xref: /freebsd/sys/ufs/ffs/ffs_softdep.c (revision e40139ff33b48b56a24c808b166b04b8ee6f5b21)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright 1998, 2000 Marshall Kirk McKusick.
5  * Copyright 2009, 2010 Jeffrey W. Roberson <jeff@FreeBSD.org>
6  * All rights reserved.
7  *
8  * The soft updates code is derived from the appendix of a University
9  * of Michigan technical report (Gregory R. Ganger and Yale N. Patt,
10  * "Soft Updates: A Solution to the Metadata Update Problem in File
11  * Systems", CSE-TR-254-95, August 1995).
12  *
13  * Further information about soft updates can be obtained from:
14  *
15  *	Marshall Kirk McKusick		http://www.mckusick.com/softdep/
16  *	1614 Oxford Street		mckusick@mckusick.com
17  *	Berkeley, CA 94709-1608		+1-510-843-9542
18  *	USA
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  * 1. Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  * 2. Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in the
28  *    documentation and/or other materials provided with the distribution.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR
31  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
32  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
33  * IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT,
34  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
35  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
36  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
37  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
38  * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
39  * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40  *
41  *	from: @(#)ffs_softdep.c	9.59 (McKusick) 6/21/00
42  */
43 
44 #include <sys/cdefs.h>
45 __FBSDID("$FreeBSD$");
46 
47 #include "opt_ffs.h"
48 #include "opt_quota.h"
49 #include "opt_ddb.h"
50 
51 #include <sys/param.h>
52 #include <sys/kernel.h>
53 #include <sys/systm.h>
54 #include <sys/bio.h>
55 #include <sys/buf.h>
56 #include <sys/kdb.h>
57 #include <sys/kthread.h>
58 #include <sys/ktr.h>
59 #include <sys/limits.h>
60 #include <sys/lock.h>
61 #include <sys/malloc.h>
62 #include <sys/mount.h>
63 #include <sys/mutex.h>
64 #include <sys/namei.h>
65 #include <sys/priv.h>
66 #include <sys/proc.h>
67 #include <sys/racct.h>
68 #include <sys/rwlock.h>
69 #include <sys/stat.h>
70 #include <sys/sysctl.h>
71 #include <sys/syslog.h>
72 #include <sys/vnode.h>
73 #include <sys/conf.h>
74 
75 #include <ufs/ufs/dir.h>
76 #include <ufs/ufs/extattr.h>
77 #include <ufs/ufs/quota.h>
78 #include <ufs/ufs/inode.h>
79 #include <ufs/ufs/ufsmount.h>
80 #include <ufs/ffs/fs.h>
81 #include <ufs/ffs/softdep.h>
82 #include <ufs/ffs/ffs_extern.h>
83 #include <ufs/ufs/ufs_extern.h>
84 
85 #include <vm/vm.h>
86 #include <vm/vm_extern.h>
87 #include <vm/vm_object.h>
88 
89 #include <geom/geom.h>
90 #include <geom/geom_vfs.h>
91 
92 #include <ddb/ddb.h>
93 
94 #define	KTR_SUJ	0	/* Define to KTR_SPARE. */
95 
96 #ifndef SOFTUPDATES
97 
98 int
99 softdep_flushfiles(oldmnt, flags, td)
100 	struct mount *oldmnt;
101 	int flags;
102 	struct thread *td;
103 {
104 
105 	panic("softdep_flushfiles called");
106 }
107 
108 int
109 softdep_mount(devvp, mp, fs, cred)
110 	struct vnode *devvp;
111 	struct mount *mp;
112 	struct fs *fs;
113 	struct ucred *cred;
114 {
115 
116 	return (0);
117 }
118 
119 void
120 softdep_initialize()
121 {
122 
123 	return;
124 }
125 
126 void
127 softdep_uninitialize()
128 {
129 
130 	return;
131 }
132 
133 void
134 softdep_unmount(mp)
135 	struct mount *mp;
136 {
137 
138 	panic("softdep_unmount called");
139 }
140 
141 void
142 softdep_setup_sbupdate(ump, fs, bp)
143 	struct ufsmount *ump;
144 	struct fs *fs;
145 	struct buf *bp;
146 {
147 
148 	panic("softdep_setup_sbupdate called");
149 }
150 
151 void
152 softdep_setup_inomapdep(bp, ip, newinum, mode)
153 	struct buf *bp;
154 	struct inode *ip;
155 	ino_t newinum;
156 	int mode;
157 {
158 
159 	panic("softdep_setup_inomapdep called");
160 }
161 
162 void
163 softdep_setup_blkmapdep(bp, mp, newblkno, frags, oldfrags)
164 	struct buf *bp;
165 	struct mount *mp;
166 	ufs2_daddr_t newblkno;
167 	int frags;
168 	int oldfrags;
169 {
170 
171 	panic("softdep_setup_blkmapdep called");
172 }
173 
174 void
175 softdep_setup_allocdirect(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp)
176 	struct inode *ip;
177 	ufs_lbn_t lbn;
178 	ufs2_daddr_t newblkno;
179 	ufs2_daddr_t oldblkno;
180 	long newsize;
181 	long oldsize;
182 	struct buf *bp;
183 {
184 
185 	panic("softdep_setup_allocdirect called");
186 }
187 
188 void
189 softdep_setup_allocext(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp)
190 	struct inode *ip;
191 	ufs_lbn_t lbn;
192 	ufs2_daddr_t newblkno;
193 	ufs2_daddr_t oldblkno;
194 	long newsize;
195 	long oldsize;
196 	struct buf *bp;
197 {
198 
199 	panic("softdep_setup_allocext called");
200 }
201 
202 void
203 softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp)
204 	struct inode *ip;
205 	ufs_lbn_t lbn;
206 	struct buf *bp;
207 	int ptrno;
208 	ufs2_daddr_t newblkno;
209 	ufs2_daddr_t oldblkno;
210 	struct buf *nbp;
211 {
212 
213 	panic("softdep_setup_allocindir_page called");
214 }
215 
216 void
217 softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno)
218 	struct buf *nbp;
219 	struct inode *ip;
220 	struct buf *bp;
221 	int ptrno;
222 	ufs2_daddr_t newblkno;
223 {
224 
225 	panic("softdep_setup_allocindir_meta called");
226 }
227 
228 void
229 softdep_journal_freeblocks(ip, cred, length, flags)
230 	struct inode *ip;
231 	struct ucred *cred;
232 	off_t length;
233 	int flags;
234 {
235 
236 	panic("softdep_journal_freeblocks called");
237 }
238 
239 void
240 softdep_journal_fsync(ip)
241 	struct inode *ip;
242 {
243 
244 	panic("softdep_journal_fsync called");
245 }
246 
247 void
248 softdep_setup_freeblocks(ip, length, flags)
249 	struct inode *ip;
250 	off_t length;
251 	int flags;
252 {
253 
254 	panic("softdep_setup_freeblocks called");
255 }
256 
257 void
258 softdep_freefile(pvp, ino, mode)
259 		struct vnode *pvp;
260 		ino_t ino;
261 		int mode;
262 {
263 
264 	panic("softdep_freefile called");
265 }
266 
267 int
268 softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk)
269 	struct buf *bp;
270 	struct inode *dp;
271 	off_t diroffset;
272 	ino_t newinum;
273 	struct buf *newdirbp;
274 	int isnewblk;
275 {
276 
277 	panic("softdep_setup_directory_add called");
278 }
279 
280 void
281 softdep_change_directoryentry_offset(bp, dp, base, oldloc, newloc, entrysize)
282 	struct buf *bp;
283 	struct inode *dp;
284 	caddr_t base;
285 	caddr_t oldloc;
286 	caddr_t newloc;
287 	int entrysize;
288 {
289 
290 	panic("softdep_change_directoryentry_offset called");
291 }
292 
293 void
294 softdep_setup_remove(bp, dp, ip, isrmdir)
295 	struct buf *bp;
296 	struct inode *dp;
297 	struct inode *ip;
298 	int isrmdir;
299 {
300 
301 	panic("softdep_setup_remove called");
302 }
303 
304 void
305 softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir)
306 	struct buf *bp;
307 	struct inode *dp;
308 	struct inode *ip;
309 	ino_t newinum;
310 	int isrmdir;
311 {
312 
313 	panic("softdep_setup_directory_change called");
314 }
315 
316 void
317 softdep_setup_blkfree(mp, bp, blkno, frags, wkhd)
318 	struct mount *mp;
319 	struct buf *bp;
320 	ufs2_daddr_t blkno;
321 	int frags;
322 	struct workhead *wkhd;
323 {
324 
325 	panic("%s called", __FUNCTION__);
326 }
327 
328 void
329 softdep_setup_inofree(mp, bp, ino, wkhd)
330 	struct mount *mp;
331 	struct buf *bp;
332 	ino_t ino;
333 	struct workhead *wkhd;
334 {
335 
336 	panic("%s called", __FUNCTION__);
337 }
338 
339 void
340 softdep_setup_unlink(dp, ip)
341 	struct inode *dp;
342 	struct inode *ip;
343 {
344 
345 	panic("%s called", __FUNCTION__);
346 }
347 
348 void
349 softdep_setup_link(dp, ip)
350 	struct inode *dp;
351 	struct inode *ip;
352 {
353 
354 	panic("%s called", __FUNCTION__);
355 }
356 
357 void
358 softdep_revert_link(dp, ip)
359 	struct inode *dp;
360 	struct inode *ip;
361 {
362 
363 	panic("%s called", __FUNCTION__);
364 }
365 
366 void
367 softdep_setup_rmdir(dp, ip)
368 	struct inode *dp;
369 	struct inode *ip;
370 {
371 
372 	panic("%s called", __FUNCTION__);
373 }
374 
375 void
376 softdep_revert_rmdir(dp, ip)
377 	struct inode *dp;
378 	struct inode *ip;
379 {
380 
381 	panic("%s called", __FUNCTION__);
382 }
383 
384 void
385 softdep_setup_create(dp, ip)
386 	struct inode *dp;
387 	struct inode *ip;
388 {
389 
390 	panic("%s called", __FUNCTION__);
391 }
392 
393 void
394 softdep_revert_create(dp, ip)
395 	struct inode *dp;
396 	struct inode *ip;
397 {
398 
399 	panic("%s called", __FUNCTION__);
400 }
401 
402 void
403 softdep_setup_mkdir(dp, ip)
404 	struct inode *dp;
405 	struct inode *ip;
406 {
407 
408 	panic("%s called", __FUNCTION__);
409 }
410 
411 void
412 softdep_revert_mkdir(dp, ip)
413 	struct inode *dp;
414 	struct inode *ip;
415 {
416 
417 	panic("%s called", __FUNCTION__);
418 }
419 
420 void
421 softdep_setup_dotdot_link(dp, ip)
422 	struct inode *dp;
423 	struct inode *ip;
424 {
425 
426 	panic("%s called", __FUNCTION__);
427 }
428 
429 int
430 softdep_prealloc(vp, waitok)
431 	struct vnode *vp;
432 	int waitok;
433 {
434 
435 	panic("%s called", __FUNCTION__);
436 }
437 
438 int
439 softdep_journal_lookup(mp, vpp)
440 	struct mount *mp;
441 	struct vnode **vpp;
442 {
443 
444 	return (ENOENT);
445 }
446 
447 void
448 softdep_change_linkcnt(ip)
449 	struct inode *ip;
450 {
451 
452 	panic("softdep_change_linkcnt called");
453 }
454 
455 void
456 softdep_load_inodeblock(ip)
457 	struct inode *ip;
458 {
459 
460 	panic("softdep_load_inodeblock called");
461 }
462 
463 void
464 softdep_update_inodeblock(ip, bp, waitfor)
465 	struct inode *ip;
466 	struct buf *bp;
467 	int waitfor;
468 {
469 
470 	panic("softdep_update_inodeblock called");
471 }
472 
473 int
474 softdep_fsync(vp)
475 	struct vnode *vp;	/* the "in_core" copy of the inode */
476 {
477 
478 	return (0);
479 }
480 
481 void
482 softdep_fsync_mountdev(vp)
483 	struct vnode *vp;
484 {
485 
486 	return;
487 }
488 
489 int
490 softdep_flushworklist(oldmnt, countp, td)
491 	struct mount *oldmnt;
492 	int *countp;
493 	struct thread *td;
494 {
495 
496 	*countp = 0;
497 	return (0);
498 }
499 
500 int
501 softdep_sync_metadata(struct vnode *vp)
502 {
503 
504 	panic("softdep_sync_metadata called");
505 }
506 
507 int
508 softdep_sync_buf(struct vnode *vp, struct buf *bp, int waitfor)
509 {
510 
511 	panic("softdep_sync_buf called");
512 }
513 
514 int
515 softdep_slowdown(vp)
516 	struct vnode *vp;
517 {
518 
519 	panic("softdep_slowdown called");
520 }
521 
522 int
523 softdep_request_cleanup(fs, vp, cred, resource)
524 	struct fs *fs;
525 	struct vnode *vp;
526 	struct ucred *cred;
527 	int resource;
528 {
529 
530 	return (0);
531 }
532 
533 int
534 softdep_check_suspend(struct mount *mp,
535 		      struct vnode *devvp,
536 		      int softdep_depcnt,
537 		      int softdep_accdepcnt,
538 		      int secondary_writes,
539 		      int secondary_accwrites)
540 {
541 	struct bufobj *bo;
542 	int error;
543 
544 	(void) softdep_depcnt,
545 	(void) softdep_accdepcnt;
546 
547 	bo = &devvp->v_bufobj;
548 	ASSERT_BO_WLOCKED(bo);
549 
550 	MNT_ILOCK(mp);
551 	while (mp->mnt_secondary_writes != 0) {
552 		BO_UNLOCK(bo);
553 		msleep(&mp->mnt_secondary_writes, MNT_MTX(mp),
554 		    (PUSER - 1) | PDROP, "secwr", 0);
555 		BO_LOCK(bo);
556 		MNT_ILOCK(mp);
557 	}
558 
559 	/*
560 	 * Reasons for needing more work before suspend:
561 	 * - Dirty buffers on devvp.
562 	 * - Secondary writes occurred after start of vnode sync loop
563 	 */
564 	error = 0;
565 	if (bo->bo_numoutput > 0 ||
566 	    bo->bo_dirty.bv_cnt > 0 ||
567 	    secondary_writes != 0 ||
568 	    mp->mnt_secondary_writes != 0 ||
569 	    secondary_accwrites != mp->mnt_secondary_accwrites)
570 		error = EAGAIN;
571 	BO_UNLOCK(bo);
572 	return (error);
573 }
574 
575 void
576 softdep_get_depcounts(struct mount *mp,
577 		      int *softdepactivep,
578 		      int *softdepactiveaccp)
579 {
580 	(void) mp;
581 	*softdepactivep = 0;
582 	*softdepactiveaccp = 0;
583 }
584 
585 void
586 softdep_buf_append(bp, wkhd)
587 	struct buf *bp;
588 	struct workhead *wkhd;
589 {
590 
591 	panic("softdep_buf_appendwork called");
592 }
593 
594 void
595 softdep_inode_append(ip, cred, wkhd)
596 	struct inode *ip;
597 	struct ucred *cred;
598 	struct workhead *wkhd;
599 {
600 
601 	panic("softdep_inode_appendwork called");
602 }
603 
604 void
605 softdep_freework(wkhd)
606 	struct workhead *wkhd;
607 {
608 
609 	panic("softdep_freework called");
610 }
611 
612 #else
613 
614 FEATURE(softupdates, "FFS soft-updates support");
615 
616 static SYSCTL_NODE(_debug, OID_AUTO, softdep, CTLFLAG_RW, 0,
617     "soft updates stats");
618 static SYSCTL_NODE(_debug_softdep, OID_AUTO, total, CTLFLAG_RW, 0,
619     "total dependencies allocated");
620 static SYSCTL_NODE(_debug_softdep, OID_AUTO, highuse, CTLFLAG_RW, 0,
621     "high use dependencies allocated");
622 static SYSCTL_NODE(_debug_softdep, OID_AUTO, current, CTLFLAG_RW, 0,
623     "current dependencies allocated");
624 static SYSCTL_NODE(_debug_softdep, OID_AUTO, write, CTLFLAG_RW, 0,
625     "current dependencies written");
626 
627 unsigned long dep_current[D_LAST + 1];
628 unsigned long dep_highuse[D_LAST + 1];
629 unsigned long dep_total[D_LAST + 1];
630 unsigned long dep_write[D_LAST + 1];
631 
632 #define	SOFTDEP_TYPE(type, str, long)					\
633     static MALLOC_DEFINE(M_ ## type, #str, long);			\
634     SYSCTL_ULONG(_debug_softdep_total, OID_AUTO, str, CTLFLAG_RD,	\
635 	&dep_total[D_ ## type], 0, "");					\
636     SYSCTL_ULONG(_debug_softdep_current, OID_AUTO, str, CTLFLAG_RD, 	\
637 	&dep_current[D_ ## type], 0, "");				\
638     SYSCTL_ULONG(_debug_softdep_highuse, OID_AUTO, str, CTLFLAG_RD, 	\
639 	&dep_highuse[D_ ## type], 0, "");				\
640     SYSCTL_ULONG(_debug_softdep_write, OID_AUTO, str, CTLFLAG_RD, 	\
641 	&dep_write[D_ ## type], 0, "");
642 
643 SOFTDEP_TYPE(PAGEDEP, pagedep, "File page dependencies");
644 SOFTDEP_TYPE(INODEDEP, inodedep, "Inode dependencies");
645 SOFTDEP_TYPE(BMSAFEMAP, bmsafemap,
646     "Block or frag allocated from cyl group map");
647 SOFTDEP_TYPE(NEWBLK, newblk, "New block or frag allocation dependency");
648 SOFTDEP_TYPE(ALLOCDIRECT, allocdirect, "Block or frag dependency for an inode");
649 SOFTDEP_TYPE(INDIRDEP, indirdep, "Indirect block dependencies");
650 SOFTDEP_TYPE(ALLOCINDIR, allocindir, "Block dependency for an indirect block");
651 SOFTDEP_TYPE(FREEFRAG, freefrag, "Previously used frag for an inode");
652 SOFTDEP_TYPE(FREEBLKS, freeblks, "Blocks freed from an inode");
653 SOFTDEP_TYPE(FREEFILE, freefile, "Inode deallocated");
654 SOFTDEP_TYPE(DIRADD, diradd, "New directory entry");
655 SOFTDEP_TYPE(MKDIR, mkdir, "New directory");
656 SOFTDEP_TYPE(DIRREM, dirrem, "Directory entry deleted");
657 SOFTDEP_TYPE(NEWDIRBLK, newdirblk, "Unclaimed new directory block");
658 SOFTDEP_TYPE(FREEWORK, freework, "free an inode block");
659 SOFTDEP_TYPE(FREEDEP, freedep, "track a block free");
660 SOFTDEP_TYPE(JADDREF, jaddref, "Journal inode ref add");
661 SOFTDEP_TYPE(JREMREF, jremref, "Journal inode ref remove");
662 SOFTDEP_TYPE(JMVREF, jmvref, "Journal inode ref move");
663 SOFTDEP_TYPE(JNEWBLK, jnewblk, "Journal new block");
664 SOFTDEP_TYPE(JFREEBLK, jfreeblk, "Journal free block");
665 SOFTDEP_TYPE(JFREEFRAG, jfreefrag, "Journal free frag");
666 SOFTDEP_TYPE(JSEG, jseg, "Journal segment");
667 SOFTDEP_TYPE(JSEGDEP, jsegdep, "Journal segment complete");
668 SOFTDEP_TYPE(SBDEP, sbdep, "Superblock write dependency");
669 SOFTDEP_TYPE(JTRUNC, jtrunc, "Journal inode truncation");
670 SOFTDEP_TYPE(JFSYNC, jfsync, "Journal fsync complete");
671 
672 static MALLOC_DEFINE(M_SENTINEL, "sentinel", "Worklist sentinel");
673 
674 static MALLOC_DEFINE(M_SAVEDINO, "savedino", "Saved inodes");
675 static MALLOC_DEFINE(M_JBLOCKS, "jblocks", "Journal block locations");
676 static MALLOC_DEFINE(M_MOUNTDATA, "softdep", "Softdep per-mount data");
677 
678 #define M_SOFTDEP_FLAGS	(M_WAITOK)
679 
680 /*
681  * translate from workitem type to memory type
682  * MUST match the defines above, such that memtype[D_XXX] == M_XXX
683  */
684 static struct malloc_type *memtype[] = {
685 	NULL,
686 	M_PAGEDEP,
687 	M_INODEDEP,
688 	M_BMSAFEMAP,
689 	M_NEWBLK,
690 	M_ALLOCDIRECT,
691 	M_INDIRDEP,
692 	M_ALLOCINDIR,
693 	M_FREEFRAG,
694 	M_FREEBLKS,
695 	M_FREEFILE,
696 	M_DIRADD,
697 	M_MKDIR,
698 	M_DIRREM,
699 	M_NEWDIRBLK,
700 	M_FREEWORK,
701 	M_FREEDEP,
702 	M_JADDREF,
703 	M_JREMREF,
704 	M_JMVREF,
705 	M_JNEWBLK,
706 	M_JFREEBLK,
707 	M_JFREEFRAG,
708 	M_JSEG,
709 	M_JSEGDEP,
710 	M_SBDEP,
711 	M_JTRUNC,
712 	M_JFSYNC,
713 	M_SENTINEL
714 };
715 
716 #define DtoM(type) (memtype[type])
717 
718 /*
719  * Names of malloc types.
720  */
721 #define TYPENAME(type)  \
722 	((unsigned)(type) <= D_LAST && (unsigned)(type) >= D_FIRST ? \
723 	memtype[type]->ks_shortdesc : "???")
724 /*
725  * End system adaptation definitions.
726  */
727 
728 #define	DOTDOT_OFFSET	offsetof(struct dirtemplate, dotdot_ino)
729 #define	DOT_OFFSET	offsetof(struct dirtemplate, dot_ino)
730 
731 /*
732  * Internal function prototypes.
733  */
734 static	void check_clear_deps(struct mount *);
735 static	void softdep_error(char *, int);
736 static	int softdep_process_worklist(struct mount *, int);
737 static	int softdep_waitidle(struct mount *, int);
738 static	void drain_output(struct vnode *);
739 static	struct buf *getdirtybuf(struct buf *, struct rwlock *, int);
740 static	int check_inodedep_free(struct inodedep *);
741 static	void clear_remove(struct mount *);
742 static	void clear_inodedeps(struct mount *);
743 static	void unlinked_inodedep(struct mount *, struct inodedep *);
744 static	void clear_unlinked_inodedep(struct inodedep *);
745 static	struct inodedep *first_unlinked_inodedep(struct ufsmount *);
746 static	int flush_pagedep_deps(struct vnode *, struct mount *,
747 	    struct diraddhd *);
748 static	int free_pagedep(struct pagedep *);
749 static	int flush_newblk_dep(struct vnode *, struct mount *, ufs_lbn_t);
750 static	int flush_inodedep_deps(struct vnode *, struct mount *, ino_t);
751 static	int flush_deplist(struct allocdirectlst *, int, int *);
752 static	int sync_cgs(struct mount *, int);
753 static	int handle_written_filepage(struct pagedep *, struct buf *, int);
754 static	int handle_written_sbdep(struct sbdep *, struct buf *);
755 static	void initiate_write_sbdep(struct sbdep *);
756 static	void diradd_inode_written(struct diradd *, struct inodedep *);
757 static	int handle_written_indirdep(struct indirdep *, struct buf *,
758 	    struct buf**, int);
759 static	int handle_written_inodeblock(struct inodedep *, struct buf *, int);
760 static	int jnewblk_rollforward(struct jnewblk *, struct fs *, struct cg *,
761 	    uint8_t *);
762 static	int handle_written_bmsafemap(struct bmsafemap *, struct buf *, int);
763 static	void handle_written_jaddref(struct jaddref *);
764 static	void handle_written_jremref(struct jremref *);
765 static	void handle_written_jseg(struct jseg *, struct buf *);
766 static	void handle_written_jnewblk(struct jnewblk *);
767 static	void handle_written_jblkdep(struct jblkdep *);
768 static	void handle_written_jfreefrag(struct jfreefrag *);
769 static	void complete_jseg(struct jseg *);
770 static	void complete_jsegs(struct jseg *);
771 static	void jseg_write(struct ufsmount *ump, struct jseg *, uint8_t *);
772 static	void jaddref_write(struct jaddref *, struct jseg *, uint8_t *);
773 static	void jremref_write(struct jremref *, struct jseg *, uint8_t *);
774 static	void jmvref_write(struct jmvref *, struct jseg *, uint8_t *);
775 static	void jtrunc_write(struct jtrunc *, struct jseg *, uint8_t *);
776 static	void jfsync_write(struct jfsync *, struct jseg *, uint8_t *data);
777 static	void jnewblk_write(struct jnewblk *, struct jseg *, uint8_t *);
778 static	void jfreeblk_write(struct jfreeblk *, struct jseg *, uint8_t *);
779 static	void jfreefrag_write(struct jfreefrag *, struct jseg *, uint8_t *);
780 static	inline void inoref_write(struct inoref *, struct jseg *,
781 	    struct jrefrec *);
782 static	void handle_allocdirect_partdone(struct allocdirect *,
783 	    struct workhead *);
784 static	struct jnewblk *cancel_newblk(struct newblk *, struct worklist *,
785 	    struct workhead *);
786 static	void indirdep_complete(struct indirdep *);
787 static	int indirblk_lookup(struct mount *, ufs2_daddr_t);
788 static	void indirblk_insert(struct freework *);
789 static	void indirblk_remove(struct freework *);
790 static	void handle_allocindir_partdone(struct allocindir *);
791 static	void initiate_write_filepage(struct pagedep *, struct buf *);
792 static	void initiate_write_indirdep(struct indirdep*, struct buf *);
793 static	void handle_written_mkdir(struct mkdir *, int);
794 static	int jnewblk_rollback(struct jnewblk *, struct fs *, struct cg *,
795 	    uint8_t *);
796 static	void initiate_write_bmsafemap(struct bmsafemap *, struct buf *);
797 static	void initiate_write_inodeblock_ufs1(struct inodedep *, struct buf *);
798 static	void initiate_write_inodeblock_ufs2(struct inodedep *, struct buf *);
799 static	void handle_workitem_freefile(struct freefile *);
800 static	int handle_workitem_remove(struct dirrem *, int);
801 static	struct dirrem *newdirrem(struct buf *, struct inode *,
802 	    struct inode *, int, struct dirrem **);
803 static	struct indirdep *indirdep_lookup(struct mount *, struct inode *,
804 	    struct buf *);
805 static	void cancel_indirdep(struct indirdep *, struct buf *,
806 	    struct freeblks *);
807 static	void free_indirdep(struct indirdep *);
808 static	void free_diradd(struct diradd *, struct workhead *);
809 static	void merge_diradd(struct inodedep *, struct diradd *);
810 static	void complete_diradd(struct diradd *);
811 static	struct diradd *diradd_lookup(struct pagedep *, int);
812 static	struct jremref *cancel_diradd_dotdot(struct inode *, struct dirrem *,
813 	    struct jremref *);
814 static	struct jremref *cancel_mkdir_dotdot(struct inode *, struct dirrem *,
815 	    struct jremref *);
816 static	void cancel_diradd(struct diradd *, struct dirrem *, struct jremref *,
817 	    struct jremref *, struct jremref *);
818 static	void dirrem_journal(struct dirrem *, struct jremref *, struct jremref *,
819 	    struct jremref *);
820 static	void cancel_allocindir(struct allocindir *, struct buf *bp,
821 	    struct freeblks *, int);
822 static	int setup_trunc_indir(struct freeblks *, struct inode *,
823 	    ufs_lbn_t, ufs_lbn_t, ufs2_daddr_t);
824 static	void complete_trunc_indir(struct freework *);
825 static	void trunc_indirdep(struct indirdep *, struct freeblks *, struct buf *,
826 	    int);
827 static	void complete_mkdir(struct mkdir *);
828 static	void free_newdirblk(struct newdirblk *);
829 static	void free_jremref(struct jremref *);
830 static	void free_jaddref(struct jaddref *);
831 static	void free_jsegdep(struct jsegdep *);
832 static	void free_jsegs(struct jblocks *);
833 static	void rele_jseg(struct jseg *);
834 static	void free_jseg(struct jseg *, struct jblocks *);
835 static	void free_jnewblk(struct jnewblk *);
836 static	void free_jblkdep(struct jblkdep *);
837 static	void free_jfreefrag(struct jfreefrag *);
838 static	void free_freedep(struct freedep *);
839 static	void journal_jremref(struct dirrem *, struct jremref *,
840 	    struct inodedep *);
841 static	void cancel_jnewblk(struct jnewblk *, struct workhead *);
842 static	int cancel_jaddref(struct jaddref *, struct inodedep *,
843 	    struct workhead *);
844 static	void cancel_jfreefrag(struct jfreefrag *);
845 static	inline void setup_freedirect(struct freeblks *, struct inode *,
846 	    int, int);
847 static	inline void setup_freeext(struct freeblks *, struct inode *, int, int);
848 static	inline void setup_freeindir(struct freeblks *, struct inode *, int,
849 	    ufs_lbn_t, int);
850 static	inline struct freeblks *newfreeblks(struct mount *, struct inode *);
851 static	void freeblks_free(struct ufsmount *, struct freeblks *, int);
852 static	void indir_trunc(struct freework *, ufs2_daddr_t, ufs_lbn_t);
853 static	ufs2_daddr_t blkcount(struct fs *, ufs2_daddr_t, off_t);
854 static	int trunc_check_buf(struct buf *, int *, ufs_lbn_t, int, int);
855 static	void trunc_dependencies(struct inode *, struct freeblks *, ufs_lbn_t,
856 	    int, int);
857 static	void trunc_pages(struct inode *, off_t, ufs2_daddr_t, int);
858 static 	int cancel_pagedep(struct pagedep *, struct freeblks *, int);
859 static	int deallocate_dependencies(struct buf *, struct freeblks *, int);
860 static	void newblk_freefrag(struct newblk*);
861 static	void free_newblk(struct newblk *);
862 static	void cancel_allocdirect(struct allocdirectlst *,
863 	    struct allocdirect *, struct freeblks *);
864 static	int check_inode_unwritten(struct inodedep *);
865 static	int free_inodedep(struct inodedep *);
866 static	void freework_freeblock(struct freework *, u_long);
867 static	void freework_enqueue(struct freework *);
868 static	int handle_workitem_freeblocks(struct freeblks *, int);
869 static	int handle_complete_freeblocks(struct freeblks *, int);
870 static	void handle_workitem_indirblk(struct freework *);
871 static	void handle_written_freework(struct freework *);
872 static	void merge_inode_lists(struct allocdirectlst *,struct allocdirectlst *);
873 static	struct worklist *jnewblk_merge(struct worklist *, struct worklist *,
874 	    struct workhead *);
875 static	struct freefrag *setup_allocindir_phase2(struct buf *, struct inode *,
876 	    struct inodedep *, struct allocindir *, ufs_lbn_t);
877 static	struct allocindir *newallocindir(struct inode *, int, ufs2_daddr_t,
878 	    ufs2_daddr_t, ufs_lbn_t);
879 static	void handle_workitem_freefrag(struct freefrag *);
880 static	struct freefrag *newfreefrag(struct inode *, ufs2_daddr_t, long,
881 	    ufs_lbn_t, u_long);
882 static	void allocdirect_merge(struct allocdirectlst *,
883 	    struct allocdirect *, struct allocdirect *);
884 static	struct freefrag *allocindir_merge(struct allocindir *,
885 	    struct allocindir *);
886 static	int bmsafemap_find(struct bmsafemap_hashhead *, int,
887 	    struct bmsafemap **);
888 static	struct bmsafemap *bmsafemap_lookup(struct mount *, struct buf *,
889 	    int cg, struct bmsafemap *);
890 static	int newblk_find(struct newblk_hashhead *, ufs2_daddr_t, int,
891 	    struct newblk **);
892 static	int newblk_lookup(struct mount *, ufs2_daddr_t, int, struct newblk **);
893 static	int inodedep_find(struct inodedep_hashhead *, ino_t,
894 	    struct inodedep **);
895 static	int inodedep_lookup(struct mount *, ino_t, int, struct inodedep **);
896 static	int pagedep_lookup(struct mount *, struct buf *bp, ino_t, ufs_lbn_t,
897 	    int, struct pagedep **);
898 static	int pagedep_find(struct pagedep_hashhead *, ino_t, ufs_lbn_t,
899 	    struct pagedep **);
900 static	void pause_timer(void *);
901 static	int request_cleanup(struct mount *, int);
902 static	int softdep_request_cleanup_flush(struct mount *, struct ufsmount *);
903 static	void schedule_cleanup(struct mount *);
904 static void softdep_ast_cleanup_proc(struct thread *);
905 static struct ufsmount *softdep_bp_to_mp(struct buf *bp);
906 static	int process_worklist_item(struct mount *, int, int);
907 static	void process_removes(struct vnode *);
908 static	void process_truncates(struct vnode *);
909 static	void jwork_move(struct workhead *, struct workhead *);
910 static	void jwork_insert(struct workhead *, struct jsegdep *);
911 static	void add_to_worklist(struct worklist *, int);
912 static	void wake_worklist(struct worklist *);
913 static	void wait_worklist(struct worklist *, char *);
914 static	void remove_from_worklist(struct worklist *);
915 static	void softdep_flush(void *);
916 static	void softdep_flushjournal(struct mount *);
917 static	int softdep_speedup(struct ufsmount *);
918 static	void worklist_speedup(struct mount *);
919 static	int journal_mount(struct mount *, struct fs *, struct ucred *);
920 static	void journal_unmount(struct ufsmount *);
921 static	int journal_space(struct ufsmount *, int);
922 static	void journal_suspend(struct ufsmount *);
923 static	int journal_unsuspend(struct ufsmount *ump);
924 static	void softdep_prelink(struct vnode *, struct vnode *);
925 static	void add_to_journal(struct worklist *);
926 static	void remove_from_journal(struct worklist *);
927 static	bool softdep_excess_items(struct ufsmount *, int);
928 static	void softdep_process_journal(struct mount *, struct worklist *, int);
929 static	struct jremref *newjremref(struct dirrem *, struct inode *,
930 	    struct inode *ip, off_t, nlink_t);
931 static	struct jaddref *newjaddref(struct inode *, ino_t, off_t, int16_t,
932 	    uint16_t);
933 static	inline void newinoref(struct inoref *, ino_t, ino_t, off_t, nlink_t,
934 	    uint16_t);
935 static	inline struct jsegdep *inoref_jseg(struct inoref *);
936 static	struct jmvref *newjmvref(struct inode *, ino_t, off_t, off_t);
937 static	struct jfreeblk *newjfreeblk(struct freeblks *, ufs_lbn_t,
938 	    ufs2_daddr_t, int);
939 static	void adjust_newfreework(struct freeblks *, int);
940 static	struct jtrunc *newjtrunc(struct freeblks *, off_t, int);
941 static	void move_newblock_dep(struct jaddref *, struct inodedep *);
942 static	void cancel_jfreeblk(struct freeblks *, ufs2_daddr_t);
943 static	struct jfreefrag *newjfreefrag(struct freefrag *, struct inode *,
944 	    ufs2_daddr_t, long, ufs_lbn_t);
945 static	struct freework *newfreework(struct ufsmount *, struct freeblks *,
946 	    struct freework *, ufs_lbn_t, ufs2_daddr_t, int, int, int);
947 static	int jwait(struct worklist *, int);
948 static	struct inodedep *inodedep_lookup_ip(struct inode *);
949 static	int bmsafemap_backgroundwrite(struct bmsafemap *, struct buf *);
950 static	struct freefile *handle_bufwait(struct inodedep *, struct workhead *);
951 static	void handle_jwork(struct workhead *);
952 static	struct mkdir *setup_newdir(struct diradd *, ino_t, ino_t, struct buf *,
953 	    struct mkdir **);
954 static	struct jblocks *jblocks_create(void);
955 static	ufs2_daddr_t jblocks_alloc(struct jblocks *, int, int *);
956 static	void jblocks_free(struct jblocks *, struct mount *, int);
957 static	void jblocks_destroy(struct jblocks *);
958 static	void jblocks_add(struct jblocks *, ufs2_daddr_t, int);
959 
960 /*
961  * Exported softdep operations.
962  */
963 static	void softdep_disk_io_initiation(struct buf *);
964 static	void softdep_disk_write_complete(struct buf *);
965 static	void softdep_deallocate_dependencies(struct buf *);
966 static	int softdep_count_dependencies(struct buf *bp, int);
967 
968 /*
969  * Global lock over all of soft updates.
970  */
971 static struct mtx lk;
972 MTX_SYSINIT(softdep_lock, &lk, "global softdep", MTX_DEF);
973 
974 #define ACQUIRE_GBLLOCK(lk)	mtx_lock(lk)
975 #define FREE_GBLLOCK(lk)	mtx_unlock(lk)
976 #define GBLLOCK_OWNED(lk)	mtx_assert((lk), MA_OWNED)
977 
978 /*
979  * Per-filesystem soft-updates locking.
980  */
981 #define LOCK_PTR(ump)		(&(ump)->um_softdep->sd_fslock)
982 #define TRY_ACQUIRE_LOCK(ump)	rw_try_wlock(&(ump)->um_softdep->sd_fslock)
983 #define ACQUIRE_LOCK(ump)	rw_wlock(&(ump)->um_softdep->sd_fslock)
984 #define FREE_LOCK(ump)		rw_wunlock(&(ump)->um_softdep->sd_fslock)
985 #define LOCK_OWNED(ump)		rw_assert(&(ump)->um_softdep->sd_fslock, \
986 				    RA_WLOCKED)
987 
988 #define	BUF_AREC(bp)		lockallowrecurse(&(bp)->b_lock)
989 #define	BUF_NOREC(bp)		lockdisablerecurse(&(bp)->b_lock)
990 
991 /*
992  * Worklist queue management.
993  * These routines require that the lock be held.
994  */
995 #ifndef /* NOT */ INVARIANTS
996 #define WORKLIST_INSERT(head, item) do {	\
997 	(item)->wk_state |= ONWORKLIST;		\
998 	LIST_INSERT_HEAD(head, item, wk_list);	\
999 } while (0)
1000 #define WORKLIST_REMOVE(item) do {		\
1001 	(item)->wk_state &= ~ONWORKLIST;	\
1002 	LIST_REMOVE(item, wk_list);		\
1003 } while (0)
1004 #define WORKLIST_INSERT_UNLOCKED	WORKLIST_INSERT
1005 #define WORKLIST_REMOVE_UNLOCKED	WORKLIST_REMOVE
1006 
1007 #else /* INVARIANTS */
1008 static	void worklist_insert(struct workhead *, struct worklist *, int,
1009 	const char *, int);
1010 static	void worklist_remove(struct worklist *, int, const char *, int);
1011 
1012 #define WORKLIST_INSERT(head, item) \
1013 	worklist_insert(head, item, 1, __func__, __LINE__)
1014 #define WORKLIST_INSERT_UNLOCKED(head, item)\
1015 	worklist_insert(head, item, 0, __func__, __LINE__)
1016 #define WORKLIST_REMOVE(item)\
1017 	worklist_remove(item, 1, __func__, __LINE__)
1018 #define WORKLIST_REMOVE_UNLOCKED(item)\
1019 	worklist_remove(item, 0, __func__, __LINE__)
1020 
1021 static void
1022 worklist_insert(head, item, locked, func, line)
1023 	struct workhead *head;
1024 	struct worklist *item;
1025 	int locked;
1026 	const char *func;
1027 	int line;
1028 {
1029 
1030 	if (locked)
1031 		LOCK_OWNED(VFSTOUFS(item->wk_mp));
1032 	if (item->wk_state & ONWORKLIST)
1033 		panic("worklist_insert: %p %s(0x%X) already on list, "
1034 		    "added in function %s at line %d",
1035 		    item, TYPENAME(item->wk_type), item->wk_state,
1036 		    item->wk_func, item->wk_line);
1037 	item->wk_state |= ONWORKLIST;
1038 	item->wk_func = func;
1039 	item->wk_line = line;
1040 	LIST_INSERT_HEAD(head, item, wk_list);
1041 }
1042 
1043 static void
1044 worklist_remove(item, locked, func, line)
1045 	struct worklist *item;
1046 	int locked;
1047 	const char *func;
1048 	int line;
1049 {
1050 
1051 	if (locked)
1052 		LOCK_OWNED(VFSTOUFS(item->wk_mp));
1053 	if ((item->wk_state & ONWORKLIST) == 0)
1054 		panic("worklist_remove: %p %s(0x%X) not on list, "
1055 		    "removed in function %s at line %d",
1056 		    item, TYPENAME(item->wk_type), item->wk_state,
1057 		    item->wk_func, item->wk_line);
1058 	item->wk_state &= ~ONWORKLIST;
1059 	item->wk_func = func;
1060 	item->wk_line = line;
1061 	LIST_REMOVE(item, wk_list);
1062 }
1063 #endif /* INVARIANTS */
1064 
1065 /*
1066  * Merge two jsegdeps keeping only the oldest one as newer references
1067  * can't be discarded until after older references.
1068  */
1069 static inline struct jsegdep *
1070 jsegdep_merge(struct jsegdep *one, struct jsegdep *two)
1071 {
1072 	struct jsegdep *swp;
1073 
1074 	if (two == NULL)
1075 		return (one);
1076 
1077 	if (one->jd_seg->js_seq > two->jd_seg->js_seq) {
1078 		swp = one;
1079 		one = two;
1080 		two = swp;
1081 	}
1082 	WORKLIST_REMOVE(&two->jd_list);
1083 	free_jsegdep(two);
1084 
1085 	return (one);
1086 }
1087 
1088 /*
1089  * If two freedeps are compatible free one to reduce list size.
1090  */
1091 static inline struct freedep *
1092 freedep_merge(struct freedep *one, struct freedep *two)
1093 {
1094 	if (two == NULL)
1095 		return (one);
1096 
1097 	if (one->fd_freework == two->fd_freework) {
1098 		WORKLIST_REMOVE(&two->fd_list);
1099 		free_freedep(two);
1100 	}
1101 	return (one);
1102 }
1103 
1104 /*
1105  * Move journal work from one list to another.  Duplicate freedeps and
1106  * jsegdeps are coalesced to keep the lists as small as possible.
1107  */
1108 static void
1109 jwork_move(dst, src)
1110 	struct workhead *dst;
1111 	struct workhead *src;
1112 {
1113 	struct freedep *freedep;
1114 	struct jsegdep *jsegdep;
1115 	struct worklist *wkn;
1116 	struct worklist *wk;
1117 
1118 	KASSERT(dst != src,
1119 	    ("jwork_move: dst == src"));
1120 	freedep = NULL;
1121 	jsegdep = NULL;
1122 	LIST_FOREACH_SAFE(wk, dst, wk_list, wkn) {
1123 		if (wk->wk_type == D_JSEGDEP)
1124 			jsegdep = jsegdep_merge(WK_JSEGDEP(wk), jsegdep);
1125 		else if (wk->wk_type == D_FREEDEP)
1126 			freedep = freedep_merge(WK_FREEDEP(wk), freedep);
1127 	}
1128 
1129 	while ((wk = LIST_FIRST(src)) != NULL) {
1130 		WORKLIST_REMOVE(wk);
1131 		WORKLIST_INSERT(dst, wk);
1132 		if (wk->wk_type == D_JSEGDEP) {
1133 			jsegdep = jsegdep_merge(WK_JSEGDEP(wk), jsegdep);
1134 			continue;
1135 		}
1136 		if (wk->wk_type == D_FREEDEP)
1137 			freedep = freedep_merge(WK_FREEDEP(wk), freedep);
1138 	}
1139 }
1140 
1141 static void
1142 jwork_insert(dst, jsegdep)
1143 	struct workhead *dst;
1144 	struct jsegdep *jsegdep;
1145 {
1146 	struct jsegdep *jsegdepn;
1147 	struct worklist *wk;
1148 
1149 	LIST_FOREACH(wk, dst, wk_list)
1150 		if (wk->wk_type == D_JSEGDEP)
1151 			break;
1152 	if (wk == NULL) {
1153 		WORKLIST_INSERT(dst, &jsegdep->jd_list);
1154 		return;
1155 	}
1156 	jsegdepn = WK_JSEGDEP(wk);
1157 	if (jsegdep->jd_seg->js_seq < jsegdepn->jd_seg->js_seq) {
1158 		WORKLIST_REMOVE(wk);
1159 		free_jsegdep(jsegdepn);
1160 		WORKLIST_INSERT(dst, &jsegdep->jd_list);
1161 	} else
1162 		free_jsegdep(jsegdep);
1163 }
1164 
1165 /*
1166  * Routines for tracking and managing workitems.
1167  */
1168 static	void workitem_free(struct worklist *, int);
1169 static	void workitem_alloc(struct worklist *, int, struct mount *);
1170 static	void workitem_reassign(struct worklist *, int);
1171 
1172 #define	WORKITEM_FREE(item, type) \
1173 	workitem_free((struct worklist *)(item), (type))
1174 #define	WORKITEM_REASSIGN(item, type) \
1175 	workitem_reassign((struct worklist *)(item), (type))
1176 
1177 static void
1178 workitem_free(item, type)
1179 	struct worklist *item;
1180 	int type;
1181 {
1182 	struct ufsmount *ump;
1183 
1184 #ifdef INVARIANTS
1185 	if (item->wk_state & ONWORKLIST)
1186 		panic("workitem_free: %s(0x%X) still on list, "
1187 		    "added in function %s at line %d",
1188 		    TYPENAME(item->wk_type), item->wk_state,
1189 		    item->wk_func, item->wk_line);
1190 	if (item->wk_type != type && type != D_NEWBLK)
1191 		panic("workitem_free: type mismatch %s != %s",
1192 		    TYPENAME(item->wk_type), TYPENAME(type));
1193 #endif
1194 	if (item->wk_state & IOWAITING)
1195 		wakeup(item);
1196 	ump = VFSTOUFS(item->wk_mp);
1197 	LOCK_OWNED(ump);
1198 	KASSERT(ump->softdep_deps > 0,
1199 	    ("workitem_free: %s: softdep_deps going negative",
1200 	    ump->um_fs->fs_fsmnt));
1201 	if (--ump->softdep_deps == 0 && ump->softdep_req)
1202 		wakeup(&ump->softdep_deps);
1203 	KASSERT(dep_current[item->wk_type] > 0,
1204 	    ("workitem_free: %s: dep_current[%s] going negative",
1205 	    ump->um_fs->fs_fsmnt, TYPENAME(item->wk_type)));
1206 	KASSERT(ump->softdep_curdeps[item->wk_type] > 0,
1207 	    ("workitem_free: %s: softdep_curdeps[%s] going negative",
1208 	    ump->um_fs->fs_fsmnt, TYPENAME(item->wk_type)));
1209 	atomic_subtract_long(&dep_current[item->wk_type], 1);
1210 	ump->softdep_curdeps[item->wk_type] -= 1;
1211 	free(item, DtoM(type));
1212 }
1213 
1214 static void
1215 workitem_alloc(item, type, mp)
1216 	struct worklist *item;
1217 	int type;
1218 	struct mount *mp;
1219 {
1220 	struct ufsmount *ump;
1221 
1222 	item->wk_type = type;
1223 	item->wk_mp = mp;
1224 	item->wk_state = 0;
1225 
1226 	ump = VFSTOUFS(mp);
1227 	ACQUIRE_GBLLOCK(&lk);
1228 	dep_current[type]++;
1229 	if (dep_current[type] > dep_highuse[type])
1230 		dep_highuse[type] = dep_current[type];
1231 	dep_total[type]++;
1232 	FREE_GBLLOCK(&lk);
1233 	ACQUIRE_LOCK(ump);
1234 	ump->softdep_curdeps[type] += 1;
1235 	ump->softdep_deps++;
1236 	ump->softdep_accdeps++;
1237 	FREE_LOCK(ump);
1238 }
1239 
1240 static void
1241 workitem_reassign(item, newtype)
1242 	struct worklist *item;
1243 	int newtype;
1244 {
1245 	struct ufsmount *ump;
1246 
1247 	ump = VFSTOUFS(item->wk_mp);
1248 	LOCK_OWNED(ump);
1249 	KASSERT(ump->softdep_curdeps[item->wk_type] > 0,
1250 	    ("workitem_reassign: %s: softdep_curdeps[%s] going negative",
1251 	    VFSTOUFS(item->wk_mp)->um_fs->fs_fsmnt, TYPENAME(item->wk_type)));
1252 	ump->softdep_curdeps[item->wk_type] -= 1;
1253 	ump->softdep_curdeps[newtype] += 1;
1254 	KASSERT(dep_current[item->wk_type] > 0,
1255 	    ("workitem_reassign: %s: dep_current[%s] going negative",
1256 	    VFSTOUFS(item->wk_mp)->um_fs->fs_fsmnt, TYPENAME(item->wk_type)));
1257 	ACQUIRE_GBLLOCK(&lk);
1258 	dep_current[newtype]++;
1259 	dep_current[item->wk_type]--;
1260 	if (dep_current[newtype] > dep_highuse[newtype])
1261 		dep_highuse[newtype] = dep_current[newtype];
1262 	dep_total[newtype]++;
1263 	FREE_GBLLOCK(&lk);
1264 	item->wk_type = newtype;
1265 }
1266 
1267 /*
1268  * Workitem queue management
1269  */
1270 static int max_softdeps;	/* maximum number of structs before slowdown */
1271 static int tickdelay = 2;	/* number of ticks to pause during slowdown */
1272 static int proc_waiting;	/* tracks whether we have a timeout posted */
1273 static int *stat_countp;	/* statistic to count in proc_waiting timeout */
1274 static struct callout softdep_callout;
1275 static int req_clear_inodedeps;	/* syncer process flush some inodedeps */
1276 static int req_clear_remove;	/* syncer process flush some freeblks */
1277 static int softdep_flushcache = 0; /* Should we do BIO_FLUSH? */
1278 
1279 /*
1280  * runtime statistics
1281  */
1282 static int stat_flush_threads;	/* number of softdep flushing threads */
1283 static int stat_worklist_push;	/* number of worklist cleanups */
1284 static int stat_blk_limit_push;	/* number of times block limit neared */
1285 static int stat_ino_limit_push;	/* number of times inode limit neared */
1286 static int stat_blk_limit_hit;	/* number of times block slowdown imposed */
1287 static int stat_ino_limit_hit;	/* number of times inode slowdown imposed */
1288 static int stat_sync_limit_hit;	/* number of synchronous slowdowns imposed */
1289 static int stat_indir_blk_ptrs;	/* bufs redirtied as indir ptrs not written */
1290 static int stat_inode_bitmap;	/* bufs redirtied as inode bitmap not written */
1291 static int stat_direct_blk_ptrs;/* bufs redirtied as direct ptrs not written */
1292 static int stat_dir_entry;	/* bufs redirtied as dir entry cannot write */
1293 static int stat_jaddref;	/* bufs redirtied as ino bitmap can not write */
1294 static int stat_jnewblk;	/* bufs redirtied as blk bitmap can not write */
1295 static int stat_journal_min;	/* Times hit journal min threshold */
1296 static int stat_journal_low;	/* Times hit journal low threshold */
1297 static int stat_journal_wait;	/* Times blocked in jwait(). */
1298 static int stat_jwait_filepage;	/* Times blocked in jwait() for filepage. */
1299 static int stat_jwait_freeblks;	/* Times blocked in jwait() for freeblks. */
1300 static int stat_jwait_inode;	/* Times blocked in jwait() for inodes. */
1301 static int stat_jwait_newblk;	/* Times blocked in jwait() for newblks. */
1302 static int stat_cleanup_high_delay; /* Maximum cleanup delay (in ticks) */
1303 static int stat_cleanup_blkrequests; /* Number of block cleanup requests */
1304 static int stat_cleanup_inorequests; /* Number of inode cleanup requests */
1305 static int stat_cleanup_retries; /* Number of cleanups that needed to flush */
1306 static int stat_cleanup_failures; /* Number of cleanup requests that failed */
1307 static int stat_emptyjblocks; /* Number of potentially empty journal blocks */
1308 
1309 SYSCTL_INT(_debug_softdep, OID_AUTO, max_softdeps, CTLFLAG_RW,
1310     &max_softdeps, 0, "");
1311 SYSCTL_INT(_debug_softdep, OID_AUTO, tickdelay, CTLFLAG_RW,
1312     &tickdelay, 0, "");
1313 SYSCTL_INT(_debug_softdep, OID_AUTO, flush_threads, CTLFLAG_RD,
1314     &stat_flush_threads, 0, "");
1315 SYSCTL_INT(_debug_softdep, OID_AUTO, worklist_push,
1316     CTLFLAG_RW | CTLFLAG_STATS, &stat_worklist_push, 0,"");
1317 SYSCTL_INT(_debug_softdep, OID_AUTO, blk_limit_push,
1318     CTLFLAG_RW | CTLFLAG_STATS, &stat_blk_limit_push, 0,"");
1319 SYSCTL_INT(_debug_softdep, OID_AUTO, ino_limit_push,
1320     CTLFLAG_RW | CTLFLAG_STATS, &stat_ino_limit_push, 0,"");
1321 SYSCTL_INT(_debug_softdep, OID_AUTO, blk_limit_hit,
1322     CTLFLAG_RW | CTLFLAG_STATS, &stat_blk_limit_hit, 0, "");
1323 SYSCTL_INT(_debug_softdep, OID_AUTO, ino_limit_hit,
1324     CTLFLAG_RW | CTLFLAG_STATS, &stat_ino_limit_hit, 0, "");
1325 SYSCTL_INT(_debug_softdep, OID_AUTO, sync_limit_hit,
1326     CTLFLAG_RW | CTLFLAG_STATS, &stat_sync_limit_hit, 0, "");
1327 SYSCTL_INT(_debug_softdep, OID_AUTO, indir_blk_ptrs,
1328     CTLFLAG_RW | CTLFLAG_STATS, &stat_indir_blk_ptrs, 0, "");
1329 SYSCTL_INT(_debug_softdep, OID_AUTO, inode_bitmap,
1330     CTLFLAG_RW | CTLFLAG_STATS, &stat_inode_bitmap, 0, "");
1331 SYSCTL_INT(_debug_softdep, OID_AUTO, direct_blk_ptrs,
1332     CTLFLAG_RW | CTLFLAG_STATS, &stat_direct_blk_ptrs, 0, "");
1333 SYSCTL_INT(_debug_softdep, OID_AUTO, dir_entry,
1334     CTLFLAG_RW | CTLFLAG_STATS, &stat_dir_entry, 0, "");
1335 SYSCTL_INT(_debug_softdep, OID_AUTO, jaddref_rollback,
1336     CTLFLAG_RW | CTLFLAG_STATS, &stat_jaddref, 0, "");
1337 SYSCTL_INT(_debug_softdep, OID_AUTO, jnewblk_rollback,
1338     CTLFLAG_RW | CTLFLAG_STATS, &stat_jnewblk, 0, "");
1339 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_low,
1340     CTLFLAG_RW | CTLFLAG_STATS, &stat_journal_low, 0, "");
1341 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_min,
1342     CTLFLAG_RW | CTLFLAG_STATS, &stat_journal_min, 0, "");
1343 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_wait,
1344     CTLFLAG_RW | CTLFLAG_STATS, &stat_journal_wait, 0, "");
1345 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_filepage,
1346     CTLFLAG_RW | CTLFLAG_STATS, &stat_jwait_filepage, 0, "");
1347 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_freeblks,
1348     CTLFLAG_RW | CTLFLAG_STATS, &stat_jwait_freeblks, 0, "");
1349 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_inode,
1350     CTLFLAG_RW | CTLFLAG_STATS, &stat_jwait_inode, 0, "");
1351 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_newblk,
1352     CTLFLAG_RW | CTLFLAG_STATS, &stat_jwait_newblk, 0, "");
1353 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_blkrequests,
1354     CTLFLAG_RW | CTLFLAG_STATS, &stat_cleanup_blkrequests, 0, "");
1355 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_inorequests,
1356     CTLFLAG_RW | CTLFLAG_STATS, &stat_cleanup_inorequests, 0, "");
1357 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_high_delay,
1358     CTLFLAG_RW | CTLFLAG_STATS, &stat_cleanup_high_delay, 0, "");
1359 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_retries,
1360     CTLFLAG_RW | CTLFLAG_STATS, &stat_cleanup_retries, 0, "");
1361 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_failures,
1362     CTLFLAG_RW | CTLFLAG_STATS, &stat_cleanup_failures, 0, "");
1363 
1364 SYSCTL_INT(_debug_softdep, OID_AUTO, flushcache, CTLFLAG_RW,
1365     &softdep_flushcache, 0, "");
1366 SYSCTL_INT(_debug_softdep, OID_AUTO, emptyjblocks, CTLFLAG_RD,
1367     &stat_emptyjblocks, 0, "");
1368 
1369 SYSCTL_DECL(_vfs_ffs);
1370 
1371 /* Whether to recompute the summary at mount time */
1372 static int compute_summary_at_mount = 0;
1373 SYSCTL_INT(_vfs_ffs, OID_AUTO, compute_summary_at_mount, CTLFLAG_RW,
1374 	   &compute_summary_at_mount, 0, "Recompute summary at mount");
1375 static int print_threads = 0;
1376 SYSCTL_INT(_debug_softdep, OID_AUTO, print_threads, CTLFLAG_RW,
1377     &print_threads, 0, "Notify flusher thread start/stop");
1378 
1379 /* List of all filesystems mounted with soft updates */
1380 static TAILQ_HEAD(, mount_softdeps) softdepmounts;
1381 
1382 /*
1383  * This function cleans the worklist for a filesystem.
1384  * Each filesystem running with soft dependencies gets its own
1385  * thread to run in this function. The thread is started up in
1386  * softdep_mount and shutdown in softdep_unmount. They show up
1387  * as part of the kernel "bufdaemon" process whose process
1388  * entry is available in bufdaemonproc.
1389  */
1390 static int searchfailed;
1391 extern struct proc *bufdaemonproc;
1392 static void
1393 softdep_flush(addr)
1394 	void *addr;
1395 {
1396 	struct mount *mp;
1397 	struct thread *td;
1398 	struct ufsmount *ump;
1399 
1400 	td = curthread;
1401 	td->td_pflags |= TDP_NORUNNINGBUF;
1402 	mp = (struct mount *)addr;
1403 	ump = VFSTOUFS(mp);
1404 	atomic_add_int(&stat_flush_threads, 1);
1405 	ACQUIRE_LOCK(ump);
1406 	ump->softdep_flags &= ~FLUSH_STARTING;
1407 	wakeup(&ump->softdep_flushtd);
1408 	FREE_LOCK(ump);
1409 	if (print_threads) {
1410 		if (stat_flush_threads == 1)
1411 			printf("Running %s at pid %d\n", bufdaemonproc->p_comm,
1412 			    bufdaemonproc->p_pid);
1413 		printf("Start thread %s\n", td->td_name);
1414 	}
1415 	for (;;) {
1416 		while (softdep_process_worklist(mp, 0) > 0 ||
1417 		    (MOUNTEDSUJ(mp) &&
1418 		    VFSTOUFS(mp)->softdep_jblocks->jb_suspended))
1419 			kthread_suspend_check();
1420 		ACQUIRE_LOCK(ump);
1421 		if ((ump->softdep_flags & (FLUSH_CLEANUP | FLUSH_EXIT)) == 0)
1422 			msleep(&ump->softdep_flushtd, LOCK_PTR(ump), PVM,
1423 			    "sdflush", hz / 2);
1424 		ump->softdep_flags &= ~FLUSH_CLEANUP;
1425 		/*
1426 		 * Check to see if we are done and need to exit.
1427 		 */
1428 		if ((ump->softdep_flags & FLUSH_EXIT) == 0) {
1429 			FREE_LOCK(ump);
1430 			continue;
1431 		}
1432 		ump->softdep_flags &= ~FLUSH_EXIT;
1433 		FREE_LOCK(ump);
1434 		wakeup(&ump->softdep_flags);
1435 		if (print_threads)
1436 			printf("Stop thread %s: searchfailed %d, did cleanups %d\n", td->td_name, searchfailed, ump->um_softdep->sd_cleanups);
1437 		atomic_subtract_int(&stat_flush_threads, 1);
1438 		kthread_exit();
1439 		panic("kthread_exit failed\n");
1440 	}
1441 }
1442 
1443 static void
1444 worklist_speedup(mp)
1445 	struct mount *mp;
1446 {
1447 	struct ufsmount *ump;
1448 
1449 	ump = VFSTOUFS(mp);
1450 	LOCK_OWNED(ump);
1451 	if ((ump->softdep_flags & (FLUSH_CLEANUP | FLUSH_EXIT)) == 0)
1452 		ump->softdep_flags |= FLUSH_CLEANUP;
1453 	wakeup(&ump->softdep_flushtd);
1454 }
1455 
1456 static void
1457 softdep_send_speedup(struct ufsmount *ump, size_t shortage, u_int flags)
1458 {
1459 	struct buf *bp;
1460 
1461 	bp = malloc(sizeof(*bp), M_TRIM, M_WAITOK | M_ZERO);
1462 	bp->b_iocmd = BIO_SPEEDUP;
1463 	bp->b_ioflags = flags;
1464 	bp->b_bcount = shortage;
1465 	g_vfs_strategy(ump->um_bo, bp);
1466 	bufwait(bp);
1467 	free(bp, M_TRIM);
1468 }
1469 
1470 static int
1471 softdep_speedup(ump)
1472 	struct ufsmount *ump;
1473 {
1474 	struct ufsmount *altump;
1475 	struct mount_softdeps *sdp;
1476 
1477 	LOCK_OWNED(ump);
1478 	worklist_speedup(ump->um_mountp);
1479 	bd_speedup();
1480 	/*
1481 	 * If we have global shortages, then we need other
1482 	 * filesystems to help with the cleanup. Here we wakeup a
1483 	 * flusher thread for a filesystem that is over its fair
1484 	 * share of resources.
1485 	 */
1486 	if (req_clear_inodedeps || req_clear_remove) {
1487 		ACQUIRE_GBLLOCK(&lk);
1488 		TAILQ_FOREACH(sdp, &softdepmounts, sd_next) {
1489 			if ((altump = sdp->sd_ump) == ump)
1490 				continue;
1491 			if (((req_clear_inodedeps &&
1492 			    altump->softdep_curdeps[D_INODEDEP] >
1493 			    max_softdeps / stat_flush_threads) ||
1494 			    (req_clear_remove &&
1495 			    altump->softdep_curdeps[D_DIRREM] >
1496 			    (max_softdeps / 2) / stat_flush_threads)) &&
1497 			    TRY_ACQUIRE_LOCK(altump))
1498 				break;
1499 		}
1500 		if (sdp == NULL) {
1501 			searchfailed++;
1502 			FREE_GBLLOCK(&lk);
1503 		} else {
1504 			/*
1505 			 * Move to the end of the list so we pick a
1506 			 * different one on out next try.
1507 			 */
1508 			TAILQ_REMOVE(&softdepmounts, sdp, sd_next);
1509 			TAILQ_INSERT_TAIL(&softdepmounts, sdp, sd_next);
1510 			FREE_GBLLOCK(&lk);
1511 			if ((altump->softdep_flags &
1512 			    (FLUSH_CLEANUP | FLUSH_EXIT)) == 0)
1513 				altump->softdep_flags |= FLUSH_CLEANUP;
1514 			altump->um_softdep->sd_cleanups++;
1515 			wakeup(&altump->softdep_flushtd);
1516 			FREE_LOCK(altump);
1517 		}
1518 	}
1519 	return (speedup_syncer());
1520 }
1521 
1522 /*
1523  * Add an item to the end of the work queue.
1524  * This routine requires that the lock be held.
1525  * This is the only routine that adds items to the list.
1526  * The following routine is the only one that removes items
1527  * and does so in order from first to last.
1528  */
1529 
1530 #define	WK_HEAD		0x0001	/* Add to HEAD. */
1531 #define	WK_NODELAY	0x0002	/* Process immediately. */
1532 
1533 static void
1534 add_to_worklist(wk, flags)
1535 	struct worklist *wk;
1536 	int flags;
1537 {
1538 	struct ufsmount *ump;
1539 
1540 	ump = VFSTOUFS(wk->wk_mp);
1541 	LOCK_OWNED(ump);
1542 	if (wk->wk_state & ONWORKLIST)
1543 		panic("add_to_worklist: %s(0x%X) already on list",
1544 		    TYPENAME(wk->wk_type), wk->wk_state);
1545 	wk->wk_state |= ONWORKLIST;
1546 	if (ump->softdep_on_worklist == 0) {
1547 		LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list);
1548 		ump->softdep_worklist_tail = wk;
1549 	} else if (flags & WK_HEAD) {
1550 		LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list);
1551 	} else {
1552 		LIST_INSERT_AFTER(ump->softdep_worklist_tail, wk, wk_list);
1553 		ump->softdep_worklist_tail = wk;
1554 	}
1555 	ump->softdep_on_worklist += 1;
1556 	if (flags & WK_NODELAY)
1557 		worklist_speedup(wk->wk_mp);
1558 }
1559 
1560 /*
1561  * Remove the item to be processed. If we are removing the last
1562  * item on the list, we need to recalculate the tail pointer.
1563  */
1564 static void
1565 remove_from_worklist(wk)
1566 	struct worklist *wk;
1567 {
1568 	struct ufsmount *ump;
1569 
1570 	ump = VFSTOUFS(wk->wk_mp);
1571 	if (ump->softdep_worklist_tail == wk)
1572 		ump->softdep_worklist_tail =
1573 		    (struct worklist *)wk->wk_list.le_prev;
1574 	WORKLIST_REMOVE(wk);
1575 	ump->softdep_on_worklist -= 1;
1576 }
1577 
1578 static void
1579 wake_worklist(wk)
1580 	struct worklist *wk;
1581 {
1582 	if (wk->wk_state & IOWAITING) {
1583 		wk->wk_state &= ~IOWAITING;
1584 		wakeup(wk);
1585 	}
1586 }
1587 
1588 static void
1589 wait_worklist(wk, wmesg)
1590 	struct worklist *wk;
1591 	char *wmesg;
1592 {
1593 	struct ufsmount *ump;
1594 
1595 	ump = VFSTOUFS(wk->wk_mp);
1596 	wk->wk_state |= IOWAITING;
1597 	msleep(wk, LOCK_PTR(ump), PVM, wmesg, 0);
1598 }
1599 
1600 /*
1601  * Process that runs once per second to handle items in the background queue.
1602  *
1603  * Note that we ensure that everything is done in the order in which they
1604  * appear in the queue. The code below depends on this property to ensure
1605  * that blocks of a file are freed before the inode itself is freed. This
1606  * ordering ensures that no new <vfsid, inum, lbn> triples will be generated
1607  * until all the old ones have been purged from the dependency lists.
1608  */
1609 static int
1610 softdep_process_worklist(mp, full)
1611 	struct mount *mp;
1612 	int full;
1613 {
1614 	int cnt, matchcnt;
1615 	struct ufsmount *ump;
1616 	long starttime;
1617 
1618 	KASSERT(mp != NULL, ("softdep_process_worklist: NULL mp"));
1619 	if (MOUNTEDSOFTDEP(mp) == 0)
1620 		return (0);
1621 	matchcnt = 0;
1622 	ump = VFSTOUFS(mp);
1623 	ACQUIRE_LOCK(ump);
1624 	starttime = time_second;
1625 	softdep_process_journal(mp, NULL, full ? MNT_WAIT : 0);
1626 	check_clear_deps(mp);
1627 	while (ump->softdep_on_worklist > 0) {
1628 		if ((cnt = process_worklist_item(mp, 10, LK_NOWAIT)) == 0)
1629 			break;
1630 		else
1631 			matchcnt += cnt;
1632 		check_clear_deps(mp);
1633 		/*
1634 		 * We do not generally want to stop for buffer space, but if
1635 		 * we are really being a buffer hog, we will stop and wait.
1636 		 */
1637 		if (should_yield()) {
1638 			FREE_LOCK(ump);
1639 			kern_yield(PRI_USER);
1640 			bwillwrite();
1641 			ACQUIRE_LOCK(ump);
1642 		}
1643 		/*
1644 		 * Never allow processing to run for more than one
1645 		 * second. This gives the syncer thread the opportunity
1646 		 * to pause if appropriate.
1647 		 */
1648 		if (!full && starttime != time_second)
1649 			break;
1650 	}
1651 	if (full == 0)
1652 		journal_unsuspend(ump);
1653 	FREE_LOCK(ump);
1654 	return (matchcnt);
1655 }
1656 
1657 /*
1658  * Process all removes associated with a vnode if we are running out of
1659  * journal space.  Any other process which attempts to flush these will
1660  * be unable as we have the vnodes locked.
1661  */
1662 static void
1663 process_removes(vp)
1664 	struct vnode *vp;
1665 {
1666 	struct inodedep *inodedep;
1667 	struct dirrem *dirrem;
1668 	struct ufsmount *ump;
1669 	struct mount *mp;
1670 	ino_t inum;
1671 
1672 	mp = vp->v_mount;
1673 	ump = VFSTOUFS(mp);
1674 	LOCK_OWNED(ump);
1675 	inum = VTOI(vp)->i_number;
1676 	for (;;) {
1677 top:
1678 		if (inodedep_lookup(mp, inum, 0, &inodedep) == 0)
1679 			return;
1680 		LIST_FOREACH(dirrem, &inodedep->id_dirremhd, dm_inonext) {
1681 			/*
1682 			 * If another thread is trying to lock this vnode
1683 			 * it will fail but we must wait for it to do so
1684 			 * before we can proceed.
1685 			 */
1686 			if (dirrem->dm_state & INPROGRESS) {
1687 				wait_worklist(&dirrem->dm_list, "pwrwait");
1688 				goto top;
1689 			}
1690 			if ((dirrem->dm_state & (COMPLETE | ONWORKLIST)) ==
1691 			    (COMPLETE | ONWORKLIST))
1692 				break;
1693 		}
1694 		if (dirrem == NULL)
1695 			return;
1696 		remove_from_worklist(&dirrem->dm_list);
1697 		FREE_LOCK(ump);
1698 		if (vn_start_secondary_write(NULL, &mp, V_NOWAIT))
1699 			panic("process_removes: suspended filesystem");
1700 		handle_workitem_remove(dirrem, 0);
1701 		vn_finished_secondary_write(mp);
1702 		ACQUIRE_LOCK(ump);
1703 	}
1704 }
1705 
1706 /*
1707  * Process all truncations associated with a vnode if we are running out
1708  * of journal space.  This is called when the vnode lock is already held
1709  * and no other process can clear the truncation.  This function returns
1710  * a value greater than zero if it did any work.
1711  */
1712 static void
1713 process_truncates(vp)
1714 	struct vnode *vp;
1715 {
1716 	struct inodedep *inodedep;
1717 	struct freeblks *freeblks;
1718 	struct ufsmount *ump;
1719 	struct mount *mp;
1720 	ino_t inum;
1721 	int cgwait;
1722 
1723 	mp = vp->v_mount;
1724 	ump = VFSTOUFS(mp);
1725 	LOCK_OWNED(ump);
1726 	inum = VTOI(vp)->i_number;
1727 	for (;;) {
1728 		if (inodedep_lookup(mp, inum, 0, &inodedep) == 0)
1729 			return;
1730 		cgwait = 0;
1731 		TAILQ_FOREACH(freeblks, &inodedep->id_freeblklst, fb_next) {
1732 			/* Journal entries not yet written.  */
1733 			if (!LIST_EMPTY(&freeblks->fb_jblkdephd)) {
1734 				jwait(&LIST_FIRST(
1735 				    &freeblks->fb_jblkdephd)->jb_list,
1736 				    MNT_WAIT);
1737 				break;
1738 			}
1739 			/* Another thread is executing this item. */
1740 			if (freeblks->fb_state & INPROGRESS) {
1741 				wait_worklist(&freeblks->fb_list, "ptrwait");
1742 				break;
1743 			}
1744 			/* Freeblks is waiting on a inode write. */
1745 			if ((freeblks->fb_state & COMPLETE) == 0) {
1746 				FREE_LOCK(ump);
1747 				ffs_update(vp, 1);
1748 				ACQUIRE_LOCK(ump);
1749 				break;
1750 			}
1751 			if ((freeblks->fb_state & (ALLCOMPLETE | ONWORKLIST)) ==
1752 			    (ALLCOMPLETE | ONWORKLIST)) {
1753 				remove_from_worklist(&freeblks->fb_list);
1754 				freeblks->fb_state |= INPROGRESS;
1755 				FREE_LOCK(ump);
1756 				if (vn_start_secondary_write(NULL, &mp,
1757 				    V_NOWAIT))
1758 					panic("process_truncates: "
1759 					    "suspended filesystem");
1760 				handle_workitem_freeblocks(freeblks, 0);
1761 				vn_finished_secondary_write(mp);
1762 				ACQUIRE_LOCK(ump);
1763 				break;
1764 			}
1765 			if (freeblks->fb_cgwait)
1766 				cgwait++;
1767 		}
1768 		if (cgwait) {
1769 			FREE_LOCK(ump);
1770 			sync_cgs(mp, MNT_WAIT);
1771 			ffs_sync_snap(mp, MNT_WAIT);
1772 			ACQUIRE_LOCK(ump);
1773 			continue;
1774 		}
1775 		if (freeblks == NULL)
1776 			break;
1777 	}
1778 	return;
1779 }
1780 
1781 /*
1782  * Process one item on the worklist.
1783  */
1784 static int
1785 process_worklist_item(mp, target, flags)
1786 	struct mount *mp;
1787 	int target;
1788 	int flags;
1789 {
1790 	struct worklist sentinel;
1791 	struct worklist *wk;
1792 	struct ufsmount *ump;
1793 	int matchcnt;
1794 	int error;
1795 
1796 	KASSERT(mp != NULL, ("process_worklist_item: NULL mp"));
1797 	/*
1798 	 * If we are being called because of a process doing a
1799 	 * copy-on-write, then it is not safe to write as we may
1800 	 * recurse into the copy-on-write routine.
1801 	 */
1802 	if (curthread->td_pflags & TDP_COWINPROGRESS)
1803 		return (-1);
1804 	PHOLD(curproc);	/* Don't let the stack go away. */
1805 	ump = VFSTOUFS(mp);
1806 	LOCK_OWNED(ump);
1807 	matchcnt = 0;
1808 	sentinel.wk_mp = NULL;
1809 	sentinel.wk_type = D_SENTINEL;
1810 	LIST_INSERT_HEAD(&ump->softdep_workitem_pending, &sentinel, wk_list);
1811 	for (wk = LIST_NEXT(&sentinel, wk_list); wk != NULL;
1812 	    wk = LIST_NEXT(&sentinel, wk_list)) {
1813 		if (wk->wk_type == D_SENTINEL) {
1814 			LIST_REMOVE(&sentinel, wk_list);
1815 			LIST_INSERT_AFTER(wk, &sentinel, wk_list);
1816 			continue;
1817 		}
1818 		if (wk->wk_state & INPROGRESS)
1819 			panic("process_worklist_item: %p already in progress.",
1820 			    wk);
1821 		wk->wk_state |= INPROGRESS;
1822 		remove_from_worklist(wk);
1823 		FREE_LOCK(ump);
1824 		if (vn_start_secondary_write(NULL, &mp, V_NOWAIT))
1825 			panic("process_worklist_item: suspended filesystem");
1826 		switch (wk->wk_type) {
1827 		case D_DIRREM:
1828 			/* removal of a directory entry */
1829 			error = handle_workitem_remove(WK_DIRREM(wk), flags);
1830 			break;
1831 
1832 		case D_FREEBLKS:
1833 			/* releasing blocks and/or fragments from a file */
1834 			error = handle_workitem_freeblocks(WK_FREEBLKS(wk),
1835 			    flags);
1836 			break;
1837 
1838 		case D_FREEFRAG:
1839 			/* releasing a fragment when replaced as a file grows */
1840 			handle_workitem_freefrag(WK_FREEFRAG(wk));
1841 			error = 0;
1842 			break;
1843 
1844 		case D_FREEFILE:
1845 			/* releasing an inode when its link count drops to 0 */
1846 			handle_workitem_freefile(WK_FREEFILE(wk));
1847 			error = 0;
1848 			break;
1849 
1850 		default:
1851 			panic("%s_process_worklist: Unknown type %s",
1852 			    "softdep", TYPENAME(wk->wk_type));
1853 			/* NOTREACHED */
1854 		}
1855 		vn_finished_secondary_write(mp);
1856 		ACQUIRE_LOCK(ump);
1857 		if (error == 0) {
1858 			if (++matchcnt == target)
1859 				break;
1860 			continue;
1861 		}
1862 		/*
1863 		 * We have to retry the worklist item later.  Wake up any
1864 		 * waiters who may be able to complete it immediately and
1865 		 * add the item back to the head so we don't try to execute
1866 		 * it again.
1867 		 */
1868 		wk->wk_state &= ~INPROGRESS;
1869 		wake_worklist(wk);
1870 		add_to_worklist(wk, WK_HEAD);
1871 	}
1872 	/* Sentinal could've become the tail from remove_from_worklist. */
1873 	if (ump->softdep_worklist_tail == &sentinel)
1874 		ump->softdep_worklist_tail =
1875 		    (struct worklist *)sentinel.wk_list.le_prev;
1876 	LIST_REMOVE(&sentinel, wk_list);
1877 	PRELE(curproc);
1878 	return (matchcnt);
1879 }
1880 
1881 /*
1882  * Move dependencies from one buffer to another.
1883  */
1884 int
1885 softdep_move_dependencies(oldbp, newbp)
1886 	struct buf *oldbp;
1887 	struct buf *newbp;
1888 {
1889 	struct worklist *wk, *wktail;
1890 	struct ufsmount *ump;
1891 	int dirty;
1892 
1893 	if ((wk = LIST_FIRST(&oldbp->b_dep)) == NULL)
1894 		return (0);
1895 	KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0,
1896 	    ("softdep_move_dependencies called on non-softdep filesystem"));
1897 	dirty = 0;
1898 	wktail = NULL;
1899 	ump = VFSTOUFS(wk->wk_mp);
1900 	ACQUIRE_LOCK(ump);
1901 	while ((wk = LIST_FIRST(&oldbp->b_dep)) != NULL) {
1902 		LIST_REMOVE(wk, wk_list);
1903 		if (wk->wk_type == D_BMSAFEMAP &&
1904 		    bmsafemap_backgroundwrite(WK_BMSAFEMAP(wk), newbp))
1905 			dirty = 1;
1906 		if (wktail == NULL)
1907 			LIST_INSERT_HEAD(&newbp->b_dep, wk, wk_list);
1908 		else
1909 			LIST_INSERT_AFTER(wktail, wk, wk_list);
1910 		wktail = wk;
1911 	}
1912 	FREE_LOCK(ump);
1913 
1914 	return (dirty);
1915 }
1916 
1917 /*
1918  * Purge the work list of all items associated with a particular mount point.
1919  */
1920 int
1921 softdep_flushworklist(oldmnt, countp, td)
1922 	struct mount *oldmnt;
1923 	int *countp;
1924 	struct thread *td;
1925 {
1926 	struct vnode *devvp;
1927 	struct ufsmount *ump;
1928 	int count, error;
1929 
1930 	/*
1931 	 * Alternately flush the block device associated with the mount
1932 	 * point and process any dependencies that the flushing
1933 	 * creates. We continue until no more worklist dependencies
1934 	 * are found.
1935 	 */
1936 	*countp = 0;
1937 	error = 0;
1938 	ump = VFSTOUFS(oldmnt);
1939 	devvp = ump->um_devvp;
1940 	while ((count = softdep_process_worklist(oldmnt, 1)) > 0) {
1941 		*countp += count;
1942 		vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
1943 		error = VOP_FSYNC(devvp, MNT_WAIT, td);
1944 		VOP_UNLOCK(devvp);
1945 		if (error != 0)
1946 			break;
1947 	}
1948 	return (error);
1949 }
1950 
1951 #define	SU_WAITIDLE_RETRIES	20
1952 static int
1953 softdep_waitidle(struct mount *mp, int flags __unused)
1954 {
1955 	struct ufsmount *ump;
1956 	struct vnode *devvp;
1957 	struct thread *td;
1958 	int error, i;
1959 
1960 	ump = VFSTOUFS(mp);
1961 	devvp = ump->um_devvp;
1962 	td = curthread;
1963 	error = 0;
1964 	ACQUIRE_LOCK(ump);
1965 	for (i = 0; i < SU_WAITIDLE_RETRIES && ump->softdep_deps != 0; i++) {
1966 		ump->softdep_req = 1;
1967 		KASSERT((flags & FORCECLOSE) == 0 ||
1968 		    ump->softdep_on_worklist == 0,
1969 		    ("softdep_waitidle: work added after flush"));
1970 		msleep(&ump->softdep_deps, LOCK_PTR(ump), PVM | PDROP,
1971 		    "softdeps", 10 * hz);
1972 		vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
1973 		error = VOP_FSYNC(devvp, MNT_WAIT, td);
1974 		VOP_UNLOCK(devvp);
1975 		ACQUIRE_LOCK(ump);
1976 		if (error != 0)
1977 			break;
1978 	}
1979 	ump->softdep_req = 0;
1980 	if (i == SU_WAITIDLE_RETRIES && error == 0 && ump->softdep_deps != 0) {
1981 		error = EBUSY;
1982 		printf("softdep_waitidle: Failed to flush worklist for %p\n",
1983 		    mp);
1984 	}
1985 	FREE_LOCK(ump);
1986 	return (error);
1987 }
1988 
1989 /*
1990  * Flush all vnodes and worklist items associated with a specified mount point.
1991  */
1992 int
1993 softdep_flushfiles(oldmnt, flags, td)
1994 	struct mount *oldmnt;
1995 	int flags;
1996 	struct thread *td;
1997 {
1998 #ifdef QUOTA
1999 	struct ufsmount *ump;
2000 	int i;
2001 #endif
2002 	int error, early, depcount, loopcnt, retry_flush_count, retry;
2003 	int morework;
2004 
2005 	KASSERT(MOUNTEDSOFTDEP(oldmnt) != 0,
2006 	    ("softdep_flushfiles called on non-softdep filesystem"));
2007 	loopcnt = 10;
2008 	retry_flush_count = 3;
2009 retry_flush:
2010 	error = 0;
2011 
2012 	/*
2013 	 * Alternately flush the vnodes associated with the mount
2014 	 * point and process any dependencies that the flushing
2015 	 * creates. In theory, this loop can happen at most twice,
2016 	 * but we give it a few extra just to be sure.
2017 	 */
2018 	for (; loopcnt > 0; loopcnt--) {
2019 		/*
2020 		 * Do another flush in case any vnodes were brought in
2021 		 * as part of the cleanup operations.
2022 		 */
2023 		early = retry_flush_count == 1 || (oldmnt->mnt_kern_flag &
2024 		    MNTK_UNMOUNT) == 0 ? 0 : EARLYFLUSH;
2025 		if ((error = ffs_flushfiles(oldmnt, flags | early, td)) != 0)
2026 			break;
2027 		if ((error = softdep_flushworklist(oldmnt, &depcount, td)) != 0 ||
2028 		    depcount == 0)
2029 			break;
2030 	}
2031 	/*
2032 	 * If we are unmounting then it is an error to fail. If we
2033 	 * are simply trying to downgrade to read-only, then filesystem
2034 	 * activity can keep us busy forever, so we just fail with EBUSY.
2035 	 */
2036 	if (loopcnt == 0) {
2037 		if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT)
2038 			panic("softdep_flushfiles: looping");
2039 		error = EBUSY;
2040 	}
2041 	if (!error)
2042 		error = softdep_waitidle(oldmnt, flags);
2043 	if (!error) {
2044 		if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT) {
2045 			retry = 0;
2046 			MNT_ILOCK(oldmnt);
2047 			morework = oldmnt->mnt_nvnodelistsize > 0;
2048 #ifdef QUOTA
2049 			ump = VFSTOUFS(oldmnt);
2050 			UFS_LOCK(ump);
2051 			for (i = 0; i < MAXQUOTAS; i++) {
2052 				if (ump->um_quotas[i] != NULLVP)
2053 					morework = 1;
2054 			}
2055 			UFS_UNLOCK(ump);
2056 #endif
2057 			if (morework) {
2058 				if (--retry_flush_count > 0) {
2059 					retry = 1;
2060 					loopcnt = 3;
2061 				} else
2062 					error = EBUSY;
2063 			}
2064 			MNT_IUNLOCK(oldmnt);
2065 			if (retry)
2066 				goto retry_flush;
2067 		}
2068 	}
2069 	return (error);
2070 }
2071 
2072 /*
2073  * Structure hashing.
2074  *
2075  * There are four types of structures that can be looked up:
2076  *	1) pagedep structures identified by mount point, inode number,
2077  *	   and logical block.
2078  *	2) inodedep structures identified by mount point and inode number.
2079  *	3) newblk structures identified by mount point and
2080  *	   physical block number.
2081  *	4) bmsafemap structures identified by mount point and
2082  *	   cylinder group number.
2083  *
2084  * The "pagedep" and "inodedep" dependency structures are hashed
2085  * separately from the file blocks and inodes to which they correspond.
2086  * This separation helps when the in-memory copy of an inode or
2087  * file block must be replaced. It also obviates the need to access
2088  * an inode or file page when simply updating (or de-allocating)
2089  * dependency structures. Lookup of newblk structures is needed to
2090  * find newly allocated blocks when trying to associate them with
2091  * their allocdirect or allocindir structure.
2092  *
2093  * The lookup routines optionally create and hash a new instance when
2094  * an existing entry is not found. The bmsafemap lookup routine always
2095  * allocates a new structure if an existing one is not found.
2096  */
2097 #define DEPALLOC	0x0001	/* allocate structure if lookup fails */
2098 
2099 /*
2100  * Structures and routines associated with pagedep caching.
2101  */
2102 #define	PAGEDEP_HASH(ump, inum, lbn) \
2103 	(&(ump)->pagedep_hashtbl[((inum) + (lbn)) & (ump)->pagedep_hash_size])
2104 
2105 static int
2106 pagedep_find(pagedephd, ino, lbn, pagedeppp)
2107 	struct pagedep_hashhead *pagedephd;
2108 	ino_t ino;
2109 	ufs_lbn_t lbn;
2110 	struct pagedep **pagedeppp;
2111 {
2112 	struct pagedep *pagedep;
2113 
2114 	LIST_FOREACH(pagedep, pagedephd, pd_hash) {
2115 		if (ino == pagedep->pd_ino && lbn == pagedep->pd_lbn) {
2116 			*pagedeppp = pagedep;
2117 			return (1);
2118 		}
2119 	}
2120 	*pagedeppp = NULL;
2121 	return (0);
2122 }
2123 /*
2124  * Look up a pagedep. Return 1 if found, 0 otherwise.
2125  * If not found, allocate if DEPALLOC flag is passed.
2126  * Found or allocated entry is returned in pagedeppp.
2127  */
2128 static int
2129 pagedep_lookup(mp, bp, ino, lbn, flags, pagedeppp)
2130 	struct mount *mp;
2131 	struct buf *bp;
2132 	ino_t ino;
2133 	ufs_lbn_t lbn;
2134 	int flags;
2135 	struct pagedep **pagedeppp;
2136 {
2137 	struct pagedep *pagedep;
2138 	struct pagedep_hashhead *pagedephd;
2139 	struct worklist *wk;
2140 	struct ufsmount *ump;
2141 	int ret;
2142 	int i;
2143 
2144 	ump = VFSTOUFS(mp);
2145 	LOCK_OWNED(ump);
2146 	if (bp) {
2147 		LIST_FOREACH(wk, &bp->b_dep, wk_list) {
2148 			if (wk->wk_type == D_PAGEDEP) {
2149 				*pagedeppp = WK_PAGEDEP(wk);
2150 				return (1);
2151 			}
2152 		}
2153 	}
2154 	pagedephd = PAGEDEP_HASH(ump, ino, lbn);
2155 	ret = pagedep_find(pagedephd, ino, lbn, pagedeppp);
2156 	if (ret) {
2157 		if (((*pagedeppp)->pd_state & ONWORKLIST) == 0 && bp)
2158 			WORKLIST_INSERT(&bp->b_dep, &(*pagedeppp)->pd_list);
2159 		return (1);
2160 	}
2161 	if ((flags & DEPALLOC) == 0)
2162 		return (0);
2163 	FREE_LOCK(ump);
2164 	pagedep = malloc(sizeof(struct pagedep),
2165 	    M_PAGEDEP, M_SOFTDEP_FLAGS|M_ZERO);
2166 	workitem_alloc(&pagedep->pd_list, D_PAGEDEP, mp);
2167 	ACQUIRE_LOCK(ump);
2168 	ret = pagedep_find(pagedephd, ino, lbn, pagedeppp);
2169 	if (*pagedeppp) {
2170 		/*
2171 		 * This should never happen since we only create pagedeps
2172 		 * with the vnode lock held.  Could be an assert.
2173 		 */
2174 		WORKITEM_FREE(pagedep, D_PAGEDEP);
2175 		return (ret);
2176 	}
2177 	pagedep->pd_ino = ino;
2178 	pagedep->pd_lbn = lbn;
2179 	LIST_INIT(&pagedep->pd_dirremhd);
2180 	LIST_INIT(&pagedep->pd_pendinghd);
2181 	for (i = 0; i < DAHASHSZ; i++)
2182 		LIST_INIT(&pagedep->pd_diraddhd[i]);
2183 	LIST_INSERT_HEAD(pagedephd, pagedep, pd_hash);
2184 	WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list);
2185 	*pagedeppp = pagedep;
2186 	return (0);
2187 }
2188 
2189 /*
2190  * Structures and routines associated with inodedep caching.
2191  */
2192 #define	INODEDEP_HASH(ump, inum) \
2193       (&(ump)->inodedep_hashtbl[(inum) & (ump)->inodedep_hash_size])
2194 
2195 static int
2196 inodedep_find(inodedephd, inum, inodedeppp)
2197 	struct inodedep_hashhead *inodedephd;
2198 	ino_t inum;
2199 	struct inodedep **inodedeppp;
2200 {
2201 	struct inodedep *inodedep;
2202 
2203 	LIST_FOREACH(inodedep, inodedephd, id_hash)
2204 		if (inum == inodedep->id_ino)
2205 			break;
2206 	if (inodedep) {
2207 		*inodedeppp = inodedep;
2208 		return (1);
2209 	}
2210 	*inodedeppp = NULL;
2211 
2212 	return (0);
2213 }
2214 /*
2215  * Look up an inodedep. Return 1 if found, 0 if not found.
2216  * If not found, allocate if DEPALLOC flag is passed.
2217  * Found or allocated entry is returned in inodedeppp.
2218  */
2219 static int
2220 inodedep_lookup(mp, inum, flags, inodedeppp)
2221 	struct mount *mp;
2222 	ino_t inum;
2223 	int flags;
2224 	struct inodedep **inodedeppp;
2225 {
2226 	struct inodedep *inodedep;
2227 	struct inodedep_hashhead *inodedephd;
2228 	struct ufsmount *ump;
2229 	struct fs *fs;
2230 
2231 	ump = VFSTOUFS(mp);
2232 	LOCK_OWNED(ump);
2233 	fs = ump->um_fs;
2234 	inodedephd = INODEDEP_HASH(ump, inum);
2235 
2236 	if (inodedep_find(inodedephd, inum, inodedeppp))
2237 		return (1);
2238 	if ((flags & DEPALLOC) == 0)
2239 		return (0);
2240 	/*
2241 	 * If the system is over its limit and our filesystem is
2242 	 * responsible for more than our share of that usage and
2243 	 * we are not in a rush, request some inodedep cleanup.
2244 	 */
2245 	if (softdep_excess_items(ump, D_INODEDEP))
2246 		schedule_cleanup(mp);
2247 	else
2248 		FREE_LOCK(ump);
2249 	inodedep = malloc(sizeof(struct inodedep),
2250 		M_INODEDEP, M_SOFTDEP_FLAGS);
2251 	workitem_alloc(&inodedep->id_list, D_INODEDEP, mp);
2252 	ACQUIRE_LOCK(ump);
2253 	if (inodedep_find(inodedephd, inum, inodedeppp)) {
2254 		WORKITEM_FREE(inodedep, D_INODEDEP);
2255 		return (1);
2256 	}
2257 	inodedep->id_fs = fs;
2258 	inodedep->id_ino = inum;
2259 	inodedep->id_state = ALLCOMPLETE;
2260 	inodedep->id_nlinkdelta = 0;
2261 	inodedep->id_savedino1 = NULL;
2262 	inodedep->id_savedsize = -1;
2263 	inodedep->id_savedextsize = -1;
2264 	inodedep->id_savednlink = -1;
2265 	inodedep->id_bmsafemap = NULL;
2266 	inodedep->id_mkdiradd = NULL;
2267 	LIST_INIT(&inodedep->id_dirremhd);
2268 	LIST_INIT(&inodedep->id_pendinghd);
2269 	LIST_INIT(&inodedep->id_inowait);
2270 	LIST_INIT(&inodedep->id_bufwait);
2271 	TAILQ_INIT(&inodedep->id_inoreflst);
2272 	TAILQ_INIT(&inodedep->id_inoupdt);
2273 	TAILQ_INIT(&inodedep->id_newinoupdt);
2274 	TAILQ_INIT(&inodedep->id_extupdt);
2275 	TAILQ_INIT(&inodedep->id_newextupdt);
2276 	TAILQ_INIT(&inodedep->id_freeblklst);
2277 	LIST_INSERT_HEAD(inodedephd, inodedep, id_hash);
2278 	*inodedeppp = inodedep;
2279 	return (0);
2280 }
2281 
2282 /*
2283  * Structures and routines associated with newblk caching.
2284  */
2285 #define	NEWBLK_HASH(ump, inum) \
2286 	(&(ump)->newblk_hashtbl[(inum) & (ump)->newblk_hash_size])
2287 
2288 static int
2289 newblk_find(newblkhd, newblkno, flags, newblkpp)
2290 	struct newblk_hashhead *newblkhd;
2291 	ufs2_daddr_t newblkno;
2292 	int flags;
2293 	struct newblk **newblkpp;
2294 {
2295 	struct newblk *newblk;
2296 
2297 	LIST_FOREACH(newblk, newblkhd, nb_hash) {
2298 		if (newblkno != newblk->nb_newblkno)
2299 			continue;
2300 		/*
2301 		 * If we're creating a new dependency don't match those that
2302 		 * have already been converted to allocdirects.  This is for
2303 		 * a frag extend.
2304 		 */
2305 		if ((flags & DEPALLOC) && newblk->nb_list.wk_type != D_NEWBLK)
2306 			continue;
2307 		break;
2308 	}
2309 	if (newblk) {
2310 		*newblkpp = newblk;
2311 		return (1);
2312 	}
2313 	*newblkpp = NULL;
2314 	return (0);
2315 }
2316 
2317 /*
2318  * Look up a newblk. Return 1 if found, 0 if not found.
2319  * If not found, allocate if DEPALLOC flag is passed.
2320  * Found or allocated entry is returned in newblkpp.
2321  */
2322 static int
2323 newblk_lookup(mp, newblkno, flags, newblkpp)
2324 	struct mount *mp;
2325 	ufs2_daddr_t newblkno;
2326 	int flags;
2327 	struct newblk **newblkpp;
2328 {
2329 	struct newblk *newblk;
2330 	struct newblk_hashhead *newblkhd;
2331 	struct ufsmount *ump;
2332 
2333 	ump = VFSTOUFS(mp);
2334 	LOCK_OWNED(ump);
2335 	newblkhd = NEWBLK_HASH(ump, newblkno);
2336 	if (newblk_find(newblkhd, newblkno, flags, newblkpp))
2337 		return (1);
2338 	if ((flags & DEPALLOC) == 0)
2339 		return (0);
2340 	if (softdep_excess_items(ump, D_NEWBLK) ||
2341 	    softdep_excess_items(ump, D_ALLOCDIRECT) ||
2342 	    softdep_excess_items(ump, D_ALLOCINDIR))
2343 		schedule_cleanup(mp);
2344 	else
2345 		FREE_LOCK(ump);
2346 	newblk = malloc(sizeof(union allblk), M_NEWBLK,
2347 	    M_SOFTDEP_FLAGS | M_ZERO);
2348 	workitem_alloc(&newblk->nb_list, D_NEWBLK, mp);
2349 	ACQUIRE_LOCK(ump);
2350 	if (newblk_find(newblkhd, newblkno, flags, newblkpp)) {
2351 		WORKITEM_FREE(newblk, D_NEWBLK);
2352 		return (1);
2353 	}
2354 	newblk->nb_freefrag = NULL;
2355 	LIST_INIT(&newblk->nb_indirdeps);
2356 	LIST_INIT(&newblk->nb_newdirblk);
2357 	LIST_INIT(&newblk->nb_jwork);
2358 	newblk->nb_state = ATTACHED;
2359 	newblk->nb_newblkno = newblkno;
2360 	LIST_INSERT_HEAD(newblkhd, newblk, nb_hash);
2361 	*newblkpp = newblk;
2362 	return (0);
2363 }
2364 
2365 /*
2366  * Structures and routines associated with freed indirect block caching.
2367  */
2368 #define	INDIR_HASH(ump, blkno) \
2369 	(&(ump)->indir_hashtbl[(blkno) & (ump)->indir_hash_size])
2370 
2371 /*
2372  * Lookup an indirect block in the indir hash table.  The freework is
2373  * removed and potentially freed.  The caller must do a blocking journal
2374  * write before writing to the blkno.
2375  */
2376 static int
2377 indirblk_lookup(mp, blkno)
2378 	struct mount *mp;
2379 	ufs2_daddr_t blkno;
2380 {
2381 	struct freework *freework;
2382 	struct indir_hashhead *wkhd;
2383 	struct ufsmount *ump;
2384 
2385 	ump = VFSTOUFS(mp);
2386 	wkhd = INDIR_HASH(ump, blkno);
2387 	TAILQ_FOREACH(freework, wkhd, fw_next) {
2388 		if (freework->fw_blkno != blkno)
2389 			continue;
2390 		indirblk_remove(freework);
2391 		return (1);
2392 	}
2393 	return (0);
2394 }
2395 
2396 /*
2397  * Insert an indirect block represented by freework into the indirblk
2398  * hash table so that it may prevent the block from being re-used prior
2399  * to the journal being written.
2400  */
2401 static void
2402 indirblk_insert(freework)
2403 	struct freework *freework;
2404 {
2405 	struct jblocks *jblocks;
2406 	struct jseg *jseg;
2407 	struct ufsmount *ump;
2408 
2409 	ump = VFSTOUFS(freework->fw_list.wk_mp);
2410 	jblocks = ump->softdep_jblocks;
2411 	jseg = TAILQ_LAST(&jblocks->jb_segs, jseglst);
2412 	if (jseg == NULL)
2413 		return;
2414 
2415 	LIST_INSERT_HEAD(&jseg->js_indirs, freework, fw_segs);
2416 	TAILQ_INSERT_HEAD(INDIR_HASH(ump, freework->fw_blkno), freework,
2417 	    fw_next);
2418 	freework->fw_state &= ~DEPCOMPLETE;
2419 }
2420 
2421 static void
2422 indirblk_remove(freework)
2423 	struct freework *freework;
2424 {
2425 	struct ufsmount *ump;
2426 
2427 	ump = VFSTOUFS(freework->fw_list.wk_mp);
2428 	LIST_REMOVE(freework, fw_segs);
2429 	TAILQ_REMOVE(INDIR_HASH(ump, freework->fw_blkno), freework, fw_next);
2430 	freework->fw_state |= DEPCOMPLETE;
2431 	if ((freework->fw_state & ALLCOMPLETE) == ALLCOMPLETE)
2432 		WORKITEM_FREE(freework, D_FREEWORK);
2433 }
2434 
2435 /*
2436  * Executed during filesystem system initialization before
2437  * mounting any filesystems.
2438  */
2439 void
2440 softdep_initialize()
2441 {
2442 
2443 	TAILQ_INIT(&softdepmounts);
2444 #ifdef __LP64__
2445 	max_softdeps = desiredvnodes * 4;
2446 #else
2447 	max_softdeps = desiredvnodes * 2;
2448 #endif
2449 
2450 	/* initialise bioops hack */
2451 	bioops.io_start = softdep_disk_io_initiation;
2452 	bioops.io_complete = softdep_disk_write_complete;
2453 	bioops.io_deallocate = softdep_deallocate_dependencies;
2454 	bioops.io_countdeps = softdep_count_dependencies;
2455 	softdep_ast_cleanup = softdep_ast_cleanup_proc;
2456 
2457 	/* Initialize the callout with an mtx. */
2458 	callout_init_mtx(&softdep_callout, &lk, 0);
2459 }
2460 
2461 /*
2462  * Executed after all filesystems have been unmounted during
2463  * filesystem module unload.
2464  */
2465 void
2466 softdep_uninitialize()
2467 {
2468 
2469 	/* clear bioops hack */
2470 	bioops.io_start = NULL;
2471 	bioops.io_complete = NULL;
2472 	bioops.io_deallocate = NULL;
2473 	bioops.io_countdeps = NULL;
2474 	softdep_ast_cleanup = NULL;
2475 
2476 	callout_drain(&softdep_callout);
2477 }
2478 
2479 /*
2480  * Called at mount time to notify the dependency code that a
2481  * filesystem wishes to use it.
2482  */
2483 int
2484 softdep_mount(devvp, mp, fs, cred)
2485 	struct vnode *devvp;
2486 	struct mount *mp;
2487 	struct fs *fs;
2488 	struct ucred *cred;
2489 {
2490 	struct csum_total cstotal;
2491 	struct mount_softdeps *sdp;
2492 	struct ufsmount *ump;
2493 	struct cg *cgp;
2494 	struct buf *bp;
2495 	u_int cyl, i;
2496 	int error;
2497 
2498 	sdp = malloc(sizeof(struct mount_softdeps), M_MOUNTDATA,
2499 	    M_WAITOK | M_ZERO);
2500 	MNT_ILOCK(mp);
2501 	mp->mnt_flag = (mp->mnt_flag & ~MNT_ASYNC) | MNT_SOFTDEP;
2502 	if ((mp->mnt_kern_flag & MNTK_SOFTDEP) == 0) {
2503 		mp->mnt_kern_flag = (mp->mnt_kern_flag & ~MNTK_ASYNC) |
2504 			MNTK_SOFTDEP | MNTK_NOASYNC;
2505 	}
2506 	ump = VFSTOUFS(mp);
2507 	ump->um_softdep = sdp;
2508 	MNT_IUNLOCK(mp);
2509 	rw_init(LOCK_PTR(ump), "per-fs softdep");
2510 	sdp->sd_ump = ump;
2511 	LIST_INIT(&ump->softdep_workitem_pending);
2512 	LIST_INIT(&ump->softdep_journal_pending);
2513 	TAILQ_INIT(&ump->softdep_unlinked);
2514 	LIST_INIT(&ump->softdep_dirtycg);
2515 	ump->softdep_worklist_tail = NULL;
2516 	ump->softdep_on_worklist = 0;
2517 	ump->softdep_deps = 0;
2518 	LIST_INIT(&ump->softdep_mkdirlisthd);
2519 	ump->pagedep_hashtbl = hashinit(desiredvnodes / 5, M_PAGEDEP,
2520 	    &ump->pagedep_hash_size);
2521 	ump->pagedep_nextclean = 0;
2522 	ump->inodedep_hashtbl = hashinit(desiredvnodes, M_INODEDEP,
2523 	    &ump->inodedep_hash_size);
2524 	ump->inodedep_nextclean = 0;
2525 	ump->newblk_hashtbl = hashinit(max_softdeps / 2,  M_NEWBLK,
2526 	    &ump->newblk_hash_size);
2527 	ump->bmsafemap_hashtbl = hashinit(1024, M_BMSAFEMAP,
2528 	    &ump->bmsafemap_hash_size);
2529 	i = 1 << (ffs(desiredvnodes / 10) - 1);
2530 	ump->indir_hashtbl = malloc(i * sizeof(struct indir_hashhead),
2531 	    M_FREEWORK, M_WAITOK);
2532 	ump->indir_hash_size = i - 1;
2533 	for (i = 0; i <= ump->indir_hash_size; i++)
2534 		TAILQ_INIT(&ump->indir_hashtbl[i]);
2535 	ACQUIRE_GBLLOCK(&lk);
2536 	TAILQ_INSERT_TAIL(&softdepmounts, sdp, sd_next);
2537 	FREE_GBLLOCK(&lk);
2538 	if ((fs->fs_flags & FS_SUJ) &&
2539 	    (error = journal_mount(mp, fs, cred)) != 0) {
2540 		printf("Failed to start journal: %d\n", error);
2541 		softdep_unmount(mp);
2542 		return (error);
2543 	}
2544 	/*
2545 	 * Start our flushing thread in the bufdaemon process.
2546 	 */
2547 	ACQUIRE_LOCK(ump);
2548 	ump->softdep_flags |= FLUSH_STARTING;
2549 	FREE_LOCK(ump);
2550 	kproc_kthread_add(&softdep_flush, mp, &bufdaemonproc,
2551 	    &ump->softdep_flushtd, 0, 0, "softdepflush", "%s worker",
2552 	    mp->mnt_stat.f_mntonname);
2553 	ACQUIRE_LOCK(ump);
2554 	while ((ump->softdep_flags & FLUSH_STARTING) != 0) {
2555 		msleep(&ump->softdep_flushtd, LOCK_PTR(ump), PVM, "sdstart",
2556 		    hz / 2);
2557 	}
2558 	FREE_LOCK(ump);
2559 	/*
2560 	 * When doing soft updates, the counters in the
2561 	 * superblock may have gotten out of sync. Recomputation
2562 	 * can take a long time and can be deferred for background
2563 	 * fsck.  However, the old behavior of scanning the cylinder
2564 	 * groups and recalculating them at mount time is available
2565 	 * by setting vfs.ffs.compute_summary_at_mount to one.
2566 	 */
2567 	if (compute_summary_at_mount == 0 || fs->fs_clean != 0)
2568 		return (0);
2569 	bzero(&cstotal, sizeof cstotal);
2570 	for (cyl = 0; cyl < fs->fs_ncg; cyl++) {
2571 		if ((error = bread(devvp, fsbtodb(fs, cgtod(fs, cyl)),
2572 		    fs->fs_cgsize, cred, &bp)) != 0) {
2573 			brelse(bp);
2574 			softdep_unmount(mp);
2575 			return (error);
2576 		}
2577 		cgp = (struct cg *)bp->b_data;
2578 		cstotal.cs_nffree += cgp->cg_cs.cs_nffree;
2579 		cstotal.cs_nbfree += cgp->cg_cs.cs_nbfree;
2580 		cstotal.cs_nifree += cgp->cg_cs.cs_nifree;
2581 		cstotal.cs_ndir += cgp->cg_cs.cs_ndir;
2582 		fs->fs_cs(fs, cyl) = cgp->cg_cs;
2583 		brelse(bp);
2584 	}
2585 #ifdef INVARIANTS
2586 	if (bcmp(&cstotal, &fs->fs_cstotal, sizeof cstotal))
2587 		printf("%s: superblock summary recomputed\n", fs->fs_fsmnt);
2588 #endif
2589 	bcopy(&cstotal, &fs->fs_cstotal, sizeof cstotal);
2590 	return (0);
2591 }
2592 
2593 void
2594 softdep_unmount(mp)
2595 	struct mount *mp;
2596 {
2597 	struct ufsmount *ump;
2598 #ifdef INVARIANTS
2599 	int i;
2600 #endif
2601 
2602 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
2603 	    ("softdep_unmount called on non-softdep filesystem"));
2604 	ump = VFSTOUFS(mp);
2605 	MNT_ILOCK(mp);
2606 	mp->mnt_flag &= ~MNT_SOFTDEP;
2607 	if (MOUNTEDSUJ(mp) == 0) {
2608 		MNT_IUNLOCK(mp);
2609 	} else {
2610 		mp->mnt_flag &= ~MNT_SUJ;
2611 		MNT_IUNLOCK(mp);
2612 		journal_unmount(ump);
2613 	}
2614 	/*
2615 	 * Shut down our flushing thread. Check for NULL is if
2616 	 * softdep_mount errors out before the thread has been created.
2617 	 */
2618 	if (ump->softdep_flushtd != NULL) {
2619 		ACQUIRE_LOCK(ump);
2620 		ump->softdep_flags |= FLUSH_EXIT;
2621 		wakeup(&ump->softdep_flushtd);
2622 		msleep(&ump->softdep_flags, LOCK_PTR(ump), PVM | PDROP,
2623 		    "sdwait", 0);
2624 		KASSERT((ump->softdep_flags & FLUSH_EXIT) == 0,
2625 		    ("Thread shutdown failed"));
2626 	}
2627 	/*
2628 	 * Free up our resources.
2629 	 */
2630 	ACQUIRE_GBLLOCK(&lk);
2631 	TAILQ_REMOVE(&softdepmounts, ump->um_softdep, sd_next);
2632 	FREE_GBLLOCK(&lk);
2633 	rw_destroy(LOCK_PTR(ump));
2634 	hashdestroy(ump->pagedep_hashtbl, M_PAGEDEP, ump->pagedep_hash_size);
2635 	hashdestroy(ump->inodedep_hashtbl, M_INODEDEP, ump->inodedep_hash_size);
2636 	hashdestroy(ump->newblk_hashtbl, M_NEWBLK, ump->newblk_hash_size);
2637 	hashdestroy(ump->bmsafemap_hashtbl, M_BMSAFEMAP,
2638 	    ump->bmsafemap_hash_size);
2639 	free(ump->indir_hashtbl, M_FREEWORK);
2640 #ifdef INVARIANTS
2641 	for (i = 0; i <= D_LAST; i++)
2642 		KASSERT(ump->softdep_curdeps[i] == 0,
2643 		    ("Unmount %s: Dep type %s != 0 (%ld)", ump->um_fs->fs_fsmnt,
2644 		    TYPENAME(i), ump->softdep_curdeps[i]));
2645 #endif
2646 	free(ump->um_softdep, M_MOUNTDATA);
2647 }
2648 
2649 static struct jblocks *
2650 jblocks_create(void)
2651 {
2652 	struct jblocks *jblocks;
2653 
2654 	jblocks = malloc(sizeof(*jblocks), M_JBLOCKS, M_WAITOK | M_ZERO);
2655 	TAILQ_INIT(&jblocks->jb_segs);
2656 	jblocks->jb_avail = 10;
2657 	jblocks->jb_extent = malloc(sizeof(struct jextent) * jblocks->jb_avail,
2658 	    M_JBLOCKS, M_WAITOK | M_ZERO);
2659 
2660 	return (jblocks);
2661 }
2662 
2663 static ufs2_daddr_t
2664 jblocks_alloc(jblocks, bytes, actual)
2665 	struct jblocks *jblocks;
2666 	int bytes;
2667 	int *actual;
2668 {
2669 	ufs2_daddr_t daddr;
2670 	struct jextent *jext;
2671 	int freecnt;
2672 	int blocks;
2673 
2674 	blocks = bytes / DEV_BSIZE;
2675 	jext = &jblocks->jb_extent[jblocks->jb_head];
2676 	freecnt = jext->je_blocks - jblocks->jb_off;
2677 	if (freecnt == 0) {
2678 		jblocks->jb_off = 0;
2679 		if (++jblocks->jb_head > jblocks->jb_used)
2680 			jblocks->jb_head = 0;
2681 		jext = &jblocks->jb_extent[jblocks->jb_head];
2682 		freecnt = jext->je_blocks;
2683 	}
2684 	if (freecnt > blocks)
2685 		freecnt = blocks;
2686 	*actual = freecnt * DEV_BSIZE;
2687 	daddr = jext->je_daddr + jblocks->jb_off;
2688 	jblocks->jb_off += freecnt;
2689 	jblocks->jb_free -= freecnt;
2690 
2691 	return (daddr);
2692 }
2693 
2694 static void
2695 jblocks_free(jblocks, mp, bytes)
2696 	struct jblocks *jblocks;
2697 	struct mount *mp;
2698 	int bytes;
2699 {
2700 
2701 	LOCK_OWNED(VFSTOUFS(mp));
2702 	jblocks->jb_free += bytes / DEV_BSIZE;
2703 	if (jblocks->jb_suspended)
2704 		worklist_speedup(mp);
2705 	wakeup(jblocks);
2706 }
2707 
2708 static void
2709 jblocks_destroy(jblocks)
2710 	struct jblocks *jblocks;
2711 {
2712 
2713 	if (jblocks->jb_extent)
2714 		free(jblocks->jb_extent, M_JBLOCKS);
2715 	free(jblocks, M_JBLOCKS);
2716 }
2717 
2718 static void
2719 jblocks_add(jblocks, daddr, blocks)
2720 	struct jblocks *jblocks;
2721 	ufs2_daddr_t daddr;
2722 	int blocks;
2723 {
2724 	struct jextent *jext;
2725 
2726 	jblocks->jb_blocks += blocks;
2727 	jblocks->jb_free += blocks;
2728 	jext = &jblocks->jb_extent[jblocks->jb_used];
2729 	/* Adding the first block. */
2730 	if (jext->je_daddr == 0) {
2731 		jext->je_daddr = daddr;
2732 		jext->je_blocks = blocks;
2733 		return;
2734 	}
2735 	/* Extending the last extent. */
2736 	if (jext->je_daddr + jext->je_blocks == daddr) {
2737 		jext->je_blocks += blocks;
2738 		return;
2739 	}
2740 	/* Adding a new extent. */
2741 	if (++jblocks->jb_used == jblocks->jb_avail) {
2742 		jblocks->jb_avail *= 2;
2743 		jext = malloc(sizeof(struct jextent) * jblocks->jb_avail,
2744 		    M_JBLOCKS, M_WAITOK | M_ZERO);
2745 		memcpy(jext, jblocks->jb_extent,
2746 		    sizeof(struct jextent) * jblocks->jb_used);
2747 		free(jblocks->jb_extent, M_JBLOCKS);
2748 		jblocks->jb_extent = jext;
2749 	}
2750 	jext = &jblocks->jb_extent[jblocks->jb_used];
2751 	jext->je_daddr = daddr;
2752 	jext->je_blocks = blocks;
2753 	return;
2754 }
2755 
2756 int
2757 softdep_journal_lookup(mp, vpp)
2758 	struct mount *mp;
2759 	struct vnode **vpp;
2760 {
2761 	struct componentname cnp;
2762 	struct vnode *dvp;
2763 	ino_t sujournal;
2764 	int error;
2765 
2766 	error = VFS_VGET(mp, UFS_ROOTINO, LK_EXCLUSIVE, &dvp);
2767 	if (error)
2768 		return (error);
2769 	bzero(&cnp, sizeof(cnp));
2770 	cnp.cn_nameiop = LOOKUP;
2771 	cnp.cn_flags = ISLASTCN;
2772 	cnp.cn_thread = curthread;
2773 	cnp.cn_cred = curthread->td_ucred;
2774 	cnp.cn_pnbuf = SUJ_FILE;
2775 	cnp.cn_nameptr = SUJ_FILE;
2776 	cnp.cn_namelen = strlen(SUJ_FILE);
2777 	error = ufs_lookup_ino(dvp, NULL, &cnp, &sujournal);
2778 	vput(dvp);
2779 	if (error != 0)
2780 		return (error);
2781 	error = VFS_VGET(mp, sujournal, LK_EXCLUSIVE, vpp);
2782 	return (error);
2783 }
2784 
2785 /*
2786  * Open and verify the journal file.
2787  */
2788 static int
2789 journal_mount(mp, fs, cred)
2790 	struct mount *mp;
2791 	struct fs *fs;
2792 	struct ucred *cred;
2793 {
2794 	struct jblocks *jblocks;
2795 	struct ufsmount *ump;
2796 	struct vnode *vp;
2797 	struct inode *ip;
2798 	ufs2_daddr_t blkno;
2799 	int bcount;
2800 	int error;
2801 	int i;
2802 
2803 	ump = VFSTOUFS(mp);
2804 	ump->softdep_journal_tail = NULL;
2805 	ump->softdep_on_journal = 0;
2806 	ump->softdep_accdeps = 0;
2807 	ump->softdep_req = 0;
2808 	ump->softdep_jblocks = NULL;
2809 	error = softdep_journal_lookup(mp, &vp);
2810 	if (error != 0) {
2811 		printf("Failed to find journal.  Use tunefs to create one\n");
2812 		return (error);
2813 	}
2814 	ip = VTOI(vp);
2815 	if (ip->i_size < SUJ_MIN) {
2816 		error = ENOSPC;
2817 		goto out;
2818 	}
2819 	bcount = lblkno(fs, ip->i_size);	/* Only use whole blocks. */
2820 	jblocks = jblocks_create();
2821 	for (i = 0; i < bcount; i++) {
2822 		error = ufs_bmaparray(vp, i, &blkno, NULL, NULL, NULL);
2823 		if (error)
2824 			break;
2825 		jblocks_add(jblocks, blkno, fsbtodb(fs, fs->fs_frag));
2826 	}
2827 	if (error) {
2828 		jblocks_destroy(jblocks);
2829 		goto out;
2830 	}
2831 	jblocks->jb_low = jblocks->jb_free / 3;	/* Reserve 33%. */
2832 	jblocks->jb_min = jblocks->jb_free / 10; /* Suspend at 10%. */
2833 	ump->softdep_jblocks = jblocks;
2834 out:
2835 	if (error == 0) {
2836 		MNT_ILOCK(mp);
2837 		mp->mnt_flag |= MNT_SUJ;
2838 		mp->mnt_flag &= ~MNT_SOFTDEP;
2839 		MNT_IUNLOCK(mp);
2840 		/*
2841 		 * Only validate the journal contents if the
2842 		 * filesystem is clean, otherwise we write the logs
2843 		 * but they'll never be used.  If the filesystem was
2844 		 * still dirty when we mounted it the journal is
2845 		 * invalid and a new journal can only be valid if it
2846 		 * starts from a clean mount.
2847 		 */
2848 		if (fs->fs_clean) {
2849 			DIP_SET(ip, i_modrev, fs->fs_mtime);
2850 			ip->i_flags |= IN_MODIFIED;
2851 			ffs_update(vp, 1);
2852 		}
2853 	}
2854 	vput(vp);
2855 	return (error);
2856 }
2857 
2858 static void
2859 journal_unmount(ump)
2860 	struct ufsmount *ump;
2861 {
2862 
2863 	if (ump->softdep_jblocks)
2864 		jblocks_destroy(ump->softdep_jblocks);
2865 	ump->softdep_jblocks = NULL;
2866 }
2867 
2868 /*
2869  * Called when a journal record is ready to be written.  Space is allocated
2870  * and the journal entry is created when the journal is flushed to stable
2871  * store.
2872  */
2873 static void
2874 add_to_journal(wk)
2875 	struct worklist *wk;
2876 {
2877 	struct ufsmount *ump;
2878 
2879 	ump = VFSTOUFS(wk->wk_mp);
2880 	LOCK_OWNED(ump);
2881 	if (wk->wk_state & ONWORKLIST)
2882 		panic("add_to_journal: %s(0x%X) already on list",
2883 		    TYPENAME(wk->wk_type), wk->wk_state);
2884 	wk->wk_state |= ONWORKLIST | DEPCOMPLETE;
2885 	if (LIST_EMPTY(&ump->softdep_journal_pending)) {
2886 		ump->softdep_jblocks->jb_age = ticks;
2887 		LIST_INSERT_HEAD(&ump->softdep_journal_pending, wk, wk_list);
2888 	} else
2889 		LIST_INSERT_AFTER(ump->softdep_journal_tail, wk, wk_list);
2890 	ump->softdep_journal_tail = wk;
2891 	ump->softdep_on_journal += 1;
2892 }
2893 
2894 /*
2895  * Remove an arbitrary item for the journal worklist maintain the tail
2896  * pointer.  This happens when a new operation obviates the need to
2897  * journal an old operation.
2898  */
2899 static void
2900 remove_from_journal(wk)
2901 	struct worklist *wk;
2902 {
2903 	struct ufsmount *ump;
2904 
2905 	ump = VFSTOUFS(wk->wk_mp);
2906 	LOCK_OWNED(ump);
2907 #ifdef INVARIANTS
2908 	{
2909 		struct worklist *wkn;
2910 
2911 		LIST_FOREACH(wkn, &ump->softdep_journal_pending, wk_list)
2912 			if (wkn == wk)
2913 				break;
2914 		if (wkn == NULL)
2915 			panic("remove_from_journal: %p is not in journal", wk);
2916 	}
2917 #endif
2918 	/*
2919 	 * We emulate a TAILQ to save space in most structures which do not
2920 	 * require TAILQ semantics.  Here we must update the tail position
2921 	 * when removing the tail which is not the final entry. This works
2922 	 * only if the worklist linkage are at the beginning of the structure.
2923 	 */
2924 	if (ump->softdep_journal_tail == wk)
2925 		ump->softdep_journal_tail =
2926 		    (struct worklist *)wk->wk_list.le_prev;
2927 	WORKLIST_REMOVE(wk);
2928 	ump->softdep_on_journal -= 1;
2929 }
2930 
2931 /*
2932  * Check for journal space as well as dependency limits so the prelink
2933  * code can throttle both journaled and non-journaled filesystems.
2934  * Threshold is 0 for low and 1 for min.
2935  */
2936 static int
2937 journal_space(ump, thresh)
2938 	struct ufsmount *ump;
2939 	int thresh;
2940 {
2941 	struct jblocks *jblocks;
2942 	int limit, avail;
2943 
2944 	jblocks = ump->softdep_jblocks;
2945 	if (jblocks == NULL)
2946 		return (1);
2947 	/*
2948 	 * We use a tighter restriction here to prevent request_cleanup()
2949 	 * running in threads from running into locks we currently hold.
2950 	 * We have to be over the limit and our filesystem has to be
2951 	 * responsible for more than our share of that usage.
2952 	 */
2953 	limit = (max_softdeps / 10) * 9;
2954 	if (dep_current[D_INODEDEP] > limit &&
2955 	    ump->softdep_curdeps[D_INODEDEP] > limit / stat_flush_threads)
2956 		return (0);
2957 	if (thresh)
2958 		thresh = jblocks->jb_min;
2959 	else
2960 		thresh = jblocks->jb_low;
2961 	avail = (ump->softdep_on_journal * JREC_SIZE) / DEV_BSIZE;
2962 	avail = jblocks->jb_free - avail;
2963 
2964 	return (avail > thresh);
2965 }
2966 
2967 static void
2968 journal_suspend(ump)
2969 	struct ufsmount *ump;
2970 {
2971 	struct jblocks *jblocks;
2972 	struct mount *mp;
2973 	bool set;
2974 
2975 	mp = UFSTOVFS(ump);
2976 	if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0)
2977 		return;
2978 
2979 	jblocks = ump->softdep_jblocks;
2980 	vfs_op_enter(mp);
2981 	set = false;
2982 	MNT_ILOCK(mp);
2983 	if ((mp->mnt_kern_flag & MNTK_SUSPEND) == 0) {
2984 		stat_journal_min++;
2985 		mp->mnt_kern_flag |= MNTK_SUSPEND;
2986 		mp->mnt_susp_owner = ump->softdep_flushtd;
2987 		set = true;
2988 	}
2989 	jblocks->jb_suspended = 1;
2990 	MNT_IUNLOCK(mp);
2991 	if (!set)
2992 		vfs_op_exit(mp);
2993 }
2994 
2995 static int
2996 journal_unsuspend(struct ufsmount *ump)
2997 {
2998 	struct jblocks *jblocks;
2999 	struct mount *mp;
3000 
3001 	mp = UFSTOVFS(ump);
3002 	jblocks = ump->softdep_jblocks;
3003 
3004 	if (jblocks != NULL && jblocks->jb_suspended &&
3005 	    journal_space(ump, jblocks->jb_min)) {
3006 		jblocks->jb_suspended = 0;
3007 		FREE_LOCK(ump);
3008 		mp->mnt_susp_owner = curthread;
3009 		vfs_write_resume(mp, 0);
3010 		ACQUIRE_LOCK(ump);
3011 		return (1);
3012 	}
3013 	return (0);
3014 }
3015 
3016 /*
3017  * Called before any allocation function to be certain that there is
3018  * sufficient space in the journal prior to creating any new records.
3019  * Since in the case of block allocation we may have multiple locked
3020  * buffers at the time of the actual allocation we can not block
3021  * when the journal records are created.  Doing so would create a deadlock
3022  * if any of these buffers needed to be flushed to reclaim space.  Instead
3023  * we require a sufficiently large amount of available space such that
3024  * each thread in the system could have passed this allocation check and
3025  * still have sufficient free space.  With 20% of a minimum journal size
3026  * of 1MB we have 6553 records available.
3027  */
3028 int
3029 softdep_prealloc(vp, waitok)
3030 	struct vnode *vp;
3031 	int waitok;
3032 {
3033 	struct ufsmount *ump;
3034 
3035 	KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0,
3036 	    ("softdep_prealloc called on non-softdep filesystem"));
3037 	/*
3038 	 * Nothing to do if we are not running journaled soft updates.
3039 	 * If we currently hold the snapshot lock, we must avoid
3040 	 * handling other resources that could cause deadlock.  Do not
3041 	 * touch quotas vnode since it is typically recursed with
3042 	 * other vnode locks held.
3043 	 */
3044 	if (DOINGSUJ(vp) == 0 || IS_SNAPSHOT(VTOI(vp)) ||
3045 	    (vp->v_vflag & VV_SYSTEM) != 0)
3046 		return (0);
3047 	ump = VFSTOUFS(vp->v_mount);
3048 	ACQUIRE_LOCK(ump);
3049 	if (journal_space(ump, 0)) {
3050 		FREE_LOCK(ump);
3051 		return (0);
3052 	}
3053 	stat_journal_low++;
3054 	FREE_LOCK(ump);
3055 	if (waitok == MNT_NOWAIT)
3056 		return (ENOSPC);
3057 	/*
3058 	 * Attempt to sync this vnode once to flush any journal
3059 	 * work attached to it.
3060 	 */
3061 	if ((curthread->td_pflags & TDP_COWINPROGRESS) == 0)
3062 		ffs_syncvnode(vp, waitok, 0);
3063 	ACQUIRE_LOCK(ump);
3064 	process_removes(vp);
3065 	process_truncates(vp);
3066 	if (journal_space(ump, 0) == 0) {
3067 		softdep_speedup(ump);
3068 		if (journal_space(ump, 1) == 0)
3069 			journal_suspend(ump);
3070 	}
3071 	FREE_LOCK(ump);
3072 
3073 	return (0);
3074 }
3075 
3076 /*
3077  * Before adjusting a link count on a vnode verify that we have sufficient
3078  * journal space.  If not, process operations that depend on the currently
3079  * locked pair of vnodes to try to flush space as the syncer, buf daemon,
3080  * and softdep flush threads can not acquire these locks to reclaim space.
3081  */
3082 static void
3083 softdep_prelink(dvp, vp)
3084 	struct vnode *dvp;
3085 	struct vnode *vp;
3086 {
3087 	struct ufsmount *ump;
3088 
3089 	ump = VFSTOUFS(dvp->v_mount);
3090 	LOCK_OWNED(ump);
3091 	/*
3092 	 * Nothing to do if we have sufficient journal space.
3093 	 * If we currently hold the snapshot lock, we must avoid
3094 	 * handling other resources that could cause deadlock.
3095 	 */
3096 	if (journal_space(ump, 0) || (vp && IS_SNAPSHOT(VTOI(vp))))
3097 		return;
3098 	stat_journal_low++;
3099 	FREE_LOCK(ump);
3100 	if (vp)
3101 		ffs_syncvnode(vp, MNT_NOWAIT, 0);
3102 	ffs_syncvnode(dvp, MNT_WAIT, 0);
3103 	ACQUIRE_LOCK(ump);
3104 	/* Process vp before dvp as it may create .. removes. */
3105 	if (vp) {
3106 		process_removes(vp);
3107 		process_truncates(vp);
3108 	}
3109 	process_removes(dvp);
3110 	process_truncates(dvp);
3111 	softdep_speedup(ump);
3112 	process_worklist_item(UFSTOVFS(ump), 2, LK_NOWAIT);
3113 	if (journal_space(ump, 0) == 0) {
3114 		softdep_speedup(ump);
3115 		if (journal_space(ump, 1) == 0)
3116 			journal_suspend(ump);
3117 	}
3118 }
3119 
3120 static void
3121 jseg_write(ump, jseg, data)
3122 	struct ufsmount *ump;
3123 	struct jseg *jseg;
3124 	uint8_t *data;
3125 {
3126 	struct jsegrec *rec;
3127 
3128 	rec = (struct jsegrec *)data;
3129 	rec->jsr_seq = jseg->js_seq;
3130 	rec->jsr_oldest = jseg->js_oldseq;
3131 	rec->jsr_cnt = jseg->js_cnt;
3132 	rec->jsr_blocks = jseg->js_size / ump->um_devvp->v_bufobj.bo_bsize;
3133 	rec->jsr_crc = 0;
3134 	rec->jsr_time = ump->um_fs->fs_mtime;
3135 }
3136 
3137 static inline void
3138 inoref_write(inoref, jseg, rec)
3139 	struct inoref *inoref;
3140 	struct jseg *jseg;
3141 	struct jrefrec *rec;
3142 {
3143 
3144 	inoref->if_jsegdep->jd_seg = jseg;
3145 	rec->jr_ino = inoref->if_ino;
3146 	rec->jr_parent = inoref->if_parent;
3147 	rec->jr_nlink = inoref->if_nlink;
3148 	rec->jr_mode = inoref->if_mode;
3149 	rec->jr_diroff = inoref->if_diroff;
3150 }
3151 
3152 static void
3153 jaddref_write(jaddref, jseg, data)
3154 	struct jaddref *jaddref;
3155 	struct jseg *jseg;
3156 	uint8_t *data;
3157 {
3158 	struct jrefrec *rec;
3159 
3160 	rec = (struct jrefrec *)data;
3161 	rec->jr_op = JOP_ADDREF;
3162 	inoref_write(&jaddref->ja_ref, jseg, rec);
3163 }
3164 
3165 static void
3166 jremref_write(jremref, jseg, data)
3167 	struct jremref *jremref;
3168 	struct jseg *jseg;
3169 	uint8_t *data;
3170 {
3171 	struct jrefrec *rec;
3172 
3173 	rec = (struct jrefrec *)data;
3174 	rec->jr_op = JOP_REMREF;
3175 	inoref_write(&jremref->jr_ref, jseg, rec);
3176 }
3177 
3178 static void
3179 jmvref_write(jmvref, jseg, data)
3180 	struct jmvref *jmvref;
3181 	struct jseg *jseg;
3182 	uint8_t *data;
3183 {
3184 	struct jmvrec *rec;
3185 
3186 	rec = (struct jmvrec *)data;
3187 	rec->jm_op = JOP_MVREF;
3188 	rec->jm_ino = jmvref->jm_ino;
3189 	rec->jm_parent = jmvref->jm_parent;
3190 	rec->jm_oldoff = jmvref->jm_oldoff;
3191 	rec->jm_newoff = jmvref->jm_newoff;
3192 }
3193 
3194 static void
3195 jnewblk_write(jnewblk, jseg, data)
3196 	struct jnewblk *jnewblk;
3197 	struct jseg *jseg;
3198 	uint8_t *data;
3199 {
3200 	struct jblkrec *rec;
3201 
3202 	jnewblk->jn_jsegdep->jd_seg = jseg;
3203 	rec = (struct jblkrec *)data;
3204 	rec->jb_op = JOP_NEWBLK;
3205 	rec->jb_ino = jnewblk->jn_ino;
3206 	rec->jb_blkno = jnewblk->jn_blkno;
3207 	rec->jb_lbn = jnewblk->jn_lbn;
3208 	rec->jb_frags = jnewblk->jn_frags;
3209 	rec->jb_oldfrags = jnewblk->jn_oldfrags;
3210 }
3211 
3212 static void
3213 jfreeblk_write(jfreeblk, jseg, data)
3214 	struct jfreeblk *jfreeblk;
3215 	struct jseg *jseg;
3216 	uint8_t *data;
3217 {
3218 	struct jblkrec *rec;
3219 
3220 	jfreeblk->jf_dep.jb_jsegdep->jd_seg = jseg;
3221 	rec = (struct jblkrec *)data;
3222 	rec->jb_op = JOP_FREEBLK;
3223 	rec->jb_ino = jfreeblk->jf_ino;
3224 	rec->jb_blkno = jfreeblk->jf_blkno;
3225 	rec->jb_lbn = jfreeblk->jf_lbn;
3226 	rec->jb_frags = jfreeblk->jf_frags;
3227 	rec->jb_oldfrags = 0;
3228 }
3229 
3230 static void
3231 jfreefrag_write(jfreefrag, jseg, data)
3232 	struct jfreefrag *jfreefrag;
3233 	struct jseg *jseg;
3234 	uint8_t *data;
3235 {
3236 	struct jblkrec *rec;
3237 
3238 	jfreefrag->fr_jsegdep->jd_seg = jseg;
3239 	rec = (struct jblkrec *)data;
3240 	rec->jb_op = JOP_FREEBLK;
3241 	rec->jb_ino = jfreefrag->fr_ino;
3242 	rec->jb_blkno = jfreefrag->fr_blkno;
3243 	rec->jb_lbn = jfreefrag->fr_lbn;
3244 	rec->jb_frags = jfreefrag->fr_frags;
3245 	rec->jb_oldfrags = 0;
3246 }
3247 
3248 static void
3249 jtrunc_write(jtrunc, jseg, data)
3250 	struct jtrunc *jtrunc;
3251 	struct jseg *jseg;
3252 	uint8_t *data;
3253 {
3254 	struct jtrncrec *rec;
3255 
3256 	jtrunc->jt_dep.jb_jsegdep->jd_seg = jseg;
3257 	rec = (struct jtrncrec *)data;
3258 	rec->jt_op = JOP_TRUNC;
3259 	rec->jt_ino = jtrunc->jt_ino;
3260 	rec->jt_size = jtrunc->jt_size;
3261 	rec->jt_extsize = jtrunc->jt_extsize;
3262 }
3263 
3264 static void
3265 jfsync_write(jfsync, jseg, data)
3266 	struct jfsync *jfsync;
3267 	struct jseg *jseg;
3268 	uint8_t *data;
3269 {
3270 	struct jtrncrec *rec;
3271 
3272 	rec = (struct jtrncrec *)data;
3273 	rec->jt_op = JOP_SYNC;
3274 	rec->jt_ino = jfsync->jfs_ino;
3275 	rec->jt_size = jfsync->jfs_size;
3276 	rec->jt_extsize = jfsync->jfs_extsize;
3277 }
3278 
3279 static void
3280 softdep_flushjournal(mp)
3281 	struct mount *mp;
3282 {
3283 	struct jblocks *jblocks;
3284 	struct ufsmount *ump;
3285 
3286 	if (MOUNTEDSUJ(mp) == 0)
3287 		return;
3288 	ump = VFSTOUFS(mp);
3289 	jblocks = ump->softdep_jblocks;
3290 	ACQUIRE_LOCK(ump);
3291 	while (ump->softdep_on_journal) {
3292 		jblocks->jb_needseg = 1;
3293 		softdep_process_journal(mp, NULL, MNT_WAIT);
3294 	}
3295 	FREE_LOCK(ump);
3296 }
3297 
3298 static void softdep_synchronize_completed(struct bio *);
3299 static void softdep_synchronize(struct bio *, struct ufsmount *, void *);
3300 
3301 static void
3302 softdep_synchronize_completed(bp)
3303         struct bio *bp;
3304 {
3305 	struct jseg *oldest;
3306 	struct jseg *jseg;
3307 	struct ufsmount *ump;
3308 
3309 	/*
3310 	 * caller1 marks the last segment written before we issued the
3311 	 * synchronize cache.
3312 	 */
3313 	jseg = bp->bio_caller1;
3314 	if (jseg == NULL) {
3315 		g_destroy_bio(bp);
3316 		return;
3317 	}
3318 	ump = VFSTOUFS(jseg->js_list.wk_mp);
3319 	ACQUIRE_LOCK(ump);
3320 	oldest = NULL;
3321 	/*
3322 	 * Mark all the journal entries waiting on the synchronize cache
3323 	 * as completed so they may continue on.
3324 	 */
3325 	while (jseg != NULL && (jseg->js_state & COMPLETE) == 0) {
3326 		jseg->js_state |= COMPLETE;
3327 		oldest = jseg;
3328 		jseg = TAILQ_PREV(jseg, jseglst, js_next);
3329 	}
3330 	/*
3331 	 * Restart deferred journal entry processing from the oldest
3332 	 * completed jseg.
3333 	 */
3334 	if (oldest)
3335 		complete_jsegs(oldest);
3336 
3337 	FREE_LOCK(ump);
3338 	g_destroy_bio(bp);
3339 }
3340 
3341 /*
3342  * Send BIO_FLUSH/SYNCHRONIZE CACHE to the device to enforce write ordering
3343  * barriers.  The journal must be written prior to any blocks that depend
3344  * on it and the journal can not be released until the blocks have be
3345  * written.  This code handles both barriers simultaneously.
3346  */
3347 static void
3348 softdep_synchronize(bp, ump, caller1)
3349 	struct bio *bp;
3350 	struct ufsmount *ump;
3351 	void *caller1;
3352 {
3353 
3354 	bp->bio_cmd = BIO_FLUSH;
3355 	bp->bio_flags |= BIO_ORDERED;
3356 	bp->bio_data = NULL;
3357 	bp->bio_offset = ump->um_cp->provider->mediasize;
3358 	bp->bio_length = 0;
3359 	bp->bio_done = softdep_synchronize_completed;
3360 	bp->bio_caller1 = caller1;
3361 	g_io_request(bp, ump->um_cp);
3362 }
3363 
3364 /*
3365  * Flush some journal records to disk.
3366  */
3367 static void
3368 softdep_process_journal(mp, needwk, flags)
3369 	struct mount *mp;
3370 	struct worklist *needwk;
3371 	int flags;
3372 {
3373 	struct jblocks *jblocks;
3374 	struct ufsmount *ump;
3375 	struct worklist *wk;
3376 	struct jseg *jseg;
3377 	struct buf *bp;
3378 	struct bio *bio;
3379 	uint8_t *data;
3380 	struct fs *fs;
3381 	int shouldflush;
3382 	int segwritten;
3383 	int jrecmin;	/* Minimum records per block. */
3384 	int jrecmax;	/* Maximum records per block. */
3385 	int size;
3386 	int cnt;
3387 	int off;
3388 	int devbsize;
3389 
3390 	if (MOUNTEDSUJ(mp) == 0)
3391 		return;
3392 	shouldflush = softdep_flushcache;
3393 	bio = NULL;
3394 	jseg = NULL;
3395 	ump = VFSTOUFS(mp);
3396 	LOCK_OWNED(ump);
3397 	fs = ump->um_fs;
3398 	jblocks = ump->softdep_jblocks;
3399 	devbsize = ump->um_devvp->v_bufobj.bo_bsize;
3400 	/*
3401 	 * We write anywhere between a disk block and fs block.  The upper
3402 	 * bound is picked to prevent buffer cache fragmentation and limit
3403 	 * processing time per I/O.
3404 	 */
3405 	jrecmin = (devbsize / JREC_SIZE) - 1; /* -1 for seg header */
3406 	jrecmax = (fs->fs_bsize / devbsize) * jrecmin;
3407 	segwritten = 0;
3408 	for (;;) {
3409 		cnt = ump->softdep_on_journal;
3410 		/*
3411 		 * Criteria for writing a segment:
3412 		 * 1) We have a full block.
3413 		 * 2) We're called from jwait() and haven't found the
3414 		 *    journal item yet.
3415 		 * 3) Always write if needseg is set.
3416 		 * 4) If we are called from process_worklist and have
3417 		 *    not yet written anything we write a partial block
3418 		 *    to enforce a 1 second maximum latency on journal
3419 		 *    entries.
3420 		 */
3421 		if (cnt < (jrecmax - 1) && needwk == NULL &&
3422 		    jblocks->jb_needseg == 0 && (segwritten || cnt == 0))
3423 			break;
3424 		cnt++;
3425 		/*
3426 		 * Verify some free journal space.  softdep_prealloc() should
3427 		 * guarantee that we don't run out so this is indicative of
3428 		 * a problem with the flow control.  Try to recover
3429 		 * gracefully in any event.
3430 		 */
3431 		while (jblocks->jb_free == 0) {
3432 			if (flags != MNT_WAIT)
3433 				break;
3434 			printf("softdep: Out of journal space!\n");
3435 			softdep_speedup(ump);
3436 			msleep(jblocks, LOCK_PTR(ump), PRIBIO, "jblocks", hz);
3437 		}
3438 		FREE_LOCK(ump);
3439 		jseg = malloc(sizeof(*jseg), M_JSEG, M_SOFTDEP_FLAGS);
3440 		workitem_alloc(&jseg->js_list, D_JSEG, mp);
3441 		LIST_INIT(&jseg->js_entries);
3442 		LIST_INIT(&jseg->js_indirs);
3443 		jseg->js_state = ATTACHED;
3444 		if (shouldflush == 0)
3445 			jseg->js_state |= COMPLETE;
3446 		else if (bio == NULL)
3447 			bio = g_alloc_bio();
3448 		jseg->js_jblocks = jblocks;
3449 		bp = geteblk(fs->fs_bsize, 0);
3450 		ACQUIRE_LOCK(ump);
3451 		/*
3452 		 * If there was a race while we were allocating the block
3453 		 * and jseg the entry we care about was likely written.
3454 		 * We bail out in both the WAIT and NOWAIT case and assume
3455 		 * the caller will loop if the entry it cares about is
3456 		 * not written.
3457 		 */
3458 		cnt = ump->softdep_on_journal;
3459 		if (cnt + jblocks->jb_needseg == 0 || jblocks->jb_free == 0) {
3460 			bp->b_flags |= B_INVAL | B_NOCACHE;
3461 			WORKITEM_FREE(jseg, D_JSEG);
3462 			FREE_LOCK(ump);
3463 			brelse(bp);
3464 			ACQUIRE_LOCK(ump);
3465 			break;
3466 		}
3467 		/*
3468 		 * Calculate the disk block size required for the available
3469 		 * records rounded to the min size.
3470 		 */
3471 		if (cnt == 0)
3472 			size = devbsize;
3473 		else if (cnt < jrecmax)
3474 			size = howmany(cnt, jrecmin) * devbsize;
3475 		else
3476 			size = fs->fs_bsize;
3477 		/*
3478 		 * Allocate a disk block for this journal data and account
3479 		 * for truncation of the requested size if enough contiguous
3480 		 * space was not available.
3481 		 */
3482 		bp->b_blkno = jblocks_alloc(jblocks, size, &size);
3483 		bp->b_lblkno = bp->b_blkno;
3484 		bp->b_offset = bp->b_blkno * DEV_BSIZE;
3485 		bp->b_bcount = size;
3486 		bp->b_flags &= ~B_INVAL;
3487 		bp->b_flags |= B_VALIDSUSPWRT | B_NOCOPY;
3488 		/*
3489 		 * Initialize our jseg with cnt records.  Assign the next
3490 		 * sequence number to it and link it in-order.
3491 		 */
3492 		cnt = MIN(cnt, (size / devbsize) * jrecmin);
3493 		jseg->js_buf = bp;
3494 		jseg->js_cnt = cnt;
3495 		jseg->js_refs = cnt + 1;	/* Self ref. */
3496 		jseg->js_size = size;
3497 		jseg->js_seq = jblocks->jb_nextseq++;
3498 		if (jblocks->jb_oldestseg == NULL)
3499 			jblocks->jb_oldestseg = jseg;
3500 		jseg->js_oldseq = jblocks->jb_oldestseg->js_seq;
3501 		TAILQ_INSERT_TAIL(&jblocks->jb_segs, jseg, js_next);
3502 		if (jblocks->jb_writeseg == NULL)
3503 			jblocks->jb_writeseg = jseg;
3504 		/*
3505 		 * Start filling in records from the pending list.
3506 		 */
3507 		data = bp->b_data;
3508 		off = 0;
3509 
3510 		/*
3511 		 * Always put a header on the first block.
3512 		 * XXX As with below, there might not be a chance to get
3513 		 * into the loop.  Ensure that something valid is written.
3514 		 */
3515 		jseg_write(ump, jseg, data);
3516 		off += JREC_SIZE;
3517 		data = bp->b_data + off;
3518 
3519 		/*
3520 		 * XXX Something is wrong here.  There's no work to do,
3521 		 * but we need to perform and I/O and allow it to complete
3522 		 * anyways.
3523 		 */
3524 		if (LIST_EMPTY(&ump->softdep_journal_pending))
3525 			stat_emptyjblocks++;
3526 
3527 		while ((wk = LIST_FIRST(&ump->softdep_journal_pending))
3528 		    != NULL) {
3529 			if (cnt == 0)
3530 				break;
3531 			/* Place a segment header on every device block. */
3532 			if ((off % devbsize) == 0) {
3533 				jseg_write(ump, jseg, data);
3534 				off += JREC_SIZE;
3535 				data = bp->b_data + off;
3536 			}
3537 			if (wk == needwk)
3538 				needwk = NULL;
3539 			remove_from_journal(wk);
3540 			wk->wk_state |= INPROGRESS;
3541 			WORKLIST_INSERT(&jseg->js_entries, wk);
3542 			switch (wk->wk_type) {
3543 			case D_JADDREF:
3544 				jaddref_write(WK_JADDREF(wk), jseg, data);
3545 				break;
3546 			case D_JREMREF:
3547 				jremref_write(WK_JREMREF(wk), jseg, data);
3548 				break;
3549 			case D_JMVREF:
3550 				jmvref_write(WK_JMVREF(wk), jseg, data);
3551 				break;
3552 			case D_JNEWBLK:
3553 				jnewblk_write(WK_JNEWBLK(wk), jseg, data);
3554 				break;
3555 			case D_JFREEBLK:
3556 				jfreeblk_write(WK_JFREEBLK(wk), jseg, data);
3557 				break;
3558 			case D_JFREEFRAG:
3559 				jfreefrag_write(WK_JFREEFRAG(wk), jseg, data);
3560 				break;
3561 			case D_JTRUNC:
3562 				jtrunc_write(WK_JTRUNC(wk), jseg, data);
3563 				break;
3564 			case D_JFSYNC:
3565 				jfsync_write(WK_JFSYNC(wk), jseg, data);
3566 				break;
3567 			default:
3568 				panic("process_journal: Unknown type %s",
3569 				    TYPENAME(wk->wk_type));
3570 				/* NOTREACHED */
3571 			}
3572 			off += JREC_SIZE;
3573 			data = bp->b_data + off;
3574 			cnt--;
3575 		}
3576 
3577 		/* Clear any remaining space so we don't leak kernel data */
3578 		if (size > off)
3579 			bzero(data, size - off);
3580 
3581 		/*
3582 		 * Write this one buffer and continue.
3583 		 */
3584 		segwritten = 1;
3585 		jblocks->jb_needseg = 0;
3586 		WORKLIST_INSERT(&bp->b_dep, &jseg->js_list);
3587 		FREE_LOCK(ump);
3588 		pbgetvp(ump->um_devvp, bp);
3589 		/*
3590 		 * We only do the blocking wait once we find the journal
3591 		 * entry we're looking for.
3592 		 */
3593 		if (needwk == NULL && flags == MNT_WAIT)
3594 			bwrite(bp);
3595 		else
3596 			bawrite(bp);
3597 		ACQUIRE_LOCK(ump);
3598 	}
3599 	/*
3600 	 * If we wrote a segment issue a synchronize cache so the journal
3601 	 * is reflected on disk before the data is written.  Since reclaiming
3602 	 * journal space also requires writing a journal record this
3603 	 * process also enforces a barrier before reclamation.
3604 	 */
3605 	if (segwritten && shouldflush) {
3606 		softdep_synchronize(bio, ump,
3607 		    TAILQ_LAST(&jblocks->jb_segs, jseglst));
3608 	} else if (bio)
3609 		g_destroy_bio(bio);
3610 	/*
3611 	 * If we've suspended the filesystem because we ran out of journal
3612 	 * space either try to sync it here to make some progress or
3613 	 * unsuspend it if we already have.
3614 	 */
3615 	if (flags == 0 && jblocks->jb_suspended) {
3616 		if (journal_unsuspend(ump))
3617 			return;
3618 		FREE_LOCK(ump);
3619 		VFS_SYNC(mp, MNT_NOWAIT);
3620 		ffs_sbupdate(ump, MNT_WAIT, 0);
3621 		ACQUIRE_LOCK(ump);
3622 	}
3623 }
3624 
3625 /*
3626  * Complete a jseg, allowing all dependencies awaiting journal writes
3627  * to proceed.  Each journal dependency also attaches a jsegdep to dependent
3628  * structures so that the journal segment can be freed to reclaim space.
3629  */
3630 static void
3631 complete_jseg(jseg)
3632 	struct jseg *jseg;
3633 {
3634 	struct worklist *wk;
3635 	struct jmvref *jmvref;
3636 #ifdef INVARIANTS
3637 	int i = 0;
3638 #endif
3639 
3640 	while ((wk = LIST_FIRST(&jseg->js_entries)) != NULL) {
3641 		WORKLIST_REMOVE(wk);
3642 		wk->wk_state &= ~INPROGRESS;
3643 		wk->wk_state |= COMPLETE;
3644 		KASSERT(i++ < jseg->js_cnt,
3645 		    ("handle_written_jseg: overflow %d >= %d",
3646 		    i - 1, jseg->js_cnt));
3647 		switch (wk->wk_type) {
3648 		case D_JADDREF:
3649 			handle_written_jaddref(WK_JADDREF(wk));
3650 			break;
3651 		case D_JREMREF:
3652 			handle_written_jremref(WK_JREMREF(wk));
3653 			break;
3654 		case D_JMVREF:
3655 			rele_jseg(jseg);	/* No jsegdep. */
3656 			jmvref = WK_JMVREF(wk);
3657 			LIST_REMOVE(jmvref, jm_deps);
3658 			if ((jmvref->jm_pagedep->pd_state & ONWORKLIST) == 0)
3659 				free_pagedep(jmvref->jm_pagedep);
3660 			WORKITEM_FREE(jmvref, D_JMVREF);
3661 			break;
3662 		case D_JNEWBLK:
3663 			handle_written_jnewblk(WK_JNEWBLK(wk));
3664 			break;
3665 		case D_JFREEBLK:
3666 			handle_written_jblkdep(&WK_JFREEBLK(wk)->jf_dep);
3667 			break;
3668 		case D_JTRUNC:
3669 			handle_written_jblkdep(&WK_JTRUNC(wk)->jt_dep);
3670 			break;
3671 		case D_JFSYNC:
3672 			rele_jseg(jseg);	/* No jsegdep. */
3673 			WORKITEM_FREE(wk, D_JFSYNC);
3674 			break;
3675 		case D_JFREEFRAG:
3676 			handle_written_jfreefrag(WK_JFREEFRAG(wk));
3677 			break;
3678 		default:
3679 			panic("handle_written_jseg: Unknown type %s",
3680 			    TYPENAME(wk->wk_type));
3681 			/* NOTREACHED */
3682 		}
3683 	}
3684 	/* Release the self reference so the structure may be freed. */
3685 	rele_jseg(jseg);
3686 }
3687 
3688 /*
3689  * Determine which jsegs are ready for completion processing.  Waits for
3690  * synchronize cache to complete as well as forcing in-order completion
3691  * of journal entries.
3692  */
3693 static void
3694 complete_jsegs(jseg)
3695 	struct jseg *jseg;
3696 {
3697 	struct jblocks *jblocks;
3698 	struct jseg *jsegn;
3699 
3700 	jblocks = jseg->js_jblocks;
3701 	/*
3702 	 * Don't allow out of order completions.  If this isn't the first
3703 	 * block wait for it to write before we're done.
3704 	 */
3705 	if (jseg != jblocks->jb_writeseg)
3706 		return;
3707 	/* Iterate through available jsegs processing their entries. */
3708 	while (jseg && (jseg->js_state & ALLCOMPLETE) == ALLCOMPLETE) {
3709 		jblocks->jb_oldestwrseq = jseg->js_oldseq;
3710 		jsegn = TAILQ_NEXT(jseg, js_next);
3711 		complete_jseg(jseg);
3712 		jseg = jsegn;
3713 	}
3714 	jblocks->jb_writeseg = jseg;
3715 	/*
3716 	 * Attempt to free jsegs now that oldestwrseq may have advanced.
3717 	 */
3718 	free_jsegs(jblocks);
3719 }
3720 
3721 /*
3722  * Mark a jseg as DEPCOMPLETE and throw away the buffer.  Attempt to handle
3723  * the final completions.
3724  */
3725 static void
3726 handle_written_jseg(jseg, bp)
3727 	struct jseg *jseg;
3728 	struct buf *bp;
3729 {
3730 
3731 	if (jseg->js_refs == 0)
3732 		panic("handle_written_jseg: No self-reference on %p", jseg);
3733 	jseg->js_state |= DEPCOMPLETE;
3734 	/*
3735 	 * We'll never need this buffer again, set flags so it will be
3736 	 * discarded.
3737 	 */
3738 	bp->b_flags |= B_INVAL | B_NOCACHE;
3739 	pbrelvp(bp);
3740 	complete_jsegs(jseg);
3741 }
3742 
3743 static inline struct jsegdep *
3744 inoref_jseg(inoref)
3745 	struct inoref *inoref;
3746 {
3747 	struct jsegdep *jsegdep;
3748 
3749 	jsegdep = inoref->if_jsegdep;
3750 	inoref->if_jsegdep = NULL;
3751 
3752 	return (jsegdep);
3753 }
3754 
3755 /*
3756  * Called once a jremref has made it to stable store.  The jremref is marked
3757  * complete and we attempt to free it.  Any pagedeps writes sleeping waiting
3758  * for the jremref to complete will be awoken by free_jremref.
3759  */
3760 static void
3761 handle_written_jremref(jremref)
3762 	struct jremref *jremref;
3763 {
3764 	struct inodedep *inodedep;
3765 	struct jsegdep *jsegdep;
3766 	struct dirrem *dirrem;
3767 
3768 	/* Grab the jsegdep. */
3769 	jsegdep = inoref_jseg(&jremref->jr_ref);
3770 	/*
3771 	 * Remove us from the inoref list.
3772 	 */
3773 	if (inodedep_lookup(jremref->jr_list.wk_mp, jremref->jr_ref.if_ino,
3774 	    0, &inodedep) == 0)
3775 		panic("handle_written_jremref: Lost inodedep");
3776 	TAILQ_REMOVE(&inodedep->id_inoreflst, &jremref->jr_ref, if_deps);
3777 	/*
3778 	 * Complete the dirrem.
3779 	 */
3780 	dirrem = jremref->jr_dirrem;
3781 	jremref->jr_dirrem = NULL;
3782 	LIST_REMOVE(jremref, jr_deps);
3783 	jsegdep->jd_state |= jremref->jr_state & MKDIR_PARENT;
3784 	jwork_insert(&dirrem->dm_jwork, jsegdep);
3785 	if (LIST_EMPTY(&dirrem->dm_jremrefhd) &&
3786 	    (dirrem->dm_state & COMPLETE) != 0)
3787 		add_to_worklist(&dirrem->dm_list, 0);
3788 	free_jremref(jremref);
3789 }
3790 
3791 /*
3792  * Called once a jaddref has made it to stable store.  The dependency is
3793  * marked complete and any dependent structures are added to the inode
3794  * bufwait list to be completed as soon as it is written.  If a bitmap write
3795  * depends on this entry we move the inode into the inodedephd of the
3796  * bmsafemap dependency and attempt to remove the jaddref from the bmsafemap.
3797  */
3798 static void
3799 handle_written_jaddref(jaddref)
3800 	struct jaddref *jaddref;
3801 {
3802 	struct jsegdep *jsegdep;
3803 	struct inodedep *inodedep;
3804 	struct diradd *diradd;
3805 	struct mkdir *mkdir;
3806 
3807 	/* Grab the jsegdep. */
3808 	jsegdep = inoref_jseg(&jaddref->ja_ref);
3809 	mkdir = NULL;
3810 	diradd = NULL;
3811 	if (inodedep_lookup(jaddref->ja_list.wk_mp, jaddref->ja_ino,
3812 	    0, &inodedep) == 0)
3813 		panic("handle_written_jaddref: Lost inodedep.");
3814 	if (jaddref->ja_diradd == NULL)
3815 		panic("handle_written_jaddref: No dependency");
3816 	if (jaddref->ja_diradd->da_list.wk_type == D_DIRADD) {
3817 		diradd = jaddref->ja_diradd;
3818 		WORKLIST_INSERT(&inodedep->id_bufwait, &diradd->da_list);
3819 	} else if (jaddref->ja_state & MKDIR_PARENT) {
3820 		mkdir = jaddref->ja_mkdir;
3821 		WORKLIST_INSERT(&inodedep->id_bufwait, &mkdir->md_list);
3822 	} else if (jaddref->ja_state & MKDIR_BODY)
3823 		mkdir = jaddref->ja_mkdir;
3824 	else
3825 		panic("handle_written_jaddref: Unknown dependency %p",
3826 		    jaddref->ja_diradd);
3827 	jaddref->ja_diradd = NULL;	/* also clears ja_mkdir */
3828 	/*
3829 	 * Remove us from the inode list.
3830 	 */
3831 	TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref, if_deps);
3832 	/*
3833 	 * The mkdir may be waiting on the jaddref to clear before freeing.
3834 	 */
3835 	if (mkdir) {
3836 		KASSERT(mkdir->md_list.wk_type == D_MKDIR,
3837 		    ("handle_written_jaddref: Incorrect type for mkdir %s",
3838 		    TYPENAME(mkdir->md_list.wk_type)));
3839 		mkdir->md_jaddref = NULL;
3840 		diradd = mkdir->md_diradd;
3841 		mkdir->md_state |= DEPCOMPLETE;
3842 		complete_mkdir(mkdir);
3843 	}
3844 	jwork_insert(&diradd->da_jwork, jsegdep);
3845 	if (jaddref->ja_state & NEWBLOCK) {
3846 		inodedep->id_state |= ONDEPLIST;
3847 		LIST_INSERT_HEAD(&inodedep->id_bmsafemap->sm_inodedephd,
3848 		    inodedep, id_deps);
3849 	}
3850 	free_jaddref(jaddref);
3851 }
3852 
3853 /*
3854  * Called once a jnewblk journal is written.  The allocdirect or allocindir
3855  * is placed in the bmsafemap to await notification of a written bitmap.  If
3856  * the operation was canceled we add the segdep to the appropriate
3857  * dependency to free the journal space once the canceling operation
3858  * completes.
3859  */
3860 static void
3861 handle_written_jnewblk(jnewblk)
3862 	struct jnewblk *jnewblk;
3863 {
3864 	struct bmsafemap *bmsafemap;
3865 	struct freefrag *freefrag;
3866 	struct freework *freework;
3867 	struct jsegdep *jsegdep;
3868 	struct newblk *newblk;
3869 
3870 	/* Grab the jsegdep. */
3871 	jsegdep = jnewblk->jn_jsegdep;
3872 	jnewblk->jn_jsegdep = NULL;
3873 	if (jnewblk->jn_dep == NULL)
3874 		panic("handle_written_jnewblk: No dependency for the segdep.");
3875 	switch (jnewblk->jn_dep->wk_type) {
3876 	case D_NEWBLK:
3877 	case D_ALLOCDIRECT:
3878 	case D_ALLOCINDIR:
3879 		/*
3880 		 * Add the written block to the bmsafemap so it can
3881 		 * be notified when the bitmap is on disk.
3882 		 */
3883 		newblk = WK_NEWBLK(jnewblk->jn_dep);
3884 		newblk->nb_jnewblk = NULL;
3885 		if ((newblk->nb_state & GOINGAWAY) == 0) {
3886 			bmsafemap = newblk->nb_bmsafemap;
3887 			newblk->nb_state |= ONDEPLIST;
3888 			LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk,
3889 			    nb_deps);
3890 		}
3891 		jwork_insert(&newblk->nb_jwork, jsegdep);
3892 		break;
3893 	case D_FREEFRAG:
3894 		/*
3895 		 * A newblock being removed by a freefrag when replaced by
3896 		 * frag extension.
3897 		 */
3898 		freefrag = WK_FREEFRAG(jnewblk->jn_dep);
3899 		freefrag->ff_jdep = NULL;
3900 		jwork_insert(&freefrag->ff_jwork, jsegdep);
3901 		break;
3902 	case D_FREEWORK:
3903 		/*
3904 		 * A direct block was removed by truncate.
3905 		 */
3906 		freework = WK_FREEWORK(jnewblk->jn_dep);
3907 		freework->fw_jnewblk = NULL;
3908 		jwork_insert(&freework->fw_freeblks->fb_jwork, jsegdep);
3909 		break;
3910 	default:
3911 		panic("handle_written_jnewblk: Unknown type %d.",
3912 		    jnewblk->jn_dep->wk_type);
3913 	}
3914 	jnewblk->jn_dep = NULL;
3915 	free_jnewblk(jnewblk);
3916 }
3917 
3918 /*
3919  * Cancel a jfreefrag that won't be needed, probably due to colliding with
3920  * an in-flight allocation that has not yet been committed.  Divorce us
3921  * from the freefrag and mark it DEPCOMPLETE so that it may be added
3922  * to the worklist.
3923  */
3924 static void
3925 cancel_jfreefrag(jfreefrag)
3926 	struct jfreefrag *jfreefrag;
3927 {
3928 	struct freefrag *freefrag;
3929 
3930 	if (jfreefrag->fr_jsegdep) {
3931 		free_jsegdep(jfreefrag->fr_jsegdep);
3932 		jfreefrag->fr_jsegdep = NULL;
3933 	}
3934 	freefrag = jfreefrag->fr_freefrag;
3935 	jfreefrag->fr_freefrag = NULL;
3936 	free_jfreefrag(jfreefrag);
3937 	freefrag->ff_state |= DEPCOMPLETE;
3938 	CTR1(KTR_SUJ, "cancel_jfreefrag: blkno %jd", freefrag->ff_blkno);
3939 }
3940 
3941 /*
3942  * Free a jfreefrag when the parent freefrag is rendered obsolete.
3943  */
3944 static void
3945 free_jfreefrag(jfreefrag)
3946 	struct jfreefrag *jfreefrag;
3947 {
3948 
3949 	if (jfreefrag->fr_state & INPROGRESS)
3950 		WORKLIST_REMOVE(&jfreefrag->fr_list);
3951 	else if (jfreefrag->fr_state & ONWORKLIST)
3952 		remove_from_journal(&jfreefrag->fr_list);
3953 	if (jfreefrag->fr_freefrag != NULL)
3954 		panic("free_jfreefrag:  Still attached to a freefrag.");
3955 	WORKITEM_FREE(jfreefrag, D_JFREEFRAG);
3956 }
3957 
3958 /*
3959  * Called when the journal write for a jfreefrag completes.  The parent
3960  * freefrag is added to the worklist if this completes its dependencies.
3961  */
3962 static void
3963 handle_written_jfreefrag(jfreefrag)
3964 	struct jfreefrag *jfreefrag;
3965 {
3966 	struct jsegdep *jsegdep;
3967 	struct freefrag *freefrag;
3968 
3969 	/* Grab the jsegdep. */
3970 	jsegdep = jfreefrag->fr_jsegdep;
3971 	jfreefrag->fr_jsegdep = NULL;
3972 	freefrag = jfreefrag->fr_freefrag;
3973 	if (freefrag == NULL)
3974 		panic("handle_written_jfreefrag: No freefrag.");
3975 	freefrag->ff_state |= DEPCOMPLETE;
3976 	freefrag->ff_jdep = NULL;
3977 	jwork_insert(&freefrag->ff_jwork, jsegdep);
3978 	if ((freefrag->ff_state & ALLCOMPLETE) == ALLCOMPLETE)
3979 		add_to_worklist(&freefrag->ff_list, 0);
3980 	jfreefrag->fr_freefrag = NULL;
3981 	free_jfreefrag(jfreefrag);
3982 }
3983 
3984 /*
3985  * Called when the journal write for a jfreeblk completes.  The jfreeblk
3986  * is removed from the freeblks list of pending journal writes and the
3987  * jsegdep is moved to the freeblks jwork to be completed when all blocks
3988  * have been reclaimed.
3989  */
3990 static void
3991 handle_written_jblkdep(jblkdep)
3992 	struct jblkdep *jblkdep;
3993 {
3994 	struct freeblks *freeblks;
3995 	struct jsegdep *jsegdep;
3996 
3997 	/* Grab the jsegdep. */
3998 	jsegdep = jblkdep->jb_jsegdep;
3999 	jblkdep->jb_jsegdep = NULL;
4000 	freeblks = jblkdep->jb_freeblks;
4001 	LIST_REMOVE(jblkdep, jb_deps);
4002 	jwork_insert(&freeblks->fb_jwork, jsegdep);
4003 	/*
4004 	 * If the freeblks is all journaled, we can add it to the worklist.
4005 	 */
4006 	if (LIST_EMPTY(&freeblks->fb_jblkdephd) &&
4007 	    (freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE)
4008 		add_to_worklist(&freeblks->fb_list, WK_NODELAY);
4009 
4010 	free_jblkdep(jblkdep);
4011 }
4012 
4013 static struct jsegdep *
4014 newjsegdep(struct worklist *wk)
4015 {
4016 	struct jsegdep *jsegdep;
4017 
4018 	jsegdep = malloc(sizeof(*jsegdep), M_JSEGDEP, M_SOFTDEP_FLAGS);
4019 	workitem_alloc(&jsegdep->jd_list, D_JSEGDEP, wk->wk_mp);
4020 	jsegdep->jd_seg = NULL;
4021 
4022 	return (jsegdep);
4023 }
4024 
4025 static struct jmvref *
4026 newjmvref(dp, ino, oldoff, newoff)
4027 	struct inode *dp;
4028 	ino_t ino;
4029 	off_t oldoff;
4030 	off_t newoff;
4031 {
4032 	struct jmvref *jmvref;
4033 
4034 	jmvref = malloc(sizeof(*jmvref), M_JMVREF, M_SOFTDEP_FLAGS);
4035 	workitem_alloc(&jmvref->jm_list, D_JMVREF, ITOVFS(dp));
4036 	jmvref->jm_list.wk_state = ATTACHED | DEPCOMPLETE;
4037 	jmvref->jm_parent = dp->i_number;
4038 	jmvref->jm_ino = ino;
4039 	jmvref->jm_oldoff = oldoff;
4040 	jmvref->jm_newoff = newoff;
4041 
4042 	return (jmvref);
4043 }
4044 
4045 /*
4046  * Allocate a new jremref that tracks the removal of ip from dp with the
4047  * directory entry offset of diroff.  Mark the entry as ATTACHED and
4048  * DEPCOMPLETE as we have all the information required for the journal write
4049  * and the directory has already been removed from the buffer.  The caller
4050  * is responsible for linking the jremref into the pagedep and adding it
4051  * to the journal to write.  The MKDIR_PARENT flag is set if we're doing
4052  * a DOTDOT addition so handle_workitem_remove() can properly assign
4053  * the jsegdep when we're done.
4054  */
4055 static struct jremref *
4056 newjremref(struct dirrem *dirrem, struct inode *dp, struct inode *ip,
4057     off_t diroff, nlink_t nlink)
4058 {
4059 	struct jremref *jremref;
4060 
4061 	jremref = malloc(sizeof(*jremref), M_JREMREF, M_SOFTDEP_FLAGS);
4062 	workitem_alloc(&jremref->jr_list, D_JREMREF, ITOVFS(dp));
4063 	jremref->jr_state = ATTACHED;
4064 	newinoref(&jremref->jr_ref, ip->i_number, dp->i_number, diroff,
4065 	   nlink, ip->i_mode);
4066 	jremref->jr_dirrem = dirrem;
4067 
4068 	return (jremref);
4069 }
4070 
4071 static inline void
4072 newinoref(struct inoref *inoref, ino_t ino, ino_t parent, off_t diroff,
4073     nlink_t nlink, uint16_t mode)
4074 {
4075 
4076 	inoref->if_jsegdep = newjsegdep(&inoref->if_list);
4077 	inoref->if_diroff = diroff;
4078 	inoref->if_ino = ino;
4079 	inoref->if_parent = parent;
4080 	inoref->if_nlink = nlink;
4081 	inoref->if_mode = mode;
4082 }
4083 
4084 /*
4085  * Allocate a new jaddref to track the addition of ino to dp at diroff.  The
4086  * directory offset may not be known until later.  The caller is responsible
4087  * adding the entry to the journal when this information is available.  nlink
4088  * should be the link count prior to the addition and mode is only required
4089  * to have the correct FMT.
4090  */
4091 static struct jaddref *
4092 newjaddref(struct inode *dp, ino_t ino, off_t diroff, int16_t nlink,
4093     uint16_t mode)
4094 {
4095 	struct jaddref *jaddref;
4096 
4097 	jaddref = malloc(sizeof(*jaddref), M_JADDREF, M_SOFTDEP_FLAGS);
4098 	workitem_alloc(&jaddref->ja_list, D_JADDREF, ITOVFS(dp));
4099 	jaddref->ja_state = ATTACHED;
4100 	jaddref->ja_mkdir = NULL;
4101 	newinoref(&jaddref->ja_ref, ino, dp->i_number, diroff, nlink, mode);
4102 
4103 	return (jaddref);
4104 }
4105 
4106 /*
4107  * Create a new free dependency for a freework.  The caller is responsible
4108  * for adjusting the reference count when it has the lock held.  The freedep
4109  * will track an outstanding bitmap write that will ultimately clear the
4110  * freework to continue.
4111  */
4112 static struct freedep *
4113 newfreedep(struct freework *freework)
4114 {
4115 	struct freedep *freedep;
4116 
4117 	freedep = malloc(sizeof(*freedep), M_FREEDEP, M_SOFTDEP_FLAGS);
4118 	workitem_alloc(&freedep->fd_list, D_FREEDEP, freework->fw_list.wk_mp);
4119 	freedep->fd_freework = freework;
4120 
4121 	return (freedep);
4122 }
4123 
4124 /*
4125  * Free a freedep structure once the buffer it is linked to is written.  If
4126  * this is the last reference to the freework schedule it for completion.
4127  */
4128 static void
4129 free_freedep(freedep)
4130 	struct freedep *freedep;
4131 {
4132 	struct freework *freework;
4133 
4134 	freework = freedep->fd_freework;
4135 	freework->fw_freeblks->fb_cgwait--;
4136 	if (--freework->fw_ref == 0)
4137 		freework_enqueue(freework);
4138 	WORKITEM_FREE(freedep, D_FREEDEP);
4139 }
4140 
4141 /*
4142  * Allocate a new freework structure that may be a level in an indirect
4143  * when parent is not NULL or a top level block when it is.  The top level
4144  * freework structures are allocated without the per-filesystem lock held
4145  * and before the freeblks is visible outside of softdep_setup_freeblocks().
4146  */
4147 static struct freework *
4148 newfreework(ump, freeblks, parent, lbn, nb, frags, off, journal)
4149 	struct ufsmount *ump;
4150 	struct freeblks *freeblks;
4151 	struct freework *parent;
4152 	ufs_lbn_t lbn;
4153 	ufs2_daddr_t nb;
4154 	int frags;
4155 	int off;
4156 	int journal;
4157 {
4158 	struct freework *freework;
4159 
4160 	freework = malloc(sizeof(*freework), M_FREEWORK, M_SOFTDEP_FLAGS);
4161 	workitem_alloc(&freework->fw_list, D_FREEWORK, freeblks->fb_list.wk_mp);
4162 	freework->fw_state = ATTACHED;
4163 	freework->fw_jnewblk = NULL;
4164 	freework->fw_freeblks = freeblks;
4165 	freework->fw_parent = parent;
4166 	freework->fw_lbn = lbn;
4167 	freework->fw_blkno = nb;
4168 	freework->fw_frags = frags;
4169 	freework->fw_indir = NULL;
4170 	freework->fw_ref = (MOUNTEDSUJ(UFSTOVFS(ump)) == 0 ||
4171 	    lbn >= -UFS_NXADDR) ? 0 : NINDIR(ump->um_fs) + 1;
4172 	freework->fw_start = freework->fw_off = off;
4173 	if (journal)
4174 		newjfreeblk(freeblks, lbn, nb, frags);
4175 	if (parent == NULL) {
4176 		ACQUIRE_LOCK(ump);
4177 		WORKLIST_INSERT(&freeblks->fb_freeworkhd, &freework->fw_list);
4178 		freeblks->fb_ref++;
4179 		FREE_LOCK(ump);
4180 	}
4181 
4182 	return (freework);
4183 }
4184 
4185 /*
4186  * Eliminate a jfreeblk for a block that does not need journaling.
4187  */
4188 static void
4189 cancel_jfreeblk(freeblks, blkno)
4190 	struct freeblks *freeblks;
4191 	ufs2_daddr_t blkno;
4192 {
4193 	struct jfreeblk *jfreeblk;
4194 	struct jblkdep *jblkdep;
4195 
4196 	LIST_FOREACH(jblkdep, &freeblks->fb_jblkdephd, jb_deps) {
4197 		if (jblkdep->jb_list.wk_type != D_JFREEBLK)
4198 			continue;
4199 		jfreeblk = WK_JFREEBLK(&jblkdep->jb_list);
4200 		if (jfreeblk->jf_blkno == blkno)
4201 			break;
4202 	}
4203 	if (jblkdep == NULL)
4204 		return;
4205 	CTR1(KTR_SUJ, "cancel_jfreeblk: blkno %jd", blkno);
4206 	free_jsegdep(jblkdep->jb_jsegdep);
4207 	LIST_REMOVE(jblkdep, jb_deps);
4208 	WORKITEM_FREE(jfreeblk, D_JFREEBLK);
4209 }
4210 
4211 /*
4212  * Allocate a new jfreeblk to journal top level block pointer when truncating
4213  * a file.  The caller must add this to the worklist when the per-filesystem
4214  * lock is held.
4215  */
4216 static struct jfreeblk *
4217 newjfreeblk(freeblks, lbn, blkno, frags)
4218 	struct freeblks *freeblks;
4219 	ufs_lbn_t lbn;
4220 	ufs2_daddr_t blkno;
4221 	int frags;
4222 {
4223 	struct jfreeblk *jfreeblk;
4224 
4225 	jfreeblk = malloc(sizeof(*jfreeblk), M_JFREEBLK, M_SOFTDEP_FLAGS);
4226 	workitem_alloc(&jfreeblk->jf_dep.jb_list, D_JFREEBLK,
4227 	    freeblks->fb_list.wk_mp);
4228 	jfreeblk->jf_dep.jb_jsegdep = newjsegdep(&jfreeblk->jf_dep.jb_list);
4229 	jfreeblk->jf_dep.jb_freeblks = freeblks;
4230 	jfreeblk->jf_ino = freeblks->fb_inum;
4231 	jfreeblk->jf_lbn = lbn;
4232 	jfreeblk->jf_blkno = blkno;
4233 	jfreeblk->jf_frags = frags;
4234 	LIST_INSERT_HEAD(&freeblks->fb_jblkdephd, &jfreeblk->jf_dep, jb_deps);
4235 
4236 	return (jfreeblk);
4237 }
4238 
4239 /*
4240  * The journal is only prepared to handle full-size block numbers, so we
4241  * have to adjust the record to reflect the change to a full-size block.
4242  * For example, suppose we have a block made up of fragments 8-15 and
4243  * want to free its last two fragments. We are given a request that says:
4244  *     FREEBLK ino=5, blkno=14, lbn=0, frags=2, oldfrags=0
4245  * where frags are the number of fragments to free and oldfrags are the
4246  * number of fragments to keep. To block align it, we have to change it to
4247  * have a valid full-size blkno, so it becomes:
4248  *     FREEBLK ino=5, blkno=8, lbn=0, frags=2, oldfrags=6
4249  */
4250 static void
4251 adjust_newfreework(freeblks, frag_offset)
4252 	struct freeblks *freeblks;
4253 	int frag_offset;
4254 {
4255 	struct jfreeblk *jfreeblk;
4256 
4257 	KASSERT((LIST_FIRST(&freeblks->fb_jblkdephd) != NULL &&
4258 	    LIST_FIRST(&freeblks->fb_jblkdephd)->jb_list.wk_type == D_JFREEBLK),
4259 	    ("adjust_newfreework: Missing freeblks dependency"));
4260 
4261 	jfreeblk = WK_JFREEBLK(LIST_FIRST(&freeblks->fb_jblkdephd));
4262 	jfreeblk->jf_blkno -= frag_offset;
4263 	jfreeblk->jf_frags += frag_offset;
4264 }
4265 
4266 /*
4267  * Allocate a new jtrunc to track a partial truncation.
4268  */
4269 static struct jtrunc *
4270 newjtrunc(freeblks, size, extsize)
4271 	struct freeblks *freeblks;
4272 	off_t size;
4273 	int extsize;
4274 {
4275 	struct jtrunc *jtrunc;
4276 
4277 	jtrunc = malloc(sizeof(*jtrunc), M_JTRUNC, M_SOFTDEP_FLAGS);
4278 	workitem_alloc(&jtrunc->jt_dep.jb_list, D_JTRUNC,
4279 	    freeblks->fb_list.wk_mp);
4280 	jtrunc->jt_dep.jb_jsegdep = newjsegdep(&jtrunc->jt_dep.jb_list);
4281 	jtrunc->jt_dep.jb_freeblks = freeblks;
4282 	jtrunc->jt_ino = freeblks->fb_inum;
4283 	jtrunc->jt_size = size;
4284 	jtrunc->jt_extsize = extsize;
4285 	LIST_INSERT_HEAD(&freeblks->fb_jblkdephd, &jtrunc->jt_dep, jb_deps);
4286 
4287 	return (jtrunc);
4288 }
4289 
4290 /*
4291  * If we're canceling a new bitmap we have to search for another ref
4292  * to move into the bmsafemap dep.  This might be better expressed
4293  * with another structure.
4294  */
4295 static void
4296 move_newblock_dep(jaddref, inodedep)
4297 	struct jaddref *jaddref;
4298 	struct inodedep *inodedep;
4299 {
4300 	struct inoref *inoref;
4301 	struct jaddref *jaddrefn;
4302 
4303 	jaddrefn = NULL;
4304 	for (inoref = TAILQ_NEXT(&jaddref->ja_ref, if_deps); inoref;
4305 	    inoref = TAILQ_NEXT(inoref, if_deps)) {
4306 		if ((jaddref->ja_state & NEWBLOCK) &&
4307 		    inoref->if_list.wk_type == D_JADDREF) {
4308 			jaddrefn = (struct jaddref *)inoref;
4309 			break;
4310 		}
4311 	}
4312 	if (jaddrefn == NULL)
4313 		return;
4314 	jaddrefn->ja_state &= ~(ATTACHED | UNDONE);
4315 	jaddrefn->ja_state |= jaddref->ja_state &
4316 	    (ATTACHED | UNDONE | NEWBLOCK);
4317 	jaddref->ja_state &= ~(ATTACHED | UNDONE | NEWBLOCK);
4318 	jaddref->ja_state |= ATTACHED;
4319 	LIST_REMOVE(jaddref, ja_bmdeps);
4320 	LIST_INSERT_HEAD(&inodedep->id_bmsafemap->sm_jaddrefhd, jaddrefn,
4321 	    ja_bmdeps);
4322 }
4323 
4324 /*
4325  * Cancel a jaddref either before it has been written or while it is being
4326  * written.  This happens when a link is removed before the add reaches
4327  * the disk.  The jaddref dependency is kept linked into the bmsafemap
4328  * and inode to prevent the link count or bitmap from reaching the disk
4329  * until handle_workitem_remove() re-adjusts the counts and bitmaps as
4330  * required.
4331  *
4332  * Returns 1 if the canceled addref requires journaling of the remove and
4333  * 0 otherwise.
4334  */
4335 static int
4336 cancel_jaddref(jaddref, inodedep, wkhd)
4337 	struct jaddref *jaddref;
4338 	struct inodedep *inodedep;
4339 	struct workhead *wkhd;
4340 {
4341 	struct inoref *inoref;
4342 	struct jsegdep *jsegdep;
4343 	int needsj;
4344 
4345 	KASSERT((jaddref->ja_state & COMPLETE) == 0,
4346 	    ("cancel_jaddref: Canceling complete jaddref"));
4347 	if (jaddref->ja_state & (INPROGRESS | COMPLETE))
4348 		needsj = 1;
4349 	else
4350 		needsj = 0;
4351 	if (inodedep == NULL)
4352 		if (inodedep_lookup(jaddref->ja_list.wk_mp, jaddref->ja_ino,
4353 		    0, &inodedep) == 0)
4354 			panic("cancel_jaddref: Lost inodedep");
4355 	/*
4356 	 * We must adjust the nlink of any reference operation that follows
4357 	 * us so that it is consistent with the in-memory reference.  This
4358 	 * ensures that inode nlink rollbacks always have the correct link.
4359 	 */
4360 	if (needsj == 0) {
4361 		for (inoref = TAILQ_NEXT(&jaddref->ja_ref, if_deps); inoref;
4362 		    inoref = TAILQ_NEXT(inoref, if_deps)) {
4363 			if (inoref->if_state & GOINGAWAY)
4364 				break;
4365 			inoref->if_nlink--;
4366 		}
4367 	}
4368 	jsegdep = inoref_jseg(&jaddref->ja_ref);
4369 	if (jaddref->ja_state & NEWBLOCK)
4370 		move_newblock_dep(jaddref, inodedep);
4371 	wake_worklist(&jaddref->ja_list);
4372 	jaddref->ja_mkdir = NULL;
4373 	if (jaddref->ja_state & INPROGRESS) {
4374 		jaddref->ja_state &= ~INPROGRESS;
4375 		WORKLIST_REMOVE(&jaddref->ja_list);
4376 		jwork_insert(wkhd, jsegdep);
4377 	} else {
4378 		free_jsegdep(jsegdep);
4379 		if (jaddref->ja_state & DEPCOMPLETE)
4380 			remove_from_journal(&jaddref->ja_list);
4381 	}
4382 	jaddref->ja_state |= (GOINGAWAY | DEPCOMPLETE);
4383 	/*
4384 	 * Leave NEWBLOCK jaddrefs on the inodedep so handle_workitem_remove
4385 	 * can arrange for them to be freed with the bitmap.  Otherwise we
4386 	 * no longer need this addref attached to the inoreflst and it
4387 	 * will incorrectly adjust nlink if we leave it.
4388 	 */
4389 	if ((jaddref->ja_state & NEWBLOCK) == 0) {
4390 		TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref,
4391 		    if_deps);
4392 		jaddref->ja_state |= COMPLETE;
4393 		free_jaddref(jaddref);
4394 		return (needsj);
4395 	}
4396 	/*
4397 	 * Leave the head of the list for jsegdeps for fast merging.
4398 	 */
4399 	if (LIST_FIRST(wkhd) != NULL) {
4400 		jaddref->ja_state |= ONWORKLIST;
4401 		LIST_INSERT_AFTER(LIST_FIRST(wkhd), &jaddref->ja_list, wk_list);
4402 	} else
4403 		WORKLIST_INSERT(wkhd, &jaddref->ja_list);
4404 
4405 	return (needsj);
4406 }
4407 
4408 /*
4409  * Attempt to free a jaddref structure when some work completes.  This
4410  * should only succeed once the entry is written and all dependencies have
4411  * been notified.
4412  */
4413 static void
4414 free_jaddref(jaddref)
4415 	struct jaddref *jaddref;
4416 {
4417 
4418 	if ((jaddref->ja_state & ALLCOMPLETE) != ALLCOMPLETE)
4419 		return;
4420 	if (jaddref->ja_ref.if_jsegdep)
4421 		panic("free_jaddref: segdep attached to jaddref %p(0x%X)\n",
4422 		    jaddref, jaddref->ja_state);
4423 	if (jaddref->ja_state & NEWBLOCK)
4424 		LIST_REMOVE(jaddref, ja_bmdeps);
4425 	if (jaddref->ja_state & (INPROGRESS | ONWORKLIST))
4426 		panic("free_jaddref: Bad state %p(0x%X)",
4427 		    jaddref, jaddref->ja_state);
4428 	if (jaddref->ja_mkdir != NULL)
4429 		panic("free_jaddref: Work pending, 0x%X\n", jaddref->ja_state);
4430 	WORKITEM_FREE(jaddref, D_JADDREF);
4431 }
4432 
4433 /*
4434  * Free a jremref structure once it has been written or discarded.
4435  */
4436 static void
4437 free_jremref(jremref)
4438 	struct jremref *jremref;
4439 {
4440 
4441 	if (jremref->jr_ref.if_jsegdep)
4442 		free_jsegdep(jremref->jr_ref.if_jsegdep);
4443 	if (jremref->jr_state & INPROGRESS)
4444 		panic("free_jremref: IO still pending");
4445 	WORKITEM_FREE(jremref, D_JREMREF);
4446 }
4447 
4448 /*
4449  * Free a jnewblk structure.
4450  */
4451 static void
4452 free_jnewblk(jnewblk)
4453 	struct jnewblk *jnewblk;
4454 {
4455 
4456 	if ((jnewblk->jn_state & ALLCOMPLETE) != ALLCOMPLETE)
4457 		return;
4458 	LIST_REMOVE(jnewblk, jn_deps);
4459 	if (jnewblk->jn_dep != NULL)
4460 		panic("free_jnewblk: Dependency still attached.");
4461 	WORKITEM_FREE(jnewblk, D_JNEWBLK);
4462 }
4463 
4464 /*
4465  * Cancel a jnewblk which has been been made redundant by frag extension.
4466  */
4467 static void
4468 cancel_jnewblk(jnewblk, wkhd)
4469 	struct jnewblk *jnewblk;
4470 	struct workhead *wkhd;
4471 {
4472 	struct jsegdep *jsegdep;
4473 
4474 	CTR1(KTR_SUJ, "cancel_jnewblk: blkno %jd", jnewblk->jn_blkno);
4475 	jsegdep = jnewblk->jn_jsegdep;
4476 	if (jnewblk->jn_jsegdep == NULL || jnewblk->jn_dep == NULL)
4477 		panic("cancel_jnewblk: Invalid state");
4478 	jnewblk->jn_jsegdep  = NULL;
4479 	jnewblk->jn_dep = NULL;
4480 	jnewblk->jn_state |= GOINGAWAY;
4481 	if (jnewblk->jn_state & INPROGRESS) {
4482 		jnewblk->jn_state &= ~INPROGRESS;
4483 		WORKLIST_REMOVE(&jnewblk->jn_list);
4484 		jwork_insert(wkhd, jsegdep);
4485 	} else {
4486 		free_jsegdep(jsegdep);
4487 		remove_from_journal(&jnewblk->jn_list);
4488 	}
4489 	wake_worklist(&jnewblk->jn_list);
4490 	WORKLIST_INSERT(wkhd, &jnewblk->jn_list);
4491 }
4492 
4493 static void
4494 free_jblkdep(jblkdep)
4495 	struct jblkdep *jblkdep;
4496 {
4497 
4498 	if (jblkdep->jb_list.wk_type == D_JFREEBLK)
4499 		WORKITEM_FREE(jblkdep, D_JFREEBLK);
4500 	else if (jblkdep->jb_list.wk_type == D_JTRUNC)
4501 		WORKITEM_FREE(jblkdep, D_JTRUNC);
4502 	else
4503 		panic("free_jblkdep: Unexpected type %s",
4504 		    TYPENAME(jblkdep->jb_list.wk_type));
4505 }
4506 
4507 /*
4508  * Free a single jseg once it is no longer referenced in memory or on
4509  * disk.  Reclaim journal blocks and dependencies waiting for the segment
4510  * to disappear.
4511  */
4512 static void
4513 free_jseg(jseg, jblocks)
4514 	struct jseg *jseg;
4515 	struct jblocks *jblocks;
4516 {
4517 	struct freework *freework;
4518 
4519 	/*
4520 	 * Free freework structures that were lingering to indicate freed
4521 	 * indirect blocks that forced journal write ordering on reallocate.
4522 	 */
4523 	while ((freework = LIST_FIRST(&jseg->js_indirs)) != NULL)
4524 		indirblk_remove(freework);
4525 	if (jblocks->jb_oldestseg == jseg)
4526 		jblocks->jb_oldestseg = TAILQ_NEXT(jseg, js_next);
4527 	TAILQ_REMOVE(&jblocks->jb_segs, jseg, js_next);
4528 	jblocks_free(jblocks, jseg->js_list.wk_mp, jseg->js_size);
4529 	KASSERT(LIST_EMPTY(&jseg->js_entries),
4530 	    ("free_jseg: Freed jseg has valid entries."));
4531 	WORKITEM_FREE(jseg, D_JSEG);
4532 }
4533 
4534 /*
4535  * Free all jsegs that meet the criteria for being reclaimed and update
4536  * oldestseg.
4537  */
4538 static void
4539 free_jsegs(jblocks)
4540 	struct jblocks *jblocks;
4541 {
4542 	struct jseg *jseg;
4543 
4544 	/*
4545 	 * Free only those jsegs which have none allocated before them to
4546 	 * preserve the journal space ordering.
4547 	 */
4548 	while ((jseg = TAILQ_FIRST(&jblocks->jb_segs)) != NULL) {
4549 		/*
4550 		 * Only reclaim space when nothing depends on this journal
4551 		 * set and another set has written that it is no longer
4552 		 * valid.
4553 		 */
4554 		if (jseg->js_refs != 0) {
4555 			jblocks->jb_oldestseg = jseg;
4556 			return;
4557 		}
4558 		if ((jseg->js_state & ALLCOMPLETE) != ALLCOMPLETE)
4559 			break;
4560 		if (jseg->js_seq > jblocks->jb_oldestwrseq)
4561 			break;
4562 		/*
4563 		 * We can free jsegs that didn't write entries when
4564 		 * oldestwrseq == js_seq.
4565 		 */
4566 		if (jseg->js_seq == jblocks->jb_oldestwrseq &&
4567 		    jseg->js_cnt != 0)
4568 			break;
4569 		free_jseg(jseg, jblocks);
4570 	}
4571 	/*
4572 	 * If we exited the loop above we still must discover the
4573 	 * oldest valid segment.
4574 	 */
4575 	if (jseg)
4576 		for (jseg = jblocks->jb_oldestseg; jseg != NULL;
4577 		     jseg = TAILQ_NEXT(jseg, js_next))
4578 			if (jseg->js_refs != 0)
4579 				break;
4580 	jblocks->jb_oldestseg = jseg;
4581 	/*
4582 	 * The journal has no valid records but some jsegs may still be
4583 	 * waiting on oldestwrseq to advance.  We force a small record
4584 	 * out to permit these lingering records to be reclaimed.
4585 	 */
4586 	if (jblocks->jb_oldestseg == NULL && !TAILQ_EMPTY(&jblocks->jb_segs))
4587 		jblocks->jb_needseg = 1;
4588 }
4589 
4590 /*
4591  * Release one reference to a jseg and free it if the count reaches 0.  This
4592  * should eventually reclaim journal space as well.
4593  */
4594 static void
4595 rele_jseg(jseg)
4596 	struct jseg *jseg;
4597 {
4598 
4599 	KASSERT(jseg->js_refs > 0,
4600 	    ("free_jseg: Invalid refcnt %d", jseg->js_refs));
4601 	if (--jseg->js_refs != 0)
4602 		return;
4603 	free_jsegs(jseg->js_jblocks);
4604 }
4605 
4606 /*
4607  * Release a jsegdep and decrement the jseg count.
4608  */
4609 static void
4610 free_jsegdep(jsegdep)
4611 	struct jsegdep *jsegdep;
4612 {
4613 
4614 	if (jsegdep->jd_seg)
4615 		rele_jseg(jsegdep->jd_seg);
4616 	WORKITEM_FREE(jsegdep, D_JSEGDEP);
4617 }
4618 
4619 /*
4620  * Wait for a journal item to make it to disk.  Initiate journal processing
4621  * if required.
4622  */
4623 static int
4624 jwait(wk, waitfor)
4625 	struct worklist *wk;
4626 	int waitfor;
4627 {
4628 
4629 	LOCK_OWNED(VFSTOUFS(wk->wk_mp));
4630 	/*
4631 	 * Blocking journal waits cause slow synchronous behavior.  Record
4632 	 * stats on the frequency of these blocking operations.
4633 	 */
4634 	if (waitfor == MNT_WAIT) {
4635 		stat_journal_wait++;
4636 		switch (wk->wk_type) {
4637 		case D_JREMREF:
4638 		case D_JMVREF:
4639 			stat_jwait_filepage++;
4640 			break;
4641 		case D_JTRUNC:
4642 		case D_JFREEBLK:
4643 			stat_jwait_freeblks++;
4644 			break;
4645 		case D_JNEWBLK:
4646 			stat_jwait_newblk++;
4647 			break;
4648 		case D_JADDREF:
4649 			stat_jwait_inode++;
4650 			break;
4651 		default:
4652 			break;
4653 		}
4654 	}
4655 	/*
4656 	 * If IO has not started we process the journal.  We can't mark the
4657 	 * worklist item as IOWAITING because we drop the lock while
4658 	 * processing the journal and the worklist entry may be freed after
4659 	 * this point.  The caller may call back in and re-issue the request.
4660 	 */
4661 	if ((wk->wk_state & INPROGRESS) == 0) {
4662 		softdep_process_journal(wk->wk_mp, wk, waitfor);
4663 		if (waitfor != MNT_WAIT)
4664 			return (EBUSY);
4665 		return (0);
4666 	}
4667 	if (waitfor != MNT_WAIT)
4668 		return (EBUSY);
4669 	wait_worklist(wk, "jwait");
4670 	return (0);
4671 }
4672 
4673 /*
4674  * Lookup an inodedep based on an inode pointer and set the nlinkdelta as
4675  * appropriate.  This is a convenience function to reduce duplicate code
4676  * for the setup and revert functions below.
4677  */
4678 static struct inodedep *
4679 inodedep_lookup_ip(ip)
4680 	struct inode *ip;
4681 {
4682 	struct inodedep *inodedep;
4683 
4684 	KASSERT(ip->i_nlink >= ip->i_effnlink,
4685 	    ("inodedep_lookup_ip: bad delta"));
4686 	(void) inodedep_lookup(ITOVFS(ip), ip->i_number, DEPALLOC,
4687 	    &inodedep);
4688 	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
4689 	KASSERT((inodedep->id_state & UNLINKED) == 0, ("inode unlinked"));
4690 
4691 	return (inodedep);
4692 }
4693 
4694 /*
4695  * Called prior to creating a new inode and linking it to a directory.  The
4696  * jaddref structure must already be allocated by softdep_setup_inomapdep
4697  * and it is discovered here so we can initialize the mode and update
4698  * nlinkdelta.
4699  */
4700 void
4701 softdep_setup_create(dp, ip)
4702 	struct inode *dp;
4703 	struct inode *ip;
4704 {
4705 	struct inodedep *inodedep;
4706 	struct jaddref *jaddref;
4707 	struct vnode *dvp;
4708 
4709 	KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
4710 	    ("softdep_setup_create called on non-softdep filesystem"));
4711 	KASSERT(ip->i_nlink == 1,
4712 	    ("softdep_setup_create: Invalid link count."));
4713 	dvp = ITOV(dp);
4714 	ACQUIRE_LOCK(ITOUMP(dp));
4715 	inodedep = inodedep_lookup_ip(ip);
4716 	if (DOINGSUJ(dvp)) {
4717 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4718 		    inoreflst);
4719 		KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number,
4720 		    ("softdep_setup_create: No addref structure present."));
4721 	}
4722 	softdep_prelink(dvp, NULL);
4723 	FREE_LOCK(ITOUMP(dp));
4724 }
4725 
4726 /*
4727  * Create a jaddref structure to track the addition of a DOTDOT link when
4728  * we are reparenting an inode as part of a rename.  This jaddref will be
4729  * found by softdep_setup_directory_change.  Adjusts nlinkdelta for
4730  * non-journaling softdep.
4731  */
4732 void
4733 softdep_setup_dotdot_link(dp, ip)
4734 	struct inode *dp;
4735 	struct inode *ip;
4736 {
4737 	struct inodedep *inodedep;
4738 	struct jaddref *jaddref;
4739 	struct vnode *dvp;
4740 
4741 	KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
4742 	    ("softdep_setup_dotdot_link called on non-softdep filesystem"));
4743 	dvp = ITOV(dp);
4744 	jaddref = NULL;
4745 	/*
4746 	 * We don't set MKDIR_PARENT as this is not tied to a mkdir and
4747 	 * is used as a normal link would be.
4748 	 */
4749 	if (DOINGSUJ(dvp))
4750 		jaddref = newjaddref(ip, dp->i_number, DOTDOT_OFFSET,
4751 		    dp->i_effnlink - 1, dp->i_mode);
4752 	ACQUIRE_LOCK(ITOUMP(dp));
4753 	inodedep = inodedep_lookup_ip(dp);
4754 	if (jaddref)
4755 		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref,
4756 		    if_deps);
4757 	softdep_prelink(dvp, ITOV(ip));
4758 	FREE_LOCK(ITOUMP(dp));
4759 }
4760 
4761 /*
4762  * Create a jaddref structure to track a new link to an inode.  The directory
4763  * offset is not known until softdep_setup_directory_add or
4764  * softdep_setup_directory_change.  Adjusts nlinkdelta for non-journaling
4765  * softdep.
4766  */
4767 void
4768 softdep_setup_link(dp, ip)
4769 	struct inode *dp;
4770 	struct inode *ip;
4771 {
4772 	struct inodedep *inodedep;
4773 	struct jaddref *jaddref;
4774 	struct vnode *dvp;
4775 
4776 	KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
4777 	    ("softdep_setup_link called on non-softdep filesystem"));
4778 	dvp = ITOV(dp);
4779 	jaddref = NULL;
4780 	if (DOINGSUJ(dvp))
4781 		jaddref = newjaddref(dp, ip->i_number, 0, ip->i_effnlink - 1,
4782 		    ip->i_mode);
4783 	ACQUIRE_LOCK(ITOUMP(dp));
4784 	inodedep = inodedep_lookup_ip(ip);
4785 	if (jaddref)
4786 		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref,
4787 		    if_deps);
4788 	softdep_prelink(dvp, ITOV(ip));
4789 	FREE_LOCK(ITOUMP(dp));
4790 }
4791 
4792 /*
4793  * Called to create the jaddref structures to track . and .. references as
4794  * well as lookup and further initialize the incomplete jaddref created
4795  * by softdep_setup_inomapdep when the inode was allocated.  Adjusts
4796  * nlinkdelta for non-journaling softdep.
4797  */
4798 void
4799 softdep_setup_mkdir(dp, ip)
4800 	struct inode *dp;
4801 	struct inode *ip;
4802 {
4803 	struct inodedep *inodedep;
4804 	struct jaddref *dotdotaddref;
4805 	struct jaddref *dotaddref;
4806 	struct jaddref *jaddref;
4807 	struct vnode *dvp;
4808 
4809 	KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
4810 	    ("softdep_setup_mkdir called on non-softdep filesystem"));
4811 	dvp = ITOV(dp);
4812 	dotaddref = dotdotaddref = NULL;
4813 	if (DOINGSUJ(dvp)) {
4814 		dotaddref = newjaddref(ip, ip->i_number, DOT_OFFSET, 1,
4815 		    ip->i_mode);
4816 		dotaddref->ja_state |= MKDIR_BODY;
4817 		dotdotaddref = newjaddref(ip, dp->i_number, DOTDOT_OFFSET,
4818 		    dp->i_effnlink - 1, dp->i_mode);
4819 		dotdotaddref->ja_state |= MKDIR_PARENT;
4820 	}
4821 	ACQUIRE_LOCK(ITOUMP(dp));
4822 	inodedep = inodedep_lookup_ip(ip);
4823 	if (DOINGSUJ(dvp)) {
4824 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4825 		    inoreflst);
4826 		KASSERT(jaddref != NULL,
4827 		    ("softdep_setup_mkdir: No addref structure present."));
4828 		KASSERT(jaddref->ja_parent == dp->i_number,
4829 		    ("softdep_setup_mkdir: bad parent %ju",
4830 		    (uintmax_t)jaddref->ja_parent));
4831 		TAILQ_INSERT_BEFORE(&jaddref->ja_ref, &dotaddref->ja_ref,
4832 		    if_deps);
4833 	}
4834 	inodedep = inodedep_lookup_ip(dp);
4835 	if (DOINGSUJ(dvp))
4836 		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst,
4837 		    &dotdotaddref->ja_ref, if_deps);
4838 	softdep_prelink(ITOV(dp), NULL);
4839 	FREE_LOCK(ITOUMP(dp));
4840 }
4841 
4842 /*
4843  * Called to track nlinkdelta of the inode and parent directories prior to
4844  * unlinking a directory.
4845  */
4846 void
4847 softdep_setup_rmdir(dp, ip)
4848 	struct inode *dp;
4849 	struct inode *ip;
4850 {
4851 	struct vnode *dvp;
4852 
4853 	KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
4854 	    ("softdep_setup_rmdir called on non-softdep filesystem"));
4855 	dvp = ITOV(dp);
4856 	ACQUIRE_LOCK(ITOUMP(dp));
4857 	(void) inodedep_lookup_ip(ip);
4858 	(void) inodedep_lookup_ip(dp);
4859 	softdep_prelink(dvp, ITOV(ip));
4860 	FREE_LOCK(ITOUMP(dp));
4861 }
4862 
4863 /*
4864  * Called to track nlinkdelta of the inode and parent directories prior to
4865  * unlink.
4866  */
4867 void
4868 softdep_setup_unlink(dp, ip)
4869 	struct inode *dp;
4870 	struct inode *ip;
4871 {
4872 	struct vnode *dvp;
4873 
4874 	KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
4875 	    ("softdep_setup_unlink called on non-softdep filesystem"));
4876 	dvp = ITOV(dp);
4877 	ACQUIRE_LOCK(ITOUMP(dp));
4878 	(void) inodedep_lookup_ip(ip);
4879 	(void) inodedep_lookup_ip(dp);
4880 	softdep_prelink(dvp, ITOV(ip));
4881 	FREE_LOCK(ITOUMP(dp));
4882 }
4883 
4884 /*
4885  * Called to release the journal structures created by a failed non-directory
4886  * creation.  Adjusts nlinkdelta for non-journaling softdep.
4887  */
4888 void
4889 softdep_revert_create(dp, ip)
4890 	struct inode *dp;
4891 	struct inode *ip;
4892 {
4893 	struct inodedep *inodedep;
4894 	struct jaddref *jaddref;
4895 	struct vnode *dvp;
4896 
4897 	KASSERT(MOUNTEDSOFTDEP(ITOVFS((dp))) != 0,
4898 	    ("softdep_revert_create called on non-softdep filesystem"));
4899 	dvp = ITOV(dp);
4900 	ACQUIRE_LOCK(ITOUMP(dp));
4901 	inodedep = inodedep_lookup_ip(ip);
4902 	if (DOINGSUJ(dvp)) {
4903 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4904 		    inoreflst);
4905 		KASSERT(jaddref->ja_parent == dp->i_number,
4906 		    ("softdep_revert_create: addref parent mismatch"));
4907 		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4908 	}
4909 	FREE_LOCK(ITOUMP(dp));
4910 }
4911 
4912 /*
4913  * Called to release the journal structures created by a failed link
4914  * addition.  Adjusts nlinkdelta for non-journaling softdep.
4915  */
4916 void
4917 softdep_revert_link(dp, ip)
4918 	struct inode *dp;
4919 	struct inode *ip;
4920 {
4921 	struct inodedep *inodedep;
4922 	struct jaddref *jaddref;
4923 	struct vnode *dvp;
4924 
4925 	KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
4926 	    ("softdep_revert_link called on non-softdep filesystem"));
4927 	dvp = ITOV(dp);
4928 	ACQUIRE_LOCK(ITOUMP(dp));
4929 	inodedep = inodedep_lookup_ip(ip);
4930 	if (DOINGSUJ(dvp)) {
4931 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4932 		    inoreflst);
4933 		KASSERT(jaddref->ja_parent == dp->i_number,
4934 		    ("softdep_revert_link: addref parent mismatch"));
4935 		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4936 	}
4937 	FREE_LOCK(ITOUMP(dp));
4938 }
4939 
4940 /*
4941  * Called to release the journal structures created by a failed mkdir
4942  * attempt.  Adjusts nlinkdelta for non-journaling softdep.
4943  */
4944 void
4945 softdep_revert_mkdir(dp, ip)
4946 	struct inode *dp;
4947 	struct inode *ip;
4948 {
4949 	struct inodedep *inodedep;
4950 	struct jaddref *jaddref;
4951 	struct jaddref *dotaddref;
4952 	struct vnode *dvp;
4953 
4954 	KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
4955 	    ("softdep_revert_mkdir called on non-softdep filesystem"));
4956 	dvp = ITOV(dp);
4957 
4958 	ACQUIRE_LOCK(ITOUMP(dp));
4959 	inodedep = inodedep_lookup_ip(dp);
4960 	if (DOINGSUJ(dvp)) {
4961 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4962 		    inoreflst);
4963 		KASSERT(jaddref->ja_parent == ip->i_number,
4964 		    ("softdep_revert_mkdir: dotdot addref parent mismatch"));
4965 		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4966 	}
4967 	inodedep = inodedep_lookup_ip(ip);
4968 	if (DOINGSUJ(dvp)) {
4969 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4970 		    inoreflst);
4971 		KASSERT(jaddref->ja_parent == dp->i_number,
4972 		    ("softdep_revert_mkdir: addref parent mismatch"));
4973 		dotaddref = (struct jaddref *)TAILQ_PREV(&jaddref->ja_ref,
4974 		    inoreflst, if_deps);
4975 		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4976 		KASSERT(dotaddref->ja_parent == ip->i_number,
4977 		    ("softdep_revert_mkdir: dot addref parent mismatch"));
4978 		cancel_jaddref(dotaddref, inodedep, &inodedep->id_inowait);
4979 	}
4980 	FREE_LOCK(ITOUMP(dp));
4981 }
4982 
4983 /*
4984  * Called to correct nlinkdelta after a failed rmdir.
4985  */
4986 void
4987 softdep_revert_rmdir(dp, ip)
4988 	struct inode *dp;
4989 	struct inode *ip;
4990 {
4991 
4992 	KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
4993 	    ("softdep_revert_rmdir called on non-softdep filesystem"));
4994 	ACQUIRE_LOCK(ITOUMP(dp));
4995 	(void) inodedep_lookup_ip(ip);
4996 	(void) inodedep_lookup_ip(dp);
4997 	FREE_LOCK(ITOUMP(dp));
4998 }
4999 
5000 /*
5001  * Protecting the freemaps (or bitmaps).
5002  *
5003  * To eliminate the need to execute fsck before mounting a filesystem
5004  * after a power failure, one must (conservatively) guarantee that the
5005  * on-disk copy of the bitmaps never indicate that a live inode or block is
5006  * free.  So, when a block or inode is allocated, the bitmap should be
5007  * updated (on disk) before any new pointers.  When a block or inode is
5008  * freed, the bitmap should not be updated until all pointers have been
5009  * reset.  The latter dependency is handled by the delayed de-allocation
5010  * approach described below for block and inode de-allocation.  The former
5011  * dependency is handled by calling the following procedure when a block or
5012  * inode is allocated. When an inode is allocated an "inodedep" is created
5013  * with its DEPCOMPLETE flag cleared until its bitmap is written to disk.
5014  * Each "inodedep" is also inserted into the hash indexing structure so
5015  * that any additional link additions can be made dependent on the inode
5016  * allocation.
5017  *
5018  * The ufs filesystem maintains a number of free block counts (e.g., per
5019  * cylinder group, per cylinder and per <cylinder, rotational position> pair)
5020  * in addition to the bitmaps.  These counts are used to improve efficiency
5021  * during allocation and therefore must be consistent with the bitmaps.
5022  * There is no convenient way to guarantee post-crash consistency of these
5023  * counts with simple update ordering, for two main reasons: (1) The counts
5024  * and bitmaps for a single cylinder group block are not in the same disk
5025  * sector.  If a disk write is interrupted (e.g., by power failure), one may
5026  * be written and the other not.  (2) Some of the counts are located in the
5027  * superblock rather than the cylinder group block. So, we focus our soft
5028  * updates implementation on protecting the bitmaps. When mounting a
5029  * filesystem, we recompute the auxiliary counts from the bitmaps.
5030  */
5031 
5032 /*
5033  * Called just after updating the cylinder group block to allocate an inode.
5034  */
5035 void
5036 softdep_setup_inomapdep(bp, ip, newinum, mode)
5037 	struct buf *bp;		/* buffer for cylgroup block with inode map */
5038 	struct inode *ip;	/* inode related to allocation */
5039 	ino_t newinum;		/* new inode number being allocated */
5040 	int mode;
5041 {
5042 	struct inodedep *inodedep;
5043 	struct bmsafemap *bmsafemap;
5044 	struct jaddref *jaddref;
5045 	struct mount *mp;
5046 	struct fs *fs;
5047 
5048 	mp = ITOVFS(ip);
5049 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
5050 	    ("softdep_setup_inomapdep called on non-softdep filesystem"));
5051 	fs = VFSTOUFS(mp)->um_fs;
5052 	jaddref = NULL;
5053 
5054 	/*
5055 	 * Allocate the journal reference add structure so that the bitmap
5056 	 * can be dependent on it.
5057 	 */
5058 	if (MOUNTEDSUJ(mp)) {
5059 		jaddref = newjaddref(ip, newinum, 0, 0, mode);
5060 		jaddref->ja_state |= NEWBLOCK;
5061 	}
5062 
5063 	/*
5064 	 * Create a dependency for the newly allocated inode.
5065 	 * Panic if it already exists as something is seriously wrong.
5066 	 * Otherwise add it to the dependency list for the buffer holding
5067 	 * the cylinder group map from which it was allocated.
5068 	 *
5069 	 * We have to preallocate a bmsafemap entry in case it is needed
5070 	 * in bmsafemap_lookup since once we allocate the inodedep, we
5071 	 * have to finish initializing it before we can FREE_LOCK().
5072 	 * By preallocating, we avoid FREE_LOCK() while doing a malloc
5073 	 * in bmsafemap_lookup. We cannot call bmsafemap_lookup before
5074 	 * creating the inodedep as it can be freed during the time
5075 	 * that we FREE_LOCK() while allocating the inodedep. We must
5076 	 * call workitem_alloc() before entering the locked section as
5077 	 * it also acquires the lock and we must avoid trying doing so
5078 	 * recursively.
5079 	 */
5080 	bmsafemap = malloc(sizeof(struct bmsafemap),
5081 	    M_BMSAFEMAP, M_SOFTDEP_FLAGS);
5082 	workitem_alloc(&bmsafemap->sm_list, D_BMSAFEMAP, mp);
5083 	ACQUIRE_LOCK(ITOUMP(ip));
5084 	if ((inodedep_lookup(mp, newinum, DEPALLOC, &inodedep)))
5085 		panic("softdep_setup_inomapdep: dependency %p for new"
5086 		    "inode already exists", inodedep);
5087 	bmsafemap = bmsafemap_lookup(mp, bp, ino_to_cg(fs, newinum), bmsafemap);
5088 	if (jaddref) {
5089 		LIST_INSERT_HEAD(&bmsafemap->sm_jaddrefhd, jaddref, ja_bmdeps);
5090 		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref,
5091 		    if_deps);
5092 	} else {
5093 		inodedep->id_state |= ONDEPLIST;
5094 		LIST_INSERT_HEAD(&bmsafemap->sm_inodedephd, inodedep, id_deps);
5095 	}
5096 	inodedep->id_bmsafemap = bmsafemap;
5097 	inodedep->id_state &= ~DEPCOMPLETE;
5098 	FREE_LOCK(ITOUMP(ip));
5099 }
5100 
5101 /*
5102  * Called just after updating the cylinder group block to
5103  * allocate block or fragment.
5104  */
5105 void
5106 softdep_setup_blkmapdep(bp, mp, newblkno, frags, oldfrags)
5107 	struct buf *bp;		/* buffer for cylgroup block with block map */
5108 	struct mount *mp;	/* filesystem doing allocation */
5109 	ufs2_daddr_t newblkno;	/* number of newly allocated block */
5110 	int frags;		/* Number of fragments. */
5111 	int oldfrags;		/* Previous number of fragments for extend. */
5112 {
5113 	struct newblk *newblk;
5114 	struct bmsafemap *bmsafemap;
5115 	struct jnewblk *jnewblk;
5116 	struct ufsmount *ump;
5117 	struct fs *fs;
5118 
5119 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
5120 	    ("softdep_setup_blkmapdep called on non-softdep filesystem"));
5121 	ump = VFSTOUFS(mp);
5122 	fs = ump->um_fs;
5123 	jnewblk = NULL;
5124 	/*
5125 	 * Create a dependency for the newly allocated block.
5126 	 * Add it to the dependency list for the buffer holding
5127 	 * the cylinder group map from which it was allocated.
5128 	 */
5129 	if (MOUNTEDSUJ(mp)) {
5130 		jnewblk = malloc(sizeof(*jnewblk), M_JNEWBLK, M_SOFTDEP_FLAGS);
5131 		workitem_alloc(&jnewblk->jn_list, D_JNEWBLK, mp);
5132 		jnewblk->jn_jsegdep = newjsegdep(&jnewblk->jn_list);
5133 		jnewblk->jn_state = ATTACHED;
5134 		jnewblk->jn_blkno = newblkno;
5135 		jnewblk->jn_frags = frags;
5136 		jnewblk->jn_oldfrags = oldfrags;
5137 #ifdef INVARIANTS
5138 		{
5139 			struct cg *cgp;
5140 			uint8_t *blksfree;
5141 			long bno;
5142 			int i;
5143 
5144 			cgp = (struct cg *)bp->b_data;
5145 			blksfree = cg_blksfree(cgp);
5146 			bno = dtogd(fs, jnewblk->jn_blkno);
5147 			for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags;
5148 			    i++) {
5149 				if (isset(blksfree, bno + i))
5150 					panic("softdep_setup_blkmapdep: "
5151 					    "free fragment %d from %d-%d "
5152 					    "state 0x%X dep %p", i,
5153 					    jnewblk->jn_oldfrags,
5154 					    jnewblk->jn_frags,
5155 					    jnewblk->jn_state,
5156 					    jnewblk->jn_dep);
5157 			}
5158 		}
5159 #endif
5160 	}
5161 
5162 	CTR3(KTR_SUJ,
5163 	    "softdep_setup_blkmapdep: blkno %jd frags %d oldfrags %d",
5164 	    newblkno, frags, oldfrags);
5165 	ACQUIRE_LOCK(ump);
5166 	if (newblk_lookup(mp, newblkno, DEPALLOC, &newblk) != 0)
5167 		panic("softdep_setup_blkmapdep: found block");
5168 	newblk->nb_bmsafemap = bmsafemap = bmsafemap_lookup(mp, bp,
5169 	    dtog(fs, newblkno), NULL);
5170 	if (jnewblk) {
5171 		jnewblk->jn_dep = (struct worklist *)newblk;
5172 		LIST_INSERT_HEAD(&bmsafemap->sm_jnewblkhd, jnewblk, jn_deps);
5173 	} else {
5174 		newblk->nb_state |= ONDEPLIST;
5175 		LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, nb_deps);
5176 	}
5177 	newblk->nb_bmsafemap = bmsafemap;
5178 	newblk->nb_jnewblk = jnewblk;
5179 	FREE_LOCK(ump);
5180 }
5181 
5182 #define	BMSAFEMAP_HASH(ump, cg) \
5183       (&(ump)->bmsafemap_hashtbl[(cg) & (ump)->bmsafemap_hash_size])
5184 
5185 static int
5186 bmsafemap_find(bmsafemaphd, cg, bmsafemapp)
5187 	struct bmsafemap_hashhead *bmsafemaphd;
5188 	int cg;
5189 	struct bmsafemap **bmsafemapp;
5190 {
5191 	struct bmsafemap *bmsafemap;
5192 
5193 	LIST_FOREACH(bmsafemap, bmsafemaphd, sm_hash)
5194 		if (bmsafemap->sm_cg == cg)
5195 			break;
5196 	if (bmsafemap) {
5197 		*bmsafemapp = bmsafemap;
5198 		return (1);
5199 	}
5200 	*bmsafemapp = NULL;
5201 
5202 	return (0);
5203 }
5204 
5205 /*
5206  * Find the bmsafemap associated with a cylinder group buffer.
5207  * If none exists, create one. The buffer must be locked when
5208  * this routine is called and this routine must be called with
5209  * the softdep lock held. To avoid giving up the lock while
5210  * allocating a new bmsafemap, a preallocated bmsafemap may be
5211  * provided. If it is provided but not needed, it is freed.
5212  */
5213 static struct bmsafemap *
5214 bmsafemap_lookup(mp, bp, cg, newbmsafemap)
5215 	struct mount *mp;
5216 	struct buf *bp;
5217 	int cg;
5218 	struct bmsafemap *newbmsafemap;
5219 {
5220 	struct bmsafemap_hashhead *bmsafemaphd;
5221 	struct bmsafemap *bmsafemap, *collision;
5222 	struct worklist *wk;
5223 	struct ufsmount *ump;
5224 
5225 	ump = VFSTOUFS(mp);
5226 	LOCK_OWNED(ump);
5227 	KASSERT(bp != NULL, ("bmsafemap_lookup: missing buffer"));
5228 	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
5229 		if (wk->wk_type == D_BMSAFEMAP) {
5230 			if (newbmsafemap)
5231 				WORKITEM_FREE(newbmsafemap, D_BMSAFEMAP);
5232 			return (WK_BMSAFEMAP(wk));
5233 		}
5234 	}
5235 	bmsafemaphd = BMSAFEMAP_HASH(ump, cg);
5236 	if (bmsafemap_find(bmsafemaphd, cg, &bmsafemap) == 1) {
5237 		if (newbmsafemap)
5238 			WORKITEM_FREE(newbmsafemap, D_BMSAFEMAP);
5239 		return (bmsafemap);
5240 	}
5241 	if (newbmsafemap) {
5242 		bmsafemap = newbmsafemap;
5243 	} else {
5244 		FREE_LOCK(ump);
5245 		bmsafemap = malloc(sizeof(struct bmsafemap),
5246 			M_BMSAFEMAP, M_SOFTDEP_FLAGS);
5247 		workitem_alloc(&bmsafemap->sm_list, D_BMSAFEMAP, mp);
5248 		ACQUIRE_LOCK(ump);
5249 	}
5250 	bmsafemap->sm_buf = bp;
5251 	LIST_INIT(&bmsafemap->sm_inodedephd);
5252 	LIST_INIT(&bmsafemap->sm_inodedepwr);
5253 	LIST_INIT(&bmsafemap->sm_newblkhd);
5254 	LIST_INIT(&bmsafemap->sm_newblkwr);
5255 	LIST_INIT(&bmsafemap->sm_jaddrefhd);
5256 	LIST_INIT(&bmsafemap->sm_jnewblkhd);
5257 	LIST_INIT(&bmsafemap->sm_freehd);
5258 	LIST_INIT(&bmsafemap->sm_freewr);
5259 	if (bmsafemap_find(bmsafemaphd, cg, &collision) == 1) {
5260 		WORKITEM_FREE(bmsafemap, D_BMSAFEMAP);
5261 		return (collision);
5262 	}
5263 	bmsafemap->sm_cg = cg;
5264 	LIST_INSERT_HEAD(bmsafemaphd, bmsafemap, sm_hash);
5265 	LIST_INSERT_HEAD(&ump->softdep_dirtycg, bmsafemap, sm_next);
5266 	WORKLIST_INSERT(&bp->b_dep, &bmsafemap->sm_list);
5267 	return (bmsafemap);
5268 }
5269 
5270 /*
5271  * Direct block allocation dependencies.
5272  *
5273  * When a new block is allocated, the corresponding disk locations must be
5274  * initialized (with zeros or new data) before the on-disk inode points to
5275  * them.  Also, the freemap from which the block was allocated must be
5276  * updated (on disk) before the inode's pointer. These two dependencies are
5277  * independent of each other and are needed for all file blocks and indirect
5278  * blocks that are pointed to directly by the inode.  Just before the
5279  * "in-core" version of the inode is updated with a newly allocated block
5280  * number, a procedure (below) is called to setup allocation dependency
5281  * structures.  These structures are removed when the corresponding
5282  * dependencies are satisfied or when the block allocation becomes obsolete
5283  * (i.e., the file is deleted, the block is de-allocated, or the block is a
5284  * fragment that gets upgraded).  All of these cases are handled in
5285  * procedures described later.
5286  *
5287  * When a file extension causes a fragment to be upgraded, either to a larger
5288  * fragment or to a full block, the on-disk location may change (if the
5289  * previous fragment could not simply be extended). In this case, the old
5290  * fragment must be de-allocated, but not until after the inode's pointer has
5291  * been updated. In most cases, this is handled by later procedures, which
5292  * will construct a "freefrag" structure to be added to the workitem queue
5293  * when the inode update is complete (or obsolete).  The main exception to
5294  * this is when an allocation occurs while a pending allocation dependency
5295  * (for the same block pointer) remains.  This case is handled in the main
5296  * allocation dependency setup procedure by immediately freeing the
5297  * unreferenced fragments.
5298  */
5299 void
5300 softdep_setup_allocdirect(ip, off, newblkno, oldblkno, newsize, oldsize, bp)
5301 	struct inode *ip;	/* inode to which block is being added */
5302 	ufs_lbn_t off;		/* block pointer within inode */
5303 	ufs2_daddr_t newblkno;	/* disk block number being added */
5304 	ufs2_daddr_t oldblkno;	/* previous block number, 0 unless frag */
5305 	long newsize;		/* size of new block */
5306 	long oldsize;		/* size of new block */
5307 	struct buf *bp;		/* bp for allocated block */
5308 {
5309 	struct allocdirect *adp, *oldadp;
5310 	struct allocdirectlst *adphead;
5311 	struct freefrag *freefrag;
5312 	struct inodedep *inodedep;
5313 	struct pagedep *pagedep;
5314 	struct jnewblk *jnewblk;
5315 	struct newblk *newblk;
5316 	struct mount *mp;
5317 	ufs_lbn_t lbn;
5318 
5319 	lbn = bp->b_lblkno;
5320 	mp = ITOVFS(ip);
5321 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
5322 	    ("softdep_setup_allocdirect called on non-softdep filesystem"));
5323 	if (oldblkno && oldblkno != newblkno)
5324 		/*
5325 		 * The usual case is that a smaller fragment that
5326 		 * was just allocated has been replaced with a bigger
5327 		 * fragment or a full-size block. If it is marked as
5328 		 * B_DELWRI, the current contents have not been written
5329 		 * to disk. It is possible that the block was written
5330 		 * earlier, but very uncommon. If the block has never
5331 		 * been written, there is no need to send a BIO_DELETE
5332 		 * for it when it is freed. The gain from avoiding the
5333 		 * TRIMs for the common case of unwritten blocks far
5334 		 * exceeds the cost of the write amplification for the
5335 		 * uncommon case of failing to send a TRIM for a block
5336 		 * that had been written.
5337 		 */
5338 		freefrag = newfreefrag(ip, oldblkno, oldsize, lbn,
5339 		    (bp->b_flags & B_DELWRI) != 0 ? NOTRIM_KEY : SINGLETON_KEY);
5340 	else
5341 		freefrag = NULL;
5342 
5343 	CTR6(KTR_SUJ,
5344 	    "softdep_setup_allocdirect: ino %d blkno %jd oldblkno %jd "
5345 	    "off %jd newsize %ld oldsize %d",
5346 	    ip->i_number, newblkno, oldblkno, off, newsize, oldsize);
5347 	ACQUIRE_LOCK(ITOUMP(ip));
5348 	if (off >= UFS_NDADDR) {
5349 		if (lbn > 0)
5350 			panic("softdep_setup_allocdirect: bad lbn %jd, off %jd",
5351 			    lbn, off);
5352 		/* allocating an indirect block */
5353 		if (oldblkno != 0)
5354 			panic("softdep_setup_allocdirect: non-zero indir");
5355 	} else {
5356 		if (off != lbn)
5357 			panic("softdep_setup_allocdirect: lbn %jd != off %jd",
5358 			    lbn, off);
5359 		/*
5360 		 * Allocating a direct block.
5361 		 *
5362 		 * If we are allocating a directory block, then we must
5363 		 * allocate an associated pagedep to track additions and
5364 		 * deletions.
5365 		 */
5366 		if ((ip->i_mode & IFMT) == IFDIR)
5367 			pagedep_lookup(mp, bp, ip->i_number, off, DEPALLOC,
5368 			    &pagedep);
5369 	}
5370 	if (newblk_lookup(mp, newblkno, 0, &newblk) == 0)
5371 		panic("softdep_setup_allocdirect: lost block");
5372 	KASSERT(newblk->nb_list.wk_type == D_NEWBLK,
5373 	    ("softdep_setup_allocdirect: newblk already initialized"));
5374 	/*
5375 	 * Convert the newblk to an allocdirect.
5376 	 */
5377 	WORKITEM_REASSIGN(newblk, D_ALLOCDIRECT);
5378 	adp = (struct allocdirect *)newblk;
5379 	newblk->nb_freefrag = freefrag;
5380 	adp->ad_offset = off;
5381 	adp->ad_oldblkno = oldblkno;
5382 	adp->ad_newsize = newsize;
5383 	adp->ad_oldsize = oldsize;
5384 
5385 	/*
5386 	 * Finish initializing the journal.
5387 	 */
5388 	if ((jnewblk = newblk->nb_jnewblk) != NULL) {
5389 		jnewblk->jn_ino = ip->i_number;
5390 		jnewblk->jn_lbn = lbn;
5391 		add_to_journal(&jnewblk->jn_list);
5392 	}
5393 	if (freefrag && freefrag->ff_jdep != NULL &&
5394 	    freefrag->ff_jdep->wk_type == D_JFREEFRAG)
5395 		add_to_journal(freefrag->ff_jdep);
5396 	inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
5397 	adp->ad_inodedep = inodedep;
5398 
5399 	WORKLIST_INSERT(&bp->b_dep, &newblk->nb_list);
5400 	/*
5401 	 * The list of allocdirects must be kept in sorted and ascending
5402 	 * order so that the rollback routines can quickly determine the
5403 	 * first uncommitted block (the size of the file stored on disk
5404 	 * ends at the end of the lowest committed fragment, or if there
5405 	 * are no fragments, at the end of the highest committed block).
5406 	 * Since files generally grow, the typical case is that the new
5407 	 * block is to be added at the end of the list. We speed this
5408 	 * special case by checking against the last allocdirect in the
5409 	 * list before laboriously traversing the list looking for the
5410 	 * insertion point.
5411 	 */
5412 	adphead = &inodedep->id_newinoupdt;
5413 	oldadp = TAILQ_LAST(adphead, allocdirectlst);
5414 	if (oldadp == NULL || oldadp->ad_offset <= off) {
5415 		/* insert at end of list */
5416 		TAILQ_INSERT_TAIL(adphead, adp, ad_next);
5417 		if (oldadp != NULL && oldadp->ad_offset == off)
5418 			allocdirect_merge(adphead, adp, oldadp);
5419 		FREE_LOCK(ITOUMP(ip));
5420 		return;
5421 	}
5422 	TAILQ_FOREACH(oldadp, adphead, ad_next) {
5423 		if (oldadp->ad_offset >= off)
5424 			break;
5425 	}
5426 	if (oldadp == NULL)
5427 		panic("softdep_setup_allocdirect: lost entry");
5428 	/* insert in middle of list */
5429 	TAILQ_INSERT_BEFORE(oldadp, adp, ad_next);
5430 	if (oldadp->ad_offset == off)
5431 		allocdirect_merge(adphead, adp, oldadp);
5432 
5433 	FREE_LOCK(ITOUMP(ip));
5434 }
5435 
5436 /*
5437  * Merge a newer and older journal record to be stored either in a
5438  * newblock or freefrag.  This handles aggregating journal records for
5439  * fragment allocation into a second record as well as replacing a
5440  * journal free with an aborted journal allocation.  A segment for the
5441  * oldest record will be placed on wkhd if it has been written.  If not
5442  * the segment for the newer record will suffice.
5443  */
5444 static struct worklist *
5445 jnewblk_merge(new, old, wkhd)
5446 	struct worklist *new;
5447 	struct worklist *old;
5448 	struct workhead *wkhd;
5449 {
5450 	struct jnewblk *njnewblk;
5451 	struct jnewblk *jnewblk;
5452 
5453 	/* Handle NULLs to simplify callers. */
5454 	if (new == NULL)
5455 		return (old);
5456 	if (old == NULL)
5457 		return (new);
5458 	/* Replace a jfreefrag with a jnewblk. */
5459 	if (new->wk_type == D_JFREEFRAG) {
5460 		if (WK_JNEWBLK(old)->jn_blkno != WK_JFREEFRAG(new)->fr_blkno)
5461 			panic("jnewblk_merge: blkno mismatch: %p, %p",
5462 			    old, new);
5463 		cancel_jfreefrag(WK_JFREEFRAG(new));
5464 		return (old);
5465 	}
5466 	if (old->wk_type != D_JNEWBLK || new->wk_type != D_JNEWBLK)
5467 		panic("jnewblk_merge: Bad type: old %d new %d\n",
5468 		    old->wk_type, new->wk_type);
5469 	/*
5470 	 * Handle merging of two jnewblk records that describe
5471 	 * different sets of fragments in the same block.
5472 	 */
5473 	jnewblk = WK_JNEWBLK(old);
5474 	njnewblk = WK_JNEWBLK(new);
5475 	if (jnewblk->jn_blkno != njnewblk->jn_blkno)
5476 		panic("jnewblk_merge: Merging disparate blocks.");
5477 	/*
5478 	 * The record may be rolled back in the cg.
5479 	 */
5480 	if (jnewblk->jn_state & UNDONE) {
5481 		jnewblk->jn_state &= ~UNDONE;
5482 		njnewblk->jn_state |= UNDONE;
5483 		njnewblk->jn_state &= ~ATTACHED;
5484 	}
5485 	/*
5486 	 * We modify the newer addref and free the older so that if neither
5487 	 * has been written the most up-to-date copy will be on disk.  If
5488 	 * both have been written but rolled back we only temporarily need
5489 	 * one of them to fix the bits when the cg write completes.
5490 	 */
5491 	jnewblk->jn_state |= ATTACHED | COMPLETE;
5492 	njnewblk->jn_oldfrags = jnewblk->jn_oldfrags;
5493 	cancel_jnewblk(jnewblk, wkhd);
5494 	WORKLIST_REMOVE(&jnewblk->jn_list);
5495 	free_jnewblk(jnewblk);
5496 	return (new);
5497 }
5498 
5499 /*
5500  * Replace an old allocdirect dependency with a newer one.
5501  */
5502 static void
5503 allocdirect_merge(adphead, newadp, oldadp)
5504 	struct allocdirectlst *adphead;	/* head of list holding allocdirects */
5505 	struct allocdirect *newadp;	/* allocdirect being added */
5506 	struct allocdirect *oldadp;	/* existing allocdirect being checked */
5507 {
5508 	struct worklist *wk;
5509 	struct freefrag *freefrag;
5510 
5511 	freefrag = NULL;
5512 	LOCK_OWNED(VFSTOUFS(newadp->ad_list.wk_mp));
5513 	if (newadp->ad_oldblkno != oldadp->ad_newblkno ||
5514 	    newadp->ad_oldsize != oldadp->ad_newsize ||
5515 	    newadp->ad_offset >= UFS_NDADDR)
5516 		panic("%s %jd != new %jd || old size %ld != new %ld",
5517 		    "allocdirect_merge: old blkno",
5518 		    (intmax_t)newadp->ad_oldblkno,
5519 		    (intmax_t)oldadp->ad_newblkno,
5520 		    newadp->ad_oldsize, oldadp->ad_newsize);
5521 	newadp->ad_oldblkno = oldadp->ad_oldblkno;
5522 	newadp->ad_oldsize = oldadp->ad_oldsize;
5523 	/*
5524 	 * If the old dependency had a fragment to free or had never
5525 	 * previously had a block allocated, then the new dependency
5526 	 * can immediately post its freefrag and adopt the old freefrag.
5527 	 * This action is done by swapping the freefrag dependencies.
5528 	 * The new dependency gains the old one's freefrag, and the
5529 	 * old one gets the new one and then immediately puts it on
5530 	 * the worklist when it is freed by free_newblk. It is
5531 	 * not possible to do this swap when the old dependency had a
5532 	 * non-zero size but no previous fragment to free. This condition
5533 	 * arises when the new block is an extension of the old block.
5534 	 * Here, the first part of the fragment allocated to the new
5535 	 * dependency is part of the block currently claimed on disk by
5536 	 * the old dependency, so cannot legitimately be freed until the
5537 	 * conditions for the new dependency are fulfilled.
5538 	 */
5539 	freefrag = newadp->ad_freefrag;
5540 	if (oldadp->ad_freefrag != NULL || oldadp->ad_oldblkno == 0) {
5541 		newadp->ad_freefrag = oldadp->ad_freefrag;
5542 		oldadp->ad_freefrag = freefrag;
5543 	}
5544 	/*
5545 	 * If we are tracking a new directory-block allocation,
5546 	 * move it from the old allocdirect to the new allocdirect.
5547 	 */
5548 	if ((wk = LIST_FIRST(&oldadp->ad_newdirblk)) != NULL) {
5549 		WORKLIST_REMOVE(wk);
5550 		if (!LIST_EMPTY(&oldadp->ad_newdirblk))
5551 			panic("allocdirect_merge: extra newdirblk");
5552 		WORKLIST_INSERT(&newadp->ad_newdirblk, wk);
5553 	}
5554 	TAILQ_REMOVE(adphead, oldadp, ad_next);
5555 	/*
5556 	 * We need to move any journal dependencies over to the freefrag
5557 	 * that releases this block if it exists.  Otherwise we are
5558 	 * extending an existing block and we'll wait until that is
5559 	 * complete to release the journal space and extend the
5560 	 * new journal to cover this old space as well.
5561 	 */
5562 	if (freefrag == NULL) {
5563 		if (oldadp->ad_newblkno != newadp->ad_newblkno)
5564 			panic("allocdirect_merge: %jd != %jd",
5565 			    oldadp->ad_newblkno, newadp->ad_newblkno);
5566 		newadp->ad_block.nb_jnewblk = (struct jnewblk *)
5567 		    jnewblk_merge(&newadp->ad_block.nb_jnewblk->jn_list,
5568 		    &oldadp->ad_block.nb_jnewblk->jn_list,
5569 		    &newadp->ad_block.nb_jwork);
5570 		oldadp->ad_block.nb_jnewblk = NULL;
5571 		cancel_newblk(&oldadp->ad_block, NULL,
5572 		    &newadp->ad_block.nb_jwork);
5573 	} else {
5574 		wk = (struct worklist *) cancel_newblk(&oldadp->ad_block,
5575 		    &freefrag->ff_list, &freefrag->ff_jwork);
5576 		freefrag->ff_jdep = jnewblk_merge(freefrag->ff_jdep, wk,
5577 		    &freefrag->ff_jwork);
5578 	}
5579 	free_newblk(&oldadp->ad_block);
5580 }
5581 
5582 /*
5583  * Allocate a jfreefrag structure to journal a single block free.
5584  */
5585 static struct jfreefrag *
5586 newjfreefrag(freefrag, ip, blkno, size, lbn)
5587 	struct freefrag *freefrag;
5588 	struct inode *ip;
5589 	ufs2_daddr_t blkno;
5590 	long size;
5591 	ufs_lbn_t lbn;
5592 {
5593 	struct jfreefrag *jfreefrag;
5594 	struct fs *fs;
5595 
5596 	fs = ITOFS(ip);
5597 	jfreefrag = malloc(sizeof(struct jfreefrag), M_JFREEFRAG,
5598 	    M_SOFTDEP_FLAGS);
5599 	workitem_alloc(&jfreefrag->fr_list, D_JFREEFRAG, ITOVFS(ip));
5600 	jfreefrag->fr_jsegdep = newjsegdep(&jfreefrag->fr_list);
5601 	jfreefrag->fr_state = ATTACHED | DEPCOMPLETE;
5602 	jfreefrag->fr_ino = ip->i_number;
5603 	jfreefrag->fr_lbn = lbn;
5604 	jfreefrag->fr_blkno = blkno;
5605 	jfreefrag->fr_frags = numfrags(fs, size);
5606 	jfreefrag->fr_freefrag = freefrag;
5607 
5608 	return (jfreefrag);
5609 }
5610 
5611 /*
5612  * Allocate a new freefrag structure.
5613  */
5614 static struct freefrag *
5615 newfreefrag(ip, blkno, size, lbn, key)
5616 	struct inode *ip;
5617 	ufs2_daddr_t blkno;
5618 	long size;
5619 	ufs_lbn_t lbn;
5620 	u_long key;
5621 {
5622 	struct freefrag *freefrag;
5623 	struct ufsmount *ump;
5624 	struct fs *fs;
5625 
5626 	CTR4(KTR_SUJ, "newfreefrag: ino %d blkno %jd size %ld lbn %jd",
5627 	    ip->i_number, blkno, size, lbn);
5628 	ump = ITOUMP(ip);
5629 	fs = ump->um_fs;
5630 	if (fragnum(fs, blkno) + numfrags(fs, size) > fs->fs_frag)
5631 		panic("newfreefrag: frag size");
5632 	freefrag = malloc(sizeof(struct freefrag),
5633 	    M_FREEFRAG, M_SOFTDEP_FLAGS);
5634 	workitem_alloc(&freefrag->ff_list, D_FREEFRAG, UFSTOVFS(ump));
5635 	freefrag->ff_state = ATTACHED;
5636 	LIST_INIT(&freefrag->ff_jwork);
5637 	freefrag->ff_inum = ip->i_number;
5638 	freefrag->ff_vtype = ITOV(ip)->v_type;
5639 	freefrag->ff_blkno = blkno;
5640 	freefrag->ff_fragsize = size;
5641 	freefrag->ff_key = key;
5642 
5643 	if (MOUNTEDSUJ(UFSTOVFS(ump))) {
5644 		freefrag->ff_jdep = (struct worklist *)
5645 		    newjfreefrag(freefrag, ip, blkno, size, lbn);
5646 	} else {
5647 		freefrag->ff_state |= DEPCOMPLETE;
5648 		freefrag->ff_jdep = NULL;
5649 	}
5650 
5651 	return (freefrag);
5652 }
5653 
5654 /*
5655  * This workitem de-allocates fragments that were replaced during
5656  * file block allocation.
5657  */
5658 static void
5659 handle_workitem_freefrag(freefrag)
5660 	struct freefrag *freefrag;
5661 {
5662 	struct ufsmount *ump = VFSTOUFS(freefrag->ff_list.wk_mp);
5663 	struct workhead wkhd;
5664 
5665 	CTR3(KTR_SUJ,
5666 	    "handle_workitem_freefrag: ino %d blkno %jd size %ld",
5667 	    freefrag->ff_inum, freefrag->ff_blkno, freefrag->ff_fragsize);
5668 	/*
5669 	 * It would be illegal to add new completion items to the
5670 	 * freefrag after it was schedule to be done so it must be
5671 	 * safe to modify the list head here.
5672 	 */
5673 	LIST_INIT(&wkhd);
5674 	ACQUIRE_LOCK(ump);
5675 	LIST_SWAP(&freefrag->ff_jwork, &wkhd, worklist, wk_list);
5676 	/*
5677 	 * If the journal has not been written we must cancel it here.
5678 	 */
5679 	if (freefrag->ff_jdep) {
5680 		if (freefrag->ff_jdep->wk_type != D_JNEWBLK)
5681 			panic("handle_workitem_freefrag: Unexpected type %d\n",
5682 			    freefrag->ff_jdep->wk_type);
5683 		cancel_jnewblk(WK_JNEWBLK(freefrag->ff_jdep), &wkhd);
5684 	}
5685 	FREE_LOCK(ump);
5686 	ffs_blkfree(ump, ump->um_fs, ump->um_devvp, freefrag->ff_blkno,
5687 	   freefrag->ff_fragsize, freefrag->ff_inum, freefrag->ff_vtype,
5688 	   &wkhd, freefrag->ff_key);
5689 	ACQUIRE_LOCK(ump);
5690 	WORKITEM_FREE(freefrag, D_FREEFRAG);
5691 	FREE_LOCK(ump);
5692 }
5693 
5694 /*
5695  * Set up a dependency structure for an external attributes data block.
5696  * This routine follows much of the structure of softdep_setup_allocdirect.
5697  * See the description of softdep_setup_allocdirect above for details.
5698  */
5699 void
5700 softdep_setup_allocext(ip, off, newblkno, oldblkno, newsize, oldsize, bp)
5701 	struct inode *ip;
5702 	ufs_lbn_t off;
5703 	ufs2_daddr_t newblkno;
5704 	ufs2_daddr_t oldblkno;
5705 	long newsize;
5706 	long oldsize;
5707 	struct buf *bp;
5708 {
5709 	struct allocdirect *adp, *oldadp;
5710 	struct allocdirectlst *adphead;
5711 	struct freefrag *freefrag;
5712 	struct inodedep *inodedep;
5713 	struct jnewblk *jnewblk;
5714 	struct newblk *newblk;
5715 	struct mount *mp;
5716 	struct ufsmount *ump;
5717 	ufs_lbn_t lbn;
5718 
5719 	mp = ITOVFS(ip);
5720 	ump = VFSTOUFS(mp);
5721 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
5722 	    ("softdep_setup_allocext called on non-softdep filesystem"));
5723 	KASSERT(off < UFS_NXADDR,
5724 	    ("softdep_setup_allocext: lbn %lld > UFS_NXADDR", (long long)off));
5725 
5726 	lbn = bp->b_lblkno;
5727 	if (oldblkno && oldblkno != newblkno)
5728 		/*
5729 		 * The usual case is that a smaller fragment that
5730 		 * was just allocated has been replaced with a bigger
5731 		 * fragment or a full-size block. If it is marked as
5732 		 * B_DELWRI, the current contents have not been written
5733 		 * to disk. It is possible that the block was written
5734 		 * earlier, but very uncommon. If the block has never
5735 		 * been written, there is no need to send a BIO_DELETE
5736 		 * for it when it is freed. The gain from avoiding the
5737 		 * TRIMs for the common case of unwritten blocks far
5738 		 * exceeds the cost of the write amplification for the
5739 		 * uncommon case of failing to send a TRIM for a block
5740 		 * that had been written.
5741 		 */
5742 		freefrag = newfreefrag(ip, oldblkno, oldsize, lbn,
5743 		    (bp->b_flags & B_DELWRI) != 0 ? NOTRIM_KEY : SINGLETON_KEY);
5744 	else
5745 		freefrag = NULL;
5746 
5747 	ACQUIRE_LOCK(ump);
5748 	if (newblk_lookup(mp, newblkno, 0, &newblk) == 0)
5749 		panic("softdep_setup_allocext: lost block");
5750 	KASSERT(newblk->nb_list.wk_type == D_NEWBLK,
5751 	    ("softdep_setup_allocext: newblk already initialized"));
5752 	/*
5753 	 * Convert the newblk to an allocdirect.
5754 	 */
5755 	WORKITEM_REASSIGN(newblk, D_ALLOCDIRECT);
5756 	adp = (struct allocdirect *)newblk;
5757 	newblk->nb_freefrag = freefrag;
5758 	adp->ad_offset = off;
5759 	adp->ad_oldblkno = oldblkno;
5760 	adp->ad_newsize = newsize;
5761 	adp->ad_oldsize = oldsize;
5762 	adp->ad_state |=  EXTDATA;
5763 
5764 	/*
5765 	 * Finish initializing the journal.
5766 	 */
5767 	if ((jnewblk = newblk->nb_jnewblk) != NULL) {
5768 		jnewblk->jn_ino = ip->i_number;
5769 		jnewblk->jn_lbn = lbn;
5770 		add_to_journal(&jnewblk->jn_list);
5771 	}
5772 	if (freefrag && freefrag->ff_jdep != NULL &&
5773 	    freefrag->ff_jdep->wk_type == D_JFREEFRAG)
5774 		add_to_journal(freefrag->ff_jdep);
5775 	inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
5776 	adp->ad_inodedep = inodedep;
5777 
5778 	WORKLIST_INSERT(&bp->b_dep, &newblk->nb_list);
5779 	/*
5780 	 * The list of allocdirects must be kept in sorted and ascending
5781 	 * order so that the rollback routines can quickly determine the
5782 	 * first uncommitted block (the size of the file stored on disk
5783 	 * ends at the end of the lowest committed fragment, or if there
5784 	 * are no fragments, at the end of the highest committed block).
5785 	 * Since files generally grow, the typical case is that the new
5786 	 * block is to be added at the end of the list. We speed this
5787 	 * special case by checking against the last allocdirect in the
5788 	 * list before laboriously traversing the list looking for the
5789 	 * insertion point.
5790 	 */
5791 	adphead = &inodedep->id_newextupdt;
5792 	oldadp = TAILQ_LAST(adphead, allocdirectlst);
5793 	if (oldadp == NULL || oldadp->ad_offset <= off) {
5794 		/* insert at end of list */
5795 		TAILQ_INSERT_TAIL(adphead, adp, ad_next);
5796 		if (oldadp != NULL && oldadp->ad_offset == off)
5797 			allocdirect_merge(adphead, adp, oldadp);
5798 		FREE_LOCK(ump);
5799 		return;
5800 	}
5801 	TAILQ_FOREACH(oldadp, adphead, ad_next) {
5802 		if (oldadp->ad_offset >= off)
5803 			break;
5804 	}
5805 	if (oldadp == NULL)
5806 		panic("softdep_setup_allocext: lost entry");
5807 	/* insert in middle of list */
5808 	TAILQ_INSERT_BEFORE(oldadp, adp, ad_next);
5809 	if (oldadp->ad_offset == off)
5810 		allocdirect_merge(adphead, adp, oldadp);
5811 	FREE_LOCK(ump);
5812 }
5813 
5814 /*
5815  * Indirect block allocation dependencies.
5816  *
5817  * The same dependencies that exist for a direct block also exist when
5818  * a new block is allocated and pointed to by an entry in a block of
5819  * indirect pointers. The undo/redo states described above are also
5820  * used here. Because an indirect block contains many pointers that
5821  * may have dependencies, a second copy of the entire in-memory indirect
5822  * block is kept. The buffer cache copy is always completely up-to-date.
5823  * The second copy, which is used only as a source for disk writes,
5824  * contains only the safe pointers (i.e., those that have no remaining
5825  * update dependencies). The second copy is freed when all pointers
5826  * are safe. The cache is not allowed to replace indirect blocks with
5827  * pending update dependencies. If a buffer containing an indirect
5828  * block with dependencies is written, these routines will mark it
5829  * dirty again. It can only be successfully written once all the
5830  * dependencies are removed. The ffs_fsync routine in conjunction with
5831  * softdep_sync_metadata work together to get all the dependencies
5832  * removed so that a file can be successfully written to disk. Three
5833  * procedures are used when setting up indirect block pointer
5834  * dependencies. The division is necessary because of the organization
5835  * of the "balloc" routine and because of the distinction between file
5836  * pages and file metadata blocks.
5837  */
5838 
5839 /*
5840  * Allocate a new allocindir structure.
5841  */
5842 static struct allocindir *
5843 newallocindir(ip, ptrno, newblkno, oldblkno, lbn)
5844 	struct inode *ip;	/* inode for file being extended */
5845 	int ptrno;		/* offset of pointer in indirect block */
5846 	ufs2_daddr_t newblkno;	/* disk block number being added */
5847 	ufs2_daddr_t oldblkno;	/* previous block number, 0 if none */
5848 	ufs_lbn_t lbn;
5849 {
5850 	struct newblk *newblk;
5851 	struct allocindir *aip;
5852 	struct freefrag *freefrag;
5853 	struct jnewblk *jnewblk;
5854 
5855 	if (oldblkno)
5856 		freefrag = newfreefrag(ip, oldblkno, ITOFS(ip)->fs_bsize, lbn,
5857 		    SINGLETON_KEY);
5858 	else
5859 		freefrag = NULL;
5860 	ACQUIRE_LOCK(ITOUMP(ip));
5861 	if (newblk_lookup(ITOVFS(ip), newblkno, 0, &newblk) == 0)
5862 		panic("new_allocindir: lost block");
5863 	KASSERT(newblk->nb_list.wk_type == D_NEWBLK,
5864 	    ("newallocindir: newblk already initialized"));
5865 	WORKITEM_REASSIGN(newblk, D_ALLOCINDIR);
5866 	newblk->nb_freefrag = freefrag;
5867 	aip = (struct allocindir *)newblk;
5868 	aip->ai_offset = ptrno;
5869 	aip->ai_oldblkno = oldblkno;
5870 	aip->ai_lbn = lbn;
5871 	if ((jnewblk = newblk->nb_jnewblk) != NULL) {
5872 		jnewblk->jn_ino = ip->i_number;
5873 		jnewblk->jn_lbn = lbn;
5874 		add_to_journal(&jnewblk->jn_list);
5875 	}
5876 	if (freefrag && freefrag->ff_jdep != NULL &&
5877 	    freefrag->ff_jdep->wk_type == D_JFREEFRAG)
5878 		add_to_journal(freefrag->ff_jdep);
5879 	return (aip);
5880 }
5881 
5882 /*
5883  * Called just before setting an indirect block pointer
5884  * to a newly allocated file page.
5885  */
5886 void
5887 softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp)
5888 	struct inode *ip;	/* inode for file being extended */
5889 	ufs_lbn_t lbn;		/* allocated block number within file */
5890 	struct buf *bp;		/* buffer with indirect blk referencing page */
5891 	int ptrno;		/* offset of pointer in indirect block */
5892 	ufs2_daddr_t newblkno;	/* disk block number being added */
5893 	ufs2_daddr_t oldblkno;	/* previous block number, 0 if none */
5894 	struct buf *nbp;	/* buffer holding allocated page */
5895 {
5896 	struct inodedep *inodedep;
5897 	struct freefrag *freefrag;
5898 	struct allocindir *aip;
5899 	struct pagedep *pagedep;
5900 	struct mount *mp;
5901 	struct ufsmount *ump;
5902 
5903 	mp = ITOVFS(ip);
5904 	ump = VFSTOUFS(mp);
5905 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
5906 	    ("softdep_setup_allocindir_page called on non-softdep filesystem"));
5907 	KASSERT(lbn == nbp->b_lblkno,
5908 	    ("softdep_setup_allocindir_page: lbn %jd != lblkno %jd",
5909 	    lbn, bp->b_lblkno));
5910 	CTR4(KTR_SUJ,
5911 	    "softdep_setup_allocindir_page: ino %d blkno %jd oldblkno %jd "
5912 	    "lbn %jd", ip->i_number, newblkno, oldblkno, lbn);
5913 	ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_page");
5914 	aip = newallocindir(ip, ptrno, newblkno, oldblkno, lbn);
5915 	(void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
5916 	/*
5917 	 * If we are allocating a directory page, then we must
5918 	 * allocate an associated pagedep to track additions and
5919 	 * deletions.
5920 	 */
5921 	if ((ip->i_mode & IFMT) == IFDIR)
5922 		pagedep_lookup(mp, nbp, ip->i_number, lbn, DEPALLOC, &pagedep);
5923 	WORKLIST_INSERT(&nbp->b_dep, &aip->ai_block.nb_list);
5924 	freefrag = setup_allocindir_phase2(bp, ip, inodedep, aip, lbn);
5925 	FREE_LOCK(ump);
5926 	if (freefrag)
5927 		handle_workitem_freefrag(freefrag);
5928 }
5929 
5930 /*
5931  * Called just before setting an indirect block pointer to a
5932  * newly allocated indirect block.
5933  */
5934 void
5935 softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno)
5936 	struct buf *nbp;	/* newly allocated indirect block */
5937 	struct inode *ip;	/* inode for file being extended */
5938 	struct buf *bp;		/* indirect block referencing allocated block */
5939 	int ptrno;		/* offset of pointer in indirect block */
5940 	ufs2_daddr_t newblkno;	/* disk block number being added */
5941 {
5942 	struct inodedep *inodedep;
5943 	struct allocindir *aip;
5944 	struct ufsmount *ump;
5945 	ufs_lbn_t lbn;
5946 
5947 	ump = ITOUMP(ip);
5948 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
5949 	    ("softdep_setup_allocindir_meta called on non-softdep filesystem"));
5950 	CTR3(KTR_SUJ,
5951 	    "softdep_setup_allocindir_meta: ino %d blkno %jd ptrno %d",
5952 	    ip->i_number, newblkno, ptrno);
5953 	lbn = nbp->b_lblkno;
5954 	ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_meta");
5955 	aip = newallocindir(ip, ptrno, newblkno, 0, lbn);
5956 	inodedep_lookup(UFSTOVFS(ump), ip->i_number, DEPALLOC, &inodedep);
5957 	WORKLIST_INSERT(&nbp->b_dep, &aip->ai_block.nb_list);
5958 	if (setup_allocindir_phase2(bp, ip, inodedep, aip, lbn))
5959 		panic("softdep_setup_allocindir_meta: Block already existed");
5960 	FREE_LOCK(ump);
5961 }
5962 
5963 static void
5964 indirdep_complete(indirdep)
5965 	struct indirdep *indirdep;
5966 {
5967 	struct allocindir *aip;
5968 
5969 	LIST_REMOVE(indirdep, ir_next);
5970 	indirdep->ir_state |= DEPCOMPLETE;
5971 
5972 	while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != NULL) {
5973 		LIST_REMOVE(aip, ai_next);
5974 		free_newblk(&aip->ai_block);
5975 	}
5976 	/*
5977 	 * If this indirdep is not attached to a buf it was simply waiting
5978 	 * on completion to clear completehd.  free_indirdep() asserts
5979 	 * that nothing is dangling.
5980 	 */
5981 	if ((indirdep->ir_state & ONWORKLIST) == 0)
5982 		free_indirdep(indirdep);
5983 }
5984 
5985 static struct indirdep *
5986 indirdep_lookup(mp, ip, bp)
5987 	struct mount *mp;
5988 	struct inode *ip;
5989 	struct buf *bp;
5990 {
5991 	struct indirdep *indirdep, *newindirdep;
5992 	struct newblk *newblk;
5993 	struct ufsmount *ump;
5994 	struct worklist *wk;
5995 	struct fs *fs;
5996 	ufs2_daddr_t blkno;
5997 
5998 	ump = VFSTOUFS(mp);
5999 	LOCK_OWNED(ump);
6000 	indirdep = NULL;
6001 	newindirdep = NULL;
6002 	fs = ump->um_fs;
6003 	for (;;) {
6004 		LIST_FOREACH(wk, &bp->b_dep, wk_list) {
6005 			if (wk->wk_type != D_INDIRDEP)
6006 				continue;
6007 			indirdep = WK_INDIRDEP(wk);
6008 			break;
6009 		}
6010 		/* Found on the buffer worklist, no new structure to free. */
6011 		if (indirdep != NULL && newindirdep == NULL)
6012 			return (indirdep);
6013 		if (indirdep != NULL && newindirdep != NULL)
6014 			panic("indirdep_lookup: simultaneous create");
6015 		/* None found on the buffer and a new structure is ready. */
6016 		if (indirdep == NULL && newindirdep != NULL)
6017 			break;
6018 		/* None found and no new structure available. */
6019 		FREE_LOCK(ump);
6020 		newindirdep = malloc(sizeof(struct indirdep),
6021 		    M_INDIRDEP, M_SOFTDEP_FLAGS);
6022 		workitem_alloc(&newindirdep->ir_list, D_INDIRDEP, mp);
6023 		newindirdep->ir_state = ATTACHED;
6024 		if (I_IS_UFS1(ip))
6025 			newindirdep->ir_state |= UFS1FMT;
6026 		TAILQ_INIT(&newindirdep->ir_trunc);
6027 		newindirdep->ir_saveddata = NULL;
6028 		LIST_INIT(&newindirdep->ir_deplisthd);
6029 		LIST_INIT(&newindirdep->ir_donehd);
6030 		LIST_INIT(&newindirdep->ir_writehd);
6031 		LIST_INIT(&newindirdep->ir_completehd);
6032 		if (bp->b_blkno == bp->b_lblkno) {
6033 			ufs_bmaparray(bp->b_vp, bp->b_lblkno, &blkno, bp,
6034 			    NULL, NULL);
6035 			bp->b_blkno = blkno;
6036 		}
6037 		newindirdep->ir_freeblks = NULL;
6038 		newindirdep->ir_savebp =
6039 		    getblk(ump->um_devvp, bp->b_blkno, bp->b_bcount, 0, 0, 0);
6040 		newindirdep->ir_bp = bp;
6041 		BUF_KERNPROC(newindirdep->ir_savebp);
6042 		bcopy(bp->b_data, newindirdep->ir_savebp->b_data, bp->b_bcount);
6043 		ACQUIRE_LOCK(ump);
6044 	}
6045 	indirdep = newindirdep;
6046 	WORKLIST_INSERT(&bp->b_dep, &indirdep->ir_list);
6047 	/*
6048 	 * If the block is not yet allocated we don't set DEPCOMPLETE so
6049 	 * that we don't free dependencies until the pointers are valid.
6050 	 * This could search b_dep for D_ALLOCDIRECT/D_ALLOCINDIR rather
6051 	 * than using the hash.
6052 	 */
6053 	if (newblk_lookup(mp, dbtofsb(fs, bp->b_blkno), 0, &newblk))
6054 		LIST_INSERT_HEAD(&newblk->nb_indirdeps, indirdep, ir_next);
6055 	else
6056 		indirdep->ir_state |= DEPCOMPLETE;
6057 	return (indirdep);
6058 }
6059 
6060 /*
6061  * Called to finish the allocation of the "aip" allocated
6062  * by one of the two routines above.
6063  */
6064 static struct freefrag *
6065 setup_allocindir_phase2(bp, ip, inodedep, aip, lbn)
6066 	struct buf *bp;		/* in-memory copy of the indirect block */
6067 	struct inode *ip;	/* inode for file being extended */
6068 	struct inodedep *inodedep; /* Inodedep for ip */
6069 	struct allocindir *aip;	/* allocindir allocated by the above routines */
6070 	ufs_lbn_t lbn;		/* Logical block number for this block. */
6071 {
6072 	struct fs *fs;
6073 	struct indirdep *indirdep;
6074 	struct allocindir *oldaip;
6075 	struct freefrag *freefrag;
6076 	struct mount *mp;
6077 	struct ufsmount *ump;
6078 
6079 	mp = ITOVFS(ip);
6080 	ump = VFSTOUFS(mp);
6081 	LOCK_OWNED(ump);
6082 	fs = ump->um_fs;
6083 	if (bp->b_lblkno >= 0)
6084 		panic("setup_allocindir_phase2: not indir blk");
6085 	KASSERT(aip->ai_offset >= 0 && aip->ai_offset < NINDIR(fs),
6086 	    ("setup_allocindir_phase2: Bad offset %d", aip->ai_offset));
6087 	indirdep = indirdep_lookup(mp, ip, bp);
6088 	KASSERT(indirdep->ir_savebp != NULL,
6089 	    ("setup_allocindir_phase2 NULL ir_savebp"));
6090 	aip->ai_indirdep = indirdep;
6091 	/*
6092 	 * Check for an unwritten dependency for this indirect offset.  If
6093 	 * there is, merge the old dependency into the new one.  This happens
6094 	 * as a result of reallocblk only.
6095 	 */
6096 	freefrag = NULL;
6097 	if (aip->ai_oldblkno != 0) {
6098 		LIST_FOREACH(oldaip, &indirdep->ir_deplisthd, ai_next) {
6099 			if (oldaip->ai_offset == aip->ai_offset) {
6100 				freefrag = allocindir_merge(aip, oldaip);
6101 				goto done;
6102 			}
6103 		}
6104 		LIST_FOREACH(oldaip, &indirdep->ir_donehd, ai_next) {
6105 			if (oldaip->ai_offset == aip->ai_offset) {
6106 				freefrag = allocindir_merge(aip, oldaip);
6107 				goto done;
6108 			}
6109 		}
6110 	}
6111 done:
6112 	LIST_INSERT_HEAD(&indirdep->ir_deplisthd, aip, ai_next);
6113 	return (freefrag);
6114 }
6115 
6116 /*
6117  * Merge two allocindirs which refer to the same block.  Move newblock
6118  * dependencies and setup the freefrags appropriately.
6119  */
6120 static struct freefrag *
6121 allocindir_merge(aip, oldaip)
6122 	struct allocindir *aip;
6123 	struct allocindir *oldaip;
6124 {
6125 	struct freefrag *freefrag;
6126 	struct worklist *wk;
6127 
6128 	if (oldaip->ai_newblkno != aip->ai_oldblkno)
6129 		panic("allocindir_merge: blkno");
6130 	aip->ai_oldblkno = oldaip->ai_oldblkno;
6131 	freefrag = aip->ai_freefrag;
6132 	aip->ai_freefrag = oldaip->ai_freefrag;
6133 	oldaip->ai_freefrag = NULL;
6134 	KASSERT(freefrag != NULL, ("setup_allocindir_phase2: No freefrag"));
6135 	/*
6136 	 * If we are tracking a new directory-block allocation,
6137 	 * move it from the old allocindir to the new allocindir.
6138 	 */
6139 	if ((wk = LIST_FIRST(&oldaip->ai_newdirblk)) != NULL) {
6140 		WORKLIST_REMOVE(wk);
6141 		if (!LIST_EMPTY(&oldaip->ai_newdirblk))
6142 			panic("allocindir_merge: extra newdirblk");
6143 		WORKLIST_INSERT(&aip->ai_newdirblk, wk);
6144 	}
6145 	/*
6146 	 * We can skip journaling for this freefrag and just complete
6147 	 * any pending journal work for the allocindir that is being
6148 	 * removed after the freefrag completes.
6149 	 */
6150 	if (freefrag->ff_jdep)
6151 		cancel_jfreefrag(WK_JFREEFRAG(freefrag->ff_jdep));
6152 	LIST_REMOVE(oldaip, ai_next);
6153 	freefrag->ff_jdep = (struct worklist *)cancel_newblk(&oldaip->ai_block,
6154 	    &freefrag->ff_list, &freefrag->ff_jwork);
6155 	free_newblk(&oldaip->ai_block);
6156 
6157 	return (freefrag);
6158 }
6159 
6160 static inline void
6161 setup_freedirect(freeblks, ip, i, needj)
6162 	struct freeblks *freeblks;
6163 	struct inode *ip;
6164 	int i;
6165 	int needj;
6166 {
6167 	struct ufsmount *ump;
6168 	ufs2_daddr_t blkno;
6169 	int frags;
6170 
6171 	blkno = DIP(ip, i_db[i]);
6172 	if (blkno == 0)
6173 		return;
6174 	DIP_SET(ip, i_db[i], 0);
6175 	ump = ITOUMP(ip);
6176 	frags = sblksize(ump->um_fs, ip->i_size, i);
6177 	frags = numfrags(ump->um_fs, frags);
6178 	newfreework(ump, freeblks, NULL, i, blkno, frags, 0, needj);
6179 }
6180 
6181 static inline void
6182 setup_freeext(freeblks, ip, i, needj)
6183 	struct freeblks *freeblks;
6184 	struct inode *ip;
6185 	int i;
6186 	int needj;
6187 {
6188 	struct ufsmount *ump;
6189 	ufs2_daddr_t blkno;
6190 	int frags;
6191 
6192 	blkno = ip->i_din2->di_extb[i];
6193 	if (blkno == 0)
6194 		return;
6195 	ip->i_din2->di_extb[i] = 0;
6196 	ump = ITOUMP(ip);
6197 	frags = sblksize(ump->um_fs, ip->i_din2->di_extsize, i);
6198 	frags = numfrags(ump->um_fs, frags);
6199 	newfreework(ump, freeblks, NULL, -1 - i, blkno, frags, 0, needj);
6200 }
6201 
6202 static inline void
6203 setup_freeindir(freeblks, ip, i, lbn, needj)
6204 	struct freeblks *freeblks;
6205 	struct inode *ip;
6206 	int i;
6207 	ufs_lbn_t lbn;
6208 	int needj;
6209 {
6210 	struct ufsmount *ump;
6211 	ufs2_daddr_t blkno;
6212 
6213 	blkno = DIP(ip, i_ib[i]);
6214 	if (blkno == 0)
6215 		return;
6216 	DIP_SET(ip, i_ib[i], 0);
6217 	ump = ITOUMP(ip);
6218 	newfreework(ump, freeblks, NULL, lbn, blkno, ump->um_fs->fs_frag,
6219 	    0, needj);
6220 }
6221 
6222 static inline struct freeblks *
6223 newfreeblks(mp, ip)
6224 	struct mount *mp;
6225 	struct inode *ip;
6226 {
6227 	struct freeblks *freeblks;
6228 
6229 	freeblks = malloc(sizeof(struct freeblks),
6230 		M_FREEBLKS, M_SOFTDEP_FLAGS|M_ZERO);
6231 	workitem_alloc(&freeblks->fb_list, D_FREEBLKS, mp);
6232 	LIST_INIT(&freeblks->fb_jblkdephd);
6233 	LIST_INIT(&freeblks->fb_jwork);
6234 	freeblks->fb_ref = 0;
6235 	freeblks->fb_cgwait = 0;
6236 	freeblks->fb_state = ATTACHED;
6237 	freeblks->fb_uid = ip->i_uid;
6238 	freeblks->fb_inum = ip->i_number;
6239 	freeblks->fb_vtype = ITOV(ip)->v_type;
6240 	freeblks->fb_modrev = DIP(ip, i_modrev);
6241 	freeblks->fb_devvp = ITODEVVP(ip);
6242 	freeblks->fb_chkcnt = 0;
6243 	freeblks->fb_len = 0;
6244 
6245 	return (freeblks);
6246 }
6247 
6248 static void
6249 trunc_indirdep(indirdep, freeblks, bp, off)
6250 	struct indirdep *indirdep;
6251 	struct freeblks *freeblks;
6252 	struct buf *bp;
6253 	int off;
6254 {
6255 	struct allocindir *aip, *aipn;
6256 
6257 	/*
6258 	 * The first set of allocindirs won't be in savedbp.
6259 	 */
6260 	LIST_FOREACH_SAFE(aip, &indirdep->ir_deplisthd, ai_next, aipn)
6261 		if (aip->ai_offset > off)
6262 			cancel_allocindir(aip, bp, freeblks, 1);
6263 	LIST_FOREACH_SAFE(aip, &indirdep->ir_donehd, ai_next, aipn)
6264 		if (aip->ai_offset > off)
6265 			cancel_allocindir(aip, bp, freeblks, 1);
6266 	/*
6267 	 * These will exist in savedbp.
6268 	 */
6269 	LIST_FOREACH_SAFE(aip, &indirdep->ir_writehd, ai_next, aipn)
6270 		if (aip->ai_offset > off)
6271 			cancel_allocindir(aip, NULL, freeblks, 0);
6272 	LIST_FOREACH_SAFE(aip, &indirdep->ir_completehd, ai_next, aipn)
6273 		if (aip->ai_offset > off)
6274 			cancel_allocindir(aip, NULL, freeblks, 0);
6275 }
6276 
6277 /*
6278  * Follow the chain of indirects down to lastlbn creating a freework
6279  * structure for each.  This will be used to start indir_trunc() at
6280  * the right offset and create the journal records for the parrtial
6281  * truncation.  A second step will handle the truncated dependencies.
6282  */
6283 static int
6284 setup_trunc_indir(freeblks, ip, lbn, lastlbn, blkno)
6285 	struct freeblks *freeblks;
6286 	struct inode *ip;
6287 	ufs_lbn_t lbn;
6288 	ufs_lbn_t lastlbn;
6289 	ufs2_daddr_t blkno;
6290 {
6291 	struct indirdep *indirdep;
6292 	struct indirdep *indirn;
6293 	struct freework *freework;
6294 	struct newblk *newblk;
6295 	struct mount *mp;
6296 	struct ufsmount *ump;
6297 	struct buf *bp;
6298 	uint8_t *start;
6299 	uint8_t *end;
6300 	ufs_lbn_t lbnadd;
6301 	int level;
6302 	int error;
6303 	int off;
6304 
6305 
6306 	freework = NULL;
6307 	if (blkno == 0)
6308 		return (0);
6309 	mp = freeblks->fb_list.wk_mp;
6310 	ump = VFSTOUFS(mp);
6311 	/*
6312 	 * Here, calls to VOP_BMAP() will fail.  However, we already have
6313 	 * the on-disk address, so we just pass it to bread() instead of
6314 	 * having bread() attempt to calculate it using VOP_BMAP().
6315 	 */
6316 	error = breadn_flags(ITOV(ip), lbn, blkptrtodb(ump, blkno),
6317 	    (int)mp->mnt_stat.f_iosize, NULL, NULL, 0, NOCRED, 0, NULL, &bp);
6318 	if (error)
6319 		return (error);
6320 	level = lbn_level(lbn);
6321 	lbnadd = lbn_offset(ump->um_fs, level);
6322 	/*
6323 	 * Compute the offset of the last block we want to keep.  Store
6324 	 * in the freework the first block we want to completely free.
6325 	 */
6326 	off = (lastlbn - -(lbn + level)) / lbnadd;
6327 	if (off + 1 == NINDIR(ump->um_fs))
6328 		goto nowork;
6329 	freework = newfreework(ump, freeblks, NULL, lbn, blkno, 0, off + 1, 0);
6330 	/*
6331 	 * Link the freework into the indirdep.  This will prevent any new
6332 	 * allocations from proceeding until we are finished with the
6333 	 * truncate and the block is written.
6334 	 */
6335 	ACQUIRE_LOCK(ump);
6336 	indirdep = indirdep_lookup(mp, ip, bp);
6337 	if (indirdep->ir_freeblks)
6338 		panic("setup_trunc_indir: indirdep already truncated.");
6339 	TAILQ_INSERT_TAIL(&indirdep->ir_trunc, freework, fw_next);
6340 	freework->fw_indir = indirdep;
6341 	/*
6342 	 * Cancel any allocindirs that will not make it to disk.
6343 	 * We have to do this for all copies of the indirdep that
6344 	 * live on this newblk.
6345 	 */
6346 	if ((indirdep->ir_state & DEPCOMPLETE) == 0) {
6347 		if (newblk_lookup(mp, dbtofsb(ump->um_fs, bp->b_blkno), 0,
6348 		    &newblk) == 0)
6349 			panic("setup_trunc_indir: lost block");
6350 		LIST_FOREACH(indirn, &newblk->nb_indirdeps, ir_next)
6351 			trunc_indirdep(indirn, freeblks, bp, off);
6352 	} else
6353 		trunc_indirdep(indirdep, freeblks, bp, off);
6354 	FREE_LOCK(ump);
6355 	/*
6356 	 * Creation is protected by the buf lock. The saveddata is only
6357 	 * needed if a full truncation follows a partial truncation but it
6358 	 * is difficult to allocate in that case so we fetch it anyway.
6359 	 */
6360 	if (indirdep->ir_saveddata == NULL)
6361 		indirdep->ir_saveddata = malloc(bp->b_bcount, M_INDIRDEP,
6362 		    M_SOFTDEP_FLAGS);
6363 nowork:
6364 	/* Fetch the blkno of the child and the zero start offset. */
6365 	if (I_IS_UFS1(ip)) {
6366 		blkno = ((ufs1_daddr_t *)bp->b_data)[off];
6367 		start = (uint8_t *)&((ufs1_daddr_t *)bp->b_data)[off+1];
6368 	} else {
6369 		blkno = ((ufs2_daddr_t *)bp->b_data)[off];
6370 		start = (uint8_t *)&((ufs2_daddr_t *)bp->b_data)[off+1];
6371 	}
6372 	if (freework) {
6373 		/* Zero the truncated pointers. */
6374 		end = bp->b_data + bp->b_bcount;
6375 		bzero(start, end - start);
6376 		bdwrite(bp);
6377 	} else
6378 		bqrelse(bp);
6379 	if (level == 0)
6380 		return (0);
6381 	lbn++; /* adjust level */
6382 	lbn -= (off * lbnadd);
6383 	return setup_trunc_indir(freeblks, ip, lbn, lastlbn, blkno);
6384 }
6385 
6386 /*
6387  * Complete the partial truncation of an indirect block setup by
6388  * setup_trunc_indir().  This zeros the truncated pointers in the saved
6389  * copy and writes them to disk before the freeblks is allowed to complete.
6390  */
6391 static void
6392 complete_trunc_indir(freework)
6393 	struct freework *freework;
6394 {
6395 	struct freework *fwn;
6396 	struct indirdep *indirdep;
6397 	struct ufsmount *ump;
6398 	struct buf *bp;
6399 	uintptr_t start;
6400 	int count;
6401 
6402 	ump = VFSTOUFS(freework->fw_list.wk_mp);
6403 	LOCK_OWNED(ump);
6404 	indirdep = freework->fw_indir;
6405 	for (;;) {
6406 		bp = indirdep->ir_bp;
6407 		/* See if the block was discarded. */
6408 		if (bp == NULL)
6409 			break;
6410 		/* Inline part of getdirtybuf().  We dont want bremfree. */
6411 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) == 0)
6412 			break;
6413 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
6414 		    LOCK_PTR(ump)) == 0)
6415 			BUF_UNLOCK(bp);
6416 		ACQUIRE_LOCK(ump);
6417 	}
6418 	freework->fw_state |= DEPCOMPLETE;
6419 	TAILQ_REMOVE(&indirdep->ir_trunc, freework, fw_next);
6420 	/*
6421 	 * Zero the pointers in the saved copy.
6422 	 */
6423 	if (indirdep->ir_state & UFS1FMT)
6424 		start = sizeof(ufs1_daddr_t);
6425 	else
6426 		start = sizeof(ufs2_daddr_t);
6427 	start *= freework->fw_start;
6428 	count = indirdep->ir_savebp->b_bcount - start;
6429 	start += (uintptr_t)indirdep->ir_savebp->b_data;
6430 	bzero((char *)start, count);
6431 	/*
6432 	 * We need to start the next truncation in the list if it has not
6433 	 * been started yet.
6434 	 */
6435 	fwn = TAILQ_FIRST(&indirdep->ir_trunc);
6436 	if (fwn != NULL) {
6437 		if (fwn->fw_freeblks == indirdep->ir_freeblks)
6438 			TAILQ_REMOVE(&indirdep->ir_trunc, fwn, fw_next);
6439 		if ((fwn->fw_state & ONWORKLIST) == 0)
6440 			freework_enqueue(fwn);
6441 	}
6442 	/*
6443 	 * If bp is NULL the block was fully truncated, restore
6444 	 * the saved block list otherwise free it if it is no
6445 	 * longer needed.
6446 	 */
6447 	if (TAILQ_EMPTY(&indirdep->ir_trunc)) {
6448 		if (bp == NULL)
6449 			bcopy(indirdep->ir_saveddata,
6450 			    indirdep->ir_savebp->b_data,
6451 			    indirdep->ir_savebp->b_bcount);
6452 		free(indirdep->ir_saveddata, M_INDIRDEP);
6453 		indirdep->ir_saveddata = NULL;
6454 	}
6455 	/*
6456 	 * When bp is NULL there is a full truncation pending.  We
6457 	 * must wait for this full truncation to be journaled before
6458 	 * we can release this freework because the disk pointers will
6459 	 * never be written as zero.
6460 	 */
6461 	if (bp == NULL)  {
6462 		if (LIST_EMPTY(&indirdep->ir_freeblks->fb_jblkdephd))
6463 			handle_written_freework(freework);
6464 		else
6465 			WORKLIST_INSERT(&indirdep->ir_freeblks->fb_freeworkhd,
6466 			   &freework->fw_list);
6467 	} else {
6468 		/* Complete when the real copy is written. */
6469 		WORKLIST_INSERT(&bp->b_dep, &freework->fw_list);
6470 		BUF_UNLOCK(bp);
6471 	}
6472 }
6473 
6474 /*
6475  * Calculate the number of blocks we are going to release where datablocks
6476  * is the current total and length is the new file size.
6477  */
6478 static ufs2_daddr_t
6479 blkcount(fs, datablocks, length)
6480 	struct fs *fs;
6481 	ufs2_daddr_t datablocks;
6482 	off_t length;
6483 {
6484 	off_t totblks, numblks;
6485 
6486 	totblks = 0;
6487 	numblks = howmany(length, fs->fs_bsize);
6488 	if (numblks <= UFS_NDADDR) {
6489 		totblks = howmany(length, fs->fs_fsize);
6490 		goto out;
6491 	}
6492         totblks = blkstofrags(fs, numblks);
6493 	numblks -= UFS_NDADDR;
6494 	/*
6495 	 * Count all single, then double, then triple indirects required.
6496 	 * Subtracting one indirects worth of blocks for each pass
6497 	 * acknowledges one of each pointed to by the inode.
6498 	 */
6499 	for (;;) {
6500 		totblks += blkstofrags(fs, howmany(numblks, NINDIR(fs)));
6501 		numblks -= NINDIR(fs);
6502 		if (numblks <= 0)
6503 			break;
6504 		numblks = howmany(numblks, NINDIR(fs));
6505 	}
6506 out:
6507 	totblks = fsbtodb(fs, totblks);
6508 	/*
6509 	 * Handle sparse files.  We can't reclaim more blocks than the inode
6510 	 * references.  We will correct it later in handle_complete_freeblks()
6511 	 * when we know the real count.
6512 	 */
6513 	if (totblks > datablocks)
6514 		return (0);
6515 	return (datablocks - totblks);
6516 }
6517 
6518 /*
6519  * Handle freeblocks for journaled softupdate filesystems.
6520  *
6521  * Contrary to normal softupdates, we must preserve the block pointers in
6522  * indirects until their subordinates are free.  This is to avoid journaling
6523  * every block that is freed which may consume more space than the journal
6524  * itself.  The recovery program will see the free block journals at the
6525  * base of the truncated area and traverse them to reclaim space.  The
6526  * pointers in the inode may be cleared immediately after the journal
6527  * records are written because each direct and indirect pointer in the
6528  * inode is recorded in a journal.  This permits full truncation to proceed
6529  * asynchronously.  The write order is journal -> inode -> cgs -> indirects.
6530  *
6531  * The algorithm is as follows:
6532  * 1) Traverse the in-memory state and create journal entries to release
6533  *    the relevant blocks and full indirect trees.
6534  * 2) Traverse the indirect block chain adding partial truncation freework
6535  *    records to indirects in the path to lastlbn.  The freework will
6536  *    prevent new allocation dependencies from being satisfied in this
6537  *    indirect until the truncation completes.
6538  * 3) Read and lock the inode block, performing an update with the new size
6539  *    and pointers.  This prevents truncated data from becoming valid on
6540  *    disk through step 4.
6541  * 4) Reap unsatisfied dependencies that are beyond the truncated area,
6542  *    eliminate journal work for those records that do not require it.
6543  * 5) Schedule the journal records to be written followed by the inode block.
6544  * 6) Allocate any necessary frags for the end of file.
6545  * 7) Zero any partially truncated blocks.
6546  *
6547  * From this truncation proceeds asynchronously using the freework and
6548  * indir_trunc machinery.  The file will not be extended again into a
6549  * partially truncated indirect block until all work is completed but
6550  * the normal dependency mechanism ensures that it is rolled back/forward
6551  * as appropriate.  Further truncation may occur without delay and is
6552  * serialized in indir_trunc().
6553  */
6554 void
6555 softdep_journal_freeblocks(ip, cred, length, flags)
6556 	struct inode *ip;	/* The inode whose length is to be reduced */
6557 	struct ucred *cred;
6558 	off_t length;		/* The new length for the file */
6559 	int flags;		/* IO_EXT and/or IO_NORMAL */
6560 {
6561 	struct freeblks *freeblks, *fbn;
6562 	struct worklist *wk, *wkn;
6563 	struct inodedep *inodedep;
6564 	struct jblkdep *jblkdep;
6565 	struct allocdirect *adp, *adpn;
6566 	struct ufsmount *ump;
6567 	struct fs *fs;
6568 	struct buf *bp;
6569 	struct vnode *vp;
6570 	struct mount *mp;
6571 	ufs2_daddr_t extblocks, datablocks;
6572 	ufs_lbn_t tmpval, lbn, lastlbn;
6573 	int frags, lastoff, iboff, allocblock, needj, error, i;
6574 
6575 	ump = ITOUMP(ip);
6576 	mp = UFSTOVFS(ump);
6577 	fs = ump->um_fs;
6578 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
6579 	    ("softdep_journal_freeblocks called on non-softdep filesystem"));
6580 	vp = ITOV(ip);
6581 	needj = 1;
6582 	iboff = -1;
6583 	allocblock = 0;
6584 	extblocks = 0;
6585 	datablocks = 0;
6586 	frags = 0;
6587 	freeblks = newfreeblks(mp, ip);
6588 	ACQUIRE_LOCK(ump);
6589 	/*
6590 	 * If we're truncating a removed file that will never be written
6591 	 * we don't need to journal the block frees.  The canceled journals
6592 	 * for the allocations will suffice.
6593 	 */
6594 	inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
6595 	if ((inodedep->id_state & (UNLINKED | DEPCOMPLETE)) == UNLINKED &&
6596 	    length == 0)
6597 		needj = 0;
6598 	CTR3(KTR_SUJ, "softdep_journal_freeblks: ip %d length %ld needj %d",
6599 	    ip->i_number, length, needj);
6600 	FREE_LOCK(ump);
6601 	/*
6602 	 * Calculate the lbn that we are truncating to.  This results in -1
6603 	 * if we're truncating the 0 bytes.  So it is the last lbn we want
6604 	 * to keep, not the first lbn we want to truncate.
6605 	 */
6606 	lastlbn = lblkno(fs, length + fs->fs_bsize - 1) - 1;
6607 	lastoff = blkoff(fs, length);
6608 	/*
6609 	 * Compute frags we are keeping in lastlbn.  0 means all.
6610 	 */
6611 	if (lastlbn >= 0 && lastlbn < UFS_NDADDR) {
6612 		frags = fragroundup(fs, lastoff);
6613 		/* adp offset of last valid allocdirect. */
6614 		iboff = lastlbn;
6615 	} else if (lastlbn > 0)
6616 		iboff = UFS_NDADDR;
6617 	if (fs->fs_magic == FS_UFS2_MAGIC)
6618 		extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize));
6619 	/*
6620 	 * Handle normal data blocks and indirects.  This section saves
6621 	 * values used after the inode update to complete frag and indirect
6622 	 * truncation.
6623 	 */
6624 	if ((flags & IO_NORMAL) != 0) {
6625 		/*
6626 		 * Handle truncation of whole direct and indirect blocks.
6627 		 */
6628 		for (i = iboff + 1; i < UFS_NDADDR; i++)
6629 			setup_freedirect(freeblks, ip, i, needj);
6630 		for (i = 0, tmpval = NINDIR(fs), lbn = UFS_NDADDR;
6631 		    i < UFS_NIADDR;
6632 		    i++, lbn += tmpval, tmpval *= NINDIR(fs)) {
6633 			/* Release a whole indirect tree. */
6634 			if (lbn > lastlbn) {
6635 				setup_freeindir(freeblks, ip, i, -lbn -i,
6636 				    needj);
6637 				continue;
6638 			}
6639 			iboff = i + UFS_NDADDR;
6640 			/*
6641 			 * Traverse partially truncated indirect tree.
6642 			 */
6643 			if (lbn <= lastlbn && lbn + tmpval - 1 > lastlbn)
6644 				setup_trunc_indir(freeblks, ip, -lbn - i,
6645 				    lastlbn, DIP(ip, i_ib[i]));
6646 		}
6647 		/*
6648 		 * Handle partial truncation to a frag boundary.
6649 		 */
6650 		if (frags) {
6651 			ufs2_daddr_t blkno;
6652 			long oldfrags;
6653 
6654 			oldfrags = blksize(fs, ip, lastlbn);
6655 			blkno = DIP(ip, i_db[lastlbn]);
6656 			if (blkno && oldfrags != frags) {
6657 				oldfrags -= frags;
6658 				oldfrags = numfrags(fs, oldfrags);
6659 				blkno += numfrags(fs, frags);
6660 				newfreework(ump, freeblks, NULL, lastlbn,
6661 				    blkno, oldfrags, 0, needj);
6662 				if (needj)
6663 					adjust_newfreework(freeblks,
6664 					    numfrags(fs, frags));
6665 			} else if (blkno == 0)
6666 				allocblock = 1;
6667 		}
6668 		/*
6669 		 * Add a journal record for partial truncate if we are
6670 		 * handling indirect blocks.  Non-indirects need no extra
6671 		 * journaling.
6672 		 */
6673 		if (length != 0 && lastlbn >= UFS_NDADDR) {
6674 			UFS_INODE_SET_FLAG(ip, IN_TRUNCATED);
6675 			newjtrunc(freeblks, length, 0);
6676 		}
6677 		ip->i_size = length;
6678 		DIP_SET(ip, i_size, ip->i_size);
6679 		datablocks = DIP(ip, i_blocks) - extblocks;
6680 		if (length != 0)
6681 			datablocks = blkcount(fs, datablocks, length);
6682 		freeblks->fb_len = length;
6683 	}
6684 	if ((flags & IO_EXT) != 0) {
6685 		for (i = 0; i < UFS_NXADDR; i++)
6686 			setup_freeext(freeblks, ip, i, needj);
6687 		ip->i_din2->di_extsize = 0;
6688 		datablocks += extblocks;
6689 	}
6690 #ifdef QUOTA
6691 	/* Reference the quotas in case the block count is wrong in the end. */
6692 	quotaref(vp, freeblks->fb_quota);
6693 	(void) chkdq(ip, -datablocks, NOCRED, FORCE);
6694 #endif
6695 	freeblks->fb_chkcnt = -datablocks;
6696 	UFS_LOCK(ump);
6697 	fs->fs_pendingblocks += datablocks;
6698 	UFS_UNLOCK(ump);
6699 	DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - datablocks);
6700 	/*
6701 	 * Handle truncation of incomplete alloc direct dependencies.  We
6702 	 * hold the inode block locked to prevent incomplete dependencies
6703 	 * from reaching the disk while we are eliminating those that
6704 	 * have been truncated.  This is a partially inlined ffs_update().
6705 	 */
6706 	ufs_itimes(vp);
6707 	ip->i_flag &= ~(IN_LAZYACCESS | IN_LAZYMOD | IN_MODIFIED);
6708 	error = bread(ump->um_devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
6709 	    (int)fs->fs_bsize, cred, &bp);
6710 	if (error) {
6711 		softdep_error("softdep_journal_freeblocks", error);
6712 		return;
6713 	}
6714 	if (bp->b_bufsize == fs->fs_bsize)
6715 		bp->b_flags |= B_CLUSTEROK;
6716 	softdep_update_inodeblock(ip, bp, 0);
6717 	if (ump->um_fstype == UFS1) {
6718 		*((struct ufs1_dinode *)bp->b_data +
6719 		    ino_to_fsbo(fs, ip->i_number)) = *ip->i_din1;
6720 	} else {
6721 		ffs_update_dinode_ckhash(fs, ip->i_din2);
6722 		*((struct ufs2_dinode *)bp->b_data +
6723 		    ino_to_fsbo(fs, ip->i_number)) = *ip->i_din2;
6724 	}
6725 	ACQUIRE_LOCK(ump);
6726 	(void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
6727 	if ((inodedep->id_state & IOSTARTED) != 0)
6728 		panic("softdep_setup_freeblocks: inode busy");
6729 	/*
6730 	 * Add the freeblks structure to the list of operations that
6731 	 * must await the zero'ed inode being written to disk. If we
6732 	 * still have a bitmap dependency (needj), then the inode
6733 	 * has never been written to disk, so we can process the
6734 	 * freeblks below once we have deleted the dependencies.
6735 	 */
6736 	if (needj)
6737 		WORKLIST_INSERT(&bp->b_dep, &freeblks->fb_list);
6738 	else
6739 		freeblks->fb_state |= COMPLETE;
6740 	if ((flags & IO_NORMAL) != 0) {
6741 		TAILQ_FOREACH_SAFE(adp, &inodedep->id_inoupdt, ad_next, adpn) {
6742 			if (adp->ad_offset > iboff)
6743 				cancel_allocdirect(&inodedep->id_inoupdt, adp,
6744 				    freeblks);
6745 			/*
6746 			 * Truncate the allocdirect.  We could eliminate
6747 			 * or modify journal records as well.
6748 			 */
6749 			else if (adp->ad_offset == iboff && frags)
6750 				adp->ad_newsize = frags;
6751 		}
6752 	}
6753 	if ((flags & IO_EXT) != 0)
6754 		while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL)
6755 			cancel_allocdirect(&inodedep->id_extupdt, adp,
6756 			    freeblks);
6757 	/*
6758 	 * Scan the bufwait list for newblock dependencies that will never
6759 	 * make it to disk.
6760 	 */
6761 	LIST_FOREACH_SAFE(wk, &inodedep->id_bufwait, wk_list, wkn) {
6762 		if (wk->wk_type != D_ALLOCDIRECT)
6763 			continue;
6764 		adp = WK_ALLOCDIRECT(wk);
6765 		if (((flags & IO_NORMAL) != 0 && (adp->ad_offset > iboff)) ||
6766 		    ((flags & IO_EXT) != 0 && (adp->ad_state & EXTDATA))) {
6767 			cancel_jfreeblk(freeblks, adp->ad_newblkno);
6768 			cancel_newblk(WK_NEWBLK(wk), NULL, &freeblks->fb_jwork);
6769 			WORKLIST_INSERT(&freeblks->fb_freeworkhd, wk);
6770 		}
6771 	}
6772 	/*
6773 	 * Add journal work.
6774 	 */
6775 	LIST_FOREACH(jblkdep, &freeblks->fb_jblkdephd, jb_deps)
6776 		add_to_journal(&jblkdep->jb_list);
6777 	FREE_LOCK(ump);
6778 	bdwrite(bp);
6779 	/*
6780 	 * Truncate dependency structures beyond length.
6781 	 */
6782 	trunc_dependencies(ip, freeblks, lastlbn, frags, flags);
6783 	/*
6784 	 * This is only set when we need to allocate a fragment because
6785 	 * none existed at the end of a frag-sized file.  It handles only
6786 	 * allocating a new, zero filled block.
6787 	 */
6788 	if (allocblock) {
6789 		ip->i_size = length - lastoff;
6790 		DIP_SET(ip, i_size, ip->i_size);
6791 		error = UFS_BALLOC(vp, length - 1, 1, cred, BA_CLRBUF, &bp);
6792 		if (error != 0) {
6793 			softdep_error("softdep_journal_freeblks", error);
6794 			return;
6795 		}
6796 		ip->i_size = length;
6797 		DIP_SET(ip, i_size, length);
6798 		UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_UPDATE);
6799 		allocbuf(bp, frags);
6800 		ffs_update(vp, 0);
6801 		bawrite(bp);
6802 	} else if (lastoff != 0 && vp->v_type != VDIR) {
6803 		int size;
6804 
6805 		/*
6806 		 * Zero the end of a truncated frag or block.
6807 		 */
6808 		size = sblksize(fs, length, lastlbn);
6809 		error = bread(vp, lastlbn, size, cred, &bp);
6810 		if (error) {
6811 			softdep_error("softdep_journal_freeblks", error);
6812 			return;
6813 		}
6814 		bzero((char *)bp->b_data + lastoff, size - lastoff);
6815 		bawrite(bp);
6816 
6817 	}
6818 	ACQUIRE_LOCK(ump);
6819 	inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
6820 	TAILQ_INSERT_TAIL(&inodedep->id_freeblklst, freeblks, fb_next);
6821 	freeblks->fb_state |= DEPCOMPLETE | ONDEPLIST;
6822 	/*
6823 	 * We zero earlier truncations so they don't erroneously
6824 	 * update i_blocks.
6825 	 */
6826 	if (freeblks->fb_len == 0 && (flags & IO_NORMAL) != 0)
6827 		TAILQ_FOREACH(fbn, &inodedep->id_freeblklst, fb_next)
6828 			fbn->fb_len = 0;
6829 	if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE &&
6830 	    LIST_EMPTY(&freeblks->fb_jblkdephd))
6831 		freeblks->fb_state |= INPROGRESS;
6832 	else
6833 		freeblks = NULL;
6834 	FREE_LOCK(ump);
6835 	if (freeblks)
6836 		handle_workitem_freeblocks(freeblks, 0);
6837 	trunc_pages(ip, length, extblocks, flags);
6838 
6839 }
6840 
6841 /*
6842  * Flush a JOP_SYNC to the journal.
6843  */
6844 void
6845 softdep_journal_fsync(ip)
6846 	struct inode *ip;
6847 {
6848 	struct jfsync *jfsync;
6849 	struct ufsmount *ump;
6850 
6851 	ump = ITOUMP(ip);
6852 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
6853 	    ("softdep_journal_fsync called on non-softdep filesystem"));
6854 	if ((ip->i_flag & IN_TRUNCATED) == 0)
6855 		return;
6856 	ip->i_flag &= ~IN_TRUNCATED;
6857 	jfsync = malloc(sizeof(*jfsync), M_JFSYNC, M_SOFTDEP_FLAGS | M_ZERO);
6858 	workitem_alloc(&jfsync->jfs_list, D_JFSYNC, UFSTOVFS(ump));
6859 	jfsync->jfs_size = ip->i_size;
6860 	jfsync->jfs_ino = ip->i_number;
6861 	ACQUIRE_LOCK(ump);
6862 	add_to_journal(&jfsync->jfs_list);
6863 	jwait(&jfsync->jfs_list, MNT_WAIT);
6864 	FREE_LOCK(ump);
6865 }
6866 
6867 /*
6868  * Block de-allocation dependencies.
6869  *
6870  * When blocks are de-allocated, the on-disk pointers must be nullified before
6871  * the blocks are made available for use by other files.  (The true
6872  * requirement is that old pointers must be nullified before new on-disk
6873  * pointers are set.  We chose this slightly more stringent requirement to
6874  * reduce complexity.) Our implementation handles this dependency by updating
6875  * the inode (or indirect block) appropriately but delaying the actual block
6876  * de-allocation (i.e., freemap and free space count manipulation) until
6877  * after the updated versions reach stable storage.  After the disk is
6878  * updated, the blocks can be safely de-allocated whenever it is convenient.
6879  * This implementation handles only the common case of reducing a file's
6880  * length to zero. Other cases are handled by the conventional synchronous
6881  * write approach.
6882  *
6883  * The ffs implementation with which we worked double-checks
6884  * the state of the block pointers and file size as it reduces
6885  * a file's length.  Some of this code is replicated here in our
6886  * soft updates implementation.  The freeblks->fb_chkcnt field is
6887  * used to transfer a part of this information to the procedure
6888  * that eventually de-allocates the blocks.
6889  *
6890  * This routine should be called from the routine that shortens
6891  * a file's length, before the inode's size or block pointers
6892  * are modified. It will save the block pointer information for
6893  * later release and zero the inode so that the calling routine
6894  * can release it.
6895  */
6896 void
6897 softdep_setup_freeblocks(ip, length, flags)
6898 	struct inode *ip;	/* The inode whose length is to be reduced */
6899 	off_t length;		/* The new length for the file */
6900 	int flags;		/* IO_EXT and/or IO_NORMAL */
6901 {
6902 	struct ufs1_dinode *dp1;
6903 	struct ufs2_dinode *dp2;
6904 	struct freeblks *freeblks;
6905 	struct inodedep *inodedep;
6906 	struct allocdirect *adp;
6907 	struct ufsmount *ump;
6908 	struct buf *bp;
6909 	struct fs *fs;
6910 	ufs2_daddr_t extblocks, datablocks;
6911 	struct mount *mp;
6912 	int i, delay, error;
6913 	ufs_lbn_t tmpval;
6914 	ufs_lbn_t lbn;
6915 
6916 	ump = ITOUMP(ip);
6917 	mp = UFSTOVFS(ump);
6918 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
6919 	    ("softdep_setup_freeblocks called on non-softdep filesystem"));
6920 	CTR2(KTR_SUJ, "softdep_setup_freeblks: ip %d length %ld",
6921 	    ip->i_number, length);
6922 	KASSERT(length == 0, ("softdep_setup_freeblocks: non-zero length"));
6923 	fs = ump->um_fs;
6924 	if ((error = bread(ump->um_devvp,
6925 	    fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
6926 	    (int)fs->fs_bsize, NOCRED, &bp)) != 0) {
6927 		brelse(bp);
6928 		softdep_error("softdep_setup_freeblocks", error);
6929 		return;
6930 	}
6931 	freeblks = newfreeblks(mp, ip);
6932 	extblocks = 0;
6933 	datablocks = 0;
6934 	if (fs->fs_magic == FS_UFS2_MAGIC)
6935 		extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize));
6936 	if ((flags & IO_NORMAL) != 0) {
6937 		for (i = 0; i < UFS_NDADDR; i++)
6938 			setup_freedirect(freeblks, ip, i, 0);
6939 		for (i = 0, tmpval = NINDIR(fs), lbn = UFS_NDADDR;
6940 		    i < UFS_NIADDR;
6941 		    i++, lbn += tmpval, tmpval *= NINDIR(fs))
6942 			setup_freeindir(freeblks, ip, i, -lbn -i, 0);
6943 		ip->i_size = 0;
6944 		DIP_SET(ip, i_size, 0);
6945 		datablocks = DIP(ip, i_blocks) - extblocks;
6946 	}
6947 	if ((flags & IO_EXT) != 0) {
6948 		for (i = 0; i < UFS_NXADDR; i++)
6949 			setup_freeext(freeblks, ip, i, 0);
6950 		ip->i_din2->di_extsize = 0;
6951 		datablocks += extblocks;
6952 	}
6953 #ifdef QUOTA
6954 	/* Reference the quotas in case the block count is wrong in the end. */
6955 	quotaref(ITOV(ip), freeblks->fb_quota);
6956 	(void) chkdq(ip, -datablocks, NOCRED, FORCE);
6957 #endif
6958 	freeblks->fb_chkcnt = -datablocks;
6959 	UFS_LOCK(ump);
6960 	fs->fs_pendingblocks += datablocks;
6961 	UFS_UNLOCK(ump);
6962 	DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - datablocks);
6963 	/*
6964 	 * Push the zero'ed inode to its disk buffer so that we are free
6965 	 * to delete its dependencies below. Once the dependencies are gone
6966 	 * the buffer can be safely released.
6967 	 */
6968 	if (ump->um_fstype == UFS1) {
6969 		dp1 = ((struct ufs1_dinode *)bp->b_data +
6970 		    ino_to_fsbo(fs, ip->i_number));
6971 		ip->i_din1->di_freelink = dp1->di_freelink;
6972 		*dp1 = *ip->i_din1;
6973 	} else {
6974 		dp2 = ((struct ufs2_dinode *)bp->b_data +
6975 		    ino_to_fsbo(fs, ip->i_number));
6976 		ip->i_din2->di_freelink = dp2->di_freelink;
6977 		ffs_update_dinode_ckhash(fs, ip->i_din2);
6978 		*dp2 = *ip->i_din2;
6979 	}
6980 	/*
6981 	 * Find and eliminate any inode dependencies.
6982 	 */
6983 	ACQUIRE_LOCK(ump);
6984 	(void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
6985 	if ((inodedep->id_state & IOSTARTED) != 0)
6986 		panic("softdep_setup_freeblocks: inode busy");
6987 	/*
6988 	 * Add the freeblks structure to the list of operations that
6989 	 * must await the zero'ed inode being written to disk. If we
6990 	 * still have a bitmap dependency (delay == 0), then the inode
6991 	 * has never been written to disk, so we can process the
6992 	 * freeblks below once we have deleted the dependencies.
6993 	 */
6994 	delay = (inodedep->id_state & DEPCOMPLETE);
6995 	if (delay)
6996 		WORKLIST_INSERT(&bp->b_dep, &freeblks->fb_list);
6997 	else
6998 		freeblks->fb_state |= COMPLETE;
6999 	/*
7000 	 * Because the file length has been truncated to zero, any
7001 	 * pending block allocation dependency structures associated
7002 	 * with this inode are obsolete and can simply be de-allocated.
7003 	 * We must first merge the two dependency lists to get rid of
7004 	 * any duplicate freefrag structures, then purge the merged list.
7005 	 * If we still have a bitmap dependency, then the inode has never
7006 	 * been written to disk, so we can free any fragments without delay.
7007 	 */
7008 	if (flags & IO_NORMAL) {
7009 		merge_inode_lists(&inodedep->id_newinoupdt,
7010 		    &inodedep->id_inoupdt);
7011 		while ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL)
7012 			cancel_allocdirect(&inodedep->id_inoupdt, adp,
7013 			    freeblks);
7014 	}
7015 	if (flags & IO_EXT) {
7016 		merge_inode_lists(&inodedep->id_newextupdt,
7017 		    &inodedep->id_extupdt);
7018 		while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL)
7019 			cancel_allocdirect(&inodedep->id_extupdt, adp,
7020 			    freeblks);
7021 	}
7022 	FREE_LOCK(ump);
7023 	bdwrite(bp);
7024 	trunc_dependencies(ip, freeblks, -1, 0, flags);
7025 	ACQUIRE_LOCK(ump);
7026 	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0)
7027 		(void) free_inodedep(inodedep);
7028 	freeblks->fb_state |= DEPCOMPLETE;
7029 	/*
7030 	 * If the inode with zeroed block pointers is now on disk
7031 	 * we can start freeing blocks.
7032 	 */
7033 	if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE)
7034 		freeblks->fb_state |= INPROGRESS;
7035 	else
7036 		freeblks = NULL;
7037 	FREE_LOCK(ump);
7038 	if (freeblks)
7039 		handle_workitem_freeblocks(freeblks, 0);
7040 	trunc_pages(ip, length, extblocks, flags);
7041 }
7042 
7043 /*
7044  * Eliminate pages from the page cache that back parts of this inode and
7045  * adjust the vnode pager's idea of our size.  This prevents stale data
7046  * from hanging around in the page cache.
7047  */
7048 static void
7049 trunc_pages(ip, length, extblocks, flags)
7050 	struct inode *ip;
7051 	off_t length;
7052 	ufs2_daddr_t extblocks;
7053 	int flags;
7054 {
7055 	struct vnode *vp;
7056 	struct fs *fs;
7057 	ufs_lbn_t lbn;
7058 	off_t end, extend;
7059 
7060 	vp = ITOV(ip);
7061 	fs = ITOFS(ip);
7062 	extend = OFF_TO_IDX(lblktosize(fs, -extblocks));
7063 	if ((flags & IO_EXT) != 0)
7064 		vn_pages_remove(vp, extend, 0);
7065 	if ((flags & IO_NORMAL) == 0)
7066 		return;
7067 	BO_LOCK(&vp->v_bufobj);
7068 	drain_output(vp);
7069 	BO_UNLOCK(&vp->v_bufobj);
7070 	/*
7071 	 * The vnode pager eliminates file pages we eliminate indirects
7072 	 * below.
7073 	 */
7074 	vnode_pager_setsize(vp, length);
7075 	/*
7076 	 * Calculate the end based on the last indirect we want to keep.  If
7077 	 * the block extends into indirects we can just use the negative of
7078 	 * its lbn.  Doubles and triples exist at lower numbers so we must
7079 	 * be careful not to remove those, if they exist.  double and triple
7080 	 * indirect lbns do not overlap with others so it is not important
7081 	 * to verify how many levels are required.
7082 	 */
7083 	lbn = lblkno(fs, length);
7084 	if (lbn >= UFS_NDADDR) {
7085 		/* Calculate the virtual lbn of the triple indirect. */
7086 		lbn = -lbn - (UFS_NIADDR - 1);
7087 		end = OFF_TO_IDX(lblktosize(fs, lbn));
7088 	} else
7089 		end = extend;
7090 	vn_pages_remove(vp, OFF_TO_IDX(OFF_MAX), end);
7091 }
7092 
7093 /*
7094  * See if the buf bp is in the range eliminated by truncation.
7095  */
7096 static int
7097 trunc_check_buf(bp, blkoffp, lastlbn, lastoff, flags)
7098 	struct buf *bp;
7099 	int *blkoffp;
7100 	ufs_lbn_t lastlbn;
7101 	int lastoff;
7102 	int flags;
7103 {
7104 	ufs_lbn_t lbn;
7105 
7106 	*blkoffp = 0;
7107 	/* Only match ext/normal blocks as appropriate. */
7108 	if (((flags & IO_EXT) == 0 && (bp->b_xflags & BX_ALTDATA)) ||
7109 	    ((flags & IO_NORMAL) == 0 && (bp->b_xflags & BX_ALTDATA) == 0))
7110 		return (0);
7111 	/* ALTDATA is always a full truncation. */
7112 	if ((bp->b_xflags & BX_ALTDATA) != 0)
7113 		return (1);
7114 	/* -1 is full truncation. */
7115 	if (lastlbn == -1)
7116 		return (1);
7117 	/*
7118 	 * If this is a partial truncate we only want those
7119 	 * blocks and indirect blocks that cover the range
7120 	 * we're after.
7121 	 */
7122 	lbn = bp->b_lblkno;
7123 	if (lbn < 0)
7124 		lbn = -(lbn + lbn_level(lbn));
7125 	if (lbn < lastlbn)
7126 		return (0);
7127 	/* Here we only truncate lblkno if it's partial. */
7128 	if (lbn == lastlbn) {
7129 		if (lastoff == 0)
7130 			return (0);
7131 		*blkoffp = lastoff;
7132 	}
7133 	return (1);
7134 }
7135 
7136 /*
7137  * Eliminate any dependencies that exist in memory beyond lblkno:off
7138  */
7139 static void
7140 trunc_dependencies(ip, freeblks, lastlbn, lastoff, flags)
7141 	struct inode *ip;
7142 	struct freeblks *freeblks;
7143 	ufs_lbn_t lastlbn;
7144 	int lastoff;
7145 	int flags;
7146 {
7147 	struct bufobj *bo;
7148 	struct vnode *vp;
7149 	struct buf *bp;
7150 	int blkoff;
7151 
7152 	/*
7153 	 * We must wait for any I/O in progress to finish so that
7154 	 * all potential buffers on the dirty list will be visible.
7155 	 * Once they are all there, walk the list and get rid of
7156 	 * any dependencies.
7157 	 */
7158 	vp = ITOV(ip);
7159 	bo = &vp->v_bufobj;
7160 	BO_LOCK(bo);
7161 	drain_output(vp);
7162 	TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs)
7163 		bp->b_vflags &= ~BV_SCANNED;
7164 restart:
7165 	TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) {
7166 		if (bp->b_vflags & BV_SCANNED)
7167 			continue;
7168 		if (!trunc_check_buf(bp, &blkoff, lastlbn, lastoff, flags)) {
7169 			bp->b_vflags |= BV_SCANNED;
7170 			continue;
7171 		}
7172 		KASSERT(bp->b_bufobj == bo, ("Wrong object in buffer"));
7173 		if ((bp = getdirtybuf(bp, BO_LOCKPTR(bo), MNT_WAIT)) == NULL)
7174 			goto restart;
7175 		BO_UNLOCK(bo);
7176 		if (deallocate_dependencies(bp, freeblks, blkoff))
7177 			bqrelse(bp);
7178 		else
7179 			brelse(bp);
7180 		BO_LOCK(bo);
7181 		goto restart;
7182 	}
7183 	/*
7184 	 * Now do the work of vtruncbuf while also matching indirect blocks.
7185 	 */
7186 	TAILQ_FOREACH(bp, &bo->bo_clean.bv_hd, b_bobufs)
7187 		bp->b_vflags &= ~BV_SCANNED;
7188 cleanrestart:
7189 	TAILQ_FOREACH(bp, &bo->bo_clean.bv_hd, b_bobufs) {
7190 		if (bp->b_vflags & BV_SCANNED)
7191 			continue;
7192 		if (!trunc_check_buf(bp, &blkoff, lastlbn, lastoff, flags)) {
7193 			bp->b_vflags |= BV_SCANNED;
7194 			continue;
7195 		}
7196 		if (BUF_LOCK(bp,
7197 		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
7198 		    BO_LOCKPTR(bo)) == ENOLCK) {
7199 			BO_LOCK(bo);
7200 			goto cleanrestart;
7201 		}
7202 		bp->b_vflags |= BV_SCANNED;
7203 		bremfree(bp);
7204 		if (blkoff != 0) {
7205 			allocbuf(bp, blkoff);
7206 			bqrelse(bp);
7207 		} else {
7208 			bp->b_flags |= B_INVAL | B_NOCACHE | B_RELBUF;
7209 			brelse(bp);
7210 		}
7211 		BO_LOCK(bo);
7212 		goto cleanrestart;
7213 	}
7214 	drain_output(vp);
7215 	BO_UNLOCK(bo);
7216 }
7217 
7218 static int
7219 cancel_pagedep(pagedep, freeblks, blkoff)
7220 	struct pagedep *pagedep;
7221 	struct freeblks *freeblks;
7222 	int blkoff;
7223 {
7224 	struct jremref *jremref;
7225 	struct jmvref *jmvref;
7226 	struct dirrem *dirrem, *tmp;
7227 	int i;
7228 
7229 	/*
7230 	 * Copy any directory remove dependencies to the list
7231 	 * to be processed after the freeblks proceeds.  If
7232 	 * directory entry never made it to disk they
7233 	 * can be dumped directly onto the work list.
7234 	 */
7235 	LIST_FOREACH_SAFE(dirrem, &pagedep->pd_dirremhd, dm_next, tmp) {
7236 		/* Skip this directory removal if it is intended to remain. */
7237 		if (dirrem->dm_offset < blkoff)
7238 			continue;
7239 		/*
7240 		 * If there are any dirrems we wait for the journal write
7241 		 * to complete and then restart the buf scan as the lock
7242 		 * has been dropped.
7243 		 */
7244 		while ((jremref = LIST_FIRST(&dirrem->dm_jremrefhd)) != NULL) {
7245 			jwait(&jremref->jr_list, MNT_WAIT);
7246 			return (ERESTART);
7247 		}
7248 		LIST_REMOVE(dirrem, dm_next);
7249 		dirrem->dm_dirinum = pagedep->pd_ino;
7250 		WORKLIST_INSERT(&freeblks->fb_freeworkhd, &dirrem->dm_list);
7251 	}
7252 	while ((jmvref = LIST_FIRST(&pagedep->pd_jmvrefhd)) != NULL) {
7253 		jwait(&jmvref->jm_list, MNT_WAIT);
7254 		return (ERESTART);
7255 	}
7256 	/*
7257 	 * When we're partially truncating a pagedep we just want to flush
7258 	 * journal entries and return.  There can not be any adds in the
7259 	 * truncated portion of the directory and newblk must remain if
7260 	 * part of the block remains.
7261 	 */
7262 	if (blkoff != 0) {
7263 		struct diradd *dap;
7264 
7265 		LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist)
7266 			if (dap->da_offset > blkoff)
7267 				panic("cancel_pagedep: diradd %p off %d > %d",
7268 				    dap, dap->da_offset, blkoff);
7269 		for (i = 0; i < DAHASHSZ; i++)
7270 			LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist)
7271 				if (dap->da_offset > blkoff)
7272 					panic("cancel_pagedep: diradd %p off %d > %d",
7273 					    dap, dap->da_offset, blkoff);
7274 		return (0);
7275 	}
7276 	/*
7277 	 * There should be no directory add dependencies present
7278 	 * as the directory could not be truncated until all
7279 	 * children were removed.
7280 	 */
7281 	KASSERT(LIST_FIRST(&pagedep->pd_pendinghd) == NULL,
7282 	    ("deallocate_dependencies: pendinghd != NULL"));
7283 	for (i = 0; i < DAHASHSZ; i++)
7284 		KASSERT(LIST_FIRST(&pagedep->pd_diraddhd[i]) == NULL,
7285 		    ("deallocate_dependencies: diraddhd != NULL"));
7286 	if ((pagedep->pd_state & NEWBLOCK) != 0)
7287 		free_newdirblk(pagedep->pd_newdirblk);
7288 	if (free_pagedep(pagedep) == 0)
7289 		panic("Failed to free pagedep %p", pagedep);
7290 	return (0);
7291 }
7292 
7293 /*
7294  * Reclaim any dependency structures from a buffer that is about to
7295  * be reallocated to a new vnode. The buffer must be locked, thus,
7296  * no I/O completion operations can occur while we are manipulating
7297  * its associated dependencies. The mutex is held so that other I/O's
7298  * associated with related dependencies do not occur.
7299  */
7300 static int
7301 deallocate_dependencies(bp, freeblks, off)
7302 	struct buf *bp;
7303 	struct freeblks *freeblks;
7304 	int off;
7305 {
7306 	struct indirdep *indirdep;
7307 	struct pagedep *pagedep;
7308 	struct worklist *wk, *wkn;
7309 	struct ufsmount *ump;
7310 
7311 	ump = softdep_bp_to_mp(bp);
7312 	if (ump == NULL)
7313 		goto done;
7314 	ACQUIRE_LOCK(ump);
7315 	LIST_FOREACH_SAFE(wk, &bp->b_dep, wk_list, wkn) {
7316 		switch (wk->wk_type) {
7317 		case D_INDIRDEP:
7318 			indirdep = WK_INDIRDEP(wk);
7319 			if (bp->b_lblkno >= 0 ||
7320 			    bp->b_blkno != indirdep->ir_savebp->b_lblkno)
7321 				panic("deallocate_dependencies: not indir");
7322 			cancel_indirdep(indirdep, bp, freeblks);
7323 			continue;
7324 
7325 		case D_PAGEDEP:
7326 			pagedep = WK_PAGEDEP(wk);
7327 			if (cancel_pagedep(pagedep, freeblks, off)) {
7328 				FREE_LOCK(ump);
7329 				return (ERESTART);
7330 			}
7331 			continue;
7332 
7333 		case D_ALLOCINDIR:
7334 			/*
7335 			 * Simply remove the allocindir, we'll find it via
7336 			 * the indirdep where we can clear pointers if
7337 			 * needed.
7338 			 */
7339 			WORKLIST_REMOVE(wk);
7340 			continue;
7341 
7342 		case D_FREEWORK:
7343 			/*
7344 			 * A truncation is waiting for the zero'd pointers
7345 			 * to be written.  It can be freed when the freeblks
7346 			 * is journaled.
7347 			 */
7348 			WORKLIST_REMOVE(wk);
7349 			wk->wk_state |= ONDEPLIST;
7350 			WORKLIST_INSERT(&freeblks->fb_freeworkhd, wk);
7351 			break;
7352 
7353 		case D_ALLOCDIRECT:
7354 			if (off != 0)
7355 				continue;
7356 			/* FALLTHROUGH */
7357 		default:
7358 			panic("deallocate_dependencies: Unexpected type %s",
7359 			    TYPENAME(wk->wk_type));
7360 			/* NOTREACHED */
7361 		}
7362 	}
7363 	FREE_LOCK(ump);
7364 done:
7365 	/*
7366 	 * Don't throw away this buf, we were partially truncating and
7367 	 * some deps may always remain.
7368 	 */
7369 	if (off) {
7370 		allocbuf(bp, off);
7371 		bp->b_vflags |= BV_SCANNED;
7372 		return (EBUSY);
7373 	}
7374 	bp->b_flags |= B_INVAL | B_NOCACHE;
7375 
7376 	return (0);
7377 }
7378 
7379 /*
7380  * An allocdirect is being canceled due to a truncate.  We must make sure
7381  * the journal entry is released in concert with the blkfree that releases
7382  * the storage.  Completed journal entries must not be released until the
7383  * space is no longer pointed to by the inode or in the bitmap.
7384  */
7385 static void
7386 cancel_allocdirect(adphead, adp, freeblks)
7387 	struct allocdirectlst *adphead;
7388 	struct allocdirect *adp;
7389 	struct freeblks *freeblks;
7390 {
7391 	struct freework *freework;
7392 	struct newblk *newblk;
7393 	struct worklist *wk;
7394 
7395 	TAILQ_REMOVE(adphead, adp, ad_next);
7396 	newblk = (struct newblk *)adp;
7397 	freework = NULL;
7398 	/*
7399 	 * Find the correct freework structure.
7400 	 */
7401 	LIST_FOREACH(wk, &freeblks->fb_freeworkhd, wk_list) {
7402 		if (wk->wk_type != D_FREEWORK)
7403 			continue;
7404 		freework = WK_FREEWORK(wk);
7405 		if (freework->fw_blkno == newblk->nb_newblkno)
7406 			break;
7407 	}
7408 	if (freework == NULL)
7409 		panic("cancel_allocdirect: Freework not found");
7410 	/*
7411 	 * If a newblk exists at all we still have the journal entry that
7412 	 * initiated the allocation so we do not need to journal the free.
7413 	 */
7414 	cancel_jfreeblk(freeblks, freework->fw_blkno);
7415 	/*
7416 	 * If the journal hasn't been written the jnewblk must be passed
7417 	 * to the call to ffs_blkfree that reclaims the space.  We accomplish
7418 	 * this by linking the journal dependency into the freework to be
7419 	 * freed when freework_freeblock() is called.  If the journal has
7420 	 * been written we can simply reclaim the journal space when the
7421 	 * freeblks work is complete.
7422 	 */
7423 	freework->fw_jnewblk = cancel_newblk(newblk, &freework->fw_list,
7424 	    &freeblks->fb_jwork);
7425 	WORKLIST_INSERT(&freeblks->fb_freeworkhd, &newblk->nb_list);
7426 }
7427 
7428 
7429 /*
7430  * Cancel a new block allocation.  May be an indirect or direct block.  We
7431  * remove it from various lists and return any journal record that needs to
7432  * be resolved by the caller.
7433  *
7434  * A special consideration is made for indirects which were never pointed
7435  * at on disk and will never be found once this block is released.
7436  */
7437 static struct jnewblk *
7438 cancel_newblk(newblk, wk, wkhd)
7439 	struct newblk *newblk;
7440 	struct worklist *wk;
7441 	struct workhead *wkhd;
7442 {
7443 	struct jnewblk *jnewblk;
7444 
7445 	CTR1(KTR_SUJ, "cancel_newblk: blkno %jd", newblk->nb_newblkno);
7446 
7447 	newblk->nb_state |= GOINGAWAY;
7448 	/*
7449 	 * Previously we traversed the completedhd on each indirdep
7450 	 * attached to this newblk to cancel them and gather journal
7451 	 * work.  Since we need only the oldest journal segment and
7452 	 * the lowest point on the tree will always have the oldest
7453 	 * journal segment we are free to release the segments
7454 	 * of any subordinates and may leave the indirdep list to
7455 	 * indirdep_complete() when this newblk is freed.
7456 	 */
7457 	if (newblk->nb_state & ONDEPLIST) {
7458 		newblk->nb_state &= ~ONDEPLIST;
7459 		LIST_REMOVE(newblk, nb_deps);
7460 	}
7461 	if (newblk->nb_state & ONWORKLIST)
7462 		WORKLIST_REMOVE(&newblk->nb_list);
7463 	/*
7464 	 * If the journal entry hasn't been written we save a pointer to
7465 	 * the dependency that frees it until it is written or the
7466 	 * superseding operation completes.
7467 	 */
7468 	jnewblk = newblk->nb_jnewblk;
7469 	if (jnewblk != NULL && wk != NULL) {
7470 		newblk->nb_jnewblk = NULL;
7471 		jnewblk->jn_dep = wk;
7472 	}
7473 	if (!LIST_EMPTY(&newblk->nb_jwork))
7474 		jwork_move(wkhd, &newblk->nb_jwork);
7475 	/*
7476 	 * When truncating we must free the newdirblk early to remove
7477 	 * the pagedep from the hash before returning.
7478 	 */
7479 	if ((wk = LIST_FIRST(&newblk->nb_newdirblk)) != NULL)
7480 		free_newdirblk(WK_NEWDIRBLK(wk));
7481 	if (!LIST_EMPTY(&newblk->nb_newdirblk))
7482 		panic("cancel_newblk: extra newdirblk");
7483 
7484 	return (jnewblk);
7485 }
7486 
7487 /*
7488  * Schedule the freefrag associated with a newblk to be released once
7489  * the pointers are written and the previous block is no longer needed.
7490  */
7491 static void
7492 newblk_freefrag(newblk)
7493 	struct newblk *newblk;
7494 {
7495 	struct freefrag *freefrag;
7496 
7497 	if (newblk->nb_freefrag == NULL)
7498 		return;
7499 	freefrag = newblk->nb_freefrag;
7500 	newblk->nb_freefrag = NULL;
7501 	freefrag->ff_state |= COMPLETE;
7502 	if ((freefrag->ff_state & ALLCOMPLETE) == ALLCOMPLETE)
7503 		add_to_worklist(&freefrag->ff_list, 0);
7504 }
7505 
7506 /*
7507  * Free a newblk. Generate a new freefrag work request if appropriate.
7508  * This must be called after the inode pointer and any direct block pointers
7509  * are valid or fully removed via truncate or frag extension.
7510  */
7511 static void
7512 free_newblk(newblk)
7513 	struct newblk *newblk;
7514 {
7515 	struct indirdep *indirdep;
7516 	struct worklist *wk;
7517 
7518 	KASSERT(newblk->nb_jnewblk == NULL,
7519 	    ("free_newblk: jnewblk %p still attached", newblk->nb_jnewblk));
7520 	KASSERT(newblk->nb_list.wk_type != D_NEWBLK,
7521 	    ("free_newblk: unclaimed newblk"));
7522 	LOCK_OWNED(VFSTOUFS(newblk->nb_list.wk_mp));
7523 	newblk_freefrag(newblk);
7524 	if (newblk->nb_state & ONDEPLIST)
7525 		LIST_REMOVE(newblk, nb_deps);
7526 	if (newblk->nb_state & ONWORKLIST)
7527 		WORKLIST_REMOVE(&newblk->nb_list);
7528 	LIST_REMOVE(newblk, nb_hash);
7529 	if ((wk = LIST_FIRST(&newblk->nb_newdirblk)) != NULL)
7530 		free_newdirblk(WK_NEWDIRBLK(wk));
7531 	if (!LIST_EMPTY(&newblk->nb_newdirblk))
7532 		panic("free_newblk: extra newdirblk");
7533 	while ((indirdep = LIST_FIRST(&newblk->nb_indirdeps)) != NULL)
7534 		indirdep_complete(indirdep);
7535 	handle_jwork(&newblk->nb_jwork);
7536 	WORKITEM_FREE(newblk, D_NEWBLK);
7537 }
7538 
7539 /*
7540  * Free a newdirblk. Clear the NEWBLOCK flag on its associated pagedep.
7541  */
7542 static void
7543 free_newdirblk(newdirblk)
7544 	struct newdirblk *newdirblk;
7545 {
7546 	struct pagedep *pagedep;
7547 	struct diradd *dap;
7548 	struct worklist *wk;
7549 
7550 	LOCK_OWNED(VFSTOUFS(newdirblk->db_list.wk_mp));
7551 	WORKLIST_REMOVE(&newdirblk->db_list);
7552 	/*
7553 	 * If the pagedep is still linked onto the directory buffer
7554 	 * dependency chain, then some of the entries on the
7555 	 * pd_pendinghd list may not be committed to disk yet. In
7556 	 * this case, we will simply clear the NEWBLOCK flag and
7557 	 * let the pd_pendinghd list be processed when the pagedep
7558 	 * is next written. If the pagedep is no longer on the buffer
7559 	 * dependency chain, then all the entries on the pd_pending
7560 	 * list are committed to disk and we can free them here.
7561 	 */
7562 	pagedep = newdirblk->db_pagedep;
7563 	pagedep->pd_state &= ~NEWBLOCK;
7564 	if ((pagedep->pd_state & ONWORKLIST) == 0) {
7565 		while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL)
7566 			free_diradd(dap, NULL);
7567 		/*
7568 		 * If no dependencies remain, the pagedep will be freed.
7569 		 */
7570 		free_pagedep(pagedep);
7571 	}
7572 	/* Should only ever be one item in the list. */
7573 	while ((wk = LIST_FIRST(&newdirblk->db_mkdir)) != NULL) {
7574 		WORKLIST_REMOVE(wk);
7575 		handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY);
7576 	}
7577 	WORKITEM_FREE(newdirblk, D_NEWDIRBLK);
7578 }
7579 
7580 /*
7581  * Prepare an inode to be freed. The actual free operation is not
7582  * done until the zero'ed inode has been written to disk.
7583  */
7584 void
7585 softdep_freefile(pvp, ino, mode)
7586 	struct vnode *pvp;
7587 	ino_t ino;
7588 	int mode;
7589 {
7590 	struct inode *ip = VTOI(pvp);
7591 	struct inodedep *inodedep;
7592 	struct freefile *freefile;
7593 	struct freeblks *freeblks;
7594 	struct ufsmount *ump;
7595 
7596 	ump = ITOUMP(ip);
7597 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
7598 	    ("softdep_freefile called on non-softdep filesystem"));
7599 	/*
7600 	 * This sets up the inode de-allocation dependency.
7601 	 */
7602 	freefile = malloc(sizeof(struct freefile),
7603 		M_FREEFILE, M_SOFTDEP_FLAGS);
7604 	workitem_alloc(&freefile->fx_list, D_FREEFILE, pvp->v_mount);
7605 	freefile->fx_mode = mode;
7606 	freefile->fx_oldinum = ino;
7607 	freefile->fx_devvp = ump->um_devvp;
7608 	LIST_INIT(&freefile->fx_jwork);
7609 	UFS_LOCK(ump);
7610 	ump->um_fs->fs_pendinginodes += 1;
7611 	UFS_UNLOCK(ump);
7612 
7613 	/*
7614 	 * If the inodedep does not exist, then the zero'ed inode has
7615 	 * been written to disk. If the allocated inode has never been
7616 	 * written to disk, then the on-disk inode is zero'ed. In either
7617 	 * case we can free the file immediately.  If the journal was
7618 	 * canceled before being written the inode will never make it to
7619 	 * disk and we must send the canceled journal entrys to
7620 	 * ffs_freefile() to be cleared in conjunction with the bitmap.
7621 	 * Any blocks waiting on the inode to write can be safely freed
7622 	 * here as it will never been written.
7623 	 */
7624 	ACQUIRE_LOCK(ump);
7625 	inodedep_lookup(pvp->v_mount, ino, 0, &inodedep);
7626 	if (inodedep) {
7627 		/*
7628 		 * Clear out freeblks that no longer need to reference
7629 		 * this inode.
7630 		 */
7631 		while ((freeblks =
7632 		    TAILQ_FIRST(&inodedep->id_freeblklst)) != NULL) {
7633 			TAILQ_REMOVE(&inodedep->id_freeblklst, freeblks,
7634 			    fb_next);
7635 			freeblks->fb_state &= ~ONDEPLIST;
7636 		}
7637 		/*
7638 		 * Remove this inode from the unlinked list.
7639 		 */
7640 		if (inodedep->id_state & UNLINKED) {
7641 			/*
7642 			 * Save the journal work to be freed with the bitmap
7643 			 * before we clear UNLINKED.  Otherwise it can be lost
7644 			 * if the inode block is written.
7645 			 */
7646 			handle_bufwait(inodedep, &freefile->fx_jwork);
7647 			clear_unlinked_inodedep(inodedep);
7648 			/*
7649 			 * Re-acquire inodedep as we've dropped the
7650 			 * per-filesystem lock in clear_unlinked_inodedep().
7651 			 */
7652 			inodedep_lookup(pvp->v_mount, ino, 0, &inodedep);
7653 		}
7654 	}
7655 	if (inodedep == NULL || check_inode_unwritten(inodedep)) {
7656 		FREE_LOCK(ump);
7657 		handle_workitem_freefile(freefile);
7658 		return;
7659 	}
7660 	if ((inodedep->id_state & DEPCOMPLETE) == 0)
7661 		inodedep->id_state |= GOINGAWAY;
7662 	WORKLIST_INSERT(&inodedep->id_inowait, &freefile->fx_list);
7663 	FREE_LOCK(ump);
7664 	if (ip->i_number == ino)
7665 		UFS_INODE_SET_FLAG(ip, IN_MODIFIED);
7666 }
7667 
7668 /*
7669  * Check to see if an inode has never been written to disk. If
7670  * so free the inodedep and return success, otherwise return failure.
7671  *
7672  * If we still have a bitmap dependency, then the inode has never
7673  * been written to disk. Drop the dependency as it is no longer
7674  * necessary since the inode is being deallocated. We set the
7675  * ALLCOMPLETE flags since the bitmap now properly shows that the
7676  * inode is not allocated. Even if the inode is actively being
7677  * written, it has been rolled back to its zero'ed state, so we
7678  * are ensured that a zero inode is what is on the disk. For short
7679  * lived files, this change will usually result in removing all the
7680  * dependencies from the inode so that it can be freed immediately.
7681  */
7682 static int
7683 check_inode_unwritten(inodedep)
7684 	struct inodedep *inodedep;
7685 {
7686 
7687 	LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp));
7688 
7689 	if ((inodedep->id_state & (DEPCOMPLETE | UNLINKED)) != 0 ||
7690 	    !LIST_EMPTY(&inodedep->id_dirremhd) ||
7691 	    !LIST_EMPTY(&inodedep->id_pendinghd) ||
7692 	    !LIST_EMPTY(&inodedep->id_bufwait) ||
7693 	    !LIST_EMPTY(&inodedep->id_inowait) ||
7694 	    !TAILQ_EMPTY(&inodedep->id_inoreflst) ||
7695 	    !TAILQ_EMPTY(&inodedep->id_inoupdt) ||
7696 	    !TAILQ_EMPTY(&inodedep->id_newinoupdt) ||
7697 	    !TAILQ_EMPTY(&inodedep->id_extupdt) ||
7698 	    !TAILQ_EMPTY(&inodedep->id_newextupdt) ||
7699 	    !TAILQ_EMPTY(&inodedep->id_freeblklst) ||
7700 	    inodedep->id_mkdiradd != NULL ||
7701 	    inodedep->id_nlinkdelta != 0)
7702 		return (0);
7703 	/*
7704 	 * Another process might be in initiate_write_inodeblock_ufs[12]
7705 	 * trying to allocate memory without holding "Softdep Lock".
7706 	 */
7707 	if ((inodedep->id_state & IOSTARTED) != 0 &&
7708 	    inodedep->id_savedino1 == NULL)
7709 		return (0);
7710 
7711 	if (inodedep->id_state & ONDEPLIST)
7712 		LIST_REMOVE(inodedep, id_deps);
7713 	inodedep->id_state &= ~ONDEPLIST;
7714 	inodedep->id_state |= ALLCOMPLETE;
7715 	inodedep->id_bmsafemap = NULL;
7716 	if (inodedep->id_state & ONWORKLIST)
7717 		WORKLIST_REMOVE(&inodedep->id_list);
7718 	if (inodedep->id_savedino1 != NULL) {
7719 		free(inodedep->id_savedino1, M_SAVEDINO);
7720 		inodedep->id_savedino1 = NULL;
7721 	}
7722 	if (free_inodedep(inodedep) == 0)
7723 		panic("check_inode_unwritten: busy inode");
7724 	return (1);
7725 }
7726 
7727 static int
7728 check_inodedep_free(inodedep)
7729 	struct inodedep *inodedep;
7730 {
7731 
7732 	LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp));
7733 	if ((inodedep->id_state & ALLCOMPLETE) != ALLCOMPLETE ||
7734 	    !LIST_EMPTY(&inodedep->id_dirremhd) ||
7735 	    !LIST_EMPTY(&inodedep->id_pendinghd) ||
7736 	    !LIST_EMPTY(&inodedep->id_bufwait) ||
7737 	    !LIST_EMPTY(&inodedep->id_inowait) ||
7738 	    !TAILQ_EMPTY(&inodedep->id_inoreflst) ||
7739 	    !TAILQ_EMPTY(&inodedep->id_inoupdt) ||
7740 	    !TAILQ_EMPTY(&inodedep->id_newinoupdt) ||
7741 	    !TAILQ_EMPTY(&inodedep->id_extupdt) ||
7742 	    !TAILQ_EMPTY(&inodedep->id_newextupdt) ||
7743 	    !TAILQ_EMPTY(&inodedep->id_freeblklst) ||
7744 	    inodedep->id_mkdiradd != NULL ||
7745 	    inodedep->id_nlinkdelta != 0 ||
7746 	    inodedep->id_savedino1 != NULL)
7747 		return (0);
7748 	return (1);
7749 }
7750 
7751 /*
7752  * Try to free an inodedep structure. Return 1 if it could be freed.
7753  */
7754 static int
7755 free_inodedep(inodedep)
7756 	struct inodedep *inodedep;
7757 {
7758 
7759 	LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp));
7760 	if ((inodedep->id_state & (ONWORKLIST | UNLINKED)) != 0 ||
7761 	    !check_inodedep_free(inodedep))
7762 		return (0);
7763 	if (inodedep->id_state & ONDEPLIST)
7764 		LIST_REMOVE(inodedep, id_deps);
7765 	LIST_REMOVE(inodedep, id_hash);
7766 	WORKITEM_FREE(inodedep, D_INODEDEP);
7767 	return (1);
7768 }
7769 
7770 /*
7771  * Free the block referenced by a freework structure.  The parent freeblks
7772  * structure is released and completed when the final cg bitmap reaches
7773  * the disk.  This routine may be freeing a jnewblk which never made it to
7774  * disk in which case we do not have to wait as the operation is undone
7775  * in memory immediately.
7776  */
7777 static void
7778 freework_freeblock(freework, key)
7779 	struct freework *freework;
7780 	u_long key;
7781 {
7782 	struct freeblks *freeblks;
7783 	struct jnewblk *jnewblk;
7784 	struct ufsmount *ump;
7785 	struct workhead wkhd;
7786 	struct fs *fs;
7787 	int bsize;
7788 	int needj;
7789 
7790 	ump = VFSTOUFS(freework->fw_list.wk_mp);
7791 	LOCK_OWNED(ump);
7792 	/*
7793 	 * Handle partial truncate separately.
7794 	 */
7795 	if (freework->fw_indir) {
7796 		complete_trunc_indir(freework);
7797 		return;
7798 	}
7799 	freeblks = freework->fw_freeblks;
7800 	fs = ump->um_fs;
7801 	needj = MOUNTEDSUJ(freeblks->fb_list.wk_mp) != 0;
7802 	bsize = lfragtosize(fs, freework->fw_frags);
7803 	LIST_INIT(&wkhd);
7804 	/*
7805 	 * DEPCOMPLETE is cleared in indirblk_insert() if the block lives
7806 	 * on the indirblk hashtable and prevents premature freeing.
7807 	 */
7808 	freework->fw_state |= DEPCOMPLETE;
7809 	/*
7810 	 * SUJ needs to wait for the segment referencing freed indirect
7811 	 * blocks to expire so that we know the checker will not confuse
7812 	 * a re-allocated indirect block with its old contents.
7813 	 */
7814 	if (needj && freework->fw_lbn <= -UFS_NDADDR)
7815 		indirblk_insert(freework);
7816 	/*
7817 	 * If we are canceling an existing jnewblk pass it to the free
7818 	 * routine, otherwise pass the freeblk which will ultimately
7819 	 * release the freeblks.  If we're not journaling, we can just
7820 	 * free the freeblks immediately.
7821 	 */
7822 	jnewblk = freework->fw_jnewblk;
7823 	if (jnewblk != NULL) {
7824 		cancel_jnewblk(jnewblk, &wkhd);
7825 		needj = 0;
7826 	} else if (needj) {
7827 		freework->fw_state |= DELAYEDFREE;
7828 		freeblks->fb_cgwait++;
7829 		WORKLIST_INSERT(&wkhd, &freework->fw_list);
7830 	}
7831 	FREE_LOCK(ump);
7832 	freeblks_free(ump, freeblks, btodb(bsize));
7833 	CTR4(KTR_SUJ,
7834 	    "freework_freeblock: ino %jd blkno %jd lbn %jd size %d",
7835 	    freeblks->fb_inum, freework->fw_blkno, freework->fw_lbn, bsize);
7836 	ffs_blkfree(ump, fs, freeblks->fb_devvp, freework->fw_blkno, bsize,
7837 	    freeblks->fb_inum, freeblks->fb_vtype, &wkhd, key);
7838 	ACQUIRE_LOCK(ump);
7839 	/*
7840 	 * The jnewblk will be discarded and the bits in the map never
7841 	 * made it to disk.  We can immediately free the freeblk.
7842 	 */
7843 	if (needj == 0)
7844 		handle_written_freework(freework);
7845 }
7846 
7847 /*
7848  * We enqueue freework items that need processing back on the freeblks and
7849  * add the freeblks to the worklist.  This makes it easier to find all work
7850  * required to flush a truncation in process_truncates().
7851  */
7852 static void
7853 freework_enqueue(freework)
7854 	struct freework *freework;
7855 {
7856 	struct freeblks *freeblks;
7857 
7858 	freeblks = freework->fw_freeblks;
7859 	if ((freework->fw_state & INPROGRESS) == 0)
7860 		WORKLIST_INSERT(&freeblks->fb_freeworkhd, &freework->fw_list);
7861 	if ((freeblks->fb_state &
7862 	    (ONWORKLIST | INPROGRESS | ALLCOMPLETE)) == ALLCOMPLETE &&
7863 	    LIST_EMPTY(&freeblks->fb_jblkdephd))
7864 		add_to_worklist(&freeblks->fb_list, WK_NODELAY);
7865 }
7866 
7867 /*
7868  * Start, continue, or finish the process of freeing an indirect block tree.
7869  * The free operation may be paused at any point with fw_off containing the
7870  * offset to restart from.  This enables us to implement some flow control
7871  * for large truncates which may fan out and generate a huge number of
7872  * dependencies.
7873  */
7874 static void
7875 handle_workitem_indirblk(freework)
7876 	struct freework *freework;
7877 {
7878 	struct freeblks *freeblks;
7879 	struct ufsmount *ump;
7880 	struct fs *fs;
7881 
7882 	freeblks = freework->fw_freeblks;
7883 	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
7884 	fs = ump->um_fs;
7885 	if (freework->fw_state & DEPCOMPLETE) {
7886 		handle_written_freework(freework);
7887 		return;
7888 	}
7889 	if (freework->fw_off == NINDIR(fs)) {
7890 		freework_freeblock(freework, SINGLETON_KEY);
7891 		return;
7892 	}
7893 	freework->fw_state |= INPROGRESS;
7894 	FREE_LOCK(ump);
7895 	indir_trunc(freework, fsbtodb(fs, freework->fw_blkno),
7896 	    freework->fw_lbn);
7897 	ACQUIRE_LOCK(ump);
7898 }
7899 
7900 /*
7901  * Called when a freework structure attached to a cg buf is written.  The
7902  * ref on either the parent or the freeblks structure is released and
7903  * the freeblks is added back to the worklist if there is more work to do.
7904  */
7905 static void
7906 handle_written_freework(freework)
7907 	struct freework *freework;
7908 {
7909 	struct freeblks *freeblks;
7910 	struct freework *parent;
7911 
7912 	freeblks = freework->fw_freeblks;
7913 	parent = freework->fw_parent;
7914 	if (freework->fw_state & DELAYEDFREE)
7915 		freeblks->fb_cgwait--;
7916 	freework->fw_state |= COMPLETE;
7917 	if ((freework->fw_state & ALLCOMPLETE) == ALLCOMPLETE)
7918 		WORKITEM_FREE(freework, D_FREEWORK);
7919 	if (parent) {
7920 		if (--parent->fw_ref == 0)
7921 			freework_enqueue(parent);
7922 		return;
7923 	}
7924 	if (--freeblks->fb_ref != 0)
7925 		return;
7926 	if ((freeblks->fb_state & (ALLCOMPLETE | ONWORKLIST | INPROGRESS)) ==
7927 	    ALLCOMPLETE && LIST_EMPTY(&freeblks->fb_jblkdephd))
7928 		add_to_worklist(&freeblks->fb_list, WK_NODELAY);
7929 }
7930 
7931 /*
7932  * This workitem routine performs the block de-allocation.
7933  * The workitem is added to the pending list after the updated
7934  * inode block has been written to disk.  As mentioned above,
7935  * checks regarding the number of blocks de-allocated (compared
7936  * to the number of blocks allocated for the file) are also
7937  * performed in this function.
7938  */
7939 static int
7940 handle_workitem_freeblocks(freeblks, flags)
7941 	struct freeblks *freeblks;
7942 	int flags;
7943 {
7944 	struct freework *freework;
7945 	struct newblk *newblk;
7946 	struct allocindir *aip;
7947 	struct ufsmount *ump;
7948 	struct worklist *wk;
7949 	u_long key;
7950 
7951 	KASSERT(LIST_EMPTY(&freeblks->fb_jblkdephd),
7952 	    ("handle_workitem_freeblocks: Journal entries not written."));
7953 	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
7954 	key = ffs_blkrelease_start(ump, freeblks->fb_devvp, freeblks->fb_inum);
7955 	ACQUIRE_LOCK(ump);
7956 	while ((wk = LIST_FIRST(&freeblks->fb_freeworkhd)) != NULL) {
7957 		WORKLIST_REMOVE(wk);
7958 		switch (wk->wk_type) {
7959 		case D_DIRREM:
7960 			wk->wk_state |= COMPLETE;
7961 			add_to_worklist(wk, 0);
7962 			continue;
7963 
7964 		case D_ALLOCDIRECT:
7965 			free_newblk(WK_NEWBLK(wk));
7966 			continue;
7967 
7968 		case D_ALLOCINDIR:
7969 			aip = WK_ALLOCINDIR(wk);
7970 			freework = NULL;
7971 			if (aip->ai_state & DELAYEDFREE) {
7972 				FREE_LOCK(ump);
7973 				freework = newfreework(ump, freeblks, NULL,
7974 				    aip->ai_lbn, aip->ai_newblkno,
7975 				    ump->um_fs->fs_frag, 0, 0);
7976 				ACQUIRE_LOCK(ump);
7977 			}
7978 			newblk = WK_NEWBLK(wk);
7979 			if (newblk->nb_jnewblk) {
7980 				freework->fw_jnewblk = newblk->nb_jnewblk;
7981 				newblk->nb_jnewblk->jn_dep = &freework->fw_list;
7982 				newblk->nb_jnewblk = NULL;
7983 			}
7984 			free_newblk(newblk);
7985 			continue;
7986 
7987 		case D_FREEWORK:
7988 			freework = WK_FREEWORK(wk);
7989 			if (freework->fw_lbn <= -UFS_NDADDR)
7990 				handle_workitem_indirblk(freework);
7991 			else
7992 				freework_freeblock(freework, key);
7993 			continue;
7994 		default:
7995 			panic("handle_workitem_freeblocks: Unknown type %s",
7996 			    TYPENAME(wk->wk_type));
7997 		}
7998 	}
7999 	if (freeblks->fb_ref != 0) {
8000 		freeblks->fb_state &= ~INPROGRESS;
8001 		wake_worklist(&freeblks->fb_list);
8002 		freeblks = NULL;
8003 	}
8004 	FREE_LOCK(ump);
8005 	ffs_blkrelease_finish(ump, key);
8006 	if (freeblks)
8007 		return handle_complete_freeblocks(freeblks, flags);
8008 	return (0);
8009 }
8010 
8011 /*
8012  * Handle completion of block free via truncate.  This allows fs_pending
8013  * to track the actual free block count more closely than if we only updated
8014  * it at the end.  We must be careful to handle cases where the block count
8015  * on free was incorrect.
8016  */
8017 static void
8018 freeblks_free(ump, freeblks, blocks)
8019 	struct ufsmount *ump;
8020 	struct freeblks *freeblks;
8021 	int blocks;
8022 {
8023 	struct fs *fs;
8024 	ufs2_daddr_t remain;
8025 
8026 	UFS_LOCK(ump);
8027 	remain = -freeblks->fb_chkcnt;
8028 	freeblks->fb_chkcnt += blocks;
8029 	if (remain > 0) {
8030 		if (remain < blocks)
8031 			blocks = remain;
8032 		fs = ump->um_fs;
8033 		fs->fs_pendingblocks -= blocks;
8034 	}
8035 	UFS_UNLOCK(ump);
8036 }
8037 
8038 /*
8039  * Once all of the freework workitems are complete we can retire the
8040  * freeblocks dependency and any journal work awaiting completion.  This
8041  * can not be called until all other dependencies are stable on disk.
8042  */
8043 static int
8044 handle_complete_freeblocks(freeblks, flags)
8045 	struct freeblks *freeblks;
8046 	int flags;
8047 {
8048 	struct inodedep *inodedep;
8049 	struct inode *ip;
8050 	struct vnode *vp;
8051 	struct fs *fs;
8052 	struct ufsmount *ump;
8053 	ufs2_daddr_t spare;
8054 
8055 	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
8056 	fs = ump->um_fs;
8057 	flags = LK_EXCLUSIVE | flags;
8058 	spare = freeblks->fb_chkcnt;
8059 
8060 	/*
8061 	 * If we did not release the expected number of blocks we may have
8062 	 * to adjust the inode block count here.  Only do so if it wasn't
8063 	 * a truncation to zero and the modrev still matches.
8064 	 */
8065 	if (spare && freeblks->fb_len != 0) {
8066 		if (ffs_vgetf(freeblks->fb_list.wk_mp, freeblks->fb_inum,
8067 		    flags, &vp, FFSV_FORCEINSMQ) != 0)
8068 			return (EBUSY);
8069 		ip = VTOI(vp);
8070 		if (ip->i_mode == 0) {
8071 			vgone(vp);
8072 		} else if (DIP(ip, i_modrev) == freeblks->fb_modrev) {
8073 			DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - spare);
8074 			UFS_INODE_SET_FLAG(ip, IN_CHANGE);
8075 			/*
8076 			 * We must wait so this happens before the
8077 			 * journal is reclaimed.
8078 			 */
8079 			ffs_update(vp, 1);
8080 		}
8081 		vput(vp);
8082 	}
8083 	if (spare < 0) {
8084 		UFS_LOCK(ump);
8085 		fs->fs_pendingblocks += spare;
8086 		UFS_UNLOCK(ump);
8087 	}
8088 #ifdef QUOTA
8089 	/* Handle spare. */
8090 	if (spare)
8091 		quotaadj(freeblks->fb_quota, ump, -spare);
8092 	quotarele(freeblks->fb_quota);
8093 #endif
8094 	ACQUIRE_LOCK(ump);
8095 	if (freeblks->fb_state & ONDEPLIST) {
8096 		inodedep_lookup(freeblks->fb_list.wk_mp, freeblks->fb_inum,
8097 		    0, &inodedep);
8098 		TAILQ_REMOVE(&inodedep->id_freeblklst, freeblks, fb_next);
8099 		freeblks->fb_state &= ~ONDEPLIST;
8100 		if (TAILQ_EMPTY(&inodedep->id_freeblklst))
8101 			free_inodedep(inodedep);
8102 	}
8103 	/*
8104 	 * All of the freeblock deps must be complete prior to this call
8105 	 * so it's now safe to complete earlier outstanding journal entries.
8106 	 */
8107 	handle_jwork(&freeblks->fb_jwork);
8108 	WORKITEM_FREE(freeblks, D_FREEBLKS);
8109 	FREE_LOCK(ump);
8110 	return (0);
8111 }
8112 
8113 /*
8114  * Release blocks associated with the freeblks and stored in the indirect
8115  * block dbn. If level is greater than SINGLE, the block is an indirect block
8116  * and recursive calls to indirtrunc must be used to cleanse other indirect
8117  * blocks.
8118  *
8119  * This handles partial and complete truncation of blocks.  Partial is noted
8120  * with goingaway == 0.  In this case the freework is completed after the
8121  * zero'd indirects are written to disk.  For full truncation the freework
8122  * is completed after the block is freed.
8123  */
8124 static void
8125 indir_trunc(freework, dbn, lbn)
8126 	struct freework *freework;
8127 	ufs2_daddr_t dbn;
8128 	ufs_lbn_t lbn;
8129 {
8130 	struct freework *nfreework;
8131 	struct workhead wkhd;
8132 	struct freeblks *freeblks;
8133 	struct buf *bp;
8134 	struct fs *fs;
8135 	struct indirdep *indirdep;
8136 	struct mount *mp;
8137 	struct ufsmount *ump;
8138 	ufs1_daddr_t *bap1;
8139 	ufs2_daddr_t nb, nnb, *bap2;
8140 	ufs_lbn_t lbnadd, nlbn;
8141 	u_long key;
8142 	int nblocks, ufs1fmt, freedblocks;
8143 	int goingaway, freedeps, needj, level, cnt, i;
8144 
8145 	freeblks = freework->fw_freeblks;
8146 	mp = freeblks->fb_list.wk_mp;
8147 	ump = VFSTOUFS(mp);
8148 	fs = ump->um_fs;
8149 	/*
8150 	 * Get buffer of block pointers to be freed.  There are three cases:
8151 	 *
8152 	 * 1) Partial truncate caches the indirdep pointer in the freework
8153 	 *    which provides us a back copy to the save bp which holds the
8154 	 *    pointers we want to clear.  When this completes the zero
8155 	 *    pointers are written to the real copy.
8156 	 * 2) The indirect is being completely truncated, cancel_indirdep()
8157 	 *    eliminated the real copy and placed the indirdep on the saved
8158 	 *    copy.  The indirdep and buf are discarded when this completes.
8159 	 * 3) The indirect was not in memory, we read a copy off of the disk
8160 	 *    using the devvp and drop and invalidate the buffer when we're
8161 	 *    done.
8162 	 */
8163 	goingaway = 1;
8164 	indirdep = NULL;
8165 	if (freework->fw_indir != NULL) {
8166 		goingaway = 0;
8167 		indirdep = freework->fw_indir;
8168 		bp = indirdep->ir_savebp;
8169 		if (bp == NULL || bp->b_blkno != dbn)
8170 			panic("indir_trunc: Bad saved buf %p blkno %jd",
8171 			    bp, (intmax_t)dbn);
8172 	} else if ((bp = incore(&freeblks->fb_devvp->v_bufobj, dbn)) != NULL) {
8173 		/*
8174 		 * The lock prevents the buf dep list from changing and
8175 	 	 * indirects on devvp should only ever have one dependency.
8176 		 */
8177 		indirdep = WK_INDIRDEP(LIST_FIRST(&bp->b_dep));
8178 		if (indirdep == NULL || (indirdep->ir_state & GOINGAWAY) == 0)
8179 			panic("indir_trunc: Bad indirdep %p from buf %p",
8180 			    indirdep, bp);
8181 	} else if (bread(freeblks->fb_devvp, dbn, (int)fs->fs_bsize,
8182 	    NOCRED, &bp) != 0) {
8183 		brelse(bp);
8184 		return;
8185 	}
8186 	ACQUIRE_LOCK(ump);
8187 	/* Protects against a race with complete_trunc_indir(). */
8188 	freework->fw_state &= ~INPROGRESS;
8189 	/*
8190 	 * If we have an indirdep we need to enforce the truncation order
8191 	 * and discard it when it is complete.
8192 	 */
8193 	if (indirdep) {
8194 		if (freework != TAILQ_FIRST(&indirdep->ir_trunc) &&
8195 		    !TAILQ_EMPTY(&indirdep->ir_trunc)) {
8196 			/*
8197 			 * Add the complete truncate to the list on the
8198 			 * indirdep to enforce in-order processing.
8199 			 */
8200 			if (freework->fw_indir == NULL)
8201 				TAILQ_INSERT_TAIL(&indirdep->ir_trunc,
8202 				    freework, fw_next);
8203 			FREE_LOCK(ump);
8204 			return;
8205 		}
8206 		/*
8207 		 * If we're goingaway, free the indirdep.  Otherwise it will
8208 		 * linger until the write completes.
8209 		 */
8210 		if (goingaway)
8211 			free_indirdep(indirdep);
8212 	}
8213 	FREE_LOCK(ump);
8214 	/* Initialize pointers depending on block size. */
8215 	if (ump->um_fstype == UFS1) {
8216 		bap1 = (ufs1_daddr_t *)bp->b_data;
8217 		nb = bap1[freework->fw_off];
8218 		ufs1fmt = 1;
8219 		bap2 = NULL;
8220 	} else {
8221 		bap2 = (ufs2_daddr_t *)bp->b_data;
8222 		nb = bap2[freework->fw_off];
8223 		ufs1fmt = 0;
8224 		bap1 = NULL;
8225 	}
8226 	level = lbn_level(lbn);
8227 	needj = MOUNTEDSUJ(UFSTOVFS(ump)) != 0;
8228 	lbnadd = lbn_offset(fs, level);
8229 	nblocks = btodb(fs->fs_bsize);
8230 	nfreework = freework;
8231 	freedeps = 0;
8232 	cnt = 0;
8233 	/*
8234 	 * Reclaim blocks.  Traverses into nested indirect levels and
8235 	 * arranges for the current level to be freed when subordinates
8236 	 * are free when journaling.
8237 	 */
8238 	key = ffs_blkrelease_start(ump, freeblks->fb_devvp, freeblks->fb_inum);
8239 	for (i = freework->fw_off; i < NINDIR(fs); i++, nb = nnb) {
8240 		if (UFS_CHECK_BLKNO(mp, freeblks->fb_inum, nb,
8241 		    fs->fs_bsize) != 0)
8242 			nb = 0;
8243 		if (i != NINDIR(fs) - 1) {
8244 			if (ufs1fmt)
8245 				nnb = bap1[i+1];
8246 			else
8247 				nnb = bap2[i+1];
8248 		} else
8249 			nnb = 0;
8250 		if (nb == 0)
8251 			continue;
8252 		cnt++;
8253 		if (level != 0) {
8254 			nlbn = (lbn + 1) - (i * lbnadd);
8255 			if (needj != 0) {
8256 				nfreework = newfreework(ump, freeblks, freework,
8257 				    nlbn, nb, fs->fs_frag, 0, 0);
8258 				freedeps++;
8259 			}
8260 			indir_trunc(nfreework, fsbtodb(fs, nb), nlbn);
8261 		} else {
8262 			struct freedep *freedep;
8263 
8264 			/*
8265 			 * Attempt to aggregate freedep dependencies for
8266 			 * all blocks being released to the same CG.
8267 			 */
8268 			LIST_INIT(&wkhd);
8269 			if (needj != 0 &&
8270 			    (nnb == 0 || (dtog(fs, nb) != dtog(fs, nnb)))) {
8271 				freedep = newfreedep(freework);
8272 				WORKLIST_INSERT_UNLOCKED(&wkhd,
8273 				    &freedep->fd_list);
8274 				freedeps++;
8275 			}
8276 			CTR3(KTR_SUJ,
8277 			    "indir_trunc: ino %jd blkno %jd size %d",
8278 			    freeblks->fb_inum, nb, fs->fs_bsize);
8279 			ffs_blkfree(ump, fs, freeblks->fb_devvp, nb,
8280 			    fs->fs_bsize, freeblks->fb_inum,
8281 			    freeblks->fb_vtype, &wkhd, key);
8282 		}
8283 	}
8284 	ffs_blkrelease_finish(ump, key);
8285 	if (goingaway) {
8286 		bp->b_flags |= B_INVAL | B_NOCACHE;
8287 		brelse(bp);
8288 	}
8289 	freedblocks = 0;
8290 	if (level == 0)
8291 		freedblocks = (nblocks * cnt);
8292 	if (needj == 0)
8293 		freedblocks += nblocks;
8294 	freeblks_free(ump, freeblks, freedblocks);
8295 	/*
8296 	 * If we are journaling set up the ref counts and offset so this
8297 	 * indirect can be completed when its children are free.
8298 	 */
8299 	if (needj) {
8300 		ACQUIRE_LOCK(ump);
8301 		freework->fw_off = i;
8302 		freework->fw_ref += freedeps;
8303 		freework->fw_ref -= NINDIR(fs) + 1;
8304 		if (level == 0)
8305 			freeblks->fb_cgwait += freedeps;
8306 		if (freework->fw_ref == 0)
8307 			freework_freeblock(freework, SINGLETON_KEY);
8308 		FREE_LOCK(ump);
8309 		return;
8310 	}
8311 	/*
8312 	 * If we're not journaling we can free the indirect now.
8313 	 */
8314 	dbn = dbtofsb(fs, dbn);
8315 	CTR3(KTR_SUJ,
8316 	    "indir_trunc 2: ino %jd blkno %jd size %d",
8317 	    freeblks->fb_inum, dbn, fs->fs_bsize);
8318 	ffs_blkfree(ump, fs, freeblks->fb_devvp, dbn, fs->fs_bsize,
8319 	    freeblks->fb_inum, freeblks->fb_vtype, NULL, SINGLETON_KEY);
8320 	/* Non SUJ softdep does single-threaded truncations. */
8321 	if (freework->fw_blkno == dbn) {
8322 		freework->fw_state |= ALLCOMPLETE;
8323 		ACQUIRE_LOCK(ump);
8324 		handle_written_freework(freework);
8325 		FREE_LOCK(ump);
8326 	}
8327 	return;
8328 }
8329 
8330 /*
8331  * Cancel an allocindir when it is removed via truncation.  When bp is not
8332  * NULL the indirect never appeared on disk and is scheduled to be freed
8333  * independently of the indir so we can more easily track journal work.
8334  */
8335 static void
8336 cancel_allocindir(aip, bp, freeblks, trunc)
8337 	struct allocindir *aip;
8338 	struct buf *bp;
8339 	struct freeblks *freeblks;
8340 	int trunc;
8341 {
8342 	struct indirdep *indirdep;
8343 	struct freefrag *freefrag;
8344 	struct newblk *newblk;
8345 
8346 	newblk = (struct newblk *)aip;
8347 	LIST_REMOVE(aip, ai_next);
8348 	/*
8349 	 * We must eliminate the pointer in bp if it must be freed on its
8350 	 * own due to partial truncate or pending journal work.
8351 	 */
8352 	if (bp && (trunc || newblk->nb_jnewblk)) {
8353 		/*
8354 		 * Clear the pointer and mark the aip to be freed
8355 		 * directly if it never existed on disk.
8356 		 */
8357 		aip->ai_state |= DELAYEDFREE;
8358 		indirdep = aip->ai_indirdep;
8359 		if (indirdep->ir_state & UFS1FMT)
8360 			((ufs1_daddr_t *)bp->b_data)[aip->ai_offset] = 0;
8361 		else
8362 			((ufs2_daddr_t *)bp->b_data)[aip->ai_offset] = 0;
8363 	}
8364 	/*
8365 	 * When truncating the previous pointer will be freed via
8366 	 * savedbp.  Eliminate the freefrag which would dup free.
8367 	 */
8368 	if (trunc && (freefrag = newblk->nb_freefrag) != NULL) {
8369 		newblk->nb_freefrag = NULL;
8370 		if (freefrag->ff_jdep)
8371 			cancel_jfreefrag(
8372 			    WK_JFREEFRAG(freefrag->ff_jdep));
8373 		jwork_move(&freeblks->fb_jwork, &freefrag->ff_jwork);
8374 		WORKITEM_FREE(freefrag, D_FREEFRAG);
8375 	}
8376 	/*
8377 	 * If the journal hasn't been written the jnewblk must be passed
8378 	 * to the call to ffs_blkfree that reclaims the space.  We accomplish
8379 	 * this by leaving the journal dependency on the newblk to be freed
8380 	 * when a freework is created in handle_workitem_freeblocks().
8381 	 */
8382 	cancel_newblk(newblk, NULL, &freeblks->fb_jwork);
8383 	WORKLIST_INSERT(&freeblks->fb_freeworkhd, &newblk->nb_list);
8384 }
8385 
8386 /*
8387  * Create the mkdir dependencies for . and .. in a new directory.  Link them
8388  * in to a newdirblk so any subsequent additions are tracked properly.  The
8389  * caller is responsible for adding the mkdir1 dependency to the journal
8390  * and updating id_mkdiradd.  This function returns with the per-filesystem
8391  * lock held.
8392  */
8393 static struct mkdir *
8394 setup_newdir(dap, newinum, dinum, newdirbp, mkdirp)
8395 	struct diradd *dap;
8396 	ino_t newinum;
8397 	ino_t dinum;
8398 	struct buf *newdirbp;
8399 	struct mkdir **mkdirp;
8400 {
8401 	struct newblk *newblk;
8402 	struct pagedep *pagedep;
8403 	struct inodedep *inodedep;
8404 	struct newdirblk *newdirblk;
8405 	struct mkdir *mkdir1, *mkdir2;
8406 	struct worklist *wk;
8407 	struct jaddref *jaddref;
8408 	struct ufsmount *ump;
8409 	struct mount *mp;
8410 
8411 	mp = dap->da_list.wk_mp;
8412 	ump = VFSTOUFS(mp);
8413 	newdirblk = malloc(sizeof(struct newdirblk), M_NEWDIRBLK,
8414 	    M_SOFTDEP_FLAGS);
8415 	workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp);
8416 	LIST_INIT(&newdirblk->db_mkdir);
8417 	mkdir1 = malloc(sizeof(struct mkdir), M_MKDIR, M_SOFTDEP_FLAGS);
8418 	workitem_alloc(&mkdir1->md_list, D_MKDIR, mp);
8419 	mkdir1->md_state = ATTACHED | MKDIR_BODY;
8420 	mkdir1->md_diradd = dap;
8421 	mkdir1->md_jaddref = NULL;
8422 	mkdir2 = malloc(sizeof(struct mkdir), M_MKDIR, M_SOFTDEP_FLAGS);
8423 	workitem_alloc(&mkdir2->md_list, D_MKDIR, mp);
8424 	mkdir2->md_state = ATTACHED | MKDIR_PARENT;
8425 	mkdir2->md_diradd = dap;
8426 	mkdir2->md_jaddref = NULL;
8427 	if (MOUNTEDSUJ(mp) == 0) {
8428 		mkdir1->md_state |= DEPCOMPLETE;
8429 		mkdir2->md_state |= DEPCOMPLETE;
8430 	}
8431 	/*
8432 	 * Dependency on "." and ".." being written to disk.
8433 	 */
8434 	mkdir1->md_buf = newdirbp;
8435 	ACQUIRE_LOCK(VFSTOUFS(mp));
8436 	LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir1, md_mkdirs);
8437 	/*
8438 	 * We must link the pagedep, allocdirect, and newdirblk for
8439 	 * the initial file page so the pointer to the new directory
8440 	 * is not written until the directory contents are live and
8441 	 * any subsequent additions are not marked live until the
8442 	 * block is reachable via the inode.
8443 	 */
8444 	if (pagedep_lookup(mp, newdirbp, newinum, 0, 0, &pagedep) == 0)
8445 		panic("setup_newdir: lost pagedep");
8446 	LIST_FOREACH(wk, &newdirbp->b_dep, wk_list)
8447 		if (wk->wk_type == D_ALLOCDIRECT)
8448 			break;
8449 	if (wk == NULL)
8450 		panic("setup_newdir: lost allocdirect");
8451 	if (pagedep->pd_state & NEWBLOCK)
8452 		panic("setup_newdir: NEWBLOCK already set");
8453 	newblk = WK_NEWBLK(wk);
8454 	pagedep->pd_state |= NEWBLOCK;
8455 	pagedep->pd_newdirblk = newdirblk;
8456 	newdirblk->db_pagedep = pagedep;
8457 	WORKLIST_INSERT(&newblk->nb_newdirblk, &newdirblk->db_list);
8458 	WORKLIST_INSERT(&newdirblk->db_mkdir, &mkdir1->md_list);
8459 	/*
8460 	 * Look up the inodedep for the parent directory so that we
8461 	 * can link mkdir2 into the pending dotdot jaddref or
8462 	 * the inode write if there is none.  If the inode is
8463 	 * ALLCOMPLETE and no jaddref is present all dependencies have
8464 	 * been satisfied and mkdir2 can be freed.
8465 	 */
8466 	inodedep_lookup(mp, dinum, 0, &inodedep);
8467 	if (MOUNTEDSUJ(mp)) {
8468 		if (inodedep == NULL)
8469 			panic("setup_newdir: Lost parent.");
8470 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
8471 		    inoreflst);
8472 		KASSERT(jaddref != NULL && jaddref->ja_parent == newinum &&
8473 		    (jaddref->ja_state & MKDIR_PARENT),
8474 		    ("setup_newdir: bad dotdot jaddref %p", jaddref));
8475 		LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir2, md_mkdirs);
8476 		mkdir2->md_jaddref = jaddref;
8477 		jaddref->ja_mkdir = mkdir2;
8478 	} else if (inodedep == NULL ||
8479 	    (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) {
8480 		dap->da_state &= ~MKDIR_PARENT;
8481 		WORKITEM_FREE(mkdir2, D_MKDIR);
8482 		mkdir2 = NULL;
8483 	} else {
8484 		LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir2, md_mkdirs);
8485 		WORKLIST_INSERT(&inodedep->id_bufwait, &mkdir2->md_list);
8486 	}
8487 	*mkdirp = mkdir2;
8488 
8489 	return (mkdir1);
8490 }
8491 
8492 /*
8493  * Directory entry addition dependencies.
8494  *
8495  * When adding a new directory entry, the inode (with its incremented link
8496  * count) must be written to disk before the directory entry's pointer to it.
8497  * Also, if the inode is newly allocated, the corresponding freemap must be
8498  * updated (on disk) before the directory entry's pointer. These requirements
8499  * are met via undo/redo on the directory entry's pointer, which consists
8500  * simply of the inode number.
8501  *
8502  * As directory entries are added and deleted, the free space within a
8503  * directory block can become fragmented.  The ufs filesystem will compact
8504  * a fragmented directory block to make space for a new entry. When this
8505  * occurs, the offsets of previously added entries change. Any "diradd"
8506  * dependency structures corresponding to these entries must be updated with
8507  * the new offsets.
8508  */
8509 
8510 /*
8511  * This routine is called after the in-memory inode's link
8512  * count has been incremented, but before the directory entry's
8513  * pointer to the inode has been set.
8514  */
8515 int
8516 softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk)
8517 	struct buf *bp;		/* buffer containing directory block */
8518 	struct inode *dp;	/* inode for directory */
8519 	off_t diroffset;	/* offset of new entry in directory */
8520 	ino_t newinum;		/* inode referenced by new directory entry */
8521 	struct buf *newdirbp;	/* non-NULL => contents of new mkdir */
8522 	int isnewblk;		/* entry is in a newly allocated block */
8523 {
8524 	int offset;		/* offset of new entry within directory block */
8525 	ufs_lbn_t lbn;		/* block in directory containing new entry */
8526 	struct fs *fs;
8527 	struct diradd *dap;
8528 	struct newblk *newblk;
8529 	struct pagedep *pagedep;
8530 	struct inodedep *inodedep;
8531 	struct newdirblk *newdirblk;
8532 	struct mkdir *mkdir1, *mkdir2;
8533 	struct jaddref *jaddref;
8534 	struct ufsmount *ump;
8535 	struct mount *mp;
8536 	int isindir;
8537 
8538 	mp = ITOVFS(dp);
8539 	ump = VFSTOUFS(mp);
8540 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
8541 	    ("softdep_setup_directory_add called on non-softdep filesystem"));
8542 	/*
8543 	 * Whiteouts have no dependencies.
8544 	 */
8545 	if (newinum == UFS_WINO) {
8546 		if (newdirbp != NULL)
8547 			bdwrite(newdirbp);
8548 		return (0);
8549 	}
8550 	jaddref = NULL;
8551 	mkdir1 = mkdir2 = NULL;
8552 	fs = ump->um_fs;
8553 	lbn = lblkno(fs, diroffset);
8554 	offset = blkoff(fs, diroffset);
8555 	dap = malloc(sizeof(struct diradd), M_DIRADD,
8556 		M_SOFTDEP_FLAGS|M_ZERO);
8557 	workitem_alloc(&dap->da_list, D_DIRADD, mp);
8558 	dap->da_offset = offset;
8559 	dap->da_newinum = newinum;
8560 	dap->da_state = ATTACHED;
8561 	LIST_INIT(&dap->da_jwork);
8562 	isindir = bp->b_lblkno >= UFS_NDADDR;
8563 	newdirblk = NULL;
8564 	if (isnewblk &&
8565 	    (isindir ? blkoff(fs, diroffset) : fragoff(fs, diroffset)) == 0) {
8566 		newdirblk = malloc(sizeof(struct newdirblk),
8567 		    M_NEWDIRBLK, M_SOFTDEP_FLAGS);
8568 		workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp);
8569 		LIST_INIT(&newdirblk->db_mkdir);
8570 	}
8571 	/*
8572 	 * If we're creating a new directory setup the dependencies and set
8573 	 * the dap state to wait for them.  Otherwise it's COMPLETE and
8574 	 * we can move on.
8575 	 */
8576 	if (newdirbp == NULL) {
8577 		dap->da_state |= DEPCOMPLETE;
8578 		ACQUIRE_LOCK(ump);
8579 	} else {
8580 		dap->da_state |= MKDIR_BODY | MKDIR_PARENT;
8581 		mkdir1 = setup_newdir(dap, newinum, dp->i_number, newdirbp,
8582 		    &mkdir2);
8583 	}
8584 	/*
8585 	 * Link into parent directory pagedep to await its being written.
8586 	 */
8587 	pagedep_lookup(mp, bp, dp->i_number, lbn, DEPALLOC, &pagedep);
8588 #ifdef INVARIANTS
8589 	if (diradd_lookup(pagedep, offset) != NULL)
8590 		panic("softdep_setup_directory_add: %p already at off %d\n",
8591 		    diradd_lookup(pagedep, offset), offset);
8592 #endif
8593 	dap->da_pagedep = pagedep;
8594 	LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], dap,
8595 	    da_pdlist);
8596 	inodedep_lookup(mp, newinum, DEPALLOC, &inodedep);
8597 	/*
8598 	 * If we're journaling, link the diradd into the jaddref so it
8599 	 * may be completed after the journal entry is written.  Otherwise,
8600 	 * link the diradd into its inodedep.  If the inode is not yet
8601 	 * written place it on the bufwait list, otherwise do the post-inode
8602 	 * write processing to put it on the id_pendinghd list.
8603 	 */
8604 	if (MOUNTEDSUJ(mp)) {
8605 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
8606 		    inoreflst);
8607 		KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number,
8608 		    ("softdep_setup_directory_add: bad jaddref %p", jaddref));
8609 		jaddref->ja_diroff = diroffset;
8610 		jaddref->ja_diradd = dap;
8611 		add_to_journal(&jaddref->ja_list);
8612 	} else if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE)
8613 		diradd_inode_written(dap, inodedep);
8614 	else
8615 		WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list);
8616 	/*
8617 	 * Add the journal entries for . and .. links now that the primary
8618 	 * link is written.
8619 	 */
8620 	if (mkdir1 != NULL && MOUNTEDSUJ(mp)) {
8621 		jaddref = (struct jaddref *)TAILQ_PREV(&jaddref->ja_ref,
8622 		    inoreflst, if_deps);
8623 		KASSERT(jaddref != NULL &&
8624 		    jaddref->ja_ino == jaddref->ja_parent &&
8625 		    (jaddref->ja_state & MKDIR_BODY),
8626 		    ("softdep_setup_directory_add: bad dot jaddref %p",
8627 		    jaddref));
8628 		mkdir1->md_jaddref = jaddref;
8629 		jaddref->ja_mkdir = mkdir1;
8630 		/*
8631 		 * It is important that the dotdot journal entry
8632 		 * is added prior to the dot entry since dot writes
8633 		 * both the dot and dotdot links.  These both must
8634 		 * be added after the primary link for the journal
8635 		 * to remain consistent.
8636 		 */
8637 		add_to_journal(&mkdir2->md_jaddref->ja_list);
8638 		add_to_journal(&jaddref->ja_list);
8639 	}
8640 	/*
8641 	 * If we are adding a new directory remember this diradd so that if
8642 	 * we rename it we can keep the dot and dotdot dependencies.  If
8643 	 * we are adding a new name for an inode that has a mkdiradd we
8644 	 * must be in rename and we have to move the dot and dotdot
8645 	 * dependencies to this new name.  The old name is being orphaned
8646 	 * soon.
8647 	 */
8648 	if (mkdir1 != NULL) {
8649 		if (inodedep->id_mkdiradd != NULL)
8650 			panic("softdep_setup_directory_add: Existing mkdir");
8651 		inodedep->id_mkdiradd = dap;
8652 	} else if (inodedep->id_mkdiradd)
8653 		merge_diradd(inodedep, dap);
8654 	if (newdirblk != NULL) {
8655 		/*
8656 		 * There is nothing to do if we are already tracking
8657 		 * this block.
8658 		 */
8659 		if ((pagedep->pd_state & NEWBLOCK) != 0) {
8660 			WORKITEM_FREE(newdirblk, D_NEWDIRBLK);
8661 			FREE_LOCK(ump);
8662 			return (0);
8663 		}
8664 		if (newblk_lookup(mp, dbtofsb(fs, bp->b_blkno), 0, &newblk)
8665 		    == 0)
8666 			panic("softdep_setup_directory_add: lost entry");
8667 		WORKLIST_INSERT(&newblk->nb_newdirblk, &newdirblk->db_list);
8668 		pagedep->pd_state |= NEWBLOCK;
8669 		pagedep->pd_newdirblk = newdirblk;
8670 		newdirblk->db_pagedep = pagedep;
8671 		FREE_LOCK(ump);
8672 		/*
8673 		 * If we extended into an indirect signal direnter to sync.
8674 		 */
8675 		if (isindir)
8676 			return (1);
8677 		return (0);
8678 	}
8679 	FREE_LOCK(ump);
8680 	return (0);
8681 }
8682 
8683 /*
8684  * This procedure is called to change the offset of a directory
8685  * entry when compacting a directory block which must be owned
8686  * exclusively by the caller. Note that the actual entry movement
8687  * must be done in this procedure to ensure that no I/O completions
8688  * occur while the move is in progress.
8689  */
8690 void
8691 softdep_change_directoryentry_offset(bp, dp, base, oldloc, newloc, entrysize)
8692 	struct buf *bp;		/* Buffer holding directory block. */
8693 	struct inode *dp;	/* inode for directory */
8694 	caddr_t base;		/* address of dp->i_offset */
8695 	caddr_t oldloc;		/* address of old directory location */
8696 	caddr_t newloc;		/* address of new directory location */
8697 	int entrysize;		/* size of directory entry */
8698 {
8699 	int offset, oldoffset, newoffset;
8700 	struct pagedep *pagedep;
8701 	struct jmvref *jmvref;
8702 	struct diradd *dap;
8703 	struct direct *de;
8704 	struct mount *mp;
8705 	struct ufsmount *ump;
8706 	ufs_lbn_t lbn;
8707 	int flags;
8708 
8709 	mp = ITOVFS(dp);
8710 	ump = VFSTOUFS(mp);
8711 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
8712 	    ("softdep_change_directoryentry_offset called on "
8713 	     "non-softdep filesystem"));
8714 	de = (struct direct *)oldloc;
8715 	jmvref = NULL;
8716 	flags = 0;
8717 	/*
8718 	 * Moves are always journaled as it would be too complex to
8719 	 * determine if any affected adds or removes are present in the
8720 	 * journal.
8721 	 */
8722 	if (MOUNTEDSUJ(mp)) {
8723 		flags = DEPALLOC;
8724 		jmvref = newjmvref(dp, de->d_ino,
8725 		    dp->i_offset + (oldloc - base),
8726 		    dp->i_offset + (newloc - base));
8727 	}
8728 	lbn = lblkno(ump->um_fs, dp->i_offset);
8729 	offset = blkoff(ump->um_fs, dp->i_offset);
8730 	oldoffset = offset + (oldloc - base);
8731 	newoffset = offset + (newloc - base);
8732 	ACQUIRE_LOCK(ump);
8733 	if (pagedep_lookup(mp, bp, dp->i_number, lbn, flags, &pagedep) == 0)
8734 		goto done;
8735 	dap = diradd_lookup(pagedep, oldoffset);
8736 	if (dap) {
8737 		dap->da_offset = newoffset;
8738 		newoffset = DIRADDHASH(newoffset);
8739 		oldoffset = DIRADDHASH(oldoffset);
8740 		if ((dap->da_state & ALLCOMPLETE) != ALLCOMPLETE &&
8741 		    newoffset != oldoffset) {
8742 			LIST_REMOVE(dap, da_pdlist);
8743 			LIST_INSERT_HEAD(&pagedep->pd_diraddhd[newoffset],
8744 			    dap, da_pdlist);
8745 		}
8746 	}
8747 done:
8748 	if (jmvref) {
8749 		jmvref->jm_pagedep = pagedep;
8750 		LIST_INSERT_HEAD(&pagedep->pd_jmvrefhd, jmvref, jm_deps);
8751 		add_to_journal(&jmvref->jm_list);
8752 	}
8753 	bcopy(oldloc, newloc, entrysize);
8754 	FREE_LOCK(ump);
8755 }
8756 
8757 /*
8758  * Move the mkdir dependencies and journal work from one diradd to another
8759  * when renaming a directory.  The new name must depend on the mkdir deps
8760  * completing as the old name did.  Directories can only have one valid link
8761  * at a time so one must be canonical.
8762  */
8763 static void
8764 merge_diradd(inodedep, newdap)
8765 	struct inodedep *inodedep;
8766 	struct diradd *newdap;
8767 {
8768 	struct diradd *olddap;
8769 	struct mkdir *mkdir, *nextmd;
8770 	struct ufsmount *ump;
8771 	short state;
8772 
8773 	olddap = inodedep->id_mkdiradd;
8774 	inodedep->id_mkdiradd = newdap;
8775 	if ((olddap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
8776 		newdap->da_state &= ~DEPCOMPLETE;
8777 		ump = VFSTOUFS(inodedep->id_list.wk_mp);
8778 		for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir;
8779 		     mkdir = nextmd) {
8780 			nextmd = LIST_NEXT(mkdir, md_mkdirs);
8781 			if (mkdir->md_diradd != olddap)
8782 				continue;
8783 			mkdir->md_diradd = newdap;
8784 			state = mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY);
8785 			newdap->da_state |= state;
8786 			olddap->da_state &= ~state;
8787 			if ((olddap->da_state &
8788 			    (MKDIR_PARENT | MKDIR_BODY)) == 0)
8789 				break;
8790 		}
8791 		if ((olddap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0)
8792 			panic("merge_diradd: unfound ref");
8793 	}
8794 	/*
8795 	 * Any mkdir related journal items are not safe to be freed until
8796 	 * the new name is stable.
8797 	 */
8798 	jwork_move(&newdap->da_jwork, &olddap->da_jwork);
8799 	olddap->da_state |= DEPCOMPLETE;
8800 	complete_diradd(olddap);
8801 }
8802 
8803 /*
8804  * Move the diradd to the pending list when all diradd dependencies are
8805  * complete.
8806  */
8807 static void
8808 complete_diradd(dap)
8809 	struct diradd *dap;
8810 {
8811 	struct pagedep *pagedep;
8812 
8813 	if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
8814 		if (dap->da_state & DIRCHG)
8815 			pagedep = dap->da_previous->dm_pagedep;
8816 		else
8817 			pagedep = dap->da_pagedep;
8818 		LIST_REMOVE(dap, da_pdlist);
8819 		LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
8820 	}
8821 }
8822 
8823 /*
8824  * Cancel a diradd when a dirrem overlaps with it.  We must cancel the journal
8825  * add entries and conditonally journal the remove.
8826  */
8827 static void
8828 cancel_diradd(dap, dirrem, jremref, dotremref, dotdotremref)
8829 	struct diradd *dap;
8830 	struct dirrem *dirrem;
8831 	struct jremref *jremref;
8832 	struct jremref *dotremref;
8833 	struct jremref *dotdotremref;
8834 {
8835 	struct inodedep *inodedep;
8836 	struct jaddref *jaddref;
8837 	struct inoref *inoref;
8838 	struct ufsmount *ump;
8839 	struct mkdir *mkdir;
8840 
8841 	/*
8842 	 * If no remove references were allocated we're on a non-journaled
8843 	 * filesystem and can skip the cancel step.
8844 	 */
8845 	if (jremref == NULL) {
8846 		free_diradd(dap, NULL);
8847 		return;
8848 	}
8849 	/*
8850 	 * Cancel the primary name an free it if it does not require
8851 	 * journaling.
8852 	 */
8853 	if (inodedep_lookup(dap->da_list.wk_mp, dap->da_newinum,
8854 	    0, &inodedep) != 0) {
8855 		/* Abort the addref that reference this diradd.  */
8856 		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
8857 			if (inoref->if_list.wk_type != D_JADDREF)
8858 				continue;
8859 			jaddref = (struct jaddref *)inoref;
8860 			if (jaddref->ja_diradd != dap)
8861 				continue;
8862 			if (cancel_jaddref(jaddref, inodedep,
8863 			    &dirrem->dm_jwork) == 0) {
8864 				free_jremref(jremref);
8865 				jremref = NULL;
8866 			}
8867 			break;
8868 		}
8869 	}
8870 	/*
8871 	 * Cancel subordinate names and free them if they do not require
8872 	 * journaling.
8873 	 */
8874 	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
8875 		ump = VFSTOUFS(dap->da_list.wk_mp);
8876 		LIST_FOREACH(mkdir, &ump->softdep_mkdirlisthd, md_mkdirs) {
8877 			if (mkdir->md_diradd != dap)
8878 				continue;
8879 			if ((jaddref = mkdir->md_jaddref) == NULL)
8880 				continue;
8881 			mkdir->md_jaddref = NULL;
8882 			if (mkdir->md_state & MKDIR_PARENT) {
8883 				if (cancel_jaddref(jaddref, NULL,
8884 				    &dirrem->dm_jwork) == 0) {
8885 					free_jremref(dotdotremref);
8886 					dotdotremref = NULL;
8887 				}
8888 			} else {
8889 				if (cancel_jaddref(jaddref, inodedep,
8890 				    &dirrem->dm_jwork) == 0) {
8891 					free_jremref(dotremref);
8892 					dotremref = NULL;
8893 				}
8894 			}
8895 		}
8896 	}
8897 
8898 	if (jremref)
8899 		journal_jremref(dirrem, jremref, inodedep);
8900 	if (dotremref)
8901 		journal_jremref(dirrem, dotremref, inodedep);
8902 	if (dotdotremref)
8903 		journal_jremref(dirrem, dotdotremref, NULL);
8904 	jwork_move(&dirrem->dm_jwork, &dap->da_jwork);
8905 	free_diradd(dap, &dirrem->dm_jwork);
8906 }
8907 
8908 /*
8909  * Free a diradd dependency structure.
8910  */
8911 static void
8912 free_diradd(dap, wkhd)
8913 	struct diradd *dap;
8914 	struct workhead *wkhd;
8915 {
8916 	struct dirrem *dirrem;
8917 	struct pagedep *pagedep;
8918 	struct inodedep *inodedep;
8919 	struct mkdir *mkdir, *nextmd;
8920 	struct ufsmount *ump;
8921 
8922 	ump = VFSTOUFS(dap->da_list.wk_mp);
8923 	LOCK_OWNED(ump);
8924 	LIST_REMOVE(dap, da_pdlist);
8925 	if (dap->da_state & ONWORKLIST)
8926 		WORKLIST_REMOVE(&dap->da_list);
8927 	if ((dap->da_state & DIRCHG) == 0) {
8928 		pagedep = dap->da_pagedep;
8929 	} else {
8930 		dirrem = dap->da_previous;
8931 		pagedep = dirrem->dm_pagedep;
8932 		dirrem->dm_dirinum = pagedep->pd_ino;
8933 		dirrem->dm_state |= COMPLETE;
8934 		if (LIST_EMPTY(&dirrem->dm_jremrefhd))
8935 			add_to_worklist(&dirrem->dm_list, 0);
8936 	}
8937 	if (inodedep_lookup(pagedep->pd_list.wk_mp, dap->da_newinum,
8938 	    0, &inodedep) != 0)
8939 		if (inodedep->id_mkdiradd == dap)
8940 			inodedep->id_mkdiradd = NULL;
8941 	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
8942 		for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir;
8943 		     mkdir = nextmd) {
8944 			nextmd = LIST_NEXT(mkdir, md_mkdirs);
8945 			if (mkdir->md_diradd != dap)
8946 				continue;
8947 			dap->da_state &=
8948 			    ~(mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY));
8949 			LIST_REMOVE(mkdir, md_mkdirs);
8950 			if (mkdir->md_state & ONWORKLIST)
8951 				WORKLIST_REMOVE(&mkdir->md_list);
8952 			if (mkdir->md_jaddref != NULL)
8953 				panic("free_diradd: Unexpected jaddref");
8954 			WORKITEM_FREE(mkdir, D_MKDIR);
8955 			if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0)
8956 				break;
8957 		}
8958 		if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0)
8959 			panic("free_diradd: unfound ref");
8960 	}
8961 	if (inodedep)
8962 		free_inodedep(inodedep);
8963 	/*
8964 	 * Free any journal segments waiting for the directory write.
8965 	 */
8966 	handle_jwork(&dap->da_jwork);
8967 	WORKITEM_FREE(dap, D_DIRADD);
8968 }
8969 
8970 /*
8971  * Directory entry removal dependencies.
8972  *
8973  * When removing a directory entry, the entry's inode pointer must be
8974  * zero'ed on disk before the corresponding inode's link count is decremented
8975  * (possibly freeing the inode for re-use). This dependency is handled by
8976  * updating the directory entry but delaying the inode count reduction until
8977  * after the directory block has been written to disk. After this point, the
8978  * inode count can be decremented whenever it is convenient.
8979  */
8980 
8981 /*
8982  * This routine should be called immediately after removing
8983  * a directory entry.  The inode's link count should not be
8984  * decremented by the calling procedure -- the soft updates
8985  * code will do this task when it is safe.
8986  */
8987 void
8988 softdep_setup_remove(bp, dp, ip, isrmdir)
8989 	struct buf *bp;		/* buffer containing directory block */
8990 	struct inode *dp;	/* inode for the directory being modified */
8991 	struct inode *ip;	/* inode for directory entry being removed */
8992 	int isrmdir;		/* indicates if doing RMDIR */
8993 {
8994 	struct dirrem *dirrem, *prevdirrem;
8995 	struct inodedep *inodedep;
8996 	struct ufsmount *ump;
8997 	int direct;
8998 
8999 	ump = ITOUMP(ip);
9000 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
9001 	    ("softdep_setup_remove called on non-softdep filesystem"));
9002 	/*
9003 	 * Allocate a new dirrem if appropriate and ACQUIRE_LOCK.  We want
9004 	 * newdirrem() to setup the full directory remove which requires
9005 	 * isrmdir > 1.
9006 	 */
9007 	dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem);
9008 	/*
9009 	 * Add the dirrem to the inodedep's pending remove list for quick
9010 	 * discovery later.
9011 	 */
9012 	if (inodedep_lookup(UFSTOVFS(ump), ip->i_number, 0, &inodedep) == 0)
9013 		panic("softdep_setup_remove: Lost inodedep.");
9014 	KASSERT((inodedep->id_state & UNLINKED) == 0, ("inode unlinked"));
9015 	dirrem->dm_state |= ONDEPLIST;
9016 	LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext);
9017 
9018 	/*
9019 	 * If the COMPLETE flag is clear, then there were no active
9020 	 * entries and we want to roll back to a zeroed entry until
9021 	 * the new inode is committed to disk. If the COMPLETE flag is
9022 	 * set then we have deleted an entry that never made it to
9023 	 * disk. If the entry we deleted resulted from a name change,
9024 	 * then the old name still resides on disk. We cannot delete
9025 	 * its inode (returned to us in prevdirrem) until the zeroed
9026 	 * directory entry gets to disk. The new inode has never been
9027 	 * referenced on the disk, so can be deleted immediately.
9028 	 */
9029 	if ((dirrem->dm_state & COMPLETE) == 0) {
9030 		LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, dirrem,
9031 		    dm_next);
9032 		FREE_LOCK(ump);
9033 	} else {
9034 		if (prevdirrem != NULL)
9035 			LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd,
9036 			    prevdirrem, dm_next);
9037 		dirrem->dm_dirinum = dirrem->dm_pagedep->pd_ino;
9038 		direct = LIST_EMPTY(&dirrem->dm_jremrefhd);
9039 		FREE_LOCK(ump);
9040 		if (direct)
9041 			handle_workitem_remove(dirrem, 0);
9042 	}
9043 }
9044 
9045 /*
9046  * Check for an entry matching 'offset' on both the pd_dirraddhd list and the
9047  * pd_pendinghd list of a pagedep.
9048  */
9049 static struct diradd *
9050 diradd_lookup(pagedep, offset)
9051 	struct pagedep *pagedep;
9052 	int offset;
9053 {
9054 	struct diradd *dap;
9055 
9056 	LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(offset)], da_pdlist)
9057 		if (dap->da_offset == offset)
9058 			return (dap);
9059 	LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist)
9060 		if (dap->da_offset == offset)
9061 			return (dap);
9062 	return (NULL);
9063 }
9064 
9065 /*
9066  * Search for a .. diradd dependency in a directory that is being removed.
9067  * If the directory was renamed to a new parent we have a diradd rather
9068  * than a mkdir for the .. entry.  We need to cancel it now before
9069  * it is found in truncate().
9070  */
9071 static struct jremref *
9072 cancel_diradd_dotdot(ip, dirrem, jremref)
9073 	struct inode *ip;
9074 	struct dirrem *dirrem;
9075 	struct jremref *jremref;
9076 {
9077 	struct pagedep *pagedep;
9078 	struct diradd *dap;
9079 	struct worklist *wk;
9080 
9081 	if (pagedep_lookup(ITOVFS(ip), NULL, ip->i_number, 0, 0, &pagedep) == 0)
9082 		return (jremref);
9083 	dap = diradd_lookup(pagedep, DOTDOT_OFFSET);
9084 	if (dap == NULL)
9085 		return (jremref);
9086 	cancel_diradd(dap, dirrem, jremref, NULL, NULL);
9087 	/*
9088 	 * Mark any journal work as belonging to the parent so it is freed
9089 	 * with the .. reference.
9090 	 */
9091 	LIST_FOREACH(wk, &dirrem->dm_jwork, wk_list)
9092 		wk->wk_state |= MKDIR_PARENT;
9093 	return (NULL);
9094 }
9095 
9096 /*
9097  * Cancel the MKDIR_PARENT mkdir component of a diradd when we're going to
9098  * replace it with a dirrem/diradd pair as a result of re-parenting a
9099  * directory.  This ensures that we don't simultaneously have a mkdir and
9100  * a diradd for the same .. entry.
9101  */
9102 static struct jremref *
9103 cancel_mkdir_dotdot(ip, dirrem, jremref)
9104 	struct inode *ip;
9105 	struct dirrem *dirrem;
9106 	struct jremref *jremref;
9107 {
9108 	struct inodedep *inodedep;
9109 	struct jaddref *jaddref;
9110 	struct ufsmount *ump;
9111 	struct mkdir *mkdir;
9112 	struct diradd *dap;
9113 	struct mount *mp;
9114 
9115 	mp = ITOVFS(ip);
9116 	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0)
9117 		return (jremref);
9118 	dap = inodedep->id_mkdiradd;
9119 	if (dap == NULL || (dap->da_state & MKDIR_PARENT) == 0)
9120 		return (jremref);
9121 	ump = VFSTOUFS(inodedep->id_list.wk_mp);
9122 	for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir;
9123 	    mkdir = LIST_NEXT(mkdir, md_mkdirs))
9124 		if (mkdir->md_diradd == dap && mkdir->md_state & MKDIR_PARENT)
9125 			break;
9126 	if (mkdir == NULL)
9127 		panic("cancel_mkdir_dotdot: Unable to find mkdir\n");
9128 	if ((jaddref = mkdir->md_jaddref) != NULL) {
9129 		mkdir->md_jaddref = NULL;
9130 		jaddref->ja_state &= ~MKDIR_PARENT;
9131 		if (inodedep_lookup(mp, jaddref->ja_ino, 0, &inodedep) == 0)
9132 			panic("cancel_mkdir_dotdot: Lost parent inodedep");
9133 		if (cancel_jaddref(jaddref, inodedep, &dirrem->dm_jwork)) {
9134 			journal_jremref(dirrem, jremref, inodedep);
9135 			jremref = NULL;
9136 		}
9137 	}
9138 	if (mkdir->md_state & ONWORKLIST)
9139 		WORKLIST_REMOVE(&mkdir->md_list);
9140 	mkdir->md_state |= ALLCOMPLETE;
9141 	complete_mkdir(mkdir);
9142 	return (jremref);
9143 }
9144 
9145 static void
9146 journal_jremref(dirrem, jremref, inodedep)
9147 	struct dirrem *dirrem;
9148 	struct jremref *jremref;
9149 	struct inodedep *inodedep;
9150 {
9151 
9152 	if (inodedep == NULL)
9153 		if (inodedep_lookup(jremref->jr_list.wk_mp,
9154 		    jremref->jr_ref.if_ino, 0, &inodedep) == 0)
9155 			panic("journal_jremref: Lost inodedep");
9156 	LIST_INSERT_HEAD(&dirrem->dm_jremrefhd, jremref, jr_deps);
9157 	TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jremref->jr_ref, if_deps);
9158 	add_to_journal(&jremref->jr_list);
9159 }
9160 
9161 static void
9162 dirrem_journal(dirrem, jremref, dotremref, dotdotremref)
9163 	struct dirrem *dirrem;
9164 	struct jremref *jremref;
9165 	struct jremref *dotremref;
9166 	struct jremref *dotdotremref;
9167 {
9168 	struct inodedep *inodedep;
9169 
9170 
9171 	if (inodedep_lookup(jremref->jr_list.wk_mp, jremref->jr_ref.if_ino, 0,
9172 	    &inodedep) == 0)
9173 		panic("dirrem_journal: Lost inodedep");
9174 	journal_jremref(dirrem, jremref, inodedep);
9175 	if (dotremref)
9176 		journal_jremref(dirrem, dotremref, inodedep);
9177 	if (dotdotremref)
9178 		journal_jremref(dirrem, dotdotremref, NULL);
9179 }
9180 
9181 /*
9182  * Allocate a new dirrem if appropriate and return it along with
9183  * its associated pagedep. Called without a lock, returns with lock.
9184  */
9185 static struct dirrem *
9186 newdirrem(bp, dp, ip, isrmdir, prevdirremp)
9187 	struct buf *bp;		/* buffer containing directory block */
9188 	struct inode *dp;	/* inode for the directory being modified */
9189 	struct inode *ip;	/* inode for directory entry being removed */
9190 	int isrmdir;		/* indicates if doing RMDIR */
9191 	struct dirrem **prevdirremp; /* previously referenced inode, if any */
9192 {
9193 	int offset;
9194 	ufs_lbn_t lbn;
9195 	struct diradd *dap;
9196 	struct dirrem *dirrem;
9197 	struct pagedep *pagedep;
9198 	struct jremref *jremref;
9199 	struct jremref *dotremref;
9200 	struct jremref *dotdotremref;
9201 	struct vnode *dvp;
9202 	struct ufsmount *ump;
9203 
9204 	/*
9205 	 * Whiteouts have no deletion dependencies.
9206 	 */
9207 	if (ip == NULL)
9208 		panic("newdirrem: whiteout");
9209 	dvp = ITOV(dp);
9210 	ump = ITOUMP(dp);
9211 
9212 	/*
9213 	 * If the system is over its limit and our filesystem is
9214 	 * responsible for more than our share of that usage and
9215 	 * we are not a snapshot, request some inodedep cleanup.
9216 	 * Limiting the number of dirrem structures will also limit
9217 	 * the number of freefile and freeblks structures.
9218 	 */
9219 	ACQUIRE_LOCK(ump);
9220 	if (!IS_SNAPSHOT(ip) && softdep_excess_items(ump, D_DIRREM))
9221 		schedule_cleanup(UFSTOVFS(ump));
9222 	else
9223 		FREE_LOCK(ump);
9224 	dirrem = malloc(sizeof(struct dirrem), M_DIRREM, M_SOFTDEP_FLAGS |
9225 	    M_ZERO);
9226 	workitem_alloc(&dirrem->dm_list, D_DIRREM, dvp->v_mount);
9227 	LIST_INIT(&dirrem->dm_jremrefhd);
9228 	LIST_INIT(&dirrem->dm_jwork);
9229 	dirrem->dm_state = isrmdir ? RMDIR : 0;
9230 	dirrem->dm_oldinum = ip->i_number;
9231 	*prevdirremp = NULL;
9232 	/*
9233 	 * Allocate remove reference structures to track journal write
9234 	 * dependencies.  We will always have one for the link and
9235 	 * when doing directories we will always have one more for dot.
9236 	 * When renaming a directory we skip the dotdot link change so
9237 	 * this is not needed.
9238 	 */
9239 	jremref = dotremref = dotdotremref = NULL;
9240 	if (DOINGSUJ(dvp)) {
9241 		if (isrmdir) {
9242 			jremref = newjremref(dirrem, dp, ip, dp->i_offset,
9243 			    ip->i_effnlink + 2);
9244 			dotremref = newjremref(dirrem, ip, ip, DOT_OFFSET,
9245 			    ip->i_effnlink + 1);
9246 			dotdotremref = newjremref(dirrem, ip, dp, DOTDOT_OFFSET,
9247 			    dp->i_effnlink + 1);
9248 			dotdotremref->jr_state |= MKDIR_PARENT;
9249 		} else
9250 			jremref = newjremref(dirrem, dp, ip, dp->i_offset,
9251 			    ip->i_effnlink + 1);
9252 	}
9253 	ACQUIRE_LOCK(ump);
9254 	lbn = lblkno(ump->um_fs, dp->i_offset);
9255 	offset = blkoff(ump->um_fs, dp->i_offset);
9256 	pagedep_lookup(UFSTOVFS(ump), bp, dp->i_number, lbn, DEPALLOC,
9257 	    &pagedep);
9258 	dirrem->dm_pagedep = pagedep;
9259 	dirrem->dm_offset = offset;
9260 	/*
9261 	 * If we're renaming a .. link to a new directory, cancel any
9262 	 * existing MKDIR_PARENT mkdir.  If it has already been canceled
9263 	 * the jremref is preserved for any potential diradd in this
9264 	 * location.  This can not coincide with a rmdir.
9265 	 */
9266 	if (dp->i_offset == DOTDOT_OFFSET) {
9267 		if (isrmdir)
9268 			panic("newdirrem: .. directory change during remove?");
9269 		jremref = cancel_mkdir_dotdot(dp, dirrem, jremref);
9270 	}
9271 	/*
9272 	 * If we're removing a directory search for the .. dependency now and
9273 	 * cancel it.  Any pending journal work will be added to the dirrem
9274 	 * to be completed when the workitem remove completes.
9275 	 */
9276 	if (isrmdir)
9277 		dotdotremref = cancel_diradd_dotdot(ip, dirrem, dotdotremref);
9278 	/*
9279 	 * Check for a diradd dependency for the same directory entry.
9280 	 * If present, then both dependencies become obsolete and can
9281 	 * be de-allocated.
9282 	 */
9283 	dap = diradd_lookup(pagedep, offset);
9284 	if (dap == NULL) {
9285 		/*
9286 		 * Link the jremref structures into the dirrem so they are
9287 		 * written prior to the pagedep.
9288 		 */
9289 		if (jremref)
9290 			dirrem_journal(dirrem, jremref, dotremref,
9291 			    dotdotremref);
9292 		return (dirrem);
9293 	}
9294 	/*
9295 	 * Must be ATTACHED at this point.
9296 	 */
9297 	if ((dap->da_state & ATTACHED) == 0)
9298 		panic("newdirrem: not ATTACHED");
9299 	if (dap->da_newinum != ip->i_number)
9300 		panic("newdirrem: inum %ju should be %ju",
9301 		    (uintmax_t)ip->i_number, (uintmax_t)dap->da_newinum);
9302 	/*
9303 	 * If we are deleting a changed name that never made it to disk,
9304 	 * then return the dirrem describing the previous inode (which
9305 	 * represents the inode currently referenced from this entry on disk).
9306 	 */
9307 	if ((dap->da_state & DIRCHG) != 0) {
9308 		*prevdirremp = dap->da_previous;
9309 		dap->da_state &= ~DIRCHG;
9310 		dap->da_pagedep = pagedep;
9311 	}
9312 	/*
9313 	 * We are deleting an entry that never made it to disk.
9314 	 * Mark it COMPLETE so we can delete its inode immediately.
9315 	 */
9316 	dirrem->dm_state |= COMPLETE;
9317 	cancel_diradd(dap, dirrem, jremref, dotremref, dotdotremref);
9318 #ifdef INVARIANTS
9319 	if (isrmdir == 0) {
9320 		struct worklist *wk;
9321 
9322 		LIST_FOREACH(wk, &dirrem->dm_jwork, wk_list)
9323 			if (wk->wk_state & (MKDIR_BODY | MKDIR_PARENT))
9324 				panic("bad wk %p (0x%X)\n", wk, wk->wk_state);
9325 	}
9326 #endif
9327 
9328 	return (dirrem);
9329 }
9330 
9331 /*
9332  * Directory entry change dependencies.
9333  *
9334  * Changing an existing directory entry requires that an add operation
9335  * be completed first followed by a deletion. The semantics for the addition
9336  * are identical to the description of adding a new entry above except
9337  * that the rollback is to the old inode number rather than zero. Once
9338  * the addition dependency is completed, the removal is done as described
9339  * in the removal routine above.
9340  */
9341 
9342 /*
9343  * This routine should be called immediately after changing
9344  * a directory entry.  The inode's link count should not be
9345  * decremented by the calling procedure -- the soft updates
9346  * code will perform this task when it is safe.
9347  */
9348 void
9349 softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir)
9350 	struct buf *bp;		/* buffer containing directory block */
9351 	struct inode *dp;	/* inode for the directory being modified */
9352 	struct inode *ip;	/* inode for directory entry being removed */
9353 	ino_t newinum;		/* new inode number for changed entry */
9354 	int isrmdir;		/* indicates if doing RMDIR */
9355 {
9356 	int offset;
9357 	struct diradd *dap = NULL;
9358 	struct dirrem *dirrem, *prevdirrem;
9359 	struct pagedep *pagedep;
9360 	struct inodedep *inodedep;
9361 	struct jaddref *jaddref;
9362 	struct mount *mp;
9363 	struct ufsmount *ump;
9364 
9365 	mp = ITOVFS(dp);
9366 	ump = VFSTOUFS(mp);
9367 	offset = blkoff(ump->um_fs, dp->i_offset);
9368 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
9369 	   ("softdep_setup_directory_change called on non-softdep filesystem"));
9370 
9371 	/*
9372 	 * Whiteouts do not need diradd dependencies.
9373 	 */
9374 	if (newinum != UFS_WINO) {
9375 		dap = malloc(sizeof(struct diradd),
9376 		    M_DIRADD, M_SOFTDEP_FLAGS|M_ZERO);
9377 		workitem_alloc(&dap->da_list, D_DIRADD, mp);
9378 		dap->da_state = DIRCHG | ATTACHED | DEPCOMPLETE;
9379 		dap->da_offset = offset;
9380 		dap->da_newinum = newinum;
9381 		LIST_INIT(&dap->da_jwork);
9382 	}
9383 
9384 	/*
9385 	 * Allocate a new dirrem and ACQUIRE_LOCK.
9386 	 */
9387 	dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem);
9388 	pagedep = dirrem->dm_pagedep;
9389 	/*
9390 	 * The possible values for isrmdir:
9391 	 *	0 - non-directory file rename
9392 	 *	1 - directory rename within same directory
9393 	 *   inum - directory rename to new directory of given inode number
9394 	 * When renaming to a new directory, we are both deleting and
9395 	 * creating a new directory entry, so the link count on the new
9396 	 * directory should not change. Thus we do not need the followup
9397 	 * dirrem which is usually done in handle_workitem_remove. We set
9398 	 * the DIRCHG flag to tell handle_workitem_remove to skip the
9399 	 * followup dirrem.
9400 	 */
9401 	if (isrmdir > 1)
9402 		dirrem->dm_state |= DIRCHG;
9403 
9404 	/*
9405 	 * Whiteouts have no additional dependencies,
9406 	 * so just put the dirrem on the correct list.
9407 	 */
9408 	if (newinum == UFS_WINO) {
9409 		if ((dirrem->dm_state & COMPLETE) == 0) {
9410 			LIST_INSERT_HEAD(&pagedep->pd_dirremhd, dirrem,
9411 			    dm_next);
9412 		} else {
9413 			dirrem->dm_dirinum = pagedep->pd_ino;
9414 			if (LIST_EMPTY(&dirrem->dm_jremrefhd))
9415 				add_to_worklist(&dirrem->dm_list, 0);
9416 		}
9417 		FREE_LOCK(ump);
9418 		return;
9419 	}
9420 	/*
9421 	 * Add the dirrem to the inodedep's pending remove list for quick
9422 	 * discovery later.  A valid nlinkdelta ensures that this lookup
9423 	 * will not fail.
9424 	 */
9425 	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0)
9426 		panic("softdep_setup_directory_change: Lost inodedep.");
9427 	dirrem->dm_state |= ONDEPLIST;
9428 	LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext);
9429 
9430 	/*
9431 	 * If the COMPLETE flag is clear, then there were no active
9432 	 * entries and we want to roll back to the previous inode until
9433 	 * the new inode is committed to disk. If the COMPLETE flag is
9434 	 * set, then we have deleted an entry that never made it to disk.
9435 	 * If the entry we deleted resulted from a name change, then the old
9436 	 * inode reference still resides on disk. Any rollback that we do
9437 	 * needs to be to that old inode (returned to us in prevdirrem). If
9438 	 * the entry we deleted resulted from a create, then there is
9439 	 * no entry on the disk, so we want to roll back to zero rather
9440 	 * than the uncommitted inode. In either of the COMPLETE cases we
9441 	 * want to immediately free the unwritten and unreferenced inode.
9442 	 */
9443 	if ((dirrem->dm_state & COMPLETE) == 0) {
9444 		dap->da_previous = dirrem;
9445 	} else {
9446 		if (prevdirrem != NULL) {
9447 			dap->da_previous = prevdirrem;
9448 		} else {
9449 			dap->da_state &= ~DIRCHG;
9450 			dap->da_pagedep = pagedep;
9451 		}
9452 		dirrem->dm_dirinum = pagedep->pd_ino;
9453 		if (LIST_EMPTY(&dirrem->dm_jremrefhd))
9454 			add_to_worklist(&dirrem->dm_list, 0);
9455 	}
9456 	/*
9457 	 * Lookup the jaddref for this journal entry.  We must finish
9458 	 * initializing it and make the diradd write dependent on it.
9459 	 * If we're not journaling, put it on the id_bufwait list if the
9460 	 * inode is not yet written. If it is written, do the post-inode
9461 	 * write processing to put it on the id_pendinghd list.
9462 	 */
9463 	inodedep_lookup(mp, newinum, DEPALLOC, &inodedep);
9464 	if (MOUNTEDSUJ(mp)) {
9465 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
9466 		    inoreflst);
9467 		KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number,
9468 		    ("softdep_setup_directory_change: bad jaddref %p",
9469 		    jaddref));
9470 		jaddref->ja_diroff = dp->i_offset;
9471 		jaddref->ja_diradd = dap;
9472 		LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)],
9473 		    dap, da_pdlist);
9474 		add_to_journal(&jaddref->ja_list);
9475 	} else if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) {
9476 		dap->da_state |= COMPLETE;
9477 		LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
9478 		WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list);
9479 	} else {
9480 		LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)],
9481 		    dap, da_pdlist);
9482 		WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list);
9483 	}
9484 	/*
9485 	 * If we're making a new name for a directory that has not been
9486 	 * committed when need to move the dot and dotdot references to
9487 	 * this new name.
9488 	 */
9489 	if (inodedep->id_mkdiradd && dp->i_offset != DOTDOT_OFFSET)
9490 		merge_diradd(inodedep, dap);
9491 	FREE_LOCK(ump);
9492 }
9493 
9494 /*
9495  * Called whenever the link count on an inode is changed.
9496  * It creates an inode dependency so that the new reference(s)
9497  * to the inode cannot be committed to disk until the updated
9498  * inode has been written.
9499  */
9500 void
9501 softdep_change_linkcnt(ip)
9502 	struct inode *ip;	/* the inode with the increased link count */
9503 {
9504 	struct inodedep *inodedep;
9505 	struct ufsmount *ump;
9506 
9507 	ump = ITOUMP(ip);
9508 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
9509 	    ("softdep_change_linkcnt called on non-softdep filesystem"));
9510 	ACQUIRE_LOCK(ump);
9511 	inodedep_lookup(UFSTOVFS(ump), ip->i_number, DEPALLOC, &inodedep);
9512 	if (ip->i_nlink < ip->i_effnlink)
9513 		panic("softdep_change_linkcnt: bad delta");
9514 	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
9515 	FREE_LOCK(ump);
9516 }
9517 
9518 /*
9519  * Attach a sbdep dependency to the superblock buf so that we can keep
9520  * track of the head of the linked list of referenced but unlinked inodes.
9521  */
9522 void
9523 softdep_setup_sbupdate(ump, fs, bp)
9524 	struct ufsmount *ump;
9525 	struct fs *fs;
9526 	struct buf *bp;
9527 {
9528 	struct sbdep *sbdep;
9529 	struct worklist *wk;
9530 
9531 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
9532 	    ("softdep_setup_sbupdate called on non-softdep filesystem"));
9533 	LIST_FOREACH(wk, &bp->b_dep, wk_list)
9534 		if (wk->wk_type == D_SBDEP)
9535 			break;
9536 	if (wk != NULL)
9537 		return;
9538 	sbdep = malloc(sizeof(struct sbdep), M_SBDEP, M_SOFTDEP_FLAGS);
9539 	workitem_alloc(&sbdep->sb_list, D_SBDEP, UFSTOVFS(ump));
9540 	sbdep->sb_fs = fs;
9541 	sbdep->sb_ump = ump;
9542 	ACQUIRE_LOCK(ump);
9543 	WORKLIST_INSERT(&bp->b_dep, &sbdep->sb_list);
9544 	FREE_LOCK(ump);
9545 }
9546 
9547 /*
9548  * Return the first unlinked inodedep which is ready to be the head of the
9549  * list.  The inodedep and all those after it must have valid next pointers.
9550  */
9551 static struct inodedep *
9552 first_unlinked_inodedep(ump)
9553 	struct ufsmount *ump;
9554 {
9555 	struct inodedep *inodedep;
9556 	struct inodedep *idp;
9557 
9558 	LOCK_OWNED(ump);
9559 	for (inodedep = TAILQ_LAST(&ump->softdep_unlinked, inodedeplst);
9560 	    inodedep; inodedep = idp) {
9561 		if ((inodedep->id_state & UNLINKNEXT) == 0)
9562 			return (NULL);
9563 		idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked);
9564 		if (idp == NULL || (idp->id_state & UNLINKNEXT) == 0)
9565 			break;
9566 		if ((inodedep->id_state & UNLINKPREV) == 0)
9567 			break;
9568 	}
9569 	return (inodedep);
9570 }
9571 
9572 /*
9573  * Set the sujfree unlinked head pointer prior to writing a superblock.
9574  */
9575 static void
9576 initiate_write_sbdep(sbdep)
9577 	struct sbdep *sbdep;
9578 {
9579 	struct inodedep *inodedep;
9580 	struct fs *bpfs;
9581 	struct fs *fs;
9582 
9583 	bpfs = sbdep->sb_fs;
9584 	fs = sbdep->sb_ump->um_fs;
9585 	inodedep = first_unlinked_inodedep(sbdep->sb_ump);
9586 	if (inodedep) {
9587 		fs->fs_sujfree = inodedep->id_ino;
9588 		inodedep->id_state |= UNLINKPREV;
9589 	} else
9590 		fs->fs_sujfree = 0;
9591 	bpfs->fs_sujfree = fs->fs_sujfree;
9592 	/*
9593 	 * Because we have made changes to the superblock, we need to
9594 	 * recompute its check-hash.
9595 	 */
9596 	bpfs->fs_ckhash = ffs_calc_sbhash(bpfs);
9597 }
9598 
9599 /*
9600  * After a superblock is written determine whether it must be written again
9601  * due to a changing unlinked list head.
9602  */
9603 static int
9604 handle_written_sbdep(sbdep, bp)
9605 	struct sbdep *sbdep;
9606 	struct buf *bp;
9607 {
9608 	struct inodedep *inodedep;
9609 	struct fs *fs;
9610 
9611 	LOCK_OWNED(sbdep->sb_ump);
9612 	fs = sbdep->sb_fs;
9613 	/*
9614 	 * If the superblock doesn't match the in-memory list start over.
9615 	 */
9616 	inodedep = first_unlinked_inodedep(sbdep->sb_ump);
9617 	if ((inodedep && fs->fs_sujfree != inodedep->id_ino) ||
9618 	    (inodedep == NULL && fs->fs_sujfree != 0)) {
9619 		bdirty(bp);
9620 		return (1);
9621 	}
9622 	WORKITEM_FREE(sbdep, D_SBDEP);
9623 	if (fs->fs_sujfree == 0)
9624 		return (0);
9625 	/*
9626 	 * Now that we have a record of this inode in stable store allow it
9627 	 * to be written to free up pending work.  Inodes may see a lot of
9628 	 * write activity after they are unlinked which we must not hold up.
9629 	 */
9630 	for (; inodedep != NULL; inodedep = TAILQ_NEXT(inodedep, id_unlinked)) {
9631 		if ((inodedep->id_state & UNLINKLINKS) != UNLINKLINKS)
9632 			panic("handle_written_sbdep: Bad inodedep %p (0x%X)",
9633 			    inodedep, inodedep->id_state);
9634 		if (inodedep->id_state & UNLINKONLIST)
9635 			break;
9636 		inodedep->id_state |= DEPCOMPLETE | UNLINKONLIST;
9637 	}
9638 
9639 	return (0);
9640 }
9641 
9642 /*
9643  * Mark an inodedep as unlinked and insert it into the in-memory unlinked list.
9644  */
9645 static void
9646 unlinked_inodedep(mp, inodedep)
9647 	struct mount *mp;
9648 	struct inodedep *inodedep;
9649 {
9650 	struct ufsmount *ump;
9651 
9652 	ump = VFSTOUFS(mp);
9653 	LOCK_OWNED(ump);
9654 	if (MOUNTEDSUJ(mp) == 0)
9655 		return;
9656 	ump->um_fs->fs_fmod = 1;
9657 	if (inodedep->id_state & UNLINKED)
9658 		panic("unlinked_inodedep: %p already unlinked\n", inodedep);
9659 	inodedep->id_state |= UNLINKED;
9660 	TAILQ_INSERT_HEAD(&ump->softdep_unlinked, inodedep, id_unlinked);
9661 }
9662 
9663 /*
9664  * Remove an inodedep from the unlinked inodedep list.  This may require
9665  * disk writes if the inode has made it that far.
9666  */
9667 static void
9668 clear_unlinked_inodedep(inodedep)
9669 	struct inodedep *inodedep;
9670 {
9671 	struct ufs2_dinode *dip;
9672 	struct ufsmount *ump;
9673 	struct inodedep *idp;
9674 	struct inodedep *idn;
9675 	struct fs *fs, *bpfs;
9676 	struct buf *bp;
9677 	ino_t ino;
9678 	ino_t nino;
9679 	ino_t pino;
9680 	int error;
9681 
9682 	ump = VFSTOUFS(inodedep->id_list.wk_mp);
9683 	fs = ump->um_fs;
9684 	ino = inodedep->id_ino;
9685 	error = 0;
9686 	for (;;) {
9687 		LOCK_OWNED(ump);
9688 		KASSERT((inodedep->id_state & UNLINKED) != 0,
9689 		    ("clear_unlinked_inodedep: inodedep %p not unlinked",
9690 		    inodedep));
9691 		/*
9692 		 * If nothing has yet been written simply remove us from
9693 		 * the in memory list and return.  This is the most common
9694 		 * case where handle_workitem_remove() loses the final
9695 		 * reference.
9696 		 */
9697 		if ((inodedep->id_state & UNLINKLINKS) == 0)
9698 			break;
9699 		/*
9700 		 * If we have a NEXT pointer and no PREV pointer we can simply
9701 		 * clear NEXT's PREV and remove ourselves from the list.  Be
9702 		 * careful not to clear PREV if the superblock points at
9703 		 * next as well.
9704 		 */
9705 		idn = TAILQ_NEXT(inodedep, id_unlinked);
9706 		if ((inodedep->id_state & UNLINKLINKS) == UNLINKNEXT) {
9707 			if (idn && fs->fs_sujfree != idn->id_ino)
9708 				idn->id_state &= ~UNLINKPREV;
9709 			break;
9710 		}
9711 		/*
9712 		 * Here we have an inodedep which is actually linked into
9713 		 * the list.  We must remove it by forcing a write to the
9714 		 * link before us, whether it be the superblock or an inode.
9715 		 * Unfortunately the list may change while we're waiting
9716 		 * on the buf lock for either resource so we must loop until
9717 		 * we lock the right one.  If both the superblock and an
9718 		 * inode point to this inode we must clear the inode first
9719 		 * followed by the superblock.
9720 		 */
9721 		idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked);
9722 		pino = 0;
9723 		if (idp && (idp->id_state & UNLINKNEXT))
9724 			pino = idp->id_ino;
9725 		FREE_LOCK(ump);
9726 		if (pino == 0) {
9727 			bp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc),
9728 			    (int)fs->fs_sbsize, 0, 0, 0);
9729 		} else {
9730 			error = bread(ump->um_devvp,
9731 			    fsbtodb(fs, ino_to_fsba(fs, pino)),
9732 			    (int)fs->fs_bsize, NOCRED, &bp);
9733 			if (error)
9734 				brelse(bp);
9735 		}
9736 		ACQUIRE_LOCK(ump);
9737 		if (error)
9738 			break;
9739 		/* If the list has changed restart the loop. */
9740 		idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked);
9741 		nino = 0;
9742 		if (idp && (idp->id_state & UNLINKNEXT))
9743 			nino = idp->id_ino;
9744 		if (nino != pino ||
9745 		    (inodedep->id_state & UNLINKPREV) != UNLINKPREV) {
9746 			FREE_LOCK(ump);
9747 			brelse(bp);
9748 			ACQUIRE_LOCK(ump);
9749 			continue;
9750 		}
9751 		nino = 0;
9752 		idn = TAILQ_NEXT(inodedep, id_unlinked);
9753 		if (idn)
9754 			nino = idn->id_ino;
9755 		/*
9756 		 * Remove us from the in memory list.  After this we cannot
9757 		 * access the inodedep.
9758 		 */
9759 		KASSERT((inodedep->id_state & UNLINKED) != 0,
9760 		    ("clear_unlinked_inodedep: inodedep %p not unlinked",
9761 		    inodedep));
9762 		inodedep->id_state &= ~(UNLINKED | UNLINKLINKS | UNLINKONLIST);
9763 		TAILQ_REMOVE(&ump->softdep_unlinked, inodedep, id_unlinked);
9764 		FREE_LOCK(ump);
9765 		/*
9766 		 * The predecessor's next pointer is manually updated here
9767 		 * so that the NEXT flag is never cleared for an element
9768 		 * that is in the list.
9769 		 */
9770 		if (pino == 0) {
9771 			bcopy((caddr_t)fs, bp->b_data, (u_int)fs->fs_sbsize);
9772 			bpfs = (struct fs *)bp->b_data;
9773 			ffs_oldfscompat_write(bpfs, ump);
9774 			softdep_setup_sbupdate(ump, bpfs, bp);
9775 			/*
9776 			 * Because we may have made changes to the superblock,
9777 			 * we need to recompute its check-hash.
9778 			 */
9779 			bpfs->fs_ckhash = ffs_calc_sbhash(bpfs);
9780 		} else if (fs->fs_magic == FS_UFS1_MAGIC) {
9781 			((struct ufs1_dinode *)bp->b_data +
9782 			    ino_to_fsbo(fs, pino))->di_freelink = nino;
9783 		} else {
9784 			dip = (struct ufs2_dinode *)bp->b_data +
9785 			    ino_to_fsbo(fs, pino);
9786 			dip->di_freelink = nino;
9787 			ffs_update_dinode_ckhash(fs, dip);
9788 		}
9789 		/*
9790 		 * If the bwrite fails we have no recourse to recover.  The
9791 		 * filesystem is corrupted already.
9792 		 */
9793 		bwrite(bp);
9794 		ACQUIRE_LOCK(ump);
9795 		/*
9796 		 * If the superblock pointer still needs to be cleared force
9797 		 * a write here.
9798 		 */
9799 		if (fs->fs_sujfree == ino) {
9800 			FREE_LOCK(ump);
9801 			bp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc),
9802 			    (int)fs->fs_sbsize, 0, 0, 0);
9803 			bcopy((caddr_t)fs, bp->b_data, (u_int)fs->fs_sbsize);
9804 			bpfs = (struct fs *)bp->b_data;
9805 			ffs_oldfscompat_write(bpfs, ump);
9806 			softdep_setup_sbupdate(ump, bpfs, bp);
9807 			/*
9808 			 * Because we may have made changes to the superblock,
9809 			 * we need to recompute its check-hash.
9810 			 */
9811 			bpfs->fs_ckhash = ffs_calc_sbhash(bpfs);
9812 			bwrite(bp);
9813 			ACQUIRE_LOCK(ump);
9814 		}
9815 
9816 		if (fs->fs_sujfree != ino)
9817 			return;
9818 		panic("clear_unlinked_inodedep: Failed to clear free head");
9819 	}
9820 	if (inodedep->id_ino == fs->fs_sujfree)
9821 		panic("clear_unlinked_inodedep: Freeing head of free list");
9822 	inodedep->id_state &= ~(UNLINKED | UNLINKLINKS | UNLINKONLIST);
9823 	TAILQ_REMOVE(&ump->softdep_unlinked, inodedep, id_unlinked);
9824 	return;
9825 }
9826 
9827 /*
9828  * This workitem decrements the inode's link count.
9829  * If the link count reaches zero, the file is removed.
9830  */
9831 static int
9832 handle_workitem_remove(dirrem, flags)
9833 	struct dirrem *dirrem;
9834 	int flags;
9835 {
9836 	struct inodedep *inodedep;
9837 	struct workhead dotdotwk;
9838 	struct worklist *wk;
9839 	struct ufsmount *ump;
9840 	struct mount *mp;
9841 	struct vnode *vp;
9842 	struct inode *ip;
9843 	ino_t oldinum;
9844 
9845 	if (dirrem->dm_state & ONWORKLIST)
9846 		panic("handle_workitem_remove: dirrem %p still on worklist",
9847 		    dirrem);
9848 	oldinum = dirrem->dm_oldinum;
9849 	mp = dirrem->dm_list.wk_mp;
9850 	ump = VFSTOUFS(mp);
9851 	flags |= LK_EXCLUSIVE;
9852 	if (ffs_vgetf(mp, oldinum, flags, &vp, FFSV_FORCEINSMQ) != 0)
9853 		return (EBUSY);
9854 	ip = VTOI(vp);
9855 	MPASS(ip->i_mode != 0);
9856 	ACQUIRE_LOCK(ump);
9857 	if ((inodedep_lookup(mp, oldinum, 0, &inodedep)) == 0)
9858 		panic("handle_workitem_remove: lost inodedep");
9859 	if (dirrem->dm_state & ONDEPLIST)
9860 		LIST_REMOVE(dirrem, dm_inonext);
9861 	KASSERT(LIST_EMPTY(&dirrem->dm_jremrefhd),
9862 	    ("handle_workitem_remove:  Journal entries not written."));
9863 
9864 	/*
9865 	 * Move all dependencies waiting on the remove to complete
9866 	 * from the dirrem to the inode inowait list to be completed
9867 	 * after the inode has been updated and written to disk.
9868 	 *
9869 	 * Any marked MKDIR_PARENT are saved to be completed when the
9870 	 * dotdot ref is removed unless DIRCHG is specified.  For
9871 	 * directory change operations there will be no further
9872 	 * directory writes and the jsegdeps need to be moved along
9873 	 * with the rest to be completed when the inode is free or
9874 	 * stable in the inode free list.
9875 	 */
9876 	LIST_INIT(&dotdotwk);
9877 	while ((wk = LIST_FIRST(&dirrem->dm_jwork)) != NULL) {
9878 		WORKLIST_REMOVE(wk);
9879 		if ((dirrem->dm_state & DIRCHG) == 0 &&
9880 		    wk->wk_state & MKDIR_PARENT) {
9881 			wk->wk_state &= ~MKDIR_PARENT;
9882 			WORKLIST_INSERT(&dotdotwk, wk);
9883 			continue;
9884 		}
9885 		WORKLIST_INSERT(&inodedep->id_inowait, wk);
9886 	}
9887 	LIST_SWAP(&dirrem->dm_jwork, &dotdotwk, worklist, wk_list);
9888 	/*
9889 	 * Normal file deletion.
9890 	 */
9891 	if ((dirrem->dm_state & RMDIR) == 0) {
9892 		ip->i_nlink--;
9893 		KASSERT(ip->i_nlink >= 0, ("handle_workitem_remove: file ino "
9894 		    "%ju negative i_nlink %d", (intmax_t)ip->i_number,
9895 		    ip->i_nlink));
9896 		DIP_SET(ip, i_nlink, ip->i_nlink);
9897 		UFS_INODE_SET_FLAG(ip, IN_CHANGE);
9898 		if (ip->i_nlink < ip->i_effnlink)
9899 			panic("handle_workitem_remove: bad file delta");
9900 		if (ip->i_nlink == 0)
9901 			unlinked_inodedep(mp, inodedep);
9902 		inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
9903 		KASSERT(LIST_EMPTY(&dirrem->dm_jwork),
9904 		    ("handle_workitem_remove: worklist not empty. %s",
9905 		    TYPENAME(LIST_FIRST(&dirrem->dm_jwork)->wk_type)));
9906 		WORKITEM_FREE(dirrem, D_DIRREM);
9907 		FREE_LOCK(ump);
9908 		goto out;
9909 	}
9910 	/*
9911 	 * Directory deletion. Decrement reference count for both the
9912 	 * just deleted parent directory entry and the reference for ".".
9913 	 * Arrange to have the reference count on the parent decremented
9914 	 * to account for the loss of "..".
9915 	 */
9916 	ip->i_nlink -= 2;
9917 	KASSERT(ip->i_nlink >= 0, ("handle_workitem_remove: directory ino "
9918 	    "%ju negative i_nlink %d", (intmax_t)ip->i_number, ip->i_nlink));
9919 	DIP_SET(ip, i_nlink, ip->i_nlink);
9920 	UFS_INODE_SET_FLAG(ip, IN_CHANGE);
9921 	if (ip->i_nlink < ip->i_effnlink)
9922 		panic("handle_workitem_remove: bad dir delta");
9923 	if (ip->i_nlink == 0)
9924 		unlinked_inodedep(mp, inodedep);
9925 	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
9926 	/*
9927 	 * Rename a directory to a new parent. Since, we are both deleting
9928 	 * and creating a new directory entry, the link count on the new
9929 	 * directory should not change. Thus we skip the followup dirrem.
9930 	 */
9931 	if (dirrem->dm_state & DIRCHG) {
9932 		KASSERT(LIST_EMPTY(&dirrem->dm_jwork),
9933 		    ("handle_workitem_remove: DIRCHG and worklist not empty."));
9934 		WORKITEM_FREE(dirrem, D_DIRREM);
9935 		FREE_LOCK(ump);
9936 		goto out;
9937 	}
9938 	dirrem->dm_state = ONDEPLIST;
9939 	dirrem->dm_oldinum = dirrem->dm_dirinum;
9940 	/*
9941 	 * Place the dirrem on the parent's diremhd list.
9942 	 */
9943 	if (inodedep_lookup(mp, dirrem->dm_oldinum, 0, &inodedep) == 0)
9944 		panic("handle_workitem_remove: lost dir inodedep");
9945 	LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext);
9946 	/*
9947 	 * If the allocated inode has never been written to disk, then
9948 	 * the on-disk inode is zero'ed and we can remove the file
9949 	 * immediately.  When journaling if the inode has been marked
9950 	 * unlinked and not DEPCOMPLETE we know it can never be written.
9951 	 */
9952 	inodedep_lookup(mp, oldinum, 0, &inodedep);
9953 	if (inodedep == NULL ||
9954 	    (inodedep->id_state & (DEPCOMPLETE | UNLINKED)) == UNLINKED ||
9955 	    check_inode_unwritten(inodedep)) {
9956 		FREE_LOCK(ump);
9957 		vput(vp);
9958 		return handle_workitem_remove(dirrem, flags);
9959 	}
9960 	WORKLIST_INSERT(&inodedep->id_inowait, &dirrem->dm_list);
9961 	FREE_LOCK(ump);
9962 	UFS_INODE_SET_FLAG(ip, IN_CHANGE);
9963 out:
9964 	ffs_update(vp, 0);
9965 	vput(vp);
9966 	return (0);
9967 }
9968 
9969 /*
9970  * Inode de-allocation dependencies.
9971  *
9972  * When an inode's link count is reduced to zero, it can be de-allocated. We
9973  * found it convenient to postpone de-allocation until after the inode is
9974  * written to disk with its new link count (zero).  At this point, all of the
9975  * on-disk inode's block pointers are nullified and, with careful dependency
9976  * list ordering, all dependencies related to the inode will be satisfied and
9977  * the corresponding dependency structures de-allocated.  So, if/when the
9978  * inode is reused, there will be no mixing of old dependencies with new
9979  * ones.  This artificial dependency is set up by the block de-allocation
9980  * procedure above (softdep_setup_freeblocks) and completed by the
9981  * following procedure.
9982  */
9983 static void
9984 handle_workitem_freefile(freefile)
9985 	struct freefile *freefile;
9986 {
9987 	struct workhead wkhd;
9988 	struct fs *fs;
9989 	struct ufsmount *ump;
9990 	int error;
9991 #ifdef INVARIANTS
9992 	struct inodedep *idp;
9993 #endif
9994 
9995 	ump = VFSTOUFS(freefile->fx_list.wk_mp);
9996 	fs = ump->um_fs;
9997 #ifdef INVARIANTS
9998 	ACQUIRE_LOCK(ump);
9999 	error = inodedep_lookup(UFSTOVFS(ump), freefile->fx_oldinum, 0, &idp);
10000 	FREE_LOCK(ump);
10001 	if (error)
10002 		panic("handle_workitem_freefile: inodedep %p survived", idp);
10003 #endif
10004 	UFS_LOCK(ump);
10005 	fs->fs_pendinginodes -= 1;
10006 	UFS_UNLOCK(ump);
10007 	LIST_INIT(&wkhd);
10008 	LIST_SWAP(&freefile->fx_jwork, &wkhd, worklist, wk_list);
10009 	if ((error = ffs_freefile(ump, fs, freefile->fx_devvp,
10010 	    freefile->fx_oldinum, freefile->fx_mode, &wkhd)) != 0)
10011 		softdep_error("handle_workitem_freefile", error);
10012 	ACQUIRE_LOCK(ump);
10013 	WORKITEM_FREE(freefile, D_FREEFILE);
10014 	FREE_LOCK(ump);
10015 }
10016 
10017 
10018 /*
10019  * Helper function which unlinks marker element from work list and returns
10020  * the next element on the list.
10021  */
10022 static __inline struct worklist *
10023 markernext(struct worklist *marker)
10024 {
10025 	struct worklist *next;
10026 
10027 	next = LIST_NEXT(marker, wk_list);
10028 	LIST_REMOVE(marker, wk_list);
10029 	return next;
10030 }
10031 
10032 /*
10033  * Disk writes.
10034  *
10035  * The dependency structures constructed above are most actively used when file
10036  * system blocks are written to disk.  No constraints are placed on when a
10037  * block can be written, but unsatisfied update dependencies are made safe by
10038  * modifying (or replacing) the source memory for the duration of the disk
10039  * write.  When the disk write completes, the memory block is again brought
10040  * up-to-date.
10041  *
10042  * In-core inode structure reclamation.
10043  *
10044  * Because there are a finite number of "in-core" inode structures, they are
10045  * reused regularly.  By transferring all inode-related dependencies to the
10046  * in-memory inode block and indexing them separately (via "inodedep"s), we
10047  * can allow "in-core" inode structures to be reused at any time and avoid
10048  * any increase in contention.
10049  *
10050  * Called just before entering the device driver to initiate a new disk I/O.
10051  * The buffer must be locked, thus, no I/O completion operations can occur
10052  * while we are manipulating its associated dependencies.
10053  */
10054 static void
10055 softdep_disk_io_initiation(bp)
10056 	struct buf *bp;		/* structure describing disk write to occur */
10057 {
10058 	struct worklist *wk;
10059 	struct worklist marker;
10060 	struct inodedep *inodedep;
10061 	struct freeblks *freeblks;
10062 	struct jblkdep *jblkdep;
10063 	struct newblk *newblk;
10064 	struct ufsmount *ump;
10065 
10066 	/*
10067 	 * We only care about write operations. There should never
10068 	 * be dependencies for reads.
10069 	 */
10070 	if (bp->b_iocmd != BIO_WRITE)
10071 		panic("softdep_disk_io_initiation: not write");
10072 
10073 	if (bp->b_vflags & BV_BKGRDINPROG)
10074 		panic("softdep_disk_io_initiation: Writing buffer with "
10075 		    "background write in progress: %p", bp);
10076 
10077 	ump = softdep_bp_to_mp(bp);
10078 	if (ump == NULL)
10079 		return;
10080 
10081 	marker.wk_type = D_LAST + 1;	/* Not a normal workitem */
10082 	PHOLD(curproc);			/* Don't swap out kernel stack */
10083 	ACQUIRE_LOCK(ump);
10084 	/*
10085 	 * Do any necessary pre-I/O processing.
10086 	 */
10087 	for (wk = LIST_FIRST(&bp->b_dep); wk != NULL;
10088 	     wk = markernext(&marker)) {
10089 		LIST_INSERT_AFTER(wk, &marker, wk_list);
10090 		switch (wk->wk_type) {
10091 
10092 		case D_PAGEDEP:
10093 			initiate_write_filepage(WK_PAGEDEP(wk), bp);
10094 			continue;
10095 
10096 		case D_INODEDEP:
10097 			inodedep = WK_INODEDEP(wk);
10098 			if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC)
10099 				initiate_write_inodeblock_ufs1(inodedep, bp);
10100 			else
10101 				initiate_write_inodeblock_ufs2(inodedep, bp);
10102 			continue;
10103 
10104 		case D_INDIRDEP:
10105 			initiate_write_indirdep(WK_INDIRDEP(wk), bp);
10106 			continue;
10107 
10108 		case D_BMSAFEMAP:
10109 			initiate_write_bmsafemap(WK_BMSAFEMAP(wk), bp);
10110 			continue;
10111 
10112 		case D_JSEG:
10113 			WK_JSEG(wk)->js_buf = NULL;
10114 			continue;
10115 
10116 		case D_FREEBLKS:
10117 			freeblks = WK_FREEBLKS(wk);
10118 			jblkdep = LIST_FIRST(&freeblks->fb_jblkdephd);
10119 			/*
10120 			 * We have to wait for the freeblks to be journaled
10121 			 * before we can write an inodeblock with updated
10122 			 * pointers.  Be careful to arrange the marker so
10123 			 * we revisit the freeblks if it's not removed by
10124 			 * the first jwait().
10125 			 */
10126 			if (jblkdep != NULL) {
10127 				LIST_REMOVE(&marker, wk_list);
10128 				LIST_INSERT_BEFORE(wk, &marker, wk_list);
10129 				jwait(&jblkdep->jb_list, MNT_WAIT);
10130 			}
10131 			continue;
10132 		case D_ALLOCDIRECT:
10133 		case D_ALLOCINDIR:
10134 			/*
10135 			 * We have to wait for the jnewblk to be journaled
10136 			 * before we can write to a block if the contents
10137 			 * may be confused with an earlier file's indirect
10138 			 * at recovery time.  Handle the marker as described
10139 			 * above.
10140 			 */
10141 			newblk = WK_NEWBLK(wk);
10142 			if (newblk->nb_jnewblk != NULL &&
10143 			    indirblk_lookup(newblk->nb_list.wk_mp,
10144 			    newblk->nb_newblkno)) {
10145 				LIST_REMOVE(&marker, wk_list);
10146 				LIST_INSERT_BEFORE(wk, &marker, wk_list);
10147 				jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT);
10148 			}
10149 			continue;
10150 
10151 		case D_SBDEP:
10152 			initiate_write_sbdep(WK_SBDEP(wk));
10153 			continue;
10154 
10155 		case D_MKDIR:
10156 		case D_FREEWORK:
10157 		case D_FREEDEP:
10158 		case D_JSEGDEP:
10159 			continue;
10160 
10161 		default:
10162 			panic("handle_disk_io_initiation: Unexpected type %s",
10163 			    TYPENAME(wk->wk_type));
10164 			/* NOTREACHED */
10165 		}
10166 	}
10167 	FREE_LOCK(ump);
10168 	PRELE(curproc);			/* Allow swapout of kernel stack */
10169 }
10170 
10171 /*
10172  * Called from within the procedure above to deal with unsatisfied
10173  * allocation dependencies in a directory. The buffer must be locked,
10174  * thus, no I/O completion operations can occur while we are
10175  * manipulating its associated dependencies.
10176  */
10177 static void
10178 initiate_write_filepage(pagedep, bp)
10179 	struct pagedep *pagedep;
10180 	struct buf *bp;
10181 {
10182 	struct jremref *jremref;
10183 	struct jmvref *jmvref;
10184 	struct dirrem *dirrem;
10185 	struct diradd *dap;
10186 	struct direct *ep;
10187 	int i;
10188 
10189 	if (pagedep->pd_state & IOSTARTED) {
10190 		/*
10191 		 * This can only happen if there is a driver that does not
10192 		 * understand chaining. Here biodone will reissue the call
10193 		 * to strategy for the incomplete buffers.
10194 		 */
10195 		printf("initiate_write_filepage: already started\n");
10196 		return;
10197 	}
10198 	pagedep->pd_state |= IOSTARTED;
10199 	/*
10200 	 * Wait for all journal remove dependencies to hit the disk.
10201 	 * We can not allow any potentially conflicting directory adds
10202 	 * to be visible before removes and rollback is too difficult.
10203 	 * The per-filesystem lock may be dropped and re-acquired, however
10204 	 * we hold the buf locked so the dependency can not go away.
10205 	 */
10206 	LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next)
10207 		while ((jremref = LIST_FIRST(&dirrem->dm_jremrefhd)) != NULL)
10208 			jwait(&jremref->jr_list, MNT_WAIT);
10209 	while ((jmvref = LIST_FIRST(&pagedep->pd_jmvrefhd)) != NULL)
10210 		jwait(&jmvref->jm_list, MNT_WAIT);
10211 	for (i = 0; i < DAHASHSZ; i++) {
10212 		LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) {
10213 			ep = (struct direct *)
10214 			    ((char *)bp->b_data + dap->da_offset);
10215 			if (ep->d_ino != dap->da_newinum)
10216 				panic("%s: dir inum %ju != new %ju",
10217 				    "initiate_write_filepage",
10218 				    (uintmax_t)ep->d_ino,
10219 				    (uintmax_t)dap->da_newinum);
10220 			if (dap->da_state & DIRCHG)
10221 				ep->d_ino = dap->da_previous->dm_oldinum;
10222 			else
10223 				ep->d_ino = 0;
10224 			dap->da_state &= ~ATTACHED;
10225 			dap->da_state |= UNDONE;
10226 		}
10227 	}
10228 }
10229 
10230 /*
10231  * Version of initiate_write_inodeblock that handles UFS1 dinodes.
10232  * Note that any bug fixes made to this routine must be done in the
10233  * version found below.
10234  *
10235  * Called from within the procedure above to deal with unsatisfied
10236  * allocation dependencies in an inodeblock. The buffer must be
10237  * locked, thus, no I/O completion operations can occur while we
10238  * are manipulating its associated dependencies.
10239  */
10240 static void
10241 initiate_write_inodeblock_ufs1(inodedep, bp)
10242 	struct inodedep *inodedep;
10243 	struct buf *bp;			/* The inode block */
10244 {
10245 	struct allocdirect *adp, *lastadp;
10246 	struct ufs1_dinode *dp;
10247 	struct ufs1_dinode *sip;
10248 	struct inoref *inoref;
10249 	struct ufsmount *ump;
10250 	struct fs *fs;
10251 	ufs_lbn_t i;
10252 #ifdef INVARIANTS
10253 	ufs_lbn_t prevlbn = 0;
10254 #endif
10255 	int deplist;
10256 
10257 	if (inodedep->id_state & IOSTARTED)
10258 		panic("initiate_write_inodeblock_ufs1: already started");
10259 	inodedep->id_state |= IOSTARTED;
10260 	fs = inodedep->id_fs;
10261 	ump = VFSTOUFS(inodedep->id_list.wk_mp);
10262 	LOCK_OWNED(ump);
10263 	dp = (struct ufs1_dinode *)bp->b_data +
10264 	    ino_to_fsbo(fs, inodedep->id_ino);
10265 
10266 	/*
10267 	 * If we're on the unlinked list but have not yet written our
10268 	 * next pointer initialize it here.
10269 	 */
10270 	if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) {
10271 		struct inodedep *inon;
10272 
10273 		inon = TAILQ_NEXT(inodedep, id_unlinked);
10274 		dp->di_freelink = inon ? inon->id_ino : 0;
10275 	}
10276 	/*
10277 	 * If the bitmap is not yet written, then the allocated
10278 	 * inode cannot be written to disk.
10279 	 */
10280 	if ((inodedep->id_state & DEPCOMPLETE) == 0) {
10281 		if (inodedep->id_savedino1 != NULL)
10282 			panic("initiate_write_inodeblock_ufs1: I/O underway");
10283 		FREE_LOCK(ump);
10284 		sip = malloc(sizeof(struct ufs1_dinode),
10285 		    M_SAVEDINO, M_SOFTDEP_FLAGS);
10286 		ACQUIRE_LOCK(ump);
10287 		inodedep->id_savedino1 = sip;
10288 		*inodedep->id_savedino1 = *dp;
10289 		bzero((caddr_t)dp, sizeof(struct ufs1_dinode));
10290 		dp->di_gen = inodedep->id_savedino1->di_gen;
10291 		dp->di_freelink = inodedep->id_savedino1->di_freelink;
10292 		return;
10293 	}
10294 	/*
10295 	 * If no dependencies, then there is nothing to roll back.
10296 	 */
10297 	inodedep->id_savedsize = dp->di_size;
10298 	inodedep->id_savedextsize = 0;
10299 	inodedep->id_savednlink = dp->di_nlink;
10300 	if (TAILQ_EMPTY(&inodedep->id_inoupdt) &&
10301 	    TAILQ_EMPTY(&inodedep->id_inoreflst))
10302 		return;
10303 	/*
10304 	 * Revert the link count to that of the first unwritten journal entry.
10305 	 */
10306 	inoref = TAILQ_FIRST(&inodedep->id_inoreflst);
10307 	if (inoref)
10308 		dp->di_nlink = inoref->if_nlink;
10309 	/*
10310 	 * Set the dependencies to busy.
10311 	 */
10312 	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
10313 	     adp = TAILQ_NEXT(adp, ad_next)) {
10314 #ifdef INVARIANTS
10315 		if (deplist != 0 && prevlbn >= adp->ad_offset)
10316 			panic("softdep_write_inodeblock: lbn order");
10317 		prevlbn = adp->ad_offset;
10318 		if (adp->ad_offset < UFS_NDADDR &&
10319 		    dp->di_db[adp->ad_offset] != adp->ad_newblkno)
10320 			panic("initiate_write_inodeblock_ufs1: "
10321 			    "direct pointer #%jd mismatch %d != %jd",
10322 			    (intmax_t)adp->ad_offset,
10323 			    dp->di_db[adp->ad_offset],
10324 			    (intmax_t)adp->ad_newblkno);
10325 		if (adp->ad_offset >= UFS_NDADDR &&
10326 		    dp->di_ib[adp->ad_offset - UFS_NDADDR] != adp->ad_newblkno)
10327 			panic("initiate_write_inodeblock_ufs1: "
10328 			    "indirect pointer #%jd mismatch %d != %jd",
10329 			    (intmax_t)adp->ad_offset - UFS_NDADDR,
10330 			    dp->di_ib[adp->ad_offset - UFS_NDADDR],
10331 			    (intmax_t)adp->ad_newblkno);
10332 		deplist |= 1 << adp->ad_offset;
10333 		if ((adp->ad_state & ATTACHED) == 0)
10334 			panic("initiate_write_inodeblock_ufs1: "
10335 			    "Unknown state 0x%x", adp->ad_state);
10336 #endif /* INVARIANTS */
10337 		adp->ad_state &= ~ATTACHED;
10338 		adp->ad_state |= UNDONE;
10339 	}
10340 	/*
10341 	 * The on-disk inode cannot claim to be any larger than the last
10342 	 * fragment that has been written. Otherwise, the on-disk inode
10343 	 * might have fragments that were not the last block in the file
10344 	 * which would corrupt the filesystem.
10345 	 */
10346 	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
10347 	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
10348 		if (adp->ad_offset >= UFS_NDADDR)
10349 			break;
10350 		dp->di_db[adp->ad_offset] = adp->ad_oldblkno;
10351 		/* keep going until hitting a rollback to a frag */
10352 		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
10353 			continue;
10354 		dp->di_size = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize;
10355 		for (i = adp->ad_offset + 1; i < UFS_NDADDR; i++) {
10356 #ifdef INVARIANTS
10357 			if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0)
10358 				panic("initiate_write_inodeblock_ufs1: "
10359 				    "lost dep1");
10360 #endif /* INVARIANTS */
10361 			dp->di_db[i] = 0;
10362 		}
10363 		for (i = 0; i < UFS_NIADDR; i++) {
10364 #ifdef INVARIANTS
10365 			if (dp->di_ib[i] != 0 &&
10366 			    (deplist & ((1 << UFS_NDADDR) << i)) == 0)
10367 				panic("initiate_write_inodeblock_ufs1: "
10368 				    "lost dep2");
10369 #endif /* INVARIANTS */
10370 			dp->di_ib[i] = 0;
10371 		}
10372 		return;
10373 	}
10374 	/*
10375 	 * If we have zero'ed out the last allocated block of the file,
10376 	 * roll back the size to the last currently allocated block.
10377 	 * We know that this last allocated block is a full-sized as
10378 	 * we already checked for fragments in the loop above.
10379 	 */
10380 	if (lastadp != NULL &&
10381 	    dp->di_size <= (lastadp->ad_offset + 1) * fs->fs_bsize) {
10382 		for (i = lastadp->ad_offset; i >= 0; i--)
10383 			if (dp->di_db[i] != 0)
10384 				break;
10385 		dp->di_size = (i + 1) * fs->fs_bsize;
10386 	}
10387 	/*
10388 	 * The only dependencies are for indirect blocks.
10389 	 *
10390 	 * The file size for indirect block additions is not guaranteed.
10391 	 * Such a guarantee would be non-trivial to achieve. The conventional
10392 	 * synchronous write implementation also does not make this guarantee.
10393 	 * Fsck should catch and fix discrepancies. Arguably, the file size
10394 	 * can be over-estimated without destroying integrity when the file
10395 	 * moves into the indirect blocks (i.e., is large). If we want to
10396 	 * postpone fsck, we are stuck with this argument.
10397 	 */
10398 	for (; adp; adp = TAILQ_NEXT(adp, ad_next))
10399 		dp->di_ib[adp->ad_offset - UFS_NDADDR] = 0;
10400 }
10401 
10402 /*
10403  * Version of initiate_write_inodeblock that handles UFS2 dinodes.
10404  * Note that any bug fixes made to this routine must be done in the
10405  * version found above.
10406  *
10407  * Called from within the procedure above to deal with unsatisfied
10408  * allocation dependencies in an inodeblock. The buffer must be
10409  * locked, thus, no I/O completion operations can occur while we
10410  * are manipulating its associated dependencies.
10411  */
10412 static void
10413 initiate_write_inodeblock_ufs2(inodedep, bp)
10414 	struct inodedep *inodedep;
10415 	struct buf *bp;			/* The inode block */
10416 {
10417 	struct allocdirect *adp, *lastadp;
10418 	struct ufs2_dinode *dp;
10419 	struct ufs2_dinode *sip;
10420 	struct inoref *inoref;
10421 	struct ufsmount *ump;
10422 	struct fs *fs;
10423 	ufs_lbn_t i;
10424 #ifdef INVARIANTS
10425 	ufs_lbn_t prevlbn = 0;
10426 #endif
10427 	int deplist;
10428 
10429 	if (inodedep->id_state & IOSTARTED)
10430 		panic("initiate_write_inodeblock_ufs2: already started");
10431 	inodedep->id_state |= IOSTARTED;
10432 	fs = inodedep->id_fs;
10433 	ump = VFSTOUFS(inodedep->id_list.wk_mp);
10434 	LOCK_OWNED(ump);
10435 	dp = (struct ufs2_dinode *)bp->b_data +
10436 	    ino_to_fsbo(fs, inodedep->id_ino);
10437 
10438 	/*
10439 	 * If we're on the unlinked list but have not yet written our
10440 	 * next pointer initialize it here.
10441 	 */
10442 	if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) {
10443 		struct inodedep *inon;
10444 
10445 		inon = TAILQ_NEXT(inodedep, id_unlinked);
10446 		dp->di_freelink = inon ? inon->id_ino : 0;
10447 		ffs_update_dinode_ckhash(fs, dp);
10448 	}
10449 	/*
10450 	 * If the bitmap is not yet written, then the allocated
10451 	 * inode cannot be written to disk.
10452 	 */
10453 	if ((inodedep->id_state & DEPCOMPLETE) == 0) {
10454 		if (inodedep->id_savedino2 != NULL)
10455 			panic("initiate_write_inodeblock_ufs2: I/O underway");
10456 		FREE_LOCK(ump);
10457 		sip = malloc(sizeof(struct ufs2_dinode),
10458 		    M_SAVEDINO, M_SOFTDEP_FLAGS);
10459 		ACQUIRE_LOCK(ump);
10460 		inodedep->id_savedino2 = sip;
10461 		*inodedep->id_savedino2 = *dp;
10462 		bzero((caddr_t)dp, sizeof(struct ufs2_dinode));
10463 		dp->di_gen = inodedep->id_savedino2->di_gen;
10464 		dp->di_freelink = inodedep->id_savedino2->di_freelink;
10465 		return;
10466 	}
10467 	/*
10468 	 * If no dependencies, then there is nothing to roll back.
10469 	 */
10470 	inodedep->id_savedsize = dp->di_size;
10471 	inodedep->id_savedextsize = dp->di_extsize;
10472 	inodedep->id_savednlink = dp->di_nlink;
10473 	if (TAILQ_EMPTY(&inodedep->id_inoupdt) &&
10474 	    TAILQ_EMPTY(&inodedep->id_extupdt) &&
10475 	    TAILQ_EMPTY(&inodedep->id_inoreflst))
10476 		return;
10477 	/*
10478 	 * Revert the link count to that of the first unwritten journal entry.
10479 	 */
10480 	inoref = TAILQ_FIRST(&inodedep->id_inoreflst);
10481 	if (inoref)
10482 		dp->di_nlink = inoref->if_nlink;
10483 
10484 	/*
10485 	 * Set the ext data dependencies to busy.
10486 	 */
10487 	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp;
10488 	     adp = TAILQ_NEXT(adp, ad_next)) {
10489 #ifdef INVARIANTS
10490 		if (deplist != 0 && prevlbn >= adp->ad_offset)
10491 			panic("initiate_write_inodeblock_ufs2: lbn order");
10492 		prevlbn = adp->ad_offset;
10493 		if (dp->di_extb[adp->ad_offset] != adp->ad_newblkno)
10494 			panic("initiate_write_inodeblock_ufs2: "
10495 			    "ext pointer #%jd mismatch %jd != %jd",
10496 			    (intmax_t)adp->ad_offset,
10497 			    (intmax_t)dp->di_extb[adp->ad_offset],
10498 			    (intmax_t)adp->ad_newblkno);
10499 		deplist |= 1 << adp->ad_offset;
10500 		if ((adp->ad_state & ATTACHED) == 0)
10501 			panic("initiate_write_inodeblock_ufs2: Unknown "
10502 			    "state 0x%x", adp->ad_state);
10503 #endif /* INVARIANTS */
10504 		adp->ad_state &= ~ATTACHED;
10505 		adp->ad_state |= UNDONE;
10506 	}
10507 	/*
10508 	 * The on-disk inode cannot claim to be any larger than the last
10509 	 * fragment that has been written. Otherwise, the on-disk inode
10510 	 * might have fragments that were not the last block in the ext
10511 	 * data which would corrupt the filesystem.
10512 	 */
10513 	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp;
10514 	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
10515 		dp->di_extb[adp->ad_offset] = adp->ad_oldblkno;
10516 		/* keep going until hitting a rollback to a frag */
10517 		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
10518 			continue;
10519 		dp->di_extsize = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize;
10520 		for (i = adp->ad_offset + 1; i < UFS_NXADDR; i++) {
10521 #ifdef INVARIANTS
10522 			if (dp->di_extb[i] != 0 && (deplist & (1 << i)) == 0)
10523 				panic("initiate_write_inodeblock_ufs2: "
10524 				    "lost dep1");
10525 #endif /* INVARIANTS */
10526 			dp->di_extb[i] = 0;
10527 		}
10528 		lastadp = NULL;
10529 		break;
10530 	}
10531 	/*
10532 	 * If we have zero'ed out the last allocated block of the ext
10533 	 * data, roll back the size to the last currently allocated block.
10534 	 * We know that this last allocated block is a full-sized as
10535 	 * we already checked for fragments in the loop above.
10536 	 */
10537 	if (lastadp != NULL &&
10538 	    dp->di_extsize <= (lastadp->ad_offset + 1) * fs->fs_bsize) {
10539 		for (i = lastadp->ad_offset; i >= 0; i--)
10540 			if (dp->di_extb[i] != 0)
10541 				break;
10542 		dp->di_extsize = (i + 1) * fs->fs_bsize;
10543 	}
10544 	/*
10545 	 * Set the file data dependencies to busy.
10546 	 */
10547 	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
10548 	     adp = TAILQ_NEXT(adp, ad_next)) {
10549 #ifdef INVARIANTS
10550 		if (deplist != 0 && prevlbn >= adp->ad_offset)
10551 			panic("softdep_write_inodeblock: lbn order");
10552 		if ((adp->ad_state & ATTACHED) == 0)
10553 			panic("inodedep %p and adp %p not attached", inodedep, adp);
10554 		prevlbn = adp->ad_offset;
10555 		if (adp->ad_offset < UFS_NDADDR &&
10556 		    dp->di_db[adp->ad_offset] != adp->ad_newblkno)
10557 			panic("initiate_write_inodeblock_ufs2: "
10558 			    "direct pointer #%jd mismatch %jd != %jd",
10559 			    (intmax_t)adp->ad_offset,
10560 			    (intmax_t)dp->di_db[adp->ad_offset],
10561 			    (intmax_t)adp->ad_newblkno);
10562 		if (adp->ad_offset >= UFS_NDADDR &&
10563 		    dp->di_ib[adp->ad_offset - UFS_NDADDR] != adp->ad_newblkno)
10564 			panic("initiate_write_inodeblock_ufs2: "
10565 			    "indirect pointer #%jd mismatch %jd != %jd",
10566 			    (intmax_t)adp->ad_offset - UFS_NDADDR,
10567 			    (intmax_t)dp->di_ib[adp->ad_offset - UFS_NDADDR],
10568 			    (intmax_t)adp->ad_newblkno);
10569 		deplist |= 1 << adp->ad_offset;
10570 		if ((adp->ad_state & ATTACHED) == 0)
10571 			panic("initiate_write_inodeblock_ufs2: Unknown "
10572 			     "state 0x%x", adp->ad_state);
10573 #endif /* INVARIANTS */
10574 		adp->ad_state &= ~ATTACHED;
10575 		adp->ad_state |= UNDONE;
10576 	}
10577 	/*
10578 	 * The on-disk inode cannot claim to be any larger than the last
10579 	 * fragment that has been written. Otherwise, the on-disk inode
10580 	 * might have fragments that were not the last block in the file
10581 	 * which would corrupt the filesystem.
10582 	 */
10583 	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
10584 	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
10585 		if (adp->ad_offset >= UFS_NDADDR)
10586 			break;
10587 		dp->di_db[adp->ad_offset] = adp->ad_oldblkno;
10588 		/* keep going until hitting a rollback to a frag */
10589 		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
10590 			continue;
10591 		dp->di_size = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize;
10592 		for (i = adp->ad_offset + 1; i < UFS_NDADDR; i++) {
10593 #ifdef INVARIANTS
10594 			if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0)
10595 				panic("initiate_write_inodeblock_ufs2: "
10596 				    "lost dep2");
10597 #endif /* INVARIANTS */
10598 			dp->di_db[i] = 0;
10599 		}
10600 		for (i = 0; i < UFS_NIADDR; i++) {
10601 #ifdef INVARIANTS
10602 			if (dp->di_ib[i] != 0 &&
10603 			    (deplist & ((1 << UFS_NDADDR) << i)) == 0)
10604 				panic("initiate_write_inodeblock_ufs2: "
10605 				    "lost dep3");
10606 #endif /* INVARIANTS */
10607 			dp->di_ib[i] = 0;
10608 		}
10609 		ffs_update_dinode_ckhash(fs, dp);
10610 		return;
10611 	}
10612 	/*
10613 	 * If we have zero'ed out the last allocated block of the file,
10614 	 * roll back the size to the last currently allocated block.
10615 	 * We know that this last allocated block is a full-sized as
10616 	 * we already checked for fragments in the loop above.
10617 	 */
10618 	if (lastadp != NULL &&
10619 	    dp->di_size <= (lastadp->ad_offset + 1) * fs->fs_bsize) {
10620 		for (i = lastadp->ad_offset; i >= 0; i--)
10621 			if (dp->di_db[i] != 0)
10622 				break;
10623 		dp->di_size = (i + 1) * fs->fs_bsize;
10624 	}
10625 	/*
10626 	 * The only dependencies are for indirect blocks.
10627 	 *
10628 	 * The file size for indirect block additions is not guaranteed.
10629 	 * Such a guarantee would be non-trivial to achieve. The conventional
10630 	 * synchronous write implementation also does not make this guarantee.
10631 	 * Fsck should catch and fix discrepancies. Arguably, the file size
10632 	 * can be over-estimated without destroying integrity when the file
10633 	 * moves into the indirect blocks (i.e., is large). If we want to
10634 	 * postpone fsck, we are stuck with this argument.
10635 	 */
10636 	for (; adp; adp = TAILQ_NEXT(adp, ad_next))
10637 		dp->di_ib[adp->ad_offset - UFS_NDADDR] = 0;
10638 	ffs_update_dinode_ckhash(fs, dp);
10639 }
10640 
10641 /*
10642  * Cancel an indirdep as a result of truncation.  Release all of the
10643  * children allocindirs and place their journal work on the appropriate
10644  * list.
10645  */
10646 static void
10647 cancel_indirdep(indirdep, bp, freeblks)
10648 	struct indirdep *indirdep;
10649 	struct buf *bp;
10650 	struct freeblks *freeblks;
10651 {
10652 	struct allocindir *aip;
10653 
10654 	/*
10655 	 * None of the indirect pointers will ever be visible,
10656 	 * so they can simply be tossed. GOINGAWAY ensures
10657 	 * that allocated pointers will be saved in the buffer
10658 	 * cache until they are freed. Note that they will
10659 	 * only be able to be found by their physical address
10660 	 * since the inode mapping the logical address will
10661 	 * be gone. The save buffer used for the safe copy
10662 	 * was allocated in setup_allocindir_phase2 using
10663 	 * the physical address so it could be used for this
10664 	 * purpose. Hence we swap the safe copy with the real
10665 	 * copy, allowing the safe copy to be freed and holding
10666 	 * on to the real copy for later use in indir_trunc.
10667 	 */
10668 	if (indirdep->ir_state & GOINGAWAY)
10669 		panic("cancel_indirdep: already gone");
10670 	if ((indirdep->ir_state & DEPCOMPLETE) == 0) {
10671 		indirdep->ir_state |= DEPCOMPLETE;
10672 		LIST_REMOVE(indirdep, ir_next);
10673 	}
10674 	indirdep->ir_state |= GOINGAWAY;
10675 	/*
10676 	 * Pass in bp for blocks still have journal writes
10677 	 * pending so we can cancel them on their own.
10678 	 */
10679 	while ((aip = LIST_FIRST(&indirdep->ir_deplisthd)) != NULL)
10680 		cancel_allocindir(aip, bp, freeblks, 0);
10681 	while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != NULL)
10682 		cancel_allocindir(aip, NULL, freeblks, 0);
10683 	while ((aip = LIST_FIRST(&indirdep->ir_writehd)) != NULL)
10684 		cancel_allocindir(aip, NULL, freeblks, 0);
10685 	while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != NULL)
10686 		cancel_allocindir(aip, NULL, freeblks, 0);
10687 	/*
10688 	 * If there are pending partial truncations we need to keep the
10689 	 * old block copy around until they complete.  This is because
10690 	 * the current b_data is not a perfect superset of the available
10691 	 * blocks.
10692 	 */
10693 	if (TAILQ_EMPTY(&indirdep->ir_trunc))
10694 		bcopy(bp->b_data, indirdep->ir_savebp->b_data, bp->b_bcount);
10695 	else
10696 		bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount);
10697 	WORKLIST_REMOVE(&indirdep->ir_list);
10698 	WORKLIST_INSERT(&indirdep->ir_savebp->b_dep, &indirdep->ir_list);
10699 	indirdep->ir_bp = NULL;
10700 	indirdep->ir_freeblks = freeblks;
10701 }
10702 
10703 /*
10704  * Free an indirdep once it no longer has new pointers to track.
10705  */
10706 static void
10707 free_indirdep(indirdep)
10708 	struct indirdep *indirdep;
10709 {
10710 
10711 	KASSERT(TAILQ_EMPTY(&indirdep->ir_trunc),
10712 	    ("free_indirdep: Indir trunc list not empty."));
10713 	KASSERT(LIST_EMPTY(&indirdep->ir_completehd),
10714 	    ("free_indirdep: Complete head not empty."));
10715 	KASSERT(LIST_EMPTY(&indirdep->ir_writehd),
10716 	    ("free_indirdep: write head not empty."));
10717 	KASSERT(LIST_EMPTY(&indirdep->ir_donehd),
10718 	    ("free_indirdep: done head not empty."));
10719 	KASSERT(LIST_EMPTY(&indirdep->ir_deplisthd),
10720 	    ("free_indirdep: deplist head not empty."));
10721 	KASSERT((indirdep->ir_state & DEPCOMPLETE),
10722 	    ("free_indirdep: %p still on newblk list.", indirdep));
10723 	KASSERT(indirdep->ir_saveddata == NULL,
10724 	    ("free_indirdep: %p still has saved data.", indirdep));
10725 	if (indirdep->ir_state & ONWORKLIST)
10726 		WORKLIST_REMOVE(&indirdep->ir_list);
10727 	WORKITEM_FREE(indirdep, D_INDIRDEP);
10728 }
10729 
10730 /*
10731  * Called before a write to an indirdep.  This routine is responsible for
10732  * rolling back pointers to a safe state which includes only those
10733  * allocindirs which have been completed.
10734  */
10735 static void
10736 initiate_write_indirdep(indirdep, bp)
10737 	struct indirdep *indirdep;
10738 	struct buf *bp;
10739 {
10740 	struct ufsmount *ump;
10741 
10742 	indirdep->ir_state |= IOSTARTED;
10743 	if (indirdep->ir_state & GOINGAWAY)
10744 		panic("disk_io_initiation: indirdep gone");
10745 	/*
10746 	 * If there are no remaining dependencies, this will be writing
10747 	 * the real pointers.
10748 	 */
10749 	if (LIST_EMPTY(&indirdep->ir_deplisthd) &&
10750 	    TAILQ_EMPTY(&indirdep->ir_trunc))
10751 		return;
10752 	/*
10753 	 * Replace up-to-date version with safe version.
10754 	 */
10755 	if (indirdep->ir_saveddata == NULL) {
10756 		ump = VFSTOUFS(indirdep->ir_list.wk_mp);
10757 		LOCK_OWNED(ump);
10758 		FREE_LOCK(ump);
10759 		indirdep->ir_saveddata = malloc(bp->b_bcount, M_INDIRDEP,
10760 		    M_SOFTDEP_FLAGS);
10761 		ACQUIRE_LOCK(ump);
10762 	}
10763 	indirdep->ir_state &= ~ATTACHED;
10764 	indirdep->ir_state |= UNDONE;
10765 	bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount);
10766 	bcopy(indirdep->ir_savebp->b_data, bp->b_data,
10767 	    bp->b_bcount);
10768 }
10769 
10770 /*
10771  * Called when an inode has been cleared in a cg bitmap.  This finally
10772  * eliminates any canceled jaddrefs
10773  */
10774 void
10775 softdep_setup_inofree(mp, bp, ino, wkhd)
10776 	struct mount *mp;
10777 	struct buf *bp;
10778 	ino_t ino;
10779 	struct workhead *wkhd;
10780 {
10781 	struct worklist *wk, *wkn;
10782 	struct inodedep *inodedep;
10783 	struct ufsmount *ump;
10784 	uint8_t *inosused;
10785 	struct cg *cgp;
10786 	struct fs *fs;
10787 
10788 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
10789 	    ("softdep_setup_inofree called on non-softdep filesystem"));
10790 	ump = VFSTOUFS(mp);
10791 	ACQUIRE_LOCK(ump);
10792 	fs = ump->um_fs;
10793 	cgp = (struct cg *)bp->b_data;
10794 	inosused = cg_inosused(cgp);
10795 	if (isset(inosused, ino % fs->fs_ipg))
10796 		panic("softdep_setup_inofree: inode %ju not freed.",
10797 		    (uintmax_t)ino);
10798 	if (inodedep_lookup(mp, ino, 0, &inodedep))
10799 		panic("softdep_setup_inofree: ino %ju has existing inodedep %p",
10800 		    (uintmax_t)ino, inodedep);
10801 	if (wkhd) {
10802 		LIST_FOREACH_SAFE(wk, wkhd, wk_list, wkn) {
10803 			if (wk->wk_type != D_JADDREF)
10804 				continue;
10805 			WORKLIST_REMOVE(wk);
10806 			/*
10807 			 * We can free immediately even if the jaddref
10808 			 * isn't attached in a background write as now
10809 			 * the bitmaps are reconciled.
10810 			 */
10811 			wk->wk_state |= COMPLETE | ATTACHED;
10812 			free_jaddref(WK_JADDREF(wk));
10813 		}
10814 		jwork_move(&bp->b_dep, wkhd);
10815 	}
10816 	FREE_LOCK(ump);
10817 }
10818 
10819 /*
10820  * Called via ffs_blkfree() after a set of frags has been cleared from a cg
10821  * map.  Any dependencies waiting for the write to clear are added to the
10822  * buf's list and any jnewblks that are being canceled are discarded
10823  * immediately.
10824  */
10825 void
10826 softdep_setup_blkfree(mp, bp, blkno, frags, wkhd)
10827 	struct mount *mp;
10828 	struct buf *bp;
10829 	ufs2_daddr_t blkno;
10830 	int frags;
10831 	struct workhead *wkhd;
10832 {
10833 	struct bmsafemap *bmsafemap;
10834 	struct jnewblk *jnewblk;
10835 	struct ufsmount *ump;
10836 	struct worklist *wk;
10837 	struct fs *fs;
10838 #ifdef INVARIANTS
10839 	uint8_t *blksfree;
10840 	struct cg *cgp;
10841 	ufs2_daddr_t jstart;
10842 	ufs2_daddr_t jend;
10843 	ufs2_daddr_t end;
10844 	long bno;
10845 	int i;
10846 #endif
10847 
10848 	CTR3(KTR_SUJ,
10849 	    "softdep_setup_blkfree: blkno %jd frags %d wk head %p",
10850 	    blkno, frags, wkhd);
10851 
10852 	ump = VFSTOUFS(mp);
10853 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
10854 	    ("softdep_setup_blkfree called on non-softdep filesystem"));
10855 	ACQUIRE_LOCK(ump);
10856 	/* Lookup the bmsafemap so we track when it is dirty. */
10857 	fs = ump->um_fs;
10858 	bmsafemap = bmsafemap_lookup(mp, bp, dtog(fs, blkno), NULL);
10859 	/*
10860 	 * Detach any jnewblks which have been canceled.  They must linger
10861 	 * until the bitmap is cleared again by ffs_blkfree() to prevent
10862 	 * an unjournaled allocation from hitting the disk.
10863 	 */
10864 	if (wkhd) {
10865 		while ((wk = LIST_FIRST(wkhd)) != NULL) {
10866 			CTR2(KTR_SUJ,
10867 			    "softdep_setup_blkfree: blkno %jd wk type %d",
10868 			    blkno, wk->wk_type);
10869 			WORKLIST_REMOVE(wk);
10870 			if (wk->wk_type != D_JNEWBLK) {
10871 				WORKLIST_INSERT(&bmsafemap->sm_freehd, wk);
10872 				continue;
10873 			}
10874 			jnewblk = WK_JNEWBLK(wk);
10875 			KASSERT(jnewblk->jn_state & GOINGAWAY,
10876 			    ("softdep_setup_blkfree: jnewblk not canceled."));
10877 #ifdef INVARIANTS
10878 			/*
10879 			 * Assert that this block is free in the bitmap
10880 			 * before we discard the jnewblk.
10881 			 */
10882 			cgp = (struct cg *)bp->b_data;
10883 			blksfree = cg_blksfree(cgp);
10884 			bno = dtogd(fs, jnewblk->jn_blkno);
10885 			for (i = jnewblk->jn_oldfrags;
10886 			    i < jnewblk->jn_frags; i++) {
10887 				if (isset(blksfree, bno + i))
10888 					continue;
10889 				panic("softdep_setup_blkfree: not free");
10890 			}
10891 #endif
10892 			/*
10893 			 * Even if it's not attached we can free immediately
10894 			 * as the new bitmap is correct.
10895 			 */
10896 			wk->wk_state |= COMPLETE | ATTACHED;
10897 			free_jnewblk(jnewblk);
10898 		}
10899 	}
10900 
10901 #ifdef INVARIANTS
10902 	/*
10903 	 * Assert that we are not freeing a block which has an outstanding
10904 	 * allocation dependency.
10905 	 */
10906 	fs = VFSTOUFS(mp)->um_fs;
10907 	bmsafemap = bmsafemap_lookup(mp, bp, dtog(fs, blkno), NULL);
10908 	end = blkno + frags;
10909 	LIST_FOREACH(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps) {
10910 		/*
10911 		 * Don't match against blocks that will be freed when the
10912 		 * background write is done.
10913 		 */
10914 		if ((jnewblk->jn_state & (ATTACHED | COMPLETE | DEPCOMPLETE)) ==
10915 		    (COMPLETE | DEPCOMPLETE))
10916 			continue;
10917 		jstart = jnewblk->jn_blkno + jnewblk->jn_oldfrags;
10918 		jend = jnewblk->jn_blkno + jnewblk->jn_frags;
10919 		if ((blkno >= jstart && blkno < jend) ||
10920 		    (end > jstart && end <= jend)) {
10921 			printf("state 0x%X %jd - %d %d dep %p\n",
10922 			    jnewblk->jn_state, jnewblk->jn_blkno,
10923 			    jnewblk->jn_oldfrags, jnewblk->jn_frags,
10924 			    jnewblk->jn_dep);
10925 			panic("softdep_setup_blkfree: "
10926 			    "%jd-%jd(%d) overlaps with %jd-%jd",
10927 			    blkno, end, frags, jstart, jend);
10928 		}
10929 	}
10930 #endif
10931 	FREE_LOCK(ump);
10932 }
10933 
10934 /*
10935  * Revert a block allocation when the journal record that describes it
10936  * is not yet written.
10937  */
10938 static int
10939 jnewblk_rollback(jnewblk, fs, cgp, blksfree)
10940 	struct jnewblk *jnewblk;
10941 	struct fs *fs;
10942 	struct cg *cgp;
10943 	uint8_t *blksfree;
10944 {
10945 	ufs1_daddr_t fragno;
10946 	long cgbno, bbase;
10947 	int frags, blk;
10948 	int i;
10949 
10950 	frags = 0;
10951 	cgbno = dtogd(fs, jnewblk->jn_blkno);
10952 	/*
10953 	 * We have to test which frags need to be rolled back.  We may
10954 	 * be operating on a stale copy when doing background writes.
10955 	 */
10956 	for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; i++)
10957 		if (isclr(blksfree, cgbno + i))
10958 			frags++;
10959 	if (frags == 0)
10960 		return (0);
10961 	/*
10962 	 * This is mostly ffs_blkfree() sans some validation and
10963 	 * superblock updates.
10964 	 */
10965 	if (frags == fs->fs_frag) {
10966 		fragno = fragstoblks(fs, cgbno);
10967 		ffs_setblock(fs, blksfree, fragno);
10968 		ffs_clusteracct(fs, cgp, fragno, 1);
10969 		cgp->cg_cs.cs_nbfree++;
10970 	} else {
10971 		cgbno += jnewblk->jn_oldfrags;
10972 		bbase = cgbno - fragnum(fs, cgbno);
10973 		/* Decrement the old frags.  */
10974 		blk = blkmap(fs, blksfree, bbase);
10975 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
10976 		/* Deallocate the fragment */
10977 		for (i = 0; i < frags; i++)
10978 			setbit(blksfree, cgbno + i);
10979 		cgp->cg_cs.cs_nffree += frags;
10980 		/* Add back in counts associated with the new frags */
10981 		blk = blkmap(fs, blksfree, bbase);
10982 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
10983 		/* If a complete block has been reassembled, account for it. */
10984 		fragno = fragstoblks(fs, bbase);
10985 		if (ffs_isblock(fs, blksfree, fragno)) {
10986 			cgp->cg_cs.cs_nffree -= fs->fs_frag;
10987 			ffs_clusteracct(fs, cgp, fragno, 1);
10988 			cgp->cg_cs.cs_nbfree++;
10989 		}
10990 	}
10991 	stat_jnewblk++;
10992 	jnewblk->jn_state &= ~ATTACHED;
10993 	jnewblk->jn_state |= UNDONE;
10994 
10995 	return (frags);
10996 }
10997 
10998 static void
10999 initiate_write_bmsafemap(bmsafemap, bp)
11000 	struct bmsafemap *bmsafemap;
11001 	struct buf *bp;			/* The cg block. */
11002 {
11003 	struct jaddref *jaddref;
11004 	struct jnewblk *jnewblk;
11005 	uint8_t *inosused;
11006 	uint8_t *blksfree;
11007 	struct cg *cgp;
11008 	struct fs *fs;
11009 	ino_t ino;
11010 
11011 	/*
11012 	 * If this is a background write, we did this at the time that
11013 	 * the copy was made, so do not need to do it again.
11014 	 */
11015 	if (bmsafemap->sm_state & IOSTARTED)
11016 		return;
11017 	bmsafemap->sm_state |= IOSTARTED;
11018 	/*
11019 	 * Clear any inode allocations which are pending journal writes.
11020 	 */
11021 	if (LIST_FIRST(&bmsafemap->sm_jaddrefhd) != NULL) {
11022 		cgp = (struct cg *)bp->b_data;
11023 		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
11024 		inosused = cg_inosused(cgp);
11025 		LIST_FOREACH(jaddref, &bmsafemap->sm_jaddrefhd, ja_bmdeps) {
11026 			ino = jaddref->ja_ino % fs->fs_ipg;
11027 			if (isset(inosused, ino)) {
11028 				if ((jaddref->ja_mode & IFMT) == IFDIR)
11029 					cgp->cg_cs.cs_ndir--;
11030 				cgp->cg_cs.cs_nifree++;
11031 				clrbit(inosused, ino);
11032 				jaddref->ja_state &= ~ATTACHED;
11033 				jaddref->ja_state |= UNDONE;
11034 				stat_jaddref++;
11035 			} else
11036 				panic("initiate_write_bmsafemap: inode %ju "
11037 				    "marked free", (uintmax_t)jaddref->ja_ino);
11038 		}
11039 	}
11040 	/*
11041 	 * Clear any block allocations which are pending journal writes.
11042 	 */
11043 	if (LIST_FIRST(&bmsafemap->sm_jnewblkhd) != NULL) {
11044 		cgp = (struct cg *)bp->b_data;
11045 		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
11046 		blksfree = cg_blksfree(cgp);
11047 		LIST_FOREACH(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps) {
11048 			if (jnewblk_rollback(jnewblk, fs, cgp, blksfree))
11049 				continue;
11050 			panic("initiate_write_bmsafemap: block %jd "
11051 			    "marked free", jnewblk->jn_blkno);
11052 		}
11053 	}
11054 	/*
11055 	 * Move allocation lists to the written lists so they can be
11056 	 * cleared once the block write is complete.
11057 	 */
11058 	LIST_SWAP(&bmsafemap->sm_inodedephd, &bmsafemap->sm_inodedepwr,
11059 	    inodedep, id_deps);
11060 	LIST_SWAP(&bmsafemap->sm_newblkhd, &bmsafemap->sm_newblkwr,
11061 	    newblk, nb_deps);
11062 	LIST_SWAP(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr, worklist,
11063 	    wk_list);
11064 }
11065 
11066 /*
11067  * This routine is called during the completion interrupt
11068  * service routine for a disk write (from the procedure called
11069  * by the device driver to inform the filesystem caches of
11070  * a request completion).  It should be called early in this
11071  * procedure, before the block is made available to other
11072  * processes or other routines are called.
11073  *
11074  */
11075 static void
11076 softdep_disk_write_complete(bp)
11077 	struct buf *bp;		/* describes the completed disk write */
11078 {
11079 	struct worklist *wk;
11080 	struct worklist *owk;
11081 	struct ufsmount *ump;
11082 	struct workhead reattach;
11083 	struct freeblks *freeblks;
11084 	struct buf *sbp;
11085 
11086 	ump = softdep_bp_to_mp(bp);
11087 	KASSERT(LIST_EMPTY(&bp->b_dep) || ump != NULL,
11088 	    ("softdep_disk_write_complete: softdep_bp_to_mp returned NULL "
11089 	     "with outstanding dependencies for buffer %p", bp));
11090 	if (ump == NULL)
11091 		return;
11092 	/*
11093 	 * If an error occurred while doing the write, then the data
11094 	 * has not hit the disk and the dependencies cannot be processed.
11095 	 * But we do have to go through and roll forward any dependencies
11096 	 * that were rolled back before the disk write.
11097 	 */
11098 	sbp = NULL;
11099 	ACQUIRE_LOCK(ump);
11100 	if ((bp->b_ioflags & BIO_ERROR) != 0 && (bp->b_flags & B_INVAL) == 0) {
11101 		LIST_FOREACH(wk, &bp->b_dep, wk_list) {
11102 			switch (wk->wk_type) {
11103 
11104 			case D_PAGEDEP:
11105 				handle_written_filepage(WK_PAGEDEP(wk), bp, 0);
11106 				continue;
11107 
11108 			case D_INODEDEP:
11109 				handle_written_inodeblock(WK_INODEDEP(wk),
11110 				    bp, 0);
11111 				continue;
11112 
11113 			case D_BMSAFEMAP:
11114 				handle_written_bmsafemap(WK_BMSAFEMAP(wk),
11115 				    bp, 0);
11116 				continue;
11117 
11118 			case D_INDIRDEP:
11119 				handle_written_indirdep(WK_INDIRDEP(wk),
11120 				    bp, &sbp, 0);
11121 				continue;
11122 			default:
11123 				/* nothing to roll forward */
11124 				continue;
11125 			}
11126 		}
11127 		FREE_LOCK(ump);
11128 		if (sbp)
11129 			brelse(sbp);
11130 		return;
11131 	}
11132 	LIST_INIT(&reattach);
11133 
11134 	/*
11135 	 * Ump SU lock must not be released anywhere in this code segment.
11136 	 */
11137 	owk = NULL;
11138 	while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) {
11139 		WORKLIST_REMOVE(wk);
11140 		atomic_add_long(&dep_write[wk->wk_type], 1);
11141 		if (wk == owk)
11142 			panic("duplicate worklist: %p\n", wk);
11143 		owk = wk;
11144 		switch (wk->wk_type) {
11145 
11146 		case D_PAGEDEP:
11147 			if (handle_written_filepage(WK_PAGEDEP(wk), bp,
11148 			    WRITESUCCEEDED))
11149 				WORKLIST_INSERT(&reattach, wk);
11150 			continue;
11151 
11152 		case D_INODEDEP:
11153 			if (handle_written_inodeblock(WK_INODEDEP(wk), bp,
11154 			    WRITESUCCEEDED))
11155 				WORKLIST_INSERT(&reattach, wk);
11156 			continue;
11157 
11158 		case D_BMSAFEMAP:
11159 			if (handle_written_bmsafemap(WK_BMSAFEMAP(wk), bp,
11160 			    WRITESUCCEEDED))
11161 				WORKLIST_INSERT(&reattach, wk);
11162 			continue;
11163 
11164 		case D_MKDIR:
11165 			handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY);
11166 			continue;
11167 
11168 		case D_ALLOCDIRECT:
11169 			wk->wk_state |= COMPLETE;
11170 			handle_allocdirect_partdone(WK_ALLOCDIRECT(wk), NULL);
11171 			continue;
11172 
11173 		case D_ALLOCINDIR:
11174 			wk->wk_state |= COMPLETE;
11175 			handle_allocindir_partdone(WK_ALLOCINDIR(wk));
11176 			continue;
11177 
11178 		case D_INDIRDEP:
11179 			if (handle_written_indirdep(WK_INDIRDEP(wk), bp, &sbp,
11180 			    WRITESUCCEEDED))
11181 				WORKLIST_INSERT(&reattach, wk);
11182 			continue;
11183 
11184 		case D_FREEBLKS:
11185 			wk->wk_state |= COMPLETE;
11186 			freeblks = WK_FREEBLKS(wk);
11187 			if ((wk->wk_state & ALLCOMPLETE) == ALLCOMPLETE &&
11188 			    LIST_EMPTY(&freeblks->fb_jblkdephd))
11189 				add_to_worklist(wk, WK_NODELAY);
11190 			continue;
11191 
11192 		case D_FREEWORK:
11193 			handle_written_freework(WK_FREEWORK(wk));
11194 			break;
11195 
11196 		case D_JSEGDEP:
11197 			free_jsegdep(WK_JSEGDEP(wk));
11198 			continue;
11199 
11200 		case D_JSEG:
11201 			handle_written_jseg(WK_JSEG(wk), bp);
11202 			continue;
11203 
11204 		case D_SBDEP:
11205 			if (handle_written_sbdep(WK_SBDEP(wk), bp))
11206 				WORKLIST_INSERT(&reattach, wk);
11207 			continue;
11208 
11209 		case D_FREEDEP:
11210 			free_freedep(WK_FREEDEP(wk));
11211 			continue;
11212 
11213 		default:
11214 			panic("handle_disk_write_complete: Unknown type %s",
11215 			    TYPENAME(wk->wk_type));
11216 			/* NOTREACHED */
11217 		}
11218 	}
11219 	/*
11220 	 * Reattach any requests that must be redone.
11221 	 */
11222 	while ((wk = LIST_FIRST(&reattach)) != NULL) {
11223 		WORKLIST_REMOVE(wk);
11224 		WORKLIST_INSERT(&bp->b_dep, wk);
11225 	}
11226 	FREE_LOCK(ump);
11227 	if (sbp)
11228 		brelse(sbp);
11229 }
11230 
11231 /*
11232  * Called from within softdep_disk_write_complete above.
11233  */
11234 static void
11235 handle_allocdirect_partdone(adp, wkhd)
11236 	struct allocdirect *adp;	/* the completed allocdirect */
11237 	struct workhead *wkhd;		/* Work to do when inode is writtne. */
11238 {
11239 	struct allocdirectlst *listhead;
11240 	struct allocdirect *listadp;
11241 	struct inodedep *inodedep;
11242 	long bsize;
11243 
11244 	LOCK_OWNED(VFSTOUFS(adp->ad_block.nb_list.wk_mp));
11245 	if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE)
11246 		return;
11247 	/*
11248 	 * The on-disk inode cannot claim to be any larger than the last
11249 	 * fragment that has been written. Otherwise, the on-disk inode
11250 	 * might have fragments that were not the last block in the file
11251 	 * which would corrupt the filesystem. Thus, we cannot free any
11252 	 * allocdirects after one whose ad_oldblkno claims a fragment as
11253 	 * these blocks must be rolled back to zero before writing the inode.
11254 	 * We check the currently active set of allocdirects in id_inoupdt
11255 	 * or id_extupdt as appropriate.
11256 	 */
11257 	inodedep = adp->ad_inodedep;
11258 	bsize = inodedep->id_fs->fs_bsize;
11259 	if (adp->ad_state & EXTDATA)
11260 		listhead = &inodedep->id_extupdt;
11261 	else
11262 		listhead = &inodedep->id_inoupdt;
11263 	TAILQ_FOREACH(listadp, listhead, ad_next) {
11264 		/* found our block */
11265 		if (listadp == adp)
11266 			break;
11267 		/* continue if ad_oldlbn is not a fragment */
11268 		if (listadp->ad_oldsize == 0 ||
11269 		    listadp->ad_oldsize == bsize)
11270 			continue;
11271 		/* hit a fragment */
11272 		return;
11273 	}
11274 	/*
11275 	 * If we have reached the end of the current list without
11276 	 * finding the just finished dependency, then it must be
11277 	 * on the future dependency list. Future dependencies cannot
11278 	 * be freed until they are moved to the current list.
11279 	 */
11280 	if (listadp == NULL) {
11281 #ifdef INVARIANTS
11282 		if (adp->ad_state & EXTDATA)
11283 			listhead = &inodedep->id_newextupdt;
11284 		else
11285 			listhead = &inodedep->id_newinoupdt;
11286 		TAILQ_FOREACH(listadp, listhead, ad_next)
11287 			/* found our block */
11288 			if (listadp == adp)
11289 				break;
11290 		if (listadp == NULL)
11291 			panic("handle_allocdirect_partdone: lost dep");
11292 #endif /* INVARIANTS */
11293 		return;
11294 	}
11295 	/*
11296 	 * If we have found the just finished dependency, then queue
11297 	 * it along with anything that follows it that is complete.
11298 	 * Since the pointer has not yet been written in the inode
11299 	 * as the dependency prevents it, place the allocdirect on the
11300 	 * bufwait list where it will be freed once the pointer is
11301 	 * valid.
11302 	 */
11303 	if (wkhd == NULL)
11304 		wkhd = &inodedep->id_bufwait;
11305 	for (; adp; adp = listadp) {
11306 		listadp = TAILQ_NEXT(adp, ad_next);
11307 		if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE)
11308 			return;
11309 		TAILQ_REMOVE(listhead, adp, ad_next);
11310 		WORKLIST_INSERT(wkhd, &adp->ad_block.nb_list);
11311 	}
11312 }
11313 
11314 /*
11315  * Called from within softdep_disk_write_complete above.  This routine
11316  * completes successfully written allocindirs.
11317  */
11318 static void
11319 handle_allocindir_partdone(aip)
11320 	struct allocindir *aip;		/* the completed allocindir */
11321 {
11322 	struct indirdep *indirdep;
11323 
11324 	if ((aip->ai_state & ALLCOMPLETE) != ALLCOMPLETE)
11325 		return;
11326 	indirdep = aip->ai_indirdep;
11327 	LIST_REMOVE(aip, ai_next);
11328 	/*
11329 	 * Don't set a pointer while the buffer is undergoing IO or while
11330 	 * we have active truncations.
11331 	 */
11332 	if (indirdep->ir_state & UNDONE || !TAILQ_EMPTY(&indirdep->ir_trunc)) {
11333 		LIST_INSERT_HEAD(&indirdep->ir_donehd, aip, ai_next);
11334 		return;
11335 	}
11336 	if (indirdep->ir_state & UFS1FMT)
11337 		((ufs1_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] =
11338 		    aip->ai_newblkno;
11339 	else
11340 		((ufs2_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] =
11341 		    aip->ai_newblkno;
11342 	/*
11343 	 * Await the pointer write before freeing the allocindir.
11344 	 */
11345 	LIST_INSERT_HEAD(&indirdep->ir_writehd, aip, ai_next);
11346 }
11347 
11348 /*
11349  * Release segments held on a jwork list.
11350  */
11351 static void
11352 handle_jwork(wkhd)
11353 	struct workhead *wkhd;
11354 {
11355 	struct worklist *wk;
11356 
11357 	while ((wk = LIST_FIRST(wkhd)) != NULL) {
11358 		WORKLIST_REMOVE(wk);
11359 		switch (wk->wk_type) {
11360 		case D_JSEGDEP:
11361 			free_jsegdep(WK_JSEGDEP(wk));
11362 			continue;
11363 		case D_FREEDEP:
11364 			free_freedep(WK_FREEDEP(wk));
11365 			continue;
11366 		case D_FREEFRAG:
11367 			rele_jseg(WK_JSEG(WK_FREEFRAG(wk)->ff_jdep));
11368 			WORKITEM_FREE(wk, D_FREEFRAG);
11369 			continue;
11370 		case D_FREEWORK:
11371 			handle_written_freework(WK_FREEWORK(wk));
11372 			continue;
11373 		default:
11374 			panic("handle_jwork: Unknown type %s\n",
11375 			    TYPENAME(wk->wk_type));
11376 		}
11377 	}
11378 }
11379 
11380 /*
11381  * Handle the bufwait list on an inode when it is safe to release items
11382  * held there.  This normally happens after an inode block is written but
11383  * may be delayed and handled later if there are pending journal items that
11384  * are not yet safe to be released.
11385  */
11386 static struct freefile *
11387 handle_bufwait(inodedep, refhd)
11388 	struct inodedep *inodedep;
11389 	struct workhead *refhd;
11390 {
11391 	struct jaddref *jaddref;
11392 	struct freefile *freefile;
11393 	struct worklist *wk;
11394 
11395 	freefile = NULL;
11396 	while ((wk = LIST_FIRST(&inodedep->id_bufwait)) != NULL) {
11397 		WORKLIST_REMOVE(wk);
11398 		switch (wk->wk_type) {
11399 		case D_FREEFILE:
11400 			/*
11401 			 * We defer adding freefile to the worklist
11402 			 * until all other additions have been made to
11403 			 * ensure that it will be done after all the
11404 			 * old blocks have been freed.
11405 			 */
11406 			if (freefile != NULL)
11407 				panic("handle_bufwait: freefile");
11408 			freefile = WK_FREEFILE(wk);
11409 			continue;
11410 
11411 		case D_MKDIR:
11412 			handle_written_mkdir(WK_MKDIR(wk), MKDIR_PARENT);
11413 			continue;
11414 
11415 		case D_DIRADD:
11416 			diradd_inode_written(WK_DIRADD(wk), inodedep);
11417 			continue;
11418 
11419 		case D_FREEFRAG:
11420 			wk->wk_state |= COMPLETE;
11421 			if ((wk->wk_state & ALLCOMPLETE) == ALLCOMPLETE)
11422 				add_to_worklist(wk, 0);
11423 			continue;
11424 
11425 		case D_DIRREM:
11426 			wk->wk_state |= COMPLETE;
11427 			add_to_worklist(wk, 0);
11428 			continue;
11429 
11430 		case D_ALLOCDIRECT:
11431 		case D_ALLOCINDIR:
11432 			free_newblk(WK_NEWBLK(wk));
11433 			continue;
11434 
11435 		case D_JNEWBLK:
11436 			wk->wk_state |= COMPLETE;
11437 			free_jnewblk(WK_JNEWBLK(wk));
11438 			continue;
11439 
11440 		/*
11441 		 * Save freed journal segments and add references on
11442 		 * the supplied list which will delay their release
11443 		 * until the cg bitmap is cleared on disk.
11444 		 */
11445 		case D_JSEGDEP:
11446 			if (refhd == NULL)
11447 				free_jsegdep(WK_JSEGDEP(wk));
11448 			else
11449 				WORKLIST_INSERT(refhd, wk);
11450 			continue;
11451 
11452 		case D_JADDREF:
11453 			jaddref = WK_JADDREF(wk);
11454 			TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref,
11455 			    if_deps);
11456 			/*
11457 			 * Transfer any jaddrefs to the list to be freed with
11458 			 * the bitmap if we're handling a removed file.
11459 			 */
11460 			if (refhd == NULL) {
11461 				wk->wk_state |= COMPLETE;
11462 				free_jaddref(jaddref);
11463 			} else
11464 				WORKLIST_INSERT(refhd, wk);
11465 			continue;
11466 
11467 		default:
11468 			panic("handle_bufwait: Unknown type %p(%s)",
11469 			    wk, TYPENAME(wk->wk_type));
11470 			/* NOTREACHED */
11471 		}
11472 	}
11473 	return (freefile);
11474 }
11475 /*
11476  * Called from within softdep_disk_write_complete above to restore
11477  * in-memory inode block contents to their most up-to-date state. Note
11478  * that this routine is always called from interrupt level with further
11479  * interrupts from this device blocked.
11480  *
11481  * If the write did not succeed, we will do all the roll-forward
11482  * operations, but we will not take the actions that will allow its
11483  * dependencies to be processed.
11484  */
11485 static int
11486 handle_written_inodeblock(inodedep, bp, flags)
11487 	struct inodedep *inodedep;
11488 	struct buf *bp;		/* buffer containing the inode block */
11489 	int flags;
11490 {
11491 	struct freefile *freefile;
11492 	struct allocdirect *adp, *nextadp;
11493 	struct ufs1_dinode *dp1 = NULL;
11494 	struct ufs2_dinode *dp2 = NULL;
11495 	struct workhead wkhd;
11496 	int hadchanges, fstype;
11497 	ino_t freelink;
11498 
11499 	LIST_INIT(&wkhd);
11500 	hadchanges = 0;
11501 	freefile = NULL;
11502 	if ((inodedep->id_state & IOSTARTED) == 0)
11503 		panic("handle_written_inodeblock: not started");
11504 	inodedep->id_state &= ~IOSTARTED;
11505 	if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC) {
11506 		fstype = UFS1;
11507 		dp1 = (struct ufs1_dinode *)bp->b_data +
11508 		    ino_to_fsbo(inodedep->id_fs, inodedep->id_ino);
11509 		freelink = dp1->di_freelink;
11510 	} else {
11511 		fstype = UFS2;
11512 		dp2 = (struct ufs2_dinode *)bp->b_data +
11513 		    ino_to_fsbo(inodedep->id_fs, inodedep->id_ino);
11514 		freelink = dp2->di_freelink;
11515 	}
11516 	/*
11517 	 * Leave this inodeblock dirty until it's in the list.
11518 	 */
11519 	if ((inodedep->id_state & (UNLINKED | UNLINKONLIST)) == UNLINKED &&
11520 	    (flags & WRITESUCCEEDED)) {
11521 		struct inodedep *inon;
11522 
11523 		inon = TAILQ_NEXT(inodedep, id_unlinked);
11524 		if ((inon == NULL && freelink == 0) ||
11525 		    (inon && inon->id_ino == freelink)) {
11526 			if (inon)
11527 				inon->id_state |= UNLINKPREV;
11528 			inodedep->id_state |= UNLINKNEXT;
11529 		}
11530 		hadchanges = 1;
11531 	}
11532 	/*
11533 	 * If we had to rollback the inode allocation because of
11534 	 * bitmaps being incomplete, then simply restore it.
11535 	 * Keep the block dirty so that it will not be reclaimed until
11536 	 * all associated dependencies have been cleared and the
11537 	 * corresponding updates written to disk.
11538 	 */
11539 	if (inodedep->id_savedino1 != NULL) {
11540 		hadchanges = 1;
11541 		if (fstype == UFS1)
11542 			*dp1 = *inodedep->id_savedino1;
11543 		else
11544 			*dp2 = *inodedep->id_savedino2;
11545 		free(inodedep->id_savedino1, M_SAVEDINO);
11546 		inodedep->id_savedino1 = NULL;
11547 		if ((bp->b_flags & B_DELWRI) == 0)
11548 			stat_inode_bitmap++;
11549 		bdirty(bp);
11550 		/*
11551 		 * If the inode is clear here and GOINGAWAY it will never
11552 		 * be written.  Process the bufwait and clear any pending
11553 		 * work which may include the freefile.
11554 		 */
11555 		if (inodedep->id_state & GOINGAWAY)
11556 			goto bufwait;
11557 		return (1);
11558 	}
11559 	if (flags & WRITESUCCEEDED)
11560 		inodedep->id_state |= COMPLETE;
11561 	/*
11562 	 * Roll forward anything that had to be rolled back before
11563 	 * the inode could be updated.
11564 	 */
11565 	for (adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; adp = nextadp) {
11566 		nextadp = TAILQ_NEXT(adp, ad_next);
11567 		if (adp->ad_state & ATTACHED)
11568 			panic("handle_written_inodeblock: new entry");
11569 		if (fstype == UFS1) {
11570 			if (adp->ad_offset < UFS_NDADDR) {
11571 				if (dp1->di_db[adp->ad_offset]!=adp->ad_oldblkno)
11572 					panic("%s %s #%jd mismatch %d != %jd",
11573 					    "handle_written_inodeblock:",
11574 					    "direct pointer",
11575 					    (intmax_t)adp->ad_offset,
11576 					    dp1->di_db[adp->ad_offset],
11577 					    (intmax_t)adp->ad_oldblkno);
11578 				dp1->di_db[adp->ad_offset] = adp->ad_newblkno;
11579 			} else {
11580 				if (dp1->di_ib[adp->ad_offset - UFS_NDADDR] !=
11581 				    0)
11582 					panic("%s: %s #%jd allocated as %d",
11583 					    "handle_written_inodeblock",
11584 					    "indirect pointer",
11585 					    (intmax_t)adp->ad_offset -
11586 					    UFS_NDADDR,
11587 					    dp1->di_ib[adp->ad_offset -
11588 					    UFS_NDADDR]);
11589 				dp1->di_ib[adp->ad_offset - UFS_NDADDR] =
11590 				    adp->ad_newblkno;
11591 			}
11592 		} else {
11593 			if (adp->ad_offset < UFS_NDADDR) {
11594 				if (dp2->di_db[adp->ad_offset]!=adp->ad_oldblkno)
11595 					panic("%s: %s #%jd %s %jd != %jd",
11596 					    "handle_written_inodeblock",
11597 					    "direct pointer",
11598 					    (intmax_t)adp->ad_offset, "mismatch",
11599 					    (intmax_t)dp2->di_db[adp->ad_offset],
11600 					    (intmax_t)adp->ad_oldblkno);
11601 				dp2->di_db[adp->ad_offset] = adp->ad_newblkno;
11602 			} else {
11603 				if (dp2->di_ib[adp->ad_offset - UFS_NDADDR] !=
11604 				    0)
11605 					panic("%s: %s #%jd allocated as %jd",
11606 					    "handle_written_inodeblock",
11607 					    "indirect pointer",
11608 					    (intmax_t)adp->ad_offset -
11609 					    UFS_NDADDR,
11610 					    (intmax_t)
11611 					    dp2->di_ib[adp->ad_offset -
11612 					    UFS_NDADDR]);
11613 				dp2->di_ib[adp->ad_offset - UFS_NDADDR] =
11614 				    adp->ad_newblkno;
11615 			}
11616 		}
11617 		adp->ad_state &= ~UNDONE;
11618 		adp->ad_state |= ATTACHED;
11619 		hadchanges = 1;
11620 	}
11621 	for (adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; adp = nextadp) {
11622 		nextadp = TAILQ_NEXT(adp, ad_next);
11623 		if (adp->ad_state & ATTACHED)
11624 			panic("handle_written_inodeblock: new entry");
11625 		if (dp2->di_extb[adp->ad_offset] != adp->ad_oldblkno)
11626 			panic("%s: direct pointers #%jd %s %jd != %jd",
11627 			    "handle_written_inodeblock",
11628 			    (intmax_t)adp->ad_offset, "mismatch",
11629 			    (intmax_t)dp2->di_extb[adp->ad_offset],
11630 			    (intmax_t)adp->ad_oldblkno);
11631 		dp2->di_extb[adp->ad_offset] = adp->ad_newblkno;
11632 		adp->ad_state &= ~UNDONE;
11633 		adp->ad_state |= ATTACHED;
11634 		hadchanges = 1;
11635 	}
11636 	if (hadchanges && (bp->b_flags & B_DELWRI) == 0)
11637 		stat_direct_blk_ptrs++;
11638 	/*
11639 	 * Reset the file size to its most up-to-date value.
11640 	 */
11641 	if (inodedep->id_savedsize == -1 || inodedep->id_savedextsize == -1)
11642 		panic("handle_written_inodeblock: bad size");
11643 	if (inodedep->id_savednlink > UFS_LINK_MAX)
11644 		panic("handle_written_inodeblock: Invalid link count "
11645 		    "%jd for inodedep %p", (uintmax_t)inodedep->id_savednlink,
11646 		    inodedep);
11647 	if (fstype == UFS1) {
11648 		if (dp1->di_nlink != inodedep->id_savednlink) {
11649 			dp1->di_nlink = inodedep->id_savednlink;
11650 			hadchanges = 1;
11651 		}
11652 		if (dp1->di_size != inodedep->id_savedsize) {
11653 			dp1->di_size = inodedep->id_savedsize;
11654 			hadchanges = 1;
11655 		}
11656 	} else {
11657 		if (dp2->di_nlink != inodedep->id_savednlink) {
11658 			dp2->di_nlink = inodedep->id_savednlink;
11659 			hadchanges = 1;
11660 		}
11661 		if (dp2->di_size != inodedep->id_savedsize) {
11662 			dp2->di_size = inodedep->id_savedsize;
11663 			hadchanges = 1;
11664 		}
11665 		if (dp2->di_extsize != inodedep->id_savedextsize) {
11666 			dp2->di_extsize = inodedep->id_savedextsize;
11667 			hadchanges = 1;
11668 		}
11669 	}
11670 	inodedep->id_savedsize = -1;
11671 	inodedep->id_savedextsize = -1;
11672 	inodedep->id_savednlink = -1;
11673 	/*
11674 	 * If there were any rollbacks in the inode block, then it must be
11675 	 * marked dirty so that its will eventually get written back in
11676 	 * its correct form.
11677 	 */
11678 	if (hadchanges) {
11679 		if (fstype == UFS2)
11680 			ffs_update_dinode_ckhash(inodedep->id_fs, dp2);
11681 		bdirty(bp);
11682 	}
11683 bufwait:
11684 	/*
11685 	 * If the write did not succeed, we have done all the roll-forward
11686 	 * operations, but we cannot take the actions that will allow its
11687 	 * dependencies to be processed.
11688 	 */
11689 	if ((flags & WRITESUCCEEDED) == 0)
11690 		return (hadchanges);
11691 	/*
11692 	 * Process any allocdirects that completed during the update.
11693 	 */
11694 	if ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL)
11695 		handle_allocdirect_partdone(adp, &wkhd);
11696 	if ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL)
11697 		handle_allocdirect_partdone(adp, &wkhd);
11698 	/*
11699 	 * Process deallocations that were held pending until the
11700 	 * inode had been written to disk. Freeing of the inode
11701 	 * is delayed until after all blocks have been freed to
11702 	 * avoid creation of new <vfsid, inum, lbn> triples
11703 	 * before the old ones have been deleted.  Completely
11704 	 * unlinked inodes are not processed until the unlinked
11705 	 * inode list is written or the last reference is removed.
11706 	 */
11707 	if ((inodedep->id_state & (UNLINKED | UNLINKONLIST)) != UNLINKED) {
11708 		freefile = handle_bufwait(inodedep, NULL);
11709 		if (freefile && !LIST_EMPTY(&wkhd)) {
11710 			WORKLIST_INSERT(&wkhd, &freefile->fx_list);
11711 			freefile = NULL;
11712 		}
11713 	}
11714 	/*
11715 	 * Move rolled forward dependency completions to the bufwait list
11716 	 * now that those that were already written have been processed.
11717 	 */
11718 	if (!LIST_EMPTY(&wkhd) && hadchanges == 0)
11719 		panic("handle_written_inodeblock: bufwait but no changes");
11720 	jwork_move(&inodedep->id_bufwait, &wkhd);
11721 
11722 	if (freefile != NULL) {
11723 		/*
11724 		 * If the inode is goingaway it was never written.  Fake up
11725 		 * the state here so free_inodedep() can succeed.
11726 		 */
11727 		if (inodedep->id_state & GOINGAWAY)
11728 			inodedep->id_state |= COMPLETE | DEPCOMPLETE;
11729 		if (free_inodedep(inodedep) == 0)
11730 			panic("handle_written_inodeblock: live inodedep %p",
11731 			    inodedep);
11732 		add_to_worklist(&freefile->fx_list, 0);
11733 		return (0);
11734 	}
11735 
11736 	/*
11737 	 * If no outstanding dependencies, free it.
11738 	 */
11739 	if (free_inodedep(inodedep) ||
11740 	    (TAILQ_FIRST(&inodedep->id_inoreflst) == 0 &&
11741 	     TAILQ_FIRST(&inodedep->id_inoupdt) == 0 &&
11742 	     TAILQ_FIRST(&inodedep->id_extupdt) == 0 &&
11743 	     LIST_FIRST(&inodedep->id_bufwait) == 0))
11744 		return (0);
11745 	return (hadchanges);
11746 }
11747 
11748 /*
11749  * Perform needed roll-forwards and kick off any dependencies that
11750  * can now be processed.
11751  *
11752  * If the write did not succeed, we will do all the roll-forward
11753  * operations, but we will not take the actions that will allow its
11754  * dependencies to be processed.
11755  */
11756 static int
11757 handle_written_indirdep(indirdep, bp, bpp, flags)
11758 	struct indirdep *indirdep;
11759 	struct buf *bp;
11760 	struct buf **bpp;
11761 	int flags;
11762 {
11763 	struct allocindir *aip;
11764 	struct buf *sbp;
11765 	int chgs;
11766 
11767 	if (indirdep->ir_state & GOINGAWAY)
11768 		panic("handle_written_indirdep: indirdep gone");
11769 	if ((indirdep->ir_state & IOSTARTED) == 0)
11770 		panic("handle_written_indirdep: IO not started");
11771 	chgs = 0;
11772 	/*
11773 	 * If there were rollbacks revert them here.
11774 	 */
11775 	if (indirdep->ir_saveddata) {
11776 		bcopy(indirdep->ir_saveddata, bp->b_data, bp->b_bcount);
11777 		if (TAILQ_EMPTY(&indirdep->ir_trunc)) {
11778 			free(indirdep->ir_saveddata, M_INDIRDEP);
11779 			indirdep->ir_saveddata = NULL;
11780 		}
11781 		chgs = 1;
11782 	}
11783 	indirdep->ir_state &= ~(UNDONE | IOSTARTED);
11784 	indirdep->ir_state |= ATTACHED;
11785 	/*
11786 	 * If the write did not succeed, we have done all the roll-forward
11787 	 * operations, but we cannot take the actions that will allow its
11788 	 * dependencies to be processed.
11789 	 */
11790 	if ((flags & WRITESUCCEEDED) == 0) {
11791 		stat_indir_blk_ptrs++;
11792 		bdirty(bp);
11793 		return (1);
11794 	}
11795 	/*
11796 	 * Move allocindirs with written pointers to the completehd if
11797 	 * the indirdep's pointer is not yet written.  Otherwise
11798 	 * free them here.
11799 	 */
11800 	while ((aip = LIST_FIRST(&indirdep->ir_writehd)) != NULL) {
11801 		LIST_REMOVE(aip, ai_next);
11802 		if ((indirdep->ir_state & DEPCOMPLETE) == 0) {
11803 			LIST_INSERT_HEAD(&indirdep->ir_completehd, aip,
11804 			    ai_next);
11805 			newblk_freefrag(&aip->ai_block);
11806 			continue;
11807 		}
11808 		free_newblk(&aip->ai_block);
11809 	}
11810 	/*
11811 	 * Move allocindirs that have finished dependency processing from
11812 	 * the done list to the write list after updating the pointers.
11813 	 */
11814 	if (TAILQ_EMPTY(&indirdep->ir_trunc)) {
11815 		while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != NULL) {
11816 			handle_allocindir_partdone(aip);
11817 			if (aip == LIST_FIRST(&indirdep->ir_donehd))
11818 				panic("disk_write_complete: not gone");
11819 			chgs = 1;
11820 		}
11821 	}
11822 	/*
11823 	 * Preserve the indirdep if there were any changes or if it is not
11824 	 * yet valid on disk.
11825 	 */
11826 	if (chgs) {
11827 		stat_indir_blk_ptrs++;
11828 		bdirty(bp);
11829 		return (1);
11830 	}
11831 	/*
11832 	 * If there were no changes we can discard the savedbp and detach
11833 	 * ourselves from the buf.  We are only carrying completed pointers
11834 	 * in this case.
11835 	 */
11836 	sbp = indirdep->ir_savebp;
11837 	sbp->b_flags |= B_INVAL | B_NOCACHE;
11838 	indirdep->ir_savebp = NULL;
11839 	indirdep->ir_bp = NULL;
11840 	if (*bpp != NULL)
11841 		panic("handle_written_indirdep: bp already exists.");
11842 	*bpp = sbp;
11843 	/*
11844 	 * The indirdep may not be freed until its parent points at it.
11845 	 */
11846 	if (indirdep->ir_state & DEPCOMPLETE)
11847 		free_indirdep(indirdep);
11848 
11849 	return (0);
11850 }
11851 
11852 /*
11853  * Process a diradd entry after its dependent inode has been written.
11854  */
11855 static void
11856 diradd_inode_written(dap, inodedep)
11857 	struct diradd *dap;
11858 	struct inodedep *inodedep;
11859 {
11860 
11861 	LOCK_OWNED(VFSTOUFS(dap->da_list.wk_mp));
11862 	dap->da_state |= COMPLETE;
11863 	complete_diradd(dap);
11864 	WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list);
11865 }
11866 
11867 /*
11868  * Returns true if the bmsafemap will have rollbacks when written.  Must only
11869  * be called with the per-filesystem lock and the buf lock on the cg held.
11870  */
11871 static int
11872 bmsafemap_backgroundwrite(bmsafemap, bp)
11873 	struct bmsafemap *bmsafemap;
11874 	struct buf *bp;
11875 {
11876 	int dirty;
11877 
11878 	LOCK_OWNED(VFSTOUFS(bmsafemap->sm_list.wk_mp));
11879 	dirty = !LIST_EMPTY(&bmsafemap->sm_jaddrefhd) |
11880 	    !LIST_EMPTY(&bmsafemap->sm_jnewblkhd);
11881 	/*
11882 	 * If we're initiating a background write we need to process the
11883 	 * rollbacks as they exist now, not as they exist when IO starts.
11884 	 * No other consumers will look at the contents of the shadowed
11885 	 * buf so this is safe to do here.
11886 	 */
11887 	if (bp->b_xflags & BX_BKGRDMARKER)
11888 		initiate_write_bmsafemap(bmsafemap, bp);
11889 
11890 	return (dirty);
11891 }
11892 
11893 /*
11894  * Re-apply an allocation when a cg write is complete.
11895  */
11896 static int
11897 jnewblk_rollforward(jnewblk, fs, cgp, blksfree)
11898 	struct jnewblk *jnewblk;
11899 	struct fs *fs;
11900 	struct cg *cgp;
11901 	uint8_t *blksfree;
11902 {
11903 	ufs1_daddr_t fragno;
11904 	ufs2_daddr_t blkno;
11905 	long cgbno, bbase;
11906 	int frags, blk;
11907 	int i;
11908 
11909 	frags = 0;
11910 	cgbno = dtogd(fs, jnewblk->jn_blkno);
11911 	for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; i++) {
11912 		if (isclr(blksfree, cgbno + i))
11913 			panic("jnewblk_rollforward: re-allocated fragment");
11914 		frags++;
11915 	}
11916 	if (frags == fs->fs_frag) {
11917 		blkno = fragstoblks(fs, cgbno);
11918 		ffs_clrblock(fs, blksfree, (long)blkno);
11919 		ffs_clusteracct(fs, cgp, blkno, -1);
11920 		cgp->cg_cs.cs_nbfree--;
11921 	} else {
11922 		bbase = cgbno - fragnum(fs, cgbno);
11923 		cgbno += jnewblk->jn_oldfrags;
11924                 /* If a complete block had been reassembled, account for it. */
11925 		fragno = fragstoblks(fs, bbase);
11926 		if (ffs_isblock(fs, blksfree, fragno)) {
11927 			cgp->cg_cs.cs_nffree += fs->fs_frag;
11928 			ffs_clusteracct(fs, cgp, fragno, -1);
11929 			cgp->cg_cs.cs_nbfree--;
11930 		}
11931 		/* Decrement the old frags.  */
11932 		blk = blkmap(fs, blksfree, bbase);
11933 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
11934 		/* Allocate the fragment */
11935 		for (i = 0; i < frags; i++)
11936 			clrbit(blksfree, cgbno + i);
11937 		cgp->cg_cs.cs_nffree -= frags;
11938 		/* Add back in counts associated with the new frags */
11939 		blk = blkmap(fs, blksfree, bbase);
11940 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
11941 	}
11942 	return (frags);
11943 }
11944 
11945 /*
11946  * Complete a write to a bmsafemap structure.  Roll forward any bitmap
11947  * changes if it's not a background write.  Set all written dependencies
11948  * to DEPCOMPLETE and free the structure if possible.
11949  *
11950  * If the write did not succeed, we will do all the roll-forward
11951  * operations, but we will not take the actions that will allow its
11952  * dependencies to be processed.
11953  */
11954 static int
11955 handle_written_bmsafemap(bmsafemap, bp, flags)
11956 	struct bmsafemap *bmsafemap;
11957 	struct buf *bp;
11958 	int flags;
11959 {
11960 	struct newblk *newblk;
11961 	struct inodedep *inodedep;
11962 	struct jaddref *jaddref, *jatmp;
11963 	struct jnewblk *jnewblk, *jntmp;
11964 	struct ufsmount *ump;
11965 	uint8_t *inosused;
11966 	uint8_t *blksfree;
11967 	struct cg *cgp;
11968 	struct fs *fs;
11969 	ino_t ino;
11970 	int foreground;
11971 	int chgs;
11972 
11973 	if ((bmsafemap->sm_state & IOSTARTED) == 0)
11974 		panic("handle_written_bmsafemap: Not started\n");
11975 	ump = VFSTOUFS(bmsafemap->sm_list.wk_mp);
11976 	chgs = 0;
11977 	bmsafemap->sm_state &= ~IOSTARTED;
11978 	foreground = (bp->b_xflags & BX_BKGRDMARKER) == 0;
11979 	/*
11980 	 * If write was successful, release journal work that was waiting
11981 	 * on the write. Otherwise move the work back.
11982 	 */
11983 	if (flags & WRITESUCCEEDED)
11984 		handle_jwork(&bmsafemap->sm_freewr);
11985 	else
11986 		LIST_CONCAT(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr,
11987 		    worklist, wk_list);
11988 
11989 	/*
11990 	 * Restore unwritten inode allocation pending jaddref writes.
11991 	 */
11992 	if (!LIST_EMPTY(&bmsafemap->sm_jaddrefhd)) {
11993 		cgp = (struct cg *)bp->b_data;
11994 		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
11995 		inosused = cg_inosused(cgp);
11996 		LIST_FOREACH_SAFE(jaddref, &bmsafemap->sm_jaddrefhd,
11997 		    ja_bmdeps, jatmp) {
11998 			if ((jaddref->ja_state & UNDONE) == 0)
11999 				continue;
12000 			ino = jaddref->ja_ino % fs->fs_ipg;
12001 			if (isset(inosused, ino))
12002 				panic("handle_written_bmsafemap: "
12003 				    "re-allocated inode");
12004 			/* Do the roll-forward only if it's a real copy. */
12005 			if (foreground) {
12006 				if ((jaddref->ja_mode & IFMT) == IFDIR)
12007 					cgp->cg_cs.cs_ndir++;
12008 				cgp->cg_cs.cs_nifree--;
12009 				setbit(inosused, ino);
12010 				chgs = 1;
12011 			}
12012 			jaddref->ja_state &= ~UNDONE;
12013 			jaddref->ja_state |= ATTACHED;
12014 			free_jaddref(jaddref);
12015 		}
12016 	}
12017 	/*
12018 	 * Restore any block allocations which are pending journal writes.
12019 	 */
12020 	if (LIST_FIRST(&bmsafemap->sm_jnewblkhd) != NULL) {
12021 		cgp = (struct cg *)bp->b_data;
12022 		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
12023 		blksfree = cg_blksfree(cgp);
12024 		LIST_FOREACH_SAFE(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps,
12025 		    jntmp) {
12026 			if ((jnewblk->jn_state & UNDONE) == 0)
12027 				continue;
12028 			/* Do the roll-forward only if it's a real copy. */
12029 			if (foreground &&
12030 			    jnewblk_rollforward(jnewblk, fs, cgp, blksfree))
12031 				chgs = 1;
12032 			jnewblk->jn_state &= ~(UNDONE | NEWBLOCK);
12033 			jnewblk->jn_state |= ATTACHED;
12034 			free_jnewblk(jnewblk);
12035 		}
12036 	}
12037 	/*
12038 	 * If the write did not succeed, we have done all the roll-forward
12039 	 * operations, but we cannot take the actions that will allow its
12040 	 * dependencies to be processed.
12041 	 */
12042 	if ((flags & WRITESUCCEEDED) == 0) {
12043 		LIST_CONCAT(&bmsafemap->sm_newblkhd, &bmsafemap->sm_newblkwr,
12044 		    newblk, nb_deps);
12045 		LIST_CONCAT(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr,
12046 		    worklist, wk_list);
12047 		if (foreground)
12048 			bdirty(bp);
12049 		return (1);
12050 	}
12051 	while ((newblk = LIST_FIRST(&bmsafemap->sm_newblkwr))) {
12052 		newblk->nb_state |= DEPCOMPLETE;
12053 		newblk->nb_state &= ~ONDEPLIST;
12054 		newblk->nb_bmsafemap = NULL;
12055 		LIST_REMOVE(newblk, nb_deps);
12056 		if (newblk->nb_list.wk_type == D_ALLOCDIRECT)
12057 			handle_allocdirect_partdone(
12058 			    WK_ALLOCDIRECT(&newblk->nb_list), NULL);
12059 		else if (newblk->nb_list.wk_type == D_ALLOCINDIR)
12060 			handle_allocindir_partdone(
12061 			    WK_ALLOCINDIR(&newblk->nb_list));
12062 		else if (newblk->nb_list.wk_type != D_NEWBLK)
12063 			panic("handle_written_bmsafemap: Unexpected type: %s",
12064 			    TYPENAME(newblk->nb_list.wk_type));
12065 	}
12066 	while ((inodedep = LIST_FIRST(&bmsafemap->sm_inodedepwr)) != NULL) {
12067 		inodedep->id_state |= DEPCOMPLETE;
12068 		inodedep->id_state &= ~ONDEPLIST;
12069 		LIST_REMOVE(inodedep, id_deps);
12070 		inodedep->id_bmsafemap = NULL;
12071 	}
12072 	LIST_REMOVE(bmsafemap, sm_next);
12073 	if (chgs == 0 && LIST_EMPTY(&bmsafemap->sm_jaddrefhd) &&
12074 	    LIST_EMPTY(&bmsafemap->sm_jnewblkhd) &&
12075 	    LIST_EMPTY(&bmsafemap->sm_newblkhd) &&
12076 	    LIST_EMPTY(&bmsafemap->sm_inodedephd) &&
12077 	    LIST_EMPTY(&bmsafemap->sm_freehd)) {
12078 		LIST_REMOVE(bmsafemap, sm_hash);
12079 		WORKITEM_FREE(bmsafemap, D_BMSAFEMAP);
12080 		return (0);
12081 	}
12082 	LIST_INSERT_HEAD(&ump->softdep_dirtycg, bmsafemap, sm_next);
12083 	if (foreground)
12084 		bdirty(bp);
12085 	return (1);
12086 }
12087 
12088 /*
12089  * Try to free a mkdir dependency.
12090  */
12091 static void
12092 complete_mkdir(mkdir)
12093 	struct mkdir *mkdir;
12094 {
12095 	struct diradd *dap;
12096 
12097 	if ((mkdir->md_state & ALLCOMPLETE) != ALLCOMPLETE)
12098 		return;
12099 	LIST_REMOVE(mkdir, md_mkdirs);
12100 	dap = mkdir->md_diradd;
12101 	dap->da_state &= ~(mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY));
12102 	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0) {
12103 		dap->da_state |= DEPCOMPLETE;
12104 		complete_diradd(dap);
12105 	}
12106 	WORKITEM_FREE(mkdir, D_MKDIR);
12107 }
12108 
12109 /*
12110  * Handle the completion of a mkdir dependency.
12111  */
12112 static void
12113 handle_written_mkdir(mkdir, type)
12114 	struct mkdir *mkdir;
12115 	int type;
12116 {
12117 
12118 	if ((mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY)) != type)
12119 		panic("handle_written_mkdir: bad type");
12120 	mkdir->md_state |= COMPLETE;
12121 	complete_mkdir(mkdir);
12122 }
12123 
12124 static int
12125 free_pagedep(pagedep)
12126 	struct pagedep *pagedep;
12127 {
12128 	int i;
12129 
12130 	if (pagedep->pd_state & NEWBLOCK)
12131 		return (0);
12132 	if (!LIST_EMPTY(&pagedep->pd_dirremhd))
12133 		return (0);
12134 	for (i = 0; i < DAHASHSZ; i++)
12135 		if (!LIST_EMPTY(&pagedep->pd_diraddhd[i]))
12136 			return (0);
12137 	if (!LIST_EMPTY(&pagedep->pd_pendinghd))
12138 		return (0);
12139 	if (!LIST_EMPTY(&pagedep->pd_jmvrefhd))
12140 		return (0);
12141 	if (pagedep->pd_state & ONWORKLIST)
12142 		WORKLIST_REMOVE(&pagedep->pd_list);
12143 	LIST_REMOVE(pagedep, pd_hash);
12144 	WORKITEM_FREE(pagedep, D_PAGEDEP);
12145 
12146 	return (1);
12147 }
12148 
12149 /*
12150  * Called from within softdep_disk_write_complete above.
12151  * A write operation was just completed. Removed inodes can
12152  * now be freed and associated block pointers may be committed.
12153  * Note that this routine is always called from interrupt level
12154  * with further interrupts from this device blocked.
12155  *
12156  * If the write did not succeed, we will do all the roll-forward
12157  * operations, but we will not take the actions that will allow its
12158  * dependencies to be processed.
12159  */
12160 static int
12161 handle_written_filepage(pagedep, bp, flags)
12162 	struct pagedep *pagedep;
12163 	struct buf *bp;		/* buffer containing the written page */
12164 	int flags;
12165 {
12166 	struct dirrem *dirrem;
12167 	struct diradd *dap, *nextdap;
12168 	struct direct *ep;
12169 	int i, chgs;
12170 
12171 	if ((pagedep->pd_state & IOSTARTED) == 0)
12172 		panic("handle_written_filepage: not started");
12173 	pagedep->pd_state &= ~IOSTARTED;
12174 	if ((flags & WRITESUCCEEDED) == 0)
12175 		goto rollforward;
12176 	/*
12177 	 * Process any directory removals that have been committed.
12178 	 */
12179 	while ((dirrem = LIST_FIRST(&pagedep->pd_dirremhd)) != NULL) {
12180 		LIST_REMOVE(dirrem, dm_next);
12181 		dirrem->dm_state |= COMPLETE;
12182 		dirrem->dm_dirinum = pagedep->pd_ino;
12183 		KASSERT(LIST_EMPTY(&dirrem->dm_jremrefhd),
12184 		    ("handle_written_filepage: Journal entries not written."));
12185 		add_to_worklist(&dirrem->dm_list, 0);
12186 	}
12187 	/*
12188 	 * Free any directory additions that have been committed.
12189 	 * If it is a newly allocated block, we have to wait until
12190 	 * the on-disk directory inode claims the new block.
12191 	 */
12192 	if ((pagedep->pd_state & NEWBLOCK) == 0)
12193 		while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL)
12194 			free_diradd(dap, NULL);
12195 rollforward:
12196 	/*
12197 	 * Uncommitted directory entries must be restored.
12198 	 */
12199 	for (chgs = 0, i = 0; i < DAHASHSZ; i++) {
12200 		for (dap = LIST_FIRST(&pagedep->pd_diraddhd[i]); dap;
12201 		     dap = nextdap) {
12202 			nextdap = LIST_NEXT(dap, da_pdlist);
12203 			if (dap->da_state & ATTACHED)
12204 				panic("handle_written_filepage: attached");
12205 			ep = (struct direct *)
12206 			    ((char *)bp->b_data + dap->da_offset);
12207 			ep->d_ino = dap->da_newinum;
12208 			dap->da_state &= ~UNDONE;
12209 			dap->da_state |= ATTACHED;
12210 			chgs = 1;
12211 			/*
12212 			 * If the inode referenced by the directory has
12213 			 * been written out, then the dependency can be
12214 			 * moved to the pending list.
12215 			 */
12216 			if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
12217 				LIST_REMOVE(dap, da_pdlist);
12218 				LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap,
12219 				    da_pdlist);
12220 			}
12221 		}
12222 	}
12223 	/*
12224 	 * If there were any rollbacks in the directory, then it must be
12225 	 * marked dirty so that its will eventually get written back in
12226 	 * its correct form.
12227 	 */
12228 	if (chgs || (flags & WRITESUCCEEDED) == 0) {
12229 		if ((bp->b_flags & B_DELWRI) == 0)
12230 			stat_dir_entry++;
12231 		bdirty(bp);
12232 		return (1);
12233 	}
12234 	/*
12235 	 * If we are not waiting for a new directory block to be
12236 	 * claimed by its inode, then the pagedep will be freed.
12237 	 * Otherwise it will remain to track any new entries on
12238 	 * the page in case they are fsync'ed.
12239 	 */
12240 	free_pagedep(pagedep);
12241 	return (0);
12242 }
12243 
12244 /*
12245  * Writing back in-core inode structures.
12246  *
12247  * The filesystem only accesses an inode's contents when it occupies an
12248  * "in-core" inode structure.  These "in-core" structures are separate from
12249  * the page frames used to cache inode blocks.  Only the latter are
12250  * transferred to/from the disk.  So, when the updated contents of the
12251  * "in-core" inode structure are copied to the corresponding in-memory inode
12252  * block, the dependencies are also transferred.  The following procedure is
12253  * called when copying a dirty "in-core" inode to a cached inode block.
12254  */
12255 
12256 /*
12257  * Called when an inode is loaded from disk. If the effective link count
12258  * differed from the actual link count when it was last flushed, then we
12259  * need to ensure that the correct effective link count is put back.
12260  */
12261 void
12262 softdep_load_inodeblock(ip)
12263 	struct inode *ip;	/* the "in_core" copy of the inode */
12264 {
12265 	struct inodedep *inodedep;
12266 	struct ufsmount *ump;
12267 
12268 	ump = ITOUMP(ip);
12269 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
12270 	    ("softdep_load_inodeblock called on non-softdep filesystem"));
12271 	/*
12272 	 * Check for alternate nlink count.
12273 	 */
12274 	ip->i_effnlink = ip->i_nlink;
12275 	ACQUIRE_LOCK(ump);
12276 	if (inodedep_lookup(UFSTOVFS(ump), ip->i_number, 0, &inodedep) == 0) {
12277 		FREE_LOCK(ump);
12278 		return;
12279 	}
12280 	ip->i_effnlink -= inodedep->id_nlinkdelta;
12281 	KASSERT(ip->i_effnlink >= 0,
12282 	    ("softdep_load_inodeblock: negative i_effnlink"));
12283 	FREE_LOCK(ump);
12284 }
12285 
12286 /*
12287  * This routine is called just before the "in-core" inode
12288  * information is to be copied to the in-memory inode block.
12289  * Recall that an inode block contains several inodes. If
12290  * the force flag is set, then the dependencies will be
12291  * cleared so that the update can always be made. Note that
12292  * the buffer is locked when this routine is called, so we
12293  * will never be in the middle of writing the inode block
12294  * to disk.
12295  */
12296 void
12297 softdep_update_inodeblock(ip, bp, waitfor)
12298 	struct inode *ip;	/* the "in_core" copy of the inode */
12299 	struct buf *bp;		/* the buffer containing the inode block */
12300 	int waitfor;		/* nonzero => update must be allowed */
12301 {
12302 	struct inodedep *inodedep;
12303 	struct inoref *inoref;
12304 	struct ufsmount *ump;
12305 	struct worklist *wk;
12306 	struct mount *mp;
12307 	struct buf *ibp;
12308 	struct fs *fs;
12309 	int error;
12310 
12311 	ump = ITOUMP(ip);
12312 	mp = UFSTOVFS(ump);
12313 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
12314 	    ("softdep_update_inodeblock called on non-softdep filesystem"));
12315 	fs = ump->um_fs;
12316 	/*
12317 	 * Preserve the freelink that is on disk.  clear_unlinked_inodedep()
12318 	 * does not have access to the in-core ip so must write directly into
12319 	 * the inode block buffer when setting freelink.
12320 	 */
12321 	if (fs->fs_magic == FS_UFS1_MAGIC)
12322 		DIP_SET(ip, i_freelink, ((struct ufs1_dinode *)bp->b_data +
12323 		    ino_to_fsbo(fs, ip->i_number))->di_freelink);
12324 	else
12325 		DIP_SET(ip, i_freelink, ((struct ufs2_dinode *)bp->b_data +
12326 		    ino_to_fsbo(fs, ip->i_number))->di_freelink);
12327 	/*
12328 	 * If the effective link count is not equal to the actual link
12329 	 * count, then we must track the difference in an inodedep while
12330 	 * the inode is (potentially) tossed out of the cache. Otherwise,
12331 	 * if there is no existing inodedep, then there are no dependencies
12332 	 * to track.
12333 	 */
12334 	ACQUIRE_LOCK(ump);
12335 again:
12336 	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) {
12337 		FREE_LOCK(ump);
12338 		if (ip->i_effnlink != ip->i_nlink)
12339 			panic("softdep_update_inodeblock: bad link count");
12340 		return;
12341 	}
12342 	if (inodedep->id_nlinkdelta != ip->i_nlink - ip->i_effnlink)
12343 		panic("softdep_update_inodeblock: bad delta");
12344 	/*
12345 	 * If we're flushing all dependencies we must also move any waiting
12346 	 * for journal writes onto the bufwait list prior to I/O.
12347 	 */
12348 	if (waitfor) {
12349 		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
12350 			if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
12351 			    == DEPCOMPLETE) {
12352 				jwait(&inoref->if_list, MNT_WAIT);
12353 				goto again;
12354 			}
12355 		}
12356 	}
12357 	/*
12358 	 * Changes have been initiated. Anything depending on these
12359 	 * changes cannot occur until this inode has been written.
12360 	 */
12361 	inodedep->id_state &= ~COMPLETE;
12362 	if ((inodedep->id_state & ONWORKLIST) == 0)
12363 		WORKLIST_INSERT(&bp->b_dep, &inodedep->id_list);
12364 	/*
12365 	 * Any new dependencies associated with the incore inode must
12366 	 * now be moved to the list associated with the buffer holding
12367 	 * the in-memory copy of the inode. Once merged process any
12368 	 * allocdirects that are completed by the merger.
12369 	 */
12370 	merge_inode_lists(&inodedep->id_newinoupdt, &inodedep->id_inoupdt);
12371 	if (!TAILQ_EMPTY(&inodedep->id_inoupdt))
12372 		handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_inoupdt),
12373 		    NULL);
12374 	merge_inode_lists(&inodedep->id_newextupdt, &inodedep->id_extupdt);
12375 	if (!TAILQ_EMPTY(&inodedep->id_extupdt))
12376 		handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_extupdt),
12377 		    NULL);
12378 	/*
12379 	 * Now that the inode has been pushed into the buffer, the
12380 	 * operations dependent on the inode being written to disk
12381 	 * can be moved to the id_bufwait so that they will be
12382 	 * processed when the buffer I/O completes.
12383 	 */
12384 	while ((wk = LIST_FIRST(&inodedep->id_inowait)) != NULL) {
12385 		WORKLIST_REMOVE(wk);
12386 		WORKLIST_INSERT(&inodedep->id_bufwait, wk);
12387 	}
12388 	/*
12389 	 * Newly allocated inodes cannot be written until the bitmap
12390 	 * that allocates them have been written (indicated by
12391 	 * DEPCOMPLETE being set in id_state). If we are doing a
12392 	 * forced sync (e.g., an fsync on a file), we force the bitmap
12393 	 * to be written so that the update can be done.
12394 	 */
12395 	if (waitfor == 0) {
12396 		FREE_LOCK(ump);
12397 		return;
12398 	}
12399 retry:
12400 	if ((inodedep->id_state & (DEPCOMPLETE | GOINGAWAY)) != 0) {
12401 		FREE_LOCK(ump);
12402 		return;
12403 	}
12404 	ibp = inodedep->id_bmsafemap->sm_buf;
12405 	ibp = getdirtybuf(ibp, LOCK_PTR(ump), MNT_WAIT);
12406 	if (ibp == NULL) {
12407 		/*
12408 		 * If ibp came back as NULL, the dependency could have been
12409 		 * freed while we slept.  Look it up again, and check to see
12410 		 * that it has completed.
12411 		 */
12412 		if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0)
12413 			goto retry;
12414 		FREE_LOCK(ump);
12415 		return;
12416 	}
12417 	FREE_LOCK(ump);
12418 	if ((error = bwrite(ibp)) != 0)
12419 		softdep_error("softdep_update_inodeblock: bwrite", error);
12420 }
12421 
12422 /*
12423  * Merge the a new inode dependency list (such as id_newinoupdt) into an
12424  * old inode dependency list (such as id_inoupdt).
12425  */
12426 static void
12427 merge_inode_lists(newlisthead, oldlisthead)
12428 	struct allocdirectlst *newlisthead;
12429 	struct allocdirectlst *oldlisthead;
12430 {
12431 	struct allocdirect *listadp, *newadp;
12432 
12433 	newadp = TAILQ_FIRST(newlisthead);
12434 	if (newadp != NULL)
12435 		LOCK_OWNED(VFSTOUFS(newadp->ad_block.nb_list.wk_mp));
12436 	for (listadp = TAILQ_FIRST(oldlisthead); listadp && newadp;) {
12437 		if (listadp->ad_offset < newadp->ad_offset) {
12438 			listadp = TAILQ_NEXT(listadp, ad_next);
12439 			continue;
12440 		}
12441 		TAILQ_REMOVE(newlisthead, newadp, ad_next);
12442 		TAILQ_INSERT_BEFORE(listadp, newadp, ad_next);
12443 		if (listadp->ad_offset == newadp->ad_offset) {
12444 			allocdirect_merge(oldlisthead, newadp,
12445 			    listadp);
12446 			listadp = newadp;
12447 		}
12448 		newadp = TAILQ_FIRST(newlisthead);
12449 	}
12450 	while ((newadp = TAILQ_FIRST(newlisthead)) != NULL) {
12451 		TAILQ_REMOVE(newlisthead, newadp, ad_next);
12452 		TAILQ_INSERT_TAIL(oldlisthead, newadp, ad_next);
12453 	}
12454 }
12455 
12456 /*
12457  * If we are doing an fsync, then we must ensure that any directory
12458  * entries for the inode have been written after the inode gets to disk.
12459  */
12460 int
12461 softdep_fsync(vp)
12462 	struct vnode *vp;	/* the "in_core" copy of the inode */
12463 {
12464 	struct inodedep *inodedep;
12465 	struct pagedep *pagedep;
12466 	struct inoref *inoref;
12467 	struct ufsmount *ump;
12468 	struct worklist *wk;
12469 	struct diradd *dap;
12470 	struct mount *mp;
12471 	struct vnode *pvp;
12472 	struct inode *ip;
12473 	struct buf *bp;
12474 	struct fs *fs;
12475 	struct thread *td = curthread;
12476 	int error, flushparent, pagedep_new_block;
12477 	ino_t parentino;
12478 	ufs_lbn_t lbn;
12479 
12480 	ip = VTOI(vp);
12481 	mp = vp->v_mount;
12482 	ump = VFSTOUFS(mp);
12483 	fs = ump->um_fs;
12484 	if (MOUNTEDSOFTDEP(mp) == 0)
12485 		return (0);
12486 	ACQUIRE_LOCK(ump);
12487 restart:
12488 	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) {
12489 		FREE_LOCK(ump);
12490 		return (0);
12491 	}
12492 	TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
12493 		if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
12494 		    == DEPCOMPLETE) {
12495 			jwait(&inoref->if_list, MNT_WAIT);
12496 			goto restart;
12497 		}
12498 	}
12499 	if (!LIST_EMPTY(&inodedep->id_inowait) ||
12500 	    !TAILQ_EMPTY(&inodedep->id_extupdt) ||
12501 	    !TAILQ_EMPTY(&inodedep->id_newextupdt) ||
12502 	    !TAILQ_EMPTY(&inodedep->id_inoupdt) ||
12503 	    !TAILQ_EMPTY(&inodedep->id_newinoupdt))
12504 		panic("softdep_fsync: pending ops %p", inodedep);
12505 	for (error = 0, flushparent = 0; ; ) {
12506 		if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) == NULL)
12507 			break;
12508 		if (wk->wk_type != D_DIRADD)
12509 			panic("softdep_fsync: Unexpected type %s",
12510 			    TYPENAME(wk->wk_type));
12511 		dap = WK_DIRADD(wk);
12512 		/*
12513 		 * Flush our parent if this directory entry has a MKDIR_PARENT
12514 		 * dependency or is contained in a newly allocated block.
12515 		 */
12516 		if (dap->da_state & DIRCHG)
12517 			pagedep = dap->da_previous->dm_pagedep;
12518 		else
12519 			pagedep = dap->da_pagedep;
12520 		parentino = pagedep->pd_ino;
12521 		lbn = pagedep->pd_lbn;
12522 		if ((dap->da_state & (MKDIR_BODY | COMPLETE)) != COMPLETE)
12523 			panic("softdep_fsync: dirty");
12524 		if ((dap->da_state & MKDIR_PARENT) ||
12525 		    (pagedep->pd_state & NEWBLOCK))
12526 			flushparent = 1;
12527 		else
12528 			flushparent = 0;
12529 		/*
12530 		 * If we are being fsync'ed as part of vgone'ing this vnode,
12531 		 * then we will not be able to release and recover the
12532 		 * vnode below, so we just have to give up on writing its
12533 		 * directory entry out. It will eventually be written, just
12534 		 * not now, but then the user was not asking to have it
12535 		 * written, so we are not breaking any promises.
12536 		 */
12537 		if (VN_IS_DOOMED(vp))
12538 			break;
12539 		/*
12540 		 * We prevent deadlock by always fetching inodes from the
12541 		 * root, moving down the directory tree. Thus, when fetching
12542 		 * our parent directory, we first try to get the lock. If
12543 		 * that fails, we must unlock ourselves before requesting
12544 		 * the lock on our parent. See the comment in ufs_lookup
12545 		 * for details on possible races.
12546 		 */
12547 		FREE_LOCK(ump);
12548 		if (ffs_vgetf(mp, parentino, LK_NOWAIT | LK_EXCLUSIVE, &pvp,
12549 		    FFSV_FORCEINSMQ)) {
12550 			/*
12551 			 * Unmount cannot proceed after unlock because
12552 			 * caller must have called vn_start_write().
12553 			 */
12554 			VOP_UNLOCK(vp);
12555 			error = ffs_vgetf(mp, parentino, LK_EXCLUSIVE,
12556 			    &pvp, FFSV_FORCEINSMQ);
12557 			MPASS(VTOI(pvp)->i_mode != 0);
12558 			vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
12559 			if (VN_IS_DOOMED(vp)) {
12560 				if (error == 0)
12561 					vput(pvp);
12562 				error = ENOENT;
12563 			}
12564 			if (error != 0)
12565 				return (error);
12566 		}
12567 		/*
12568 		 * All MKDIR_PARENT dependencies and all the NEWBLOCK pagedeps
12569 		 * that are contained in direct blocks will be resolved by
12570 		 * doing a ffs_update. Pagedeps contained in indirect blocks
12571 		 * may require a complete sync'ing of the directory. So, we
12572 		 * try the cheap and fast ffs_update first, and if that fails,
12573 		 * then we do the slower ffs_syncvnode of the directory.
12574 		 */
12575 		if (flushparent) {
12576 			int locked;
12577 
12578 			if ((error = ffs_update(pvp, 1)) != 0) {
12579 				vput(pvp);
12580 				return (error);
12581 			}
12582 			ACQUIRE_LOCK(ump);
12583 			locked = 1;
12584 			if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0) {
12585 				if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) != NULL) {
12586 					if (wk->wk_type != D_DIRADD)
12587 						panic("softdep_fsync: Unexpected type %s",
12588 						      TYPENAME(wk->wk_type));
12589 					dap = WK_DIRADD(wk);
12590 					if (dap->da_state & DIRCHG)
12591 						pagedep = dap->da_previous->dm_pagedep;
12592 					else
12593 						pagedep = dap->da_pagedep;
12594 					pagedep_new_block = pagedep->pd_state & NEWBLOCK;
12595 					FREE_LOCK(ump);
12596 					locked = 0;
12597 					if (pagedep_new_block && (error =
12598 					    ffs_syncvnode(pvp, MNT_WAIT, 0))) {
12599 						vput(pvp);
12600 						return (error);
12601 					}
12602 				}
12603 			}
12604 			if (locked)
12605 				FREE_LOCK(ump);
12606 		}
12607 		/*
12608 		 * Flush directory page containing the inode's name.
12609 		 */
12610 		error = bread(pvp, lbn, blksize(fs, VTOI(pvp), lbn), td->td_ucred,
12611 		    &bp);
12612 		if (error == 0)
12613 			error = bwrite(bp);
12614 		else
12615 			brelse(bp);
12616 		vput(pvp);
12617 		if (error != 0)
12618 			return (error);
12619 		ACQUIRE_LOCK(ump);
12620 		if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0)
12621 			break;
12622 	}
12623 	FREE_LOCK(ump);
12624 	return (0);
12625 }
12626 
12627 /*
12628  * Flush all the dirty bitmaps associated with the block device
12629  * before flushing the rest of the dirty blocks so as to reduce
12630  * the number of dependencies that will have to be rolled back.
12631  *
12632  * XXX Unused?
12633  */
12634 void
12635 softdep_fsync_mountdev(vp)
12636 	struct vnode *vp;
12637 {
12638 	struct buf *bp, *nbp;
12639 	struct worklist *wk;
12640 	struct bufobj *bo;
12641 
12642 	if (!vn_isdisk(vp, NULL))
12643 		panic("softdep_fsync_mountdev: vnode not a disk");
12644 	bo = &vp->v_bufobj;
12645 restart:
12646 	BO_LOCK(bo);
12647 	TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
12648 		/*
12649 		 * If it is already scheduled, skip to the next buffer.
12650 		 */
12651 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL))
12652 			continue;
12653 
12654 		if ((bp->b_flags & B_DELWRI) == 0)
12655 			panic("softdep_fsync_mountdev: not dirty");
12656 		/*
12657 		 * We are only interested in bitmaps with outstanding
12658 		 * dependencies.
12659 		 */
12660 		if ((wk = LIST_FIRST(&bp->b_dep)) == NULL ||
12661 		    wk->wk_type != D_BMSAFEMAP ||
12662 		    (bp->b_vflags & BV_BKGRDINPROG)) {
12663 			BUF_UNLOCK(bp);
12664 			continue;
12665 		}
12666 		BO_UNLOCK(bo);
12667 		bremfree(bp);
12668 		(void) bawrite(bp);
12669 		goto restart;
12670 	}
12671 	drain_output(vp);
12672 	BO_UNLOCK(bo);
12673 }
12674 
12675 /*
12676  * Sync all cylinder groups that were dirty at the time this function is
12677  * called.  Newly dirtied cgs will be inserted before the sentinel.  This
12678  * is used to flush freedep activity that may be holding up writes to a
12679  * indirect block.
12680  */
12681 static int
12682 sync_cgs(mp, waitfor)
12683 	struct mount *mp;
12684 	int waitfor;
12685 {
12686 	struct bmsafemap *bmsafemap;
12687 	struct bmsafemap *sentinel;
12688 	struct ufsmount *ump;
12689 	struct buf *bp;
12690 	int error;
12691 
12692 	sentinel = malloc(sizeof(*sentinel), M_BMSAFEMAP, M_ZERO | M_WAITOK);
12693 	sentinel->sm_cg = -1;
12694 	ump = VFSTOUFS(mp);
12695 	error = 0;
12696 	ACQUIRE_LOCK(ump);
12697 	LIST_INSERT_HEAD(&ump->softdep_dirtycg, sentinel, sm_next);
12698 	for (bmsafemap = LIST_NEXT(sentinel, sm_next); bmsafemap != NULL;
12699 	    bmsafemap = LIST_NEXT(sentinel, sm_next)) {
12700 		/* Skip sentinels and cgs with no work to release. */
12701 		if (bmsafemap->sm_cg == -1 ||
12702 		    (LIST_EMPTY(&bmsafemap->sm_freehd) &&
12703 		    LIST_EMPTY(&bmsafemap->sm_freewr))) {
12704 			LIST_REMOVE(sentinel, sm_next);
12705 			LIST_INSERT_AFTER(bmsafemap, sentinel, sm_next);
12706 			continue;
12707 		}
12708 		/*
12709 		 * If we don't get the lock and we're waiting try again, if
12710 		 * not move on to the next buf and try to sync it.
12711 		 */
12712 		bp = getdirtybuf(bmsafemap->sm_buf, LOCK_PTR(ump), waitfor);
12713 		if (bp == NULL && waitfor == MNT_WAIT)
12714 			continue;
12715 		LIST_REMOVE(sentinel, sm_next);
12716 		LIST_INSERT_AFTER(bmsafemap, sentinel, sm_next);
12717 		if (bp == NULL)
12718 			continue;
12719 		FREE_LOCK(ump);
12720 		if (waitfor == MNT_NOWAIT)
12721 			bawrite(bp);
12722 		else
12723 			error = bwrite(bp);
12724 		ACQUIRE_LOCK(ump);
12725 		if (error)
12726 			break;
12727 	}
12728 	LIST_REMOVE(sentinel, sm_next);
12729 	FREE_LOCK(ump);
12730 	free(sentinel, M_BMSAFEMAP);
12731 	return (error);
12732 }
12733 
12734 /*
12735  * This routine is called when we are trying to synchronously flush a
12736  * file. This routine must eliminate any filesystem metadata dependencies
12737  * so that the syncing routine can succeed.
12738  */
12739 int
12740 softdep_sync_metadata(struct vnode *vp)
12741 {
12742 	struct inode *ip;
12743 	int error;
12744 
12745 	ip = VTOI(vp);
12746 	KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0,
12747 	    ("softdep_sync_metadata called on non-softdep filesystem"));
12748 	/*
12749 	 * Ensure that any direct block dependencies have been cleared,
12750 	 * truncations are started, and inode references are journaled.
12751 	 */
12752 	ACQUIRE_LOCK(VFSTOUFS(vp->v_mount));
12753 	/*
12754 	 * Write all journal records to prevent rollbacks on devvp.
12755 	 */
12756 	if (vp->v_type == VCHR)
12757 		softdep_flushjournal(vp->v_mount);
12758 	error = flush_inodedep_deps(vp, vp->v_mount, ip->i_number);
12759 	/*
12760 	 * Ensure that all truncates are written so we won't find deps on
12761 	 * indirect blocks.
12762 	 */
12763 	process_truncates(vp);
12764 	FREE_LOCK(VFSTOUFS(vp->v_mount));
12765 
12766 	return (error);
12767 }
12768 
12769 /*
12770  * This routine is called when we are attempting to sync a buf with
12771  * dependencies.  If waitfor is MNT_NOWAIT it attempts to schedule any
12772  * other IO it can but returns EBUSY if the buffer is not yet able to
12773  * be written.  Dependencies which will not cause rollbacks will always
12774  * return 0.
12775  */
12776 int
12777 softdep_sync_buf(struct vnode *vp, struct buf *bp, int waitfor)
12778 {
12779 	struct indirdep *indirdep;
12780 	struct pagedep *pagedep;
12781 	struct allocindir *aip;
12782 	struct newblk *newblk;
12783 	struct ufsmount *ump;
12784 	struct buf *nbp;
12785 	struct worklist *wk;
12786 	int i, error;
12787 
12788 	KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0,
12789 	    ("softdep_sync_buf called on non-softdep filesystem"));
12790 	/*
12791 	 * For VCHR we just don't want to force flush any dependencies that
12792 	 * will cause rollbacks.
12793 	 */
12794 	if (vp->v_type == VCHR) {
12795 		if (waitfor == MNT_NOWAIT && softdep_count_dependencies(bp, 0))
12796 			return (EBUSY);
12797 		return (0);
12798 	}
12799 	ump = VFSTOUFS(vp->v_mount);
12800 	ACQUIRE_LOCK(ump);
12801 	/*
12802 	 * As we hold the buffer locked, none of its dependencies
12803 	 * will disappear.
12804 	 */
12805 	error = 0;
12806 top:
12807 	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
12808 		switch (wk->wk_type) {
12809 
12810 		case D_ALLOCDIRECT:
12811 		case D_ALLOCINDIR:
12812 			newblk = WK_NEWBLK(wk);
12813 			if (newblk->nb_jnewblk != NULL) {
12814 				if (waitfor == MNT_NOWAIT) {
12815 					error = EBUSY;
12816 					goto out_unlock;
12817 				}
12818 				jwait(&newblk->nb_jnewblk->jn_list, waitfor);
12819 				goto top;
12820 			}
12821 			if (newblk->nb_state & DEPCOMPLETE ||
12822 			    waitfor == MNT_NOWAIT)
12823 				continue;
12824 			nbp = newblk->nb_bmsafemap->sm_buf;
12825 			nbp = getdirtybuf(nbp, LOCK_PTR(ump), waitfor);
12826 			if (nbp == NULL)
12827 				goto top;
12828 			FREE_LOCK(ump);
12829 			if ((error = bwrite(nbp)) != 0)
12830 				goto out;
12831 			ACQUIRE_LOCK(ump);
12832 			continue;
12833 
12834 		case D_INDIRDEP:
12835 			indirdep = WK_INDIRDEP(wk);
12836 			if (waitfor == MNT_NOWAIT) {
12837 				if (!TAILQ_EMPTY(&indirdep->ir_trunc) ||
12838 				    !LIST_EMPTY(&indirdep->ir_deplisthd)) {
12839 					error = EBUSY;
12840 					goto out_unlock;
12841 				}
12842 			}
12843 			if (!TAILQ_EMPTY(&indirdep->ir_trunc))
12844 				panic("softdep_sync_buf: truncation pending.");
12845 		restart:
12846 			LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) {
12847 				newblk = (struct newblk *)aip;
12848 				if (newblk->nb_jnewblk != NULL) {
12849 					jwait(&newblk->nb_jnewblk->jn_list,
12850 					    waitfor);
12851 					goto restart;
12852 				}
12853 				if (newblk->nb_state & DEPCOMPLETE)
12854 					continue;
12855 				nbp = newblk->nb_bmsafemap->sm_buf;
12856 				nbp = getdirtybuf(nbp, LOCK_PTR(ump), waitfor);
12857 				if (nbp == NULL)
12858 					goto restart;
12859 				FREE_LOCK(ump);
12860 				if ((error = bwrite(nbp)) != 0)
12861 					goto out;
12862 				ACQUIRE_LOCK(ump);
12863 				goto restart;
12864 			}
12865 			continue;
12866 
12867 		case D_PAGEDEP:
12868 			/*
12869 			 * Only flush directory entries in synchronous passes.
12870 			 */
12871 			if (waitfor != MNT_WAIT) {
12872 				error = EBUSY;
12873 				goto out_unlock;
12874 			}
12875 			/*
12876 			 * While syncing snapshots, we must allow recursive
12877 			 * lookups.
12878 			 */
12879 			BUF_AREC(bp);
12880 			/*
12881 			 * We are trying to sync a directory that may
12882 			 * have dependencies on both its own metadata
12883 			 * and/or dependencies on the inodes of any
12884 			 * recently allocated files. We walk its diradd
12885 			 * lists pushing out the associated inode.
12886 			 */
12887 			pagedep = WK_PAGEDEP(wk);
12888 			for (i = 0; i < DAHASHSZ; i++) {
12889 				if (LIST_FIRST(&pagedep->pd_diraddhd[i]) == 0)
12890 					continue;
12891 				if ((error = flush_pagedep_deps(vp, wk->wk_mp,
12892 				    &pagedep->pd_diraddhd[i]))) {
12893 					BUF_NOREC(bp);
12894 					goto out_unlock;
12895 				}
12896 			}
12897 			BUF_NOREC(bp);
12898 			continue;
12899 
12900 		case D_FREEWORK:
12901 		case D_FREEDEP:
12902 		case D_JSEGDEP:
12903 		case D_JNEWBLK:
12904 			continue;
12905 
12906 		default:
12907 			panic("softdep_sync_buf: Unknown type %s",
12908 			    TYPENAME(wk->wk_type));
12909 			/* NOTREACHED */
12910 		}
12911 	}
12912 out_unlock:
12913 	FREE_LOCK(ump);
12914 out:
12915 	return (error);
12916 }
12917 
12918 /*
12919  * Flush the dependencies associated with an inodedep.
12920  */
12921 static int
12922 flush_inodedep_deps(vp, mp, ino)
12923 	struct vnode *vp;
12924 	struct mount *mp;
12925 	ino_t ino;
12926 {
12927 	struct inodedep *inodedep;
12928 	struct inoref *inoref;
12929 	struct ufsmount *ump;
12930 	int error, waitfor;
12931 
12932 	/*
12933 	 * This work is done in two passes. The first pass grabs most
12934 	 * of the buffers and begins asynchronously writing them. The
12935 	 * only way to wait for these asynchronous writes is to sleep
12936 	 * on the filesystem vnode which may stay busy for a long time
12937 	 * if the filesystem is active. So, instead, we make a second
12938 	 * pass over the dependencies blocking on each write. In the
12939 	 * usual case we will be blocking against a write that we
12940 	 * initiated, so when it is done the dependency will have been
12941 	 * resolved. Thus the second pass is expected to end quickly.
12942 	 * We give a brief window at the top of the loop to allow
12943 	 * any pending I/O to complete.
12944 	 */
12945 	ump = VFSTOUFS(mp);
12946 	LOCK_OWNED(ump);
12947 	for (error = 0, waitfor = MNT_NOWAIT; ; ) {
12948 		if (error)
12949 			return (error);
12950 		FREE_LOCK(ump);
12951 		ACQUIRE_LOCK(ump);
12952 restart:
12953 		if (inodedep_lookup(mp, ino, 0, &inodedep) == 0)
12954 			return (0);
12955 		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
12956 			if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
12957 			    == DEPCOMPLETE) {
12958 				jwait(&inoref->if_list, MNT_WAIT);
12959 				goto restart;
12960 			}
12961 		}
12962 		if (flush_deplist(&inodedep->id_inoupdt, waitfor, &error) ||
12963 		    flush_deplist(&inodedep->id_newinoupdt, waitfor, &error) ||
12964 		    flush_deplist(&inodedep->id_extupdt, waitfor, &error) ||
12965 		    flush_deplist(&inodedep->id_newextupdt, waitfor, &error))
12966 			continue;
12967 		/*
12968 		 * If pass2, we are done, otherwise do pass 2.
12969 		 */
12970 		if (waitfor == MNT_WAIT)
12971 			break;
12972 		waitfor = MNT_WAIT;
12973 	}
12974 	/*
12975 	 * Try freeing inodedep in case all dependencies have been removed.
12976 	 */
12977 	if (inodedep_lookup(mp, ino, 0, &inodedep) != 0)
12978 		(void) free_inodedep(inodedep);
12979 	return (0);
12980 }
12981 
12982 /*
12983  * Flush an inode dependency list.
12984  */
12985 static int
12986 flush_deplist(listhead, waitfor, errorp)
12987 	struct allocdirectlst *listhead;
12988 	int waitfor;
12989 	int *errorp;
12990 {
12991 	struct allocdirect *adp;
12992 	struct newblk *newblk;
12993 	struct ufsmount *ump;
12994 	struct buf *bp;
12995 
12996 	if ((adp = TAILQ_FIRST(listhead)) == NULL)
12997 		return (0);
12998 	ump = VFSTOUFS(adp->ad_list.wk_mp);
12999 	LOCK_OWNED(ump);
13000 	TAILQ_FOREACH(adp, listhead, ad_next) {
13001 		newblk = (struct newblk *)adp;
13002 		if (newblk->nb_jnewblk != NULL) {
13003 			jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT);
13004 			return (1);
13005 		}
13006 		if (newblk->nb_state & DEPCOMPLETE)
13007 			continue;
13008 		bp = newblk->nb_bmsafemap->sm_buf;
13009 		bp = getdirtybuf(bp, LOCK_PTR(ump), waitfor);
13010 		if (bp == NULL) {
13011 			if (waitfor == MNT_NOWAIT)
13012 				continue;
13013 			return (1);
13014 		}
13015 		FREE_LOCK(ump);
13016 		if (waitfor == MNT_NOWAIT)
13017 			bawrite(bp);
13018 		else
13019 			*errorp = bwrite(bp);
13020 		ACQUIRE_LOCK(ump);
13021 		return (1);
13022 	}
13023 	return (0);
13024 }
13025 
13026 /*
13027  * Flush dependencies associated with an allocdirect block.
13028  */
13029 static int
13030 flush_newblk_dep(vp, mp, lbn)
13031 	struct vnode *vp;
13032 	struct mount *mp;
13033 	ufs_lbn_t lbn;
13034 {
13035 	struct newblk *newblk;
13036 	struct ufsmount *ump;
13037 	struct bufobj *bo;
13038 	struct inode *ip;
13039 	struct buf *bp;
13040 	ufs2_daddr_t blkno;
13041 	int error;
13042 
13043 	error = 0;
13044 	bo = &vp->v_bufobj;
13045 	ip = VTOI(vp);
13046 	blkno = DIP(ip, i_db[lbn]);
13047 	if (blkno == 0)
13048 		panic("flush_newblk_dep: Missing block");
13049 	ump = VFSTOUFS(mp);
13050 	ACQUIRE_LOCK(ump);
13051 	/*
13052 	 * Loop until all dependencies related to this block are satisfied.
13053 	 * We must be careful to restart after each sleep in case a write
13054 	 * completes some part of this process for us.
13055 	 */
13056 	for (;;) {
13057 		if (newblk_lookup(mp, blkno, 0, &newblk) == 0) {
13058 			FREE_LOCK(ump);
13059 			break;
13060 		}
13061 		if (newblk->nb_list.wk_type != D_ALLOCDIRECT)
13062 			panic("flush_newblk_dep: Bad newblk %p", newblk);
13063 		/*
13064 		 * Flush the journal.
13065 		 */
13066 		if (newblk->nb_jnewblk != NULL) {
13067 			jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT);
13068 			continue;
13069 		}
13070 		/*
13071 		 * Write the bitmap dependency.
13072 		 */
13073 		if ((newblk->nb_state & DEPCOMPLETE) == 0) {
13074 			bp = newblk->nb_bmsafemap->sm_buf;
13075 			bp = getdirtybuf(bp, LOCK_PTR(ump), MNT_WAIT);
13076 			if (bp == NULL)
13077 				continue;
13078 			FREE_LOCK(ump);
13079 			error = bwrite(bp);
13080 			if (error)
13081 				break;
13082 			ACQUIRE_LOCK(ump);
13083 			continue;
13084 		}
13085 		/*
13086 		 * Write the buffer.
13087 		 */
13088 		FREE_LOCK(ump);
13089 		BO_LOCK(bo);
13090 		bp = gbincore(bo, lbn);
13091 		if (bp != NULL) {
13092 			error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL |
13093 			    LK_INTERLOCK, BO_LOCKPTR(bo));
13094 			if (error == ENOLCK) {
13095 				ACQUIRE_LOCK(ump);
13096 				error = 0;
13097 				continue; /* Slept, retry */
13098 			}
13099 			if (error != 0)
13100 				break;	/* Failed */
13101 			if (bp->b_flags & B_DELWRI) {
13102 				bremfree(bp);
13103 				error = bwrite(bp);
13104 				if (error)
13105 					break;
13106 			} else
13107 				BUF_UNLOCK(bp);
13108 		} else
13109 			BO_UNLOCK(bo);
13110 		/*
13111 		 * We have to wait for the direct pointers to
13112 		 * point at the newdirblk before the dependency
13113 		 * will go away.
13114 		 */
13115 		error = ffs_update(vp, 1);
13116 		if (error)
13117 			break;
13118 		ACQUIRE_LOCK(ump);
13119 	}
13120 	return (error);
13121 }
13122 
13123 /*
13124  * Eliminate a pagedep dependency by flushing out all its diradd dependencies.
13125  */
13126 static int
13127 flush_pagedep_deps(pvp, mp, diraddhdp)
13128 	struct vnode *pvp;
13129 	struct mount *mp;
13130 	struct diraddhd *diraddhdp;
13131 {
13132 	struct inodedep *inodedep;
13133 	struct inoref *inoref;
13134 	struct ufsmount *ump;
13135 	struct diradd *dap;
13136 	struct vnode *vp;
13137 	int error = 0;
13138 	struct buf *bp;
13139 	ino_t inum;
13140 	struct diraddhd unfinished;
13141 
13142 	LIST_INIT(&unfinished);
13143 	ump = VFSTOUFS(mp);
13144 	LOCK_OWNED(ump);
13145 restart:
13146 	while ((dap = LIST_FIRST(diraddhdp)) != NULL) {
13147 		/*
13148 		 * Flush ourselves if this directory entry
13149 		 * has a MKDIR_PARENT dependency.
13150 		 */
13151 		if (dap->da_state & MKDIR_PARENT) {
13152 			FREE_LOCK(ump);
13153 			if ((error = ffs_update(pvp, 1)) != 0)
13154 				break;
13155 			ACQUIRE_LOCK(ump);
13156 			/*
13157 			 * If that cleared dependencies, go on to next.
13158 			 */
13159 			if (dap != LIST_FIRST(diraddhdp))
13160 				continue;
13161 			/*
13162 			 * All MKDIR_PARENT dependencies and all the
13163 			 * NEWBLOCK pagedeps that are contained in direct
13164 			 * blocks were resolved by doing above ffs_update.
13165 			 * Pagedeps contained in indirect blocks may
13166 			 * require a complete sync'ing of the directory.
13167 			 * We are in the midst of doing a complete sync,
13168 			 * so if they are not resolved in this pass we
13169 			 * defer them for now as they will be sync'ed by
13170 			 * our caller shortly.
13171 			 */
13172 			LIST_REMOVE(dap, da_pdlist);
13173 			LIST_INSERT_HEAD(&unfinished, dap, da_pdlist);
13174 			continue;
13175 		}
13176 		/*
13177 		 * A newly allocated directory must have its "." and
13178 		 * ".." entries written out before its name can be
13179 		 * committed in its parent.
13180 		 */
13181 		inum = dap->da_newinum;
13182 		if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0)
13183 			panic("flush_pagedep_deps: lost inode1");
13184 		/*
13185 		 * Wait for any pending journal adds to complete so we don't
13186 		 * cause rollbacks while syncing.
13187 		 */
13188 		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
13189 			if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
13190 			    == DEPCOMPLETE) {
13191 				jwait(&inoref->if_list, MNT_WAIT);
13192 				goto restart;
13193 			}
13194 		}
13195 		if (dap->da_state & MKDIR_BODY) {
13196 			FREE_LOCK(ump);
13197 			if ((error = ffs_vgetf(mp, inum, LK_EXCLUSIVE, &vp,
13198 			    FFSV_FORCEINSMQ)))
13199 				break;
13200 			MPASS(VTOI(vp)->i_mode != 0);
13201 			error = flush_newblk_dep(vp, mp, 0);
13202 			/*
13203 			 * If we still have the dependency we might need to
13204 			 * update the vnode to sync the new link count to
13205 			 * disk.
13206 			 */
13207 			if (error == 0 && dap == LIST_FIRST(diraddhdp))
13208 				error = ffs_update(vp, 1);
13209 			vput(vp);
13210 			if (error != 0)
13211 				break;
13212 			ACQUIRE_LOCK(ump);
13213 			/*
13214 			 * If that cleared dependencies, go on to next.
13215 			 */
13216 			if (dap != LIST_FIRST(diraddhdp))
13217 				continue;
13218 			if (dap->da_state & MKDIR_BODY) {
13219 				inodedep_lookup(UFSTOVFS(ump), inum, 0,
13220 				    &inodedep);
13221 				panic("flush_pagedep_deps: MKDIR_BODY "
13222 				    "inodedep %p dap %p vp %p",
13223 				    inodedep, dap, vp);
13224 			}
13225 		}
13226 		/*
13227 		 * Flush the inode on which the directory entry depends.
13228 		 * Having accounted for MKDIR_PARENT and MKDIR_BODY above,
13229 		 * the only remaining dependency is that the updated inode
13230 		 * count must get pushed to disk. The inode has already
13231 		 * been pushed into its inode buffer (via VOP_UPDATE) at
13232 		 * the time of the reference count change. So we need only
13233 		 * locate that buffer, ensure that there will be no rollback
13234 		 * caused by a bitmap dependency, then write the inode buffer.
13235 		 */
13236 retry:
13237 		if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0)
13238 			panic("flush_pagedep_deps: lost inode");
13239 		/*
13240 		 * If the inode still has bitmap dependencies,
13241 		 * push them to disk.
13242 		 */
13243 		if ((inodedep->id_state & (DEPCOMPLETE | GOINGAWAY)) == 0) {
13244 			bp = inodedep->id_bmsafemap->sm_buf;
13245 			bp = getdirtybuf(bp, LOCK_PTR(ump), MNT_WAIT);
13246 			if (bp == NULL)
13247 				goto retry;
13248 			FREE_LOCK(ump);
13249 			if ((error = bwrite(bp)) != 0)
13250 				break;
13251 			ACQUIRE_LOCK(ump);
13252 			if (dap != LIST_FIRST(diraddhdp))
13253 				continue;
13254 		}
13255 		/*
13256 		 * If the inode is still sitting in a buffer waiting
13257 		 * to be written or waiting for the link count to be
13258 		 * adjusted update it here to flush it to disk.
13259 		 */
13260 		if (dap == LIST_FIRST(diraddhdp)) {
13261 			FREE_LOCK(ump);
13262 			if ((error = ffs_vgetf(mp, inum, LK_EXCLUSIVE, &vp,
13263 			    FFSV_FORCEINSMQ)))
13264 				break;
13265 			MPASS(VTOI(vp)->i_mode != 0);
13266 			error = ffs_update(vp, 1);
13267 			vput(vp);
13268 			if (error)
13269 				break;
13270 			ACQUIRE_LOCK(ump);
13271 		}
13272 		/*
13273 		 * If we have failed to get rid of all the dependencies
13274 		 * then something is seriously wrong.
13275 		 */
13276 		if (dap == LIST_FIRST(diraddhdp)) {
13277 			inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep);
13278 			panic("flush_pagedep_deps: failed to flush "
13279 			    "inodedep %p ino %ju dap %p",
13280 			    inodedep, (uintmax_t)inum, dap);
13281 		}
13282 	}
13283 	if (error)
13284 		ACQUIRE_LOCK(ump);
13285 	while ((dap = LIST_FIRST(&unfinished)) != NULL) {
13286 		LIST_REMOVE(dap, da_pdlist);
13287 		LIST_INSERT_HEAD(diraddhdp, dap, da_pdlist);
13288 	}
13289 	return (error);
13290 }
13291 
13292 /*
13293  * A large burst of file addition or deletion activity can drive the
13294  * memory load excessively high. First attempt to slow things down
13295  * using the techniques below. If that fails, this routine requests
13296  * the offending operations to fall back to running synchronously
13297  * until the memory load returns to a reasonable level.
13298  */
13299 int
13300 softdep_slowdown(vp)
13301 	struct vnode *vp;
13302 {
13303 	struct ufsmount *ump;
13304 	int jlow;
13305 	int max_softdeps_hard;
13306 
13307 	KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0,
13308 	    ("softdep_slowdown called on non-softdep filesystem"));
13309 	ump = VFSTOUFS(vp->v_mount);
13310 	ACQUIRE_LOCK(ump);
13311 	jlow = 0;
13312 	/*
13313 	 * Check for journal space if needed.
13314 	 */
13315 	if (DOINGSUJ(vp)) {
13316 		if (journal_space(ump, 0) == 0)
13317 			jlow = 1;
13318 	}
13319 	/*
13320 	 * If the system is under its limits and our filesystem is
13321 	 * not responsible for more than our share of the usage and
13322 	 * we are not low on journal space, then no need to slow down.
13323 	 */
13324 	max_softdeps_hard = max_softdeps * 11 / 10;
13325 	if (dep_current[D_DIRREM] < max_softdeps_hard / 2 &&
13326 	    dep_current[D_INODEDEP] < max_softdeps_hard &&
13327 	    dep_current[D_INDIRDEP] < max_softdeps_hard / 1000 &&
13328 	    dep_current[D_FREEBLKS] < max_softdeps_hard && jlow == 0 &&
13329 	    ump->softdep_curdeps[D_DIRREM] <
13330 	    (max_softdeps_hard / 2) / stat_flush_threads &&
13331 	    ump->softdep_curdeps[D_INODEDEP] <
13332 	    max_softdeps_hard / stat_flush_threads &&
13333 	    ump->softdep_curdeps[D_INDIRDEP] <
13334 	    (max_softdeps_hard / 1000) / stat_flush_threads &&
13335 	    ump->softdep_curdeps[D_FREEBLKS] <
13336 	    max_softdeps_hard / stat_flush_threads) {
13337 		FREE_LOCK(ump);
13338   		return (0);
13339 	}
13340 	/*
13341 	 * If the journal is low or our filesystem is over its limit
13342 	 * then speedup the cleanup.
13343 	 */
13344 	if (ump->softdep_curdeps[D_INDIRDEP] <
13345 	    (max_softdeps_hard / 1000) / stat_flush_threads || jlow)
13346 		softdep_speedup(ump);
13347 	stat_sync_limit_hit += 1;
13348 	FREE_LOCK(ump);
13349 	/*
13350 	 * We only slow down the rate at which new dependencies are
13351 	 * generated if we are not using journaling. With journaling,
13352 	 * the cleanup should always be sufficient to keep things
13353 	 * under control.
13354 	 */
13355 	if (DOINGSUJ(vp))
13356 		return (0);
13357 	return (1);
13358 }
13359 
13360 /*
13361  * Called by the allocation routines when they are about to fail
13362  * in the hope that we can free up the requested resource (inodes
13363  * or disk space).
13364  *
13365  * First check to see if the work list has anything on it. If it has,
13366  * clean up entries until we successfully free the requested resource.
13367  * Because this process holds inodes locked, we cannot handle any remove
13368  * requests that might block on a locked inode as that could lead to
13369  * deadlock. If the worklist yields none of the requested resource,
13370  * start syncing out vnodes to free up the needed space.
13371  */
13372 int
13373 softdep_request_cleanup(fs, vp, cred, resource)
13374 	struct fs *fs;
13375 	struct vnode *vp;
13376 	struct ucred *cred;
13377 	int resource;
13378 {
13379 	struct ufsmount *ump;
13380 	struct mount *mp;
13381 	long starttime;
13382 	ufs2_daddr_t needed;
13383 	int error, failed_vnode;
13384 
13385 	/*
13386 	 * If we are being called because of a process doing a
13387 	 * copy-on-write, then it is not safe to process any
13388 	 * worklist items as we will recurse into the copyonwrite
13389 	 * routine.  This will result in an incoherent snapshot.
13390 	 * If the vnode that we hold is a snapshot, we must avoid
13391 	 * handling other resources that could cause deadlock.
13392 	 */
13393 	if ((curthread->td_pflags & TDP_COWINPROGRESS) || IS_SNAPSHOT(VTOI(vp)))
13394 		return (0);
13395 
13396 	if (resource == FLUSH_BLOCKS_WAIT)
13397 		stat_cleanup_blkrequests += 1;
13398 	else
13399 		stat_cleanup_inorequests += 1;
13400 
13401 	mp = vp->v_mount;
13402 	ump = VFSTOUFS(mp);
13403 	mtx_assert(UFS_MTX(ump), MA_OWNED);
13404 	UFS_UNLOCK(ump);
13405 	error = ffs_update(vp, 1);
13406 	if (error != 0 || MOUNTEDSOFTDEP(mp) == 0) {
13407 		UFS_LOCK(ump);
13408 		return (0);
13409 	}
13410 	/*
13411 	 * If we are in need of resources, start by cleaning up
13412 	 * any block removals associated with our inode.
13413 	 */
13414 	ACQUIRE_LOCK(ump);
13415 	process_removes(vp);
13416 	process_truncates(vp);
13417 	FREE_LOCK(ump);
13418 	/*
13419 	 * Now clean up at least as many resources as we will need.
13420 	 *
13421 	 * When requested to clean up inodes, the number that are needed
13422 	 * is set by the number of simultaneous writers (mnt_writeopcount)
13423 	 * plus a bit of slop (2) in case some more writers show up while
13424 	 * we are cleaning.
13425 	 *
13426 	 * When requested to free up space, the amount of space that
13427 	 * we need is enough blocks to allocate a full-sized segment
13428 	 * (fs_contigsumsize). The number of such segments that will
13429 	 * be needed is set by the number of simultaneous writers
13430 	 * (mnt_writeopcount) plus a bit of slop (2) in case some more
13431 	 * writers show up while we are cleaning.
13432 	 *
13433 	 * Additionally, if we are unpriviledged and allocating space,
13434 	 * we need to ensure that we clean up enough blocks to get the
13435 	 * needed number of blocks over the threshold of the minimum
13436 	 * number of blocks required to be kept free by the filesystem
13437 	 * (fs_minfree).
13438 	 */
13439 	if (resource == FLUSH_INODES_WAIT) {
13440 		needed = vfs_mount_fetch_counter(vp->v_mount,
13441 		    MNT_COUNT_WRITEOPCOUNT) + 2;
13442 	} else if (resource == FLUSH_BLOCKS_WAIT) {
13443 		needed = (vfs_mount_fetch_counter(vp->v_mount,
13444 		    MNT_COUNT_WRITEOPCOUNT) + 2) * fs->fs_contigsumsize;
13445 		if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE))
13446 			needed += fragstoblks(fs,
13447 			    roundup((fs->fs_dsize * fs->fs_minfree / 100) -
13448 			    fs->fs_cstotal.cs_nffree, fs->fs_frag));
13449 	} else {
13450 		printf("softdep_request_cleanup: Unknown resource type %d\n",
13451 		    resource);
13452 		UFS_LOCK(ump);
13453 		return (0);
13454 	}
13455 	starttime = time_second;
13456 retry:
13457 	if (resource == FLUSH_BLOCKS_WAIT &&
13458 	    fs->fs_cstotal.cs_nbfree <= needed)
13459 		softdep_send_speedup(ump, needed * fs->fs_bsize,
13460 		    BIO_SPEEDUP_TRIM);
13461 	if ((resource == FLUSH_BLOCKS_WAIT && ump->softdep_on_worklist > 0 &&
13462 	    fs->fs_cstotal.cs_nbfree <= needed) ||
13463 	    (resource == FLUSH_INODES_WAIT && fs->fs_pendinginodes > 0 &&
13464 	    fs->fs_cstotal.cs_nifree <= needed)) {
13465 		ACQUIRE_LOCK(ump);
13466 		if (ump->softdep_on_worklist > 0 &&
13467 		    process_worklist_item(UFSTOVFS(ump),
13468 		    ump->softdep_on_worklist, LK_NOWAIT) != 0)
13469 			stat_worklist_push += 1;
13470 		FREE_LOCK(ump);
13471 	}
13472 	/*
13473 	 * If we still need resources and there are no more worklist
13474 	 * entries to process to obtain them, we have to start flushing
13475 	 * the dirty vnodes to force the release of additional requests
13476 	 * to the worklist that we can then process to reap addition
13477 	 * resources. We walk the vnodes associated with the mount point
13478 	 * until we get the needed worklist requests that we can reap.
13479 	 *
13480 	 * If there are several threads all needing to clean the same
13481 	 * mount point, only one is allowed to walk the mount list.
13482 	 * When several threads all try to walk the same mount list,
13483 	 * they end up competing with each other and often end up in
13484 	 * livelock. This approach ensures that forward progress is
13485 	 * made at the cost of occational ENOSPC errors being returned
13486 	 * that might otherwise have been avoided.
13487 	 */
13488 	error = 1;
13489 	if ((resource == FLUSH_BLOCKS_WAIT &&
13490 	     fs->fs_cstotal.cs_nbfree <= needed) ||
13491 	    (resource == FLUSH_INODES_WAIT && fs->fs_pendinginodes > 0 &&
13492 	     fs->fs_cstotal.cs_nifree <= needed)) {
13493 		ACQUIRE_LOCK(ump);
13494 		if ((ump->um_softdep->sd_flags & FLUSH_RC_ACTIVE) == 0) {
13495 			ump->um_softdep->sd_flags |= FLUSH_RC_ACTIVE;
13496 			FREE_LOCK(ump);
13497 			failed_vnode = softdep_request_cleanup_flush(mp, ump);
13498 			ACQUIRE_LOCK(ump);
13499 			ump->um_softdep->sd_flags &= ~FLUSH_RC_ACTIVE;
13500 			FREE_LOCK(ump);
13501 			if (ump->softdep_on_worklist > 0) {
13502 				stat_cleanup_retries += 1;
13503 				if (!failed_vnode)
13504 					goto retry;
13505 			}
13506 		} else {
13507 			FREE_LOCK(ump);
13508 			error = 0;
13509 		}
13510 		stat_cleanup_failures += 1;
13511 	}
13512 	if (time_second - starttime > stat_cleanup_high_delay)
13513 		stat_cleanup_high_delay = time_second - starttime;
13514 	UFS_LOCK(ump);
13515 	return (error);
13516 }
13517 
13518 /*
13519  * Scan the vnodes for the specified mount point flushing out any
13520  * vnodes that can be locked without waiting. Finally, try to flush
13521  * the device associated with the mount point if it can be locked
13522  * without waiting.
13523  *
13524  * We return 0 if we were able to lock every vnode in our scan.
13525  * If we had to skip one or more vnodes, we return 1.
13526  */
13527 static int
13528 softdep_request_cleanup_flush(mp, ump)
13529 	struct mount *mp;
13530 	struct ufsmount *ump;
13531 {
13532 	struct thread *td;
13533 	struct vnode *lvp, *mvp;
13534 	int failed_vnode;
13535 
13536 	failed_vnode = 0;
13537 	td = curthread;
13538 	MNT_VNODE_FOREACH_ALL(lvp, mp, mvp) {
13539 		if (TAILQ_FIRST(&lvp->v_bufobj.bo_dirty.bv_hd) == 0) {
13540 			VI_UNLOCK(lvp);
13541 			continue;
13542 		}
13543 		if (vget(lvp, LK_EXCLUSIVE | LK_INTERLOCK | LK_NOWAIT,
13544 		    td) != 0) {
13545 			failed_vnode = 1;
13546 			continue;
13547 		}
13548 		if (lvp->v_vflag & VV_NOSYNC) {	/* unlinked */
13549 			vput(lvp);
13550 			continue;
13551 		}
13552 		(void) ffs_syncvnode(lvp, MNT_NOWAIT, 0);
13553 		vput(lvp);
13554 	}
13555 	lvp = ump->um_devvp;
13556 	if (vn_lock(lvp, LK_EXCLUSIVE | LK_NOWAIT) == 0) {
13557 		VOP_FSYNC(lvp, MNT_NOWAIT, td);
13558 		VOP_UNLOCK(lvp);
13559 	}
13560 	return (failed_vnode);
13561 }
13562 
13563 static bool
13564 softdep_excess_items(struct ufsmount *ump, int item)
13565 {
13566 
13567 	KASSERT(item >= 0 && item < D_LAST, ("item %d", item));
13568 	return (dep_current[item] > max_softdeps &&
13569 	    ump->softdep_curdeps[item] > max_softdeps /
13570 	    stat_flush_threads);
13571 }
13572 
13573 static void
13574 schedule_cleanup(struct mount *mp)
13575 {
13576 	struct ufsmount *ump;
13577 	struct thread *td;
13578 
13579 	ump = VFSTOUFS(mp);
13580 	LOCK_OWNED(ump);
13581 	FREE_LOCK(ump);
13582 	td = curthread;
13583 	if ((td->td_pflags & TDP_KTHREAD) != 0 &&
13584 	    (td->td_proc->p_flag2 & P2_AST_SU) == 0) {
13585 		/*
13586 		 * No ast is delivered to kernel threads, so nobody
13587 		 * would deref the mp.  Some kernel threads
13588 		 * explicitely check for AST, e.g. NFS daemon does
13589 		 * this in the serving loop.
13590 		 */
13591 		return;
13592 	}
13593 	if (td->td_su != NULL)
13594 		vfs_rel(td->td_su);
13595 	vfs_ref(mp);
13596 	td->td_su = mp;
13597 	thread_lock(td);
13598 	td->td_flags |= TDF_ASTPENDING;
13599 	thread_unlock(td);
13600 }
13601 
13602 static void
13603 softdep_ast_cleanup_proc(struct thread *td)
13604 {
13605 	struct mount *mp;
13606 	struct ufsmount *ump;
13607 	int error;
13608 	bool req;
13609 
13610 	while ((mp = td->td_su) != NULL) {
13611 		td->td_su = NULL;
13612 		error = vfs_busy(mp, MBF_NOWAIT);
13613 		vfs_rel(mp);
13614 		if (error != 0)
13615 			return;
13616 		if (ffs_own_mount(mp) && MOUNTEDSOFTDEP(mp)) {
13617 			ump = VFSTOUFS(mp);
13618 			for (;;) {
13619 				req = false;
13620 				ACQUIRE_LOCK(ump);
13621 				if (softdep_excess_items(ump, D_INODEDEP)) {
13622 					req = true;
13623 					request_cleanup(mp, FLUSH_INODES);
13624 				}
13625 				if (softdep_excess_items(ump, D_DIRREM)) {
13626 					req = true;
13627 					request_cleanup(mp, FLUSH_BLOCKS);
13628 				}
13629 				FREE_LOCK(ump);
13630 				if (softdep_excess_items(ump, D_NEWBLK) ||
13631 				    softdep_excess_items(ump, D_ALLOCDIRECT) ||
13632 				    softdep_excess_items(ump, D_ALLOCINDIR)) {
13633 					error = vn_start_write(NULL, &mp,
13634 					    V_WAIT);
13635 					if (error == 0) {
13636 						req = true;
13637 						VFS_SYNC(mp, MNT_WAIT);
13638 						vn_finished_write(mp);
13639 					}
13640 				}
13641 				if ((td->td_pflags & TDP_KTHREAD) != 0 || !req)
13642 					break;
13643 			}
13644 		}
13645 		vfs_unbusy(mp);
13646 	}
13647 	if ((mp = td->td_su) != NULL) {
13648 		td->td_su = NULL;
13649 		vfs_rel(mp);
13650 	}
13651 }
13652 
13653 /*
13654  * If memory utilization has gotten too high, deliberately slow things
13655  * down and speed up the I/O processing.
13656  */
13657 static int
13658 request_cleanup(mp, resource)
13659 	struct mount *mp;
13660 	int resource;
13661 {
13662 	struct thread *td = curthread;
13663 	struct ufsmount *ump;
13664 
13665 	ump = VFSTOUFS(mp);
13666 	LOCK_OWNED(ump);
13667 	/*
13668 	 * We never hold up the filesystem syncer or buf daemon.
13669 	 */
13670 	if (td->td_pflags & (TDP_SOFTDEP|TDP_NORUNNINGBUF))
13671 		return (0);
13672 	/*
13673 	 * First check to see if the work list has gotten backlogged.
13674 	 * If it has, co-opt this process to help clean up two entries.
13675 	 * Because this process may hold inodes locked, we cannot
13676 	 * handle any remove requests that might block on a locked
13677 	 * inode as that could lead to deadlock.  We set TDP_SOFTDEP
13678 	 * to avoid recursively processing the worklist.
13679 	 */
13680 	if (ump->softdep_on_worklist > max_softdeps / 10) {
13681 		td->td_pflags |= TDP_SOFTDEP;
13682 		process_worklist_item(mp, 2, LK_NOWAIT);
13683 		td->td_pflags &= ~TDP_SOFTDEP;
13684 		stat_worklist_push += 2;
13685 		return(1);
13686 	}
13687 	/*
13688 	 * Next, we attempt to speed up the syncer process. If that
13689 	 * is successful, then we allow the process to continue.
13690 	 */
13691 	if (softdep_speedup(ump) &&
13692 	    resource != FLUSH_BLOCKS_WAIT &&
13693 	    resource != FLUSH_INODES_WAIT)
13694 		return(0);
13695 	/*
13696 	 * If we are resource constrained on inode dependencies, try
13697 	 * flushing some dirty inodes. Otherwise, we are constrained
13698 	 * by file deletions, so try accelerating flushes of directories
13699 	 * with removal dependencies. We would like to do the cleanup
13700 	 * here, but we probably hold an inode locked at this point and
13701 	 * that might deadlock against one that we try to clean. So,
13702 	 * the best that we can do is request the syncer daemon to do
13703 	 * the cleanup for us.
13704 	 */
13705 	switch (resource) {
13706 
13707 	case FLUSH_INODES:
13708 	case FLUSH_INODES_WAIT:
13709 		ACQUIRE_GBLLOCK(&lk);
13710 		stat_ino_limit_push += 1;
13711 		req_clear_inodedeps += 1;
13712 		FREE_GBLLOCK(&lk);
13713 		stat_countp = &stat_ino_limit_hit;
13714 		break;
13715 
13716 	case FLUSH_BLOCKS:
13717 	case FLUSH_BLOCKS_WAIT:
13718 		ACQUIRE_GBLLOCK(&lk);
13719 		stat_blk_limit_push += 1;
13720 		req_clear_remove += 1;
13721 		FREE_GBLLOCK(&lk);
13722 		stat_countp = &stat_blk_limit_hit;
13723 		break;
13724 
13725 	default:
13726 		panic("request_cleanup: unknown type");
13727 	}
13728 	/*
13729 	 * Hopefully the syncer daemon will catch up and awaken us.
13730 	 * We wait at most tickdelay before proceeding in any case.
13731 	 */
13732 	ACQUIRE_GBLLOCK(&lk);
13733 	FREE_LOCK(ump);
13734 	proc_waiting += 1;
13735 	if (callout_pending(&softdep_callout) == FALSE)
13736 		callout_reset(&softdep_callout, tickdelay > 2 ? tickdelay : 2,
13737 		    pause_timer, 0);
13738 
13739 	if ((td->td_pflags & TDP_KTHREAD) == 0)
13740 		msleep((caddr_t)&proc_waiting, &lk, PPAUSE, "softupdate", 0);
13741 	proc_waiting -= 1;
13742 	FREE_GBLLOCK(&lk);
13743 	ACQUIRE_LOCK(ump);
13744 	return (1);
13745 }
13746 
13747 /*
13748  * Awaken processes pausing in request_cleanup and clear proc_waiting
13749  * to indicate that there is no longer a timer running. Pause_timer
13750  * will be called with the global softdep mutex (&lk) locked.
13751  */
13752 static void
13753 pause_timer(arg)
13754 	void *arg;
13755 {
13756 
13757 	GBLLOCK_OWNED(&lk);
13758 	/*
13759 	 * The callout_ API has acquired mtx and will hold it around this
13760 	 * function call.
13761 	 */
13762 	*stat_countp += proc_waiting;
13763 	wakeup(&proc_waiting);
13764 }
13765 
13766 /*
13767  * If requested, try removing inode or removal dependencies.
13768  */
13769 static void
13770 check_clear_deps(mp)
13771 	struct mount *mp;
13772 {
13773 	struct ufsmount *ump;
13774 	bool suj_susp;
13775 
13776 	/*
13777 	 * Tell the lower layers that any TRIM or WRITE transactions that have
13778 	 * been delayed for performance reasons should proceed to help alleviate
13779 	 * the shortage faster. The race between checking req_* and the softdep
13780 	 * mutex (lk) is fine since this is an advisory operation that at most
13781 	 * causes deferred work to be done sooner.
13782 	 */
13783 	ump = VFSTOUFS(mp);
13784 	suj_susp = MOUNTEDSUJ(mp) && ump->softdep_jblocks->jb_suspended;
13785 	if (req_clear_remove || req_clear_inodedeps || suj_susp) {
13786 		FREE_LOCK(ump);
13787 		softdep_send_speedup(ump, 0, BIO_SPEEDUP_TRIM | BIO_SPEEDUP_WRITE);
13788 		ACQUIRE_LOCK(ump);
13789 	}
13790 
13791 	/*
13792 	 * If we are suspended, it may be because of our using
13793 	 * too many inodedeps, so help clear them out.
13794 	 */
13795 	if (suj_susp)
13796 		clear_inodedeps(mp);
13797 
13798 	/*
13799 	 * General requests for cleanup of backed up dependencies
13800 	 */
13801 	ACQUIRE_GBLLOCK(&lk);
13802 	if (req_clear_inodedeps) {
13803 		req_clear_inodedeps -= 1;
13804 		FREE_GBLLOCK(&lk);
13805 		clear_inodedeps(mp);
13806 		ACQUIRE_GBLLOCK(&lk);
13807 		wakeup(&proc_waiting);
13808 	}
13809 	if (req_clear_remove) {
13810 		req_clear_remove -= 1;
13811 		FREE_GBLLOCK(&lk);
13812 		clear_remove(mp);
13813 		ACQUIRE_GBLLOCK(&lk);
13814 		wakeup(&proc_waiting);
13815 	}
13816 	FREE_GBLLOCK(&lk);
13817 }
13818 
13819 /*
13820  * Flush out a directory with at least one removal dependency in an effort to
13821  * reduce the number of dirrem, freefile, and freeblks dependency structures.
13822  */
13823 static void
13824 clear_remove(mp)
13825 	struct mount *mp;
13826 {
13827 	struct pagedep_hashhead *pagedephd;
13828 	struct pagedep *pagedep;
13829 	struct ufsmount *ump;
13830 	struct vnode *vp;
13831 	struct bufobj *bo;
13832 	int error, cnt;
13833 	ino_t ino;
13834 
13835 	ump = VFSTOUFS(mp);
13836 	LOCK_OWNED(ump);
13837 
13838 	for (cnt = 0; cnt <= ump->pagedep_hash_size; cnt++) {
13839 		pagedephd = &ump->pagedep_hashtbl[ump->pagedep_nextclean++];
13840 		if (ump->pagedep_nextclean > ump->pagedep_hash_size)
13841 			ump->pagedep_nextclean = 0;
13842 		LIST_FOREACH(pagedep, pagedephd, pd_hash) {
13843 			if (LIST_EMPTY(&pagedep->pd_dirremhd))
13844 				continue;
13845 			ino = pagedep->pd_ino;
13846 			if (vn_start_write(NULL, &mp, V_NOWAIT) != 0)
13847 				continue;
13848 			FREE_LOCK(ump);
13849 
13850 			/*
13851 			 * Let unmount clear deps
13852 			 */
13853 			error = vfs_busy(mp, MBF_NOWAIT);
13854 			if (error != 0)
13855 				goto finish_write;
13856 			error = ffs_vgetf(mp, ino, LK_EXCLUSIVE, &vp,
13857 			     FFSV_FORCEINSMQ);
13858 			vfs_unbusy(mp);
13859 			if (error != 0) {
13860 				softdep_error("clear_remove: vget", error);
13861 				goto finish_write;
13862 			}
13863 			MPASS(VTOI(vp)->i_mode != 0);
13864 			if ((error = ffs_syncvnode(vp, MNT_NOWAIT, 0)))
13865 				softdep_error("clear_remove: fsync", error);
13866 			bo = &vp->v_bufobj;
13867 			BO_LOCK(bo);
13868 			drain_output(vp);
13869 			BO_UNLOCK(bo);
13870 			vput(vp);
13871 		finish_write:
13872 			vn_finished_write(mp);
13873 			ACQUIRE_LOCK(ump);
13874 			return;
13875 		}
13876 	}
13877 }
13878 
13879 /*
13880  * Clear out a block of dirty inodes in an effort to reduce
13881  * the number of inodedep dependency structures.
13882  */
13883 static void
13884 clear_inodedeps(mp)
13885 	struct mount *mp;
13886 {
13887 	struct inodedep_hashhead *inodedephd;
13888 	struct inodedep *inodedep;
13889 	struct ufsmount *ump;
13890 	struct vnode *vp;
13891 	struct fs *fs;
13892 	int error, cnt;
13893 	ino_t firstino, lastino, ino;
13894 
13895 	ump = VFSTOUFS(mp);
13896 	fs = ump->um_fs;
13897 	LOCK_OWNED(ump);
13898 	/*
13899 	 * Pick a random inode dependency to be cleared.
13900 	 * We will then gather up all the inodes in its block
13901 	 * that have dependencies and flush them out.
13902 	 */
13903 	for (cnt = 0; cnt <= ump->inodedep_hash_size; cnt++) {
13904 		inodedephd = &ump->inodedep_hashtbl[ump->inodedep_nextclean++];
13905 		if (ump->inodedep_nextclean > ump->inodedep_hash_size)
13906 			ump->inodedep_nextclean = 0;
13907 		if ((inodedep = LIST_FIRST(inodedephd)) != NULL)
13908 			break;
13909 	}
13910 	if (inodedep == NULL)
13911 		return;
13912 	/*
13913 	 * Find the last inode in the block with dependencies.
13914 	 */
13915 	firstino = rounddown2(inodedep->id_ino, INOPB(fs));
13916 	for (lastino = firstino + INOPB(fs) - 1; lastino > firstino; lastino--)
13917 		if (inodedep_lookup(mp, lastino, 0, &inodedep) != 0)
13918 			break;
13919 	/*
13920 	 * Asynchronously push all but the last inode with dependencies.
13921 	 * Synchronously push the last inode with dependencies to ensure
13922 	 * that the inode block gets written to free up the inodedeps.
13923 	 */
13924 	for (ino = firstino; ino <= lastino; ino++) {
13925 		if (inodedep_lookup(mp, ino, 0, &inodedep) == 0)
13926 			continue;
13927 		if (vn_start_write(NULL, &mp, V_NOWAIT) != 0)
13928 			continue;
13929 		FREE_LOCK(ump);
13930 		error = vfs_busy(mp, MBF_NOWAIT); /* Let unmount clear deps */
13931 		if (error != 0) {
13932 			vn_finished_write(mp);
13933 			ACQUIRE_LOCK(ump);
13934 			return;
13935 		}
13936 		if ((error = ffs_vgetf(mp, ino, LK_EXCLUSIVE, &vp,
13937 		    FFSV_FORCEINSMQ)) != 0) {
13938 			softdep_error("clear_inodedeps: vget", error);
13939 			vfs_unbusy(mp);
13940 			vn_finished_write(mp);
13941 			ACQUIRE_LOCK(ump);
13942 			return;
13943 		}
13944 		vfs_unbusy(mp);
13945 		if (VTOI(vp)->i_mode == 0) {
13946 			vgone(vp);
13947 		} else if (ino == lastino) {
13948 			if ((error = ffs_syncvnode(vp, MNT_WAIT, 0)))
13949 				softdep_error("clear_inodedeps: fsync1", error);
13950 		} else {
13951 			if ((error = ffs_syncvnode(vp, MNT_NOWAIT, 0)))
13952 				softdep_error("clear_inodedeps: fsync2", error);
13953 			BO_LOCK(&vp->v_bufobj);
13954 			drain_output(vp);
13955 			BO_UNLOCK(&vp->v_bufobj);
13956 		}
13957 		vput(vp);
13958 		vn_finished_write(mp);
13959 		ACQUIRE_LOCK(ump);
13960 	}
13961 }
13962 
13963 void
13964 softdep_buf_append(bp, wkhd)
13965 	struct buf *bp;
13966 	struct workhead *wkhd;
13967 {
13968 	struct worklist *wk;
13969 	struct ufsmount *ump;
13970 
13971 	if ((wk = LIST_FIRST(wkhd)) == NULL)
13972 		return;
13973 	KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0,
13974 	    ("softdep_buf_append called on non-softdep filesystem"));
13975 	ump = VFSTOUFS(wk->wk_mp);
13976 	ACQUIRE_LOCK(ump);
13977 	while ((wk = LIST_FIRST(wkhd)) != NULL) {
13978 		WORKLIST_REMOVE(wk);
13979 		WORKLIST_INSERT(&bp->b_dep, wk);
13980 	}
13981 	FREE_LOCK(ump);
13982 
13983 }
13984 
13985 void
13986 softdep_inode_append(ip, cred, wkhd)
13987 	struct inode *ip;
13988 	struct ucred *cred;
13989 	struct workhead *wkhd;
13990 {
13991 	struct buf *bp;
13992 	struct fs *fs;
13993 	struct ufsmount *ump;
13994 	int error;
13995 
13996 	ump = ITOUMP(ip);
13997 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
13998 	    ("softdep_inode_append called on non-softdep filesystem"));
13999 	fs = ump->um_fs;
14000 	error = bread(ump->um_devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
14001 	    (int)fs->fs_bsize, cred, &bp);
14002 	if (error) {
14003 		bqrelse(bp);
14004 		softdep_freework(wkhd);
14005 		return;
14006 	}
14007 	softdep_buf_append(bp, wkhd);
14008 	bqrelse(bp);
14009 }
14010 
14011 void
14012 softdep_freework(wkhd)
14013 	struct workhead *wkhd;
14014 {
14015 	struct worklist *wk;
14016 	struct ufsmount *ump;
14017 
14018 	if ((wk = LIST_FIRST(wkhd)) == NULL)
14019 		return;
14020 	KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0,
14021 	    ("softdep_freework called on non-softdep filesystem"));
14022 	ump = VFSTOUFS(wk->wk_mp);
14023 	ACQUIRE_LOCK(ump);
14024 	handle_jwork(wkhd);
14025 	FREE_LOCK(ump);
14026 }
14027 
14028 static struct ufsmount *
14029 softdep_bp_to_mp(bp)
14030 	struct buf *bp;
14031 {
14032 	struct mount *mp;
14033 	struct vnode *vp;
14034 
14035 	if (LIST_EMPTY(&bp->b_dep))
14036 		return (NULL);
14037 	vp = bp->b_vp;
14038 	KASSERT(vp != NULL,
14039 	    ("%s, buffer with dependencies lacks vnode", __func__));
14040 
14041 	/*
14042 	 * The ump mount point is stable after we get a correct
14043 	 * pointer, since bp is locked and this prevents unmount from
14044 	 * proceeding.  But to get to it, we cannot dereference bp->b_dep
14045 	 * head wk_mp, because we do not yet own SU ump lock and
14046 	 * workitem might be freed while dereferenced.
14047 	 */
14048 retry:
14049 	switch (vp->v_type) {
14050 	case VCHR:
14051 		VI_LOCK(vp);
14052 		mp = vp->v_type == VCHR ? vp->v_rdev->si_mountpt : NULL;
14053 		VI_UNLOCK(vp);
14054 		if (mp == NULL)
14055 			goto retry;
14056 		break;
14057 	case VREG:
14058 	case VDIR:
14059 	case VLNK:
14060 	case VFIFO:
14061 	case VSOCK:
14062 		mp = vp->v_mount;
14063 		break;
14064 	case VBLK:
14065 		vn_printf(vp, "softdep_bp_to_mp: unexpected block device\n");
14066 		/* FALLTHROUGH */
14067 	case VNON:
14068 	case VBAD:
14069 	case VMARKER:
14070 		mp = NULL;
14071 		break;
14072 	default:
14073 		vn_printf(vp, "unknown vnode type");
14074 		mp = NULL;
14075 		break;
14076 	}
14077 	return (VFSTOUFS(mp));
14078 }
14079 
14080 /*
14081  * Function to determine if the buffer has outstanding dependencies
14082  * that will cause a roll-back if the buffer is written. If wantcount
14083  * is set, return number of dependencies, otherwise just yes or no.
14084  */
14085 static int
14086 softdep_count_dependencies(bp, wantcount)
14087 	struct buf *bp;
14088 	int wantcount;
14089 {
14090 	struct worklist *wk;
14091 	struct ufsmount *ump;
14092 	struct bmsafemap *bmsafemap;
14093 	struct freework *freework;
14094 	struct inodedep *inodedep;
14095 	struct indirdep *indirdep;
14096 	struct freeblks *freeblks;
14097 	struct allocindir *aip;
14098 	struct pagedep *pagedep;
14099 	struct dirrem *dirrem;
14100 	struct newblk *newblk;
14101 	struct mkdir *mkdir;
14102 	struct diradd *dap;
14103 	int i, retval;
14104 
14105 	ump = softdep_bp_to_mp(bp);
14106 	if (ump == NULL)
14107 		return (0);
14108 	retval = 0;
14109 	ACQUIRE_LOCK(ump);
14110 	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
14111 		switch (wk->wk_type) {
14112 
14113 		case D_INODEDEP:
14114 			inodedep = WK_INODEDEP(wk);
14115 			if ((inodedep->id_state & DEPCOMPLETE) == 0) {
14116 				/* bitmap allocation dependency */
14117 				retval += 1;
14118 				if (!wantcount)
14119 					goto out;
14120 			}
14121 			if (TAILQ_FIRST(&inodedep->id_inoupdt)) {
14122 				/* direct block pointer dependency */
14123 				retval += 1;
14124 				if (!wantcount)
14125 					goto out;
14126 			}
14127 			if (TAILQ_FIRST(&inodedep->id_extupdt)) {
14128 				/* direct block pointer dependency */
14129 				retval += 1;
14130 				if (!wantcount)
14131 					goto out;
14132 			}
14133 			if (TAILQ_FIRST(&inodedep->id_inoreflst)) {
14134 				/* Add reference dependency. */
14135 				retval += 1;
14136 				if (!wantcount)
14137 					goto out;
14138 			}
14139 			continue;
14140 
14141 		case D_INDIRDEP:
14142 			indirdep = WK_INDIRDEP(wk);
14143 
14144 			TAILQ_FOREACH(freework, &indirdep->ir_trunc, fw_next) {
14145 				/* indirect truncation dependency */
14146 				retval += 1;
14147 				if (!wantcount)
14148 					goto out;
14149 			}
14150 
14151 			LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) {
14152 				/* indirect block pointer dependency */
14153 				retval += 1;
14154 				if (!wantcount)
14155 					goto out;
14156 			}
14157 			continue;
14158 
14159 		case D_PAGEDEP:
14160 			pagedep = WK_PAGEDEP(wk);
14161 			LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next) {
14162 				if (LIST_FIRST(&dirrem->dm_jremrefhd)) {
14163 					/* Journal remove ref dependency. */
14164 					retval += 1;
14165 					if (!wantcount)
14166 						goto out;
14167 				}
14168 			}
14169 			for (i = 0; i < DAHASHSZ; i++) {
14170 
14171 				LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) {
14172 					/* directory entry dependency */
14173 					retval += 1;
14174 					if (!wantcount)
14175 						goto out;
14176 				}
14177 			}
14178 			continue;
14179 
14180 		case D_BMSAFEMAP:
14181 			bmsafemap = WK_BMSAFEMAP(wk);
14182 			if (LIST_FIRST(&bmsafemap->sm_jaddrefhd)) {
14183 				/* Add reference dependency. */
14184 				retval += 1;
14185 				if (!wantcount)
14186 					goto out;
14187 			}
14188 			if (LIST_FIRST(&bmsafemap->sm_jnewblkhd)) {
14189 				/* Allocate block dependency. */
14190 				retval += 1;
14191 				if (!wantcount)
14192 					goto out;
14193 			}
14194 			continue;
14195 
14196 		case D_FREEBLKS:
14197 			freeblks = WK_FREEBLKS(wk);
14198 			if (LIST_FIRST(&freeblks->fb_jblkdephd)) {
14199 				/* Freeblk journal dependency. */
14200 				retval += 1;
14201 				if (!wantcount)
14202 					goto out;
14203 			}
14204 			continue;
14205 
14206 		case D_ALLOCDIRECT:
14207 		case D_ALLOCINDIR:
14208 			newblk = WK_NEWBLK(wk);
14209 			if (newblk->nb_jnewblk) {
14210 				/* Journal allocate dependency. */
14211 				retval += 1;
14212 				if (!wantcount)
14213 					goto out;
14214 			}
14215 			continue;
14216 
14217 		case D_MKDIR:
14218 			mkdir = WK_MKDIR(wk);
14219 			if (mkdir->md_jaddref) {
14220 				/* Journal reference dependency. */
14221 				retval += 1;
14222 				if (!wantcount)
14223 					goto out;
14224 			}
14225 			continue;
14226 
14227 		case D_FREEWORK:
14228 		case D_FREEDEP:
14229 		case D_JSEGDEP:
14230 		case D_JSEG:
14231 		case D_SBDEP:
14232 			/* never a dependency on these blocks */
14233 			continue;
14234 
14235 		default:
14236 			panic("softdep_count_dependencies: Unexpected type %s",
14237 			    TYPENAME(wk->wk_type));
14238 			/* NOTREACHED */
14239 		}
14240 	}
14241 out:
14242 	FREE_LOCK(ump);
14243 	return (retval);
14244 }
14245 
14246 /*
14247  * Acquire exclusive access to a buffer.
14248  * Must be called with a locked mtx parameter.
14249  * Return acquired buffer or NULL on failure.
14250  */
14251 static struct buf *
14252 getdirtybuf(bp, lock, waitfor)
14253 	struct buf *bp;
14254 	struct rwlock *lock;
14255 	int waitfor;
14256 {
14257 	int error;
14258 
14259 	if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0) {
14260 		if (waitfor != MNT_WAIT)
14261 			return (NULL);
14262 		error = BUF_LOCK(bp,
14263 		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, lock);
14264 		/*
14265 		 * Even if we successfully acquire bp here, we have dropped
14266 		 * lock, which may violates our guarantee.
14267 		 */
14268 		if (error == 0)
14269 			BUF_UNLOCK(bp);
14270 		else if (error != ENOLCK)
14271 			panic("getdirtybuf: inconsistent lock: %d", error);
14272 		rw_wlock(lock);
14273 		return (NULL);
14274 	}
14275 	if ((bp->b_vflags & BV_BKGRDINPROG) != 0) {
14276 		if (lock != BO_LOCKPTR(bp->b_bufobj) && waitfor == MNT_WAIT) {
14277 			rw_wunlock(lock);
14278 			BO_LOCK(bp->b_bufobj);
14279 			BUF_UNLOCK(bp);
14280 			if ((bp->b_vflags & BV_BKGRDINPROG) != 0) {
14281 				bp->b_vflags |= BV_BKGRDWAIT;
14282 				msleep(&bp->b_xflags, BO_LOCKPTR(bp->b_bufobj),
14283 				       PRIBIO | PDROP, "getbuf", 0);
14284 			} else
14285 				BO_UNLOCK(bp->b_bufobj);
14286 			rw_wlock(lock);
14287 			return (NULL);
14288 		}
14289 		BUF_UNLOCK(bp);
14290 		if (waitfor != MNT_WAIT)
14291 			return (NULL);
14292 #ifdef DEBUG_VFS_LOCKS
14293 		if (bp->b_vp->v_type != VCHR)
14294 			ASSERT_BO_WLOCKED(bp->b_bufobj);
14295 #endif
14296 		bp->b_vflags |= BV_BKGRDWAIT;
14297 		rw_sleep(&bp->b_xflags, lock, PRIBIO, "getbuf", 0);
14298 		return (NULL);
14299 	}
14300 	if ((bp->b_flags & B_DELWRI) == 0) {
14301 		BUF_UNLOCK(bp);
14302 		return (NULL);
14303 	}
14304 	bremfree(bp);
14305 	return (bp);
14306 }
14307 
14308 
14309 /*
14310  * Check if it is safe to suspend the file system now.  On entry,
14311  * the vnode interlock for devvp should be held.  Return 0 with
14312  * the mount interlock held if the file system can be suspended now,
14313  * otherwise return EAGAIN with the mount interlock held.
14314  */
14315 int
14316 softdep_check_suspend(struct mount *mp,
14317 		      struct vnode *devvp,
14318 		      int softdep_depcnt,
14319 		      int softdep_accdepcnt,
14320 		      int secondary_writes,
14321 		      int secondary_accwrites)
14322 {
14323 	struct bufobj *bo;
14324 	struct ufsmount *ump;
14325 	struct inodedep *inodedep;
14326 	int error, unlinked;
14327 
14328 	bo = &devvp->v_bufobj;
14329 	ASSERT_BO_WLOCKED(bo);
14330 
14331 	/*
14332 	 * If we are not running with soft updates, then we need only
14333 	 * deal with secondary writes as we try to suspend.
14334 	 */
14335 	if (MOUNTEDSOFTDEP(mp) == 0) {
14336 		MNT_ILOCK(mp);
14337 		while (mp->mnt_secondary_writes != 0) {
14338 			BO_UNLOCK(bo);
14339 			msleep(&mp->mnt_secondary_writes, MNT_MTX(mp),
14340 			    (PUSER - 1) | PDROP, "secwr", 0);
14341 			BO_LOCK(bo);
14342 			MNT_ILOCK(mp);
14343 		}
14344 
14345 		/*
14346 		 * Reasons for needing more work before suspend:
14347 		 * - Dirty buffers on devvp.
14348 		 * - Secondary writes occurred after start of vnode sync loop
14349 		 */
14350 		error = 0;
14351 		if (bo->bo_numoutput > 0 ||
14352 		    bo->bo_dirty.bv_cnt > 0 ||
14353 		    secondary_writes != 0 ||
14354 		    mp->mnt_secondary_writes != 0 ||
14355 		    secondary_accwrites != mp->mnt_secondary_accwrites)
14356 			error = EAGAIN;
14357 		BO_UNLOCK(bo);
14358 		return (error);
14359 	}
14360 
14361 	/*
14362 	 * If we are running with soft updates, then we need to coordinate
14363 	 * with them as we try to suspend.
14364 	 */
14365 	ump = VFSTOUFS(mp);
14366 	for (;;) {
14367 		if (!TRY_ACQUIRE_LOCK(ump)) {
14368 			BO_UNLOCK(bo);
14369 			ACQUIRE_LOCK(ump);
14370 			FREE_LOCK(ump);
14371 			BO_LOCK(bo);
14372 			continue;
14373 		}
14374 		MNT_ILOCK(mp);
14375 		if (mp->mnt_secondary_writes != 0) {
14376 			FREE_LOCK(ump);
14377 			BO_UNLOCK(bo);
14378 			msleep(&mp->mnt_secondary_writes,
14379 			       MNT_MTX(mp),
14380 			       (PUSER - 1) | PDROP, "secwr", 0);
14381 			BO_LOCK(bo);
14382 			continue;
14383 		}
14384 		break;
14385 	}
14386 
14387 	unlinked = 0;
14388 	if (MOUNTEDSUJ(mp)) {
14389 		for (inodedep = TAILQ_FIRST(&ump->softdep_unlinked);
14390 		    inodedep != NULL;
14391 		    inodedep = TAILQ_NEXT(inodedep, id_unlinked)) {
14392 			if ((inodedep->id_state & (UNLINKED | UNLINKLINKS |
14393 			    UNLINKONLIST)) != (UNLINKED | UNLINKLINKS |
14394 			    UNLINKONLIST) ||
14395 			    !check_inodedep_free(inodedep))
14396 				continue;
14397 			unlinked++;
14398 		}
14399 	}
14400 
14401 	/*
14402 	 * Reasons for needing more work before suspend:
14403 	 * - Dirty buffers on devvp.
14404 	 * - Softdep activity occurred after start of vnode sync loop
14405 	 * - Secondary writes occurred after start of vnode sync loop
14406 	 */
14407 	error = 0;
14408 	if (bo->bo_numoutput > 0 ||
14409 	    bo->bo_dirty.bv_cnt > 0 ||
14410 	    softdep_depcnt != unlinked ||
14411 	    ump->softdep_deps != unlinked ||
14412 	    softdep_accdepcnt != ump->softdep_accdeps ||
14413 	    secondary_writes != 0 ||
14414 	    mp->mnt_secondary_writes != 0 ||
14415 	    secondary_accwrites != mp->mnt_secondary_accwrites)
14416 		error = EAGAIN;
14417 	FREE_LOCK(ump);
14418 	BO_UNLOCK(bo);
14419 	return (error);
14420 }
14421 
14422 
14423 /*
14424  * Get the number of dependency structures for the file system, both
14425  * the current number and the total number allocated.  These will
14426  * later be used to detect that softdep processing has occurred.
14427  */
14428 void
14429 softdep_get_depcounts(struct mount *mp,
14430 		      int *softdep_depsp,
14431 		      int *softdep_accdepsp)
14432 {
14433 	struct ufsmount *ump;
14434 
14435 	if (MOUNTEDSOFTDEP(mp) == 0) {
14436 		*softdep_depsp = 0;
14437 		*softdep_accdepsp = 0;
14438 		return;
14439 	}
14440 	ump = VFSTOUFS(mp);
14441 	ACQUIRE_LOCK(ump);
14442 	*softdep_depsp = ump->softdep_deps;
14443 	*softdep_accdepsp = ump->softdep_accdeps;
14444 	FREE_LOCK(ump);
14445 }
14446 
14447 /*
14448  * Wait for pending output on a vnode to complete.
14449  */
14450 static void
14451 drain_output(vp)
14452 	struct vnode *vp;
14453 {
14454 
14455 	ASSERT_VOP_LOCKED(vp, "drain_output");
14456 	(void)bufobj_wwait(&vp->v_bufobj, 0, 0);
14457 }
14458 
14459 /*
14460  * Called whenever a buffer that is being invalidated or reallocated
14461  * contains dependencies. This should only happen if an I/O error has
14462  * occurred. The routine is called with the buffer locked.
14463  */
14464 static void
14465 softdep_deallocate_dependencies(bp)
14466 	struct buf *bp;
14467 {
14468 
14469 	if ((bp->b_ioflags & BIO_ERROR) == 0)
14470 		panic("softdep_deallocate_dependencies: dangling deps");
14471 	if (bp->b_vp != NULL && bp->b_vp->v_mount != NULL)
14472 		softdep_error(bp->b_vp->v_mount->mnt_stat.f_mntonname, bp->b_error);
14473 	else
14474 		printf("softdep_deallocate_dependencies: "
14475 		    "got error %d while accessing filesystem\n", bp->b_error);
14476 	if (bp->b_error != ENXIO)
14477 		panic("softdep_deallocate_dependencies: unrecovered I/O error");
14478 }
14479 
14480 /*
14481  * Function to handle asynchronous write errors in the filesystem.
14482  */
14483 static void
14484 softdep_error(func, error)
14485 	char *func;
14486 	int error;
14487 {
14488 
14489 	/* XXX should do something better! */
14490 	printf("%s: got error %d while accessing filesystem\n", func, error);
14491 }
14492 
14493 #ifdef DDB
14494 
14495 /* exported to ffs_vfsops.c */
14496 extern void db_print_ffs(struct ufsmount *ump);
14497 void
14498 db_print_ffs(struct ufsmount *ump)
14499 {
14500 	db_printf("mp %p (%s) devvp %p\n", ump->um_mountp,
14501 	    ump->um_mountp->mnt_stat.f_mntonname, ump->um_devvp);
14502 	db_printf("    fs %p su_wl %d su_deps %d su_req %d\n",
14503 	    ump->um_fs, ump->softdep_on_worklist,
14504 	    ump->softdep_deps, ump->softdep_req);
14505 }
14506 
14507 static void
14508 worklist_print(struct worklist *wk, int verbose)
14509 {
14510 
14511 	if (!verbose) {
14512 		db_printf("%s: %p state 0x%b\n", TYPENAME(wk->wk_type), wk,
14513 		    (u_int)wk->wk_state, PRINT_SOFTDEP_FLAGS);
14514 		return;
14515 	}
14516 	db_printf("worklist: %p type %s state 0x%b next %p\n    ", wk,
14517 	    TYPENAME(wk->wk_type), (u_int)wk->wk_state, PRINT_SOFTDEP_FLAGS,
14518 	    LIST_NEXT(wk, wk_list));
14519 	db_print_ffs(VFSTOUFS(wk->wk_mp));
14520 }
14521 
14522 static void
14523 inodedep_print(struct inodedep *inodedep, int verbose)
14524 {
14525 
14526 	worklist_print(&inodedep->id_list, 0);
14527 	db_printf("    fs %p ino %jd inoblk %jd delta %jd nlink %jd\n",
14528 	    inodedep->id_fs,
14529 	    (intmax_t)inodedep->id_ino,
14530 	    (intmax_t)fsbtodb(inodedep->id_fs,
14531 	        ino_to_fsba(inodedep->id_fs, inodedep->id_ino)),
14532 	    (intmax_t)inodedep->id_nlinkdelta,
14533 	    (intmax_t)inodedep->id_savednlink);
14534 
14535 	if (verbose == 0)
14536 		return;
14537 
14538 	db_printf("    bmsafemap %p, mkdiradd %p, inoreflst %p\n",
14539 	    inodedep->id_bmsafemap,
14540 	    inodedep->id_mkdiradd,
14541 	    TAILQ_FIRST(&inodedep->id_inoreflst));
14542 	db_printf("    dirremhd %p, pendinghd %p, bufwait %p\n",
14543 	    LIST_FIRST(&inodedep->id_dirremhd),
14544 	    LIST_FIRST(&inodedep->id_pendinghd),
14545 	    LIST_FIRST(&inodedep->id_bufwait));
14546 	db_printf("    inowait %p, inoupdt %p, newinoupdt %p\n",
14547 	    LIST_FIRST(&inodedep->id_inowait),
14548 	    TAILQ_FIRST(&inodedep->id_inoupdt),
14549 	    TAILQ_FIRST(&inodedep->id_newinoupdt));
14550 	db_printf("    extupdt %p, newextupdt %p, freeblklst %p\n",
14551 	    TAILQ_FIRST(&inodedep->id_extupdt),
14552 	    TAILQ_FIRST(&inodedep->id_newextupdt),
14553 	    TAILQ_FIRST(&inodedep->id_freeblklst));
14554 	db_printf("    saveino %p, savedsize %jd, savedextsize %jd\n",
14555 	    inodedep->id_savedino1,
14556 	    (intmax_t)inodedep->id_savedsize,
14557 	    (intmax_t)inodedep->id_savedextsize);
14558 }
14559 
14560 static void
14561 newblk_print(struct newblk *nbp)
14562 {
14563 
14564 	worklist_print(&nbp->nb_list, 0);
14565 	db_printf("    newblkno %jd\n", (intmax_t)nbp->nb_newblkno);
14566 	db_printf("    jnewblk %p, bmsafemap %p, freefrag %p\n",
14567 	    &nbp->nb_jnewblk,
14568 	    &nbp->nb_bmsafemap,
14569 	    &nbp->nb_freefrag);
14570 	db_printf("    indirdeps %p, newdirblk %p, jwork %p\n",
14571 	    LIST_FIRST(&nbp->nb_indirdeps),
14572 	    LIST_FIRST(&nbp->nb_newdirblk),
14573 	    LIST_FIRST(&nbp->nb_jwork));
14574 }
14575 
14576 static void
14577 allocdirect_print(struct allocdirect *adp)
14578 {
14579 
14580 	newblk_print(&adp->ad_block);
14581 	db_printf("    oldblkno %jd, oldsize %ld, newsize %ld\n",
14582 	    adp->ad_oldblkno, adp->ad_oldsize, adp->ad_newsize);
14583 	db_printf("    offset %d, inodedep %p\n",
14584 	    adp->ad_offset, adp->ad_inodedep);
14585 }
14586 
14587 static void
14588 allocindir_print(struct allocindir *aip)
14589 {
14590 
14591 	newblk_print(&aip->ai_block);
14592 	db_printf("    oldblkno %jd, lbn %jd\n",
14593 	    (intmax_t)aip->ai_oldblkno, (intmax_t)aip->ai_lbn);
14594 	db_printf("    offset %d, indirdep %p\n",
14595 	    aip->ai_offset, aip->ai_indirdep);
14596 }
14597 
14598 static void
14599 mkdir_print(struct mkdir *mkdir)
14600 {
14601 
14602 	worklist_print(&mkdir->md_list, 0);
14603 	db_printf("    diradd %p, jaddref %p, buf %p\n",
14604 		mkdir->md_diradd, mkdir->md_jaddref, mkdir->md_buf);
14605 }
14606 
14607 DB_SHOW_COMMAND(sd_inodedep, db_show_sd_inodedep)
14608 {
14609 
14610 	if (have_addr == 0) {
14611 		db_printf("inodedep address required\n");
14612 		return;
14613 	}
14614 	inodedep_print((struct inodedep*)addr, 1);
14615 }
14616 
14617 DB_SHOW_COMMAND(sd_allinodedeps, db_show_sd_allinodedeps)
14618 {
14619 	struct inodedep_hashhead *inodedephd;
14620 	struct inodedep *inodedep;
14621 	struct ufsmount *ump;
14622 	int cnt;
14623 
14624 	if (have_addr == 0) {
14625 		db_printf("ufsmount address required\n");
14626 		return;
14627 	}
14628 	ump = (struct ufsmount *)addr;
14629 	for (cnt = 0; cnt < ump->inodedep_hash_size; cnt++) {
14630 		inodedephd = &ump->inodedep_hashtbl[cnt];
14631 		LIST_FOREACH(inodedep, inodedephd, id_hash) {
14632 			inodedep_print(inodedep, 0);
14633 		}
14634 	}
14635 }
14636 
14637 DB_SHOW_COMMAND(sd_worklist, db_show_sd_worklist)
14638 {
14639 
14640 	if (have_addr == 0) {
14641 		db_printf("worklist address required\n");
14642 		return;
14643 	}
14644 	worklist_print((struct worklist *)addr, 1);
14645 }
14646 
14647 DB_SHOW_COMMAND(sd_workhead, db_show_sd_workhead)
14648 {
14649 	struct worklist *wk;
14650 	struct workhead *wkhd;
14651 
14652 	if (have_addr == 0) {
14653 		db_printf("worklist address required "
14654 		    "(for example value in bp->b_dep)\n");
14655 		return;
14656 	}
14657 	/*
14658 	 * We often do not have the address of the worklist head but
14659 	 * instead a pointer to its first entry (e.g., we have the
14660 	 * contents of bp->b_dep rather than &bp->b_dep). But the back
14661 	 * pointer of bp->b_dep will point at the head of the list, so
14662 	 * we cheat and use that instead. If we are in the middle of
14663 	 * a list we will still get the same result, so nothing
14664 	 * unexpected will result.
14665 	 */
14666 	wk = (struct worklist *)addr;
14667 	if (wk == NULL)
14668 		return;
14669 	wkhd = (struct workhead *)wk->wk_list.le_prev;
14670 	LIST_FOREACH(wk, wkhd, wk_list) {
14671 		switch(wk->wk_type) {
14672 		case D_INODEDEP:
14673 			inodedep_print(WK_INODEDEP(wk), 0);
14674 			continue;
14675 		case D_ALLOCDIRECT:
14676 			allocdirect_print(WK_ALLOCDIRECT(wk));
14677 			continue;
14678 		case D_ALLOCINDIR:
14679 			allocindir_print(WK_ALLOCINDIR(wk));
14680 			continue;
14681 		case D_MKDIR:
14682 			mkdir_print(WK_MKDIR(wk));
14683 			continue;
14684 		default:
14685 			worklist_print(wk, 0);
14686 			continue;
14687 		}
14688 	}
14689 }
14690 
14691 DB_SHOW_COMMAND(sd_mkdir, db_show_sd_mkdir)
14692 {
14693 	if (have_addr == 0) {
14694 		db_printf("mkdir address required\n");
14695 		return;
14696 	}
14697 	mkdir_print((struct mkdir *)addr);
14698 }
14699 
14700 DB_SHOW_COMMAND(sd_mkdir_list, db_show_sd_mkdir_list)
14701 {
14702 	struct mkdirlist *mkdirlisthd;
14703 	struct mkdir *mkdir;
14704 
14705 	if (have_addr == 0) {
14706 		db_printf("mkdir listhead address required\n");
14707 		return;
14708 	}
14709 	mkdirlisthd = (struct mkdirlist *)addr;
14710 	LIST_FOREACH(mkdir, mkdirlisthd, md_mkdirs) {
14711 		mkdir_print(mkdir);
14712 		if (mkdir->md_diradd != NULL) {
14713 			db_printf("    ");
14714 			worklist_print(&mkdir->md_diradd->da_list, 0);
14715 		}
14716 		if (mkdir->md_jaddref != NULL) {
14717 			db_printf("    ");
14718 			worklist_print(&mkdir->md_jaddref->ja_list, 0);
14719 		}
14720 	}
14721 }
14722 
14723 DB_SHOW_COMMAND(sd_allocdirect, db_show_sd_allocdirect)
14724 {
14725 	if (have_addr == 0) {
14726 		db_printf("allocdirect address required\n");
14727 		return;
14728 	}
14729 	allocdirect_print((struct allocdirect *)addr);
14730 }
14731 
14732 DB_SHOW_COMMAND(sd_allocindir, db_show_sd_allocindir)
14733 {
14734 	if (have_addr == 0) {
14735 		db_printf("allocindir address required\n");
14736 		return;
14737 	}
14738 	allocindir_print((struct allocindir *)addr);
14739 }
14740 
14741 #endif /* DDB */
14742 
14743 #endif /* SOFTUPDATES */
14744