1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright 1998, 2000 Marshall Kirk McKusick. 5 * Copyright 2009, 2010 Jeffrey W. Roberson <jeff@FreeBSD.org> 6 * All rights reserved. 7 * 8 * The soft updates code is derived from the appendix of a University 9 * of Michigan technical report (Gregory R. Ganger and Yale N. Patt, 10 * "Soft Updates: A Solution to the Metadata Update Problem in File 11 * Systems", CSE-TR-254-95, August 1995). 12 * 13 * Further information about soft updates can be obtained from: 14 * 15 * Marshall Kirk McKusick http://www.mckusick.com/softdep/ 16 * 1614 Oxford Street mckusick@mckusick.com 17 * Berkeley, CA 94709-1608 +1-510-843-9542 18 * USA 19 * 20 * Redistribution and use in source and binary forms, with or without 21 * modification, are permitted provided that the following conditions 22 * are met: 23 * 24 * 1. Redistributions of source code must retain the above copyright 25 * notice, this list of conditions and the following disclaimer. 26 * 2. Redistributions in binary form must reproduce the above copyright 27 * notice, this list of conditions and the following disclaimer in the 28 * documentation and/or other materials provided with the distribution. 29 * 30 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR 31 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 32 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 33 * IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT, 34 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 35 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS 36 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND 37 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR 38 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 39 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 40 * 41 * from: @(#)ffs_softdep.c 9.59 (McKusick) 6/21/00 42 */ 43 44 #include <sys/cdefs.h> 45 __FBSDID("$FreeBSD$"); 46 47 #include "opt_ffs.h" 48 #include "opt_quota.h" 49 #include "opt_ddb.h" 50 51 #include <sys/param.h> 52 #include <sys/kernel.h> 53 #include <sys/systm.h> 54 #include <sys/bio.h> 55 #include <sys/buf.h> 56 #include <sys/kdb.h> 57 #include <sys/kthread.h> 58 #include <sys/ktr.h> 59 #include <sys/limits.h> 60 #include <sys/lock.h> 61 #include <sys/malloc.h> 62 #include <sys/mount.h> 63 #include <sys/mutex.h> 64 #include <sys/namei.h> 65 #include <sys/priv.h> 66 #include <sys/proc.h> 67 #include <sys/racct.h> 68 #include <sys/rwlock.h> 69 #include <sys/stat.h> 70 #include <sys/sysctl.h> 71 #include <sys/syslog.h> 72 #include <sys/vnode.h> 73 #include <sys/conf.h> 74 75 #include <ufs/ufs/dir.h> 76 #include <ufs/ufs/extattr.h> 77 #include <ufs/ufs/quota.h> 78 #include <ufs/ufs/inode.h> 79 #include <ufs/ufs/ufsmount.h> 80 #include <ufs/ffs/fs.h> 81 #include <ufs/ffs/softdep.h> 82 #include <ufs/ffs/ffs_extern.h> 83 #include <ufs/ufs/ufs_extern.h> 84 85 #include <vm/vm.h> 86 #include <vm/vm_extern.h> 87 #include <vm/vm_object.h> 88 89 #include <geom/geom.h> 90 #include <geom/geom_vfs.h> 91 92 #include <ddb/ddb.h> 93 94 #define KTR_SUJ 0 /* Define to KTR_SPARE. */ 95 96 #ifndef SOFTUPDATES 97 98 int 99 softdep_flushfiles(oldmnt, flags, td) 100 struct mount *oldmnt; 101 int flags; 102 struct thread *td; 103 { 104 105 panic("softdep_flushfiles called"); 106 } 107 108 int 109 softdep_mount(devvp, mp, fs, cred) 110 struct vnode *devvp; 111 struct mount *mp; 112 struct fs *fs; 113 struct ucred *cred; 114 { 115 116 return (0); 117 } 118 119 void 120 softdep_initialize() 121 { 122 123 return; 124 } 125 126 void 127 softdep_uninitialize() 128 { 129 130 return; 131 } 132 133 void 134 softdep_unmount(mp) 135 struct mount *mp; 136 { 137 138 panic("softdep_unmount called"); 139 } 140 141 void 142 softdep_setup_sbupdate(ump, fs, bp) 143 struct ufsmount *ump; 144 struct fs *fs; 145 struct buf *bp; 146 { 147 148 panic("softdep_setup_sbupdate called"); 149 } 150 151 void 152 softdep_setup_inomapdep(bp, ip, newinum, mode) 153 struct buf *bp; 154 struct inode *ip; 155 ino_t newinum; 156 int mode; 157 { 158 159 panic("softdep_setup_inomapdep called"); 160 } 161 162 void 163 softdep_setup_blkmapdep(bp, mp, newblkno, frags, oldfrags) 164 struct buf *bp; 165 struct mount *mp; 166 ufs2_daddr_t newblkno; 167 int frags; 168 int oldfrags; 169 { 170 171 panic("softdep_setup_blkmapdep called"); 172 } 173 174 void 175 softdep_setup_allocdirect(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp) 176 struct inode *ip; 177 ufs_lbn_t lbn; 178 ufs2_daddr_t newblkno; 179 ufs2_daddr_t oldblkno; 180 long newsize; 181 long oldsize; 182 struct buf *bp; 183 { 184 185 panic("softdep_setup_allocdirect called"); 186 } 187 188 void 189 softdep_setup_allocext(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp) 190 struct inode *ip; 191 ufs_lbn_t lbn; 192 ufs2_daddr_t newblkno; 193 ufs2_daddr_t oldblkno; 194 long newsize; 195 long oldsize; 196 struct buf *bp; 197 { 198 199 panic("softdep_setup_allocext called"); 200 } 201 202 void 203 softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp) 204 struct inode *ip; 205 ufs_lbn_t lbn; 206 struct buf *bp; 207 int ptrno; 208 ufs2_daddr_t newblkno; 209 ufs2_daddr_t oldblkno; 210 struct buf *nbp; 211 { 212 213 panic("softdep_setup_allocindir_page called"); 214 } 215 216 void 217 softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno) 218 struct buf *nbp; 219 struct inode *ip; 220 struct buf *bp; 221 int ptrno; 222 ufs2_daddr_t newblkno; 223 { 224 225 panic("softdep_setup_allocindir_meta called"); 226 } 227 228 void 229 softdep_journal_freeblocks(ip, cred, length, flags) 230 struct inode *ip; 231 struct ucred *cred; 232 off_t length; 233 int flags; 234 { 235 236 panic("softdep_journal_freeblocks called"); 237 } 238 239 void 240 softdep_journal_fsync(ip) 241 struct inode *ip; 242 { 243 244 panic("softdep_journal_fsync called"); 245 } 246 247 void 248 softdep_setup_freeblocks(ip, length, flags) 249 struct inode *ip; 250 off_t length; 251 int flags; 252 { 253 254 panic("softdep_setup_freeblocks called"); 255 } 256 257 void 258 softdep_freefile(pvp, ino, mode) 259 struct vnode *pvp; 260 ino_t ino; 261 int mode; 262 { 263 264 panic("softdep_freefile called"); 265 } 266 267 int 268 softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk) 269 struct buf *bp; 270 struct inode *dp; 271 off_t diroffset; 272 ino_t newinum; 273 struct buf *newdirbp; 274 int isnewblk; 275 { 276 277 panic("softdep_setup_directory_add called"); 278 } 279 280 void 281 softdep_change_directoryentry_offset(bp, dp, base, oldloc, newloc, entrysize) 282 struct buf *bp; 283 struct inode *dp; 284 caddr_t base; 285 caddr_t oldloc; 286 caddr_t newloc; 287 int entrysize; 288 { 289 290 panic("softdep_change_directoryentry_offset called"); 291 } 292 293 void 294 softdep_setup_remove(bp, dp, ip, isrmdir) 295 struct buf *bp; 296 struct inode *dp; 297 struct inode *ip; 298 int isrmdir; 299 { 300 301 panic("softdep_setup_remove called"); 302 } 303 304 void 305 softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir) 306 struct buf *bp; 307 struct inode *dp; 308 struct inode *ip; 309 ino_t newinum; 310 int isrmdir; 311 { 312 313 panic("softdep_setup_directory_change called"); 314 } 315 316 void 317 softdep_setup_blkfree(mp, bp, blkno, frags, wkhd) 318 struct mount *mp; 319 struct buf *bp; 320 ufs2_daddr_t blkno; 321 int frags; 322 struct workhead *wkhd; 323 { 324 325 panic("%s called", __FUNCTION__); 326 } 327 328 void 329 softdep_setup_inofree(mp, bp, ino, wkhd) 330 struct mount *mp; 331 struct buf *bp; 332 ino_t ino; 333 struct workhead *wkhd; 334 { 335 336 panic("%s called", __FUNCTION__); 337 } 338 339 void 340 softdep_setup_unlink(dp, ip) 341 struct inode *dp; 342 struct inode *ip; 343 { 344 345 panic("%s called", __FUNCTION__); 346 } 347 348 void 349 softdep_setup_link(dp, ip) 350 struct inode *dp; 351 struct inode *ip; 352 { 353 354 panic("%s called", __FUNCTION__); 355 } 356 357 void 358 softdep_revert_link(dp, ip) 359 struct inode *dp; 360 struct inode *ip; 361 { 362 363 panic("%s called", __FUNCTION__); 364 } 365 366 void 367 softdep_setup_rmdir(dp, ip) 368 struct inode *dp; 369 struct inode *ip; 370 { 371 372 panic("%s called", __FUNCTION__); 373 } 374 375 void 376 softdep_revert_rmdir(dp, ip) 377 struct inode *dp; 378 struct inode *ip; 379 { 380 381 panic("%s called", __FUNCTION__); 382 } 383 384 void 385 softdep_setup_create(dp, ip) 386 struct inode *dp; 387 struct inode *ip; 388 { 389 390 panic("%s called", __FUNCTION__); 391 } 392 393 void 394 softdep_revert_create(dp, ip) 395 struct inode *dp; 396 struct inode *ip; 397 { 398 399 panic("%s called", __FUNCTION__); 400 } 401 402 void 403 softdep_setup_mkdir(dp, ip) 404 struct inode *dp; 405 struct inode *ip; 406 { 407 408 panic("%s called", __FUNCTION__); 409 } 410 411 void 412 softdep_revert_mkdir(dp, ip) 413 struct inode *dp; 414 struct inode *ip; 415 { 416 417 panic("%s called", __FUNCTION__); 418 } 419 420 void 421 softdep_setup_dotdot_link(dp, ip) 422 struct inode *dp; 423 struct inode *ip; 424 { 425 426 panic("%s called", __FUNCTION__); 427 } 428 429 int 430 softdep_prealloc(vp, waitok) 431 struct vnode *vp; 432 int waitok; 433 { 434 435 panic("%s called", __FUNCTION__); 436 } 437 438 int 439 softdep_journal_lookup(mp, vpp) 440 struct mount *mp; 441 struct vnode **vpp; 442 { 443 444 return (ENOENT); 445 } 446 447 void 448 softdep_change_linkcnt(ip) 449 struct inode *ip; 450 { 451 452 panic("softdep_change_linkcnt called"); 453 } 454 455 void 456 softdep_load_inodeblock(ip) 457 struct inode *ip; 458 { 459 460 panic("softdep_load_inodeblock called"); 461 } 462 463 void 464 softdep_update_inodeblock(ip, bp, waitfor) 465 struct inode *ip; 466 struct buf *bp; 467 int waitfor; 468 { 469 470 panic("softdep_update_inodeblock called"); 471 } 472 473 int 474 softdep_fsync(vp) 475 struct vnode *vp; /* the "in_core" copy of the inode */ 476 { 477 478 return (0); 479 } 480 481 void 482 softdep_fsync_mountdev(vp) 483 struct vnode *vp; 484 { 485 486 return; 487 } 488 489 int 490 softdep_flushworklist(oldmnt, countp, td) 491 struct mount *oldmnt; 492 int *countp; 493 struct thread *td; 494 { 495 496 *countp = 0; 497 return (0); 498 } 499 500 int 501 softdep_sync_metadata(struct vnode *vp) 502 { 503 504 panic("softdep_sync_metadata called"); 505 } 506 507 int 508 softdep_sync_buf(struct vnode *vp, struct buf *bp, int waitfor) 509 { 510 511 panic("softdep_sync_buf called"); 512 } 513 514 int 515 softdep_slowdown(vp) 516 struct vnode *vp; 517 { 518 519 panic("softdep_slowdown called"); 520 } 521 522 int 523 softdep_request_cleanup(fs, vp, cred, resource) 524 struct fs *fs; 525 struct vnode *vp; 526 struct ucred *cred; 527 int resource; 528 { 529 530 return (0); 531 } 532 533 int 534 softdep_check_suspend(struct mount *mp, 535 struct vnode *devvp, 536 int softdep_depcnt, 537 int softdep_accdepcnt, 538 int secondary_writes, 539 int secondary_accwrites) 540 { 541 struct bufobj *bo; 542 int error; 543 544 (void) softdep_depcnt, 545 (void) softdep_accdepcnt; 546 547 bo = &devvp->v_bufobj; 548 ASSERT_BO_WLOCKED(bo); 549 550 MNT_ILOCK(mp); 551 while (mp->mnt_secondary_writes != 0) { 552 BO_UNLOCK(bo); 553 msleep(&mp->mnt_secondary_writes, MNT_MTX(mp), 554 (PUSER - 1) | PDROP, "secwr", 0); 555 BO_LOCK(bo); 556 MNT_ILOCK(mp); 557 } 558 559 /* 560 * Reasons for needing more work before suspend: 561 * - Dirty buffers on devvp. 562 * - Secondary writes occurred after start of vnode sync loop 563 */ 564 error = 0; 565 if (bo->bo_numoutput > 0 || 566 bo->bo_dirty.bv_cnt > 0 || 567 secondary_writes != 0 || 568 mp->mnt_secondary_writes != 0 || 569 secondary_accwrites != mp->mnt_secondary_accwrites) 570 error = EAGAIN; 571 BO_UNLOCK(bo); 572 return (error); 573 } 574 575 void 576 softdep_get_depcounts(struct mount *mp, 577 int *softdepactivep, 578 int *softdepactiveaccp) 579 { 580 (void) mp; 581 *softdepactivep = 0; 582 *softdepactiveaccp = 0; 583 } 584 585 void 586 softdep_buf_append(bp, wkhd) 587 struct buf *bp; 588 struct workhead *wkhd; 589 { 590 591 panic("softdep_buf_appendwork called"); 592 } 593 594 void 595 softdep_inode_append(ip, cred, wkhd) 596 struct inode *ip; 597 struct ucred *cred; 598 struct workhead *wkhd; 599 { 600 601 panic("softdep_inode_appendwork called"); 602 } 603 604 void 605 softdep_freework(wkhd) 606 struct workhead *wkhd; 607 { 608 609 panic("softdep_freework called"); 610 } 611 612 #else 613 614 FEATURE(softupdates, "FFS soft-updates support"); 615 616 static SYSCTL_NODE(_debug, OID_AUTO, softdep, CTLFLAG_RW, 0, 617 "soft updates stats"); 618 static SYSCTL_NODE(_debug_softdep, OID_AUTO, total, CTLFLAG_RW, 0, 619 "total dependencies allocated"); 620 static SYSCTL_NODE(_debug_softdep, OID_AUTO, highuse, CTLFLAG_RW, 0, 621 "high use dependencies allocated"); 622 static SYSCTL_NODE(_debug_softdep, OID_AUTO, current, CTLFLAG_RW, 0, 623 "current dependencies allocated"); 624 static SYSCTL_NODE(_debug_softdep, OID_AUTO, write, CTLFLAG_RW, 0, 625 "current dependencies written"); 626 627 unsigned long dep_current[D_LAST + 1]; 628 unsigned long dep_highuse[D_LAST + 1]; 629 unsigned long dep_total[D_LAST + 1]; 630 unsigned long dep_write[D_LAST + 1]; 631 632 #define SOFTDEP_TYPE(type, str, long) \ 633 static MALLOC_DEFINE(M_ ## type, #str, long); \ 634 SYSCTL_ULONG(_debug_softdep_total, OID_AUTO, str, CTLFLAG_RD, \ 635 &dep_total[D_ ## type], 0, ""); \ 636 SYSCTL_ULONG(_debug_softdep_current, OID_AUTO, str, CTLFLAG_RD, \ 637 &dep_current[D_ ## type], 0, ""); \ 638 SYSCTL_ULONG(_debug_softdep_highuse, OID_AUTO, str, CTLFLAG_RD, \ 639 &dep_highuse[D_ ## type], 0, ""); \ 640 SYSCTL_ULONG(_debug_softdep_write, OID_AUTO, str, CTLFLAG_RD, \ 641 &dep_write[D_ ## type], 0, ""); 642 643 SOFTDEP_TYPE(PAGEDEP, pagedep, "File page dependencies"); 644 SOFTDEP_TYPE(INODEDEP, inodedep, "Inode dependencies"); 645 SOFTDEP_TYPE(BMSAFEMAP, bmsafemap, 646 "Block or frag allocated from cyl group map"); 647 SOFTDEP_TYPE(NEWBLK, newblk, "New block or frag allocation dependency"); 648 SOFTDEP_TYPE(ALLOCDIRECT, allocdirect, "Block or frag dependency for an inode"); 649 SOFTDEP_TYPE(INDIRDEP, indirdep, "Indirect block dependencies"); 650 SOFTDEP_TYPE(ALLOCINDIR, allocindir, "Block dependency for an indirect block"); 651 SOFTDEP_TYPE(FREEFRAG, freefrag, "Previously used frag for an inode"); 652 SOFTDEP_TYPE(FREEBLKS, freeblks, "Blocks freed from an inode"); 653 SOFTDEP_TYPE(FREEFILE, freefile, "Inode deallocated"); 654 SOFTDEP_TYPE(DIRADD, diradd, "New directory entry"); 655 SOFTDEP_TYPE(MKDIR, mkdir, "New directory"); 656 SOFTDEP_TYPE(DIRREM, dirrem, "Directory entry deleted"); 657 SOFTDEP_TYPE(NEWDIRBLK, newdirblk, "Unclaimed new directory block"); 658 SOFTDEP_TYPE(FREEWORK, freework, "free an inode block"); 659 SOFTDEP_TYPE(FREEDEP, freedep, "track a block free"); 660 SOFTDEP_TYPE(JADDREF, jaddref, "Journal inode ref add"); 661 SOFTDEP_TYPE(JREMREF, jremref, "Journal inode ref remove"); 662 SOFTDEP_TYPE(JMVREF, jmvref, "Journal inode ref move"); 663 SOFTDEP_TYPE(JNEWBLK, jnewblk, "Journal new block"); 664 SOFTDEP_TYPE(JFREEBLK, jfreeblk, "Journal free block"); 665 SOFTDEP_TYPE(JFREEFRAG, jfreefrag, "Journal free frag"); 666 SOFTDEP_TYPE(JSEG, jseg, "Journal segment"); 667 SOFTDEP_TYPE(JSEGDEP, jsegdep, "Journal segment complete"); 668 SOFTDEP_TYPE(SBDEP, sbdep, "Superblock write dependency"); 669 SOFTDEP_TYPE(JTRUNC, jtrunc, "Journal inode truncation"); 670 SOFTDEP_TYPE(JFSYNC, jfsync, "Journal fsync complete"); 671 672 static MALLOC_DEFINE(M_SENTINEL, "sentinel", "Worklist sentinel"); 673 674 static MALLOC_DEFINE(M_SAVEDINO, "savedino", "Saved inodes"); 675 static MALLOC_DEFINE(M_JBLOCKS, "jblocks", "Journal block locations"); 676 static MALLOC_DEFINE(M_MOUNTDATA, "softdep", "Softdep per-mount data"); 677 678 #define M_SOFTDEP_FLAGS (M_WAITOK) 679 680 /* 681 * translate from workitem type to memory type 682 * MUST match the defines above, such that memtype[D_XXX] == M_XXX 683 */ 684 static struct malloc_type *memtype[] = { 685 NULL, 686 M_PAGEDEP, 687 M_INODEDEP, 688 M_BMSAFEMAP, 689 M_NEWBLK, 690 M_ALLOCDIRECT, 691 M_INDIRDEP, 692 M_ALLOCINDIR, 693 M_FREEFRAG, 694 M_FREEBLKS, 695 M_FREEFILE, 696 M_DIRADD, 697 M_MKDIR, 698 M_DIRREM, 699 M_NEWDIRBLK, 700 M_FREEWORK, 701 M_FREEDEP, 702 M_JADDREF, 703 M_JREMREF, 704 M_JMVREF, 705 M_JNEWBLK, 706 M_JFREEBLK, 707 M_JFREEFRAG, 708 M_JSEG, 709 M_JSEGDEP, 710 M_SBDEP, 711 M_JTRUNC, 712 M_JFSYNC, 713 M_SENTINEL 714 }; 715 716 #define DtoM(type) (memtype[type]) 717 718 /* 719 * Names of malloc types. 720 */ 721 #define TYPENAME(type) \ 722 ((unsigned)(type) <= D_LAST && (unsigned)(type) >= D_FIRST ? \ 723 memtype[type]->ks_shortdesc : "???") 724 /* 725 * End system adaptation definitions. 726 */ 727 728 #define DOTDOT_OFFSET offsetof(struct dirtemplate, dotdot_ino) 729 #define DOT_OFFSET offsetof(struct dirtemplate, dot_ino) 730 731 /* 732 * Internal function prototypes. 733 */ 734 static void check_clear_deps(struct mount *); 735 static void softdep_error(char *, int); 736 static int softdep_process_worklist(struct mount *, int); 737 static int softdep_waitidle(struct mount *, int); 738 static void drain_output(struct vnode *); 739 static struct buf *getdirtybuf(struct buf *, struct rwlock *, int); 740 static int check_inodedep_free(struct inodedep *); 741 static void clear_remove(struct mount *); 742 static void clear_inodedeps(struct mount *); 743 static void unlinked_inodedep(struct mount *, struct inodedep *); 744 static void clear_unlinked_inodedep(struct inodedep *); 745 static struct inodedep *first_unlinked_inodedep(struct ufsmount *); 746 static int flush_pagedep_deps(struct vnode *, struct mount *, 747 struct diraddhd *); 748 static int free_pagedep(struct pagedep *); 749 static int flush_newblk_dep(struct vnode *, struct mount *, ufs_lbn_t); 750 static int flush_inodedep_deps(struct vnode *, struct mount *, ino_t); 751 static int flush_deplist(struct allocdirectlst *, int, int *); 752 static int sync_cgs(struct mount *, int); 753 static int handle_written_filepage(struct pagedep *, struct buf *, int); 754 static int handle_written_sbdep(struct sbdep *, struct buf *); 755 static void initiate_write_sbdep(struct sbdep *); 756 static void diradd_inode_written(struct diradd *, struct inodedep *); 757 static int handle_written_indirdep(struct indirdep *, struct buf *, 758 struct buf**, int); 759 static int handle_written_inodeblock(struct inodedep *, struct buf *, int); 760 static int jnewblk_rollforward(struct jnewblk *, struct fs *, struct cg *, 761 uint8_t *); 762 static int handle_written_bmsafemap(struct bmsafemap *, struct buf *, int); 763 static void handle_written_jaddref(struct jaddref *); 764 static void handle_written_jremref(struct jremref *); 765 static void handle_written_jseg(struct jseg *, struct buf *); 766 static void handle_written_jnewblk(struct jnewblk *); 767 static void handle_written_jblkdep(struct jblkdep *); 768 static void handle_written_jfreefrag(struct jfreefrag *); 769 static void complete_jseg(struct jseg *); 770 static void complete_jsegs(struct jseg *); 771 static void jseg_write(struct ufsmount *ump, struct jseg *, uint8_t *); 772 static void jaddref_write(struct jaddref *, struct jseg *, uint8_t *); 773 static void jremref_write(struct jremref *, struct jseg *, uint8_t *); 774 static void jmvref_write(struct jmvref *, struct jseg *, uint8_t *); 775 static void jtrunc_write(struct jtrunc *, struct jseg *, uint8_t *); 776 static void jfsync_write(struct jfsync *, struct jseg *, uint8_t *data); 777 static void jnewblk_write(struct jnewblk *, struct jseg *, uint8_t *); 778 static void jfreeblk_write(struct jfreeblk *, struct jseg *, uint8_t *); 779 static void jfreefrag_write(struct jfreefrag *, struct jseg *, uint8_t *); 780 static inline void inoref_write(struct inoref *, struct jseg *, 781 struct jrefrec *); 782 static void handle_allocdirect_partdone(struct allocdirect *, 783 struct workhead *); 784 static struct jnewblk *cancel_newblk(struct newblk *, struct worklist *, 785 struct workhead *); 786 static void indirdep_complete(struct indirdep *); 787 static int indirblk_lookup(struct mount *, ufs2_daddr_t); 788 static void indirblk_insert(struct freework *); 789 static void indirblk_remove(struct freework *); 790 static void handle_allocindir_partdone(struct allocindir *); 791 static void initiate_write_filepage(struct pagedep *, struct buf *); 792 static void initiate_write_indirdep(struct indirdep*, struct buf *); 793 static void handle_written_mkdir(struct mkdir *, int); 794 static int jnewblk_rollback(struct jnewblk *, struct fs *, struct cg *, 795 uint8_t *); 796 static void initiate_write_bmsafemap(struct bmsafemap *, struct buf *); 797 static void initiate_write_inodeblock_ufs1(struct inodedep *, struct buf *); 798 static void initiate_write_inodeblock_ufs2(struct inodedep *, struct buf *); 799 static void handle_workitem_freefile(struct freefile *); 800 static int handle_workitem_remove(struct dirrem *, int); 801 static struct dirrem *newdirrem(struct buf *, struct inode *, 802 struct inode *, int, struct dirrem **); 803 static struct indirdep *indirdep_lookup(struct mount *, struct inode *, 804 struct buf *); 805 static void cancel_indirdep(struct indirdep *, struct buf *, 806 struct freeblks *); 807 static void free_indirdep(struct indirdep *); 808 static void free_diradd(struct diradd *, struct workhead *); 809 static void merge_diradd(struct inodedep *, struct diradd *); 810 static void complete_diradd(struct diradd *); 811 static struct diradd *diradd_lookup(struct pagedep *, int); 812 static struct jremref *cancel_diradd_dotdot(struct inode *, struct dirrem *, 813 struct jremref *); 814 static struct jremref *cancel_mkdir_dotdot(struct inode *, struct dirrem *, 815 struct jremref *); 816 static void cancel_diradd(struct diradd *, struct dirrem *, struct jremref *, 817 struct jremref *, struct jremref *); 818 static void dirrem_journal(struct dirrem *, struct jremref *, struct jremref *, 819 struct jremref *); 820 static void cancel_allocindir(struct allocindir *, struct buf *bp, 821 struct freeblks *, int); 822 static int setup_trunc_indir(struct freeblks *, struct inode *, 823 ufs_lbn_t, ufs_lbn_t, ufs2_daddr_t); 824 static void complete_trunc_indir(struct freework *); 825 static void trunc_indirdep(struct indirdep *, struct freeblks *, struct buf *, 826 int); 827 static void complete_mkdir(struct mkdir *); 828 static void free_newdirblk(struct newdirblk *); 829 static void free_jremref(struct jremref *); 830 static void free_jaddref(struct jaddref *); 831 static void free_jsegdep(struct jsegdep *); 832 static void free_jsegs(struct jblocks *); 833 static void rele_jseg(struct jseg *); 834 static void free_jseg(struct jseg *, struct jblocks *); 835 static void free_jnewblk(struct jnewblk *); 836 static void free_jblkdep(struct jblkdep *); 837 static void free_jfreefrag(struct jfreefrag *); 838 static void free_freedep(struct freedep *); 839 static void journal_jremref(struct dirrem *, struct jremref *, 840 struct inodedep *); 841 static void cancel_jnewblk(struct jnewblk *, struct workhead *); 842 static int cancel_jaddref(struct jaddref *, struct inodedep *, 843 struct workhead *); 844 static void cancel_jfreefrag(struct jfreefrag *); 845 static inline void setup_freedirect(struct freeblks *, struct inode *, 846 int, int); 847 static inline void setup_freeext(struct freeblks *, struct inode *, int, int); 848 static inline void setup_freeindir(struct freeblks *, struct inode *, int, 849 ufs_lbn_t, int); 850 static inline struct freeblks *newfreeblks(struct mount *, struct inode *); 851 static void freeblks_free(struct ufsmount *, struct freeblks *, int); 852 static void indir_trunc(struct freework *, ufs2_daddr_t, ufs_lbn_t); 853 static ufs2_daddr_t blkcount(struct fs *, ufs2_daddr_t, off_t); 854 static int trunc_check_buf(struct buf *, int *, ufs_lbn_t, int, int); 855 static void trunc_dependencies(struct inode *, struct freeblks *, ufs_lbn_t, 856 int, int); 857 static void trunc_pages(struct inode *, off_t, ufs2_daddr_t, int); 858 static int cancel_pagedep(struct pagedep *, struct freeblks *, int); 859 static int deallocate_dependencies(struct buf *, struct freeblks *, int); 860 static void newblk_freefrag(struct newblk*); 861 static void free_newblk(struct newblk *); 862 static void cancel_allocdirect(struct allocdirectlst *, 863 struct allocdirect *, struct freeblks *); 864 static int check_inode_unwritten(struct inodedep *); 865 static int free_inodedep(struct inodedep *); 866 static void freework_freeblock(struct freework *, u_long); 867 static void freework_enqueue(struct freework *); 868 static int handle_workitem_freeblocks(struct freeblks *, int); 869 static int handle_complete_freeblocks(struct freeblks *, int); 870 static void handle_workitem_indirblk(struct freework *); 871 static void handle_written_freework(struct freework *); 872 static void merge_inode_lists(struct allocdirectlst *,struct allocdirectlst *); 873 static struct worklist *jnewblk_merge(struct worklist *, struct worklist *, 874 struct workhead *); 875 static struct freefrag *setup_allocindir_phase2(struct buf *, struct inode *, 876 struct inodedep *, struct allocindir *, ufs_lbn_t); 877 static struct allocindir *newallocindir(struct inode *, int, ufs2_daddr_t, 878 ufs2_daddr_t, ufs_lbn_t); 879 static void handle_workitem_freefrag(struct freefrag *); 880 static struct freefrag *newfreefrag(struct inode *, ufs2_daddr_t, long, 881 ufs_lbn_t, u_long); 882 static void allocdirect_merge(struct allocdirectlst *, 883 struct allocdirect *, struct allocdirect *); 884 static struct freefrag *allocindir_merge(struct allocindir *, 885 struct allocindir *); 886 static int bmsafemap_find(struct bmsafemap_hashhead *, int, 887 struct bmsafemap **); 888 static struct bmsafemap *bmsafemap_lookup(struct mount *, struct buf *, 889 int cg, struct bmsafemap *); 890 static int newblk_find(struct newblk_hashhead *, ufs2_daddr_t, int, 891 struct newblk **); 892 static int newblk_lookup(struct mount *, ufs2_daddr_t, int, struct newblk **); 893 static int inodedep_find(struct inodedep_hashhead *, ino_t, 894 struct inodedep **); 895 static int inodedep_lookup(struct mount *, ino_t, int, struct inodedep **); 896 static int pagedep_lookup(struct mount *, struct buf *bp, ino_t, ufs_lbn_t, 897 int, struct pagedep **); 898 static int pagedep_find(struct pagedep_hashhead *, ino_t, ufs_lbn_t, 899 struct pagedep **); 900 static void pause_timer(void *); 901 static int request_cleanup(struct mount *, int); 902 static int softdep_request_cleanup_flush(struct mount *, struct ufsmount *); 903 static void schedule_cleanup(struct mount *); 904 static void softdep_ast_cleanup_proc(struct thread *); 905 static struct ufsmount *softdep_bp_to_mp(struct buf *bp); 906 static int process_worklist_item(struct mount *, int, int); 907 static void process_removes(struct vnode *); 908 static void process_truncates(struct vnode *); 909 static void jwork_move(struct workhead *, struct workhead *); 910 static void jwork_insert(struct workhead *, struct jsegdep *); 911 static void add_to_worklist(struct worklist *, int); 912 static void wake_worklist(struct worklist *); 913 static void wait_worklist(struct worklist *, char *); 914 static void remove_from_worklist(struct worklist *); 915 static void softdep_flush(void *); 916 static void softdep_flushjournal(struct mount *); 917 static int softdep_speedup(struct ufsmount *); 918 static void worklist_speedup(struct mount *); 919 static int journal_mount(struct mount *, struct fs *, struct ucred *); 920 static void journal_unmount(struct ufsmount *); 921 static int journal_space(struct ufsmount *, int); 922 static void journal_suspend(struct ufsmount *); 923 static int journal_unsuspend(struct ufsmount *ump); 924 static void softdep_prelink(struct vnode *, struct vnode *); 925 static void add_to_journal(struct worklist *); 926 static void remove_from_journal(struct worklist *); 927 static bool softdep_excess_items(struct ufsmount *, int); 928 static void softdep_process_journal(struct mount *, struct worklist *, int); 929 static struct jremref *newjremref(struct dirrem *, struct inode *, 930 struct inode *ip, off_t, nlink_t); 931 static struct jaddref *newjaddref(struct inode *, ino_t, off_t, int16_t, 932 uint16_t); 933 static inline void newinoref(struct inoref *, ino_t, ino_t, off_t, nlink_t, 934 uint16_t); 935 static inline struct jsegdep *inoref_jseg(struct inoref *); 936 static struct jmvref *newjmvref(struct inode *, ino_t, off_t, off_t); 937 static struct jfreeblk *newjfreeblk(struct freeblks *, ufs_lbn_t, 938 ufs2_daddr_t, int); 939 static void adjust_newfreework(struct freeblks *, int); 940 static struct jtrunc *newjtrunc(struct freeblks *, off_t, int); 941 static void move_newblock_dep(struct jaddref *, struct inodedep *); 942 static void cancel_jfreeblk(struct freeblks *, ufs2_daddr_t); 943 static struct jfreefrag *newjfreefrag(struct freefrag *, struct inode *, 944 ufs2_daddr_t, long, ufs_lbn_t); 945 static struct freework *newfreework(struct ufsmount *, struct freeblks *, 946 struct freework *, ufs_lbn_t, ufs2_daddr_t, int, int, int); 947 static int jwait(struct worklist *, int); 948 static struct inodedep *inodedep_lookup_ip(struct inode *); 949 static int bmsafemap_backgroundwrite(struct bmsafemap *, struct buf *); 950 static struct freefile *handle_bufwait(struct inodedep *, struct workhead *); 951 static void handle_jwork(struct workhead *); 952 static struct mkdir *setup_newdir(struct diradd *, ino_t, ino_t, struct buf *, 953 struct mkdir **); 954 static struct jblocks *jblocks_create(void); 955 static ufs2_daddr_t jblocks_alloc(struct jblocks *, int, int *); 956 static void jblocks_free(struct jblocks *, struct mount *, int); 957 static void jblocks_destroy(struct jblocks *); 958 static void jblocks_add(struct jblocks *, ufs2_daddr_t, int); 959 960 /* 961 * Exported softdep operations. 962 */ 963 static void softdep_disk_io_initiation(struct buf *); 964 static void softdep_disk_write_complete(struct buf *); 965 static void softdep_deallocate_dependencies(struct buf *); 966 static int softdep_count_dependencies(struct buf *bp, int); 967 968 /* 969 * Global lock over all of soft updates. 970 */ 971 static struct mtx lk; 972 MTX_SYSINIT(softdep_lock, &lk, "global softdep", MTX_DEF); 973 974 #define ACQUIRE_GBLLOCK(lk) mtx_lock(lk) 975 #define FREE_GBLLOCK(lk) mtx_unlock(lk) 976 #define GBLLOCK_OWNED(lk) mtx_assert((lk), MA_OWNED) 977 978 /* 979 * Per-filesystem soft-updates locking. 980 */ 981 #define LOCK_PTR(ump) (&(ump)->um_softdep->sd_fslock) 982 #define TRY_ACQUIRE_LOCK(ump) rw_try_wlock(&(ump)->um_softdep->sd_fslock) 983 #define ACQUIRE_LOCK(ump) rw_wlock(&(ump)->um_softdep->sd_fslock) 984 #define FREE_LOCK(ump) rw_wunlock(&(ump)->um_softdep->sd_fslock) 985 #define LOCK_OWNED(ump) rw_assert(&(ump)->um_softdep->sd_fslock, \ 986 RA_WLOCKED) 987 988 #define BUF_AREC(bp) lockallowrecurse(&(bp)->b_lock) 989 #define BUF_NOREC(bp) lockdisablerecurse(&(bp)->b_lock) 990 991 /* 992 * Worklist queue management. 993 * These routines require that the lock be held. 994 */ 995 #ifndef /* NOT */ INVARIANTS 996 #define WORKLIST_INSERT(head, item) do { \ 997 (item)->wk_state |= ONWORKLIST; \ 998 LIST_INSERT_HEAD(head, item, wk_list); \ 999 } while (0) 1000 #define WORKLIST_REMOVE(item) do { \ 1001 (item)->wk_state &= ~ONWORKLIST; \ 1002 LIST_REMOVE(item, wk_list); \ 1003 } while (0) 1004 #define WORKLIST_INSERT_UNLOCKED WORKLIST_INSERT 1005 #define WORKLIST_REMOVE_UNLOCKED WORKLIST_REMOVE 1006 1007 #else /* INVARIANTS */ 1008 static void worklist_insert(struct workhead *, struct worklist *, int, 1009 const char *, int); 1010 static void worklist_remove(struct worklist *, int, const char *, int); 1011 1012 #define WORKLIST_INSERT(head, item) \ 1013 worklist_insert(head, item, 1, __func__, __LINE__) 1014 #define WORKLIST_INSERT_UNLOCKED(head, item)\ 1015 worklist_insert(head, item, 0, __func__, __LINE__) 1016 #define WORKLIST_REMOVE(item)\ 1017 worklist_remove(item, 1, __func__, __LINE__) 1018 #define WORKLIST_REMOVE_UNLOCKED(item)\ 1019 worklist_remove(item, 0, __func__, __LINE__) 1020 1021 static void 1022 worklist_insert(head, item, locked, func, line) 1023 struct workhead *head; 1024 struct worklist *item; 1025 int locked; 1026 const char *func; 1027 int line; 1028 { 1029 1030 if (locked) 1031 LOCK_OWNED(VFSTOUFS(item->wk_mp)); 1032 if (item->wk_state & ONWORKLIST) 1033 panic("worklist_insert: %p %s(0x%X) already on list, " 1034 "added in function %s at line %d", 1035 item, TYPENAME(item->wk_type), item->wk_state, 1036 item->wk_func, item->wk_line); 1037 item->wk_state |= ONWORKLIST; 1038 item->wk_func = func; 1039 item->wk_line = line; 1040 LIST_INSERT_HEAD(head, item, wk_list); 1041 } 1042 1043 static void 1044 worklist_remove(item, locked, func, line) 1045 struct worklist *item; 1046 int locked; 1047 const char *func; 1048 int line; 1049 { 1050 1051 if (locked) 1052 LOCK_OWNED(VFSTOUFS(item->wk_mp)); 1053 if ((item->wk_state & ONWORKLIST) == 0) 1054 panic("worklist_remove: %p %s(0x%X) not on list, " 1055 "removed in function %s at line %d", 1056 item, TYPENAME(item->wk_type), item->wk_state, 1057 item->wk_func, item->wk_line); 1058 item->wk_state &= ~ONWORKLIST; 1059 item->wk_func = func; 1060 item->wk_line = line; 1061 LIST_REMOVE(item, wk_list); 1062 } 1063 #endif /* INVARIANTS */ 1064 1065 /* 1066 * Merge two jsegdeps keeping only the oldest one as newer references 1067 * can't be discarded until after older references. 1068 */ 1069 static inline struct jsegdep * 1070 jsegdep_merge(struct jsegdep *one, struct jsegdep *two) 1071 { 1072 struct jsegdep *swp; 1073 1074 if (two == NULL) 1075 return (one); 1076 1077 if (one->jd_seg->js_seq > two->jd_seg->js_seq) { 1078 swp = one; 1079 one = two; 1080 two = swp; 1081 } 1082 WORKLIST_REMOVE(&two->jd_list); 1083 free_jsegdep(two); 1084 1085 return (one); 1086 } 1087 1088 /* 1089 * If two freedeps are compatible free one to reduce list size. 1090 */ 1091 static inline struct freedep * 1092 freedep_merge(struct freedep *one, struct freedep *two) 1093 { 1094 if (two == NULL) 1095 return (one); 1096 1097 if (one->fd_freework == two->fd_freework) { 1098 WORKLIST_REMOVE(&two->fd_list); 1099 free_freedep(two); 1100 } 1101 return (one); 1102 } 1103 1104 /* 1105 * Move journal work from one list to another. Duplicate freedeps and 1106 * jsegdeps are coalesced to keep the lists as small as possible. 1107 */ 1108 static void 1109 jwork_move(dst, src) 1110 struct workhead *dst; 1111 struct workhead *src; 1112 { 1113 struct freedep *freedep; 1114 struct jsegdep *jsegdep; 1115 struct worklist *wkn; 1116 struct worklist *wk; 1117 1118 KASSERT(dst != src, 1119 ("jwork_move: dst == src")); 1120 freedep = NULL; 1121 jsegdep = NULL; 1122 LIST_FOREACH_SAFE(wk, dst, wk_list, wkn) { 1123 if (wk->wk_type == D_JSEGDEP) 1124 jsegdep = jsegdep_merge(WK_JSEGDEP(wk), jsegdep); 1125 else if (wk->wk_type == D_FREEDEP) 1126 freedep = freedep_merge(WK_FREEDEP(wk), freedep); 1127 } 1128 1129 while ((wk = LIST_FIRST(src)) != NULL) { 1130 WORKLIST_REMOVE(wk); 1131 WORKLIST_INSERT(dst, wk); 1132 if (wk->wk_type == D_JSEGDEP) { 1133 jsegdep = jsegdep_merge(WK_JSEGDEP(wk), jsegdep); 1134 continue; 1135 } 1136 if (wk->wk_type == D_FREEDEP) 1137 freedep = freedep_merge(WK_FREEDEP(wk), freedep); 1138 } 1139 } 1140 1141 static void 1142 jwork_insert(dst, jsegdep) 1143 struct workhead *dst; 1144 struct jsegdep *jsegdep; 1145 { 1146 struct jsegdep *jsegdepn; 1147 struct worklist *wk; 1148 1149 LIST_FOREACH(wk, dst, wk_list) 1150 if (wk->wk_type == D_JSEGDEP) 1151 break; 1152 if (wk == NULL) { 1153 WORKLIST_INSERT(dst, &jsegdep->jd_list); 1154 return; 1155 } 1156 jsegdepn = WK_JSEGDEP(wk); 1157 if (jsegdep->jd_seg->js_seq < jsegdepn->jd_seg->js_seq) { 1158 WORKLIST_REMOVE(wk); 1159 free_jsegdep(jsegdepn); 1160 WORKLIST_INSERT(dst, &jsegdep->jd_list); 1161 } else 1162 free_jsegdep(jsegdep); 1163 } 1164 1165 /* 1166 * Routines for tracking and managing workitems. 1167 */ 1168 static void workitem_free(struct worklist *, int); 1169 static void workitem_alloc(struct worklist *, int, struct mount *); 1170 static void workitem_reassign(struct worklist *, int); 1171 1172 #define WORKITEM_FREE(item, type) \ 1173 workitem_free((struct worklist *)(item), (type)) 1174 #define WORKITEM_REASSIGN(item, type) \ 1175 workitem_reassign((struct worklist *)(item), (type)) 1176 1177 static void 1178 workitem_free(item, type) 1179 struct worklist *item; 1180 int type; 1181 { 1182 struct ufsmount *ump; 1183 1184 #ifdef INVARIANTS 1185 if (item->wk_state & ONWORKLIST) 1186 panic("workitem_free: %s(0x%X) still on list, " 1187 "added in function %s at line %d", 1188 TYPENAME(item->wk_type), item->wk_state, 1189 item->wk_func, item->wk_line); 1190 if (item->wk_type != type && type != D_NEWBLK) 1191 panic("workitem_free: type mismatch %s != %s", 1192 TYPENAME(item->wk_type), TYPENAME(type)); 1193 #endif 1194 if (item->wk_state & IOWAITING) 1195 wakeup(item); 1196 ump = VFSTOUFS(item->wk_mp); 1197 LOCK_OWNED(ump); 1198 KASSERT(ump->softdep_deps > 0, 1199 ("workitem_free: %s: softdep_deps going negative", 1200 ump->um_fs->fs_fsmnt)); 1201 if (--ump->softdep_deps == 0 && ump->softdep_req) 1202 wakeup(&ump->softdep_deps); 1203 KASSERT(dep_current[item->wk_type] > 0, 1204 ("workitem_free: %s: dep_current[%s] going negative", 1205 ump->um_fs->fs_fsmnt, TYPENAME(item->wk_type))); 1206 KASSERT(ump->softdep_curdeps[item->wk_type] > 0, 1207 ("workitem_free: %s: softdep_curdeps[%s] going negative", 1208 ump->um_fs->fs_fsmnt, TYPENAME(item->wk_type))); 1209 atomic_subtract_long(&dep_current[item->wk_type], 1); 1210 ump->softdep_curdeps[item->wk_type] -= 1; 1211 free(item, DtoM(type)); 1212 } 1213 1214 static void 1215 workitem_alloc(item, type, mp) 1216 struct worklist *item; 1217 int type; 1218 struct mount *mp; 1219 { 1220 struct ufsmount *ump; 1221 1222 item->wk_type = type; 1223 item->wk_mp = mp; 1224 item->wk_state = 0; 1225 1226 ump = VFSTOUFS(mp); 1227 ACQUIRE_GBLLOCK(&lk); 1228 dep_current[type]++; 1229 if (dep_current[type] > dep_highuse[type]) 1230 dep_highuse[type] = dep_current[type]; 1231 dep_total[type]++; 1232 FREE_GBLLOCK(&lk); 1233 ACQUIRE_LOCK(ump); 1234 ump->softdep_curdeps[type] += 1; 1235 ump->softdep_deps++; 1236 ump->softdep_accdeps++; 1237 FREE_LOCK(ump); 1238 } 1239 1240 static void 1241 workitem_reassign(item, newtype) 1242 struct worklist *item; 1243 int newtype; 1244 { 1245 struct ufsmount *ump; 1246 1247 ump = VFSTOUFS(item->wk_mp); 1248 LOCK_OWNED(ump); 1249 KASSERT(ump->softdep_curdeps[item->wk_type] > 0, 1250 ("workitem_reassign: %s: softdep_curdeps[%s] going negative", 1251 VFSTOUFS(item->wk_mp)->um_fs->fs_fsmnt, TYPENAME(item->wk_type))); 1252 ump->softdep_curdeps[item->wk_type] -= 1; 1253 ump->softdep_curdeps[newtype] += 1; 1254 KASSERT(dep_current[item->wk_type] > 0, 1255 ("workitem_reassign: %s: dep_current[%s] going negative", 1256 VFSTOUFS(item->wk_mp)->um_fs->fs_fsmnt, TYPENAME(item->wk_type))); 1257 ACQUIRE_GBLLOCK(&lk); 1258 dep_current[newtype]++; 1259 dep_current[item->wk_type]--; 1260 if (dep_current[newtype] > dep_highuse[newtype]) 1261 dep_highuse[newtype] = dep_current[newtype]; 1262 dep_total[newtype]++; 1263 FREE_GBLLOCK(&lk); 1264 item->wk_type = newtype; 1265 } 1266 1267 /* 1268 * Workitem queue management 1269 */ 1270 static int max_softdeps; /* maximum number of structs before slowdown */ 1271 static int tickdelay = 2; /* number of ticks to pause during slowdown */ 1272 static int proc_waiting; /* tracks whether we have a timeout posted */ 1273 static int *stat_countp; /* statistic to count in proc_waiting timeout */ 1274 static struct callout softdep_callout; 1275 static int req_clear_inodedeps; /* syncer process flush some inodedeps */ 1276 static int req_clear_remove; /* syncer process flush some freeblks */ 1277 static int softdep_flushcache = 0; /* Should we do BIO_FLUSH? */ 1278 1279 /* 1280 * runtime statistics 1281 */ 1282 static int stat_flush_threads; /* number of softdep flushing threads */ 1283 static int stat_worklist_push; /* number of worklist cleanups */ 1284 static int stat_blk_limit_push; /* number of times block limit neared */ 1285 static int stat_ino_limit_push; /* number of times inode limit neared */ 1286 static int stat_blk_limit_hit; /* number of times block slowdown imposed */ 1287 static int stat_ino_limit_hit; /* number of times inode slowdown imposed */ 1288 static int stat_sync_limit_hit; /* number of synchronous slowdowns imposed */ 1289 static int stat_indir_blk_ptrs; /* bufs redirtied as indir ptrs not written */ 1290 static int stat_inode_bitmap; /* bufs redirtied as inode bitmap not written */ 1291 static int stat_direct_blk_ptrs;/* bufs redirtied as direct ptrs not written */ 1292 static int stat_dir_entry; /* bufs redirtied as dir entry cannot write */ 1293 static int stat_jaddref; /* bufs redirtied as ino bitmap can not write */ 1294 static int stat_jnewblk; /* bufs redirtied as blk bitmap can not write */ 1295 static int stat_journal_min; /* Times hit journal min threshold */ 1296 static int stat_journal_low; /* Times hit journal low threshold */ 1297 static int stat_journal_wait; /* Times blocked in jwait(). */ 1298 static int stat_jwait_filepage; /* Times blocked in jwait() for filepage. */ 1299 static int stat_jwait_freeblks; /* Times blocked in jwait() for freeblks. */ 1300 static int stat_jwait_inode; /* Times blocked in jwait() for inodes. */ 1301 static int stat_jwait_newblk; /* Times blocked in jwait() for newblks. */ 1302 static int stat_cleanup_high_delay; /* Maximum cleanup delay (in ticks) */ 1303 static int stat_cleanup_blkrequests; /* Number of block cleanup requests */ 1304 static int stat_cleanup_inorequests; /* Number of inode cleanup requests */ 1305 static int stat_cleanup_retries; /* Number of cleanups that needed to flush */ 1306 static int stat_cleanup_failures; /* Number of cleanup requests that failed */ 1307 static int stat_emptyjblocks; /* Number of potentially empty journal blocks */ 1308 1309 SYSCTL_INT(_debug_softdep, OID_AUTO, max_softdeps, CTLFLAG_RW, 1310 &max_softdeps, 0, ""); 1311 SYSCTL_INT(_debug_softdep, OID_AUTO, tickdelay, CTLFLAG_RW, 1312 &tickdelay, 0, ""); 1313 SYSCTL_INT(_debug_softdep, OID_AUTO, flush_threads, CTLFLAG_RD, 1314 &stat_flush_threads, 0, ""); 1315 SYSCTL_INT(_debug_softdep, OID_AUTO, worklist_push, 1316 CTLFLAG_RW | CTLFLAG_STATS, &stat_worklist_push, 0,""); 1317 SYSCTL_INT(_debug_softdep, OID_AUTO, blk_limit_push, 1318 CTLFLAG_RW | CTLFLAG_STATS, &stat_blk_limit_push, 0,""); 1319 SYSCTL_INT(_debug_softdep, OID_AUTO, ino_limit_push, 1320 CTLFLAG_RW | CTLFLAG_STATS, &stat_ino_limit_push, 0,""); 1321 SYSCTL_INT(_debug_softdep, OID_AUTO, blk_limit_hit, 1322 CTLFLAG_RW | CTLFLAG_STATS, &stat_blk_limit_hit, 0, ""); 1323 SYSCTL_INT(_debug_softdep, OID_AUTO, ino_limit_hit, 1324 CTLFLAG_RW | CTLFLAG_STATS, &stat_ino_limit_hit, 0, ""); 1325 SYSCTL_INT(_debug_softdep, OID_AUTO, sync_limit_hit, 1326 CTLFLAG_RW | CTLFLAG_STATS, &stat_sync_limit_hit, 0, ""); 1327 SYSCTL_INT(_debug_softdep, OID_AUTO, indir_blk_ptrs, 1328 CTLFLAG_RW | CTLFLAG_STATS, &stat_indir_blk_ptrs, 0, ""); 1329 SYSCTL_INT(_debug_softdep, OID_AUTO, inode_bitmap, 1330 CTLFLAG_RW | CTLFLAG_STATS, &stat_inode_bitmap, 0, ""); 1331 SYSCTL_INT(_debug_softdep, OID_AUTO, direct_blk_ptrs, 1332 CTLFLAG_RW | CTLFLAG_STATS, &stat_direct_blk_ptrs, 0, ""); 1333 SYSCTL_INT(_debug_softdep, OID_AUTO, dir_entry, 1334 CTLFLAG_RW | CTLFLAG_STATS, &stat_dir_entry, 0, ""); 1335 SYSCTL_INT(_debug_softdep, OID_AUTO, jaddref_rollback, 1336 CTLFLAG_RW | CTLFLAG_STATS, &stat_jaddref, 0, ""); 1337 SYSCTL_INT(_debug_softdep, OID_AUTO, jnewblk_rollback, 1338 CTLFLAG_RW | CTLFLAG_STATS, &stat_jnewblk, 0, ""); 1339 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_low, 1340 CTLFLAG_RW | CTLFLAG_STATS, &stat_journal_low, 0, ""); 1341 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_min, 1342 CTLFLAG_RW | CTLFLAG_STATS, &stat_journal_min, 0, ""); 1343 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_wait, 1344 CTLFLAG_RW | CTLFLAG_STATS, &stat_journal_wait, 0, ""); 1345 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_filepage, 1346 CTLFLAG_RW | CTLFLAG_STATS, &stat_jwait_filepage, 0, ""); 1347 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_freeblks, 1348 CTLFLAG_RW | CTLFLAG_STATS, &stat_jwait_freeblks, 0, ""); 1349 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_inode, 1350 CTLFLAG_RW | CTLFLAG_STATS, &stat_jwait_inode, 0, ""); 1351 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_newblk, 1352 CTLFLAG_RW | CTLFLAG_STATS, &stat_jwait_newblk, 0, ""); 1353 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_blkrequests, 1354 CTLFLAG_RW | CTLFLAG_STATS, &stat_cleanup_blkrequests, 0, ""); 1355 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_inorequests, 1356 CTLFLAG_RW | CTLFLAG_STATS, &stat_cleanup_inorequests, 0, ""); 1357 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_high_delay, 1358 CTLFLAG_RW | CTLFLAG_STATS, &stat_cleanup_high_delay, 0, ""); 1359 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_retries, 1360 CTLFLAG_RW | CTLFLAG_STATS, &stat_cleanup_retries, 0, ""); 1361 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_failures, 1362 CTLFLAG_RW | CTLFLAG_STATS, &stat_cleanup_failures, 0, ""); 1363 1364 SYSCTL_INT(_debug_softdep, OID_AUTO, flushcache, CTLFLAG_RW, 1365 &softdep_flushcache, 0, ""); 1366 SYSCTL_INT(_debug_softdep, OID_AUTO, emptyjblocks, CTLFLAG_RD, 1367 &stat_emptyjblocks, 0, ""); 1368 1369 SYSCTL_DECL(_vfs_ffs); 1370 1371 /* Whether to recompute the summary at mount time */ 1372 static int compute_summary_at_mount = 0; 1373 SYSCTL_INT(_vfs_ffs, OID_AUTO, compute_summary_at_mount, CTLFLAG_RW, 1374 &compute_summary_at_mount, 0, "Recompute summary at mount"); 1375 static int print_threads = 0; 1376 SYSCTL_INT(_debug_softdep, OID_AUTO, print_threads, CTLFLAG_RW, 1377 &print_threads, 0, "Notify flusher thread start/stop"); 1378 1379 /* List of all filesystems mounted with soft updates */ 1380 static TAILQ_HEAD(, mount_softdeps) softdepmounts; 1381 1382 /* 1383 * This function cleans the worklist for a filesystem. 1384 * Each filesystem running with soft dependencies gets its own 1385 * thread to run in this function. The thread is started up in 1386 * softdep_mount and shutdown in softdep_unmount. They show up 1387 * as part of the kernel "bufdaemon" process whose process 1388 * entry is available in bufdaemonproc. 1389 */ 1390 static int searchfailed; 1391 extern struct proc *bufdaemonproc; 1392 static void 1393 softdep_flush(addr) 1394 void *addr; 1395 { 1396 struct mount *mp; 1397 struct thread *td; 1398 struct ufsmount *ump; 1399 1400 td = curthread; 1401 td->td_pflags |= TDP_NORUNNINGBUF; 1402 mp = (struct mount *)addr; 1403 ump = VFSTOUFS(mp); 1404 atomic_add_int(&stat_flush_threads, 1); 1405 ACQUIRE_LOCK(ump); 1406 ump->softdep_flags &= ~FLUSH_STARTING; 1407 wakeup(&ump->softdep_flushtd); 1408 FREE_LOCK(ump); 1409 if (print_threads) { 1410 if (stat_flush_threads == 1) 1411 printf("Running %s at pid %d\n", bufdaemonproc->p_comm, 1412 bufdaemonproc->p_pid); 1413 printf("Start thread %s\n", td->td_name); 1414 } 1415 for (;;) { 1416 while (softdep_process_worklist(mp, 0) > 0 || 1417 (MOUNTEDSUJ(mp) && 1418 VFSTOUFS(mp)->softdep_jblocks->jb_suspended)) 1419 kthread_suspend_check(); 1420 ACQUIRE_LOCK(ump); 1421 if ((ump->softdep_flags & (FLUSH_CLEANUP | FLUSH_EXIT)) == 0) 1422 msleep(&ump->softdep_flushtd, LOCK_PTR(ump), PVM, 1423 "sdflush", hz / 2); 1424 ump->softdep_flags &= ~FLUSH_CLEANUP; 1425 /* 1426 * Check to see if we are done and need to exit. 1427 */ 1428 if ((ump->softdep_flags & FLUSH_EXIT) == 0) { 1429 FREE_LOCK(ump); 1430 continue; 1431 } 1432 ump->softdep_flags &= ~FLUSH_EXIT; 1433 FREE_LOCK(ump); 1434 wakeup(&ump->softdep_flags); 1435 if (print_threads) 1436 printf("Stop thread %s: searchfailed %d, did cleanups %d\n", td->td_name, searchfailed, ump->um_softdep->sd_cleanups); 1437 atomic_subtract_int(&stat_flush_threads, 1); 1438 kthread_exit(); 1439 panic("kthread_exit failed\n"); 1440 } 1441 } 1442 1443 static void 1444 worklist_speedup(mp) 1445 struct mount *mp; 1446 { 1447 struct ufsmount *ump; 1448 1449 ump = VFSTOUFS(mp); 1450 LOCK_OWNED(ump); 1451 if ((ump->softdep_flags & (FLUSH_CLEANUP | FLUSH_EXIT)) == 0) 1452 ump->softdep_flags |= FLUSH_CLEANUP; 1453 wakeup(&ump->softdep_flushtd); 1454 } 1455 1456 static void 1457 softdep_send_speedup(struct ufsmount *ump, size_t shortage, u_int flags) 1458 { 1459 struct buf *bp; 1460 1461 bp = malloc(sizeof(*bp), M_TRIM, M_WAITOK | M_ZERO); 1462 bp->b_iocmd = BIO_SPEEDUP; 1463 bp->b_ioflags = flags; 1464 bp->b_bcount = shortage; 1465 g_vfs_strategy(ump->um_bo, bp); 1466 bufwait(bp); 1467 free(bp, M_TRIM); 1468 } 1469 1470 static int 1471 softdep_speedup(ump) 1472 struct ufsmount *ump; 1473 { 1474 struct ufsmount *altump; 1475 struct mount_softdeps *sdp; 1476 1477 LOCK_OWNED(ump); 1478 worklist_speedup(ump->um_mountp); 1479 bd_speedup(); 1480 /* 1481 * If we have global shortages, then we need other 1482 * filesystems to help with the cleanup. Here we wakeup a 1483 * flusher thread for a filesystem that is over its fair 1484 * share of resources. 1485 */ 1486 if (req_clear_inodedeps || req_clear_remove) { 1487 ACQUIRE_GBLLOCK(&lk); 1488 TAILQ_FOREACH(sdp, &softdepmounts, sd_next) { 1489 if ((altump = sdp->sd_ump) == ump) 1490 continue; 1491 if (((req_clear_inodedeps && 1492 altump->softdep_curdeps[D_INODEDEP] > 1493 max_softdeps / stat_flush_threads) || 1494 (req_clear_remove && 1495 altump->softdep_curdeps[D_DIRREM] > 1496 (max_softdeps / 2) / stat_flush_threads)) && 1497 TRY_ACQUIRE_LOCK(altump)) 1498 break; 1499 } 1500 if (sdp == NULL) { 1501 searchfailed++; 1502 FREE_GBLLOCK(&lk); 1503 } else { 1504 /* 1505 * Move to the end of the list so we pick a 1506 * different one on out next try. 1507 */ 1508 TAILQ_REMOVE(&softdepmounts, sdp, sd_next); 1509 TAILQ_INSERT_TAIL(&softdepmounts, sdp, sd_next); 1510 FREE_GBLLOCK(&lk); 1511 if ((altump->softdep_flags & 1512 (FLUSH_CLEANUP | FLUSH_EXIT)) == 0) 1513 altump->softdep_flags |= FLUSH_CLEANUP; 1514 altump->um_softdep->sd_cleanups++; 1515 wakeup(&altump->softdep_flushtd); 1516 FREE_LOCK(altump); 1517 } 1518 } 1519 return (speedup_syncer()); 1520 } 1521 1522 /* 1523 * Add an item to the end of the work queue. 1524 * This routine requires that the lock be held. 1525 * This is the only routine that adds items to the list. 1526 * The following routine is the only one that removes items 1527 * and does so in order from first to last. 1528 */ 1529 1530 #define WK_HEAD 0x0001 /* Add to HEAD. */ 1531 #define WK_NODELAY 0x0002 /* Process immediately. */ 1532 1533 static void 1534 add_to_worklist(wk, flags) 1535 struct worklist *wk; 1536 int flags; 1537 { 1538 struct ufsmount *ump; 1539 1540 ump = VFSTOUFS(wk->wk_mp); 1541 LOCK_OWNED(ump); 1542 if (wk->wk_state & ONWORKLIST) 1543 panic("add_to_worklist: %s(0x%X) already on list", 1544 TYPENAME(wk->wk_type), wk->wk_state); 1545 wk->wk_state |= ONWORKLIST; 1546 if (ump->softdep_on_worklist == 0) { 1547 LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list); 1548 ump->softdep_worklist_tail = wk; 1549 } else if (flags & WK_HEAD) { 1550 LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list); 1551 } else { 1552 LIST_INSERT_AFTER(ump->softdep_worklist_tail, wk, wk_list); 1553 ump->softdep_worklist_tail = wk; 1554 } 1555 ump->softdep_on_worklist += 1; 1556 if (flags & WK_NODELAY) 1557 worklist_speedup(wk->wk_mp); 1558 } 1559 1560 /* 1561 * Remove the item to be processed. If we are removing the last 1562 * item on the list, we need to recalculate the tail pointer. 1563 */ 1564 static void 1565 remove_from_worklist(wk) 1566 struct worklist *wk; 1567 { 1568 struct ufsmount *ump; 1569 1570 ump = VFSTOUFS(wk->wk_mp); 1571 if (ump->softdep_worklist_tail == wk) 1572 ump->softdep_worklist_tail = 1573 (struct worklist *)wk->wk_list.le_prev; 1574 WORKLIST_REMOVE(wk); 1575 ump->softdep_on_worklist -= 1; 1576 } 1577 1578 static void 1579 wake_worklist(wk) 1580 struct worklist *wk; 1581 { 1582 if (wk->wk_state & IOWAITING) { 1583 wk->wk_state &= ~IOWAITING; 1584 wakeup(wk); 1585 } 1586 } 1587 1588 static void 1589 wait_worklist(wk, wmesg) 1590 struct worklist *wk; 1591 char *wmesg; 1592 { 1593 struct ufsmount *ump; 1594 1595 ump = VFSTOUFS(wk->wk_mp); 1596 wk->wk_state |= IOWAITING; 1597 msleep(wk, LOCK_PTR(ump), PVM, wmesg, 0); 1598 } 1599 1600 /* 1601 * Process that runs once per second to handle items in the background queue. 1602 * 1603 * Note that we ensure that everything is done in the order in which they 1604 * appear in the queue. The code below depends on this property to ensure 1605 * that blocks of a file are freed before the inode itself is freed. This 1606 * ordering ensures that no new <vfsid, inum, lbn> triples will be generated 1607 * until all the old ones have been purged from the dependency lists. 1608 */ 1609 static int 1610 softdep_process_worklist(mp, full) 1611 struct mount *mp; 1612 int full; 1613 { 1614 int cnt, matchcnt; 1615 struct ufsmount *ump; 1616 long starttime; 1617 1618 KASSERT(mp != NULL, ("softdep_process_worklist: NULL mp")); 1619 if (MOUNTEDSOFTDEP(mp) == 0) 1620 return (0); 1621 matchcnt = 0; 1622 ump = VFSTOUFS(mp); 1623 ACQUIRE_LOCK(ump); 1624 starttime = time_second; 1625 softdep_process_journal(mp, NULL, full ? MNT_WAIT : 0); 1626 check_clear_deps(mp); 1627 while (ump->softdep_on_worklist > 0) { 1628 if ((cnt = process_worklist_item(mp, 10, LK_NOWAIT)) == 0) 1629 break; 1630 else 1631 matchcnt += cnt; 1632 check_clear_deps(mp); 1633 /* 1634 * We do not generally want to stop for buffer space, but if 1635 * we are really being a buffer hog, we will stop and wait. 1636 */ 1637 if (should_yield()) { 1638 FREE_LOCK(ump); 1639 kern_yield(PRI_USER); 1640 bwillwrite(); 1641 ACQUIRE_LOCK(ump); 1642 } 1643 /* 1644 * Never allow processing to run for more than one 1645 * second. This gives the syncer thread the opportunity 1646 * to pause if appropriate. 1647 */ 1648 if (!full && starttime != time_second) 1649 break; 1650 } 1651 if (full == 0) 1652 journal_unsuspend(ump); 1653 FREE_LOCK(ump); 1654 return (matchcnt); 1655 } 1656 1657 /* 1658 * Process all removes associated with a vnode if we are running out of 1659 * journal space. Any other process which attempts to flush these will 1660 * be unable as we have the vnodes locked. 1661 */ 1662 static void 1663 process_removes(vp) 1664 struct vnode *vp; 1665 { 1666 struct inodedep *inodedep; 1667 struct dirrem *dirrem; 1668 struct ufsmount *ump; 1669 struct mount *mp; 1670 ino_t inum; 1671 1672 mp = vp->v_mount; 1673 ump = VFSTOUFS(mp); 1674 LOCK_OWNED(ump); 1675 inum = VTOI(vp)->i_number; 1676 for (;;) { 1677 top: 1678 if (inodedep_lookup(mp, inum, 0, &inodedep) == 0) 1679 return; 1680 LIST_FOREACH(dirrem, &inodedep->id_dirremhd, dm_inonext) { 1681 /* 1682 * If another thread is trying to lock this vnode 1683 * it will fail but we must wait for it to do so 1684 * before we can proceed. 1685 */ 1686 if (dirrem->dm_state & INPROGRESS) { 1687 wait_worklist(&dirrem->dm_list, "pwrwait"); 1688 goto top; 1689 } 1690 if ((dirrem->dm_state & (COMPLETE | ONWORKLIST)) == 1691 (COMPLETE | ONWORKLIST)) 1692 break; 1693 } 1694 if (dirrem == NULL) 1695 return; 1696 remove_from_worklist(&dirrem->dm_list); 1697 FREE_LOCK(ump); 1698 if (vn_start_secondary_write(NULL, &mp, V_NOWAIT)) 1699 panic("process_removes: suspended filesystem"); 1700 handle_workitem_remove(dirrem, 0); 1701 vn_finished_secondary_write(mp); 1702 ACQUIRE_LOCK(ump); 1703 } 1704 } 1705 1706 /* 1707 * Process all truncations associated with a vnode if we are running out 1708 * of journal space. This is called when the vnode lock is already held 1709 * and no other process can clear the truncation. This function returns 1710 * a value greater than zero if it did any work. 1711 */ 1712 static void 1713 process_truncates(vp) 1714 struct vnode *vp; 1715 { 1716 struct inodedep *inodedep; 1717 struct freeblks *freeblks; 1718 struct ufsmount *ump; 1719 struct mount *mp; 1720 ino_t inum; 1721 int cgwait; 1722 1723 mp = vp->v_mount; 1724 ump = VFSTOUFS(mp); 1725 LOCK_OWNED(ump); 1726 inum = VTOI(vp)->i_number; 1727 for (;;) { 1728 if (inodedep_lookup(mp, inum, 0, &inodedep) == 0) 1729 return; 1730 cgwait = 0; 1731 TAILQ_FOREACH(freeblks, &inodedep->id_freeblklst, fb_next) { 1732 /* Journal entries not yet written. */ 1733 if (!LIST_EMPTY(&freeblks->fb_jblkdephd)) { 1734 jwait(&LIST_FIRST( 1735 &freeblks->fb_jblkdephd)->jb_list, 1736 MNT_WAIT); 1737 break; 1738 } 1739 /* Another thread is executing this item. */ 1740 if (freeblks->fb_state & INPROGRESS) { 1741 wait_worklist(&freeblks->fb_list, "ptrwait"); 1742 break; 1743 } 1744 /* Freeblks is waiting on a inode write. */ 1745 if ((freeblks->fb_state & COMPLETE) == 0) { 1746 FREE_LOCK(ump); 1747 ffs_update(vp, 1); 1748 ACQUIRE_LOCK(ump); 1749 break; 1750 } 1751 if ((freeblks->fb_state & (ALLCOMPLETE | ONWORKLIST)) == 1752 (ALLCOMPLETE | ONWORKLIST)) { 1753 remove_from_worklist(&freeblks->fb_list); 1754 freeblks->fb_state |= INPROGRESS; 1755 FREE_LOCK(ump); 1756 if (vn_start_secondary_write(NULL, &mp, 1757 V_NOWAIT)) 1758 panic("process_truncates: " 1759 "suspended filesystem"); 1760 handle_workitem_freeblocks(freeblks, 0); 1761 vn_finished_secondary_write(mp); 1762 ACQUIRE_LOCK(ump); 1763 break; 1764 } 1765 if (freeblks->fb_cgwait) 1766 cgwait++; 1767 } 1768 if (cgwait) { 1769 FREE_LOCK(ump); 1770 sync_cgs(mp, MNT_WAIT); 1771 ffs_sync_snap(mp, MNT_WAIT); 1772 ACQUIRE_LOCK(ump); 1773 continue; 1774 } 1775 if (freeblks == NULL) 1776 break; 1777 } 1778 return; 1779 } 1780 1781 /* 1782 * Process one item on the worklist. 1783 */ 1784 static int 1785 process_worklist_item(mp, target, flags) 1786 struct mount *mp; 1787 int target; 1788 int flags; 1789 { 1790 struct worklist sentinel; 1791 struct worklist *wk; 1792 struct ufsmount *ump; 1793 int matchcnt; 1794 int error; 1795 1796 KASSERT(mp != NULL, ("process_worklist_item: NULL mp")); 1797 /* 1798 * If we are being called because of a process doing a 1799 * copy-on-write, then it is not safe to write as we may 1800 * recurse into the copy-on-write routine. 1801 */ 1802 if (curthread->td_pflags & TDP_COWINPROGRESS) 1803 return (-1); 1804 PHOLD(curproc); /* Don't let the stack go away. */ 1805 ump = VFSTOUFS(mp); 1806 LOCK_OWNED(ump); 1807 matchcnt = 0; 1808 sentinel.wk_mp = NULL; 1809 sentinel.wk_type = D_SENTINEL; 1810 LIST_INSERT_HEAD(&ump->softdep_workitem_pending, &sentinel, wk_list); 1811 for (wk = LIST_NEXT(&sentinel, wk_list); wk != NULL; 1812 wk = LIST_NEXT(&sentinel, wk_list)) { 1813 if (wk->wk_type == D_SENTINEL) { 1814 LIST_REMOVE(&sentinel, wk_list); 1815 LIST_INSERT_AFTER(wk, &sentinel, wk_list); 1816 continue; 1817 } 1818 if (wk->wk_state & INPROGRESS) 1819 panic("process_worklist_item: %p already in progress.", 1820 wk); 1821 wk->wk_state |= INPROGRESS; 1822 remove_from_worklist(wk); 1823 FREE_LOCK(ump); 1824 if (vn_start_secondary_write(NULL, &mp, V_NOWAIT)) 1825 panic("process_worklist_item: suspended filesystem"); 1826 switch (wk->wk_type) { 1827 case D_DIRREM: 1828 /* removal of a directory entry */ 1829 error = handle_workitem_remove(WK_DIRREM(wk), flags); 1830 break; 1831 1832 case D_FREEBLKS: 1833 /* releasing blocks and/or fragments from a file */ 1834 error = handle_workitem_freeblocks(WK_FREEBLKS(wk), 1835 flags); 1836 break; 1837 1838 case D_FREEFRAG: 1839 /* releasing a fragment when replaced as a file grows */ 1840 handle_workitem_freefrag(WK_FREEFRAG(wk)); 1841 error = 0; 1842 break; 1843 1844 case D_FREEFILE: 1845 /* releasing an inode when its link count drops to 0 */ 1846 handle_workitem_freefile(WK_FREEFILE(wk)); 1847 error = 0; 1848 break; 1849 1850 default: 1851 panic("%s_process_worklist: Unknown type %s", 1852 "softdep", TYPENAME(wk->wk_type)); 1853 /* NOTREACHED */ 1854 } 1855 vn_finished_secondary_write(mp); 1856 ACQUIRE_LOCK(ump); 1857 if (error == 0) { 1858 if (++matchcnt == target) 1859 break; 1860 continue; 1861 } 1862 /* 1863 * We have to retry the worklist item later. Wake up any 1864 * waiters who may be able to complete it immediately and 1865 * add the item back to the head so we don't try to execute 1866 * it again. 1867 */ 1868 wk->wk_state &= ~INPROGRESS; 1869 wake_worklist(wk); 1870 add_to_worklist(wk, WK_HEAD); 1871 } 1872 /* Sentinal could've become the tail from remove_from_worklist. */ 1873 if (ump->softdep_worklist_tail == &sentinel) 1874 ump->softdep_worklist_tail = 1875 (struct worklist *)sentinel.wk_list.le_prev; 1876 LIST_REMOVE(&sentinel, wk_list); 1877 PRELE(curproc); 1878 return (matchcnt); 1879 } 1880 1881 /* 1882 * Move dependencies from one buffer to another. 1883 */ 1884 int 1885 softdep_move_dependencies(oldbp, newbp) 1886 struct buf *oldbp; 1887 struct buf *newbp; 1888 { 1889 struct worklist *wk, *wktail; 1890 struct ufsmount *ump; 1891 int dirty; 1892 1893 if ((wk = LIST_FIRST(&oldbp->b_dep)) == NULL) 1894 return (0); 1895 KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0, 1896 ("softdep_move_dependencies called on non-softdep filesystem")); 1897 dirty = 0; 1898 wktail = NULL; 1899 ump = VFSTOUFS(wk->wk_mp); 1900 ACQUIRE_LOCK(ump); 1901 while ((wk = LIST_FIRST(&oldbp->b_dep)) != NULL) { 1902 LIST_REMOVE(wk, wk_list); 1903 if (wk->wk_type == D_BMSAFEMAP && 1904 bmsafemap_backgroundwrite(WK_BMSAFEMAP(wk), newbp)) 1905 dirty = 1; 1906 if (wktail == NULL) 1907 LIST_INSERT_HEAD(&newbp->b_dep, wk, wk_list); 1908 else 1909 LIST_INSERT_AFTER(wktail, wk, wk_list); 1910 wktail = wk; 1911 } 1912 FREE_LOCK(ump); 1913 1914 return (dirty); 1915 } 1916 1917 /* 1918 * Purge the work list of all items associated with a particular mount point. 1919 */ 1920 int 1921 softdep_flushworklist(oldmnt, countp, td) 1922 struct mount *oldmnt; 1923 int *countp; 1924 struct thread *td; 1925 { 1926 struct vnode *devvp; 1927 struct ufsmount *ump; 1928 int count, error; 1929 1930 /* 1931 * Alternately flush the block device associated with the mount 1932 * point and process any dependencies that the flushing 1933 * creates. We continue until no more worklist dependencies 1934 * are found. 1935 */ 1936 *countp = 0; 1937 error = 0; 1938 ump = VFSTOUFS(oldmnt); 1939 devvp = ump->um_devvp; 1940 while ((count = softdep_process_worklist(oldmnt, 1)) > 0) { 1941 *countp += count; 1942 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY); 1943 error = VOP_FSYNC(devvp, MNT_WAIT, td); 1944 VOP_UNLOCK(devvp); 1945 if (error != 0) 1946 break; 1947 } 1948 return (error); 1949 } 1950 1951 #define SU_WAITIDLE_RETRIES 20 1952 static int 1953 softdep_waitidle(struct mount *mp, int flags __unused) 1954 { 1955 struct ufsmount *ump; 1956 struct vnode *devvp; 1957 struct thread *td; 1958 int error, i; 1959 1960 ump = VFSTOUFS(mp); 1961 devvp = ump->um_devvp; 1962 td = curthread; 1963 error = 0; 1964 ACQUIRE_LOCK(ump); 1965 for (i = 0; i < SU_WAITIDLE_RETRIES && ump->softdep_deps != 0; i++) { 1966 ump->softdep_req = 1; 1967 KASSERT((flags & FORCECLOSE) == 0 || 1968 ump->softdep_on_worklist == 0, 1969 ("softdep_waitidle: work added after flush")); 1970 msleep(&ump->softdep_deps, LOCK_PTR(ump), PVM | PDROP, 1971 "softdeps", 10 * hz); 1972 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY); 1973 error = VOP_FSYNC(devvp, MNT_WAIT, td); 1974 VOP_UNLOCK(devvp); 1975 ACQUIRE_LOCK(ump); 1976 if (error != 0) 1977 break; 1978 } 1979 ump->softdep_req = 0; 1980 if (i == SU_WAITIDLE_RETRIES && error == 0 && ump->softdep_deps != 0) { 1981 error = EBUSY; 1982 printf("softdep_waitidle: Failed to flush worklist for %p\n", 1983 mp); 1984 } 1985 FREE_LOCK(ump); 1986 return (error); 1987 } 1988 1989 /* 1990 * Flush all vnodes and worklist items associated with a specified mount point. 1991 */ 1992 int 1993 softdep_flushfiles(oldmnt, flags, td) 1994 struct mount *oldmnt; 1995 int flags; 1996 struct thread *td; 1997 { 1998 #ifdef QUOTA 1999 struct ufsmount *ump; 2000 int i; 2001 #endif 2002 int error, early, depcount, loopcnt, retry_flush_count, retry; 2003 int morework; 2004 2005 KASSERT(MOUNTEDSOFTDEP(oldmnt) != 0, 2006 ("softdep_flushfiles called on non-softdep filesystem")); 2007 loopcnt = 10; 2008 retry_flush_count = 3; 2009 retry_flush: 2010 error = 0; 2011 2012 /* 2013 * Alternately flush the vnodes associated with the mount 2014 * point and process any dependencies that the flushing 2015 * creates. In theory, this loop can happen at most twice, 2016 * but we give it a few extra just to be sure. 2017 */ 2018 for (; loopcnt > 0; loopcnt--) { 2019 /* 2020 * Do another flush in case any vnodes were brought in 2021 * as part of the cleanup operations. 2022 */ 2023 early = retry_flush_count == 1 || (oldmnt->mnt_kern_flag & 2024 MNTK_UNMOUNT) == 0 ? 0 : EARLYFLUSH; 2025 if ((error = ffs_flushfiles(oldmnt, flags | early, td)) != 0) 2026 break; 2027 if ((error = softdep_flushworklist(oldmnt, &depcount, td)) != 0 || 2028 depcount == 0) 2029 break; 2030 } 2031 /* 2032 * If we are unmounting then it is an error to fail. If we 2033 * are simply trying to downgrade to read-only, then filesystem 2034 * activity can keep us busy forever, so we just fail with EBUSY. 2035 */ 2036 if (loopcnt == 0) { 2037 if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT) 2038 panic("softdep_flushfiles: looping"); 2039 error = EBUSY; 2040 } 2041 if (!error) 2042 error = softdep_waitidle(oldmnt, flags); 2043 if (!error) { 2044 if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT) { 2045 retry = 0; 2046 MNT_ILOCK(oldmnt); 2047 morework = oldmnt->mnt_nvnodelistsize > 0; 2048 #ifdef QUOTA 2049 ump = VFSTOUFS(oldmnt); 2050 UFS_LOCK(ump); 2051 for (i = 0; i < MAXQUOTAS; i++) { 2052 if (ump->um_quotas[i] != NULLVP) 2053 morework = 1; 2054 } 2055 UFS_UNLOCK(ump); 2056 #endif 2057 if (morework) { 2058 if (--retry_flush_count > 0) { 2059 retry = 1; 2060 loopcnt = 3; 2061 } else 2062 error = EBUSY; 2063 } 2064 MNT_IUNLOCK(oldmnt); 2065 if (retry) 2066 goto retry_flush; 2067 } 2068 } 2069 return (error); 2070 } 2071 2072 /* 2073 * Structure hashing. 2074 * 2075 * There are four types of structures that can be looked up: 2076 * 1) pagedep structures identified by mount point, inode number, 2077 * and logical block. 2078 * 2) inodedep structures identified by mount point and inode number. 2079 * 3) newblk structures identified by mount point and 2080 * physical block number. 2081 * 4) bmsafemap structures identified by mount point and 2082 * cylinder group number. 2083 * 2084 * The "pagedep" and "inodedep" dependency structures are hashed 2085 * separately from the file blocks and inodes to which they correspond. 2086 * This separation helps when the in-memory copy of an inode or 2087 * file block must be replaced. It also obviates the need to access 2088 * an inode or file page when simply updating (or de-allocating) 2089 * dependency structures. Lookup of newblk structures is needed to 2090 * find newly allocated blocks when trying to associate them with 2091 * their allocdirect or allocindir structure. 2092 * 2093 * The lookup routines optionally create and hash a new instance when 2094 * an existing entry is not found. The bmsafemap lookup routine always 2095 * allocates a new structure if an existing one is not found. 2096 */ 2097 #define DEPALLOC 0x0001 /* allocate structure if lookup fails */ 2098 2099 /* 2100 * Structures and routines associated with pagedep caching. 2101 */ 2102 #define PAGEDEP_HASH(ump, inum, lbn) \ 2103 (&(ump)->pagedep_hashtbl[((inum) + (lbn)) & (ump)->pagedep_hash_size]) 2104 2105 static int 2106 pagedep_find(pagedephd, ino, lbn, pagedeppp) 2107 struct pagedep_hashhead *pagedephd; 2108 ino_t ino; 2109 ufs_lbn_t lbn; 2110 struct pagedep **pagedeppp; 2111 { 2112 struct pagedep *pagedep; 2113 2114 LIST_FOREACH(pagedep, pagedephd, pd_hash) { 2115 if (ino == pagedep->pd_ino && lbn == pagedep->pd_lbn) { 2116 *pagedeppp = pagedep; 2117 return (1); 2118 } 2119 } 2120 *pagedeppp = NULL; 2121 return (0); 2122 } 2123 /* 2124 * Look up a pagedep. Return 1 if found, 0 otherwise. 2125 * If not found, allocate if DEPALLOC flag is passed. 2126 * Found or allocated entry is returned in pagedeppp. 2127 */ 2128 static int 2129 pagedep_lookup(mp, bp, ino, lbn, flags, pagedeppp) 2130 struct mount *mp; 2131 struct buf *bp; 2132 ino_t ino; 2133 ufs_lbn_t lbn; 2134 int flags; 2135 struct pagedep **pagedeppp; 2136 { 2137 struct pagedep *pagedep; 2138 struct pagedep_hashhead *pagedephd; 2139 struct worklist *wk; 2140 struct ufsmount *ump; 2141 int ret; 2142 int i; 2143 2144 ump = VFSTOUFS(mp); 2145 LOCK_OWNED(ump); 2146 if (bp) { 2147 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 2148 if (wk->wk_type == D_PAGEDEP) { 2149 *pagedeppp = WK_PAGEDEP(wk); 2150 return (1); 2151 } 2152 } 2153 } 2154 pagedephd = PAGEDEP_HASH(ump, ino, lbn); 2155 ret = pagedep_find(pagedephd, ino, lbn, pagedeppp); 2156 if (ret) { 2157 if (((*pagedeppp)->pd_state & ONWORKLIST) == 0 && bp) 2158 WORKLIST_INSERT(&bp->b_dep, &(*pagedeppp)->pd_list); 2159 return (1); 2160 } 2161 if ((flags & DEPALLOC) == 0) 2162 return (0); 2163 FREE_LOCK(ump); 2164 pagedep = malloc(sizeof(struct pagedep), 2165 M_PAGEDEP, M_SOFTDEP_FLAGS|M_ZERO); 2166 workitem_alloc(&pagedep->pd_list, D_PAGEDEP, mp); 2167 ACQUIRE_LOCK(ump); 2168 ret = pagedep_find(pagedephd, ino, lbn, pagedeppp); 2169 if (*pagedeppp) { 2170 /* 2171 * This should never happen since we only create pagedeps 2172 * with the vnode lock held. Could be an assert. 2173 */ 2174 WORKITEM_FREE(pagedep, D_PAGEDEP); 2175 return (ret); 2176 } 2177 pagedep->pd_ino = ino; 2178 pagedep->pd_lbn = lbn; 2179 LIST_INIT(&pagedep->pd_dirremhd); 2180 LIST_INIT(&pagedep->pd_pendinghd); 2181 for (i = 0; i < DAHASHSZ; i++) 2182 LIST_INIT(&pagedep->pd_diraddhd[i]); 2183 LIST_INSERT_HEAD(pagedephd, pagedep, pd_hash); 2184 WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list); 2185 *pagedeppp = pagedep; 2186 return (0); 2187 } 2188 2189 /* 2190 * Structures and routines associated with inodedep caching. 2191 */ 2192 #define INODEDEP_HASH(ump, inum) \ 2193 (&(ump)->inodedep_hashtbl[(inum) & (ump)->inodedep_hash_size]) 2194 2195 static int 2196 inodedep_find(inodedephd, inum, inodedeppp) 2197 struct inodedep_hashhead *inodedephd; 2198 ino_t inum; 2199 struct inodedep **inodedeppp; 2200 { 2201 struct inodedep *inodedep; 2202 2203 LIST_FOREACH(inodedep, inodedephd, id_hash) 2204 if (inum == inodedep->id_ino) 2205 break; 2206 if (inodedep) { 2207 *inodedeppp = inodedep; 2208 return (1); 2209 } 2210 *inodedeppp = NULL; 2211 2212 return (0); 2213 } 2214 /* 2215 * Look up an inodedep. Return 1 if found, 0 if not found. 2216 * If not found, allocate if DEPALLOC flag is passed. 2217 * Found or allocated entry is returned in inodedeppp. 2218 */ 2219 static int 2220 inodedep_lookup(mp, inum, flags, inodedeppp) 2221 struct mount *mp; 2222 ino_t inum; 2223 int flags; 2224 struct inodedep **inodedeppp; 2225 { 2226 struct inodedep *inodedep; 2227 struct inodedep_hashhead *inodedephd; 2228 struct ufsmount *ump; 2229 struct fs *fs; 2230 2231 ump = VFSTOUFS(mp); 2232 LOCK_OWNED(ump); 2233 fs = ump->um_fs; 2234 inodedephd = INODEDEP_HASH(ump, inum); 2235 2236 if (inodedep_find(inodedephd, inum, inodedeppp)) 2237 return (1); 2238 if ((flags & DEPALLOC) == 0) 2239 return (0); 2240 /* 2241 * If the system is over its limit and our filesystem is 2242 * responsible for more than our share of that usage and 2243 * we are not in a rush, request some inodedep cleanup. 2244 */ 2245 if (softdep_excess_items(ump, D_INODEDEP)) 2246 schedule_cleanup(mp); 2247 else 2248 FREE_LOCK(ump); 2249 inodedep = malloc(sizeof(struct inodedep), 2250 M_INODEDEP, M_SOFTDEP_FLAGS); 2251 workitem_alloc(&inodedep->id_list, D_INODEDEP, mp); 2252 ACQUIRE_LOCK(ump); 2253 if (inodedep_find(inodedephd, inum, inodedeppp)) { 2254 WORKITEM_FREE(inodedep, D_INODEDEP); 2255 return (1); 2256 } 2257 inodedep->id_fs = fs; 2258 inodedep->id_ino = inum; 2259 inodedep->id_state = ALLCOMPLETE; 2260 inodedep->id_nlinkdelta = 0; 2261 inodedep->id_savedino1 = NULL; 2262 inodedep->id_savedsize = -1; 2263 inodedep->id_savedextsize = -1; 2264 inodedep->id_savednlink = -1; 2265 inodedep->id_bmsafemap = NULL; 2266 inodedep->id_mkdiradd = NULL; 2267 LIST_INIT(&inodedep->id_dirremhd); 2268 LIST_INIT(&inodedep->id_pendinghd); 2269 LIST_INIT(&inodedep->id_inowait); 2270 LIST_INIT(&inodedep->id_bufwait); 2271 TAILQ_INIT(&inodedep->id_inoreflst); 2272 TAILQ_INIT(&inodedep->id_inoupdt); 2273 TAILQ_INIT(&inodedep->id_newinoupdt); 2274 TAILQ_INIT(&inodedep->id_extupdt); 2275 TAILQ_INIT(&inodedep->id_newextupdt); 2276 TAILQ_INIT(&inodedep->id_freeblklst); 2277 LIST_INSERT_HEAD(inodedephd, inodedep, id_hash); 2278 *inodedeppp = inodedep; 2279 return (0); 2280 } 2281 2282 /* 2283 * Structures and routines associated with newblk caching. 2284 */ 2285 #define NEWBLK_HASH(ump, inum) \ 2286 (&(ump)->newblk_hashtbl[(inum) & (ump)->newblk_hash_size]) 2287 2288 static int 2289 newblk_find(newblkhd, newblkno, flags, newblkpp) 2290 struct newblk_hashhead *newblkhd; 2291 ufs2_daddr_t newblkno; 2292 int flags; 2293 struct newblk **newblkpp; 2294 { 2295 struct newblk *newblk; 2296 2297 LIST_FOREACH(newblk, newblkhd, nb_hash) { 2298 if (newblkno != newblk->nb_newblkno) 2299 continue; 2300 /* 2301 * If we're creating a new dependency don't match those that 2302 * have already been converted to allocdirects. This is for 2303 * a frag extend. 2304 */ 2305 if ((flags & DEPALLOC) && newblk->nb_list.wk_type != D_NEWBLK) 2306 continue; 2307 break; 2308 } 2309 if (newblk) { 2310 *newblkpp = newblk; 2311 return (1); 2312 } 2313 *newblkpp = NULL; 2314 return (0); 2315 } 2316 2317 /* 2318 * Look up a newblk. Return 1 if found, 0 if not found. 2319 * If not found, allocate if DEPALLOC flag is passed. 2320 * Found or allocated entry is returned in newblkpp. 2321 */ 2322 static int 2323 newblk_lookup(mp, newblkno, flags, newblkpp) 2324 struct mount *mp; 2325 ufs2_daddr_t newblkno; 2326 int flags; 2327 struct newblk **newblkpp; 2328 { 2329 struct newblk *newblk; 2330 struct newblk_hashhead *newblkhd; 2331 struct ufsmount *ump; 2332 2333 ump = VFSTOUFS(mp); 2334 LOCK_OWNED(ump); 2335 newblkhd = NEWBLK_HASH(ump, newblkno); 2336 if (newblk_find(newblkhd, newblkno, flags, newblkpp)) 2337 return (1); 2338 if ((flags & DEPALLOC) == 0) 2339 return (0); 2340 if (softdep_excess_items(ump, D_NEWBLK) || 2341 softdep_excess_items(ump, D_ALLOCDIRECT) || 2342 softdep_excess_items(ump, D_ALLOCINDIR)) 2343 schedule_cleanup(mp); 2344 else 2345 FREE_LOCK(ump); 2346 newblk = malloc(sizeof(union allblk), M_NEWBLK, 2347 M_SOFTDEP_FLAGS | M_ZERO); 2348 workitem_alloc(&newblk->nb_list, D_NEWBLK, mp); 2349 ACQUIRE_LOCK(ump); 2350 if (newblk_find(newblkhd, newblkno, flags, newblkpp)) { 2351 WORKITEM_FREE(newblk, D_NEWBLK); 2352 return (1); 2353 } 2354 newblk->nb_freefrag = NULL; 2355 LIST_INIT(&newblk->nb_indirdeps); 2356 LIST_INIT(&newblk->nb_newdirblk); 2357 LIST_INIT(&newblk->nb_jwork); 2358 newblk->nb_state = ATTACHED; 2359 newblk->nb_newblkno = newblkno; 2360 LIST_INSERT_HEAD(newblkhd, newblk, nb_hash); 2361 *newblkpp = newblk; 2362 return (0); 2363 } 2364 2365 /* 2366 * Structures and routines associated with freed indirect block caching. 2367 */ 2368 #define INDIR_HASH(ump, blkno) \ 2369 (&(ump)->indir_hashtbl[(blkno) & (ump)->indir_hash_size]) 2370 2371 /* 2372 * Lookup an indirect block in the indir hash table. The freework is 2373 * removed and potentially freed. The caller must do a blocking journal 2374 * write before writing to the blkno. 2375 */ 2376 static int 2377 indirblk_lookup(mp, blkno) 2378 struct mount *mp; 2379 ufs2_daddr_t blkno; 2380 { 2381 struct freework *freework; 2382 struct indir_hashhead *wkhd; 2383 struct ufsmount *ump; 2384 2385 ump = VFSTOUFS(mp); 2386 wkhd = INDIR_HASH(ump, blkno); 2387 TAILQ_FOREACH(freework, wkhd, fw_next) { 2388 if (freework->fw_blkno != blkno) 2389 continue; 2390 indirblk_remove(freework); 2391 return (1); 2392 } 2393 return (0); 2394 } 2395 2396 /* 2397 * Insert an indirect block represented by freework into the indirblk 2398 * hash table so that it may prevent the block from being re-used prior 2399 * to the journal being written. 2400 */ 2401 static void 2402 indirblk_insert(freework) 2403 struct freework *freework; 2404 { 2405 struct jblocks *jblocks; 2406 struct jseg *jseg; 2407 struct ufsmount *ump; 2408 2409 ump = VFSTOUFS(freework->fw_list.wk_mp); 2410 jblocks = ump->softdep_jblocks; 2411 jseg = TAILQ_LAST(&jblocks->jb_segs, jseglst); 2412 if (jseg == NULL) 2413 return; 2414 2415 LIST_INSERT_HEAD(&jseg->js_indirs, freework, fw_segs); 2416 TAILQ_INSERT_HEAD(INDIR_HASH(ump, freework->fw_blkno), freework, 2417 fw_next); 2418 freework->fw_state &= ~DEPCOMPLETE; 2419 } 2420 2421 static void 2422 indirblk_remove(freework) 2423 struct freework *freework; 2424 { 2425 struct ufsmount *ump; 2426 2427 ump = VFSTOUFS(freework->fw_list.wk_mp); 2428 LIST_REMOVE(freework, fw_segs); 2429 TAILQ_REMOVE(INDIR_HASH(ump, freework->fw_blkno), freework, fw_next); 2430 freework->fw_state |= DEPCOMPLETE; 2431 if ((freework->fw_state & ALLCOMPLETE) == ALLCOMPLETE) 2432 WORKITEM_FREE(freework, D_FREEWORK); 2433 } 2434 2435 /* 2436 * Executed during filesystem system initialization before 2437 * mounting any filesystems. 2438 */ 2439 void 2440 softdep_initialize() 2441 { 2442 2443 TAILQ_INIT(&softdepmounts); 2444 #ifdef __LP64__ 2445 max_softdeps = desiredvnodes * 4; 2446 #else 2447 max_softdeps = desiredvnodes * 2; 2448 #endif 2449 2450 /* initialise bioops hack */ 2451 bioops.io_start = softdep_disk_io_initiation; 2452 bioops.io_complete = softdep_disk_write_complete; 2453 bioops.io_deallocate = softdep_deallocate_dependencies; 2454 bioops.io_countdeps = softdep_count_dependencies; 2455 softdep_ast_cleanup = softdep_ast_cleanup_proc; 2456 2457 /* Initialize the callout with an mtx. */ 2458 callout_init_mtx(&softdep_callout, &lk, 0); 2459 } 2460 2461 /* 2462 * Executed after all filesystems have been unmounted during 2463 * filesystem module unload. 2464 */ 2465 void 2466 softdep_uninitialize() 2467 { 2468 2469 /* clear bioops hack */ 2470 bioops.io_start = NULL; 2471 bioops.io_complete = NULL; 2472 bioops.io_deallocate = NULL; 2473 bioops.io_countdeps = NULL; 2474 softdep_ast_cleanup = NULL; 2475 2476 callout_drain(&softdep_callout); 2477 } 2478 2479 /* 2480 * Called at mount time to notify the dependency code that a 2481 * filesystem wishes to use it. 2482 */ 2483 int 2484 softdep_mount(devvp, mp, fs, cred) 2485 struct vnode *devvp; 2486 struct mount *mp; 2487 struct fs *fs; 2488 struct ucred *cred; 2489 { 2490 struct csum_total cstotal; 2491 struct mount_softdeps *sdp; 2492 struct ufsmount *ump; 2493 struct cg *cgp; 2494 struct buf *bp; 2495 u_int cyl, i; 2496 int error; 2497 2498 sdp = malloc(sizeof(struct mount_softdeps), M_MOUNTDATA, 2499 M_WAITOK | M_ZERO); 2500 MNT_ILOCK(mp); 2501 mp->mnt_flag = (mp->mnt_flag & ~MNT_ASYNC) | MNT_SOFTDEP; 2502 if ((mp->mnt_kern_flag & MNTK_SOFTDEP) == 0) { 2503 mp->mnt_kern_flag = (mp->mnt_kern_flag & ~MNTK_ASYNC) | 2504 MNTK_SOFTDEP | MNTK_NOASYNC; 2505 } 2506 ump = VFSTOUFS(mp); 2507 ump->um_softdep = sdp; 2508 MNT_IUNLOCK(mp); 2509 rw_init(LOCK_PTR(ump), "per-fs softdep"); 2510 sdp->sd_ump = ump; 2511 LIST_INIT(&ump->softdep_workitem_pending); 2512 LIST_INIT(&ump->softdep_journal_pending); 2513 TAILQ_INIT(&ump->softdep_unlinked); 2514 LIST_INIT(&ump->softdep_dirtycg); 2515 ump->softdep_worklist_tail = NULL; 2516 ump->softdep_on_worklist = 0; 2517 ump->softdep_deps = 0; 2518 LIST_INIT(&ump->softdep_mkdirlisthd); 2519 ump->pagedep_hashtbl = hashinit(desiredvnodes / 5, M_PAGEDEP, 2520 &ump->pagedep_hash_size); 2521 ump->pagedep_nextclean = 0; 2522 ump->inodedep_hashtbl = hashinit(desiredvnodes, M_INODEDEP, 2523 &ump->inodedep_hash_size); 2524 ump->inodedep_nextclean = 0; 2525 ump->newblk_hashtbl = hashinit(max_softdeps / 2, M_NEWBLK, 2526 &ump->newblk_hash_size); 2527 ump->bmsafemap_hashtbl = hashinit(1024, M_BMSAFEMAP, 2528 &ump->bmsafemap_hash_size); 2529 i = 1 << (ffs(desiredvnodes / 10) - 1); 2530 ump->indir_hashtbl = malloc(i * sizeof(struct indir_hashhead), 2531 M_FREEWORK, M_WAITOK); 2532 ump->indir_hash_size = i - 1; 2533 for (i = 0; i <= ump->indir_hash_size; i++) 2534 TAILQ_INIT(&ump->indir_hashtbl[i]); 2535 ACQUIRE_GBLLOCK(&lk); 2536 TAILQ_INSERT_TAIL(&softdepmounts, sdp, sd_next); 2537 FREE_GBLLOCK(&lk); 2538 if ((fs->fs_flags & FS_SUJ) && 2539 (error = journal_mount(mp, fs, cred)) != 0) { 2540 printf("Failed to start journal: %d\n", error); 2541 softdep_unmount(mp); 2542 return (error); 2543 } 2544 /* 2545 * Start our flushing thread in the bufdaemon process. 2546 */ 2547 ACQUIRE_LOCK(ump); 2548 ump->softdep_flags |= FLUSH_STARTING; 2549 FREE_LOCK(ump); 2550 kproc_kthread_add(&softdep_flush, mp, &bufdaemonproc, 2551 &ump->softdep_flushtd, 0, 0, "softdepflush", "%s worker", 2552 mp->mnt_stat.f_mntonname); 2553 ACQUIRE_LOCK(ump); 2554 while ((ump->softdep_flags & FLUSH_STARTING) != 0) { 2555 msleep(&ump->softdep_flushtd, LOCK_PTR(ump), PVM, "sdstart", 2556 hz / 2); 2557 } 2558 FREE_LOCK(ump); 2559 /* 2560 * When doing soft updates, the counters in the 2561 * superblock may have gotten out of sync. Recomputation 2562 * can take a long time and can be deferred for background 2563 * fsck. However, the old behavior of scanning the cylinder 2564 * groups and recalculating them at mount time is available 2565 * by setting vfs.ffs.compute_summary_at_mount to one. 2566 */ 2567 if (compute_summary_at_mount == 0 || fs->fs_clean != 0) 2568 return (0); 2569 bzero(&cstotal, sizeof cstotal); 2570 for (cyl = 0; cyl < fs->fs_ncg; cyl++) { 2571 if ((error = bread(devvp, fsbtodb(fs, cgtod(fs, cyl)), 2572 fs->fs_cgsize, cred, &bp)) != 0) { 2573 brelse(bp); 2574 softdep_unmount(mp); 2575 return (error); 2576 } 2577 cgp = (struct cg *)bp->b_data; 2578 cstotal.cs_nffree += cgp->cg_cs.cs_nffree; 2579 cstotal.cs_nbfree += cgp->cg_cs.cs_nbfree; 2580 cstotal.cs_nifree += cgp->cg_cs.cs_nifree; 2581 cstotal.cs_ndir += cgp->cg_cs.cs_ndir; 2582 fs->fs_cs(fs, cyl) = cgp->cg_cs; 2583 brelse(bp); 2584 } 2585 #ifdef INVARIANTS 2586 if (bcmp(&cstotal, &fs->fs_cstotal, sizeof cstotal)) 2587 printf("%s: superblock summary recomputed\n", fs->fs_fsmnt); 2588 #endif 2589 bcopy(&cstotal, &fs->fs_cstotal, sizeof cstotal); 2590 return (0); 2591 } 2592 2593 void 2594 softdep_unmount(mp) 2595 struct mount *mp; 2596 { 2597 struct ufsmount *ump; 2598 #ifdef INVARIANTS 2599 int i; 2600 #endif 2601 2602 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 2603 ("softdep_unmount called on non-softdep filesystem")); 2604 ump = VFSTOUFS(mp); 2605 MNT_ILOCK(mp); 2606 mp->mnt_flag &= ~MNT_SOFTDEP; 2607 if (MOUNTEDSUJ(mp) == 0) { 2608 MNT_IUNLOCK(mp); 2609 } else { 2610 mp->mnt_flag &= ~MNT_SUJ; 2611 MNT_IUNLOCK(mp); 2612 journal_unmount(ump); 2613 } 2614 /* 2615 * Shut down our flushing thread. Check for NULL is if 2616 * softdep_mount errors out before the thread has been created. 2617 */ 2618 if (ump->softdep_flushtd != NULL) { 2619 ACQUIRE_LOCK(ump); 2620 ump->softdep_flags |= FLUSH_EXIT; 2621 wakeup(&ump->softdep_flushtd); 2622 msleep(&ump->softdep_flags, LOCK_PTR(ump), PVM | PDROP, 2623 "sdwait", 0); 2624 KASSERT((ump->softdep_flags & FLUSH_EXIT) == 0, 2625 ("Thread shutdown failed")); 2626 } 2627 /* 2628 * Free up our resources. 2629 */ 2630 ACQUIRE_GBLLOCK(&lk); 2631 TAILQ_REMOVE(&softdepmounts, ump->um_softdep, sd_next); 2632 FREE_GBLLOCK(&lk); 2633 rw_destroy(LOCK_PTR(ump)); 2634 hashdestroy(ump->pagedep_hashtbl, M_PAGEDEP, ump->pagedep_hash_size); 2635 hashdestroy(ump->inodedep_hashtbl, M_INODEDEP, ump->inodedep_hash_size); 2636 hashdestroy(ump->newblk_hashtbl, M_NEWBLK, ump->newblk_hash_size); 2637 hashdestroy(ump->bmsafemap_hashtbl, M_BMSAFEMAP, 2638 ump->bmsafemap_hash_size); 2639 free(ump->indir_hashtbl, M_FREEWORK); 2640 #ifdef INVARIANTS 2641 for (i = 0; i <= D_LAST; i++) 2642 KASSERT(ump->softdep_curdeps[i] == 0, 2643 ("Unmount %s: Dep type %s != 0 (%ld)", ump->um_fs->fs_fsmnt, 2644 TYPENAME(i), ump->softdep_curdeps[i])); 2645 #endif 2646 free(ump->um_softdep, M_MOUNTDATA); 2647 } 2648 2649 static struct jblocks * 2650 jblocks_create(void) 2651 { 2652 struct jblocks *jblocks; 2653 2654 jblocks = malloc(sizeof(*jblocks), M_JBLOCKS, M_WAITOK | M_ZERO); 2655 TAILQ_INIT(&jblocks->jb_segs); 2656 jblocks->jb_avail = 10; 2657 jblocks->jb_extent = malloc(sizeof(struct jextent) * jblocks->jb_avail, 2658 M_JBLOCKS, M_WAITOK | M_ZERO); 2659 2660 return (jblocks); 2661 } 2662 2663 static ufs2_daddr_t 2664 jblocks_alloc(jblocks, bytes, actual) 2665 struct jblocks *jblocks; 2666 int bytes; 2667 int *actual; 2668 { 2669 ufs2_daddr_t daddr; 2670 struct jextent *jext; 2671 int freecnt; 2672 int blocks; 2673 2674 blocks = bytes / DEV_BSIZE; 2675 jext = &jblocks->jb_extent[jblocks->jb_head]; 2676 freecnt = jext->je_blocks - jblocks->jb_off; 2677 if (freecnt == 0) { 2678 jblocks->jb_off = 0; 2679 if (++jblocks->jb_head > jblocks->jb_used) 2680 jblocks->jb_head = 0; 2681 jext = &jblocks->jb_extent[jblocks->jb_head]; 2682 freecnt = jext->je_blocks; 2683 } 2684 if (freecnt > blocks) 2685 freecnt = blocks; 2686 *actual = freecnt * DEV_BSIZE; 2687 daddr = jext->je_daddr + jblocks->jb_off; 2688 jblocks->jb_off += freecnt; 2689 jblocks->jb_free -= freecnt; 2690 2691 return (daddr); 2692 } 2693 2694 static void 2695 jblocks_free(jblocks, mp, bytes) 2696 struct jblocks *jblocks; 2697 struct mount *mp; 2698 int bytes; 2699 { 2700 2701 LOCK_OWNED(VFSTOUFS(mp)); 2702 jblocks->jb_free += bytes / DEV_BSIZE; 2703 if (jblocks->jb_suspended) 2704 worklist_speedup(mp); 2705 wakeup(jblocks); 2706 } 2707 2708 static void 2709 jblocks_destroy(jblocks) 2710 struct jblocks *jblocks; 2711 { 2712 2713 if (jblocks->jb_extent) 2714 free(jblocks->jb_extent, M_JBLOCKS); 2715 free(jblocks, M_JBLOCKS); 2716 } 2717 2718 static void 2719 jblocks_add(jblocks, daddr, blocks) 2720 struct jblocks *jblocks; 2721 ufs2_daddr_t daddr; 2722 int blocks; 2723 { 2724 struct jextent *jext; 2725 2726 jblocks->jb_blocks += blocks; 2727 jblocks->jb_free += blocks; 2728 jext = &jblocks->jb_extent[jblocks->jb_used]; 2729 /* Adding the first block. */ 2730 if (jext->je_daddr == 0) { 2731 jext->je_daddr = daddr; 2732 jext->je_blocks = blocks; 2733 return; 2734 } 2735 /* Extending the last extent. */ 2736 if (jext->je_daddr + jext->je_blocks == daddr) { 2737 jext->je_blocks += blocks; 2738 return; 2739 } 2740 /* Adding a new extent. */ 2741 if (++jblocks->jb_used == jblocks->jb_avail) { 2742 jblocks->jb_avail *= 2; 2743 jext = malloc(sizeof(struct jextent) * jblocks->jb_avail, 2744 M_JBLOCKS, M_WAITOK | M_ZERO); 2745 memcpy(jext, jblocks->jb_extent, 2746 sizeof(struct jextent) * jblocks->jb_used); 2747 free(jblocks->jb_extent, M_JBLOCKS); 2748 jblocks->jb_extent = jext; 2749 } 2750 jext = &jblocks->jb_extent[jblocks->jb_used]; 2751 jext->je_daddr = daddr; 2752 jext->je_blocks = blocks; 2753 return; 2754 } 2755 2756 int 2757 softdep_journal_lookup(mp, vpp) 2758 struct mount *mp; 2759 struct vnode **vpp; 2760 { 2761 struct componentname cnp; 2762 struct vnode *dvp; 2763 ino_t sujournal; 2764 int error; 2765 2766 error = VFS_VGET(mp, UFS_ROOTINO, LK_EXCLUSIVE, &dvp); 2767 if (error) 2768 return (error); 2769 bzero(&cnp, sizeof(cnp)); 2770 cnp.cn_nameiop = LOOKUP; 2771 cnp.cn_flags = ISLASTCN; 2772 cnp.cn_thread = curthread; 2773 cnp.cn_cred = curthread->td_ucred; 2774 cnp.cn_pnbuf = SUJ_FILE; 2775 cnp.cn_nameptr = SUJ_FILE; 2776 cnp.cn_namelen = strlen(SUJ_FILE); 2777 error = ufs_lookup_ino(dvp, NULL, &cnp, &sujournal); 2778 vput(dvp); 2779 if (error != 0) 2780 return (error); 2781 error = VFS_VGET(mp, sujournal, LK_EXCLUSIVE, vpp); 2782 return (error); 2783 } 2784 2785 /* 2786 * Open and verify the journal file. 2787 */ 2788 static int 2789 journal_mount(mp, fs, cred) 2790 struct mount *mp; 2791 struct fs *fs; 2792 struct ucred *cred; 2793 { 2794 struct jblocks *jblocks; 2795 struct ufsmount *ump; 2796 struct vnode *vp; 2797 struct inode *ip; 2798 ufs2_daddr_t blkno; 2799 int bcount; 2800 int error; 2801 int i; 2802 2803 ump = VFSTOUFS(mp); 2804 ump->softdep_journal_tail = NULL; 2805 ump->softdep_on_journal = 0; 2806 ump->softdep_accdeps = 0; 2807 ump->softdep_req = 0; 2808 ump->softdep_jblocks = NULL; 2809 error = softdep_journal_lookup(mp, &vp); 2810 if (error != 0) { 2811 printf("Failed to find journal. Use tunefs to create one\n"); 2812 return (error); 2813 } 2814 ip = VTOI(vp); 2815 if (ip->i_size < SUJ_MIN) { 2816 error = ENOSPC; 2817 goto out; 2818 } 2819 bcount = lblkno(fs, ip->i_size); /* Only use whole blocks. */ 2820 jblocks = jblocks_create(); 2821 for (i = 0; i < bcount; i++) { 2822 error = ufs_bmaparray(vp, i, &blkno, NULL, NULL, NULL); 2823 if (error) 2824 break; 2825 jblocks_add(jblocks, blkno, fsbtodb(fs, fs->fs_frag)); 2826 } 2827 if (error) { 2828 jblocks_destroy(jblocks); 2829 goto out; 2830 } 2831 jblocks->jb_low = jblocks->jb_free / 3; /* Reserve 33%. */ 2832 jblocks->jb_min = jblocks->jb_free / 10; /* Suspend at 10%. */ 2833 ump->softdep_jblocks = jblocks; 2834 out: 2835 if (error == 0) { 2836 MNT_ILOCK(mp); 2837 mp->mnt_flag |= MNT_SUJ; 2838 mp->mnt_flag &= ~MNT_SOFTDEP; 2839 MNT_IUNLOCK(mp); 2840 /* 2841 * Only validate the journal contents if the 2842 * filesystem is clean, otherwise we write the logs 2843 * but they'll never be used. If the filesystem was 2844 * still dirty when we mounted it the journal is 2845 * invalid and a new journal can only be valid if it 2846 * starts from a clean mount. 2847 */ 2848 if (fs->fs_clean) { 2849 DIP_SET(ip, i_modrev, fs->fs_mtime); 2850 ip->i_flags |= IN_MODIFIED; 2851 ffs_update(vp, 1); 2852 } 2853 } 2854 vput(vp); 2855 return (error); 2856 } 2857 2858 static void 2859 journal_unmount(ump) 2860 struct ufsmount *ump; 2861 { 2862 2863 if (ump->softdep_jblocks) 2864 jblocks_destroy(ump->softdep_jblocks); 2865 ump->softdep_jblocks = NULL; 2866 } 2867 2868 /* 2869 * Called when a journal record is ready to be written. Space is allocated 2870 * and the journal entry is created when the journal is flushed to stable 2871 * store. 2872 */ 2873 static void 2874 add_to_journal(wk) 2875 struct worklist *wk; 2876 { 2877 struct ufsmount *ump; 2878 2879 ump = VFSTOUFS(wk->wk_mp); 2880 LOCK_OWNED(ump); 2881 if (wk->wk_state & ONWORKLIST) 2882 panic("add_to_journal: %s(0x%X) already on list", 2883 TYPENAME(wk->wk_type), wk->wk_state); 2884 wk->wk_state |= ONWORKLIST | DEPCOMPLETE; 2885 if (LIST_EMPTY(&ump->softdep_journal_pending)) { 2886 ump->softdep_jblocks->jb_age = ticks; 2887 LIST_INSERT_HEAD(&ump->softdep_journal_pending, wk, wk_list); 2888 } else 2889 LIST_INSERT_AFTER(ump->softdep_journal_tail, wk, wk_list); 2890 ump->softdep_journal_tail = wk; 2891 ump->softdep_on_journal += 1; 2892 } 2893 2894 /* 2895 * Remove an arbitrary item for the journal worklist maintain the tail 2896 * pointer. This happens when a new operation obviates the need to 2897 * journal an old operation. 2898 */ 2899 static void 2900 remove_from_journal(wk) 2901 struct worklist *wk; 2902 { 2903 struct ufsmount *ump; 2904 2905 ump = VFSTOUFS(wk->wk_mp); 2906 LOCK_OWNED(ump); 2907 #ifdef INVARIANTS 2908 { 2909 struct worklist *wkn; 2910 2911 LIST_FOREACH(wkn, &ump->softdep_journal_pending, wk_list) 2912 if (wkn == wk) 2913 break; 2914 if (wkn == NULL) 2915 panic("remove_from_journal: %p is not in journal", wk); 2916 } 2917 #endif 2918 /* 2919 * We emulate a TAILQ to save space in most structures which do not 2920 * require TAILQ semantics. Here we must update the tail position 2921 * when removing the tail which is not the final entry. This works 2922 * only if the worklist linkage are at the beginning of the structure. 2923 */ 2924 if (ump->softdep_journal_tail == wk) 2925 ump->softdep_journal_tail = 2926 (struct worklist *)wk->wk_list.le_prev; 2927 WORKLIST_REMOVE(wk); 2928 ump->softdep_on_journal -= 1; 2929 } 2930 2931 /* 2932 * Check for journal space as well as dependency limits so the prelink 2933 * code can throttle both journaled and non-journaled filesystems. 2934 * Threshold is 0 for low and 1 for min. 2935 */ 2936 static int 2937 journal_space(ump, thresh) 2938 struct ufsmount *ump; 2939 int thresh; 2940 { 2941 struct jblocks *jblocks; 2942 int limit, avail; 2943 2944 jblocks = ump->softdep_jblocks; 2945 if (jblocks == NULL) 2946 return (1); 2947 /* 2948 * We use a tighter restriction here to prevent request_cleanup() 2949 * running in threads from running into locks we currently hold. 2950 * We have to be over the limit and our filesystem has to be 2951 * responsible for more than our share of that usage. 2952 */ 2953 limit = (max_softdeps / 10) * 9; 2954 if (dep_current[D_INODEDEP] > limit && 2955 ump->softdep_curdeps[D_INODEDEP] > limit / stat_flush_threads) 2956 return (0); 2957 if (thresh) 2958 thresh = jblocks->jb_min; 2959 else 2960 thresh = jblocks->jb_low; 2961 avail = (ump->softdep_on_journal * JREC_SIZE) / DEV_BSIZE; 2962 avail = jblocks->jb_free - avail; 2963 2964 return (avail > thresh); 2965 } 2966 2967 static void 2968 journal_suspend(ump) 2969 struct ufsmount *ump; 2970 { 2971 struct jblocks *jblocks; 2972 struct mount *mp; 2973 bool set; 2974 2975 mp = UFSTOVFS(ump); 2976 if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) 2977 return; 2978 2979 jblocks = ump->softdep_jblocks; 2980 vfs_op_enter(mp); 2981 set = false; 2982 MNT_ILOCK(mp); 2983 if ((mp->mnt_kern_flag & MNTK_SUSPEND) == 0) { 2984 stat_journal_min++; 2985 mp->mnt_kern_flag |= MNTK_SUSPEND; 2986 mp->mnt_susp_owner = ump->softdep_flushtd; 2987 set = true; 2988 } 2989 jblocks->jb_suspended = 1; 2990 MNT_IUNLOCK(mp); 2991 if (!set) 2992 vfs_op_exit(mp); 2993 } 2994 2995 static int 2996 journal_unsuspend(struct ufsmount *ump) 2997 { 2998 struct jblocks *jblocks; 2999 struct mount *mp; 3000 3001 mp = UFSTOVFS(ump); 3002 jblocks = ump->softdep_jblocks; 3003 3004 if (jblocks != NULL && jblocks->jb_suspended && 3005 journal_space(ump, jblocks->jb_min)) { 3006 jblocks->jb_suspended = 0; 3007 FREE_LOCK(ump); 3008 mp->mnt_susp_owner = curthread; 3009 vfs_write_resume(mp, 0); 3010 ACQUIRE_LOCK(ump); 3011 return (1); 3012 } 3013 return (0); 3014 } 3015 3016 /* 3017 * Called before any allocation function to be certain that there is 3018 * sufficient space in the journal prior to creating any new records. 3019 * Since in the case of block allocation we may have multiple locked 3020 * buffers at the time of the actual allocation we can not block 3021 * when the journal records are created. Doing so would create a deadlock 3022 * if any of these buffers needed to be flushed to reclaim space. Instead 3023 * we require a sufficiently large amount of available space such that 3024 * each thread in the system could have passed this allocation check and 3025 * still have sufficient free space. With 20% of a minimum journal size 3026 * of 1MB we have 6553 records available. 3027 */ 3028 int 3029 softdep_prealloc(vp, waitok) 3030 struct vnode *vp; 3031 int waitok; 3032 { 3033 struct ufsmount *ump; 3034 3035 KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0, 3036 ("softdep_prealloc called on non-softdep filesystem")); 3037 /* 3038 * Nothing to do if we are not running journaled soft updates. 3039 * If we currently hold the snapshot lock, we must avoid 3040 * handling other resources that could cause deadlock. Do not 3041 * touch quotas vnode since it is typically recursed with 3042 * other vnode locks held. 3043 */ 3044 if (DOINGSUJ(vp) == 0 || IS_SNAPSHOT(VTOI(vp)) || 3045 (vp->v_vflag & VV_SYSTEM) != 0) 3046 return (0); 3047 ump = VFSTOUFS(vp->v_mount); 3048 ACQUIRE_LOCK(ump); 3049 if (journal_space(ump, 0)) { 3050 FREE_LOCK(ump); 3051 return (0); 3052 } 3053 stat_journal_low++; 3054 FREE_LOCK(ump); 3055 if (waitok == MNT_NOWAIT) 3056 return (ENOSPC); 3057 /* 3058 * Attempt to sync this vnode once to flush any journal 3059 * work attached to it. 3060 */ 3061 if ((curthread->td_pflags & TDP_COWINPROGRESS) == 0) 3062 ffs_syncvnode(vp, waitok, 0); 3063 ACQUIRE_LOCK(ump); 3064 process_removes(vp); 3065 process_truncates(vp); 3066 if (journal_space(ump, 0) == 0) { 3067 softdep_speedup(ump); 3068 if (journal_space(ump, 1) == 0) 3069 journal_suspend(ump); 3070 } 3071 FREE_LOCK(ump); 3072 3073 return (0); 3074 } 3075 3076 /* 3077 * Before adjusting a link count on a vnode verify that we have sufficient 3078 * journal space. If not, process operations that depend on the currently 3079 * locked pair of vnodes to try to flush space as the syncer, buf daemon, 3080 * and softdep flush threads can not acquire these locks to reclaim space. 3081 */ 3082 static void 3083 softdep_prelink(dvp, vp) 3084 struct vnode *dvp; 3085 struct vnode *vp; 3086 { 3087 struct ufsmount *ump; 3088 3089 ump = VFSTOUFS(dvp->v_mount); 3090 LOCK_OWNED(ump); 3091 /* 3092 * Nothing to do if we have sufficient journal space. 3093 * If we currently hold the snapshot lock, we must avoid 3094 * handling other resources that could cause deadlock. 3095 */ 3096 if (journal_space(ump, 0) || (vp && IS_SNAPSHOT(VTOI(vp)))) 3097 return; 3098 stat_journal_low++; 3099 FREE_LOCK(ump); 3100 if (vp) 3101 ffs_syncvnode(vp, MNT_NOWAIT, 0); 3102 ffs_syncvnode(dvp, MNT_WAIT, 0); 3103 ACQUIRE_LOCK(ump); 3104 /* Process vp before dvp as it may create .. removes. */ 3105 if (vp) { 3106 process_removes(vp); 3107 process_truncates(vp); 3108 } 3109 process_removes(dvp); 3110 process_truncates(dvp); 3111 softdep_speedup(ump); 3112 process_worklist_item(UFSTOVFS(ump), 2, LK_NOWAIT); 3113 if (journal_space(ump, 0) == 0) { 3114 softdep_speedup(ump); 3115 if (journal_space(ump, 1) == 0) 3116 journal_suspend(ump); 3117 } 3118 } 3119 3120 static void 3121 jseg_write(ump, jseg, data) 3122 struct ufsmount *ump; 3123 struct jseg *jseg; 3124 uint8_t *data; 3125 { 3126 struct jsegrec *rec; 3127 3128 rec = (struct jsegrec *)data; 3129 rec->jsr_seq = jseg->js_seq; 3130 rec->jsr_oldest = jseg->js_oldseq; 3131 rec->jsr_cnt = jseg->js_cnt; 3132 rec->jsr_blocks = jseg->js_size / ump->um_devvp->v_bufobj.bo_bsize; 3133 rec->jsr_crc = 0; 3134 rec->jsr_time = ump->um_fs->fs_mtime; 3135 } 3136 3137 static inline void 3138 inoref_write(inoref, jseg, rec) 3139 struct inoref *inoref; 3140 struct jseg *jseg; 3141 struct jrefrec *rec; 3142 { 3143 3144 inoref->if_jsegdep->jd_seg = jseg; 3145 rec->jr_ino = inoref->if_ino; 3146 rec->jr_parent = inoref->if_parent; 3147 rec->jr_nlink = inoref->if_nlink; 3148 rec->jr_mode = inoref->if_mode; 3149 rec->jr_diroff = inoref->if_diroff; 3150 } 3151 3152 static void 3153 jaddref_write(jaddref, jseg, data) 3154 struct jaddref *jaddref; 3155 struct jseg *jseg; 3156 uint8_t *data; 3157 { 3158 struct jrefrec *rec; 3159 3160 rec = (struct jrefrec *)data; 3161 rec->jr_op = JOP_ADDREF; 3162 inoref_write(&jaddref->ja_ref, jseg, rec); 3163 } 3164 3165 static void 3166 jremref_write(jremref, jseg, data) 3167 struct jremref *jremref; 3168 struct jseg *jseg; 3169 uint8_t *data; 3170 { 3171 struct jrefrec *rec; 3172 3173 rec = (struct jrefrec *)data; 3174 rec->jr_op = JOP_REMREF; 3175 inoref_write(&jremref->jr_ref, jseg, rec); 3176 } 3177 3178 static void 3179 jmvref_write(jmvref, jseg, data) 3180 struct jmvref *jmvref; 3181 struct jseg *jseg; 3182 uint8_t *data; 3183 { 3184 struct jmvrec *rec; 3185 3186 rec = (struct jmvrec *)data; 3187 rec->jm_op = JOP_MVREF; 3188 rec->jm_ino = jmvref->jm_ino; 3189 rec->jm_parent = jmvref->jm_parent; 3190 rec->jm_oldoff = jmvref->jm_oldoff; 3191 rec->jm_newoff = jmvref->jm_newoff; 3192 } 3193 3194 static void 3195 jnewblk_write(jnewblk, jseg, data) 3196 struct jnewblk *jnewblk; 3197 struct jseg *jseg; 3198 uint8_t *data; 3199 { 3200 struct jblkrec *rec; 3201 3202 jnewblk->jn_jsegdep->jd_seg = jseg; 3203 rec = (struct jblkrec *)data; 3204 rec->jb_op = JOP_NEWBLK; 3205 rec->jb_ino = jnewblk->jn_ino; 3206 rec->jb_blkno = jnewblk->jn_blkno; 3207 rec->jb_lbn = jnewblk->jn_lbn; 3208 rec->jb_frags = jnewblk->jn_frags; 3209 rec->jb_oldfrags = jnewblk->jn_oldfrags; 3210 } 3211 3212 static void 3213 jfreeblk_write(jfreeblk, jseg, data) 3214 struct jfreeblk *jfreeblk; 3215 struct jseg *jseg; 3216 uint8_t *data; 3217 { 3218 struct jblkrec *rec; 3219 3220 jfreeblk->jf_dep.jb_jsegdep->jd_seg = jseg; 3221 rec = (struct jblkrec *)data; 3222 rec->jb_op = JOP_FREEBLK; 3223 rec->jb_ino = jfreeblk->jf_ino; 3224 rec->jb_blkno = jfreeblk->jf_blkno; 3225 rec->jb_lbn = jfreeblk->jf_lbn; 3226 rec->jb_frags = jfreeblk->jf_frags; 3227 rec->jb_oldfrags = 0; 3228 } 3229 3230 static void 3231 jfreefrag_write(jfreefrag, jseg, data) 3232 struct jfreefrag *jfreefrag; 3233 struct jseg *jseg; 3234 uint8_t *data; 3235 { 3236 struct jblkrec *rec; 3237 3238 jfreefrag->fr_jsegdep->jd_seg = jseg; 3239 rec = (struct jblkrec *)data; 3240 rec->jb_op = JOP_FREEBLK; 3241 rec->jb_ino = jfreefrag->fr_ino; 3242 rec->jb_blkno = jfreefrag->fr_blkno; 3243 rec->jb_lbn = jfreefrag->fr_lbn; 3244 rec->jb_frags = jfreefrag->fr_frags; 3245 rec->jb_oldfrags = 0; 3246 } 3247 3248 static void 3249 jtrunc_write(jtrunc, jseg, data) 3250 struct jtrunc *jtrunc; 3251 struct jseg *jseg; 3252 uint8_t *data; 3253 { 3254 struct jtrncrec *rec; 3255 3256 jtrunc->jt_dep.jb_jsegdep->jd_seg = jseg; 3257 rec = (struct jtrncrec *)data; 3258 rec->jt_op = JOP_TRUNC; 3259 rec->jt_ino = jtrunc->jt_ino; 3260 rec->jt_size = jtrunc->jt_size; 3261 rec->jt_extsize = jtrunc->jt_extsize; 3262 } 3263 3264 static void 3265 jfsync_write(jfsync, jseg, data) 3266 struct jfsync *jfsync; 3267 struct jseg *jseg; 3268 uint8_t *data; 3269 { 3270 struct jtrncrec *rec; 3271 3272 rec = (struct jtrncrec *)data; 3273 rec->jt_op = JOP_SYNC; 3274 rec->jt_ino = jfsync->jfs_ino; 3275 rec->jt_size = jfsync->jfs_size; 3276 rec->jt_extsize = jfsync->jfs_extsize; 3277 } 3278 3279 static void 3280 softdep_flushjournal(mp) 3281 struct mount *mp; 3282 { 3283 struct jblocks *jblocks; 3284 struct ufsmount *ump; 3285 3286 if (MOUNTEDSUJ(mp) == 0) 3287 return; 3288 ump = VFSTOUFS(mp); 3289 jblocks = ump->softdep_jblocks; 3290 ACQUIRE_LOCK(ump); 3291 while (ump->softdep_on_journal) { 3292 jblocks->jb_needseg = 1; 3293 softdep_process_journal(mp, NULL, MNT_WAIT); 3294 } 3295 FREE_LOCK(ump); 3296 } 3297 3298 static void softdep_synchronize_completed(struct bio *); 3299 static void softdep_synchronize(struct bio *, struct ufsmount *, void *); 3300 3301 static void 3302 softdep_synchronize_completed(bp) 3303 struct bio *bp; 3304 { 3305 struct jseg *oldest; 3306 struct jseg *jseg; 3307 struct ufsmount *ump; 3308 3309 /* 3310 * caller1 marks the last segment written before we issued the 3311 * synchronize cache. 3312 */ 3313 jseg = bp->bio_caller1; 3314 if (jseg == NULL) { 3315 g_destroy_bio(bp); 3316 return; 3317 } 3318 ump = VFSTOUFS(jseg->js_list.wk_mp); 3319 ACQUIRE_LOCK(ump); 3320 oldest = NULL; 3321 /* 3322 * Mark all the journal entries waiting on the synchronize cache 3323 * as completed so they may continue on. 3324 */ 3325 while (jseg != NULL && (jseg->js_state & COMPLETE) == 0) { 3326 jseg->js_state |= COMPLETE; 3327 oldest = jseg; 3328 jseg = TAILQ_PREV(jseg, jseglst, js_next); 3329 } 3330 /* 3331 * Restart deferred journal entry processing from the oldest 3332 * completed jseg. 3333 */ 3334 if (oldest) 3335 complete_jsegs(oldest); 3336 3337 FREE_LOCK(ump); 3338 g_destroy_bio(bp); 3339 } 3340 3341 /* 3342 * Send BIO_FLUSH/SYNCHRONIZE CACHE to the device to enforce write ordering 3343 * barriers. The journal must be written prior to any blocks that depend 3344 * on it and the journal can not be released until the blocks have be 3345 * written. This code handles both barriers simultaneously. 3346 */ 3347 static void 3348 softdep_synchronize(bp, ump, caller1) 3349 struct bio *bp; 3350 struct ufsmount *ump; 3351 void *caller1; 3352 { 3353 3354 bp->bio_cmd = BIO_FLUSH; 3355 bp->bio_flags |= BIO_ORDERED; 3356 bp->bio_data = NULL; 3357 bp->bio_offset = ump->um_cp->provider->mediasize; 3358 bp->bio_length = 0; 3359 bp->bio_done = softdep_synchronize_completed; 3360 bp->bio_caller1 = caller1; 3361 g_io_request(bp, ump->um_cp); 3362 } 3363 3364 /* 3365 * Flush some journal records to disk. 3366 */ 3367 static void 3368 softdep_process_journal(mp, needwk, flags) 3369 struct mount *mp; 3370 struct worklist *needwk; 3371 int flags; 3372 { 3373 struct jblocks *jblocks; 3374 struct ufsmount *ump; 3375 struct worklist *wk; 3376 struct jseg *jseg; 3377 struct buf *bp; 3378 struct bio *bio; 3379 uint8_t *data; 3380 struct fs *fs; 3381 int shouldflush; 3382 int segwritten; 3383 int jrecmin; /* Minimum records per block. */ 3384 int jrecmax; /* Maximum records per block. */ 3385 int size; 3386 int cnt; 3387 int off; 3388 int devbsize; 3389 3390 if (MOUNTEDSUJ(mp) == 0) 3391 return; 3392 shouldflush = softdep_flushcache; 3393 bio = NULL; 3394 jseg = NULL; 3395 ump = VFSTOUFS(mp); 3396 LOCK_OWNED(ump); 3397 fs = ump->um_fs; 3398 jblocks = ump->softdep_jblocks; 3399 devbsize = ump->um_devvp->v_bufobj.bo_bsize; 3400 /* 3401 * We write anywhere between a disk block and fs block. The upper 3402 * bound is picked to prevent buffer cache fragmentation and limit 3403 * processing time per I/O. 3404 */ 3405 jrecmin = (devbsize / JREC_SIZE) - 1; /* -1 for seg header */ 3406 jrecmax = (fs->fs_bsize / devbsize) * jrecmin; 3407 segwritten = 0; 3408 for (;;) { 3409 cnt = ump->softdep_on_journal; 3410 /* 3411 * Criteria for writing a segment: 3412 * 1) We have a full block. 3413 * 2) We're called from jwait() and haven't found the 3414 * journal item yet. 3415 * 3) Always write if needseg is set. 3416 * 4) If we are called from process_worklist and have 3417 * not yet written anything we write a partial block 3418 * to enforce a 1 second maximum latency on journal 3419 * entries. 3420 */ 3421 if (cnt < (jrecmax - 1) && needwk == NULL && 3422 jblocks->jb_needseg == 0 && (segwritten || cnt == 0)) 3423 break; 3424 cnt++; 3425 /* 3426 * Verify some free journal space. softdep_prealloc() should 3427 * guarantee that we don't run out so this is indicative of 3428 * a problem with the flow control. Try to recover 3429 * gracefully in any event. 3430 */ 3431 while (jblocks->jb_free == 0) { 3432 if (flags != MNT_WAIT) 3433 break; 3434 printf("softdep: Out of journal space!\n"); 3435 softdep_speedup(ump); 3436 msleep(jblocks, LOCK_PTR(ump), PRIBIO, "jblocks", hz); 3437 } 3438 FREE_LOCK(ump); 3439 jseg = malloc(sizeof(*jseg), M_JSEG, M_SOFTDEP_FLAGS); 3440 workitem_alloc(&jseg->js_list, D_JSEG, mp); 3441 LIST_INIT(&jseg->js_entries); 3442 LIST_INIT(&jseg->js_indirs); 3443 jseg->js_state = ATTACHED; 3444 if (shouldflush == 0) 3445 jseg->js_state |= COMPLETE; 3446 else if (bio == NULL) 3447 bio = g_alloc_bio(); 3448 jseg->js_jblocks = jblocks; 3449 bp = geteblk(fs->fs_bsize, 0); 3450 ACQUIRE_LOCK(ump); 3451 /* 3452 * If there was a race while we were allocating the block 3453 * and jseg the entry we care about was likely written. 3454 * We bail out in both the WAIT and NOWAIT case and assume 3455 * the caller will loop if the entry it cares about is 3456 * not written. 3457 */ 3458 cnt = ump->softdep_on_journal; 3459 if (cnt + jblocks->jb_needseg == 0 || jblocks->jb_free == 0) { 3460 bp->b_flags |= B_INVAL | B_NOCACHE; 3461 WORKITEM_FREE(jseg, D_JSEG); 3462 FREE_LOCK(ump); 3463 brelse(bp); 3464 ACQUIRE_LOCK(ump); 3465 break; 3466 } 3467 /* 3468 * Calculate the disk block size required for the available 3469 * records rounded to the min size. 3470 */ 3471 if (cnt == 0) 3472 size = devbsize; 3473 else if (cnt < jrecmax) 3474 size = howmany(cnt, jrecmin) * devbsize; 3475 else 3476 size = fs->fs_bsize; 3477 /* 3478 * Allocate a disk block for this journal data and account 3479 * for truncation of the requested size if enough contiguous 3480 * space was not available. 3481 */ 3482 bp->b_blkno = jblocks_alloc(jblocks, size, &size); 3483 bp->b_lblkno = bp->b_blkno; 3484 bp->b_offset = bp->b_blkno * DEV_BSIZE; 3485 bp->b_bcount = size; 3486 bp->b_flags &= ~B_INVAL; 3487 bp->b_flags |= B_VALIDSUSPWRT | B_NOCOPY; 3488 /* 3489 * Initialize our jseg with cnt records. Assign the next 3490 * sequence number to it and link it in-order. 3491 */ 3492 cnt = MIN(cnt, (size / devbsize) * jrecmin); 3493 jseg->js_buf = bp; 3494 jseg->js_cnt = cnt; 3495 jseg->js_refs = cnt + 1; /* Self ref. */ 3496 jseg->js_size = size; 3497 jseg->js_seq = jblocks->jb_nextseq++; 3498 if (jblocks->jb_oldestseg == NULL) 3499 jblocks->jb_oldestseg = jseg; 3500 jseg->js_oldseq = jblocks->jb_oldestseg->js_seq; 3501 TAILQ_INSERT_TAIL(&jblocks->jb_segs, jseg, js_next); 3502 if (jblocks->jb_writeseg == NULL) 3503 jblocks->jb_writeseg = jseg; 3504 /* 3505 * Start filling in records from the pending list. 3506 */ 3507 data = bp->b_data; 3508 off = 0; 3509 3510 /* 3511 * Always put a header on the first block. 3512 * XXX As with below, there might not be a chance to get 3513 * into the loop. Ensure that something valid is written. 3514 */ 3515 jseg_write(ump, jseg, data); 3516 off += JREC_SIZE; 3517 data = bp->b_data + off; 3518 3519 /* 3520 * XXX Something is wrong here. There's no work to do, 3521 * but we need to perform and I/O and allow it to complete 3522 * anyways. 3523 */ 3524 if (LIST_EMPTY(&ump->softdep_journal_pending)) 3525 stat_emptyjblocks++; 3526 3527 while ((wk = LIST_FIRST(&ump->softdep_journal_pending)) 3528 != NULL) { 3529 if (cnt == 0) 3530 break; 3531 /* Place a segment header on every device block. */ 3532 if ((off % devbsize) == 0) { 3533 jseg_write(ump, jseg, data); 3534 off += JREC_SIZE; 3535 data = bp->b_data + off; 3536 } 3537 if (wk == needwk) 3538 needwk = NULL; 3539 remove_from_journal(wk); 3540 wk->wk_state |= INPROGRESS; 3541 WORKLIST_INSERT(&jseg->js_entries, wk); 3542 switch (wk->wk_type) { 3543 case D_JADDREF: 3544 jaddref_write(WK_JADDREF(wk), jseg, data); 3545 break; 3546 case D_JREMREF: 3547 jremref_write(WK_JREMREF(wk), jseg, data); 3548 break; 3549 case D_JMVREF: 3550 jmvref_write(WK_JMVREF(wk), jseg, data); 3551 break; 3552 case D_JNEWBLK: 3553 jnewblk_write(WK_JNEWBLK(wk), jseg, data); 3554 break; 3555 case D_JFREEBLK: 3556 jfreeblk_write(WK_JFREEBLK(wk), jseg, data); 3557 break; 3558 case D_JFREEFRAG: 3559 jfreefrag_write(WK_JFREEFRAG(wk), jseg, data); 3560 break; 3561 case D_JTRUNC: 3562 jtrunc_write(WK_JTRUNC(wk), jseg, data); 3563 break; 3564 case D_JFSYNC: 3565 jfsync_write(WK_JFSYNC(wk), jseg, data); 3566 break; 3567 default: 3568 panic("process_journal: Unknown type %s", 3569 TYPENAME(wk->wk_type)); 3570 /* NOTREACHED */ 3571 } 3572 off += JREC_SIZE; 3573 data = bp->b_data + off; 3574 cnt--; 3575 } 3576 3577 /* Clear any remaining space so we don't leak kernel data */ 3578 if (size > off) 3579 bzero(data, size - off); 3580 3581 /* 3582 * Write this one buffer and continue. 3583 */ 3584 segwritten = 1; 3585 jblocks->jb_needseg = 0; 3586 WORKLIST_INSERT(&bp->b_dep, &jseg->js_list); 3587 FREE_LOCK(ump); 3588 pbgetvp(ump->um_devvp, bp); 3589 /* 3590 * We only do the blocking wait once we find the journal 3591 * entry we're looking for. 3592 */ 3593 if (needwk == NULL && flags == MNT_WAIT) 3594 bwrite(bp); 3595 else 3596 bawrite(bp); 3597 ACQUIRE_LOCK(ump); 3598 } 3599 /* 3600 * If we wrote a segment issue a synchronize cache so the journal 3601 * is reflected on disk before the data is written. Since reclaiming 3602 * journal space also requires writing a journal record this 3603 * process also enforces a barrier before reclamation. 3604 */ 3605 if (segwritten && shouldflush) { 3606 softdep_synchronize(bio, ump, 3607 TAILQ_LAST(&jblocks->jb_segs, jseglst)); 3608 } else if (bio) 3609 g_destroy_bio(bio); 3610 /* 3611 * If we've suspended the filesystem because we ran out of journal 3612 * space either try to sync it here to make some progress or 3613 * unsuspend it if we already have. 3614 */ 3615 if (flags == 0 && jblocks->jb_suspended) { 3616 if (journal_unsuspend(ump)) 3617 return; 3618 FREE_LOCK(ump); 3619 VFS_SYNC(mp, MNT_NOWAIT); 3620 ffs_sbupdate(ump, MNT_WAIT, 0); 3621 ACQUIRE_LOCK(ump); 3622 } 3623 } 3624 3625 /* 3626 * Complete a jseg, allowing all dependencies awaiting journal writes 3627 * to proceed. Each journal dependency also attaches a jsegdep to dependent 3628 * structures so that the journal segment can be freed to reclaim space. 3629 */ 3630 static void 3631 complete_jseg(jseg) 3632 struct jseg *jseg; 3633 { 3634 struct worklist *wk; 3635 struct jmvref *jmvref; 3636 #ifdef INVARIANTS 3637 int i = 0; 3638 #endif 3639 3640 while ((wk = LIST_FIRST(&jseg->js_entries)) != NULL) { 3641 WORKLIST_REMOVE(wk); 3642 wk->wk_state &= ~INPROGRESS; 3643 wk->wk_state |= COMPLETE; 3644 KASSERT(i++ < jseg->js_cnt, 3645 ("handle_written_jseg: overflow %d >= %d", 3646 i - 1, jseg->js_cnt)); 3647 switch (wk->wk_type) { 3648 case D_JADDREF: 3649 handle_written_jaddref(WK_JADDREF(wk)); 3650 break; 3651 case D_JREMREF: 3652 handle_written_jremref(WK_JREMREF(wk)); 3653 break; 3654 case D_JMVREF: 3655 rele_jseg(jseg); /* No jsegdep. */ 3656 jmvref = WK_JMVREF(wk); 3657 LIST_REMOVE(jmvref, jm_deps); 3658 if ((jmvref->jm_pagedep->pd_state & ONWORKLIST) == 0) 3659 free_pagedep(jmvref->jm_pagedep); 3660 WORKITEM_FREE(jmvref, D_JMVREF); 3661 break; 3662 case D_JNEWBLK: 3663 handle_written_jnewblk(WK_JNEWBLK(wk)); 3664 break; 3665 case D_JFREEBLK: 3666 handle_written_jblkdep(&WK_JFREEBLK(wk)->jf_dep); 3667 break; 3668 case D_JTRUNC: 3669 handle_written_jblkdep(&WK_JTRUNC(wk)->jt_dep); 3670 break; 3671 case D_JFSYNC: 3672 rele_jseg(jseg); /* No jsegdep. */ 3673 WORKITEM_FREE(wk, D_JFSYNC); 3674 break; 3675 case D_JFREEFRAG: 3676 handle_written_jfreefrag(WK_JFREEFRAG(wk)); 3677 break; 3678 default: 3679 panic("handle_written_jseg: Unknown type %s", 3680 TYPENAME(wk->wk_type)); 3681 /* NOTREACHED */ 3682 } 3683 } 3684 /* Release the self reference so the structure may be freed. */ 3685 rele_jseg(jseg); 3686 } 3687 3688 /* 3689 * Determine which jsegs are ready for completion processing. Waits for 3690 * synchronize cache to complete as well as forcing in-order completion 3691 * of journal entries. 3692 */ 3693 static void 3694 complete_jsegs(jseg) 3695 struct jseg *jseg; 3696 { 3697 struct jblocks *jblocks; 3698 struct jseg *jsegn; 3699 3700 jblocks = jseg->js_jblocks; 3701 /* 3702 * Don't allow out of order completions. If this isn't the first 3703 * block wait for it to write before we're done. 3704 */ 3705 if (jseg != jblocks->jb_writeseg) 3706 return; 3707 /* Iterate through available jsegs processing their entries. */ 3708 while (jseg && (jseg->js_state & ALLCOMPLETE) == ALLCOMPLETE) { 3709 jblocks->jb_oldestwrseq = jseg->js_oldseq; 3710 jsegn = TAILQ_NEXT(jseg, js_next); 3711 complete_jseg(jseg); 3712 jseg = jsegn; 3713 } 3714 jblocks->jb_writeseg = jseg; 3715 /* 3716 * Attempt to free jsegs now that oldestwrseq may have advanced. 3717 */ 3718 free_jsegs(jblocks); 3719 } 3720 3721 /* 3722 * Mark a jseg as DEPCOMPLETE and throw away the buffer. Attempt to handle 3723 * the final completions. 3724 */ 3725 static void 3726 handle_written_jseg(jseg, bp) 3727 struct jseg *jseg; 3728 struct buf *bp; 3729 { 3730 3731 if (jseg->js_refs == 0) 3732 panic("handle_written_jseg: No self-reference on %p", jseg); 3733 jseg->js_state |= DEPCOMPLETE; 3734 /* 3735 * We'll never need this buffer again, set flags so it will be 3736 * discarded. 3737 */ 3738 bp->b_flags |= B_INVAL | B_NOCACHE; 3739 pbrelvp(bp); 3740 complete_jsegs(jseg); 3741 } 3742 3743 static inline struct jsegdep * 3744 inoref_jseg(inoref) 3745 struct inoref *inoref; 3746 { 3747 struct jsegdep *jsegdep; 3748 3749 jsegdep = inoref->if_jsegdep; 3750 inoref->if_jsegdep = NULL; 3751 3752 return (jsegdep); 3753 } 3754 3755 /* 3756 * Called once a jremref has made it to stable store. The jremref is marked 3757 * complete and we attempt to free it. Any pagedeps writes sleeping waiting 3758 * for the jremref to complete will be awoken by free_jremref. 3759 */ 3760 static void 3761 handle_written_jremref(jremref) 3762 struct jremref *jremref; 3763 { 3764 struct inodedep *inodedep; 3765 struct jsegdep *jsegdep; 3766 struct dirrem *dirrem; 3767 3768 /* Grab the jsegdep. */ 3769 jsegdep = inoref_jseg(&jremref->jr_ref); 3770 /* 3771 * Remove us from the inoref list. 3772 */ 3773 if (inodedep_lookup(jremref->jr_list.wk_mp, jremref->jr_ref.if_ino, 3774 0, &inodedep) == 0) 3775 panic("handle_written_jremref: Lost inodedep"); 3776 TAILQ_REMOVE(&inodedep->id_inoreflst, &jremref->jr_ref, if_deps); 3777 /* 3778 * Complete the dirrem. 3779 */ 3780 dirrem = jremref->jr_dirrem; 3781 jremref->jr_dirrem = NULL; 3782 LIST_REMOVE(jremref, jr_deps); 3783 jsegdep->jd_state |= jremref->jr_state & MKDIR_PARENT; 3784 jwork_insert(&dirrem->dm_jwork, jsegdep); 3785 if (LIST_EMPTY(&dirrem->dm_jremrefhd) && 3786 (dirrem->dm_state & COMPLETE) != 0) 3787 add_to_worklist(&dirrem->dm_list, 0); 3788 free_jremref(jremref); 3789 } 3790 3791 /* 3792 * Called once a jaddref has made it to stable store. The dependency is 3793 * marked complete and any dependent structures are added to the inode 3794 * bufwait list to be completed as soon as it is written. If a bitmap write 3795 * depends on this entry we move the inode into the inodedephd of the 3796 * bmsafemap dependency and attempt to remove the jaddref from the bmsafemap. 3797 */ 3798 static void 3799 handle_written_jaddref(jaddref) 3800 struct jaddref *jaddref; 3801 { 3802 struct jsegdep *jsegdep; 3803 struct inodedep *inodedep; 3804 struct diradd *diradd; 3805 struct mkdir *mkdir; 3806 3807 /* Grab the jsegdep. */ 3808 jsegdep = inoref_jseg(&jaddref->ja_ref); 3809 mkdir = NULL; 3810 diradd = NULL; 3811 if (inodedep_lookup(jaddref->ja_list.wk_mp, jaddref->ja_ino, 3812 0, &inodedep) == 0) 3813 panic("handle_written_jaddref: Lost inodedep."); 3814 if (jaddref->ja_diradd == NULL) 3815 panic("handle_written_jaddref: No dependency"); 3816 if (jaddref->ja_diradd->da_list.wk_type == D_DIRADD) { 3817 diradd = jaddref->ja_diradd; 3818 WORKLIST_INSERT(&inodedep->id_bufwait, &diradd->da_list); 3819 } else if (jaddref->ja_state & MKDIR_PARENT) { 3820 mkdir = jaddref->ja_mkdir; 3821 WORKLIST_INSERT(&inodedep->id_bufwait, &mkdir->md_list); 3822 } else if (jaddref->ja_state & MKDIR_BODY) 3823 mkdir = jaddref->ja_mkdir; 3824 else 3825 panic("handle_written_jaddref: Unknown dependency %p", 3826 jaddref->ja_diradd); 3827 jaddref->ja_diradd = NULL; /* also clears ja_mkdir */ 3828 /* 3829 * Remove us from the inode list. 3830 */ 3831 TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref, if_deps); 3832 /* 3833 * The mkdir may be waiting on the jaddref to clear before freeing. 3834 */ 3835 if (mkdir) { 3836 KASSERT(mkdir->md_list.wk_type == D_MKDIR, 3837 ("handle_written_jaddref: Incorrect type for mkdir %s", 3838 TYPENAME(mkdir->md_list.wk_type))); 3839 mkdir->md_jaddref = NULL; 3840 diradd = mkdir->md_diradd; 3841 mkdir->md_state |= DEPCOMPLETE; 3842 complete_mkdir(mkdir); 3843 } 3844 jwork_insert(&diradd->da_jwork, jsegdep); 3845 if (jaddref->ja_state & NEWBLOCK) { 3846 inodedep->id_state |= ONDEPLIST; 3847 LIST_INSERT_HEAD(&inodedep->id_bmsafemap->sm_inodedephd, 3848 inodedep, id_deps); 3849 } 3850 free_jaddref(jaddref); 3851 } 3852 3853 /* 3854 * Called once a jnewblk journal is written. The allocdirect or allocindir 3855 * is placed in the bmsafemap to await notification of a written bitmap. If 3856 * the operation was canceled we add the segdep to the appropriate 3857 * dependency to free the journal space once the canceling operation 3858 * completes. 3859 */ 3860 static void 3861 handle_written_jnewblk(jnewblk) 3862 struct jnewblk *jnewblk; 3863 { 3864 struct bmsafemap *bmsafemap; 3865 struct freefrag *freefrag; 3866 struct freework *freework; 3867 struct jsegdep *jsegdep; 3868 struct newblk *newblk; 3869 3870 /* Grab the jsegdep. */ 3871 jsegdep = jnewblk->jn_jsegdep; 3872 jnewblk->jn_jsegdep = NULL; 3873 if (jnewblk->jn_dep == NULL) 3874 panic("handle_written_jnewblk: No dependency for the segdep."); 3875 switch (jnewblk->jn_dep->wk_type) { 3876 case D_NEWBLK: 3877 case D_ALLOCDIRECT: 3878 case D_ALLOCINDIR: 3879 /* 3880 * Add the written block to the bmsafemap so it can 3881 * be notified when the bitmap is on disk. 3882 */ 3883 newblk = WK_NEWBLK(jnewblk->jn_dep); 3884 newblk->nb_jnewblk = NULL; 3885 if ((newblk->nb_state & GOINGAWAY) == 0) { 3886 bmsafemap = newblk->nb_bmsafemap; 3887 newblk->nb_state |= ONDEPLIST; 3888 LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, 3889 nb_deps); 3890 } 3891 jwork_insert(&newblk->nb_jwork, jsegdep); 3892 break; 3893 case D_FREEFRAG: 3894 /* 3895 * A newblock being removed by a freefrag when replaced by 3896 * frag extension. 3897 */ 3898 freefrag = WK_FREEFRAG(jnewblk->jn_dep); 3899 freefrag->ff_jdep = NULL; 3900 jwork_insert(&freefrag->ff_jwork, jsegdep); 3901 break; 3902 case D_FREEWORK: 3903 /* 3904 * A direct block was removed by truncate. 3905 */ 3906 freework = WK_FREEWORK(jnewblk->jn_dep); 3907 freework->fw_jnewblk = NULL; 3908 jwork_insert(&freework->fw_freeblks->fb_jwork, jsegdep); 3909 break; 3910 default: 3911 panic("handle_written_jnewblk: Unknown type %d.", 3912 jnewblk->jn_dep->wk_type); 3913 } 3914 jnewblk->jn_dep = NULL; 3915 free_jnewblk(jnewblk); 3916 } 3917 3918 /* 3919 * Cancel a jfreefrag that won't be needed, probably due to colliding with 3920 * an in-flight allocation that has not yet been committed. Divorce us 3921 * from the freefrag and mark it DEPCOMPLETE so that it may be added 3922 * to the worklist. 3923 */ 3924 static void 3925 cancel_jfreefrag(jfreefrag) 3926 struct jfreefrag *jfreefrag; 3927 { 3928 struct freefrag *freefrag; 3929 3930 if (jfreefrag->fr_jsegdep) { 3931 free_jsegdep(jfreefrag->fr_jsegdep); 3932 jfreefrag->fr_jsegdep = NULL; 3933 } 3934 freefrag = jfreefrag->fr_freefrag; 3935 jfreefrag->fr_freefrag = NULL; 3936 free_jfreefrag(jfreefrag); 3937 freefrag->ff_state |= DEPCOMPLETE; 3938 CTR1(KTR_SUJ, "cancel_jfreefrag: blkno %jd", freefrag->ff_blkno); 3939 } 3940 3941 /* 3942 * Free a jfreefrag when the parent freefrag is rendered obsolete. 3943 */ 3944 static void 3945 free_jfreefrag(jfreefrag) 3946 struct jfreefrag *jfreefrag; 3947 { 3948 3949 if (jfreefrag->fr_state & INPROGRESS) 3950 WORKLIST_REMOVE(&jfreefrag->fr_list); 3951 else if (jfreefrag->fr_state & ONWORKLIST) 3952 remove_from_journal(&jfreefrag->fr_list); 3953 if (jfreefrag->fr_freefrag != NULL) 3954 panic("free_jfreefrag: Still attached to a freefrag."); 3955 WORKITEM_FREE(jfreefrag, D_JFREEFRAG); 3956 } 3957 3958 /* 3959 * Called when the journal write for a jfreefrag completes. The parent 3960 * freefrag is added to the worklist if this completes its dependencies. 3961 */ 3962 static void 3963 handle_written_jfreefrag(jfreefrag) 3964 struct jfreefrag *jfreefrag; 3965 { 3966 struct jsegdep *jsegdep; 3967 struct freefrag *freefrag; 3968 3969 /* Grab the jsegdep. */ 3970 jsegdep = jfreefrag->fr_jsegdep; 3971 jfreefrag->fr_jsegdep = NULL; 3972 freefrag = jfreefrag->fr_freefrag; 3973 if (freefrag == NULL) 3974 panic("handle_written_jfreefrag: No freefrag."); 3975 freefrag->ff_state |= DEPCOMPLETE; 3976 freefrag->ff_jdep = NULL; 3977 jwork_insert(&freefrag->ff_jwork, jsegdep); 3978 if ((freefrag->ff_state & ALLCOMPLETE) == ALLCOMPLETE) 3979 add_to_worklist(&freefrag->ff_list, 0); 3980 jfreefrag->fr_freefrag = NULL; 3981 free_jfreefrag(jfreefrag); 3982 } 3983 3984 /* 3985 * Called when the journal write for a jfreeblk completes. The jfreeblk 3986 * is removed from the freeblks list of pending journal writes and the 3987 * jsegdep is moved to the freeblks jwork to be completed when all blocks 3988 * have been reclaimed. 3989 */ 3990 static void 3991 handle_written_jblkdep(jblkdep) 3992 struct jblkdep *jblkdep; 3993 { 3994 struct freeblks *freeblks; 3995 struct jsegdep *jsegdep; 3996 3997 /* Grab the jsegdep. */ 3998 jsegdep = jblkdep->jb_jsegdep; 3999 jblkdep->jb_jsegdep = NULL; 4000 freeblks = jblkdep->jb_freeblks; 4001 LIST_REMOVE(jblkdep, jb_deps); 4002 jwork_insert(&freeblks->fb_jwork, jsegdep); 4003 /* 4004 * If the freeblks is all journaled, we can add it to the worklist. 4005 */ 4006 if (LIST_EMPTY(&freeblks->fb_jblkdephd) && 4007 (freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE) 4008 add_to_worklist(&freeblks->fb_list, WK_NODELAY); 4009 4010 free_jblkdep(jblkdep); 4011 } 4012 4013 static struct jsegdep * 4014 newjsegdep(struct worklist *wk) 4015 { 4016 struct jsegdep *jsegdep; 4017 4018 jsegdep = malloc(sizeof(*jsegdep), M_JSEGDEP, M_SOFTDEP_FLAGS); 4019 workitem_alloc(&jsegdep->jd_list, D_JSEGDEP, wk->wk_mp); 4020 jsegdep->jd_seg = NULL; 4021 4022 return (jsegdep); 4023 } 4024 4025 static struct jmvref * 4026 newjmvref(dp, ino, oldoff, newoff) 4027 struct inode *dp; 4028 ino_t ino; 4029 off_t oldoff; 4030 off_t newoff; 4031 { 4032 struct jmvref *jmvref; 4033 4034 jmvref = malloc(sizeof(*jmvref), M_JMVREF, M_SOFTDEP_FLAGS); 4035 workitem_alloc(&jmvref->jm_list, D_JMVREF, ITOVFS(dp)); 4036 jmvref->jm_list.wk_state = ATTACHED | DEPCOMPLETE; 4037 jmvref->jm_parent = dp->i_number; 4038 jmvref->jm_ino = ino; 4039 jmvref->jm_oldoff = oldoff; 4040 jmvref->jm_newoff = newoff; 4041 4042 return (jmvref); 4043 } 4044 4045 /* 4046 * Allocate a new jremref that tracks the removal of ip from dp with the 4047 * directory entry offset of diroff. Mark the entry as ATTACHED and 4048 * DEPCOMPLETE as we have all the information required for the journal write 4049 * and the directory has already been removed from the buffer. The caller 4050 * is responsible for linking the jremref into the pagedep and adding it 4051 * to the journal to write. The MKDIR_PARENT flag is set if we're doing 4052 * a DOTDOT addition so handle_workitem_remove() can properly assign 4053 * the jsegdep when we're done. 4054 */ 4055 static struct jremref * 4056 newjremref(struct dirrem *dirrem, struct inode *dp, struct inode *ip, 4057 off_t diroff, nlink_t nlink) 4058 { 4059 struct jremref *jremref; 4060 4061 jremref = malloc(sizeof(*jremref), M_JREMREF, M_SOFTDEP_FLAGS); 4062 workitem_alloc(&jremref->jr_list, D_JREMREF, ITOVFS(dp)); 4063 jremref->jr_state = ATTACHED; 4064 newinoref(&jremref->jr_ref, ip->i_number, dp->i_number, diroff, 4065 nlink, ip->i_mode); 4066 jremref->jr_dirrem = dirrem; 4067 4068 return (jremref); 4069 } 4070 4071 static inline void 4072 newinoref(struct inoref *inoref, ino_t ino, ino_t parent, off_t diroff, 4073 nlink_t nlink, uint16_t mode) 4074 { 4075 4076 inoref->if_jsegdep = newjsegdep(&inoref->if_list); 4077 inoref->if_diroff = diroff; 4078 inoref->if_ino = ino; 4079 inoref->if_parent = parent; 4080 inoref->if_nlink = nlink; 4081 inoref->if_mode = mode; 4082 } 4083 4084 /* 4085 * Allocate a new jaddref to track the addition of ino to dp at diroff. The 4086 * directory offset may not be known until later. The caller is responsible 4087 * adding the entry to the journal when this information is available. nlink 4088 * should be the link count prior to the addition and mode is only required 4089 * to have the correct FMT. 4090 */ 4091 static struct jaddref * 4092 newjaddref(struct inode *dp, ino_t ino, off_t diroff, int16_t nlink, 4093 uint16_t mode) 4094 { 4095 struct jaddref *jaddref; 4096 4097 jaddref = malloc(sizeof(*jaddref), M_JADDREF, M_SOFTDEP_FLAGS); 4098 workitem_alloc(&jaddref->ja_list, D_JADDREF, ITOVFS(dp)); 4099 jaddref->ja_state = ATTACHED; 4100 jaddref->ja_mkdir = NULL; 4101 newinoref(&jaddref->ja_ref, ino, dp->i_number, diroff, nlink, mode); 4102 4103 return (jaddref); 4104 } 4105 4106 /* 4107 * Create a new free dependency for a freework. The caller is responsible 4108 * for adjusting the reference count when it has the lock held. The freedep 4109 * will track an outstanding bitmap write that will ultimately clear the 4110 * freework to continue. 4111 */ 4112 static struct freedep * 4113 newfreedep(struct freework *freework) 4114 { 4115 struct freedep *freedep; 4116 4117 freedep = malloc(sizeof(*freedep), M_FREEDEP, M_SOFTDEP_FLAGS); 4118 workitem_alloc(&freedep->fd_list, D_FREEDEP, freework->fw_list.wk_mp); 4119 freedep->fd_freework = freework; 4120 4121 return (freedep); 4122 } 4123 4124 /* 4125 * Free a freedep structure once the buffer it is linked to is written. If 4126 * this is the last reference to the freework schedule it for completion. 4127 */ 4128 static void 4129 free_freedep(freedep) 4130 struct freedep *freedep; 4131 { 4132 struct freework *freework; 4133 4134 freework = freedep->fd_freework; 4135 freework->fw_freeblks->fb_cgwait--; 4136 if (--freework->fw_ref == 0) 4137 freework_enqueue(freework); 4138 WORKITEM_FREE(freedep, D_FREEDEP); 4139 } 4140 4141 /* 4142 * Allocate a new freework structure that may be a level in an indirect 4143 * when parent is not NULL or a top level block when it is. The top level 4144 * freework structures are allocated without the per-filesystem lock held 4145 * and before the freeblks is visible outside of softdep_setup_freeblocks(). 4146 */ 4147 static struct freework * 4148 newfreework(ump, freeblks, parent, lbn, nb, frags, off, journal) 4149 struct ufsmount *ump; 4150 struct freeblks *freeblks; 4151 struct freework *parent; 4152 ufs_lbn_t lbn; 4153 ufs2_daddr_t nb; 4154 int frags; 4155 int off; 4156 int journal; 4157 { 4158 struct freework *freework; 4159 4160 freework = malloc(sizeof(*freework), M_FREEWORK, M_SOFTDEP_FLAGS); 4161 workitem_alloc(&freework->fw_list, D_FREEWORK, freeblks->fb_list.wk_mp); 4162 freework->fw_state = ATTACHED; 4163 freework->fw_jnewblk = NULL; 4164 freework->fw_freeblks = freeblks; 4165 freework->fw_parent = parent; 4166 freework->fw_lbn = lbn; 4167 freework->fw_blkno = nb; 4168 freework->fw_frags = frags; 4169 freework->fw_indir = NULL; 4170 freework->fw_ref = (MOUNTEDSUJ(UFSTOVFS(ump)) == 0 || 4171 lbn >= -UFS_NXADDR) ? 0 : NINDIR(ump->um_fs) + 1; 4172 freework->fw_start = freework->fw_off = off; 4173 if (journal) 4174 newjfreeblk(freeblks, lbn, nb, frags); 4175 if (parent == NULL) { 4176 ACQUIRE_LOCK(ump); 4177 WORKLIST_INSERT(&freeblks->fb_freeworkhd, &freework->fw_list); 4178 freeblks->fb_ref++; 4179 FREE_LOCK(ump); 4180 } 4181 4182 return (freework); 4183 } 4184 4185 /* 4186 * Eliminate a jfreeblk for a block that does not need journaling. 4187 */ 4188 static void 4189 cancel_jfreeblk(freeblks, blkno) 4190 struct freeblks *freeblks; 4191 ufs2_daddr_t blkno; 4192 { 4193 struct jfreeblk *jfreeblk; 4194 struct jblkdep *jblkdep; 4195 4196 LIST_FOREACH(jblkdep, &freeblks->fb_jblkdephd, jb_deps) { 4197 if (jblkdep->jb_list.wk_type != D_JFREEBLK) 4198 continue; 4199 jfreeblk = WK_JFREEBLK(&jblkdep->jb_list); 4200 if (jfreeblk->jf_blkno == blkno) 4201 break; 4202 } 4203 if (jblkdep == NULL) 4204 return; 4205 CTR1(KTR_SUJ, "cancel_jfreeblk: blkno %jd", blkno); 4206 free_jsegdep(jblkdep->jb_jsegdep); 4207 LIST_REMOVE(jblkdep, jb_deps); 4208 WORKITEM_FREE(jfreeblk, D_JFREEBLK); 4209 } 4210 4211 /* 4212 * Allocate a new jfreeblk to journal top level block pointer when truncating 4213 * a file. The caller must add this to the worklist when the per-filesystem 4214 * lock is held. 4215 */ 4216 static struct jfreeblk * 4217 newjfreeblk(freeblks, lbn, blkno, frags) 4218 struct freeblks *freeblks; 4219 ufs_lbn_t lbn; 4220 ufs2_daddr_t blkno; 4221 int frags; 4222 { 4223 struct jfreeblk *jfreeblk; 4224 4225 jfreeblk = malloc(sizeof(*jfreeblk), M_JFREEBLK, M_SOFTDEP_FLAGS); 4226 workitem_alloc(&jfreeblk->jf_dep.jb_list, D_JFREEBLK, 4227 freeblks->fb_list.wk_mp); 4228 jfreeblk->jf_dep.jb_jsegdep = newjsegdep(&jfreeblk->jf_dep.jb_list); 4229 jfreeblk->jf_dep.jb_freeblks = freeblks; 4230 jfreeblk->jf_ino = freeblks->fb_inum; 4231 jfreeblk->jf_lbn = lbn; 4232 jfreeblk->jf_blkno = blkno; 4233 jfreeblk->jf_frags = frags; 4234 LIST_INSERT_HEAD(&freeblks->fb_jblkdephd, &jfreeblk->jf_dep, jb_deps); 4235 4236 return (jfreeblk); 4237 } 4238 4239 /* 4240 * The journal is only prepared to handle full-size block numbers, so we 4241 * have to adjust the record to reflect the change to a full-size block. 4242 * For example, suppose we have a block made up of fragments 8-15 and 4243 * want to free its last two fragments. We are given a request that says: 4244 * FREEBLK ino=5, blkno=14, lbn=0, frags=2, oldfrags=0 4245 * where frags are the number of fragments to free and oldfrags are the 4246 * number of fragments to keep. To block align it, we have to change it to 4247 * have a valid full-size blkno, so it becomes: 4248 * FREEBLK ino=5, blkno=8, lbn=0, frags=2, oldfrags=6 4249 */ 4250 static void 4251 adjust_newfreework(freeblks, frag_offset) 4252 struct freeblks *freeblks; 4253 int frag_offset; 4254 { 4255 struct jfreeblk *jfreeblk; 4256 4257 KASSERT((LIST_FIRST(&freeblks->fb_jblkdephd) != NULL && 4258 LIST_FIRST(&freeblks->fb_jblkdephd)->jb_list.wk_type == D_JFREEBLK), 4259 ("adjust_newfreework: Missing freeblks dependency")); 4260 4261 jfreeblk = WK_JFREEBLK(LIST_FIRST(&freeblks->fb_jblkdephd)); 4262 jfreeblk->jf_blkno -= frag_offset; 4263 jfreeblk->jf_frags += frag_offset; 4264 } 4265 4266 /* 4267 * Allocate a new jtrunc to track a partial truncation. 4268 */ 4269 static struct jtrunc * 4270 newjtrunc(freeblks, size, extsize) 4271 struct freeblks *freeblks; 4272 off_t size; 4273 int extsize; 4274 { 4275 struct jtrunc *jtrunc; 4276 4277 jtrunc = malloc(sizeof(*jtrunc), M_JTRUNC, M_SOFTDEP_FLAGS); 4278 workitem_alloc(&jtrunc->jt_dep.jb_list, D_JTRUNC, 4279 freeblks->fb_list.wk_mp); 4280 jtrunc->jt_dep.jb_jsegdep = newjsegdep(&jtrunc->jt_dep.jb_list); 4281 jtrunc->jt_dep.jb_freeblks = freeblks; 4282 jtrunc->jt_ino = freeblks->fb_inum; 4283 jtrunc->jt_size = size; 4284 jtrunc->jt_extsize = extsize; 4285 LIST_INSERT_HEAD(&freeblks->fb_jblkdephd, &jtrunc->jt_dep, jb_deps); 4286 4287 return (jtrunc); 4288 } 4289 4290 /* 4291 * If we're canceling a new bitmap we have to search for another ref 4292 * to move into the bmsafemap dep. This might be better expressed 4293 * with another structure. 4294 */ 4295 static void 4296 move_newblock_dep(jaddref, inodedep) 4297 struct jaddref *jaddref; 4298 struct inodedep *inodedep; 4299 { 4300 struct inoref *inoref; 4301 struct jaddref *jaddrefn; 4302 4303 jaddrefn = NULL; 4304 for (inoref = TAILQ_NEXT(&jaddref->ja_ref, if_deps); inoref; 4305 inoref = TAILQ_NEXT(inoref, if_deps)) { 4306 if ((jaddref->ja_state & NEWBLOCK) && 4307 inoref->if_list.wk_type == D_JADDREF) { 4308 jaddrefn = (struct jaddref *)inoref; 4309 break; 4310 } 4311 } 4312 if (jaddrefn == NULL) 4313 return; 4314 jaddrefn->ja_state &= ~(ATTACHED | UNDONE); 4315 jaddrefn->ja_state |= jaddref->ja_state & 4316 (ATTACHED | UNDONE | NEWBLOCK); 4317 jaddref->ja_state &= ~(ATTACHED | UNDONE | NEWBLOCK); 4318 jaddref->ja_state |= ATTACHED; 4319 LIST_REMOVE(jaddref, ja_bmdeps); 4320 LIST_INSERT_HEAD(&inodedep->id_bmsafemap->sm_jaddrefhd, jaddrefn, 4321 ja_bmdeps); 4322 } 4323 4324 /* 4325 * Cancel a jaddref either before it has been written or while it is being 4326 * written. This happens when a link is removed before the add reaches 4327 * the disk. The jaddref dependency is kept linked into the bmsafemap 4328 * and inode to prevent the link count or bitmap from reaching the disk 4329 * until handle_workitem_remove() re-adjusts the counts and bitmaps as 4330 * required. 4331 * 4332 * Returns 1 if the canceled addref requires journaling of the remove and 4333 * 0 otherwise. 4334 */ 4335 static int 4336 cancel_jaddref(jaddref, inodedep, wkhd) 4337 struct jaddref *jaddref; 4338 struct inodedep *inodedep; 4339 struct workhead *wkhd; 4340 { 4341 struct inoref *inoref; 4342 struct jsegdep *jsegdep; 4343 int needsj; 4344 4345 KASSERT((jaddref->ja_state & COMPLETE) == 0, 4346 ("cancel_jaddref: Canceling complete jaddref")); 4347 if (jaddref->ja_state & (INPROGRESS | COMPLETE)) 4348 needsj = 1; 4349 else 4350 needsj = 0; 4351 if (inodedep == NULL) 4352 if (inodedep_lookup(jaddref->ja_list.wk_mp, jaddref->ja_ino, 4353 0, &inodedep) == 0) 4354 panic("cancel_jaddref: Lost inodedep"); 4355 /* 4356 * We must adjust the nlink of any reference operation that follows 4357 * us so that it is consistent with the in-memory reference. This 4358 * ensures that inode nlink rollbacks always have the correct link. 4359 */ 4360 if (needsj == 0) { 4361 for (inoref = TAILQ_NEXT(&jaddref->ja_ref, if_deps); inoref; 4362 inoref = TAILQ_NEXT(inoref, if_deps)) { 4363 if (inoref->if_state & GOINGAWAY) 4364 break; 4365 inoref->if_nlink--; 4366 } 4367 } 4368 jsegdep = inoref_jseg(&jaddref->ja_ref); 4369 if (jaddref->ja_state & NEWBLOCK) 4370 move_newblock_dep(jaddref, inodedep); 4371 wake_worklist(&jaddref->ja_list); 4372 jaddref->ja_mkdir = NULL; 4373 if (jaddref->ja_state & INPROGRESS) { 4374 jaddref->ja_state &= ~INPROGRESS; 4375 WORKLIST_REMOVE(&jaddref->ja_list); 4376 jwork_insert(wkhd, jsegdep); 4377 } else { 4378 free_jsegdep(jsegdep); 4379 if (jaddref->ja_state & DEPCOMPLETE) 4380 remove_from_journal(&jaddref->ja_list); 4381 } 4382 jaddref->ja_state |= (GOINGAWAY | DEPCOMPLETE); 4383 /* 4384 * Leave NEWBLOCK jaddrefs on the inodedep so handle_workitem_remove 4385 * can arrange for them to be freed with the bitmap. Otherwise we 4386 * no longer need this addref attached to the inoreflst and it 4387 * will incorrectly adjust nlink if we leave it. 4388 */ 4389 if ((jaddref->ja_state & NEWBLOCK) == 0) { 4390 TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref, 4391 if_deps); 4392 jaddref->ja_state |= COMPLETE; 4393 free_jaddref(jaddref); 4394 return (needsj); 4395 } 4396 /* 4397 * Leave the head of the list for jsegdeps for fast merging. 4398 */ 4399 if (LIST_FIRST(wkhd) != NULL) { 4400 jaddref->ja_state |= ONWORKLIST; 4401 LIST_INSERT_AFTER(LIST_FIRST(wkhd), &jaddref->ja_list, wk_list); 4402 } else 4403 WORKLIST_INSERT(wkhd, &jaddref->ja_list); 4404 4405 return (needsj); 4406 } 4407 4408 /* 4409 * Attempt to free a jaddref structure when some work completes. This 4410 * should only succeed once the entry is written and all dependencies have 4411 * been notified. 4412 */ 4413 static void 4414 free_jaddref(jaddref) 4415 struct jaddref *jaddref; 4416 { 4417 4418 if ((jaddref->ja_state & ALLCOMPLETE) != ALLCOMPLETE) 4419 return; 4420 if (jaddref->ja_ref.if_jsegdep) 4421 panic("free_jaddref: segdep attached to jaddref %p(0x%X)\n", 4422 jaddref, jaddref->ja_state); 4423 if (jaddref->ja_state & NEWBLOCK) 4424 LIST_REMOVE(jaddref, ja_bmdeps); 4425 if (jaddref->ja_state & (INPROGRESS | ONWORKLIST)) 4426 panic("free_jaddref: Bad state %p(0x%X)", 4427 jaddref, jaddref->ja_state); 4428 if (jaddref->ja_mkdir != NULL) 4429 panic("free_jaddref: Work pending, 0x%X\n", jaddref->ja_state); 4430 WORKITEM_FREE(jaddref, D_JADDREF); 4431 } 4432 4433 /* 4434 * Free a jremref structure once it has been written or discarded. 4435 */ 4436 static void 4437 free_jremref(jremref) 4438 struct jremref *jremref; 4439 { 4440 4441 if (jremref->jr_ref.if_jsegdep) 4442 free_jsegdep(jremref->jr_ref.if_jsegdep); 4443 if (jremref->jr_state & INPROGRESS) 4444 panic("free_jremref: IO still pending"); 4445 WORKITEM_FREE(jremref, D_JREMREF); 4446 } 4447 4448 /* 4449 * Free a jnewblk structure. 4450 */ 4451 static void 4452 free_jnewblk(jnewblk) 4453 struct jnewblk *jnewblk; 4454 { 4455 4456 if ((jnewblk->jn_state & ALLCOMPLETE) != ALLCOMPLETE) 4457 return; 4458 LIST_REMOVE(jnewblk, jn_deps); 4459 if (jnewblk->jn_dep != NULL) 4460 panic("free_jnewblk: Dependency still attached."); 4461 WORKITEM_FREE(jnewblk, D_JNEWBLK); 4462 } 4463 4464 /* 4465 * Cancel a jnewblk which has been been made redundant by frag extension. 4466 */ 4467 static void 4468 cancel_jnewblk(jnewblk, wkhd) 4469 struct jnewblk *jnewblk; 4470 struct workhead *wkhd; 4471 { 4472 struct jsegdep *jsegdep; 4473 4474 CTR1(KTR_SUJ, "cancel_jnewblk: blkno %jd", jnewblk->jn_blkno); 4475 jsegdep = jnewblk->jn_jsegdep; 4476 if (jnewblk->jn_jsegdep == NULL || jnewblk->jn_dep == NULL) 4477 panic("cancel_jnewblk: Invalid state"); 4478 jnewblk->jn_jsegdep = NULL; 4479 jnewblk->jn_dep = NULL; 4480 jnewblk->jn_state |= GOINGAWAY; 4481 if (jnewblk->jn_state & INPROGRESS) { 4482 jnewblk->jn_state &= ~INPROGRESS; 4483 WORKLIST_REMOVE(&jnewblk->jn_list); 4484 jwork_insert(wkhd, jsegdep); 4485 } else { 4486 free_jsegdep(jsegdep); 4487 remove_from_journal(&jnewblk->jn_list); 4488 } 4489 wake_worklist(&jnewblk->jn_list); 4490 WORKLIST_INSERT(wkhd, &jnewblk->jn_list); 4491 } 4492 4493 static void 4494 free_jblkdep(jblkdep) 4495 struct jblkdep *jblkdep; 4496 { 4497 4498 if (jblkdep->jb_list.wk_type == D_JFREEBLK) 4499 WORKITEM_FREE(jblkdep, D_JFREEBLK); 4500 else if (jblkdep->jb_list.wk_type == D_JTRUNC) 4501 WORKITEM_FREE(jblkdep, D_JTRUNC); 4502 else 4503 panic("free_jblkdep: Unexpected type %s", 4504 TYPENAME(jblkdep->jb_list.wk_type)); 4505 } 4506 4507 /* 4508 * Free a single jseg once it is no longer referenced in memory or on 4509 * disk. Reclaim journal blocks and dependencies waiting for the segment 4510 * to disappear. 4511 */ 4512 static void 4513 free_jseg(jseg, jblocks) 4514 struct jseg *jseg; 4515 struct jblocks *jblocks; 4516 { 4517 struct freework *freework; 4518 4519 /* 4520 * Free freework structures that were lingering to indicate freed 4521 * indirect blocks that forced journal write ordering on reallocate. 4522 */ 4523 while ((freework = LIST_FIRST(&jseg->js_indirs)) != NULL) 4524 indirblk_remove(freework); 4525 if (jblocks->jb_oldestseg == jseg) 4526 jblocks->jb_oldestseg = TAILQ_NEXT(jseg, js_next); 4527 TAILQ_REMOVE(&jblocks->jb_segs, jseg, js_next); 4528 jblocks_free(jblocks, jseg->js_list.wk_mp, jseg->js_size); 4529 KASSERT(LIST_EMPTY(&jseg->js_entries), 4530 ("free_jseg: Freed jseg has valid entries.")); 4531 WORKITEM_FREE(jseg, D_JSEG); 4532 } 4533 4534 /* 4535 * Free all jsegs that meet the criteria for being reclaimed and update 4536 * oldestseg. 4537 */ 4538 static void 4539 free_jsegs(jblocks) 4540 struct jblocks *jblocks; 4541 { 4542 struct jseg *jseg; 4543 4544 /* 4545 * Free only those jsegs which have none allocated before them to 4546 * preserve the journal space ordering. 4547 */ 4548 while ((jseg = TAILQ_FIRST(&jblocks->jb_segs)) != NULL) { 4549 /* 4550 * Only reclaim space when nothing depends on this journal 4551 * set and another set has written that it is no longer 4552 * valid. 4553 */ 4554 if (jseg->js_refs != 0) { 4555 jblocks->jb_oldestseg = jseg; 4556 return; 4557 } 4558 if ((jseg->js_state & ALLCOMPLETE) != ALLCOMPLETE) 4559 break; 4560 if (jseg->js_seq > jblocks->jb_oldestwrseq) 4561 break; 4562 /* 4563 * We can free jsegs that didn't write entries when 4564 * oldestwrseq == js_seq. 4565 */ 4566 if (jseg->js_seq == jblocks->jb_oldestwrseq && 4567 jseg->js_cnt != 0) 4568 break; 4569 free_jseg(jseg, jblocks); 4570 } 4571 /* 4572 * If we exited the loop above we still must discover the 4573 * oldest valid segment. 4574 */ 4575 if (jseg) 4576 for (jseg = jblocks->jb_oldestseg; jseg != NULL; 4577 jseg = TAILQ_NEXT(jseg, js_next)) 4578 if (jseg->js_refs != 0) 4579 break; 4580 jblocks->jb_oldestseg = jseg; 4581 /* 4582 * The journal has no valid records but some jsegs may still be 4583 * waiting on oldestwrseq to advance. We force a small record 4584 * out to permit these lingering records to be reclaimed. 4585 */ 4586 if (jblocks->jb_oldestseg == NULL && !TAILQ_EMPTY(&jblocks->jb_segs)) 4587 jblocks->jb_needseg = 1; 4588 } 4589 4590 /* 4591 * Release one reference to a jseg and free it if the count reaches 0. This 4592 * should eventually reclaim journal space as well. 4593 */ 4594 static void 4595 rele_jseg(jseg) 4596 struct jseg *jseg; 4597 { 4598 4599 KASSERT(jseg->js_refs > 0, 4600 ("free_jseg: Invalid refcnt %d", jseg->js_refs)); 4601 if (--jseg->js_refs != 0) 4602 return; 4603 free_jsegs(jseg->js_jblocks); 4604 } 4605 4606 /* 4607 * Release a jsegdep and decrement the jseg count. 4608 */ 4609 static void 4610 free_jsegdep(jsegdep) 4611 struct jsegdep *jsegdep; 4612 { 4613 4614 if (jsegdep->jd_seg) 4615 rele_jseg(jsegdep->jd_seg); 4616 WORKITEM_FREE(jsegdep, D_JSEGDEP); 4617 } 4618 4619 /* 4620 * Wait for a journal item to make it to disk. Initiate journal processing 4621 * if required. 4622 */ 4623 static int 4624 jwait(wk, waitfor) 4625 struct worklist *wk; 4626 int waitfor; 4627 { 4628 4629 LOCK_OWNED(VFSTOUFS(wk->wk_mp)); 4630 /* 4631 * Blocking journal waits cause slow synchronous behavior. Record 4632 * stats on the frequency of these blocking operations. 4633 */ 4634 if (waitfor == MNT_WAIT) { 4635 stat_journal_wait++; 4636 switch (wk->wk_type) { 4637 case D_JREMREF: 4638 case D_JMVREF: 4639 stat_jwait_filepage++; 4640 break; 4641 case D_JTRUNC: 4642 case D_JFREEBLK: 4643 stat_jwait_freeblks++; 4644 break; 4645 case D_JNEWBLK: 4646 stat_jwait_newblk++; 4647 break; 4648 case D_JADDREF: 4649 stat_jwait_inode++; 4650 break; 4651 default: 4652 break; 4653 } 4654 } 4655 /* 4656 * If IO has not started we process the journal. We can't mark the 4657 * worklist item as IOWAITING because we drop the lock while 4658 * processing the journal and the worklist entry may be freed after 4659 * this point. The caller may call back in and re-issue the request. 4660 */ 4661 if ((wk->wk_state & INPROGRESS) == 0) { 4662 softdep_process_journal(wk->wk_mp, wk, waitfor); 4663 if (waitfor != MNT_WAIT) 4664 return (EBUSY); 4665 return (0); 4666 } 4667 if (waitfor != MNT_WAIT) 4668 return (EBUSY); 4669 wait_worklist(wk, "jwait"); 4670 return (0); 4671 } 4672 4673 /* 4674 * Lookup an inodedep based on an inode pointer and set the nlinkdelta as 4675 * appropriate. This is a convenience function to reduce duplicate code 4676 * for the setup and revert functions below. 4677 */ 4678 static struct inodedep * 4679 inodedep_lookup_ip(ip) 4680 struct inode *ip; 4681 { 4682 struct inodedep *inodedep; 4683 4684 KASSERT(ip->i_nlink >= ip->i_effnlink, 4685 ("inodedep_lookup_ip: bad delta")); 4686 (void) inodedep_lookup(ITOVFS(ip), ip->i_number, DEPALLOC, 4687 &inodedep); 4688 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 4689 KASSERT((inodedep->id_state & UNLINKED) == 0, ("inode unlinked")); 4690 4691 return (inodedep); 4692 } 4693 4694 /* 4695 * Called prior to creating a new inode and linking it to a directory. The 4696 * jaddref structure must already be allocated by softdep_setup_inomapdep 4697 * and it is discovered here so we can initialize the mode and update 4698 * nlinkdelta. 4699 */ 4700 void 4701 softdep_setup_create(dp, ip) 4702 struct inode *dp; 4703 struct inode *ip; 4704 { 4705 struct inodedep *inodedep; 4706 struct jaddref *jaddref; 4707 struct vnode *dvp; 4708 4709 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 4710 ("softdep_setup_create called on non-softdep filesystem")); 4711 KASSERT(ip->i_nlink == 1, 4712 ("softdep_setup_create: Invalid link count.")); 4713 dvp = ITOV(dp); 4714 ACQUIRE_LOCK(ITOUMP(dp)); 4715 inodedep = inodedep_lookup_ip(ip); 4716 if (DOINGSUJ(dvp)) { 4717 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 4718 inoreflst); 4719 KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number, 4720 ("softdep_setup_create: No addref structure present.")); 4721 } 4722 softdep_prelink(dvp, NULL); 4723 FREE_LOCK(ITOUMP(dp)); 4724 } 4725 4726 /* 4727 * Create a jaddref structure to track the addition of a DOTDOT link when 4728 * we are reparenting an inode as part of a rename. This jaddref will be 4729 * found by softdep_setup_directory_change. Adjusts nlinkdelta for 4730 * non-journaling softdep. 4731 */ 4732 void 4733 softdep_setup_dotdot_link(dp, ip) 4734 struct inode *dp; 4735 struct inode *ip; 4736 { 4737 struct inodedep *inodedep; 4738 struct jaddref *jaddref; 4739 struct vnode *dvp; 4740 4741 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 4742 ("softdep_setup_dotdot_link called on non-softdep filesystem")); 4743 dvp = ITOV(dp); 4744 jaddref = NULL; 4745 /* 4746 * We don't set MKDIR_PARENT as this is not tied to a mkdir and 4747 * is used as a normal link would be. 4748 */ 4749 if (DOINGSUJ(dvp)) 4750 jaddref = newjaddref(ip, dp->i_number, DOTDOT_OFFSET, 4751 dp->i_effnlink - 1, dp->i_mode); 4752 ACQUIRE_LOCK(ITOUMP(dp)); 4753 inodedep = inodedep_lookup_ip(dp); 4754 if (jaddref) 4755 TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref, 4756 if_deps); 4757 softdep_prelink(dvp, ITOV(ip)); 4758 FREE_LOCK(ITOUMP(dp)); 4759 } 4760 4761 /* 4762 * Create a jaddref structure to track a new link to an inode. The directory 4763 * offset is not known until softdep_setup_directory_add or 4764 * softdep_setup_directory_change. Adjusts nlinkdelta for non-journaling 4765 * softdep. 4766 */ 4767 void 4768 softdep_setup_link(dp, ip) 4769 struct inode *dp; 4770 struct inode *ip; 4771 { 4772 struct inodedep *inodedep; 4773 struct jaddref *jaddref; 4774 struct vnode *dvp; 4775 4776 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 4777 ("softdep_setup_link called on non-softdep filesystem")); 4778 dvp = ITOV(dp); 4779 jaddref = NULL; 4780 if (DOINGSUJ(dvp)) 4781 jaddref = newjaddref(dp, ip->i_number, 0, ip->i_effnlink - 1, 4782 ip->i_mode); 4783 ACQUIRE_LOCK(ITOUMP(dp)); 4784 inodedep = inodedep_lookup_ip(ip); 4785 if (jaddref) 4786 TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref, 4787 if_deps); 4788 softdep_prelink(dvp, ITOV(ip)); 4789 FREE_LOCK(ITOUMP(dp)); 4790 } 4791 4792 /* 4793 * Called to create the jaddref structures to track . and .. references as 4794 * well as lookup and further initialize the incomplete jaddref created 4795 * by softdep_setup_inomapdep when the inode was allocated. Adjusts 4796 * nlinkdelta for non-journaling softdep. 4797 */ 4798 void 4799 softdep_setup_mkdir(dp, ip) 4800 struct inode *dp; 4801 struct inode *ip; 4802 { 4803 struct inodedep *inodedep; 4804 struct jaddref *dotdotaddref; 4805 struct jaddref *dotaddref; 4806 struct jaddref *jaddref; 4807 struct vnode *dvp; 4808 4809 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 4810 ("softdep_setup_mkdir called on non-softdep filesystem")); 4811 dvp = ITOV(dp); 4812 dotaddref = dotdotaddref = NULL; 4813 if (DOINGSUJ(dvp)) { 4814 dotaddref = newjaddref(ip, ip->i_number, DOT_OFFSET, 1, 4815 ip->i_mode); 4816 dotaddref->ja_state |= MKDIR_BODY; 4817 dotdotaddref = newjaddref(ip, dp->i_number, DOTDOT_OFFSET, 4818 dp->i_effnlink - 1, dp->i_mode); 4819 dotdotaddref->ja_state |= MKDIR_PARENT; 4820 } 4821 ACQUIRE_LOCK(ITOUMP(dp)); 4822 inodedep = inodedep_lookup_ip(ip); 4823 if (DOINGSUJ(dvp)) { 4824 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 4825 inoreflst); 4826 KASSERT(jaddref != NULL, 4827 ("softdep_setup_mkdir: No addref structure present.")); 4828 KASSERT(jaddref->ja_parent == dp->i_number, 4829 ("softdep_setup_mkdir: bad parent %ju", 4830 (uintmax_t)jaddref->ja_parent)); 4831 TAILQ_INSERT_BEFORE(&jaddref->ja_ref, &dotaddref->ja_ref, 4832 if_deps); 4833 } 4834 inodedep = inodedep_lookup_ip(dp); 4835 if (DOINGSUJ(dvp)) 4836 TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, 4837 &dotdotaddref->ja_ref, if_deps); 4838 softdep_prelink(ITOV(dp), NULL); 4839 FREE_LOCK(ITOUMP(dp)); 4840 } 4841 4842 /* 4843 * Called to track nlinkdelta of the inode and parent directories prior to 4844 * unlinking a directory. 4845 */ 4846 void 4847 softdep_setup_rmdir(dp, ip) 4848 struct inode *dp; 4849 struct inode *ip; 4850 { 4851 struct vnode *dvp; 4852 4853 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 4854 ("softdep_setup_rmdir called on non-softdep filesystem")); 4855 dvp = ITOV(dp); 4856 ACQUIRE_LOCK(ITOUMP(dp)); 4857 (void) inodedep_lookup_ip(ip); 4858 (void) inodedep_lookup_ip(dp); 4859 softdep_prelink(dvp, ITOV(ip)); 4860 FREE_LOCK(ITOUMP(dp)); 4861 } 4862 4863 /* 4864 * Called to track nlinkdelta of the inode and parent directories prior to 4865 * unlink. 4866 */ 4867 void 4868 softdep_setup_unlink(dp, ip) 4869 struct inode *dp; 4870 struct inode *ip; 4871 { 4872 struct vnode *dvp; 4873 4874 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 4875 ("softdep_setup_unlink called on non-softdep filesystem")); 4876 dvp = ITOV(dp); 4877 ACQUIRE_LOCK(ITOUMP(dp)); 4878 (void) inodedep_lookup_ip(ip); 4879 (void) inodedep_lookup_ip(dp); 4880 softdep_prelink(dvp, ITOV(ip)); 4881 FREE_LOCK(ITOUMP(dp)); 4882 } 4883 4884 /* 4885 * Called to release the journal structures created by a failed non-directory 4886 * creation. Adjusts nlinkdelta for non-journaling softdep. 4887 */ 4888 void 4889 softdep_revert_create(dp, ip) 4890 struct inode *dp; 4891 struct inode *ip; 4892 { 4893 struct inodedep *inodedep; 4894 struct jaddref *jaddref; 4895 struct vnode *dvp; 4896 4897 KASSERT(MOUNTEDSOFTDEP(ITOVFS((dp))) != 0, 4898 ("softdep_revert_create called on non-softdep filesystem")); 4899 dvp = ITOV(dp); 4900 ACQUIRE_LOCK(ITOUMP(dp)); 4901 inodedep = inodedep_lookup_ip(ip); 4902 if (DOINGSUJ(dvp)) { 4903 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 4904 inoreflst); 4905 KASSERT(jaddref->ja_parent == dp->i_number, 4906 ("softdep_revert_create: addref parent mismatch")); 4907 cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait); 4908 } 4909 FREE_LOCK(ITOUMP(dp)); 4910 } 4911 4912 /* 4913 * Called to release the journal structures created by a failed link 4914 * addition. Adjusts nlinkdelta for non-journaling softdep. 4915 */ 4916 void 4917 softdep_revert_link(dp, ip) 4918 struct inode *dp; 4919 struct inode *ip; 4920 { 4921 struct inodedep *inodedep; 4922 struct jaddref *jaddref; 4923 struct vnode *dvp; 4924 4925 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 4926 ("softdep_revert_link called on non-softdep filesystem")); 4927 dvp = ITOV(dp); 4928 ACQUIRE_LOCK(ITOUMP(dp)); 4929 inodedep = inodedep_lookup_ip(ip); 4930 if (DOINGSUJ(dvp)) { 4931 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 4932 inoreflst); 4933 KASSERT(jaddref->ja_parent == dp->i_number, 4934 ("softdep_revert_link: addref parent mismatch")); 4935 cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait); 4936 } 4937 FREE_LOCK(ITOUMP(dp)); 4938 } 4939 4940 /* 4941 * Called to release the journal structures created by a failed mkdir 4942 * attempt. Adjusts nlinkdelta for non-journaling softdep. 4943 */ 4944 void 4945 softdep_revert_mkdir(dp, ip) 4946 struct inode *dp; 4947 struct inode *ip; 4948 { 4949 struct inodedep *inodedep; 4950 struct jaddref *jaddref; 4951 struct jaddref *dotaddref; 4952 struct vnode *dvp; 4953 4954 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 4955 ("softdep_revert_mkdir called on non-softdep filesystem")); 4956 dvp = ITOV(dp); 4957 4958 ACQUIRE_LOCK(ITOUMP(dp)); 4959 inodedep = inodedep_lookup_ip(dp); 4960 if (DOINGSUJ(dvp)) { 4961 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 4962 inoreflst); 4963 KASSERT(jaddref->ja_parent == ip->i_number, 4964 ("softdep_revert_mkdir: dotdot addref parent mismatch")); 4965 cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait); 4966 } 4967 inodedep = inodedep_lookup_ip(ip); 4968 if (DOINGSUJ(dvp)) { 4969 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 4970 inoreflst); 4971 KASSERT(jaddref->ja_parent == dp->i_number, 4972 ("softdep_revert_mkdir: addref parent mismatch")); 4973 dotaddref = (struct jaddref *)TAILQ_PREV(&jaddref->ja_ref, 4974 inoreflst, if_deps); 4975 cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait); 4976 KASSERT(dotaddref->ja_parent == ip->i_number, 4977 ("softdep_revert_mkdir: dot addref parent mismatch")); 4978 cancel_jaddref(dotaddref, inodedep, &inodedep->id_inowait); 4979 } 4980 FREE_LOCK(ITOUMP(dp)); 4981 } 4982 4983 /* 4984 * Called to correct nlinkdelta after a failed rmdir. 4985 */ 4986 void 4987 softdep_revert_rmdir(dp, ip) 4988 struct inode *dp; 4989 struct inode *ip; 4990 { 4991 4992 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 4993 ("softdep_revert_rmdir called on non-softdep filesystem")); 4994 ACQUIRE_LOCK(ITOUMP(dp)); 4995 (void) inodedep_lookup_ip(ip); 4996 (void) inodedep_lookup_ip(dp); 4997 FREE_LOCK(ITOUMP(dp)); 4998 } 4999 5000 /* 5001 * Protecting the freemaps (or bitmaps). 5002 * 5003 * To eliminate the need to execute fsck before mounting a filesystem 5004 * after a power failure, one must (conservatively) guarantee that the 5005 * on-disk copy of the bitmaps never indicate that a live inode or block is 5006 * free. So, when a block or inode is allocated, the bitmap should be 5007 * updated (on disk) before any new pointers. When a block or inode is 5008 * freed, the bitmap should not be updated until all pointers have been 5009 * reset. The latter dependency is handled by the delayed de-allocation 5010 * approach described below for block and inode de-allocation. The former 5011 * dependency is handled by calling the following procedure when a block or 5012 * inode is allocated. When an inode is allocated an "inodedep" is created 5013 * with its DEPCOMPLETE flag cleared until its bitmap is written to disk. 5014 * Each "inodedep" is also inserted into the hash indexing structure so 5015 * that any additional link additions can be made dependent on the inode 5016 * allocation. 5017 * 5018 * The ufs filesystem maintains a number of free block counts (e.g., per 5019 * cylinder group, per cylinder and per <cylinder, rotational position> pair) 5020 * in addition to the bitmaps. These counts are used to improve efficiency 5021 * during allocation and therefore must be consistent with the bitmaps. 5022 * There is no convenient way to guarantee post-crash consistency of these 5023 * counts with simple update ordering, for two main reasons: (1) The counts 5024 * and bitmaps for a single cylinder group block are not in the same disk 5025 * sector. If a disk write is interrupted (e.g., by power failure), one may 5026 * be written and the other not. (2) Some of the counts are located in the 5027 * superblock rather than the cylinder group block. So, we focus our soft 5028 * updates implementation on protecting the bitmaps. When mounting a 5029 * filesystem, we recompute the auxiliary counts from the bitmaps. 5030 */ 5031 5032 /* 5033 * Called just after updating the cylinder group block to allocate an inode. 5034 */ 5035 void 5036 softdep_setup_inomapdep(bp, ip, newinum, mode) 5037 struct buf *bp; /* buffer for cylgroup block with inode map */ 5038 struct inode *ip; /* inode related to allocation */ 5039 ino_t newinum; /* new inode number being allocated */ 5040 int mode; 5041 { 5042 struct inodedep *inodedep; 5043 struct bmsafemap *bmsafemap; 5044 struct jaddref *jaddref; 5045 struct mount *mp; 5046 struct fs *fs; 5047 5048 mp = ITOVFS(ip); 5049 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 5050 ("softdep_setup_inomapdep called on non-softdep filesystem")); 5051 fs = VFSTOUFS(mp)->um_fs; 5052 jaddref = NULL; 5053 5054 /* 5055 * Allocate the journal reference add structure so that the bitmap 5056 * can be dependent on it. 5057 */ 5058 if (MOUNTEDSUJ(mp)) { 5059 jaddref = newjaddref(ip, newinum, 0, 0, mode); 5060 jaddref->ja_state |= NEWBLOCK; 5061 } 5062 5063 /* 5064 * Create a dependency for the newly allocated inode. 5065 * Panic if it already exists as something is seriously wrong. 5066 * Otherwise add it to the dependency list for the buffer holding 5067 * the cylinder group map from which it was allocated. 5068 * 5069 * We have to preallocate a bmsafemap entry in case it is needed 5070 * in bmsafemap_lookup since once we allocate the inodedep, we 5071 * have to finish initializing it before we can FREE_LOCK(). 5072 * By preallocating, we avoid FREE_LOCK() while doing a malloc 5073 * in bmsafemap_lookup. We cannot call bmsafemap_lookup before 5074 * creating the inodedep as it can be freed during the time 5075 * that we FREE_LOCK() while allocating the inodedep. We must 5076 * call workitem_alloc() before entering the locked section as 5077 * it also acquires the lock and we must avoid trying doing so 5078 * recursively. 5079 */ 5080 bmsafemap = malloc(sizeof(struct bmsafemap), 5081 M_BMSAFEMAP, M_SOFTDEP_FLAGS); 5082 workitem_alloc(&bmsafemap->sm_list, D_BMSAFEMAP, mp); 5083 ACQUIRE_LOCK(ITOUMP(ip)); 5084 if ((inodedep_lookup(mp, newinum, DEPALLOC, &inodedep))) 5085 panic("softdep_setup_inomapdep: dependency %p for new" 5086 "inode already exists", inodedep); 5087 bmsafemap = bmsafemap_lookup(mp, bp, ino_to_cg(fs, newinum), bmsafemap); 5088 if (jaddref) { 5089 LIST_INSERT_HEAD(&bmsafemap->sm_jaddrefhd, jaddref, ja_bmdeps); 5090 TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref, 5091 if_deps); 5092 } else { 5093 inodedep->id_state |= ONDEPLIST; 5094 LIST_INSERT_HEAD(&bmsafemap->sm_inodedephd, inodedep, id_deps); 5095 } 5096 inodedep->id_bmsafemap = bmsafemap; 5097 inodedep->id_state &= ~DEPCOMPLETE; 5098 FREE_LOCK(ITOUMP(ip)); 5099 } 5100 5101 /* 5102 * Called just after updating the cylinder group block to 5103 * allocate block or fragment. 5104 */ 5105 void 5106 softdep_setup_blkmapdep(bp, mp, newblkno, frags, oldfrags) 5107 struct buf *bp; /* buffer for cylgroup block with block map */ 5108 struct mount *mp; /* filesystem doing allocation */ 5109 ufs2_daddr_t newblkno; /* number of newly allocated block */ 5110 int frags; /* Number of fragments. */ 5111 int oldfrags; /* Previous number of fragments for extend. */ 5112 { 5113 struct newblk *newblk; 5114 struct bmsafemap *bmsafemap; 5115 struct jnewblk *jnewblk; 5116 struct ufsmount *ump; 5117 struct fs *fs; 5118 5119 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 5120 ("softdep_setup_blkmapdep called on non-softdep filesystem")); 5121 ump = VFSTOUFS(mp); 5122 fs = ump->um_fs; 5123 jnewblk = NULL; 5124 /* 5125 * Create a dependency for the newly allocated block. 5126 * Add it to the dependency list for the buffer holding 5127 * the cylinder group map from which it was allocated. 5128 */ 5129 if (MOUNTEDSUJ(mp)) { 5130 jnewblk = malloc(sizeof(*jnewblk), M_JNEWBLK, M_SOFTDEP_FLAGS); 5131 workitem_alloc(&jnewblk->jn_list, D_JNEWBLK, mp); 5132 jnewblk->jn_jsegdep = newjsegdep(&jnewblk->jn_list); 5133 jnewblk->jn_state = ATTACHED; 5134 jnewblk->jn_blkno = newblkno; 5135 jnewblk->jn_frags = frags; 5136 jnewblk->jn_oldfrags = oldfrags; 5137 #ifdef INVARIANTS 5138 { 5139 struct cg *cgp; 5140 uint8_t *blksfree; 5141 long bno; 5142 int i; 5143 5144 cgp = (struct cg *)bp->b_data; 5145 blksfree = cg_blksfree(cgp); 5146 bno = dtogd(fs, jnewblk->jn_blkno); 5147 for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; 5148 i++) { 5149 if (isset(blksfree, bno + i)) 5150 panic("softdep_setup_blkmapdep: " 5151 "free fragment %d from %d-%d " 5152 "state 0x%X dep %p", i, 5153 jnewblk->jn_oldfrags, 5154 jnewblk->jn_frags, 5155 jnewblk->jn_state, 5156 jnewblk->jn_dep); 5157 } 5158 } 5159 #endif 5160 } 5161 5162 CTR3(KTR_SUJ, 5163 "softdep_setup_blkmapdep: blkno %jd frags %d oldfrags %d", 5164 newblkno, frags, oldfrags); 5165 ACQUIRE_LOCK(ump); 5166 if (newblk_lookup(mp, newblkno, DEPALLOC, &newblk) != 0) 5167 panic("softdep_setup_blkmapdep: found block"); 5168 newblk->nb_bmsafemap = bmsafemap = bmsafemap_lookup(mp, bp, 5169 dtog(fs, newblkno), NULL); 5170 if (jnewblk) { 5171 jnewblk->jn_dep = (struct worklist *)newblk; 5172 LIST_INSERT_HEAD(&bmsafemap->sm_jnewblkhd, jnewblk, jn_deps); 5173 } else { 5174 newblk->nb_state |= ONDEPLIST; 5175 LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, nb_deps); 5176 } 5177 newblk->nb_bmsafemap = bmsafemap; 5178 newblk->nb_jnewblk = jnewblk; 5179 FREE_LOCK(ump); 5180 } 5181 5182 #define BMSAFEMAP_HASH(ump, cg) \ 5183 (&(ump)->bmsafemap_hashtbl[(cg) & (ump)->bmsafemap_hash_size]) 5184 5185 static int 5186 bmsafemap_find(bmsafemaphd, cg, bmsafemapp) 5187 struct bmsafemap_hashhead *bmsafemaphd; 5188 int cg; 5189 struct bmsafemap **bmsafemapp; 5190 { 5191 struct bmsafemap *bmsafemap; 5192 5193 LIST_FOREACH(bmsafemap, bmsafemaphd, sm_hash) 5194 if (bmsafemap->sm_cg == cg) 5195 break; 5196 if (bmsafemap) { 5197 *bmsafemapp = bmsafemap; 5198 return (1); 5199 } 5200 *bmsafemapp = NULL; 5201 5202 return (0); 5203 } 5204 5205 /* 5206 * Find the bmsafemap associated with a cylinder group buffer. 5207 * If none exists, create one. The buffer must be locked when 5208 * this routine is called and this routine must be called with 5209 * the softdep lock held. To avoid giving up the lock while 5210 * allocating a new bmsafemap, a preallocated bmsafemap may be 5211 * provided. If it is provided but not needed, it is freed. 5212 */ 5213 static struct bmsafemap * 5214 bmsafemap_lookup(mp, bp, cg, newbmsafemap) 5215 struct mount *mp; 5216 struct buf *bp; 5217 int cg; 5218 struct bmsafemap *newbmsafemap; 5219 { 5220 struct bmsafemap_hashhead *bmsafemaphd; 5221 struct bmsafemap *bmsafemap, *collision; 5222 struct worklist *wk; 5223 struct ufsmount *ump; 5224 5225 ump = VFSTOUFS(mp); 5226 LOCK_OWNED(ump); 5227 KASSERT(bp != NULL, ("bmsafemap_lookup: missing buffer")); 5228 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 5229 if (wk->wk_type == D_BMSAFEMAP) { 5230 if (newbmsafemap) 5231 WORKITEM_FREE(newbmsafemap, D_BMSAFEMAP); 5232 return (WK_BMSAFEMAP(wk)); 5233 } 5234 } 5235 bmsafemaphd = BMSAFEMAP_HASH(ump, cg); 5236 if (bmsafemap_find(bmsafemaphd, cg, &bmsafemap) == 1) { 5237 if (newbmsafemap) 5238 WORKITEM_FREE(newbmsafemap, D_BMSAFEMAP); 5239 return (bmsafemap); 5240 } 5241 if (newbmsafemap) { 5242 bmsafemap = newbmsafemap; 5243 } else { 5244 FREE_LOCK(ump); 5245 bmsafemap = malloc(sizeof(struct bmsafemap), 5246 M_BMSAFEMAP, M_SOFTDEP_FLAGS); 5247 workitem_alloc(&bmsafemap->sm_list, D_BMSAFEMAP, mp); 5248 ACQUIRE_LOCK(ump); 5249 } 5250 bmsafemap->sm_buf = bp; 5251 LIST_INIT(&bmsafemap->sm_inodedephd); 5252 LIST_INIT(&bmsafemap->sm_inodedepwr); 5253 LIST_INIT(&bmsafemap->sm_newblkhd); 5254 LIST_INIT(&bmsafemap->sm_newblkwr); 5255 LIST_INIT(&bmsafemap->sm_jaddrefhd); 5256 LIST_INIT(&bmsafemap->sm_jnewblkhd); 5257 LIST_INIT(&bmsafemap->sm_freehd); 5258 LIST_INIT(&bmsafemap->sm_freewr); 5259 if (bmsafemap_find(bmsafemaphd, cg, &collision) == 1) { 5260 WORKITEM_FREE(bmsafemap, D_BMSAFEMAP); 5261 return (collision); 5262 } 5263 bmsafemap->sm_cg = cg; 5264 LIST_INSERT_HEAD(bmsafemaphd, bmsafemap, sm_hash); 5265 LIST_INSERT_HEAD(&ump->softdep_dirtycg, bmsafemap, sm_next); 5266 WORKLIST_INSERT(&bp->b_dep, &bmsafemap->sm_list); 5267 return (bmsafemap); 5268 } 5269 5270 /* 5271 * Direct block allocation dependencies. 5272 * 5273 * When a new block is allocated, the corresponding disk locations must be 5274 * initialized (with zeros or new data) before the on-disk inode points to 5275 * them. Also, the freemap from which the block was allocated must be 5276 * updated (on disk) before the inode's pointer. These two dependencies are 5277 * independent of each other and are needed for all file blocks and indirect 5278 * blocks that are pointed to directly by the inode. Just before the 5279 * "in-core" version of the inode is updated with a newly allocated block 5280 * number, a procedure (below) is called to setup allocation dependency 5281 * structures. These structures are removed when the corresponding 5282 * dependencies are satisfied or when the block allocation becomes obsolete 5283 * (i.e., the file is deleted, the block is de-allocated, or the block is a 5284 * fragment that gets upgraded). All of these cases are handled in 5285 * procedures described later. 5286 * 5287 * When a file extension causes a fragment to be upgraded, either to a larger 5288 * fragment or to a full block, the on-disk location may change (if the 5289 * previous fragment could not simply be extended). In this case, the old 5290 * fragment must be de-allocated, but not until after the inode's pointer has 5291 * been updated. In most cases, this is handled by later procedures, which 5292 * will construct a "freefrag" structure to be added to the workitem queue 5293 * when the inode update is complete (or obsolete). The main exception to 5294 * this is when an allocation occurs while a pending allocation dependency 5295 * (for the same block pointer) remains. This case is handled in the main 5296 * allocation dependency setup procedure by immediately freeing the 5297 * unreferenced fragments. 5298 */ 5299 void 5300 softdep_setup_allocdirect(ip, off, newblkno, oldblkno, newsize, oldsize, bp) 5301 struct inode *ip; /* inode to which block is being added */ 5302 ufs_lbn_t off; /* block pointer within inode */ 5303 ufs2_daddr_t newblkno; /* disk block number being added */ 5304 ufs2_daddr_t oldblkno; /* previous block number, 0 unless frag */ 5305 long newsize; /* size of new block */ 5306 long oldsize; /* size of new block */ 5307 struct buf *bp; /* bp for allocated block */ 5308 { 5309 struct allocdirect *adp, *oldadp; 5310 struct allocdirectlst *adphead; 5311 struct freefrag *freefrag; 5312 struct inodedep *inodedep; 5313 struct pagedep *pagedep; 5314 struct jnewblk *jnewblk; 5315 struct newblk *newblk; 5316 struct mount *mp; 5317 ufs_lbn_t lbn; 5318 5319 lbn = bp->b_lblkno; 5320 mp = ITOVFS(ip); 5321 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 5322 ("softdep_setup_allocdirect called on non-softdep filesystem")); 5323 if (oldblkno && oldblkno != newblkno) 5324 /* 5325 * The usual case is that a smaller fragment that 5326 * was just allocated has been replaced with a bigger 5327 * fragment or a full-size block. If it is marked as 5328 * B_DELWRI, the current contents have not been written 5329 * to disk. It is possible that the block was written 5330 * earlier, but very uncommon. If the block has never 5331 * been written, there is no need to send a BIO_DELETE 5332 * for it when it is freed. The gain from avoiding the 5333 * TRIMs for the common case of unwritten blocks far 5334 * exceeds the cost of the write amplification for the 5335 * uncommon case of failing to send a TRIM for a block 5336 * that had been written. 5337 */ 5338 freefrag = newfreefrag(ip, oldblkno, oldsize, lbn, 5339 (bp->b_flags & B_DELWRI) != 0 ? NOTRIM_KEY : SINGLETON_KEY); 5340 else 5341 freefrag = NULL; 5342 5343 CTR6(KTR_SUJ, 5344 "softdep_setup_allocdirect: ino %d blkno %jd oldblkno %jd " 5345 "off %jd newsize %ld oldsize %d", 5346 ip->i_number, newblkno, oldblkno, off, newsize, oldsize); 5347 ACQUIRE_LOCK(ITOUMP(ip)); 5348 if (off >= UFS_NDADDR) { 5349 if (lbn > 0) 5350 panic("softdep_setup_allocdirect: bad lbn %jd, off %jd", 5351 lbn, off); 5352 /* allocating an indirect block */ 5353 if (oldblkno != 0) 5354 panic("softdep_setup_allocdirect: non-zero indir"); 5355 } else { 5356 if (off != lbn) 5357 panic("softdep_setup_allocdirect: lbn %jd != off %jd", 5358 lbn, off); 5359 /* 5360 * Allocating a direct block. 5361 * 5362 * If we are allocating a directory block, then we must 5363 * allocate an associated pagedep to track additions and 5364 * deletions. 5365 */ 5366 if ((ip->i_mode & IFMT) == IFDIR) 5367 pagedep_lookup(mp, bp, ip->i_number, off, DEPALLOC, 5368 &pagedep); 5369 } 5370 if (newblk_lookup(mp, newblkno, 0, &newblk) == 0) 5371 panic("softdep_setup_allocdirect: lost block"); 5372 KASSERT(newblk->nb_list.wk_type == D_NEWBLK, 5373 ("softdep_setup_allocdirect: newblk already initialized")); 5374 /* 5375 * Convert the newblk to an allocdirect. 5376 */ 5377 WORKITEM_REASSIGN(newblk, D_ALLOCDIRECT); 5378 adp = (struct allocdirect *)newblk; 5379 newblk->nb_freefrag = freefrag; 5380 adp->ad_offset = off; 5381 adp->ad_oldblkno = oldblkno; 5382 adp->ad_newsize = newsize; 5383 adp->ad_oldsize = oldsize; 5384 5385 /* 5386 * Finish initializing the journal. 5387 */ 5388 if ((jnewblk = newblk->nb_jnewblk) != NULL) { 5389 jnewblk->jn_ino = ip->i_number; 5390 jnewblk->jn_lbn = lbn; 5391 add_to_journal(&jnewblk->jn_list); 5392 } 5393 if (freefrag && freefrag->ff_jdep != NULL && 5394 freefrag->ff_jdep->wk_type == D_JFREEFRAG) 5395 add_to_journal(freefrag->ff_jdep); 5396 inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep); 5397 adp->ad_inodedep = inodedep; 5398 5399 WORKLIST_INSERT(&bp->b_dep, &newblk->nb_list); 5400 /* 5401 * The list of allocdirects must be kept in sorted and ascending 5402 * order so that the rollback routines can quickly determine the 5403 * first uncommitted block (the size of the file stored on disk 5404 * ends at the end of the lowest committed fragment, or if there 5405 * are no fragments, at the end of the highest committed block). 5406 * Since files generally grow, the typical case is that the new 5407 * block is to be added at the end of the list. We speed this 5408 * special case by checking against the last allocdirect in the 5409 * list before laboriously traversing the list looking for the 5410 * insertion point. 5411 */ 5412 adphead = &inodedep->id_newinoupdt; 5413 oldadp = TAILQ_LAST(adphead, allocdirectlst); 5414 if (oldadp == NULL || oldadp->ad_offset <= off) { 5415 /* insert at end of list */ 5416 TAILQ_INSERT_TAIL(adphead, adp, ad_next); 5417 if (oldadp != NULL && oldadp->ad_offset == off) 5418 allocdirect_merge(adphead, adp, oldadp); 5419 FREE_LOCK(ITOUMP(ip)); 5420 return; 5421 } 5422 TAILQ_FOREACH(oldadp, adphead, ad_next) { 5423 if (oldadp->ad_offset >= off) 5424 break; 5425 } 5426 if (oldadp == NULL) 5427 panic("softdep_setup_allocdirect: lost entry"); 5428 /* insert in middle of list */ 5429 TAILQ_INSERT_BEFORE(oldadp, adp, ad_next); 5430 if (oldadp->ad_offset == off) 5431 allocdirect_merge(adphead, adp, oldadp); 5432 5433 FREE_LOCK(ITOUMP(ip)); 5434 } 5435 5436 /* 5437 * Merge a newer and older journal record to be stored either in a 5438 * newblock or freefrag. This handles aggregating journal records for 5439 * fragment allocation into a second record as well as replacing a 5440 * journal free with an aborted journal allocation. A segment for the 5441 * oldest record will be placed on wkhd if it has been written. If not 5442 * the segment for the newer record will suffice. 5443 */ 5444 static struct worklist * 5445 jnewblk_merge(new, old, wkhd) 5446 struct worklist *new; 5447 struct worklist *old; 5448 struct workhead *wkhd; 5449 { 5450 struct jnewblk *njnewblk; 5451 struct jnewblk *jnewblk; 5452 5453 /* Handle NULLs to simplify callers. */ 5454 if (new == NULL) 5455 return (old); 5456 if (old == NULL) 5457 return (new); 5458 /* Replace a jfreefrag with a jnewblk. */ 5459 if (new->wk_type == D_JFREEFRAG) { 5460 if (WK_JNEWBLK(old)->jn_blkno != WK_JFREEFRAG(new)->fr_blkno) 5461 panic("jnewblk_merge: blkno mismatch: %p, %p", 5462 old, new); 5463 cancel_jfreefrag(WK_JFREEFRAG(new)); 5464 return (old); 5465 } 5466 if (old->wk_type != D_JNEWBLK || new->wk_type != D_JNEWBLK) 5467 panic("jnewblk_merge: Bad type: old %d new %d\n", 5468 old->wk_type, new->wk_type); 5469 /* 5470 * Handle merging of two jnewblk records that describe 5471 * different sets of fragments in the same block. 5472 */ 5473 jnewblk = WK_JNEWBLK(old); 5474 njnewblk = WK_JNEWBLK(new); 5475 if (jnewblk->jn_blkno != njnewblk->jn_blkno) 5476 panic("jnewblk_merge: Merging disparate blocks."); 5477 /* 5478 * The record may be rolled back in the cg. 5479 */ 5480 if (jnewblk->jn_state & UNDONE) { 5481 jnewblk->jn_state &= ~UNDONE; 5482 njnewblk->jn_state |= UNDONE; 5483 njnewblk->jn_state &= ~ATTACHED; 5484 } 5485 /* 5486 * We modify the newer addref and free the older so that if neither 5487 * has been written the most up-to-date copy will be on disk. If 5488 * both have been written but rolled back we only temporarily need 5489 * one of them to fix the bits when the cg write completes. 5490 */ 5491 jnewblk->jn_state |= ATTACHED | COMPLETE; 5492 njnewblk->jn_oldfrags = jnewblk->jn_oldfrags; 5493 cancel_jnewblk(jnewblk, wkhd); 5494 WORKLIST_REMOVE(&jnewblk->jn_list); 5495 free_jnewblk(jnewblk); 5496 return (new); 5497 } 5498 5499 /* 5500 * Replace an old allocdirect dependency with a newer one. 5501 */ 5502 static void 5503 allocdirect_merge(adphead, newadp, oldadp) 5504 struct allocdirectlst *adphead; /* head of list holding allocdirects */ 5505 struct allocdirect *newadp; /* allocdirect being added */ 5506 struct allocdirect *oldadp; /* existing allocdirect being checked */ 5507 { 5508 struct worklist *wk; 5509 struct freefrag *freefrag; 5510 5511 freefrag = NULL; 5512 LOCK_OWNED(VFSTOUFS(newadp->ad_list.wk_mp)); 5513 if (newadp->ad_oldblkno != oldadp->ad_newblkno || 5514 newadp->ad_oldsize != oldadp->ad_newsize || 5515 newadp->ad_offset >= UFS_NDADDR) 5516 panic("%s %jd != new %jd || old size %ld != new %ld", 5517 "allocdirect_merge: old blkno", 5518 (intmax_t)newadp->ad_oldblkno, 5519 (intmax_t)oldadp->ad_newblkno, 5520 newadp->ad_oldsize, oldadp->ad_newsize); 5521 newadp->ad_oldblkno = oldadp->ad_oldblkno; 5522 newadp->ad_oldsize = oldadp->ad_oldsize; 5523 /* 5524 * If the old dependency had a fragment to free or had never 5525 * previously had a block allocated, then the new dependency 5526 * can immediately post its freefrag and adopt the old freefrag. 5527 * This action is done by swapping the freefrag dependencies. 5528 * The new dependency gains the old one's freefrag, and the 5529 * old one gets the new one and then immediately puts it on 5530 * the worklist when it is freed by free_newblk. It is 5531 * not possible to do this swap when the old dependency had a 5532 * non-zero size but no previous fragment to free. This condition 5533 * arises when the new block is an extension of the old block. 5534 * Here, the first part of the fragment allocated to the new 5535 * dependency is part of the block currently claimed on disk by 5536 * the old dependency, so cannot legitimately be freed until the 5537 * conditions for the new dependency are fulfilled. 5538 */ 5539 freefrag = newadp->ad_freefrag; 5540 if (oldadp->ad_freefrag != NULL || oldadp->ad_oldblkno == 0) { 5541 newadp->ad_freefrag = oldadp->ad_freefrag; 5542 oldadp->ad_freefrag = freefrag; 5543 } 5544 /* 5545 * If we are tracking a new directory-block allocation, 5546 * move it from the old allocdirect to the new allocdirect. 5547 */ 5548 if ((wk = LIST_FIRST(&oldadp->ad_newdirblk)) != NULL) { 5549 WORKLIST_REMOVE(wk); 5550 if (!LIST_EMPTY(&oldadp->ad_newdirblk)) 5551 panic("allocdirect_merge: extra newdirblk"); 5552 WORKLIST_INSERT(&newadp->ad_newdirblk, wk); 5553 } 5554 TAILQ_REMOVE(adphead, oldadp, ad_next); 5555 /* 5556 * We need to move any journal dependencies over to the freefrag 5557 * that releases this block if it exists. Otherwise we are 5558 * extending an existing block and we'll wait until that is 5559 * complete to release the journal space and extend the 5560 * new journal to cover this old space as well. 5561 */ 5562 if (freefrag == NULL) { 5563 if (oldadp->ad_newblkno != newadp->ad_newblkno) 5564 panic("allocdirect_merge: %jd != %jd", 5565 oldadp->ad_newblkno, newadp->ad_newblkno); 5566 newadp->ad_block.nb_jnewblk = (struct jnewblk *) 5567 jnewblk_merge(&newadp->ad_block.nb_jnewblk->jn_list, 5568 &oldadp->ad_block.nb_jnewblk->jn_list, 5569 &newadp->ad_block.nb_jwork); 5570 oldadp->ad_block.nb_jnewblk = NULL; 5571 cancel_newblk(&oldadp->ad_block, NULL, 5572 &newadp->ad_block.nb_jwork); 5573 } else { 5574 wk = (struct worklist *) cancel_newblk(&oldadp->ad_block, 5575 &freefrag->ff_list, &freefrag->ff_jwork); 5576 freefrag->ff_jdep = jnewblk_merge(freefrag->ff_jdep, wk, 5577 &freefrag->ff_jwork); 5578 } 5579 free_newblk(&oldadp->ad_block); 5580 } 5581 5582 /* 5583 * Allocate a jfreefrag structure to journal a single block free. 5584 */ 5585 static struct jfreefrag * 5586 newjfreefrag(freefrag, ip, blkno, size, lbn) 5587 struct freefrag *freefrag; 5588 struct inode *ip; 5589 ufs2_daddr_t blkno; 5590 long size; 5591 ufs_lbn_t lbn; 5592 { 5593 struct jfreefrag *jfreefrag; 5594 struct fs *fs; 5595 5596 fs = ITOFS(ip); 5597 jfreefrag = malloc(sizeof(struct jfreefrag), M_JFREEFRAG, 5598 M_SOFTDEP_FLAGS); 5599 workitem_alloc(&jfreefrag->fr_list, D_JFREEFRAG, ITOVFS(ip)); 5600 jfreefrag->fr_jsegdep = newjsegdep(&jfreefrag->fr_list); 5601 jfreefrag->fr_state = ATTACHED | DEPCOMPLETE; 5602 jfreefrag->fr_ino = ip->i_number; 5603 jfreefrag->fr_lbn = lbn; 5604 jfreefrag->fr_blkno = blkno; 5605 jfreefrag->fr_frags = numfrags(fs, size); 5606 jfreefrag->fr_freefrag = freefrag; 5607 5608 return (jfreefrag); 5609 } 5610 5611 /* 5612 * Allocate a new freefrag structure. 5613 */ 5614 static struct freefrag * 5615 newfreefrag(ip, blkno, size, lbn, key) 5616 struct inode *ip; 5617 ufs2_daddr_t blkno; 5618 long size; 5619 ufs_lbn_t lbn; 5620 u_long key; 5621 { 5622 struct freefrag *freefrag; 5623 struct ufsmount *ump; 5624 struct fs *fs; 5625 5626 CTR4(KTR_SUJ, "newfreefrag: ino %d blkno %jd size %ld lbn %jd", 5627 ip->i_number, blkno, size, lbn); 5628 ump = ITOUMP(ip); 5629 fs = ump->um_fs; 5630 if (fragnum(fs, blkno) + numfrags(fs, size) > fs->fs_frag) 5631 panic("newfreefrag: frag size"); 5632 freefrag = malloc(sizeof(struct freefrag), 5633 M_FREEFRAG, M_SOFTDEP_FLAGS); 5634 workitem_alloc(&freefrag->ff_list, D_FREEFRAG, UFSTOVFS(ump)); 5635 freefrag->ff_state = ATTACHED; 5636 LIST_INIT(&freefrag->ff_jwork); 5637 freefrag->ff_inum = ip->i_number; 5638 freefrag->ff_vtype = ITOV(ip)->v_type; 5639 freefrag->ff_blkno = blkno; 5640 freefrag->ff_fragsize = size; 5641 freefrag->ff_key = key; 5642 5643 if (MOUNTEDSUJ(UFSTOVFS(ump))) { 5644 freefrag->ff_jdep = (struct worklist *) 5645 newjfreefrag(freefrag, ip, blkno, size, lbn); 5646 } else { 5647 freefrag->ff_state |= DEPCOMPLETE; 5648 freefrag->ff_jdep = NULL; 5649 } 5650 5651 return (freefrag); 5652 } 5653 5654 /* 5655 * This workitem de-allocates fragments that were replaced during 5656 * file block allocation. 5657 */ 5658 static void 5659 handle_workitem_freefrag(freefrag) 5660 struct freefrag *freefrag; 5661 { 5662 struct ufsmount *ump = VFSTOUFS(freefrag->ff_list.wk_mp); 5663 struct workhead wkhd; 5664 5665 CTR3(KTR_SUJ, 5666 "handle_workitem_freefrag: ino %d blkno %jd size %ld", 5667 freefrag->ff_inum, freefrag->ff_blkno, freefrag->ff_fragsize); 5668 /* 5669 * It would be illegal to add new completion items to the 5670 * freefrag after it was schedule to be done so it must be 5671 * safe to modify the list head here. 5672 */ 5673 LIST_INIT(&wkhd); 5674 ACQUIRE_LOCK(ump); 5675 LIST_SWAP(&freefrag->ff_jwork, &wkhd, worklist, wk_list); 5676 /* 5677 * If the journal has not been written we must cancel it here. 5678 */ 5679 if (freefrag->ff_jdep) { 5680 if (freefrag->ff_jdep->wk_type != D_JNEWBLK) 5681 panic("handle_workitem_freefrag: Unexpected type %d\n", 5682 freefrag->ff_jdep->wk_type); 5683 cancel_jnewblk(WK_JNEWBLK(freefrag->ff_jdep), &wkhd); 5684 } 5685 FREE_LOCK(ump); 5686 ffs_blkfree(ump, ump->um_fs, ump->um_devvp, freefrag->ff_blkno, 5687 freefrag->ff_fragsize, freefrag->ff_inum, freefrag->ff_vtype, 5688 &wkhd, freefrag->ff_key); 5689 ACQUIRE_LOCK(ump); 5690 WORKITEM_FREE(freefrag, D_FREEFRAG); 5691 FREE_LOCK(ump); 5692 } 5693 5694 /* 5695 * Set up a dependency structure for an external attributes data block. 5696 * This routine follows much of the structure of softdep_setup_allocdirect. 5697 * See the description of softdep_setup_allocdirect above for details. 5698 */ 5699 void 5700 softdep_setup_allocext(ip, off, newblkno, oldblkno, newsize, oldsize, bp) 5701 struct inode *ip; 5702 ufs_lbn_t off; 5703 ufs2_daddr_t newblkno; 5704 ufs2_daddr_t oldblkno; 5705 long newsize; 5706 long oldsize; 5707 struct buf *bp; 5708 { 5709 struct allocdirect *adp, *oldadp; 5710 struct allocdirectlst *adphead; 5711 struct freefrag *freefrag; 5712 struct inodedep *inodedep; 5713 struct jnewblk *jnewblk; 5714 struct newblk *newblk; 5715 struct mount *mp; 5716 struct ufsmount *ump; 5717 ufs_lbn_t lbn; 5718 5719 mp = ITOVFS(ip); 5720 ump = VFSTOUFS(mp); 5721 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 5722 ("softdep_setup_allocext called on non-softdep filesystem")); 5723 KASSERT(off < UFS_NXADDR, 5724 ("softdep_setup_allocext: lbn %lld > UFS_NXADDR", (long long)off)); 5725 5726 lbn = bp->b_lblkno; 5727 if (oldblkno && oldblkno != newblkno) 5728 /* 5729 * The usual case is that a smaller fragment that 5730 * was just allocated has been replaced with a bigger 5731 * fragment or a full-size block. If it is marked as 5732 * B_DELWRI, the current contents have not been written 5733 * to disk. It is possible that the block was written 5734 * earlier, but very uncommon. If the block has never 5735 * been written, there is no need to send a BIO_DELETE 5736 * for it when it is freed. The gain from avoiding the 5737 * TRIMs for the common case of unwritten blocks far 5738 * exceeds the cost of the write amplification for the 5739 * uncommon case of failing to send a TRIM for a block 5740 * that had been written. 5741 */ 5742 freefrag = newfreefrag(ip, oldblkno, oldsize, lbn, 5743 (bp->b_flags & B_DELWRI) != 0 ? NOTRIM_KEY : SINGLETON_KEY); 5744 else 5745 freefrag = NULL; 5746 5747 ACQUIRE_LOCK(ump); 5748 if (newblk_lookup(mp, newblkno, 0, &newblk) == 0) 5749 panic("softdep_setup_allocext: lost block"); 5750 KASSERT(newblk->nb_list.wk_type == D_NEWBLK, 5751 ("softdep_setup_allocext: newblk already initialized")); 5752 /* 5753 * Convert the newblk to an allocdirect. 5754 */ 5755 WORKITEM_REASSIGN(newblk, D_ALLOCDIRECT); 5756 adp = (struct allocdirect *)newblk; 5757 newblk->nb_freefrag = freefrag; 5758 adp->ad_offset = off; 5759 adp->ad_oldblkno = oldblkno; 5760 adp->ad_newsize = newsize; 5761 adp->ad_oldsize = oldsize; 5762 adp->ad_state |= EXTDATA; 5763 5764 /* 5765 * Finish initializing the journal. 5766 */ 5767 if ((jnewblk = newblk->nb_jnewblk) != NULL) { 5768 jnewblk->jn_ino = ip->i_number; 5769 jnewblk->jn_lbn = lbn; 5770 add_to_journal(&jnewblk->jn_list); 5771 } 5772 if (freefrag && freefrag->ff_jdep != NULL && 5773 freefrag->ff_jdep->wk_type == D_JFREEFRAG) 5774 add_to_journal(freefrag->ff_jdep); 5775 inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep); 5776 adp->ad_inodedep = inodedep; 5777 5778 WORKLIST_INSERT(&bp->b_dep, &newblk->nb_list); 5779 /* 5780 * The list of allocdirects must be kept in sorted and ascending 5781 * order so that the rollback routines can quickly determine the 5782 * first uncommitted block (the size of the file stored on disk 5783 * ends at the end of the lowest committed fragment, or if there 5784 * are no fragments, at the end of the highest committed block). 5785 * Since files generally grow, the typical case is that the new 5786 * block is to be added at the end of the list. We speed this 5787 * special case by checking against the last allocdirect in the 5788 * list before laboriously traversing the list looking for the 5789 * insertion point. 5790 */ 5791 adphead = &inodedep->id_newextupdt; 5792 oldadp = TAILQ_LAST(adphead, allocdirectlst); 5793 if (oldadp == NULL || oldadp->ad_offset <= off) { 5794 /* insert at end of list */ 5795 TAILQ_INSERT_TAIL(adphead, adp, ad_next); 5796 if (oldadp != NULL && oldadp->ad_offset == off) 5797 allocdirect_merge(adphead, adp, oldadp); 5798 FREE_LOCK(ump); 5799 return; 5800 } 5801 TAILQ_FOREACH(oldadp, adphead, ad_next) { 5802 if (oldadp->ad_offset >= off) 5803 break; 5804 } 5805 if (oldadp == NULL) 5806 panic("softdep_setup_allocext: lost entry"); 5807 /* insert in middle of list */ 5808 TAILQ_INSERT_BEFORE(oldadp, adp, ad_next); 5809 if (oldadp->ad_offset == off) 5810 allocdirect_merge(adphead, adp, oldadp); 5811 FREE_LOCK(ump); 5812 } 5813 5814 /* 5815 * Indirect block allocation dependencies. 5816 * 5817 * The same dependencies that exist for a direct block also exist when 5818 * a new block is allocated and pointed to by an entry in a block of 5819 * indirect pointers. The undo/redo states described above are also 5820 * used here. Because an indirect block contains many pointers that 5821 * may have dependencies, a second copy of the entire in-memory indirect 5822 * block is kept. The buffer cache copy is always completely up-to-date. 5823 * The second copy, which is used only as a source for disk writes, 5824 * contains only the safe pointers (i.e., those that have no remaining 5825 * update dependencies). The second copy is freed when all pointers 5826 * are safe. The cache is not allowed to replace indirect blocks with 5827 * pending update dependencies. If a buffer containing an indirect 5828 * block with dependencies is written, these routines will mark it 5829 * dirty again. It can only be successfully written once all the 5830 * dependencies are removed. The ffs_fsync routine in conjunction with 5831 * softdep_sync_metadata work together to get all the dependencies 5832 * removed so that a file can be successfully written to disk. Three 5833 * procedures are used when setting up indirect block pointer 5834 * dependencies. The division is necessary because of the organization 5835 * of the "balloc" routine and because of the distinction between file 5836 * pages and file metadata blocks. 5837 */ 5838 5839 /* 5840 * Allocate a new allocindir structure. 5841 */ 5842 static struct allocindir * 5843 newallocindir(ip, ptrno, newblkno, oldblkno, lbn) 5844 struct inode *ip; /* inode for file being extended */ 5845 int ptrno; /* offset of pointer in indirect block */ 5846 ufs2_daddr_t newblkno; /* disk block number being added */ 5847 ufs2_daddr_t oldblkno; /* previous block number, 0 if none */ 5848 ufs_lbn_t lbn; 5849 { 5850 struct newblk *newblk; 5851 struct allocindir *aip; 5852 struct freefrag *freefrag; 5853 struct jnewblk *jnewblk; 5854 5855 if (oldblkno) 5856 freefrag = newfreefrag(ip, oldblkno, ITOFS(ip)->fs_bsize, lbn, 5857 SINGLETON_KEY); 5858 else 5859 freefrag = NULL; 5860 ACQUIRE_LOCK(ITOUMP(ip)); 5861 if (newblk_lookup(ITOVFS(ip), newblkno, 0, &newblk) == 0) 5862 panic("new_allocindir: lost block"); 5863 KASSERT(newblk->nb_list.wk_type == D_NEWBLK, 5864 ("newallocindir: newblk already initialized")); 5865 WORKITEM_REASSIGN(newblk, D_ALLOCINDIR); 5866 newblk->nb_freefrag = freefrag; 5867 aip = (struct allocindir *)newblk; 5868 aip->ai_offset = ptrno; 5869 aip->ai_oldblkno = oldblkno; 5870 aip->ai_lbn = lbn; 5871 if ((jnewblk = newblk->nb_jnewblk) != NULL) { 5872 jnewblk->jn_ino = ip->i_number; 5873 jnewblk->jn_lbn = lbn; 5874 add_to_journal(&jnewblk->jn_list); 5875 } 5876 if (freefrag && freefrag->ff_jdep != NULL && 5877 freefrag->ff_jdep->wk_type == D_JFREEFRAG) 5878 add_to_journal(freefrag->ff_jdep); 5879 return (aip); 5880 } 5881 5882 /* 5883 * Called just before setting an indirect block pointer 5884 * to a newly allocated file page. 5885 */ 5886 void 5887 softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp) 5888 struct inode *ip; /* inode for file being extended */ 5889 ufs_lbn_t lbn; /* allocated block number within file */ 5890 struct buf *bp; /* buffer with indirect blk referencing page */ 5891 int ptrno; /* offset of pointer in indirect block */ 5892 ufs2_daddr_t newblkno; /* disk block number being added */ 5893 ufs2_daddr_t oldblkno; /* previous block number, 0 if none */ 5894 struct buf *nbp; /* buffer holding allocated page */ 5895 { 5896 struct inodedep *inodedep; 5897 struct freefrag *freefrag; 5898 struct allocindir *aip; 5899 struct pagedep *pagedep; 5900 struct mount *mp; 5901 struct ufsmount *ump; 5902 5903 mp = ITOVFS(ip); 5904 ump = VFSTOUFS(mp); 5905 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 5906 ("softdep_setup_allocindir_page called on non-softdep filesystem")); 5907 KASSERT(lbn == nbp->b_lblkno, 5908 ("softdep_setup_allocindir_page: lbn %jd != lblkno %jd", 5909 lbn, bp->b_lblkno)); 5910 CTR4(KTR_SUJ, 5911 "softdep_setup_allocindir_page: ino %d blkno %jd oldblkno %jd " 5912 "lbn %jd", ip->i_number, newblkno, oldblkno, lbn); 5913 ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_page"); 5914 aip = newallocindir(ip, ptrno, newblkno, oldblkno, lbn); 5915 (void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep); 5916 /* 5917 * If we are allocating a directory page, then we must 5918 * allocate an associated pagedep to track additions and 5919 * deletions. 5920 */ 5921 if ((ip->i_mode & IFMT) == IFDIR) 5922 pagedep_lookup(mp, nbp, ip->i_number, lbn, DEPALLOC, &pagedep); 5923 WORKLIST_INSERT(&nbp->b_dep, &aip->ai_block.nb_list); 5924 freefrag = setup_allocindir_phase2(bp, ip, inodedep, aip, lbn); 5925 FREE_LOCK(ump); 5926 if (freefrag) 5927 handle_workitem_freefrag(freefrag); 5928 } 5929 5930 /* 5931 * Called just before setting an indirect block pointer to a 5932 * newly allocated indirect block. 5933 */ 5934 void 5935 softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno) 5936 struct buf *nbp; /* newly allocated indirect block */ 5937 struct inode *ip; /* inode for file being extended */ 5938 struct buf *bp; /* indirect block referencing allocated block */ 5939 int ptrno; /* offset of pointer in indirect block */ 5940 ufs2_daddr_t newblkno; /* disk block number being added */ 5941 { 5942 struct inodedep *inodedep; 5943 struct allocindir *aip; 5944 struct ufsmount *ump; 5945 ufs_lbn_t lbn; 5946 5947 ump = ITOUMP(ip); 5948 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 5949 ("softdep_setup_allocindir_meta called on non-softdep filesystem")); 5950 CTR3(KTR_SUJ, 5951 "softdep_setup_allocindir_meta: ino %d blkno %jd ptrno %d", 5952 ip->i_number, newblkno, ptrno); 5953 lbn = nbp->b_lblkno; 5954 ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_meta"); 5955 aip = newallocindir(ip, ptrno, newblkno, 0, lbn); 5956 inodedep_lookup(UFSTOVFS(ump), ip->i_number, DEPALLOC, &inodedep); 5957 WORKLIST_INSERT(&nbp->b_dep, &aip->ai_block.nb_list); 5958 if (setup_allocindir_phase2(bp, ip, inodedep, aip, lbn)) 5959 panic("softdep_setup_allocindir_meta: Block already existed"); 5960 FREE_LOCK(ump); 5961 } 5962 5963 static void 5964 indirdep_complete(indirdep) 5965 struct indirdep *indirdep; 5966 { 5967 struct allocindir *aip; 5968 5969 LIST_REMOVE(indirdep, ir_next); 5970 indirdep->ir_state |= DEPCOMPLETE; 5971 5972 while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != NULL) { 5973 LIST_REMOVE(aip, ai_next); 5974 free_newblk(&aip->ai_block); 5975 } 5976 /* 5977 * If this indirdep is not attached to a buf it was simply waiting 5978 * on completion to clear completehd. free_indirdep() asserts 5979 * that nothing is dangling. 5980 */ 5981 if ((indirdep->ir_state & ONWORKLIST) == 0) 5982 free_indirdep(indirdep); 5983 } 5984 5985 static struct indirdep * 5986 indirdep_lookup(mp, ip, bp) 5987 struct mount *mp; 5988 struct inode *ip; 5989 struct buf *bp; 5990 { 5991 struct indirdep *indirdep, *newindirdep; 5992 struct newblk *newblk; 5993 struct ufsmount *ump; 5994 struct worklist *wk; 5995 struct fs *fs; 5996 ufs2_daddr_t blkno; 5997 5998 ump = VFSTOUFS(mp); 5999 LOCK_OWNED(ump); 6000 indirdep = NULL; 6001 newindirdep = NULL; 6002 fs = ump->um_fs; 6003 for (;;) { 6004 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 6005 if (wk->wk_type != D_INDIRDEP) 6006 continue; 6007 indirdep = WK_INDIRDEP(wk); 6008 break; 6009 } 6010 /* Found on the buffer worklist, no new structure to free. */ 6011 if (indirdep != NULL && newindirdep == NULL) 6012 return (indirdep); 6013 if (indirdep != NULL && newindirdep != NULL) 6014 panic("indirdep_lookup: simultaneous create"); 6015 /* None found on the buffer and a new structure is ready. */ 6016 if (indirdep == NULL && newindirdep != NULL) 6017 break; 6018 /* None found and no new structure available. */ 6019 FREE_LOCK(ump); 6020 newindirdep = malloc(sizeof(struct indirdep), 6021 M_INDIRDEP, M_SOFTDEP_FLAGS); 6022 workitem_alloc(&newindirdep->ir_list, D_INDIRDEP, mp); 6023 newindirdep->ir_state = ATTACHED; 6024 if (I_IS_UFS1(ip)) 6025 newindirdep->ir_state |= UFS1FMT; 6026 TAILQ_INIT(&newindirdep->ir_trunc); 6027 newindirdep->ir_saveddata = NULL; 6028 LIST_INIT(&newindirdep->ir_deplisthd); 6029 LIST_INIT(&newindirdep->ir_donehd); 6030 LIST_INIT(&newindirdep->ir_writehd); 6031 LIST_INIT(&newindirdep->ir_completehd); 6032 if (bp->b_blkno == bp->b_lblkno) { 6033 ufs_bmaparray(bp->b_vp, bp->b_lblkno, &blkno, bp, 6034 NULL, NULL); 6035 bp->b_blkno = blkno; 6036 } 6037 newindirdep->ir_freeblks = NULL; 6038 newindirdep->ir_savebp = 6039 getblk(ump->um_devvp, bp->b_blkno, bp->b_bcount, 0, 0, 0); 6040 newindirdep->ir_bp = bp; 6041 BUF_KERNPROC(newindirdep->ir_savebp); 6042 bcopy(bp->b_data, newindirdep->ir_savebp->b_data, bp->b_bcount); 6043 ACQUIRE_LOCK(ump); 6044 } 6045 indirdep = newindirdep; 6046 WORKLIST_INSERT(&bp->b_dep, &indirdep->ir_list); 6047 /* 6048 * If the block is not yet allocated we don't set DEPCOMPLETE so 6049 * that we don't free dependencies until the pointers are valid. 6050 * This could search b_dep for D_ALLOCDIRECT/D_ALLOCINDIR rather 6051 * than using the hash. 6052 */ 6053 if (newblk_lookup(mp, dbtofsb(fs, bp->b_blkno), 0, &newblk)) 6054 LIST_INSERT_HEAD(&newblk->nb_indirdeps, indirdep, ir_next); 6055 else 6056 indirdep->ir_state |= DEPCOMPLETE; 6057 return (indirdep); 6058 } 6059 6060 /* 6061 * Called to finish the allocation of the "aip" allocated 6062 * by one of the two routines above. 6063 */ 6064 static struct freefrag * 6065 setup_allocindir_phase2(bp, ip, inodedep, aip, lbn) 6066 struct buf *bp; /* in-memory copy of the indirect block */ 6067 struct inode *ip; /* inode for file being extended */ 6068 struct inodedep *inodedep; /* Inodedep for ip */ 6069 struct allocindir *aip; /* allocindir allocated by the above routines */ 6070 ufs_lbn_t lbn; /* Logical block number for this block. */ 6071 { 6072 struct fs *fs; 6073 struct indirdep *indirdep; 6074 struct allocindir *oldaip; 6075 struct freefrag *freefrag; 6076 struct mount *mp; 6077 struct ufsmount *ump; 6078 6079 mp = ITOVFS(ip); 6080 ump = VFSTOUFS(mp); 6081 LOCK_OWNED(ump); 6082 fs = ump->um_fs; 6083 if (bp->b_lblkno >= 0) 6084 panic("setup_allocindir_phase2: not indir blk"); 6085 KASSERT(aip->ai_offset >= 0 && aip->ai_offset < NINDIR(fs), 6086 ("setup_allocindir_phase2: Bad offset %d", aip->ai_offset)); 6087 indirdep = indirdep_lookup(mp, ip, bp); 6088 KASSERT(indirdep->ir_savebp != NULL, 6089 ("setup_allocindir_phase2 NULL ir_savebp")); 6090 aip->ai_indirdep = indirdep; 6091 /* 6092 * Check for an unwritten dependency for this indirect offset. If 6093 * there is, merge the old dependency into the new one. This happens 6094 * as a result of reallocblk only. 6095 */ 6096 freefrag = NULL; 6097 if (aip->ai_oldblkno != 0) { 6098 LIST_FOREACH(oldaip, &indirdep->ir_deplisthd, ai_next) { 6099 if (oldaip->ai_offset == aip->ai_offset) { 6100 freefrag = allocindir_merge(aip, oldaip); 6101 goto done; 6102 } 6103 } 6104 LIST_FOREACH(oldaip, &indirdep->ir_donehd, ai_next) { 6105 if (oldaip->ai_offset == aip->ai_offset) { 6106 freefrag = allocindir_merge(aip, oldaip); 6107 goto done; 6108 } 6109 } 6110 } 6111 done: 6112 LIST_INSERT_HEAD(&indirdep->ir_deplisthd, aip, ai_next); 6113 return (freefrag); 6114 } 6115 6116 /* 6117 * Merge two allocindirs which refer to the same block. Move newblock 6118 * dependencies and setup the freefrags appropriately. 6119 */ 6120 static struct freefrag * 6121 allocindir_merge(aip, oldaip) 6122 struct allocindir *aip; 6123 struct allocindir *oldaip; 6124 { 6125 struct freefrag *freefrag; 6126 struct worklist *wk; 6127 6128 if (oldaip->ai_newblkno != aip->ai_oldblkno) 6129 panic("allocindir_merge: blkno"); 6130 aip->ai_oldblkno = oldaip->ai_oldblkno; 6131 freefrag = aip->ai_freefrag; 6132 aip->ai_freefrag = oldaip->ai_freefrag; 6133 oldaip->ai_freefrag = NULL; 6134 KASSERT(freefrag != NULL, ("setup_allocindir_phase2: No freefrag")); 6135 /* 6136 * If we are tracking a new directory-block allocation, 6137 * move it from the old allocindir to the new allocindir. 6138 */ 6139 if ((wk = LIST_FIRST(&oldaip->ai_newdirblk)) != NULL) { 6140 WORKLIST_REMOVE(wk); 6141 if (!LIST_EMPTY(&oldaip->ai_newdirblk)) 6142 panic("allocindir_merge: extra newdirblk"); 6143 WORKLIST_INSERT(&aip->ai_newdirblk, wk); 6144 } 6145 /* 6146 * We can skip journaling for this freefrag and just complete 6147 * any pending journal work for the allocindir that is being 6148 * removed after the freefrag completes. 6149 */ 6150 if (freefrag->ff_jdep) 6151 cancel_jfreefrag(WK_JFREEFRAG(freefrag->ff_jdep)); 6152 LIST_REMOVE(oldaip, ai_next); 6153 freefrag->ff_jdep = (struct worklist *)cancel_newblk(&oldaip->ai_block, 6154 &freefrag->ff_list, &freefrag->ff_jwork); 6155 free_newblk(&oldaip->ai_block); 6156 6157 return (freefrag); 6158 } 6159 6160 static inline void 6161 setup_freedirect(freeblks, ip, i, needj) 6162 struct freeblks *freeblks; 6163 struct inode *ip; 6164 int i; 6165 int needj; 6166 { 6167 struct ufsmount *ump; 6168 ufs2_daddr_t blkno; 6169 int frags; 6170 6171 blkno = DIP(ip, i_db[i]); 6172 if (blkno == 0) 6173 return; 6174 DIP_SET(ip, i_db[i], 0); 6175 ump = ITOUMP(ip); 6176 frags = sblksize(ump->um_fs, ip->i_size, i); 6177 frags = numfrags(ump->um_fs, frags); 6178 newfreework(ump, freeblks, NULL, i, blkno, frags, 0, needj); 6179 } 6180 6181 static inline void 6182 setup_freeext(freeblks, ip, i, needj) 6183 struct freeblks *freeblks; 6184 struct inode *ip; 6185 int i; 6186 int needj; 6187 { 6188 struct ufsmount *ump; 6189 ufs2_daddr_t blkno; 6190 int frags; 6191 6192 blkno = ip->i_din2->di_extb[i]; 6193 if (blkno == 0) 6194 return; 6195 ip->i_din2->di_extb[i] = 0; 6196 ump = ITOUMP(ip); 6197 frags = sblksize(ump->um_fs, ip->i_din2->di_extsize, i); 6198 frags = numfrags(ump->um_fs, frags); 6199 newfreework(ump, freeblks, NULL, -1 - i, blkno, frags, 0, needj); 6200 } 6201 6202 static inline void 6203 setup_freeindir(freeblks, ip, i, lbn, needj) 6204 struct freeblks *freeblks; 6205 struct inode *ip; 6206 int i; 6207 ufs_lbn_t lbn; 6208 int needj; 6209 { 6210 struct ufsmount *ump; 6211 ufs2_daddr_t blkno; 6212 6213 blkno = DIP(ip, i_ib[i]); 6214 if (blkno == 0) 6215 return; 6216 DIP_SET(ip, i_ib[i], 0); 6217 ump = ITOUMP(ip); 6218 newfreework(ump, freeblks, NULL, lbn, blkno, ump->um_fs->fs_frag, 6219 0, needj); 6220 } 6221 6222 static inline struct freeblks * 6223 newfreeblks(mp, ip) 6224 struct mount *mp; 6225 struct inode *ip; 6226 { 6227 struct freeblks *freeblks; 6228 6229 freeblks = malloc(sizeof(struct freeblks), 6230 M_FREEBLKS, M_SOFTDEP_FLAGS|M_ZERO); 6231 workitem_alloc(&freeblks->fb_list, D_FREEBLKS, mp); 6232 LIST_INIT(&freeblks->fb_jblkdephd); 6233 LIST_INIT(&freeblks->fb_jwork); 6234 freeblks->fb_ref = 0; 6235 freeblks->fb_cgwait = 0; 6236 freeblks->fb_state = ATTACHED; 6237 freeblks->fb_uid = ip->i_uid; 6238 freeblks->fb_inum = ip->i_number; 6239 freeblks->fb_vtype = ITOV(ip)->v_type; 6240 freeblks->fb_modrev = DIP(ip, i_modrev); 6241 freeblks->fb_devvp = ITODEVVP(ip); 6242 freeblks->fb_chkcnt = 0; 6243 freeblks->fb_len = 0; 6244 6245 return (freeblks); 6246 } 6247 6248 static void 6249 trunc_indirdep(indirdep, freeblks, bp, off) 6250 struct indirdep *indirdep; 6251 struct freeblks *freeblks; 6252 struct buf *bp; 6253 int off; 6254 { 6255 struct allocindir *aip, *aipn; 6256 6257 /* 6258 * The first set of allocindirs won't be in savedbp. 6259 */ 6260 LIST_FOREACH_SAFE(aip, &indirdep->ir_deplisthd, ai_next, aipn) 6261 if (aip->ai_offset > off) 6262 cancel_allocindir(aip, bp, freeblks, 1); 6263 LIST_FOREACH_SAFE(aip, &indirdep->ir_donehd, ai_next, aipn) 6264 if (aip->ai_offset > off) 6265 cancel_allocindir(aip, bp, freeblks, 1); 6266 /* 6267 * These will exist in savedbp. 6268 */ 6269 LIST_FOREACH_SAFE(aip, &indirdep->ir_writehd, ai_next, aipn) 6270 if (aip->ai_offset > off) 6271 cancel_allocindir(aip, NULL, freeblks, 0); 6272 LIST_FOREACH_SAFE(aip, &indirdep->ir_completehd, ai_next, aipn) 6273 if (aip->ai_offset > off) 6274 cancel_allocindir(aip, NULL, freeblks, 0); 6275 } 6276 6277 /* 6278 * Follow the chain of indirects down to lastlbn creating a freework 6279 * structure for each. This will be used to start indir_trunc() at 6280 * the right offset and create the journal records for the parrtial 6281 * truncation. A second step will handle the truncated dependencies. 6282 */ 6283 static int 6284 setup_trunc_indir(freeblks, ip, lbn, lastlbn, blkno) 6285 struct freeblks *freeblks; 6286 struct inode *ip; 6287 ufs_lbn_t lbn; 6288 ufs_lbn_t lastlbn; 6289 ufs2_daddr_t blkno; 6290 { 6291 struct indirdep *indirdep; 6292 struct indirdep *indirn; 6293 struct freework *freework; 6294 struct newblk *newblk; 6295 struct mount *mp; 6296 struct ufsmount *ump; 6297 struct buf *bp; 6298 uint8_t *start; 6299 uint8_t *end; 6300 ufs_lbn_t lbnadd; 6301 int level; 6302 int error; 6303 int off; 6304 6305 6306 freework = NULL; 6307 if (blkno == 0) 6308 return (0); 6309 mp = freeblks->fb_list.wk_mp; 6310 ump = VFSTOUFS(mp); 6311 /* 6312 * Here, calls to VOP_BMAP() will fail. However, we already have 6313 * the on-disk address, so we just pass it to bread() instead of 6314 * having bread() attempt to calculate it using VOP_BMAP(). 6315 */ 6316 error = breadn_flags(ITOV(ip), lbn, blkptrtodb(ump, blkno), 6317 (int)mp->mnt_stat.f_iosize, NULL, NULL, 0, NOCRED, 0, NULL, &bp); 6318 if (error) 6319 return (error); 6320 level = lbn_level(lbn); 6321 lbnadd = lbn_offset(ump->um_fs, level); 6322 /* 6323 * Compute the offset of the last block we want to keep. Store 6324 * in the freework the first block we want to completely free. 6325 */ 6326 off = (lastlbn - -(lbn + level)) / lbnadd; 6327 if (off + 1 == NINDIR(ump->um_fs)) 6328 goto nowork; 6329 freework = newfreework(ump, freeblks, NULL, lbn, blkno, 0, off + 1, 0); 6330 /* 6331 * Link the freework into the indirdep. This will prevent any new 6332 * allocations from proceeding until we are finished with the 6333 * truncate and the block is written. 6334 */ 6335 ACQUIRE_LOCK(ump); 6336 indirdep = indirdep_lookup(mp, ip, bp); 6337 if (indirdep->ir_freeblks) 6338 panic("setup_trunc_indir: indirdep already truncated."); 6339 TAILQ_INSERT_TAIL(&indirdep->ir_trunc, freework, fw_next); 6340 freework->fw_indir = indirdep; 6341 /* 6342 * Cancel any allocindirs that will not make it to disk. 6343 * We have to do this for all copies of the indirdep that 6344 * live on this newblk. 6345 */ 6346 if ((indirdep->ir_state & DEPCOMPLETE) == 0) { 6347 if (newblk_lookup(mp, dbtofsb(ump->um_fs, bp->b_blkno), 0, 6348 &newblk) == 0) 6349 panic("setup_trunc_indir: lost block"); 6350 LIST_FOREACH(indirn, &newblk->nb_indirdeps, ir_next) 6351 trunc_indirdep(indirn, freeblks, bp, off); 6352 } else 6353 trunc_indirdep(indirdep, freeblks, bp, off); 6354 FREE_LOCK(ump); 6355 /* 6356 * Creation is protected by the buf lock. The saveddata is only 6357 * needed if a full truncation follows a partial truncation but it 6358 * is difficult to allocate in that case so we fetch it anyway. 6359 */ 6360 if (indirdep->ir_saveddata == NULL) 6361 indirdep->ir_saveddata = malloc(bp->b_bcount, M_INDIRDEP, 6362 M_SOFTDEP_FLAGS); 6363 nowork: 6364 /* Fetch the blkno of the child and the zero start offset. */ 6365 if (I_IS_UFS1(ip)) { 6366 blkno = ((ufs1_daddr_t *)bp->b_data)[off]; 6367 start = (uint8_t *)&((ufs1_daddr_t *)bp->b_data)[off+1]; 6368 } else { 6369 blkno = ((ufs2_daddr_t *)bp->b_data)[off]; 6370 start = (uint8_t *)&((ufs2_daddr_t *)bp->b_data)[off+1]; 6371 } 6372 if (freework) { 6373 /* Zero the truncated pointers. */ 6374 end = bp->b_data + bp->b_bcount; 6375 bzero(start, end - start); 6376 bdwrite(bp); 6377 } else 6378 bqrelse(bp); 6379 if (level == 0) 6380 return (0); 6381 lbn++; /* adjust level */ 6382 lbn -= (off * lbnadd); 6383 return setup_trunc_indir(freeblks, ip, lbn, lastlbn, blkno); 6384 } 6385 6386 /* 6387 * Complete the partial truncation of an indirect block setup by 6388 * setup_trunc_indir(). This zeros the truncated pointers in the saved 6389 * copy and writes them to disk before the freeblks is allowed to complete. 6390 */ 6391 static void 6392 complete_trunc_indir(freework) 6393 struct freework *freework; 6394 { 6395 struct freework *fwn; 6396 struct indirdep *indirdep; 6397 struct ufsmount *ump; 6398 struct buf *bp; 6399 uintptr_t start; 6400 int count; 6401 6402 ump = VFSTOUFS(freework->fw_list.wk_mp); 6403 LOCK_OWNED(ump); 6404 indirdep = freework->fw_indir; 6405 for (;;) { 6406 bp = indirdep->ir_bp; 6407 /* See if the block was discarded. */ 6408 if (bp == NULL) 6409 break; 6410 /* Inline part of getdirtybuf(). We dont want bremfree. */ 6411 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) == 0) 6412 break; 6413 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, 6414 LOCK_PTR(ump)) == 0) 6415 BUF_UNLOCK(bp); 6416 ACQUIRE_LOCK(ump); 6417 } 6418 freework->fw_state |= DEPCOMPLETE; 6419 TAILQ_REMOVE(&indirdep->ir_trunc, freework, fw_next); 6420 /* 6421 * Zero the pointers in the saved copy. 6422 */ 6423 if (indirdep->ir_state & UFS1FMT) 6424 start = sizeof(ufs1_daddr_t); 6425 else 6426 start = sizeof(ufs2_daddr_t); 6427 start *= freework->fw_start; 6428 count = indirdep->ir_savebp->b_bcount - start; 6429 start += (uintptr_t)indirdep->ir_savebp->b_data; 6430 bzero((char *)start, count); 6431 /* 6432 * We need to start the next truncation in the list if it has not 6433 * been started yet. 6434 */ 6435 fwn = TAILQ_FIRST(&indirdep->ir_trunc); 6436 if (fwn != NULL) { 6437 if (fwn->fw_freeblks == indirdep->ir_freeblks) 6438 TAILQ_REMOVE(&indirdep->ir_trunc, fwn, fw_next); 6439 if ((fwn->fw_state & ONWORKLIST) == 0) 6440 freework_enqueue(fwn); 6441 } 6442 /* 6443 * If bp is NULL the block was fully truncated, restore 6444 * the saved block list otherwise free it if it is no 6445 * longer needed. 6446 */ 6447 if (TAILQ_EMPTY(&indirdep->ir_trunc)) { 6448 if (bp == NULL) 6449 bcopy(indirdep->ir_saveddata, 6450 indirdep->ir_savebp->b_data, 6451 indirdep->ir_savebp->b_bcount); 6452 free(indirdep->ir_saveddata, M_INDIRDEP); 6453 indirdep->ir_saveddata = NULL; 6454 } 6455 /* 6456 * When bp is NULL there is a full truncation pending. We 6457 * must wait for this full truncation to be journaled before 6458 * we can release this freework because the disk pointers will 6459 * never be written as zero. 6460 */ 6461 if (bp == NULL) { 6462 if (LIST_EMPTY(&indirdep->ir_freeblks->fb_jblkdephd)) 6463 handle_written_freework(freework); 6464 else 6465 WORKLIST_INSERT(&indirdep->ir_freeblks->fb_freeworkhd, 6466 &freework->fw_list); 6467 } else { 6468 /* Complete when the real copy is written. */ 6469 WORKLIST_INSERT(&bp->b_dep, &freework->fw_list); 6470 BUF_UNLOCK(bp); 6471 } 6472 } 6473 6474 /* 6475 * Calculate the number of blocks we are going to release where datablocks 6476 * is the current total and length is the new file size. 6477 */ 6478 static ufs2_daddr_t 6479 blkcount(fs, datablocks, length) 6480 struct fs *fs; 6481 ufs2_daddr_t datablocks; 6482 off_t length; 6483 { 6484 off_t totblks, numblks; 6485 6486 totblks = 0; 6487 numblks = howmany(length, fs->fs_bsize); 6488 if (numblks <= UFS_NDADDR) { 6489 totblks = howmany(length, fs->fs_fsize); 6490 goto out; 6491 } 6492 totblks = blkstofrags(fs, numblks); 6493 numblks -= UFS_NDADDR; 6494 /* 6495 * Count all single, then double, then triple indirects required. 6496 * Subtracting one indirects worth of blocks for each pass 6497 * acknowledges one of each pointed to by the inode. 6498 */ 6499 for (;;) { 6500 totblks += blkstofrags(fs, howmany(numblks, NINDIR(fs))); 6501 numblks -= NINDIR(fs); 6502 if (numblks <= 0) 6503 break; 6504 numblks = howmany(numblks, NINDIR(fs)); 6505 } 6506 out: 6507 totblks = fsbtodb(fs, totblks); 6508 /* 6509 * Handle sparse files. We can't reclaim more blocks than the inode 6510 * references. We will correct it later in handle_complete_freeblks() 6511 * when we know the real count. 6512 */ 6513 if (totblks > datablocks) 6514 return (0); 6515 return (datablocks - totblks); 6516 } 6517 6518 /* 6519 * Handle freeblocks for journaled softupdate filesystems. 6520 * 6521 * Contrary to normal softupdates, we must preserve the block pointers in 6522 * indirects until their subordinates are free. This is to avoid journaling 6523 * every block that is freed which may consume more space than the journal 6524 * itself. The recovery program will see the free block journals at the 6525 * base of the truncated area and traverse them to reclaim space. The 6526 * pointers in the inode may be cleared immediately after the journal 6527 * records are written because each direct and indirect pointer in the 6528 * inode is recorded in a journal. This permits full truncation to proceed 6529 * asynchronously. The write order is journal -> inode -> cgs -> indirects. 6530 * 6531 * The algorithm is as follows: 6532 * 1) Traverse the in-memory state and create journal entries to release 6533 * the relevant blocks and full indirect trees. 6534 * 2) Traverse the indirect block chain adding partial truncation freework 6535 * records to indirects in the path to lastlbn. The freework will 6536 * prevent new allocation dependencies from being satisfied in this 6537 * indirect until the truncation completes. 6538 * 3) Read and lock the inode block, performing an update with the new size 6539 * and pointers. This prevents truncated data from becoming valid on 6540 * disk through step 4. 6541 * 4) Reap unsatisfied dependencies that are beyond the truncated area, 6542 * eliminate journal work for those records that do not require it. 6543 * 5) Schedule the journal records to be written followed by the inode block. 6544 * 6) Allocate any necessary frags for the end of file. 6545 * 7) Zero any partially truncated blocks. 6546 * 6547 * From this truncation proceeds asynchronously using the freework and 6548 * indir_trunc machinery. The file will not be extended again into a 6549 * partially truncated indirect block until all work is completed but 6550 * the normal dependency mechanism ensures that it is rolled back/forward 6551 * as appropriate. Further truncation may occur without delay and is 6552 * serialized in indir_trunc(). 6553 */ 6554 void 6555 softdep_journal_freeblocks(ip, cred, length, flags) 6556 struct inode *ip; /* The inode whose length is to be reduced */ 6557 struct ucred *cred; 6558 off_t length; /* The new length for the file */ 6559 int flags; /* IO_EXT and/or IO_NORMAL */ 6560 { 6561 struct freeblks *freeblks, *fbn; 6562 struct worklist *wk, *wkn; 6563 struct inodedep *inodedep; 6564 struct jblkdep *jblkdep; 6565 struct allocdirect *adp, *adpn; 6566 struct ufsmount *ump; 6567 struct fs *fs; 6568 struct buf *bp; 6569 struct vnode *vp; 6570 struct mount *mp; 6571 ufs2_daddr_t extblocks, datablocks; 6572 ufs_lbn_t tmpval, lbn, lastlbn; 6573 int frags, lastoff, iboff, allocblock, needj, error, i; 6574 6575 ump = ITOUMP(ip); 6576 mp = UFSTOVFS(ump); 6577 fs = ump->um_fs; 6578 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 6579 ("softdep_journal_freeblocks called on non-softdep filesystem")); 6580 vp = ITOV(ip); 6581 needj = 1; 6582 iboff = -1; 6583 allocblock = 0; 6584 extblocks = 0; 6585 datablocks = 0; 6586 frags = 0; 6587 freeblks = newfreeblks(mp, ip); 6588 ACQUIRE_LOCK(ump); 6589 /* 6590 * If we're truncating a removed file that will never be written 6591 * we don't need to journal the block frees. The canceled journals 6592 * for the allocations will suffice. 6593 */ 6594 inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep); 6595 if ((inodedep->id_state & (UNLINKED | DEPCOMPLETE)) == UNLINKED && 6596 length == 0) 6597 needj = 0; 6598 CTR3(KTR_SUJ, "softdep_journal_freeblks: ip %d length %ld needj %d", 6599 ip->i_number, length, needj); 6600 FREE_LOCK(ump); 6601 /* 6602 * Calculate the lbn that we are truncating to. This results in -1 6603 * if we're truncating the 0 bytes. So it is the last lbn we want 6604 * to keep, not the first lbn we want to truncate. 6605 */ 6606 lastlbn = lblkno(fs, length + fs->fs_bsize - 1) - 1; 6607 lastoff = blkoff(fs, length); 6608 /* 6609 * Compute frags we are keeping in lastlbn. 0 means all. 6610 */ 6611 if (lastlbn >= 0 && lastlbn < UFS_NDADDR) { 6612 frags = fragroundup(fs, lastoff); 6613 /* adp offset of last valid allocdirect. */ 6614 iboff = lastlbn; 6615 } else if (lastlbn > 0) 6616 iboff = UFS_NDADDR; 6617 if (fs->fs_magic == FS_UFS2_MAGIC) 6618 extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize)); 6619 /* 6620 * Handle normal data blocks and indirects. This section saves 6621 * values used after the inode update to complete frag and indirect 6622 * truncation. 6623 */ 6624 if ((flags & IO_NORMAL) != 0) { 6625 /* 6626 * Handle truncation of whole direct and indirect blocks. 6627 */ 6628 for (i = iboff + 1; i < UFS_NDADDR; i++) 6629 setup_freedirect(freeblks, ip, i, needj); 6630 for (i = 0, tmpval = NINDIR(fs), lbn = UFS_NDADDR; 6631 i < UFS_NIADDR; 6632 i++, lbn += tmpval, tmpval *= NINDIR(fs)) { 6633 /* Release a whole indirect tree. */ 6634 if (lbn > lastlbn) { 6635 setup_freeindir(freeblks, ip, i, -lbn -i, 6636 needj); 6637 continue; 6638 } 6639 iboff = i + UFS_NDADDR; 6640 /* 6641 * Traverse partially truncated indirect tree. 6642 */ 6643 if (lbn <= lastlbn && lbn + tmpval - 1 > lastlbn) 6644 setup_trunc_indir(freeblks, ip, -lbn - i, 6645 lastlbn, DIP(ip, i_ib[i])); 6646 } 6647 /* 6648 * Handle partial truncation to a frag boundary. 6649 */ 6650 if (frags) { 6651 ufs2_daddr_t blkno; 6652 long oldfrags; 6653 6654 oldfrags = blksize(fs, ip, lastlbn); 6655 blkno = DIP(ip, i_db[lastlbn]); 6656 if (blkno && oldfrags != frags) { 6657 oldfrags -= frags; 6658 oldfrags = numfrags(fs, oldfrags); 6659 blkno += numfrags(fs, frags); 6660 newfreework(ump, freeblks, NULL, lastlbn, 6661 blkno, oldfrags, 0, needj); 6662 if (needj) 6663 adjust_newfreework(freeblks, 6664 numfrags(fs, frags)); 6665 } else if (blkno == 0) 6666 allocblock = 1; 6667 } 6668 /* 6669 * Add a journal record for partial truncate if we are 6670 * handling indirect blocks. Non-indirects need no extra 6671 * journaling. 6672 */ 6673 if (length != 0 && lastlbn >= UFS_NDADDR) { 6674 UFS_INODE_SET_FLAG(ip, IN_TRUNCATED); 6675 newjtrunc(freeblks, length, 0); 6676 } 6677 ip->i_size = length; 6678 DIP_SET(ip, i_size, ip->i_size); 6679 datablocks = DIP(ip, i_blocks) - extblocks; 6680 if (length != 0) 6681 datablocks = blkcount(fs, datablocks, length); 6682 freeblks->fb_len = length; 6683 } 6684 if ((flags & IO_EXT) != 0) { 6685 for (i = 0; i < UFS_NXADDR; i++) 6686 setup_freeext(freeblks, ip, i, needj); 6687 ip->i_din2->di_extsize = 0; 6688 datablocks += extblocks; 6689 } 6690 #ifdef QUOTA 6691 /* Reference the quotas in case the block count is wrong in the end. */ 6692 quotaref(vp, freeblks->fb_quota); 6693 (void) chkdq(ip, -datablocks, NOCRED, FORCE); 6694 #endif 6695 freeblks->fb_chkcnt = -datablocks; 6696 UFS_LOCK(ump); 6697 fs->fs_pendingblocks += datablocks; 6698 UFS_UNLOCK(ump); 6699 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - datablocks); 6700 /* 6701 * Handle truncation of incomplete alloc direct dependencies. We 6702 * hold the inode block locked to prevent incomplete dependencies 6703 * from reaching the disk while we are eliminating those that 6704 * have been truncated. This is a partially inlined ffs_update(). 6705 */ 6706 ufs_itimes(vp); 6707 ip->i_flag &= ~(IN_LAZYACCESS | IN_LAZYMOD | IN_MODIFIED); 6708 error = bread(ump->um_devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)), 6709 (int)fs->fs_bsize, cred, &bp); 6710 if (error) { 6711 softdep_error("softdep_journal_freeblocks", error); 6712 return; 6713 } 6714 if (bp->b_bufsize == fs->fs_bsize) 6715 bp->b_flags |= B_CLUSTEROK; 6716 softdep_update_inodeblock(ip, bp, 0); 6717 if (ump->um_fstype == UFS1) { 6718 *((struct ufs1_dinode *)bp->b_data + 6719 ino_to_fsbo(fs, ip->i_number)) = *ip->i_din1; 6720 } else { 6721 ffs_update_dinode_ckhash(fs, ip->i_din2); 6722 *((struct ufs2_dinode *)bp->b_data + 6723 ino_to_fsbo(fs, ip->i_number)) = *ip->i_din2; 6724 } 6725 ACQUIRE_LOCK(ump); 6726 (void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep); 6727 if ((inodedep->id_state & IOSTARTED) != 0) 6728 panic("softdep_setup_freeblocks: inode busy"); 6729 /* 6730 * Add the freeblks structure to the list of operations that 6731 * must await the zero'ed inode being written to disk. If we 6732 * still have a bitmap dependency (needj), then the inode 6733 * has never been written to disk, so we can process the 6734 * freeblks below once we have deleted the dependencies. 6735 */ 6736 if (needj) 6737 WORKLIST_INSERT(&bp->b_dep, &freeblks->fb_list); 6738 else 6739 freeblks->fb_state |= COMPLETE; 6740 if ((flags & IO_NORMAL) != 0) { 6741 TAILQ_FOREACH_SAFE(adp, &inodedep->id_inoupdt, ad_next, adpn) { 6742 if (adp->ad_offset > iboff) 6743 cancel_allocdirect(&inodedep->id_inoupdt, adp, 6744 freeblks); 6745 /* 6746 * Truncate the allocdirect. We could eliminate 6747 * or modify journal records as well. 6748 */ 6749 else if (adp->ad_offset == iboff && frags) 6750 adp->ad_newsize = frags; 6751 } 6752 } 6753 if ((flags & IO_EXT) != 0) 6754 while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL) 6755 cancel_allocdirect(&inodedep->id_extupdt, adp, 6756 freeblks); 6757 /* 6758 * Scan the bufwait list for newblock dependencies that will never 6759 * make it to disk. 6760 */ 6761 LIST_FOREACH_SAFE(wk, &inodedep->id_bufwait, wk_list, wkn) { 6762 if (wk->wk_type != D_ALLOCDIRECT) 6763 continue; 6764 adp = WK_ALLOCDIRECT(wk); 6765 if (((flags & IO_NORMAL) != 0 && (adp->ad_offset > iboff)) || 6766 ((flags & IO_EXT) != 0 && (adp->ad_state & EXTDATA))) { 6767 cancel_jfreeblk(freeblks, adp->ad_newblkno); 6768 cancel_newblk(WK_NEWBLK(wk), NULL, &freeblks->fb_jwork); 6769 WORKLIST_INSERT(&freeblks->fb_freeworkhd, wk); 6770 } 6771 } 6772 /* 6773 * Add journal work. 6774 */ 6775 LIST_FOREACH(jblkdep, &freeblks->fb_jblkdephd, jb_deps) 6776 add_to_journal(&jblkdep->jb_list); 6777 FREE_LOCK(ump); 6778 bdwrite(bp); 6779 /* 6780 * Truncate dependency structures beyond length. 6781 */ 6782 trunc_dependencies(ip, freeblks, lastlbn, frags, flags); 6783 /* 6784 * This is only set when we need to allocate a fragment because 6785 * none existed at the end of a frag-sized file. It handles only 6786 * allocating a new, zero filled block. 6787 */ 6788 if (allocblock) { 6789 ip->i_size = length - lastoff; 6790 DIP_SET(ip, i_size, ip->i_size); 6791 error = UFS_BALLOC(vp, length - 1, 1, cred, BA_CLRBUF, &bp); 6792 if (error != 0) { 6793 softdep_error("softdep_journal_freeblks", error); 6794 return; 6795 } 6796 ip->i_size = length; 6797 DIP_SET(ip, i_size, length); 6798 UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_UPDATE); 6799 allocbuf(bp, frags); 6800 ffs_update(vp, 0); 6801 bawrite(bp); 6802 } else if (lastoff != 0 && vp->v_type != VDIR) { 6803 int size; 6804 6805 /* 6806 * Zero the end of a truncated frag or block. 6807 */ 6808 size = sblksize(fs, length, lastlbn); 6809 error = bread(vp, lastlbn, size, cred, &bp); 6810 if (error) { 6811 softdep_error("softdep_journal_freeblks", error); 6812 return; 6813 } 6814 bzero((char *)bp->b_data + lastoff, size - lastoff); 6815 bawrite(bp); 6816 6817 } 6818 ACQUIRE_LOCK(ump); 6819 inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep); 6820 TAILQ_INSERT_TAIL(&inodedep->id_freeblklst, freeblks, fb_next); 6821 freeblks->fb_state |= DEPCOMPLETE | ONDEPLIST; 6822 /* 6823 * We zero earlier truncations so they don't erroneously 6824 * update i_blocks. 6825 */ 6826 if (freeblks->fb_len == 0 && (flags & IO_NORMAL) != 0) 6827 TAILQ_FOREACH(fbn, &inodedep->id_freeblklst, fb_next) 6828 fbn->fb_len = 0; 6829 if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE && 6830 LIST_EMPTY(&freeblks->fb_jblkdephd)) 6831 freeblks->fb_state |= INPROGRESS; 6832 else 6833 freeblks = NULL; 6834 FREE_LOCK(ump); 6835 if (freeblks) 6836 handle_workitem_freeblocks(freeblks, 0); 6837 trunc_pages(ip, length, extblocks, flags); 6838 6839 } 6840 6841 /* 6842 * Flush a JOP_SYNC to the journal. 6843 */ 6844 void 6845 softdep_journal_fsync(ip) 6846 struct inode *ip; 6847 { 6848 struct jfsync *jfsync; 6849 struct ufsmount *ump; 6850 6851 ump = ITOUMP(ip); 6852 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 6853 ("softdep_journal_fsync called on non-softdep filesystem")); 6854 if ((ip->i_flag & IN_TRUNCATED) == 0) 6855 return; 6856 ip->i_flag &= ~IN_TRUNCATED; 6857 jfsync = malloc(sizeof(*jfsync), M_JFSYNC, M_SOFTDEP_FLAGS | M_ZERO); 6858 workitem_alloc(&jfsync->jfs_list, D_JFSYNC, UFSTOVFS(ump)); 6859 jfsync->jfs_size = ip->i_size; 6860 jfsync->jfs_ino = ip->i_number; 6861 ACQUIRE_LOCK(ump); 6862 add_to_journal(&jfsync->jfs_list); 6863 jwait(&jfsync->jfs_list, MNT_WAIT); 6864 FREE_LOCK(ump); 6865 } 6866 6867 /* 6868 * Block de-allocation dependencies. 6869 * 6870 * When blocks are de-allocated, the on-disk pointers must be nullified before 6871 * the blocks are made available for use by other files. (The true 6872 * requirement is that old pointers must be nullified before new on-disk 6873 * pointers are set. We chose this slightly more stringent requirement to 6874 * reduce complexity.) Our implementation handles this dependency by updating 6875 * the inode (or indirect block) appropriately but delaying the actual block 6876 * de-allocation (i.e., freemap and free space count manipulation) until 6877 * after the updated versions reach stable storage. After the disk is 6878 * updated, the blocks can be safely de-allocated whenever it is convenient. 6879 * This implementation handles only the common case of reducing a file's 6880 * length to zero. Other cases are handled by the conventional synchronous 6881 * write approach. 6882 * 6883 * The ffs implementation with which we worked double-checks 6884 * the state of the block pointers and file size as it reduces 6885 * a file's length. Some of this code is replicated here in our 6886 * soft updates implementation. The freeblks->fb_chkcnt field is 6887 * used to transfer a part of this information to the procedure 6888 * that eventually de-allocates the blocks. 6889 * 6890 * This routine should be called from the routine that shortens 6891 * a file's length, before the inode's size or block pointers 6892 * are modified. It will save the block pointer information for 6893 * later release and zero the inode so that the calling routine 6894 * can release it. 6895 */ 6896 void 6897 softdep_setup_freeblocks(ip, length, flags) 6898 struct inode *ip; /* The inode whose length is to be reduced */ 6899 off_t length; /* The new length for the file */ 6900 int flags; /* IO_EXT and/or IO_NORMAL */ 6901 { 6902 struct ufs1_dinode *dp1; 6903 struct ufs2_dinode *dp2; 6904 struct freeblks *freeblks; 6905 struct inodedep *inodedep; 6906 struct allocdirect *adp; 6907 struct ufsmount *ump; 6908 struct buf *bp; 6909 struct fs *fs; 6910 ufs2_daddr_t extblocks, datablocks; 6911 struct mount *mp; 6912 int i, delay, error; 6913 ufs_lbn_t tmpval; 6914 ufs_lbn_t lbn; 6915 6916 ump = ITOUMP(ip); 6917 mp = UFSTOVFS(ump); 6918 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 6919 ("softdep_setup_freeblocks called on non-softdep filesystem")); 6920 CTR2(KTR_SUJ, "softdep_setup_freeblks: ip %d length %ld", 6921 ip->i_number, length); 6922 KASSERT(length == 0, ("softdep_setup_freeblocks: non-zero length")); 6923 fs = ump->um_fs; 6924 if ((error = bread(ump->um_devvp, 6925 fsbtodb(fs, ino_to_fsba(fs, ip->i_number)), 6926 (int)fs->fs_bsize, NOCRED, &bp)) != 0) { 6927 brelse(bp); 6928 softdep_error("softdep_setup_freeblocks", error); 6929 return; 6930 } 6931 freeblks = newfreeblks(mp, ip); 6932 extblocks = 0; 6933 datablocks = 0; 6934 if (fs->fs_magic == FS_UFS2_MAGIC) 6935 extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize)); 6936 if ((flags & IO_NORMAL) != 0) { 6937 for (i = 0; i < UFS_NDADDR; i++) 6938 setup_freedirect(freeblks, ip, i, 0); 6939 for (i = 0, tmpval = NINDIR(fs), lbn = UFS_NDADDR; 6940 i < UFS_NIADDR; 6941 i++, lbn += tmpval, tmpval *= NINDIR(fs)) 6942 setup_freeindir(freeblks, ip, i, -lbn -i, 0); 6943 ip->i_size = 0; 6944 DIP_SET(ip, i_size, 0); 6945 datablocks = DIP(ip, i_blocks) - extblocks; 6946 } 6947 if ((flags & IO_EXT) != 0) { 6948 for (i = 0; i < UFS_NXADDR; i++) 6949 setup_freeext(freeblks, ip, i, 0); 6950 ip->i_din2->di_extsize = 0; 6951 datablocks += extblocks; 6952 } 6953 #ifdef QUOTA 6954 /* Reference the quotas in case the block count is wrong in the end. */ 6955 quotaref(ITOV(ip), freeblks->fb_quota); 6956 (void) chkdq(ip, -datablocks, NOCRED, FORCE); 6957 #endif 6958 freeblks->fb_chkcnt = -datablocks; 6959 UFS_LOCK(ump); 6960 fs->fs_pendingblocks += datablocks; 6961 UFS_UNLOCK(ump); 6962 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - datablocks); 6963 /* 6964 * Push the zero'ed inode to its disk buffer so that we are free 6965 * to delete its dependencies below. Once the dependencies are gone 6966 * the buffer can be safely released. 6967 */ 6968 if (ump->um_fstype == UFS1) { 6969 dp1 = ((struct ufs1_dinode *)bp->b_data + 6970 ino_to_fsbo(fs, ip->i_number)); 6971 ip->i_din1->di_freelink = dp1->di_freelink; 6972 *dp1 = *ip->i_din1; 6973 } else { 6974 dp2 = ((struct ufs2_dinode *)bp->b_data + 6975 ino_to_fsbo(fs, ip->i_number)); 6976 ip->i_din2->di_freelink = dp2->di_freelink; 6977 ffs_update_dinode_ckhash(fs, ip->i_din2); 6978 *dp2 = *ip->i_din2; 6979 } 6980 /* 6981 * Find and eliminate any inode dependencies. 6982 */ 6983 ACQUIRE_LOCK(ump); 6984 (void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep); 6985 if ((inodedep->id_state & IOSTARTED) != 0) 6986 panic("softdep_setup_freeblocks: inode busy"); 6987 /* 6988 * Add the freeblks structure to the list of operations that 6989 * must await the zero'ed inode being written to disk. If we 6990 * still have a bitmap dependency (delay == 0), then the inode 6991 * has never been written to disk, so we can process the 6992 * freeblks below once we have deleted the dependencies. 6993 */ 6994 delay = (inodedep->id_state & DEPCOMPLETE); 6995 if (delay) 6996 WORKLIST_INSERT(&bp->b_dep, &freeblks->fb_list); 6997 else 6998 freeblks->fb_state |= COMPLETE; 6999 /* 7000 * Because the file length has been truncated to zero, any 7001 * pending block allocation dependency structures associated 7002 * with this inode are obsolete and can simply be de-allocated. 7003 * We must first merge the two dependency lists to get rid of 7004 * any duplicate freefrag structures, then purge the merged list. 7005 * If we still have a bitmap dependency, then the inode has never 7006 * been written to disk, so we can free any fragments without delay. 7007 */ 7008 if (flags & IO_NORMAL) { 7009 merge_inode_lists(&inodedep->id_newinoupdt, 7010 &inodedep->id_inoupdt); 7011 while ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL) 7012 cancel_allocdirect(&inodedep->id_inoupdt, adp, 7013 freeblks); 7014 } 7015 if (flags & IO_EXT) { 7016 merge_inode_lists(&inodedep->id_newextupdt, 7017 &inodedep->id_extupdt); 7018 while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL) 7019 cancel_allocdirect(&inodedep->id_extupdt, adp, 7020 freeblks); 7021 } 7022 FREE_LOCK(ump); 7023 bdwrite(bp); 7024 trunc_dependencies(ip, freeblks, -1, 0, flags); 7025 ACQUIRE_LOCK(ump); 7026 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0) 7027 (void) free_inodedep(inodedep); 7028 freeblks->fb_state |= DEPCOMPLETE; 7029 /* 7030 * If the inode with zeroed block pointers is now on disk 7031 * we can start freeing blocks. 7032 */ 7033 if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE) 7034 freeblks->fb_state |= INPROGRESS; 7035 else 7036 freeblks = NULL; 7037 FREE_LOCK(ump); 7038 if (freeblks) 7039 handle_workitem_freeblocks(freeblks, 0); 7040 trunc_pages(ip, length, extblocks, flags); 7041 } 7042 7043 /* 7044 * Eliminate pages from the page cache that back parts of this inode and 7045 * adjust the vnode pager's idea of our size. This prevents stale data 7046 * from hanging around in the page cache. 7047 */ 7048 static void 7049 trunc_pages(ip, length, extblocks, flags) 7050 struct inode *ip; 7051 off_t length; 7052 ufs2_daddr_t extblocks; 7053 int flags; 7054 { 7055 struct vnode *vp; 7056 struct fs *fs; 7057 ufs_lbn_t lbn; 7058 off_t end, extend; 7059 7060 vp = ITOV(ip); 7061 fs = ITOFS(ip); 7062 extend = OFF_TO_IDX(lblktosize(fs, -extblocks)); 7063 if ((flags & IO_EXT) != 0) 7064 vn_pages_remove(vp, extend, 0); 7065 if ((flags & IO_NORMAL) == 0) 7066 return; 7067 BO_LOCK(&vp->v_bufobj); 7068 drain_output(vp); 7069 BO_UNLOCK(&vp->v_bufobj); 7070 /* 7071 * The vnode pager eliminates file pages we eliminate indirects 7072 * below. 7073 */ 7074 vnode_pager_setsize(vp, length); 7075 /* 7076 * Calculate the end based on the last indirect we want to keep. If 7077 * the block extends into indirects we can just use the negative of 7078 * its lbn. Doubles and triples exist at lower numbers so we must 7079 * be careful not to remove those, if they exist. double and triple 7080 * indirect lbns do not overlap with others so it is not important 7081 * to verify how many levels are required. 7082 */ 7083 lbn = lblkno(fs, length); 7084 if (lbn >= UFS_NDADDR) { 7085 /* Calculate the virtual lbn of the triple indirect. */ 7086 lbn = -lbn - (UFS_NIADDR - 1); 7087 end = OFF_TO_IDX(lblktosize(fs, lbn)); 7088 } else 7089 end = extend; 7090 vn_pages_remove(vp, OFF_TO_IDX(OFF_MAX), end); 7091 } 7092 7093 /* 7094 * See if the buf bp is in the range eliminated by truncation. 7095 */ 7096 static int 7097 trunc_check_buf(bp, blkoffp, lastlbn, lastoff, flags) 7098 struct buf *bp; 7099 int *blkoffp; 7100 ufs_lbn_t lastlbn; 7101 int lastoff; 7102 int flags; 7103 { 7104 ufs_lbn_t lbn; 7105 7106 *blkoffp = 0; 7107 /* Only match ext/normal blocks as appropriate. */ 7108 if (((flags & IO_EXT) == 0 && (bp->b_xflags & BX_ALTDATA)) || 7109 ((flags & IO_NORMAL) == 0 && (bp->b_xflags & BX_ALTDATA) == 0)) 7110 return (0); 7111 /* ALTDATA is always a full truncation. */ 7112 if ((bp->b_xflags & BX_ALTDATA) != 0) 7113 return (1); 7114 /* -1 is full truncation. */ 7115 if (lastlbn == -1) 7116 return (1); 7117 /* 7118 * If this is a partial truncate we only want those 7119 * blocks and indirect blocks that cover the range 7120 * we're after. 7121 */ 7122 lbn = bp->b_lblkno; 7123 if (lbn < 0) 7124 lbn = -(lbn + lbn_level(lbn)); 7125 if (lbn < lastlbn) 7126 return (0); 7127 /* Here we only truncate lblkno if it's partial. */ 7128 if (lbn == lastlbn) { 7129 if (lastoff == 0) 7130 return (0); 7131 *blkoffp = lastoff; 7132 } 7133 return (1); 7134 } 7135 7136 /* 7137 * Eliminate any dependencies that exist in memory beyond lblkno:off 7138 */ 7139 static void 7140 trunc_dependencies(ip, freeblks, lastlbn, lastoff, flags) 7141 struct inode *ip; 7142 struct freeblks *freeblks; 7143 ufs_lbn_t lastlbn; 7144 int lastoff; 7145 int flags; 7146 { 7147 struct bufobj *bo; 7148 struct vnode *vp; 7149 struct buf *bp; 7150 int blkoff; 7151 7152 /* 7153 * We must wait for any I/O in progress to finish so that 7154 * all potential buffers on the dirty list will be visible. 7155 * Once they are all there, walk the list and get rid of 7156 * any dependencies. 7157 */ 7158 vp = ITOV(ip); 7159 bo = &vp->v_bufobj; 7160 BO_LOCK(bo); 7161 drain_output(vp); 7162 TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) 7163 bp->b_vflags &= ~BV_SCANNED; 7164 restart: 7165 TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) { 7166 if (bp->b_vflags & BV_SCANNED) 7167 continue; 7168 if (!trunc_check_buf(bp, &blkoff, lastlbn, lastoff, flags)) { 7169 bp->b_vflags |= BV_SCANNED; 7170 continue; 7171 } 7172 KASSERT(bp->b_bufobj == bo, ("Wrong object in buffer")); 7173 if ((bp = getdirtybuf(bp, BO_LOCKPTR(bo), MNT_WAIT)) == NULL) 7174 goto restart; 7175 BO_UNLOCK(bo); 7176 if (deallocate_dependencies(bp, freeblks, blkoff)) 7177 bqrelse(bp); 7178 else 7179 brelse(bp); 7180 BO_LOCK(bo); 7181 goto restart; 7182 } 7183 /* 7184 * Now do the work of vtruncbuf while also matching indirect blocks. 7185 */ 7186 TAILQ_FOREACH(bp, &bo->bo_clean.bv_hd, b_bobufs) 7187 bp->b_vflags &= ~BV_SCANNED; 7188 cleanrestart: 7189 TAILQ_FOREACH(bp, &bo->bo_clean.bv_hd, b_bobufs) { 7190 if (bp->b_vflags & BV_SCANNED) 7191 continue; 7192 if (!trunc_check_buf(bp, &blkoff, lastlbn, lastoff, flags)) { 7193 bp->b_vflags |= BV_SCANNED; 7194 continue; 7195 } 7196 if (BUF_LOCK(bp, 7197 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, 7198 BO_LOCKPTR(bo)) == ENOLCK) { 7199 BO_LOCK(bo); 7200 goto cleanrestart; 7201 } 7202 bp->b_vflags |= BV_SCANNED; 7203 bremfree(bp); 7204 if (blkoff != 0) { 7205 allocbuf(bp, blkoff); 7206 bqrelse(bp); 7207 } else { 7208 bp->b_flags |= B_INVAL | B_NOCACHE | B_RELBUF; 7209 brelse(bp); 7210 } 7211 BO_LOCK(bo); 7212 goto cleanrestart; 7213 } 7214 drain_output(vp); 7215 BO_UNLOCK(bo); 7216 } 7217 7218 static int 7219 cancel_pagedep(pagedep, freeblks, blkoff) 7220 struct pagedep *pagedep; 7221 struct freeblks *freeblks; 7222 int blkoff; 7223 { 7224 struct jremref *jremref; 7225 struct jmvref *jmvref; 7226 struct dirrem *dirrem, *tmp; 7227 int i; 7228 7229 /* 7230 * Copy any directory remove dependencies to the list 7231 * to be processed after the freeblks proceeds. If 7232 * directory entry never made it to disk they 7233 * can be dumped directly onto the work list. 7234 */ 7235 LIST_FOREACH_SAFE(dirrem, &pagedep->pd_dirremhd, dm_next, tmp) { 7236 /* Skip this directory removal if it is intended to remain. */ 7237 if (dirrem->dm_offset < blkoff) 7238 continue; 7239 /* 7240 * If there are any dirrems we wait for the journal write 7241 * to complete and then restart the buf scan as the lock 7242 * has been dropped. 7243 */ 7244 while ((jremref = LIST_FIRST(&dirrem->dm_jremrefhd)) != NULL) { 7245 jwait(&jremref->jr_list, MNT_WAIT); 7246 return (ERESTART); 7247 } 7248 LIST_REMOVE(dirrem, dm_next); 7249 dirrem->dm_dirinum = pagedep->pd_ino; 7250 WORKLIST_INSERT(&freeblks->fb_freeworkhd, &dirrem->dm_list); 7251 } 7252 while ((jmvref = LIST_FIRST(&pagedep->pd_jmvrefhd)) != NULL) { 7253 jwait(&jmvref->jm_list, MNT_WAIT); 7254 return (ERESTART); 7255 } 7256 /* 7257 * When we're partially truncating a pagedep we just want to flush 7258 * journal entries and return. There can not be any adds in the 7259 * truncated portion of the directory and newblk must remain if 7260 * part of the block remains. 7261 */ 7262 if (blkoff != 0) { 7263 struct diradd *dap; 7264 7265 LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist) 7266 if (dap->da_offset > blkoff) 7267 panic("cancel_pagedep: diradd %p off %d > %d", 7268 dap, dap->da_offset, blkoff); 7269 for (i = 0; i < DAHASHSZ; i++) 7270 LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) 7271 if (dap->da_offset > blkoff) 7272 panic("cancel_pagedep: diradd %p off %d > %d", 7273 dap, dap->da_offset, blkoff); 7274 return (0); 7275 } 7276 /* 7277 * There should be no directory add dependencies present 7278 * as the directory could not be truncated until all 7279 * children were removed. 7280 */ 7281 KASSERT(LIST_FIRST(&pagedep->pd_pendinghd) == NULL, 7282 ("deallocate_dependencies: pendinghd != NULL")); 7283 for (i = 0; i < DAHASHSZ; i++) 7284 KASSERT(LIST_FIRST(&pagedep->pd_diraddhd[i]) == NULL, 7285 ("deallocate_dependencies: diraddhd != NULL")); 7286 if ((pagedep->pd_state & NEWBLOCK) != 0) 7287 free_newdirblk(pagedep->pd_newdirblk); 7288 if (free_pagedep(pagedep) == 0) 7289 panic("Failed to free pagedep %p", pagedep); 7290 return (0); 7291 } 7292 7293 /* 7294 * Reclaim any dependency structures from a buffer that is about to 7295 * be reallocated to a new vnode. The buffer must be locked, thus, 7296 * no I/O completion operations can occur while we are manipulating 7297 * its associated dependencies. The mutex is held so that other I/O's 7298 * associated with related dependencies do not occur. 7299 */ 7300 static int 7301 deallocate_dependencies(bp, freeblks, off) 7302 struct buf *bp; 7303 struct freeblks *freeblks; 7304 int off; 7305 { 7306 struct indirdep *indirdep; 7307 struct pagedep *pagedep; 7308 struct worklist *wk, *wkn; 7309 struct ufsmount *ump; 7310 7311 ump = softdep_bp_to_mp(bp); 7312 if (ump == NULL) 7313 goto done; 7314 ACQUIRE_LOCK(ump); 7315 LIST_FOREACH_SAFE(wk, &bp->b_dep, wk_list, wkn) { 7316 switch (wk->wk_type) { 7317 case D_INDIRDEP: 7318 indirdep = WK_INDIRDEP(wk); 7319 if (bp->b_lblkno >= 0 || 7320 bp->b_blkno != indirdep->ir_savebp->b_lblkno) 7321 panic("deallocate_dependencies: not indir"); 7322 cancel_indirdep(indirdep, bp, freeblks); 7323 continue; 7324 7325 case D_PAGEDEP: 7326 pagedep = WK_PAGEDEP(wk); 7327 if (cancel_pagedep(pagedep, freeblks, off)) { 7328 FREE_LOCK(ump); 7329 return (ERESTART); 7330 } 7331 continue; 7332 7333 case D_ALLOCINDIR: 7334 /* 7335 * Simply remove the allocindir, we'll find it via 7336 * the indirdep where we can clear pointers if 7337 * needed. 7338 */ 7339 WORKLIST_REMOVE(wk); 7340 continue; 7341 7342 case D_FREEWORK: 7343 /* 7344 * A truncation is waiting for the zero'd pointers 7345 * to be written. It can be freed when the freeblks 7346 * is journaled. 7347 */ 7348 WORKLIST_REMOVE(wk); 7349 wk->wk_state |= ONDEPLIST; 7350 WORKLIST_INSERT(&freeblks->fb_freeworkhd, wk); 7351 break; 7352 7353 case D_ALLOCDIRECT: 7354 if (off != 0) 7355 continue; 7356 /* FALLTHROUGH */ 7357 default: 7358 panic("deallocate_dependencies: Unexpected type %s", 7359 TYPENAME(wk->wk_type)); 7360 /* NOTREACHED */ 7361 } 7362 } 7363 FREE_LOCK(ump); 7364 done: 7365 /* 7366 * Don't throw away this buf, we were partially truncating and 7367 * some deps may always remain. 7368 */ 7369 if (off) { 7370 allocbuf(bp, off); 7371 bp->b_vflags |= BV_SCANNED; 7372 return (EBUSY); 7373 } 7374 bp->b_flags |= B_INVAL | B_NOCACHE; 7375 7376 return (0); 7377 } 7378 7379 /* 7380 * An allocdirect is being canceled due to a truncate. We must make sure 7381 * the journal entry is released in concert with the blkfree that releases 7382 * the storage. Completed journal entries must not be released until the 7383 * space is no longer pointed to by the inode or in the bitmap. 7384 */ 7385 static void 7386 cancel_allocdirect(adphead, adp, freeblks) 7387 struct allocdirectlst *adphead; 7388 struct allocdirect *adp; 7389 struct freeblks *freeblks; 7390 { 7391 struct freework *freework; 7392 struct newblk *newblk; 7393 struct worklist *wk; 7394 7395 TAILQ_REMOVE(adphead, adp, ad_next); 7396 newblk = (struct newblk *)adp; 7397 freework = NULL; 7398 /* 7399 * Find the correct freework structure. 7400 */ 7401 LIST_FOREACH(wk, &freeblks->fb_freeworkhd, wk_list) { 7402 if (wk->wk_type != D_FREEWORK) 7403 continue; 7404 freework = WK_FREEWORK(wk); 7405 if (freework->fw_blkno == newblk->nb_newblkno) 7406 break; 7407 } 7408 if (freework == NULL) 7409 panic("cancel_allocdirect: Freework not found"); 7410 /* 7411 * If a newblk exists at all we still have the journal entry that 7412 * initiated the allocation so we do not need to journal the free. 7413 */ 7414 cancel_jfreeblk(freeblks, freework->fw_blkno); 7415 /* 7416 * If the journal hasn't been written the jnewblk must be passed 7417 * to the call to ffs_blkfree that reclaims the space. We accomplish 7418 * this by linking the journal dependency into the freework to be 7419 * freed when freework_freeblock() is called. If the journal has 7420 * been written we can simply reclaim the journal space when the 7421 * freeblks work is complete. 7422 */ 7423 freework->fw_jnewblk = cancel_newblk(newblk, &freework->fw_list, 7424 &freeblks->fb_jwork); 7425 WORKLIST_INSERT(&freeblks->fb_freeworkhd, &newblk->nb_list); 7426 } 7427 7428 7429 /* 7430 * Cancel a new block allocation. May be an indirect or direct block. We 7431 * remove it from various lists and return any journal record that needs to 7432 * be resolved by the caller. 7433 * 7434 * A special consideration is made for indirects which were never pointed 7435 * at on disk and will never be found once this block is released. 7436 */ 7437 static struct jnewblk * 7438 cancel_newblk(newblk, wk, wkhd) 7439 struct newblk *newblk; 7440 struct worklist *wk; 7441 struct workhead *wkhd; 7442 { 7443 struct jnewblk *jnewblk; 7444 7445 CTR1(KTR_SUJ, "cancel_newblk: blkno %jd", newblk->nb_newblkno); 7446 7447 newblk->nb_state |= GOINGAWAY; 7448 /* 7449 * Previously we traversed the completedhd on each indirdep 7450 * attached to this newblk to cancel them and gather journal 7451 * work. Since we need only the oldest journal segment and 7452 * the lowest point on the tree will always have the oldest 7453 * journal segment we are free to release the segments 7454 * of any subordinates and may leave the indirdep list to 7455 * indirdep_complete() when this newblk is freed. 7456 */ 7457 if (newblk->nb_state & ONDEPLIST) { 7458 newblk->nb_state &= ~ONDEPLIST; 7459 LIST_REMOVE(newblk, nb_deps); 7460 } 7461 if (newblk->nb_state & ONWORKLIST) 7462 WORKLIST_REMOVE(&newblk->nb_list); 7463 /* 7464 * If the journal entry hasn't been written we save a pointer to 7465 * the dependency that frees it until it is written or the 7466 * superseding operation completes. 7467 */ 7468 jnewblk = newblk->nb_jnewblk; 7469 if (jnewblk != NULL && wk != NULL) { 7470 newblk->nb_jnewblk = NULL; 7471 jnewblk->jn_dep = wk; 7472 } 7473 if (!LIST_EMPTY(&newblk->nb_jwork)) 7474 jwork_move(wkhd, &newblk->nb_jwork); 7475 /* 7476 * When truncating we must free the newdirblk early to remove 7477 * the pagedep from the hash before returning. 7478 */ 7479 if ((wk = LIST_FIRST(&newblk->nb_newdirblk)) != NULL) 7480 free_newdirblk(WK_NEWDIRBLK(wk)); 7481 if (!LIST_EMPTY(&newblk->nb_newdirblk)) 7482 panic("cancel_newblk: extra newdirblk"); 7483 7484 return (jnewblk); 7485 } 7486 7487 /* 7488 * Schedule the freefrag associated with a newblk to be released once 7489 * the pointers are written and the previous block is no longer needed. 7490 */ 7491 static void 7492 newblk_freefrag(newblk) 7493 struct newblk *newblk; 7494 { 7495 struct freefrag *freefrag; 7496 7497 if (newblk->nb_freefrag == NULL) 7498 return; 7499 freefrag = newblk->nb_freefrag; 7500 newblk->nb_freefrag = NULL; 7501 freefrag->ff_state |= COMPLETE; 7502 if ((freefrag->ff_state & ALLCOMPLETE) == ALLCOMPLETE) 7503 add_to_worklist(&freefrag->ff_list, 0); 7504 } 7505 7506 /* 7507 * Free a newblk. Generate a new freefrag work request if appropriate. 7508 * This must be called after the inode pointer and any direct block pointers 7509 * are valid or fully removed via truncate or frag extension. 7510 */ 7511 static void 7512 free_newblk(newblk) 7513 struct newblk *newblk; 7514 { 7515 struct indirdep *indirdep; 7516 struct worklist *wk; 7517 7518 KASSERT(newblk->nb_jnewblk == NULL, 7519 ("free_newblk: jnewblk %p still attached", newblk->nb_jnewblk)); 7520 KASSERT(newblk->nb_list.wk_type != D_NEWBLK, 7521 ("free_newblk: unclaimed newblk")); 7522 LOCK_OWNED(VFSTOUFS(newblk->nb_list.wk_mp)); 7523 newblk_freefrag(newblk); 7524 if (newblk->nb_state & ONDEPLIST) 7525 LIST_REMOVE(newblk, nb_deps); 7526 if (newblk->nb_state & ONWORKLIST) 7527 WORKLIST_REMOVE(&newblk->nb_list); 7528 LIST_REMOVE(newblk, nb_hash); 7529 if ((wk = LIST_FIRST(&newblk->nb_newdirblk)) != NULL) 7530 free_newdirblk(WK_NEWDIRBLK(wk)); 7531 if (!LIST_EMPTY(&newblk->nb_newdirblk)) 7532 panic("free_newblk: extra newdirblk"); 7533 while ((indirdep = LIST_FIRST(&newblk->nb_indirdeps)) != NULL) 7534 indirdep_complete(indirdep); 7535 handle_jwork(&newblk->nb_jwork); 7536 WORKITEM_FREE(newblk, D_NEWBLK); 7537 } 7538 7539 /* 7540 * Free a newdirblk. Clear the NEWBLOCK flag on its associated pagedep. 7541 */ 7542 static void 7543 free_newdirblk(newdirblk) 7544 struct newdirblk *newdirblk; 7545 { 7546 struct pagedep *pagedep; 7547 struct diradd *dap; 7548 struct worklist *wk; 7549 7550 LOCK_OWNED(VFSTOUFS(newdirblk->db_list.wk_mp)); 7551 WORKLIST_REMOVE(&newdirblk->db_list); 7552 /* 7553 * If the pagedep is still linked onto the directory buffer 7554 * dependency chain, then some of the entries on the 7555 * pd_pendinghd list may not be committed to disk yet. In 7556 * this case, we will simply clear the NEWBLOCK flag and 7557 * let the pd_pendinghd list be processed when the pagedep 7558 * is next written. If the pagedep is no longer on the buffer 7559 * dependency chain, then all the entries on the pd_pending 7560 * list are committed to disk and we can free them here. 7561 */ 7562 pagedep = newdirblk->db_pagedep; 7563 pagedep->pd_state &= ~NEWBLOCK; 7564 if ((pagedep->pd_state & ONWORKLIST) == 0) { 7565 while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL) 7566 free_diradd(dap, NULL); 7567 /* 7568 * If no dependencies remain, the pagedep will be freed. 7569 */ 7570 free_pagedep(pagedep); 7571 } 7572 /* Should only ever be one item in the list. */ 7573 while ((wk = LIST_FIRST(&newdirblk->db_mkdir)) != NULL) { 7574 WORKLIST_REMOVE(wk); 7575 handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY); 7576 } 7577 WORKITEM_FREE(newdirblk, D_NEWDIRBLK); 7578 } 7579 7580 /* 7581 * Prepare an inode to be freed. The actual free operation is not 7582 * done until the zero'ed inode has been written to disk. 7583 */ 7584 void 7585 softdep_freefile(pvp, ino, mode) 7586 struct vnode *pvp; 7587 ino_t ino; 7588 int mode; 7589 { 7590 struct inode *ip = VTOI(pvp); 7591 struct inodedep *inodedep; 7592 struct freefile *freefile; 7593 struct freeblks *freeblks; 7594 struct ufsmount *ump; 7595 7596 ump = ITOUMP(ip); 7597 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 7598 ("softdep_freefile called on non-softdep filesystem")); 7599 /* 7600 * This sets up the inode de-allocation dependency. 7601 */ 7602 freefile = malloc(sizeof(struct freefile), 7603 M_FREEFILE, M_SOFTDEP_FLAGS); 7604 workitem_alloc(&freefile->fx_list, D_FREEFILE, pvp->v_mount); 7605 freefile->fx_mode = mode; 7606 freefile->fx_oldinum = ino; 7607 freefile->fx_devvp = ump->um_devvp; 7608 LIST_INIT(&freefile->fx_jwork); 7609 UFS_LOCK(ump); 7610 ump->um_fs->fs_pendinginodes += 1; 7611 UFS_UNLOCK(ump); 7612 7613 /* 7614 * If the inodedep does not exist, then the zero'ed inode has 7615 * been written to disk. If the allocated inode has never been 7616 * written to disk, then the on-disk inode is zero'ed. In either 7617 * case we can free the file immediately. If the journal was 7618 * canceled before being written the inode will never make it to 7619 * disk and we must send the canceled journal entrys to 7620 * ffs_freefile() to be cleared in conjunction with the bitmap. 7621 * Any blocks waiting on the inode to write can be safely freed 7622 * here as it will never been written. 7623 */ 7624 ACQUIRE_LOCK(ump); 7625 inodedep_lookup(pvp->v_mount, ino, 0, &inodedep); 7626 if (inodedep) { 7627 /* 7628 * Clear out freeblks that no longer need to reference 7629 * this inode. 7630 */ 7631 while ((freeblks = 7632 TAILQ_FIRST(&inodedep->id_freeblklst)) != NULL) { 7633 TAILQ_REMOVE(&inodedep->id_freeblklst, freeblks, 7634 fb_next); 7635 freeblks->fb_state &= ~ONDEPLIST; 7636 } 7637 /* 7638 * Remove this inode from the unlinked list. 7639 */ 7640 if (inodedep->id_state & UNLINKED) { 7641 /* 7642 * Save the journal work to be freed with the bitmap 7643 * before we clear UNLINKED. Otherwise it can be lost 7644 * if the inode block is written. 7645 */ 7646 handle_bufwait(inodedep, &freefile->fx_jwork); 7647 clear_unlinked_inodedep(inodedep); 7648 /* 7649 * Re-acquire inodedep as we've dropped the 7650 * per-filesystem lock in clear_unlinked_inodedep(). 7651 */ 7652 inodedep_lookup(pvp->v_mount, ino, 0, &inodedep); 7653 } 7654 } 7655 if (inodedep == NULL || check_inode_unwritten(inodedep)) { 7656 FREE_LOCK(ump); 7657 handle_workitem_freefile(freefile); 7658 return; 7659 } 7660 if ((inodedep->id_state & DEPCOMPLETE) == 0) 7661 inodedep->id_state |= GOINGAWAY; 7662 WORKLIST_INSERT(&inodedep->id_inowait, &freefile->fx_list); 7663 FREE_LOCK(ump); 7664 if (ip->i_number == ino) 7665 UFS_INODE_SET_FLAG(ip, IN_MODIFIED); 7666 } 7667 7668 /* 7669 * Check to see if an inode has never been written to disk. If 7670 * so free the inodedep and return success, otherwise return failure. 7671 * 7672 * If we still have a bitmap dependency, then the inode has never 7673 * been written to disk. Drop the dependency as it is no longer 7674 * necessary since the inode is being deallocated. We set the 7675 * ALLCOMPLETE flags since the bitmap now properly shows that the 7676 * inode is not allocated. Even if the inode is actively being 7677 * written, it has been rolled back to its zero'ed state, so we 7678 * are ensured that a zero inode is what is on the disk. For short 7679 * lived files, this change will usually result in removing all the 7680 * dependencies from the inode so that it can be freed immediately. 7681 */ 7682 static int 7683 check_inode_unwritten(inodedep) 7684 struct inodedep *inodedep; 7685 { 7686 7687 LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp)); 7688 7689 if ((inodedep->id_state & (DEPCOMPLETE | UNLINKED)) != 0 || 7690 !LIST_EMPTY(&inodedep->id_dirremhd) || 7691 !LIST_EMPTY(&inodedep->id_pendinghd) || 7692 !LIST_EMPTY(&inodedep->id_bufwait) || 7693 !LIST_EMPTY(&inodedep->id_inowait) || 7694 !TAILQ_EMPTY(&inodedep->id_inoreflst) || 7695 !TAILQ_EMPTY(&inodedep->id_inoupdt) || 7696 !TAILQ_EMPTY(&inodedep->id_newinoupdt) || 7697 !TAILQ_EMPTY(&inodedep->id_extupdt) || 7698 !TAILQ_EMPTY(&inodedep->id_newextupdt) || 7699 !TAILQ_EMPTY(&inodedep->id_freeblklst) || 7700 inodedep->id_mkdiradd != NULL || 7701 inodedep->id_nlinkdelta != 0) 7702 return (0); 7703 /* 7704 * Another process might be in initiate_write_inodeblock_ufs[12] 7705 * trying to allocate memory without holding "Softdep Lock". 7706 */ 7707 if ((inodedep->id_state & IOSTARTED) != 0 && 7708 inodedep->id_savedino1 == NULL) 7709 return (0); 7710 7711 if (inodedep->id_state & ONDEPLIST) 7712 LIST_REMOVE(inodedep, id_deps); 7713 inodedep->id_state &= ~ONDEPLIST; 7714 inodedep->id_state |= ALLCOMPLETE; 7715 inodedep->id_bmsafemap = NULL; 7716 if (inodedep->id_state & ONWORKLIST) 7717 WORKLIST_REMOVE(&inodedep->id_list); 7718 if (inodedep->id_savedino1 != NULL) { 7719 free(inodedep->id_savedino1, M_SAVEDINO); 7720 inodedep->id_savedino1 = NULL; 7721 } 7722 if (free_inodedep(inodedep) == 0) 7723 panic("check_inode_unwritten: busy inode"); 7724 return (1); 7725 } 7726 7727 static int 7728 check_inodedep_free(inodedep) 7729 struct inodedep *inodedep; 7730 { 7731 7732 LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp)); 7733 if ((inodedep->id_state & ALLCOMPLETE) != ALLCOMPLETE || 7734 !LIST_EMPTY(&inodedep->id_dirremhd) || 7735 !LIST_EMPTY(&inodedep->id_pendinghd) || 7736 !LIST_EMPTY(&inodedep->id_bufwait) || 7737 !LIST_EMPTY(&inodedep->id_inowait) || 7738 !TAILQ_EMPTY(&inodedep->id_inoreflst) || 7739 !TAILQ_EMPTY(&inodedep->id_inoupdt) || 7740 !TAILQ_EMPTY(&inodedep->id_newinoupdt) || 7741 !TAILQ_EMPTY(&inodedep->id_extupdt) || 7742 !TAILQ_EMPTY(&inodedep->id_newextupdt) || 7743 !TAILQ_EMPTY(&inodedep->id_freeblklst) || 7744 inodedep->id_mkdiradd != NULL || 7745 inodedep->id_nlinkdelta != 0 || 7746 inodedep->id_savedino1 != NULL) 7747 return (0); 7748 return (1); 7749 } 7750 7751 /* 7752 * Try to free an inodedep structure. Return 1 if it could be freed. 7753 */ 7754 static int 7755 free_inodedep(inodedep) 7756 struct inodedep *inodedep; 7757 { 7758 7759 LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp)); 7760 if ((inodedep->id_state & (ONWORKLIST | UNLINKED)) != 0 || 7761 !check_inodedep_free(inodedep)) 7762 return (0); 7763 if (inodedep->id_state & ONDEPLIST) 7764 LIST_REMOVE(inodedep, id_deps); 7765 LIST_REMOVE(inodedep, id_hash); 7766 WORKITEM_FREE(inodedep, D_INODEDEP); 7767 return (1); 7768 } 7769 7770 /* 7771 * Free the block referenced by a freework structure. The parent freeblks 7772 * structure is released and completed when the final cg bitmap reaches 7773 * the disk. This routine may be freeing a jnewblk which never made it to 7774 * disk in which case we do not have to wait as the operation is undone 7775 * in memory immediately. 7776 */ 7777 static void 7778 freework_freeblock(freework, key) 7779 struct freework *freework; 7780 u_long key; 7781 { 7782 struct freeblks *freeblks; 7783 struct jnewblk *jnewblk; 7784 struct ufsmount *ump; 7785 struct workhead wkhd; 7786 struct fs *fs; 7787 int bsize; 7788 int needj; 7789 7790 ump = VFSTOUFS(freework->fw_list.wk_mp); 7791 LOCK_OWNED(ump); 7792 /* 7793 * Handle partial truncate separately. 7794 */ 7795 if (freework->fw_indir) { 7796 complete_trunc_indir(freework); 7797 return; 7798 } 7799 freeblks = freework->fw_freeblks; 7800 fs = ump->um_fs; 7801 needj = MOUNTEDSUJ(freeblks->fb_list.wk_mp) != 0; 7802 bsize = lfragtosize(fs, freework->fw_frags); 7803 LIST_INIT(&wkhd); 7804 /* 7805 * DEPCOMPLETE is cleared in indirblk_insert() if the block lives 7806 * on the indirblk hashtable and prevents premature freeing. 7807 */ 7808 freework->fw_state |= DEPCOMPLETE; 7809 /* 7810 * SUJ needs to wait for the segment referencing freed indirect 7811 * blocks to expire so that we know the checker will not confuse 7812 * a re-allocated indirect block with its old contents. 7813 */ 7814 if (needj && freework->fw_lbn <= -UFS_NDADDR) 7815 indirblk_insert(freework); 7816 /* 7817 * If we are canceling an existing jnewblk pass it to the free 7818 * routine, otherwise pass the freeblk which will ultimately 7819 * release the freeblks. If we're not journaling, we can just 7820 * free the freeblks immediately. 7821 */ 7822 jnewblk = freework->fw_jnewblk; 7823 if (jnewblk != NULL) { 7824 cancel_jnewblk(jnewblk, &wkhd); 7825 needj = 0; 7826 } else if (needj) { 7827 freework->fw_state |= DELAYEDFREE; 7828 freeblks->fb_cgwait++; 7829 WORKLIST_INSERT(&wkhd, &freework->fw_list); 7830 } 7831 FREE_LOCK(ump); 7832 freeblks_free(ump, freeblks, btodb(bsize)); 7833 CTR4(KTR_SUJ, 7834 "freework_freeblock: ino %jd blkno %jd lbn %jd size %d", 7835 freeblks->fb_inum, freework->fw_blkno, freework->fw_lbn, bsize); 7836 ffs_blkfree(ump, fs, freeblks->fb_devvp, freework->fw_blkno, bsize, 7837 freeblks->fb_inum, freeblks->fb_vtype, &wkhd, key); 7838 ACQUIRE_LOCK(ump); 7839 /* 7840 * The jnewblk will be discarded and the bits in the map never 7841 * made it to disk. We can immediately free the freeblk. 7842 */ 7843 if (needj == 0) 7844 handle_written_freework(freework); 7845 } 7846 7847 /* 7848 * We enqueue freework items that need processing back on the freeblks and 7849 * add the freeblks to the worklist. This makes it easier to find all work 7850 * required to flush a truncation in process_truncates(). 7851 */ 7852 static void 7853 freework_enqueue(freework) 7854 struct freework *freework; 7855 { 7856 struct freeblks *freeblks; 7857 7858 freeblks = freework->fw_freeblks; 7859 if ((freework->fw_state & INPROGRESS) == 0) 7860 WORKLIST_INSERT(&freeblks->fb_freeworkhd, &freework->fw_list); 7861 if ((freeblks->fb_state & 7862 (ONWORKLIST | INPROGRESS | ALLCOMPLETE)) == ALLCOMPLETE && 7863 LIST_EMPTY(&freeblks->fb_jblkdephd)) 7864 add_to_worklist(&freeblks->fb_list, WK_NODELAY); 7865 } 7866 7867 /* 7868 * Start, continue, or finish the process of freeing an indirect block tree. 7869 * The free operation may be paused at any point with fw_off containing the 7870 * offset to restart from. This enables us to implement some flow control 7871 * for large truncates which may fan out and generate a huge number of 7872 * dependencies. 7873 */ 7874 static void 7875 handle_workitem_indirblk(freework) 7876 struct freework *freework; 7877 { 7878 struct freeblks *freeblks; 7879 struct ufsmount *ump; 7880 struct fs *fs; 7881 7882 freeblks = freework->fw_freeblks; 7883 ump = VFSTOUFS(freeblks->fb_list.wk_mp); 7884 fs = ump->um_fs; 7885 if (freework->fw_state & DEPCOMPLETE) { 7886 handle_written_freework(freework); 7887 return; 7888 } 7889 if (freework->fw_off == NINDIR(fs)) { 7890 freework_freeblock(freework, SINGLETON_KEY); 7891 return; 7892 } 7893 freework->fw_state |= INPROGRESS; 7894 FREE_LOCK(ump); 7895 indir_trunc(freework, fsbtodb(fs, freework->fw_blkno), 7896 freework->fw_lbn); 7897 ACQUIRE_LOCK(ump); 7898 } 7899 7900 /* 7901 * Called when a freework structure attached to a cg buf is written. The 7902 * ref on either the parent or the freeblks structure is released and 7903 * the freeblks is added back to the worklist if there is more work to do. 7904 */ 7905 static void 7906 handle_written_freework(freework) 7907 struct freework *freework; 7908 { 7909 struct freeblks *freeblks; 7910 struct freework *parent; 7911 7912 freeblks = freework->fw_freeblks; 7913 parent = freework->fw_parent; 7914 if (freework->fw_state & DELAYEDFREE) 7915 freeblks->fb_cgwait--; 7916 freework->fw_state |= COMPLETE; 7917 if ((freework->fw_state & ALLCOMPLETE) == ALLCOMPLETE) 7918 WORKITEM_FREE(freework, D_FREEWORK); 7919 if (parent) { 7920 if (--parent->fw_ref == 0) 7921 freework_enqueue(parent); 7922 return; 7923 } 7924 if (--freeblks->fb_ref != 0) 7925 return; 7926 if ((freeblks->fb_state & (ALLCOMPLETE | ONWORKLIST | INPROGRESS)) == 7927 ALLCOMPLETE && LIST_EMPTY(&freeblks->fb_jblkdephd)) 7928 add_to_worklist(&freeblks->fb_list, WK_NODELAY); 7929 } 7930 7931 /* 7932 * This workitem routine performs the block de-allocation. 7933 * The workitem is added to the pending list after the updated 7934 * inode block has been written to disk. As mentioned above, 7935 * checks regarding the number of blocks de-allocated (compared 7936 * to the number of blocks allocated for the file) are also 7937 * performed in this function. 7938 */ 7939 static int 7940 handle_workitem_freeblocks(freeblks, flags) 7941 struct freeblks *freeblks; 7942 int flags; 7943 { 7944 struct freework *freework; 7945 struct newblk *newblk; 7946 struct allocindir *aip; 7947 struct ufsmount *ump; 7948 struct worklist *wk; 7949 u_long key; 7950 7951 KASSERT(LIST_EMPTY(&freeblks->fb_jblkdephd), 7952 ("handle_workitem_freeblocks: Journal entries not written.")); 7953 ump = VFSTOUFS(freeblks->fb_list.wk_mp); 7954 key = ffs_blkrelease_start(ump, freeblks->fb_devvp, freeblks->fb_inum); 7955 ACQUIRE_LOCK(ump); 7956 while ((wk = LIST_FIRST(&freeblks->fb_freeworkhd)) != NULL) { 7957 WORKLIST_REMOVE(wk); 7958 switch (wk->wk_type) { 7959 case D_DIRREM: 7960 wk->wk_state |= COMPLETE; 7961 add_to_worklist(wk, 0); 7962 continue; 7963 7964 case D_ALLOCDIRECT: 7965 free_newblk(WK_NEWBLK(wk)); 7966 continue; 7967 7968 case D_ALLOCINDIR: 7969 aip = WK_ALLOCINDIR(wk); 7970 freework = NULL; 7971 if (aip->ai_state & DELAYEDFREE) { 7972 FREE_LOCK(ump); 7973 freework = newfreework(ump, freeblks, NULL, 7974 aip->ai_lbn, aip->ai_newblkno, 7975 ump->um_fs->fs_frag, 0, 0); 7976 ACQUIRE_LOCK(ump); 7977 } 7978 newblk = WK_NEWBLK(wk); 7979 if (newblk->nb_jnewblk) { 7980 freework->fw_jnewblk = newblk->nb_jnewblk; 7981 newblk->nb_jnewblk->jn_dep = &freework->fw_list; 7982 newblk->nb_jnewblk = NULL; 7983 } 7984 free_newblk(newblk); 7985 continue; 7986 7987 case D_FREEWORK: 7988 freework = WK_FREEWORK(wk); 7989 if (freework->fw_lbn <= -UFS_NDADDR) 7990 handle_workitem_indirblk(freework); 7991 else 7992 freework_freeblock(freework, key); 7993 continue; 7994 default: 7995 panic("handle_workitem_freeblocks: Unknown type %s", 7996 TYPENAME(wk->wk_type)); 7997 } 7998 } 7999 if (freeblks->fb_ref != 0) { 8000 freeblks->fb_state &= ~INPROGRESS; 8001 wake_worklist(&freeblks->fb_list); 8002 freeblks = NULL; 8003 } 8004 FREE_LOCK(ump); 8005 ffs_blkrelease_finish(ump, key); 8006 if (freeblks) 8007 return handle_complete_freeblocks(freeblks, flags); 8008 return (0); 8009 } 8010 8011 /* 8012 * Handle completion of block free via truncate. This allows fs_pending 8013 * to track the actual free block count more closely than if we only updated 8014 * it at the end. We must be careful to handle cases where the block count 8015 * on free was incorrect. 8016 */ 8017 static void 8018 freeblks_free(ump, freeblks, blocks) 8019 struct ufsmount *ump; 8020 struct freeblks *freeblks; 8021 int blocks; 8022 { 8023 struct fs *fs; 8024 ufs2_daddr_t remain; 8025 8026 UFS_LOCK(ump); 8027 remain = -freeblks->fb_chkcnt; 8028 freeblks->fb_chkcnt += blocks; 8029 if (remain > 0) { 8030 if (remain < blocks) 8031 blocks = remain; 8032 fs = ump->um_fs; 8033 fs->fs_pendingblocks -= blocks; 8034 } 8035 UFS_UNLOCK(ump); 8036 } 8037 8038 /* 8039 * Once all of the freework workitems are complete we can retire the 8040 * freeblocks dependency and any journal work awaiting completion. This 8041 * can not be called until all other dependencies are stable on disk. 8042 */ 8043 static int 8044 handle_complete_freeblocks(freeblks, flags) 8045 struct freeblks *freeblks; 8046 int flags; 8047 { 8048 struct inodedep *inodedep; 8049 struct inode *ip; 8050 struct vnode *vp; 8051 struct fs *fs; 8052 struct ufsmount *ump; 8053 ufs2_daddr_t spare; 8054 8055 ump = VFSTOUFS(freeblks->fb_list.wk_mp); 8056 fs = ump->um_fs; 8057 flags = LK_EXCLUSIVE | flags; 8058 spare = freeblks->fb_chkcnt; 8059 8060 /* 8061 * If we did not release the expected number of blocks we may have 8062 * to adjust the inode block count here. Only do so if it wasn't 8063 * a truncation to zero and the modrev still matches. 8064 */ 8065 if (spare && freeblks->fb_len != 0) { 8066 if (ffs_vgetf(freeblks->fb_list.wk_mp, freeblks->fb_inum, 8067 flags, &vp, FFSV_FORCEINSMQ) != 0) 8068 return (EBUSY); 8069 ip = VTOI(vp); 8070 if (ip->i_mode == 0) { 8071 vgone(vp); 8072 } else if (DIP(ip, i_modrev) == freeblks->fb_modrev) { 8073 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - spare); 8074 UFS_INODE_SET_FLAG(ip, IN_CHANGE); 8075 /* 8076 * We must wait so this happens before the 8077 * journal is reclaimed. 8078 */ 8079 ffs_update(vp, 1); 8080 } 8081 vput(vp); 8082 } 8083 if (spare < 0) { 8084 UFS_LOCK(ump); 8085 fs->fs_pendingblocks += spare; 8086 UFS_UNLOCK(ump); 8087 } 8088 #ifdef QUOTA 8089 /* Handle spare. */ 8090 if (spare) 8091 quotaadj(freeblks->fb_quota, ump, -spare); 8092 quotarele(freeblks->fb_quota); 8093 #endif 8094 ACQUIRE_LOCK(ump); 8095 if (freeblks->fb_state & ONDEPLIST) { 8096 inodedep_lookup(freeblks->fb_list.wk_mp, freeblks->fb_inum, 8097 0, &inodedep); 8098 TAILQ_REMOVE(&inodedep->id_freeblklst, freeblks, fb_next); 8099 freeblks->fb_state &= ~ONDEPLIST; 8100 if (TAILQ_EMPTY(&inodedep->id_freeblklst)) 8101 free_inodedep(inodedep); 8102 } 8103 /* 8104 * All of the freeblock deps must be complete prior to this call 8105 * so it's now safe to complete earlier outstanding journal entries. 8106 */ 8107 handle_jwork(&freeblks->fb_jwork); 8108 WORKITEM_FREE(freeblks, D_FREEBLKS); 8109 FREE_LOCK(ump); 8110 return (0); 8111 } 8112 8113 /* 8114 * Release blocks associated with the freeblks and stored in the indirect 8115 * block dbn. If level is greater than SINGLE, the block is an indirect block 8116 * and recursive calls to indirtrunc must be used to cleanse other indirect 8117 * blocks. 8118 * 8119 * This handles partial and complete truncation of blocks. Partial is noted 8120 * with goingaway == 0. In this case the freework is completed after the 8121 * zero'd indirects are written to disk. For full truncation the freework 8122 * is completed after the block is freed. 8123 */ 8124 static void 8125 indir_trunc(freework, dbn, lbn) 8126 struct freework *freework; 8127 ufs2_daddr_t dbn; 8128 ufs_lbn_t lbn; 8129 { 8130 struct freework *nfreework; 8131 struct workhead wkhd; 8132 struct freeblks *freeblks; 8133 struct buf *bp; 8134 struct fs *fs; 8135 struct indirdep *indirdep; 8136 struct mount *mp; 8137 struct ufsmount *ump; 8138 ufs1_daddr_t *bap1; 8139 ufs2_daddr_t nb, nnb, *bap2; 8140 ufs_lbn_t lbnadd, nlbn; 8141 u_long key; 8142 int nblocks, ufs1fmt, freedblocks; 8143 int goingaway, freedeps, needj, level, cnt, i; 8144 8145 freeblks = freework->fw_freeblks; 8146 mp = freeblks->fb_list.wk_mp; 8147 ump = VFSTOUFS(mp); 8148 fs = ump->um_fs; 8149 /* 8150 * Get buffer of block pointers to be freed. There are three cases: 8151 * 8152 * 1) Partial truncate caches the indirdep pointer in the freework 8153 * which provides us a back copy to the save bp which holds the 8154 * pointers we want to clear. When this completes the zero 8155 * pointers are written to the real copy. 8156 * 2) The indirect is being completely truncated, cancel_indirdep() 8157 * eliminated the real copy and placed the indirdep on the saved 8158 * copy. The indirdep and buf are discarded when this completes. 8159 * 3) The indirect was not in memory, we read a copy off of the disk 8160 * using the devvp and drop and invalidate the buffer when we're 8161 * done. 8162 */ 8163 goingaway = 1; 8164 indirdep = NULL; 8165 if (freework->fw_indir != NULL) { 8166 goingaway = 0; 8167 indirdep = freework->fw_indir; 8168 bp = indirdep->ir_savebp; 8169 if (bp == NULL || bp->b_blkno != dbn) 8170 panic("indir_trunc: Bad saved buf %p blkno %jd", 8171 bp, (intmax_t)dbn); 8172 } else if ((bp = incore(&freeblks->fb_devvp->v_bufobj, dbn)) != NULL) { 8173 /* 8174 * The lock prevents the buf dep list from changing and 8175 * indirects on devvp should only ever have one dependency. 8176 */ 8177 indirdep = WK_INDIRDEP(LIST_FIRST(&bp->b_dep)); 8178 if (indirdep == NULL || (indirdep->ir_state & GOINGAWAY) == 0) 8179 panic("indir_trunc: Bad indirdep %p from buf %p", 8180 indirdep, bp); 8181 } else if (bread(freeblks->fb_devvp, dbn, (int)fs->fs_bsize, 8182 NOCRED, &bp) != 0) { 8183 brelse(bp); 8184 return; 8185 } 8186 ACQUIRE_LOCK(ump); 8187 /* Protects against a race with complete_trunc_indir(). */ 8188 freework->fw_state &= ~INPROGRESS; 8189 /* 8190 * If we have an indirdep we need to enforce the truncation order 8191 * and discard it when it is complete. 8192 */ 8193 if (indirdep) { 8194 if (freework != TAILQ_FIRST(&indirdep->ir_trunc) && 8195 !TAILQ_EMPTY(&indirdep->ir_trunc)) { 8196 /* 8197 * Add the complete truncate to the list on the 8198 * indirdep to enforce in-order processing. 8199 */ 8200 if (freework->fw_indir == NULL) 8201 TAILQ_INSERT_TAIL(&indirdep->ir_trunc, 8202 freework, fw_next); 8203 FREE_LOCK(ump); 8204 return; 8205 } 8206 /* 8207 * If we're goingaway, free the indirdep. Otherwise it will 8208 * linger until the write completes. 8209 */ 8210 if (goingaway) 8211 free_indirdep(indirdep); 8212 } 8213 FREE_LOCK(ump); 8214 /* Initialize pointers depending on block size. */ 8215 if (ump->um_fstype == UFS1) { 8216 bap1 = (ufs1_daddr_t *)bp->b_data; 8217 nb = bap1[freework->fw_off]; 8218 ufs1fmt = 1; 8219 bap2 = NULL; 8220 } else { 8221 bap2 = (ufs2_daddr_t *)bp->b_data; 8222 nb = bap2[freework->fw_off]; 8223 ufs1fmt = 0; 8224 bap1 = NULL; 8225 } 8226 level = lbn_level(lbn); 8227 needj = MOUNTEDSUJ(UFSTOVFS(ump)) != 0; 8228 lbnadd = lbn_offset(fs, level); 8229 nblocks = btodb(fs->fs_bsize); 8230 nfreework = freework; 8231 freedeps = 0; 8232 cnt = 0; 8233 /* 8234 * Reclaim blocks. Traverses into nested indirect levels and 8235 * arranges for the current level to be freed when subordinates 8236 * are free when journaling. 8237 */ 8238 key = ffs_blkrelease_start(ump, freeblks->fb_devvp, freeblks->fb_inum); 8239 for (i = freework->fw_off; i < NINDIR(fs); i++, nb = nnb) { 8240 if (UFS_CHECK_BLKNO(mp, freeblks->fb_inum, nb, 8241 fs->fs_bsize) != 0) 8242 nb = 0; 8243 if (i != NINDIR(fs) - 1) { 8244 if (ufs1fmt) 8245 nnb = bap1[i+1]; 8246 else 8247 nnb = bap2[i+1]; 8248 } else 8249 nnb = 0; 8250 if (nb == 0) 8251 continue; 8252 cnt++; 8253 if (level != 0) { 8254 nlbn = (lbn + 1) - (i * lbnadd); 8255 if (needj != 0) { 8256 nfreework = newfreework(ump, freeblks, freework, 8257 nlbn, nb, fs->fs_frag, 0, 0); 8258 freedeps++; 8259 } 8260 indir_trunc(nfreework, fsbtodb(fs, nb), nlbn); 8261 } else { 8262 struct freedep *freedep; 8263 8264 /* 8265 * Attempt to aggregate freedep dependencies for 8266 * all blocks being released to the same CG. 8267 */ 8268 LIST_INIT(&wkhd); 8269 if (needj != 0 && 8270 (nnb == 0 || (dtog(fs, nb) != dtog(fs, nnb)))) { 8271 freedep = newfreedep(freework); 8272 WORKLIST_INSERT_UNLOCKED(&wkhd, 8273 &freedep->fd_list); 8274 freedeps++; 8275 } 8276 CTR3(KTR_SUJ, 8277 "indir_trunc: ino %jd blkno %jd size %d", 8278 freeblks->fb_inum, nb, fs->fs_bsize); 8279 ffs_blkfree(ump, fs, freeblks->fb_devvp, nb, 8280 fs->fs_bsize, freeblks->fb_inum, 8281 freeblks->fb_vtype, &wkhd, key); 8282 } 8283 } 8284 ffs_blkrelease_finish(ump, key); 8285 if (goingaway) { 8286 bp->b_flags |= B_INVAL | B_NOCACHE; 8287 brelse(bp); 8288 } 8289 freedblocks = 0; 8290 if (level == 0) 8291 freedblocks = (nblocks * cnt); 8292 if (needj == 0) 8293 freedblocks += nblocks; 8294 freeblks_free(ump, freeblks, freedblocks); 8295 /* 8296 * If we are journaling set up the ref counts and offset so this 8297 * indirect can be completed when its children are free. 8298 */ 8299 if (needj) { 8300 ACQUIRE_LOCK(ump); 8301 freework->fw_off = i; 8302 freework->fw_ref += freedeps; 8303 freework->fw_ref -= NINDIR(fs) + 1; 8304 if (level == 0) 8305 freeblks->fb_cgwait += freedeps; 8306 if (freework->fw_ref == 0) 8307 freework_freeblock(freework, SINGLETON_KEY); 8308 FREE_LOCK(ump); 8309 return; 8310 } 8311 /* 8312 * If we're not journaling we can free the indirect now. 8313 */ 8314 dbn = dbtofsb(fs, dbn); 8315 CTR3(KTR_SUJ, 8316 "indir_trunc 2: ino %jd blkno %jd size %d", 8317 freeblks->fb_inum, dbn, fs->fs_bsize); 8318 ffs_blkfree(ump, fs, freeblks->fb_devvp, dbn, fs->fs_bsize, 8319 freeblks->fb_inum, freeblks->fb_vtype, NULL, SINGLETON_KEY); 8320 /* Non SUJ softdep does single-threaded truncations. */ 8321 if (freework->fw_blkno == dbn) { 8322 freework->fw_state |= ALLCOMPLETE; 8323 ACQUIRE_LOCK(ump); 8324 handle_written_freework(freework); 8325 FREE_LOCK(ump); 8326 } 8327 return; 8328 } 8329 8330 /* 8331 * Cancel an allocindir when it is removed via truncation. When bp is not 8332 * NULL the indirect never appeared on disk and is scheduled to be freed 8333 * independently of the indir so we can more easily track journal work. 8334 */ 8335 static void 8336 cancel_allocindir(aip, bp, freeblks, trunc) 8337 struct allocindir *aip; 8338 struct buf *bp; 8339 struct freeblks *freeblks; 8340 int trunc; 8341 { 8342 struct indirdep *indirdep; 8343 struct freefrag *freefrag; 8344 struct newblk *newblk; 8345 8346 newblk = (struct newblk *)aip; 8347 LIST_REMOVE(aip, ai_next); 8348 /* 8349 * We must eliminate the pointer in bp if it must be freed on its 8350 * own due to partial truncate or pending journal work. 8351 */ 8352 if (bp && (trunc || newblk->nb_jnewblk)) { 8353 /* 8354 * Clear the pointer and mark the aip to be freed 8355 * directly if it never existed on disk. 8356 */ 8357 aip->ai_state |= DELAYEDFREE; 8358 indirdep = aip->ai_indirdep; 8359 if (indirdep->ir_state & UFS1FMT) 8360 ((ufs1_daddr_t *)bp->b_data)[aip->ai_offset] = 0; 8361 else 8362 ((ufs2_daddr_t *)bp->b_data)[aip->ai_offset] = 0; 8363 } 8364 /* 8365 * When truncating the previous pointer will be freed via 8366 * savedbp. Eliminate the freefrag which would dup free. 8367 */ 8368 if (trunc && (freefrag = newblk->nb_freefrag) != NULL) { 8369 newblk->nb_freefrag = NULL; 8370 if (freefrag->ff_jdep) 8371 cancel_jfreefrag( 8372 WK_JFREEFRAG(freefrag->ff_jdep)); 8373 jwork_move(&freeblks->fb_jwork, &freefrag->ff_jwork); 8374 WORKITEM_FREE(freefrag, D_FREEFRAG); 8375 } 8376 /* 8377 * If the journal hasn't been written the jnewblk must be passed 8378 * to the call to ffs_blkfree that reclaims the space. We accomplish 8379 * this by leaving the journal dependency on the newblk to be freed 8380 * when a freework is created in handle_workitem_freeblocks(). 8381 */ 8382 cancel_newblk(newblk, NULL, &freeblks->fb_jwork); 8383 WORKLIST_INSERT(&freeblks->fb_freeworkhd, &newblk->nb_list); 8384 } 8385 8386 /* 8387 * Create the mkdir dependencies for . and .. in a new directory. Link them 8388 * in to a newdirblk so any subsequent additions are tracked properly. The 8389 * caller is responsible for adding the mkdir1 dependency to the journal 8390 * and updating id_mkdiradd. This function returns with the per-filesystem 8391 * lock held. 8392 */ 8393 static struct mkdir * 8394 setup_newdir(dap, newinum, dinum, newdirbp, mkdirp) 8395 struct diradd *dap; 8396 ino_t newinum; 8397 ino_t dinum; 8398 struct buf *newdirbp; 8399 struct mkdir **mkdirp; 8400 { 8401 struct newblk *newblk; 8402 struct pagedep *pagedep; 8403 struct inodedep *inodedep; 8404 struct newdirblk *newdirblk; 8405 struct mkdir *mkdir1, *mkdir2; 8406 struct worklist *wk; 8407 struct jaddref *jaddref; 8408 struct ufsmount *ump; 8409 struct mount *mp; 8410 8411 mp = dap->da_list.wk_mp; 8412 ump = VFSTOUFS(mp); 8413 newdirblk = malloc(sizeof(struct newdirblk), M_NEWDIRBLK, 8414 M_SOFTDEP_FLAGS); 8415 workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp); 8416 LIST_INIT(&newdirblk->db_mkdir); 8417 mkdir1 = malloc(sizeof(struct mkdir), M_MKDIR, M_SOFTDEP_FLAGS); 8418 workitem_alloc(&mkdir1->md_list, D_MKDIR, mp); 8419 mkdir1->md_state = ATTACHED | MKDIR_BODY; 8420 mkdir1->md_diradd = dap; 8421 mkdir1->md_jaddref = NULL; 8422 mkdir2 = malloc(sizeof(struct mkdir), M_MKDIR, M_SOFTDEP_FLAGS); 8423 workitem_alloc(&mkdir2->md_list, D_MKDIR, mp); 8424 mkdir2->md_state = ATTACHED | MKDIR_PARENT; 8425 mkdir2->md_diradd = dap; 8426 mkdir2->md_jaddref = NULL; 8427 if (MOUNTEDSUJ(mp) == 0) { 8428 mkdir1->md_state |= DEPCOMPLETE; 8429 mkdir2->md_state |= DEPCOMPLETE; 8430 } 8431 /* 8432 * Dependency on "." and ".." being written to disk. 8433 */ 8434 mkdir1->md_buf = newdirbp; 8435 ACQUIRE_LOCK(VFSTOUFS(mp)); 8436 LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir1, md_mkdirs); 8437 /* 8438 * We must link the pagedep, allocdirect, and newdirblk for 8439 * the initial file page so the pointer to the new directory 8440 * is not written until the directory contents are live and 8441 * any subsequent additions are not marked live until the 8442 * block is reachable via the inode. 8443 */ 8444 if (pagedep_lookup(mp, newdirbp, newinum, 0, 0, &pagedep) == 0) 8445 panic("setup_newdir: lost pagedep"); 8446 LIST_FOREACH(wk, &newdirbp->b_dep, wk_list) 8447 if (wk->wk_type == D_ALLOCDIRECT) 8448 break; 8449 if (wk == NULL) 8450 panic("setup_newdir: lost allocdirect"); 8451 if (pagedep->pd_state & NEWBLOCK) 8452 panic("setup_newdir: NEWBLOCK already set"); 8453 newblk = WK_NEWBLK(wk); 8454 pagedep->pd_state |= NEWBLOCK; 8455 pagedep->pd_newdirblk = newdirblk; 8456 newdirblk->db_pagedep = pagedep; 8457 WORKLIST_INSERT(&newblk->nb_newdirblk, &newdirblk->db_list); 8458 WORKLIST_INSERT(&newdirblk->db_mkdir, &mkdir1->md_list); 8459 /* 8460 * Look up the inodedep for the parent directory so that we 8461 * can link mkdir2 into the pending dotdot jaddref or 8462 * the inode write if there is none. If the inode is 8463 * ALLCOMPLETE and no jaddref is present all dependencies have 8464 * been satisfied and mkdir2 can be freed. 8465 */ 8466 inodedep_lookup(mp, dinum, 0, &inodedep); 8467 if (MOUNTEDSUJ(mp)) { 8468 if (inodedep == NULL) 8469 panic("setup_newdir: Lost parent."); 8470 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 8471 inoreflst); 8472 KASSERT(jaddref != NULL && jaddref->ja_parent == newinum && 8473 (jaddref->ja_state & MKDIR_PARENT), 8474 ("setup_newdir: bad dotdot jaddref %p", jaddref)); 8475 LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir2, md_mkdirs); 8476 mkdir2->md_jaddref = jaddref; 8477 jaddref->ja_mkdir = mkdir2; 8478 } else if (inodedep == NULL || 8479 (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) { 8480 dap->da_state &= ~MKDIR_PARENT; 8481 WORKITEM_FREE(mkdir2, D_MKDIR); 8482 mkdir2 = NULL; 8483 } else { 8484 LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir2, md_mkdirs); 8485 WORKLIST_INSERT(&inodedep->id_bufwait, &mkdir2->md_list); 8486 } 8487 *mkdirp = mkdir2; 8488 8489 return (mkdir1); 8490 } 8491 8492 /* 8493 * Directory entry addition dependencies. 8494 * 8495 * When adding a new directory entry, the inode (with its incremented link 8496 * count) must be written to disk before the directory entry's pointer to it. 8497 * Also, if the inode is newly allocated, the corresponding freemap must be 8498 * updated (on disk) before the directory entry's pointer. These requirements 8499 * are met via undo/redo on the directory entry's pointer, which consists 8500 * simply of the inode number. 8501 * 8502 * As directory entries are added and deleted, the free space within a 8503 * directory block can become fragmented. The ufs filesystem will compact 8504 * a fragmented directory block to make space for a new entry. When this 8505 * occurs, the offsets of previously added entries change. Any "diradd" 8506 * dependency structures corresponding to these entries must be updated with 8507 * the new offsets. 8508 */ 8509 8510 /* 8511 * This routine is called after the in-memory inode's link 8512 * count has been incremented, but before the directory entry's 8513 * pointer to the inode has been set. 8514 */ 8515 int 8516 softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk) 8517 struct buf *bp; /* buffer containing directory block */ 8518 struct inode *dp; /* inode for directory */ 8519 off_t diroffset; /* offset of new entry in directory */ 8520 ino_t newinum; /* inode referenced by new directory entry */ 8521 struct buf *newdirbp; /* non-NULL => contents of new mkdir */ 8522 int isnewblk; /* entry is in a newly allocated block */ 8523 { 8524 int offset; /* offset of new entry within directory block */ 8525 ufs_lbn_t lbn; /* block in directory containing new entry */ 8526 struct fs *fs; 8527 struct diradd *dap; 8528 struct newblk *newblk; 8529 struct pagedep *pagedep; 8530 struct inodedep *inodedep; 8531 struct newdirblk *newdirblk; 8532 struct mkdir *mkdir1, *mkdir2; 8533 struct jaddref *jaddref; 8534 struct ufsmount *ump; 8535 struct mount *mp; 8536 int isindir; 8537 8538 mp = ITOVFS(dp); 8539 ump = VFSTOUFS(mp); 8540 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 8541 ("softdep_setup_directory_add called on non-softdep filesystem")); 8542 /* 8543 * Whiteouts have no dependencies. 8544 */ 8545 if (newinum == UFS_WINO) { 8546 if (newdirbp != NULL) 8547 bdwrite(newdirbp); 8548 return (0); 8549 } 8550 jaddref = NULL; 8551 mkdir1 = mkdir2 = NULL; 8552 fs = ump->um_fs; 8553 lbn = lblkno(fs, diroffset); 8554 offset = blkoff(fs, diroffset); 8555 dap = malloc(sizeof(struct diradd), M_DIRADD, 8556 M_SOFTDEP_FLAGS|M_ZERO); 8557 workitem_alloc(&dap->da_list, D_DIRADD, mp); 8558 dap->da_offset = offset; 8559 dap->da_newinum = newinum; 8560 dap->da_state = ATTACHED; 8561 LIST_INIT(&dap->da_jwork); 8562 isindir = bp->b_lblkno >= UFS_NDADDR; 8563 newdirblk = NULL; 8564 if (isnewblk && 8565 (isindir ? blkoff(fs, diroffset) : fragoff(fs, diroffset)) == 0) { 8566 newdirblk = malloc(sizeof(struct newdirblk), 8567 M_NEWDIRBLK, M_SOFTDEP_FLAGS); 8568 workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp); 8569 LIST_INIT(&newdirblk->db_mkdir); 8570 } 8571 /* 8572 * If we're creating a new directory setup the dependencies and set 8573 * the dap state to wait for them. Otherwise it's COMPLETE and 8574 * we can move on. 8575 */ 8576 if (newdirbp == NULL) { 8577 dap->da_state |= DEPCOMPLETE; 8578 ACQUIRE_LOCK(ump); 8579 } else { 8580 dap->da_state |= MKDIR_BODY | MKDIR_PARENT; 8581 mkdir1 = setup_newdir(dap, newinum, dp->i_number, newdirbp, 8582 &mkdir2); 8583 } 8584 /* 8585 * Link into parent directory pagedep to await its being written. 8586 */ 8587 pagedep_lookup(mp, bp, dp->i_number, lbn, DEPALLOC, &pagedep); 8588 #ifdef INVARIANTS 8589 if (diradd_lookup(pagedep, offset) != NULL) 8590 panic("softdep_setup_directory_add: %p already at off %d\n", 8591 diradd_lookup(pagedep, offset), offset); 8592 #endif 8593 dap->da_pagedep = pagedep; 8594 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], dap, 8595 da_pdlist); 8596 inodedep_lookup(mp, newinum, DEPALLOC, &inodedep); 8597 /* 8598 * If we're journaling, link the diradd into the jaddref so it 8599 * may be completed after the journal entry is written. Otherwise, 8600 * link the diradd into its inodedep. If the inode is not yet 8601 * written place it on the bufwait list, otherwise do the post-inode 8602 * write processing to put it on the id_pendinghd list. 8603 */ 8604 if (MOUNTEDSUJ(mp)) { 8605 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 8606 inoreflst); 8607 KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number, 8608 ("softdep_setup_directory_add: bad jaddref %p", jaddref)); 8609 jaddref->ja_diroff = diroffset; 8610 jaddref->ja_diradd = dap; 8611 add_to_journal(&jaddref->ja_list); 8612 } else if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) 8613 diradd_inode_written(dap, inodedep); 8614 else 8615 WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list); 8616 /* 8617 * Add the journal entries for . and .. links now that the primary 8618 * link is written. 8619 */ 8620 if (mkdir1 != NULL && MOUNTEDSUJ(mp)) { 8621 jaddref = (struct jaddref *)TAILQ_PREV(&jaddref->ja_ref, 8622 inoreflst, if_deps); 8623 KASSERT(jaddref != NULL && 8624 jaddref->ja_ino == jaddref->ja_parent && 8625 (jaddref->ja_state & MKDIR_BODY), 8626 ("softdep_setup_directory_add: bad dot jaddref %p", 8627 jaddref)); 8628 mkdir1->md_jaddref = jaddref; 8629 jaddref->ja_mkdir = mkdir1; 8630 /* 8631 * It is important that the dotdot journal entry 8632 * is added prior to the dot entry since dot writes 8633 * both the dot and dotdot links. These both must 8634 * be added after the primary link for the journal 8635 * to remain consistent. 8636 */ 8637 add_to_journal(&mkdir2->md_jaddref->ja_list); 8638 add_to_journal(&jaddref->ja_list); 8639 } 8640 /* 8641 * If we are adding a new directory remember this diradd so that if 8642 * we rename it we can keep the dot and dotdot dependencies. If 8643 * we are adding a new name for an inode that has a mkdiradd we 8644 * must be in rename and we have to move the dot and dotdot 8645 * dependencies to this new name. The old name is being orphaned 8646 * soon. 8647 */ 8648 if (mkdir1 != NULL) { 8649 if (inodedep->id_mkdiradd != NULL) 8650 panic("softdep_setup_directory_add: Existing mkdir"); 8651 inodedep->id_mkdiradd = dap; 8652 } else if (inodedep->id_mkdiradd) 8653 merge_diradd(inodedep, dap); 8654 if (newdirblk != NULL) { 8655 /* 8656 * There is nothing to do if we are already tracking 8657 * this block. 8658 */ 8659 if ((pagedep->pd_state & NEWBLOCK) != 0) { 8660 WORKITEM_FREE(newdirblk, D_NEWDIRBLK); 8661 FREE_LOCK(ump); 8662 return (0); 8663 } 8664 if (newblk_lookup(mp, dbtofsb(fs, bp->b_blkno), 0, &newblk) 8665 == 0) 8666 panic("softdep_setup_directory_add: lost entry"); 8667 WORKLIST_INSERT(&newblk->nb_newdirblk, &newdirblk->db_list); 8668 pagedep->pd_state |= NEWBLOCK; 8669 pagedep->pd_newdirblk = newdirblk; 8670 newdirblk->db_pagedep = pagedep; 8671 FREE_LOCK(ump); 8672 /* 8673 * If we extended into an indirect signal direnter to sync. 8674 */ 8675 if (isindir) 8676 return (1); 8677 return (0); 8678 } 8679 FREE_LOCK(ump); 8680 return (0); 8681 } 8682 8683 /* 8684 * This procedure is called to change the offset of a directory 8685 * entry when compacting a directory block which must be owned 8686 * exclusively by the caller. Note that the actual entry movement 8687 * must be done in this procedure to ensure that no I/O completions 8688 * occur while the move is in progress. 8689 */ 8690 void 8691 softdep_change_directoryentry_offset(bp, dp, base, oldloc, newloc, entrysize) 8692 struct buf *bp; /* Buffer holding directory block. */ 8693 struct inode *dp; /* inode for directory */ 8694 caddr_t base; /* address of dp->i_offset */ 8695 caddr_t oldloc; /* address of old directory location */ 8696 caddr_t newloc; /* address of new directory location */ 8697 int entrysize; /* size of directory entry */ 8698 { 8699 int offset, oldoffset, newoffset; 8700 struct pagedep *pagedep; 8701 struct jmvref *jmvref; 8702 struct diradd *dap; 8703 struct direct *de; 8704 struct mount *mp; 8705 struct ufsmount *ump; 8706 ufs_lbn_t lbn; 8707 int flags; 8708 8709 mp = ITOVFS(dp); 8710 ump = VFSTOUFS(mp); 8711 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 8712 ("softdep_change_directoryentry_offset called on " 8713 "non-softdep filesystem")); 8714 de = (struct direct *)oldloc; 8715 jmvref = NULL; 8716 flags = 0; 8717 /* 8718 * Moves are always journaled as it would be too complex to 8719 * determine if any affected adds or removes are present in the 8720 * journal. 8721 */ 8722 if (MOUNTEDSUJ(mp)) { 8723 flags = DEPALLOC; 8724 jmvref = newjmvref(dp, de->d_ino, 8725 dp->i_offset + (oldloc - base), 8726 dp->i_offset + (newloc - base)); 8727 } 8728 lbn = lblkno(ump->um_fs, dp->i_offset); 8729 offset = blkoff(ump->um_fs, dp->i_offset); 8730 oldoffset = offset + (oldloc - base); 8731 newoffset = offset + (newloc - base); 8732 ACQUIRE_LOCK(ump); 8733 if (pagedep_lookup(mp, bp, dp->i_number, lbn, flags, &pagedep) == 0) 8734 goto done; 8735 dap = diradd_lookup(pagedep, oldoffset); 8736 if (dap) { 8737 dap->da_offset = newoffset; 8738 newoffset = DIRADDHASH(newoffset); 8739 oldoffset = DIRADDHASH(oldoffset); 8740 if ((dap->da_state & ALLCOMPLETE) != ALLCOMPLETE && 8741 newoffset != oldoffset) { 8742 LIST_REMOVE(dap, da_pdlist); 8743 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[newoffset], 8744 dap, da_pdlist); 8745 } 8746 } 8747 done: 8748 if (jmvref) { 8749 jmvref->jm_pagedep = pagedep; 8750 LIST_INSERT_HEAD(&pagedep->pd_jmvrefhd, jmvref, jm_deps); 8751 add_to_journal(&jmvref->jm_list); 8752 } 8753 bcopy(oldloc, newloc, entrysize); 8754 FREE_LOCK(ump); 8755 } 8756 8757 /* 8758 * Move the mkdir dependencies and journal work from one diradd to another 8759 * when renaming a directory. The new name must depend on the mkdir deps 8760 * completing as the old name did. Directories can only have one valid link 8761 * at a time so one must be canonical. 8762 */ 8763 static void 8764 merge_diradd(inodedep, newdap) 8765 struct inodedep *inodedep; 8766 struct diradd *newdap; 8767 { 8768 struct diradd *olddap; 8769 struct mkdir *mkdir, *nextmd; 8770 struct ufsmount *ump; 8771 short state; 8772 8773 olddap = inodedep->id_mkdiradd; 8774 inodedep->id_mkdiradd = newdap; 8775 if ((olddap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) { 8776 newdap->da_state &= ~DEPCOMPLETE; 8777 ump = VFSTOUFS(inodedep->id_list.wk_mp); 8778 for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir; 8779 mkdir = nextmd) { 8780 nextmd = LIST_NEXT(mkdir, md_mkdirs); 8781 if (mkdir->md_diradd != olddap) 8782 continue; 8783 mkdir->md_diradd = newdap; 8784 state = mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY); 8785 newdap->da_state |= state; 8786 olddap->da_state &= ~state; 8787 if ((olddap->da_state & 8788 (MKDIR_PARENT | MKDIR_BODY)) == 0) 8789 break; 8790 } 8791 if ((olddap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) 8792 panic("merge_diradd: unfound ref"); 8793 } 8794 /* 8795 * Any mkdir related journal items are not safe to be freed until 8796 * the new name is stable. 8797 */ 8798 jwork_move(&newdap->da_jwork, &olddap->da_jwork); 8799 olddap->da_state |= DEPCOMPLETE; 8800 complete_diradd(olddap); 8801 } 8802 8803 /* 8804 * Move the diradd to the pending list when all diradd dependencies are 8805 * complete. 8806 */ 8807 static void 8808 complete_diradd(dap) 8809 struct diradd *dap; 8810 { 8811 struct pagedep *pagedep; 8812 8813 if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) { 8814 if (dap->da_state & DIRCHG) 8815 pagedep = dap->da_previous->dm_pagedep; 8816 else 8817 pagedep = dap->da_pagedep; 8818 LIST_REMOVE(dap, da_pdlist); 8819 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist); 8820 } 8821 } 8822 8823 /* 8824 * Cancel a diradd when a dirrem overlaps with it. We must cancel the journal 8825 * add entries and conditonally journal the remove. 8826 */ 8827 static void 8828 cancel_diradd(dap, dirrem, jremref, dotremref, dotdotremref) 8829 struct diradd *dap; 8830 struct dirrem *dirrem; 8831 struct jremref *jremref; 8832 struct jremref *dotremref; 8833 struct jremref *dotdotremref; 8834 { 8835 struct inodedep *inodedep; 8836 struct jaddref *jaddref; 8837 struct inoref *inoref; 8838 struct ufsmount *ump; 8839 struct mkdir *mkdir; 8840 8841 /* 8842 * If no remove references were allocated we're on a non-journaled 8843 * filesystem and can skip the cancel step. 8844 */ 8845 if (jremref == NULL) { 8846 free_diradd(dap, NULL); 8847 return; 8848 } 8849 /* 8850 * Cancel the primary name an free it if it does not require 8851 * journaling. 8852 */ 8853 if (inodedep_lookup(dap->da_list.wk_mp, dap->da_newinum, 8854 0, &inodedep) != 0) { 8855 /* Abort the addref that reference this diradd. */ 8856 TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) { 8857 if (inoref->if_list.wk_type != D_JADDREF) 8858 continue; 8859 jaddref = (struct jaddref *)inoref; 8860 if (jaddref->ja_diradd != dap) 8861 continue; 8862 if (cancel_jaddref(jaddref, inodedep, 8863 &dirrem->dm_jwork) == 0) { 8864 free_jremref(jremref); 8865 jremref = NULL; 8866 } 8867 break; 8868 } 8869 } 8870 /* 8871 * Cancel subordinate names and free them if they do not require 8872 * journaling. 8873 */ 8874 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) { 8875 ump = VFSTOUFS(dap->da_list.wk_mp); 8876 LIST_FOREACH(mkdir, &ump->softdep_mkdirlisthd, md_mkdirs) { 8877 if (mkdir->md_diradd != dap) 8878 continue; 8879 if ((jaddref = mkdir->md_jaddref) == NULL) 8880 continue; 8881 mkdir->md_jaddref = NULL; 8882 if (mkdir->md_state & MKDIR_PARENT) { 8883 if (cancel_jaddref(jaddref, NULL, 8884 &dirrem->dm_jwork) == 0) { 8885 free_jremref(dotdotremref); 8886 dotdotremref = NULL; 8887 } 8888 } else { 8889 if (cancel_jaddref(jaddref, inodedep, 8890 &dirrem->dm_jwork) == 0) { 8891 free_jremref(dotremref); 8892 dotremref = NULL; 8893 } 8894 } 8895 } 8896 } 8897 8898 if (jremref) 8899 journal_jremref(dirrem, jremref, inodedep); 8900 if (dotremref) 8901 journal_jremref(dirrem, dotremref, inodedep); 8902 if (dotdotremref) 8903 journal_jremref(dirrem, dotdotremref, NULL); 8904 jwork_move(&dirrem->dm_jwork, &dap->da_jwork); 8905 free_diradd(dap, &dirrem->dm_jwork); 8906 } 8907 8908 /* 8909 * Free a diradd dependency structure. 8910 */ 8911 static void 8912 free_diradd(dap, wkhd) 8913 struct diradd *dap; 8914 struct workhead *wkhd; 8915 { 8916 struct dirrem *dirrem; 8917 struct pagedep *pagedep; 8918 struct inodedep *inodedep; 8919 struct mkdir *mkdir, *nextmd; 8920 struct ufsmount *ump; 8921 8922 ump = VFSTOUFS(dap->da_list.wk_mp); 8923 LOCK_OWNED(ump); 8924 LIST_REMOVE(dap, da_pdlist); 8925 if (dap->da_state & ONWORKLIST) 8926 WORKLIST_REMOVE(&dap->da_list); 8927 if ((dap->da_state & DIRCHG) == 0) { 8928 pagedep = dap->da_pagedep; 8929 } else { 8930 dirrem = dap->da_previous; 8931 pagedep = dirrem->dm_pagedep; 8932 dirrem->dm_dirinum = pagedep->pd_ino; 8933 dirrem->dm_state |= COMPLETE; 8934 if (LIST_EMPTY(&dirrem->dm_jremrefhd)) 8935 add_to_worklist(&dirrem->dm_list, 0); 8936 } 8937 if (inodedep_lookup(pagedep->pd_list.wk_mp, dap->da_newinum, 8938 0, &inodedep) != 0) 8939 if (inodedep->id_mkdiradd == dap) 8940 inodedep->id_mkdiradd = NULL; 8941 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) { 8942 for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir; 8943 mkdir = nextmd) { 8944 nextmd = LIST_NEXT(mkdir, md_mkdirs); 8945 if (mkdir->md_diradd != dap) 8946 continue; 8947 dap->da_state &= 8948 ~(mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY)); 8949 LIST_REMOVE(mkdir, md_mkdirs); 8950 if (mkdir->md_state & ONWORKLIST) 8951 WORKLIST_REMOVE(&mkdir->md_list); 8952 if (mkdir->md_jaddref != NULL) 8953 panic("free_diradd: Unexpected jaddref"); 8954 WORKITEM_FREE(mkdir, D_MKDIR); 8955 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0) 8956 break; 8957 } 8958 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) 8959 panic("free_diradd: unfound ref"); 8960 } 8961 if (inodedep) 8962 free_inodedep(inodedep); 8963 /* 8964 * Free any journal segments waiting for the directory write. 8965 */ 8966 handle_jwork(&dap->da_jwork); 8967 WORKITEM_FREE(dap, D_DIRADD); 8968 } 8969 8970 /* 8971 * Directory entry removal dependencies. 8972 * 8973 * When removing a directory entry, the entry's inode pointer must be 8974 * zero'ed on disk before the corresponding inode's link count is decremented 8975 * (possibly freeing the inode for re-use). This dependency is handled by 8976 * updating the directory entry but delaying the inode count reduction until 8977 * after the directory block has been written to disk. After this point, the 8978 * inode count can be decremented whenever it is convenient. 8979 */ 8980 8981 /* 8982 * This routine should be called immediately after removing 8983 * a directory entry. The inode's link count should not be 8984 * decremented by the calling procedure -- the soft updates 8985 * code will do this task when it is safe. 8986 */ 8987 void 8988 softdep_setup_remove(bp, dp, ip, isrmdir) 8989 struct buf *bp; /* buffer containing directory block */ 8990 struct inode *dp; /* inode for the directory being modified */ 8991 struct inode *ip; /* inode for directory entry being removed */ 8992 int isrmdir; /* indicates if doing RMDIR */ 8993 { 8994 struct dirrem *dirrem, *prevdirrem; 8995 struct inodedep *inodedep; 8996 struct ufsmount *ump; 8997 int direct; 8998 8999 ump = ITOUMP(ip); 9000 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 9001 ("softdep_setup_remove called on non-softdep filesystem")); 9002 /* 9003 * Allocate a new dirrem if appropriate and ACQUIRE_LOCK. We want 9004 * newdirrem() to setup the full directory remove which requires 9005 * isrmdir > 1. 9006 */ 9007 dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem); 9008 /* 9009 * Add the dirrem to the inodedep's pending remove list for quick 9010 * discovery later. 9011 */ 9012 if (inodedep_lookup(UFSTOVFS(ump), ip->i_number, 0, &inodedep) == 0) 9013 panic("softdep_setup_remove: Lost inodedep."); 9014 KASSERT((inodedep->id_state & UNLINKED) == 0, ("inode unlinked")); 9015 dirrem->dm_state |= ONDEPLIST; 9016 LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext); 9017 9018 /* 9019 * If the COMPLETE flag is clear, then there were no active 9020 * entries and we want to roll back to a zeroed entry until 9021 * the new inode is committed to disk. If the COMPLETE flag is 9022 * set then we have deleted an entry that never made it to 9023 * disk. If the entry we deleted resulted from a name change, 9024 * then the old name still resides on disk. We cannot delete 9025 * its inode (returned to us in prevdirrem) until the zeroed 9026 * directory entry gets to disk. The new inode has never been 9027 * referenced on the disk, so can be deleted immediately. 9028 */ 9029 if ((dirrem->dm_state & COMPLETE) == 0) { 9030 LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, dirrem, 9031 dm_next); 9032 FREE_LOCK(ump); 9033 } else { 9034 if (prevdirrem != NULL) 9035 LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, 9036 prevdirrem, dm_next); 9037 dirrem->dm_dirinum = dirrem->dm_pagedep->pd_ino; 9038 direct = LIST_EMPTY(&dirrem->dm_jremrefhd); 9039 FREE_LOCK(ump); 9040 if (direct) 9041 handle_workitem_remove(dirrem, 0); 9042 } 9043 } 9044 9045 /* 9046 * Check for an entry matching 'offset' on both the pd_dirraddhd list and the 9047 * pd_pendinghd list of a pagedep. 9048 */ 9049 static struct diradd * 9050 diradd_lookup(pagedep, offset) 9051 struct pagedep *pagedep; 9052 int offset; 9053 { 9054 struct diradd *dap; 9055 9056 LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(offset)], da_pdlist) 9057 if (dap->da_offset == offset) 9058 return (dap); 9059 LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist) 9060 if (dap->da_offset == offset) 9061 return (dap); 9062 return (NULL); 9063 } 9064 9065 /* 9066 * Search for a .. diradd dependency in a directory that is being removed. 9067 * If the directory was renamed to a new parent we have a diradd rather 9068 * than a mkdir for the .. entry. We need to cancel it now before 9069 * it is found in truncate(). 9070 */ 9071 static struct jremref * 9072 cancel_diradd_dotdot(ip, dirrem, jremref) 9073 struct inode *ip; 9074 struct dirrem *dirrem; 9075 struct jremref *jremref; 9076 { 9077 struct pagedep *pagedep; 9078 struct diradd *dap; 9079 struct worklist *wk; 9080 9081 if (pagedep_lookup(ITOVFS(ip), NULL, ip->i_number, 0, 0, &pagedep) == 0) 9082 return (jremref); 9083 dap = diradd_lookup(pagedep, DOTDOT_OFFSET); 9084 if (dap == NULL) 9085 return (jremref); 9086 cancel_diradd(dap, dirrem, jremref, NULL, NULL); 9087 /* 9088 * Mark any journal work as belonging to the parent so it is freed 9089 * with the .. reference. 9090 */ 9091 LIST_FOREACH(wk, &dirrem->dm_jwork, wk_list) 9092 wk->wk_state |= MKDIR_PARENT; 9093 return (NULL); 9094 } 9095 9096 /* 9097 * Cancel the MKDIR_PARENT mkdir component of a diradd when we're going to 9098 * replace it with a dirrem/diradd pair as a result of re-parenting a 9099 * directory. This ensures that we don't simultaneously have a mkdir and 9100 * a diradd for the same .. entry. 9101 */ 9102 static struct jremref * 9103 cancel_mkdir_dotdot(ip, dirrem, jremref) 9104 struct inode *ip; 9105 struct dirrem *dirrem; 9106 struct jremref *jremref; 9107 { 9108 struct inodedep *inodedep; 9109 struct jaddref *jaddref; 9110 struct ufsmount *ump; 9111 struct mkdir *mkdir; 9112 struct diradd *dap; 9113 struct mount *mp; 9114 9115 mp = ITOVFS(ip); 9116 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) 9117 return (jremref); 9118 dap = inodedep->id_mkdiradd; 9119 if (dap == NULL || (dap->da_state & MKDIR_PARENT) == 0) 9120 return (jremref); 9121 ump = VFSTOUFS(inodedep->id_list.wk_mp); 9122 for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir; 9123 mkdir = LIST_NEXT(mkdir, md_mkdirs)) 9124 if (mkdir->md_diradd == dap && mkdir->md_state & MKDIR_PARENT) 9125 break; 9126 if (mkdir == NULL) 9127 panic("cancel_mkdir_dotdot: Unable to find mkdir\n"); 9128 if ((jaddref = mkdir->md_jaddref) != NULL) { 9129 mkdir->md_jaddref = NULL; 9130 jaddref->ja_state &= ~MKDIR_PARENT; 9131 if (inodedep_lookup(mp, jaddref->ja_ino, 0, &inodedep) == 0) 9132 panic("cancel_mkdir_dotdot: Lost parent inodedep"); 9133 if (cancel_jaddref(jaddref, inodedep, &dirrem->dm_jwork)) { 9134 journal_jremref(dirrem, jremref, inodedep); 9135 jremref = NULL; 9136 } 9137 } 9138 if (mkdir->md_state & ONWORKLIST) 9139 WORKLIST_REMOVE(&mkdir->md_list); 9140 mkdir->md_state |= ALLCOMPLETE; 9141 complete_mkdir(mkdir); 9142 return (jremref); 9143 } 9144 9145 static void 9146 journal_jremref(dirrem, jremref, inodedep) 9147 struct dirrem *dirrem; 9148 struct jremref *jremref; 9149 struct inodedep *inodedep; 9150 { 9151 9152 if (inodedep == NULL) 9153 if (inodedep_lookup(jremref->jr_list.wk_mp, 9154 jremref->jr_ref.if_ino, 0, &inodedep) == 0) 9155 panic("journal_jremref: Lost inodedep"); 9156 LIST_INSERT_HEAD(&dirrem->dm_jremrefhd, jremref, jr_deps); 9157 TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jremref->jr_ref, if_deps); 9158 add_to_journal(&jremref->jr_list); 9159 } 9160 9161 static void 9162 dirrem_journal(dirrem, jremref, dotremref, dotdotremref) 9163 struct dirrem *dirrem; 9164 struct jremref *jremref; 9165 struct jremref *dotremref; 9166 struct jremref *dotdotremref; 9167 { 9168 struct inodedep *inodedep; 9169 9170 9171 if (inodedep_lookup(jremref->jr_list.wk_mp, jremref->jr_ref.if_ino, 0, 9172 &inodedep) == 0) 9173 panic("dirrem_journal: Lost inodedep"); 9174 journal_jremref(dirrem, jremref, inodedep); 9175 if (dotremref) 9176 journal_jremref(dirrem, dotremref, inodedep); 9177 if (dotdotremref) 9178 journal_jremref(dirrem, dotdotremref, NULL); 9179 } 9180 9181 /* 9182 * Allocate a new dirrem if appropriate and return it along with 9183 * its associated pagedep. Called without a lock, returns with lock. 9184 */ 9185 static struct dirrem * 9186 newdirrem(bp, dp, ip, isrmdir, prevdirremp) 9187 struct buf *bp; /* buffer containing directory block */ 9188 struct inode *dp; /* inode for the directory being modified */ 9189 struct inode *ip; /* inode for directory entry being removed */ 9190 int isrmdir; /* indicates if doing RMDIR */ 9191 struct dirrem **prevdirremp; /* previously referenced inode, if any */ 9192 { 9193 int offset; 9194 ufs_lbn_t lbn; 9195 struct diradd *dap; 9196 struct dirrem *dirrem; 9197 struct pagedep *pagedep; 9198 struct jremref *jremref; 9199 struct jremref *dotremref; 9200 struct jremref *dotdotremref; 9201 struct vnode *dvp; 9202 struct ufsmount *ump; 9203 9204 /* 9205 * Whiteouts have no deletion dependencies. 9206 */ 9207 if (ip == NULL) 9208 panic("newdirrem: whiteout"); 9209 dvp = ITOV(dp); 9210 ump = ITOUMP(dp); 9211 9212 /* 9213 * If the system is over its limit and our filesystem is 9214 * responsible for more than our share of that usage and 9215 * we are not a snapshot, request some inodedep cleanup. 9216 * Limiting the number of dirrem structures will also limit 9217 * the number of freefile and freeblks structures. 9218 */ 9219 ACQUIRE_LOCK(ump); 9220 if (!IS_SNAPSHOT(ip) && softdep_excess_items(ump, D_DIRREM)) 9221 schedule_cleanup(UFSTOVFS(ump)); 9222 else 9223 FREE_LOCK(ump); 9224 dirrem = malloc(sizeof(struct dirrem), M_DIRREM, M_SOFTDEP_FLAGS | 9225 M_ZERO); 9226 workitem_alloc(&dirrem->dm_list, D_DIRREM, dvp->v_mount); 9227 LIST_INIT(&dirrem->dm_jremrefhd); 9228 LIST_INIT(&dirrem->dm_jwork); 9229 dirrem->dm_state = isrmdir ? RMDIR : 0; 9230 dirrem->dm_oldinum = ip->i_number; 9231 *prevdirremp = NULL; 9232 /* 9233 * Allocate remove reference structures to track journal write 9234 * dependencies. We will always have one for the link and 9235 * when doing directories we will always have one more for dot. 9236 * When renaming a directory we skip the dotdot link change so 9237 * this is not needed. 9238 */ 9239 jremref = dotremref = dotdotremref = NULL; 9240 if (DOINGSUJ(dvp)) { 9241 if (isrmdir) { 9242 jremref = newjremref(dirrem, dp, ip, dp->i_offset, 9243 ip->i_effnlink + 2); 9244 dotremref = newjremref(dirrem, ip, ip, DOT_OFFSET, 9245 ip->i_effnlink + 1); 9246 dotdotremref = newjremref(dirrem, ip, dp, DOTDOT_OFFSET, 9247 dp->i_effnlink + 1); 9248 dotdotremref->jr_state |= MKDIR_PARENT; 9249 } else 9250 jremref = newjremref(dirrem, dp, ip, dp->i_offset, 9251 ip->i_effnlink + 1); 9252 } 9253 ACQUIRE_LOCK(ump); 9254 lbn = lblkno(ump->um_fs, dp->i_offset); 9255 offset = blkoff(ump->um_fs, dp->i_offset); 9256 pagedep_lookup(UFSTOVFS(ump), bp, dp->i_number, lbn, DEPALLOC, 9257 &pagedep); 9258 dirrem->dm_pagedep = pagedep; 9259 dirrem->dm_offset = offset; 9260 /* 9261 * If we're renaming a .. link to a new directory, cancel any 9262 * existing MKDIR_PARENT mkdir. If it has already been canceled 9263 * the jremref is preserved for any potential diradd in this 9264 * location. This can not coincide with a rmdir. 9265 */ 9266 if (dp->i_offset == DOTDOT_OFFSET) { 9267 if (isrmdir) 9268 panic("newdirrem: .. directory change during remove?"); 9269 jremref = cancel_mkdir_dotdot(dp, dirrem, jremref); 9270 } 9271 /* 9272 * If we're removing a directory search for the .. dependency now and 9273 * cancel it. Any pending journal work will be added to the dirrem 9274 * to be completed when the workitem remove completes. 9275 */ 9276 if (isrmdir) 9277 dotdotremref = cancel_diradd_dotdot(ip, dirrem, dotdotremref); 9278 /* 9279 * Check for a diradd dependency for the same directory entry. 9280 * If present, then both dependencies become obsolete and can 9281 * be de-allocated. 9282 */ 9283 dap = diradd_lookup(pagedep, offset); 9284 if (dap == NULL) { 9285 /* 9286 * Link the jremref structures into the dirrem so they are 9287 * written prior to the pagedep. 9288 */ 9289 if (jremref) 9290 dirrem_journal(dirrem, jremref, dotremref, 9291 dotdotremref); 9292 return (dirrem); 9293 } 9294 /* 9295 * Must be ATTACHED at this point. 9296 */ 9297 if ((dap->da_state & ATTACHED) == 0) 9298 panic("newdirrem: not ATTACHED"); 9299 if (dap->da_newinum != ip->i_number) 9300 panic("newdirrem: inum %ju should be %ju", 9301 (uintmax_t)ip->i_number, (uintmax_t)dap->da_newinum); 9302 /* 9303 * If we are deleting a changed name that never made it to disk, 9304 * then return the dirrem describing the previous inode (which 9305 * represents the inode currently referenced from this entry on disk). 9306 */ 9307 if ((dap->da_state & DIRCHG) != 0) { 9308 *prevdirremp = dap->da_previous; 9309 dap->da_state &= ~DIRCHG; 9310 dap->da_pagedep = pagedep; 9311 } 9312 /* 9313 * We are deleting an entry that never made it to disk. 9314 * Mark it COMPLETE so we can delete its inode immediately. 9315 */ 9316 dirrem->dm_state |= COMPLETE; 9317 cancel_diradd(dap, dirrem, jremref, dotremref, dotdotremref); 9318 #ifdef INVARIANTS 9319 if (isrmdir == 0) { 9320 struct worklist *wk; 9321 9322 LIST_FOREACH(wk, &dirrem->dm_jwork, wk_list) 9323 if (wk->wk_state & (MKDIR_BODY | MKDIR_PARENT)) 9324 panic("bad wk %p (0x%X)\n", wk, wk->wk_state); 9325 } 9326 #endif 9327 9328 return (dirrem); 9329 } 9330 9331 /* 9332 * Directory entry change dependencies. 9333 * 9334 * Changing an existing directory entry requires that an add operation 9335 * be completed first followed by a deletion. The semantics for the addition 9336 * are identical to the description of adding a new entry above except 9337 * that the rollback is to the old inode number rather than zero. Once 9338 * the addition dependency is completed, the removal is done as described 9339 * in the removal routine above. 9340 */ 9341 9342 /* 9343 * This routine should be called immediately after changing 9344 * a directory entry. The inode's link count should not be 9345 * decremented by the calling procedure -- the soft updates 9346 * code will perform this task when it is safe. 9347 */ 9348 void 9349 softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir) 9350 struct buf *bp; /* buffer containing directory block */ 9351 struct inode *dp; /* inode for the directory being modified */ 9352 struct inode *ip; /* inode for directory entry being removed */ 9353 ino_t newinum; /* new inode number for changed entry */ 9354 int isrmdir; /* indicates if doing RMDIR */ 9355 { 9356 int offset; 9357 struct diradd *dap = NULL; 9358 struct dirrem *dirrem, *prevdirrem; 9359 struct pagedep *pagedep; 9360 struct inodedep *inodedep; 9361 struct jaddref *jaddref; 9362 struct mount *mp; 9363 struct ufsmount *ump; 9364 9365 mp = ITOVFS(dp); 9366 ump = VFSTOUFS(mp); 9367 offset = blkoff(ump->um_fs, dp->i_offset); 9368 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 9369 ("softdep_setup_directory_change called on non-softdep filesystem")); 9370 9371 /* 9372 * Whiteouts do not need diradd dependencies. 9373 */ 9374 if (newinum != UFS_WINO) { 9375 dap = malloc(sizeof(struct diradd), 9376 M_DIRADD, M_SOFTDEP_FLAGS|M_ZERO); 9377 workitem_alloc(&dap->da_list, D_DIRADD, mp); 9378 dap->da_state = DIRCHG | ATTACHED | DEPCOMPLETE; 9379 dap->da_offset = offset; 9380 dap->da_newinum = newinum; 9381 LIST_INIT(&dap->da_jwork); 9382 } 9383 9384 /* 9385 * Allocate a new dirrem and ACQUIRE_LOCK. 9386 */ 9387 dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem); 9388 pagedep = dirrem->dm_pagedep; 9389 /* 9390 * The possible values for isrmdir: 9391 * 0 - non-directory file rename 9392 * 1 - directory rename within same directory 9393 * inum - directory rename to new directory of given inode number 9394 * When renaming to a new directory, we are both deleting and 9395 * creating a new directory entry, so the link count on the new 9396 * directory should not change. Thus we do not need the followup 9397 * dirrem which is usually done in handle_workitem_remove. We set 9398 * the DIRCHG flag to tell handle_workitem_remove to skip the 9399 * followup dirrem. 9400 */ 9401 if (isrmdir > 1) 9402 dirrem->dm_state |= DIRCHG; 9403 9404 /* 9405 * Whiteouts have no additional dependencies, 9406 * so just put the dirrem on the correct list. 9407 */ 9408 if (newinum == UFS_WINO) { 9409 if ((dirrem->dm_state & COMPLETE) == 0) { 9410 LIST_INSERT_HEAD(&pagedep->pd_dirremhd, dirrem, 9411 dm_next); 9412 } else { 9413 dirrem->dm_dirinum = pagedep->pd_ino; 9414 if (LIST_EMPTY(&dirrem->dm_jremrefhd)) 9415 add_to_worklist(&dirrem->dm_list, 0); 9416 } 9417 FREE_LOCK(ump); 9418 return; 9419 } 9420 /* 9421 * Add the dirrem to the inodedep's pending remove list for quick 9422 * discovery later. A valid nlinkdelta ensures that this lookup 9423 * will not fail. 9424 */ 9425 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) 9426 panic("softdep_setup_directory_change: Lost inodedep."); 9427 dirrem->dm_state |= ONDEPLIST; 9428 LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext); 9429 9430 /* 9431 * If the COMPLETE flag is clear, then there were no active 9432 * entries and we want to roll back to the previous inode until 9433 * the new inode is committed to disk. If the COMPLETE flag is 9434 * set, then we have deleted an entry that never made it to disk. 9435 * If the entry we deleted resulted from a name change, then the old 9436 * inode reference still resides on disk. Any rollback that we do 9437 * needs to be to that old inode (returned to us in prevdirrem). If 9438 * the entry we deleted resulted from a create, then there is 9439 * no entry on the disk, so we want to roll back to zero rather 9440 * than the uncommitted inode. In either of the COMPLETE cases we 9441 * want to immediately free the unwritten and unreferenced inode. 9442 */ 9443 if ((dirrem->dm_state & COMPLETE) == 0) { 9444 dap->da_previous = dirrem; 9445 } else { 9446 if (prevdirrem != NULL) { 9447 dap->da_previous = prevdirrem; 9448 } else { 9449 dap->da_state &= ~DIRCHG; 9450 dap->da_pagedep = pagedep; 9451 } 9452 dirrem->dm_dirinum = pagedep->pd_ino; 9453 if (LIST_EMPTY(&dirrem->dm_jremrefhd)) 9454 add_to_worklist(&dirrem->dm_list, 0); 9455 } 9456 /* 9457 * Lookup the jaddref for this journal entry. We must finish 9458 * initializing it and make the diradd write dependent on it. 9459 * If we're not journaling, put it on the id_bufwait list if the 9460 * inode is not yet written. If it is written, do the post-inode 9461 * write processing to put it on the id_pendinghd list. 9462 */ 9463 inodedep_lookup(mp, newinum, DEPALLOC, &inodedep); 9464 if (MOUNTEDSUJ(mp)) { 9465 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 9466 inoreflst); 9467 KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number, 9468 ("softdep_setup_directory_change: bad jaddref %p", 9469 jaddref)); 9470 jaddref->ja_diroff = dp->i_offset; 9471 jaddref->ja_diradd = dap; 9472 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], 9473 dap, da_pdlist); 9474 add_to_journal(&jaddref->ja_list); 9475 } else if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) { 9476 dap->da_state |= COMPLETE; 9477 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist); 9478 WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list); 9479 } else { 9480 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], 9481 dap, da_pdlist); 9482 WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list); 9483 } 9484 /* 9485 * If we're making a new name for a directory that has not been 9486 * committed when need to move the dot and dotdot references to 9487 * this new name. 9488 */ 9489 if (inodedep->id_mkdiradd && dp->i_offset != DOTDOT_OFFSET) 9490 merge_diradd(inodedep, dap); 9491 FREE_LOCK(ump); 9492 } 9493 9494 /* 9495 * Called whenever the link count on an inode is changed. 9496 * It creates an inode dependency so that the new reference(s) 9497 * to the inode cannot be committed to disk until the updated 9498 * inode has been written. 9499 */ 9500 void 9501 softdep_change_linkcnt(ip) 9502 struct inode *ip; /* the inode with the increased link count */ 9503 { 9504 struct inodedep *inodedep; 9505 struct ufsmount *ump; 9506 9507 ump = ITOUMP(ip); 9508 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 9509 ("softdep_change_linkcnt called on non-softdep filesystem")); 9510 ACQUIRE_LOCK(ump); 9511 inodedep_lookup(UFSTOVFS(ump), ip->i_number, DEPALLOC, &inodedep); 9512 if (ip->i_nlink < ip->i_effnlink) 9513 panic("softdep_change_linkcnt: bad delta"); 9514 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 9515 FREE_LOCK(ump); 9516 } 9517 9518 /* 9519 * Attach a sbdep dependency to the superblock buf so that we can keep 9520 * track of the head of the linked list of referenced but unlinked inodes. 9521 */ 9522 void 9523 softdep_setup_sbupdate(ump, fs, bp) 9524 struct ufsmount *ump; 9525 struct fs *fs; 9526 struct buf *bp; 9527 { 9528 struct sbdep *sbdep; 9529 struct worklist *wk; 9530 9531 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 9532 ("softdep_setup_sbupdate called on non-softdep filesystem")); 9533 LIST_FOREACH(wk, &bp->b_dep, wk_list) 9534 if (wk->wk_type == D_SBDEP) 9535 break; 9536 if (wk != NULL) 9537 return; 9538 sbdep = malloc(sizeof(struct sbdep), M_SBDEP, M_SOFTDEP_FLAGS); 9539 workitem_alloc(&sbdep->sb_list, D_SBDEP, UFSTOVFS(ump)); 9540 sbdep->sb_fs = fs; 9541 sbdep->sb_ump = ump; 9542 ACQUIRE_LOCK(ump); 9543 WORKLIST_INSERT(&bp->b_dep, &sbdep->sb_list); 9544 FREE_LOCK(ump); 9545 } 9546 9547 /* 9548 * Return the first unlinked inodedep which is ready to be the head of the 9549 * list. The inodedep and all those after it must have valid next pointers. 9550 */ 9551 static struct inodedep * 9552 first_unlinked_inodedep(ump) 9553 struct ufsmount *ump; 9554 { 9555 struct inodedep *inodedep; 9556 struct inodedep *idp; 9557 9558 LOCK_OWNED(ump); 9559 for (inodedep = TAILQ_LAST(&ump->softdep_unlinked, inodedeplst); 9560 inodedep; inodedep = idp) { 9561 if ((inodedep->id_state & UNLINKNEXT) == 0) 9562 return (NULL); 9563 idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked); 9564 if (idp == NULL || (idp->id_state & UNLINKNEXT) == 0) 9565 break; 9566 if ((inodedep->id_state & UNLINKPREV) == 0) 9567 break; 9568 } 9569 return (inodedep); 9570 } 9571 9572 /* 9573 * Set the sujfree unlinked head pointer prior to writing a superblock. 9574 */ 9575 static void 9576 initiate_write_sbdep(sbdep) 9577 struct sbdep *sbdep; 9578 { 9579 struct inodedep *inodedep; 9580 struct fs *bpfs; 9581 struct fs *fs; 9582 9583 bpfs = sbdep->sb_fs; 9584 fs = sbdep->sb_ump->um_fs; 9585 inodedep = first_unlinked_inodedep(sbdep->sb_ump); 9586 if (inodedep) { 9587 fs->fs_sujfree = inodedep->id_ino; 9588 inodedep->id_state |= UNLINKPREV; 9589 } else 9590 fs->fs_sujfree = 0; 9591 bpfs->fs_sujfree = fs->fs_sujfree; 9592 /* 9593 * Because we have made changes to the superblock, we need to 9594 * recompute its check-hash. 9595 */ 9596 bpfs->fs_ckhash = ffs_calc_sbhash(bpfs); 9597 } 9598 9599 /* 9600 * After a superblock is written determine whether it must be written again 9601 * due to a changing unlinked list head. 9602 */ 9603 static int 9604 handle_written_sbdep(sbdep, bp) 9605 struct sbdep *sbdep; 9606 struct buf *bp; 9607 { 9608 struct inodedep *inodedep; 9609 struct fs *fs; 9610 9611 LOCK_OWNED(sbdep->sb_ump); 9612 fs = sbdep->sb_fs; 9613 /* 9614 * If the superblock doesn't match the in-memory list start over. 9615 */ 9616 inodedep = first_unlinked_inodedep(sbdep->sb_ump); 9617 if ((inodedep && fs->fs_sujfree != inodedep->id_ino) || 9618 (inodedep == NULL && fs->fs_sujfree != 0)) { 9619 bdirty(bp); 9620 return (1); 9621 } 9622 WORKITEM_FREE(sbdep, D_SBDEP); 9623 if (fs->fs_sujfree == 0) 9624 return (0); 9625 /* 9626 * Now that we have a record of this inode in stable store allow it 9627 * to be written to free up pending work. Inodes may see a lot of 9628 * write activity after they are unlinked which we must not hold up. 9629 */ 9630 for (; inodedep != NULL; inodedep = TAILQ_NEXT(inodedep, id_unlinked)) { 9631 if ((inodedep->id_state & UNLINKLINKS) != UNLINKLINKS) 9632 panic("handle_written_sbdep: Bad inodedep %p (0x%X)", 9633 inodedep, inodedep->id_state); 9634 if (inodedep->id_state & UNLINKONLIST) 9635 break; 9636 inodedep->id_state |= DEPCOMPLETE | UNLINKONLIST; 9637 } 9638 9639 return (0); 9640 } 9641 9642 /* 9643 * Mark an inodedep as unlinked and insert it into the in-memory unlinked list. 9644 */ 9645 static void 9646 unlinked_inodedep(mp, inodedep) 9647 struct mount *mp; 9648 struct inodedep *inodedep; 9649 { 9650 struct ufsmount *ump; 9651 9652 ump = VFSTOUFS(mp); 9653 LOCK_OWNED(ump); 9654 if (MOUNTEDSUJ(mp) == 0) 9655 return; 9656 ump->um_fs->fs_fmod = 1; 9657 if (inodedep->id_state & UNLINKED) 9658 panic("unlinked_inodedep: %p already unlinked\n", inodedep); 9659 inodedep->id_state |= UNLINKED; 9660 TAILQ_INSERT_HEAD(&ump->softdep_unlinked, inodedep, id_unlinked); 9661 } 9662 9663 /* 9664 * Remove an inodedep from the unlinked inodedep list. This may require 9665 * disk writes if the inode has made it that far. 9666 */ 9667 static void 9668 clear_unlinked_inodedep(inodedep) 9669 struct inodedep *inodedep; 9670 { 9671 struct ufs2_dinode *dip; 9672 struct ufsmount *ump; 9673 struct inodedep *idp; 9674 struct inodedep *idn; 9675 struct fs *fs, *bpfs; 9676 struct buf *bp; 9677 ino_t ino; 9678 ino_t nino; 9679 ino_t pino; 9680 int error; 9681 9682 ump = VFSTOUFS(inodedep->id_list.wk_mp); 9683 fs = ump->um_fs; 9684 ino = inodedep->id_ino; 9685 error = 0; 9686 for (;;) { 9687 LOCK_OWNED(ump); 9688 KASSERT((inodedep->id_state & UNLINKED) != 0, 9689 ("clear_unlinked_inodedep: inodedep %p not unlinked", 9690 inodedep)); 9691 /* 9692 * If nothing has yet been written simply remove us from 9693 * the in memory list and return. This is the most common 9694 * case where handle_workitem_remove() loses the final 9695 * reference. 9696 */ 9697 if ((inodedep->id_state & UNLINKLINKS) == 0) 9698 break; 9699 /* 9700 * If we have a NEXT pointer and no PREV pointer we can simply 9701 * clear NEXT's PREV and remove ourselves from the list. Be 9702 * careful not to clear PREV if the superblock points at 9703 * next as well. 9704 */ 9705 idn = TAILQ_NEXT(inodedep, id_unlinked); 9706 if ((inodedep->id_state & UNLINKLINKS) == UNLINKNEXT) { 9707 if (idn && fs->fs_sujfree != idn->id_ino) 9708 idn->id_state &= ~UNLINKPREV; 9709 break; 9710 } 9711 /* 9712 * Here we have an inodedep which is actually linked into 9713 * the list. We must remove it by forcing a write to the 9714 * link before us, whether it be the superblock or an inode. 9715 * Unfortunately the list may change while we're waiting 9716 * on the buf lock for either resource so we must loop until 9717 * we lock the right one. If both the superblock and an 9718 * inode point to this inode we must clear the inode first 9719 * followed by the superblock. 9720 */ 9721 idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked); 9722 pino = 0; 9723 if (idp && (idp->id_state & UNLINKNEXT)) 9724 pino = idp->id_ino; 9725 FREE_LOCK(ump); 9726 if (pino == 0) { 9727 bp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc), 9728 (int)fs->fs_sbsize, 0, 0, 0); 9729 } else { 9730 error = bread(ump->um_devvp, 9731 fsbtodb(fs, ino_to_fsba(fs, pino)), 9732 (int)fs->fs_bsize, NOCRED, &bp); 9733 if (error) 9734 brelse(bp); 9735 } 9736 ACQUIRE_LOCK(ump); 9737 if (error) 9738 break; 9739 /* If the list has changed restart the loop. */ 9740 idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked); 9741 nino = 0; 9742 if (idp && (idp->id_state & UNLINKNEXT)) 9743 nino = idp->id_ino; 9744 if (nino != pino || 9745 (inodedep->id_state & UNLINKPREV) != UNLINKPREV) { 9746 FREE_LOCK(ump); 9747 brelse(bp); 9748 ACQUIRE_LOCK(ump); 9749 continue; 9750 } 9751 nino = 0; 9752 idn = TAILQ_NEXT(inodedep, id_unlinked); 9753 if (idn) 9754 nino = idn->id_ino; 9755 /* 9756 * Remove us from the in memory list. After this we cannot 9757 * access the inodedep. 9758 */ 9759 KASSERT((inodedep->id_state & UNLINKED) != 0, 9760 ("clear_unlinked_inodedep: inodedep %p not unlinked", 9761 inodedep)); 9762 inodedep->id_state &= ~(UNLINKED | UNLINKLINKS | UNLINKONLIST); 9763 TAILQ_REMOVE(&ump->softdep_unlinked, inodedep, id_unlinked); 9764 FREE_LOCK(ump); 9765 /* 9766 * The predecessor's next pointer is manually updated here 9767 * so that the NEXT flag is never cleared for an element 9768 * that is in the list. 9769 */ 9770 if (pino == 0) { 9771 bcopy((caddr_t)fs, bp->b_data, (u_int)fs->fs_sbsize); 9772 bpfs = (struct fs *)bp->b_data; 9773 ffs_oldfscompat_write(bpfs, ump); 9774 softdep_setup_sbupdate(ump, bpfs, bp); 9775 /* 9776 * Because we may have made changes to the superblock, 9777 * we need to recompute its check-hash. 9778 */ 9779 bpfs->fs_ckhash = ffs_calc_sbhash(bpfs); 9780 } else if (fs->fs_magic == FS_UFS1_MAGIC) { 9781 ((struct ufs1_dinode *)bp->b_data + 9782 ino_to_fsbo(fs, pino))->di_freelink = nino; 9783 } else { 9784 dip = (struct ufs2_dinode *)bp->b_data + 9785 ino_to_fsbo(fs, pino); 9786 dip->di_freelink = nino; 9787 ffs_update_dinode_ckhash(fs, dip); 9788 } 9789 /* 9790 * If the bwrite fails we have no recourse to recover. The 9791 * filesystem is corrupted already. 9792 */ 9793 bwrite(bp); 9794 ACQUIRE_LOCK(ump); 9795 /* 9796 * If the superblock pointer still needs to be cleared force 9797 * a write here. 9798 */ 9799 if (fs->fs_sujfree == ino) { 9800 FREE_LOCK(ump); 9801 bp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc), 9802 (int)fs->fs_sbsize, 0, 0, 0); 9803 bcopy((caddr_t)fs, bp->b_data, (u_int)fs->fs_sbsize); 9804 bpfs = (struct fs *)bp->b_data; 9805 ffs_oldfscompat_write(bpfs, ump); 9806 softdep_setup_sbupdate(ump, bpfs, bp); 9807 /* 9808 * Because we may have made changes to the superblock, 9809 * we need to recompute its check-hash. 9810 */ 9811 bpfs->fs_ckhash = ffs_calc_sbhash(bpfs); 9812 bwrite(bp); 9813 ACQUIRE_LOCK(ump); 9814 } 9815 9816 if (fs->fs_sujfree != ino) 9817 return; 9818 panic("clear_unlinked_inodedep: Failed to clear free head"); 9819 } 9820 if (inodedep->id_ino == fs->fs_sujfree) 9821 panic("clear_unlinked_inodedep: Freeing head of free list"); 9822 inodedep->id_state &= ~(UNLINKED | UNLINKLINKS | UNLINKONLIST); 9823 TAILQ_REMOVE(&ump->softdep_unlinked, inodedep, id_unlinked); 9824 return; 9825 } 9826 9827 /* 9828 * This workitem decrements the inode's link count. 9829 * If the link count reaches zero, the file is removed. 9830 */ 9831 static int 9832 handle_workitem_remove(dirrem, flags) 9833 struct dirrem *dirrem; 9834 int flags; 9835 { 9836 struct inodedep *inodedep; 9837 struct workhead dotdotwk; 9838 struct worklist *wk; 9839 struct ufsmount *ump; 9840 struct mount *mp; 9841 struct vnode *vp; 9842 struct inode *ip; 9843 ino_t oldinum; 9844 9845 if (dirrem->dm_state & ONWORKLIST) 9846 panic("handle_workitem_remove: dirrem %p still on worklist", 9847 dirrem); 9848 oldinum = dirrem->dm_oldinum; 9849 mp = dirrem->dm_list.wk_mp; 9850 ump = VFSTOUFS(mp); 9851 flags |= LK_EXCLUSIVE; 9852 if (ffs_vgetf(mp, oldinum, flags, &vp, FFSV_FORCEINSMQ) != 0) 9853 return (EBUSY); 9854 ip = VTOI(vp); 9855 MPASS(ip->i_mode != 0); 9856 ACQUIRE_LOCK(ump); 9857 if ((inodedep_lookup(mp, oldinum, 0, &inodedep)) == 0) 9858 panic("handle_workitem_remove: lost inodedep"); 9859 if (dirrem->dm_state & ONDEPLIST) 9860 LIST_REMOVE(dirrem, dm_inonext); 9861 KASSERT(LIST_EMPTY(&dirrem->dm_jremrefhd), 9862 ("handle_workitem_remove: Journal entries not written.")); 9863 9864 /* 9865 * Move all dependencies waiting on the remove to complete 9866 * from the dirrem to the inode inowait list to be completed 9867 * after the inode has been updated and written to disk. 9868 * 9869 * Any marked MKDIR_PARENT are saved to be completed when the 9870 * dotdot ref is removed unless DIRCHG is specified. For 9871 * directory change operations there will be no further 9872 * directory writes and the jsegdeps need to be moved along 9873 * with the rest to be completed when the inode is free or 9874 * stable in the inode free list. 9875 */ 9876 LIST_INIT(&dotdotwk); 9877 while ((wk = LIST_FIRST(&dirrem->dm_jwork)) != NULL) { 9878 WORKLIST_REMOVE(wk); 9879 if ((dirrem->dm_state & DIRCHG) == 0 && 9880 wk->wk_state & MKDIR_PARENT) { 9881 wk->wk_state &= ~MKDIR_PARENT; 9882 WORKLIST_INSERT(&dotdotwk, wk); 9883 continue; 9884 } 9885 WORKLIST_INSERT(&inodedep->id_inowait, wk); 9886 } 9887 LIST_SWAP(&dirrem->dm_jwork, &dotdotwk, worklist, wk_list); 9888 /* 9889 * Normal file deletion. 9890 */ 9891 if ((dirrem->dm_state & RMDIR) == 0) { 9892 ip->i_nlink--; 9893 KASSERT(ip->i_nlink >= 0, ("handle_workitem_remove: file ino " 9894 "%ju negative i_nlink %d", (intmax_t)ip->i_number, 9895 ip->i_nlink)); 9896 DIP_SET(ip, i_nlink, ip->i_nlink); 9897 UFS_INODE_SET_FLAG(ip, IN_CHANGE); 9898 if (ip->i_nlink < ip->i_effnlink) 9899 panic("handle_workitem_remove: bad file delta"); 9900 if (ip->i_nlink == 0) 9901 unlinked_inodedep(mp, inodedep); 9902 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 9903 KASSERT(LIST_EMPTY(&dirrem->dm_jwork), 9904 ("handle_workitem_remove: worklist not empty. %s", 9905 TYPENAME(LIST_FIRST(&dirrem->dm_jwork)->wk_type))); 9906 WORKITEM_FREE(dirrem, D_DIRREM); 9907 FREE_LOCK(ump); 9908 goto out; 9909 } 9910 /* 9911 * Directory deletion. Decrement reference count for both the 9912 * just deleted parent directory entry and the reference for ".". 9913 * Arrange to have the reference count on the parent decremented 9914 * to account for the loss of "..". 9915 */ 9916 ip->i_nlink -= 2; 9917 KASSERT(ip->i_nlink >= 0, ("handle_workitem_remove: directory ino " 9918 "%ju negative i_nlink %d", (intmax_t)ip->i_number, ip->i_nlink)); 9919 DIP_SET(ip, i_nlink, ip->i_nlink); 9920 UFS_INODE_SET_FLAG(ip, IN_CHANGE); 9921 if (ip->i_nlink < ip->i_effnlink) 9922 panic("handle_workitem_remove: bad dir delta"); 9923 if (ip->i_nlink == 0) 9924 unlinked_inodedep(mp, inodedep); 9925 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 9926 /* 9927 * Rename a directory to a new parent. Since, we are both deleting 9928 * and creating a new directory entry, the link count on the new 9929 * directory should not change. Thus we skip the followup dirrem. 9930 */ 9931 if (dirrem->dm_state & DIRCHG) { 9932 KASSERT(LIST_EMPTY(&dirrem->dm_jwork), 9933 ("handle_workitem_remove: DIRCHG and worklist not empty.")); 9934 WORKITEM_FREE(dirrem, D_DIRREM); 9935 FREE_LOCK(ump); 9936 goto out; 9937 } 9938 dirrem->dm_state = ONDEPLIST; 9939 dirrem->dm_oldinum = dirrem->dm_dirinum; 9940 /* 9941 * Place the dirrem on the parent's diremhd list. 9942 */ 9943 if (inodedep_lookup(mp, dirrem->dm_oldinum, 0, &inodedep) == 0) 9944 panic("handle_workitem_remove: lost dir inodedep"); 9945 LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext); 9946 /* 9947 * If the allocated inode has never been written to disk, then 9948 * the on-disk inode is zero'ed and we can remove the file 9949 * immediately. When journaling if the inode has been marked 9950 * unlinked and not DEPCOMPLETE we know it can never be written. 9951 */ 9952 inodedep_lookup(mp, oldinum, 0, &inodedep); 9953 if (inodedep == NULL || 9954 (inodedep->id_state & (DEPCOMPLETE | UNLINKED)) == UNLINKED || 9955 check_inode_unwritten(inodedep)) { 9956 FREE_LOCK(ump); 9957 vput(vp); 9958 return handle_workitem_remove(dirrem, flags); 9959 } 9960 WORKLIST_INSERT(&inodedep->id_inowait, &dirrem->dm_list); 9961 FREE_LOCK(ump); 9962 UFS_INODE_SET_FLAG(ip, IN_CHANGE); 9963 out: 9964 ffs_update(vp, 0); 9965 vput(vp); 9966 return (0); 9967 } 9968 9969 /* 9970 * Inode de-allocation dependencies. 9971 * 9972 * When an inode's link count is reduced to zero, it can be de-allocated. We 9973 * found it convenient to postpone de-allocation until after the inode is 9974 * written to disk with its new link count (zero). At this point, all of the 9975 * on-disk inode's block pointers are nullified and, with careful dependency 9976 * list ordering, all dependencies related to the inode will be satisfied and 9977 * the corresponding dependency structures de-allocated. So, if/when the 9978 * inode is reused, there will be no mixing of old dependencies with new 9979 * ones. This artificial dependency is set up by the block de-allocation 9980 * procedure above (softdep_setup_freeblocks) and completed by the 9981 * following procedure. 9982 */ 9983 static void 9984 handle_workitem_freefile(freefile) 9985 struct freefile *freefile; 9986 { 9987 struct workhead wkhd; 9988 struct fs *fs; 9989 struct ufsmount *ump; 9990 int error; 9991 #ifdef INVARIANTS 9992 struct inodedep *idp; 9993 #endif 9994 9995 ump = VFSTOUFS(freefile->fx_list.wk_mp); 9996 fs = ump->um_fs; 9997 #ifdef INVARIANTS 9998 ACQUIRE_LOCK(ump); 9999 error = inodedep_lookup(UFSTOVFS(ump), freefile->fx_oldinum, 0, &idp); 10000 FREE_LOCK(ump); 10001 if (error) 10002 panic("handle_workitem_freefile: inodedep %p survived", idp); 10003 #endif 10004 UFS_LOCK(ump); 10005 fs->fs_pendinginodes -= 1; 10006 UFS_UNLOCK(ump); 10007 LIST_INIT(&wkhd); 10008 LIST_SWAP(&freefile->fx_jwork, &wkhd, worklist, wk_list); 10009 if ((error = ffs_freefile(ump, fs, freefile->fx_devvp, 10010 freefile->fx_oldinum, freefile->fx_mode, &wkhd)) != 0) 10011 softdep_error("handle_workitem_freefile", error); 10012 ACQUIRE_LOCK(ump); 10013 WORKITEM_FREE(freefile, D_FREEFILE); 10014 FREE_LOCK(ump); 10015 } 10016 10017 10018 /* 10019 * Helper function which unlinks marker element from work list and returns 10020 * the next element on the list. 10021 */ 10022 static __inline struct worklist * 10023 markernext(struct worklist *marker) 10024 { 10025 struct worklist *next; 10026 10027 next = LIST_NEXT(marker, wk_list); 10028 LIST_REMOVE(marker, wk_list); 10029 return next; 10030 } 10031 10032 /* 10033 * Disk writes. 10034 * 10035 * The dependency structures constructed above are most actively used when file 10036 * system blocks are written to disk. No constraints are placed on when a 10037 * block can be written, but unsatisfied update dependencies are made safe by 10038 * modifying (or replacing) the source memory for the duration of the disk 10039 * write. When the disk write completes, the memory block is again brought 10040 * up-to-date. 10041 * 10042 * In-core inode structure reclamation. 10043 * 10044 * Because there are a finite number of "in-core" inode structures, they are 10045 * reused regularly. By transferring all inode-related dependencies to the 10046 * in-memory inode block and indexing them separately (via "inodedep"s), we 10047 * can allow "in-core" inode structures to be reused at any time and avoid 10048 * any increase in contention. 10049 * 10050 * Called just before entering the device driver to initiate a new disk I/O. 10051 * The buffer must be locked, thus, no I/O completion operations can occur 10052 * while we are manipulating its associated dependencies. 10053 */ 10054 static void 10055 softdep_disk_io_initiation(bp) 10056 struct buf *bp; /* structure describing disk write to occur */ 10057 { 10058 struct worklist *wk; 10059 struct worklist marker; 10060 struct inodedep *inodedep; 10061 struct freeblks *freeblks; 10062 struct jblkdep *jblkdep; 10063 struct newblk *newblk; 10064 struct ufsmount *ump; 10065 10066 /* 10067 * We only care about write operations. There should never 10068 * be dependencies for reads. 10069 */ 10070 if (bp->b_iocmd != BIO_WRITE) 10071 panic("softdep_disk_io_initiation: not write"); 10072 10073 if (bp->b_vflags & BV_BKGRDINPROG) 10074 panic("softdep_disk_io_initiation: Writing buffer with " 10075 "background write in progress: %p", bp); 10076 10077 ump = softdep_bp_to_mp(bp); 10078 if (ump == NULL) 10079 return; 10080 10081 marker.wk_type = D_LAST + 1; /* Not a normal workitem */ 10082 PHOLD(curproc); /* Don't swap out kernel stack */ 10083 ACQUIRE_LOCK(ump); 10084 /* 10085 * Do any necessary pre-I/O processing. 10086 */ 10087 for (wk = LIST_FIRST(&bp->b_dep); wk != NULL; 10088 wk = markernext(&marker)) { 10089 LIST_INSERT_AFTER(wk, &marker, wk_list); 10090 switch (wk->wk_type) { 10091 10092 case D_PAGEDEP: 10093 initiate_write_filepage(WK_PAGEDEP(wk), bp); 10094 continue; 10095 10096 case D_INODEDEP: 10097 inodedep = WK_INODEDEP(wk); 10098 if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC) 10099 initiate_write_inodeblock_ufs1(inodedep, bp); 10100 else 10101 initiate_write_inodeblock_ufs2(inodedep, bp); 10102 continue; 10103 10104 case D_INDIRDEP: 10105 initiate_write_indirdep(WK_INDIRDEP(wk), bp); 10106 continue; 10107 10108 case D_BMSAFEMAP: 10109 initiate_write_bmsafemap(WK_BMSAFEMAP(wk), bp); 10110 continue; 10111 10112 case D_JSEG: 10113 WK_JSEG(wk)->js_buf = NULL; 10114 continue; 10115 10116 case D_FREEBLKS: 10117 freeblks = WK_FREEBLKS(wk); 10118 jblkdep = LIST_FIRST(&freeblks->fb_jblkdephd); 10119 /* 10120 * We have to wait for the freeblks to be journaled 10121 * before we can write an inodeblock with updated 10122 * pointers. Be careful to arrange the marker so 10123 * we revisit the freeblks if it's not removed by 10124 * the first jwait(). 10125 */ 10126 if (jblkdep != NULL) { 10127 LIST_REMOVE(&marker, wk_list); 10128 LIST_INSERT_BEFORE(wk, &marker, wk_list); 10129 jwait(&jblkdep->jb_list, MNT_WAIT); 10130 } 10131 continue; 10132 case D_ALLOCDIRECT: 10133 case D_ALLOCINDIR: 10134 /* 10135 * We have to wait for the jnewblk to be journaled 10136 * before we can write to a block if the contents 10137 * may be confused with an earlier file's indirect 10138 * at recovery time. Handle the marker as described 10139 * above. 10140 */ 10141 newblk = WK_NEWBLK(wk); 10142 if (newblk->nb_jnewblk != NULL && 10143 indirblk_lookup(newblk->nb_list.wk_mp, 10144 newblk->nb_newblkno)) { 10145 LIST_REMOVE(&marker, wk_list); 10146 LIST_INSERT_BEFORE(wk, &marker, wk_list); 10147 jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT); 10148 } 10149 continue; 10150 10151 case D_SBDEP: 10152 initiate_write_sbdep(WK_SBDEP(wk)); 10153 continue; 10154 10155 case D_MKDIR: 10156 case D_FREEWORK: 10157 case D_FREEDEP: 10158 case D_JSEGDEP: 10159 continue; 10160 10161 default: 10162 panic("handle_disk_io_initiation: Unexpected type %s", 10163 TYPENAME(wk->wk_type)); 10164 /* NOTREACHED */ 10165 } 10166 } 10167 FREE_LOCK(ump); 10168 PRELE(curproc); /* Allow swapout of kernel stack */ 10169 } 10170 10171 /* 10172 * Called from within the procedure above to deal with unsatisfied 10173 * allocation dependencies in a directory. The buffer must be locked, 10174 * thus, no I/O completion operations can occur while we are 10175 * manipulating its associated dependencies. 10176 */ 10177 static void 10178 initiate_write_filepage(pagedep, bp) 10179 struct pagedep *pagedep; 10180 struct buf *bp; 10181 { 10182 struct jremref *jremref; 10183 struct jmvref *jmvref; 10184 struct dirrem *dirrem; 10185 struct diradd *dap; 10186 struct direct *ep; 10187 int i; 10188 10189 if (pagedep->pd_state & IOSTARTED) { 10190 /* 10191 * This can only happen if there is a driver that does not 10192 * understand chaining. Here biodone will reissue the call 10193 * to strategy for the incomplete buffers. 10194 */ 10195 printf("initiate_write_filepage: already started\n"); 10196 return; 10197 } 10198 pagedep->pd_state |= IOSTARTED; 10199 /* 10200 * Wait for all journal remove dependencies to hit the disk. 10201 * We can not allow any potentially conflicting directory adds 10202 * to be visible before removes and rollback is too difficult. 10203 * The per-filesystem lock may be dropped and re-acquired, however 10204 * we hold the buf locked so the dependency can not go away. 10205 */ 10206 LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next) 10207 while ((jremref = LIST_FIRST(&dirrem->dm_jremrefhd)) != NULL) 10208 jwait(&jremref->jr_list, MNT_WAIT); 10209 while ((jmvref = LIST_FIRST(&pagedep->pd_jmvrefhd)) != NULL) 10210 jwait(&jmvref->jm_list, MNT_WAIT); 10211 for (i = 0; i < DAHASHSZ; i++) { 10212 LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) { 10213 ep = (struct direct *) 10214 ((char *)bp->b_data + dap->da_offset); 10215 if (ep->d_ino != dap->da_newinum) 10216 panic("%s: dir inum %ju != new %ju", 10217 "initiate_write_filepage", 10218 (uintmax_t)ep->d_ino, 10219 (uintmax_t)dap->da_newinum); 10220 if (dap->da_state & DIRCHG) 10221 ep->d_ino = dap->da_previous->dm_oldinum; 10222 else 10223 ep->d_ino = 0; 10224 dap->da_state &= ~ATTACHED; 10225 dap->da_state |= UNDONE; 10226 } 10227 } 10228 } 10229 10230 /* 10231 * Version of initiate_write_inodeblock that handles UFS1 dinodes. 10232 * Note that any bug fixes made to this routine must be done in the 10233 * version found below. 10234 * 10235 * Called from within the procedure above to deal with unsatisfied 10236 * allocation dependencies in an inodeblock. The buffer must be 10237 * locked, thus, no I/O completion operations can occur while we 10238 * are manipulating its associated dependencies. 10239 */ 10240 static void 10241 initiate_write_inodeblock_ufs1(inodedep, bp) 10242 struct inodedep *inodedep; 10243 struct buf *bp; /* The inode block */ 10244 { 10245 struct allocdirect *adp, *lastadp; 10246 struct ufs1_dinode *dp; 10247 struct ufs1_dinode *sip; 10248 struct inoref *inoref; 10249 struct ufsmount *ump; 10250 struct fs *fs; 10251 ufs_lbn_t i; 10252 #ifdef INVARIANTS 10253 ufs_lbn_t prevlbn = 0; 10254 #endif 10255 int deplist; 10256 10257 if (inodedep->id_state & IOSTARTED) 10258 panic("initiate_write_inodeblock_ufs1: already started"); 10259 inodedep->id_state |= IOSTARTED; 10260 fs = inodedep->id_fs; 10261 ump = VFSTOUFS(inodedep->id_list.wk_mp); 10262 LOCK_OWNED(ump); 10263 dp = (struct ufs1_dinode *)bp->b_data + 10264 ino_to_fsbo(fs, inodedep->id_ino); 10265 10266 /* 10267 * If we're on the unlinked list but have not yet written our 10268 * next pointer initialize it here. 10269 */ 10270 if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) { 10271 struct inodedep *inon; 10272 10273 inon = TAILQ_NEXT(inodedep, id_unlinked); 10274 dp->di_freelink = inon ? inon->id_ino : 0; 10275 } 10276 /* 10277 * If the bitmap is not yet written, then the allocated 10278 * inode cannot be written to disk. 10279 */ 10280 if ((inodedep->id_state & DEPCOMPLETE) == 0) { 10281 if (inodedep->id_savedino1 != NULL) 10282 panic("initiate_write_inodeblock_ufs1: I/O underway"); 10283 FREE_LOCK(ump); 10284 sip = malloc(sizeof(struct ufs1_dinode), 10285 M_SAVEDINO, M_SOFTDEP_FLAGS); 10286 ACQUIRE_LOCK(ump); 10287 inodedep->id_savedino1 = sip; 10288 *inodedep->id_savedino1 = *dp; 10289 bzero((caddr_t)dp, sizeof(struct ufs1_dinode)); 10290 dp->di_gen = inodedep->id_savedino1->di_gen; 10291 dp->di_freelink = inodedep->id_savedino1->di_freelink; 10292 return; 10293 } 10294 /* 10295 * If no dependencies, then there is nothing to roll back. 10296 */ 10297 inodedep->id_savedsize = dp->di_size; 10298 inodedep->id_savedextsize = 0; 10299 inodedep->id_savednlink = dp->di_nlink; 10300 if (TAILQ_EMPTY(&inodedep->id_inoupdt) && 10301 TAILQ_EMPTY(&inodedep->id_inoreflst)) 10302 return; 10303 /* 10304 * Revert the link count to that of the first unwritten journal entry. 10305 */ 10306 inoref = TAILQ_FIRST(&inodedep->id_inoreflst); 10307 if (inoref) 10308 dp->di_nlink = inoref->if_nlink; 10309 /* 10310 * Set the dependencies to busy. 10311 */ 10312 for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 10313 adp = TAILQ_NEXT(adp, ad_next)) { 10314 #ifdef INVARIANTS 10315 if (deplist != 0 && prevlbn >= adp->ad_offset) 10316 panic("softdep_write_inodeblock: lbn order"); 10317 prevlbn = adp->ad_offset; 10318 if (adp->ad_offset < UFS_NDADDR && 10319 dp->di_db[adp->ad_offset] != adp->ad_newblkno) 10320 panic("initiate_write_inodeblock_ufs1: " 10321 "direct pointer #%jd mismatch %d != %jd", 10322 (intmax_t)adp->ad_offset, 10323 dp->di_db[adp->ad_offset], 10324 (intmax_t)adp->ad_newblkno); 10325 if (adp->ad_offset >= UFS_NDADDR && 10326 dp->di_ib[adp->ad_offset - UFS_NDADDR] != adp->ad_newblkno) 10327 panic("initiate_write_inodeblock_ufs1: " 10328 "indirect pointer #%jd mismatch %d != %jd", 10329 (intmax_t)adp->ad_offset - UFS_NDADDR, 10330 dp->di_ib[adp->ad_offset - UFS_NDADDR], 10331 (intmax_t)adp->ad_newblkno); 10332 deplist |= 1 << adp->ad_offset; 10333 if ((adp->ad_state & ATTACHED) == 0) 10334 panic("initiate_write_inodeblock_ufs1: " 10335 "Unknown state 0x%x", adp->ad_state); 10336 #endif /* INVARIANTS */ 10337 adp->ad_state &= ~ATTACHED; 10338 adp->ad_state |= UNDONE; 10339 } 10340 /* 10341 * The on-disk inode cannot claim to be any larger than the last 10342 * fragment that has been written. Otherwise, the on-disk inode 10343 * might have fragments that were not the last block in the file 10344 * which would corrupt the filesystem. 10345 */ 10346 for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 10347 lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) { 10348 if (adp->ad_offset >= UFS_NDADDR) 10349 break; 10350 dp->di_db[adp->ad_offset] = adp->ad_oldblkno; 10351 /* keep going until hitting a rollback to a frag */ 10352 if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize) 10353 continue; 10354 dp->di_size = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize; 10355 for (i = adp->ad_offset + 1; i < UFS_NDADDR; i++) { 10356 #ifdef INVARIANTS 10357 if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0) 10358 panic("initiate_write_inodeblock_ufs1: " 10359 "lost dep1"); 10360 #endif /* INVARIANTS */ 10361 dp->di_db[i] = 0; 10362 } 10363 for (i = 0; i < UFS_NIADDR; i++) { 10364 #ifdef INVARIANTS 10365 if (dp->di_ib[i] != 0 && 10366 (deplist & ((1 << UFS_NDADDR) << i)) == 0) 10367 panic("initiate_write_inodeblock_ufs1: " 10368 "lost dep2"); 10369 #endif /* INVARIANTS */ 10370 dp->di_ib[i] = 0; 10371 } 10372 return; 10373 } 10374 /* 10375 * If we have zero'ed out the last allocated block of the file, 10376 * roll back the size to the last currently allocated block. 10377 * We know that this last allocated block is a full-sized as 10378 * we already checked for fragments in the loop above. 10379 */ 10380 if (lastadp != NULL && 10381 dp->di_size <= (lastadp->ad_offset + 1) * fs->fs_bsize) { 10382 for (i = lastadp->ad_offset; i >= 0; i--) 10383 if (dp->di_db[i] != 0) 10384 break; 10385 dp->di_size = (i + 1) * fs->fs_bsize; 10386 } 10387 /* 10388 * The only dependencies are for indirect blocks. 10389 * 10390 * The file size for indirect block additions is not guaranteed. 10391 * Such a guarantee would be non-trivial to achieve. The conventional 10392 * synchronous write implementation also does not make this guarantee. 10393 * Fsck should catch and fix discrepancies. Arguably, the file size 10394 * can be over-estimated without destroying integrity when the file 10395 * moves into the indirect blocks (i.e., is large). If we want to 10396 * postpone fsck, we are stuck with this argument. 10397 */ 10398 for (; adp; adp = TAILQ_NEXT(adp, ad_next)) 10399 dp->di_ib[adp->ad_offset - UFS_NDADDR] = 0; 10400 } 10401 10402 /* 10403 * Version of initiate_write_inodeblock that handles UFS2 dinodes. 10404 * Note that any bug fixes made to this routine must be done in the 10405 * version found above. 10406 * 10407 * Called from within the procedure above to deal with unsatisfied 10408 * allocation dependencies in an inodeblock. The buffer must be 10409 * locked, thus, no I/O completion operations can occur while we 10410 * are manipulating its associated dependencies. 10411 */ 10412 static void 10413 initiate_write_inodeblock_ufs2(inodedep, bp) 10414 struct inodedep *inodedep; 10415 struct buf *bp; /* The inode block */ 10416 { 10417 struct allocdirect *adp, *lastadp; 10418 struct ufs2_dinode *dp; 10419 struct ufs2_dinode *sip; 10420 struct inoref *inoref; 10421 struct ufsmount *ump; 10422 struct fs *fs; 10423 ufs_lbn_t i; 10424 #ifdef INVARIANTS 10425 ufs_lbn_t prevlbn = 0; 10426 #endif 10427 int deplist; 10428 10429 if (inodedep->id_state & IOSTARTED) 10430 panic("initiate_write_inodeblock_ufs2: already started"); 10431 inodedep->id_state |= IOSTARTED; 10432 fs = inodedep->id_fs; 10433 ump = VFSTOUFS(inodedep->id_list.wk_mp); 10434 LOCK_OWNED(ump); 10435 dp = (struct ufs2_dinode *)bp->b_data + 10436 ino_to_fsbo(fs, inodedep->id_ino); 10437 10438 /* 10439 * If we're on the unlinked list but have not yet written our 10440 * next pointer initialize it here. 10441 */ 10442 if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) { 10443 struct inodedep *inon; 10444 10445 inon = TAILQ_NEXT(inodedep, id_unlinked); 10446 dp->di_freelink = inon ? inon->id_ino : 0; 10447 ffs_update_dinode_ckhash(fs, dp); 10448 } 10449 /* 10450 * If the bitmap is not yet written, then the allocated 10451 * inode cannot be written to disk. 10452 */ 10453 if ((inodedep->id_state & DEPCOMPLETE) == 0) { 10454 if (inodedep->id_savedino2 != NULL) 10455 panic("initiate_write_inodeblock_ufs2: I/O underway"); 10456 FREE_LOCK(ump); 10457 sip = malloc(sizeof(struct ufs2_dinode), 10458 M_SAVEDINO, M_SOFTDEP_FLAGS); 10459 ACQUIRE_LOCK(ump); 10460 inodedep->id_savedino2 = sip; 10461 *inodedep->id_savedino2 = *dp; 10462 bzero((caddr_t)dp, sizeof(struct ufs2_dinode)); 10463 dp->di_gen = inodedep->id_savedino2->di_gen; 10464 dp->di_freelink = inodedep->id_savedino2->di_freelink; 10465 return; 10466 } 10467 /* 10468 * If no dependencies, then there is nothing to roll back. 10469 */ 10470 inodedep->id_savedsize = dp->di_size; 10471 inodedep->id_savedextsize = dp->di_extsize; 10472 inodedep->id_savednlink = dp->di_nlink; 10473 if (TAILQ_EMPTY(&inodedep->id_inoupdt) && 10474 TAILQ_EMPTY(&inodedep->id_extupdt) && 10475 TAILQ_EMPTY(&inodedep->id_inoreflst)) 10476 return; 10477 /* 10478 * Revert the link count to that of the first unwritten journal entry. 10479 */ 10480 inoref = TAILQ_FIRST(&inodedep->id_inoreflst); 10481 if (inoref) 10482 dp->di_nlink = inoref->if_nlink; 10483 10484 /* 10485 * Set the ext data dependencies to busy. 10486 */ 10487 for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; 10488 adp = TAILQ_NEXT(adp, ad_next)) { 10489 #ifdef INVARIANTS 10490 if (deplist != 0 && prevlbn >= adp->ad_offset) 10491 panic("initiate_write_inodeblock_ufs2: lbn order"); 10492 prevlbn = adp->ad_offset; 10493 if (dp->di_extb[adp->ad_offset] != adp->ad_newblkno) 10494 panic("initiate_write_inodeblock_ufs2: " 10495 "ext pointer #%jd mismatch %jd != %jd", 10496 (intmax_t)adp->ad_offset, 10497 (intmax_t)dp->di_extb[adp->ad_offset], 10498 (intmax_t)adp->ad_newblkno); 10499 deplist |= 1 << adp->ad_offset; 10500 if ((adp->ad_state & ATTACHED) == 0) 10501 panic("initiate_write_inodeblock_ufs2: Unknown " 10502 "state 0x%x", adp->ad_state); 10503 #endif /* INVARIANTS */ 10504 adp->ad_state &= ~ATTACHED; 10505 adp->ad_state |= UNDONE; 10506 } 10507 /* 10508 * The on-disk inode cannot claim to be any larger than the last 10509 * fragment that has been written. Otherwise, the on-disk inode 10510 * might have fragments that were not the last block in the ext 10511 * data which would corrupt the filesystem. 10512 */ 10513 for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; 10514 lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) { 10515 dp->di_extb[adp->ad_offset] = adp->ad_oldblkno; 10516 /* keep going until hitting a rollback to a frag */ 10517 if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize) 10518 continue; 10519 dp->di_extsize = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize; 10520 for (i = adp->ad_offset + 1; i < UFS_NXADDR; i++) { 10521 #ifdef INVARIANTS 10522 if (dp->di_extb[i] != 0 && (deplist & (1 << i)) == 0) 10523 panic("initiate_write_inodeblock_ufs2: " 10524 "lost dep1"); 10525 #endif /* INVARIANTS */ 10526 dp->di_extb[i] = 0; 10527 } 10528 lastadp = NULL; 10529 break; 10530 } 10531 /* 10532 * If we have zero'ed out the last allocated block of the ext 10533 * data, roll back the size to the last currently allocated block. 10534 * We know that this last allocated block is a full-sized as 10535 * we already checked for fragments in the loop above. 10536 */ 10537 if (lastadp != NULL && 10538 dp->di_extsize <= (lastadp->ad_offset + 1) * fs->fs_bsize) { 10539 for (i = lastadp->ad_offset; i >= 0; i--) 10540 if (dp->di_extb[i] != 0) 10541 break; 10542 dp->di_extsize = (i + 1) * fs->fs_bsize; 10543 } 10544 /* 10545 * Set the file data dependencies to busy. 10546 */ 10547 for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 10548 adp = TAILQ_NEXT(adp, ad_next)) { 10549 #ifdef INVARIANTS 10550 if (deplist != 0 && prevlbn >= adp->ad_offset) 10551 panic("softdep_write_inodeblock: lbn order"); 10552 if ((adp->ad_state & ATTACHED) == 0) 10553 panic("inodedep %p and adp %p not attached", inodedep, adp); 10554 prevlbn = adp->ad_offset; 10555 if (adp->ad_offset < UFS_NDADDR && 10556 dp->di_db[adp->ad_offset] != adp->ad_newblkno) 10557 panic("initiate_write_inodeblock_ufs2: " 10558 "direct pointer #%jd mismatch %jd != %jd", 10559 (intmax_t)adp->ad_offset, 10560 (intmax_t)dp->di_db[adp->ad_offset], 10561 (intmax_t)adp->ad_newblkno); 10562 if (adp->ad_offset >= UFS_NDADDR && 10563 dp->di_ib[adp->ad_offset - UFS_NDADDR] != adp->ad_newblkno) 10564 panic("initiate_write_inodeblock_ufs2: " 10565 "indirect pointer #%jd mismatch %jd != %jd", 10566 (intmax_t)adp->ad_offset - UFS_NDADDR, 10567 (intmax_t)dp->di_ib[adp->ad_offset - UFS_NDADDR], 10568 (intmax_t)adp->ad_newblkno); 10569 deplist |= 1 << adp->ad_offset; 10570 if ((adp->ad_state & ATTACHED) == 0) 10571 panic("initiate_write_inodeblock_ufs2: Unknown " 10572 "state 0x%x", adp->ad_state); 10573 #endif /* INVARIANTS */ 10574 adp->ad_state &= ~ATTACHED; 10575 adp->ad_state |= UNDONE; 10576 } 10577 /* 10578 * The on-disk inode cannot claim to be any larger than the last 10579 * fragment that has been written. Otherwise, the on-disk inode 10580 * might have fragments that were not the last block in the file 10581 * which would corrupt the filesystem. 10582 */ 10583 for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 10584 lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) { 10585 if (adp->ad_offset >= UFS_NDADDR) 10586 break; 10587 dp->di_db[adp->ad_offset] = adp->ad_oldblkno; 10588 /* keep going until hitting a rollback to a frag */ 10589 if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize) 10590 continue; 10591 dp->di_size = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize; 10592 for (i = adp->ad_offset + 1; i < UFS_NDADDR; i++) { 10593 #ifdef INVARIANTS 10594 if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0) 10595 panic("initiate_write_inodeblock_ufs2: " 10596 "lost dep2"); 10597 #endif /* INVARIANTS */ 10598 dp->di_db[i] = 0; 10599 } 10600 for (i = 0; i < UFS_NIADDR; i++) { 10601 #ifdef INVARIANTS 10602 if (dp->di_ib[i] != 0 && 10603 (deplist & ((1 << UFS_NDADDR) << i)) == 0) 10604 panic("initiate_write_inodeblock_ufs2: " 10605 "lost dep3"); 10606 #endif /* INVARIANTS */ 10607 dp->di_ib[i] = 0; 10608 } 10609 ffs_update_dinode_ckhash(fs, dp); 10610 return; 10611 } 10612 /* 10613 * If we have zero'ed out the last allocated block of the file, 10614 * roll back the size to the last currently allocated block. 10615 * We know that this last allocated block is a full-sized as 10616 * we already checked for fragments in the loop above. 10617 */ 10618 if (lastadp != NULL && 10619 dp->di_size <= (lastadp->ad_offset + 1) * fs->fs_bsize) { 10620 for (i = lastadp->ad_offset; i >= 0; i--) 10621 if (dp->di_db[i] != 0) 10622 break; 10623 dp->di_size = (i + 1) * fs->fs_bsize; 10624 } 10625 /* 10626 * The only dependencies are for indirect blocks. 10627 * 10628 * The file size for indirect block additions is not guaranteed. 10629 * Such a guarantee would be non-trivial to achieve. The conventional 10630 * synchronous write implementation also does not make this guarantee. 10631 * Fsck should catch and fix discrepancies. Arguably, the file size 10632 * can be over-estimated without destroying integrity when the file 10633 * moves into the indirect blocks (i.e., is large). If we want to 10634 * postpone fsck, we are stuck with this argument. 10635 */ 10636 for (; adp; adp = TAILQ_NEXT(adp, ad_next)) 10637 dp->di_ib[adp->ad_offset - UFS_NDADDR] = 0; 10638 ffs_update_dinode_ckhash(fs, dp); 10639 } 10640 10641 /* 10642 * Cancel an indirdep as a result of truncation. Release all of the 10643 * children allocindirs and place their journal work on the appropriate 10644 * list. 10645 */ 10646 static void 10647 cancel_indirdep(indirdep, bp, freeblks) 10648 struct indirdep *indirdep; 10649 struct buf *bp; 10650 struct freeblks *freeblks; 10651 { 10652 struct allocindir *aip; 10653 10654 /* 10655 * None of the indirect pointers will ever be visible, 10656 * so they can simply be tossed. GOINGAWAY ensures 10657 * that allocated pointers will be saved in the buffer 10658 * cache until they are freed. Note that they will 10659 * only be able to be found by their physical address 10660 * since the inode mapping the logical address will 10661 * be gone. The save buffer used for the safe copy 10662 * was allocated in setup_allocindir_phase2 using 10663 * the physical address so it could be used for this 10664 * purpose. Hence we swap the safe copy with the real 10665 * copy, allowing the safe copy to be freed and holding 10666 * on to the real copy for later use in indir_trunc. 10667 */ 10668 if (indirdep->ir_state & GOINGAWAY) 10669 panic("cancel_indirdep: already gone"); 10670 if ((indirdep->ir_state & DEPCOMPLETE) == 0) { 10671 indirdep->ir_state |= DEPCOMPLETE; 10672 LIST_REMOVE(indirdep, ir_next); 10673 } 10674 indirdep->ir_state |= GOINGAWAY; 10675 /* 10676 * Pass in bp for blocks still have journal writes 10677 * pending so we can cancel them on their own. 10678 */ 10679 while ((aip = LIST_FIRST(&indirdep->ir_deplisthd)) != NULL) 10680 cancel_allocindir(aip, bp, freeblks, 0); 10681 while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != NULL) 10682 cancel_allocindir(aip, NULL, freeblks, 0); 10683 while ((aip = LIST_FIRST(&indirdep->ir_writehd)) != NULL) 10684 cancel_allocindir(aip, NULL, freeblks, 0); 10685 while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != NULL) 10686 cancel_allocindir(aip, NULL, freeblks, 0); 10687 /* 10688 * If there are pending partial truncations we need to keep the 10689 * old block copy around until they complete. This is because 10690 * the current b_data is not a perfect superset of the available 10691 * blocks. 10692 */ 10693 if (TAILQ_EMPTY(&indirdep->ir_trunc)) 10694 bcopy(bp->b_data, indirdep->ir_savebp->b_data, bp->b_bcount); 10695 else 10696 bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount); 10697 WORKLIST_REMOVE(&indirdep->ir_list); 10698 WORKLIST_INSERT(&indirdep->ir_savebp->b_dep, &indirdep->ir_list); 10699 indirdep->ir_bp = NULL; 10700 indirdep->ir_freeblks = freeblks; 10701 } 10702 10703 /* 10704 * Free an indirdep once it no longer has new pointers to track. 10705 */ 10706 static void 10707 free_indirdep(indirdep) 10708 struct indirdep *indirdep; 10709 { 10710 10711 KASSERT(TAILQ_EMPTY(&indirdep->ir_trunc), 10712 ("free_indirdep: Indir trunc list not empty.")); 10713 KASSERT(LIST_EMPTY(&indirdep->ir_completehd), 10714 ("free_indirdep: Complete head not empty.")); 10715 KASSERT(LIST_EMPTY(&indirdep->ir_writehd), 10716 ("free_indirdep: write head not empty.")); 10717 KASSERT(LIST_EMPTY(&indirdep->ir_donehd), 10718 ("free_indirdep: done head not empty.")); 10719 KASSERT(LIST_EMPTY(&indirdep->ir_deplisthd), 10720 ("free_indirdep: deplist head not empty.")); 10721 KASSERT((indirdep->ir_state & DEPCOMPLETE), 10722 ("free_indirdep: %p still on newblk list.", indirdep)); 10723 KASSERT(indirdep->ir_saveddata == NULL, 10724 ("free_indirdep: %p still has saved data.", indirdep)); 10725 if (indirdep->ir_state & ONWORKLIST) 10726 WORKLIST_REMOVE(&indirdep->ir_list); 10727 WORKITEM_FREE(indirdep, D_INDIRDEP); 10728 } 10729 10730 /* 10731 * Called before a write to an indirdep. This routine is responsible for 10732 * rolling back pointers to a safe state which includes only those 10733 * allocindirs which have been completed. 10734 */ 10735 static void 10736 initiate_write_indirdep(indirdep, bp) 10737 struct indirdep *indirdep; 10738 struct buf *bp; 10739 { 10740 struct ufsmount *ump; 10741 10742 indirdep->ir_state |= IOSTARTED; 10743 if (indirdep->ir_state & GOINGAWAY) 10744 panic("disk_io_initiation: indirdep gone"); 10745 /* 10746 * If there are no remaining dependencies, this will be writing 10747 * the real pointers. 10748 */ 10749 if (LIST_EMPTY(&indirdep->ir_deplisthd) && 10750 TAILQ_EMPTY(&indirdep->ir_trunc)) 10751 return; 10752 /* 10753 * Replace up-to-date version with safe version. 10754 */ 10755 if (indirdep->ir_saveddata == NULL) { 10756 ump = VFSTOUFS(indirdep->ir_list.wk_mp); 10757 LOCK_OWNED(ump); 10758 FREE_LOCK(ump); 10759 indirdep->ir_saveddata = malloc(bp->b_bcount, M_INDIRDEP, 10760 M_SOFTDEP_FLAGS); 10761 ACQUIRE_LOCK(ump); 10762 } 10763 indirdep->ir_state &= ~ATTACHED; 10764 indirdep->ir_state |= UNDONE; 10765 bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount); 10766 bcopy(indirdep->ir_savebp->b_data, bp->b_data, 10767 bp->b_bcount); 10768 } 10769 10770 /* 10771 * Called when an inode has been cleared in a cg bitmap. This finally 10772 * eliminates any canceled jaddrefs 10773 */ 10774 void 10775 softdep_setup_inofree(mp, bp, ino, wkhd) 10776 struct mount *mp; 10777 struct buf *bp; 10778 ino_t ino; 10779 struct workhead *wkhd; 10780 { 10781 struct worklist *wk, *wkn; 10782 struct inodedep *inodedep; 10783 struct ufsmount *ump; 10784 uint8_t *inosused; 10785 struct cg *cgp; 10786 struct fs *fs; 10787 10788 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 10789 ("softdep_setup_inofree called on non-softdep filesystem")); 10790 ump = VFSTOUFS(mp); 10791 ACQUIRE_LOCK(ump); 10792 fs = ump->um_fs; 10793 cgp = (struct cg *)bp->b_data; 10794 inosused = cg_inosused(cgp); 10795 if (isset(inosused, ino % fs->fs_ipg)) 10796 panic("softdep_setup_inofree: inode %ju not freed.", 10797 (uintmax_t)ino); 10798 if (inodedep_lookup(mp, ino, 0, &inodedep)) 10799 panic("softdep_setup_inofree: ino %ju has existing inodedep %p", 10800 (uintmax_t)ino, inodedep); 10801 if (wkhd) { 10802 LIST_FOREACH_SAFE(wk, wkhd, wk_list, wkn) { 10803 if (wk->wk_type != D_JADDREF) 10804 continue; 10805 WORKLIST_REMOVE(wk); 10806 /* 10807 * We can free immediately even if the jaddref 10808 * isn't attached in a background write as now 10809 * the bitmaps are reconciled. 10810 */ 10811 wk->wk_state |= COMPLETE | ATTACHED; 10812 free_jaddref(WK_JADDREF(wk)); 10813 } 10814 jwork_move(&bp->b_dep, wkhd); 10815 } 10816 FREE_LOCK(ump); 10817 } 10818 10819 /* 10820 * Called via ffs_blkfree() after a set of frags has been cleared from a cg 10821 * map. Any dependencies waiting for the write to clear are added to the 10822 * buf's list and any jnewblks that are being canceled are discarded 10823 * immediately. 10824 */ 10825 void 10826 softdep_setup_blkfree(mp, bp, blkno, frags, wkhd) 10827 struct mount *mp; 10828 struct buf *bp; 10829 ufs2_daddr_t blkno; 10830 int frags; 10831 struct workhead *wkhd; 10832 { 10833 struct bmsafemap *bmsafemap; 10834 struct jnewblk *jnewblk; 10835 struct ufsmount *ump; 10836 struct worklist *wk; 10837 struct fs *fs; 10838 #ifdef INVARIANTS 10839 uint8_t *blksfree; 10840 struct cg *cgp; 10841 ufs2_daddr_t jstart; 10842 ufs2_daddr_t jend; 10843 ufs2_daddr_t end; 10844 long bno; 10845 int i; 10846 #endif 10847 10848 CTR3(KTR_SUJ, 10849 "softdep_setup_blkfree: blkno %jd frags %d wk head %p", 10850 blkno, frags, wkhd); 10851 10852 ump = VFSTOUFS(mp); 10853 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 10854 ("softdep_setup_blkfree called on non-softdep filesystem")); 10855 ACQUIRE_LOCK(ump); 10856 /* Lookup the bmsafemap so we track when it is dirty. */ 10857 fs = ump->um_fs; 10858 bmsafemap = bmsafemap_lookup(mp, bp, dtog(fs, blkno), NULL); 10859 /* 10860 * Detach any jnewblks which have been canceled. They must linger 10861 * until the bitmap is cleared again by ffs_blkfree() to prevent 10862 * an unjournaled allocation from hitting the disk. 10863 */ 10864 if (wkhd) { 10865 while ((wk = LIST_FIRST(wkhd)) != NULL) { 10866 CTR2(KTR_SUJ, 10867 "softdep_setup_blkfree: blkno %jd wk type %d", 10868 blkno, wk->wk_type); 10869 WORKLIST_REMOVE(wk); 10870 if (wk->wk_type != D_JNEWBLK) { 10871 WORKLIST_INSERT(&bmsafemap->sm_freehd, wk); 10872 continue; 10873 } 10874 jnewblk = WK_JNEWBLK(wk); 10875 KASSERT(jnewblk->jn_state & GOINGAWAY, 10876 ("softdep_setup_blkfree: jnewblk not canceled.")); 10877 #ifdef INVARIANTS 10878 /* 10879 * Assert that this block is free in the bitmap 10880 * before we discard the jnewblk. 10881 */ 10882 cgp = (struct cg *)bp->b_data; 10883 blksfree = cg_blksfree(cgp); 10884 bno = dtogd(fs, jnewblk->jn_blkno); 10885 for (i = jnewblk->jn_oldfrags; 10886 i < jnewblk->jn_frags; i++) { 10887 if (isset(blksfree, bno + i)) 10888 continue; 10889 panic("softdep_setup_blkfree: not free"); 10890 } 10891 #endif 10892 /* 10893 * Even if it's not attached we can free immediately 10894 * as the new bitmap is correct. 10895 */ 10896 wk->wk_state |= COMPLETE | ATTACHED; 10897 free_jnewblk(jnewblk); 10898 } 10899 } 10900 10901 #ifdef INVARIANTS 10902 /* 10903 * Assert that we are not freeing a block which has an outstanding 10904 * allocation dependency. 10905 */ 10906 fs = VFSTOUFS(mp)->um_fs; 10907 bmsafemap = bmsafemap_lookup(mp, bp, dtog(fs, blkno), NULL); 10908 end = blkno + frags; 10909 LIST_FOREACH(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps) { 10910 /* 10911 * Don't match against blocks that will be freed when the 10912 * background write is done. 10913 */ 10914 if ((jnewblk->jn_state & (ATTACHED | COMPLETE | DEPCOMPLETE)) == 10915 (COMPLETE | DEPCOMPLETE)) 10916 continue; 10917 jstart = jnewblk->jn_blkno + jnewblk->jn_oldfrags; 10918 jend = jnewblk->jn_blkno + jnewblk->jn_frags; 10919 if ((blkno >= jstart && blkno < jend) || 10920 (end > jstart && end <= jend)) { 10921 printf("state 0x%X %jd - %d %d dep %p\n", 10922 jnewblk->jn_state, jnewblk->jn_blkno, 10923 jnewblk->jn_oldfrags, jnewblk->jn_frags, 10924 jnewblk->jn_dep); 10925 panic("softdep_setup_blkfree: " 10926 "%jd-%jd(%d) overlaps with %jd-%jd", 10927 blkno, end, frags, jstart, jend); 10928 } 10929 } 10930 #endif 10931 FREE_LOCK(ump); 10932 } 10933 10934 /* 10935 * Revert a block allocation when the journal record that describes it 10936 * is not yet written. 10937 */ 10938 static int 10939 jnewblk_rollback(jnewblk, fs, cgp, blksfree) 10940 struct jnewblk *jnewblk; 10941 struct fs *fs; 10942 struct cg *cgp; 10943 uint8_t *blksfree; 10944 { 10945 ufs1_daddr_t fragno; 10946 long cgbno, bbase; 10947 int frags, blk; 10948 int i; 10949 10950 frags = 0; 10951 cgbno = dtogd(fs, jnewblk->jn_blkno); 10952 /* 10953 * We have to test which frags need to be rolled back. We may 10954 * be operating on a stale copy when doing background writes. 10955 */ 10956 for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; i++) 10957 if (isclr(blksfree, cgbno + i)) 10958 frags++; 10959 if (frags == 0) 10960 return (0); 10961 /* 10962 * This is mostly ffs_blkfree() sans some validation and 10963 * superblock updates. 10964 */ 10965 if (frags == fs->fs_frag) { 10966 fragno = fragstoblks(fs, cgbno); 10967 ffs_setblock(fs, blksfree, fragno); 10968 ffs_clusteracct(fs, cgp, fragno, 1); 10969 cgp->cg_cs.cs_nbfree++; 10970 } else { 10971 cgbno += jnewblk->jn_oldfrags; 10972 bbase = cgbno - fragnum(fs, cgbno); 10973 /* Decrement the old frags. */ 10974 blk = blkmap(fs, blksfree, bbase); 10975 ffs_fragacct(fs, blk, cgp->cg_frsum, -1); 10976 /* Deallocate the fragment */ 10977 for (i = 0; i < frags; i++) 10978 setbit(blksfree, cgbno + i); 10979 cgp->cg_cs.cs_nffree += frags; 10980 /* Add back in counts associated with the new frags */ 10981 blk = blkmap(fs, blksfree, bbase); 10982 ffs_fragacct(fs, blk, cgp->cg_frsum, 1); 10983 /* If a complete block has been reassembled, account for it. */ 10984 fragno = fragstoblks(fs, bbase); 10985 if (ffs_isblock(fs, blksfree, fragno)) { 10986 cgp->cg_cs.cs_nffree -= fs->fs_frag; 10987 ffs_clusteracct(fs, cgp, fragno, 1); 10988 cgp->cg_cs.cs_nbfree++; 10989 } 10990 } 10991 stat_jnewblk++; 10992 jnewblk->jn_state &= ~ATTACHED; 10993 jnewblk->jn_state |= UNDONE; 10994 10995 return (frags); 10996 } 10997 10998 static void 10999 initiate_write_bmsafemap(bmsafemap, bp) 11000 struct bmsafemap *bmsafemap; 11001 struct buf *bp; /* The cg block. */ 11002 { 11003 struct jaddref *jaddref; 11004 struct jnewblk *jnewblk; 11005 uint8_t *inosused; 11006 uint8_t *blksfree; 11007 struct cg *cgp; 11008 struct fs *fs; 11009 ino_t ino; 11010 11011 /* 11012 * If this is a background write, we did this at the time that 11013 * the copy was made, so do not need to do it again. 11014 */ 11015 if (bmsafemap->sm_state & IOSTARTED) 11016 return; 11017 bmsafemap->sm_state |= IOSTARTED; 11018 /* 11019 * Clear any inode allocations which are pending journal writes. 11020 */ 11021 if (LIST_FIRST(&bmsafemap->sm_jaddrefhd) != NULL) { 11022 cgp = (struct cg *)bp->b_data; 11023 fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs; 11024 inosused = cg_inosused(cgp); 11025 LIST_FOREACH(jaddref, &bmsafemap->sm_jaddrefhd, ja_bmdeps) { 11026 ino = jaddref->ja_ino % fs->fs_ipg; 11027 if (isset(inosused, ino)) { 11028 if ((jaddref->ja_mode & IFMT) == IFDIR) 11029 cgp->cg_cs.cs_ndir--; 11030 cgp->cg_cs.cs_nifree++; 11031 clrbit(inosused, ino); 11032 jaddref->ja_state &= ~ATTACHED; 11033 jaddref->ja_state |= UNDONE; 11034 stat_jaddref++; 11035 } else 11036 panic("initiate_write_bmsafemap: inode %ju " 11037 "marked free", (uintmax_t)jaddref->ja_ino); 11038 } 11039 } 11040 /* 11041 * Clear any block allocations which are pending journal writes. 11042 */ 11043 if (LIST_FIRST(&bmsafemap->sm_jnewblkhd) != NULL) { 11044 cgp = (struct cg *)bp->b_data; 11045 fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs; 11046 blksfree = cg_blksfree(cgp); 11047 LIST_FOREACH(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps) { 11048 if (jnewblk_rollback(jnewblk, fs, cgp, blksfree)) 11049 continue; 11050 panic("initiate_write_bmsafemap: block %jd " 11051 "marked free", jnewblk->jn_blkno); 11052 } 11053 } 11054 /* 11055 * Move allocation lists to the written lists so they can be 11056 * cleared once the block write is complete. 11057 */ 11058 LIST_SWAP(&bmsafemap->sm_inodedephd, &bmsafemap->sm_inodedepwr, 11059 inodedep, id_deps); 11060 LIST_SWAP(&bmsafemap->sm_newblkhd, &bmsafemap->sm_newblkwr, 11061 newblk, nb_deps); 11062 LIST_SWAP(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr, worklist, 11063 wk_list); 11064 } 11065 11066 /* 11067 * This routine is called during the completion interrupt 11068 * service routine for a disk write (from the procedure called 11069 * by the device driver to inform the filesystem caches of 11070 * a request completion). It should be called early in this 11071 * procedure, before the block is made available to other 11072 * processes or other routines are called. 11073 * 11074 */ 11075 static void 11076 softdep_disk_write_complete(bp) 11077 struct buf *bp; /* describes the completed disk write */ 11078 { 11079 struct worklist *wk; 11080 struct worklist *owk; 11081 struct ufsmount *ump; 11082 struct workhead reattach; 11083 struct freeblks *freeblks; 11084 struct buf *sbp; 11085 11086 ump = softdep_bp_to_mp(bp); 11087 KASSERT(LIST_EMPTY(&bp->b_dep) || ump != NULL, 11088 ("softdep_disk_write_complete: softdep_bp_to_mp returned NULL " 11089 "with outstanding dependencies for buffer %p", bp)); 11090 if (ump == NULL) 11091 return; 11092 /* 11093 * If an error occurred while doing the write, then the data 11094 * has not hit the disk and the dependencies cannot be processed. 11095 * But we do have to go through and roll forward any dependencies 11096 * that were rolled back before the disk write. 11097 */ 11098 sbp = NULL; 11099 ACQUIRE_LOCK(ump); 11100 if ((bp->b_ioflags & BIO_ERROR) != 0 && (bp->b_flags & B_INVAL) == 0) { 11101 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 11102 switch (wk->wk_type) { 11103 11104 case D_PAGEDEP: 11105 handle_written_filepage(WK_PAGEDEP(wk), bp, 0); 11106 continue; 11107 11108 case D_INODEDEP: 11109 handle_written_inodeblock(WK_INODEDEP(wk), 11110 bp, 0); 11111 continue; 11112 11113 case D_BMSAFEMAP: 11114 handle_written_bmsafemap(WK_BMSAFEMAP(wk), 11115 bp, 0); 11116 continue; 11117 11118 case D_INDIRDEP: 11119 handle_written_indirdep(WK_INDIRDEP(wk), 11120 bp, &sbp, 0); 11121 continue; 11122 default: 11123 /* nothing to roll forward */ 11124 continue; 11125 } 11126 } 11127 FREE_LOCK(ump); 11128 if (sbp) 11129 brelse(sbp); 11130 return; 11131 } 11132 LIST_INIT(&reattach); 11133 11134 /* 11135 * Ump SU lock must not be released anywhere in this code segment. 11136 */ 11137 owk = NULL; 11138 while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) { 11139 WORKLIST_REMOVE(wk); 11140 atomic_add_long(&dep_write[wk->wk_type], 1); 11141 if (wk == owk) 11142 panic("duplicate worklist: %p\n", wk); 11143 owk = wk; 11144 switch (wk->wk_type) { 11145 11146 case D_PAGEDEP: 11147 if (handle_written_filepage(WK_PAGEDEP(wk), bp, 11148 WRITESUCCEEDED)) 11149 WORKLIST_INSERT(&reattach, wk); 11150 continue; 11151 11152 case D_INODEDEP: 11153 if (handle_written_inodeblock(WK_INODEDEP(wk), bp, 11154 WRITESUCCEEDED)) 11155 WORKLIST_INSERT(&reattach, wk); 11156 continue; 11157 11158 case D_BMSAFEMAP: 11159 if (handle_written_bmsafemap(WK_BMSAFEMAP(wk), bp, 11160 WRITESUCCEEDED)) 11161 WORKLIST_INSERT(&reattach, wk); 11162 continue; 11163 11164 case D_MKDIR: 11165 handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY); 11166 continue; 11167 11168 case D_ALLOCDIRECT: 11169 wk->wk_state |= COMPLETE; 11170 handle_allocdirect_partdone(WK_ALLOCDIRECT(wk), NULL); 11171 continue; 11172 11173 case D_ALLOCINDIR: 11174 wk->wk_state |= COMPLETE; 11175 handle_allocindir_partdone(WK_ALLOCINDIR(wk)); 11176 continue; 11177 11178 case D_INDIRDEP: 11179 if (handle_written_indirdep(WK_INDIRDEP(wk), bp, &sbp, 11180 WRITESUCCEEDED)) 11181 WORKLIST_INSERT(&reattach, wk); 11182 continue; 11183 11184 case D_FREEBLKS: 11185 wk->wk_state |= COMPLETE; 11186 freeblks = WK_FREEBLKS(wk); 11187 if ((wk->wk_state & ALLCOMPLETE) == ALLCOMPLETE && 11188 LIST_EMPTY(&freeblks->fb_jblkdephd)) 11189 add_to_worklist(wk, WK_NODELAY); 11190 continue; 11191 11192 case D_FREEWORK: 11193 handle_written_freework(WK_FREEWORK(wk)); 11194 break; 11195 11196 case D_JSEGDEP: 11197 free_jsegdep(WK_JSEGDEP(wk)); 11198 continue; 11199 11200 case D_JSEG: 11201 handle_written_jseg(WK_JSEG(wk), bp); 11202 continue; 11203 11204 case D_SBDEP: 11205 if (handle_written_sbdep(WK_SBDEP(wk), bp)) 11206 WORKLIST_INSERT(&reattach, wk); 11207 continue; 11208 11209 case D_FREEDEP: 11210 free_freedep(WK_FREEDEP(wk)); 11211 continue; 11212 11213 default: 11214 panic("handle_disk_write_complete: Unknown type %s", 11215 TYPENAME(wk->wk_type)); 11216 /* NOTREACHED */ 11217 } 11218 } 11219 /* 11220 * Reattach any requests that must be redone. 11221 */ 11222 while ((wk = LIST_FIRST(&reattach)) != NULL) { 11223 WORKLIST_REMOVE(wk); 11224 WORKLIST_INSERT(&bp->b_dep, wk); 11225 } 11226 FREE_LOCK(ump); 11227 if (sbp) 11228 brelse(sbp); 11229 } 11230 11231 /* 11232 * Called from within softdep_disk_write_complete above. 11233 */ 11234 static void 11235 handle_allocdirect_partdone(adp, wkhd) 11236 struct allocdirect *adp; /* the completed allocdirect */ 11237 struct workhead *wkhd; /* Work to do when inode is writtne. */ 11238 { 11239 struct allocdirectlst *listhead; 11240 struct allocdirect *listadp; 11241 struct inodedep *inodedep; 11242 long bsize; 11243 11244 LOCK_OWNED(VFSTOUFS(adp->ad_block.nb_list.wk_mp)); 11245 if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE) 11246 return; 11247 /* 11248 * The on-disk inode cannot claim to be any larger than the last 11249 * fragment that has been written. Otherwise, the on-disk inode 11250 * might have fragments that were not the last block in the file 11251 * which would corrupt the filesystem. Thus, we cannot free any 11252 * allocdirects after one whose ad_oldblkno claims a fragment as 11253 * these blocks must be rolled back to zero before writing the inode. 11254 * We check the currently active set of allocdirects in id_inoupdt 11255 * or id_extupdt as appropriate. 11256 */ 11257 inodedep = adp->ad_inodedep; 11258 bsize = inodedep->id_fs->fs_bsize; 11259 if (adp->ad_state & EXTDATA) 11260 listhead = &inodedep->id_extupdt; 11261 else 11262 listhead = &inodedep->id_inoupdt; 11263 TAILQ_FOREACH(listadp, listhead, ad_next) { 11264 /* found our block */ 11265 if (listadp == adp) 11266 break; 11267 /* continue if ad_oldlbn is not a fragment */ 11268 if (listadp->ad_oldsize == 0 || 11269 listadp->ad_oldsize == bsize) 11270 continue; 11271 /* hit a fragment */ 11272 return; 11273 } 11274 /* 11275 * If we have reached the end of the current list without 11276 * finding the just finished dependency, then it must be 11277 * on the future dependency list. Future dependencies cannot 11278 * be freed until they are moved to the current list. 11279 */ 11280 if (listadp == NULL) { 11281 #ifdef INVARIANTS 11282 if (adp->ad_state & EXTDATA) 11283 listhead = &inodedep->id_newextupdt; 11284 else 11285 listhead = &inodedep->id_newinoupdt; 11286 TAILQ_FOREACH(listadp, listhead, ad_next) 11287 /* found our block */ 11288 if (listadp == adp) 11289 break; 11290 if (listadp == NULL) 11291 panic("handle_allocdirect_partdone: lost dep"); 11292 #endif /* INVARIANTS */ 11293 return; 11294 } 11295 /* 11296 * If we have found the just finished dependency, then queue 11297 * it along with anything that follows it that is complete. 11298 * Since the pointer has not yet been written in the inode 11299 * as the dependency prevents it, place the allocdirect on the 11300 * bufwait list where it will be freed once the pointer is 11301 * valid. 11302 */ 11303 if (wkhd == NULL) 11304 wkhd = &inodedep->id_bufwait; 11305 for (; adp; adp = listadp) { 11306 listadp = TAILQ_NEXT(adp, ad_next); 11307 if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE) 11308 return; 11309 TAILQ_REMOVE(listhead, adp, ad_next); 11310 WORKLIST_INSERT(wkhd, &adp->ad_block.nb_list); 11311 } 11312 } 11313 11314 /* 11315 * Called from within softdep_disk_write_complete above. This routine 11316 * completes successfully written allocindirs. 11317 */ 11318 static void 11319 handle_allocindir_partdone(aip) 11320 struct allocindir *aip; /* the completed allocindir */ 11321 { 11322 struct indirdep *indirdep; 11323 11324 if ((aip->ai_state & ALLCOMPLETE) != ALLCOMPLETE) 11325 return; 11326 indirdep = aip->ai_indirdep; 11327 LIST_REMOVE(aip, ai_next); 11328 /* 11329 * Don't set a pointer while the buffer is undergoing IO or while 11330 * we have active truncations. 11331 */ 11332 if (indirdep->ir_state & UNDONE || !TAILQ_EMPTY(&indirdep->ir_trunc)) { 11333 LIST_INSERT_HEAD(&indirdep->ir_donehd, aip, ai_next); 11334 return; 11335 } 11336 if (indirdep->ir_state & UFS1FMT) 11337 ((ufs1_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] = 11338 aip->ai_newblkno; 11339 else 11340 ((ufs2_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] = 11341 aip->ai_newblkno; 11342 /* 11343 * Await the pointer write before freeing the allocindir. 11344 */ 11345 LIST_INSERT_HEAD(&indirdep->ir_writehd, aip, ai_next); 11346 } 11347 11348 /* 11349 * Release segments held on a jwork list. 11350 */ 11351 static void 11352 handle_jwork(wkhd) 11353 struct workhead *wkhd; 11354 { 11355 struct worklist *wk; 11356 11357 while ((wk = LIST_FIRST(wkhd)) != NULL) { 11358 WORKLIST_REMOVE(wk); 11359 switch (wk->wk_type) { 11360 case D_JSEGDEP: 11361 free_jsegdep(WK_JSEGDEP(wk)); 11362 continue; 11363 case D_FREEDEP: 11364 free_freedep(WK_FREEDEP(wk)); 11365 continue; 11366 case D_FREEFRAG: 11367 rele_jseg(WK_JSEG(WK_FREEFRAG(wk)->ff_jdep)); 11368 WORKITEM_FREE(wk, D_FREEFRAG); 11369 continue; 11370 case D_FREEWORK: 11371 handle_written_freework(WK_FREEWORK(wk)); 11372 continue; 11373 default: 11374 panic("handle_jwork: Unknown type %s\n", 11375 TYPENAME(wk->wk_type)); 11376 } 11377 } 11378 } 11379 11380 /* 11381 * Handle the bufwait list on an inode when it is safe to release items 11382 * held there. This normally happens after an inode block is written but 11383 * may be delayed and handled later if there are pending journal items that 11384 * are not yet safe to be released. 11385 */ 11386 static struct freefile * 11387 handle_bufwait(inodedep, refhd) 11388 struct inodedep *inodedep; 11389 struct workhead *refhd; 11390 { 11391 struct jaddref *jaddref; 11392 struct freefile *freefile; 11393 struct worklist *wk; 11394 11395 freefile = NULL; 11396 while ((wk = LIST_FIRST(&inodedep->id_bufwait)) != NULL) { 11397 WORKLIST_REMOVE(wk); 11398 switch (wk->wk_type) { 11399 case D_FREEFILE: 11400 /* 11401 * We defer adding freefile to the worklist 11402 * until all other additions have been made to 11403 * ensure that it will be done after all the 11404 * old blocks have been freed. 11405 */ 11406 if (freefile != NULL) 11407 panic("handle_bufwait: freefile"); 11408 freefile = WK_FREEFILE(wk); 11409 continue; 11410 11411 case D_MKDIR: 11412 handle_written_mkdir(WK_MKDIR(wk), MKDIR_PARENT); 11413 continue; 11414 11415 case D_DIRADD: 11416 diradd_inode_written(WK_DIRADD(wk), inodedep); 11417 continue; 11418 11419 case D_FREEFRAG: 11420 wk->wk_state |= COMPLETE; 11421 if ((wk->wk_state & ALLCOMPLETE) == ALLCOMPLETE) 11422 add_to_worklist(wk, 0); 11423 continue; 11424 11425 case D_DIRREM: 11426 wk->wk_state |= COMPLETE; 11427 add_to_worklist(wk, 0); 11428 continue; 11429 11430 case D_ALLOCDIRECT: 11431 case D_ALLOCINDIR: 11432 free_newblk(WK_NEWBLK(wk)); 11433 continue; 11434 11435 case D_JNEWBLK: 11436 wk->wk_state |= COMPLETE; 11437 free_jnewblk(WK_JNEWBLK(wk)); 11438 continue; 11439 11440 /* 11441 * Save freed journal segments and add references on 11442 * the supplied list which will delay their release 11443 * until the cg bitmap is cleared on disk. 11444 */ 11445 case D_JSEGDEP: 11446 if (refhd == NULL) 11447 free_jsegdep(WK_JSEGDEP(wk)); 11448 else 11449 WORKLIST_INSERT(refhd, wk); 11450 continue; 11451 11452 case D_JADDREF: 11453 jaddref = WK_JADDREF(wk); 11454 TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref, 11455 if_deps); 11456 /* 11457 * Transfer any jaddrefs to the list to be freed with 11458 * the bitmap if we're handling a removed file. 11459 */ 11460 if (refhd == NULL) { 11461 wk->wk_state |= COMPLETE; 11462 free_jaddref(jaddref); 11463 } else 11464 WORKLIST_INSERT(refhd, wk); 11465 continue; 11466 11467 default: 11468 panic("handle_bufwait: Unknown type %p(%s)", 11469 wk, TYPENAME(wk->wk_type)); 11470 /* NOTREACHED */ 11471 } 11472 } 11473 return (freefile); 11474 } 11475 /* 11476 * Called from within softdep_disk_write_complete above to restore 11477 * in-memory inode block contents to their most up-to-date state. Note 11478 * that this routine is always called from interrupt level with further 11479 * interrupts from this device blocked. 11480 * 11481 * If the write did not succeed, we will do all the roll-forward 11482 * operations, but we will not take the actions that will allow its 11483 * dependencies to be processed. 11484 */ 11485 static int 11486 handle_written_inodeblock(inodedep, bp, flags) 11487 struct inodedep *inodedep; 11488 struct buf *bp; /* buffer containing the inode block */ 11489 int flags; 11490 { 11491 struct freefile *freefile; 11492 struct allocdirect *adp, *nextadp; 11493 struct ufs1_dinode *dp1 = NULL; 11494 struct ufs2_dinode *dp2 = NULL; 11495 struct workhead wkhd; 11496 int hadchanges, fstype; 11497 ino_t freelink; 11498 11499 LIST_INIT(&wkhd); 11500 hadchanges = 0; 11501 freefile = NULL; 11502 if ((inodedep->id_state & IOSTARTED) == 0) 11503 panic("handle_written_inodeblock: not started"); 11504 inodedep->id_state &= ~IOSTARTED; 11505 if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC) { 11506 fstype = UFS1; 11507 dp1 = (struct ufs1_dinode *)bp->b_data + 11508 ino_to_fsbo(inodedep->id_fs, inodedep->id_ino); 11509 freelink = dp1->di_freelink; 11510 } else { 11511 fstype = UFS2; 11512 dp2 = (struct ufs2_dinode *)bp->b_data + 11513 ino_to_fsbo(inodedep->id_fs, inodedep->id_ino); 11514 freelink = dp2->di_freelink; 11515 } 11516 /* 11517 * Leave this inodeblock dirty until it's in the list. 11518 */ 11519 if ((inodedep->id_state & (UNLINKED | UNLINKONLIST)) == UNLINKED && 11520 (flags & WRITESUCCEEDED)) { 11521 struct inodedep *inon; 11522 11523 inon = TAILQ_NEXT(inodedep, id_unlinked); 11524 if ((inon == NULL && freelink == 0) || 11525 (inon && inon->id_ino == freelink)) { 11526 if (inon) 11527 inon->id_state |= UNLINKPREV; 11528 inodedep->id_state |= UNLINKNEXT; 11529 } 11530 hadchanges = 1; 11531 } 11532 /* 11533 * If we had to rollback the inode allocation because of 11534 * bitmaps being incomplete, then simply restore it. 11535 * Keep the block dirty so that it will not be reclaimed until 11536 * all associated dependencies have been cleared and the 11537 * corresponding updates written to disk. 11538 */ 11539 if (inodedep->id_savedino1 != NULL) { 11540 hadchanges = 1; 11541 if (fstype == UFS1) 11542 *dp1 = *inodedep->id_savedino1; 11543 else 11544 *dp2 = *inodedep->id_savedino2; 11545 free(inodedep->id_savedino1, M_SAVEDINO); 11546 inodedep->id_savedino1 = NULL; 11547 if ((bp->b_flags & B_DELWRI) == 0) 11548 stat_inode_bitmap++; 11549 bdirty(bp); 11550 /* 11551 * If the inode is clear here and GOINGAWAY it will never 11552 * be written. Process the bufwait and clear any pending 11553 * work which may include the freefile. 11554 */ 11555 if (inodedep->id_state & GOINGAWAY) 11556 goto bufwait; 11557 return (1); 11558 } 11559 if (flags & WRITESUCCEEDED) 11560 inodedep->id_state |= COMPLETE; 11561 /* 11562 * Roll forward anything that had to be rolled back before 11563 * the inode could be updated. 11564 */ 11565 for (adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; adp = nextadp) { 11566 nextadp = TAILQ_NEXT(adp, ad_next); 11567 if (adp->ad_state & ATTACHED) 11568 panic("handle_written_inodeblock: new entry"); 11569 if (fstype == UFS1) { 11570 if (adp->ad_offset < UFS_NDADDR) { 11571 if (dp1->di_db[adp->ad_offset]!=adp->ad_oldblkno) 11572 panic("%s %s #%jd mismatch %d != %jd", 11573 "handle_written_inodeblock:", 11574 "direct pointer", 11575 (intmax_t)adp->ad_offset, 11576 dp1->di_db[adp->ad_offset], 11577 (intmax_t)adp->ad_oldblkno); 11578 dp1->di_db[adp->ad_offset] = adp->ad_newblkno; 11579 } else { 11580 if (dp1->di_ib[adp->ad_offset - UFS_NDADDR] != 11581 0) 11582 panic("%s: %s #%jd allocated as %d", 11583 "handle_written_inodeblock", 11584 "indirect pointer", 11585 (intmax_t)adp->ad_offset - 11586 UFS_NDADDR, 11587 dp1->di_ib[adp->ad_offset - 11588 UFS_NDADDR]); 11589 dp1->di_ib[adp->ad_offset - UFS_NDADDR] = 11590 adp->ad_newblkno; 11591 } 11592 } else { 11593 if (adp->ad_offset < UFS_NDADDR) { 11594 if (dp2->di_db[adp->ad_offset]!=adp->ad_oldblkno) 11595 panic("%s: %s #%jd %s %jd != %jd", 11596 "handle_written_inodeblock", 11597 "direct pointer", 11598 (intmax_t)adp->ad_offset, "mismatch", 11599 (intmax_t)dp2->di_db[adp->ad_offset], 11600 (intmax_t)adp->ad_oldblkno); 11601 dp2->di_db[adp->ad_offset] = adp->ad_newblkno; 11602 } else { 11603 if (dp2->di_ib[adp->ad_offset - UFS_NDADDR] != 11604 0) 11605 panic("%s: %s #%jd allocated as %jd", 11606 "handle_written_inodeblock", 11607 "indirect pointer", 11608 (intmax_t)adp->ad_offset - 11609 UFS_NDADDR, 11610 (intmax_t) 11611 dp2->di_ib[adp->ad_offset - 11612 UFS_NDADDR]); 11613 dp2->di_ib[adp->ad_offset - UFS_NDADDR] = 11614 adp->ad_newblkno; 11615 } 11616 } 11617 adp->ad_state &= ~UNDONE; 11618 adp->ad_state |= ATTACHED; 11619 hadchanges = 1; 11620 } 11621 for (adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; adp = nextadp) { 11622 nextadp = TAILQ_NEXT(adp, ad_next); 11623 if (adp->ad_state & ATTACHED) 11624 panic("handle_written_inodeblock: new entry"); 11625 if (dp2->di_extb[adp->ad_offset] != adp->ad_oldblkno) 11626 panic("%s: direct pointers #%jd %s %jd != %jd", 11627 "handle_written_inodeblock", 11628 (intmax_t)adp->ad_offset, "mismatch", 11629 (intmax_t)dp2->di_extb[adp->ad_offset], 11630 (intmax_t)adp->ad_oldblkno); 11631 dp2->di_extb[adp->ad_offset] = adp->ad_newblkno; 11632 adp->ad_state &= ~UNDONE; 11633 adp->ad_state |= ATTACHED; 11634 hadchanges = 1; 11635 } 11636 if (hadchanges && (bp->b_flags & B_DELWRI) == 0) 11637 stat_direct_blk_ptrs++; 11638 /* 11639 * Reset the file size to its most up-to-date value. 11640 */ 11641 if (inodedep->id_savedsize == -1 || inodedep->id_savedextsize == -1) 11642 panic("handle_written_inodeblock: bad size"); 11643 if (inodedep->id_savednlink > UFS_LINK_MAX) 11644 panic("handle_written_inodeblock: Invalid link count " 11645 "%jd for inodedep %p", (uintmax_t)inodedep->id_savednlink, 11646 inodedep); 11647 if (fstype == UFS1) { 11648 if (dp1->di_nlink != inodedep->id_savednlink) { 11649 dp1->di_nlink = inodedep->id_savednlink; 11650 hadchanges = 1; 11651 } 11652 if (dp1->di_size != inodedep->id_savedsize) { 11653 dp1->di_size = inodedep->id_savedsize; 11654 hadchanges = 1; 11655 } 11656 } else { 11657 if (dp2->di_nlink != inodedep->id_savednlink) { 11658 dp2->di_nlink = inodedep->id_savednlink; 11659 hadchanges = 1; 11660 } 11661 if (dp2->di_size != inodedep->id_savedsize) { 11662 dp2->di_size = inodedep->id_savedsize; 11663 hadchanges = 1; 11664 } 11665 if (dp2->di_extsize != inodedep->id_savedextsize) { 11666 dp2->di_extsize = inodedep->id_savedextsize; 11667 hadchanges = 1; 11668 } 11669 } 11670 inodedep->id_savedsize = -1; 11671 inodedep->id_savedextsize = -1; 11672 inodedep->id_savednlink = -1; 11673 /* 11674 * If there were any rollbacks in the inode block, then it must be 11675 * marked dirty so that its will eventually get written back in 11676 * its correct form. 11677 */ 11678 if (hadchanges) { 11679 if (fstype == UFS2) 11680 ffs_update_dinode_ckhash(inodedep->id_fs, dp2); 11681 bdirty(bp); 11682 } 11683 bufwait: 11684 /* 11685 * If the write did not succeed, we have done all the roll-forward 11686 * operations, but we cannot take the actions that will allow its 11687 * dependencies to be processed. 11688 */ 11689 if ((flags & WRITESUCCEEDED) == 0) 11690 return (hadchanges); 11691 /* 11692 * Process any allocdirects that completed during the update. 11693 */ 11694 if ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL) 11695 handle_allocdirect_partdone(adp, &wkhd); 11696 if ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL) 11697 handle_allocdirect_partdone(adp, &wkhd); 11698 /* 11699 * Process deallocations that were held pending until the 11700 * inode had been written to disk. Freeing of the inode 11701 * is delayed until after all blocks have been freed to 11702 * avoid creation of new <vfsid, inum, lbn> triples 11703 * before the old ones have been deleted. Completely 11704 * unlinked inodes are not processed until the unlinked 11705 * inode list is written or the last reference is removed. 11706 */ 11707 if ((inodedep->id_state & (UNLINKED | UNLINKONLIST)) != UNLINKED) { 11708 freefile = handle_bufwait(inodedep, NULL); 11709 if (freefile && !LIST_EMPTY(&wkhd)) { 11710 WORKLIST_INSERT(&wkhd, &freefile->fx_list); 11711 freefile = NULL; 11712 } 11713 } 11714 /* 11715 * Move rolled forward dependency completions to the bufwait list 11716 * now that those that were already written have been processed. 11717 */ 11718 if (!LIST_EMPTY(&wkhd) && hadchanges == 0) 11719 panic("handle_written_inodeblock: bufwait but no changes"); 11720 jwork_move(&inodedep->id_bufwait, &wkhd); 11721 11722 if (freefile != NULL) { 11723 /* 11724 * If the inode is goingaway it was never written. Fake up 11725 * the state here so free_inodedep() can succeed. 11726 */ 11727 if (inodedep->id_state & GOINGAWAY) 11728 inodedep->id_state |= COMPLETE | DEPCOMPLETE; 11729 if (free_inodedep(inodedep) == 0) 11730 panic("handle_written_inodeblock: live inodedep %p", 11731 inodedep); 11732 add_to_worklist(&freefile->fx_list, 0); 11733 return (0); 11734 } 11735 11736 /* 11737 * If no outstanding dependencies, free it. 11738 */ 11739 if (free_inodedep(inodedep) || 11740 (TAILQ_FIRST(&inodedep->id_inoreflst) == 0 && 11741 TAILQ_FIRST(&inodedep->id_inoupdt) == 0 && 11742 TAILQ_FIRST(&inodedep->id_extupdt) == 0 && 11743 LIST_FIRST(&inodedep->id_bufwait) == 0)) 11744 return (0); 11745 return (hadchanges); 11746 } 11747 11748 /* 11749 * Perform needed roll-forwards and kick off any dependencies that 11750 * can now be processed. 11751 * 11752 * If the write did not succeed, we will do all the roll-forward 11753 * operations, but we will not take the actions that will allow its 11754 * dependencies to be processed. 11755 */ 11756 static int 11757 handle_written_indirdep(indirdep, bp, bpp, flags) 11758 struct indirdep *indirdep; 11759 struct buf *bp; 11760 struct buf **bpp; 11761 int flags; 11762 { 11763 struct allocindir *aip; 11764 struct buf *sbp; 11765 int chgs; 11766 11767 if (indirdep->ir_state & GOINGAWAY) 11768 panic("handle_written_indirdep: indirdep gone"); 11769 if ((indirdep->ir_state & IOSTARTED) == 0) 11770 panic("handle_written_indirdep: IO not started"); 11771 chgs = 0; 11772 /* 11773 * If there were rollbacks revert them here. 11774 */ 11775 if (indirdep->ir_saveddata) { 11776 bcopy(indirdep->ir_saveddata, bp->b_data, bp->b_bcount); 11777 if (TAILQ_EMPTY(&indirdep->ir_trunc)) { 11778 free(indirdep->ir_saveddata, M_INDIRDEP); 11779 indirdep->ir_saveddata = NULL; 11780 } 11781 chgs = 1; 11782 } 11783 indirdep->ir_state &= ~(UNDONE | IOSTARTED); 11784 indirdep->ir_state |= ATTACHED; 11785 /* 11786 * If the write did not succeed, we have done all the roll-forward 11787 * operations, but we cannot take the actions that will allow its 11788 * dependencies to be processed. 11789 */ 11790 if ((flags & WRITESUCCEEDED) == 0) { 11791 stat_indir_blk_ptrs++; 11792 bdirty(bp); 11793 return (1); 11794 } 11795 /* 11796 * Move allocindirs with written pointers to the completehd if 11797 * the indirdep's pointer is not yet written. Otherwise 11798 * free them here. 11799 */ 11800 while ((aip = LIST_FIRST(&indirdep->ir_writehd)) != NULL) { 11801 LIST_REMOVE(aip, ai_next); 11802 if ((indirdep->ir_state & DEPCOMPLETE) == 0) { 11803 LIST_INSERT_HEAD(&indirdep->ir_completehd, aip, 11804 ai_next); 11805 newblk_freefrag(&aip->ai_block); 11806 continue; 11807 } 11808 free_newblk(&aip->ai_block); 11809 } 11810 /* 11811 * Move allocindirs that have finished dependency processing from 11812 * the done list to the write list after updating the pointers. 11813 */ 11814 if (TAILQ_EMPTY(&indirdep->ir_trunc)) { 11815 while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != NULL) { 11816 handle_allocindir_partdone(aip); 11817 if (aip == LIST_FIRST(&indirdep->ir_donehd)) 11818 panic("disk_write_complete: not gone"); 11819 chgs = 1; 11820 } 11821 } 11822 /* 11823 * Preserve the indirdep if there were any changes or if it is not 11824 * yet valid on disk. 11825 */ 11826 if (chgs) { 11827 stat_indir_blk_ptrs++; 11828 bdirty(bp); 11829 return (1); 11830 } 11831 /* 11832 * If there were no changes we can discard the savedbp and detach 11833 * ourselves from the buf. We are only carrying completed pointers 11834 * in this case. 11835 */ 11836 sbp = indirdep->ir_savebp; 11837 sbp->b_flags |= B_INVAL | B_NOCACHE; 11838 indirdep->ir_savebp = NULL; 11839 indirdep->ir_bp = NULL; 11840 if (*bpp != NULL) 11841 panic("handle_written_indirdep: bp already exists."); 11842 *bpp = sbp; 11843 /* 11844 * The indirdep may not be freed until its parent points at it. 11845 */ 11846 if (indirdep->ir_state & DEPCOMPLETE) 11847 free_indirdep(indirdep); 11848 11849 return (0); 11850 } 11851 11852 /* 11853 * Process a diradd entry after its dependent inode has been written. 11854 */ 11855 static void 11856 diradd_inode_written(dap, inodedep) 11857 struct diradd *dap; 11858 struct inodedep *inodedep; 11859 { 11860 11861 LOCK_OWNED(VFSTOUFS(dap->da_list.wk_mp)); 11862 dap->da_state |= COMPLETE; 11863 complete_diradd(dap); 11864 WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list); 11865 } 11866 11867 /* 11868 * Returns true if the bmsafemap will have rollbacks when written. Must only 11869 * be called with the per-filesystem lock and the buf lock on the cg held. 11870 */ 11871 static int 11872 bmsafemap_backgroundwrite(bmsafemap, bp) 11873 struct bmsafemap *bmsafemap; 11874 struct buf *bp; 11875 { 11876 int dirty; 11877 11878 LOCK_OWNED(VFSTOUFS(bmsafemap->sm_list.wk_mp)); 11879 dirty = !LIST_EMPTY(&bmsafemap->sm_jaddrefhd) | 11880 !LIST_EMPTY(&bmsafemap->sm_jnewblkhd); 11881 /* 11882 * If we're initiating a background write we need to process the 11883 * rollbacks as they exist now, not as they exist when IO starts. 11884 * No other consumers will look at the contents of the shadowed 11885 * buf so this is safe to do here. 11886 */ 11887 if (bp->b_xflags & BX_BKGRDMARKER) 11888 initiate_write_bmsafemap(bmsafemap, bp); 11889 11890 return (dirty); 11891 } 11892 11893 /* 11894 * Re-apply an allocation when a cg write is complete. 11895 */ 11896 static int 11897 jnewblk_rollforward(jnewblk, fs, cgp, blksfree) 11898 struct jnewblk *jnewblk; 11899 struct fs *fs; 11900 struct cg *cgp; 11901 uint8_t *blksfree; 11902 { 11903 ufs1_daddr_t fragno; 11904 ufs2_daddr_t blkno; 11905 long cgbno, bbase; 11906 int frags, blk; 11907 int i; 11908 11909 frags = 0; 11910 cgbno = dtogd(fs, jnewblk->jn_blkno); 11911 for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; i++) { 11912 if (isclr(blksfree, cgbno + i)) 11913 panic("jnewblk_rollforward: re-allocated fragment"); 11914 frags++; 11915 } 11916 if (frags == fs->fs_frag) { 11917 blkno = fragstoblks(fs, cgbno); 11918 ffs_clrblock(fs, blksfree, (long)blkno); 11919 ffs_clusteracct(fs, cgp, blkno, -1); 11920 cgp->cg_cs.cs_nbfree--; 11921 } else { 11922 bbase = cgbno - fragnum(fs, cgbno); 11923 cgbno += jnewblk->jn_oldfrags; 11924 /* If a complete block had been reassembled, account for it. */ 11925 fragno = fragstoblks(fs, bbase); 11926 if (ffs_isblock(fs, blksfree, fragno)) { 11927 cgp->cg_cs.cs_nffree += fs->fs_frag; 11928 ffs_clusteracct(fs, cgp, fragno, -1); 11929 cgp->cg_cs.cs_nbfree--; 11930 } 11931 /* Decrement the old frags. */ 11932 blk = blkmap(fs, blksfree, bbase); 11933 ffs_fragacct(fs, blk, cgp->cg_frsum, -1); 11934 /* Allocate the fragment */ 11935 for (i = 0; i < frags; i++) 11936 clrbit(blksfree, cgbno + i); 11937 cgp->cg_cs.cs_nffree -= frags; 11938 /* Add back in counts associated with the new frags */ 11939 blk = blkmap(fs, blksfree, bbase); 11940 ffs_fragacct(fs, blk, cgp->cg_frsum, 1); 11941 } 11942 return (frags); 11943 } 11944 11945 /* 11946 * Complete a write to a bmsafemap structure. Roll forward any bitmap 11947 * changes if it's not a background write. Set all written dependencies 11948 * to DEPCOMPLETE and free the structure if possible. 11949 * 11950 * If the write did not succeed, we will do all the roll-forward 11951 * operations, but we will not take the actions that will allow its 11952 * dependencies to be processed. 11953 */ 11954 static int 11955 handle_written_bmsafemap(bmsafemap, bp, flags) 11956 struct bmsafemap *bmsafemap; 11957 struct buf *bp; 11958 int flags; 11959 { 11960 struct newblk *newblk; 11961 struct inodedep *inodedep; 11962 struct jaddref *jaddref, *jatmp; 11963 struct jnewblk *jnewblk, *jntmp; 11964 struct ufsmount *ump; 11965 uint8_t *inosused; 11966 uint8_t *blksfree; 11967 struct cg *cgp; 11968 struct fs *fs; 11969 ino_t ino; 11970 int foreground; 11971 int chgs; 11972 11973 if ((bmsafemap->sm_state & IOSTARTED) == 0) 11974 panic("handle_written_bmsafemap: Not started\n"); 11975 ump = VFSTOUFS(bmsafemap->sm_list.wk_mp); 11976 chgs = 0; 11977 bmsafemap->sm_state &= ~IOSTARTED; 11978 foreground = (bp->b_xflags & BX_BKGRDMARKER) == 0; 11979 /* 11980 * If write was successful, release journal work that was waiting 11981 * on the write. Otherwise move the work back. 11982 */ 11983 if (flags & WRITESUCCEEDED) 11984 handle_jwork(&bmsafemap->sm_freewr); 11985 else 11986 LIST_CONCAT(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr, 11987 worklist, wk_list); 11988 11989 /* 11990 * Restore unwritten inode allocation pending jaddref writes. 11991 */ 11992 if (!LIST_EMPTY(&bmsafemap->sm_jaddrefhd)) { 11993 cgp = (struct cg *)bp->b_data; 11994 fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs; 11995 inosused = cg_inosused(cgp); 11996 LIST_FOREACH_SAFE(jaddref, &bmsafemap->sm_jaddrefhd, 11997 ja_bmdeps, jatmp) { 11998 if ((jaddref->ja_state & UNDONE) == 0) 11999 continue; 12000 ino = jaddref->ja_ino % fs->fs_ipg; 12001 if (isset(inosused, ino)) 12002 panic("handle_written_bmsafemap: " 12003 "re-allocated inode"); 12004 /* Do the roll-forward only if it's a real copy. */ 12005 if (foreground) { 12006 if ((jaddref->ja_mode & IFMT) == IFDIR) 12007 cgp->cg_cs.cs_ndir++; 12008 cgp->cg_cs.cs_nifree--; 12009 setbit(inosused, ino); 12010 chgs = 1; 12011 } 12012 jaddref->ja_state &= ~UNDONE; 12013 jaddref->ja_state |= ATTACHED; 12014 free_jaddref(jaddref); 12015 } 12016 } 12017 /* 12018 * Restore any block allocations which are pending journal writes. 12019 */ 12020 if (LIST_FIRST(&bmsafemap->sm_jnewblkhd) != NULL) { 12021 cgp = (struct cg *)bp->b_data; 12022 fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs; 12023 blksfree = cg_blksfree(cgp); 12024 LIST_FOREACH_SAFE(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps, 12025 jntmp) { 12026 if ((jnewblk->jn_state & UNDONE) == 0) 12027 continue; 12028 /* Do the roll-forward only if it's a real copy. */ 12029 if (foreground && 12030 jnewblk_rollforward(jnewblk, fs, cgp, blksfree)) 12031 chgs = 1; 12032 jnewblk->jn_state &= ~(UNDONE | NEWBLOCK); 12033 jnewblk->jn_state |= ATTACHED; 12034 free_jnewblk(jnewblk); 12035 } 12036 } 12037 /* 12038 * If the write did not succeed, we have done all the roll-forward 12039 * operations, but we cannot take the actions that will allow its 12040 * dependencies to be processed. 12041 */ 12042 if ((flags & WRITESUCCEEDED) == 0) { 12043 LIST_CONCAT(&bmsafemap->sm_newblkhd, &bmsafemap->sm_newblkwr, 12044 newblk, nb_deps); 12045 LIST_CONCAT(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr, 12046 worklist, wk_list); 12047 if (foreground) 12048 bdirty(bp); 12049 return (1); 12050 } 12051 while ((newblk = LIST_FIRST(&bmsafemap->sm_newblkwr))) { 12052 newblk->nb_state |= DEPCOMPLETE; 12053 newblk->nb_state &= ~ONDEPLIST; 12054 newblk->nb_bmsafemap = NULL; 12055 LIST_REMOVE(newblk, nb_deps); 12056 if (newblk->nb_list.wk_type == D_ALLOCDIRECT) 12057 handle_allocdirect_partdone( 12058 WK_ALLOCDIRECT(&newblk->nb_list), NULL); 12059 else if (newblk->nb_list.wk_type == D_ALLOCINDIR) 12060 handle_allocindir_partdone( 12061 WK_ALLOCINDIR(&newblk->nb_list)); 12062 else if (newblk->nb_list.wk_type != D_NEWBLK) 12063 panic("handle_written_bmsafemap: Unexpected type: %s", 12064 TYPENAME(newblk->nb_list.wk_type)); 12065 } 12066 while ((inodedep = LIST_FIRST(&bmsafemap->sm_inodedepwr)) != NULL) { 12067 inodedep->id_state |= DEPCOMPLETE; 12068 inodedep->id_state &= ~ONDEPLIST; 12069 LIST_REMOVE(inodedep, id_deps); 12070 inodedep->id_bmsafemap = NULL; 12071 } 12072 LIST_REMOVE(bmsafemap, sm_next); 12073 if (chgs == 0 && LIST_EMPTY(&bmsafemap->sm_jaddrefhd) && 12074 LIST_EMPTY(&bmsafemap->sm_jnewblkhd) && 12075 LIST_EMPTY(&bmsafemap->sm_newblkhd) && 12076 LIST_EMPTY(&bmsafemap->sm_inodedephd) && 12077 LIST_EMPTY(&bmsafemap->sm_freehd)) { 12078 LIST_REMOVE(bmsafemap, sm_hash); 12079 WORKITEM_FREE(bmsafemap, D_BMSAFEMAP); 12080 return (0); 12081 } 12082 LIST_INSERT_HEAD(&ump->softdep_dirtycg, bmsafemap, sm_next); 12083 if (foreground) 12084 bdirty(bp); 12085 return (1); 12086 } 12087 12088 /* 12089 * Try to free a mkdir dependency. 12090 */ 12091 static void 12092 complete_mkdir(mkdir) 12093 struct mkdir *mkdir; 12094 { 12095 struct diradd *dap; 12096 12097 if ((mkdir->md_state & ALLCOMPLETE) != ALLCOMPLETE) 12098 return; 12099 LIST_REMOVE(mkdir, md_mkdirs); 12100 dap = mkdir->md_diradd; 12101 dap->da_state &= ~(mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY)); 12102 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0) { 12103 dap->da_state |= DEPCOMPLETE; 12104 complete_diradd(dap); 12105 } 12106 WORKITEM_FREE(mkdir, D_MKDIR); 12107 } 12108 12109 /* 12110 * Handle the completion of a mkdir dependency. 12111 */ 12112 static void 12113 handle_written_mkdir(mkdir, type) 12114 struct mkdir *mkdir; 12115 int type; 12116 { 12117 12118 if ((mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY)) != type) 12119 panic("handle_written_mkdir: bad type"); 12120 mkdir->md_state |= COMPLETE; 12121 complete_mkdir(mkdir); 12122 } 12123 12124 static int 12125 free_pagedep(pagedep) 12126 struct pagedep *pagedep; 12127 { 12128 int i; 12129 12130 if (pagedep->pd_state & NEWBLOCK) 12131 return (0); 12132 if (!LIST_EMPTY(&pagedep->pd_dirremhd)) 12133 return (0); 12134 for (i = 0; i < DAHASHSZ; i++) 12135 if (!LIST_EMPTY(&pagedep->pd_diraddhd[i])) 12136 return (0); 12137 if (!LIST_EMPTY(&pagedep->pd_pendinghd)) 12138 return (0); 12139 if (!LIST_EMPTY(&pagedep->pd_jmvrefhd)) 12140 return (0); 12141 if (pagedep->pd_state & ONWORKLIST) 12142 WORKLIST_REMOVE(&pagedep->pd_list); 12143 LIST_REMOVE(pagedep, pd_hash); 12144 WORKITEM_FREE(pagedep, D_PAGEDEP); 12145 12146 return (1); 12147 } 12148 12149 /* 12150 * Called from within softdep_disk_write_complete above. 12151 * A write operation was just completed. Removed inodes can 12152 * now be freed and associated block pointers may be committed. 12153 * Note that this routine is always called from interrupt level 12154 * with further interrupts from this device blocked. 12155 * 12156 * If the write did not succeed, we will do all the roll-forward 12157 * operations, but we will not take the actions that will allow its 12158 * dependencies to be processed. 12159 */ 12160 static int 12161 handle_written_filepage(pagedep, bp, flags) 12162 struct pagedep *pagedep; 12163 struct buf *bp; /* buffer containing the written page */ 12164 int flags; 12165 { 12166 struct dirrem *dirrem; 12167 struct diradd *dap, *nextdap; 12168 struct direct *ep; 12169 int i, chgs; 12170 12171 if ((pagedep->pd_state & IOSTARTED) == 0) 12172 panic("handle_written_filepage: not started"); 12173 pagedep->pd_state &= ~IOSTARTED; 12174 if ((flags & WRITESUCCEEDED) == 0) 12175 goto rollforward; 12176 /* 12177 * Process any directory removals that have been committed. 12178 */ 12179 while ((dirrem = LIST_FIRST(&pagedep->pd_dirremhd)) != NULL) { 12180 LIST_REMOVE(dirrem, dm_next); 12181 dirrem->dm_state |= COMPLETE; 12182 dirrem->dm_dirinum = pagedep->pd_ino; 12183 KASSERT(LIST_EMPTY(&dirrem->dm_jremrefhd), 12184 ("handle_written_filepage: Journal entries not written.")); 12185 add_to_worklist(&dirrem->dm_list, 0); 12186 } 12187 /* 12188 * Free any directory additions that have been committed. 12189 * If it is a newly allocated block, we have to wait until 12190 * the on-disk directory inode claims the new block. 12191 */ 12192 if ((pagedep->pd_state & NEWBLOCK) == 0) 12193 while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL) 12194 free_diradd(dap, NULL); 12195 rollforward: 12196 /* 12197 * Uncommitted directory entries must be restored. 12198 */ 12199 for (chgs = 0, i = 0; i < DAHASHSZ; i++) { 12200 for (dap = LIST_FIRST(&pagedep->pd_diraddhd[i]); dap; 12201 dap = nextdap) { 12202 nextdap = LIST_NEXT(dap, da_pdlist); 12203 if (dap->da_state & ATTACHED) 12204 panic("handle_written_filepage: attached"); 12205 ep = (struct direct *) 12206 ((char *)bp->b_data + dap->da_offset); 12207 ep->d_ino = dap->da_newinum; 12208 dap->da_state &= ~UNDONE; 12209 dap->da_state |= ATTACHED; 12210 chgs = 1; 12211 /* 12212 * If the inode referenced by the directory has 12213 * been written out, then the dependency can be 12214 * moved to the pending list. 12215 */ 12216 if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) { 12217 LIST_REMOVE(dap, da_pdlist); 12218 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, 12219 da_pdlist); 12220 } 12221 } 12222 } 12223 /* 12224 * If there were any rollbacks in the directory, then it must be 12225 * marked dirty so that its will eventually get written back in 12226 * its correct form. 12227 */ 12228 if (chgs || (flags & WRITESUCCEEDED) == 0) { 12229 if ((bp->b_flags & B_DELWRI) == 0) 12230 stat_dir_entry++; 12231 bdirty(bp); 12232 return (1); 12233 } 12234 /* 12235 * If we are not waiting for a new directory block to be 12236 * claimed by its inode, then the pagedep will be freed. 12237 * Otherwise it will remain to track any new entries on 12238 * the page in case they are fsync'ed. 12239 */ 12240 free_pagedep(pagedep); 12241 return (0); 12242 } 12243 12244 /* 12245 * Writing back in-core inode structures. 12246 * 12247 * The filesystem only accesses an inode's contents when it occupies an 12248 * "in-core" inode structure. These "in-core" structures are separate from 12249 * the page frames used to cache inode blocks. Only the latter are 12250 * transferred to/from the disk. So, when the updated contents of the 12251 * "in-core" inode structure are copied to the corresponding in-memory inode 12252 * block, the dependencies are also transferred. The following procedure is 12253 * called when copying a dirty "in-core" inode to a cached inode block. 12254 */ 12255 12256 /* 12257 * Called when an inode is loaded from disk. If the effective link count 12258 * differed from the actual link count when it was last flushed, then we 12259 * need to ensure that the correct effective link count is put back. 12260 */ 12261 void 12262 softdep_load_inodeblock(ip) 12263 struct inode *ip; /* the "in_core" copy of the inode */ 12264 { 12265 struct inodedep *inodedep; 12266 struct ufsmount *ump; 12267 12268 ump = ITOUMP(ip); 12269 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 12270 ("softdep_load_inodeblock called on non-softdep filesystem")); 12271 /* 12272 * Check for alternate nlink count. 12273 */ 12274 ip->i_effnlink = ip->i_nlink; 12275 ACQUIRE_LOCK(ump); 12276 if (inodedep_lookup(UFSTOVFS(ump), ip->i_number, 0, &inodedep) == 0) { 12277 FREE_LOCK(ump); 12278 return; 12279 } 12280 ip->i_effnlink -= inodedep->id_nlinkdelta; 12281 KASSERT(ip->i_effnlink >= 0, 12282 ("softdep_load_inodeblock: negative i_effnlink")); 12283 FREE_LOCK(ump); 12284 } 12285 12286 /* 12287 * This routine is called just before the "in-core" inode 12288 * information is to be copied to the in-memory inode block. 12289 * Recall that an inode block contains several inodes. If 12290 * the force flag is set, then the dependencies will be 12291 * cleared so that the update can always be made. Note that 12292 * the buffer is locked when this routine is called, so we 12293 * will never be in the middle of writing the inode block 12294 * to disk. 12295 */ 12296 void 12297 softdep_update_inodeblock(ip, bp, waitfor) 12298 struct inode *ip; /* the "in_core" copy of the inode */ 12299 struct buf *bp; /* the buffer containing the inode block */ 12300 int waitfor; /* nonzero => update must be allowed */ 12301 { 12302 struct inodedep *inodedep; 12303 struct inoref *inoref; 12304 struct ufsmount *ump; 12305 struct worklist *wk; 12306 struct mount *mp; 12307 struct buf *ibp; 12308 struct fs *fs; 12309 int error; 12310 12311 ump = ITOUMP(ip); 12312 mp = UFSTOVFS(ump); 12313 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 12314 ("softdep_update_inodeblock called on non-softdep filesystem")); 12315 fs = ump->um_fs; 12316 /* 12317 * Preserve the freelink that is on disk. clear_unlinked_inodedep() 12318 * does not have access to the in-core ip so must write directly into 12319 * the inode block buffer when setting freelink. 12320 */ 12321 if (fs->fs_magic == FS_UFS1_MAGIC) 12322 DIP_SET(ip, i_freelink, ((struct ufs1_dinode *)bp->b_data + 12323 ino_to_fsbo(fs, ip->i_number))->di_freelink); 12324 else 12325 DIP_SET(ip, i_freelink, ((struct ufs2_dinode *)bp->b_data + 12326 ino_to_fsbo(fs, ip->i_number))->di_freelink); 12327 /* 12328 * If the effective link count is not equal to the actual link 12329 * count, then we must track the difference in an inodedep while 12330 * the inode is (potentially) tossed out of the cache. Otherwise, 12331 * if there is no existing inodedep, then there are no dependencies 12332 * to track. 12333 */ 12334 ACQUIRE_LOCK(ump); 12335 again: 12336 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) { 12337 FREE_LOCK(ump); 12338 if (ip->i_effnlink != ip->i_nlink) 12339 panic("softdep_update_inodeblock: bad link count"); 12340 return; 12341 } 12342 if (inodedep->id_nlinkdelta != ip->i_nlink - ip->i_effnlink) 12343 panic("softdep_update_inodeblock: bad delta"); 12344 /* 12345 * If we're flushing all dependencies we must also move any waiting 12346 * for journal writes onto the bufwait list prior to I/O. 12347 */ 12348 if (waitfor) { 12349 TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) { 12350 if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY)) 12351 == DEPCOMPLETE) { 12352 jwait(&inoref->if_list, MNT_WAIT); 12353 goto again; 12354 } 12355 } 12356 } 12357 /* 12358 * Changes have been initiated. Anything depending on these 12359 * changes cannot occur until this inode has been written. 12360 */ 12361 inodedep->id_state &= ~COMPLETE; 12362 if ((inodedep->id_state & ONWORKLIST) == 0) 12363 WORKLIST_INSERT(&bp->b_dep, &inodedep->id_list); 12364 /* 12365 * Any new dependencies associated with the incore inode must 12366 * now be moved to the list associated with the buffer holding 12367 * the in-memory copy of the inode. Once merged process any 12368 * allocdirects that are completed by the merger. 12369 */ 12370 merge_inode_lists(&inodedep->id_newinoupdt, &inodedep->id_inoupdt); 12371 if (!TAILQ_EMPTY(&inodedep->id_inoupdt)) 12372 handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_inoupdt), 12373 NULL); 12374 merge_inode_lists(&inodedep->id_newextupdt, &inodedep->id_extupdt); 12375 if (!TAILQ_EMPTY(&inodedep->id_extupdt)) 12376 handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_extupdt), 12377 NULL); 12378 /* 12379 * Now that the inode has been pushed into the buffer, the 12380 * operations dependent on the inode being written to disk 12381 * can be moved to the id_bufwait so that they will be 12382 * processed when the buffer I/O completes. 12383 */ 12384 while ((wk = LIST_FIRST(&inodedep->id_inowait)) != NULL) { 12385 WORKLIST_REMOVE(wk); 12386 WORKLIST_INSERT(&inodedep->id_bufwait, wk); 12387 } 12388 /* 12389 * Newly allocated inodes cannot be written until the bitmap 12390 * that allocates them have been written (indicated by 12391 * DEPCOMPLETE being set in id_state). If we are doing a 12392 * forced sync (e.g., an fsync on a file), we force the bitmap 12393 * to be written so that the update can be done. 12394 */ 12395 if (waitfor == 0) { 12396 FREE_LOCK(ump); 12397 return; 12398 } 12399 retry: 12400 if ((inodedep->id_state & (DEPCOMPLETE | GOINGAWAY)) != 0) { 12401 FREE_LOCK(ump); 12402 return; 12403 } 12404 ibp = inodedep->id_bmsafemap->sm_buf; 12405 ibp = getdirtybuf(ibp, LOCK_PTR(ump), MNT_WAIT); 12406 if (ibp == NULL) { 12407 /* 12408 * If ibp came back as NULL, the dependency could have been 12409 * freed while we slept. Look it up again, and check to see 12410 * that it has completed. 12411 */ 12412 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0) 12413 goto retry; 12414 FREE_LOCK(ump); 12415 return; 12416 } 12417 FREE_LOCK(ump); 12418 if ((error = bwrite(ibp)) != 0) 12419 softdep_error("softdep_update_inodeblock: bwrite", error); 12420 } 12421 12422 /* 12423 * Merge the a new inode dependency list (such as id_newinoupdt) into an 12424 * old inode dependency list (such as id_inoupdt). 12425 */ 12426 static void 12427 merge_inode_lists(newlisthead, oldlisthead) 12428 struct allocdirectlst *newlisthead; 12429 struct allocdirectlst *oldlisthead; 12430 { 12431 struct allocdirect *listadp, *newadp; 12432 12433 newadp = TAILQ_FIRST(newlisthead); 12434 if (newadp != NULL) 12435 LOCK_OWNED(VFSTOUFS(newadp->ad_block.nb_list.wk_mp)); 12436 for (listadp = TAILQ_FIRST(oldlisthead); listadp && newadp;) { 12437 if (listadp->ad_offset < newadp->ad_offset) { 12438 listadp = TAILQ_NEXT(listadp, ad_next); 12439 continue; 12440 } 12441 TAILQ_REMOVE(newlisthead, newadp, ad_next); 12442 TAILQ_INSERT_BEFORE(listadp, newadp, ad_next); 12443 if (listadp->ad_offset == newadp->ad_offset) { 12444 allocdirect_merge(oldlisthead, newadp, 12445 listadp); 12446 listadp = newadp; 12447 } 12448 newadp = TAILQ_FIRST(newlisthead); 12449 } 12450 while ((newadp = TAILQ_FIRST(newlisthead)) != NULL) { 12451 TAILQ_REMOVE(newlisthead, newadp, ad_next); 12452 TAILQ_INSERT_TAIL(oldlisthead, newadp, ad_next); 12453 } 12454 } 12455 12456 /* 12457 * If we are doing an fsync, then we must ensure that any directory 12458 * entries for the inode have been written after the inode gets to disk. 12459 */ 12460 int 12461 softdep_fsync(vp) 12462 struct vnode *vp; /* the "in_core" copy of the inode */ 12463 { 12464 struct inodedep *inodedep; 12465 struct pagedep *pagedep; 12466 struct inoref *inoref; 12467 struct ufsmount *ump; 12468 struct worklist *wk; 12469 struct diradd *dap; 12470 struct mount *mp; 12471 struct vnode *pvp; 12472 struct inode *ip; 12473 struct buf *bp; 12474 struct fs *fs; 12475 struct thread *td = curthread; 12476 int error, flushparent, pagedep_new_block; 12477 ino_t parentino; 12478 ufs_lbn_t lbn; 12479 12480 ip = VTOI(vp); 12481 mp = vp->v_mount; 12482 ump = VFSTOUFS(mp); 12483 fs = ump->um_fs; 12484 if (MOUNTEDSOFTDEP(mp) == 0) 12485 return (0); 12486 ACQUIRE_LOCK(ump); 12487 restart: 12488 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) { 12489 FREE_LOCK(ump); 12490 return (0); 12491 } 12492 TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) { 12493 if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY)) 12494 == DEPCOMPLETE) { 12495 jwait(&inoref->if_list, MNT_WAIT); 12496 goto restart; 12497 } 12498 } 12499 if (!LIST_EMPTY(&inodedep->id_inowait) || 12500 !TAILQ_EMPTY(&inodedep->id_extupdt) || 12501 !TAILQ_EMPTY(&inodedep->id_newextupdt) || 12502 !TAILQ_EMPTY(&inodedep->id_inoupdt) || 12503 !TAILQ_EMPTY(&inodedep->id_newinoupdt)) 12504 panic("softdep_fsync: pending ops %p", inodedep); 12505 for (error = 0, flushparent = 0; ; ) { 12506 if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) == NULL) 12507 break; 12508 if (wk->wk_type != D_DIRADD) 12509 panic("softdep_fsync: Unexpected type %s", 12510 TYPENAME(wk->wk_type)); 12511 dap = WK_DIRADD(wk); 12512 /* 12513 * Flush our parent if this directory entry has a MKDIR_PARENT 12514 * dependency or is contained in a newly allocated block. 12515 */ 12516 if (dap->da_state & DIRCHG) 12517 pagedep = dap->da_previous->dm_pagedep; 12518 else 12519 pagedep = dap->da_pagedep; 12520 parentino = pagedep->pd_ino; 12521 lbn = pagedep->pd_lbn; 12522 if ((dap->da_state & (MKDIR_BODY | COMPLETE)) != COMPLETE) 12523 panic("softdep_fsync: dirty"); 12524 if ((dap->da_state & MKDIR_PARENT) || 12525 (pagedep->pd_state & NEWBLOCK)) 12526 flushparent = 1; 12527 else 12528 flushparent = 0; 12529 /* 12530 * If we are being fsync'ed as part of vgone'ing this vnode, 12531 * then we will not be able to release and recover the 12532 * vnode below, so we just have to give up on writing its 12533 * directory entry out. It will eventually be written, just 12534 * not now, but then the user was not asking to have it 12535 * written, so we are not breaking any promises. 12536 */ 12537 if (VN_IS_DOOMED(vp)) 12538 break; 12539 /* 12540 * We prevent deadlock by always fetching inodes from the 12541 * root, moving down the directory tree. Thus, when fetching 12542 * our parent directory, we first try to get the lock. If 12543 * that fails, we must unlock ourselves before requesting 12544 * the lock on our parent. See the comment in ufs_lookup 12545 * for details on possible races. 12546 */ 12547 FREE_LOCK(ump); 12548 if (ffs_vgetf(mp, parentino, LK_NOWAIT | LK_EXCLUSIVE, &pvp, 12549 FFSV_FORCEINSMQ)) { 12550 /* 12551 * Unmount cannot proceed after unlock because 12552 * caller must have called vn_start_write(). 12553 */ 12554 VOP_UNLOCK(vp); 12555 error = ffs_vgetf(mp, parentino, LK_EXCLUSIVE, 12556 &pvp, FFSV_FORCEINSMQ); 12557 MPASS(VTOI(pvp)->i_mode != 0); 12558 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 12559 if (VN_IS_DOOMED(vp)) { 12560 if (error == 0) 12561 vput(pvp); 12562 error = ENOENT; 12563 } 12564 if (error != 0) 12565 return (error); 12566 } 12567 /* 12568 * All MKDIR_PARENT dependencies and all the NEWBLOCK pagedeps 12569 * that are contained in direct blocks will be resolved by 12570 * doing a ffs_update. Pagedeps contained in indirect blocks 12571 * may require a complete sync'ing of the directory. So, we 12572 * try the cheap and fast ffs_update first, and if that fails, 12573 * then we do the slower ffs_syncvnode of the directory. 12574 */ 12575 if (flushparent) { 12576 int locked; 12577 12578 if ((error = ffs_update(pvp, 1)) != 0) { 12579 vput(pvp); 12580 return (error); 12581 } 12582 ACQUIRE_LOCK(ump); 12583 locked = 1; 12584 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0) { 12585 if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) != NULL) { 12586 if (wk->wk_type != D_DIRADD) 12587 panic("softdep_fsync: Unexpected type %s", 12588 TYPENAME(wk->wk_type)); 12589 dap = WK_DIRADD(wk); 12590 if (dap->da_state & DIRCHG) 12591 pagedep = dap->da_previous->dm_pagedep; 12592 else 12593 pagedep = dap->da_pagedep; 12594 pagedep_new_block = pagedep->pd_state & NEWBLOCK; 12595 FREE_LOCK(ump); 12596 locked = 0; 12597 if (pagedep_new_block && (error = 12598 ffs_syncvnode(pvp, MNT_WAIT, 0))) { 12599 vput(pvp); 12600 return (error); 12601 } 12602 } 12603 } 12604 if (locked) 12605 FREE_LOCK(ump); 12606 } 12607 /* 12608 * Flush directory page containing the inode's name. 12609 */ 12610 error = bread(pvp, lbn, blksize(fs, VTOI(pvp), lbn), td->td_ucred, 12611 &bp); 12612 if (error == 0) 12613 error = bwrite(bp); 12614 else 12615 brelse(bp); 12616 vput(pvp); 12617 if (error != 0) 12618 return (error); 12619 ACQUIRE_LOCK(ump); 12620 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) 12621 break; 12622 } 12623 FREE_LOCK(ump); 12624 return (0); 12625 } 12626 12627 /* 12628 * Flush all the dirty bitmaps associated with the block device 12629 * before flushing the rest of the dirty blocks so as to reduce 12630 * the number of dependencies that will have to be rolled back. 12631 * 12632 * XXX Unused? 12633 */ 12634 void 12635 softdep_fsync_mountdev(vp) 12636 struct vnode *vp; 12637 { 12638 struct buf *bp, *nbp; 12639 struct worklist *wk; 12640 struct bufobj *bo; 12641 12642 if (!vn_isdisk(vp, NULL)) 12643 panic("softdep_fsync_mountdev: vnode not a disk"); 12644 bo = &vp->v_bufobj; 12645 restart: 12646 BO_LOCK(bo); 12647 TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) { 12648 /* 12649 * If it is already scheduled, skip to the next buffer. 12650 */ 12651 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL)) 12652 continue; 12653 12654 if ((bp->b_flags & B_DELWRI) == 0) 12655 panic("softdep_fsync_mountdev: not dirty"); 12656 /* 12657 * We are only interested in bitmaps with outstanding 12658 * dependencies. 12659 */ 12660 if ((wk = LIST_FIRST(&bp->b_dep)) == NULL || 12661 wk->wk_type != D_BMSAFEMAP || 12662 (bp->b_vflags & BV_BKGRDINPROG)) { 12663 BUF_UNLOCK(bp); 12664 continue; 12665 } 12666 BO_UNLOCK(bo); 12667 bremfree(bp); 12668 (void) bawrite(bp); 12669 goto restart; 12670 } 12671 drain_output(vp); 12672 BO_UNLOCK(bo); 12673 } 12674 12675 /* 12676 * Sync all cylinder groups that were dirty at the time this function is 12677 * called. Newly dirtied cgs will be inserted before the sentinel. This 12678 * is used to flush freedep activity that may be holding up writes to a 12679 * indirect block. 12680 */ 12681 static int 12682 sync_cgs(mp, waitfor) 12683 struct mount *mp; 12684 int waitfor; 12685 { 12686 struct bmsafemap *bmsafemap; 12687 struct bmsafemap *sentinel; 12688 struct ufsmount *ump; 12689 struct buf *bp; 12690 int error; 12691 12692 sentinel = malloc(sizeof(*sentinel), M_BMSAFEMAP, M_ZERO | M_WAITOK); 12693 sentinel->sm_cg = -1; 12694 ump = VFSTOUFS(mp); 12695 error = 0; 12696 ACQUIRE_LOCK(ump); 12697 LIST_INSERT_HEAD(&ump->softdep_dirtycg, sentinel, sm_next); 12698 for (bmsafemap = LIST_NEXT(sentinel, sm_next); bmsafemap != NULL; 12699 bmsafemap = LIST_NEXT(sentinel, sm_next)) { 12700 /* Skip sentinels and cgs with no work to release. */ 12701 if (bmsafemap->sm_cg == -1 || 12702 (LIST_EMPTY(&bmsafemap->sm_freehd) && 12703 LIST_EMPTY(&bmsafemap->sm_freewr))) { 12704 LIST_REMOVE(sentinel, sm_next); 12705 LIST_INSERT_AFTER(bmsafemap, sentinel, sm_next); 12706 continue; 12707 } 12708 /* 12709 * If we don't get the lock and we're waiting try again, if 12710 * not move on to the next buf and try to sync it. 12711 */ 12712 bp = getdirtybuf(bmsafemap->sm_buf, LOCK_PTR(ump), waitfor); 12713 if (bp == NULL && waitfor == MNT_WAIT) 12714 continue; 12715 LIST_REMOVE(sentinel, sm_next); 12716 LIST_INSERT_AFTER(bmsafemap, sentinel, sm_next); 12717 if (bp == NULL) 12718 continue; 12719 FREE_LOCK(ump); 12720 if (waitfor == MNT_NOWAIT) 12721 bawrite(bp); 12722 else 12723 error = bwrite(bp); 12724 ACQUIRE_LOCK(ump); 12725 if (error) 12726 break; 12727 } 12728 LIST_REMOVE(sentinel, sm_next); 12729 FREE_LOCK(ump); 12730 free(sentinel, M_BMSAFEMAP); 12731 return (error); 12732 } 12733 12734 /* 12735 * This routine is called when we are trying to synchronously flush a 12736 * file. This routine must eliminate any filesystem metadata dependencies 12737 * so that the syncing routine can succeed. 12738 */ 12739 int 12740 softdep_sync_metadata(struct vnode *vp) 12741 { 12742 struct inode *ip; 12743 int error; 12744 12745 ip = VTOI(vp); 12746 KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0, 12747 ("softdep_sync_metadata called on non-softdep filesystem")); 12748 /* 12749 * Ensure that any direct block dependencies have been cleared, 12750 * truncations are started, and inode references are journaled. 12751 */ 12752 ACQUIRE_LOCK(VFSTOUFS(vp->v_mount)); 12753 /* 12754 * Write all journal records to prevent rollbacks on devvp. 12755 */ 12756 if (vp->v_type == VCHR) 12757 softdep_flushjournal(vp->v_mount); 12758 error = flush_inodedep_deps(vp, vp->v_mount, ip->i_number); 12759 /* 12760 * Ensure that all truncates are written so we won't find deps on 12761 * indirect blocks. 12762 */ 12763 process_truncates(vp); 12764 FREE_LOCK(VFSTOUFS(vp->v_mount)); 12765 12766 return (error); 12767 } 12768 12769 /* 12770 * This routine is called when we are attempting to sync a buf with 12771 * dependencies. If waitfor is MNT_NOWAIT it attempts to schedule any 12772 * other IO it can but returns EBUSY if the buffer is not yet able to 12773 * be written. Dependencies which will not cause rollbacks will always 12774 * return 0. 12775 */ 12776 int 12777 softdep_sync_buf(struct vnode *vp, struct buf *bp, int waitfor) 12778 { 12779 struct indirdep *indirdep; 12780 struct pagedep *pagedep; 12781 struct allocindir *aip; 12782 struct newblk *newblk; 12783 struct ufsmount *ump; 12784 struct buf *nbp; 12785 struct worklist *wk; 12786 int i, error; 12787 12788 KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0, 12789 ("softdep_sync_buf called on non-softdep filesystem")); 12790 /* 12791 * For VCHR we just don't want to force flush any dependencies that 12792 * will cause rollbacks. 12793 */ 12794 if (vp->v_type == VCHR) { 12795 if (waitfor == MNT_NOWAIT && softdep_count_dependencies(bp, 0)) 12796 return (EBUSY); 12797 return (0); 12798 } 12799 ump = VFSTOUFS(vp->v_mount); 12800 ACQUIRE_LOCK(ump); 12801 /* 12802 * As we hold the buffer locked, none of its dependencies 12803 * will disappear. 12804 */ 12805 error = 0; 12806 top: 12807 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 12808 switch (wk->wk_type) { 12809 12810 case D_ALLOCDIRECT: 12811 case D_ALLOCINDIR: 12812 newblk = WK_NEWBLK(wk); 12813 if (newblk->nb_jnewblk != NULL) { 12814 if (waitfor == MNT_NOWAIT) { 12815 error = EBUSY; 12816 goto out_unlock; 12817 } 12818 jwait(&newblk->nb_jnewblk->jn_list, waitfor); 12819 goto top; 12820 } 12821 if (newblk->nb_state & DEPCOMPLETE || 12822 waitfor == MNT_NOWAIT) 12823 continue; 12824 nbp = newblk->nb_bmsafemap->sm_buf; 12825 nbp = getdirtybuf(nbp, LOCK_PTR(ump), waitfor); 12826 if (nbp == NULL) 12827 goto top; 12828 FREE_LOCK(ump); 12829 if ((error = bwrite(nbp)) != 0) 12830 goto out; 12831 ACQUIRE_LOCK(ump); 12832 continue; 12833 12834 case D_INDIRDEP: 12835 indirdep = WK_INDIRDEP(wk); 12836 if (waitfor == MNT_NOWAIT) { 12837 if (!TAILQ_EMPTY(&indirdep->ir_trunc) || 12838 !LIST_EMPTY(&indirdep->ir_deplisthd)) { 12839 error = EBUSY; 12840 goto out_unlock; 12841 } 12842 } 12843 if (!TAILQ_EMPTY(&indirdep->ir_trunc)) 12844 panic("softdep_sync_buf: truncation pending."); 12845 restart: 12846 LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) { 12847 newblk = (struct newblk *)aip; 12848 if (newblk->nb_jnewblk != NULL) { 12849 jwait(&newblk->nb_jnewblk->jn_list, 12850 waitfor); 12851 goto restart; 12852 } 12853 if (newblk->nb_state & DEPCOMPLETE) 12854 continue; 12855 nbp = newblk->nb_bmsafemap->sm_buf; 12856 nbp = getdirtybuf(nbp, LOCK_PTR(ump), waitfor); 12857 if (nbp == NULL) 12858 goto restart; 12859 FREE_LOCK(ump); 12860 if ((error = bwrite(nbp)) != 0) 12861 goto out; 12862 ACQUIRE_LOCK(ump); 12863 goto restart; 12864 } 12865 continue; 12866 12867 case D_PAGEDEP: 12868 /* 12869 * Only flush directory entries in synchronous passes. 12870 */ 12871 if (waitfor != MNT_WAIT) { 12872 error = EBUSY; 12873 goto out_unlock; 12874 } 12875 /* 12876 * While syncing snapshots, we must allow recursive 12877 * lookups. 12878 */ 12879 BUF_AREC(bp); 12880 /* 12881 * We are trying to sync a directory that may 12882 * have dependencies on both its own metadata 12883 * and/or dependencies on the inodes of any 12884 * recently allocated files. We walk its diradd 12885 * lists pushing out the associated inode. 12886 */ 12887 pagedep = WK_PAGEDEP(wk); 12888 for (i = 0; i < DAHASHSZ; i++) { 12889 if (LIST_FIRST(&pagedep->pd_diraddhd[i]) == 0) 12890 continue; 12891 if ((error = flush_pagedep_deps(vp, wk->wk_mp, 12892 &pagedep->pd_diraddhd[i]))) { 12893 BUF_NOREC(bp); 12894 goto out_unlock; 12895 } 12896 } 12897 BUF_NOREC(bp); 12898 continue; 12899 12900 case D_FREEWORK: 12901 case D_FREEDEP: 12902 case D_JSEGDEP: 12903 case D_JNEWBLK: 12904 continue; 12905 12906 default: 12907 panic("softdep_sync_buf: Unknown type %s", 12908 TYPENAME(wk->wk_type)); 12909 /* NOTREACHED */ 12910 } 12911 } 12912 out_unlock: 12913 FREE_LOCK(ump); 12914 out: 12915 return (error); 12916 } 12917 12918 /* 12919 * Flush the dependencies associated with an inodedep. 12920 */ 12921 static int 12922 flush_inodedep_deps(vp, mp, ino) 12923 struct vnode *vp; 12924 struct mount *mp; 12925 ino_t ino; 12926 { 12927 struct inodedep *inodedep; 12928 struct inoref *inoref; 12929 struct ufsmount *ump; 12930 int error, waitfor; 12931 12932 /* 12933 * This work is done in two passes. The first pass grabs most 12934 * of the buffers and begins asynchronously writing them. The 12935 * only way to wait for these asynchronous writes is to sleep 12936 * on the filesystem vnode which may stay busy for a long time 12937 * if the filesystem is active. So, instead, we make a second 12938 * pass over the dependencies blocking on each write. In the 12939 * usual case we will be blocking against a write that we 12940 * initiated, so when it is done the dependency will have been 12941 * resolved. Thus the second pass is expected to end quickly. 12942 * We give a brief window at the top of the loop to allow 12943 * any pending I/O to complete. 12944 */ 12945 ump = VFSTOUFS(mp); 12946 LOCK_OWNED(ump); 12947 for (error = 0, waitfor = MNT_NOWAIT; ; ) { 12948 if (error) 12949 return (error); 12950 FREE_LOCK(ump); 12951 ACQUIRE_LOCK(ump); 12952 restart: 12953 if (inodedep_lookup(mp, ino, 0, &inodedep) == 0) 12954 return (0); 12955 TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) { 12956 if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY)) 12957 == DEPCOMPLETE) { 12958 jwait(&inoref->if_list, MNT_WAIT); 12959 goto restart; 12960 } 12961 } 12962 if (flush_deplist(&inodedep->id_inoupdt, waitfor, &error) || 12963 flush_deplist(&inodedep->id_newinoupdt, waitfor, &error) || 12964 flush_deplist(&inodedep->id_extupdt, waitfor, &error) || 12965 flush_deplist(&inodedep->id_newextupdt, waitfor, &error)) 12966 continue; 12967 /* 12968 * If pass2, we are done, otherwise do pass 2. 12969 */ 12970 if (waitfor == MNT_WAIT) 12971 break; 12972 waitfor = MNT_WAIT; 12973 } 12974 /* 12975 * Try freeing inodedep in case all dependencies have been removed. 12976 */ 12977 if (inodedep_lookup(mp, ino, 0, &inodedep) != 0) 12978 (void) free_inodedep(inodedep); 12979 return (0); 12980 } 12981 12982 /* 12983 * Flush an inode dependency list. 12984 */ 12985 static int 12986 flush_deplist(listhead, waitfor, errorp) 12987 struct allocdirectlst *listhead; 12988 int waitfor; 12989 int *errorp; 12990 { 12991 struct allocdirect *adp; 12992 struct newblk *newblk; 12993 struct ufsmount *ump; 12994 struct buf *bp; 12995 12996 if ((adp = TAILQ_FIRST(listhead)) == NULL) 12997 return (0); 12998 ump = VFSTOUFS(adp->ad_list.wk_mp); 12999 LOCK_OWNED(ump); 13000 TAILQ_FOREACH(adp, listhead, ad_next) { 13001 newblk = (struct newblk *)adp; 13002 if (newblk->nb_jnewblk != NULL) { 13003 jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT); 13004 return (1); 13005 } 13006 if (newblk->nb_state & DEPCOMPLETE) 13007 continue; 13008 bp = newblk->nb_bmsafemap->sm_buf; 13009 bp = getdirtybuf(bp, LOCK_PTR(ump), waitfor); 13010 if (bp == NULL) { 13011 if (waitfor == MNT_NOWAIT) 13012 continue; 13013 return (1); 13014 } 13015 FREE_LOCK(ump); 13016 if (waitfor == MNT_NOWAIT) 13017 bawrite(bp); 13018 else 13019 *errorp = bwrite(bp); 13020 ACQUIRE_LOCK(ump); 13021 return (1); 13022 } 13023 return (0); 13024 } 13025 13026 /* 13027 * Flush dependencies associated with an allocdirect block. 13028 */ 13029 static int 13030 flush_newblk_dep(vp, mp, lbn) 13031 struct vnode *vp; 13032 struct mount *mp; 13033 ufs_lbn_t lbn; 13034 { 13035 struct newblk *newblk; 13036 struct ufsmount *ump; 13037 struct bufobj *bo; 13038 struct inode *ip; 13039 struct buf *bp; 13040 ufs2_daddr_t blkno; 13041 int error; 13042 13043 error = 0; 13044 bo = &vp->v_bufobj; 13045 ip = VTOI(vp); 13046 blkno = DIP(ip, i_db[lbn]); 13047 if (blkno == 0) 13048 panic("flush_newblk_dep: Missing block"); 13049 ump = VFSTOUFS(mp); 13050 ACQUIRE_LOCK(ump); 13051 /* 13052 * Loop until all dependencies related to this block are satisfied. 13053 * We must be careful to restart after each sleep in case a write 13054 * completes some part of this process for us. 13055 */ 13056 for (;;) { 13057 if (newblk_lookup(mp, blkno, 0, &newblk) == 0) { 13058 FREE_LOCK(ump); 13059 break; 13060 } 13061 if (newblk->nb_list.wk_type != D_ALLOCDIRECT) 13062 panic("flush_newblk_dep: Bad newblk %p", newblk); 13063 /* 13064 * Flush the journal. 13065 */ 13066 if (newblk->nb_jnewblk != NULL) { 13067 jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT); 13068 continue; 13069 } 13070 /* 13071 * Write the bitmap dependency. 13072 */ 13073 if ((newblk->nb_state & DEPCOMPLETE) == 0) { 13074 bp = newblk->nb_bmsafemap->sm_buf; 13075 bp = getdirtybuf(bp, LOCK_PTR(ump), MNT_WAIT); 13076 if (bp == NULL) 13077 continue; 13078 FREE_LOCK(ump); 13079 error = bwrite(bp); 13080 if (error) 13081 break; 13082 ACQUIRE_LOCK(ump); 13083 continue; 13084 } 13085 /* 13086 * Write the buffer. 13087 */ 13088 FREE_LOCK(ump); 13089 BO_LOCK(bo); 13090 bp = gbincore(bo, lbn); 13091 if (bp != NULL) { 13092 error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL | 13093 LK_INTERLOCK, BO_LOCKPTR(bo)); 13094 if (error == ENOLCK) { 13095 ACQUIRE_LOCK(ump); 13096 error = 0; 13097 continue; /* Slept, retry */ 13098 } 13099 if (error != 0) 13100 break; /* Failed */ 13101 if (bp->b_flags & B_DELWRI) { 13102 bremfree(bp); 13103 error = bwrite(bp); 13104 if (error) 13105 break; 13106 } else 13107 BUF_UNLOCK(bp); 13108 } else 13109 BO_UNLOCK(bo); 13110 /* 13111 * We have to wait for the direct pointers to 13112 * point at the newdirblk before the dependency 13113 * will go away. 13114 */ 13115 error = ffs_update(vp, 1); 13116 if (error) 13117 break; 13118 ACQUIRE_LOCK(ump); 13119 } 13120 return (error); 13121 } 13122 13123 /* 13124 * Eliminate a pagedep dependency by flushing out all its diradd dependencies. 13125 */ 13126 static int 13127 flush_pagedep_deps(pvp, mp, diraddhdp) 13128 struct vnode *pvp; 13129 struct mount *mp; 13130 struct diraddhd *diraddhdp; 13131 { 13132 struct inodedep *inodedep; 13133 struct inoref *inoref; 13134 struct ufsmount *ump; 13135 struct diradd *dap; 13136 struct vnode *vp; 13137 int error = 0; 13138 struct buf *bp; 13139 ino_t inum; 13140 struct diraddhd unfinished; 13141 13142 LIST_INIT(&unfinished); 13143 ump = VFSTOUFS(mp); 13144 LOCK_OWNED(ump); 13145 restart: 13146 while ((dap = LIST_FIRST(diraddhdp)) != NULL) { 13147 /* 13148 * Flush ourselves if this directory entry 13149 * has a MKDIR_PARENT dependency. 13150 */ 13151 if (dap->da_state & MKDIR_PARENT) { 13152 FREE_LOCK(ump); 13153 if ((error = ffs_update(pvp, 1)) != 0) 13154 break; 13155 ACQUIRE_LOCK(ump); 13156 /* 13157 * If that cleared dependencies, go on to next. 13158 */ 13159 if (dap != LIST_FIRST(diraddhdp)) 13160 continue; 13161 /* 13162 * All MKDIR_PARENT dependencies and all the 13163 * NEWBLOCK pagedeps that are contained in direct 13164 * blocks were resolved by doing above ffs_update. 13165 * Pagedeps contained in indirect blocks may 13166 * require a complete sync'ing of the directory. 13167 * We are in the midst of doing a complete sync, 13168 * so if they are not resolved in this pass we 13169 * defer them for now as they will be sync'ed by 13170 * our caller shortly. 13171 */ 13172 LIST_REMOVE(dap, da_pdlist); 13173 LIST_INSERT_HEAD(&unfinished, dap, da_pdlist); 13174 continue; 13175 } 13176 /* 13177 * A newly allocated directory must have its "." and 13178 * ".." entries written out before its name can be 13179 * committed in its parent. 13180 */ 13181 inum = dap->da_newinum; 13182 if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0) 13183 panic("flush_pagedep_deps: lost inode1"); 13184 /* 13185 * Wait for any pending journal adds to complete so we don't 13186 * cause rollbacks while syncing. 13187 */ 13188 TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) { 13189 if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY)) 13190 == DEPCOMPLETE) { 13191 jwait(&inoref->if_list, MNT_WAIT); 13192 goto restart; 13193 } 13194 } 13195 if (dap->da_state & MKDIR_BODY) { 13196 FREE_LOCK(ump); 13197 if ((error = ffs_vgetf(mp, inum, LK_EXCLUSIVE, &vp, 13198 FFSV_FORCEINSMQ))) 13199 break; 13200 MPASS(VTOI(vp)->i_mode != 0); 13201 error = flush_newblk_dep(vp, mp, 0); 13202 /* 13203 * If we still have the dependency we might need to 13204 * update the vnode to sync the new link count to 13205 * disk. 13206 */ 13207 if (error == 0 && dap == LIST_FIRST(diraddhdp)) 13208 error = ffs_update(vp, 1); 13209 vput(vp); 13210 if (error != 0) 13211 break; 13212 ACQUIRE_LOCK(ump); 13213 /* 13214 * If that cleared dependencies, go on to next. 13215 */ 13216 if (dap != LIST_FIRST(diraddhdp)) 13217 continue; 13218 if (dap->da_state & MKDIR_BODY) { 13219 inodedep_lookup(UFSTOVFS(ump), inum, 0, 13220 &inodedep); 13221 panic("flush_pagedep_deps: MKDIR_BODY " 13222 "inodedep %p dap %p vp %p", 13223 inodedep, dap, vp); 13224 } 13225 } 13226 /* 13227 * Flush the inode on which the directory entry depends. 13228 * Having accounted for MKDIR_PARENT and MKDIR_BODY above, 13229 * the only remaining dependency is that the updated inode 13230 * count must get pushed to disk. The inode has already 13231 * been pushed into its inode buffer (via VOP_UPDATE) at 13232 * the time of the reference count change. So we need only 13233 * locate that buffer, ensure that there will be no rollback 13234 * caused by a bitmap dependency, then write the inode buffer. 13235 */ 13236 retry: 13237 if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0) 13238 panic("flush_pagedep_deps: lost inode"); 13239 /* 13240 * If the inode still has bitmap dependencies, 13241 * push them to disk. 13242 */ 13243 if ((inodedep->id_state & (DEPCOMPLETE | GOINGAWAY)) == 0) { 13244 bp = inodedep->id_bmsafemap->sm_buf; 13245 bp = getdirtybuf(bp, LOCK_PTR(ump), MNT_WAIT); 13246 if (bp == NULL) 13247 goto retry; 13248 FREE_LOCK(ump); 13249 if ((error = bwrite(bp)) != 0) 13250 break; 13251 ACQUIRE_LOCK(ump); 13252 if (dap != LIST_FIRST(diraddhdp)) 13253 continue; 13254 } 13255 /* 13256 * If the inode is still sitting in a buffer waiting 13257 * to be written or waiting for the link count to be 13258 * adjusted update it here to flush it to disk. 13259 */ 13260 if (dap == LIST_FIRST(diraddhdp)) { 13261 FREE_LOCK(ump); 13262 if ((error = ffs_vgetf(mp, inum, LK_EXCLUSIVE, &vp, 13263 FFSV_FORCEINSMQ))) 13264 break; 13265 MPASS(VTOI(vp)->i_mode != 0); 13266 error = ffs_update(vp, 1); 13267 vput(vp); 13268 if (error) 13269 break; 13270 ACQUIRE_LOCK(ump); 13271 } 13272 /* 13273 * If we have failed to get rid of all the dependencies 13274 * then something is seriously wrong. 13275 */ 13276 if (dap == LIST_FIRST(diraddhdp)) { 13277 inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep); 13278 panic("flush_pagedep_deps: failed to flush " 13279 "inodedep %p ino %ju dap %p", 13280 inodedep, (uintmax_t)inum, dap); 13281 } 13282 } 13283 if (error) 13284 ACQUIRE_LOCK(ump); 13285 while ((dap = LIST_FIRST(&unfinished)) != NULL) { 13286 LIST_REMOVE(dap, da_pdlist); 13287 LIST_INSERT_HEAD(diraddhdp, dap, da_pdlist); 13288 } 13289 return (error); 13290 } 13291 13292 /* 13293 * A large burst of file addition or deletion activity can drive the 13294 * memory load excessively high. First attempt to slow things down 13295 * using the techniques below. If that fails, this routine requests 13296 * the offending operations to fall back to running synchronously 13297 * until the memory load returns to a reasonable level. 13298 */ 13299 int 13300 softdep_slowdown(vp) 13301 struct vnode *vp; 13302 { 13303 struct ufsmount *ump; 13304 int jlow; 13305 int max_softdeps_hard; 13306 13307 KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0, 13308 ("softdep_slowdown called on non-softdep filesystem")); 13309 ump = VFSTOUFS(vp->v_mount); 13310 ACQUIRE_LOCK(ump); 13311 jlow = 0; 13312 /* 13313 * Check for journal space if needed. 13314 */ 13315 if (DOINGSUJ(vp)) { 13316 if (journal_space(ump, 0) == 0) 13317 jlow = 1; 13318 } 13319 /* 13320 * If the system is under its limits and our filesystem is 13321 * not responsible for more than our share of the usage and 13322 * we are not low on journal space, then no need to slow down. 13323 */ 13324 max_softdeps_hard = max_softdeps * 11 / 10; 13325 if (dep_current[D_DIRREM] < max_softdeps_hard / 2 && 13326 dep_current[D_INODEDEP] < max_softdeps_hard && 13327 dep_current[D_INDIRDEP] < max_softdeps_hard / 1000 && 13328 dep_current[D_FREEBLKS] < max_softdeps_hard && jlow == 0 && 13329 ump->softdep_curdeps[D_DIRREM] < 13330 (max_softdeps_hard / 2) / stat_flush_threads && 13331 ump->softdep_curdeps[D_INODEDEP] < 13332 max_softdeps_hard / stat_flush_threads && 13333 ump->softdep_curdeps[D_INDIRDEP] < 13334 (max_softdeps_hard / 1000) / stat_flush_threads && 13335 ump->softdep_curdeps[D_FREEBLKS] < 13336 max_softdeps_hard / stat_flush_threads) { 13337 FREE_LOCK(ump); 13338 return (0); 13339 } 13340 /* 13341 * If the journal is low or our filesystem is over its limit 13342 * then speedup the cleanup. 13343 */ 13344 if (ump->softdep_curdeps[D_INDIRDEP] < 13345 (max_softdeps_hard / 1000) / stat_flush_threads || jlow) 13346 softdep_speedup(ump); 13347 stat_sync_limit_hit += 1; 13348 FREE_LOCK(ump); 13349 /* 13350 * We only slow down the rate at which new dependencies are 13351 * generated if we are not using journaling. With journaling, 13352 * the cleanup should always be sufficient to keep things 13353 * under control. 13354 */ 13355 if (DOINGSUJ(vp)) 13356 return (0); 13357 return (1); 13358 } 13359 13360 /* 13361 * Called by the allocation routines when they are about to fail 13362 * in the hope that we can free up the requested resource (inodes 13363 * or disk space). 13364 * 13365 * First check to see if the work list has anything on it. If it has, 13366 * clean up entries until we successfully free the requested resource. 13367 * Because this process holds inodes locked, we cannot handle any remove 13368 * requests that might block on a locked inode as that could lead to 13369 * deadlock. If the worklist yields none of the requested resource, 13370 * start syncing out vnodes to free up the needed space. 13371 */ 13372 int 13373 softdep_request_cleanup(fs, vp, cred, resource) 13374 struct fs *fs; 13375 struct vnode *vp; 13376 struct ucred *cred; 13377 int resource; 13378 { 13379 struct ufsmount *ump; 13380 struct mount *mp; 13381 long starttime; 13382 ufs2_daddr_t needed; 13383 int error, failed_vnode; 13384 13385 /* 13386 * If we are being called because of a process doing a 13387 * copy-on-write, then it is not safe to process any 13388 * worklist items as we will recurse into the copyonwrite 13389 * routine. This will result in an incoherent snapshot. 13390 * If the vnode that we hold is a snapshot, we must avoid 13391 * handling other resources that could cause deadlock. 13392 */ 13393 if ((curthread->td_pflags & TDP_COWINPROGRESS) || IS_SNAPSHOT(VTOI(vp))) 13394 return (0); 13395 13396 if (resource == FLUSH_BLOCKS_WAIT) 13397 stat_cleanup_blkrequests += 1; 13398 else 13399 stat_cleanup_inorequests += 1; 13400 13401 mp = vp->v_mount; 13402 ump = VFSTOUFS(mp); 13403 mtx_assert(UFS_MTX(ump), MA_OWNED); 13404 UFS_UNLOCK(ump); 13405 error = ffs_update(vp, 1); 13406 if (error != 0 || MOUNTEDSOFTDEP(mp) == 0) { 13407 UFS_LOCK(ump); 13408 return (0); 13409 } 13410 /* 13411 * If we are in need of resources, start by cleaning up 13412 * any block removals associated with our inode. 13413 */ 13414 ACQUIRE_LOCK(ump); 13415 process_removes(vp); 13416 process_truncates(vp); 13417 FREE_LOCK(ump); 13418 /* 13419 * Now clean up at least as many resources as we will need. 13420 * 13421 * When requested to clean up inodes, the number that are needed 13422 * is set by the number of simultaneous writers (mnt_writeopcount) 13423 * plus a bit of slop (2) in case some more writers show up while 13424 * we are cleaning. 13425 * 13426 * When requested to free up space, the amount of space that 13427 * we need is enough blocks to allocate a full-sized segment 13428 * (fs_contigsumsize). The number of such segments that will 13429 * be needed is set by the number of simultaneous writers 13430 * (mnt_writeopcount) plus a bit of slop (2) in case some more 13431 * writers show up while we are cleaning. 13432 * 13433 * Additionally, if we are unpriviledged and allocating space, 13434 * we need to ensure that we clean up enough blocks to get the 13435 * needed number of blocks over the threshold of the minimum 13436 * number of blocks required to be kept free by the filesystem 13437 * (fs_minfree). 13438 */ 13439 if (resource == FLUSH_INODES_WAIT) { 13440 needed = vfs_mount_fetch_counter(vp->v_mount, 13441 MNT_COUNT_WRITEOPCOUNT) + 2; 13442 } else if (resource == FLUSH_BLOCKS_WAIT) { 13443 needed = (vfs_mount_fetch_counter(vp->v_mount, 13444 MNT_COUNT_WRITEOPCOUNT) + 2) * fs->fs_contigsumsize; 13445 if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE)) 13446 needed += fragstoblks(fs, 13447 roundup((fs->fs_dsize * fs->fs_minfree / 100) - 13448 fs->fs_cstotal.cs_nffree, fs->fs_frag)); 13449 } else { 13450 printf("softdep_request_cleanup: Unknown resource type %d\n", 13451 resource); 13452 UFS_LOCK(ump); 13453 return (0); 13454 } 13455 starttime = time_second; 13456 retry: 13457 if (resource == FLUSH_BLOCKS_WAIT && 13458 fs->fs_cstotal.cs_nbfree <= needed) 13459 softdep_send_speedup(ump, needed * fs->fs_bsize, 13460 BIO_SPEEDUP_TRIM); 13461 if ((resource == FLUSH_BLOCKS_WAIT && ump->softdep_on_worklist > 0 && 13462 fs->fs_cstotal.cs_nbfree <= needed) || 13463 (resource == FLUSH_INODES_WAIT && fs->fs_pendinginodes > 0 && 13464 fs->fs_cstotal.cs_nifree <= needed)) { 13465 ACQUIRE_LOCK(ump); 13466 if (ump->softdep_on_worklist > 0 && 13467 process_worklist_item(UFSTOVFS(ump), 13468 ump->softdep_on_worklist, LK_NOWAIT) != 0) 13469 stat_worklist_push += 1; 13470 FREE_LOCK(ump); 13471 } 13472 /* 13473 * If we still need resources and there are no more worklist 13474 * entries to process to obtain them, we have to start flushing 13475 * the dirty vnodes to force the release of additional requests 13476 * to the worklist that we can then process to reap addition 13477 * resources. We walk the vnodes associated with the mount point 13478 * until we get the needed worklist requests that we can reap. 13479 * 13480 * If there are several threads all needing to clean the same 13481 * mount point, only one is allowed to walk the mount list. 13482 * When several threads all try to walk the same mount list, 13483 * they end up competing with each other and often end up in 13484 * livelock. This approach ensures that forward progress is 13485 * made at the cost of occational ENOSPC errors being returned 13486 * that might otherwise have been avoided. 13487 */ 13488 error = 1; 13489 if ((resource == FLUSH_BLOCKS_WAIT && 13490 fs->fs_cstotal.cs_nbfree <= needed) || 13491 (resource == FLUSH_INODES_WAIT && fs->fs_pendinginodes > 0 && 13492 fs->fs_cstotal.cs_nifree <= needed)) { 13493 ACQUIRE_LOCK(ump); 13494 if ((ump->um_softdep->sd_flags & FLUSH_RC_ACTIVE) == 0) { 13495 ump->um_softdep->sd_flags |= FLUSH_RC_ACTIVE; 13496 FREE_LOCK(ump); 13497 failed_vnode = softdep_request_cleanup_flush(mp, ump); 13498 ACQUIRE_LOCK(ump); 13499 ump->um_softdep->sd_flags &= ~FLUSH_RC_ACTIVE; 13500 FREE_LOCK(ump); 13501 if (ump->softdep_on_worklist > 0) { 13502 stat_cleanup_retries += 1; 13503 if (!failed_vnode) 13504 goto retry; 13505 } 13506 } else { 13507 FREE_LOCK(ump); 13508 error = 0; 13509 } 13510 stat_cleanup_failures += 1; 13511 } 13512 if (time_second - starttime > stat_cleanup_high_delay) 13513 stat_cleanup_high_delay = time_second - starttime; 13514 UFS_LOCK(ump); 13515 return (error); 13516 } 13517 13518 /* 13519 * Scan the vnodes for the specified mount point flushing out any 13520 * vnodes that can be locked without waiting. Finally, try to flush 13521 * the device associated with the mount point if it can be locked 13522 * without waiting. 13523 * 13524 * We return 0 if we were able to lock every vnode in our scan. 13525 * If we had to skip one or more vnodes, we return 1. 13526 */ 13527 static int 13528 softdep_request_cleanup_flush(mp, ump) 13529 struct mount *mp; 13530 struct ufsmount *ump; 13531 { 13532 struct thread *td; 13533 struct vnode *lvp, *mvp; 13534 int failed_vnode; 13535 13536 failed_vnode = 0; 13537 td = curthread; 13538 MNT_VNODE_FOREACH_ALL(lvp, mp, mvp) { 13539 if (TAILQ_FIRST(&lvp->v_bufobj.bo_dirty.bv_hd) == 0) { 13540 VI_UNLOCK(lvp); 13541 continue; 13542 } 13543 if (vget(lvp, LK_EXCLUSIVE | LK_INTERLOCK | LK_NOWAIT, 13544 td) != 0) { 13545 failed_vnode = 1; 13546 continue; 13547 } 13548 if (lvp->v_vflag & VV_NOSYNC) { /* unlinked */ 13549 vput(lvp); 13550 continue; 13551 } 13552 (void) ffs_syncvnode(lvp, MNT_NOWAIT, 0); 13553 vput(lvp); 13554 } 13555 lvp = ump->um_devvp; 13556 if (vn_lock(lvp, LK_EXCLUSIVE | LK_NOWAIT) == 0) { 13557 VOP_FSYNC(lvp, MNT_NOWAIT, td); 13558 VOP_UNLOCK(lvp); 13559 } 13560 return (failed_vnode); 13561 } 13562 13563 static bool 13564 softdep_excess_items(struct ufsmount *ump, int item) 13565 { 13566 13567 KASSERT(item >= 0 && item < D_LAST, ("item %d", item)); 13568 return (dep_current[item] > max_softdeps && 13569 ump->softdep_curdeps[item] > max_softdeps / 13570 stat_flush_threads); 13571 } 13572 13573 static void 13574 schedule_cleanup(struct mount *mp) 13575 { 13576 struct ufsmount *ump; 13577 struct thread *td; 13578 13579 ump = VFSTOUFS(mp); 13580 LOCK_OWNED(ump); 13581 FREE_LOCK(ump); 13582 td = curthread; 13583 if ((td->td_pflags & TDP_KTHREAD) != 0 && 13584 (td->td_proc->p_flag2 & P2_AST_SU) == 0) { 13585 /* 13586 * No ast is delivered to kernel threads, so nobody 13587 * would deref the mp. Some kernel threads 13588 * explicitely check for AST, e.g. NFS daemon does 13589 * this in the serving loop. 13590 */ 13591 return; 13592 } 13593 if (td->td_su != NULL) 13594 vfs_rel(td->td_su); 13595 vfs_ref(mp); 13596 td->td_su = mp; 13597 thread_lock(td); 13598 td->td_flags |= TDF_ASTPENDING; 13599 thread_unlock(td); 13600 } 13601 13602 static void 13603 softdep_ast_cleanup_proc(struct thread *td) 13604 { 13605 struct mount *mp; 13606 struct ufsmount *ump; 13607 int error; 13608 bool req; 13609 13610 while ((mp = td->td_su) != NULL) { 13611 td->td_su = NULL; 13612 error = vfs_busy(mp, MBF_NOWAIT); 13613 vfs_rel(mp); 13614 if (error != 0) 13615 return; 13616 if (ffs_own_mount(mp) && MOUNTEDSOFTDEP(mp)) { 13617 ump = VFSTOUFS(mp); 13618 for (;;) { 13619 req = false; 13620 ACQUIRE_LOCK(ump); 13621 if (softdep_excess_items(ump, D_INODEDEP)) { 13622 req = true; 13623 request_cleanup(mp, FLUSH_INODES); 13624 } 13625 if (softdep_excess_items(ump, D_DIRREM)) { 13626 req = true; 13627 request_cleanup(mp, FLUSH_BLOCKS); 13628 } 13629 FREE_LOCK(ump); 13630 if (softdep_excess_items(ump, D_NEWBLK) || 13631 softdep_excess_items(ump, D_ALLOCDIRECT) || 13632 softdep_excess_items(ump, D_ALLOCINDIR)) { 13633 error = vn_start_write(NULL, &mp, 13634 V_WAIT); 13635 if (error == 0) { 13636 req = true; 13637 VFS_SYNC(mp, MNT_WAIT); 13638 vn_finished_write(mp); 13639 } 13640 } 13641 if ((td->td_pflags & TDP_KTHREAD) != 0 || !req) 13642 break; 13643 } 13644 } 13645 vfs_unbusy(mp); 13646 } 13647 if ((mp = td->td_su) != NULL) { 13648 td->td_su = NULL; 13649 vfs_rel(mp); 13650 } 13651 } 13652 13653 /* 13654 * If memory utilization has gotten too high, deliberately slow things 13655 * down and speed up the I/O processing. 13656 */ 13657 static int 13658 request_cleanup(mp, resource) 13659 struct mount *mp; 13660 int resource; 13661 { 13662 struct thread *td = curthread; 13663 struct ufsmount *ump; 13664 13665 ump = VFSTOUFS(mp); 13666 LOCK_OWNED(ump); 13667 /* 13668 * We never hold up the filesystem syncer or buf daemon. 13669 */ 13670 if (td->td_pflags & (TDP_SOFTDEP|TDP_NORUNNINGBUF)) 13671 return (0); 13672 /* 13673 * First check to see if the work list has gotten backlogged. 13674 * If it has, co-opt this process to help clean up two entries. 13675 * Because this process may hold inodes locked, we cannot 13676 * handle any remove requests that might block on a locked 13677 * inode as that could lead to deadlock. We set TDP_SOFTDEP 13678 * to avoid recursively processing the worklist. 13679 */ 13680 if (ump->softdep_on_worklist > max_softdeps / 10) { 13681 td->td_pflags |= TDP_SOFTDEP; 13682 process_worklist_item(mp, 2, LK_NOWAIT); 13683 td->td_pflags &= ~TDP_SOFTDEP; 13684 stat_worklist_push += 2; 13685 return(1); 13686 } 13687 /* 13688 * Next, we attempt to speed up the syncer process. If that 13689 * is successful, then we allow the process to continue. 13690 */ 13691 if (softdep_speedup(ump) && 13692 resource != FLUSH_BLOCKS_WAIT && 13693 resource != FLUSH_INODES_WAIT) 13694 return(0); 13695 /* 13696 * If we are resource constrained on inode dependencies, try 13697 * flushing some dirty inodes. Otherwise, we are constrained 13698 * by file deletions, so try accelerating flushes of directories 13699 * with removal dependencies. We would like to do the cleanup 13700 * here, but we probably hold an inode locked at this point and 13701 * that might deadlock against one that we try to clean. So, 13702 * the best that we can do is request the syncer daemon to do 13703 * the cleanup for us. 13704 */ 13705 switch (resource) { 13706 13707 case FLUSH_INODES: 13708 case FLUSH_INODES_WAIT: 13709 ACQUIRE_GBLLOCK(&lk); 13710 stat_ino_limit_push += 1; 13711 req_clear_inodedeps += 1; 13712 FREE_GBLLOCK(&lk); 13713 stat_countp = &stat_ino_limit_hit; 13714 break; 13715 13716 case FLUSH_BLOCKS: 13717 case FLUSH_BLOCKS_WAIT: 13718 ACQUIRE_GBLLOCK(&lk); 13719 stat_blk_limit_push += 1; 13720 req_clear_remove += 1; 13721 FREE_GBLLOCK(&lk); 13722 stat_countp = &stat_blk_limit_hit; 13723 break; 13724 13725 default: 13726 panic("request_cleanup: unknown type"); 13727 } 13728 /* 13729 * Hopefully the syncer daemon will catch up and awaken us. 13730 * We wait at most tickdelay before proceeding in any case. 13731 */ 13732 ACQUIRE_GBLLOCK(&lk); 13733 FREE_LOCK(ump); 13734 proc_waiting += 1; 13735 if (callout_pending(&softdep_callout) == FALSE) 13736 callout_reset(&softdep_callout, tickdelay > 2 ? tickdelay : 2, 13737 pause_timer, 0); 13738 13739 if ((td->td_pflags & TDP_KTHREAD) == 0) 13740 msleep((caddr_t)&proc_waiting, &lk, PPAUSE, "softupdate", 0); 13741 proc_waiting -= 1; 13742 FREE_GBLLOCK(&lk); 13743 ACQUIRE_LOCK(ump); 13744 return (1); 13745 } 13746 13747 /* 13748 * Awaken processes pausing in request_cleanup and clear proc_waiting 13749 * to indicate that there is no longer a timer running. Pause_timer 13750 * will be called with the global softdep mutex (&lk) locked. 13751 */ 13752 static void 13753 pause_timer(arg) 13754 void *arg; 13755 { 13756 13757 GBLLOCK_OWNED(&lk); 13758 /* 13759 * The callout_ API has acquired mtx and will hold it around this 13760 * function call. 13761 */ 13762 *stat_countp += proc_waiting; 13763 wakeup(&proc_waiting); 13764 } 13765 13766 /* 13767 * If requested, try removing inode or removal dependencies. 13768 */ 13769 static void 13770 check_clear_deps(mp) 13771 struct mount *mp; 13772 { 13773 struct ufsmount *ump; 13774 bool suj_susp; 13775 13776 /* 13777 * Tell the lower layers that any TRIM or WRITE transactions that have 13778 * been delayed for performance reasons should proceed to help alleviate 13779 * the shortage faster. The race between checking req_* and the softdep 13780 * mutex (lk) is fine since this is an advisory operation that at most 13781 * causes deferred work to be done sooner. 13782 */ 13783 ump = VFSTOUFS(mp); 13784 suj_susp = MOUNTEDSUJ(mp) && ump->softdep_jblocks->jb_suspended; 13785 if (req_clear_remove || req_clear_inodedeps || suj_susp) { 13786 FREE_LOCK(ump); 13787 softdep_send_speedup(ump, 0, BIO_SPEEDUP_TRIM | BIO_SPEEDUP_WRITE); 13788 ACQUIRE_LOCK(ump); 13789 } 13790 13791 /* 13792 * If we are suspended, it may be because of our using 13793 * too many inodedeps, so help clear them out. 13794 */ 13795 if (suj_susp) 13796 clear_inodedeps(mp); 13797 13798 /* 13799 * General requests for cleanup of backed up dependencies 13800 */ 13801 ACQUIRE_GBLLOCK(&lk); 13802 if (req_clear_inodedeps) { 13803 req_clear_inodedeps -= 1; 13804 FREE_GBLLOCK(&lk); 13805 clear_inodedeps(mp); 13806 ACQUIRE_GBLLOCK(&lk); 13807 wakeup(&proc_waiting); 13808 } 13809 if (req_clear_remove) { 13810 req_clear_remove -= 1; 13811 FREE_GBLLOCK(&lk); 13812 clear_remove(mp); 13813 ACQUIRE_GBLLOCK(&lk); 13814 wakeup(&proc_waiting); 13815 } 13816 FREE_GBLLOCK(&lk); 13817 } 13818 13819 /* 13820 * Flush out a directory with at least one removal dependency in an effort to 13821 * reduce the number of dirrem, freefile, and freeblks dependency structures. 13822 */ 13823 static void 13824 clear_remove(mp) 13825 struct mount *mp; 13826 { 13827 struct pagedep_hashhead *pagedephd; 13828 struct pagedep *pagedep; 13829 struct ufsmount *ump; 13830 struct vnode *vp; 13831 struct bufobj *bo; 13832 int error, cnt; 13833 ino_t ino; 13834 13835 ump = VFSTOUFS(mp); 13836 LOCK_OWNED(ump); 13837 13838 for (cnt = 0; cnt <= ump->pagedep_hash_size; cnt++) { 13839 pagedephd = &ump->pagedep_hashtbl[ump->pagedep_nextclean++]; 13840 if (ump->pagedep_nextclean > ump->pagedep_hash_size) 13841 ump->pagedep_nextclean = 0; 13842 LIST_FOREACH(pagedep, pagedephd, pd_hash) { 13843 if (LIST_EMPTY(&pagedep->pd_dirremhd)) 13844 continue; 13845 ino = pagedep->pd_ino; 13846 if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) 13847 continue; 13848 FREE_LOCK(ump); 13849 13850 /* 13851 * Let unmount clear deps 13852 */ 13853 error = vfs_busy(mp, MBF_NOWAIT); 13854 if (error != 0) 13855 goto finish_write; 13856 error = ffs_vgetf(mp, ino, LK_EXCLUSIVE, &vp, 13857 FFSV_FORCEINSMQ); 13858 vfs_unbusy(mp); 13859 if (error != 0) { 13860 softdep_error("clear_remove: vget", error); 13861 goto finish_write; 13862 } 13863 MPASS(VTOI(vp)->i_mode != 0); 13864 if ((error = ffs_syncvnode(vp, MNT_NOWAIT, 0))) 13865 softdep_error("clear_remove: fsync", error); 13866 bo = &vp->v_bufobj; 13867 BO_LOCK(bo); 13868 drain_output(vp); 13869 BO_UNLOCK(bo); 13870 vput(vp); 13871 finish_write: 13872 vn_finished_write(mp); 13873 ACQUIRE_LOCK(ump); 13874 return; 13875 } 13876 } 13877 } 13878 13879 /* 13880 * Clear out a block of dirty inodes in an effort to reduce 13881 * the number of inodedep dependency structures. 13882 */ 13883 static void 13884 clear_inodedeps(mp) 13885 struct mount *mp; 13886 { 13887 struct inodedep_hashhead *inodedephd; 13888 struct inodedep *inodedep; 13889 struct ufsmount *ump; 13890 struct vnode *vp; 13891 struct fs *fs; 13892 int error, cnt; 13893 ino_t firstino, lastino, ino; 13894 13895 ump = VFSTOUFS(mp); 13896 fs = ump->um_fs; 13897 LOCK_OWNED(ump); 13898 /* 13899 * Pick a random inode dependency to be cleared. 13900 * We will then gather up all the inodes in its block 13901 * that have dependencies and flush them out. 13902 */ 13903 for (cnt = 0; cnt <= ump->inodedep_hash_size; cnt++) { 13904 inodedephd = &ump->inodedep_hashtbl[ump->inodedep_nextclean++]; 13905 if (ump->inodedep_nextclean > ump->inodedep_hash_size) 13906 ump->inodedep_nextclean = 0; 13907 if ((inodedep = LIST_FIRST(inodedephd)) != NULL) 13908 break; 13909 } 13910 if (inodedep == NULL) 13911 return; 13912 /* 13913 * Find the last inode in the block with dependencies. 13914 */ 13915 firstino = rounddown2(inodedep->id_ino, INOPB(fs)); 13916 for (lastino = firstino + INOPB(fs) - 1; lastino > firstino; lastino--) 13917 if (inodedep_lookup(mp, lastino, 0, &inodedep) != 0) 13918 break; 13919 /* 13920 * Asynchronously push all but the last inode with dependencies. 13921 * Synchronously push the last inode with dependencies to ensure 13922 * that the inode block gets written to free up the inodedeps. 13923 */ 13924 for (ino = firstino; ino <= lastino; ino++) { 13925 if (inodedep_lookup(mp, ino, 0, &inodedep) == 0) 13926 continue; 13927 if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) 13928 continue; 13929 FREE_LOCK(ump); 13930 error = vfs_busy(mp, MBF_NOWAIT); /* Let unmount clear deps */ 13931 if (error != 0) { 13932 vn_finished_write(mp); 13933 ACQUIRE_LOCK(ump); 13934 return; 13935 } 13936 if ((error = ffs_vgetf(mp, ino, LK_EXCLUSIVE, &vp, 13937 FFSV_FORCEINSMQ)) != 0) { 13938 softdep_error("clear_inodedeps: vget", error); 13939 vfs_unbusy(mp); 13940 vn_finished_write(mp); 13941 ACQUIRE_LOCK(ump); 13942 return; 13943 } 13944 vfs_unbusy(mp); 13945 if (VTOI(vp)->i_mode == 0) { 13946 vgone(vp); 13947 } else if (ino == lastino) { 13948 if ((error = ffs_syncvnode(vp, MNT_WAIT, 0))) 13949 softdep_error("clear_inodedeps: fsync1", error); 13950 } else { 13951 if ((error = ffs_syncvnode(vp, MNT_NOWAIT, 0))) 13952 softdep_error("clear_inodedeps: fsync2", error); 13953 BO_LOCK(&vp->v_bufobj); 13954 drain_output(vp); 13955 BO_UNLOCK(&vp->v_bufobj); 13956 } 13957 vput(vp); 13958 vn_finished_write(mp); 13959 ACQUIRE_LOCK(ump); 13960 } 13961 } 13962 13963 void 13964 softdep_buf_append(bp, wkhd) 13965 struct buf *bp; 13966 struct workhead *wkhd; 13967 { 13968 struct worklist *wk; 13969 struct ufsmount *ump; 13970 13971 if ((wk = LIST_FIRST(wkhd)) == NULL) 13972 return; 13973 KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0, 13974 ("softdep_buf_append called on non-softdep filesystem")); 13975 ump = VFSTOUFS(wk->wk_mp); 13976 ACQUIRE_LOCK(ump); 13977 while ((wk = LIST_FIRST(wkhd)) != NULL) { 13978 WORKLIST_REMOVE(wk); 13979 WORKLIST_INSERT(&bp->b_dep, wk); 13980 } 13981 FREE_LOCK(ump); 13982 13983 } 13984 13985 void 13986 softdep_inode_append(ip, cred, wkhd) 13987 struct inode *ip; 13988 struct ucred *cred; 13989 struct workhead *wkhd; 13990 { 13991 struct buf *bp; 13992 struct fs *fs; 13993 struct ufsmount *ump; 13994 int error; 13995 13996 ump = ITOUMP(ip); 13997 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 13998 ("softdep_inode_append called on non-softdep filesystem")); 13999 fs = ump->um_fs; 14000 error = bread(ump->um_devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)), 14001 (int)fs->fs_bsize, cred, &bp); 14002 if (error) { 14003 bqrelse(bp); 14004 softdep_freework(wkhd); 14005 return; 14006 } 14007 softdep_buf_append(bp, wkhd); 14008 bqrelse(bp); 14009 } 14010 14011 void 14012 softdep_freework(wkhd) 14013 struct workhead *wkhd; 14014 { 14015 struct worklist *wk; 14016 struct ufsmount *ump; 14017 14018 if ((wk = LIST_FIRST(wkhd)) == NULL) 14019 return; 14020 KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0, 14021 ("softdep_freework called on non-softdep filesystem")); 14022 ump = VFSTOUFS(wk->wk_mp); 14023 ACQUIRE_LOCK(ump); 14024 handle_jwork(wkhd); 14025 FREE_LOCK(ump); 14026 } 14027 14028 static struct ufsmount * 14029 softdep_bp_to_mp(bp) 14030 struct buf *bp; 14031 { 14032 struct mount *mp; 14033 struct vnode *vp; 14034 14035 if (LIST_EMPTY(&bp->b_dep)) 14036 return (NULL); 14037 vp = bp->b_vp; 14038 KASSERT(vp != NULL, 14039 ("%s, buffer with dependencies lacks vnode", __func__)); 14040 14041 /* 14042 * The ump mount point is stable after we get a correct 14043 * pointer, since bp is locked and this prevents unmount from 14044 * proceeding. But to get to it, we cannot dereference bp->b_dep 14045 * head wk_mp, because we do not yet own SU ump lock and 14046 * workitem might be freed while dereferenced. 14047 */ 14048 retry: 14049 switch (vp->v_type) { 14050 case VCHR: 14051 VI_LOCK(vp); 14052 mp = vp->v_type == VCHR ? vp->v_rdev->si_mountpt : NULL; 14053 VI_UNLOCK(vp); 14054 if (mp == NULL) 14055 goto retry; 14056 break; 14057 case VREG: 14058 case VDIR: 14059 case VLNK: 14060 case VFIFO: 14061 case VSOCK: 14062 mp = vp->v_mount; 14063 break; 14064 case VBLK: 14065 vn_printf(vp, "softdep_bp_to_mp: unexpected block device\n"); 14066 /* FALLTHROUGH */ 14067 case VNON: 14068 case VBAD: 14069 case VMARKER: 14070 mp = NULL; 14071 break; 14072 default: 14073 vn_printf(vp, "unknown vnode type"); 14074 mp = NULL; 14075 break; 14076 } 14077 return (VFSTOUFS(mp)); 14078 } 14079 14080 /* 14081 * Function to determine if the buffer has outstanding dependencies 14082 * that will cause a roll-back if the buffer is written. If wantcount 14083 * is set, return number of dependencies, otherwise just yes or no. 14084 */ 14085 static int 14086 softdep_count_dependencies(bp, wantcount) 14087 struct buf *bp; 14088 int wantcount; 14089 { 14090 struct worklist *wk; 14091 struct ufsmount *ump; 14092 struct bmsafemap *bmsafemap; 14093 struct freework *freework; 14094 struct inodedep *inodedep; 14095 struct indirdep *indirdep; 14096 struct freeblks *freeblks; 14097 struct allocindir *aip; 14098 struct pagedep *pagedep; 14099 struct dirrem *dirrem; 14100 struct newblk *newblk; 14101 struct mkdir *mkdir; 14102 struct diradd *dap; 14103 int i, retval; 14104 14105 ump = softdep_bp_to_mp(bp); 14106 if (ump == NULL) 14107 return (0); 14108 retval = 0; 14109 ACQUIRE_LOCK(ump); 14110 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 14111 switch (wk->wk_type) { 14112 14113 case D_INODEDEP: 14114 inodedep = WK_INODEDEP(wk); 14115 if ((inodedep->id_state & DEPCOMPLETE) == 0) { 14116 /* bitmap allocation dependency */ 14117 retval += 1; 14118 if (!wantcount) 14119 goto out; 14120 } 14121 if (TAILQ_FIRST(&inodedep->id_inoupdt)) { 14122 /* direct block pointer dependency */ 14123 retval += 1; 14124 if (!wantcount) 14125 goto out; 14126 } 14127 if (TAILQ_FIRST(&inodedep->id_extupdt)) { 14128 /* direct block pointer dependency */ 14129 retval += 1; 14130 if (!wantcount) 14131 goto out; 14132 } 14133 if (TAILQ_FIRST(&inodedep->id_inoreflst)) { 14134 /* Add reference dependency. */ 14135 retval += 1; 14136 if (!wantcount) 14137 goto out; 14138 } 14139 continue; 14140 14141 case D_INDIRDEP: 14142 indirdep = WK_INDIRDEP(wk); 14143 14144 TAILQ_FOREACH(freework, &indirdep->ir_trunc, fw_next) { 14145 /* indirect truncation dependency */ 14146 retval += 1; 14147 if (!wantcount) 14148 goto out; 14149 } 14150 14151 LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) { 14152 /* indirect block pointer dependency */ 14153 retval += 1; 14154 if (!wantcount) 14155 goto out; 14156 } 14157 continue; 14158 14159 case D_PAGEDEP: 14160 pagedep = WK_PAGEDEP(wk); 14161 LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next) { 14162 if (LIST_FIRST(&dirrem->dm_jremrefhd)) { 14163 /* Journal remove ref dependency. */ 14164 retval += 1; 14165 if (!wantcount) 14166 goto out; 14167 } 14168 } 14169 for (i = 0; i < DAHASHSZ; i++) { 14170 14171 LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) { 14172 /* directory entry dependency */ 14173 retval += 1; 14174 if (!wantcount) 14175 goto out; 14176 } 14177 } 14178 continue; 14179 14180 case D_BMSAFEMAP: 14181 bmsafemap = WK_BMSAFEMAP(wk); 14182 if (LIST_FIRST(&bmsafemap->sm_jaddrefhd)) { 14183 /* Add reference dependency. */ 14184 retval += 1; 14185 if (!wantcount) 14186 goto out; 14187 } 14188 if (LIST_FIRST(&bmsafemap->sm_jnewblkhd)) { 14189 /* Allocate block dependency. */ 14190 retval += 1; 14191 if (!wantcount) 14192 goto out; 14193 } 14194 continue; 14195 14196 case D_FREEBLKS: 14197 freeblks = WK_FREEBLKS(wk); 14198 if (LIST_FIRST(&freeblks->fb_jblkdephd)) { 14199 /* Freeblk journal dependency. */ 14200 retval += 1; 14201 if (!wantcount) 14202 goto out; 14203 } 14204 continue; 14205 14206 case D_ALLOCDIRECT: 14207 case D_ALLOCINDIR: 14208 newblk = WK_NEWBLK(wk); 14209 if (newblk->nb_jnewblk) { 14210 /* Journal allocate dependency. */ 14211 retval += 1; 14212 if (!wantcount) 14213 goto out; 14214 } 14215 continue; 14216 14217 case D_MKDIR: 14218 mkdir = WK_MKDIR(wk); 14219 if (mkdir->md_jaddref) { 14220 /* Journal reference dependency. */ 14221 retval += 1; 14222 if (!wantcount) 14223 goto out; 14224 } 14225 continue; 14226 14227 case D_FREEWORK: 14228 case D_FREEDEP: 14229 case D_JSEGDEP: 14230 case D_JSEG: 14231 case D_SBDEP: 14232 /* never a dependency on these blocks */ 14233 continue; 14234 14235 default: 14236 panic("softdep_count_dependencies: Unexpected type %s", 14237 TYPENAME(wk->wk_type)); 14238 /* NOTREACHED */ 14239 } 14240 } 14241 out: 14242 FREE_LOCK(ump); 14243 return (retval); 14244 } 14245 14246 /* 14247 * Acquire exclusive access to a buffer. 14248 * Must be called with a locked mtx parameter. 14249 * Return acquired buffer or NULL on failure. 14250 */ 14251 static struct buf * 14252 getdirtybuf(bp, lock, waitfor) 14253 struct buf *bp; 14254 struct rwlock *lock; 14255 int waitfor; 14256 { 14257 int error; 14258 14259 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0) { 14260 if (waitfor != MNT_WAIT) 14261 return (NULL); 14262 error = BUF_LOCK(bp, 14263 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, lock); 14264 /* 14265 * Even if we successfully acquire bp here, we have dropped 14266 * lock, which may violates our guarantee. 14267 */ 14268 if (error == 0) 14269 BUF_UNLOCK(bp); 14270 else if (error != ENOLCK) 14271 panic("getdirtybuf: inconsistent lock: %d", error); 14272 rw_wlock(lock); 14273 return (NULL); 14274 } 14275 if ((bp->b_vflags & BV_BKGRDINPROG) != 0) { 14276 if (lock != BO_LOCKPTR(bp->b_bufobj) && waitfor == MNT_WAIT) { 14277 rw_wunlock(lock); 14278 BO_LOCK(bp->b_bufobj); 14279 BUF_UNLOCK(bp); 14280 if ((bp->b_vflags & BV_BKGRDINPROG) != 0) { 14281 bp->b_vflags |= BV_BKGRDWAIT; 14282 msleep(&bp->b_xflags, BO_LOCKPTR(bp->b_bufobj), 14283 PRIBIO | PDROP, "getbuf", 0); 14284 } else 14285 BO_UNLOCK(bp->b_bufobj); 14286 rw_wlock(lock); 14287 return (NULL); 14288 } 14289 BUF_UNLOCK(bp); 14290 if (waitfor != MNT_WAIT) 14291 return (NULL); 14292 #ifdef DEBUG_VFS_LOCKS 14293 if (bp->b_vp->v_type != VCHR) 14294 ASSERT_BO_WLOCKED(bp->b_bufobj); 14295 #endif 14296 bp->b_vflags |= BV_BKGRDWAIT; 14297 rw_sleep(&bp->b_xflags, lock, PRIBIO, "getbuf", 0); 14298 return (NULL); 14299 } 14300 if ((bp->b_flags & B_DELWRI) == 0) { 14301 BUF_UNLOCK(bp); 14302 return (NULL); 14303 } 14304 bremfree(bp); 14305 return (bp); 14306 } 14307 14308 14309 /* 14310 * Check if it is safe to suspend the file system now. On entry, 14311 * the vnode interlock for devvp should be held. Return 0 with 14312 * the mount interlock held if the file system can be suspended now, 14313 * otherwise return EAGAIN with the mount interlock held. 14314 */ 14315 int 14316 softdep_check_suspend(struct mount *mp, 14317 struct vnode *devvp, 14318 int softdep_depcnt, 14319 int softdep_accdepcnt, 14320 int secondary_writes, 14321 int secondary_accwrites) 14322 { 14323 struct bufobj *bo; 14324 struct ufsmount *ump; 14325 struct inodedep *inodedep; 14326 int error, unlinked; 14327 14328 bo = &devvp->v_bufobj; 14329 ASSERT_BO_WLOCKED(bo); 14330 14331 /* 14332 * If we are not running with soft updates, then we need only 14333 * deal with secondary writes as we try to suspend. 14334 */ 14335 if (MOUNTEDSOFTDEP(mp) == 0) { 14336 MNT_ILOCK(mp); 14337 while (mp->mnt_secondary_writes != 0) { 14338 BO_UNLOCK(bo); 14339 msleep(&mp->mnt_secondary_writes, MNT_MTX(mp), 14340 (PUSER - 1) | PDROP, "secwr", 0); 14341 BO_LOCK(bo); 14342 MNT_ILOCK(mp); 14343 } 14344 14345 /* 14346 * Reasons for needing more work before suspend: 14347 * - Dirty buffers on devvp. 14348 * - Secondary writes occurred after start of vnode sync loop 14349 */ 14350 error = 0; 14351 if (bo->bo_numoutput > 0 || 14352 bo->bo_dirty.bv_cnt > 0 || 14353 secondary_writes != 0 || 14354 mp->mnt_secondary_writes != 0 || 14355 secondary_accwrites != mp->mnt_secondary_accwrites) 14356 error = EAGAIN; 14357 BO_UNLOCK(bo); 14358 return (error); 14359 } 14360 14361 /* 14362 * If we are running with soft updates, then we need to coordinate 14363 * with them as we try to suspend. 14364 */ 14365 ump = VFSTOUFS(mp); 14366 for (;;) { 14367 if (!TRY_ACQUIRE_LOCK(ump)) { 14368 BO_UNLOCK(bo); 14369 ACQUIRE_LOCK(ump); 14370 FREE_LOCK(ump); 14371 BO_LOCK(bo); 14372 continue; 14373 } 14374 MNT_ILOCK(mp); 14375 if (mp->mnt_secondary_writes != 0) { 14376 FREE_LOCK(ump); 14377 BO_UNLOCK(bo); 14378 msleep(&mp->mnt_secondary_writes, 14379 MNT_MTX(mp), 14380 (PUSER - 1) | PDROP, "secwr", 0); 14381 BO_LOCK(bo); 14382 continue; 14383 } 14384 break; 14385 } 14386 14387 unlinked = 0; 14388 if (MOUNTEDSUJ(mp)) { 14389 for (inodedep = TAILQ_FIRST(&ump->softdep_unlinked); 14390 inodedep != NULL; 14391 inodedep = TAILQ_NEXT(inodedep, id_unlinked)) { 14392 if ((inodedep->id_state & (UNLINKED | UNLINKLINKS | 14393 UNLINKONLIST)) != (UNLINKED | UNLINKLINKS | 14394 UNLINKONLIST) || 14395 !check_inodedep_free(inodedep)) 14396 continue; 14397 unlinked++; 14398 } 14399 } 14400 14401 /* 14402 * Reasons for needing more work before suspend: 14403 * - Dirty buffers on devvp. 14404 * - Softdep activity occurred after start of vnode sync loop 14405 * - Secondary writes occurred after start of vnode sync loop 14406 */ 14407 error = 0; 14408 if (bo->bo_numoutput > 0 || 14409 bo->bo_dirty.bv_cnt > 0 || 14410 softdep_depcnt != unlinked || 14411 ump->softdep_deps != unlinked || 14412 softdep_accdepcnt != ump->softdep_accdeps || 14413 secondary_writes != 0 || 14414 mp->mnt_secondary_writes != 0 || 14415 secondary_accwrites != mp->mnt_secondary_accwrites) 14416 error = EAGAIN; 14417 FREE_LOCK(ump); 14418 BO_UNLOCK(bo); 14419 return (error); 14420 } 14421 14422 14423 /* 14424 * Get the number of dependency structures for the file system, both 14425 * the current number and the total number allocated. These will 14426 * later be used to detect that softdep processing has occurred. 14427 */ 14428 void 14429 softdep_get_depcounts(struct mount *mp, 14430 int *softdep_depsp, 14431 int *softdep_accdepsp) 14432 { 14433 struct ufsmount *ump; 14434 14435 if (MOUNTEDSOFTDEP(mp) == 0) { 14436 *softdep_depsp = 0; 14437 *softdep_accdepsp = 0; 14438 return; 14439 } 14440 ump = VFSTOUFS(mp); 14441 ACQUIRE_LOCK(ump); 14442 *softdep_depsp = ump->softdep_deps; 14443 *softdep_accdepsp = ump->softdep_accdeps; 14444 FREE_LOCK(ump); 14445 } 14446 14447 /* 14448 * Wait for pending output on a vnode to complete. 14449 */ 14450 static void 14451 drain_output(vp) 14452 struct vnode *vp; 14453 { 14454 14455 ASSERT_VOP_LOCKED(vp, "drain_output"); 14456 (void)bufobj_wwait(&vp->v_bufobj, 0, 0); 14457 } 14458 14459 /* 14460 * Called whenever a buffer that is being invalidated or reallocated 14461 * contains dependencies. This should only happen if an I/O error has 14462 * occurred. The routine is called with the buffer locked. 14463 */ 14464 static void 14465 softdep_deallocate_dependencies(bp) 14466 struct buf *bp; 14467 { 14468 14469 if ((bp->b_ioflags & BIO_ERROR) == 0) 14470 panic("softdep_deallocate_dependencies: dangling deps"); 14471 if (bp->b_vp != NULL && bp->b_vp->v_mount != NULL) 14472 softdep_error(bp->b_vp->v_mount->mnt_stat.f_mntonname, bp->b_error); 14473 else 14474 printf("softdep_deallocate_dependencies: " 14475 "got error %d while accessing filesystem\n", bp->b_error); 14476 if (bp->b_error != ENXIO) 14477 panic("softdep_deallocate_dependencies: unrecovered I/O error"); 14478 } 14479 14480 /* 14481 * Function to handle asynchronous write errors in the filesystem. 14482 */ 14483 static void 14484 softdep_error(func, error) 14485 char *func; 14486 int error; 14487 { 14488 14489 /* XXX should do something better! */ 14490 printf("%s: got error %d while accessing filesystem\n", func, error); 14491 } 14492 14493 #ifdef DDB 14494 14495 /* exported to ffs_vfsops.c */ 14496 extern void db_print_ffs(struct ufsmount *ump); 14497 void 14498 db_print_ffs(struct ufsmount *ump) 14499 { 14500 db_printf("mp %p (%s) devvp %p\n", ump->um_mountp, 14501 ump->um_mountp->mnt_stat.f_mntonname, ump->um_devvp); 14502 db_printf(" fs %p su_wl %d su_deps %d su_req %d\n", 14503 ump->um_fs, ump->softdep_on_worklist, 14504 ump->softdep_deps, ump->softdep_req); 14505 } 14506 14507 static void 14508 worklist_print(struct worklist *wk, int verbose) 14509 { 14510 14511 if (!verbose) { 14512 db_printf("%s: %p state 0x%b\n", TYPENAME(wk->wk_type), wk, 14513 (u_int)wk->wk_state, PRINT_SOFTDEP_FLAGS); 14514 return; 14515 } 14516 db_printf("worklist: %p type %s state 0x%b next %p\n ", wk, 14517 TYPENAME(wk->wk_type), (u_int)wk->wk_state, PRINT_SOFTDEP_FLAGS, 14518 LIST_NEXT(wk, wk_list)); 14519 db_print_ffs(VFSTOUFS(wk->wk_mp)); 14520 } 14521 14522 static void 14523 inodedep_print(struct inodedep *inodedep, int verbose) 14524 { 14525 14526 worklist_print(&inodedep->id_list, 0); 14527 db_printf(" fs %p ino %jd inoblk %jd delta %jd nlink %jd\n", 14528 inodedep->id_fs, 14529 (intmax_t)inodedep->id_ino, 14530 (intmax_t)fsbtodb(inodedep->id_fs, 14531 ino_to_fsba(inodedep->id_fs, inodedep->id_ino)), 14532 (intmax_t)inodedep->id_nlinkdelta, 14533 (intmax_t)inodedep->id_savednlink); 14534 14535 if (verbose == 0) 14536 return; 14537 14538 db_printf(" bmsafemap %p, mkdiradd %p, inoreflst %p\n", 14539 inodedep->id_bmsafemap, 14540 inodedep->id_mkdiradd, 14541 TAILQ_FIRST(&inodedep->id_inoreflst)); 14542 db_printf(" dirremhd %p, pendinghd %p, bufwait %p\n", 14543 LIST_FIRST(&inodedep->id_dirremhd), 14544 LIST_FIRST(&inodedep->id_pendinghd), 14545 LIST_FIRST(&inodedep->id_bufwait)); 14546 db_printf(" inowait %p, inoupdt %p, newinoupdt %p\n", 14547 LIST_FIRST(&inodedep->id_inowait), 14548 TAILQ_FIRST(&inodedep->id_inoupdt), 14549 TAILQ_FIRST(&inodedep->id_newinoupdt)); 14550 db_printf(" extupdt %p, newextupdt %p, freeblklst %p\n", 14551 TAILQ_FIRST(&inodedep->id_extupdt), 14552 TAILQ_FIRST(&inodedep->id_newextupdt), 14553 TAILQ_FIRST(&inodedep->id_freeblklst)); 14554 db_printf(" saveino %p, savedsize %jd, savedextsize %jd\n", 14555 inodedep->id_savedino1, 14556 (intmax_t)inodedep->id_savedsize, 14557 (intmax_t)inodedep->id_savedextsize); 14558 } 14559 14560 static void 14561 newblk_print(struct newblk *nbp) 14562 { 14563 14564 worklist_print(&nbp->nb_list, 0); 14565 db_printf(" newblkno %jd\n", (intmax_t)nbp->nb_newblkno); 14566 db_printf(" jnewblk %p, bmsafemap %p, freefrag %p\n", 14567 &nbp->nb_jnewblk, 14568 &nbp->nb_bmsafemap, 14569 &nbp->nb_freefrag); 14570 db_printf(" indirdeps %p, newdirblk %p, jwork %p\n", 14571 LIST_FIRST(&nbp->nb_indirdeps), 14572 LIST_FIRST(&nbp->nb_newdirblk), 14573 LIST_FIRST(&nbp->nb_jwork)); 14574 } 14575 14576 static void 14577 allocdirect_print(struct allocdirect *adp) 14578 { 14579 14580 newblk_print(&adp->ad_block); 14581 db_printf(" oldblkno %jd, oldsize %ld, newsize %ld\n", 14582 adp->ad_oldblkno, adp->ad_oldsize, adp->ad_newsize); 14583 db_printf(" offset %d, inodedep %p\n", 14584 adp->ad_offset, adp->ad_inodedep); 14585 } 14586 14587 static void 14588 allocindir_print(struct allocindir *aip) 14589 { 14590 14591 newblk_print(&aip->ai_block); 14592 db_printf(" oldblkno %jd, lbn %jd\n", 14593 (intmax_t)aip->ai_oldblkno, (intmax_t)aip->ai_lbn); 14594 db_printf(" offset %d, indirdep %p\n", 14595 aip->ai_offset, aip->ai_indirdep); 14596 } 14597 14598 static void 14599 mkdir_print(struct mkdir *mkdir) 14600 { 14601 14602 worklist_print(&mkdir->md_list, 0); 14603 db_printf(" diradd %p, jaddref %p, buf %p\n", 14604 mkdir->md_diradd, mkdir->md_jaddref, mkdir->md_buf); 14605 } 14606 14607 DB_SHOW_COMMAND(sd_inodedep, db_show_sd_inodedep) 14608 { 14609 14610 if (have_addr == 0) { 14611 db_printf("inodedep address required\n"); 14612 return; 14613 } 14614 inodedep_print((struct inodedep*)addr, 1); 14615 } 14616 14617 DB_SHOW_COMMAND(sd_allinodedeps, db_show_sd_allinodedeps) 14618 { 14619 struct inodedep_hashhead *inodedephd; 14620 struct inodedep *inodedep; 14621 struct ufsmount *ump; 14622 int cnt; 14623 14624 if (have_addr == 0) { 14625 db_printf("ufsmount address required\n"); 14626 return; 14627 } 14628 ump = (struct ufsmount *)addr; 14629 for (cnt = 0; cnt < ump->inodedep_hash_size; cnt++) { 14630 inodedephd = &ump->inodedep_hashtbl[cnt]; 14631 LIST_FOREACH(inodedep, inodedephd, id_hash) { 14632 inodedep_print(inodedep, 0); 14633 } 14634 } 14635 } 14636 14637 DB_SHOW_COMMAND(sd_worklist, db_show_sd_worklist) 14638 { 14639 14640 if (have_addr == 0) { 14641 db_printf("worklist address required\n"); 14642 return; 14643 } 14644 worklist_print((struct worklist *)addr, 1); 14645 } 14646 14647 DB_SHOW_COMMAND(sd_workhead, db_show_sd_workhead) 14648 { 14649 struct worklist *wk; 14650 struct workhead *wkhd; 14651 14652 if (have_addr == 0) { 14653 db_printf("worklist address required " 14654 "(for example value in bp->b_dep)\n"); 14655 return; 14656 } 14657 /* 14658 * We often do not have the address of the worklist head but 14659 * instead a pointer to its first entry (e.g., we have the 14660 * contents of bp->b_dep rather than &bp->b_dep). But the back 14661 * pointer of bp->b_dep will point at the head of the list, so 14662 * we cheat and use that instead. If we are in the middle of 14663 * a list we will still get the same result, so nothing 14664 * unexpected will result. 14665 */ 14666 wk = (struct worklist *)addr; 14667 if (wk == NULL) 14668 return; 14669 wkhd = (struct workhead *)wk->wk_list.le_prev; 14670 LIST_FOREACH(wk, wkhd, wk_list) { 14671 switch(wk->wk_type) { 14672 case D_INODEDEP: 14673 inodedep_print(WK_INODEDEP(wk), 0); 14674 continue; 14675 case D_ALLOCDIRECT: 14676 allocdirect_print(WK_ALLOCDIRECT(wk)); 14677 continue; 14678 case D_ALLOCINDIR: 14679 allocindir_print(WK_ALLOCINDIR(wk)); 14680 continue; 14681 case D_MKDIR: 14682 mkdir_print(WK_MKDIR(wk)); 14683 continue; 14684 default: 14685 worklist_print(wk, 0); 14686 continue; 14687 } 14688 } 14689 } 14690 14691 DB_SHOW_COMMAND(sd_mkdir, db_show_sd_mkdir) 14692 { 14693 if (have_addr == 0) { 14694 db_printf("mkdir address required\n"); 14695 return; 14696 } 14697 mkdir_print((struct mkdir *)addr); 14698 } 14699 14700 DB_SHOW_COMMAND(sd_mkdir_list, db_show_sd_mkdir_list) 14701 { 14702 struct mkdirlist *mkdirlisthd; 14703 struct mkdir *mkdir; 14704 14705 if (have_addr == 0) { 14706 db_printf("mkdir listhead address required\n"); 14707 return; 14708 } 14709 mkdirlisthd = (struct mkdirlist *)addr; 14710 LIST_FOREACH(mkdir, mkdirlisthd, md_mkdirs) { 14711 mkdir_print(mkdir); 14712 if (mkdir->md_diradd != NULL) { 14713 db_printf(" "); 14714 worklist_print(&mkdir->md_diradd->da_list, 0); 14715 } 14716 if (mkdir->md_jaddref != NULL) { 14717 db_printf(" "); 14718 worklist_print(&mkdir->md_jaddref->ja_list, 0); 14719 } 14720 } 14721 } 14722 14723 DB_SHOW_COMMAND(sd_allocdirect, db_show_sd_allocdirect) 14724 { 14725 if (have_addr == 0) { 14726 db_printf("allocdirect address required\n"); 14727 return; 14728 } 14729 allocdirect_print((struct allocdirect *)addr); 14730 } 14731 14732 DB_SHOW_COMMAND(sd_allocindir, db_show_sd_allocindir) 14733 { 14734 if (have_addr == 0) { 14735 db_printf("allocindir address required\n"); 14736 return; 14737 } 14738 allocindir_print((struct allocindir *)addr); 14739 } 14740 14741 #endif /* DDB */ 14742 14743 #endif /* SOFTUPDATES */ 14744