xref: /freebsd/sys/ufs/ffs/ffs_softdep.c (revision dd41de95a84d979615a2ef11df6850622bf6184e)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright 1998, 2000 Marshall Kirk McKusick.
5  * Copyright 2009, 2010 Jeffrey W. Roberson <jeff@FreeBSD.org>
6  * All rights reserved.
7  *
8  * The soft updates code is derived from the appendix of a University
9  * of Michigan technical report (Gregory R. Ganger and Yale N. Patt,
10  * "Soft Updates: A Solution to the Metadata Update Problem in File
11  * Systems", CSE-TR-254-95, August 1995).
12  *
13  * Further information about soft updates can be obtained from:
14  *
15  *	Marshall Kirk McKusick		http://www.mckusick.com/softdep/
16  *	1614 Oxford Street		mckusick@mckusick.com
17  *	Berkeley, CA 94709-1608		+1-510-843-9542
18  *	USA
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  * 1. Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  * 2. Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in the
28  *    documentation and/or other materials provided with the distribution.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR
31  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
32  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
33  * IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT,
34  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
35  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
36  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
37  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
38  * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
39  * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40  *
41  *	from: @(#)ffs_softdep.c	9.59 (McKusick) 6/21/00
42  */
43 
44 #include <sys/cdefs.h>
45 __FBSDID("$FreeBSD$");
46 
47 #include "opt_ffs.h"
48 #include "opt_quota.h"
49 #include "opt_ddb.h"
50 
51 #include <sys/param.h>
52 #include <sys/kernel.h>
53 #include <sys/systm.h>
54 #include <sys/bio.h>
55 #include <sys/buf.h>
56 #include <sys/kdb.h>
57 #include <sys/kthread.h>
58 #include <sys/ktr.h>
59 #include <sys/limits.h>
60 #include <sys/lock.h>
61 #include <sys/malloc.h>
62 #include <sys/mount.h>
63 #include <sys/mutex.h>
64 #include <sys/namei.h>
65 #include <sys/priv.h>
66 #include <sys/proc.h>
67 #include <sys/racct.h>
68 #include <sys/rwlock.h>
69 #include <sys/stat.h>
70 #include <sys/sysctl.h>
71 #include <sys/syslog.h>
72 #include <sys/vnode.h>
73 #include <sys/conf.h>
74 
75 #include <ufs/ufs/dir.h>
76 #include <ufs/ufs/extattr.h>
77 #include <ufs/ufs/quota.h>
78 #include <ufs/ufs/inode.h>
79 #include <ufs/ufs/ufsmount.h>
80 #include <ufs/ffs/fs.h>
81 #include <ufs/ffs/softdep.h>
82 #include <ufs/ffs/ffs_extern.h>
83 #include <ufs/ufs/ufs_extern.h>
84 
85 #include <vm/vm.h>
86 #include <vm/vm_extern.h>
87 #include <vm/vm_object.h>
88 
89 #include <geom/geom.h>
90 #include <geom/geom_vfs.h>
91 
92 #include <ddb/ddb.h>
93 
94 #define	KTR_SUJ	0	/* Define to KTR_SPARE. */
95 
96 #ifndef SOFTUPDATES
97 
98 int
99 softdep_flushfiles(oldmnt, flags, td)
100 	struct mount *oldmnt;
101 	int flags;
102 	struct thread *td;
103 {
104 
105 	panic("softdep_flushfiles called");
106 }
107 
108 int
109 softdep_mount(devvp, mp, fs, cred)
110 	struct vnode *devvp;
111 	struct mount *mp;
112 	struct fs *fs;
113 	struct ucred *cred;
114 {
115 
116 	return (0);
117 }
118 
119 void
120 softdep_initialize()
121 {
122 
123 	return;
124 }
125 
126 void
127 softdep_uninitialize()
128 {
129 
130 	return;
131 }
132 
133 void
134 softdep_unmount(mp)
135 	struct mount *mp;
136 {
137 
138 	panic("softdep_unmount called");
139 }
140 
141 void
142 softdep_setup_sbupdate(ump, fs, bp)
143 	struct ufsmount *ump;
144 	struct fs *fs;
145 	struct buf *bp;
146 {
147 
148 	panic("softdep_setup_sbupdate called");
149 }
150 
151 void
152 softdep_setup_inomapdep(bp, ip, newinum, mode)
153 	struct buf *bp;
154 	struct inode *ip;
155 	ino_t newinum;
156 	int mode;
157 {
158 
159 	panic("softdep_setup_inomapdep called");
160 }
161 
162 void
163 softdep_setup_blkmapdep(bp, mp, newblkno, frags, oldfrags)
164 	struct buf *bp;
165 	struct mount *mp;
166 	ufs2_daddr_t newblkno;
167 	int frags;
168 	int oldfrags;
169 {
170 
171 	panic("softdep_setup_blkmapdep called");
172 }
173 
174 void
175 softdep_setup_allocdirect(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp)
176 	struct inode *ip;
177 	ufs_lbn_t lbn;
178 	ufs2_daddr_t newblkno;
179 	ufs2_daddr_t oldblkno;
180 	long newsize;
181 	long oldsize;
182 	struct buf *bp;
183 {
184 
185 	panic("softdep_setup_allocdirect called");
186 }
187 
188 void
189 softdep_setup_allocext(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp)
190 	struct inode *ip;
191 	ufs_lbn_t lbn;
192 	ufs2_daddr_t newblkno;
193 	ufs2_daddr_t oldblkno;
194 	long newsize;
195 	long oldsize;
196 	struct buf *bp;
197 {
198 
199 	panic("softdep_setup_allocext called");
200 }
201 
202 void
203 softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp)
204 	struct inode *ip;
205 	ufs_lbn_t lbn;
206 	struct buf *bp;
207 	int ptrno;
208 	ufs2_daddr_t newblkno;
209 	ufs2_daddr_t oldblkno;
210 	struct buf *nbp;
211 {
212 
213 	panic("softdep_setup_allocindir_page called");
214 }
215 
216 void
217 softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno)
218 	struct buf *nbp;
219 	struct inode *ip;
220 	struct buf *bp;
221 	int ptrno;
222 	ufs2_daddr_t newblkno;
223 {
224 
225 	panic("softdep_setup_allocindir_meta called");
226 }
227 
228 void
229 softdep_journal_freeblocks(ip, cred, length, flags)
230 	struct inode *ip;
231 	struct ucred *cred;
232 	off_t length;
233 	int flags;
234 {
235 
236 	panic("softdep_journal_freeblocks called");
237 }
238 
239 void
240 softdep_journal_fsync(ip)
241 	struct inode *ip;
242 {
243 
244 	panic("softdep_journal_fsync called");
245 }
246 
247 void
248 softdep_setup_freeblocks(ip, length, flags)
249 	struct inode *ip;
250 	off_t length;
251 	int flags;
252 {
253 
254 	panic("softdep_setup_freeblocks called");
255 }
256 
257 void
258 softdep_freefile(pvp, ino, mode)
259 		struct vnode *pvp;
260 		ino_t ino;
261 		int mode;
262 {
263 
264 	panic("softdep_freefile called");
265 }
266 
267 int
268 softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk)
269 	struct buf *bp;
270 	struct inode *dp;
271 	off_t diroffset;
272 	ino_t newinum;
273 	struct buf *newdirbp;
274 	int isnewblk;
275 {
276 
277 	panic("softdep_setup_directory_add called");
278 }
279 
280 void
281 softdep_change_directoryentry_offset(bp, dp, base, oldloc, newloc, entrysize)
282 	struct buf *bp;
283 	struct inode *dp;
284 	caddr_t base;
285 	caddr_t oldloc;
286 	caddr_t newloc;
287 	int entrysize;
288 {
289 
290 	panic("softdep_change_directoryentry_offset called");
291 }
292 
293 void
294 softdep_setup_remove(bp, dp, ip, isrmdir)
295 	struct buf *bp;
296 	struct inode *dp;
297 	struct inode *ip;
298 	int isrmdir;
299 {
300 
301 	panic("softdep_setup_remove called");
302 }
303 
304 void
305 softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir)
306 	struct buf *bp;
307 	struct inode *dp;
308 	struct inode *ip;
309 	ino_t newinum;
310 	int isrmdir;
311 {
312 
313 	panic("softdep_setup_directory_change called");
314 }
315 
316 void
317 softdep_setup_blkfree(mp, bp, blkno, frags, wkhd)
318 	struct mount *mp;
319 	struct buf *bp;
320 	ufs2_daddr_t blkno;
321 	int frags;
322 	struct workhead *wkhd;
323 {
324 
325 	panic("%s called", __FUNCTION__);
326 }
327 
328 void
329 softdep_setup_inofree(mp, bp, ino, wkhd)
330 	struct mount *mp;
331 	struct buf *bp;
332 	ino_t ino;
333 	struct workhead *wkhd;
334 {
335 
336 	panic("%s called", __FUNCTION__);
337 }
338 
339 void
340 softdep_setup_unlink(dp, ip)
341 	struct inode *dp;
342 	struct inode *ip;
343 {
344 
345 	panic("%s called", __FUNCTION__);
346 }
347 
348 void
349 softdep_setup_link(dp, ip)
350 	struct inode *dp;
351 	struct inode *ip;
352 {
353 
354 	panic("%s called", __FUNCTION__);
355 }
356 
357 void
358 softdep_revert_link(dp, ip)
359 	struct inode *dp;
360 	struct inode *ip;
361 {
362 
363 	panic("%s called", __FUNCTION__);
364 }
365 
366 void
367 softdep_setup_rmdir(dp, ip)
368 	struct inode *dp;
369 	struct inode *ip;
370 {
371 
372 	panic("%s called", __FUNCTION__);
373 }
374 
375 void
376 softdep_revert_rmdir(dp, ip)
377 	struct inode *dp;
378 	struct inode *ip;
379 {
380 
381 	panic("%s called", __FUNCTION__);
382 }
383 
384 void
385 softdep_setup_create(dp, ip)
386 	struct inode *dp;
387 	struct inode *ip;
388 {
389 
390 	panic("%s called", __FUNCTION__);
391 }
392 
393 void
394 softdep_revert_create(dp, ip)
395 	struct inode *dp;
396 	struct inode *ip;
397 {
398 
399 	panic("%s called", __FUNCTION__);
400 }
401 
402 void
403 softdep_setup_mkdir(dp, ip)
404 	struct inode *dp;
405 	struct inode *ip;
406 {
407 
408 	panic("%s called", __FUNCTION__);
409 }
410 
411 void
412 softdep_revert_mkdir(dp, ip)
413 	struct inode *dp;
414 	struct inode *ip;
415 {
416 
417 	panic("%s called", __FUNCTION__);
418 }
419 
420 void
421 softdep_setup_dotdot_link(dp, ip)
422 	struct inode *dp;
423 	struct inode *ip;
424 {
425 
426 	panic("%s called", __FUNCTION__);
427 }
428 
429 int
430 softdep_prealloc(vp, waitok)
431 	struct vnode *vp;
432 	int waitok;
433 {
434 
435 	panic("%s called", __FUNCTION__);
436 }
437 
438 int
439 softdep_journal_lookup(mp, vpp)
440 	struct mount *mp;
441 	struct vnode **vpp;
442 {
443 
444 	return (ENOENT);
445 }
446 
447 void
448 softdep_change_linkcnt(ip)
449 	struct inode *ip;
450 {
451 
452 	panic("softdep_change_linkcnt called");
453 }
454 
455 void
456 softdep_load_inodeblock(ip)
457 	struct inode *ip;
458 {
459 
460 	panic("softdep_load_inodeblock called");
461 }
462 
463 void
464 softdep_update_inodeblock(ip, bp, waitfor)
465 	struct inode *ip;
466 	struct buf *bp;
467 	int waitfor;
468 {
469 
470 	panic("softdep_update_inodeblock called");
471 }
472 
473 int
474 softdep_fsync(vp)
475 	struct vnode *vp;	/* the "in_core" copy of the inode */
476 {
477 
478 	return (0);
479 }
480 
481 void
482 softdep_fsync_mountdev(vp)
483 	struct vnode *vp;
484 {
485 
486 	return;
487 }
488 
489 int
490 softdep_flushworklist(oldmnt, countp, td)
491 	struct mount *oldmnt;
492 	int *countp;
493 	struct thread *td;
494 {
495 
496 	*countp = 0;
497 	return (0);
498 }
499 
500 int
501 softdep_sync_metadata(struct vnode *vp)
502 {
503 
504 	panic("softdep_sync_metadata called");
505 }
506 
507 int
508 softdep_sync_buf(struct vnode *vp, struct buf *bp, int waitfor)
509 {
510 
511 	panic("softdep_sync_buf called");
512 }
513 
514 int
515 softdep_slowdown(vp)
516 	struct vnode *vp;
517 {
518 
519 	panic("softdep_slowdown called");
520 }
521 
522 int
523 softdep_request_cleanup(fs, vp, cred, resource)
524 	struct fs *fs;
525 	struct vnode *vp;
526 	struct ucred *cred;
527 	int resource;
528 {
529 
530 	return (0);
531 }
532 
533 int
534 softdep_check_suspend(struct mount *mp,
535 		      struct vnode *devvp,
536 		      int softdep_depcnt,
537 		      int softdep_accdepcnt,
538 		      int secondary_writes,
539 		      int secondary_accwrites)
540 {
541 	struct bufobj *bo;
542 	int error;
543 
544 	(void) softdep_depcnt,
545 	(void) softdep_accdepcnt;
546 
547 	bo = &devvp->v_bufobj;
548 	ASSERT_BO_WLOCKED(bo);
549 
550 	MNT_ILOCK(mp);
551 	while (mp->mnt_secondary_writes != 0) {
552 		BO_UNLOCK(bo);
553 		msleep(&mp->mnt_secondary_writes, MNT_MTX(mp),
554 		    (PUSER - 1) | PDROP, "secwr", 0);
555 		BO_LOCK(bo);
556 		MNT_ILOCK(mp);
557 	}
558 
559 	/*
560 	 * Reasons for needing more work before suspend:
561 	 * - Dirty buffers on devvp.
562 	 * - Secondary writes occurred after start of vnode sync loop
563 	 */
564 	error = 0;
565 	if (bo->bo_numoutput > 0 ||
566 	    bo->bo_dirty.bv_cnt > 0 ||
567 	    secondary_writes != 0 ||
568 	    mp->mnt_secondary_writes != 0 ||
569 	    secondary_accwrites != mp->mnt_secondary_accwrites)
570 		error = EAGAIN;
571 	BO_UNLOCK(bo);
572 	return (error);
573 }
574 
575 void
576 softdep_get_depcounts(struct mount *mp,
577 		      int *softdepactivep,
578 		      int *softdepactiveaccp)
579 {
580 	(void) mp;
581 	*softdepactivep = 0;
582 	*softdepactiveaccp = 0;
583 }
584 
585 void
586 softdep_buf_append(bp, wkhd)
587 	struct buf *bp;
588 	struct workhead *wkhd;
589 {
590 
591 	panic("softdep_buf_appendwork called");
592 }
593 
594 void
595 softdep_inode_append(ip, cred, wkhd)
596 	struct inode *ip;
597 	struct ucred *cred;
598 	struct workhead *wkhd;
599 {
600 
601 	panic("softdep_inode_appendwork called");
602 }
603 
604 void
605 softdep_freework(wkhd)
606 	struct workhead *wkhd;
607 {
608 
609 	panic("softdep_freework called");
610 }
611 
612 int
613 softdep_prerename(fdvp, fvp, tdvp, tvp)
614 	struct vnode *fdvp;
615 	struct vnode *fvp;
616 	struct vnode *tdvp;
617 	struct vnode *tvp;
618 {
619 
620 	panic("softdep_prerename called");
621 }
622 
623 int
624 softdep_prelink(dvp, vp)
625 	struct vnode *dvp;
626 	struct vnode *vp;
627 {
628 
629 	panic("softdep_prelink called");
630 }
631 
632 #else
633 
634 FEATURE(softupdates, "FFS soft-updates support");
635 
636 static SYSCTL_NODE(_debug, OID_AUTO, softdep, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
637     "soft updates stats");
638 static SYSCTL_NODE(_debug_softdep, OID_AUTO, total,
639     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
640     "total dependencies allocated");
641 static SYSCTL_NODE(_debug_softdep, OID_AUTO, highuse,
642     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
643     "high use dependencies allocated");
644 static SYSCTL_NODE(_debug_softdep, OID_AUTO, current,
645     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
646     "current dependencies allocated");
647 static SYSCTL_NODE(_debug_softdep, OID_AUTO, write,
648     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
649     "current dependencies written");
650 
651 unsigned long dep_current[D_LAST + 1];
652 unsigned long dep_highuse[D_LAST + 1];
653 unsigned long dep_total[D_LAST + 1];
654 unsigned long dep_write[D_LAST + 1];
655 
656 #define	SOFTDEP_TYPE(type, str, long)					\
657     static MALLOC_DEFINE(M_ ## type, #str, long);			\
658     SYSCTL_ULONG(_debug_softdep_total, OID_AUTO, str, CTLFLAG_RD,	\
659 	&dep_total[D_ ## type], 0, "");					\
660     SYSCTL_ULONG(_debug_softdep_current, OID_AUTO, str, CTLFLAG_RD, 	\
661 	&dep_current[D_ ## type], 0, "");				\
662     SYSCTL_ULONG(_debug_softdep_highuse, OID_AUTO, str, CTLFLAG_RD, 	\
663 	&dep_highuse[D_ ## type], 0, "");				\
664     SYSCTL_ULONG(_debug_softdep_write, OID_AUTO, str, CTLFLAG_RD, 	\
665 	&dep_write[D_ ## type], 0, "");
666 
667 SOFTDEP_TYPE(PAGEDEP, pagedep, "File page dependencies");
668 SOFTDEP_TYPE(INODEDEP, inodedep, "Inode dependencies");
669 SOFTDEP_TYPE(BMSAFEMAP, bmsafemap,
670     "Block or frag allocated from cyl group map");
671 SOFTDEP_TYPE(NEWBLK, newblk, "New block or frag allocation dependency");
672 SOFTDEP_TYPE(ALLOCDIRECT, allocdirect, "Block or frag dependency for an inode");
673 SOFTDEP_TYPE(INDIRDEP, indirdep, "Indirect block dependencies");
674 SOFTDEP_TYPE(ALLOCINDIR, allocindir, "Block dependency for an indirect block");
675 SOFTDEP_TYPE(FREEFRAG, freefrag, "Previously used frag for an inode");
676 SOFTDEP_TYPE(FREEBLKS, freeblks, "Blocks freed from an inode");
677 SOFTDEP_TYPE(FREEFILE, freefile, "Inode deallocated");
678 SOFTDEP_TYPE(DIRADD, diradd, "New directory entry");
679 SOFTDEP_TYPE(MKDIR, mkdir, "New directory");
680 SOFTDEP_TYPE(DIRREM, dirrem, "Directory entry deleted");
681 SOFTDEP_TYPE(NEWDIRBLK, newdirblk, "Unclaimed new directory block");
682 SOFTDEP_TYPE(FREEWORK, freework, "free an inode block");
683 SOFTDEP_TYPE(FREEDEP, freedep, "track a block free");
684 SOFTDEP_TYPE(JADDREF, jaddref, "Journal inode ref add");
685 SOFTDEP_TYPE(JREMREF, jremref, "Journal inode ref remove");
686 SOFTDEP_TYPE(JMVREF, jmvref, "Journal inode ref move");
687 SOFTDEP_TYPE(JNEWBLK, jnewblk, "Journal new block");
688 SOFTDEP_TYPE(JFREEBLK, jfreeblk, "Journal free block");
689 SOFTDEP_TYPE(JFREEFRAG, jfreefrag, "Journal free frag");
690 SOFTDEP_TYPE(JSEG, jseg, "Journal segment");
691 SOFTDEP_TYPE(JSEGDEP, jsegdep, "Journal segment complete");
692 SOFTDEP_TYPE(SBDEP, sbdep, "Superblock write dependency");
693 SOFTDEP_TYPE(JTRUNC, jtrunc, "Journal inode truncation");
694 SOFTDEP_TYPE(JFSYNC, jfsync, "Journal fsync complete");
695 
696 static MALLOC_DEFINE(M_SENTINEL, "sentinel", "Worklist sentinel");
697 
698 static MALLOC_DEFINE(M_SAVEDINO, "savedino", "Saved inodes");
699 static MALLOC_DEFINE(M_JBLOCKS, "jblocks", "Journal block locations");
700 static MALLOC_DEFINE(M_MOUNTDATA, "softdep", "Softdep per-mount data");
701 
702 #define M_SOFTDEP_FLAGS	(M_WAITOK)
703 
704 /*
705  * translate from workitem type to memory type
706  * MUST match the defines above, such that memtype[D_XXX] == M_XXX
707  */
708 static struct malloc_type *memtype[] = {
709 	NULL,
710 	M_PAGEDEP,
711 	M_INODEDEP,
712 	M_BMSAFEMAP,
713 	M_NEWBLK,
714 	M_ALLOCDIRECT,
715 	M_INDIRDEP,
716 	M_ALLOCINDIR,
717 	M_FREEFRAG,
718 	M_FREEBLKS,
719 	M_FREEFILE,
720 	M_DIRADD,
721 	M_MKDIR,
722 	M_DIRREM,
723 	M_NEWDIRBLK,
724 	M_FREEWORK,
725 	M_FREEDEP,
726 	M_JADDREF,
727 	M_JREMREF,
728 	M_JMVREF,
729 	M_JNEWBLK,
730 	M_JFREEBLK,
731 	M_JFREEFRAG,
732 	M_JSEG,
733 	M_JSEGDEP,
734 	M_SBDEP,
735 	M_JTRUNC,
736 	M_JFSYNC,
737 	M_SENTINEL
738 };
739 
740 #define DtoM(type) (memtype[type])
741 
742 /*
743  * Names of malloc types.
744  */
745 #define TYPENAME(type)  \
746 	((unsigned)(type) <= D_LAST && (unsigned)(type) >= D_FIRST ? \
747 	memtype[type]->ks_shortdesc : "???")
748 /*
749  * End system adaptation definitions.
750  */
751 
752 #define	DOTDOT_OFFSET	offsetof(struct dirtemplate, dotdot_ino)
753 #define	DOT_OFFSET	offsetof(struct dirtemplate, dot_ino)
754 
755 /*
756  * Internal function prototypes.
757  */
758 static	void check_clear_deps(struct mount *);
759 static	void softdep_error(char *, int);
760 static	int softdep_prerename_vnode(struct ufsmount *, struct vnode *);
761 static	int softdep_process_worklist(struct mount *, int);
762 static	int softdep_waitidle(struct mount *, int);
763 static	void drain_output(struct vnode *);
764 static	struct buf *getdirtybuf(struct buf *, struct rwlock *, int);
765 static	int check_inodedep_free(struct inodedep *);
766 static	void clear_remove(struct mount *);
767 static	void clear_inodedeps(struct mount *);
768 static	void unlinked_inodedep(struct mount *, struct inodedep *);
769 static	void clear_unlinked_inodedep(struct inodedep *);
770 static	struct inodedep *first_unlinked_inodedep(struct ufsmount *);
771 static	int flush_pagedep_deps(struct vnode *, struct mount *,
772 	    struct diraddhd *, struct buf *);
773 static	int free_pagedep(struct pagedep *);
774 static	int flush_newblk_dep(struct vnode *, struct mount *, ufs_lbn_t);
775 static	int flush_inodedep_deps(struct vnode *, struct mount *, ino_t);
776 static	int flush_deplist(struct allocdirectlst *, int, int *);
777 static	int sync_cgs(struct mount *, int);
778 static	int handle_written_filepage(struct pagedep *, struct buf *, int);
779 static	int handle_written_sbdep(struct sbdep *, struct buf *);
780 static	void initiate_write_sbdep(struct sbdep *);
781 static	void diradd_inode_written(struct diradd *, struct inodedep *);
782 static	int handle_written_indirdep(struct indirdep *, struct buf *,
783 	    struct buf**, int);
784 static	int handle_written_inodeblock(struct inodedep *, struct buf *, int);
785 static	int jnewblk_rollforward(struct jnewblk *, struct fs *, struct cg *,
786 	    uint8_t *);
787 static	int handle_written_bmsafemap(struct bmsafemap *, struct buf *, int);
788 static	void handle_written_jaddref(struct jaddref *);
789 static	void handle_written_jremref(struct jremref *);
790 static	void handle_written_jseg(struct jseg *, struct buf *);
791 static	void handle_written_jnewblk(struct jnewblk *);
792 static	void handle_written_jblkdep(struct jblkdep *);
793 static	void handle_written_jfreefrag(struct jfreefrag *);
794 static	void complete_jseg(struct jseg *);
795 static	void complete_jsegs(struct jseg *);
796 static	void jseg_write(struct ufsmount *ump, struct jseg *, uint8_t *);
797 static	void jaddref_write(struct jaddref *, struct jseg *, uint8_t *);
798 static	void jremref_write(struct jremref *, struct jseg *, uint8_t *);
799 static	void jmvref_write(struct jmvref *, struct jseg *, uint8_t *);
800 static	void jtrunc_write(struct jtrunc *, struct jseg *, uint8_t *);
801 static	void jfsync_write(struct jfsync *, struct jseg *, uint8_t *data);
802 static	void jnewblk_write(struct jnewblk *, struct jseg *, uint8_t *);
803 static	void jfreeblk_write(struct jfreeblk *, struct jseg *, uint8_t *);
804 static	void jfreefrag_write(struct jfreefrag *, struct jseg *, uint8_t *);
805 static	inline void inoref_write(struct inoref *, struct jseg *,
806 	    struct jrefrec *);
807 static	void handle_allocdirect_partdone(struct allocdirect *,
808 	    struct workhead *);
809 static	struct jnewblk *cancel_newblk(struct newblk *, struct worklist *,
810 	    struct workhead *);
811 static	void indirdep_complete(struct indirdep *);
812 static	int indirblk_lookup(struct mount *, ufs2_daddr_t);
813 static	void indirblk_insert(struct freework *);
814 static	void indirblk_remove(struct freework *);
815 static	void handle_allocindir_partdone(struct allocindir *);
816 static	void initiate_write_filepage(struct pagedep *, struct buf *);
817 static	void initiate_write_indirdep(struct indirdep*, struct buf *);
818 static	void handle_written_mkdir(struct mkdir *, int);
819 static	int jnewblk_rollback(struct jnewblk *, struct fs *, struct cg *,
820 	    uint8_t *);
821 static	void initiate_write_bmsafemap(struct bmsafemap *, struct buf *);
822 static	void initiate_write_inodeblock_ufs1(struct inodedep *, struct buf *);
823 static	void initiate_write_inodeblock_ufs2(struct inodedep *, struct buf *);
824 static	void handle_workitem_freefile(struct freefile *);
825 static	int handle_workitem_remove(struct dirrem *, int);
826 static	struct dirrem *newdirrem(struct buf *, struct inode *,
827 	    struct inode *, int, struct dirrem **);
828 static	struct indirdep *indirdep_lookup(struct mount *, struct inode *,
829 	    struct buf *);
830 static	void cancel_indirdep(struct indirdep *, struct buf *,
831 	    struct freeblks *);
832 static	void free_indirdep(struct indirdep *);
833 static	void free_diradd(struct diradd *, struct workhead *);
834 static	void merge_diradd(struct inodedep *, struct diradd *);
835 static	void complete_diradd(struct diradd *);
836 static	struct diradd *diradd_lookup(struct pagedep *, int);
837 static	struct jremref *cancel_diradd_dotdot(struct inode *, struct dirrem *,
838 	    struct jremref *);
839 static	struct jremref *cancel_mkdir_dotdot(struct inode *, struct dirrem *,
840 	    struct jremref *);
841 static	void cancel_diradd(struct diradd *, struct dirrem *, struct jremref *,
842 	    struct jremref *, struct jremref *);
843 static	void dirrem_journal(struct dirrem *, struct jremref *, struct jremref *,
844 	    struct jremref *);
845 static	void cancel_allocindir(struct allocindir *, struct buf *bp,
846 	    struct freeblks *, int);
847 static	int setup_trunc_indir(struct freeblks *, struct inode *,
848 	    ufs_lbn_t, ufs_lbn_t, ufs2_daddr_t);
849 static	void complete_trunc_indir(struct freework *);
850 static	void trunc_indirdep(struct indirdep *, struct freeblks *, struct buf *,
851 	    int);
852 static	void complete_mkdir(struct mkdir *);
853 static	void free_newdirblk(struct newdirblk *);
854 static	void free_jremref(struct jremref *);
855 static	void free_jaddref(struct jaddref *);
856 static	void free_jsegdep(struct jsegdep *);
857 static	void free_jsegs(struct jblocks *);
858 static	void rele_jseg(struct jseg *);
859 static	void free_jseg(struct jseg *, struct jblocks *);
860 static	void free_jnewblk(struct jnewblk *);
861 static	void free_jblkdep(struct jblkdep *);
862 static	void free_jfreefrag(struct jfreefrag *);
863 static	void free_freedep(struct freedep *);
864 static	void journal_jremref(struct dirrem *, struct jremref *,
865 	    struct inodedep *);
866 static	void cancel_jnewblk(struct jnewblk *, struct workhead *);
867 static	int cancel_jaddref(struct jaddref *, struct inodedep *,
868 	    struct workhead *);
869 static	void cancel_jfreefrag(struct jfreefrag *);
870 static	inline void setup_freedirect(struct freeblks *, struct inode *,
871 	    int, int);
872 static	inline void setup_freeext(struct freeblks *, struct inode *, int, int);
873 static	inline void setup_freeindir(struct freeblks *, struct inode *, int,
874 	    ufs_lbn_t, int);
875 static	inline struct freeblks *newfreeblks(struct mount *, struct inode *);
876 static	void freeblks_free(struct ufsmount *, struct freeblks *, int);
877 static	void indir_trunc(struct freework *, ufs2_daddr_t, ufs_lbn_t);
878 static	ufs2_daddr_t blkcount(struct fs *, ufs2_daddr_t, off_t);
879 static	int trunc_check_buf(struct buf *, int *, ufs_lbn_t, int, int);
880 static	void trunc_dependencies(struct inode *, struct freeblks *, ufs_lbn_t,
881 	    int, int);
882 static	void trunc_pages(struct inode *, off_t, ufs2_daddr_t, int);
883 static 	int cancel_pagedep(struct pagedep *, struct freeblks *, int);
884 static	int deallocate_dependencies(struct buf *, struct freeblks *, int);
885 static	void newblk_freefrag(struct newblk*);
886 static	void free_newblk(struct newblk *);
887 static	void cancel_allocdirect(struct allocdirectlst *,
888 	    struct allocdirect *, struct freeblks *);
889 static	int check_inode_unwritten(struct inodedep *);
890 static	int free_inodedep(struct inodedep *);
891 static	void freework_freeblock(struct freework *, u_long);
892 static	void freework_enqueue(struct freework *);
893 static	int handle_workitem_freeblocks(struct freeblks *, int);
894 static	int handle_complete_freeblocks(struct freeblks *, int);
895 static	void handle_workitem_indirblk(struct freework *);
896 static	void handle_written_freework(struct freework *);
897 static	void merge_inode_lists(struct allocdirectlst *,struct allocdirectlst *);
898 static	struct worklist *jnewblk_merge(struct worklist *, struct worklist *,
899 	    struct workhead *);
900 static	struct freefrag *setup_allocindir_phase2(struct buf *, struct inode *,
901 	    struct inodedep *, struct allocindir *, ufs_lbn_t);
902 static	struct allocindir *newallocindir(struct inode *, int, ufs2_daddr_t,
903 	    ufs2_daddr_t, ufs_lbn_t);
904 static	void handle_workitem_freefrag(struct freefrag *);
905 static	struct freefrag *newfreefrag(struct inode *, ufs2_daddr_t, long,
906 	    ufs_lbn_t, u_long);
907 static	void allocdirect_merge(struct allocdirectlst *,
908 	    struct allocdirect *, struct allocdirect *);
909 static	struct freefrag *allocindir_merge(struct allocindir *,
910 	    struct allocindir *);
911 static	int bmsafemap_find(struct bmsafemap_hashhead *, int,
912 	    struct bmsafemap **);
913 static	struct bmsafemap *bmsafemap_lookup(struct mount *, struct buf *,
914 	    int cg, struct bmsafemap *);
915 static	int newblk_find(struct newblk_hashhead *, ufs2_daddr_t, int,
916 	    struct newblk **);
917 static	int newblk_lookup(struct mount *, ufs2_daddr_t, int, struct newblk **);
918 static	int inodedep_find(struct inodedep_hashhead *, ino_t,
919 	    struct inodedep **);
920 static	int inodedep_lookup(struct mount *, ino_t, int, struct inodedep **);
921 static	int pagedep_lookup(struct mount *, struct buf *bp, ino_t, ufs_lbn_t,
922 	    int, struct pagedep **);
923 static	int pagedep_find(struct pagedep_hashhead *, ino_t, ufs_lbn_t,
924 	    struct pagedep **);
925 static	void pause_timer(void *);
926 static	int request_cleanup(struct mount *, int);
927 static	int softdep_request_cleanup_flush(struct mount *, struct ufsmount *);
928 static	void schedule_cleanup(struct mount *);
929 static void softdep_ast_cleanup_proc(struct thread *);
930 static struct ufsmount *softdep_bp_to_mp(struct buf *bp);
931 static	int process_worklist_item(struct mount *, int, int);
932 static	void process_removes(struct vnode *);
933 static	void process_truncates(struct vnode *);
934 static	void jwork_move(struct workhead *, struct workhead *);
935 static	void jwork_insert(struct workhead *, struct jsegdep *);
936 static	void add_to_worklist(struct worklist *, int);
937 static	void wake_worklist(struct worklist *);
938 static	void wait_worklist(struct worklist *, char *);
939 static	void remove_from_worklist(struct worklist *);
940 static	void softdep_flush(void *);
941 static	void softdep_flushjournal(struct mount *);
942 static	int softdep_speedup(struct ufsmount *);
943 static	void worklist_speedup(struct mount *);
944 static	int journal_mount(struct mount *, struct fs *, struct ucred *);
945 static	void journal_unmount(struct ufsmount *);
946 static	int journal_space(struct ufsmount *, int);
947 static	void journal_suspend(struct ufsmount *);
948 static	int journal_unsuspend(struct ufsmount *ump);
949 static	void add_to_journal(struct worklist *);
950 static	void remove_from_journal(struct worklist *);
951 static	bool softdep_excess_items(struct ufsmount *, int);
952 static	void softdep_process_journal(struct mount *, struct worklist *, int);
953 static	struct jremref *newjremref(struct dirrem *, struct inode *,
954 	    struct inode *ip, off_t, nlink_t);
955 static	struct jaddref *newjaddref(struct inode *, ino_t, off_t, int16_t,
956 	    uint16_t);
957 static	inline void newinoref(struct inoref *, ino_t, ino_t, off_t, nlink_t,
958 	    uint16_t);
959 static	inline struct jsegdep *inoref_jseg(struct inoref *);
960 static	struct jmvref *newjmvref(struct inode *, ino_t, off_t, off_t);
961 static	struct jfreeblk *newjfreeblk(struct freeblks *, ufs_lbn_t,
962 	    ufs2_daddr_t, int);
963 static	void adjust_newfreework(struct freeblks *, int);
964 static	struct jtrunc *newjtrunc(struct freeblks *, off_t, int);
965 static	void move_newblock_dep(struct jaddref *, struct inodedep *);
966 static	void cancel_jfreeblk(struct freeblks *, ufs2_daddr_t);
967 static	struct jfreefrag *newjfreefrag(struct freefrag *, struct inode *,
968 	    ufs2_daddr_t, long, ufs_lbn_t);
969 static	struct freework *newfreework(struct ufsmount *, struct freeblks *,
970 	    struct freework *, ufs_lbn_t, ufs2_daddr_t, int, int, int);
971 static	int jwait(struct worklist *, int);
972 static	struct inodedep *inodedep_lookup_ip(struct inode *);
973 static	int bmsafemap_backgroundwrite(struct bmsafemap *, struct buf *);
974 static	struct freefile *handle_bufwait(struct inodedep *, struct workhead *);
975 static	void handle_jwork(struct workhead *);
976 static	struct mkdir *setup_newdir(struct diradd *, ino_t, ino_t, struct buf *,
977 	    struct mkdir **);
978 static	struct jblocks *jblocks_create(void);
979 static	ufs2_daddr_t jblocks_alloc(struct jblocks *, int, int *);
980 static	void jblocks_free(struct jblocks *, struct mount *, int);
981 static	void jblocks_destroy(struct jblocks *);
982 static	void jblocks_add(struct jblocks *, ufs2_daddr_t, int);
983 
984 /*
985  * Exported softdep operations.
986  */
987 static	void softdep_disk_io_initiation(struct buf *);
988 static	void softdep_disk_write_complete(struct buf *);
989 static	void softdep_deallocate_dependencies(struct buf *);
990 static	int softdep_count_dependencies(struct buf *bp, int);
991 
992 /*
993  * Global lock over all of soft updates.
994  */
995 static struct mtx lk;
996 MTX_SYSINIT(softdep_lock, &lk, "global softdep", MTX_DEF);
997 
998 #define ACQUIRE_GBLLOCK(lk)	mtx_lock(lk)
999 #define FREE_GBLLOCK(lk)	mtx_unlock(lk)
1000 #define GBLLOCK_OWNED(lk)	mtx_assert((lk), MA_OWNED)
1001 
1002 /*
1003  * Per-filesystem soft-updates locking.
1004  */
1005 #define LOCK_PTR(ump)		(&(ump)->um_softdep->sd_fslock)
1006 #define TRY_ACQUIRE_LOCK(ump)	rw_try_wlock(&(ump)->um_softdep->sd_fslock)
1007 #define ACQUIRE_LOCK(ump)	rw_wlock(&(ump)->um_softdep->sd_fslock)
1008 #define FREE_LOCK(ump)		rw_wunlock(&(ump)->um_softdep->sd_fslock)
1009 #define LOCK_OWNED(ump)		rw_assert(&(ump)->um_softdep->sd_fslock, \
1010 				    RA_WLOCKED)
1011 
1012 #define	BUF_AREC(bp)		lockallowrecurse(&(bp)->b_lock)
1013 #define	BUF_NOREC(bp)		lockdisablerecurse(&(bp)->b_lock)
1014 
1015 /*
1016  * Worklist queue management.
1017  * These routines require that the lock be held.
1018  */
1019 #ifndef /* NOT */ INVARIANTS
1020 #define WORKLIST_INSERT(head, item) do {	\
1021 	(item)->wk_state |= ONWORKLIST;		\
1022 	LIST_INSERT_HEAD(head, item, wk_list);	\
1023 } while (0)
1024 #define WORKLIST_REMOVE(item) do {		\
1025 	(item)->wk_state &= ~ONWORKLIST;	\
1026 	LIST_REMOVE(item, wk_list);		\
1027 } while (0)
1028 #define WORKLIST_INSERT_UNLOCKED	WORKLIST_INSERT
1029 #define WORKLIST_REMOVE_UNLOCKED	WORKLIST_REMOVE
1030 
1031 #else /* INVARIANTS */
1032 static	void worklist_insert(struct workhead *, struct worklist *, int,
1033 	const char *, int);
1034 static	void worklist_remove(struct worklist *, int, const char *, int);
1035 
1036 #define WORKLIST_INSERT(head, item) \
1037 	worklist_insert(head, item, 1, __func__, __LINE__)
1038 #define WORKLIST_INSERT_UNLOCKED(head, item)\
1039 	worklist_insert(head, item, 0, __func__, __LINE__)
1040 #define WORKLIST_REMOVE(item)\
1041 	worklist_remove(item, 1, __func__, __LINE__)
1042 #define WORKLIST_REMOVE_UNLOCKED(item)\
1043 	worklist_remove(item, 0, __func__, __LINE__)
1044 
1045 static void
1046 worklist_insert(head, item, locked, func, line)
1047 	struct workhead *head;
1048 	struct worklist *item;
1049 	int locked;
1050 	const char *func;
1051 	int line;
1052 {
1053 
1054 	if (locked)
1055 		LOCK_OWNED(VFSTOUFS(item->wk_mp));
1056 	if (item->wk_state & ONWORKLIST)
1057 		panic("worklist_insert: %p %s(0x%X) already on list, "
1058 		    "added in function %s at line %d",
1059 		    item, TYPENAME(item->wk_type), item->wk_state,
1060 		    item->wk_func, item->wk_line);
1061 	item->wk_state |= ONWORKLIST;
1062 	item->wk_func = func;
1063 	item->wk_line = line;
1064 	LIST_INSERT_HEAD(head, item, wk_list);
1065 }
1066 
1067 static void
1068 worklist_remove(item, locked, func, line)
1069 	struct worklist *item;
1070 	int locked;
1071 	const char *func;
1072 	int line;
1073 {
1074 
1075 	if (locked)
1076 		LOCK_OWNED(VFSTOUFS(item->wk_mp));
1077 	if ((item->wk_state & ONWORKLIST) == 0)
1078 		panic("worklist_remove: %p %s(0x%X) not on list, "
1079 		    "removed in function %s at line %d",
1080 		    item, TYPENAME(item->wk_type), item->wk_state,
1081 		    item->wk_func, item->wk_line);
1082 	item->wk_state &= ~ONWORKLIST;
1083 	item->wk_func = func;
1084 	item->wk_line = line;
1085 	LIST_REMOVE(item, wk_list);
1086 }
1087 #endif /* INVARIANTS */
1088 
1089 /*
1090  * Merge two jsegdeps keeping only the oldest one as newer references
1091  * can't be discarded until after older references.
1092  */
1093 static inline struct jsegdep *
1094 jsegdep_merge(struct jsegdep *one, struct jsegdep *two)
1095 {
1096 	struct jsegdep *swp;
1097 
1098 	if (two == NULL)
1099 		return (one);
1100 
1101 	if (one->jd_seg->js_seq > two->jd_seg->js_seq) {
1102 		swp = one;
1103 		one = two;
1104 		two = swp;
1105 	}
1106 	WORKLIST_REMOVE(&two->jd_list);
1107 	free_jsegdep(two);
1108 
1109 	return (one);
1110 }
1111 
1112 /*
1113  * If two freedeps are compatible free one to reduce list size.
1114  */
1115 static inline struct freedep *
1116 freedep_merge(struct freedep *one, struct freedep *two)
1117 {
1118 	if (two == NULL)
1119 		return (one);
1120 
1121 	if (one->fd_freework == two->fd_freework) {
1122 		WORKLIST_REMOVE(&two->fd_list);
1123 		free_freedep(two);
1124 	}
1125 	return (one);
1126 }
1127 
1128 /*
1129  * Move journal work from one list to another.  Duplicate freedeps and
1130  * jsegdeps are coalesced to keep the lists as small as possible.
1131  */
1132 static void
1133 jwork_move(dst, src)
1134 	struct workhead *dst;
1135 	struct workhead *src;
1136 {
1137 	struct freedep *freedep;
1138 	struct jsegdep *jsegdep;
1139 	struct worklist *wkn;
1140 	struct worklist *wk;
1141 
1142 	KASSERT(dst != src,
1143 	    ("jwork_move: dst == src"));
1144 	freedep = NULL;
1145 	jsegdep = NULL;
1146 	LIST_FOREACH_SAFE(wk, dst, wk_list, wkn) {
1147 		if (wk->wk_type == D_JSEGDEP)
1148 			jsegdep = jsegdep_merge(WK_JSEGDEP(wk), jsegdep);
1149 		else if (wk->wk_type == D_FREEDEP)
1150 			freedep = freedep_merge(WK_FREEDEP(wk), freedep);
1151 	}
1152 
1153 	while ((wk = LIST_FIRST(src)) != NULL) {
1154 		WORKLIST_REMOVE(wk);
1155 		WORKLIST_INSERT(dst, wk);
1156 		if (wk->wk_type == D_JSEGDEP) {
1157 			jsegdep = jsegdep_merge(WK_JSEGDEP(wk), jsegdep);
1158 			continue;
1159 		}
1160 		if (wk->wk_type == D_FREEDEP)
1161 			freedep = freedep_merge(WK_FREEDEP(wk), freedep);
1162 	}
1163 }
1164 
1165 static void
1166 jwork_insert(dst, jsegdep)
1167 	struct workhead *dst;
1168 	struct jsegdep *jsegdep;
1169 {
1170 	struct jsegdep *jsegdepn;
1171 	struct worklist *wk;
1172 
1173 	LIST_FOREACH(wk, dst, wk_list)
1174 		if (wk->wk_type == D_JSEGDEP)
1175 			break;
1176 	if (wk == NULL) {
1177 		WORKLIST_INSERT(dst, &jsegdep->jd_list);
1178 		return;
1179 	}
1180 	jsegdepn = WK_JSEGDEP(wk);
1181 	if (jsegdep->jd_seg->js_seq < jsegdepn->jd_seg->js_seq) {
1182 		WORKLIST_REMOVE(wk);
1183 		free_jsegdep(jsegdepn);
1184 		WORKLIST_INSERT(dst, &jsegdep->jd_list);
1185 	} else
1186 		free_jsegdep(jsegdep);
1187 }
1188 
1189 /*
1190  * Routines for tracking and managing workitems.
1191  */
1192 static	void workitem_free(struct worklist *, int);
1193 static	void workitem_alloc(struct worklist *, int, struct mount *);
1194 static	void workitem_reassign(struct worklist *, int);
1195 
1196 #define	WORKITEM_FREE(item, type) \
1197 	workitem_free((struct worklist *)(item), (type))
1198 #define	WORKITEM_REASSIGN(item, type) \
1199 	workitem_reassign((struct worklist *)(item), (type))
1200 
1201 static void
1202 workitem_free(item, type)
1203 	struct worklist *item;
1204 	int type;
1205 {
1206 	struct ufsmount *ump;
1207 
1208 #ifdef INVARIANTS
1209 	if (item->wk_state & ONWORKLIST)
1210 		panic("workitem_free: %s(0x%X) still on list, "
1211 		    "added in function %s at line %d",
1212 		    TYPENAME(item->wk_type), item->wk_state,
1213 		    item->wk_func, item->wk_line);
1214 	if (item->wk_type != type && type != D_NEWBLK)
1215 		panic("workitem_free: type mismatch %s != %s",
1216 		    TYPENAME(item->wk_type), TYPENAME(type));
1217 #endif
1218 	if (item->wk_state & IOWAITING)
1219 		wakeup(item);
1220 	ump = VFSTOUFS(item->wk_mp);
1221 	LOCK_OWNED(ump);
1222 	KASSERT(ump->softdep_deps > 0,
1223 	    ("workitem_free: %s: softdep_deps going negative",
1224 	    ump->um_fs->fs_fsmnt));
1225 	if (--ump->softdep_deps == 0 && ump->softdep_req)
1226 		wakeup(&ump->softdep_deps);
1227 	KASSERT(dep_current[item->wk_type] > 0,
1228 	    ("workitem_free: %s: dep_current[%s] going negative",
1229 	    ump->um_fs->fs_fsmnt, TYPENAME(item->wk_type)));
1230 	KASSERT(ump->softdep_curdeps[item->wk_type] > 0,
1231 	    ("workitem_free: %s: softdep_curdeps[%s] going negative",
1232 	    ump->um_fs->fs_fsmnt, TYPENAME(item->wk_type)));
1233 	atomic_subtract_long(&dep_current[item->wk_type], 1);
1234 	ump->softdep_curdeps[item->wk_type] -= 1;
1235 #ifdef INVARIANTS
1236 	LIST_REMOVE(item, wk_all);
1237 #endif
1238 	free(item, DtoM(type));
1239 }
1240 
1241 static void
1242 workitem_alloc(item, type, mp)
1243 	struct worklist *item;
1244 	int type;
1245 	struct mount *mp;
1246 {
1247 	struct ufsmount *ump;
1248 
1249 	item->wk_type = type;
1250 	item->wk_mp = mp;
1251 	item->wk_state = 0;
1252 
1253 	ump = VFSTOUFS(mp);
1254 	ACQUIRE_GBLLOCK(&lk);
1255 	dep_current[type]++;
1256 	if (dep_current[type] > dep_highuse[type])
1257 		dep_highuse[type] = dep_current[type];
1258 	dep_total[type]++;
1259 	FREE_GBLLOCK(&lk);
1260 	ACQUIRE_LOCK(ump);
1261 	ump->softdep_curdeps[type] += 1;
1262 	ump->softdep_deps++;
1263 	ump->softdep_accdeps++;
1264 #ifdef INVARIANTS
1265 	LIST_INSERT_HEAD(&ump->softdep_alldeps[type], item, wk_all);
1266 #endif
1267 	FREE_LOCK(ump);
1268 }
1269 
1270 static void
1271 workitem_reassign(item, newtype)
1272 	struct worklist *item;
1273 	int newtype;
1274 {
1275 	struct ufsmount *ump;
1276 
1277 	ump = VFSTOUFS(item->wk_mp);
1278 	LOCK_OWNED(ump);
1279 	KASSERT(ump->softdep_curdeps[item->wk_type] > 0,
1280 	    ("workitem_reassign: %s: softdep_curdeps[%s] going negative",
1281 	    VFSTOUFS(item->wk_mp)->um_fs->fs_fsmnt, TYPENAME(item->wk_type)));
1282 	ump->softdep_curdeps[item->wk_type] -= 1;
1283 	ump->softdep_curdeps[newtype] += 1;
1284 	KASSERT(dep_current[item->wk_type] > 0,
1285 	    ("workitem_reassign: %s: dep_current[%s] going negative",
1286 	    VFSTOUFS(item->wk_mp)->um_fs->fs_fsmnt, TYPENAME(item->wk_type)));
1287 	ACQUIRE_GBLLOCK(&lk);
1288 	dep_current[newtype]++;
1289 	dep_current[item->wk_type]--;
1290 	if (dep_current[newtype] > dep_highuse[newtype])
1291 		dep_highuse[newtype] = dep_current[newtype];
1292 	dep_total[newtype]++;
1293 	FREE_GBLLOCK(&lk);
1294 	item->wk_type = newtype;
1295 }
1296 
1297 /*
1298  * Workitem queue management
1299  */
1300 static int max_softdeps;	/* maximum number of structs before slowdown */
1301 static int tickdelay = 2;	/* number of ticks to pause during slowdown */
1302 static int proc_waiting;	/* tracks whether we have a timeout posted */
1303 static int *stat_countp;	/* statistic to count in proc_waiting timeout */
1304 static struct callout softdep_callout;
1305 static int req_clear_inodedeps;	/* syncer process flush some inodedeps */
1306 static int req_clear_remove;	/* syncer process flush some freeblks */
1307 static int softdep_flushcache = 0; /* Should we do BIO_FLUSH? */
1308 
1309 /*
1310  * runtime statistics
1311  */
1312 static int stat_flush_threads;	/* number of softdep flushing threads */
1313 static int stat_worklist_push;	/* number of worklist cleanups */
1314 static int stat_delayed_inact;	/* number of delayed inactivation cleanups */
1315 static int stat_blk_limit_push;	/* number of times block limit neared */
1316 static int stat_ino_limit_push;	/* number of times inode limit neared */
1317 static int stat_blk_limit_hit;	/* number of times block slowdown imposed */
1318 static int stat_ino_limit_hit;	/* number of times inode slowdown imposed */
1319 static int stat_sync_limit_hit;	/* number of synchronous slowdowns imposed */
1320 static int stat_indir_blk_ptrs;	/* bufs redirtied as indir ptrs not written */
1321 static int stat_inode_bitmap;	/* bufs redirtied as inode bitmap not written */
1322 static int stat_direct_blk_ptrs;/* bufs redirtied as direct ptrs not written */
1323 static int stat_dir_entry;	/* bufs redirtied as dir entry cannot write */
1324 static int stat_jaddref;	/* bufs redirtied as ino bitmap can not write */
1325 static int stat_jnewblk;	/* bufs redirtied as blk bitmap can not write */
1326 static int stat_journal_min;	/* Times hit journal min threshold */
1327 static int stat_journal_low;	/* Times hit journal low threshold */
1328 static int stat_journal_wait;	/* Times blocked in jwait(). */
1329 static int stat_jwait_filepage;	/* Times blocked in jwait() for filepage. */
1330 static int stat_jwait_freeblks;	/* Times blocked in jwait() for freeblks. */
1331 static int stat_jwait_inode;	/* Times blocked in jwait() for inodes. */
1332 static int stat_jwait_newblk;	/* Times blocked in jwait() for newblks. */
1333 static int stat_cleanup_high_delay; /* Maximum cleanup delay (in ticks) */
1334 static int stat_cleanup_blkrequests; /* Number of block cleanup requests */
1335 static int stat_cleanup_inorequests; /* Number of inode cleanup requests */
1336 static int stat_cleanup_retries; /* Number of cleanups that needed to flush */
1337 static int stat_cleanup_failures; /* Number of cleanup requests that failed */
1338 static int stat_emptyjblocks; /* Number of potentially empty journal blocks */
1339 
1340 SYSCTL_INT(_debug_softdep, OID_AUTO, max_softdeps, CTLFLAG_RW,
1341     &max_softdeps, 0, "");
1342 SYSCTL_INT(_debug_softdep, OID_AUTO, tickdelay, CTLFLAG_RW,
1343     &tickdelay, 0, "");
1344 SYSCTL_INT(_debug_softdep, OID_AUTO, flush_threads, CTLFLAG_RD,
1345     &stat_flush_threads, 0, "");
1346 SYSCTL_INT(_debug_softdep, OID_AUTO, worklist_push,
1347     CTLFLAG_RW | CTLFLAG_STATS, &stat_worklist_push, 0,"");
1348 SYSCTL_INT(_debug_softdep, OID_AUTO, delayed_inactivations, CTLFLAG_RD,
1349     &stat_delayed_inact, 0, "");
1350 SYSCTL_INT(_debug_softdep, OID_AUTO, blk_limit_push,
1351     CTLFLAG_RW | CTLFLAG_STATS, &stat_blk_limit_push, 0,"");
1352 SYSCTL_INT(_debug_softdep, OID_AUTO, ino_limit_push,
1353     CTLFLAG_RW | CTLFLAG_STATS, &stat_ino_limit_push, 0,"");
1354 SYSCTL_INT(_debug_softdep, OID_AUTO, blk_limit_hit,
1355     CTLFLAG_RW | CTLFLAG_STATS, &stat_blk_limit_hit, 0, "");
1356 SYSCTL_INT(_debug_softdep, OID_AUTO, ino_limit_hit,
1357     CTLFLAG_RW | CTLFLAG_STATS, &stat_ino_limit_hit, 0, "");
1358 SYSCTL_INT(_debug_softdep, OID_AUTO, sync_limit_hit,
1359     CTLFLAG_RW | CTLFLAG_STATS, &stat_sync_limit_hit, 0, "");
1360 SYSCTL_INT(_debug_softdep, OID_AUTO, indir_blk_ptrs,
1361     CTLFLAG_RW | CTLFLAG_STATS, &stat_indir_blk_ptrs, 0, "");
1362 SYSCTL_INT(_debug_softdep, OID_AUTO, inode_bitmap,
1363     CTLFLAG_RW | CTLFLAG_STATS, &stat_inode_bitmap, 0, "");
1364 SYSCTL_INT(_debug_softdep, OID_AUTO, direct_blk_ptrs,
1365     CTLFLAG_RW | CTLFLAG_STATS, &stat_direct_blk_ptrs, 0, "");
1366 SYSCTL_INT(_debug_softdep, OID_AUTO, dir_entry,
1367     CTLFLAG_RW | CTLFLAG_STATS, &stat_dir_entry, 0, "");
1368 SYSCTL_INT(_debug_softdep, OID_AUTO, jaddref_rollback,
1369     CTLFLAG_RW | CTLFLAG_STATS, &stat_jaddref, 0, "");
1370 SYSCTL_INT(_debug_softdep, OID_AUTO, jnewblk_rollback,
1371     CTLFLAG_RW | CTLFLAG_STATS, &stat_jnewblk, 0, "");
1372 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_low,
1373     CTLFLAG_RW | CTLFLAG_STATS, &stat_journal_low, 0, "");
1374 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_min,
1375     CTLFLAG_RW | CTLFLAG_STATS, &stat_journal_min, 0, "");
1376 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_wait,
1377     CTLFLAG_RW | CTLFLAG_STATS, &stat_journal_wait, 0, "");
1378 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_filepage,
1379     CTLFLAG_RW | CTLFLAG_STATS, &stat_jwait_filepage, 0, "");
1380 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_freeblks,
1381     CTLFLAG_RW | CTLFLAG_STATS, &stat_jwait_freeblks, 0, "");
1382 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_inode,
1383     CTLFLAG_RW | CTLFLAG_STATS, &stat_jwait_inode, 0, "");
1384 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_newblk,
1385     CTLFLAG_RW | CTLFLAG_STATS, &stat_jwait_newblk, 0, "");
1386 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_blkrequests,
1387     CTLFLAG_RW | CTLFLAG_STATS, &stat_cleanup_blkrequests, 0, "");
1388 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_inorequests,
1389     CTLFLAG_RW | CTLFLAG_STATS, &stat_cleanup_inorequests, 0, "");
1390 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_high_delay,
1391     CTLFLAG_RW | CTLFLAG_STATS, &stat_cleanup_high_delay, 0, "");
1392 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_retries,
1393     CTLFLAG_RW | CTLFLAG_STATS, &stat_cleanup_retries, 0, "");
1394 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_failures,
1395     CTLFLAG_RW | CTLFLAG_STATS, &stat_cleanup_failures, 0, "");
1396 
1397 SYSCTL_INT(_debug_softdep, OID_AUTO, flushcache, CTLFLAG_RW,
1398     &softdep_flushcache, 0, "");
1399 SYSCTL_INT(_debug_softdep, OID_AUTO, emptyjblocks, CTLFLAG_RD,
1400     &stat_emptyjblocks, 0, "");
1401 
1402 SYSCTL_DECL(_vfs_ffs);
1403 
1404 /* Whether to recompute the summary at mount time */
1405 static int compute_summary_at_mount = 0;
1406 SYSCTL_INT(_vfs_ffs, OID_AUTO, compute_summary_at_mount, CTLFLAG_RW,
1407 	   &compute_summary_at_mount, 0, "Recompute summary at mount");
1408 static int print_threads = 0;
1409 SYSCTL_INT(_debug_softdep, OID_AUTO, print_threads, CTLFLAG_RW,
1410     &print_threads, 0, "Notify flusher thread start/stop");
1411 
1412 /* List of all filesystems mounted with soft updates */
1413 static TAILQ_HEAD(, mount_softdeps) softdepmounts;
1414 
1415 static void
1416 get_parent_vp_unlock_bp(struct mount *mp, struct buf *bp,
1417     struct diraddhd *diraddhdp, struct diraddhd *unfinishedp)
1418 {
1419 	struct diradd *dap;
1420 
1421 	/*
1422 	 * Requeue unfinished dependencies before
1423 	 * unlocking buffer, which could make
1424 	 * diraddhdp invalid.
1425 	 */
1426 	ACQUIRE_LOCK(VFSTOUFS(mp));
1427 	while ((dap = LIST_FIRST(unfinishedp)) != NULL) {
1428 		LIST_REMOVE(dap, da_pdlist);
1429 		LIST_INSERT_HEAD(diraddhdp, dap, da_pdlist);
1430 	}
1431 	FREE_LOCK(VFSTOUFS(mp));
1432 
1433 	bp->b_vflags &= ~BV_SCANNED;
1434 	BUF_NOREC(bp);
1435 	BUF_UNLOCK(bp);
1436 }
1437 
1438 /*
1439  * This function fetches inode inum on mount point mp.  We already
1440  * hold a locked vnode vp, and might have a locked buffer bp belonging
1441  * to vp.
1442 
1443  * We must not block on acquiring the new inode lock as we will get
1444  * into a lock-order reversal with the buffer lock and possibly get a
1445  * deadlock.  Thus if we cannot instantiate the requested vnode
1446  * without sleeping on its lock, we must unlock the vnode and the
1447  * buffer before doing a blocking on the vnode lock.  We return
1448  * ERELOOKUP if we have had to unlock either the vnode or the buffer so
1449  * that the caller can reassess its state.
1450  *
1451  * Top-level VFS code (for syscalls and other consumers, e.g. callers
1452  * of VOP_FSYNC() in syncer) check for ERELOOKUP and restart at safe
1453  * point.
1454  *
1455  * Since callers expect to operate on fully constructed vnode, we also
1456  * recheck v_data after relock, and return ENOENT if NULL.
1457  *
1458  * If unlocking bp, we must unroll dequeueing its unfinished
1459  * dependencies, and clear scan flag, before unlocking.  If unlocking
1460  * vp while it is under deactivation, we re-queue deactivation.
1461  */
1462 static int
1463 get_parent_vp(struct vnode *vp, struct mount *mp, ino_t inum, struct buf *bp,
1464     struct diraddhd *diraddhdp, struct diraddhd *unfinishedp,
1465     struct vnode **rvp)
1466 {
1467 	struct vnode *pvp;
1468 	int error;
1469 	bool bplocked;
1470 
1471 	ASSERT_VOP_ELOCKED(vp, "child vnode must be locked");
1472 	for (bplocked = true, pvp = NULL;;) {
1473 		error = ffs_vgetf(mp, inum, LK_EXCLUSIVE | LK_NOWAIT, &pvp,
1474 		    FFSV_FORCEINSMQ | FFSV_FORCEINODEDEP);
1475 		if (error == 0) {
1476 			/*
1477 			 * Since we could have unlocked vp, the inode
1478 			 * number could no longer indicate a
1479 			 * constructed node.  In this case, we must
1480 			 * restart the syscall.
1481 			 */
1482 			if (VTOI(pvp)->i_mode == 0 || !bplocked) {
1483 				if (bp != NULL && bplocked)
1484 					get_parent_vp_unlock_bp(mp, bp,
1485 					    diraddhdp, unfinishedp);
1486 				if (VTOI(pvp)->i_mode == 0)
1487 					vgone(pvp);
1488 				error = ERELOOKUP;
1489 				goto out2;
1490 			}
1491 			goto out1;
1492 		}
1493 		if (bp != NULL && bplocked) {
1494 			get_parent_vp_unlock_bp(mp, bp, diraddhdp, unfinishedp);
1495 			bplocked = false;
1496 		}
1497 
1498 		/*
1499 		 * Do not drop vnode lock while inactivating during
1500 		 * vunref.  This would result in leaks of the VI flags
1501 		 * and reclaiming of non-truncated vnode.  Instead,
1502 		 * re-schedule inactivation hoping that we would be
1503 		 * able to sync inode later.
1504 		 */
1505 		if ((vp->v_iflag & VI_DOINGINACT) != 0 &&
1506 		    (vp->v_vflag & VV_UNREF) != 0) {
1507 			VI_LOCK(vp);
1508 			vp->v_iflag |= VI_OWEINACT;
1509 			VI_UNLOCK(vp);
1510 			return (ERELOOKUP);
1511 		}
1512 
1513 		VOP_UNLOCK(vp);
1514 		error = ffs_vgetf(mp, inum, LK_EXCLUSIVE, &pvp,
1515 		    FFSV_FORCEINSMQ | FFSV_FORCEINODEDEP);
1516 		if (error != 0) {
1517 			MPASS(error != ERELOOKUP);
1518 			vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1519 			break;
1520 		}
1521 		if (VTOI(pvp)->i_mode == 0) {
1522 			vgone(pvp);
1523 			vput(pvp);
1524 			pvp = NULL;
1525 			vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1526 			error = ERELOOKUP;
1527 			break;
1528 		}
1529 		error = vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT);
1530 		if (error == 0)
1531 			break;
1532 		vput(pvp);
1533 		pvp = NULL;
1534 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1535 		if (vp->v_data == NULL) {
1536 			error = ENOENT;
1537 			break;
1538 		}
1539 	}
1540 	if (bp != NULL) {
1541 		MPASS(!bplocked);
1542 		error = ERELOOKUP;
1543 	}
1544 out2:
1545 	if (error != 0 && pvp != NULL) {
1546 		vput(pvp);
1547 		pvp = NULL;
1548 	}
1549 out1:
1550 	*rvp = pvp;
1551 	ASSERT_VOP_ELOCKED(vp, "child vnode must be locked on return");
1552 	return (error);
1553 }
1554 
1555 /*
1556  * This function cleans the worklist for a filesystem.
1557  * Each filesystem running with soft dependencies gets its own
1558  * thread to run in this function. The thread is started up in
1559  * softdep_mount and shutdown in softdep_unmount. They show up
1560  * as part of the kernel "bufdaemon" process whose process
1561  * entry is available in bufdaemonproc.
1562  */
1563 static int searchfailed;
1564 extern struct proc *bufdaemonproc;
1565 static void
1566 softdep_flush(addr)
1567 	void *addr;
1568 {
1569 	struct mount *mp;
1570 	struct thread *td;
1571 	struct ufsmount *ump;
1572 	int cleanups;
1573 
1574 	td = curthread;
1575 	td->td_pflags |= TDP_NORUNNINGBUF;
1576 	mp = (struct mount *)addr;
1577 	ump = VFSTOUFS(mp);
1578 	atomic_add_int(&stat_flush_threads, 1);
1579 	ACQUIRE_LOCK(ump);
1580 	ump->softdep_flags &= ~FLUSH_STARTING;
1581 	wakeup(&ump->softdep_flushtd);
1582 	FREE_LOCK(ump);
1583 	if (print_threads) {
1584 		if (stat_flush_threads == 1)
1585 			printf("Running %s at pid %d\n", bufdaemonproc->p_comm,
1586 			    bufdaemonproc->p_pid);
1587 		printf("Start thread %s\n", td->td_name);
1588 	}
1589 	for (;;) {
1590 		while (softdep_process_worklist(mp, 0) > 0 ||
1591 		    (MOUNTEDSUJ(mp) &&
1592 		    VFSTOUFS(mp)->softdep_jblocks->jb_suspended))
1593 			kthread_suspend_check();
1594 		ACQUIRE_LOCK(ump);
1595 		if ((ump->softdep_flags & (FLUSH_CLEANUP | FLUSH_EXIT)) == 0)
1596 			msleep(&ump->softdep_flushtd, LOCK_PTR(ump), PVM,
1597 			    "sdflush", hz / 2);
1598 		ump->softdep_flags &= ~FLUSH_CLEANUP;
1599 		/*
1600 		 * Check to see if we are done and need to exit.
1601 		 */
1602 		if ((ump->softdep_flags & FLUSH_EXIT) == 0) {
1603 			FREE_LOCK(ump);
1604 			continue;
1605 		}
1606 		ump->softdep_flags &= ~FLUSH_EXIT;
1607 		cleanups = ump->um_softdep->sd_cleanups;
1608 		FREE_LOCK(ump);
1609 		wakeup(&ump->softdep_flags);
1610 		if (print_threads) {
1611 			printf("Stop thread %s: searchfailed %d, "
1612 			    "did cleanups %d\n",
1613 			    td->td_name, searchfailed, cleanups);
1614 		}
1615 		atomic_subtract_int(&stat_flush_threads, 1);
1616 		kthread_exit();
1617 		panic("kthread_exit failed\n");
1618 	}
1619 }
1620 
1621 static void
1622 worklist_speedup(mp)
1623 	struct mount *mp;
1624 {
1625 	struct ufsmount *ump;
1626 
1627 	ump = VFSTOUFS(mp);
1628 	LOCK_OWNED(ump);
1629 	if ((ump->softdep_flags & (FLUSH_CLEANUP | FLUSH_EXIT)) == 0)
1630 		ump->softdep_flags |= FLUSH_CLEANUP;
1631 	wakeup(&ump->softdep_flushtd);
1632 }
1633 
1634 static void
1635 softdep_send_speedup(struct ufsmount *ump, off_t shortage, u_int flags)
1636 {
1637 	struct buf *bp;
1638 
1639 	if ((ump->um_flags & UM_CANSPEEDUP) == 0)
1640 		return;
1641 
1642 	bp = malloc(sizeof(*bp), M_TRIM, M_WAITOK | M_ZERO);
1643 	bp->b_iocmd = BIO_SPEEDUP;
1644 	bp->b_ioflags = flags;
1645 	bp->b_bcount = omin(shortage, LONG_MAX);
1646 	g_vfs_strategy(ump->um_bo, bp);
1647 	bufwait(bp);
1648 	free(bp, M_TRIM);
1649 }
1650 
1651 static int
1652 softdep_speedup(ump)
1653 	struct ufsmount *ump;
1654 {
1655 	struct ufsmount *altump;
1656 	struct mount_softdeps *sdp;
1657 
1658 	LOCK_OWNED(ump);
1659 	worklist_speedup(ump->um_mountp);
1660 	bd_speedup();
1661 	/*
1662 	 * If we have global shortages, then we need other
1663 	 * filesystems to help with the cleanup. Here we wakeup a
1664 	 * flusher thread for a filesystem that is over its fair
1665 	 * share of resources.
1666 	 */
1667 	if (req_clear_inodedeps || req_clear_remove) {
1668 		ACQUIRE_GBLLOCK(&lk);
1669 		TAILQ_FOREACH(sdp, &softdepmounts, sd_next) {
1670 			if ((altump = sdp->sd_ump) == ump)
1671 				continue;
1672 			if (((req_clear_inodedeps &&
1673 			    altump->softdep_curdeps[D_INODEDEP] >
1674 			    max_softdeps / stat_flush_threads) ||
1675 			    (req_clear_remove &&
1676 			    altump->softdep_curdeps[D_DIRREM] >
1677 			    (max_softdeps / 2) / stat_flush_threads)) &&
1678 			    TRY_ACQUIRE_LOCK(altump))
1679 				break;
1680 		}
1681 		if (sdp == NULL) {
1682 			searchfailed++;
1683 			FREE_GBLLOCK(&lk);
1684 		} else {
1685 			/*
1686 			 * Move to the end of the list so we pick a
1687 			 * different one on out next try.
1688 			 */
1689 			TAILQ_REMOVE(&softdepmounts, sdp, sd_next);
1690 			TAILQ_INSERT_TAIL(&softdepmounts, sdp, sd_next);
1691 			FREE_GBLLOCK(&lk);
1692 			if ((altump->softdep_flags &
1693 			    (FLUSH_CLEANUP | FLUSH_EXIT)) == 0)
1694 				altump->softdep_flags |= FLUSH_CLEANUP;
1695 			altump->um_softdep->sd_cleanups++;
1696 			wakeup(&altump->softdep_flushtd);
1697 			FREE_LOCK(altump);
1698 		}
1699 	}
1700 	return (speedup_syncer());
1701 }
1702 
1703 /*
1704  * Add an item to the end of the work queue.
1705  * This routine requires that the lock be held.
1706  * This is the only routine that adds items to the list.
1707  * The following routine is the only one that removes items
1708  * and does so in order from first to last.
1709  */
1710 
1711 #define	WK_HEAD		0x0001	/* Add to HEAD. */
1712 #define	WK_NODELAY	0x0002	/* Process immediately. */
1713 
1714 static void
1715 add_to_worklist(wk, flags)
1716 	struct worklist *wk;
1717 	int flags;
1718 {
1719 	struct ufsmount *ump;
1720 
1721 	ump = VFSTOUFS(wk->wk_mp);
1722 	LOCK_OWNED(ump);
1723 	if (wk->wk_state & ONWORKLIST)
1724 		panic("add_to_worklist: %s(0x%X) already on list",
1725 		    TYPENAME(wk->wk_type), wk->wk_state);
1726 	wk->wk_state |= ONWORKLIST;
1727 	if (ump->softdep_on_worklist == 0) {
1728 		LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list);
1729 		ump->softdep_worklist_tail = wk;
1730 	} else if (flags & WK_HEAD) {
1731 		LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list);
1732 	} else {
1733 		LIST_INSERT_AFTER(ump->softdep_worklist_tail, wk, wk_list);
1734 		ump->softdep_worklist_tail = wk;
1735 	}
1736 	ump->softdep_on_worklist += 1;
1737 	if (flags & WK_NODELAY)
1738 		worklist_speedup(wk->wk_mp);
1739 }
1740 
1741 /*
1742  * Remove the item to be processed. If we are removing the last
1743  * item on the list, we need to recalculate the tail pointer.
1744  */
1745 static void
1746 remove_from_worklist(wk)
1747 	struct worklist *wk;
1748 {
1749 	struct ufsmount *ump;
1750 
1751 	ump = VFSTOUFS(wk->wk_mp);
1752 	if (ump->softdep_worklist_tail == wk)
1753 		ump->softdep_worklist_tail =
1754 		    (struct worklist *)wk->wk_list.le_prev;
1755 	WORKLIST_REMOVE(wk);
1756 	ump->softdep_on_worklist -= 1;
1757 }
1758 
1759 static void
1760 wake_worklist(wk)
1761 	struct worklist *wk;
1762 {
1763 	if (wk->wk_state & IOWAITING) {
1764 		wk->wk_state &= ~IOWAITING;
1765 		wakeup(wk);
1766 	}
1767 }
1768 
1769 static void
1770 wait_worklist(wk, wmesg)
1771 	struct worklist *wk;
1772 	char *wmesg;
1773 {
1774 	struct ufsmount *ump;
1775 
1776 	ump = VFSTOUFS(wk->wk_mp);
1777 	wk->wk_state |= IOWAITING;
1778 	msleep(wk, LOCK_PTR(ump), PVM, wmesg, 0);
1779 }
1780 
1781 /*
1782  * Process that runs once per second to handle items in the background queue.
1783  *
1784  * Note that we ensure that everything is done in the order in which they
1785  * appear in the queue. The code below depends on this property to ensure
1786  * that blocks of a file are freed before the inode itself is freed. This
1787  * ordering ensures that no new <vfsid, inum, lbn> triples will be generated
1788  * until all the old ones have been purged from the dependency lists.
1789  */
1790 static int
1791 softdep_process_worklist(mp, full)
1792 	struct mount *mp;
1793 	int full;
1794 {
1795 	int cnt, matchcnt;
1796 	struct ufsmount *ump;
1797 	long starttime;
1798 
1799 	KASSERT(mp != NULL, ("softdep_process_worklist: NULL mp"));
1800 	ump = VFSTOUFS(mp);
1801 	if (ump->um_softdep == NULL)
1802 		return (0);
1803 	matchcnt = 0;
1804 	ACQUIRE_LOCK(ump);
1805 	starttime = time_second;
1806 	softdep_process_journal(mp, NULL, full ? MNT_WAIT : 0);
1807 	check_clear_deps(mp);
1808 	while (ump->softdep_on_worklist > 0) {
1809 		if ((cnt = process_worklist_item(mp, 10, LK_NOWAIT)) == 0)
1810 			break;
1811 		else
1812 			matchcnt += cnt;
1813 		check_clear_deps(mp);
1814 		/*
1815 		 * We do not generally want to stop for buffer space, but if
1816 		 * we are really being a buffer hog, we will stop and wait.
1817 		 */
1818 		if (should_yield()) {
1819 			FREE_LOCK(ump);
1820 			kern_yield(PRI_USER);
1821 			bwillwrite();
1822 			ACQUIRE_LOCK(ump);
1823 		}
1824 		/*
1825 		 * Never allow processing to run for more than one
1826 		 * second. This gives the syncer thread the opportunity
1827 		 * to pause if appropriate.
1828 		 */
1829 		if (!full && starttime != time_second)
1830 			break;
1831 	}
1832 	if (full == 0)
1833 		journal_unsuspend(ump);
1834 	FREE_LOCK(ump);
1835 	return (matchcnt);
1836 }
1837 
1838 /*
1839  * Process all removes associated with a vnode if we are running out of
1840  * journal space.  Any other process which attempts to flush these will
1841  * be unable as we have the vnodes locked.
1842  */
1843 static void
1844 process_removes(vp)
1845 	struct vnode *vp;
1846 {
1847 	struct inodedep *inodedep;
1848 	struct dirrem *dirrem;
1849 	struct ufsmount *ump;
1850 	struct mount *mp;
1851 	ino_t inum;
1852 
1853 	mp = vp->v_mount;
1854 	ump = VFSTOUFS(mp);
1855 	LOCK_OWNED(ump);
1856 	inum = VTOI(vp)->i_number;
1857 	for (;;) {
1858 top:
1859 		if (inodedep_lookup(mp, inum, 0, &inodedep) == 0)
1860 			return;
1861 		LIST_FOREACH(dirrem, &inodedep->id_dirremhd, dm_inonext) {
1862 			/*
1863 			 * If another thread is trying to lock this vnode
1864 			 * it will fail but we must wait for it to do so
1865 			 * before we can proceed.
1866 			 */
1867 			if (dirrem->dm_state & INPROGRESS) {
1868 				wait_worklist(&dirrem->dm_list, "pwrwait");
1869 				goto top;
1870 			}
1871 			if ((dirrem->dm_state & (COMPLETE | ONWORKLIST)) ==
1872 			    (COMPLETE | ONWORKLIST))
1873 				break;
1874 		}
1875 		if (dirrem == NULL)
1876 			return;
1877 		remove_from_worklist(&dirrem->dm_list);
1878 		FREE_LOCK(ump);
1879 		if (vn_start_secondary_write(NULL, &mp, V_NOWAIT))
1880 			panic("process_removes: suspended filesystem");
1881 		handle_workitem_remove(dirrem, 0);
1882 		vn_finished_secondary_write(mp);
1883 		ACQUIRE_LOCK(ump);
1884 	}
1885 }
1886 
1887 /*
1888  * Process all truncations associated with a vnode if we are running out
1889  * of journal space.  This is called when the vnode lock is already held
1890  * and no other process can clear the truncation.  This function returns
1891  * a value greater than zero if it did any work.
1892  */
1893 static void
1894 process_truncates(vp)
1895 	struct vnode *vp;
1896 {
1897 	struct inodedep *inodedep;
1898 	struct freeblks *freeblks;
1899 	struct ufsmount *ump;
1900 	struct mount *mp;
1901 	ino_t inum;
1902 	int cgwait;
1903 
1904 	mp = vp->v_mount;
1905 	ump = VFSTOUFS(mp);
1906 	LOCK_OWNED(ump);
1907 	inum = VTOI(vp)->i_number;
1908 	for (;;) {
1909 		if (inodedep_lookup(mp, inum, 0, &inodedep) == 0)
1910 			return;
1911 		cgwait = 0;
1912 		TAILQ_FOREACH(freeblks, &inodedep->id_freeblklst, fb_next) {
1913 			/* Journal entries not yet written.  */
1914 			if (!LIST_EMPTY(&freeblks->fb_jblkdephd)) {
1915 				jwait(&LIST_FIRST(
1916 				    &freeblks->fb_jblkdephd)->jb_list,
1917 				    MNT_WAIT);
1918 				break;
1919 			}
1920 			/* Another thread is executing this item. */
1921 			if (freeblks->fb_state & INPROGRESS) {
1922 				wait_worklist(&freeblks->fb_list, "ptrwait");
1923 				break;
1924 			}
1925 			/* Freeblks is waiting on a inode write. */
1926 			if ((freeblks->fb_state & COMPLETE) == 0) {
1927 				FREE_LOCK(ump);
1928 				ffs_update(vp, 1);
1929 				ACQUIRE_LOCK(ump);
1930 				break;
1931 			}
1932 			if ((freeblks->fb_state & (ALLCOMPLETE | ONWORKLIST)) ==
1933 			    (ALLCOMPLETE | ONWORKLIST)) {
1934 				remove_from_worklist(&freeblks->fb_list);
1935 				freeblks->fb_state |= INPROGRESS;
1936 				FREE_LOCK(ump);
1937 				if (vn_start_secondary_write(NULL, &mp,
1938 				    V_NOWAIT))
1939 					panic("process_truncates: "
1940 					    "suspended filesystem");
1941 				handle_workitem_freeblocks(freeblks, 0);
1942 				vn_finished_secondary_write(mp);
1943 				ACQUIRE_LOCK(ump);
1944 				break;
1945 			}
1946 			if (freeblks->fb_cgwait)
1947 				cgwait++;
1948 		}
1949 		if (cgwait) {
1950 			FREE_LOCK(ump);
1951 			sync_cgs(mp, MNT_WAIT);
1952 			ffs_sync_snap(mp, MNT_WAIT);
1953 			ACQUIRE_LOCK(ump);
1954 			continue;
1955 		}
1956 		if (freeblks == NULL)
1957 			break;
1958 	}
1959 	return;
1960 }
1961 
1962 /*
1963  * Process one item on the worklist.
1964  */
1965 static int
1966 process_worklist_item(mp, target, flags)
1967 	struct mount *mp;
1968 	int target;
1969 	int flags;
1970 {
1971 	struct worklist sentinel;
1972 	struct worklist *wk;
1973 	struct ufsmount *ump;
1974 	int matchcnt;
1975 	int error;
1976 
1977 	KASSERT(mp != NULL, ("process_worklist_item: NULL mp"));
1978 	/*
1979 	 * If we are being called because of a process doing a
1980 	 * copy-on-write, then it is not safe to write as we may
1981 	 * recurse into the copy-on-write routine.
1982 	 */
1983 	if (curthread->td_pflags & TDP_COWINPROGRESS)
1984 		return (-1);
1985 	PHOLD(curproc);	/* Don't let the stack go away. */
1986 	ump = VFSTOUFS(mp);
1987 	LOCK_OWNED(ump);
1988 	matchcnt = 0;
1989 	sentinel.wk_mp = NULL;
1990 	sentinel.wk_type = D_SENTINEL;
1991 	LIST_INSERT_HEAD(&ump->softdep_workitem_pending, &sentinel, wk_list);
1992 	for (wk = LIST_NEXT(&sentinel, wk_list); wk != NULL;
1993 	    wk = LIST_NEXT(&sentinel, wk_list)) {
1994 		if (wk->wk_type == D_SENTINEL) {
1995 			LIST_REMOVE(&sentinel, wk_list);
1996 			LIST_INSERT_AFTER(wk, &sentinel, wk_list);
1997 			continue;
1998 		}
1999 		if (wk->wk_state & INPROGRESS)
2000 			panic("process_worklist_item: %p already in progress.",
2001 			    wk);
2002 		wk->wk_state |= INPROGRESS;
2003 		remove_from_worklist(wk);
2004 		FREE_LOCK(ump);
2005 		if (vn_start_secondary_write(NULL, &mp, V_NOWAIT))
2006 			panic("process_worklist_item: suspended filesystem");
2007 		switch (wk->wk_type) {
2008 		case D_DIRREM:
2009 			/* removal of a directory entry */
2010 			error = handle_workitem_remove(WK_DIRREM(wk), flags);
2011 			break;
2012 
2013 		case D_FREEBLKS:
2014 			/* releasing blocks and/or fragments from a file */
2015 			error = handle_workitem_freeblocks(WK_FREEBLKS(wk),
2016 			    flags);
2017 			break;
2018 
2019 		case D_FREEFRAG:
2020 			/* releasing a fragment when replaced as a file grows */
2021 			handle_workitem_freefrag(WK_FREEFRAG(wk));
2022 			error = 0;
2023 			break;
2024 
2025 		case D_FREEFILE:
2026 			/* releasing an inode when its link count drops to 0 */
2027 			handle_workitem_freefile(WK_FREEFILE(wk));
2028 			error = 0;
2029 			break;
2030 
2031 		default:
2032 			panic("%s_process_worklist: Unknown type %s",
2033 			    "softdep", TYPENAME(wk->wk_type));
2034 			/* NOTREACHED */
2035 		}
2036 		vn_finished_secondary_write(mp);
2037 		ACQUIRE_LOCK(ump);
2038 		if (error == 0) {
2039 			if (++matchcnt == target)
2040 				break;
2041 			continue;
2042 		}
2043 		/*
2044 		 * We have to retry the worklist item later.  Wake up any
2045 		 * waiters who may be able to complete it immediately and
2046 		 * add the item back to the head so we don't try to execute
2047 		 * it again.
2048 		 */
2049 		wk->wk_state &= ~INPROGRESS;
2050 		wake_worklist(wk);
2051 		add_to_worklist(wk, WK_HEAD);
2052 	}
2053 	/* Sentinal could've become the tail from remove_from_worklist. */
2054 	if (ump->softdep_worklist_tail == &sentinel)
2055 		ump->softdep_worklist_tail =
2056 		    (struct worklist *)sentinel.wk_list.le_prev;
2057 	LIST_REMOVE(&sentinel, wk_list);
2058 	PRELE(curproc);
2059 	return (matchcnt);
2060 }
2061 
2062 /*
2063  * Move dependencies from one buffer to another.
2064  */
2065 int
2066 softdep_move_dependencies(oldbp, newbp)
2067 	struct buf *oldbp;
2068 	struct buf *newbp;
2069 {
2070 	struct worklist *wk, *wktail;
2071 	struct ufsmount *ump;
2072 	int dirty;
2073 
2074 	if ((wk = LIST_FIRST(&oldbp->b_dep)) == NULL)
2075 		return (0);
2076 	KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0,
2077 	    ("softdep_move_dependencies called on non-softdep filesystem"));
2078 	dirty = 0;
2079 	wktail = NULL;
2080 	ump = VFSTOUFS(wk->wk_mp);
2081 	ACQUIRE_LOCK(ump);
2082 	while ((wk = LIST_FIRST(&oldbp->b_dep)) != NULL) {
2083 		LIST_REMOVE(wk, wk_list);
2084 		if (wk->wk_type == D_BMSAFEMAP &&
2085 		    bmsafemap_backgroundwrite(WK_BMSAFEMAP(wk), newbp))
2086 			dirty = 1;
2087 		if (wktail == NULL)
2088 			LIST_INSERT_HEAD(&newbp->b_dep, wk, wk_list);
2089 		else
2090 			LIST_INSERT_AFTER(wktail, wk, wk_list);
2091 		wktail = wk;
2092 	}
2093 	FREE_LOCK(ump);
2094 
2095 	return (dirty);
2096 }
2097 
2098 /*
2099  * Purge the work list of all items associated with a particular mount point.
2100  */
2101 int
2102 softdep_flushworklist(oldmnt, countp, td)
2103 	struct mount *oldmnt;
2104 	int *countp;
2105 	struct thread *td;
2106 {
2107 	struct vnode *devvp;
2108 	struct ufsmount *ump;
2109 	int count, error;
2110 
2111 	/*
2112 	 * Alternately flush the block device associated with the mount
2113 	 * point and process any dependencies that the flushing
2114 	 * creates. We continue until no more worklist dependencies
2115 	 * are found.
2116 	 */
2117 	*countp = 0;
2118 	error = 0;
2119 	ump = VFSTOUFS(oldmnt);
2120 	devvp = ump->um_devvp;
2121 	while ((count = softdep_process_worklist(oldmnt, 1)) > 0) {
2122 		*countp += count;
2123 		vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
2124 		error = VOP_FSYNC(devvp, MNT_WAIT, td);
2125 		VOP_UNLOCK(devvp);
2126 		if (error != 0)
2127 			break;
2128 	}
2129 	return (error);
2130 }
2131 
2132 #define	SU_WAITIDLE_RETRIES	20
2133 static int
2134 softdep_waitidle(struct mount *mp, int flags __unused)
2135 {
2136 	struct ufsmount *ump;
2137 	struct vnode *devvp;
2138 	struct thread *td;
2139 	int error, i;
2140 
2141 	ump = VFSTOUFS(mp);
2142 	KASSERT(ump->um_softdep != NULL,
2143 	    ("softdep_waitidle called on non-softdep filesystem"));
2144 	devvp = ump->um_devvp;
2145 	td = curthread;
2146 	error = 0;
2147 	ACQUIRE_LOCK(ump);
2148 	for (i = 0; i < SU_WAITIDLE_RETRIES && ump->softdep_deps != 0; i++) {
2149 		ump->softdep_req = 1;
2150 		KASSERT((flags & FORCECLOSE) == 0 ||
2151 		    ump->softdep_on_worklist == 0,
2152 		    ("softdep_waitidle: work added after flush"));
2153 		msleep(&ump->softdep_deps, LOCK_PTR(ump), PVM | PDROP,
2154 		    "softdeps", 10 * hz);
2155 		vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
2156 		error = VOP_FSYNC(devvp, MNT_WAIT, td);
2157 		VOP_UNLOCK(devvp);
2158 		ACQUIRE_LOCK(ump);
2159 		if (error != 0)
2160 			break;
2161 	}
2162 	ump->softdep_req = 0;
2163 	if (i == SU_WAITIDLE_RETRIES && error == 0 && ump->softdep_deps != 0) {
2164 		error = EBUSY;
2165 		printf("softdep_waitidle: Failed to flush worklist for %p\n",
2166 		    mp);
2167 	}
2168 	FREE_LOCK(ump);
2169 	return (error);
2170 }
2171 
2172 /*
2173  * Flush all vnodes and worklist items associated with a specified mount point.
2174  */
2175 int
2176 softdep_flushfiles(oldmnt, flags, td)
2177 	struct mount *oldmnt;
2178 	int flags;
2179 	struct thread *td;
2180 {
2181 	struct ufsmount *ump;
2182 #ifdef QUOTA
2183 	int i;
2184 #endif
2185 	int error, early, depcount, loopcnt, retry_flush_count, retry;
2186 	int morework;
2187 
2188 	ump = VFSTOUFS(oldmnt);
2189 	KASSERT(ump->um_softdep != NULL,
2190 	    ("softdep_flushfiles called on non-softdep filesystem"));
2191 	loopcnt = 10;
2192 	retry_flush_count = 3;
2193 retry_flush:
2194 	error = 0;
2195 
2196 	/*
2197 	 * Alternately flush the vnodes associated with the mount
2198 	 * point and process any dependencies that the flushing
2199 	 * creates. In theory, this loop can happen at most twice,
2200 	 * but we give it a few extra just to be sure.
2201 	 */
2202 	for (; loopcnt > 0; loopcnt--) {
2203 		/*
2204 		 * Do another flush in case any vnodes were brought in
2205 		 * as part of the cleanup operations.
2206 		 */
2207 		early = retry_flush_count == 1 || (oldmnt->mnt_kern_flag &
2208 		    MNTK_UNMOUNT) == 0 ? 0 : EARLYFLUSH;
2209 		if ((error = ffs_flushfiles(oldmnt, flags | early, td)) != 0)
2210 			break;
2211 		if ((error = softdep_flushworklist(oldmnt, &depcount, td)) != 0 ||
2212 		    depcount == 0)
2213 			break;
2214 	}
2215 	/*
2216 	 * If we are unmounting then it is an error to fail. If we
2217 	 * are simply trying to downgrade to read-only, then filesystem
2218 	 * activity can keep us busy forever, so we just fail with EBUSY.
2219 	 */
2220 	if (loopcnt == 0) {
2221 		if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT)
2222 			panic("softdep_flushfiles: looping");
2223 		error = EBUSY;
2224 	}
2225 	if (!error)
2226 		error = softdep_waitidle(oldmnt, flags);
2227 	if (!error) {
2228 		if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT) {
2229 			retry = 0;
2230 			MNT_ILOCK(oldmnt);
2231 			morework = oldmnt->mnt_nvnodelistsize > 0;
2232 #ifdef QUOTA
2233 			UFS_LOCK(ump);
2234 			for (i = 0; i < MAXQUOTAS; i++) {
2235 				if (ump->um_quotas[i] != NULLVP)
2236 					morework = 1;
2237 			}
2238 			UFS_UNLOCK(ump);
2239 #endif
2240 			if (morework) {
2241 				if (--retry_flush_count > 0) {
2242 					retry = 1;
2243 					loopcnt = 3;
2244 				} else
2245 					error = EBUSY;
2246 			}
2247 			MNT_IUNLOCK(oldmnt);
2248 			if (retry)
2249 				goto retry_flush;
2250 		}
2251 	}
2252 	return (error);
2253 }
2254 
2255 /*
2256  * Structure hashing.
2257  *
2258  * There are four types of structures that can be looked up:
2259  *	1) pagedep structures identified by mount point, inode number,
2260  *	   and logical block.
2261  *	2) inodedep structures identified by mount point and inode number.
2262  *	3) newblk structures identified by mount point and
2263  *	   physical block number.
2264  *	4) bmsafemap structures identified by mount point and
2265  *	   cylinder group number.
2266  *
2267  * The "pagedep" and "inodedep" dependency structures are hashed
2268  * separately from the file blocks and inodes to which they correspond.
2269  * This separation helps when the in-memory copy of an inode or
2270  * file block must be replaced. It also obviates the need to access
2271  * an inode or file page when simply updating (or de-allocating)
2272  * dependency structures. Lookup of newblk structures is needed to
2273  * find newly allocated blocks when trying to associate them with
2274  * their allocdirect or allocindir structure.
2275  *
2276  * The lookup routines optionally create and hash a new instance when
2277  * an existing entry is not found. The bmsafemap lookup routine always
2278  * allocates a new structure if an existing one is not found.
2279  */
2280 #define DEPALLOC	0x0001	/* allocate structure if lookup fails */
2281 
2282 /*
2283  * Structures and routines associated with pagedep caching.
2284  */
2285 #define	PAGEDEP_HASH(ump, inum, lbn) \
2286 	(&(ump)->pagedep_hashtbl[((inum) + (lbn)) & (ump)->pagedep_hash_size])
2287 
2288 static int
2289 pagedep_find(pagedephd, ino, lbn, pagedeppp)
2290 	struct pagedep_hashhead *pagedephd;
2291 	ino_t ino;
2292 	ufs_lbn_t lbn;
2293 	struct pagedep **pagedeppp;
2294 {
2295 	struct pagedep *pagedep;
2296 
2297 	LIST_FOREACH(pagedep, pagedephd, pd_hash) {
2298 		if (ino == pagedep->pd_ino && lbn == pagedep->pd_lbn) {
2299 			*pagedeppp = pagedep;
2300 			return (1);
2301 		}
2302 	}
2303 	*pagedeppp = NULL;
2304 	return (0);
2305 }
2306 /*
2307  * Look up a pagedep. Return 1 if found, 0 otherwise.
2308  * If not found, allocate if DEPALLOC flag is passed.
2309  * Found or allocated entry is returned in pagedeppp.
2310  */
2311 static int
2312 pagedep_lookup(mp, bp, ino, lbn, flags, pagedeppp)
2313 	struct mount *mp;
2314 	struct buf *bp;
2315 	ino_t ino;
2316 	ufs_lbn_t lbn;
2317 	int flags;
2318 	struct pagedep **pagedeppp;
2319 {
2320 	struct pagedep *pagedep;
2321 	struct pagedep_hashhead *pagedephd;
2322 	struct worklist *wk;
2323 	struct ufsmount *ump;
2324 	int ret;
2325 	int i;
2326 
2327 	ump = VFSTOUFS(mp);
2328 	LOCK_OWNED(ump);
2329 	if (bp) {
2330 		LIST_FOREACH(wk, &bp->b_dep, wk_list) {
2331 			if (wk->wk_type == D_PAGEDEP) {
2332 				*pagedeppp = WK_PAGEDEP(wk);
2333 				return (1);
2334 			}
2335 		}
2336 	}
2337 	pagedephd = PAGEDEP_HASH(ump, ino, lbn);
2338 	ret = pagedep_find(pagedephd, ino, lbn, pagedeppp);
2339 	if (ret) {
2340 		if (((*pagedeppp)->pd_state & ONWORKLIST) == 0 && bp)
2341 			WORKLIST_INSERT(&bp->b_dep, &(*pagedeppp)->pd_list);
2342 		return (1);
2343 	}
2344 	if ((flags & DEPALLOC) == 0)
2345 		return (0);
2346 	FREE_LOCK(ump);
2347 	pagedep = malloc(sizeof(struct pagedep),
2348 	    M_PAGEDEP, M_SOFTDEP_FLAGS|M_ZERO);
2349 	workitem_alloc(&pagedep->pd_list, D_PAGEDEP, mp);
2350 	ACQUIRE_LOCK(ump);
2351 	ret = pagedep_find(pagedephd, ino, lbn, pagedeppp);
2352 	if (*pagedeppp) {
2353 		/*
2354 		 * This should never happen since we only create pagedeps
2355 		 * with the vnode lock held.  Could be an assert.
2356 		 */
2357 		WORKITEM_FREE(pagedep, D_PAGEDEP);
2358 		return (ret);
2359 	}
2360 	pagedep->pd_ino = ino;
2361 	pagedep->pd_lbn = lbn;
2362 	LIST_INIT(&pagedep->pd_dirremhd);
2363 	LIST_INIT(&pagedep->pd_pendinghd);
2364 	for (i = 0; i < DAHASHSZ; i++)
2365 		LIST_INIT(&pagedep->pd_diraddhd[i]);
2366 	LIST_INSERT_HEAD(pagedephd, pagedep, pd_hash);
2367 	WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list);
2368 	*pagedeppp = pagedep;
2369 	return (0);
2370 }
2371 
2372 /*
2373  * Structures and routines associated with inodedep caching.
2374  */
2375 #define	INODEDEP_HASH(ump, inum) \
2376       (&(ump)->inodedep_hashtbl[(inum) & (ump)->inodedep_hash_size])
2377 
2378 static int
2379 inodedep_find(inodedephd, inum, inodedeppp)
2380 	struct inodedep_hashhead *inodedephd;
2381 	ino_t inum;
2382 	struct inodedep **inodedeppp;
2383 {
2384 	struct inodedep *inodedep;
2385 
2386 	LIST_FOREACH(inodedep, inodedephd, id_hash)
2387 		if (inum == inodedep->id_ino)
2388 			break;
2389 	if (inodedep) {
2390 		*inodedeppp = inodedep;
2391 		return (1);
2392 	}
2393 	*inodedeppp = NULL;
2394 
2395 	return (0);
2396 }
2397 /*
2398  * Look up an inodedep. Return 1 if found, 0 if not found.
2399  * If not found, allocate if DEPALLOC flag is passed.
2400  * Found or allocated entry is returned in inodedeppp.
2401  */
2402 static int
2403 inodedep_lookup(mp, inum, flags, inodedeppp)
2404 	struct mount *mp;
2405 	ino_t inum;
2406 	int flags;
2407 	struct inodedep **inodedeppp;
2408 {
2409 	struct inodedep *inodedep;
2410 	struct inodedep_hashhead *inodedephd;
2411 	struct ufsmount *ump;
2412 	struct fs *fs;
2413 
2414 	ump = VFSTOUFS(mp);
2415 	LOCK_OWNED(ump);
2416 	fs = ump->um_fs;
2417 	inodedephd = INODEDEP_HASH(ump, inum);
2418 
2419 	if (inodedep_find(inodedephd, inum, inodedeppp))
2420 		return (1);
2421 	if ((flags & DEPALLOC) == 0)
2422 		return (0);
2423 	/*
2424 	 * If the system is over its limit and our filesystem is
2425 	 * responsible for more than our share of that usage and
2426 	 * we are not in a rush, request some inodedep cleanup.
2427 	 */
2428 	if (softdep_excess_items(ump, D_INODEDEP))
2429 		schedule_cleanup(mp);
2430 	else
2431 		FREE_LOCK(ump);
2432 	inodedep = malloc(sizeof(struct inodedep),
2433 		M_INODEDEP, M_SOFTDEP_FLAGS);
2434 	workitem_alloc(&inodedep->id_list, D_INODEDEP, mp);
2435 	ACQUIRE_LOCK(ump);
2436 	if (inodedep_find(inodedephd, inum, inodedeppp)) {
2437 		WORKITEM_FREE(inodedep, D_INODEDEP);
2438 		return (1);
2439 	}
2440 	inodedep->id_fs = fs;
2441 	inodedep->id_ino = inum;
2442 	inodedep->id_state = ALLCOMPLETE;
2443 	inodedep->id_nlinkdelta = 0;
2444 	inodedep->id_nlinkwrote = -1;
2445 	inodedep->id_savedino1 = NULL;
2446 	inodedep->id_savedsize = -1;
2447 	inodedep->id_savedextsize = -1;
2448 	inodedep->id_savednlink = -1;
2449 	inodedep->id_bmsafemap = NULL;
2450 	inodedep->id_mkdiradd = NULL;
2451 	LIST_INIT(&inodedep->id_dirremhd);
2452 	LIST_INIT(&inodedep->id_pendinghd);
2453 	LIST_INIT(&inodedep->id_inowait);
2454 	LIST_INIT(&inodedep->id_bufwait);
2455 	TAILQ_INIT(&inodedep->id_inoreflst);
2456 	TAILQ_INIT(&inodedep->id_inoupdt);
2457 	TAILQ_INIT(&inodedep->id_newinoupdt);
2458 	TAILQ_INIT(&inodedep->id_extupdt);
2459 	TAILQ_INIT(&inodedep->id_newextupdt);
2460 	TAILQ_INIT(&inodedep->id_freeblklst);
2461 	LIST_INSERT_HEAD(inodedephd, inodedep, id_hash);
2462 	*inodedeppp = inodedep;
2463 	return (0);
2464 }
2465 
2466 /*
2467  * Structures and routines associated with newblk caching.
2468  */
2469 #define	NEWBLK_HASH(ump, inum) \
2470 	(&(ump)->newblk_hashtbl[(inum) & (ump)->newblk_hash_size])
2471 
2472 static int
2473 newblk_find(newblkhd, newblkno, flags, newblkpp)
2474 	struct newblk_hashhead *newblkhd;
2475 	ufs2_daddr_t newblkno;
2476 	int flags;
2477 	struct newblk **newblkpp;
2478 {
2479 	struct newblk *newblk;
2480 
2481 	LIST_FOREACH(newblk, newblkhd, nb_hash) {
2482 		if (newblkno != newblk->nb_newblkno)
2483 			continue;
2484 		/*
2485 		 * If we're creating a new dependency don't match those that
2486 		 * have already been converted to allocdirects.  This is for
2487 		 * a frag extend.
2488 		 */
2489 		if ((flags & DEPALLOC) && newblk->nb_list.wk_type != D_NEWBLK)
2490 			continue;
2491 		break;
2492 	}
2493 	if (newblk) {
2494 		*newblkpp = newblk;
2495 		return (1);
2496 	}
2497 	*newblkpp = NULL;
2498 	return (0);
2499 }
2500 
2501 /*
2502  * Look up a newblk. Return 1 if found, 0 if not found.
2503  * If not found, allocate if DEPALLOC flag is passed.
2504  * Found or allocated entry is returned in newblkpp.
2505  */
2506 static int
2507 newblk_lookup(mp, newblkno, flags, newblkpp)
2508 	struct mount *mp;
2509 	ufs2_daddr_t newblkno;
2510 	int flags;
2511 	struct newblk **newblkpp;
2512 {
2513 	struct newblk *newblk;
2514 	struct newblk_hashhead *newblkhd;
2515 	struct ufsmount *ump;
2516 
2517 	ump = VFSTOUFS(mp);
2518 	LOCK_OWNED(ump);
2519 	newblkhd = NEWBLK_HASH(ump, newblkno);
2520 	if (newblk_find(newblkhd, newblkno, flags, newblkpp))
2521 		return (1);
2522 	if ((flags & DEPALLOC) == 0)
2523 		return (0);
2524 	if (softdep_excess_items(ump, D_NEWBLK) ||
2525 	    softdep_excess_items(ump, D_ALLOCDIRECT) ||
2526 	    softdep_excess_items(ump, D_ALLOCINDIR))
2527 		schedule_cleanup(mp);
2528 	else
2529 		FREE_LOCK(ump);
2530 	newblk = malloc(sizeof(union allblk), M_NEWBLK,
2531 	    M_SOFTDEP_FLAGS | M_ZERO);
2532 	workitem_alloc(&newblk->nb_list, D_NEWBLK, mp);
2533 	ACQUIRE_LOCK(ump);
2534 	if (newblk_find(newblkhd, newblkno, flags, newblkpp)) {
2535 		WORKITEM_FREE(newblk, D_NEWBLK);
2536 		return (1);
2537 	}
2538 	newblk->nb_freefrag = NULL;
2539 	LIST_INIT(&newblk->nb_indirdeps);
2540 	LIST_INIT(&newblk->nb_newdirblk);
2541 	LIST_INIT(&newblk->nb_jwork);
2542 	newblk->nb_state = ATTACHED;
2543 	newblk->nb_newblkno = newblkno;
2544 	LIST_INSERT_HEAD(newblkhd, newblk, nb_hash);
2545 	*newblkpp = newblk;
2546 	return (0);
2547 }
2548 
2549 /*
2550  * Structures and routines associated with freed indirect block caching.
2551  */
2552 #define	INDIR_HASH(ump, blkno) \
2553 	(&(ump)->indir_hashtbl[(blkno) & (ump)->indir_hash_size])
2554 
2555 /*
2556  * Lookup an indirect block in the indir hash table.  The freework is
2557  * removed and potentially freed.  The caller must do a blocking journal
2558  * write before writing to the blkno.
2559  */
2560 static int
2561 indirblk_lookup(mp, blkno)
2562 	struct mount *mp;
2563 	ufs2_daddr_t blkno;
2564 {
2565 	struct freework *freework;
2566 	struct indir_hashhead *wkhd;
2567 	struct ufsmount *ump;
2568 
2569 	ump = VFSTOUFS(mp);
2570 	wkhd = INDIR_HASH(ump, blkno);
2571 	TAILQ_FOREACH(freework, wkhd, fw_next) {
2572 		if (freework->fw_blkno != blkno)
2573 			continue;
2574 		indirblk_remove(freework);
2575 		return (1);
2576 	}
2577 	return (0);
2578 }
2579 
2580 /*
2581  * Insert an indirect block represented by freework into the indirblk
2582  * hash table so that it may prevent the block from being re-used prior
2583  * to the journal being written.
2584  */
2585 static void
2586 indirblk_insert(freework)
2587 	struct freework *freework;
2588 {
2589 	struct jblocks *jblocks;
2590 	struct jseg *jseg;
2591 	struct ufsmount *ump;
2592 
2593 	ump = VFSTOUFS(freework->fw_list.wk_mp);
2594 	jblocks = ump->softdep_jblocks;
2595 	jseg = TAILQ_LAST(&jblocks->jb_segs, jseglst);
2596 	if (jseg == NULL)
2597 		return;
2598 
2599 	LIST_INSERT_HEAD(&jseg->js_indirs, freework, fw_segs);
2600 	TAILQ_INSERT_HEAD(INDIR_HASH(ump, freework->fw_blkno), freework,
2601 	    fw_next);
2602 	freework->fw_state &= ~DEPCOMPLETE;
2603 }
2604 
2605 static void
2606 indirblk_remove(freework)
2607 	struct freework *freework;
2608 {
2609 	struct ufsmount *ump;
2610 
2611 	ump = VFSTOUFS(freework->fw_list.wk_mp);
2612 	LIST_REMOVE(freework, fw_segs);
2613 	TAILQ_REMOVE(INDIR_HASH(ump, freework->fw_blkno), freework, fw_next);
2614 	freework->fw_state |= DEPCOMPLETE;
2615 	if ((freework->fw_state & ALLCOMPLETE) == ALLCOMPLETE)
2616 		WORKITEM_FREE(freework, D_FREEWORK);
2617 }
2618 
2619 /*
2620  * Executed during filesystem system initialization before
2621  * mounting any filesystems.
2622  */
2623 void
2624 softdep_initialize()
2625 {
2626 
2627 	TAILQ_INIT(&softdepmounts);
2628 #ifdef __LP64__
2629 	max_softdeps = desiredvnodes * 4;
2630 #else
2631 	max_softdeps = desiredvnodes * 2;
2632 #endif
2633 
2634 	/* initialise bioops hack */
2635 	bioops.io_start = softdep_disk_io_initiation;
2636 	bioops.io_complete = softdep_disk_write_complete;
2637 	bioops.io_deallocate = softdep_deallocate_dependencies;
2638 	bioops.io_countdeps = softdep_count_dependencies;
2639 	softdep_ast_cleanup = softdep_ast_cleanup_proc;
2640 
2641 	/* Initialize the callout with an mtx. */
2642 	callout_init_mtx(&softdep_callout, &lk, 0);
2643 }
2644 
2645 /*
2646  * Executed after all filesystems have been unmounted during
2647  * filesystem module unload.
2648  */
2649 void
2650 softdep_uninitialize()
2651 {
2652 
2653 	/* clear bioops hack */
2654 	bioops.io_start = NULL;
2655 	bioops.io_complete = NULL;
2656 	bioops.io_deallocate = NULL;
2657 	bioops.io_countdeps = NULL;
2658 	softdep_ast_cleanup = NULL;
2659 
2660 	callout_drain(&softdep_callout);
2661 }
2662 
2663 /*
2664  * Called at mount time to notify the dependency code that a
2665  * filesystem wishes to use it.
2666  */
2667 int
2668 softdep_mount(devvp, mp, fs, cred)
2669 	struct vnode *devvp;
2670 	struct mount *mp;
2671 	struct fs *fs;
2672 	struct ucred *cred;
2673 {
2674 	struct csum_total cstotal;
2675 	struct mount_softdeps *sdp;
2676 	struct ufsmount *ump;
2677 	struct cg *cgp;
2678 	struct buf *bp;
2679 	u_int cyl, i;
2680 	int error;
2681 
2682 	ump = VFSTOUFS(mp);
2683 
2684 	sdp = malloc(sizeof(struct mount_softdeps), M_MOUNTDATA,
2685 	    M_WAITOK | M_ZERO);
2686 	rw_init(&sdp->sd_fslock, "SUrw");
2687 	sdp->sd_ump = ump;
2688 	LIST_INIT(&sdp->sd_workitem_pending);
2689 	LIST_INIT(&sdp->sd_journal_pending);
2690 	TAILQ_INIT(&sdp->sd_unlinked);
2691 	LIST_INIT(&sdp->sd_dirtycg);
2692 	sdp->sd_worklist_tail = NULL;
2693 	sdp->sd_on_worklist = 0;
2694 	sdp->sd_deps = 0;
2695 	LIST_INIT(&sdp->sd_mkdirlisthd);
2696 	sdp->sd_pdhash = hashinit(desiredvnodes / 5, M_PAGEDEP,
2697 	    &sdp->sd_pdhashsize);
2698 	sdp->sd_pdnextclean = 0;
2699 	sdp->sd_idhash = hashinit(desiredvnodes, M_INODEDEP,
2700 	    &sdp->sd_idhashsize);
2701 	sdp->sd_idnextclean = 0;
2702 	sdp->sd_newblkhash = hashinit(max_softdeps / 2,  M_NEWBLK,
2703 	    &sdp->sd_newblkhashsize);
2704 	sdp->sd_bmhash = hashinit(1024, M_BMSAFEMAP, &sdp->sd_bmhashsize);
2705 	i = 1 << (ffs(desiredvnodes / 10) - 1);
2706 	sdp->sd_indirhash = malloc(i * sizeof(struct indir_hashhead),
2707 	    M_FREEWORK, M_WAITOK);
2708 	sdp->sd_indirhashsize = i - 1;
2709 	for (i = 0; i <= sdp->sd_indirhashsize; i++)
2710 		TAILQ_INIT(&sdp->sd_indirhash[i]);
2711 #ifdef INVARIANTS
2712 	for (i = 0; i <= D_LAST; i++)
2713 		LIST_INIT(&sdp->sd_alldeps[i]);
2714 #endif
2715 	ACQUIRE_GBLLOCK(&lk);
2716 	TAILQ_INSERT_TAIL(&softdepmounts, sdp, sd_next);
2717 	FREE_GBLLOCK(&lk);
2718 
2719 	ump->um_softdep = sdp;
2720 	MNT_ILOCK(mp);
2721 	mp->mnt_flag = (mp->mnt_flag & ~MNT_ASYNC) | MNT_SOFTDEP;
2722 	if ((mp->mnt_kern_flag & MNTK_SOFTDEP) == 0) {
2723 		mp->mnt_kern_flag = (mp->mnt_kern_flag & ~MNTK_ASYNC) |
2724 		    MNTK_SOFTDEP | MNTK_NOASYNC;
2725 	}
2726 	MNT_IUNLOCK(mp);
2727 
2728 	if ((fs->fs_flags & FS_SUJ) &&
2729 	    (error = journal_mount(mp, fs, cred)) != 0) {
2730 		printf("Failed to start journal: %d\n", error);
2731 		softdep_unmount(mp);
2732 		return (error);
2733 	}
2734 	/*
2735 	 * Start our flushing thread in the bufdaemon process.
2736 	 */
2737 	ACQUIRE_LOCK(ump);
2738 	ump->softdep_flags |= FLUSH_STARTING;
2739 	FREE_LOCK(ump);
2740 	kproc_kthread_add(&softdep_flush, mp, &bufdaemonproc,
2741 	    &ump->softdep_flushtd, 0, 0, "softdepflush", "%s worker",
2742 	    mp->mnt_stat.f_mntonname);
2743 	ACQUIRE_LOCK(ump);
2744 	while ((ump->softdep_flags & FLUSH_STARTING) != 0) {
2745 		msleep(&ump->softdep_flushtd, LOCK_PTR(ump), PVM, "sdstart",
2746 		    hz / 2);
2747 	}
2748 	FREE_LOCK(ump);
2749 	/*
2750 	 * When doing soft updates, the counters in the
2751 	 * superblock may have gotten out of sync. Recomputation
2752 	 * can take a long time and can be deferred for background
2753 	 * fsck.  However, the old behavior of scanning the cylinder
2754 	 * groups and recalculating them at mount time is available
2755 	 * by setting vfs.ffs.compute_summary_at_mount to one.
2756 	 */
2757 	if (compute_summary_at_mount == 0 || fs->fs_clean != 0)
2758 		return (0);
2759 	bzero(&cstotal, sizeof cstotal);
2760 	for (cyl = 0; cyl < fs->fs_ncg; cyl++) {
2761 		if ((error = bread(devvp, fsbtodb(fs, cgtod(fs, cyl)),
2762 		    fs->fs_cgsize, cred, &bp)) != 0) {
2763 			brelse(bp);
2764 			softdep_unmount(mp);
2765 			return (error);
2766 		}
2767 		cgp = (struct cg *)bp->b_data;
2768 		cstotal.cs_nffree += cgp->cg_cs.cs_nffree;
2769 		cstotal.cs_nbfree += cgp->cg_cs.cs_nbfree;
2770 		cstotal.cs_nifree += cgp->cg_cs.cs_nifree;
2771 		cstotal.cs_ndir += cgp->cg_cs.cs_ndir;
2772 		fs->fs_cs(fs, cyl) = cgp->cg_cs;
2773 		brelse(bp);
2774 	}
2775 #ifdef INVARIANTS
2776 	if (bcmp(&cstotal, &fs->fs_cstotal, sizeof cstotal))
2777 		printf("%s: superblock summary recomputed\n", fs->fs_fsmnt);
2778 #endif
2779 	bcopy(&cstotal, &fs->fs_cstotal, sizeof cstotal);
2780 	return (0);
2781 }
2782 
2783 void
2784 softdep_unmount(mp)
2785 	struct mount *mp;
2786 {
2787 	struct ufsmount *ump;
2788 	struct mount_softdeps *ums;
2789 
2790 	ump = VFSTOUFS(mp);
2791 	KASSERT(ump->um_softdep != NULL,
2792 	    ("softdep_unmount called on non-softdep filesystem"));
2793 	MNT_ILOCK(mp);
2794 	mp->mnt_flag &= ~MNT_SOFTDEP;
2795 	if ((mp->mnt_flag & MNT_SUJ) == 0) {
2796 		MNT_IUNLOCK(mp);
2797 	} else {
2798 		mp->mnt_flag &= ~MNT_SUJ;
2799 		MNT_IUNLOCK(mp);
2800 		journal_unmount(ump);
2801 	}
2802 	/*
2803 	 * Shut down our flushing thread. Check for NULL is if
2804 	 * softdep_mount errors out before the thread has been created.
2805 	 */
2806 	if (ump->softdep_flushtd != NULL) {
2807 		ACQUIRE_LOCK(ump);
2808 		ump->softdep_flags |= FLUSH_EXIT;
2809 		wakeup(&ump->softdep_flushtd);
2810 		while ((ump->softdep_flags & FLUSH_EXIT) != 0) {
2811 			msleep(&ump->softdep_flags, LOCK_PTR(ump), PVM,
2812 			    "sdwait", 0);
2813 		}
2814 		KASSERT((ump->softdep_flags & FLUSH_EXIT) == 0,
2815 		    ("Thread shutdown failed"));
2816 		FREE_LOCK(ump);
2817 	}
2818 
2819 	/*
2820 	 * We are no longer have softdep structure attached to ump.
2821 	 */
2822 	ums = ump->um_softdep;
2823 	ACQUIRE_GBLLOCK(&lk);
2824 	TAILQ_REMOVE(&softdepmounts, ums, sd_next);
2825 	FREE_GBLLOCK(&lk);
2826 	ump->um_softdep = NULL;
2827 
2828 	KASSERT(ums->sd_on_journal == 0,
2829 	    ("ump %p ums %p on_journal %d", ump, ums, ums->sd_on_journal));
2830 	KASSERT(ums->sd_on_worklist == 0,
2831 	    ("ump %p ums %p on_worklist %d", ump, ums, ums->sd_on_worklist));
2832 	KASSERT(ums->sd_deps == 0,
2833 	    ("ump %p ums %p deps %d", ump, ums, ums->sd_deps));
2834 
2835 	/*
2836 	 * Free up our resources.
2837 	 */
2838 	rw_destroy(&ums->sd_fslock);
2839 	hashdestroy(ums->sd_pdhash, M_PAGEDEP, ums->sd_pdhashsize);
2840 	hashdestroy(ums->sd_idhash, M_INODEDEP, ums->sd_idhashsize);
2841 	hashdestroy(ums->sd_newblkhash, M_NEWBLK, ums->sd_newblkhashsize);
2842 	hashdestroy(ums->sd_bmhash, M_BMSAFEMAP, ums->sd_bmhashsize);
2843 	free(ums->sd_indirhash, M_FREEWORK);
2844 #ifdef INVARIANTS
2845 	for (int i = 0; i <= D_LAST; i++) {
2846 		KASSERT(ums->sd_curdeps[i] == 0,
2847 		    ("Unmount %s: Dep type %s != 0 (%ld)", ump->um_fs->fs_fsmnt,
2848 		    TYPENAME(i), ums->sd_curdeps[i]));
2849 		KASSERT(LIST_EMPTY(&ums->sd_alldeps[i]),
2850 		    ("Unmount %s: Dep type %s not empty (%p)",
2851 		    ump->um_fs->fs_fsmnt,
2852 		    TYPENAME(i), LIST_FIRST(&ums->sd_alldeps[i])));
2853 	}
2854 #endif
2855 	free(ums, M_MOUNTDATA);
2856 }
2857 
2858 static struct jblocks *
2859 jblocks_create(void)
2860 {
2861 	struct jblocks *jblocks;
2862 
2863 	jblocks = malloc(sizeof(*jblocks), M_JBLOCKS, M_WAITOK | M_ZERO);
2864 	TAILQ_INIT(&jblocks->jb_segs);
2865 	jblocks->jb_avail = 10;
2866 	jblocks->jb_extent = malloc(sizeof(struct jextent) * jblocks->jb_avail,
2867 	    M_JBLOCKS, M_WAITOK | M_ZERO);
2868 
2869 	return (jblocks);
2870 }
2871 
2872 static ufs2_daddr_t
2873 jblocks_alloc(jblocks, bytes, actual)
2874 	struct jblocks *jblocks;
2875 	int bytes;
2876 	int *actual;
2877 {
2878 	ufs2_daddr_t daddr;
2879 	struct jextent *jext;
2880 	int freecnt;
2881 	int blocks;
2882 
2883 	blocks = bytes / DEV_BSIZE;
2884 	jext = &jblocks->jb_extent[jblocks->jb_head];
2885 	freecnt = jext->je_blocks - jblocks->jb_off;
2886 	if (freecnt == 0) {
2887 		jblocks->jb_off = 0;
2888 		if (++jblocks->jb_head > jblocks->jb_used)
2889 			jblocks->jb_head = 0;
2890 		jext = &jblocks->jb_extent[jblocks->jb_head];
2891 		freecnt = jext->je_blocks;
2892 	}
2893 	if (freecnt > blocks)
2894 		freecnt = blocks;
2895 	*actual = freecnt * DEV_BSIZE;
2896 	daddr = jext->je_daddr + jblocks->jb_off;
2897 	jblocks->jb_off += freecnt;
2898 	jblocks->jb_free -= freecnt;
2899 
2900 	return (daddr);
2901 }
2902 
2903 static void
2904 jblocks_free(jblocks, mp, bytes)
2905 	struct jblocks *jblocks;
2906 	struct mount *mp;
2907 	int bytes;
2908 {
2909 
2910 	LOCK_OWNED(VFSTOUFS(mp));
2911 	jblocks->jb_free += bytes / DEV_BSIZE;
2912 	if (jblocks->jb_suspended)
2913 		worklist_speedup(mp);
2914 	wakeup(jblocks);
2915 }
2916 
2917 static void
2918 jblocks_destroy(jblocks)
2919 	struct jblocks *jblocks;
2920 {
2921 
2922 	if (jblocks->jb_extent)
2923 		free(jblocks->jb_extent, M_JBLOCKS);
2924 	free(jblocks, M_JBLOCKS);
2925 }
2926 
2927 static void
2928 jblocks_add(jblocks, daddr, blocks)
2929 	struct jblocks *jblocks;
2930 	ufs2_daddr_t daddr;
2931 	int blocks;
2932 {
2933 	struct jextent *jext;
2934 
2935 	jblocks->jb_blocks += blocks;
2936 	jblocks->jb_free += blocks;
2937 	jext = &jblocks->jb_extent[jblocks->jb_used];
2938 	/* Adding the first block. */
2939 	if (jext->je_daddr == 0) {
2940 		jext->je_daddr = daddr;
2941 		jext->je_blocks = blocks;
2942 		return;
2943 	}
2944 	/* Extending the last extent. */
2945 	if (jext->je_daddr + jext->je_blocks == daddr) {
2946 		jext->je_blocks += blocks;
2947 		return;
2948 	}
2949 	/* Adding a new extent. */
2950 	if (++jblocks->jb_used == jblocks->jb_avail) {
2951 		jblocks->jb_avail *= 2;
2952 		jext = malloc(sizeof(struct jextent) * jblocks->jb_avail,
2953 		    M_JBLOCKS, M_WAITOK | M_ZERO);
2954 		memcpy(jext, jblocks->jb_extent,
2955 		    sizeof(struct jextent) * jblocks->jb_used);
2956 		free(jblocks->jb_extent, M_JBLOCKS);
2957 		jblocks->jb_extent = jext;
2958 	}
2959 	jext = &jblocks->jb_extent[jblocks->jb_used];
2960 	jext->je_daddr = daddr;
2961 	jext->je_blocks = blocks;
2962 	return;
2963 }
2964 
2965 int
2966 softdep_journal_lookup(mp, vpp)
2967 	struct mount *mp;
2968 	struct vnode **vpp;
2969 {
2970 	struct componentname cnp;
2971 	struct vnode *dvp;
2972 	ino_t sujournal;
2973 	int error;
2974 
2975 	error = VFS_VGET(mp, UFS_ROOTINO, LK_EXCLUSIVE, &dvp);
2976 	if (error)
2977 		return (error);
2978 	bzero(&cnp, sizeof(cnp));
2979 	cnp.cn_nameiop = LOOKUP;
2980 	cnp.cn_flags = ISLASTCN;
2981 	cnp.cn_thread = curthread;
2982 	cnp.cn_cred = curthread->td_ucred;
2983 	cnp.cn_pnbuf = SUJ_FILE;
2984 	cnp.cn_nameptr = SUJ_FILE;
2985 	cnp.cn_namelen = strlen(SUJ_FILE);
2986 	error = ufs_lookup_ino(dvp, NULL, &cnp, &sujournal);
2987 	vput(dvp);
2988 	if (error != 0)
2989 		return (error);
2990 	error = VFS_VGET(mp, sujournal, LK_EXCLUSIVE, vpp);
2991 	return (error);
2992 }
2993 
2994 /*
2995  * Open and verify the journal file.
2996  */
2997 static int
2998 journal_mount(mp, fs, cred)
2999 	struct mount *mp;
3000 	struct fs *fs;
3001 	struct ucred *cred;
3002 {
3003 	struct jblocks *jblocks;
3004 	struct ufsmount *ump;
3005 	struct vnode *vp;
3006 	struct inode *ip;
3007 	ufs2_daddr_t blkno;
3008 	int bcount;
3009 	int error;
3010 	int i;
3011 
3012 	ump = VFSTOUFS(mp);
3013 	ump->softdep_journal_tail = NULL;
3014 	ump->softdep_on_journal = 0;
3015 	ump->softdep_accdeps = 0;
3016 	ump->softdep_req = 0;
3017 	ump->softdep_jblocks = NULL;
3018 	error = softdep_journal_lookup(mp, &vp);
3019 	if (error != 0) {
3020 		printf("Failed to find journal.  Use tunefs to create one\n");
3021 		return (error);
3022 	}
3023 	ip = VTOI(vp);
3024 	if (ip->i_size < SUJ_MIN) {
3025 		error = ENOSPC;
3026 		goto out;
3027 	}
3028 	bcount = lblkno(fs, ip->i_size);	/* Only use whole blocks. */
3029 	jblocks = jblocks_create();
3030 	for (i = 0; i < bcount; i++) {
3031 		error = ufs_bmaparray(vp, i, &blkno, NULL, NULL, NULL);
3032 		if (error)
3033 			break;
3034 		jblocks_add(jblocks, blkno, fsbtodb(fs, fs->fs_frag));
3035 	}
3036 	if (error) {
3037 		jblocks_destroy(jblocks);
3038 		goto out;
3039 	}
3040 	jblocks->jb_low = jblocks->jb_free / 3;	/* Reserve 33%. */
3041 	jblocks->jb_min = jblocks->jb_free / 10; /* Suspend at 10%. */
3042 	ump->softdep_jblocks = jblocks;
3043 
3044 	MNT_ILOCK(mp);
3045 	mp->mnt_flag |= MNT_SUJ;
3046 	MNT_IUNLOCK(mp);
3047 
3048 	/*
3049 	 * Only validate the journal contents if the
3050 	 * filesystem is clean, otherwise we write the logs
3051 	 * but they'll never be used.  If the filesystem was
3052 	 * still dirty when we mounted it the journal is
3053 	 * invalid and a new journal can only be valid if it
3054 	 * starts from a clean mount.
3055 	 */
3056 	if (fs->fs_clean) {
3057 		DIP_SET(ip, i_modrev, fs->fs_mtime);
3058 		ip->i_flags |= IN_MODIFIED;
3059 		ffs_update(vp, 1);
3060 	}
3061 out:
3062 	vput(vp);
3063 	return (error);
3064 }
3065 
3066 static void
3067 journal_unmount(ump)
3068 	struct ufsmount *ump;
3069 {
3070 
3071 	if (ump->softdep_jblocks)
3072 		jblocks_destroy(ump->softdep_jblocks);
3073 	ump->softdep_jblocks = NULL;
3074 }
3075 
3076 /*
3077  * Called when a journal record is ready to be written.  Space is allocated
3078  * and the journal entry is created when the journal is flushed to stable
3079  * store.
3080  */
3081 static void
3082 add_to_journal(wk)
3083 	struct worklist *wk;
3084 {
3085 	struct ufsmount *ump;
3086 
3087 	ump = VFSTOUFS(wk->wk_mp);
3088 	LOCK_OWNED(ump);
3089 	if (wk->wk_state & ONWORKLIST)
3090 		panic("add_to_journal: %s(0x%X) already on list",
3091 		    TYPENAME(wk->wk_type), wk->wk_state);
3092 	wk->wk_state |= ONWORKLIST | DEPCOMPLETE;
3093 	if (LIST_EMPTY(&ump->softdep_journal_pending)) {
3094 		ump->softdep_jblocks->jb_age = ticks;
3095 		LIST_INSERT_HEAD(&ump->softdep_journal_pending, wk, wk_list);
3096 	} else
3097 		LIST_INSERT_AFTER(ump->softdep_journal_tail, wk, wk_list);
3098 	ump->softdep_journal_tail = wk;
3099 	ump->softdep_on_journal += 1;
3100 }
3101 
3102 /*
3103  * Remove an arbitrary item for the journal worklist maintain the tail
3104  * pointer.  This happens when a new operation obviates the need to
3105  * journal an old operation.
3106  */
3107 static void
3108 remove_from_journal(wk)
3109 	struct worklist *wk;
3110 {
3111 	struct ufsmount *ump;
3112 
3113 	ump = VFSTOUFS(wk->wk_mp);
3114 	LOCK_OWNED(ump);
3115 #ifdef INVARIANTS
3116 	{
3117 		struct worklist *wkn;
3118 
3119 		LIST_FOREACH(wkn, &ump->softdep_journal_pending, wk_list)
3120 			if (wkn == wk)
3121 				break;
3122 		if (wkn == NULL)
3123 			panic("remove_from_journal: %p is not in journal", wk);
3124 	}
3125 #endif
3126 	/*
3127 	 * We emulate a TAILQ to save space in most structures which do not
3128 	 * require TAILQ semantics.  Here we must update the tail position
3129 	 * when removing the tail which is not the final entry. This works
3130 	 * only if the worklist linkage are at the beginning of the structure.
3131 	 */
3132 	if (ump->softdep_journal_tail == wk)
3133 		ump->softdep_journal_tail =
3134 		    (struct worklist *)wk->wk_list.le_prev;
3135 	WORKLIST_REMOVE(wk);
3136 	ump->softdep_on_journal -= 1;
3137 }
3138 
3139 /*
3140  * Check for journal space as well as dependency limits so the prelink
3141  * code can throttle both journaled and non-journaled filesystems.
3142  * Threshold is 0 for low and 1 for min.
3143  */
3144 static int
3145 journal_space(ump, thresh)
3146 	struct ufsmount *ump;
3147 	int thresh;
3148 {
3149 	struct jblocks *jblocks;
3150 	int limit, avail;
3151 
3152 	jblocks = ump->softdep_jblocks;
3153 	if (jblocks == NULL)
3154 		return (1);
3155 	/*
3156 	 * We use a tighter restriction here to prevent request_cleanup()
3157 	 * running in threads from running into locks we currently hold.
3158 	 * We have to be over the limit and our filesystem has to be
3159 	 * responsible for more than our share of that usage.
3160 	 */
3161 	limit = (max_softdeps / 10) * 9;
3162 	if (dep_current[D_INODEDEP] > limit &&
3163 	    ump->softdep_curdeps[D_INODEDEP] > limit / stat_flush_threads)
3164 		return (0);
3165 	if (thresh)
3166 		thresh = jblocks->jb_min;
3167 	else
3168 		thresh = jblocks->jb_low;
3169 	avail = (ump->softdep_on_journal * JREC_SIZE) / DEV_BSIZE;
3170 	avail = jblocks->jb_free - avail;
3171 
3172 	return (avail > thresh);
3173 }
3174 
3175 static void
3176 journal_suspend(ump)
3177 	struct ufsmount *ump;
3178 {
3179 	struct jblocks *jblocks;
3180 	struct mount *mp;
3181 	bool set;
3182 
3183 	mp = UFSTOVFS(ump);
3184 	if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0)
3185 		return;
3186 
3187 	jblocks = ump->softdep_jblocks;
3188 	vfs_op_enter(mp);
3189 	set = false;
3190 	MNT_ILOCK(mp);
3191 	if ((mp->mnt_kern_flag & MNTK_SUSPEND) == 0) {
3192 		stat_journal_min++;
3193 		mp->mnt_kern_flag |= MNTK_SUSPEND;
3194 		mp->mnt_susp_owner = ump->softdep_flushtd;
3195 		set = true;
3196 	}
3197 	jblocks->jb_suspended = 1;
3198 	MNT_IUNLOCK(mp);
3199 	if (!set)
3200 		vfs_op_exit(mp);
3201 }
3202 
3203 static int
3204 journal_unsuspend(struct ufsmount *ump)
3205 {
3206 	struct jblocks *jblocks;
3207 	struct mount *mp;
3208 
3209 	mp = UFSTOVFS(ump);
3210 	jblocks = ump->softdep_jblocks;
3211 
3212 	if (jblocks != NULL && jblocks->jb_suspended &&
3213 	    journal_space(ump, jblocks->jb_min)) {
3214 		jblocks->jb_suspended = 0;
3215 		FREE_LOCK(ump);
3216 		mp->mnt_susp_owner = curthread;
3217 		vfs_write_resume(mp, 0);
3218 		ACQUIRE_LOCK(ump);
3219 		return (1);
3220 	}
3221 	return (0);
3222 }
3223 
3224 /*
3225  * Called before any allocation function to be certain that there is
3226  * sufficient space in the journal prior to creating any new records.
3227  * Since in the case of block allocation we may have multiple locked
3228  * buffers at the time of the actual allocation we can not block
3229  * when the journal records are created.  Doing so would create a deadlock
3230  * if any of these buffers needed to be flushed to reclaim space.  Instead
3231  * we require a sufficiently large amount of available space such that
3232  * each thread in the system could have passed this allocation check and
3233  * still have sufficient free space.  With 20% of a minimum journal size
3234  * of 1MB we have 6553 records available.
3235  */
3236 int
3237 softdep_prealloc(vp, waitok)
3238 	struct vnode *vp;
3239 	int waitok;
3240 {
3241 	struct ufsmount *ump;
3242 
3243 	KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0,
3244 	    ("softdep_prealloc called on non-softdep filesystem"));
3245 	/*
3246 	 * Nothing to do if we are not running journaled soft updates.
3247 	 * If we currently hold the snapshot lock, we must avoid
3248 	 * handling other resources that could cause deadlock.  Do not
3249 	 * touch quotas vnode since it is typically recursed with
3250 	 * other vnode locks held.
3251 	 */
3252 	if (DOINGSUJ(vp) == 0 || IS_SNAPSHOT(VTOI(vp)) ||
3253 	    (vp->v_vflag & VV_SYSTEM) != 0)
3254 		return (0);
3255 	ump = VFSTOUFS(vp->v_mount);
3256 	ACQUIRE_LOCK(ump);
3257 	if (journal_space(ump, 0)) {
3258 		FREE_LOCK(ump);
3259 		return (0);
3260 	}
3261 	stat_journal_low++;
3262 	FREE_LOCK(ump);
3263 	if (waitok == MNT_NOWAIT)
3264 		return (ENOSPC);
3265 	/*
3266 	 * Attempt to sync this vnode once to flush any journal
3267 	 * work attached to it.
3268 	 */
3269 	if ((curthread->td_pflags & TDP_COWINPROGRESS) == 0)
3270 		ffs_syncvnode(vp, waitok, 0);
3271 	ACQUIRE_LOCK(ump);
3272 	process_removes(vp);
3273 	process_truncates(vp);
3274 	if (journal_space(ump, 0) == 0) {
3275 		softdep_speedup(ump);
3276 		if (journal_space(ump, 1) == 0)
3277 			journal_suspend(ump);
3278 	}
3279 	FREE_LOCK(ump);
3280 
3281 	return (0);
3282 }
3283 
3284 /*
3285  * Try hard to sync all data and metadata for the vnode, and workitems
3286  * flushing which might conflict with the vnode lock.  This is a
3287  * helper for softdep_prerename().
3288  */
3289 static int
3290 softdep_prerename_vnode(ump, vp)
3291 	struct ufsmount *ump;
3292 	struct vnode *vp;
3293 {
3294 	int error;
3295 
3296 	ASSERT_VOP_ELOCKED(vp, "prehandle");
3297 	if (vp->v_data == NULL)
3298 		return (0);
3299 	error = VOP_FSYNC(vp, MNT_WAIT, curthread);
3300 	if (error != 0)
3301 		return (error);
3302 	ACQUIRE_LOCK(ump);
3303 	process_removes(vp);
3304 	process_truncates(vp);
3305 	FREE_LOCK(ump);
3306 	return (0);
3307 }
3308 
3309 /*
3310  * Must be called from VOP_RENAME() after all vnodes are locked.
3311  * Ensures that there is enough journal space for rename.  It is
3312  * sufficiently different from softdep_prelink() by having to handle
3313  * four vnodes.
3314  */
3315 int
3316 softdep_prerename(fdvp, fvp, tdvp, tvp)
3317 	struct vnode *fdvp;
3318 	struct vnode *fvp;
3319 	struct vnode *tdvp;
3320 	struct vnode *tvp;
3321 {
3322 	struct ufsmount *ump;
3323 	int error;
3324 
3325 	ump = VFSTOUFS(fdvp->v_mount);
3326 
3327 	if (journal_space(ump, 0))
3328 		return (0);
3329 
3330 	VOP_UNLOCK(tdvp);
3331 	VOP_UNLOCK(fvp);
3332 	if (tvp != NULL && tvp != tdvp)
3333 		VOP_UNLOCK(tvp);
3334 
3335 	error = softdep_prerename_vnode(ump, fdvp);
3336 	VOP_UNLOCK(fdvp);
3337 	if (error != 0)
3338 		return (error);
3339 
3340 	VOP_LOCK(fvp, LK_EXCLUSIVE | LK_RETRY);
3341 	error = softdep_prerename_vnode(ump, fvp);
3342 	VOP_UNLOCK(fvp);
3343 	if (error != 0)
3344 		return (error);
3345 
3346 	if (tdvp != fdvp) {
3347 		VOP_LOCK(tdvp, LK_EXCLUSIVE | LK_RETRY);
3348 		error = softdep_prerename_vnode(ump, tdvp);
3349 		VOP_UNLOCK(tdvp);
3350 		if (error != 0)
3351 			return (error);
3352 	}
3353 
3354 	if (tvp != fvp && tvp != NULL) {
3355 		VOP_LOCK(tvp, LK_EXCLUSIVE | LK_RETRY);
3356 		error = softdep_prerename_vnode(ump, tvp);
3357 		VOP_UNLOCK(tvp);
3358 		if (error != 0)
3359 			return (error);
3360 	}
3361 
3362 	ACQUIRE_LOCK(ump);
3363 	softdep_speedup(ump);
3364 	process_worklist_item(UFSTOVFS(ump), 2, LK_NOWAIT);
3365 	if (journal_space(ump, 0) == 0) {
3366 		softdep_speedup(ump);
3367 		if (journal_space(ump, 1) == 0)
3368 			journal_suspend(ump);
3369 	}
3370 	FREE_LOCK(ump);
3371 	return (ERELOOKUP);
3372 }
3373 
3374 /*
3375  * Before adjusting a link count on a vnode verify that we have sufficient
3376  * journal space.  If not, process operations that depend on the currently
3377  * locked pair of vnodes to try to flush space as the syncer, buf daemon,
3378  * and softdep flush threads can not acquire these locks to reclaim space.
3379  *
3380  * Returns 0 if all owned locks are still valid and were not dropped
3381  * in the process, in other case it returns either an error from sync,
3382  * or ERELOOKUP if any of the locks were re-acquired.  In the later
3383  * case, the state of the vnodes cannot be relied upon and our VFS
3384  * syscall must be restarted at top level from the lookup.
3385  */
3386 int
3387 softdep_prelink(dvp, vp)
3388 	struct vnode *dvp;
3389 	struct vnode *vp;
3390 {
3391 	struct ufsmount *ump;
3392 
3393 	ASSERT_VOP_ELOCKED(dvp, "prelink dvp");
3394 	if (vp != NULL)
3395 		ASSERT_VOP_ELOCKED(vp, "prelink vp");
3396 	ump = VFSTOUFS(dvp->v_mount);
3397 
3398 	/*
3399 	 * Nothing to do if we have sufficient journal space.  We skip
3400 	 * flushing when vp is a snapshot to avoid deadlock where
3401 	 * another thread is trying to update the inodeblock for dvp
3402 	 * and is waiting on snaplk that vp holds.
3403 	 */
3404 	if (journal_space(ump, 0) || (vp != NULL && IS_SNAPSHOT(VTOI(vp))))
3405 		return (0);
3406 
3407 	stat_journal_low++;
3408 	if (vp != NULL) {
3409 		VOP_UNLOCK(dvp);
3410 		ffs_syncvnode(vp, MNT_NOWAIT, 0);
3411 		vn_lock_pair(dvp, false, vp, true);
3412 		if (dvp->v_data == NULL)
3413 			return (ERELOOKUP);
3414 	}
3415 	if (vp != NULL)
3416 		VOP_UNLOCK(vp);
3417 	ffs_syncvnode(dvp, MNT_WAIT, 0);
3418 	VOP_UNLOCK(dvp);
3419 
3420 	/* Process vp before dvp as it may create .. removes. */
3421 	if (vp != NULL) {
3422 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
3423 		if (vp->v_data == NULL) {
3424 			vn_lock_pair(dvp, false, vp, true);
3425 			return (ERELOOKUP);
3426 		}
3427 		ACQUIRE_LOCK(ump);
3428 		process_removes(vp);
3429 		process_truncates(vp);
3430 		FREE_LOCK(ump);
3431 		VOP_UNLOCK(vp);
3432 	}
3433 
3434 	vn_lock(dvp, LK_EXCLUSIVE | LK_RETRY);
3435 	if (dvp->v_data == NULL) {
3436 		vn_lock_pair(dvp, true, vp, false);
3437 		return (ERELOOKUP);
3438 	}
3439 
3440 	ACQUIRE_LOCK(ump);
3441 	process_removes(dvp);
3442 	process_truncates(dvp);
3443 	VOP_UNLOCK(dvp);
3444 	softdep_speedup(ump);
3445 
3446 	process_worklist_item(UFSTOVFS(ump), 2, LK_NOWAIT);
3447 	if (journal_space(ump, 0) == 0) {
3448 		softdep_speedup(ump);
3449 		if (journal_space(ump, 1) == 0)
3450 			journal_suspend(ump);
3451 	}
3452 	FREE_LOCK(ump);
3453 
3454 	vn_lock_pair(dvp, false, vp, false);
3455 	return (ERELOOKUP);
3456 }
3457 
3458 static void
3459 jseg_write(ump, jseg, data)
3460 	struct ufsmount *ump;
3461 	struct jseg *jseg;
3462 	uint8_t *data;
3463 {
3464 	struct jsegrec *rec;
3465 
3466 	rec = (struct jsegrec *)data;
3467 	rec->jsr_seq = jseg->js_seq;
3468 	rec->jsr_oldest = jseg->js_oldseq;
3469 	rec->jsr_cnt = jseg->js_cnt;
3470 	rec->jsr_blocks = jseg->js_size / ump->um_devvp->v_bufobj.bo_bsize;
3471 	rec->jsr_crc = 0;
3472 	rec->jsr_time = ump->um_fs->fs_mtime;
3473 }
3474 
3475 static inline void
3476 inoref_write(inoref, jseg, rec)
3477 	struct inoref *inoref;
3478 	struct jseg *jseg;
3479 	struct jrefrec *rec;
3480 {
3481 
3482 	inoref->if_jsegdep->jd_seg = jseg;
3483 	rec->jr_ino = inoref->if_ino;
3484 	rec->jr_parent = inoref->if_parent;
3485 	rec->jr_nlink = inoref->if_nlink;
3486 	rec->jr_mode = inoref->if_mode;
3487 	rec->jr_diroff = inoref->if_diroff;
3488 }
3489 
3490 static void
3491 jaddref_write(jaddref, jseg, data)
3492 	struct jaddref *jaddref;
3493 	struct jseg *jseg;
3494 	uint8_t *data;
3495 {
3496 	struct jrefrec *rec;
3497 
3498 	rec = (struct jrefrec *)data;
3499 	rec->jr_op = JOP_ADDREF;
3500 	inoref_write(&jaddref->ja_ref, jseg, rec);
3501 }
3502 
3503 static void
3504 jremref_write(jremref, jseg, data)
3505 	struct jremref *jremref;
3506 	struct jseg *jseg;
3507 	uint8_t *data;
3508 {
3509 	struct jrefrec *rec;
3510 
3511 	rec = (struct jrefrec *)data;
3512 	rec->jr_op = JOP_REMREF;
3513 	inoref_write(&jremref->jr_ref, jseg, rec);
3514 }
3515 
3516 static void
3517 jmvref_write(jmvref, jseg, data)
3518 	struct jmvref *jmvref;
3519 	struct jseg *jseg;
3520 	uint8_t *data;
3521 {
3522 	struct jmvrec *rec;
3523 
3524 	rec = (struct jmvrec *)data;
3525 	rec->jm_op = JOP_MVREF;
3526 	rec->jm_ino = jmvref->jm_ino;
3527 	rec->jm_parent = jmvref->jm_parent;
3528 	rec->jm_oldoff = jmvref->jm_oldoff;
3529 	rec->jm_newoff = jmvref->jm_newoff;
3530 }
3531 
3532 static void
3533 jnewblk_write(jnewblk, jseg, data)
3534 	struct jnewblk *jnewblk;
3535 	struct jseg *jseg;
3536 	uint8_t *data;
3537 {
3538 	struct jblkrec *rec;
3539 
3540 	jnewblk->jn_jsegdep->jd_seg = jseg;
3541 	rec = (struct jblkrec *)data;
3542 	rec->jb_op = JOP_NEWBLK;
3543 	rec->jb_ino = jnewblk->jn_ino;
3544 	rec->jb_blkno = jnewblk->jn_blkno;
3545 	rec->jb_lbn = jnewblk->jn_lbn;
3546 	rec->jb_frags = jnewblk->jn_frags;
3547 	rec->jb_oldfrags = jnewblk->jn_oldfrags;
3548 }
3549 
3550 static void
3551 jfreeblk_write(jfreeblk, jseg, data)
3552 	struct jfreeblk *jfreeblk;
3553 	struct jseg *jseg;
3554 	uint8_t *data;
3555 {
3556 	struct jblkrec *rec;
3557 
3558 	jfreeblk->jf_dep.jb_jsegdep->jd_seg = jseg;
3559 	rec = (struct jblkrec *)data;
3560 	rec->jb_op = JOP_FREEBLK;
3561 	rec->jb_ino = jfreeblk->jf_ino;
3562 	rec->jb_blkno = jfreeblk->jf_blkno;
3563 	rec->jb_lbn = jfreeblk->jf_lbn;
3564 	rec->jb_frags = jfreeblk->jf_frags;
3565 	rec->jb_oldfrags = 0;
3566 }
3567 
3568 static void
3569 jfreefrag_write(jfreefrag, jseg, data)
3570 	struct jfreefrag *jfreefrag;
3571 	struct jseg *jseg;
3572 	uint8_t *data;
3573 {
3574 	struct jblkrec *rec;
3575 
3576 	jfreefrag->fr_jsegdep->jd_seg = jseg;
3577 	rec = (struct jblkrec *)data;
3578 	rec->jb_op = JOP_FREEBLK;
3579 	rec->jb_ino = jfreefrag->fr_ino;
3580 	rec->jb_blkno = jfreefrag->fr_blkno;
3581 	rec->jb_lbn = jfreefrag->fr_lbn;
3582 	rec->jb_frags = jfreefrag->fr_frags;
3583 	rec->jb_oldfrags = 0;
3584 }
3585 
3586 static void
3587 jtrunc_write(jtrunc, jseg, data)
3588 	struct jtrunc *jtrunc;
3589 	struct jseg *jseg;
3590 	uint8_t *data;
3591 {
3592 	struct jtrncrec *rec;
3593 
3594 	jtrunc->jt_dep.jb_jsegdep->jd_seg = jseg;
3595 	rec = (struct jtrncrec *)data;
3596 	rec->jt_op = JOP_TRUNC;
3597 	rec->jt_ino = jtrunc->jt_ino;
3598 	rec->jt_size = jtrunc->jt_size;
3599 	rec->jt_extsize = jtrunc->jt_extsize;
3600 }
3601 
3602 static void
3603 jfsync_write(jfsync, jseg, data)
3604 	struct jfsync *jfsync;
3605 	struct jseg *jseg;
3606 	uint8_t *data;
3607 {
3608 	struct jtrncrec *rec;
3609 
3610 	rec = (struct jtrncrec *)data;
3611 	rec->jt_op = JOP_SYNC;
3612 	rec->jt_ino = jfsync->jfs_ino;
3613 	rec->jt_size = jfsync->jfs_size;
3614 	rec->jt_extsize = jfsync->jfs_extsize;
3615 }
3616 
3617 static void
3618 softdep_flushjournal(mp)
3619 	struct mount *mp;
3620 {
3621 	struct jblocks *jblocks;
3622 	struct ufsmount *ump;
3623 
3624 	if (MOUNTEDSUJ(mp) == 0)
3625 		return;
3626 	ump = VFSTOUFS(mp);
3627 	jblocks = ump->softdep_jblocks;
3628 	ACQUIRE_LOCK(ump);
3629 	while (ump->softdep_on_journal) {
3630 		jblocks->jb_needseg = 1;
3631 		softdep_process_journal(mp, NULL, MNT_WAIT);
3632 	}
3633 	FREE_LOCK(ump);
3634 }
3635 
3636 static void softdep_synchronize_completed(struct bio *);
3637 static void softdep_synchronize(struct bio *, struct ufsmount *, void *);
3638 
3639 static void
3640 softdep_synchronize_completed(bp)
3641         struct bio *bp;
3642 {
3643 	struct jseg *oldest;
3644 	struct jseg *jseg;
3645 	struct ufsmount *ump;
3646 
3647 	/*
3648 	 * caller1 marks the last segment written before we issued the
3649 	 * synchronize cache.
3650 	 */
3651 	jseg = bp->bio_caller1;
3652 	if (jseg == NULL) {
3653 		g_destroy_bio(bp);
3654 		return;
3655 	}
3656 	ump = VFSTOUFS(jseg->js_list.wk_mp);
3657 	ACQUIRE_LOCK(ump);
3658 	oldest = NULL;
3659 	/*
3660 	 * Mark all the journal entries waiting on the synchronize cache
3661 	 * as completed so they may continue on.
3662 	 */
3663 	while (jseg != NULL && (jseg->js_state & COMPLETE) == 0) {
3664 		jseg->js_state |= COMPLETE;
3665 		oldest = jseg;
3666 		jseg = TAILQ_PREV(jseg, jseglst, js_next);
3667 	}
3668 	/*
3669 	 * Restart deferred journal entry processing from the oldest
3670 	 * completed jseg.
3671 	 */
3672 	if (oldest)
3673 		complete_jsegs(oldest);
3674 
3675 	FREE_LOCK(ump);
3676 	g_destroy_bio(bp);
3677 }
3678 
3679 /*
3680  * Send BIO_FLUSH/SYNCHRONIZE CACHE to the device to enforce write ordering
3681  * barriers.  The journal must be written prior to any blocks that depend
3682  * on it and the journal can not be released until the blocks have be
3683  * written.  This code handles both barriers simultaneously.
3684  */
3685 static void
3686 softdep_synchronize(bp, ump, caller1)
3687 	struct bio *bp;
3688 	struct ufsmount *ump;
3689 	void *caller1;
3690 {
3691 
3692 	bp->bio_cmd = BIO_FLUSH;
3693 	bp->bio_flags |= BIO_ORDERED;
3694 	bp->bio_data = NULL;
3695 	bp->bio_offset = ump->um_cp->provider->mediasize;
3696 	bp->bio_length = 0;
3697 	bp->bio_done = softdep_synchronize_completed;
3698 	bp->bio_caller1 = caller1;
3699 	g_io_request(bp, ump->um_cp);
3700 }
3701 
3702 /*
3703  * Flush some journal records to disk.
3704  */
3705 static void
3706 softdep_process_journal(mp, needwk, flags)
3707 	struct mount *mp;
3708 	struct worklist *needwk;
3709 	int flags;
3710 {
3711 	struct jblocks *jblocks;
3712 	struct ufsmount *ump;
3713 	struct worklist *wk;
3714 	struct jseg *jseg;
3715 	struct buf *bp;
3716 	struct bio *bio;
3717 	uint8_t *data;
3718 	struct fs *fs;
3719 	int shouldflush;
3720 	int segwritten;
3721 	int jrecmin;	/* Minimum records per block. */
3722 	int jrecmax;	/* Maximum records per block. */
3723 	int size;
3724 	int cnt;
3725 	int off;
3726 	int devbsize;
3727 
3728 	ump = VFSTOUFS(mp);
3729 	if (ump->um_softdep == NULL || ump->um_softdep->sd_jblocks == NULL)
3730 		return;
3731 	shouldflush = softdep_flushcache;
3732 	bio = NULL;
3733 	jseg = NULL;
3734 	LOCK_OWNED(ump);
3735 	fs = ump->um_fs;
3736 	jblocks = ump->softdep_jblocks;
3737 	devbsize = ump->um_devvp->v_bufobj.bo_bsize;
3738 	/*
3739 	 * We write anywhere between a disk block and fs block.  The upper
3740 	 * bound is picked to prevent buffer cache fragmentation and limit
3741 	 * processing time per I/O.
3742 	 */
3743 	jrecmin = (devbsize / JREC_SIZE) - 1; /* -1 for seg header */
3744 	jrecmax = (fs->fs_bsize / devbsize) * jrecmin;
3745 	segwritten = 0;
3746 	for (;;) {
3747 		cnt = ump->softdep_on_journal;
3748 		/*
3749 		 * Criteria for writing a segment:
3750 		 * 1) We have a full block.
3751 		 * 2) We're called from jwait() and haven't found the
3752 		 *    journal item yet.
3753 		 * 3) Always write if needseg is set.
3754 		 * 4) If we are called from process_worklist and have
3755 		 *    not yet written anything we write a partial block
3756 		 *    to enforce a 1 second maximum latency on journal
3757 		 *    entries.
3758 		 */
3759 		if (cnt < (jrecmax - 1) && needwk == NULL &&
3760 		    jblocks->jb_needseg == 0 && (segwritten || cnt == 0))
3761 			break;
3762 		cnt++;
3763 		/*
3764 		 * Verify some free journal space.  softdep_prealloc() should
3765 		 * guarantee that we don't run out so this is indicative of
3766 		 * a problem with the flow control.  Try to recover
3767 		 * gracefully in any event.
3768 		 */
3769 		while (jblocks->jb_free == 0) {
3770 			if (flags != MNT_WAIT)
3771 				break;
3772 			printf("softdep: Out of journal space!\n");
3773 			softdep_speedup(ump);
3774 			msleep(jblocks, LOCK_PTR(ump), PRIBIO, "jblocks", hz);
3775 		}
3776 		FREE_LOCK(ump);
3777 		jseg = malloc(sizeof(*jseg), M_JSEG, M_SOFTDEP_FLAGS);
3778 		workitem_alloc(&jseg->js_list, D_JSEG, mp);
3779 		LIST_INIT(&jseg->js_entries);
3780 		LIST_INIT(&jseg->js_indirs);
3781 		jseg->js_state = ATTACHED;
3782 		if (shouldflush == 0)
3783 			jseg->js_state |= COMPLETE;
3784 		else if (bio == NULL)
3785 			bio = g_alloc_bio();
3786 		jseg->js_jblocks = jblocks;
3787 		bp = geteblk(fs->fs_bsize, 0);
3788 		ACQUIRE_LOCK(ump);
3789 		/*
3790 		 * If there was a race while we were allocating the block
3791 		 * and jseg the entry we care about was likely written.
3792 		 * We bail out in both the WAIT and NOWAIT case and assume
3793 		 * the caller will loop if the entry it cares about is
3794 		 * not written.
3795 		 */
3796 		cnt = ump->softdep_on_journal;
3797 		if (cnt + jblocks->jb_needseg == 0 || jblocks->jb_free == 0) {
3798 			bp->b_flags |= B_INVAL | B_NOCACHE;
3799 			WORKITEM_FREE(jseg, D_JSEG);
3800 			FREE_LOCK(ump);
3801 			brelse(bp);
3802 			ACQUIRE_LOCK(ump);
3803 			break;
3804 		}
3805 		/*
3806 		 * Calculate the disk block size required for the available
3807 		 * records rounded to the min size.
3808 		 */
3809 		if (cnt == 0)
3810 			size = devbsize;
3811 		else if (cnt < jrecmax)
3812 			size = howmany(cnt, jrecmin) * devbsize;
3813 		else
3814 			size = fs->fs_bsize;
3815 		/*
3816 		 * Allocate a disk block for this journal data and account
3817 		 * for truncation of the requested size if enough contiguous
3818 		 * space was not available.
3819 		 */
3820 		bp->b_blkno = jblocks_alloc(jblocks, size, &size);
3821 		bp->b_lblkno = bp->b_blkno;
3822 		bp->b_offset = bp->b_blkno * DEV_BSIZE;
3823 		bp->b_bcount = size;
3824 		bp->b_flags &= ~B_INVAL;
3825 		bp->b_flags |= B_VALIDSUSPWRT | B_NOCOPY;
3826 		/*
3827 		 * Initialize our jseg with cnt records.  Assign the next
3828 		 * sequence number to it and link it in-order.
3829 		 */
3830 		cnt = MIN(cnt, (size / devbsize) * jrecmin);
3831 		jseg->js_buf = bp;
3832 		jseg->js_cnt = cnt;
3833 		jseg->js_refs = cnt + 1;	/* Self ref. */
3834 		jseg->js_size = size;
3835 		jseg->js_seq = jblocks->jb_nextseq++;
3836 		if (jblocks->jb_oldestseg == NULL)
3837 			jblocks->jb_oldestseg = jseg;
3838 		jseg->js_oldseq = jblocks->jb_oldestseg->js_seq;
3839 		TAILQ_INSERT_TAIL(&jblocks->jb_segs, jseg, js_next);
3840 		if (jblocks->jb_writeseg == NULL)
3841 			jblocks->jb_writeseg = jseg;
3842 		/*
3843 		 * Start filling in records from the pending list.
3844 		 */
3845 		data = bp->b_data;
3846 		off = 0;
3847 
3848 		/*
3849 		 * Always put a header on the first block.
3850 		 * XXX As with below, there might not be a chance to get
3851 		 * into the loop.  Ensure that something valid is written.
3852 		 */
3853 		jseg_write(ump, jseg, data);
3854 		off += JREC_SIZE;
3855 		data = bp->b_data + off;
3856 
3857 		/*
3858 		 * XXX Something is wrong here.  There's no work to do,
3859 		 * but we need to perform and I/O and allow it to complete
3860 		 * anyways.
3861 		 */
3862 		if (LIST_EMPTY(&ump->softdep_journal_pending))
3863 			stat_emptyjblocks++;
3864 
3865 		while ((wk = LIST_FIRST(&ump->softdep_journal_pending))
3866 		    != NULL) {
3867 			if (cnt == 0)
3868 				break;
3869 			/* Place a segment header on every device block. */
3870 			if ((off % devbsize) == 0) {
3871 				jseg_write(ump, jseg, data);
3872 				off += JREC_SIZE;
3873 				data = bp->b_data + off;
3874 			}
3875 			if (wk == needwk)
3876 				needwk = NULL;
3877 			remove_from_journal(wk);
3878 			wk->wk_state |= INPROGRESS;
3879 			WORKLIST_INSERT(&jseg->js_entries, wk);
3880 			switch (wk->wk_type) {
3881 			case D_JADDREF:
3882 				jaddref_write(WK_JADDREF(wk), jseg, data);
3883 				break;
3884 			case D_JREMREF:
3885 				jremref_write(WK_JREMREF(wk), jseg, data);
3886 				break;
3887 			case D_JMVREF:
3888 				jmvref_write(WK_JMVREF(wk), jseg, data);
3889 				break;
3890 			case D_JNEWBLK:
3891 				jnewblk_write(WK_JNEWBLK(wk), jseg, data);
3892 				break;
3893 			case D_JFREEBLK:
3894 				jfreeblk_write(WK_JFREEBLK(wk), jseg, data);
3895 				break;
3896 			case D_JFREEFRAG:
3897 				jfreefrag_write(WK_JFREEFRAG(wk), jseg, data);
3898 				break;
3899 			case D_JTRUNC:
3900 				jtrunc_write(WK_JTRUNC(wk), jseg, data);
3901 				break;
3902 			case D_JFSYNC:
3903 				jfsync_write(WK_JFSYNC(wk), jseg, data);
3904 				break;
3905 			default:
3906 				panic("process_journal: Unknown type %s",
3907 				    TYPENAME(wk->wk_type));
3908 				/* NOTREACHED */
3909 			}
3910 			off += JREC_SIZE;
3911 			data = bp->b_data + off;
3912 			cnt--;
3913 		}
3914 
3915 		/* Clear any remaining space so we don't leak kernel data */
3916 		if (size > off)
3917 			bzero(data, size - off);
3918 
3919 		/*
3920 		 * Write this one buffer and continue.
3921 		 */
3922 		segwritten = 1;
3923 		jblocks->jb_needseg = 0;
3924 		WORKLIST_INSERT(&bp->b_dep, &jseg->js_list);
3925 		FREE_LOCK(ump);
3926 		bp->b_xflags |= BX_CVTENXIO;
3927 		pbgetvp(ump->um_devvp, bp);
3928 		/*
3929 		 * We only do the blocking wait once we find the journal
3930 		 * entry we're looking for.
3931 		 */
3932 		if (needwk == NULL && flags == MNT_WAIT)
3933 			bwrite(bp);
3934 		else
3935 			bawrite(bp);
3936 		ACQUIRE_LOCK(ump);
3937 	}
3938 	/*
3939 	 * If we wrote a segment issue a synchronize cache so the journal
3940 	 * is reflected on disk before the data is written.  Since reclaiming
3941 	 * journal space also requires writing a journal record this
3942 	 * process also enforces a barrier before reclamation.
3943 	 */
3944 	if (segwritten && shouldflush) {
3945 		softdep_synchronize(bio, ump,
3946 		    TAILQ_LAST(&jblocks->jb_segs, jseglst));
3947 	} else if (bio)
3948 		g_destroy_bio(bio);
3949 	/*
3950 	 * If we've suspended the filesystem because we ran out of journal
3951 	 * space either try to sync it here to make some progress or
3952 	 * unsuspend it if we already have.
3953 	 */
3954 	if (flags == 0 && jblocks->jb_suspended) {
3955 		if (journal_unsuspend(ump))
3956 			return;
3957 		FREE_LOCK(ump);
3958 		VFS_SYNC(mp, MNT_NOWAIT);
3959 		ffs_sbupdate(ump, MNT_WAIT, 0);
3960 		ACQUIRE_LOCK(ump);
3961 	}
3962 }
3963 
3964 /*
3965  * Complete a jseg, allowing all dependencies awaiting journal writes
3966  * to proceed.  Each journal dependency also attaches a jsegdep to dependent
3967  * structures so that the journal segment can be freed to reclaim space.
3968  */
3969 static void
3970 complete_jseg(jseg)
3971 	struct jseg *jseg;
3972 {
3973 	struct worklist *wk;
3974 	struct jmvref *jmvref;
3975 #ifdef INVARIANTS
3976 	int i = 0;
3977 #endif
3978 
3979 	while ((wk = LIST_FIRST(&jseg->js_entries)) != NULL) {
3980 		WORKLIST_REMOVE(wk);
3981 		wk->wk_state &= ~INPROGRESS;
3982 		wk->wk_state |= COMPLETE;
3983 		KASSERT(i++ < jseg->js_cnt,
3984 		    ("handle_written_jseg: overflow %d >= %d",
3985 		    i - 1, jseg->js_cnt));
3986 		switch (wk->wk_type) {
3987 		case D_JADDREF:
3988 			handle_written_jaddref(WK_JADDREF(wk));
3989 			break;
3990 		case D_JREMREF:
3991 			handle_written_jremref(WK_JREMREF(wk));
3992 			break;
3993 		case D_JMVREF:
3994 			rele_jseg(jseg);	/* No jsegdep. */
3995 			jmvref = WK_JMVREF(wk);
3996 			LIST_REMOVE(jmvref, jm_deps);
3997 			if ((jmvref->jm_pagedep->pd_state & ONWORKLIST) == 0)
3998 				free_pagedep(jmvref->jm_pagedep);
3999 			WORKITEM_FREE(jmvref, D_JMVREF);
4000 			break;
4001 		case D_JNEWBLK:
4002 			handle_written_jnewblk(WK_JNEWBLK(wk));
4003 			break;
4004 		case D_JFREEBLK:
4005 			handle_written_jblkdep(&WK_JFREEBLK(wk)->jf_dep);
4006 			break;
4007 		case D_JTRUNC:
4008 			handle_written_jblkdep(&WK_JTRUNC(wk)->jt_dep);
4009 			break;
4010 		case D_JFSYNC:
4011 			rele_jseg(jseg);	/* No jsegdep. */
4012 			WORKITEM_FREE(wk, D_JFSYNC);
4013 			break;
4014 		case D_JFREEFRAG:
4015 			handle_written_jfreefrag(WK_JFREEFRAG(wk));
4016 			break;
4017 		default:
4018 			panic("handle_written_jseg: Unknown type %s",
4019 			    TYPENAME(wk->wk_type));
4020 			/* NOTREACHED */
4021 		}
4022 	}
4023 	/* Release the self reference so the structure may be freed. */
4024 	rele_jseg(jseg);
4025 }
4026 
4027 /*
4028  * Determine which jsegs are ready for completion processing.  Waits for
4029  * synchronize cache to complete as well as forcing in-order completion
4030  * of journal entries.
4031  */
4032 static void
4033 complete_jsegs(jseg)
4034 	struct jseg *jseg;
4035 {
4036 	struct jblocks *jblocks;
4037 	struct jseg *jsegn;
4038 
4039 	jblocks = jseg->js_jblocks;
4040 	/*
4041 	 * Don't allow out of order completions.  If this isn't the first
4042 	 * block wait for it to write before we're done.
4043 	 */
4044 	if (jseg != jblocks->jb_writeseg)
4045 		return;
4046 	/* Iterate through available jsegs processing their entries. */
4047 	while (jseg && (jseg->js_state & ALLCOMPLETE) == ALLCOMPLETE) {
4048 		jblocks->jb_oldestwrseq = jseg->js_oldseq;
4049 		jsegn = TAILQ_NEXT(jseg, js_next);
4050 		complete_jseg(jseg);
4051 		jseg = jsegn;
4052 	}
4053 	jblocks->jb_writeseg = jseg;
4054 	/*
4055 	 * Attempt to free jsegs now that oldestwrseq may have advanced.
4056 	 */
4057 	free_jsegs(jblocks);
4058 }
4059 
4060 /*
4061  * Mark a jseg as DEPCOMPLETE and throw away the buffer.  Attempt to handle
4062  * the final completions.
4063  */
4064 static void
4065 handle_written_jseg(jseg, bp)
4066 	struct jseg *jseg;
4067 	struct buf *bp;
4068 {
4069 
4070 	if (jseg->js_refs == 0)
4071 		panic("handle_written_jseg: No self-reference on %p", jseg);
4072 	jseg->js_state |= DEPCOMPLETE;
4073 	/*
4074 	 * We'll never need this buffer again, set flags so it will be
4075 	 * discarded.
4076 	 */
4077 	bp->b_flags |= B_INVAL | B_NOCACHE;
4078 	pbrelvp(bp);
4079 	complete_jsegs(jseg);
4080 }
4081 
4082 static inline struct jsegdep *
4083 inoref_jseg(inoref)
4084 	struct inoref *inoref;
4085 {
4086 	struct jsegdep *jsegdep;
4087 
4088 	jsegdep = inoref->if_jsegdep;
4089 	inoref->if_jsegdep = NULL;
4090 
4091 	return (jsegdep);
4092 }
4093 
4094 /*
4095  * Called once a jremref has made it to stable store.  The jremref is marked
4096  * complete and we attempt to free it.  Any pagedeps writes sleeping waiting
4097  * for the jremref to complete will be awoken by free_jremref.
4098  */
4099 static void
4100 handle_written_jremref(jremref)
4101 	struct jremref *jremref;
4102 {
4103 	struct inodedep *inodedep;
4104 	struct jsegdep *jsegdep;
4105 	struct dirrem *dirrem;
4106 
4107 	/* Grab the jsegdep. */
4108 	jsegdep = inoref_jseg(&jremref->jr_ref);
4109 	/*
4110 	 * Remove us from the inoref list.
4111 	 */
4112 	if (inodedep_lookup(jremref->jr_list.wk_mp, jremref->jr_ref.if_ino,
4113 	    0, &inodedep) == 0)
4114 		panic("handle_written_jremref: Lost inodedep");
4115 	TAILQ_REMOVE(&inodedep->id_inoreflst, &jremref->jr_ref, if_deps);
4116 	/*
4117 	 * Complete the dirrem.
4118 	 */
4119 	dirrem = jremref->jr_dirrem;
4120 	jremref->jr_dirrem = NULL;
4121 	LIST_REMOVE(jremref, jr_deps);
4122 	jsegdep->jd_state |= jremref->jr_state & MKDIR_PARENT;
4123 	jwork_insert(&dirrem->dm_jwork, jsegdep);
4124 	if (LIST_EMPTY(&dirrem->dm_jremrefhd) &&
4125 	    (dirrem->dm_state & COMPLETE) != 0)
4126 		add_to_worklist(&dirrem->dm_list, 0);
4127 	free_jremref(jremref);
4128 }
4129 
4130 /*
4131  * Called once a jaddref has made it to stable store.  The dependency is
4132  * marked complete and any dependent structures are added to the inode
4133  * bufwait list to be completed as soon as it is written.  If a bitmap write
4134  * depends on this entry we move the inode into the inodedephd of the
4135  * bmsafemap dependency and attempt to remove the jaddref from the bmsafemap.
4136  */
4137 static void
4138 handle_written_jaddref(jaddref)
4139 	struct jaddref *jaddref;
4140 {
4141 	struct jsegdep *jsegdep;
4142 	struct inodedep *inodedep;
4143 	struct diradd *diradd;
4144 	struct mkdir *mkdir;
4145 
4146 	/* Grab the jsegdep. */
4147 	jsegdep = inoref_jseg(&jaddref->ja_ref);
4148 	mkdir = NULL;
4149 	diradd = NULL;
4150 	if (inodedep_lookup(jaddref->ja_list.wk_mp, jaddref->ja_ino,
4151 	    0, &inodedep) == 0)
4152 		panic("handle_written_jaddref: Lost inodedep.");
4153 	if (jaddref->ja_diradd == NULL)
4154 		panic("handle_written_jaddref: No dependency");
4155 	if (jaddref->ja_diradd->da_list.wk_type == D_DIRADD) {
4156 		diradd = jaddref->ja_diradd;
4157 		WORKLIST_INSERT(&inodedep->id_bufwait, &diradd->da_list);
4158 	} else if (jaddref->ja_state & MKDIR_PARENT) {
4159 		mkdir = jaddref->ja_mkdir;
4160 		WORKLIST_INSERT(&inodedep->id_bufwait, &mkdir->md_list);
4161 	} else if (jaddref->ja_state & MKDIR_BODY)
4162 		mkdir = jaddref->ja_mkdir;
4163 	else
4164 		panic("handle_written_jaddref: Unknown dependency %p",
4165 		    jaddref->ja_diradd);
4166 	jaddref->ja_diradd = NULL;	/* also clears ja_mkdir */
4167 	/*
4168 	 * Remove us from the inode list.
4169 	 */
4170 	TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref, if_deps);
4171 	/*
4172 	 * The mkdir may be waiting on the jaddref to clear before freeing.
4173 	 */
4174 	if (mkdir) {
4175 		KASSERT(mkdir->md_list.wk_type == D_MKDIR,
4176 		    ("handle_written_jaddref: Incorrect type for mkdir %s",
4177 		    TYPENAME(mkdir->md_list.wk_type)));
4178 		mkdir->md_jaddref = NULL;
4179 		diradd = mkdir->md_diradd;
4180 		mkdir->md_state |= DEPCOMPLETE;
4181 		complete_mkdir(mkdir);
4182 	}
4183 	jwork_insert(&diradd->da_jwork, jsegdep);
4184 	if (jaddref->ja_state & NEWBLOCK) {
4185 		inodedep->id_state |= ONDEPLIST;
4186 		LIST_INSERT_HEAD(&inodedep->id_bmsafemap->sm_inodedephd,
4187 		    inodedep, id_deps);
4188 	}
4189 	free_jaddref(jaddref);
4190 }
4191 
4192 /*
4193  * Called once a jnewblk journal is written.  The allocdirect or allocindir
4194  * is placed in the bmsafemap to await notification of a written bitmap.  If
4195  * the operation was canceled we add the segdep to the appropriate
4196  * dependency to free the journal space once the canceling operation
4197  * completes.
4198  */
4199 static void
4200 handle_written_jnewblk(jnewblk)
4201 	struct jnewblk *jnewblk;
4202 {
4203 	struct bmsafemap *bmsafemap;
4204 	struct freefrag *freefrag;
4205 	struct freework *freework;
4206 	struct jsegdep *jsegdep;
4207 	struct newblk *newblk;
4208 
4209 	/* Grab the jsegdep. */
4210 	jsegdep = jnewblk->jn_jsegdep;
4211 	jnewblk->jn_jsegdep = NULL;
4212 	if (jnewblk->jn_dep == NULL)
4213 		panic("handle_written_jnewblk: No dependency for the segdep.");
4214 	switch (jnewblk->jn_dep->wk_type) {
4215 	case D_NEWBLK:
4216 	case D_ALLOCDIRECT:
4217 	case D_ALLOCINDIR:
4218 		/*
4219 		 * Add the written block to the bmsafemap so it can
4220 		 * be notified when the bitmap is on disk.
4221 		 */
4222 		newblk = WK_NEWBLK(jnewblk->jn_dep);
4223 		newblk->nb_jnewblk = NULL;
4224 		if ((newblk->nb_state & GOINGAWAY) == 0) {
4225 			bmsafemap = newblk->nb_bmsafemap;
4226 			newblk->nb_state |= ONDEPLIST;
4227 			LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk,
4228 			    nb_deps);
4229 		}
4230 		jwork_insert(&newblk->nb_jwork, jsegdep);
4231 		break;
4232 	case D_FREEFRAG:
4233 		/*
4234 		 * A newblock being removed by a freefrag when replaced by
4235 		 * frag extension.
4236 		 */
4237 		freefrag = WK_FREEFRAG(jnewblk->jn_dep);
4238 		freefrag->ff_jdep = NULL;
4239 		jwork_insert(&freefrag->ff_jwork, jsegdep);
4240 		break;
4241 	case D_FREEWORK:
4242 		/*
4243 		 * A direct block was removed by truncate.
4244 		 */
4245 		freework = WK_FREEWORK(jnewblk->jn_dep);
4246 		freework->fw_jnewblk = NULL;
4247 		jwork_insert(&freework->fw_freeblks->fb_jwork, jsegdep);
4248 		break;
4249 	default:
4250 		panic("handle_written_jnewblk: Unknown type %d.",
4251 		    jnewblk->jn_dep->wk_type);
4252 	}
4253 	jnewblk->jn_dep = NULL;
4254 	free_jnewblk(jnewblk);
4255 }
4256 
4257 /*
4258  * Cancel a jfreefrag that won't be needed, probably due to colliding with
4259  * an in-flight allocation that has not yet been committed.  Divorce us
4260  * from the freefrag and mark it DEPCOMPLETE so that it may be added
4261  * to the worklist.
4262  */
4263 static void
4264 cancel_jfreefrag(jfreefrag)
4265 	struct jfreefrag *jfreefrag;
4266 {
4267 	struct freefrag *freefrag;
4268 
4269 	if (jfreefrag->fr_jsegdep) {
4270 		free_jsegdep(jfreefrag->fr_jsegdep);
4271 		jfreefrag->fr_jsegdep = NULL;
4272 	}
4273 	freefrag = jfreefrag->fr_freefrag;
4274 	jfreefrag->fr_freefrag = NULL;
4275 	free_jfreefrag(jfreefrag);
4276 	freefrag->ff_state |= DEPCOMPLETE;
4277 	CTR1(KTR_SUJ, "cancel_jfreefrag: blkno %jd", freefrag->ff_blkno);
4278 }
4279 
4280 /*
4281  * Free a jfreefrag when the parent freefrag is rendered obsolete.
4282  */
4283 static void
4284 free_jfreefrag(jfreefrag)
4285 	struct jfreefrag *jfreefrag;
4286 {
4287 
4288 	if (jfreefrag->fr_state & INPROGRESS)
4289 		WORKLIST_REMOVE(&jfreefrag->fr_list);
4290 	else if (jfreefrag->fr_state & ONWORKLIST)
4291 		remove_from_journal(&jfreefrag->fr_list);
4292 	if (jfreefrag->fr_freefrag != NULL)
4293 		panic("free_jfreefrag:  Still attached to a freefrag.");
4294 	WORKITEM_FREE(jfreefrag, D_JFREEFRAG);
4295 }
4296 
4297 /*
4298  * Called when the journal write for a jfreefrag completes.  The parent
4299  * freefrag is added to the worklist if this completes its dependencies.
4300  */
4301 static void
4302 handle_written_jfreefrag(jfreefrag)
4303 	struct jfreefrag *jfreefrag;
4304 {
4305 	struct jsegdep *jsegdep;
4306 	struct freefrag *freefrag;
4307 
4308 	/* Grab the jsegdep. */
4309 	jsegdep = jfreefrag->fr_jsegdep;
4310 	jfreefrag->fr_jsegdep = NULL;
4311 	freefrag = jfreefrag->fr_freefrag;
4312 	if (freefrag == NULL)
4313 		panic("handle_written_jfreefrag: No freefrag.");
4314 	freefrag->ff_state |= DEPCOMPLETE;
4315 	freefrag->ff_jdep = NULL;
4316 	jwork_insert(&freefrag->ff_jwork, jsegdep);
4317 	if ((freefrag->ff_state & ALLCOMPLETE) == ALLCOMPLETE)
4318 		add_to_worklist(&freefrag->ff_list, 0);
4319 	jfreefrag->fr_freefrag = NULL;
4320 	free_jfreefrag(jfreefrag);
4321 }
4322 
4323 /*
4324  * Called when the journal write for a jfreeblk completes.  The jfreeblk
4325  * is removed from the freeblks list of pending journal writes and the
4326  * jsegdep is moved to the freeblks jwork to be completed when all blocks
4327  * have been reclaimed.
4328  */
4329 static void
4330 handle_written_jblkdep(jblkdep)
4331 	struct jblkdep *jblkdep;
4332 {
4333 	struct freeblks *freeblks;
4334 	struct jsegdep *jsegdep;
4335 
4336 	/* Grab the jsegdep. */
4337 	jsegdep = jblkdep->jb_jsegdep;
4338 	jblkdep->jb_jsegdep = NULL;
4339 	freeblks = jblkdep->jb_freeblks;
4340 	LIST_REMOVE(jblkdep, jb_deps);
4341 	jwork_insert(&freeblks->fb_jwork, jsegdep);
4342 	/*
4343 	 * If the freeblks is all journaled, we can add it to the worklist.
4344 	 */
4345 	if (LIST_EMPTY(&freeblks->fb_jblkdephd) &&
4346 	    (freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE)
4347 		add_to_worklist(&freeblks->fb_list, WK_NODELAY);
4348 
4349 	free_jblkdep(jblkdep);
4350 }
4351 
4352 static struct jsegdep *
4353 newjsegdep(struct worklist *wk)
4354 {
4355 	struct jsegdep *jsegdep;
4356 
4357 	jsegdep = malloc(sizeof(*jsegdep), M_JSEGDEP, M_SOFTDEP_FLAGS);
4358 	workitem_alloc(&jsegdep->jd_list, D_JSEGDEP, wk->wk_mp);
4359 	jsegdep->jd_seg = NULL;
4360 
4361 	return (jsegdep);
4362 }
4363 
4364 static struct jmvref *
4365 newjmvref(dp, ino, oldoff, newoff)
4366 	struct inode *dp;
4367 	ino_t ino;
4368 	off_t oldoff;
4369 	off_t newoff;
4370 {
4371 	struct jmvref *jmvref;
4372 
4373 	jmvref = malloc(sizeof(*jmvref), M_JMVREF, M_SOFTDEP_FLAGS);
4374 	workitem_alloc(&jmvref->jm_list, D_JMVREF, ITOVFS(dp));
4375 	jmvref->jm_list.wk_state = ATTACHED | DEPCOMPLETE;
4376 	jmvref->jm_parent = dp->i_number;
4377 	jmvref->jm_ino = ino;
4378 	jmvref->jm_oldoff = oldoff;
4379 	jmvref->jm_newoff = newoff;
4380 
4381 	return (jmvref);
4382 }
4383 
4384 /*
4385  * Allocate a new jremref that tracks the removal of ip from dp with the
4386  * directory entry offset of diroff.  Mark the entry as ATTACHED and
4387  * DEPCOMPLETE as we have all the information required for the journal write
4388  * and the directory has already been removed from the buffer.  The caller
4389  * is responsible for linking the jremref into the pagedep and adding it
4390  * to the journal to write.  The MKDIR_PARENT flag is set if we're doing
4391  * a DOTDOT addition so handle_workitem_remove() can properly assign
4392  * the jsegdep when we're done.
4393  */
4394 static struct jremref *
4395 newjremref(struct dirrem *dirrem, struct inode *dp, struct inode *ip,
4396     off_t diroff, nlink_t nlink)
4397 {
4398 	struct jremref *jremref;
4399 
4400 	jremref = malloc(sizeof(*jremref), M_JREMREF, M_SOFTDEP_FLAGS);
4401 	workitem_alloc(&jremref->jr_list, D_JREMREF, ITOVFS(dp));
4402 	jremref->jr_state = ATTACHED;
4403 	newinoref(&jremref->jr_ref, ip->i_number, dp->i_number, diroff,
4404 	   nlink, ip->i_mode);
4405 	jremref->jr_dirrem = dirrem;
4406 
4407 	return (jremref);
4408 }
4409 
4410 static inline void
4411 newinoref(struct inoref *inoref, ino_t ino, ino_t parent, off_t diroff,
4412     nlink_t nlink, uint16_t mode)
4413 {
4414 
4415 	inoref->if_jsegdep = newjsegdep(&inoref->if_list);
4416 	inoref->if_diroff = diroff;
4417 	inoref->if_ino = ino;
4418 	inoref->if_parent = parent;
4419 	inoref->if_nlink = nlink;
4420 	inoref->if_mode = mode;
4421 }
4422 
4423 /*
4424  * Allocate a new jaddref to track the addition of ino to dp at diroff.  The
4425  * directory offset may not be known until later.  The caller is responsible
4426  * adding the entry to the journal when this information is available.  nlink
4427  * should be the link count prior to the addition and mode is only required
4428  * to have the correct FMT.
4429  */
4430 static struct jaddref *
4431 newjaddref(struct inode *dp, ino_t ino, off_t diroff, int16_t nlink,
4432     uint16_t mode)
4433 {
4434 	struct jaddref *jaddref;
4435 
4436 	jaddref = malloc(sizeof(*jaddref), M_JADDREF, M_SOFTDEP_FLAGS);
4437 	workitem_alloc(&jaddref->ja_list, D_JADDREF, ITOVFS(dp));
4438 	jaddref->ja_state = ATTACHED;
4439 	jaddref->ja_mkdir = NULL;
4440 	newinoref(&jaddref->ja_ref, ino, dp->i_number, diroff, nlink, mode);
4441 
4442 	return (jaddref);
4443 }
4444 
4445 /*
4446  * Create a new free dependency for a freework.  The caller is responsible
4447  * for adjusting the reference count when it has the lock held.  The freedep
4448  * will track an outstanding bitmap write that will ultimately clear the
4449  * freework to continue.
4450  */
4451 static struct freedep *
4452 newfreedep(struct freework *freework)
4453 {
4454 	struct freedep *freedep;
4455 
4456 	freedep = malloc(sizeof(*freedep), M_FREEDEP, M_SOFTDEP_FLAGS);
4457 	workitem_alloc(&freedep->fd_list, D_FREEDEP, freework->fw_list.wk_mp);
4458 	freedep->fd_freework = freework;
4459 
4460 	return (freedep);
4461 }
4462 
4463 /*
4464  * Free a freedep structure once the buffer it is linked to is written.  If
4465  * this is the last reference to the freework schedule it for completion.
4466  */
4467 static void
4468 free_freedep(freedep)
4469 	struct freedep *freedep;
4470 {
4471 	struct freework *freework;
4472 
4473 	freework = freedep->fd_freework;
4474 	freework->fw_freeblks->fb_cgwait--;
4475 	if (--freework->fw_ref == 0)
4476 		freework_enqueue(freework);
4477 	WORKITEM_FREE(freedep, D_FREEDEP);
4478 }
4479 
4480 /*
4481  * Allocate a new freework structure that may be a level in an indirect
4482  * when parent is not NULL or a top level block when it is.  The top level
4483  * freework structures are allocated without the per-filesystem lock held
4484  * and before the freeblks is visible outside of softdep_setup_freeblocks().
4485  */
4486 static struct freework *
4487 newfreework(ump, freeblks, parent, lbn, nb, frags, off, journal)
4488 	struct ufsmount *ump;
4489 	struct freeblks *freeblks;
4490 	struct freework *parent;
4491 	ufs_lbn_t lbn;
4492 	ufs2_daddr_t nb;
4493 	int frags;
4494 	int off;
4495 	int journal;
4496 {
4497 	struct freework *freework;
4498 
4499 	freework = malloc(sizeof(*freework), M_FREEWORK, M_SOFTDEP_FLAGS);
4500 	workitem_alloc(&freework->fw_list, D_FREEWORK, freeblks->fb_list.wk_mp);
4501 	freework->fw_state = ATTACHED;
4502 	freework->fw_jnewblk = NULL;
4503 	freework->fw_freeblks = freeblks;
4504 	freework->fw_parent = parent;
4505 	freework->fw_lbn = lbn;
4506 	freework->fw_blkno = nb;
4507 	freework->fw_frags = frags;
4508 	freework->fw_indir = NULL;
4509 	freework->fw_ref = (MOUNTEDSUJ(UFSTOVFS(ump)) == 0 ||
4510 	    lbn >= -UFS_NXADDR) ? 0 : NINDIR(ump->um_fs) + 1;
4511 	freework->fw_start = freework->fw_off = off;
4512 	if (journal)
4513 		newjfreeblk(freeblks, lbn, nb, frags);
4514 	if (parent == NULL) {
4515 		ACQUIRE_LOCK(ump);
4516 		WORKLIST_INSERT(&freeblks->fb_freeworkhd, &freework->fw_list);
4517 		freeblks->fb_ref++;
4518 		FREE_LOCK(ump);
4519 	}
4520 
4521 	return (freework);
4522 }
4523 
4524 /*
4525  * Eliminate a jfreeblk for a block that does not need journaling.
4526  */
4527 static void
4528 cancel_jfreeblk(freeblks, blkno)
4529 	struct freeblks *freeblks;
4530 	ufs2_daddr_t blkno;
4531 {
4532 	struct jfreeblk *jfreeblk;
4533 	struct jblkdep *jblkdep;
4534 
4535 	LIST_FOREACH(jblkdep, &freeblks->fb_jblkdephd, jb_deps) {
4536 		if (jblkdep->jb_list.wk_type != D_JFREEBLK)
4537 			continue;
4538 		jfreeblk = WK_JFREEBLK(&jblkdep->jb_list);
4539 		if (jfreeblk->jf_blkno == blkno)
4540 			break;
4541 	}
4542 	if (jblkdep == NULL)
4543 		return;
4544 	CTR1(KTR_SUJ, "cancel_jfreeblk: blkno %jd", blkno);
4545 	free_jsegdep(jblkdep->jb_jsegdep);
4546 	LIST_REMOVE(jblkdep, jb_deps);
4547 	WORKITEM_FREE(jfreeblk, D_JFREEBLK);
4548 }
4549 
4550 /*
4551  * Allocate a new jfreeblk to journal top level block pointer when truncating
4552  * a file.  The caller must add this to the worklist when the per-filesystem
4553  * lock is held.
4554  */
4555 static struct jfreeblk *
4556 newjfreeblk(freeblks, lbn, blkno, frags)
4557 	struct freeblks *freeblks;
4558 	ufs_lbn_t lbn;
4559 	ufs2_daddr_t blkno;
4560 	int frags;
4561 {
4562 	struct jfreeblk *jfreeblk;
4563 
4564 	jfreeblk = malloc(sizeof(*jfreeblk), M_JFREEBLK, M_SOFTDEP_FLAGS);
4565 	workitem_alloc(&jfreeblk->jf_dep.jb_list, D_JFREEBLK,
4566 	    freeblks->fb_list.wk_mp);
4567 	jfreeblk->jf_dep.jb_jsegdep = newjsegdep(&jfreeblk->jf_dep.jb_list);
4568 	jfreeblk->jf_dep.jb_freeblks = freeblks;
4569 	jfreeblk->jf_ino = freeblks->fb_inum;
4570 	jfreeblk->jf_lbn = lbn;
4571 	jfreeblk->jf_blkno = blkno;
4572 	jfreeblk->jf_frags = frags;
4573 	LIST_INSERT_HEAD(&freeblks->fb_jblkdephd, &jfreeblk->jf_dep, jb_deps);
4574 
4575 	return (jfreeblk);
4576 }
4577 
4578 /*
4579  * The journal is only prepared to handle full-size block numbers, so we
4580  * have to adjust the record to reflect the change to a full-size block.
4581  * For example, suppose we have a block made up of fragments 8-15 and
4582  * want to free its last two fragments. We are given a request that says:
4583  *     FREEBLK ino=5, blkno=14, lbn=0, frags=2, oldfrags=0
4584  * where frags are the number of fragments to free and oldfrags are the
4585  * number of fragments to keep. To block align it, we have to change it to
4586  * have a valid full-size blkno, so it becomes:
4587  *     FREEBLK ino=5, blkno=8, lbn=0, frags=2, oldfrags=6
4588  */
4589 static void
4590 adjust_newfreework(freeblks, frag_offset)
4591 	struct freeblks *freeblks;
4592 	int frag_offset;
4593 {
4594 	struct jfreeblk *jfreeblk;
4595 
4596 	KASSERT((LIST_FIRST(&freeblks->fb_jblkdephd) != NULL &&
4597 	    LIST_FIRST(&freeblks->fb_jblkdephd)->jb_list.wk_type == D_JFREEBLK),
4598 	    ("adjust_newfreework: Missing freeblks dependency"));
4599 
4600 	jfreeblk = WK_JFREEBLK(LIST_FIRST(&freeblks->fb_jblkdephd));
4601 	jfreeblk->jf_blkno -= frag_offset;
4602 	jfreeblk->jf_frags += frag_offset;
4603 }
4604 
4605 /*
4606  * Allocate a new jtrunc to track a partial truncation.
4607  */
4608 static struct jtrunc *
4609 newjtrunc(freeblks, size, extsize)
4610 	struct freeblks *freeblks;
4611 	off_t size;
4612 	int extsize;
4613 {
4614 	struct jtrunc *jtrunc;
4615 
4616 	jtrunc = malloc(sizeof(*jtrunc), M_JTRUNC, M_SOFTDEP_FLAGS);
4617 	workitem_alloc(&jtrunc->jt_dep.jb_list, D_JTRUNC,
4618 	    freeblks->fb_list.wk_mp);
4619 	jtrunc->jt_dep.jb_jsegdep = newjsegdep(&jtrunc->jt_dep.jb_list);
4620 	jtrunc->jt_dep.jb_freeblks = freeblks;
4621 	jtrunc->jt_ino = freeblks->fb_inum;
4622 	jtrunc->jt_size = size;
4623 	jtrunc->jt_extsize = extsize;
4624 	LIST_INSERT_HEAD(&freeblks->fb_jblkdephd, &jtrunc->jt_dep, jb_deps);
4625 
4626 	return (jtrunc);
4627 }
4628 
4629 /*
4630  * If we're canceling a new bitmap we have to search for another ref
4631  * to move into the bmsafemap dep.  This might be better expressed
4632  * with another structure.
4633  */
4634 static void
4635 move_newblock_dep(jaddref, inodedep)
4636 	struct jaddref *jaddref;
4637 	struct inodedep *inodedep;
4638 {
4639 	struct inoref *inoref;
4640 	struct jaddref *jaddrefn;
4641 
4642 	jaddrefn = NULL;
4643 	for (inoref = TAILQ_NEXT(&jaddref->ja_ref, if_deps); inoref;
4644 	    inoref = TAILQ_NEXT(inoref, if_deps)) {
4645 		if ((jaddref->ja_state & NEWBLOCK) &&
4646 		    inoref->if_list.wk_type == D_JADDREF) {
4647 			jaddrefn = (struct jaddref *)inoref;
4648 			break;
4649 		}
4650 	}
4651 	if (jaddrefn == NULL)
4652 		return;
4653 	jaddrefn->ja_state &= ~(ATTACHED | UNDONE);
4654 	jaddrefn->ja_state |= jaddref->ja_state &
4655 	    (ATTACHED | UNDONE | NEWBLOCK);
4656 	jaddref->ja_state &= ~(ATTACHED | UNDONE | NEWBLOCK);
4657 	jaddref->ja_state |= ATTACHED;
4658 	LIST_REMOVE(jaddref, ja_bmdeps);
4659 	LIST_INSERT_HEAD(&inodedep->id_bmsafemap->sm_jaddrefhd, jaddrefn,
4660 	    ja_bmdeps);
4661 }
4662 
4663 /*
4664  * Cancel a jaddref either before it has been written or while it is being
4665  * written.  This happens when a link is removed before the add reaches
4666  * the disk.  The jaddref dependency is kept linked into the bmsafemap
4667  * and inode to prevent the link count or bitmap from reaching the disk
4668  * until handle_workitem_remove() re-adjusts the counts and bitmaps as
4669  * required.
4670  *
4671  * Returns 1 if the canceled addref requires journaling of the remove and
4672  * 0 otherwise.
4673  */
4674 static int
4675 cancel_jaddref(jaddref, inodedep, wkhd)
4676 	struct jaddref *jaddref;
4677 	struct inodedep *inodedep;
4678 	struct workhead *wkhd;
4679 {
4680 	struct inoref *inoref;
4681 	struct jsegdep *jsegdep;
4682 	int needsj;
4683 
4684 	KASSERT((jaddref->ja_state & COMPLETE) == 0,
4685 	    ("cancel_jaddref: Canceling complete jaddref"));
4686 	if (jaddref->ja_state & (INPROGRESS | COMPLETE))
4687 		needsj = 1;
4688 	else
4689 		needsj = 0;
4690 	if (inodedep == NULL)
4691 		if (inodedep_lookup(jaddref->ja_list.wk_mp, jaddref->ja_ino,
4692 		    0, &inodedep) == 0)
4693 			panic("cancel_jaddref: Lost inodedep");
4694 	/*
4695 	 * We must adjust the nlink of any reference operation that follows
4696 	 * us so that it is consistent with the in-memory reference.  This
4697 	 * ensures that inode nlink rollbacks always have the correct link.
4698 	 */
4699 	if (needsj == 0) {
4700 		for (inoref = TAILQ_NEXT(&jaddref->ja_ref, if_deps); inoref;
4701 		    inoref = TAILQ_NEXT(inoref, if_deps)) {
4702 			if (inoref->if_state & GOINGAWAY)
4703 				break;
4704 			inoref->if_nlink--;
4705 		}
4706 	}
4707 	jsegdep = inoref_jseg(&jaddref->ja_ref);
4708 	if (jaddref->ja_state & NEWBLOCK)
4709 		move_newblock_dep(jaddref, inodedep);
4710 	wake_worklist(&jaddref->ja_list);
4711 	jaddref->ja_mkdir = NULL;
4712 	if (jaddref->ja_state & INPROGRESS) {
4713 		jaddref->ja_state &= ~INPROGRESS;
4714 		WORKLIST_REMOVE(&jaddref->ja_list);
4715 		jwork_insert(wkhd, jsegdep);
4716 	} else {
4717 		free_jsegdep(jsegdep);
4718 		if (jaddref->ja_state & DEPCOMPLETE)
4719 			remove_from_journal(&jaddref->ja_list);
4720 	}
4721 	jaddref->ja_state |= (GOINGAWAY | DEPCOMPLETE);
4722 	/*
4723 	 * Leave NEWBLOCK jaddrefs on the inodedep so handle_workitem_remove
4724 	 * can arrange for them to be freed with the bitmap.  Otherwise we
4725 	 * no longer need this addref attached to the inoreflst and it
4726 	 * will incorrectly adjust nlink if we leave it.
4727 	 */
4728 	if ((jaddref->ja_state & NEWBLOCK) == 0) {
4729 		TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref,
4730 		    if_deps);
4731 		jaddref->ja_state |= COMPLETE;
4732 		free_jaddref(jaddref);
4733 		return (needsj);
4734 	}
4735 	/*
4736 	 * Leave the head of the list for jsegdeps for fast merging.
4737 	 */
4738 	if (LIST_FIRST(wkhd) != NULL) {
4739 		jaddref->ja_state |= ONWORKLIST;
4740 		LIST_INSERT_AFTER(LIST_FIRST(wkhd), &jaddref->ja_list, wk_list);
4741 	} else
4742 		WORKLIST_INSERT(wkhd, &jaddref->ja_list);
4743 
4744 	return (needsj);
4745 }
4746 
4747 /*
4748  * Attempt to free a jaddref structure when some work completes.  This
4749  * should only succeed once the entry is written and all dependencies have
4750  * been notified.
4751  */
4752 static void
4753 free_jaddref(jaddref)
4754 	struct jaddref *jaddref;
4755 {
4756 
4757 	if ((jaddref->ja_state & ALLCOMPLETE) != ALLCOMPLETE)
4758 		return;
4759 	if (jaddref->ja_ref.if_jsegdep)
4760 		panic("free_jaddref: segdep attached to jaddref %p(0x%X)\n",
4761 		    jaddref, jaddref->ja_state);
4762 	if (jaddref->ja_state & NEWBLOCK)
4763 		LIST_REMOVE(jaddref, ja_bmdeps);
4764 	if (jaddref->ja_state & (INPROGRESS | ONWORKLIST))
4765 		panic("free_jaddref: Bad state %p(0x%X)",
4766 		    jaddref, jaddref->ja_state);
4767 	if (jaddref->ja_mkdir != NULL)
4768 		panic("free_jaddref: Work pending, 0x%X\n", jaddref->ja_state);
4769 	WORKITEM_FREE(jaddref, D_JADDREF);
4770 }
4771 
4772 /*
4773  * Free a jremref structure once it has been written or discarded.
4774  */
4775 static void
4776 free_jremref(jremref)
4777 	struct jremref *jremref;
4778 {
4779 
4780 	if (jremref->jr_ref.if_jsegdep)
4781 		free_jsegdep(jremref->jr_ref.if_jsegdep);
4782 	if (jremref->jr_state & INPROGRESS)
4783 		panic("free_jremref: IO still pending");
4784 	WORKITEM_FREE(jremref, D_JREMREF);
4785 }
4786 
4787 /*
4788  * Free a jnewblk structure.
4789  */
4790 static void
4791 free_jnewblk(jnewblk)
4792 	struct jnewblk *jnewblk;
4793 {
4794 
4795 	if ((jnewblk->jn_state & ALLCOMPLETE) != ALLCOMPLETE)
4796 		return;
4797 	LIST_REMOVE(jnewblk, jn_deps);
4798 	if (jnewblk->jn_dep != NULL)
4799 		panic("free_jnewblk: Dependency still attached.");
4800 	WORKITEM_FREE(jnewblk, D_JNEWBLK);
4801 }
4802 
4803 /*
4804  * Cancel a jnewblk which has been been made redundant by frag extension.
4805  */
4806 static void
4807 cancel_jnewblk(jnewblk, wkhd)
4808 	struct jnewblk *jnewblk;
4809 	struct workhead *wkhd;
4810 {
4811 	struct jsegdep *jsegdep;
4812 
4813 	CTR1(KTR_SUJ, "cancel_jnewblk: blkno %jd", jnewblk->jn_blkno);
4814 	jsegdep = jnewblk->jn_jsegdep;
4815 	if (jnewblk->jn_jsegdep == NULL || jnewblk->jn_dep == NULL)
4816 		panic("cancel_jnewblk: Invalid state");
4817 	jnewblk->jn_jsegdep  = NULL;
4818 	jnewblk->jn_dep = NULL;
4819 	jnewblk->jn_state |= GOINGAWAY;
4820 	if (jnewblk->jn_state & INPROGRESS) {
4821 		jnewblk->jn_state &= ~INPROGRESS;
4822 		WORKLIST_REMOVE(&jnewblk->jn_list);
4823 		jwork_insert(wkhd, jsegdep);
4824 	} else {
4825 		free_jsegdep(jsegdep);
4826 		remove_from_journal(&jnewblk->jn_list);
4827 	}
4828 	wake_worklist(&jnewblk->jn_list);
4829 	WORKLIST_INSERT(wkhd, &jnewblk->jn_list);
4830 }
4831 
4832 static void
4833 free_jblkdep(jblkdep)
4834 	struct jblkdep *jblkdep;
4835 {
4836 
4837 	if (jblkdep->jb_list.wk_type == D_JFREEBLK)
4838 		WORKITEM_FREE(jblkdep, D_JFREEBLK);
4839 	else if (jblkdep->jb_list.wk_type == D_JTRUNC)
4840 		WORKITEM_FREE(jblkdep, D_JTRUNC);
4841 	else
4842 		panic("free_jblkdep: Unexpected type %s",
4843 		    TYPENAME(jblkdep->jb_list.wk_type));
4844 }
4845 
4846 /*
4847  * Free a single jseg once it is no longer referenced in memory or on
4848  * disk.  Reclaim journal blocks and dependencies waiting for the segment
4849  * to disappear.
4850  */
4851 static void
4852 free_jseg(jseg, jblocks)
4853 	struct jseg *jseg;
4854 	struct jblocks *jblocks;
4855 {
4856 	struct freework *freework;
4857 
4858 	/*
4859 	 * Free freework structures that were lingering to indicate freed
4860 	 * indirect blocks that forced journal write ordering on reallocate.
4861 	 */
4862 	while ((freework = LIST_FIRST(&jseg->js_indirs)) != NULL)
4863 		indirblk_remove(freework);
4864 	if (jblocks->jb_oldestseg == jseg)
4865 		jblocks->jb_oldestseg = TAILQ_NEXT(jseg, js_next);
4866 	TAILQ_REMOVE(&jblocks->jb_segs, jseg, js_next);
4867 	jblocks_free(jblocks, jseg->js_list.wk_mp, jseg->js_size);
4868 	KASSERT(LIST_EMPTY(&jseg->js_entries),
4869 	    ("free_jseg: Freed jseg has valid entries."));
4870 	WORKITEM_FREE(jseg, D_JSEG);
4871 }
4872 
4873 /*
4874  * Free all jsegs that meet the criteria for being reclaimed and update
4875  * oldestseg.
4876  */
4877 static void
4878 free_jsegs(jblocks)
4879 	struct jblocks *jblocks;
4880 {
4881 	struct jseg *jseg;
4882 
4883 	/*
4884 	 * Free only those jsegs which have none allocated before them to
4885 	 * preserve the journal space ordering.
4886 	 */
4887 	while ((jseg = TAILQ_FIRST(&jblocks->jb_segs)) != NULL) {
4888 		/*
4889 		 * Only reclaim space when nothing depends on this journal
4890 		 * set and another set has written that it is no longer
4891 		 * valid.
4892 		 */
4893 		if (jseg->js_refs != 0) {
4894 			jblocks->jb_oldestseg = jseg;
4895 			return;
4896 		}
4897 		if ((jseg->js_state & ALLCOMPLETE) != ALLCOMPLETE)
4898 			break;
4899 		if (jseg->js_seq > jblocks->jb_oldestwrseq)
4900 			break;
4901 		/*
4902 		 * We can free jsegs that didn't write entries when
4903 		 * oldestwrseq == js_seq.
4904 		 */
4905 		if (jseg->js_seq == jblocks->jb_oldestwrseq &&
4906 		    jseg->js_cnt != 0)
4907 			break;
4908 		free_jseg(jseg, jblocks);
4909 	}
4910 	/*
4911 	 * If we exited the loop above we still must discover the
4912 	 * oldest valid segment.
4913 	 */
4914 	if (jseg)
4915 		for (jseg = jblocks->jb_oldestseg; jseg != NULL;
4916 		     jseg = TAILQ_NEXT(jseg, js_next))
4917 			if (jseg->js_refs != 0)
4918 				break;
4919 	jblocks->jb_oldestseg = jseg;
4920 	/*
4921 	 * The journal has no valid records but some jsegs may still be
4922 	 * waiting on oldestwrseq to advance.  We force a small record
4923 	 * out to permit these lingering records to be reclaimed.
4924 	 */
4925 	if (jblocks->jb_oldestseg == NULL && !TAILQ_EMPTY(&jblocks->jb_segs))
4926 		jblocks->jb_needseg = 1;
4927 }
4928 
4929 /*
4930  * Release one reference to a jseg and free it if the count reaches 0.  This
4931  * should eventually reclaim journal space as well.
4932  */
4933 static void
4934 rele_jseg(jseg)
4935 	struct jseg *jseg;
4936 {
4937 
4938 	KASSERT(jseg->js_refs > 0,
4939 	    ("free_jseg: Invalid refcnt %d", jseg->js_refs));
4940 	if (--jseg->js_refs != 0)
4941 		return;
4942 	free_jsegs(jseg->js_jblocks);
4943 }
4944 
4945 /*
4946  * Release a jsegdep and decrement the jseg count.
4947  */
4948 static void
4949 free_jsegdep(jsegdep)
4950 	struct jsegdep *jsegdep;
4951 {
4952 
4953 	if (jsegdep->jd_seg)
4954 		rele_jseg(jsegdep->jd_seg);
4955 	WORKITEM_FREE(jsegdep, D_JSEGDEP);
4956 }
4957 
4958 /*
4959  * Wait for a journal item to make it to disk.  Initiate journal processing
4960  * if required.
4961  */
4962 static int
4963 jwait(wk, waitfor)
4964 	struct worklist *wk;
4965 	int waitfor;
4966 {
4967 
4968 	LOCK_OWNED(VFSTOUFS(wk->wk_mp));
4969 	/*
4970 	 * Blocking journal waits cause slow synchronous behavior.  Record
4971 	 * stats on the frequency of these blocking operations.
4972 	 */
4973 	if (waitfor == MNT_WAIT) {
4974 		stat_journal_wait++;
4975 		switch (wk->wk_type) {
4976 		case D_JREMREF:
4977 		case D_JMVREF:
4978 			stat_jwait_filepage++;
4979 			break;
4980 		case D_JTRUNC:
4981 		case D_JFREEBLK:
4982 			stat_jwait_freeblks++;
4983 			break;
4984 		case D_JNEWBLK:
4985 			stat_jwait_newblk++;
4986 			break;
4987 		case D_JADDREF:
4988 			stat_jwait_inode++;
4989 			break;
4990 		default:
4991 			break;
4992 		}
4993 	}
4994 	/*
4995 	 * If IO has not started we process the journal.  We can't mark the
4996 	 * worklist item as IOWAITING because we drop the lock while
4997 	 * processing the journal and the worklist entry may be freed after
4998 	 * this point.  The caller may call back in and re-issue the request.
4999 	 */
5000 	if ((wk->wk_state & INPROGRESS) == 0) {
5001 		softdep_process_journal(wk->wk_mp, wk, waitfor);
5002 		if (waitfor != MNT_WAIT)
5003 			return (EBUSY);
5004 		return (0);
5005 	}
5006 	if (waitfor != MNT_WAIT)
5007 		return (EBUSY);
5008 	wait_worklist(wk, "jwait");
5009 	return (0);
5010 }
5011 
5012 /*
5013  * Lookup an inodedep based on an inode pointer and set the nlinkdelta as
5014  * appropriate.  This is a convenience function to reduce duplicate code
5015  * for the setup and revert functions below.
5016  */
5017 static struct inodedep *
5018 inodedep_lookup_ip(ip)
5019 	struct inode *ip;
5020 {
5021 	struct inodedep *inodedep;
5022 
5023 	KASSERT(ip->i_nlink >= ip->i_effnlink,
5024 	    ("inodedep_lookup_ip: bad delta"));
5025 	(void) inodedep_lookup(ITOVFS(ip), ip->i_number, DEPALLOC,
5026 	    &inodedep);
5027 	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
5028 	KASSERT((inodedep->id_state & UNLINKED) == 0, ("inode unlinked"));
5029 
5030 	return (inodedep);
5031 }
5032 
5033 /*
5034  * Called prior to creating a new inode and linking it to a directory.  The
5035  * jaddref structure must already be allocated by softdep_setup_inomapdep
5036  * and it is discovered here so we can initialize the mode and update
5037  * nlinkdelta.
5038  */
5039 void
5040 softdep_setup_create(dp, ip)
5041 	struct inode *dp;
5042 	struct inode *ip;
5043 {
5044 	struct inodedep *inodedep;
5045 	struct jaddref *jaddref;
5046 	struct vnode *dvp;
5047 
5048 	KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
5049 	    ("softdep_setup_create called on non-softdep filesystem"));
5050 	KASSERT(ip->i_nlink == 1,
5051 	    ("softdep_setup_create: Invalid link count."));
5052 	dvp = ITOV(dp);
5053 	ACQUIRE_LOCK(ITOUMP(dp));
5054 	inodedep = inodedep_lookup_ip(ip);
5055 	if (DOINGSUJ(dvp)) {
5056 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
5057 		    inoreflst);
5058 		KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number,
5059 		    ("softdep_setup_create: No addref structure present."));
5060 	}
5061 	FREE_LOCK(ITOUMP(dp));
5062 }
5063 
5064 /*
5065  * Create a jaddref structure to track the addition of a DOTDOT link when
5066  * we are reparenting an inode as part of a rename.  This jaddref will be
5067  * found by softdep_setup_directory_change.  Adjusts nlinkdelta for
5068  * non-journaling softdep.
5069  */
5070 void
5071 softdep_setup_dotdot_link(dp, ip)
5072 	struct inode *dp;
5073 	struct inode *ip;
5074 {
5075 	struct inodedep *inodedep;
5076 	struct jaddref *jaddref;
5077 	struct vnode *dvp;
5078 
5079 	KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
5080 	    ("softdep_setup_dotdot_link called on non-softdep filesystem"));
5081 	dvp = ITOV(dp);
5082 	jaddref = NULL;
5083 	/*
5084 	 * We don't set MKDIR_PARENT as this is not tied to a mkdir and
5085 	 * is used as a normal link would be.
5086 	 */
5087 	if (DOINGSUJ(dvp))
5088 		jaddref = newjaddref(ip, dp->i_number, DOTDOT_OFFSET,
5089 		    dp->i_effnlink - 1, dp->i_mode);
5090 	ACQUIRE_LOCK(ITOUMP(dp));
5091 	inodedep = inodedep_lookup_ip(dp);
5092 	if (jaddref)
5093 		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref,
5094 		    if_deps);
5095 	FREE_LOCK(ITOUMP(dp));
5096 }
5097 
5098 /*
5099  * Create a jaddref structure to track a new link to an inode.  The directory
5100  * offset is not known until softdep_setup_directory_add or
5101  * softdep_setup_directory_change.  Adjusts nlinkdelta for non-journaling
5102  * softdep.
5103  */
5104 void
5105 softdep_setup_link(dp, ip)
5106 	struct inode *dp;
5107 	struct inode *ip;
5108 {
5109 	struct inodedep *inodedep;
5110 	struct jaddref *jaddref;
5111 	struct vnode *dvp;
5112 
5113 	KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
5114 	    ("softdep_setup_link called on non-softdep filesystem"));
5115 	dvp = ITOV(dp);
5116 	jaddref = NULL;
5117 	if (DOINGSUJ(dvp))
5118 		jaddref = newjaddref(dp, ip->i_number, 0, ip->i_effnlink - 1,
5119 		    ip->i_mode);
5120 	ACQUIRE_LOCK(ITOUMP(dp));
5121 	inodedep = inodedep_lookup_ip(ip);
5122 	if (jaddref)
5123 		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref,
5124 		    if_deps);
5125 	FREE_LOCK(ITOUMP(dp));
5126 }
5127 
5128 /*
5129  * Called to create the jaddref structures to track . and .. references as
5130  * well as lookup and further initialize the incomplete jaddref created
5131  * by softdep_setup_inomapdep when the inode was allocated.  Adjusts
5132  * nlinkdelta for non-journaling softdep.
5133  */
5134 void
5135 softdep_setup_mkdir(dp, ip)
5136 	struct inode *dp;
5137 	struct inode *ip;
5138 {
5139 	struct inodedep *inodedep;
5140 	struct jaddref *dotdotaddref;
5141 	struct jaddref *dotaddref;
5142 	struct jaddref *jaddref;
5143 	struct vnode *dvp;
5144 
5145 	KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
5146 	    ("softdep_setup_mkdir called on non-softdep filesystem"));
5147 	dvp = ITOV(dp);
5148 	dotaddref = dotdotaddref = NULL;
5149 	if (DOINGSUJ(dvp)) {
5150 		dotaddref = newjaddref(ip, ip->i_number, DOT_OFFSET, 1,
5151 		    ip->i_mode);
5152 		dotaddref->ja_state |= MKDIR_BODY;
5153 		dotdotaddref = newjaddref(ip, dp->i_number, DOTDOT_OFFSET,
5154 		    dp->i_effnlink - 1, dp->i_mode);
5155 		dotdotaddref->ja_state |= MKDIR_PARENT;
5156 	}
5157 	ACQUIRE_LOCK(ITOUMP(dp));
5158 	inodedep = inodedep_lookup_ip(ip);
5159 	if (DOINGSUJ(dvp)) {
5160 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
5161 		    inoreflst);
5162 		KASSERT(jaddref != NULL,
5163 		    ("softdep_setup_mkdir: No addref structure present."));
5164 		KASSERT(jaddref->ja_parent == dp->i_number,
5165 		    ("softdep_setup_mkdir: bad parent %ju",
5166 		    (uintmax_t)jaddref->ja_parent));
5167 		TAILQ_INSERT_BEFORE(&jaddref->ja_ref, &dotaddref->ja_ref,
5168 		    if_deps);
5169 	}
5170 	inodedep = inodedep_lookup_ip(dp);
5171 	if (DOINGSUJ(dvp))
5172 		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst,
5173 		    &dotdotaddref->ja_ref, if_deps);
5174 	FREE_LOCK(ITOUMP(dp));
5175 }
5176 
5177 /*
5178  * Called to track nlinkdelta of the inode and parent directories prior to
5179  * unlinking a directory.
5180  */
5181 void
5182 softdep_setup_rmdir(dp, ip)
5183 	struct inode *dp;
5184 	struct inode *ip;
5185 {
5186 	struct vnode *dvp;
5187 
5188 	KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
5189 	    ("softdep_setup_rmdir called on non-softdep filesystem"));
5190 	dvp = ITOV(dp);
5191 	ACQUIRE_LOCK(ITOUMP(dp));
5192 	(void) inodedep_lookup_ip(ip);
5193 	(void) inodedep_lookup_ip(dp);
5194 	FREE_LOCK(ITOUMP(dp));
5195 }
5196 
5197 /*
5198  * Called to track nlinkdelta of the inode and parent directories prior to
5199  * unlink.
5200  */
5201 void
5202 softdep_setup_unlink(dp, ip)
5203 	struct inode *dp;
5204 	struct inode *ip;
5205 {
5206 	struct vnode *dvp;
5207 
5208 	KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
5209 	    ("softdep_setup_unlink called on non-softdep filesystem"));
5210 	dvp = ITOV(dp);
5211 	ACQUIRE_LOCK(ITOUMP(dp));
5212 	(void) inodedep_lookup_ip(ip);
5213 	(void) inodedep_lookup_ip(dp);
5214 	FREE_LOCK(ITOUMP(dp));
5215 }
5216 
5217 /*
5218  * Called to release the journal structures created by a failed non-directory
5219  * creation.  Adjusts nlinkdelta for non-journaling softdep.
5220  */
5221 void
5222 softdep_revert_create(dp, ip)
5223 	struct inode *dp;
5224 	struct inode *ip;
5225 {
5226 	struct inodedep *inodedep;
5227 	struct jaddref *jaddref;
5228 	struct vnode *dvp;
5229 
5230 	KASSERT(MOUNTEDSOFTDEP(ITOVFS((dp))) != 0,
5231 	    ("softdep_revert_create called on non-softdep filesystem"));
5232 	dvp = ITOV(dp);
5233 	ACQUIRE_LOCK(ITOUMP(dp));
5234 	inodedep = inodedep_lookup_ip(ip);
5235 	if (DOINGSUJ(dvp)) {
5236 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
5237 		    inoreflst);
5238 		KASSERT(jaddref->ja_parent == dp->i_number,
5239 		    ("softdep_revert_create: addref parent mismatch"));
5240 		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
5241 	}
5242 	FREE_LOCK(ITOUMP(dp));
5243 }
5244 
5245 /*
5246  * Called to release the journal structures created by a failed link
5247  * addition.  Adjusts nlinkdelta for non-journaling softdep.
5248  */
5249 void
5250 softdep_revert_link(dp, ip)
5251 	struct inode *dp;
5252 	struct inode *ip;
5253 {
5254 	struct inodedep *inodedep;
5255 	struct jaddref *jaddref;
5256 	struct vnode *dvp;
5257 
5258 	KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
5259 	    ("softdep_revert_link called on non-softdep filesystem"));
5260 	dvp = ITOV(dp);
5261 	ACQUIRE_LOCK(ITOUMP(dp));
5262 	inodedep = inodedep_lookup_ip(ip);
5263 	if (DOINGSUJ(dvp)) {
5264 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
5265 		    inoreflst);
5266 		KASSERT(jaddref->ja_parent == dp->i_number,
5267 		    ("softdep_revert_link: addref parent mismatch"));
5268 		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
5269 	}
5270 	FREE_LOCK(ITOUMP(dp));
5271 }
5272 
5273 /*
5274  * Called to release the journal structures created by a failed mkdir
5275  * attempt.  Adjusts nlinkdelta for non-journaling softdep.
5276  */
5277 void
5278 softdep_revert_mkdir(dp, ip)
5279 	struct inode *dp;
5280 	struct inode *ip;
5281 {
5282 	struct inodedep *inodedep;
5283 	struct jaddref *jaddref;
5284 	struct jaddref *dotaddref;
5285 	struct vnode *dvp;
5286 
5287 	KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
5288 	    ("softdep_revert_mkdir called on non-softdep filesystem"));
5289 	dvp = ITOV(dp);
5290 
5291 	ACQUIRE_LOCK(ITOUMP(dp));
5292 	inodedep = inodedep_lookup_ip(dp);
5293 	if (DOINGSUJ(dvp)) {
5294 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
5295 		    inoreflst);
5296 		KASSERT(jaddref->ja_parent == ip->i_number,
5297 		    ("softdep_revert_mkdir: dotdot addref parent mismatch"));
5298 		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
5299 	}
5300 	inodedep = inodedep_lookup_ip(ip);
5301 	if (DOINGSUJ(dvp)) {
5302 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
5303 		    inoreflst);
5304 		KASSERT(jaddref->ja_parent == dp->i_number,
5305 		    ("softdep_revert_mkdir: addref parent mismatch"));
5306 		dotaddref = (struct jaddref *)TAILQ_PREV(&jaddref->ja_ref,
5307 		    inoreflst, if_deps);
5308 		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
5309 		KASSERT(dotaddref->ja_parent == ip->i_number,
5310 		    ("softdep_revert_mkdir: dot addref parent mismatch"));
5311 		cancel_jaddref(dotaddref, inodedep, &inodedep->id_inowait);
5312 	}
5313 	FREE_LOCK(ITOUMP(dp));
5314 }
5315 
5316 /*
5317  * Called to correct nlinkdelta after a failed rmdir.
5318  */
5319 void
5320 softdep_revert_rmdir(dp, ip)
5321 	struct inode *dp;
5322 	struct inode *ip;
5323 {
5324 
5325 	KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
5326 	    ("softdep_revert_rmdir called on non-softdep filesystem"));
5327 	ACQUIRE_LOCK(ITOUMP(dp));
5328 	(void) inodedep_lookup_ip(ip);
5329 	(void) inodedep_lookup_ip(dp);
5330 	FREE_LOCK(ITOUMP(dp));
5331 }
5332 
5333 /*
5334  * Protecting the freemaps (or bitmaps).
5335  *
5336  * To eliminate the need to execute fsck before mounting a filesystem
5337  * after a power failure, one must (conservatively) guarantee that the
5338  * on-disk copy of the bitmaps never indicate that a live inode or block is
5339  * free.  So, when a block or inode is allocated, the bitmap should be
5340  * updated (on disk) before any new pointers.  When a block or inode is
5341  * freed, the bitmap should not be updated until all pointers have been
5342  * reset.  The latter dependency is handled by the delayed de-allocation
5343  * approach described below for block and inode de-allocation.  The former
5344  * dependency is handled by calling the following procedure when a block or
5345  * inode is allocated. When an inode is allocated an "inodedep" is created
5346  * with its DEPCOMPLETE flag cleared until its bitmap is written to disk.
5347  * Each "inodedep" is also inserted into the hash indexing structure so
5348  * that any additional link additions can be made dependent on the inode
5349  * allocation.
5350  *
5351  * The ufs filesystem maintains a number of free block counts (e.g., per
5352  * cylinder group, per cylinder and per <cylinder, rotational position> pair)
5353  * in addition to the bitmaps.  These counts are used to improve efficiency
5354  * during allocation and therefore must be consistent with the bitmaps.
5355  * There is no convenient way to guarantee post-crash consistency of these
5356  * counts with simple update ordering, for two main reasons: (1) The counts
5357  * and bitmaps for a single cylinder group block are not in the same disk
5358  * sector.  If a disk write is interrupted (e.g., by power failure), one may
5359  * be written and the other not.  (2) Some of the counts are located in the
5360  * superblock rather than the cylinder group block. So, we focus our soft
5361  * updates implementation on protecting the bitmaps. When mounting a
5362  * filesystem, we recompute the auxiliary counts from the bitmaps.
5363  */
5364 
5365 /*
5366  * Called just after updating the cylinder group block to allocate an inode.
5367  */
5368 void
5369 softdep_setup_inomapdep(bp, ip, newinum, mode)
5370 	struct buf *bp;		/* buffer for cylgroup block with inode map */
5371 	struct inode *ip;	/* inode related to allocation */
5372 	ino_t newinum;		/* new inode number being allocated */
5373 	int mode;
5374 {
5375 	struct inodedep *inodedep;
5376 	struct bmsafemap *bmsafemap;
5377 	struct jaddref *jaddref;
5378 	struct mount *mp;
5379 	struct fs *fs;
5380 
5381 	mp = ITOVFS(ip);
5382 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
5383 	    ("softdep_setup_inomapdep called on non-softdep filesystem"));
5384 	fs = VFSTOUFS(mp)->um_fs;
5385 	jaddref = NULL;
5386 
5387 	/*
5388 	 * Allocate the journal reference add structure so that the bitmap
5389 	 * can be dependent on it.
5390 	 */
5391 	if (MOUNTEDSUJ(mp)) {
5392 		jaddref = newjaddref(ip, newinum, 0, 0, mode);
5393 		jaddref->ja_state |= NEWBLOCK;
5394 	}
5395 
5396 	/*
5397 	 * Create a dependency for the newly allocated inode.
5398 	 * Panic if it already exists as something is seriously wrong.
5399 	 * Otherwise add it to the dependency list for the buffer holding
5400 	 * the cylinder group map from which it was allocated.
5401 	 *
5402 	 * We have to preallocate a bmsafemap entry in case it is needed
5403 	 * in bmsafemap_lookup since once we allocate the inodedep, we
5404 	 * have to finish initializing it before we can FREE_LOCK().
5405 	 * By preallocating, we avoid FREE_LOCK() while doing a malloc
5406 	 * in bmsafemap_lookup. We cannot call bmsafemap_lookup before
5407 	 * creating the inodedep as it can be freed during the time
5408 	 * that we FREE_LOCK() while allocating the inodedep. We must
5409 	 * call workitem_alloc() before entering the locked section as
5410 	 * it also acquires the lock and we must avoid trying doing so
5411 	 * recursively.
5412 	 */
5413 	bmsafemap = malloc(sizeof(struct bmsafemap),
5414 	    M_BMSAFEMAP, M_SOFTDEP_FLAGS);
5415 	workitem_alloc(&bmsafemap->sm_list, D_BMSAFEMAP, mp);
5416 	ACQUIRE_LOCK(ITOUMP(ip));
5417 	if ((inodedep_lookup(mp, newinum, DEPALLOC, &inodedep)))
5418 		panic("softdep_setup_inomapdep: dependency %p for new"
5419 		    "inode already exists", inodedep);
5420 	bmsafemap = bmsafemap_lookup(mp, bp, ino_to_cg(fs, newinum), bmsafemap);
5421 	if (jaddref) {
5422 		LIST_INSERT_HEAD(&bmsafemap->sm_jaddrefhd, jaddref, ja_bmdeps);
5423 		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref,
5424 		    if_deps);
5425 	} else {
5426 		inodedep->id_state |= ONDEPLIST;
5427 		LIST_INSERT_HEAD(&bmsafemap->sm_inodedephd, inodedep, id_deps);
5428 	}
5429 	inodedep->id_bmsafemap = bmsafemap;
5430 	inodedep->id_state &= ~DEPCOMPLETE;
5431 	FREE_LOCK(ITOUMP(ip));
5432 }
5433 
5434 /*
5435  * Called just after updating the cylinder group block to
5436  * allocate block or fragment.
5437  */
5438 void
5439 softdep_setup_blkmapdep(bp, mp, newblkno, frags, oldfrags)
5440 	struct buf *bp;		/* buffer for cylgroup block with block map */
5441 	struct mount *mp;	/* filesystem doing allocation */
5442 	ufs2_daddr_t newblkno;	/* number of newly allocated block */
5443 	int frags;		/* Number of fragments. */
5444 	int oldfrags;		/* Previous number of fragments for extend. */
5445 {
5446 	struct newblk *newblk;
5447 	struct bmsafemap *bmsafemap;
5448 	struct jnewblk *jnewblk;
5449 	struct ufsmount *ump;
5450 	struct fs *fs;
5451 
5452 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
5453 	    ("softdep_setup_blkmapdep called on non-softdep filesystem"));
5454 	ump = VFSTOUFS(mp);
5455 	fs = ump->um_fs;
5456 	jnewblk = NULL;
5457 	/*
5458 	 * Create a dependency for the newly allocated block.
5459 	 * Add it to the dependency list for the buffer holding
5460 	 * the cylinder group map from which it was allocated.
5461 	 */
5462 	if (MOUNTEDSUJ(mp)) {
5463 		jnewblk = malloc(sizeof(*jnewblk), M_JNEWBLK, M_SOFTDEP_FLAGS);
5464 		workitem_alloc(&jnewblk->jn_list, D_JNEWBLK, mp);
5465 		jnewblk->jn_jsegdep = newjsegdep(&jnewblk->jn_list);
5466 		jnewblk->jn_state = ATTACHED;
5467 		jnewblk->jn_blkno = newblkno;
5468 		jnewblk->jn_frags = frags;
5469 		jnewblk->jn_oldfrags = oldfrags;
5470 #ifdef INVARIANTS
5471 		{
5472 			struct cg *cgp;
5473 			uint8_t *blksfree;
5474 			long bno;
5475 			int i;
5476 
5477 			cgp = (struct cg *)bp->b_data;
5478 			blksfree = cg_blksfree(cgp);
5479 			bno = dtogd(fs, jnewblk->jn_blkno);
5480 			for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags;
5481 			    i++) {
5482 				if (isset(blksfree, bno + i))
5483 					panic("softdep_setup_blkmapdep: "
5484 					    "free fragment %d from %d-%d "
5485 					    "state 0x%X dep %p", i,
5486 					    jnewblk->jn_oldfrags,
5487 					    jnewblk->jn_frags,
5488 					    jnewblk->jn_state,
5489 					    jnewblk->jn_dep);
5490 			}
5491 		}
5492 #endif
5493 	}
5494 
5495 	CTR3(KTR_SUJ,
5496 	    "softdep_setup_blkmapdep: blkno %jd frags %d oldfrags %d",
5497 	    newblkno, frags, oldfrags);
5498 	ACQUIRE_LOCK(ump);
5499 	if (newblk_lookup(mp, newblkno, DEPALLOC, &newblk) != 0)
5500 		panic("softdep_setup_blkmapdep: found block");
5501 	newblk->nb_bmsafemap = bmsafemap = bmsafemap_lookup(mp, bp,
5502 	    dtog(fs, newblkno), NULL);
5503 	if (jnewblk) {
5504 		jnewblk->jn_dep = (struct worklist *)newblk;
5505 		LIST_INSERT_HEAD(&bmsafemap->sm_jnewblkhd, jnewblk, jn_deps);
5506 	} else {
5507 		newblk->nb_state |= ONDEPLIST;
5508 		LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, nb_deps);
5509 	}
5510 	newblk->nb_bmsafemap = bmsafemap;
5511 	newblk->nb_jnewblk = jnewblk;
5512 	FREE_LOCK(ump);
5513 }
5514 
5515 #define	BMSAFEMAP_HASH(ump, cg) \
5516       (&(ump)->bmsafemap_hashtbl[(cg) & (ump)->bmsafemap_hash_size])
5517 
5518 static int
5519 bmsafemap_find(bmsafemaphd, cg, bmsafemapp)
5520 	struct bmsafemap_hashhead *bmsafemaphd;
5521 	int cg;
5522 	struct bmsafemap **bmsafemapp;
5523 {
5524 	struct bmsafemap *bmsafemap;
5525 
5526 	LIST_FOREACH(bmsafemap, bmsafemaphd, sm_hash)
5527 		if (bmsafemap->sm_cg == cg)
5528 			break;
5529 	if (bmsafemap) {
5530 		*bmsafemapp = bmsafemap;
5531 		return (1);
5532 	}
5533 	*bmsafemapp = NULL;
5534 
5535 	return (0);
5536 }
5537 
5538 /*
5539  * Find the bmsafemap associated with a cylinder group buffer.
5540  * If none exists, create one. The buffer must be locked when
5541  * this routine is called and this routine must be called with
5542  * the softdep lock held. To avoid giving up the lock while
5543  * allocating a new bmsafemap, a preallocated bmsafemap may be
5544  * provided. If it is provided but not needed, it is freed.
5545  */
5546 static struct bmsafemap *
5547 bmsafemap_lookup(mp, bp, cg, newbmsafemap)
5548 	struct mount *mp;
5549 	struct buf *bp;
5550 	int cg;
5551 	struct bmsafemap *newbmsafemap;
5552 {
5553 	struct bmsafemap_hashhead *bmsafemaphd;
5554 	struct bmsafemap *bmsafemap, *collision;
5555 	struct worklist *wk;
5556 	struct ufsmount *ump;
5557 
5558 	ump = VFSTOUFS(mp);
5559 	LOCK_OWNED(ump);
5560 	KASSERT(bp != NULL, ("bmsafemap_lookup: missing buffer"));
5561 	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
5562 		if (wk->wk_type == D_BMSAFEMAP) {
5563 			if (newbmsafemap)
5564 				WORKITEM_FREE(newbmsafemap, D_BMSAFEMAP);
5565 			return (WK_BMSAFEMAP(wk));
5566 		}
5567 	}
5568 	bmsafemaphd = BMSAFEMAP_HASH(ump, cg);
5569 	if (bmsafemap_find(bmsafemaphd, cg, &bmsafemap) == 1) {
5570 		if (newbmsafemap)
5571 			WORKITEM_FREE(newbmsafemap, D_BMSAFEMAP);
5572 		return (bmsafemap);
5573 	}
5574 	if (newbmsafemap) {
5575 		bmsafemap = newbmsafemap;
5576 	} else {
5577 		FREE_LOCK(ump);
5578 		bmsafemap = malloc(sizeof(struct bmsafemap),
5579 			M_BMSAFEMAP, M_SOFTDEP_FLAGS);
5580 		workitem_alloc(&bmsafemap->sm_list, D_BMSAFEMAP, mp);
5581 		ACQUIRE_LOCK(ump);
5582 	}
5583 	bmsafemap->sm_buf = bp;
5584 	LIST_INIT(&bmsafemap->sm_inodedephd);
5585 	LIST_INIT(&bmsafemap->sm_inodedepwr);
5586 	LIST_INIT(&bmsafemap->sm_newblkhd);
5587 	LIST_INIT(&bmsafemap->sm_newblkwr);
5588 	LIST_INIT(&bmsafemap->sm_jaddrefhd);
5589 	LIST_INIT(&bmsafemap->sm_jnewblkhd);
5590 	LIST_INIT(&bmsafemap->sm_freehd);
5591 	LIST_INIT(&bmsafemap->sm_freewr);
5592 	if (bmsafemap_find(bmsafemaphd, cg, &collision) == 1) {
5593 		WORKITEM_FREE(bmsafemap, D_BMSAFEMAP);
5594 		return (collision);
5595 	}
5596 	bmsafemap->sm_cg = cg;
5597 	LIST_INSERT_HEAD(bmsafemaphd, bmsafemap, sm_hash);
5598 	LIST_INSERT_HEAD(&ump->softdep_dirtycg, bmsafemap, sm_next);
5599 	WORKLIST_INSERT(&bp->b_dep, &bmsafemap->sm_list);
5600 	return (bmsafemap);
5601 }
5602 
5603 /*
5604  * Direct block allocation dependencies.
5605  *
5606  * When a new block is allocated, the corresponding disk locations must be
5607  * initialized (with zeros or new data) before the on-disk inode points to
5608  * them.  Also, the freemap from which the block was allocated must be
5609  * updated (on disk) before the inode's pointer. These two dependencies are
5610  * independent of each other and are needed for all file blocks and indirect
5611  * blocks that are pointed to directly by the inode.  Just before the
5612  * "in-core" version of the inode is updated with a newly allocated block
5613  * number, a procedure (below) is called to setup allocation dependency
5614  * structures.  These structures are removed when the corresponding
5615  * dependencies are satisfied or when the block allocation becomes obsolete
5616  * (i.e., the file is deleted, the block is de-allocated, or the block is a
5617  * fragment that gets upgraded).  All of these cases are handled in
5618  * procedures described later.
5619  *
5620  * When a file extension causes a fragment to be upgraded, either to a larger
5621  * fragment or to a full block, the on-disk location may change (if the
5622  * previous fragment could not simply be extended). In this case, the old
5623  * fragment must be de-allocated, but not until after the inode's pointer has
5624  * been updated. In most cases, this is handled by later procedures, which
5625  * will construct a "freefrag" structure to be added to the workitem queue
5626  * when the inode update is complete (or obsolete).  The main exception to
5627  * this is when an allocation occurs while a pending allocation dependency
5628  * (for the same block pointer) remains.  This case is handled in the main
5629  * allocation dependency setup procedure by immediately freeing the
5630  * unreferenced fragments.
5631  */
5632 void
5633 softdep_setup_allocdirect(ip, off, newblkno, oldblkno, newsize, oldsize, bp)
5634 	struct inode *ip;	/* inode to which block is being added */
5635 	ufs_lbn_t off;		/* block pointer within inode */
5636 	ufs2_daddr_t newblkno;	/* disk block number being added */
5637 	ufs2_daddr_t oldblkno;	/* previous block number, 0 unless frag */
5638 	long newsize;		/* size of new block */
5639 	long oldsize;		/* size of new block */
5640 	struct buf *bp;		/* bp for allocated block */
5641 {
5642 	struct allocdirect *adp, *oldadp;
5643 	struct allocdirectlst *adphead;
5644 	struct freefrag *freefrag;
5645 	struct inodedep *inodedep;
5646 	struct pagedep *pagedep;
5647 	struct jnewblk *jnewblk;
5648 	struct newblk *newblk;
5649 	struct mount *mp;
5650 	ufs_lbn_t lbn;
5651 
5652 	lbn = bp->b_lblkno;
5653 	mp = ITOVFS(ip);
5654 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
5655 	    ("softdep_setup_allocdirect called on non-softdep filesystem"));
5656 	if (oldblkno && oldblkno != newblkno)
5657 		/*
5658 		 * The usual case is that a smaller fragment that
5659 		 * was just allocated has been replaced with a bigger
5660 		 * fragment or a full-size block. If it is marked as
5661 		 * B_DELWRI, the current contents have not been written
5662 		 * to disk. It is possible that the block was written
5663 		 * earlier, but very uncommon. If the block has never
5664 		 * been written, there is no need to send a BIO_DELETE
5665 		 * for it when it is freed. The gain from avoiding the
5666 		 * TRIMs for the common case of unwritten blocks far
5667 		 * exceeds the cost of the write amplification for the
5668 		 * uncommon case of failing to send a TRIM for a block
5669 		 * that had been written.
5670 		 */
5671 		freefrag = newfreefrag(ip, oldblkno, oldsize, lbn,
5672 		    (bp->b_flags & B_DELWRI) != 0 ? NOTRIM_KEY : SINGLETON_KEY);
5673 	else
5674 		freefrag = NULL;
5675 
5676 	CTR6(KTR_SUJ,
5677 	    "softdep_setup_allocdirect: ino %d blkno %jd oldblkno %jd "
5678 	    "off %jd newsize %ld oldsize %d",
5679 	    ip->i_number, newblkno, oldblkno, off, newsize, oldsize);
5680 	ACQUIRE_LOCK(ITOUMP(ip));
5681 	if (off >= UFS_NDADDR) {
5682 		if (lbn > 0)
5683 			panic("softdep_setup_allocdirect: bad lbn %jd, off %jd",
5684 			    lbn, off);
5685 		/* allocating an indirect block */
5686 		if (oldblkno != 0)
5687 			panic("softdep_setup_allocdirect: non-zero indir");
5688 	} else {
5689 		if (off != lbn)
5690 			panic("softdep_setup_allocdirect: lbn %jd != off %jd",
5691 			    lbn, off);
5692 		/*
5693 		 * Allocating a direct block.
5694 		 *
5695 		 * If we are allocating a directory block, then we must
5696 		 * allocate an associated pagedep to track additions and
5697 		 * deletions.
5698 		 */
5699 		if ((ip->i_mode & IFMT) == IFDIR)
5700 			pagedep_lookup(mp, bp, ip->i_number, off, DEPALLOC,
5701 			    &pagedep);
5702 	}
5703 	if (newblk_lookup(mp, newblkno, 0, &newblk) == 0)
5704 		panic("softdep_setup_allocdirect: lost block");
5705 	KASSERT(newblk->nb_list.wk_type == D_NEWBLK,
5706 	    ("softdep_setup_allocdirect: newblk already initialized"));
5707 	/*
5708 	 * Convert the newblk to an allocdirect.
5709 	 */
5710 	WORKITEM_REASSIGN(newblk, D_ALLOCDIRECT);
5711 	adp = (struct allocdirect *)newblk;
5712 	newblk->nb_freefrag = freefrag;
5713 	adp->ad_offset = off;
5714 	adp->ad_oldblkno = oldblkno;
5715 	adp->ad_newsize = newsize;
5716 	adp->ad_oldsize = oldsize;
5717 
5718 	/*
5719 	 * Finish initializing the journal.
5720 	 */
5721 	if ((jnewblk = newblk->nb_jnewblk) != NULL) {
5722 		jnewblk->jn_ino = ip->i_number;
5723 		jnewblk->jn_lbn = lbn;
5724 		add_to_journal(&jnewblk->jn_list);
5725 	}
5726 	if (freefrag && freefrag->ff_jdep != NULL &&
5727 	    freefrag->ff_jdep->wk_type == D_JFREEFRAG)
5728 		add_to_journal(freefrag->ff_jdep);
5729 	inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
5730 	adp->ad_inodedep = inodedep;
5731 
5732 	WORKLIST_INSERT(&bp->b_dep, &newblk->nb_list);
5733 	/*
5734 	 * The list of allocdirects must be kept in sorted and ascending
5735 	 * order so that the rollback routines can quickly determine the
5736 	 * first uncommitted block (the size of the file stored on disk
5737 	 * ends at the end of the lowest committed fragment, or if there
5738 	 * are no fragments, at the end of the highest committed block).
5739 	 * Since files generally grow, the typical case is that the new
5740 	 * block is to be added at the end of the list. We speed this
5741 	 * special case by checking against the last allocdirect in the
5742 	 * list before laboriously traversing the list looking for the
5743 	 * insertion point.
5744 	 */
5745 	adphead = &inodedep->id_newinoupdt;
5746 	oldadp = TAILQ_LAST(adphead, allocdirectlst);
5747 	if (oldadp == NULL || oldadp->ad_offset <= off) {
5748 		/* insert at end of list */
5749 		TAILQ_INSERT_TAIL(adphead, adp, ad_next);
5750 		if (oldadp != NULL && oldadp->ad_offset == off)
5751 			allocdirect_merge(adphead, adp, oldadp);
5752 		FREE_LOCK(ITOUMP(ip));
5753 		return;
5754 	}
5755 	TAILQ_FOREACH(oldadp, adphead, ad_next) {
5756 		if (oldadp->ad_offset >= off)
5757 			break;
5758 	}
5759 	if (oldadp == NULL)
5760 		panic("softdep_setup_allocdirect: lost entry");
5761 	/* insert in middle of list */
5762 	TAILQ_INSERT_BEFORE(oldadp, adp, ad_next);
5763 	if (oldadp->ad_offset == off)
5764 		allocdirect_merge(adphead, adp, oldadp);
5765 
5766 	FREE_LOCK(ITOUMP(ip));
5767 }
5768 
5769 /*
5770  * Merge a newer and older journal record to be stored either in a
5771  * newblock or freefrag.  This handles aggregating journal records for
5772  * fragment allocation into a second record as well as replacing a
5773  * journal free with an aborted journal allocation.  A segment for the
5774  * oldest record will be placed on wkhd if it has been written.  If not
5775  * the segment for the newer record will suffice.
5776  */
5777 static struct worklist *
5778 jnewblk_merge(new, old, wkhd)
5779 	struct worklist *new;
5780 	struct worklist *old;
5781 	struct workhead *wkhd;
5782 {
5783 	struct jnewblk *njnewblk;
5784 	struct jnewblk *jnewblk;
5785 
5786 	/* Handle NULLs to simplify callers. */
5787 	if (new == NULL)
5788 		return (old);
5789 	if (old == NULL)
5790 		return (new);
5791 	/* Replace a jfreefrag with a jnewblk. */
5792 	if (new->wk_type == D_JFREEFRAG) {
5793 		if (WK_JNEWBLK(old)->jn_blkno != WK_JFREEFRAG(new)->fr_blkno)
5794 			panic("jnewblk_merge: blkno mismatch: %p, %p",
5795 			    old, new);
5796 		cancel_jfreefrag(WK_JFREEFRAG(new));
5797 		return (old);
5798 	}
5799 	if (old->wk_type != D_JNEWBLK || new->wk_type != D_JNEWBLK)
5800 		panic("jnewblk_merge: Bad type: old %d new %d\n",
5801 		    old->wk_type, new->wk_type);
5802 	/*
5803 	 * Handle merging of two jnewblk records that describe
5804 	 * different sets of fragments in the same block.
5805 	 */
5806 	jnewblk = WK_JNEWBLK(old);
5807 	njnewblk = WK_JNEWBLK(new);
5808 	if (jnewblk->jn_blkno != njnewblk->jn_blkno)
5809 		panic("jnewblk_merge: Merging disparate blocks.");
5810 	/*
5811 	 * The record may be rolled back in the cg.
5812 	 */
5813 	if (jnewblk->jn_state & UNDONE) {
5814 		jnewblk->jn_state &= ~UNDONE;
5815 		njnewblk->jn_state |= UNDONE;
5816 		njnewblk->jn_state &= ~ATTACHED;
5817 	}
5818 	/*
5819 	 * We modify the newer addref and free the older so that if neither
5820 	 * has been written the most up-to-date copy will be on disk.  If
5821 	 * both have been written but rolled back we only temporarily need
5822 	 * one of them to fix the bits when the cg write completes.
5823 	 */
5824 	jnewblk->jn_state |= ATTACHED | COMPLETE;
5825 	njnewblk->jn_oldfrags = jnewblk->jn_oldfrags;
5826 	cancel_jnewblk(jnewblk, wkhd);
5827 	WORKLIST_REMOVE(&jnewblk->jn_list);
5828 	free_jnewblk(jnewblk);
5829 	return (new);
5830 }
5831 
5832 /*
5833  * Replace an old allocdirect dependency with a newer one.
5834  */
5835 static void
5836 allocdirect_merge(adphead, newadp, oldadp)
5837 	struct allocdirectlst *adphead;	/* head of list holding allocdirects */
5838 	struct allocdirect *newadp;	/* allocdirect being added */
5839 	struct allocdirect *oldadp;	/* existing allocdirect being checked */
5840 {
5841 	struct worklist *wk;
5842 	struct freefrag *freefrag;
5843 
5844 	freefrag = NULL;
5845 	LOCK_OWNED(VFSTOUFS(newadp->ad_list.wk_mp));
5846 	if (newadp->ad_oldblkno != oldadp->ad_newblkno ||
5847 	    newadp->ad_oldsize != oldadp->ad_newsize ||
5848 	    newadp->ad_offset >= UFS_NDADDR)
5849 		panic("%s %jd != new %jd || old size %ld != new %ld",
5850 		    "allocdirect_merge: old blkno",
5851 		    (intmax_t)newadp->ad_oldblkno,
5852 		    (intmax_t)oldadp->ad_newblkno,
5853 		    newadp->ad_oldsize, oldadp->ad_newsize);
5854 	newadp->ad_oldblkno = oldadp->ad_oldblkno;
5855 	newadp->ad_oldsize = oldadp->ad_oldsize;
5856 	/*
5857 	 * If the old dependency had a fragment to free or had never
5858 	 * previously had a block allocated, then the new dependency
5859 	 * can immediately post its freefrag and adopt the old freefrag.
5860 	 * This action is done by swapping the freefrag dependencies.
5861 	 * The new dependency gains the old one's freefrag, and the
5862 	 * old one gets the new one and then immediately puts it on
5863 	 * the worklist when it is freed by free_newblk. It is
5864 	 * not possible to do this swap when the old dependency had a
5865 	 * non-zero size but no previous fragment to free. This condition
5866 	 * arises when the new block is an extension of the old block.
5867 	 * Here, the first part of the fragment allocated to the new
5868 	 * dependency is part of the block currently claimed on disk by
5869 	 * the old dependency, so cannot legitimately be freed until the
5870 	 * conditions for the new dependency are fulfilled.
5871 	 */
5872 	freefrag = newadp->ad_freefrag;
5873 	if (oldadp->ad_freefrag != NULL || oldadp->ad_oldblkno == 0) {
5874 		newadp->ad_freefrag = oldadp->ad_freefrag;
5875 		oldadp->ad_freefrag = freefrag;
5876 	}
5877 	/*
5878 	 * If we are tracking a new directory-block allocation,
5879 	 * move it from the old allocdirect to the new allocdirect.
5880 	 */
5881 	if ((wk = LIST_FIRST(&oldadp->ad_newdirblk)) != NULL) {
5882 		WORKLIST_REMOVE(wk);
5883 		if (!LIST_EMPTY(&oldadp->ad_newdirblk))
5884 			panic("allocdirect_merge: extra newdirblk");
5885 		WORKLIST_INSERT(&newadp->ad_newdirblk, wk);
5886 	}
5887 	TAILQ_REMOVE(adphead, oldadp, ad_next);
5888 	/*
5889 	 * We need to move any journal dependencies over to the freefrag
5890 	 * that releases this block if it exists.  Otherwise we are
5891 	 * extending an existing block and we'll wait until that is
5892 	 * complete to release the journal space and extend the
5893 	 * new journal to cover this old space as well.
5894 	 */
5895 	if (freefrag == NULL) {
5896 		if (oldadp->ad_newblkno != newadp->ad_newblkno)
5897 			panic("allocdirect_merge: %jd != %jd",
5898 			    oldadp->ad_newblkno, newadp->ad_newblkno);
5899 		newadp->ad_block.nb_jnewblk = (struct jnewblk *)
5900 		    jnewblk_merge(&newadp->ad_block.nb_jnewblk->jn_list,
5901 		    &oldadp->ad_block.nb_jnewblk->jn_list,
5902 		    &newadp->ad_block.nb_jwork);
5903 		oldadp->ad_block.nb_jnewblk = NULL;
5904 		cancel_newblk(&oldadp->ad_block, NULL,
5905 		    &newadp->ad_block.nb_jwork);
5906 	} else {
5907 		wk = (struct worklist *) cancel_newblk(&oldadp->ad_block,
5908 		    &freefrag->ff_list, &freefrag->ff_jwork);
5909 		freefrag->ff_jdep = jnewblk_merge(freefrag->ff_jdep, wk,
5910 		    &freefrag->ff_jwork);
5911 	}
5912 	free_newblk(&oldadp->ad_block);
5913 }
5914 
5915 /*
5916  * Allocate a jfreefrag structure to journal a single block free.
5917  */
5918 static struct jfreefrag *
5919 newjfreefrag(freefrag, ip, blkno, size, lbn)
5920 	struct freefrag *freefrag;
5921 	struct inode *ip;
5922 	ufs2_daddr_t blkno;
5923 	long size;
5924 	ufs_lbn_t lbn;
5925 {
5926 	struct jfreefrag *jfreefrag;
5927 	struct fs *fs;
5928 
5929 	fs = ITOFS(ip);
5930 	jfreefrag = malloc(sizeof(struct jfreefrag), M_JFREEFRAG,
5931 	    M_SOFTDEP_FLAGS);
5932 	workitem_alloc(&jfreefrag->fr_list, D_JFREEFRAG, ITOVFS(ip));
5933 	jfreefrag->fr_jsegdep = newjsegdep(&jfreefrag->fr_list);
5934 	jfreefrag->fr_state = ATTACHED | DEPCOMPLETE;
5935 	jfreefrag->fr_ino = ip->i_number;
5936 	jfreefrag->fr_lbn = lbn;
5937 	jfreefrag->fr_blkno = blkno;
5938 	jfreefrag->fr_frags = numfrags(fs, size);
5939 	jfreefrag->fr_freefrag = freefrag;
5940 
5941 	return (jfreefrag);
5942 }
5943 
5944 /*
5945  * Allocate a new freefrag structure.
5946  */
5947 static struct freefrag *
5948 newfreefrag(ip, blkno, size, lbn, key)
5949 	struct inode *ip;
5950 	ufs2_daddr_t blkno;
5951 	long size;
5952 	ufs_lbn_t lbn;
5953 	u_long key;
5954 {
5955 	struct freefrag *freefrag;
5956 	struct ufsmount *ump;
5957 	struct fs *fs;
5958 
5959 	CTR4(KTR_SUJ, "newfreefrag: ino %d blkno %jd size %ld lbn %jd",
5960 	    ip->i_number, blkno, size, lbn);
5961 	ump = ITOUMP(ip);
5962 	fs = ump->um_fs;
5963 	if (fragnum(fs, blkno) + numfrags(fs, size) > fs->fs_frag)
5964 		panic("newfreefrag: frag size");
5965 	freefrag = malloc(sizeof(struct freefrag),
5966 	    M_FREEFRAG, M_SOFTDEP_FLAGS);
5967 	workitem_alloc(&freefrag->ff_list, D_FREEFRAG, UFSTOVFS(ump));
5968 	freefrag->ff_state = ATTACHED;
5969 	LIST_INIT(&freefrag->ff_jwork);
5970 	freefrag->ff_inum = ip->i_number;
5971 	freefrag->ff_vtype = ITOV(ip)->v_type;
5972 	freefrag->ff_blkno = blkno;
5973 	freefrag->ff_fragsize = size;
5974 	freefrag->ff_key = key;
5975 
5976 	if (MOUNTEDSUJ(UFSTOVFS(ump))) {
5977 		freefrag->ff_jdep = (struct worklist *)
5978 		    newjfreefrag(freefrag, ip, blkno, size, lbn);
5979 	} else {
5980 		freefrag->ff_state |= DEPCOMPLETE;
5981 		freefrag->ff_jdep = NULL;
5982 	}
5983 
5984 	return (freefrag);
5985 }
5986 
5987 /*
5988  * This workitem de-allocates fragments that were replaced during
5989  * file block allocation.
5990  */
5991 static void
5992 handle_workitem_freefrag(freefrag)
5993 	struct freefrag *freefrag;
5994 {
5995 	struct ufsmount *ump = VFSTOUFS(freefrag->ff_list.wk_mp);
5996 	struct workhead wkhd;
5997 
5998 	CTR3(KTR_SUJ,
5999 	    "handle_workitem_freefrag: ino %d blkno %jd size %ld",
6000 	    freefrag->ff_inum, freefrag->ff_blkno, freefrag->ff_fragsize);
6001 	/*
6002 	 * It would be illegal to add new completion items to the
6003 	 * freefrag after it was schedule to be done so it must be
6004 	 * safe to modify the list head here.
6005 	 */
6006 	LIST_INIT(&wkhd);
6007 	ACQUIRE_LOCK(ump);
6008 	LIST_SWAP(&freefrag->ff_jwork, &wkhd, worklist, wk_list);
6009 	/*
6010 	 * If the journal has not been written we must cancel it here.
6011 	 */
6012 	if (freefrag->ff_jdep) {
6013 		if (freefrag->ff_jdep->wk_type != D_JNEWBLK)
6014 			panic("handle_workitem_freefrag: Unexpected type %d\n",
6015 			    freefrag->ff_jdep->wk_type);
6016 		cancel_jnewblk(WK_JNEWBLK(freefrag->ff_jdep), &wkhd);
6017 	}
6018 	FREE_LOCK(ump);
6019 	ffs_blkfree(ump, ump->um_fs, ump->um_devvp, freefrag->ff_blkno,
6020 	   freefrag->ff_fragsize, freefrag->ff_inum, freefrag->ff_vtype,
6021 	   &wkhd, freefrag->ff_key);
6022 	ACQUIRE_LOCK(ump);
6023 	WORKITEM_FREE(freefrag, D_FREEFRAG);
6024 	FREE_LOCK(ump);
6025 }
6026 
6027 /*
6028  * Set up a dependency structure for an external attributes data block.
6029  * This routine follows much of the structure of softdep_setup_allocdirect.
6030  * See the description of softdep_setup_allocdirect above for details.
6031  */
6032 void
6033 softdep_setup_allocext(ip, off, newblkno, oldblkno, newsize, oldsize, bp)
6034 	struct inode *ip;
6035 	ufs_lbn_t off;
6036 	ufs2_daddr_t newblkno;
6037 	ufs2_daddr_t oldblkno;
6038 	long newsize;
6039 	long oldsize;
6040 	struct buf *bp;
6041 {
6042 	struct allocdirect *adp, *oldadp;
6043 	struct allocdirectlst *adphead;
6044 	struct freefrag *freefrag;
6045 	struct inodedep *inodedep;
6046 	struct jnewblk *jnewblk;
6047 	struct newblk *newblk;
6048 	struct mount *mp;
6049 	struct ufsmount *ump;
6050 	ufs_lbn_t lbn;
6051 
6052 	mp = ITOVFS(ip);
6053 	ump = VFSTOUFS(mp);
6054 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
6055 	    ("softdep_setup_allocext called on non-softdep filesystem"));
6056 	KASSERT(off < UFS_NXADDR,
6057 	    ("softdep_setup_allocext: lbn %lld > UFS_NXADDR", (long long)off));
6058 
6059 	lbn = bp->b_lblkno;
6060 	if (oldblkno && oldblkno != newblkno)
6061 		/*
6062 		 * The usual case is that a smaller fragment that
6063 		 * was just allocated has been replaced with a bigger
6064 		 * fragment or a full-size block. If it is marked as
6065 		 * B_DELWRI, the current contents have not been written
6066 		 * to disk. It is possible that the block was written
6067 		 * earlier, but very uncommon. If the block has never
6068 		 * been written, there is no need to send a BIO_DELETE
6069 		 * for it when it is freed. The gain from avoiding the
6070 		 * TRIMs for the common case of unwritten blocks far
6071 		 * exceeds the cost of the write amplification for the
6072 		 * uncommon case of failing to send a TRIM for a block
6073 		 * that had been written.
6074 		 */
6075 		freefrag = newfreefrag(ip, oldblkno, oldsize, lbn,
6076 		    (bp->b_flags & B_DELWRI) != 0 ? NOTRIM_KEY : SINGLETON_KEY);
6077 	else
6078 		freefrag = NULL;
6079 
6080 	ACQUIRE_LOCK(ump);
6081 	if (newblk_lookup(mp, newblkno, 0, &newblk) == 0)
6082 		panic("softdep_setup_allocext: lost block");
6083 	KASSERT(newblk->nb_list.wk_type == D_NEWBLK,
6084 	    ("softdep_setup_allocext: newblk already initialized"));
6085 	/*
6086 	 * Convert the newblk to an allocdirect.
6087 	 */
6088 	WORKITEM_REASSIGN(newblk, D_ALLOCDIRECT);
6089 	adp = (struct allocdirect *)newblk;
6090 	newblk->nb_freefrag = freefrag;
6091 	adp->ad_offset = off;
6092 	adp->ad_oldblkno = oldblkno;
6093 	adp->ad_newsize = newsize;
6094 	adp->ad_oldsize = oldsize;
6095 	adp->ad_state |=  EXTDATA;
6096 
6097 	/*
6098 	 * Finish initializing the journal.
6099 	 */
6100 	if ((jnewblk = newblk->nb_jnewblk) != NULL) {
6101 		jnewblk->jn_ino = ip->i_number;
6102 		jnewblk->jn_lbn = lbn;
6103 		add_to_journal(&jnewblk->jn_list);
6104 	}
6105 	if (freefrag && freefrag->ff_jdep != NULL &&
6106 	    freefrag->ff_jdep->wk_type == D_JFREEFRAG)
6107 		add_to_journal(freefrag->ff_jdep);
6108 	inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
6109 	adp->ad_inodedep = inodedep;
6110 
6111 	WORKLIST_INSERT(&bp->b_dep, &newblk->nb_list);
6112 	/*
6113 	 * The list of allocdirects must be kept in sorted and ascending
6114 	 * order so that the rollback routines can quickly determine the
6115 	 * first uncommitted block (the size of the file stored on disk
6116 	 * ends at the end of the lowest committed fragment, or if there
6117 	 * are no fragments, at the end of the highest committed block).
6118 	 * Since files generally grow, the typical case is that the new
6119 	 * block is to be added at the end of the list. We speed this
6120 	 * special case by checking against the last allocdirect in the
6121 	 * list before laboriously traversing the list looking for the
6122 	 * insertion point.
6123 	 */
6124 	adphead = &inodedep->id_newextupdt;
6125 	oldadp = TAILQ_LAST(adphead, allocdirectlst);
6126 	if (oldadp == NULL || oldadp->ad_offset <= off) {
6127 		/* insert at end of list */
6128 		TAILQ_INSERT_TAIL(adphead, adp, ad_next);
6129 		if (oldadp != NULL && oldadp->ad_offset == off)
6130 			allocdirect_merge(adphead, adp, oldadp);
6131 		FREE_LOCK(ump);
6132 		return;
6133 	}
6134 	TAILQ_FOREACH(oldadp, adphead, ad_next) {
6135 		if (oldadp->ad_offset >= off)
6136 			break;
6137 	}
6138 	if (oldadp == NULL)
6139 		panic("softdep_setup_allocext: lost entry");
6140 	/* insert in middle of list */
6141 	TAILQ_INSERT_BEFORE(oldadp, adp, ad_next);
6142 	if (oldadp->ad_offset == off)
6143 		allocdirect_merge(adphead, adp, oldadp);
6144 	FREE_LOCK(ump);
6145 }
6146 
6147 /*
6148  * Indirect block allocation dependencies.
6149  *
6150  * The same dependencies that exist for a direct block also exist when
6151  * a new block is allocated and pointed to by an entry in a block of
6152  * indirect pointers. The undo/redo states described above are also
6153  * used here. Because an indirect block contains many pointers that
6154  * may have dependencies, a second copy of the entire in-memory indirect
6155  * block is kept. The buffer cache copy is always completely up-to-date.
6156  * The second copy, which is used only as a source for disk writes,
6157  * contains only the safe pointers (i.e., those that have no remaining
6158  * update dependencies). The second copy is freed when all pointers
6159  * are safe. The cache is not allowed to replace indirect blocks with
6160  * pending update dependencies. If a buffer containing an indirect
6161  * block with dependencies is written, these routines will mark it
6162  * dirty again. It can only be successfully written once all the
6163  * dependencies are removed. The ffs_fsync routine in conjunction with
6164  * softdep_sync_metadata work together to get all the dependencies
6165  * removed so that a file can be successfully written to disk. Three
6166  * procedures are used when setting up indirect block pointer
6167  * dependencies. The division is necessary because of the organization
6168  * of the "balloc" routine and because of the distinction between file
6169  * pages and file metadata blocks.
6170  */
6171 
6172 /*
6173  * Allocate a new allocindir structure.
6174  */
6175 static struct allocindir *
6176 newallocindir(ip, ptrno, newblkno, oldblkno, lbn)
6177 	struct inode *ip;	/* inode for file being extended */
6178 	int ptrno;		/* offset of pointer in indirect block */
6179 	ufs2_daddr_t newblkno;	/* disk block number being added */
6180 	ufs2_daddr_t oldblkno;	/* previous block number, 0 if none */
6181 	ufs_lbn_t lbn;
6182 {
6183 	struct newblk *newblk;
6184 	struct allocindir *aip;
6185 	struct freefrag *freefrag;
6186 	struct jnewblk *jnewblk;
6187 
6188 	if (oldblkno)
6189 		freefrag = newfreefrag(ip, oldblkno, ITOFS(ip)->fs_bsize, lbn,
6190 		    SINGLETON_KEY);
6191 	else
6192 		freefrag = NULL;
6193 	ACQUIRE_LOCK(ITOUMP(ip));
6194 	if (newblk_lookup(ITOVFS(ip), newblkno, 0, &newblk) == 0)
6195 		panic("new_allocindir: lost block");
6196 	KASSERT(newblk->nb_list.wk_type == D_NEWBLK,
6197 	    ("newallocindir: newblk already initialized"));
6198 	WORKITEM_REASSIGN(newblk, D_ALLOCINDIR);
6199 	newblk->nb_freefrag = freefrag;
6200 	aip = (struct allocindir *)newblk;
6201 	aip->ai_offset = ptrno;
6202 	aip->ai_oldblkno = oldblkno;
6203 	aip->ai_lbn = lbn;
6204 	if ((jnewblk = newblk->nb_jnewblk) != NULL) {
6205 		jnewblk->jn_ino = ip->i_number;
6206 		jnewblk->jn_lbn = lbn;
6207 		add_to_journal(&jnewblk->jn_list);
6208 	}
6209 	if (freefrag && freefrag->ff_jdep != NULL &&
6210 	    freefrag->ff_jdep->wk_type == D_JFREEFRAG)
6211 		add_to_journal(freefrag->ff_jdep);
6212 	return (aip);
6213 }
6214 
6215 /*
6216  * Called just before setting an indirect block pointer
6217  * to a newly allocated file page.
6218  */
6219 void
6220 softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp)
6221 	struct inode *ip;	/* inode for file being extended */
6222 	ufs_lbn_t lbn;		/* allocated block number within file */
6223 	struct buf *bp;		/* buffer with indirect blk referencing page */
6224 	int ptrno;		/* offset of pointer in indirect block */
6225 	ufs2_daddr_t newblkno;	/* disk block number being added */
6226 	ufs2_daddr_t oldblkno;	/* previous block number, 0 if none */
6227 	struct buf *nbp;	/* buffer holding allocated page */
6228 {
6229 	struct inodedep *inodedep;
6230 	struct freefrag *freefrag;
6231 	struct allocindir *aip;
6232 	struct pagedep *pagedep;
6233 	struct mount *mp;
6234 	struct ufsmount *ump;
6235 
6236 	mp = ITOVFS(ip);
6237 	ump = VFSTOUFS(mp);
6238 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
6239 	    ("softdep_setup_allocindir_page called on non-softdep filesystem"));
6240 	KASSERT(lbn == nbp->b_lblkno,
6241 	    ("softdep_setup_allocindir_page: lbn %jd != lblkno %jd",
6242 	    lbn, bp->b_lblkno));
6243 	CTR4(KTR_SUJ,
6244 	    "softdep_setup_allocindir_page: ino %d blkno %jd oldblkno %jd "
6245 	    "lbn %jd", ip->i_number, newblkno, oldblkno, lbn);
6246 	ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_page");
6247 	aip = newallocindir(ip, ptrno, newblkno, oldblkno, lbn);
6248 	(void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
6249 	/*
6250 	 * If we are allocating a directory page, then we must
6251 	 * allocate an associated pagedep to track additions and
6252 	 * deletions.
6253 	 */
6254 	if ((ip->i_mode & IFMT) == IFDIR)
6255 		pagedep_lookup(mp, nbp, ip->i_number, lbn, DEPALLOC, &pagedep);
6256 	WORKLIST_INSERT(&nbp->b_dep, &aip->ai_block.nb_list);
6257 	freefrag = setup_allocindir_phase2(bp, ip, inodedep, aip, lbn);
6258 	FREE_LOCK(ump);
6259 	if (freefrag)
6260 		handle_workitem_freefrag(freefrag);
6261 }
6262 
6263 /*
6264  * Called just before setting an indirect block pointer to a
6265  * newly allocated indirect block.
6266  */
6267 void
6268 softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno)
6269 	struct buf *nbp;	/* newly allocated indirect block */
6270 	struct inode *ip;	/* inode for file being extended */
6271 	struct buf *bp;		/* indirect block referencing allocated block */
6272 	int ptrno;		/* offset of pointer in indirect block */
6273 	ufs2_daddr_t newblkno;	/* disk block number being added */
6274 {
6275 	struct inodedep *inodedep;
6276 	struct allocindir *aip;
6277 	struct ufsmount *ump;
6278 	ufs_lbn_t lbn;
6279 
6280 	ump = ITOUMP(ip);
6281 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
6282 	    ("softdep_setup_allocindir_meta called on non-softdep filesystem"));
6283 	CTR3(KTR_SUJ,
6284 	    "softdep_setup_allocindir_meta: ino %d blkno %jd ptrno %d",
6285 	    ip->i_number, newblkno, ptrno);
6286 	lbn = nbp->b_lblkno;
6287 	ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_meta");
6288 	aip = newallocindir(ip, ptrno, newblkno, 0, lbn);
6289 	inodedep_lookup(UFSTOVFS(ump), ip->i_number, DEPALLOC, &inodedep);
6290 	WORKLIST_INSERT(&nbp->b_dep, &aip->ai_block.nb_list);
6291 	if (setup_allocindir_phase2(bp, ip, inodedep, aip, lbn))
6292 		panic("softdep_setup_allocindir_meta: Block already existed");
6293 	FREE_LOCK(ump);
6294 }
6295 
6296 static void
6297 indirdep_complete(indirdep)
6298 	struct indirdep *indirdep;
6299 {
6300 	struct allocindir *aip;
6301 
6302 	LIST_REMOVE(indirdep, ir_next);
6303 	indirdep->ir_state |= DEPCOMPLETE;
6304 
6305 	while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != NULL) {
6306 		LIST_REMOVE(aip, ai_next);
6307 		free_newblk(&aip->ai_block);
6308 	}
6309 	/*
6310 	 * If this indirdep is not attached to a buf it was simply waiting
6311 	 * on completion to clear completehd.  free_indirdep() asserts
6312 	 * that nothing is dangling.
6313 	 */
6314 	if ((indirdep->ir_state & ONWORKLIST) == 0)
6315 		free_indirdep(indirdep);
6316 }
6317 
6318 static struct indirdep *
6319 indirdep_lookup(mp, ip, bp)
6320 	struct mount *mp;
6321 	struct inode *ip;
6322 	struct buf *bp;
6323 {
6324 	struct indirdep *indirdep, *newindirdep;
6325 	struct newblk *newblk;
6326 	struct ufsmount *ump;
6327 	struct worklist *wk;
6328 	struct fs *fs;
6329 	ufs2_daddr_t blkno;
6330 
6331 	ump = VFSTOUFS(mp);
6332 	LOCK_OWNED(ump);
6333 	indirdep = NULL;
6334 	newindirdep = NULL;
6335 	fs = ump->um_fs;
6336 	for (;;) {
6337 		LIST_FOREACH(wk, &bp->b_dep, wk_list) {
6338 			if (wk->wk_type != D_INDIRDEP)
6339 				continue;
6340 			indirdep = WK_INDIRDEP(wk);
6341 			break;
6342 		}
6343 		/* Found on the buffer worklist, no new structure to free. */
6344 		if (indirdep != NULL && newindirdep == NULL)
6345 			return (indirdep);
6346 		if (indirdep != NULL && newindirdep != NULL)
6347 			panic("indirdep_lookup: simultaneous create");
6348 		/* None found on the buffer and a new structure is ready. */
6349 		if (indirdep == NULL && newindirdep != NULL)
6350 			break;
6351 		/* None found and no new structure available. */
6352 		FREE_LOCK(ump);
6353 		newindirdep = malloc(sizeof(struct indirdep),
6354 		    M_INDIRDEP, M_SOFTDEP_FLAGS);
6355 		workitem_alloc(&newindirdep->ir_list, D_INDIRDEP, mp);
6356 		newindirdep->ir_state = ATTACHED;
6357 		if (I_IS_UFS1(ip))
6358 			newindirdep->ir_state |= UFS1FMT;
6359 		TAILQ_INIT(&newindirdep->ir_trunc);
6360 		newindirdep->ir_saveddata = NULL;
6361 		LIST_INIT(&newindirdep->ir_deplisthd);
6362 		LIST_INIT(&newindirdep->ir_donehd);
6363 		LIST_INIT(&newindirdep->ir_writehd);
6364 		LIST_INIT(&newindirdep->ir_completehd);
6365 		if (bp->b_blkno == bp->b_lblkno) {
6366 			ufs_bmaparray(bp->b_vp, bp->b_lblkno, &blkno, bp,
6367 			    NULL, NULL);
6368 			bp->b_blkno = blkno;
6369 		}
6370 		newindirdep->ir_freeblks = NULL;
6371 		newindirdep->ir_savebp =
6372 		    getblk(ump->um_devvp, bp->b_blkno, bp->b_bcount, 0, 0, 0);
6373 		newindirdep->ir_bp = bp;
6374 		BUF_KERNPROC(newindirdep->ir_savebp);
6375 		bcopy(bp->b_data, newindirdep->ir_savebp->b_data, bp->b_bcount);
6376 		ACQUIRE_LOCK(ump);
6377 	}
6378 	indirdep = newindirdep;
6379 	WORKLIST_INSERT(&bp->b_dep, &indirdep->ir_list);
6380 	/*
6381 	 * If the block is not yet allocated we don't set DEPCOMPLETE so
6382 	 * that we don't free dependencies until the pointers are valid.
6383 	 * This could search b_dep for D_ALLOCDIRECT/D_ALLOCINDIR rather
6384 	 * than using the hash.
6385 	 */
6386 	if (newblk_lookup(mp, dbtofsb(fs, bp->b_blkno), 0, &newblk))
6387 		LIST_INSERT_HEAD(&newblk->nb_indirdeps, indirdep, ir_next);
6388 	else
6389 		indirdep->ir_state |= DEPCOMPLETE;
6390 	return (indirdep);
6391 }
6392 
6393 /*
6394  * Called to finish the allocation of the "aip" allocated
6395  * by one of the two routines above.
6396  */
6397 static struct freefrag *
6398 setup_allocindir_phase2(bp, ip, inodedep, aip, lbn)
6399 	struct buf *bp;		/* in-memory copy of the indirect block */
6400 	struct inode *ip;	/* inode for file being extended */
6401 	struct inodedep *inodedep; /* Inodedep for ip */
6402 	struct allocindir *aip;	/* allocindir allocated by the above routines */
6403 	ufs_lbn_t lbn;		/* Logical block number for this block. */
6404 {
6405 	struct fs *fs;
6406 	struct indirdep *indirdep;
6407 	struct allocindir *oldaip;
6408 	struct freefrag *freefrag;
6409 	struct mount *mp;
6410 	struct ufsmount *ump;
6411 
6412 	mp = ITOVFS(ip);
6413 	ump = VFSTOUFS(mp);
6414 	LOCK_OWNED(ump);
6415 	fs = ump->um_fs;
6416 	if (bp->b_lblkno >= 0)
6417 		panic("setup_allocindir_phase2: not indir blk");
6418 	KASSERT(aip->ai_offset >= 0 && aip->ai_offset < NINDIR(fs),
6419 	    ("setup_allocindir_phase2: Bad offset %d", aip->ai_offset));
6420 	indirdep = indirdep_lookup(mp, ip, bp);
6421 	KASSERT(indirdep->ir_savebp != NULL,
6422 	    ("setup_allocindir_phase2 NULL ir_savebp"));
6423 	aip->ai_indirdep = indirdep;
6424 	/*
6425 	 * Check for an unwritten dependency for this indirect offset.  If
6426 	 * there is, merge the old dependency into the new one.  This happens
6427 	 * as a result of reallocblk only.
6428 	 */
6429 	freefrag = NULL;
6430 	if (aip->ai_oldblkno != 0) {
6431 		LIST_FOREACH(oldaip, &indirdep->ir_deplisthd, ai_next) {
6432 			if (oldaip->ai_offset == aip->ai_offset) {
6433 				freefrag = allocindir_merge(aip, oldaip);
6434 				goto done;
6435 			}
6436 		}
6437 		LIST_FOREACH(oldaip, &indirdep->ir_donehd, ai_next) {
6438 			if (oldaip->ai_offset == aip->ai_offset) {
6439 				freefrag = allocindir_merge(aip, oldaip);
6440 				goto done;
6441 			}
6442 		}
6443 	}
6444 done:
6445 	LIST_INSERT_HEAD(&indirdep->ir_deplisthd, aip, ai_next);
6446 	return (freefrag);
6447 }
6448 
6449 /*
6450  * Merge two allocindirs which refer to the same block.  Move newblock
6451  * dependencies and setup the freefrags appropriately.
6452  */
6453 static struct freefrag *
6454 allocindir_merge(aip, oldaip)
6455 	struct allocindir *aip;
6456 	struct allocindir *oldaip;
6457 {
6458 	struct freefrag *freefrag;
6459 	struct worklist *wk;
6460 
6461 	if (oldaip->ai_newblkno != aip->ai_oldblkno)
6462 		panic("allocindir_merge: blkno");
6463 	aip->ai_oldblkno = oldaip->ai_oldblkno;
6464 	freefrag = aip->ai_freefrag;
6465 	aip->ai_freefrag = oldaip->ai_freefrag;
6466 	oldaip->ai_freefrag = NULL;
6467 	KASSERT(freefrag != NULL, ("setup_allocindir_phase2: No freefrag"));
6468 	/*
6469 	 * If we are tracking a new directory-block allocation,
6470 	 * move it from the old allocindir to the new allocindir.
6471 	 */
6472 	if ((wk = LIST_FIRST(&oldaip->ai_newdirblk)) != NULL) {
6473 		WORKLIST_REMOVE(wk);
6474 		if (!LIST_EMPTY(&oldaip->ai_newdirblk))
6475 			panic("allocindir_merge: extra newdirblk");
6476 		WORKLIST_INSERT(&aip->ai_newdirblk, wk);
6477 	}
6478 	/*
6479 	 * We can skip journaling for this freefrag and just complete
6480 	 * any pending journal work for the allocindir that is being
6481 	 * removed after the freefrag completes.
6482 	 */
6483 	if (freefrag->ff_jdep)
6484 		cancel_jfreefrag(WK_JFREEFRAG(freefrag->ff_jdep));
6485 	LIST_REMOVE(oldaip, ai_next);
6486 	freefrag->ff_jdep = (struct worklist *)cancel_newblk(&oldaip->ai_block,
6487 	    &freefrag->ff_list, &freefrag->ff_jwork);
6488 	free_newblk(&oldaip->ai_block);
6489 
6490 	return (freefrag);
6491 }
6492 
6493 static inline void
6494 setup_freedirect(freeblks, ip, i, needj)
6495 	struct freeblks *freeblks;
6496 	struct inode *ip;
6497 	int i;
6498 	int needj;
6499 {
6500 	struct ufsmount *ump;
6501 	ufs2_daddr_t blkno;
6502 	int frags;
6503 
6504 	blkno = DIP(ip, i_db[i]);
6505 	if (blkno == 0)
6506 		return;
6507 	DIP_SET(ip, i_db[i], 0);
6508 	ump = ITOUMP(ip);
6509 	frags = sblksize(ump->um_fs, ip->i_size, i);
6510 	frags = numfrags(ump->um_fs, frags);
6511 	newfreework(ump, freeblks, NULL, i, blkno, frags, 0, needj);
6512 }
6513 
6514 static inline void
6515 setup_freeext(freeblks, ip, i, needj)
6516 	struct freeblks *freeblks;
6517 	struct inode *ip;
6518 	int i;
6519 	int needj;
6520 {
6521 	struct ufsmount *ump;
6522 	ufs2_daddr_t blkno;
6523 	int frags;
6524 
6525 	blkno = ip->i_din2->di_extb[i];
6526 	if (blkno == 0)
6527 		return;
6528 	ip->i_din2->di_extb[i] = 0;
6529 	ump = ITOUMP(ip);
6530 	frags = sblksize(ump->um_fs, ip->i_din2->di_extsize, i);
6531 	frags = numfrags(ump->um_fs, frags);
6532 	newfreework(ump, freeblks, NULL, -1 - i, blkno, frags, 0, needj);
6533 }
6534 
6535 static inline void
6536 setup_freeindir(freeblks, ip, i, lbn, needj)
6537 	struct freeblks *freeblks;
6538 	struct inode *ip;
6539 	int i;
6540 	ufs_lbn_t lbn;
6541 	int needj;
6542 {
6543 	struct ufsmount *ump;
6544 	ufs2_daddr_t blkno;
6545 
6546 	blkno = DIP(ip, i_ib[i]);
6547 	if (blkno == 0)
6548 		return;
6549 	DIP_SET(ip, i_ib[i], 0);
6550 	ump = ITOUMP(ip);
6551 	newfreework(ump, freeblks, NULL, lbn, blkno, ump->um_fs->fs_frag,
6552 	    0, needj);
6553 }
6554 
6555 static inline struct freeblks *
6556 newfreeblks(mp, ip)
6557 	struct mount *mp;
6558 	struct inode *ip;
6559 {
6560 	struct freeblks *freeblks;
6561 
6562 	freeblks = malloc(sizeof(struct freeblks),
6563 		M_FREEBLKS, M_SOFTDEP_FLAGS|M_ZERO);
6564 	workitem_alloc(&freeblks->fb_list, D_FREEBLKS, mp);
6565 	LIST_INIT(&freeblks->fb_jblkdephd);
6566 	LIST_INIT(&freeblks->fb_jwork);
6567 	freeblks->fb_ref = 0;
6568 	freeblks->fb_cgwait = 0;
6569 	freeblks->fb_state = ATTACHED;
6570 	freeblks->fb_uid = ip->i_uid;
6571 	freeblks->fb_inum = ip->i_number;
6572 	freeblks->fb_vtype = ITOV(ip)->v_type;
6573 	freeblks->fb_modrev = DIP(ip, i_modrev);
6574 	freeblks->fb_devvp = ITODEVVP(ip);
6575 	freeblks->fb_chkcnt = 0;
6576 	freeblks->fb_len = 0;
6577 
6578 	return (freeblks);
6579 }
6580 
6581 static void
6582 trunc_indirdep(indirdep, freeblks, bp, off)
6583 	struct indirdep *indirdep;
6584 	struct freeblks *freeblks;
6585 	struct buf *bp;
6586 	int off;
6587 {
6588 	struct allocindir *aip, *aipn;
6589 
6590 	/*
6591 	 * The first set of allocindirs won't be in savedbp.
6592 	 */
6593 	LIST_FOREACH_SAFE(aip, &indirdep->ir_deplisthd, ai_next, aipn)
6594 		if (aip->ai_offset > off)
6595 			cancel_allocindir(aip, bp, freeblks, 1);
6596 	LIST_FOREACH_SAFE(aip, &indirdep->ir_donehd, ai_next, aipn)
6597 		if (aip->ai_offset > off)
6598 			cancel_allocindir(aip, bp, freeblks, 1);
6599 	/*
6600 	 * These will exist in savedbp.
6601 	 */
6602 	LIST_FOREACH_SAFE(aip, &indirdep->ir_writehd, ai_next, aipn)
6603 		if (aip->ai_offset > off)
6604 			cancel_allocindir(aip, NULL, freeblks, 0);
6605 	LIST_FOREACH_SAFE(aip, &indirdep->ir_completehd, ai_next, aipn)
6606 		if (aip->ai_offset > off)
6607 			cancel_allocindir(aip, NULL, freeblks, 0);
6608 }
6609 
6610 /*
6611  * Follow the chain of indirects down to lastlbn creating a freework
6612  * structure for each.  This will be used to start indir_trunc() at
6613  * the right offset and create the journal records for the parrtial
6614  * truncation.  A second step will handle the truncated dependencies.
6615  */
6616 static int
6617 setup_trunc_indir(freeblks, ip, lbn, lastlbn, blkno)
6618 	struct freeblks *freeblks;
6619 	struct inode *ip;
6620 	ufs_lbn_t lbn;
6621 	ufs_lbn_t lastlbn;
6622 	ufs2_daddr_t blkno;
6623 {
6624 	struct indirdep *indirdep;
6625 	struct indirdep *indirn;
6626 	struct freework *freework;
6627 	struct newblk *newblk;
6628 	struct mount *mp;
6629 	struct ufsmount *ump;
6630 	struct buf *bp;
6631 	uint8_t *start;
6632 	uint8_t *end;
6633 	ufs_lbn_t lbnadd;
6634 	int level;
6635 	int error;
6636 	int off;
6637 
6638 	freework = NULL;
6639 	if (blkno == 0)
6640 		return (0);
6641 	mp = freeblks->fb_list.wk_mp;
6642 	ump = VFSTOUFS(mp);
6643 	/*
6644 	 * Here, calls to VOP_BMAP() will fail.  However, we already have
6645 	 * the on-disk address, so we just pass it to bread() instead of
6646 	 * having bread() attempt to calculate it using VOP_BMAP().
6647 	 */
6648 	error = ffs_breadz(ump, ITOV(ip), lbn, blkptrtodb(ump, blkno),
6649 	    (int)mp->mnt_stat.f_iosize, NULL, NULL, 0, NOCRED, 0, NULL, &bp);
6650 	if (error)
6651 		return (error);
6652 	level = lbn_level(lbn);
6653 	lbnadd = lbn_offset(ump->um_fs, level);
6654 	/*
6655 	 * Compute the offset of the last block we want to keep.  Store
6656 	 * in the freework the first block we want to completely free.
6657 	 */
6658 	off = (lastlbn - -(lbn + level)) / lbnadd;
6659 	if (off + 1 == NINDIR(ump->um_fs))
6660 		goto nowork;
6661 	freework = newfreework(ump, freeblks, NULL, lbn, blkno, 0, off + 1, 0);
6662 	/*
6663 	 * Link the freework into the indirdep.  This will prevent any new
6664 	 * allocations from proceeding until we are finished with the
6665 	 * truncate and the block is written.
6666 	 */
6667 	ACQUIRE_LOCK(ump);
6668 	indirdep = indirdep_lookup(mp, ip, bp);
6669 	if (indirdep->ir_freeblks)
6670 		panic("setup_trunc_indir: indirdep already truncated.");
6671 	TAILQ_INSERT_TAIL(&indirdep->ir_trunc, freework, fw_next);
6672 	freework->fw_indir = indirdep;
6673 	/*
6674 	 * Cancel any allocindirs that will not make it to disk.
6675 	 * We have to do this for all copies of the indirdep that
6676 	 * live on this newblk.
6677 	 */
6678 	if ((indirdep->ir_state & DEPCOMPLETE) == 0) {
6679 		if (newblk_lookup(mp, dbtofsb(ump->um_fs, bp->b_blkno), 0,
6680 		    &newblk) == 0)
6681 			panic("setup_trunc_indir: lost block");
6682 		LIST_FOREACH(indirn, &newblk->nb_indirdeps, ir_next)
6683 			trunc_indirdep(indirn, freeblks, bp, off);
6684 	} else
6685 		trunc_indirdep(indirdep, freeblks, bp, off);
6686 	FREE_LOCK(ump);
6687 	/*
6688 	 * Creation is protected by the buf lock. The saveddata is only
6689 	 * needed if a full truncation follows a partial truncation but it
6690 	 * is difficult to allocate in that case so we fetch it anyway.
6691 	 */
6692 	if (indirdep->ir_saveddata == NULL)
6693 		indirdep->ir_saveddata = malloc(bp->b_bcount, M_INDIRDEP,
6694 		    M_SOFTDEP_FLAGS);
6695 nowork:
6696 	/* Fetch the blkno of the child and the zero start offset. */
6697 	if (I_IS_UFS1(ip)) {
6698 		blkno = ((ufs1_daddr_t *)bp->b_data)[off];
6699 		start = (uint8_t *)&((ufs1_daddr_t *)bp->b_data)[off+1];
6700 	} else {
6701 		blkno = ((ufs2_daddr_t *)bp->b_data)[off];
6702 		start = (uint8_t *)&((ufs2_daddr_t *)bp->b_data)[off+1];
6703 	}
6704 	if (freework) {
6705 		/* Zero the truncated pointers. */
6706 		end = bp->b_data + bp->b_bcount;
6707 		bzero(start, end - start);
6708 		bdwrite(bp);
6709 	} else
6710 		bqrelse(bp);
6711 	if (level == 0)
6712 		return (0);
6713 	lbn++; /* adjust level */
6714 	lbn -= (off * lbnadd);
6715 	return setup_trunc_indir(freeblks, ip, lbn, lastlbn, blkno);
6716 }
6717 
6718 /*
6719  * Complete the partial truncation of an indirect block setup by
6720  * setup_trunc_indir().  This zeros the truncated pointers in the saved
6721  * copy and writes them to disk before the freeblks is allowed to complete.
6722  */
6723 static void
6724 complete_trunc_indir(freework)
6725 	struct freework *freework;
6726 {
6727 	struct freework *fwn;
6728 	struct indirdep *indirdep;
6729 	struct ufsmount *ump;
6730 	struct buf *bp;
6731 	uintptr_t start;
6732 	int count;
6733 
6734 	ump = VFSTOUFS(freework->fw_list.wk_mp);
6735 	LOCK_OWNED(ump);
6736 	indirdep = freework->fw_indir;
6737 	for (;;) {
6738 		bp = indirdep->ir_bp;
6739 		/* See if the block was discarded. */
6740 		if (bp == NULL)
6741 			break;
6742 		/* Inline part of getdirtybuf().  We dont want bremfree. */
6743 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) == 0)
6744 			break;
6745 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
6746 		    LOCK_PTR(ump)) == 0)
6747 			BUF_UNLOCK(bp);
6748 		ACQUIRE_LOCK(ump);
6749 	}
6750 	freework->fw_state |= DEPCOMPLETE;
6751 	TAILQ_REMOVE(&indirdep->ir_trunc, freework, fw_next);
6752 	/*
6753 	 * Zero the pointers in the saved copy.
6754 	 */
6755 	if (indirdep->ir_state & UFS1FMT)
6756 		start = sizeof(ufs1_daddr_t);
6757 	else
6758 		start = sizeof(ufs2_daddr_t);
6759 	start *= freework->fw_start;
6760 	count = indirdep->ir_savebp->b_bcount - start;
6761 	start += (uintptr_t)indirdep->ir_savebp->b_data;
6762 	bzero((char *)start, count);
6763 	/*
6764 	 * We need to start the next truncation in the list if it has not
6765 	 * been started yet.
6766 	 */
6767 	fwn = TAILQ_FIRST(&indirdep->ir_trunc);
6768 	if (fwn != NULL) {
6769 		if (fwn->fw_freeblks == indirdep->ir_freeblks)
6770 			TAILQ_REMOVE(&indirdep->ir_trunc, fwn, fw_next);
6771 		if ((fwn->fw_state & ONWORKLIST) == 0)
6772 			freework_enqueue(fwn);
6773 	}
6774 	/*
6775 	 * If bp is NULL the block was fully truncated, restore
6776 	 * the saved block list otherwise free it if it is no
6777 	 * longer needed.
6778 	 */
6779 	if (TAILQ_EMPTY(&indirdep->ir_trunc)) {
6780 		if (bp == NULL)
6781 			bcopy(indirdep->ir_saveddata,
6782 			    indirdep->ir_savebp->b_data,
6783 			    indirdep->ir_savebp->b_bcount);
6784 		free(indirdep->ir_saveddata, M_INDIRDEP);
6785 		indirdep->ir_saveddata = NULL;
6786 	}
6787 	/*
6788 	 * When bp is NULL there is a full truncation pending.  We
6789 	 * must wait for this full truncation to be journaled before
6790 	 * we can release this freework because the disk pointers will
6791 	 * never be written as zero.
6792 	 */
6793 	if (bp == NULL)  {
6794 		if (LIST_EMPTY(&indirdep->ir_freeblks->fb_jblkdephd))
6795 			handle_written_freework(freework);
6796 		else
6797 			WORKLIST_INSERT(&indirdep->ir_freeblks->fb_freeworkhd,
6798 			   &freework->fw_list);
6799 		if (fwn == NULL) {
6800 			freework->fw_indir = (void *)0x0000deadbeef0000;
6801 			bp = indirdep->ir_savebp;
6802 			indirdep->ir_savebp = NULL;
6803 			free_indirdep(indirdep);
6804 			FREE_LOCK(ump);
6805 			brelse(bp);
6806 			ACQUIRE_LOCK(ump);
6807 		}
6808 	} else {
6809 		/* Complete when the real copy is written. */
6810 		WORKLIST_INSERT(&bp->b_dep, &freework->fw_list);
6811 		BUF_UNLOCK(bp);
6812 	}
6813 }
6814 
6815 /*
6816  * Calculate the number of blocks we are going to release where datablocks
6817  * is the current total and length is the new file size.
6818  */
6819 static ufs2_daddr_t
6820 blkcount(fs, datablocks, length)
6821 	struct fs *fs;
6822 	ufs2_daddr_t datablocks;
6823 	off_t length;
6824 {
6825 	off_t totblks, numblks;
6826 
6827 	totblks = 0;
6828 	numblks = howmany(length, fs->fs_bsize);
6829 	if (numblks <= UFS_NDADDR) {
6830 		totblks = howmany(length, fs->fs_fsize);
6831 		goto out;
6832 	}
6833         totblks = blkstofrags(fs, numblks);
6834 	numblks -= UFS_NDADDR;
6835 	/*
6836 	 * Count all single, then double, then triple indirects required.
6837 	 * Subtracting one indirects worth of blocks for each pass
6838 	 * acknowledges one of each pointed to by the inode.
6839 	 */
6840 	for (;;) {
6841 		totblks += blkstofrags(fs, howmany(numblks, NINDIR(fs)));
6842 		numblks -= NINDIR(fs);
6843 		if (numblks <= 0)
6844 			break;
6845 		numblks = howmany(numblks, NINDIR(fs));
6846 	}
6847 out:
6848 	totblks = fsbtodb(fs, totblks);
6849 	/*
6850 	 * Handle sparse files.  We can't reclaim more blocks than the inode
6851 	 * references.  We will correct it later in handle_complete_freeblks()
6852 	 * when we know the real count.
6853 	 */
6854 	if (totblks > datablocks)
6855 		return (0);
6856 	return (datablocks - totblks);
6857 }
6858 
6859 /*
6860  * Handle freeblocks for journaled softupdate filesystems.
6861  *
6862  * Contrary to normal softupdates, we must preserve the block pointers in
6863  * indirects until their subordinates are free.  This is to avoid journaling
6864  * every block that is freed which may consume more space than the journal
6865  * itself.  The recovery program will see the free block journals at the
6866  * base of the truncated area and traverse them to reclaim space.  The
6867  * pointers in the inode may be cleared immediately after the journal
6868  * records are written because each direct and indirect pointer in the
6869  * inode is recorded in a journal.  This permits full truncation to proceed
6870  * asynchronously.  The write order is journal -> inode -> cgs -> indirects.
6871  *
6872  * The algorithm is as follows:
6873  * 1) Traverse the in-memory state and create journal entries to release
6874  *    the relevant blocks and full indirect trees.
6875  * 2) Traverse the indirect block chain adding partial truncation freework
6876  *    records to indirects in the path to lastlbn.  The freework will
6877  *    prevent new allocation dependencies from being satisfied in this
6878  *    indirect until the truncation completes.
6879  * 3) Read and lock the inode block, performing an update with the new size
6880  *    and pointers.  This prevents truncated data from becoming valid on
6881  *    disk through step 4.
6882  * 4) Reap unsatisfied dependencies that are beyond the truncated area,
6883  *    eliminate journal work for those records that do not require it.
6884  * 5) Schedule the journal records to be written followed by the inode block.
6885  * 6) Allocate any necessary frags for the end of file.
6886  * 7) Zero any partially truncated blocks.
6887  *
6888  * From this truncation proceeds asynchronously using the freework and
6889  * indir_trunc machinery.  The file will not be extended again into a
6890  * partially truncated indirect block until all work is completed but
6891  * the normal dependency mechanism ensures that it is rolled back/forward
6892  * as appropriate.  Further truncation may occur without delay and is
6893  * serialized in indir_trunc().
6894  */
6895 void
6896 softdep_journal_freeblocks(ip, cred, length, flags)
6897 	struct inode *ip;	/* The inode whose length is to be reduced */
6898 	struct ucred *cred;
6899 	off_t length;		/* The new length for the file */
6900 	int flags;		/* IO_EXT and/or IO_NORMAL */
6901 {
6902 	struct freeblks *freeblks, *fbn;
6903 	struct worklist *wk, *wkn;
6904 	struct inodedep *inodedep;
6905 	struct jblkdep *jblkdep;
6906 	struct allocdirect *adp, *adpn;
6907 	struct ufsmount *ump;
6908 	struct fs *fs;
6909 	struct buf *bp;
6910 	struct vnode *vp;
6911 	struct mount *mp;
6912 	daddr_t dbn;
6913 	ufs2_daddr_t extblocks, datablocks;
6914 	ufs_lbn_t tmpval, lbn, lastlbn;
6915 	int frags, lastoff, iboff, allocblock, needj, error, i;
6916 
6917 	ump = ITOUMP(ip);
6918 	mp = UFSTOVFS(ump);
6919 	fs = ump->um_fs;
6920 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
6921 	    ("softdep_journal_freeblocks called on non-softdep filesystem"));
6922 	vp = ITOV(ip);
6923 	needj = 1;
6924 	iboff = -1;
6925 	allocblock = 0;
6926 	extblocks = 0;
6927 	datablocks = 0;
6928 	frags = 0;
6929 	freeblks = newfreeblks(mp, ip);
6930 	ACQUIRE_LOCK(ump);
6931 	/*
6932 	 * If we're truncating a removed file that will never be written
6933 	 * we don't need to journal the block frees.  The canceled journals
6934 	 * for the allocations will suffice.
6935 	 */
6936 	inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
6937 	if ((inodedep->id_state & (UNLINKED | DEPCOMPLETE)) == UNLINKED &&
6938 	    length == 0)
6939 		needj = 0;
6940 	CTR3(KTR_SUJ, "softdep_journal_freeblks: ip %d length %ld needj %d",
6941 	    ip->i_number, length, needj);
6942 	FREE_LOCK(ump);
6943 	/*
6944 	 * Calculate the lbn that we are truncating to.  This results in -1
6945 	 * if we're truncating the 0 bytes.  So it is the last lbn we want
6946 	 * to keep, not the first lbn we want to truncate.
6947 	 */
6948 	lastlbn = lblkno(fs, length + fs->fs_bsize - 1) - 1;
6949 	lastoff = blkoff(fs, length);
6950 	/*
6951 	 * Compute frags we are keeping in lastlbn.  0 means all.
6952 	 */
6953 	if (lastlbn >= 0 && lastlbn < UFS_NDADDR) {
6954 		frags = fragroundup(fs, lastoff);
6955 		/* adp offset of last valid allocdirect. */
6956 		iboff = lastlbn;
6957 	} else if (lastlbn > 0)
6958 		iboff = UFS_NDADDR;
6959 	if (fs->fs_magic == FS_UFS2_MAGIC)
6960 		extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize));
6961 	/*
6962 	 * Handle normal data blocks and indirects.  This section saves
6963 	 * values used after the inode update to complete frag and indirect
6964 	 * truncation.
6965 	 */
6966 	if ((flags & IO_NORMAL) != 0) {
6967 		/*
6968 		 * Handle truncation of whole direct and indirect blocks.
6969 		 */
6970 		for (i = iboff + 1; i < UFS_NDADDR; i++)
6971 			setup_freedirect(freeblks, ip, i, needj);
6972 		for (i = 0, tmpval = NINDIR(fs), lbn = UFS_NDADDR;
6973 		    i < UFS_NIADDR;
6974 		    i++, lbn += tmpval, tmpval *= NINDIR(fs)) {
6975 			/* Release a whole indirect tree. */
6976 			if (lbn > lastlbn) {
6977 				setup_freeindir(freeblks, ip, i, -lbn -i,
6978 				    needj);
6979 				continue;
6980 			}
6981 			iboff = i + UFS_NDADDR;
6982 			/*
6983 			 * Traverse partially truncated indirect tree.
6984 			 */
6985 			if (lbn <= lastlbn && lbn + tmpval - 1 > lastlbn)
6986 				setup_trunc_indir(freeblks, ip, -lbn - i,
6987 				    lastlbn, DIP(ip, i_ib[i]));
6988 		}
6989 		/*
6990 		 * Handle partial truncation to a frag boundary.
6991 		 */
6992 		if (frags) {
6993 			ufs2_daddr_t blkno;
6994 			long oldfrags;
6995 
6996 			oldfrags = blksize(fs, ip, lastlbn);
6997 			blkno = DIP(ip, i_db[lastlbn]);
6998 			if (blkno && oldfrags != frags) {
6999 				oldfrags -= frags;
7000 				oldfrags = numfrags(fs, oldfrags);
7001 				blkno += numfrags(fs, frags);
7002 				newfreework(ump, freeblks, NULL, lastlbn,
7003 				    blkno, oldfrags, 0, needj);
7004 				if (needj)
7005 					adjust_newfreework(freeblks,
7006 					    numfrags(fs, frags));
7007 			} else if (blkno == 0)
7008 				allocblock = 1;
7009 		}
7010 		/*
7011 		 * Add a journal record for partial truncate if we are
7012 		 * handling indirect blocks.  Non-indirects need no extra
7013 		 * journaling.
7014 		 */
7015 		if (length != 0 && lastlbn >= UFS_NDADDR) {
7016 			UFS_INODE_SET_FLAG(ip, IN_TRUNCATED);
7017 			newjtrunc(freeblks, length, 0);
7018 		}
7019 		ip->i_size = length;
7020 		DIP_SET(ip, i_size, ip->i_size);
7021 		UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE);
7022 		datablocks = DIP(ip, i_blocks) - extblocks;
7023 		if (length != 0)
7024 			datablocks = blkcount(fs, datablocks, length);
7025 		freeblks->fb_len = length;
7026 	}
7027 	if ((flags & IO_EXT) != 0) {
7028 		for (i = 0; i < UFS_NXADDR; i++)
7029 			setup_freeext(freeblks, ip, i, needj);
7030 		ip->i_din2->di_extsize = 0;
7031 		datablocks += extblocks;
7032 		UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE);
7033 	}
7034 #ifdef QUOTA
7035 	/* Reference the quotas in case the block count is wrong in the end. */
7036 	quotaref(vp, freeblks->fb_quota);
7037 	(void) chkdq(ip, -datablocks, NOCRED, FORCE);
7038 #endif
7039 	freeblks->fb_chkcnt = -datablocks;
7040 	UFS_LOCK(ump);
7041 	fs->fs_pendingblocks += datablocks;
7042 	UFS_UNLOCK(ump);
7043 	DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - datablocks);
7044 	/*
7045 	 * Handle truncation of incomplete alloc direct dependencies.  We
7046 	 * hold the inode block locked to prevent incomplete dependencies
7047 	 * from reaching the disk while we are eliminating those that
7048 	 * have been truncated.  This is a partially inlined ffs_update().
7049 	 */
7050 	ufs_itimes(vp);
7051 	ip->i_flag &= ~(IN_LAZYACCESS | IN_LAZYMOD | IN_MODIFIED);
7052 	dbn = fsbtodb(fs, ino_to_fsba(fs, ip->i_number));
7053 	error = ffs_breadz(ump, ump->um_devvp, dbn, dbn, (int)fs->fs_bsize,
7054 	    NULL, NULL, 0, cred, 0, NULL, &bp);
7055 	if (error) {
7056 		softdep_error("softdep_journal_freeblocks", error);
7057 		return;
7058 	}
7059 	if (bp->b_bufsize == fs->fs_bsize)
7060 		bp->b_flags |= B_CLUSTEROK;
7061 	softdep_update_inodeblock(ip, bp, 0);
7062 	if (ump->um_fstype == UFS1) {
7063 		*((struct ufs1_dinode *)bp->b_data +
7064 		    ino_to_fsbo(fs, ip->i_number)) = *ip->i_din1;
7065 	} else {
7066 		ffs_update_dinode_ckhash(fs, ip->i_din2);
7067 		*((struct ufs2_dinode *)bp->b_data +
7068 		    ino_to_fsbo(fs, ip->i_number)) = *ip->i_din2;
7069 	}
7070 	ACQUIRE_LOCK(ump);
7071 	(void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
7072 	if ((inodedep->id_state & IOSTARTED) != 0)
7073 		panic("softdep_setup_freeblocks: inode busy");
7074 	/*
7075 	 * Add the freeblks structure to the list of operations that
7076 	 * must await the zero'ed inode being written to disk. If we
7077 	 * still have a bitmap dependency (needj), then the inode
7078 	 * has never been written to disk, so we can process the
7079 	 * freeblks below once we have deleted the dependencies.
7080 	 */
7081 	if (needj)
7082 		WORKLIST_INSERT(&bp->b_dep, &freeblks->fb_list);
7083 	else
7084 		freeblks->fb_state |= COMPLETE;
7085 	if ((flags & IO_NORMAL) != 0) {
7086 		TAILQ_FOREACH_SAFE(adp, &inodedep->id_inoupdt, ad_next, adpn) {
7087 			if (adp->ad_offset > iboff)
7088 				cancel_allocdirect(&inodedep->id_inoupdt, adp,
7089 				    freeblks);
7090 			/*
7091 			 * Truncate the allocdirect.  We could eliminate
7092 			 * or modify journal records as well.
7093 			 */
7094 			else if (adp->ad_offset == iboff && frags)
7095 				adp->ad_newsize = frags;
7096 		}
7097 	}
7098 	if ((flags & IO_EXT) != 0)
7099 		while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL)
7100 			cancel_allocdirect(&inodedep->id_extupdt, adp,
7101 			    freeblks);
7102 	/*
7103 	 * Scan the bufwait list for newblock dependencies that will never
7104 	 * make it to disk.
7105 	 */
7106 	LIST_FOREACH_SAFE(wk, &inodedep->id_bufwait, wk_list, wkn) {
7107 		if (wk->wk_type != D_ALLOCDIRECT)
7108 			continue;
7109 		adp = WK_ALLOCDIRECT(wk);
7110 		if (((flags & IO_NORMAL) != 0 && (adp->ad_offset > iboff)) ||
7111 		    ((flags & IO_EXT) != 0 && (adp->ad_state & EXTDATA))) {
7112 			cancel_jfreeblk(freeblks, adp->ad_newblkno);
7113 			cancel_newblk(WK_NEWBLK(wk), NULL, &freeblks->fb_jwork);
7114 			WORKLIST_INSERT(&freeblks->fb_freeworkhd, wk);
7115 		}
7116 	}
7117 	/*
7118 	 * Add journal work.
7119 	 */
7120 	LIST_FOREACH(jblkdep, &freeblks->fb_jblkdephd, jb_deps)
7121 		add_to_journal(&jblkdep->jb_list);
7122 	FREE_LOCK(ump);
7123 	bdwrite(bp);
7124 	/*
7125 	 * Truncate dependency structures beyond length.
7126 	 */
7127 	trunc_dependencies(ip, freeblks, lastlbn, frags, flags);
7128 	/*
7129 	 * This is only set when we need to allocate a fragment because
7130 	 * none existed at the end of a frag-sized file.  It handles only
7131 	 * allocating a new, zero filled block.
7132 	 */
7133 	if (allocblock) {
7134 		ip->i_size = length - lastoff;
7135 		DIP_SET(ip, i_size, ip->i_size);
7136 		error = UFS_BALLOC(vp, length - 1, 1, cred, BA_CLRBUF, &bp);
7137 		if (error != 0) {
7138 			softdep_error("softdep_journal_freeblks", error);
7139 			return;
7140 		}
7141 		ip->i_size = length;
7142 		DIP_SET(ip, i_size, length);
7143 		UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE | IN_UPDATE);
7144 		allocbuf(bp, frags);
7145 		ffs_update(vp, 0);
7146 		bawrite(bp);
7147 	} else if (lastoff != 0 && vp->v_type != VDIR) {
7148 		int size;
7149 
7150 		/*
7151 		 * Zero the end of a truncated frag or block.
7152 		 */
7153 		size = sblksize(fs, length, lastlbn);
7154 		error = bread(vp, lastlbn, size, cred, &bp);
7155 		if (error == 0) {
7156 			bzero((char *)bp->b_data + lastoff, size - lastoff);
7157 			bawrite(bp);
7158 		} else if (!ffs_fsfail_cleanup(ump, error)) {
7159 			softdep_error("softdep_journal_freeblks", error);
7160 			return;
7161 		}
7162 	}
7163 	ACQUIRE_LOCK(ump);
7164 	inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
7165 	TAILQ_INSERT_TAIL(&inodedep->id_freeblklst, freeblks, fb_next);
7166 	freeblks->fb_state |= DEPCOMPLETE | ONDEPLIST;
7167 	/*
7168 	 * We zero earlier truncations so they don't erroneously
7169 	 * update i_blocks.
7170 	 */
7171 	if (freeblks->fb_len == 0 && (flags & IO_NORMAL) != 0)
7172 		TAILQ_FOREACH(fbn, &inodedep->id_freeblklst, fb_next)
7173 			fbn->fb_len = 0;
7174 	if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE &&
7175 	    LIST_EMPTY(&freeblks->fb_jblkdephd))
7176 		freeblks->fb_state |= INPROGRESS;
7177 	else
7178 		freeblks = NULL;
7179 	FREE_LOCK(ump);
7180 	if (freeblks)
7181 		handle_workitem_freeblocks(freeblks, 0);
7182 	trunc_pages(ip, length, extblocks, flags);
7183 
7184 }
7185 
7186 /*
7187  * Flush a JOP_SYNC to the journal.
7188  */
7189 void
7190 softdep_journal_fsync(ip)
7191 	struct inode *ip;
7192 {
7193 	struct jfsync *jfsync;
7194 	struct ufsmount *ump;
7195 
7196 	ump = ITOUMP(ip);
7197 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
7198 	    ("softdep_journal_fsync called on non-softdep filesystem"));
7199 	if ((ip->i_flag & IN_TRUNCATED) == 0)
7200 		return;
7201 	ip->i_flag &= ~IN_TRUNCATED;
7202 	jfsync = malloc(sizeof(*jfsync), M_JFSYNC, M_SOFTDEP_FLAGS | M_ZERO);
7203 	workitem_alloc(&jfsync->jfs_list, D_JFSYNC, UFSTOVFS(ump));
7204 	jfsync->jfs_size = ip->i_size;
7205 	jfsync->jfs_ino = ip->i_number;
7206 	ACQUIRE_LOCK(ump);
7207 	add_to_journal(&jfsync->jfs_list);
7208 	jwait(&jfsync->jfs_list, MNT_WAIT);
7209 	FREE_LOCK(ump);
7210 }
7211 
7212 /*
7213  * Block de-allocation dependencies.
7214  *
7215  * When blocks are de-allocated, the on-disk pointers must be nullified before
7216  * the blocks are made available for use by other files.  (The true
7217  * requirement is that old pointers must be nullified before new on-disk
7218  * pointers are set.  We chose this slightly more stringent requirement to
7219  * reduce complexity.) Our implementation handles this dependency by updating
7220  * the inode (or indirect block) appropriately but delaying the actual block
7221  * de-allocation (i.e., freemap and free space count manipulation) until
7222  * after the updated versions reach stable storage.  After the disk is
7223  * updated, the blocks can be safely de-allocated whenever it is convenient.
7224  * This implementation handles only the common case of reducing a file's
7225  * length to zero. Other cases are handled by the conventional synchronous
7226  * write approach.
7227  *
7228  * The ffs implementation with which we worked double-checks
7229  * the state of the block pointers and file size as it reduces
7230  * a file's length.  Some of this code is replicated here in our
7231  * soft updates implementation.  The freeblks->fb_chkcnt field is
7232  * used to transfer a part of this information to the procedure
7233  * that eventually de-allocates the blocks.
7234  *
7235  * This routine should be called from the routine that shortens
7236  * a file's length, before the inode's size or block pointers
7237  * are modified. It will save the block pointer information for
7238  * later release and zero the inode so that the calling routine
7239  * can release it.
7240  */
7241 void
7242 softdep_setup_freeblocks(ip, length, flags)
7243 	struct inode *ip;	/* The inode whose length is to be reduced */
7244 	off_t length;		/* The new length for the file */
7245 	int flags;		/* IO_EXT and/or IO_NORMAL */
7246 {
7247 	struct ufs1_dinode *dp1;
7248 	struct ufs2_dinode *dp2;
7249 	struct freeblks *freeblks;
7250 	struct inodedep *inodedep;
7251 	struct allocdirect *adp;
7252 	struct ufsmount *ump;
7253 	struct buf *bp;
7254 	struct fs *fs;
7255 	ufs2_daddr_t extblocks, datablocks;
7256 	struct mount *mp;
7257 	int i, delay, error;
7258 	ufs_lbn_t tmpval;
7259 	ufs_lbn_t lbn;
7260 
7261 	ump = ITOUMP(ip);
7262 	mp = UFSTOVFS(ump);
7263 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
7264 	    ("softdep_setup_freeblocks called on non-softdep filesystem"));
7265 	CTR2(KTR_SUJ, "softdep_setup_freeblks: ip %d length %ld",
7266 	    ip->i_number, length);
7267 	KASSERT(length == 0, ("softdep_setup_freeblocks: non-zero length"));
7268 	fs = ump->um_fs;
7269 	if ((error = bread(ump->um_devvp,
7270 	    fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
7271 	    (int)fs->fs_bsize, NOCRED, &bp)) != 0) {
7272 		if (!ffs_fsfail_cleanup(ump, error))
7273 			softdep_error("softdep_setup_freeblocks", error);
7274 		return;
7275 	}
7276 	freeblks = newfreeblks(mp, ip);
7277 	extblocks = 0;
7278 	datablocks = 0;
7279 	if (fs->fs_magic == FS_UFS2_MAGIC)
7280 		extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize));
7281 	if ((flags & IO_NORMAL) != 0) {
7282 		for (i = 0; i < UFS_NDADDR; i++)
7283 			setup_freedirect(freeblks, ip, i, 0);
7284 		for (i = 0, tmpval = NINDIR(fs), lbn = UFS_NDADDR;
7285 		    i < UFS_NIADDR;
7286 		    i++, lbn += tmpval, tmpval *= NINDIR(fs))
7287 			setup_freeindir(freeblks, ip, i, -lbn -i, 0);
7288 		ip->i_size = 0;
7289 		DIP_SET(ip, i_size, 0);
7290 		UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE);
7291 		datablocks = DIP(ip, i_blocks) - extblocks;
7292 	}
7293 	if ((flags & IO_EXT) != 0) {
7294 		for (i = 0; i < UFS_NXADDR; i++)
7295 			setup_freeext(freeblks, ip, i, 0);
7296 		ip->i_din2->di_extsize = 0;
7297 		datablocks += extblocks;
7298 		UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE);
7299 	}
7300 #ifdef QUOTA
7301 	/* Reference the quotas in case the block count is wrong in the end. */
7302 	quotaref(ITOV(ip), freeblks->fb_quota);
7303 	(void) chkdq(ip, -datablocks, NOCRED, FORCE);
7304 #endif
7305 	freeblks->fb_chkcnt = -datablocks;
7306 	UFS_LOCK(ump);
7307 	fs->fs_pendingblocks += datablocks;
7308 	UFS_UNLOCK(ump);
7309 	DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - datablocks);
7310 	/*
7311 	 * Push the zero'ed inode to its disk buffer so that we are free
7312 	 * to delete its dependencies below. Once the dependencies are gone
7313 	 * the buffer can be safely released.
7314 	 */
7315 	if (ump->um_fstype == UFS1) {
7316 		dp1 = ((struct ufs1_dinode *)bp->b_data +
7317 		    ino_to_fsbo(fs, ip->i_number));
7318 		ip->i_din1->di_freelink = dp1->di_freelink;
7319 		*dp1 = *ip->i_din1;
7320 	} else {
7321 		dp2 = ((struct ufs2_dinode *)bp->b_data +
7322 		    ino_to_fsbo(fs, ip->i_number));
7323 		ip->i_din2->di_freelink = dp2->di_freelink;
7324 		ffs_update_dinode_ckhash(fs, ip->i_din2);
7325 		*dp2 = *ip->i_din2;
7326 	}
7327 	/*
7328 	 * Find and eliminate any inode dependencies.
7329 	 */
7330 	ACQUIRE_LOCK(ump);
7331 	(void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
7332 	if ((inodedep->id_state & IOSTARTED) != 0)
7333 		panic("softdep_setup_freeblocks: inode busy");
7334 	/*
7335 	 * Add the freeblks structure to the list of operations that
7336 	 * must await the zero'ed inode being written to disk. If we
7337 	 * still have a bitmap dependency (delay == 0), then the inode
7338 	 * has never been written to disk, so we can process the
7339 	 * freeblks below once we have deleted the dependencies.
7340 	 */
7341 	delay = (inodedep->id_state & DEPCOMPLETE);
7342 	if (delay)
7343 		WORKLIST_INSERT(&bp->b_dep, &freeblks->fb_list);
7344 	else
7345 		freeblks->fb_state |= COMPLETE;
7346 	/*
7347 	 * Because the file length has been truncated to zero, any
7348 	 * pending block allocation dependency structures associated
7349 	 * with this inode are obsolete and can simply be de-allocated.
7350 	 * We must first merge the two dependency lists to get rid of
7351 	 * any duplicate freefrag structures, then purge the merged list.
7352 	 * If we still have a bitmap dependency, then the inode has never
7353 	 * been written to disk, so we can free any fragments without delay.
7354 	 */
7355 	if (flags & IO_NORMAL) {
7356 		merge_inode_lists(&inodedep->id_newinoupdt,
7357 		    &inodedep->id_inoupdt);
7358 		while ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL)
7359 			cancel_allocdirect(&inodedep->id_inoupdt, adp,
7360 			    freeblks);
7361 	}
7362 	if (flags & IO_EXT) {
7363 		merge_inode_lists(&inodedep->id_newextupdt,
7364 		    &inodedep->id_extupdt);
7365 		while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL)
7366 			cancel_allocdirect(&inodedep->id_extupdt, adp,
7367 			    freeblks);
7368 	}
7369 	FREE_LOCK(ump);
7370 	bdwrite(bp);
7371 	trunc_dependencies(ip, freeblks, -1, 0, flags);
7372 	ACQUIRE_LOCK(ump);
7373 	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0)
7374 		(void) free_inodedep(inodedep);
7375 	freeblks->fb_state |= DEPCOMPLETE;
7376 	/*
7377 	 * If the inode with zeroed block pointers is now on disk
7378 	 * we can start freeing blocks.
7379 	 */
7380 	if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE)
7381 		freeblks->fb_state |= INPROGRESS;
7382 	else
7383 		freeblks = NULL;
7384 	FREE_LOCK(ump);
7385 	if (freeblks)
7386 		handle_workitem_freeblocks(freeblks, 0);
7387 	trunc_pages(ip, length, extblocks, flags);
7388 }
7389 
7390 /*
7391  * Eliminate pages from the page cache that back parts of this inode and
7392  * adjust the vnode pager's idea of our size.  This prevents stale data
7393  * from hanging around in the page cache.
7394  */
7395 static void
7396 trunc_pages(ip, length, extblocks, flags)
7397 	struct inode *ip;
7398 	off_t length;
7399 	ufs2_daddr_t extblocks;
7400 	int flags;
7401 {
7402 	struct vnode *vp;
7403 	struct fs *fs;
7404 	ufs_lbn_t lbn;
7405 	off_t end, extend;
7406 
7407 	vp = ITOV(ip);
7408 	fs = ITOFS(ip);
7409 	extend = OFF_TO_IDX(lblktosize(fs, -extblocks));
7410 	if ((flags & IO_EXT) != 0)
7411 		vn_pages_remove(vp, extend, 0);
7412 	if ((flags & IO_NORMAL) == 0)
7413 		return;
7414 	BO_LOCK(&vp->v_bufobj);
7415 	drain_output(vp);
7416 	BO_UNLOCK(&vp->v_bufobj);
7417 	/*
7418 	 * The vnode pager eliminates file pages we eliminate indirects
7419 	 * below.
7420 	 */
7421 	vnode_pager_setsize(vp, length);
7422 	/*
7423 	 * Calculate the end based on the last indirect we want to keep.  If
7424 	 * the block extends into indirects we can just use the negative of
7425 	 * its lbn.  Doubles and triples exist at lower numbers so we must
7426 	 * be careful not to remove those, if they exist.  double and triple
7427 	 * indirect lbns do not overlap with others so it is not important
7428 	 * to verify how many levels are required.
7429 	 */
7430 	lbn = lblkno(fs, length);
7431 	if (lbn >= UFS_NDADDR) {
7432 		/* Calculate the virtual lbn of the triple indirect. */
7433 		lbn = -lbn - (UFS_NIADDR - 1);
7434 		end = OFF_TO_IDX(lblktosize(fs, lbn));
7435 	} else
7436 		end = extend;
7437 	vn_pages_remove(vp, OFF_TO_IDX(OFF_MAX), end);
7438 }
7439 
7440 /*
7441  * See if the buf bp is in the range eliminated by truncation.
7442  */
7443 static int
7444 trunc_check_buf(bp, blkoffp, lastlbn, lastoff, flags)
7445 	struct buf *bp;
7446 	int *blkoffp;
7447 	ufs_lbn_t lastlbn;
7448 	int lastoff;
7449 	int flags;
7450 {
7451 	ufs_lbn_t lbn;
7452 
7453 	*blkoffp = 0;
7454 	/* Only match ext/normal blocks as appropriate. */
7455 	if (((flags & IO_EXT) == 0 && (bp->b_xflags & BX_ALTDATA)) ||
7456 	    ((flags & IO_NORMAL) == 0 && (bp->b_xflags & BX_ALTDATA) == 0))
7457 		return (0);
7458 	/* ALTDATA is always a full truncation. */
7459 	if ((bp->b_xflags & BX_ALTDATA) != 0)
7460 		return (1);
7461 	/* -1 is full truncation. */
7462 	if (lastlbn == -1)
7463 		return (1);
7464 	/*
7465 	 * If this is a partial truncate we only want those
7466 	 * blocks and indirect blocks that cover the range
7467 	 * we're after.
7468 	 */
7469 	lbn = bp->b_lblkno;
7470 	if (lbn < 0)
7471 		lbn = -(lbn + lbn_level(lbn));
7472 	if (lbn < lastlbn)
7473 		return (0);
7474 	/* Here we only truncate lblkno if it's partial. */
7475 	if (lbn == lastlbn) {
7476 		if (lastoff == 0)
7477 			return (0);
7478 		*blkoffp = lastoff;
7479 	}
7480 	return (1);
7481 }
7482 
7483 /*
7484  * Eliminate any dependencies that exist in memory beyond lblkno:off
7485  */
7486 static void
7487 trunc_dependencies(ip, freeblks, lastlbn, lastoff, flags)
7488 	struct inode *ip;
7489 	struct freeblks *freeblks;
7490 	ufs_lbn_t lastlbn;
7491 	int lastoff;
7492 	int flags;
7493 {
7494 	struct bufobj *bo;
7495 	struct vnode *vp;
7496 	struct buf *bp;
7497 	int blkoff;
7498 
7499 	/*
7500 	 * We must wait for any I/O in progress to finish so that
7501 	 * all potential buffers on the dirty list will be visible.
7502 	 * Once they are all there, walk the list and get rid of
7503 	 * any dependencies.
7504 	 */
7505 	vp = ITOV(ip);
7506 	bo = &vp->v_bufobj;
7507 	BO_LOCK(bo);
7508 	drain_output(vp);
7509 	TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs)
7510 		bp->b_vflags &= ~BV_SCANNED;
7511 restart:
7512 	TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) {
7513 		if (bp->b_vflags & BV_SCANNED)
7514 			continue;
7515 		if (!trunc_check_buf(bp, &blkoff, lastlbn, lastoff, flags)) {
7516 			bp->b_vflags |= BV_SCANNED;
7517 			continue;
7518 		}
7519 		KASSERT(bp->b_bufobj == bo, ("Wrong object in buffer"));
7520 		if ((bp = getdirtybuf(bp, BO_LOCKPTR(bo), MNT_WAIT)) == NULL)
7521 			goto restart;
7522 		BO_UNLOCK(bo);
7523 		if (deallocate_dependencies(bp, freeblks, blkoff))
7524 			bqrelse(bp);
7525 		else
7526 			brelse(bp);
7527 		BO_LOCK(bo);
7528 		goto restart;
7529 	}
7530 	/*
7531 	 * Now do the work of vtruncbuf while also matching indirect blocks.
7532 	 */
7533 	TAILQ_FOREACH(bp, &bo->bo_clean.bv_hd, b_bobufs)
7534 		bp->b_vflags &= ~BV_SCANNED;
7535 cleanrestart:
7536 	TAILQ_FOREACH(bp, &bo->bo_clean.bv_hd, b_bobufs) {
7537 		if (bp->b_vflags & BV_SCANNED)
7538 			continue;
7539 		if (!trunc_check_buf(bp, &blkoff, lastlbn, lastoff, flags)) {
7540 			bp->b_vflags |= BV_SCANNED;
7541 			continue;
7542 		}
7543 		if (BUF_LOCK(bp,
7544 		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
7545 		    BO_LOCKPTR(bo)) == ENOLCK) {
7546 			BO_LOCK(bo);
7547 			goto cleanrestart;
7548 		}
7549 		BO_LOCK(bo);
7550 		bp->b_vflags |= BV_SCANNED;
7551 		BO_UNLOCK(bo);
7552 		bremfree(bp);
7553 		if (blkoff != 0) {
7554 			allocbuf(bp, blkoff);
7555 			bqrelse(bp);
7556 		} else {
7557 			bp->b_flags |= B_INVAL | B_NOCACHE | B_RELBUF;
7558 			brelse(bp);
7559 		}
7560 		BO_LOCK(bo);
7561 		goto cleanrestart;
7562 	}
7563 	drain_output(vp);
7564 	BO_UNLOCK(bo);
7565 }
7566 
7567 static int
7568 cancel_pagedep(pagedep, freeblks, blkoff)
7569 	struct pagedep *pagedep;
7570 	struct freeblks *freeblks;
7571 	int blkoff;
7572 {
7573 	struct jremref *jremref;
7574 	struct jmvref *jmvref;
7575 	struct dirrem *dirrem, *tmp;
7576 	int i;
7577 
7578 	/*
7579 	 * Copy any directory remove dependencies to the list
7580 	 * to be processed after the freeblks proceeds.  If
7581 	 * directory entry never made it to disk they
7582 	 * can be dumped directly onto the work list.
7583 	 */
7584 	LIST_FOREACH_SAFE(dirrem, &pagedep->pd_dirremhd, dm_next, tmp) {
7585 		/* Skip this directory removal if it is intended to remain. */
7586 		if (dirrem->dm_offset < blkoff)
7587 			continue;
7588 		/*
7589 		 * If there are any dirrems we wait for the journal write
7590 		 * to complete and then restart the buf scan as the lock
7591 		 * has been dropped.
7592 		 */
7593 		while ((jremref = LIST_FIRST(&dirrem->dm_jremrefhd)) != NULL) {
7594 			jwait(&jremref->jr_list, MNT_WAIT);
7595 			return (ERESTART);
7596 		}
7597 		LIST_REMOVE(dirrem, dm_next);
7598 		dirrem->dm_dirinum = pagedep->pd_ino;
7599 		WORKLIST_INSERT(&freeblks->fb_freeworkhd, &dirrem->dm_list);
7600 	}
7601 	while ((jmvref = LIST_FIRST(&pagedep->pd_jmvrefhd)) != NULL) {
7602 		jwait(&jmvref->jm_list, MNT_WAIT);
7603 		return (ERESTART);
7604 	}
7605 	/*
7606 	 * When we're partially truncating a pagedep we just want to flush
7607 	 * journal entries and return.  There can not be any adds in the
7608 	 * truncated portion of the directory and newblk must remain if
7609 	 * part of the block remains.
7610 	 */
7611 	if (blkoff != 0) {
7612 		struct diradd *dap;
7613 
7614 		LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist)
7615 			if (dap->da_offset > blkoff)
7616 				panic("cancel_pagedep: diradd %p off %d > %d",
7617 				    dap, dap->da_offset, blkoff);
7618 		for (i = 0; i < DAHASHSZ; i++)
7619 			LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist)
7620 				if (dap->da_offset > blkoff)
7621 					panic("cancel_pagedep: diradd %p off %d > %d",
7622 					    dap, dap->da_offset, blkoff);
7623 		return (0);
7624 	}
7625 	/*
7626 	 * There should be no directory add dependencies present
7627 	 * as the directory could not be truncated until all
7628 	 * children were removed.
7629 	 */
7630 	KASSERT(LIST_FIRST(&pagedep->pd_pendinghd) == NULL,
7631 	    ("deallocate_dependencies: pendinghd != NULL"));
7632 	for (i = 0; i < DAHASHSZ; i++)
7633 		KASSERT(LIST_FIRST(&pagedep->pd_diraddhd[i]) == NULL,
7634 		    ("deallocate_dependencies: diraddhd != NULL"));
7635 	if ((pagedep->pd_state & NEWBLOCK) != 0)
7636 		free_newdirblk(pagedep->pd_newdirblk);
7637 	if (free_pagedep(pagedep) == 0)
7638 		panic("Failed to free pagedep %p", pagedep);
7639 	return (0);
7640 }
7641 
7642 /*
7643  * Reclaim any dependency structures from a buffer that is about to
7644  * be reallocated to a new vnode. The buffer must be locked, thus,
7645  * no I/O completion operations can occur while we are manipulating
7646  * its associated dependencies. The mutex is held so that other I/O's
7647  * associated with related dependencies do not occur.
7648  */
7649 static int
7650 deallocate_dependencies(bp, freeblks, off)
7651 	struct buf *bp;
7652 	struct freeblks *freeblks;
7653 	int off;
7654 {
7655 	struct indirdep *indirdep;
7656 	struct pagedep *pagedep;
7657 	struct worklist *wk, *wkn;
7658 	struct ufsmount *ump;
7659 
7660 	ump = softdep_bp_to_mp(bp);
7661 	if (ump == NULL)
7662 		goto done;
7663 	ACQUIRE_LOCK(ump);
7664 	LIST_FOREACH_SAFE(wk, &bp->b_dep, wk_list, wkn) {
7665 		switch (wk->wk_type) {
7666 		case D_INDIRDEP:
7667 			indirdep = WK_INDIRDEP(wk);
7668 			if (bp->b_lblkno >= 0 ||
7669 			    bp->b_blkno != indirdep->ir_savebp->b_lblkno)
7670 				panic("deallocate_dependencies: not indir");
7671 			cancel_indirdep(indirdep, bp, freeblks);
7672 			continue;
7673 
7674 		case D_PAGEDEP:
7675 			pagedep = WK_PAGEDEP(wk);
7676 			if (cancel_pagedep(pagedep, freeblks, off)) {
7677 				FREE_LOCK(ump);
7678 				return (ERESTART);
7679 			}
7680 			continue;
7681 
7682 		case D_ALLOCINDIR:
7683 			/*
7684 			 * Simply remove the allocindir, we'll find it via
7685 			 * the indirdep where we can clear pointers if
7686 			 * needed.
7687 			 */
7688 			WORKLIST_REMOVE(wk);
7689 			continue;
7690 
7691 		case D_FREEWORK:
7692 			/*
7693 			 * A truncation is waiting for the zero'd pointers
7694 			 * to be written.  It can be freed when the freeblks
7695 			 * is journaled.
7696 			 */
7697 			WORKLIST_REMOVE(wk);
7698 			wk->wk_state |= ONDEPLIST;
7699 			WORKLIST_INSERT(&freeblks->fb_freeworkhd, wk);
7700 			break;
7701 
7702 		case D_ALLOCDIRECT:
7703 			if (off != 0)
7704 				continue;
7705 			/* FALLTHROUGH */
7706 		default:
7707 			panic("deallocate_dependencies: Unexpected type %s",
7708 			    TYPENAME(wk->wk_type));
7709 			/* NOTREACHED */
7710 		}
7711 	}
7712 	FREE_LOCK(ump);
7713 done:
7714 	/*
7715 	 * Don't throw away this buf, we were partially truncating and
7716 	 * some deps may always remain.
7717 	 */
7718 	if (off) {
7719 		allocbuf(bp, off);
7720 		bp->b_vflags |= BV_SCANNED;
7721 		return (EBUSY);
7722 	}
7723 	bp->b_flags |= B_INVAL | B_NOCACHE;
7724 
7725 	return (0);
7726 }
7727 
7728 /*
7729  * An allocdirect is being canceled due to a truncate.  We must make sure
7730  * the journal entry is released in concert with the blkfree that releases
7731  * the storage.  Completed journal entries must not be released until the
7732  * space is no longer pointed to by the inode or in the bitmap.
7733  */
7734 static void
7735 cancel_allocdirect(adphead, adp, freeblks)
7736 	struct allocdirectlst *adphead;
7737 	struct allocdirect *adp;
7738 	struct freeblks *freeblks;
7739 {
7740 	struct freework *freework;
7741 	struct newblk *newblk;
7742 	struct worklist *wk;
7743 
7744 	TAILQ_REMOVE(adphead, adp, ad_next);
7745 	newblk = (struct newblk *)adp;
7746 	freework = NULL;
7747 	/*
7748 	 * Find the correct freework structure.
7749 	 */
7750 	LIST_FOREACH(wk, &freeblks->fb_freeworkhd, wk_list) {
7751 		if (wk->wk_type != D_FREEWORK)
7752 			continue;
7753 		freework = WK_FREEWORK(wk);
7754 		if (freework->fw_blkno == newblk->nb_newblkno)
7755 			break;
7756 	}
7757 	if (freework == NULL)
7758 		panic("cancel_allocdirect: Freework not found");
7759 	/*
7760 	 * If a newblk exists at all we still have the journal entry that
7761 	 * initiated the allocation so we do not need to journal the free.
7762 	 */
7763 	cancel_jfreeblk(freeblks, freework->fw_blkno);
7764 	/*
7765 	 * If the journal hasn't been written the jnewblk must be passed
7766 	 * to the call to ffs_blkfree that reclaims the space.  We accomplish
7767 	 * this by linking the journal dependency into the freework to be
7768 	 * freed when freework_freeblock() is called.  If the journal has
7769 	 * been written we can simply reclaim the journal space when the
7770 	 * freeblks work is complete.
7771 	 */
7772 	freework->fw_jnewblk = cancel_newblk(newblk, &freework->fw_list,
7773 	    &freeblks->fb_jwork);
7774 	WORKLIST_INSERT(&freeblks->fb_freeworkhd, &newblk->nb_list);
7775 }
7776 
7777 /*
7778  * Cancel a new block allocation.  May be an indirect or direct block.  We
7779  * remove it from various lists and return any journal record that needs to
7780  * be resolved by the caller.
7781  *
7782  * A special consideration is made for indirects which were never pointed
7783  * at on disk and will never be found once this block is released.
7784  */
7785 static struct jnewblk *
7786 cancel_newblk(newblk, wk, wkhd)
7787 	struct newblk *newblk;
7788 	struct worklist *wk;
7789 	struct workhead *wkhd;
7790 {
7791 	struct jnewblk *jnewblk;
7792 
7793 	CTR1(KTR_SUJ, "cancel_newblk: blkno %jd", newblk->nb_newblkno);
7794 
7795 	newblk->nb_state |= GOINGAWAY;
7796 	/*
7797 	 * Previously we traversed the completedhd on each indirdep
7798 	 * attached to this newblk to cancel them and gather journal
7799 	 * work.  Since we need only the oldest journal segment and
7800 	 * the lowest point on the tree will always have the oldest
7801 	 * journal segment we are free to release the segments
7802 	 * of any subordinates and may leave the indirdep list to
7803 	 * indirdep_complete() when this newblk is freed.
7804 	 */
7805 	if (newblk->nb_state & ONDEPLIST) {
7806 		newblk->nb_state &= ~ONDEPLIST;
7807 		LIST_REMOVE(newblk, nb_deps);
7808 	}
7809 	if (newblk->nb_state & ONWORKLIST)
7810 		WORKLIST_REMOVE(&newblk->nb_list);
7811 	/*
7812 	 * If the journal entry hasn't been written we save a pointer to
7813 	 * the dependency that frees it until it is written or the
7814 	 * superseding operation completes.
7815 	 */
7816 	jnewblk = newblk->nb_jnewblk;
7817 	if (jnewblk != NULL && wk != NULL) {
7818 		newblk->nb_jnewblk = NULL;
7819 		jnewblk->jn_dep = wk;
7820 	}
7821 	if (!LIST_EMPTY(&newblk->nb_jwork))
7822 		jwork_move(wkhd, &newblk->nb_jwork);
7823 	/*
7824 	 * When truncating we must free the newdirblk early to remove
7825 	 * the pagedep from the hash before returning.
7826 	 */
7827 	if ((wk = LIST_FIRST(&newblk->nb_newdirblk)) != NULL)
7828 		free_newdirblk(WK_NEWDIRBLK(wk));
7829 	if (!LIST_EMPTY(&newblk->nb_newdirblk))
7830 		panic("cancel_newblk: extra newdirblk");
7831 
7832 	return (jnewblk);
7833 }
7834 
7835 /*
7836  * Schedule the freefrag associated with a newblk to be released once
7837  * the pointers are written and the previous block is no longer needed.
7838  */
7839 static void
7840 newblk_freefrag(newblk)
7841 	struct newblk *newblk;
7842 {
7843 	struct freefrag *freefrag;
7844 
7845 	if (newblk->nb_freefrag == NULL)
7846 		return;
7847 	freefrag = newblk->nb_freefrag;
7848 	newblk->nb_freefrag = NULL;
7849 	freefrag->ff_state |= COMPLETE;
7850 	if ((freefrag->ff_state & ALLCOMPLETE) == ALLCOMPLETE)
7851 		add_to_worklist(&freefrag->ff_list, 0);
7852 }
7853 
7854 /*
7855  * Free a newblk. Generate a new freefrag work request if appropriate.
7856  * This must be called after the inode pointer and any direct block pointers
7857  * are valid or fully removed via truncate or frag extension.
7858  */
7859 static void
7860 free_newblk(newblk)
7861 	struct newblk *newblk;
7862 {
7863 	struct indirdep *indirdep;
7864 	struct worklist *wk;
7865 
7866 	KASSERT(newblk->nb_jnewblk == NULL,
7867 	    ("free_newblk: jnewblk %p still attached", newblk->nb_jnewblk));
7868 	KASSERT(newblk->nb_list.wk_type != D_NEWBLK,
7869 	    ("free_newblk: unclaimed newblk"));
7870 	LOCK_OWNED(VFSTOUFS(newblk->nb_list.wk_mp));
7871 	newblk_freefrag(newblk);
7872 	if (newblk->nb_state & ONDEPLIST)
7873 		LIST_REMOVE(newblk, nb_deps);
7874 	if (newblk->nb_state & ONWORKLIST)
7875 		WORKLIST_REMOVE(&newblk->nb_list);
7876 	LIST_REMOVE(newblk, nb_hash);
7877 	if ((wk = LIST_FIRST(&newblk->nb_newdirblk)) != NULL)
7878 		free_newdirblk(WK_NEWDIRBLK(wk));
7879 	if (!LIST_EMPTY(&newblk->nb_newdirblk))
7880 		panic("free_newblk: extra newdirblk");
7881 	while ((indirdep = LIST_FIRST(&newblk->nb_indirdeps)) != NULL)
7882 		indirdep_complete(indirdep);
7883 	handle_jwork(&newblk->nb_jwork);
7884 	WORKITEM_FREE(newblk, D_NEWBLK);
7885 }
7886 
7887 /*
7888  * Free a newdirblk. Clear the NEWBLOCK flag on its associated pagedep.
7889  */
7890 static void
7891 free_newdirblk(newdirblk)
7892 	struct newdirblk *newdirblk;
7893 {
7894 	struct pagedep *pagedep;
7895 	struct diradd *dap;
7896 	struct worklist *wk;
7897 
7898 	LOCK_OWNED(VFSTOUFS(newdirblk->db_list.wk_mp));
7899 	WORKLIST_REMOVE(&newdirblk->db_list);
7900 	/*
7901 	 * If the pagedep is still linked onto the directory buffer
7902 	 * dependency chain, then some of the entries on the
7903 	 * pd_pendinghd list may not be committed to disk yet. In
7904 	 * this case, we will simply clear the NEWBLOCK flag and
7905 	 * let the pd_pendinghd list be processed when the pagedep
7906 	 * is next written. If the pagedep is no longer on the buffer
7907 	 * dependency chain, then all the entries on the pd_pending
7908 	 * list are committed to disk and we can free them here.
7909 	 */
7910 	pagedep = newdirblk->db_pagedep;
7911 	pagedep->pd_state &= ~NEWBLOCK;
7912 	if ((pagedep->pd_state & ONWORKLIST) == 0) {
7913 		while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL)
7914 			free_diradd(dap, NULL);
7915 		/*
7916 		 * If no dependencies remain, the pagedep will be freed.
7917 		 */
7918 		free_pagedep(pagedep);
7919 	}
7920 	/* Should only ever be one item in the list. */
7921 	while ((wk = LIST_FIRST(&newdirblk->db_mkdir)) != NULL) {
7922 		WORKLIST_REMOVE(wk);
7923 		handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY);
7924 	}
7925 	WORKITEM_FREE(newdirblk, D_NEWDIRBLK);
7926 }
7927 
7928 /*
7929  * Prepare an inode to be freed. The actual free operation is not
7930  * done until the zero'ed inode has been written to disk.
7931  */
7932 void
7933 softdep_freefile(pvp, ino, mode)
7934 	struct vnode *pvp;
7935 	ino_t ino;
7936 	int mode;
7937 {
7938 	struct inode *ip = VTOI(pvp);
7939 	struct inodedep *inodedep;
7940 	struct freefile *freefile;
7941 	struct freeblks *freeblks;
7942 	struct ufsmount *ump;
7943 
7944 	ump = ITOUMP(ip);
7945 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
7946 	    ("softdep_freefile called on non-softdep filesystem"));
7947 	/*
7948 	 * This sets up the inode de-allocation dependency.
7949 	 */
7950 	freefile = malloc(sizeof(struct freefile),
7951 		M_FREEFILE, M_SOFTDEP_FLAGS);
7952 	workitem_alloc(&freefile->fx_list, D_FREEFILE, pvp->v_mount);
7953 	freefile->fx_mode = mode;
7954 	freefile->fx_oldinum = ino;
7955 	freefile->fx_devvp = ump->um_devvp;
7956 	LIST_INIT(&freefile->fx_jwork);
7957 	UFS_LOCK(ump);
7958 	ump->um_fs->fs_pendinginodes += 1;
7959 	UFS_UNLOCK(ump);
7960 
7961 	/*
7962 	 * If the inodedep does not exist, then the zero'ed inode has
7963 	 * been written to disk. If the allocated inode has never been
7964 	 * written to disk, then the on-disk inode is zero'ed. In either
7965 	 * case we can free the file immediately.  If the journal was
7966 	 * canceled before being written the inode will never make it to
7967 	 * disk and we must send the canceled journal entrys to
7968 	 * ffs_freefile() to be cleared in conjunction with the bitmap.
7969 	 * Any blocks waiting on the inode to write can be safely freed
7970 	 * here as it will never been written.
7971 	 */
7972 	ACQUIRE_LOCK(ump);
7973 	inodedep_lookup(pvp->v_mount, ino, 0, &inodedep);
7974 	if (inodedep) {
7975 		/*
7976 		 * Clear out freeblks that no longer need to reference
7977 		 * this inode.
7978 		 */
7979 		while ((freeblks =
7980 		    TAILQ_FIRST(&inodedep->id_freeblklst)) != NULL) {
7981 			TAILQ_REMOVE(&inodedep->id_freeblklst, freeblks,
7982 			    fb_next);
7983 			freeblks->fb_state &= ~ONDEPLIST;
7984 		}
7985 		/*
7986 		 * Remove this inode from the unlinked list.
7987 		 */
7988 		if (inodedep->id_state & UNLINKED) {
7989 			/*
7990 			 * Save the journal work to be freed with the bitmap
7991 			 * before we clear UNLINKED.  Otherwise it can be lost
7992 			 * if the inode block is written.
7993 			 */
7994 			handle_bufwait(inodedep, &freefile->fx_jwork);
7995 			clear_unlinked_inodedep(inodedep);
7996 			/*
7997 			 * Re-acquire inodedep as we've dropped the
7998 			 * per-filesystem lock in clear_unlinked_inodedep().
7999 			 */
8000 			inodedep_lookup(pvp->v_mount, ino, 0, &inodedep);
8001 		}
8002 	}
8003 	if (inodedep == NULL || check_inode_unwritten(inodedep)) {
8004 		FREE_LOCK(ump);
8005 		handle_workitem_freefile(freefile);
8006 		return;
8007 	}
8008 	if ((inodedep->id_state & DEPCOMPLETE) == 0)
8009 		inodedep->id_state |= GOINGAWAY;
8010 	WORKLIST_INSERT(&inodedep->id_inowait, &freefile->fx_list);
8011 	FREE_LOCK(ump);
8012 	if (ip->i_number == ino)
8013 		UFS_INODE_SET_FLAG(ip, IN_MODIFIED);
8014 }
8015 
8016 /*
8017  * Check to see if an inode has never been written to disk. If
8018  * so free the inodedep and return success, otherwise return failure.
8019  *
8020  * If we still have a bitmap dependency, then the inode has never
8021  * been written to disk. Drop the dependency as it is no longer
8022  * necessary since the inode is being deallocated. We set the
8023  * ALLCOMPLETE flags since the bitmap now properly shows that the
8024  * inode is not allocated. Even if the inode is actively being
8025  * written, it has been rolled back to its zero'ed state, so we
8026  * are ensured that a zero inode is what is on the disk. For short
8027  * lived files, this change will usually result in removing all the
8028  * dependencies from the inode so that it can be freed immediately.
8029  */
8030 static int
8031 check_inode_unwritten(inodedep)
8032 	struct inodedep *inodedep;
8033 {
8034 
8035 	LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp));
8036 
8037 	if ((inodedep->id_state & (DEPCOMPLETE | UNLINKED)) != 0 ||
8038 	    !LIST_EMPTY(&inodedep->id_dirremhd) ||
8039 	    !LIST_EMPTY(&inodedep->id_pendinghd) ||
8040 	    !LIST_EMPTY(&inodedep->id_bufwait) ||
8041 	    !LIST_EMPTY(&inodedep->id_inowait) ||
8042 	    !TAILQ_EMPTY(&inodedep->id_inoreflst) ||
8043 	    !TAILQ_EMPTY(&inodedep->id_inoupdt) ||
8044 	    !TAILQ_EMPTY(&inodedep->id_newinoupdt) ||
8045 	    !TAILQ_EMPTY(&inodedep->id_extupdt) ||
8046 	    !TAILQ_EMPTY(&inodedep->id_newextupdt) ||
8047 	    !TAILQ_EMPTY(&inodedep->id_freeblklst) ||
8048 	    inodedep->id_mkdiradd != NULL ||
8049 	    inodedep->id_nlinkdelta != 0)
8050 		return (0);
8051 	/*
8052 	 * Another process might be in initiate_write_inodeblock_ufs[12]
8053 	 * trying to allocate memory without holding "Softdep Lock".
8054 	 */
8055 	if ((inodedep->id_state & IOSTARTED) != 0 &&
8056 	    inodedep->id_savedino1 == NULL)
8057 		return (0);
8058 
8059 	if (inodedep->id_state & ONDEPLIST)
8060 		LIST_REMOVE(inodedep, id_deps);
8061 	inodedep->id_state &= ~ONDEPLIST;
8062 	inodedep->id_state |= ALLCOMPLETE;
8063 	inodedep->id_bmsafemap = NULL;
8064 	if (inodedep->id_state & ONWORKLIST)
8065 		WORKLIST_REMOVE(&inodedep->id_list);
8066 	if (inodedep->id_savedino1 != NULL) {
8067 		free(inodedep->id_savedino1, M_SAVEDINO);
8068 		inodedep->id_savedino1 = NULL;
8069 	}
8070 	if (free_inodedep(inodedep) == 0)
8071 		panic("check_inode_unwritten: busy inode");
8072 	return (1);
8073 }
8074 
8075 static int
8076 check_inodedep_free(inodedep)
8077 	struct inodedep *inodedep;
8078 {
8079 
8080 	LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp));
8081 	if ((inodedep->id_state & ALLCOMPLETE) != ALLCOMPLETE ||
8082 	    !LIST_EMPTY(&inodedep->id_dirremhd) ||
8083 	    !LIST_EMPTY(&inodedep->id_pendinghd) ||
8084 	    !LIST_EMPTY(&inodedep->id_bufwait) ||
8085 	    !LIST_EMPTY(&inodedep->id_inowait) ||
8086 	    !TAILQ_EMPTY(&inodedep->id_inoreflst) ||
8087 	    !TAILQ_EMPTY(&inodedep->id_inoupdt) ||
8088 	    !TAILQ_EMPTY(&inodedep->id_newinoupdt) ||
8089 	    !TAILQ_EMPTY(&inodedep->id_extupdt) ||
8090 	    !TAILQ_EMPTY(&inodedep->id_newextupdt) ||
8091 	    !TAILQ_EMPTY(&inodedep->id_freeblklst) ||
8092 	    inodedep->id_mkdiradd != NULL ||
8093 	    inodedep->id_nlinkdelta != 0 ||
8094 	    inodedep->id_savedino1 != NULL)
8095 		return (0);
8096 	return (1);
8097 }
8098 
8099 /*
8100  * Try to free an inodedep structure. Return 1 if it could be freed.
8101  */
8102 static int
8103 free_inodedep(inodedep)
8104 	struct inodedep *inodedep;
8105 {
8106 
8107 	LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp));
8108 	if ((inodedep->id_state & (ONWORKLIST | UNLINKED)) != 0 ||
8109 	    !check_inodedep_free(inodedep))
8110 		return (0);
8111 	if (inodedep->id_state & ONDEPLIST)
8112 		LIST_REMOVE(inodedep, id_deps);
8113 	LIST_REMOVE(inodedep, id_hash);
8114 	WORKITEM_FREE(inodedep, D_INODEDEP);
8115 	return (1);
8116 }
8117 
8118 /*
8119  * Free the block referenced by a freework structure.  The parent freeblks
8120  * structure is released and completed when the final cg bitmap reaches
8121  * the disk.  This routine may be freeing a jnewblk which never made it to
8122  * disk in which case we do not have to wait as the operation is undone
8123  * in memory immediately.
8124  */
8125 static void
8126 freework_freeblock(freework, key)
8127 	struct freework *freework;
8128 	u_long key;
8129 {
8130 	struct freeblks *freeblks;
8131 	struct jnewblk *jnewblk;
8132 	struct ufsmount *ump;
8133 	struct workhead wkhd;
8134 	struct fs *fs;
8135 	int bsize;
8136 	int needj;
8137 
8138 	ump = VFSTOUFS(freework->fw_list.wk_mp);
8139 	LOCK_OWNED(ump);
8140 	/*
8141 	 * Handle partial truncate separately.
8142 	 */
8143 	if (freework->fw_indir) {
8144 		complete_trunc_indir(freework);
8145 		return;
8146 	}
8147 	freeblks = freework->fw_freeblks;
8148 	fs = ump->um_fs;
8149 	needj = MOUNTEDSUJ(freeblks->fb_list.wk_mp) != 0;
8150 	bsize = lfragtosize(fs, freework->fw_frags);
8151 	LIST_INIT(&wkhd);
8152 	/*
8153 	 * DEPCOMPLETE is cleared in indirblk_insert() if the block lives
8154 	 * on the indirblk hashtable and prevents premature freeing.
8155 	 */
8156 	freework->fw_state |= DEPCOMPLETE;
8157 	/*
8158 	 * SUJ needs to wait for the segment referencing freed indirect
8159 	 * blocks to expire so that we know the checker will not confuse
8160 	 * a re-allocated indirect block with its old contents.
8161 	 */
8162 	if (needj && freework->fw_lbn <= -UFS_NDADDR)
8163 		indirblk_insert(freework);
8164 	/*
8165 	 * If we are canceling an existing jnewblk pass it to the free
8166 	 * routine, otherwise pass the freeblk which will ultimately
8167 	 * release the freeblks.  If we're not journaling, we can just
8168 	 * free the freeblks immediately.
8169 	 */
8170 	jnewblk = freework->fw_jnewblk;
8171 	if (jnewblk != NULL) {
8172 		cancel_jnewblk(jnewblk, &wkhd);
8173 		needj = 0;
8174 	} else if (needj) {
8175 		freework->fw_state |= DELAYEDFREE;
8176 		freeblks->fb_cgwait++;
8177 		WORKLIST_INSERT(&wkhd, &freework->fw_list);
8178 	}
8179 	FREE_LOCK(ump);
8180 	freeblks_free(ump, freeblks, btodb(bsize));
8181 	CTR4(KTR_SUJ,
8182 	    "freework_freeblock: ino %jd blkno %jd lbn %jd size %d",
8183 	    freeblks->fb_inum, freework->fw_blkno, freework->fw_lbn, bsize);
8184 	ffs_blkfree(ump, fs, freeblks->fb_devvp, freework->fw_blkno, bsize,
8185 	    freeblks->fb_inum, freeblks->fb_vtype, &wkhd, key);
8186 	ACQUIRE_LOCK(ump);
8187 	/*
8188 	 * The jnewblk will be discarded and the bits in the map never
8189 	 * made it to disk.  We can immediately free the freeblk.
8190 	 */
8191 	if (needj == 0)
8192 		handle_written_freework(freework);
8193 }
8194 
8195 /*
8196  * We enqueue freework items that need processing back on the freeblks and
8197  * add the freeblks to the worklist.  This makes it easier to find all work
8198  * required to flush a truncation in process_truncates().
8199  */
8200 static void
8201 freework_enqueue(freework)
8202 	struct freework *freework;
8203 {
8204 	struct freeblks *freeblks;
8205 
8206 	freeblks = freework->fw_freeblks;
8207 	if ((freework->fw_state & INPROGRESS) == 0)
8208 		WORKLIST_INSERT(&freeblks->fb_freeworkhd, &freework->fw_list);
8209 	if ((freeblks->fb_state &
8210 	    (ONWORKLIST | INPROGRESS | ALLCOMPLETE)) == ALLCOMPLETE &&
8211 	    LIST_EMPTY(&freeblks->fb_jblkdephd))
8212 		add_to_worklist(&freeblks->fb_list, WK_NODELAY);
8213 }
8214 
8215 /*
8216  * Start, continue, or finish the process of freeing an indirect block tree.
8217  * The free operation may be paused at any point with fw_off containing the
8218  * offset to restart from.  This enables us to implement some flow control
8219  * for large truncates which may fan out and generate a huge number of
8220  * dependencies.
8221  */
8222 static void
8223 handle_workitem_indirblk(freework)
8224 	struct freework *freework;
8225 {
8226 	struct freeblks *freeblks;
8227 	struct ufsmount *ump;
8228 	struct fs *fs;
8229 
8230 	freeblks = freework->fw_freeblks;
8231 	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
8232 	fs = ump->um_fs;
8233 	if (freework->fw_state & DEPCOMPLETE) {
8234 		handle_written_freework(freework);
8235 		return;
8236 	}
8237 	if (freework->fw_off == NINDIR(fs)) {
8238 		freework_freeblock(freework, SINGLETON_KEY);
8239 		return;
8240 	}
8241 	freework->fw_state |= INPROGRESS;
8242 	FREE_LOCK(ump);
8243 	indir_trunc(freework, fsbtodb(fs, freework->fw_blkno),
8244 	    freework->fw_lbn);
8245 	ACQUIRE_LOCK(ump);
8246 }
8247 
8248 /*
8249  * Called when a freework structure attached to a cg buf is written.  The
8250  * ref on either the parent or the freeblks structure is released and
8251  * the freeblks is added back to the worklist if there is more work to do.
8252  */
8253 static void
8254 handle_written_freework(freework)
8255 	struct freework *freework;
8256 {
8257 	struct freeblks *freeblks;
8258 	struct freework *parent;
8259 
8260 	freeblks = freework->fw_freeblks;
8261 	parent = freework->fw_parent;
8262 	if (freework->fw_state & DELAYEDFREE)
8263 		freeblks->fb_cgwait--;
8264 	freework->fw_state |= COMPLETE;
8265 	if ((freework->fw_state & ALLCOMPLETE) == ALLCOMPLETE)
8266 		WORKITEM_FREE(freework, D_FREEWORK);
8267 	if (parent) {
8268 		if (--parent->fw_ref == 0)
8269 			freework_enqueue(parent);
8270 		return;
8271 	}
8272 	if (--freeblks->fb_ref != 0)
8273 		return;
8274 	if ((freeblks->fb_state & (ALLCOMPLETE | ONWORKLIST | INPROGRESS)) ==
8275 	    ALLCOMPLETE && LIST_EMPTY(&freeblks->fb_jblkdephd))
8276 		add_to_worklist(&freeblks->fb_list, WK_NODELAY);
8277 }
8278 
8279 /*
8280  * This workitem routine performs the block de-allocation.
8281  * The workitem is added to the pending list after the updated
8282  * inode block has been written to disk.  As mentioned above,
8283  * checks regarding the number of blocks de-allocated (compared
8284  * to the number of blocks allocated for the file) are also
8285  * performed in this function.
8286  */
8287 static int
8288 handle_workitem_freeblocks(freeblks, flags)
8289 	struct freeblks *freeblks;
8290 	int flags;
8291 {
8292 	struct freework *freework;
8293 	struct newblk *newblk;
8294 	struct allocindir *aip;
8295 	struct ufsmount *ump;
8296 	struct worklist *wk;
8297 	u_long key;
8298 
8299 	KASSERT(LIST_EMPTY(&freeblks->fb_jblkdephd),
8300 	    ("handle_workitem_freeblocks: Journal entries not written."));
8301 	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
8302 	key = ffs_blkrelease_start(ump, freeblks->fb_devvp, freeblks->fb_inum);
8303 	ACQUIRE_LOCK(ump);
8304 	while ((wk = LIST_FIRST(&freeblks->fb_freeworkhd)) != NULL) {
8305 		WORKLIST_REMOVE(wk);
8306 		switch (wk->wk_type) {
8307 		case D_DIRREM:
8308 			wk->wk_state |= COMPLETE;
8309 			add_to_worklist(wk, 0);
8310 			continue;
8311 
8312 		case D_ALLOCDIRECT:
8313 			free_newblk(WK_NEWBLK(wk));
8314 			continue;
8315 
8316 		case D_ALLOCINDIR:
8317 			aip = WK_ALLOCINDIR(wk);
8318 			freework = NULL;
8319 			if (aip->ai_state & DELAYEDFREE) {
8320 				FREE_LOCK(ump);
8321 				freework = newfreework(ump, freeblks, NULL,
8322 				    aip->ai_lbn, aip->ai_newblkno,
8323 				    ump->um_fs->fs_frag, 0, 0);
8324 				ACQUIRE_LOCK(ump);
8325 			}
8326 			newblk = WK_NEWBLK(wk);
8327 			if (newblk->nb_jnewblk) {
8328 				freework->fw_jnewblk = newblk->nb_jnewblk;
8329 				newblk->nb_jnewblk->jn_dep = &freework->fw_list;
8330 				newblk->nb_jnewblk = NULL;
8331 			}
8332 			free_newblk(newblk);
8333 			continue;
8334 
8335 		case D_FREEWORK:
8336 			freework = WK_FREEWORK(wk);
8337 			if (freework->fw_lbn <= -UFS_NDADDR)
8338 				handle_workitem_indirblk(freework);
8339 			else
8340 				freework_freeblock(freework, key);
8341 			continue;
8342 		default:
8343 			panic("handle_workitem_freeblocks: Unknown type %s",
8344 			    TYPENAME(wk->wk_type));
8345 		}
8346 	}
8347 	if (freeblks->fb_ref != 0) {
8348 		freeblks->fb_state &= ~INPROGRESS;
8349 		wake_worklist(&freeblks->fb_list);
8350 		freeblks = NULL;
8351 	}
8352 	FREE_LOCK(ump);
8353 	ffs_blkrelease_finish(ump, key);
8354 	if (freeblks)
8355 		return handle_complete_freeblocks(freeblks, flags);
8356 	return (0);
8357 }
8358 
8359 /*
8360  * Handle completion of block free via truncate.  This allows fs_pending
8361  * to track the actual free block count more closely than if we only updated
8362  * it at the end.  We must be careful to handle cases where the block count
8363  * on free was incorrect.
8364  */
8365 static void
8366 freeblks_free(ump, freeblks, blocks)
8367 	struct ufsmount *ump;
8368 	struct freeblks *freeblks;
8369 	int blocks;
8370 {
8371 	struct fs *fs;
8372 	ufs2_daddr_t remain;
8373 
8374 	UFS_LOCK(ump);
8375 	remain = -freeblks->fb_chkcnt;
8376 	freeblks->fb_chkcnt += blocks;
8377 	if (remain > 0) {
8378 		if (remain < blocks)
8379 			blocks = remain;
8380 		fs = ump->um_fs;
8381 		fs->fs_pendingblocks -= blocks;
8382 	}
8383 	UFS_UNLOCK(ump);
8384 }
8385 
8386 /*
8387  * Once all of the freework workitems are complete we can retire the
8388  * freeblocks dependency and any journal work awaiting completion.  This
8389  * can not be called until all other dependencies are stable on disk.
8390  */
8391 static int
8392 handle_complete_freeblocks(freeblks, flags)
8393 	struct freeblks *freeblks;
8394 	int flags;
8395 {
8396 	struct inodedep *inodedep;
8397 	struct inode *ip;
8398 	struct vnode *vp;
8399 	struct fs *fs;
8400 	struct ufsmount *ump;
8401 	ufs2_daddr_t spare;
8402 
8403 	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
8404 	fs = ump->um_fs;
8405 	flags = LK_EXCLUSIVE | flags;
8406 	spare = freeblks->fb_chkcnt;
8407 
8408 	/*
8409 	 * If we did not release the expected number of blocks we may have
8410 	 * to adjust the inode block count here.  Only do so if it wasn't
8411 	 * a truncation to zero and the modrev still matches.
8412 	 */
8413 	if (spare && freeblks->fb_len != 0) {
8414 		if (ffs_vgetf(freeblks->fb_list.wk_mp, freeblks->fb_inum,
8415 		    flags, &vp, FFSV_FORCEINSMQ | FFSV_FORCEINODEDEP) != 0)
8416 			return (EBUSY);
8417 		ip = VTOI(vp);
8418 		if (ip->i_mode == 0) {
8419 			vgone(vp);
8420 		} else if (DIP(ip, i_modrev) == freeblks->fb_modrev) {
8421 			DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - spare);
8422 			UFS_INODE_SET_FLAG(ip, IN_CHANGE);
8423 			/*
8424 			 * We must wait so this happens before the
8425 			 * journal is reclaimed.
8426 			 */
8427 			ffs_update(vp, 1);
8428 		}
8429 		vput(vp);
8430 	}
8431 	if (spare < 0) {
8432 		UFS_LOCK(ump);
8433 		fs->fs_pendingblocks += spare;
8434 		UFS_UNLOCK(ump);
8435 	}
8436 #ifdef QUOTA
8437 	/* Handle spare. */
8438 	if (spare)
8439 		quotaadj(freeblks->fb_quota, ump, -spare);
8440 	quotarele(freeblks->fb_quota);
8441 #endif
8442 	ACQUIRE_LOCK(ump);
8443 	if (freeblks->fb_state & ONDEPLIST) {
8444 		inodedep_lookup(freeblks->fb_list.wk_mp, freeblks->fb_inum,
8445 		    0, &inodedep);
8446 		TAILQ_REMOVE(&inodedep->id_freeblklst, freeblks, fb_next);
8447 		freeblks->fb_state &= ~ONDEPLIST;
8448 		if (TAILQ_EMPTY(&inodedep->id_freeblklst))
8449 			free_inodedep(inodedep);
8450 	}
8451 	/*
8452 	 * All of the freeblock deps must be complete prior to this call
8453 	 * so it's now safe to complete earlier outstanding journal entries.
8454 	 */
8455 	handle_jwork(&freeblks->fb_jwork);
8456 	WORKITEM_FREE(freeblks, D_FREEBLKS);
8457 	FREE_LOCK(ump);
8458 	return (0);
8459 }
8460 
8461 /*
8462  * Release blocks associated with the freeblks and stored in the indirect
8463  * block dbn. If level is greater than SINGLE, the block is an indirect block
8464  * and recursive calls to indirtrunc must be used to cleanse other indirect
8465  * blocks.
8466  *
8467  * This handles partial and complete truncation of blocks.  Partial is noted
8468  * with goingaway == 0.  In this case the freework is completed after the
8469  * zero'd indirects are written to disk.  For full truncation the freework
8470  * is completed after the block is freed.
8471  */
8472 static void
8473 indir_trunc(freework, dbn, lbn)
8474 	struct freework *freework;
8475 	ufs2_daddr_t dbn;
8476 	ufs_lbn_t lbn;
8477 {
8478 	struct freework *nfreework;
8479 	struct workhead wkhd;
8480 	struct freeblks *freeblks;
8481 	struct buf *bp;
8482 	struct fs *fs;
8483 	struct indirdep *indirdep;
8484 	struct mount *mp;
8485 	struct ufsmount *ump;
8486 	ufs1_daddr_t *bap1;
8487 	ufs2_daddr_t nb, nnb, *bap2;
8488 	ufs_lbn_t lbnadd, nlbn;
8489 	u_long key;
8490 	int nblocks, ufs1fmt, freedblocks;
8491 	int goingaway, freedeps, needj, level, cnt, i, error;
8492 
8493 	freeblks = freework->fw_freeblks;
8494 	mp = freeblks->fb_list.wk_mp;
8495 	ump = VFSTOUFS(mp);
8496 	fs = ump->um_fs;
8497 	/*
8498 	 * Get buffer of block pointers to be freed.  There are three cases:
8499 	 *
8500 	 * 1) Partial truncate caches the indirdep pointer in the freework
8501 	 *    which provides us a back copy to the save bp which holds the
8502 	 *    pointers we want to clear.  When this completes the zero
8503 	 *    pointers are written to the real copy.
8504 	 * 2) The indirect is being completely truncated, cancel_indirdep()
8505 	 *    eliminated the real copy and placed the indirdep on the saved
8506 	 *    copy.  The indirdep and buf are discarded when this completes.
8507 	 * 3) The indirect was not in memory, we read a copy off of the disk
8508 	 *    using the devvp and drop and invalidate the buffer when we're
8509 	 *    done.
8510 	 */
8511 	goingaway = 1;
8512 	indirdep = NULL;
8513 	if (freework->fw_indir != NULL) {
8514 		goingaway = 0;
8515 		indirdep = freework->fw_indir;
8516 		bp = indirdep->ir_savebp;
8517 		if (bp == NULL || bp->b_blkno != dbn)
8518 			panic("indir_trunc: Bad saved buf %p blkno %jd",
8519 			    bp, (intmax_t)dbn);
8520 	} else if ((bp = incore(&freeblks->fb_devvp->v_bufobj, dbn)) != NULL) {
8521 		/*
8522 		 * The lock prevents the buf dep list from changing and
8523 	 	 * indirects on devvp should only ever have one dependency.
8524 		 */
8525 		indirdep = WK_INDIRDEP(LIST_FIRST(&bp->b_dep));
8526 		if (indirdep == NULL || (indirdep->ir_state & GOINGAWAY) == 0)
8527 			panic("indir_trunc: Bad indirdep %p from buf %p",
8528 			    indirdep, bp);
8529 	} else {
8530 		error = ffs_breadz(ump, freeblks->fb_devvp, dbn, dbn,
8531 		    (int)fs->fs_bsize, NULL, NULL, 0, NOCRED, 0, NULL, &bp);
8532 		if (error)
8533 			return;
8534 	}
8535 	ACQUIRE_LOCK(ump);
8536 	/* Protects against a race with complete_trunc_indir(). */
8537 	freework->fw_state &= ~INPROGRESS;
8538 	/*
8539 	 * If we have an indirdep we need to enforce the truncation order
8540 	 * and discard it when it is complete.
8541 	 */
8542 	if (indirdep) {
8543 		if (freework != TAILQ_FIRST(&indirdep->ir_trunc) &&
8544 		    !TAILQ_EMPTY(&indirdep->ir_trunc)) {
8545 			/*
8546 			 * Add the complete truncate to the list on the
8547 			 * indirdep to enforce in-order processing.
8548 			 */
8549 			if (freework->fw_indir == NULL)
8550 				TAILQ_INSERT_TAIL(&indirdep->ir_trunc,
8551 				    freework, fw_next);
8552 			FREE_LOCK(ump);
8553 			return;
8554 		}
8555 		/*
8556 		 * If we're goingaway, free the indirdep.  Otherwise it will
8557 		 * linger until the write completes.
8558 		 */
8559 		if (goingaway) {
8560 			KASSERT(indirdep->ir_savebp == bp,
8561 			    ("indir_trunc: losing ir_savebp %p",
8562 			    indirdep->ir_savebp));
8563 			indirdep->ir_savebp = NULL;
8564 			free_indirdep(indirdep);
8565 		}
8566 	}
8567 	FREE_LOCK(ump);
8568 	/* Initialize pointers depending on block size. */
8569 	if (ump->um_fstype == UFS1) {
8570 		bap1 = (ufs1_daddr_t *)bp->b_data;
8571 		nb = bap1[freework->fw_off];
8572 		ufs1fmt = 1;
8573 		bap2 = NULL;
8574 	} else {
8575 		bap2 = (ufs2_daddr_t *)bp->b_data;
8576 		nb = bap2[freework->fw_off];
8577 		ufs1fmt = 0;
8578 		bap1 = NULL;
8579 	}
8580 	level = lbn_level(lbn);
8581 	needj = MOUNTEDSUJ(UFSTOVFS(ump)) != 0;
8582 	lbnadd = lbn_offset(fs, level);
8583 	nblocks = btodb(fs->fs_bsize);
8584 	nfreework = freework;
8585 	freedeps = 0;
8586 	cnt = 0;
8587 	/*
8588 	 * Reclaim blocks.  Traverses into nested indirect levels and
8589 	 * arranges for the current level to be freed when subordinates
8590 	 * are free when journaling.
8591 	 */
8592 	key = ffs_blkrelease_start(ump, freeblks->fb_devvp, freeblks->fb_inum);
8593 	for (i = freework->fw_off; i < NINDIR(fs); i++, nb = nnb) {
8594 		if (UFS_CHECK_BLKNO(mp, freeblks->fb_inum, nb,
8595 		    fs->fs_bsize) != 0)
8596 			nb = 0;
8597 		if (i != NINDIR(fs) - 1) {
8598 			if (ufs1fmt)
8599 				nnb = bap1[i+1];
8600 			else
8601 				nnb = bap2[i+1];
8602 		} else
8603 			nnb = 0;
8604 		if (nb == 0)
8605 			continue;
8606 		cnt++;
8607 		if (level != 0) {
8608 			nlbn = (lbn + 1) - (i * lbnadd);
8609 			if (needj != 0) {
8610 				nfreework = newfreework(ump, freeblks, freework,
8611 				    nlbn, nb, fs->fs_frag, 0, 0);
8612 				freedeps++;
8613 			}
8614 			indir_trunc(nfreework, fsbtodb(fs, nb), nlbn);
8615 		} else {
8616 			struct freedep *freedep;
8617 
8618 			/*
8619 			 * Attempt to aggregate freedep dependencies for
8620 			 * all blocks being released to the same CG.
8621 			 */
8622 			LIST_INIT(&wkhd);
8623 			if (needj != 0 &&
8624 			    (nnb == 0 || (dtog(fs, nb) != dtog(fs, nnb)))) {
8625 				freedep = newfreedep(freework);
8626 				WORKLIST_INSERT_UNLOCKED(&wkhd,
8627 				    &freedep->fd_list);
8628 				freedeps++;
8629 			}
8630 			CTR3(KTR_SUJ,
8631 			    "indir_trunc: ino %jd blkno %jd size %d",
8632 			    freeblks->fb_inum, nb, fs->fs_bsize);
8633 			ffs_blkfree(ump, fs, freeblks->fb_devvp, nb,
8634 			    fs->fs_bsize, freeblks->fb_inum,
8635 			    freeblks->fb_vtype, &wkhd, key);
8636 		}
8637 	}
8638 	ffs_blkrelease_finish(ump, key);
8639 	if (goingaway) {
8640 		bp->b_flags |= B_INVAL | B_NOCACHE;
8641 		brelse(bp);
8642 	}
8643 	freedblocks = 0;
8644 	if (level == 0)
8645 		freedblocks = (nblocks * cnt);
8646 	if (needj == 0)
8647 		freedblocks += nblocks;
8648 	freeblks_free(ump, freeblks, freedblocks);
8649 	/*
8650 	 * If we are journaling set up the ref counts and offset so this
8651 	 * indirect can be completed when its children are free.
8652 	 */
8653 	if (needj) {
8654 		ACQUIRE_LOCK(ump);
8655 		freework->fw_off = i;
8656 		freework->fw_ref += freedeps;
8657 		freework->fw_ref -= NINDIR(fs) + 1;
8658 		if (level == 0)
8659 			freeblks->fb_cgwait += freedeps;
8660 		if (freework->fw_ref == 0)
8661 			freework_freeblock(freework, SINGLETON_KEY);
8662 		FREE_LOCK(ump);
8663 		return;
8664 	}
8665 	/*
8666 	 * If we're not journaling we can free the indirect now.
8667 	 */
8668 	dbn = dbtofsb(fs, dbn);
8669 	CTR3(KTR_SUJ,
8670 	    "indir_trunc 2: ino %jd blkno %jd size %d",
8671 	    freeblks->fb_inum, dbn, fs->fs_bsize);
8672 	ffs_blkfree(ump, fs, freeblks->fb_devvp, dbn, fs->fs_bsize,
8673 	    freeblks->fb_inum, freeblks->fb_vtype, NULL, SINGLETON_KEY);
8674 	/* Non SUJ softdep does single-threaded truncations. */
8675 	if (freework->fw_blkno == dbn) {
8676 		freework->fw_state |= ALLCOMPLETE;
8677 		ACQUIRE_LOCK(ump);
8678 		handle_written_freework(freework);
8679 		FREE_LOCK(ump);
8680 	}
8681 	return;
8682 }
8683 
8684 /*
8685  * Cancel an allocindir when it is removed via truncation.  When bp is not
8686  * NULL the indirect never appeared on disk and is scheduled to be freed
8687  * independently of the indir so we can more easily track journal work.
8688  */
8689 static void
8690 cancel_allocindir(aip, bp, freeblks, trunc)
8691 	struct allocindir *aip;
8692 	struct buf *bp;
8693 	struct freeblks *freeblks;
8694 	int trunc;
8695 {
8696 	struct indirdep *indirdep;
8697 	struct freefrag *freefrag;
8698 	struct newblk *newblk;
8699 
8700 	newblk = (struct newblk *)aip;
8701 	LIST_REMOVE(aip, ai_next);
8702 	/*
8703 	 * We must eliminate the pointer in bp if it must be freed on its
8704 	 * own due to partial truncate or pending journal work.
8705 	 */
8706 	if (bp && (trunc || newblk->nb_jnewblk)) {
8707 		/*
8708 		 * Clear the pointer and mark the aip to be freed
8709 		 * directly if it never existed on disk.
8710 		 */
8711 		aip->ai_state |= DELAYEDFREE;
8712 		indirdep = aip->ai_indirdep;
8713 		if (indirdep->ir_state & UFS1FMT)
8714 			((ufs1_daddr_t *)bp->b_data)[aip->ai_offset] = 0;
8715 		else
8716 			((ufs2_daddr_t *)bp->b_data)[aip->ai_offset] = 0;
8717 	}
8718 	/*
8719 	 * When truncating the previous pointer will be freed via
8720 	 * savedbp.  Eliminate the freefrag which would dup free.
8721 	 */
8722 	if (trunc && (freefrag = newblk->nb_freefrag) != NULL) {
8723 		newblk->nb_freefrag = NULL;
8724 		if (freefrag->ff_jdep)
8725 			cancel_jfreefrag(
8726 			    WK_JFREEFRAG(freefrag->ff_jdep));
8727 		jwork_move(&freeblks->fb_jwork, &freefrag->ff_jwork);
8728 		WORKITEM_FREE(freefrag, D_FREEFRAG);
8729 	}
8730 	/*
8731 	 * If the journal hasn't been written the jnewblk must be passed
8732 	 * to the call to ffs_blkfree that reclaims the space.  We accomplish
8733 	 * this by leaving the journal dependency on the newblk to be freed
8734 	 * when a freework is created in handle_workitem_freeblocks().
8735 	 */
8736 	cancel_newblk(newblk, NULL, &freeblks->fb_jwork);
8737 	WORKLIST_INSERT(&freeblks->fb_freeworkhd, &newblk->nb_list);
8738 }
8739 
8740 /*
8741  * Create the mkdir dependencies for . and .. in a new directory.  Link them
8742  * in to a newdirblk so any subsequent additions are tracked properly.  The
8743  * caller is responsible for adding the mkdir1 dependency to the journal
8744  * and updating id_mkdiradd.  This function returns with the per-filesystem
8745  * lock held.
8746  */
8747 static struct mkdir *
8748 setup_newdir(dap, newinum, dinum, newdirbp, mkdirp)
8749 	struct diradd *dap;
8750 	ino_t newinum;
8751 	ino_t dinum;
8752 	struct buf *newdirbp;
8753 	struct mkdir **mkdirp;
8754 {
8755 	struct newblk *newblk;
8756 	struct pagedep *pagedep;
8757 	struct inodedep *inodedep;
8758 	struct newdirblk *newdirblk;
8759 	struct mkdir *mkdir1, *mkdir2;
8760 	struct worklist *wk;
8761 	struct jaddref *jaddref;
8762 	struct ufsmount *ump;
8763 	struct mount *mp;
8764 
8765 	mp = dap->da_list.wk_mp;
8766 	ump = VFSTOUFS(mp);
8767 	newdirblk = malloc(sizeof(struct newdirblk), M_NEWDIRBLK,
8768 	    M_SOFTDEP_FLAGS);
8769 	workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp);
8770 	LIST_INIT(&newdirblk->db_mkdir);
8771 	mkdir1 = malloc(sizeof(struct mkdir), M_MKDIR, M_SOFTDEP_FLAGS);
8772 	workitem_alloc(&mkdir1->md_list, D_MKDIR, mp);
8773 	mkdir1->md_state = ATTACHED | MKDIR_BODY;
8774 	mkdir1->md_diradd = dap;
8775 	mkdir1->md_jaddref = NULL;
8776 	mkdir2 = malloc(sizeof(struct mkdir), M_MKDIR, M_SOFTDEP_FLAGS);
8777 	workitem_alloc(&mkdir2->md_list, D_MKDIR, mp);
8778 	mkdir2->md_state = ATTACHED | MKDIR_PARENT;
8779 	mkdir2->md_diradd = dap;
8780 	mkdir2->md_jaddref = NULL;
8781 	if (MOUNTEDSUJ(mp) == 0) {
8782 		mkdir1->md_state |= DEPCOMPLETE;
8783 		mkdir2->md_state |= DEPCOMPLETE;
8784 	}
8785 	/*
8786 	 * Dependency on "." and ".." being written to disk.
8787 	 */
8788 	mkdir1->md_buf = newdirbp;
8789 	ACQUIRE_LOCK(VFSTOUFS(mp));
8790 	LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir1, md_mkdirs);
8791 	/*
8792 	 * We must link the pagedep, allocdirect, and newdirblk for
8793 	 * the initial file page so the pointer to the new directory
8794 	 * is not written until the directory contents are live and
8795 	 * any subsequent additions are not marked live until the
8796 	 * block is reachable via the inode.
8797 	 */
8798 	if (pagedep_lookup(mp, newdirbp, newinum, 0, 0, &pagedep) == 0)
8799 		panic("setup_newdir: lost pagedep");
8800 	LIST_FOREACH(wk, &newdirbp->b_dep, wk_list)
8801 		if (wk->wk_type == D_ALLOCDIRECT)
8802 			break;
8803 	if (wk == NULL)
8804 		panic("setup_newdir: lost allocdirect");
8805 	if (pagedep->pd_state & NEWBLOCK)
8806 		panic("setup_newdir: NEWBLOCK already set");
8807 	newblk = WK_NEWBLK(wk);
8808 	pagedep->pd_state |= NEWBLOCK;
8809 	pagedep->pd_newdirblk = newdirblk;
8810 	newdirblk->db_pagedep = pagedep;
8811 	WORKLIST_INSERT(&newblk->nb_newdirblk, &newdirblk->db_list);
8812 	WORKLIST_INSERT(&newdirblk->db_mkdir, &mkdir1->md_list);
8813 	/*
8814 	 * Look up the inodedep for the parent directory so that we
8815 	 * can link mkdir2 into the pending dotdot jaddref or
8816 	 * the inode write if there is none.  If the inode is
8817 	 * ALLCOMPLETE and no jaddref is present all dependencies have
8818 	 * been satisfied and mkdir2 can be freed.
8819 	 */
8820 	inodedep_lookup(mp, dinum, 0, &inodedep);
8821 	if (MOUNTEDSUJ(mp)) {
8822 		if (inodedep == NULL)
8823 			panic("setup_newdir: Lost parent.");
8824 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
8825 		    inoreflst);
8826 		KASSERT(jaddref != NULL && jaddref->ja_parent == newinum &&
8827 		    (jaddref->ja_state & MKDIR_PARENT),
8828 		    ("setup_newdir: bad dotdot jaddref %p", jaddref));
8829 		LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir2, md_mkdirs);
8830 		mkdir2->md_jaddref = jaddref;
8831 		jaddref->ja_mkdir = mkdir2;
8832 	} else if (inodedep == NULL ||
8833 	    (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) {
8834 		dap->da_state &= ~MKDIR_PARENT;
8835 		WORKITEM_FREE(mkdir2, D_MKDIR);
8836 		mkdir2 = NULL;
8837 	} else {
8838 		LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir2, md_mkdirs);
8839 		WORKLIST_INSERT(&inodedep->id_bufwait, &mkdir2->md_list);
8840 	}
8841 	*mkdirp = mkdir2;
8842 
8843 	return (mkdir1);
8844 }
8845 
8846 /*
8847  * Directory entry addition dependencies.
8848  *
8849  * When adding a new directory entry, the inode (with its incremented link
8850  * count) must be written to disk before the directory entry's pointer to it.
8851  * Also, if the inode is newly allocated, the corresponding freemap must be
8852  * updated (on disk) before the directory entry's pointer. These requirements
8853  * are met via undo/redo on the directory entry's pointer, which consists
8854  * simply of the inode number.
8855  *
8856  * As directory entries are added and deleted, the free space within a
8857  * directory block can become fragmented.  The ufs filesystem will compact
8858  * a fragmented directory block to make space for a new entry. When this
8859  * occurs, the offsets of previously added entries change. Any "diradd"
8860  * dependency structures corresponding to these entries must be updated with
8861  * the new offsets.
8862  */
8863 
8864 /*
8865  * This routine is called after the in-memory inode's link
8866  * count has been incremented, but before the directory entry's
8867  * pointer to the inode has been set.
8868  */
8869 int
8870 softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk)
8871 	struct buf *bp;		/* buffer containing directory block */
8872 	struct inode *dp;	/* inode for directory */
8873 	off_t diroffset;	/* offset of new entry in directory */
8874 	ino_t newinum;		/* inode referenced by new directory entry */
8875 	struct buf *newdirbp;	/* non-NULL => contents of new mkdir */
8876 	int isnewblk;		/* entry is in a newly allocated block */
8877 {
8878 	int offset;		/* offset of new entry within directory block */
8879 	ufs_lbn_t lbn;		/* block in directory containing new entry */
8880 	struct fs *fs;
8881 	struct diradd *dap;
8882 	struct newblk *newblk;
8883 	struct pagedep *pagedep;
8884 	struct inodedep *inodedep;
8885 	struct newdirblk *newdirblk;
8886 	struct mkdir *mkdir1, *mkdir2;
8887 	struct jaddref *jaddref;
8888 	struct ufsmount *ump;
8889 	struct mount *mp;
8890 	int isindir;
8891 
8892 	mp = ITOVFS(dp);
8893 	ump = VFSTOUFS(mp);
8894 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
8895 	    ("softdep_setup_directory_add called on non-softdep filesystem"));
8896 	/*
8897 	 * Whiteouts have no dependencies.
8898 	 */
8899 	if (newinum == UFS_WINO) {
8900 		if (newdirbp != NULL)
8901 			bdwrite(newdirbp);
8902 		return (0);
8903 	}
8904 	jaddref = NULL;
8905 	mkdir1 = mkdir2 = NULL;
8906 	fs = ump->um_fs;
8907 	lbn = lblkno(fs, diroffset);
8908 	offset = blkoff(fs, diroffset);
8909 	dap = malloc(sizeof(struct diradd), M_DIRADD,
8910 		M_SOFTDEP_FLAGS|M_ZERO);
8911 	workitem_alloc(&dap->da_list, D_DIRADD, mp);
8912 	dap->da_offset = offset;
8913 	dap->da_newinum = newinum;
8914 	dap->da_state = ATTACHED;
8915 	LIST_INIT(&dap->da_jwork);
8916 	isindir = bp->b_lblkno >= UFS_NDADDR;
8917 	newdirblk = NULL;
8918 	if (isnewblk &&
8919 	    (isindir ? blkoff(fs, diroffset) : fragoff(fs, diroffset)) == 0) {
8920 		newdirblk = malloc(sizeof(struct newdirblk),
8921 		    M_NEWDIRBLK, M_SOFTDEP_FLAGS);
8922 		workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp);
8923 		LIST_INIT(&newdirblk->db_mkdir);
8924 	}
8925 	/*
8926 	 * If we're creating a new directory setup the dependencies and set
8927 	 * the dap state to wait for them.  Otherwise it's COMPLETE and
8928 	 * we can move on.
8929 	 */
8930 	if (newdirbp == NULL) {
8931 		dap->da_state |= DEPCOMPLETE;
8932 		ACQUIRE_LOCK(ump);
8933 	} else {
8934 		dap->da_state |= MKDIR_BODY | MKDIR_PARENT;
8935 		mkdir1 = setup_newdir(dap, newinum, dp->i_number, newdirbp,
8936 		    &mkdir2);
8937 	}
8938 	/*
8939 	 * Link into parent directory pagedep to await its being written.
8940 	 */
8941 	pagedep_lookup(mp, bp, dp->i_number, lbn, DEPALLOC, &pagedep);
8942 #ifdef INVARIANTS
8943 	if (diradd_lookup(pagedep, offset) != NULL)
8944 		panic("softdep_setup_directory_add: %p already at off %d\n",
8945 		    diradd_lookup(pagedep, offset), offset);
8946 #endif
8947 	dap->da_pagedep = pagedep;
8948 	LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], dap,
8949 	    da_pdlist);
8950 	inodedep_lookup(mp, newinum, DEPALLOC, &inodedep);
8951 	/*
8952 	 * If we're journaling, link the diradd into the jaddref so it
8953 	 * may be completed after the journal entry is written.  Otherwise,
8954 	 * link the diradd into its inodedep.  If the inode is not yet
8955 	 * written place it on the bufwait list, otherwise do the post-inode
8956 	 * write processing to put it on the id_pendinghd list.
8957 	 */
8958 	if (MOUNTEDSUJ(mp)) {
8959 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
8960 		    inoreflst);
8961 		KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number,
8962 		    ("softdep_setup_directory_add: bad jaddref %p", jaddref));
8963 		jaddref->ja_diroff = diroffset;
8964 		jaddref->ja_diradd = dap;
8965 		add_to_journal(&jaddref->ja_list);
8966 	} else if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE)
8967 		diradd_inode_written(dap, inodedep);
8968 	else
8969 		WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list);
8970 	/*
8971 	 * Add the journal entries for . and .. links now that the primary
8972 	 * link is written.
8973 	 */
8974 	if (mkdir1 != NULL && MOUNTEDSUJ(mp)) {
8975 		jaddref = (struct jaddref *)TAILQ_PREV(&jaddref->ja_ref,
8976 		    inoreflst, if_deps);
8977 		KASSERT(jaddref != NULL &&
8978 		    jaddref->ja_ino == jaddref->ja_parent &&
8979 		    (jaddref->ja_state & MKDIR_BODY),
8980 		    ("softdep_setup_directory_add: bad dot jaddref %p",
8981 		    jaddref));
8982 		mkdir1->md_jaddref = jaddref;
8983 		jaddref->ja_mkdir = mkdir1;
8984 		/*
8985 		 * It is important that the dotdot journal entry
8986 		 * is added prior to the dot entry since dot writes
8987 		 * both the dot and dotdot links.  These both must
8988 		 * be added after the primary link for the journal
8989 		 * to remain consistent.
8990 		 */
8991 		add_to_journal(&mkdir2->md_jaddref->ja_list);
8992 		add_to_journal(&jaddref->ja_list);
8993 	}
8994 	/*
8995 	 * If we are adding a new directory remember this diradd so that if
8996 	 * we rename it we can keep the dot and dotdot dependencies.  If
8997 	 * we are adding a new name for an inode that has a mkdiradd we
8998 	 * must be in rename and we have to move the dot and dotdot
8999 	 * dependencies to this new name.  The old name is being orphaned
9000 	 * soon.
9001 	 */
9002 	if (mkdir1 != NULL) {
9003 		if (inodedep->id_mkdiradd != NULL)
9004 			panic("softdep_setup_directory_add: Existing mkdir");
9005 		inodedep->id_mkdiradd = dap;
9006 	} else if (inodedep->id_mkdiradd)
9007 		merge_diradd(inodedep, dap);
9008 	if (newdirblk != NULL) {
9009 		/*
9010 		 * There is nothing to do if we are already tracking
9011 		 * this block.
9012 		 */
9013 		if ((pagedep->pd_state & NEWBLOCK) != 0) {
9014 			WORKITEM_FREE(newdirblk, D_NEWDIRBLK);
9015 			FREE_LOCK(ump);
9016 			return (0);
9017 		}
9018 		if (newblk_lookup(mp, dbtofsb(fs, bp->b_blkno), 0, &newblk)
9019 		    == 0)
9020 			panic("softdep_setup_directory_add: lost entry");
9021 		WORKLIST_INSERT(&newblk->nb_newdirblk, &newdirblk->db_list);
9022 		pagedep->pd_state |= NEWBLOCK;
9023 		pagedep->pd_newdirblk = newdirblk;
9024 		newdirblk->db_pagedep = pagedep;
9025 		FREE_LOCK(ump);
9026 		/*
9027 		 * If we extended into an indirect signal direnter to sync.
9028 		 */
9029 		if (isindir)
9030 			return (1);
9031 		return (0);
9032 	}
9033 	FREE_LOCK(ump);
9034 	return (0);
9035 }
9036 
9037 /*
9038  * This procedure is called to change the offset of a directory
9039  * entry when compacting a directory block which must be owned
9040  * exclusively by the caller. Note that the actual entry movement
9041  * must be done in this procedure to ensure that no I/O completions
9042  * occur while the move is in progress.
9043  */
9044 void
9045 softdep_change_directoryentry_offset(bp, dp, base, oldloc, newloc, entrysize)
9046 	struct buf *bp;		/* Buffer holding directory block. */
9047 	struct inode *dp;	/* inode for directory */
9048 	caddr_t base;		/* address of dp->i_offset */
9049 	caddr_t oldloc;		/* address of old directory location */
9050 	caddr_t newloc;		/* address of new directory location */
9051 	int entrysize;		/* size of directory entry */
9052 {
9053 	int offset, oldoffset, newoffset;
9054 	struct pagedep *pagedep;
9055 	struct jmvref *jmvref;
9056 	struct diradd *dap;
9057 	struct direct *de;
9058 	struct mount *mp;
9059 	struct ufsmount *ump;
9060 	ufs_lbn_t lbn;
9061 	int flags;
9062 
9063 	mp = ITOVFS(dp);
9064 	ump = VFSTOUFS(mp);
9065 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
9066 	    ("softdep_change_directoryentry_offset called on "
9067 	     "non-softdep filesystem"));
9068 	de = (struct direct *)oldloc;
9069 	jmvref = NULL;
9070 	flags = 0;
9071 	/*
9072 	 * Moves are always journaled as it would be too complex to
9073 	 * determine if any affected adds or removes are present in the
9074 	 * journal.
9075 	 */
9076 	if (MOUNTEDSUJ(mp)) {
9077 		flags = DEPALLOC;
9078 		jmvref = newjmvref(dp, de->d_ino,
9079 		    I_OFFSET(dp) + (oldloc - base),
9080 		    I_OFFSET(dp) + (newloc - base));
9081 	}
9082 	lbn = lblkno(ump->um_fs, I_OFFSET(dp));
9083 	offset = blkoff(ump->um_fs, I_OFFSET(dp));
9084 	oldoffset = offset + (oldloc - base);
9085 	newoffset = offset + (newloc - base);
9086 	ACQUIRE_LOCK(ump);
9087 	if (pagedep_lookup(mp, bp, dp->i_number, lbn, flags, &pagedep) == 0)
9088 		goto done;
9089 	dap = diradd_lookup(pagedep, oldoffset);
9090 	if (dap) {
9091 		dap->da_offset = newoffset;
9092 		newoffset = DIRADDHASH(newoffset);
9093 		oldoffset = DIRADDHASH(oldoffset);
9094 		if ((dap->da_state & ALLCOMPLETE) != ALLCOMPLETE &&
9095 		    newoffset != oldoffset) {
9096 			LIST_REMOVE(dap, da_pdlist);
9097 			LIST_INSERT_HEAD(&pagedep->pd_diraddhd[newoffset],
9098 			    dap, da_pdlist);
9099 		}
9100 	}
9101 done:
9102 	if (jmvref) {
9103 		jmvref->jm_pagedep = pagedep;
9104 		LIST_INSERT_HEAD(&pagedep->pd_jmvrefhd, jmvref, jm_deps);
9105 		add_to_journal(&jmvref->jm_list);
9106 	}
9107 	bcopy(oldloc, newloc, entrysize);
9108 	FREE_LOCK(ump);
9109 }
9110 
9111 /*
9112  * Move the mkdir dependencies and journal work from one diradd to another
9113  * when renaming a directory.  The new name must depend on the mkdir deps
9114  * completing as the old name did.  Directories can only have one valid link
9115  * at a time so one must be canonical.
9116  */
9117 static void
9118 merge_diradd(inodedep, newdap)
9119 	struct inodedep *inodedep;
9120 	struct diradd *newdap;
9121 {
9122 	struct diradd *olddap;
9123 	struct mkdir *mkdir, *nextmd;
9124 	struct ufsmount *ump;
9125 	short state;
9126 
9127 	olddap = inodedep->id_mkdiradd;
9128 	inodedep->id_mkdiradd = newdap;
9129 	if ((olddap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
9130 		newdap->da_state &= ~DEPCOMPLETE;
9131 		ump = VFSTOUFS(inodedep->id_list.wk_mp);
9132 		for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir;
9133 		     mkdir = nextmd) {
9134 			nextmd = LIST_NEXT(mkdir, md_mkdirs);
9135 			if (mkdir->md_diradd != olddap)
9136 				continue;
9137 			mkdir->md_diradd = newdap;
9138 			state = mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY);
9139 			newdap->da_state |= state;
9140 			olddap->da_state &= ~state;
9141 			if ((olddap->da_state &
9142 			    (MKDIR_PARENT | MKDIR_BODY)) == 0)
9143 				break;
9144 		}
9145 		if ((olddap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0)
9146 			panic("merge_diradd: unfound ref");
9147 	}
9148 	/*
9149 	 * Any mkdir related journal items are not safe to be freed until
9150 	 * the new name is stable.
9151 	 */
9152 	jwork_move(&newdap->da_jwork, &olddap->da_jwork);
9153 	olddap->da_state |= DEPCOMPLETE;
9154 	complete_diradd(olddap);
9155 }
9156 
9157 /*
9158  * Move the diradd to the pending list when all diradd dependencies are
9159  * complete.
9160  */
9161 static void
9162 complete_diradd(dap)
9163 	struct diradd *dap;
9164 {
9165 	struct pagedep *pagedep;
9166 
9167 	if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
9168 		if (dap->da_state & DIRCHG)
9169 			pagedep = dap->da_previous->dm_pagedep;
9170 		else
9171 			pagedep = dap->da_pagedep;
9172 		LIST_REMOVE(dap, da_pdlist);
9173 		LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
9174 	}
9175 }
9176 
9177 /*
9178  * Cancel a diradd when a dirrem overlaps with it.  We must cancel the journal
9179  * add entries and conditonally journal the remove.
9180  */
9181 static void
9182 cancel_diradd(dap, dirrem, jremref, dotremref, dotdotremref)
9183 	struct diradd *dap;
9184 	struct dirrem *dirrem;
9185 	struct jremref *jremref;
9186 	struct jremref *dotremref;
9187 	struct jremref *dotdotremref;
9188 {
9189 	struct inodedep *inodedep;
9190 	struct jaddref *jaddref;
9191 	struct inoref *inoref;
9192 	struct ufsmount *ump;
9193 	struct mkdir *mkdir;
9194 
9195 	/*
9196 	 * If no remove references were allocated we're on a non-journaled
9197 	 * filesystem and can skip the cancel step.
9198 	 */
9199 	if (jremref == NULL) {
9200 		free_diradd(dap, NULL);
9201 		return;
9202 	}
9203 	/*
9204 	 * Cancel the primary name an free it if it does not require
9205 	 * journaling.
9206 	 */
9207 	if (inodedep_lookup(dap->da_list.wk_mp, dap->da_newinum,
9208 	    0, &inodedep) != 0) {
9209 		/* Abort the addref that reference this diradd.  */
9210 		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
9211 			if (inoref->if_list.wk_type != D_JADDREF)
9212 				continue;
9213 			jaddref = (struct jaddref *)inoref;
9214 			if (jaddref->ja_diradd != dap)
9215 				continue;
9216 			if (cancel_jaddref(jaddref, inodedep,
9217 			    &dirrem->dm_jwork) == 0) {
9218 				free_jremref(jremref);
9219 				jremref = NULL;
9220 			}
9221 			break;
9222 		}
9223 	}
9224 	/*
9225 	 * Cancel subordinate names and free them if they do not require
9226 	 * journaling.
9227 	 */
9228 	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
9229 		ump = VFSTOUFS(dap->da_list.wk_mp);
9230 		LIST_FOREACH(mkdir, &ump->softdep_mkdirlisthd, md_mkdirs) {
9231 			if (mkdir->md_diradd != dap)
9232 				continue;
9233 			if ((jaddref = mkdir->md_jaddref) == NULL)
9234 				continue;
9235 			mkdir->md_jaddref = NULL;
9236 			if (mkdir->md_state & MKDIR_PARENT) {
9237 				if (cancel_jaddref(jaddref, NULL,
9238 				    &dirrem->dm_jwork) == 0) {
9239 					free_jremref(dotdotremref);
9240 					dotdotremref = NULL;
9241 				}
9242 			} else {
9243 				if (cancel_jaddref(jaddref, inodedep,
9244 				    &dirrem->dm_jwork) == 0) {
9245 					free_jremref(dotremref);
9246 					dotremref = NULL;
9247 				}
9248 			}
9249 		}
9250 	}
9251 
9252 	if (jremref)
9253 		journal_jremref(dirrem, jremref, inodedep);
9254 	if (dotremref)
9255 		journal_jremref(dirrem, dotremref, inodedep);
9256 	if (dotdotremref)
9257 		journal_jremref(dirrem, dotdotremref, NULL);
9258 	jwork_move(&dirrem->dm_jwork, &dap->da_jwork);
9259 	free_diradd(dap, &dirrem->dm_jwork);
9260 }
9261 
9262 /*
9263  * Free a diradd dependency structure.
9264  */
9265 static void
9266 free_diradd(dap, wkhd)
9267 	struct diradd *dap;
9268 	struct workhead *wkhd;
9269 {
9270 	struct dirrem *dirrem;
9271 	struct pagedep *pagedep;
9272 	struct inodedep *inodedep;
9273 	struct mkdir *mkdir, *nextmd;
9274 	struct ufsmount *ump;
9275 
9276 	ump = VFSTOUFS(dap->da_list.wk_mp);
9277 	LOCK_OWNED(ump);
9278 	LIST_REMOVE(dap, da_pdlist);
9279 	if (dap->da_state & ONWORKLIST)
9280 		WORKLIST_REMOVE(&dap->da_list);
9281 	if ((dap->da_state & DIRCHG) == 0) {
9282 		pagedep = dap->da_pagedep;
9283 	} else {
9284 		dirrem = dap->da_previous;
9285 		pagedep = dirrem->dm_pagedep;
9286 		dirrem->dm_dirinum = pagedep->pd_ino;
9287 		dirrem->dm_state |= COMPLETE;
9288 		if (LIST_EMPTY(&dirrem->dm_jremrefhd))
9289 			add_to_worklist(&dirrem->dm_list, 0);
9290 	}
9291 	if (inodedep_lookup(pagedep->pd_list.wk_mp, dap->da_newinum,
9292 	    0, &inodedep) != 0)
9293 		if (inodedep->id_mkdiradd == dap)
9294 			inodedep->id_mkdiradd = NULL;
9295 	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
9296 		for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir;
9297 		     mkdir = nextmd) {
9298 			nextmd = LIST_NEXT(mkdir, md_mkdirs);
9299 			if (mkdir->md_diradd != dap)
9300 				continue;
9301 			dap->da_state &=
9302 			    ~(mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY));
9303 			LIST_REMOVE(mkdir, md_mkdirs);
9304 			if (mkdir->md_state & ONWORKLIST)
9305 				WORKLIST_REMOVE(&mkdir->md_list);
9306 			if (mkdir->md_jaddref != NULL)
9307 				panic("free_diradd: Unexpected jaddref");
9308 			WORKITEM_FREE(mkdir, D_MKDIR);
9309 			if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0)
9310 				break;
9311 		}
9312 		if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0)
9313 			panic("free_diradd: unfound ref");
9314 	}
9315 	if (inodedep)
9316 		free_inodedep(inodedep);
9317 	/*
9318 	 * Free any journal segments waiting for the directory write.
9319 	 */
9320 	handle_jwork(&dap->da_jwork);
9321 	WORKITEM_FREE(dap, D_DIRADD);
9322 }
9323 
9324 /*
9325  * Directory entry removal dependencies.
9326  *
9327  * When removing a directory entry, the entry's inode pointer must be
9328  * zero'ed on disk before the corresponding inode's link count is decremented
9329  * (possibly freeing the inode for re-use). This dependency is handled by
9330  * updating the directory entry but delaying the inode count reduction until
9331  * after the directory block has been written to disk. After this point, the
9332  * inode count can be decremented whenever it is convenient.
9333  */
9334 
9335 /*
9336  * This routine should be called immediately after removing
9337  * a directory entry.  The inode's link count should not be
9338  * decremented by the calling procedure -- the soft updates
9339  * code will do this task when it is safe.
9340  */
9341 void
9342 softdep_setup_remove(bp, dp, ip, isrmdir)
9343 	struct buf *bp;		/* buffer containing directory block */
9344 	struct inode *dp;	/* inode for the directory being modified */
9345 	struct inode *ip;	/* inode for directory entry being removed */
9346 	int isrmdir;		/* indicates if doing RMDIR */
9347 {
9348 	struct dirrem *dirrem, *prevdirrem;
9349 	struct inodedep *inodedep;
9350 	struct ufsmount *ump;
9351 	int direct;
9352 
9353 	ump = ITOUMP(ip);
9354 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
9355 	    ("softdep_setup_remove called on non-softdep filesystem"));
9356 	/*
9357 	 * Allocate a new dirrem if appropriate and ACQUIRE_LOCK.  We want
9358 	 * newdirrem() to setup the full directory remove which requires
9359 	 * isrmdir > 1.
9360 	 */
9361 	dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem);
9362 	/*
9363 	 * Add the dirrem to the inodedep's pending remove list for quick
9364 	 * discovery later.
9365 	 */
9366 	if (inodedep_lookup(UFSTOVFS(ump), ip->i_number, 0, &inodedep) == 0)
9367 		panic("softdep_setup_remove: Lost inodedep.");
9368 	KASSERT((inodedep->id_state & UNLINKED) == 0, ("inode unlinked"));
9369 	dirrem->dm_state |= ONDEPLIST;
9370 	LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext);
9371 
9372 	/*
9373 	 * If the COMPLETE flag is clear, then there were no active
9374 	 * entries and we want to roll back to a zeroed entry until
9375 	 * the new inode is committed to disk. If the COMPLETE flag is
9376 	 * set then we have deleted an entry that never made it to
9377 	 * disk. If the entry we deleted resulted from a name change,
9378 	 * then the old name still resides on disk. We cannot delete
9379 	 * its inode (returned to us in prevdirrem) until the zeroed
9380 	 * directory entry gets to disk. The new inode has never been
9381 	 * referenced on the disk, so can be deleted immediately.
9382 	 */
9383 	if ((dirrem->dm_state & COMPLETE) == 0) {
9384 		LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, dirrem,
9385 		    dm_next);
9386 		FREE_LOCK(ump);
9387 	} else {
9388 		if (prevdirrem != NULL)
9389 			LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd,
9390 			    prevdirrem, dm_next);
9391 		dirrem->dm_dirinum = dirrem->dm_pagedep->pd_ino;
9392 		direct = LIST_EMPTY(&dirrem->dm_jremrefhd);
9393 		FREE_LOCK(ump);
9394 		if (direct)
9395 			handle_workitem_remove(dirrem, 0);
9396 	}
9397 }
9398 
9399 /*
9400  * Check for an entry matching 'offset' on both the pd_dirraddhd list and the
9401  * pd_pendinghd list of a pagedep.
9402  */
9403 static struct diradd *
9404 diradd_lookup(pagedep, offset)
9405 	struct pagedep *pagedep;
9406 	int offset;
9407 {
9408 	struct diradd *dap;
9409 
9410 	LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(offset)], da_pdlist)
9411 		if (dap->da_offset == offset)
9412 			return (dap);
9413 	LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist)
9414 		if (dap->da_offset == offset)
9415 			return (dap);
9416 	return (NULL);
9417 }
9418 
9419 /*
9420  * Search for a .. diradd dependency in a directory that is being removed.
9421  * If the directory was renamed to a new parent we have a diradd rather
9422  * than a mkdir for the .. entry.  We need to cancel it now before
9423  * it is found in truncate().
9424  */
9425 static struct jremref *
9426 cancel_diradd_dotdot(ip, dirrem, jremref)
9427 	struct inode *ip;
9428 	struct dirrem *dirrem;
9429 	struct jremref *jremref;
9430 {
9431 	struct pagedep *pagedep;
9432 	struct diradd *dap;
9433 	struct worklist *wk;
9434 
9435 	if (pagedep_lookup(ITOVFS(ip), NULL, ip->i_number, 0, 0, &pagedep) == 0)
9436 		return (jremref);
9437 	dap = diradd_lookup(pagedep, DOTDOT_OFFSET);
9438 	if (dap == NULL)
9439 		return (jremref);
9440 	cancel_diradd(dap, dirrem, jremref, NULL, NULL);
9441 	/*
9442 	 * Mark any journal work as belonging to the parent so it is freed
9443 	 * with the .. reference.
9444 	 */
9445 	LIST_FOREACH(wk, &dirrem->dm_jwork, wk_list)
9446 		wk->wk_state |= MKDIR_PARENT;
9447 	return (NULL);
9448 }
9449 
9450 /*
9451  * Cancel the MKDIR_PARENT mkdir component of a diradd when we're going to
9452  * replace it with a dirrem/diradd pair as a result of re-parenting a
9453  * directory.  This ensures that we don't simultaneously have a mkdir and
9454  * a diradd for the same .. entry.
9455  */
9456 static struct jremref *
9457 cancel_mkdir_dotdot(ip, dirrem, jremref)
9458 	struct inode *ip;
9459 	struct dirrem *dirrem;
9460 	struct jremref *jremref;
9461 {
9462 	struct inodedep *inodedep;
9463 	struct jaddref *jaddref;
9464 	struct ufsmount *ump;
9465 	struct mkdir *mkdir;
9466 	struct diradd *dap;
9467 	struct mount *mp;
9468 
9469 	mp = ITOVFS(ip);
9470 	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0)
9471 		return (jremref);
9472 	dap = inodedep->id_mkdiradd;
9473 	if (dap == NULL || (dap->da_state & MKDIR_PARENT) == 0)
9474 		return (jremref);
9475 	ump = VFSTOUFS(inodedep->id_list.wk_mp);
9476 	for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir;
9477 	    mkdir = LIST_NEXT(mkdir, md_mkdirs))
9478 		if (mkdir->md_diradd == dap && mkdir->md_state & MKDIR_PARENT)
9479 			break;
9480 	if (mkdir == NULL)
9481 		panic("cancel_mkdir_dotdot: Unable to find mkdir\n");
9482 	if ((jaddref = mkdir->md_jaddref) != NULL) {
9483 		mkdir->md_jaddref = NULL;
9484 		jaddref->ja_state &= ~MKDIR_PARENT;
9485 		if (inodedep_lookup(mp, jaddref->ja_ino, 0, &inodedep) == 0)
9486 			panic("cancel_mkdir_dotdot: Lost parent inodedep");
9487 		if (cancel_jaddref(jaddref, inodedep, &dirrem->dm_jwork)) {
9488 			journal_jremref(dirrem, jremref, inodedep);
9489 			jremref = NULL;
9490 		}
9491 	}
9492 	if (mkdir->md_state & ONWORKLIST)
9493 		WORKLIST_REMOVE(&mkdir->md_list);
9494 	mkdir->md_state |= ALLCOMPLETE;
9495 	complete_mkdir(mkdir);
9496 	return (jremref);
9497 }
9498 
9499 static void
9500 journal_jremref(dirrem, jremref, inodedep)
9501 	struct dirrem *dirrem;
9502 	struct jremref *jremref;
9503 	struct inodedep *inodedep;
9504 {
9505 
9506 	if (inodedep == NULL)
9507 		if (inodedep_lookup(jremref->jr_list.wk_mp,
9508 		    jremref->jr_ref.if_ino, 0, &inodedep) == 0)
9509 			panic("journal_jremref: Lost inodedep");
9510 	LIST_INSERT_HEAD(&dirrem->dm_jremrefhd, jremref, jr_deps);
9511 	TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jremref->jr_ref, if_deps);
9512 	add_to_journal(&jremref->jr_list);
9513 }
9514 
9515 static void
9516 dirrem_journal(dirrem, jremref, dotremref, dotdotremref)
9517 	struct dirrem *dirrem;
9518 	struct jremref *jremref;
9519 	struct jremref *dotremref;
9520 	struct jremref *dotdotremref;
9521 {
9522 	struct inodedep *inodedep;
9523 
9524 	if (inodedep_lookup(jremref->jr_list.wk_mp, jremref->jr_ref.if_ino, 0,
9525 	    &inodedep) == 0)
9526 		panic("dirrem_journal: Lost inodedep");
9527 	journal_jremref(dirrem, jremref, inodedep);
9528 	if (dotremref)
9529 		journal_jremref(dirrem, dotremref, inodedep);
9530 	if (dotdotremref)
9531 		journal_jremref(dirrem, dotdotremref, NULL);
9532 }
9533 
9534 /*
9535  * Allocate a new dirrem if appropriate and return it along with
9536  * its associated pagedep. Called without a lock, returns with lock.
9537  */
9538 static struct dirrem *
9539 newdirrem(bp, dp, ip, isrmdir, prevdirremp)
9540 	struct buf *bp;		/* buffer containing directory block */
9541 	struct inode *dp;	/* inode for the directory being modified */
9542 	struct inode *ip;	/* inode for directory entry being removed */
9543 	int isrmdir;		/* indicates if doing RMDIR */
9544 	struct dirrem **prevdirremp; /* previously referenced inode, if any */
9545 {
9546 	int offset;
9547 	ufs_lbn_t lbn;
9548 	struct diradd *dap;
9549 	struct dirrem *dirrem;
9550 	struct pagedep *pagedep;
9551 	struct jremref *jremref;
9552 	struct jremref *dotremref;
9553 	struct jremref *dotdotremref;
9554 	struct vnode *dvp;
9555 	struct ufsmount *ump;
9556 
9557 	/*
9558 	 * Whiteouts have no deletion dependencies.
9559 	 */
9560 	if (ip == NULL)
9561 		panic("newdirrem: whiteout");
9562 	dvp = ITOV(dp);
9563 	ump = ITOUMP(dp);
9564 
9565 	/*
9566 	 * If the system is over its limit and our filesystem is
9567 	 * responsible for more than our share of that usage and
9568 	 * we are not a snapshot, request some inodedep cleanup.
9569 	 * Limiting the number of dirrem structures will also limit
9570 	 * the number of freefile and freeblks structures.
9571 	 */
9572 	ACQUIRE_LOCK(ump);
9573 	if (!IS_SNAPSHOT(ip) && softdep_excess_items(ump, D_DIRREM))
9574 		schedule_cleanup(UFSTOVFS(ump));
9575 	else
9576 		FREE_LOCK(ump);
9577 	dirrem = malloc(sizeof(struct dirrem), M_DIRREM, M_SOFTDEP_FLAGS |
9578 	    M_ZERO);
9579 	workitem_alloc(&dirrem->dm_list, D_DIRREM, dvp->v_mount);
9580 	LIST_INIT(&dirrem->dm_jremrefhd);
9581 	LIST_INIT(&dirrem->dm_jwork);
9582 	dirrem->dm_state = isrmdir ? RMDIR : 0;
9583 	dirrem->dm_oldinum = ip->i_number;
9584 	*prevdirremp = NULL;
9585 	/*
9586 	 * Allocate remove reference structures to track journal write
9587 	 * dependencies.  We will always have one for the link and
9588 	 * when doing directories we will always have one more for dot.
9589 	 * When renaming a directory we skip the dotdot link change so
9590 	 * this is not needed.
9591 	 */
9592 	jremref = dotremref = dotdotremref = NULL;
9593 	if (DOINGSUJ(dvp)) {
9594 		if (isrmdir) {
9595 			jremref = newjremref(dirrem, dp, ip, I_OFFSET(dp),
9596 			    ip->i_effnlink + 2);
9597 			dotremref = newjremref(dirrem, ip, ip, DOT_OFFSET,
9598 			    ip->i_effnlink + 1);
9599 			dotdotremref = newjremref(dirrem, ip, dp, DOTDOT_OFFSET,
9600 			    dp->i_effnlink + 1);
9601 			dotdotremref->jr_state |= MKDIR_PARENT;
9602 		} else
9603 			jremref = newjremref(dirrem, dp, ip, I_OFFSET(dp),
9604 			    ip->i_effnlink + 1);
9605 	}
9606 	ACQUIRE_LOCK(ump);
9607 	lbn = lblkno(ump->um_fs, I_OFFSET(dp));
9608 	offset = blkoff(ump->um_fs, I_OFFSET(dp));
9609 	pagedep_lookup(UFSTOVFS(ump), bp, dp->i_number, lbn, DEPALLOC,
9610 	    &pagedep);
9611 	dirrem->dm_pagedep = pagedep;
9612 	dirrem->dm_offset = offset;
9613 	/*
9614 	 * If we're renaming a .. link to a new directory, cancel any
9615 	 * existing MKDIR_PARENT mkdir.  If it has already been canceled
9616 	 * the jremref is preserved for any potential diradd in this
9617 	 * location.  This can not coincide with a rmdir.
9618 	 */
9619 	if (I_OFFSET(dp) == DOTDOT_OFFSET) {
9620 		if (isrmdir)
9621 			panic("newdirrem: .. directory change during remove?");
9622 		jremref = cancel_mkdir_dotdot(dp, dirrem, jremref);
9623 	}
9624 	/*
9625 	 * If we're removing a directory search for the .. dependency now and
9626 	 * cancel it.  Any pending journal work will be added to the dirrem
9627 	 * to be completed when the workitem remove completes.
9628 	 */
9629 	if (isrmdir)
9630 		dotdotremref = cancel_diradd_dotdot(ip, dirrem, dotdotremref);
9631 	/*
9632 	 * Check for a diradd dependency for the same directory entry.
9633 	 * If present, then both dependencies become obsolete and can
9634 	 * be de-allocated.
9635 	 */
9636 	dap = diradd_lookup(pagedep, offset);
9637 	if (dap == NULL) {
9638 		/*
9639 		 * Link the jremref structures into the dirrem so they are
9640 		 * written prior to the pagedep.
9641 		 */
9642 		if (jremref)
9643 			dirrem_journal(dirrem, jremref, dotremref,
9644 			    dotdotremref);
9645 		return (dirrem);
9646 	}
9647 	/*
9648 	 * Must be ATTACHED at this point.
9649 	 */
9650 	if ((dap->da_state & ATTACHED) == 0)
9651 		panic("newdirrem: not ATTACHED");
9652 	if (dap->da_newinum != ip->i_number)
9653 		panic("newdirrem: inum %ju should be %ju",
9654 		    (uintmax_t)ip->i_number, (uintmax_t)dap->da_newinum);
9655 	/*
9656 	 * If we are deleting a changed name that never made it to disk,
9657 	 * then return the dirrem describing the previous inode (which
9658 	 * represents the inode currently referenced from this entry on disk).
9659 	 */
9660 	if ((dap->da_state & DIRCHG) != 0) {
9661 		*prevdirremp = dap->da_previous;
9662 		dap->da_state &= ~DIRCHG;
9663 		dap->da_pagedep = pagedep;
9664 	}
9665 	/*
9666 	 * We are deleting an entry that never made it to disk.
9667 	 * Mark it COMPLETE so we can delete its inode immediately.
9668 	 */
9669 	dirrem->dm_state |= COMPLETE;
9670 	cancel_diradd(dap, dirrem, jremref, dotremref, dotdotremref);
9671 #ifdef INVARIANTS
9672 	if (isrmdir == 0) {
9673 		struct worklist *wk;
9674 
9675 		LIST_FOREACH(wk, &dirrem->dm_jwork, wk_list)
9676 			if (wk->wk_state & (MKDIR_BODY | MKDIR_PARENT))
9677 				panic("bad wk %p (0x%X)\n", wk, wk->wk_state);
9678 	}
9679 #endif
9680 
9681 	return (dirrem);
9682 }
9683 
9684 /*
9685  * Directory entry change dependencies.
9686  *
9687  * Changing an existing directory entry requires that an add operation
9688  * be completed first followed by a deletion. The semantics for the addition
9689  * are identical to the description of adding a new entry above except
9690  * that the rollback is to the old inode number rather than zero. Once
9691  * the addition dependency is completed, the removal is done as described
9692  * in the removal routine above.
9693  */
9694 
9695 /*
9696  * This routine should be called immediately after changing
9697  * a directory entry.  The inode's link count should not be
9698  * decremented by the calling procedure -- the soft updates
9699  * code will perform this task when it is safe.
9700  */
9701 void
9702 softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir)
9703 	struct buf *bp;		/* buffer containing directory block */
9704 	struct inode *dp;	/* inode for the directory being modified */
9705 	struct inode *ip;	/* inode for directory entry being removed */
9706 	ino_t newinum;		/* new inode number for changed entry */
9707 	int isrmdir;		/* indicates if doing RMDIR */
9708 {
9709 	int offset;
9710 	struct diradd *dap = NULL;
9711 	struct dirrem *dirrem, *prevdirrem;
9712 	struct pagedep *pagedep;
9713 	struct inodedep *inodedep;
9714 	struct jaddref *jaddref;
9715 	struct mount *mp;
9716 	struct ufsmount *ump;
9717 
9718 	mp = ITOVFS(dp);
9719 	ump = VFSTOUFS(mp);
9720 	offset = blkoff(ump->um_fs, I_OFFSET(dp));
9721 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
9722 	   ("softdep_setup_directory_change called on non-softdep filesystem"));
9723 
9724 	/*
9725 	 * Whiteouts do not need diradd dependencies.
9726 	 */
9727 	if (newinum != UFS_WINO) {
9728 		dap = malloc(sizeof(struct diradd),
9729 		    M_DIRADD, M_SOFTDEP_FLAGS|M_ZERO);
9730 		workitem_alloc(&dap->da_list, D_DIRADD, mp);
9731 		dap->da_state = DIRCHG | ATTACHED | DEPCOMPLETE;
9732 		dap->da_offset = offset;
9733 		dap->da_newinum = newinum;
9734 		LIST_INIT(&dap->da_jwork);
9735 	}
9736 
9737 	/*
9738 	 * Allocate a new dirrem and ACQUIRE_LOCK.
9739 	 */
9740 	dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem);
9741 	pagedep = dirrem->dm_pagedep;
9742 	/*
9743 	 * The possible values for isrmdir:
9744 	 *	0 - non-directory file rename
9745 	 *	1 - directory rename within same directory
9746 	 *   inum - directory rename to new directory of given inode number
9747 	 * When renaming to a new directory, we are both deleting and
9748 	 * creating a new directory entry, so the link count on the new
9749 	 * directory should not change. Thus we do not need the followup
9750 	 * dirrem which is usually done in handle_workitem_remove. We set
9751 	 * the DIRCHG flag to tell handle_workitem_remove to skip the
9752 	 * followup dirrem.
9753 	 */
9754 	if (isrmdir > 1)
9755 		dirrem->dm_state |= DIRCHG;
9756 
9757 	/*
9758 	 * Whiteouts have no additional dependencies,
9759 	 * so just put the dirrem on the correct list.
9760 	 */
9761 	if (newinum == UFS_WINO) {
9762 		if ((dirrem->dm_state & COMPLETE) == 0) {
9763 			LIST_INSERT_HEAD(&pagedep->pd_dirremhd, dirrem,
9764 			    dm_next);
9765 		} else {
9766 			dirrem->dm_dirinum = pagedep->pd_ino;
9767 			if (LIST_EMPTY(&dirrem->dm_jremrefhd))
9768 				add_to_worklist(&dirrem->dm_list, 0);
9769 		}
9770 		FREE_LOCK(ump);
9771 		return;
9772 	}
9773 	/*
9774 	 * Add the dirrem to the inodedep's pending remove list for quick
9775 	 * discovery later.  A valid nlinkdelta ensures that this lookup
9776 	 * will not fail.
9777 	 */
9778 	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0)
9779 		panic("softdep_setup_directory_change: Lost inodedep.");
9780 	dirrem->dm_state |= ONDEPLIST;
9781 	LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext);
9782 
9783 	/*
9784 	 * If the COMPLETE flag is clear, then there were no active
9785 	 * entries and we want to roll back to the previous inode until
9786 	 * the new inode is committed to disk. If the COMPLETE flag is
9787 	 * set, then we have deleted an entry that never made it to disk.
9788 	 * If the entry we deleted resulted from a name change, then the old
9789 	 * inode reference still resides on disk. Any rollback that we do
9790 	 * needs to be to that old inode (returned to us in prevdirrem). If
9791 	 * the entry we deleted resulted from a create, then there is
9792 	 * no entry on the disk, so we want to roll back to zero rather
9793 	 * than the uncommitted inode. In either of the COMPLETE cases we
9794 	 * want to immediately free the unwritten and unreferenced inode.
9795 	 */
9796 	if ((dirrem->dm_state & COMPLETE) == 0) {
9797 		dap->da_previous = dirrem;
9798 	} else {
9799 		if (prevdirrem != NULL) {
9800 			dap->da_previous = prevdirrem;
9801 		} else {
9802 			dap->da_state &= ~DIRCHG;
9803 			dap->da_pagedep = pagedep;
9804 		}
9805 		dirrem->dm_dirinum = pagedep->pd_ino;
9806 		if (LIST_EMPTY(&dirrem->dm_jremrefhd))
9807 			add_to_worklist(&dirrem->dm_list, 0);
9808 	}
9809 	/*
9810 	 * Lookup the jaddref for this journal entry.  We must finish
9811 	 * initializing it and make the diradd write dependent on it.
9812 	 * If we're not journaling, put it on the id_bufwait list if the
9813 	 * inode is not yet written. If it is written, do the post-inode
9814 	 * write processing to put it on the id_pendinghd list.
9815 	 */
9816 	inodedep_lookup(mp, newinum, DEPALLOC, &inodedep);
9817 	if (MOUNTEDSUJ(mp)) {
9818 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
9819 		    inoreflst);
9820 		KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number,
9821 		    ("softdep_setup_directory_change: bad jaddref %p",
9822 		    jaddref));
9823 		jaddref->ja_diroff = I_OFFSET(dp);
9824 		jaddref->ja_diradd = dap;
9825 		LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)],
9826 		    dap, da_pdlist);
9827 		add_to_journal(&jaddref->ja_list);
9828 	} else if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) {
9829 		dap->da_state |= COMPLETE;
9830 		LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
9831 		WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list);
9832 	} else {
9833 		LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)],
9834 		    dap, da_pdlist);
9835 		WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list);
9836 	}
9837 	/*
9838 	 * If we're making a new name for a directory that has not been
9839 	 * committed when need to move the dot and dotdot references to
9840 	 * this new name.
9841 	 */
9842 	if (inodedep->id_mkdiradd && I_OFFSET(dp) != DOTDOT_OFFSET)
9843 		merge_diradd(inodedep, dap);
9844 	FREE_LOCK(ump);
9845 }
9846 
9847 /*
9848  * Called whenever the link count on an inode is changed.
9849  * It creates an inode dependency so that the new reference(s)
9850  * to the inode cannot be committed to disk until the updated
9851  * inode has been written.
9852  */
9853 void
9854 softdep_change_linkcnt(ip)
9855 	struct inode *ip;	/* the inode with the increased link count */
9856 {
9857 	struct inodedep *inodedep;
9858 	struct ufsmount *ump;
9859 
9860 	ump = ITOUMP(ip);
9861 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
9862 	    ("softdep_change_linkcnt called on non-softdep filesystem"));
9863 	ACQUIRE_LOCK(ump);
9864 	inodedep_lookup(UFSTOVFS(ump), ip->i_number, DEPALLOC, &inodedep);
9865 	if (ip->i_nlink < ip->i_effnlink)
9866 		panic("softdep_change_linkcnt: bad delta");
9867 	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
9868 	FREE_LOCK(ump);
9869 }
9870 
9871 /*
9872  * Attach a sbdep dependency to the superblock buf so that we can keep
9873  * track of the head of the linked list of referenced but unlinked inodes.
9874  */
9875 void
9876 softdep_setup_sbupdate(ump, fs, bp)
9877 	struct ufsmount *ump;
9878 	struct fs *fs;
9879 	struct buf *bp;
9880 {
9881 	struct sbdep *sbdep;
9882 	struct worklist *wk;
9883 
9884 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
9885 	    ("softdep_setup_sbupdate called on non-softdep filesystem"));
9886 	LIST_FOREACH(wk, &bp->b_dep, wk_list)
9887 		if (wk->wk_type == D_SBDEP)
9888 			break;
9889 	if (wk != NULL)
9890 		return;
9891 	sbdep = malloc(sizeof(struct sbdep), M_SBDEP, M_SOFTDEP_FLAGS);
9892 	workitem_alloc(&sbdep->sb_list, D_SBDEP, UFSTOVFS(ump));
9893 	sbdep->sb_fs = fs;
9894 	sbdep->sb_ump = ump;
9895 	ACQUIRE_LOCK(ump);
9896 	WORKLIST_INSERT(&bp->b_dep, &sbdep->sb_list);
9897 	FREE_LOCK(ump);
9898 }
9899 
9900 /*
9901  * Return the first unlinked inodedep which is ready to be the head of the
9902  * list.  The inodedep and all those after it must have valid next pointers.
9903  */
9904 static struct inodedep *
9905 first_unlinked_inodedep(ump)
9906 	struct ufsmount *ump;
9907 {
9908 	struct inodedep *inodedep;
9909 	struct inodedep *idp;
9910 
9911 	LOCK_OWNED(ump);
9912 	for (inodedep = TAILQ_LAST(&ump->softdep_unlinked, inodedeplst);
9913 	    inodedep; inodedep = idp) {
9914 		if ((inodedep->id_state & UNLINKNEXT) == 0)
9915 			return (NULL);
9916 		idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked);
9917 		if (idp == NULL || (idp->id_state & UNLINKNEXT) == 0)
9918 			break;
9919 		if ((inodedep->id_state & UNLINKPREV) == 0)
9920 			break;
9921 	}
9922 	return (inodedep);
9923 }
9924 
9925 /*
9926  * Set the sujfree unlinked head pointer prior to writing a superblock.
9927  */
9928 static void
9929 initiate_write_sbdep(sbdep)
9930 	struct sbdep *sbdep;
9931 {
9932 	struct inodedep *inodedep;
9933 	struct fs *bpfs;
9934 	struct fs *fs;
9935 
9936 	bpfs = sbdep->sb_fs;
9937 	fs = sbdep->sb_ump->um_fs;
9938 	inodedep = first_unlinked_inodedep(sbdep->sb_ump);
9939 	if (inodedep) {
9940 		fs->fs_sujfree = inodedep->id_ino;
9941 		inodedep->id_state |= UNLINKPREV;
9942 	} else
9943 		fs->fs_sujfree = 0;
9944 	bpfs->fs_sujfree = fs->fs_sujfree;
9945 	/*
9946 	 * Because we have made changes to the superblock, we need to
9947 	 * recompute its check-hash.
9948 	 */
9949 	bpfs->fs_ckhash = ffs_calc_sbhash(bpfs);
9950 }
9951 
9952 /*
9953  * After a superblock is written determine whether it must be written again
9954  * due to a changing unlinked list head.
9955  */
9956 static int
9957 handle_written_sbdep(sbdep, bp)
9958 	struct sbdep *sbdep;
9959 	struct buf *bp;
9960 {
9961 	struct inodedep *inodedep;
9962 	struct fs *fs;
9963 
9964 	LOCK_OWNED(sbdep->sb_ump);
9965 	fs = sbdep->sb_fs;
9966 	/*
9967 	 * If the superblock doesn't match the in-memory list start over.
9968 	 */
9969 	inodedep = first_unlinked_inodedep(sbdep->sb_ump);
9970 	if ((inodedep && fs->fs_sujfree != inodedep->id_ino) ||
9971 	    (inodedep == NULL && fs->fs_sujfree != 0)) {
9972 		bdirty(bp);
9973 		return (1);
9974 	}
9975 	WORKITEM_FREE(sbdep, D_SBDEP);
9976 	if (fs->fs_sujfree == 0)
9977 		return (0);
9978 	/*
9979 	 * Now that we have a record of this inode in stable store allow it
9980 	 * to be written to free up pending work.  Inodes may see a lot of
9981 	 * write activity after they are unlinked which we must not hold up.
9982 	 */
9983 	for (; inodedep != NULL; inodedep = TAILQ_NEXT(inodedep, id_unlinked)) {
9984 		if ((inodedep->id_state & UNLINKLINKS) != UNLINKLINKS)
9985 			panic("handle_written_sbdep: Bad inodedep %p (0x%X)",
9986 			    inodedep, inodedep->id_state);
9987 		if (inodedep->id_state & UNLINKONLIST)
9988 			break;
9989 		inodedep->id_state |= DEPCOMPLETE | UNLINKONLIST;
9990 	}
9991 
9992 	return (0);
9993 }
9994 
9995 /*
9996  * Mark an inodedep as unlinked and insert it into the in-memory unlinked list.
9997  */
9998 static void
9999 unlinked_inodedep(mp, inodedep)
10000 	struct mount *mp;
10001 	struct inodedep *inodedep;
10002 {
10003 	struct ufsmount *ump;
10004 
10005 	ump = VFSTOUFS(mp);
10006 	LOCK_OWNED(ump);
10007 	if (MOUNTEDSUJ(mp) == 0)
10008 		return;
10009 	ump->um_fs->fs_fmod = 1;
10010 	if (inodedep->id_state & UNLINKED)
10011 		panic("unlinked_inodedep: %p already unlinked\n", inodedep);
10012 	inodedep->id_state |= UNLINKED;
10013 	TAILQ_INSERT_HEAD(&ump->softdep_unlinked, inodedep, id_unlinked);
10014 }
10015 
10016 /*
10017  * Remove an inodedep from the unlinked inodedep list.  This may require
10018  * disk writes if the inode has made it that far.
10019  */
10020 static void
10021 clear_unlinked_inodedep(inodedep)
10022 	struct inodedep *inodedep;
10023 {
10024 	struct ufs2_dinode *dip;
10025 	struct ufsmount *ump;
10026 	struct inodedep *idp;
10027 	struct inodedep *idn;
10028 	struct fs *fs, *bpfs;
10029 	struct buf *bp;
10030 	daddr_t dbn;
10031 	ino_t ino;
10032 	ino_t nino;
10033 	ino_t pino;
10034 	int error;
10035 
10036 	ump = VFSTOUFS(inodedep->id_list.wk_mp);
10037 	fs = ump->um_fs;
10038 	ino = inodedep->id_ino;
10039 	error = 0;
10040 	for (;;) {
10041 		LOCK_OWNED(ump);
10042 		KASSERT((inodedep->id_state & UNLINKED) != 0,
10043 		    ("clear_unlinked_inodedep: inodedep %p not unlinked",
10044 		    inodedep));
10045 		/*
10046 		 * If nothing has yet been written simply remove us from
10047 		 * the in memory list and return.  This is the most common
10048 		 * case where handle_workitem_remove() loses the final
10049 		 * reference.
10050 		 */
10051 		if ((inodedep->id_state & UNLINKLINKS) == 0)
10052 			break;
10053 		/*
10054 		 * If we have a NEXT pointer and no PREV pointer we can simply
10055 		 * clear NEXT's PREV and remove ourselves from the list.  Be
10056 		 * careful not to clear PREV if the superblock points at
10057 		 * next as well.
10058 		 */
10059 		idn = TAILQ_NEXT(inodedep, id_unlinked);
10060 		if ((inodedep->id_state & UNLINKLINKS) == UNLINKNEXT) {
10061 			if (idn && fs->fs_sujfree != idn->id_ino)
10062 				idn->id_state &= ~UNLINKPREV;
10063 			break;
10064 		}
10065 		/*
10066 		 * Here we have an inodedep which is actually linked into
10067 		 * the list.  We must remove it by forcing a write to the
10068 		 * link before us, whether it be the superblock or an inode.
10069 		 * Unfortunately the list may change while we're waiting
10070 		 * on the buf lock for either resource so we must loop until
10071 		 * we lock the right one.  If both the superblock and an
10072 		 * inode point to this inode we must clear the inode first
10073 		 * followed by the superblock.
10074 		 */
10075 		idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked);
10076 		pino = 0;
10077 		if (idp && (idp->id_state & UNLINKNEXT))
10078 			pino = idp->id_ino;
10079 		FREE_LOCK(ump);
10080 		if (pino == 0) {
10081 			bp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc),
10082 			    (int)fs->fs_sbsize, 0, 0, 0);
10083 		} else {
10084 			dbn = fsbtodb(fs, ino_to_fsba(fs, pino));
10085 			error = ffs_breadz(ump, ump->um_devvp, dbn, dbn,
10086 			    (int)fs->fs_bsize, NULL, NULL, 0, NOCRED, 0, NULL,
10087 			    &bp);
10088 		}
10089 		ACQUIRE_LOCK(ump);
10090 		if (error)
10091 			break;
10092 		/* If the list has changed restart the loop. */
10093 		idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked);
10094 		nino = 0;
10095 		if (idp && (idp->id_state & UNLINKNEXT))
10096 			nino = idp->id_ino;
10097 		if (nino != pino ||
10098 		    (inodedep->id_state & UNLINKPREV) != UNLINKPREV) {
10099 			FREE_LOCK(ump);
10100 			brelse(bp);
10101 			ACQUIRE_LOCK(ump);
10102 			continue;
10103 		}
10104 		nino = 0;
10105 		idn = TAILQ_NEXT(inodedep, id_unlinked);
10106 		if (idn)
10107 			nino = idn->id_ino;
10108 		/*
10109 		 * Remove us from the in memory list.  After this we cannot
10110 		 * access the inodedep.
10111 		 */
10112 		KASSERT((inodedep->id_state & UNLINKED) != 0,
10113 		    ("clear_unlinked_inodedep: inodedep %p not unlinked",
10114 		    inodedep));
10115 		inodedep->id_state &= ~(UNLINKED | UNLINKLINKS | UNLINKONLIST);
10116 		TAILQ_REMOVE(&ump->softdep_unlinked, inodedep, id_unlinked);
10117 		FREE_LOCK(ump);
10118 		/*
10119 		 * The predecessor's next pointer is manually updated here
10120 		 * so that the NEXT flag is never cleared for an element
10121 		 * that is in the list.
10122 		 */
10123 		if (pino == 0) {
10124 			bcopy((caddr_t)fs, bp->b_data, (u_int)fs->fs_sbsize);
10125 			bpfs = (struct fs *)bp->b_data;
10126 			ffs_oldfscompat_write(bpfs, ump);
10127 			softdep_setup_sbupdate(ump, bpfs, bp);
10128 			/*
10129 			 * Because we may have made changes to the superblock,
10130 			 * we need to recompute its check-hash.
10131 			 */
10132 			bpfs->fs_ckhash = ffs_calc_sbhash(bpfs);
10133 		} else if (fs->fs_magic == FS_UFS1_MAGIC) {
10134 			((struct ufs1_dinode *)bp->b_data +
10135 			    ino_to_fsbo(fs, pino))->di_freelink = nino;
10136 		} else {
10137 			dip = (struct ufs2_dinode *)bp->b_data +
10138 			    ino_to_fsbo(fs, pino);
10139 			dip->di_freelink = nino;
10140 			ffs_update_dinode_ckhash(fs, dip);
10141 		}
10142 		/*
10143 		 * If the bwrite fails we have no recourse to recover.  The
10144 		 * filesystem is corrupted already.
10145 		 */
10146 		bwrite(bp);
10147 		ACQUIRE_LOCK(ump);
10148 		/*
10149 		 * If the superblock pointer still needs to be cleared force
10150 		 * a write here.
10151 		 */
10152 		if (fs->fs_sujfree == ino) {
10153 			FREE_LOCK(ump);
10154 			bp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc),
10155 			    (int)fs->fs_sbsize, 0, 0, 0);
10156 			bcopy((caddr_t)fs, bp->b_data, (u_int)fs->fs_sbsize);
10157 			bpfs = (struct fs *)bp->b_data;
10158 			ffs_oldfscompat_write(bpfs, ump);
10159 			softdep_setup_sbupdate(ump, bpfs, bp);
10160 			/*
10161 			 * Because we may have made changes to the superblock,
10162 			 * we need to recompute its check-hash.
10163 			 */
10164 			bpfs->fs_ckhash = ffs_calc_sbhash(bpfs);
10165 			bwrite(bp);
10166 			ACQUIRE_LOCK(ump);
10167 		}
10168 
10169 		if (fs->fs_sujfree != ino)
10170 			return;
10171 		panic("clear_unlinked_inodedep: Failed to clear free head");
10172 	}
10173 	if (inodedep->id_ino == fs->fs_sujfree)
10174 		panic("clear_unlinked_inodedep: Freeing head of free list");
10175 	inodedep->id_state &= ~(UNLINKED | UNLINKLINKS | UNLINKONLIST);
10176 	TAILQ_REMOVE(&ump->softdep_unlinked, inodedep, id_unlinked);
10177 	return;
10178 }
10179 
10180 /*
10181  * This workitem decrements the inode's link count.
10182  * If the link count reaches zero, the file is removed.
10183  */
10184 static int
10185 handle_workitem_remove(dirrem, flags)
10186 	struct dirrem *dirrem;
10187 	int flags;
10188 {
10189 	struct inodedep *inodedep;
10190 	struct workhead dotdotwk;
10191 	struct worklist *wk;
10192 	struct ufsmount *ump;
10193 	struct mount *mp;
10194 	struct vnode *vp;
10195 	struct inode *ip;
10196 	ino_t oldinum;
10197 
10198 	if (dirrem->dm_state & ONWORKLIST)
10199 		panic("handle_workitem_remove: dirrem %p still on worklist",
10200 		    dirrem);
10201 	oldinum = dirrem->dm_oldinum;
10202 	mp = dirrem->dm_list.wk_mp;
10203 	ump = VFSTOUFS(mp);
10204 	flags |= LK_EXCLUSIVE;
10205 	if (ffs_vgetf(mp, oldinum, flags, &vp, FFSV_FORCEINSMQ |
10206 	    FFSV_FORCEINODEDEP) != 0)
10207 		return (EBUSY);
10208 	ip = VTOI(vp);
10209 	MPASS(ip->i_mode != 0);
10210 	ACQUIRE_LOCK(ump);
10211 	if ((inodedep_lookup(mp, oldinum, 0, &inodedep)) == 0)
10212 		panic("handle_workitem_remove: lost inodedep");
10213 	if (dirrem->dm_state & ONDEPLIST)
10214 		LIST_REMOVE(dirrem, dm_inonext);
10215 	KASSERT(LIST_EMPTY(&dirrem->dm_jremrefhd),
10216 	    ("handle_workitem_remove:  Journal entries not written."));
10217 
10218 	/*
10219 	 * Move all dependencies waiting on the remove to complete
10220 	 * from the dirrem to the inode inowait list to be completed
10221 	 * after the inode has been updated and written to disk.
10222 	 *
10223 	 * Any marked MKDIR_PARENT are saved to be completed when the
10224 	 * dotdot ref is removed unless DIRCHG is specified.  For
10225 	 * directory change operations there will be no further
10226 	 * directory writes and the jsegdeps need to be moved along
10227 	 * with the rest to be completed when the inode is free or
10228 	 * stable in the inode free list.
10229 	 */
10230 	LIST_INIT(&dotdotwk);
10231 	while ((wk = LIST_FIRST(&dirrem->dm_jwork)) != NULL) {
10232 		WORKLIST_REMOVE(wk);
10233 		if ((dirrem->dm_state & DIRCHG) == 0 &&
10234 		    wk->wk_state & MKDIR_PARENT) {
10235 			wk->wk_state &= ~MKDIR_PARENT;
10236 			WORKLIST_INSERT(&dotdotwk, wk);
10237 			continue;
10238 		}
10239 		WORKLIST_INSERT(&inodedep->id_inowait, wk);
10240 	}
10241 	LIST_SWAP(&dirrem->dm_jwork, &dotdotwk, worklist, wk_list);
10242 	/*
10243 	 * Normal file deletion.
10244 	 */
10245 	if ((dirrem->dm_state & RMDIR) == 0) {
10246 		ip->i_nlink--;
10247 		KASSERT(ip->i_nlink >= 0, ("handle_workitem_remove: file ino "
10248 		    "%ju negative i_nlink %d", (intmax_t)ip->i_number,
10249 		    ip->i_nlink));
10250 		DIP_SET(ip, i_nlink, ip->i_nlink);
10251 		UFS_INODE_SET_FLAG(ip, IN_CHANGE);
10252 		if (ip->i_nlink < ip->i_effnlink)
10253 			panic("handle_workitem_remove: bad file delta");
10254 		if (ip->i_nlink == 0)
10255 			unlinked_inodedep(mp, inodedep);
10256 		inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
10257 		KASSERT(LIST_EMPTY(&dirrem->dm_jwork),
10258 		    ("handle_workitem_remove: worklist not empty. %s",
10259 		    TYPENAME(LIST_FIRST(&dirrem->dm_jwork)->wk_type)));
10260 		WORKITEM_FREE(dirrem, D_DIRREM);
10261 		FREE_LOCK(ump);
10262 		goto out;
10263 	}
10264 	/*
10265 	 * Directory deletion. Decrement reference count for both the
10266 	 * just deleted parent directory entry and the reference for ".".
10267 	 * Arrange to have the reference count on the parent decremented
10268 	 * to account for the loss of "..".
10269 	 */
10270 	ip->i_nlink -= 2;
10271 	KASSERT(ip->i_nlink >= 0, ("handle_workitem_remove: directory ino "
10272 	    "%ju negative i_nlink %d", (intmax_t)ip->i_number, ip->i_nlink));
10273 	DIP_SET(ip, i_nlink, ip->i_nlink);
10274 	UFS_INODE_SET_FLAG(ip, IN_CHANGE);
10275 	if (ip->i_nlink < ip->i_effnlink)
10276 		panic("handle_workitem_remove: bad dir delta");
10277 	if (ip->i_nlink == 0)
10278 		unlinked_inodedep(mp, inodedep);
10279 	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
10280 	/*
10281 	 * Rename a directory to a new parent. Since, we are both deleting
10282 	 * and creating a new directory entry, the link count on the new
10283 	 * directory should not change. Thus we skip the followup dirrem.
10284 	 */
10285 	if (dirrem->dm_state & DIRCHG) {
10286 		KASSERT(LIST_EMPTY(&dirrem->dm_jwork),
10287 		    ("handle_workitem_remove: DIRCHG and worklist not empty."));
10288 		WORKITEM_FREE(dirrem, D_DIRREM);
10289 		FREE_LOCK(ump);
10290 		goto out;
10291 	}
10292 	dirrem->dm_state = ONDEPLIST;
10293 	dirrem->dm_oldinum = dirrem->dm_dirinum;
10294 	/*
10295 	 * Place the dirrem on the parent's diremhd list.
10296 	 */
10297 	if (inodedep_lookup(mp, dirrem->dm_oldinum, 0, &inodedep) == 0)
10298 		panic("handle_workitem_remove: lost dir inodedep");
10299 	LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext);
10300 	/*
10301 	 * If the allocated inode has never been written to disk, then
10302 	 * the on-disk inode is zero'ed and we can remove the file
10303 	 * immediately.  When journaling if the inode has been marked
10304 	 * unlinked and not DEPCOMPLETE we know it can never be written.
10305 	 */
10306 	inodedep_lookup(mp, oldinum, 0, &inodedep);
10307 	if (inodedep == NULL ||
10308 	    (inodedep->id_state & (DEPCOMPLETE | UNLINKED)) == UNLINKED ||
10309 	    check_inode_unwritten(inodedep)) {
10310 		FREE_LOCK(ump);
10311 		vput(vp);
10312 		return handle_workitem_remove(dirrem, flags);
10313 	}
10314 	WORKLIST_INSERT(&inodedep->id_inowait, &dirrem->dm_list);
10315 	FREE_LOCK(ump);
10316 	UFS_INODE_SET_FLAG(ip, IN_CHANGE);
10317 out:
10318 	ffs_update(vp, 0);
10319 	vput(vp);
10320 	return (0);
10321 }
10322 
10323 /*
10324  * Inode de-allocation dependencies.
10325  *
10326  * When an inode's link count is reduced to zero, it can be de-allocated. We
10327  * found it convenient to postpone de-allocation until after the inode is
10328  * written to disk with its new link count (zero).  At this point, all of the
10329  * on-disk inode's block pointers are nullified and, with careful dependency
10330  * list ordering, all dependencies related to the inode will be satisfied and
10331  * the corresponding dependency structures de-allocated.  So, if/when the
10332  * inode is reused, there will be no mixing of old dependencies with new
10333  * ones.  This artificial dependency is set up by the block de-allocation
10334  * procedure above (softdep_setup_freeblocks) and completed by the
10335  * following procedure.
10336  */
10337 static void
10338 handle_workitem_freefile(freefile)
10339 	struct freefile *freefile;
10340 {
10341 	struct workhead wkhd;
10342 	struct fs *fs;
10343 	struct ufsmount *ump;
10344 	int error;
10345 #ifdef INVARIANTS
10346 	struct inodedep *idp;
10347 #endif
10348 
10349 	ump = VFSTOUFS(freefile->fx_list.wk_mp);
10350 	fs = ump->um_fs;
10351 #ifdef INVARIANTS
10352 	ACQUIRE_LOCK(ump);
10353 	error = inodedep_lookup(UFSTOVFS(ump), freefile->fx_oldinum, 0, &idp);
10354 	FREE_LOCK(ump);
10355 	if (error)
10356 		panic("handle_workitem_freefile: inodedep %p survived", idp);
10357 #endif
10358 	UFS_LOCK(ump);
10359 	fs->fs_pendinginodes -= 1;
10360 	UFS_UNLOCK(ump);
10361 	LIST_INIT(&wkhd);
10362 	LIST_SWAP(&freefile->fx_jwork, &wkhd, worklist, wk_list);
10363 	if ((error = ffs_freefile(ump, fs, freefile->fx_devvp,
10364 	    freefile->fx_oldinum, freefile->fx_mode, &wkhd)) != 0)
10365 		softdep_error("handle_workitem_freefile", error);
10366 	ACQUIRE_LOCK(ump);
10367 	WORKITEM_FREE(freefile, D_FREEFILE);
10368 	FREE_LOCK(ump);
10369 }
10370 
10371 /*
10372  * Helper function which unlinks marker element from work list and returns
10373  * the next element on the list.
10374  */
10375 static __inline struct worklist *
10376 markernext(struct worklist *marker)
10377 {
10378 	struct worklist *next;
10379 
10380 	next = LIST_NEXT(marker, wk_list);
10381 	LIST_REMOVE(marker, wk_list);
10382 	return next;
10383 }
10384 
10385 /*
10386  * Disk writes.
10387  *
10388  * The dependency structures constructed above are most actively used when file
10389  * system blocks are written to disk.  No constraints are placed on when a
10390  * block can be written, but unsatisfied update dependencies are made safe by
10391  * modifying (or replacing) the source memory for the duration of the disk
10392  * write.  When the disk write completes, the memory block is again brought
10393  * up-to-date.
10394  *
10395  * In-core inode structure reclamation.
10396  *
10397  * Because there are a finite number of "in-core" inode structures, they are
10398  * reused regularly.  By transferring all inode-related dependencies to the
10399  * in-memory inode block and indexing them separately (via "inodedep"s), we
10400  * can allow "in-core" inode structures to be reused at any time and avoid
10401  * any increase in contention.
10402  *
10403  * Called just before entering the device driver to initiate a new disk I/O.
10404  * The buffer must be locked, thus, no I/O completion operations can occur
10405  * while we are manipulating its associated dependencies.
10406  */
10407 static void
10408 softdep_disk_io_initiation(bp)
10409 	struct buf *bp;		/* structure describing disk write to occur */
10410 {
10411 	struct worklist *wk;
10412 	struct worklist marker;
10413 	struct inodedep *inodedep;
10414 	struct freeblks *freeblks;
10415 	struct jblkdep *jblkdep;
10416 	struct newblk *newblk;
10417 	struct ufsmount *ump;
10418 
10419 	/*
10420 	 * We only care about write operations. There should never
10421 	 * be dependencies for reads.
10422 	 */
10423 	if (bp->b_iocmd != BIO_WRITE)
10424 		panic("softdep_disk_io_initiation: not write");
10425 
10426 	if (bp->b_vflags & BV_BKGRDINPROG)
10427 		panic("softdep_disk_io_initiation: Writing buffer with "
10428 		    "background write in progress: %p", bp);
10429 
10430 	ump = softdep_bp_to_mp(bp);
10431 	if (ump == NULL)
10432 		return;
10433 
10434 	marker.wk_type = D_LAST + 1;	/* Not a normal workitem */
10435 	PHOLD(curproc);			/* Don't swap out kernel stack */
10436 	ACQUIRE_LOCK(ump);
10437 	/*
10438 	 * Do any necessary pre-I/O processing.
10439 	 */
10440 	for (wk = LIST_FIRST(&bp->b_dep); wk != NULL;
10441 	     wk = markernext(&marker)) {
10442 		LIST_INSERT_AFTER(wk, &marker, wk_list);
10443 		switch (wk->wk_type) {
10444 		case D_PAGEDEP:
10445 			initiate_write_filepage(WK_PAGEDEP(wk), bp);
10446 			continue;
10447 
10448 		case D_INODEDEP:
10449 			inodedep = WK_INODEDEP(wk);
10450 			if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC)
10451 				initiate_write_inodeblock_ufs1(inodedep, bp);
10452 			else
10453 				initiate_write_inodeblock_ufs2(inodedep, bp);
10454 			continue;
10455 
10456 		case D_INDIRDEP:
10457 			initiate_write_indirdep(WK_INDIRDEP(wk), bp);
10458 			continue;
10459 
10460 		case D_BMSAFEMAP:
10461 			initiate_write_bmsafemap(WK_BMSAFEMAP(wk), bp);
10462 			continue;
10463 
10464 		case D_JSEG:
10465 			WK_JSEG(wk)->js_buf = NULL;
10466 			continue;
10467 
10468 		case D_FREEBLKS:
10469 			freeblks = WK_FREEBLKS(wk);
10470 			jblkdep = LIST_FIRST(&freeblks->fb_jblkdephd);
10471 			/*
10472 			 * We have to wait for the freeblks to be journaled
10473 			 * before we can write an inodeblock with updated
10474 			 * pointers.  Be careful to arrange the marker so
10475 			 * we revisit the freeblks if it's not removed by
10476 			 * the first jwait().
10477 			 */
10478 			if (jblkdep != NULL) {
10479 				LIST_REMOVE(&marker, wk_list);
10480 				LIST_INSERT_BEFORE(wk, &marker, wk_list);
10481 				jwait(&jblkdep->jb_list, MNT_WAIT);
10482 			}
10483 			continue;
10484 		case D_ALLOCDIRECT:
10485 		case D_ALLOCINDIR:
10486 			/*
10487 			 * We have to wait for the jnewblk to be journaled
10488 			 * before we can write to a block if the contents
10489 			 * may be confused with an earlier file's indirect
10490 			 * at recovery time.  Handle the marker as described
10491 			 * above.
10492 			 */
10493 			newblk = WK_NEWBLK(wk);
10494 			if (newblk->nb_jnewblk != NULL &&
10495 			    indirblk_lookup(newblk->nb_list.wk_mp,
10496 			    newblk->nb_newblkno)) {
10497 				LIST_REMOVE(&marker, wk_list);
10498 				LIST_INSERT_BEFORE(wk, &marker, wk_list);
10499 				jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT);
10500 			}
10501 			continue;
10502 
10503 		case D_SBDEP:
10504 			initiate_write_sbdep(WK_SBDEP(wk));
10505 			continue;
10506 
10507 		case D_MKDIR:
10508 		case D_FREEWORK:
10509 		case D_FREEDEP:
10510 		case D_JSEGDEP:
10511 			continue;
10512 
10513 		default:
10514 			panic("handle_disk_io_initiation: Unexpected type %s",
10515 			    TYPENAME(wk->wk_type));
10516 			/* NOTREACHED */
10517 		}
10518 	}
10519 	FREE_LOCK(ump);
10520 	PRELE(curproc);			/* Allow swapout of kernel stack */
10521 }
10522 
10523 /*
10524  * Called from within the procedure above to deal with unsatisfied
10525  * allocation dependencies in a directory. The buffer must be locked,
10526  * thus, no I/O completion operations can occur while we are
10527  * manipulating its associated dependencies.
10528  */
10529 static void
10530 initiate_write_filepage(pagedep, bp)
10531 	struct pagedep *pagedep;
10532 	struct buf *bp;
10533 {
10534 	struct jremref *jremref;
10535 	struct jmvref *jmvref;
10536 	struct dirrem *dirrem;
10537 	struct diradd *dap;
10538 	struct direct *ep;
10539 	int i;
10540 
10541 	if (pagedep->pd_state & IOSTARTED) {
10542 		/*
10543 		 * This can only happen if there is a driver that does not
10544 		 * understand chaining. Here biodone will reissue the call
10545 		 * to strategy for the incomplete buffers.
10546 		 */
10547 		printf("initiate_write_filepage: already started\n");
10548 		return;
10549 	}
10550 	pagedep->pd_state |= IOSTARTED;
10551 	/*
10552 	 * Wait for all journal remove dependencies to hit the disk.
10553 	 * We can not allow any potentially conflicting directory adds
10554 	 * to be visible before removes and rollback is too difficult.
10555 	 * The per-filesystem lock may be dropped and re-acquired, however
10556 	 * we hold the buf locked so the dependency can not go away.
10557 	 */
10558 	LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next)
10559 		while ((jremref = LIST_FIRST(&dirrem->dm_jremrefhd)) != NULL)
10560 			jwait(&jremref->jr_list, MNT_WAIT);
10561 	while ((jmvref = LIST_FIRST(&pagedep->pd_jmvrefhd)) != NULL)
10562 		jwait(&jmvref->jm_list, MNT_WAIT);
10563 	for (i = 0; i < DAHASHSZ; i++) {
10564 		LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) {
10565 			ep = (struct direct *)
10566 			    ((char *)bp->b_data + dap->da_offset);
10567 			if (ep->d_ino != dap->da_newinum)
10568 				panic("%s: dir inum %ju != new %ju",
10569 				    "initiate_write_filepage",
10570 				    (uintmax_t)ep->d_ino,
10571 				    (uintmax_t)dap->da_newinum);
10572 			if (dap->da_state & DIRCHG)
10573 				ep->d_ino = dap->da_previous->dm_oldinum;
10574 			else
10575 				ep->d_ino = 0;
10576 			dap->da_state &= ~ATTACHED;
10577 			dap->da_state |= UNDONE;
10578 		}
10579 	}
10580 }
10581 
10582 /*
10583  * Version of initiate_write_inodeblock that handles UFS1 dinodes.
10584  * Note that any bug fixes made to this routine must be done in the
10585  * version found below.
10586  *
10587  * Called from within the procedure above to deal with unsatisfied
10588  * allocation dependencies in an inodeblock. The buffer must be
10589  * locked, thus, no I/O completion operations can occur while we
10590  * are manipulating its associated dependencies.
10591  */
10592 static void
10593 initiate_write_inodeblock_ufs1(inodedep, bp)
10594 	struct inodedep *inodedep;
10595 	struct buf *bp;			/* The inode block */
10596 {
10597 	struct allocdirect *adp, *lastadp;
10598 	struct ufs1_dinode *dp;
10599 	struct ufs1_dinode *sip;
10600 	struct inoref *inoref;
10601 	struct ufsmount *ump;
10602 	struct fs *fs;
10603 	ufs_lbn_t i;
10604 #ifdef INVARIANTS
10605 	ufs_lbn_t prevlbn = 0;
10606 #endif
10607 	int deplist;
10608 
10609 	if (inodedep->id_state & IOSTARTED)
10610 		panic("initiate_write_inodeblock_ufs1: already started");
10611 	inodedep->id_state |= IOSTARTED;
10612 	fs = inodedep->id_fs;
10613 	ump = VFSTOUFS(inodedep->id_list.wk_mp);
10614 	LOCK_OWNED(ump);
10615 	dp = (struct ufs1_dinode *)bp->b_data +
10616 	    ino_to_fsbo(fs, inodedep->id_ino);
10617 
10618 	/*
10619 	 * If we're on the unlinked list but have not yet written our
10620 	 * next pointer initialize it here.
10621 	 */
10622 	if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) {
10623 		struct inodedep *inon;
10624 
10625 		inon = TAILQ_NEXT(inodedep, id_unlinked);
10626 		dp->di_freelink = inon ? inon->id_ino : 0;
10627 	}
10628 	/*
10629 	 * If the bitmap is not yet written, then the allocated
10630 	 * inode cannot be written to disk.
10631 	 */
10632 	if ((inodedep->id_state & DEPCOMPLETE) == 0) {
10633 		if (inodedep->id_savedino1 != NULL)
10634 			panic("initiate_write_inodeblock_ufs1: I/O underway");
10635 		FREE_LOCK(ump);
10636 		sip = malloc(sizeof(struct ufs1_dinode),
10637 		    M_SAVEDINO, M_SOFTDEP_FLAGS);
10638 		ACQUIRE_LOCK(ump);
10639 		inodedep->id_savedino1 = sip;
10640 		*inodedep->id_savedino1 = *dp;
10641 		bzero((caddr_t)dp, sizeof(struct ufs1_dinode));
10642 		dp->di_gen = inodedep->id_savedino1->di_gen;
10643 		dp->di_freelink = inodedep->id_savedino1->di_freelink;
10644 		return;
10645 	}
10646 	/*
10647 	 * If no dependencies, then there is nothing to roll back.
10648 	 */
10649 	inodedep->id_savedsize = dp->di_size;
10650 	inodedep->id_savedextsize = 0;
10651 	inodedep->id_savednlink = dp->di_nlink;
10652 	if (TAILQ_EMPTY(&inodedep->id_inoupdt) &&
10653 	    TAILQ_EMPTY(&inodedep->id_inoreflst))
10654 		return;
10655 	/*
10656 	 * Revert the link count to that of the first unwritten journal entry.
10657 	 */
10658 	inoref = TAILQ_FIRST(&inodedep->id_inoreflst);
10659 	if (inoref)
10660 		dp->di_nlink = inoref->if_nlink;
10661 	/*
10662 	 * Set the dependencies to busy.
10663 	 */
10664 	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
10665 	     adp = TAILQ_NEXT(adp, ad_next)) {
10666 #ifdef INVARIANTS
10667 		if (deplist != 0 && prevlbn >= adp->ad_offset)
10668 			panic("softdep_write_inodeblock: lbn order");
10669 		prevlbn = adp->ad_offset;
10670 		if (adp->ad_offset < UFS_NDADDR &&
10671 		    dp->di_db[adp->ad_offset] != adp->ad_newblkno)
10672 			panic("initiate_write_inodeblock_ufs1: "
10673 			    "direct pointer #%jd mismatch %d != %jd",
10674 			    (intmax_t)adp->ad_offset,
10675 			    dp->di_db[adp->ad_offset],
10676 			    (intmax_t)adp->ad_newblkno);
10677 		if (adp->ad_offset >= UFS_NDADDR &&
10678 		    dp->di_ib[adp->ad_offset - UFS_NDADDR] != adp->ad_newblkno)
10679 			panic("initiate_write_inodeblock_ufs1: "
10680 			    "indirect pointer #%jd mismatch %d != %jd",
10681 			    (intmax_t)adp->ad_offset - UFS_NDADDR,
10682 			    dp->di_ib[adp->ad_offset - UFS_NDADDR],
10683 			    (intmax_t)adp->ad_newblkno);
10684 		deplist |= 1 << adp->ad_offset;
10685 		if ((adp->ad_state & ATTACHED) == 0)
10686 			panic("initiate_write_inodeblock_ufs1: "
10687 			    "Unknown state 0x%x", adp->ad_state);
10688 #endif /* INVARIANTS */
10689 		adp->ad_state &= ~ATTACHED;
10690 		adp->ad_state |= UNDONE;
10691 	}
10692 	/*
10693 	 * The on-disk inode cannot claim to be any larger than the last
10694 	 * fragment that has been written. Otherwise, the on-disk inode
10695 	 * might have fragments that were not the last block in the file
10696 	 * which would corrupt the filesystem.
10697 	 */
10698 	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
10699 	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
10700 		if (adp->ad_offset >= UFS_NDADDR)
10701 			break;
10702 		dp->di_db[adp->ad_offset] = adp->ad_oldblkno;
10703 		/* keep going until hitting a rollback to a frag */
10704 		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
10705 			continue;
10706 		dp->di_size = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize;
10707 		for (i = adp->ad_offset + 1; i < UFS_NDADDR; i++) {
10708 #ifdef INVARIANTS
10709 			if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0)
10710 				panic("initiate_write_inodeblock_ufs1: "
10711 				    "lost dep1");
10712 #endif /* INVARIANTS */
10713 			dp->di_db[i] = 0;
10714 		}
10715 		for (i = 0; i < UFS_NIADDR; i++) {
10716 #ifdef INVARIANTS
10717 			if (dp->di_ib[i] != 0 &&
10718 			    (deplist & ((1 << UFS_NDADDR) << i)) == 0)
10719 				panic("initiate_write_inodeblock_ufs1: "
10720 				    "lost dep2");
10721 #endif /* INVARIANTS */
10722 			dp->di_ib[i] = 0;
10723 		}
10724 		return;
10725 	}
10726 	/*
10727 	 * If we have zero'ed out the last allocated block of the file,
10728 	 * roll back the size to the last currently allocated block.
10729 	 * We know that this last allocated block is a full-sized as
10730 	 * we already checked for fragments in the loop above.
10731 	 */
10732 	if (lastadp != NULL &&
10733 	    dp->di_size <= (lastadp->ad_offset + 1) * fs->fs_bsize) {
10734 		for (i = lastadp->ad_offset; i >= 0; i--)
10735 			if (dp->di_db[i] != 0)
10736 				break;
10737 		dp->di_size = (i + 1) * fs->fs_bsize;
10738 	}
10739 	/*
10740 	 * The only dependencies are for indirect blocks.
10741 	 *
10742 	 * The file size for indirect block additions is not guaranteed.
10743 	 * Such a guarantee would be non-trivial to achieve. The conventional
10744 	 * synchronous write implementation also does not make this guarantee.
10745 	 * Fsck should catch and fix discrepancies. Arguably, the file size
10746 	 * can be over-estimated without destroying integrity when the file
10747 	 * moves into the indirect blocks (i.e., is large). If we want to
10748 	 * postpone fsck, we are stuck with this argument.
10749 	 */
10750 	for (; adp; adp = TAILQ_NEXT(adp, ad_next))
10751 		dp->di_ib[adp->ad_offset - UFS_NDADDR] = 0;
10752 }
10753 
10754 /*
10755  * Version of initiate_write_inodeblock that handles UFS2 dinodes.
10756  * Note that any bug fixes made to this routine must be done in the
10757  * version found above.
10758  *
10759  * Called from within the procedure above to deal with unsatisfied
10760  * allocation dependencies in an inodeblock. The buffer must be
10761  * locked, thus, no I/O completion operations can occur while we
10762  * are manipulating its associated dependencies.
10763  */
10764 static void
10765 initiate_write_inodeblock_ufs2(inodedep, bp)
10766 	struct inodedep *inodedep;
10767 	struct buf *bp;			/* The inode block */
10768 {
10769 	struct allocdirect *adp, *lastadp;
10770 	struct ufs2_dinode *dp;
10771 	struct ufs2_dinode *sip;
10772 	struct inoref *inoref;
10773 	struct ufsmount *ump;
10774 	struct fs *fs;
10775 	ufs_lbn_t i;
10776 #ifdef INVARIANTS
10777 	ufs_lbn_t prevlbn = 0;
10778 #endif
10779 	int deplist;
10780 
10781 	if (inodedep->id_state & IOSTARTED)
10782 		panic("initiate_write_inodeblock_ufs2: already started");
10783 	inodedep->id_state |= IOSTARTED;
10784 	fs = inodedep->id_fs;
10785 	ump = VFSTOUFS(inodedep->id_list.wk_mp);
10786 	LOCK_OWNED(ump);
10787 	dp = (struct ufs2_dinode *)bp->b_data +
10788 	    ino_to_fsbo(fs, inodedep->id_ino);
10789 
10790 	/*
10791 	 * If we're on the unlinked list but have not yet written our
10792 	 * next pointer initialize it here.
10793 	 */
10794 	if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) {
10795 		struct inodedep *inon;
10796 
10797 		inon = TAILQ_NEXT(inodedep, id_unlinked);
10798 		dp->di_freelink = inon ? inon->id_ino : 0;
10799 		ffs_update_dinode_ckhash(fs, dp);
10800 	}
10801 	/*
10802 	 * If the bitmap is not yet written, then the allocated
10803 	 * inode cannot be written to disk.
10804 	 */
10805 	if ((inodedep->id_state & DEPCOMPLETE) == 0) {
10806 		if (inodedep->id_savedino2 != NULL)
10807 			panic("initiate_write_inodeblock_ufs2: I/O underway");
10808 		FREE_LOCK(ump);
10809 		sip = malloc(sizeof(struct ufs2_dinode),
10810 		    M_SAVEDINO, M_SOFTDEP_FLAGS);
10811 		ACQUIRE_LOCK(ump);
10812 		inodedep->id_savedino2 = sip;
10813 		*inodedep->id_savedino2 = *dp;
10814 		bzero((caddr_t)dp, sizeof(struct ufs2_dinode));
10815 		dp->di_gen = inodedep->id_savedino2->di_gen;
10816 		dp->di_freelink = inodedep->id_savedino2->di_freelink;
10817 		return;
10818 	}
10819 	/*
10820 	 * If no dependencies, then there is nothing to roll back.
10821 	 */
10822 	inodedep->id_savedsize = dp->di_size;
10823 	inodedep->id_savedextsize = dp->di_extsize;
10824 	inodedep->id_savednlink = dp->di_nlink;
10825 	if (TAILQ_EMPTY(&inodedep->id_inoupdt) &&
10826 	    TAILQ_EMPTY(&inodedep->id_extupdt) &&
10827 	    TAILQ_EMPTY(&inodedep->id_inoreflst))
10828 		return;
10829 	/*
10830 	 * Revert the link count to that of the first unwritten journal entry.
10831 	 */
10832 	inoref = TAILQ_FIRST(&inodedep->id_inoreflst);
10833 	if (inoref)
10834 		dp->di_nlink = inoref->if_nlink;
10835 
10836 	/*
10837 	 * Set the ext data dependencies to busy.
10838 	 */
10839 	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp;
10840 	     adp = TAILQ_NEXT(adp, ad_next)) {
10841 #ifdef INVARIANTS
10842 		if (deplist != 0 && prevlbn >= adp->ad_offset)
10843 			panic("initiate_write_inodeblock_ufs2: lbn order");
10844 		prevlbn = adp->ad_offset;
10845 		if (dp->di_extb[adp->ad_offset] != adp->ad_newblkno)
10846 			panic("initiate_write_inodeblock_ufs2: "
10847 			    "ext pointer #%jd mismatch %jd != %jd",
10848 			    (intmax_t)adp->ad_offset,
10849 			    (intmax_t)dp->di_extb[adp->ad_offset],
10850 			    (intmax_t)adp->ad_newblkno);
10851 		deplist |= 1 << adp->ad_offset;
10852 		if ((adp->ad_state & ATTACHED) == 0)
10853 			panic("initiate_write_inodeblock_ufs2: Unknown "
10854 			    "state 0x%x", adp->ad_state);
10855 #endif /* INVARIANTS */
10856 		adp->ad_state &= ~ATTACHED;
10857 		adp->ad_state |= UNDONE;
10858 	}
10859 	/*
10860 	 * The on-disk inode cannot claim to be any larger than the last
10861 	 * fragment that has been written. Otherwise, the on-disk inode
10862 	 * might have fragments that were not the last block in the ext
10863 	 * data which would corrupt the filesystem.
10864 	 */
10865 	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp;
10866 	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
10867 		dp->di_extb[adp->ad_offset] = adp->ad_oldblkno;
10868 		/* keep going until hitting a rollback to a frag */
10869 		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
10870 			continue;
10871 		dp->di_extsize = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize;
10872 		for (i = adp->ad_offset + 1; i < UFS_NXADDR; i++) {
10873 #ifdef INVARIANTS
10874 			if (dp->di_extb[i] != 0 && (deplist & (1 << i)) == 0)
10875 				panic("initiate_write_inodeblock_ufs2: "
10876 				    "lost dep1");
10877 #endif /* INVARIANTS */
10878 			dp->di_extb[i] = 0;
10879 		}
10880 		lastadp = NULL;
10881 		break;
10882 	}
10883 	/*
10884 	 * If we have zero'ed out the last allocated block of the ext
10885 	 * data, roll back the size to the last currently allocated block.
10886 	 * We know that this last allocated block is a full-sized as
10887 	 * we already checked for fragments in the loop above.
10888 	 */
10889 	if (lastadp != NULL &&
10890 	    dp->di_extsize <= (lastadp->ad_offset + 1) * fs->fs_bsize) {
10891 		for (i = lastadp->ad_offset; i >= 0; i--)
10892 			if (dp->di_extb[i] != 0)
10893 				break;
10894 		dp->di_extsize = (i + 1) * fs->fs_bsize;
10895 	}
10896 	/*
10897 	 * Set the file data dependencies to busy.
10898 	 */
10899 	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
10900 	     adp = TAILQ_NEXT(adp, ad_next)) {
10901 #ifdef INVARIANTS
10902 		if (deplist != 0 && prevlbn >= adp->ad_offset)
10903 			panic("softdep_write_inodeblock: lbn order");
10904 		if ((adp->ad_state & ATTACHED) == 0)
10905 			panic("inodedep %p and adp %p not attached", inodedep, adp);
10906 		prevlbn = adp->ad_offset;
10907 		if (!ffs_fsfail_cleanup(ump, 0) &&
10908 		    adp->ad_offset < UFS_NDADDR &&
10909 		    dp->di_db[adp->ad_offset] != adp->ad_newblkno)
10910 			panic("initiate_write_inodeblock_ufs2: "
10911 			    "direct pointer #%jd mismatch %jd != %jd",
10912 			    (intmax_t)adp->ad_offset,
10913 			    (intmax_t)dp->di_db[adp->ad_offset],
10914 			    (intmax_t)adp->ad_newblkno);
10915 		if (!ffs_fsfail_cleanup(ump, 0) &&
10916 		    adp->ad_offset >= UFS_NDADDR &&
10917 		    dp->di_ib[adp->ad_offset - UFS_NDADDR] != adp->ad_newblkno)
10918 			panic("initiate_write_inodeblock_ufs2: "
10919 			    "indirect pointer #%jd mismatch %jd != %jd",
10920 			    (intmax_t)adp->ad_offset - UFS_NDADDR,
10921 			    (intmax_t)dp->di_ib[adp->ad_offset - UFS_NDADDR],
10922 			    (intmax_t)adp->ad_newblkno);
10923 		deplist |= 1 << adp->ad_offset;
10924 		if ((adp->ad_state & ATTACHED) == 0)
10925 			panic("initiate_write_inodeblock_ufs2: Unknown "
10926 			     "state 0x%x", adp->ad_state);
10927 #endif /* INVARIANTS */
10928 		adp->ad_state &= ~ATTACHED;
10929 		adp->ad_state |= UNDONE;
10930 	}
10931 	/*
10932 	 * The on-disk inode cannot claim to be any larger than the last
10933 	 * fragment that has been written. Otherwise, the on-disk inode
10934 	 * might have fragments that were not the last block in the file
10935 	 * which would corrupt the filesystem.
10936 	 */
10937 	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
10938 	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
10939 		if (adp->ad_offset >= UFS_NDADDR)
10940 			break;
10941 		dp->di_db[adp->ad_offset] = adp->ad_oldblkno;
10942 		/* keep going until hitting a rollback to a frag */
10943 		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
10944 			continue;
10945 		dp->di_size = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize;
10946 		for (i = adp->ad_offset + 1; i < UFS_NDADDR; i++) {
10947 #ifdef INVARIANTS
10948 			if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0)
10949 				panic("initiate_write_inodeblock_ufs2: "
10950 				    "lost dep2");
10951 #endif /* INVARIANTS */
10952 			dp->di_db[i] = 0;
10953 		}
10954 		for (i = 0; i < UFS_NIADDR; i++) {
10955 #ifdef INVARIANTS
10956 			if (dp->di_ib[i] != 0 &&
10957 			    (deplist & ((1 << UFS_NDADDR) << i)) == 0)
10958 				panic("initiate_write_inodeblock_ufs2: "
10959 				    "lost dep3");
10960 #endif /* INVARIANTS */
10961 			dp->di_ib[i] = 0;
10962 		}
10963 		ffs_update_dinode_ckhash(fs, dp);
10964 		return;
10965 	}
10966 	/*
10967 	 * If we have zero'ed out the last allocated block of the file,
10968 	 * roll back the size to the last currently allocated block.
10969 	 * We know that this last allocated block is a full-sized as
10970 	 * we already checked for fragments in the loop above.
10971 	 */
10972 	if (lastadp != NULL &&
10973 	    dp->di_size <= (lastadp->ad_offset + 1) * fs->fs_bsize) {
10974 		for (i = lastadp->ad_offset; i >= 0; i--)
10975 			if (dp->di_db[i] != 0)
10976 				break;
10977 		dp->di_size = (i + 1) * fs->fs_bsize;
10978 	}
10979 	/*
10980 	 * The only dependencies are for indirect blocks.
10981 	 *
10982 	 * The file size for indirect block additions is not guaranteed.
10983 	 * Such a guarantee would be non-trivial to achieve. The conventional
10984 	 * synchronous write implementation also does not make this guarantee.
10985 	 * Fsck should catch and fix discrepancies. Arguably, the file size
10986 	 * can be over-estimated without destroying integrity when the file
10987 	 * moves into the indirect blocks (i.e., is large). If we want to
10988 	 * postpone fsck, we are stuck with this argument.
10989 	 */
10990 	for (; adp; adp = TAILQ_NEXT(adp, ad_next))
10991 		dp->di_ib[adp->ad_offset - UFS_NDADDR] = 0;
10992 	ffs_update_dinode_ckhash(fs, dp);
10993 }
10994 
10995 /*
10996  * Cancel an indirdep as a result of truncation.  Release all of the
10997  * children allocindirs and place their journal work on the appropriate
10998  * list.
10999  */
11000 static void
11001 cancel_indirdep(indirdep, bp, freeblks)
11002 	struct indirdep *indirdep;
11003 	struct buf *bp;
11004 	struct freeblks *freeblks;
11005 {
11006 	struct allocindir *aip;
11007 
11008 	/*
11009 	 * None of the indirect pointers will ever be visible,
11010 	 * so they can simply be tossed. GOINGAWAY ensures
11011 	 * that allocated pointers will be saved in the buffer
11012 	 * cache until they are freed. Note that they will
11013 	 * only be able to be found by their physical address
11014 	 * since the inode mapping the logical address will
11015 	 * be gone. The save buffer used for the safe copy
11016 	 * was allocated in setup_allocindir_phase2 using
11017 	 * the physical address so it could be used for this
11018 	 * purpose. Hence we swap the safe copy with the real
11019 	 * copy, allowing the safe copy to be freed and holding
11020 	 * on to the real copy for later use in indir_trunc.
11021 	 */
11022 	if (indirdep->ir_state & GOINGAWAY)
11023 		panic("cancel_indirdep: already gone");
11024 	if ((indirdep->ir_state & DEPCOMPLETE) == 0) {
11025 		indirdep->ir_state |= DEPCOMPLETE;
11026 		LIST_REMOVE(indirdep, ir_next);
11027 	}
11028 	indirdep->ir_state |= GOINGAWAY;
11029 	/*
11030 	 * Pass in bp for blocks still have journal writes
11031 	 * pending so we can cancel them on their own.
11032 	 */
11033 	while ((aip = LIST_FIRST(&indirdep->ir_deplisthd)) != NULL)
11034 		cancel_allocindir(aip, bp, freeblks, 0);
11035 	while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != NULL)
11036 		cancel_allocindir(aip, NULL, freeblks, 0);
11037 	while ((aip = LIST_FIRST(&indirdep->ir_writehd)) != NULL)
11038 		cancel_allocindir(aip, NULL, freeblks, 0);
11039 	while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != NULL)
11040 		cancel_allocindir(aip, NULL, freeblks, 0);
11041 	/*
11042 	 * If there are pending partial truncations we need to keep the
11043 	 * old block copy around until they complete.  This is because
11044 	 * the current b_data is not a perfect superset of the available
11045 	 * blocks.
11046 	 */
11047 	if (TAILQ_EMPTY(&indirdep->ir_trunc))
11048 		bcopy(bp->b_data, indirdep->ir_savebp->b_data, bp->b_bcount);
11049 	else
11050 		bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount);
11051 	WORKLIST_REMOVE(&indirdep->ir_list);
11052 	WORKLIST_INSERT(&indirdep->ir_savebp->b_dep, &indirdep->ir_list);
11053 	indirdep->ir_bp = NULL;
11054 	indirdep->ir_freeblks = freeblks;
11055 }
11056 
11057 /*
11058  * Free an indirdep once it no longer has new pointers to track.
11059  */
11060 static void
11061 free_indirdep(indirdep)
11062 	struct indirdep *indirdep;
11063 {
11064 
11065 	KASSERT(TAILQ_EMPTY(&indirdep->ir_trunc),
11066 	    ("free_indirdep: Indir trunc list not empty."));
11067 	KASSERT(LIST_EMPTY(&indirdep->ir_completehd),
11068 	    ("free_indirdep: Complete head not empty."));
11069 	KASSERT(LIST_EMPTY(&indirdep->ir_writehd),
11070 	    ("free_indirdep: write head not empty."));
11071 	KASSERT(LIST_EMPTY(&indirdep->ir_donehd),
11072 	    ("free_indirdep: done head not empty."));
11073 	KASSERT(LIST_EMPTY(&indirdep->ir_deplisthd),
11074 	    ("free_indirdep: deplist head not empty."));
11075 	KASSERT((indirdep->ir_state & DEPCOMPLETE),
11076 	    ("free_indirdep: %p still on newblk list.", indirdep));
11077 	KASSERT(indirdep->ir_saveddata == NULL,
11078 	    ("free_indirdep: %p still has saved data.", indirdep));
11079 	KASSERT(indirdep->ir_savebp == NULL,
11080 	    ("free_indirdep: %p still has savebp buffer.", indirdep));
11081 	if (indirdep->ir_state & ONWORKLIST)
11082 		WORKLIST_REMOVE(&indirdep->ir_list);
11083 	WORKITEM_FREE(indirdep, D_INDIRDEP);
11084 }
11085 
11086 /*
11087  * Called before a write to an indirdep.  This routine is responsible for
11088  * rolling back pointers to a safe state which includes only those
11089  * allocindirs which have been completed.
11090  */
11091 static void
11092 initiate_write_indirdep(indirdep, bp)
11093 	struct indirdep *indirdep;
11094 	struct buf *bp;
11095 {
11096 	struct ufsmount *ump;
11097 
11098 	indirdep->ir_state |= IOSTARTED;
11099 	if (indirdep->ir_state & GOINGAWAY)
11100 		panic("disk_io_initiation: indirdep gone");
11101 	/*
11102 	 * If there are no remaining dependencies, this will be writing
11103 	 * the real pointers.
11104 	 */
11105 	if (LIST_EMPTY(&indirdep->ir_deplisthd) &&
11106 	    TAILQ_EMPTY(&indirdep->ir_trunc))
11107 		return;
11108 	/*
11109 	 * Replace up-to-date version with safe version.
11110 	 */
11111 	if (indirdep->ir_saveddata == NULL) {
11112 		ump = VFSTOUFS(indirdep->ir_list.wk_mp);
11113 		LOCK_OWNED(ump);
11114 		FREE_LOCK(ump);
11115 		indirdep->ir_saveddata = malloc(bp->b_bcount, M_INDIRDEP,
11116 		    M_SOFTDEP_FLAGS);
11117 		ACQUIRE_LOCK(ump);
11118 	}
11119 	indirdep->ir_state &= ~ATTACHED;
11120 	indirdep->ir_state |= UNDONE;
11121 	bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount);
11122 	bcopy(indirdep->ir_savebp->b_data, bp->b_data,
11123 	    bp->b_bcount);
11124 }
11125 
11126 /*
11127  * Called when an inode has been cleared in a cg bitmap.  This finally
11128  * eliminates any canceled jaddrefs
11129  */
11130 void
11131 softdep_setup_inofree(mp, bp, ino, wkhd)
11132 	struct mount *mp;
11133 	struct buf *bp;
11134 	ino_t ino;
11135 	struct workhead *wkhd;
11136 {
11137 	struct worklist *wk, *wkn;
11138 	struct inodedep *inodedep;
11139 	struct ufsmount *ump;
11140 	uint8_t *inosused;
11141 	struct cg *cgp;
11142 	struct fs *fs;
11143 
11144 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
11145 	    ("softdep_setup_inofree called on non-softdep filesystem"));
11146 	ump = VFSTOUFS(mp);
11147 	ACQUIRE_LOCK(ump);
11148 	if (!ffs_fsfail_cleanup(ump, 0)) {
11149 		fs = ump->um_fs;
11150 		cgp = (struct cg *)bp->b_data;
11151 		inosused = cg_inosused(cgp);
11152 		if (isset(inosused, ino % fs->fs_ipg))
11153 			panic("softdep_setup_inofree: inode %ju not freed.",
11154 			    (uintmax_t)ino);
11155 	}
11156 	if (inodedep_lookup(mp, ino, 0, &inodedep))
11157 		panic("softdep_setup_inofree: ino %ju has existing inodedep %p",
11158 		    (uintmax_t)ino, inodedep);
11159 	if (wkhd) {
11160 		LIST_FOREACH_SAFE(wk, wkhd, wk_list, wkn) {
11161 			if (wk->wk_type != D_JADDREF)
11162 				continue;
11163 			WORKLIST_REMOVE(wk);
11164 			/*
11165 			 * We can free immediately even if the jaddref
11166 			 * isn't attached in a background write as now
11167 			 * the bitmaps are reconciled.
11168 			 */
11169 			wk->wk_state |= COMPLETE | ATTACHED;
11170 			free_jaddref(WK_JADDREF(wk));
11171 		}
11172 		jwork_move(&bp->b_dep, wkhd);
11173 	}
11174 	FREE_LOCK(ump);
11175 }
11176 
11177 /*
11178  * Called via ffs_blkfree() after a set of frags has been cleared from a cg
11179  * map.  Any dependencies waiting for the write to clear are added to the
11180  * buf's list and any jnewblks that are being canceled are discarded
11181  * immediately.
11182  */
11183 void
11184 softdep_setup_blkfree(mp, bp, blkno, frags, wkhd)
11185 	struct mount *mp;
11186 	struct buf *bp;
11187 	ufs2_daddr_t blkno;
11188 	int frags;
11189 	struct workhead *wkhd;
11190 {
11191 	struct bmsafemap *bmsafemap;
11192 	struct jnewblk *jnewblk;
11193 	struct ufsmount *ump;
11194 	struct worklist *wk;
11195 	struct fs *fs;
11196 #ifdef INVARIANTS
11197 	uint8_t *blksfree;
11198 	struct cg *cgp;
11199 	ufs2_daddr_t jstart;
11200 	ufs2_daddr_t jend;
11201 	ufs2_daddr_t end;
11202 	long bno;
11203 	int i;
11204 #endif
11205 
11206 	CTR3(KTR_SUJ,
11207 	    "softdep_setup_blkfree: blkno %jd frags %d wk head %p",
11208 	    blkno, frags, wkhd);
11209 
11210 	ump = VFSTOUFS(mp);
11211 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
11212 	    ("softdep_setup_blkfree called on non-softdep filesystem"));
11213 	ACQUIRE_LOCK(ump);
11214 	/* Lookup the bmsafemap so we track when it is dirty. */
11215 	fs = ump->um_fs;
11216 	bmsafemap = bmsafemap_lookup(mp, bp, dtog(fs, blkno), NULL);
11217 	/*
11218 	 * Detach any jnewblks which have been canceled.  They must linger
11219 	 * until the bitmap is cleared again by ffs_blkfree() to prevent
11220 	 * an unjournaled allocation from hitting the disk.
11221 	 */
11222 	if (wkhd) {
11223 		while ((wk = LIST_FIRST(wkhd)) != NULL) {
11224 			CTR2(KTR_SUJ,
11225 			    "softdep_setup_blkfree: blkno %jd wk type %d",
11226 			    blkno, wk->wk_type);
11227 			WORKLIST_REMOVE(wk);
11228 			if (wk->wk_type != D_JNEWBLK) {
11229 				WORKLIST_INSERT(&bmsafemap->sm_freehd, wk);
11230 				continue;
11231 			}
11232 			jnewblk = WK_JNEWBLK(wk);
11233 			KASSERT(jnewblk->jn_state & GOINGAWAY,
11234 			    ("softdep_setup_blkfree: jnewblk not canceled."));
11235 #ifdef INVARIANTS
11236 			/*
11237 			 * Assert that this block is free in the bitmap
11238 			 * before we discard the jnewblk.
11239 			 */
11240 			cgp = (struct cg *)bp->b_data;
11241 			blksfree = cg_blksfree(cgp);
11242 			bno = dtogd(fs, jnewblk->jn_blkno);
11243 			for (i = jnewblk->jn_oldfrags;
11244 			    i < jnewblk->jn_frags; i++) {
11245 				if (isset(blksfree, bno + i))
11246 					continue;
11247 				panic("softdep_setup_blkfree: not free");
11248 			}
11249 #endif
11250 			/*
11251 			 * Even if it's not attached we can free immediately
11252 			 * as the new bitmap is correct.
11253 			 */
11254 			wk->wk_state |= COMPLETE | ATTACHED;
11255 			free_jnewblk(jnewblk);
11256 		}
11257 	}
11258 
11259 #ifdef INVARIANTS
11260 	/*
11261 	 * Assert that we are not freeing a block which has an outstanding
11262 	 * allocation dependency.
11263 	 */
11264 	fs = VFSTOUFS(mp)->um_fs;
11265 	bmsafemap = bmsafemap_lookup(mp, bp, dtog(fs, blkno), NULL);
11266 	end = blkno + frags;
11267 	LIST_FOREACH(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps) {
11268 		/*
11269 		 * Don't match against blocks that will be freed when the
11270 		 * background write is done.
11271 		 */
11272 		if ((jnewblk->jn_state & (ATTACHED | COMPLETE | DEPCOMPLETE)) ==
11273 		    (COMPLETE | DEPCOMPLETE))
11274 			continue;
11275 		jstart = jnewblk->jn_blkno + jnewblk->jn_oldfrags;
11276 		jend = jnewblk->jn_blkno + jnewblk->jn_frags;
11277 		if ((blkno >= jstart && blkno < jend) ||
11278 		    (end > jstart && end <= jend)) {
11279 			printf("state 0x%X %jd - %d %d dep %p\n",
11280 			    jnewblk->jn_state, jnewblk->jn_blkno,
11281 			    jnewblk->jn_oldfrags, jnewblk->jn_frags,
11282 			    jnewblk->jn_dep);
11283 			panic("softdep_setup_blkfree: "
11284 			    "%jd-%jd(%d) overlaps with %jd-%jd",
11285 			    blkno, end, frags, jstart, jend);
11286 		}
11287 	}
11288 #endif
11289 	FREE_LOCK(ump);
11290 }
11291 
11292 /*
11293  * Revert a block allocation when the journal record that describes it
11294  * is not yet written.
11295  */
11296 static int
11297 jnewblk_rollback(jnewblk, fs, cgp, blksfree)
11298 	struct jnewblk *jnewblk;
11299 	struct fs *fs;
11300 	struct cg *cgp;
11301 	uint8_t *blksfree;
11302 {
11303 	ufs1_daddr_t fragno;
11304 	long cgbno, bbase;
11305 	int frags, blk;
11306 	int i;
11307 
11308 	frags = 0;
11309 	cgbno = dtogd(fs, jnewblk->jn_blkno);
11310 	/*
11311 	 * We have to test which frags need to be rolled back.  We may
11312 	 * be operating on a stale copy when doing background writes.
11313 	 */
11314 	for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; i++)
11315 		if (isclr(blksfree, cgbno + i))
11316 			frags++;
11317 	if (frags == 0)
11318 		return (0);
11319 	/*
11320 	 * This is mostly ffs_blkfree() sans some validation and
11321 	 * superblock updates.
11322 	 */
11323 	if (frags == fs->fs_frag) {
11324 		fragno = fragstoblks(fs, cgbno);
11325 		ffs_setblock(fs, blksfree, fragno);
11326 		ffs_clusteracct(fs, cgp, fragno, 1);
11327 		cgp->cg_cs.cs_nbfree++;
11328 	} else {
11329 		cgbno += jnewblk->jn_oldfrags;
11330 		bbase = cgbno - fragnum(fs, cgbno);
11331 		/* Decrement the old frags.  */
11332 		blk = blkmap(fs, blksfree, bbase);
11333 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
11334 		/* Deallocate the fragment */
11335 		for (i = 0; i < frags; i++)
11336 			setbit(blksfree, cgbno + i);
11337 		cgp->cg_cs.cs_nffree += frags;
11338 		/* Add back in counts associated with the new frags */
11339 		blk = blkmap(fs, blksfree, bbase);
11340 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
11341 		/* If a complete block has been reassembled, account for it. */
11342 		fragno = fragstoblks(fs, bbase);
11343 		if (ffs_isblock(fs, blksfree, fragno)) {
11344 			cgp->cg_cs.cs_nffree -= fs->fs_frag;
11345 			ffs_clusteracct(fs, cgp, fragno, 1);
11346 			cgp->cg_cs.cs_nbfree++;
11347 		}
11348 	}
11349 	stat_jnewblk++;
11350 	jnewblk->jn_state &= ~ATTACHED;
11351 	jnewblk->jn_state |= UNDONE;
11352 
11353 	return (frags);
11354 }
11355 
11356 static void
11357 initiate_write_bmsafemap(bmsafemap, bp)
11358 	struct bmsafemap *bmsafemap;
11359 	struct buf *bp;			/* The cg block. */
11360 {
11361 	struct jaddref *jaddref;
11362 	struct jnewblk *jnewblk;
11363 	uint8_t *inosused;
11364 	uint8_t *blksfree;
11365 	struct cg *cgp;
11366 	struct fs *fs;
11367 	ino_t ino;
11368 
11369 	/*
11370 	 * If this is a background write, we did this at the time that
11371 	 * the copy was made, so do not need to do it again.
11372 	 */
11373 	if (bmsafemap->sm_state & IOSTARTED)
11374 		return;
11375 	bmsafemap->sm_state |= IOSTARTED;
11376 	/*
11377 	 * Clear any inode allocations which are pending journal writes.
11378 	 */
11379 	if (LIST_FIRST(&bmsafemap->sm_jaddrefhd) != NULL) {
11380 		cgp = (struct cg *)bp->b_data;
11381 		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
11382 		inosused = cg_inosused(cgp);
11383 		LIST_FOREACH(jaddref, &bmsafemap->sm_jaddrefhd, ja_bmdeps) {
11384 			ino = jaddref->ja_ino % fs->fs_ipg;
11385 			if (isset(inosused, ino)) {
11386 				if ((jaddref->ja_mode & IFMT) == IFDIR)
11387 					cgp->cg_cs.cs_ndir--;
11388 				cgp->cg_cs.cs_nifree++;
11389 				clrbit(inosused, ino);
11390 				jaddref->ja_state &= ~ATTACHED;
11391 				jaddref->ja_state |= UNDONE;
11392 				stat_jaddref++;
11393 			} else
11394 				panic("initiate_write_bmsafemap: inode %ju "
11395 				    "marked free", (uintmax_t)jaddref->ja_ino);
11396 		}
11397 	}
11398 	/*
11399 	 * Clear any block allocations which are pending journal writes.
11400 	 */
11401 	if (LIST_FIRST(&bmsafemap->sm_jnewblkhd) != NULL) {
11402 		cgp = (struct cg *)bp->b_data;
11403 		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
11404 		blksfree = cg_blksfree(cgp);
11405 		LIST_FOREACH(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps) {
11406 			if (jnewblk_rollback(jnewblk, fs, cgp, blksfree))
11407 				continue;
11408 			panic("initiate_write_bmsafemap: block %jd "
11409 			    "marked free", jnewblk->jn_blkno);
11410 		}
11411 	}
11412 	/*
11413 	 * Move allocation lists to the written lists so they can be
11414 	 * cleared once the block write is complete.
11415 	 */
11416 	LIST_SWAP(&bmsafemap->sm_inodedephd, &bmsafemap->sm_inodedepwr,
11417 	    inodedep, id_deps);
11418 	LIST_SWAP(&bmsafemap->sm_newblkhd, &bmsafemap->sm_newblkwr,
11419 	    newblk, nb_deps);
11420 	LIST_SWAP(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr, worklist,
11421 	    wk_list);
11422 }
11423 
11424 void
11425 softdep_handle_error(struct buf *bp)
11426 {
11427 	struct ufsmount *ump;
11428 
11429 	ump = softdep_bp_to_mp(bp);
11430 	if (ump == NULL)
11431 		return;
11432 
11433 	if (ffs_fsfail_cleanup(ump, bp->b_error)) {
11434 		/*
11435 		 * No future writes will succeed, so the on-disk image is safe.
11436 		 * Pretend that this write succeeded so that the softdep state
11437 		 * will be cleaned up naturally.
11438 		 */
11439 		bp->b_ioflags &= ~BIO_ERROR;
11440 		bp->b_error = 0;
11441 	}
11442 }
11443 
11444 /*
11445  * This routine is called during the completion interrupt
11446  * service routine for a disk write (from the procedure called
11447  * by the device driver to inform the filesystem caches of
11448  * a request completion).  It should be called early in this
11449  * procedure, before the block is made available to other
11450  * processes or other routines are called.
11451  *
11452  */
11453 static void
11454 softdep_disk_write_complete(bp)
11455 	struct buf *bp;		/* describes the completed disk write */
11456 {
11457 	struct worklist *wk;
11458 	struct worklist *owk;
11459 	struct ufsmount *ump;
11460 	struct workhead reattach;
11461 	struct freeblks *freeblks;
11462 	struct buf *sbp;
11463 
11464 	ump = softdep_bp_to_mp(bp);
11465 	KASSERT(LIST_EMPTY(&bp->b_dep) || ump != NULL,
11466 	    ("softdep_disk_write_complete: softdep_bp_to_mp returned NULL "
11467 	     "with outstanding dependencies for buffer %p", bp));
11468 	if (ump == NULL)
11469 		return;
11470 	if ((bp->b_ioflags & BIO_ERROR) != 0)
11471 		softdep_handle_error(bp);
11472 	/*
11473 	 * If an error occurred while doing the write, then the data
11474 	 * has not hit the disk and the dependencies cannot be processed.
11475 	 * But we do have to go through and roll forward any dependencies
11476 	 * that were rolled back before the disk write.
11477 	 */
11478 	sbp = NULL;
11479 	ACQUIRE_LOCK(ump);
11480 	if ((bp->b_ioflags & BIO_ERROR) != 0 && (bp->b_flags & B_INVAL) == 0) {
11481 		LIST_FOREACH(wk, &bp->b_dep, wk_list) {
11482 			switch (wk->wk_type) {
11483 			case D_PAGEDEP:
11484 				handle_written_filepage(WK_PAGEDEP(wk), bp, 0);
11485 				continue;
11486 
11487 			case D_INODEDEP:
11488 				handle_written_inodeblock(WK_INODEDEP(wk),
11489 				    bp, 0);
11490 				continue;
11491 
11492 			case D_BMSAFEMAP:
11493 				handle_written_bmsafemap(WK_BMSAFEMAP(wk),
11494 				    bp, 0);
11495 				continue;
11496 
11497 			case D_INDIRDEP:
11498 				handle_written_indirdep(WK_INDIRDEP(wk),
11499 				    bp, &sbp, 0);
11500 				continue;
11501 			default:
11502 				/* nothing to roll forward */
11503 				continue;
11504 			}
11505 		}
11506 		FREE_LOCK(ump);
11507 		if (sbp)
11508 			brelse(sbp);
11509 		return;
11510 	}
11511 	LIST_INIT(&reattach);
11512 
11513 	/*
11514 	 * Ump SU lock must not be released anywhere in this code segment.
11515 	 */
11516 	owk = NULL;
11517 	while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) {
11518 		WORKLIST_REMOVE(wk);
11519 		atomic_add_long(&dep_write[wk->wk_type], 1);
11520 		if (wk == owk)
11521 			panic("duplicate worklist: %p\n", wk);
11522 		owk = wk;
11523 		switch (wk->wk_type) {
11524 		case D_PAGEDEP:
11525 			if (handle_written_filepage(WK_PAGEDEP(wk), bp,
11526 			    WRITESUCCEEDED))
11527 				WORKLIST_INSERT(&reattach, wk);
11528 			continue;
11529 
11530 		case D_INODEDEP:
11531 			if (handle_written_inodeblock(WK_INODEDEP(wk), bp,
11532 			    WRITESUCCEEDED))
11533 				WORKLIST_INSERT(&reattach, wk);
11534 			continue;
11535 
11536 		case D_BMSAFEMAP:
11537 			if (handle_written_bmsafemap(WK_BMSAFEMAP(wk), bp,
11538 			    WRITESUCCEEDED))
11539 				WORKLIST_INSERT(&reattach, wk);
11540 			continue;
11541 
11542 		case D_MKDIR:
11543 			handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY);
11544 			continue;
11545 
11546 		case D_ALLOCDIRECT:
11547 			wk->wk_state |= COMPLETE;
11548 			handle_allocdirect_partdone(WK_ALLOCDIRECT(wk), NULL);
11549 			continue;
11550 
11551 		case D_ALLOCINDIR:
11552 			wk->wk_state |= COMPLETE;
11553 			handle_allocindir_partdone(WK_ALLOCINDIR(wk));
11554 			continue;
11555 
11556 		case D_INDIRDEP:
11557 			if (handle_written_indirdep(WK_INDIRDEP(wk), bp, &sbp,
11558 			    WRITESUCCEEDED))
11559 				WORKLIST_INSERT(&reattach, wk);
11560 			continue;
11561 
11562 		case D_FREEBLKS:
11563 			wk->wk_state |= COMPLETE;
11564 			freeblks = WK_FREEBLKS(wk);
11565 			if ((wk->wk_state & ALLCOMPLETE) == ALLCOMPLETE &&
11566 			    LIST_EMPTY(&freeblks->fb_jblkdephd))
11567 				add_to_worklist(wk, WK_NODELAY);
11568 			continue;
11569 
11570 		case D_FREEWORK:
11571 			handle_written_freework(WK_FREEWORK(wk));
11572 			break;
11573 
11574 		case D_JSEGDEP:
11575 			free_jsegdep(WK_JSEGDEP(wk));
11576 			continue;
11577 
11578 		case D_JSEG:
11579 			handle_written_jseg(WK_JSEG(wk), bp);
11580 			continue;
11581 
11582 		case D_SBDEP:
11583 			if (handle_written_sbdep(WK_SBDEP(wk), bp))
11584 				WORKLIST_INSERT(&reattach, wk);
11585 			continue;
11586 
11587 		case D_FREEDEP:
11588 			free_freedep(WK_FREEDEP(wk));
11589 			continue;
11590 
11591 		default:
11592 			panic("handle_disk_write_complete: Unknown type %s",
11593 			    TYPENAME(wk->wk_type));
11594 			/* NOTREACHED */
11595 		}
11596 	}
11597 	/*
11598 	 * Reattach any requests that must be redone.
11599 	 */
11600 	while ((wk = LIST_FIRST(&reattach)) != NULL) {
11601 		WORKLIST_REMOVE(wk);
11602 		WORKLIST_INSERT(&bp->b_dep, wk);
11603 	}
11604 	FREE_LOCK(ump);
11605 	if (sbp)
11606 		brelse(sbp);
11607 }
11608 
11609 /*
11610  * Called from within softdep_disk_write_complete above.
11611  */
11612 static void
11613 handle_allocdirect_partdone(adp, wkhd)
11614 	struct allocdirect *adp;	/* the completed allocdirect */
11615 	struct workhead *wkhd;		/* Work to do when inode is writtne. */
11616 {
11617 	struct allocdirectlst *listhead;
11618 	struct allocdirect *listadp;
11619 	struct inodedep *inodedep;
11620 	long bsize;
11621 
11622 	LOCK_OWNED(VFSTOUFS(adp->ad_block.nb_list.wk_mp));
11623 	if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE)
11624 		return;
11625 	/*
11626 	 * The on-disk inode cannot claim to be any larger than the last
11627 	 * fragment that has been written. Otherwise, the on-disk inode
11628 	 * might have fragments that were not the last block in the file
11629 	 * which would corrupt the filesystem. Thus, we cannot free any
11630 	 * allocdirects after one whose ad_oldblkno claims a fragment as
11631 	 * these blocks must be rolled back to zero before writing the inode.
11632 	 * We check the currently active set of allocdirects in id_inoupdt
11633 	 * or id_extupdt as appropriate.
11634 	 */
11635 	inodedep = adp->ad_inodedep;
11636 	bsize = inodedep->id_fs->fs_bsize;
11637 	if (adp->ad_state & EXTDATA)
11638 		listhead = &inodedep->id_extupdt;
11639 	else
11640 		listhead = &inodedep->id_inoupdt;
11641 	TAILQ_FOREACH(listadp, listhead, ad_next) {
11642 		/* found our block */
11643 		if (listadp == adp)
11644 			break;
11645 		/* continue if ad_oldlbn is not a fragment */
11646 		if (listadp->ad_oldsize == 0 ||
11647 		    listadp->ad_oldsize == bsize)
11648 			continue;
11649 		/* hit a fragment */
11650 		return;
11651 	}
11652 	/*
11653 	 * If we have reached the end of the current list without
11654 	 * finding the just finished dependency, then it must be
11655 	 * on the future dependency list. Future dependencies cannot
11656 	 * be freed until they are moved to the current list.
11657 	 */
11658 	if (listadp == NULL) {
11659 #ifdef INVARIANTS
11660 		if (adp->ad_state & EXTDATA)
11661 			listhead = &inodedep->id_newextupdt;
11662 		else
11663 			listhead = &inodedep->id_newinoupdt;
11664 		TAILQ_FOREACH(listadp, listhead, ad_next)
11665 			/* found our block */
11666 			if (listadp == adp)
11667 				break;
11668 		if (listadp == NULL)
11669 			panic("handle_allocdirect_partdone: lost dep");
11670 #endif /* INVARIANTS */
11671 		return;
11672 	}
11673 	/*
11674 	 * If we have found the just finished dependency, then queue
11675 	 * it along with anything that follows it that is complete.
11676 	 * Since the pointer has not yet been written in the inode
11677 	 * as the dependency prevents it, place the allocdirect on the
11678 	 * bufwait list where it will be freed once the pointer is
11679 	 * valid.
11680 	 */
11681 	if (wkhd == NULL)
11682 		wkhd = &inodedep->id_bufwait;
11683 	for (; adp; adp = listadp) {
11684 		listadp = TAILQ_NEXT(adp, ad_next);
11685 		if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE)
11686 			return;
11687 		TAILQ_REMOVE(listhead, adp, ad_next);
11688 		WORKLIST_INSERT(wkhd, &adp->ad_block.nb_list);
11689 	}
11690 }
11691 
11692 /*
11693  * Called from within softdep_disk_write_complete above.  This routine
11694  * completes successfully written allocindirs.
11695  */
11696 static void
11697 handle_allocindir_partdone(aip)
11698 	struct allocindir *aip;		/* the completed allocindir */
11699 {
11700 	struct indirdep *indirdep;
11701 
11702 	if ((aip->ai_state & ALLCOMPLETE) != ALLCOMPLETE)
11703 		return;
11704 	indirdep = aip->ai_indirdep;
11705 	LIST_REMOVE(aip, ai_next);
11706 	/*
11707 	 * Don't set a pointer while the buffer is undergoing IO or while
11708 	 * we have active truncations.
11709 	 */
11710 	if (indirdep->ir_state & UNDONE || !TAILQ_EMPTY(&indirdep->ir_trunc)) {
11711 		LIST_INSERT_HEAD(&indirdep->ir_donehd, aip, ai_next);
11712 		return;
11713 	}
11714 	if (indirdep->ir_state & UFS1FMT)
11715 		((ufs1_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] =
11716 		    aip->ai_newblkno;
11717 	else
11718 		((ufs2_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] =
11719 		    aip->ai_newblkno;
11720 	/*
11721 	 * Await the pointer write before freeing the allocindir.
11722 	 */
11723 	LIST_INSERT_HEAD(&indirdep->ir_writehd, aip, ai_next);
11724 }
11725 
11726 /*
11727  * Release segments held on a jwork list.
11728  */
11729 static void
11730 handle_jwork(wkhd)
11731 	struct workhead *wkhd;
11732 {
11733 	struct worklist *wk;
11734 
11735 	while ((wk = LIST_FIRST(wkhd)) != NULL) {
11736 		WORKLIST_REMOVE(wk);
11737 		switch (wk->wk_type) {
11738 		case D_JSEGDEP:
11739 			free_jsegdep(WK_JSEGDEP(wk));
11740 			continue;
11741 		case D_FREEDEP:
11742 			free_freedep(WK_FREEDEP(wk));
11743 			continue;
11744 		case D_FREEFRAG:
11745 			rele_jseg(WK_JSEG(WK_FREEFRAG(wk)->ff_jdep));
11746 			WORKITEM_FREE(wk, D_FREEFRAG);
11747 			continue;
11748 		case D_FREEWORK:
11749 			handle_written_freework(WK_FREEWORK(wk));
11750 			continue;
11751 		default:
11752 			panic("handle_jwork: Unknown type %s\n",
11753 			    TYPENAME(wk->wk_type));
11754 		}
11755 	}
11756 }
11757 
11758 /*
11759  * Handle the bufwait list on an inode when it is safe to release items
11760  * held there.  This normally happens after an inode block is written but
11761  * may be delayed and handled later if there are pending journal items that
11762  * are not yet safe to be released.
11763  */
11764 static struct freefile *
11765 handle_bufwait(inodedep, refhd)
11766 	struct inodedep *inodedep;
11767 	struct workhead *refhd;
11768 {
11769 	struct jaddref *jaddref;
11770 	struct freefile *freefile;
11771 	struct worklist *wk;
11772 
11773 	freefile = NULL;
11774 	while ((wk = LIST_FIRST(&inodedep->id_bufwait)) != NULL) {
11775 		WORKLIST_REMOVE(wk);
11776 		switch (wk->wk_type) {
11777 		case D_FREEFILE:
11778 			/*
11779 			 * We defer adding freefile to the worklist
11780 			 * until all other additions have been made to
11781 			 * ensure that it will be done after all the
11782 			 * old blocks have been freed.
11783 			 */
11784 			if (freefile != NULL)
11785 				panic("handle_bufwait: freefile");
11786 			freefile = WK_FREEFILE(wk);
11787 			continue;
11788 
11789 		case D_MKDIR:
11790 			handle_written_mkdir(WK_MKDIR(wk), MKDIR_PARENT);
11791 			continue;
11792 
11793 		case D_DIRADD:
11794 			diradd_inode_written(WK_DIRADD(wk), inodedep);
11795 			continue;
11796 
11797 		case D_FREEFRAG:
11798 			wk->wk_state |= COMPLETE;
11799 			if ((wk->wk_state & ALLCOMPLETE) == ALLCOMPLETE)
11800 				add_to_worklist(wk, 0);
11801 			continue;
11802 
11803 		case D_DIRREM:
11804 			wk->wk_state |= COMPLETE;
11805 			add_to_worklist(wk, 0);
11806 			continue;
11807 
11808 		case D_ALLOCDIRECT:
11809 		case D_ALLOCINDIR:
11810 			free_newblk(WK_NEWBLK(wk));
11811 			continue;
11812 
11813 		case D_JNEWBLK:
11814 			wk->wk_state |= COMPLETE;
11815 			free_jnewblk(WK_JNEWBLK(wk));
11816 			continue;
11817 
11818 		/*
11819 		 * Save freed journal segments and add references on
11820 		 * the supplied list which will delay their release
11821 		 * until the cg bitmap is cleared on disk.
11822 		 */
11823 		case D_JSEGDEP:
11824 			if (refhd == NULL)
11825 				free_jsegdep(WK_JSEGDEP(wk));
11826 			else
11827 				WORKLIST_INSERT(refhd, wk);
11828 			continue;
11829 
11830 		case D_JADDREF:
11831 			jaddref = WK_JADDREF(wk);
11832 			TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref,
11833 			    if_deps);
11834 			/*
11835 			 * Transfer any jaddrefs to the list to be freed with
11836 			 * the bitmap if we're handling a removed file.
11837 			 */
11838 			if (refhd == NULL) {
11839 				wk->wk_state |= COMPLETE;
11840 				free_jaddref(jaddref);
11841 			} else
11842 				WORKLIST_INSERT(refhd, wk);
11843 			continue;
11844 
11845 		default:
11846 			panic("handle_bufwait: Unknown type %p(%s)",
11847 			    wk, TYPENAME(wk->wk_type));
11848 			/* NOTREACHED */
11849 		}
11850 	}
11851 	return (freefile);
11852 }
11853 /*
11854  * Called from within softdep_disk_write_complete above to restore
11855  * in-memory inode block contents to their most up-to-date state. Note
11856  * that this routine is always called from interrupt level with further
11857  * interrupts from this device blocked.
11858  *
11859  * If the write did not succeed, we will do all the roll-forward
11860  * operations, but we will not take the actions that will allow its
11861  * dependencies to be processed.
11862  */
11863 static int
11864 handle_written_inodeblock(inodedep, bp, flags)
11865 	struct inodedep *inodedep;
11866 	struct buf *bp;		/* buffer containing the inode block */
11867 	int flags;
11868 {
11869 	struct freefile *freefile;
11870 	struct allocdirect *adp, *nextadp;
11871 	struct ufs1_dinode *dp1 = NULL;
11872 	struct ufs2_dinode *dp2 = NULL;
11873 	struct workhead wkhd;
11874 	int hadchanges, fstype;
11875 	ino_t freelink;
11876 
11877 	LIST_INIT(&wkhd);
11878 	hadchanges = 0;
11879 	freefile = NULL;
11880 	if ((inodedep->id_state & IOSTARTED) == 0)
11881 		panic("handle_written_inodeblock: not started");
11882 	inodedep->id_state &= ~IOSTARTED;
11883 	if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC) {
11884 		fstype = UFS1;
11885 		dp1 = (struct ufs1_dinode *)bp->b_data +
11886 		    ino_to_fsbo(inodedep->id_fs, inodedep->id_ino);
11887 		freelink = dp1->di_freelink;
11888 	} else {
11889 		fstype = UFS2;
11890 		dp2 = (struct ufs2_dinode *)bp->b_data +
11891 		    ino_to_fsbo(inodedep->id_fs, inodedep->id_ino);
11892 		freelink = dp2->di_freelink;
11893 	}
11894 	/*
11895 	 * Leave this inodeblock dirty until it's in the list.
11896 	 */
11897 	if ((inodedep->id_state & (UNLINKED | UNLINKONLIST)) == UNLINKED &&
11898 	    (flags & WRITESUCCEEDED)) {
11899 		struct inodedep *inon;
11900 
11901 		inon = TAILQ_NEXT(inodedep, id_unlinked);
11902 		if ((inon == NULL && freelink == 0) ||
11903 		    (inon && inon->id_ino == freelink)) {
11904 			if (inon)
11905 				inon->id_state |= UNLINKPREV;
11906 			inodedep->id_state |= UNLINKNEXT;
11907 		}
11908 		hadchanges = 1;
11909 	}
11910 	/*
11911 	 * If we had to rollback the inode allocation because of
11912 	 * bitmaps being incomplete, then simply restore it.
11913 	 * Keep the block dirty so that it will not be reclaimed until
11914 	 * all associated dependencies have been cleared and the
11915 	 * corresponding updates written to disk.
11916 	 */
11917 	if (inodedep->id_savedino1 != NULL) {
11918 		hadchanges = 1;
11919 		if (fstype == UFS1)
11920 			*dp1 = *inodedep->id_savedino1;
11921 		else
11922 			*dp2 = *inodedep->id_savedino2;
11923 		free(inodedep->id_savedino1, M_SAVEDINO);
11924 		inodedep->id_savedino1 = NULL;
11925 		if ((bp->b_flags & B_DELWRI) == 0)
11926 			stat_inode_bitmap++;
11927 		bdirty(bp);
11928 		/*
11929 		 * If the inode is clear here and GOINGAWAY it will never
11930 		 * be written.  Process the bufwait and clear any pending
11931 		 * work which may include the freefile.
11932 		 */
11933 		if (inodedep->id_state & GOINGAWAY)
11934 			goto bufwait;
11935 		return (1);
11936 	}
11937 	if (flags & WRITESUCCEEDED)
11938 		inodedep->id_state |= COMPLETE;
11939 	/*
11940 	 * Roll forward anything that had to be rolled back before
11941 	 * the inode could be updated.
11942 	 */
11943 	for (adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; adp = nextadp) {
11944 		nextadp = TAILQ_NEXT(adp, ad_next);
11945 		if (adp->ad_state & ATTACHED)
11946 			panic("handle_written_inodeblock: new entry");
11947 		if (fstype == UFS1) {
11948 			if (adp->ad_offset < UFS_NDADDR) {
11949 				if (dp1->di_db[adp->ad_offset]!=adp->ad_oldblkno)
11950 					panic("%s %s #%jd mismatch %d != %jd",
11951 					    "handle_written_inodeblock:",
11952 					    "direct pointer",
11953 					    (intmax_t)adp->ad_offset,
11954 					    dp1->di_db[adp->ad_offset],
11955 					    (intmax_t)adp->ad_oldblkno);
11956 				dp1->di_db[adp->ad_offset] = adp->ad_newblkno;
11957 			} else {
11958 				if (dp1->di_ib[adp->ad_offset - UFS_NDADDR] !=
11959 				    0)
11960 					panic("%s: %s #%jd allocated as %d",
11961 					    "handle_written_inodeblock",
11962 					    "indirect pointer",
11963 					    (intmax_t)adp->ad_offset -
11964 					    UFS_NDADDR,
11965 					    dp1->di_ib[adp->ad_offset -
11966 					    UFS_NDADDR]);
11967 				dp1->di_ib[adp->ad_offset - UFS_NDADDR] =
11968 				    adp->ad_newblkno;
11969 			}
11970 		} else {
11971 			if (adp->ad_offset < UFS_NDADDR) {
11972 				if (dp2->di_db[adp->ad_offset]!=adp->ad_oldblkno)
11973 					panic("%s: %s #%jd %s %jd != %jd",
11974 					    "handle_written_inodeblock",
11975 					    "direct pointer",
11976 					    (intmax_t)adp->ad_offset, "mismatch",
11977 					    (intmax_t)dp2->di_db[adp->ad_offset],
11978 					    (intmax_t)adp->ad_oldblkno);
11979 				dp2->di_db[adp->ad_offset] = adp->ad_newblkno;
11980 			} else {
11981 				if (dp2->di_ib[adp->ad_offset - UFS_NDADDR] !=
11982 				    0)
11983 					panic("%s: %s #%jd allocated as %jd",
11984 					    "handle_written_inodeblock",
11985 					    "indirect pointer",
11986 					    (intmax_t)adp->ad_offset -
11987 					    UFS_NDADDR,
11988 					    (intmax_t)
11989 					    dp2->di_ib[adp->ad_offset -
11990 					    UFS_NDADDR]);
11991 				dp2->di_ib[adp->ad_offset - UFS_NDADDR] =
11992 				    adp->ad_newblkno;
11993 			}
11994 		}
11995 		adp->ad_state &= ~UNDONE;
11996 		adp->ad_state |= ATTACHED;
11997 		hadchanges = 1;
11998 	}
11999 	for (adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; adp = nextadp) {
12000 		nextadp = TAILQ_NEXT(adp, ad_next);
12001 		if (adp->ad_state & ATTACHED)
12002 			panic("handle_written_inodeblock: new entry");
12003 		if (dp2->di_extb[adp->ad_offset] != adp->ad_oldblkno)
12004 			panic("%s: direct pointers #%jd %s %jd != %jd",
12005 			    "handle_written_inodeblock",
12006 			    (intmax_t)adp->ad_offset, "mismatch",
12007 			    (intmax_t)dp2->di_extb[adp->ad_offset],
12008 			    (intmax_t)adp->ad_oldblkno);
12009 		dp2->di_extb[adp->ad_offset] = adp->ad_newblkno;
12010 		adp->ad_state &= ~UNDONE;
12011 		adp->ad_state |= ATTACHED;
12012 		hadchanges = 1;
12013 	}
12014 	if (hadchanges && (bp->b_flags & B_DELWRI) == 0)
12015 		stat_direct_blk_ptrs++;
12016 	/*
12017 	 * Reset the file size to its most up-to-date value.
12018 	 */
12019 	if (inodedep->id_savedsize == -1 || inodedep->id_savedextsize == -1)
12020 		panic("handle_written_inodeblock: bad size");
12021 	if (inodedep->id_savednlink > UFS_LINK_MAX)
12022 		panic("handle_written_inodeblock: Invalid link count "
12023 		    "%jd for inodedep %p", (uintmax_t)inodedep->id_savednlink,
12024 		    inodedep);
12025 	if (fstype == UFS1) {
12026 		if (dp1->di_nlink != inodedep->id_savednlink) {
12027 			dp1->di_nlink = inodedep->id_savednlink;
12028 			hadchanges = 1;
12029 		}
12030 		if (dp1->di_size != inodedep->id_savedsize) {
12031 			dp1->di_size = inodedep->id_savedsize;
12032 			hadchanges = 1;
12033 		}
12034 	} else {
12035 		if (dp2->di_nlink != inodedep->id_savednlink) {
12036 			dp2->di_nlink = inodedep->id_savednlink;
12037 			hadchanges = 1;
12038 		}
12039 		if (dp2->di_size != inodedep->id_savedsize) {
12040 			dp2->di_size = inodedep->id_savedsize;
12041 			hadchanges = 1;
12042 		}
12043 		if (dp2->di_extsize != inodedep->id_savedextsize) {
12044 			dp2->di_extsize = inodedep->id_savedextsize;
12045 			hadchanges = 1;
12046 		}
12047 	}
12048 	inodedep->id_savedsize = -1;
12049 	inodedep->id_savedextsize = -1;
12050 	inodedep->id_savednlink = -1;
12051 	/*
12052 	 * If there were any rollbacks in the inode block, then it must be
12053 	 * marked dirty so that its will eventually get written back in
12054 	 * its correct form.
12055 	 */
12056 	if (hadchanges) {
12057 		if (fstype == UFS2)
12058 			ffs_update_dinode_ckhash(inodedep->id_fs, dp2);
12059 		bdirty(bp);
12060 	}
12061 bufwait:
12062 	/*
12063 	 * If the write did not succeed, we have done all the roll-forward
12064 	 * operations, but we cannot take the actions that will allow its
12065 	 * dependencies to be processed.
12066 	 */
12067 	if ((flags & WRITESUCCEEDED) == 0)
12068 		return (hadchanges);
12069 	/*
12070 	 * Process any allocdirects that completed during the update.
12071 	 */
12072 	if ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL)
12073 		handle_allocdirect_partdone(adp, &wkhd);
12074 	if ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL)
12075 		handle_allocdirect_partdone(adp, &wkhd);
12076 	/*
12077 	 * Process deallocations that were held pending until the
12078 	 * inode had been written to disk. Freeing of the inode
12079 	 * is delayed until after all blocks have been freed to
12080 	 * avoid creation of new <vfsid, inum, lbn> triples
12081 	 * before the old ones have been deleted.  Completely
12082 	 * unlinked inodes are not processed until the unlinked
12083 	 * inode list is written or the last reference is removed.
12084 	 */
12085 	if ((inodedep->id_state & (UNLINKED | UNLINKONLIST)) != UNLINKED) {
12086 		freefile = handle_bufwait(inodedep, NULL);
12087 		if (freefile && !LIST_EMPTY(&wkhd)) {
12088 			WORKLIST_INSERT(&wkhd, &freefile->fx_list);
12089 			freefile = NULL;
12090 		}
12091 	}
12092 	/*
12093 	 * Move rolled forward dependency completions to the bufwait list
12094 	 * now that those that were already written have been processed.
12095 	 */
12096 	if (!LIST_EMPTY(&wkhd) && hadchanges == 0)
12097 		panic("handle_written_inodeblock: bufwait but no changes");
12098 	jwork_move(&inodedep->id_bufwait, &wkhd);
12099 
12100 	if (freefile != NULL) {
12101 		/*
12102 		 * If the inode is goingaway it was never written.  Fake up
12103 		 * the state here so free_inodedep() can succeed.
12104 		 */
12105 		if (inodedep->id_state & GOINGAWAY)
12106 			inodedep->id_state |= COMPLETE | DEPCOMPLETE;
12107 		if (free_inodedep(inodedep) == 0)
12108 			panic("handle_written_inodeblock: live inodedep %p",
12109 			    inodedep);
12110 		add_to_worklist(&freefile->fx_list, 0);
12111 		return (0);
12112 	}
12113 
12114 	/*
12115 	 * If no outstanding dependencies, free it.
12116 	 */
12117 	if (free_inodedep(inodedep) ||
12118 	    (TAILQ_FIRST(&inodedep->id_inoreflst) == 0 &&
12119 	     TAILQ_FIRST(&inodedep->id_inoupdt) == 0 &&
12120 	     TAILQ_FIRST(&inodedep->id_extupdt) == 0 &&
12121 	     LIST_FIRST(&inodedep->id_bufwait) == 0))
12122 		return (0);
12123 	return (hadchanges);
12124 }
12125 
12126 /*
12127  * Perform needed roll-forwards and kick off any dependencies that
12128  * can now be processed.
12129  *
12130  * If the write did not succeed, we will do all the roll-forward
12131  * operations, but we will not take the actions that will allow its
12132  * dependencies to be processed.
12133  */
12134 static int
12135 handle_written_indirdep(indirdep, bp, bpp, flags)
12136 	struct indirdep *indirdep;
12137 	struct buf *bp;
12138 	struct buf **bpp;
12139 	int flags;
12140 {
12141 	struct allocindir *aip;
12142 	struct buf *sbp;
12143 	int chgs;
12144 
12145 	if (indirdep->ir_state & GOINGAWAY)
12146 		panic("handle_written_indirdep: indirdep gone");
12147 	if ((indirdep->ir_state & IOSTARTED) == 0)
12148 		panic("handle_written_indirdep: IO not started");
12149 	chgs = 0;
12150 	/*
12151 	 * If there were rollbacks revert them here.
12152 	 */
12153 	if (indirdep->ir_saveddata) {
12154 		bcopy(indirdep->ir_saveddata, bp->b_data, bp->b_bcount);
12155 		if (TAILQ_EMPTY(&indirdep->ir_trunc)) {
12156 			free(indirdep->ir_saveddata, M_INDIRDEP);
12157 			indirdep->ir_saveddata = NULL;
12158 		}
12159 		chgs = 1;
12160 	}
12161 	indirdep->ir_state &= ~(UNDONE | IOSTARTED);
12162 	indirdep->ir_state |= ATTACHED;
12163 	/*
12164 	 * If the write did not succeed, we have done all the roll-forward
12165 	 * operations, but we cannot take the actions that will allow its
12166 	 * dependencies to be processed.
12167 	 */
12168 	if ((flags & WRITESUCCEEDED) == 0) {
12169 		stat_indir_blk_ptrs++;
12170 		bdirty(bp);
12171 		return (1);
12172 	}
12173 	/*
12174 	 * Move allocindirs with written pointers to the completehd if
12175 	 * the indirdep's pointer is not yet written.  Otherwise
12176 	 * free them here.
12177 	 */
12178 	while ((aip = LIST_FIRST(&indirdep->ir_writehd)) != NULL) {
12179 		LIST_REMOVE(aip, ai_next);
12180 		if ((indirdep->ir_state & DEPCOMPLETE) == 0) {
12181 			LIST_INSERT_HEAD(&indirdep->ir_completehd, aip,
12182 			    ai_next);
12183 			newblk_freefrag(&aip->ai_block);
12184 			continue;
12185 		}
12186 		free_newblk(&aip->ai_block);
12187 	}
12188 	/*
12189 	 * Move allocindirs that have finished dependency processing from
12190 	 * the done list to the write list after updating the pointers.
12191 	 */
12192 	if (TAILQ_EMPTY(&indirdep->ir_trunc)) {
12193 		while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != NULL) {
12194 			handle_allocindir_partdone(aip);
12195 			if (aip == LIST_FIRST(&indirdep->ir_donehd))
12196 				panic("disk_write_complete: not gone");
12197 			chgs = 1;
12198 		}
12199 	}
12200 	/*
12201 	 * Preserve the indirdep if there were any changes or if it is not
12202 	 * yet valid on disk.
12203 	 */
12204 	if (chgs) {
12205 		stat_indir_blk_ptrs++;
12206 		bdirty(bp);
12207 		return (1);
12208 	}
12209 	/*
12210 	 * If there were no changes we can discard the savedbp and detach
12211 	 * ourselves from the buf.  We are only carrying completed pointers
12212 	 * in this case.
12213 	 */
12214 	sbp = indirdep->ir_savebp;
12215 	sbp->b_flags |= B_INVAL | B_NOCACHE;
12216 	indirdep->ir_savebp = NULL;
12217 	indirdep->ir_bp = NULL;
12218 	if (*bpp != NULL)
12219 		panic("handle_written_indirdep: bp already exists.");
12220 	*bpp = sbp;
12221 	/*
12222 	 * The indirdep may not be freed until its parent points at it.
12223 	 */
12224 	if (indirdep->ir_state & DEPCOMPLETE)
12225 		free_indirdep(indirdep);
12226 
12227 	return (0);
12228 }
12229 
12230 /*
12231  * Process a diradd entry after its dependent inode has been written.
12232  */
12233 static void
12234 diradd_inode_written(dap, inodedep)
12235 	struct diradd *dap;
12236 	struct inodedep *inodedep;
12237 {
12238 
12239 	LOCK_OWNED(VFSTOUFS(dap->da_list.wk_mp));
12240 	dap->da_state |= COMPLETE;
12241 	complete_diradd(dap);
12242 	WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list);
12243 }
12244 
12245 /*
12246  * Returns true if the bmsafemap will have rollbacks when written.  Must only
12247  * be called with the per-filesystem lock and the buf lock on the cg held.
12248  */
12249 static int
12250 bmsafemap_backgroundwrite(bmsafemap, bp)
12251 	struct bmsafemap *bmsafemap;
12252 	struct buf *bp;
12253 {
12254 	int dirty;
12255 
12256 	LOCK_OWNED(VFSTOUFS(bmsafemap->sm_list.wk_mp));
12257 	dirty = !LIST_EMPTY(&bmsafemap->sm_jaddrefhd) |
12258 	    !LIST_EMPTY(&bmsafemap->sm_jnewblkhd);
12259 	/*
12260 	 * If we're initiating a background write we need to process the
12261 	 * rollbacks as they exist now, not as they exist when IO starts.
12262 	 * No other consumers will look at the contents of the shadowed
12263 	 * buf so this is safe to do here.
12264 	 */
12265 	if (bp->b_xflags & BX_BKGRDMARKER)
12266 		initiate_write_bmsafemap(bmsafemap, bp);
12267 
12268 	return (dirty);
12269 }
12270 
12271 /*
12272  * Re-apply an allocation when a cg write is complete.
12273  */
12274 static int
12275 jnewblk_rollforward(jnewblk, fs, cgp, blksfree)
12276 	struct jnewblk *jnewblk;
12277 	struct fs *fs;
12278 	struct cg *cgp;
12279 	uint8_t *blksfree;
12280 {
12281 	ufs1_daddr_t fragno;
12282 	ufs2_daddr_t blkno;
12283 	long cgbno, bbase;
12284 	int frags, blk;
12285 	int i;
12286 
12287 	frags = 0;
12288 	cgbno = dtogd(fs, jnewblk->jn_blkno);
12289 	for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; i++) {
12290 		if (isclr(blksfree, cgbno + i))
12291 			panic("jnewblk_rollforward: re-allocated fragment");
12292 		frags++;
12293 	}
12294 	if (frags == fs->fs_frag) {
12295 		blkno = fragstoblks(fs, cgbno);
12296 		ffs_clrblock(fs, blksfree, (long)blkno);
12297 		ffs_clusteracct(fs, cgp, blkno, -1);
12298 		cgp->cg_cs.cs_nbfree--;
12299 	} else {
12300 		bbase = cgbno - fragnum(fs, cgbno);
12301 		cgbno += jnewblk->jn_oldfrags;
12302                 /* If a complete block had been reassembled, account for it. */
12303 		fragno = fragstoblks(fs, bbase);
12304 		if (ffs_isblock(fs, blksfree, fragno)) {
12305 			cgp->cg_cs.cs_nffree += fs->fs_frag;
12306 			ffs_clusteracct(fs, cgp, fragno, -1);
12307 			cgp->cg_cs.cs_nbfree--;
12308 		}
12309 		/* Decrement the old frags.  */
12310 		blk = blkmap(fs, blksfree, bbase);
12311 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
12312 		/* Allocate the fragment */
12313 		for (i = 0; i < frags; i++)
12314 			clrbit(blksfree, cgbno + i);
12315 		cgp->cg_cs.cs_nffree -= frags;
12316 		/* Add back in counts associated with the new frags */
12317 		blk = blkmap(fs, blksfree, bbase);
12318 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
12319 	}
12320 	return (frags);
12321 }
12322 
12323 /*
12324  * Complete a write to a bmsafemap structure.  Roll forward any bitmap
12325  * changes if it's not a background write.  Set all written dependencies
12326  * to DEPCOMPLETE and free the structure if possible.
12327  *
12328  * If the write did not succeed, we will do all the roll-forward
12329  * operations, but we will not take the actions that will allow its
12330  * dependencies to be processed.
12331  */
12332 static int
12333 handle_written_bmsafemap(bmsafemap, bp, flags)
12334 	struct bmsafemap *bmsafemap;
12335 	struct buf *bp;
12336 	int flags;
12337 {
12338 	struct newblk *newblk;
12339 	struct inodedep *inodedep;
12340 	struct jaddref *jaddref, *jatmp;
12341 	struct jnewblk *jnewblk, *jntmp;
12342 	struct ufsmount *ump;
12343 	uint8_t *inosused;
12344 	uint8_t *blksfree;
12345 	struct cg *cgp;
12346 	struct fs *fs;
12347 	ino_t ino;
12348 	int foreground;
12349 	int chgs;
12350 
12351 	if ((bmsafemap->sm_state & IOSTARTED) == 0)
12352 		panic("handle_written_bmsafemap: Not started\n");
12353 	ump = VFSTOUFS(bmsafemap->sm_list.wk_mp);
12354 	chgs = 0;
12355 	bmsafemap->sm_state &= ~IOSTARTED;
12356 	foreground = (bp->b_xflags & BX_BKGRDMARKER) == 0;
12357 	/*
12358 	 * If write was successful, release journal work that was waiting
12359 	 * on the write. Otherwise move the work back.
12360 	 */
12361 	if (flags & WRITESUCCEEDED)
12362 		handle_jwork(&bmsafemap->sm_freewr);
12363 	else
12364 		LIST_CONCAT(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr,
12365 		    worklist, wk_list);
12366 
12367 	/*
12368 	 * Restore unwritten inode allocation pending jaddref writes.
12369 	 */
12370 	if (!LIST_EMPTY(&bmsafemap->sm_jaddrefhd)) {
12371 		cgp = (struct cg *)bp->b_data;
12372 		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
12373 		inosused = cg_inosused(cgp);
12374 		LIST_FOREACH_SAFE(jaddref, &bmsafemap->sm_jaddrefhd,
12375 		    ja_bmdeps, jatmp) {
12376 			if ((jaddref->ja_state & UNDONE) == 0)
12377 				continue;
12378 			ino = jaddref->ja_ino % fs->fs_ipg;
12379 			if (isset(inosused, ino))
12380 				panic("handle_written_bmsafemap: "
12381 				    "re-allocated inode");
12382 			/* Do the roll-forward only if it's a real copy. */
12383 			if (foreground) {
12384 				if ((jaddref->ja_mode & IFMT) == IFDIR)
12385 					cgp->cg_cs.cs_ndir++;
12386 				cgp->cg_cs.cs_nifree--;
12387 				setbit(inosused, ino);
12388 				chgs = 1;
12389 			}
12390 			jaddref->ja_state &= ~UNDONE;
12391 			jaddref->ja_state |= ATTACHED;
12392 			free_jaddref(jaddref);
12393 		}
12394 	}
12395 	/*
12396 	 * Restore any block allocations which are pending journal writes.
12397 	 */
12398 	if (LIST_FIRST(&bmsafemap->sm_jnewblkhd) != NULL) {
12399 		cgp = (struct cg *)bp->b_data;
12400 		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
12401 		blksfree = cg_blksfree(cgp);
12402 		LIST_FOREACH_SAFE(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps,
12403 		    jntmp) {
12404 			if ((jnewblk->jn_state & UNDONE) == 0)
12405 				continue;
12406 			/* Do the roll-forward only if it's a real copy. */
12407 			if (foreground &&
12408 			    jnewblk_rollforward(jnewblk, fs, cgp, blksfree))
12409 				chgs = 1;
12410 			jnewblk->jn_state &= ~(UNDONE | NEWBLOCK);
12411 			jnewblk->jn_state |= ATTACHED;
12412 			free_jnewblk(jnewblk);
12413 		}
12414 	}
12415 	/*
12416 	 * If the write did not succeed, we have done all the roll-forward
12417 	 * operations, but we cannot take the actions that will allow its
12418 	 * dependencies to be processed.
12419 	 */
12420 	if ((flags & WRITESUCCEEDED) == 0) {
12421 		LIST_CONCAT(&bmsafemap->sm_newblkhd, &bmsafemap->sm_newblkwr,
12422 		    newblk, nb_deps);
12423 		LIST_CONCAT(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr,
12424 		    worklist, wk_list);
12425 		if (foreground)
12426 			bdirty(bp);
12427 		return (1);
12428 	}
12429 	while ((newblk = LIST_FIRST(&bmsafemap->sm_newblkwr))) {
12430 		newblk->nb_state |= DEPCOMPLETE;
12431 		newblk->nb_state &= ~ONDEPLIST;
12432 		newblk->nb_bmsafemap = NULL;
12433 		LIST_REMOVE(newblk, nb_deps);
12434 		if (newblk->nb_list.wk_type == D_ALLOCDIRECT)
12435 			handle_allocdirect_partdone(
12436 			    WK_ALLOCDIRECT(&newblk->nb_list), NULL);
12437 		else if (newblk->nb_list.wk_type == D_ALLOCINDIR)
12438 			handle_allocindir_partdone(
12439 			    WK_ALLOCINDIR(&newblk->nb_list));
12440 		else if (newblk->nb_list.wk_type != D_NEWBLK)
12441 			panic("handle_written_bmsafemap: Unexpected type: %s",
12442 			    TYPENAME(newblk->nb_list.wk_type));
12443 	}
12444 	while ((inodedep = LIST_FIRST(&bmsafemap->sm_inodedepwr)) != NULL) {
12445 		inodedep->id_state |= DEPCOMPLETE;
12446 		inodedep->id_state &= ~ONDEPLIST;
12447 		LIST_REMOVE(inodedep, id_deps);
12448 		inodedep->id_bmsafemap = NULL;
12449 	}
12450 	LIST_REMOVE(bmsafemap, sm_next);
12451 	if (chgs == 0 && LIST_EMPTY(&bmsafemap->sm_jaddrefhd) &&
12452 	    LIST_EMPTY(&bmsafemap->sm_jnewblkhd) &&
12453 	    LIST_EMPTY(&bmsafemap->sm_newblkhd) &&
12454 	    LIST_EMPTY(&bmsafemap->sm_inodedephd) &&
12455 	    LIST_EMPTY(&bmsafemap->sm_freehd)) {
12456 		LIST_REMOVE(bmsafemap, sm_hash);
12457 		WORKITEM_FREE(bmsafemap, D_BMSAFEMAP);
12458 		return (0);
12459 	}
12460 	LIST_INSERT_HEAD(&ump->softdep_dirtycg, bmsafemap, sm_next);
12461 	if (foreground)
12462 		bdirty(bp);
12463 	return (1);
12464 }
12465 
12466 /*
12467  * Try to free a mkdir dependency.
12468  */
12469 static void
12470 complete_mkdir(mkdir)
12471 	struct mkdir *mkdir;
12472 {
12473 	struct diradd *dap;
12474 
12475 	if ((mkdir->md_state & ALLCOMPLETE) != ALLCOMPLETE)
12476 		return;
12477 	LIST_REMOVE(mkdir, md_mkdirs);
12478 	dap = mkdir->md_diradd;
12479 	dap->da_state &= ~(mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY));
12480 	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0) {
12481 		dap->da_state |= DEPCOMPLETE;
12482 		complete_diradd(dap);
12483 	}
12484 	WORKITEM_FREE(mkdir, D_MKDIR);
12485 }
12486 
12487 /*
12488  * Handle the completion of a mkdir dependency.
12489  */
12490 static void
12491 handle_written_mkdir(mkdir, type)
12492 	struct mkdir *mkdir;
12493 	int type;
12494 {
12495 
12496 	if ((mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY)) != type)
12497 		panic("handle_written_mkdir: bad type");
12498 	mkdir->md_state |= COMPLETE;
12499 	complete_mkdir(mkdir);
12500 }
12501 
12502 static int
12503 free_pagedep(pagedep)
12504 	struct pagedep *pagedep;
12505 {
12506 	int i;
12507 
12508 	if (pagedep->pd_state & NEWBLOCK)
12509 		return (0);
12510 	if (!LIST_EMPTY(&pagedep->pd_dirremhd))
12511 		return (0);
12512 	for (i = 0; i < DAHASHSZ; i++)
12513 		if (!LIST_EMPTY(&pagedep->pd_diraddhd[i]))
12514 			return (0);
12515 	if (!LIST_EMPTY(&pagedep->pd_pendinghd))
12516 		return (0);
12517 	if (!LIST_EMPTY(&pagedep->pd_jmvrefhd))
12518 		return (0);
12519 	if (pagedep->pd_state & ONWORKLIST)
12520 		WORKLIST_REMOVE(&pagedep->pd_list);
12521 	LIST_REMOVE(pagedep, pd_hash);
12522 	WORKITEM_FREE(pagedep, D_PAGEDEP);
12523 
12524 	return (1);
12525 }
12526 
12527 /*
12528  * Called from within softdep_disk_write_complete above.
12529  * A write operation was just completed. Removed inodes can
12530  * now be freed and associated block pointers may be committed.
12531  * Note that this routine is always called from interrupt level
12532  * with further interrupts from this device blocked.
12533  *
12534  * If the write did not succeed, we will do all the roll-forward
12535  * operations, but we will not take the actions that will allow its
12536  * dependencies to be processed.
12537  */
12538 static int
12539 handle_written_filepage(pagedep, bp, flags)
12540 	struct pagedep *pagedep;
12541 	struct buf *bp;		/* buffer containing the written page */
12542 	int flags;
12543 {
12544 	struct dirrem *dirrem;
12545 	struct diradd *dap, *nextdap;
12546 	struct direct *ep;
12547 	int i, chgs;
12548 
12549 	if ((pagedep->pd_state & IOSTARTED) == 0)
12550 		panic("handle_written_filepage: not started");
12551 	pagedep->pd_state &= ~IOSTARTED;
12552 	if ((flags & WRITESUCCEEDED) == 0)
12553 		goto rollforward;
12554 	/*
12555 	 * Process any directory removals that have been committed.
12556 	 */
12557 	while ((dirrem = LIST_FIRST(&pagedep->pd_dirremhd)) != NULL) {
12558 		LIST_REMOVE(dirrem, dm_next);
12559 		dirrem->dm_state |= COMPLETE;
12560 		dirrem->dm_dirinum = pagedep->pd_ino;
12561 		KASSERT(LIST_EMPTY(&dirrem->dm_jremrefhd),
12562 		    ("handle_written_filepage: Journal entries not written."));
12563 		add_to_worklist(&dirrem->dm_list, 0);
12564 	}
12565 	/*
12566 	 * Free any directory additions that have been committed.
12567 	 * If it is a newly allocated block, we have to wait until
12568 	 * the on-disk directory inode claims the new block.
12569 	 */
12570 	if ((pagedep->pd_state & NEWBLOCK) == 0)
12571 		while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL)
12572 			free_diradd(dap, NULL);
12573 rollforward:
12574 	/*
12575 	 * Uncommitted directory entries must be restored.
12576 	 */
12577 	for (chgs = 0, i = 0; i < DAHASHSZ; i++) {
12578 		for (dap = LIST_FIRST(&pagedep->pd_diraddhd[i]); dap;
12579 		     dap = nextdap) {
12580 			nextdap = LIST_NEXT(dap, da_pdlist);
12581 			if (dap->da_state & ATTACHED)
12582 				panic("handle_written_filepage: attached");
12583 			ep = (struct direct *)
12584 			    ((char *)bp->b_data + dap->da_offset);
12585 			ep->d_ino = dap->da_newinum;
12586 			dap->da_state &= ~UNDONE;
12587 			dap->da_state |= ATTACHED;
12588 			chgs = 1;
12589 			/*
12590 			 * If the inode referenced by the directory has
12591 			 * been written out, then the dependency can be
12592 			 * moved to the pending list.
12593 			 */
12594 			if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
12595 				LIST_REMOVE(dap, da_pdlist);
12596 				LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap,
12597 				    da_pdlist);
12598 			}
12599 		}
12600 	}
12601 	/*
12602 	 * If there were any rollbacks in the directory, then it must be
12603 	 * marked dirty so that its will eventually get written back in
12604 	 * its correct form.
12605 	 */
12606 	if (chgs || (flags & WRITESUCCEEDED) == 0) {
12607 		if ((bp->b_flags & B_DELWRI) == 0)
12608 			stat_dir_entry++;
12609 		bdirty(bp);
12610 		return (1);
12611 	}
12612 	/*
12613 	 * If we are not waiting for a new directory block to be
12614 	 * claimed by its inode, then the pagedep will be freed.
12615 	 * Otherwise it will remain to track any new entries on
12616 	 * the page in case they are fsync'ed.
12617 	 */
12618 	free_pagedep(pagedep);
12619 	return (0);
12620 }
12621 
12622 /*
12623  * Writing back in-core inode structures.
12624  *
12625  * The filesystem only accesses an inode's contents when it occupies an
12626  * "in-core" inode structure.  These "in-core" structures are separate from
12627  * the page frames used to cache inode blocks.  Only the latter are
12628  * transferred to/from the disk.  So, when the updated contents of the
12629  * "in-core" inode structure are copied to the corresponding in-memory inode
12630  * block, the dependencies are also transferred.  The following procedure is
12631  * called when copying a dirty "in-core" inode to a cached inode block.
12632  */
12633 
12634 /*
12635  * Called when an inode is loaded from disk. If the effective link count
12636  * differed from the actual link count when it was last flushed, then we
12637  * need to ensure that the correct effective link count is put back.
12638  */
12639 void
12640 softdep_load_inodeblock(ip)
12641 	struct inode *ip;	/* the "in_core" copy of the inode */
12642 {
12643 	struct inodedep *inodedep;
12644 	struct ufsmount *ump;
12645 
12646 	ump = ITOUMP(ip);
12647 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
12648 	    ("softdep_load_inodeblock called on non-softdep filesystem"));
12649 	/*
12650 	 * Check for alternate nlink count.
12651 	 */
12652 	ip->i_effnlink = ip->i_nlink;
12653 	ACQUIRE_LOCK(ump);
12654 	if (inodedep_lookup(UFSTOVFS(ump), ip->i_number, 0, &inodedep) == 0) {
12655 		FREE_LOCK(ump);
12656 		return;
12657 	}
12658 	if (ip->i_nlink != inodedep->id_nlinkwrote &&
12659 	    inodedep->id_nlinkwrote != -1) {
12660 		KASSERT(ip->i_nlink == 0 &&
12661 		    (ump->um_flags & UM_FSFAIL_CLEANUP) != 0,
12662 		    ("read bad i_nlink value"));
12663 		ip->i_effnlink = ip->i_nlink = inodedep->id_nlinkwrote;
12664 	}
12665 	ip->i_effnlink -= inodedep->id_nlinkdelta;
12666 	KASSERT(ip->i_effnlink >= 0,
12667 	    ("softdep_load_inodeblock: negative i_effnlink"));
12668 	FREE_LOCK(ump);
12669 }
12670 
12671 /*
12672  * This routine is called just before the "in-core" inode
12673  * information is to be copied to the in-memory inode block.
12674  * Recall that an inode block contains several inodes. If
12675  * the force flag is set, then the dependencies will be
12676  * cleared so that the update can always be made. Note that
12677  * the buffer is locked when this routine is called, so we
12678  * will never be in the middle of writing the inode block
12679  * to disk.
12680  */
12681 void
12682 softdep_update_inodeblock(ip, bp, waitfor)
12683 	struct inode *ip;	/* the "in_core" copy of the inode */
12684 	struct buf *bp;		/* the buffer containing the inode block */
12685 	int waitfor;		/* nonzero => update must be allowed */
12686 {
12687 	struct inodedep *inodedep;
12688 	struct inoref *inoref;
12689 	struct ufsmount *ump;
12690 	struct worklist *wk;
12691 	struct mount *mp;
12692 	struct buf *ibp;
12693 	struct fs *fs;
12694 	int error;
12695 
12696 	ump = ITOUMP(ip);
12697 	mp = UFSTOVFS(ump);
12698 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
12699 	    ("softdep_update_inodeblock called on non-softdep filesystem"));
12700 	fs = ump->um_fs;
12701 	/*
12702 	 * Preserve the freelink that is on disk.  clear_unlinked_inodedep()
12703 	 * does not have access to the in-core ip so must write directly into
12704 	 * the inode block buffer when setting freelink.
12705 	 */
12706 	if (fs->fs_magic == FS_UFS1_MAGIC)
12707 		DIP_SET(ip, i_freelink, ((struct ufs1_dinode *)bp->b_data +
12708 		    ino_to_fsbo(fs, ip->i_number))->di_freelink);
12709 	else
12710 		DIP_SET(ip, i_freelink, ((struct ufs2_dinode *)bp->b_data +
12711 		    ino_to_fsbo(fs, ip->i_number))->di_freelink);
12712 	/*
12713 	 * If the effective link count is not equal to the actual link
12714 	 * count, then we must track the difference in an inodedep while
12715 	 * the inode is (potentially) tossed out of the cache. Otherwise,
12716 	 * if there is no existing inodedep, then there are no dependencies
12717 	 * to track.
12718 	 */
12719 	ACQUIRE_LOCK(ump);
12720 again:
12721 	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) {
12722 		FREE_LOCK(ump);
12723 		if (ip->i_effnlink != ip->i_nlink)
12724 			panic("softdep_update_inodeblock: bad link count");
12725 		return;
12726 	}
12727 	KASSERT(ip->i_nlink >= inodedep->id_nlinkdelta,
12728 	    ("softdep_update_inodeblock inconsistent ip %p i_nlink %d "
12729 	    "inodedep %p id_nlinkdelta %jd",
12730 	    ip, ip->i_nlink, inodedep, (intmax_t)inodedep->id_nlinkdelta));
12731 	inodedep->id_nlinkwrote = ip->i_nlink;
12732 	if (inodedep->id_nlinkdelta != ip->i_nlink - ip->i_effnlink)
12733 		panic("softdep_update_inodeblock: bad delta");
12734 	/*
12735 	 * If we're flushing all dependencies we must also move any waiting
12736 	 * for journal writes onto the bufwait list prior to I/O.
12737 	 */
12738 	if (waitfor) {
12739 		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
12740 			if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
12741 			    == DEPCOMPLETE) {
12742 				jwait(&inoref->if_list, MNT_WAIT);
12743 				goto again;
12744 			}
12745 		}
12746 	}
12747 	/*
12748 	 * Changes have been initiated. Anything depending on these
12749 	 * changes cannot occur until this inode has been written.
12750 	 */
12751 	inodedep->id_state &= ~COMPLETE;
12752 	if ((inodedep->id_state & ONWORKLIST) == 0)
12753 		WORKLIST_INSERT(&bp->b_dep, &inodedep->id_list);
12754 	/*
12755 	 * Any new dependencies associated with the incore inode must
12756 	 * now be moved to the list associated with the buffer holding
12757 	 * the in-memory copy of the inode. Once merged process any
12758 	 * allocdirects that are completed by the merger.
12759 	 */
12760 	merge_inode_lists(&inodedep->id_newinoupdt, &inodedep->id_inoupdt);
12761 	if (!TAILQ_EMPTY(&inodedep->id_inoupdt))
12762 		handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_inoupdt),
12763 		    NULL);
12764 	merge_inode_lists(&inodedep->id_newextupdt, &inodedep->id_extupdt);
12765 	if (!TAILQ_EMPTY(&inodedep->id_extupdt))
12766 		handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_extupdt),
12767 		    NULL);
12768 	/*
12769 	 * Now that the inode has been pushed into the buffer, the
12770 	 * operations dependent on the inode being written to disk
12771 	 * can be moved to the id_bufwait so that they will be
12772 	 * processed when the buffer I/O completes.
12773 	 */
12774 	while ((wk = LIST_FIRST(&inodedep->id_inowait)) != NULL) {
12775 		WORKLIST_REMOVE(wk);
12776 		WORKLIST_INSERT(&inodedep->id_bufwait, wk);
12777 	}
12778 	/*
12779 	 * Newly allocated inodes cannot be written until the bitmap
12780 	 * that allocates them have been written (indicated by
12781 	 * DEPCOMPLETE being set in id_state). If we are doing a
12782 	 * forced sync (e.g., an fsync on a file), we force the bitmap
12783 	 * to be written so that the update can be done.
12784 	 */
12785 	if (waitfor == 0) {
12786 		FREE_LOCK(ump);
12787 		return;
12788 	}
12789 retry:
12790 	if ((inodedep->id_state & (DEPCOMPLETE | GOINGAWAY)) != 0) {
12791 		FREE_LOCK(ump);
12792 		return;
12793 	}
12794 	ibp = inodedep->id_bmsafemap->sm_buf;
12795 	ibp = getdirtybuf(ibp, LOCK_PTR(ump), MNT_WAIT);
12796 	if (ibp == NULL) {
12797 		/*
12798 		 * If ibp came back as NULL, the dependency could have been
12799 		 * freed while we slept.  Look it up again, and check to see
12800 		 * that it has completed.
12801 		 */
12802 		if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0)
12803 			goto retry;
12804 		FREE_LOCK(ump);
12805 		return;
12806 	}
12807 	FREE_LOCK(ump);
12808 	if ((error = bwrite(ibp)) != 0)
12809 		softdep_error("softdep_update_inodeblock: bwrite", error);
12810 }
12811 
12812 /*
12813  * Merge the a new inode dependency list (such as id_newinoupdt) into an
12814  * old inode dependency list (such as id_inoupdt).
12815  */
12816 static void
12817 merge_inode_lists(newlisthead, oldlisthead)
12818 	struct allocdirectlst *newlisthead;
12819 	struct allocdirectlst *oldlisthead;
12820 {
12821 	struct allocdirect *listadp, *newadp;
12822 
12823 	newadp = TAILQ_FIRST(newlisthead);
12824 	if (newadp != NULL)
12825 		LOCK_OWNED(VFSTOUFS(newadp->ad_block.nb_list.wk_mp));
12826 	for (listadp = TAILQ_FIRST(oldlisthead); listadp && newadp;) {
12827 		if (listadp->ad_offset < newadp->ad_offset) {
12828 			listadp = TAILQ_NEXT(listadp, ad_next);
12829 			continue;
12830 		}
12831 		TAILQ_REMOVE(newlisthead, newadp, ad_next);
12832 		TAILQ_INSERT_BEFORE(listadp, newadp, ad_next);
12833 		if (listadp->ad_offset == newadp->ad_offset) {
12834 			allocdirect_merge(oldlisthead, newadp,
12835 			    listadp);
12836 			listadp = newadp;
12837 		}
12838 		newadp = TAILQ_FIRST(newlisthead);
12839 	}
12840 	while ((newadp = TAILQ_FIRST(newlisthead)) != NULL) {
12841 		TAILQ_REMOVE(newlisthead, newadp, ad_next);
12842 		TAILQ_INSERT_TAIL(oldlisthead, newadp, ad_next);
12843 	}
12844 }
12845 
12846 /*
12847  * If we are doing an fsync, then we must ensure that any directory
12848  * entries for the inode have been written after the inode gets to disk.
12849  */
12850 int
12851 softdep_fsync(vp)
12852 	struct vnode *vp;	/* the "in_core" copy of the inode */
12853 {
12854 	struct inodedep *inodedep;
12855 	struct pagedep *pagedep;
12856 	struct inoref *inoref;
12857 	struct ufsmount *ump;
12858 	struct worklist *wk;
12859 	struct diradd *dap;
12860 	struct mount *mp;
12861 	struct vnode *pvp;
12862 	struct inode *ip;
12863 	struct buf *bp;
12864 	struct fs *fs;
12865 	struct thread *td = curthread;
12866 	int error, flushparent, pagedep_new_block;
12867 	ino_t parentino;
12868 	ufs_lbn_t lbn;
12869 
12870 	ip = VTOI(vp);
12871 	mp = vp->v_mount;
12872 	ump = VFSTOUFS(mp);
12873 	fs = ump->um_fs;
12874 	if (MOUNTEDSOFTDEP(mp) == 0)
12875 		return (0);
12876 	ACQUIRE_LOCK(ump);
12877 restart:
12878 	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) {
12879 		FREE_LOCK(ump);
12880 		return (0);
12881 	}
12882 	TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
12883 		if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
12884 		    == DEPCOMPLETE) {
12885 			jwait(&inoref->if_list, MNT_WAIT);
12886 			goto restart;
12887 		}
12888 	}
12889 	if (!LIST_EMPTY(&inodedep->id_inowait) ||
12890 	    !TAILQ_EMPTY(&inodedep->id_extupdt) ||
12891 	    !TAILQ_EMPTY(&inodedep->id_newextupdt) ||
12892 	    !TAILQ_EMPTY(&inodedep->id_inoupdt) ||
12893 	    !TAILQ_EMPTY(&inodedep->id_newinoupdt))
12894 		panic("softdep_fsync: pending ops %p", inodedep);
12895 	for (error = 0, flushparent = 0; ; ) {
12896 		if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) == NULL)
12897 			break;
12898 		if (wk->wk_type != D_DIRADD)
12899 			panic("softdep_fsync: Unexpected type %s",
12900 			    TYPENAME(wk->wk_type));
12901 		dap = WK_DIRADD(wk);
12902 		/*
12903 		 * Flush our parent if this directory entry has a MKDIR_PARENT
12904 		 * dependency or is contained in a newly allocated block.
12905 		 */
12906 		if (dap->da_state & DIRCHG)
12907 			pagedep = dap->da_previous->dm_pagedep;
12908 		else
12909 			pagedep = dap->da_pagedep;
12910 		parentino = pagedep->pd_ino;
12911 		lbn = pagedep->pd_lbn;
12912 		if ((dap->da_state & (MKDIR_BODY | COMPLETE)) != COMPLETE)
12913 			panic("softdep_fsync: dirty");
12914 		if ((dap->da_state & MKDIR_PARENT) ||
12915 		    (pagedep->pd_state & NEWBLOCK))
12916 			flushparent = 1;
12917 		else
12918 			flushparent = 0;
12919 		/*
12920 		 * If we are being fsync'ed as part of vgone'ing this vnode,
12921 		 * then we will not be able to release and recover the
12922 		 * vnode below, so we just have to give up on writing its
12923 		 * directory entry out. It will eventually be written, just
12924 		 * not now, but then the user was not asking to have it
12925 		 * written, so we are not breaking any promises.
12926 		 */
12927 		if (VN_IS_DOOMED(vp))
12928 			break;
12929 		/*
12930 		 * We prevent deadlock by always fetching inodes from the
12931 		 * root, moving down the directory tree. Thus, when fetching
12932 		 * our parent directory, we first try to get the lock. If
12933 		 * that fails, we must unlock ourselves before requesting
12934 		 * the lock on our parent. See the comment in ufs_lookup
12935 		 * for details on possible races.
12936 		 */
12937 		FREE_LOCK(ump);
12938 		error = get_parent_vp(vp, mp, parentino, NULL, NULL, NULL,
12939 		    &pvp);
12940 		if (error == ERELOOKUP)
12941 			error = 0;
12942 		if (error != 0)
12943 			return (error);
12944 		/*
12945 		 * All MKDIR_PARENT dependencies and all the NEWBLOCK pagedeps
12946 		 * that are contained in direct blocks will be resolved by
12947 		 * doing a ffs_update. Pagedeps contained in indirect blocks
12948 		 * may require a complete sync'ing of the directory. So, we
12949 		 * try the cheap and fast ffs_update first, and if that fails,
12950 		 * then we do the slower ffs_syncvnode of the directory.
12951 		 */
12952 		if (flushparent) {
12953 			int locked;
12954 
12955 			if ((error = ffs_update(pvp, 1)) != 0) {
12956 				vput(pvp);
12957 				return (error);
12958 			}
12959 			ACQUIRE_LOCK(ump);
12960 			locked = 1;
12961 			if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0) {
12962 				if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) != NULL) {
12963 					if (wk->wk_type != D_DIRADD)
12964 						panic("softdep_fsync: Unexpected type %s",
12965 						      TYPENAME(wk->wk_type));
12966 					dap = WK_DIRADD(wk);
12967 					if (dap->da_state & DIRCHG)
12968 						pagedep = dap->da_previous->dm_pagedep;
12969 					else
12970 						pagedep = dap->da_pagedep;
12971 					pagedep_new_block = pagedep->pd_state & NEWBLOCK;
12972 					FREE_LOCK(ump);
12973 					locked = 0;
12974 					if (pagedep_new_block && (error =
12975 					    ffs_syncvnode(pvp, MNT_WAIT, 0))) {
12976 						vput(pvp);
12977 						return (error);
12978 					}
12979 				}
12980 			}
12981 			if (locked)
12982 				FREE_LOCK(ump);
12983 		}
12984 		/*
12985 		 * Flush directory page containing the inode's name.
12986 		 */
12987 		error = bread(pvp, lbn, blksize(fs, VTOI(pvp), lbn), td->td_ucred,
12988 		    &bp);
12989 		if (error == 0)
12990 			error = bwrite(bp);
12991 		else
12992 			brelse(bp);
12993 		vput(pvp);
12994 		if (!ffs_fsfail_cleanup(ump, error))
12995 			return (error);
12996 		ACQUIRE_LOCK(ump);
12997 		if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0)
12998 			break;
12999 	}
13000 	FREE_LOCK(ump);
13001 	return (0);
13002 }
13003 
13004 /*
13005  * Flush all the dirty bitmaps associated with the block device
13006  * before flushing the rest of the dirty blocks so as to reduce
13007  * the number of dependencies that will have to be rolled back.
13008  *
13009  * XXX Unused?
13010  */
13011 void
13012 softdep_fsync_mountdev(vp)
13013 	struct vnode *vp;
13014 {
13015 	struct buf *bp, *nbp;
13016 	struct worklist *wk;
13017 	struct bufobj *bo;
13018 
13019 	if (!vn_isdisk(vp))
13020 		panic("softdep_fsync_mountdev: vnode not a disk");
13021 	bo = &vp->v_bufobj;
13022 restart:
13023 	BO_LOCK(bo);
13024 	TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
13025 		/*
13026 		 * If it is already scheduled, skip to the next buffer.
13027 		 */
13028 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL))
13029 			continue;
13030 
13031 		if ((bp->b_flags & B_DELWRI) == 0)
13032 			panic("softdep_fsync_mountdev: not dirty");
13033 		/*
13034 		 * We are only interested in bitmaps with outstanding
13035 		 * dependencies.
13036 		 */
13037 		if ((wk = LIST_FIRST(&bp->b_dep)) == NULL ||
13038 		    wk->wk_type != D_BMSAFEMAP ||
13039 		    (bp->b_vflags & BV_BKGRDINPROG)) {
13040 			BUF_UNLOCK(bp);
13041 			continue;
13042 		}
13043 		BO_UNLOCK(bo);
13044 		bremfree(bp);
13045 		(void) bawrite(bp);
13046 		goto restart;
13047 	}
13048 	drain_output(vp);
13049 	BO_UNLOCK(bo);
13050 }
13051 
13052 /*
13053  * Sync all cylinder groups that were dirty at the time this function is
13054  * called.  Newly dirtied cgs will be inserted before the sentinel.  This
13055  * is used to flush freedep activity that may be holding up writes to a
13056  * indirect block.
13057  */
13058 static int
13059 sync_cgs(mp, waitfor)
13060 	struct mount *mp;
13061 	int waitfor;
13062 {
13063 	struct bmsafemap *bmsafemap;
13064 	struct bmsafemap *sentinel;
13065 	struct ufsmount *ump;
13066 	struct buf *bp;
13067 	int error;
13068 
13069 	sentinel = malloc(sizeof(*sentinel), M_BMSAFEMAP, M_ZERO | M_WAITOK);
13070 	sentinel->sm_cg = -1;
13071 	ump = VFSTOUFS(mp);
13072 	error = 0;
13073 	ACQUIRE_LOCK(ump);
13074 	LIST_INSERT_HEAD(&ump->softdep_dirtycg, sentinel, sm_next);
13075 	for (bmsafemap = LIST_NEXT(sentinel, sm_next); bmsafemap != NULL;
13076 	    bmsafemap = LIST_NEXT(sentinel, sm_next)) {
13077 		/* Skip sentinels and cgs with no work to release. */
13078 		if (bmsafemap->sm_cg == -1 ||
13079 		    (LIST_EMPTY(&bmsafemap->sm_freehd) &&
13080 		    LIST_EMPTY(&bmsafemap->sm_freewr))) {
13081 			LIST_REMOVE(sentinel, sm_next);
13082 			LIST_INSERT_AFTER(bmsafemap, sentinel, sm_next);
13083 			continue;
13084 		}
13085 		/*
13086 		 * If we don't get the lock and we're waiting try again, if
13087 		 * not move on to the next buf and try to sync it.
13088 		 */
13089 		bp = getdirtybuf(bmsafemap->sm_buf, LOCK_PTR(ump), waitfor);
13090 		if (bp == NULL && waitfor == MNT_WAIT)
13091 			continue;
13092 		LIST_REMOVE(sentinel, sm_next);
13093 		LIST_INSERT_AFTER(bmsafemap, sentinel, sm_next);
13094 		if (bp == NULL)
13095 			continue;
13096 		FREE_LOCK(ump);
13097 		if (waitfor == MNT_NOWAIT)
13098 			bawrite(bp);
13099 		else
13100 			error = bwrite(bp);
13101 		ACQUIRE_LOCK(ump);
13102 		if (error)
13103 			break;
13104 	}
13105 	LIST_REMOVE(sentinel, sm_next);
13106 	FREE_LOCK(ump);
13107 	free(sentinel, M_BMSAFEMAP);
13108 	return (error);
13109 }
13110 
13111 /*
13112  * This routine is called when we are trying to synchronously flush a
13113  * file. This routine must eliminate any filesystem metadata dependencies
13114  * so that the syncing routine can succeed.
13115  */
13116 int
13117 softdep_sync_metadata(struct vnode *vp)
13118 {
13119 	struct inode *ip;
13120 	int error;
13121 
13122 	ip = VTOI(vp);
13123 	KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0,
13124 	    ("softdep_sync_metadata called on non-softdep filesystem"));
13125 	/*
13126 	 * Ensure that any direct block dependencies have been cleared,
13127 	 * truncations are started, and inode references are journaled.
13128 	 */
13129 	ACQUIRE_LOCK(VFSTOUFS(vp->v_mount));
13130 	/*
13131 	 * Write all journal records to prevent rollbacks on devvp.
13132 	 */
13133 	if (vp->v_type == VCHR)
13134 		softdep_flushjournal(vp->v_mount);
13135 	error = flush_inodedep_deps(vp, vp->v_mount, ip->i_number);
13136 	/*
13137 	 * Ensure that all truncates are written so we won't find deps on
13138 	 * indirect blocks.
13139 	 */
13140 	process_truncates(vp);
13141 	FREE_LOCK(VFSTOUFS(vp->v_mount));
13142 
13143 	return (error);
13144 }
13145 
13146 /*
13147  * This routine is called when we are attempting to sync a buf with
13148  * dependencies.  If waitfor is MNT_NOWAIT it attempts to schedule any
13149  * other IO it can but returns EBUSY if the buffer is not yet able to
13150  * be written.  Dependencies which will not cause rollbacks will always
13151  * return 0.
13152  */
13153 int
13154 softdep_sync_buf(struct vnode *vp, struct buf *bp, int waitfor)
13155 {
13156 	struct indirdep *indirdep;
13157 	struct pagedep *pagedep;
13158 	struct allocindir *aip;
13159 	struct newblk *newblk;
13160 	struct ufsmount *ump;
13161 	struct buf *nbp;
13162 	struct worklist *wk;
13163 	int i, error;
13164 
13165 	KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0,
13166 	    ("softdep_sync_buf called on non-softdep filesystem"));
13167 	/*
13168 	 * For VCHR we just don't want to force flush any dependencies that
13169 	 * will cause rollbacks.
13170 	 */
13171 	if (vp->v_type == VCHR) {
13172 		if (waitfor == MNT_NOWAIT && softdep_count_dependencies(bp, 0))
13173 			return (EBUSY);
13174 		return (0);
13175 	}
13176 	ump = VFSTOUFS(vp->v_mount);
13177 	ACQUIRE_LOCK(ump);
13178 	/*
13179 	 * As we hold the buffer locked, none of its dependencies
13180 	 * will disappear.
13181 	 */
13182 	error = 0;
13183 top:
13184 	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
13185 		switch (wk->wk_type) {
13186 		case D_ALLOCDIRECT:
13187 		case D_ALLOCINDIR:
13188 			newblk = WK_NEWBLK(wk);
13189 			if (newblk->nb_jnewblk != NULL) {
13190 				if (waitfor == MNT_NOWAIT) {
13191 					error = EBUSY;
13192 					goto out_unlock;
13193 				}
13194 				jwait(&newblk->nb_jnewblk->jn_list, waitfor);
13195 				goto top;
13196 			}
13197 			if (newblk->nb_state & DEPCOMPLETE ||
13198 			    waitfor == MNT_NOWAIT)
13199 				continue;
13200 			nbp = newblk->nb_bmsafemap->sm_buf;
13201 			nbp = getdirtybuf(nbp, LOCK_PTR(ump), waitfor);
13202 			if (nbp == NULL)
13203 				goto top;
13204 			FREE_LOCK(ump);
13205 			if ((error = bwrite(nbp)) != 0)
13206 				goto out;
13207 			ACQUIRE_LOCK(ump);
13208 			continue;
13209 
13210 		case D_INDIRDEP:
13211 			indirdep = WK_INDIRDEP(wk);
13212 			if (waitfor == MNT_NOWAIT) {
13213 				if (!TAILQ_EMPTY(&indirdep->ir_trunc) ||
13214 				    !LIST_EMPTY(&indirdep->ir_deplisthd)) {
13215 					error = EBUSY;
13216 					goto out_unlock;
13217 				}
13218 			}
13219 			if (!TAILQ_EMPTY(&indirdep->ir_trunc))
13220 				panic("softdep_sync_buf: truncation pending.");
13221 		restart:
13222 			LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) {
13223 				newblk = (struct newblk *)aip;
13224 				if (newblk->nb_jnewblk != NULL) {
13225 					jwait(&newblk->nb_jnewblk->jn_list,
13226 					    waitfor);
13227 					goto restart;
13228 				}
13229 				if (newblk->nb_state & DEPCOMPLETE)
13230 					continue;
13231 				nbp = newblk->nb_bmsafemap->sm_buf;
13232 				nbp = getdirtybuf(nbp, LOCK_PTR(ump), waitfor);
13233 				if (nbp == NULL)
13234 					goto restart;
13235 				FREE_LOCK(ump);
13236 				if ((error = bwrite(nbp)) != 0)
13237 					goto out;
13238 				ACQUIRE_LOCK(ump);
13239 				goto restart;
13240 			}
13241 			continue;
13242 
13243 		case D_PAGEDEP:
13244 			/*
13245 			 * Only flush directory entries in synchronous passes.
13246 			 */
13247 			if (waitfor != MNT_WAIT) {
13248 				error = EBUSY;
13249 				goto out_unlock;
13250 			}
13251 			/*
13252 			 * While syncing snapshots, we must allow recursive
13253 			 * lookups.
13254 			 */
13255 			BUF_AREC(bp);
13256 			/*
13257 			 * We are trying to sync a directory that may
13258 			 * have dependencies on both its own metadata
13259 			 * and/or dependencies on the inodes of any
13260 			 * recently allocated files. We walk its diradd
13261 			 * lists pushing out the associated inode.
13262 			 */
13263 			pagedep = WK_PAGEDEP(wk);
13264 			for (i = 0; i < DAHASHSZ; i++) {
13265 				if (LIST_FIRST(&pagedep->pd_diraddhd[i]) == 0)
13266 					continue;
13267 				error = flush_pagedep_deps(vp, wk->wk_mp,
13268 				    &pagedep->pd_diraddhd[i], bp);
13269 				if (error != 0) {
13270 					if (error != ERELOOKUP)
13271 						BUF_NOREC(bp);
13272 					goto out_unlock;
13273 				}
13274 			}
13275 			BUF_NOREC(bp);
13276 			continue;
13277 
13278 		case D_FREEWORK:
13279 		case D_FREEDEP:
13280 		case D_JSEGDEP:
13281 		case D_JNEWBLK:
13282 			continue;
13283 
13284 		default:
13285 			panic("softdep_sync_buf: Unknown type %s",
13286 			    TYPENAME(wk->wk_type));
13287 			/* NOTREACHED */
13288 		}
13289 	}
13290 out_unlock:
13291 	FREE_LOCK(ump);
13292 out:
13293 	return (error);
13294 }
13295 
13296 /*
13297  * Flush the dependencies associated with an inodedep.
13298  */
13299 static int
13300 flush_inodedep_deps(vp, mp, ino)
13301 	struct vnode *vp;
13302 	struct mount *mp;
13303 	ino_t ino;
13304 {
13305 	struct inodedep *inodedep;
13306 	struct inoref *inoref;
13307 	struct ufsmount *ump;
13308 	int error, waitfor;
13309 
13310 	/*
13311 	 * This work is done in two passes. The first pass grabs most
13312 	 * of the buffers and begins asynchronously writing them. The
13313 	 * only way to wait for these asynchronous writes is to sleep
13314 	 * on the filesystem vnode which may stay busy for a long time
13315 	 * if the filesystem is active. So, instead, we make a second
13316 	 * pass over the dependencies blocking on each write. In the
13317 	 * usual case we will be blocking against a write that we
13318 	 * initiated, so when it is done the dependency will have been
13319 	 * resolved. Thus the second pass is expected to end quickly.
13320 	 * We give a brief window at the top of the loop to allow
13321 	 * any pending I/O to complete.
13322 	 */
13323 	ump = VFSTOUFS(mp);
13324 	LOCK_OWNED(ump);
13325 	for (error = 0, waitfor = MNT_NOWAIT; ; ) {
13326 		if (error)
13327 			return (error);
13328 		FREE_LOCK(ump);
13329 		ACQUIRE_LOCK(ump);
13330 restart:
13331 		if (inodedep_lookup(mp, ino, 0, &inodedep) == 0)
13332 			return (0);
13333 		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
13334 			if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
13335 			    == DEPCOMPLETE) {
13336 				jwait(&inoref->if_list, MNT_WAIT);
13337 				goto restart;
13338 			}
13339 		}
13340 		if (flush_deplist(&inodedep->id_inoupdt, waitfor, &error) ||
13341 		    flush_deplist(&inodedep->id_newinoupdt, waitfor, &error) ||
13342 		    flush_deplist(&inodedep->id_extupdt, waitfor, &error) ||
13343 		    flush_deplist(&inodedep->id_newextupdt, waitfor, &error))
13344 			continue;
13345 		/*
13346 		 * If pass2, we are done, otherwise do pass 2.
13347 		 */
13348 		if (waitfor == MNT_WAIT)
13349 			break;
13350 		waitfor = MNT_WAIT;
13351 	}
13352 	/*
13353 	 * Try freeing inodedep in case all dependencies have been removed.
13354 	 */
13355 	if (inodedep_lookup(mp, ino, 0, &inodedep) != 0)
13356 		(void) free_inodedep(inodedep);
13357 	return (0);
13358 }
13359 
13360 /*
13361  * Flush an inode dependency list.
13362  */
13363 static int
13364 flush_deplist(listhead, waitfor, errorp)
13365 	struct allocdirectlst *listhead;
13366 	int waitfor;
13367 	int *errorp;
13368 {
13369 	struct allocdirect *adp;
13370 	struct newblk *newblk;
13371 	struct ufsmount *ump;
13372 	struct buf *bp;
13373 
13374 	if ((adp = TAILQ_FIRST(listhead)) == NULL)
13375 		return (0);
13376 	ump = VFSTOUFS(adp->ad_list.wk_mp);
13377 	LOCK_OWNED(ump);
13378 	TAILQ_FOREACH(adp, listhead, ad_next) {
13379 		newblk = (struct newblk *)adp;
13380 		if (newblk->nb_jnewblk != NULL) {
13381 			jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT);
13382 			return (1);
13383 		}
13384 		if (newblk->nb_state & DEPCOMPLETE)
13385 			continue;
13386 		bp = newblk->nb_bmsafemap->sm_buf;
13387 		bp = getdirtybuf(bp, LOCK_PTR(ump), waitfor);
13388 		if (bp == NULL) {
13389 			if (waitfor == MNT_NOWAIT)
13390 				continue;
13391 			return (1);
13392 		}
13393 		FREE_LOCK(ump);
13394 		if (waitfor == MNT_NOWAIT)
13395 			bawrite(bp);
13396 		else
13397 			*errorp = bwrite(bp);
13398 		ACQUIRE_LOCK(ump);
13399 		return (1);
13400 	}
13401 	return (0);
13402 }
13403 
13404 /*
13405  * Flush dependencies associated with an allocdirect block.
13406  */
13407 static int
13408 flush_newblk_dep(vp, mp, lbn)
13409 	struct vnode *vp;
13410 	struct mount *mp;
13411 	ufs_lbn_t lbn;
13412 {
13413 	struct newblk *newblk;
13414 	struct ufsmount *ump;
13415 	struct bufobj *bo;
13416 	struct inode *ip;
13417 	struct buf *bp;
13418 	ufs2_daddr_t blkno;
13419 	int error;
13420 
13421 	error = 0;
13422 	bo = &vp->v_bufobj;
13423 	ip = VTOI(vp);
13424 	blkno = DIP(ip, i_db[lbn]);
13425 	if (blkno == 0)
13426 		panic("flush_newblk_dep: Missing block");
13427 	ump = VFSTOUFS(mp);
13428 	ACQUIRE_LOCK(ump);
13429 	/*
13430 	 * Loop until all dependencies related to this block are satisfied.
13431 	 * We must be careful to restart after each sleep in case a write
13432 	 * completes some part of this process for us.
13433 	 */
13434 	for (;;) {
13435 		if (newblk_lookup(mp, blkno, 0, &newblk) == 0) {
13436 			FREE_LOCK(ump);
13437 			break;
13438 		}
13439 		if (newblk->nb_list.wk_type != D_ALLOCDIRECT)
13440 			panic("flush_newblk_dep: Bad newblk %p", newblk);
13441 		/*
13442 		 * Flush the journal.
13443 		 */
13444 		if (newblk->nb_jnewblk != NULL) {
13445 			jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT);
13446 			continue;
13447 		}
13448 		/*
13449 		 * Write the bitmap dependency.
13450 		 */
13451 		if ((newblk->nb_state & DEPCOMPLETE) == 0) {
13452 			bp = newblk->nb_bmsafemap->sm_buf;
13453 			bp = getdirtybuf(bp, LOCK_PTR(ump), MNT_WAIT);
13454 			if (bp == NULL)
13455 				continue;
13456 			FREE_LOCK(ump);
13457 			error = bwrite(bp);
13458 			if (error)
13459 				break;
13460 			ACQUIRE_LOCK(ump);
13461 			continue;
13462 		}
13463 		/*
13464 		 * Write the buffer.
13465 		 */
13466 		FREE_LOCK(ump);
13467 		BO_LOCK(bo);
13468 		bp = gbincore(bo, lbn);
13469 		if (bp != NULL) {
13470 			error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL |
13471 			    LK_INTERLOCK, BO_LOCKPTR(bo));
13472 			if (error == ENOLCK) {
13473 				ACQUIRE_LOCK(ump);
13474 				error = 0;
13475 				continue; /* Slept, retry */
13476 			}
13477 			if (error != 0)
13478 				break;	/* Failed */
13479 			if (bp->b_flags & B_DELWRI) {
13480 				bremfree(bp);
13481 				error = bwrite(bp);
13482 				if (error)
13483 					break;
13484 			} else
13485 				BUF_UNLOCK(bp);
13486 		} else
13487 			BO_UNLOCK(bo);
13488 		/*
13489 		 * We have to wait for the direct pointers to
13490 		 * point at the newdirblk before the dependency
13491 		 * will go away.
13492 		 */
13493 		error = ffs_update(vp, 1);
13494 		if (error)
13495 			break;
13496 		ACQUIRE_LOCK(ump);
13497 	}
13498 	return (error);
13499 }
13500 
13501 /*
13502  * Eliminate a pagedep dependency by flushing out all its diradd dependencies.
13503  */
13504 static int
13505 flush_pagedep_deps(pvp, mp, diraddhdp, locked_bp)
13506 	struct vnode *pvp;
13507 	struct mount *mp;
13508 	struct diraddhd *diraddhdp;
13509 	struct buf *locked_bp;
13510 {
13511 	struct inodedep *inodedep;
13512 	struct inoref *inoref;
13513 	struct ufsmount *ump;
13514 	struct diradd *dap;
13515 	struct vnode *vp;
13516 	int error = 0;
13517 	struct buf *bp;
13518 	ino_t inum;
13519 	struct diraddhd unfinished;
13520 
13521 	LIST_INIT(&unfinished);
13522 	ump = VFSTOUFS(mp);
13523 	LOCK_OWNED(ump);
13524 restart:
13525 	while ((dap = LIST_FIRST(diraddhdp)) != NULL) {
13526 		/*
13527 		 * Flush ourselves if this directory entry
13528 		 * has a MKDIR_PARENT dependency.
13529 		 */
13530 		if (dap->da_state & MKDIR_PARENT) {
13531 			FREE_LOCK(ump);
13532 			if ((error = ffs_update(pvp, 1)) != 0)
13533 				break;
13534 			ACQUIRE_LOCK(ump);
13535 			/*
13536 			 * If that cleared dependencies, go on to next.
13537 			 */
13538 			if (dap != LIST_FIRST(diraddhdp))
13539 				continue;
13540 			/*
13541 			 * All MKDIR_PARENT dependencies and all the
13542 			 * NEWBLOCK pagedeps that are contained in direct
13543 			 * blocks were resolved by doing above ffs_update.
13544 			 * Pagedeps contained in indirect blocks may
13545 			 * require a complete sync'ing of the directory.
13546 			 * We are in the midst of doing a complete sync,
13547 			 * so if they are not resolved in this pass we
13548 			 * defer them for now as they will be sync'ed by
13549 			 * our caller shortly.
13550 			 */
13551 			LIST_REMOVE(dap, da_pdlist);
13552 			LIST_INSERT_HEAD(&unfinished, dap, da_pdlist);
13553 			continue;
13554 		}
13555 		/*
13556 		 * A newly allocated directory must have its "." and
13557 		 * ".." entries written out before its name can be
13558 		 * committed in its parent.
13559 		 */
13560 		inum = dap->da_newinum;
13561 		if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0)
13562 			panic("flush_pagedep_deps: lost inode1");
13563 		/*
13564 		 * Wait for any pending journal adds to complete so we don't
13565 		 * cause rollbacks while syncing.
13566 		 */
13567 		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
13568 			if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
13569 			    == DEPCOMPLETE) {
13570 				jwait(&inoref->if_list, MNT_WAIT);
13571 				goto restart;
13572 			}
13573 		}
13574 		if (dap->da_state & MKDIR_BODY) {
13575 			FREE_LOCK(ump);
13576 			error = get_parent_vp(pvp, mp, inum, locked_bp,
13577 			    diraddhdp, &unfinished, &vp);
13578 			if (error != 0)
13579 				break;
13580 			error = flush_newblk_dep(vp, mp, 0);
13581 			/*
13582 			 * If we still have the dependency we might need to
13583 			 * update the vnode to sync the new link count to
13584 			 * disk.
13585 			 */
13586 			if (error == 0 && dap == LIST_FIRST(diraddhdp))
13587 				error = ffs_update(vp, 1);
13588 			vput(vp);
13589 			if (error != 0)
13590 				break;
13591 			ACQUIRE_LOCK(ump);
13592 			/*
13593 			 * If that cleared dependencies, go on to next.
13594 			 */
13595 			if (dap != LIST_FIRST(diraddhdp))
13596 				continue;
13597 			if (dap->da_state & MKDIR_BODY) {
13598 				inodedep_lookup(UFSTOVFS(ump), inum, 0,
13599 				    &inodedep);
13600 				panic("flush_pagedep_deps: MKDIR_BODY "
13601 				    "inodedep %p dap %p vp %p",
13602 				    inodedep, dap, vp);
13603 			}
13604 		}
13605 		/*
13606 		 * Flush the inode on which the directory entry depends.
13607 		 * Having accounted for MKDIR_PARENT and MKDIR_BODY above,
13608 		 * the only remaining dependency is that the updated inode
13609 		 * count must get pushed to disk. The inode has already
13610 		 * been pushed into its inode buffer (via VOP_UPDATE) at
13611 		 * the time of the reference count change. So we need only
13612 		 * locate that buffer, ensure that there will be no rollback
13613 		 * caused by a bitmap dependency, then write the inode buffer.
13614 		 */
13615 retry:
13616 		if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0)
13617 			panic("flush_pagedep_deps: lost inode");
13618 		/*
13619 		 * If the inode still has bitmap dependencies,
13620 		 * push them to disk.
13621 		 */
13622 		if ((inodedep->id_state & (DEPCOMPLETE | GOINGAWAY)) == 0) {
13623 			bp = inodedep->id_bmsafemap->sm_buf;
13624 			bp = getdirtybuf(bp, LOCK_PTR(ump), MNT_WAIT);
13625 			if (bp == NULL)
13626 				goto retry;
13627 			FREE_LOCK(ump);
13628 			if ((error = bwrite(bp)) != 0)
13629 				break;
13630 			ACQUIRE_LOCK(ump);
13631 			if (dap != LIST_FIRST(diraddhdp))
13632 				continue;
13633 		}
13634 		/*
13635 		 * If the inode is still sitting in a buffer waiting
13636 		 * to be written or waiting for the link count to be
13637 		 * adjusted update it here to flush it to disk.
13638 		 */
13639 		if (dap == LIST_FIRST(diraddhdp)) {
13640 			FREE_LOCK(ump);
13641 			error = get_parent_vp(pvp, mp, inum, locked_bp,
13642 			    diraddhdp, &unfinished, &vp);
13643 			if (error != 0)
13644 				break;
13645 			error = ffs_update(vp, 1);
13646 			vput(vp);
13647 			if (error)
13648 				break;
13649 			ACQUIRE_LOCK(ump);
13650 		}
13651 		/*
13652 		 * If we have failed to get rid of all the dependencies
13653 		 * then something is seriously wrong.
13654 		 */
13655 		if (dap == LIST_FIRST(diraddhdp)) {
13656 			inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep);
13657 			panic("flush_pagedep_deps: failed to flush "
13658 			    "inodedep %p ino %ju dap %p",
13659 			    inodedep, (uintmax_t)inum, dap);
13660 		}
13661 	}
13662 	if (error)
13663 		ACQUIRE_LOCK(ump);
13664 	while ((dap = LIST_FIRST(&unfinished)) != NULL) {
13665 		LIST_REMOVE(dap, da_pdlist);
13666 		LIST_INSERT_HEAD(diraddhdp, dap, da_pdlist);
13667 	}
13668 	return (error);
13669 }
13670 
13671 /*
13672  * A large burst of file addition or deletion activity can drive the
13673  * memory load excessively high. First attempt to slow things down
13674  * using the techniques below. If that fails, this routine requests
13675  * the offending operations to fall back to running synchronously
13676  * until the memory load returns to a reasonable level.
13677  */
13678 int
13679 softdep_slowdown(vp)
13680 	struct vnode *vp;
13681 {
13682 	struct ufsmount *ump;
13683 	int jlow;
13684 	int max_softdeps_hard;
13685 
13686 	KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0,
13687 	    ("softdep_slowdown called on non-softdep filesystem"));
13688 	ump = VFSTOUFS(vp->v_mount);
13689 	ACQUIRE_LOCK(ump);
13690 	jlow = 0;
13691 	/*
13692 	 * Check for journal space if needed.
13693 	 */
13694 	if (DOINGSUJ(vp)) {
13695 		if (journal_space(ump, 0) == 0)
13696 			jlow = 1;
13697 	}
13698 	/*
13699 	 * If the system is under its limits and our filesystem is
13700 	 * not responsible for more than our share of the usage and
13701 	 * we are not low on journal space, then no need to slow down.
13702 	 */
13703 	max_softdeps_hard = max_softdeps * 11 / 10;
13704 	if (dep_current[D_DIRREM] < max_softdeps_hard / 2 &&
13705 	    dep_current[D_INODEDEP] < max_softdeps_hard &&
13706 	    dep_current[D_INDIRDEP] < max_softdeps_hard / 1000 &&
13707 	    dep_current[D_FREEBLKS] < max_softdeps_hard && jlow == 0 &&
13708 	    ump->softdep_curdeps[D_DIRREM] <
13709 	    (max_softdeps_hard / 2) / stat_flush_threads &&
13710 	    ump->softdep_curdeps[D_INODEDEP] <
13711 	    max_softdeps_hard / stat_flush_threads &&
13712 	    ump->softdep_curdeps[D_INDIRDEP] <
13713 	    (max_softdeps_hard / 1000) / stat_flush_threads &&
13714 	    ump->softdep_curdeps[D_FREEBLKS] <
13715 	    max_softdeps_hard / stat_flush_threads) {
13716 		FREE_LOCK(ump);
13717   		return (0);
13718 	}
13719 	/*
13720 	 * If the journal is low or our filesystem is over its limit
13721 	 * then speedup the cleanup.
13722 	 */
13723 	if (ump->softdep_curdeps[D_INDIRDEP] <
13724 	    (max_softdeps_hard / 1000) / stat_flush_threads || jlow)
13725 		softdep_speedup(ump);
13726 	stat_sync_limit_hit += 1;
13727 	FREE_LOCK(ump);
13728 	/*
13729 	 * We only slow down the rate at which new dependencies are
13730 	 * generated if we are not using journaling. With journaling,
13731 	 * the cleanup should always be sufficient to keep things
13732 	 * under control.
13733 	 */
13734 	if (DOINGSUJ(vp))
13735 		return (0);
13736 	return (1);
13737 }
13738 
13739 static int
13740 softdep_request_cleanup_filter(struct vnode *vp, void *arg __unused)
13741 {
13742 	return ((vp->v_iflag & VI_OWEINACT) != 0 && vp->v_usecount == 0 &&
13743 	    ((vp->v_vflag & VV_NOSYNC) != 0 || VTOI(vp)->i_effnlink == 0));
13744 }
13745 
13746 static void
13747 softdep_request_cleanup_inactivate(struct mount *mp)
13748 {
13749 	struct vnode *vp, *mvp;
13750 	int error;
13751 
13752 	MNT_VNODE_FOREACH_LAZY(vp, mp, mvp, softdep_request_cleanup_filter,
13753 	    NULL) {
13754 		vholdl(vp);
13755 		vn_lock(vp, LK_EXCLUSIVE | LK_INTERLOCK | LK_RETRY);
13756 		VI_LOCK(vp);
13757 		if (vp->v_data != NULL && vp->v_usecount == 0) {
13758 			while ((vp->v_iflag & VI_OWEINACT) != 0) {
13759 				error = vinactive(vp);
13760 				if (error != 0 && error != ERELOOKUP)
13761 					break;
13762 			}
13763 			atomic_add_int(&stat_delayed_inact, 1);
13764 		}
13765 		VOP_UNLOCK(vp);
13766 		vdropl(vp);
13767 	}
13768 }
13769 
13770 /*
13771  * Called by the allocation routines when they are about to fail
13772  * in the hope that we can free up the requested resource (inodes
13773  * or disk space).
13774  *
13775  * First check to see if the work list has anything on it. If it has,
13776  * clean up entries until we successfully free the requested resource.
13777  * Because this process holds inodes locked, we cannot handle any remove
13778  * requests that might block on a locked inode as that could lead to
13779  * deadlock. If the worklist yields none of the requested resource,
13780  * start syncing out vnodes to free up the needed space.
13781  */
13782 int
13783 softdep_request_cleanup(fs, vp, cred, resource)
13784 	struct fs *fs;
13785 	struct vnode *vp;
13786 	struct ucred *cred;
13787 	int resource;
13788 {
13789 	struct ufsmount *ump;
13790 	struct mount *mp;
13791 	long starttime;
13792 	ufs2_daddr_t needed;
13793 	int error, failed_vnode;
13794 
13795 	/*
13796 	 * If we are being called because of a process doing a
13797 	 * copy-on-write, then it is not safe to process any
13798 	 * worklist items as we will recurse into the copyonwrite
13799 	 * routine.  This will result in an incoherent snapshot.
13800 	 * If the vnode that we hold is a snapshot, we must avoid
13801 	 * handling other resources that could cause deadlock.
13802 	 */
13803 	if ((curthread->td_pflags & TDP_COWINPROGRESS) || IS_SNAPSHOT(VTOI(vp)))
13804 		return (0);
13805 
13806 	if (resource == FLUSH_BLOCKS_WAIT)
13807 		stat_cleanup_blkrequests += 1;
13808 	else
13809 		stat_cleanup_inorequests += 1;
13810 
13811 	mp = vp->v_mount;
13812 	ump = VFSTOUFS(mp);
13813 	mtx_assert(UFS_MTX(ump), MA_OWNED);
13814 	UFS_UNLOCK(ump);
13815 	error = ffs_update(vp, 1);
13816 	if (error != 0 || MOUNTEDSOFTDEP(mp) == 0) {
13817 		UFS_LOCK(ump);
13818 		return (0);
13819 	}
13820 	/*
13821 	 * If we are in need of resources, start by cleaning up
13822 	 * any block removals associated with our inode.
13823 	 */
13824 	ACQUIRE_LOCK(ump);
13825 	process_removes(vp);
13826 	process_truncates(vp);
13827 	FREE_LOCK(ump);
13828 	/*
13829 	 * Now clean up at least as many resources as we will need.
13830 	 *
13831 	 * When requested to clean up inodes, the number that are needed
13832 	 * is set by the number of simultaneous writers (mnt_writeopcount)
13833 	 * plus a bit of slop (2) in case some more writers show up while
13834 	 * we are cleaning.
13835 	 *
13836 	 * When requested to free up space, the amount of space that
13837 	 * we need is enough blocks to allocate a full-sized segment
13838 	 * (fs_contigsumsize). The number of such segments that will
13839 	 * be needed is set by the number of simultaneous writers
13840 	 * (mnt_writeopcount) plus a bit of slop (2) in case some more
13841 	 * writers show up while we are cleaning.
13842 	 *
13843 	 * Additionally, if we are unpriviledged and allocating space,
13844 	 * we need to ensure that we clean up enough blocks to get the
13845 	 * needed number of blocks over the threshold of the minimum
13846 	 * number of blocks required to be kept free by the filesystem
13847 	 * (fs_minfree).
13848 	 */
13849 	if (resource == FLUSH_INODES_WAIT) {
13850 		needed = vfs_mount_fetch_counter(vp->v_mount,
13851 		    MNT_COUNT_WRITEOPCOUNT) + 2;
13852 	} else if (resource == FLUSH_BLOCKS_WAIT) {
13853 		needed = (vfs_mount_fetch_counter(vp->v_mount,
13854 		    MNT_COUNT_WRITEOPCOUNT) + 2) * fs->fs_contigsumsize;
13855 		if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE))
13856 			needed += fragstoblks(fs,
13857 			    roundup((fs->fs_dsize * fs->fs_minfree / 100) -
13858 			    fs->fs_cstotal.cs_nffree, fs->fs_frag));
13859 	} else {
13860 		printf("softdep_request_cleanup: Unknown resource type %d\n",
13861 		    resource);
13862 		UFS_LOCK(ump);
13863 		return (0);
13864 	}
13865 	starttime = time_second;
13866 retry:
13867 	if (resource == FLUSH_BLOCKS_WAIT &&
13868 	    fs->fs_cstotal.cs_nbfree <= needed)
13869 		softdep_send_speedup(ump, needed * fs->fs_bsize,
13870 		    BIO_SPEEDUP_TRIM);
13871 	if ((resource == FLUSH_BLOCKS_WAIT && ump->softdep_on_worklist > 0 &&
13872 	    fs->fs_cstotal.cs_nbfree <= needed) ||
13873 	    (resource == FLUSH_INODES_WAIT && fs->fs_pendinginodes > 0 &&
13874 	    fs->fs_cstotal.cs_nifree <= needed)) {
13875 		ACQUIRE_LOCK(ump);
13876 		if (ump->softdep_on_worklist > 0 &&
13877 		    process_worklist_item(UFSTOVFS(ump),
13878 		    ump->softdep_on_worklist, LK_NOWAIT) != 0)
13879 			stat_worklist_push += 1;
13880 		FREE_LOCK(ump);
13881 	}
13882 
13883 	/*
13884 	 * Check that there are vnodes pending inactivation.  As they
13885 	 * have been unlinked, inactivating them will free up their
13886 	 * inodes.
13887 	 */
13888 	ACQUIRE_LOCK(ump);
13889 	if (resource == FLUSH_INODES_WAIT &&
13890 	    fs->fs_cstotal.cs_nifree <= needed &&
13891 	    fs->fs_pendinginodes <= needed) {
13892 		if ((ump->um_softdep->sd_flags & FLUSH_DI_ACTIVE) == 0) {
13893 			ump->um_softdep->sd_flags |= FLUSH_DI_ACTIVE;
13894 			FREE_LOCK(ump);
13895 			softdep_request_cleanup_inactivate(mp);
13896 			ACQUIRE_LOCK(ump);
13897 			ump->um_softdep->sd_flags &= ~FLUSH_DI_ACTIVE;
13898 			wakeup(&ump->um_softdep->sd_flags);
13899 		} else {
13900 			while ((ump->um_softdep->sd_flags &
13901 			    FLUSH_DI_ACTIVE) != 0) {
13902 				msleep(&ump->um_softdep->sd_flags,
13903 				    LOCK_PTR(ump), PVM, "ffsvina", hz);
13904 			}
13905 		}
13906 	}
13907 	FREE_LOCK(ump);
13908 
13909 	/*
13910 	 * If we still need resources and there are no more worklist
13911 	 * entries to process to obtain them, we have to start flushing
13912 	 * the dirty vnodes to force the release of additional requests
13913 	 * to the worklist that we can then process to reap addition
13914 	 * resources. We walk the vnodes associated with the mount point
13915 	 * until we get the needed worklist requests that we can reap.
13916 	 *
13917 	 * If there are several threads all needing to clean the same
13918 	 * mount point, only one is allowed to walk the mount list.
13919 	 * When several threads all try to walk the same mount list,
13920 	 * they end up competing with each other and often end up in
13921 	 * livelock. This approach ensures that forward progress is
13922 	 * made at the cost of occational ENOSPC errors being returned
13923 	 * that might otherwise have been avoided.
13924 	 */
13925 	error = 1;
13926 	if ((resource == FLUSH_BLOCKS_WAIT &&
13927 	     fs->fs_cstotal.cs_nbfree <= needed) ||
13928 	    (resource == FLUSH_INODES_WAIT && fs->fs_pendinginodes > 0 &&
13929 	     fs->fs_cstotal.cs_nifree <= needed)) {
13930 		ACQUIRE_LOCK(ump);
13931 		if ((ump->um_softdep->sd_flags & FLUSH_RC_ACTIVE) == 0) {
13932 			ump->um_softdep->sd_flags |= FLUSH_RC_ACTIVE;
13933 			FREE_LOCK(ump);
13934 			failed_vnode = softdep_request_cleanup_flush(mp, ump);
13935 			ACQUIRE_LOCK(ump);
13936 			ump->um_softdep->sd_flags &= ~FLUSH_RC_ACTIVE;
13937 			wakeup(&ump->um_softdep->sd_flags);
13938 			FREE_LOCK(ump);
13939 			if (ump->softdep_on_worklist > 0) {
13940 				stat_cleanup_retries += 1;
13941 				if (!failed_vnode)
13942 					goto retry;
13943 			}
13944 		} else {
13945 			while ((ump->um_softdep->sd_flags &
13946 			    FLUSH_RC_ACTIVE) != 0) {
13947 				msleep(&ump->um_softdep->sd_flags,
13948 				    LOCK_PTR(ump), PVM, "ffsrca", hz);
13949 			}
13950 			FREE_LOCK(ump);
13951 			error = 0;
13952 		}
13953 		stat_cleanup_failures += 1;
13954 	}
13955 	if (time_second - starttime > stat_cleanup_high_delay)
13956 		stat_cleanup_high_delay = time_second - starttime;
13957 	UFS_LOCK(ump);
13958 	return (error);
13959 }
13960 
13961 /*
13962  * Scan the vnodes for the specified mount point flushing out any
13963  * vnodes that can be locked without waiting. Finally, try to flush
13964  * the device associated with the mount point if it can be locked
13965  * without waiting.
13966  *
13967  * We return 0 if we were able to lock every vnode in our scan.
13968  * If we had to skip one or more vnodes, we return 1.
13969  */
13970 static int
13971 softdep_request_cleanup_flush(mp, ump)
13972 	struct mount *mp;
13973 	struct ufsmount *ump;
13974 {
13975 	struct thread *td;
13976 	struct vnode *lvp, *mvp;
13977 	int failed_vnode;
13978 
13979 	failed_vnode = 0;
13980 	td = curthread;
13981 	MNT_VNODE_FOREACH_ALL(lvp, mp, mvp) {
13982 		if (TAILQ_FIRST(&lvp->v_bufobj.bo_dirty.bv_hd) == 0) {
13983 			VI_UNLOCK(lvp);
13984 			continue;
13985 		}
13986 		if (vget(lvp, LK_EXCLUSIVE | LK_INTERLOCK | LK_NOWAIT) != 0) {
13987 			failed_vnode = 1;
13988 			continue;
13989 		}
13990 		if (lvp->v_vflag & VV_NOSYNC) {	/* unlinked */
13991 			vput(lvp);
13992 			continue;
13993 		}
13994 		(void) ffs_syncvnode(lvp, MNT_NOWAIT, 0);
13995 		vput(lvp);
13996 	}
13997 	lvp = ump->um_devvp;
13998 	if (vn_lock(lvp, LK_EXCLUSIVE | LK_NOWAIT) == 0) {
13999 		VOP_FSYNC(lvp, MNT_NOWAIT, td);
14000 		VOP_UNLOCK(lvp);
14001 	}
14002 	return (failed_vnode);
14003 }
14004 
14005 static bool
14006 softdep_excess_items(struct ufsmount *ump, int item)
14007 {
14008 
14009 	KASSERT(item >= 0 && item < D_LAST, ("item %d", item));
14010 	return (dep_current[item] > max_softdeps &&
14011 	    ump->softdep_curdeps[item] > max_softdeps /
14012 	    stat_flush_threads);
14013 }
14014 
14015 static void
14016 schedule_cleanup(struct mount *mp)
14017 {
14018 	struct ufsmount *ump;
14019 	struct thread *td;
14020 
14021 	ump = VFSTOUFS(mp);
14022 	LOCK_OWNED(ump);
14023 	FREE_LOCK(ump);
14024 	td = curthread;
14025 	if ((td->td_pflags & TDP_KTHREAD) != 0 &&
14026 	    (td->td_proc->p_flag2 & P2_AST_SU) == 0) {
14027 		/*
14028 		 * No ast is delivered to kernel threads, so nobody
14029 		 * would deref the mp.  Some kernel threads
14030 		 * explicitely check for AST, e.g. NFS daemon does
14031 		 * this in the serving loop.
14032 		 */
14033 		return;
14034 	}
14035 	if (td->td_su != NULL)
14036 		vfs_rel(td->td_su);
14037 	vfs_ref(mp);
14038 	td->td_su = mp;
14039 	thread_lock(td);
14040 	td->td_flags |= TDF_ASTPENDING;
14041 	thread_unlock(td);
14042 }
14043 
14044 static void
14045 softdep_ast_cleanup_proc(struct thread *td)
14046 {
14047 	struct mount *mp;
14048 	struct ufsmount *ump;
14049 	int error;
14050 	bool req;
14051 
14052 	while ((mp = td->td_su) != NULL) {
14053 		td->td_su = NULL;
14054 		error = vfs_busy(mp, MBF_NOWAIT);
14055 		vfs_rel(mp);
14056 		if (error != 0)
14057 			return;
14058 		if (ffs_own_mount(mp) && MOUNTEDSOFTDEP(mp)) {
14059 			ump = VFSTOUFS(mp);
14060 			for (;;) {
14061 				req = false;
14062 				ACQUIRE_LOCK(ump);
14063 				if (softdep_excess_items(ump, D_INODEDEP)) {
14064 					req = true;
14065 					request_cleanup(mp, FLUSH_INODES);
14066 				}
14067 				if (softdep_excess_items(ump, D_DIRREM)) {
14068 					req = true;
14069 					request_cleanup(mp, FLUSH_BLOCKS);
14070 				}
14071 				FREE_LOCK(ump);
14072 				if (softdep_excess_items(ump, D_NEWBLK) ||
14073 				    softdep_excess_items(ump, D_ALLOCDIRECT) ||
14074 				    softdep_excess_items(ump, D_ALLOCINDIR)) {
14075 					error = vn_start_write(NULL, &mp,
14076 					    V_WAIT);
14077 					if (error == 0) {
14078 						req = true;
14079 						VFS_SYNC(mp, MNT_WAIT);
14080 						vn_finished_write(mp);
14081 					}
14082 				}
14083 				if ((td->td_pflags & TDP_KTHREAD) != 0 || !req)
14084 					break;
14085 			}
14086 		}
14087 		vfs_unbusy(mp);
14088 	}
14089 	if ((mp = td->td_su) != NULL) {
14090 		td->td_su = NULL;
14091 		vfs_rel(mp);
14092 	}
14093 }
14094 
14095 /*
14096  * If memory utilization has gotten too high, deliberately slow things
14097  * down and speed up the I/O processing.
14098  */
14099 static int
14100 request_cleanup(mp, resource)
14101 	struct mount *mp;
14102 	int resource;
14103 {
14104 	struct thread *td = curthread;
14105 	struct ufsmount *ump;
14106 
14107 	ump = VFSTOUFS(mp);
14108 	LOCK_OWNED(ump);
14109 	/*
14110 	 * We never hold up the filesystem syncer or buf daemon.
14111 	 */
14112 	if (td->td_pflags & (TDP_SOFTDEP|TDP_NORUNNINGBUF))
14113 		return (0);
14114 	/*
14115 	 * First check to see if the work list has gotten backlogged.
14116 	 * If it has, co-opt this process to help clean up two entries.
14117 	 * Because this process may hold inodes locked, we cannot
14118 	 * handle any remove requests that might block on a locked
14119 	 * inode as that could lead to deadlock.  We set TDP_SOFTDEP
14120 	 * to avoid recursively processing the worklist.
14121 	 */
14122 	if (ump->softdep_on_worklist > max_softdeps / 10) {
14123 		td->td_pflags |= TDP_SOFTDEP;
14124 		process_worklist_item(mp, 2, LK_NOWAIT);
14125 		td->td_pflags &= ~TDP_SOFTDEP;
14126 		stat_worklist_push += 2;
14127 		return(1);
14128 	}
14129 	/*
14130 	 * Next, we attempt to speed up the syncer process. If that
14131 	 * is successful, then we allow the process to continue.
14132 	 */
14133 	if (softdep_speedup(ump) &&
14134 	    resource != FLUSH_BLOCKS_WAIT &&
14135 	    resource != FLUSH_INODES_WAIT)
14136 		return(0);
14137 	/*
14138 	 * If we are resource constrained on inode dependencies, try
14139 	 * flushing some dirty inodes. Otherwise, we are constrained
14140 	 * by file deletions, so try accelerating flushes of directories
14141 	 * with removal dependencies. We would like to do the cleanup
14142 	 * here, but we probably hold an inode locked at this point and
14143 	 * that might deadlock against one that we try to clean. So,
14144 	 * the best that we can do is request the syncer daemon to do
14145 	 * the cleanup for us.
14146 	 */
14147 	switch (resource) {
14148 	case FLUSH_INODES:
14149 	case FLUSH_INODES_WAIT:
14150 		ACQUIRE_GBLLOCK(&lk);
14151 		stat_ino_limit_push += 1;
14152 		req_clear_inodedeps += 1;
14153 		FREE_GBLLOCK(&lk);
14154 		stat_countp = &stat_ino_limit_hit;
14155 		break;
14156 
14157 	case FLUSH_BLOCKS:
14158 	case FLUSH_BLOCKS_WAIT:
14159 		ACQUIRE_GBLLOCK(&lk);
14160 		stat_blk_limit_push += 1;
14161 		req_clear_remove += 1;
14162 		FREE_GBLLOCK(&lk);
14163 		stat_countp = &stat_blk_limit_hit;
14164 		break;
14165 
14166 	default:
14167 		panic("request_cleanup: unknown type");
14168 	}
14169 	/*
14170 	 * Hopefully the syncer daemon will catch up and awaken us.
14171 	 * We wait at most tickdelay before proceeding in any case.
14172 	 */
14173 	ACQUIRE_GBLLOCK(&lk);
14174 	FREE_LOCK(ump);
14175 	proc_waiting += 1;
14176 	if (callout_pending(&softdep_callout) == FALSE)
14177 		callout_reset(&softdep_callout, tickdelay > 2 ? tickdelay : 2,
14178 		    pause_timer, 0);
14179 
14180 	if ((td->td_pflags & TDP_KTHREAD) == 0)
14181 		msleep((caddr_t)&proc_waiting, &lk, PPAUSE, "softupdate", 0);
14182 	proc_waiting -= 1;
14183 	FREE_GBLLOCK(&lk);
14184 	ACQUIRE_LOCK(ump);
14185 	return (1);
14186 }
14187 
14188 /*
14189  * Awaken processes pausing in request_cleanup and clear proc_waiting
14190  * to indicate that there is no longer a timer running. Pause_timer
14191  * will be called with the global softdep mutex (&lk) locked.
14192  */
14193 static void
14194 pause_timer(arg)
14195 	void *arg;
14196 {
14197 
14198 	GBLLOCK_OWNED(&lk);
14199 	/*
14200 	 * The callout_ API has acquired mtx and will hold it around this
14201 	 * function call.
14202 	 */
14203 	*stat_countp += proc_waiting;
14204 	wakeup(&proc_waiting);
14205 }
14206 
14207 /*
14208  * If requested, try removing inode or removal dependencies.
14209  */
14210 static void
14211 check_clear_deps(mp)
14212 	struct mount *mp;
14213 {
14214 	struct ufsmount *ump;
14215 	bool suj_susp;
14216 
14217 	/*
14218 	 * Tell the lower layers that any TRIM or WRITE transactions that have
14219 	 * been delayed for performance reasons should proceed to help alleviate
14220 	 * the shortage faster. The race between checking req_* and the softdep
14221 	 * mutex (lk) is fine since this is an advisory operation that at most
14222 	 * causes deferred work to be done sooner.
14223 	 */
14224 	ump = VFSTOUFS(mp);
14225 	suj_susp = ump->um_softdep->sd_jblocks != NULL &&
14226 	    ump->softdep_jblocks->jb_suspended;
14227 	if (req_clear_remove || req_clear_inodedeps || suj_susp) {
14228 		FREE_LOCK(ump);
14229 		softdep_send_speedup(ump, 0, BIO_SPEEDUP_TRIM | BIO_SPEEDUP_WRITE);
14230 		ACQUIRE_LOCK(ump);
14231 	}
14232 
14233 	/*
14234 	 * If we are suspended, it may be because of our using
14235 	 * too many inodedeps, so help clear them out.
14236 	 */
14237 	if (suj_susp)
14238 		clear_inodedeps(mp);
14239 
14240 	/*
14241 	 * General requests for cleanup of backed up dependencies
14242 	 */
14243 	ACQUIRE_GBLLOCK(&lk);
14244 	if (req_clear_inodedeps) {
14245 		req_clear_inodedeps -= 1;
14246 		FREE_GBLLOCK(&lk);
14247 		clear_inodedeps(mp);
14248 		ACQUIRE_GBLLOCK(&lk);
14249 		wakeup(&proc_waiting);
14250 	}
14251 	if (req_clear_remove) {
14252 		req_clear_remove -= 1;
14253 		FREE_GBLLOCK(&lk);
14254 		clear_remove(mp);
14255 		ACQUIRE_GBLLOCK(&lk);
14256 		wakeup(&proc_waiting);
14257 	}
14258 	FREE_GBLLOCK(&lk);
14259 }
14260 
14261 /*
14262  * Flush out a directory with at least one removal dependency in an effort to
14263  * reduce the number of dirrem, freefile, and freeblks dependency structures.
14264  */
14265 static void
14266 clear_remove(mp)
14267 	struct mount *mp;
14268 {
14269 	struct pagedep_hashhead *pagedephd;
14270 	struct pagedep *pagedep;
14271 	struct ufsmount *ump;
14272 	struct vnode *vp;
14273 	struct bufobj *bo;
14274 	int error, cnt;
14275 	ino_t ino;
14276 
14277 	ump = VFSTOUFS(mp);
14278 	LOCK_OWNED(ump);
14279 
14280 	for (cnt = 0; cnt <= ump->pagedep_hash_size; cnt++) {
14281 		pagedephd = &ump->pagedep_hashtbl[ump->pagedep_nextclean++];
14282 		if (ump->pagedep_nextclean > ump->pagedep_hash_size)
14283 			ump->pagedep_nextclean = 0;
14284 		LIST_FOREACH(pagedep, pagedephd, pd_hash) {
14285 			if (LIST_EMPTY(&pagedep->pd_dirremhd))
14286 				continue;
14287 			ino = pagedep->pd_ino;
14288 			if (vn_start_write(NULL, &mp, V_NOWAIT) != 0)
14289 				continue;
14290 			FREE_LOCK(ump);
14291 
14292 			/*
14293 			 * Let unmount clear deps
14294 			 */
14295 			error = vfs_busy(mp, MBF_NOWAIT);
14296 			if (error != 0)
14297 				goto finish_write;
14298 			error = ffs_vgetf(mp, ino, LK_EXCLUSIVE, &vp,
14299 			     FFSV_FORCEINSMQ | FFSV_FORCEINODEDEP);
14300 			vfs_unbusy(mp);
14301 			if (error != 0) {
14302 				softdep_error("clear_remove: vget", error);
14303 				goto finish_write;
14304 			}
14305 			MPASS(VTOI(vp)->i_mode != 0);
14306 			if ((error = ffs_syncvnode(vp, MNT_NOWAIT, 0)))
14307 				softdep_error("clear_remove: fsync", error);
14308 			bo = &vp->v_bufobj;
14309 			BO_LOCK(bo);
14310 			drain_output(vp);
14311 			BO_UNLOCK(bo);
14312 			vput(vp);
14313 		finish_write:
14314 			vn_finished_write(mp);
14315 			ACQUIRE_LOCK(ump);
14316 			return;
14317 		}
14318 	}
14319 }
14320 
14321 /*
14322  * Clear out a block of dirty inodes in an effort to reduce
14323  * the number of inodedep dependency structures.
14324  */
14325 static void
14326 clear_inodedeps(mp)
14327 	struct mount *mp;
14328 {
14329 	struct inodedep_hashhead *inodedephd;
14330 	struct inodedep *inodedep;
14331 	struct ufsmount *ump;
14332 	struct vnode *vp;
14333 	struct fs *fs;
14334 	int error, cnt;
14335 	ino_t firstino, lastino, ino;
14336 
14337 	ump = VFSTOUFS(mp);
14338 	fs = ump->um_fs;
14339 	LOCK_OWNED(ump);
14340 	/*
14341 	 * Pick a random inode dependency to be cleared.
14342 	 * We will then gather up all the inodes in its block
14343 	 * that have dependencies and flush them out.
14344 	 */
14345 	for (cnt = 0; cnt <= ump->inodedep_hash_size; cnt++) {
14346 		inodedephd = &ump->inodedep_hashtbl[ump->inodedep_nextclean++];
14347 		if (ump->inodedep_nextclean > ump->inodedep_hash_size)
14348 			ump->inodedep_nextclean = 0;
14349 		if ((inodedep = LIST_FIRST(inodedephd)) != NULL)
14350 			break;
14351 	}
14352 	if (inodedep == NULL)
14353 		return;
14354 	/*
14355 	 * Find the last inode in the block with dependencies.
14356 	 */
14357 	firstino = rounddown2(inodedep->id_ino, INOPB(fs));
14358 	for (lastino = firstino + INOPB(fs) - 1; lastino > firstino; lastino--)
14359 		if (inodedep_lookup(mp, lastino, 0, &inodedep) != 0)
14360 			break;
14361 	/*
14362 	 * Asynchronously push all but the last inode with dependencies.
14363 	 * Synchronously push the last inode with dependencies to ensure
14364 	 * that the inode block gets written to free up the inodedeps.
14365 	 */
14366 	for (ino = firstino; ino <= lastino; ino++) {
14367 		if (inodedep_lookup(mp, ino, 0, &inodedep) == 0)
14368 			continue;
14369 		if (vn_start_write(NULL, &mp, V_NOWAIT) != 0)
14370 			continue;
14371 		FREE_LOCK(ump);
14372 		error = vfs_busy(mp, MBF_NOWAIT); /* Let unmount clear deps */
14373 		if (error != 0) {
14374 			vn_finished_write(mp);
14375 			ACQUIRE_LOCK(ump);
14376 			return;
14377 		}
14378 		if ((error = ffs_vgetf(mp, ino, LK_EXCLUSIVE, &vp,
14379 		    FFSV_FORCEINSMQ | FFSV_FORCEINODEDEP)) != 0) {
14380 			softdep_error("clear_inodedeps: vget", error);
14381 			vfs_unbusy(mp);
14382 			vn_finished_write(mp);
14383 			ACQUIRE_LOCK(ump);
14384 			return;
14385 		}
14386 		vfs_unbusy(mp);
14387 		if (VTOI(vp)->i_mode == 0) {
14388 			vgone(vp);
14389 		} else if (ino == lastino) {
14390 			do {
14391 				error = ffs_syncvnode(vp, MNT_WAIT, 0);
14392 			} while (error == ERELOOKUP);
14393 			if (error != 0)
14394 				softdep_error("clear_inodedeps: fsync1", error);
14395 		} else {
14396 			if ((error = ffs_syncvnode(vp, MNT_NOWAIT, 0)))
14397 				softdep_error("clear_inodedeps: fsync2", error);
14398 			BO_LOCK(&vp->v_bufobj);
14399 			drain_output(vp);
14400 			BO_UNLOCK(&vp->v_bufobj);
14401 		}
14402 		vput(vp);
14403 		vn_finished_write(mp);
14404 		ACQUIRE_LOCK(ump);
14405 	}
14406 }
14407 
14408 void
14409 softdep_buf_append(bp, wkhd)
14410 	struct buf *bp;
14411 	struct workhead *wkhd;
14412 {
14413 	struct worklist *wk;
14414 	struct ufsmount *ump;
14415 
14416 	if ((wk = LIST_FIRST(wkhd)) == NULL)
14417 		return;
14418 	KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0,
14419 	    ("softdep_buf_append called on non-softdep filesystem"));
14420 	ump = VFSTOUFS(wk->wk_mp);
14421 	ACQUIRE_LOCK(ump);
14422 	while ((wk = LIST_FIRST(wkhd)) != NULL) {
14423 		WORKLIST_REMOVE(wk);
14424 		WORKLIST_INSERT(&bp->b_dep, wk);
14425 	}
14426 	FREE_LOCK(ump);
14427 
14428 }
14429 
14430 void
14431 softdep_inode_append(ip, cred, wkhd)
14432 	struct inode *ip;
14433 	struct ucred *cred;
14434 	struct workhead *wkhd;
14435 {
14436 	struct buf *bp;
14437 	struct fs *fs;
14438 	struct ufsmount *ump;
14439 	int error;
14440 
14441 	ump = ITOUMP(ip);
14442 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
14443 	    ("softdep_inode_append called on non-softdep filesystem"));
14444 	fs = ump->um_fs;
14445 	error = bread(ump->um_devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
14446 	    (int)fs->fs_bsize, cred, &bp);
14447 	if (error) {
14448 		bqrelse(bp);
14449 		softdep_freework(wkhd);
14450 		return;
14451 	}
14452 	softdep_buf_append(bp, wkhd);
14453 	bqrelse(bp);
14454 }
14455 
14456 void
14457 softdep_freework(wkhd)
14458 	struct workhead *wkhd;
14459 {
14460 	struct worklist *wk;
14461 	struct ufsmount *ump;
14462 
14463 	if ((wk = LIST_FIRST(wkhd)) == NULL)
14464 		return;
14465 	KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0,
14466 	    ("softdep_freework called on non-softdep filesystem"));
14467 	ump = VFSTOUFS(wk->wk_mp);
14468 	ACQUIRE_LOCK(ump);
14469 	handle_jwork(wkhd);
14470 	FREE_LOCK(ump);
14471 }
14472 
14473 static struct ufsmount *
14474 softdep_bp_to_mp(bp)
14475 	struct buf *bp;
14476 {
14477 	struct mount *mp;
14478 	struct vnode *vp;
14479 
14480 	if (LIST_EMPTY(&bp->b_dep))
14481 		return (NULL);
14482 	vp = bp->b_vp;
14483 	KASSERT(vp != NULL,
14484 	    ("%s, buffer with dependencies lacks vnode", __func__));
14485 
14486 	/*
14487 	 * The ump mount point is stable after we get a correct
14488 	 * pointer, since bp is locked and this prevents unmount from
14489 	 * proceeding.  But to get to it, we cannot dereference bp->b_dep
14490 	 * head wk_mp, because we do not yet own SU ump lock and
14491 	 * workitem might be freed while dereferenced.
14492 	 */
14493 retry:
14494 	switch (vp->v_type) {
14495 	case VCHR:
14496 		VI_LOCK(vp);
14497 		mp = vp->v_type == VCHR ? vp->v_rdev->si_mountpt : NULL;
14498 		VI_UNLOCK(vp);
14499 		if (mp == NULL)
14500 			goto retry;
14501 		break;
14502 	case VREG:
14503 	case VDIR:
14504 	case VLNK:
14505 	case VFIFO:
14506 	case VSOCK:
14507 		mp = vp->v_mount;
14508 		break;
14509 	case VBLK:
14510 		vn_printf(vp, "softdep_bp_to_mp: unexpected block device\n");
14511 		/* FALLTHROUGH */
14512 	case VNON:
14513 	case VBAD:
14514 	case VMARKER:
14515 		mp = NULL;
14516 		break;
14517 	default:
14518 		vn_printf(vp, "unknown vnode type");
14519 		mp = NULL;
14520 		break;
14521 	}
14522 	return (VFSTOUFS(mp));
14523 }
14524 
14525 /*
14526  * Function to determine if the buffer has outstanding dependencies
14527  * that will cause a roll-back if the buffer is written. If wantcount
14528  * is set, return number of dependencies, otherwise just yes or no.
14529  */
14530 static int
14531 softdep_count_dependencies(bp, wantcount)
14532 	struct buf *bp;
14533 	int wantcount;
14534 {
14535 	struct worklist *wk;
14536 	struct ufsmount *ump;
14537 	struct bmsafemap *bmsafemap;
14538 	struct freework *freework;
14539 	struct inodedep *inodedep;
14540 	struct indirdep *indirdep;
14541 	struct freeblks *freeblks;
14542 	struct allocindir *aip;
14543 	struct pagedep *pagedep;
14544 	struct dirrem *dirrem;
14545 	struct newblk *newblk;
14546 	struct mkdir *mkdir;
14547 	struct diradd *dap;
14548 	int i, retval;
14549 
14550 	ump = softdep_bp_to_mp(bp);
14551 	if (ump == NULL)
14552 		return (0);
14553 	retval = 0;
14554 	ACQUIRE_LOCK(ump);
14555 	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
14556 		switch (wk->wk_type) {
14557 		case D_INODEDEP:
14558 			inodedep = WK_INODEDEP(wk);
14559 			if ((inodedep->id_state & DEPCOMPLETE) == 0) {
14560 				/* bitmap allocation dependency */
14561 				retval += 1;
14562 				if (!wantcount)
14563 					goto out;
14564 			}
14565 			if (TAILQ_FIRST(&inodedep->id_inoupdt)) {
14566 				/* direct block pointer dependency */
14567 				retval += 1;
14568 				if (!wantcount)
14569 					goto out;
14570 			}
14571 			if (TAILQ_FIRST(&inodedep->id_extupdt)) {
14572 				/* direct block pointer dependency */
14573 				retval += 1;
14574 				if (!wantcount)
14575 					goto out;
14576 			}
14577 			if (TAILQ_FIRST(&inodedep->id_inoreflst)) {
14578 				/* Add reference dependency. */
14579 				retval += 1;
14580 				if (!wantcount)
14581 					goto out;
14582 			}
14583 			continue;
14584 
14585 		case D_INDIRDEP:
14586 			indirdep = WK_INDIRDEP(wk);
14587 
14588 			TAILQ_FOREACH(freework, &indirdep->ir_trunc, fw_next) {
14589 				/* indirect truncation dependency */
14590 				retval += 1;
14591 				if (!wantcount)
14592 					goto out;
14593 			}
14594 
14595 			LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) {
14596 				/* indirect block pointer dependency */
14597 				retval += 1;
14598 				if (!wantcount)
14599 					goto out;
14600 			}
14601 			continue;
14602 
14603 		case D_PAGEDEP:
14604 			pagedep = WK_PAGEDEP(wk);
14605 			LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next) {
14606 				if (LIST_FIRST(&dirrem->dm_jremrefhd)) {
14607 					/* Journal remove ref dependency. */
14608 					retval += 1;
14609 					if (!wantcount)
14610 						goto out;
14611 				}
14612 			}
14613 			for (i = 0; i < DAHASHSZ; i++) {
14614 				LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) {
14615 					/* directory entry dependency */
14616 					retval += 1;
14617 					if (!wantcount)
14618 						goto out;
14619 				}
14620 			}
14621 			continue;
14622 
14623 		case D_BMSAFEMAP:
14624 			bmsafemap = WK_BMSAFEMAP(wk);
14625 			if (LIST_FIRST(&bmsafemap->sm_jaddrefhd)) {
14626 				/* Add reference dependency. */
14627 				retval += 1;
14628 				if (!wantcount)
14629 					goto out;
14630 			}
14631 			if (LIST_FIRST(&bmsafemap->sm_jnewblkhd)) {
14632 				/* Allocate block dependency. */
14633 				retval += 1;
14634 				if (!wantcount)
14635 					goto out;
14636 			}
14637 			continue;
14638 
14639 		case D_FREEBLKS:
14640 			freeblks = WK_FREEBLKS(wk);
14641 			if (LIST_FIRST(&freeblks->fb_jblkdephd)) {
14642 				/* Freeblk journal dependency. */
14643 				retval += 1;
14644 				if (!wantcount)
14645 					goto out;
14646 			}
14647 			continue;
14648 
14649 		case D_ALLOCDIRECT:
14650 		case D_ALLOCINDIR:
14651 			newblk = WK_NEWBLK(wk);
14652 			if (newblk->nb_jnewblk) {
14653 				/* Journal allocate dependency. */
14654 				retval += 1;
14655 				if (!wantcount)
14656 					goto out;
14657 			}
14658 			continue;
14659 
14660 		case D_MKDIR:
14661 			mkdir = WK_MKDIR(wk);
14662 			if (mkdir->md_jaddref) {
14663 				/* Journal reference dependency. */
14664 				retval += 1;
14665 				if (!wantcount)
14666 					goto out;
14667 			}
14668 			continue;
14669 
14670 		case D_FREEWORK:
14671 		case D_FREEDEP:
14672 		case D_JSEGDEP:
14673 		case D_JSEG:
14674 		case D_SBDEP:
14675 			/* never a dependency on these blocks */
14676 			continue;
14677 
14678 		default:
14679 			panic("softdep_count_dependencies: Unexpected type %s",
14680 			    TYPENAME(wk->wk_type));
14681 			/* NOTREACHED */
14682 		}
14683 	}
14684 out:
14685 	FREE_LOCK(ump);
14686 	return (retval);
14687 }
14688 
14689 /*
14690  * Acquire exclusive access to a buffer.
14691  * Must be called with a locked mtx parameter.
14692  * Return acquired buffer or NULL on failure.
14693  */
14694 static struct buf *
14695 getdirtybuf(bp, lock, waitfor)
14696 	struct buf *bp;
14697 	struct rwlock *lock;
14698 	int waitfor;
14699 {
14700 	int error;
14701 
14702 	if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0) {
14703 		if (waitfor != MNT_WAIT)
14704 			return (NULL);
14705 		error = BUF_LOCK(bp,
14706 		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, lock);
14707 		/*
14708 		 * Even if we successfully acquire bp here, we have dropped
14709 		 * lock, which may violates our guarantee.
14710 		 */
14711 		if (error == 0)
14712 			BUF_UNLOCK(bp);
14713 		else if (error != ENOLCK)
14714 			panic("getdirtybuf: inconsistent lock: %d", error);
14715 		rw_wlock(lock);
14716 		return (NULL);
14717 	}
14718 	if ((bp->b_vflags & BV_BKGRDINPROG) != 0) {
14719 		if (lock != BO_LOCKPTR(bp->b_bufobj) && waitfor == MNT_WAIT) {
14720 			rw_wunlock(lock);
14721 			BO_LOCK(bp->b_bufobj);
14722 			BUF_UNLOCK(bp);
14723 			if ((bp->b_vflags & BV_BKGRDINPROG) != 0) {
14724 				bp->b_vflags |= BV_BKGRDWAIT;
14725 				msleep(&bp->b_xflags, BO_LOCKPTR(bp->b_bufobj),
14726 				       PRIBIO | PDROP, "getbuf", 0);
14727 			} else
14728 				BO_UNLOCK(bp->b_bufobj);
14729 			rw_wlock(lock);
14730 			return (NULL);
14731 		}
14732 		BUF_UNLOCK(bp);
14733 		if (waitfor != MNT_WAIT)
14734 			return (NULL);
14735 #ifdef DEBUG_VFS_LOCKS
14736 		if (bp->b_vp->v_type != VCHR)
14737 			ASSERT_BO_WLOCKED(bp->b_bufobj);
14738 #endif
14739 		bp->b_vflags |= BV_BKGRDWAIT;
14740 		rw_sleep(&bp->b_xflags, lock, PRIBIO, "getbuf", 0);
14741 		return (NULL);
14742 	}
14743 	if ((bp->b_flags & B_DELWRI) == 0) {
14744 		BUF_UNLOCK(bp);
14745 		return (NULL);
14746 	}
14747 	bremfree(bp);
14748 	return (bp);
14749 }
14750 
14751 /*
14752  * Check if it is safe to suspend the file system now.  On entry,
14753  * the vnode interlock for devvp should be held.  Return 0 with
14754  * the mount interlock held if the file system can be suspended now,
14755  * otherwise return EAGAIN with the mount interlock held.
14756  */
14757 int
14758 softdep_check_suspend(struct mount *mp,
14759 		      struct vnode *devvp,
14760 		      int softdep_depcnt,
14761 		      int softdep_accdepcnt,
14762 		      int secondary_writes,
14763 		      int secondary_accwrites)
14764 {
14765 	struct bufobj *bo;
14766 	struct ufsmount *ump;
14767 	struct inodedep *inodedep;
14768 	int error, unlinked;
14769 
14770 	bo = &devvp->v_bufobj;
14771 	ASSERT_BO_WLOCKED(bo);
14772 
14773 	/*
14774 	 * If we are not running with soft updates, then we need only
14775 	 * deal with secondary writes as we try to suspend.
14776 	 */
14777 	if (MOUNTEDSOFTDEP(mp) == 0) {
14778 		MNT_ILOCK(mp);
14779 		while (mp->mnt_secondary_writes != 0) {
14780 			BO_UNLOCK(bo);
14781 			msleep(&mp->mnt_secondary_writes, MNT_MTX(mp),
14782 			    (PUSER - 1) | PDROP, "secwr", 0);
14783 			BO_LOCK(bo);
14784 			MNT_ILOCK(mp);
14785 		}
14786 
14787 		/*
14788 		 * Reasons for needing more work before suspend:
14789 		 * - Dirty buffers on devvp.
14790 		 * - Secondary writes occurred after start of vnode sync loop
14791 		 */
14792 		error = 0;
14793 		if (bo->bo_numoutput > 0 ||
14794 		    bo->bo_dirty.bv_cnt > 0 ||
14795 		    secondary_writes != 0 ||
14796 		    mp->mnt_secondary_writes != 0 ||
14797 		    secondary_accwrites != mp->mnt_secondary_accwrites)
14798 			error = EAGAIN;
14799 		BO_UNLOCK(bo);
14800 		return (error);
14801 	}
14802 
14803 	/*
14804 	 * If we are running with soft updates, then we need to coordinate
14805 	 * with them as we try to suspend.
14806 	 */
14807 	ump = VFSTOUFS(mp);
14808 	for (;;) {
14809 		if (!TRY_ACQUIRE_LOCK(ump)) {
14810 			BO_UNLOCK(bo);
14811 			ACQUIRE_LOCK(ump);
14812 			FREE_LOCK(ump);
14813 			BO_LOCK(bo);
14814 			continue;
14815 		}
14816 		MNT_ILOCK(mp);
14817 		if (mp->mnt_secondary_writes != 0) {
14818 			FREE_LOCK(ump);
14819 			BO_UNLOCK(bo);
14820 			msleep(&mp->mnt_secondary_writes,
14821 			       MNT_MTX(mp),
14822 			       (PUSER - 1) | PDROP, "secwr", 0);
14823 			BO_LOCK(bo);
14824 			continue;
14825 		}
14826 		break;
14827 	}
14828 
14829 	unlinked = 0;
14830 	if (MOUNTEDSUJ(mp)) {
14831 		for (inodedep = TAILQ_FIRST(&ump->softdep_unlinked);
14832 		    inodedep != NULL;
14833 		    inodedep = TAILQ_NEXT(inodedep, id_unlinked)) {
14834 			if ((inodedep->id_state & (UNLINKED | UNLINKLINKS |
14835 			    UNLINKONLIST)) != (UNLINKED | UNLINKLINKS |
14836 			    UNLINKONLIST) ||
14837 			    !check_inodedep_free(inodedep))
14838 				continue;
14839 			unlinked++;
14840 		}
14841 	}
14842 
14843 	/*
14844 	 * Reasons for needing more work before suspend:
14845 	 * - Dirty buffers on devvp.
14846 	 * - Softdep activity occurred after start of vnode sync loop
14847 	 * - Secondary writes occurred after start of vnode sync loop
14848 	 */
14849 	error = 0;
14850 	if (bo->bo_numoutput > 0 ||
14851 	    bo->bo_dirty.bv_cnt > 0 ||
14852 	    softdep_depcnt != unlinked ||
14853 	    ump->softdep_deps != unlinked ||
14854 	    softdep_accdepcnt != ump->softdep_accdeps ||
14855 	    secondary_writes != 0 ||
14856 	    mp->mnt_secondary_writes != 0 ||
14857 	    secondary_accwrites != mp->mnt_secondary_accwrites)
14858 		error = EAGAIN;
14859 	FREE_LOCK(ump);
14860 	BO_UNLOCK(bo);
14861 	return (error);
14862 }
14863 
14864 /*
14865  * Get the number of dependency structures for the file system, both
14866  * the current number and the total number allocated.  These will
14867  * later be used to detect that softdep processing has occurred.
14868  */
14869 void
14870 softdep_get_depcounts(struct mount *mp,
14871 		      int *softdep_depsp,
14872 		      int *softdep_accdepsp)
14873 {
14874 	struct ufsmount *ump;
14875 
14876 	if (MOUNTEDSOFTDEP(mp) == 0) {
14877 		*softdep_depsp = 0;
14878 		*softdep_accdepsp = 0;
14879 		return;
14880 	}
14881 	ump = VFSTOUFS(mp);
14882 	ACQUIRE_LOCK(ump);
14883 	*softdep_depsp = ump->softdep_deps;
14884 	*softdep_accdepsp = ump->softdep_accdeps;
14885 	FREE_LOCK(ump);
14886 }
14887 
14888 /*
14889  * Wait for pending output on a vnode to complete.
14890  */
14891 static void
14892 drain_output(vp)
14893 	struct vnode *vp;
14894 {
14895 
14896 	ASSERT_VOP_LOCKED(vp, "drain_output");
14897 	(void)bufobj_wwait(&vp->v_bufobj, 0, 0);
14898 }
14899 
14900 /*
14901  * Called whenever a buffer that is being invalidated or reallocated
14902  * contains dependencies. This should only happen if an I/O error has
14903  * occurred. The routine is called with the buffer locked.
14904  */
14905 static void
14906 softdep_deallocate_dependencies(bp)
14907 	struct buf *bp;
14908 {
14909 
14910 	if ((bp->b_ioflags & BIO_ERROR) == 0)
14911 		panic("softdep_deallocate_dependencies: dangling deps");
14912 	if (bp->b_vp != NULL && bp->b_vp->v_mount != NULL)
14913 		softdep_error(bp->b_vp->v_mount->mnt_stat.f_mntonname, bp->b_error);
14914 	else
14915 		printf("softdep_deallocate_dependencies: "
14916 		    "got error %d while accessing filesystem\n", bp->b_error);
14917 	if (bp->b_error != ENXIO)
14918 		panic("softdep_deallocate_dependencies: unrecovered I/O error");
14919 }
14920 
14921 /*
14922  * Function to handle asynchronous write errors in the filesystem.
14923  */
14924 static void
14925 softdep_error(func, error)
14926 	char *func;
14927 	int error;
14928 {
14929 
14930 	/* XXX should do something better! */
14931 	printf("%s: got error %d while accessing filesystem\n", func, error);
14932 }
14933 
14934 #ifdef DDB
14935 
14936 /* exported to ffs_vfsops.c */
14937 extern void db_print_ffs(struct ufsmount *ump);
14938 void
14939 db_print_ffs(struct ufsmount *ump)
14940 {
14941 	db_printf("mp %p (%s) devvp %p\n", ump->um_mountp,
14942 	    ump->um_mountp->mnt_stat.f_mntonname, ump->um_devvp);
14943 	db_printf("    fs %p su_wl %d su_deps %d su_req %d\n",
14944 	    ump->um_fs, ump->softdep_on_worklist,
14945 	    ump->softdep_deps, ump->softdep_req);
14946 }
14947 
14948 static void
14949 worklist_print(struct worklist *wk, int verbose)
14950 {
14951 
14952 	if (!verbose) {
14953 		db_printf("%s: %p state 0x%b\n", TYPENAME(wk->wk_type), wk,
14954 		    (u_int)wk->wk_state, PRINT_SOFTDEP_FLAGS);
14955 		return;
14956 	}
14957 	db_printf("worklist: %p type %s state 0x%b next %p\n    ", wk,
14958 	    TYPENAME(wk->wk_type), (u_int)wk->wk_state, PRINT_SOFTDEP_FLAGS,
14959 	    LIST_NEXT(wk, wk_list));
14960 	db_print_ffs(VFSTOUFS(wk->wk_mp));
14961 }
14962 
14963 static void
14964 inodedep_print(struct inodedep *inodedep, int verbose)
14965 {
14966 
14967 	worklist_print(&inodedep->id_list, 0);
14968 	db_printf("    fs %p ino %jd inoblk %jd delta %jd nlink %jd\n",
14969 	    inodedep->id_fs,
14970 	    (intmax_t)inodedep->id_ino,
14971 	    (intmax_t)fsbtodb(inodedep->id_fs,
14972 	        ino_to_fsba(inodedep->id_fs, inodedep->id_ino)),
14973 	    (intmax_t)inodedep->id_nlinkdelta,
14974 	    (intmax_t)inodedep->id_savednlink);
14975 
14976 	if (verbose == 0)
14977 		return;
14978 
14979 	db_printf("    bmsafemap %p, mkdiradd %p, inoreflst %p\n",
14980 	    inodedep->id_bmsafemap,
14981 	    inodedep->id_mkdiradd,
14982 	    TAILQ_FIRST(&inodedep->id_inoreflst));
14983 	db_printf("    dirremhd %p, pendinghd %p, bufwait %p\n",
14984 	    LIST_FIRST(&inodedep->id_dirremhd),
14985 	    LIST_FIRST(&inodedep->id_pendinghd),
14986 	    LIST_FIRST(&inodedep->id_bufwait));
14987 	db_printf("    inowait %p, inoupdt %p, newinoupdt %p\n",
14988 	    LIST_FIRST(&inodedep->id_inowait),
14989 	    TAILQ_FIRST(&inodedep->id_inoupdt),
14990 	    TAILQ_FIRST(&inodedep->id_newinoupdt));
14991 	db_printf("    extupdt %p, newextupdt %p, freeblklst %p\n",
14992 	    TAILQ_FIRST(&inodedep->id_extupdt),
14993 	    TAILQ_FIRST(&inodedep->id_newextupdt),
14994 	    TAILQ_FIRST(&inodedep->id_freeblklst));
14995 	db_printf("    saveino %p, savedsize %jd, savedextsize %jd\n",
14996 	    inodedep->id_savedino1,
14997 	    (intmax_t)inodedep->id_savedsize,
14998 	    (intmax_t)inodedep->id_savedextsize);
14999 }
15000 
15001 static void
15002 newblk_print(struct newblk *nbp)
15003 {
15004 
15005 	worklist_print(&nbp->nb_list, 0);
15006 	db_printf("    newblkno %jd\n", (intmax_t)nbp->nb_newblkno);
15007 	db_printf("    jnewblk %p, bmsafemap %p, freefrag %p\n",
15008 	    &nbp->nb_jnewblk,
15009 	    &nbp->nb_bmsafemap,
15010 	    &nbp->nb_freefrag);
15011 	db_printf("    indirdeps %p, newdirblk %p, jwork %p\n",
15012 	    LIST_FIRST(&nbp->nb_indirdeps),
15013 	    LIST_FIRST(&nbp->nb_newdirblk),
15014 	    LIST_FIRST(&nbp->nb_jwork));
15015 }
15016 
15017 static void
15018 allocdirect_print(struct allocdirect *adp)
15019 {
15020 
15021 	newblk_print(&adp->ad_block);
15022 	db_printf("    oldblkno %jd, oldsize %ld, newsize %ld\n",
15023 	    adp->ad_oldblkno, adp->ad_oldsize, adp->ad_newsize);
15024 	db_printf("    offset %d, inodedep %p\n",
15025 	    adp->ad_offset, adp->ad_inodedep);
15026 }
15027 
15028 static void
15029 allocindir_print(struct allocindir *aip)
15030 {
15031 
15032 	newblk_print(&aip->ai_block);
15033 	db_printf("    oldblkno %jd, lbn %jd\n",
15034 	    (intmax_t)aip->ai_oldblkno, (intmax_t)aip->ai_lbn);
15035 	db_printf("    offset %d, indirdep %p\n",
15036 	    aip->ai_offset, aip->ai_indirdep);
15037 }
15038 
15039 static void
15040 mkdir_print(struct mkdir *mkdir)
15041 {
15042 
15043 	worklist_print(&mkdir->md_list, 0);
15044 	db_printf("    diradd %p, jaddref %p, buf %p\n",
15045 		mkdir->md_diradd, mkdir->md_jaddref, mkdir->md_buf);
15046 }
15047 
15048 DB_SHOW_COMMAND(sd_inodedep, db_show_sd_inodedep)
15049 {
15050 
15051 	if (have_addr == 0) {
15052 		db_printf("inodedep address required\n");
15053 		return;
15054 	}
15055 	inodedep_print((struct inodedep*)addr, 1);
15056 }
15057 
15058 DB_SHOW_COMMAND(sd_allinodedeps, db_show_sd_allinodedeps)
15059 {
15060 	struct inodedep_hashhead *inodedephd;
15061 	struct inodedep *inodedep;
15062 	struct ufsmount *ump;
15063 	int cnt;
15064 
15065 	if (have_addr == 0) {
15066 		db_printf("ufsmount address required\n");
15067 		return;
15068 	}
15069 	ump = (struct ufsmount *)addr;
15070 	for (cnt = 0; cnt < ump->inodedep_hash_size; cnt++) {
15071 		inodedephd = &ump->inodedep_hashtbl[cnt];
15072 		LIST_FOREACH(inodedep, inodedephd, id_hash) {
15073 			inodedep_print(inodedep, 0);
15074 		}
15075 	}
15076 }
15077 
15078 DB_SHOW_COMMAND(sd_worklist, db_show_sd_worklist)
15079 {
15080 
15081 	if (have_addr == 0) {
15082 		db_printf("worklist address required\n");
15083 		return;
15084 	}
15085 	worklist_print((struct worklist *)addr, 1);
15086 }
15087 
15088 DB_SHOW_COMMAND(sd_workhead, db_show_sd_workhead)
15089 {
15090 	struct worklist *wk;
15091 	struct workhead *wkhd;
15092 
15093 	if (have_addr == 0) {
15094 		db_printf("worklist address required "
15095 		    "(for example value in bp->b_dep)\n");
15096 		return;
15097 	}
15098 	/*
15099 	 * We often do not have the address of the worklist head but
15100 	 * instead a pointer to its first entry (e.g., we have the
15101 	 * contents of bp->b_dep rather than &bp->b_dep). But the back
15102 	 * pointer of bp->b_dep will point at the head of the list, so
15103 	 * we cheat and use that instead. If we are in the middle of
15104 	 * a list we will still get the same result, so nothing
15105 	 * unexpected will result.
15106 	 */
15107 	wk = (struct worklist *)addr;
15108 	if (wk == NULL)
15109 		return;
15110 	wkhd = (struct workhead *)wk->wk_list.le_prev;
15111 	LIST_FOREACH(wk, wkhd, wk_list) {
15112 		switch(wk->wk_type) {
15113 		case D_INODEDEP:
15114 			inodedep_print(WK_INODEDEP(wk), 0);
15115 			continue;
15116 		case D_ALLOCDIRECT:
15117 			allocdirect_print(WK_ALLOCDIRECT(wk));
15118 			continue;
15119 		case D_ALLOCINDIR:
15120 			allocindir_print(WK_ALLOCINDIR(wk));
15121 			continue;
15122 		case D_MKDIR:
15123 			mkdir_print(WK_MKDIR(wk));
15124 			continue;
15125 		default:
15126 			worklist_print(wk, 0);
15127 			continue;
15128 		}
15129 	}
15130 }
15131 
15132 DB_SHOW_COMMAND(sd_mkdir, db_show_sd_mkdir)
15133 {
15134 	if (have_addr == 0) {
15135 		db_printf("mkdir address required\n");
15136 		return;
15137 	}
15138 	mkdir_print((struct mkdir *)addr);
15139 }
15140 
15141 DB_SHOW_COMMAND(sd_mkdir_list, db_show_sd_mkdir_list)
15142 {
15143 	struct mkdirlist *mkdirlisthd;
15144 	struct mkdir *mkdir;
15145 
15146 	if (have_addr == 0) {
15147 		db_printf("mkdir listhead address required\n");
15148 		return;
15149 	}
15150 	mkdirlisthd = (struct mkdirlist *)addr;
15151 	LIST_FOREACH(mkdir, mkdirlisthd, md_mkdirs) {
15152 		mkdir_print(mkdir);
15153 		if (mkdir->md_diradd != NULL) {
15154 			db_printf("    ");
15155 			worklist_print(&mkdir->md_diradd->da_list, 0);
15156 		}
15157 		if (mkdir->md_jaddref != NULL) {
15158 			db_printf("    ");
15159 			worklist_print(&mkdir->md_jaddref->ja_list, 0);
15160 		}
15161 	}
15162 }
15163 
15164 DB_SHOW_COMMAND(sd_allocdirect, db_show_sd_allocdirect)
15165 {
15166 	if (have_addr == 0) {
15167 		db_printf("allocdirect address required\n");
15168 		return;
15169 	}
15170 	allocdirect_print((struct allocdirect *)addr);
15171 }
15172 
15173 DB_SHOW_COMMAND(sd_allocindir, db_show_sd_allocindir)
15174 {
15175 	if (have_addr == 0) {
15176 		db_printf("allocindir address required\n");
15177 		return;
15178 	}
15179 	allocindir_print((struct allocindir *)addr);
15180 }
15181 
15182 #endif /* DDB */
15183 
15184 #endif /* SOFTUPDATES */
15185