply waiting 5911 * on completion to clear completehd. free_indirdep() asserts 5912 * that nothing is dangling. 5913 */ 5914 if ((indirdep->ir_state & ONWORKLIST) == 0) 5915 free_indirdep(indirdep); 5916 } 5917 5918 static struct indirdep * 5919 indirdep_lookup(mp, ip, bp) 5920 struct mount *mp; 5921 struct inode *ip; 5922 struct buf *bp; 5923 { 5924 struct indirdep *indirdep, *newindirdep; 5925 struct newblk *newblk; 5926 struct ufsmount *ump; 5927 struct worklist *wk; 5928 struct fs *fs; 5929 ufs2_daddr_t blkno; 5930 5931 ump = VFSTOUFS(mp); 5932 LOCK_OWNED(ump); 5933 indirdep = NULL; 5934 newindirdep = NULL; 5935 fs = ump->um_fs; 5936 for (;;) { 5937 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 5938 if (wk->wk_type != D_INDIRDEP) 5939 continue; 5940 indirdep = WK_INDIRDEP(wk); 5941 break; 5942 } 5943 /* Found on the buffer worklist, no new structure to free. */ 5944 if (indirdep != NULL && newindirdep == NULL) 5945 return (indirdep); 5946 if (indirdep != NULL && newindirdep != NULL) 5947 panic("indirdep_lookup: simultaneous create"); 5948 /* None found on the buffer and a new structure is ready. */ 5949 if (indirdep == NULL && newindirdep != NULL) 5950 break; 5951 /* None found and no new structure available. */ 5952 FREE_LOCK(ump); 5953 newindirdep = malloc(sizeof(struct indirdep), 5954 M_INDIRDEP, M_SOFTDEP_FLAGS); 5955 workitem_alloc(&newindirdep->ir_list, D_INDIRDEP, mp); 5956 newindirdep->ir_state = ATTACHED; 5957 if (I_IS_UFS1(ip)) 5958 newindirdep->ir_state |= UFS1FMT; 5959 TAILQ_INIT(&newindirdep->ir_trunc); 5960 newindirdep->ir_saveddata = NULL; 5961 LIST_INIT(&newindirdep->ir_deplisthd); 5962 LIST_INIT(&newindirdep->ir_donehd); 5963 LIST_INIT(&newindirdep->ir_writehd); 5964 LIST_INIT(&newindirdep->ir_completehd); 5965 if (bp->b_blkno == bp->b_lblkno) { 5966 ufs_bmaparray(bp->b_vp, bp->b_lblkno, &blkno, bp, 5967 NULL, NULL); 5968 bp->b_blkno = blkno; 5969 } 5970 newindirdep->ir_freeblks = NULL; 5971 newindirdep->ir_savebp = 5972 getblk(ump->um_devvp, bp->b_blkno, bp->b_bcount, 0, 0, 0); 5973 newindirdep->ir_bp = bp; 5974 BUF_KERNPROC(newindirdep->ir_savebp); 5975 bcopy(bp->b_data, newindirdep->ir_savebp->b_data, bp->b_bcount); 5976 ACQUIRE_LOCK(ump); 5977 } 5978 indirdep = newindirdep; 5979 WORKLIST_INSERT(&bp->b_dep, &indirdep->ir_list); 5980 /* 5981 * If the block is not yet allocated we don't set DEPCOMPLETE so 5982 * that we don't free dependencies until the pointers are valid. 5983 * This could search b_dep for D_ALLOCDIRECT/D_ALLOCINDIR rather 5984 * than using the hash. 5985 */ 5986 if (newblk_lookup(mp, dbtofsb(fs, bp->b_blkno), 0, &newblk)) 5987 LIST_INSERT_HEAD(&newblk->nb_indirdeps, indirdep, ir_next); 5988 else 5989 indirdep->ir_state |= DEPCOMPLETE; 5990 return (indirdep); 5991 } 5992 5993 /* 5994 * Called to finish the allocation of the "aip" allocated 5995 * by one of the two routines above. 5996 */ 5997 static struct freefrag * 5998 setup_allocindir_phase2(bp, ip, inodedep, aip, lbn) 5999 struct buf *bp; /* in-memory copy of the indirect block */ 6000 struct inode *ip; /* inode for file being extended */ 6001 struct inodedep *inodedep; /* Inodedep for ip */ 6002 struct allocindir *aip; /* allocindir allocated by the above routines */ 6003 ufs_lbn_t lbn; /* Logical block number for this block. */ 6004 { 6005 struct fs *fs; 6006 struct indirdep *indirdep; 6007 struct allocindir *oldaip; 6008 struct freefrag *freefrag; 6009 struct mount *mp; 6010 struct ufsmount *ump; 6011 6012 mp = ITOVFS(ip); 6013 ump = VFSTOUFS(mp); 6014 LOCK_OWNED(ump); 6015 fs = ump->um_fs; 6016 if (bp->b_lblkno >= 0) 6017 panic("setup_allocindir_phase2: not indir blk"); 6018 KASSERT(aip->ai_offset >= 0 && aip->ai_offset < NINDIR(fs), 6019 ("setup_allocindir_phase2: Bad offset %d", aip->ai_offset)); 6020 indirdep = indirdep_lookup(mp, ip, bp); 6021 KASSERT(indirdep->ir_savebp != NULL, 6022 ("setup_allocindir_phase2 NULL ir_savebp")); 6023 aip->ai_indirdep = indirdep; 6024 /* 6025 * Check for an unwritten dependency for this indirect offset. If 6026 * there is, merge the old dependency into the new one. This happens 6027 * as a result of reallocblk only. 6028 */ 6029 freefrag = NULL; 6030 if (aip->ai_oldblkno != 0) { 6031 LIST_FOREACH(oldaip, &indirdep->ir_deplisthd, ai_next) { 6032 if (oldaip->ai_offset == aip->ai_offset) { 6033 freefrag = allocindir_merge(aip, oldaip); 6034 goto done; 6035 } 6036 } 6037 LIST_FOREACH(oldaip, &indirdep->ir_donehd, ai_next) { 6038 if (oldaip->ai_offset == aip->ai_offset) { 6039 freefrag = allocindir_merge(aip, oldaip); 6040 goto done; 6041 } 6042 } 6043 } 6044 done: 6045 LIST_INSERT_HEAD(&indirdep->ir_deplisthd, aip, ai_next); 6046 return (freefrag); 6047 } 6048 6049 /* 6050 * Merge two allocindirs which refer to the same block. Move newblock 6051 * dependencies and setup the freefrags appropriately. 6052 */ 6053 static struct freefrag * 6054 allocindir_merge(aip, oldaip) 6055 struct allocindir *aip; 6056 struct allocindir *oldaip; 6057 { 6058 struct freefrag *freefrag; 6059 struct worklist *wk; 6060 6061 if (oldaip->ai_newblkno != aip->ai_oldblkno) 6062 panic("allocindir_merge: blkno"); 6063 aip->ai_oldblkno = oldaip->ai_oldblkno; 6064 freefrag = aip->ai_freefrag; 6065 aip->ai_freefrag = oldaip->ai_freefrag; 6066 oldaip->ai_freefrag = NULL; 6067 KASSERT(freefrag != NULL, ("setup_allocindir_phase2: No freefrag")); 6068 /* 6069 * If we are tracking a new directory-block allocation, 6070 * move it from the old allocindir to the new allocindir. 6071 */ 6072 if ((wk = LIST_FIRST(&oldaip->ai_newdirblk)) != NULL) { 6073 WORKLIST_REMOVE(wk); 6074 if (!LIST_EMPTY(&oldaip->ai_newdirblk)) 6075 panic("allocindir_merge: extra newdirblk"); 6076 WORKLIST_INSERT(&aip->ai_newdirblk, wk); 6077 } 6078 /* 6079 * We can skip journaling for this freefrag and just complete 6080 * any pending journal work for the allocindir that is being 6081 * removed after the freefrag completes. 6082 */ 6083 if (freefrag->ff_jdep) 6084 cancel_jfreefrag(WK_JFREEFRAG(freefrag->ff_jdep)); 6085 LIST_REMOVE(oldaip, ai_next); 6086 freefrag->ff_jdep = (struct worklist *)cancel_newblk(&oldaip->ai_block, 6087 &freefrag->ff_list, &freefrag->ff_jwork); 6088 free_newblk(&oldaip->ai_block); 6089 6090 return (freefrag); 6091 } 6092 6093 static inline void 6094 setup_freedirect(freeblks, ip, i, needj) 6095 struct freeblks *freeblks; 6096 struct inode *ip; 6097 int i; 6098 int needj; 6099 { 6100 struct ufsmount *ump; 6101 ufs2_daddr_t blkno; 6102 int frags; 6103 6104 blkno = DIP(ip, i_db[i]); 6105 if (blkno == 0) 6106 return; 6107 DIP_SET(ip, i_db[i], 0); 6108 ump = ITOUMP(ip); 6109 frags = sblksize(ump->um_fs, ip->i_size, i); 6110 frags = numfrags(ump->um_fs, frags); 6111 newfreework(ump, freeblks, NULL, i, blkno, frags, 0, needj); 6112 } 6113 6114 static inline void 6115 setup_freeext(freeblks, ip, i, needj) 6116 struct freeblks *freeblks; 6117 struct inode *ip; 6118 int i; 6119 int needj; 6120 { 6121 struct ufsmount *ump; 6122 ufs2_daddr_t blkno; 6123 int frags; 6124 6125 blkno = ip->i_din2->di_extb[i]; 6126 if (blkno == 0) 6127 return; 6128 ip->i_din2->di_extb[i] = 0; 6129 ump = ITOUMP(ip); 6130 frags = sblksize(ump->um_fs, ip->i_din2->di_extsize, i); 6131 frags = numfrags(ump->um_fs, frags); 6132 newfreework(ump, freeblks, NULL, -1 - i, blkno, frags, 0, needj); 6133 } 6134 6135 static inline void 6136 setup_freeindir(freeblks, ip, i, lbn, needj) 6137 struct freeblks *freeblks; 6138 struct inode *ip; 6139 int i; 6140 ufs_lbn_t lbn; 6141 int needj; 6142 { 6143 struct ufsmount *ump; 6144 ufs2_daddr_t blkno; 6145 6146 blkno = DIP(ip, i_ib[i]); 6147 if (blkno == 0) 6148 return; 6149 DIP_SET(ip, i_ib[i], 0); 6150 ump = ITOUMP(ip); 6151 newfreework(ump, freeblks, NULL, lbn, blkno, ump->um_fs->fs_frag, 6152 0, needj); 6153 } 6154 6155 static inline struct freeblks * 6156 newfreeblks(mp, ip) 6157 struct mount *mp; 6158 struct inode *ip; 6159 { 6160 struct freeblks *freeblks; 6161 6162 freeblks = malloc(sizeof(struct freeblks), 6163 M_FREEBLKS, M_SOFTDEP_FLAGS|M_ZERO); 6164 workitem_alloc(&freeblks->fb_list, D_FREEBLKS, mp); 6165 LIST_INIT(&freeblks->fb_jblkdephd); 6166 LIST_INIT(&freeblks->fb_jwork); 6167 freeblks->fb_ref = 0; 6168 freeblks->fb_cgwait = 0; 6169 freeblks->fb_state = ATTACHED; 6170 freeblks->fb_uid = ip->i_uid; 6171 freeblks->fb_inum = ip->i_number; 6172 freeblks->fb_vtype = ITOV(ip)->v_type; 6173 freeblks->fb_modrev = DIP(ip, i_modrev); 6174 freeblks->fb_devvp = ITODEVVP(ip); 6175 freeblks->fb_chkcnt = 0; 6176 freeblks->fb_len = 0; 6177 6178 return (freeblks); 6179 } 6180 6181 static void 6182 trunc_indirdep(indirdep, freeblks, bp, off) 6183 struct indirdep *indirdep; 6184 struct freeblks *freeblks; 6185 struct buf *bp; 6186 int off; 6187 { 6188 struct allocindir *aip, *aipn; 6189 6190 /* 6191 * The first set of allocindirs won't be in savedbp. 6192 */ 6193 LIST_FOREACH_SAFE(aip, &indirdep->ir_deplisthd, ai_next, aipn) 6194 if (aip->ai_offset > off) 6195 cancel_allocindir(aip, bp, freeblks, 1); 6196 LIST_FOREACH_SAFE(aip, &indirdep->ir_donehd, ai_next, aipn) 6197 if (aip->ai_offset > off) 6198 cancel_allocindir(aip, bp, freeblks, 1); 6199 /* 6200 * These will exist in savedbp. 6201 */ 6202 LIST_FOREACH_SAFE(aip, &indirdep->ir_writehd, ai_next, aipn) 6203 if (aip->ai_offset > off) 6204 cancel_allocindir(aip, NULL, freeblks, 0); 6205 LIST_FOREACH_SAFE(aip, &indirdep->ir_completehd, ai_next, aipn) 6206 if (aip->ai_offset > off) 6207 cancel_allocindir(aip, NULL, freeblks, 0); 6208 } 6209 6210 /* 6211 * Follow the chain of indirects down to lastlbn creating a freework 6212 * structure for each. This will be used to start indir_trunc() at 6213 * the right offset and create the journal records for the parrtial 6214 * truncation. A second step will handle the truncated dependencies. 6215 */ 6216 static int 6217 setup_trunc_indir(freeblks, ip, lbn, lastlbn, blkno) 6218 struct freeblks *freeblks; 6219 struct inode *ip; 6220 ufs_lbn_t lbn; 6221 ufs_lbn_t lastlbn; 6222 ufs2_daddr_t blkno; 6223 { 6224 struct indirdep *indirdep; 6225 struct indirdep *indirn; 6226 struct freework *freework; 6227 struct newblk *newblk; 6228 struct mount *mp; 6229 struct ufsmount *ump; 6230 struct buf *bp; 6231 uint8_t *start; 6232 uint8_t *end; 6233 ufs_lbn_t lbnadd; 6234 int level; 6235 int error; 6236 int off; 6237 6238 6239 freework = NULL; 6240 if (blkno == 0) 6241 return (0); 6242 mp = freeblks->fb_list.wk_mp; 6243 ump = VFSTOUFS(mp); 6244 bp = getblk(ITOV(ip), lbn, mp->mnt_stat.f_iosize, 0, 0, 0); 6245 if ((bp->b_flags & B_CACHE) == 0) { 6246 bp->b_blkno = blkptrtodb(VFSTOUFS(mp), blkno); 6247 bp->b_iocmd = BIO_READ; 6248 bp->b_flags &= ~B_INVAL; 6249 bp->b_ioflags &= ~BIO_ERROR; 6250 vfs_busy_pages(bp, 0); 6251 bp->b_iooffset = dbtob(bp->b_blkno); 6252 bstrategy(bp); 6253 #ifdef RACCT 6254 if (racct_enable) { 6255 PROC_LOCK(curproc); 6256 racct_add_buf(curproc, bp, 0); 6257 PROC_UNLOCK(curproc); 6258 } 6259 #endif /* RACCT */ 6260 curthread->td_ru.ru_inblock++; 6261 error = bufwait(bp); 6262 if (error) { 6263 brelse(bp); 6264 return (error); 6265 } 6266 } 6267 level = lbn_level(lbn); 6268 lbnadd = lbn_offset(ump->um_fs, level); 6269 /* 6270 * Compute the offset of the last block we want to keep. Store 6271 * in the freework the first block we want to completely free. 6272 */ 6273 off = (lastlbn - -(lbn + level)) / lbnadd; 6274 if (off + 1 == NINDIR(ump->um_fs)) 6275 goto nowork; 6276 freework = newfreework(ump, freeblks, NULL, lbn, blkno, 0, off + 1, 0); 6277 /* 6278 * Link the freework into the indirdep. This will prevent any new 6279 * allocations from proceeding until we are finished with the 6280 * truncate and the block is written. 6281 */ 6282 ACQUIRE_LOCK(ump); 6283 indirdep = indirdep_lookup(mp, ip, bp); 6284 if (indirdep->ir_freeblks) 6285 panic("setup_trunc_indir: indirdep already truncated."); 6286 TAILQ_INSERT_TAIL(&indirdep->ir_trunc, freework, fw_next); 6287 freework->fw_indir = indirdep; 6288 /* 6289 * Cancel any allocindirs that will not make it to disk. 6290 * We have to do this for all copies of the indirdep that 6291 * live on this newblk. 6292 */ 6293 if ((indirdep->ir_state & DEPCOMPLETE) == 0) { 6294 newblk_lookup(mp, dbtofsb(ump->um_fs, bp->b_blkno), 0, &newblk); 6295 LIST_FOREACH(indirn, &newblk->nb_indirdeps, ir_next) 6296 trunc_indirdep(indirn, freeblks, bp, off); 6297 } else 6298 trunc_indirdep(indirdep, freeblks, bp, off); 6299 FREE_LOCK(ump); 6300 /* 6301 * Creation is protected by the buf lock. The saveddata is only 6302 * needed if a full truncation follows a partial truncation but it 6303 * is difficult to allocate in that case so we fetch it anyway. 6304 */ 6305 if (indirdep->ir_saveddata == NULL) 6306 indirdep->ir_saveddata = malloc(bp->b_bcount, M_INDIRDEP, 6307 M_SOFTDEP_FLAGS); 6308 nowork: 6309 /* Fetch the blkno of the child and the zero start offset. */ 6310 if (I_IS_UFS1(ip)) { 6311 blkno = ((ufs1_daddr_t *)bp->b_data)[off]; 6312 start = (uint8_t *)&((ufs1_daddr_t *)bp->b_data)[off+1]; 6313 } else { 6314 blkno = ((ufs2_daddr_t *)bp->b_data)[off]; 6315 start = (uint8_t *)&((ufs2_daddr_t *)bp->b_data)[off+1]; 6316 } 6317 if (freework) { 6318 /* Zero the truncated pointers. */ 6319 end = bp->b_data + bp->b_bcount; 6320 bzero(start, end - start); 6321 bdwrite(bp); 6322 } else 6323 bqrelse(bp); 6324 if (level == 0) 6325 return (0); 6326 lbn++; /* adjust level */ 6327 lbn -= (off * lbnadd); 6328 return setup_trunc_indir(freeblks, ip, lbn, lastlbn, blkno); 6329 } 6330 6331 /* 6332 * Complete the partial truncation of an indirect block setup by 6333 * setup_trunc_indir(). This zeros the truncated pointers in the saved 6334 * copy and writes them to disk before the freeblks is allowed to complete. 6335 */ 6336 static void 6337 complete_trunc_indir(freework) 6338 struct freework *freework; 6339 { 6340 struct freework *fwn; 6341 struct indirdep *indirdep; 6342 struct ufsmount *ump; 6343 struct buf *bp; 6344 uintptr_t start; 6345 int count; 6346 6347 ump = VFSTOUFS(freework->fw_list.wk_mp); 6348 LOCK_OWNED(ump); 6349 indirdep = freework->fw_indir; 6350 for (;;) { 6351 bp = indirdep->ir_bp; 6352 /* See if the block was discarded. */ 6353 if (bp == NULL) 6354 break; 6355 /* Inline part of getdirtybuf(). We dont want bremfree. */ 6356 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) == 0) 6357 break; 6358 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, 6359 LOCK_PTR(ump)) == 0) 6360 BUF_UNLOCK(bp); 6361 ACQUIRE_LOCK(ump); 6362 } 6363 freework->fw_state |= DEPCOMPLETE; 6364 TAILQ_REMOVE(&indirdep->ir_trunc, freework, fw_next); 6365 /* 6366 * Zero the pointers in the saved copy. 6367 */ 6368 if (indirdep->ir_state & UFS1FMT) 6369 start = sizeof(ufs1_daddr_t); 6370 else 6371 start = sizeof(ufs2_daddr_t); 6372 start *= freework->fw_start; 6373 count = indirdep->ir_savebp->b_bcount - start; 6374 start += (uintptr_t)indirdep->ir_savebp->b_data; 6375 bzero((char *)start, count); 6376 /* 6377 * We need to start the next truncation in the list if it has not 6378 * been started yet. 6379 */ 6380 fwn = TAILQ_FIRST(&indirdep->ir_trunc); 6381 if (fwn != NULL) { 6382 if (fwn->fw_freeblks == indirdep->ir_freeblks) 6383 TAILQ_REMOVE(&indirdep->ir_trunc, fwn, fw_next); 6384 if ((fwn->fw_state & ONWORKLIST) == 0) 6385 freework_enqueue(fwn); 6386 } 6387 /* 6388 * If bp is NULL the block was fully truncated, restore 6389 * the saved block list otherwise free it if it is no 6390 * longer needed. 6391 */ 6392 if (TAILQ_EMPTY(&indirdep->ir_trunc)) { 6393 if (bp == NULL) 6394 bcopy(indirdep->ir_saveddata, 6395 indirdep->ir_savebp->b_data, 6396 indirdep->ir_savebp->b_bcount); 6397 free(indirdep->ir_saveddata, M_INDIRDEP); 6398 indirdep->ir_saveddata = NULL; 6399 } 6400 /* 6401 * When bp is NULL there is a full truncation pending. We 6402 * must wait for this full truncation to be journaled before 6403 * we can release this freework because the disk pointers will 6404 * never be written as zero. 6405 */ 6406 if (bp == NULL) { 6407 if (LIST_EMPTY(&indirdep->ir_freeblks->fb_jblkdephd)) 6408 handle_written_freework(freework); 6409 else 6410 WORKLIST_INSERT(&indirdep->ir_freeblks->fb_freeworkhd, 6411 &freework->fw_list); 6412 } else { 6413 /* Complete when the real copy is written. */ 6414 WORKLIST_INSERT(&bp->b_dep, &freework->fw_list); 6415 BUF_UNLOCK(bp); 6416 } 6417 } 6418 6419 /* 6420 * Calculate the number of blocks we are going to release where datablocks 6421 * is the current total and length is the new file size. 6422 */ 6423 static ufs2_daddr_t 6424 blkcount(fs, datablocks, length) 6425 struct fs *fs; 6426 ufs2_daddr_t datablocks; 6427 off_t length; 6428 { 6429 off_t totblks, numblks; 6430 6431 totblks = 0; 6432 numblks = howmany(length, fs->fs_bsize); 6433 if (numblks <= UFS_NDADDR) { 6434 totblks = howmany(length, fs->fs_fsize); 6435 goto out; 6436 } 6437 totblks = blkstofrags(fs, numblks); 6438 numblks -= UFS_NDADDR; 6439 /* 6440 * Count all single, then double, then triple indirects required. 6441 * Subtracting one indirects worth of blocks for each pass 6442 * acknowledges one of each pointed to by the inode. 6443 */ 6444 for (;;) { 6445 totblks += blkstofrags(fs, howmany(numblks, NINDIR(fs))); 6446 numblks -= NINDIR(fs); 6447 if (numblks <= 0) 6448 break; 6449 numblks = howmany(numblks, NINDIR(fs)); 6450 } 6451 out: 6452 totblks = fsbtodb(fs, totblks); 6453 /* 6454 * Handle sparse files. We can't reclaim more blocks than the inode 6455 * references. We will correct it later in handle_complete_freeblks() 6456 * when we know the real count. 6457 */ 6458 if (totblks > datablocks) 6459 return (0); 6460 return (datablocks - totblks); 6461 } 6462 6463 /* 6464 * Handle freeblocks for journaled softupdate filesystems. 6465 * 6466 * Contrary to normal softupdates, we must preserve the block pointers in 6467 * indirects until their subordinates are free. This is to avoid journaling 6468 * every block that is freed which may consume more space than the journal 6469 * itself. The recovery program will see the free block journals at the 6470 * base of the truncated area and traverse them to reclaim space. The 6471 * pointers in the inode may be cleared immediately after the journal 6472 * records are written because each direct and indirect pointer in the 6473 * inode is recorded in a journal. This permits full truncation to proceed 6474 * asynchronously. The write order is journal -> inode -> cgs -> indirects. 6475 * 6476 * The algorithm is as follows: 6477 * 1) Traverse the in-memory state and create journal entries to release 6478 * the relevant blocks and full indirect trees. 6479 * 2) Traverse the indirect block chain adding partial truncation freework 6480 * records to indirects in the path to lastlbn. The freework will 6481 * prevent new allocation dependencies from being satisfied in this 6482 * indirect until the truncation completes. 6483 * 3) Read and lock the inode block, performing an update with the new size 6484 * and pointers. This prevents truncated data from becoming valid on 6485 * disk through step 4. 6486 * 4) Reap unsatisfied dependencies that are beyond the truncated area, 6487 * eliminate journal work for those records that do not require it. 6488 * 5) Schedule the journal records to be written followed by the inode block. 6489 * 6) Allocate any necessary frags for the end of file. 6490 * 7) Zero any partially truncated blocks. 6491 * 6492 * From this truncation proceeds asynchronously using the freework and 6493 * indir_trunc machinery. The file will not be extended again into a 6494 * partially truncated indirect block until all work is completed but 6495 * the normal dependency mechanism ensures that it is rolled back/forward 6496 * as appropriate. Further truncation may occur without delay and is 6497 * serialized in indir_trunc(). 6498 */ 6499 void 6500 softdep_journal_freeblocks(ip, cred, length, flags) 6501 struct inode *ip; /* The inode whose length is to be reduced */ 6502 struct ucred *cred; 6503 off_t length; /* The new length for the file */ 6504 int flags; /* IO_EXT and/or IO_NORMAL */ 6505 { 6506 struct freeblks *freeblks, *fbn; 6507 struct worklist *wk, *wkn; 6508 struct inodedep *inodedep; 6509 struct jblkdep *jblkdep; 6510 struct allocdirect *adp, *adpn; 6511 struct ufsmount *ump; 6512 struct fs *fs; 6513 struct buf *bp; 6514 struct vnode *vp; 6515 struct mount *mp; 6516 ufs2_daddr_t extblocks, datablocks; 6517 ufs_lbn_t tmpval, lbn, lastlbn; 6518 int frags, lastoff, iboff, allocblock, needj, error, i; 6519 6520 ump = ITOUMP(ip); 6521 mp = UFSTOVFS(ump); 6522 fs = ump->um_fs; 6523 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 6524 ("softdep_journal_freeblocks called on non-softdep filesystem")); 6525 vp = ITOV(ip); 6526 needj = 1; 6527 iboff = -1; 6528 allocblock = 0; 6529 extblocks = 0; 6530 datablocks = 0; 6531 frags = 0; 6532 freeblks = newfreeblks(mp, ip); 6533 ACQUIRE_LOCK(ump); 6534 /* 6535 * If we're truncating a removed file that will never be written 6536 * we don't need to journal the block frees. The canceled journals 6537 * for the allocations will suffice. 6538 */ 6539 inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep); 6540 if ((inodedep->id_state & (UNLINKED | DEPCOMPLETE)) == UNLINKED && 6541 length == 0) 6542 needj = 0; 6543 CTR3(KTR_SUJ, "softdep_journal_freeblks: ip %d length %ld needj %d", 6544 ip->i_number, length, needj); 6545 FREE_LOCK(ump); 6546 /* 6547 * Calculate the lbn that we are truncating to. This results in -1 6548 * if we're truncating the 0 bytes. So it is the last lbn we want 6549 * to keep, not the first lbn we want to truncate. 6550 */ 6551 lastlbn = lblkno(fs, length + fs->fs_bsize - 1) - 1; 6552 lastoff = blkoff(fs, length); 6553 /* 6554 * Compute frags we are keeping in lastlbn. 0 means all. 6555 */ 6556 if (lastlbn >= 0 && lastlbn < UFS_NDADDR) { 6557 frags = fragroundup(fs, lastoff); 6558 /* adp offset of last valid allocdirect. */ 6559 iboff = lastlbn; 6560 } else if (lastlbn > 0) 6561 iboff = UFS_NDADDR; 6562 if (fs->fs_magic == FS_UFS2_MAGIC) 6563 extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize)); 6564 /* 6565 * Handle normal data blocks and indirects. This section saves 6566 * values used after the inode update to complete frag and indirect 6567 * truncation. 6568 */ 6569 if ((flags & IO_NORMAL) != 0) { 6570 /* 6571 * Handle truncation of whole direct and indirect blocks. 6572 */ 6573 for (i = iboff + 1; i < UFS_NDADDR; i++) 6574 setup_freedirect(freeblks, ip, i, needj); 6575 for (i = 0, tmpval = NINDIR(fs), lbn = UFS_NDADDR; 6576 i < UFS_NIADDR; 6577 i++, lbn += tmpval, tmpval *= NINDIR(fs)) { 6578 /* Release a whole indirect tree. */ 6579 if (lbn > lastlbn) { 6580 setup_freeindir(freeblks, ip, i, -lbn -i, 6581 needj); 6582 continue; 6583 } 6584 iboff = i + UFS_NDADDR; 6585 /* 6586 * Traverse partially truncated indirect tree. 6587 */ 6588 if (lbn <= lastlbn && lbn + tmpval - 1 > lastlbn) 6589 setup_trunc_indir(freeblks, ip, -lbn - i, 6590 lastlbn, DIP(ip, i_ib[i])); 6591 } 6592 /* 6593 * Handle partial truncation to a frag boundary. 6594 */ 6595 if (frags) { 6596 ufs2_daddr_t blkno; 6597 long oldfrags; 6598 6599 oldfrags = blksize(fs, ip, lastlbn); 6600 blkno = DIP(ip, i_db[lastlbn]); 6601 if (blkno && oldfrags != frags) { 6602 oldfrags -= frags; 6603 oldfrags = numfrags(fs, oldfrags); 6604 blkno += numfrags(fs, frags); 6605 newfreework(ump, freeblks, NULL, lastlbn, 6606 blkno, oldfrags, 0, needj); 6607 if (needj) 6608 adjust_newfreework(freeblks, 6609 numfrags(fs, frags)); 6610 } else if (blkno == 0) 6611 allocblock = 1; 6612 } 6613 /* 6614 * Add a journal record for partial truncate if we are 6615 * handling indirect blocks. Non-indirects need no extra 6616 * journaling. 6617 */ 6618 if (length != 0 && lastlbn >= UFS_NDADDR) { 6619 ip->i_flag |= IN_TRUNCATED; 6620 newjtrunc(freeblks, length, 0); 6621 } 6622 ip->i_size = length; 6623 DIP_SET(ip, i_size, ip->i_size); 6624 datablocks = DIP(ip, i_blocks) - extblocks; 6625 if (length != 0) 6626 datablocks = blkcount(fs, datablocks, length); 6627 freeblks->fb_len = length; 6628 } 6629 if ((flags & IO_EXT) != 0) { 6630 for (i = 0; i < UFS_NXADDR; i++) 6631 setup_freeext(freeblks, ip, i, needj); 6632 ip->i_din2->di_extsize = 0; 6633 datablocks += extblocks; 6634 } 6635 #ifdef QUOTA 6636 /* Reference the quotas in case the block count is wrong in the end. */ 6637 quotaref(vp, freeblks->fb_quota); 6638 (void) chkdq(ip, -datablocks, NOCRED, 0); 6639 #endif 6640 freeblks->fb_chkcnt = -datablocks; 6641 UFS_LOCK(ump); 6642 fs->fs_pendingblocks += datablocks; 6643 UFS_UNLOCK(ump); 6644 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - datablocks); 6645 /* 6646 * Handle truncation of incomplete alloc direct dependencies. We 6647 * hold the inode block locked to prevent incomplete dependencies 6648 * from reaching the disk while we are eliminating those that 6649 * have been truncated. This is a partially inlined ffs_update(). 6650 */ 6651 ufs_itimes(vp); 6652 ip->i_flag &= ~(IN_LAZYACCESS | IN_LAZYMOD | IN_MODIFIED); 6653 error = bread(ump->um_devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)), 6654 (int)fs->fs_bsize, cred, &bp); 6655 if (error) { 6656 brelse(bp); 6657 softdep_error("softdep_journal_freeblocks", error); 6658 return; 6659 } 6660 if (bp->b_bufsize == fs->fs_bsize) 6661 bp->b_flags |= B_CLUSTEROK; 6662 softdep_update_inodeblock(ip, bp, 0); 6663 if (ump->um_fstype == UFS1) 6664 *((struct ufs1_dinode *)bp->b_data + 6665 ino_to_fsbo(fs, ip->i_number)) = *ip->i_din1; 6666 else 6667 *((struct ufs2_dinode *)bp->b_data + 6668 ino_to_fsbo(fs, ip->i_number)) = *ip->i_din2; 6669 ACQUIRE_LOCK(ump); 6670 (void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep); 6671 if ((inodedep->id_state & IOSTARTED) != 0) 6672 panic("softdep_setup_freeblocks: inode busy"); 6673 /* 6674 * Add the freeblks structure to the list of operations that 6675 * must await the zero'ed inode being written to disk. If we 6676 * still have a bitmap dependency (needj), then the inode 6677 * has never been written to disk, so we can process the 6678 * freeblks below once we have deleted the dependencies. 6679 */ 6680 if (needj) 6681 WORKLIST_INSERT(&bp->b_dep, &freeblks->fb_list); 6682 else 6683 freeblks->fb_state |= COMPLETE; 6684 if ((flags & IO_NORMAL) != 0) { 6685 TAILQ_FOREACH_SAFE(adp, &inodedep->id_inoupdt, ad_next, adpn) { 6686 if (adp->ad_offset > iboff) 6687 cancel_allocdirect(&inodedep->id_inoupdt, adp, 6688 freeblks); 6689 /* 6690 * Truncate the allocdirect. We could eliminate 6691 * or modify journal records as well. 6692 */ 6693 else if (adp->ad_offset == iboff && frags) 6694 adp->ad_newsize = frags; 6695 } 6696 } 6697 if ((flags & IO_EXT) != 0) 6698 while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL) 6699 cancel_allocdirect(&inodedep->id_extupdt, adp, 6700 freeblks); 6701 /* 6702 * Scan the bufwait list for newblock dependencies that will never 6703 * make it to disk. 6704 */ 6705 LIST_FOREACH_SAFE(wk, &inodedep->id_bufwait, wk_list, wkn) { 6706 if (wk->wk_type != D_ALLOCDIRECT) 6707 continue; 6708 adp = WK_ALLOCDIRECT(wk); 6709 if (((flags & IO_NORMAL) != 0 && (adp->ad_offset > iboff)) || 6710 ((flags & IO_EXT) != 0 && (adp->ad_state & EXTDATA))) { 6711 cancel_jfreeblk(freeblks, adp->ad_newblkno); 6712 cancel_newblk(WK_NEWBLK(wk), NULL, &freeblks->fb_jwork); 6713 WORKLIST_INSERT(&freeblks->fb_freeworkhd, wk); 6714 } 6715 } 6716 /* 6717 * Add journal work. 6718 */ 6719 LIST_FOREACH(jblkdep, &freeblks->fb_jblkdephd, jb_deps) 6720 add_to_journal(&jblkdep->jb_list); 6721 FREE_LOCK(ump); 6722 bdwrite(bp); 6723 /* 6724 * Truncate dependency structures beyond length. 6725 */ 6726 trunc_dependencies(ip, freeblks, lastlbn, frags, flags); 6727 /* 6728 * This is only set when we need to allocate a fragment because 6729 * none existed at the end of a frag-sized file. It handles only 6730 * allocating a new, zero filled block. 6731 */ 6732 if (allocblock) { 6733 ip->i_size = length - lastoff; 6734 DIP_SET(ip, i_size, ip->i_size); 6735 error = UFS_BALLOC(vp, length - 1, 1, cred, BA_CLRBUF, &bp); 6736 if (error != 0) { 6737 softdep_error("softdep_journal_freeblks", error); 6738 return; 6739 } 6740 ip->i_size = length; 6741 DIP_SET(ip, i_size, length); 6742 ip->i_flag |= IN_CHANGE | IN_UPDATE; 6743 allocbuf(bp, frags); 6744 ffs_update(vp, 0); 6745 bawrite(bp); 6746 } else if (lastoff != 0 && vp->v_type != VDIR) { 6747 int size; 6748 6749 /* 6750 * Zero the end of a truncated frag or block. 6751 */ 6752 size = sblksize(fs, length, lastlbn); 6753 error = bread(vp, lastlbn, size, cred, &bp); 6754 if (error) { 6755 softdep_error("softdep_journal_freeblks", error); 6756 return; 6757 } 6758 bzero((char *)bp->b_data + lastoff, size - lastoff); 6759 bawrite(bp); 6760 6761 } 6762 ACQUIRE_LOCK(ump); 6763 inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep); 6764 TAILQ_INSERT_TAIL(&inodedep->id_freeblklst, freeblks, fb_next); 6765 freeblks->fb_state |= DEPCOMPLETE | ONDEPLIST; 6766 /* 6767 * We zero earlier truncations so they don't erroneously 6768 * update i_blocks. 6769 */ 6770 if (freeblks->fb_len == 0 && (flags & IO_NORMAL) != 0) 6771 TAILQ_FOREACH(fbn, &inodedep->id_freeblklst, fb_next) 6772 fbn->fb_len = 0; 6773 if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE && 6774 LIST_EMPTY(&freeblks->fb_jblkdephd)) 6775 freeblks->fb_state |= INPROGRESS; 6776 else 6777 freeblks = NULL; 6778 FREE_LOCK(ump); 6779 if (freeblks) 6780 handle_workitem_freeblocks(freeblks, 0); 6781 trunc_pages(ip, length, extblocks, flags); 6782 6783 } 6784 6785 /* 6786 * Flush a JOP_SYNC to the journal. 6787 */ 6788 void 6789 softdep_journal_fsync(ip) 6790 struct inode *ip; 6791 { 6792 struct jfsync *jfsync; 6793 struct ufsmount *ump; 6794 6795 ump = ITOUMP(ip); 6796 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 6797 ("softdep_journal_fsync called on non-softdep filesystem")); 6798 if ((ip->i_flag & IN_TRUNCATED) == 0) 6799 return; 6800 ip->i_flag &= ~IN_TRUNCATED; 6801 jfsync = malloc(sizeof(*jfsync), M_JFSYNC, M_SOFTDEP_FLAGS | M_ZERO); 6802 workitem_alloc(&jfsync->jfs_list, D_JFSYNC, UFSTOVFS(ump)); 6803 jfsync->jfs_size = ip->i_size; 6804 jfsync->jfs_ino = ip->i_number; 6805 ACQUIRE_LOCK(ump); 6806 add_to_journal(&jfsync->jfs_list); 6807 jwait(&jfsync->jfs_list, MNT_WAIT); 6808 FREE_LOCK(ump); 6809 } 6810 6811 /* 6812 * Block de-allocation dependencies. 6813 * 6814 * When blocks are de-allocated, the on-disk pointers must be nullified before 6815 * the blocks are made available for use by other files. (The true 6816 * requirement is that old pointers must be nullified before new on-disk 6817 * pointers are set. We chose this slightly more stringent requirement to 6818 * reduce complexity.) Our implementation handles this dependency by updating 6819 * the inode (or indirect block) appropriately but delaying the actual block 6820 * de-allocation (i.e., freemap and free space count manipulation) until 6821 * after the updated versions reach stable storage. After the disk is 6822 * updated, the blocks can be safely de-allocated whenever it is convenient. 6823 * This implementation handles only the common case of reducing a file's 6824 * length to zero. Other cases are handled by the conventional synchronous 6825 * write approach. 6826 * 6827 * The ffs implementation with which we worked double-checks 6828 * the state of the block pointers and file size as it reduces 6829 * a file's length. Some of this code is replicated here in our 6830 * soft updates implementation. The freeblks->fb_chkcnt field is 6831 * used to transfer a part of this information to the procedure 6832 * that eventually de-allocates the blocks. 6833 * 6834 * This routine should be called from the routine that shortens 6835 * a file's length, before the inode's size or block pointers 6836 * are modified. It will save the block pointer information for 6837 * later release and zero the inode so that the calling routine 6838 * can release it. 6839 */ 6840 void 6841 softdep_setup_freeblocks(ip, length, flags) 6842 struct inode *ip; /* The inode whose length is to be reduced */ 6843 off_t length; /* The new length for the file */ 6844 int flags; /* IO_EXT and/or IO_NORMAL */ 6845 { 6846 struct ufs1_dinode *dp1; 6847 struct ufs2_dinode *dp2; 6848 struct freeblks *freeblks; 6849 struct inodedep *inodedep; 6850 struct allocdirect *adp; 6851 struct ufsmount *ump; 6852 struct buf *bp; 6853 struct fs *fs; 6854 ufs2_daddr_t extblocks, datablocks; 6855 struct mount *mp; 6856 int i, delay, error; 6857 ufs_lbn_t tmpval; 6858 ufs_lbn_t lbn; 6859 6860 ump = ITOUMP(ip); 6861 mp = UFSTOVFS(ump); 6862 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 6863 ("softdep_setup_freeblocks called on non-softdep filesystem")); 6864 CTR2(KTR_SUJ, "softdep_setup_freeblks: ip %d length %ld", 6865 ip->i_number, length); 6866 KASSERT(length == 0, ("softdep_setup_freeblocks: non-zero length")); 6867 fs = ump->um_fs; 6868 if ((error = bread(ump->um_devvp, 6869 fsbtodb(fs, ino_to_fsba(fs, ip->i_number)), 6870 (int)fs->fs_bsize, NOCRED, &bp)) != 0) { 6871 brelse(bp); 6872 softdep_error("softdep_setup_freeblocks", error); 6873 return; 6874 } 6875 freeblks = newfreeblks(mp, ip); 6876 extblocks = 0; 6877 datablocks = 0; 6878 if (fs->fs_magic == FS_UFS2_MAGIC) 6879 extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize)); 6880 if ((flags & IO_NORMAL) != 0) { 6881 for (i = 0; i < UFS_NDADDR; i++) 6882 setup_freedirect(freeblks, ip, i, 0); 6883 for (i = 0, tmpval = NINDIR(fs), lbn = UFS_NDADDR; 6884 i < UFS_NIADDR; 6885 i++, lbn += tmpval, tmpval *= NINDIR(fs)) 6886 setup_freeindir(freeblks, ip, i, -lbn -i, 0); 6887 ip->i_size = 0; 6888 DIP_SET(ip, i_size, 0); 6889 datablocks = DIP(ip, i_blocks) - extblocks; 6890 } 6891 if ((flags & IO_EXT) != 0) { 6892 for (i = 0; i < UFS_NXADDR; i++) 6893 setup_freeext(freeblks, ip, i, 0); 6894 ip->i_din2->di_extsize = 0; 6895 datablocks += extblocks; 6896 } 6897 #ifdef QUOTA 6898 /* Reference the quotas in case the block count is wrong in the end. */ 6899 quotaref(ITOV(ip), freeblks->fb_quota); 6900 (void) chkdq(ip, -datablocks, NOCRED, 0); 6901 #endif 6902 freeblks->fb_chkcnt = -datablocks; 6903 UFS_LOCK(ump); 6904 fs->fs_pendingblocks += datablocks; 6905 UFS_UNLOCK(ump); 6906 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - datablocks); 6907 /* 6908 * Push the zero'ed inode to its disk buffer so that we are free 6909 * to delete its dependencies below. Once the dependencies are gone 6910 * the buffer can be safely released. 6911 */ 6912 if (ump->um_fstype == UFS1) { 6913 dp1 = ((struct ufs1_dinode *)bp->b_data + 6914 ino_to_fsbo(fs, ip->i_number)); 6915 ip->i_din1->di_freelink = dp1->di_freelink; 6916 *dp1 = *ip->i_din1; 6917 } else { 6918 dp2 = ((struct ufs2_dinode *)bp->b_data + 6919 ino_to_fsbo(fs, ip->i_number)); 6920 ip->i_din2->di_freelink = dp2->di_freelink; 6921 *dp2 = *ip->i_din2; 6922 } 6923 /* 6924 * Find and eliminate any inode dependencies. 6925 */ 6926 ACQUIRE_LOCK(ump); 6927 (void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep); 6928 if ((inodedep->id_state & IOSTARTED) != 0) 6929 panic("softdep_setup_freeblocks: inode busy"); 6930 /* 6931 * Add the freeblks structure to the list of operations that 6932 * must await the zero'ed inode being written to disk. If we 6933 * still have a bitmap dependency (delay == 0), then the inode 6934 * has never been written to disk, so we can process the 6935 * freeblks below once we have deleted the dependencies. 6936 */ 6937 delay = (inodedep->id_state & DEPCOMPLETE); 6938 if (delay) 6939 WORKLIST_INSERT(&bp->b_dep, &freeblks->fb_list); 6940 else 6941 freeblks->fb_state |= COMPLETE; 6942 /* 6943 * Because the file length has been truncated to zero, any 6944 * pending block allocation dependency structures associated 6945 * with this inode are obsolete and can simply be de-allocated. 6946 * We must first merge the two dependency lists to get rid of 6947 * any duplicate freefrag structures, then purge the merged list. 6948 * If we still have a bitmap dependency, then the inode has never 6949 * been written to disk, so we can free any fragments without delay. 6950 */ 6951 if (flags & IO_NORMAL) { 6952 merge_inode_lists(&inodedep->id_newinoupdt, 6953 &inodedep->id_inoupdt); 6954 while ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL) 6955 cancel_allocdirect(&inodedep->id_inoupdt, adp, 6956 freeblks); 6957 } 6958 if (flags & IO_EXT) { 6959 merge_inode_lists(&inodedep->id_newextupdt, 6960 &inodedep->id_extupdt); 6961 while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL) 6962 cancel_allocdirect(&inodedep->id_extupdt, adp, 6963 freeblks); 6964 } 6965 FREE_LOCK(ump); 6966 bdwrite(bp); 6967 trunc_dependencies(ip, freeblks, -1, 0, flags); 6968 ACQUIRE_LOCK(ump); 6969 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0) 6970 (void) free_inodedep(inodedep); 6971 freeblks->fb_state |= DEPCOMPLETE; 6972 /* 6973 * If the inode with zeroed block pointers is now on disk 6974 * we can start freeing blocks. 6975 */ 6976 if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE) 6977 freeblks->fb_state |= INPROGRESS; 6978 else 6979 freeblks = NULL; 6980 FREE_LOCK(ump); 6981 if (freeblks) 6982 handle_workitem_freeblocks(freeblks, 0); 6983 trunc_pages(ip, length, extblocks, flags); 6984 } 6985 6986 /* 6987 * Eliminate pages from the page cache that back parts of this inode and 6988 * adjust the vnode pager's idea of our size. This prevents stale data 6989 * from hanging around in the page cache. 6990 */ 6991 static void 6992 trunc_pages(ip, length, extblocks, flags) 6993 struct inode *ip; 6994 off_t length; 6995 ufs2_daddr_t extblocks; 6996 int flags; 6997 { 6998 struct vnode *vp; 6999 struct fs *fs; 7000 ufs_lbn_t lbn; 7001 off_t end, extend; 7002 7003 vp = ITOV(ip); 7004 fs = ITOFS(ip); 7005 extend = OFF_TO_IDX(lblktosize(fs, -extblocks)); 7006 if ((flags & IO_EXT) != 0) 7007 vn_pages_remove(vp, extend, 0); 7008 if ((flags & IO_NORMAL) == 0) 7009 return; 7010 BO_LOCK(&vp->v_bufobj); 7011 drain_output(vp); 7012 BO_UNLOCK(&vp->v_bufobj); 7013 /* 7014 * The vnode pager eliminates file pages we eliminate indirects 7015 * below. 7016 */ 7017 vnode_pager_setsize(vp, length); 7018 /* 7019 * Calculate the end based on the last indirect we want to keep. If 7020 * the block extends into indirects we can just use the negative of 7021 * its lbn. Doubles and triples exist at lower numbers so we must 7022 * be careful not to remove those, if they exist. double and triple 7023 * indirect lbns do not overlap with others so it is not important 7024 * to verify how many levels are required. 7025 */ 7026 lbn = lblkno(fs, length); 7027 if (lbn >= UFS_NDADDR) { 7028 /* Calculate the virtual lbn of the triple indirect. */ 7029 lbn = -lbn - (UFS_NIADDR - 1); 7030 end = OFF_TO_IDX(lblktosize(fs, lbn)); 7031 } else 7032 end = extend; 7033 vn_pages_remove(vp, OFF_TO_IDX(OFF_MAX), end); 7034 } 7035 7036 /* 7037 * See if the buf bp is in the range eliminated by truncation. 7038 */ 7039 static int 7040 trunc_check_buf(bp, blkoffp, lastlbn, lastoff, flags) 7041 struct buf *bp; 7042 int *blkoffp; 7043 ufs_lbn_t lastlbn; 7044 int lastoff; 7045 int flags; 7046 { 7047 ufs_lbn_t lbn; 7048 7049 *blkoffp = 0; 7050 /* Only match ext/normal blocks as appropriate. */ 7051 if (((flags & IO_EXT) == 0 && (bp->b_xflags & BX_ALTDATA)) || 7052 ((flags & IO_NORMAL) == 0 && (bp->b_xflags & BX_ALTDATA) == 0)) 7053 return (0); 7054 /* ALTDATA is always a full truncation. */ 7055 if ((bp->b_xflags & BX_ALTDATA) != 0) 7056 return (1); 7057 /* -1 is full truncation. */ 7058 if (lastlbn == -1) 7059 return (1); 7060 /* 7061 * If this is a partial truncate we only want those 7062 * blocks and indirect blocks that cover the range 7063 * we're after. 7064 */ 7065 lbn = bp->b_lblkno; 7066 if (lbn < 0) 7067 lbn = -(lbn + lbn_level(lbn)); 7068 if (lbn < lastlbn) 7069 return (0); 7070 /* Here we only truncate lblkno if it's partial. */ 7071 if (lbn == lastlbn) { 7072 if (lastoff == 0) 7073 return (0); 7074 *blkoffp = lastoff; 7075 } 7076 return (1); 7077 } 7078 7079 /* 7080 * Eliminate any dependencies that exist in memory beyond lblkno:off 7081 */ 7082 static void 7083 trunc_dependencies(ip, freeblks, lastlbn, lastoff, flags) 7084 struct inode *ip; 7085 struct freeblks *freeblks; 7086 ufs_lbn_t lastlbn; 7087 int lastoff; 7088 int flags; 7089 { 7090 struct bufobj *bo; 7091 struct vnode *vp; 7092 struct buf *bp; 7093 int blkoff; 7094 7095 /* 7096 * We must wait for any I/O in progress to finish so that 7097 * all potential buffers on the dirty list will be visible. 7098 * Once they are all there, walk the list and get rid of 7099 * any dependencies. 7100 */ 7101 vp = ITOV(ip); 7102 bo = &vp->v_bufobj; 7103 BO_LOCK(bo); 7104 drain_output(vp); 7105 TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) 7106 bp->b_vflags &= ~BV_SCANNED; 7107 restart: 7108 TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) { 7109 if (bp->b_vflags & BV_SCANNED) 7110 continue; 7111 if (!trunc_check_buf(bp, &blkoff, lastlbn, lastoff, flags)) { 7112 bp->b_vflags |= BV_SCANNED; 7113 continue; 7114 } 7115 KASSERT(bp->b_bufobj == bo, ("Wrong object in buffer")); 7116 if ((bp = getdirtybuf(bp, BO_LOCKPTR(bo), MNT_WAIT)) == NULL) 7117 goto restart; 7118 BO_UNLOCK(bo); 7119 if (deallocate_dependencies(bp, freeblks, blkoff)) 7120 bqrelse(bp); 7121 else 7122 brelse(bp); 7123 BO_LOCK(bo); 7124 goto restart; 7125 } 7126 /* 7127 * Now do the work of vtruncbuf while also matching indirect blocks. 7128 */ 7129 TAILQ_FOREACH(bp, &bo->bo_clean.bv_hd, b_bobufs) 7130 bp->b_vflags &= ~BV_SCANNED; 7131 cleanrestart: 7132 TAILQ_FOREACH(bp, &bo->bo_clean.bv_hd, b_bobufs) { 7133 if (bp->b_vflags & BV_SCANNED) 7134 continue; 7135 if (!trunc_check_buf(bp, &blkoff, lastlbn, lastoff, flags)) { 7136 bp->b_vflags |= BV_SCANNED; 7137 continue; 7138 } 7139 if (BUF_LOCK(bp, 7140 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, 7141 BO_LOCKPTR(bo)) == ENOLCK) { 7142 BO_LOCK(bo); 7143 goto cleanrestart; 7144 } 7145 bp->b_vflags |= BV_SCANNED; 7146 bremfree(bp); 7147 if (blkoff != 0) { 7148 allocbuf(bp, blkoff); 7149 bqrelse(bp); 7150 } else { 7151 bp->b_flags |= B_INVAL | B_NOCACHE | B_RELBUF; 7152 brelse(bp); 7153 } 7154 BO_LOCK(bo); 7155 goto cleanrestart; 7156 } 7157 drain_output(vp); 7158 BO_UNLOCK(bo); 7159 } 7160 7161 static int 7162 cancel_pagedep(pagedep, freeblks, blkoff) 7163 struct pagedep *pagedep; 7164 struct freeblks *freeblks; 7165 int blkoff; 7166 { 7167 struct jremref *jremref; 7168 struct jmvref *jmvref; 7169 struct dirrem *dirrem, *tmp; 7170 int i; 7171 7172 /* 7173 * Copy any directory remove dependencies to the list 7174 * to be processed after the freeblks proceeds. If 7175 * directory entry never made it to disk they 7176 * can be dumped directly onto the work list. 7177 */ 7178 LIST_FOREACH_SAFE(dirrem, &pagedep->pd_dirremhd, dm_next, tmp) { 7179 /* Skip this directory removal if it is intended to remain. */ 7180 if (dirrem->dm_offset < blkoff) 7181 continue; 7182 /* 7183 * If there are any dirrems we wait for the journal write 7184 * to complete and then restart the buf scan as the lock 7185 * has been dropped. 7186 */ 7187 while ((jremref = LIST_FIRST(&dirrem->dm_jremrefhd)) != NULL) { 7188 jwait(&jremref->jr_list, MNT_WAIT); 7189 return (ERESTART); 7190 } 7191 LIST_REMOVE(dirrem, dm_next); 7192 dirrem->dm_dirinum = pagedep->pd_ino; 7193 WORKLIST_INSERT(&freeblks->fb_freeworkhd, &dirrem->dm_list); 7194 } 7195 while ((jmvref = LIST_FIRST(&pagedep->pd_jmvrefhd)) != NULL) { 7196 jwait(&jmvref->jm_list, MNT_WAIT); 7197 return (ERESTART); 7198 } 7199 /* 7200 * When we're partially truncating a pagedep we just want to flush 7201 * journal entries and return. There can not be any adds in the 7202 * truncated portion of the directory and newblk must remain if 7203 * part of the block remains. 7204 */ 7205 if (blkoff != 0) { 7206 struct diradd *dap; 7207 7208 LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist) 7209 if (dap->da_offset > blkoff) 7210 panic("cancel_pagedep: diradd %p off %d > %d", 7211 dap, dap->da_offset, blkoff); 7212 for (i = 0; i < DAHASHSZ; i++) 7213 LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) 7214 if (dap->da_offset > blkoff) 7215 panic("cancel_pagedep: diradd %p off %d > %d", 7216 dap, dap->da_offset, blkoff); 7217 return (0); 7218 } 7219 /* 7220 * There should be no directory add dependencies present 7221 * as the directory could not be truncated until all 7222 * children were removed. 7223 */ 7224 KASSERT(LIST_FIRST(&pagedep->pd_pendinghd) == NULL, 7225 ("deallocate_dependencies: pendinghd != NULL")); 7226 for (i = 0; i < DAHASHSZ; i++) 7227 KASSERT(LIST_FIRST(&pagedep->pd_diraddhd[i]) == NULL, 7228 ("deallocate_dependencies: diraddhd != NULL")); 7229 if ((pagedep->pd_state & NEWBLOCK) != 0) 7230 free_newdirblk(pagedep->pd_newdirblk); 7231 if (free_pagedep(pagedep) == 0) 7232 panic("Failed to free pagedep %p", pagedep); 7233 return (0); 7234 } 7235 7236 /* 7237 * Reclaim any dependency structures from a buffer that is about to 7238 * be reallocated to a new vnode. The buffer must be locked, thus, 7239 * no I/O completion operations can occur while we are manipulating 7240 * its associated dependencies. The mutex is held so that other I/O's 7241 * associated with related dependencies do not occur. 7242 */ 7243 static int 7244 deallocate_dependencies(bp, freeblks, off) 7245 struct buf *bp; 7246 struct freeblks *freeblks; 7247 int off; 7248 { 7249 struct indirdep *indirdep; 7250 struct pagedep *pagedep; 7251 struct worklist *wk, *wkn; 7252 struct ufsmount *ump; 7253 7254 ump = softdep_bp_to_mp(bp); 7255 if (ump == NULL) 7256 goto done; 7257 ACQUIRE_LOCK(ump); 7258 LIST_FOREACH_SAFE(wk, &bp->b_dep, wk_list, wkn) { 7259 switch (wk->wk_type) { 7260 case D_INDIRDEP: 7261 indirdep = WK_INDIRDEP(wk); 7262 if (bp->b_lblkno >= 0 || 7263 bp->b_blkno != indirdep->ir_savebp->b_lblkno) 7264 panic("deallocate_dependencies: not indir"); 7265 cancel_indirdep(indirdep, bp, freeblks); 7266 continue; 7267 7268 case D_PAGEDEP: 7269 pagedep = WK_PAGEDEP(wk); 7270 if (cancel_pagedep(pagedep, freeblks, off)) { 7271 FREE_LOCK(ump); 7272 return (ERESTART); 7273 } 7274 continue; 7275 7276 case D_ALLOCINDIR: 7277 /* 7278 * Simply remove the allocindir, we'll find it via 7279 * the indirdep where we can clear pointers if 7280 * needed. 7281 */ 7282 WORKLIST_REMOVE(wk); 7283 continue; 7284 7285 case D_FREEWORK: 7286 /* 7287 * A truncation is waiting for the zero'd pointers 7288 * to be written. It can be freed when the freeblks 7289 * is journaled. 7290 */ 7291 WORKLIST_REMOVE(wk); 7292 wk->wk_state |= ONDEPLIST; 7293 WORKLIST_INSERT(&freeblks->fb_freeworkhd, wk); 7294 break; 7295 7296 case D_ALLOCDIRECT: 7297 if (off != 0) 7298 continue; 7299 /* FALLTHROUGH */ 7300 default: 7301 panic("deallocate_dependencies: Unexpected type %s", 7302 TYPENAME(wk->wk_type)); 7303 /* NOTREACHED */ 7304 } 7305 } 7306 FREE_LOCK(ump); 7307 done: 7308 /* 7309 * Don't throw away this buf, we were partially truncating and 7310 * some deps may always remain. 7311 */ 7312 if (off) { 7313 allocbuf(bp, off); 7314 bp->b_vflags |= BV_SCANNED; 7315 return (EBUSY); 7316 } 7317 bp->b_flags |= B_INVAL | B_NOCACHE; 7318 7319 return (0); 7320 } 7321 7322 /* 7323 * An allocdirect is being canceled due to a truncate. We must make sure 7324 * the journal entry is released in concert with the blkfree that releases 7325 * the storage. Completed journal entries must not be released until the 7326 * space is no longer pointed to by the inode or in the bitmap. 7327 */ 7328 static void 7329 cancel_allocdirect(adphead, adp, freeblks) 7330 struct allocdirectlst *adphead; 7331 struct allocdirect *adp; 7332 struct freeblks *freeblks; 7333 { 7334 struct freework *freework; 7335 struct newblk *newblk; 7336 struct worklist *wk; 7337 7338 TAILQ_REMOVE(adphead, adp, ad_next); 7339 newblk = (struct newblk *)adp; 7340 freework = NULL; 7341 /* 7342 * Find the correct freework structure. 7343 */ 7344 LIST_FOREACH(wk, &freeblks->fb_freeworkhd, wk_list) { 7345 if (wk->wk_type != D_FREEWORK) 7346 continue; 7347 freework = WK_FREEWORK(wk); 7348 if (freework->fw_blkno == newblk->nb_newblkno) 7349 break; 7350 } 7351 if (freework == NULL) 7352 panic("cancel_allocdirect: Freework not found"); 7353 /* 7354 * If a newblk exists at all we still have the journal entry that 7355 * initiated the allocation so we do not need to journal the free. 7356 */ 7357 cancel_jfreeblk(freeblks, freework->fw_blkno); 7358 /* 7359 * If the journal hasn't been written the jnewblk must be passed 7360 * to the call to ffs_blkfree that reclaims the space. We accomplish 7361 * this by linking the journal dependency into the freework to be 7362 * freed when freework_freeblock() is called. If the journal has 7363 * been written we can simply reclaim the journal space when the 7364 * freeblks work is complete. 7365 */ 7366 freework->fw_jnewblk = cancel_newblk(newblk, &freework->fw_list, 7367 &freeblks->fb_jwork); 7368 WORKLIST_INSERT(&freeblks->fb_freeworkhd, &newblk->nb_list); 7369 } 7370 7371 7372 /* 7373 * Cancel a new block allocation. May be an indirect or direct block. We 7374 * remove it from various lists and return any journal record that needs to 7375 * be resolved by the caller. 7376 * 7377 * A special consideration is made for indirects which were never pointed 7378 * at on disk and will never be found once this block is released. 7379 */ 7380 static struct jnewblk * 7381 cancel_newblk(newblk, wk, wkhd) 7382 struct newblk *newblk; 7383 struct worklist *wk; 7384 struct workhead *wkhd; 7385 { 7386 struct jnewblk *jnewblk; 7387 7388 CTR1(KTR_SUJ, "cancel_newblk: blkno %jd", newblk->nb_newblkno); 7389 7390 newblk->nb_state |= GOINGAWAY; 7391 /* 7392 * Previously we traversed the completedhd on each indirdep 7393 * attached to this newblk to cancel them and gather journal 7394 * work. Since we need only the oldest journal segment and 7395 * the lowest point on the tree will always have the oldest 7396 * journal segment we are free to release the segments 7397 * of any subordinates and may leave the indirdep list to 7398 * indirdep_complete() when this newblk is freed. 7399 */ 7400 if (newblk->nb_state & ONDEPLIST) { 7401 newblk->nb_state &= ~ONDEPLIST; 7402 LIST_REMOVE(newblk, nb_deps); 7403 } 7404 if (newblk->nb_state & ONWORKLIST) 7405 WORKLIST_REMOVE(&newblk->nb_list); 7406 /* 7407 * If the journal entry hasn't been written we save a pointer to 7408 * the dependency that frees it until it is written or the 7409 * superseding operation completes. 7410 */ 7411 jnewblk = newblk->nb_jnewblk; 7412 if (jnewblk != NULL && wk != NULL) { 7413 newblk->nb_jnewblk = NULL; 7414 jnewblk->jn_dep = wk; 7415 } 7416 if (!LIST_EMPTY(&newblk->nb_jwork)) 7417 jwork_move(wkhd, &newblk->nb_jwork); 7418 /* 7419 * When truncating we must free the newdirblk early to remove 7420 * the pagedep from the hash before returning. 7421 */ 7422 if ((wk = LIST_FIRST(&newblk->nb_newdirblk)) != NULL) 7423 free_newdirblk(WK_NEWDIRBLK(wk)); 7424 if (!LIST_EMPTY(&newblk->nb_newdirblk)) 7425 panic("cancel_newblk: extra newdirblk"); 7426 7427 return (jnewblk); 7428 } 7429 7430 /* 7431 * Schedule the freefrag associated with a newblk to be released once 7432 * the pointers are written and the previous block is no longer needed. 7433 */ 7434 static void 7435 newblk_freefrag(newblk) 7436 struct newblk *newblk; 7437 { 7438 struct freefrag *freefrag; 7439 7440 if (newblk->nb_freefrag == NULL) 7441 return; 7442 freefrag = newblk->nb_freefrag; 7443 newblk->nb_freefrag = NULL; 7444 freefrag->ff_state |= COMPLETE; 7445 if ((freefrag->ff_state & ALLCOMPLETE) == ALLCOMPLETE) 7446 add_to_worklist(&freefrag->ff_list, 0); 7447 } 7448 7449 /* 7450 * Free a newblk. Generate a new freefrag work request if appropriate. 7451 * This must be called after the inode pointer and any direct block pointers 7452 * are valid or fully removed via truncate or frag extension. 7453 */ 7454 static void 7455 free_newblk(newblk) 7456 struct newblk *newblk; 7457 { 7458 struct indirdep *indirdep; 7459 struct worklist *wk; 7460 7461 KASSERT(newblk->nb_jnewblk == NULL, 7462 ("free_newblk: jnewblk %p still attached", newblk->nb_jnewblk)); 7463 KASSERT(newblk->nb_list.wk_type != D_NEWBLK, 7464 ("free_newblk: unclaimed newblk")); 7465 LOCK_OWNED(VFSTOUFS(newblk->nb_list.wk_mp)); 7466 newblk_freefrag(newblk); 7467 if (newblk->nb_state & ONDEPLIST) 7468 LIST_REMOVE(newblk, nb_deps); 7469 if (newblk->nb_state & ONWORKLIST) 7470 WORKLIST_REMOVE(&newblk->nb_list); 7471 LIST_REMOVE(newblk, nb_hash); 7472 if ((wk = LIST_FIRST(&newblk->nb_newdirblk)) != NULL) 7473 free_newdirblk(WK_NEWDIRBLK(wk)); 7474 if (!LIST_EMPTY(&newblk->nb_newdirblk)) 7475 panic("free_newblk: extra newdirblk"); 7476 while ((indirdep = LIST_FIRST(&newblk->nb_indirdeps)) != NULL) 7477 indirdep_complete(indirdep); 7478 handle_jwork(&newblk->nb_jwork); 7479 WORKITEM_FREE(newblk, D_NEWBLK); 7480 } 7481 7482 /* 7483 * Free a newdirblk. Clear the NEWBLOCK flag on its associated pagedep. 7484 * This routine must be called with splbio interrupts blocked. 7485 */ 7486 static void 7487 free_newdirblk(newdirblk) 7488 struct newdirblk *newdirblk; 7489 { 7490 struct pagedep *pagedep; 7491 struct diradd *dap; 7492 struct worklist *wk; 7493 7494 LOCK_OWNED(VFSTOUFS(newdirblk->db_list.wk_mp)); 7495 WORKLIST_REMOVE(&newdirblk->db_list); 7496 /* 7497 * If the pagedep is still linked onto the directory buffer 7498 * dependency chain, then some of the entries on the 7499 * pd_pendinghd list may not be committed to disk yet. In 7500 * this case, we will simply clear the NEWBLOCK flag and 7501 * let the pd_pendinghd list be processed when the pagedep 7502 * is next written. If the pagedep is no longer on the buffer 7503 * dependency chain, then all the entries on the pd_pending 7504 * list are committed to disk and we can free them here. 7505 */ 7506 pagedep = newdirblk->db_pagedep; 7507 pagedep->pd_state &= ~NEWBLOCK; 7508 if ((pagedep->pd_state & ONWORKLIST) == 0) { 7509 while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL) 7510 free_diradd(dap, NULL); 7511 /* 7512 * If no dependencies remain, the pagedep will be freed. 7513 */ 7514 free_pagedep(pagedep); 7515 } 7516 /* Should only ever be one item in the list. */ 7517 while ((wk = LIST_FIRST(&newdirblk->db_mkdir)) != NULL) { 7518 WORKLIST_REMOVE(wk); 7519 handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY); 7520 } 7521 WORKITEM_FREE(newdirblk, D_NEWDIRBLK); 7522 } 7523 7524 /* 7525 * Prepare an inode to be freed. The actual free operation is not 7526 * done until the zero'ed inode has been written to disk. 7527 */ 7528 void 7529 softdep_freefile(pvp, ino, mode) 7530 struct vnode *pvp; 7531 ino_t ino; 7532 int mode; 7533 { 7534 struct inode *ip = VTOI(pvp); 7535 struct inodedep *inodedep; 7536 struct freefile *freefile; 7537 struct freeblks *freeblks; 7538 struct ufsmount *ump; 7539 7540 ump = ITOUMP(ip); 7541 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 7542 ("softdep_freefile called on non-softdep filesystem")); 7543 /* 7544 * This sets up the inode de-allocation dependency. 7545 */ 7546 freefile = malloc(sizeof(struct freefile), 7547 M_FREEFILE, M_SOFTDEP_FLAGS); 7548 workitem_alloc(&freefile->fx_list, D_FREEFILE, pvp->v_mount); 7549 freefile->fx_mode = mode; 7550 freefile->fx_oldinum = ino; 7551 freefile->fx_devvp = ump->um_devvp; 7552 LIST_INIT(&freefile->fx_jwork); 7553 UFS_LOCK(ump); 7554 ump->um_fs->fs_pendinginodes += 1; 7555 UFS_UNLOCK(ump); 7556 7557 /* 7558 * If the inodedep does not exist, then the zero'ed inode has 7559 * been written to disk. If the allocated inode has never been 7560 * written to disk, then the on-disk inode is zero'ed. In either 7561 * case we can free the file immediately. If the journal was 7562 * canceled before being written the inode will never make it to 7563 * disk and we must send the canceled journal entrys to 7564 * ffs_freefile() to be cleared in conjunction with the bitmap. 7565 * Any blocks waiting on the inode to write can be safely freed 7566 * here as it will never been written. 7567 */ 7568 ACQUIRE_LOCK(ump); 7569 inodedep_lookup(pvp->v_mount, ino, 0, &inodedep); 7570 if (inodedep) { 7571 /* 7572 * Clear out freeblks that no longer need to reference 7573 * this inode. 7574 */ 7575 while ((freeblks = 7576 TAILQ_FIRST(&inodedep->id_freeblklst)) != NULL) { 7577 TAILQ_REMOVE(&inodedep->id_freeblklst, freeblks, 7578 fb_next); 7579 freeblks->fb_state &= ~ONDEPLIST; 7580 } 7581 /* 7582 * Remove this inode from the unlinked list. 7583 */ 7584 if (inodedep->id_state & UNLINKED) { 7585 /* 7586 * Save the journal work to be freed with the bitmap 7587 * before we clear UNLINKED. Otherwise it can be lost 7588 * if the inode block is written. 7589 */ 7590 handle_bufwait(inodedep, &freefile->fx_jwork); 7591 clear_unlinked_inodedep(inodedep); 7592 /* 7593 * Re-acquire inodedep as we've dropped the 7594 * per-filesystem lock in clear_unlinked_inodedep(). 7595 */ 7596 inodedep_lookup(pvp->v_mount, ino, 0, &inodedep); 7597 } 7598 } 7599 if (inodedep == NULL || check_inode_unwritten(inodedep)) { 7600 FREE_LOCK(ump); 7601 handle_workitem_freefile(freefile); 7602 return; 7603 } 7604 if ((inodedep->id_state & DEPCOMPLETE) == 0) 7605 inodedep->id_state |= GOINGAWAY; 7606 WORKLIST_INSERT(&inodedep->id_inowait, &freefile->fx_list); 7607 FREE_LOCK(ump); 7608 if (ip->i_number == ino) 7609 ip->i_flag |= IN_MODIFIED; 7610 } 7611 7612 /* 7613 * Check to see if an inode has never been written to disk. If 7614 * so free the inodedep and return success, otherwise return failure. 7615 * This routine must be called with splbio interrupts blocked. 7616 * 7617 * If we still have a bitmap dependency, then the inode has never 7618 * been written to disk. Drop the dependency as it is no longer 7619 * necessary since the inode is being deallocated. We set the 7620 * ALLCOMPLETE flags since the bitmap now properly shows that the 7621 * inode is not allocated. Even if the inode is actively being 7622 * written, it has been rolled back to its zero'ed state, so we 7623 * are ensured that a zero inode is what is on the disk. For short 7624 * lived files, this change will usually result in removing all the 7625 * dependencies from the inode so that it can be freed immediately. 7626 */ 7627 static int 7628 check_inode_unwritten(inodedep) 7629 struct inodedep *inodedep; 7630 { 7631 7632 LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp)); 7633 7634 if ((inodedep->id_state & (DEPCOMPLETE | UNLINKED)) != 0 || 7635 !LIST_EMPTY(&inodedep->id_dirremhd) || 7636 !LIST_EMPTY(&inodedep->id_pendinghd) || 7637 !LIST_EMPTY(&inodedep->id_bufwait) || 7638 !LIST_EMPTY(&inodedep->id_inowait) || 7639 !TAILQ_EMPTY(&inodedep->id_inoreflst) || 7640 !TAILQ_EMPTY(&inodedep->id_inoupdt) || 7641 !TAILQ_EMPTY(&inodedep->id_newinoupdt) || 7642 !TAILQ_EMPTY(&inodedep->id_extupdt) || 7643 !TAILQ_EMPTY(&inodedep->id_newextupdt) || 7644 !TAILQ_EMPTY(&inodedep->id_freeblklst) || 7645 inodedep->id_mkdiradd != NULL || 7646 inodedep->id_nlinkdelta != 0) 7647 return (0); 7648 /* 7649 * Another process might be in initiate_write_inodeblock_ufs[12] 7650 * trying to allocate memory without holding "Softdep Lock". 7651 */ 7652 if ((inodedep->id_state & IOSTARTED) != 0 && 7653 inodedep->id_savedino1 == NULL) 7654 return (0); 7655 7656 if (inodedep->id_state & ONDEPLIST) 7657 LIST_REMOVE(inodedep, id_deps); 7658 inodedep->id_state &= ~ONDEPLIST; 7659 inodedep->id_state |= ALLCOMPLETE; 7660 inodedep->id_bmsafemap = NULL; 7661 if (inodedep->id_state & ONWORKLIST) 7662 WORKLIST_REMOVE(&inodedep->id_list); 7663 if (inodedep->id_savedino1 != NULL) { 7664 free(inodedep->id_savedino1, M_SAVEDINO); 7665 inodedep->id_savedino1 = NULL; 7666 } 7667 if (free_inodedep(inodedep) == 0) 7668 panic("check_inode_unwritten: busy inode"); 7669 return (1); 7670 } 7671 7672 static int 7673 check_inodedep_free(inodedep) 7674 struct inodedep *inodedep; 7675 { 7676 7677 LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp)); 7678 if ((inodedep->id_state & ALLCOMPLETE) != ALLCOMPLETE || 7679 !LIST_EMPTY(&inodedep->id_dirremhd) || 7680 !LIST_EMPTY(&inodedep->id_pendinghd) || 7681 !LIST_EMPTY(&inodedep->id_bufwait) || 7682 !LIST_EMPTY(&inodedep->id_inowait) || 7683 !TAILQ_EMPTY(&inodedep->id_inoreflst) || 7684 !TAILQ_EMPTY(&inodedep->id_inoupdt) || 7685 !TAILQ_EMPTY(&inodedep->id_newinoupdt) || 7686 !TAILQ_EMPTY(&inodedep->id_extupdt) || 7687 !TAILQ_EMPTY(&inodedep->id_newextupdt) || 7688 !TAILQ_EMPTY(&inodedep->id_freeblklst) || 7689 inodedep->id_mkdiradd != NULL || 7690 inodedep->id_nlinkdelta != 0 || 7691 inodedep->id_savedino1 != NULL) 7692 return (0); 7693 return (1); 7694 } 7695 7696 /* 7697 * Try to free an inodedep structure. Return 1 if it could be freed. 7698 */ 7699 static int 7700 free_inodedep(inodedep) 7701 struct inodedep *inodedep; 7702 { 7703 7704 LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp)); 7705 if ((inodedep->id_state & (ONWORKLIST | UNLINKED)) != 0 || 7706 !check_inodedep_free(inodedep)) 7707 return (0); 7708 if (inodedep->id_state & ONDEPLIST) 7709 LIST_REMOVE(inodedep, id_deps); 7710 LIST_REMOVE(inodedep, id_hash); 7711 WORKITEM_FREE(inodedep, D_INODEDEP); 7712 return (1); 7713 } 7714 7715 /* 7716 * Free the block referenced by a freework structure. The parent freeblks 7717 * structure is released and completed when the final cg bitmap reaches 7718 * the disk. This routine may be freeing a jnewblk which never made it to 7719 * disk in which case we do not have to wait as the operation is undone 7720 * in memory immediately. 7721 */ 7722 static void 7723 freework_freeblock(freework) 7724 struct freework *freework; 7725 { 7726 struct freeblks *freeblks; 7727 struct jnewblk *jnewblk; 7728 struct ufsmount *ump; 7729 struct workhead wkhd; 7730 struct fs *fs; 7731 int bsize; 7732 int needj; 7733 7734 ump = VFSTOUFS(freework->fw_list.wk_mp); 7735 LOCK_OWNED(ump); 7736 /* 7737 * Handle partial truncate separately. 7738 */ 7739 if (freework->fw_indir) { 7740 complete_trunc_indir(freework); 7741 return; 7742 } 7743 freeblks = freework->fw_freeblks; 7744 fs = ump->um_fs; 7745 needj = MOUNTEDSUJ(freeblks->fb_list.wk_mp) != 0; 7746 bsize = lfragtosize(fs, freework->fw_frags); 7747 LIST_INIT(&wkhd); 7748 /* 7749 * DEPCOMPLETE is cleared in indirblk_insert() if the block lives 7750 * on the indirblk hashtable and prevents premature freeing. 7751 */ 7752 freework->fw_state |= DEPCOMPLETE; 7753 /* 7754 * SUJ needs to wait for the segment referencing freed indirect 7755 * blocks to expire so that we know the checker will not confuse 7756 * a re-allocated indirect block with its old contents. 7757 */ 7758 if (needj && freework->fw_lbn <= -UFS_NDADDR) 7759 indirblk_insert(freework); 7760 /* 7761 * If we are canceling an existing jnewblk pass it to the free 7762 * routine, otherwise pass the freeblk which will ultimately 7763 * release the freeblks. If we're not journaling, we can just 7764 * free the freeblks immediately. 7765 */ 7766 jnewblk = freework->fw_jnewblk; 7767 if (jnewblk != NULL) { 7768 cancel_jnewblk(jnewblk, &wkhd); 7769 needj = 0; 7770 } else if (needj) { 7771 freework->fw_state |= DELAYEDFREE; 7772 freeblks->fb_cgwait++; 7773 WORKLIST_INSERT(&wkhd, &freework->fw_list); 7774 } 7775 FREE_LOCK(ump); 7776 freeblks_free(ump, freeblks, btodb(bsize)); 7777 CTR4(KTR_SUJ, 7778 "freework_freeblock: ino %d blkno %jd lbn %jd size %ld", 7779 freeblks->fb_inum, freework->fw_blkno, freework->fw_lbn, bsize); 7780 ffs_blkfree(ump, fs, freeblks->fb_devvp, freework->fw_blkno, bsize, 7781 freeblks->fb_inum, freeblks->fb_vtype, &wkhd); 7782 ACQUIRE_LOCK(ump); 7783 /* 7784 * The jnewblk will be discarded and the bits in the map never 7785 * made it to disk. We can immediately free the freeblk. 7786 */ 7787 if (needj == 0) 7788 handle_written_freework(freework); 7789 } 7790 7791 /* 7792 * We enqueue freework items that need processing back on the freeblks and 7793 * add the freeblks to the worklist. This makes it easier to find all work 7794 * required to flush a truncation in process_truncates(). 7795 */ 7796 static void 7797 freework_enqueue(freework) 7798 struct freework *freework; 7799 { 7800 struct freeblks *freeblks; 7801 7802 freeblks = freework->fw_freeblks; 7803 if ((freework->fw_state & INPROGRESS) == 0) 7804 WORKLIST_INSERT(&freeblks->fb_freeworkhd, &freework->fw_list); 7805 if ((freeblks->fb_state & 7806 (ONWORKLIST | INPROGRESS | ALLCOMPLETE)) == ALLCOMPLETE && 7807 LIST_EMPTY(&freeblks->fb_jblkdephd)) 7808 add_to_worklist(&freeblks->fb_list, WK_NODELAY); 7809 } 7810 7811 /* 7812 * Start, continue, or finish the process of freeing an indirect block tree. 7813 * The free operation may be paused at any point with fw_off containing the 7814 * offset to restart from. This enables us to implement some flow control 7815 * for large truncates which may fan out and generate a huge number of 7816 * dependencies. 7817 */ 7818 static void 7819 handle_workitem_indirblk(freework) 7820 struct freework *freework; 7821 { 7822 struct freeblks *freeblks; 7823 struct ufsmount *ump; 7824 struct fs *fs; 7825 7826 freeblks = freework->fw_freeblks; 7827 ump = VFSTOUFS(freeblks->fb_list.wk_mp); 7828 fs = ump->um_fs; 7829 if (freework->fw_state & DEPCOMPLETE) { 7830 handle_written_freework(freework); 7831 return; 7832 } 7833 if (freework->fw_off == NINDIR(fs)) { 7834 freework_freeblock(freework); 7835 return; 7836 } 7837 freework->fw_state |= INPROGRESS; 7838 FREE_LOCK(ump); 7839 indir_trunc(freework, fsbtodb(fs, freework->fw_blkno), 7840 freework->fw_lbn); 7841 ACQUIRE_LOCK(ump); 7842 } 7843 7844 /* 7845 * Called when a freework structure attached to a cg buf is written. The 7846 * ref on either the parent or the freeblks structure is released and 7847 * the freeblks is added back to the worklist if there is more work to do. 7848 */ 7849 static void 7850 handle_written_freework(freework) 7851 struct freework *freework; 7852 { 7853 struct freeblks *freeblks; 7854 struct freework *parent; 7855 7856 freeblks = freework->fw_freeblks; 7857 parent = freework->fw_parent; 7858 if (freework->fw_state & DELAYEDFREE) 7859 freeblks->fb_cgwait--; 7860 freework->fw_state |= COMPLETE; 7861 if ((freework->fw_state & ALLCOMPLETE) == ALLCOMPLETE) 7862 WORKITEM_FREE(freework, D_FREEWORK); 7863 if (parent) { 7864 if (--parent->fw_ref == 0) 7865 freework_enqueue(parent); 7866 return; 7867 } 7868 if (--freeblks->fb_ref != 0) 7869 return; 7870 if ((freeblks->fb_state & (ALLCOMPLETE | ONWORKLIST | INPROGRESS)) == 7871 ALLCOMPLETE && LIST_EMPTY(&freeblks->fb_jblkdephd)) 7872 add_to_worklist(&freeblks->fb_list, WK_NODELAY); 7873 } 7874 7875 /* 7876 * This workitem routine performs the block de-allocation. 7877 * The workitem is added to the pending list after the updated 7878 * inode block has been written to disk. As mentioned above, 7879 * checks regarding the number of blocks de-allocated (compared 7880 * to the number of blocks allocated for the file) are also 7881 * performed in this function. 7882 */ 7883 static int 7884 handle_workitem_freeblocks(freeblks, flags) 7885 struct freeblks *freeblks; 7886 int flags; 7887 { 7888 struct freework *freework; 7889 struct newblk *newblk; 7890 struct allocindir *aip; 7891 struct ufsmount *ump; 7892 struct worklist *wk; 7893 7894 KASSERT(LIST_EMPTY(&freeblks->fb_jblkdephd), 7895 ("handle_workitem_freeblocks: Journal entries not written.")); 7896 ump = VFSTOUFS(freeblks->fb_list.wk_mp); 7897 ACQUIRE_LOCK(ump); 7898 while ((wk = LIST_FIRST(&freeblks->fb_freeworkhd)) != NULL) { 7899 WORKLIST_REMOVE(wk); 7900 switch (wk->wk_type) { 7901 case D_DIRREM: 7902 wk->wk_state |= COMPLETE; 7903 add_to_worklist(wk, 0); 7904 continue; 7905 7906 case D_ALLOCDIRECT: 7907 free_newblk(WK_NEWBLK(wk)); 7908 continue; 7909 7910 case D_ALLOCINDIR: 7911 aip = WK_ALLOCINDIR(wk); 7912 freework = NULL; 7913 if (aip->ai_state & DELAYEDFREE) { 7914 FREE_LOCK(ump); 7915 freework = newfreework(ump, freeblks, NULL, 7916 aip->ai_lbn, aip->ai_newblkno, 7917 ump->um_fs->fs_frag, 0, 0); 7918 ACQUIRE_LOCK(ump); 7919 } 7920 newblk = WK_NEWBLK(wk); 7921 if (newblk->nb_jnewblk) { 7922 freework->fw_jnewblk = newblk->nb_jnewblk; 7923 newblk->nb_jnewblk->jn_dep = &freework->fw_list; 7924 newblk->nb_jnewblk = NULL; 7925 } 7926 free_newblk(newblk); 7927 continue; 7928 7929 case D_FREEWORK: 7930 freework = WK_FREEWORK(wk); 7931 if (freework->fw_lbn <= -UFS_NDADDR) 7932 handle_workitem_indirblk(freework); 7933 else 7934 freework_freeblock(freework); 7935 continue; 7936 default: 7937 panic("handle_workitem_freeblocks: Unknown type %s", 7938 TYPENAME(wk->wk_type)); 7939 } 7940 } 7941 if (freeblks->fb_ref != 0) { 7942 freeblks->fb_state &= ~INPROGRESS; 7943 wake_worklist(&freeblks->fb_list); 7944 freeblks = NULL; 7945 } 7946 FREE_LOCK(ump); 7947 if (freeblks) 7948 return handle_complete_freeblocks(freeblks, flags); 7949 return (0); 7950 } 7951 7952 /* 7953 * Handle completion of block free via truncate. This allows fs_pending 7954 * to track the actual free block count more closely than if we only updated 7955 * it at the end. We must be careful to handle cases where the block count 7956 * on free was incorrect. 7957 */ 7958 static void 7959 freeblks_free(ump, freeblks, blocks) 7960 struct ufsmount *ump; 7961 struct freeblks *freeblks; 7962 int blocks; 7963 { 7964 struct fs *fs; 7965 ufs2_daddr_t remain; 7966 7967 UFS_LOCK(ump); 7968 remain = -freeblks->fb_chkcnt; 7969 freeblks->fb_chkcnt += blocks; 7970 if (remain > 0) { 7971 if (remain < blocks) 7972 blocks = remain; 7973 fs = ump->um_fs; 7974 fs->fs_pendingblocks -= blocks; 7975 } 7976 UFS_UNLOCK(ump); 7977 } 7978 7979 /* 7980 * Once all of the freework workitems are complete we can retire the 7981 * freeblocks dependency and any journal work awaiting completion. This 7982 * can not be called until all other dependencies are stable on disk. 7983 */ 7984 static int 7985 handle_complete_freeblocks(freeblks, flags) 7986 struct freeblks *freeblks; 7987 int flags; 7988 { 7989 struct inodedep *inodedep; 7990 struct inode *ip; 7991 struct vnode *vp; 7992 struct fs *fs; 7993 struct ufsmount *ump; 7994 ufs2_daddr_t spare; 7995 7996 ump = VFSTOUFS(freeblks->fb_list.wk_mp); 7997 fs = ump->um_fs; 7998 flags = LK_EXCLUSIVE | flags; 7999 spare = freeblks->fb_chkcnt; 8000 8001 /* 8002 * If we did not release the expected number of blocks we may have 8003 * to adjust the inode block count here. Only do so if it wasn't 8004 * a truncation to zero and the modrev still matches. 8005 */ 8006 if (spare && freeblks->fb_len != 0) { 8007 if (ffs_vgetf(freeblks->fb_list.wk_mp, freeblks->fb_inum, 8008 flags, &vp, FFSV_FORCEINSMQ) != 0) 8009 return (EBUSY); 8010 ip = VTOI(vp); 8011 if (DIP(ip, i_modrev) == freeblks->fb_modrev) { 8012 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - spare); 8013 ip->i_flag |= IN_CHANGE; 8014 /* 8015 * We must wait so this happens before the 8016 * journal is reclaimed. 8017 */ 8018 ffs_update(vp, 1); 8019 } 8020 vput(vp); 8021 } 8022 if (spare < 0) { 8023 UFS_LOCK(ump); 8024 fs->fs_pendingblocks += spare; 8025 UFS_UNLOCK(ump); 8026 } 8027 #ifdef QUOTA 8028 /* Handle spare. */ 8029 if (spare) 8030 quotaadj(freeblks->fb_quota, ump, -spare); 8031 quotarele(freeblks->fb_quota); 8032 #endif 8033 ACQUIRE_LOCK(ump); 8034 if (freeblks->fb_state & ONDEPLIST) { 8035 inodedep_lookup(freeblks->fb_list.wk_mp, freeblks->fb_inum, 8036 0, &inodedep); 8037 TAILQ_REMOVE(&inodedep->id_freeblklst, freeblks, fb_next); 8038 freeblks->fb_state &= ~ONDEPLIST; 8039 if (TAILQ_EMPTY(&inodedep->id_freeblklst)) 8040 free_inodedep(inodedep); 8041 } 8042 /* 8043 * All of the freeblock deps must be complete prior to this call 8044 * so it's now safe to complete earlier outstanding journal entries. 8045 */ 8046 handle_jwork(&freeblks->fb_jwork); 8047 WORKITEM_FREE(freeblks, D_FREEBLKS); 8048 FREE_LOCK(ump); 8049 return (0); 8050 } 8051 8052 /* 8053 * Release blocks associated with the freeblks and stored in the indirect 8054 * block dbn. If level is greater than SINGLE, the block is an indirect block 8055 * and recursive calls to indirtrunc must be used to cleanse other indirect 8056 * blocks. 8057 * 8058 * This handles partial and complete truncation of blocks. Partial is noted 8059 * with goingaway == 0. In this case the freework is completed after the 8060 * zero'd indirects are written to disk. For full truncation the freework 8061 * is completed after the block is freed. 8062 */ 8063 static void 8064 indir_trunc(freework, dbn, lbn) 8065 struct freework *freework; 8066 ufs2_daddr_t dbn; 8067 ufs_lbn_t lbn; 8068 { 8069 struct freework *nfreework; 8070 struct workhead wkhd; 8071 struct freeblks *freeblks; 8072 struct buf *bp; 8073 struct fs *fs; 8074 struct indirdep *indirdep; 8075 struct ufsmount *ump; 8076 ufs1_daddr_t *bap1; 8077 ufs2_daddr_t nb, nnb, *bap2; 8078 ufs_lbn_t lbnadd, nlbn; 8079 int i, nblocks, ufs1fmt; 8080 int freedblocks; 8081 int goingaway; 8082 int freedeps; 8083 int needj; 8084 int level; 8085 int cnt; 8086 8087 freeblks = freework->fw_freeblks; 8088 ump = VFSTOUFS(freeblks->fb_list.wk_mp); 8089 fs = ump->um_fs; 8090 /* 8091 * Get buffer of block pointers to be freed. There are three cases: 8092 * 8093 * 1) Partial truncate caches the indirdep pointer in the freework 8094 * which provides us a back copy to the save bp which holds the 8095 * pointers we want to clear. When this completes the zero 8096 * pointers are written to the real copy. 8097 * 2) The indirect is being completely truncated, cancel_indirdep() 8098 * eliminated the real copy and placed the indirdep on the saved 8099 * copy. The indirdep and buf are discarded when this completes. 8100 * 3) The indirect was not in memory, we read a copy off of the disk 8101 * using the devvp and drop and invalidate the buffer when we're 8102 * done. 8103 */ 8104 goingaway = 1; 8105 indirdep = NULL; 8106 if (freework->fw_indir != NULL) { 8107 goingaway = 0; 8108 indirdep = freework->fw_indir; 8109 bp = indirdep->ir_savebp; 8110 if (bp == NULL || bp->b_blkno != dbn) 8111 panic("indir_trunc: Bad saved buf %p blkno %jd", 8112 bp, (intmax_t)dbn); 8113 } else if ((bp = incore(&freeblks->fb_devvp->v_bufobj, dbn)) != NULL) { 8114 /* 8115 * The lock prevents the buf dep list from changing and 8116 * indirects on devvp should only ever have one dependency. 8117 */ 8118 indirdep = WK_INDIRDEP(LIST_FIRST(&bp->b_dep)); 8119 if (indirdep == NULL || (indirdep->ir_state & GOINGAWAY) == 0) 8120 panic("indir_trunc: Bad indirdep %p from buf %p", 8121 indirdep, bp); 8122 } else if (bread(freeblks->fb_devvp, dbn, (int)fs->fs_bsize, 8123 NOCRED, &bp) != 0) { 8124 brelse(bp); 8125 return; 8126 } 8127 ACQUIRE_LOCK(ump); 8128 /* Protects against a race with complete_trunc_indir(). */ 8129 freework->fw_state &= ~INPROGRESS; 8130 /* 8131 * If we have an indirdep we need to enforce the truncation order 8132 * and discard it when it is complete. 8133 */ 8134 if (indirdep) { 8135 if (freework != TAILQ_FIRST(&indirdep->ir_trunc) && 8136 !TAILQ_EMPTY(&indirdep->ir_trunc)) { 8137 /* 8138 * Add the complete truncate to the list on the 8139 * indirdep to enforce in-order processing. 8140 */ 8141 if (freework->fw_indir == NULL) 8142 TAILQ_INSERT_TAIL(&indirdep->ir_trunc, 8143 freework, fw_next); 8144 FREE_LOCK(ump); 8145 return; 8146 } 8147 /* 8148 * If we're goingaway, free the indirdep. Otherwise it will 8149 * linger until the write completes. 8150 */ 8151 if (goingaway) 8152 free_indirdep(indirdep); 8153 } 8154 FREE_LOCK(ump); 8155 /* Initialize pointers depending on block size. */ 8156 if (ump->um_fstype == UFS1) { 8157 bap1 = (ufs1_daddr_t *)bp->b_data; 8158 nb = bap1[freework->fw_off]; 8159 ufs1fmt = 1; 8160 bap2 = NULL; 8161 } else { 8162 bap2 = (ufs2_daddr_t *)bp->b_data; 8163 nb = bap2[freework->fw_off]; 8164 ufs1fmt = 0; 8165 bap1 = NULL; 8166 } 8167 level = lbn_level(lbn); 8168 needj = MOUNTEDSUJ(UFSTOVFS(ump)) != 0; 8169 lbnadd = lbn_offset(fs, level); 8170 nblocks = btodb(fs->fs_bsize); 8171 nfreework = freework; 8172 freedeps = 0; 8173 cnt = 0; 8174 /* 8175 * Reclaim blocks. Traverses into nested indirect levels and 8176 * arranges for the current level to be freed when subordinates 8177 * are free when journaling. 8178 */ 8179 for (i = freework->fw_off; i < NINDIR(fs); i++, nb = nnb) { 8180 if (i != NINDIR(fs) - 1) { 8181 if (ufs1fmt) 8182 nnb = bap1[i+1]; 8183 else 8184 nnb = bap2[i+1]; 8185 } else 8186 nnb = 0; 8187 if (nb == 0) 8188 continue; 8189 cnt++; 8190 if (level != 0) { 8191 nlbn = (lbn + 1) - (i * lbnadd); 8192 if (needj != 0) { 8193 nfreework = newfreework(ump, freeblks, freework, 8194 nlbn, nb, fs->fs_frag, 0, 0); 8195 freedeps++; 8196 } 8197 indir_trunc(nfreework, fsbtodb(fs, nb), nlbn); 8198 } else { 8199 struct freedep *freedep; 8200 8201 /* 8202 * Attempt to aggregate freedep dependencies for 8203 * all blocks being released to the same CG. 8204 */ 8205 LIST_INIT(&wkhd); 8206 if (needj != 0 && 8207 (nnb == 0 || (dtog(fs, nb) != dtog(fs, nnb)))) { 8208 freedep = newfreedep(freework); 8209 WORKLIST_INSERT_UNLOCKED(&wkhd, 8210 &freedep->fd_list); 8211 freedeps++; 8212 } 8213 CTR3(KTR_SUJ, 8214 "indir_trunc: ino %d blkno %jd size %ld", 8215 freeblks->fb_inum, nb, fs->fs_bsize); 8216 ffs_blkfree(ump, fs, freeblks->fb_devvp, nb, 8217 fs->fs_bsize, freeblks->fb_inum, 8218 freeblks->fb_vtype, &wkhd); 8219 } 8220 } 8221 if (goingaway) { 8222 bp->b_flags |= B_INVAL | B_NOCACHE; 8223 brelse(bp); 8224 } 8225 freedblocks = 0; 8226 if (level == 0) 8227 freedblocks = (nblocks * cnt); 8228 if (needj == 0) 8229 freedblocks += nblocks; 8230 freeblks_free(ump, freeblks, freedblocks); 8231 /* 8232 * If we are journaling set up the ref counts and offset so this 8233 * indirect can be completed when its children are free. 8234 */ 8235 if (needj) { 8236 ACQUIRE_LOCK(ump); 8237 freework->fw_off = i; 8238 freework->fw_ref += freedeps; 8239 freework->fw_ref -= NINDIR(fs) + 1; 8240 if (level == 0) 8241 freeblks->fb_cgwait += freedeps; 8242 if (freework->fw_ref == 0) 8243 freework_freeblock(freework); 8244 FREE_LOCK(ump); 8245 return; 8246 } 8247 /* 8248 * If we're not journaling we can free the indirect now. 8249 */ 8250 dbn = dbtofsb(fs, dbn); 8251 CTR3(KTR_SUJ, 8252 "indir_trunc 2: ino %d blkno %jd size %ld", 8253 freeblks->fb_inum, dbn, fs->fs_bsize); 8254 ffs_blkfree(ump, fs, freeblks->fb_devvp, dbn, fs->fs_bsize, 8255 freeblks->fb_inum, freeblks->fb_vtype, NULL); 8256 /* Non SUJ softdep does single-threaded truncations. */ 8257 if (freework->fw_blkno == dbn) { 8258 freework->fw_state |= ALLCOMPLETE; 8259 ACQUIRE_LOCK(ump); 8260 handle_written_freework(freework); 8261 FREE_LOCK(ump); 8262 } 8263 return; 8264 } 8265 8266 /* 8267 * Cancel an allocindir when it is removed via truncation. When bp is not 8268 * NULL the indirect never appeared on disk and is scheduled to be freed 8269 * independently of the indir so we can more easily track journal work. 8270 */ 8271 static void 8272 cancel_allocindir(aip, bp, freeblks, trunc) 8273 struct allocindir *aip; 8274 struct buf *bp; 8275 struct freeblks *freeblks; 8276 int trunc; 8277 { 8278 struct indirdep *indirdep; 8279 struct freefrag *freefrag; 8280 struct newblk *newblk; 8281 8282 newblk = (struct newblk *)aip; 8283 LIST_REMOVE(aip, ai_next); 8284 /* 8285 * We must eliminate the pointer in bp if it must be freed on its 8286 * own due to partial truncate or pending journal work. 8287 */ 8288 if (bp && (trunc || newblk->nb_jnewblk)) { 8289 /* 8290 * Clear the pointer and mark the aip to be freed 8291 * directly if it never existed on disk. 8292 */ 8293 aip->ai_state |= DELAYEDFREE; 8294 indirdep = aip->ai_indirdep; 8295 if (indirdep->ir_state & UFS1FMT) 8296 ((ufs1_daddr_t *)bp->b_data)[aip->ai_offset] = 0; 8297 else 8298 ((ufs2_daddr_t *)bp->b_data)[aip->ai_offset] = 0; 8299 } 8300 /* 8301 * When truncating the previous pointer will be freed via 8302 * savedbp. Eliminate the freefrag which would dup free. 8303 */ 8304 if (trunc && (freefrag = newblk->nb_freefrag) != NULL) { 8305 newblk->nb_freefrag = NULL; 8306 if (freefrag->ff_jdep) 8307 cancel_jfreefrag( 8308 WK_JFREEFRAG(freefrag->ff_jdep)); 8309 jwork_move(&freeblks->fb_jwork, &freefrag->ff_jwork); 8310 WORKITEM_FREE(freefrag, D_FREEFRAG); 8311 } 8312 /* 8313 * If the journal hasn't been written the jnewblk must be passed 8314 * to the call to ffs_blkfree that reclaims the space. We accomplish 8315 * this by leaving the journal dependency on the newblk to be freed 8316 * when a freework is created in handle_workitem_freeblocks(). 8317 */ 8318 cancel_newblk(newblk, NULL, &freeblks->fb_jwork); 8319 WORKLIST_INSERT(&freeblks->fb_freeworkhd, &newblk->nb_list); 8320 } 8321 8322 /* 8323 * Create the mkdir dependencies for . and .. in a new directory. Link them 8324 * in to a newdirblk so any subsequent additions are tracked properly. The 8325 * caller is responsible for adding the mkdir1 dependency to the journal 8326 * and updating id_mkdiradd. This function returns with the per-filesystem 8327 * lock held. 8328 */ 8329 static struct mkdir * 8330 setup_newdir(dap, newinum, dinum, newdirbp, mkdirp) 8331 struct diradd *dap; 8332 ino_t newinum; 8333 ino_t dinum; 8334 struct buf *newdirbp; 8335 struct mkdir **mkdirp; 8336 { 8337 struct newblk *newblk; 8338 struct pagedep *pagedep; 8339 struct inodedep *inodedep; 8340 struct newdirblk *newdirblk; 8341 struct mkdir *mkdir1, *mkdir2; 8342 struct worklist *wk; 8343 struct jaddref *jaddref; 8344 struct ufsmount *ump; 8345 struct mount *mp; 8346 8347 mp = dap->da_list.wk_mp; 8348 ump = VFSTOUFS(mp); 8349 newdirblk = malloc(sizeof(struct newdirblk), M_NEWDIRBLK, 8350 M_SOFTDEP_FLAGS); 8351 workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp); 8352 LIST_INIT(&newdirblk->db_mkdir); 8353 mkdir1 = malloc(sizeof(struct mkdir), M_MKDIR, M_SOFTDEP_FLAGS); 8354 workitem_alloc(&mkdir1->md_list, D_MKDIR, mp); 8355 mkdir1->md_state = ATTACHED | MKDIR_BODY; 8356 mkdir1->md_diradd = dap; 8357 mkdir1->md_jaddref = NULL; 8358 mkdir2 = malloc(sizeof(struct mkdir), M_MKDIR, M_SOFTDEP_FLAGS); 8359 workitem_alloc(&mkdir2->md_list, D_MKDIR, mp); 8360 mkdir2->md_state = ATTACHED | MKDIR_PARENT; 8361 mkdir2->md_diradd = dap; 8362 mkdir2->md_jaddref = NULL; 8363 if (MOUNTEDSUJ(mp) == 0) { 8364 mkdir1->md_state |= DEPCOMPLETE; 8365 mkdir2->md_state |= DEPCOMPLETE; 8366 } 8367 /* 8368 * Dependency on "." and ".." being written to disk. 8369 */ 8370 mkdir1->md_buf = newdirbp; 8371 ACQUIRE_LOCK(VFSTOUFS(mp)); 8372 LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir1, md_mkdirs); 8373 /* 8374 * We must link the pagedep, allocdirect, and newdirblk for 8375 * the initial file page so the pointer to the new directory 8376 * is not written until the directory contents are live and 8377 * any subsequent additions are not marked live until the 8378 * block is reachable via the inode. 8379 */ 8380 if (pagedep_lookup(mp, newdirbp, newinum, 0, 0, &pagedep) == 0) 8381 panic("setup_newdir: lost pagedep"); 8382 LIST_FOREACH(wk, &newdirbp->b_dep, wk_list) 8383 if (wk->wk_type == D_ALLOCDIRECT) 8384 break; 8385 if (wk == NULL) 8386 panic("setup_newdir: lost allocdirect"); 8387 if (pagedep->pd_state & NEWBLOCK) 8388 panic("setup_newdir: NEWBLOCK already set"); 8389 newblk = WK_NEWBLK(wk); 8390 pagedep->pd_state |= NEWBLOCK; 8391 pagedep->pd_newdirblk = newdirblk; 8392 newdirblk->db_pagedep = pagedep; 8393 WORKLIST_INSERT(&newblk->nb_newdirblk, &newdirblk->db_list); 8394 WORKLIST_INSERT(&newdirblk->db_mkdir, &mkdir1->md_list); 8395 /* 8396 * Look up the inodedep for the parent directory so that we 8397 * can link mkdir2 into the pending dotdot jaddref or 8398 * the inode write if there is none. If the inode is 8399 * ALLCOMPLETE and no jaddref is present all dependencies have 8400 * been satisfied and mkdir2 can be freed. 8401 */ 8402 inodedep_lookup(mp, dinum, 0, &inodedep); 8403 if (MOUNTEDSUJ(mp)) { 8404 if (inodedep == NULL) 8405 panic("setup_newdir: Lost parent."); 8406 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 8407 inoreflst); 8408 KASSERT(jaddref != NULL && jaddref->ja_parent == newinum && 8409 (jaddref->ja_state & MKDIR_PARENT), 8410 ("setup_newdir: bad dotdot jaddref %p", jaddref)); 8411 LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir2, md_mkdirs); 8412 mkdir2->md_jaddref = jaddref; 8413 jaddref->ja_mkdir = mkdir2; 8414 } else if (inodedep == NULL || 8415 (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) { 8416 dap->da_state &= ~MKDIR_PARENT; 8417 WORKITEM_FREE(mkdir2, D_MKDIR); 8418 mkdir2 = NULL; 8419 } else { 8420 LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir2, md_mkdirs); 8421 WORKLIST_INSERT(&inodedep->id_bufwait, &mkdir2->md_list); 8422 } 8423 *mkdirp = mkdir2; 8424 8425 return (mkdir1); 8426 } 8427 8428 /* 8429 * Directory entry addition dependencies. 8430 * 8431 * When adding a new directory entry, the inode (with its incremented link 8432 * count) must be written to disk before the directory entry's pointer to it. 8433 * Also, if the inode is newly allocated, the corresponding freemap must be 8434 * updated (on disk) before the directory entry's pointer. These requirements 8435 * are met via undo/redo on the directory entry's pointer, which consists 8436 * simply of the inode number. 8437 * 8438 * As directory entries are added and deleted, the free space within a 8439 * directory block can become fragmented. The ufs filesystem will compact 8440 * a fragmented directory block to make space for a new entry. When this 8441 * occurs, the offsets of previously added entries change. Any "diradd" 8442 * dependency structures corresponding to these entries must be updated with 8443 * the new offsets. 8444 */ 8445 8446 /* 8447 * This routine is called after the in-memory inode's link 8448 * count has been incremented, but before the directory entry's 8449 * pointer to the inode has been set. 8450 */ 8451 int 8452 softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk) 8453 struct buf *bp; /* buffer containing directory block */ 8454 struct inode *dp; /* inode for directory */ 8455 off_t diroffset; /* offset of new entry in directory */ 8456 ino_t newinum; /* inode referenced by new directory entry */ 8457 struct buf *newdirbp; /* non-NULL => contents of new mkdir */ 8458 int isnewblk; /* entry is in a newly allocated block */ 8459 { 8460 int offset; /* offset of new entry within directory block */ 8461 ufs_lbn_t lbn; /* block in directory containing new entry */ 8462 struct fs *fs; 8463 struct diradd *dap; 8464 struct newblk *newblk; 8465 struct pagedep *pagedep; 8466 struct inodedep *inodedep; 8467 struct newdirblk *newdirblk; 8468 struct mkdir *mkdir1, *mkdir2; 8469 struct jaddref *jaddref; 8470 struct ufsmount *ump; 8471 struct mount *mp; 8472 int isindir; 8473 8474 mp = ITOVFS(dp); 8475 ump = VFSTOUFS(mp); 8476 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 8477 ("softdep_setup_directory_add called on non-softdep filesystem")); 8478 /* 8479 * Whiteouts have no dependencies. 8480 */ 8481 if (newinum == UFS_WINO) { 8482 if (newdirbp != NULL) 8483 bdwrite(newdirbp); 8484 return (0); 8485 } 8486 jaddref = NULL; 8487 mkdir1 = mkdir2 = NULL; 8488 fs = ump->um_fs; 8489 lbn = lblkno(fs, diroffset); 8490 offset = blkoff(fs, diroffset); 8491 dap = malloc(sizeof(struct diradd), M_DIRADD, 8492 M_SOFTDEP_FLAGS|M_ZERO); 8493 workitem_alloc(&dap->da_list, D_DIRADD, mp); 8494 dap->da_offset = offset; 8495 dap->da_newinum = newinum; 8496 dap->da_state = ATTACHED; 8497 LIST_INIT(&dap->da_jwork); 8498 isindir = bp->b_lblkno >= UFS_NDADDR; 8499 newdirblk = NULL; 8500 if (isnewblk && 8501 (isindir ? blkoff(fs, diroffset) : fragoff(fs, diroffset)) == 0) { 8502 newdirblk = malloc(sizeof(struct newdirblk), 8503 M_NEWDIRBLK, M_SOFTDEP_FLAGS); 8504 workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp); 8505 LIST_INIT(&newdirblk->db_mkdir); 8506 } 8507 /* 8508 * If we're creating a new directory setup the dependencies and set 8509 * the dap state to wait for them. Otherwise it's COMPLETE and 8510 * we can move on. 8511 */ 8512 if (newdirbp == NULL) { 8513 dap->da_state |= DEPCOMPLETE; 8514 ACQUIRE_LOCK(ump); 8515 } else { 8516 dap->da_state |= MKDIR_BODY | MKDIR_PARENT; 8517 mkdir1 = setup_newdir(dap, newinum, dp->i_number, newdirbp, 8518 &mkdir2); 8519 } 8520 /* 8521 * Link into parent directory pagedep to await its being written. 8522 */ 8523 pagedep_lookup(mp, bp, dp->i_number, lbn, DEPALLOC, &pagedep); 8524 #ifdef DEBUG 8525 if (diradd_lookup(pagedep, offset) != NULL) 8526 panic("softdep_setup_directory_add: %p already at off %d\n", 8527 diradd_lookup(pagedep, offset), offset); 8528 #endif 8529 dap->da_pagedep = pagedep; 8530 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], dap, 8531 da_pdlist); 8532 inodedep_lookup(mp, newinum, DEPALLOC, &inodedep); 8533 /* 8534 * If we're journaling, link the diradd into the jaddref so it 8535 * may be completed after the journal entry is written. Otherwise, 8536 * link the diradd into its inodedep. If the inode is not yet 8537 * written place it on the bufwait list, otherwise do the post-inode 8538 * write processing to put it on the id_pendinghd list. 8539 */ 8540 if (MOUNTEDSUJ(mp)) { 8541 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 8542 inoreflst); 8543 KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number, 8544 ("softdep_setup_directory_add: bad jaddref %p", jaddref)); 8545 jaddref->ja_diroff = diroffset; 8546 jaddref->ja_diradd = dap; 8547 add_to_journal(&jaddref->ja_list); 8548 } else if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) 8549 diradd_inode_written(dap, inodedep); 8550 else 8551 WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list); 8552 /* 8553 * Add the journal entries for . and .. links now that the primary 8554 * link is written. 8555 */ 8556 if (mkdir1 != NULL && MOUNTEDSUJ(mp)) { 8557 jaddref = (struct jaddref *)TAILQ_PREV(&jaddref->ja_ref, 8558 inoreflst, if_deps); 8559 KASSERT(jaddref != NULL && 8560 jaddref->ja_ino == jaddref->ja_parent && 8561 (jaddref->ja_state & MKDIR_BODY), 8562 ("softdep_setup_directory_add: bad dot jaddref %p", 8563 jaddref)); 8564 mkdir1->md_jaddref = jaddref; 8565 jaddref->ja_mkdir = mkdir1; 8566 /* 8567 * It is important that the dotdot journal entry 8568 * is added prior to the dot entry since dot writes 8569 * both the dot and dotdot links. These both must 8570 * be added after the primary link for the journal 8571 * to remain consistent. 8572 */ 8573 add_to_journal(&mkdir2->md_jaddref->ja_list); 8574 add_to_journal(&jaddref->ja_list); 8575 } 8576 /* 8577 * If we are adding a new directory remember this diradd so that if 8578 * we rename it we can keep the dot and dotdot dependencies. If 8579 * we are adding a new name for an inode that has a mkdiradd we 8580 * must be in rename and we have to move the dot and dotdot 8581 * dependencies to this new name. The old name is being orphaned 8582 * soon. 8583 */ 8584 if (mkdir1 != NULL) { 8585 if (inodedep->id_mkdiradd != NULL) 8586 panic("softdep_setup_directory_add: Existing mkdir"); 8587 inodedep->id_mkdiradd = dap; 8588 } else if (inodedep->id_mkdiradd) 8589 merge_diradd(inodedep, dap); 8590 if (newdirblk != NULL) { 8591 /* 8592 * There is nothing to do if we are already tracking 8593 * this block. 8594 */ 8595 if ((pagedep->pd_state & NEWBLOCK) != 0) { 8596 WORKITEM_FREE(newdirblk, D_NEWDIRBLK); 8597 FREE_LOCK(ump); 8598 return (0); 8599 } 8600 if (newblk_lookup(mp, dbtofsb(fs, bp->b_blkno), 0, &newblk) 8601 == 0) 8602 panic("softdep_setup_directory_add: lost entry"); 8603 WORKLIST_INSERT(&newblk->nb_newdirblk, &newdirblk->db_list); 8604 pagedep->pd_state |= NEWBLOCK; 8605 pagedep->pd_newdirblk = newdirblk; 8606 newdirblk->db_pagedep = pagedep; 8607 FREE_LOCK(ump); 8608 /* 8609 * If we extended into an indirect signal direnter to sync. 8610 */ 8611 if (isindir) 8612 return (1); 8613 return (0); 8614 } 8615 FREE_LOCK(ump); 8616 return (0); 8617 } 8618 8619 /* 8620 * This procedure is called to change the offset of a directory 8621 * entry when compacting a directory block which must be owned 8622 * exclusively by the caller. Note that the actual entry movement 8623 * must be done in this procedure to ensure that no I/O completions 8624 * occur while the move is in progress. 8625 */ 8626 void 8627 softdep_change_directoryentry_offset(bp, dp, base, oldloc, newloc, entrysize) 8628 struct buf *bp; /* Buffer holding directory block. */ 8629 struct inode *dp; /* inode for directory */ 8630 caddr_t base; /* address of dp->i_offset */ 8631 caddr_t oldloc; /* address of old directory location */ 8632 caddr_t newloc; /* address of new directory location */ 8633 int entrysize; /* size of directory entry */ 8634 { 8635 int offset, oldoffset, newoffset; 8636 struct pagedep *pagedep; 8637 struct jmvref *jmvref; 8638 struct diradd *dap; 8639 struct direct *de; 8640 struct mount *mp; 8641 struct ufsmount *ump; 8642 ufs_lbn_t lbn; 8643 int flags; 8644 8645 mp = ITOVFS(dp); 8646 ump = VFSTOUFS(mp); 8647 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 8648 ("softdep_change_directoryentry_offset called on " 8649 "non-softdep filesystem")); 8650 de = (struct direct *)oldloc; 8651 jmvref = NULL; 8652 flags = 0; 8653 /* 8654 * Moves are always journaled as it would be too complex to 8655 * determine if any affected adds or removes are present in the 8656 * journal. 8657 */ 8658 if (MOUNTEDSUJ(mp)) { 8659 flags = DEPALLOC; 8660 jmvref = newjmvref(dp, de->d_ino, 8661 dp->i_offset + (oldloc - base), 8662 dp->i_offset + (newloc - base)); 8663 } 8664 lbn = lblkno(ump->um_fs, dp->i_offset); 8665 offset = blkoff(ump->um_fs, dp->i_offset); 8666 oldoffset = offset + (oldloc - base); 8667 newoffset = offset + (newloc - base); 8668 ACQUIRE_LOCK(ump); 8669 if (pagedep_lookup(mp, bp, dp->i_number, lbn, flags, &pagedep) == 0) 8670 goto done; 8671 dap = diradd_lookup(pagedep, oldoffset); 8672 if (dap) { 8673 dap->da_offset = newoffset; 8674 newoffset = DIRADDHASH(newoffset); 8675 oldoffset = DIRADDHASH(oldoffset); 8676 if ((dap->da_state & ALLCOMPLETE) != ALLCOMPLETE && 8677 newoffset != oldoffset) { 8678 LIST_REMOVE(dap, da_pdlist); 8679 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[newoffset], 8680 dap, da_pdlist); 8681 } 8682 } 8683 done: 8684 if (jmvref) { 8685 jmvref->jm_pagedep = pagedep; 8686 LIST_INSERT_HEAD(&pagedep->pd_jmvrefhd, jmvref, jm_deps); 8687 add_to_journal(&jmvref->jm_list); 8688 } 8689 bcopy(oldloc, newloc, entrysize); 8690 FREE_LOCK(ump); 8691 } 8692 8693 /* 8694 * Move the mkdir dependencies and journal work from one diradd to another 8695 * when renaming a directory. The new name must depend on the mkdir deps 8696 * completing as the old name did. Directories can only have one valid link 8697 * at a time so one must be canonical. 8698 */ 8699 static void 8700 merge_diradd(inodedep, newdap) 8701 struct inodedep *inodedep; 8702 struct diradd *newdap; 8703 { 8704 struct diradd *olddap; 8705 struct mkdir *mkdir, *nextmd; 8706 struct ufsmount *ump; 8707 short state; 8708 8709 olddap = inodedep->id_mkdiradd; 8710 inodedep->id_mkdiradd = newdap; 8711 if ((olddap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) { 8712 newdap->da_state &= ~DEPCOMPLETE; 8713 ump = VFSTOUFS(inodedep->id_list.wk_mp); 8714 for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir; 8715 mkdir = nextmd) { 8716 nextmd = LIST_NEXT(mkdir, md_mkdirs); 8717 if (mkdir->md_diradd != olddap) 8718 continue; 8719 mkdir->md_diradd = newdap; 8720 state = mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY); 8721 newdap->da_state |= state; 8722 olddap->da_state &= ~state; 8723 if ((olddap->da_state & 8724 (MKDIR_PARENT | MKDIR_BODY)) == 0) 8725 break; 8726 } 8727 if ((olddap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) 8728 panic("merge_diradd: unfound ref"); 8729 } 8730 /* 8731 * Any mkdir related journal items are not safe to be freed until 8732 * the new name is stable. 8733 */ 8734 jwork_move(&newdap->da_jwork, &olddap->da_jwork); 8735 olddap->da_state |= DEPCOMPLETE; 8736 complete_diradd(olddap); 8737 } 8738 8739 /* 8740 * Move the diradd to the pending list when all diradd dependencies are 8741 * complete. 8742 */ 8743 static void 8744 complete_diradd(dap) 8745 struct diradd *dap; 8746 { 8747 struct pagedep *pagedep; 8748 8749 if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) { 8750 if (dap->da_state & DIRCHG) 8751 pagedep = dap->da_previous->dm_pagedep; 8752 else 8753 pagedep = dap->da_pagedep; 8754 LIST_REMOVE(dap, da_pdlist); 8755 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist); 8756 } 8757 } 8758 8759 /* 8760 * Cancel a diradd when a dirrem overlaps with it. We must cancel the journal 8761 * add entries and conditonally journal the remove. 8762 */ 8763 static void 8764 cancel_diradd(dap, dirrem, jremref, dotremref, dotdotremref) 8765 struct diradd *dap; 8766 struct dirrem *dirrem; 8767 struct jremref *jremref; 8768 struct jremref *dotremref; 8769 struct jremref *dotdotremref; 8770 { 8771 struct inodedep *inodedep; 8772 struct jaddref *jaddref; 8773 struct inoref *inoref; 8774 struct ufsmount *ump; 8775 struct mkdir *mkdir; 8776 8777 /* 8778 * If no remove references were allocated we're on a non-journaled 8779 * filesystem and can skip the cancel step. 8780 */ 8781 if (jremref == NULL) { 8782 free_diradd(dap, NULL); 8783 return; 8784 } 8785 /* 8786 * Cancel the primary name an free it if it does not require 8787 * journaling. 8788 */ 8789 if (inodedep_lookup(dap->da_list.wk_mp, dap->da_newinum, 8790 0, &inodedep) != 0) { 8791 /* Abort the addref that reference this diradd. */ 8792 TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) { 8793 if (inoref->if_list.wk_type != D_JADDREF) 8794 continue; 8795 jaddref = (struct jaddref *)inoref; 8796 if (jaddref->ja_diradd != dap) 8797 continue; 8798 if (cancel_jaddref(jaddref, inodedep, 8799 &dirrem->dm_jwork) == 0) { 8800 free_jremref(jremref); 8801 jremref = NULL; 8802 } 8803 break; 8804 } 8805 } 8806 /* 8807 * Cancel subordinate names and free them if they do not require 8808 * journaling. 8809 */ 8810 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) { 8811 ump = VFSTOUFS(dap->da_list.wk_mp); 8812 LIST_FOREACH(mkdir, &ump->softdep_mkdirlisthd, md_mkdirs) { 8813 if (mkdir->md_diradd != dap) 8814 continue; 8815 if ((jaddref = mkdir->md_jaddref) == NULL) 8816 continue; 8817 mkdir->md_jaddref = NULL; 8818 if (mkdir->md_state & MKDIR_PARENT) { 8819 if (cancel_jaddref(jaddref, NULL, 8820 &dirrem->dm_jwork) == 0) { 8821 free_jremref(dotdotremref); 8822 dotdotremref = NULL; 8823 } 8824 } else { 8825 if (cancel_jaddref(jaddref, inodedep, 8826 &dirrem->dm_jwork) == 0) { 8827 free_jremref(dotremref); 8828 dotremref = NULL; 8829 } 8830 } 8831 } 8832 } 8833 8834 if (jremref) 8835 journal_jremref(dirrem, jremref, inodedep); 8836 if (dotremref) 8837 journal_jremref(dirrem, dotremref, inodedep); 8838 if (dotdotremref) 8839 journal_jremref(dirrem, dotdotremref, NULL); 8840 jwork_move(&dirrem->dm_jwork, &dap->da_jwork); 8841 free_diradd(dap, &dirrem->dm_jwork); 8842 } 8843 8844 /* 8845 * Free a diradd dependency structure. This routine must be called 8846 * with splbio interrupts blocked. 8847 */ 8848 static void 8849 free_diradd(dap, wkhd) 8850 struct diradd *dap; 8851 struct workhead *wkhd; 8852 { 8853 struct dirrem *dirrem; 8854 struct pagedep *pagedep; 8855 struct inodedep *inodedep; 8856 struct mkdir *mkdir, *nextmd; 8857 struct ufsmount *ump; 8858 8859 ump = VFSTOUFS(dap->da_list.wk_mp); 8860 LOCK_OWNED(ump); 8861 LIST_REMOVE(dap, da_pdlist); 8862 if (dap->da_state & ONWORKLIST) 8863 WORKLIST_REMOVE(&dap->da_list); 8864 if ((dap->da_state & DIRCHG) == 0) { 8865 pagedep = dap->da_pagedep; 8866 } else { 8867 dirrem = dap->da_previous; 8868 pagedep = dirrem->dm_pagedep; 8869 dirrem->dm_dirinum = pagedep->pd_ino; 8870 dirrem->dm_state |= COMPLETE; 8871 if (LIST_EMPTY(&dirrem->dm_jremrefhd)) 8872 add_to_worklist(&dirrem->dm_list, 0); 8873 } 8874 if (inodedep_lookup(pagedep->pd_list.wk_mp, dap->da_newinum, 8875 0, &inodedep) != 0) 8876 if (inodedep->id_mkdiradd == dap) 8877 inodedep->id_mkdiradd = NULL; 8878 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) { 8879 for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir; 8880 mkdir = nextmd) { 8881 nextmd = LIST_NEXT(mkdir, md_mkdirs); 8882 if (mkdir->md_diradd != dap) 8883 continue; 8884 dap->da_state &= 8885 ~(mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY)); 8886 LIST_REMOVE(mkdir, md_mkdirs); 8887 if (mkdir->md_state & ONWORKLIST) 8888 WORKLIST_REMOVE(&mkdir->md_list); 8889 if (mkdir->md_jaddref != NULL) 8890 panic("free_diradd: Unexpected jaddref"); 8891 WORKITEM_FREE(mkdir, D_MKDIR); 8892 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0) 8893 break; 8894 } 8895 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) 8896 panic("free_diradd: unfound ref"); 8897 } 8898 if (inodedep) 8899 free_inodedep(inodedep); 8900 /* 8901 * Free any journal segments waiting for the directory write. 8902 */ 8903 handle_jwork(&dap->da_jwork); 8904 WORKITEM_FREE(dap, D_DIRADD); 8905 } 8906 8907 /* 8908 * Directory entry removal dependencies. 8909 * 8910 * When removing a directory entry, the entry's inode pointer must be 8911 * zero'ed on disk before the corresponding inode's link count is decremented 8912 * (possibly freeing the inode for re-use). This dependency is handled by 8913 * updating the directory entry but delaying the inode count reduction until 8914 * after the directory block has been written to disk. After this point, the 8915 * inode count can be decremented whenever it is convenient. 8916 */ 8917 8918 /* 8919 * This routine should be called immediately after removing 8920 * a directory entry. The inode's link count should not be 8921 * decremented by the calling procedure -- the soft updates 8922 * code will do this task when it is safe. 8923 */ 8924 void 8925 softdep_setup_remove(bp, dp, ip, isrmdir) 8926 struct buf *bp; /* buffer containing directory block */ 8927 struct inode *dp; /* inode for the directory being modified */ 8928 struct inode *ip; /* inode for directory entry being removed */ 8929 int isrmdir; /* indicates if doing RMDIR */ 8930 { 8931 struct dirrem *dirrem, *prevdirrem; 8932 struct inodedep *inodedep; 8933 struct ufsmount *ump; 8934 int direct; 8935 8936 ump = ITOUMP(ip); 8937 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 8938 ("softdep_setup_remove called on non-softdep filesystem")); 8939 /* 8940 * Allocate a new dirrem if appropriate and ACQUIRE_LOCK. We want 8941 * newdirrem() to setup the full directory remove which requires 8942 * isrmdir > 1. 8943 */ 8944 dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem); 8945 /* 8946 * Add the dirrem to the inodedep's pending remove list for quick 8947 * discovery later. 8948 */ 8949 if (inodedep_lookup(UFSTOVFS(ump), ip->i_number, 0, &inodedep) == 0) 8950 panic("softdep_setup_remove: Lost inodedep."); 8951 KASSERT((inodedep->id_state & UNLINKED) == 0, ("inode unlinked")); 8952 dirrem->dm_state |= ONDEPLIST; 8953 LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext); 8954 8955 /* 8956 * If the COMPLETE flag is clear, then there were no active 8957 * entries and we want to roll back to a zeroed entry until 8958 * the new inode is committed to disk. If the COMPLETE flag is 8959 * set then we have deleted an entry that never made it to 8960 * disk. If the entry we deleted resulted from a name change, 8961 * then the old name still resides on disk. We cannot delete 8962 * its inode (returned to us in prevdirrem) until the zeroed 8963 * directory entry gets to disk. The new inode has never been 8964 * referenced on the disk, so can be deleted immediately. 8965 */ 8966 if ((dirrem->dm_state & COMPLETE) == 0) { 8967 LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, dirrem, 8968 dm_next); 8969 FREE_LOCK(ump); 8970 } else { 8971 if (prevdirrem != NULL) 8972 LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, 8973 prevdirrem, dm_next); 8974 dirrem->dm_dirinum = dirrem->dm_pagedep->pd_ino; 8975 direct = LIST_EMPTY(&dirrem->dm_jremrefhd); 8976 FREE_LOCK(ump); 8977 if (direct) 8978 handle_workitem_remove(dirrem, 0); 8979 } 8980 } 8981 8982 /* 8983 * Check for an entry matching 'offset' on both the pd_dirraddhd list and the 8984 * pd_pendinghd list of a pagedep. 8985 */ 8986 static struct diradd * 8987 diradd_lookup(pagedep, offset) 8988 struct pagedep *pagedep; 8989 int offset; 8990 { 8991 struct diradd *dap; 8992 8993 LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(offset)], da_pdlist) 8994 if (dap->da_offset == offset) 8995 return (dap); 8996 LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist) 8997 if (dap->da_offset == offset) 8998 return (dap); 8999 return (NULL); 9000 } 9001 9002 /* 9003 * Search for a .. diradd dependency in a directory that is being removed. 9004 * If the directory was renamed to a new parent we have a diradd rather 9005 * than a mkdir for the .. entry. We need to cancel it now before 9006 * it is found in truncate(). 9007 */ 9008 static struct jremref * 9009 cancel_diradd_dotdot(ip, dirrem, jremref) 9010 struct inode *ip; 9011 struct dirrem *dirrem; 9012 struct jremref *jremref; 9013 { 9014 struct pagedep *pagedep; 9015 struct diradd *dap; 9016 struct worklist *wk; 9017 9018 if (pagedep_lookup(ITOVFS(ip), NULL, ip->i_number, 0, 0, &pagedep) == 0) 9019 return (jremref); 9020 dap = diradd_lookup(pagedep, DOTDOT_OFFSET); 9021 if (dap == NULL) 9022 return (jremref); 9023 cancel_diradd(dap, dirrem, jremref, NULL, NULL); 9024 /* 9025 * Mark any journal work as belonging to the parent so it is freed 9026 * with the .. reference. 9027 */ 9028 LIST_FOREACH(wk, &dirrem->dm_jwork, wk_list) 9029 wk->wk_state |= MKDIR_PARENT; 9030 return (NULL); 9031 } 9032 9033 /* 9034 * Cancel the MKDIR_PARENT mkdir component of a diradd when we're going to 9035 * replace it with a dirrem/diradd pair as a result of re-parenting a 9036 * directory. This ensures that we don't simultaneously have a mkdir and 9037 * a diradd for the same .. entry. 9038 */ 9039 static struct jremref * 9040 cancel_mkdir_dotdot(ip, dirrem, jremref) 9041 struct inode *ip; 9042 struct dirrem *dirrem; 9043 struct jremref *jremref; 9044 { 9045 struct inodedep *inodedep; 9046 struct jaddref *jaddref; 9047 struct ufsmount *ump; 9048 struct mkdir *mkdir; 9049 struct diradd *dap; 9050 struct mount *mp; 9051 9052 mp = ITOVFS(ip); 9053 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) 9054 return (jremref); 9055 dap = inodedep->id_mkdiradd; 9056 if (dap == NULL || (dap->da_state & MKDIR_PARENT) == 0) 9057 return (jremref); 9058 ump = VFSTOUFS(inodedep->id_list.wk_mp); 9059 for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir; 9060 mkdir = LIST_NEXT(mkdir, md_mkdirs)) 9061 if (mkdir->md_diradd == dap && mkdir->md_state & MKDIR_PARENT) 9062 break; 9063 if (mkdir == NULL) 9064 panic("cancel_mkdir_dotdot: Unable to find mkdir\n"); 9065 if ((jaddref = mkdir->md_jaddref) != NULL) { 9066 mkdir->md_jaddref = NULL; 9067 jaddref->ja_state &= ~MKDIR_PARENT; 9068 if (inodedep_lookup(mp, jaddref->ja_ino, 0, &inodedep) == 0) 9069 panic("cancel_mkdir_dotdot: Lost parent inodedep"); 9070 if (cancel_jaddref(jaddref, inodedep, &dirrem->dm_jwork)) { 9071 journal_jremref(dirrem, jremref, inodedep); 9072 jremref = NULL; 9073 } 9074 } 9075 if (mkdir->md_state & ONWORKLIST) 9076 WORKLIST_REMOVE(&mkdir->md_list); 9077 mkdir->md_state |= ALLCOMPLETE; 9078 complete_mkdir(mkdir); 9079 return (jremref); 9080 } 9081 9082 static void 9083 journal_jremref(dirrem, jremref, inodedep) 9084 struct dirrem *dirrem; 9085 struct jremref *jremref; 9086 struct inodedep *inodedep; 9087 { 9088 9089 if (inodedep == NULL) 9090 if (inodedep_lookup(jremref->jr_list.wk_mp, 9091 jremref->jr_ref.if_ino, 0, &inodedep) == 0) 9092 panic("journal_jremref: Lost inodedep"); 9093 LIST_INSERT_HEAD(&dirrem->dm_jremrefhd, jremref, jr_deps); 9094 TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jremref->jr_ref, if_deps); 9095 add_to_journal(&jremref->jr_list); 9096 } 9097 9098 static void 9099 dirrem_journal(dirrem, jremref, dotremref, dotdotremref) 9100 struct dirrem *dirrem; 9101 struct jremref *jremref; 9102 struct jremref *dotremref; 9103 struct jremref *dotdotremref; 9104 { 9105 struct inodedep *inodedep; 9106 9107 9108 if (inodedep_lookup(jremref->jr_list.wk_mp, jremref->jr_ref.if_ino, 0, 9109 &inodedep) == 0) 9110 panic("dirrem_journal: Lost inodedep"); 9111 journal_jremref(dirrem, jremref, inodedep); 9112 if (dotremref) 9113 journal_jremref(dirrem, dotremref, inodedep); 9114 if (dotdotremref) 9115 journal_jremref(dirrem, dotdotremref, NULL); 9116 } 9117 9118 /* 9119 * Allocate a new dirrem if appropriate and return it along with 9120 * its associated pagedep. Called without a lock, returns with lock. 9121 */ 9122 static struct dirrem * 9123 newdirrem(bp, dp, ip, isrmdir, prevdirremp) 9124 struct buf *bp; /* buffer containing directory block */ 9125 struct inode *dp; /* inode for the directory being modified */ 9126 struct inode *ip; /* inode for directory entry being removed */ 9127 int isrmdir; /* indicates if doing RMDIR */ 9128 struct dirrem **prevdirremp; /* previously referenced inode, if any */ 9129 { 9130 int offset; 9131 ufs_lbn_t lbn; 9132 struct diradd *dap; 9133 struct dirrem *dirrem; 9134 struct pagedep *pagedep; 9135 struct jremref *jremref; 9136 struct jremref *dotremref; 9137 struct jremref *dotdotremref; 9138 struct vnode *dvp; 9139 struct ufsmount *ump; 9140 9141 /* 9142 * Whiteouts have no deletion dependencies. 9143 */ 9144 if (ip == NULL) 9145 panic("newdirrem: whiteout"); 9146 dvp = ITOV(dp); 9147 ump = ITOUMP(dp); 9148 9149 /* 9150 * If the system is over its limit and our filesystem is 9151 * responsible for more than our share of that usage and 9152 * we are not a snapshot, request some inodedep cleanup. 9153 * Limiting the number of dirrem structures will also limit 9154 * the number of freefile and freeblks structures. 9155 */ 9156 ACQUIRE_LOCK(ump); 9157 if (!IS_SNAPSHOT(ip) && softdep_excess_items(ump, D_DIRREM)) 9158 schedule_cleanup(UFSTOVFS(ump)); 9159 else 9160 FREE_LOCK(ump); 9161 dirrem = malloc(sizeof(struct dirrem), M_DIRREM, M_SOFTDEP_FLAGS | 9162 M_ZERO); 9163 workitem_alloc(&dirrem->dm_list, D_DIRREM, dvp->v_mount); 9164 LIST_INIT(&dirrem->dm_jremrefhd); 9165 LIST_INIT(&dirrem->dm_jwork); 9166 dirrem->dm_state = isrmdir ? RMDIR : 0; 9167 dirrem->dm_oldinum = ip->i_number; 9168 *prevdirremp = NULL; 9169 /* 9170 * Allocate remove reference structures to track journal write 9171 * dependencies. We will always have one for the link and 9172 * when doing directories we will always have one more for dot. 9173 * When renaming a directory we skip the dotdot link change so 9174 * this is not needed. 9175 */ 9176 jremref = dotremref = dotdotremref = NULL; 9177 if (DOINGSUJ(dvp)) { 9178 if (isrmdir) { 9179 jremref = newjremref(dirrem, dp, ip, dp->i_offset, 9180 ip->i_effnlink + 2); 9181 dotremref = newjremref(dirrem, ip, ip, DOT_OFFSET, 9182 ip->i_effnlink + 1); 9183 dotdotremref = newjremref(dirrem, ip, dp, DOTDOT_OFFSET, 9184 dp->i_effnlink + 1); 9185 dotdotremref->jr_state |= MKDIR_PARENT; 9186 } else 9187 jremref = newjremref(dirrem, dp, ip, dp->i_offset, 9188 ip->i_effnlink + 1); 9189 } 9190 ACQUIRE_LOCK(ump); 9191 lbn = lblkno(ump->um_fs, dp->i_offset); 9192 offset = blkoff(ump->um_fs, dp->i_offset); 9193 pagedep_lookup(UFSTOVFS(ump), bp, dp->i_number, lbn, DEPALLOC, 9194 &pagedep); 9195 dirrem->dm_pagedep = pagedep; 9196 dirrem->dm_offset = offset; 9197 /* 9198 * If we're renaming a .. link to a new directory, cancel any 9199 * existing MKDIR_PARENT mkdir. If it has already been canceled 9200 * the jremref is preserved for any potential diradd in this 9201 * location. This can not coincide with a rmdir. 9202 */ 9203 if (dp->i_offset == DOTDOT_OFFSET) { 9204 if (isrmdir) 9205 panic("newdirrem: .. directory change during remove?"); 9206 jremref = cancel_mkdir_dotdot(dp, dirrem, jremref); 9207 } 9208 /* 9209 * If we're removing a directory search for the .. dependency now and 9210 * cancel it. Any pending journal work will be added to the dirrem 9211 * to be completed when the workitem remove completes. 9212 */ 9213 if (isrmdir) 9214 dotdotremref = cancel_diradd_dotdot(ip, dirrem, dotdotremref); 9215 /* 9216 * Check for a diradd dependency for the same directory entry. 9217 * If present, then both dependencies become obsolete and can 9218 * be de-allocated. 9219 */ 9220 dap = diradd_lookup(pagedep, offset); 9221 if (dap == NULL) { 9222 /* 9223 * Link the jremref structures into the dirrem so they are 9224 * written prior to the pagedep. 9225 */ 9226 if (jremref) 9227 dirrem_journal(dirrem, jremref, dotremref, 9228 dotdotremref); 9229 return (dirrem); 9230 } 9231 /* 9232 * Must be ATTACHED at this point. 9233 */ 9234 if ((dap->da_state & ATTACHED) == 0) 9235 panic("newdirrem: not ATTACHED"); 9236 if (dap->da_newinum != ip->i_number) 9237 panic("newdirrem: inum %ju should be %ju", 9238 (uintmax_t)ip->i_number, (uintmax_t)dap->da_newinum); 9239 /* 9240 * If we are deleting a changed name that never made it to disk, 9241 * then return the dirrem describing the previous inode (which 9242 * represents the inode currently referenced from this entry on disk). 9243 */ 9244 if ((dap->da_state & DIRCHG) != 0) { 9245 *prevdirremp = dap->da_previous; 9246 dap->da_state &= ~DIRCHG; 9247 dap->da_pagedep = pagedep; 9248 } 9249 /* 9250 * We are deleting an entry that never made it to disk. 9251 * Mark it COMPLETE so we can delete its inode immediately. 9252 */ 9253 dirrem->dm_state |= COMPLETE; 9254 cancel_diradd(dap, dirrem, jremref, dotremref, dotdotremref); 9255 #ifdef SUJ_DEBUG 9256 if (isrmdir == 0) { 9257 struct worklist *wk; 9258 9259 LIST_FOREACH(wk, &dirrem->dm_jwork, wk_list) 9260 if (wk->wk_state & (MKDIR_BODY | MKDIR_PARENT)) 9261 panic("bad wk %p (0x%X)\n", wk, wk->wk_state); 9262 } 9263 #endif 9264 9265 return (dirrem); 9266 } 9267 9268 /* 9269 * Directory entry change dependencies. 9270 * 9271 * Changing an existing directory entry requires that an add operation 9272 * be completed first followed by a deletion. The semantics for the addition 9273 * are identical to the description of adding a new entry above except 9274 * that the rollback is to the old inode number rather than zero. Once 9275 * the addition dependency is completed, the removal is done as described 9276 * in the removal routine above. 9277 */ 9278 9279 /* 9280 * This routine should be called immediately after changing 9281 * a directory entry. The inode's link count should not be 9282 * decremented by the calling procedure -- the soft updates 9283 * code will perform this task when it is safe. 9284 */ 9285 void 9286 softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir) 9287 struct buf *bp; /* buffer containing directory block */ 9288 struct inode *dp; /* inode for the directory being modified */ 9289 struct inode *ip; /* inode for directory entry being removed */ 9290 ino_t newinum; /* new inode number for changed entry */ 9291 int isrmdir; /* indicates if doing RMDIR */ 9292 { 9293 int offset; 9294 struct diradd *dap = NULL; 9295 struct dirrem *dirrem, *prevdirrem; 9296 struct pagedep *pagedep; 9297 struct inodedep *inodedep; 9298 struct jaddref *jaddref; 9299 struct mount *mp; 9300 struct ufsmount *ump; 9301 9302 mp = ITOVFS(dp); 9303 ump = VFSTOUFS(mp); 9304 offset = blkoff(ump->um_fs, dp->i_offset); 9305 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 9306 ("softdep_setup_directory_change called on non-softdep filesystem")); 9307 9308 /* 9309 * Whiteouts do not need diradd dependencies. 9310 */ 9311 if (newinum != UFS_WINO) { 9312 dap = malloc(sizeof(struct diradd), 9313 M_DIRADD, M_SOFTDEP_FLAGS|M_ZERO); 9314 workitem_alloc(&dap->da_list, D_DIRADD, mp); 9315 dap->da_state = DIRCHG | ATTACHED | DEPCOMPLETE; 9316 dap->da_offset = offset; 9317 dap->da_newinum = newinum; 9318 LIST_INIT(&dap->da_jwork); 9319 } 9320 9321 /* 9322 * Allocate a new dirrem and ACQUIRE_LOCK. 9323 */ 9324 dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem); 9325 pagedep = dirrem->dm_pagedep; 9326 /* 9327 * The possible values for isrmdir: 9328 * 0 - non-directory file rename 9329 * 1 - directory rename within same directory 9330 * inum - directory rename to new directory of given inode number 9331 * When renaming to a new directory, we are both deleting and 9332 * creating a new directory entry, so the link count on the new 9333 * directory should not change. Thus we do not need the followup 9334 * dirrem which is usually done in handle_workitem_remove. We set 9335 * the DIRCHG flag to tell handle_workitem_remove to skip the 9336 * followup dirrem. 9337 */ 9338 if (isrmdir > 1) 9339 dirrem->dm_state |= DIRCHG; 9340 9341 /* 9342 * Whiteouts have no additional dependencies, 9343 * so just put the dirrem on the correct list. 9344 */ 9345 if (newinum == UFS_WINO) { 9346 if ((dirrem->dm_state & COMPLETE) == 0) { 9347 LIST_INSERT_HEAD(&pagedep->pd_dirremhd, dirrem, 9348 dm_next); 9349 } else { 9350 dirrem->dm_dirinum = pagedep->pd_ino; 9351 if (LIST_EMPTY(&dirrem->dm_jremrefhd)) 9352 add_to_worklist(&dirrem->dm_list, 0); 9353 } 9354 FREE_LOCK(ump); 9355 return; 9356 } 9357 /* 9358 * Add the dirrem to the inodedep's pending remove list for quick 9359 * discovery later. A valid nlinkdelta ensures that this lookup 9360 * will not fail. 9361 */ 9362 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) 9363 panic("softdep_setup_directory_change: Lost inodedep."); 9364 dirrem->dm_state |= ONDEPLIST; 9365 LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext); 9366 9367 /* 9368 * If the COMPLETE flag is clear, then there were no active 9369 * entries and we want to roll back to the previous inode until 9370 * the new inode is committed to disk. If the COMPLETE flag is 9371 * set, then we have deleted an entry that never made it to disk. 9372 * If the entry we deleted resulted from a name change, then the old 9373 * inode reference still resides on disk. Any rollback that we do 9374 * needs to be to that old inode (returned to us in prevdirrem). If 9375 * the entry we deleted resulted from a create, then there is 9376 * no entry on the disk, so we want to roll back to zero rather 9377 * than the uncommitted inode. In either of the COMPLETE cases we 9378 * want to immediately free the unwritten and unreferenced inode. 9379 */ 9380 if ((dirrem->dm_state & COMPLETE) == 0) { 9381 dap->da_previous = dirrem; 9382 } else { 9383 if (prevdirrem != NULL) { 9384 dap->da_previous = prevdirrem; 9385 } else { 9386 dap->da_state &= ~DIRCHG; 9387 dap->da_pagedep = pagedep; 9388 } 9389 dirrem->dm_dirinum = pagedep->pd_ino; 9390 if (LIST_EMPTY(&dirrem->dm_jremrefhd)) 9391 add_to_worklist(&dirrem->dm_list, 0); 9392 } 9393 /* 9394 * Lookup the jaddref for this journal entry. We must finish 9395 * initializing it and make the diradd write dependent on it. 9396 * If we're not journaling, put it on the id_bufwait list if the 9397 * inode is not yet written. If it is written, do the post-inode 9398 * write processing to put it on the id_pendinghd list. 9399 */ 9400 inodedep_lookup(mp, newinum, DEPALLOC, &inodedep); 9401 if (MOUNTEDSUJ(mp)) { 9402 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 9403 inoreflst); 9404 KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number, 9405 ("softdep_setup_directory_change: bad jaddref %p", 9406 jaddref)); 9407 jaddref->ja_diroff = dp->i_offset; 9408 jaddref->ja_diradd = dap; 9409 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], 9410 dap, da_pdlist); 9411 add_to_journal(&jaddref->ja_list); 9412 } else if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) { 9413 dap->da_state |= COMPLETE; 9414 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist); 9415 WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list); 9416 } else { 9417 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], 9418 dap, da_pdlist); 9419 WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list); 9420 } 9421 /* 9422 * If we're making a new name for a directory that has not been 9423 * committed when need to move the dot and dotdot references to 9424 * this new name. 9425 */ 9426 if (inodedep->id_mkdiradd && dp->i_offset != DOTDOT_OFFSET) 9427 merge_diradd(inodedep, dap); 9428 FREE_LOCK(ump); 9429 } 9430 9431 /* 9432 * Called whenever the link count on an inode is changed. 9433 * It creates an inode dependency so that the new reference(s) 9434 * to the inode cannot be committed to disk until the updated 9435 * inode has been written. 9436 */ 9437 void 9438 softdep_change_linkcnt(ip) 9439 struct inode *ip; /* the inode with the increased link count */ 9440 { 9441 struct inodedep *inodedep; 9442 struct ufsmount *ump; 9443 9444 ump = ITOUMP(ip); 9445 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 9446 ("softdep_change_linkcnt called on non-softdep filesystem")); 9447 ACQUIRE_LOCK(ump); 9448 inodedep_lookup(UFSTOVFS(ump), ip->i_number, DEPALLOC, &inodedep); 9449 if (ip->i_nlink < ip->i_effnlink) 9450 panic("softdep_change_linkcnt: bad delta"); 9451 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 9452 FREE_LOCK(ump); 9453 } 9454 9455 /* 9456 * Attach a sbdep dependency to the superblock buf so that we can keep 9457 * track of the head of the linked list of referenced but unlinked inodes. 9458 */ 9459 void 9460 softdep_setup_sbupdate(ump, fs, bp) 9461 struct ufsmount *ump; 9462 struct fs *fs; 9463 struct buf *bp; 9464 { 9465 struct sbdep *sbdep; 9466 struct worklist *wk; 9467 9468 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 9469 ("softdep_setup_sbupdate called on non-softdep filesystem")); 9470 LIST_FOREACH(wk, &bp->b_dep, wk_list) 9471 if (wk->wk_type == D_SBDEP) 9472 break; 9473 if (wk != NULL) 9474 return; 9475 sbdep = malloc(sizeof(struct sbdep), M_SBDEP, M_SOFTDEP_FLAGS); 9476 workitem_alloc(&sbdep->sb_list, D_SBDEP, UFSTOVFS(ump)); 9477 sbdep->sb_fs = fs; 9478 sbdep->sb_ump = ump; 9479 ACQUIRE_LOCK(ump); 9480 WORKLIST_INSERT(&bp->b_dep, &sbdep->sb_list); 9481 FREE_LOCK(ump); 9482 } 9483 9484 /* 9485 * Return the first unlinked inodedep which is ready to be the head of the 9486 * list. The inodedep and all those after it must have valid next pointers. 9487 */ 9488 static struct inodedep * 9489 first_unlinked_inodedep(ump) 9490 struct ufsmount *ump; 9491 { 9492 struct inodedep *inodedep; 9493 struct inodedep *idp; 9494 9495 LOCK_OWNED(ump); 9496 for (inodedep = TAILQ_LAST(&ump->softdep_unlinked, inodedeplst); 9497 inodedep; inodedep = idp) { 9498 if ((inodedep->id_state & UNLINKNEXT) == 0) 9499 return (NULL); 9500 idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked); 9501 if (idp == NULL || (idp->id_state & UNLINKNEXT) == 0) 9502 break; 9503 if ((inodedep->id_state & UNLINKPREV) == 0) 9504 break; 9505 } 9506 return (inodedep); 9507 } 9508 9509 /* 9510 * Set the sujfree unlinked head pointer prior to writing a superblock. 9511 */ 9512 static void 9513 initiate_write_sbdep(sbdep) 9514 struct sbdep *sbdep; 9515 { 9516 struct inodedep *inodedep; 9517 struct fs *bpfs; 9518 struct fs *fs; 9519 9520 bpfs = sbdep->sb_fs; 9521 fs = sbdep->sb_ump->um_fs; 9522 inodedep = first_unlinked_inodedep(sbdep->sb_ump); 9523 if (inodedep) { 9524 fs->fs_sujfree = inodedep->id_ino; 9525 inodedep->id_state |= UNLINKPREV; 9526 } else 9527 fs->fs_sujfree = 0; 9528 bpfs->fs_sujfree = fs->fs_sujfree; 9529 } 9530 9531 /* 9532 * After a superblock is written determine whether it must be written again 9533 * due to a changing unlinked list head. 9534 */ 9535 static int 9536 handle_written_sbdep(sbdep, bp) 9537 struct sbdep *sbdep; 9538 struct buf *bp; 9539 { 9540 struct inodedep *inodedep; 9541 struct fs *fs; 9542 9543 LOCK_OWNED(sbdep->sb_ump); 9544 fs = sbdep->sb_fs; 9545 /* 9546 * If the superblock doesn't match the in-memory list start over. 9547 */ 9548 inodedep = first_unlinked_inodedep(sbdep->sb_ump); 9549 if ((inodedep && fs->fs_sujfree != inodedep->id_ino) || 9550 (inodedep == NULL && fs->fs_sujfree != 0)) { 9551 bdirty(bp); 9552 return (1); 9553 } 9554 WORKITEM_FREE(sbdep, D_SBDEP); 9555 if (fs->fs_sujfree == 0) 9556 return (0); 9557 /* 9558 * Now that we have a record of this inode in stable store allow it 9559 * to be written to free up pending work. Inodes may see a lot of 9560 * write activity after they are unlinked which we must not hold up. 9561 */ 9562 for (; inodedep != NULL; inodedep = TAILQ_NEXT(inodedep, id_unlinked)) { 9563 if ((inodedep->id_state & UNLINKLINKS) != UNLINKLINKS) 9564 panic("handle_written_sbdep: Bad inodedep %p (0x%X)", 9565 inodedep, inodedep->id_state); 9566 if (inodedep->id_state & UNLINKONLIST) 9567 break; 9568 inodedep->id_state |= DEPCOMPLETE | UNLINKONLIST; 9569 } 9570 9571 return (0); 9572 } 9573 9574 /* 9575 * Mark an inodedep as unlinked and insert it into the in-memory unlinked list. 9576 */ 9577 static void 9578 unlinked_inodedep(mp, inodedep) 9579 struct mount *mp; 9580 struct inodedep *inodedep; 9581 { 9582 struct ufsmount *ump; 9583 9584 ump = VFSTOUFS(mp); 9585 LOCK_OWNED(ump); 9586 if (MOUNTEDSUJ(mp) == 0) 9587 return; 9588 ump->um_fs->fs_fmod = 1; 9589 if (inodedep->id_state & UNLINKED) 9590 panic("unlinked_inodedep: %p already unlinked\n", inodedep); 9591 inodedep->id_state |= UNLINKED; 9592 TAILQ_INSERT_HEAD(&ump->softdep_unlinked, inodedep, id_unlinked); 9593 } 9594 9595 /* 9596 * Remove an inodedep from the unlinked inodedep list. This may require 9597 * disk writes if the inode has made it that far. 9598 */ 9599 static void 9600 clear_unlinked_inodedep(inodedep) 9601 struct inodedep *inodedep; 9602 { 9603 struct ufsmount *ump; 9604 struct inodedep *idp; 9605 struct inodedep *idn; 9606 struct fs *fs; 9607 struct buf *bp; 9608 ino_t ino; 9609 ino_t nino; 9610 ino_t pino; 9611 int error; 9612 9613 ump = VFSTOUFS(inodedep->id_list.wk_mp); 9614 fs = ump->um_fs; 9615 ino = inodedep->id_ino; 9616 error = 0; 9617 for (;;) { 9618 LOCK_OWNED(ump); 9619 KASSERT((inodedep->id_state & UNLINKED) != 0, 9620 ("clear_unlinked_inodedep: inodedep %p not unlinked", 9621 inodedep)); 9622 /* 9623 * If nothing has yet been written simply remove us from 9624 * the in memory list and return. This is the most common 9625 * case where handle_workitem_remove() loses the final 9626 * reference. 9627 */ 9628 if ((inodedep->id_state & UNLINKLINKS) == 0) 9629 break; 9630 /* 9631 * If we have a NEXT pointer and no PREV pointer we can simply 9632 * clear NEXT's PREV and remove ourselves from the list. Be 9633 * careful not to clear PREV if the superblock points at 9634 * next as well. 9635 */ 9636 idn = TAILQ_NEXT(inodedep, id_unlinked); 9637 if ((inodedep->id_state & UNLINKLINKS) == UNLINKNEXT) { 9638 if (idn && fs->fs_sujfree != idn->id_ino) 9639 idn->id_state &= ~UNLINKPREV; 9640 break; 9641 } 9642 /* 9643 * Here we have an inodedep which is actually linked into 9644 * the list. We must remove it by forcing a write to the 9645 * link before us, whether it be the superblock or an inode. 9646 * Unfortunately the list may change while we're waiting 9647 * on the buf lock for either resource so we must loop until 9648 * we lock the right one. If both the superblock and an 9649 * inode point to this inode we must clear the inode first 9650 * followed by the superblock. 9651 */ 9652 idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked); 9653 pino = 0; 9654 if (idp && (idp->id_state & UNLINKNEXT)) 9655 pino = idp->id_ino; 9656 FREE_LOCK(ump); 9657 if (pino == 0) { 9658 bp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc), 9659 (int)fs->fs_sbsize, 0, 0, 0); 9660 } else { 9661 error = bread(ump->um_devvp, 9662 fsbtodb(fs, ino_to_fsba(fs, pino)), 9663 (int)fs->fs_bsize, NOCRED, &bp); 9664 if (error) 9665 brelse(bp); 9666 } 9667 ACQUIRE_LOCK(ump); 9668 if (error) 9669 break; 9670 /* If the list has changed restart the loop. */ 9671 idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked); 9672 nino = 0; 9673 if (idp && (idp->id_state & UNLINKNEXT)) 9674 nino = idp->id_ino; 9675 if (nino != pino || 9676 (inodedep->id_state & UNLINKPREV) != UNLINKPREV) { 9677 FREE_LOCK(ump); 9678 brelse(bp); 9679 ACQUIRE_LOCK(ump); 9680 continue; 9681 } 9682 nino = 0; 9683 idn = TAILQ_NEXT(inodedep, id_unlinked); 9684 if (idn) 9685 nino = idn->id_ino; 9686 /* 9687 * Remove us from the in memory list. After this we cannot 9688 * access the inodedep. 9689 */ 9690 KASSERT((inodedep->id_state & UNLINKED) != 0, 9691 ("clear_unlinked_inodedep: inodedep %p not unlinked", 9692 inodedep)); 9693 inodedep->id_state &= ~(UNLINKED | UNLINKLINKS | UNLINKONLIST); 9694 TAILQ_REMOVE(&ump->softdep_unlinked, inodedep, id_unlinked); 9695 FREE_LOCK(ump); 9696 /* 9697 * The predecessor's next pointer is manually updated here 9698 * so that the NEXT flag is never cleared for an element 9699 * that is in the list. 9700 */ 9701 if (pino == 0) { 9702 bcopy((caddr_t)fs, bp->b_data, (u_int)fs->fs_sbsize); 9703 ffs_oldfscompat_write((struct fs *)bp->b_data, ump); 9704 softdep_setup_sbupdate(ump, (struct fs *)bp->b_data, 9705 bp); 9706 } else if (fs->fs_magic == FS_UFS1_MAGIC) 9707 ((struct ufs1_dinode *)bp->b_data + 9708 ino_to_fsbo(fs, pino))->di_freelink = nino; 9709 else 9710 ((struct ufs2_dinode *)bp->b_data + 9711 ino_to_fsbo(fs, pino))->di_freelink = nino; 9712 /* 9713 * If the bwrite fails we have no recourse to recover. The 9714 * filesystem is corrupted already. 9715 */ 9716 bwrite(bp); 9717 ACQUIRE_LOCK(ump); 9718 /* 9719 * If the superblock pointer still needs to be cleared force 9720 * a write here. 9721 */ 9722 if (fs->fs_sujfree == ino) { 9723 FREE_LOCK(ump); 9724 bp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc), 9725 (int)fs->fs_sbsize, 0, 0, 0); 9726 bcopy((caddr_t)fs, bp->b_data, (u_int)fs->fs_sbsize); 9727 ffs_oldfscompat_write((struct fs *)bp->b_data, ump); 9728 softdep_setup_sbupdate(ump, (struct fs *)bp->b_data, 9729 bp); 9730 bwrite(bp); 9731 ACQUIRE_LOCK(ump); 9732 } 9733 9734 if (fs->fs_sujfree != ino) 9735 return; 9736 panic("clear_unlinked_inodedep: Failed to clear free head"); 9737 } 9738 if (inodedep->id_ino == fs->fs_sujfree) 9739 panic("clear_unlinked_inodedep: Freeing head of free list"); 9740 inodedep->id_state &= ~(UNLINKED | UNLINKLINKS | UNLINKONLIST); 9741 TAILQ_REMOVE(&ump->softdep_unlinked, inodedep, id_unlinked); 9742 return; 9743 } 9744 9745 /* 9746 * This workitem decrements the inode's link count. 9747 * If the link count reaches zero, the file is removed. 9748 */ 9749 static int 9750 handle_workitem_remove(dirrem, flags) 9751 struct dirrem *dirrem; 9752 int flags; 9753 { 9754 struct inodedep *inodedep; 9755 struct workhead dotdotwk; 9756 struct worklist *wk; 9757 struct ufsmount *ump; 9758 struct mount *mp; 9759 struct vnode *vp; 9760 struct inode *ip; 9761 ino_t oldinum; 9762 9763 if (dirrem->dm_state & ONWORKLIST) 9764 panic("handle_workitem_remove: dirrem %p still on worklist", 9765 dirrem); 9766 oldinum = dirrem->dm_oldinum; 9767 mp = dirrem->dm_list.wk_mp; 9768 ump = VFSTOUFS(mp); 9769 flags |= LK_EXCLUSIVE; 9770 if (ffs_vgetf(mp, oldinum, flags, &vp, FFSV_FORCEINSMQ) != 0) 9771 return (EBUSY); 9772 ip = VTOI(vp); 9773 ACQUIRE_LOCK(ump); 9774 if ((inodedep_lookup(mp, oldinum, 0, &inodedep)) == 0) 9775 panic("handle_workitem_remove: lost inodedep"); 9776 if (dirrem->dm_state & ONDEPLIST) 9777 LIST_REMOVE(dirrem, dm_inonext); 9778 KASSERT(LIST_EMPTY(&dirrem->dm_jremrefhd), 9779 ("handle_workitem_remove: Journal entries not written.")); 9780 9781 /* 9782 * Move all dependencies waiting on the remove to complete 9783 * from the dirrem to the inode inowait list to be completed 9784 * after the inode has been updated and written to disk. Any 9785 * marked MKDIR_PARENT are saved to be completed when the .. ref 9786 * is removed. 9787 */ 9788 LIST_INIT(&dotdotwk); 9789 while ((wk = LIST_FIRST(&dirrem->dm_jwork)) != NULL) { 9790 WORKLIST_REMOVE(wk); 9791 if (wk->wk_state & MKDIR_PARENT) { 9792 wk->wk_state &= ~MKDIR_PARENT; 9793 WORKLIST_INSERT(&dotdotwk, wk); 9794 continue; 9795 } 9796 WORKLIST_INSERT(&inodedep->id_inowait, wk); 9797 } 9798 LIST_SWAP(&dirrem->dm_jwork, &dotdotwk, worklist, wk_list); 9799 /* 9800 * Normal file deletion. 9801 */ 9802 if ((dirrem->dm_state & RMDIR) == 0) { 9803 ip->i_nlink--; 9804 DIP_SET(ip, i_nlink, ip->i_nlink); 9805 ip->i_flag |= IN_CHANGE; 9806 if (ip->i_nlink < ip->i_effnlink) 9807 panic("handle_workitem_remove: bad file delta"); 9808 if (ip->i_nlink == 0) 9809 unlinked_inodedep(mp, inodedep); 9810 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 9811 KASSERT(LIST_EMPTY(&dirrem->dm_jwork), 9812 ("handle_workitem_remove: worklist not empty. %s", 9813 TYPENAME(LIST_FIRST(&dirrem->dm_jwork)->wk_type))); 9814 WORKITEM_FREE(dirrem, D_DIRREM); 9815 FREE_LOCK(ump); 9816 goto out; 9817 } 9818 /* 9819 * Directory deletion. Decrement reference count for both the 9820 * just deleted parent directory entry and the reference for ".". 9821 * Arrange to have the reference count on the parent decremented 9822 * to account for the loss of "..". 9823 */ 9824 ip->i_nlink -= 2; 9825 DIP_SET(ip, i_nlink, ip->i_nlink); 9826 ip->i_flag |= IN_CHANGE; 9827 if (ip->i_nlink < ip->i_effnlink) 9828 panic("handle_workitem_remove: bad dir delta"); 9829 if (ip->i_nlink == 0) 9830 unlinked_inodedep(mp, inodedep); 9831 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 9832 /* 9833 * Rename a directory to a new parent. Since, we are both deleting 9834 * and creating a new directory entry, the link count on the new 9835 * directory should not change. Thus we skip the followup dirrem. 9836 */ 9837 if (dirrem->dm_state & DIRCHG) { 9838 KASSERT(LIST_EMPTY(&dirrem->dm_jwork), 9839 ("handle_workitem_remove: DIRCHG and worklist not empty.")); 9840 WORKITEM_FREE(dirrem, D_DIRREM); 9841 FREE_LOCK(ump); 9842 goto out; 9843 } 9844 dirrem->dm_state = ONDEPLIST; 9845 dirrem->dm_oldinum = dirrem->dm_dirinum; 9846 /* 9847 * Place the dirrem on the parent's diremhd list. 9848 */ 9849 if (inodedep_lookup(mp, dirrem->dm_oldinum, 0, &inodedep) == 0) 9850 panic("handle_workitem_remove: lost dir inodedep"); 9851 LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext); 9852 /* 9853 * If the allocated inode has never been written to disk, then 9854 * the on-disk inode is zero'ed and we can remove the file 9855 * immediately. When journaling if the inode has been marked 9856 * unlinked and not DEPCOMPLETE we know it can never be written. 9857 */ 9858 inodedep_lookup(mp, oldinum, 0, &inodedep); 9859 if (inodedep == NULL || 9860 (inodedep->id_state & (DEPCOMPLETE | UNLINKED)) == UNLINKED || 9861 check_inode_unwritten(inodedep)) { 9862 FREE_LOCK(ump); 9863 vput(vp); 9864 return handle_workitem_remove(dirrem, flags); 9865 } 9866 WORKLIST_INSERT(&inodedep->id_inowait, &dirrem->dm_list); 9867 FREE_LOCK(ump); 9868 ip->i_flag |= IN_CHANGE; 9869 out: 9870 ffs_update(vp, 0); 9871 vput(vp); 9872 return (0); 9873 } 9874 9875 /* 9876 * Inode de-allocation dependencies. 9877 * 9878 * When an inode's link count is reduced to zero, it can be de-allocated. We 9879 * found it convenient to postpone de-allocation until after the inode is 9880 * written to disk with its new link count (zero). At this point, all of the 9881 * on-disk inode's block pointers are nullified and, with careful dependency 9882 * list ordering, all dependencies related to the inode will be satisfied and 9883 * the corresponding dependency structures de-allocated. So, if/when the 9884 * inode is reused, there will be no mixing of old dependencies with new 9885 * ones. This artificial dependency is set up by the block de-allocation 9886 * procedure above (softdep_setup_freeblocks) and completed by the 9887 * following procedure. 9888 */ 9889 static void 9890 handle_workitem_freefile(freefile) 9891 struct freefile *freefile; 9892 { 9893 struct workhead wkhd; 9894 struct fs *fs; 9895 struct inodedep *idp; 9896 struct ufsmount *ump; 9897 int error; 9898 9899 ump = VFSTOUFS(freefile->fx_list.wk_mp); 9900 fs = ump->um_fs; 9901 #ifdef DEBUG 9902 ACQUIRE_LOCK(ump); 9903 error = inodedep_lookup(UFSTOVFS(ump), freefile->fx_oldinum, 0, &idp); 9904 FREE_LOCK(ump); 9905 if (error) 9906 panic("handle_workitem_freefile: inodedep %p survived", idp); 9907 #endif 9908 UFS_LOCK(ump); 9909 fs->fs_pendinginodes -= 1; 9910 UFS_UNLOCK(ump); 9911 LIST_INIT(&wkhd); 9912 LIST_SWAP(&freefile->fx_jwork, &wkhd, worklist, wk_list); 9913 if ((error = ffs_freefile(ump, fs, freefile->fx_devvp, 9914 freefile->fx_oldinum, freefile->fx_mode, &wkhd)) != 0) 9915 softdep_error("handle_workitem_freefile", error); 9916 ACQUIRE_LOCK(ump); 9917 WORKITEM_FREE(freefile, D_FREEFILE); 9918 FREE_LOCK(ump); 9919 } 9920 9921 9922 /* 9923 * Helper function which unlinks marker element from work list and returns 9924 * the next element on the list. 9925 */ 9926 static __inline struct worklist * 9927 markernext(struct worklist *marker) 9928 { 9929 struct worklist *next; 9930 9931 next = LIST_NEXT(marker, wk_list); 9932 LIST_REMOVE(marker, wk_list); 9933 return next; 9934 } 9935 9936 /* 9937 * Disk writes. 9938 * 9939 * The dependency structures constructed above are most actively used when file 9940 * system blocks are written to disk. No constraints are placed on when a 9941 * block can be written, but unsatisfied update dependencies are made safe by 9942 * modifying (or replacing) the source memory for the duration of the disk 9943 * write. When the disk write completes, the memory block is again brought 9944 * up-to-date. 9945 * 9946 * In-core inode structure reclamation. 9947 * 9948 * Because there are a finite number of "in-core" inode structures, they are 9949 * reused regularly. By transferring all inode-related dependencies to the 9950 * in-memory inode block and indexing them separately (via "inodedep"s), we 9951 * can allow "in-core" inode structures to be reused at any time and avoid 9952 * any increase in contention. 9953 * 9954 * Called just before entering the device driver to initiate a new disk I/O. 9955 * The buffer must be locked, thus, no I/O completion operations can occur 9956 * while we are manipulating its associated dependencies. 9957 */ 9958 static void 9959 softdep_disk_io_initiation(bp) 9960 struct buf *bp; /* structure describing disk write to occur */ 9961 { 9962 struct worklist *wk; 9963 struct worklist marker; 9964 struct inodedep *inodedep; 9965 struct freeblks *freeblks; 9966 struct jblkdep *jblkdep; 9967 struct newblk *newblk; 9968 struct ufsmount *ump; 9969 9970 /* 9971 * We only care about write operations. There should never 9972 * be dependencies for reads. 9973 */ 9974 if (bp->b_iocmd != BIO_WRITE) 9975 panic("softdep_disk_io_initiation: not write"); 9976 9977 if (bp->b_vflags & BV_BKGRDINPROG) 9978 panic("softdep_disk_io_initiation: Writing buffer with " 9979 "background write in progress: %p", bp); 9980 9981 ump = softdep_bp_to_mp(bp); 9982 if (ump == NULL) 9983 return; 9984 9985 marker.wk_type = D_LAST + 1; /* Not a normal workitem */ 9986 PHOLD(curproc); /* Don't swap out kernel stack */ 9987 ACQUIRE_LOCK(ump); 9988 /* 9989 * Do any necessary pre-I/O processing. 9990 */ 9991 for (wk = LIST_FIRST(&bp->b_dep); wk != NULL; 9992 wk = markernext(&marker)) { 9993 LIST_INSERT_AFTER(wk, &marker, wk_list); 9994 switch (wk->wk_type) { 9995 9996 case D_PAGEDEP: 9997 initiate_write_filepage(WK_PAGEDEP(wk), bp); 9998 continue; 9999 10000 case D_INODEDEP: 10001 inodedep = WK_INODEDEP(wk); 10002 if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC) 10003 initiate_write_inodeblock_ufs1(inodedep, bp); 10004 else 10005 initiate_write_inodeblock_ufs2(inodedep, bp); 10006 continue; 10007 10008 case D_INDIRDEP: 10009 initiate_write_indirdep(WK_INDIRDEP(wk), bp); 10010 continue; 10011 10012 case D_BMSAFEMAP: 10013 initiate_write_bmsafemap(WK_BMSAFEMAP(wk), bp); 10014 continue; 10015 10016 case D_JSEG: 10017 WK_JSEG(wk)->js_buf = NULL; 10018 continue; 10019 10020 case D_FREEBLKS: 10021 freeblks = WK_FREEBLKS(wk); 10022 jblkdep = LIST_FIRST(&freeblks->fb_jblkdephd); 10023 /* 10024 * We have to wait for the freeblks to be journaled 10025 * before we can write an inodeblock with updated 10026 * pointers. Be careful to arrange the marker so 10027 * we revisit the freeblks if it's not removed by 10028 * the first jwait(). 10029 */ 10030 if (jblkdep != NULL) { 10031 LIST_REMOVE(&marker, wk_list); 10032 LIST_INSERT_BEFORE(wk, &marker, wk_list); 10033 jwait(&jblkdep->jb_list, MNT_WAIT); 10034 } 10035 continue; 10036 case D_ALLOCDIRECT: 10037 case D_ALLOCINDIR: 10038 /* 10039 * We have to wait for the jnewblk to be journaled 10040 * before we can write to a block if the contents 10041 * may be confused with an earlier file's indirect 10042 * at recovery time. Handle the marker as described 10043 * above. 10044 */ 10045 newblk = WK_NEWBLK(wk); 10046 if (newblk->nb_jnewblk != NULL && 10047 indirblk_lookup(newblk->nb_list.wk_mp, 10048 newblk->nb_newblkno)) { 10049 LIST_REMOVE(&marker, wk_list); 10050 LIST_INSERT_BEFORE(wk, &marker, wk_list); 10051 jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT); 10052 } 10053 continue; 10054 10055 case D_SBDEP: 10056 initiate_write_sbdep(WK_SBDEP(wk)); 10057 continue; 10058 10059 case D_MKDIR: 10060 case D_FREEWORK: 10061 case D_FREEDEP: 10062 case D_JSEGDEP: 10063 continue; 10064 10065 default: 10066 panic("handle_disk_io_initiation: Unexpected type %s", 10067 TYPENAME(wk->wk_type)); 10068 /* NOTREACHED */ 10069 } 10070 } 10071 FREE_LOCK(ump); 10072 PRELE(curproc); /* Allow swapout of kernel stack */ 10073 } 10074 10075 /* 10076 * Called from within the procedure above to deal with unsatisfied 10077 * allocation dependencies in a directory. The buffer must be locked, 10078 * thus, no I/O completion operations can occur while we are 10079 * manipulating its associated dependencies. 10080 */ 10081 static void 10082 initiate_write_filepage(pagedep, bp) 10083 struct pagedep *pagedep; 10084 struct buf *bp; 10085 { 10086 struct jremref *jremref; 10087 struct jmvref *jmvref; 10088 struct dirrem *dirrem; 10089 struct diradd *dap; 10090 struct direct *ep; 10091 int i; 10092 10093 if (pagedep->pd_state & IOSTARTED) { 10094 /* 10095 * This can only happen if there is a driver that does not 10096 * understand chaining. Here biodone will reissue the call 10097 * to strategy for the incomplete buffers. 10098 */ 10099 printf("initiate_write_filepage: already started\n"); 10100 return; 10101 } 10102 pagedep->pd_state |= IOSTARTED; 10103 /* 10104 * Wait for all journal remove dependencies to hit the disk. 10105 * We can not allow any potentially conflicting directory adds 10106 * to be visible before removes and rollback is too difficult. 10107 * The per-filesystem lock may be dropped and re-acquired, however 10108 * we hold the buf locked so the dependency can not go away. 10109 */ 10110 LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next) 10111 while ((jremref = LIST_FIRST(&dirrem->dm_jremrefhd)) != NULL) 10112 jwait(&jremref->jr_list, MNT_WAIT); 10113 while ((jmvref = LIST_FIRST(&pagedep->pd_jmvrefhd)) != NULL) 10114 jwait(&jmvref->jm_list, MNT_WAIT); 10115 for (i = 0; i < DAHASHSZ; i++) { 10116 LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) { 10117 ep = (struct direct *) 10118 ((char *)bp->b_data + dap->da_offset); 10119 if (ep->d_ino != dap->da_newinum) 10120 panic("%s: dir inum %ju != new %ju", 10121 "initiate_write_filepage", 10122 (uintmax_t)ep->d_ino, 10123 (uintmax_t)dap->da_newinum); 10124 if (dap->da_state & DIRCHG) 10125 ep->d_ino = dap->da_previous->dm_oldinum; 10126 else 10127 ep->d_ino = 0; 10128 dap->da_state &= ~ATTACHED; 10129 dap->da_state |= UNDONE; 10130 } 10131 } 10132 } 10133 10134 /* 10135 * Version of initiate_write_inodeblock that handles UFS1 dinodes. 10136 * Note that any bug fixes made to this routine must be done in the 10137 * version found below. 10138 * 10139 * Called from within the procedure above to deal with unsatisfied 10140 * allocation dependencies in an inodeblock. The buffer must be 10141 * locked, thus, no I/O completion operations can occur while we 10142 * are manipulating its associated dependencies. 10143 */ 10144 static void 10145 initiate_write_inodeblock_ufs1(inodedep, bp) 10146 struct inodedep *inodedep; 10147 struct buf *bp; /* The inode block */ 10148 { 10149 struct allocdirect *adp, *lastadp; 10150 struct ufs1_dinode *dp; 10151 struct ufs1_dinode *sip; 10152 struct inoref *inoref; 10153 struct ufsmount *ump; 10154 struct fs *fs; 10155 ufs_lbn_t i; 10156 #ifdef INVARIANTS 10157 ufs_lbn_t prevlbn = 0; 10158 #endif 10159 int deplist; 10160 10161 if (inodedep->id_state & IOSTARTED) 10162 panic("initiate_write_inodeblock_ufs1: already started"); 10163 inodedep->id_state |= IOSTARTED; 10164 fs = inodedep->id_fs; 10165 ump = VFSTOUFS(inodedep->id_list.wk_mp); 10166 LOCK_OWNED(ump); 10167 dp = (struct ufs1_dinode *)bp->b_data + 10168 ino_to_fsbo(fs, inodedep->id_ino); 10169 10170 /* 10171 * If we're on the unlinked list but have not yet written our 10172 * next pointer initialize it here. 10173 */ 10174 if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) { 10175 struct inodedep *inon; 10176 10177 inon = TAILQ_NEXT(inodedep, id_unlinked); 10178 dp->di_freelink = inon ? inon->id_ino : 0; 10179 } 10180 /* 10181 * If the bitmap is not yet written, then the allocated 10182 * inode cannot be written to disk. 10183 */ 10184 if ((inodedep->id_state & DEPCOMPLETE) == 0) { 10185 if (inodedep->id_savedino1 != NULL) 10186 panic("initiate_write_inodeblock_ufs1: I/O underway"); 10187 FREE_LOCK(ump); 10188 sip = malloc(sizeof(struct ufs1_dinode), 10189 M_SAVEDINO, M_SOFTDEP_FLAGS); 10190 ACQUIRE_LOCK(ump); 10191 inodedep->id_savedino1 = sip; 10192 *inodedep->id_savedino1 = *dp; 10193 bzero((caddr_t)dp, sizeof(struct ufs1_dinode)); 10194 dp->di_gen = inodedep->id_savedino1->di_gen; 10195 dp->di_freelink = inodedep->id_savedino1->di_freelink; 10196 return; 10197 } 10198 /* 10199 * If no dependencies, then there is nothing to roll back. 10200 */ 10201 inodedep->id_savedsize = dp->di_size; 10202 inodedep->id_savedextsize = 0; 10203 inodedep->id_savednlink = dp->di_nlink; 10204 if (TAILQ_EMPTY(&inodedep->id_inoupdt) && 10205 TAILQ_EMPTY(&inodedep->id_inoreflst)) 10206 return; 10207 /* 10208 * Revert the link count to that of the first unwritten journal entry. 10209 */ 10210 inoref = TAILQ_FIRST(&inodedep->id_inoreflst); 10211 if (inoref) 10212 dp->di_nlink = inoref->if_nlink; 10213 /* 10214 * Set the dependencies to busy. 10215 */ 10216 for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 10217 adp = TAILQ_NEXT(adp, ad_next)) { 10218 #ifdef INVARIANTS 10219 if (deplist != 0 && prevlbn >= adp->ad_offset) 10220 panic("softdep_write_inodeblock: lbn order"); 10221 prevlbn = adp->ad_offset; 10222 if (adp->ad_offset < UFS_NDADDR && 10223 dp->di_db[adp->ad_offset] != adp->ad_newblkno) 10224 panic("%s: direct pointer #%jd mismatch %d != %jd", 10225 "softdep_write_inodeblock", 10226 (intmax_t)adp->ad_offset, 10227 dp->di_db[adp->ad_offset], 10228 (intmax_t)adp->ad_newblkno); 10229 if (adp->ad_offset >= UFS_NDADDR && 10230 dp->di_ib[adp->ad_offset - UFS_NDADDR] != adp->ad_newblkno) 10231 panic("%s: indirect pointer #%jd mismatch %d != %jd", 10232 "softdep_write_inodeblock", 10233 (intmax_t)adp->ad_offset - UFS_NDADDR, 10234 dp->di_ib[adp->ad_offset - UFS_NDADDR], 10235 (intmax_t)adp->ad_newblkno); 10236 deplist |= 1 << adp->ad_offset; 10237 if ((adp->ad_state & ATTACHED) == 0) 10238 panic("softdep_write_inodeblock: Unknown state 0x%x", 10239 adp->ad_state); 10240 #endif /* INVARIANTS */ 10241 adp->ad_state &= ~ATTACHED; 10242 adp->ad_state |= UNDONE; 10243 } 10244 /* 10245 * The on-disk inode cannot claim to be any larger than the last 10246 * fragment that has been written. Otherwise, the on-disk inode 10247 * might have fragments that were not the last block in the file 10248 * which would corrupt the filesystem. 10249 */ 10250 for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 10251 lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) { 10252 if (adp->ad_offset >= UFS_NDADDR) 10253 break; 10254 dp->di_db[adp->ad_offset] = adp->ad_oldblkno; 10255 /* keep going until hitting a rollback to a frag */ 10256 if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize) 10257 continue; 10258 dp->di_size = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize; 10259 for (i = adp->ad_offset + 1; i < UFS_NDADDR; i++) { 10260 #ifdef INVARIANTS 10261 if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0) 10262 panic("softdep_write_inodeblock: lost dep1"); 10263 #endif /* INVARIANTS */ 10264 dp->di_db[i] = 0; 10265 } 10266 for (i = 0; i < UFS_NIADDR; i++) { 10267 #ifdef INVARIANTS 10268 if (dp->di_ib[i] != 0 && 10269 (deplist & ((1 << UFS_NDADDR) << i)) == 0) 10270 panic("softdep_write_inodeblock: lost dep2"); 10271 #endif /* INVARIANTS */ 10272 dp->di_ib[i] = 0; 10273 } 10274 return; 10275 } 10276 /* 10277 * If we have zero'ed out the last allocated block of the file, 10278 * roll back the size to the last currently allocated block. 10279 * We know that this last allocated block is a full-sized as 10280 * we already checked for fragments in the loop above. 10281 */ 10282 if (lastadp != NULL && 10283 dp->di_size <= (lastadp->ad_offset + 1) * fs->fs_bsize) { 10284 for (i = lastadp->ad_offset; i >= 0; i--) 10285 if (dp->di_db[i] != 0) 10286 break; 10287 dp->di_size = (i + 1) * fs->fs_bsize; 10288 } 10289 /* 10290 * The only dependencies are for indirect blocks. 10291 * 10292 * The file size for indirect block additions is not guaranteed. 10293 * Such a guarantee would be non-trivial to achieve. The conventional 10294 * synchronous write implementation also does not make this guarantee. 10295 * Fsck should catch and fix discrepancies. Arguably, the file size 10296 * can be over-estimated without destroying integrity when the file 10297 * moves into the indirect blocks (i.e., is large). If we want to 10298 * postpone fsck, we are stuck with this argument. 10299 */ 10300 for (; adp; adp = TAILQ_NEXT(adp, ad_next)) 10301 dp->di_ib[adp->ad_offset - UFS_NDADDR] = 0; 10302 } 10303 10304 /* 10305 * Version of initiate_write_inodeblock that handles UFS2 dinodes. 10306 * Note that any bug fixes made to this routine must be done in the 10307 * version found above. 10308 * 10309 * Called from within the procedure above to deal with unsatisfied 10310 * allocation dependencies in an inodeblock. The buffer must be 10311 * locked, thus, no I/O completion operations can occur while we 10312 * are manipulating its associated dependencies. 10313 */ 10314 static void 10315 initiate_write_inodeblock_ufs2(inodedep, bp) 10316 struct inodedep *inodedep; 10317 struct buf *bp; /* The inode block */ 10318 { 10319 struct allocdirect *adp, *lastadp; 10320 struct ufs2_dinode *dp; 10321 struct ufs2_dinode *sip; 10322 struct inoref *inoref; 10323 struct ufsmount *ump; 10324 struct fs *fs; 10325 ufs_lbn_t i; 10326 #ifdef INVARIANTS 10327 ufs_lbn_t prevlbn = 0; 10328 #endif 10329 int deplist; 10330 10331 if (inodedep->id_state & IOSTARTED) 10332 panic("initiate_write_inodeblock_ufs2: already started"); 10333 inodedep->id_state |= IOSTARTED; 10334 fs = inodedep->id_fs; 10335 ump = VFSTOUFS(inodedep->id_list.wk_mp); 10336 LOCK_OWNED(ump); 10337 dp = (struct ufs2_dinode *)bp->b_data + 10338 ino_to_fsbo(fs, inodedep->id_ino); 10339 10340 /* 10341 * If we're on the unlinked list but have not yet written our 10342 * next pointer initialize it here. 10343 */ 10344 if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) { 10345 struct inodedep *inon; 10346 10347 inon = TAILQ_NEXT(inodedep, id_unlinked); 10348 dp->di_freelink = inon ? inon->id_ino : 0; 10349 } 10350 /* 10351 * If the bitmap is not yet written, then the allocated 10352 * inode cannot be written to disk. 10353 */ 10354 if ((inodedep->id_state & DEPCOMPLETE) == 0) { 10355 if (inodedep->id_savedino2 != NULL) 10356 panic("initiate_write_inodeblock_ufs2: I/O underway"); 10357 FREE_LOCK(ump); 10358 sip = malloc(sizeof(struct ufs2_dinode), 10359 M_SAVEDINO, M_SOFTDEP_FLAGS); 10360 ACQUIRE_LOCK(ump); 10361 inodedep->id_savedino2 = sip; 10362 *inodedep->id_savedino2 = *dp; 10363 bzero((caddr_t)dp, sizeof(struct ufs2_dinode)); 10364 dp->di_gen = inodedep->id_savedino2->di_gen; 10365 dp->di_freelink = inodedep->id_savedino2->di_freelink; 10366 return; 10367 } 10368 /* 10369 * If no dependencies, then there is nothing to roll back. 10370 */ 10371 inodedep->id_savedsize = dp->di_size; 10372 inodedep->id_savedextsize = dp->di_extsize; 10373 inodedep->id_savednlink = dp->di_nlink; 10374 if (TAILQ_EMPTY(&inodedep->id_inoupdt) && 10375 TAILQ_EMPTY(&inodedep->id_extupdt) && 10376 TAILQ_EMPTY(&inodedep->id_inoreflst)) 10377 return; 10378 /* 10379 * Revert the link count to that of the first unwritten journal entry. 10380 */ 10381 inoref = TAILQ_FIRST(&inodedep->id_inoreflst); 10382 if (inoref) 10383 dp->di_nlink = inoref->if_nlink; 10384 10385 /* 10386 * Set the ext data dependencies to busy. 10387 */ 10388 for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; 10389 adp = TAILQ_NEXT(adp, ad_next)) { 10390 #ifdef INVARIANTS 10391 if (deplist != 0 && prevlbn >= adp->ad_offset) 10392 panic("softdep_write_inodeblock: lbn order"); 10393 prevlbn = adp->ad_offset; 10394 if (dp->di_extb[adp->ad_offset] != adp->ad_newblkno) 10395 panic("%s: direct pointer #%jd mismatch %jd != %jd", 10396 "softdep_write_inodeblock", 10397 (intmax_t)adp->ad_offset, 10398 (intmax_t)dp->di_extb[adp->ad_offset], 10399 (intmax_t)adp->ad_newblkno); 10400 deplist |= 1 << adp->ad_offset; 10401 if ((adp->ad_state & ATTACHED) == 0) 10402 panic("softdep_write_inodeblock: Unknown state 0x%x", 10403 adp->ad_state); 10404 #endif /* INVARIANTS */ 10405 adp->ad_state &= ~ATTACHED; 10406 adp->ad_state |= UNDONE; 10407 } 10408 /* 10409 * The on-disk inode cannot claim to be any larger than the last 10410 * fragment that has been written. Otherwise, the on-disk inode 10411 * might have fragments that were not the last block in the ext 10412 * data which would corrupt the filesystem. 10413 */ 10414 for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; 10415 lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) { 10416 dp->di_extb[adp->ad_offset] = adp->ad_oldblkno; 10417 /* keep going until hitting a rollback to a frag */ 10418 if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize) 10419 continue; 10420 dp->di_extsize = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize; 10421 for (i = adp->ad_offset + 1; i < UFS_NXADDR; i++) { 10422 #ifdef INVARIANTS 10423 if (dp->di_extb[i] != 0 && (deplist & (1 << i)) == 0) 10424 panic("softdep_write_inodeblock: lost dep1"); 10425 #endif /* INVARIANTS */ 10426 dp->di_extb[i] = 0; 10427 } 10428 lastadp = NULL; 10429 break; 10430 } 10431 /* 10432 * If we have zero'ed out the last allocated block of the ext 10433 * data, roll back the size to the last currently allocated block. 10434 * We know that this last allocated block is a full-sized as 10435 * we already checked for fragments in the loop above. 10436 */ 10437 if (lastadp != NULL && 10438 dp->di_extsize <= (lastadp->ad_offset + 1) * fs->fs_bsize) { 10439 for (i = lastadp->ad_offset; i >= 0; i--) 10440 if (dp->di_extb[i] != 0) 10441 break; 10442 dp->di_extsize = (i + 1) * fs->fs_bsize; 10443 } 10444 /* 10445 * Set the file data dependencies to busy. 10446 */ 10447 for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 10448 adp = TAILQ_NEXT(adp, ad_next)) { 10449 #ifdef INVARIANTS 10450 if (deplist != 0 && prevlbn >= adp->ad_offset) 10451 panic("softdep_write_inodeblock: lbn order"); 10452 if ((adp->ad_state & ATTACHED) == 0) 10453 panic("inodedep %p and adp %p not attached", inodedep, adp); 10454 prevlbn = adp->ad_offset; 10455 if (adp->ad_offset < UFS_NDADDR && 10456 dp->di_db[adp->ad_offset] != adp->ad_newblkno) 10457 panic("%s: direct pointer #%jd mismatch %jd != %jd", 10458 "softdep_write_inodeblock", 10459 (intmax_t)adp->ad_offset, 10460 (intmax_t)dp->di_db[adp->ad_offset], 10461 (intmax_t)adp->ad_newblkno); 10462 if (adp->ad_offset >= UFS_NDADDR && 10463 dp->di_ib[adp->ad_offset - UFS_NDADDR] != adp->ad_newblkno) 10464 panic("%s indirect pointer #%jd mismatch %jd != %jd", 10465 "softdep_write_inodeblock:", 10466 (intmax_t)adp->ad_offset - UFS_NDADDR, 10467 (intmax_t)dp->di_ib[adp->ad_offset - UFS_NDADDR], 10468 (intmax_t)adp->ad_newblkno); 10469 deplist |= 1 << adp->ad_offset; 10470 if ((adp->ad_state & ATTACHED) == 0) 10471 panic("softdep_write_inodeblock: Unknown state 0x%x", 10472 adp->ad_state); 10473 #endif /* INVARIANTS */ 10474 adp->ad_state &= ~ATTACHED; 10475 adp->ad_state |= UNDONE; 10476 } 10477 /* 10478 * The on-disk inode cannot claim to be any larger than the last 10479 * fragment that has been written. Otherwise, the on-disk inode 10480 * might have fragments that were not the last block in the file 10481 * which would corrupt the filesystem. 10482 */ 10483 for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 10484 lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) { 10485 if (adp->ad_offset >= UFS_NDADDR) 10486 break; 10487 dp->di_db[adp->ad_offset] = adp->ad_oldblkno; 10488 /* keep going until hitting a rollback to a frag */ 10489 if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize) 10490 continue; 10491 dp->di_size = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize; 10492 for (i = adp->ad_offset + 1; i < UFS_NDADDR; i++) { 10493 #ifdef INVARIANTS 10494 if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0) 10495 panic("softdep_write_inodeblock: lost dep2"); 10496 #endif /* INVARIANTS */ 10497 dp->di_db[i] = 0; 10498 } 10499 for (i = 0; i < UFS_NIADDR; i++) { 10500 #ifdef INVARIANTS 10501 if (dp->di_ib[i] != 0 && 10502 (deplist & ((1 << UFS_NDADDR) << i)) == 0) 10503 panic("softdep_write_inodeblock: lost dep3"); 10504 #endif /* INVARIANTS */ 10505 dp->di_ib[i] = 0; 10506 } 10507 return; 10508 } 10509 /* 10510 * If we have zero'ed out the last allocated block of the file, 10511 * roll back the size to the last currently allocated block. 10512 * We know that this last allocated block is a full-sized as 10513 * we already checked for fragments in the loop above. 10514 */ 10515 if (lastadp != NULL && 10516 dp->di_size <= (lastadp->ad_offset + 1) * fs->fs_bsize) { 10517 for (i = lastadp->ad_offset; i >= 0; i--) 10518 if (dp->di_db[i] != 0) 10519 break; 10520 dp->di_size = (i + 1) * fs->fs_bsize; 10521 } 10522 /* 10523 * The only dependencies are for indirect blocks. 10524 * 10525 * The file size for indirect block additions is not guaranteed. 10526 * Such a guarantee would be non-trivial to achieve. The conventional 10527 * synchronous write implementation also does not make this guarantee. 10528 * Fsck should catch and fix discrepancies. Arguably, the file size 10529 * can be over-estimated without destroying integrity when the file 10530 * moves into the indirect blocks (i.e., is large). If we want to 10531 * postpone fsck, we are stuck with this argument. 10532 */ 10533 for (; adp; adp = TAILQ_NEXT(adp, ad_next)) 10534 dp->di_ib[adp->ad_offset - UFS_NDADDR] = 0; 10535 } 10536 10537 /* 10538 * Cancel an indirdep as a result of truncation. Release all of the 10539 * children allocindirs and place their journal work on the appropriate 10540 * list. 10541 */ 10542 static void 10543 cancel_indirdep(indirdep, bp, freeblks) 10544 struct indirdep *indirdep; 10545 struct buf *bp; 10546 struct freeblks *freeblks; 10547 { 10548 struct allocindir *aip; 10549 10550 /* 10551 * None of the indirect pointers will ever be visible, 10552 * so they can simply be tossed. GOINGAWAY ensures 10553 * that allocated pointers will be saved in the buffer 10554 * cache until they are freed. Note that they will 10555 * only be able to be found by their physical address 10556 * since the inode mapping the logical address will 10557 * be gone. The save buffer used for the safe copy 10558 * was allocated in setup_allocindir_phase2 using 10559 * the physical address so it could be used for this 10560 * purpose. Hence we swap the safe copy with the real 10561 * copy, allowing the safe copy to be freed and holding 10562 * on to the real copy for later use in indir_trunc. 10563 */ 10564 if (indirdep->ir_state & GOINGAWAY) 10565 panic("cancel_indirdep: already gone"); 10566 if ((indirdep->ir_state & DEPCOMPLETE) == 0) { 10567 indirdep->ir_state |= DEPCOMPLETE; 10568 LIST_REMOVE(indirdep, ir_next); 10569 } 10570 indirdep->ir_state |= GOINGAWAY; 10571 /* 10572 * Pass in bp for blocks still have journal writes 10573 * pending so we can cancel them on their own. 10574 */ 10575 while ((aip = LIST_FIRST(&indirdep->ir_deplisthd)) != NULL) 10576 cancel_allocindir(aip, bp, freeblks, 0); 10577 while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != NULL) 10578 cancel_allocindir(aip, NULL, freeblks, 0); 10579 while ((aip = LIST_FIRST(&indirdep->ir_writehd)) != NULL) 10580 cancel_allocindir(aip, NULL, freeblks, 0); 10581 while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != NULL) 10582 cancel_allocindir(aip, NULL, freeblks, 0); 10583 /* 10584 * If there are pending partial truncations we need to keep the 10585 * old block copy around until they complete. This is because 10586 * the current b_data is not a perfect superset of the available 10587 * blocks. 10588 */ 10589 if (TAILQ_EMPTY(&indirdep->ir_trunc)) 10590 bcopy(bp->b_data, indirdep->ir_savebp->b_data, bp->b_bcount); 10591 else 10592 bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount); 10593 WORKLIST_REMOVE(&indirdep->ir_list); 10594 WORKLIST_INSERT(&indirdep->ir_savebp->b_dep, &indirdep->ir_list); 10595 indirdep->ir_bp = NULL; 10596 indirdep->ir_freeblks = freeblks; 10597 } 10598 10599 /* 10600 * Free an indirdep once it no longer has new pointers to track. 10601 */ 10602 static void 10603 free_indirdep(indirdep) 10604 struct indirdep *indirdep; 10605 { 10606 10607 KASSERT(TAILQ_EMPTY(&indirdep->ir_trunc), 10608 ("free_indirdep: Indir trunc list not empty.")); 10609 KASSERT(LIST_EMPTY(&indirdep->ir_completehd), 10610 ("free_indirdep: Complete head not empty.")); 10611 KASSERT(LIST_EMPTY(&indirdep->ir_writehd), 10612 ("free_indirdep: write head not empty.")); 10613 KASSERT(LIST_EMPTY(&indirdep->ir_donehd), 10614 ("free_indirdep: done head not empty.")); 10615 KASSERT(LIST_EMPTY(&indirdep->ir_deplisthd), 10616 ("free_indirdep: deplist head not empty.")); 10617 KASSERT((indirdep->ir_state & DEPCOMPLETE), 10618 ("free_indirdep: %p still on newblk list.", indirdep)); 10619 KASSERT(indirdep->ir_saveddata == NULL, 10620 ("free_indirdep: %p still has saved data.", indirdep)); 10621 if (indirdep->ir_state & ONWORKLIST) 10622 WORKLIST_REMOVE(&indirdep->ir_list); 10623 WORKITEM_FREE(indirdep, D_INDIRDEP); 10624 } 10625 10626 /* 10627 * Called before a write to an indirdep. This routine is responsible for 10628 * rolling back pointers to a safe state which includes only those 10629 * allocindirs which have been completed. 10630 */ 10631 static void 10632 initiate_write_indirdep(indirdep, bp) 10633 struct indirdep *indirdep; 10634 struct buf *bp; 10635 { 10636 struct ufsmount *ump; 10637 10638 indirdep->ir_state |= IOSTARTED; 10639 if (indirdep->ir_state & GOINGAWAY) 10640 panic("disk_io_initiation: indirdep gone"); 10641 /* 10642 * If there are no remaining dependencies, this will be writing 10643 * the real pointers. 10644 */ 10645 if (LIST_EMPTY(&indirdep->ir_deplisthd) && 10646 TAILQ_EMPTY(&indirdep->ir_trunc)) 10647 return; 10648 /* 10649 * Replace up-to-date version with safe version. 10650 */ 10651 if (indirdep->ir_saveddata == NULL) { 10652 ump = VFSTOUFS(indirdep->ir_list.wk_mp); 10653 LOCK_OWNED(ump); 10654 FREE_LOCK(ump); 10655 indirdep->ir_saveddata = malloc(bp->b_bcount, M_INDIRDEP, 10656 M_SOFTDEP_FLAGS); 10657 ACQUIRE_LOCK(ump); 10658 } 10659 indirdep->ir_state &= ~ATTACHED; 10660 indirdep->ir_state |= UNDONE; 10661 bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount); 10662 bcopy(indirdep->ir_savebp->b_data, bp->b_data, 10663 bp->b_bcount); 10664 } 10665 10666 /* 10667 * Called when an inode has been cleared in a cg bitmap. This finally 10668 * eliminates any canceled jaddrefs 10669 */ 10670 void 10671 softdep_setup_inofree(mp, bp, ino, wkhd) 10672 struct mount *mp; 10673 struct buf *bp; 10674 ino_t ino; 10675 struct workhead *wkhd; 10676 { 10677 struct worklist *wk, *wkn; 10678 struct inodedep *inodedep; 10679 struct ufsmount *ump; 10680 uint8_t *inosused; 10681 struct cg *cgp; 10682 struct fs *fs; 10683 10684 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 10685 ("softdep_setup_inofree called on non-softdep filesystem")); 10686 ump = VFSTOUFS(mp); 10687 ACQUIRE_LOCK(ump); 10688 fs = ump->um_fs; 10689 cgp = (struct cg *)bp->b_data; 10690 inosused = cg_inosused(cgp); 10691 if (isset(inosused, ino % fs->fs_ipg)) 10692 panic("softdep_setup_inofree: inode %ju not freed.", 10693 (uintmax_t)ino); 10694 if (inodedep_lookup(mp, ino, 0, &inodedep)) 10695 panic("softdep_setup_inofree: ino %ju has existing inodedep %p", 10696 (uintmax_t)ino, inodedep); 10697 if (wkhd) { 10698 LIST_FOREACH_SAFE(wk, wkhd, wk_list, wkn) { 10699 if (wk->wk_type != D_JADDREF) 10700 continue; 10701 WORKLIST_REMOVE(wk); 10702 /* 10703 * We can free immediately even if the jaddref 10704 * isn't attached in a background write as now 10705 * the bitmaps are reconciled. 10706 */ 10707 wk->wk_state |= COMPLETE | ATTACHED; 10708 free_jaddref(WK_JADDREF(wk)); 10709 } 10710 jwork_move(&bp->b_dep, wkhd); 10711 } 10712 FREE_LOCK(ump); 10713 } 10714 10715 10716 /* 10717 * Called via ffs_blkfree() after a set of frags has been cleared from a cg 10718 * map. Any dependencies waiting for the write to clear are added to the 10719 * buf's list and any jnewblks that are being canceled are discarded 10720 * immediately. 10721 */ 10722 void 10723 softdep_setup_blkfree(mp, bp, blkno, frags, wkhd) 10724 struct mount *mp; 10725 struct buf *bp; 10726 ufs2_daddr_t blkno; 10727 int frags; 10728 struct workhead *wkhd; 10729 { 10730 struct bmsafemap *bmsafemap; 10731 struct jnewblk *jnewblk; 10732 struct ufsmount *ump; 10733 struct worklist *wk; 10734 struct fs *fs; 10735 #ifdef SUJ_DEBUG 10736 uint8_t *blksfree; 10737 struct cg *cgp; 10738 ufs2_daddr_t jstart; 10739 ufs2_daddr_t jend; 10740 ufs2_daddr_t end; 10741 long bno; 10742 int i; 10743 #endif 10744 10745 CTR3(KTR_SUJ, 10746 "softdep_setup_blkfree: blkno %jd frags %d wk head %p", 10747 blkno, frags, wkhd); 10748 10749 ump = VFSTOUFS(mp); 10750 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 10751 ("softdep_setup_blkfree called on non-softdep filesystem")); 10752 ACQUIRE_LOCK(ump); 10753 /* Lookup the bmsafemap so we track when it is dirty. */ 10754 fs = ump->um_fs; 10755 bmsafemap = bmsafemap_lookup(mp, bp, dtog(fs, blkno), NULL); 10756 /* 10757 * Detach any jnewblks which have been canceled. They must linger 10758 * until the bitmap is cleared again by ffs_blkfree() to prevent 10759 * an unjournaled allocation from hitting the disk. 10760 */ 10761 if (wkhd) { 10762 while ((wk = LIST_FIRST(wkhd)) != NULL) { 10763 CTR2(KTR_SUJ, 10764 "softdep_setup_blkfree: blkno %jd wk type %d", 10765 blkno, wk->wk_type); 10766 WORKLIST_REMOVE(wk); 10767 if (wk->wk_type != D_JNEWBLK) { 10768 WORKLIST_INSERT(&bmsafemap->sm_freehd, wk); 10769 continue; 10770 } 10771 jnewblk = WK_JNEWBLK(wk); 10772 KASSERT(jnewblk->jn_state & GOINGAWAY, 10773 ("softdep_setup_blkfree: jnewblk not canceled.")); 10774 #ifdef SUJ_DEBUG 10775 /* 10776 * Assert that this block is free in the bitmap 10777 * before we discard the jnewblk. 10778 */ 10779 cgp = (struct cg *)bp->b_data; 10780 blksfree = cg_blksfree(cgp); 10781 bno = dtogd(fs, jnewblk->jn_blkno); 10782 for (i = jnewblk->jn_oldfrags; 10783 i < jnewblk->jn_frags; i++) { 10784 if (isset(blksfree, bno + i)) 10785 continue; 10786 panic("softdep_setup_blkfree: not free"); 10787 } 10788 #endif 10789 /* 10790 * Even if it's not attached we can free immediately 10791 * as the new bitmap is correct. 10792 */ 10793 wk->wk_state |= COMPLETE | ATTACHED; 10794 free_jnewblk(jnewblk); 10795 } 10796 } 10797 10798 #ifdef SUJ_DEBUG 10799 /* 10800 * Assert that we are not freeing a block which has an outstanding 10801 * allocation dependency. 10802 */ 10803 fs = VFSTOUFS(mp)->um_fs; 10804 bmsafemap = bmsafemap_lookup(mp, bp, dtog(fs, blkno), NULL); 10805 end = blkno + frags; 10806 LIST_FOREACH(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps) { 10807 /* 10808 * Don't match against blocks that will be freed when the 10809 * background write is done. 10810 */ 10811 if ((jnewblk->jn_state & (ATTACHED | COMPLETE | DEPCOMPLETE)) == 10812 (COMPLETE | DEPCOMPLETE)) 10813 continue; 10814 jstart = jnewblk->jn_blkno + jnewblk->jn_oldfrags; 10815 jend = jnewblk->jn_blkno + jnewblk->jn_frags; 10816 if ((blkno >= jstart && blkno < jend) || 10817 (end > jstart && end <= jend)) { 10818 printf("state 0x%X %jd - %d %d dep %p\n", 10819 jnewblk->jn_state, jnewblk->jn_blkno, 10820 jnewblk->jn_oldfrags, jnewblk->jn_frags, 10821 jnewblk->jn_dep); 10822 panic("softdep_setup_blkfree: " 10823 "%jd-%jd(%d) overlaps with %jd-%jd", 10824 blkno, end, frags, jstart, jend); 10825 } 10826 } 10827 #endif 10828 FREE_LOCK(ump); 10829 } 10830 10831 /* 10832 * Revert a block allocation when the journal record that describes it 10833 * is not yet written. 10834 */ 10835 static int 10836 jnewblk_rollback(jnewblk, fs, cgp, blksfree) 10837 struct jnewblk *jnewblk; 10838 struct fs *fs; 10839 struct cg *cgp; 10840 uint8_t *blksfree; 10841 { 10842 ufs1_daddr_t fragno; 10843 long cgbno, bbase; 10844 int frags, blk; 10845 int i; 10846 10847 frags = 0; 10848 cgbno = dtogd(fs, jnewblk->jn_blkno); 10849 /* 10850 * We have to test which frags need to be rolled back. We may 10851 * be operating on a stale copy when doing background writes. 10852 */ 10853 for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; i++) 10854 if (isclr(blksfree, cgbno + i)) 10855 frags++; 10856 if (frags == 0) 10857 return (0); 10858 /* 10859 * This is mostly ffs_blkfree() sans some validation and 10860 * superblock updates. 10861 */ 10862 if (frags == fs->fs_frag) { 10863 fragno = fragstoblks(fs, cgbno); 10864 ffs_setblock(fs, blksfree, fragno); 10865 ffs_clusteracct(fs, cgp, fragno, 1); 10866 cgp->cg_cs.cs_nbfree++; 10867 } else { 10868 cgbno += jnewblk->jn_oldfrags; 10869 bbase = cgbno - fragnum(fs, cgbno); 10870 /* Decrement the old frags. */ 10871 blk = blkmap(fs, blksfree, bbase); 10872 ffs_fragacct(fs, blk, cgp->cg_frsum, -1); 10873 /* Deallocate the fragment */ 10874 for (i = 0; i < frags; i++) 10875 setbit(blksfree, cgbno + i); 10876 cgp->cg_cs.cs_nffree += frags; 10877 /* Add back in counts associated with the new frags */ 10878 blk = blkmap(fs, blksfree, bbase); 10879 ffs_fragacct(fs, blk, cgp->cg_frsum, 1); 10880 /* If a complete block has been reassembled, account for it. */ 10881 fragno = fragstoblks(fs, bbase); 10882 if (ffs_isblock(fs, blksfree, fragno)) { 10883 cgp->cg_cs.cs_nffree -= fs->fs_frag; 10884 ffs_clusteracct(fs, cgp, fragno, 1); 10885 cgp->cg_cs.cs_nbfree++; 10886 } 10887 } 10888 stat_jnewblk++; 10889 jnewblk->jn_state &= ~ATTACHED; 10890 jnewblk->jn_state |= UNDONE; 10891 10892 return (frags); 10893 } 10894 10895 static void 10896 initiate_write_bmsafemap(bmsafemap, bp) 10897 struct bmsafemap *bmsafemap; 10898 struct buf *bp; /* The cg block. */ 10899 { 10900 struct jaddref *jaddref; 10901 struct jnewblk *jnewblk; 10902 uint8_t *inosused; 10903 uint8_t *blksfree; 10904 struct cg *cgp; 10905 struct fs *fs; 10906 ino_t ino; 10907 10908 /* 10909 * If this is a background write, we did this at the time that 10910 * the copy was made, so do not need to do it again. 10911 */ 10912 if (bmsafemap->sm_state & IOSTARTED) 10913 return; 10914 bmsafemap->sm_state |= IOSTARTED; 10915 /* 10916 * Clear any inode allocations which are pending journal writes. 10917 */ 10918 if (LIST_FIRST(&bmsafemap->sm_jaddrefhd) != NULL) { 10919 cgp = (struct cg *)bp->b_data; 10920 fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs; 10921 inosused = cg_inosused(cgp); 10922 LIST_FOREACH(jaddref, &bmsafemap->sm_jaddrefhd, ja_bmdeps) { 10923 ino = jaddref->ja_ino % fs->fs_ipg; 10924 if (isset(inosused, ino)) { 10925 if ((jaddref->ja_mode & IFMT) == IFDIR) 10926 cgp->cg_cs.cs_ndir--; 10927 cgp->cg_cs.cs_nifree++; 10928 clrbit(inosused, ino); 10929 jaddref->ja_state &= ~ATTACHED; 10930 jaddref->ja_state |= UNDONE; 10931 stat_jaddref++; 10932 } else 10933 panic("initiate_write_bmsafemap: inode %ju " 10934 "marked free", (uintmax_t)jaddref->ja_ino); 10935 } 10936 } 10937 /* 10938 * Clear any block allocations which are pending journal writes. 10939 */ 10940 if (LIST_FIRST(&bmsafemap->sm_jnewblkhd) != NULL) { 10941 cgp = (struct cg *)bp->b_data; 10942 fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs; 10943 blksfree = cg_blksfree(cgp); 10944 LIST_FOREACH(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps) { 10945 if (jnewblk_rollback(jnewblk, fs, cgp, blksfree)) 10946 continue; 10947 panic("initiate_write_bmsafemap: block %jd " 10948 "marked free", jnewblk->jn_blkno); 10949 } 10950 } 10951 /* 10952 * Move allocation lists to the written lists so they can be 10953 * cleared once the block write is complete. 10954 */ 10955 LIST_SWAP(&bmsafemap->sm_inodedephd, &bmsafemap->sm_inodedepwr, 10956 inodedep, id_deps); 10957 LIST_SWAP(&bmsafemap->sm_newblkhd, &bmsafemap->sm_newblkwr, 10958 newblk, nb_deps); 10959 LIST_SWAP(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr, worklist, 10960 wk_list); 10961 } 10962 10963 /* 10964 * This routine is called during the completion interrupt 10965 * service routine for a disk write (from the procedure called 10966 * by the device driver to inform the filesystem caches of 10967 * a request completion). It should be called early in this 10968 * procedure, before the block is made available to other 10969 * processes or other routines are called. 10970 * 10971 */ 10972 static void 10973 softdep_disk_write_complete(bp) 10974 struct buf *bp; /* describes the completed disk write */ 10975 { 10976 struct worklist *wk; 10977 struct worklist *owk; 10978 struct ufsmount *ump; 10979 struct workhead reattach; 10980 struct freeblks *freeblks; 10981 struct buf *sbp; 10982 10983 ump = softdep_bp_to_mp(bp); 10984 if (ump == NULL) 10985 return; 10986 10987 /* 10988 * If an error occurred while doing the write, then the data 10989 * has not hit the disk and the dependencies cannot be processed. 10990 * But we do have to go through and roll forward any dependencies 10991 * that were rolled back before the disk write. 10992 */ 10993 ACQUIRE_LOCK(ump); 10994 if ((bp->b_ioflags & BIO_ERROR) != 0 && (bp->b_flags & B_INVAL) == 0) { 10995 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 10996 switch (wk->wk_type) { 10997 10998 case D_PAGEDEP: 10999 handle_written_filepage(WK_PAGEDEP(wk), bp, 0); 11000 continue; 11001 11002 case D_INODEDEP: 11003 handle_written_inodeblock(WK_INODEDEP(wk), 11004 bp, 0); 11005 continue; 11006 11007 case D_BMSAFEMAP: 11008 handle_written_bmsafemap(WK_BMSAFEMAP(wk), 11009 bp, 0); 11010 continue; 11011 11012 case D_INDIRDEP: 11013 handle_written_indirdep(WK_INDIRDEP(wk), 11014 bp, &sbp, 0); 11015 continue; 11016 default: 11017 /* nothing to roll forward */ 11018 continue; 11019 } 11020 } 11021 FREE_LOCK(ump); 11022 return; 11023 } 11024 LIST_INIT(&reattach); 11025 11026 /* 11027 * Ump SU lock must not be released anywhere in this code segment. 11028 */ 11029 sbp = NULL; 11030 owk = NULL; 11031 while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) { 11032 WORKLIST_REMOVE(wk); 11033 atomic_add_long(&dep_write[wk->wk_type], 1); 11034 if (wk == owk) 11035 panic("duplicate worklist: %p\n", wk); 11036 owk = wk; 11037 switch (wk->wk_type) { 11038 11039 case D_PAGEDEP: 11040 if (handle_written_filepage(WK_PAGEDEP(wk), bp, 11041 WRITESUCCEEDED)) 11042 WORKLIST_INSERT(&reattach, wk); 11043 continue; 11044 11045 case D_INODEDEP: 11046 if (handle_written_inodeblock(WK_INODEDEP(wk), bp, 11047 WRITESUCCEEDED)) 11048 WORKLIST_INSERT(&reattach, wk); 11049 continue; 11050 11051 case D_BMSAFEMAP: 11052 if (handle_written_bmsafemap(WK_BMSAFEMAP(wk), bp, 11053 WRITESUCCEEDED)) 11054 WORKLIST_INSERT(&reattach, wk); 11055 continue; 11056 11057 case D_MKDIR: 11058 handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY); 11059 continue; 11060 11061 case D_ALLOCDIRECT: 11062 wk->wk_state |= COMPLETE; 11063 handle_allocdirect_partdone(WK_ALLOCDIRECT(wk), NULL); 11064 continue; 11065 11066 case D_ALLOCINDIR: 11067 wk->wk_state |= COMPLETE; 11068 handle_allocindir_partdone(WK_ALLOCINDIR(wk)); 11069 continue; 11070 11071 case D_INDIRDEP: 11072 if (handle_written_indirdep(WK_INDIRDEP(wk), bp, &sbp, 11073 WRITESUCCEEDED)) 11074 WORKLIST_INSERT(&reattach, wk); 11075 continue; 11076 11077 case D_FREEBLKS: 11078 wk->wk_state |= COMPLETE; 11079 freeblks = WK_FREEBLKS(wk); 11080 if ((wk->wk_state & ALLCOMPLETE) == ALLCOMPLETE && 11081 LIST_EMPTY(&freeblks->fb_jblkdephd)) 11082 add_to_worklist(wk, WK_NODELAY); 11083 continue; 11084 11085 case D_FREEWORK: 11086 handle_written_freework(WK_FREEWORK(wk)); 11087 break; 11088 11089 case D_JSEGDEP: 11090 free_jsegdep(WK_JSEGDEP(wk)); 11091 continue; 11092 11093 case D_JSEG: 11094 handle_written_jseg(WK_JSEG(wk), bp); 11095 continue; 11096 11097 case D_SBDEP: 11098 if (handle_written_sbdep(WK_SBDEP(wk), bp)) 11099 WORKLIST_INSERT(&reattach, wk); 11100 continue; 11101 11102 case D_FREEDEP: 11103 free_freedep(WK_FREEDEP(wk)); 11104 continue; 11105 11106 default: 11107 panic("handle_disk_write_complete: Unknown type %s", 11108 TYPENAME(wk->wk_type)); 11109 /* NOTREACHED */ 11110 } 11111 } 11112 /* 11113 * Reattach any requests that must be redone. 11114 */ 11115 while ((wk = LIST_FIRST(&reattach)) != NULL) { 11116 WORKLIST_REMOVE(wk); 11117 WORKLIST_INSERT(&bp->b_dep, wk); 11118 } 11119 FREE_LOCK(ump); 11120 if (sbp) 11121 brelse(sbp); 11122 } 11123 11124 /* 11125 * Called from within softdep_disk_write_complete above. Note that 11126 * this routine is always called from interrupt level with further 11127 * splbio interrupts blocked. 11128 */ 11129 static void 11130 handle_allocdirect_partdone(adp, wkhd) 11131 struct allocdirect *adp; /* the completed allocdirect */ 11132 struct workhead *wkhd; /* Work to do when inode is writtne. */ 11133 { 11134 struct allocdirectlst *listhead; 11135 struct allocdirect *listadp; 11136 struct inodedep *inodedep; 11137 long bsize; 11138 11139 if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE) 11140 return; 11141 /* 11142 * The on-disk inode cannot claim to be any larger than the last 11143 * fragment that has been written. Otherwise, the on-disk inode 11144 * might have fragments that were not the last block in the file 11145 * which would corrupt the filesystem. Thus, we cannot free any 11146 * allocdirects after one whose ad_oldblkno claims a fragment as 11147 * these blocks must be rolled back to zero before writing the inode. 11148 * We check the currently active set of allocdirects in id_inoupdt 11149 * or id_extupdt as appropriate. 11150 */ 11151 inodedep = adp->ad_inodedep; 11152 bsize = inodedep->id_fs->fs_bsize; 11153 if (adp->ad_state & EXTDATA) 11154 listhead = &inodedep->id_extupdt; 11155 else 11156 listhead = &inodedep->id_inoupdt; 11157 TAILQ_FOREACH(listadp, listhead, ad_next) { 11158 /* found our block */ 11159 if (listadp == adp) 11160 break; 11161 /* continue if ad_oldlbn is not a fragment */ 11162 if (listadp->ad_oldsize == 0 || 11163 listadp->ad_oldsize == bsize) 11164 continue; 11165 /* hit a fragment */ 11166 return; 11167 } 11168 /* 11169 * If we have reached the end of the current list without 11170 * finding the just finished dependency, then it must be 11171 * on the future dependency list. Future dependencies cannot 11172 * be freed until they are moved to the current list. 11173 */ 11174 if (listadp == NULL) { 11175 #ifdef DEBUG 11176 if (adp->ad_state & EXTDATA) 11177 listhead = &inodedep->id_newextupdt; 11178 else 11179 listhead = &inodedep->id_newinoupdt; 11180 TAILQ_FOREACH(listadp, listhead, ad_next) 11181 /* found our block */ 11182 if (listadp == adp) 11183 break; 11184 if (listadp == NULL) 11185 panic("handle_allocdirect_partdone: lost dep"); 11186 #endif /* DEBUG */ 11187 return; 11188 } 11189 /* 11190 * If we have found the just finished dependency, then queue 11191 * it along with anything that follows it that is complete. 11192 * Since the pointer has not yet been written in the inode 11193 * as the dependency prevents it, place the allocdirect on the 11194 * bufwait list where it will be freed once the pointer is 11195 * valid. 11196 */ 11197 if (wkhd == NULL) 11198 wkhd = &inodedep->id_bufwait; 11199 for (; adp; adp = listadp) { 11200 listadp = TAILQ_NEXT(adp, ad_next); 11201 if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE) 11202 return; 11203 TAILQ_REMOVE(listhead, adp, ad_next); 11204 WORKLIST_INSERT(wkhd, &adp->ad_block.nb_list); 11205 } 11206 } 11207 11208 /* 11209 * Called from within softdep_disk_write_complete above. This routine 11210 * completes successfully written allocindirs. 11211 */ 11212 static void 11213 handle_allocindir_partdone(aip) 11214 struct allocindir *aip; /* the completed allocindir */ 11215 { 11216 struct indirdep *indirdep; 11217 11218 if ((aip->ai_state & ALLCOMPLETE) != ALLCOMPLETE) 11219 return; 11220 indirdep = aip->ai_indirdep; 11221 LIST_REMOVE(aip, ai_next); 11222 /* 11223 * Don't set a pointer while the buffer is undergoing IO or while 11224 * we have active truncations. 11225 */ 11226 if (indirdep->ir_state & UNDONE || !TAILQ_EMPTY(&indirdep->ir_trunc)) { 11227 LIST_INSERT_HEAD(&indirdep->ir_donehd, aip, ai_next); 11228 return; 11229 } 11230 if (indirdep->ir_state & UFS1FMT) 11231 ((ufs1_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] = 11232 aip->ai_newblkno; 11233 else 11234 ((ufs2_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] = 11235 aip->ai_newblkno; 11236 /* 11237 * Await the pointer write before freeing the allocindir. 11238 */ 11239 LIST_INSERT_HEAD(&indirdep->ir_writehd, aip, ai_next); 11240 } 11241 11242 /* 11243 * Release segments held on a jwork list. 11244 */ 11245 static void 11246 handle_jwork(wkhd) 11247 struct workhead *wkhd; 11248 { 11249 struct worklist *wk; 11250 11251 while ((wk = LIST_FIRST(wkhd)) != NULL) { 11252 WORKLIST_REMOVE(wk); 11253 switch (wk->wk_type) { 11254 case D_JSEGDEP: 11255 free_jsegdep(WK_JSEGDEP(wk)); 11256 continue; 11257 case D_FREEDEP: 11258 free_freedep(WK_FREEDEP(wk)); 11259 continue; 11260 case D_FREEFRAG: 11261 rele_jseg(WK_JSEG(WK_FREEFRAG(wk)->ff_jdep)); 11262 WORKITEM_FREE(wk, D_FREEFRAG); 11263 continue; 11264 case D_FREEWORK: 11265 handle_written_freework(WK_FREEWORK(wk)); 11266 continue; 11267 default: 11268 panic("handle_jwork: Unknown type %s\n", 11269 TYPENAME(wk->wk_type)); 11270 } 11271 } 11272 } 11273 11274 /* 11275 * Handle the bufwait list on an inode when it is safe to release items 11276 * held there. This normally happens after an inode block is written but 11277 * may be delayed and handled later if there are pending journal items that 11278 * are not yet safe to be released. 11279 */ 11280 static struct freefile * 11281 handle_bufwait(inodedep, refhd) 11282 struct inodedep *inodedep; 11283 struct workhead *refhd; 11284 { 11285 struct jaddref *jaddref; 11286 struct freefile *freefile; 11287 struct worklist *wk; 11288 11289 freefile = NULL; 11290 while ((wk = LIST_FIRST(&inodedep->id_bufwait)) != NULL) { 11291 WORKLIST_REMOVE(wk); 11292 switch (wk->wk_type) { 11293 case D_FREEFILE: 11294 /* 11295 * We defer adding freefile to the worklist 11296 * until all other additions have been made to 11297 * ensure that it will be done after all the 11298 * old blocks have been freed. 11299 */ 11300 if (freefile != NULL) 11301 panic("handle_bufwait: freefile"); 11302 freefile = WK_FREEFILE(wk); 11303 continue; 11304 11305 case D_MKDIR: 11306 handle_written_mkdir(WK_MKDIR(wk), MKDIR_PARENT); 11307 continue; 11308 11309 case D_DIRADD: 11310 diradd_inode_written(WK_DIRADD(wk), inodedep); 11311 continue; 11312 11313 case D_FREEFRAG: 11314 wk->wk_state |= COMPLETE; 11315 if ((wk->wk_state & ALLCOMPLETE) == ALLCOMPLETE) 11316 add_to_worklist(wk, 0); 11317 continue; 11318 11319 case D_DIRREM: 11320 wk->wk_state |= COMPLETE; 11321 add_to_worklist(wk, 0); 11322 continue; 11323 11324 case D_ALLOCDIRECT: 11325 case D_ALLOCINDIR: 11326 free_newblk(WK_NEWBLK(wk)); 11327 continue; 11328 11329 case D_JNEWBLK: 11330 wk->wk_state |= COMPLETE; 11331 free_jnewblk(WK_JNEWBLK(wk)); 11332 continue; 11333 11334 /* 11335 * Save freed journal segments and add references on 11336 * the supplied list which will delay their release 11337 * until the cg bitmap is cleared on disk. 11338 */ 11339 case D_JSEGDEP: 11340 if (refhd == NULL) 11341 free_jsegdep(WK_JSEGDEP(wk)); 11342 else 11343 WORKLIST_INSERT(refhd, wk); 11344 continue; 11345 11346 case D_JADDREF: 11347 jaddref = WK_JADDREF(wk); 11348 TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref, 11349 if_deps); 11350 /* 11351 * Transfer any jaddrefs to the list to be freed with 11352 * the bitmap if we're handling a removed file. 11353 */ 11354 if (refhd == NULL) { 11355 wk->wk_state |= COMPLETE; 11356 free_jaddref(jaddref); 11357 } else 11358 WORKLIST_INSERT(refhd, wk); 11359 continue; 11360 11361 default: 11362 panic("handle_bufwait: Unknown type %p(%s)", 11363 wk, TYPENAME(wk->wk_type)); 11364 /* NOTREACHED */ 11365 } 11366 } 11367 return (freefile); 11368 } 11369 /* 11370 * Called from within softdep_disk_write_complete above to restore 11371 * in-memory inode block contents to their most up-to-date state. Note 11372 * that this routine is always called from interrupt level with further 11373 * interrupts from this device blocked. 11374 * 11375 * If the write did not succeed, we will do all the roll-forward 11376 * operations, but we will not take the actions that will allow its 11377 * dependencies to be processed. 11378 */ 11379 static int 11380 handle_written_inodeblock(inodedep, bp, flags) 11381 struct inodedep *inodedep; 11382 struct buf *bp; /* buffer containing the inode block */ 11383 int flags; 11384 { 11385 struct freefile *freefile; 11386 struct allocdirect *adp, *nextadp; 11387 struct ufs1_dinode *dp1 = NULL; 11388 struct ufs2_dinode *dp2 = NULL; 11389 struct workhead wkhd; 11390 int hadchanges, fstype; 11391 ino_t freelink; 11392 11393 LIST_INIT(&wkhd); 11394 hadchanges = 0; 11395 freefile = NULL; 11396 if ((inodedep->id_state & IOSTARTED) == 0) 11397 panic("handle_written_inodeblock: not started"); 11398 inodedep->id_state &= ~IOSTARTED; 11399 if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC) { 11400 fstype = UFS1; 11401 dp1 = (struct ufs1_dinode *)bp->b_data + 11402 ino_to_fsbo(inodedep->id_fs, inodedep->id_ino); 11403 freelink = dp1->di_freelink; 11404 } else { 11405 fstype = UFS2; 11406 dp2 = (struct ufs2_dinode *)bp->b_data + 11407 ino_to_fsbo(inodedep->id_fs, inodedep->id_ino); 11408 freelink = dp2->di_freelink; 11409 } 11410 /* 11411 * Leave this inodeblock dirty until it's in the list. 11412 */ 11413 if ((inodedep->id_state & (UNLINKED | UNLINKONLIST)) == UNLINKED && 11414 (flags & WRITESUCCEEDED)) { 11415 struct inodedep *inon; 11416 11417 inon = TAILQ_NEXT(inodedep, id_unlinked); 11418 if ((inon == NULL && freelink == 0) || 11419 (inon && inon->id_ino == freelink)) { 11420 if (inon) 11421 inon->id_state |= UNLINKPREV; 11422 inodedep->id_state |= UNLINKNEXT; 11423 } 11424 hadchanges = 1; 11425 } 11426 /* 11427 * If we had to rollback the inode allocation because of 11428 * bitmaps being incomplete, then simply restore it. 11429 * Keep the block dirty so that it will not be reclaimed until 11430 * all associated dependencies have been cleared and the 11431 * corresponding updates written to disk. 11432 */ 11433 if (inodedep->id_savedino1 != NULL) { 11434 hadchanges = 1; 11435 if (fstype == UFS1) 11436 *dp1 = *inodedep->id_savedino1; 11437 else 11438 *dp2 = *inodedep->id_savedino2; 11439 free(inodedep->id_savedino1, M_SAVEDINO); 11440 inodedep->id_savedino1 = NULL; 11441 if ((bp->b_flags & B_DELWRI) == 0) 11442 stat_inode_bitmap++; 11443 bdirty(bp); 11444 /* 11445 * If the inode is clear here and GOINGAWAY it will never 11446 * be written. Process the bufwait and clear any pending 11447 * work which may include the freefile. 11448 */ 11449 if (inodedep->id_state & GOINGAWAY) 11450 goto bufwait; 11451 return (1); 11452 } 11453 if (flags & WRITESUCCEEDED) 11454 inodedep->id_state |= COMPLETE; 11455 /* 11456 * Roll forward anything that had to be rolled back before 11457 * the inode could be updated. 11458 */ 11459 for (adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; adp = nextadp) { 11460 nextadp = TAILQ_NEXT(adp, ad_next); 11461 if (adp->ad_state & ATTACHED) 11462 panic("handle_written_inodeblock: new entry"); 11463 if (fstype == UFS1) { 11464 if (adp->ad_offset < UFS_NDADDR) { 11465 if (dp1->di_db[adp->ad_offset]!=adp->ad_oldblkno) 11466 panic("%s %s #%jd mismatch %d != %jd", 11467 "handle_written_inodeblock:", 11468 "direct pointer", 11469 (intmax_t)adp->ad_offset, 11470 dp1->di_db[adp->ad_offset], 11471 (intmax_t)adp->ad_oldblkno); 11472 dp1->di_db[adp->ad_offset] = adp->ad_newblkno; 11473 } else { 11474 if (dp1->di_ib[adp->ad_offset - UFS_NDADDR] != 11475 0) 11476 panic("%s: %s #%jd allocated as %d", 11477 "handle_written_inodeblock", 11478 "indirect pointer", 11479 (intmax_t)adp->ad_offset - 11480 UFS_NDADDR, 11481 dp1->di_ib[adp->ad_offset - 11482 UFS_NDADDR]); 11483 dp1->di_ib[adp->ad_offset - UFS_NDADDR] = 11484 adp->ad_newblkno; 11485 } 11486 } else { 11487 if (adp->ad_offset < UFS_NDADDR) { 11488 if (dp2->di_db[adp->ad_offset]!=adp->ad_oldblkno) 11489 panic("%s: %s #%jd %s %jd != %jd", 11490 "handle_written_inodeblock", 11491 "direct pointer", 11492 (intmax_t)adp->ad_offset, "mismatch", 11493 (intmax_t)dp2->di_db[adp->ad_offset], 11494 (intmax_t)adp->ad_oldblkno); 11495 dp2->di_db[adp->ad_offset] = adp->ad_newblkno; 11496 } else { 11497 if (dp2->di_ib[adp->ad_offset - UFS_NDADDR] != 11498 0) 11499 panic("%s: %s #%jd allocated as %jd", 11500 "handle_written_inodeblock", 11501 "indirect pointer", 11502 (intmax_t)adp->ad_offset - 11503 UFS_NDADDR, 11504 (intmax_t) 11505 dp2->di_ib[adp->ad_offset - 11506 UFS_NDADDR]); 11507 dp2->di_ib[adp->ad_offset - UFS_NDADDR] = 11508 adp->ad_newblkno; 11509 } 11510 } 11511 adp->ad_state &= ~UNDONE; 11512 adp->ad_state |= ATTACHED; 11513 hadchanges = 1; 11514 } 11515 for (adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; adp = nextadp) { 11516 nextadp = TAILQ_NEXT(adp, ad_next); 11517 if (adp->ad_state & ATTACHED) 11518 panic("handle_written_inodeblock: new entry"); 11519 if (dp2->di_extb[adp->ad_offset] != adp->ad_oldblkno) 11520 panic("%s: direct pointers #%jd %s %jd != %jd", 11521 "handle_written_inodeblock", 11522 (intmax_t)adp->ad_offset, "mismatch", 11523 (intmax_t)dp2->di_extb[adp->ad_offset], 11524 (intmax_t)adp->ad_oldblkno); 11525 dp2->di_extb[adp->ad_offset] = adp->ad_newblkno; 11526 adp->ad_state &= ~UNDONE; 11527 adp->ad_state |= ATTACHED; 11528 hadchanges = 1; 11529 } 11530 if (hadchanges && (bp->b_flags & B_DELWRI) == 0) 11531 stat_direct_blk_ptrs++; 11532 /* 11533 * Reset the file size to its most up-to-date value. 11534 */ 11535 if (inodedep->id_savedsize == -1 || inodedep->id_savedextsize == -1) 11536 panic("handle_written_inodeblock: bad size"); 11537 if (inodedep->id_savednlink > UFS_LINK_MAX) 11538 panic("handle_written_inodeblock: Invalid link count " 11539 "%jd for inodedep %p", (uintmax_t)inodedep->id_savednlink, 11540 inodedep); 11541 if (fstype == UFS1) { 11542 if (dp1->di_nlink != inodedep->id_savednlink) { 11543 dp1->di_nlink = inodedep->id_savednlink; 11544 hadchanges = 1; 11545 } 11546 if (dp1->di_size != inodedep->id_savedsize) { 11547 dp1->di_size = inodedep->id_savedsize; 11548 hadchanges = 1; 11549 } 11550 } else { 11551 if (dp2->di_nlink != inodedep->id_savednlink) { 11552 dp2->di_nlink = inodedep->id_savednlink; 11553 hadchanges = 1; 11554 } 11555 if (dp2->di_size != inodedep->id_savedsize) { 11556 dp2->di_size = inodedep->id_savedsize; 11557 hadchanges = 1; 11558 } 11559 if (dp2->di_extsize != inodedep->id_savedextsize) { 11560 dp2->di_extsize = inodedep->id_savedextsize; 11561 hadchanges = 1; 11562 } 11563 } 11564 inodedep->id_savedsize = -1; 11565 inodedep->id_savedextsize = -1; 11566 inodedep->id_savednlink = -1; 11567 /* 11568 * If there were any rollbacks in the inode block, then it must be 11569 * marked dirty so that its will eventually get written back in 11570 * its correct form. 11571 */ 11572 if (hadchanges) 11573 bdirty(bp); 11574 bufwait: 11575 /* 11576 * If the write did not succeed, we have done all the roll-forward 11577 * operations, but we cannot take the actions that will allow its 11578 * dependencies to be processed. 11579 */ 11580 if ((flags & WRITESUCCEEDED) == 0) 11581 return (hadchanges); 11582 /* 11583 * Process any allocdirects that completed during the update. 11584 */ 11585 if ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL) 11586 handle_allocdirect_partdone(adp, &wkhd); 11587 if ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL) 11588 handle_allocdirect_partdone(adp, &wkhd); 11589 /* 11590 * Process deallocations that were held pending until the 11591 * inode had been written to disk. Freeing of the inode 11592 * is delayed until after all blocks have been freed to 11593 * avoid creation of new <vfsid, inum, lbn> triples 11594 * before the old ones have been deleted. Completely 11595 * unlinked inodes are not processed until the unlinked 11596 * inode list is written or the last reference is removed. 11597 */ 11598 if ((inodedep->id_state & (UNLINKED | UNLINKONLIST)) != UNLINKED) { 11599 freefile = handle_bufwait(inodedep, NULL); 11600 if (freefile && !LIST_EMPTY(&wkhd)) { 11601 WORKLIST_INSERT(&wkhd, &freefile->fx_list); 11602 freefile = NULL; 11603 } 11604 } 11605 /* 11606 * Move rolled forward dependency completions to the bufwait list 11607 * now that those that were already written have been processed. 11608 */ 11609 if (!LIST_EMPTY(&wkhd) && hadchanges == 0) 11610 panic("handle_written_inodeblock: bufwait but no changes"); 11611 jwork_move(&inodedep->id_bufwait, &wkhd); 11612 11613 if (freefile != NULL) { 11614 /* 11615 * If the inode is goingaway it was never written. Fake up 11616 * the state here so free_inodedep() can succeed. 11617 */ 11618 if (inodedep->id_state & GOINGAWAY) 11619 inodedep->id_state |= COMPLETE | DEPCOMPLETE; 11620 if (free_inodedep(inodedep) == 0) 11621 panic("handle_written_inodeblock: live inodedep %p", 11622 inodedep); 11623 add_to_worklist(&freefile->fx_list, 0); 11624 return (0); 11625 } 11626 11627 /* 11628 * If no outstanding dependencies, free it. 11629 */ 11630 if (free_inodedep(inodedep) || 11631 (TAILQ_FIRST(&inodedep->id_inoreflst) == 0 && 11632 TAILQ_FIRST(&inodedep->id_inoupdt) == 0 && 11633 TAILQ_FIRST(&inodedep->id_extupdt) == 0 && 11634 LIST_FIRST(&inodedep->id_bufwait) == 0)) 11635 return (0); 11636 return (hadchanges); 11637 } 11638 11639 /* 11640 * Perform needed roll-forwards and kick off any dependencies that 11641 * can now be processed. 11642 * 11643 * If the write did not succeed, we will do all the roll-forward 11644 * operations, but we will not take the actions that will allow its 11645 * dependencies to be processed. 11646 */ 11647 static int 11648 handle_written_indirdep(indirdep, bp, bpp, flags) 11649 struct indirdep *indirdep; 11650 struct buf *bp; 11651 struct buf **bpp; 11652 int flags; 11653 { 11654 struct allocindir *aip; 11655 struct buf *sbp; 11656 int chgs; 11657 11658 if (indirdep->ir_state & GOINGAWAY) 11659 panic("handle_written_indirdep: indirdep gone"); 11660 if ((indirdep->ir_state & IOSTARTED) == 0) 11661 panic("handle_written_indirdep: IO not started"); 11662 chgs = 0; 11663 /* 11664 * If there were rollbacks revert them here. 11665 */ 11666 if (indirdep->ir_saveddata) { 11667 bcopy(indirdep->ir_saveddata, bp->b_data, bp->b_bcount); 11668 if (TAILQ_EMPTY(&indirdep->ir_trunc)) { 11669 free(indirdep->ir_saveddata, M_INDIRDEP); 11670 indirdep->ir_saveddata = NULL; 11671 } 11672 chgs = 1; 11673 } 11674 indirdep->ir_state &= ~(UNDONE | IOSTARTED); 11675 indirdep->ir_state |= ATTACHED; 11676 /* 11677 * If the write did not succeed, we have done all the roll-forward 11678 * operations, but we cannot take the actions that will allow its 11679 * dependencies to be processed. 11680 */ 11681 if ((flags & WRITESUCCEEDED) == 0) { 11682 stat_indir_blk_ptrs++; 11683 bdirty(bp); 11684 return (1); 11685 } 11686 /* 11687 * Move allocindirs with written pointers to the completehd if 11688 * the indirdep's pointer is not yet written. Otherwise 11689 * free them here. 11690 */ 11691 while ((aip = LIST_FIRST(&indirdep->ir_writehd)) != NULL) { 11692 LIST_REMOVE(aip, ai_next); 11693 if ((indirdep->ir_state & DEPCOMPLETE) == 0) { 11694 LIST_INSERT_HEAD(&indirdep->ir_completehd, aip, 11695 ai_next); 11696 newblk_freefrag(&aip->ai_block); 11697 continue; 11698 } 11699 free_newblk(&aip->ai_block); 11700 } 11701 /* 11702 * Move allocindirs that have finished dependency processing from 11703 * the done list to the write list after updating the pointers. 11704 */ 11705 if (TAILQ_EMPTY(&indirdep->ir_trunc)) { 11706 while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != NULL) { 11707 handle_allocindir_partdone(aip); 11708 if (aip == LIST_FIRST(&indirdep->ir_donehd)) 11709 panic("disk_write_complete: not gone"); 11710 chgs = 1; 11711 } 11712 } 11713 /* 11714 * Preserve the indirdep if there were any changes or if it is not 11715 * yet valid on disk. 11716 */ 11717 if (chgs) { 11718 stat_indir_blk_ptrs++; 11719 bdirty(bp); 11720 return (1); 11721 } 11722 /* 11723 * If there were no changes we can discard the savedbp and detach 11724 * ourselves from the buf. We are only carrying completed pointers 11725 * in this case. 11726 */ 11727 sbp = indirdep->ir_savebp; 11728 sbp->b_flags |= B_INVAL | B_NOCACHE; 11729 indirdep->ir_savebp = NULL; 11730 indirdep->ir_bp = NULL; 11731 if (*bpp != NULL) 11732 panic("handle_written_indirdep: bp already exists."); 11733 *bpp = sbp; 11734 /* 11735 * The indirdep may not be freed until its parent points at it. 11736 */ 11737 if (indirdep->ir_state & DEPCOMPLETE) 11738 free_indirdep(indirdep); 11739 11740 return (0); 11741 } 11742 11743 /* 11744 * Process a diradd entry after its dependent inode has been written. 11745 * This routine must be called with splbio interrupts blocked. 11746 */ 11747 static void 11748 diradd_inode_written(dap, inodedep) 11749 struct diradd *dap; 11750 struct inodedep *inodedep; 11751 { 11752 11753 dap->da_state |= COMPLETE; 11754 complete_diradd(dap); 11755 WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list); 11756 } 11757 11758 /* 11759 * Returns true if the bmsafemap will have rollbacks when written. Must only 11760 * be called with the per-filesystem lock and the buf lock on the cg held. 11761 */ 11762 static int 11763 bmsafemap_backgroundwrite(bmsafemap, bp) 11764 struct bmsafemap *bmsafemap; 11765 struct buf *bp; 11766 { 11767 int dirty; 11768 11769 LOCK_OWNED(VFSTOUFS(bmsafemap->sm_list.wk_mp)); 11770 dirty = !LIST_EMPTY(&bmsafemap->sm_jaddrefhd) | 11771 !LIST_EMPTY(&bmsafemap->sm_jnewblkhd); 11772 /* 11773 * If we're initiating a background write we need to process the 11774 * rollbacks as they exist now, not as they exist when IO starts. 11775 * No other consumers will look at the contents of the shadowed 11776 * buf so this is safe to do here. 11777 */ 11778 if (bp->b_xflags & BX_BKGRDMARKER) 11779 initiate_write_bmsafemap(bmsafemap, bp); 11780 11781 return (dirty); 11782 } 11783 11784 /* 11785 * Re-apply an allocation when a cg write is complete. 11786 */ 11787 static int 11788 jnewblk_rollforward(jnewblk, fs, cgp, blksfree) 11789 struct jnewblk *jnewblk; 11790 struct fs *fs; 11791 struct cg *cgp; 11792 uint8_t *blksfree; 11793 { 11794 ufs1_daddr_t fragno; 11795 ufs2_daddr_t blkno; 11796 long cgbno, bbase; 11797 int frags, blk; 11798 int i; 11799 11800 frags = 0; 11801 cgbno = dtogd(fs, jnewblk->jn_blkno); 11802 for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; i++) { 11803 if (isclr(blksfree, cgbno + i)) 11804 panic("jnewblk_rollforward: re-allocated fragment"); 11805 frags++; 11806 } 11807 if (frags == fs->fs_frag) { 11808 blkno = fragstoblks(fs, cgbno); 11809 ffs_clrblock(fs, blksfree, (long)blkno); 11810 ffs_clusteracct(fs, cgp, blkno, -1); 11811 cgp->cg_cs.cs_nbfree--; 11812 } else { 11813 bbase = cgbno - fragnum(fs, cgbno); 11814 cgbno += jnewblk->jn_oldfrags; 11815 /* If a complete block had been reassembled, account for it. */ 11816 fragno = fragstoblks(fs, bbase); 11817 if (ffs_isblock(fs, blksfree, fragno)) { 11818 cgp->cg_cs.cs_nffree += fs->fs_frag; 11819 ffs_clusteracct(fs, cgp, fragno, -1); 11820 cgp->cg_cs.cs_nbfree--; 11821 } 11822 /* Decrement the old frags. */ 11823 blk = blkmap(fs, blksfree, bbase); 11824 ffs_fragacct(fs, blk, cgp->cg_frsum, -1); 11825 /* Allocate the fragment */ 11826 for (i = 0; i < frags; i++) 11827 clrbit(blksfree, cgbno + i); 11828 cgp->cg_cs.cs_nffree -= frags; 11829 /* Add back in counts associated with the new frags */ 11830 blk = blkmap(fs, blksfree, bbase); 11831 ffs_fragacct(fs, blk, cgp->cg_frsum, 1); 11832 } 11833 return (frags); 11834 } 11835 11836 /* 11837 * Complete a write to a bmsafemap structure. Roll forward any bitmap 11838 * changes if it's not a background write. Set all written dependencies 11839 * to DEPCOMPLETE and free the structure if possible. 11840 * 11841 * If the write did not succeed, we will do all the roll-forward 11842 * operations, but we will not take the actions that will allow its 11843 * dependencies to be processed. 11844 */ 11845 static int 11846 handle_written_bmsafemap(bmsafemap, bp, flags) 11847 struct bmsafemap *bmsafemap; 11848 struct buf *bp; 11849 int flags; 11850 { 11851 struct newblk *newblk; 11852 struct inodedep *inodedep; 11853 struct jaddref *jaddref, *jatmp; 11854 struct jnewblk *jnewblk, *jntmp; 11855 struct ufsmount *ump; 11856 uint8_t *inosused; 11857 uint8_t *blksfree; 11858 struct cg *cgp; 11859 struct fs *fs; 11860 ino_t ino; 11861 int foreground; 11862 int chgs; 11863 11864 if ((bmsafemap->sm_state & IOSTARTED) == 0) 11865 panic("handle_written_bmsafemap: Not started\n"); 11866 ump = VFSTOUFS(bmsafemap->sm_list.wk_mp); 11867 chgs = 0; 11868 bmsafemap->sm_state &= ~IOSTARTED; 11869 foreground = (bp->b_xflags & BX_BKGRDMARKER) == 0; 11870 /* 11871 * If write was successful, release journal work that was waiting 11872 * on the write. Otherwise move the work back. 11873 */ 11874 if (flags & WRITESUCCEEDED) 11875 handle_jwork(&bmsafemap->sm_freewr); 11876 else 11877 LIST_CONCAT(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr, 11878 worklist, wk_list); 11879 11880 /* 11881 * Restore unwritten inode allocation pending jaddref writes. 11882 */ 11883 if (!LIST_EMPTY(&bmsafemap->sm_jaddrefhd)) { 11884 cgp = (struct cg *)bp->b_data; 11885 fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs; 11886 inosused = cg_inosused(cgp); 11887 LIST_FOREACH_SAFE(jaddref, &bmsafemap->sm_jaddrefhd, 11888 ja_bmdeps, jatmp) { 11889 if ((jaddref->ja_state & UNDONE) == 0) 11890 continue; 11891 ino = jaddref->ja_ino % fs->fs_ipg; 11892 if (isset(inosused, ino)) 11893 panic("handle_written_bmsafemap: " 11894 "re-allocated inode"); 11895 /* Do the roll-forward only if it's a real copy. */ 11896 if (foreground) { 11897 if ((jaddref->ja_mode & IFMT) == IFDIR) 11898 cgp->cg_cs.cs_ndir++; 11899 cgp->cg_cs.cs_nifree--; 11900 setbit(inosused, ino); 11901 chgs = 1; 11902 } 11903 jaddref->ja_state &= ~UNDONE; 11904 jaddref->ja_state |= ATTACHED; 11905 free_jaddref(jaddref); 11906 } 11907 } 11908 /* 11909 * Restore any block allocations which are pending journal writes. 11910 */ 11911 if (LIST_FIRST(&bmsafemap->sm_jnewblkhd) != NULL) { 11912 cgp = (struct cg *)bp->b_data; 11913 fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs; 11914 blksfree = cg_blksfree(cgp); 11915 LIST_FOREACH_SAFE(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps, 11916 jntmp) { 11917 if ((jnewblk->jn_state & UNDONE) == 0) 11918 continue; 11919 /* Do the roll-forward only if it's a real copy. */ 11920 if (foreground && 11921 jnewblk_rollforward(jnewblk, fs, cgp, blksfree)) 11922 chgs = 1; 11923 jnewblk->jn_state &= ~(UNDONE | NEWBLOCK); 11924 jnewblk->jn_state |= ATTACHED; 11925 free_jnewblk(jnewblk); 11926 } 11927 } 11928 /* 11929 * If the write did not succeed, we have done all the roll-forward 11930 * operations, but we cannot take the actions that will allow its 11931 * dependencies to be processed. 11932 */ 11933 if ((flags & WRITESUCCEEDED) == 0) { 11934 LIST_CONCAT(&bmsafemap->sm_newblkhd, &bmsafemap->sm_newblkwr, 11935 newblk, nb_deps); 11936 LIST_CONCAT(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr, 11937 worklist, wk_list); 11938 if (foreground) 11939 bdirty(bp); 11940 return (1); 11941 } 11942 while ((newblk = LIST_FIRST(&bmsafemap->sm_newblkwr))) { 11943 newblk->nb_state |= DEPCOMPLETE; 11944 newblk->nb_state &= ~ONDEPLIST; 11945 newblk->nb_bmsafemap = NULL; 11946 LIST_REMOVE(newblk, nb_deps); 11947 if (newblk->nb_list.wk_type == D_ALLOCDIRECT) 11948 handle_allocdirect_partdone( 11949 WK_ALLOCDIRECT(&newblk->nb_list), NULL); 11950 else if (newblk->nb_list.wk_type == D_ALLOCINDIR) 11951 handle_allocindir_partdone( 11952 WK_ALLOCINDIR(&newblk->nb_list)); 11953 else if (newblk->nb_list.wk_type != D_NEWBLK) 11954 panic("handle_written_bmsafemap: Unexpected type: %s", 11955 TYPENAME(newblk->nb_list.wk_type)); 11956 } 11957 while ((inodedep = LIST_FIRST(&bmsafemap->sm_inodedepwr)) != NULL) { 11958 inodedep->id_state |= DEPCOMPLETE; 11959 inodedep->id_state &= ~ONDEPLIST; 11960 LIST_REMOVE(inodedep, id_deps); 11961 inodedep->id_bmsafemap = NULL; 11962 } 11963 LIST_REMOVE(bmsafemap, sm_next); 11964 if (chgs == 0 && LIST_EMPTY(&bmsafemap->sm_jaddrefhd) && 11965 LIST_EMPTY(&bmsafemap->sm_jnewblkhd) && 11966 LIST_EMPTY(&bmsafemap->sm_newblkhd) && 11967 LIST_EMPTY(&bmsafemap->sm_inodedephd) && 11968 LIST_EMPTY(&bmsafemap->sm_freehd)) { 11969 LIST_REMOVE(bmsafemap, sm_hash); 11970 WORKITEM_FREE(bmsafemap, D_BMSAFEMAP); 11971 return (0); 11972 } 11973 LIST_INSERT_HEAD(&ump->softdep_dirtycg, bmsafemap, sm_next); 11974 if (foreground) 11975 bdirty(bp); 11976 return (1); 11977 } 11978 11979 /* 11980 * Try to free a mkdir dependency. 11981 */ 11982 static void 11983 complete_mkdir(mkdir) 11984 struct mkdir *mkdir; 11985 { 11986 struct diradd *dap; 11987 11988 if ((mkdir->md_state & ALLCOMPLETE) != ALLCOMPLETE) 11989 return; 11990 LIST_REMOVE(mkdir, md_mkdirs); 11991 dap = mkdir->md_diradd; 11992 dap->da_state &= ~(mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY)); 11993 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0) { 11994 dap->da_state |= DEPCOMPLETE; 11995 complete_diradd(dap); 11996 } 11997 WORKITEM_FREE(mkdir, D_MKDIR); 11998 } 11999 12000 /* 12001 * Handle the completion of a mkdir dependency. 12002 */ 12003 static void 12004 handle_written_mkdir(mkdir, type) 12005 struct mkdir *mkdir; 12006 int type; 12007 { 12008 12009 if ((mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY)) != type) 12010 panic("handle_written_mkdir: bad type"); 12011 mkdir->md_state |= COMPLETE; 12012 complete_mkdir(mkdir); 12013 } 12014 12015 static int 12016 free_pagedep(pagedep) 12017 struct pagedep *pagedep; 12018 { 12019 int i; 12020 12021 if (pagedep->pd_state & NEWBLOCK) 12022 return (0); 12023 if (!LIST_EMPTY(&pagedep->pd_dirremhd)) 12024 return (0); 12025 for (i = 0; i < DAHASHSZ; i++) 12026 if (!LIST_EMPTY(&pagedep->pd_diraddhd[i])) 12027 return (0); 12028 if (!LIST_EMPTY(&pagedep->pd_pendinghd)) 12029 return (0); 12030 if (!LIST_EMPTY(&pagedep->pd_jmvrefhd)) 12031 return (0); 12032 if (pagedep->pd_state & ONWORKLIST) 12033 WORKLIST_REMOVE(&pagedep->pd_list); 12034 LIST_REMOVE(pagedep, pd_hash); 12035 WORKITEM_FREE(pagedep, D_PAGEDEP); 12036 12037 return (1); 12038 } 12039 12040 /* 12041 * Called from within softdep_disk_write_complete above. 12042 * A write operation was just completed. Removed inodes can 12043 * now be freed and associated block pointers may be committed. 12044 * Note that this routine is always called from interrupt level 12045 * with further interrupts from this device blocked. 12046 * 12047 * If the write did not succeed, we will do all the roll-forward 12048 * operations, but we will not take the actions that will allow its 12049 * dependencies to be processed. 12050 */ 12051 static int 12052 handle_written_filepage(pagedep, bp, flags) 12053 struct pagedep *pagedep; 12054 struct buf *bp; /* buffer containing the written page */ 12055 int flags; 12056 { 12057 struct dirrem *dirrem; 12058 struct diradd *dap, *nextdap; 12059 struct direct *ep; 12060 int i, chgs; 12061 12062 if ((pagedep->pd_state & IOSTARTED) == 0) 12063 panic("handle_written_filepage: not started"); 12064 pagedep->pd_state &= ~IOSTARTED; 12065 if ((flags & WRITESUCCEEDED) == 0) 12066 goto rollforward; 12067 /* 12068 * Process any directory removals that have been committed. 12069 */ 12070 while ((dirrem = LIST_FIRST(&pagedep->pd_dirremhd)) != NULL) { 12071 LIST_REMOVE(dirrem, dm_next); 12072 dirrem->dm_state |= COMPLETE; 12073 dirrem->dm_dirinum = pagedep->pd_ino; 12074 KASSERT(LIST_EMPTY(&dirrem->dm_jremrefhd), 12075 ("handle_written_filepage: Journal entries not written.")); 12076 add_to_worklist(&dirrem->dm_list, 0); 12077 } 12078 /* 12079 * Free any directory additions that have been committed. 12080 * If it is a newly allocated block, we have to wait until 12081 * the on-disk directory inode claims the new block. 12082 */ 12083 if ((pagedep->pd_state & NEWBLOCK) == 0) 12084 while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL) 12085 free_diradd(dap, NULL); 12086 rollforward: 12087 /* 12088 * Uncommitted directory entries must be restored. 12089 */ 12090 for (chgs = 0, i = 0; i < DAHASHSZ; i++) { 12091 for (dap = LIST_FIRST(&pagedep->pd_diraddhd[i]); dap; 12092 dap = nextdap) { 12093 nextdap = LIST_NEXT(dap, da_pdlist); 12094 if (dap->da_state & ATTACHED) 12095 panic("handle_written_filepage: attached"); 12096 ep = (struct direct *) 12097 ((char *)bp->b_data + dap->da_offset); 12098 ep->d_ino = dap->da_newinum; 12099 dap->da_state &= ~UNDONE; 12100 dap->da_state |= ATTACHED; 12101 chgs = 1; 12102 /* 12103 * If the inode referenced by the directory has 12104 * been written out, then the dependency can be 12105 * moved to the pending list. 12106 */ 12107 if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) { 12108 LIST_REMOVE(dap, da_pdlist); 12109 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, 12110 da_pdlist); 12111 } 12112 } 12113 } 12114 /* 12115 * If there were any rollbacks in the directory, then it must be 12116 * marked dirty so that its will eventually get written back in 12117 * its correct form. 12118 */ 12119 if (chgs || (flags & WRITESUCCEEDED) == 0) { 12120 if ((bp->b_flags & B_DELWRI) == 0) 12121 stat_dir_entry++; 12122 bdirty(bp); 12123 return (1); 12124 } 12125 /* 12126 * If we are not waiting for a new directory block to be 12127 * claimed by its inode, then the pagedep will be freed. 12128 * Otherwise it will remain to track any new entries on 12129 * the page in case they are fsync'ed. 12130 */ 12131 free_pagedep(pagedep); 12132 return (0); 12133 } 12134 12135 /* 12136 * Writing back in-core inode structures. 12137 * 12138 * The filesystem only accesses an inode's contents when it occupies an 12139 * "in-core" inode structure. These "in-core" structures are separate from 12140 * the page frames used to cache inode blocks. Only the latter are 12141 * transferred to/from the disk. So, when the updated contents of the 12142 * "in-core" inode structure are copied to the corresponding in-memory inode 12143 * block, the dependencies are also transferred. The following procedure is 12144 * called when copying a dirty "in-core" inode to a cached inode block. 12145 */ 12146 12147 /* 12148 * Called when an inode is loaded from disk. If the effective link count 12149 * differed from the actual link count when it was last flushed, then we 12150 * need to ensure that the correct effective link count is put back. 12151 */ 12152 void 12153 softdep_load_inodeblock(ip) 12154 struct inode *ip; /* the "in_core" copy of the inode */ 12155 { 12156 struct inodedep *inodedep; 12157 struct ufsmount *ump; 12158 12159 ump = ITOUMP(ip); 12160 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 12161 ("softdep_load_inodeblock called on non-softdep filesystem")); 12162 /* 12163 * Check for alternate nlink count. 12164 */ 12165 ip->i_effnlink = ip->i_nlink; 12166 ACQUIRE_LOCK(ump); 12167 if (inodedep_lookup(UFSTOVFS(ump), ip->i_number, 0, &inodedep) == 0) { 12168 FREE_LOCK(ump); 12169 return; 12170 } 12171 ip->i_effnlink -= inodedep->id_nlinkdelta; 12172 FREE_LOCK(ump); 12173 } 12174 12175 /* 12176 * This routine is called just before the "in-core" inode 12177 * information is to be copied to the in-memory inode block. 12178 * Recall that an inode block contains several inodes. If 12179 * the force flag is set, then the dependencies will be 12180 * cleared so that the update can always be made. Note that 12181 * the buffer is locked when this routine is called, so we 12182 * will never be in the middle of writing the inode block 12183 * to disk. 12184 */ 12185 void 12186 softdep_update_inodeblock(ip, bp, waitfor) 12187 struct inode *ip; /* the "in_core" copy of the inode */ 12188 struct buf *bp; /* the buffer containing the inode block */ 12189 int waitfor; /* nonzero => update must be allowed */ 12190 { 12191 struct inodedep *inodedep; 12192 struct inoref *inoref; 12193 struct ufsmount *ump; 12194 struct worklist *wk; 12195 struct mount *mp; 12196 struct buf *ibp; 12197 struct fs *fs; 12198 int error; 12199 12200 ump = ITOUMP(ip); 12201 mp = UFSTOVFS(ump); 12202 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 12203 ("softdep_update_inodeblock called on non-softdep filesystem")); 12204 fs = ump->um_fs; 12205 /* 12206 * Preserve the freelink that is on disk. clear_unlinked_inodedep() 12207 * does not have access to the in-core ip so must write directly into 12208 * the inode block buffer when setting freelink. 12209 */ 12210 if (fs->fs_magic == FS_UFS1_MAGIC) 12211 DIP_SET(ip, i_freelink, ((struct ufs1_dinode *)bp->b_data + 12212 ino_to_fsbo(fs, ip->i_number))->di_freelink); 12213 else 12214 DIP_SET(ip, i_freelink, ((struct ufs2_dinode *)bp->b_data + 12215 ino_to_fsbo(fs, ip->i_number))->di_freelink); 12216 /* 12217 * If the effective link count is not equal to the actual link 12218 * count, then we must track the difference in an inodedep while 12219 * the inode is (potentially) tossed out of the cache. Otherwise, 12220 * if there is no existing inodedep, then there are no dependencies 12221 * to track. 12222 */ 12223 ACQUIRE_LOCK(ump); 12224 again: 12225 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) { 12226 FREE_LOCK(ump); 12227 if (ip->i_effnlink != ip->i_nlink) 12228 panic("softdep_update_inodeblock: bad link count"); 12229 return; 12230 } 12231 if (inodedep->id_nlinkdelta != ip->i_nlink - ip->i_effnlink) 12232 panic("softdep_update_inodeblock: bad delta"); 12233 /* 12234 * If we're flushing all dependencies we must also move any waiting 12235 * for journal writes onto the bufwait list prior to I/O. 12236 */ 12237 if (waitfor) { 12238 TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) { 12239 if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY)) 12240 == DEPCOMPLETE) { 12241 jwait(&inoref->if_list, MNT_WAIT); 12242 goto again; 12243 } 12244 } 12245 } 12246 /* 12247 * Changes have been initiated. Anything depending on these 12248 * changes cannot occur until this inode has been written. 12249 */ 12250 inodedep->id_state &= ~COMPLETE; 12251 if ((inodedep->id_state & ONWORKLIST) == 0) 12252 WORKLIST_INSERT(&bp->b_dep, &inodedep->id_list); 12253 /* 12254 * Any new dependencies associated with the incore inode must 12255 * now be moved to the list associated with the buffer holding 12256 * the in-memory copy of the inode. Once merged process any 12257 * allocdirects that are completed by the merger. 12258 */ 12259 merge_inode_lists(&inodedep->id_newinoupdt, &inodedep->id_inoupdt); 12260 if (!TAILQ_EMPTY(&inodedep->id_inoupdt)) 12261 handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_inoupdt), 12262 NULL); 12263 merge_inode_lists(&inodedep->id_newextupdt, &inodedep->id_extupdt); 12264 if (!TAILQ_EMPTY(&inodedep->id_extupdt)) 12265 handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_extupdt), 12266 NULL); 12267 /* 12268 * Now that the inode has been pushed into the buffer, the 12269 * operations dependent on the inode being written to disk 12270 * can be moved to the id_bufwait so that they will be 12271 * processed when the buffer I/O completes. 12272 */ 12273 while ((wk = LIST_FIRST(&inodedep->id_inowait)) != NULL) { 12274 WORKLIST_REMOVE(wk); 12275 WORKLIST_INSERT(&inodedep->id_bufwait, wk); 12276 } 12277 /* 12278 * Newly allocated inodes cannot be written until the bitmap 12279 * that allocates them have been written (indicated by 12280 * DEPCOMPLETE being set in id_state). If we are doing a 12281 * forced sync (e.g., an fsync on a file), we force the bitmap 12282 * to be written so that the update can be done. 12283 */ 12284 if (waitfor == 0) { 12285 FREE_LOCK(ump); 12286 return; 12287 } 12288 retry: 12289 if ((inodedep->id_state & (DEPCOMPLETE | GOINGAWAY)) != 0) { 12290 FREE_LOCK(ump); 12291 return; 12292 } 12293 ibp = inodedep->id_bmsafemap->sm_buf; 12294 ibp = getdirtybuf(ibp, LOCK_PTR(ump), MNT_WAIT); 12295 if (ibp == NULL) { 12296 /* 12297 * If ibp came back as NULL, the dependency could have been 12298 * freed while we slept. Look it up again, and check to see 12299 * that it has completed. 12300 */ 12301 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0) 12302 goto retry; 12303 FREE_LOCK(ump); 12304 return; 12305 } 12306 FREE_LOCK(ump); 12307 if ((error = bwrite(ibp)) != 0) 12308 softdep_error("softdep_update_inodeblock: bwrite", error); 12309 } 12310 12311 /* 12312 * Merge the a new inode dependency list (such as id_newinoupdt) into an 12313 * old inode dependency list (such as id_inoupdt). This routine must be 12314 * called with splbio interrupts blocked. 12315 */ 12316 static void 12317 merge_inode_lists(newlisthead, oldlisthead) 12318 struct allocdirectlst *newlisthead; 12319 struct allocdirectlst *oldlisthead; 12320 { 12321 struct allocdirect *listadp, *newadp; 12322 12323 newadp = TAILQ_FIRST(newlisthead); 12324 for (listadp = TAILQ_FIRST(oldlisthead); listadp && newadp;) { 12325 if (listadp->ad_offset < newadp->ad_offset) { 12326 listadp = TAILQ_NEXT(listadp, ad_next); 12327 continue; 12328 } 12329 TAILQ_REMOVE(newlisthead, newadp, ad_next); 12330 TAILQ_INSERT_BEFORE(listadp, newadp, ad_next); 12331 if (listadp->ad_offset == newadp->ad_offset) { 12332 allocdirect_merge(oldlisthead, newadp, 12333 listadp); 12334 listadp = newadp; 12335 } 12336 newadp = TAILQ_FIRST(newlisthead); 12337 } 12338 while ((newadp = TAILQ_FIRST(newlisthead)) != NULL) { 12339 TAILQ_REMOVE(newlisthead, newadp, ad_next); 12340 TAILQ_INSERT_TAIL(oldlisthead, newadp, ad_next); 12341 } 12342 } 12343 12344 /* 12345 * If we are doing an fsync, then we must ensure that any directory 12346 * entries for the inode have been written after the inode gets to disk. 12347 */ 12348 int 12349 softdep_fsync(vp) 12350 struct vnode *vp; /* the "in_core" copy of the inode */ 12351 { 12352 struct inodedep *inodedep; 12353 struct pagedep *pagedep; 12354 struct inoref *inoref; 12355 struct ufsmount *ump; 12356 struct worklist *wk; 12357 struct diradd *dap; 12358 struct mount *mp; 12359 struct vnode *pvp; 12360 struct inode *ip; 12361 struct buf *bp; 12362 struct fs *fs; 12363 struct thread *td = curthread; 12364 int error, flushparent, pagedep_new_block; 12365 ino_t parentino; 12366 ufs_lbn_t lbn; 12367 12368 ip = VTOI(vp); 12369 mp = vp->v_mount; 12370 ump = VFSTOUFS(mp); 12371 fs = ump->um_fs; 12372 if (MOUNTEDSOFTDEP(mp) == 0) 12373 return (0); 12374 ACQUIRE_LOCK(ump); 12375 restart: 12376 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) { 12377 FREE_LOCK(ump); 12378 return (0); 12379 } 12380 TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) { 12381 if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY)) 12382 == DEPCOMPLETE) { 12383 jwait(&inoref->if_list, MNT_WAIT); 12384 goto restart; 12385 } 12386 } 12387 if (!LIST_EMPTY(&inodedep->id_inowait) || 12388 !TAILQ_EMPTY(&inodedep->id_extupdt) || 12389 !TAILQ_EMPTY(&inodedep->id_newextupdt) || 12390 !TAILQ_EMPTY(&inodedep->id_inoupdt) || 12391 !TAILQ_EMPTY(&inodedep->id_newinoupdt)) 12392 panic("softdep_fsync: pending ops %p", inodedep); 12393 for (error = 0, flushparent = 0; ; ) { 12394 if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) == NULL) 12395 break; 12396 if (wk->wk_type != D_DIRADD) 12397 panic("softdep_fsync: Unexpected type %s", 12398 TYPENAME(wk->wk_type)); 12399 dap = WK_DIRADD(wk); 12400 /* 12401 * Flush our parent if this directory entry has a MKDIR_PARENT 12402 * dependency or is contained in a newly allocated block. 12403 */ 12404 if (dap->da_state & DIRCHG) 12405 pagedep = dap->da_previous->dm_pagedep; 12406 else 12407 pagedep = dap->da_pagedep; 12408 parentino = pagedep->pd_ino; 12409 lbn = pagedep->pd_lbn; 12410 if ((dap->da_state & (MKDIR_BODY | COMPLETE)) != COMPLETE) 12411 panic("softdep_fsync: dirty"); 12412 if ((dap->da_state & MKDIR_PARENT) || 12413 (pagedep->pd_state & NEWBLOCK)) 12414 flushparent = 1; 12415 else 12416 flushparent = 0; 12417 /* 12418 * If we are being fsync'ed as part of vgone'ing this vnode, 12419 * then we will not be able to release and recover the 12420 * vnode below, so we just have to give up on writing its 12421 * directory entry out. It will eventually be written, just 12422 * not now, but then the user was not asking to have it 12423 * written, so we are not breaking any promises. 12424 */ 12425 if (vp->v_iflag & VI_DOOMED) 12426 break; 12427 /* 12428 * We prevent deadlock by always fetching inodes from the 12429 * root, moving down the directory tree. Thus, when fetching 12430 * our parent directory, we first try to get the lock. If 12431 * that fails, we must unlock ourselves before requesting 12432 * the lock on our parent. See the comment in ufs_lookup 12433 * for details on possible races. 12434 */ 12435 FREE_LOCK(ump); 12436 if (ffs_vgetf(mp, parentino, LK_NOWAIT | LK_EXCLUSIVE, &pvp, 12437 FFSV_FORCEINSMQ)) { 12438 error = vfs_busy(mp, MBF_NOWAIT); 12439 if (error != 0) { 12440 vfs_ref(mp); 12441 VOP_UNLOCK(vp, 0); 12442 error = vfs_busy(mp, 0); 12443 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 12444 vfs_rel(mp); 12445 if (error != 0) 12446 return (ENOENT); 12447 if (vp->v_iflag & VI_DOOMED) { 12448 vfs_unbusy(mp); 12449 return (ENOENT); 12450 } 12451 } 12452 VOP_UNLOCK(vp, 0); 12453 error = ffs_vgetf(mp, parentino, LK_EXCLUSIVE, 12454 &pvp, FFSV_FORCEINSMQ); 12455 vfs_unbusy(mp); 12456 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 12457 if (vp->v_iflag & VI_DOOMED) { 12458 if (error == 0) 12459 vput(pvp); 12460 error = ENOENT; 12461 } 12462 if (error != 0) 12463 return (error); 12464 } 12465 /* 12466 * All MKDIR_PARENT dependencies and all the NEWBLOCK pagedeps 12467 * that are contained in direct blocks will be resolved by 12468 * doing a ffs_update. Pagedeps contained in indirect blocks 12469 * may require a complete sync'ing of the directory. So, we 12470 * try the cheap and fast ffs_update first, and if that fails, 12471 * then we do the slower ffs_syncvnode of the directory. 12472 */ 12473 if (flushparent) { 12474 int locked; 12475 12476 if ((error = ffs_update(pvp, 1)) != 0) { 12477 vput(pvp); 12478 return (error); 12479 } 12480 ACQUIRE_LOCK(ump); 12481 locked = 1; 12482 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0) { 12483 if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) != NULL) { 12484 if (wk->wk_type != D_DIRADD) 12485 panic("softdep_fsync: Unexpected type %s", 12486 TYPENAME(wk->wk_type)); 12487 dap = WK_DIRADD(wk); 12488 if (dap->da_state & DIRCHG) 12489 pagedep = dap->da_previous->dm_pagedep; 12490 else 12491 pagedep = dap->da_pagedep; 12492 pagedep_new_block = pagedep->pd_state & NEWBLOCK; 12493 FREE_LOCK(ump); 12494 locked = 0; 12495 if (pagedep_new_block && (error = 12496 ffs_syncvnode(pvp, MNT_WAIT, 0))) { 12497 vput(pvp); 12498 return (error); 12499 } 12500 } 12501 } 12502 if (locked) 12503 FREE_LOCK(ump); 12504 } 12505 /* 12506 * Flush directory page containing the inode's name. 12507 */ 12508 error = bread(pvp, lbn, blksize(fs, VTOI(pvp), lbn), td->td_ucred, 12509 &bp); 12510 if (error == 0) 12511 error = bwrite(bp); 12512 else 12513 brelse(bp); 12514 vput(pvp); 12515 if (error != 0) 12516 return (error); 12517 ACQUIRE_LOCK(ump); 12518 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) 12519 break; 12520 } 12521 FREE_LOCK(ump); 12522 return (0); 12523 } 12524 12525 /* 12526 * Flush all the dirty bitmaps associated with the block device 12527 * before flushing the rest of the dirty blocks so as to reduce 12528 * the number of dependencies that will have to be rolled back. 12529 * 12530 * XXX Unused? 12531 */ 12532 void 12533 softdep_fsync_mountdev(vp) 12534 struct vnode *vp; 12535 { 12536 struct buf *bp, *nbp; 12537 struct worklist *wk; 12538 struct bufobj *bo; 12539 12540 if (!vn_isdisk(vp, NULL)) 12541 panic("softdep_fsync_mountdev: vnode not a disk"); 12542 bo = &vp->v_bufobj; 12543 restart: 12544 BO_LOCK(bo); 12545 TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) { 12546 /* 12547 * If it is already scheduled, skip to the next buffer. 12548 */ 12549 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL)) 12550 continue; 12551 12552 if ((bp->b_flags & B_DELWRI) == 0) 12553 panic("softdep_fsync_mountdev: not dirty"); 12554 /* 12555 * We are only interested in bitmaps with outstanding 12556 * dependencies. 12557 */ 12558 if ((wk = LIST_FIRST(&bp->b_dep)) == NULL || 12559 wk->wk_type != D_BMSAFEMAP || 12560 (bp->b_vflags & BV_BKGRDINPROG)) { 12561 BUF_UNLOCK(bp); 12562 continue; 12563 } 12564 BO_UNLOCK(bo); 12565 bremfree(bp); 12566 (void) bawrite(bp); 12567 goto restart; 12568 } 12569 drain_output(vp); 12570 BO_UNLOCK(bo); 12571 } 12572 12573 /* 12574 * Sync all cylinder groups that were dirty at the time this function is 12575 * called. Newly dirtied cgs will be inserted before the sentinel. This 12576 * is used to flush freedep activity that may be holding up writes to a 12577 * indirect block. 12578 */ 12579 static int 12580 sync_cgs(mp, waitfor) 12581 struct mount *mp; 12582 int waitfor; 12583 { 12584 struct bmsafemap *bmsafemap; 12585 struct bmsafemap *sentinel; 12586 struct ufsmount *ump; 12587 struct buf *bp; 12588 int error; 12589 12590 sentinel = malloc(sizeof(*sentinel), M_BMSAFEMAP, M_ZERO | M_WAITOK); 12591 sentinel->sm_cg = -1; 12592 ump = VFSTOUFS(mp); 12593 error = 0; 12594 ACQUIRE_LOCK(ump); 12595 LIST_INSERT_HEAD(&ump->softdep_dirtycg, sentinel, sm_next); 12596 for (bmsafemap = LIST_NEXT(sentinel, sm_next); bmsafemap != NULL; 12597 bmsafemap = LIST_NEXT(sentinel, sm_next)) { 12598 /* Skip sentinels and cgs with no work to release. */ 12599 if (bmsafemap->sm_cg == -1 || 12600 (LIST_EMPTY(&bmsafemap->sm_freehd) && 12601 LIST_EMPTY(&bmsafemap->sm_freewr))) { 12602 LIST_REMOVE(sentinel, sm_next); 12603 LIST_INSERT_AFTER(bmsafemap, sentinel, sm_next); 12604 continue; 12605 } 12606 /* 12607 * If we don't get the lock and we're waiting try again, if 12608 * not move on to the next buf and try to sync it. 12609 */ 12610 bp = getdirtybuf(bmsafemap->sm_buf, LOCK_PTR(ump), waitfor); 12611 if (bp == NULL && waitfor == MNT_WAIT) 12612 continue; 12613 LIST_REMOVE(sentinel, sm_next); 12614 LIST_INSERT_AFTER(bmsafemap, sentinel, sm_next); 12615 if (bp == NULL) 12616 continue; 12617 FREE_LOCK(ump); 12618 if (waitfor == MNT_NOWAIT) 12619 bawrite(bp); 12620 else 12621 error = bwrite(bp); 12622 ACQUIRE_LOCK(ump); 12623 if (error) 12624 break; 12625 } 12626 LIST_REMOVE(sentinel, sm_next); 12627 FREE_LOCK(ump); 12628 free(sentinel, M_BMSAFEMAP); 12629 return (error); 12630 } 12631 12632 /* 12633 * This routine is called when we are trying to synchronously flush a 12634 * file. This routine must eliminate any filesystem metadata dependencies 12635 * so that the syncing routine can succeed. 12636 */ 12637 int 12638 softdep_sync_metadata(struct vnode *vp) 12639 { 12640 struct inode *ip; 12641 int error; 12642 12643 ip = VTOI(vp); 12644 KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0, 12645 ("softdep_sync_metadata called on non-softdep filesystem")); 12646 /* 12647 * Ensure that any direct block dependencies have been cleared, 12648 * truncations are started, and inode references are journaled. 12649 */ 12650 ACQUIRE_LOCK(VFSTOUFS(vp->v_mount)); 12651 /* 12652 * Write all journal records to prevent rollbacks on devvp. 12653 */ 12654 if (vp->v_type == VCHR) 12655 softdep_flushjournal(vp->v_mount); 12656 error = flush_inodedep_deps(vp, vp->v_mount, ip->i_number); 12657 /* 12658 * Ensure that all truncates are written so we won't find deps on 12659 * indirect blocks. 12660 */ 12661 process_truncates(vp); 12662 FREE_LOCK(VFSTOUFS(vp->v_mount)); 12663 12664 return (error); 12665 } 12666 12667 /* 12668 * This routine is called when we are attempting to sync a buf with 12669 * dependencies. If waitfor is MNT_NOWAIT it attempts to schedule any 12670 * other IO it can but returns EBUSY if the buffer is not yet able to 12671 * be written. Dependencies which will not cause rollbacks will always 12672 * return 0. 12673 */ 12674 int 12675 softdep_sync_buf(struct vnode *vp, struct buf *bp, int waitfor) 12676 { 12677 struct indirdep *indirdep; 12678 struct pagedep *pagedep; 12679 struct allocindir *aip; 12680 struct newblk *newblk; 12681 struct ufsmount *ump; 12682 struct buf *nbp; 12683 struct worklist *wk; 12684 int i, error; 12685 12686 KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0, 12687 ("softdep_sync_buf called on non-softdep filesystem")); 12688 /* 12689 * For VCHR we just don't want to force flush any dependencies that 12690 * will cause rollbacks. 12691 */ 12692 if (vp->v_type == VCHR) { 12693 if (waitfor == MNT_NOWAIT && softdep_count_dependencies(bp, 0)) 12694 return (EBUSY); 12695 return (0); 12696 } 12697 ump = VFSTOUFS(vp->v_mount); 12698 ACQUIRE_LOCK(ump); 12699 /* 12700 * As we hold the buffer locked, none of its dependencies 12701 * will disappear. 12702 */ 12703 error = 0; 12704 top: 12705 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 12706 switch (wk->wk_type) { 12707 12708 case D_ALLOCDIRECT: 12709 case D_ALLOCINDIR: 12710 newblk = WK_NEWBLK(wk); 12711 if (newblk->nb_jnewblk != NULL) { 12712 if (waitfor == MNT_NOWAIT) { 12713 error = EBUSY; 12714 goto out_unlock; 12715 } 12716 jwait(&newblk->nb_jnewblk->jn_list, waitfor); 12717 goto top; 12718 } 12719 if (newblk->nb_state & DEPCOMPLETE || 12720 waitfor == MNT_NOWAIT) 12721 continue; 12722 nbp = newblk->nb_bmsafemap->sm_buf; 12723 nbp = getdirtybuf(nbp, LOCK_PTR(ump), waitfor); 12724 if (nbp == NULL) 12725 goto top; 12726 FREE_LOCK(ump); 12727 if ((error = bwrite(nbp)) != 0) 12728 goto out; 12729 ACQUIRE_LOCK(ump); 12730 continue; 12731 12732 case D_INDIRDEP: 12733 indirdep = WK_INDIRDEP(wk); 12734 if (waitfor == MNT_NOWAIT) { 12735 if (!TAILQ_EMPTY(&indirdep->ir_trunc) || 12736 !LIST_EMPTY(&indirdep->ir_deplisthd)) { 12737 error = EBUSY; 12738 goto out_unlock; 12739 } 12740 } 12741 if (!TAILQ_EMPTY(&indirdep->ir_trunc)) 12742 panic("softdep_sync_buf: truncation pending."); 12743 restart: 12744 LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) { 12745 newblk = (struct newblk *)aip; 12746 if (newblk->nb_jnewblk != NULL) { 12747 jwait(&newblk->nb_jnewblk->jn_list, 12748 waitfor); 12749 goto restart; 12750 } 12751 if (newblk->nb_state & DEPCOMPLETE) 12752 continue; 12753 nbp = newblk->nb_bmsafemap->sm_buf; 12754 nbp = getdirtybuf(nbp, LOCK_PTR(ump), waitfor); 12755 if (nbp == NULL) 12756 goto restart; 12757 FREE_LOCK(ump); 12758 if ((error = bwrite(nbp)) != 0) 12759 goto out; 12760 ACQUIRE_LOCK(ump); 12761 goto restart; 12762 } 12763 continue; 12764 12765 case D_PAGEDEP: 12766 /* 12767 * Only flush directory entries in synchronous passes. 12768 */ 12769 if (waitfor != MNT_WAIT) { 12770 error = EBUSY; 12771 goto out_unlock; 12772 } 12773 /* 12774 * While syncing snapshots, we must allow recursive 12775 * lookups. 12776 */ 12777 BUF_AREC(bp); 12778 /* 12779 * We are trying to sync a directory that may 12780 * have dependencies on both its own metadata 12781 * and/or dependencies on the inodes of any 12782 * recently allocated files. We walk its diradd 12783 * lists pushing out the associated inode. 12784 */ 12785 pagedep = WK_PAGEDEP(wk); 12786 for (i = 0; i < DAHASHSZ; i++) { 12787 if (LIST_FIRST(&pagedep->pd_diraddhd[i]) == 0) 12788 continue; 12789 if ((error = flush_pagedep_deps(vp, wk->wk_mp, 12790 &pagedep->pd_diraddhd[i]))) { 12791 BUF_NOREC(bp); 12792 goto out_unlock; 12793 } 12794 } 12795 BUF_NOREC(bp); 12796 continue; 12797 12798 case D_FREEWORK: 12799 case D_FREEDEP: 12800 case D_JSEGDEP: 12801 case D_JNEWBLK: 12802 continue; 12803 12804 default: 12805 panic("softdep_sync_buf: Unknown type %s", 12806 TYPENAME(wk->wk_type)); 12807 /* NOTREACHED */ 12808 } 12809 } 12810 out_unlock: 12811 FREE_LOCK(ump); 12812 out: 12813 return (error); 12814 } 12815 12816 /* 12817 * Flush the dependencies associated with an inodedep. 12818 * Called with splbio blocked. 12819 */ 12820 static int 12821 flush_inodedep_deps(vp, mp, ino) 12822 struct vnode *vp; 12823 struct mount *mp; 12824 ino_t ino; 12825 { 12826 struct inodedep *inodedep; 12827 struct inoref *inoref; 12828 struct ufsmount *ump; 12829 int error, waitfor; 12830 12831 /* 12832 * This work is done in two passes. The first pass grabs most 12833 * of the buffers and begins asynchronously writing them. The 12834 * only way to wait for these asynchronous writes is to sleep 12835 * on the filesystem vnode which may stay busy for a long time 12836 * if the filesystem is active. So, instead, we make a second 12837 * pass over the dependencies blocking on each write. In the 12838 * usual case we will be blocking against a write that we 12839 * initiated, so when it is done the dependency will have been 12840 * resolved. Thus the second pass is expected to end quickly. 12841 * We give a brief window at the top of the loop to allow 12842 * any pending I/O to complete. 12843 */ 12844 ump = VFSTOUFS(mp); 12845 LOCK_OWNED(ump); 12846 for (error = 0, waitfor = MNT_NOWAIT; ; ) { 12847 if (error) 12848 return (error); 12849 FREE_LOCK(ump); 12850 ACQUIRE_LOCK(ump); 12851 restart: 12852 if (inodedep_lookup(mp, ino, 0, &inodedep) == 0) 12853 return (0); 12854 TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) { 12855 if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY)) 12856 == DEPCOMPLETE) { 12857 jwait(&inoref->if_list, MNT_WAIT); 12858 goto restart; 12859 } 12860 } 12861 if (flush_deplist(&inodedep->id_inoupdt, waitfor, &error) || 12862 flush_deplist(&inodedep->id_newinoupdt, waitfor, &error) || 12863 flush_deplist(&inodedep->id_extupdt, waitfor, &error) || 12864 flush_deplist(&inodedep->id_newextupdt, waitfor, &error)) 12865 continue; 12866 /* 12867 * If pass2, we are done, otherwise do pass 2. 12868 */ 12869 if (waitfor == MNT_WAIT) 12870 break; 12871 waitfor = MNT_WAIT; 12872 } 12873 /* 12874 * Try freeing inodedep in case all dependencies have been removed. 12875 */ 12876 if (inodedep_lookup(mp, ino, 0, &inodedep) != 0) 12877 (void) free_inodedep(inodedep); 12878 return (0); 12879 } 12880 12881 /* 12882 * Flush an inode dependency list. 12883 * Called with splbio blocked. 12884 */ 12885 static int 12886 flush_deplist(listhead, waitfor, errorp) 12887 struct allocdirectlst *listhead; 12888 int waitfor; 12889 int *errorp; 12890 { 12891 struct allocdirect *adp; 12892 struct newblk *newblk; 12893 struct ufsmount *ump; 12894 struct buf *bp; 12895 12896 if ((adp = TAILQ_FIRST(listhead)) == NULL) 12897 return (0); 12898 ump = VFSTOUFS(adp->ad_list.wk_mp); 12899 LOCK_OWNED(ump); 12900 TAILQ_FOREACH(adp, listhead, ad_next) { 12901 newblk = (struct newblk *)adp; 12902 if (newblk->nb_jnewblk != NULL) { 12903 jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT); 12904 return (1); 12905 } 12906 if (newblk->nb_state & DEPCOMPLETE) 12907 continue; 12908 bp = newblk->nb_bmsafemap->sm_buf; 12909 bp = getdirtybuf(bp, LOCK_PTR(ump), waitfor); 12910 if (bp == NULL) { 12911 if (waitfor == MNT_NOWAIT) 12912 continue; 12913 return (1); 12914 } 12915 FREE_LOCK(ump); 12916 if (waitfor == MNT_NOWAIT) 12917 bawrite(bp); 12918 else 12919 *errorp = bwrite(bp); 12920 ACQUIRE_LOCK(ump); 12921 return (1); 12922 } 12923 return (0); 12924 } 12925 12926 /* 12927 * Flush dependencies associated with an allocdirect block. 12928 */ 12929 static int 12930 flush_newblk_dep(vp, mp, lbn) 12931 struct vnode *vp; 12932 struct mount *mp; 12933 ufs_lbn_t lbn; 12934 { 12935 struct newblk *newblk; 12936 struct ufsmount *ump; 12937 struct bufobj *bo; 12938 struct inode *ip; 12939 struct buf *bp; 12940 ufs2_daddr_t blkno; 12941 int error; 12942 12943 error = 0; 12944 bo = &vp->v_bufobj; 12945 ip = VTOI(vp); 12946 blkno = DIP(ip, i_db[lbn]); 12947 if (blkno == 0) 12948 panic("flush_newblk_dep: Missing block"); 12949 ump = VFSTOUFS(mp); 12950 ACQUIRE_LOCK(ump); 12951 /* 12952 * Loop until all dependencies related to this block are satisfied. 12953 * We must be careful to restart after each sleep in case a write 12954 * completes some part of this process for us. 12955 */ 12956 for (;;) { 12957 if (newblk_lookup(mp, blkno, 0, &newblk) == 0) { 12958 FREE_LOCK(ump); 12959 break; 12960 } 12961 if (newblk->nb_list.wk_type != D_ALLOCDIRECT) 12962 panic("flush_newblk_deps: Bad newblk %p", newblk); 12963 /* 12964 * Flush the journal. 12965 */ 12966 if (newblk->nb_jnewblk != NULL) { 12967 jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT); 12968 continue; 12969 } 12970 /* 12971 * Write the bitmap dependency. 12972 */ 12973 if ((newblk->nb_state & DEPCOMPLETE) == 0) { 12974 bp = newblk->nb_bmsafemap->sm_buf; 12975 bp = getdirtybuf(bp, LOCK_PTR(ump), MNT_WAIT); 12976 if (bp == NULL) 12977 continue; 12978 FREE_LOCK(ump); 12979 error = bwrite(bp); 12980 if (error) 12981 break; 12982 ACQUIRE_LOCK(ump); 12983 continue; 12984 } 12985 /* 12986 * Write the buffer. 12987 */ 12988 FREE_LOCK(ump); 12989 BO_LOCK(bo); 12990 bp = gbincore(bo, lbn); 12991 if (bp != NULL) { 12992 error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL | 12993 LK_INTERLOCK, BO_LOCKPTR(bo)); 12994 if (error == ENOLCK) { 12995 ACQUIRE_LOCK(ump); 12996 error = 0; 12997 continue; /* Slept, retry */ 12998 } 12999 if (error != 0) 13000 break; /* Failed */ 13001 if (bp->b_flags & B_DELWRI) { 13002 bremfree(bp); 13003 error = bwrite(bp); 13004 if (error) 13005 break; 13006 } else 13007 BUF_UNLOCK(bp); 13008 } else 13009 BO_UNLOCK(bo); 13010 /* 13011 * We have to wait for the direct pointers to 13012 * point at the newdirblk before the dependency 13013 * will go away. 13014 */ 13015 error = ffs_update(vp, 1); 13016 if (error) 13017 break; 13018 ACQUIRE_LOCK(ump); 13019 } 13020 return (error); 13021 } 13022 13023 /* 13024 * Eliminate a pagedep dependency by flushing out all its diradd dependencies. 13025 * Called with splbio blocked. 13026 */ 13027 static int 13028 flush_pagedep_deps(pvp, mp, diraddhdp) 13029 struct vnode *pvp; 13030 struct mount *mp; 13031 struct diraddhd *diraddhdp; 13032 { 13033 struct inodedep *inodedep; 13034 struct inoref *inoref; 13035 struct ufsmount *ump; 13036 struct diradd *dap; 13037 struct vnode *vp; 13038 int error = 0; 13039 struct buf *bp; 13040 ino_t inum; 13041 struct diraddhd unfinished; 13042 13043 LIST_INIT(&unfinished); 13044 ump = VFSTOUFS(mp); 13045 LOCK_OWNED(ump); 13046 restart: 13047 while ((dap = LIST_FIRST(diraddhdp)) != NULL) { 13048 /* 13049 * Flush ourselves if this directory entry 13050 * has a MKDIR_PARENT dependency. 13051 */ 13052 if (dap->da_state & MKDIR_PARENT) { 13053 FREE_LOCK(ump); 13054 if ((error = ffs_update(pvp, 1)) != 0) 13055 break; 13056 ACQUIRE_LOCK(ump); 13057 /* 13058 * If that cleared dependencies, go on to next. 13059 */ 13060 if (dap != LIST_FIRST(diraddhdp)) 13061 continue; 13062 /* 13063 * All MKDIR_PARENT dependencies and all the 13064 * NEWBLOCK pagedeps that are contained in direct 13065 * blocks were resolved by doing above ffs_update. 13066 * Pagedeps contained in indirect blocks may 13067 * require a complete sync'ing of the directory. 13068 * We are in the midst of doing a complete sync, 13069 * so if they are not resolved in this pass we 13070 * defer them for now as they will be sync'ed by 13071 * our caller shortly. 13072 */ 13073 LIST_REMOVE(dap, da_pdlist); 13074 LIST_INSERT_HEAD(&unfinished, dap, da_pdlist); 13075 continue; 13076 } 13077 /* 13078 * A newly allocated directory must have its "." and 13079 * ".." entries written out before its name can be 13080 * committed in its parent. 13081 */ 13082 inum = dap->da_newinum; 13083 if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0) 13084 panic("flush_pagedep_deps: lost inode1"); 13085 /* 13086 * Wait for any pending journal adds to complete so we don't 13087 * cause rollbacks while syncing. 13088 */ 13089 TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) { 13090 if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY)) 13091 == DEPCOMPLETE) { 13092 jwait(&inoref->if_list, MNT_WAIT); 13093 goto restart; 13094 } 13095 } 13096 if (dap->da_state & MKDIR_BODY) { 13097 FREE_LOCK(ump); 13098 if ((error = ffs_vgetf(mp, inum, LK_EXCLUSIVE, &vp, 13099 FFSV_FORCEINSMQ))) 13100 break; 13101 error = flush_newblk_dep(vp, mp, 0); 13102 /* 13103 * If we still have the dependency we might need to 13104 * update the vnode to sync the new link count to 13105 * disk. 13106 */ 13107 if (error == 0 && dap == LIST_FIRST(diraddhdp)) 13108 error = ffs_update(vp, 1); 13109 vput(vp); 13110 if (error != 0) 13111 break; 13112 ACQUIRE_LOCK(ump); 13113 /* 13114 * If that cleared dependencies, go on to next. 13115 */ 13116 if (dap != LIST_FIRST(diraddhdp)) 13117 continue; 13118 if (dap->da_state & MKDIR_BODY) { 13119 inodedep_lookup(UFSTOVFS(ump), inum, 0, 13120 &inodedep); 13121 panic("flush_pagedep_deps: MKDIR_BODY " 13122 "inodedep %p dap %p vp %p", 13123 inodedep, dap, vp); 13124 } 13125 } 13126 /* 13127 * Flush the inode on which the directory entry depends. 13128 * Having accounted for MKDIR_PARENT and MKDIR_BODY above, 13129 * the only remaining dependency is that the updated inode 13130 * count must get pushed to disk. The inode has already 13131 * been pushed into its inode buffer (via VOP_UPDATE) at 13132 * the time of the reference count change. So we need only 13133 * locate that buffer, ensure that there will be no rollback 13134 * caused by a bitmap dependency, then write the inode buffer. 13135 */ 13136 retry: 13137 if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0) 13138 panic("flush_pagedep_deps: lost inode"); 13139 /* 13140 * If the inode still has bitmap dependencies, 13141 * push them to disk. 13142 */ 13143 if ((inodedep->id_state & (DEPCOMPLETE | GOINGAWAY)) == 0) { 13144 bp = inodedep->id_bmsafemap->sm_buf; 13145 bp = getdirtybuf(bp, LOCK_PTR(ump), MNT_WAIT); 13146 if (bp == NULL) 13147 goto retry; 13148 FREE_LOCK(ump); 13149 if ((error = bwrite(bp)) != 0) 13150 break; 13151 ACQUIRE_LOCK(ump); 13152 if (dap != LIST_FIRST(diraddhdp)) 13153 continue; 13154 } 13155 /* 13156 * If the inode is still sitting in a buffer waiting 13157 * to be written or waiting for the link count to be 13158 * adjusted update it here to flush it to disk. 13159 */ 13160 if (dap == LIST_FIRST(diraddhdp)) { 13161 FREE_LOCK(ump); 13162 if ((error = ffs_vgetf(mp, inum, LK_EXCLUSIVE, &vp, 13163 FFSV_FORCEINSMQ))) 13164 break; 13165 error = ffs_update(vp, 1); 13166 vput(vp); 13167 if (error) 13168 break; 13169 ACQUIRE_LOCK(ump); 13170 } 13171 /* 13172 * If we have failed to get rid of all the dependencies 13173 * then something is seriously wrong. 13174 */ 13175 if (dap == LIST_FIRST(diraddhdp)) { 13176 inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep); 13177 panic("flush_pagedep_deps: failed to flush " 13178 "inodedep %p ino %ju dap %p", 13179 inodedep, (uintmax_t)inum, dap); 13180 } 13181 } 13182 if (error) 13183 ACQUIRE_LOCK(ump); 13184 while ((dap = LIST_FIRST(&unfinished)) != NULL) { 13185 LIST_REMOVE(dap, da_pdlist); 13186 LIST_INSERT_HEAD(diraddhdp, dap, da_pdlist); 13187 } 13188 return (error); 13189 } 13190 13191 /* 13192 * A large burst of file addition or deletion activity can drive the 13193 * memory load excessively high. First attempt to slow things down 13194 * using the techniques below. If that fails, this routine requests 13195 * the offending operations to fall back to running synchronously 13196 * until the memory load returns to a reasonable level. 13197 */ 13198 int 13199 softdep_slowdown(vp) 13200 struct vnode *vp; 13201 { 13202 struct ufsmount *ump; 13203 int jlow; 13204 int max_softdeps_hard; 13205 13206 KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0, 13207 ("softdep_slowdown called on non-softdep filesystem")); 13208 ump = VFSTOUFS(vp->v_mount); 13209 ACQUIRE_LOCK(ump); 13210 jlow = 0; 13211 /* 13212 * Check for journal space if needed. 13213 */ 13214 if (DOINGSUJ(vp)) { 13215 if (journal_space(ump, 0) == 0) 13216 jlow = 1; 13217 } 13218 /* 13219 * If the system is under its limits and our filesystem is 13220 * not responsible for more than our share of the usage and 13221 * we are not low on journal space, then no need to slow down. 13222 */ 13223 max_softdeps_hard = max_softdeps * 11 / 10; 13224 if (dep_current[D_DIRREM] < max_softdeps_hard / 2 && 13225 dep_current[D_INODEDEP] < max_softdeps_hard && 13226 dep_current[D_INDIRDEP] < max_softdeps_hard / 1000 && 13227 dep_current[D_FREEBLKS] < max_softdeps_hard && jlow == 0 && 13228 ump->softdep_curdeps[D_DIRREM] < 13229 (max_softdeps_hard / 2) / stat_flush_threads && 13230 ump->softdep_curdeps[D_INODEDEP] < 13231 max_softdeps_hard / stat_flush_threads && 13232 ump->softdep_curdeps[D_INDIRDEP] < 13233 (max_softdeps_hard / 1000) / stat_flush_threads && 13234 ump->softdep_curdeps[D_FREEBLKS] < 13235 max_softdeps_hard / stat_flush_threads) { 13236 FREE_LOCK(ump); 13237 return (0); 13238 } 13239 /* 13240 * If the journal is low or our filesystem is over its limit 13241 * then speedup the cleanup. 13242 */ 13243 if (ump->softdep_curdeps[D_INDIRDEP] < 13244 (max_softdeps_hard / 1000) / stat_flush_threads || jlow) 13245 softdep_speedup(ump); 13246 stat_sync_limit_hit += 1; 13247 FREE_LOCK(ump); 13248 /* 13249 * We only slow down the rate at which new dependencies are 13250 * generated if we are not using journaling. With journaling, 13251 * the cleanup should always be sufficient to keep things 13252 * under control. 13253 */ 13254 if (DOINGSUJ(vp)) 13255 return (0); 13256 return (1); 13257 } 13258 13259 /* 13260 * Called by the allocation routines when they are about to fail 13261 * in the hope that we can free up the requested resource (inodes 13262 * or disk space). 13263 * 13264 * First check to see if the work list has anything on it. If it has, 13265 * clean up entries until we successfully free the requested resource. 13266 * Because this process holds inodes locked, we cannot handle any remove 13267 * requests that might block on a locked inode as that could lead to 13268 * deadlock. If the worklist yields none of the requested resource, 13269 * start syncing out vnodes to free up the needed space. 13270 */ 13271 int 13272 softdep_request_cleanup(fs, vp, cred, resource) 13273 struct fs *fs; 13274 struct vnode *vp; 13275 struct ucred *cred; 13276 int resource; 13277 { 13278 struct ufsmount *ump; 13279 struct mount *mp; 13280 long starttime; 13281 ufs2_daddr_t needed; 13282 int error, failed_vnode; 13283 13284 /* 13285 * If we are being called because of a process doing a 13286 * copy-on-write, then it is not safe to process any 13287 * worklist items as we will recurse into the copyonwrite 13288 * routine. This will result in an incoherent snapshot. 13289 * If the vnode that we hold is a snapshot, we must avoid 13290 * handling other resources that could cause deadlock. 13291 */ 13292 if ((curthread->td_pflags & TDP_COWINPROGRESS) || IS_SNAPSHOT(VTOI(vp))) 13293 return (0); 13294 13295 if (resource == FLUSH_BLOCKS_WAIT) 13296 stat_cleanup_blkrequests += 1; 13297 else 13298 stat_cleanup_inorequests += 1; 13299 13300 mp = vp->v_mount; 13301 ump = VFSTOUFS(mp); 13302 mtx_assert(UFS_MTX(ump), MA_OWNED); 13303 UFS_UNLOCK(ump); 13304 error = ffs_update(vp, 1); 13305 if (error != 0 || MOUNTEDSOFTDEP(mp) == 0) { 13306 UFS_LOCK(ump); 13307 return (0); 13308 } 13309 /* 13310 * If we are in need of resources, start by cleaning up 13311 * any block removals associated with our inode. 13312 */ 13313 ACQUIRE_LOCK(ump); 13314 process_removes(vp); 13315 process_truncates(vp); 13316 FREE_LOCK(ump); 13317 /* 13318 * Now clean up at least as many resources as we will need. 13319 * 13320 * When requested to clean up inodes, the number that are needed 13321 * is set by the number of simultaneous writers (mnt_writeopcount) 13322 * plus a bit of slop (2) in case some more writers show up while 13323 * we are cleaning. 13324 * 13325 * When requested to free up space, the amount of space that 13326 * we need is enough blocks to allocate a full-sized segment 13327 * (fs_contigsumsize). The number of such segments that will 13328 * be needed is set by the number of simultaneous writers 13329 * (mnt_writeopcount) plus a bit of slop (2) in case some more 13330 * writers show up while we are cleaning. 13331 * 13332 * Additionally, if we are unpriviledged and allocating space, 13333 * we need to ensure that we clean up enough blocks to get the 13334 * needed number of blocks over the threshold of the minimum 13335 * number of blocks required to be kept free by the filesystem 13336 * (fs_minfree). 13337 */ 13338 if (resource == FLUSH_INODES_WAIT) { 13339 needed = vp->v_mount->mnt_writeopcount + 2; 13340 } else if (resource == FLUSH_BLOCKS_WAIT) { 13341 needed = (vp->v_mount->mnt_writeopcount + 2) * 13342 fs->fs_contigsumsize; 13343 if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE, 0)) 13344 needed += fragstoblks(fs, 13345 roundup((fs->fs_dsize * fs->fs_minfree / 100) - 13346 fs->fs_cstotal.cs_nffree, fs->fs_frag)); 13347 } else { 13348 UFS_LOCK(ump); 13349 printf("softdep_request_cleanup: Unknown resource type %d\n", 13350 resource); 13351 return (0); 13352 } 13353 starttime = time_second; 13354 retry: 13355 if ((resource == FLUSH_BLOCKS_WAIT && ump->softdep_on_worklist > 0 && 13356 fs->fs_cstotal.cs_nbfree <= needed) || 13357 (resource == FLUSH_INODES_WAIT && fs->fs_pendinginodes > 0 && 13358 fs->fs_cstotal.cs_nifree <= needed)) { 13359 ACQUIRE_LOCK(ump); 13360 if (ump->softdep_on_worklist > 0 && 13361 process_worklist_item(UFSTOVFS(ump), 13362 ump->softdep_on_worklist, LK_NOWAIT) != 0) 13363 stat_worklist_push += 1; 13364 FREE_LOCK(ump); 13365 } 13366 /* 13367 * If we still need resources and there are no more worklist 13368 * entries to process to obtain them, we have to start flushing 13369 * the dirty vnodes to force the release of additional requests 13370 * to the worklist that we can then process to reap addition 13371 * resources. We walk the vnodes associated with the mount point 13372 * until we get the needed worklist requests that we can reap. 13373 * 13374 * If there are several threads all needing to clean the same 13375 * mount point, only one is allowed to walk the mount list. 13376 * When several threads all try to walk the same mount list, 13377 * they end up competing with each other and often end up in 13378 * livelock. This approach ensures that forward progress is 13379 * made at the cost of occational ENOSPC errors being returned 13380 * that might otherwise have been avoided. 13381 */ 13382 error = 1; 13383 if ((resource == FLUSH_BLOCKS_WAIT && 13384 fs->fs_cstotal.cs_nbfree <= needed) || 13385 (resource == FLUSH_INODES_WAIT && fs->fs_pendinginodes > 0 && 13386 fs->fs_cstotal.cs_nifree <= needed)) { 13387 ACQUIRE_LOCK(ump); 13388 if ((ump->um_softdep->sd_flags & FLUSH_RC_ACTIVE) == 0) { 13389 ump->um_softdep->sd_flags |= FLUSH_RC_ACTIVE; 13390 FREE_LOCK(ump); 13391 failed_vnode = softdep_request_cleanup_flush(mp, ump); 13392 ACQUIRE_LOCK(ump); 13393 ump->um_softdep->sd_flags &= ~FLUSH_RC_ACTIVE; 13394 FREE_LOCK(ump); 13395 if (ump->softdep_on_worklist > 0) { 13396 stat_cleanup_retries += 1; 13397 if (!failed_vnode) 13398 goto retry; 13399 } 13400 } else { 13401 FREE_LOCK(ump); 13402 error = 0; 13403 } 13404 stat_cleanup_failures += 1; 13405 } 13406 if (time_second - starttime > stat_cleanup_high_delay) 13407 stat_cleanup_high_delay = time_second - starttime; 13408 UFS_LOCK(ump); 13409 return (error); 13410 } 13411 13412 /* 13413 * Scan the vnodes for the specified mount point flushing out any 13414 * vnodes that can be locked without waiting. Finally, try to flush 13415 * the device associated with the mount point if it can be locked 13416 * without waiting. 13417 * 13418 * We return 0 if we were able to lock every vnode in our scan. 13419 * If we had to skip one or more vnodes, we return 1. 13420 */ 13421 static int 13422 softdep_request_cleanup_flush(mp, ump) 13423 struct mount *mp; 13424 struct ufsmount *ump; 13425 { 13426 struct thread *td; 13427 struct vnode *lvp, *mvp; 13428 int failed_vnode; 13429 13430 failed_vnode = 0; 13431 td = curthread; 13432 MNT_VNODE_FOREACH_ALL(lvp, mp, mvp) { 13433 if (TAILQ_FIRST(&lvp->v_bufobj.bo_dirty.bv_hd) == 0) { 13434 VI_UNLOCK(lvp); 13435 continue; 13436 } 13437 if (vget(lvp, LK_EXCLUSIVE | LK_INTERLOCK | LK_NOWAIT, 13438 td) != 0) { 13439 failed_vnode = 1; 13440 continue; 13441 } 13442 if (lvp->v_vflag & VV_NOSYNC) { /* unlinked */ 13443 vput(lvp); 13444 continue; 13445 } 13446 (void) ffs_syncvnode(lvp, MNT_NOWAIT, 0); 13447 vput(lvp); 13448 } 13449 lvp = ump->um_devvp; 13450 if (vn_lock(lvp, LK_EXCLUSIVE | LK_NOWAIT) == 0) { 13451 VOP_FSYNC(lvp, MNT_NOWAIT, td); 13452 VOP_UNLOCK(lvp, 0); 13453 } 13454 return (failed_vnode); 13455 } 13456 13457 static bool 13458 softdep_excess_items(struct ufsmount *ump, int item) 13459 { 13460 13461 KASSERT(item >= 0 && item < D_LAST, ("item %d", item)); 13462 return (dep_current[item] > max_softdeps && 13463 ump->softdep_curdeps[item] > max_softdeps / 13464 stat_flush_threads); 13465 } 13466 13467 static void 13468 schedule_cleanup(struct mount *mp) 13469 { 13470 struct ufsmount *ump; 13471 struct thread *td; 13472 13473 ump = VFSTOUFS(mp); 13474 LOCK_OWNED(ump); 13475 FREE_LOCK(ump); 13476 td = curthread; 13477 if ((td->td_pflags & TDP_KTHREAD) != 0 && 13478 (td->td_proc->p_flag2 & P2_AST_SU) == 0) { 13479 /* 13480 * No ast is delivered to kernel threads, so nobody 13481 * would deref the mp. Some kernel threads 13482 * explicitely check for AST, e.g. NFS daemon does 13483 * this in the serving loop. 13484 */ 13485 return; 13486 } 13487 if (td->td_su != NULL) 13488 vfs_rel(td->td_su); 13489 vfs_ref(mp); 13490 td->td_su = mp; 13491 thread_lock(td); 13492 td->td_flags |= TDF_ASTPENDING; 13493 thread_unlock(td); 13494 } 13495 13496 static void 13497 softdep_ast_cleanup_proc(struct thread *td) 13498 { 13499 struct mount *mp; 13500 struct ufsmount *ump; 13501 int error; 13502 bool req; 13503 13504 while ((mp = td->td_su) != NULL) { 13505 td->td_su = NULL; 13506 error = vfs_busy(mp, MBF_NOWAIT); 13507 vfs_rel(mp); 13508 if (error != 0) 13509 return; 13510 if (ffs_own_mount(mp) && MOUNTEDSOFTDEP(mp)) { 13511 ump = VFSTOUFS(mp); 13512 for (;;) { 13513 req = false; 13514 ACQUIRE_LOCK(ump); 13515 if (softdep_excess_items(ump, D_INODEDEP)) { 13516 req = true; 13517 request_cleanup(mp, FLUSH_INODES); 13518 } 13519 if (softdep_excess_items(ump, D_DIRREM)) { 13520 req = true; 13521 request_cleanup(mp, FLUSH_BLOCKS); 13522 } 13523 FREE_LOCK(ump); 13524 if (softdep_excess_items(ump, D_NEWBLK) || 13525 softdep_excess_items(ump, D_ALLOCDIRECT) || 13526 softdep_excess_items(ump, D_ALLOCINDIR)) { 13527 error = vn_start_write(NULL, &mp, 13528 V_WAIT); 13529 if (error == 0) { 13530 req = true; 13531 VFS_SYNC(mp, MNT_WAIT); 13532 vn_finished_write(mp); 13533 } 13534 } 13535 if ((td->td_pflags & TDP_KTHREAD) != 0 || !req) 13536 break; 13537 } 13538 } 13539 vfs_unbusy(mp); 13540 } 13541 if ((mp = td->td_su) != NULL) { 13542 td->td_su = NULL; 13543 vfs_rel(mp); 13544 } 13545 } 13546 13547 /* 13548 * If memory utilization has gotten too high, deliberately slow things 13549 * down and speed up the I/O processing. 13550 */ 13551 static int 13552 request_cleanup(mp, resource) 13553 struct mount *mp; 13554 int resource; 13555 { 13556 struct thread *td = curthread; 13557 struct ufsmount *ump; 13558 13559 ump = VFSTOUFS(mp); 13560 LOCK_OWNED(ump); 13561 /* 13562 * We never hold up the filesystem syncer or buf daemon. 13563 */ 13564 if (td->td_pflags & (TDP_SOFTDEP|TDP_NORUNNINGBUF)) 13565 return (0); 13566 /* 13567 * First check to see if the work list has gotten backlogged. 13568 * If it has, co-opt this process to help clean up two entries. 13569 * Because this process may hold inodes locked, we cannot 13570 * handle any remove requests that might block on a locked 13571 * inode as that could lead to deadlock. We set TDP_SOFTDEP 13572 * to avoid recursively processing the worklist. 13573 */ 13574 if (ump->softdep_on_worklist > max_softdeps / 10) { 13575 td->td_pflags |= TDP_SOFTDEP; 13576 process_worklist_item(mp, 2, LK_NOWAIT); 13577 td->td_pflags &= ~TDP_SOFTDEP; 13578 stat_worklist_push += 2; 13579 return(1); 13580 } 13581 /* 13582 * Next, we attempt to speed up the syncer process. If that 13583 * is successful, then we allow the process to continue. 13584 */ 13585 if (softdep_speedup(ump) && 13586 resource != FLUSH_BLOCKS_WAIT && 13587 resource != FLUSH_INODES_WAIT) 13588 return(0); 13589 /* 13590 * If we are resource constrained on inode dependencies, try 13591 * flushing some dirty inodes. Otherwise, we are constrained 13592 * by file deletions, so try accelerating flushes of directories 13593 * with removal dependencies. We would like to do the cleanup 13594 * here, but we probably hold an inode locked at this point and 13595 * that might deadlock against one that we try to clean. So, 13596 * the best that we can do is request the syncer daemon to do 13597 * the cleanup for us. 13598 */ 13599 switch (resource) { 13600 13601 case FLUSH_INODES: 13602 case FLUSH_INODES_WAIT: 13603 ACQUIRE_GBLLOCK(&lk); 13604 stat_ino_limit_push += 1; 13605 req_clear_inodedeps += 1; 13606 FREE_GBLLOCK(&lk); 13607 stat_countp = &stat_ino_limit_hit; 13608 break; 13609 13610 case FLUSH_BLOCKS: 13611 case FLUSH_BLOCKS_WAIT: 13612 ACQUIRE_GBLLOCK(&lk); 13613 stat_blk_limit_push += 1; 13614 req_clear_remove += 1; 13615 FREE_GBLLOCK(&lk); 13616 stat_countp = &stat_blk_limit_hit; 13617 break; 13618 13619 default: 13620 panic("request_cleanup: unknown type"); 13621 } 13622 /* 13623 * Hopefully the syncer daemon will catch up and awaken us. 13624 * We wait at most tickdelay before proceeding in any case. 13625 */ 13626 ACQUIRE_GBLLOCK(&lk); 13627 FREE_LOCK(ump); 13628 proc_waiting += 1; 13629 if (callout_pending(&softdep_callout) == FALSE) 13630 callout_reset(&softdep_callout, tickdelay > 2 ? tickdelay : 2, 13631 pause_timer, 0); 13632 13633 if ((td->td_pflags & TDP_KTHREAD) == 0) 13634 msleep((caddr_t)&proc_waiting, &lk, PPAUSE, "softupdate", 0); 13635 proc_waiting -= 1; 13636 FREE_GBLLOCK(&lk); 13637 ACQUIRE_LOCK(ump); 13638 return (1); 13639 } 13640 13641 /* 13642 * Awaken processes pausing in request_cleanup and clear proc_waiting 13643 * to indicate that there is no longer a timer running. Pause_timer 13644 * will be called with the global softdep mutex (&lk) locked. 13645 */ 13646 static void 13647 pause_timer(arg) 13648 void *arg; 13649 { 13650 13651 GBLLOCK_OWNED(&lk); 13652 /* 13653 * The callout_ API has acquired mtx and will hold it around this 13654 * function call. 13655 */ 13656 *stat_countp += proc_waiting; 13657 wakeup(&proc_waiting); 13658 } 13659 13660 /* 13661 * If requested, try removing inode or removal dependencies. 13662 */ 13663 static void 13664 check_clear_deps(mp) 13665 struct mount *mp; 13666 { 13667 13668 /* 13669 * If we are suspended, it may be because of our using 13670 * too many inodedeps, so help clear them out. 13671 */ 13672 if (MOUNTEDSUJ(mp) && VFSTOUFS(mp)->softdep_jblocks->jb_suspended) 13673 clear_inodedeps(mp); 13674 /* 13675 * General requests for cleanup of backed up dependencies 13676 */ 13677 ACQUIRE_GBLLOCK(&lk); 13678 if (req_clear_inodedeps) { 13679 req_clear_inodedeps -= 1; 13680 FREE_GBLLOCK(&lk); 13681 clear_inodedeps(mp); 13682 ACQUIRE_GBLLOCK(&lk); 13683 wakeup(&proc_waiting); 13684 } 13685 if (req_clear_remove) { 13686 req_clear_remove -= 1; 13687 FREE_GBLLOCK(&lk); 13688 clear_remove(mp); 13689 ACQUIRE_GBLLOCK(&lk); 13690 wakeup(&proc_waiting); 13691 } 13692 FREE_GBLLOCK(&lk); 13693 } 13694 13695 /* 13696 * Flush out a directory with at least one removal dependency in an effort to 13697 * reduce the number of dirrem, freefile, and freeblks dependency structures. 13698 */ 13699 static void 13700 clear_remove(mp) 13701 struct mount *mp; 13702 { 13703 struct pagedep_hashhead *pagedephd; 13704 struct pagedep *pagedep; 13705 struct ufsmount *ump; 13706 struct vnode *vp; 13707 struct bufobj *bo; 13708 int error, cnt; 13709 ino_t ino; 13710 13711 ump = VFSTOUFS(mp); 13712 LOCK_OWNED(ump); 13713 13714 for (cnt = 0; cnt <= ump->pagedep_hash_size; cnt++) { 13715 pagedephd = &ump->pagedep_hashtbl[ump->pagedep_nextclean++]; 13716 if (ump->pagedep_nextclean > ump->pagedep_hash_size) 13717 ump->pagedep_nextclean = 0; 13718 LIST_FOREACH(pagedep, pagedephd, pd_hash) { 13719 if (LIST_EMPTY(&pagedep->pd_dirremhd)) 13720 continue; 13721 ino = pagedep->pd_ino; 13722 if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) 13723 continue; 13724 FREE_LOCK(ump); 13725 13726 /* 13727 * Let unmount clear deps 13728 */ 13729 error = vfs_busy(mp, MBF_NOWAIT); 13730 if (error != 0) 13731 goto finish_write; 13732 error = ffs_vgetf(mp, ino, LK_EXCLUSIVE, &vp, 13733 FFSV_FORCEINSMQ); 13734 vfs_unbusy(mp); 13735 if (error != 0) { 13736 softdep_error("clear_remove: vget", error); 13737 goto finish_write; 13738 } 13739 if ((error = ffs_syncvnode(vp, MNT_NOWAIT, 0))) 13740 softdep_error("clear_remove: fsync", error); 13741 bo = &vp->v_bufobj; 13742 BO_LOCK(bo); 13743 drain_output(vp); 13744 BO_UNLOCK(bo); 13745 vput(vp); 13746 finish_write: 13747 vn_finished_write(mp); 13748 ACQUIRE_LOCK(ump); 13749 return; 13750 } 13751 } 13752 } 13753 13754 /* 13755 * Clear out a block of dirty inodes in an effort to reduce 13756 * the number of inodedep dependency structures. 13757 */ 13758 static void 13759 clear_inodedeps(mp) 13760 struct mount *mp; 13761 { 13762 struct inodedep_hashhead *inodedephd; 13763 struct inodedep *inodedep; 13764 struct ufsmount *ump; 13765 struct vnode *vp; 13766 struct fs *fs; 13767 int error, cnt; 13768 ino_t firstino, lastino, ino; 13769 13770 ump = VFSTOUFS(mp); 13771 fs = ump->um_fs; 13772 LOCK_OWNED(ump); 13773 /* 13774 * Pick a random inode dependency to be cleared. 13775 * We will then gather up all the inodes in its block 13776 * that have dependencies and flush them out. 13777 */ 13778 for (cnt = 0; cnt <= ump->inodedep_hash_size; cnt++) { 13779 inodedephd = &ump->inodedep_hashtbl[ump->inodedep_nextclean++]; 13780 if (ump->inodedep_nextclean > ump->inodedep_hash_size) 13781 ump->inodedep_nextclean = 0; 13782 if ((inodedep = LIST_FIRST(inodedephd)) != NULL) 13783 break; 13784 } 13785 if (inodedep == NULL) 13786 return; 13787 /* 13788 * Find the last inode in the block with dependencies. 13789 */ 13790 firstino = rounddown2(inodedep->id_ino, INOPB(fs)); 13791 for (lastino = firstino + INOPB(fs) - 1; lastino > firstino; lastino--) 13792 if (inodedep_lookup(mp, lastino, 0, &inodedep) != 0) 13793 break; 13794 /* 13795 * Asynchronously push all but the last inode with dependencies. 13796 * Synchronously push the last inode with dependencies to ensure 13797 * that the inode block gets written to free up the inodedeps. 13798 */ 13799 for (ino = firstino; ino <= lastino; ino++) { 13800 if (inodedep_lookup(mp, ino, 0, &inodedep) == 0) 13801 continue; 13802 if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) 13803 continue; 13804 FREE_LOCK(ump); 13805 error = vfs_busy(mp, MBF_NOWAIT); /* Let unmount clear deps */ 13806 if (error != 0) { 13807 vn_finished_write(mp); 13808 ACQUIRE_LOCK(ump); 13809 return; 13810 } 13811 if ((error = ffs_vgetf(mp, ino, LK_EXCLUSIVE, &vp, 13812 FFSV_FORCEINSMQ)) != 0) { 13813 softdep_error("clear_inodedeps: vget", error); 13814 vfs_unbusy(mp); 13815 vn_finished_write(mp); 13816 ACQUIRE_LOCK(ump); 13817 return; 13818 } 13819 vfs_unbusy(mp); 13820 if (ino == lastino) { 13821 if ((error = ffs_syncvnode(vp, MNT_WAIT, 0))) 13822 softdep_error("clear_inodedeps: fsync1", error); 13823 } else { 13824 if ((error = ffs_syncvnode(vp, MNT_NOWAIT, 0))) 13825 softdep_error("clear_inodedeps: fsync2", error); 13826 BO_LOCK(&vp->v_bufobj); 13827 drain_output(vp); 13828 BO_UNLOCK(&vp->v_bufobj); 13829 } 13830 vput(vp); 13831 vn_finished_write(mp); 13832 ACQUIRE_LOCK(ump); 13833 } 13834 } 13835 13836 void 13837 softdep_buf_append(bp, wkhd) 13838 struct buf *bp; 13839 struct workhead *wkhd; 13840 { 13841 struct worklist *wk; 13842 struct ufsmount *ump; 13843 13844 if ((wk = LIST_FIRST(wkhd)) == NULL) 13845 return; 13846 KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0, 13847 ("softdep_buf_append called on non-softdep filesystem")); 13848 ump = VFSTOUFS(wk->wk_mp); 13849 ACQUIRE_LOCK(ump); 13850 while ((wk = LIST_FIRST(wkhd)) != NULL) { 13851 WORKLIST_REMOVE(wk); 13852 WORKLIST_INSERT(&bp->b_dep, wk); 13853 } 13854 FREE_LOCK(ump); 13855 13856 } 13857 13858 void 13859 softdep_inode_append(ip, cred, wkhd) 13860 struct inode *ip; 13861 struct ucred *cred; 13862 struct workhead *wkhd; 13863 { 13864 struct buf *bp; 13865 struct fs *fs; 13866 struct ufsmount *ump; 13867 int error; 13868 13869 ump = ITOUMP(ip); 13870 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 13871 ("softdep_inode_append called on non-softdep filesystem")); 13872 fs = ump->um_fs; 13873 error = bread(ump->um_devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)), 13874 (int)fs->fs_bsize, cred, &bp); 13875 if (error) { 13876 bqrelse(bp); 13877 softdep_freework(wkhd); 13878 return; 13879 } 13880 softdep_buf_append(bp, wkhd); 13881 bqrelse(bp); 13882 } 13883 13884 void 13885 softdep_freework(wkhd) 13886 struct workhead *wkhd; 13887 { 13888 struct worklist *wk; 13889 struct ufsmount *ump; 13890 13891 if ((wk = LIST_FIRST(wkhd)) == NULL) 13892 return; 13893 KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0, 13894 ("softdep_freework called on non-softdep filesystem")); 13895 ump = VFSTOUFS(wk->wk_mp); 13896 ACQUIRE_LOCK(ump); 13897 handle_jwork(wkhd); 13898 FREE_LOCK(ump); 13899 } 13900 13901 static struct ufsmount * 13902 softdep_bp_to_mp(bp) 13903 struct buf *bp; 13904 { 13905 struct mount *mp; 13906 struct vnode *vp; 13907 13908 if (LIST_EMPTY(&bp->b_dep)) 13909 return (NULL); 13910 vp = bp->b_vp; 13911 13912 /* 13913 * The ump mount point is stable after we get a correct 13914 * pointer, since bp is locked and this prevents unmount from 13915 * proceeding. But to get to it, we cannot dereference bp->b_dep 13916 * head wk_mp, because we do not yet own SU ump lock and 13917 * workitem might be freed while dereferenced. 13918 */ 13919 retry: 13920 if (vp->v_type == VCHR) { 13921 VI_LOCK(vp); 13922 mp = vp->v_type == VCHR ? vp->v_rdev->si_mountpt : NULL; 13923 VI_UNLOCK(vp); 13924 if (mp == NULL) 13925 goto retry; 13926 } else if (vp->v_type == VREG || vp->v_type == VDIR || 13927 vp->v_type == VLNK) { 13928 mp = vp->v_mount; 13929 } else { 13930 return (NULL); 13931 } 13932 return (VFSTOUFS(mp)); 13933 } 13934 13935 /* 13936 * Function to determine if the buffer has outstanding dependencies 13937 * that will cause a roll-back if the buffer is written. If wantcount 13938 * is set, return number of dependencies, otherwise just yes or no. 13939 */ 13940 static int 13941 softdep_count_dependencies(bp, wantcount) 13942 struct buf *bp; 13943 int wantcount; 13944 { 13945 struct worklist *wk; 13946 struct ufsmount *ump; 13947 struct bmsafemap *bmsafemap; 13948 struct freework *freework; 13949 struct inodedep *inodedep; 13950 struct indirdep *indirdep; 13951 struct freeblks *freeblks; 13952 struct allocindir *aip; 13953 struct pagedep *pagedep; 13954 struct dirrem *dirrem; 13955 struct newblk *newblk; 13956 struct mkdir *mkdir; 13957 struct diradd *dap; 13958 int i, retval; 13959 13960 ump = softdep_bp_to_mp(bp); 13961 if (ump == NULL) 13962 return (0); 13963 retval = 0; 13964 ACQUIRE_LOCK(ump); 13965 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 13966 switch (wk->wk_type) { 13967 13968 case D_INODEDEP: 13969 inodedep = WK_INODEDEP(wk); 13970 if ((inodedep->id_state & DEPCOMPLETE) == 0) { 13971 /* bitmap allocation dependency */ 13972 retval += 1; 13973 if (!wantcount) 13974 goto out; 13975 } 13976 if (TAILQ_FIRST(&inodedep->id_inoupdt)) { 13977 /* direct block pointer dependency */ 13978 retval += 1; 13979 if (!wantcount) 13980 goto out; 13981 } 13982 if (TAILQ_FIRST(&inodedep->id_extupdt)) { 13983 /* direct block pointer dependency */ 13984 retval += 1; 13985 if (!wantcount) 13986 goto out; 13987 } 13988 if (TAILQ_FIRST(&inodedep->id_inoreflst)) { 13989 /* Add reference dependency. */ 13990 retval += 1; 13991 if (!wantcount) 13992 goto out; 13993 } 13994 continue; 13995 13996 case D_INDIRDEP: 13997 indirdep = WK_INDIRDEP(wk); 13998 13999 TAILQ_FOREACH(freework, &indirdep->ir_trunc, fw_next) { 14000 /* indirect truncation dependency */ 14001 retval += 1; 14002 if (!wantcount) 14003 goto out; 14004 } 14005 14006 LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) { 14007 /* indirect block pointer dependency */ 14008 retval += 1; 14009 if (!wantcount) 14010 goto out; 14011 } 14012 continue; 14013 14014 case D_PAGEDEP: 14015 pagedep = WK_PAGEDEP(wk); 14016 LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next) { 14017 if (LIST_FIRST(&dirrem->dm_jremrefhd)) { 14018 /* Journal remove ref dependency. */ 14019 retval += 1; 14020 if (!wantcount) 14021 goto out; 14022 } 14023 } 14024 for (i = 0; i < DAHASHSZ; i++) { 14025 14026 LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) { 14027 /* directory entry dependency */ 14028 retval += 1; 14029 if (!wantcount) 14030 goto out; 14031 } 14032 } 14033 continue; 14034 14035 case D_BMSAFEMAP: 14036 bmsafemap = WK_BMSAFEMAP(wk); 14037 if (LIST_FIRST(&bmsafemap->sm_jaddrefhd)) { 14038 /* Add reference dependency. */ 14039 retval += 1; 14040 if (!wantcount) 14041 goto out; 14042 } 14043 if (LIST_FIRST(&bmsafemap->sm_jnewblkhd)) { 14044 /* Allocate block dependency. */ 14045 retval += 1; 14046 if (!wantcount) 14047 goto out; 14048 } 14049 continue; 14050 14051 case D_FREEBLKS: 14052 freeblks = WK_FREEBLKS(wk); 14053 if (LIST_FIRST(&freeblks->fb_jblkdephd)) { 14054 /* Freeblk journal dependency. */ 14055 retval += 1; 14056 if (!wantcount) 14057 goto out; 14058 } 14059 continue; 14060 14061 case D_ALLOCDIRECT: 14062 case D_ALLOCINDIR: 14063 newblk = WK_NEWBLK(wk); 14064 if (newblk->nb_jnewblk) { 14065 /* Journal allocate dependency. */ 14066 retval += 1; 14067 if (!wantcount) 14068 goto out; 14069 } 14070 continue; 14071 14072 case D_MKDIR: 14073 mkdir = WK_MKDIR(wk); 14074 if (mkdir->md_jaddref) { 14075 /* Journal reference dependency. */ 14076 retval += 1; 14077 if (!wantcount) 14078 goto out; 14079 } 14080 continue; 14081 14082 case D_FREEWORK: 14083 case D_FREEDEP: 14084 case D_JSEGDEP: 14085 case D_JSEG: 14086 case D_SBDEP: 14087 /* never a dependency on these blocks */ 14088 continue; 14089 14090 default: 14091 panic("softdep_count_dependencies: Unexpected type %s", 14092 TYPENAME(wk->wk_type)); 14093 /* NOTREACHED */ 14094 } 14095 } 14096 out: 14097 FREE_LOCK(ump); 14098 return (retval); 14099 } 14100 14101 /* 14102 * Acquire exclusive access to a buffer. 14103 * Must be called with a locked mtx parameter. 14104 * Return acquired buffer or NULL on failure. 14105 */ 14106 static struct buf * 14107 getdirtybuf(bp, lock, waitfor) 14108 struct buf *bp; 14109 struct rwlock *lock; 14110 int waitfor; 14111 { 14112 int error; 14113 14114 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0) { 14115 if (waitfor != MNT_WAIT) 14116 return (NULL); 14117 error = BUF_LOCK(bp, 14118 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, lock); 14119 /* 14120 * Even if we successfully acquire bp here, we have dropped 14121 * lock, which may violates our guarantee. 14122 */ 14123 if (error == 0) 14124 BUF_UNLOCK(bp); 14125 else if (error != ENOLCK) 14126 panic("getdirtybuf: inconsistent lock: %d", error); 14127 rw_wlock(lock); 14128 return (NULL); 14129 } 14130 if ((bp->b_vflags & BV_BKGRDINPROG) != 0) { 14131 if (lock != BO_LOCKPTR(bp->b_bufobj) && waitfor == MNT_WAIT) { 14132 rw_wunlock(lock); 14133 BO_LOCK(bp->b_bufobj); 14134 BUF_UNLOCK(bp); 14135 if ((bp->b_vflags & BV_BKGRDINPROG) != 0) { 14136 bp->b_vflags |= BV_BKGRDWAIT; 14137 msleep(&bp->b_xflags, BO_LOCKPTR(bp->b_bufobj), 14138 PRIBIO | PDROP, "getbuf", 0); 14139 } else 14140 BO_UNLOCK(bp->b_bufobj); 14141 rw_wlock(lock); 14142 return (NULL); 14143 } 14144 BUF_UNLOCK(bp); 14145 if (waitfor != MNT_WAIT) 14146 return (NULL); 14147 #ifdef DEBUG_VFS_LOCKS 14148 if (bp->b_vp->v_type != VCHR) 14149 ASSERT_BO_WLOCKED(bp->b_bufobj); 14150 #endif 14151 bp->b_vflags |= BV_BKGRDWAIT; 14152 rw_sleep(&bp->b_xflags, lock, PRIBIO, "getbuf", 0); 14153 return (NULL); 14154 } 14155 if ((bp->b_flags & B_DELWRI) == 0) { 14156 BUF_UNLOCK(bp); 14157 return (NULL); 14158 } 14159 bremfree(bp); 14160 return (bp); 14161 } 14162 14163 14164 /* 14165 * Check if it is safe to suspend the file system now. On entry, 14166 * the vnode interlock for devvp should be held. Return 0 with 14167 * the mount interlock held if the file system can be suspended now, 14168 * otherwise return EAGAIN with the mount interlock held. 14169 */ 14170 int 14171 softdep_check_suspend(struct mount *mp, 14172 struct vnode *devvp, 14173 int softdep_depcnt, 14174 int softdep_accdepcnt, 14175 int secondary_writes, 14176 int secondary_accwrites) 14177 { 14178 struct bufobj *bo; 14179 struct ufsmount *ump; 14180 struct inodedep *inodedep; 14181 int error, unlinked; 14182 14183 bo = &devvp->v_bufobj; 14184 ASSERT_BO_WLOCKED(bo); 14185 14186 /* 14187 * If we are not running with soft updates, then we need only 14188 * deal with secondary writes as we try to suspend. 14189 */ 14190 if (MOUNTEDSOFTDEP(mp) == 0) { 14191 MNT_ILOCK(mp); 14192 while (mp->mnt_secondary_writes != 0) { 14193 BO_UNLOCK(bo); 14194 msleep(&mp->mnt_secondary_writes, MNT_MTX(mp), 14195 (PUSER - 1) | PDROP, "secwr", 0); 14196 BO_LOCK(bo); 14197 MNT_ILOCK(mp); 14198 } 14199 14200 /* 14201 * Reasons for needing more work before suspend: 14202 * - Dirty buffers on devvp. 14203 * - Secondary writes occurred after start of vnode sync loop 14204 */ 14205 error = 0; 14206 if (bo->bo_numoutput > 0 || 14207 bo->bo_dirty.bv_cnt > 0 || 14208 secondary_writes != 0 || 14209 mp->mnt_secondary_writes != 0 || 14210 secondary_accwrites != mp->mnt_secondary_accwrites) 14211 error = EAGAIN; 14212 BO_UNLOCK(bo); 14213 return (error); 14214 } 14215 14216 /* 14217 * If we are running with soft updates, then we need to coordinate 14218 * with them as we try to suspend. 14219 */ 14220 ump = VFSTOUFS(mp); 14221 for (;;) { 14222 if (!TRY_ACQUIRE_LOCK(ump)) { 14223 BO_UNLOCK(bo); 14224 ACQUIRE_LOCK(ump); 14225 FREE_LOCK(ump); 14226 BO_LOCK(bo); 14227 continue; 14228 } 14229 MNT_ILOCK(mp); 14230 if (mp->mnt_secondary_writes != 0) { 14231 FREE_LOCK(ump); 14232 BO_UNLOCK(bo); 14233 msleep(&mp->mnt_secondary_writes, 14234 MNT_MTX(mp), 14235 (PUSER - 1) | PDROP, "secwr", 0); 14236 BO_LOCK(bo); 14237 continue; 14238 } 14239 break; 14240 } 14241 14242 unlinked = 0; 14243 if (MOUNTEDSUJ(mp)) { 14244 for (inodedep = TAILQ_FIRST(&ump->softdep_unlinked); 14245 inodedep != NULL; 14246 inodedep = TAILQ_NEXT(inodedep, id_unlinked)) { 14247 if ((inodedep->id_state & (UNLINKED | UNLINKLINKS | 14248 UNLINKONLIST)) != (UNLINKED | UNLINKLINKS | 14249 UNLINKONLIST) || 14250 !check_inodedep_free(inodedep)) 14251 continue; 14252 unlinked++; 14253 } 14254 } 14255 14256 /* 14257 * Reasons for needing more work before suspend: 14258 * - Dirty buffers on devvp. 14259 * - Softdep activity occurred after start of vnode sync loop 14260 * - Secondary writes occurred after start of vnode sync loop 14261 */ 14262 error = 0; 14263 if (bo->bo_numoutput > 0 || 14264 bo->bo_dirty.bv_cnt > 0 || 14265 softdep_depcnt != unlinked || 14266 ump->softdep_deps != unlinked || 14267 softdep_accdepcnt != ump->softdep_accdeps || 14268 secondary_writes != 0 || 14269 mp->mnt_secondary_writes != 0 || 14270 secondary_accwrites != mp->mnt_secondary_accwrites) 14271 error = EAGAIN; 14272 FREE_LOCK(ump); 14273 BO_UNLOCK(bo); 14274 return (error); 14275 } 14276 14277 14278 /* 14279 * Get the number of dependency structures for the file system, both 14280 * the current number and the total number allocated. These will 14281 * later be used to detect that softdep processing has occurred. 14282 */ 14283 void 14284 softdep_get_depcounts(struct mount *mp, 14285 int *softdep_depsp, 14286 int *softdep_accdepsp) 14287 { 14288 struct ufsmount *ump; 14289 14290 if (MOUNTEDSOFTDEP(mp) == 0) { 14291 *softdep_depsp = 0; 14292 *softdep_accdepsp = 0; 14293 return; 14294 } 14295 ump = VFSTOUFS(mp); 14296 ACQUIRE_LOCK(ump); 14297 *softdep_depsp = ump->softdep_deps; 14298 *softdep_accdepsp = ump->softdep_accdeps; 14299 FREE_LOCK(ump); 14300 } 14301 14302 /* 14303 * Wait for pending output on a vnode to complete. 14304 */ 14305 static void 14306 drain_output(vp) 14307 struct vnode *vp; 14308 { 14309 14310 ASSERT_VOP_LOCKED(vp, "drain_output"); 14311 (void)bufobj_wwait(&vp->v_bufobj, 0, 0); 14312 } 14313 14314 /* 14315 * Called whenever a buffer that is being invalidated or reallocated 14316 * contains dependencies. This should only happen if an I/O error has 14317 * occurred. The routine is called with the buffer locked. 14318 */ 14319 static void 14320 softdep_deallocate_dependencies(bp) 14321 struct buf *bp; 14322 { 14323 14324 if ((bp->b_ioflags & BIO_ERROR) == 0) 14325 panic("softdep_deallocate_dependencies: dangling deps"); 14326 if (bp->b_vp != NULL && bp->b_vp->v_mount != NULL) 14327 softdep_error(bp->b_vp->v_mount->mnt_stat.f_mntonname, bp->b_error); 14328 else 14329 printf("softdep_deallocate_dependencies: " 14330 "got error %d while accessing filesystem\n", bp->b_error); 14331 if (bp->b_error != ENXIO) 14332 panic("softdep_deallocate_dependencies: unrecovered I/O error"); 14333 } 14334 14335 /* 14336 * Function to handle asynchronous write errors in the filesystem. 14337 */ 14338 static void 14339 softdep_error(func, error) 14340 char *func; 14341 int error; 14342 { 14343 14344 /* XXX should do something better! */ 14345 printf("%s: got error %d while accessing filesystem\n", func, error); 14346 } 14347 14348 #ifdef DDB 14349 14350 static void 14351 inodedep_print(struct inodedep *inodedep, int verbose) 14352 { 14353 db_printf("%p fs %p st %x ino %jd inoblk %jd delta %jd nlink %jd" 14354 " saveino %p\n", 14355 inodedep, inodedep->id_fs, inodedep->id_state, 14356 (intmax_t)inodedep->id_ino, 14357 (intmax_t)fsbtodb(inodedep->id_fs, 14358 ino_to_fsba(inodedep->id_fs, inodedep->id_ino)), 14359 (intmax_t)inodedep->id_nlinkdelta, 14360 (intmax_t)inodedep->id_savednlink, 14361 inodedep->id_savedino1); 14362 14363 if (verbose == 0) 14364 return; 14365 14366 db_printf("\tpendinghd %p, bufwait %p, inowait %p, inoreflst %p, " 14367 "mkdiradd %p\n", 14368 LIST_FIRST(&inodedep->id_pendinghd), 14369 LIST_FIRST(&inodedep->id_bufwait), 14370 LIST_FIRST(&inodedep->id_inowait), 14371 TAILQ_FIRST(&inodedep->id_inoreflst), 14372 inodedep->id_mkdiradd); 14373 db_printf("\tinoupdt %p, newinoupdt %p, extupdt %p, newextupdt %p\n", 14374 TAILQ_FIRST(&inodedep->id_inoupdt), 14375 TAILQ_FIRST(&inodedep->id_newinoupdt), 14376 TAILQ_FIRST(&inodedep->id_extupdt), 14377 TAILQ_FIRST(&inodedep->id_newextupdt)); 14378 } 14379 14380 DB_SHOW_COMMAND(inodedep, db_show_inodedep) 14381 { 14382 14383 if (have_addr == 0) { 14384 db_printf("Address required\n"); 14385 return; 14386 } 14387 inodedep_print((struct inodedep*)addr, 1); 14388 } 14389 14390 DB_SHOW_COMMAND(inodedeps, db_show_inodedeps) 14391 { 14392 struct inodedep_hashhead *inodedephd; 14393 struct inodedep *inodedep; 14394 struct ufsmount *ump; 14395 int cnt; 14396 14397 if (have_addr == 0) { 14398 db_printf("Address required\n"); 14399 return; 14400 } 14401 ump = (struct ufsmount *)addr; 14402 for (cnt = 0; cnt < ump->inodedep_hash_size; cnt++) { 14403 inodedephd = &ump->inodedep_hashtbl[cnt]; 14404 LIST_FOREACH(inodedep, inodedephd, id_hash) { 14405 inodedep_print(inodedep, 0); 14406 } 14407 } 14408 } 14409 14410 DB_SHOW_COMMAND(worklist, db_show_worklist) 14411 { 14412 struct worklist *wk; 14413 14414 if (have_addr == 0) { 14415 db_printf("Address required\n"); 14416 return; 14417 } 14418 wk = (struct worklist *)addr; 14419 printf("worklist: %p type %s state 0x%X\n", 14420 wk, TYPENAME(wk->wk_type), wk->wk_state); 14421 } 14422 14423 DB_SHOW_COMMAND(workhead, db_show_workhead) 14424 { 14425 struct workhead *wkhd; 14426 struct worklist *wk; 14427 int i; 14428 14429 if (have_addr == 0) { 14430 db_printf("Address required\n"); 14431 return; 14432 } 14433 wkhd = (struct workhead *)addr; 14434 wk = LIST_FIRST(wkhd); 14435 for (i = 0; i < 100 && wk != NULL; i++, wk = LIST_NEXT(wk, wk_list)) 14436 db_printf("worklist: %p type %s state 0x%X", 14437 wk, TYPENAME(wk->wk_type), wk->wk_state); 14438 if (i == 100) 14439 db_printf("workhead overflow"); 14440 printf("\n"); 14441 } 14442 14443 14444 DB_SHOW_COMMAND(mkdirs, db_show_mkdirs) 14445 { 14446 struct mkdirlist *mkdirlisthd; 14447 struct jaddref *jaddref; 14448 struct diradd *diradd; 14449 struct mkdir *mkdir; 14450 14451 if (have_addr == 0) { 14452 db_printf("Address required\n"); 14453 return; 14454 } 14455 mkdirlisthd = (struct mkdirlist *)addr; 14456 LIST_FOREACH(mkdir, mkdirlisthd, md_mkdirs) { 14457 diradd = mkdir->md_diradd; 14458 db_printf("mkdir: %p state 0x%X dap %p state 0x%X", 14459 mkdir, mkdir->md_state, diradd, diradd->da_state); 14460 if ((jaddref = mkdir->md_jaddref) != NULL) 14461 db_printf(" jaddref %p jaddref state 0x%X", 14462 jaddref, jaddref->ja_state); 14463 db_printf("\n"); 14464 } 14465 } 14466 14467 /* exported to ffs_vfsops.c */ 14468 extern void db_print_ffs(struct ufsmount *ump); 14469 void 14470 db_print_ffs(struct ufsmount *ump) 14471 { 14472 db_printf("mp %p %s devvp %p fs %p su_wl %d su_deps %d su_req %d\n", 14473 ump->um_mountp, ump->um_mountp->mnt_stat.f_mntonname, 14474 ump->um_devvp, ump->um_fs, ump->softdep_on_worklist, 14475 ump->softdep_deps, ump->softdep_req); 14476 } 14477 14478 #endif /* DDB */ 14479 14480 #endif /* SOFTUPDATES */ 14481