xref: /freebsd/sys/ufs/ffs/ffs_softdep.c (revision e32fecd0c2c3ee37c47ee100f169e7eb0282a873)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright 1998, 2000 Marshall Kirk McKusick.
5  * Copyright 2009, 2010 Jeffrey W. Roberson <jeff@FreeBSD.org>
6  * All rights reserved.
7  *
8  * The soft updates code is derived from the appendix of a University
9  * of Michigan technical report (Gregory R. Ganger and Yale N. Patt,
10  * "Soft Updates: A Solution to the Metadata Update Problem in File
11  * Systems", CSE-TR-254-95, August 1995).
12  *
13  * Further information about soft updates can be obtained from:
14  *
15  *	Marshall Kirk McKusick		http://www.mckusick.com/softdep/
16  *	1614 Oxford Street		mckusick@mckusick.com
17  *	Berkeley, CA 94709-1608		+1-510-843-9542
18  *	USA
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  * 1. Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  * 2. Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in the
28  *    documentation and/or other materials provided with the distribution.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR
31  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
32  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
33  * IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT,
34  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
35  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
36  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
37  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
38  * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
39  * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40  *
41  *	from: @(#)ffs_softdep.c	9.59 (McKusick) 6/21/00
42  */
43 
44 #include <sys/cdefs.h>
45 __FBSDID("$FreeBSD$");
46 
47 #include "opt_ffs.h"
48 #include "opt_quota.h"
49 #include "opt_ddb.h"
50 
51 #include <sys/param.h>
52 #include <sys/kernel.h>
53 #include <sys/systm.h>
54 #include <sys/bio.h>
55 #include <sys/buf.h>
56 #include <sys/kdb.h>
57 #include <sys/kthread.h>
58 #include <sys/ktr.h>
59 #include <sys/limits.h>
60 #include <sys/lock.h>
61 #include <sys/malloc.h>
62 #include <sys/mount.h>
63 #include <sys/mutex.h>
64 #include <sys/namei.h>
65 #include <sys/priv.h>
66 #include <sys/proc.h>
67 #include <sys/racct.h>
68 #include <sys/rwlock.h>
69 #include <sys/stat.h>
70 #include <sys/sysctl.h>
71 #include <sys/syslog.h>
72 #include <sys/vnode.h>
73 #include <sys/conf.h>
74 
75 #include <ufs/ufs/dir.h>
76 #include <ufs/ufs/extattr.h>
77 #include <ufs/ufs/quota.h>
78 #include <ufs/ufs/inode.h>
79 #include <ufs/ufs/ufsmount.h>
80 #include <ufs/ffs/fs.h>
81 #include <ufs/ffs/softdep.h>
82 #include <ufs/ffs/ffs_extern.h>
83 #include <ufs/ufs/ufs_extern.h>
84 
85 #include <vm/vm.h>
86 #include <vm/vm_extern.h>
87 #include <vm/vm_object.h>
88 
89 #include <geom/geom.h>
90 #include <geom/geom_vfs.h>
91 
92 #include <ddb/ddb.h>
93 
94 #define	KTR_SUJ	0	/* Define to KTR_SPARE. */
95 
96 #ifndef SOFTUPDATES
97 
98 int
99 softdep_flushfiles(struct mount *oldmnt,
100 	int flags,
101 	struct thread *td)
102 {
103 
104 	panic("softdep_flushfiles called");
105 }
106 
107 int
108 softdep_mount(struct vnode *devvp,
109 	struct mount *mp,
110 	struct fs *fs,
111 	struct ucred *cred)
112 {
113 
114 	return (0);
115 }
116 
117 void
118 softdep_initialize(void)
119 {
120 
121 	return;
122 }
123 
124 void
125 softdep_uninitialize(void)
126 {
127 
128 	return;
129 }
130 
131 void
132 softdep_unmount(struct mount *mp)
133 {
134 
135 	panic("softdep_unmount called");
136 }
137 
138 void
139 softdep_setup_sbupdate(struct ufsmount *ump,
140 	struct fs *fs,
141 	struct buf *bp)
142 {
143 
144 	panic("softdep_setup_sbupdate called");
145 }
146 
147 void
148 softdep_setup_inomapdep(struct buf *bp,
149 	struct inode *ip,
150 	ino_t newinum,
151 	int mode)
152 {
153 
154 	panic("softdep_setup_inomapdep called");
155 }
156 
157 void
158 softdep_setup_blkmapdep(struct buf *bp,
159 	struct mount *mp,
160 	ufs2_daddr_t newblkno,
161 	int frags,
162 	int oldfrags)
163 {
164 
165 	panic("softdep_setup_blkmapdep called");
166 }
167 
168 void
169 softdep_setup_allocdirect(struct inode *ip,
170 	ufs_lbn_t lbn,
171 	ufs2_daddr_t newblkno,
172 	ufs2_daddr_t oldblkno,
173 	long newsize,
174 	long oldsize,
175 	struct buf *bp)
176 {
177 
178 	panic("softdep_setup_allocdirect called");
179 }
180 
181 void
182 softdep_setup_allocext(struct inode *ip,
183 	ufs_lbn_t lbn,
184 	ufs2_daddr_t newblkno,
185 	ufs2_daddr_t oldblkno,
186 	long newsize,
187 	long oldsize,
188 	struct buf *bp)
189 {
190 
191 	panic("softdep_setup_allocext called");
192 }
193 
194 void
195 softdep_setup_allocindir_page(struct inode *ip,
196 	ufs_lbn_t lbn,
197 	struct buf *bp,
198 	int ptrno,
199 	ufs2_daddr_t newblkno,
200 	ufs2_daddr_t oldblkno,
201 	struct buf *nbp)
202 {
203 
204 	panic("softdep_setup_allocindir_page called");
205 }
206 
207 void
208 softdep_setup_allocindir_meta(struct buf *nbp,
209 	struct inode *ip,
210 	struct buf *bp,
211 	int ptrno,
212 	ufs2_daddr_t newblkno)
213 {
214 
215 	panic("softdep_setup_allocindir_meta called");
216 }
217 
218 void
219 softdep_journal_freeblocks(struct inode *ip,
220 	struct ucred *cred,
221 	off_t length,
222 	int flags)
223 {
224 
225 	panic("softdep_journal_freeblocks called");
226 }
227 
228 void
229 softdep_journal_fsync(struct inode *ip)
230 {
231 
232 	panic("softdep_journal_fsync called");
233 }
234 
235 void
236 softdep_setup_freeblocks(struct inode *ip,
237 	off_t length,
238 	int flags)
239 {
240 
241 	panic("softdep_setup_freeblocks called");
242 }
243 
244 void
245 softdep_freefile(struct vnode *pvp,
246 		ino_t ino,
247 		int mode)
248 {
249 
250 	panic("softdep_freefile called");
251 }
252 
253 int
254 softdep_setup_directory_add(struct buf *bp,
255 	struct inode *dp,
256 	off_t diroffset,
257 	ino_t newinum,
258 	struct buf *newdirbp,
259 	int isnewblk)
260 {
261 
262 	panic("softdep_setup_directory_add called");
263 }
264 
265 void
266 softdep_change_directoryentry_offset(struct buf *bp,
267 	struct inode *dp,
268 	caddr_t base,
269 	caddr_t oldloc,
270 	caddr_t newloc,
271 	int entrysize)
272 {
273 
274 	panic("softdep_change_directoryentry_offset called");
275 }
276 
277 void
278 softdep_setup_remove(struct buf *bp,
279 	struct inode *dp,
280 	struct inode *ip,
281 	int isrmdir)
282 {
283 
284 	panic("softdep_setup_remove called");
285 }
286 
287 void
288 softdep_setup_directory_change(struct buf *bp,
289 	struct inode *dp,
290 	struct inode *ip,
291 	ino_t newinum,
292 	int isrmdir)
293 {
294 
295 	panic("softdep_setup_directory_change called");
296 }
297 
298 void
299 softdep_setup_blkfree(struct mount *mp,
300 	struct buf *bp,
301 	ufs2_daddr_t blkno,
302 	int frags,
303 	struct workhead *wkhd)
304 {
305 
306 	panic("%s called", __FUNCTION__);
307 }
308 
309 void
310 softdep_setup_inofree(struct mount *mp,
311 	struct buf *bp,
312 	ino_t ino,
313 	struct workhead *wkhd)
314 {
315 
316 	panic("%s called", __FUNCTION__);
317 }
318 
319 void
320 softdep_setup_unlink(struct inode *dp, struct inode *ip)
321 {
322 
323 	panic("%s called", __FUNCTION__);
324 }
325 
326 void
327 softdep_setup_link(struct inode *dp, struct inode *ip)
328 {
329 
330 	panic("%s called", __FUNCTION__);
331 }
332 
333 void
334 softdep_revert_link(struct inode *dp, struct inode *ip)
335 {
336 
337 	panic("%s called", __FUNCTION__);
338 }
339 
340 void
341 softdep_setup_rmdir(struct inode *dp, struct inode *ip)
342 {
343 
344 	panic("%s called", __FUNCTION__);
345 }
346 
347 void
348 softdep_revert_rmdir(struct inode *dp, struct inode *ip)
349 {
350 
351 	panic("%s called", __FUNCTION__);
352 }
353 
354 void
355 softdep_setup_create(struct inode *dp, struct inode *ip)
356 {
357 
358 	panic("%s called", __FUNCTION__);
359 }
360 
361 void
362 softdep_revert_create(struct inode *dp, struct inode *ip)
363 {
364 
365 	panic("%s called", __FUNCTION__);
366 }
367 
368 void
369 softdep_setup_mkdir(struct inode *dp, struct inode *ip)
370 {
371 
372 	panic("%s called", __FUNCTION__);
373 }
374 
375 void
376 softdep_revert_mkdir(struct inode *dp, struct inode *ip)
377 {
378 
379 	panic("%s called", __FUNCTION__);
380 }
381 
382 void
383 softdep_setup_dotdot_link(struct inode *dp, struct inode *ip)
384 {
385 
386 	panic("%s called", __FUNCTION__);
387 }
388 
389 int
390 softdep_prealloc(struct vnode *vp, int waitok)
391 {
392 
393 	panic("%s called", __FUNCTION__);
394 }
395 
396 int
397 softdep_journal_lookup(struct mount *mp, struct vnode **vpp)
398 {
399 
400 	return (ENOENT);
401 }
402 
403 void
404 softdep_change_linkcnt(struct inode *ip)
405 {
406 
407 	panic("softdep_change_linkcnt called");
408 }
409 
410 void
411 softdep_load_inodeblock(struct inode *ip)
412 {
413 
414 	panic("softdep_load_inodeblock called");
415 }
416 
417 void
418 softdep_update_inodeblock(struct inode *ip,
419 	struct buf *bp,
420 	int waitfor)
421 {
422 
423 	panic("softdep_update_inodeblock called");
424 }
425 
426 int
427 softdep_fsync(struct vnode *vp)	/* the "in_core" copy of the inode */
428 {
429 
430 	return (0);
431 }
432 
433 void
434 softdep_fsync_mountdev(struct vnode *vp)
435 {
436 
437 	return;
438 }
439 
440 int
441 softdep_flushworklist(struct mount *oldmnt,
442 	int *countp,
443 	struct thread *td)
444 {
445 
446 	*countp = 0;
447 	return (0);
448 }
449 
450 int
451 softdep_sync_metadata(struct vnode *vp)
452 {
453 
454 	panic("softdep_sync_metadata called");
455 }
456 
457 int
458 softdep_sync_buf(struct vnode *vp, struct buf *bp, int waitfor)
459 {
460 
461 	panic("softdep_sync_buf called");
462 }
463 
464 int
465 softdep_slowdown(struct vnode *vp)
466 {
467 
468 	panic("softdep_slowdown called");
469 }
470 
471 int
472 softdep_request_cleanup(struct fs *fs,
473 	struct vnode *vp,
474 	struct ucred *cred,
475 	int resource)
476 {
477 
478 	return (0);
479 }
480 
481 int
482 softdep_check_suspend(struct mount *mp,
483 		      struct vnode *devvp,
484 		      int softdep_depcnt,
485 		      int softdep_accdepcnt,
486 		      int secondary_writes,
487 		      int secondary_accwrites)
488 {
489 	struct bufobj *bo;
490 	int error;
491 
492 	(void) softdep_depcnt,
493 	(void) softdep_accdepcnt;
494 
495 	bo = &devvp->v_bufobj;
496 	ASSERT_BO_WLOCKED(bo);
497 
498 	MNT_ILOCK(mp);
499 	while (mp->mnt_secondary_writes != 0) {
500 		BO_UNLOCK(bo);
501 		msleep(&mp->mnt_secondary_writes, MNT_MTX(mp),
502 		    (PUSER - 1) | PDROP, "secwr", 0);
503 		BO_LOCK(bo);
504 		MNT_ILOCK(mp);
505 	}
506 
507 	/*
508 	 * Reasons for needing more work before suspend:
509 	 * - Dirty buffers on devvp.
510 	 * - Secondary writes occurred after start of vnode sync loop
511 	 */
512 	error = 0;
513 	if (bo->bo_numoutput > 0 ||
514 	    bo->bo_dirty.bv_cnt > 0 ||
515 	    secondary_writes != 0 ||
516 	    mp->mnt_secondary_writes != 0 ||
517 	    secondary_accwrites != mp->mnt_secondary_accwrites)
518 		error = EAGAIN;
519 	BO_UNLOCK(bo);
520 	return (error);
521 }
522 
523 void
524 softdep_get_depcounts(struct mount *mp,
525 		      int *softdepactivep,
526 		      int *softdepactiveaccp)
527 {
528 	(void) mp;
529 	*softdepactivep = 0;
530 	*softdepactiveaccp = 0;
531 }
532 
533 void
534 softdep_buf_append(struct buf *bp, struct workhead *wkhd)
535 {
536 
537 	panic("softdep_buf_appendwork called");
538 }
539 
540 void
541 softdep_inode_append(struct inode *ip,
542 	struct ucred *cred,
543 	struct workhead *wkhd)
544 {
545 
546 	panic("softdep_inode_appendwork called");
547 }
548 
549 void
550 softdep_freework(struct workhead *wkhd)
551 {
552 
553 	panic("softdep_freework called");
554 }
555 
556 int
557 softdep_prerename(struct vnode *fdvp,
558 	struct vnode *fvp,
559 	struct vnode *tdvp,
560 	struct vnode *tvp)
561 {
562 
563 	panic("softdep_prerename called");
564 }
565 
566 int
567 softdep_prelink(struct vnode *dvp,
568 	struct vnode *vp,
569 	struct componentname *cnp)
570 {
571 
572 	panic("softdep_prelink called");
573 }
574 
575 #else
576 
577 FEATURE(softupdates, "FFS soft-updates support");
578 
579 static SYSCTL_NODE(_debug, OID_AUTO, softdep, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
580     "soft updates stats");
581 static SYSCTL_NODE(_debug_softdep, OID_AUTO, total,
582     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
583     "total dependencies allocated");
584 static SYSCTL_NODE(_debug_softdep, OID_AUTO, highuse,
585     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
586     "high use dependencies allocated");
587 static SYSCTL_NODE(_debug_softdep, OID_AUTO, current,
588     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
589     "current dependencies allocated");
590 static SYSCTL_NODE(_debug_softdep, OID_AUTO, write,
591     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
592     "current dependencies written");
593 
594 unsigned long dep_current[D_LAST + 1];
595 unsigned long dep_highuse[D_LAST + 1];
596 unsigned long dep_total[D_LAST + 1];
597 unsigned long dep_write[D_LAST + 1];
598 
599 #define	SOFTDEP_TYPE(type, str, long)					\
600     static MALLOC_DEFINE(M_ ## type, #str, long);			\
601     SYSCTL_ULONG(_debug_softdep_total, OID_AUTO, str, CTLFLAG_RD,	\
602 	&dep_total[D_ ## type], 0, "");					\
603     SYSCTL_ULONG(_debug_softdep_current, OID_AUTO, str, CTLFLAG_RD, 	\
604 	&dep_current[D_ ## type], 0, "");				\
605     SYSCTL_ULONG(_debug_softdep_highuse, OID_AUTO, str, CTLFLAG_RD, 	\
606 	&dep_highuse[D_ ## type], 0, "");				\
607     SYSCTL_ULONG(_debug_softdep_write, OID_AUTO, str, CTLFLAG_RD, 	\
608 	&dep_write[D_ ## type], 0, "");
609 
610 SOFTDEP_TYPE(PAGEDEP, pagedep, "File page dependencies");
611 SOFTDEP_TYPE(INODEDEP, inodedep, "Inode dependencies");
612 SOFTDEP_TYPE(BMSAFEMAP, bmsafemap,
613     "Block or frag allocated from cyl group map");
614 SOFTDEP_TYPE(NEWBLK, newblk, "New block or frag allocation dependency");
615 SOFTDEP_TYPE(ALLOCDIRECT, allocdirect, "Block or frag dependency for an inode");
616 SOFTDEP_TYPE(INDIRDEP, indirdep, "Indirect block dependencies");
617 SOFTDEP_TYPE(ALLOCINDIR, allocindir, "Block dependency for an indirect block");
618 SOFTDEP_TYPE(FREEFRAG, freefrag, "Previously used frag for an inode");
619 SOFTDEP_TYPE(FREEBLKS, freeblks, "Blocks freed from an inode");
620 SOFTDEP_TYPE(FREEFILE, freefile, "Inode deallocated");
621 SOFTDEP_TYPE(DIRADD, diradd, "New directory entry");
622 SOFTDEP_TYPE(MKDIR, mkdir, "New directory");
623 SOFTDEP_TYPE(DIRREM, dirrem, "Directory entry deleted");
624 SOFTDEP_TYPE(NEWDIRBLK, newdirblk, "Unclaimed new directory block");
625 SOFTDEP_TYPE(FREEWORK, freework, "free an inode block");
626 SOFTDEP_TYPE(FREEDEP, freedep, "track a block free");
627 SOFTDEP_TYPE(JADDREF, jaddref, "Journal inode ref add");
628 SOFTDEP_TYPE(JREMREF, jremref, "Journal inode ref remove");
629 SOFTDEP_TYPE(JMVREF, jmvref, "Journal inode ref move");
630 SOFTDEP_TYPE(JNEWBLK, jnewblk, "Journal new block");
631 SOFTDEP_TYPE(JFREEBLK, jfreeblk, "Journal free block");
632 SOFTDEP_TYPE(JFREEFRAG, jfreefrag, "Journal free frag");
633 SOFTDEP_TYPE(JSEG, jseg, "Journal segment");
634 SOFTDEP_TYPE(JSEGDEP, jsegdep, "Journal segment complete");
635 SOFTDEP_TYPE(SBDEP, sbdep, "Superblock write dependency");
636 SOFTDEP_TYPE(JTRUNC, jtrunc, "Journal inode truncation");
637 SOFTDEP_TYPE(JFSYNC, jfsync, "Journal fsync complete");
638 
639 static MALLOC_DEFINE(M_SENTINEL, "sentinel", "Worklist sentinel");
640 
641 static MALLOC_DEFINE(M_SAVEDINO, "savedino", "Saved inodes");
642 static MALLOC_DEFINE(M_JBLOCKS, "jblocks", "Journal block locations");
643 static MALLOC_DEFINE(M_MOUNTDATA, "softdep", "Softdep per-mount data");
644 
645 #define M_SOFTDEP_FLAGS	(M_WAITOK)
646 
647 /*
648  * translate from workitem type to memory type
649  * MUST match the defines above, such that memtype[D_XXX] == M_XXX
650  */
651 static struct malloc_type *memtype[] = {
652 	NULL,
653 	M_PAGEDEP,
654 	M_INODEDEP,
655 	M_BMSAFEMAP,
656 	M_NEWBLK,
657 	M_ALLOCDIRECT,
658 	M_INDIRDEP,
659 	M_ALLOCINDIR,
660 	M_FREEFRAG,
661 	M_FREEBLKS,
662 	M_FREEFILE,
663 	M_DIRADD,
664 	M_MKDIR,
665 	M_DIRREM,
666 	M_NEWDIRBLK,
667 	M_FREEWORK,
668 	M_FREEDEP,
669 	M_JADDREF,
670 	M_JREMREF,
671 	M_JMVREF,
672 	M_JNEWBLK,
673 	M_JFREEBLK,
674 	M_JFREEFRAG,
675 	M_JSEG,
676 	M_JSEGDEP,
677 	M_SBDEP,
678 	M_JTRUNC,
679 	M_JFSYNC,
680 	M_SENTINEL
681 };
682 
683 #define DtoM(type) (memtype[type])
684 
685 /*
686  * Names of malloc types.
687  */
688 #define TYPENAME(type)  \
689 	((unsigned)(type) <= D_LAST && (unsigned)(type) >= D_FIRST ? \
690 	memtype[type]->ks_shortdesc : "???")
691 /*
692  * End system adaptation definitions.
693  */
694 
695 #define	DOTDOT_OFFSET	offsetof(struct dirtemplate, dotdot_ino)
696 #define	DOT_OFFSET	offsetof(struct dirtemplate, dot_ino)
697 
698 /*
699  * Internal function prototypes.
700  */
701 static	void check_clear_deps(struct mount *);
702 static	void softdep_error(char *, int);
703 static	int softdep_prerename_vnode(struct ufsmount *, struct vnode *);
704 static	int softdep_process_worklist(struct mount *, int);
705 static	int softdep_waitidle(struct mount *, int);
706 static	void drain_output(struct vnode *);
707 static	struct buf *getdirtybuf(struct buf *, struct rwlock *, int);
708 static	int check_inodedep_free(struct inodedep *);
709 static	void clear_remove(struct mount *);
710 static	void clear_inodedeps(struct mount *);
711 static	void unlinked_inodedep(struct mount *, struct inodedep *);
712 static	void clear_unlinked_inodedep(struct inodedep *);
713 static	struct inodedep *first_unlinked_inodedep(struct ufsmount *);
714 static	int flush_pagedep_deps(struct vnode *, struct mount *,
715 	    struct diraddhd *, struct buf *);
716 static	int free_pagedep(struct pagedep *);
717 static	int flush_newblk_dep(struct vnode *, struct mount *, ufs_lbn_t);
718 static	int flush_inodedep_deps(struct vnode *, struct mount *, ino_t);
719 static	int flush_deplist(struct allocdirectlst *, int, int *);
720 static	int sync_cgs(struct mount *, int);
721 static	int handle_written_filepage(struct pagedep *, struct buf *, int);
722 static	int handle_written_sbdep(struct sbdep *, struct buf *);
723 static	void initiate_write_sbdep(struct sbdep *);
724 static	void diradd_inode_written(struct diradd *, struct inodedep *);
725 static	int handle_written_indirdep(struct indirdep *, struct buf *,
726 	    struct buf**, int);
727 static	int handle_written_inodeblock(struct inodedep *, struct buf *, int);
728 static	int jnewblk_rollforward(struct jnewblk *, struct fs *, struct cg *,
729 	    uint8_t *);
730 static	int handle_written_bmsafemap(struct bmsafemap *, struct buf *, int);
731 static	void handle_written_jaddref(struct jaddref *);
732 static	void handle_written_jremref(struct jremref *);
733 static	void handle_written_jseg(struct jseg *, struct buf *);
734 static	void handle_written_jnewblk(struct jnewblk *);
735 static	void handle_written_jblkdep(struct jblkdep *);
736 static	void handle_written_jfreefrag(struct jfreefrag *);
737 static	void complete_jseg(struct jseg *);
738 static	void complete_jsegs(struct jseg *);
739 static	void jseg_write(struct ufsmount *ump, struct jseg *, uint8_t *);
740 static	void jaddref_write(struct jaddref *, struct jseg *, uint8_t *);
741 static	void jremref_write(struct jremref *, struct jseg *, uint8_t *);
742 static	void jmvref_write(struct jmvref *, struct jseg *, uint8_t *);
743 static	void jtrunc_write(struct jtrunc *, struct jseg *, uint8_t *);
744 static	void jfsync_write(struct jfsync *, struct jseg *, uint8_t *data);
745 static	void jnewblk_write(struct jnewblk *, struct jseg *, uint8_t *);
746 static	void jfreeblk_write(struct jfreeblk *, struct jseg *, uint8_t *);
747 static	void jfreefrag_write(struct jfreefrag *, struct jseg *, uint8_t *);
748 static	inline void inoref_write(struct inoref *, struct jseg *,
749 	    struct jrefrec *);
750 static	void handle_allocdirect_partdone(struct allocdirect *,
751 	    struct workhead *);
752 static	struct jnewblk *cancel_newblk(struct newblk *, struct worklist *,
753 	    struct workhead *);
754 static	void indirdep_complete(struct indirdep *);
755 static	int indirblk_lookup(struct mount *, ufs2_daddr_t);
756 static	void indirblk_insert(struct freework *);
757 static	void indirblk_remove(struct freework *);
758 static	void handle_allocindir_partdone(struct allocindir *);
759 static	void initiate_write_filepage(struct pagedep *, struct buf *);
760 static	void initiate_write_indirdep(struct indirdep*, struct buf *);
761 static	void handle_written_mkdir(struct mkdir *, int);
762 static	int jnewblk_rollback(struct jnewblk *, struct fs *, struct cg *,
763 	    uint8_t *);
764 static	void initiate_write_bmsafemap(struct bmsafemap *, struct buf *);
765 static	void initiate_write_inodeblock_ufs1(struct inodedep *, struct buf *);
766 static	void initiate_write_inodeblock_ufs2(struct inodedep *, struct buf *);
767 static	void handle_workitem_freefile(struct freefile *);
768 static	int handle_workitem_remove(struct dirrem *, int);
769 static	struct dirrem *newdirrem(struct buf *, struct inode *,
770 	    struct inode *, int, struct dirrem **);
771 static	struct indirdep *indirdep_lookup(struct mount *, struct inode *,
772 	    struct buf *);
773 static	void cancel_indirdep(struct indirdep *, struct buf *,
774 	    struct freeblks *);
775 static	void free_indirdep(struct indirdep *);
776 static	void free_diradd(struct diradd *, struct workhead *);
777 static	void merge_diradd(struct inodedep *, struct diradd *);
778 static	void complete_diradd(struct diradd *);
779 static	struct diradd *diradd_lookup(struct pagedep *, int);
780 static	struct jremref *cancel_diradd_dotdot(struct inode *, struct dirrem *,
781 	    struct jremref *);
782 static	struct jremref *cancel_mkdir_dotdot(struct inode *, struct dirrem *,
783 	    struct jremref *);
784 static	void cancel_diradd(struct diradd *, struct dirrem *, struct jremref *,
785 	    struct jremref *, struct jremref *);
786 static	void dirrem_journal(struct dirrem *, struct jremref *, struct jremref *,
787 	    struct jremref *);
788 static	void cancel_allocindir(struct allocindir *, struct buf *bp,
789 	    struct freeblks *, int);
790 static	int setup_trunc_indir(struct freeblks *, struct inode *,
791 	    ufs_lbn_t, ufs_lbn_t, ufs2_daddr_t);
792 static	void complete_trunc_indir(struct freework *);
793 static	void trunc_indirdep(struct indirdep *, struct freeblks *, struct buf *,
794 	    int);
795 static	void complete_mkdir(struct mkdir *);
796 static	void free_newdirblk(struct newdirblk *);
797 static	void free_jremref(struct jremref *);
798 static	void free_jaddref(struct jaddref *);
799 static	void free_jsegdep(struct jsegdep *);
800 static	void free_jsegs(struct jblocks *);
801 static	void rele_jseg(struct jseg *);
802 static	void free_jseg(struct jseg *, struct jblocks *);
803 static	void free_jnewblk(struct jnewblk *);
804 static	void free_jblkdep(struct jblkdep *);
805 static	void free_jfreefrag(struct jfreefrag *);
806 static	void free_freedep(struct freedep *);
807 static	void journal_jremref(struct dirrem *, struct jremref *,
808 	    struct inodedep *);
809 static	void cancel_jnewblk(struct jnewblk *, struct workhead *);
810 static	int cancel_jaddref(struct jaddref *, struct inodedep *,
811 	    struct workhead *);
812 static	void cancel_jfreefrag(struct jfreefrag *);
813 static	inline void setup_freedirect(struct freeblks *, struct inode *,
814 	    int, int);
815 static	inline void setup_freeext(struct freeblks *, struct inode *, int, int);
816 static	inline void setup_freeindir(struct freeblks *, struct inode *, int,
817 	    ufs_lbn_t, int);
818 static	inline struct freeblks *newfreeblks(struct mount *, struct inode *);
819 static	void freeblks_free(struct ufsmount *, struct freeblks *, int);
820 static	void indir_trunc(struct freework *, ufs2_daddr_t, ufs_lbn_t);
821 static	ufs2_daddr_t blkcount(struct fs *, ufs2_daddr_t, off_t);
822 static	int trunc_check_buf(struct buf *, int *, ufs_lbn_t, int, int);
823 static	void trunc_dependencies(struct inode *, struct freeblks *, ufs_lbn_t,
824 	    int, int);
825 static	void trunc_pages(struct inode *, off_t, ufs2_daddr_t, int);
826 static 	int cancel_pagedep(struct pagedep *, struct freeblks *, int);
827 static	int deallocate_dependencies(struct buf *, struct freeblks *, int);
828 static	void newblk_freefrag(struct newblk*);
829 static	void free_newblk(struct newblk *);
830 static	void cancel_allocdirect(struct allocdirectlst *,
831 	    struct allocdirect *, struct freeblks *);
832 static	int check_inode_unwritten(struct inodedep *);
833 static	int free_inodedep(struct inodedep *);
834 static	void freework_freeblock(struct freework *, u_long);
835 static	void freework_enqueue(struct freework *);
836 static	int handle_workitem_freeblocks(struct freeblks *, int);
837 static	int handle_complete_freeblocks(struct freeblks *, int);
838 static	void handle_workitem_indirblk(struct freework *);
839 static	void handle_written_freework(struct freework *);
840 static	void merge_inode_lists(struct allocdirectlst *,struct allocdirectlst *);
841 static	struct worklist *jnewblk_merge(struct worklist *, struct worklist *,
842 	    struct workhead *);
843 static	struct freefrag *setup_allocindir_phase2(struct buf *, struct inode *,
844 	    struct inodedep *, struct allocindir *, ufs_lbn_t);
845 static	struct allocindir *newallocindir(struct inode *, int, ufs2_daddr_t,
846 	    ufs2_daddr_t, ufs_lbn_t);
847 static	void handle_workitem_freefrag(struct freefrag *);
848 static	struct freefrag *newfreefrag(struct inode *, ufs2_daddr_t, long,
849 	    ufs_lbn_t, u_long);
850 static	void allocdirect_merge(struct allocdirectlst *,
851 	    struct allocdirect *, struct allocdirect *);
852 static	struct freefrag *allocindir_merge(struct allocindir *,
853 	    struct allocindir *);
854 static	int bmsafemap_find(struct bmsafemap_hashhead *, int,
855 	    struct bmsafemap **);
856 static	struct bmsafemap *bmsafemap_lookup(struct mount *, struct buf *,
857 	    int cg, struct bmsafemap *);
858 static	int newblk_find(struct newblk_hashhead *, ufs2_daddr_t, int,
859 	    struct newblk **);
860 static	int newblk_lookup(struct mount *, ufs2_daddr_t, int, struct newblk **);
861 static	int inodedep_find(struct inodedep_hashhead *, ino_t,
862 	    struct inodedep **);
863 static	int inodedep_lookup(struct mount *, ino_t, int, struct inodedep **);
864 static	int pagedep_lookup(struct mount *, struct buf *bp, ino_t, ufs_lbn_t,
865 	    int, struct pagedep **);
866 static	int pagedep_find(struct pagedep_hashhead *, ino_t, ufs_lbn_t,
867 	    struct pagedep **);
868 static	void pause_timer(void *);
869 static	int request_cleanup(struct mount *, int);
870 static	int softdep_request_cleanup_flush(struct mount *, struct ufsmount *);
871 static	void schedule_cleanup(struct mount *);
872 static void softdep_ast_cleanup_proc(struct thread *, int);
873 static struct ufsmount *softdep_bp_to_mp(struct buf *bp);
874 static	int process_worklist_item(struct mount *, int, int);
875 static	void process_removes(struct vnode *);
876 static	void process_truncates(struct vnode *);
877 static	void jwork_move(struct workhead *, struct workhead *);
878 static	void jwork_insert(struct workhead *, struct jsegdep *);
879 static	void add_to_worklist(struct worklist *, int);
880 static	void wake_worklist(struct worklist *);
881 static	void wait_worklist(struct worklist *, char *);
882 static	void remove_from_worklist(struct worklist *);
883 static	void softdep_flush(void *);
884 static	void softdep_flushjournal(struct mount *);
885 static	int softdep_speedup(struct ufsmount *);
886 static	void worklist_speedup(struct mount *);
887 static	int journal_mount(struct mount *, struct fs *, struct ucred *);
888 static	void journal_unmount(struct ufsmount *);
889 static	int journal_space(struct ufsmount *, int);
890 static	void journal_suspend(struct ufsmount *);
891 static	int journal_unsuspend(struct ufsmount *ump);
892 static	void add_to_journal(struct worklist *);
893 static	void remove_from_journal(struct worklist *);
894 static	bool softdep_excess_items(struct ufsmount *, int);
895 static	void softdep_process_journal(struct mount *, struct worklist *, int);
896 static	struct jremref *newjremref(struct dirrem *, struct inode *,
897 	    struct inode *ip, off_t, nlink_t);
898 static	struct jaddref *newjaddref(struct inode *, ino_t, off_t, int16_t,
899 	    uint16_t);
900 static	inline void newinoref(struct inoref *, ino_t, ino_t, off_t, nlink_t,
901 	    uint16_t);
902 static	inline struct jsegdep *inoref_jseg(struct inoref *);
903 static	struct jmvref *newjmvref(struct inode *, ino_t, off_t, off_t);
904 static	struct jfreeblk *newjfreeblk(struct freeblks *, ufs_lbn_t,
905 	    ufs2_daddr_t, int);
906 static	void adjust_newfreework(struct freeblks *, int);
907 static	struct jtrunc *newjtrunc(struct freeblks *, off_t, int);
908 static	void move_newblock_dep(struct jaddref *, struct inodedep *);
909 static	void cancel_jfreeblk(struct freeblks *, ufs2_daddr_t);
910 static	struct jfreefrag *newjfreefrag(struct freefrag *, struct inode *,
911 	    ufs2_daddr_t, long, ufs_lbn_t);
912 static	struct freework *newfreework(struct ufsmount *, struct freeblks *,
913 	    struct freework *, ufs_lbn_t, ufs2_daddr_t, int, int, int);
914 static	int jwait(struct worklist *, int);
915 static	struct inodedep *inodedep_lookup_ip(struct inode *);
916 static	int bmsafemap_backgroundwrite(struct bmsafemap *, struct buf *);
917 static	struct freefile *handle_bufwait(struct inodedep *, struct workhead *);
918 static	void handle_jwork(struct workhead *);
919 static	struct mkdir *setup_newdir(struct diradd *, ino_t, ino_t, struct buf *,
920 	    struct mkdir **);
921 static	struct jblocks *jblocks_create(void);
922 static	ufs2_daddr_t jblocks_alloc(struct jblocks *, int, int *);
923 static	void jblocks_free(struct jblocks *, struct mount *, int);
924 static	void jblocks_destroy(struct jblocks *);
925 static	void jblocks_add(struct jblocks *, ufs2_daddr_t, int);
926 
927 /*
928  * Exported softdep operations.
929  */
930 static	void softdep_disk_io_initiation(struct buf *);
931 static	void softdep_disk_write_complete(struct buf *);
932 static	void softdep_deallocate_dependencies(struct buf *);
933 static	int softdep_count_dependencies(struct buf *bp, int);
934 
935 /*
936  * Global lock over all of soft updates.
937  */
938 static struct mtx lk;
939 MTX_SYSINIT(softdep_lock, &lk, "global softdep", MTX_DEF);
940 
941 #define ACQUIRE_GBLLOCK(lk)	mtx_lock(lk)
942 #define FREE_GBLLOCK(lk)	mtx_unlock(lk)
943 #define GBLLOCK_OWNED(lk)	mtx_assert((lk), MA_OWNED)
944 
945 /*
946  * Per-filesystem soft-updates locking.
947  */
948 #define LOCK_PTR(ump)		(&(ump)->um_softdep->sd_fslock)
949 #define TRY_ACQUIRE_LOCK(ump)	rw_try_wlock(&(ump)->um_softdep->sd_fslock)
950 #define ACQUIRE_LOCK(ump)	rw_wlock(&(ump)->um_softdep->sd_fslock)
951 #define FREE_LOCK(ump)		rw_wunlock(&(ump)->um_softdep->sd_fslock)
952 #define LOCK_OWNED(ump)		rw_assert(&(ump)->um_softdep->sd_fslock, \
953 				    RA_WLOCKED)
954 
955 #define	BUF_AREC(bp)		lockallowrecurse(&(bp)->b_lock)
956 #define	BUF_NOREC(bp)		lockdisablerecurse(&(bp)->b_lock)
957 
958 /*
959  * Worklist queue management.
960  * These routines require that the lock be held.
961  */
962 #ifndef /* NOT */ INVARIANTS
963 #define WORKLIST_INSERT(head, item) do {	\
964 	(item)->wk_state |= ONWORKLIST;		\
965 	LIST_INSERT_HEAD(head, item, wk_list);	\
966 } while (0)
967 #define WORKLIST_REMOVE(item) do {		\
968 	(item)->wk_state &= ~ONWORKLIST;	\
969 	LIST_REMOVE(item, wk_list);		\
970 } while (0)
971 #define WORKLIST_INSERT_UNLOCKED	WORKLIST_INSERT
972 #define WORKLIST_REMOVE_UNLOCKED	WORKLIST_REMOVE
973 
974 #else /* INVARIANTS */
975 static	void worklist_insert(struct workhead *, struct worklist *, int,
976 	const char *, int);
977 static	void worklist_remove(struct worklist *, int, const char *, int);
978 
979 #define WORKLIST_INSERT(head, item) \
980 	worklist_insert(head, item, 1, __func__, __LINE__)
981 #define WORKLIST_INSERT_UNLOCKED(head, item)\
982 	worklist_insert(head, item, 0, __func__, __LINE__)
983 #define WORKLIST_REMOVE(item)\
984 	worklist_remove(item, 1, __func__, __LINE__)
985 #define WORKLIST_REMOVE_UNLOCKED(item)\
986 	worklist_remove(item, 0, __func__, __LINE__)
987 
988 static void
989 worklist_insert(struct workhead *head,
990 	struct worklist *item,
991 	int locked,
992 	const char *func,
993 	int line)
994 {
995 
996 	if (locked)
997 		LOCK_OWNED(VFSTOUFS(item->wk_mp));
998 	if (item->wk_state & ONWORKLIST)
999 		panic("worklist_insert: %p %s(0x%X) already on list, "
1000 		    "added in function %s at line %d",
1001 		    item, TYPENAME(item->wk_type), item->wk_state,
1002 		    item->wk_func, item->wk_line);
1003 	item->wk_state |= ONWORKLIST;
1004 	item->wk_func = func;
1005 	item->wk_line = line;
1006 	LIST_INSERT_HEAD(head, item, wk_list);
1007 }
1008 
1009 static void
1010 worklist_remove(struct worklist *item,
1011 	int locked,
1012 	const char *func,
1013 	int line)
1014 {
1015 
1016 	if (locked)
1017 		LOCK_OWNED(VFSTOUFS(item->wk_mp));
1018 	if ((item->wk_state & ONWORKLIST) == 0)
1019 		panic("worklist_remove: %p %s(0x%X) not on list, "
1020 		    "removed in function %s at line %d",
1021 		    item, TYPENAME(item->wk_type), item->wk_state,
1022 		    item->wk_func, item->wk_line);
1023 	item->wk_state &= ~ONWORKLIST;
1024 	item->wk_func = func;
1025 	item->wk_line = line;
1026 	LIST_REMOVE(item, wk_list);
1027 }
1028 #endif /* INVARIANTS */
1029 
1030 /*
1031  * Merge two jsegdeps keeping only the oldest one as newer references
1032  * can't be discarded until after older references.
1033  */
1034 static inline struct jsegdep *
1035 jsegdep_merge(struct jsegdep *one, struct jsegdep *two)
1036 {
1037 	struct jsegdep *swp;
1038 
1039 	if (two == NULL)
1040 		return (one);
1041 
1042 	if (one->jd_seg->js_seq > two->jd_seg->js_seq) {
1043 		swp = one;
1044 		one = two;
1045 		two = swp;
1046 	}
1047 	WORKLIST_REMOVE(&two->jd_list);
1048 	free_jsegdep(two);
1049 
1050 	return (one);
1051 }
1052 
1053 /*
1054  * If two freedeps are compatible free one to reduce list size.
1055  */
1056 static inline struct freedep *
1057 freedep_merge(struct freedep *one, struct freedep *two)
1058 {
1059 	if (two == NULL)
1060 		return (one);
1061 
1062 	if (one->fd_freework == two->fd_freework) {
1063 		WORKLIST_REMOVE(&two->fd_list);
1064 		free_freedep(two);
1065 	}
1066 	return (one);
1067 }
1068 
1069 /*
1070  * Move journal work from one list to another.  Duplicate freedeps and
1071  * jsegdeps are coalesced to keep the lists as small as possible.
1072  */
1073 static void
1074 jwork_move(struct workhead *dst, struct workhead *src)
1075 {
1076 	struct freedep *freedep;
1077 	struct jsegdep *jsegdep;
1078 	struct worklist *wkn;
1079 	struct worklist *wk;
1080 
1081 	KASSERT(dst != src,
1082 	    ("jwork_move: dst == src"));
1083 	freedep = NULL;
1084 	jsegdep = NULL;
1085 	LIST_FOREACH_SAFE(wk, dst, wk_list, wkn) {
1086 		if (wk->wk_type == D_JSEGDEP)
1087 			jsegdep = jsegdep_merge(WK_JSEGDEP(wk), jsegdep);
1088 		else if (wk->wk_type == D_FREEDEP)
1089 			freedep = freedep_merge(WK_FREEDEP(wk), freedep);
1090 	}
1091 
1092 	while ((wk = LIST_FIRST(src)) != NULL) {
1093 		WORKLIST_REMOVE(wk);
1094 		WORKLIST_INSERT(dst, wk);
1095 		if (wk->wk_type == D_JSEGDEP) {
1096 			jsegdep = jsegdep_merge(WK_JSEGDEP(wk), jsegdep);
1097 			continue;
1098 		}
1099 		if (wk->wk_type == D_FREEDEP)
1100 			freedep = freedep_merge(WK_FREEDEP(wk), freedep);
1101 	}
1102 }
1103 
1104 static void
1105 jwork_insert(struct workhead *dst, struct jsegdep *jsegdep)
1106 {
1107 	struct jsegdep *jsegdepn;
1108 	struct worklist *wk;
1109 
1110 	LIST_FOREACH(wk, dst, wk_list)
1111 		if (wk->wk_type == D_JSEGDEP)
1112 			break;
1113 	if (wk == NULL) {
1114 		WORKLIST_INSERT(dst, &jsegdep->jd_list);
1115 		return;
1116 	}
1117 	jsegdepn = WK_JSEGDEP(wk);
1118 	if (jsegdep->jd_seg->js_seq < jsegdepn->jd_seg->js_seq) {
1119 		WORKLIST_REMOVE(wk);
1120 		free_jsegdep(jsegdepn);
1121 		WORKLIST_INSERT(dst, &jsegdep->jd_list);
1122 	} else
1123 		free_jsegdep(jsegdep);
1124 }
1125 
1126 /*
1127  * Routines for tracking and managing workitems.
1128  */
1129 static	void workitem_free(struct worklist *, int);
1130 static	void workitem_alloc(struct worklist *, int, struct mount *);
1131 static	void workitem_reassign(struct worklist *, int);
1132 
1133 #define	WORKITEM_FREE(item, type) \
1134 	workitem_free((struct worklist *)(item), (type))
1135 #define	WORKITEM_REASSIGN(item, type) \
1136 	workitem_reassign((struct worklist *)(item), (type))
1137 
1138 static void
1139 workitem_free(struct worklist *item, int type)
1140 {
1141 	struct ufsmount *ump;
1142 
1143 #ifdef INVARIANTS
1144 	if (item->wk_state & ONWORKLIST)
1145 		panic("workitem_free: %s(0x%X) still on list, "
1146 		    "added in function %s at line %d",
1147 		    TYPENAME(item->wk_type), item->wk_state,
1148 		    item->wk_func, item->wk_line);
1149 	if (item->wk_type != type && type != D_NEWBLK)
1150 		panic("workitem_free: type mismatch %s != %s",
1151 		    TYPENAME(item->wk_type), TYPENAME(type));
1152 #endif
1153 	if (item->wk_state & IOWAITING)
1154 		wakeup(item);
1155 	ump = VFSTOUFS(item->wk_mp);
1156 	LOCK_OWNED(ump);
1157 	KASSERT(ump->softdep_deps > 0,
1158 	    ("workitem_free: %s: softdep_deps going negative",
1159 	    ump->um_fs->fs_fsmnt));
1160 	if (--ump->softdep_deps == 0 && ump->softdep_req)
1161 		wakeup(&ump->softdep_deps);
1162 	KASSERT(dep_current[item->wk_type] > 0,
1163 	    ("workitem_free: %s: dep_current[%s] going negative",
1164 	    ump->um_fs->fs_fsmnt, TYPENAME(item->wk_type)));
1165 	KASSERT(ump->softdep_curdeps[item->wk_type] > 0,
1166 	    ("workitem_free: %s: softdep_curdeps[%s] going negative",
1167 	    ump->um_fs->fs_fsmnt, TYPENAME(item->wk_type)));
1168 	atomic_subtract_long(&dep_current[item->wk_type], 1);
1169 	ump->softdep_curdeps[item->wk_type] -= 1;
1170 	LIST_REMOVE(item, wk_all);
1171 	free(item, DtoM(type));
1172 }
1173 
1174 static void
1175 workitem_alloc(struct worklist *item,
1176 	int type,
1177 	struct mount *mp)
1178 {
1179 	struct ufsmount *ump;
1180 
1181 	item->wk_type = type;
1182 	item->wk_mp = mp;
1183 	item->wk_state = 0;
1184 
1185 	ump = VFSTOUFS(mp);
1186 	ACQUIRE_GBLLOCK(&lk);
1187 	dep_current[type]++;
1188 	if (dep_current[type] > dep_highuse[type])
1189 		dep_highuse[type] = dep_current[type];
1190 	dep_total[type]++;
1191 	FREE_GBLLOCK(&lk);
1192 	ACQUIRE_LOCK(ump);
1193 	ump->softdep_curdeps[type] += 1;
1194 	ump->softdep_deps++;
1195 	ump->softdep_accdeps++;
1196 	LIST_INSERT_HEAD(&ump->softdep_alldeps[type], item, wk_all);
1197 	FREE_LOCK(ump);
1198 }
1199 
1200 static void
1201 workitem_reassign(struct worklist *item, int newtype)
1202 {
1203 	struct ufsmount *ump;
1204 
1205 	ump = VFSTOUFS(item->wk_mp);
1206 	LOCK_OWNED(ump);
1207 	KASSERT(ump->softdep_curdeps[item->wk_type] > 0,
1208 	    ("workitem_reassign: %s: softdep_curdeps[%s] going negative",
1209 	    VFSTOUFS(item->wk_mp)->um_fs->fs_fsmnt, TYPENAME(item->wk_type)));
1210 	ump->softdep_curdeps[item->wk_type] -= 1;
1211 	ump->softdep_curdeps[newtype] += 1;
1212 	KASSERT(dep_current[item->wk_type] > 0,
1213 	    ("workitem_reassign: %s: dep_current[%s] going negative",
1214 	    VFSTOUFS(item->wk_mp)->um_fs->fs_fsmnt, TYPENAME(item->wk_type)));
1215 	ACQUIRE_GBLLOCK(&lk);
1216 	dep_current[newtype]++;
1217 	dep_current[item->wk_type]--;
1218 	if (dep_current[newtype] > dep_highuse[newtype])
1219 		dep_highuse[newtype] = dep_current[newtype];
1220 	dep_total[newtype]++;
1221 	FREE_GBLLOCK(&lk);
1222 	item->wk_type = newtype;
1223 	LIST_REMOVE(item, wk_all);
1224 	LIST_INSERT_HEAD(&ump->softdep_alldeps[newtype], item, wk_all);
1225 }
1226 
1227 /*
1228  * Workitem queue management
1229  */
1230 static int max_softdeps;	/* maximum number of structs before slowdown */
1231 static int tickdelay = 2;	/* number of ticks to pause during slowdown */
1232 static int proc_waiting;	/* tracks whether we have a timeout posted */
1233 static int *stat_countp;	/* statistic to count in proc_waiting timeout */
1234 static struct callout softdep_callout;
1235 static int req_clear_inodedeps;	/* syncer process flush some inodedeps */
1236 static int req_clear_remove;	/* syncer process flush some freeblks */
1237 static int softdep_flushcache = 0; /* Should we do BIO_FLUSH? */
1238 
1239 /*
1240  * runtime statistics
1241  */
1242 static int stat_flush_threads;	/* number of softdep flushing threads */
1243 static int stat_worklist_push;	/* number of worklist cleanups */
1244 static int stat_delayed_inact;	/* number of delayed inactivation cleanups */
1245 static int stat_blk_limit_push;	/* number of times block limit neared */
1246 static int stat_ino_limit_push;	/* number of times inode limit neared */
1247 static int stat_blk_limit_hit;	/* number of times block slowdown imposed */
1248 static int stat_ino_limit_hit;	/* number of times inode slowdown imposed */
1249 static int stat_sync_limit_hit;	/* number of synchronous slowdowns imposed */
1250 static int stat_indir_blk_ptrs;	/* bufs redirtied as indir ptrs not written */
1251 static int stat_inode_bitmap;	/* bufs redirtied as inode bitmap not written */
1252 static int stat_direct_blk_ptrs;/* bufs redirtied as direct ptrs not written */
1253 static int stat_dir_entry;	/* bufs redirtied as dir entry cannot write */
1254 static int stat_jaddref;	/* bufs redirtied as ino bitmap can not write */
1255 static int stat_jnewblk;	/* bufs redirtied as blk bitmap can not write */
1256 static int stat_journal_min;	/* Times hit journal min threshold */
1257 static int stat_journal_low;	/* Times hit journal low threshold */
1258 static int stat_journal_wait;	/* Times blocked in jwait(). */
1259 static int stat_jwait_filepage;	/* Times blocked in jwait() for filepage. */
1260 static int stat_jwait_freeblks;	/* Times blocked in jwait() for freeblks. */
1261 static int stat_jwait_inode;	/* Times blocked in jwait() for inodes. */
1262 static int stat_jwait_newblk;	/* Times blocked in jwait() for newblks. */
1263 static int stat_cleanup_high_delay; /* Maximum cleanup delay (in ticks) */
1264 static int stat_cleanup_blkrequests; /* Number of block cleanup requests */
1265 static int stat_cleanup_inorequests; /* Number of inode cleanup requests */
1266 static int stat_cleanup_retries; /* Number of cleanups that needed to flush */
1267 static int stat_cleanup_failures; /* Number of cleanup requests that failed */
1268 static int stat_emptyjblocks; /* Number of potentially empty journal blocks */
1269 
1270 SYSCTL_INT(_debug_softdep, OID_AUTO, max_softdeps, CTLFLAG_RW,
1271     &max_softdeps, 0, "");
1272 SYSCTL_INT(_debug_softdep, OID_AUTO, tickdelay, CTLFLAG_RW,
1273     &tickdelay, 0, "");
1274 SYSCTL_INT(_debug_softdep, OID_AUTO, flush_threads, CTLFLAG_RD,
1275     &stat_flush_threads, 0, "");
1276 SYSCTL_INT(_debug_softdep, OID_AUTO, worklist_push,
1277     CTLFLAG_RW | CTLFLAG_STATS, &stat_worklist_push, 0,"");
1278 SYSCTL_INT(_debug_softdep, OID_AUTO, delayed_inactivations, CTLFLAG_RD,
1279     &stat_delayed_inact, 0, "");
1280 SYSCTL_INT(_debug_softdep, OID_AUTO, blk_limit_push,
1281     CTLFLAG_RW | CTLFLAG_STATS, &stat_blk_limit_push, 0,"");
1282 SYSCTL_INT(_debug_softdep, OID_AUTO, ino_limit_push,
1283     CTLFLAG_RW | CTLFLAG_STATS, &stat_ino_limit_push, 0,"");
1284 SYSCTL_INT(_debug_softdep, OID_AUTO, blk_limit_hit,
1285     CTLFLAG_RW | CTLFLAG_STATS, &stat_blk_limit_hit, 0, "");
1286 SYSCTL_INT(_debug_softdep, OID_AUTO, ino_limit_hit,
1287     CTLFLAG_RW | CTLFLAG_STATS, &stat_ino_limit_hit, 0, "");
1288 SYSCTL_INT(_debug_softdep, OID_AUTO, sync_limit_hit,
1289     CTLFLAG_RW | CTLFLAG_STATS, &stat_sync_limit_hit, 0, "");
1290 SYSCTL_INT(_debug_softdep, OID_AUTO, indir_blk_ptrs,
1291     CTLFLAG_RW | CTLFLAG_STATS, &stat_indir_blk_ptrs, 0, "");
1292 SYSCTL_INT(_debug_softdep, OID_AUTO, inode_bitmap,
1293     CTLFLAG_RW | CTLFLAG_STATS, &stat_inode_bitmap, 0, "");
1294 SYSCTL_INT(_debug_softdep, OID_AUTO, direct_blk_ptrs,
1295     CTLFLAG_RW | CTLFLAG_STATS, &stat_direct_blk_ptrs, 0, "");
1296 SYSCTL_INT(_debug_softdep, OID_AUTO, dir_entry,
1297     CTLFLAG_RW | CTLFLAG_STATS, &stat_dir_entry, 0, "");
1298 SYSCTL_INT(_debug_softdep, OID_AUTO, jaddref_rollback,
1299     CTLFLAG_RW | CTLFLAG_STATS, &stat_jaddref, 0, "");
1300 SYSCTL_INT(_debug_softdep, OID_AUTO, jnewblk_rollback,
1301     CTLFLAG_RW | CTLFLAG_STATS, &stat_jnewblk, 0, "");
1302 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_low,
1303     CTLFLAG_RW | CTLFLAG_STATS, &stat_journal_low, 0, "");
1304 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_min,
1305     CTLFLAG_RW | CTLFLAG_STATS, &stat_journal_min, 0, "");
1306 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_wait,
1307     CTLFLAG_RW | CTLFLAG_STATS, &stat_journal_wait, 0, "");
1308 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_filepage,
1309     CTLFLAG_RW | CTLFLAG_STATS, &stat_jwait_filepage, 0, "");
1310 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_freeblks,
1311     CTLFLAG_RW | CTLFLAG_STATS, &stat_jwait_freeblks, 0, "");
1312 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_inode,
1313     CTLFLAG_RW | CTLFLAG_STATS, &stat_jwait_inode, 0, "");
1314 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_newblk,
1315     CTLFLAG_RW | CTLFLAG_STATS, &stat_jwait_newblk, 0, "");
1316 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_blkrequests,
1317     CTLFLAG_RW | CTLFLAG_STATS, &stat_cleanup_blkrequests, 0, "");
1318 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_inorequests,
1319     CTLFLAG_RW | CTLFLAG_STATS, &stat_cleanup_inorequests, 0, "");
1320 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_high_delay,
1321     CTLFLAG_RW | CTLFLAG_STATS, &stat_cleanup_high_delay, 0, "");
1322 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_retries,
1323     CTLFLAG_RW | CTLFLAG_STATS, &stat_cleanup_retries, 0, "");
1324 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_failures,
1325     CTLFLAG_RW | CTLFLAG_STATS, &stat_cleanup_failures, 0, "");
1326 
1327 SYSCTL_INT(_debug_softdep, OID_AUTO, flushcache, CTLFLAG_RW,
1328     &softdep_flushcache, 0, "");
1329 SYSCTL_INT(_debug_softdep, OID_AUTO, emptyjblocks, CTLFLAG_RD,
1330     &stat_emptyjblocks, 0, "");
1331 
1332 SYSCTL_DECL(_vfs_ffs);
1333 
1334 /* Whether to recompute the summary at mount time */
1335 static int compute_summary_at_mount = 0;
1336 SYSCTL_INT(_vfs_ffs, OID_AUTO, compute_summary_at_mount, CTLFLAG_RW,
1337 	   &compute_summary_at_mount, 0, "Recompute summary at mount");
1338 static int print_threads = 0;
1339 SYSCTL_INT(_debug_softdep, OID_AUTO, print_threads, CTLFLAG_RW,
1340     &print_threads, 0, "Notify flusher thread start/stop");
1341 
1342 /* List of all filesystems mounted with soft updates */
1343 static TAILQ_HEAD(, mount_softdeps) softdepmounts;
1344 
1345 static void
1346 get_parent_vp_unlock_bp(struct mount *mp,
1347 	struct buf *bp,
1348 	struct diraddhd *diraddhdp,
1349 	struct diraddhd *unfinishedp)
1350 {
1351 	struct diradd *dap;
1352 
1353 	/*
1354 	 * Requeue unfinished dependencies before
1355 	 * unlocking buffer, which could make
1356 	 * diraddhdp invalid.
1357 	 */
1358 	ACQUIRE_LOCK(VFSTOUFS(mp));
1359 	while ((dap = LIST_FIRST(unfinishedp)) != NULL) {
1360 		LIST_REMOVE(dap, da_pdlist);
1361 		LIST_INSERT_HEAD(diraddhdp, dap, da_pdlist);
1362 	}
1363 	FREE_LOCK(VFSTOUFS(mp));
1364 
1365 	bp->b_vflags &= ~BV_SCANNED;
1366 	BUF_NOREC(bp);
1367 	BUF_UNLOCK(bp);
1368 }
1369 
1370 /*
1371  * This function fetches inode inum on mount point mp.  We already
1372  * hold a locked vnode vp, and might have a locked buffer bp belonging
1373  * to vp.
1374 
1375  * We must not block on acquiring the new inode lock as we will get
1376  * into a lock-order reversal with the buffer lock and possibly get a
1377  * deadlock.  Thus if we cannot instantiate the requested vnode
1378  * without sleeping on its lock, we must unlock the vnode and the
1379  * buffer before doing a blocking on the vnode lock.  We return
1380  * ERELOOKUP if we have had to unlock either the vnode or the buffer so
1381  * that the caller can reassess its state.
1382  *
1383  * Top-level VFS code (for syscalls and other consumers, e.g. callers
1384  * of VOP_FSYNC() in syncer) check for ERELOOKUP and restart at safe
1385  * point.
1386  *
1387  * Since callers expect to operate on fully constructed vnode, we also
1388  * recheck v_data after relock, and return ENOENT if NULL.
1389  *
1390  * If unlocking bp, we must unroll dequeueing its unfinished
1391  * dependencies, and clear scan flag, before unlocking.  If unlocking
1392  * vp while it is under deactivation, we re-queue deactivation.
1393  */
1394 static int
1395 get_parent_vp(struct vnode *vp,
1396 	struct mount *mp,
1397 	ino_t inum,
1398 	struct buf *bp,
1399 	struct diraddhd *diraddhdp,
1400 	struct diraddhd *unfinishedp,
1401 	struct vnode **rvp)
1402 {
1403 	struct vnode *pvp;
1404 	int error;
1405 	bool bplocked;
1406 
1407 	ASSERT_VOP_ELOCKED(vp, "child vnode must be locked");
1408 	for (bplocked = true, pvp = NULL;;) {
1409 		error = ffs_vgetf(mp, inum, LK_EXCLUSIVE | LK_NOWAIT, &pvp,
1410 		    FFSV_FORCEINSMQ | FFSV_FORCEINODEDEP);
1411 		if (error == 0) {
1412 			/*
1413 			 * Since we could have unlocked vp, the inode
1414 			 * number could no longer indicate a
1415 			 * constructed node.  In this case, we must
1416 			 * restart the syscall.
1417 			 */
1418 			if (VTOI(pvp)->i_mode == 0 || !bplocked) {
1419 				if (bp != NULL && bplocked)
1420 					get_parent_vp_unlock_bp(mp, bp,
1421 					    diraddhdp, unfinishedp);
1422 				if (VTOI(pvp)->i_mode == 0)
1423 					vgone(pvp);
1424 				error = ERELOOKUP;
1425 				goto out2;
1426 			}
1427 			goto out1;
1428 		}
1429 		if (bp != NULL && bplocked) {
1430 			get_parent_vp_unlock_bp(mp, bp, diraddhdp, unfinishedp);
1431 			bplocked = false;
1432 		}
1433 
1434 		/*
1435 		 * Do not drop vnode lock while inactivating during
1436 		 * vunref.  This would result in leaks of the VI flags
1437 		 * and reclaiming of non-truncated vnode.  Instead,
1438 		 * re-schedule inactivation hoping that we would be
1439 		 * able to sync inode later.
1440 		 */
1441 		if ((vp->v_iflag & VI_DOINGINACT) != 0 &&
1442 		    (vp->v_vflag & VV_UNREF) != 0) {
1443 			VI_LOCK(vp);
1444 			vp->v_iflag |= VI_OWEINACT;
1445 			VI_UNLOCK(vp);
1446 			return (ERELOOKUP);
1447 		}
1448 
1449 		VOP_UNLOCK(vp);
1450 		error = ffs_vgetf(mp, inum, LK_EXCLUSIVE, &pvp,
1451 		    FFSV_FORCEINSMQ | FFSV_FORCEINODEDEP);
1452 		if (error != 0) {
1453 			MPASS(error != ERELOOKUP);
1454 			vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1455 			break;
1456 		}
1457 		if (VTOI(pvp)->i_mode == 0) {
1458 			vgone(pvp);
1459 			vput(pvp);
1460 			pvp = NULL;
1461 			vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1462 			error = ERELOOKUP;
1463 			break;
1464 		}
1465 		error = vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT);
1466 		if (error == 0)
1467 			break;
1468 		vput(pvp);
1469 		pvp = NULL;
1470 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1471 		if (vp->v_data == NULL) {
1472 			error = ENOENT;
1473 			break;
1474 		}
1475 	}
1476 	if (bp != NULL) {
1477 		MPASS(!bplocked);
1478 		error = ERELOOKUP;
1479 	}
1480 out2:
1481 	if (error != 0 && pvp != NULL) {
1482 		vput(pvp);
1483 		pvp = NULL;
1484 	}
1485 out1:
1486 	*rvp = pvp;
1487 	ASSERT_VOP_ELOCKED(vp, "child vnode must be locked on return");
1488 	return (error);
1489 }
1490 
1491 /*
1492  * This function cleans the worklist for a filesystem.
1493  * Each filesystem running with soft dependencies gets its own
1494  * thread to run in this function. The thread is started up in
1495  * softdep_mount and shutdown in softdep_unmount. They show up
1496  * as part of the kernel "bufdaemon" process whose process
1497  * entry is available in bufdaemonproc.
1498  */
1499 static int searchfailed;
1500 extern struct proc *bufdaemonproc;
1501 static void
1502 softdep_flush(void *addr)
1503 {
1504 	struct mount *mp;
1505 	struct thread *td;
1506 	struct ufsmount *ump;
1507 	int cleanups;
1508 
1509 	td = curthread;
1510 	td->td_pflags |= TDP_NORUNNINGBUF;
1511 	mp = (struct mount *)addr;
1512 	ump = VFSTOUFS(mp);
1513 	atomic_add_int(&stat_flush_threads, 1);
1514 	ACQUIRE_LOCK(ump);
1515 	ump->softdep_flags &= ~FLUSH_STARTING;
1516 	wakeup(&ump->softdep_flushtd);
1517 	FREE_LOCK(ump);
1518 	if (print_threads) {
1519 		if (stat_flush_threads == 1)
1520 			printf("Running %s at pid %d\n", bufdaemonproc->p_comm,
1521 			    bufdaemonproc->p_pid);
1522 		printf("Start thread %s\n", td->td_name);
1523 	}
1524 	for (;;) {
1525 		while (softdep_process_worklist(mp, 0) > 0 ||
1526 		    (MOUNTEDSUJ(mp) &&
1527 		    VFSTOUFS(mp)->softdep_jblocks->jb_suspended))
1528 			kthread_suspend_check();
1529 		ACQUIRE_LOCK(ump);
1530 		if ((ump->softdep_flags & (FLUSH_CLEANUP | FLUSH_EXIT)) == 0)
1531 			msleep(&ump->softdep_flushtd, LOCK_PTR(ump), PVM,
1532 			    "sdflush", hz / 2);
1533 		ump->softdep_flags &= ~FLUSH_CLEANUP;
1534 		/*
1535 		 * Check to see if we are done and need to exit.
1536 		 */
1537 		if ((ump->softdep_flags & FLUSH_EXIT) == 0) {
1538 			FREE_LOCK(ump);
1539 			continue;
1540 		}
1541 		ump->softdep_flags &= ~FLUSH_EXIT;
1542 		cleanups = ump->um_softdep->sd_cleanups;
1543 		FREE_LOCK(ump);
1544 		wakeup(&ump->softdep_flags);
1545 		if (print_threads) {
1546 			printf("Stop thread %s: searchfailed %d, "
1547 			    "did cleanups %d\n",
1548 			    td->td_name, searchfailed, cleanups);
1549 		}
1550 		atomic_subtract_int(&stat_flush_threads, 1);
1551 		kthread_exit();
1552 		panic("kthread_exit failed\n");
1553 	}
1554 }
1555 
1556 static void
1557 worklist_speedup(struct mount *mp)
1558 {
1559 	struct ufsmount *ump;
1560 
1561 	ump = VFSTOUFS(mp);
1562 	LOCK_OWNED(ump);
1563 	if ((ump->softdep_flags & (FLUSH_CLEANUP | FLUSH_EXIT)) == 0)
1564 		ump->softdep_flags |= FLUSH_CLEANUP;
1565 	wakeup(&ump->softdep_flushtd);
1566 }
1567 
1568 static void
1569 softdep_send_speedup(struct ufsmount *ump,
1570 	off_t shortage,
1571 	u_int flags)
1572 {
1573 	struct buf *bp;
1574 
1575 	if ((ump->um_flags & UM_CANSPEEDUP) == 0)
1576 		return;
1577 
1578 	bp = malloc(sizeof(*bp), M_TRIM, M_WAITOK | M_ZERO);
1579 	bp->b_iocmd = BIO_SPEEDUP;
1580 	bp->b_ioflags = flags;
1581 	bp->b_bcount = omin(shortage, LONG_MAX);
1582 	g_vfs_strategy(ump->um_bo, bp);
1583 	bufwait(bp);
1584 	free(bp, M_TRIM);
1585 }
1586 
1587 static int
1588 softdep_speedup(struct ufsmount *ump)
1589 {
1590 	struct ufsmount *altump;
1591 	struct mount_softdeps *sdp;
1592 
1593 	LOCK_OWNED(ump);
1594 	worklist_speedup(ump->um_mountp);
1595 	bd_speedup();
1596 	/*
1597 	 * If we have global shortages, then we need other
1598 	 * filesystems to help with the cleanup. Here we wakeup a
1599 	 * flusher thread for a filesystem that is over its fair
1600 	 * share of resources.
1601 	 */
1602 	if (req_clear_inodedeps || req_clear_remove) {
1603 		ACQUIRE_GBLLOCK(&lk);
1604 		TAILQ_FOREACH(sdp, &softdepmounts, sd_next) {
1605 			if ((altump = sdp->sd_ump) == ump)
1606 				continue;
1607 			if (((req_clear_inodedeps &&
1608 			    altump->softdep_curdeps[D_INODEDEP] >
1609 			    max_softdeps / stat_flush_threads) ||
1610 			    (req_clear_remove &&
1611 			    altump->softdep_curdeps[D_DIRREM] >
1612 			    (max_softdeps / 2) / stat_flush_threads)) &&
1613 			    TRY_ACQUIRE_LOCK(altump))
1614 				break;
1615 		}
1616 		if (sdp == NULL) {
1617 			searchfailed++;
1618 			FREE_GBLLOCK(&lk);
1619 		} else {
1620 			/*
1621 			 * Move to the end of the list so we pick a
1622 			 * different one on out next try.
1623 			 */
1624 			TAILQ_REMOVE(&softdepmounts, sdp, sd_next);
1625 			TAILQ_INSERT_TAIL(&softdepmounts, sdp, sd_next);
1626 			FREE_GBLLOCK(&lk);
1627 			if ((altump->softdep_flags &
1628 			    (FLUSH_CLEANUP | FLUSH_EXIT)) == 0)
1629 				altump->softdep_flags |= FLUSH_CLEANUP;
1630 			altump->um_softdep->sd_cleanups++;
1631 			wakeup(&altump->softdep_flushtd);
1632 			FREE_LOCK(altump);
1633 		}
1634 	}
1635 	return (speedup_syncer());
1636 }
1637 
1638 /*
1639  * Add an item to the end of the work queue.
1640  * This routine requires that the lock be held.
1641  * This is the only routine that adds items to the list.
1642  * The following routine is the only one that removes items
1643  * and does so in order from first to last.
1644  */
1645 
1646 #define	WK_HEAD		0x0001	/* Add to HEAD. */
1647 #define	WK_NODELAY	0x0002	/* Process immediately. */
1648 
1649 static void
1650 add_to_worklist(struct worklist *wk, int flags)
1651 {
1652 	struct ufsmount *ump;
1653 
1654 	ump = VFSTOUFS(wk->wk_mp);
1655 	LOCK_OWNED(ump);
1656 	if (wk->wk_state & ONWORKLIST)
1657 		panic("add_to_worklist: %s(0x%X) already on list",
1658 		    TYPENAME(wk->wk_type), wk->wk_state);
1659 	wk->wk_state |= ONWORKLIST;
1660 	if (ump->softdep_on_worklist == 0) {
1661 		LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list);
1662 		ump->softdep_worklist_tail = wk;
1663 	} else if (flags & WK_HEAD) {
1664 		LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list);
1665 	} else {
1666 		LIST_INSERT_AFTER(ump->softdep_worklist_tail, wk, wk_list);
1667 		ump->softdep_worklist_tail = wk;
1668 	}
1669 	ump->softdep_on_worklist += 1;
1670 	if (flags & WK_NODELAY)
1671 		worklist_speedup(wk->wk_mp);
1672 }
1673 
1674 /*
1675  * Remove the item to be processed. If we are removing the last
1676  * item on the list, we need to recalculate the tail pointer.
1677  */
1678 static void
1679 remove_from_worklist(struct worklist *wk)
1680 {
1681 	struct ufsmount *ump;
1682 
1683 	ump = VFSTOUFS(wk->wk_mp);
1684 	if (ump->softdep_worklist_tail == wk)
1685 		ump->softdep_worklist_tail =
1686 		    (struct worklist *)wk->wk_list.le_prev;
1687 	WORKLIST_REMOVE(wk);
1688 	ump->softdep_on_worklist -= 1;
1689 }
1690 
1691 static void
1692 wake_worklist(struct worklist *wk)
1693 {
1694 	if (wk->wk_state & IOWAITING) {
1695 		wk->wk_state &= ~IOWAITING;
1696 		wakeup(wk);
1697 	}
1698 }
1699 
1700 static void
1701 wait_worklist(struct worklist *wk, char *wmesg)
1702 {
1703 	struct ufsmount *ump;
1704 
1705 	ump = VFSTOUFS(wk->wk_mp);
1706 	wk->wk_state |= IOWAITING;
1707 	msleep(wk, LOCK_PTR(ump), PVM, wmesg, 0);
1708 }
1709 
1710 /*
1711  * Process that runs once per second to handle items in the background queue.
1712  *
1713  * Note that we ensure that everything is done in the order in which they
1714  * appear in the queue. The code below depends on this property to ensure
1715  * that blocks of a file are freed before the inode itself is freed. This
1716  * ordering ensures that no new <vfsid, inum, lbn> triples will be generated
1717  * until all the old ones have been purged from the dependency lists.
1718  */
1719 static int
1720 softdep_process_worklist(struct mount *mp, int full)
1721 {
1722 	int cnt, matchcnt;
1723 	struct ufsmount *ump;
1724 	long starttime;
1725 
1726 	KASSERT(mp != NULL, ("softdep_process_worklist: NULL mp"));
1727 	ump = VFSTOUFS(mp);
1728 	if (ump->um_softdep == NULL)
1729 		return (0);
1730 	matchcnt = 0;
1731 	ACQUIRE_LOCK(ump);
1732 	starttime = time_second;
1733 	softdep_process_journal(mp, NULL, full ? MNT_WAIT : 0);
1734 	check_clear_deps(mp);
1735 	while (ump->softdep_on_worklist > 0) {
1736 		if ((cnt = process_worklist_item(mp, 10, LK_NOWAIT)) == 0)
1737 			break;
1738 		else
1739 			matchcnt += cnt;
1740 		check_clear_deps(mp);
1741 		/*
1742 		 * We do not generally want to stop for buffer space, but if
1743 		 * we are really being a buffer hog, we will stop and wait.
1744 		 */
1745 		if (should_yield()) {
1746 			FREE_LOCK(ump);
1747 			kern_yield(PRI_USER);
1748 			bwillwrite();
1749 			ACQUIRE_LOCK(ump);
1750 		}
1751 		/*
1752 		 * Never allow processing to run for more than one
1753 		 * second. This gives the syncer thread the opportunity
1754 		 * to pause if appropriate.
1755 		 */
1756 		if (!full && starttime != time_second)
1757 			break;
1758 	}
1759 	if (full == 0)
1760 		journal_unsuspend(ump);
1761 	FREE_LOCK(ump);
1762 	return (matchcnt);
1763 }
1764 
1765 /*
1766  * Process all removes associated with a vnode if we are running out of
1767  * journal space.  Any other process which attempts to flush these will
1768  * be unable as we have the vnodes locked.
1769  */
1770 static void
1771 process_removes(struct vnode *vp)
1772 {
1773 	struct inodedep *inodedep;
1774 	struct dirrem *dirrem;
1775 	struct ufsmount *ump;
1776 	struct mount *mp;
1777 	ino_t inum;
1778 
1779 	mp = vp->v_mount;
1780 	ump = VFSTOUFS(mp);
1781 	LOCK_OWNED(ump);
1782 	inum = VTOI(vp)->i_number;
1783 	for (;;) {
1784 top:
1785 		if (inodedep_lookup(mp, inum, 0, &inodedep) == 0)
1786 			return;
1787 		LIST_FOREACH(dirrem, &inodedep->id_dirremhd, dm_inonext) {
1788 			/*
1789 			 * If another thread is trying to lock this vnode
1790 			 * it will fail but we must wait for it to do so
1791 			 * before we can proceed.
1792 			 */
1793 			if (dirrem->dm_state & INPROGRESS) {
1794 				wait_worklist(&dirrem->dm_list, "pwrwait");
1795 				goto top;
1796 			}
1797 			if ((dirrem->dm_state & (COMPLETE | ONWORKLIST)) ==
1798 			    (COMPLETE | ONWORKLIST))
1799 				break;
1800 		}
1801 		if (dirrem == NULL)
1802 			return;
1803 		remove_from_worklist(&dirrem->dm_list);
1804 		FREE_LOCK(ump);
1805 		if (vn_start_secondary_write(NULL, &mp, V_NOWAIT))
1806 			panic("process_removes: suspended filesystem");
1807 		handle_workitem_remove(dirrem, 0);
1808 		vn_finished_secondary_write(mp);
1809 		ACQUIRE_LOCK(ump);
1810 	}
1811 }
1812 
1813 /*
1814  * Process all truncations associated with a vnode if we are running out
1815  * of journal space.  This is called when the vnode lock is already held
1816  * and no other process can clear the truncation.  This function returns
1817  * a value greater than zero if it did any work.
1818  */
1819 static void
1820 process_truncates(struct vnode *vp)
1821 {
1822 	struct inodedep *inodedep;
1823 	struct freeblks *freeblks;
1824 	struct ufsmount *ump;
1825 	struct mount *mp;
1826 	ino_t inum;
1827 	int cgwait;
1828 
1829 	mp = vp->v_mount;
1830 	ump = VFSTOUFS(mp);
1831 	LOCK_OWNED(ump);
1832 	inum = VTOI(vp)->i_number;
1833 	for (;;) {
1834 		if (inodedep_lookup(mp, inum, 0, &inodedep) == 0)
1835 			return;
1836 		cgwait = 0;
1837 		TAILQ_FOREACH(freeblks, &inodedep->id_freeblklst, fb_next) {
1838 			/* Journal entries not yet written.  */
1839 			if (!LIST_EMPTY(&freeblks->fb_jblkdephd)) {
1840 				jwait(&LIST_FIRST(
1841 				    &freeblks->fb_jblkdephd)->jb_list,
1842 				    MNT_WAIT);
1843 				break;
1844 			}
1845 			/* Another thread is executing this item. */
1846 			if (freeblks->fb_state & INPROGRESS) {
1847 				wait_worklist(&freeblks->fb_list, "ptrwait");
1848 				break;
1849 			}
1850 			/* Freeblks is waiting on a inode write. */
1851 			if ((freeblks->fb_state & COMPLETE) == 0) {
1852 				FREE_LOCK(ump);
1853 				ffs_update(vp, 1);
1854 				ACQUIRE_LOCK(ump);
1855 				break;
1856 			}
1857 			if ((freeblks->fb_state & (ALLCOMPLETE | ONWORKLIST)) ==
1858 			    (ALLCOMPLETE | ONWORKLIST)) {
1859 				remove_from_worklist(&freeblks->fb_list);
1860 				freeblks->fb_state |= INPROGRESS;
1861 				FREE_LOCK(ump);
1862 				if (vn_start_secondary_write(NULL, &mp,
1863 				    V_NOWAIT))
1864 					panic("process_truncates: "
1865 					    "suspended filesystem");
1866 				handle_workitem_freeblocks(freeblks, 0);
1867 				vn_finished_secondary_write(mp);
1868 				ACQUIRE_LOCK(ump);
1869 				break;
1870 			}
1871 			if (freeblks->fb_cgwait)
1872 				cgwait++;
1873 		}
1874 		if (cgwait) {
1875 			FREE_LOCK(ump);
1876 			sync_cgs(mp, MNT_WAIT);
1877 			ffs_sync_snap(mp, MNT_WAIT);
1878 			ACQUIRE_LOCK(ump);
1879 			continue;
1880 		}
1881 		if (freeblks == NULL)
1882 			break;
1883 	}
1884 	return;
1885 }
1886 
1887 /*
1888  * Process one item on the worklist.
1889  */
1890 static int
1891 process_worklist_item(struct mount *mp,
1892 	int target,
1893 	int flags)
1894 {
1895 	struct worklist sentinel;
1896 	struct worklist *wk;
1897 	struct ufsmount *ump;
1898 	int matchcnt;
1899 	int error;
1900 
1901 	KASSERT(mp != NULL, ("process_worklist_item: NULL mp"));
1902 	/*
1903 	 * If we are being called because of a process doing a
1904 	 * copy-on-write, then it is not safe to write as we may
1905 	 * recurse into the copy-on-write routine.
1906 	 */
1907 	if (curthread->td_pflags & TDP_COWINPROGRESS)
1908 		return (-1);
1909 	PHOLD(curproc);	/* Don't let the stack go away. */
1910 	ump = VFSTOUFS(mp);
1911 	LOCK_OWNED(ump);
1912 	matchcnt = 0;
1913 	sentinel.wk_mp = NULL;
1914 	sentinel.wk_type = D_SENTINEL;
1915 	LIST_INSERT_HEAD(&ump->softdep_workitem_pending, &sentinel, wk_list);
1916 	for (wk = LIST_NEXT(&sentinel, wk_list); wk != NULL;
1917 	    wk = LIST_NEXT(&sentinel, wk_list)) {
1918 		if (wk->wk_type == D_SENTINEL) {
1919 			LIST_REMOVE(&sentinel, wk_list);
1920 			LIST_INSERT_AFTER(wk, &sentinel, wk_list);
1921 			continue;
1922 		}
1923 		if (wk->wk_state & INPROGRESS)
1924 			panic("process_worklist_item: %p already in progress.",
1925 			    wk);
1926 		wk->wk_state |= INPROGRESS;
1927 		remove_from_worklist(wk);
1928 		FREE_LOCK(ump);
1929 		if (vn_start_secondary_write(NULL, &mp, V_NOWAIT))
1930 			panic("process_worklist_item: suspended filesystem");
1931 		switch (wk->wk_type) {
1932 		case D_DIRREM:
1933 			/* removal of a directory entry */
1934 			error = handle_workitem_remove(WK_DIRREM(wk), flags);
1935 			break;
1936 
1937 		case D_FREEBLKS:
1938 			/* releasing blocks and/or fragments from a file */
1939 			error = handle_workitem_freeblocks(WK_FREEBLKS(wk),
1940 			    flags);
1941 			break;
1942 
1943 		case D_FREEFRAG:
1944 			/* releasing a fragment when replaced as a file grows */
1945 			handle_workitem_freefrag(WK_FREEFRAG(wk));
1946 			error = 0;
1947 			break;
1948 
1949 		case D_FREEFILE:
1950 			/* releasing an inode when its link count drops to 0 */
1951 			handle_workitem_freefile(WK_FREEFILE(wk));
1952 			error = 0;
1953 			break;
1954 
1955 		default:
1956 			panic("%s_process_worklist: Unknown type %s",
1957 			    "softdep", TYPENAME(wk->wk_type));
1958 			/* NOTREACHED */
1959 		}
1960 		vn_finished_secondary_write(mp);
1961 		ACQUIRE_LOCK(ump);
1962 		if (error == 0) {
1963 			if (++matchcnt == target)
1964 				break;
1965 			continue;
1966 		}
1967 		/*
1968 		 * We have to retry the worklist item later.  Wake up any
1969 		 * waiters who may be able to complete it immediately and
1970 		 * add the item back to the head so we don't try to execute
1971 		 * it again.
1972 		 */
1973 		wk->wk_state &= ~INPROGRESS;
1974 		wake_worklist(wk);
1975 		add_to_worklist(wk, WK_HEAD);
1976 	}
1977 	/* Sentinal could've become the tail from remove_from_worklist. */
1978 	if (ump->softdep_worklist_tail == &sentinel)
1979 		ump->softdep_worklist_tail =
1980 		    (struct worklist *)sentinel.wk_list.le_prev;
1981 	LIST_REMOVE(&sentinel, wk_list);
1982 	PRELE(curproc);
1983 	return (matchcnt);
1984 }
1985 
1986 /*
1987  * Move dependencies from one buffer to another.
1988  */
1989 int
1990 softdep_move_dependencies(struct buf *oldbp, struct buf *newbp)
1991 {
1992 	struct worklist *wk, *wktail;
1993 	struct ufsmount *ump;
1994 	int dirty;
1995 
1996 	if ((wk = LIST_FIRST(&oldbp->b_dep)) == NULL)
1997 		return (0);
1998 	KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0,
1999 	    ("softdep_move_dependencies called on non-softdep filesystem"));
2000 	dirty = 0;
2001 	wktail = NULL;
2002 	ump = VFSTOUFS(wk->wk_mp);
2003 	ACQUIRE_LOCK(ump);
2004 	while ((wk = LIST_FIRST(&oldbp->b_dep)) != NULL) {
2005 		LIST_REMOVE(wk, wk_list);
2006 		if (wk->wk_type == D_BMSAFEMAP &&
2007 		    bmsafemap_backgroundwrite(WK_BMSAFEMAP(wk), newbp))
2008 			dirty = 1;
2009 		if (wktail == NULL)
2010 			LIST_INSERT_HEAD(&newbp->b_dep, wk, wk_list);
2011 		else
2012 			LIST_INSERT_AFTER(wktail, wk, wk_list);
2013 		wktail = wk;
2014 	}
2015 	FREE_LOCK(ump);
2016 
2017 	return (dirty);
2018 }
2019 
2020 /*
2021  * Purge the work list of all items associated with a particular mount point.
2022  */
2023 int
2024 softdep_flushworklist(struct mount *oldmnt,
2025 	int *countp,
2026 	struct thread *td)
2027 {
2028 	struct vnode *devvp;
2029 	struct ufsmount *ump;
2030 	int count, error;
2031 
2032 	/*
2033 	 * Alternately flush the block device associated with the mount
2034 	 * point and process any dependencies that the flushing
2035 	 * creates. We continue until no more worklist dependencies
2036 	 * are found.
2037 	 */
2038 	*countp = 0;
2039 	error = 0;
2040 	ump = VFSTOUFS(oldmnt);
2041 	devvp = ump->um_devvp;
2042 	while ((count = softdep_process_worklist(oldmnt, 1)) > 0) {
2043 		*countp += count;
2044 		vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
2045 		error = VOP_FSYNC(devvp, MNT_WAIT, td);
2046 		VOP_UNLOCK(devvp);
2047 		if (error != 0)
2048 			break;
2049 	}
2050 	return (error);
2051 }
2052 
2053 #define	SU_WAITIDLE_RETRIES	20
2054 static int
2055 softdep_waitidle(struct mount *mp, int flags __unused)
2056 {
2057 	struct ufsmount *ump;
2058 	struct vnode *devvp;
2059 	struct thread *td;
2060 	int error, i;
2061 
2062 	ump = VFSTOUFS(mp);
2063 	KASSERT(ump->um_softdep != NULL,
2064 	    ("softdep_waitidle called on non-softdep filesystem"));
2065 	devvp = ump->um_devvp;
2066 	td = curthread;
2067 	error = 0;
2068 	ACQUIRE_LOCK(ump);
2069 	for (i = 0; i < SU_WAITIDLE_RETRIES && ump->softdep_deps != 0; i++) {
2070 		ump->softdep_req = 1;
2071 		KASSERT((flags & FORCECLOSE) == 0 ||
2072 		    ump->softdep_on_worklist == 0,
2073 		    ("softdep_waitidle: work added after flush"));
2074 		msleep(&ump->softdep_deps, LOCK_PTR(ump), PVM | PDROP,
2075 		    "softdeps", 10 * hz);
2076 		vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
2077 		error = VOP_FSYNC(devvp, MNT_WAIT, td);
2078 		VOP_UNLOCK(devvp);
2079 		ACQUIRE_LOCK(ump);
2080 		if (error != 0)
2081 			break;
2082 	}
2083 	ump->softdep_req = 0;
2084 	if (i == SU_WAITIDLE_RETRIES && error == 0 && ump->softdep_deps != 0) {
2085 		error = EBUSY;
2086 		printf("softdep_waitidle: Failed to flush worklist for %p\n",
2087 		    mp);
2088 	}
2089 	FREE_LOCK(ump);
2090 	return (error);
2091 }
2092 
2093 /*
2094  * Flush all vnodes and worklist items associated with a specified mount point.
2095  */
2096 int
2097 softdep_flushfiles(struct mount *oldmnt,
2098 	int flags,
2099 	struct thread *td)
2100 {
2101 	struct ufsmount *ump __unused;
2102 #ifdef QUOTA
2103 	int i;
2104 #endif
2105 	int error, early, depcount, loopcnt, retry_flush_count, retry;
2106 	int morework;
2107 
2108 	ump = VFSTOUFS(oldmnt);
2109 	KASSERT(ump->um_softdep != NULL,
2110 	    ("softdep_flushfiles called on non-softdep filesystem"));
2111 	loopcnt = 10;
2112 	retry_flush_count = 3;
2113 retry_flush:
2114 	error = 0;
2115 
2116 	/*
2117 	 * Alternately flush the vnodes associated with the mount
2118 	 * point and process any dependencies that the flushing
2119 	 * creates. In theory, this loop can happen at most twice,
2120 	 * but we give it a few extra just to be sure.
2121 	 */
2122 	for (; loopcnt > 0; loopcnt--) {
2123 		/*
2124 		 * Do another flush in case any vnodes were brought in
2125 		 * as part of the cleanup operations.
2126 		 */
2127 		early = retry_flush_count == 1 || (oldmnt->mnt_kern_flag &
2128 		    MNTK_UNMOUNT) == 0 ? 0 : EARLYFLUSH;
2129 		if ((error = ffs_flushfiles(oldmnt, flags | early, td)) != 0)
2130 			break;
2131 		if ((error = softdep_flushworklist(oldmnt, &depcount, td)) != 0 ||
2132 		    depcount == 0)
2133 			break;
2134 	}
2135 	/*
2136 	 * If we are unmounting then it is an error to fail. If we
2137 	 * are simply trying to downgrade to read-only, then filesystem
2138 	 * activity can keep us busy forever, so we just fail with EBUSY.
2139 	 */
2140 	if (loopcnt == 0) {
2141 		if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT)
2142 			panic("softdep_flushfiles: looping");
2143 		error = EBUSY;
2144 	}
2145 	if (!error)
2146 		error = softdep_waitidle(oldmnt, flags);
2147 	if (!error) {
2148 		if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT) {
2149 			retry = 0;
2150 			MNT_ILOCK(oldmnt);
2151 			morework = oldmnt->mnt_nvnodelistsize > 0;
2152 #ifdef QUOTA
2153 			UFS_LOCK(ump);
2154 			for (i = 0; i < MAXQUOTAS; i++) {
2155 				if (ump->um_quotas[i] != NULLVP)
2156 					morework = 1;
2157 			}
2158 			UFS_UNLOCK(ump);
2159 #endif
2160 			if (morework) {
2161 				if (--retry_flush_count > 0) {
2162 					retry = 1;
2163 					loopcnt = 3;
2164 				} else
2165 					error = EBUSY;
2166 			}
2167 			MNT_IUNLOCK(oldmnt);
2168 			if (retry)
2169 				goto retry_flush;
2170 		}
2171 	}
2172 	return (error);
2173 }
2174 
2175 /*
2176  * Structure hashing.
2177  *
2178  * There are four types of structures that can be looked up:
2179  *	1) pagedep structures identified by mount point, inode number,
2180  *	   and logical block.
2181  *	2) inodedep structures identified by mount point and inode number.
2182  *	3) newblk structures identified by mount point and
2183  *	   physical block number.
2184  *	4) bmsafemap structures identified by mount point and
2185  *	   cylinder group number.
2186  *
2187  * The "pagedep" and "inodedep" dependency structures are hashed
2188  * separately from the file blocks and inodes to which they correspond.
2189  * This separation helps when the in-memory copy of an inode or
2190  * file block must be replaced. It also obviates the need to access
2191  * an inode or file page when simply updating (or de-allocating)
2192  * dependency structures. Lookup of newblk structures is needed to
2193  * find newly allocated blocks when trying to associate them with
2194  * their allocdirect or allocindir structure.
2195  *
2196  * The lookup routines optionally create and hash a new instance when
2197  * an existing entry is not found. The bmsafemap lookup routine always
2198  * allocates a new structure if an existing one is not found.
2199  */
2200 #define DEPALLOC	0x0001	/* allocate structure if lookup fails */
2201 
2202 /*
2203  * Structures and routines associated with pagedep caching.
2204  */
2205 #define	PAGEDEP_HASH(ump, inum, lbn) \
2206 	(&(ump)->pagedep_hashtbl[((inum) + (lbn)) & (ump)->pagedep_hash_size])
2207 
2208 static int
2209 pagedep_find(struct pagedep_hashhead *pagedephd,
2210 	ino_t ino,
2211 	ufs_lbn_t lbn,
2212 	struct pagedep **pagedeppp)
2213 {
2214 	struct pagedep *pagedep;
2215 
2216 	LIST_FOREACH(pagedep, pagedephd, pd_hash) {
2217 		if (ino == pagedep->pd_ino && lbn == pagedep->pd_lbn) {
2218 			*pagedeppp = pagedep;
2219 			return (1);
2220 		}
2221 	}
2222 	*pagedeppp = NULL;
2223 	return (0);
2224 }
2225 /*
2226  * Look up a pagedep. Return 1 if found, 0 otherwise.
2227  * If not found, allocate if DEPALLOC flag is passed.
2228  * Found or allocated entry is returned in pagedeppp.
2229  */
2230 static int
2231 pagedep_lookup(struct mount *mp,
2232 	struct buf *bp,
2233 	ino_t ino,
2234 	ufs_lbn_t lbn,
2235 	int flags,
2236 	struct pagedep **pagedeppp)
2237 {
2238 	struct pagedep *pagedep;
2239 	struct pagedep_hashhead *pagedephd;
2240 	struct worklist *wk;
2241 	struct ufsmount *ump;
2242 	int ret;
2243 	int i;
2244 
2245 	ump = VFSTOUFS(mp);
2246 	LOCK_OWNED(ump);
2247 	if (bp) {
2248 		LIST_FOREACH(wk, &bp->b_dep, wk_list) {
2249 			if (wk->wk_type == D_PAGEDEP) {
2250 				*pagedeppp = WK_PAGEDEP(wk);
2251 				return (1);
2252 			}
2253 		}
2254 	}
2255 	pagedephd = PAGEDEP_HASH(ump, ino, lbn);
2256 	ret = pagedep_find(pagedephd, ino, lbn, pagedeppp);
2257 	if (ret) {
2258 		if (((*pagedeppp)->pd_state & ONWORKLIST) == 0 && bp)
2259 			WORKLIST_INSERT(&bp->b_dep, &(*pagedeppp)->pd_list);
2260 		return (1);
2261 	}
2262 	if ((flags & DEPALLOC) == 0)
2263 		return (0);
2264 	FREE_LOCK(ump);
2265 	pagedep = malloc(sizeof(struct pagedep),
2266 	    M_PAGEDEP, M_SOFTDEP_FLAGS|M_ZERO);
2267 	workitem_alloc(&pagedep->pd_list, D_PAGEDEP, mp);
2268 	ACQUIRE_LOCK(ump);
2269 	ret = pagedep_find(pagedephd, ino, lbn, pagedeppp);
2270 	if (*pagedeppp) {
2271 		/*
2272 		 * This should never happen since we only create pagedeps
2273 		 * with the vnode lock held.  Could be an assert.
2274 		 */
2275 		WORKITEM_FREE(pagedep, D_PAGEDEP);
2276 		return (ret);
2277 	}
2278 	pagedep->pd_ino = ino;
2279 	pagedep->pd_lbn = lbn;
2280 	LIST_INIT(&pagedep->pd_dirremhd);
2281 	LIST_INIT(&pagedep->pd_pendinghd);
2282 	for (i = 0; i < DAHASHSZ; i++)
2283 		LIST_INIT(&pagedep->pd_diraddhd[i]);
2284 	LIST_INSERT_HEAD(pagedephd, pagedep, pd_hash);
2285 	WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list);
2286 	*pagedeppp = pagedep;
2287 	return (0);
2288 }
2289 
2290 /*
2291  * Structures and routines associated with inodedep caching.
2292  */
2293 #define	INODEDEP_HASH(ump, inum) \
2294       (&(ump)->inodedep_hashtbl[(inum) & (ump)->inodedep_hash_size])
2295 
2296 static int
2297 inodedep_find(struct inodedep_hashhead *inodedephd,
2298 	ino_t inum,
2299 	struct inodedep **inodedeppp)
2300 {
2301 	struct inodedep *inodedep;
2302 
2303 	LIST_FOREACH(inodedep, inodedephd, id_hash)
2304 		if (inum == inodedep->id_ino)
2305 			break;
2306 	if (inodedep) {
2307 		*inodedeppp = inodedep;
2308 		return (1);
2309 	}
2310 	*inodedeppp = NULL;
2311 
2312 	return (0);
2313 }
2314 /*
2315  * Look up an inodedep. Return 1 if found, 0 if not found.
2316  * If not found, allocate if DEPALLOC flag is passed.
2317  * Found or allocated entry is returned in inodedeppp.
2318  */
2319 static int
2320 inodedep_lookup(struct mount *mp,
2321 	ino_t inum,
2322 	int flags,
2323 	struct inodedep **inodedeppp)
2324 {
2325 	struct inodedep *inodedep;
2326 	struct inodedep_hashhead *inodedephd;
2327 	struct ufsmount *ump;
2328 	struct fs *fs;
2329 
2330 	ump = VFSTOUFS(mp);
2331 	LOCK_OWNED(ump);
2332 	fs = ump->um_fs;
2333 	inodedephd = INODEDEP_HASH(ump, inum);
2334 
2335 	if (inodedep_find(inodedephd, inum, inodedeppp))
2336 		return (1);
2337 	if ((flags & DEPALLOC) == 0)
2338 		return (0);
2339 	/*
2340 	 * If the system is over its limit and our filesystem is
2341 	 * responsible for more than our share of that usage and
2342 	 * we are not in a rush, request some inodedep cleanup.
2343 	 */
2344 	if (softdep_excess_items(ump, D_INODEDEP))
2345 		schedule_cleanup(mp);
2346 	else
2347 		FREE_LOCK(ump);
2348 	inodedep = malloc(sizeof(struct inodedep),
2349 		M_INODEDEP, M_SOFTDEP_FLAGS);
2350 	workitem_alloc(&inodedep->id_list, D_INODEDEP, mp);
2351 	ACQUIRE_LOCK(ump);
2352 	if (inodedep_find(inodedephd, inum, inodedeppp)) {
2353 		WORKITEM_FREE(inodedep, D_INODEDEP);
2354 		return (1);
2355 	}
2356 	inodedep->id_fs = fs;
2357 	inodedep->id_ino = inum;
2358 	inodedep->id_state = ALLCOMPLETE;
2359 	inodedep->id_nlinkdelta = 0;
2360 	inodedep->id_nlinkwrote = -1;
2361 	inodedep->id_savedino1 = NULL;
2362 	inodedep->id_savedsize = -1;
2363 	inodedep->id_savedextsize = -1;
2364 	inodedep->id_savednlink = -1;
2365 	inodedep->id_bmsafemap = NULL;
2366 	inodedep->id_mkdiradd = NULL;
2367 	LIST_INIT(&inodedep->id_dirremhd);
2368 	LIST_INIT(&inodedep->id_pendinghd);
2369 	LIST_INIT(&inodedep->id_inowait);
2370 	LIST_INIT(&inodedep->id_bufwait);
2371 	TAILQ_INIT(&inodedep->id_inoreflst);
2372 	TAILQ_INIT(&inodedep->id_inoupdt);
2373 	TAILQ_INIT(&inodedep->id_newinoupdt);
2374 	TAILQ_INIT(&inodedep->id_extupdt);
2375 	TAILQ_INIT(&inodedep->id_newextupdt);
2376 	TAILQ_INIT(&inodedep->id_freeblklst);
2377 	LIST_INSERT_HEAD(inodedephd, inodedep, id_hash);
2378 	*inodedeppp = inodedep;
2379 	return (0);
2380 }
2381 
2382 /*
2383  * Structures and routines associated with newblk caching.
2384  */
2385 #define	NEWBLK_HASH(ump, inum) \
2386 	(&(ump)->newblk_hashtbl[(inum) & (ump)->newblk_hash_size])
2387 
2388 static int
2389 newblk_find(struct newblk_hashhead *newblkhd,
2390 	ufs2_daddr_t newblkno,
2391 	int flags,
2392 	struct newblk **newblkpp)
2393 {
2394 	struct newblk *newblk;
2395 
2396 	LIST_FOREACH(newblk, newblkhd, nb_hash) {
2397 		if (newblkno != newblk->nb_newblkno)
2398 			continue;
2399 		/*
2400 		 * If we're creating a new dependency don't match those that
2401 		 * have already been converted to allocdirects.  This is for
2402 		 * a frag extend.
2403 		 */
2404 		if ((flags & DEPALLOC) && newblk->nb_list.wk_type != D_NEWBLK)
2405 			continue;
2406 		break;
2407 	}
2408 	if (newblk) {
2409 		*newblkpp = newblk;
2410 		return (1);
2411 	}
2412 	*newblkpp = NULL;
2413 	return (0);
2414 }
2415 
2416 /*
2417  * Look up a newblk. Return 1 if found, 0 if not found.
2418  * If not found, allocate if DEPALLOC flag is passed.
2419  * Found or allocated entry is returned in newblkpp.
2420  */
2421 static int
2422 newblk_lookup(struct mount *mp,
2423 	ufs2_daddr_t newblkno,
2424 	int flags,
2425 	struct newblk **newblkpp)
2426 {
2427 	struct newblk *newblk;
2428 	struct newblk_hashhead *newblkhd;
2429 	struct ufsmount *ump;
2430 
2431 	ump = VFSTOUFS(mp);
2432 	LOCK_OWNED(ump);
2433 	newblkhd = NEWBLK_HASH(ump, newblkno);
2434 	if (newblk_find(newblkhd, newblkno, flags, newblkpp))
2435 		return (1);
2436 	if ((flags & DEPALLOC) == 0)
2437 		return (0);
2438 	if (softdep_excess_items(ump, D_NEWBLK) ||
2439 	    softdep_excess_items(ump, D_ALLOCDIRECT) ||
2440 	    softdep_excess_items(ump, D_ALLOCINDIR))
2441 		schedule_cleanup(mp);
2442 	else
2443 		FREE_LOCK(ump);
2444 	newblk = malloc(sizeof(union allblk), M_NEWBLK,
2445 	    M_SOFTDEP_FLAGS | M_ZERO);
2446 	workitem_alloc(&newblk->nb_list, D_NEWBLK, mp);
2447 	ACQUIRE_LOCK(ump);
2448 	if (newblk_find(newblkhd, newblkno, flags, newblkpp)) {
2449 		WORKITEM_FREE(newblk, D_NEWBLK);
2450 		return (1);
2451 	}
2452 	newblk->nb_freefrag = NULL;
2453 	LIST_INIT(&newblk->nb_indirdeps);
2454 	LIST_INIT(&newblk->nb_newdirblk);
2455 	LIST_INIT(&newblk->nb_jwork);
2456 	newblk->nb_state = ATTACHED;
2457 	newblk->nb_newblkno = newblkno;
2458 	LIST_INSERT_HEAD(newblkhd, newblk, nb_hash);
2459 	*newblkpp = newblk;
2460 	return (0);
2461 }
2462 
2463 /*
2464  * Structures and routines associated with freed indirect block caching.
2465  */
2466 #define	INDIR_HASH(ump, blkno) \
2467 	(&(ump)->indir_hashtbl[(blkno) & (ump)->indir_hash_size])
2468 
2469 /*
2470  * Lookup an indirect block in the indir hash table.  The freework is
2471  * removed and potentially freed.  The caller must do a blocking journal
2472  * write before writing to the blkno.
2473  */
2474 static int
2475 indirblk_lookup(struct mount *mp, ufs2_daddr_t blkno)
2476 {
2477 	struct freework *freework;
2478 	struct indir_hashhead *wkhd;
2479 	struct ufsmount *ump;
2480 
2481 	ump = VFSTOUFS(mp);
2482 	wkhd = INDIR_HASH(ump, blkno);
2483 	TAILQ_FOREACH(freework, wkhd, fw_next) {
2484 		if (freework->fw_blkno != blkno)
2485 			continue;
2486 		indirblk_remove(freework);
2487 		return (1);
2488 	}
2489 	return (0);
2490 }
2491 
2492 /*
2493  * Insert an indirect block represented by freework into the indirblk
2494  * hash table so that it may prevent the block from being re-used prior
2495  * to the journal being written.
2496  */
2497 static void
2498 indirblk_insert(struct freework *freework)
2499 {
2500 	struct jblocks *jblocks;
2501 	struct jseg *jseg;
2502 	struct ufsmount *ump;
2503 
2504 	ump = VFSTOUFS(freework->fw_list.wk_mp);
2505 	jblocks = ump->softdep_jblocks;
2506 	jseg = TAILQ_LAST(&jblocks->jb_segs, jseglst);
2507 	if (jseg == NULL)
2508 		return;
2509 
2510 	LIST_INSERT_HEAD(&jseg->js_indirs, freework, fw_segs);
2511 	TAILQ_INSERT_HEAD(INDIR_HASH(ump, freework->fw_blkno), freework,
2512 	    fw_next);
2513 	freework->fw_state &= ~DEPCOMPLETE;
2514 }
2515 
2516 static void
2517 indirblk_remove(struct freework *freework)
2518 {
2519 	struct ufsmount *ump;
2520 
2521 	ump = VFSTOUFS(freework->fw_list.wk_mp);
2522 	LIST_REMOVE(freework, fw_segs);
2523 	TAILQ_REMOVE(INDIR_HASH(ump, freework->fw_blkno), freework, fw_next);
2524 	freework->fw_state |= DEPCOMPLETE;
2525 	if ((freework->fw_state & ALLCOMPLETE) == ALLCOMPLETE)
2526 		WORKITEM_FREE(freework, D_FREEWORK);
2527 }
2528 
2529 /*
2530  * Executed during filesystem system initialization before
2531  * mounting any filesystems.
2532  */
2533 void
2534 softdep_initialize(void)
2535 {
2536 
2537 	TAILQ_INIT(&softdepmounts);
2538 #ifdef __LP64__
2539 	max_softdeps = desiredvnodes * 4;
2540 #else
2541 	max_softdeps = desiredvnodes * 2;
2542 #endif
2543 
2544 	/* initialise bioops hack */
2545 	bioops.io_start = softdep_disk_io_initiation;
2546 	bioops.io_complete = softdep_disk_write_complete;
2547 	bioops.io_deallocate = softdep_deallocate_dependencies;
2548 	bioops.io_countdeps = softdep_count_dependencies;
2549 	ast_register(TDA_UFS, ASTR_KCLEAR | ASTR_ASTF_REQUIRED, 0,
2550 	    softdep_ast_cleanup_proc);
2551 
2552 	/* Initialize the callout with an mtx. */
2553 	callout_init_mtx(&softdep_callout, &lk, 0);
2554 }
2555 
2556 /*
2557  * Executed after all filesystems have been unmounted during
2558  * filesystem module unload.
2559  */
2560 void
2561 softdep_uninitialize(void)
2562 {
2563 
2564 	/* clear bioops hack */
2565 	bioops.io_start = NULL;
2566 	bioops.io_complete = NULL;
2567 	bioops.io_deallocate = NULL;
2568 	bioops.io_countdeps = NULL;
2569 	ast_deregister(TDA_UFS);
2570 
2571 	callout_drain(&softdep_callout);
2572 }
2573 
2574 /*
2575  * Called at mount time to notify the dependency code that a
2576  * filesystem wishes to use it.
2577  */
2578 int
2579 softdep_mount(struct vnode *devvp,
2580 	struct mount *mp,
2581 	struct fs *fs,
2582 	struct ucred *cred)
2583 {
2584 	struct csum_total cstotal;
2585 	struct mount_softdeps *sdp;
2586 	struct ufsmount *ump;
2587 	struct cg *cgp;
2588 	struct buf *bp;
2589 	u_int cyl, i;
2590 	int error;
2591 
2592 	ump = VFSTOUFS(mp);
2593 
2594 	sdp = malloc(sizeof(struct mount_softdeps), M_MOUNTDATA,
2595 	    M_WAITOK | M_ZERO);
2596 	rw_init(&sdp->sd_fslock, "SUrw");
2597 	sdp->sd_ump = ump;
2598 	LIST_INIT(&sdp->sd_workitem_pending);
2599 	LIST_INIT(&sdp->sd_journal_pending);
2600 	TAILQ_INIT(&sdp->sd_unlinked);
2601 	LIST_INIT(&sdp->sd_dirtycg);
2602 	sdp->sd_worklist_tail = NULL;
2603 	sdp->sd_on_worklist = 0;
2604 	sdp->sd_deps = 0;
2605 	LIST_INIT(&sdp->sd_mkdirlisthd);
2606 	sdp->sd_pdhash = hashinit(desiredvnodes / 5, M_PAGEDEP,
2607 	    &sdp->sd_pdhashsize);
2608 	sdp->sd_pdnextclean = 0;
2609 	sdp->sd_idhash = hashinit(desiredvnodes, M_INODEDEP,
2610 	    &sdp->sd_idhashsize);
2611 	sdp->sd_idnextclean = 0;
2612 	sdp->sd_newblkhash = hashinit(max_softdeps / 2,  M_NEWBLK,
2613 	    &sdp->sd_newblkhashsize);
2614 	sdp->sd_bmhash = hashinit(1024, M_BMSAFEMAP, &sdp->sd_bmhashsize);
2615 	i = 1 << (ffs(desiredvnodes / 10) - 1);
2616 	sdp->sd_indirhash = malloc(i * sizeof(struct indir_hashhead),
2617 	    M_FREEWORK, M_WAITOK);
2618 	sdp->sd_indirhashsize = i - 1;
2619 	for (i = 0; i <= sdp->sd_indirhashsize; i++)
2620 		TAILQ_INIT(&sdp->sd_indirhash[i]);
2621 	for (i = 0; i <= D_LAST; i++)
2622 		LIST_INIT(&sdp->sd_alldeps[i]);
2623 	ACQUIRE_GBLLOCK(&lk);
2624 	TAILQ_INSERT_TAIL(&softdepmounts, sdp, sd_next);
2625 	FREE_GBLLOCK(&lk);
2626 
2627 	ump->um_softdep = sdp;
2628 	MNT_ILOCK(mp);
2629 	mp->mnt_flag = (mp->mnt_flag & ~MNT_ASYNC) | MNT_SOFTDEP;
2630 	if ((mp->mnt_kern_flag & MNTK_SOFTDEP) == 0) {
2631 		mp->mnt_kern_flag = (mp->mnt_kern_flag & ~MNTK_ASYNC) |
2632 		    MNTK_SOFTDEP | MNTK_NOASYNC;
2633 	}
2634 	MNT_IUNLOCK(mp);
2635 
2636 	if ((fs->fs_flags & FS_SUJ) &&
2637 	    (error = journal_mount(mp, fs, cred)) != 0) {
2638 		printf("Failed to start journal: %d\n", error);
2639 		softdep_unmount(mp);
2640 		return (error);
2641 	}
2642 	/*
2643 	 * Start our flushing thread in the bufdaemon process.
2644 	 */
2645 	ACQUIRE_LOCK(ump);
2646 	ump->softdep_flags |= FLUSH_STARTING;
2647 	FREE_LOCK(ump);
2648 	kproc_kthread_add(&softdep_flush, mp, &bufdaemonproc,
2649 	    &ump->softdep_flushtd, 0, 0, "softdepflush", "%s worker",
2650 	    mp->mnt_stat.f_mntonname);
2651 	ACQUIRE_LOCK(ump);
2652 	while ((ump->softdep_flags & FLUSH_STARTING) != 0) {
2653 		msleep(&ump->softdep_flushtd, LOCK_PTR(ump), PVM, "sdstart",
2654 		    hz / 2);
2655 	}
2656 	FREE_LOCK(ump);
2657 	/*
2658 	 * When doing soft updates, the counters in the
2659 	 * superblock may have gotten out of sync. Recomputation
2660 	 * can take a long time and can be deferred for background
2661 	 * fsck.  However, the old behavior of scanning the cylinder
2662 	 * groups and recalculating them at mount time is available
2663 	 * by setting vfs.ffs.compute_summary_at_mount to one.
2664 	 */
2665 	if (compute_summary_at_mount == 0 || fs->fs_clean != 0)
2666 		return (0);
2667 	bzero(&cstotal, sizeof cstotal);
2668 	for (cyl = 0; cyl < fs->fs_ncg; cyl++) {
2669 		if ((error = bread(devvp, fsbtodb(fs, cgtod(fs, cyl)),
2670 		    fs->fs_cgsize, cred, &bp)) != 0) {
2671 			brelse(bp);
2672 			softdep_unmount(mp);
2673 			return (error);
2674 		}
2675 		cgp = (struct cg *)bp->b_data;
2676 		cstotal.cs_nffree += cgp->cg_cs.cs_nffree;
2677 		cstotal.cs_nbfree += cgp->cg_cs.cs_nbfree;
2678 		cstotal.cs_nifree += cgp->cg_cs.cs_nifree;
2679 		cstotal.cs_ndir += cgp->cg_cs.cs_ndir;
2680 		fs->fs_cs(fs, cyl) = cgp->cg_cs;
2681 		brelse(bp);
2682 	}
2683 #ifdef INVARIANTS
2684 	if (bcmp(&cstotal, &fs->fs_cstotal, sizeof cstotal))
2685 		printf("%s: superblock summary recomputed\n", fs->fs_fsmnt);
2686 #endif
2687 	bcopy(&cstotal, &fs->fs_cstotal, sizeof cstotal);
2688 	return (0);
2689 }
2690 
2691 void
2692 softdep_unmount(struct mount *mp)
2693 {
2694 	struct ufsmount *ump;
2695 	struct mount_softdeps *ums;
2696 
2697 	ump = VFSTOUFS(mp);
2698 	KASSERT(ump->um_softdep != NULL,
2699 	    ("softdep_unmount called on non-softdep filesystem"));
2700 	MNT_ILOCK(mp);
2701 	mp->mnt_flag &= ~MNT_SOFTDEP;
2702 	if ((mp->mnt_flag & MNT_SUJ) == 0) {
2703 		MNT_IUNLOCK(mp);
2704 	} else {
2705 		mp->mnt_flag &= ~MNT_SUJ;
2706 		MNT_IUNLOCK(mp);
2707 		journal_unmount(ump);
2708 	}
2709 	/*
2710 	 * Shut down our flushing thread. Check for NULL is if
2711 	 * softdep_mount errors out before the thread has been created.
2712 	 */
2713 	if (ump->softdep_flushtd != NULL) {
2714 		ACQUIRE_LOCK(ump);
2715 		ump->softdep_flags |= FLUSH_EXIT;
2716 		wakeup(&ump->softdep_flushtd);
2717 		while ((ump->softdep_flags & FLUSH_EXIT) != 0) {
2718 			msleep(&ump->softdep_flags, LOCK_PTR(ump), PVM,
2719 			    "sdwait", 0);
2720 		}
2721 		KASSERT((ump->softdep_flags & FLUSH_EXIT) == 0,
2722 		    ("Thread shutdown failed"));
2723 		FREE_LOCK(ump);
2724 	}
2725 
2726 	/*
2727 	 * We are no longer have softdep structure attached to ump.
2728 	 */
2729 	ums = ump->um_softdep;
2730 	ACQUIRE_GBLLOCK(&lk);
2731 	TAILQ_REMOVE(&softdepmounts, ums, sd_next);
2732 	FREE_GBLLOCK(&lk);
2733 	ump->um_softdep = NULL;
2734 
2735 	KASSERT(ums->sd_on_journal == 0,
2736 	    ("ump %p ums %p on_journal %d", ump, ums, ums->sd_on_journal));
2737 	KASSERT(ums->sd_on_worklist == 0,
2738 	    ("ump %p ums %p on_worklist %d", ump, ums, ums->sd_on_worklist));
2739 	KASSERT(ums->sd_deps == 0,
2740 	    ("ump %p ums %p deps %d", ump, ums, ums->sd_deps));
2741 
2742 	/*
2743 	 * Free up our resources.
2744 	 */
2745 	rw_destroy(&ums->sd_fslock);
2746 	hashdestroy(ums->sd_pdhash, M_PAGEDEP, ums->sd_pdhashsize);
2747 	hashdestroy(ums->sd_idhash, M_INODEDEP, ums->sd_idhashsize);
2748 	hashdestroy(ums->sd_newblkhash, M_NEWBLK, ums->sd_newblkhashsize);
2749 	hashdestroy(ums->sd_bmhash, M_BMSAFEMAP, ums->sd_bmhashsize);
2750 	free(ums->sd_indirhash, M_FREEWORK);
2751 #ifdef INVARIANTS
2752 	for (int i = 0; i <= D_LAST; i++) {
2753 		KASSERT(ums->sd_curdeps[i] == 0,
2754 		    ("Unmount %s: Dep type %s != 0 (%ld)", ump->um_fs->fs_fsmnt,
2755 		    TYPENAME(i), ums->sd_curdeps[i]));
2756 		KASSERT(LIST_EMPTY(&ums->sd_alldeps[i]),
2757 		    ("Unmount %s: Dep type %s not empty (%p)",
2758 		    ump->um_fs->fs_fsmnt,
2759 		    TYPENAME(i), LIST_FIRST(&ums->sd_alldeps[i])));
2760 	}
2761 #endif
2762 	free(ums, M_MOUNTDATA);
2763 }
2764 
2765 static struct jblocks *
2766 jblocks_create(void)
2767 {
2768 	struct jblocks *jblocks;
2769 
2770 	jblocks = malloc(sizeof(*jblocks), M_JBLOCKS, M_WAITOK | M_ZERO);
2771 	TAILQ_INIT(&jblocks->jb_segs);
2772 	jblocks->jb_avail = 10;
2773 	jblocks->jb_extent = malloc(sizeof(struct jextent) * jblocks->jb_avail,
2774 	    M_JBLOCKS, M_WAITOK | M_ZERO);
2775 
2776 	return (jblocks);
2777 }
2778 
2779 static ufs2_daddr_t
2780 jblocks_alloc(struct jblocks *jblocks,
2781 	int bytes,
2782 	int *actual)
2783 {
2784 	ufs2_daddr_t daddr;
2785 	struct jextent *jext;
2786 	int freecnt;
2787 	int blocks;
2788 
2789 	blocks = bytes / DEV_BSIZE;
2790 	jext = &jblocks->jb_extent[jblocks->jb_head];
2791 	freecnt = jext->je_blocks - jblocks->jb_off;
2792 	if (freecnt == 0) {
2793 		jblocks->jb_off = 0;
2794 		if (++jblocks->jb_head > jblocks->jb_used)
2795 			jblocks->jb_head = 0;
2796 		jext = &jblocks->jb_extent[jblocks->jb_head];
2797 		freecnt = jext->je_blocks;
2798 	}
2799 	if (freecnt > blocks)
2800 		freecnt = blocks;
2801 	*actual = freecnt * DEV_BSIZE;
2802 	daddr = jext->je_daddr + jblocks->jb_off;
2803 	jblocks->jb_off += freecnt;
2804 	jblocks->jb_free -= freecnt;
2805 
2806 	return (daddr);
2807 }
2808 
2809 static void
2810 jblocks_free(struct jblocks *jblocks,
2811 	struct mount *mp,
2812 	int bytes)
2813 {
2814 
2815 	LOCK_OWNED(VFSTOUFS(mp));
2816 	jblocks->jb_free += bytes / DEV_BSIZE;
2817 	if (jblocks->jb_suspended)
2818 		worklist_speedup(mp);
2819 	wakeup(jblocks);
2820 }
2821 
2822 static void
2823 jblocks_destroy(struct jblocks *jblocks)
2824 {
2825 
2826 	if (jblocks->jb_extent)
2827 		free(jblocks->jb_extent, M_JBLOCKS);
2828 	free(jblocks, M_JBLOCKS);
2829 }
2830 
2831 static void
2832 jblocks_add(struct jblocks *jblocks,
2833 	ufs2_daddr_t daddr,
2834 	int blocks)
2835 {
2836 	struct jextent *jext;
2837 
2838 	jblocks->jb_blocks += blocks;
2839 	jblocks->jb_free += blocks;
2840 	jext = &jblocks->jb_extent[jblocks->jb_used];
2841 	/* Adding the first block. */
2842 	if (jext->je_daddr == 0) {
2843 		jext->je_daddr = daddr;
2844 		jext->je_blocks = blocks;
2845 		return;
2846 	}
2847 	/* Extending the last extent. */
2848 	if (jext->je_daddr + jext->je_blocks == daddr) {
2849 		jext->je_blocks += blocks;
2850 		return;
2851 	}
2852 	/* Adding a new extent. */
2853 	if (++jblocks->jb_used == jblocks->jb_avail) {
2854 		jblocks->jb_avail *= 2;
2855 		jext = malloc(sizeof(struct jextent) * jblocks->jb_avail,
2856 		    M_JBLOCKS, M_WAITOK | M_ZERO);
2857 		memcpy(jext, jblocks->jb_extent,
2858 		    sizeof(struct jextent) * jblocks->jb_used);
2859 		free(jblocks->jb_extent, M_JBLOCKS);
2860 		jblocks->jb_extent = jext;
2861 	}
2862 	jext = &jblocks->jb_extent[jblocks->jb_used];
2863 	jext->je_daddr = daddr;
2864 	jext->je_blocks = blocks;
2865 	return;
2866 }
2867 
2868 int
2869 softdep_journal_lookup(struct mount *mp, struct vnode **vpp)
2870 {
2871 	struct componentname cnp;
2872 	struct vnode *dvp;
2873 	ino_t sujournal;
2874 	int error;
2875 
2876 	error = VFS_VGET(mp, UFS_ROOTINO, LK_EXCLUSIVE, &dvp);
2877 	if (error)
2878 		return (error);
2879 	bzero(&cnp, sizeof(cnp));
2880 	cnp.cn_nameiop = LOOKUP;
2881 	cnp.cn_flags = ISLASTCN;
2882 	cnp.cn_cred = curthread->td_ucred;
2883 	cnp.cn_pnbuf = SUJ_FILE;
2884 	cnp.cn_nameptr = SUJ_FILE;
2885 	cnp.cn_namelen = strlen(SUJ_FILE);
2886 	error = ufs_lookup_ino(dvp, NULL, &cnp, &sujournal);
2887 	vput(dvp);
2888 	if (error != 0)
2889 		return (error);
2890 	error = VFS_VGET(mp, sujournal, LK_EXCLUSIVE, vpp);
2891 	return (error);
2892 }
2893 
2894 /*
2895  * Open and verify the journal file.
2896  */
2897 static int
2898 journal_mount(struct mount *mp,
2899 	struct fs *fs,
2900 	struct ucred *cred)
2901 {
2902 	struct jblocks *jblocks;
2903 	struct ufsmount *ump;
2904 	struct vnode *vp;
2905 	struct inode *ip;
2906 	ufs2_daddr_t blkno;
2907 	int bcount;
2908 	int error;
2909 	int i;
2910 
2911 	ump = VFSTOUFS(mp);
2912 	ump->softdep_journal_tail = NULL;
2913 	ump->softdep_on_journal = 0;
2914 	ump->softdep_accdeps = 0;
2915 	ump->softdep_req = 0;
2916 	ump->softdep_jblocks = NULL;
2917 	error = softdep_journal_lookup(mp, &vp);
2918 	if (error != 0) {
2919 		printf("Failed to find journal.  Use tunefs to create one\n");
2920 		return (error);
2921 	}
2922 	ip = VTOI(vp);
2923 	if (ip->i_size < SUJ_MIN) {
2924 		error = ENOSPC;
2925 		goto out;
2926 	}
2927 	bcount = lblkno(fs, ip->i_size);	/* Only use whole blocks. */
2928 	jblocks = jblocks_create();
2929 	for (i = 0; i < bcount; i++) {
2930 		error = ufs_bmaparray(vp, i, &blkno, NULL, NULL, NULL);
2931 		if (error)
2932 			break;
2933 		jblocks_add(jblocks, blkno, fsbtodb(fs, fs->fs_frag));
2934 	}
2935 	if (error) {
2936 		jblocks_destroy(jblocks);
2937 		goto out;
2938 	}
2939 	jblocks->jb_low = jblocks->jb_free / 3;	/* Reserve 33%. */
2940 	jblocks->jb_min = jblocks->jb_free / 10; /* Suspend at 10%. */
2941 	ump->softdep_jblocks = jblocks;
2942 
2943 	MNT_ILOCK(mp);
2944 	mp->mnt_flag |= MNT_SUJ;
2945 	MNT_IUNLOCK(mp);
2946 
2947 	/*
2948 	 * Only validate the journal contents if the
2949 	 * filesystem is clean, otherwise we write the logs
2950 	 * but they'll never be used.  If the filesystem was
2951 	 * still dirty when we mounted it the journal is
2952 	 * invalid and a new journal can only be valid if it
2953 	 * starts from a clean mount.
2954 	 */
2955 	if (fs->fs_clean) {
2956 		DIP_SET(ip, i_modrev, fs->fs_mtime);
2957 		ip->i_flags |= IN_MODIFIED;
2958 		ffs_update(vp, 1);
2959 	}
2960 out:
2961 	vput(vp);
2962 	return (error);
2963 }
2964 
2965 static void
2966 journal_unmount(struct ufsmount *ump)
2967 {
2968 
2969 	if (ump->softdep_jblocks)
2970 		jblocks_destroy(ump->softdep_jblocks);
2971 	ump->softdep_jblocks = NULL;
2972 }
2973 
2974 /*
2975  * Called when a journal record is ready to be written.  Space is allocated
2976  * and the journal entry is created when the journal is flushed to stable
2977  * store.
2978  */
2979 static void
2980 add_to_journal(struct worklist *wk)
2981 {
2982 	struct ufsmount *ump;
2983 
2984 	ump = VFSTOUFS(wk->wk_mp);
2985 	LOCK_OWNED(ump);
2986 	if (wk->wk_state & ONWORKLIST)
2987 		panic("add_to_journal: %s(0x%X) already on list",
2988 		    TYPENAME(wk->wk_type), wk->wk_state);
2989 	wk->wk_state |= ONWORKLIST | DEPCOMPLETE;
2990 	if (LIST_EMPTY(&ump->softdep_journal_pending)) {
2991 		ump->softdep_jblocks->jb_age = ticks;
2992 		LIST_INSERT_HEAD(&ump->softdep_journal_pending, wk, wk_list);
2993 	} else
2994 		LIST_INSERT_AFTER(ump->softdep_journal_tail, wk, wk_list);
2995 	ump->softdep_journal_tail = wk;
2996 	ump->softdep_on_journal += 1;
2997 }
2998 
2999 /*
3000  * Remove an arbitrary item for the journal worklist maintain the tail
3001  * pointer.  This happens when a new operation obviates the need to
3002  * journal an old operation.
3003  */
3004 static void
3005 remove_from_journal(struct worklist *wk)
3006 {
3007 	struct ufsmount *ump;
3008 
3009 	ump = VFSTOUFS(wk->wk_mp);
3010 	LOCK_OWNED(ump);
3011 #ifdef INVARIANTS
3012 	{
3013 		struct worklist *wkn;
3014 
3015 		LIST_FOREACH(wkn, &ump->softdep_journal_pending, wk_list)
3016 			if (wkn == wk)
3017 				break;
3018 		if (wkn == NULL)
3019 			panic("remove_from_journal: %p is not in journal", wk);
3020 	}
3021 #endif
3022 	/*
3023 	 * We emulate a TAILQ to save space in most structures which do not
3024 	 * require TAILQ semantics.  Here we must update the tail position
3025 	 * when removing the tail which is not the final entry. This works
3026 	 * only if the worklist linkage are at the beginning of the structure.
3027 	 */
3028 	if (ump->softdep_journal_tail == wk)
3029 		ump->softdep_journal_tail =
3030 		    (struct worklist *)wk->wk_list.le_prev;
3031 	WORKLIST_REMOVE(wk);
3032 	ump->softdep_on_journal -= 1;
3033 }
3034 
3035 /*
3036  * Check for journal space as well as dependency limits so the prelink
3037  * code can throttle both journaled and non-journaled filesystems.
3038  * Threshold is 0 for low and 1 for min.
3039  */
3040 static int
3041 journal_space(struct ufsmount *ump, int thresh)
3042 {
3043 	struct jblocks *jblocks;
3044 	int limit, avail;
3045 
3046 	jblocks = ump->softdep_jblocks;
3047 	if (jblocks == NULL)
3048 		return (1);
3049 	/*
3050 	 * We use a tighter restriction here to prevent request_cleanup()
3051 	 * running in threads from running into locks we currently hold.
3052 	 * We have to be over the limit and our filesystem has to be
3053 	 * responsible for more than our share of that usage.
3054 	 */
3055 	limit = (max_softdeps / 10) * 9;
3056 	if (dep_current[D_INODEDEP] > limit &&
3057 	    ump->softdep_curdeps[D_INODEDEP] > limit / stat_flush_threads)
3058 		return (0);
3059 	if (thresh)
3060 		thresh = jblocks->jb_min;
3061 	else
3062 		thresh = jblocks->jb_low;
3063 	avail = (ump->softdep_on_journal * JREC_SIZE) / DEV_BSIZE;
3064 	avail = jblocks->jb_free - avail;
3065 
3066 	return (avail > thresh);
3067 }
3068 
3069 static void
3070 journal_suspend(struct ufsmount *ump)
3071 {
3072 	struct jblocks *jblocks;
3073 	struct mount *mp;
3074 	bool set;
3075 
3076 	mp = UFSTOVFS(ump);
3077 	if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0)
3078 		return;
3079 
3080 	jblocks = ump->softdep_jblocks;
3081 	vfs_op_enter(mp);
3082 	set = false;
3083 	MNT_ILOCK(mp);
3084 	if ((mp->mnt_kern_flag & MNTK_SUSPEND) == 0) {
3085 		stat_journal_min++;
3086 		mp->mnt_kern_flag |= MNTK_SUSPEND;
3087 		mp->mnt_susp_owner = ump->softdep_flushtd;
3088 		set = true;
3089 	}
3090 	jblocks->jb_suspended = 1;
3091 	MNT_IUNLOCK(mp);
3092 	if (!set)
3093 		vfs_op_exit(mp);
3094 }
3095 
3096 static int
3097 journal_unsuspend(struct ufsmount *ump)
3098 {
3099 	struct jblocks *jblocks;
3100 	struct mount *mp;
3101 
3102 	mp = UFSTOVFS(ump);
3103 	jblocks = ump->softdep_jblocks;
3104 
3105 	if (jblocks != NULL && jblocks->jb_suspended &&
3106 	    journal_space(ump, jblocks->jb_min)) {
3107 		jblocks->jb_suspended = 0;
3108 		FREE_LOCK(ump);
3109 		mp->mnt_susp_owner = curthread;
3110 		vfs_write_resume(mp, 0);
3111 		ACQUIRE_LOCK(ump);
3112 		return (1);
3113 	}
3114 	return (0);
3115 }
3116 
3117 static void
3118 journal_check_space(struct ufsmount *ump)
3119 {
3120 	struct mount *mp;
3121 
3122 	LOCK_OWNED(ump);
3123 
3124 	if (journal_space(ump, 0) == 0) {
3125 		softdep_speedup(ump);
3126 		mp = UFSTOVFS(ump);
3127 		FREE_LOCK(ump);
3128 		VFS_SYNC(mp, MNT_NOWAIT);
3129 		ffs_sbupdate(ump, MNT_WAIT, 0);
3130 		ACQUIRE_LOCK(ump);
3131 		if (journal_space(ump, 1) == 0)
3132 			journal_suspend(ump);
3133 	}
3134 }
3135 
3136 /*
3137  * Called before any allocation function to be certain that there is
3138  * sufficient space in the journal prior to creating any new records.
3139  * Since in the case of block allocation we may have multiple locked
3140  * buffers at the time of the actual allocation we can not block
3141  * when the journal records are created.  Doing so would create a deadlock
3142  * if any of these buffers needed to be flushed to reclaim space.  Instead
3143  * we require a sufficiently large amount of available space such that
3144  * each thread in the system could have passed this allocation check and
3145  * still have sufficient free space.  With 20% of a minimum journal size
3146  * of 1MB we have 6553 records available.
3147  */
3148 int
3149 softdep_prealloc(struct vnode *vp, int waitok)
3150 {
3151 	struct ufsmount *ump;
3152 
3153 	KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0,
3154 	    ("softdep_prealloc called on non-softdep filesystem"));
3155 	/*
3156 	 * Nothing to do if we are not running journaled soft updates.
3157 	 * If we currently hold the snapshot lock, we must avoid
3158 	 * handling other resources that could cause deadlock.  Do not
3159 	 * touch quotas vnode since it is typically recursed with
3160 	 * other vnode locks held.
3161 	 */
3162 	if (DOINGSUJ(vp) == 0 || IS_SNAPSHOT(VTOI(vp)) ||
3163 	    (vp->v_vflag & VV_SYSTEM) != 0)
3164 		return (0);
3165 	ump = VFSTOUFS(vp->v_mount);
3166 	ACQUIRE_LOCK(ump);
3167 	if (journal_space(ump, 0)) {
3168 		FREE_LOCK(ump);
3169 		return (0);
3170 	}
3171 	stat_journal_low++;
3172 	FREE_LOCK(ump);
3173 	if (waitok == MNT_NOWAIT)
3174 		return (ENOSPC);
3175 	/*
3176 	 * Attempt to sync this vnode once to flush any journal
3177 	 * work attached to it.
3178 	 */
3179 	if ((curthread->td_pflags & TDP_COWINPROGRESS) == 0)
3180 		ffs_syncvnode(vp, waitok, 0);
3181 	ACQUIRE_LOCK(ump);
3182 	process_removes(vp);
3183 	process_truncates(vp);
3184 	journal_check_space(ump);
3185 	FREE_LOCK(ump);
3186 
3187 	return (0);
3188 }
3189 
3190 /*
3191  * Try hard to sync all data and metadata for the vnode, and workitems
3192  * flushing which might conflict with the vnode lock.  This is a
3193  * helper for softdep_prerename().
3194  */
3195 static int
3196 softdep_prerename_vnode(struct ufsmount *ump, struct vnode *vp)
3197 {
3198 	int error;
3199 
3200 	ASSERT_VOP_ELOCKED(vp, "prehandle");
3201 	if (vp->v_data == NULL)
3202 		return (0);
3203 	error = VOP_FSYNC(vp, MNT_WAIT, curthread);
3204 	if (error != 0)
3205 		return (error);
3206 	ACQUIRE_LOCK(ump);
3207 	process_removes(vp);
3208 	process_truncates(vp);
3209 	FREE_LOCK(ump);
3210 	return (0);
3211 }
3212 
3213 /*
3214  * Must be called from VOP_RENAME() after all vnodes are locked.
3215  * Ensures that there is enough journal space for rename.  It is
3216  * sufficiently different from softdep_prelink() by having to handle
3217  * four vnodes.
3218  */
3219 int
3220 softdep_prerename(struct vnode *fdvp,
3221 	struct vnode *fvp,
3222 	struct vnode *tdvp,
3223 	struct vnode *tvp)
3224 {
3225 	struct ufsmount *ump;
3226 	int error;
3227 
3228 	ump = VFSTOUFS(fdvp->v_mount);
3229 
3230 	if (journal_space(ump, 0))
3231 		return (0);
3232 
3233 	VOP_UNLOCK(tdvp);
3234 	VOP_UNLOCK(fvp);
3235 	if (tvp != NULL && tvp != tdvp)
3236 		VOP_UNLOCK(tvp);
3237 
3238 	error = softdep_prerename_vnode(ump, fdvp);
3239 	VOP_UNLOCK(fdvp);
3240 	if (error != 0)
3241 		return (error);
3242 
3243 	VOP_LOCK(fvp, LK_EXCLUSIVE | LK_RETRY);
3244 	error = softdep_prerename_vnode(ump, fvp);
3245 	VOP_UNLOCK(fvp);
3246 	if (error != 0)
3247 		return (error);
3248 
3249 	if (tdvp != fdvp) {
3250 		VOP_LOCK(tdvp, LK_EXCLUSIVE | LK_RETRY);
3251 		error = softdep_prerename_vnode(ump, tdvp);
3252 		VOP_UNLOCK(tdvp);
3253 		if (error != 0)
3254 			return (error);
3255 	}
3256 
3257 	if (tvp != fvp && tvp != NULL) {
3258 		VOP_LOCK(tvp, LK_EXCLUSIVE | LK_RETRY);
3259 		error = softdep_prerename_vnode(ump, tvp);
3260 		VOP_UNLOCK(tvp);
3261 		if (error != 0)
3262 			return (error);
3263 	}
3264 
3265 	ACQUIRE_LOCK(ump);
3266 	softdep_speedup(ump);
3267 	process_worklist_item(UFSTOVFS(ump), 2, LK_NOWAIT);
3268 	journal_check_space(ump);
3269 	FREE_LOCK(ump);
3270 	return (ERELOOKUP);
3271 }
3272 
3273 /*
3274  * Before adjusting a link count on a vnode verify that we have sufficient
3275  * journal space.  If not, process operations that depend on the currently
3276  * locked pair of vnodes to try to flush space as the syncer, buf daemon,
3277  * and softdep flush threads can not acquire these locks to reclaim space.
3278  *
3279  * Returns 0 if all owned locks are still valid and were not dropped
3280  * in the process, in other case it returns either an error from sync,
3281  * or ERELOOKUP if any of the locks were re-acquired.  In the later
3282  * case, the state of the vnodes cannot be relied upon and our VFS
3283  * syscall must be restarted at top level from the lookup.
3284  */
3285 int
3286 softdep_prelink(struct vnode *dvp,
3287 	struct vnode *vp,
3288 	struct componentname *cnp)
3289 {
3290 	struct ufsmount *ump;
3291 	struct nameidata *ndp;
3292 
3293 	ASSERT_VOP_ELOCKED(dvp, "prelink dvp");
3294 	if (vp != NULL)
3295 		ASSERT_VOP_ELOCKED(vp, "prelink vp");
3296 	ump = VFSTOUFS(dvp->v_mount);
3297 
3298 	/*
3299 	 * Nothing to do if we have sufficient journal space.  We skip
3300 	 * flushing when vp is a snapshot to avoid deadlock where
3301 	 * another thread is trying to update the inodeblock for dvp
3302 	 * and is waiting on snaplk that vp holds.
3303 	 */
3304 	if (journal_space(ump, 0) || (vp != NULL && IS_SNAPSHOT(VTOI(vp))))
3305 		return (0);
3306 
3307 	/*
3308 	 * Check if the journal space consumption can in theory be
3309 	 * accounted on dvp and vp.  If the vnodes metadata was not
3310 	 * changed comparing with the previous round-trip into
3311 	 * softdep_prelink(), as indicated by the seqc generation
3312 	 * recorded in the nameidata, then there is no point in
3313 	 * starting the sync.
3314 	 */
3315 	ndp = __containerof(cnp, struct nameidata, ni_cnd);
3316 	if (!seqc_in_modify(ndp->ni_dvp_seqc) &&
3317 	    vn_seqc_consistent(dvp, ndp->ni_dvp_seqc) &&
3318 	    (vp == NULL || (!seqc_in_modify(ndp->ni_vp_seqc) &&
3319 	    vn_seqc_consistent(vp, ndp->ni_vp_seqc))))
3320 		return (0);
3321 
3322 	stat_journal_low++;
3323 	if (vp != NULL) {
3324 		VOP_UNLOCK(dvp);
3325 		ffs_syncvnode(vp, MNT_NOWAIT, 0);
3326 		vn_lock_pair(dvp, false, LK_EXCLUSIVE, vp, true, LK_EXCLUSIVE);
3327 		if (dvp->v_data == NULL)
3328 			goto out;
3329 	}
3330 	if (vp != NULL)
3331 		VOP_UNLOCK(vp);
3332 	ffs_syncvnode(dvp, MNT_WAIT, 0);
3333 	/* Process vp before dvp as it may create .. removes. */
3334 	if (vp != NULL) {
3335 		VOP_UNLOCK(dvp);
3336 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
3337 		if (vp->v_data == NULL) {
3338 			vn_lock_pair(dvp, false, LK_EXCLUSIVE, vp, true,
3339 			    LK_EXCLUSIVE);
3340 			goto out;
3341 		}
3342 		ACQUIRE_LOCK(ump);
3343 		process_removes(vp);
3344 		process_truncates(vp);
3345 		FREE_LOCK(ump);
3346 		VOP_UNLOCK(vp);
3347 		vn_lock(dvp, LK_EXCLUSIVE | LK_RETRY);
3348 		if (dvp->v_data == NULL) {
3349 			vn_lock_pair(dvp, true, LK_EXCLUSIVE, vp, false,
3350 			    LK_EXCLUSIVE);
3351 			goto out;
3352 		}
3353 	}
3354 
3355 	ACQUIRE_LOCK(ump);
3356 	process_removes(dvp);
3357 	process_truncates(dvp);
3358 	VOP_UNLOCK(dvp);
3359 	softdep_speedup(ump);
3360 
3361 	process_worklist_item(UFSTOVFS(ump), 2, LK_NOWAIT);
3362 	journal_check_space(ump);
3363 	FREE_LOCK(ump);
3364 
3365 	vn_lock_pair(dvp, false, LK_EXCLUSIVE, vp, false, LK_EXCLUSIVE);
3366 out:
3367 	ndp->ni_dvp_seqc = vn_seqc_read_any(dvp);
3368 	if (vp != NULL)
3369 		ndp->ni_vp_seqc = vn_seqc_read_any(vp);
3370 	return (ERELOOKUP);
3371 }
3372 
3373 static void
3374 jseg_write(struct ufsmount *ump,
3375 	struct jseg *jseg,
3376 	uint8_t *data)
3377 {
3378 	struct jsegrec *rec;
3379 
3380 	rec = (struct jsegrec *)data;
3381 	rec->jsr_seq = jseg->js_seq;
3382 	rec->jsr_oldest = jseg->js_oldseq;
3383 	rec->jsr_cnt = jseg->js_cnt;
3384 	rec->jsr_blocks = jseg->js_size / ump->um_devvp->v_bufobj.bo_bsize;
3385 	rec->jsr_crc = 0;
3386 	rec->jsr_time = ump->um_fs->fs_mtime;
3387 }
3388 
3389 static inline void
3390 inoref_write(struct inoref *inoref,
3391 	struct jseg *jseg,
3392 	struct jrefrec *rec)
3393 {
3394 
3395 	inoref->if_jsegdep->jd_seg = jseg;
3396 	rec->jr_ino = inoref->if_ino;
3397 	rec->jr_parent = inoref->if_parent;
3398 	rec->jr_nlink = inoref->if_nlink;
3399 	rec->jr_mode = inoref->if_mode;
3400 	rec->jr_diroff = inoref->if_diroff;
3401 }
3402 
3403 static void
3404 jaddref_write(struct jaddref *jaddref,
3405 	struct jseg *jseg,
3406 	uint8_t *data)
3407 {
3408 	struct jrefrec *rec;
3409 
3410 	rec = (struct jrefrec *)data;
3411 	rec->jr_op = JOP_ADDREF;
3412 	inoref_write(&jaddref->ja_ref, jseg, rec);
3413 }
3414 
3415 static void
3416 jremref_write(struct jremref *jremref,
3417 	struct jseg *jseg,
3418 	uint8_t *data)
3419 {
3420 	struct jrefrec *rec;
3421 
3422 	rec = (struct jrefrec *)data;
3423 	rec->jr_op = JOP_REMREF;
3424 	inoref_write(&jremref->jr_ref, jseg, rec);
3425 }
3426 
3427 static void
3428 jmvref_write(struct jmvref *jmvref,
3429 	struct jseg *jseg,
3430 	uint8_t *data)
3431 {
3432 	struct jmvrec *rec;
3433 
3434 	rec = (struct jmvrec *)data;
3435 	rec->jm_op = JOP_MVREF;
3436 	rec->jm_ino = jmvref->jm_ino;
3437 	rec->jm_parent = jmvref->jm_parent;
3438 	rec->jm_oldoff = jmvref->jm_oldoff;
3439 	rec->jm_newoff = jmvref->jm_newoff;
3440 }
3441 
3442 static void
3443 jnewblk_write(struct jnewblk *jnewblk,
3444 	struct jseg *jseg,
3445 	uint8_t *data)
3446 {
3447 	struct jblkrec *rec;
3448 
3449 	jnewblk->jn_jsegdep->jd_seg = jseg;
3450 	rec = (struct jblkrec *)data;
3451 	rec->jb_op = JOP_NEWBLK;
3452 	rec->jb_ino = jnewblk->jn_ino;
3453 	rec->jb_blkno = jnewblk->jn_blkno;
3454 	rec->jb_lbn = jnewblk->jn_lbn;
3455 	rec->jb_frags = jnewblk->jn_frags;
3456 	rec->jb_oldfrags = jnewblk->jn_oldfrags;
3457 }
3458 
3459 static void
3460 jfreeblk_write(struct jfreeblk *jfreeblk,
3461 	struct jseg *jseg,
3462 	uint8_t *data)
3463 {
3464 	struct jblkrec *rec;
3465 
3466 	jfreeblk->jf_dep.jb_jsegdep->jd_seg = jseg;
3467 	rec = (struct jblkrec *)data;
3468 	rec->jb_op = JOP_FREEBLK;
3469 	rec->jb_ino = jfreeblk->jf_ino;
3470 	rec->jb_blkno = jfreeblk->jf_blkno;
3471 	rec->jb_lbn = jfreeblk->jf_lbn;
3472 	rec->jb_frags = jfreeblk->jf_frags;
3473 	rec->jb_oldfrags = 0;
3474 }
3475 
3476 static void
3477 jfreefrag_write(struct jfreefrag *jfreefrag,
3478 	struct jseg *jseg,
3479 	uint8_t *data)
3480 {
3481 	struct jblkrec *rec;
3482 
3483 	jfreefrag->fr_jsegdep->jd_seg = jseg;
3484 	rec = (struct jblkrec *)data;
3485 	rec->jb_op = JOP_FREEBLK;
3486 	rec->jb_ino = jfreefrag->fr_ino;
3487 	rec->jb_blkno = jfreefrag->fr_blkno;
3488 	rec->jb_lbn = jfreefrag->fr_lbn;
3489 	rec->jb_frags = jfreefrag->fr_frags;
3490 	rec->jb_oldfrags = 0;
3491 }
3492 
3493 static void
3494 jtrunc_write(struct jtrunc *jtrunc,
3495 	struct jseg *jseg,
3496 	uint8_t *data)
3497 {
3498 	struct jtrncrec *rec;
3499 
3500 	jtrunc->jt_dep.jb_jsegdep->jd_seg = jseg;
3501 	rec = (struct jtrncrec *)data;
3502 	rec->jt_op = JOP_TRUNC;
3503 	rec->jt_ino = jtrunc->jt_ino;
3504 	rec->jt_size = jtrunc->jt_size;
3505 	rec->jt_extsize = jtrunc->jt_extsize;
3506 }
3507 
3508 static void
3509 jfsync_write(struct jfsync *jfsync,
3510 	struct jseg *jseg,
3511 	uint8_t *data)
3512 {
3513 	struct jtrncrec *rec;
3514 
3515 	rec = (struct jtrncrec *)data;
3516 	rec->jt_op = JOP_SYNC;
3517 	rec->jt_ino = jfsync->jfs_ino;
3518 	rec->jt_size = jfsync->jfs_size;
3519 	rec->jt_extsize = jfsync->jfs_extsize;
3520 }
3521 
3522 static void
3523 softdep_flushjournal(struct mount *mp)
3524 {
3525 	struct jblocks *jblocks;
3526 	struct ufsmount *ump;
3527 
3528 	if (MOUNTEDSUJ(mp) == 0)
3529 		return;
3530 	ump = VFSTOUFS(mp);
3531 	jblocks = ump->softdep_jblocks;
3532 	ACQUIRE_LOCK(ump);
3533 	while (ump->softdep_on_journal) {
3534 		jblocks->jb_needseg = 1;
3535 		softdep_process_journal(mp, NULL, MNT_WAIT);
3536 	}
3537 	FREE_LOCK(ump);
3538 }
3539 
3540 static void softdep_synchronize_completed(struct bio *);
3541 static void softdep_synchronize(struct bio *, struct ufsmount *, void *);
3542 
3543 static void
3544 softdep_synchronize_completed(struct bio *bp)
3545 {
3546 	struct jseg *oldest;
3547 	struct jseg *jseg;
3548 	struct ufsmount *ump;
3549 
3550 	/*
3551 	 * caller1 marks the last segment written before we issued the
3552 	 * synchronize cache.
3553 	 */
3554 	jseg = bp->bio_caller1;
3555 	if (jseg == NULL) {
3556 		g_destroy_bio(bp);
3557 		return;
3558 	}
3559 	ump = VFSTOUFS(jseg->js_list.wk_mp);
3560 	ACQUIRE_LOCK(ump);
3561 	oldest = NULL;
3562 	/*
3563 	 * Mark all the journal entries waiting on the synchronize cache
3564 	 * as completed so they may continue on.
3565 	 */
3566 	while (jseg != NULL && (jseg->js_state & COMPLETE) == 0) {
3567 		jseg->js_state |= COMPLETE;
3568 		oldest = jseg;
3569 		jseg = TAILQ_PREV(jseg, jseglst, js_next);
3570 	}
3571 	/*
3572 	 * Restart deferred journal entry processing from the oldest
3573 	 * completed jseg.
3574 	 */
3575 	if (oldest)
3576 		complete_jsegs(oldest);
3577 
3578 	FREE_LOCK(ump);
3579 	g_destroy_bio(bp);
3580 }
3581 
3582 /*
3583  * Send BIO_FLUSH/SYNCHRONIZE CACHE to the device to enforce write ordering
3584  * barriers.  The journal must be written prior to any blocks that depend
3585  * on it and the journal can not be released until the blocks have be
3586  * written.  This code handles both barriers simultaneously.
3587  */
3588 static void
3589 softdep_synchronize(struct bio *bp,
3590 	struct ufsmount *ump,
3591 	void *caller1)
3592 {
3593 
3594 	bp->bio_cmd = BIO_FLUSH;
3595 	bp->bio_flags |= BIO_ORDERED;
3596 	bp->bio_data = NULL;
3597 	bp->bio_offset = ump->um_cp->provider->mediasize;
3598 	bp->bio_length = 0;
3599 	bp->bio_done = softdep_synchronize_completed;
3600 	bp->bio_caller1 = caller1;
3601 	g_io_request(bp, ump->um_cp);
3602 }
3603 
3604 /*
3605  * Flush some journal records to disk.
3606  */
3607 static void
3608 softdep_process_journal(struct mount *mp,
3609 	struct worklist *needwk,
3610 	int flags)
3611 {
3612 	struct jblocks *jblocks;
3613 	struct ufsmount *ump;
3614 	struct worklist *wk;
3615 	struct jseg *jseg;
3616 	struct buf *bp;
3617 	struct bio *bio;
3618 	uint8_t *data;
3619 	struct fs *fs;
3620 	int shouldflush;
3621 	int segwritten;
3622 	int jrecmin;	/* Minimum records per block. */
3623 	int jrecmax;	/* Maximum records per block. */
3624 	int size;
3625 	int cnt;
3626 	int off;
3627 	int devbsize;
3628 
3629 	ump = VFSTOUFS(mp);
3630 	if (ump->um_softdep == NULL || ump->um_softdep->sd_jblocks == NULL)
3631 		return;
3632 	shouldflush = softdep_flushcache;
3633 	bio = NULL;
3634 	jseg = NULL;
3635 	LOCK_OWNED(ump);
3636 	fs = ump->um_fs;
3637 	jblocks = ump->softdep_jblocks;
3638 	devbsize = ump->um_devvp->v_bufobj.bo_bsize;
3639 	/*
3640 	 * We write anywhere between a disk block and fs block.  The upper
3641 	 * bound is picked to prevent buffer cache fragmentation and limit
3642 	 * processing time per I/O.
3643 	 */
3644 	jrecmin = (devbsize / JREC_SIZE) - 1; /* -1 for seg header */
3645 	jrecmax = (fs->fs_bsize / devbsize) * jrecmin;
3646 	segwritten = 0;
3647 	for (;;) {
3648 		cnt = ump->softdep_on_journal;
3649 		/*
3650 		 * Criteria for writing a segment:
3651 		 * 1) We have a full block.
3652 		 * 2) We're called from jwait() and haven't found the
3653 		 *    journal item yet.
3654 		 * 3) Always write if needseg is set.
3655 		 * 4) If we are called from process_worklist and have
3656 		 *    not yet written anything we write a partial block
3657 		 *    to enforce a 1 second maximum latency on journal
3658 		 *    entries.
3659 		 */
3660 		if (cnt < (jrecmax - 1) && needwk == NULL &&
3661 		    jblocks->jb_needseg == 0 && (segwritten || cnt == 0))
3662 			break;
3663 		cnt++;
3664 		/*
3665 		 * Verify some free journal space.  softdep_prealloc() should
3666 		 * guarantee that we don't run out so this is indicative of
3667 		 * a problem with the flow control.  Try to recover
3668 		 * gracefully in any event.
3669 		 */
3670 		while (jblocks->jb_free == 0) {
3671 			if (flags != MNT_WAIT)
3672 				break;
3673 			printf("softdep: Out of journal space!\n");
3674 			softdep_speedup(ump);
3675 			msleep(jblocks, LOCK_PTR(ump), PRIBIO, "jblocks", hz);
3676 		}
3677 		FREE_LOCK(ump);
3678 		jseg = malloc(sizeof(*jseg), M_JSEG, M_SOFTDEP_FLAGS);
3679 		workitem_alloc(&jseg->js_list, D_JSEG, mp);
3680 		LIST_INIT(&jseg->js_entries);
3681 		LIST_INIT(&jseg->js_indirs);
3682 		jseg->js_state = ATTACHED;
3683 		if (shouldflush == 0)
3684 			jseg->js_state |= COMPLETE;
3685 		else if (bio == NULL)
3686 			bio = g_alloc_bio();
3687 		jseg->js_jblocks = jblocks;
3688 		bp = geteblk(fs->fs_bsize, 0);
3689 		ACQUIRE_LOCK(ump);
3690 		/*
3691 		 * If there was a race while we were allocating the block
3692 		 * and jseg the entry we care about was likely written.
3693 		 * We bail out in both the WAIT and NOWAIT case and assume
3694 		 * the caller will loop if the entry it cares about is
3695 		 * not written.
3696 		 */
3697 		cnt = ump->softdep_on_journal;
3698 		if (cnt + jblocks->jb_needseg == 0 || jblocks->jb_free == 0) {
3699 			bp->b_flags |= B_INVAL | B_NOCACHE;
3700 			WORKITEM_FREE(jseg, D_JSEG);
3701 			FREE_LOCK(ump);
3702 			brelse(bp);
3703 			ACQUIRE_LOCK(ump);
3704 			break;
3705 		}
3706 		/*
3707 		 * Calculate the disk block size required for the available
3708 		 * records rounded to the min size.
3709 		 */
3710 		if (cnt == 0)
3711 			size = devbsize;
3712 		else if (cnt < jrecmax)
3713 			size = howmany(cnt, jrecmin) * devbsize;
3714 		else
3715 			size = fs->fs_bsize;
3716 		/*
3717 		 * Allocate a disk block for this journal data and account
3718 		 * for truncation of the requested size if enough contiguous
3719 		 * space was not available.
3720 		 */
3721 		bp->b_blkno = jblocks_alloc(jblocks, size, &size);
3722 		bp->b_lblkno = bp->b_blkno;
3723 		bp->b_offset = bp->b_blkno * DEV_BSIZE;
3724 		bp->b_bcount = size;
3725 		bp->b_flags &= ~B_INVAL;
3726 		bp->b_flags |= B_VALIDSUSPWRT | B_NOCOPY;
3727 		/*
3728 		 * Initialize our jseg with cnt records.  Assign the next
3729 		 * sequence number to it and link it in-order.
3730 		 */
3731 		cnt = MIN(cnt, (size / devbsize) * jrecmin);
3732 		jseg->js_buf = bp;
3733 		jseg->js_cnt = cnt;
3734 		jseg->js_refs = cnt + 1;	/* Self ref. */
3735 		jseg->js_size = size;
3736 		jseg->js_seq = jblocks->jb_nextseq++;
3737 		if (jblocks->jb_oldestseg == NULL)
3738 			jblocks->jb_oldestseg = jseg;
3739 		jseg->js_oldseq = jblocks->jb_oldestseg->js_seq;
3740 		TAILQ_INSERT_TAIL(&jblocks->jb_segs, jseg, js_next);
3741 		if (jblocks->jb_writeseg == NULL)
3742 			jblocks->jb_writeseg = jseg;
3743 		/*
3744 		 * Start filling in records from the pending list.
3745 		 */
3746 		data = bp->b_data;
3747 		off = 0;
3748 
3749 		/*
3750 		 * Always put a header on the first block.
3751 		 * XXX As with below, there might not be a chance to get
3752 		 * into the loop.  Ensure that something valid is written.
3753 		 */
3754 		jseg_write(ump, jseg, data);
3755 		off += JREC_SIZE;
3756 		data = bp->b_data + off;
3757 
3758 		/*
3759 		 * XXX Something is wrong here.  There's no work to do,
3760 		 * but we need to perform and I/O and allow it to complete
3761 		 * anyways.
3762 		 */
3763 		if (LIST_EMPTY(&ump->softdep_journal_pending))
3764 			stat_emptyjblocks++;
3765 
3766 		while ((wk = LIST_FIRST(&ump->softdep_journal_pending))
3767 		    != NULL) {
3768 			if (cnt == 0)
3769 				break;
3770 			/* Place a segment header on every device block. */
3771 			if ((off % devbsize) == 0) {
3772 				jseg_write(ump, jseg, data);
3773 				off += JREC_SIZE;
3774 				data = bp->b_data + off;
3775 			}
3776 			if (wk == needwk)
3777 				needwk = NULL;
3778 			remove_from_journal(wk);
3779 			wk->wk_state |= INPROGRESS;
3780 			WORKLIST_INSERT(&jseg->js_entries, wk);
3781 			switch (wk->wk_type) {
3782 			case D_JADDREF:
3783 				jaddref_write(WK_JADDREF(wk), jseg, data);
3784 				break;
3785 			case D_JREMREF:
3786 				jremref_write(WK_JREMREF(wk), jseg, data);
3787 				break;
3788 			case D_JMVREF:
3789 				jmvref_write(WK_JMVREF(wk), jseg, data);
3790 				break;
3791 			case D_JNEWBLK:
3792 				jnewblk_write(WK_JNEWBLK(wk), jseg, data);
3793 				break;
3794 			case D_JFREEBLK:
3795 				jfreeblk_write(WK_JFREEBLK(wk), jseg, data);
3796 				break;
3797 			case D_JFREEFRAG:
3798 				jfreefrag_write(WK_JFREEFRAG(wk), jseg, data);
3799 				break;
3800 			case D_JTRUNC:
3801 				jtrunc_write(WK_JTRUNC(wk), jseg, data);
3802 				break;
3803 			case D_JFSYNC:
3804 				jfsync_write(WK_JFSYNC(wk), jseg, data);
3805 				break;
3806 			default:
3807 				panic("process_journal: Unknown type %s",
3808 				    TYPENAME(wk->wk_type));
3809 				/* NOTREACHED */
3810 			}
3811 			off += JREC_SIZE;
3812 			data = bp->b_data + off;
3813 			cnt--;
3814 		}
3815 
3816 		/* Clear any remaining space so we don't leak kernel data */
3817 		if (size > off)
3818 			bzero(data, size - off);
3819 
3820 		/*
3821 		 * Write this one buffer and continue.
3822 		 */
3823 		segwritten = 1;
3824 		jblocks->jb_needseg = 0;
3825 		WORKLIST_INSERT(&bp->b_dep, &jseg->js_list);
3826 		FREE_LOCK(ump);
3827 		bp->b_xflags |= BX_CVTENXIO;
3828 		pbgetvp(ump->um_devvp, bp);
3829 		/*
3830 		 * We only do the blocking wait once we find the journal
3831 		 * entry we're looking for.
3832 		 */
3833 		if (needwk == NULL && flags == MNT_WAIT)
3834 			bwrite(bp);
3835 		else
3836 			bawrite(bp);
3837 		ACQUIRE_LOCK(ump);
3838 	}
3839 	/*
3840 	 * If we wrote a segment issue a synchronize cache so the journal
3841 	 * is reflected on disk before the data is written.  Since reclaiming
3842 	 * journal space also requires writing a journal record this
3843 	 * process also enforces a barrier before reclamation.
3844 	 */
3845 	if (segwritten && shouldflush) {
3846 		softdep_synchronize(bio, ump,
3847 		    TAILQ_LAST(&jblocks->jb_segs, jseglst));
3848 	} else if (bio)
3849 		g_destroy_bio(bio);
3850 	/*
3851 	 * If we've suspended the filesystem because we ran out of journal
3852 	 * space either try to sync it here to make some progress or
3853 	 * unsuspend it if we already have.
3854 	 */
3855 	if (flags == 0 && jblocks->jb_suspended) {
3856 		if (journal_unsuspend(ump))
3857 			return;
3858 		FREE_LOCK(ump);
3859 		VFS_SYNC(mp, MNT_NOWAIT);
3860 		ffs_sbupdate(ump, MNT_WAIT, 0);
3861 		ACQUIRE_LOCK(ump);
3862 	}
3863 }
3864 
3865 /*
3866  * Complete a jseg, allowing all dependencies awaiting journal writes
3867  * to proceed.  Each journal dependency also attaches a jsegdep to dependent
3868  * structures so that the journal segment can be freed to reclaim space.
3869  */
3870 static void
3871 complete_jseg(struct jseg *jseg)
3872 {
3873 	struct worklist *wk;
3874 	struct jmvref *jmvref;
3875 #ifdef INVARIANTS
3876 	int i = 0;
3877 #endif
3878 
3879 	while ((wk = LIST_FIRST(&jseg->js_entries)) != NULL) {
3880 		WORKLIST_REMOVE(wk);
3881 		wk->wk_state &= ~INPROGRESS;
3882 		wk->wk_state |= COMPLETE;
3883 		KASSERT(i++ < jseg->js_cnt,
3884 		    ("handle_written_jseg: overflow %d >= %d",
3885 		    i - 1, jseg->js_cnt));
3886 		switch (wk->wk_type) {
3887 		case D_JADDREF:
3888 			handle_written_jaddref(WK_JADDREF(wk));
3889 			break;
3890 		case D_JREMREF:
3891 			handle_written_jremref(WK_JREMREF(wk));
3892 			break;
3893 		case D_JMVREF:
3894 			rele_jseg(jseg);	/* No jsegdep. */
3895 			jmvref = WK_JMVREF(wk);
3896 			LIST_REMOVE(jmvref, jm_deps);
3897 			if ((jmvref->jm_pagedep->pd_state & ONWORKLIST) == 0)
3898 				free_pagedep(jmvref->jm_pagedep);
3899 			WORKITEM_FREE(jmvref, D_JMVREF);
3900 			break;
3901 		case D_JNEWBLK:
3902 			handle_written_jnewblk(WK_JNEWBLK(wk));
3903 			break;
3904 		case D_JFREEBLK:
3905 			handle_written_jblkdep(&WK_JFREEBLK(wk)->jf_dep);
3906 			break;
3907 		case D_JTRUNC:
3908 			handle_written_jblkdep(&WK_JTRUNC(wk)->jt_dep);
3909 			break;
3910 		case D_JFSYNC:
3911 			rele_jseg(jseg);	/* No jsegdep. */
3912 			WORKITEM_FREE(wk, D_JFSYNC);
3913 			break;
3914 		case D_JFREEFRAG:
3915 			handle_written_jfreefrag(WK_JFREEFRAG(wk));
3916 			break;
3917 		default:
3918 			panic("handle_written_jseg: Unknown type %s",
3919 			    TYPENAME(wk->wk_type));
3920 			/* NOTREACHED */
3921 		}
3922 	}
3923 	/* Release the self reference so the structure may be freed. */
3924 	rele_jseg(jseg);
3925 }
3926 
3927 /*
3928  * Determine which jsegs are ready for completion processing.  Waits for
3929  * synchronize cache to complete as well as forcing in-order completion
3930  * of journal entries.
3931  */
3932 static void
3933 complete_jsegs(struct jseg *jseg)
3934 {
3935 	struct jblocks *jblocks;
3936 	struct jseg *jsegn;
3937 
3938 	jblocks = jseg->js_jblocks;
3939 	/*
3940 	 * Don't allow out of order completions.  If this isn't the first
3941 	 * block wait for it to write before we're done.
3942 	 */
3943 	if (jseg != jblocks->jb_writeseg)
3944 		return;
3945 	/* Iterate through available jsegs processing their entries. */
3946 	while (jseg && (jseg->js_state & ALLCOMPLETE) == ALLCOMPLETE) {
3947 		jblocks->jb_oldestwrseq = jseg->js_oldseq;
3948 		jsegn = TAILQ_NEXT(jseg, js_next);
3949 		complete_jseg(jseg);
3950 		jseg = jsegn;
3951 	}
3952 	jblocks->jb_writeseg = jseg;
3953 	/*
3954 	 * Attempt to free jsegs now that oldestwrseq may have advanced.
3955 	 */
3956 	free_jsegs(jblocks);
3957 }
3958 
3959 /*
3960  * Mark a jseg as DEPCOMPLETE and throw away the buffer.  Attempt to handle
3961  * the final completions.
3962  */
3963 static void
3964 handle_written_jseg(struct jseg *jseg, struct buf *bp)
3965 {
3966 
3967 	if (jseg->js_refs == 0)
3968 		panic("handle_written_jseg: No self-reference on %p", jseg);
3969 	jseg->js_state |= DEPCOMPLETE;
3970 	/*
3971 	 * We'll never need this buffer again, set flags so it will be
3972 	 * discarded.
3973 	 */
3974 	bp->b_flags |= B_INVAL | B_NOCACHE;
3975 	pbrelvp(bp);
3976 	complete_jsegs(jseg);
3977 }
3978 
3979 static inline struct jsegdep *
3980 inoref_jseg(struct inoref *inoref)
3981 {
3982 	struct jsegdep *jsegdep;
3983 
3984 	jsegdep = inoref->if_jsegdep;
3985 	inoref->if_jsegdep = NULL;
3986 
3987 	return (jsegdep);
3988 }
3989 
3990 /*
3991  * Called once a jremref has made it to stable store.  The jremref is marked
3992  * complete and we attempt to free it.  Any pagedeps writes sleeping waiting
3993  * for the jremref to complete will be awoken by free_jremref.
3994  */
3995 static void
3996 handle_written_jremref(struct jremref *jremref)
3997 {
3998 	struct inodedep *inodedep;
3999 	struct jsegdep *jsegdep;
4000 	struct dirrem *dirrem;
4001 
4002 	/* Grab the jsegdep. */
4003 	jsegdep = inoref_jseg(&jremref->jr_ref);
4004 	/*
4005 	 * Remove us from the inoref list.
4006 	 */
4007 	if (inodedep_lookup(jremref->jr_list.wk_mp, jremref->jr_ref.if_ino,
4008 	    0, &inodedep) == 0)
4009 		panic("handle_written_jremref: Lost inodedep");
4010 	TAILQ_REMOVE(&inodedep->id_inoreflst, &jremref->jr_ref, if_deps);
4011 	/*
4012 	 * Complete the dirrem.
4013 	 */
4014 	dirrem = jremref->jr_dirrem;
4015 	jremref->jr_dirrem = NULL;
4016 	LIST_REMOVE(jremref, jr_deps);
4017 	jsegdep->jd_state |= jremref->jr_state & MKDIR_PARENT;
4018 	jwork_insert(&dirrem->dm_jwork, jsegdep);
4019 	if (LIST_EMPTY(&dirrem->dm_jremrefhd) &&
4020 	    (dirrem->dm_state & COMPLETE) != 0)
4021 		add_to_worklist(&dirrem->dm_list, 0);
4022 	free_jremref(jremref);
4023 }
4024 
4025 /*
4026  * Called once a jaddref has made it to stable store.  The dependency is
4027  * marked complete and any dependent structures are added to the inode
4028  * bufwait list to be completed as soon as it is written.  If a bitmap write
4029  * depends on this entry we move the inode into the inodedephd of the
4030  * bmsafemap dependency and attempt to remove the jaddref from the bmsafemap.
4031  */
4032 static void
4033 handle_written_jaddref(struct jaddref *jaddref)
4034 {
4035 	struct jsegdep *jsegdep;
4036 	struct inodedep *inodedep;
4037 	struct diradd *diradd;
4038 	struct mkdir *mkdir;
4039 
4040 	/* Grab the jsegdep. */
4041 	jsegdep = inoref_jseg(&jaddref->ja_ref);
4042 	mkdir = NULL;
4043 	diradd = NULL;
4044 	if (inodedep_lookup(jaddref->ja_list.wk_mp, jaddref->ja_ino,
4045 	    0, &inodedep) == 0)
4046 		panic("handle_written_jaddref: Lost inodedep.");
4047 	if (jaddref->ja_diradd == NULL)
4048 		panic("handle_written_jaddref: No dependency");
4049 	if (jaddref->ja_diradd->da_list.wk_type == D_DIRADD) {
4050 		diradd = jaddref->ja_diradd;
4051 		WORKLIST_INSERT(&inodedep->id_bufwait, &diradd->da_list);
4052 	} else if (jaddref->ja_state & MKDIR_PARENT) {
4053 		mkdir = jaddref->ja_mkdir;
4054 		WORKLIST_INSERT(&inodedep->id_bufwait, &mkdir->md_list);
4055 	} else if (jaddref->ja_state & MKDIR_BODY)
4056 		mkdir = jaddref->ja_mkdir;
4057 	else
4058 		panic("handle_written_jaddref: Unknown dependency %p",
4059 		    jaddref->ja_diradd);
4060 	jaddref->ja_diradd = NULL;	/* also clears ja_mkdir */
4061 	/*
4062 	 * Remove us from the inode list.
4063 	 */
4064 	TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref, if_deps);
4065 	/*
4066 	 * The mkdir may be waiting on the jaddref to clear before freeing.
4067 	 */
4068 	if (mkdir) {
4069 		KASSERT(mkdir->md_list.wk_type == D_MKDIR,
4070 		    ("handle_written_jaddref: Incorrect type for mkdir %s",
4071 		    TYPENAME(mkdir->md_list.wk_type)));
4072 		mkdir->md_jaddref = NULL;
4073 		diradd = mkdir->md_diradd;
4074 		mkdir->md_state |= DEPCOMPLETE;
4075 		complete_mkdir(mkdir);
4076 	}
4077 	jwork_insert(&diradd->da_jwork, jsegdep);
4078 	if (jaddref->ja_state & NEWBLOCK) {
4079 		inodedep->id_state |= ONDEPLIST;
4080 		LIST_INSERT_HEAD(&inodedep->id_bmsafemap->sm_inodedephd,
4081 		    inodedep, id_deps);
4082 	}
4083 	free_jaddref(jaddref);
4084 }
4085 
4086 /*
4087  * Called once a jnewblk journal is written.  The allocdirect or allocindir
4088  * is placed in the bmsafemap to await notification of a written bitmap.  If
4089  * the operation was canceled we add the segdep to the appropriate
4090  * dependency to free the journal space once the canceling operation
4091  * completes.
4092  */
4093 static void
4094 handle_written_jnewblk(struct jnewblk *jnewblk)
4095 {
4096 	struct bmsafemap *bmsafemap;
4097 	struct freefrag *freefrag;
4098 	struct freework *freework;
4099 	struct jsegdep *jsegdep;
4100 	struct newblk *newblk;
4101 
4102 	/* Grab the jsegdep. */
4103 	jsegdep = jnewblk->jn_jsegdep;
4104 	jnewblk->jn_jsegdep = NULL;
4105 	if (jnewblk->jn_dep == NULL)
4106 		panic("handle_written_jnewblk: No dependency for the segdep.");
4107 	switch (jnewblk->jn_dep->wk_type) {
4108 	case D_NEWBLK:
4109 	case D_ALLOCDIRECT:
4110 	case D_ALLOCINDIR:
4111 		/*
4112 		 * Add the written block to the bmsafemap so it can
4113 		 * be notified when the bitmap is on disk.
4114 		 */
4115 		newblk = WK_NEWBLK(jnewblk->jn_dep);
4116 		newblk->nb_jnewblk = NULL;
4117 		if ((newblk->nb_state & GOINGAWAY) == 0) {
4118 			bmsafemap = newblk->nb_bmsafemap;
4119 			newblk->nb_state |= ONDEPLIST;
4120 			LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk,
4121 			    nb_deps);
4122 		}
4123 		jwork_insert(&newblk->nb_jwork, jsegdep);
4124 		break;
4125 	case D_FREEFRAG:
4126 		/*
4127 		 * A newblock being removed by a freefrag when replaced by
4128 		 * frag extension.
4129 		 */
4130 		freefrag = WK_FREEFRAG(jnewblk->jn_dep);
4131 		freefrag->ff_jdep = NULL;
4132 		jwork_insert(&freefrag->ff_jwork, jsegdep);
4133 		break;
4134 	case D_FREEWORK:
4135 		/*
4136 		 * A direct block was removed by truncate.
4137 		 */
4138 		freework = WK_FREEWORK(jnewblk->jn_dep);
4139 		freework->fw_jnewblk = NULL;
4140 		jwork_insert(&freework->fw_freeblks->fb_jwork, jsegdep);
4141 		break;
4142 	default:
4143 		panic("handle_written_jnewblk: Unknown type %d.",
4144 		    jnewblk->jn_dep->wk_type);
4145 	}
4146 	jnewblk->jn_dep = NULL;
4147 	free_jnewblk(jnewblk);
4148 }
4149 
4150 /*
4151  * Cancel a jfreefrag that won't be needed, probably due to colliding with
4152  * an in-flight allocation that has not yet been committed.  Divorce us
4153  * from the freefrag and mark it DEPCOMPLETE so that it may be added
4154  * to the worklist.
4155  */
4156 static void
4157 cancel_jfreefrag(struct jfreefrag *jfreefrag)
4158 {
4159 	struct freefrag *freefrag;
4160 
4161 	if (jfreefrag->fr_jsegdep) {
4162 		free_jsegdep(jfreefrag->fr_jsegdep);
4163 		jfreefrag->fr_jsegdep = NULL;
4164 	}
4165 	freefrag = jfreefrag->fr_freefrag;
4166 	jfreefrag->fr_freefrag = NULL;
4167 	free_jfreefrag(jfreefrag);
4168 	freefrag->ff_state |= DEPCOMPLETE;
4169 	CTR1(KTR_SUJ, "cancel_jfreefrag: blkno %jd", freefrag->ff_blkno);
4170 }
4171 
4172 /*
4173  * Free a jfreefrag when the parent freefrag is rendered obsolete.
4174  */
4175 static void
4176 free_jfreefrag(struct jfreefrag *jfreefrag)
4177 {
4178 
4179 	if (jfreefrag->fr_state & INPROGRESS)
4180 		WORKLIST_REMOVE(&jfreefrag->fr_list);
4181 	else if (jfreefrag->fr_state & ONWORKLIST)
4182 		remove_from_journal(&jfreefrag->fr_list);
4183 	if (jfreefrag->fr_freefrag != NULL)
4184 		panic("free_jfreefrag:  Still attached to a freefrag.");
4185 	WORKITEM_FREE(jfreefrag, D_JFREEFRAG);
4186 }
4187 
4188 /*
4189  * Called when the journal write for a jfreefrag completes.  The parent
4190  * freefrag is added to the worklist if this completes its dependencies.
4191  */
4192 static void
4193 handle_written_jfreefrag(struct jfreefrag *jfreefrag)
4194 {
4195 	struct jsegdep *jsegdep;
4196 	struct freefrag *freefrag;
4197 
4198 	/* Grab the jsegdep. */
4199 	jsegdep = jfreefrag->fr_jsegdep;
4200 	jfreefrag->fr_jsegdep = NULL;
4201 	freefrag = jfreefrag->fr_freefrag;
4202 	if (freefrag == NULL)
4203 		panic("handle_written_jfreefrag: No freefrag.");
4204 	freefrag->ff_state |= DEPCOMPLETE;
4205 	freefrag->ff_jdep = NULL;
4206 	jwork_insert(&freefrag->ff_jwork, jsegdep);
4207 	if ((freefrag->ff_state & ALLCOMPLETE) == ALLCOMPLETE)
4208 		add_to_worklist(&freefrag->ff_list, 0);
4209 	jfreefrag->fr_freefrag = NULL;
4210 	free_jfreefrag(jfreefrag);
4211 }
4212 
4213 /*
4214  * Called when the journal write for a jfreeblk completes.  The jfreeblk
4215  * is removed from the freeblks list of pending journal writes and the
4216  * jsegdep is moved to the freeblks jwork to be completed when all blocks
4217  * have been reclaimed.
4218  */
4219 static void
4220 handle_written_jblkdep(struct jblkdep *jblkdep)
4221 {
4222 	struct freeblks *freeblks;
4223 	struct jsegdep *jsegdep;
4224 
4225 	/* Grab the jsegdep. */
4226 	jsegdep = jblkdep->jb_jsegdep;
4227 	jblkdep->jb_jsegdep = NULL;
4228 	freeblks = jblkdep->jb_freeblks;
4229 	LIST_REMOVE(jblkdep, jb_deps);
4230 	jwork_insert(&freeblks->fb_jwork, jsegdep);
4231 	/*
4232 	 * If the freeblks is all journaled, we can add it to the worklist.
4233 	 */
4234 	if (LIST_EMPTY(&freeblks->fb_jblkdephd) &&
4235 	    (freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE)
4236 		add_to_worklist(&freeblks->fb_list, WK_NODELAY);
4237 
4238 	free_jblkdep(jblkdep);
4239 }
4240 
4241 static struct jsegdep *
4242 newjsegdep(struct worklist *wk)
4243 {
4244 	struct jsegdep *jsegdep;
4245 
4246 	jsegdep = malloc(sizeof(*jsegdep), M_JSEGDEP, M_SOFTDEP_FLAGS);
4247 	workitem_alloc(&jsegdep->jd_list, D_JSEGDEP, wk->wk_mp);
4248 	jsegdep->jd_seg = NULL;
4249 
4250 	return (jsegdep);
4251 }
4252 
4253 static struct jmvref *
4254 newjmvref(struct inode *dp,
4255 	ino_t ino,
4256 	off_t oldoff,
4257 	off_t newoff)
4258 {
4259 	struct jmvref *jmvref;
4260 
4261 	jmvref = malloc(sizeof(*jmvref), M_JMVREF, M_SOFTDEP_FLAGS);
4262 	workitem_alloc(&jmvref->jm_list, D_JMVREF, ITOVFS(dp));
4263 	jmvref->jm_list.wk_state = ATTACHED | DEPCOMPLETE;
4264 	jmvref->jm_parent = dp->i_number;
4265 	jmvref->jm_ino = ino;
4266 	jmvref->jm_oldoff = oldoff;
4267 	jmvref->jm_newoff = newoff;
4268 
4269 	return (jmvref);
4270 }
4271 
4272 /*
4273  * Allocate a new jremref that tracks the removal of ip from dp with the
4274  * directory entry offset of diroff.  Mark the entry as ATTACHED and
4275  * DEPCOMPLETE as we have all the information required for the journal write
4276  * and the directory has already been removed from the buffer.  The caller
4277  * is responsible for linking the jremref into the pagedep and adding it
4278  * to the journal to write.  The MKDIR_PARENT flag is set if we're doing
4279  * a DOTDOT addition so handle_workitem_remove() can properly assign
4280  * the jsegdep when we're done.
4281  */
4282 static struct jremref *
4283 newjremref(struct dirrem *dirrem,
4284 	struct inode *dp,
4285 	struct inode *ip,
4286 	off_t diroff,
4287 	nlink_t nlink)
4288 {
4289 	struct jremref *jremref;
4290 
4291 	jremref = malloc(sizeof(*jremref), M_JREMREF, M_SOFTDEP_FLAGS);
4292 	workitem_alloc(&jremref->jr_list, D_JREMREF, ITOVFS(dp));
4293 	jremref->jr_state = ATTACHED;
4294 	newinoref(&jremref->jr_ref, ip->i_number, dp->i_number, diroff,
4295 	   nlink, ip->i_mode);
4296 	jremref->jr_dirrem = dirrem;
4297 
4298 	return (jremref);
4299 }
4300 
4301 static inline void
4302 newinoref(struct inoref *inoref,
4303 	ino_t ino,
4304 	ino_t parent,
4305 	off_t diroff,
4306 	nlink_t nlink,
4307 	uint16_t mode)
4308 {
4309 
4310 	inoref->if_jsegdep = newjsegdep(&inoref->if_list);
4311 	inoref->if_diroff = diroff;
4312 	inoref->if_ino = ino;
4313 	inoref->if_parent = parent;
4314 	inoref->if_nlink = nlink;
4315 	inoref->if_mode = mode;
4316 }
4317 
4318 /*
4319  * Allocate a new jaddref to track the addition of ino to dp at diroff.  The
4320  * directory offset may not be known until later.  The caller is responsible
4321  * adding the entry to the journal when this information is available.  nlink
4322  * should be the link count prior to the addition and mode is only required
4323  * to have the correct FMT.
4324  */
4325 static struct jaddref *
4326 newjaddref(struct inode *dp,
4327 	ino_t ino,
4328 	off_t diroff,
4329 	int16_t nlink,
4330 	uint16_t mode)
4331 {
4332 	struct jaddref *jaddref;
4333 
4334 	jaddref = malloc(sizeof(*jaddref), M_JADDREF, M_SOFTDEP_FLAGS);
4335 	workitem_alloc(&jaddref->ja_list, D_JADDREF, ITOVFS(dp));
4336 	jaddref->ja_state = ATTACHED;
4337 	jaddref->ja_mkdir = NULL;
4338 	newinoref(&jaddref->ja_ref, ino, dp->i_number, diroff, nlink, mode);
4339 
4340 	return (jaddref);
4341 }
4342 
4343 /*
4344  * Create a new free dependency for a freework.  The caller is responsible
4345  * for adjusting the reference count when it has the lock held.  The freedep
4346  * will track an outstanding bitmap write that will ultimately clear the
4347  * freework to continue.
4348  */
4349 static struct freedep *
4350 newfreedep(struct freework *freework)
4351 {
4352 	struct freedep *freedep;
4353 
4354 	freedep = malloc(sizeof(*freedep), M_FREEDEP, M_SOFTDEP_FLAGS);
4355 	workitem_alloc(&freedep->fd_list, D_FREEDEP, freework->fw_list.wk_mp);
4356 	freedep->fd_freework = freework;
4357 
4358 	return (freedep);
4359 }
4360 
4361 /*
4362  * Free a freedep structure once the buffer it is linked to is written.  If
4363  * this is the last reference to the freework schedule it for completion.
4364  */
4365 static void
4366 free_freedep(struct freedep *freedep)
4367 {
4368 	struct freework *freework;
4369 
4370 	freework = freedep->fd_freework;
4371 	freework->fw_freeblks->fb_cgwait--;
4372 	if (--freework->fw_ref == 0)
4373 		freework_enqueue(freework);
4374 	WORKITEM_FREE(freedep, D_FREEDEP);
4375 }
4376 
4377 /*
4378  * Allocate a new freework structure that may be a level in an indirect
4379  * when parent is not NULL or a top level block when it is.  The top level
4380  * freework structures are allocated without the per-filesystem lock held
4381  * and before the freeblks is visible outside of softdep_setup_freeblocks().
4382  */
4383 static struct freework *
4384 newfreework(struct ufsmount *ump,
4385 	struct freeblks *freeblks,
4386 	struct freework *parent,
4387 	ufs_lbn_t lbn,
4388 	ufs2_daddr_t nb,
4389 	int frags,
4390 	int off,
4391 	int journal)
4392 {
4393 	struct freework *freework;
4394 
4395 	freework = malloc(sizeof(*freework), M_FREEWORK, M_SOFTDEP_FLAGS);
4396 	workitem_alloc(&freework->fw_list, D_FREEWORK, freeblks->fb_list.wk_mp);
4397 	freework->fw_state = ATTACHED;
4398 	freework->fw_jnewblk = NULL;
4399 	freework->fw_freeblks = freeblks;
4400 	freework->fw_parent = parent;
4401 	freework->fw_lbn = lbn;
4402 	freework->fw_blkno = nb;
4403 	freework->fw_frags = frags;
4404 	freework->fw_indir = NULL;
4405 	freework->fw_ref = (MOUNTEDSUJ(UFSTOVFS(ump)) == 0 ||
4406 	    lbn >= -UFS_NXADDR) ? 0 : NINDIR(ump->um_fs) + 1;
4407 	freework->fw_start = freework->fw_off = off;
4408 	if (journal)
4409 		newjfreeblk(freeblks, lbn, nb, frags);
4410 	if (parent == NULL) {
4411 		ACQUIRE_LOCK(ump);
4412 		WORKLIST_INSERT(&freeblks->fb_freeworkhd, &freework->fw_list);
4413 		freeblks->fb_ref++;
4414 		FREE_LOCK(ump);
4415 	}
4416 
4417 	return (freework);
4418 }
4419 
4420 /*
4421  * Eliminate a jfreeblk for a block that does not need journaling.
4422  */
4423 static void
4424 cancel_jfreeblk(struct freeblks *freeblks, ufs2_daddr_t blkno)
4425 {
4426 	struct jfreeblk *jfreeblk;
4427 	struct jblkdep *jblkdep;
4428 
4429 	LIST_FOREACH(jblkdep, &freeblks->fb_jblkdephd, jb_deps) {
4430 		if (jblkdep->jb_list.wk_type != D_JFREEBLK)
4431 			continue;
4432 		jfreeblk = WK_JFREEBLK(&jblkdep->jb_list);
4433 		if (jfreeblk->jf_blkno == blkno)
4434 			break;
4435 	}
4436 	if (jblkdep == NULL)
4437 		return;
4438 	CTR1(KTR_SUJ, "cancel_jfreeblk: blkno %jd", blkno);
4439 	free_jsegdep(jblkdep->jb_jsegdep);
4440 	LIST_REMOVE(jblkdep, jb_deps);
4441 	WORKITEM_FREE(jfreeblk, D_JFREEBLK);
4442 }
4443 
4444 /*
4445  * Allocate a new jfreeblk to journal top level block pointer when truncating
4446  * a file.  The caller must add this to the worklist when the per-filesystem
4447  * lock is held.
4448  */
4449 static struct jfreeblk *
4450 newjfreeblk(struct freeblks *freeblks,
4451 	ufs_lbn_t lbn,
4452 	ufs2_daddr_t blkno,
4453 	int frags)
4454 {
4455 	struct jfreeblk *jfreeblk;
4456 
4457 	jfreeblk = malloc(sizeof(*jfreeblk), M_JFREEBLK, M_SOFTDEP_FLAGS);
4458 	workitem_alloc(&jfreeblk->jf_dep.jb_list, D_JFREEBLK,
4459 	    freeblks->fb_list.wk_mp);
4460 	jfreeblk->jf_dep.jb_jsegdep = newjsegdep(&jfreeblk->jf_dep.jb_list);
4461 	jfreeblk->jf_dep.jb_freeblks = freeblks;
4462 	jfreeblk->jf_ino = freeblks->fb_inum;
4463 	jfreeblk->jf_lbn = lbn;
4464 	jfreeblk->jf_blkno = blkno;
4465 	jfreeblk->jf_frags = frags;
4466 	LIST_INSERT_HEAD(&freeblks->fb_jblkdephd, &jfreeblk->jf_dep, jb_deps);
4467 
4468 	return (jfreeblk);
4469 }
4470 
4471 /*
4472  * The journal is only prepared to handle full-size block numbers, so we
4473  * have to adjust the record to reflect the change to a full-size block.
4474  * For example, suppose we have a block made up of fragments 8-15 and
4475  * want to free its last two fragments. We are given a request that says:
4476  *     FREEBLK ino=5, blkno=14, lbn=0, frags=2, oldfrags=0
4477  * where frags are the number of fragments to free and oldfrags are the
4478  * number of fragments to keep. To block align it, we have to change it to
4479  * have a valid full-size blkno, so it becomes:
4480  *     FREEBLK ino=5, blkno=8, lbn=0, frags=2, oldfrags=6
4481  */
4482 static void
4483 adjust_newfreework(struct freeblks *freeblks, int frag_offset)
4484 {
4485 	struct jfreeblk *jfreeblk;
4486 
4487 	KASSERT((LIST_FIRST(&freeblks->fb_jblkdephd) != NULL &&
4488 	    LIST_FIRST(&freeblks->fb_jblkdephd)->jb_list.wk_type == D_JFREEBLK),
4489 	    ("adjust_newfreework: Missing freeblks dependency"));
4490 
4491 	jfreeblk = WK_JFREEBLK(LIST_FIRST(&freeblks->fb_jblkdephd));
4492 	jfreeblk->jf_blkno -= frag_offset;
4493 	jfreeblk->jf_frags += frag_offset;
4494 }
4495 
4496 /*
4497  * Allocate a new jtrunc to track a partial truncation.
4498  */
4499 static struct jtrunc *
4500 newjtrunc(struct freeblks *freeblks,
4501 	off_t size,
4502 	int extsize)
4503 {
4504 	struct jtrunc *jtrunc;
4505 
4506 	jtrunc = malloc(sizeof(*jtrunc), M_JTRUNC, M_SOFTDEP_FLAGS);
4507 	workitem_alloc(&jtrunc->jt_dep.jb_list, D_JTRUNC,
4508 	    freeblks->fb_list.wk_mp);
4509 	jtrunc->jt_dep.jb_jsegdep = newjsegdep(&jtrunc->jt_dep.jb_list);
4510 	jtrunc->jt_dep.jb_freeblks = freeblks;
4511 	jtrunc->jt_ino = freeblks->fb_inum;
4512 	jtrunc->jt_size = size;
4513 	jtrunc->jt_extsize = extsize;
4514 	LIST_INSERT_HEAD(&freeblks->fb_jblkdephd, &jtrunc->jt_dep, jb_deps);
4515 
4516 	return (jtrunc);
4517 }
4518 
4519 /*
4520  * If we're canceling a new bitmap we have to search for another ref
4521  * to move into the bmsafemap dep.  This might be better expressed
4522  * with another structure.
4523  */
4524 static void
4525 move_newblock_dep(struct jaddref *jaddref, struct inodedep *inodedep)
4526 {
4527 	struct inoref *inoref;
4528 	struct jaddref *jaddrefn;
4529 
4530 	jaddrefn = NULL;
4531 	for (inoref = TAILQ_NEXT(&jaddref->ja_ref, if_deps); inoref;
4532 	    inoref = TAILQ_NEXT(inoref, if_deps)) {
4533 		if ((jaddref->ja_state & NEWBLOCK) &&
4534 		    inoref->if_list.wk_type == D_JADDREF) {
4535 			jaddrefn = (struct jaddref *)inoref;
4536 			break;
4537 		}
4538 	}
4539 	if (jaddrefn == NULL)
4540 		return;
4541 	jaddrefn->ja_state &= ~(ATTACHED | UNDONE);
4542 	jaddrefn->ja_state |= jaddref->ja_state &
4543 	    (ATTACHED | UNDONE | NEWBLOCK);
4544 	jaddref->ja_state &= ~(ATTACHED | UNDONE | NEWBLOCK);
4545 	jaddref->ja_state |= ATTACHED;
4546 	LIST_REMOVE(jaddref, ja_bmdeps);
4547 	LIST_INSERT_HEAD(&inodedep->id_bmsafemap->sm_jaddrefhd, jaddrefn,
4548 	    ja_bmdeps);
4549 }
4550 
4551 /*
4552  * Cancel a jaddref either before it has been written or while it is being
4553  * written.  This happens when a link is removed before the add reaches
4554  * the disk.  The jaddref dependency is kept linked into the bmsafemap
4555  * and inode to prevent the link count or bitmap from reaching the disk
4556  * until handle_workitem_remove() re-adjusts the counts and bitmaps as
4557  * required.
4558  *
4559  * Returns 1 if the canceled addref requires journaling of the remove and
4560  * 0 otherwise.
4561  */
4562 static int
4563 cancel_jaddref(struct jaddref *jaddref,
4564 	struct inodedep *inodedep,
4565 	struct workhead *wkhd)
4566 {
4567 	struct inoref *inoref;
4568 	struct jsegdep *jsegdep;
4569 	int needsj;
4570 
4571 	KASSERT((jaddref->ja_state & COMPLETE) == 0,
4572 	    ("cancel_jaddref: Canceling complete jaddref"));
4573 	if (jaddref->ja_state & (INPROGRESS | COMPLETE))
4574 		needsj = 1;
4575 	else
4576 		needsj = 0;
4577 	if (inodedep == NULL)
4578 		if (inodedep_lookup(jaddref->ja_list.wk_mp, jaddref->ja_ino,
4579 		    0, &inodedep) == 0)
4580 			panic("cancel_jaddref: Lost inodedep");
4581 	/*
4582 	 * We must adjust the nlink of any reference operation that follows
4583 	 * us so that it is consistent with the in-memory reference.  This
4584 	 * ensures that inode nlink rollbacks always have the correct link.
4585 	 */
4586 	if (needsj == 0) {
4587 		for (inoref = TAILQ_NEXT(&jaddref->ja_ref, if_deps); inoref;
4588 		    inoref = TAILQ_NEXT(inoref, if_deps)) {
4589 			if (inoref->if_state & GOINGAWAY)
4590 				break;
4591 			inoref->if_nlink--;
4592 		}
4593 	}
4594 	jsegdep = inoref_jseg(&jaddref->ja_ref);
4595 	if (jaddref->ja_state & NEWBLOCK)
4596 		move_newblock_dep(jaddref, inodedep);
4597 	wake_worklist(&jaddref->ja_list);
4598 	jaddref->ja_mkdir = NULL;
4599 	if (jaddref->ja_state & INPROGRESS) {
4600 		jaddref->ja_state &= ~INPROGRESS;
4601 		WORKLIST_REMOVE(&jaddref->ja_list);
4602 		jwork_insert(wkhd, jsegdep);
4603 	} else {
4604 		free_jsegdep(jsegdep);
4605 		if (jaddref->ja_state & DEPCOMPLETE)
4606 			remove_from_journal(&jaddref->ja_list);
4607 	}
4608 	jaddref->ja_state |= (GOINGAWAY | DEPCOMPLETE);
4609 	/*
4610 	 * Leave NEWBLOCK jaddrefs on the inodedep so handle_workitem_remove
4611 	 * can arrange for them to be freed with the bitmap.  Otherwise we
4612 	 * no longer need this addref attached to the inoreflst and it
4613 	 * will incorrectly adjust nlink if we leave it.
4614 	 */
4615 	if ((jaddref->ja_state & NEWBLOCK) == 0) {
4616 		TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref,
4617 		    if_deps);
4618 		jaddref->ja_state |= COMPLETE;
4619 		free_jaddref(jaddref);
4620 		return (needsj);
4621 	}
4622 	/*
4623 	 * Leave the head of the list for jsegdeps for fast merging.
4624 	 */
4625 	if (LIST_FIRST(wkhd) != NULL) {
4626 		jaddref->ja_state |= ONWORKLIST;
4627 		LIST_INSERT_AFTER(LIST_FIRST(wkhd), &jaddref->ja_list, wk_list);
4628 	} else
4629 		WORKLIST_INSERT(wkhd, &jaddref->ja_list);
4630 
4631 	return (needsj);
4632 }
4633 
4634 /*
4635  * Attempt to free a jaddref structure when some work completes.  This
4636  * should only succeed once the entry is written and all dependencies have
4637  * been notified.
4638  */
4639 static void
4640 free_jaddref(struct jaddref *jaddref)
4641 {
4642 
4643 	if ((jaddref->ja_state & ALLCOMPLETE) != ALLCOMPLETE)
4644 		return;
4645 	if (jaddref->ja_ref.if_jsegdep)
4646 		panic("free_jaddref: segdep attached to jaddref %p(0x%X)\n",
4647 		    jaddref, jaddref->ja_state);
4648 	if (jaddref->ja_state & NEWBLOCK)
4649 		LIST_REMOVE(jaddref, ja_bmdeps);
4650 	if (jaddref->ja_state & (INPROGRESS | ONWORKLIST))
4651 		panic("free_jaddref: Bad state %p(0x%X)",
4652 		    jaddref, jaddref->ja_state);
4653 	if (jaddref->ja_mkdir != NULL)
4654 		panic("free_jaddref: Work pending, 0x%X\n", jaddref->ja_state);
4655 	WORKITEM_FREE(jaddref, D_JADDREF);
4656 }
4657 
4658 /*
4659  * Free a jremref structure once it has been written or discarded.
4660  */
4661 static void
4662 free_jremref(struct jremref *jremref)
4663 {
4664 
4665 	if (jremref->jr_ref.if_jsegdep)
4666 		free_jsegdep(jremref->jr_ref.if_jsegdep);
4667 	if (jremref->jr_state & INPROGRESS)
4668 		panic("free_jremref: IO still pending");
4669 	WORKITEM_FREE(jremref, D_JREMREF);
4670 }
4671 
4672 /*
4673  * Free a jnewblk structure.
4674  */
4675 static void
4676 free_jnewblk(struct jnewblk *jnewblk)
4677 {
4678 
4679 	if ((jnewblk->jn_state & ALLCOMPLETE) != ALLCOMPLETE)
4680 		return;
4681 	LIST_REMOVE(jnewblk, jn_deps);
4682 	if (jnewblk->jn_dep != NULL)
4683 		panic("free_jnewblk: Dependency still attached.");
4684 	WORKITEM_FREE(jnewblk, D_JNEWBLK);
4685 }
4686 
4687 /*
4688  * Cancel a jnewblk which has been been made redundant by frag extension.
4689  */
4690 static void
4691 cancel_jnewblk(struct jnewblk *jnewblk, struct workhead *wkhd)
4692 {
4693 	struct jsegdep *jsegdep;
4694 
4695 	CTR1(KTR_SUJ, "cancel_jnewblk: blkno %jd", jnewblk->jn_blkno);
4696 	jsegdep = jnewblk->jn_jsegdep;
4697 	if (jnewblk->jn_jsegdep == NULL || jnewblk->jn_dep == NULL)
4698 		panic("cancel_jnewblk: Invalid state");
4699 	jnewblk->jn_jsegdep  = NULL;
4700 	jnewblk->jn_dep = NULL;
4701 	jnewblk->jn_state |= GOINGAWAY;
4702 	if (jnewblk->jn_state & INPROGRESS) {
4703 		jnewblk->jn_state &= ~INPROGRESS;
4704 		WORKLIST_REMOVE(&jnewblk->jn_list);
4705 		jwork_insert(wkhd, jsegdep);
4706 	} else {
4707 		free_jsegdep(jsegdep);
4708 		remove_from_journal(&jnewblk->jn_list);
4709 	}
4710 	wake_worklist(&jnewblk->jn_list);
4711 	WORKLIST_INSERT(wkhd, &jnewblk->jn_list);
4712 }
4713 
4714 static void
4715 free_jblkdep(struct jblkdep *jblkdep)
4716 {
4717 
4718 	if (jblkdep->jb_list.wk_type == D_JFREEBLK)
4719 		WORKITEM_FREE(jblkdep, D_JFREEBLK);
4720 	else if (jblkdep->jb_list.wk_type == D_JTRUNC)
4721 		WORKITEM_FREE(jblkdep, D_JTRUNC);
4722 	else
4723 		panic("free_jblkdep: Unexpected type %s",
4724 		    TYPENAME(jblkdep->jb_list.wk_type));
4725 }
4726 
4727 /*
4728  * Free a single jseg once it is no longer referenced in memory or on
4729  * disk.  Reclaim journal blocks and dependencies waiting for the segment
4730  * to disappear.
4731  */
4732 static void
4733 free_jseg(struct jseg *jseg, struct jblocks *jblocks)
4734 {
4735 	struct freework *freework;
4736 
4737 	/*
4738 	 * Free freework structures that were lingering to indicate freed
4739 	 * indirect blocks that forced journal write ordering on reallocate.
4740 	 */
4741 	while ((freework = LIST_FIRST(&jseg->js_indirs)) != NULL)
4742 		indirblk_remove(freework);
4743 	if (jblocks->jb_oldestseg == jseg)
4744 		jblocks->jb_oldestseg = TAILQ_NEXT(jseg, js_next);
4745 	TAILQ_REMOVE(&jblocks->jb_segs, jseg, js_next);
4746 	jblocks_free(jblocks, jseg->js_list.wk_mp, jseg->js_size);
4747 	KASSERT(LIST_EMPTY(&jseg->js_entries),
4748 	    ("free_jseg: Freed jseg has valid entries."));
4749 	WORKITEM_FREE(jseg, D_JSEG);
4750 }
4751 
4752 /*
4753  * Free all jsegs that meet the criteria for being reclaimed and update
4754  * oldestseg.
4755  */
4756 static void
4757 free_jsegs(struct jblocks *jblocks)
4758 {
4759 	struct jseg *jseg;
4760 
4761 	/*
4762 	 * Free only those jsegs which have none allocated before them to
4763 	 * preserve the journal space ordering.
4764 	 */
4765 	while ((jseg = TAILQ_FIRST(&jblocks->jb_segs)) != NULL) {
4766 		/*
4767 		 * Only reclaim space when nothing depends on this journal
4768 		 * set and another set has written that it is no longer
4769 		 * valid.
4770 		 */
4771 		if (jseg->js_refs != 0) {
4772 			jblocks->jb_oldestseg = jseg;
4773 			return;
4774 		}
4775 		if ((jseg->js_state & ALLCOMPLETE) != ALLCOMPLETE)
4776 			break;
4777 		if (jseg->js_seq > jblocks->jb_oldestwrseq)
4778 			break;
4779 		/*
4780 		 * We can free jsegs that didn't write entries when
4781 		 * oldestwrseq == js_seq.
4782 		 */
4783 		if (jseg->js_seq == jblocks->jb_oldestwrseq &&
4784 		    jseg->js_cnt != 0)
4785 			break;
4786 		free_jseg(jseg, jblocks);
4787 	}
4788 	/*
4789 	 * If we exited the loop above we still must discover the
4790 	 * oldest valid segment.
4791 	 */
4792 	if (jseg)
4793 		for (jseg = jblocks->jb_oldestseg; jseg != NULL;
4794 		     jseg = TAILQ_NEXT(jseg, js_next))
4795 			if (jseg->js_refs != 0)
4796 				break;
4797 	jblocks->jb_oldestseg = jseg;
4798 	/*
4799 	 * The journal has no valid records but some jsegs may still be
4800 	 * waiting on oldestwrseq to advance.  We force a small record
4801 	 * out to permit these lingering records to be reclaimed.
4802 	 */
4803 	if (jblocks->jb_oldestseg == NULL && !TAILQ_EMPTY(&jblocks->jb_segs))
4804 		jblocks->jb_needseg = 1;
4805 }
4806 
4807 /*
4808  * Release one reference to a jseg and free it if the count reaches 0.  This
4809  * should eventually reclaim journal space as well.
4810  */
4811 static void
4812 rele_jseg(struct jseg *jseg)
4813 {
4814 
4815 	KASSERT(jseg->js_refs > 0,
4816 	    ("free_jseg: Invalid refcnt %d", jseg->js_refs));
4817 	if (--jseg->js_refs != 0)
4818 		return;
4819 	free_jsegs(jseg->js_jblocks);
4820 }
4821 
4822 /*
4823  * Release a jsegdep and decrement the jseg count.
4824  */
4825 static void
4826 free_jsegdep(struct jsegdep *jsegdep)
4827 {
4828 
4829 	if (jsegdep->jd_seg)
4830 		rele_jseg(jsegdep->jd_seg);
4831 	WORKITEM_FREE(jsegdep, D_JSEGDEP);
4832 }
4833 
4834 /*
4835  * Wait for a journal item to make it to disk.  Initiate journal processing
4836  * if required.
4837  */
4838 static int
4839 jwait(struct worklist *wk, int waitfor)
4840 {
4841 
4842 	LOCK_OWNED(VFSTOUFS(wk->wk_mp));
4843 	/*
4844 	 * Blocking journal waits cause slow synchronous behavior.  Record
4845 	 * stats on the frequency of these blocking operations.
4846 	 */
4847 	if (waitfor == MNT_WAIT) {
4848 		stat_journal_wait++;
4849 		switch (wk->wk_type) {
4850 		case D_JREMREF:
4851 		case D_JMVREF:
4852 			stat_jwait_filepage++;
4853 			break;
4854 		case D_JTRUNC:
4855 		case D_JFREEBLK:
4856 			stat_jwait_freeblks++;
4857 			break;
4858 		case D_JNEWBLK:
4859 			stat_jwait_newblk++;
4860 			break;
4861 		case D_JADDREF:
4862 			stat_jwait_inode++;
4863 			break;
4864 		default:
4865 			break;
4866 		}
4867 	}
4868 	/*
4869 	 * If IO has not started we process the journal.  We can't mark the
4870 	 * worklist item as IOWAITING because we drop the lock while
4871 	 * processing the journal and the worklist entry may be freed after
4872 	 * this point.  The caller may call back in and re-issue the request.
4873 	 */
4874 	if ((wk->wk_state & INPROGRESS) == 0) {
4875 		softdep_process_journal(wk->wk_mp, wk, waitfor);
4876 		if (waitfor != MNT_WAIT)
4877 			return (EBUSY);
4878 		return (0);
4879 	}
4880 	if (waitfor != MNT_WAIT)
4881 		return (EBUSY);
4882 	wait_worklist(wk, "jwait");
4883 	return (0);
4884 }
4885 
4886 /*
4887  * Lookup an inodedep based on an inode pointer and set the nlinkdelta as
4888  * appropriate.  This is a convenience function to reduce duplicate code
4889  * for the setup and revert functions below.
4890  */
4891 static struct inodedep *
4892 inodedep_lookup_ip(struct inode *ip)
4893 {
4894 	struct inodedep *inodedep;
4895 
4896 	KASSERT(ip->i_nlink >= ip->i_effnlink,
4897 	    ("inodedep_lookup_ip: bad delta"));
4898 	(void) inodedep_lookup(ITOVFS(ip), ip->i_number, DEPALLOC,
4899 	    &inodedep);
4900 	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
4901 	KASSERT((inodedep->id_state & UNLINKED) == 0, ("inode unlinked"));
4902 
4903 	return (inodedep);
4904 }
4905 
4906 /*
4907  * Called prior to creating a new inode and linking it to a directory.  The
4908  * jaddref structure must already be allocated by softdep_setup_inomapdep
4909  * and it is discovered here so we can initialize the mode and update
4910  * nlinkdelta.
4911  */
4912 void
4913 softdep_setup_create(struct inode *dp, struct inode *ip)
4914 {
4915 	struct inodedep *inodedep;
4916 	struct jaddref *jaddref __diagused;
4917 	struct vnode *dvp;
4918 
4919 	KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
4920 	    ("softdep_setup_create called on non-softdep filesystem"));
4921 	KASSERT(ip->i_nlink == 1,
4922 	    ("softdep_setup_create: Invalid link count."));
4923 	dvp = ITOV(dp);
4924 	ACQUIRE_LOCK(ITOUMP(dp));
4925 	inodedep = inodedep_lookup_ip(ip);
4926 	if (DOINGSUJ(dvp)) {
4927 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4928 		    inoreflst);
4929 		KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number,
4930 		    ("softdep_setup_create: No addref structure present."));
4931 	}
4932 	FREE_LOCK(ITOUMP(dp));
4933 }
4934 
4935 /*
4936  * Create a jaddref structure to track the addition of a DOTDOT link when
4937  * we are reparenting an inode as part of a rename.  This jaddref will be
4938  * found by softdep_setup_directory_change.  Adjusts nlinkdelta for
4939  * non-journaling softdep.
4940  */
4941 void
4942 softdep_setup_dotdot_link(struct inode *dp, struct inode *ip)
4943 {
4944 	struct inodedep *inodedep;
4945 	struct jaddref *jaddref;
4946 	struct vnode *dvp;
4947 
4948 	KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
4949 	    ("softdep_setup_dotdot_link called on non-softdep filesystem"));
4950 	dvp = ITOV(dp);
4951 	jaddref = NULL;
4952 	/*
4953 	 * We don't set MKDIR_PARENT as this is not tied to a mkdir and
4954 	 * is used as a normal link would be.
4955 	 */
4956 	if (DOINGSUJ(dvp))
4957 		jaddref = newjaddref(ip, dp->i_number, DOTDOT_OFFSET,
4958 		    dp->i_effnlink - 1, dp->i_mode);
4959 	ACQUIRE_LOCK(ITOUMP(dp));
4960 	inodedep = inodedep_lookup_ip(dp);
4961 	if (jaddref)
4962 		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref,
4963 		    if_deps);
4964 	FREE_LOCK(ITOUMP(dp));
4965 }
4966 
4967 /*
4968  * Create a jaddref structure to track a new link to an inode.  The directory
4969  * offset is not known until softdep_setup_directory_add or
4970  * softdep_setup_directory_change.  Adjusts nlinkdelta for non-journaling
4971  * softdep.
4972  */
4973 void
4974 softdep_setup_link(struct inode *dp, struct inode *ip)
4975 {
4976 	struct inodedep *inodedep;
4977 	struct jaddref *jaddref;
4978 	struct vnode *dvp;
4979 
4980 	KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
4981 	    ("softdep_setup_link called on non-softdep filesystem"));
4982 	dvp = ITOV(dp);
4983 	jaddref = NULL;
4984 	if (DOINGSUJ(dvp))
4985 		jaddref = newjaddref(dp, ip->i_number, 0, ip->i_effnlink - 1,
4986 		    ip->i_mode);
4987 	ACQUIRE_LOCK(ITOUMP(dp));
4988 	inodedep = inodedep_lookup_ip(ip);
4989 	if (jaddref)
4990 		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref,
4991 		    if_deps);
4992 	FREE_LOCK(ITOUMP(dp));
4993 }
4994 
4995 /*
4996  * Called to create the jaddref structures to track . and .. references as
4997  * well as lookup and further initialize the incomplete jaddref created
4998  * by softdep_setup_inomapdep when the inode was allocated.  Adjusts
4999  * nlinkdelta for non-journaling softdep.
5000  */
5001 void
5002 softdep_setup_mkdir(struct inode *dp, struct inode *ip)
5003 {
5004 	struct inodedep *inodedep;
5005 	struct jaddref *dotdotaddref;
5006 	struct jaddref *dotaddref;
5007 	struct jaddref *jaddref;
5008 	struct vnode *dvp;
5009 
5010 	KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
5011 	    ("softdep_setup_mkdir called on non-softdep filesystem"));
5012 	dvp = ITOV(dp);
5013 	dotaddref = dotdotaddref = NULL;
5014 	if (DOINGSUJ(dvp)) {
5015 		dotaddref = newjaddref(ip, ip->i_number, DOT_OFFSET, 1,
5016 		    ip->i_mode);
5017 		dotaddref->ja_state |= MKDIR_BODY;
5018 		dotdotaddref = newjaddref(ip, dp->i_number, DOTDOT_OFFSET,
5019 		    dp->i_effnlink - 1, dp->i_mode);
5020 		dotdotaddref->ja_state |= MKDIR_PARENT;
5021 	}
5022 	ACQUIRE_LOCK(ITOUMP(dp));
5023 	inodedep = inodedep_lookup_ip(ip);
5024 	if (DOINGSUJ(dvp)) {
5025 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
5026 		    inoreflst);
5027 		KASSERT(jaddref != NULL,
5028 		    ("softdep_setup_mkdir: No addref structure present."));
5029 		KASSERT(jaddref->ja_parent == dp->i_number,
5030 		    ("softdep_setup_mkdir: bad parent %ju",
5031 		    (uintmax_t)jaddref->ja_parent));
5032 		TAILQ_INSERT_BEFORE(&jaddref->ja_ref, &dotaddref->ja_ref,
5033 		    if_deps);
5034 	}
5035 	inodedep = inodedep_lookup_ip(dp);
5036 	if (DOINGSUJ(dvp))
5037 		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst,
5038 		    &dotdotaddref->ja_ref, if_deps);
5039 	FREE_LOCK(ITOUMP(dp));
5040 }
5041 
5042 /*
5043  * Called to track nlinkdelta of the inode and parent directories prior to
5044  * unlinking a directory.
5045  */
5046 void
5047 softdep_setup_rmdir(struct inode *dp, struct inode *ip)
5048 {
5049 
5050 	KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
5051 	    ("softdep_setup_rmdir called on non-softdep filesystem"));
5052 	ACQUIRE_LOCK(ITOUMP(dp));
5053 	(void) inodedep_lookup_ip(ip);
5054 	(void) inodedep_lookup_ip(dp);
5055 	FREE_LOCK(ITOUMP(dp));
5056 }
5057 
5058 /*
5059  * Called to track nlinkdelta of the inode and parent directories prior to
5060  * unlink.
5061  */
5062 void
5063 softdep_setup_unlink(struct inode *dp, struct inode *ip)
5064 {
5065 
5066 	KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
5067 	    ("softdep_setup_unlink called on non-softdep filesystem"));
5068 	ACQUIRE_LOCK(ITOUMP(dp));
5069 	(void) inodedep_lookup_ip(ip);
5070 	(void) inodedep_lookup_ip(dp);
5071 	FREE_LOCK(ITOUMP(dp));
5072 }
5073 
5074 /*
5075  * Called to release the journal structures created by a failed non-directory
5076  * creation.  Adjusts nlinkdelta for non-journaling softdep.
5077  */
5078 void
5079 softdep_revert_create(struct inode *dp, struct inode *ip)
5080 {
5081 	struct inodedep *inodedep;
5082 	struct jaddref *jaddref;
5083 	struct vnode *dvp;
5084 
5085 	KASSERT(MOUNTEDSOFTDEP(ITOVFS((dp))) != 0,
5086 	    ("softdep_revert_create called on non-softdep filesystem"));
5087 	dvp = ITOV(dp);
5088 	ACQUIRE_LOCK(ITOUMP(dp));
5089 	inodedep = inodedep_lookup_ip(ip);
5090 	if (DOINGSUJ(dvp)) {
5091 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
5092 		    inoreflst);
5093 		KASSERT(jaddref->ja_parent == dp->i_number,
5094 		    ("softdep_revert_create: addref parent mismatch"));
5095 		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
5096 	}
5097 	FREE_LOCK(ITOUMP(dp));
5098 }
5099 
5100 /*
5101  * Called to release the journal structures created by a failed link
5102  * addition.  Adjusts nlinkdelta for non-journaling softdep.
5103  */
5104 void
5105 softdep_revert_link(struct inode *dp, struct inode *ip)
5106 {
5107 	struct inodedep *inodedep;
5108 	struct jaddref *jaddref;
5109 	struct vnode *dvp;
5110 
5111 	KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
5112 	    ("softdep_revert_link called on non-softdep filesystem"));
5113 	dvp = ITOV(dp);
5114 	ACQUIRE_LOCK(ITOUMP(dp));
5115 	inodedep = inodedep_lookup_ip(ip);
5116 	if (DOINGSUJ(dvp)) {
5117 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
5118 		    inoreflst);
5119 		KASSERT(jaddref->ja_parent == dp->i_number,
5120 		    ("softdep_revert_link: addref parent mismatch"));
5121 		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
5122 	}
5123 	FREE_LOCK(ITOUMP(dp));
5124 }
5125 
5126 /*
5127  * Called to release the journal structures created by a failed mkdir
5128  * attempt.  Adjusts nlinkdelta for non-journaling softdep.
5129  */
5130 void
5131 softdep_revert_mkdir(struct inode *dp, struct inode *ip)
5132 {
5133 	struct inodedep *inodedep;
5134 	struct jaddref *jaddref;
5135 	struct jaddref *dotaddref;
5136 	struct vnode *dvp;
5137 
5138 	KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
5139 	    ("softdep_revert_mkdir called on non-softdep filesystem"));
5140 	dvp = ITOV(dp);
5141 
5142 	ACQUIRE_LOCK(ITOUMP(dp));
5143 	inodedep = inodedep_lookup_ip(dp);
5144 	if (DOINGSUJ(dvp)) {
5145 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
5146 		    inoreflst);
5147 		KASSERT(jaddref->ja_parent == ip->i_number,
5148 		    ("softdep_revert_mkdir: dotdot addref parent mismatch"));
5149 		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
5150 	}
5151 	inodedep = inodedep_lookup_ip(ip);
5152 	if (DOINGSUJ(dvp)) {
5153 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
5154 		    inoreflst);
5155 		KASSERT(jaddref->ja_parent == dp->i_number,
5156 		    ("softdep_revert_mkdir: addref parent mismatch"));
5157 		dotaddref = (struct jaddref *)TAILQ_PREV(&jaddref->ja_ref,
5158 		    inoreflst, if_deps);
5159 		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
5160 		KASSERT(dotaddref->ja_parent == ip->i_number,
5161 		    ("softdep_revert_mkdir: dot addref parent mismatch"));
5162 		cancel_jaddref(dotaddref, inodedep, &inodedep->id_inowait);
5163 	}
5164 	FREE_LOCK(ITOUMP(dp));
5165 }
5166 
5167 /*
5168  * Called to correct nlinkdelta after a failed rmdir.
5169  */
5170 void
5171 softdep_revert_rmdir(struct inode *dp, struct inode *ip)
5172 {
5173 
5174 	KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
5175 	    ("softdep_revert_rmdir called on non-softdep filesystem"));
5176 	ACQUIRE_LOCK(ITOUMP(dp));
5177 	(void) inodedep_lookup_ip(ip);
5178 	(void) inodedep_lookup_ip(dp);
5179 	FREE_LOCK(ITOUMP(dp));
5180 }
5181 
5182 /*
5183  * Protecting the freemaps (or bitmaps).
5184  *
5185  * To eliminate the need to execute fsck before mounting a filesystem
5186  * after a power failure, one must (conservatively) guarantee that the
5187  * on-disk copy of the bitmaps never indicate that a live inode or block is
5188  * free.  So, when a block or inode is allocated, the bitmap should be
5189  * updated (on disk) before any new pointers.  When a block or inode is
5190  * freed, the bitmap should not be updated until all pointers have been
5191  * reset.  The latter dependency is handled by the delayed de-allocation
5192  * approach described below for block and inode de-allocation.  The former
5193  * dependency is handled by calling the following procedure when a block or
5194  * inode is allocated. When an inode is allocated an "inodedep" is created
5195  * with its DEPCOMPLETE flag cleared until its bitmap is written to disk.
5196  * Each "inodedep" is also inserted into the hash indexing structure so
5197  * that any additional link additions can be made dependent on the inode
5198  * allocation.
5199  *
5200  * The ufs filesystem maintains a number of free block counts (e.g., per
5201  * cylinder group, per cylinder and per <cylinder, rotational position> pair)
5202  * in addition to the bitmaps.  These counts are used to improve efficiency
5203  * during allocation and therefore must be consistent with the bitmaps.
5204  * There is no convenient way to guarantee post-crash consistency of these
5205  * counts with simple update ordering, for two main reasons: (1) The counts
5206  * and bitmaps for a single cylinder group block are not in the same disk
5207  * sector.  If a disk write is interrupted (e.g., by power failure), one may
5208  * be written and the other not.  (2) Some of the counts are located in the
5209  * superblock rather than the cylinder group block. So, we focus our soft
5210  * updates implementation on protecting the bitmaps. When mounting a
5211  * filesystem, we recompute the auxiliary counts from the bitmaps.
5212  */
5213 
5214 /*
5215  * Called just after updating the cylinder group block to allocate an inode.
5216  */
5217 void
5218 softdep_setup_inomapdep(
5219 	struct buf *bp,		/* buffer for cylgroup block with inode map */
5220 	struct inode *ip,	/* inode related to allocation */
5221 	ino_t newinum,		/* new inode number being allocated */
5222 	int mode)
5223 {
5224 	struct inodedep *inodedep;
5225 	struct bmsafemap *bmsafemap;
5226 	struct jaddref *jaddref;
5227 	struct mount *mp;
5228 	struct fs *fs;
5229 
5230 	mp = ITOVFS(ip);
5231 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
5232 	    ("softdep_setup_inomapdep called on non-softdep filesystem"));
5233 	fs = VFSTOUFS(mp)->um_fs;
5234 	jaddref = NULL;
5235 
5236 	/*
5237 	 * Allocate the journal reference add structure so that the bitmap
5238 	 * can be dependent on it.
5239 	 */
5240 	if (MOUNTEDSUJ(mp)) {
5241 		jaddref = newjaddref(ip, newinum, 0, 0, mode);
5242 		jaddref->ja_state |= NEWBLOCK;
5243 	}
5244 
5245 	/*
5246 	 * Create a dependency for the newly allocated inode.
5247 	 * Panic if it already exists as something is seriously wrong.
5248 	 * Otherwise add it to the dependency list for the buffer holding
5249 	 * the cylinder group map from which it was allocated.
5250 	 *
5251 	 * We have to preallocate a bmsafemap entry in case it is needed
5252 	 * in bmsafemap_lookup since once we allocate the inodedep, we
5253 	 * have to finish initializing it before we can FREE_LOCK().
5254 	 * By preallocating, we avoid FREE_LOCK() while doing a malloc
5255 	 * in bmsafemap_lookup. We cannot call bmsafemap_lookup before
5256 	 * creating the inodedep as it can be freed during the time
5257 	 * that we FREE_LOCK() while allocating the inodedep. We must
5258 	 * call workitem_alloc() before entering the locked section as
5259 	 * it also acquires the lock and we must avoid trying doing so
5260 	 * recursively.
5261 	 */
5262 	bmsafemap = malloc(sizeof(struct bmsafemap),
5263 	    M_BMSAFEMAP, M_SOFTDEP_FLAGS);
5264 	workitem_alloc(&bmsafemap->sm_list, D_BMSAFEMAP, mp);
5265 	ACQUIRE_LOCK(ITOUMP(ip));
5266 	if ((inodedep_lookup(mp, newinum, DEPALLOC, &inodedep)))
5267 		panic("softdep_setup_inomapdep: dependency %p for new"
5268 		    "inode already exists", inodedep);
5269 	bmsafemap = bmsafemap_lookup(mp, bp, ino_to_cg(fs, newinum), bmsafemap);
5270 	if (jaddref) {
5271 		LIST_INSERT_HEAD(&bmsafemap->sm_jaddrefhd, jaddref, ja_bmdeps);
5272 		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref,
5273 		    if_deps);
5274 	} else {
5275 		inodedep->id_state |= ONDEPLIST;
5276 		LIST_INSERT_HEAD(&bmsafemap->sm_inodedephd, inodedep, id_deps);
5277 	}
5278 	inodedep->id_bmsafemap = bmsafemap;
5279 	inodedep->id_state &= ~DEPCOMPLETE;
5280 	FREE_LOCK(ITOUMP(ip));
5281 }
5282 
5283 /*
5284  * Called just after updating the cylinder group block to
5285  * allocate block or fragment.
5286  */
5287 void
5288 softdep_setup_blkmapdep(
5289 	struct buf *bp,		/* buffer for cylgroup block with block map */
5290 	struct mount *mp,	/* filesystem doing allocation */
5291 	ufs2_daddr_t newblkno,	/* number of newly allocated block */
5292 	int frags,		/* Number of fragments. */
5293 	int oldfrags)		/* Previous number of fragments for extend. */
5294 {
5295 	struct newblk *newblk;
5296 	struct bmsafemap *bmsafemap;
5297 	struct jnewblk *jnewblk;
5298 	struct ufsmount *ump;
5299 	struct fs *fs;
5300 
5301 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
5302 	    ("softdep_setup_blkmapdep called on non-softdep filesystem"));
5303 	ump = VFSTOUFS(mp);
5304 	fs = ump->um_fs;
5305 	jnewblk = NULL;
5306 	/*
5307 	 * Create a dependency for the newly allocated block.
5308 	 * Add it to the dependency list for the buffer holding
5309 	 * the cylinder group map from which it was allocated.
5310 	 */
5311 	if (MOUNTEDSUJ(mp)) {
5312 		jnewblk = malloc(sizeof(*jnewblk), M_JNEWBLK, M_SOFTDEP_FLAGS);
5313 		workitem_alloc(&jnewblk->jn_list, D_JNEWBLK, mp);
5314 		jnewblk->jn_jsegdep = newjsegdep(&jnewblk->jn_list);
5315 		jnewblk->jn_state = ATTACHED;
5316 		jnewblk->jn_blkno = newblkno;
5317 		jnewblk->jn_frags = frags;
5318 		jnewblk->jn_oldfrags = oldfrags;
5319 #ifdef INVARIANTS
5320 		{
5321 			struct cg *cgp;
5322 			uint8_t *blksfree;
5323 			long bno;
5324 			int i;
5325 
5326 			cgp = (struct cg *)bp->b_data;
5327 			blksfree = cg_blksfree(cgp);
5328 			bno = dtogd(fs, jnewblk->jn_blkno);
5329 			for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags;
5330 			    i++) {
5331 				if (isset(blksfree, bno + i))
5332 					panic("softdep_setup_blkmapdep: "
5333 					    "free fragment %d from %d-%d "
5334 					    "state 0x%X dep %p", i,
5335 					    jnewblk->jn_oldfrags,
5336 					    jnewblk->jn_frags,
5337 					    jnewblk->jn_state,
5338 					    jnewblk->jn_dep);
5339 			}
5340 		}
5341 #endif
5342 	}
5343 
5344 	CTR3(KTR_SUJ,
5345 	    "softdep_setup_blkmapdep: blkno %jd frags %d oldfrags %d",
5346 	    newblkno, frags, oldfrags);
5347 	ACQUIRE_LOCK(ump);
5348 	if (newblk_lookup(mp, newblkno, DEPALLOC, &newblk) != 0)
5349 		panic("softdep_setup_blkmapdep: found block");
5350 	newblk->nb_bmsafemap = bmsafemap = bmsafemap_lookup(mp, bp,
5351 	    dtog(fs, newblkno), NULL);
5352 	if (jnewblk) {
5353 		jnewblk->jn_dep = (struct worklist *)newblk;
5354 		LIST_INSERT_HEAD(&bmsafemap->sm_jnewblkhd, jnewblk, jn_deps);
5355 	} else {
5356 		newblk->nb_state |= ONDEPLIST;
5357 		LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, nb_deps);
5358 	}
5359 	newblk->nb_bmsafemap = bmsafemap;
5360 	newblk->nb_jnewblk = jnewblk;
5361 	FREE_LOCK(ump);
5362 }
5363 
5364 #define	BMSAFEMAP_HASH(ump, cg) \
5365       (&(ump)->bmsafemap_hashtbl[(cg) & (ump)->bmsafemap_hash_size])
5366 
5367 static int
5368 bmsafemap_find(
5369 	struct bmsafemap_hashhead *bmsafemaphd,
5370 	int cg,
5371 	struct bmsafemap **bmsafemapp)
5372 {
5373 	struct bmsafemap *bmsafemap;
5374 
5375 	LIST_FOREACH(bmsafemap, bmsafemaphd, sm_hash)
5376 		if (bmsafemap->sm_cg == cg)
5377 			break;
5378 	if (bmsafemap) {
5379 		*bmsafemapp = bmsafemap;
5380 		return (1);
5381 	}
5382 	*bmsafemapp = NULL;
5383 
5384 	return (0);
5385 }
5386 
5387 /*
5388  * Find the bmsafemap associated with a cylinder group buffer.
5389  * If none exists, create one. The buffer must be locked when
5390  * this routine is called and this routine must be called with
5391  * the softdep lock held. To avoid giving up the lock while
5392  * allocating a new bmsafemap, a preallocated bmsafemap may be
5393  * provided. If it is provided but not needed, it is freed.
5394  */
5395 static struct bmsafemap *
5396 bmsafemap_lookup(struct mount *mp,
5397 	struct buf *bp,
5398 	int cg,
5399 	struct bmsafemap *newbmsafemap)
5400 {
5401 	struct bmsafemap_hashhead *bmsafemaphd;
5402 	struct bmsafemap *bmsafemap, *collision;
5403 	struct worklist *wk;
5404 	struct ufsmount *ump;
5405 
5406 	ump = VFSTOUFS(mp);
5407 	LOCK_OWNED(ump);
5408 	KASSERT(bp != NULL, ("bmsafemap_lookup: missing buffer"));
5409 	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
5410 		if (wk->wk_type == D_BMSAFEMAP) {
5411 			if (newbmsafemap)
5412 				WORKITEM_FREE(newbmsafemap, D_BMSAFEMAP);
5413 			return (WK_BMSAFEMAP(wk));
5414 		}
5415 	}
5416 	bmsafemaphd = BMSAFEMAP_HASH(ump, cg);
5417 	if (bmsafemap_find(bmsafemaphd, cg, &bmsafemap) == 1) {
5418 		if (newbmsafemap)
5419 			WORKITEM_FREE(newbmsafemap, D_BMSAFEMAP);
5420 		return (bmsafemap);
5421 	}
5422 	if (newbmsafemap) {
5423 		bmsafemap = newbmsafemap;
5424 	} else {
5425 		FREE_LOCK(ump);
5426 		bmsafemap = malloc(sizeof(struct bmsafemap),
5427 			M_BMSAFEMAP, M_SOFTDEP_FLAGS);
5428 		workitem_alloc(&bmsafemap->sm_list, D_BMSAFEMAP, mp);
5429 		ACQUIRE_LOCK(ump);
5430 	}
5431 	bmsafemap->sm_buf = bp;
5432 	LIST_INIT(&bmsafemap->sm_inodedephd);
5433 	LIST_INIT(&bmsafemap->sm_inodedepwr);
5434 	LIST_INIT(&bmsafemap->sm_newblkhd);
5435 	LIST_INIT(&bmsafemap->sm_newblkwr);
5436 	LIST_INIT(&bmsafemap->sm_jaddrefhd);
5437 	LIST_INIT(&bmsafemap->sm_jnewblkhd);
5438 	LIST_INIT(&bmsafemap->sm_freehd);
5439 	LIST_INIT(&bmsafemap->sm_freewr);
5440 	if (bmsafemap_find(bmsafemaphd, cg, &collision) == 1) {
5441 		WORKITEM_FREE(bmsafemap, D_BMSAFEMAP);
5442 		return (collision);
5443 	}
5444 	bmsafemap->sm_cg = cg;
5445 	LIST_INSERT_HEAD(bmsafemaphd, bmsafemap, sm_hash);
5446 	LIST_INSERT_HEAD(&ump->softdep_dirtycg, bmsafemap, sm_next);
5447 	WORKLIST_INSERT(&bp->b_dep, &bmsafemap->sm_list);
5448 	return (bmsafemap);
5449 }
5450 
5451 /*
5452  * Direct block allocation dependencies.
5453  *
5454  * When a new block is allocated, the corresponding disk locations must be
5455  * initialized (with zeros or new data) before the on-disk inode points to
5456  * them.  Also, the freemap from which the block was allocated must be
5457  * updated (on disk) before the inode's pointer. These two dependencies are
5458  * independent of each other and are needed for all file blocks and indirect
5459  * blocks that are pointed to directly by the inode.  Just before the
5460  * "in-core" version of the inode is updated with a newly allocated block
5461  * number, a procedure (below) is called to setup allocation dependency
5462  * structures.  These structures are removed when the corresponding
5463  * dependencies are satisfied or when the block allocation becomes obsolete
5464  * (i.e., the file is deleted, the block is de-allocated, or the block is a
5465  * fragment that gets upgraded).  All of these cases are handled in
5466  * procedures described later.
5467  *
5468  * When a file extension causes a fragment to be upgraded, either to a larger
5469  * fragment or to a full block, the on-disk location may change (if the
5470  * previous fragment could not simply be extended). In this case, the old
5471  * fragment must be de-allocated, but not until after the inode's pointer has
5472  * been updated. In most cases, this is handled by later procedures, which
5473  * will construct a "freefrag" structure to be added to the workitem queue
5474  * when the inode update is complete (or obsolete).  The main exception to
5475  * this is when an allocation occurs while a pending allocation dependency
5476  * (for the same block pointer) remains.  This case is handled in the main
5477  * allocation dependency setup procedure by immediately freeing the
5478  * unreferenced fragments.
5479  */
5480 void
5481 softdep_setup_allocdirect(
5482 	struct inode *ip,	/* inode to which block is being added */
5483 	ufs_lbn_t off,		/* block pointer within inode */
5484 	ufs2_daddr_t newblkno,	/* disk block number being added */
5485 	ufs2_daddr_t oldblkno,	/* previous block number, 0 unless frag */
5486 	long newsize,		/* size of new block */
5487 	long oldsize,		/* size of new block */
5488 	struct buf *bp)		/* bp for allocated block */
5489 {
5490 	struct allocdirect *adp, *oldadp;
5491 	struct allocdirectlst *adphead;
5492 	struct freefrag *freefrag;
5493 	struct inodedep *inodedep;
5494 	struct pagedep *pagedep;
5495 	struct jnewblk *jnewblk;
5496 	struct newblk *newblk;
5497 	struct mount *mp;
5498 	ufs_lbn_t lbn;
5499 
5500 	lbn = bp->b_lblkno;
5501 	mp = ITOVFS(ip);
5502 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
5503 	    ("softdep_setup_allocdirect called on non-softdep filesystem"));
5504 	if (oldblkno && oldblkno != newblkno)
5505 		/*
5506 		 * The usual case is that a smaller fragment that
5507 		 * was just allocated has been replaced with a bigger
5508 		 * fragment or a full-size block. If it is marked as
5509 		 * B_DELWRI, the current contents have not been written
5510 		 * to disk. It is possible that the block was written
5511 		 * earlier, but very uncommon. If the block has never
5512 		 * been written, there is no need to send a BIO_DELETE
5513 		 * for it when it is freed. The gain from avoiding the
5514 		 * TRIMs for the common case of unwritten blocks far
5515 		 * exceeds the cost of the write amplification for the
5516 		 * uncommon case of failing to send a TRIM for a block
5517 		 * that had been written.
5518 		 */
5519 		freefrag = newfreefrag(ip, oldblkno, oldsize, lbn,
5520 		    (bp->b_flags & B_DELWRI) != 0 ? NOTRIM_KEY : SINGLETON_KEY);
5521 	else
5522 		freefrag = NULL;
5523 
5524 	CTR6(KTR_SUJ,
5525 	    "softdep_setup_allocdirect: ino %d blkno %jd oldblkno %jd "
5526 	    "off %jd newsize %ld oldsize %d",
5527 	    ip->i_number, newblkno, oldblkno, off, newsize, oldsize);
5528 	ACQUIRE_LOCK(ITOUMP(ip));
5529 	if (off >= UFS_NDADDR) {
5530 		if (lbn > 0)
5531 			panic("softdep_setup_allocdirect: bad lbn %jd, off %jd",
5532 			    lbn, off);
5533 		/* allocating an indirect block */
5534 		if (oldblkno != 0)
5535 			panic("softdep_setup_allocdirect: non-zero indir");
5536 	} else {
5537 		if (off != lbn)
5538 			panic("softdep_setup_allocdirect: lbn %jd != off %jd",
5539 			    lbn, off);
5540 		/*
5541 		 * Allocating a direct block.
5542 		 *
5543 		 * If we are allocating a directory block, then we must
5544 		 * allocate an associated pagedep to track additions and
5545 		 * deletions.
5546 		 */
5547 		if ((ip->i_mode & IFMT) == IFDIR)
5548 			pagedep_lookup(mp, bp, ip->i_number, off, DEPALLOC,
5549 			    &pagedep);
5550 	}
5551 	if (newblk_lookup(mp, newblkno, 0, &newblk) == 0)
5552 		panic("softdep_setup_allocdirect: lost block");
5553 	KASSERT(newblk->nb_list.wk_type == D_NEWBLK,
5554 	    ("softdep_setup_allocdirect: newblk already initialized"));
5555 	/*
5556 	 * Convert the newblk to an allocdirect.
5557 	 */
5558 	WORKITEM_REASSIGN(newblk, D_ALLOCDIRECT);
5559 	adp = (struct allocdirect *)newblk;
5560 	newblk->nb_freefrag = freefrag;
5561 	adp->ad_offset = off;
5562 	adp->ad_oldblkno = oldblkno;
5563 	adp->ad_newsize = newsize;
5564 	adp->ad_oldsize = oldsize;
5565 
5566 	/*
5567 	 * Finish initializing the journal.
5568 	 */
5569 	if ((jnewblk = newblk->nb_jnewblk) != NULL) {
5570 		jnewblk->jn_ino = ip->i_number;
5571 		jnewblk->jn_lbn = lbn;
5572 		add_to_journal(&jnewblk->jn_list);
5573 	}
5574 	if (freefrag && freefrag->ff_jdep != NULL &&
5575 	    freefrag->ff_jdep->wk_type == D_JFREEFRAG)
5576 		add_to_journal(freefrag->ff_jdep);
5577 	inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
5578 	adp->ad_inodedep = inodedep;
5579 
5580 	WORKLIST_INSERT(&bp->b_dep, &newblk->nb_list);
5581 	/*
5582 	 * The list of allocdirects must be kept in sorted and ascending
5583 	 * order so that the rollback routines can quickly determine the
5584 	 * first uncommitted block (the size of the file stored on disk
5585 	 * ends at the end of the lowest committed fragment, or if there
5586 	 * are no fragments, at the end of the highest committed block).
5587 	 * Since files generally grow, the typical case is that the new
5588 	 * block is to be added at the end of the list. We speed this
5589 	 * special case by checking against the last allocdirect in the
5590 	 * list before laboriously traversing the list looking for the
5591 	 * insertion point.
5592 	 */
5593 	adphead = &inodedep->id_newinoupdt;
5594 	oldadp = TAILQ_LAST(adphead, allocdirectlst);
5595 	if (oldadp == NULL || oldadp->ad_offset <= off) {
5596 		/* insert at end of list */
5597 		TAILQ_INSERT_TAIL(adphead, adp, ad_next);
5598 		if (oldadp != NULL && oldadp->ad_offset == off)
5599 			allocdirect_merge(adphead, adp, oldadp);
5600 		FREE_LOCK(ITOUMP(ip));
5601 		return;
5602 	}
5603 	TAILQ_FOREACH(oldadp, adphead, ad_next) {
5604 		if (oldadp->ad_offset >= off)
5605 			break;
5606 	}
5607 	if (oldadp == NULL)
5608 		panic("softdep_setup_allocdirect: lost entry");
5609 	/* insert in middle of list */
5610 	TAILQ_INSERT_BEFORE(oldadp, adp, ad_next);
5611 	if (oldadp->ad_offset == off)
5612 		allocdirect_merge(adphead, adp, oldadp);
5613 
5614 	FREE_LOCK(ITOUMP(ip));
5615 }
5616 
5617 /*
5618  * Merge a newer and older journal record to be stored either in a
5619  * newblock or freefrag.  This handles aggregating journal records for
5620  * fragment allocation into a second record as well as replacing a
5621  * journal free with an aborted journal allocation.  A segment for the
5622  * oldest record will be placed on wkhd if it has been written.  If not
5623  * the segment for the newer record will suffice.
5624  */
5625 static struct worklist *
5626 jnewblk_merge(struct worklist *new,
5627 	struct worklist *old,
5628 	struct workhead *wkhd)
5629 {
5630 	struct jnewblk *njnewblk;
5631 	struct jnewblk *jnewblk;
5632 
5633 	/* Handle NULLs to simplify callers. */
5634 	if (new == NULL)
5635 		return (old);
5636 	if (old == NULL)
5637 		return (new);
5638 	/* Replace a jfreefrag with a jnewblk. */
5639 	if (new->wk_type == D_JFREEFRAG) {
5640 		if (WK_JNEWBLK(old)->jn_blkno != WK_JFREEFRAG(new)->fr_blkno)
5641 			panic("jnewblk_merge: blkno mismatch: %p, %p",
5642 			    old, new);
5643 		cancel_jfreefrag(WK_JFREEFRAG(new));
5644 		return (old);
5645 	}
5646 	if (old->wk_type != D_JNEWBLK || new->wk_type != D_JNEWBLK)
5647 		panic("jnewblk_merge: Bad type: old %d new %d\n",
5648 		    old->wk_type, new->wk_type);
5649 	/*
5650 	 * Handle merging of two jnewblk records that describe
5651 	 * different sets of fragments in the same block.
5652 	 */
5653 	jnewblk = WK_JNEWBLK(old);
5654 	njnewblk = WK_JNEWBLK(new);
5655 	if (jnewblk->jn_blkno != njnewblk->jn_blkno)
5656 		panic("jnewblk_merge: Merging disparate blocks.");
5657 	/*
5658 	 * The record may be rolled back in the cg.
5659 	 */
5660 	if (jnewblk->jn_state & UNDONE) {
5661 		jnewblk->jn_state &= ~UNDONE;
5662 		njnewblk->jn_state |= UNDONE;
5663 		njnewblk->jn_state &= ~ATTACHED;
5664 	}
5665 	/*
5666 	 * We modify the newer addref and free the older so that if neither
5667 	 * has been written the most up-to-date copy will be on disk.  If
5668 	 * both have been written but rolled back we only temporarily need
5669 	 * one of them to fix the bits when the cg write completes.
5670 	 */
5671 	jnewblk->jn_state |= ATTACHED | COMPLETE;
5672 	njnewblk->jn_oldfrags = jnewblk->jn_oldfrags;
5673 	cancel_jnewblk(jnewblk, wkhd);
5674 	WORKLIST_REMOVE(&jnewblk->jn_list);
5675 	free_jnewblk(jnewblk);
5676 	return (new);
5677 }
5678 
5679 /*
5680  * Replace an old allocdirect dependency with a newer one.
5681  */
5682 static void
5683 allocdirect_merge(
5684 	struct allocdirectlst *adphead,	/* head of list holding allocdirects */
5685 	struct allocdirect *newadp,	/* allocdirect being added */
5686 	struct allocdirect *oldadp)	/* existing allocdirect being checked */
5687 {
5688 	struct worklist *wk;
5689 	struct freefrag *freefrag;
5690 
5691 	freefrag = NULL;
5692 	LOCK_OWNED(VFSTOUFS(newadp->ad_list.wk_mp));
5693 	if (newadp->ad_oldblkno != oldadp->ad_newblkno ||
5694 	    newadp->ad_oldsize != oldadp->ad_newsize ||
5695 	    newadp->ad_offset >= UFS_NDADDR)
5696 		panic("%s %jd != new %jd || old size %ld != new %ld",
5697 		    "allocdirect_merge: old blkno",
5698 		    (intmax_t)newadp->ad_oldblkno,
5699 		    (intmax_t)oldadp->ad_newblkno,
5700 		    newadp->ad_oldsize, oldadp->ad_newsize);
5701 	newadp->ad_oldblkno = oldadp->ad_oldblkno;
5702 	newadp->ad_oldsize = oldadp->ad_oldsize;
5703 	/*
5704 	 * If the old dependency had a fragment to free or had never
5705 	 * previously had a block allocated, then the new dependency
5706 	 * can immediately post its freefrag and adopt the old freefrag.
5707 	 * This action is done by swapping the freefrag dependencies.
5708 	 * The new dependency gains the old one's freefrag, and the
5709 	 * old one gets the new one and then immediately puts it on
5710 	 * the worklist when it is freed by free_newblk. It is
5711 	 * not possible to do this swap when the old dependency had a
5712 	 * non-zero size but no previous fragment to free. This condition
5713 	 * arises when the new block is an extension of the old block.
5714 	 * Here, the first part of the fragment allocated to the new
5715 	 * dependency is part of the block currently claimed on disk by
5716 	 * the old dependency, so cannot legitimately be freed until the
5717 	 * conditions for the new dependency are fulfilled.
5718 	 */
5719 	freefrag = newadp->ad_freefrag;
5720 	if (oldadp->ad_freefrag != NULL || oldadp->ad_oldblkno == 0) {
5721 		newadp->ad_freefrag = oldadp->ad_freefrag;
5722 		oldadp->ad_freefrag = freefrag;
5723 	}
5724 	/*
5725 	 * If we are tracking a new directory-block allocation,
5726 	 * move it from the old allocdirect to the new allocdirect.
5727 	 */
5728 	if ((wk = LIST_FIRST(&oldadp->ad_newdirblk)) != NULL) {
5729 		WORKLIST_REMOVE(wk);
5730 		if (!LIST_EMPTY(&oldadp->ad_newdirblk))
5731 			panic("allocdirect_merge: extra newdirblk");
5732 		WORKLIST_INSERT(&newadp->ad_newdirblk, wk);
5733 	}
5734 	TAILQ_REMOVE(adphead, oldadp, ad_next);
5735 	/*
5736 	 * We need to move any journal dependencies over to the freefrag
5737 	 * that releases this block if it exists.  Otherwise we are
5738 	 * extending an existing block and we'll wait until that is
5739 	 * complete to release the journal space and extend the
5740 	 * new journal to cover this old space as well.
5741 	 */
5742 	if (freefrag == NULL) {
5743 		if (oldadp->ad_newblkno != newadp->ad_newblkno)
5744 			panic("allocdirect_merge: %jd != %jd",
5745 			    oldadp->ad_newblkno, newadp->ad_newblkno);
5746 		newadp->ad_block.nb_jnewblk = (struct jnewblk *)
5747 		    jnewblk_merge(&newadp->ad_block.nb_jnewblk->jn_list,
5748 		    &oldadp->ad_block.nb_jnewblk->jn_list,
5749 		    &newadp->ad_block.nb_jwork);
5750 		oldadp->ad_block.nb_jnewblk = NULL;
5751 		cancel_newblk(&oldadp->ad_block, NULL,
5752 		    &newadp->ad_block.nb_jwork);
5753 	} else {
5754 		wk = (struct worklist *) cancel_newblk(&oldadp->ad_block,
5755 		    &freefrag->ff_list, &freefrag->ff_jwork);
5756 		freefrag->ff_jdep = jnewblk_merge(freefrag->ff_jdep, wk,
5757 		    &freefrag->ff_jwork);
5758 	}
5759 	free_newblk(&oldadp->ad_block);
5760 }
5761 
5762 /*
5763  * Allocate a jfreefrag structure to journal a single block free.
5764  */
5765 static struct jfreefrag *
5766 newjfreefrag(struct freefrag *freefrag,
5767 	struct inode *ip,
5768 	ufs2_daddr_t blkno,
5769 	long size,
5770 	ufs_lbn_t lbn)
5771 {
5772 	struct jfreefrag *jfreefrag;
5773 	struct fs *fs;
5774 
5775 	fs = ITOFS(ip);
5776 	jfreefrag = malloc(sizeof(struct jfreefrag), M_JFREEFRAG,
5777 	    M_SOFTDEP_FLAGS);
5778 	workitem_alloc(&jfreefrag->fr_list, D_JFREEFRAG, ITOVFS(ip));
5779 	jfreefrag->fr_jsegdep = newjsegdep(&jfreefrag->fr_list);
5780 	jfreefrag->fr_state = ATTACHED | DEPCOMPLETE;
5781 	jfreefrag->fr_ino = ip->i_number;
5782 	jfreefrag->fr_lbn = lbn;
5783 	jfreefrag->fr_blkno = blkno;
5784 	jfreefrag->fr_frags = numfrags(fs, size);
5785 	jfreefrag->fr_freefrag = freefrag;
5786 
5787 	return (jfreefrag);
5788 }
5789 
5790 /*
5791  * Allocate a new freefrag structure.
5792  */
5793 static struct freefrag *
5794 newfreefrag(struct inode *ip,
5795 	ufs2_daddr_t blkno,
5796 	long size,
5797 	ufs_lbn_t lbn,
5798 	u_long key)
5799 {
5800 	struct freefrag *freefrag;
5801 	struct ufsmount *ump;
5802 	struct fs *fs;
5803 
5804 	CTR4(KTR_SUJ, "newfreefrag: ino %d blkno %jd size %ld lbn %jd",
5805 	    ip->i_number, blkno, size, lbn);
5806 	ump = ITOUMP(ip);
5807 	fs = ump->um_fs;
5808 	if (fragnum(fs, blkno) + numfrags(fs, size) > fs->fs_frag)
5809 		panic("newfreefrag: frag size");
5810 	freefrag = malloc(sizeof(struct freefrag),
5811 	    M_FREEFRAG, M_SOFTDEP_FLAGS);
5812 	workitem_alloc(&freefrag->ff_list, D_FREEFRAG, UFSTOVFS(ump));
5813 	freefrag->ff_state = ATTACHED;
5814 	LIST_INIT(&freefrag->ff_jwork);
5815 	freefrag->ff_inum = ip->i_number;
5816 	freefrag->ff_vtype = ITOV(ip)->v_type;
5817 	freefrag->ff_blkno = blkno;
5818 	freefrag->ff_fragsize = size;
5819 	freefrag->ff_key = key;
5820 
5821 	if (MOUNTEDSUJ(UFSTOVFS(ump))) {
5822 		freefrag->ff_jdep = (struct worklist *)
5823 		    newjfreefrag(freefrag, ip, blkno, size, lbn);
5824 	} else {
5825 		freefrag->ff_state |= DEPCOMPLETE;
5826 		freefrag->ff_jdep = NULL;
5827 	}
5828 
5829 	return (freefrag);
5830 }
5831 
5832 /*
5833  * This workitem de-allocates fragments that were replaced during
5834  * file block allocation.
5835  */
5836 static void
5837 handle_workitem_freefrag(struct freefrag *freefrag)
5838 {
5839 	struct ufsmount *ump = VFSTOUFS(freefrag->ff_list.wk_mp);
5840 	struct workhead wkhd;
5841 
5842 	CTR3(KTR_SUJ,
5843 	    "handle_workitem_freefrag: ino %d blkno %jd size %ld",
5844 	    freefrag->ff_inum, freefrag->ff_blkno, freefrag->ff_fragsize);
5845 	/*
5846 	 * It would be illegal to add new completion items to the
5847 	 * freefrag after it was schedule to be done so it must be
5848 	 * safe to modify the list head here.
5849 	 */
5850 	LIST_INIT(&wkhd);
5851 	ACQUIRE_LOCK(ump);
5852 	LIST_SWAP(&freefrag->ff_jwork, &wkhd, worklist, wk_list);
5853 	/*
5854 	 * If the journal has not been written we must cancel it here.
5855 	 */
5856 	if (freefrag->ff_jdep) {
5857 		if (freefrag->ff_jdep->wk_type != D_JNEWBLK)
5858 			panic("handle_workitem_freefrag: Unexpected type %d\n",
5859 			    freefrag->ff_jdep->wk_type);
5860 		cancel_jnewblk(WK_JNEWBLK(freefrag->ff_jdep), &wkhd);
5861 	}
5862 	FREE_LOCK(ump);
5863 	ffs_blkfree(ump, ump->um_fs, ump->um_devvp, freefrag->ff_blkno,
5864 	   freefrag->ff_fragsize, freefrag->ff_inum, freefrag->ff_vtype,
5865 	   &wkhd, freefrag->ff_key);
5866 	ACQUIRE_LOCK(ump);
5867 	WORKITEM_FREE(freefrag, D_FREEFRAG);
5868 	FREE_LOCK(ump);
5869 }
5870 
5871 /*
5872  * Set up a dependency structure for an external attributes data block.
5873  * This routine follows much of the structure of softdep_setup_allocdirect.
5874  * See the description of softdep_setup_allocdirect above for details.
5875  */
5876 void
5877 softdep_setup_allocext(
5878 	struct inode *ip,
5879 	ufs_lbn_t off,
5880 	ufs2_daddr_t newblkno,
5881 	ufs2_daddr_t oldblkno,
5882 	long newsize,
5883 	long oldsize,
5884 	struct buf *bp)
5885 {
5886 	struct allocdirect *adp, *oldadp;
5887 	struct allocdirectlst *adphead;
5888 	struct freefrag *freefrag;
5889 	struct inodedep *inodedep;
5890 	struct jnewblk *jnewblk;
5891 	struct newblk *newblk;
5892 	struct mount *mp;
5893 	struct ufsmount *ump;
5894 	ufs_lbn_t lbn;
5895 
5896 	mp = ITOVFS(ip);
5897 	ump = VFSTOUFS(mp);
5898 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
5899 	    ("softdep_setup_allocext called on non-softdep filesystem"));
5900 	KASSERT(off < UFS_NXADDR,
5901 	    ("softdep_setup_allocext: lbn %lld > UFS_NXADDR", (long long)off));
5902 
5903 	lbn = bp->b_lblkno;
5904 	if (oldblkno && oldblkno != newblkno)
5905 		/*
5906 		 * The usual case is that a smaller fragment that
5907 		 * was just allocated has been replaced with a bigger
5908 		 * fragment or a full-size block. If it is marked as
5909 		 * B_DELWRI, the current contents have not been written
5910 		 * to disk. It is possible that the block was written
5911 		 * earlier, but very uncommon. If the block has never
5912 		 * been written, there is no need to send a BIO_DELETE
5913 		 * for it when it is freed. The gain from avoiding the
5914 		 * TRIMs for the common case of unwritten blocks far
5915 		 * exceeds the cost of the write amplification for the
5916 		 * uncommon case of failing to send a TRIM for a block
5917 		 * that had been written.
5918 		 */
5919 		freefrag = newfreefrag(ip, oldblkno, oldsize, lbn,
5920 		    (bp->b_flags & B_DELWRI) != 0 ? NOTRIM_KEY : SINGLETON_KEY);
5921 	else
5922 		freefrag = NULL;
5923 
5924 	ACQUIRE_LOCK(ump);
5925 	if (newblk_lookup(mp, newblkno, 0, &newblk) == 0)
5926 		panic("softdep_setup_allocext: lost block");
5927 	KASSERT(newblk->nb_list.wk_type == D_NEWBLK,
5928 	    ("softdep_setup_allocext: newblk already initialized"));
5929 	/*
5930 	 * Convert the newblk to an allocdirect.
5931 	 */
5932 	WORKITEM_REASSIGN(newblk, D_ALLOCDIRECT);
5933 	adp = (struct allocdirect *)newblk;
5934 	newblk->nb_freefrag = freefrag;
5935 	adp->ad_offset = off;
5936 	adp->ad_oldblkno = oldblkno;
5937 	adp->ad_newsize = newsize;
5938 	adp->ad_oldsize = oldsize;
5939 	adp->ad_state |=  EXTDATA;
5940 
5941 	/*
5942 	 * Finish initializing the journal.
5943 	 */
5944 	if ((jnewblk = newblk->nb_jnewblk) != NULL) {
5945 		jnewblk->jn_ino = ip->i_number;
5946 		jnewblk->jn_lbn = lbn;
5947 		add_to_journal(&jnewblk->jn_list);
5948 	}
5949 	if (freefrag && freefrag->ff_jdep != NULL &&
5950 	    freefrag->ff_jdep->wk_type == D_JFREEFRAG)
5951 		add_to_journal(freefrag->ff_jdep);
5952 	inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
5953 	adp->ad_inodedep = inodedep;
5954 
5955 	WORKLIST_INSERT(&bp->b_dep, &newblk->nb_list);
5956 	/*
5957 	 * The list of allocdirects must be kept in sorted and ascending
5958 	 * order so that the rollback routines can quickly determine the
5959 	 * first uncommitted block (the size of the file stored on disk
5960 	 * ends at the end of the lowest committed fragment, or if there
5961 	 * are no fragments, at the end of the highest committed block).
5962 	 * Since files generally grow, the typical case is that the new
5963 	 * block is to be added at the end of the list. We speed this
5964 	 * special case by checking against the last allocdirect in the
5965 	 * list before laboriously traversing the list looking for the
5966 	 * insertion point.
5967 	 */
5968 	adphead = &inodedep->id_newextupdt;
5969 	oldadp = TAILQ_LAST(adphead, allocdirectlst);
5970 	if (oldadp == NULL || oldadp->ad_offset <= off) {
5971 		/* insert at end of list */
5972 		TAILQ_INSERT_TAIL(adphead, adp, ad_next);
5973 		if (oldadp != NULL && oldadp->ad_offset == off)
5974 			allocdirect_merge(adphead, adp, oldadp);
5975 		FREE_LOCK(ump);
5976 		return;
5977 	}
5978 	TAILQ_FOREACH(oldadp, adphead, ad_next) {
5979 		if (oldadp->ad_offset >= off)
5980 			break;
5981 	}
5982 	if (oldadp == NULL)
5983 		panic("softdep_setup_allocext: lost entry");
5984 	/* insert in middle of list */
5985 	TAILQ_INSERT_BEFORE(oldadp, adp, ad_next);
5986 	if (oldadp->ad_offset == off)
5987 		allocdirect_merge(adphead, adp, oldadp);
5988 	FREE_LOCK(ump);
5989 }
5990 
5991 /*
5992  * Indirect block allocation dependencies.
5993  *
5994  * The same dependencies that exist for a direct block also exist when
5995  * a new block is allocated and pointed to by an entry in a block of
5996  * indirect pointers. The undo/redo states described above are also
5997  * used here. Because an indirect block contains many pointers that
5998  * may have dependencies, a second copy of the entire in-memory indirect
5999  * block is kept. The buffer cache copy is always completely up-to-date.
6000  * The second copy, which is used only as a source for disk writes,
6001  * contains only the safe pointers (i.e., those that have no remaining
6002  * update dependencies). The second copy is freed when all pointers
6003  * are safe. The cache is not allowed to replace indirect blocks with
6004  * pending update dependencies. If a buffer containing an indirect
6005  * block with dependencies is written, these routines will mark it
6006  * dirty again. It can only be successfully written once all the
6007  * dependencies are removed. The ffs_fsync routine in conjunction with
6008  * softdep_sync_metadata work together to get all the dependencies
6009  * removed so that a file can be successfully written to disk. Three
6010  * procedures are used when setting up indirect block pointer
6011  * dependencies. The division is necessary because of the organization
6012  * of the "balloc" routine and because of the distinction between file
6013  * pages and file metadata blocks.
6014  */
6015 
6016 /*
6017  * Allocate a new allocindir structure.
6018  */
6019 static struct allocindir *
6020 newallocindir(
6021 	struct inode *ip,	/* inode for file being extended */
6022 	int ptrno,		/* offset of pointer in indirect block */
6023 	ufs2_daddr_t newblkno,	/* disk block number being added */
6024 	ufs2_daddr_t oldblkno,	/* previous block number, 0 if none */
6025 	ufs_lbn_t lbn)
6026 {
6027 	struct newblk *newblk;
6028 	struct allocindir *aip;
6029 	struct freefrag *freefrag;
6030 	struct jnewblk *jnewblk;
6031 
6032 	if (oldblkno)
6033 		freefrag = newfreefrag(ip, oldblkno, ITOFS(ip)->fs_bsize, lbn,
6034 		    SINGLETON_KEY);
6035 	else
6036 		freefrag = NULL;
6037 	ACQUIRE_LOCK(ITOUMP(ip));
6038 	if (newblk_lookup(ITOVFS(ip), newblkno, 0, &newblk) == 0)
6039 		panic("new_allocindir: lost block");
6040 	KASSERT(newblk->nb_list.wk_type == D_NEWBLK,
6041 	    ("newallocindir: newblk already initialized"));
6042 	WORKITEM_REASSIGN(newblk, D_ALLOCINDIR);
6043 	newblk->nb_freefrag = freefrag;
6044 	aip = (struct allocindir *)newblk;
6045 	aip->ai_offset = ptrno;
6046 	aip->ai_oldblkno = oldblkno;
6047 	aip->ai_lbn = lbn;
6048 	if ((jnewblk = newblk->nb_jnewblk) != NULL) {
6049 		jnewblk->jn_ino = ip->i_number;
6050 		jnewblk->jn_lbn = lbn;
6051 		add_to_journal(&jnewblk->jn_list);
6052 	}
6053 	if (freefrag && freefrag->ff_jdep != NULL &&
6054 	    freefrag->ff_jdep->wk_type == D_JFREEFRAG)
6055 		add_to_journal(freefrag->ff_jdep);
6056 	return (aip);
6057 }
6058 
6059 /*
6060  * Called just before setting an indirect block pointer
6061  * to a newly allocated file page.
6062  */
6063 void
6064 softdep_setup_allocindir_page(
6065 	struct inode *ip,	/* inode for file being extended */
6066 	ufs_lbn_t lbn,		/* allocated block number within file */
6067 	struct buf *bp,		/* buffer with indirect blk referencing page */
6068 	int ptrno,		/* offset of pointer in indirect block */
6069 	ufs2_daddr_t newblkno,	/* disk block number being added */
6070 	ufs2_daddr_t oldblkno,	/* previous block number, 0 if none */
6071 	struct buf *nbp)	/* buffer holding allocated page */
6072 {
6073 	struct inodedep *inodedep;
6074 	struct freefrag *freefrag;
6075 	struct allocindir *aip;
6076 	struct pagedep *pagedep;
6077 	struct mount *mp;
6078 	struct ufsmount *ump;
6079 
6080 	mp = ITOVFS(ip);
6081 	ump = VFSTOUFS(mp);
6082 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
6083 	    ("softdep_setup_allocindir_page called on non-softdep filesystem"));
6084 	KASSERT(lbn == nbp->b_lblkno,
6085 	    ("softdep_setup_allocindir_page: lbn %jd != lblkno %jd",
6086 	    lbn, bp->b_lblkno));
6087 	CTR4(KTR_SUJ,
6088 	    "softdep_setup_allocindir_page: ino %d blkno %jd oldblkno %jd "
6089 	    "lbn %jd", ip->i_number, newblkno, oldblkno, lbn);
6090 	ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_page");
6091 	aip = newallocindir(ip, ptrno, newblkno, oldblkno, lbn);
6092 	(void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
6093 	/*
6094 	 * If we are allocating a directory page, then we must
6095 	 * allocate an associated pagedep to track additions and
6096 	 * deletions.
6097 	 */
6098 	if ((ip->i_mode & IFMT) == IFDIR)
6099 		pagedep_lookup(mp, nbp, ip->i_number, lbn, DEPALLOC, &pagedep);
6100 	WORKLIST_INSERT(&nbp->b_dep, &aip->ai_block.nb_list);
6101 	freefrag = setup_allocindir_phase2(bp, ip, inodedep, aip, lbn);
6102 	FREE_LOCK(ump);
6103 	if (freefrag)
6104 		handle_workitem_freefrag(freefrag);
6105 }
6106 
6107 /*
6108  * Called just before setting an indirect block pointer to a
6109  * newly allocated indirect block.
6110  */
6111 void
6112 softdep_setup_allocindir_meta(
6113 	struct buf *nbp,	/* newly allocated indirect block */
6114 	struct inode *ip,	/* inode for file being extended */
6115 	struct buf *bp,		/* indirect block referencing allocated block */
6116 	int ptrno,		/* offset of pointer in indirect block */
6117 	ufs2_daddr_t newblkno)	/* disk block number being added */
6118 {
6119 	struct inodedep *inodedep;
6120 	struct allocindir *aip;
6121 	struct ufsmount *ump;
6122 	ufs_lbn_t lbn;
6123 
6124 	ump = ITOUMP(ip);
6125 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
6126 	    ("softdep_setup_allocindir_meta called on non-softdep filesystem"));
6127 	CTR3(KTR_SUJ,
6128 	    "softdep_setup_allocindir_meta: ino %d blkno %jd ptrno %d",
6129 	    ip->i_number, newblkno, ptrno);
6130 	lbn = nbp->b_lblkno;
6131 	ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_meta");
6132 	aip = newallocindir(ip, ptrno, newblkno, 0, lbn);
6133 	inodedep_lookup(UFSTOVFS(ump), ip->i_number, DEPALLOC, &inodedep);
6134 	WORKLIST_INSERT(&nbp->b_dep, &aip->ai_block.nb_list);
6135 	if (setup_allocindir_phase2(bp, ip, inodedep, aip, lbn))
6136 		panic("softdep_setup_allocindir_meta: Block already existed");
6137 	FREE_LOCK(ump);
6138 }
6139 
6140 static void
6141 indirdep_complete(struct indirdep *indirdep)
6142 {
6143 	struct allocindir *aip;
6144 
6145 	LIST_REMOVE(indirdep, ir_next);
6146 	indirdep->ir_state |= DEPCOMPLETE;
6147 
6148 	while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != NULL) {
6149 		LIST_REMOVE(aip, ai_next);
6150 		free_newblk(&aip->ai_block);
6151 	}
6152 	/*
6153 	 * If this indirdep is not attached to a buf it was simply waiting
6154 	 * on completion to clear completehd.  free_indirdep() asserts
6155 	 * that nothing is dangling.
6156 	 */
6157 	if ((indirdep->ir_state & ONWORKLIST) == 0)
6158 		free_indirdep(indirdep);
6159 }
6160 
6161 static struct indirdep *
6162 indirdep_lookup(struct mount *mp,
6163 	struct inode *ip,
6164 	struct buf *bp)
6165 {
6166 	struct indirdep *indirdep, *newindirdep;
6167 	struct newblk *newblk;
6168 	struct ufsmount *ump;
6169 	struct worklist *wk;
6170 	struct fs *fs;
6171 	ufs2_daddr_t blkno;
6172 
6173 	ump = VFSTOUFS(mp);
6174 	LOCK_OWNED(ump);
6175 	indirdep = NULL;
6176 	newindirdep = NULL;
6177 	fs = ump->um_fs;
6178 	for (;;) {
6179 		LIST_FOREACH(wk, &bp->b_dep, wk_list) {
6180 			if (wk->wk_type != D_INDIRDEP)
6181 				continue;
6182 			indirdep = WK_INDIRDEP(wk);
6183 			break;
6184 		}
6185 		/* Found on the buffer worklist, no new structure to free. */
6186 		if (indirdep != NULL && newindirdep == NULL)
6187 			return (indirdep);
6188 		if (indirdep != NULL && newindirdep != NULL)
6189 			panic("indirdep_lookup: simultaneous create");
6190 		/* None found on the buffer and a new structure is ready. */
6191 		if (indirdep == NULL && newindirdep != NULL)
6192 			break;
6193 		/* None found and no new structure available. */
6194 		FREE_LOCK(ump);
6195 		newindirdep = malloc(sizeof(struct indirdep),
6196 		    M_INDIRDEP, M_SOFTDEP_FLAGS);
6197 		workitem_alloc(&newindirdep->ir_list, D_INDIRDEP, mp);
6198 		newindirdep->ir_state = ATTACHED;
6199 		if (I_IS_UFS1(ip))
6200 			newindirdep->ir_state |= UFS1FMT;
6201 		TAILQ_INIT(&newindirdep->ir_trunc);
6202 		newindirdep->ir_saveddata = NULL;
6203 		LIST_INIT(&newindirdep->ir_deplisthd);
6204 		LIST_INIT(&newindirdep->ir_donehd);
6205 		LIST_INIT(&newindirdep->ir_writehd);
6206 		LIST_INIT(&newindirdep->ir_completehd);
6207 		if (bp->b_blkno == bp->b_lblkno) {
6208 			ufs_bmaparray(bp->b_vp, bp->b_lblkno, &blkno, bp,
6209 			    NULL, NULL);
6210 			bp->b_blkno = blkno;
6211 		}
6212 		newindirdep->ir_freeblks = NULL;
6213 		newindirdep->ir_savebp =
6214 		    getblk(ump->um_devvp, bp->b_blkno, bp->b_bcount, 0, 0, 0);
6215 		newindirdep->ir_bp = bp;
6216 		BUF_KERNPROC(newindirdep->ir_savebp);
6217 		bcopy(bp->b_data, newindirdep->ir_savebp->b_data, bp->b_bcount);
6218 		ACQUIRE_LOCK(ump);
6219 	}
6220 	indirdep = newindirdep;
6221 	WORKLIST_INSERT(&bp->b_dep, &indirdep->ir_list);
6222 	/*
6223 	 * If the block is not yet allocated we don't set DEPCOMPLETE so
6224 	 * that we don't free dependencies until the pointers are valid.
6225 	 * This could search b_dep for D_ALLOCDIRECT/D_ALLOCINDIR rather
6226 	 * than using the hash.
6227 	 */
6228 	if (newblk_lookup(mp, dbtofsb(fs, bp->b_blkno), 0, &newblk))
6229 		LIST_INSERT_HEAD(&newblk->nb_indirdeps, indirdep, ir_next);
6230 	else
6231 		indirdep->ir_state |= DEPCOMPLETE;
6232 	return (indirdep);
6233 }
6234 
6235 /*
6236  * Called to finish the allocation of the "aip" allocated
6237  * by one of the two routines above.
6238  */
6239 static struct freefrag *
6240 setup_allocindir_phase2(
6241 	struct buf *bp,		/* in-memory copy of the indirect block */
6242 	struct inode *ip,	/* inode for file being extended */
6243 	struct inodedep *inodedep, /* Inodedep for ip */
6244 	struct allocindir *aip,	/* allocindir allocated by the above routines */
6245 	ufs_lbn_t lbn)		/* Logical block number for this block. */
6246 {
6247 	struct fs *fs __diagused;
6248 	struct indirdep *indirdep;
6249 	struct allocindir *oldaip;
6250 	struct freefrag *freefrag;
6251 	struct mount *mp;
6252 	struct ufsmount *ump;
6253 
6254 	mp = ITOVFS(ip);
6255 	ump = VFSTOUFS(mp);
6256 	LOCK_OWNED(ump);
6257 	fs = ump->um_fs;
6258 	if (bp->b_lblkno >= 0)
6259 		panic("setup_allocindir_phase2: not indir blk");
6260 	KASSERT(aip->ai_offset >= 0 && aip->ai_offset < NINDIR(fs),
6261 	    ("setup_allocindir_phase2: Bad offset %d", aip->ai_offset));
6262 	indirdep = indirdep_lookup(mp, ip, bp);
6263 	KASSERT(indirdep->ir_savebp != NULL,
6264 	    ("setup_allocindir_phase2 NULL ir_savebp"));
6265 	aip->ai_indirdep = indirdep;
6266 	/*
6267 	 * Check for an unwritten dependency for this indirect offset.  If
6268 	 * there is, merge the old dependency into the new one.  This happens
6269 	 * as a result of reallocblk only.
6270 	 */
6271 	freefrag = NULL;
6272 	if (aip->ai_oldblkno != 0) {
6273 		LIST_FOREACH(oldaip, &indirdep->ir_deplisthd, ai_next) {
6274 			if (oldaip->ai_offset == aip->ai_offset) {
6275 				freefrag = allocindir_merge(aip, oldaip);
6276 				goto done;
6277 			}
6278 		}
6279 		LIST_FOREACH(oldaip, &indirdep->ir_donehd, ai_next) {
6280 			if (oldaip->ai_offset == aip->ai_offset) {
6281 				freefrag = allocindir_merge(aip, oldaip);
6282 				goto done;
6283 			}
6284 		}
6285 	}
6286 done:
6287 	LIST_INSERT_HEAD(&indirdep->ir_deplisthd, aip, ai_next);
6288 	return (freefrag);
6289 }
6290 
6291 /*
6292  * Merge two allocindirs which refer to the same block.  Move newblock
6293  * dependencies and setup the freefrags appropriately.
6294  */
6295 static struct freefrag *
6296 allocindir_merge(
6297 	struct allocindir *aip,
6298 	struct allocindir *oldaip)
6299 {
6300 	struct freefrag *freefrag;
6301 	struct worklist *wk;
6302 
6303 	if (oldaip->ai_newblkno != aip->ai_oldblkno)
6304 		panic("allocindir_merge: blkno");
6305 	aip->ai_oldblkno = oldaip->ai_oldblkno;
6306 	freefrag = aip->ai_freefrag;
6307 	aip->ai_freefrag = oldaip->ai_freefrag;
6308 	oldaip->ai_freefrag = NULL;
6309 	KASSERT(freefrag != NULL, ("setup_allocindir_phase2: No freefrag"));
6310 	/*
6311 	 * If we are tracking a new directory-block allocation,
6312 	 * move it from the old allocindir to the new allocindir.
6313 	 */
6314 	if ((wk = LIST_FIRST(&oldaip->ai_newdirblk)) != NULL) {
6315 		WORKLIST_REMOVE(wk);
6316 		if (!LIST_EMPTY(&oldaip->ai_newdirblk))
6317 			panic("allocindir_merge: extra newdirblk");
6318 		WORKLIST_INSERT(&aip->ai_newdirblk, wk);
6319 	}
6320 	/*
6321 	 * We can skip journaling for this freefrag and just complete
6322 	 * any pending journal work for the allocindir that is being
6323 	 * removed after the freefrag completes.
6324 	 */
6325 	if (freefrag->ff_jdep)
6326 		cancel_jfreefrag(WK_JFREEFRAG(freefrag->ff_jdep));
6327 	LIST_REMOVE(oldaip, ai_next);
6328 	freefrag->ff_jdep = (struct worklist *)cancel_newblk(&oldaip->ai_block,
6329 	    &freefrag->ff_list, &freefrag->ff_jwork);
6330 	free_newblk(&oldaip->ai_block);
6331 
6332 	return (freefrag);
6333 }
6334 
6335 static inline void
6336 setup_freedirect(
6337 	struct freeblks *freeblks,
6338 	struct inode *ip,
6339 	int i,
6340 	int needj)
6341 {
6342 	struct ufsmount *ump;
6343 	ufs2_daddr_t blkno;
6344 	int frags;
6345 
6346 	blkno = DIP(ip, i_db[i]);
6347 	if (blkno == 0)
6348 		return;
6349 	DIP_SET(ip, i_db[i], 0);
6350 	ump = ITOUMP(ip);
6351 	frags = sblksize(ump->um_fs, ip->i_size, i);
6352 	frags = numfrags(ump->um_fs, frags);
6353 	newfreework(ump, freeblks, NULL, i, blkno, frags, 0, needj);
6354 }
6355 
6356 static inline void
6357 setup_freeext(
6358 	struct freeblks *freeblks,
6359 	struct inode *ip,
6360 	int i,
6361 	int needj)
6362 {
6363 	struct ufsmount *ump;
6364 	ufs2_daddr_t blkno;
6365 	int frags;
6366 
6367 	blkno = ip->i_din2->di_extb[i];
6368 	if (blkno == 0)
6369 		return;
6370 	ip->i_din2->di_extb[i] = 0;
6371 	ump = ITOUMP(ip);
6372 	frags = sblksize(ump->um_fs, ip->i_din2->di_extsize, i);
6373 	frags = numfrags(ump->um_fs, frags);
6374 	newfreework(ump, freeblks, NULL, -1 - i, blkno, frags, 0, needj);
6375 }
6376 
6377 static inline void
6378 setup_freeindir(
6379 	struct freeblks *freeblks,
6380 	struct inode *ip,
6381 	int i,
6382 	ufs_lbn_t lbn,
6383 	int needj)
6384 {
6385 	struct ufsmount *ump;
6386 	ufs2_daddr_t blkno;
6387 
6388 	blkno = DIP(ip, i_ib[i]);
6389 	if (blkno == 0)
6390 		return;
6391 	DIP_SET(ip, i_ib[i], 0);
6392 	ump = ITOUMP(ip);
6393 	newfreework(ump, freeblks, NULL, lbn, blkno, ump->um_fs->fs_frag,
6394 	    0, needj);
6395 }
6396 
6397 static inline struct freeblks *
6398 newfreeblks(struct mount *mp, struct inode *ip)
6399 {
6400 	struct freeblks *freeblks;
6401 
6402 	freeblks = malloc(sizeof(struct freeblks),
6403 		M_FREEBLKS, M_SOFTDEP_FLAGS|M_ZERO);
6404 	workitem_alloc(&freeblks->fb_list, D_FREEBLKS, mp);
6405 	LIST_INIT(&freeblks->fb_jblkdephd);
6406 	LIST_INIT(&freeblks->fb_jwork);
6407 	freeblks->fb_ref = 0;
6408 	freeblks->fb_cgwait = 0;
6409 	freeblks->fb_state = ATTACHED;
6410 	freeblks->fb_uid = ip->i_uid;
6411 	freeblks->fb_inum = ip->i_number;
6412 	freeblks->fb_vtype = ITOV(ip)->v_type;
6413 	freeblks->fb_modrev = DIP(ip, i_modrev);
6414 	freeblks->fb_devvp = ITODEVVP(ip);
6415 	freeblks->fb_chkcnt = 0;
6416 	freeblks->fb_len = 0;
6417 
6418 	return (freeblks);
6419 }
6420 
6421 static void
6422 trunc_indirdep(
6423 	struct indirdep *indirdep,
6424 	struct freeblks *freeblks,
6425 	struct buf *bp,
6426 	int off)
6427 {
6428 	struct allocindir *aip, *aipn;
6429 
6430 	/*
6431 	 * The first set of allocindirs won't be in savedbp.
6432 	 */
6433 	LIST_FOREACH_SAFE(aip, &indirdep->ir_deplisthd, ai_next, aipn)
6434 		if (aip->ai_offset > off)
6435 			cancel_allocindir(aip, bp, freeblks, 1);
6436 	LIST_FOREACH_SAFE(aip, &indirdep->ir_donehd, ai_next, aipn)
6437 		if (aip->ai_offset > off)
6438 			cancel_allocindir(aip, bp, freeblks, 1);
6439 	/*
6440 	 * These will exist in savedbp.
6441 	 */
6442 	LIST_FOREACH_SAFE(aip, &indirdep->ir_writehd, ai_next, aipn)
6443 		if (aip->ai_offset > off)
6444 			cancel_allocindir(aip, NULL, freeblks, 0);
6445 	LIST_FOREACH_SAFE(aip, &indirdep->ir_completehd, ai_next, aipn)
6446 		if (aip->ai_offset > off)
6447 			cancel_allocindir(aip, NULL, freeblks, 0);
6448 }
6449 
6450 /*
6451  * Follow the chain of indirects down to lastlbn creating a freework
6452  * structure for each.  This will be used to start indir_trunc() at
6453  * the right offset and create the journal records for the parrtial
6454  * truncation.  A second step will handle the truncated dependencies.
6455  */
6456 static int
6457 setup_trunc_indir(
6458 	struct freeblks *freeblks,
6459 	struct inode *ip,
6460 	ufs_lbn_t lbn,
6461 	ufs_lbn_t lastlbn,
6462 	ufs2_daddr_t blkno)
6463 {
6464 	struct indirdep *indirdep;
6465 	struct indirdep *indirn;
6466 	struct freework *freework;
6467 	struct newblk *newblk;
6468 	struct mount *mp;
6469 	struct ufsmount *ump;
6470 	struct buf *bp;
6471 	uint8_t *start;
6472 	uint8_t *end;
6473 	ufs_lbn_t lbnadd;
6474 	int level;
6475 	int error;
6476 	int off;
6477 
6478 	freework = NULL;
6479 	if (blkno == 0)
6480 		return (0);
6481 	mp = freeblks->fb_list.wk_mp;
6482 	ump = VFSTOUFS(mp);
6483 	/*
6484 	 * Here, calls to VOP_BMAP() will fail.  However, we already have
6485 	 * the on-disk address, so we just pass it to bread() instead of
6486 	 * having bread() attempt to calculate it using VOP_BMAP().
6487 	 */
6488 	error = ffs_breadz(ump, ITOV(ip), lbn, blkptrtodb(ump, blkno),
6489 	    (int)mp->mnt_stat.f_iosize, NULL, NULL, 0, NOCRED, 0, NULL, &bp);
6490 	if (error)
6491 		return (error);
6492 	level = lbn_level(lbn);
6493 	lbnadd = lbn_offset(ump->um_fs, level);
6494 	/*
6495 	 * Compute the offset of the last block we want to keep.  Store
6496 	 * in the freework the first block we want to completely free.
6497 	 */
6498 	off = (lastlbn - -(lbn + level)) / lbnadd;
6499 	if (off + 1 == NINDIR(ump->um_fs))
6500 		goto nowork;
6501 	freework = newfreework(ump, freeblks, NULL, lbn, blkno, 0, off + 1, 0);
6502 	/*
6503 	 * Link the freework into the indirdep.  This will prevent any new
6504 	 * allocations from proceeding until we are finished with the
6505 	 * truncate and the block is written.
6506 	 */
6507 	ACQUIRE_LOCK(ump);
6508 	indirdep = indirdep_lookup(mp, ip, bp);
6509 	if (indirdep->ir_freeblks)
6510 		panic("setup_trunc_indir: indirdep already truncated.");
6511 	TAILQ_INSERT_TAIL(&indirdep->ir_trunc, freework, fw_next);
6512 	freework->fw_indir = indirdep;
6513 	/*
6514 	 * Cancel any allocindirs that will not make it to disk.
6515 	 * We have to do this for all copies of the indirdep that
6516 	 * live on this newblk.
6517 	 */
6518 	if ((indirdep->ir_state & DEPCOMPLETE) == 0) {
6519 		if (newblk_lookup(mp, dbtofsb(ump->um_fs, bp->b_blkno), 0,
6520 		    &newblk) == 0)
6521 			panic("setup_trunc_indir: lost block");
6522 		LIST_FOREACH(indirn, &newblk->nb_indirdeps, ir_next)
6523 			trunc_indirdep(indirn, freeblks, bp, off);
6524 	} else
6525 		trunc_indirdep(indirdep, freeblks, bp, off);
6526 	FREE_LOCK(ump);
6527 	/*
6528 	 * Creation is protected by the buf lock. The saveddata is only
6529 	 * needed if a full truncation follows a partial truncation but it
6530 	 * is difficult to allocate in that case so we fetch it anyway.
6531 	 */
6532 	if (indirdep->ir_saveddata == NULL)
6533 		indirdep->ir_saveddata = malloc(bp->b_bcount, M_INDIRDEP,
6534 		    M_SOFTDEP_FLAGS);
6535 nowork:
6536 	/* Fetch the blkno of the child and the zero start offset. */
6537 	if (I_IS_UFS1(ip)) {
6538 		blkno = ((ufs1_daddr_t *)bp->b_data)[off];
6539 		start = (uint8_t *)&((ufs1_daddr_t *)bp->b_data)[off+1];
6540 	} else {
6541 		blkno = ((ufs2_daddr_t *)bp->b_data)[off];
6542 		start = (uint8_t *)&((ufs2_daddr_t *)bp->b_data)[off+1];
6543 	}
6544 	if (freework) {
6545 		/* Zero the truncated pointers. */
6546 		end = bp->b_data + bp->b_bcount;
6547 		bzero(start, end - start);
6548 		bdwrite(bp);
6549 	} else
6550 		bqrelse(bp);
6551 	if (level == 0)
6552 		return (0);
6553 	lbn++; /* adjust level */
6554 	lbn -= (off * lbnadd);
6555 	return setup_trunc_indir(freeblks, ip, lbn, lastlbn, blkno);
6556 }
6557 
6558 /*
6559  * Complete the partial truncation of an indirect block setup by
6560  * setup_trunc_indir().  This zeros the truncated pointers in the saved
6561  * copy and writes them to disk before the freeblks is allowed to complete.
6562  */
6563 static void
6564 complete_trunc_indir(struct freework *freework)
6565 {
6566 	struct freework *fwn;
6567 	struct indirdep *indirdep;
6568 	struct ufsmount *ump;
6569 	struct buf *bp;
6570 	uintptr_t start;
6571 	int count;
6572 
6573 	ump = VFSTOUFS(freework->fw_list.wk_mp);
6574 	LOCK_OWNED(ump);
6575 	indirdep = freework->fw_indir;
6576 	for (;;) {
6577 		bp = indirdep->ir_bp;
6578 		/* See if the block was discarded. */
6579 		if (bp == NULL)
6580 			break;
6581 		/* Inline part of getdirtybuf().  We dont want bremfree. */
6582 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) == 0)
6583 			break;
6584 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
6585 		    LOCK_PTR(ump)) == 0)
6586 			BUF_UNLOCK(bp);
6587 		ACQUIRE_LOCK(ump);
6588 	}
6589 	freework->fw_state |= DEPCOMPLETE;
6590 	TAILQ_REMOVE(&indirdep->ir_trunc, freework, fw_next);
6591 	/*
6592 	 * Zero the pointers in the saved copy.
6593 	 */
6594 	if (indirdep->ir_state & UFS1FMT)
6595 		start = sizeof(ufs1_daddr_t);
6596 	else
6597 		start = sizeof(ufs2_daddr_t);
6598 	start *= freework->fw_start;
6599 	count = indirdep->ir_savebp->b_bcount - start;
6600 	start += (uintptr_t)indirdep->ir_savebp->b_data;
6601 	bzero((char *)start, count);
6602 	/*
6603 	 * We need to start the next truncation in the list if it has not
6604 	 * been started yet.
6605 	 */
6606 	fwn = TAILQ_FIRST(&indirdep->ir_trunc);
6607 	if (fwn != NULL) {
6608 		if (fwn->fw_freeblks == indirdep->ir_freeblks)
6609 			TAILQ_REMOVE(&indirdep->ir_trunc, fwn, fw_next);
6610 		if ((fwn->fw_state & ONWORKLIST) == 0)
6611 			freework_enqueue(fwn);
6612 	}
6613 	/*
6614 	 * If bp is NULL the block was fully truncated, restore
6615 	 * the saved block list otherwise free it if it is no
6616 	 * longer needed.
6617 	 */
6618 	if (TAILQ_EMPTY(&indirdep->ir_trunc)) {
6619 		if (bp == NULL)
6620 			bcopy(indirdep->ir_saveddata,
6621 			    indirdep->ir_savebp->b_data,
6622 			    indirdep->ir_savebp->b_bcount);
6623 		free(indirdep->ir_saveddata, M_INDIRDEP);
6624 		indirdep->ir_saveddata = NULL;
6625 	}
6626 	/*
6627 	 * When bp is NULL there is a full truncation pending.  We
6628 	 * must wait for this full truncation to be journaled before
6629 	 * we can release this freework because the disk pointers will
6630 	 * never be written as zero.
6631 	 */
6632 	if (bp == NULL)  {
6633 		if (LIST_EMPTY(&indirdep->ir_freeblks->fb_jblkdephd))
6634 			handle_written_freework(freework);
6635 		else
6636 			WORKLIST_INSERT(&indirdep->ir_freeblks->fb_freeworkhd,
6637 			   &freework->fw_list);
6638 		if (fwn == NULL) {
6639 			freework->fw_indir = (void *)0x0000deadbeef0000;
6640 			bp = indirdep->ir_savebp;
6641 			indirdep->ir_savebp = NULL;
6642 			free_indirdep(indirdep);
6643 			FREE_LOCK(ump);
6644 			brelse(bp);
6645 			ACQUIRE_LOCK(ump);
6646 		}
6647 	} else {
6648 		/* Complete when the real copy is written. */
6649 		WORKLIST_INSERT(&bp->b_dep, &freework->fw_list);
6650 		BUF_UNLOCK(bp);
6651 	}
6652 }
6653 
6654 /*
6655  * Calculate the number of blocks we are going to release where datablocks
6656  * is the current total and length is the new file size.
6657  */
6658 static ufs2_daddr_t
6659 blkcount(struct fs *fs,
6660 	ufs2_daddr_t datablocks,
6661 	off_t length)
6662 {
6663 	off_t totblks, numblks;
6664 
6665 	totblks = 0;
6666 	numblks = howmany(length, fs->fs_bsize);
6667 	if (numblks <= UFS_NDADDR) {
6668 		totblks = howmany(length, fs->fs_fsize);
6669 		goto out;
6670 	}
6671         totblks = blkstofrags(fs, numblks);
6672 	numblks -= UFS_NDADDR;
6673 	/*
6674 	 * Count all single, then double, then triple indirects required.
6675 	 * Subtracting one indirects worth of blocks for each pass
6676 	 * acknowledges one of each pointed to by the inode.
6677 	 */
6678 	for (;;) {
6679 		totblks += blkstofrags(fs, howmany(numblks, NINDIR(fs)));
6680 		numblks -= NINDIR(fs);
6681 		if (numblks <= 0)
6682 			break;
6683 		numblks = howmany(numblks, NINDIR(fs));
6684 	}
6685 out:
6686 	totblks = fsbtodb(fs, totblks);
6687 	/*
6688 	 * Handle sparse files.  We can't reclaim more blocks than the inode
6689 	 * references.  We will correct it later in handle_complete_freeblks()
6690 	 * when we know the real count.
6691 	 */
6692 	if (totblks > datablocks)
6693 		return (0);
6694 	return (datablocks - totblks);
6695 }
6696 
6697 /*
6698  * Handle freeblocks for journaled softupdate filesystems.
6699  *
6700  * Contrary to normal softupdates, we must preserve the block pointers in
6701  * indirects until their subordinates are free.  This is to avoid journaling
6702  * every block that is freed which may consume more space than the journal
6703  * itself.  The recovery program will see the free block journals at the
6704  * base of the truncated area and traverse them to reclaim space.  The
6705  * pointers in the inode may be cleared immediately after the journal
6706  * records are written because each direct and indirect pointer in the
6707  * inode is recorded in a journal.  This permits full truncation to proceed
6708  * asynchronously.  The write order is journal -> inode -> cgs -> indirects.
6709  *
6710  * The algorithm is as follows:
6711  * 1) Traverse the in-memory state and create journal entries to release
6712  *    the relevant blocks and full indirect trees.
6713  * 2) Traverse the indirect block chain adding partial truncation freework
6714  *    records to indirects in the path to lastlbn.  The freework will
6715  *    prevent new allocation dependencies from being satisfied in this
6716  *    indirect until the truncation completes.
6717  * 3) Read and lock the inode block, performing an update with the new size
6718  *    and pointers.  This prevents truncated data from becoming valid on
6719  *    disk through step 4.
6720  * 4) Reap unsatisfied dependencies that are beyond the truncated area,
6721  *    eliminate journal work for those records that do not require it.
6722  * 5) Schedule the journal records to be written followed by the inode block.
6723  * 6) Allocate any necessary frags for the end of file.
6724  * 7) Zero any partially truncated blocks.
6725  *
6726  * From this truncation proceeds asynchronously using the freework and
6727  * indir_trunc machinery.  The file will not be extended again into a
6728  * partially truncated indirect block until all work is completed but
6729  * the normal dependency mechanism ensures that it is rolled back/forward
6730  * as appropriate.  Further truncation may occur without delay and is
6731  * serialized in indir_trunc().
6732  */
6733 void
6734 softdep_journal_freeblocks(
6735 	struct inode *ip,	/* The inode whose length is to be reduced */
6736 	struct ucred *cred,
6737 	off_t length,		/* The new length for the file */
6738 	int flags)		/* IO_EXT and/or IO_NORMAL */
6739 {
6740 	struct freeblks *freeblks, *fbn;
6741 	struct worklist *wk, *wkn;
6742 	struct inodedep *inodedep;
6743 	struct jblkdep *jblkdep;
6744 	struct allocdirect *adp, *adpn;
6745 	struct ufsmount *ump;
6746 	struct fs *fs;
6747 	struct buf *bp;
6748 	struct vnode *vp;
6749 	struct mount *mp;
6750 	daddr_t dbn;
6751 	ufs2_daddr_t extblocks, datablocks;
6752 	ufs_lbn_t tmpval, lbn, lastlbn;
6753 	int frags, lastoff, iboff, allocblock, needj, error, i;
6754 
6755 	ump = ITOUMP(ip);
6756 	mp = UFSTOVFS(ump);
6757 	fs = ump->um_fs;
6758 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
6759 	    ("softdep_journal_freeblocks called on non-softdep filesystem"));
6760 	vp = ITOV(ip);
6761 	needj = 1;
6762 	iboff = -1;
6763 	allocblock = 0;
6764 	extblocks = 0;
6765 	datablocks = 0;
6766 	frags = 0;
6767 	freeblks = newfreeblks(mp, ip);
6768 	ACQUIRE_LOCK(ump);
6769 	/*
6770 	 * If we're truncating a removed file that will never be written
6771 	 * we don't need to journal the block frees.  The canceled journals
6772 	 * for the allocations will suffice.
6773 	 */
6774 	inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
6775 	if ((inodedep->id_state & (UNLINKED | DEPCOMPLETE)) == UNLINKED &&
6776 	    length == 0)
6777 		needj = 0;
6778 	CTR3(KTR_SUJ, "softdep_journal_freeblks: ip %d length %ld needj %d",
6779 	    ip->i_number, length, needj);
6780 	FREE_LOCK(ump);
6781 	/*
6782 	 * Calculate the lbn that we are truncating to.  This results in -1
6783 	 * if we're truncating the 0 bytes.  So it is the last lbn we want
6784 	 * to keep, not the first lbn we want to truncate.
6785 	 */
6786 	lastlbn = lblkno(fs, length + fs->fs_bsize - 1) - 1;
6787 	lastoff = blkoff(fs, length);
6788 	/*
6789 	 * Compute frags we are keeping in lastlbn.  0 means all.
6790 	 */
6791 	if (lastlbn >= 0 && lastlbn < UFS_NDADDR) {
6792 		frags = fragroundup(fs, lastoff);
6793 		/* adp offset of last valid allocdirect. */
6794 		iboff = lastlbn;
6795 	} else if (lastlbn > 0)
6796 		iboff = UFS_NDADDR;
6797 	if (fs->fs_magic == FS_UFS2_MAGIC)
6798 		extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize));
6799 	/*
6800 	 * Handle normal data blocks and indirects.  This section saves
6801 	 * values used after the inode update to complete frag and indirect
6802 	 * truncation.
6803 	 */
6804 	if ((flags & IO_NORMAL) != 0) {
6805 		/*
6806 		 * Handle truncation of whole direct and indirect blocks.
6807 		 */
6808 		for (i = iboff + 1; i < UFS_NDADDR; i++)
6809 			setup_freedirect(freeblks, ip, i, needj);
6810 		for (i = 0, tmpval = NINDIR(fs), lbn = UFS_NDADDR;
6811 		    i < UFS_NIADDR;
6812 		    i++, lbn += tmpval, tmpval *= NINDIR(fs)) {
6813 			/* Release a whole indirect tree. */
6814 			if (lbn > lastlbn) {
6815 				setup_freeindir(freeblks, ip, i, -lbn -i,
6816 				    needj);
6817 				continue;
6818 			}
6819 			iboff = i + UFS_NDADDR;
6820 			/*
6821 			 * Traverse partially truncated indirect tree.
6822 			 */
6823 			if (lbn <= lastlbn && lbn + tmpval - 1 > lastlbn)
6824 				setup_trunc_indir(freeblks, ip, -lbn - i,
6825 				    lastlbn, DIP(ip, i_ib[i]));
6826 		}
6827 		/*
6828 		 * Handle partial truncation to a frag boundary.
6829 		 */
6830 		if (frags) {
6831 			ufs2_daddr_t blkno;
6832 			long oldfrags;
6833 
6834 			oldfrags = blksize(fs, ip, lastlbn);
6835 			blkno = DIP(ip, i_db[lastlbn]);
6836 			if (blkno && oldfrags != frags) {
6837 				oldfrags -= frags;
6838 				oldfrags = numfrags(fs, oldfrags);
6839 				blkno += numfrags(fs, frags);
6840 				newfreework(ump, freeblks, NULL, lastlbn,
6841 				    blkno, oldfrags, 0, needj);
6842 				if (needj)
6843 					adjust_newfreework(freeblks,
6844 					    numfrags(fs, frags));
6845 			} else if (blkno == 0)
6846 				allocblock = 1;
6847 		}
6848 		/*
6849 		 * Add a journal record for partial truncate if we are
6850 		 * handling indirect blocks.  Non-indirects need no extra
6851 		 * journaling.
6852 		 */
6853 		if (length != 0 && lastlbn >= UFS_NDADDR) {
6854 			UFS_INODE_SET_FLAG(ip, IN_TRUNCATED);
6855 			newjtrunc(freeblks, length, 0);
6856 		}
6857 		ip->i_size = length;
6858 		DIP_SET(ip, i_size, ip->i_size);
6859 		UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE);
6860 		datablocks = DIP(ip, i_blocks) - extblocks;
6861 		if (length != 0)
6862 			datablocks = blkcount(fs, datablocks, length);
6863 		freeblks->fb_len = length;
6864 	}
6865 	if ((flags & IO_EXT) != 0) {
6866 		for (i = 0; i < UFS_NXADDR; i++)
6867 			setup_freeext(freeblks, ip, i, needj);
6868 		ip->i_din2->di_extsize = 0;
6869 		datablocks += extblocks;
6870 		UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE);
6871 	}
6872 #ifdef QUOTA
6873 	/* Reference the quotas in case the block count is wrong in the end. */
6874 	quotaref(vp, freeblks->fb_quota);
6875 	(void) chkdq(ip, -datablocks, NOCRED, FORCE);
6876 #endif
6877 	freeblks->fb_chkcnt = -datablocks;
6878 	UFS_LOCK(ump);
6879 	fs->fs_pendingblocks += datablocks;
6880 	UFS_UNLOCK(ump);
6881 	DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - datablocks);
6882 	/*
6883 	 * Handle truncation of incomplete alloc direct dependencies.  We
6884 	 * hold the inode block locked to prevent incomplete dependencies
6885 	 * from reaching the disk while we are eliminating those that
6886 	 * have been truncated.  This is a partially inlined ffs_update().
6887 	 */
6888 	ufs_itimes(vp);
6889 	ip->i_flag &= ~(IN_LAZYACCESS | IN_LAZYMOD | IN_MODIFIED);
6890 	dbn = fsbtodb(fs, ino_to_fsba(fs, ip->i_number));
6891 	error = ffs_breadz(ump, ump->um_devvp, dbn, dbn, (int)fs->fs_bsize,
6892 	    NULL, NULL, 0, cred, 0, NULL, &bp);
6893 	if (error) {
6894 		softdep_error("softdep_journal_freeblocks", error);
6895 		return;
6896 	}
6897 	if (bp->b_bufsize == fs->fs_bsize)
6898 		bp->b_flags |= B_CLUSTEROK;
6899 	softdep_update_inodeblock(ip, bp, 0);
6900 	if (ump->um_fstype == UFS1) {
6901 		*((struct ufs1_dinode *)bp->b_data +
6902 		    ino_to_fsbo(fs, ip->i_number)) = *ip->i_din1;
6903 	} else {
6904 		ffs_update_dinode_ckhash(fs, ip->i_din2);
6905 		*((struct ufs2_dinode *)bp->b_data +
6906 		    ino_to_fsbo(fs, ip->i_number)) = *ip->i_din2;
6907 	}
6908 	ACQUIRE_LOCK(ump);
6909 	(void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
6910 	if ((inodedep->id_state & IOSTARTED) != 0)
6911 		panic("softdep_setup_freeblocks: inode busy");
6912 	/*
6913 	 * Add the freeblks structure to the list of operations that
6914 	 * must await the zero'ed inode being written to disk. If we
6915 	 * still have a bitmap dependency (needj), then the inode
6916 	 * has never been written to disk, so we can process the
6917 	 * freeblks below once we have deleted the dependencies.
6918 	 */
6919 	if (needj)
6920 		WORKLIST_INSERT(&bp->b_dep, &freeblks->fb_list);
6921 	else
6922 		freeblks->fb_state |= COMPLETE;
6923 	if ((flags & IO_NORMAL) != 0) {
6924 		TAILQ_FOREACH_SAFE(adp, &inodedep->id_inoupdt, ad_next, adpn) {
6925 			if (adp->ad_offset > iboff)
6926 				cancel_allocdirect(&inodedep->id_inoupdt, adp,
6927 				    freeblks);
6928 			/*
6929 			 * Truncate the allocdirect.  We could eliminate
6930 			 * or modify journal records as well.
6931 			 */
6932 			else if (adp->ad_offset == iboff && frags)
6933 				adp->ad_newsize = frags;
6934 		}
6935 	}
6936 	if ((flags & IO_EXT) != 0)
6937 		while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL)
6938 			cancel_allocdirect(&inodedep->id_extupdt, adp,
6939 			    freeblks);
6940 	/*
6941 	 * Scan the bufwait list for newblock dependencies that will never
6942 	 * make it to disk.
6943 	 */
6944 	LIST_FOREACH_SAFE(wk, &inodedep->id_bufwait, wk_list, wkn) {
6945 		if (wk->wk_type != D_ALLOCDIRECT)
6946 			continue;
6947 		adp = WK_ALLOCDIRECT(wk);
6948 		if (((flags & IO_NORMAL) != 0 && (adp->ad_offset > iboff)) ||
6949 		    ((flags & IO_EXT) != 0 && (adp->ad_state & EXTDATA))) {
6950 			cancel_jfreeblk(freeblks, adp->ad_newblkno);
6951 			cancel_newblk(WK_NEWBLK(wk), NULL, &freeblks->fb_jwork);
6952 			WORKLIST_INSERT(&freeblks->fb_freeworkhd, wk);
6953 		}
6954 	}
6955 	/*
6956 	 * Add journal work.
6957 	 */
6958 	LIST_FOREACH(jblkdep, &freeblks->fb_jblkdephd, jb_deps)
6959 		add_to_journal(&jblkdep->jb_list);
6960 	FREE_LOCK(ump);
6961 	bdwrite(bp);
6962 	/*
6963 	 * Truncate dependency structures beyond length.
6964 	 */
6965 	trunc_dependencies(ip, freeblks, lastlbn, frags, flags);
6966 	/*
6967 	 * This is only set when we need to allocate a fragment because
6968 	 * none existed at the end of a frag-sized file.  It handles only
6969 	 * allocating a new, zero filled block.
6970 	 */
6971 	if (allocblock) {
6972 		ip->i_size = length - lastoff;
6973 		DIP_SET(ip, i_size, ip->i_size);
6974 		error = UFS_BALLOC(vp, length - 1, 1, cred, BA_CLRBUF, &bp);
6975 		if (error != 0) {
6976 			softdep_error("softdep_journal_freeblks", error);
6977 			return;
6978 		}
6979 		ip->i_size = length;
6980 		DIP_SET(ip, i_size, length);
6981 		UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE | IN_UPDATE);
6982 		allocbuf(bp, frags);
6983 		ffs_update(vp, 0);
6984 		bawrite(bp);
6985 	} else if (lastoff != 0 && vp->v_type != VDIR) {
6986 		int size;
6987 
6988 		/*
6989 		 * Zero the end of a truncated frag or block.
6990 		 */
6991 		size = sblksize(fs, length, lastlbn);
6992 		error = bread(vp, lastlbn, size, cred, &bp);
6993 		if (error == 0) {
6994 			bzero((char *)bp->b_data + lastoff, size - lastoff);
6995 			bawrite(bp);
6996 		} else if (!ffs_fsfail_cleanup(ump, error)) {
6997 			softdep_error("softdep_journal_freeblks", error);
6998 			return;
6999 		}
7000 	}
7001 	ACQUIRE_LOCK(ump);
7002 	inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
7003 	TAILQ_INSERT_TAIL(&inodedep->id_freeblklst, freeblks, fb_next);
7004 	freeblks->fb_state |= DEPCOMPLETE | ONDEPLIST;
7005 	/*
7006 	 * We zero earlier truncations so they don't erroneously
7007 	 * update i_blocks.
7008 	 */
7009 	if (freeblks->fb_len == 0 && (flags & IO_NORMAL) != 0)
7010 		TAILQ_FOREACH(fbn, &inodedep->id_freeblklst, fb_next)
7011 			fbn->fb_len = 0;
7012 	if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE &&
7013 	    LIST_EMPTY(&freeblks->fb_jblkdephd))
7014 		freeblks->fb_state |= INPROGRESS;
7015 	else
7016 		freeblks = NULL;
7017 	FREE_LOCK(ump);
7018 	if (freeblks)
7019 		handle_workitem_freeblocks(freeblks, 0);
7020 	trunc_pages(ip, length, extblocks, flags);
7021 
7022 }
7023 
7024 /*
7025  * Flush a JOP_SYNC to the journal.
7026  */
7027 void
7028 softdep_journal_fsync(struct inode *ip)
7029 {
7030 	struct jfsync *jfsync;
7031 	struct ufsmount *ump;
7032 
7033 	ump = ITOUMP(ip);
7034 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
7035 	    ("softdep_journal_fsync called on non-softdep filesystem"));
7036 	if ((ip->i_flag & IN_TRUNCATED) == 0)
7037 		return;
7038 	ip->i_flag &= ~IN_TRUNCATED;
7039 	jfsync = malloc(sizeof(*jfsync), M_JFSYNC, M_SOFTDEP_FLAGS | M_ZERO);
7040 	workitem_alloc(&jfsync->jfs_list, D_JFSYNC, UFSTOVFS(ump));
7041 	jfsync->jfs_size = ip->i_size;
7042 	jfsync->jfs_ino = ip->i_number;
7043 	ACQUIRE_LOCK(ump);
7044 	add_to_journal(&jfsync->jfs_list);
7045 	jwait(&jfsync->jfs_list, MNT_WAIT);
7046 	FREE_LOCK(ump);
7047 }
7048 
7049 /*
7050  * Block de-allocation dependencies.
7051  *
7052  * When blocks are de-allocated, the on-disk pointers must be nullified before
7053  * the blocks are made available for use by other files.  (The true
7054  * requirement is that old pointers must be nullified before new on-disk
7055  * pointers are set.  We chose this slightly more stringent requirement to
7056  * reduce complexity.) Our implementation handles this dependency by updating
7057  * the inode (or indirect block) appropriately but delaying the actual block
7058  * de-allocation (i.e., freemap and free space count manipulation) until
7059  * after the updated versions reach stable storage.  After the disk is
7060  * updated, the blocks can be safely de-allocated whenever it is convenient.
7061  * This implementation handles only the common case of reducing a file's
7062  * length to zero. Other cases are handled by the conventional synchronous
7063  * write approach.
7064  *
7065  * The ffs implementation with which we worked double-checks
7066  * the state of the block pointers and file size as it reduces
7067  * a file's length.  Some of this code is replicated here in our
7068  * soft updates implementation.  The freeblks->fb_chkcnt field is
7069  * used to transfer a part of this information to the procedure
7070  * that eventually de-allocates the blocks.
7071  *
7072  * This routine should be called from the routine that shortens
7073  * a file's length, before the inode's size or block pointers
7074  * are modified. It will save the block pointer information for
7075  * later release and zero the inode so that the calling routine
7076  * can release it.
7077  */
7078 void
7079 softdep_setup_freeblocks(
7080 	struct inode *ip,	/* The inode whose length is to be reduced */
7081 	off_t length,		/* The new length for the file */
7082 	int flags)		/* IO_EXT and/or IO_NORMAL */
7083 {
7084 	struct ufs1_dinode *dp1;
7085 	struct ufs2_dinode *dp2;
7086 	struct freeblks *freeblks;
7087 	struct inodedep *inodedep;
7088 	struct allocdirect *adp;
7089 	struct ufsmount *ump;
7090 	struct buf *bp;
7091 	struct fs *fs;
7092 	ufs2_daddr_t extblocks, datablocks;
7093 	struct mount *mp;
7094 	int i, delay, error;
7095 	ufs_lbn_t tmpval;
7096 	ufs_lbn_t lbn;
7097 
7098 	ump = ITOUMP(ip);
7099 	mp = UFSTOVFS(ump);
7100 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
7101 	    ("softdep_setup_freeblocks called on non-softdep filesystem"));
7102 	CTR2(KTR_SUJ, "softdep_setup_freeblks: ip %d length %ld",
7103 	    ip->i_number, length);
7104 	KASSERT(length == 0, ("softdep_setup_freeblocks: non-zero length"));
7105 	fs = ump->um_fs;
7106 	if ((error = bread(ump->um_devvp,
7107 	    fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
7108 	    (int)fs->fs_bsize, NOCRED, &bp)) != 0) {
7109 		if (!ffs_fsfail_cleanup(ump, error))
7110 			softdep_error("softdep_setup_freeblocks", error);
7111 		return;
7112 	}
7113 	freeblks = newfreeblks(mp, ip);
7114 	extblocks = 0;
7115 	datablocks = 0;
7116 	if (fs->fs_magic == FS_UFS2_MAGIC)
7117 		extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize));
7118 	if ((flags & IO_NORMAL) != 0) {
7119 		for (i = 0; i < UFS_NDADDR; i++)
7120 			setup_freedirect(freeblks, ip, i, 0);
7121 		for (i = 0, tmpval = NINDIR(fs), lbn = UFS_NDADDR;
7122 		    i < UFS_NIADDR;
7123 		    i++, lbn += tmpval, tmpval *= NINDIR(fs))
7124 			setup_freeindir(freeblks, ip, i, -lbn -i, 0);
7125 		ip->i_size = 0;
7126 		DIP_SET(ip, i_size, 0);
7127 		UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE);
7128 		datablocks = DIP(ip, i_blocks) - extblocks;
7129 	}
7130 	if ((flags & IO_EXT) != 0) {
7131 		for (i = 0; i < UFS_NXADDR; i++)
7132 			setup_freeext(freeblks, ip, i, 0);
7133 		ip->i_din2->di_extsize = 0;
7134 		datablocks += extblocks;
7135 		UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE);
7136 	}
7137 #ifdef QUOTA
7138 	/* Reference the quotas in case the block count is wrong in the end. */
7139 	quotaref(ITOV(ip), freeblks->fb_quota);
7140 	(void) chkdq(ip, -datablocks, NOCRED, FORCE);
7141 #endif
7142 	freeblks->fb_chkcnt = -datablocks;
7143 	UFS_LOCK(ump);
7144 	fs->fs_pendingblocks += datablocks;
7145 	UFS_UNLOCK(ump);
7146 	DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - datablocks);
7147 	/*
7148 	 * Push the zero'ed inode to its disk buffer so that we are free
7149 	 * to delete its dependencies below. Once the dependencies are gone
7150 	 * the buffer can be safely released.
7151 	 */
7152 	if (ump->um_fstype == UFS1) {
7153 		dp1 = ((struct ufs1_dinode *)bp->b_data +
7154 		    ino_to_fsbo(fs, ip->i_number));
7155 		ip->i_din1->di_freelink = dp1->di_freelink;
7156 		*dp1 = *ip->i_din1;
7157 	} else {
7158 		dp2 = ((struct ufs2_dinode *)bp->b_data +
7159 		    ino_to_fsbo(fs, ip->i_number));
7160 		ip->i_din2->di_freelink = dp2->di_freelink;
7161 		ffs_update_dinode_ckhash(fs, ip->i_din2);
7162 		*dp2 = *ip->i_din2;
7163 	}
7164 	/*
7165 	 * Find and eliminate any inode dependencies.
7166 	 */
7167 	ACQUIRE_LOCK(ump);
7168 	(void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
7169 	if ((inodedep->id_state & IOSTARTED) != 0)
7170 		panic("softdep_setup_freeblocks: inode busy");
7171 	/*
7172 	 * Add the freeblks structure to the list of operations that
7173 	 * must await the zero'ed inode being written to disk. If we
7174 	 * still have a bitmap dependency (delay == 0), then the inode
7175 	 * has never been written to disk, so we can process the
7176 	 * freeblks below once we have deleted the dependencies.
7177 	 */
7178 	delay = (inodedep->id_state & DEPCOMPLETE);
7179 	if (delay)
7180 		WORKLIST_INSERT(&bp->b_dep, &freeblks->fb_list);
7181 	else
7182 		freeblks->fb_state |= COMPLETE;
7183 	/*
7184 	 * Because the file length has been truncated to zero, any
7185 	 * pending block allocation dependency structures associated
7186 	 * with this inode are obsolete and can simply be de-allocated.
7187 	 * We must first merge the two dependency lists to get rid of
7188 	 * any duplicate freefrag structures, then purge the merged list.
7189 	 * If we still have a bitmap dependency, then the inode has never
7190 	 * been written to disk, so we can free any fragments without delay.
7191 	 */
7192 	if (flags & IO_NORMAL) {
7193 		merge_inode_lists(&inodedep->id_newinoupdt,
7194 		    &inodedep->id_inoupdt);
7195 		while ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL)
7196 			cancel_allocdirect(&inodedep->id_inoupdt, adp,
7197 			    freeblks);
7198 	}
7199 	if (flags & IO_EXT) {
7200 		merge_inode_lists(&inodedep->id_newextupdt,
7201 		    &inodedep->id_extupdt);
7202 		while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL)
7203 			cancel_allocdirect(&inodedep->id_extupdt, adp,
7204 			    freeblks);
7205 	}
7206 	FREE_LOCK(ump);
7207 	bdwrite(bp);
7208 	trunc_dependencies(ip, freeblks, -1, 0, flags);
7209 	ACQUIRE_LOCK(ump);
7210 	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0)
7211 		(void) free_inodedep(inodedep);
7212 	freeblks->fb_state |= DEPCOMPLETE;
7213 	/*
7214 	 * If the inode with zeroed block pointers is now on disk
7215 	 * we can start freeing blocks.
7216 	 */
7217 	if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE)
7218 		freeblks->fb_state |= INPROGRESS;
7219 	else
7220 		freeblks = NULL;
7221 	FREE_LOCK(ump);
7222 	if (freeblks)
7223 		handle_workitem_freeblocks(freeblks, 0);
7224 	trunc_pages(ip, length, extblocks, flags);
7225 }
7226 
7227 /*
7228  * Eliminate pages from the page cache that back parts of this inode and
7229  * adjust the vnode pager's idea of our size.  This prevents stale data
7230  * from hanging around in the page cache.
7231  */
7232 static void
7233 trunc_pages(
7234 	struct inode *ip,
7235 	off_t length,
7236 	ufs2_daddr_t extblocks,
7237 	int flags)
7238 {
7239 	struct vnode *vp;
7240 	struct fs *fs;
7241 	ufs_lbn_t lbn;
7242 	off_t end, extend;
7243 
7244 	vp = ITOV(ip);
7245 	fs = ITOFS(ip);
7246 	extend = OFF_TO_IDX(lblktosize(fs, -extblocks));
7247 	if ((flags & IO_EXT) != 0)
7248 		vn_pages_remove(vp, extend, 0);
7249 	if ((flags & IO_NORMAL) == 0)
7250 		return;
7251 	BO_LOCK(&vp->v_bufobj);
7252 	drain_output(vp);
7253 	BO_UNLOCK(&vp->v_bufobj);
7254 	/*
7255 	 * The vnode pager eliminates file pages we eliminate indirects
7256 	 * below.
7257 	 */
7258 	vnode_pager_setsize(vp, length);
7259 	/*
7260 	 * Calculate the end based on the last indirect we want to keep.  If
7261 	 * the block extends into indirects we can just use the negative of
7262 	 * its lbn.  Doubles and triples exist at lower numbers so we must
7263 	 * be careful not to remove those, if they exist.  double and triple
7264 	 * indirect lbns do not overlap with others so it is not important
7265 	 * to verify how many levels are required.
7266 	 */
7267 	lbn = lblkno(fs, length);
7268 	if (lbn >= UFS_NDADDR) {
7269 		/* Calculate the virtual lbn of the triple indirect. */
7270 		lbn = -lbn - (UFS_NIADDR - 1);
7271 		end = OFF_TO_IDX(lblktosize(fs, lbn));
7272 	} else
7273 		end = extend;
7274 	vn_pages_remove(vp, OFF_TO_IDX(OFF_MAX), end);
7275 }
7276 
7277 /*
7278  * See if the buf bp is in the range eliminated by truncation.
7279  */
7280 static int
7281 trunc_check_buf(
7282 	struct buf *bp,
7283 	int *blkoffp,
7284 	ufs_lbn_t lastlbn,
7285 	int lastoff,
7286 	int flags)
7287 {
7288 	ufs_lbn_t lbn;
7289 
7290 	*blkoffp = 0;
7291 	/* Only match ext/normal blocks as appropriate. */
7292 	if (((flags & IO_EXT) == 0 && (bp->b_xflags & BX_ALTDATA)) ||
7293 	    ((flags & IO_NORMAL) == 0 && (bp->b_xflags & BX_ALTDATA) == 0))
7294 		return (0);
7295 	/* ALTDATA is always a full truncation. */
7296 	if ((bp->b_xflags & BX_ALTDATA) != 0)
7297 		return (1);
7298 	/* -1 is full truncation. */
7299 	if (lastlbn == -1)
7300 		return (1);
7301 	/*
7302 	 * If this is a partial truncate we only want those
7303 	 * blocks and indirect blocks that cover the range
7304 	 * we're after.
7305 	 */
7306 	lbn = bp->b_lblkno;
7307 	if (lbn < 0)
7308 		lbn = -(lbn + lbn_level(lbn));
7309 	if (lbn < lastlbn)
7310 		return (0);
7311 	/* Here we only truncate lblkno if it's partial. */
7312 	if (lbn == lastlbn) {
7313 		if (lastoff == 0)
7314 			return (0);
7315 		*blkoffp = lastoff;
7316 	}
7317 	return (1);
7318 }
7319 
7320 /*
7321  * Eliminate any dependencies that exist in memory beyond lblkno:off
7322  */
7323 static void
7324 trunc_dependencies(
7325 	struct inode *ip,
7326 	struct freeblks *freeblks,
7327 	ufs_lbn_t lastlbn,
7328 	int lastoff,
7329 	int flags)
7330 {
7331 	struct bufobj *bo;
7332 	struct vnode *vp;
7333 	struct buf *bp;
7334 	int blkoff;
7335 
7336 	/*
7337 	 * We must wait for any I/O in progress to finish so that
7338 	 * all potential buffers on the dirty list will be visible.
7339 	 * Once they are all there, walk the list and get rid of
7340 	 * any dependencies.
7341 	 */
7342 	vp = ITOV(ip);
7343 	bo = &vp->v_bufobj;
7344 	BO_LOCK(bo);
7345 	drain_output(vp);
7346 	TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs)
7347 		bp->b_vflags &= ~BV_SCANNED;
7348 restart:
7349 	TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) {
7350 		if (bp->b_vflags & BV_SCANNED)
7351 			continue;
7352 		if (!trunc_check_buf(bp, &blkoff, lastlbn, lastoff, flags)) {
7353 			bp->b_vflags |= BV_SCANNED;
7354 			continue;
7355 		}
7356 		KASSERT(bp->b_bufobj == bo, ("Wrong object in buffer"));
7357 		if ((bp = getdirtybuf(bp, BO_LOCKPTR(bo), MNT_WAIT)) == NULL)
7358 			goto restart;
7359 		BO_UNLOCK(bo);
7360 		if (deallocate_dependencies(bp, freeblks, blkoff))
7361 			bqrelse(bp);
7362 		else
7363 			brelse(bp);
7364 		BO_LOCK(bo);
7365 		goto restart;
7366 	}
7367 	/*
7368 	 * Now do the work of vtruncbuf while also matching indirect blocks.
7369 	 */
7370 	TAILQ_FOREACH(bp, &bo->bo_clean.bv_hd, b_bobufs)
7371 		bp->b_vflags &= ~BV_SCANNED;
7372 cleanrestart:
7373 	TAILQ_FOREACH(bp, &bo->bo_clean.bv_hd, b_bobufs) {
7374 		if (bp->b_vflags & BV_SCANNED)
7375 			continue;
7376 		if (!trunc_check_buf(bp, &blkoff, lastlbn, lastoff, flags)) {
7377 			bp->b_vflags |= BV_SCANNED;
7378 			continue;
7379 		}
7380 		if (BUF_LOCK(bp,
7381 		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
7382 		    BO_LOCKPTR(bo)) == ENOLCK) {
7383 			BO_LOCK(bo);
7384 			goto cleanrestart;
7385 		}
7386 		BO_LOCK(bo);
7387 		bp->b_vflags |= BV_SCANNED;
7388 		BO_UNLOCK(bo);
7389 		bremfree(bp);
7390 		if (blkoff != 0) {
7391 			allocbuf(bp, blkoff);
7392 			bqrelse(bp);
7393 		} else {
7394 			bp->b_flags |= B_INVAL | B_NOCACHE | B_RELBUF;
7395 			brelse(bp);
7396 		}
7397 		BO_LOCK(bo);
7398 		goto cleanrestart;
7399 	}
7400 	drain_output(vp);
7401 	BO_UNLOCK(bo);
7402 }
7403 
7404 static int
7405 cancel_pagedep(
7406 	struct pagedep *pagedep,
7407 	struct freeblks *freeblks,
7408 	int blkoff)
7409 {
7410 	struct jremref *jremref;
7411 	struct jmvref *jmvref;
7412 	struct dirrem *dirrem, *tmp;
7413 	int i;
7414 
7415 	/*
7416 	 * Copy any directory remove dependencies to the list
7417 	 * to be processed after the freeblks proceeds.  If
7418 	 * directory entry never made it to disk they
7419 	 * can be dumped directly onto the work list.
7420 	 */
7421 	LIST_FOREACH_SAFE(dirrem, &pagedep->pd_dirremhd, dm_next, tmp) {
7422 		/* Skip this directory removal if it is intended to remain. */
7423 		if (dirrem->dm_offset < blkoff)
7424 			continue;
7425 		/*
7426 		 * If there are any dirrems we wait for the journal write
7427 		 * to complete and then restart the buf scan as the lock
7428 		 * has been dropped.
7429 		 */
7430 		while ((jremref = LIST_FIRST(&dirrem->dm_jremrefhd)) != NULL) {
7431 			jwait(&jremref->jr_list, MNT_WAIT);
7432 			return (ERESTART);
7433 		}
7434 		LIST_REMOVE(dirrem, dm_next);
7435 		dirrem->dm_dirinum = pagedep->pd_ino;
7436 		WORKLIST_INSERT(&freeblks->fb_freeworkhd, &dirrem->dm_list);
7437 	}
7438 	while ((jmvref = LIST_FIRST(&pagedep->pd_jmvrefhd)) != NULL) {
7439 		jwait(&jmvref->jm_list, MNT_WAIT);
7440 		return (ERESTART);
7441 	}
7442 	/*
7443 	 * When we're partially truncating a pagedep we just want to flush
7444 	 * journal entries and return.  There can not be any adds in the
7445 	 * truncated portion of the directory and newblk must remain if
7446 	 * part of the block remains.
7447 	 */
7448 	if (blkoff != 0) {
7449 		struct diradd *dap;
7450 
7451 		LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist)
7452 			if (dap->da_offset > blkoff)
7453 				panic("cancel_pagedep: diradd %p off %d > %d",
7454 				    dap, dap->da_offset, blkoff);
7455 		for (i = 0; i < DAHASHSZ; i++)
7456 			LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist)
7457 				if (dap->da_offset > blkoff)
7458 					panic("cancel_pagedep: diradd %p off %d > %d",
7459 					    dap, dap->da_offset, blkoff);
7460 		return (0);
7461 	}
7462 	/*
7463 	 * There should be no directory add dependencies present
7464 	 * as the directory could not be truncated until all
7465 	 * children were removed.
7466 	 */
7467 	KASSERT(LIST_FIRST(&pagedep->pd_pendinghd) == NULL,
7468 	    ("deallocate_dependencies: pendinghd != NULL"));
7469 	for (i = 0; i < DAHASHSZ; i++)
7470 		KASSERT(LIST_FIRST(&pagedep->pd_diraddhd[i]) == NULL,
7471 		    ("deallocate_dependencies: diraddhd != NULL"));
7472 	if ((pagedep->pd_state & NEWBLOCK) != 0)
7473 		free_newdirblk(pagedep->pd_newdirblk);
7474 	if (free_pagedep(pagedep) == 0)
7475 		panic("Failed to free pagedep %p", pagedep);
7476 	return (0);
7477 }
7478 
7479 /*
7480  * Reclaim any dependency structures from a buffer that is about to
7481  * be reallocated to a new vnode. The buffer must be locked, thus,
7482  * no I/O completion operations can occur while we are manipulating
7483  * its associated dependencies. The mutex is held so that other I/O's
7484  * associated with related dependencies do not occur.
7485  */
7486 static int
7487 deallocate_dependencies(
7488 	struct buf *bp,
7489 	struct freeblks *freeblks,
7490 	int off)
7491 {
7492 	struct indirdep *indirdep;
7493 	struct pagedep *pagedep;
7494 	struct worklist *wk, *wkn;
7495 	struct ufsmount *ump;
7496 
7497 	ump = softdep_bp_to_mp(bp);
7498 	if (ump == NULL)
7499 		goto done;
7500 	ACQUIRE_LOCK(ump);
7501 	LIST_FOREACH_SAFE(wk, &bp->b_dep, wk_list, wkn) {
7502 		switch (wk->wk_type) {
7503 		case D_INDIRDEP:
7504 			indirdep = WK_INDIRDEP(wk);
7505 			if (bp->b_lblkno >= 0 ||
7506 			    bp->b_blkno != indirdep->ir_savebp->b_lblkno)
7507 				panic("deallocate_dependencies: not indir");
7508 			cancel_indirdep(indirdep, bp, freeblks);
7509 			continue;
7510 
7511 		case D_PAGEDEP:
7512 			pagedep = WK_PAGEDEP(wk);
7513 			if (cancel_pagedep(pagedep, freeblks, off)) {
7514 				FREE_LOCK(ump);
7515 				return (ERESTART);
7516 			}
7517 			continue;
7518 
7519 		case D_ALLOCINDIR:
7520 			/*
7521 			 * Simply remove the allocindir, we'll find it via
7522 			 * the indirdep where we can clear pointers if
7523 			 * needed.
7524 			 */
7525 			WORKLIST_REMOVE(wk);
7526 			continue;
7527 
7528 		case D_FREEWORK:
7529 			/*
7530 			 * A truncation is waiting for the zero'd pointers
7531 			 * to be written.  It can be freed when the freeblks
7532 			 * is journaled.
7533 			 */
7534 			WORKLIST_REMOVE(wk);
7535 			wk->wk_state |= ONDEPLIST;
7536 			WORKLIST_INSERT(&freeblks->fb_freeworkhd, wk);
7537 			break;
7538 
7539 		case D_ALLOCDIRECT:
7540 			if (off != 0)
7541 				continue;
7542 			/* FALLTHROUGH */
7543 		default:
7544 			panic("deallocate_dependencies: Unexpected type %s",
7545 			    TYPENAME(wk->wk_type));
7546 			/* NOTREACHED */
7547 		}
7548 	}
7549 	FREE_LOCK(ump);
7550 done:
7551 	/*
7552 	 * Don't throw away this buf, we were partially truncating and
7553 	 * some deps may always remain.
7554 	 */
7555 	if (off) {
7556 		allocbuf(bp, off);
7557 		bp->b_vflags |= BV_SCANNED;
7558 		return (EBUSY);
7559 	}
7560 	bp->b_flags |= B_INVAL | B_NOCACHE;
7561 
7562 	return (0);
7563 }
7564 
7565 /*
7566  * An allocdirect is being canceled due to a truncate.  We must make sure
7567  * the journal entry is released in concert with the blkfree that releases
7568  * the storage.  Completed journal entries must not be released until the
7569  * space is no longer pointed to by the inode or in the bitmap.
7570  */
7571 static void
7572 cancel_allocdirect(
7573 	struct allocdirectlst *adphead,
7574 	struct allocdirect *adp,
7575 	struct freeblks *freeblks)
7576 {
7577 	struct freework *freework;
7578 	struct newblk *newblk;
7579 	struct worklist *wk;
7580 
7581 	TAILQ_REMOVE(adphead, adp, ad_next);
7582 	newblk = (struct newblk *)adp;
7583 	freework = NULL;
7584 	/*
7585 	 * Find the correct freework structure.
7586 	 */
7587 	LIST_FOREACH(wk, &freeblks->fb_freeworkhd, wk_list) {
7588 		if (wk->wk_type != D_FREEWORK)
7589 			continue;
7590 		freework = WK_FREEWORK(wk);
7591 		if (freework->fw_blkno == newblk->nb_newblkno)
7592 			break;
7593 	}
7594 	if (freework == NULL)
7595 		panic("cancel_allocdirect: Freework not found");
7596 	/*
7597 	 * If a newblk exists at all we still have the journal entry that
7598 	 * initiated the allocation so we do not need to journal the free.
7599 	 */
7600 	cancel_jfreeblk(freeblks, freework->fw_blkno);
7601 	/*
7602 	 * If the journal hasn't been written the jnewblk must be passed
7603 	 * to the call to ffs_blkfree that reclaims the space.  We accomplish
7604 	 * this by linking the journal dependency into the freework to be
7605 	 * freed when freework_freeblock() is called.  If the journal has
7606 	 * been written we can simply reclaim the journal space when the
7607 	 * freeblks work is complete.
7608 	 */
7609 	freework->fw_jnewblk = cancel_newblk(newblk, &freework->fw_list,
7610 	    &freeblks->fb_jwork);
7611 	WORKLIST_INSERT(&freeblks->fb_freeworkhd, &newblk->nb_list);
7612 }
7613 
7614 /*
7615  * Cancel a new block allocation.  May be an indirect or direct block.  We
7616  * remove it from various lists and return any journal record that needs to
7617  * be resolved by the caller.
7618  *
7619  * A special consideration is made for indirects which were never pointed
7620  * at on disk and will never be found once this block is released.
7621  */
7622 static struct jnewblk *
7623 cancel_newblk(
7624 	struct newblk *newblk,
7625 	struct worklist *wk,
7626 	struct workhead *wkhd)
7627 {
7628 	struct jnewblk *jnewblk;
7629 
7630 	CTR1(KTR_SUJ, "cancel_newblk: blkno %jd", newblk->nb_newblkno);
7631 
7632 	newblk->nb_state |= GOINGAWAY;
7633 	/*
7634 	 * Previously we traversed the completedhd on each indirdep
7635 	 * attached to this newblk to cancel them and gather journal
7636 	 * work.  Since we need only the oldest journal segment and
7637 	 * the lowest point on the tree will always have the oldest
7638 	 * journal segment we are free to release the segments
7639 	 * of any subordinates and may leave the indirdep list to
7640 	 * indirdep_complete() when this newblk is freed.
7641 	 */
7642 	if (newblk->nb_state & ONDEPLIST) {
7643 		newblk->nb_state &= ~ONDEPLIST;
7644 		LIST_REMOVE(newblk, nb_deps);
7645 	}
7646 	if (newblk->nb_state & ONWORKLIST)
7647 		WORKLIST_REMOVE(&newblk->nb_list);
7648 	/*
7649 	 * If the journal entry hasn't been written we save a pointer to
7650 	 * the dependency that frees it until it is written or the
7651 	 * superseding operation completes.
7652 	 */
7653 	jnewblk = newblk->nb_jnewblk;
7654 	if (jnewblk != NULL && wk != NULL) {
7655 		newblk->nb_jnewblk = NULL;
7656 		jnewblk->jn_dep = wk;
7657 	}
7658 	if (!LIST_EMPTY(&newblk->nb_jwork))
7659 		jwork_move(wkhd, &newblk->nb_jwork);
7660 	/*
7661 	 * When truncating we must free the newdirblk early to remove
7662 	 * the pagedep from the hash before returning.
7663 	 */
7664 	if ((wk = LIST_FIRST(&newblk->nb_newdirblk)) != NULL)
7665 		free_newdirblk(WK_NEWDIRBLK(wk));
7666 	if (!LIST_EMPTY(&newblk->nb_newdirblk))
7667 		panic("cancel_newblk: extra newdirblk");
7668 
7669 	return (jnewblk);
7670 }
7671 
7672 /*
7673  * Schedule the freefrag associated with a newblk to be released once
7674  * the pointers are written and the previous block is no longer needed.
7675  */
7676 static void
7677 newblk_freefrag(struct newblk *newblk)
7678 {
7679 	struct freefrag *freefrag;
7680 
7681 	if (newblk->nb_freefrag == NULL)
7682 		return;
7683 	freefrag = newblk->nb_freefrag;
7684 	newblk->nb_freefrag = NULL;
7685 	freefrag->ff_state |= COMPLETE;
7686 	if ((freefrag->ff_state & ALLCOMPLETE) == ALLCOMPLETE)
7687 		add_to_worklist(&freefrag->ff_list, 0);
7688 }
7689 
7690 /*
7691  * Free a newblk. Generate a new freefrag work request if appropriate.
7692  * This must be called after the inode pointer and any direct block pointers
7693  * are valid or fully removed via truncate or frag extension.
7694  */
7695 static void
7696 free_newblk(struct newblk *newblk)
7697 {
7698 	struct indirdep *indirdep;
7699 	struct worklist *wk;
7700 
7701 	KASSERT(newblk->nb_jnewblk == NULL,
7702 	    ("free_newblk: jnewblk %p still attached", newblk->nb_jnewblk));
7703 	KASSERT(newblk->nb_list.wk_type != D_NEWBLK,
7704 	    ("free_newblk: unclaimed newblk"));
7705 	LOCK_OWNED(VFSTOUFS(newblk->nb_list.wk_mp));
7706 	newblk_freefrag(newblk);
7707 	if (newblk->nb_state & ONDEPLIST)
7708 		LIST_REMOVE(newblk, nb_deps);
7709 	if (newblk->nb_state & ONWORKLIST)
7710 		WORKLIST_REMOVE(&newblk->nb_list);
7711 	LIST_REMOVE(newblk, nb_hash);
7712 	if ((wk = LIST_FIRST(&newblk->nb_newdirblk)) != NULL)
7713 		free_newdirblk(WK_NEWDIRBLK(wk));
7714 	if (!LIST_EMPTY(&newblk->nb_newdirblk))
7715 		panic("free_newblk: extra newdirblk");
7716 	while ((indirdep = LIST_FIRST(&newblk->nb_indirdeps)) != NULL)
7717 		indirdep_complete(indirdep);
7718 	handle_jwork(&newblk->nb_jwork);
7719 	WORKITEM_FREE(newblk, D_NEWBLK);
7720 }
7721 
7722 /*
7723  * Free a newdirblk. Clear the NEWBLOCK flag on its associated pagedep.
7724  */
7725 static void
7726 free_newdirblk(struct newdirblk *newdirblk)
7727 {
7728 	struct pagedep *pagedep;
7729 	struct diradd *dap;
7730 	struct worklist *wk;
7731 
7732 	LOCK_OWNED(VFSTOUFS(newdirblk->db_list.wk_mp));
7733 	WORKLIST_REMOVE(&newdirblk->db_list);
7734 	/*
7735 	 * If the pagedep is still linked onto the directory buffer
7736 	 * dependency chain, then some of the entries on the
7737 	 * pd_pendinghd list may not be committed to disk yet. In
7738 	 * this case, we will simply clear the NEWBLOCK flag and
7739 	 * let the pd_pendinghd list be processed when the pagedep
7740 	 * is next written. If the pagedep is no longer on the buffer
7741 	 * dependency chain, then all the entries on the pd_pending
7742 	 * list are committed to disk and we can free them here.
7743 	 */
7744 	pagedep = newdirblk->db_pagedep;
7745 	pagedep->pd_state &= ~NEWBLOCK;
7746 	if ((pagedep->pd_state & ONWORKLIST) == 0) {
7747 		while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL)
7748 			free_diradd(dap, NULL);
7749 		/*
7750 		 * If no dependencies remain, the pagedep will be freed.
7751 		 */
7752 		free_pagedep(pagedep);
7753 	}
7754 	/* Should only ever be one item in the list. */
7755 	while ((wk = LIST_FIRST(&newdirblk->db_mkdir)) != NULL) {
7756 		WORKLIST_REMOVE(wk);
7757 		handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY);
7758 	}
7759 	WORKITEM_FREE(newdirblk, D_NEWDIRBLK);
7760 }
7761 
7762 /*
7763  * Prepare an inode to be freed. The actual free operation is not
7764  * done until the zero'ed inode has been written to disk.
7765  */
7766 void
7767 softdep_freefile(
7768 	struct vnode *pvp,
7769 	ino_t ino,
7770 	int mode)
7771 {
7772 	struct inode *ip = VTOI(pvp);
7773 	struct inodedep *inodedep;
7774 	struct freefile *freefile;
7775 	struct freeblks *freeblks;
7776 	struct ufsmount *ump;
7777 
7778 	ump = ITOUMP(ip);
7779 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
7780 	    ("softdep_freefile called on non-softdep filesystem"));
7781 	/*
7782 	 * This sets up the inode de-allocation dependency.
7783 	 */
7784 	freefile = malloc(sizeof(struct freefile),
7785 		M_FREEFILE, M_SOFTDEP_FLAGS);
7786 	workitem_alloc(&freefile->fx_list, D_FREEFILE, pvp->v_mount);
7787 	freefile->fx_mode = mode;
7788 	freefile->fx_oldinum = ino;
7789 	freefile->fx_devvp = ump->um_devvp;
7790 	LIST_INIT(&freefile->fx_jwork);
7791 	UFS_LOCK(ump);
7792 	ump->um_fs->fs_pendinginodes += 1;
7793 	UFS_UNLOCK(ump);
7794 
7795 	/*
7796 	 * If the inodedep does not exist, then the zero'ed inode has
7797 	 * been written to disk. If the allocated inode has never been
7798 	 * written to disk, then the on-disk inode is zero'ed. In either
7799 	 * case we can free the file immediately.  If the journal was
7800 	 * canceled before being written the inode will never make it to
7801 	 * disk and we must send the canceled journal entrys to
7802 	 * ffs_freefile() to be cleared in conjunction with the bitmap.
7803 	 * Any blocks waiting on the inode to write can be safely freed
7804 	 * here as it will never been written.
7805 	 */
7806 	ACQUIRE_LOCK(ump);
7807 	inodedep_lookup(pvp->v_mount, ino, 0, &inodedep);
7808 	if (inodedep) {
7809 		/*
7810 		 * Clear out freeblks that no longer need to reference
7811 		 * this inode.
7812 		 */
7813 		while ((freeblks =
7814 		    TAILQ_FIRST(&inodedep->id_freeblklst)) != NULL) {
7815 			TAILQ_REMOVE(&inodedep->id_freeblklst, freeblks,
7816 			    fb_next);
7817 			freeblks->fb_state &= ~ONDEPLIST;
7818 		}
7819 		/*
7820 		 * Remove this inode from the unlinked list.
7821 		 */
7822 		if (inodedep->id_state & UNLINKED) {
7823 			/*
7824 			 * Save the journal work to be freed with the bitmap
7825 			 * before we clear UNLINKED.  Otherwise it can be lost
7826 			 * if the inode block is written.
7827 			 */
7828 			handle_bufwait(inodedep, &freefile->fx_jwork);
7829 			clear_unlinked_inodedep(inodedep);
7830 			/*
7831 			 * Re-acquire inodedep as we've dropped the
7832 			 * per-filesystem lock in clear_unlinked_inodedep().
7833 			 */
7834 			inodedep_lookup(pvp->v_mount, ino, 0, &inodedep);
7835 		}
7836 	}
7837 	if (inodedep == NULL || check_inode_unwritten(inodedep)) {
7838 		FREE_LOCK(ump);
7839 		handle_workitem_freefile(freefile);
7840 		return;
7841 	}
7842 	if ((inodedep->id_state & DEPCOMPLETE) == 0)
7843 		inodedep->id_state |= GOINGAWAY;
7844 	WORKLIST_INSERT(&inodedep->id_inowait, &freefile->fx_list);
7845 	FREE_LOCK(ump);
7846 	if (ip->i_number == ino)
7847 		UFS_INODE_SET_FLAG(ip, IN_MODIFIED);
7848 }
7849 
7850 /*
7851  * Check to see if an inode has never been written to disk. If
7852  * so free the inodedep and return success, otherwise return failure.
7853  *
7854  * If we still have a bitmap dependency, then the inode has never
7855  * been written to disk. Drop the dependency as it is no longer
7856  * necessary since the inode is being deallocated. We set the
7857  * ALLCOMPLETE flags since the bitmap now properly shows that the
7858  * inode is not allocated. Even if the inode is actively being
7859  * written, it has been rolled back to its zero'ed state, so we
7860  * are ensured that a zero inode is what is on the disk. For short
7861  * lived files, this change will usually result in removing all the
7862  * dependencies from the inode so that it can be freed immediately.
7863  */
7864 static int
7865 check_inode_unwritten(struct inodedep *inodedep)
7866 {
7867 
7868 	LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp));
7869 
7870 	if ((inodedep->id_state & (DEPCOMPLETE | UNLINKED)) != 0 ||
7871 	    !LIST_EMPTY(&inodedep->id_dirremhd) ||
7872 	    !LIST_EMPTY(&inodedep->id_pendinghd) ||
7873 	    !LIST_EMPTY(&inodedep->id_bufwait) ||
7874 	    !LIST_EMPTY(&inodedep->id_inowait) ||
7875 	    !TAILQ_EMPTY(&inodedep->id_inoreflst) ||
7876 	    !TAILQ_EMPTY(&inodedep->id_inoupdt) ||
7877 	    !TAILQ_EMPTY(&inodedep->id_newinoupdt) ||
7878 	    !TAILQ_EMPTY(&inodedep->id_extupdt) ||
7879 	    !TAILQ_EMPTY(&inodedep->id_newextupdt) ||
7880 	    !TAILQ_EMPTY(&inodedep->id_freeblklst) ||
7881 	    inodedep->id_mkdiradd != NULL ||
7882 	    inodedep->id_nlinkdelta != 0)
7883 		return (0);
7884 	/*
7885 	 * Another process might be in initiate_write_inodeblock_ufs[12]
7886 	 * trying to allocate memory without holding "Softdep Lock".
7887 	 */
7888 	if ((inodedep->id_state & IOSTARTED) != 0 &&
7889 	    inodedep->id_savedino1 == NULL)
7890 		return (0);
7891 
7892 	if (inodedep->id_state & ONDEPLIST)
7893 		LIST_REMOVE(inodedep, id_deps);
7894 	inodedep->id_state &= ~ONDEPLIST;
7895 	inodedep->id_state |= ALLCOMPLETE;
7896 	inodedep->id_bmsafemap = NULL;
7897 	if (inodedep->id_state & ONWORKLIST)
7898 		WORKLIST_REMOVE(&inodedep->id_list);
7899 	if (inodedep->id_savedino1 != NULL) {
7900 		free(inodedep->id_savedino1, M_SAVEDINO);
7901 		inodedep->id_savedino1 = NULL;
7902 	}
7903 	if (free_inodedep(inodedep) == 0)
7904 		panic("check_inode_unwritten: busy inode");
7905 	return (1);
7906 }
7907 
7908 static int
7909 check_inodedep_free(struct inodedep *inodedep)
7910 {
7911 
7912 	LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp));
7913 	if ((inodedep->id_state & ALLCOMPLETE) != ALLCOMPLETE ||
7914 	    !LIST_EMPTY(&inodedep->id_dirremhd) ||
7915 	    !LIST_EMPTY(&inodedep->id_pendinghd) ||
7916 	    !LIST_EMPTY(&inodedep->id_bufwait) ||
7917 	    !LIST_EMPTY(&inodedep->id_inowait) ||
7918 	    !TAILQ_EMPTY(&inodedep->id_inoreflst) ||
7919 	    !TAILQ_EMPTY(&inodedep->id_inoupdt) ||
7920 	    !TAILQ_EMPTY(&inodedep->id_newinoupdt) ||
7921 	    !TAILQ_EMPTY(&inodedep->id_extupdt) ||
7922 	    !TAILQ_EMPTY(&inodedep->id_newextupdt) ||
7923 	    !TAILQ_EMPTY(&inodedep->id_freeblklst) ||
7924 	    inodedep->id_mkdiradd != NULL ||
7925 	    inodedep->id_nlinkdelta != 0 ||
7926 	    inodedep->id_savedino1 != NULL)
7927 		return (0);
7928 	return (1);
7929 }
7930 
7931 /*
7932  * Try to free an inodedep structure. Return 1 if it could be freed.
7933  */
7934 static int
7935 free_inodedep(struct inodedep *inodedep)
7936 {
7937 
7938 	LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp));
7939 	if ((inodedep->id_state & (ONWORKLIST | UNLINKED)) != 0 ||
7940 	    !check_inodedep_free(inodedep))
7941 		return (0);
7942 	if (inodedep->id_state & ONDEPLIST)
7943 		LIST_REMOVE(inodedep, id_deps);
7944 	LIST_REMOVE(inodedep, id_hash);
7945 	WORKITEM_FREE(inodedep, D_INODEDEP);
7946 	return (1);
7947 }
7948 
7949 /*
7950  * Free the block referenced by a freework structure.  The parent freeblks
7951  * structure is released and completed when the final cg bitmap reaches
7952  * the disk.  This routine may be freeing a jnewblk which never made it to
7953  * disk in which case we do not have to wait as the operation is undone
7954  * in memory immediately.
7955  */
7956 static void
7957 freework_freeblock(struct freework *freework, u_long key)
7958 {
7959 	struct freeblks *freeblks;
7960 	struct jnewblk *jnewblk;
7961 	struct ufsmount *ump;
7962 	struct workhead wkhd;
7963 	struct fs *fs;
7964 	int bsize;
7965 	int needj;
7966 
7967 	ump = VFSTOUFS(freework->fw_list.wk_mp);
7968 	LOCK_OWNED(ump);
7969 	/*
7970 	 * Handle partial truncate separately.
7971 	 */
7972 	if (freework->fw_indir) {
7973 		complete_trunc_indir(freework);
7974 		return;
7975 	}
7976 	freeblks = freework->fw_freeblks;
7977 	fs = ump->um_fs;
7978 	needj = MOUNTEDSUJ(freeblks->fb_list.wk_mp) != 0;
7979 	bsize = lfragtosize(fs, freework->fw_frags);
7980 	LIST_INIT(&wkhd);
7981 	/*
7982 	 * DEPCOMPLETE is cleared in indirblk_insert() if the block lives
7983 	 * on the indirblk hashtable and prevents premature freeing.
7984 	 */
7985 	freework->fw_state |= DEPCOMPLETE;
7986 	/*
7987 	 * SUJ needs to wait for the segment referencing freed indirect
7988 	 * blocks to expire so that we know the checker will not confuse
7989 	 * a re-allocated indirect block with its old contents.
7990 	 */
7991 	if (needj && freework->fw_lbn <= -UFS_NDADDR)
7992 		indirblk_insert(freework);
7993 	/*
7994 	 * If we are canceling an existing jnewblk pass it to the free
7995 	 * routine, otherwise pass the freeblk which will ultimately
7996 	 * release the freeblks.  If we're not journaling, we can just
7997 	 * free the freeblks immediately.
7998 	 */
7999 	jnewblk = freework->fw_jnewblk;
8000 	if (jnewblk != NULL) {
8001 		cancel_jnewblk(jnewblk, &wkhd);
8002 		needj = 0;
8003 	} else if (needj) {
8004 		freework->fw_state |= DELAYEDFREE;
8005 		freeblks->fb_cgwait++;
8006 		WORKLIST_INSERT(&wkhd, &freework->fw_list);
8007 	}
8008 	FREE_LOCK(ump);
8009 	freeblks_free(ump, freeblks, btodb(bsize));
8010 	CTR4(KTR_SUJ,
8011 	    "freework_freeblock: ino %jd blkno %jd lbn %jd size %d",
8012 	    freeblks->fb_inum, freework->fw_blkno, freework->fw_lbn, bsize);
8013 	ffs_blkfree(ump, fs, freeblks->fb_devvp, freework->fw_blkno, bsize,
8014 	    freeblks->fb_inum, freeblks->fb_vtype, &wkhd, key);
8015 	ACQUIRE_LOCK(ump);
8016 	/*
8017 	 * The jnewblk will be discarded and the bits in the map never
8018 	 * made it to disk.  We can immediately free the freeblk.
8019 	 */
8020 	if (needj == 0)
8021 		handle_written_freework(freework);
8022 }
8023 
8024 /*
8025  * We enqueue freework items that need processing back on the freeblks and
8026  * add the freeblks to the worklist.  This makes it easier to find all work
8027  * required to flush a truncation in process_truncates().
8028  */
8029 static void
8030 freework_enqueue(struct freework *freework)
8031 {
8032 	struct freeblks *freeblks;
8033 
8034 	freeblks = freework->fw_freeblks;
8035 	if ((freework->fw_state & INPROGRESS) == 0)
8036 		WORKLIST_INSERT(&freeblks->fb_freeworkhd, &freework->fw_list);
8037 	if ((freeblks->fb_state &
8038 	    (ONWORKLIST | INPROGRESS | ALLCOMPLETE)) == ALLCOMPLETE &&
8039 	    LIST_EMPTY(&freeblks->fb_jblkdephd))
8040 		add_to_worklist(&freeblks->fb_list, WK_NODELAY);
8041 }
8042 
8043 /*
8044  * Start, continue, or finish the process of freeing an indirect block tree.
8045  * The free operation may be paused at any point with fw_off containing the
8046  * offset to restart from.  This enables us to implement some flow control
8047  * for large truncates which may fan out and generate a huge number of
8048  * dependencies.
8049  */
8050 static void
8051 handle_workitem_indirblk(struct freework *freework)
8052 {
8053 	struct freeblks *freeblks;
8054 	struct ufsmount *ump;
8055 	struct fs *fs;
8056 
8057 	freeblks = freework->fw_freeblks;
8058 	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
8059 	fs = ump->um_fs;
8060 	if (freework->fw_state & DEPCOMPLETE) {
8061 		handle_written_freework(freework);
8062 		return;
8063 	}
8064 	if (freework->fw_off == NINDIR(fs)) {
8065 		freework_freeblock(freework, SINGLETON_KEY);
8066 		return;
8067 	}
8068 	freework->fw_state |= INPROGRESS;
8069 	FREE_LOCK(ump);
8070 	indir_trunc(freework, fsbtodb(fs, freework->fw_blkno),
8071 	    freework->fw_lbn);
8072 	ACQUIRE_LOCK(ump);
8073 }
8074 
8075 /*
8076  * Called when a freework structure attached to a cg buf is written.  The
8077  * ref on either the parent or the freeblks structure is released and
8078  * the freeblks is added back to the worklist if there is more work to do.
8079  */
8080 static void
8081 handle_written_freework(struct freework *freework)
8082 {
8083 	struct freeblks *freeblks;
8084 	struct freework *parent;
8085 
8086 	freeblks = freework->fw_freeblks;
8087 	parent = freework->fw_parent;
8088 	if (freework->fw_state & DELAYEDFREE)
8089 		freeblks->fb_cgwait--;
8090 	freework->fw_state |= COMPLETE;
8091 	if ((freework->fw_state & ALLCOMPLETE) == ALLCOMPLETE)
8092 		WORKITEM_FREE(freework, D_FREEWORK);
8093 	if (parent) {
8094 		if (--parent->fw_ref == 0)
8095 			freework_enqueue(parent);
8096 		return;
8097 	}
8098 	if (--freeblks->fb_ref != 0)
8099 		return;
8100 	if ((freeblks->fb_state & (ALLCOMPLETE | ONWORKLIST | INPROGRESS)) ==
8101 	    ALLCOMPLETE && LIST_EMPTY(&freeblks->fb_jblkdephd))
8102 		add_to_worklist(&freeblks->fb_list, WK_NODELAY);
8103 }
8104 
8105 /*
8106  * This workitem routine performs the block de-allocation.
8107  * The workitem is added to the pending list after the updated
8108  * inode block has been written to disk.  As mentioned above,
8109  * checks regarding the number of blocks de-allocated (compared
8110  * to the number of blocks allocated for the file) are also
8111  * performed in this function.
8112  */
8113 static int
8114 handle_workitem_freeblocks(struct freeblks *freeblks, int flags)
8115 {
8116 	struct freework *freework;
8117 	struct newblk *newblk;
8118 	struct allocindir *aip;
8119 	struct ufsmount *ump;
8120 	struct worklist *wk;
8121 	u_long key;
8122 
8123 	KASSERT(LIST_EMPTY(&freeblks->fb_jblkdephd),
8124 	    ("handle_workitem_freeblocks: Journal entries not written."));
8125 	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
8126 	key = ffs_blkrelease_start(ump, freeblks->fb_devvp, freeblks->fb_inum);
8127 	ACQUIRE_LOCK(ump);
8128 	while ((wk = LIST_FIRST(&freeblks->fb_freeworkhd)) != NULL) {
8129 		WORKLIST_REMOVE(wk);
8130 		switch (wk->wk_type) {
8131 		case D_DIRREM:
8132 			wk->wk_state |= COMPLETE;
8133 			add_to_worklist(wk, 0);
8134 			continue;
8135 
8136 		case D_ALLOCDIRECT:
8137 			free_newblk(WK_NEWBLK(wk));
8138 			continue;
8139 
8140 		case D_ALLOCINDIR:
8141 			aip = WK_ALLOCINDIR(wk);
8142 			freework = NULL;
8143 			if (aip->ai_state & DELAYEDFREE) {
8144 				FREE_LOCK(ump);
8145 				freework = newfreework(ump, freeblks, NULL,
8146 				    aip->ai_lbn, aip->ai_newblkno,
8147 				    ump->um_fs->fs_frag, 0, 0);
8148 				ACQUIRE_LOCK(ump);
8149 			}
8150 			newblk = WK_NEWBLK(wk);
8151 			if (newblk->nb_jnewblk) {
8152 				freework->fw_jnewblk = newblk->nb_jnewblk;
8153 				newblk->nb_jnewblk->jn_dep = &freework->fw_list;
8154 				newblk->nb_jnewblk = NULL;
8155 			}
8156 			free_newblk(newblk);
8157 			continue;
8158 
8159 		case D_FREEWORK:
8160 			freework = WK_FREEWORK(wk);
8161 			if (freework->fw_lbn <= -UFS_NDADDR)
8162 				handle_workitem_indirblk(freework);
8163 			else
8164 				freework_freeblock(freework, key);
8165 			continue;
8166 		default:
8167 			panic("handle_workitem_freeblocks: Unknown type %s",
8168 			    TYPENAME(wk->wk_type));
8169 		}
8170 	}
8171 	if (freeblks->fb_ref != 0) {
8172 		freeblks->fb_state &= ~INPROGRESS;
8173 		wake_worklist(&freeblks->fb_list);
8174 		freeblks = NULL;
8175 	}
8176 	FREE_LOCK(ump);
8177 	ffs_blkrelease_finish(ump, key);
8178 	if (freeblks)
8179 		return handle_complete_freeblocks(freeblks, flags);
8180 	return (0);
8181 }
8182 
8183 /*
8184  * Handle completion of block free via truncate.  This allows fs_pending
8185  * to track the actual free block count more closely than if we only updated
8186  * it at the end.  We must be careful to handle cases where the block count
8187  * on free was incorrect.
8188  */
8189 static void
8190 freeblks_free(struct ufsmount *ump,
8191 	struct freeblks *freeblks,
8192 	int blocks)
8193 {
8194 	struct fs *fs;
8195 	ufs2_daddr_t remain;
8196 
8197 	UFS_LOCK(ump);
8198 	remain = -freeblks->fb_chkcnt;
8199 	freeblks->fb_chkcnt += blocks;
8200 	if (remain > 0) {
8201 		if (remain < blocks)
8202 			blocks = remain;
8203 		fs = ump->um_fs;
8204 		fs->fs_pendingblocks -= blocks;
8205 	}
8206 	UFS_UNLOCK(ump);
8207 }
8208 
8209 /*
8210  * Once all of the freework workitems are complete we can retire the
8211  * freeblocks dependency and any journal work awaiting completion.  This
8212  * can not be called until all other dependencies are stable on disk.
8213  */
8214 static int
8215 handle_complete_freeblocks(struct freeblks *freeblks, int flags)
8216 {
8217 	struct inodedep *inodedep;
8218 	struct inode *ip;
8219 	struct vnode *vp;
8220 	struct fs *fs;
8221 	struct ufsmount *ump;
8222 	ufs2_daddr_t spare;
8223 
8224 	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
8225 	fs = ump->um_fs;
8226 	flags = LK_EXCLUSIVE | flags;
8227 	spare = freeblks->fb_chkcnt;
8228 
8229 	/*
8230 	 * If we did not release the expected number of blocks we may have
8231 	 * to adjust the inode block count here.  Only do so if it wasn't
8232 	 * a truncation to zero and the modrev still matches.
8233 	 */
8234 	if (spare && freeblks->fb_len != 0) {
8235 		if (ffs_vgetf(freeblks->fb_list.wk_mp, freeblks->fb_inum,
8236 		    flags, &vp, FFSV_FORCEINSMQ | FFSV_FORCEINODEDEP) != 0)
8237 			return (EBUSY);
8238 		ip = VTOI(vp);
8239 		if (ip->i_mode == 0) {
8240 			vgone(vp);
8241 		} else if (DIP(ip, i_modrev) == freeblks->fb_modrev) {
8242 			DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - spare);
8243 			UFS_INODE_SET_FLAG(ip, IN_CHANGE);
8244 			/*
8245 			 * We must wait so this happens before the
8246 			 * journal is reclaimed.
8247 			 */
8248 			ffs_update(vp, 1);
8249 		}
8250 		vput(vp);
8251 	}
8252 	if (spare < 0) {
8253 		UFS_LOCK(ump);
8254 		fs->fs_pendingblocks += spare;
8255 		UFS_UNLOCK(ump);
8256 	}
8257 #ifdef QUOTA
8258 	/* Handle spare. */
8259 	if (spare)
8260 		quotaadj(freeblks->fb_quota, ump, -spare);
8261 	quotarele(freeblks->fb_quota);
8262 #endif
8263 	ACQUIRE_LOCK(ump);
8264 	if (freeblks->fb_state & ONDEPLIST) {
8265 		inodedep_lookup(freeblks->fb_list.wk_mp, freeblks->fb_inum,
8266 		    0, &inodedep);
8267 		TAILQ_REMOVE(&inodedep->id_freeblklst, freeblks, fb_next);
8268 		freeblks->fb_state &= ~ONDEPLIST;
8269 		if (TAILQ_EMPTY(&inodedep->id_freeblklst))
8270 			free_inodedep(inodedep);
8271 	}
8272 	/*
8273 	 * All of the freeblock deps must be complete prior to this call
8274 	 * so it's now safe to complete earlier outstanding journal entries.
8275 	 */
8276 	handle_jwork(&freeblks->fb_jwork);
8277 	WORKITEM_FREE(freeblks, D_FREEBLKS);
8278 	FREE_LOCK(ump);
8279 	return (0);
8280 }
8281 
8282 /*
8283  * Release blocks associated with the freeblks and stored in the indirect
8284  * block dbn. If level is greater than SINGLE, the block is an indirect block
8285  * and recursive calls to indirtrunc must be used to cleanse other indirect
8286  * blocks.
8287  *
8288  * This handles partial and complete truncation of blocks.  Partial is noted
8289  * with goingaway == 0.  In this case the freework is completed after the
8290  * zero'd indirects are written to disk.  For full truncation the freework
8291  * is completed after the block is freed.
8292  */
8293 static void
8294 indir_trunc(struct freework *freework,
8295 	ufs2_daddr_t dbn,
8296 	ufs_lbn_t lbn)
8297 {
8298 	struct freework *nfreework;
8299 	struct workhead wkhd;
8300 	struct freeblks *freeblks;
8301 	struct buf *bp;
8302 	struct fs *fs;
8303 	struct indirdep *indirdep;
8304 	struct mount *mp;
8305 	struct ufsmount *ump;
8306 	ufs1_daddr_t *bap1;
8307 	ufs2_daddr_t nb, nnb, *bap2;
8308 	ufs_lbn_t lbnadd, nlbn;
8309 	u_long key;
8310 	int nblocks, ufs1fmt, freedblocks;
8311 	int goingaway, freedeps, needj, level, cnt, i, error;
8312 
8313 	freeblks = freework->fw_freeblks;
8314 	mp = freeblks->fb_list.wk_mp;
8315 	ump = VFSTOUFS(mp);
8316 	fs = ump->um_fs;
8317 	/*
8318 	 * Get buffer of block pointers to be freed.  There are three cases:
8319 	 *
8320 	 * 1) Partial truncate caches the indirdep pointer in the freework
8321 	 *    which provides us a back copy to the save bp which holds the
8322 	 *    pointers we want to clear.  When this completes the zero
8323 	 *    pointers are written to the real copy.
8324 	 * 2) The indirect is being completely truncated, cancel_indirdep()
8325 	 *    eliminated the real copy and placed the indirdep on the saved
8326 	 *    copy.  The indirdep and buf are discarded when this completes.
8327 	 * 3) The indirect was not in memory, we read a copy off of the disk
8328 	 *    using the devvp and drop and invalidate the buffer when we're
8329 	 *    done.
8330 	 */
8331 	goingaway = 1;
8332 	indirdep = NULL;
8333 	if (freework->fw_indir != NULL) {
8334 		goingaway = 0;
8335 		indirdep = freework->fw_indir;
8336 		bp = indirdep->ir_savebp;
8337 		if (bp == NULL || bp->b_blkno != dbn)
8338 			panic("indir_trunc: Bad saved buf %p blkno %jd",
8339 			    bp, (intmax_t)dbn);
8340 	} else if ((bp = incore(&freeblks->fb_devvp->v_bufobj, dbn)) != NULL) {
8341 		/*
8342 		 * The lock prevents the buf dep list from changing and
8343 	 	 * indirects on devvp should only ever have one dependency.
8344 		 */
8345 		indirdep = WK_INDIRDEP(LIST_FIRST(&bp->b_dep));
8346 		if (indirdep == NULL || (indirdep->ir_state & GOINGAWAY) == 0)
8347 			panic("indir_trunc: Bad indirdep %p from buf %p",
8348 			    indirdep, bp);
8349 	} else {
8350 		error = ffs_breadz(ump, freeblks->fb_devvp, dbn, dbn,
8351 		    (int)fs->fs_bsize, NULL, NULL, 0, NOCRED, 0, NULL, &bp);
8352 		if (error)
8353 			return;
8354 	}
8355 	ACQUIRE_LOCK(ump);
8356 	/* Protects against a race with complete_trunc_indir(). */
8357 	freework->fw_state &= ~INPROGRESS;
8358 	/*
8359 	 * If we have an indirdep we need to enforce the truncation order
8360 	 * and discard it when it is complete.
8361 	 */
8362 	if (indirdep) {
8363 		if (freework != TAILQ_FIRST(&indirdep->ir_trunc) &&
8364 		    !TAILQ_EMPTY(&indirdep->ir_trunc)) {
8365 			/*
8366 			 * Add the complete truncate to the list on the
8367 			 * indirdep to enforce in-order processing.
8368 			 */
8369 			if (freework->fw_indir == NULL)
8370 				TAILQ_INSERT_TAIL(&indirdep->ir_trunc,
8371 				    freework, fw_next);
8372 			FREE_LOCK(ump);
8373 			return;
8374 		}
8375 		/*
8376 		 * If we're goingaway, free the indirdep.  Otherwise it will
8377 		 * linger until the write completes.
8378 		 */
8379 		if (goingaway) {
8380 			KASSERT(indirdep->ir_savebp == bp,
8381 			    ("indir_trunc: losing ir_savebp %p",
8382 			    indirdep->ir_savebp));
8383 			indirdep->ir_savebp = NULL;
8384 			free_indirdep(indirdep);
8385 		}
8386 	}
8387 	FREE_LOCK(ump);
8388 	/* Initialize pointers depending on block size. */
8389 	if (ump->um_fstype == UFS1) {
8390 		bap1 = (ufs1_daddr_t *)bp->b_data;
8391 		nb = bap1[freework->fw_off];
8392 		ufs1fmt = 1;
8393 		bap2 = NULL;
8394 	} else {
8395 		bap2 = (ufs2_daddr_t *)bp->b_data;
8396 		nb = bap2[freework->fw_off];
8397 		ufs1fmt = 0;
8398 		bap1 = NULL;
8399 	}
8400 	level = lbn_level(lbn);
8401 	needj = MOUNTEDSUJ(UFSTOVFS(ump)) != 0;
8402 	lbnadd = lbn_offset(fs, level);
8403 	nblocks = btodb(fs->fs_bsize);
8404 	nfreework = freework;
8405 	freedeps = 0;
8406 	cnt = 0;
8407 	/*
8408 	 * Reclaim blocks.  Traverses into nested indirect levels and
8409 	 * arranges for the current level to be freed when subordinates
8410 	 * are free when journaling.
8411 	 */
8412 	key = ffs_blkrelease_start(ump, freeblks->fb_devvp, freeblks->fb_inum);
8413 	for (i = freework->fw_off; i < NINDIR(fs); i++, nb = nnb) {
8414 		if (UFS_CHECK_BLKNO(mp, freeblks->fb_inum, nb,
8415 		    fs->fs_bsize) != 0)
8416 			nb = 0;
8417 		if (i != NINDIR(fs) - 1) {
8418 			if (ufs1fmt)
8419 				nnb = bap1[i+1];
8420 			else
8421 				nnb = bap2[i+1];
8422 		} else
8423 			nnb = 0;
8424 		if (nb == 0)
8425 			continue;
8426 		cnt++;
8427 		if (level != 0) {
8428 			nlbn = (lbn + 1) - (i * lbnadd);
8429 			if (needj != 0) {
8430 				nfreework = newfreework(ump, freeblks, freework,
8431 				    nlbn, nb, fs->fs_frag, 0, 0);
8432 				freedeps++;
8433 			}
8434 			indir_trunc(nfreework, fsbtodb(fs, nb), nlbn);
8435 		} else {
8436 			struct freedep *freedep;
8437 
8438 			/*
8439 			 * Attempt to aggregate freedep dependencies for
8440 			 * all blocks being released to the same CG.
8441 			 */
8442 			LIST_INIT(&wkhd);
8443 			if (needj != 0 &&
8444 			    (nnb == 0 || (dtog(fs, nb) != dtog(fs, nnb)))) {
8445 				freedep = newfreedep(freework);
8446 				WORKLIST_INSERT_UNLOCKED(&wkhd,
8447 				    &freedep->fd_list);
8448 				freedeps++;
8449 			}
8450 			CTR3(KTR_SUJ,
8451 			    "indir_trunc: ino %jd blkno %jd size %d",
8452 			    freeblks->fb_inum, nb, fs->fs_bsize);
8453 			ffs_blkfree(ump, fs, freeblks->fb_devvp, nb,
8454 			    fs->fs_bsize, freeblks->fb_inum,
8455 			    freeblks->fb_vtype, &wkhd, key);
8456 		}
8457 	}
8458 	ffs_blkrelease_finish(ump, key);
8459 	if (goingaway) {
8460 		bp->b_flags |= B_INVAL | B_NOCACHE;
8461 		brelse(bp);
8462 	}
8463 	freedblocks = 0;
8464 	if (level == 0)
8465 		freedblocks = (nblocks * cnt);
8466 	if (needj == 0)
8467 		freedblocks += nblocks;
8468 	freeblks_free(ump, freeblks, freedblocks);
8469 	/*
8470 	 * If we are journaling set up the ref counts and offset so this
8471 	 * indirect can be completed when its children are free.
8472 	 */
8473 	if (needj) {
8474 		ACQUIRE_LOCK(ump);
8475 		freework->fw_off = i;
8476 		freework->fw_ref += freedeps;
8477 		freework->fw_ref -= NINDIR(fs) + 1;
8478 		if (level == 0)
8479 			freeblks->fb_cgwait += freedeps;
8480 		if (freework->fw_ref == 0)
8481 			freework_freeblock(freework, SINGLETON_KEY);
8482 		FREE_LOCK(ump);
8483 		return;
8484 	}
8485 	/*
8486 	 * If we're not journaling we can free the indirect now.
8487 	 */
8488 	dbn = dbtofsb(fs, dbn);
8489 	CTR3(KTR_SUJ,
8490 	    "indir_trunc 2: ino %jd blkno %jd size %d",
8491 	    freeblks->fb_inum, dbn, fs->fs_bsize);
8492 	ffs_blkfree(ump, fs, freeblks->fb_devvp, dbn, fs->fs_bsize,
8493 	    freeblks->fb_inum, freeblks->fb_vtype, NULL, SINGLETON_KEY);
8494 	/* Non SUJ softdep does single-threaded truncations. */
8495 	if (freework->fw_blkno == dbn) {
8496 		freework->fw_state |= ALLCOMPLETE;
8497 		ACQUIRE_LOCK(ump);
8498 		handle_written_freework(freework);
8499 		FREE_LOCK(ump);
8500 	}
8501 	return;
8502 }
8503 
8504 /*
8505  * Cancel an allocindir when it is removed via truncation.  When bp is not
8506  * NULL the indirect never appeared on disk and is scheduled to be freed
8507  * independently of the indir so we can more easily track journal work.
8508  */
8509 static void
8510 cancel_allocindir(
8511 	struct allocindir *aip,
8512 	struct buf *bp,
8513 	struct freeblks *freeblks,
8514 	int trunc)
8515 {
8516 	struct indirdep *indirdep;
8517 	struct freefrag *freefrag;
8518 	struct newblk *newblk;
8519 
8520 	newblk = (struct newblk *)aip;
8521 	LIST_REMOVE(aip, ai_next);
8522 	/*
8523 	 * We must eliminate the pointer in bp if it must be freed on its
8524 	 * own due to partial truncate or pending journal work.
8525 	 */
8526 	if (bp && (trunc || newblk->nb_jnewblk)) {
8527 		/*
8528 		 * Clear the pointer and mark the aip to be freed
8529 		 * directly if it never existed on disk.
8530 		 */
8531 		aip->ai_state |= DELAYEDFREE;
8532 		indirdep = aip->ai_indirdep;
8533 		if (indirdep->ir_state & UFS1FMT)
8534 			((ufs1_daddr_t *)bp->b_data)[aip->ai_offset] = 0;
8535 		else
8536 			((ufs2_daddr_t *)bp->b_data)[aip->ai_offset] = 0;
8537 	}
8538 	/*
8539 	 * When truncating the previous pointer will be freed via
8540 	 * savedbp.  Eliminate the freefrag which would dup free.
8541 	 */
8542 	if (trunc && (freefrag = newblk->nb_freefrag) != NULL) {
8543 		newblk->nb_freefrag = NULL;
8544 		if (freefrag->ff_jdep)
8545 			cancel_jfreefrag(
8546 			    WK_JFREEFRAG(freefrag->ff_jdep));
8547 		jwork_move(&freeblks->fb_jwork, &freefrag->ff_jwork);
8548 		WORKITEM_FREE(freefrag, D_FREEFRAG);
8549 	}
8550 	/*
8551 	 * If the journal hasn't been written the jnewblk must be passed
8552 	 * to the call to ffs_blkfree that reclaims the space.  We accomplish
8553 	 * this by leaving the journal dependency on the newblk to be freed
8554 	 * when a freework is created in handle_workitem_freeblocks().
8555 	 */
8556 	cancel_newblk(newblk, NULL, &freeblks->fb_jwork);
8557 	WORKLIST_INSERT(&freeblks->fb_freeworkhd, &newblk->nb_list);
8558 }
8559 
8560 /*
8561  * Create the mkdir dependencies for . and .. in a new directory.  Link them
8562  * in to a newdirblk so any subsequent additions are tracked properly.  The
8563  * caller is responsible for adding the mkdir1 dependency to the journal
8564  * and updating id_mkdiradd.  This function returns with the per-filesystem
8565  * lock held.
8566  */
8567 static struct mkdir *
8568 setup_newdir(
8569 	struct diradd *dap,
8570 	ino_t newinum,
8571 	ino_t dinum,
8572 	struct buf *newdirbp,
8573 	struct mkdir **mkdirp)
8574 {
8575 	struct newblk *newblk;
8576 	struct pagedep *pagedep;
8577 	struct inodedep *inodedep;
8578 	struct newdirblk *newdirblk;
8579 	struct mkdir *mkdir1, *mkdir2;
8580 	struct worklist *wk;
8581 	struct jaddref *jaddref;
8582 	struct ufsmount *ump;
8583 	struct mount *mp;
8584 
8585 	mp = dap->da_list.wk_mp;
8586 	ump = VFSTOUFS(mp);
8587 	newdirblk = malloc(sizeof(struct newdirblk), M_NEWDIRBLK,
8588 	    M_SOFTDEP_FLAGS);
8589 	workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp);
8590 	LIST_INIT(&newdirblk->db_mkdir);
8591 	mkdir1 = malloc(sizeof(struct mkdir), M_MKDIR, M_SOFTDEP_FLAGS);
8592 	workitem_alloc(&mkdir1->md_list, D_MKDIR, mp);
8593 	mkdir1->md_state = ATTACHED | MKDIR_BODY;
8594 	mkdir1->md_diradd = dap;
8595 	mkdir1->md_jaddref = NULL;
8596 	mkdir2 = malloc(sizeof(struct mkdir), M_MKDIR, M_SOFTDEP_FLAGS);
8597 	workitem_alloc(&mkdir2->md_list, D_MKDIR, mp);
8598 	mkdir2->md_state = ATTACHED | MKDIR_PARENT;
8599 	mkdir2->md_diradd = dap;
8600 	mkdir2->md_jaddref = NULL;
8601 	if (MOUNTEDSUJ(mp) == 0) {
8602 		mkdir1->md_state |= DEPCOMPLETE;
8603 		mkdir2->md_state |= DEPCOMPLETE;
8604 	}
8605 	/*
8606 	 * Dependency on "." and ".." being written to disk.
8607 	 */
8608 	mkdir1->md_buf = newdirbp;
8609 	ACQUIRE_LOCK(VFSTOUFS(mp));
8610 	LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir1, md_mkdirs);
8611 	/*
8612 	 * We must link the pagedep, allocdirect, and newdirblk for
8613 	 * the initial file page so the pointer to the new directory
8614 	 * is not written until the directory contents are live and
8615 	 * any subsequent additions are not marked live until the
8616 	 * block is reachable via the inode.
8617 	 */
8618 	if (pagedep_lookup(mp, newdirbp, newinum, 0, 0, &pagedep) == 0)
8619 		panic("setup_newdir: lost pagedep");
8620 	LIST_FOREACH(wk, &newdirbp->b_dep, wk_list)
8621 		if (wk->wk_type == D_ALLOCDIRECT)
8622 			break;
8623 	if (wk == NULL)
8624 		panic("setup_newdir: lost allocdirect");
8625 	if (pagedep->pd_state & NEWBLOCK)
8626 		panic("setup_newdir: NEWBLOCK already set");
8627 	newblk = WK_NEWBLK(wk);
8628 	pagedep->pd_state |= NEWBLOCK;
8629 	pagedep->pd_newdirblk = newdirblk;
8630 	newdirblk->db_pagedep = pagedep;
8631 	WORKLIST_INSERT(&newblk->nb_newdirblk, &newdirblk->db_list);
8632 	WORKLIST_INSERT(&newdirblk->db_mkdir, &mkdir1->md_list);
8633 	/*
8634 	 * Look up the inodedep for the parent directory so that we
8635 	 * can link mkdir2 into the pending dotdot jaddref or
8636 	 * the inode write if there is none.  If the inode is
8637 	 * ALLCOMPLETE and no jaddref is present all dependencies have
8638 	 * been satisfied and mkdir2 can be freed.
8639 	 */
8640 	inodedep_lookup(mp, dinum, 0, &inodedep);
8641 	if (MOUNTEDSUJ(mp)) {
8642 		if (inodedep == NULL)
8643 			panic("setup_newdir: Lost parent.");
8644 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
8645 		    inoreflst);
8646 		KASSERT(jaddref != NULL && jaddref->ja_parent == newinum &&
8647 		    (jaddref->ja_state & MKDIR_PARENT),
8648 		    ("setup_newdir: bad dotdot jaddref %p", jaddref));
8649 		LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir2, md_mkdirs);
8650 		mkdir2->md_jaddref = jaddref;
8651 		jaddref->ja_mkdir = mkdir2;
8652 	} else if (inodedep == NULL ||
8653 	    (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) {
8654 		dap->da_state &= ~MKDIR_PARENT;
8655 		WORKITEM_FREE(mkdir2, D_MKDIR);
8656 		mkdir2 = NULL;
8657 	} else {
8658 		LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir2, md_mkdirs);
8659 		WORKLIST_INSERT(&inodedep->id_bufwait, &mkdir2->md_list);
8660 	}
8661 	*mkdirp = mkdir2;
8662 
8663 	return (mkdir1);
8664 }
8665 
8666 /*
8667  * Directory entry addition dependencies.
8668  *
8669  * When adding a new directory entry, the inode (with its incremented link
8670  * count) must be written to disk before the directory entry's pointer to it.
8671  * Also, if the inode is newly allocated, the corresponding freemap must be
8672  * updated (on disk) before the directory entry's pointer. These requirements
8673  * are met via undo/redo on the directory entry's pointer, which consists
8674  * simply of the inode number.
8675  *
8676  * As directory entries are added and deleted, the free space within a
8677  * directory block can become fragmented.  The ufs filesystem will compact
8678  * a fragmented directory block to make space for a new entry. When this
8679  * occurs, the offsets of previously added entries change. Any "diradd"
8680  * dependency structures corresponding to these entries must be updated with
8681  * the new offsets.
8682  */
8683 
8684 /*
8685  * This routine is called after the in-memory inode's link
8686  * count has been incremented, but before the directory entry's
8687  * pointer to the inode has been set.
8688  */
8689 int
8690 softdep_setup_directory_add(
8691 	struct buf *bp,		/* buffer containing directory block */
8692 	struct inode *dp,	/* inode for directory */
8693 	off_t diroffset,	/* offset of new entry in directory */
8694 	ino_t newinum,		/* inode referenced by new directory entry */
8695 	struct buf *newdirbp,	/* non-NULL => contents of new mkdir */
8696 	int isnewblk)		/* entry is in a newly allocated block */
8697 {
8698 	int offset;		/* offset of new entry within directory block */
8699 	ufs_lbn_t lbn;		/* block in directory containing new entry */
8700 	struct fs *fs;
8701 	struct diradd *dap;
8702 	struct newblk *newblk;
8703 	struct pagedep *pagedep;
8704 	struct inodedep *inodedep;
8705 	struct newdirblk *newdirblk;
8706 	struct mkdir *mkdir1, *mkdir2;
8707 	struct jaddref *jaddref;
8708 	struct ufsmount *ump;
8709 	struct mount *mp;
8710 	int isindir;
8711 
8712 	mp = ITOVFS(dp);
8713 	ump = VFSTOUFS(mp);
8714 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
8715 	    ("softdep_setup_directory_add called on non-softdep filesystem"));
8716 	/*
8717 	 * Whiteouts have no dependencies.
8718 	 */
8719 	if (newinum == UFS_WINO) {
8720 		if (newdirbp != NULL)
8721 			bdwrite(newdirbp);
8722 		return (0);
8723 	}
8724 	jaddref = NULL;
8725 	mkdir1 = mkdir2 = NULL;
8726 	fs = ump->um_fs;
8727 	lbn = lblkno(fs, diroffset);
8728 	offset = blkoff(fs, diroffset);
8729 	dap = malloc(sizeof(struct diradd), M_DIRADD,
8730 		M_SOFTDEP_FLAGS|M_ZERO);
8731 	workitem_alloc(&dap->da_list, D_DIRADD, mp);
8732 	dap->da_offset = offset;
8733 	dap->da_newinum = newinum;
8734 	dap->da_state = ATTACHED;
8735 	LIST_INIT(&dap->da_jwork);
8736 	isindir = bp->b_lblkno >= UFS_NDADDR;
8737 	newdirblk = NULL;
8738 	if (isnewblk &&
8739 	    (isindir ? blkoff(fs, diroffset) : fragoff(fs, diroffset)) == 0) {
8740 		newdirblk = malloc(sizeof(struct newdirblk),
8741 		    M_NEWDIRBLK, M_SOFTDEP_FLAGS);
8742 		workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp);
8743 		LIST_INIT(&newdirblk->db_mkdir);
8744 	}
8745 	/*
8746 	 * If we're creating a new directory setup the dependencies and set
8747 	 * the dap state to wait for them.  Otherwise it's COMPLETE and
8748 	 * we can move on.
8749 	 */
8750 	if (newdirbp == NULL) {
8751 		dap->da_state |= DEPCOMPLETE;
8752 		ACQUIRE_LOCK(ump);
8753 	} else {
8754 		dap->da_state |= MKDIR_BODY | MKDIR_PARENT;
8755 		mkdir1 = setup_newdir(dap, newinum, dp->i_number, newdirbp,
8756 		    &mkdir2);
8757 	}
8758 	/*
8759 	 * Link into parent directory pagedep to await its being written.
8760 	 */
8761 	pagedep_lookup(mp, bp, dp->i_number, lbn, DEPALLOC, &pagedep);
8762 #ifdef INVARIANTS
8763 	if (diradd_lookup(pagedep, offset) != NULL)
8764 		panic("softdep_setup_directory_add: %p already at off %d\n",
8765 		    diradd_lookup(pagedep, offset), offset);
8766 #endif
8767 	dap->da_pagedep = pagedep;
8768 	LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], dap,
8769 	    da_pdlist);
8770 	inodedep_lookup(mp, newinum, DEPALLOC, &inodedep);
8771 	/*
8772 	 * If we're journaling, link the diradd into the jaddref so it
8773 	 * may be completed after the journal entry is written.  Otherwise,
8774 	 * link the diradd into its inodedep.  If the inode is not yet
8775 	 * written place it on the bufwait list, otherwise do the post-inode
8776 	 * write processing to put it on the id_pendinghd list.
8777 	 */
8778 	if (MOUNTEDSUJ(mp)) {
8779 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
8780 		    inoreflst);
8781 		KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number,
8782 		    ("softdep_setup_directory_add: bad jaddref %p", jaddref));
8783 		jaddref->ja_diroff = diroffset;
8784 		jaddref->ja_diradd = dap;
8785 		add_to_journal(&jaddref->ja_list);
8786 	} else if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE)
8787 		diradd_inode_written(dap, inodedep);
8788 	else
8789 		WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list);
8790 	/*
8791 	 * Add the journal entries for . and .. links now that the primary
8792 	 * link is written.
8793 	 */
8794 	if (mkdir1 != NULL && MOUNTEDSUJ(mp)) {
8795 		jaddref = (struct jaddref *)TAILQ_PREV(&jaddref->ja_ref,
8796 		    inoreflst, if_deps);
8797 		KASSERT(jaddref != NULL &&
8798 		    jaddref->ja_ino == jaddref->ja_parent &&
8799 		    (jaddref->ja_state & MKDIR_BODY),
8800 		    ("softdep_setup_directory_add: bad dot jaddref %p",
8801 		    jaddref));
8802 		mkdir1->md_jaddref = jaddref;
8803 		jaddref->ja_mkdir = mkdir1;
8804 		/*
8805 		 * It is important that the dotdot journal entry
8806 		 * is added prior to the dot entry since dot writes
8807 		 * both the dot and dotdot links.  These both must
8808 		 * be added after the primary link for the journal
8809 		 * to remain consistent.
8810 		 */
8811 		add_to_journal(&mkdir2->md_jaddref->ja_list);
8812 		add_to_journal(&jaddref->ja_list);
8813 	}
8814 	/*
8815 	 * If we are adding a new directory remember this diradd so that if
8816 	 * we rename it we can keep the dot and dotdot dependencies.  If
8817 	 * we are adding a new name for an inode that has a mkdiradd we
8818 	 * must be in rename and we have to move the dot and dotdot
8819 	 * dependencies to this new name.  The old name is being orphaned
8820 	 * soon.
8821 	 */
8822 	if (mkdir1 != NULL) {
8823 		if (inodedep->id_mkdiradd != NULL)
8824 			panic("softdep_setup_directory_add: Existing mkdir");
8825 		inodedep->id_mkdiradd = dap;
8826 	} else if (inodedep->id_mkdiradd)
8827 		merge_diradd(inodedep, dap);
8828 	if (newdirblk != NULL) {
8829 		/*
8830 		 * There is nothing to do if we are already tracking
8831 		 * this block.
8832 		 */
8833 		if ((pagedep->pd_state & NEWBLOCK) != 0) {
8834 			WORKITEM_FREE(newdirblk, D_NEWDIRBLK);
8835 			FREE_LOCK(ump);
8836 			return (0);
8837 		}
8838 		if (newblk_lookup(mp, dbtofsb(fs, bp->b_blkno), 0, &newblk)
8839 		    == 0)
8840 			panic("softdep_setup_directory_add: lost entry");
8841 		WORKLIST_INSERT(&newblk->nb_newdirblk, &newdirblk->db_list);
8842 		pagedep->pd_state |= NEWBLOCK;
8843 		pagedep->pd_newdirblk = newdirblk;
8844 		newdirblk->db_pagedep = pagedep;
8845 		FREE_LOCK(ump);
8846 		/*
8847 		 * If we extended into an indirect signal direnter to sync.
8848 		 */
8849 		if (isindir)
8850 			return (1);
8851 		return (0);
8852 	}
8853 	FREE_LOCK(ump);
8854 	return (0);
8855 }
8856 
8857 /*
8858  * This procedure is called to change the offset of a directory
8859  * entry when compacting a directory block which must be owned
8860  * exclusively by the caller. Note that the actual entry movement
8861  * must be done in this procedure to ensure that no I/O completions
8862  * occur while the move is in progress.
8863  */
8864 void
8865 softdep_change_directoryentry_offset(
8866 	struct buf *bp,		/* Buffer holding directory block. */
8867 	struct inode *dp,	/* inode for directory */
8868 	caddr_t base,		/* address of dp->i_offset */
8869 	caddr_t oldloc,		/* address of old directory location */
8870 	caddr_t newloc,		/* address of new directory location */
8871 	int entrysize)		/* size of directory entry */
8872 {
8873 	int offset, oldoffset, newoffset;
8874 	struct pagedep *pagedep;
8875 	struct jmvref *jmvref;
8876 	struct diradd *dap;
8877 	struct direct *de;
8878 	struct mount *mp;
8879 	struct ufsmount *ump;
8880 	ufs_lbn_t lbn;
8881 	int flags;
8882 
8883 	mp = ITOVFS(dp);
8884 	ump = VFSTOUFS(mp);
8885 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
8886 	    ("softdep_change_directoryentry_offset called on "
8887 	     "non-softdep filesystem"));
8888 	de = (struct direct *)oldloc;
8889 	jmvref = NULL;
8890 	flags = 0;
8891 	/*
8892 	 * Moves are always journaled as it would be too complex to
8893 	 * determine if any affected adds or removes are present in the
8894 	 * journal.
8895 	 */
8896 	if (MOUNTEDSUJ(mp)) {
8897 		flags = DEPALLOC;
8898 		jmvref = newjmvref(dp, de->d_ino,
8899 		    I_OFFSET(dp) + (oldloc - base),
8900 		    I_OFFSET(dp) + (newloc - base));
8901 	}
8902 	lbn = lblkno(ump->um_fs, I_OFFSET(dp));
8903 	offset = blkoff(ump->um_fs, I_OFFSET(dp));
8904 	oldoffset = offset + (oldloc - base);
8905 	newoffset = offset + (newloc - base);
8906 	ACQUIRE_LOCK(ump);
8907 	if (pagedep_lookup(mp, bp, dp->i_number, lbn, flags, &pagedep) == 0)
8908 		goto done;
8909 	dap = diradd_lookup(pagedep, oldoffset);
8910 	if (dap) {
8911 		dap->da_offset = newoffset;
8912 		newoffset = DIRADDHASH(newoffset);
8913 		oldoffset = DIRADDHASH(oldoffset);
8914 		if ((dap->da_state & ALLCOMPLETE) != ALLCOMPLETE &&
8915 		    newoffset != oldoffset) {
8916 			LIST_REMOVE(dap, da_pdlist);
8917 			LIST_INSERT_HEAD(&pagedep->pd_diraddhd[newoffset],
8918 			    dap, da_pdlist);
8919 		}
8920 	}
8921 done:
8922 	if (jmvref) {
8923 		jmvref->jm_pagedep = pagedep;
8924 		LIST_INSERT_HEAD(&pagedep->pd_jmvrefhd, jmvref, jm_deps);
8925 		add_to_journal(&jmvref->jm_list);
8926 	}
8927 	bcopy(oldloc, newloc, entrysize);
8928 	FREE_LOCK(ump);
8929 }
8930 
8931 /*
8932  * Move the mkdir dependencies and journal work from one diradd to another
8933  * when renaming a directory.  The new name must depend on the mkdir deps
8934  * completing as the old name did.  Directories can only have one valid link
8935  * at a time so one must be canonical.
8936  */
8937 static void
8938 merge_diradd(struct inodedep *inodedep, struct diradd *newdap)
8939 {
8940 	struct diradd *olddap;
8941 	struct mkdir *mkdir, *nextmd;
8942 	struct ufsmount *ump;
8943 	short state;
8944 
8945 	olddap = inodedep->id_mkdiradd;
8946 	inodedep->id_mkdiradd = newdap;
8947 	if ((olddap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
8948 		newdap->da_state &= ~DEPCOMPLETE;
8949 		ump = VFSTOUFS(inodedep->id_list.wk_mp);
8950 		for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir;
8951 		     mkdir = nextmd) {
8952 			nextmd = LIST_NEXT(mkdir, md_mkdirs);
8953 			if (mkdir->md_diradd != olddap)
8954 				continue;
8955 			mkdir->md_diradd = newdap;
8956 			state = mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY);
8957 			newdap->da_state |= state;
8958 			olddap->da_state &= ~state;
8959 			if ((olddap->da_state &
8960 			    (MKDIR_PARENT | MKDIR_BODY)) == 0)
8961 				break;
8962 		}
8963 		if ((olddap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0)
8964 			panic("merge_diradd: unfound ref");
8965 	}
8966 	/*
8967 	 * Any mkdir related journal items are not safe to be freed until
8968 	 * the new name is stable.
8969 	 */
8970 	jwork_move(&newdap->da_jwork, &olddap->da_jwork);
8971 	olddap->da_state |= DEPCOMPLETE;
8972 	complete_diradd(olddap);
8973 }
8974 
8975 /*
8976  * Move the diradd to the pending list when all diradd dependencies are
8977  * complete.
8978  */
8979 static void
8980 complete_diradd(struct diradd *dap)
8981 {
8982 	struct pagedep *pagedep;
8983 
8984 	if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
8985 		if (dap->da_state & DIRCHG)
8986 			pagedep = dap->da_previous->dm_pagedep;
8987 		else
8988 			pagedep = dap->da_pagedep;
8989 		LIST_REMOVE(dap, da_pdlist);
8990 		LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
8991 	}
8992 }
8993 
8994 /*
8995  * Cancel a diradd when a dirrem overlaps with it.  We must cancel the journal
8996  * add entries and conditionally journal the remove.
8997  */
8998 static void
8999 cancel_diradd(
9000 	struct diradd *dap,
9001 	struct dirrem *dirrem,
9002 	struct jremref *jremref,
9003 	struct jremref *dotremref,
9004 	struct jremref *dotdotremref)
9005 {
9006 	struct inodedep *inodedep;
9007 	struct jaddref *jaddref;
9008 	struct inoref *inoref;
9009 	struct ufsmount *ump;
9010 	struct mkdir *mkdir;
9011 
9012 	/*
9013 	 * If no remove references were allocated we're on a non-journaled
9014 	 * filesystem and can skip the cancel step.
9015 	 */
9016 	if (jremref == NULL) {
9017 		free_diradd(dap, NULL);
9018 		return;
9019 	}
9020 	/*
9021 	 * Cancel the primary name an free it if it does not require
9022 	 * journaling.
9023 	 */
9024 	if (inodedep_lookup(dap->da_list.wk_mp, dap->da_newinum,
9025 	    0, &inodedep) != 0) {
9026 		/* Abort the addref that reference this diradd.  */
9027 		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
9028 			if (inoref->if_list.wk_type != D_JADDREF)
9029 				continue;
9030 			jaddref = (struct jaddref *)inoref;
9031 			if (jaddref->ja_diradd != dap)
9032 				continue;
9033 			if (cancel_jaddref(jaddref, inodedep,
9034 			    &dirrem->dm_jwork) == 0) {
9035 				free_jremref(jremref);
9036 				jremref = NULL;
9037 			}
9038 			break;
9039 		}
9040 	}
9041 	/*
9042 	 * Cancel subordinate names and free them if they do not require
9043 	 * journaling.
9044 	 */
9045 	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
9046 		ump = VFSTOUFS(dap->da_list.wk_mp);
9047 		LIST_FOREACH(mkdir, &ump->softdep_mkdirlisthd, md_mkdirs) {
9048 			if (mkdir->md_diradd != dap)
9049 				continue;
9050 			if ((jaddref = mkdir->md_jaddref) == NULL)
9051 				continue;
9052 			mkdir->md_jaddref = NULL;
9053 			if (mkdir->md_state & MKDIR_PARENT) {
9054 				if (cancel_jaddref(jaddref, NULL,
9055 				    &dirrem->dm_jwork) == 0) {
9056 					free_jremref(dotdotremref);
9057 					dotdotremref = NULL;
9058 				}
9059 			} else {
9060 				if (cancel_jaddref(jaddref, inodedep,
9061 				    &dirrem->dm_jwork) == 0) {
9062 					free_jremref(dotremref);
9063 					dotremref = NULL;
9064 				}
9065 			}
9066 		}
9067 	}
9068 
9069 	if (jremref)
9070 		journal_jremref(dirrem, jremref, inodedep);
9071 	if (dotremref)
9072 		journal_jremref(dirrem, dotremref, inodedep);
9073 	if (dotdotremref)
9074 		journal_jremref(dirrem, dotdotremref, NULL);
9075 	jwork_move(&dirrem->dm_jwork, &dap->da_jwork);
9076 	free_diradd(dap, &dirrem->dm_jwork);
9077 }
9078 
9079 /*
9080  * Free a diradd dependency structure.
9081  */
9082 static void
9083 free_diradd(struct diradd *dap, struct workhead *wkhd)
9084 {
9085 	struct dirrem *dirrem;
9086 	struct pagedep *pagedep;
9087 	struct inodedep *inodedep;
9088 	struct mkdir *mkdir, *nextmd;
9089 	struct ufsmount *ump;
9090 
9091 	ump = VFSTOUFS(dap->da_list.wk_mp);
9092 	LOCK_OWNED(ump);
9093 	LIST_REMOVE(dap, da_pdlist);
9094 	if (dap->da_state & ONWORKLIST)
9095 		WORKLIST_REMOVE(&dap->da_list);
9096 	if ((dap->da_state & DIRCHG) == 0) {
9097 		pagedep = dap->da_pagedep;
9098 	} else {
9099 		dirrem = dap->da_previous;
9100 		pagedep = dirrem->dm_pagedep;
9101 		dirrem->dm_dirinum = pagedep->pd_ino;
9102 		dirrem->dm_state |= COMPLETE;
9103 		if (LIST_EMPTY(&dirrem->dm_jremrefhd))
9104 			add_to_worklist(&dirrem->dm_list, 0);
9105 	}
9106 	if (inodedep_lookup(pagedep->pd_list.wk_mp, dap->da_newinum,
9107 	    0, &inodedep) != 0)
9108 		if (inodedep->id_mkdiradd == dap)
9109 			inodedep->id_mkdiradd = NULL;
9110 	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
9111 		for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir;
9112 		     mkdir = nextmd) {
9113 			nextmd = LIST_NEXT(mkdir, md_mkdirs);
9114 			if (mkdir->md_diradd != dap)
9115 				continue;
9116 			dap->da_state &=
9117 			    ~(mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY));
9118 			LIST_REMOVE(mkdir, md_mkdirs);
9119 			if (mkdir->md_state & ONWORKLIST)
9120 				WORKLIST_REMOVE(&mkdir->md_list);
9121 			if (mkdir->md_jaddref != NULL)
9122 				panic("free_diradd: Unexpected jaddref");
9123 			WORKITEM_FREE(mkdir, D_MKDIR);
9124 			if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0)
9125 				break;
9126 		}
9127 		if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0)
9128 			panic("free_diradd: unfound ref");
9129 	}
9130 	if (inodedep)
9131 		free_inodedep(inodedep);
9132 	/*
9133 	 * Free any journal segments waiting for the directory write.
9134 	 */
9135 	handle_jwork(&dap->da_jwork);
9136 	WORKITEM_FREE(dap, D_DIRADD);
9137 }
9138 
9139 /*
9140  * Directory entry removal dependencies.
9141  *
9142  * When removing a directory entry, the entry's inode pointer must be
9143  * zero'ed on disk before the corresponding inode's link count is decremented
9144  * (possibly freeing the inode for re-use). This dependency is handled by
9145  * updating the directory entry but delaying the inode count reduction until
9146  * after the directory block has been written to disk. After this point, the
9147  * inode count can be decremented whenever it is convenient.
9148  */
9149 
9150 /*
9151  * This routine should be called immediately after removing
9152  * a directory entry.  The inode's link count should not be
9153  * decremented by the calling procedure -- the soft updates
9154  * code will do this task when it is safe.
9155  */
9156 void
9157 softdep_setup_remove(
9158 	struct buf *bp,		/* buffer containing directory block */
9159 	struct inode *dp,	/* inode for the directory being modified */
9160 	struct inode *ip,	/* inode for directory entry being removed */
9161 	int isrmdir)		/* indicates if doing RMDIR */
9162 {
9163 	struct dirrem *dirrem, *prevdirrem;
9164 	struct inodedep *inodedep;
9165 	struct ufsmount *ump;
9166 	int direct;
9167 
9168 	ump = ITOUMP(ip);
9169 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
9170 	    ("softdep_setup_remove called on non-softdep filesystem"));
9171 	/*
9172 	 * Allocate a new dirrem if appropriate and ACQUIRE_LOCK.  We want
9173 	 * newdirrem() to setup the full directory remove which requires
9174 	 * isrmdir > 1.
9175 	 */
9176 	dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem);
9177 	/*
9178 	 * Add the dirrem to the inodedep's pending remove list for quick
9179 	 * discovery later.
9180 	 */
9181 	if (inodedep_lookup(UFSTOVFS(ump), ip->i_number, 0, &inodedep) == 0)
9182 		panic("softdep_setup_remove: Lost inodedep.");
9183 	KASSERT((inodedep->id_state & UNLINKED) == 0, ("inode unlinked"));
9184 	dirrem->dm_state |= ONDEPLIST;
9185 	LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext);
9186 
9187 	/*
9188 	 * If the COMPLETE flag is clear, then there were no active
9189 	 * entries and we want to roll back to a zeroed entry until
9190 	 * the new inode is committed to disk. If the COMPLETE flag is
9191 	 * set then we have deleted an entry that never made it to
9192 	 * disk. If the entry we deleted resulted from a name change,
9193 	 * then the old name still resides on disk. We cannot delete
9194 	 * its inode (returned to us in prevdirrem) until the zeroed
9195 	 * directory entry gets to disk. The new inode has never been
9196 	 * referenced on the disk, so can be deleted immediately.
9197 	 */
9198 	if ((dirrem->dm_state & COMPLETE) == 0) {
9199 		LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, dirrem,
9200 		    dm_next);
9201 		FREE_LOCK(ump);
9202 	} else {
9203 		if (prevdirrem != NULL)
9204 			LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd,
9205 			    prevdirrem, dm_next);
9206 		dirrem->dm_dirinum = dirrem->dm_pagedep->pd_ino;
9207 		direct = LIST_EMPTY(&dirrem->dm_jremrefhd);
9208 		FREE_LOCK(ump);
9209 		if (direct)
9210 			handle_workitem_remove(dirrem, 0);
9211 	}
9212 }
9213 
9214 /*
9215  * Check for an entry matching 'offset' on both the pd_dirraddhd list and the
9216  * pd_pendinghd list of a pagedep.
9217  */
9218 static struct diradd *
9219 diradd_lookup(struct pagedep *pagedep, int offset)
9220 {
9221 	struct diradd *dap;
9222 
9223 	LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(offset)], da_pdlist)
9224 		if (dap->da_offset == offset)
9225 			return (dap);
9226 	LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist)
9227 		if (dap->da_offset == offset)
9228 			return (dap);
9229 	return (NULL);
9230 }
9231 
9232 /*
9233  * Search for a .. diradd dependency in a directory that is being removed.
9234  * If the directory was renamed to a new parent we have a diradd rather
9235  * than a mkdir for the .. entry.  We need to cancel it now before
9236  * it is found in truncate().
9237  */
9238 static struct jremref *
9239 cancel_diradd_dotdot(struct inode *ip,
9240 	struct dirrem *dirrem,
9241 	struct jremref *jremref)
9242 {
9243 	struct pagedep *pagedep;
9244 	struct diradd *dap;
9245 	struct worklist *wk;
9246 
9247 	if (pagedep_lookup(ITOVFS(ip), NULL, ip->i_number, 0, 0, &pagedep) == 0)
9248 		return (jremref);
9249 	dap = diradd_lookup(pagedep, DOTDOT_OFFSET);
9250 	if (dap == NULL)
9251 		return (jremref);
9252 	cancel_diradd(dap, dirrem, jremref, NULL, NULL);
9253 	/*
9254 	 * Mark any journal work as belonging to the parent so it is freed
9255 	 * with the .. reference.
9256 	 */
9257 	LIST_FOREACH(wk, &dirrem->dm_jwork, wk_list)
9258 		wk->wk_state |= MKDIR_PARENT;
9259 	return (NULL);
9260 }
9261 
9262 /*
9263  * Cancel the MKDIR_PARENT mkdir component of a diradd when we're going to
9264  * replace it with a dirrem/diradd pair as a result of re-parenting a
9265  * directory.  This ensures that we don't simultaneously have a mkdir and
9266  * a diradd for the same .. entry.
9267  */
9268 static struct jremref *
9269 cancel_mkdir_dotdot(struct inode *ip,
9270 	struct dirrem *dirrem,
9271 	struct jremref *jremref)
9272 {
9273 	struct inodedep *inodedep;
9274 	struct jaddref *jaddref;
9275 	struct ufsmount *ump;
9276 	struct mkdir *mkdir;
9277 	struct diradd *dap;
9278 	struct mount *mp;
9279 
9280 	mp = ITOVFS(ip);
9281 	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0)
9282 		return (jremref);
9283 	dap = inodedep->id_mkdiradd;
9284 	if (dap == NULL || (dap->da_state & MKDIR_PARENT) == 0)
9285 		return (jremref);
9286 	ump = VFSTOUFS(inodedep->id_list.wk_mp);
9287 	for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir;
9288 	    mkdir = LIST_NEXT(mkdir, md_mkdirs))
9289 		if (mkdir->md_diradd == dap && mkdir->md_state & MKDIR_PARENT)
9290 			break;
9291 	if (mkdir == NULL)
9292 		panic("cancel_mkdir_dotdot: Unable to find mkdir\n");
9293 	if ((jaddref = mkdir->md_jaddref) != NULL) {
9294 		mkdir->md_jaddref = NULL;
9295 		jaddref->ja_state &= ~MKDIR_PARENT;
9296 		if (inodedep_lookup(mp, jaddref->ja_ino, 0, &inodedep) == 0)
9297 			panic("cancel_mkdir_dotdot: Lost parent inodedep");
9298 		if (cancel_jaddref(jaddref, inodedep, &dirrem->dm_jwork)) {
9299 			journal_jremref(dirrem, jremref, inodedep);
9300 			jremref = NULL;
9301 		}
9302 	}
9303 	if (mkdir->md_state & ONWORKLIST)
9304 		WORKLIST_REMOVE(&mkdir->md_list);
9305 	mkdir->md_state |= ALLCOMPLETE;
9306 	complete_mkdir(mkdir);
9307 	return (jremref);
9308 }
9309 
9310 static void
9311 journal_jremref(struct dirrem *dirrem,
9312 	struct jremref *jremref,
9313 	struct inodedep *inodedep)
9314 {
9315 
9316 	if (inodedep == NULL)
9317 		if (inodedep_lookup(jremref->jr_list.wk_mp,
9318 		    jremref->jr_ref.if_ino, 0, &inodedep) == 0)
9319 			panic("journal_jremref: Lost inodedep");
9320 	LIST_INSERT_HEAD(&dirrem->dm_jremrefhd, jremref, jr_deps);
9321 	TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jremref->jr_ref, if_deps);
9322 	add_to_journal(&jremref->jr_list);
9323 }
9324 
9325 static void
9326 dirrem_journal(
9327 	struct dirrem *dirrem,
9328 	struct jremref *jremref,
9329 	struct jremref *dotremref,
9330 	struct jremref *dotdotremref)
9331 {
9332 	struct inodedep *inodedep;
9333 
9334 	if (inodedep_lookup(jremref->jr_list.wk_mp, jremref->jr_ref.if_ino, 0,
9335 	    &inodedep) == 0)
9336 		panic("dirrem_journal: Lost inodedep");
9337 	journal_jremref(dirrem, jremref, inodedep);
9338 	if (dotremref)
9339 		journal_jremref(dirrem, dotremref, inodedep);
9340 	if (dotdotremref)
9341 		journal_jremref(dirrem, dotdotremref, NULL);
9342 }
9343 
9344 /*
9345  * Allocate a new dirrem if appropriate and return it along with
9346  * its associated pagedep. Called without a lock, returns with lock.
9347  */
9348 static struct dirrem *
9349 newdirrem(
9350 	struct buf *bp,		/* buffer containing directory block */
9351 	struct inode *dp,	/* inode for the directory being modified */
9352 	struct inode *ip,	/* inode for directory entry being removed */
9353 	int isrmdir,		/* indicates if doing RMDIR */
9354 	struct dirrem **prevdirremp) /* previously referenced inode, if any */
9355 {
9356 	int offset;
9357 	ufs_lbn_t lbn;
9358 	struct diradd *dap;
9359 	struct dirrem *dirrem;
9360 	struct pagedep *pagedep;
9361 	struct jremref *jremref;
9362 	struct jremref *dotremref;
9363 	struct jremref *dotdotremref;
9364 	struct vnode *dvp;
9365 	struct ufsmount *ump;
9366 
9367 	/*
9368 	 * Whiteouts have no deletion dependencies.
9369 	 */
9370 	if (ip == NULL)
9371 		panic("newdirrem: whiteout");
9372 	dvp = ITOV(dp);
9373 	ump = ITOUMP(dp);
9374 
9375 	/*
9376 	 * If the system is over its limit and our filesystem is
9377 	 * responsible for more than our share of that usage and
9378 	 * we are not a snapshot, request some inodedep cleanup.
9379 	 * Limiting the number of dirrem structures will also limit
9380 	 * the number of freefile and freeblks structures.
9381 	 */
9382 	ACQUIRE_LOCK(ump);
9383 	if (!IS_SNAPSHOT(ip) && softdep_excess_items(ump, D_DIRREM))
9384 		schedule_cleanup(UFSTOVFS(ump));
9385 	else
9386 		FREE_LOCK(ump);
9387 	dirrem = malloc(sizeof(struct dirrem), M_DIRREM, M_SOFTDEP_FLAGS |
9388 	    M_ZERO);
9389 	workitem_alloc(&dirrem->dm_list, D_DIRREM, dvp->v_mount);
9390 	LIST_INIT(&dirrem->dm_jremrefhd);
9391 	LIST_INIT(&dirrem->dm_jwork);
9392 	dirrem->dm_state = isrmdir ? RMDIR : 0;
9393 	dirrem->dm_oldinum = ip->i_number;
9394 	*prevdirremp = NULL;
9395 	/*
9396 	 * Allocate remove reference structures to track journal write
9397 	 * dependencies.  We will always have one for the link and
9398 	 * when doing directories we will always have one more for dot.
9399 	 * When renaming a directory we skip the dotdot link change so
9400 	 * this is not needed.
9401 	 */
9402 	jremref = dotremref = dotdotremref = NULL;
9403 	if (DOINGSUJ(dvp)) {
9404 		if (isrmdir) {
9405 			jremref = newjremref(dirrem, dp, ip, I_OFFSET(dp),
9406 			    ip->i_effnlink + 2);
9407 			dotremref = newjremref(dirrem, ip, ip, DOT_OFFSET,
9408 			    ip->i_effnlink + 1);
9409 			dotdotremref = newjremref(dirrem, ip, dp, DOTDOT_OFFSET,
9410 			    dp->i_effnlink + 1);
9411 			dotdotremref->jr_state |= MKDIR_PARENT;
9412 		} else
9413 			jremref = newjremref(dirrem, dp, ip, I_OFFSET(dp),
9414 			    ip->i_effnlink + 1);
9415 	}
9416 	ACQUIRE_LOCK(ump);
9417 	lbn = lblkno(ump->um_fs, I_OFFSET(dp));
9418 	offset = blkoff(ump->um_fs, I_OFFSET(dp));
9419 	pagedep_lookup(UFSTOVFS(ump), bp, dp->i_number, lbn, DEPALLOC,
9420 	    &pagedep);
9421 	dirrem->dm_pagedep = pagedep;
9422 	dirrem->dm_offset = offset;
9423 	/*
9424 	 * If we're renaming a .. link to a new directory, cancel any
9425 	 * existing MKDIR_PARENT mkdir.  If it has already been canceled
9426 	 * the jremref is preserved for any potential diradd in this
9427 	 * location.  This can not coincide with a rmdir.
9428 	 */
9429 	if (I_OFFSET(dp) == DOTDOT_OFFSET) {
9430 		if (isrmdir)
9431 			panic("newdirrem: .. directory change during remove?");
9432 		jremref = cancel_mkdir_dotdot(dp, dirrem, jremref);
9433 	}
9434 	/*
9435 	 * If we're removing a directory search for the .. dependency now and
9436 	 * cancel it.  Any pending journal work will be added to the dirrem
9437 	 * to be completed when the workitem remove completes.
9438 	 */
9439 	if (isrmdir)
9440 		dotdotremref = cancel_diradd_dotdot(ip, dirrem, dotdotremref);
9441 	/*
9442 	 * Check for a diradd dependency for the same directory entry.
9443 	 * If present, then both dependencies become obsolete and can
9444 	 * be de-allocated.
9445 	 */
9446 	dap = diradd_lookup(pagedep, offset);
9447 	if (dap == NULL) {
9448 		/*
9449 		 * Link the jremref structures into the dirrem so they are
9450 		 * written prior to the pagedep.
9451 		 */
9452 		if (jremref)
9453 			dirrem_journal(dirrem, jremref, dotremref,
9454 			    dotdotremref);
9455 		return (dirrem);
9456 	}
9457 	/*
9458 	 * Must be ATTACHED at this point.
9459 	 */
9460 	if ((dap->da_state & ATTACHED) == 0)
9461 		panic("newdirrem: not ATTACHED");
9462 	if (dap->da_newinum != ip->i_number)
9463 		panic("newdirrem: inum %ju should be %ju",
9464 		    (uintmax_t)ip->i_number, (uintmax_t)dap->da_newinum);
9465 	/*
9466 	 * If we are deleting a changed name that never made it to disk,
9467 	 * then return the dirrem describing the previous inode (which
9468 	 * represents the inode currently referenced from this entry on disk).
9469 	 */
9470 	if ((dap->da_state & DIRCHG) != 0) {
9471 		*prevdirremp = dap->da_previous;
9472 		dap->da_state &= ~DIRCHG;
9473 		dap->da_pagedep = pagedep;
9474 	}
9475 	/*
9476 	 * We are deleting an entry that never made it to disk.
9477 	 * Mark it COMPLETE so we can delete its inode immediately.
9478 	 */
9479 	dirrem->dm_state |= COMPLETE;
9480 	cancel_diradd(dap, dirrem, jremref, dotremref, dotdotremref);
9481 #ifdef INVARIANTS
9482 	if (isrmdir == 0) {
9483 		struct worklist *wk;
9484 
9485 		LIST_FOREACH(wk, &dirrem->dm_jwork, wk_list)
9486 			if (wk->wk_state & (MKDIR_BODY | MKDIR_PARENT))
9487 				panic("bad wk %p (0x%X)\n", wk, wk->wk_state);
9488 	}
9489 #endif
9490 
9491 	return (dirrem);
9492 }
9493 
9494 /*
9495  * Directory entry change dependencies.
9496  *
9497  * Changing an existing directory entry requires that an add operation
9498  * be completed first followed by a deletion. The semantics for the addition
9499  * are identical to the description of adding a new entry above except
9500  * that the rollback is to the old inode number rather than zero. Once
9501  * the addition dependency is completed, the removal is done as described
9502  * in the removal routine above.
9503  */
9504 
9505 /*
9506  * This routine should be called immediately after changing
9507  * a directory entry.  The inode's link count should not be
9508  * decremented by the calling procedure -- the soft updates
9509  * code will perform this task when it is safe.
9510  */
9511 void
9512 softdep_setup_directory_change(
9513 	struct buf *bp,		/* buffer containing directory block */
9514 	struct inode *dp,	/* inode for the directory being modified */
9515 	struct inode *ip,	/* inode for directory entry being removed */
9516 	ino_t newinum,		/* new inode number for changed entry */
9517 	int isrmdir)		/* indicates if doing RMDIR */
9518 {
9519 	int offset;
9520 	struct diradd *dap = NULL;
9521 	struct dirrem *dirrem, *prevdirrem;
9522 	struct pagedep *pagedep;
9523 	struct inodedep *inodedep;
9524 	struct jaddref *jaddref;
9525 	struct mount *mp;
9526 	struct ufsmount *ump;
9527 
9528 	mp = ITOVFS(dp);
9529 	ump = VFSTOUFS(mp);
9530 	offset = blkoff(ump->um_fs, I_OFFSET(dp));
9531 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
9532 	   ("softdep_setup_directory_change called on non-softdep filesystem"));
9533 
9534 	/*
9535 	 * Whiteouts do not need diradd dependencies.
9536 	 */
9537 	if (newinum != UFS_WINO) {
9538 		dap = malloc(sizeof(struct diradd),
9539 		    M_DIRADD, M_SOFTDEP_FLAGS|M_ZERO);
9540 		workitem_alloc(&dap->da_list, D_DIRADD, mp);
9541 		dap->da_state = DIRCHG | ATTACHED | DEPCOMPLETE;
9542 		dap->da_offset = offset;
9543 		dap->da_newinum = newinum;
9544 		LIST_INIT(&dap->da_jwork);
9545 	}
9546 
9547 	/*
9548 	 * Allocate a new dirrem and ACQUIRE_LOCK.
9549 	 */
9550 	dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem);
9551 	pagedep = dirrem->dm_pagedep;
9552 	/*
9553 	 * The possible values for isrmdir:
9554 	 *	0 - non-directory file rename
9555 	 *	1 - directory rename within same directory
9556 	 *   inum - directory rename to new directory of given inode number
9557 	 * When renaming to a new directory, we are both deleting and
9558 	 * creating a new directory entry, so the link count on the new
9559 	 * directory should not change. Thus we do not need the followup
9560 	 * dirrem which is usually done in handle_workitem_remove. We set
9561 	 * the DIRCHG flag to tell handle_workitem_remove to skip the
9562 	 * followup dirrem.
9563 	 */
9564 	if (isrmdir > 1)
9565 		dirrem->dm_state |= DIRCHG;
9566 
9567 	/*
9568 	 * Whiteouts have no additional dependencies,
9569 	 * so just put the dirrem on the correct list.
9570 	 */
9571 	if (newinum == UFS_WINO) {
9572 		if ((dirrem->dm_state & COMPLETE) == 0) {
9573 			LIST_INSERT_HEAD(&pagedep->pd_dirremhd, dirrem,
9574 			    dm_next);
9575 		} else {
9576 			dirrem->dm_dirinum = pagedep->pd_ino;
9577 			if (LIST_EMPTY(&dirrem->dm_jremrefhd))
9578 				add_to_worklist(&dirrem->dm_list, 0);
9579 		}
9580 		FREE_LOCK(ump);
9581 		return;
9582 	}
9583 	/*
9584 	 * Add the dirrem to the inodedep's pending remove list for quick
9585 	 * discovery later.  A valid nlinkdelta ensures that this lookup
9586 	 * will not fail.
9587 	 */
9588 	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0)
9589 		panic("softdep_setup_directory_change: Lost inodedep.");
9590 	dirrem->dm_state |= ONDEPLIST;
9591 	LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext);
9592 
9593 	/*
9594 	 * If the COMPLETE flag is clear, then there were no active
9595 	 * entries and we want to roll back to the previous inode until
9596 	 * the new inode is committed to disk. If the COMPLETE flag is
9597 	 * set, then we have deleted an entry that never made it to disk.
9598 	 * If the entry we deleted resulted from a name change, then the old
9599 	 * inode reference still resides on disk. Any rollback that we do
9600 	 * needs to be to that old inode (returned to us in prevdirrem). If
9601 	 * the entry we deleted resulted from a create, then there is
9602 	 * no entry on the disk, so we want to roll back to zero rather
9603 	 * than the uncommitted inode. In either of the COMPLETE cases we
9604 	 * want to immediately free the unwritten and unreferenced inode.
9605 	 */
9606 	if ((dirrem->dm_state & COMPLETE) == 0) {
9607 		dap->da_previous = dirrem;
9608 	} else {
9609 		if (prevdirrem != NULL) {
9610 			dap->da_previous = prevdirrem;
9611 		} else {
9612 			dap->da_state &= ~DIRCHG;
9613 			dap->da_pagedep = pagedep;
9614 		}
9615 		dirrem->dm_dirinum = pagedep->pd_ino;
9616 		if (LIST_EMPTY(&dirrem->dm_jremrefhd))
9617 			add_to_worklist(&dirrem->dm_list, 0);
9618 	}
9619 	/*
9620 	 * Lookup the jaddref for this journal entry.  We must finish
9621 	 * initializing it and make the diradd write dependent on it.
9622 	 * If we're not journaling, put it on the id_bufwait list if the
9623 	 * inode is not yet written. If it is written, do the post-inode
9624 	 * write processing to put it on the id_pendinghd list.
9625 	 */
9626 	inodedep_lookup(mp, newinum, DEPALLOC, &inodedep);
9627 	if (MOUNTEDSUJ(mp)) {
9628 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
9629 		    inoreflst);
9630 		KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number,
9631 		    ("softdep_setup_directory_change: bad jaddref %p",
9632 		    jaddref));
9633 		jaddref->ja_diroff = I_OFFSET(dp);
9634 		jaddref->ja_diradd = dap;
9635 		LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)],
9636 		    dap, da_pdlist);
9637 		add_to_journal(&jaddref->ja_list);
9638 	} else if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) {
9639 		dap->da_state |= COMPLETE;
9640 		LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
9641 		WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list);
9642 	} else {
9643 		LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)],
9644 		    dap, da_pdlist);
9645 		WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list);
9646 	}
9647 	/*
9648 	 * If we're making a new name for a directory that has not been
9649 	 * committed when need to move the dot and dotdot references to
9650 	 * this new name.
9651 	 */
9652 	if (inodedep->id_mkdiradd && I_OFFSET(dp) != DOTDOT_OFFSET)
9653 		merge_diradd(inodedep, dap);
9654 	FREE_LOCK(ump);
9655 }
9656 
9657 /*
9658  * Called whenever the link count on an inode is changed.
9659  * It creates an inode dependency so that the new reference(s)
9660  * to the inode cannot be committed to disk until the updated
9661  * inode has been written.
9662  */
9663 void
9664 softdep_change_linkcnt(
9665 	struct inode *ip)	/* the inode with the increased link count */
9666 {
9667 	struct inodedep *inodedep;
9668 	struct ufsmount *ump;
9669 
9670 	ump = ITOUMP(ip);
9671 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
9672 	    ("softdep_change_linkcnt called on non-softdep filesystem"));
9673 	ACQUIRE_LOCK(ump);
9674 	inodedep_lookup(UFSTOVFS(ump), ip->i_number, DEPALLOC, &inodedep);
9675 	if (ip->i_nlink < ip->i_effnlink)
9676 		panic("softdep_change_linkcnt: bad delta");
9677 	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
9678 	FREE_LOCK(ump);
9679 }
9680 
9681 /*
9682  * Attach a sbdep dependency to the superblock buf so that we can keep
9683  * track of the head of the linked list of referenced but unlinked inodes.
9684  */
9685 void
9686 softdep_setup_sbupdate(
9687 	struct ufsmount *ump,
9688 	struct fs *fs,
9689 	struct buf *bp)
9690 {
9691 	struct sbdep *sbdep;
9692 	struct worklist *wk;
9693 
9694 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
9695 	    ("softdep_setup_sbupdate called on non-softdep filesystem"));
9696 	LIST_FOREACH(wk, &bp->b_dep, wk_list)
9697 		if (wk->wk_type == D_SBDEP)
9698 			break;
9699 	if (wk != NULL)
9700 		return;
9701 	sbdep = malloc(sizeof(struct sbdep), M_SBDEP, M_SOFTDEP_FLAGS);
9702 	workitem_alloc(&sbdep->sb_list, D_SBDEP, UFSTOVFS(ump));
9703 	sbdep->sb_fs = fs;
9704 	sbdep->sb_ump = ump;
9705 	ACQUIRE_LOCK(ump);
9706 	WORKLIST_INSERT(&bp->b_dep, &sbdep->sb_list);
9707 	FREE_LOCK(ump);
9708 }
9709 
9710 /*
9711  * Return the first unlinked inodedep which is ready to be the head of the
9712  * list.  The inodedep and all those after it must have valid next pointers.
9713  */
9714 static struct inodedep *
9715 first_unlinked_inodedep(struct ufsmount *ump)
9716 {
9717 	struct inodedep *inodedep;
9718 	struct inodedep *idp;
9719 
9720 	LOCK_OWNED(ump);
9721 	for (inodedep = TAILQ_LAST(&ump->softdep_unlinked, inodedeplst);
9722 	    inodedep; inodedep = idp) {
9723 		if ((inodedep->id_state & UNLINKNEXT) == 0)
9724 			return (NULL);
9725 		idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked);
9726 		if (idp == NULL || (idp->id_state & UNLINKNEXT) == 0)
9727 			break;
9728 		if ((inodedep->id_state & UNLINKPREV) == 0)
9729 			break;
9730 	}
9731 	return (inodedep);
9732 }
9733 
9734 /*
9735  * Set the sujfree unlinked head pointer prior to writing a superblock.
9736  */
9737 static void
9738 initiate_write_sbdep(struct sbdep *sbdep)
9739 {
9740 	struct inodedep *inodedep;
9741 	struct fs *bpfs;
9742 	struct fs *fs;
9743 
9744 	bpfs = sbdep->sb_fs;
9745 	fs = sbdep->sb_ump->um_fs;
9746 	inodedep = first_unlinked_inodedep(sbdep->sb_ump);
9747 	if (inodedep) {
9748 		fs->fs_sujfree = inodedep->id_ino;
9749 		inodedep->id_state |= UNLINKPREV;
9750 	} else
9751 		fs->fs_sujfree = 0;
9752 	bpfs->fs_sujfree = fs->fs_sujfree;
9753 	/*
9754 	 * Because we have made changes to the superblock, we need to
9755 	 * recompute its check-hash.
9756 	 */
9757 	bpfs->fs_ckhash = ffs_calc_sbhash(bpfs);
9758 }
9759 
9760 /*
9761  * After a superblock is written determine whether it must be written again
9762  * due to a changing unlinked list head.
9763  */
9764 static int
9765 handle_written_sbdep(struct sbdep *sbdep, struct buf *bp)
9766 {
9767 	struct inodedep *inodedep;
9768 	struct fs *fs;
9769 
9770 	LOCK_OWNED(sbdep->sb_ump);
9771 	fs = sbdep->sb_fs;
9772 	/*
9773 	 * If the superblock doesn't match the in-memory list start over.
9774 	 */
9775 	inodedep = first_unlinked_inodedep(sbdep->sb_ump);
9776 	if ((inodedep && fs->fs_sujfree != inodedep->id_ino) ||
9777 	    (inodedep == NULL && fs->fs_sujfree != 0)) {
9778 		bdirty(bp);
9779 		return (1);
9780 	}
9781 	WORKITEM_FREE(sbdep, D_SBDEP);
9782 	if (fs->fs_sujfree == 0)
9783 		return (0);
9784 	/*
9785 	 * Now that we have a record of this inode in stable store allow it
9786 	 * to be written to free up pending work.  Inodes may see a lot of
9787 	 * write activity after they are unlinked which we must not hold up.
9788 	 */
9789 	for (; inodedep != NULL; inodedep = TAILQ_NEXT(inodedep, id_unlinked)) {
9790 		if ((inodedep->id_state & UNLINKLINKS) != UNLINKLINKS)
9791 			panic("handle_written_sbdep: Bad inodedep %p (0x%X)",
9792 			    inodedep, inodedep->id_state);
9793 		if (inodedep->id_state & UNLINKONLIST)
9794 			break;
9795 		inodedep->id_state |= DEPCOMPLETE | UNLINKONLIST;
9796 	}
9797 
9798 	return (0);
9799 }
9800 
9801 /*
9802  * Mark an inodedep as unlinked and insert it into the in-memory unlinked list.
9803  */
9804 static void
9805 unlinked_inodedep( struct mount *mp, struct inodedep *inodedep)
9806 {
9807 	struct ufsmount *ump;
9808 
9809 	ump = VFSTOUFS(mp);
9810 	LOCK_OWNED(ump);
9811 	if (MOUNTEDSUJ(mp) == 0)
9812 		return;
9813 	ump->um_fs->fs_fmod = 1;
9814 	if (inodedep->id_state & UNLINKED)
9815 		panic("unlinked_inodedep: %p already unlinked\n", inodedep);
9816 	inodedep->id_state |= UNLINKED;
9817 	TAILQ_INSERT_HEAD(&ump->softdep_unlinked, inodedep, id_unlinked);
9818 }
9819 
9820 /*
9821  * Remove an inodedep from the unlinked inodedep list.  This may require
9822  * disk writes if the inode has made it that far.
9823  */
9824 static void
9825 clear_unlinked_inodedep( struct inodedep *inodedep)
9826 {
9827 	struct ufs2_dinode *dip;
9828 	struct ufsmount *ump;
9829 	struct inodedep *idp;
9830 	struct inodedep *idn;
9831 	struct fs *fs, *bpfs;
9832 	struct buf *bp;
9833 	daddr_t dbn;
9834 	ino_t ino;
9835 	ino_t nino;
9836 	ino_t pino;
9837 	int error;
9838 
9839 	ump = VFSTOUFS(inodedep->id_list.wk_mp);
9840 	fs = ump->um_fs;
9841 	ino = inodedep->id_ino;
9842 	error = 0;
9843 	for (;;) {
9844 		LOCK_OWNED(ump);
9845 		KASSERT((inodedep->id_state & UNLINKED) != 0,
9846 		    ("clear_unlinked_inodedep: inodedep %p not unlinked",
9847 		    inodedep));
9848 		/*
9849 		 * If nothing has yet been written simply remove us from
9850 		 * the in memory list and return.  This is the most common
9851 		 * case where handle_workitem_remove() loses the final
9852 		 * reference.
9853 		 */
9854 		if ((inodedep->id_state & UNLINKLINKS) == 0)
9855 			break;
9856 		/*
9857 		 * If we have a NEXT pointer and no PREV pointer we can simply
9858 		 * clear NEXT's PREV and remove ourselves from the list.  Be
9859 		 * careful not to clear PREV if the superblock points at
9860 		 * next as well.
9861 		 */
9862 		idn = TAILQ_NEXT(inodedep, id_unlinked);
9863 		if ((inodedep->id_state & UNLINKLINKS) == UNLINKNEXT) {
9864 			if (idn && fs->fs_sujfree != idn->id_ino)
9865 				idn->id_state &= ~UNLINKPREV;
9866 			break;
9867 		}
9868 		/*
9869 		 * Here we have an inodedep which is actually linked into
9870 		 * the list.  We must remove it by forcing a write to the
9871 		 * link before us, whether it be the superblock or an inode.
9872 		 * Unfortunately the list may change while we're waiting
9873 		 * on the buf lock for either resource so we must loop until
9874 		 * we lock the right one.  If both the superblock and an
9875 		 * inode point to this inode we must clear the inode first
9876 		 * followed by the superblock.
9877 		 */
9878 		idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked);
9879 		pino = 0;
9880 		if (idp && (idp->id_state & UNLINKNEXT))
9881 			pino = idp->id_ino;
9882 		FREE_LOCK(ump);
9883 		if (pino == 0) {
9884 			bp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc),
9885 			    (int)fs->fs_sbsize, 0, 0, 0);
9886 		} else {
9887 			dbn = fsbtodb(fs, ino_to_fsba(fs, pino));
9888 			error = ffs_breadz(ump, ump->um_devvp, dbn, dbn,
9889 			    (int)fs->fs_bsize, NULL, NULL, 0, NOCRED, 0, NULL,
9890 			    &bp);
9891 		}
9892 		ACQUIRE_LOCK(ump);
9893 		if (error)
9894 			break;
9895 		/* If the list has changed restart the loop. */
9896 		idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked);
9897 		nino = 0;
9898 		if (idp && (idp->id_state & UNLINKNEXT))
9899 			nino = idp->id_ino;
9900 		if (nino != pino ||
9901 		    (inodedep->id_state & UNLINKPREV) != UNLINKPREV) {
9902 			FREE_LOCK(ump);
9903 			brelse(bp);
9904 			ACQUIRE_LOCK(ump);
9905 			continue;
9906 		}
9907 		nino = 0;
9908 		idn = TAILQ_NEXT(inodedep, id_unlinked);
9909 		if (idn)
9910 			nino = idn->id_ino;
9911 		/*
9912 		 * Remove us from the in memory list.  After this we cannot
9913 		 * access the inodedep.
9914 		 */
9915 		KASSERT((inodedep->id_state & UNLINKED) != 0,
9916 		    ("clear_unlinked_inodedep: inodedep %p not unlinked",
9917 		    inodedep));
9918 		inodedep->id_state &= ~(UNLINKED | UNLINKLINKS | UNLINKONLIST);
9919 		TAILQ_REMOVE(&ump->softdep_unlinked, inodedep, id_unlinked);
9920 		FREE_LOCK(ump);
9921 		/*
9922 		 * The predecessor's next pointer is manually updated here
9923 		 * so that the NEXT flag is never cleared for an element
9924 		 * that is in the list.
9925 		 */
9926 		if (pino == 0) {
9927 			bcopy((caddr_t)fs, bp->b_data, (u_int)fs->fs_sbsize);
9928 			bpfs = (struct fs *)bp->b_data;
9929 			ffs_oldfscompat_write(bpfs, ump);
9930 			softdep_setup_sbupdate(ump, bpfs, bp);
9931 			/*
9932 			 * Because we may have made changes to the superblock,
9933 			 * we need to recompute its check-hash.
9934 			 */
9935 			bpfs->fs_ckhash = ffs_calc_sbhash(bpfs);
9936 		} else if (fs->fs_magic == FS_UFS1_MAGIC) {
9937 			((struct ufs1_dinode *)bp->b_data +
9938 			    ino_to_fsbo(fs, pino))->di_freelink = nino;
9939 		} else {
9940 			dip = (struct ufs2_dinode *)bp->b_data +
9941 			    ino_to_fsbo(fs, pino);
9942 			dip->di_freelink = nino;
9943 			ffs_update_dinode_ckhash(fs, dip);
9944 		}
9945 		/*
9946 		 * If the bwrite fails we have no recourse to recover.  The
9947 		 * filesystem is corrupted already.
9948 		 */
9949 		bwrite(bp);
9950 		ACQUIRE_LOCK(ump);
9951 		/*
9952 		 * If the superblock pointer still needs to be cleared force
9953 		 * a write here.
9954 		 */
9955 		if (fs->fs_sujfree == ino) {
9956 			FREE_LOCK(ump);
9957 			bp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc),
9958 			    (int)fs->fs_sbsize, 0, 0, 0);
9959 			bcopy((caddr_t)fs, bp->b_data, (u_int)fs->fs_sbsize);
9960 			bpfs = (struct fs *)bp->b_data;
9961 			ffs_oldfscompat_write(bpfs, ump);
9962 			softdep_setup_sbupdate(ump, bpfs, bp);
9963 			/*
9964 			 * Because we may have made changes to the superblock,
9965 			 * we need to recompute its check-hash.
9966 			 */
9967 			bpfs->fs_ckhash = ffs_calc_sbhash(bpfs);
9968 			bwrite(bp);
9969 			ACQUIRE_LOCK(ump);
9970 		}
9971 
9972 		if (fs->fs_sujfree != ino)
9973 			return;
9974 		panic("clear_unlinked_inodedep: Failed to clear free head");
9975 	}
9976 	if (inodedep->id_ino == fs->fs_sujfree)
9977 		panic("clear_unlinked_inodedep: Freeing head of free list");
9978 	inodedep->id_state &= ~(UNLINKED | UNLINKLINKS | UNLINKONLIST);
9979 	TAILQ_REMOVE(&ump->softdep_unlinked, inodedep, id_unlinked);
9980 	return;
9981 }
9982 
9983 /*
9984  * This workitem decrements the inode's link count.
9985  * If the link count reaches zero, the file is removed.
9986  */
9987 static int
9988 handle_workitem_remove(struct dirrem *dirrem, int flags)
9989 {
9990 	struct inodedep *inodedep;
9991 	struct workhead dotdotwk;
9992 	struct worklist *wk;
9993 	struct ufsmount *ump;
9994 	struct mount *mp;
9995 	struct vnode *vp;
9996 	struct inode *ip;
9997 	ino_t oldinum;
9998 
9999 	if (dirrem->dm_state & ONWORKLIST)
10000 		panic("handle_workitem_remove: dirrem %p still on worklist",
10001 		    dirrem);
10002 	oldinum = dirrem->dm_oldinum;
10003 	mp = dirrem->dm_list.wk_mp;
10004 	ump = VFSTOUFS(mp);
10005 	flags |= LK_EXCLUSIVE;
10006 	if (ffs_vgetf(mp, oldinum, flags, &vp, FFSV_FORCEINSMQ |
10007 	    FFSV_FORCEINODEDEP) != 0)
10008 		return (EBUSY);
10009 	ip = VTOI(vp);
10010 	MPASS(ip->i_mode != 0);
10011 	ACQUIRE_LOCK(ump);
10012 	if ((inodedep_lookup(mp, oldinum, 0, &inodedep)) == 0)
10013 		panic("handle_workitem_remove: lost inodedep");
10014 	if (dirrem->dm_state & ONDEPLIST)
10015 		LIST_REMOVE(dirrem, dm_inonext);
10016 	KASSERT(LIST_EMPTY(&dirrem->dm_jremrefhd),
10017 	    ("handle_workitem_remove:  Journal entries not written."));
10018 
10019 	/*
10020 	 * Move all dependencies waiting on the remove to complete
10021 	 * from the dirrem to the inode inowait list to be completed
10022 	 * after the inode has been updated and written to disk.
10023 	 *
10024 	 * Any marked MKDIR_PARENT are saved to be completed when the
10025 	 * dotdot ref is removed unless DIRCHG is specified.  For
10026 	 * directory change operations there will be no further
10027 	 * directory writes and the jsegdeps need to be moved along
10028 	 * with the rest to be completed when the inode is free or
10029 	 * stable in the inode free list.
10030 	 */
10031 	LIST_INIT(&dotdotwk);
10032 	while ((wk = LIST_FIRST(&dirrem->dm_jwork)) != NULL) {
10033 		WORKLIST_REMOVE(wk);
10034 		if ((dirrem->dm_state & DIRCHG) == 0 &&
10035 		    wk->wk_state & MKDIR_PARENT) {
10036 			wk->wk_state &= ~MKDIR_PARENT;
10037 			WORKLIST_INSERT(&dotdotwk, wk);
10038 			continue;
10039 		}
10040 		WORKLIST_INSERT(&inodedep->id_inowait, wk);
10041 	}
10042 	LIST_SWAP(&dirrem->dm_jwork, &dotdotwk, worklist, wk_list);
10043 	/*
10044 	 * Normal file deletion.
10045 	 */
10046 	if ((dirrem->dm_state & RMDIR) == 0) {
10047 		ip->i_nlink--;
10048 		KASSERT(ip->i_nlink >= 0, ("handle_workitem_remove: file ino "
10049 		    "%ju negative i_nlink %d", (intmax_t)ip->i_number,
10050 		    ip->i_nlink));
10051 		DIP_SET(ip, i_nlink, ip->i_nlink);
10052 		UFS_INODE_SET_FLAG(ip, IN_CHANGE);
10053 		if (ip->i_nlink < ip->i_effnlink)
10054 			panic("handle_workitem_remove: bad file delta");
10055 		if (ip->i_nlink == 0)
10056 			unlinked_inodedep(mp, inodedep);
10057 		inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
10058 		KASSERT(LIST_EMPTY(&dirrem->dm_jwork),
10059 		    ("handle_workitem_remove: worklist not empty. %s",
10060 		    TYPENAME(LIST_FIRST(&dirrem->dm_jwork)->wk_type)));
10061 		WORKITEM_FREE(dirrem, D_DIRREM);
10062 		FREE_LOCK(ump);
10063 		goto out;
10064 	}
10065 	/*
10066 	 * Directory deletion. Decrement reference count for both the
10067 	 * just deleted parent directory entry and the reference for ".".
10068 	 * Arrange to have the reference count on the parent decremented
10069 	 * to account for the loss of "..".
10070 	 */
10071 	ip->i_nlink -= 2;
10072 	KASSERT(ip->i_nlink >= 0, ("handle_workitem_remove: directory ino "
10073 	    "%ju negative i_nlink %d", (intmax_t)ip->i_number, ip->i_nlink));
10074 	DIP_SET(ip, i_nlink, ip->i_nlink);
10075 	UFS_INODE_SET_FLAG(ip, IN_CHANGE);
10076 	if (ip->i_nlink < ip->i_effnlink)
10077 		panic("handle_workitem_remove: bad dir delta");
10078 	if (ip->i_nlink == 0)
10079 		unlinked_inodedep(mp, inodedep);
10080 	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
10081 	/*
10082 	 * Rename a directory to a new parent. Since, we are both deleting
10083 	 * and creating a new directory entry, the link count on the new
10084 	 * directory should not change. Thus we skip the followup dirrem.
10085 	 */
10086 	if (dirrem->dm_state & DIRCHG) {
10087 		KASSERT(LIST_EMPTY(&dirrem->dm_jwork),
10088 		    ("handle_workitem_remove: DIRCHG and worklist not empty."));
10089 		WORKITEM_FREE(dirrem, D_DIRREM);
10090 		FREE_LOCK(ump);
10091 		goto out;
10092 	}
10093 	dirrem->dm_state = ONDEPLIST;
10094 	dirrem->dm_oldinum = dirrem->dm_dirinum;
10095 	/*
10096 	 * Place the dirrem on the parent's diremhd list.
10097 	 */
10098 	if (inodedep_lookup(mp, dirrem->dm_oldinum, 0, &inodedep) == 0)
10099 		panic("handle_workitem_remove: lost dir inodedep");
10100 	LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext);
10101 	/*
10102 	 * If the allocated inode has never been written to disk, then
10103 	 * the on-disk inode is zero'ed and we can remove the file
10104 	 * immediately.  When journaling if the inode has been marked
10105 	 * unlinked and not DEPCOMPLETE we know it can never be written.
10106 	 */
10107 	inodedep_lookup(mp, oldinum, 0, &inodedep);
10108 	if (inodedep == NULL ||
10109 	    (inodedep->id_state & (DEPCOMPLETE | UNLINKED)) == UNLINKED ||
10110 	    check_inode_unwritten(inodedep)) {
10111 		FREE_LOCK(ump);
10112 		vput(vp);
10113 		return handle_workitem_remove(dirrem, flags);
10114 	}
10115 	WORKLIST_INSERT(&inodedep->id_inowait, &dirrem->dm_list);
10116 	FREE_LOCK(ump);
10117 	UFS_INODE_SET_FLAG(ip, IN_CHANGE);
10118 out:
10119 	ffs_update(vp, 0);
10120 	vput(vp);
10121 	return (0);
10122 }
10123 
10124 /*
10125  * Inode de-allocation dependencies.
10126  *
10127  * When an inode's link count is reduced to zero, it can be de-allocated. We
10128  * found it convenient to postpone de-allocation until after the inode is
10129  * written to disk with its new link count (zero).  At this point, all of the
10130  * on-disk inode's block pointers are nullified and, with careful dependency
10131  * list ordering, all dependencies related to the inode will be satisfied and
10132  * the corresponding dependency structures de-allocated.  So, if/when the
10133  * inode is reused, there will be no mixing of old dependencies with new
10134  * ones.  This artificial dependency is set up by the block de-allocation
10135  * procedure above (softdep_setup_freeblocks) and completed by the
10136  * following procedure.
10137  */
10138 static void
10139 handle_workitem_freefile(struct freefile *freefile)
10140 {
10141 	struct workhead wkhd;
10142 	struct fs *fs;
10143 	struct ufsmount *ump;
10144 	int error;
10145 #ifdef INVARIANTS
10146 	struct inodedep *idp;
10147 #endif
10148 
10149 	ump = VFSTOUFS(freefile->fx_list.wk_mp);
10150 	fs = ump->um_fs;
10151 #ifdef INVARIANTS
10152 	ACQUIRE_LOCK(ump);
10153 	error = inodedep_lookup(UFSTOVFS(ump), freefile->fx_oldinum, 0, &idp);
10154 	FREE_LOCK(ump);
10155 	if (error)
10156 		panic("handle_workitem_freefile: inodedep %p survived", idp);
10157 #endif
10158 	UFS_LOCK(ump);
10159 	fs->fs_pendinginodes -= 1;
10160 	UFS_UNLOCK(ump);
10161 	LIST_INIT(&wkhd);
10162 	LIST_SWAP(&freefile->fx_jwork, &wkhd, worklist, wk_list);
10163 	if ((error = ffs_freefile(ump, fs, freefile->fx_devvp,
10164 	    freefile->fx_oldinum, freefile->fx_mode, &wkhd)) != 0)
10165 		softdep_error("handle_workitem_freefile", error);
10166 	ACQUIRE_LOCK(ump);
10167 	WORKITEM_FREE(freefile, D_FREEFILE);
10168 	FREE_LOCK(ump);
10169 }
10170 
10171 /*
10172  * Helper function which unlinks marker element from work list and returns
10173  * the next element on the list.
10174  */
10175 static __inline struct worklist *
10176 markernext(struct worklist *marker)
10177 {
10178 	struct worklist *next;
10179 
10180 	next = LIST_NEXT(marker, wk_list);
10181 	LIST_REMOVE(marker, wk_list);
10182 	return next;
10183 }
10184 
10185 /*
10186  * Disk writes.
10187  *
10188  * The dependency structures constructed above are most actively used when file
10189  * system blocks are written to disk.  No constraints are placed on when a
10190  * block can be written, but unsatisfied update dependencies are made safe by
10191  * modifying (or replacing) the source memory for the duration of the disk
10192  * write.  When the disk write completes, the memory block is again brought
10193  * up-to-date.
10194  *
10195  * In-core inode structure reclamation.
10196  *
10197  * Because there are a finite number of "in-core" inode structures, they are
10198  * reused regularly.  By transferring all inode-related dependencies to the
10199  * in-memory inode block and indexing them separately (via "inodedep"s), we
10200  * can allow "in-core" inode structures to be reused at any time and avoid
10201  * any increase in contention.
10202  *
10203  * Called just before entering the device driver to initiate a new disk I/O.
10204  * The buffer must be locked, thus, no I/O completion operations can occur
10205  * while we are manipulating its associated dependencies.
10206  */
10207 static void
10208 softdep_disk_io_initiation(
10209 	struct buf *bp)		/* structure describing disk write to occur */
10210 {
10211 	struct worklist *wk;
10212 	struct worklist marker;
10213 	struct inodedep *inodedep;
10214 	struct freeblks *freeblks;
10215 	struct jblkdep *jblkdep;
10216 	struct newblk *newblk;
10217 	struct ufsmount *ump;
10218 
10219 	/*
10220 	 * We only care about write operations. There should never
10221 	 * be dependencies for reads.
10222 	 */
10223 	if (bp->b_iocmd != BIO_WRITE)
10224 		panic("softdep_disk_io_initiation: not write");
10225 
10226 	if (bp->b_vflags & BV_BKGRDINPROG)
10227 		panic("softdep_disk_io_initiation: Writing buffer with "
10228 		    "background write in progress: %p", bp);
10229 
10230 	ump = softdep_bp_to_mp(bp);
10231 	if (ump == NULL)
10232 		return;
10233 
10234 	marker.wk_type = D_LAST + 1;	/* Not a normal workitem */
10235 	PHOLD(curproc);			/* Don't swap out kernel stack */
10236 	ACQUIRE_LOCK(ump);
10237 	/*
10238 	 * Do any necessary pre-I/O processing.
10239 	 */
10240 	for (wk = LIST_FIRST(&bp->b_dep); wk != NULL;
10241 	     wk = markernext(&marker)) {
10242 		LIST_INSERT_AFTER(wk, &marker, wk_list);
10243 		switch (wk->wk_type) {
10244 		case D_PAGEDEP:
10245 			initiate_write_filepage(WK_PAGEDEP(wk), bp);
10246 			continue;
10247 
10248 		case D_INODEDEP:
10249 			inodedep = WK_INODEDEP(wk);
10250 			if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC)
10251 				initiate_write_inodeblock_ufs1(inodedep, bp);
10252 			else
10253 				initiate_write_inodeblock_ufs2(inodedep, bp);
10254 			continue;
10255 
10256 		case D_INDIRDEP:
10257 			initiate_write_indirdep(WK_INDIRDEP(wk), bp);
10258 			continue;
10259 
10260 		case D_BMSAFEMAP:
10261 			initiate_write_bmsafemap(WK_BMSAFEMAP(wk), bp);
10262 			continue;
10263 
10264 		case D_JSEG:
10265 			WK_JSEG(wk)->js_buf = NULL;
10266 			continue;
10267 
10268 		case D_FREEBLKS:
10269 			freeblks = WK_FREEBLKS(wk);
10270 			jblkdep = LIST_FIRST(&freeblks->fb_jblkdephd);
10271 			/*
10272 			 * We have to wait for the freeblks to be journaled
10273 			 * before we can write an inodeblock with updated
10274 			 * pointers.  Be careful to arrange the marker so
10275 			 * we revisit the freeblks if it's not removed by
10276 			 * the first jwait().
10277 			 */
10278 			if (jblkdep != NULL) {
10279 				LIST_REMOVE(&marker, wk_list);
10280 				LIST_INSERT_BEFORE(wk, &marker, wk_list);
10281 				jwait(&jblkdep->jb_list, MNT_WAIT);
10282 			}
10283 			continue;
10284 		case D_ALLOCDIRECT:
10285 		case D_ALLOCINDIR:
10286 			/*
10287 			 * We have to wait for the jnewblk to be journaled
10288 			 * before we can write to a block if the contents
10289 			 * may be confused with an earlier file's indirect
10290 			 * at recovery time.  Handle the marker as described
10291 			 * above.
10292 			 */
10293 			newblk = WK_NEWBLK(wk);
10294 			if (newblk->nb_jnewblk != NULL &&
10295 			    indirblk_lookup(newblk->nb_list.wk_mp,
10296 			    newblk->nb_newblkno)) {
10297 				LIST_REMOVE(&marker, wk_list);
10298 				LIST_INSERT_BEFORE(wk, &marker, wk_list);
10299 				jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT);
10300 			}
10301 			continue;
10302 
10303 		case D_SBDEP:
10304 			initiate_write_sbdep(WK_SBDEP(wk));
10305 			continue;
10306 
10307 		case D_MKDIR:
10308 		case D_FREEWORK:
10309 		case D_FREEDEP:
10310 		case D_JSEGDEP:
10311 			continue;
10312 
10313 		default:
10314 			panic("handle_disk_io_initiation: Unexpected type %s",
10315 			    TYPENAME(wk->wk_type));
10316 			/* NOTREACHED */
10317 		}
10318 	}
10319 	FREE_LOCK(ump);
10320 	PRELE(curproc);			/* Allow swapout of kernel stack */
10321 }
10322 
10323 /*
10324  * Called from within the procedure above to deal with unsatisfied
10325  * allocation dependencies in a directory. The buffer must be locked,
10326  * thus, no I/O completion operations can occur while we are
10327  * manipulating its associated dependencies.
10328  */
10329 static void
10330 initiate_write_filepage(struct pagedep *pagedep, struct buf *bp)
10331 {
10332 	struct jremref *jremref;
10333 	struct jmvref *jmvref;
10334 	struct dirrem *dirrem;
10335 	struct diradd *dap;
10336 	struct direct *ep;
10337 	int i;
10338 
10339 	if (pagedep->pd_state & IOSTARTED) {
10340 		/*
10341 		 * This can only happen if there is a driver that does not
10342 		 * understand chaining. Here biodone will reissue the call
10343 		 * to strategy for the incomplete buffers.
10344 		 */
10345 		printf("initiate_write_filepage: already started\n");
10346 		return;
10347 	}
10348 	pagedep->pd_state |= IOSTARTED;
10349 	/*
10350 	 * Wait for all journal remove dependencies to hit the disk.
10351 	 * We can not allow any potentially conflicting directory adds
10352 	 * to be visible before removes and rollback is too difficult.
10353 	 * The per-filesystem lock may be dropped and re-acquired, however
10354 	 * we hold the buf locked so the dependency can not go away.
10355 	 */
10356 	LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next)
10357 		while ((jremref = LIST_FIRST(&dirrem->dm_jremrefhd)) != NULL)
10358 			jwait(&jremref->jr_list, MNT_WAIT);
10359 	while ((jmvref = LIST_FIRST(&pagedep->pd_jmvrefhd)) != NULL)
10360 		jwait(&jmvref->jm_list, MNT_WAIT);
10361 	for (i = 0; i < DAHASHSZ; i++) {
10362 		LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) {
10363 			ep = (struct direct *)
10364 			    ((char *)bp->b_data + dap->da_offset);
10365 			if (ep->d_ino != dap->da_newinum)
10366 				panic("%s: dir inum %ju != new %ju",
10367 				    "initiate_write_filepage",
10368 				    (uintmax_t)ep->d_ino,
10369 				    (uintmax_t)dap->da_newinum);
10370 			if (dap->da_state & DIRCHG)
10371 				ep->d_ino = dap->da_previous->dm_oldinum;
10372 			else
10373 				ep->d_ino = 0;
10374 			dap->da_state &= ~ATTACHED;
10375 			dap->da_state |= UNDONE;
10376 		}
10377 	}
10378 }
10379 
10380 /*
10381  * Version of initiate_write_inodeblock that handles UFS1 dinodes.
10382  * Note that any bug fixes made to this routine must be done in the
10383  * version found below.
10384  *
10385  * Called from within the procedure above to deal with unsatisfied
10386  * allocation dependencies in an inodeblock. The buffer must be
10387  * locked, thus, no I/O completion operations can occur while we
10388  * are manipulating its associated dependencies.
10389  */
10390 static void
10391 initiate_write_inodeblock_ufs1(
10392 	struct inodedep *inodedep,
10393 	struct buf *bp)			/* The inode block */
10394 {
10395 	struct allocdirect *adp, *lastadp;
10396 	struct ufs1_dinode *dp;
10397 	struct ufs1_dinode *sip;
10398 	struct inoref *inoref;
10399 	struct ufsmount *ump;
10400 	struct fs *fs;
10401 	ufs_lbn_t i;
10402 #ifdef INVARIANTS
10403 	ufs_lbn_t prevlbn = 0;
10404 #endif
10405 	int deplist __diagused;
10406 
10407 	if (inodedep->id_state & IOSTARTED)
10408 		panic("initiate_write_inodeblock_ufs1: already started");
10409 	inodedep->id_state |= IOSTARTED;
10410 	fs = inodedep->id_fs;
10411 	ump = VFSTOUFS(inodedep->id_list.wk_mp);
10412 	LOCK_OWNED(ump);
10413 	dp = (struct ufs1_dinode *)bp->b_data +
10414 	    ino_to_fsbo(fs, inodedep->id_ino);
10415 
10416 	/*
10417 	 * If we're on the unlinked list but have not yet written our
10418 	 * next pointer initialize it here.
10419 	 */
10420 	if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) {
10421 		struct inodedep *inon;
10422 
10423 		inon = TAILQ_NEXT(inodedep, id_unlinked);
10424 		dp->di_freelink = inon ? inon->id_ino : 0;
10425 	}
10426 	/*
10427 	 * If the bitmap is not yet written, then the allocated
10428 	 * inode cannot be written to disk.
10429 	 */
10430 	if ((inodedep->id_state & DEPCOMPLETE) == 0) {
10431 		if (inodedep->id_savedino1 != NULL)
10432 			panic("initiate_write_inodeblock_ufs1: I/O underway");
10433 		FREE_LOCK(ump);
10434 		sip = malloc(sizeof(struct ufs1_dinode),
10435 		    M_SAVEDINO, M_SOFTDEP_FLAGS);
10436 		ACQUIRE_LOCK(ump);
10437 		inodedep->id_savedino1 = sip;
10438 		*inodedep->id_savedino1 = *dp;
10439 		bzero((caddr_t)dp, sizeof(struct ufs1_dinode));
10440 		dp->di_gen = inodedep->id_savedino1->di_gen;
10441 		dp->di_freelink = inodedep->id_savedino1->di_freelink;
10442 		return;
10443 	}
10444 	/*
10445 	 * If no dependencies, then there is nothing to roll back.
10446 	 */
10447 	inodedep->id_savedsize = dp->di_size;
10448 	inodedep->id_savedextsize = 0;
10449 	inodedep->id_savednlink = dp->di_nlink;
10450 	if (TAILQ_EMPTY(&inodedep->id_inoupdt) &&
10451 	    TAILQ_EMPTY(&inodedep->id_inoreflst))
10452 		return;
10453 	/*
10454 	 * Revert the link count to that of the first unwritten journal entry.
10455 	 */
10456 	inoref = TAILQ_FIRST(&inodedep->id_inoreflst);
10457 	if (inoref)
10458 		dp->di_nlink = inoref->if_nlink;
10459 	/*
10460 	 * Set the dependencies to busy.
10461 	 */
10462 	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
10463 	     adp = TAILQ_NEXT(adp, ad_next)) {
10464 #ifdef INVARIANTS
10465 		if (deplist != 0 && prevlbn >= adp->ad_offset)
10466 			panic("softdep_write_inodeblock: lbn order");
10467 		prevlbn = adp->ad_offset;
10468 		if (adp->ad_offset < UFS_NDADDR &&
10469 		    dp->di_db[adp->ad_offset] != adp->ad_newblkno)
10470 			panic("initiate_write_inodeblock_ufs1: "
10471 			    "direct pointer #%jd mismatch %d != %jd",
10472 			    (intmax_t)adp->ad_offset,
10473 			    dp->di_db[adp->ad_offset],
10474 			    (intmax_t)adp->ad_newblkno);
10475 		if (adp->ad_offset >= UFS_NDADDR &&
10476 		    dp->di_ib[adp->ad_offset - UFS_NDADDR] != adp->ad_newblkno)
10477 			panic("initiate_write_inodeblock_ufs1: "
10478 			    "indirect pointer #%jd mismatch %d != %jd",
10479 			    (intmax_t)adp->ad_offset - UFS_NDADDR,
10480 			    dp->di_ib[adp->ad_offset - UFS_NDADDR],
10481 			    (intmax_t)adp->ad_newblkno);
10482 		deplist |= 1 << adp->ad_offset;
10483 		if ((adp->ad_state & ATTACHED) == 0)
10484 			panic("initiate_write_inodeblock_ufs1: "
10485 			    "Unknown state 0x%x", adp->ad_state);
10486 #endif /* INVARIANTS */
10487 		adp->ad_state &= ~ATTACHED;
10488 		adp->ad_state |= UNDONE;
10489 	}
10490 	/*
10491 	 * The on-disk inode cannot claim to be any larger than the last
10492 	 * fragment that has been written. Otherwise, the on-disk inode
10493 	 * might have fragments that were not the last block in the file
10494 	 * which would corrupt the filesystem.
10495 	 */
10496 	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
10497 	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
10498 		if (adp->ad_offset >= UFS_NDADDR)
10499 			break;
10500 		dp->di_db[adp->ad_offset] = adp->ad_oldblkno;
10501 		/* keep going until hitting a rollback to a frag */
10502 		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
10503 			continue;
10504 		dp->di_size = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize;
10505 		for (i = adp->ad_offset + 1; i < UFS_NDADDR; i++) {
10506 #ifdef INVARIANTS
10507 			if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0)
10508 				panic("initiate_write_inodeblock_ufs1: "
10509 				    "lost dep1");
10510 #endif /* INVARIANTS */
10511 			dp->di_db[i] = 0;
10512 		}
10513 		for (i = 0; i < UFS_NIADDR; i++) {
10514 #ifdef INVARIANTS
10515 			if (dp->di_ib[i] != 0 &&
10516 			    (deplist & ((1 << UFS_NDADDR) << i)) == 0)
10517 				panic("initiate_write_inodeblock_ufs1: "
10518 				    "lost dep2");
10519 #endif /* INVARIANTS */
10520 			dp->di_ib[i] = 0;
10521 		}
10522 		return;
10523 	}
10524 	/*
10525 	 * If we have zero'ed out the last allocated block of the file,
10526 	 * roll back the size to the last currently allocated block.
10527 	 * We know that this last allocated block is a full-sized as
10528 	 * we already checked for fragments in the loop above.
10529 	 */
10530 	if (lastadp != NULL &&
10531 	    dp->di_size <= (lastadp->ad_offset + 1) * fs->fs_bsize) {
10532 		for (i = lastadp->ad_offset; i >= 0; i--)
10533 			if (dp->di_db[i] != 0)
10534 				break;
10535 		dp->di_size = (i + 1) * fs->fs_bsize;
10536 	}
10537 	/*
10538 	 * The only dependencies are for indirect blocks.
10539 	 *
10540 	 * The file size for indirect block additions is not guaranteed.
10541 	 * Such a guarantee would be non-trivial to achieve. The conventional
10542 	 * synchronous write implementation also does not make this guarantee.
10543 	 * Fsck should catch and fix discrepancies. Arguably, the file size
10544 	 * can be over-estimated without destroying integrity when the file
10545 	 * moves into the indirect blocks (i.e., is large). If we want to
10546 	 * postpone fsck, we are stuck with this argument.
10547 	 */
10548 	for (; adp; adp = TAILQ_NEXT(adp, ad_next))
10549 		dp->di_ib[adp->ad_offset - UFS_NDADDR] = 0;
10550 }
10551 
10552 /*
10553  * Version of initiate_write_inodeblock that handles UFS2 dinodes.
10554  * Note that any bug fixes made to this routine must be done in the
10555  * version found above.
10556  *
10557  * Called from within the procedure above to deal with unsatisfied
10558  * allocation dependencies in an inodeblock. The buffer must be
10559  * locked, thus, no I/O completion operations can occur while we
10560  * are manipulating its associated dependencies.
10561  */
10562 static void
10563 initiate_write_inodeblock_ufs2(
10564 	struct inodedep *inodedep,
10565 	struct buf *bp)			/* The inode block */
10566 {
10567 	struct allocdirect *adp, *lastadp;
10568 	struct ufs2_dinode *dp;
10569 	struct ufs2_dinode *sip;
10570 	struct inoref *inoref;
10571 	struct ufsmount *ump;
10572 	struct fs *fs;
10573 	ufs_lbn_t i;
10574 #ifdef INVARIANTS
10575 	ufs_lbn_t prevlbn = 0;
10576 #endif
10577 	int deplist __diagused;
10578 
10579 	if (inodedep->id_state & IOSTARTED)
10580 		panic("initiate_write_inodeblock_ufs2: already started");
10581 	inodedep->id_state |= IOSTARTED;
10582 	fs = inodedep->id_fs;
10583 	ump = VFSTOUFS(inodedep->id_list.wk_mp);
10584 	LOCK_OWNED(ump);
10585 	dp = (struct ufs2_dinode *)bp->b_data +
10586 	    ino_to_fsbo(fs, inodedep->id_ino);
10587 
10588 	/*
10589 	 * If we're on the unlinked list but have not yet written our
10590 	 * next pointer initialize it here.
10591 	 */
10592 	if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) {
10593 		struct inodedep *inon;
10594 
10595 		inon = TAILQ_NEXT(inodedep, id_unlinked);
10596 		dp->di_freelink = inon ? inon->id_ino : 0;
10597 		ffs_update_dinode_ckhash(fs, dp);
10598 	}
10599 	/*
10600 	 * If the bitmap is not yet written, then the allocated
10601 	 * inode cannot be written to disk.
10602 	 */
10603 	if ((inodedep->id_state & DEPCOMPLETE) == 0) {
10604 		if (inodedep->id_savedino2 != NULL)
10605 			panic("initiate_write_inodeblock_ufs2: I/O underway");
10606 		FREE_LOCK(ump);
10607 		sip = malloc(sizeof(struct ufs2_dinode),
10608 		    M_SAVEDINO, M_SOFTDEP_FLAGS);
10609 		ACQUIRE_LOCK(ump);
10610 		inodedep->id_savedino2 = sip;
10611 		*inodedep->id_savedino2 = *dp;
10612 		bzero((caddr_t)dp, sizeof(struct ufs2_dinode));
10613 		dp->di_gen = inodedep->id_savedino2->di_gen;
10614 		dp->di_freelink = inodedep->id_savedino2->di_freelink;
10615 		return;
10616 	}
10617 	/*
10618 	 * If no dependencies, then there is nothing to roll back.
10619 	 */
10620 	inodedep->id_savedsize = dp->di_size;
10621 	inodedep->id_savedextsize = dp->di_extsize;
10622 	inodedep->id_savednlink = dp->di_nlink;
10623 	if (TAILQ_EMPTY(&inodedep->id_inoupdt) &&
10624 	    TAILQ_EMPTY(&inodedep->id_extupdt) &&
10625 	    TAILQ_EMPTY(&inodedep->id_inoreflst))
10626 		return;
10627 	/*
10628 	 * Revert the link count to that of the first unwritten journal entry.
10629 	 */
10630 	inoref = TAILQ_FIRST(&inodedep->id_inoreflst);
10631 	if (inoref)
10632 		dp->di_nlink = inoref->if_nlink;
10633 
10634 	/*
10635 	 * Set the ext data dependencies to busy.
10636 	 */
10637 	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp;
10638 	     adp = TAILQ_NEXT(adp, ad_next)) {
10639 #ifdef INVARIANTS
10640 		if (deplist != 0 && prevlbn >= adp->ad_offset)
10641 			panic("initiate_write_inodeblock_ufs2: lbn order");
10642 		prevlbn = adp->ad_offset;
10643 		if (dp->di_extb[adp->ad_offset] != adp->ad_newblkno)
10644 			panic("initiate_write_inodeblock_ufs2: "
10645 			    "ext pointer #%jd mismatch %jd != %jd",
10646 			    (intmax_t)adp->ad_offset,
10647 			    (intmax_t)dp->di_extb[adp->ad_offset],
10648 			    (intmax_t)adp->ad_newblkno);
10649 		deplist |= 1 << adp->ad_offset;
10650 		if ((adp->ad_state & ATTACHED) == 0)
10651 			panic("initiate_write_inodeblock_ufs2: Unknown "
10652 			    "state 0x%x", adp->ad_state);
10653 #endif /* INVARIANTS */
10654 		adp->ad_state &= ~ATTACHED;
10655 		adp->ad_state |= UNDONE;
10656 	}
10657 	/*
10658 	 * The on-disk inode cannot claim to be any larger than the last
10659 	 * fragment that has been written. Otherwise, the on-disk inode
10660 	 * might have fragments that were not the last block in the ext
10661 	 * data which would corrupt the filesystem.
10662 	 */
10663 	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp;
10664 	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
10665 		dp->di_extb[adp->ad_offset] = adp->ad_oldblkno;
10666 		/* keep going until hitting a rollback to a frag */
10667 		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
10668 			continue;
10669 		dp->di_extsize = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize;
10670 		for (i = adp->ad_offset + 1; i < UFS_NXADDR; i++) {
10671 #ifdef INVARIANTS
10672 			if (dp->di_extb[i] != 0 && (deplist & (1 << i)) == 0)
10673 				panic("initiate_write_inodeblock_ufs2: "
10674 				    "lost dep1");
10675 #endif /* INVARIANTS */
10676 			dp->di_extb[i] = 0;
10677 		}
10678 		lastadp = NULL;
10679 		break;
10680 	}
10681 	/*
10682 	 * If we have zero'ed out the last allocated block of the ext
10683 	 * data, roll back the size to the last currently allocated block.
10684 	 * We know that this last allocated block is a full-sized as
10685 	 * we already checked for fragments in the loop above.
10686 	 */
10687 	if (lastadp != NULL &&
10688 	    dp->di_extsize <= (lastadp->ad_offset + 1) * fs->fs_bsize) {
10689 		for (i = lastadp->ad_offset; i >= 0; i--)
10690 			if (dp->di_extb[i] != 0)
10691 				break;
10692 		dp->di_extsize = (i + 1) * fs->fs_bsize;
10693 	}
10694 	/*
10695 	 * Set the file data dependencies to busy.
10696 	 */
10697 	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
10698 	     adp = TAILQ_NEXT(adp, ad_next)) {
10699 #ifdef INVARIANTS
10700 		if (deplist != 0 && prevlbn >= adp->ad_offset)
10701 			panic("softdep_write_inodeblock: lbn order");
10702 		if ((adp->ad_state & ATTACHED) == 0)
10703 			panic("inodedep %p and adp %p not attached", inodedep, adp);
10704 		prevlbn = adp->ad_offset;
10705 		if (!ffs_fsfail_cleanup(ump, 0) &&
10706 		    adp->ad_offset < UFS_NDADDR &&
10707 		    dp->di_db[adp->ad_offset] != adp->ad_newblkno)
10708 			panic("initiate_write_inodeblock_ufs2: "
10709 			    "direct pointer #%jd mismatch %jd != %jd",
10710 			    (intmax_t)adp->ad_offset,
10711 			    (intmax_t)dp->di_db[adp->ad_offset],
10712 			    (intmax_t)adp->ad_newblkno);
10713 		if (!ffs_fsfail_cleanup(ump, 0) &&
10714 		    adp->ad_offset >= UFS_NDADDR &&
10715 		    dp->di_ib[adp->ad_offset - UFS_NDADDR] != adp->ad_newblkno)
10716 			panic("initiate_write_inodeblock_ufs2: "
10717 			    "indirect pointer #%jd mismatch %jd != %jd",
10718 			    (intmax_t)adp->ad_offset - UFS_NDADDR,
10719 			    (intmax_t)dp->di_ib[adp->ad_offset - UFS_NDADDR],
10720 			    (intmax_t)adp->ad_newblkno);
10721 		deplist |= 1 << adp->ad_offset;
10722 		if ((adp->ad_state & ATTACHED) == 0)
10723 			panic("initiate_write_inodeblock_ufs2: Unknown "
10724 			     "state 0x%x", adp->ad_state);
10725 #endif /* INVARIANTS */
10726 		adp->ad_state &= ~ATTACHED;
10727 		adp->ad_state |= UNDONE;
10728 	}
10729 	/*
10730 	 * The on-disk inode cannot claim to be any larger than the last
10731 	 * fragment that has been written. Otherwise, the on-disk inode
10732 	 * might have fragments that were not the last block in the file
10733 	 * which would corrupt the filesystem.
10734 	 */
10735 	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
10736 	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
10737 		if (adp->ad_offset >= UFS_NDADDR)
10738 			break;
10739 		dp->di_db[adp->ad_offset] = adp->ad_oldblkno;
10740 		/* keep going until hitting a rollback to a frag */
10741 		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
10742 			continue;
10743 		dp->di_size = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize;
10744 		for (i = adp->ad_offset + 1; i < UFS_NDADDR; i++) {
10745 #ifdef INVARIANTS
10746 			if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0)
10747 				panic("initiate_write_inodeblock_ufs2: "
10748 				    "lost dep2");
10749 #endif /* INVARIANTS */
10750 			dp->di_db[i] = 0;
10751 		}
10752 		for (i = 0; i < UFS_NIADDR; i++) {
10753 #ifdef INVARIANTS
10754 			if (dp->di_ib[i] != 0 &&
10755 			    (deplist & ((1 << UFS_NDADDR) << i)) == 0)
10756 				panic("initiate_write_inodeblock_ufs2: "
10757 				    "lost dep3");
10758 #endif /* INVARIANTS */
10759 			dp->di_ib[i] = 0;
10760 		}
10761 		ffs_update_dinode_ckhash(fs, dp);
10762 		return;
10763 	}
10764 	/*
10765 	 * If we have zero'ed out the last allocated block of the file,
10766 	 * roll back the size to the last currently allocated block.
10767 	 * We know that this last allocated block is a full-sized as
10768 	 * we already checked for fragments in the loop above.
10769 	 */
10770 	if (lastadp != NULL &&
10771 	    dp->di_size <= (lastadp->ad_offset + 1) * fs->fs_bsize) {
10772 		for (i = lastadp->ad_offset; i >= 0; i--)
10773 			if (dp->di_db[i] != 0)
10774 				break;
10775 		dp->di_size = (i + 1) * fs->fs_bsize;
10776 	}
10777 	/*
10778 	 * The only dependencies are for indirect blocks.
10779 	 *
10780 	 * The file size for indirect block additions is not guaranteed.
10781 	 * Such a guarantee would be non-trivial to achieve. The conventional
10782 	 * synchronous write implementation also does not make this guarantee.
10783 	 * Fsck should catch and fix discrepancies. Arguably, the file size
10784 	 * can be over-estimated without destroying integrity when the file
10785 	 * moves into the indirect blocks (i.e., is large). If we want to
10786 	 * postpone fsck, we are stuck with this argument.
10787 	 */
10788 	for (; adp; adp = TAILQ_NEXT(adp, ad_next))
10789 		dp->di_ib[adp->ad_offset - UFS_NDADDR] = 0;
10790 	ffs_update_dinode_ckhash(fs, dp);
10791 }
10792 
10793 /*
10794  * Cancel an indirdep as a result of truncation.  Release all of the
10795  * children allocindirs and place their journal work on the appropriate
10796  * list.
10797  */
10798 static void
10799 cancel_indirdep(
10800 	struct indirdep *indirdep,
10801 	struct buf *bp,
10802 	struct freeblks *freeblks)
10803 {
10804 	struct allocindir *aip;
10805 
10806 	/*
10807 	 * None of the indirect pointers will ever be visible,
10808 	 * so they can simply be tossed. GOINGAWAY ensures
10809 	 * that allocated pointers will be saved in the buffer
10810 	 * cache until they are freed. Note that they will
10811 	 * only be able to be found by their physical address
10812 	 * since the inode mapping the logical address will
10813 	 * be gone. The save buffer used for the safe copy
10814 	 * was allocated in setup_allocindir_phase2 using
10815 	 * the physical address so it could be used for this
10816 	 * purpose. Hence we swap the safe copy with the real
10817 	 * copy, allowing the safe copy to be freed and holding
10818 	 * on to the real copy for later use in indir_trunc.
10819 	 */
10820 	if (indirdep->ir_state & GOINGAWAY)
10821 		panic("cancel_indirdep: already gone");
10822 	if ((indirdep->ir_state & DEPCOMPLETE) == 0) {
10823 		indirdep->ir_state |= DEPCOMPLETE;
10824 		LIST_REMOVE(indirdep, ir_next);
10825 	}
10826 	indirdep->ir_state |= GOINGAWAY;
10827 	/*
10828 	 * Pass in bp for blocks still have journal writes
10829 	 * pending so we can cancel them on their own.
10830 	 */
10831 	while ((aip = LIST_FIRST(&indirdep->ir_deplisthd)) != NULL)
10832 		cancel_allocindir(aip, bp, freeblks, 0);
10833 	while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != NULL)
10834 		cancel_allocindir(aip, NULL, freeblks, 0);
10835 	while ((aip = LIST_FIRST(&indirdep->ir_writehd)) != NULL)
10836 		cancel_allocindir(aip, NULL, freeblks, 0);
10837 	while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != NULL)
10838 		cancel_allocindir(aip, NULL, freeblks, 0);
10839 	/*
10840 	 * If there are pending partial truncations we need to keep the
10841 	 * old block copy around until they complete.  This is because
10842 	 * the current b_data is not a perfect superset of the available
10843 	 * blocks.
10844 	 */
10845 	if (TAILQ_EMPTY(&indirdep->ir_trunc))
10846 		bcopy(bp->b_data, indirdep->ir_savebp->b_data, bp->b_bcount);
10847 	else
10848 		bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount);
10849 	WORKLIST_REMOVE(&indirdep->ir_list);
10850 	WORKLIST_INSERT(&indirdep->ir_savebp->b_dep, &indirdep->ir_list);
10851 	indirdep->ir_bp = NULL;
10852 	indirdep->ir_freeblks = freeblks;
10853 }
10854 
10855 /*
10856  * Free an indirdep once it no longer has new pointers to track.
10857  */
10858 static void
10859 free_indirdep(struct indirdep *indirdep)
10860 {
10861 
10862 	KASSERT(TAILQ_EMPTY(&indirdep->ir_trunc),
10863 	    ("free_indirdep: Indir trunc list not empty."));
10864 	KASSERT(LIST_EMPTY(&indirdep->ir_completehd),
10865 	    ("free_indirdep: Complete head not empty."));
10866 	KASSERT(LIST_EMPTY(&indirdep->ir_writehd),
10867 	    ("free_indirdep: write head not empty."));
10868 	KASSERT(LIST_EMPTY(&indirdep->ir_donehd),
10869 	    ("free_indirdep: done head not empty."));
10870 	KASSERT(LIST_EMPTY(&indirdep->ir_deplisthd),
10871 	    ("free_indirdep: deplist head not empty."));
10872 	KASSERT((indirdep->ir_state & DEPCOMPLETE),
10873 	    ("free_indirdep: %p still on newblk list.", indirdep));
10874 	KASSERT(indirdep->ir_saveddata == NULL,
10875 	    ("free_indirdep: %p still has saved data.", indirdep));
10876 	KASSERT(indirdep->ir_savebp == NULL,
10877 	    ("free_indirdep: %p still has savebp buffer.", indirdep));
10878 	if (indirdep->ir_state & ONWORKLIST)
10879 		WORKLIST_REMOVE(&indirdep->ir_list);
10880 	WORKITEM_FREE(indirdep, D_INDIRDEP);
10881 }
10882 
10883 /*
10884  * Called before a write to an indirdep.  This routine is responsible for
10885  * rolling back pointers to a safe state which includes only those
10886  * allocindirs which have been completed.
10887  */
10888 static void
10889 initiate_write_indirdep(struct indirdep *indirdep, struct buf *bp)
10890 {
10891 	struct ufsmount *ump;
10892 
10893 	indirdep->ir_state |= IOSTARTED;
10894 	if (indirdep->ir_state & GOINGAWAY)
10895 		panic("disk_io_initiation: indirdep gone");
10896 	/*
10897 	 * If there are no remaining dependencies, this will be writing
10898 	 * the real pointers.
10899 	 */
10900 	if (LIST_EMPTY(&indirdep->ir_deplisthd) &&
10901 	    TAILQ_EMPTY(&indirdep->ir_trunc))
10902 		return;
10903 	/*
10904 	 * Replace up-to-date version with safe version.
10905 	 */
10906 	if (indirdep->ir_saveddata == NULL) {
10907 		ump = VFSTOUFS(indirdep->ir_list.wk_mp);
10908 		LOCK_OWNED(ump);
10909 		FREE_LOCK(ump);
10910 		indirdep->ir_saveddata = malloc(bp->b_bcount, M_INDIRDEP,
10911 		    M_SOFTDEP_FLAGS);
10912 		ACQUIRE_LOCK(ump);
10913 	}
10914 	indirdep->ir_state &= ~ATTACHED;
10915 	indirdep->ir_state |= UNDONE;
10916 	bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount);
10917 	bcopy(indirdep->ir_savebp->b_data, bp->b_data,
10918 	    bp->b_bcount);
10919 }
10920 
10921 /*
10922  * Called when an inode has been cleared in a cg bitmap.  This finally
10923  * eliminates any canceled jaddrefs
10924  */
10925 void
10926 softdep_setup_inofree(struct mount *mp,
10927 	struct buf *bp,
10928 	ino_t ino,
10929 	struct workhead *wkhd)
10930 {
10931 	struct worklist *wk, *wkn;
10932 	struct inodedep *inodedep;
10933 	struct ufsmount *ump;
10934 	uint8_t *inosused;
10935 	struct cg *cgp;
10936 	struct fs *fs;
10937 
10938 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
10939 	    ("softdep_setup_inofree called on non-softdep filesystem"));
10940 	ump = VFSTOUFS(mp);
10941 	ACQUIRE_LOCK(ump);
10942 	if (!ffs_fsfail_cleanup(ump, 0)) {
10943 		fs = ump->um_fs;
10944 		cgp = (struct cg *)bp->b_data;
10945 		inosused = cg_inosused(cgp);
10946 		if (isset(inosused, ino % fs->fs_ipg))
10947 			panic("softdep_setup_inofree: inode %ju not freed.",
10948 			    (uintmax_t)ino);
10949 	}
10950 	if (inodedep_lookup(mp, ino, 0, &inodedep))
10951 		panic("softdep_setup_inofree: ino %ju has existing inodedep %p",
10952 		    (uintmax_t)ino, inodedep);
10953 	if (wkhd) {
10954 		LIST_FOREACH_SAFE(wk, wkhd, wk_list, wkn) {
10955 			if (wk->wk_type != D_JADDREF)
10956 				continue;
10957 			WORKLIST_REMOVE(wk);
10958 			/*
10959 			 * We can free immediately even if the jaddref
10960 			 * isn't attached in a background write as now
10961 			 * the bitmaps are reconciled.
10962 			 */
10963 			wk->wk_state |= COMPLETE | ATTACHED;
10964 			free_jaddref(WK_JADDREF(wk));
10965 		}
10966 		jwork_move(&bp->b_dep, wkhd);
10967 	}
10968 	FREE_LOCK(ump);
10969 }
10970 
10971 /*
10972  * Called via ffs_blkfree() after a set of frags has been cleared from a cg
10973  * map.  Any dependencies waiting for the write to clear are added to the
10974  * buf's list and any jnewblks that are being canceled are discarded
10975  * immediately.
10976  */
10977 void
10978 softdep_setup_blkfree(
10979 	struct mount *mp,
10980 	struct buf *bp,
10981 	ufs2_daddr_t blkno,
10982 	int frags,
10983 	struct workhead *wkhd)
10984 {
10985 	struct bmsafemap *bmsafemap;
10986 	struct jnewblk *jnewblk;
10987 	struct ufsmount *ump;
10988 	struct worklist *wk;
10989 	struct fs *fs;
10990 #ifdef INVARIANTS
10991 	uint8_t *blksfree;
10992 	struct cg *cgp;
10993 	ufs2_daddr_t jstart;
10994 	ufs2_daddr_t jend;
10995 	ufs2_daddr_t end;
10996 	long bno;
10997 	int i;
10998 #endif
10999 
11000 	CTR3(KTR_SUJ,
11001 	    "softdep_setup_blkfree: blkno %jd frags %d wk head %p",
11002 	    blkno, frags, wkhd);
11003 
11004 	ump = VFSTOUFS(mp);
11005 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
11006 	    ("softdep_setup_blkfree called on non-softdep filesystem"));
11007 	ACQUIRE_LOCK(ump);
11008 	/* Lookup the bmsafemap so we track when it is dirty. */
11009 	fs = ump->um_fs;
11010 	bmsafemap = bmsafemap_lookup(mp, bp, dtog(fs, blkno), NULL);
11011 	/*
11012 	 * Detach any jnewblks which have been canceled.  They must linger
11013 	 * until the bitmap is cleared again by ffs_blkfree() to prevent
11014 	 * an unjournaled allocation from hitting the disk.
11015 	 */
11016 	if (wkhd) {
11017 		while ((wk = LIST_FIRST(wkhd)) != NULL) {
11018 			CTR2(KTR_SUJ,
11019 			    "softdep_setup_blkfree: blkno %jd wk type %d",
11020 			    blkno, wk->wk_type);
11021 			WORKLIST_REMOVE(wk);
11022 			if (wk->wk_type != D_JNEWBLK) {
11023 				WORKLIST_INSERT(&bmsafemap->sm_freehd, wk);
11024 				continue;
11025 			}
11026 			jnewblk = WK_JNEWBLK(wk);
11027 			KASSERT(jnewblk->jn_state & GOINGAWAY,
11028 			    ("softdep_setup_blkfree: jnewblk not canceled."));
11029 #ifdef INVARIANTS
11030 			/*
11031 			 * Assert that this block is free in the bitmap
11032 			 * before we discard the jnewblk.
11033 			 */
11034 			cgp = (struct cg *)bp->b_data;
11035 			blksfree = cg_blksfree(cgp);
11036 			bno = dtogd(fs, jnewblk->jn_blkno);
11037 			for (i = jnewblk->jn_oldfrags;
11038 			    i < jnewblk->jn_frags; i++) {
11039 				if (isset(blksfree, bno + i))
11040 					continue;
11041 				panic("softdep_setup_blkfree: not free");
11042 			}
11043 #endif
11044 			/*
11045 			 * Even if it's not attached we can free immediately
11046 			 * as the new bitmap is correct.
11047 			 */
11048 			wk->wk_state |= COMPLETE | ATTACHED;
11049 			free_jnewblk(jnewblk);
11050 		}
11051 	}
11052 
11053 #ifdef INVARIANTS
11054 	/*
11055 	 * Assert that we are not freeing a block which has an outstanding
11056 	 * allocation dependency.
11057 	 */
11058 	fs = VFSTOUFS(mp)->um_fs;
11059 	bmsafemap = bmsafemap_lookup(mp, bp, dtog(fs, blkno), NULL);
11060 	end = blkno + frags;
11061 	LIST_FOREACH(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps) {
11062 		/*
11063 		 * Don't match against blocks that will be freed when the
11064 		 * background write is done.
11065 		 */
11066 		if ((jnewblk->jn_state & (ATTACHED | COMPLETE | DEPCOMPLETE)) ==
11067 		    (COMPLETE | DEPCOMPLETE))
11068 			continue;
11069 		jstart = jnewblk->jn_blkno + jnewblk->jn_oldfrags;
11070 		jend = jnewblk->jn_blkno + jnewblk->jn_frags;
11071 		if ((blkno >= jstart && blkno < jend) ||
11072 		    (end > jstart && end <= jend)) {
11073 			printf("state 0x%X %jd - %d %d dep %p\n",
11074 			    jnewblk->jn_state, jnewblk->jn_blkno,
11075 			    jnewblk->jn_oldfrags, jnewblk->jn_frags,
11076 			    jnewblk->jn_dep);
11077 			panic("softdep_setup_blkfree: "
11078 			    "%jd-%jd(%d) overlaps with %jd-%jd",
11079 			    blkno, end, frags, jstart, jend);
11080 		}
11081 	}
11082 #endif
11083 	FREE_LOCK(ump);
11084 }
11085 
11086 /*
11087  * Revert a block allocation when the journal record that describes it
11088  * is not yet written.
11089  */
11090 static int
11091 jnewblk_rollback(
11092 	struct jnewblk *jnewblk,
11093 	struct fs *fs,
11094 	struct cg *cgp,
11095 	uint8_t *blksfree)
11096 {
11097 	ufs1_daddr_t fragno;
11098 	long cgbno, bbase;
11099 	int frags, blk;
11100 	int i;
11101 
11102 	frags = 0;
11103 	cgbno = dtogd(fs, jnewblk->jn_blkno);
11104 	/*
11105 	 * We have to test which frags need to be rolled back.  We may
11106 	 * be operating on a stale copy when doing background writes.
11107 	 */
11108 	for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; i++)
11109 		if (isclr(blksfree, cgbno + i))
11110 			frags++;
11111 	if (frags == 0)
11112 		return (0);
11113 	/*
11114 	 * This is mostly ffs_blkfree() sans some validation and
11115 	 * superblock updates.
11116 	 */
11117 	if (frags == fs->fs_frag) {
11118 		fragno = fragstoblks(fs, cgbno);
11119 		ffs_setblock(fs, blksfree, fragno);
11120 		ffs_clusteracct(fs, cgp, fragno, 1);
11121 		cgp->cg_cs.cs_nbfree++;
11122 	} else {
11123 		cgbno += jnewblk->jn_oldfrags;
11124 		bbase = cgbno - fragnum(fs, cgbno);
11125 		/* Decrement the old frags.  */
11126 		blk = blkmap(fs, blksfree, bbase);
11127 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
11128 		/* Deallocate the fragment */
11129 		for (i = 0; i < frags; i++)
11130 			setbit(blksfree, cgbno + i);
11131 		cgp->cg_cs.cs_nffree += frags;
11132 		/* Add back in counts associated with the new frags */
11133 		blk = blkmap(fs, blksfree, bbase);
11134 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
11135 		/* If a complete block has been reassembled, account for it. */
11136 		fragno = fragstoblks(fs, bbase);
11137 		if (ffs_isblock(fs, blksfree, fragno)) {
11138 			cgp->cg_cs.cs_nffree -= fs->fs_frag;
11139 			ffs_clusteracct(fs, cgp, fragno, 1);
11140 			cgp->cg_cs.cs_nbfree++;
11141 		}
11142 	}
11143 	stat_jnewblk++;
11144 	jnewblk->jn_state &= ~ATTACHED;
11145 	jnewblk->jn_state |= UNDONE;
11146 
11147 	return (frags);
11148 }
11149 
11150 static void
11151 initiate_write_bmsafemap(
11152 	struct bmsafemap *bmsafemap,
11153 	struct buf *bp)			/* The cg block. */
11154 {
11155 	struct jaddref *jaddref;
11156 	struct jnewblk *jnewblk;
11157 	uint8_t *inosused;
11158 	uint8_t *blksfree;
11159 	struct cg *cgp;
11160 	struct fs *fs;
11161 	ino_t ino;
11162 
11163 	/*
11164 	 * If this is a background write, we did this at the time that
11165 	 * the copy was made, so do not need to do it again.
11166 	 */
11167 	if (bmsafemap->sm_state & IOSTARTED)
11168 		return;
11169 	bmsafemap->sm_state |= IOSTARTED;
11170 	/*
11171 	 * Clear any inode allocations which are pending journal writes.
11172 	 */
11173 	if (LIST_FIRST(&bmsafemap->sm_jaddrefhd) != NULL) {
11174 		cgp = (struct cg *)bp->b_data;
11175 		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
11176 		inosused = cg_inosused(cgp);
11177 		LIST_FOREACH(jaddref, &bmsafemap->sm_jaddrefhd, ja_bmdeps) {
11178 			ino = jaddref->ja_ino % fs->fs_ipg;
11179 			if (isset(inosused, ino)) {
11180 				if ((jaddref->ja_mode & IFMT) == IFDIR)
11181 					cgp->cg_cs.cs_ndir--;
11182 				cgp->cg_cs.cs_nifree++;
11183 				clrbit(inosused, ino);
11184 				jaddref->ja_state &= ~ATTACHED;
11185 				jaddref->ja_state |= UNDONE;
11186 				stat_jaddref++;
11187 			} else
11188 				panic("initiate_write_bmsafemap: inode %ju "
11189 				    "marked free", (uintmax_t)jaddref->ja_ino);
11190 		}
11191 	}
11192 	/*
11193 	 * Clear any block allocations which are pending journal writes.
11194 	 */
11195 	if (LIST_FIRST(&bmsafemap->sm_jnewblkhd) != NULL) {
11196 		cgp = (struct cg *)bp->b_data;
11197 		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
11198 		blksfree = cg_blksfree(cgp);
11199 		LIST_FOREACH(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps) {
11200 			if (jnewblk_rollback(jnewblk, fs, cgp, blksfree))
11201 				continue;
11202 			panic("initiate_write_bmsafemap: block %jd "
11203 			    "marked free", jnewblk->jn_blkno);
11204 		}
11205 	}
11206 	/*
11207 	 * Move allocation lists to the written lists so they can be
11208 	 * cleared once the block write is complete.
11209 	 */
11210 	LIST_SWAP(&bmsafemap->sm_inodedephd, &bmsafemap->sm_inodedepwr,
11211 	    inodedep, id_deps);
11212 	LIST_SWAP(&bmsafemap->sm_newblkhd, &bmsafemap->sm_newblkwr,
11213 	    newblk, nb_deps);
11214 	LIST_SWAP(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr, worklist,
11215 	    wk_list);
11216 }
11217 
11218 void
11219 softdep_handle_error(struct buf *bp)
11220 {
11221 	struct ufsmount *ump;
11222 
11223 	ump = softdep_bp_to_mp(bp);
11224 	if (ump == NULL)
11225 		return;
11226 
11227 	if (ffs_fsfail_cleanup(ump, bp->b_error)) {
11228 		/*
11229 		 * No future writes will succeed, so the on-disk image is safe.
11230 		 * Pretend that this write succeeded so that the softdep state
11231 		 * will be cleaned up naturally.
11232 		 */
11233 		bp->b_ioflags &= ~BIO_ERROR;
11234 		bp->b_error = 0;
11235 	}
11236 }
11237 
11238 /*
11239  * This routine is called during the completion interrupt
11240  * service routine for a disk write (from the procedure called
11241  * by the device driver to inform the filesystem caches of
11242  * a request completion).  It should be called early in this
11243  * procedure, before the block is made available to other
11244  * processes or other routines are called.
11245  *
11246  */
11247 static void
11248 softdep_disk_write_complete(
11249 	struct buf *bp)		/* describes the completed disk write */
11250 {
11251 	struct worklist *wk;
11252 	struct worklist *owk;
11253 	struct ufsmount *ump;
11254 	struct workhead reattach;
11255 	struct freeblks *freeblks;
11256 	struct buf *sbp;
11257 
11258 	ump = softdep_bp_to_mp(bp);
11259 	KASSERT(LIST_EMPTY(&bp->b_dep) || ump != NULL,
11260 	    ("softdep_disk_write_complete: softdep_bp_to_mp returned NULL "
11261 	     "with outstanding dependencies for buffer %p", bp));
11262 	if (ump == NULL)
11263 		return;
11264 	if ((bp->b_ioflags & BIO_ERROR) != 0)
11265 		softdep_handle_error(bp);
11266 	/*
11267 	 * If an error occurred while doing the write, then the data
11268 	 * has not hit the disk and the dependencies cannot be processed.
11269 	 * But we do have to go through and roll forward any dependencies
11270 	 * that were rolled back before the disk write.
11271 	 */
11272 	sbp = NULL;
11273 	ACQUIRE_LOCK(ump);
11274 	if ((bp->b_ioflags & BIO_ERROR) != 0 && (bp->b_flags & B_INVAL) == 0) {
11275 		LIST_FOREACH(wk, &bp->b_dep, wk_list) {
11276 			switch (wk->wk_type) {
11277 			case D_PAGEDEP:
11278 				handle_written_filepage(WK_PAGEDEP(wk), bp, 0);
11279 				continue;
11280 
11281 			case D_INODEDEP:
11282 				handle_written_inodeblock(WK_INODEDEP(wk),
11283 				    bp, 0);
11284 				continue;
11285 
11286 			case D_BMSAFEMAP:
11287 				handle_written_bmsafemap(WK_BMSAFEMAP(wk),
11288 				    bp, 0);
11289 				continue;
11290 
11291 			case D_INDIRDEP:
11292 				handle_written_indirdep(WK_INDIRDEP(wk),
11293 				    bp, &sbp, 0);
11294 				continue;
11295 			default:
11296 				/* nothing to roll forward */
11297 				continue;
11298 			}
11299 		}
11300 		FREE_LOCK(ump);
11301 		if (sbp)
11302 			brelse(sbp);
11303 		return;
11304 	}
11305 	LIST_INIT(&reattach);
11306 
11307 	/*
11308 	 * Ump SU lock must not be released anywhere in this code segment.
11309 	 */
11310 	owk = NULL;
11311 	while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) {
11312 		WORKLIST_REMOVE(wk);
11313 		atomic_add_long(&dep_write[wk->wk_type], 1);
11314 		if (wk == owk)
11315 			panic("duplicate worklist: %p\n", wk);
11316 		owk = wk;
11317 		switch (wk->wk_type) {
11318 		case D_PAGEDEP:
11319 			if (handle_written_filepage(WK_PAGEDEP(wk), bp,
11320 			    WRITESUCCEEDED))
11321 				WORKLIST_INSERT(&reattach, wk);
11322 			continue;
11323 
11324 		case D_INODEDEP:
11325 			if (handle_written_inodeblock(WK_INODEDEP(wk), bp,
11326 			    WRITESUCCEEDED))
11327 				WORKLIST_INSERT(&reattach, wk);
11328 			continue;
11329 
11330 		case D_BMSAFEMAP:
11331 			if (handle_written_bmsafemap(WK_BMSAFEMAP(wk), bp,
11332 			    WRITESUCCEEDED))
11333 				WORKLIST_INSERT(&reattach, wk);
11334 			continue;
11335 
11336 		case D_MKDIR:
11337 			handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY);
11338 			continue;
11339 
11340 		case D_ALLOCDIRECT:
11341 			wk->wk_state |= COMPLETE;
11342 			handle_allocdirect_partdone(WK_ALLOCDIRECT(wk), NULL);
11343 			continue;
11344 
11345 		case D_ALLOCINDIR:
11346 			wk->wk_state |= COMPLETE;
11347 			handle_allocindir_partdone(WK_ALLOCINDIR(wk));
11348 			continue;
11349 
11350 		case D_INDIRDEP:
11351 			if (handle_written_indirdep(WK_INDIRDEP(wk), bp, &sbp,
11352 			    WRITESUCCEEDED))
11353 				WORKLIST_INSERT(&reattach, wk);
11354 			continue;
11355 
11356 		case D_FREEBLKS:
11357 			wk->wk_state |= COMPLETE;
11358 			freeblks = WK_FREEBLKS(wk);
11359 			if ((wk->wk_state & ALLCOMPLETE) == ALLCOMPLETE &&
11360 			    LIST_EMPTY(&freeblks->fb_jblkdephd))
11361 				add_to_worklist(wk, WK_NODELAY);
11362 			continue;
11363 
11364 		case D_FREEWORK:
11365 			handle_written_freework(WK_FREEWORK(wk));
11366 			break;
11367 
11368 		case D_JSEGDEP:
11369 			free_jsegdep(WK_JSEGDEP(wk));
11370 			continue;
11371 
11372 		case D_JSEG:
11373 			handle_written_jseg(WK_JSEG(wk), bp);
11374 			continue;
11375 
11376 		case D_SBDEP:
11377 			if (handle_written_sbdep(WK_SBDEP(wk), bp))
11378 				WORKLIST_INSERT(&reattach, wk);
11379 			continue;
11380 
11381 		case D_FREEDEP:
11382 			free_freedep(WK_FREEDEP(wk));
11383 			continue;
11384 
11385 		default:
11386 			panic("handle_disk_write_complete: Unknown type %s",
11387 			    TYPENAME(wk->wk_type));
11388 			/* NOTREACHED */
11389 		}
11390 	}
11391 	/*
11392 	 * Reattach any requests that must be redone.
11393 	 */
11394 	while ((wk = LIST_FIRST(&reattach)) != NULL) {
11395 		WORKLIST_REMOVE(wk);
11396 		WORKLIST_INSERT(&bp->b_dep, wk);
11397 	}
11398 	FREE_LOCK(ump);
11399 	if (sbp)
11400 		brelse(sbp);
11401 }
11402 
11403 /*
11404  * Called from within softdep_disk_write_complete above.
11405  */
11406 static void
11407 handle_allocdirect_partdone(
11408 	struct allocdirect *adp,	/* the completed allocdirect */
11409 	struct workhead *wkhd)		/* Work to do when inode is writtne. */
11410 {
11411 	struct allocdirectlst *listhead;
11412 	struct allocdirect *listadp;
11413 	struct inodedep *inodedep;
11414 	long bsize;
11415 
11416 	LOCK_OWNED(VFSTOUFS(adp->ad_block.nb_list.wk_mp));
11417 	if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE)
11418 		return;
11419 	/*
11420 	 * The on-disk inode cannot claim to be any larger than the last
11421 	 * fragment that has been written. Otherwise, the on-disk inode
11422 	 * might have fragments that were not the last block in the file
11423 	 * which would corrupt the filesystem. Thus, we cannot free any
11424 	 * allocdirects after one whose ad_oldblkno claims a fragment as
11425 	 * these blocks must be rolled back to zero before writing the inode.
11426 	 * We check the currently active set of allocdirects in id_inoupdt
11427 	 * or id_extupdt as appropriate.
11428 	 */
11429 	inodedep = adp->ad_inodedep;
11430 	bsize = inodedep->id_fs->fs_bsize;
11431 	if (adp->ad_state & EXTDATA)
11432 		listhead = &inodedep->id_extupdt;
11433 	else
11434 		listhead = &inodedep->id_inoupdt;
11435 	TAILQ_FOREACH(listadp, listhead, ad_next) {
11436 		/* found our block */
11437 		if (listadp == adp)
11438 			break;
11439 		/* continue if ad_oldlbn is not a fragment */
11440 		if (listadp->ad_oldsize == 0 ||
11441 		    listadp->ad_oldsize == bsize)
11442 			continue;
11443 		/* hit a fragment */
11444 		return;
11445 	}
11446 	/*
11447 	 * If we have reached the end of the current list without
11448 	 * finding the just finished dependency, then it must be
11449 	 * on the future dependency list. Future dependencies cannot
11450 	 * be freed until they are moved to the current list.
11451 	 */
11452 	if (listadp == NULL) {
11453 #ifdef INVARIANTS
11454 		if (adp->ad_state & EXTDATA)
11455 			listhead = &inodedep->id_newextupdt;
11456 		else
11457 			listhead = &inodedep->id_newinoupdt;
11458 		TAILQ_FOREACH(listadp, listhead, ad_next)
11459 			/* found our block */
11460 			if (listadp == adp)
11461 				break;
11462 		if (listadp == NULL)
11463 			panic("handle_allocdirect_partdone: lost dep");
11464 #endif /* INVARIANTS */
11465 		return;
11466 	}
11467 	/*
11468 	 * If we have found the just finished dependency, then queue
11469 	 * it along with anything that follows it that is complete.
11470 	 * Since the pointer has not yet been written in the inode
11471 	 * as the dependency prevents it, place the allocdirect on the
11472 	 * bufwait list where it will be freed once the pointer is
11473 	 * valid.
11474 	 */
11475 	if (wkhd == NULL)
11476 		wkhd = &inodedep->id_bufwait;
11477 	for (; adp; adp = listadp) {
11478 		listadp = TAILQ_NEXT(adp, ad_next);
11479 		if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE)
11480 			return;
11481 		TAILQ_REMOVE(listhead, adp, ad_next);
11482 		WORKLIST_INSERT(wkhd, &adp->ad_block.nb_list);
11483 	}
11484 }
11485 
11486 /*
11487  * Called from within softdep_disk_write_complete above.  This routine
11488  * completes successfully written allocindirs.
11489  */
11490 static void
11491 handle_allocindir_partdone(
11492 	struct allocindir *aip)		/* the completed allocindir */
11493 {
11494 	struct indirdep *indirdep;
11495 
11496 	if ((aip->ai_state & ALLCOMPLETE) != ALLCOMPLETE)
11497 		return;
11498 	indirdep = aip->ai_indirdep;
11499 	LIST_REMOVE(aip, ai_next);
11500 	/*
11501 	 * Don't set a pointer while the buffer is undergoing IO or while
11502 	 * we have active truncations.
11503 	 */
11504 	if (indirdep->ir_state & UNDONE || !TAILQ_EMPTY(&indirdep->ir_trunc)) {
11505 		LIST_INSERT_HEAD(&indirdep->ir_donehd, aip, ai_next);
11506 		return;
11507 	}
11508 	if (indirdep->ir_state & UFS1FMT)
11509 		((ufs1_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] =
11510 		    aip->ai_newblkno;
11511 	else
11512 		((ufs2_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] =
11513 		    aip->ai_newblkno;
11514 	/*
11515 	 * Await the pointer write before freeing the allocindir.
11516 	 */
11517 	LIST_INSERT_HEAD(&indirdep->ir_writehd, aip, ai_next);
11518 }
11519 
11520 /*
11521  * Release segments held on a jwork list.
11522  */
11523 static void
11524 handle_jwork(struct workhead *wkhd)
11525 {
11526 	struct worklist *wk;
11527 
11528 	while ((wk = LIST_FIRST(wkhd)) != NULL) {
11529 		WORKLIST_REMOVE(wk);
11530 		switch (wk->wk_type) {
11531 		case D_JSEGDEP:
11532 			free_jsegdep(WK_JSEGDEP(wk));
11533 			continue;
11534 		case D_FREEDEP:
11535 			free_freedep(WK_FREEDEP(wk));
11536 			continue;
11537 		case D_FREEFRAG:
11538 			rele_jseg(WK_JSEG(WK_FREEFRAG(wk)->ff_jdep));
11539 			WORKITEM_FREE(wk, D_FREEFRAG);
11540 			continue;
11541 		case D_FREEWORK:
11542 			handle_written_freework(WK_FREEWORK(wk));
11543 			continue;
11544 		default:
11545 			panic("handle_jwork: Unknown type %s\n",
11546 			    TYPENAME(wk->wk_type));
11547 		}
11548 	}
11549 }
11550 
11551 /*
11552  * Handle the bufwait list on an inode when it is safe to release items
11553  * held there.  This normally happens after an inode block is written but
11554  * may be delayed and handled later if there are pending journal items that
11555  * are not yet safe to be released.
11556  */
11557 static struct freefile *
11558 handle_bufwait(
11559 	struct inodedep *inodedep,
11560 	struct workhead *refhd)
11561 {
11562 	struct jaddref *jaddref;
11563 	struct freefile *freefile;
11564 	struct worklist *wk;
11565 
11566 	freefile = NULL;
11567 	while ((wk = LIST_FIRST(&inodedep->id_bufwait)) != NULL) {
11568 		WORKLIST_REMOVE(wk);
11569 		switch (wk->wk_type) {
11570 		case D_FREEFILE:
11571 			/*
11572 			 * We defer adding freefile to the worklist
11573 			 * until all other additions have been made to
11574 			 * ensure that it will be done after all the
11575 			 * old blocks have been freed.
11576 			 */
11577 			if (freefile != NULL)
11578 				panic("handle_bufwait: freefile");
11579 			freefile = WK_FREEFILE(wk);
11580 			continue;
11581 
11582 		case D_MKDIR:
11583 			handle_written_mkdir(WK_MKDIR(wk), MKDIR_PARENT);
11584 			continue;
11585 
11586 		case D_DIRADD:
11587 			diradd_inode_written(WK_DIRADD(wk), inodedep);
11588 			continue;
11589 
11590 		case D_FREEFRAG:
11591 			wk->wk_state |= COMPLETE;
11592 			if ((wk->wk_state & ALLCOMPLETE) == ALLCOMPLETE)
11593 				add_to_worklist(wk, 0);
11594 			continue;
11595 
11596 		case D_DIRREM:
11597 			wk->wk_state |= COMPLETE;
11598 			add_to_worklist(wk, 0);
11599 			continue;
11600 
11601 		case D_ALLOCDIRECT:
11602 		case D_ALLOCINDIR:
11603 			free_newblk(WK_NEWBLK(wk));
11604 			continue;
11605 
11606 		case D_JNEWBLK:
11607 			wk->wk_state |= COMPLETE;
11608 			free_jnewblk(WK_JNEWBLK(wk));
11609 			continue;
11610 
11611 		/*
11612 		 * Save freed journal segments and add references on
11613 		 * the supplied list which will delay their release
11614 		 * until the cg bitmap is cleared on disk.
11615 		 */
11616 		case D_JSEGDEP:
11617 			if (refhd == NULL)
11618 				free_jsegdep(WK_JSEGDEP(wk));
11619 			else
11620 				WORKLIST_INSERT(refhd, wk);
11621 			continue;
11622 
11623 		case D_JADDREF:
11624 			jaddref = WK_JADDREF(wk);
11625 			TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref,
11626 			    if_deps);
11627 			/*
11628 			 * Transfer any jaddrefs to the list to be freed with
11629 			 * the bitmap if we're handling a removed file.
11630 			 */
11631 			if (refhd == NULL) {
11632 				wk->wk_state |= COMPLETE;
11633 				free_jaddref(jaddref);
11634 			} else
11635 				WORKLIST_INSERT(refhd, wk);
11636 			continue;
11637 
11638 		default:
11639 			panic("handle_bufwait: Unknown type %p(%s)",
11640 			    wk, TYPENAME(wk->wk_type));
11641 			/* NOTREACHED */
11642 		}
11643 	}
11644 	return (freefile);
11645 }
11646 /*
11647  * Called from within softdep_disk_write_complete above to restore
11648  * in-memory inode block contents to their most up-to-date state. Note
11649  * that this routine is always called from interrupt level with further
11650  * interrupts from this device blocked.
11651  *
11652  * If the write did not succeed, we will do all the roll-forward
11653  * operations, but we will not take the actions that will allow its
11654  * dependencies to be processed.
11655  */
11656 static int
11657 handle_written_inodeblock(
11658 	struct inodedep *inodedep,
11659 	struct buf *bp,		/* buffer containing the inode block */
11660 	int flags)
11661 {
11662 	struct freefile *freefile;
11663 	struct allocdirect *adp, *nextadp;
11664 	struct ufs1_dinode *dp1 = NULL;
11665 	struct ufs2_dinode *dp2 = NULL;
11666 	struct workhead wkhd;
11667 	int hadchanges, fstype;
11668 	ino_t freelink;
11669 
11670 	LIST_INIT(&wkhd);
11671 	hadchanges = 0;
11672 	freefile = NULL;
11673 	if ((inodedep->id_state & IOSTARTED) == 0)
11674 		panic("handle_written_inodeblock: not started");
11675 	inodedep->id_state &= ~IOSTARTED;
11676 	if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC) {
11677 		fstype = UFS1;
11678 		dp1 = (struct ufs1_dinode *)bp->b_data +
11679 		    ino_to_fsbo(inodedep->id_fs, inodedep->id_ino);
11680 		freelink = dp1->di_freelink;
11681 	} else {
11682 		fstype = UFS2;
11683 		dp2 = (struct ufs2_dinode *)bp->b_data +
11684 		    ino_to_fsbo(inodedep->id_fs, inodedep->id_ino);
11685 		freelink = dp2->di_freelink;
11686 	}
11687 	/*
11688 	 * Leave this inodeblock dirty until it's in the list.
11689 	 */
11690 	if ((inodedep->id_state & (UNLINKED | UNLINKONLIST)) == UNLINKED &&
11691 	    (flags & WRITESUCCEEDED)) {
11692 		struct inodedep *inon;
11693 
11694 		inon = TAILQ_NEXT(inodedep, id_unlinked);
11695 		if ((inon == NULL && freelink == 0) ||
11696 		    (inon && inon->id_ino == freelink)) {
11697 			if (inon)
11698 				inon->id_state |= UNLINKPREV;
11699 			inodedep->id_state |= UNLINKNEXT;
11700 		}
11701 		hadchanges = 1;
11702 	}
11703 	/*
11704 	 * If we had to rollback the inode allocation because of
11705 	 * bitmaps being incomplete, then simply restore it.
11706 	 * Keep the block dirty so that it will not be reclaimed until
11707 	 * all associated dependencies have been cleared and the
11708 	 * corresponding updates written to disk.
11709 	 */
11710 	if (inodedep->id_savedino1 != NULL) {
11711 		hadchanges = 1;
11712 		if (fstype == UFS1)
11713 			*dp1 = *inodedep->id_savedino1;
11714 		else
11715 			*dp2 = *inodedep->id_savedino2;
11716 		free(inodedep->id_savedino1, M_SAVEDINO);
11717 		inodedep->id_savedino1 = NULL;
11718 		if ((bp->b_flags & B_DELWRI) == 0)
11719 			stat_inode_bitmap++;
11720 		bdirty(bp);
11721 		/*
11722 		 * If the inode is clear here and GOINGAWAY it will never
11723 		 * be written.  Process the bufwait and clear any pending
11724 		 * work which may include the freefile.
11725 		 */
11726 		if (inodedep->id_state & GOINGAWAY)
11727 			goto bufwait;
11728 		return (1);
11729 	}
11730 	if (flags & WRITESUCCEEDED)
11731 		inodedep->id_state |= COMPLETE;
11732 	/*
11733 	 * Roll forward anything that had to be rolled back before
11734 	 * the inode could be updated.
11735 	 */
11736 	for (adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; adp = nextadp) {
11737 		nextadp = TAILQ_NEXT(adp, ad_next);
11738 		if (adp->ad_state & ATTACHED)
11739 			panic("handle_written_inodeblock: new entry");
11740 		if (fstype == UFS1) {
11741 			if (adp->ad_offset < UFS_NDADDR) {
11742 				if (dp1->di_db[adp->ad_offset]!=adp->ad_oldblkno)
11743 					panic("%s %s #%jd mismatch %d != %jd",
11744 					    "handle_written_inodeblock:",
11745 					    "direct pointer",
11746 					    (intmax_t)adp->ad_offset,
11747 					    dp1->di_db[adp->ad_offset],
11748 					    (intmax_t)adp->ad_oldblkno);
11749 				dp1->di_db[adp->ad_offset] = adp->ad_newblkno;
11750 			} else {
11751 				if (dp1->di_ib[adp->ad_offset - UFS_NDADDR] !=
11752 				    0)
11753 					panic("%s: %s #%jd allocated as %d",
11754 					    "handle_written_inodeblock",
11755 					    "indirect pointer",
11756 					    (intmax_t)adp->ad_offset -
11757 					    UFS_NDADDR,
11758 					    dp1->di_ib[adp->ad_offset -
11759 					    UFS_NDADDR]);
11760 				dp1->di_ib[adp->ad_offset - UFS_NDADDR] =
11761 				    adp->ad_newblkno;
11762 			}
11763 		} else {
11764 			if (adp->ad_offset < UFS_NDADDR) {
11765 				if (dp2->di_db[adp->ad_offset]!=adp->ad_oldblkno)
11766 					panic("%s: %s #%jd %s %jd != %jd",
11767 					    "handle_written_inodeblock",
11768 					    "direct pointer",
11769 					    (intmax_t)adp->ad_offset, "mismatch",
11770 					    (intmax_t)dp2->di_db[adp->ad_offset],
11771 					    (intmax_t)adp->ad_oldblkno);
11772 				dp2->di_db[adp->ad_offset] = adp->ad_newblkno;
11773 			} else {
11774 				if (dp2->di_ib[adp->ad_offset - UFS_NDADDR] !=
11775 				    0)
11776 					panic("%s: %s #%jd allocated as %jd",
11777 					    "handle_written_inodeblock",
11778 					    "indirect pointer",
11779 					    (intmax_t)adp->ad_offset -
11780 					    UFS_NDADDR,
11781 					    (intmax_t)
11782 					    dp2->di_ib[adp->ad_offset -
11783 					    UFS_NDADDR]);
11784 				dp2->di_ib[adp->ad_offset - UFS_NDADDR] =
11785 				    adp->ad_newblkno;
11786 			}
11787 		}
11788 		adp->ad_state &= ~UNDONE;
11789 		adp->ad_state |= ATTACHED;
11790 		hadchanges = 1;
11791 	}
11792 	for (adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; adp = nextadp) {
11793 		nextadp = TAILQ_NEXT(adp, ad_next);
11794 		if (adp->ad_state & ATTACHED)
11795 			panic("handle_written_inodeblock: new entry");
11796 		if (dp2->di_extb[adp->ad_offset] != adp->ad_oldblkno)
11797 			panic("%s: direct pointers #%jd %s %jd != %jd",
11798 			    "handle_written_inodeblock",
11799 			    (intmax_t)adp->ad_offset, "mismatch",
11800 			    (intmax_t)dp2->di_extb[adp->ad_offset],
11801 			    (intmax_t)adp->ad_oldblkno);
11802 		dp2->di_extb[adp->ad_offset] = adp->ad_newblkno;
11803 		adp->ad_state &= ~UNDONE;
11804 		adp->ad_state |= ATTACHED;
11805 		hadchanges = 1;
11806 	}
11807 	if (hadchanges && (bp->b_flags & B_DELWRI) == 0)
11808 		stat_direct_blk_ptrs++;
11809 	/*
11810 	 * Reset the file size to its most up-to-date value.
11811 	 */
11812 	if (inodedep->id_savedsize == -1 || inodedep->id_savedextsize == -1)
11813 		panic("handle_written_inodeblock: bad size");
11814 	if (inodedep->id_savednlink > UFS_LINK_MAX)
11815 		panic("handle_written_inodeblock: Invalid link count "
11816 		    "%jd for inodedep %p", (uintmax_t)inodedep->id_savednlink,
11817 		    inodedep);
11818 	if (fstype == UFS1) {
11819 		if (dp1->di_nlink != inodedep->id_savednlink) {
11820 			dp1->di_nlink = inodedep->id_savednlink;
11821 			hadchanges = 1;
11822 		}
11823 		if (dp1->di_size != inodedep->id_savedsize) {
11824 			dp1->di_size = inodedep->id_savedsize;
11825 			hadchanges = 1;
11826 		}
11827 	} else {
11828 		if (dp2->di_nlink != inodedep->id_savednlink) {
11829 			dp2->di_nlink = inodedep->id_savednlink;
11830 			hadchanges = 1;
11831 		}
11832 		if (dp2->di_size != inodedep->id_savedsize) {
11833 			dp2->di_size = inodedep->id_savedsize;
11834 			hadchanges = 1;
11835 		}
11836 		if (dp2->di_extsize != inodedep->id_savedextsize) {
11837 			dp2->di_extsize = inodedep->id_savedextsize;
11838 			hadchanges = 1;
11839 		}
11840 	}
11841 	inodedep->id_savedsize = -1;
11842 	inodedep->id_savedextsize = -1;
11843 	inodedep->id_savednlink = -1;
11844 	/*
11845 	 * If there were any rollbacks in the inode block, then it must be
11846 	 * marked dirty so that its will eventually get written back in
11847 	 * its correct form.
11848 	 */
11849 	if (hadchanges) {
11850 		if (fstype == UFS2)
11851 			ffs_update_dinode_ckhash(inodedep->id_fs, dp2);
11852 		bdirty(bp);
11853 	}
11854 bufwait:
11855 	/*
11856 	 * If the write did not succeed, we have done all the roll-forward
11857 	 * operations, but we cannot take the actions that will allow its
11858 	 * dependencies to be processed.
11859 	 */
11860 	if ((flags & WRITESUCCEEDED) == 0)
11861 		return (hadchanges);
11862 	/*
11863 	 * Process any allocdirects that completed during the update.
11864 	 */
11865 	if ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL)
11866 		handle_allocdirect_partdone(adp, &wkhd);
11867 	if ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL)
11868 		handle_allocdirect_partdone(adp, &wkhd);
11869 	/*
11870 	 * Process deallocations that were held pending until the
11871 	 * inode had been written to disk. Freeing of the inode
11872 	 * is delayed until after all blocks have been freed to
11873 	 * avoid creation of new <vfsid, inum, lbn> triples
11874 	 * before the old ones have been deleted.  Completely
11875 	 * unlinked inodes are not processed until the unlinked
11876 	 * inode list is written or the last reference is removed.
11877 	 */
11878 	if ((inodedep->id_state & (UNLINKED | UNLINKONLIST)) != UNLINKED) {
11879 		freefile = handle_bufwait(inodedep, NULL);
11880 		if (freefile && !LIST_EMPTY(&wkhd)) {
11881 			WORKLIST_INSERT(&wkhd, &freefile->fx_list);
11882 			freefile = NULL;
11883 		}
11884 	}
11885 	/*
11886 	 * Move rolled forward dependency completions to the bufwait list
11887 	 * now that those that were already written have been processed.
11888 	 */
11889 	if (!LIST_EMPTY(&wkhd) && hadchanges == 0)
11890 		panic("handle_written_inodeblock: bufwait but no changes");
11891 	jwork_move(&inodedep->id_bufwait, &wkhd);
11892 
11893 	if (freefile != NULL) {
11894 		/*
11895 		 * If the inode is goingaway it was never written.  Fake up
11896 		 * the state here so free_inodedep() can succeed.
11897 		 */
11898 		if (inodedep->id_state & GOINGAWAY)
11899 			inodedep->id_state |= COMPLETE | DEPCOMPLETE;
11900 		if (free_inodedep(inodedep) == 0)
11901 			panic("handle_written_inodeblock: live inodedep %p",
11902 			    inodedep);
11903 		add_to_worklist(&freefile->fx_list, 0);
11904 		return (0);
11905 	}
11906 
11907 	/*
11908 	 * If no outstanding dependencies, free it.
11909 	 */
11910 	if (free_inodedep(inodedep) ||
11911 	    (TAILQ_FIRST(&inodedep->id_inoreflst) == 0 &&
11912 	     TAILQ_FIRST(&inodedep->id_inoupdt) == 0 &&
11913 	     TAILQ_FIRST(&inodedep->id_extupdt) == 0 &&
11914 	     LIST_FIRST(&inodedep->id_bufwait) == 0))
11915 		return (0);
11916 	return (hadchanges);
11917 }
11918 
11919 /*
11920  * Perform needed roll-forwards and kick off any dependencies that
11921  * can now be processed.
11922  *
11923  * If the write did not succeed, we will do all the roll-forward
11924  * operations, but we will not take the actions that will allow its
11925  * dependencies to be processed.
11926  */
11927 static int
11928 handle_written_indirdep(
11929 	struct indirdep *indirdep,
11930 	struct buf *bp,
11931 	struct buf **bpp,
11932 	int flags)
11933 {
11934 	struct allocindir *aip;
11935 	struct buf *sbp;
11936 	int chgs;
11937 
11938 	if (indirdep->ir_state & GOINGAWAY)
11939 		panic("handle_written_indirdep: indirdep gone");
11940 	if ((indirdep->ir_state & IOSTARTED) == 0)
11941 		panic("handle_written_indirdep: IO not started");
11942 	chgs = 0;
11943 	/*
11944 	 * If there were rollbacks revert them here.
11945 	 */
11946 	if (indirdep->ir_saveddata) {
11947 		bcopy(indirdep->ir_saveddata, bp->b_data, bp->b_bcount);
11948 		if (TAILQ_EMPTY(&indirdep->ir_trunc)) {
11949 			free(indirdep->ir_saveddata, M_INDIRDEP);
11950 			indirdep->ir_saveddata = NULL;
11951 		}
11952 		chgs = 1;
11953 	}
11954 	indirdep->ir_state &= ~(UNDONE | IOSTARTED);
11955 	indirdep->ir_state |= ATTACHED;
11956 	/*
11957 	 * If the write did not succeed, we have done all the roll-forward
11958 	 * operations, but we cannot take the actions that will allow its
11959 	 * dependencies to be processed.
11960 	 */
11961 	if ((flags & WRITESUCCEEDED) == 0) {
11962 		stat_indir_blk_ptrs++;
11963 		bdirty(bp);
11964 		return (1);
11965 	}
11966 	/*
11967 	 * Move allocindirs with written pointers to the completehd if
11968 	 * the indirdep's pointer is not yet written.  Otherwise
11969 	 * free them here.
11970 	 */
11971 	while ((aip = LIST_FIRST(&indirdep->ir_writehd)) != NULL) {
11972 		LIST_REMOVE(aip, ai_next);
11973 		if ((indirdep->ir_state & DEPCOMPLETE) == 0) {
11974 			LIST_INSERT_HEAD(&indirdep->ir_completehd, aip,
11975 			    ai_next);
11976 			newblk_freefrag(&aip->ai_block);
11977 			continue;
11978 		}
11979 		free_newblk(&aip->ai_block);
11980 	}
11981 	/*
11982 	 * Move allocindirs that have finished dependency processing from
11983 	 * the done list to the write list after updating the pointers.
11984 	 */
11985 	if (TAILQ_EMPTY(&indirdep->ir_trunc)) {
11986 		while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != NULL) {
11987 			handle_allocindir_partdone(aip);
11988 			if (aip == LIST_FIRST(&indirdep->ir_donehd))
11989 				panic("disk_write_complete: not gone");
11990 			chgs = 1;
11991 		}
11992 	}
11993 	/*
11994 	 * Preserve the indirdep if there were any changes or if it is not
11995 	 * yet valid on disk.
11996 	 */
11997 	if (chgs) {
11998 		stat_indir_blk_ptrs++;
11999 		bdirty(bp);
12000 		return (1);
12001 	}
12002 	/*
12003 	 * If there were no changes we can discard the savedbp and detach
12004 	 * ourselves from the buf.  We are only carrying completed pointers
12005 	 * in this case.
12006 	 */
12007 	sbp = indirdep->ir_savebp;
12008 	sbp->b_flags |= B_INVAL | B_NOCACHE;
12009 	indirdep->ir_savebp = NULL;
12010 	indirdep->ir_bp = NULL;
12011 	if (*bpp != NULL)
12012 		panic("handle_written_indirdep: bp already exists.");
12013 	*bpp = sbp;
12014 	/*
12015 	 * The indirdep may not be freed until its parent points at it.
12016 	 */
12017 	if (indirdep->ir_state & DEPCOMPLETE)
12018 		free_indirdep(indirdep);
12019 
12020 	return (0);
12021 }
12022 
12023 /*
12024  * Process a diradd entry after its dependent inode has been written.
12025  */
12026 static void
12027 diradd_inode_written(
12028 	struct diradd *dap,
12029 	struct inodedep *inodedep)
12030 {
12031 
12032 	LOCK_OWNED(VFSTOUFS(dap->da_list.wk_mp));
12033 	dap->da_state |= COMPLETE;
12034 	complete_diradd(dap);
12035 	WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list);
12036 }
12037 
12038 /*
12039  * Returns true if the bmsafemap will have rollbacks when written.  Must only
12040  * be called with the per-filesystem lock and the buf lock on the cg held.
12041  */
12042 static int
12043 bmsafemap_backgroundwrite(
12044 	struct bmsafemap *bmsafemap,
12045 	struct buf *bp)
12046 {
12047 	int dirty;
12048 
12049 	LOCK_OWNED(VFSTOUFS(bmsafemap->sm_list.wk_mp));
12050 	dirty = !LIST_EMPTY(&bmsafemap->sm_jaddrefhd) |
12051 	    !LIST_EMPTY(&bmsafemap->sm_jnewblkhd);
12052 	/*
12053 	 * If we're initiating a background write we need to process the
12054 	 * rollbacks as they exist now, not as they exist when IO starts.
12055 	 * No other consumers will look at the contents of the shadowed
12056 	 * buf so this is safe to do here.
12057 	 */
12058 	if (bp->b_xflags & BX_BKGRDMARKER)
12059 		initiate_write_bmsafemap(bmsafemap, bp);
12060 
12061 	return (dirty);
12062 }
12063 
12064 /*
12065  * Re-apply an allocation when a cg write is complete.
12066  */
12067 static int
12068 jnewblk_rollforward(
12069 	struct jnewblk *jnewblk,
12070 	struct fs *fs,
12071 	struct cg *cgp,
12072 	uint8_t *blksfree)
12073 {
12074 	ufs1_daddr_t fragno;
12075 	ufs2_daddr_t blkno;
12076 	long cgbno, bbase;
12077 	int frags, blk;
12078 	int i;
12079 
12080 	frags = 0;
12081 	cgbno = dtogd(fs, jnewblk->jn_blkno);
12082 	for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; i++) {
12083 		if (isclr(blksfree, cgbno + i))
12084 			panic("jnewblk_rollforward: re-allocated fragment");
12085 		frags++;
12086 	}
12087 	if (frags == fs->fs_frag) {
12088 		blkno = fragstoblks(fs, cgbno);
12089 		ffs_clrblock(fs, blksfree, (long)blkno);
12090 		ffs_clusteracct(fs, cgp, blkno, -1);
12091 		cgp->cg_cs.cs_nbfree--;
12092 	} else {
12093 		bbase = cgbno - fragnum(fs, cgbno);
12094 		cgbno += jnewblk->jn_oldfrags;
12095                 /* If a complete block had been reassembled, account for it. */
12096 		fragno = fragstoblks(fs, bbase);
12097 		if (ffs_isblock(fs, blksfree, fragno)) {
12098 			cgp->cg_cs.cs_nffree += fs->fs_frag;
12099 			ffs_clusteracct(fs, cgp, fragno, -1);
12100 			cgp->cg_cs.cs_nbfree--;
12101 		}
12102 		/* Decrement the old frags.  */
12103 		blk = blkmap(fs, blksfree, bbase);
12104 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
12105 		/* Allocate the fragment */
12106 		for (i = 0; i < frags; i++)
12107 			clrbit(blksfree, cgbno + i);
12108 		cgp->cg_cs.cs_nffree -= frags;
12109 		/* Add back in counts associated with the new frags */
12110 		blk = blkmap(fs, blksfree, bbase);
12111 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
12112 	}
12113 	return (frags);
12114 }
12115 
12116 /*
12117  * Complete a write to a bmsafemap structure.  Roll forward any bitmap
12118  * changes if it's not a background write.  Set all written dependencies
12119  * to DEPCOMPLETE and free the structure if possible.
12120  *
12121  * If the write did not succeed, we will do all the roll-forward
12122  * operations, but we will not take the actions that will allow its
12123  * dependencies to be processed.
12124  */
12125 static int
12126 handle_written_bmsafemap(
12127 	struct bmsafemap *bmsafemap,
12128 	struct buf *bp,
12129 	int flags)
12130 {
12131 	struct newblk *newblk;
12132 	struct inodedep *inodedep;
12133 	struct jaddref *jaddref, *jatmp;
12134 	struct jnewblk *jnewblk, *jntmp;
12135 	struct ufsmount *ump;
12136 	uint8_t *inosused;
12137 	uint8_t *blksfree;
12138 	struct cg *cgp;
12139 	struct fs *fs;
12140 	ino_t ino;
12141 	int foreground;
12142 	int chgs;
12143 
12144 	if ((bmsafemap->sm_state & IOSTARTED) == 0)
12145 		panic("handle_written_bmsafemap: Not started\n");
12146 	ump = VFSTOUFS(bmsafemap->sm_list.wk_mp);
12147 	chgs = 0;
12148 	bmsafemap->sm_state &= ~IOSTARTED;
12149 	foreground = (bp->b_xflags & BX_BKGRDMARKER) == 0;
12150 	/*
12151 	 * If write was successful, release journal work that was waiting
12152 	 * on the write. Otherwise move the work back.
12153 	 */
12154 	if (flags & WRITESUCCEEDED)
12155 		handle_jwork(&bmsafemap->sm_freewr);
12156 	else
12157 		LIST_CONCAT(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr,
12158 		    worklist, wk_list);
12159 
12160 	/*
12161 	 * Restore unwritten inode allocation pending jaddref writes.
12162 	 */
12163 	if (!LIST_EMPTY(&bmsafemap->sm_jaddrefhd)) {
12164 		cgp = (struct cg *)bp->b_data;
12165 		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
12166 		inosused = cg_inosused(cgp);
12167 		LIST_FOREACH_SAFE(jaddref, &bmsafemap->sm_jaddrefhd,
12168 		    ja_bmdeps, jatmp) {
12169 			if ((jaddref->ja_state & UNDONE) == 0)
12170 				continue;
12171 			ino = jaddref->ja_ino % fs->fs_ipg;
12172 			if (isset(inosused, ino))
12173 				panic("handle_written_bmsafemap: "
12174 				    "re-allocated inode");
12175 			/* Do the roll-forward only if it's a real copy. */
12176 			if (foreground) {
12177 				if ((jaddref->ja_mode & IFMT) == IFDIR)
12178 					cgp->cg_cs.cs_ndir++;
12179 				cgp->cg_cs.cs_nifree--;
12180 				setbit(inosused, ino);
12181 				chgs = 1;
12182 			}
12183 			jaddref->ja_state &= ~UNDONE;
12184 			jaddref->ja_state |= ATTACHED;
12185 			free_jaddref(jaddref);
12186 		}
12187 	}
12188 	/*
12189 	 * Restore any block allocations which are pending journal writes.
12190 	 */
12191 	if (LIST_FIRST(&bmsafemap->sm_jnewblkhd) != NULL) {
12192 		cgp = (struct cg *)bp->b_data;
12193 		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
12194 		blksfree = cg_blksfree(cgp);
12195 		LIST_FOREACH_SAFE(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps,
12196 		    jntmp) {
12197 			if ((jnewblk->jn_state & UNDONE) == 0)
12198 				continue;
12199 			/* Do the roll-forward only if it's a real copy. */
12200 			if (foreground &&
12201 			    jnewblk_rollforward(jnewblk, fs, cgp, blksfree))
12202 				chgs = 1;
12203 			jnewblk->jn_state &= ~(UNDONE | NEWBLOCK);
12204 			jnewblk->jn_state |= ATTACHED;
12205 			free_jnewblk(jnewblk);
12206 		}
12207 	}
12208 	/*
12209 	 * If the write did not succeed, we have done all the roll-forward
12210 	 * operations, but we cannot take the actions that will allow its
12211 	 * dependencies to be processed.
12212 	 */
12213 	if ((flags & WRITESUCCEEDED) == 0) {
12214 		LIST_CONCAT(&bmsafemap->sm_newblkhd, &bmsafemap->sm_newblkwr,
12215 		    newblk, nb_deps);
12216 		LIST_CONCAT(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr,
12217 		    worklist, wk_list);
12218 		if (foreground)
12219 			bdirty(bp);
12220 		return (1);
12221 	}
12222 	while ((newblk = LIST_FIRST(&bmsafemap->sm_newblkwr))) {
12223 		newblk->nb_state |= DEPCOMPLETE;
12224 		newblk->nb_state &= ~ONDEPLIST;
12225 		newblk->nb_bmsafemap = NULL;
12226 		LIST_REMOVE(newblk, nb_deps);
12227 		if (newblk->nb_list.wk_type == D_ALLOCDIRECT)
12228 			handle_allocdirect_partdone(
12229 			    WK_ALLOCDIRECT(&newblk->nb_list), NULL);
12230 		else if (newblk->nb_list.wk_type == D_ALLOCINDIR)
12231 			handle_allocindir_partdone(
12232 			    WK_ALLOCINDIR(&newblk->nb_list));
12233 		else if (newblk->nb_list.wk_type != D_NEWBLK)
12234 			panic("handle_written_bmsafemap: Unexpected type: %s",
12235 			    TYPENAME(newblk->nb_list.wk_type));
12236 	}
12237 	while ((inodedep = LIST_FIRST(&bmsafemap->sm_inodedepwr)) != NULL) {
12238 		inodedep->id_state |= DEPCOMPLETE;
12239 		inodedep->id_state &= ~ONDEPLIST;
12240 		LIST_REMOVE(inodedep, id_deps);
12241 		inodedep->id_bmsafemap = NULL;
12242 	}
12243 	LIST_REMOVE(bmsafemap, sm_next);
12244 	if (chgs == 0 && LIST_EMPTY(&bmsafemap->sm_jaddrefhd) &&
12245 	    LIST_EMPTY(&bmsafemap->sm_jnewblkhd) &&
12246 	    LIST_EMPTY(&bmsafemap->sm_newblkhd) &&
12247 	    LIST_EMPTY(&bmsafemap->sm_inodedephd) &&
12248 	    LIST_EMPTY(&bmsafemap->sm_freehd)) {
12249 		LIST_REMOVE(bmsafemap, sm_hash);
12250 		WORKITEM_FREE(bmsafemap, D_BMSAFEMAP);
12251 		return (0);
12252 	}
12253 	LIST_INSERT_HEAD(&ump->softdep_dirtycg, bmsafemap, sm_next);
12254 	if (foreground)
12255 		bdirty(bp);
12256 	return (1);
12257 }
12258 
12259 /*
12260  * Try to free a mkdir dependency.
12261  */
12262 static void
12263 complete_mkdir(struct mkdir *mkdir)
12264 {
12265 	struct diradd *dap;
12266 
12267 	if ((mkdir->md_state & ALLCOMPLETE) != ALLCOMPLETE)
12268 		return;
12269 	LIST_REMOVE(mkdir, md_mkdirs);
12270 	dap = mkdir->md_diradd;
12271 	dap->da_state &= ~(mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY));
12272 	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0) {
12273 		dap->da_state |= DEPCOMPLETE;
12274 		complete_diradd(dap);
12275 	}
12276 	WORKITEM_FREE(mkdir, D_MKDIR);
12277 }
12278 
12279 /*
12280  * Handle the completion of a mkdir dependency.
12281  */
12282 static void
12283 handle_written_mkdir(struct mkdir *mkdir, int type)
12284 {
12285 
12286 	if ((mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY)) != type)
12287 		panic("handle_written_mkdir: bad type");
12288 	mkdir->md_state |= COMPLETE;
12289 	complete_mkdir(mkdir);
12290 }
12291 
12292 static int
12293 free_pagedep(struct pagedep *pagedep)
12294 {
12295 	int i;
12296 
12297 	if (pagedep->pd_state & NEWBLOCK)
12298 		return (0);
12299 	if (!LIST_EMPTY(&pagedep->pd_dirremhd))
12300 		return (0);
12301 	for (i = 0; i < DAHASHSZ; i++)
12302 		if (!LIST_EMPTY(&pagedep->pd_diraddhd[i]))
12303 			return (0);
12304 	if (!LIST_EMPTY(&pagedep->pd_pendinghd))
12305 		return (0);
12306 	if (!LIST_EMPTY(&pagedep->pd_jmvrefhd))
12307 		return (0);
12308 	if (pagedep->pd_state & ONWORKLIST)
12309 		WORKLIST_REMOVE(&pagedep->pd_list);
12310 	LIST_REMOVE(pagedep, pd_hash);
12311 	WORKITEM_FREE(pagedep, D_PAGEDEP);
12312 
12313 	return (1);
12314 }
12315 
12316 /*
12317  * Called from within softdep_disk_write_complete above.
12318  * A write operation was just completed. Removed inodes can
12319  * now be freed and associated block pointers may be committed.
12320  * Note that this routine is always called from interrupt level
12321  * with further interrupts from this device blocked.
12322  *
12323  * If the write did not succeed, we will do all the roll-forward
12324  * operations, but we will not take the actions that will allow its
12325  * dependencies to be processed.
12326  */
12327 static int
12328 handle_written_filepage(
12329 	struct pagedep *pagedep,
12330 	struct buf *bp,		/* buffer containing the written page */
12331 	int flags)
12332 {
12333 	struct dirrem *dirrem;
12334 	struct diradd *dap, *nextdap;
12335 	struct direct *ep;
12336 	int i, chgs;
12337 
12338 	if ((pagedep->pd_state & IOSTARTED) == 0)
12339 		panic("handle_written_filepage: not started");
12340 	pagedep->pd_state &= ~IOSTARTED;
12341 	if ((flags & WRITESUCCEEDED) == 0)
12342 		goto rollforward;
12343 	/*
12344 	 * Process any directory removals that have been committed.
12345 	 */
12346 	while ((dirrem = LIST_FIRST(&pagedep->pd_dirremhd)) != NULL) {
12347 		LIST_REMOVE(dirrem, dm_next);
12348 		dirrem->dm_state |= COMPLETE;
12349 		dirrem->dm_dirinum = pagedep->pd_ino;
12350 		KASSERT(LIST_EMPTY(&dirrem->dm_jremrefhd),
12351 		    ("handle_written_filepage: Journal entries not written."));
12352 		add_to_worklist(&dirrem->dm_list, 0);
12353 	}
12354 	/*
12355 	 * Free any directory additions that have been committed.
12356 	 * If it is a newly allocated block, we have to wait until
12357 	 * the on-disk directory inode claims the new block.
12358 	 */
12359 	if ((pagedep->pd_state & NEWBLOCK) == 0)
12360 		while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL)
12361 			free_diradd(dap, NULL);
12362 rollforward:
12363 	/*
12364 	 * Uncommitted directory entries must be restored.
12365 	 */
12366 	for (chgs = 0, i = 0; i < DAHASHSZ; i++) {
12367 		for (dap = LIST_FIRST(&pagedep->pd_diraddhd[i]); dap;
12368 		     dap = nextdap) {
12369 			nextdap = LIST_NEXT(dap, da_pdlist);
12370 			if (dap->da_state & ATTACHED)
12371 				panic("handle_written_filepage: attached");
12372 			ep = (struct direct *)
12373 			    ((char *)bp->b_data + dap->da_offset);
12374 			ep->d_ino = dap->da_newinum;
12375 			dap->da_state &= ~UNDONE;
12376 			dap->da_state |= ATTACHED;
12377 			chgs = 1;
12378 			/*
12379 			 * If the inode referenced by the directory has
12380 			 * been written out, then the dependency can be
12381 			 * moved to the pending list.
12382 			 */
12383 			if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
12384 				LIST_REMOVE(dap, da_pdlist);
12385 				LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap,
12386 				    da_pdlist);
12387 			}
12388 		}
12389 	}
12390 	/*
12391 	 * If there were any rollbacks in the directory, then it must be
12392 	 * marked dirty so that its will eventually get written back in
12393 	 * its correct form.
12394 	 */
12395 	if (chgs || (flags & WRITESUCCEEDED) == 0) {
12396 		if ((bp->b_flags & B_DELWRI) == 0)
12397 			stat_dir_entry++;
12398 		bdirty(bp);
12399 		return (1);
12400 	}
12401 	/*
12402 	 * If we are not waiting for a new directory block to be
12403 	 * claimed by its inode, then the pagedep will be freed.
12404 	 * Otherwise it will remain to track any new entries on
12405 	 * the page in case they are fsync'ed.
12406 	 */
12407 	free_pagedep(pagedep);
12408 	return (0);
12409 }
12410 
12411 /*
12412  * Writing back in-core inode structures.
12413  *
12414  * The filesystem only accesses an inode's contents when it occupies an
12415  * "in-core" inode structure.  These "in-core" structures are separate from
12416  * the page frames used to cache inode blocks.  Only the latter are
12417  * transferred to/from the disk.  So, when the updated contents of the
12418  * "in-core" inode structure are copied to the corresponding in-memory inode
12419  * block, the dependencies are also transferred.  The following procedure is
12420  * called when copying a dirty "in-core" inode to a cached inode block.
12421  */
12422 
12423 /*
12424  * Called when an inode is loaded from disk. If the effective link count
12425  * differed from the actual link count when it was last flushed, then we
12426  * need to ensure that the correct effective link count is put back.
12427  */
12428 void
12429 softdep_load_inodeblock(
12430 	struct inode *ip)	/* the "in_core" copy of the inode */
12431 {
12432 	struct inodedep *inodedep;
12433 	struct ufsmount *ump;
12434 
12435 	ump = ITOUMP(ip);
12436 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
12437 	    ("softdep_load_inodeblock called on non-softdep filesystem"));
12438 	/*
12439 	 * Check for alternate nlink count.
12440 	 */
12441 	ip->i_effnlink = ip->i_nlink;
12442 	ACQUIRE_LOCK(ump);
12443 	if (inodedep_lookup(UFSTOVFS(ump), ip->i_number, 0, &inodedep) == 0) {
12444 		FREE_LOCK(ump);
12445 		return;
12446 	}
12447 	if (ip->i_nlink != inodedep->id_nlinkwrote &&
12448 	    inodedep->id_nlinkwrote != -1) {
12449 		KASSERT(ip->i_nlink == 0 &&
12450 		    (ump->um_flags & UM_FSFAIL_CLEANUP) != 0,
12451 		    ("read bad i_nlink value"));
12452 		ip->i_effnlink = ip->i_nlink = inodedep->id_nlinkwrote;
12453 	}
12454 	ip->i_effnlink -= inodedep->id_nlinkdelta;
12455 	KASSERT(ip->i_effnlink >= 0,
12456 	    ("softdep_load_inodeblock: negative i_effnlink"));
12457 	FREE_LOCK(ump);
12458 }
12459 
12460 /*
12461  * This routine is called just before the "in-core" inode
12462  * information is to be copied to the in-memory inode block.
12463  * Recall that an inode block contains several inodes. If
12464  * the force flag is set, then the dependencies will be
12465  * cleared so that the update can always be made. Note that
12466  * the buffer is locked when this routine is called, so we
12467  * will never be in the middle of writing the inode block
12468  * to disk.
12469  */
12470 void
12471 softdep_update_inodeblock(
12472 	struct inode *ip,	/* the "in_core" copy of the inode */
12473 	struct buf *bp,		/* the buffer containing the inode block */
12474 	int waitfor)		/* nonzero => update must be allowed */
12475 {
12476 	struct inodedep *inodedep;
12477 	struct inoref *inoref;
12478 	struct ufsmount *ump;
12479 	struct worklist *wk;
12480 	struct mount *mp;
12481 	struct buf *ibp;
12482 	struct fs *fs;
12483 	int error;
12484 
12485 	ump = ITOUMP(ip);
12486 	mp = UFSTOVFS(ump);
12487 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
12488 	    ("softdep_update_inodeblock called on non-softdep filesystem"));
12489 	fs = ump->um_fs;
12490 	/*
12491 	 * If the effective link count is not equal to the actual link
12492 	 * count, then we must track the difference in an inodedep while
12493 	 * the inode is (potentially) tossed out of the cache. Otherwise,
12494 	 * if there is no existing inodedep, then there are no dependencies
12495 	 * to track.
12496 	 */
12497 	ACQUIRE_LOCK(ump);
12498 again:
12499 	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) {
12500 		FREE_LOCK(ump);
12501 		if (ip->i_effnlink != ip->i_nlink)
12502 			panic("softdep_update_inodeblock: bad link count");
12503 		return;
12504 	}
12505 	/*
12506 	 * Preserve the freelink that is on disk.  clear_unlinked_inodedep()
12507 	 * does not have access to the in-core ip so must write directly into
12508 	 * the inode block buffer when setting freelink.
12509 	 */
12510 	if ((inodedep->id_state & UNLINKED) != 0) {
12511 		if (fs->fs_magic == FS_UFS1_MAGIC)
12512 			DIP_SET(ip, i_freelink,
12513 			    ((struct ufs1_dinode *)bp->b_data +
12514 			    ino_to_fsbo(fs, ip->i_number))->di_freelink);
12515 		else
12516 			DIP_SET(ip, i_freelink,
12517 			    ((struct ufs2_dinode *)bp->b_data +
12518 			    ino_to_fsbo(fs, ip->i_number))->di_freelink);
12519 	}
12520 	KASSERT(ip->i_nlink >= inodedep->id_nlinkdelta,
12521 	    ("softdep_update_inodeblock inconsistent ip %p i_nlink %d "
12522 	    "inodedep %p id_nlinkdelta %jd",
12523 	    ip, ip->i_nlink, inodedep, (intmax_t)inodedep->id_nlinkdelta));
12524 	inodedep->id_nlinkwrote = ip->i_nlink;
12525 	if (inodedep->id_nlinkdelta != ip->i_nlink - ip->i_effnlink)
12526 		panic("softdep_update_inodeblock: bad delta");
12527 	/*
12528 	 * If we're flushing all dependencies we must also move any waiting
12529 	 * for journal writes onto the bufwait list prior to I/O.
12530 	 */
12531 	if (waitfor) {
12532 		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
12533 			if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
12534 			    == DEPCOMPLETE) {
12535 				jwait(&inoref->if_list, MNT_WAIT);
12536 				goto again;
12537 			}
12538 		}
12539 	}
12540 	/*
12541 	 * Changes have been initiated. Anything depending on these
12542 	 * changes cannot occur until this inode has been written.
12543 	 */
12544 	inodedep->id_state &= ~COMPLETE;
12545 	if ((inodedep->id_state & ONWORKLIST) == 0)
12546 		WORKLIST_INSERT(&bp->b_dep, &inodedep->id_list);
12547 	/*
12548 	 * Any new dependencies associated with the incore inode must
12549 	 * now be moved to the list associated with the buffer holding
12550 	 * the in-memory copy of the inode. Once merged process any
12551 	 * allocdirects that are completed by the merger.
12552 	 */
12553 	merge_inode_lists(&inodedep->id_newinoupdt, &inodedep->id_inoupdt);
12554 	if (!TAILQ_EMPTY(&inodedep->id_inoupdt))
12555 		handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_inoupdt),
12556 		    NULL);
12557 	merge_inode_lists(&inodedep->id_newextupdt, &inodedep->id_extupdt);
12558 	if (!TAILQ_EMPTY(&inodedep->id_extupdt))
12559 		handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_extupdt),
12560 		    NULL);
12561 	/*
12562 	 * Now that the inode has been pushed into the buffer, the
12563 	 * operations dependent on the inode being written to disk
12564 	 * can be moved to the id_bufwait so that they will be
12565 	 * processed when the buffer I/O completes.
12566 	 */
12567 	while ((wk = LIST_FIRST(&inodedep->id_inowait)) != NULL) {
12568 		WORKLIST_REMOVE(wk);
12569 		WORKLIST_INSERT(&inodedep->id_bufwait, wk);
12570 	}
12571 	/*
12572 	 * Newly allocated inodes cannot be written until the bitmap
12573 	 * that allocates them have been written (indicated by
12574 	 * DEPCOMPLETE being set in id_state). If we are doing a
12575 	 * forced sync (e.g., an fsync on a file), we force the bitmap
12576 	 * to be written so that the update can be done.
12577 	 */
12578 	if (waitfor == 0) {
12579 		FREE_LOCK(ump);
12580 		return;
12581 	}
12582 retry:
12583 	if ((inodedep->id_state & (DEPCOMPLETE | GOINGAWAY)) != 0) {
12584 		FREE_LOCK(ump);
12585 		return;
12586 	}
12587 	ibp = inodedep->id_bmsafemap->sm_buf;
12588 	ibp = getdirtybuf(ibp, LOCK_PTR(ump), MNT_WAIT);
12589 	if (ibp == NULL) {
12590 		/*
12591 		 * If ibp came back as NULL, the dependency could have been
12592 		 * freed while we slept.  Look it up again, and check to see
12593 		 * that it has completed.
12594 		 */
12595 		if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0)
12596 			goto retry;
12597 		FREE_LOCK(ump);
12598 		return;
12599 	}
12600 	FREE_LOCK(ump);
12601 	if ((error = bwrite(ibp)) != 0)
12602 		softdep_error("softdep_update_inodeblock: bwrite", error);
12603 }
12604 
12605 /*
12606  * Merge the a new inode dependency list (such as id_newinoupdt) into an
12607  * old inode dependency list (such as id_inoupdt).
12608  */
12609 static void
12610 merge_inode_lists(
12611 	struct allocdirectlst *newlisthead,
12612 	struct allocdirectlst *oldlisthead)
12613 {
12614 	struct allocdirect *listadp, *newadp;
12615 
12616 	newadp = TAILQ_FIRST(newlisthead);
12617 	if (newadp != NULL)
12618 		LOCK_OWNED(VFSTOUFS(newadp->ad_block.nb_list.wk_mp));
12619 	for (listadp = TAILQ_FIRST(oldlisthead); listadp && newadp;) {
12620 		if (listadp->ad_offset < newadp->ad_offset) {
12621 			listadp = TAILQ_NEXT(listadp, ad_next);
12622 			continue;
12623 		}
12624 		TAILQ_REMOVE(newlisthead, newadp, ad_next);
12625 		TAILQ_INSERT_BEFORE(listadp, newadp, ad_next);
12626 		if (listadp->ad_offset == newadp->ad_offset) {
12627 			allocdirect_merge(oldlisthead, newadp,
12628 			    listadp);
12629 			listadp = newadp;
12630 		}
12631 		newadp = TAILQ_FIRST(newlisthead);
12632 	}
12633 	while ((newadp = TAILQ_FIRST(newlisthead)) != NULL) {
12634 		TAILQ_REMOVE(newlisthead, newadp, ad_next);
12635 		TAILQ_INSERT_TAIL(oldlisthead, newadp, ad_next);
12636 	}
12637 }
12638 
12639 /*
12640  * If we are doing an fsync, then we must ensure that any directory
12641  * entries for the inode have been written after the inode gets to disk.
12642  */
12643 int
12644 softdep_fsync(
12645 	struct vnode *vp)	/* the "in_core" copy of the inode */
12646 {
12647 	struct inodedep *inodedep;
12648 	struct pagedep *pagedep;
12649 	struct inoref *inoref;
12650 	struct ufsmount *ump;
12651 	struct worklist *wk;
12652 	struct diradd *dap;
12653 	struct mount *mp;
12654 	struct vnode *pvp;
12655 	struct inode *ip;
12656 	struct buf *bp;
12657 	struct fs *fs;
12658 	struct thread *td = curthread;
12659 	int error, flushparent, pagedep_new_block;
12660 	ino_t parentino;
12661 	ufs_lbn_t lbn;
12662 
12663 	ip = VTOI(vp);
12664 	mp = vp->v_mount;
12665 	ump = VFSTOUFS(mp);
12666 	fs = ump->um_fs;
12667 	if (MOUNTEDSOFTDEP(mp) == 0)
12668 		return (0);
12669 	ACQUIRE_LOCK(ump);
12670 restart:
12671 	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) {
12672 		FREE_LOCK(ump);
12673 		return (0);
12674 	}
12675 	TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
12676 		if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
12677 		    == DEPCOMPLETE) {
12678 			jwait(&inoref->if_list, MNT_WAIT);
12679 			goto restart;
12680 		}
12681 	}
12682 	if (!LIST_EMPTY(&inodedep->id_inowait) ||
12683 	    !TAILQ_EMPTY(&inodedep->id_extupdt) ||
12684 	    !TAILQ_EMPTY(&inodedep->id_newextupdt) ||
12685 	    !TAILQ_EMPTY(&inodedep->id_inoupdt) ||
12686 	    !TAILQ_EMPTY(&inodedep->id_newinoupdt))
12687 		panic("softdep_fsync: pending ops %p", inodedep);
12688 	for (error = 0, flushparent = 0; ; ) {
12689 		if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) == NULL)
12690 			break;
12691 		if (wk->wk_type != D_DIRADD)
12692 			panic("softdep_fsync: Unexpected type %s",
12693 			    TYPENAME(wk->wk_type));
12694 		dap = WK_DIRADD(wk);
12695 		/*
12696 		 * Flush our parent if this directory entry has a MKDIR_PARENT
12697 		 * dependency or is contained in a newly allocated block.
12698 		 */
12699 		if (dap->da_state & DIRCHG)
12700 			pagedep = dap->da_previous->dm_pagedep;
12701 		else
12702 			pagedep = dap->da_pagedep;
12703 		parentino = pagedep->pd_ino;
12704 		lbn = pagedep->pd_lbn;
12705 		if ((dap->da_state & (MKDIR_BODY | COMPLETE)) != COMPLETE)
12706 			panic("softdep_fsync: dirty");
12707 		if ((dap->da_state & MKDIR_PARENT) ||
12708 		    (pagedep->pd_state & NEWBLOCK))
12709 			flushparent = 1;
12710 		else
12711 			flushparent = 0;
12712 		/*
12713 		 * If we are being fsync'ed as part of vgone'ing this vnode,
12714 		 * then we will not be able to release and recover the
12715 		 * vnode below, so we just have to give up on writing its
12716 		 * directory entry out. It will eventually be written, just
12717 		 * not now, but then the user was not asking to have it
12718 		 * written, so we are not breaking any promises.
12719 		 */
12720 		if (VN_IS_DOOMED(vp))
12721 			break;
12722 		/*
12723 		 * We prevent deadlock by always fetching inodes from the
12724 		 * root, moving down the directory tree. Thus, when fetching
12725 		 * our parent directory, we first try to get the lock. If
12726 		 * that fails, we must unlock ourselves before requesting
12727 		 * the lock on our parent. See the comment in ufs_lookup
12728 		 * for details on possible races.
12729 		 */
12730 		FREE_LOCK(ump);
12731 		error = get_parent_vp(vp, mp, parentino, NULL, NULL, NULL,
12732 		    &pvp);
12733 		if (error == ERELOOKUP)
12734 			error = 0;
12735 		if (error != 0)
12736 			return (error);
12737 		/*
12738 		 * All MKDIR_PARENT dependencies and all the NEWBLOCK pagedeps
12739 		 * that are contained in direct blocks will be resolved by
12740 		 * doing a ffs_update. Pagedeps contained in indirect blocks
12741 		 * may require a complete sync'ing of the directory. So, we
12742 		 * try the cheap and fast ffs_update first, and if that fails,
12743 		 * then we do the slower ffs_syncvnode of the directory.
12744 		 */
12745 		if (flushparent) {
12746 			int locked;
12747 
12748 			if ((error = ffs_update(pvp, 1)) != 0) {
12749 				vput(pvp);
12750 				return (error);
12751 			}
12752 			ACQUIRE_LOCK(ump);
12753 			locked = 1;
12754 			if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0) {
12755 				if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) != NULL) {
12756 					if (wk->wk_type != D_DIRADD)
12757 						panic("softdep_fsync: Unexpected type %s",
12758 						      TYPENAME(wk->wk_type));
12759 					dap = WK_DIRADD(wk);
12760 					if (dap->da_state & DIRCHG)
12761 						pagedep = dap->da_previous->dm_pagedep;
12762 					else
12763 						pagedep = dap->da_pagedep;
12764 					pagedep_new_block = pagedep->pd_state & NEWBLOCK;
12765 					FREE_LOCK(ump);
12766 					locked = 0;
12767 					if (pagedep_new_block) {
12768 						VOP_UNLOCK(vp);
12769 						error = ffs_syncvnode(pvp,
12770 						    MNT_WAIT, 0);
12771 						if (error == 0)
12772 							error = ERELOOKUP;
12773 						vput(pvp);
12774 						vn_lock(vp, LK_EXCLUSIVE |
12775 						    LK_RETRY);
12776 						return (error);
12777 					}
12778 				}
12779 			}
12780 			if (locked)
12781 				FREE_LOCK(ump);
12782 		}
12783 		/*
12784 		 * Flush directory page containing the inode's name.
12785 		 */
12786 		error = bread(pvp, lbn, blksize(fs, VTOI(pvp), lbn), td->td_ucred,
12787 		    &bp);
12788 		if (error == 0)
12789 			error = bwrite(bp);
12790 		else
12791 			brelse(bp);
12792 		vput(pvp);
12793 		if (!ffs_fsfail_cleanup(ump, error))
12794 			return (error);
12795 		ACQUIRE_LOCK(ump);
12796 		if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0)
12797 			break;
12798 	}
12799 	FREE_LOCK(ump);
12800 	return (0);
12801 }
12802 
12803 /*
12804  * Flush all the dirty bitmaps associated with the block device
12805  * before flushing the rest of the dirty blocks so as to reduce
12806  * the number of dependencies that will have to be rolled back.
12807  *
12808  * XXX Unused?
12809  */
12810 void
12811 softdep_fsync_mountdev(struct vnode *vp)
12812 {
12813 	struct buf *bp, *nbp;
12814 	struct worklist *wk;
12815 	struct bufobj *bo;
12816 
12817 	if (!vn_isdisk(vp))
12818 		panic("softdep_fsync_mountdev: vnode not a disk");
12819 	bo = &vp->v_bufobj;
12820 restart:
12821 	BO_LOCK(bo);
12822 	TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
12823 		/*
12824 		 * If it is already scheduled, skip to the next buffer.
12825 		 */
12826 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL))
12827 			continue;
12828 
12829 		if ((bp->b_flags & B_DELWRI) == 0)
12830 			panic("softdep_fsync_mountdev: not dirty");
12831 		/*
12832 		 * We are only interested in bitmaps with outstanding
12833 		 * dependencies.
12834 		 */
12835 		if ((wk = LIST_FIRST(&bp->b_dep)) == NULL ||
12836 		    wk->wk_type != D_BMSAFEMAP ||
12837 		    (bp->b_vflags & BV_BKGRDINPROG)) {
12838 			BUF_UNLOCK(bp);
12839 			continue;
12840 		}
12841 		BO_UNLOCK(bo);
12842 		bremfree(bp);
12843 		(void) bawrite(bp);
12844 		goto restart;
12845 	}
12846 	drain_output(vp);
12847 	BO_UNLOCK(bo);
12848 }
12849 
12850 /*
12851  * Sync all cylinder groups that were dirty at the time this function is
12852  * called.  Newly dirtied cgs will be inserted before the sentinel.  This
12853  * is used to flush freedep activity that may be holding up writes to a
12854  * indirect block.
12855  */
12856 static int
12857 sync_cgs(struct mount *mp, int waitfor)
12858 {
12859 	struct bmsafemap *bmsafemap;
12860 	struct bmsafemap *sentinel;
12861 	struct ufsmount *ump;
12862 	struct buf *bp;
12863 	int error;
12864 
12865 	sentinel = malloc(sizeof(*sentinel), M_BMSAFEMAP, M_ZERO | M_WAITOK);
12866 	sentinel->sm_cg = -1;
12867 	ump = VFSTOUFS(mp);
12868 	error = 0;
12869 	ACQUIRE_LOCK(ump);
12870 	LIST_INSERT_HEAD(&ump->softdep_dirtycg, sentinel, sm_next);
12871 	for (bmsafemap = LIST_NEXT(sentinel, sm_next); bmsafemap != NULL;
12872 	    bmsafemap = LIST_NEXT(sentinel, sm_next)) {
12873 		/* Skip sentinels and cgs with no work to release. */
12874 		if (bmsafemap->sm_cg == -1 ||
12875 		    (LIST_EMPTY(&bmsafemap->sm_freehd) &&
12876 		    LIST_EMPTY(&bmsafemap->sm_freewr))) {
12877 			LIST_REMOVE(sentinel, sm_next);
12878 			LIST_INSERT_AFTER(bmsafemap, sentinel, sm_next);
12879 			continue;
12880 		}
12881 		/*
12882 		 * If we don't get the lock and we're waiting try again, if
12883 		 * not move on to the next buf and try to sync it.
12884 		 */
12885 		bp = getdirtybuf(bmsafemap->sm_buf, LOCK_PTR(ump), waitfor);
12886 		if (bp == NULL && waitfor == MNT_WAIT)
12887 			continue;
12888 		LIST_REMOVE(sentinel, sm_next);
12889 		LIST_INSERT_AFTER(bmsafemap, sentinel, sm_next);
12890 		if (bp == NULL)
12891 			continue;
12892 		FREE_LOCK(ump);
12893 		if (waitfor == MNT_NOWAIT)
12894 			bawrite(bp);
12895 		else
12896 			error = bwrite(bp);
12897 		ACQUIRE_LOCK(ump);
12898 		if (error)
12899 			break;
12900 	}
12901 	LIST_REMOVE(sentinel, sm_next);
12902 	FREE_LOCK(ump);
12903 	free(sentinel, M_BMSAFEMAP);
12904 	return (error);
12905 }
12906 
12907 /*
12908  * This routine is called when we are trying to synchronously flush a
12909  * file. This routine must eliminate any filesystem metadata dependencies
12910  * so that the syncing routine can succeed.
12911  */
12912 int
12913 softdep_sync_metadata(struct vnode *vp)
12914 {
12915 	struct inode *ip;
12916 	int error;
12917 
12918 	ip = VTOI(vp);
12919 	KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0,
12920 	    ("softdep_sync_metadata called on non-softdep filesystem"));
12921 	/*
12922 	 * Ensure that any direct block dependencies have been cleared,
12923 	 * truncations are started, and inode references are journaled.
12924 	 */
12925 	ACQUIRE_LOCK(VFSTOUFS(vp->v_mount));
12926 	/*
12927 	 * Write all journal records to prevent rollbacks on devvp.
12928 	 */
12929 	if (vp->v_type == VCHR)
12930 		softdep_flushjournal(vp->v_mount);
12931 	error = flush_inodedep_deps(vp, vp->v_mount, ip->i_number);
12932 	/*
12933 	 * Ensure that all truncates are written so we won't find deps on
12934 	 * indirect blocks.
12935 	 */
12936 	process_truncates(vp);
12937 	FREE_LOCK(VFSTOUFS(vp->v_mount));
12938 
12939 	return (error);
12940 }
12941 
12942 /*
12943  * This routine is called when we are attempting to sync a buf with
12944  * dependencies.  If waitfor is MNT_NOWAIT it attempts to schedule any
12945  * other IO it can but returns EBUSY if the buffer is not yet able to
12946  * be written.  Dependencies which will not cause rollbacks will always
12947  * return 0.
12948  */
12949 int
12950 softdep_sync_buf(struct vnode *vp,
12951 	struct buf *bp,
12952 	int waitfor)
12953 {
12954 	struct indirdep *indirdep;
12955 	struct pagedep *pagedep;
12956 	struct allocindir *aip;
12957 	struct newblk *newblk;
12958 	struct ufsmount *ump;
12959 	struct buf *nbp;
12960 	struct worklist *wk;
12961 	int i, error;
12962 
12963 	KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0,
12964 	    ("softdep_sync_buf called on non-softdep filesystem"));
12965 	/*
12966 	 * For VCHR we just don't want to force flush any dependencies that
12967 	 * will cause rollbacks.
12968 	 */
12969 	if (vp->v_type == VCHR) {
12970 		if (waitfor == MNT_NOWAIT && softdep_count_dependencies(bp, 0))
12971 			return (EBUSY);
12972 		return (0);
12973 	}
12974 	ump = VFSTOUFS(vp->v_mount);
12975 	ACQUIRE_LOCK(ump);
12976 	/*
12977 	 * As we hold the buffer locked, none of its dependencies
12978 	 * will disappear.
12979 	 */
12980 	error = 0;
12981 top:
12982 	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
12983 		switch (wk->wk_type) {
12984 		case D_ALLOCDIRECT:
12985 		case D_ALLOCINDIR:
12986 			newblk = WK_NEWBLK(wk);
12987 			if (newblk->nb_jnewblk != NULL) {
12988 				if (waitfor == MNT_NOWAIT) {
12989 					error = EBUSY;
12990 					goto out_unlock;
12991 				}
12992 				jwait(&newblk->nb_jnewblk->jn_list, waitfor);
12993 				goto top;
12994 			}
12995 			if (newblk->nb_state & DEPCOMPLETE ||
12996 			    waitfor == MNT_NOWAIT)
12997 				continue;
12998 			nbp = newblk->nb_bmsafemap->sm_buf;
12999 			nbp = getdirtybuf(nbp, LOCK_PTR(ump), waitfor);
13000 			if (nbp == NULL)
13001 				goto top;
13002 			FREE_LOCK(ump);
13003 			if ((error = bwrite(nbp)) != 0)
13004 				goto out;
13005 			ACQUIRE_LOCK(ump);
13006 			continue;
13007 
13008 		case D_INDIRDEP:
13009 			indirdep = WK_INDIRDEP(wk);
13010 			if (waitfor == MNT_NOWAIT) {
13011 				if (!TAILQ_EMPTY(&indirdep->ir_trunc) ||
13012 				    !LIST_EMPTY(&indirdep->ir_deplisthd)) {
13013 					error = EBUSY;
13014 					goto out_unlock;
13015 				}
13016 			}
13017 			if (!TAILQ_EMPTY(&indirdep->ir_trunc))
13018 				panic("softdep_sync_buf: truncation pending.");
13019 		restart:
13020 			LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) {
13021 				newblk = (struct newblk *)aip;
13022 				if (newblk->nb_jnewblk != NULL) {
13023 					jwait(&newblk->nb_jnewblk->jn_list,
13024 					    waitfor);
13025 					goto restart;
13026 				}
13027 				if (newblk->nb_state & DEPCOMPLETE)
13028 					continue;
13029 				nbp = newblk->nb_bmsafemap->sm_buf;
13030 				nbp = getdirtybuf(nbp, LOCK_PTR(ump), waitfor);
13031 				if (nbp == NULL)
13032 					goto restart;
13033 				FREE_LOCK(ump);
13034 				if ((error = bwrite(nbp)) != 0)
13035 					goto out;
13036 				ACQUIRE_LOCK(ump);
13037 				goto restart;
13038 			}
13039 			continue;
13040 
13041 		case D_PAGEDEP:
13042 			/*
13043 			 * Only flush directory entries in synchronous passes.
13044 			 */
13045 			if (waitfor != MNT_WAIT) {
13046 				error = EBUSY;
13047 				goto out_unlock;
13048 			}
13049 			/*
13050 			 * While syncing snapshots, we must allow recursive
13051 			 * lookups.
13052 			 */
13053 			BUF_AREC(bp);
13054 			/*
13055 			 * We are trying to sync a directory that may
13056 			 * have dependencies on both its own metadata
13057 			 * and/or dependencies on the inodes of any
13058 			 * recently allocated files. We walk its diradd
13059 			 * lists pushing out the associated inode.
13060 			 */
13061 			pagedep = WK_PAGEDEP(wk);
13062 			for (i = 0; i < DAHASHSZ; i++) {
13063 				if (LIST_FIRST(&pagedep->pd_diraddhd[i]) == 0)
13064 					continue;
13065 				error = flush_pagedep_deps(vp, wk->wk_mp,
13066 				    &pagedep->pd_diraddhd[i], bp);
13067 				if (error != 0) {
13068 					if (error != ERELOOKUP)
13069 						BUF_NOREC(bp);
13070 					goto out_unlock;
13071 				}
13072 			}
13073 			BUF_NOREC(bp);
13074 			continue;
13075 
13076 		case D_FREEWORK:
13077 		case D_FREEDEP:
13078 		case D_JSEGDEP:
13079 		case D_JNEWBLK:
13080 			continue;
13081 
13082 		default:
13083 			panic("softdep_sync_buf: Unknown type %s",
13084 			    TYPENAME(wk->wk_type));
13085 			/* NOTREACHED */
13086 		}
13087 	}
13088 out_unlock:
13089 	FREE_LOCK(ump);
13090 out:
13091 	return (error);
13092 }
13093 
13094 /*
13095  * Flush the dependencies associated with an inodedep.
13096  */
13097 static int
13098 flush_inodedep_deps(
13099 	struct vnode *vp,
13100 	struct mount *mp,
13101 	ino_t ino)
13102 {
13103 	struct inodedep *inodedep;
13104 	struct inoref *inoref;
13105 	struct ufsmount *ump;
13106 	int error, waitfor;
13107 
13108 	/*
13109 	 * This work is done in two passes. The first pass grabs most
13110 	 * of the buffers and begins asynchronously writing them. The
13111 	 * only way to wait for these asynchronous writes is to sleep
13112 	 * on the filesystem vnode which may stay busy for a long time
13113 	 * if the filesystem is active. So, instead, we make a second
13114 	 * pass over the dependencies blocking on each write. In the
13115 	 * usual case we will be blocking against a write that we
13116 	 * initiated, so when it is done the dependency will have been
13117 	 * resolved. Thus the second pass is expected to end quickly.
13118 	 * We give a brief window at the top of the loop to allow
13119 	 * any pending I/O to complete.
13120 	 */
13121 	ump = VFSTOUFS(mp);
13122 	LOCK_OWNED(ump);
13123 	for (error = 0, waitfor = MNT_NOWAIT; ; ) {
13124 		if (error)
13125 			return (error);
13126 		FREE_LOCK(ump);
13127 		ACQUIRE_LOCK(ump);
13128 restart:
13129 		if (inodedep_lookup(mp, ino, 0, &inodedep) == 0)
13130 			return (0);
13131 		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
13132 			if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
13133 			    == DEPCOMPLETE) {
13134 				jwait(&inoref->if_list, MNT_WAIT);
13135 				goto restart;
13136 			}
13137 		}
13138 		if (flush_deplist(&inodedep->id_inoupdt, waitfor, &error) ||
13139 		    flush_deplist(&inodedep->id_newinoupdt, waitfor, &error) ||
13140 		    flush_deplist(&inodedep->id_extupdt, waitfor, &error) ||
13141 		    flush_deplist(&inodedep->id_newextupdt, waitfor, &error))
13142 			continue;
13143 		/*
13144 		 * If pass2, we are done, otherwise do pass 2.
13145 		 */
13146 		if (waitfor == MNT_WAIT)
13147 			break;
13148 		waitfor = MNT_WAIT;
13149 	}
13150 	/*
13151 	 * Try freeing inodedep in case all dependencies have been removed.
13152 	 */
13153 	if (inodedep_lookup(mp, ino, 0, &inodedep) != 0)
13154 		(void) free_inodedep(inodedep);
13155 	return (0);
13156 }
13157 
13158 /*
13159  * Flush an inode dependency list.
13160  */
13161 static int
13162 flush_deplist(
13163 	struct allocdirectlst *listhead,
13164 	int waitfor,
13165 	int *errorp)
13166 {
13167 	struct allocdirect *adp;
13168 	struct newblk *newblk;
13169 	struct ufsmount *ump;
13170 	struct buf *bp;
13171 
13172 	if ((adp = TAILQ_FIRST(listhead)) == NULL)
13173 		return (0);
13174 	ump = VFSTOUFS(adp->ad_list.wk_mp);
13175 	LOCK_OWNED(ump);
13176 	TAILQ_FOREACH(adp, listhead, ad_next) {
13177 		newblk = (struct newblk *)adp;
13178 		if (newblk->nb_jnewblk != NULL) {
13179 			jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT);
13180 			return (1);
13181 		}
13182 		if (newblk->nb_state & DEPCOMPLETE)
13183 			continue;
13184 		bp = newblk->nb_bmsafemap->sm_buf;
13185 		bp = getdirtybuf(bp, LOCK_PTR(ump), waitfor);
13186 		if (bp == NULL) {
13187 			if (waitfor == MNT_NOWAIT)
13188 				continue;
13189 			return (1);
13190 		}
13191 		FREE_LOCK(ump);
13192 		if (waitfor == MNT_NOWAIT)
13193 			bawrite(bp);
13194 		else
13195 			*errorp = bwrite(bp);
13196 		ACQUIRE_LOCK(ump);
13197 		return (1);
13198 	}
13199 	return (0);
13200 }
13201 
13202 /*
13203  * Flush dependencies associated with an allocdirect block.
13204  */
13205 static int
13206 flush_newblk_dep(
13207 	struct vnode *vp,
13208 	struct mount *mp,
13209 	ufs_lbn_t lbn)
13210 {
13211 	struct newblk *newblk;
13212 	struct ufsmount *ump;
13213 	struct bufobj *bo;
13214 	struct inode *ip;
13215 	struct buf *bp;
13216 	ufs2_daddr_t blkno;
13217 	int error;
13218 
13219 	error = 0;
13220 	bo = &vp->v_bufobj;
13221 	ip = VTOI(vp);
13222 	blkno = DIP(ip, i_db[lbn]);
13223 	if (blkno == 0)
13224 		panic("flush_newblk_dep: Missing block");
13225 	ump = VFSTOUFS(mp);
13226 	ACQUIRE_LOCK(ump);
13227 	/*
13228 	 * Loop until all dependencies related to this block are satisfied.
13229 	 * We must be careful to restart after each sleep in case a write
13230 	 * completes some part of this process for us.
13231 	 */
13232 	for (;;) {
13233 		if (newblk_lookup(mp, blkno, 0, &newblk) == 0) {
13234 			FREE_LOCK(ump);
13235 			break;
13236 		}
13237 		if (newblk->nb_list.wk_type != D_ALLOCDIRECT)
13238 			panic("flush_newblk_dep: Bad newblk %p", newblk);
13239 		/*
13240 		 * Flush the journal.
13241 		 */
13242 		if (newblk->nb_jnewblk != NULL) {
13243 			jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT);
13244 			continue;
13245 		}
13246 		/*
13247 		 * Write the bitmap dependency.
13248 		 */
13249 		if ((newblk->nb_state & DEPCOMPLETE) == 0) {
13250 			bp = newblk->nb_bmsafemap->sm_buf;
13251 			bp = getdirtybuf(bp, LOCK_PTR(ump), MNT_WAIT);
13252 			if (bp == NULL)
13253 				continue;
13254 			FREE_LOCK(ump);
13255 			error = bwrite(bp);
13256 			if (error)
13257 				break;
13258 			ACQUIRE_LOCK(ump);
13259 			continue;
13260 		}
13261 		/*
13262 		 * Write the buffer.
13263 		 */
13264 		FREE_LOCK(ump);
13265 		BO_LOCK(bo);
13266 		bp = gbincore(bo, lbn);
13267 		if (bp != NULL) {
13268 			error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL |
13269 			    LK_INTERLOCK, BO_LOCKPTR(bo));
13270 			if (error == ENOLCK) {
13271 				ACQUIRE_LOCK(ump);
13272 				error = 0;
13273 				continue; /* Slept, retry */
13274 			}
13275 			if (error != 0)
13276 				break;	/* Failed */
13277 			if (bp->b_flags & B_DELWRI) {
13278 				bremfree(bp);
13279 				error = bwrite(bp);
13280 				if (error)
13281 					break;
13282 			} else
13283 				BUF_UNLOCK(bp);
13284 		} else
13285 			BO_UNLOCK(bo);
13286 		/*
13287 		 * We have to wait for the direct pointers to
13288 		 * point at the newdirblk before the dependency
13289 		 * will go away.
13290 		 */
13291 		error = ffs_update(vp, 1);
13292 		if (error)
13293 			break;
13294 		ACQUIRE_LOCK(ump);
13295 	}
13296 	return (error);
13297 }
13298 
13299 /*
13300  * Eliminate a pagedep dependency by flushing out all its diradd dependencies.
13301  */
13302 static int
13303 flush_pagedep_deps(
13304 	struct vnode *pvp,
13305 	struct mount *mp,
13306 	struct diraddhd *diraddhdp,
13307 	struct buf *locked_bp)
13308 {
13309 	struct inodedep *inodedep;
13310 	struct inoref *inoref;
13311 	struct ufsmount *ump;
13312 	struct diradd *dap;
13313 	struct vnode *vp;
13314 	int error = 0;
13315 	struct buf *bp;
13316 	ino_t inum;
13317 	struct diraddhd unfinished;
13318 
13319 	LIST_INIT(&unfinished);
13320 	ump = VFSTOUFS(mp);
13321 	LOCK_OWNED(ump);
13322 restart:
13323 	while ((dap = LIST_FIRST(diraddhdp)) != NULL) {
13324 		/*
13325 		 * Flush ourselves if this directory entry
13326 		 * has a MKDIR_PARENT dependency.
13327 		 */
13328 		if (dap->da_state & MKDIR_PARENT) {
13329 			FREE_LOCK(ump);
13330 			if ((error = ffs_update(pvp, 1)) != 0)
13331 				break;
13332 			ACQUIRE_LOCK(ump);
13333 			/*
13334 			 * If that cleared dependencies, go on to next.
13335 			 */
13336 			if (dap != LIST_FIRST(diraddhdp))
13337 				continue;
13338 			/*
13339 			 * All MKDIR_PARENT dependencies and all the
13340 			 * NEWBLOCK pagedeps that are contained in direct
13341 			 * blocks were resolved by doing above ffs_update.
13342 			 * Pagedeps contained in indirect blocks may
13343 			 * require a complete sync'ing of the directory.
13344 			 * We are in the midst of doing a complete sync,
13345 			 * so if they are not resolved in this pass we
13346 			 * defer them for now as they will be sync'ed by
13347 			 * our caller shortly.
13348 			 */
13349 			LIST_REMOVE(dap, da_pdlist);
13350 			LIST_INSERT_HEAD(&unfinished, dap, da_pdlist);
13351 			continue;
13352 		}
13353 		/*
13354 		 * A newly allocated directory must have its "." and
13355 		 * ".." entries written out before its name can be
13356 		 * committed in its parent.
13357 		 */
13358 		inum = dap->da_newinum;
13359 		if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0)
13360 			panic("flush_pagedep_deps: lost inode1");
13361 		/*
13362 		 * Wait for any pending journal adds to complete so we don't
13363 		 * cause rollbacks while syncing.
13364 		 */
13365 		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
13366 			if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
13367 			    == DEPCOMPLETE) {
13368 				jwait(&inoref->if_list, MNT_WAIT);
13369 				goto restart;
13370 			}
13371 		}
13372 		if (dap->da_state & MKDIR_BODY) {
13373 			FREE_LOCK(ump);
13374 			error = get_parent_vp(pvp, mp, inum, locked_bp,
13375 			    diraddhdp, &unfinished, &vp);
13376 			if (error != 0)
13377 				break;
13378 			error = flush_newblk_dep(vp, mp, 0);
13379 			/*
13380 			 * If we still have the dependency we might need to
13381 			 * update the vnode to sync the new link count to
13382 			 * disk.
13383 			 */
13384 			if (error == 0 && dap == LIST_FIRST(diraddhdp))
13385 				error = ffs_update(vp, 1);
13386 			vput(vp);
13387 			if (error != 0)
13388 				break;
13389 			ACQUIRE_LOCK(ump);
13390 			/*
13391 			 * If that cleared dependencies, go on to next.
13392 			 */
13393 			if (dap != LIST_FIRST(diraddhdp))
13394 				continue;
13395 			if (dap->da_state & MKDIR_BODY) {
13396 				inodedep_lookup(UFSTOVFS(ump), inum, 0,
13397 				    &inodedep);
13398 				panic("flush_pagedep_deps: MKDIR_BODY "
13399 				    "inodedep %p dap %p vp %p",
13400 				    inodedep, dap, vp);
13401 			}
13402 		}
13403 		/*
13404 		 * Flush the inode on which the directory entry depends.
13405 		 * Having accounted for MKDIR_PARENT and MKDIR_BODY above,
13406 		 * the only remaining dependency is that the updated inode
13407 		 * count must get pushed to disk. The inode has already
13408 		 * been pushed into its inode buffer (via VOP_UPDATE) at
13409 		 * the time of the reference count change. So we need only
13410 		 * locate that buffer, ensure that there will be no rollback
13411 		 * caused by a bitmap dependency, then write the inode buffer.
13412 		 */
13413 retry:
13414 		if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0)
13415 			panic("flush_pagedep_deps: lost inode");
13416 		/*
13417 		 * If the inode still has bitmap dependencies,
13418 		 * push them to disk.
13419 		 */
13420 		if ((inodedep->id_state & (DEPCOMPLETE | GOINGAWAY)) == 0) {
13421 			bp = inodedep->id_bmsafemap->sm_buf;
13422 			bp = getdirtybuf(bp, LOCK_PTR(ump), MNT_WAIT);
13423 			if (bp == NULL)
13424 				goto retry;
13425 			FREE_LOCK(ump);
13426 			if ((error = bwrite(bp)) != 0)
13427 				break;
13428 			ACQUIRE_LOCK(ump);
13429 			if (dap != LIST_FIRST(diraddhdp))
13430 				continue;
13431 		}
13432 		/*
13433 		 * If the inode is still sitting in a buffer waiting
13434 		 * to be written or waiting for the link count to be
13435 		 * adjusted update it here to flush it to disk.
13436 		 */
13437 		if (dap == LIST_FIRST(diraddhdp)) {
13438 			FREE_LOCK(ump);
13439 			error = get_parent_vp(pvp, mp, inum, locked_bp,
13440 			    diraddhdp, &unfinished, &vp);
13441 			if (error != 0)
13442 				break;
13443 			error = ffs_update(vp, 1);
13444 			vput(vp);
13445 			if (error)
13446 				break;
13447 			ACQUIRE_LOCK(ump);
13448 		}
13449 		/*
13450 		 * If we have failed to get rid of all the dependencies
13451 		 * then something is seriously wrong.
13452 		 */
13453 		if (dap == LIST_FIRST(diraddhdp)) {
13454 			inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep);
13455 			panic("flush_pagedep_deps: failed to flush "
13456 			    "inodedep %p ino %ju dap %p",
13457 			    inodedep, (uintmax_t)inum, dap);
13458 		}
13459 	}
13460 	if (error)
13461 		ACQUIRE_LOCK(ump);
13462 	while ((dap = LIST_FIRST(&unfinished)) != NULL) {
13463 		LIST_REMOVE(dap, da_pdlist);
13464 		LIST_INSERT_HEAD(diraddhdp, dap, da_pdlist);
13465 	}
13466 	return (error);
13467 }
13468 
13469 /*
13470  * A large burst of file addition or deletion activity can drive the
13471  * memory load excessively high. First attempt to slow things down
13472  * using the techniques below. If that fails, this routine requests
13473  * the offending operations to fall back to running synchronously
13474  * until the memory load returns to a reasonable level.
13475  */
13476 int
13477 softdep_slowdown(struct vnode *vp)
13478 {
13479 	struct ufsmount *ump;
13480 	int jlow;
13481 	int max_softdeps_hard;
13482 
13483 	KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0,
13484 	    ("softdep_slowdown called on non-softdep filesystem"));
13485 	ump = VFSTOUFS(vp->v_mount);
13486 	ACQUIRE_LOCK(ump);
13487 	jlow = 0;
13488 	/*
13489 	 * Check for journal space if needed.
13490 	 */
13491 	if (DOINGSUJ(vp)) {
13492 		if (journal_space(ump, 0) == 0)
13493 			jlow = 1;
13494 	}
13495 	/*
13496 	 * If the system is under its limits and our filesystem is
13497 	 * not responsible for more than our share of the usage and
13498 	 * we are not low on journal space, then no need to slow down.
13499 	 */
13500 	max_softdeps_hard = max_softdeps * 11 / 10;
13501 	if (dep_current[D_DIRREM] < max_softdeps_hard / 2 &&
13502 	    dep_current[D_INODEDEP] < max_softdeps_hard &&
13503 	    dep_current[D_INDIRDEP] < max_softdeps_hard / 1000 &&
13504 	    dep_current[D_FREEBLKS] < max_softdeps_hard && jlow == 0 &&
13505 	    ump->softdep_curdeps[D_DIRREM] <
13506 	    (max_softdeps_hard / 2) / stat_flush_threads &&
13507 	    ump->softdep_curdeps[D_INODEDEP] <
13508 	    max_softdeps_hard / stat_flush_threads &&
13509 	    ump->softdep_curdeps[D_INDIRDEP] <
13510 	    (max_softdeps_hard / 1000) / stat_flush_threads &&
13511 	    ump->softdep_curdeps[D_FREEBLKS] <
13512 	    max_softdeps_hard / stat_flush_threads) {
13513 		FREE_LOCK(ump);
13514   		return (0);
13515 	}
13516 	/*
13517 	 * If the journal is low or our filesystem is over its limit
13518 	 * then speedup the cleanup.
13519 	 */
13520 	if (ump->softdep_curdeps[D_INDIRDEP] <
13521 	    (max_softdeps_hard / 1000) / stat_flush_threads || jlow)
13522 		softdep_speedup(ump);
13523 	stat_sync_limit_hit += 1;
13524 	FREE_LOCK(ump);
13525 	/*
13526 	 * We only slow down the rate at which new dependencies are
13527 	 * generated if we are not using journaling. With journaling,
13528 	 * the cleanup should always be sufficient to keep things
13529 	 * under control.
13530 	 */
13531 	if (DOINGSUJ(vp))
13532 		return (0);
13533 	return (1);
13534 }
13535 
13536 static int
13537 softdep_request_cleanup_filter(struct vnode *vp, void *arg __unused)
13538 {
13539 	return ((vp->v_iflag & VI_OWEINACT) != 0 && vp->v_usecount == 0 &&
13540 	    ((vp->v_vflag & VV_NOSYNC) != 0 || VTOI(vp)->i_effnlink == 0));
13541 }
13542 
13543 static void
13544 softdep_request_cleanup_inactivate(struct mount *mp)
13545 {
13546 	struct vnode *vp, *mvp;
13547 	int error;
13548 
13549 	MNT_VNODE_FOREACH_LAZY(vp, mp, mvp, softdep_request_cleanup_filter,
13550 	    NULL) {
13551 		vholdl(vp);
13552 		vn_lock(vp, LK_EXCLUSIVE | LK_INTERLOCK | LK_RETRY);
13553 		VI_LOCK(vp);
13554 		if (IS_UFS(vp) && vp->v_usecount == 0) {
13555 			while ((vp->v_iflag & VI_OWEINACT) != 0) {
13556 				error = vinactive(vp);
13557 				if (error != 0 && error != ERELOOKUP)
13558 					break;
13559 			}
13560 			atomic_add_int(&stat_delayed_inact, 1);
13561 		}
13562 		VOP_UNLOCK(vp);
13563 		vdropl(vp);
13564 	}
13565 }
13566 
13567 /*
13568  * Called by the allocation routines when they are about to fail
13569  * in the hope that we can free up the requested resource (inodes
13570  * or disk space).
13571  *
13572  * First check to see if the work list has anything on it. If it has,
13573  * clean up entries until we successfully free the requested resource.
13574  * Because this process holds inodes locked, we cannot handle any remove
13575  * requests that might block on a locked inode as that could lead to
13576  * deadlock. If the worklist yields none of the requested resource,
13577  * start syncing out vnodes to free up the needed space.
13578  */
13579 int
13580 softdep_request_cleanup(
13581 	struct fs *fs,
13582 	struct vnode *vp,
13583 	struct ucred *cred,
13584 	int resource)
13585 {
13586 	struct ufsmount *ump;
13587 	struct mount *mp;
13588 	long starttime;
13589 	ufs2_daddr_t needed;
13590 	int error, failed_vnode;
13591 
13592 	/*
13593 	 * If we are being called because of a process doing a
13594 	 * copy-on-write, then it is not safe to process any
13595 	 * worklist items as we will recurse into the copyonwrite
13596 	 * routine.  This will result in an incoherent snapshot.
13597 	 * If the vnode that we hold is a snapshot, we must avoid
13598 	 * handling other resources that could cause deadlock.
13599 	 */
13600 	if ((curthread->td_pflags & TDP_COWINPROGRESS) || IS_SNAPSHOT(VTOI(vp)))
13601 		return (0);
13602 
13603 	if (resource == FLUSH_BLOCKS_WAIT)
13604 		stat_cleanup_blkrequests += 1;
13605 	else
13606 		stat_cleanup_inorequests += 1;
13607 
13608 	mp = vp->v_mount;
13609 	ump = VFSTOUFS(mp);
13610 	mtx_assert(UFS_MTX(ump), MA_OWNED);
13611 	UFS_UNLOCK(ump);
13612 	error = ffs_update(vp, 1);
13613 	if (error != 0 || MOUNTEDSOFTDEP(mp) == 0) {
13614 		UFS_LOCK(ump);
13615 		return (0);
13616 	}
13617 	/*
13618 	 * If we are in need of resources, start by cleaning up
13619 	 * any block removals associated with our inode.
13620 	 */
13621 	ACQUIRE_LOCK(ump);
13622 	process_removes(vp);
13623 	process_truncates(vp);
13624 	FREE_LOCK(ump);
13625 	/*
13626 	 * Now clean up at least as many resources as we will need.
13627 	 *
13628 	 * When requested to clean up inodes, the number that are needed
13629 	 * is set by the number of simultaneous writers (mnt_writeopcount)
13630 	 * plus a bit of slop (2) in case some more writers show up while
13631 	 * we are cleaning.
13632 	 *
13633 	 * When requested to free up space, the amount of space that
13634 	 * we need is enough blocks to allocate a full-sized segment
13635 	 * (fs_contigsumsize). The number of such segments that will
13636 	 * be needed is set by the number of simultaneous writers
13637 	 * (mnt_writeopcount) plus a bit of slop (2) in case some more
13638 	 * writers show up while we are cleaning.
13639 	 *
13640 	 * Additionally, if we are unpriviledged and allocating space,
13641 	 * we need to ensure that we clean up enough blocks to get the
13642 	 * needed number of blocks over the threshold of the minimum
13643 	 * number of blocks required to be kept free by the filesystem
13644 	 * (fs_minfree).
13645 	 */
13646 	if (resource == FLUSH_INODES_WAIT) {
13647 		needed = vfs_mount_fetch_counter(vp->v_mount,
13648 		    MNT_COUNT_WRITEOPCOUNT) + 2;
13649 	} else if (resource == FLUSH_BLOCKS_WAIT) {
13650 		needed = (vfs_mount_fetch_counter(vp->v_mount,
13651 		    MNT_COUNT_WRITEOPCOUNT) + 2) * fs->fs_contigsumsize;
13652 		if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE))
13653 			needed += fragstoblks(fs,
13654 			    roundup((fs->fs_dsize * fs->fs_minfree / 100) -
13655 			    fs->fs_cstotal.cs_nffree, fs->fs_frag));
13656 	} else {
13657 		printf("softdep_request_cleanup: Unknown resource type %d\n",
13658 		    resource);
13659 		UFS_LOCK(ump);
13660 		return (0);
13661 	}
13662 	starttime = time_second;
13663 retry:
13664 	if (resource == FLUSH_BLOCKS_WAIT &&
13665 	    fs->fs_cstotal.cs_nbfree <= needed)
13666 		softdep_send_speedup(ump, needed * fs->fs_bsize,
13667 		    BIO_SPEEDUP_TRIM);
13668 	if ((resource == FLUSH_BLOCKS_WAIT && ump->softdep_on_worklist > 0 &&
13669 	    fs->fs_cstotal.cs_nbfree <= needed) ||
13670 	    (resource == FLUSH_INODES_WAIT && fs->fs_pendinginodes > 0 &&
13671 	    fs->fs_cstotal.cs_nifree <= needed)) {
13672 		ACQUIRE_LOCK(ump);
13673 		if (ump->softdep_on_worklist > 0 &&
13674 		    process_worklist_item(UFSTOVFS(ump),
13675 		    ump->softdep_on_worklist, LK_NOWAIT) != 0)
13676 			stat_worklist_push += 1;
13677 		FREE_LOCK(ump);
13678 	}
13679 
13680 	/*
13681 	 * Check that there are vnodes pending inactivation.  As they
13682 	 * have been unlinked, inactivating them will free up their
13683 	 * inodes.
13684 	 */
13685 	ACQUIRE_LOCK(ump);
13686 	if (resource == FLUSH_INODES_WAIT &&
13687 	    fs->fs_cstotal.cs_nifree <= needed &&
13688 	    fs->fs_pendinginodes <= needed) {
13689 		if ((ump->um_softdep->sd_flags & FLUSH_DI_ACTIVE) == 0) {
13690 			ump->um_softdep->sd_flags |= FLUSH_DI_ACTIVE;
13691 			FREE_LOCK(ump);
13692 			softdep_request_cleanup_inactivate(mp);
13693 			ACQUIRE_LOCK(ump);
13694 			ump->um_softdep->sd_flags &= ~FLUSH_DI_ACTIVE;
13695 			wakeup(&ump->um_softdep->sd_flags);
13696 		} else {
13697 			while ((ump->um_softdep->sd_flags &
13698 			    FLUSH_DI_ACTIVE) != 0) {
13699 				msleep(&ump->um_softdep->sd_flags,
13700 				    LOCK_PTR(ump), PVM, "ffsvina", hz);
13701 			}
13702 		}
13703 	}
13704 	FREE_LOCK(ump);
13705 
13706 	/*
13707 	 * If we still need resources and there are no more worklist
13708 	 * entries to process to obtain them, we have to start flushing
13709 	 * the dirty vnodes to force the release of additional requests
13710 	 * to the worklist that we can then process to reap addition
13711 	 * resources. We walk the vnodes associated with the mount point
13712 	 * until we get the needed worklist requests that we can reap.
13713 	 *
13714 	 * If there are several threads all needing to clean the same
13715 	 * mount point, only one is allowed to walk the mount list.
13716 	 * When several threads all try to walk the same mount list,
13717 	 * they end up competing with each other and often end up in
13718 	 * livelock. This approach ensures that forward progress is
13719 	 * made at the cost of occational ENOSPC errors being returned
13720 	 * that might otherwise have been avoided.
13721 	 */
13722 	error = 1;
13723 	if ((resource == FLUSH_BLOCKS_WAIT &&
13724 	     fs->fs_cstotal.cs_nbfree <= needed) ||
13725 	    (resource == FLUSH_INODES_WAIT && fs->fs_pendinginodes > 0 &&
13726 	     fs->fs_cstotal.cs_nifree <= needed)) {
13727 		ACQUIRE_LOCK(ump);
13728 		if ((ump->um_softdep->sd_flags & FLUSH_RC_ACTIVE) == 0) {
13729 			ump->um_softdep->sd_flags |= FLUSH_RC_ACTIVE;
13730 			FREE_LOCK(ump);
13731 			failed_vnode = softdep_request_cleanup_flush(mp, ump);
13732 			ACQUIRE_LOCK(ump);
13733 			ump->um_softdep->sd_flags &= ~FLUSH_RC_ACTIVE;
13734 			wakeup(&ump->um_softdep->sd_flags);
13735 			FREE_LOCK(ump);
13736 			if (ump->softdep_on_worklist > 0) {
13737 				stat_cleanup_retries += 1;
13738 				if (!failed_vnode)
13739 					goto retry;
13740 			}
13741 		} else {
13742 			while ((ump->um_softdep->sd_flags &
13743 			    FLUSH_RC_ACTIVE) != 0) {
13744 				msleep(&ump->um_softdep->sd_flags,
13745 				    LOCK_PTR(ump), PVM, "ffsrca", hz);
13746 			}
13747 			FREE_LOCK(ump);
13748 			error = 0;
13749 		}
13750 		stat_cleanup_failures += 1;
13751 	}
13752 	if (time_second - starttime > stat_cleanup_high_delay)
13753 		stat_cleanup_high_delay = time_second - starttime;
13754 	UFS_LOCK(ump);
13755 	return (error);
13756 }
13757 
13758 /*
13759  * Scan the vnodes for the specified mount point flushing out any
13760  * vnodes that can be locked without waiting. Finally, try to flush
13761  * the device associated with the mount point if it can be locked
13762  * without waiting.
13763  *
13764  * We return 0 if we were able to lock every vnode in our scan.
13765  * If we had to skip one or more vnodes, we return 1.
13766  */
13767 static int
13768 softdep_request_cleanup_flush(struct mount *mp, struct ufsmount *ump)
13769 {
13770 	struct thread *td;
13771 	struct vnode *lvp, *mvp;
13772 	int failed_vnode;
13773 
13774 	failed_vnode = 0;
13775 	td = curthread;
13776 	MNT_VNODE_FOREACH_ALL(lvp, mp, mvp) {
13777 		if (TAILQ_FIRST(&lvp->v_bufobj.bo_dirty.bv_hd) == 0) {
13778 			VI_UNLOCK(lvp);
13779 			continue;
13780 		}
13781 		if (vget(lvp, LK_EXCLUSIVE | LK_INTERLOCK | LK_NOWAIT) != 0) {
13782 			failed_vnode = 1;
13783 			continue;
13784 		}
13785 		if (lvp->v_vflag & VV_NOSYNC) {	/* unlinked */
13786 			vput(lvp);
13787 			continue;
13788 		}
13789 		(void) ffs_syncvnode(lvp, MNT_NOWAIT, 0);
13790 		vput(lvp);
13791 	}
13792 	lvp = ump->um_devvp;
13793 	if (vn_lock(lvp, LK_EXCLUSIVE | LK_NOWAIT) == 0) {
13794 		VOP_FSYNC(lvp, MNT_NOWAIT, td);
13795 		VOP_UNLOCK(lvp);
13796 	}
13797 	return (failed_vnode);
13798 }
13799 
13800 static bool
13801 softdep_excess_items(struct ufsmount *ump, int item)
13802 {
13803 
13804 	KASSERT(item >= 0 && item < D_LAST, ("item %d", item));
13805 	return (dep_current[item] > max_softdeps &&
13806 	    ump->softdep_curdeps[item] > max_softdeps /
13807 	    stat_flush_threads);
13808 }
13809 
13810 static void
13811 schedule_cleanup(struct mount *mp)
13812 {
13813 	struct ufsmount *ump;
13814 	struct thread *td;
13815 
13816 	ump = VFSTOUFS(mp);
13817 	LOCK_OWNED(ump);
13818 	FREE_LOCK(ump);
13819 	td = curthread;
13820 	if ((td->td_pflags & TDP_KTHREAD) != 0 &&
13821 	    (td->td_proc->p_flag2 & P2_AST_SU) == 0) {
13822 		/*
13823 		 * No ast is delivered to kernel threads, so nobody
13824 		 * would deref the mp.  Some kernel threads
13825 		 * explicitly check for AST, e.g. NFS daemon does
13826 		 * this in the serving loop.
13827 		 */
13828 		return;
13829 	}
13830 	if (td->td_su != NULL)
13831 		vfs_rel(td->td_su);
13832 	vfs_ref(mp);
13833 	td->td_su = mp;
13834 	ast_sched(td, TDA_UFS);
13835 }
13836 
13837 static void
13838 softdep_ast_cleanup_proc(struct thread *td, int ast __unused)
13839 {
13840 	struct mount *mp;
13841 	struct ufsmount *ump;
13842 	int error;
13843 	bool req;
13844 
13845 	while ((mp = td->td_su) != NULL) {
13846 		td->td_su = NULL;
13847 		error = vfs_busy(mp, MBF_NOWAIT);
13848 		vfs_rel(mp);
13849 		if (error != 0)
13850 			return;
13851 		if (ffs_own_mount(mp) && MOUNTEDSOFTDEP(mp)) {
13852 			ump = VFSTOUFS(mp);
13853 			for (;;) {
13854 				req = false;
13855 				ACQUIRE_LOCK(ump);
13856 				if (softdep_excess_items(ump, D_INODEDEP)) {
13857 					req = true;
13858 					request_cleanup(mp, FLUSH_INODES);
13859 				}
13860 				if (softdep_excess_items(ump, D_DIRREM)) {
13861 					req = true;
13862 					request_cleanup(mp, FLUSH_BLOCKS);
13863 				}
13864 				FREE_LOCK(ump);
13865 				if (softdep_excess_items(ump, D_NEWBLK) ||
13866 				    softdep_excess_items(ump, D_ALLOCDIRECT) ||
13867 				    softdep_excess_items(ump, D_ALLOCINDIR)) {
13868 					error = vn_start_write(NULL, &mp,
13869 					    V_WAIT);
13870 					if (error == 0) {
13871 						req = true;
13872 						VFS_SYNC(mp, MNT_WAIT);
13873 						vn_finished_write(mp);
13874 					}
13875 				}
13876 				if ((td->td_pflags & TDP_KTHREAD) != 0 || !req)
13877 					break;
13878 			}
13879 		}
13880 		vfs_unbusy(mp);
13881 	}
13882 	if ((mp = td->td_su) != NULL) {
13883 		td->td_su = NULL;
13884 		vfs_rel(mp);
13885 	}
13886 }
13887 
13888 /*
13889  * If memory utilization has gotten too high, deliberately slow things
13890  * down and speed up the I/O processing.
13891  */
13892 static int
13893 request_cleanup(struct mount *mp, int resource)
13894 {
13895 	struct thread *td = curthread;
13896 	struct ufsmount *ump;
13897 
13898 	ump = VFSTOUFS(mp);
13899 	LOCK_OWNED(ump);
13900 	/*
13901 	 * We never hold up the filesystem syncer or buf daemon.
13902 	 */
13903 	if (td->td_pflags & (TDP_SOFTDEP|TDP_NORUNNINGBUF))
13904 		return (0);
13905 	/*
13906 	 * First check to see if the work list has gotten backlogged.
13907 	 * If it has, co-opt this process to help clean up two entries.
13908 	 * Because this process may hold inodes locked, we cannot
13909 	 * handle any remove requests that might block on a locked
13910 	 * inode as that could lead to deadlock.  We set TDP_SOFTDEP
13911 	 * to avoid recursively processing the worklist.
13912 	 */
13913 	if (ump->softdep_on_worklist > max_softdeps / 10) {
13914 		td->td_pflags |= TDP_SOFTDEP;
13915 		process_worklist_item(mp, 2, LK_NOWAIT);
13916 		td->td_pflags &= ~TDP_SOFTDEP;
13917 		stat_worklist_push += 2;
13918 		return(1);
13919 	}
13920 	/*
13921 	 * Next, we attempt to speed up the syncer process. If that
13922 	 * is successful, then we allow the process to continue.
13923 	 */
13924 	if (softdep_speedup(ump) &&
13925 	    resource != FLUSH_BLOCKS_WAIT &&
13926 	    resource != FLUSH_INODES_WAIT)
13927 		return(0);
13928 	/*
13929 	 * If we are resource constrained on inode dependencies, try
13930 	 * flushing some dirty inodes. Otherwise, we are constrained
13931 	 * by file deletions, so try accelerating flushes of directories
13932 	 * with removal dependencies. We would like to do the cleanup
13933 	 * here, but we probably hold an inode locked at this point and
13934 	 * that might deadlock against one that we try to clean. So,
13935 	 * the best that we can do is request the syncer daemon to do
13936 	 * the cleanup for us.
13937 	 */
13938 	switch (resource) {
13939 	case FLUSH_INODES:
13940 	case FLUSH_INODES_WAIT:
13941 		ACQUIRE_GBLLOCK(&lk);
13942 		stat_ino_limit_push += 1;
13943 		req_clear_inodedeps += 1;
13944 		FREE_GBLLOCK(&lk);
13945 		stat_countp = &stat_ino_limit_hit;
13946 		break;
13947 
13948 	case FLUSH_BLOCKS:
13949 	case FLUSH_BLOCKS_WAIT:
13950 		ACQUIRE_GBLLOCK(&lk);
13951 		stat_blk_limit_push += 1;
13952 		req_clear_remove += 1;
13953 		FREE_GBLLOCK(&lk);
13954 		stat_countp = &stat_blk_limit_hit;
13955 		break;
13956 
13957 	default:
13958 		panic("request_cleanup: unknown type");
13959 	}
13960 	/*
13961 	 * Hopefully the syncer daemon will catch up and awaken us.
13962 	 * We wait at most tickdelay before proceeding in any case.
13963 	 */
13964 	ACQUIRE_GBLLOCK(&lk);
13965 	FREE_LOCK(ump);
13966 	proc_waiting += 1;
13967 	if (callout_pending(&softdep_callout) == FALSE)
13968 		callout_reset(&softdep_callout, tickdelay > 2 ? tickdelay : 2,
13969 		    pause_timer, 0);
13970 
13971 	if ((td->td_pflags & TDP_KTHREAD) == 0)
13972 		msleep((caddr_t)&proc_waiting, &lk, PPAUSE, "softupdate", 0);
13973 	proc_waiting -= 1;
13974 	FREE_GBLLOCK(&lk);
13975 	ACQUIRE_LOCK(ump);
13976 	return (1);
13977 }
13978 
13979 /*
13980  * Awaken processes pausing in request_cleanup and clear proc_waiting
13981  * to indicate that there is no longer a timer running. Pause_timer
13982  * will be called with the global softdep mutex (&lk) locked.
13983  */
13984 static void
13985 pause_timer(void *arg)
13986 {
13987 
13988 	GBLLOCK_OWNED(&lk);
13989 	/*
13990 	 * The callout_ API has acquired mtx and will hold it around this
13991 	 * function call.
13992 	 */
13993 	*stat_countp += proc_waiting;
13994 	wakeup(&proc_waiting);
13995 }
13996 
13997 /*
13998  * If requested, try removing inode or removal dependencies.
13999  */
14000 static void
14001 check_clear_deps(struct mount *mp)
14002 {
14003 	struct ufsmount *ump;
14004 	bool suj_susp;
14005 
14006 	/*
14007 	 * Tell the lower layers that any TRIM or WRITE transactions that have
14008 	 * been delayed for performance reasons should proceed to help alleviate
14009 	 * the shortage faster. The race between checking req_* and the softdep
14010 	 * mutex (lk) is fine since this is an advisory operation that at most
14011 	 * causes deferred work to be done sooner.
14012 	 */
14013 	ump = VFSTOUFS(mp);
14014 	suj_susp = ump->um_softdep->sd_jblocks != NULL &&
14015 	    ump->softdep_jblocks->jb_suspended;
14016 	if (req_clear_remove || req_clear_inodedeps || suj_susp) {
14017 		FREE_LOCK(ump);
14018 		softdep_send_speedup(ump, 0, BIO_SPEEDUP_TRIM | BIO_SPEEDUP_WRITE);
14019 		ACQUIRE_LOCK(ump);
14020 	}
14021 
14022 	/*
14023 	 * If we are suspended, it may be because of our using
14024 	 * too many inodedeps, so help clear them out.
14025 	 */
14026 	if (suj_susp)
14027 		clear_inodedeps(mp);
14028 
14029 	/*
14030 	 * General requests for cleanup of backed up dependencies
14031 	 */
14032 	ACQUIRE_GBLLOCK(&lk);
14033 	if (req_clear_inodedeps) {
14034 		req_clear_inodedeps -= 1;
14035 		FREE_GBLLOCK(&lk);
14036 		clear_inodedeps(mp);
14037 		ACQUIRE_GBLLOCK(&lk);
14038 		wakeup(&proc_waiting);
14039 	}
14040 	if (req_clear_remove) {
14041 		req_clear_remove -= 1;
14042 		FREE_GBLLOCK(&lk);
14043 		clear_remove(mp);
14044 		ACQUIRE_GBLLOCK(&lk);
14045 		wakeup(&proc_waiting);
14046 	}
14047 	FREE_GBLLOCK(&lk);
14048 }
14049 
14050 /*
14051  * Flush out a directory with at least one removal dependency in an effort to
14052  * reduce the number of dirrem, freefile, and freeblks dependency structures.
14053  */
14054 static void
14055 clear_remove(struct mount *mp)
14056 {
14057 	struct pagedep_hashhead *pagedephd;
14058 	struct pagedep *pagedep;
14059 	struct ufsmount *ump;
14060 	struct vnode *vp;
14061 	struct bufobj *bo;
14062 	int error, cnt;
14063 	ino_t ino;
14064 
14065 	ump = VFSTOUFS(mp);
14066 	LOCK_OWNED(ump);
14067 
14068 	for (cnt = 0; cnt <= ump->pagedep_hash_size; cnt++) {
14069 		pagedephd = &ump->pagedep_hashtbl[ump->pagedep_nextclean++];
14070 		if (ump->pagedep_nextclean > ump->pagedep_hash_size)
14071 			ump->pagedep_nextclean = 0;
14072 		LIST_FOREACH(pagedep, pagedephd, pd_hash) {
14073 			if (LIST_EMPTY(&pagedep->pd_dirremhd))
14074 				continue;
14075 			ino = pagedep->pd_ino;
14076 			if (vn_start_write(NULL, &mp, V_NOWAIT) != 0)
14077 				continue;
14078 			FREE_LOCK(ump);
14079 
14080 			/*
14081 			 * Let unmount clear deps
14082 			 */
14083 			error = vfs_busy(mp, MBF_NOWAIT);
14084 			if (error != 0)
14085 				goto finish_write;
14086 			error = ffs_vgetf(mp, ino, LK_EXCLUSIVE, &vp,
14087 			     FFSV_FORCEINSMQ | FFSV_FORCEINODEDEP);
14088 			vfs_unbusy(mp);
14089 			if (error != 0) {
14090 				softdep_error("clear_remove: vget", error);
14091 				goto finish_write;
14092 			}
14093 			MPASS(VTOI(vp)->i_mode != 0);
14094 			if ((error = ffs_syncvnode(vp, MNT_NOWAIT, 0)))
14095 				softdep_error("clear_remove: fsync", error);
14096 			bo = &vp->v_bufobj;
14097 			BO_LOCK(bo);
14098 			drain_output(vp);
14099 			BO_UNLOCK(bo);
14100 			vput(vp);
14101 		finish_write:
14102 			vn_finished_write(mp);
14103 			ACQUIRE_LOCK(ump);
14104 			return;
14105 		}
14106 	}
14107 }
14108 
14109 /*
14110  * Clear out a block of dirty inodes in an effort to reduce
14111  * the number of inodedep dependency structures.
14112  */
14113 static void
14114 clear_inodedeps(struct mount *mp)
14115 {
14116 	struct inodedep_hashhead *inodedephd;
14117 	struct inodedep *inodedep;
14118 	struct ufsmount *ump;
14119 	struct vnode *vp;
14120 	struct fs *fs;
14121 	int error, cnt;
14122 	ino_t firstino, lastino, ino;
14123 
14124 	ump = VFSTOUFS(mp);
14125 	fs = ump->um_fs;
14126 	LOCK_OWNED(ump);
14127 	/*
14128 	 * Pick a random inode dependency to be cleared.
14129 	 * We will then gather up all the inodes in its block
14130 	 * that have dependencies and flush them out.
14131 	 */
14132 	for (cnt = 0; cnt <= ump->inodedep_hash_size; cnt++) {
14133 		inodedephd = &ump->inodedep_hashtbl[ump->inodedep_nextclean++];
14134 		if (ump->inodedep_nextclean > ump->inodedep_hash_size)
14135 			ump->inodedep_nextclean = 0;
14136 		if ((inodedep = LIST_FIRST(inodedephd)) != NULL)
14137 			break;
14138 	}
14139 	if (inodedep == NULL)
14140 		return;
14141 	/*
14142 	 * Find the last inode in the block with dependencies.
14143 	 */
14144 	firstino = rounddown2(inodedep->id_ino, INOPB(fs));
14145 	for (lastino = firstino + INOPB(fs) - 1; lastino > firstino; lastino--)
14146 		if (inodedep_lookup(mp, lastino, 0, &inodedep) != 0)
14147 			break;
14148 	/*
14149 	 * Asynchronously push all but the last inode with dependencies.
14150 	 * Synchronously push the last inode with dependencies to ensure
14151 	 * that the inode block gets written to free up the inodedeps.
14152 	 */
14153 	for (ino = firstino; ino <= lastino; ino++) {
14154 		if (inodedep_lookup(mp, ino, 0, &inodedep) == 0)
14155 			continue;
14156 		if (vn_start_write(NULL, &mp, V_NOWAIT) != 0)
14157 			continue;
14158 		FREE_LOCK(ump);
14159 		error = vfs_busy(mp, MBF_NOWAIT); /* Let unmount clear deps */
14160 		if (error != 0) {
14161 			vn_finished_write(mp);
14162 			ACQUIRE_LOCK(ump);
14163 			return;
14164 		}
14165 		if ((error = ffs_vgetf(mp, ino, LK_EXCLUSIVE, &vp,
14166 		    FFSV_FORCEINSMQ | FFSV_FORCEINODEDEP)) != 0) {
14167 			softdep_error("clear_inodedeps: vget", error);
14168 			vfs_unbusy(mp);
14169 			vn_finished_write(mp);
14170 			ACQUIRE_LOCK(ump);
14171 			return;
14172 		}
14173 		vfs_unbusy(mp);
14174 		if (VTOI(vp)->i_mode == 0) {
14175 			vgone(vp);
14176 		} else if (ino == lastino) {
14177 			do {
14178 				error = ffs_syncvnode(vp, MNT_WAIT, 0);
14179 			} while (error == ERELOOKUP);
14180 			if (error != 0)
14181 				softdep_error("clear_inodedeps: fsync1", error);
14182 		} else {
14183 			if ((error = ffs_syncvnode(vp, MNT_NOWAIT, 0)))
14184 				softdep_error("clear_inodedeps: fsync2", error);
14185 			BO_LOCK(&vp->v_bufobj);
14186 			drain_output(vp);
14187 			BO_UNLOCK(&vp->v_bufobj);
14188 		}
14189 		vput(vp);
14190 		vn_finished_write(mp);
14191 		ACQUIRE_LOCK(ump);
14192 	}
14193 }
14194 
14195 void
14196 softdep_buf_append(struct buf *bp, struct workhead *wkhd)
14197 {
14198 	struct worklist *wk;
14199 	struct ufsmount *ump;
14200 
14201 	if ((wk = LIST_FIRST(wkhd)) == NULL)
14202 		return;
14203 	KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0,
14204 	    ("softdep_buf_append called on non-softdep filesystem"));
14205 	ump = VFSTOUFS(wk->wk_mp);
14206 	ACQUIRE_LOCK(ump);
14207 	while ((wk = LIST_FIRST(wkhd)) != NULL) {
14208 		WORKLIST_REMOVE(wk);
14209 		WORKLIST_INSERT(&bp->b_dep, wk);
14210 	}
14211 	FREE_LOCK(ump);
14212 
14213 }
14214 
14215 void
14216 softdep_inode_append(
14217 	struct inode *ip,
14218 	struct ucred *cred,
14219 	struct workhead *wkhd)
14220 {
14221 	struct buf *bp;
14222 	struct fs *fs;
14223 	struct ufsmount *ump;
14224 	int error;
14225 
14226 	ump = ITOUMP(ip);
14227 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
14228 	    ("softdep_inode_append called on non-softdep filesystem"));
14229 	fs = ump->um_fs;
14230 	error = bread(ump->um_devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
14231 	    (int)fs->fs_bsize, cred, &bp);
14232 	if (error) {
14233 		bqrelse(bp);
14234 		softdep_freework(wkhd);
14235 		return;
14236 	}
14237 	softdep_buf_append(bp, wkhd);
14238 	bqrelse(bp);
14239 }
14240 
14241 void
14242 softdep_freework(struct workhead *wkhd)
14243 {
14244 	struct worklist *wk;
14245 	struct ufsmount *ump;
14246 
14247 	if ((wk = LIST_FIRST(wkhd)) == NULL)
14248 		return;
14249 	KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0,
14250 	    ("softdep_freework called on non-softdep filesystem"));
14251 	ump = VFSTOUFS(wk->wk_mp);
14252 	ACQUIRE_LOCK(ump);
14253 	handle_jwork(wkhd);
14254 	FREE_LOCK(ump);
14255 }
14256 
14257 static struct ufsmount *
14258 softdep_bp_to_mp(struct buf *bp)
14259 {
14260 	struct mount *mp;
14261 	struct vnode *vp;
14262 
14263 	if (LIST_EMPTY(&bp->b_dep))
14264 		return (NULL);
14265 	vp = bp->b_vp;
14266 	KASSERT(vp != NULL,
14267 	    ("%s, buffer with dependencies lacks vnode", __func__));
14268 
14269 	/*
14270 	 * The ump mount point is stable after we get a correct
14271 	 * pointer, since bp is locked and this prevents unmount from
14272 	 * proceeding.  But to get to it, we cannot dereference bp->b_dep
14273 	 * head wk_mp, because we do not yet own SU ump lock and
14274 	 * workitem might be freed while dereferenced.
14275 	 */
14276 retry:
14277 	switch (vp->v_type) {
14278 	case VCHR:
14279 		VI_LOCK(vp);
14280 		mp = vp->v_type == VCHR ? vp->v_rdev->si_mountpt : NULL;
14281 		VI_UNLOCK(vp);
14282 		if (mp == NULL)
14283 			goto retry;
14284 		break;
14285 	case VREG:
14286 	case VDIR:
14287 	case VLNK:
14288 	case VFIFO:
14289 	case VSOCK:
14290 		mp = vp->v_mount;
14291 		break;
14292 	case VBLK:
14293 		vn_printf(vp, "softdep_bp_to_mp: unexpected block device\n");
14294 		/* FALLTHROUGH */
14295 	case VNON:
14296 	case VBAD:
14297 	case VMARKER:
14298 		mp = NULL;
14299 		break;
14300 	default:
14301 		vn_printf(vp, "unknown vnode type");
14302 		mp = NULL;
14303 		break;
14304 	}
14305 	return (VFSTOUFS(mp));
14306 }
14307 
14308 /*
14309  * Function to determine if the buffer has outstanding dependencies
14310  * that will cause a roll-back if the buffer is written. If wantcount
14311  * is set, return number of dependencies, otherwise just yes or no.
14312  */
14313 static int
14314 softdep_count_dependencies(struct buf *bp, int wantcount)
14315 {
14316 	struct worklist *wk;
14317 	struct ufsmount *ump;
14318 	struct bmsafemap *bmsafemap;
14319 	struct freework *freework;
14320 	struct inodedep *inodedep;
14321 	struct indirdep *indirdep;
14322 	struct freeblks *freeblks;
14323 	struct allocindir *aip;
14324 	struct pagedep *pagedep;
14325 	struct dirrem *dirrem;
14326 	struct newblk *newblk;
14327 	struct mkdir *mkdir;
14328 	struct diradd *dap;
14329 	int i, retval;
14330 
14331 	ump = softdep_bp_to_mp(bp);
14332 	if (ump == NULL)
14333 		return (0);
14334 	retval = 0;
14335 	ACQUIRE_LOCK(ump);
14336 	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
14337 		switch (wk->wk_type) {
14338 		case D_INODEDEP:
14339 			inodedep = WK_INODEDEP(wk);
14340 			if ((inodedep->id_state & DEPCOMPLETE) == 0) {
14341 				/* bitmap allocation dependency */
14342 				retval += 1;
14343 				if (!wantcount)
14344 					goto out;
14345 			}
14346 			if (TAILQ_FIRST(&inodedep->id_inoupdt)) {
14347 				/* direct block pointer dependency */
14348 				retval += 1;
14349 				if (!wantcount)
14350 					goto out;
14351 			}
14352 			if (TAILQ_FIRST(&inodedep->id_extupdt)) {
14353 				/* direct block pointer dependency */
14354 				retval += 1;
14355 				if (!wantcount)
14356 					goto out;
14357 			}
14358 			if (TAILQ_FIRST(&inodedep->id_inoreflst)) {
14359 				/* Add reference dependency. */
14360 				retval += 1;
14361 				if (!wantcount)
14362 					goto out;
14363 			}
14364 			continue;
14365 
14366 		case D_INDIRDEP:
14367 			indirdep = WK_INDIRDEP(wk);
14368 
14369 			TAILQ_FOREACH(freework, &indirdep->ir_trunc, fw_next) {
14370 				/* indirect truncation dependency */
14371 				retval += 1;
14372 				if (!wantcount)
14373 					goto out;
14374 			}
14375 
14376 			LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) {
14377 				/* indirect block pointer dependency */
14378 				retval += 1;
14379 				if (!wantcount)
14380 					goto out;
14381 			}
14382 			continue;
14383 
14384 		case D_PAGEDEP:
14385 			pagedep = WK_PAGEDEP(wk);
14386 			LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next) {
14387 				if (LIST_FIRST(&dirrem->dm_jremrefhd)) {
14388 					/* Journal remove ref dependency. */
14389 					retval += 1;
14390 					if (!wantcount)
14391 						goto out;
14392 				}
14393 			}
14394 			for (i = 0; i < DAHASHSZ; i++) {
14395 				LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) {
14396 					/* directory entry dependency */
14397 					retval += 1;
14398 					if (!wantcount)
14399 						goto out;
14400 				}
14401 			}
14402 			continue;
14403 
14404 		case D_BMSAFEMAP:
14405 			bmsafemap = WK_BMSAFEMAP(wk);
14406 			if (LIST_FIRST(&bmsafemap->sm_jaddrefhd)) {
14407 				/* Add reference dependency. */
14408 				retval += 1;
14409 				if (!wantcount)
14410 					goto out;
14411 			}
14412 			if (LIST_FIRST(&bmsafemap->sm_jnewblkhd)) {
14413 				/* Allocate block dependency. */
14414 				retval += 1;
14415 				if (!wantcount)
14416 					goto out;
14417 			}
14418 			continue;
14419 
14420 		case D_FREEBLKS:
14421 			freeblks = WK_FREEBLKS(wk);
14422 			if (LIST_FIRST(&freeblks->fb_jblkdephd)) {
14423 				/* Freeblk journal dependency. */
14424 				retval += 1;
14425 				if (!wantcount)
14426 					goto out;
14427 			}
14428 			continue;
14429 
14430 		case D_ALLOCDIRECT:
14431 		case D_ALLOCINDIR:
14432 			newblk = WK_NEWBLK(wk);
14433 			if (newblk->nb_jnewblk) {
14434 				/* Journal allocate dependency. */
14435 				retval += 1;
14436 				if (!wantcount)
14437 					goto out;
14438 			}
14439 			continue;
14440 
14441 		case D_MKDIR:
14442 			mkdir = WK_MKDIR(wk);
14443 			if (mkdir->md_jaddref) {
14444 				/* Journal reference dependency. */
14445 				retval += 1;
14446 				if (!wantcount)
14447 					goto out;
14448 			}
14449 			continue;
14450 
14451 		case D_FREEWORK:
14452 		case D_FREEDEP:
14453 		case D_JSEGDEP:
14454 		case D_JSEG:
14455 		case D_SBDEP:
14456 			/* never a dependency on these blocks */
14457 			continue;
14458 
14459 		default:
14460 			panic("softdep_count_dependencies: Unexpected type %s",
14461 			    TYPENAME(wk->wk_type));
14462 			/* NOTREACHED */
14463 		}
14464 	}
14465 out:
14466 	FREE_LOCK(ump);
14467 	return (retval);
14468 }
14469 
14470 /*
14471  * Acquire exclusive access to a buffer.
14472  * Must be called with a locked mtx parameter.
14473  * Return acquired buffer or NULL on failure.
14474  */
14475 static struct buf *
14476 getdirtybuf(struct buf *bp,
14477 	struct rwlock *lock,
14478 	int waitfor)
14479 {
14480 	int error;
14481 
14482 	if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0) {
14483 		if (waitfor != MNT_WAIT)
14484 			return (NULL);
14485 		error = BUF_LOCK(bp,
14486 		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, lock);
14487 		/*
14488 		 * Even if we successfully acquire bp here, we have dropped
14489 		 * lock, which may violates our guarantee.
14490 		 */
14491 		if (error == 0)
14492 			BUF_UNLOCK(bp);
14493 		else if (error != ENOLCK)
14494 			panic("getdirtybuf: inconsistent lock: %d", error);
14495 		rw_wlock(lock);
14496 		return (NULL);
14497 	}
14498 	if ((bp->b_vflags & BV_BKGRDINPROG) != 0) {
14499 		if (lock != BO_LOCKPTR(bp->b_bufobj) && waitfor == MNT_WAIT) {
14500 			rw_wunlock(lock);
14501 			BO_LOCK(bp->b_bufobj);
14502 			BUF_UNLOCK(bp);
14503 			if ((bp->b_vflags & BV_BKGRDINPROG) != 0) {
14504 				bp->b_vflags |= BV_BKGRDWAIT;
14505 				msleep(&bp->b_xflags, BO_LOCKPTR(bp->b_bufobj),
14506 				       PRIBIO | PDROP, "getbuf", 0);
14507 			} else
14508 				BO_UNLOCK(bp->b_bufobj);
14509 			rw_wlock(lock);
14510 			return (NULL);
14511 		}
14512 		BUF_UNLOCK(bp);
14513 		if (waitfor != MNT_WAIT)
14514 			return (NULL);
14515 #ifdef DEBUG_VFS_LOCKS
14516 		if (bp->b_vp->v_type != VCHR)
14517 			ASSERT_BO_WLOCKED(bp->b_bufobj);
14518 #endif
14519 		bp->b_vflags |= BV_BKGRDWAIT;
14520 		rw_sleep(&bp->b_xflags, lock, PRIBIO, "getbuf", 0);
14521 		return (NULL);
14522 	}
14523 	if ((bp->b_flags & B_DELWRI) == 0) {
14524 		BUF_UNLOCK(bp);
14525 		return (NULL);
14526 	}
14527 	bremfree(bp);
14528 	return (bp);
14529 }
14530 
14531 /*
14532  * Check if it is safe to suspend the file system now.  On entry,
14533  * the vnode interlock for devvp should be held.  Return 0 with
14534  * the mount interlock held if the file system can be suspended now,
14535  * otherwise return EAGAIN with the mount interlock held.
14536  */
14537 int
14538 softdep_check_suspend(struct mount *mp,
14539 		      struct vnode *devvp,
14540 		      int softdep_depcnt,
14541 		      int softdep_accdepcnt,
14542 		      int secondary_writes,
14543 		      int secondary_accwrites)
14544 {
14545 	struct buf *bp;
14546 	struct bufobj *bo;
14547 	struct ufsmount *ump;
14548 	struct inodedep *inodedep;
14549 	struct indirdep *indirdep;
14550 	struct worklist *wk, *nextwk;
14551 	int error, unlinked;
14552 
14553 	bo = &devvp->v_bufobj;
14554 	ASSERT_BO_WLOCKED(bo);
14555 
14556 	/*
14557 	 * If we are not running with soft updates, then we need only
14558 	 * deal with secondary writes as we try to suspend.
14559 	 */
14560 	if (MOUNTEDSOFTDEP(mp) == 0) {
14561 		MNT_ILOCK(mp);
14562 		while (mp->mnt_secondary_writes != 0) {
14563 			BO_UNLOCK(bo);
14564 			msleep(&mp->mnt_secondary_writes, MNT_MTX(mp),
14565 			    (PUSER - 1) | PDROP, "secwr", 0);
14566 			BO_LOCK(bo);
14567 			MNT_ILOCK(mp);
14568 		}
14569 
14570 		/*
14571 		 * Reasons for needing more work before suspend:
14572 		 * - Dirty buffers on devvp.
14573 		 * - Secondary writes occurred after start of vnode sync loop
14574 		 */
14575 		error = 0;
14576 		if (bo->bo_numoutput > 0 ||
14577 		    bo->bo_dirty.bv_cnt > 0 ||
14578 		    secondary_writes != 0 ||
14579 		    mp->mnt_secondary_writes != 0 ||
14580 		    secondary_accwrites != mp->mnt_secondary_accwrites)
14581 			error = EAGAIN;
14582 		BO_UNLOCK(bo);
14583 		return (error);
14584 	}
14585 
14586 	/*
14587 	 * If we are running with soft updates, then we need to coordinate
14588 	 * with them as we try to suspend.
14589 	 */
14590 	ump = VFSTOUFS(mp);
14591 	for (;;) {
14592 		if (!TRY_ACQUIRE_LOCK(ump)) {
14593 			BO_UNLOCK(bo);
14594 			ACQUIRE_LOCK(ump);
14595 			FREE_LOCK(ump);
14596 			BO_LOCK(bo);
14597 			continue;
14598 		}
14599 		MNT_ILOCK(mp);
14600 		if (mp->mnt_secondary_writes != 0) {
14601 			FREE_LOCK(ump);
14602 			BO_UNLOCK(bo);
14603 			msleep(&mp->mnt_secondary_writes,
14604 			       MNT_MTX(mp),
14605 			       (PUSER - 1) | PDROP, "secwr", 0);
14606 			BO_LOCK(bo);
14607 			continue;
14608 		}
14609 		break;
14610 	}
14611 
14612 	unlinked = 0;
14613 	if (MOUNTEDSUJ(mp)) {
14614 		for (inodedep = TAILQ_FIRST(&ump->softdep_unlinked);
14615 		    inodedep != NULL;
14616 		    inodedep = TAILQ_NEXT(inodedep, id_unlinked)) {
14617 			if ((inodedep->id_state & (UNLINKED | UNLINKLINKS |
14618 			    UNLINKONLIST)) != (UNLINKED | UNLINKLINKS |
14619 			    UNLINKONLIST) ||
14620 			    !check_inodedep_free(inodedep))
14621 				continue;
14622 			unlinked++;
14623 		}
14624 	}
14625 
14626 	/*
14627 	 * XXX Check for orphaned indirdep dependency structures.
14628 	 *
14629 	 * During forcible unmount after a disk failure there is a
14630 	 * bug that causes one or more indirdep dependency structures
14631 	 * to fail to be deallocated. We check for them here and clean
14632 	 * them up so that the unmount can succeed.
14633 	 */
14634 	if ((ump->um_flags & UM_FSFAIL_CLEANUP) != 0 && ump->softdep_deps > 0 &&
14635 	    ump->softdep_deps == ump->softdep_curdeps[D_INDIRDEP]) {
14636 		LIST_FOREACH_SAFE(wk, &ump->softdep_alldeps[D_INDIRDEP],
14637 		    wk_all, nextwk) {
14638 			indirdep = WK_INDIRDEP(wk);
14639 			if ((indirdep->ir_state & (GOINGAWAY | DEPCOMPLETE)) !=
14640 			    (GOINGAWAY | DEPCOMPLETE) ||
14641 			    !TAILQ_EMPTY(&indirdep->ir_trunc) ||
14642 			    !LIST_EMPTY(&indirdep->ir_completehd) ||
14643 			    !LIST_EMPTY(&indirdep->ir_writehd) ||
14644 			    !LIST_EMPTY(&indirdep->ir_donehd) ||
14645 			    !LIST_EMPTY(&indirdep->ir_deplisthd) ||
14646 			    indirdep->ir_saveddata != NULL ||
14647 			    indirdep->ir_savebp == NULL) {
14648 				printf("%s: skipping orphaned indirdep %p\n",
14649 				    __FUNCTION__, indirdep);
14650 				continue;
14651 			}
14652 			printf("%s: freeing orphaned indirdep %p\n",
14653 			    __FUNCTION__, indirdep);
14654 			bp = indirdep->ir_savebp;
14655 			indirdep->ir_savebp = NULL;
14656 			free_indirdep(indirdep);
14657 			FREE_LOCK(ump);
14658 			brelse(bp);
14659 			while (!TRY_ACQUIRE_LOCK(ump)) {
14660 				BO_UNLOCK(bo);
14661 				ACQUIRE_LOCK(ump);
14662 				FREE_LOCK(ump);
14663 				BO_LOCK(bo);
14664 			}
14665 		}
14666 	}
14667 
14668 	/*
14669 	 * Reasons for needing more work before suspend:
14670 	 * - Dirty buffers on devvp.
14671 	 * - Dependency structures still exist
14672 	 * - Softdep activity occurred after start of vnode sync loop
14673 	 * - Secondary writes occurred after start of vnode sync loop
14674 	 */
14675 	error = 0;
14676 	if (bo->bo_numoutput > 0 ||
14677 	    bo->bo_dirty.bv_cnt > 0 ||
14678 	    softdep_depcnt != unlinked ||
14679 	    ump->softdep_deps != unlinked ||
14680 	    softdep_accdepcnt != ump->softdep_accdeps ||
14681 	    secondary_writes != 0 ||
14682 	    mp->mnt_secondary_writes != 0 ||
14683 	    secondary_accwrites != mp->mnt_secondary_accwrites)
14684 		error = EAGAIN;
14685 	FREE_LOCK(ump);
14686 	BO_UNLOCK(bo);
14687 	return (error);
14688 }
14689 
14690 /*
14691  * Get the number of dependency structures for the file system, both
14692  * the current number and the total number allocated.  These will
14693  * later be used to detect that softdep processing has occurred.
14694  */
14695 void
14696 softdep_get_depcounts(struct mount *mp,
14697 		      int *softdep_depsp,
14698 		      int *softdep_accdepsp)
14699 {
14700 	struct ufsmount *ump;
14701 
14702 	if (MOUNTEDSOFTDEP(mp) == 0) {
14703 		*softdep_depsp = 0;
14704 		*softdep_accdepsp = 0;
14705 		return;
14706 	}
14707 	ump = VFSTOUFS(mp);
14708 	ACQUIRE_LOCK(ump);
14709 	*softdep_depsp = ump->softdep_deps;
14710 	*softdep_accdepsp = ump->softdep_accdeps;
14711 	FREE_LOCK(ump);
14712 }
14713 
14714 /*
14715  * Wait for pending output on a vnode to complete.
14716  */
14717 static void
14718 drain_output(struct vnode *vp)
14719 {
14720 
14721 	ASSERT_VOP_LOCKED(vp, "drain_output");
14722 	(void)bufobj_wwait(&vp->v_bufobj, 0, 0);
14723 }
14724 
14725 /*
14726  * Called whenever a buffer that is being invalidated or reallocated
14727  * contains dependencies. This should only happen if an I/O error has
14728  * occurred. The routine is called with the buffer locked.
14729  */
14730 static void
14731 softdep_deallocate_dependencies(struct buf *bp)
14732 {
14733 
14734 	if ((bp->b_ioflags & BIO_ERROR) == 0)
14735 		panic("softdep_deallocate_dependencies: dangling deps");
14736 	if (bp->b_vp != NULL && bp->b_vp->v_mount != NULL)
14737 		softdep_error(bp->b_vp->v_mount->mnt_stat.f_mntonname, bp->b_error);
14738 	else
14739 		printf("softdep_deallocate_dependencies: "
14740 		    "got error %d while accessing filesystem\n", bp->b_error);
14741 	if (bp->b_error != ENXIO)
14742 		panic("softdep_deallocate_dependencies: unrecovered I/O error");
14743 }
14744 
14745 /*
14746  * Function to handle asynchronous write errors in the filesystem.
14747  */
14748 static void
14749 softdep_error(char *func, int error)
14750 {
14751 
14752 	/* XXX should do something better! */
14753 	printf("%s: got error %d while accessing filesystem\n", func, error);
14754 }
14755 
14756 #ifdef DDB
14757 
14758 /* exported to ffs_vfsops.c */
14759 extern void db_print_ffs(struct ufsmount *ump);
14760 void
14761 db_print_ffs(struct ufsmount *ump)
14762 {
14763 	db_printf("mp %p (%s) devvp %p\n", ump->um_mountp,
14764 	    ump->um_mountp->mnt_stat.f_mntonname, ump->um_devvp);
14765 	db_printf("    fs %p ", ump->um_fs);
14766 
14767 	if (ump->um_softdep != NULL) {
14768 		db_printf("su_wl %d su_deps %d su_req %d\n",
14769 		    ump->softdep_on_worklist, ump->softdep_deps,
14770 		    ump->softdep_req);
14771 	} else {
14772 		db_printf("su disabled\n");
14773 	}
14774 }
14775 
14776 static void
14777 worklist_print(struct worklist *wk, int verbose)
14778 {
14779 
14780 	if (!verbose) {
14781 		db_printf("%s: %p state 0x%b\n", TYPENAME(wk->wk_type), wk,
14782 		    (u_int)wk->wk_state, PRINT_SOFTDEP_FLAGS);
14783 		return;
14784 	}
14785 	db_printf("worklist: %p type %s state 0x%b next %p\n    ", wk,
14786 	    TYPENAME(wk->wk_type), (u_int)wk->wk_state, PRINT_SOFTDEP_FLAGS,
14787 	    LIST_NEXT(wk, wk_list));
14788 	db_print_ffs(VFSTOUFS(wk->wk_mp));
14789 }
14790 
14791 static void
14792 inodedep_print(struct inodedep *inodedep, int verbose)
14793 {
14794 
14795 	worklist_print(&inodedep->id_list, 0);
14796 	db_printf("    fs %p ino %jd inoblk %jd delta %jd nlink %jd\n",
14797 	    inodedep->id_fs,
14798 	    (intmax_t)inodedep->id_ino,
14799 	    (intmax_t)fsbtodb(inodedep->id_fs,
14800 	        ino_to_fsba(inodedep->id_fs, inodedep->id_ino)),
14801 	    (intmax_t)inodedep->id_nlinkdelta,
14802 	    (intmax_t)inodedep->id_savednlink);
14803 
14804 	if (verbose == 0)
14805 		return;
14806 
14807 	db_printf("    bmsafemap %p, mkdiradd %p, inoreflst %p\n",
14808 	    inodedep->id_bmsafemap,
14809 	    inodedep->id_mkdiradd,
14810 	    TAILQ_FIRST(&inodedep->id_inoreflst));
14811 	db_printf("    dirremhd %p, pendinghd %p, bufwait %p\n",
14812 	    LIST_FIRST(&inodedep->id_dirremhd),
14813 	    LIST_FIRST(&inodedep->id_pendinghd),
14814 	    LIST_FIRST(&inodedep->id_bufwait));
14815 	db_printf("    inowait %p, inoupdt %p, newinoupdt %p\n",
14816 	    LIST_FIRST(&inodedep->id_inowait),
14817 	    TAILQ_FIRST(&inodedep->id_inoupdt),
14818 	    TAILQ_FIRST(&inodedep->id_newinoupdt));
14819 	db_printf("    extupdt %p, newextupdt %p, freeblklst %p\n",
14820 	    TAILQ_FIRST(&inodedep->id_extupdt),
14821 	    TAILQ_FIRST(&inodedep->id_newextupdt),
14822 	    TAILQ_FIRST(&inodedep->id_freeblklst));
14823 	db_printf("    saveino %p, savedsize %jd, savedextsize %jd\n",
14824 	    inodedep->id_savedino1,
14825 	    (intmax_t)inodedep->id_savedsize,
14826 	    (intmax_t)inodedep->id_savedextsize);
14827 }
14828 
14829 static void
14830 newblk_print(struct newblk *nbp)
14831 {
14832 
14833 	worklist_print(&nbp->nb_list, 0);
14834 	db_printf("    newblkno %jd\n", (intmax_t)nbp->nb_newblkno);
14835 	db_printf("    jnewblk %p, bmsafemap %p, freefrag %p\n",
14836 	    &nbp->nb_jnewblk,
14837 	    &nbp->nb_bmsafemap,
14838 	    &nbp->nb_freefrag);
14839 	db_printf("    indirdeps %p, newdirblk %p, jwork %p\n",
14840 	    LIST_FIRST(&nbp->nb_indirdeps),
14841 	    LIST_FIRST(&nbp->nb_newdirblk),
14842 	    LIST_FIRST(&nbp->nb_jwork));
14843 }
14844 
14845 static void
14846 allocdirect_print(struct allocdirect *adp)
14847 {
14848 
14849 	newblk_print(&adp->ad_block);
14850 	db_printf("    oldblkno %jd, oldsize %ld, newsize %ld\n",
14851 	    adp->ad_oldblkno, adp->ad_oldsize, adp->ad_newsize);
14852 	db_printf("    offset %d, inodedep %p\n",
14853 	    adp->ad_offset, adp->ad_inodedep);
14854 }
14855 
14856 static void
14857 allocindir_print(struct allocindir *aip)
14858 {
14859 
14860 	newblk_print(&aip->ai_block);
14861 	db_printf("    oldblkno %jd, lbn %jd\n",
14862 	    (intmax_t)aip->ai_oldblkno, (intmax_t)aip->ai_lbn);
14863 	db_printf("    offset %d, indirdep %p\n",
14864 	    aip->ai_offset, aip->ai_indirdep);
14865 }
14866 
14867 static void
14868 mkdir_print(struct mkdir *mkdir)
14869 {
14870 
14871 	worklist_print(&mkdir->md_list, 0);
14872 	db_printf("    diradd %p, jaddref %p, buf %p\n",
14873 		mkdir->md_diradd, mkdir->md_jaddref, mkdir->md_buf);
14874 }
14875 
14876 DB_SHOW_COMMAND(sd_inodedep, db_show_sd_inodedep)
14877 {
14878 
14879 	if (have_addr == 0) {
14880 		db_printf("inodedep address required\n");
14881 		return;
14882 	}
14883 	inodedep_print((struct inodedep*)addr, 1);
14884 }
14885 
14886 DB_SHOW_COMMAND(sd_allinodedeps, db_show_sd_allinodedeps)
14887 {
14888 	struct inodedep_hashhead *inodedephd;
14889 	struct inodedep *inodedep;
14890 	struct ufsmount *ump;
14891 	int cnt;
14892 
14893 	if (have_addr == 0) {
14894 		db_printf("ufsmount address required\n");
14895 		return;
14896 	}
14897 	ump = (struct ufsmount *)addr;
14898 	for (cnt = 0; cnt < ump->inodedep_hash_size; cnt++) {
14899 		inodedephd = &ump->inodedep_hashtbl[cnt];
14900 		LIST_FOREACH(inodedep, inodedephd, id_hash) {
14901 			inodedep_print(inodedep, 0);
14902 		}
14903 	}
14904 }
14905 
14906 DB_SHOW_COMMAND(sd_worklist, db_show_sd_worklist)
14907 {
14908 
14909 	if (have_addr == 0) {
14910 		db_printf("worklist address required\n");
14911 		return;
14912 	}
14913 	worklist_print((struct worklist *)addr, 1);
14914 }
14915 
14916 DB_SHOW_COMMAND(sd_workhead, db_show_sd_workhead)
14917 {
14918 	struct worklist *wk;
14919 	struct workhead *wkhd;
14920 
14921 	if (have_addr == 0) {
14922 		db_printf("worklist address required "
14923 		    "(for example value in bp->b_dep)\n");
14924 		return;
14925 	}
14926 	/*
14927 	 * We often do not have the address of the worklist head but
14928 	 * instead a pointer to its first entry (e.g., we have the
14929 	 * contents of bp->b_dep rather than &bp->b_dep). But the back
14930 	 * pointer of bp->b_dep will point at the head of the list, so
14931 	 * we cheat and use that instead. If we are in the middle of
14932 	 * a list we will still get the same result, so nothing
14933 	 * unexpected will result.
14934 	 */
14935 	wk = (struct worklist *)addr;
14936 	if (wk == NULL)
14937 		return;
14938 	wkhd = (struct workhead *)wk->wk_list.le_prev;
14939 	LIST_FOREACH(wk, wkhd, wk_list) {
14940 		switch(wk->wk_type) {
14941 		case D_INODEDEP:
14942 			inodedep_print(WK_INODEDEP(wk), 0);
14943 			continue;
14944 		case D_ALLOCDIRECT:
14945 			allocdirect_print(WK_ALLOCDIRECT(wk));
14946 			continue;
14947 		case D_ALLOCINDIR:
14948 			allocindir_print(WK_ALLOCINDIR(wk));
14949 			continue;
14950 		case D_MKDIR:
14951 			mkdir_print(WK_MKDIR(wk));
14952 			continue;
14953 		default:
14954 			worklist_print(wk, 0);
14955 			continue;
14956 		}
14957 	}
14958 }
14959 
14960 DB_SHOW_COMMAND(sd_mkdir, db_show_sd_mkdir)
14961 {
14962 	if (have_addr == 0) {
14963 		db_printf("mkdir address required\n");
14964 		return;
14965 	}
14966 	mkdir_print((struct mkdir *)addr);
14967 }
14968 
14969 DB_SHOW_COMMAND(sd_mkdir_list, db_show_sd_mkdir_list)
14970 {
14971 	struct mkdirlist *mkdirlisthd;
14972 	struct mkdir *mkdir;
14973 
14974 	if (have_addr == 0) {
14975 		db_printf("mkdir listhead address required\n");
14976 		return;
14977 	}
14978 	mkdirlisthd = (struct mkdirlist *)addr;
14979 	LIST_FOREACH(mkdir, mkdirlisthd, md_mkdirs) {
14980 		mkdir_print(mkdir);
14981 		if (mkdir->md_diradd != NULL) {
14982 			db_printf("    ");
14983 			worklist_print(&mkdir->md_diradd->da_list, 0);
14984 		}
14985 		if (mkdir->md_jaddref != NULL) {
14986 			db_printf("    ");
14987 			worklist_print(&mkdir->md_jaddref->ja_list, 0);
14988 		}
14989 	}
14990 }
14991 
14992 DB_SHOW_COMMAND(sd_allocdirect, db_show_sd_allocdirect)
14993 {
14994 	if (have_addr == 0) {
14995 		db_printf("allocdirect address required\n");
14996 		return;
14997 	}
14998 	allocdirect_print((struct allocdirect *)addr);
14999 }
15000 
15001 DB_SHOW_COMMAND(sd_allocindir, db_show_sd_allocindir)
15002 {
15003 	if (have_addr == 0) {
15004 		db_printf("allocindir address required\n");
15005 		return;
15006 	}
15007 	allocindir_print((struct allocindir *)addr);
15008 }
15009 
15010 #endif /* DDB */
15011 
15012 #endif /* SOFTUPDATES */
15013