xref: /freebsd/sys/ufs/ffs/ffs_softdep.c (revision d8010b1175094374c8295d0fba56c2402b32a4da)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright 1998, 2000 Marshall Kirk McKusick.
5  * Copyright 2009, 2010 Jeffrey W. Roberson <jeff@FreeBSD.org>
6  * All rights reserved.
7  *
8  * The soft updates code is derived from the appendix of a University
9  * of Michigan technical report (Gregory R. Ganger and Yale N. Patt,
10  * "Soft Updates: A Solution to the Metadata Update Problem in File
11  * Systems", CSE-TR-254-95, August 1995).
12  *
13  * Further information about soft updates can be obtained from:
14  *
15  *	Marshall Kirk McKusick		http://www.mckusick.com/softdep/
16  *	1614 Oxford Street		mckusick@mckusick.com
17  *	Berkeley, CA 94709-1608		+1-510-843-9542
18  *	USA
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  * 1. Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  * 2. Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in the
28  *    documentation and/or other materials provided with the distribution.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR
31  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
32  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
33  * IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT,
34  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
35  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
36  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
37  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
38  * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
39  * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40  *
41  *	from: @(#)ffs_softdep.c	9.59 (McKusick) 6/21/00
42  */
43 
44 #include <sys/cdefs.h>
45 __FBSDID("$FreeBSD$");
46 
47 #include "opt_ffs.h"
48 #include "opt_quota.h"
49 #include "opt_ddb.h"
50 
51 #include <sys/param.h>
52 #include <sys/kernel.h>
53 #include <sys/systm.h>
54 #include <sys/bio.h>
55 #include <sys/buf.h>
56 #include <sys/kdb.h>
57 #include <sys/kthread.h>
58 #include <sys/ktr.h>
59 #include <sys/limits.h>
60 #include <sys/lock.h>
61 #include <sys/malloc.h>
62 #include <sys/mount.h>
63 #include <sys/mutex.h>
64 #include <sys/namei.h>
65 #include <sys/priv.h>
66 #include <sys/proc.h>
67 #include <sys/racct.h>
68 #include <sys/rwlock.h>
69 #include <sys/stat.h>
70 #include <sys/sysctl.h>
71 #include <sys/syslog.h>
72 #include <sys/vnode.h>
73 #include <sys/conf.h>
74 
75 #include <ufs/ufs/dir.h>
76 #include <ufs/ufs/extattr.h>
77 #include <ufs/ufs/quota.h>
78 #include <ufs/ufs/inode.h>
79 #include <ufs/ufs/ufsmount.h>
80 #include <ufs/ffs/fs.h>
81 #include <ufs/ffs/softdep.h>
82 #include <ufs/ffs/ffs_extern.h>
83 #include <ufs/ufs/ufs_extern.h>
84 
85 #include <vm/vm.h>
86 #include <vm/vm_extern.h>
87 #include <vm/vm_object.h>
88 
89 #include <geom/geom.h>
90 
91 #include <ddb/ddb.h>
92 
93 #define	KTR_SUJ	0	/* Define to KTR_SPARE. */
94 
95 #ifndef SOFTUPDATES
96 
97 int
98 softdep_flushfiles(oldmnt, flags, td)
99 	struct mount *oldmnt;
100 	int flags;
101 	struct thread *td;
102 {
103 
104 	panic("softdep_flushfiles called");
105 }
106 
107 int
108 softdep_mount(devvp, mp, fs, cred)
109 	struct vnode *devvp;
110 	struct mount *mp;
111 	struct fs *fs;
112 	struct ucred *cred;
113 {
114 
115 	return (0);
116 }
117 
118 void
119 softdep_initialize()
120 {
121 
122 	return;
123 }
124 
125 void
126 softdep_uninitialize()
127 {
128 
129 	return;
130 }
131 
132 void
133 softdep_unmount(mp)
134 	struct mount *mp;
135 {
136 
137 	panic("softdep_unmount called");
138 }
139 
140 void
141 softdep_setup_sbupdate(ump, fs, bp)
142 	struct ufsmount *ump;
143 	struct fs *fs;
144 	struct buf *bp;
145 {
146 
147 	panic("softdep_setup_sbupdate called");
148 }
149 
150 void
151 softdep_setup_inomapdep(bp, ip, newinum, mode)
152 	struct buf *bp;
153 	struct inode *ip;
154 	ino_t newinum;
155 	int mode;
156 {
157 
158 	panic("softdep_setup_inomapdep called");
159 }
160 
161 void
162 softdep_setup_blkmapdep(bp, mp, newblkno, frags, oldfrags)
163 	struct buf *bp;
164 	struct mount *mp;
165 	ufs2_daddr_t newblkno;
166 	int frags;
167 	int oldfrags;
168 {
169 
170 	panic("softdep_setup_blkmapdep called");
171 }
172 
173 void
174 softdep_setup_allocdirect(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp)
175 	struct inode *ip;
176 	ufs_lbn_t lbn;
177 	ufs2_daddr_t newblkno;
178 	ufs2_daddr_t oldblkno;
179 	long newsize;
180 	long oldsize;
181 	struct buf *bp;
182 {
183 
184 	panic("softdep_setup_allocdirect called");
185 }
186 
187 void
188 softdep_setup_allocext(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp)
189 	struct inode *ip;
190 	ufs_lbn_t lbn;
191 	ufs2_daddr_t newblkno;
192 	ufs2_daddr_t oldblkno;
193 	long newsize;
194 	long oldsize;
195 	struct buf *bp;
196 {
197 
198 	panic("softdep_setup_allocext called");
199 }
200 
201 void
202 softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp)
203 	struct inode *ip;
204 	ufs_lbn_t lbn;
205 	struct buf *bp;
206 	int ptrno;
207 	ufs2_daddr_t newblkno;
208 	ufs2_daddr_t oldblkno;
209 	struct buf *nbp;
210 {
211 
212 	panic("softdep_setup_allocindir_page called");
213 }
214 
215 void
216 softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno)
217 	struct buf *nbp;
218 	struct inode *ip;
219 	struct buf *bp;
220 	int ptrno;
221 	ufs2_daddr_t newblkno;
222 {
223 
224 	panic("softdep_setup_allocindir_meta called");
225 }
226 
227 void
228 softdep_journal_freeblocks(ip, cred, length, flags)
229 	struct inode *ip;
230 	struct ucred *cred;
231 	off_t length;
232 	int flags;
233 {
234 
235 	panic("softdep_journal_freeblocks called");
236 }
237 
238 void
239 softdep_journal_fsync(ip)
240 	struct inode *ip;
241 {
242 
243 	panic("softdep_journal_fsync called");
244 }
245 
246 void
247 softdep_setup_freeblocks(ip, length, flags)
248 	struct inode *ip;
249 	off_t length;
250 	int flags;
251 {
252 
253 	panic("softdep_setup_freeblocks called");
254 }
255 
256 void
257 softdep_freefile(pvp, ino, mode)
258 		struct vnode *pvp;
259 		ino_t ino;
260 		int mode;
261 {
262 
263 	panic("softdep_freefile called");
264 }
265 
266 int
267 softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk)
268 	struct buf *bp;
269 	struct inode *dp;
270 	off_t diroffset;
271 	ino_t newinum;
272 	struct buf *newdirbp;
273 	int isnewblk;
274 {
275 
276 	panic("softdep_setup_directory_add called");
277 }
278 
279 void
280 softdep_change_directoryentry_offset(bp, dp, base, oldloc, newloc, entrysize)
281 	struct buf *bp;
282 	struct inode *dp;
283 	caddr_t base;
284 	caddr_t oldloc;
285 	caddr_t newloc;
286 	int entrysize;
287 {
288 
289 	panic("softdep_change_directoryentry_offset called");
290 }
291 
292 void
293 softdep_setup_remove(bp, dp, ip, isrmdir)
294 	struct buf *bp;
295 	struct inode *dp;
296 	struct inode *ip;
297 	int isrmdir;
298 {
299 
300 	panic("softdep_setup_remove called");
301 }
302 
303 void
304 softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir)
305 	struct buf *bp;
306 	struct inode *dp;
307 	struct inode *ip;
308 	ino_t newinum;
309 	int isrmdir;
310 {
311 
312 	panic("softdep_setup_directory_change called");
313 }
314 
315 void
316 softdep_setup_blkfree(mp, bp, blkno, frags, wkhd)
317 	struct mount *mp;
318 	struct buf *bp;
319 	ufs2_daddr_t blkno;
320 	int frags;
321 	struct workhead *wkhd;
322 {
323 
324 	panic("%s called", __FUNCTION__);
325 }
326 
327 void
328 softdep_setup_inofree(mp, bp, ino, wkhd)
329 	struct mount *mp;
330 	struct buf *bp;
331 	ino_t ino;
332 	struct workhead *wkhd;
333 {
334 
335 	panic("%s called", __FUNCTION__);
336 }
337 
338 void
339 softdep_setup_unlink(dp, ip)
340 	struct inode *dp;
341 	struct inode *ip;
342 {
343 
344 	panic("%s called", __FUNCTION__);
345 }
346 
347 void
348 softdep_setup_link(dp, ip)
349 	struct inode *dp;
350 	struct inode *ip;
351 {
352 
353 	panic("%s called", __FUNCTION__);
354 }
355 
356 void
357 softdep_revert_link(dp, ip)
358 	struct inode *dp;
359 	struct inode *ip;
360 {
361 
362 	panic("%s called", __FUNCTION__);
363 }
364 
365 void
366 softdep_setup_rmdir(dp, ip)
367 	struct inode *dp;
368 	struct inode *ip;
369 {
370 
371 	panic("%s called", __FUNCTION__);
372 }
373 
374 void
375 softdep_revert_rmdir(dp, ip)
376 	struct inode *dp;
377 	struct inode *ip;
378 {
379 
380 	panic("%s called", __FUNCTION__);
381 }
382 
383 void
384 softdep_setup_create(dp, ip)
385 	struct inode *dp;
386 	struct inode *ip;
387 {
388 
389 	panic("%s called", __FUNCTION__);
390 }
391 
392 void
393 softdep_revert_create(dp, ip)
394 	struct inode *dp;
395 	struct inode *ip;
396 {
397 
398 	panic("%s called", __FUNCTION__);
399 }
400 
401 void
402 softdep_setup_mkdir(dp, ip)
403 	struct inode *dp;
404 	struct inode *ip;
405 {
406 
407 	panic("%s called", __FUNCTION__);
408 }
409 
410 void
411 softdep_revert_mkdir(dp, ip)
412 	struct inode *dp;
413 	struct inode *ip;
414 {
415 
416 	panic("%s called", __FUNCTION__);
417 }
418 
419 void
420 softdep_setup_dotdot_link(dp, ip)
421 	struct inode *dp;
422 	struct inode *ip;
423 {
424 
425 	panic("%s called", __FUNCTION__);
426 }
427 
428 int
429 softdep_prealloc(vp, waitok)
430 	struct vnode *vp;
431 	int waitok;
432 {
433 
434 	panic("%s called", __FUNCTION__);
435 }
436 
437 int
438 softdep_journal_lookup(mp, vpp)
439 	struct mount *mp;
440 	struct vnode **vpp;
441 {
442 
443 	return (ENOENT);
444 }
445 
446 void
447 softdep_change_linkcnt(ip)
448 	struct inode *ip;
449 {
450 
451 	panic("softdep_change_linkcnt called");
452 }
453 
454 void
455 softdep_load_inodeblock(ip)
456 	struct inode *ip;
457 {
458 
459 	panic("softdep_load_inodeblock called");
460 }
461 
462 void
463 softdep_update_inodeblock(ip, bp, waitfor)
464 	struct inode *ip;
465 	struct buf *bp;
466 	int waitfor;
467 {
468 
469 	panic("softdep_update_inodeblock called");
470 }
471 
472 int
473 softdep_fsync(vp)
474 	struct vnode *vp;	/* the "in_core" copy of the inode */
475 {
476 
477 	return (0);
478 }
479 
480 void
481 softdep_fsync_mountdev(vp)
482 	struct vnode *vp;
483 {
484 
485 	return;
486 }
487 
488 int
489 softdep_flushworklist(oldmnt, countp, td)
490 	struct mount *oldmnt;
491 	int *countp;
492 	struct thread *td;
493 {
494 
495 	*countp = 0;
496 	return (0);
497 }
498 
499 int
500 softdep_sync_metadata(struct vnode *vp)
501 {
502 
503 	panic("softdep_sync_metadata called");
504 }
505 
506 int
507 softdep_sync_buf(struct vnode *vp, struct buf *bp, int waitfor)
508 {
509 
510 	panic("softdep_sync_buf called");
511 }
512 
513 int
514 softdep_slowdown(vp)
515 	struct vnode *vp;
516 {
517 
518 	panic("softdep_slowdown called");
519 }
520 
521 int
522 softdep_request_cleanup(fs, vp, cred, resource)
523 	struct fs *fs;
524 	struct vnode *vp;
525 	struct ucred *cred;
526 	int resource;
527 {
528 
529 	return (0);
530 }
531 
532 int
533 softdep_check_suspend(struct mount *mp,
534 		      struct vnode *devvp,
535 		      int softdep_depcnt,
536 		      int softdep_accdepcnt,
537 		      int secondary_writes,
538 		      int secondary_accwrites)
539 {
540 	struct bufobj *bo;
541 	int error;
542 
543 	(void) softdep_depcnt,
544 	(void) softdep_accdepcnt;
545 
546 	bo = &devvp->v_bufobj;
547 	ASSERT_BO_WLOCKED(bo);
548 
549 	MNT_ILOCK(mp);
550 	while (mp->mnt_secondary_writes != 0) {
551 		BO_UNLOCK(bo);
552 		msleep(&mp->mnt_secondary_writes, MNT_MTX(mp),
553 		    (PUSER - 1) | PDROP, "secwr", 0);
554 		BO_LOCK(bo);
555 		MNT_ILOCK(mp);
556 	}
557 
558 	/*
559 	 * Reasons for needing more work before suspend:
560 	 * - Dirty buffers on devvp.
561 	 * - Secondary writes occurred after start of vnode sync loop
562 	 */
563 	error = 0;
564 	if (bo->bo_numoutput > 0 ||
565 	    bo->bo_dirty.bv_cnt > 0 ||
566 	    secondary_writes != 0 ||
567 	    mp->mnt_secondary_writes != 0 ||
568 	    secondary_accwrites != mp->mnt_secondary_accwrites)
569 		error = EAGAIN;
570 	BO_UNLOCK(bo);
571 	return (error);
572 }
573 
574 void
575 softdep_get_depcounts(struct mount *mp,
576 		      int *softdepactivep,
577 		      int *softdepactiveaccp)
578 {
579 	(void) mp;
580 	*softdepactivep = 0;
581 	*softdepactiveaccp = 0;
582 }
583 
584 void
585 softdep_buf_append(bp, wkhd)
586 	struct buf *bp;
587 	struct workhead *wkhd;
588 {
589 
590 	panic("softdep_buf_appendwork called");
591 }
592 
593 void
594 softdep_inode_append(ip, cred, wkhd)
595 	struct inode *ip;
596 	struct ucred *cred;
597 	struct workhead *wkhd;
598 {
599 
600 	panic("softdep_inode_appendwork called");
601 }
602 
603 void
604 softdep_freework(wkhd)
605 	struct workhead *wkhd;
606 {
607 
608 	panic("softdep_freework called");
609 }
610 
611 #else
612 
613 FEATURE(softupdates, "FFS soft-updates support");
614 
615 static SYSCTL_NODE(_debug, OID_AUTO, softdep, CTLFLAG_RW, 0,
616     "soft updates stats");
617 static SYSCTL_NODE(_debug_softdep, OID_AUTO, total, CTLFLAG_RW, 0,
618     "total dependencies allocated");
619 static SYSCTL_NODE(_debug_softdep, OID_AUTO, highuse, CTLFLAG_RW, 0,
620     "high use dependencies allocated");
621 static SYSCTL_NODE(_debug_softdep, OID_AUTO, current, CTLFLAG_RW, 0,
622     "current dependencies allocated");
623 static SYSCTL_NODE(_debug_softdep, OID_AUTO, write, CTLFLAG_RW, 0,
624     "current dependencies written");
625 
626 unsigned long dep_current[D_LAST + 1];
627 unsigned long dep_highuse[D_LAST + 1];
628 unsigned long dep_total[D_LAST + 1];
629 unsigned long dep_write[D_LAST + 1];
630 
631 #define	SOFTDEP_TYPE(type, str, long)					\
632     static MALLOC_DEFINE(M_ ## type, #str, long);			\
633     SYSCTL_ULONG(_debug_softdep_total, OID_AUTO, str, CTLFLAG_RD,	\
634 	&dep_total[D_ ## type], 0, "");					\
635     SYSCTL_ULONG(_debug_softdep_current, OID_AUTO, str, CTLFLAG_RD, 	\
636 	&dep_current[D_ ## type], 0, "");				\
637     SYSCTL_ULONG(_debug_softdep_highuse, OID_AUTO, str, CTLFLAG_RD, 	\
638 	&dep_highuse[D_ ## type], 0, "");				\
639     SYSCTL_ULONG(_debug_softdep_write, OID_AUTO, str, CTLFLAG_RD, 	\
640 	&dep_write[D_ ## type], 0, "");
641 
642 SOFTDEP_TYPE(PAGEDEP, pagedep, "File page dependencies");
643 SOFTDEP_TYPE(INODEDEP, inodedep, "Inode dependencies");
644 SOFTDEP_TYPE(BMSAFEMAP, bmsafemap,
645     "Block or frag allocated from cyl group map");
646 SOFTDEP_TYPE(NEWBLK, newblk, "New block or frag allocation dependency");
647 SOFTDEP_TYPE(ALLOCDIRECT, allocdirect, "Block or frag dependency for an inode");
648 SOFTDEP_TYPE(INDIRDEP, indirdep, "Indirect block dependencies");
649 SOFTDEP_TYPE(ALLOCINDIR, allocindir, "Block dependency for an indirect block");
650 SOFTDEP_TYPE(FREEFRAG, freefrag, "Previously used frag for an inode");
651 SOFTDEP_TYPE(FREEBLKS, freeblks, "Blocks freed from an inode");
652 SOFTDEP_TYPE(FREEFILE, freefile, "Inode deallocated");
653 SOFTDEP_TYPE(DIRADD, diradd, "New directory entry");
654 SOFTDEP_TYPE(MKDIR, mkdir, "New directory");
655 SOFTDEP_TYPE(DIRREM, dirrem, "Directory entry deleted");
656 SOFTDEP_TYPE(NEWDIRBLK, newdirblk, "Unclaimed new directory block");
657 SOFTDEP_TYPE(FREEWORK, freework, "free an inode block");
658 SOFTDEP_TYPE(FREEDEP, freedep, "track a block free");
659 SOFTDEP_TYPE(JADDREF, jaddref, "Journal inode ref add");
660 SOFTDEP_TYPE(JREMREF, jremref, "Journal inode ref remove");
661 SOFTDEP_TYPE(JMVREF, jmvref, "Journal inode ref move");
662 SOFTDEP_TYPE(JNEWBLK, jnewblk, "Journal new block");
663 SOFTDEP_TYPE(JFREEBLK, jfreeblk, "Journal free block");
664 SOFTDEP_TYPE(JFREEFRAG, jfreefrag, "Journal free frag");
665 SOFTDEP_TYPE(JSEG, jseg, "Journal segment");
666 SOFTDEP_TYPE(JSEGDEP, jsegdep, "Journal segment complete");
667 SOFTDEP_TYPE(SBDEP, sbdep, "Superblock write dependency");
668 SOFTDEP_TYPE(JTRUNC, jtrunc, "Journal inode truncation");
669 SOFTDEP_TYPE(JFSYNC, jfsync, "Journal fsync complete");
670 
671 static MALLOC_DEFINE(M_SENTINEL, "sentinel", "Worklist sentinel");
672 
673 static MALLOC_DEFINE(M_SAVEDINO, "savedino", "Saved inodes");
674 static MALLOC_DEFINE(M_JBLOCKS, "jblocks", "Journal block locations");
675 static MALLOC_DEFINE(M_MOUNTDATA, "softdep", "Softdep per-mount data");
676 
677 #define M_SOFTDEP_FLAGS	(M_WAITOK)
678 
679 /*
680  * translate from workitem type to memory type
681  * MUST match the defines above, such that memtype[D_XXX] == M_XXX
682  */
683 static struct malloc_type *memtype[] = {
684 	NULL,
685 	M_PAGEDEP,
686 	M_INODEDEP,
687 	M_BMSAFEMAP,
688 	M_NEWBLK,
689 	M_ALLOCDIRECT,
690 	M_INDIRDEP,
691 	M_ALLOCINDIR,
692 	M_FREEFRAG,
693 	M_FREEBLKS,
694 	M_FREEFILE,
695 	M_DIRADD,
696 	M_MKDIR,
697 	M_DIRREM,
698 	M_NEWDIRBLK,
699 	M_FREEWORK,
700 	M_FREEDEP,
701 	M_JADDREF,
702 	M_JREMREF,
703 	M_JMVREF,
704 	M_JNEWBLK,
705 	M_JFREEBLK,
706 	M_JFREEFRAG,
707 	M_JSEG,
708 	M_JSEGDEP,
709 	M_SBDEP,
710 	M_JTRUNC,
711 	M_JFSYNC,
712 	M_SENTINEL
713 };
714 
715 #define DtoM(type) (memtype[type])
716 
717 /*
718  * Names of malloc types.
719  */
720 #define TYPENAME(type)  \
721 	((unsigned)(type) <= D_LAST && (unsigned)(type) >= D_FIRST ? \
722 	memtype[type]->ks_shortdesc : "???")
723 /*
724  * End system adaptation definitions.
725  */
726 
727 #define	DOTDOT_OFFSET	offsetof(struct dirtemplate, dotdot_ino)
728 #define	DOT_OFFSET	offsetof(struct dirtemplate, dot_ino)
729 
730 /*
731  * Internal function prototypes.
732  */
733 static	void check_clear_deps(struct mount *);
734 static	void softdep_error(char *, int);
735 static	int softdep_process_worklist(struct mount *, int);
736 static	int softdep_waitidle(struct mount *, int);
737 static	void drain_output(struct vnode *);
738 static	struct buf *getdirtybuf(struct buf *, struct rwlock *, int);
739 static	int check_inodedep_free(struct inodedep *);
740 static	void clear_remove(struct mount *);
741 static	void clear_inodedeps(struct mount *);
742 static	void unlinked_inodedep(struct mount *, struct inodedep *);
743 static	void clear_unlinked_inodedep(struct inodedep *);
744 static	struct inodedep *first_unlinked_inodedep(struct ufsmount *);
745 static	int flush_pagedep_deps(struct vnode *, struct mount *,
746 	    struct diraddhd *);
747 static	int free_pagedep(struct pagedep *);
748 static	int flush_newblk_dep(struct vnode *, struct mount *, ufs_lbn_t);
749 static	int flush_inodedep_deps(struct vnode *, struct mount *, ino_t);
750 static	int flush_deplist(struct allocdirectlst *, int, int *);
751 static	int sync_cgs(struct mount *, int);
752 static	int handle_written_filepage(struct pagedep *, struct buf *, int);
753 static	int handle_written_sbdep(struct sbdep *, struct buf *);
754 static	void initiate_write_sbdep(struct sbdep *);
755 static	void diradd_inode_written(struct diradd *, struct inodedep *);
756 static	int handle_written_indirdep(struct indirdep *, struct buf *,
757 	    struct buf**, int);
758 static	int handle_written_inodeblock(struct inodedep *, struct buf *, int);
759 static	int jnewblk_rollforward(struct jnewblk *, struct fs *, struct cg *,
760 	    uint8_t *);
761 static	int handle_written_bmsafemap(struct bmsafemap *, struct buf *, int);
762 static	void handle_written_jaddref(struct jaddref *);
763 static	void handle_written_jremref(struct jremref *);
764 static	void handle_written_jseg(struct jseg *, struct buf *);
765 static	void handle_written_jnewblk(struct jnewblk *);
766 static	void handle_written_jblkdep(struct jblkdep *);
767 static	void handle_written_jfreefrag(struct jfreefrag *);
768 static	void complete_jseg(struct jseg *);
769 static	void complete_jsegs(struct jseg *);
770 static	void jseg_write(struct ufsmount *ump, struct jseg *, uint8_t *);
771 static	void jaddref_write(struct jaddref *, struct jseg *, uint8_t *);
772 static	void jremref_write(struct jremref *, struct jseg *, uint8_t *);
773 static	void jmvref_write(struct jmvref *, struct jseg *, uint8_t *);
774 static	void jtrunc_write(struct jtrunc *, struct jseg *, uint8_t *);
775 static	void jfsync_write(struct jfsync *, struct jseg *, uint8_t *data);
776 static	void jnewblk_write(struct jnewblk *, struct jseg *, uint8_t *);
777 static	void jfreeblk_write(struct jfreeblk *, struct jseg *, uint8_t *);
778 static	void jfreefrag_write(struct jfreefrag *, struct jseg *, uint8_t *);
779 static	inline void inoref_write(struct inoref *, struct jseg *,
780 	    struct jrefrec *);
781 static	void handle_allocdirect_partdone(struct allocdirect *,
782 	    struct workhead *);
783 static	struct jnewblk *cancel_newblk(struct newblk *, struct worklist *,
784 	    struct workhead *);
785 static	void indirdep_complete(struct indirdep *);
786 static	int indirblk_lookup(struct mount *, ufs2_daddr_t);
787 static	void indirblk_insert(struct freework *);
788 static	void indirblk_remove(struct freework *);
789 static	void handle_allocindir_partdone(struct allocindir *);
790 static	void initiate_write_filepage(struct pagedep *, struct buf *);
791 static	void initiate_write_indirdep(struct indirdep*, struct buf *);
792 static	void handle_written_mkdir(struct mkdir *, int);
793 static	int jnewblk_rollback(struct jnewblk *, struct fs *, struct cg *,
794 	    uint8_t *);
795 static	void initiate_write_bmsafemap(struct bmsafemap *, struct buf *);
796 static	void initiate_write_inodeblock_ufs1(struct inodedep *, struct buf *);
797 static	void initiate_write_inodeblock_ufs2(struct inodedep *, struct buf *);
798 static	void handle_workitem_freefile(struct freefile *);
799 static	int handle_workitem_remove(struct dirrem *, int);
800 static	struct dirrem *newdirrem(struct buf *, struct inode *,
801 	    struct inode *, int, struct dirrem **);
802 static	struct indirdep *indirdep_lookup(struct mount *, struct inode *,
803 	    struct buf *);
804 static	void cancel_indirdep(struct indirdep *, struct buf *,
805 	    struct freeblks *);
806 static	void free_indirdep(struct indirdep *);
807 static	void free_diradd(struct diradd *, struct workhead *);
808 static	void merge_diradd(struct inodedep *, struct diradd *);
809 static	void complete_diradd(struct diradd *);
810 static	struct diradd *diradd_lookup(struct pagedep *, int);
811 static	struct jremref *cancel_diradd_dotdot(struct inode *, struct dirrem *,
812 	    struct jremref *);
813 static	struct jremref *cancel_mkdir_dotdot(struct inode *, struct dirrem *,
814 	    struct jremref *);
815 static	void cancel_diradd(struct diradd *, struct dirrem *, struct jremref *,
816 	    struct jremref *, struct jremref *);
817 static	void dirrem_journal(struct dirrem *, struct jremref *, struct jremref *,
818 	    struct jremref *);
819 static	void cancel_allocindir(struct allocindir *, struct buf *bp,
820 	    struct freeblks *, int);
821 static	int setup_trunc_indir(struct freeblks *, struct inode *,
822 	    ufs_lbn_t, ufs_lbn_t, ufs2_daddr_t);
823 static	void complete_trunc_indir(struct freework *);
824 static	void trunc_indirdep(struct indirdep *, struct freeblks *, struct buf *,
825 	    int);
826 static	void complete_mkdir(struct mkdir *);
827 static	void free_newdirblk(struct newdirblk *);
828 static	void free_jremref(struct jremref *);
829 static	void free_jaddref(struct jaddref *);
830 static	void free_jsegdep(struct jsegdep *);
831 static	void free_jsegs(struct jblocks *);
832 static	void rele_jseg(struct jseg *);
833 static	void free_jseg(struct jseg *, struct jblocks *);
834 static	void free_jnewblk(struct jnewblk *);
835 static	void free_jblkdep(struct jblkdep *);
836 static	void free_jfreefrag(struct jfreefrag *);
837 static	void free_freedep(struct freedep *);
838 static	void journal_jremref(struct dirrem *, struct jremref *,
839 	    struct inodedep *);
840 static	void cancel_jnewblk(struct jnewblk *, struct workhead *);
841 static	int cancel_jaddref(struct jaddref *, struct inodedep *,
842 	    struct workhead *);
843 static	void cancel_jfreefrag(struct jfreefrag *);
844 static	inline void setup_freedirect(struct freeblks *, struct inode *,
845 	    int, int);
846 static	inline void setup_freeext(struct freeblks *, struct inode *, int, int);
847 static	inline void setup_freeindir(struct freeblks *, struct inode *, int,
848 	    ufs_lbn_t, int);
849 static	inline struct freeblks *newfreeblks(struct mount *, struct inode *);
850 static	void freeblks_free(struct ufsmount *, struct freeblks *, int);
851 static	void indir_trunc(struct freework *, ufs2_daddr_t, ufs_lbn_t);
852 static	ufs2_daddr_t blkcount(struct fs *, ufs2_daddr_t, off_t);
853 static	int trunc_check_buf(struct buf *, int *, ufs_lbn_t, int, int);
854 static	void trunc_dependencies(struct inode *, struct freeblks *, ufs_lbn_t,
855 	    int, int);
856 static	void trunc_pages(struct inode *, off_t, ufs2_daddr_t, int);
857 static 	int cancel_pagedep(struct pagedep *, struct freeblks *, int);
858 static	int deallocate_dependencies(struct buf *, struct freeblks *, int);
859 static	void newblk_freefrag(struct newblk*);
860 static	void free_newblk(struct newblk *);
861 static	void cancel_allocdirect(struct allocdirectlst *,
862 	    struct allocdirect *, struct freeblks *);
863 static	int check_inode_unwritten(struct inodedep *);
864 static	int free_inodedep(struct inodedep *);
865 static	void freework_freeblock(struct freework *, u_long);
866 static	void freework_enqueue(struct freework *);
867 static	int handle_workitem_freeblocks(struct freeblks *, int);
868 static	int handle_complete_freeblocks(struct freeblks *, int);
869 static	void handle_workitem_indirblk(struct freework *);
870 static	void handle_written_freework(struct freework *);
871 static	void merge_inode_lists(struct allocdirectlst *,struct allocdirectlst *);
872 static	struct worklist *jnewblk_merge(struct worklist *, struct worklist *,
873 	    struct workhead *);
874 static	struct freefrag *setup_allocindir_phase2(struct buf *, struct inode *,
875 	    struct inodedep *, struct allocindir *, ufs_lbn_t);
876 static	struct allocindir *newallocindir(struct inode *, int, ufs2_daddr_t,
877 	    ufs2_daddr_t, ufs_lbn_t);
878 static	void handle_workitem_freefrag(struct freefrag *);
879 static	struct freefrag *newfreefrag(struct inode *, ufs2_daddr_t, long,
880 	    ufs_lbn_t, u_long);
881 static	void allocdirect_merge(struct allocdirectlst *,
882 	    struct allocdirect *, struct allocdirect *);
883 static	struct freefrag *allocindir_merge(struct allocindir *,
884 	    struct allocindir *);
885 static	int bmsafemap_find(struct bmsafemap_hashhead *, int,
886 	    struct bmsafemap **);
887 static	struct bmsafemap *bmsafemap_lookup(struct mount *, struct buf *,
888 	    int cg, struct bmsafemap *);
889 static	int newblk_find(struct newblk_hashhead *, ufs2_daddr_t, int,
890 	    struct newblk **);
891 static	int newblk_lookup(struct mount *, ufs2_daddr_t, int, struct newblk **);
892 static	int inodedep_find(struct inodedep_hashhead *, ino_t,
893 	    struct inodedep **);
894 static	int inodedep_lookup(struct mount *, ino_t, int, struct inodedep **);
895 static	int pagedep_lookup(struct mount *, struct buf *bp, ino_t, ufs_lbn_t,
896 	    int, struct pagedep **);
897 static	int pagedep_find(struct pagedep_hashhead *, ino_t, ufs_lbn_t,
898 	    struct pagedep **);
899 static	void pause_timer(void *);
900 static	int request_cleanup(struct mount *, int);
901 static	int softdep_request_cleanup_flush(struct mount *, struct ufsmount *);
902 static	void schedule_cleanup(struct mount *);
903 static void softdep_ast_cleanup_proc(struct thread *);
904 static struct ufsmount *softdep_bp_to_mp(struct buf *bp);
905 static	int process_worklist_item(struct mount *, int, int);
906 static	void process_removes(struct vnode *);
907 static	void process_truncates(struct vnode *);
908 static	void jwork_move(struct workhead *, struct workhead *);
909 static	void jwork_insert(struct workhead *, struct jsegdep *);
910 static	void add_to_worklist(struct worklist *, int);
911 static	void wake_worklist(struct worklist *);
912 static	void wait_worklist(struct worklist *, char *);
913 static	void remove_from_worklist(struct worklist *);
914 static	void softdep_flush(void *);
915 static	void softdep_flushjournal(struct mount *);
916 static	int softdep_speedup(struct ufsmount *);
917 static	void worklist_speedup(struct mount *);
918 static	int journal_mount(struct mount *, struct fs *, struct ucred *);
919 static	void journal_unmount(struct ufsmount *);
920 static	int journal_space(struct ufsmount *, int);
921 static	void journal_suspend(struct ufsmount *);
922 static	int journal_unsuspend(struct ufsmount *ump);
923 static	void softdep_prelink(struct vnode *, struct vnode *);
924 static	void add_to_journal(struct worklist *);
925 static	void remove_from_journal(struct worklist *);
926 static	bool softdep_excess_items(struct ufsmount *, int);
927 static	void softdep_process_journal(struct mount *, struct worklist *, int);
928 static	struct jremref *newjremref(struct dirrem *, struct inode *,
929 	    struct inode *ip, off_t, nlink_t);
930 static	struct jaddref *newjaddref(struct inode *, ino_t, off_t, int16_t,
931 	    uint16_t);
932 static	inline void newinoref(struct inoref *, ino_t, ino_t, off_t, nlink_t,
933 	    uint16_t);
934 static	inline struct jsegdep *inoref_jseg(struct inoref *);
935 static	struct jmvref *newjmvref(struct inode *, ino_t, off_t, off_t);
936 static	struct jfreeblk *newjfreeblk(struct freeblks *, ufs_lbn_t,
937 	    ufs2_daddr_t, int);
938 static	void adjust_newfreework(struct freeblks *, int);
939 static	struct jtrunc *newjtrunc(struct freeblks *, off_t, int);
940 static	void move_newblock_dep(struct jaddref *, struct inodedep *);
941 static	void cancel_jfreeblk(struct freeblks *, ufs2_daddr_t);
942 static	struct jfreefrag *newjfreefrag(struct freefrag *, struct inode *,
943 	    ufs2_daddr_t, long, ufs_lbn_t);
944 static	struct freework *newfreework(struct ufsmount *, struct freeblks *,
945 	    struct freework *, ufs_lbn_t, ufs2_daddr_t, int, int, int);
946 static	int jwait(struct worklist *, int);
947 static	struct inodedep *inodedep_lookup_ip(struct inode *);
948 static	int bmsafemap_backgroundwrite(struct bmsafemap *, struct buf *);
949 static	struct freefile *handle_bufwait(struct inodedep *, struct workhead *);
950 static	void handle_jwork(struct workhead *);
951 static	struct mkdir *setup_newdir(struct diradd *, ino_t, ino_t, struct buf *,
952 	    struct mkdir **);
953 static	struct jblocks *jblocks_create(void);
954 static	ufs2_daddr_t jblocks_alloc(struct jblocks *, int, int *);
955 static	void jblocks_free(struct jblocks *, struct mount *, int);
956 static	void jblocks_destroy(struct jblocks *);
957 static	void jblocks_add(struct jblocks *, ufs2_daddr_t, int);
958 
959 /*
960  * Exported softdep operations.
961  */
962 static	void softdep_disk_io_initiation(struct buf *);
963 static	void softdep_disk_write_complete(struct buf *);
964 static	void softdep_deallocate_dependencies(struct buf *);
965 static	int softdep_count_dependencies(struct buf *bp, int);
966 
967 /*
968  * Global lock over all of soft updates.
969  */
970 static struct mtx lk;
971 MTX_SYSINIT(softdep_lock, &lk, "global softdep", MTX_DEF);
972 
973 #define ACQUIRE_GBLLOCK(lk)	mtx_lock(lk)
974 #define FREE_GBLLOCK(lk)	mtx_unlock(lk)
975 #define GBLLOCK_OWNED(lk)	mtx_assert((lk), MA_OWNED)
976 
977 /*
978  * Per-filesystem soft-updates locking.
979  */
980 #define LOCK_PTR(ump)		(&(ump)->um_softdep->sd_fslock)
981 #define TRY_ACQUIRE_LOCK(ump)	rw_try_wlock(&(ump)->um_softdep->sd_fslock)
982 #define ACQUIRE_LOCK(ump)	rw_wlock(&(ump)->um_softdep->sd_fslock)
983 #define FREE_LOCK(ump)		rw_wunlock(&(ump)->um_softdep->sd_fslock)
984 #define LOCK_OWNED(ump)		rw_assert(&(ump)->um_softdep->sd_fslock, \
985 				    RA_WLOCKED)
986 
987 #define	BUF_AREC(bp)		lockallowrecurse(&(bp)->b_lock)
988 #define	BUF_NOREC(bp)		lockdisablerecurse(&(bp)->b_lock)
989 
990 /*
991  * Worklist queue management.
992  * These routines require that the lock be held.
993  */
994 #ifndef /* NOT */ INVARIANTS
995 #define WORKLIST_INSERT(head, item) do {	\
996 	(item)->wk_state |= ONWORKLIST;		\
997 	LIST_INSERT_HEAD(head, item, wk_list);	\
998 } while (0)
999 #define WORKLIST_REMOVE(item) do {		\
1000 	(item)->wk_state &= ~ONWORKLIST;	\
1001 	LIST_REMOVE(item, wk_list);		\
1002 } while (0)
1003 #define WORKLIST_INSERT_UNLOCKED	WORKLIST_INSERT
1004 #define WORKLIST_REMOVE_UNLOCKED	WORKLIST_REMOVE
1005 
1006 #else /* INVARIANTS */
1007 static	void worklist_insert(struct workhead *, struct worklist *, int,
1008 	const char *, int);
1009 static	void worklist_remove(struct worklist *, int, const char *, int);
1010 
1011 #define WORKLIST_INSERT(head, item) \
1012 	worklist_insert(head, item, 1, __func__, __LINE__)
1013 #define WORKLIST_INSERT_UNLOCKED(head, item)\
1014 	worklist_insert(head, item, 0, __func__, __LINE__)
1015 #define WORKLIST_REMOVE(item)\
1016 	worklist_remove(item, 1, __func__, __LINE__)
1017 #define WORKLIST_REMOVE_UNLOCKED(item)\
1018 	worklist_remove(item, 0, __func__, __LINE__)
1019 
1020 static void
1021 worklist_insert(head, item, locked, func, line)
1022 	struct workhead *head;
1023 	struct worklist *item;
1024 	int locked;
1025 	const char *func;
1026 	int line;
1027 {
1028 
1029 	if (locked)
1030 		LOCK_OWNED(VFSTOUFS(item->wk_mp));
1031 	if (item->wk_state & ONWORKLIST)
1032 		panic("worklist_insert: %p %s(0x%X) already on list, "
1033 		    "added in function %s at line %d",
1034 		    item, TYPENAME(item->wk_type), item->wk_state,
1035 		    item->wk_func, item->wk_line);
1036 	item->wk_state |= ONWORKLIST;
1037 	item->wk_func = func;
1038 	item->wk_line = line;
1039 	LIST_INSERT_HEAD(head, item, wk_list);
1040 }
1041 
1042 static void
1043 worklist_remove(item, locked, func, line)
1044 	struct worklist *item;
1045 	int locked;
1046 	const char *func;
1047 	int line;
1048 {
1049 
1050 	if (locked)
1051 		LOCK_OWNED(VFSTOUFS(item->wk_mp));
1052 	if ((item->wk_state & ONWORKLIST) == 0)
1053 		panic("worklist_remove: %p %s(0x%X) not on list, "
1054 		    "removed in function %s at line %d",
1055 		    item, TYPENAME(item->wk_type), item->wk_state,
1056 		    item->wk_func, item->wk_line);
1057 	item->wk_state &= ~ONWORKLIST;
1058 	item->wk_func = func;
1059 	item->wk_line = line;
1060 	LIST_REMOVE(item, wk_list);
1061 }
1062 #endif /* INVARIANTS */
1063 
1064 /*
1065  * Merge two jsegdeps keeping only the oldest one as newer references
1066  * can't be discarded until after older references.
1067  */
1068 static inline struct jsegdep *
1069 jsegdep_merge(struct jsegdep *one, struct jsegdep *two)
1070 {
1071 	struct jsegdep *swp;
1072 
1073 	if (two == NULL)
1074 		return (one);
1075 
1076 	if (one->jd_seg->js_seq > two->jd_seg->js_seq) {
1077 		swp = one;
1078 		one = two;
1079 		two = swp;
1080 	}
1081 	WORKLIST_REMOVE(&two->jd_list);
1082 	free_jsegdep(two);
1083 
1084 	return (one);
1085 }
1086 
1087 /*
1088  * If two freedeps are compatible free one to reduce list size.
1089  */
1090 static inline struct freedep *
1091 freedep_merge(struct freedep *one, struct freedep *two)
1092 {
1093 	if (two == NULL)
1094 		return (one);
1095 
1096 	if (one->fd_freework == two->fd_freework) {
1097 		WORKLIST_REMOVE(&two->fd_list);
1098 		free_freedep(two);
1099 	}
1100 	return (one);
1101 }
1102 
1103 /*
1104  * Move journal work from one list to another.  Duplicate freedeps and
1105  * jsegdeps are coalesced to keep the lists as small as possible.
1106  */
1107 static void
1108 jwork_move(dst, src)
1109 	struct workhead *dst;
1110 	struct workhead *src;
1111 {
1112 	struct freedep *freedep;
1113 	struct jsegdep *jsegdep;
1114 	struct worklist *wkn;
1115 	struct worklist *wk;
1116 
1117 	KASSERT(dst != src,
1118 	    ("jwork_move: dst == src"));
1119 	freedep = NULL;
1120 	jsegdep = NULL;
1121 	LIST_FOREACH_SAFE(wk, dst, wk_list, wkn) {
1122 		if (wk->wk_type == D_JSEGDEP)
1123 			jsegdep = jsegdep_merge(WK_JSEGDEP(wk), jsegdep);
1124 		else if (wk->wk_type == D_FREEDEP)
1125 			freedep = freedep_merge(WK_FREEDEP(wk), freedep);
1126 	}
1127 
1128 	while ((wk = LIST_FIRST(src)) != NULL) {
1129 		WORKLIST_REMOVE(wk);
1130 		WORKLIST_INSERT(dst, wk);
1131 		if (wk->wk_type == D_JSEGDEP) {
1132 			jsegdep = jsegdep_merge(WK_JSEGDEP(wk), jsegdep);
1133 			continue;
1134 		}
1135 		if (wk->wk_type == D_FREEDEP)
1136 			freedep = freedep_merge(WK_FREEDEP(wk), freedep);
1137 	}
1138 }
1139 
1140 static void
1141 jwork_insert(dst, jsegdep)
1142 	struct workhead *dst;
1143 	struct jsegdep *jsegdep;
1144 {
1145 	struct jsegdep *jsegdepn;
1146 	struct worklist *wk;
1147 
1148 	LIST_FOREACH(wk, dst, wk_list)
1149 		if (wk->wk_type == D_JSEGDEP)
1150 			break;
1151 	if (wk == NULL) {
1152 		WORKLIST_INSERT(dst, &jsegdep->jd_list);
1153 		return;
1154 	}
1155 	jsegdepn = WK_JSEGDEP(wk);
1156 	if (jsegdep->jd_seg->js_seq < jsegdepn->jd_seg->js_seq) {
1157 		WORKLIST_REMOVE(wk);
1158 		free_jsegdep(jsegdepn);
1159 		WORKLIST_INSERT(dst, &jsegdep->jd_list);
1160 	} else
1161 		free_jsegdep(jsegdep);
1162 }
1163 
1164 /*
1165  * Routines for tracking and managing workitems.
1166  */
1167 static	void workitem_free(struct worklist *, int);
1168 static	void workitem_alloc(struct worklist *, int, struct mount *);
1169 static	void workitem_reassign(struct worklist *, int);
1170 
1171 #define	WORKITEM_FREE(item, type) \
1172 	workitem_free((struct worklist *)(item), (type))
1173 #define	WORKITEM_REASSIGN(item, type) \
1174 	workitem_reassign((struct worklist *)(item), (type))
1175 
1176 static void
1177 workitem_free(item, type)
1178 	struct worklist *item;
1179 	int type;
1180 {
1181 	struct ufsmount *ump;
1182 
1183 #ifdef INVARIANTS
1184 	if (item->wk_state & ONWORKLIST)
1185 		panic("workitem_free: %s(0x%X) still on list, "
1186 		    "added in function %s at line %d",
1187 		    TYPENAME(item->wk_type), item->wk_state,
1188 		    item->wk_func, item->wk_line);
1189 	if (item->wk_type != type && type != D_NEWBLK)
1190 		panic("workitem_free: type mismatch %s != %s",
1191 		    TYPENAME(item->wk_type), TYPENAME(type));
1192 #endif
1193 	if (item->wk_state & IOWAITING)
1194 		wakeup(item);
1195 	ump = VFSTOUFS(item->wk_mp);
1196 	LOCK_OWNED(ump);
1197 	KASSERT(ump->softdep_deps > 0,
1198 	    ("workitem_free: %s: softdep_deps going negative",
1199 	    ump->um_fs->fs_fsmnt));
1200 	if (--ump->softdep_deps == 0 && ump->softdep_req)
1201 		wakeup(&ump->softdep_deps);
1202 	KASSERT(dep_current[item->wk_type] > 0,
1203 	    ("workitem_free: %s: dep_current[%s] going negative",
1204 	    ump->um_fs->fs_fsmnt, TYPENAME(item->wk_type)));
1205 	KASSERT(ump->softdep_curdeps[item->wk_type] > 0,
1206 	    ("workitem_free: %s: softdep_curdeps[%s] going negative",
1207 	    ump->um_fs->fs_fsmnt, TYPENAME(item->wk_type)));
1208 	atomic_subtract_long(&dep_current[item->wk_type], 1);
1209 	ump->softdep_curdeps[item->wk_type] -= 1;
1210 	free(item, DtoM(type));
1211 }
1212 
1213 static void
1214 workitem_alloc(item, type, mp)
1215 	struct worklist *item;
1216 	int type;
1217 	struct mount *mp;
1218 {
1219 	struct ufsmount *ump;
1220 
1221 	item->wk_type = type;
1222 	item->wk_mp = mp;
1223 	item->wk_state = 0;
1224 
1225 	ump = VFSTOUFS(mp);
1226 	ACQUIRE_GBLLOCK(&lk);
1227 	dep_current[type]++;
1228 	if (dep_current[type] > dep_highuse[type])
1229 		dep_highuse[type] = dep_current[type];
1230 	dep_total[type]++;
1231 	FREE_GBLLOCK(&lk);
1232 	ACQUIRE_LOCK(ump);
1233 	ump->softdep_curdeps[type] += 1;
1234 	ump->softdep_deps++;
1235 	ump->softdep_accdeps++;
1236 	FREE_LOCK(ump);
1237 }
1238 
1239 static void
1240 workitem_reassign(item, newtype)
1241 	struct worklist *item;
1242 	int newtype;
1243 {
1244 	struct ufsmount *ump;
1245 
1246 	ump = VFSTOUFS(item->wk_mp);
1247 	LOCK_OWNED(ump);
1248 	KASSERT(ump->softdep_curdeps[item->wk_type] > 0,
1249 	    ("workitem_reassign: %s: softdep_curdeps[%s] going negative",
1250 	    VFSTOUFS(item->wk_mp)->um_fs->fs_fsmnt, TYPENAME(item->wk_type)));
1251 	ump->softdep_curdeps[item->wk_type] -= 1;
1252 	ump->softdep_curdeps[newtype] += 1;
1253 	KASSERT(dep_current[item->wk_type] > 0,
1254 	    ("workitem_reassign: %s: dep_current[%s] going negative",
1255 	    VFSTOUFS(item->wk_mp)->um_fs->fs_fsmnt, TYPENAME(item->wk_type)));
1256 	ACQUIRE_GBLLOCK(&lk);
1257 	dep_current[newtype]++;
1258 	dep_current[item->wk_type]--;
1259 	if (dep_current[newtype] > dep_highuse[newtype])
1260 		dep_highuse[newtype] = dep_current[newtype];
1261 	dep_total[newtype]++;
1262 	FREE_GBLLOCK(&lk);
1263 	item->wk_type = newtype;
1264 }
1265 
1266 /*
1267  * Workitem queue management
1268  */
1269 static int max_softdeps;	/* maximum number of structs before slowdown */
1270 static int tickdelay = 2;	/* number of ticks to pause during slowdown */
1271 static int proc_waiting;	/* tracks whether we have a timeout posted */
1272 static int *stat_countp;	/* statistic to count in proc_waiting timeout */
1273 static struct callout softdep_callout;
1274 static int req_clear_inodedeps;	/* syncer process flush some inodedeps */
1275 static int req_clear_remove;	/* syncer process flush some freeblks */
1276 static int softdep_flushcache = 0; /* Should we do BIO_FLUSH? */
1277 
1278 /*
1279  * runtime statistics
1280  */
1281 static int stat_flush_threads;	/* number of softdep flushing threads */
1282 static int stat_worklist_push;	/* number of worklist cleanups */
1283 static int stat_blk_limit_push;	/* number of times block limit neared */
1284 static int stat_ino_limit_push;	/* number of times inode limit neared */
1285 static int stat_blk_limit_hit;	/* number of times block slowdown imposed */
1286 static int stat_ino_limit_hit;	/* number of times inode slowdown imposed */
1287 static int stat_sync_limit_hit;	/* number of synchronous slowdowns imposed */
1288 static int stat_indir_blk_ptrs;	/* bufs redirtied as indir ptrs not written */
1289 static int stat_inode_bitmap;	/* bufs redirtied as inode bitmap not written */
1290 static int stat_direct_blk_ptrs;/* bufs redirtied as direct ptrs not written */
1291 static int stat_dir_entry;	/* bufs redirtied as dir entry cannot write */
1292 static int stat_jaddref;	/* bufs redirtied as ino bitmap can not write */
1293 static int stat_jnewblk;	/* bufs redirtied as blk bitmap can not write */
1294 static int stat_journal_min;	/* Times hit journal min threshold */
1295 static int stat_journal_low;	/* Times hit journal low threshold */
1296 static int stat_journal_wait;	/* Times blocked in jwait(). */
1297 static int stat_jwait_filepage;	/* Times blocked in jwait() for filepage. */
1298 static int stat_jwait_freeblks;	/* Times blocked in jwait() for freeblks. */
1299 static int stat_jwait_inode;	/* Times blocked in jwait() for inodes. */
1300 static int stat_jwait_newblk;	/* Times blocked in jwait() for newblks. */
1301 static int stat_cleanup_high_delay; /* Maximum cleanup delay (in ticks) */
1302 static int stat_cleanup_blkrequests; /* Number of block cleanup requests */
1303 static int stat_cleanup_inorequests; /* Number of inode cleanup requests */
1304 static int stat_cleanup_retries; /* Number of cleanups that needed to flush */
1305 static int stat_cleanup_failures; /* Number of cleanup requests that failed */
1306 static int stat_emptyjblocks; /* Number of potentially empty journal blocks */
1307 
1308 SYSCTL_INT(_debug_softdep, OID_AUTO, max_softdeps, CTLFLAG_RW,
1309     &max_softdeps, 0, "");
1310 SYSCTL_INT(_debug_softdep, OID_AUTO, tickdelay, CTLFLAG_RW,
1311     &tickdelay, 0, "");
1312 SYSCTL_INT(_debug_softdep, OID_AUTO, flush_threads, CTLFLAG_RD,
1313     &stat_flush_threads, 0, "");
1314 SYSCTL_INT(_debug_softdep, OID_AUTO, worklist_push,
1315     CTLFLAG_RW | CTLFLAG_STATS, &stat_worklist_push, 0,"");
1316 SYSCTL_INT(_debug_softdep, OID_AUTO, blk_limit_push,
1317     CTLFLAG_RW | CTLFLAG_STATS, &stat_blk_limit_push, 0,"");
1318 SYSCTL_INT(_debug_softdep, OID_AUTO, ino_limit_push,
1319     CTLFLAG_RW | CTLFLAG_STATS, &stat_ino_limit_push, 0,"");
1320 SYSCTL_INT(_debug_softdep, OID_AUTO, blk_limit_hit,
1321     CTLFLAG_RW | CTLFLAG_STATS, &stat_blk_limit_hit, 0, "");
1322 SYSCTL_INT(_debug_softdep, OID_AUTO, ino_limit_hit,
1323     CTLFLAG_RW | CTLFLAG_STATS, &stat_ino_limit_hit, 0, "");
1324 SYSCTL_INT(_debug_softdep, OID_AUTO, sync_limit_hit,
1325     CTLFLAG_RW | CTLFLAG_STATS, &stat_sync_limit_hit, 0, "");
1326 SYSCTL_INT(_debug_softdep, OID_AUTO, indir_blk_ptrs,
1327     CTLFLAG_RW | CTLFLAG_STATS, &stat_indir_blk_ptrs, 0, "");
1328 SYSCTL_INT(_debug_softdep, OID_AUTO, inode_bitmap,
1329     CTLFLAG_RW | CTLFLAG_STATS, &stat_inode_bitmap, 0, "");
1330 SYSCTL_INT(_debug_softdep, OID_AUTO, direct_blk_ptrs,
1331     CTLFLAG_RW | CTLFLAG_STATS, &stat_direct_blk_ptrs, 0, "");
1332 SYSCTL_INT(_debug_softdep, OID_AUTO, dir_entry,
1333     CTLFLAG_RW | CTLFLAG_STATS, &stat_dir_entry, 0, "");
1334 SYSCTL_INT(_debug_softdep, OID_AUTO, jaddref_rollback,
1335     CTLFLAG_RW | CTLFLAG_STATS, &stat_jaddref, 0, "");
1336 SYSCTL_INT(_debug_softdep, OID_AUTO, jnewblk_rollback,
1337     CTLFLAG_RW | CTLFLAG_STATS, &stat_jnewblk, 0, "");
1338 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_low,
1339     CTLFLAG_RW | CTLFLAG_STATS, &stat_journal_low, 0, "");
1340 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_min,
1341     CTLFLAG_RW | CTLFLAG_STATS, &stat_journal_min, 0, "");
1342 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_wait,
1343     CTLFLAG_RW | CTLFLAG_STATS, &stat_journal_wait, 0, "");
1344 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_filepage,
1345     CTLFLAG_RW | CTLFLAG_STATS, &stat_jwait_filepage, 0, "");
1346 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_freeblks,
1347     CTLFLAG_RW | CTLFLAG_STATS, &stat_jwait_freeblks, 0, "");
1348 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_inode,
1349     CTLFLAG_RW | CTLFLAG_STATS, &stat_jwait_inode, 0, "");
1350 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_newblk,
1351     CTLFLAG_RW | CTLFLAG_STATS, &stat_jwait_newblk, 0, "");
1352 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_blkrequests,
1353     CTLFLAG_RW | CTLFLAG_STATS, &stat_cleanup_blkrequests, 0, "");
1354 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_inorequests,
1355     CTLFLAG_RW | CTLFLAG_STATS, &stat_cleanup_inorequests, 0, "");
1356 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_high_delay,
1357     CTLFLAG_RW | CTLFLAG_STATS, &stat_cleanup_high_delay, 0, "");
1358 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_retries,
1359     CTLFLAG_RW | CTLFLAG_STATS, &stat_cleanup_retries, 0, "");
1360 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_failures,
1361     CTLFLAG_RW | CTLFLAG_STATS, &stat_cleanup_failures, 0, "");
1362 
1363 SYSCTL_INT(_debug_softdep, OID_AUTO, flushcache, CTLFLAG_RW,
1364     &softdep_flushcache, 0, "");
1365 SYSCTL_INT(_debug_softdep, OID_AUTO, emptyjblocks, CTLFLAG_RD,
1366     &stat_emptyjblocks, 0, "");
1367 
1368 SYSCTL_DECL(_vfs_ffs);
1369 
1370 /* Whether to recompute the summary at mount time */
1371 static int compute_summary_at_mount = 0;
1372 SYSCTL_INT(_vfs_ffs, OID_AUTO, compute_summary_at_mount, CTLFLAG_RW,
1373 	   &compute_summary_at_mount, 0, "Recompute summary at mount");
1374 static int print_threads = 0;
1375 SYSCTL_INT(_debug_softdep, OID_AUTO, print_threads, CTLFLAG_RW,
1376     &print_threads, 0, "Notify flusher thread start/stop");
1377 
1378 /* List of all filesystems mounted with soft updates */
1379 static TAILQ_HEAD(, mount_softdeps) softdepmounts;
1380 
1381 /*
1382  * This function cleans the worklist for a filesystem.
1383  * Each filesystem running with soft dependencies gets its own
1384  * thread to run in this function. The thread is started up in
1385  * softdep_mount and shutdown in softdep_unmount. They show up
1386  * as part of the kernel "bufdaemon" process whose process
1387  * entry is available in bufdaemonproc.
1388  */
1389 static int searchfailed;
1390 extern struct proc *bufdaemonproc;
1391 static void
1392 softdep_flush(addr)
1393 	void *addr;
1394 {
1395 	struct mount *mp;
1396 	struct thread *td;
1397 	struct ufsmount *ump;
1398 
1399 	td = curthread;
1400 	td->td_pflags |= TDP_NORUNNINGBUF;
1401 	mp = (struct mount *)addr;
1402 	ump = VFSTOUFS(mp);
1403 	atomic_add_int(&stat_flush_threads, 1);
1404 	ACQUIRE_LOCK(ump);
1405 	ump->softdep_flags &= ~FLUSH_STARTING;
1406 	wakeup(&ump->softdep_flushtd);
1407 	FREE_LOCK(ump);
1408 	if (print_threads) {
1409 		if (stat_flush_threads == 1)
1410 			printf("Running %s at pid %d\n", bufdaemonproc->p_comm,
1411 			    bufdaemonproc->p_pid);
1412 		printf("Start thread %s\n", td->td_name);
1413 	}
1414 	for (;;) {
1415 		while (softdep_process_worklist(mp, 0) > 0 ||
1416 		    (MOUNTEDSUJ(mp) &&
1417 		    VFSTOUFS(mp)->softdep_jblocks->jb_suspended))
1418 			kthread_suspend_check();
1419 		ACQUIRE_LOCK(ump);
1420 		if ((ump->softdep_flags & (FLUSH_CLEANUP | FLUSH_EXIT)) == 0)
1421 			msleep(&ump->softdep_flushtd, LOCK_PTR(ump), PVM,
1422 			    "sdflush", hz / 2);
1423 		ump->softdep_flags &= ~FLUSH_CLEANUP;
1424 		/*
1425 		 * Check to see if we are done and need to exit.
1426 		 */
1427 		if ((ump->softdep_flags & FLUSH_EXIT) == 0) {
1428 			FREE_LOCK(ump);
1429 			continue;
1430 		}
1431 		ump->softdep_flags &= ~FLUSH_EXIT;
1432 		FREE_LOCK(ump);
1433 		wakeup(&ump->softdep_flags);
1434 		if (print_threads)
1435 			printf("Stop thread %s: searchfailed %d, did cleanups %d\n", td->td_name, searchfailed, ump->um_softdep->sd_cleanups);
1436 		atomic_subtract_int(&stat_flush_threads, 1);
1437 		kthread_exit();
1438 		panic("kthread_exit failed\n");
1439 	}
1440 }
1441 
1442 static void
1443 worklist_speedup(mp)
1444 	struct mount *mp;
1445 {
1446 	struct ufsmount *ump;
1447 
1448 	ump = VFSTOUFS(mp);
1449 	LOCK_OWNED(ump);
1450 	if ((ump->softdep_flags & (FLUSH_CLEANUP | FLUSH_EXIT)) == 0)
1451 		ump->softdep_flags |= FLUSH_CLEANUP;
1452 	wakeup(&ump->softdep_flushtd);
1453 }
1454 
1455 static int
1456 softdep_speedup(ump)
1457 	struct ufsmount *ump;
1458 {
1459 	struct ufsmount *altump;
1460 	struct mount_softdeps *sdp;
1461 
1462 	LOCK_OWNED(ump);
1463 	worklist_speedup(ump->um_mountp);
1464 	bd_speedup();
1465 	/*
1466 	 * If we have global shortages, then we need other
1467 	 * filesystems to help with the cleanup. Here we wakeup a
1468 	 * flusher thread for a filesystem that is over its fair
1469 	 * share of resources.
1470 	 */
1471 	if (req_clear_inodedeps || req_clear_remove) {
1472 		ACQUIRE_GBLLOCK(&lk);
1473 		TAILQ_FOREACH(sdp, &softdepmounts, sd_next) {
1474 			if ((altump = sdp->sd_ump) == ump)
1475 				continue;
1476 			if (((req_clear_inodedeps &&
1477 			    altump->softdep_curdeps[D_INODEDEP] >
1478 			    max_softdeps / stat_flush_threads) ||
1479 			    (req_clear_remove &&
1480 			    altump->softdep_curdeps[D_DIRREM] >
1481 			    (max_softdeps / 2) / stat_flush_threads)) &&
1482 			    TRY_ACQUIRE_LOCK(altump))
1483 				break;
1484 		}
1485 		if (sdp == NULL) {
1486 			searchfailed++;
1487 			FREE_GBLLOCK(&lk);
1488 		} else {
1489 			/*
1490 			 * Move to the end of the list so we pick a
1491 			 * different one on out next try.
1492 			 */
1493 			TAILQ_REMOVE(&softdepmounts, sdp, sd_next);
1494 			TAILQ_INSERT_TAIL(&softdepmounts, sdp, sd_next);
1495 			FREE_GBLLOCK(&lk);
1496 			if ((altump->softdep_flags &
1497 			    (FLUSH_CLEANUP | FLUSH_EXIT)) == 0)
1498 				altump->softdep_flags |= FLUSH_CLEANUP;
1499 			altump->um_softdep->sd_cleanups++;
1500 			wakeup(&altump->softdep_flushtd);
1501 			FREE_LOCK(altump);
1502 		}
1503 	}
1504 	return (speedup_syncer());
1505 }
1506 
1507 /*
1508  * Add an item to the end of the work queue.
1509  * This routine requires that the lock be held.
1510  * This is the only routine that adds items to the list.
1511  * The following routine is the only one that removes items
1512  * and does so in order from first to last.
1513  */
1514 
1515 #define	WK_HEAD		0x0001	/* Add to HEAD. */
1516 #define	WK_NODELAY	0x0002	/* Process immediately. */
1517 
1518 static void
1519 add_to_worklist(wk, flags)
1520 	struct worklist *wk;
1521 	int flags;
1522 {
1523 	struct ufsmount *ump;
1524 
1525 	ump = VFSTOUFS(wk->wk_mp);
1526 	LOCK_OWNED(ump);
1527 	if (wk->wk_state & ONWORKLIST)
1528 		panic("add_to_worklist: %s(0x%X) already on list",
1529 		    TYPENAME(wk->wk_type), wk->wk_state);
1530 	wk->wk_state |= ONWORKLIST;
1531 	if (ump->softdep_on_worklist == 0) {
1532 		LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list);
1533 		ump->softdep_worklist_tail = wk;
1534 	} else if (flags & WK_HEAD) {
1535 		LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list);
1536 	} else {
1537 		LIST_INSERT_AFTER(ump->softdep_worklist_tail, wk, wk_list);
1538 		ump->softdep_worklist_tail = wk;
1539 	}
1540 	ump->softdep_on_worklist += 1;
1541 	if (flags & WK_NODELAY)
1542 		worklist_speedup(wk->wk_mp);
1543 }
1544 
1545 /*
1546  * Remove the item to be processed. If we are removing the last
1547  * item on the list, we need to recalculate the tail pointer.
1548  */
1549 static void
1550 remove_from_worklist(wk)
1551 	struct worklist *wk;
1552 {
1553 	struct ufsmount *ump;
1554 
1555 	ump = VFSTOUFS(wk->wk_mp);
1556 	if (ump->softdep_worklist_tail == wk)
1557 		ump->softdep_worklist_tail =
1558 		    (struct worklist *)wk->wk_list.le_prev;
1559 	WORKLIST_REMOVE(wk);
1560 	ump->softdep_on_worklist -= 1;
1561 }
1562 
1563 static void
1564 wake_worklist(wk)
1565 	struct worklist *wk;
1566 {
1567 	if (wk->wk_state & IOWAITING) {
1568 		wk->wk_state &= ~IOWAITING;
1569 		wakeup(wk);
1570 	}
1571 }
1572 
1573 static void
1574 wait_worklist(wk, wmesg)
1575 	struct worklist *wk;
1576 	char *wmesg;
1577 {
1578 	struct ufsmount *ump;
1579 
1580 	ump = VFSTOUFS(wk->wk_mp);
1581 	wk->wk_state |= IOWAITING;
1582 	msleep(wk, LOCK_PTR(ump), PVM, wmesg, 0);
1583 }
1584 
1585 /*
1586  * Process that runs once per second to handle items in the background queue.
1587  *
1588  * Note that we ensure that everything is done in the order in which they
1589  * appear in the queue. The code below depends on this property to ensure
1590  * that blocks of a file are freed before the inode itself is freed. This
1591  * ordering ensures that no new <vfsid, inum, lbn> triples will be generated
1592  * until all the old ones have been purged from the dependency lists.
1593  */
1594 static int
1595 softdep_process_worklist(mp, full)
1596 	struct mount *mp;
1597 	int full;
1598 {
1599 	int cnt, matchcnt;
1600 	struct ufsmount *ump;
1601 	long starttime;
1602 
1603 	KASSERT(mp != NULL, ("softdep_process_worklist: NULL mp"));
1604 	if (MOUNTEDSOFTDEP(mp) == 0)
1605 		return (0);
1606 	matchcnt = 0;
1607 	ump = VFSTOUFS(mp);
1608 	ACQUIRE_LOCK(ump);
1609 	starttime = time_second;
1610 	softdep_process_journal(mp, NULL, full ? MNT_WAIT : 0);
1611 	check_clear_deps(mp);
1612 	while (ump->softdep_on_worklist > 0) {
1613 		if ((cnt = process_worklist_item(mp, 10, LK_NOWAIT)) == 0)
1614 			break;
1615 		else
1616 			matchcnt += cnt;
1617 		check_clear_deps(mp);
1618 		/*
1619 		 * We do not generally want to stop for buffer space, but if
1620 		 * we are really being a buffer hog, we will stop and wait.
1621 		 */
1622 		if (should_yield()) {
1623 			FREE_LOCK(ump);
1624 			kern_yield(PRI_USER);
1625 			bwillwrite();
1626 			ACQUIRE_LOCK(ump);
1627 		}
1628 		/*
1629 		 * Never allow processing to run for more than one
1630 		 * second. This gives the syncer thread the opportunity
1631 		 * to pause if appropriate.
1632 		 */
1633 		if (!full && starttime != time_second)
1634 			break;
1635 	}
1636 	if (full == 0)
1637 		journal_unsuspend(ump);
1638 	FREE_LOCK(ump);
1639 	return (matchcnt);
1640 }
1641 
1642 /*
1643  * Process all removes associated with a vnode if we are running out of
1644  * journal space.  Any other process which attempts to flush these will
1645  * be unable as we have the vnodes locked.
1646  */
1647 static void
1648 process_removes(vp)
1649 	struct vnode *vp;
1650 {
1651 	struct inodedep *inodedep;
1652 	struct dirrem *dirrem;
1653 	struct ufsmount *ump;
1654 	struct mount *mp;
1655 	ino_t inum;
1656 
1657 	mp = vp->v_mount;
1658 	ump = VFSTOUFS(mp);
1659 	LOCK_OWNED(ump);
1660 	inum = VTOI(vp)->i_number;
1661 	for (;;) {
1662 top:
1663 		if (inodedep_lookup(mp, inum, 0, &inodedep) == 0)
1664 			return;
1665 		LIST_FOREACH(dirrem, &inodedep->id_dirremhd, dm_inonext) {
1666 			/*
1667 			 * If another thread is trying to lock this vnode
1668 			 * it will fail but we must wait for it to do so
1669 			 * before we can proceed.
1670 			 */
1671 			if (dirrem->dm_state & INPROGRESS) {
1672 				wait_worklist(&dirrem->dm_list, "pwrwait");
1673 				goto top;
1674 			}
1675 			if ((dirrem->dm_state & (COMPLETE | ONWORKLIST)) ==
1676 			    (COMPLETE | ONWORKLIST))
1677 				break;
1678 		}
1679 		if (dirrem == NULL)
1680 			return;
1681 		remove_from_worklist(&dirrem->dm_list);
1682 		FREE_LOCK(ump);
1683 		if (vn_start_secondary_write(NULL, &mp, V_NOWAIT))
1684 			panic("process_removes: suspended filesystem");
1685 		handle_workitem_remove(dirrem, 0);
1686 		vn_finished_secondary_write(mp);
1687 		ACQUIRE_LOCK(ump);
1688 	}
1689 }
1690 
1691 /*
1692  * Process all truncations associated with a vnode if we are running out
1693  * of journal space.  This is called when the vnode lock is already held
1694  * and no other process can clear the truncation.  This function returns
1695  * a value greater than zero if it did any work.
1696  */
1697 static void
1698 process_truncates(vp)
1699 	struct vnode *vp;
1700 {
1701 	struct inodedep *inodedep;
1702 	struct freeblks *freeblks;
1703 	struct ufsmount *ump;
1704 	struct mount *mp;
1705 	ino_t inum;
1706 	int cgwait;
1707 
1708 	mp = vp->v_mount;
1709 	ump = VFSTOUFS(mp);
1710 	LOCK_OWNED(ump);
1711 	inum = VTOI(vp)->i_number;
1712 	for (;;) {
1713 		if (inodedep_lookup(mp, inum, 0, &inodedep) == 0)
1714 			return;
1715 		cgwait = 0;
1716 		TAILQ_FOREACH(freeblks, &inodedep->id_freeblklst, fb_next) {
1717 			/* Journal entries not yet written.  */
1718 			if (!LIST_EMPTY(&freeblks->fb_jblkdephd)) {
1719 				jwait(&LIST_FIRST(
1720 				    &freeblks->fb_jblkdephd)->jb_list,
1721 				    MNT_WAIT);
1722 				break;
1723 			}
1724 			/* Another thread is executing this item. */
1725 			if (freeblks->fb_state & INPROGRESS) {
1726 				wait_worklist(&freeblks->fb_list, "ptrwait");
1727 				break;
1728 			}
1729 			/* Freeblks is waiting on a inode write. */
1730 			if ((freeblks->fb_state & COMPLETE) == 0) {
1731 				FREE_LOCK(ump);
1732 				ffs_update(vp, 1);
1733 				ACQUIRE_LOCK(ump);
1734 				break;
1735 			}
1736 			if ((freeblks->fb_state & (ALLCOMPLETE | ONWORKLIST)) ==
1737 			    (ALLCOMPLETE | ONWORKLIST)) {
1738 				remove_from_worklist(&freeblks->fb_list);
1739 				freeblks->fb_state |= INPROGRESS;
1740 				FREE_LOCK(ump);
1741 				if (vn_start_secondary_write(NULL, &mp,
1742 				    V_NOWAIT))
1743 					panic("process_truncates: "
1744 					    "suspended filesystem");
1745 				handle_workitem_freeblocks(freeblks, 0);
1746 				vn_finished_secondary_write(mp);
1747 				ACQUIRE_LOCK(ump);
1748 				break;
1749 			}
1750 			if (freeblks->fb_cgwait)
1751 				cgwait++;
1752 		}
1753 		if (cgwait) {
1754 			FREE_LOCK(ump);
1755 			sync_cgs(mp, MNT_WAIT);
1756 			ffs_sync_snap(mp, MNT_WAIT);
1757 			ACQUIRE_LOCK(ump);
1758 			continue;
1759 		}
1760 		if (freeblks == NULL)
1761 			break;
1762 	}
1763 	return;
1764 }
1765 
1766 /*
1767  * Process one item on the worklist.
1768  */
1769 static int
1770 process_worklist_item(mp, target, flags)
1771 	struct mount *mp;
1772 	int target;
1773 	int flags;
1774 {
1775 	struct worklist sentinel;
1776 	struct worklist *wk;
1777 	struct ufsmount *ump;
1778 	int matchcnt;
1779 	int error;
1780 
1781 	KASSERT(mp != NULL, ("process_worklist_item: NULL mp"));
1782 	/*
1783 	 * If we are being called because of a process doing a
1784 	 * copy-on-write, then it is not safe to write as we may
1785 	 * recurse into the copy-on-write routine.
1786 	 */
1787 	if (curthread->td_pflags & TDP_COWINPROGRESS)
1788 		return (-1);
1789 	PHOLD(curproc);	/* Don't let the stack go away. */
1790 	ump = VFSTOUFS(mp);
1791 	LOCK_OWNED(ump);
1792 	matchcnt = 0;
1793 	sentinel.wk_mp = NULL;
1794 	sentinel.wk_type = D_SENTINEL;
1795 	LIST_INSERT_HEAD(&ump->softdep_workitem_pending, &sentinel, wk_list);
1796 	for (wk = LIST_NEXT(&sentinel, wk_list); wk != NULL;
1797 	    wk = LIST_NEXT(&sentinel, wk_list)) {
1798 		if (wk->wk_type == D_SENTINEL) {
1799 			LIST_REMOVE(&sentinel, wk_list);
1800 			LIST_INSERT_AFTER(wk, &sentinel, wk_list);
1801 			continue;
1802 		}
1803 		if (wk->wk_state & INPROGRESS)
1804 			panic("process_worklist_item: %p already in progress.",
1805 			    wk);
1806 		wk->wk_state |= INPROGRESS;
1807 		remove_from_worklist(wk);
1808 		FREE_LOCK(ump);
1809 		if (vn_start_secondary_write(NULL, &mp, V_NOWAIT))
1810 			panic("process_worklist_item: suspended filesystem");
1811 		switch (wk->wk_type) {
1812 		case D_DIRREM:
1813 			/* removal of a directory entry */
1814 			error = handle_workitem_remove(WK_DIRREM(wk), flags);
1815 			break;
1816 
1817 		case D_FREEBLKS:
1818 			/* releasing blocks and/or fragments from a file */
1819 			error = handle_workitem_freeblocks(WK_FREEBLKS(wk),
1820 			    flags);
1821 			break;
1822 
1823 		case D_FREEFRAG:
1824 			/* releasing a fragment when replaced as a file grows */
1825 			handle_workitem_freefrag(WK_FREEFRAG(wk));
1826 			error = 0;
1827 			break;
1828 
1829 		case D_FREEFILE:
1830 			/* releasing an inode when its link count drops to 0 */
1831 			handle_workitem_freefile(WK_FREEFILE(wk));
1832 			error = 0;
1833 			break;
1834 
1835 		default:
1836 			panic("%s_process_worklist: Unknown type %s",
1837 			    "softdep", TYPENAME(wk->wk_type));
1838 			/* NOTREACHED */
1839 		}
1840 		vn_finished_secondary_write(mp);
1841 		ACQUIRE_LOCK(ump);
1842 		if (error == 0) {
1843 			if (++matchcnt == target)
1844 				break;
1845 			continue;
1846 		}
1847 		/*
1848 		 * We have to retry the worklist item later.  Wake up any
1849 		 * waiters who may be able to complete it immediately and
1850 		 * add the item back to the head so we don't try to execute
1851 		 * it again.
1852 		 */
1853 		wk->wk_state &= ~INPROGRESS;
1854 		wake_worklist(wk);
1855 		add_to_worklist(wk, WK_HEAD);
1856 	}
1857 	/* Sentinal could've become the tail from remove_from_worklist. */
1858 	if (ump->softdep_worklist_tail == &sentinel)
1859 		ump->softdep_worklist_tail =
1860 		    (struct worklist *)sentinel.wk_list.le_prev;
1861 	LIST_REMOVE(&sentinel, wk_list);
1862 	PRELE(curproc);
1863 	return (matchcnt);
1864 }
1865 
1866 /*
1867  * Move dependencies from one buffer to another.
1868  */
1869 int
1870 softdep_move_dependencies(oldbp, newbp)
1871 	struct buf *oldbp;
1872 	struct buf *newbp;
1873 {
1874 	struct worklist *wk, *wktail;
1875 	struct ufsmount *ump;
1876 	int dirty;
1877 
1878 	if ((wk = LIST_FIRST(&oldbp->b_dep)) == NULL)
1879 		return (0);
1880 	KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0,
1881 	    ("softdep_move_dependencies called on non-softdep filesystem"));
1882 	dirty = 0;
1883 	wktail = NULL;
1884 	ump = VFSTOUFS(wk->wk_mp);
1885 	ACQUIRE_LOCK(ump);
1886 	while ((wk = LIST_FIRST(&oldbp->b_dep)) != NULL) {
1887 		LIST_REMOVE(wk, wk_list);
1888 		if (wk->wk_type == D_BMSAFEMAP &&
1889 		    bmsafemap_backgroundwrite(WK_BMSAFEMAP(wk), newbp))
1890 			dirty = 1;
1891 		if (wktail == NULL)
1892 			LIST_INSERT_HEAD(&newbp->b_dep, wk, wk_list);
1893 		else
1894 			LIST_INSERT_AFTER(wktail, wk, wk_list);
1895 		wktail = wk;
1896 	}
1897 	FREE_LOCK(ump);
1898 
1899 	return (dirty);
1900 }
1901 
1902 /*
1903  * Purge the work list of all items associated with a particular mount point.
1904  */
1905 int
1906 softdep_flushworklist(oldmnt, countp, td)
1907 	struct mount *oldmnt;
1908 	int *countp;
1909 	struct thread *td;
1910 {
1911 	struct vnode *devvp;
1912 	struct ufsmount *ump;
1913 	int count, error;
1914 
1915 	/*
1916 	 * Alternately flush the block device associated with the mount
1917 	 * point and process any dependencies that the flushing
1918 	 * creates. We continue until no more worklist dependencies
1919 	 * are found.
1920 	 */
1921 	*countp = 0;
1922 	error = 0;
1923 	ump = VFSTOUFS(oldmnt);
1924 	devvp = ump->um_devvp;
1925 	while ((count = softdep_process_worklist(oldmnt, 1)) > 0) {
1926 		*countp += count;
1927 		vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
1928 		error = VOP_FSYNC(devvp, MNT_WAIT, td);
1929 		VOP_UNLOCK(devvp, 0);
1930 		if (error != 0)
1931 			break;
1932 	}
1933 	return (error);
1934 }
1935 
1936 #define	SU_WAITIDLE_RETRIES	20
1937 static int
1938 softdep_waitidle(struct mount *mp, int flags __unused)
1939 {
1940 	struct ufsmount *ump;
1941 	struct vnode *devvp;
1942 	struct thread *td;
1943 	int error, i;
1944 
1945 	ump = VFSTOUFS(mp);
1946 	devvp = ump->um_devvp;
1947 	td = curthread;
1948 	error = 0;
1949 	ACQUIRE_LOCK(ump);
1950 	for (i = 0; i < SU_WAITIDLE_RETRIES && ump->softdep_deps != 0; i++) {
1951 		ump->softdep_req = 1;
1952 		KASSERT((flags & FORCECLOSE) == 0 ||
1953 		    ump->softdep_on_worklist == 0,
1954 		    ("softdep_waitidle: work added after flush"));
1955 		msleep(&ump->softdep_deps, LOCK_PTR(ump), PVM | PDROP,
1956 		    "softdeps", 10 * hz);
1957 		vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
1958 		error = VOP_FSYNC(devvp, MNT_WAIT, td);
1959 		VOP_UNLOCK(devvp, 0);
1960 		ACQUIRE_LOCK(ump);
1961 		if (error != 0)
1962 			break;
1963 	}
1964 	ump->softdep_req = 0;
1965 	if (i == SU_WAITIDLE_RETRIES && error == 0 && ump->softdep_deps != 0) {
1966 		error = EBUSY;
1967 		printf("softdep_waitidle: Failed to flush worklist for %p\n",
1968 		    mp);
1969 	}
1970 	FREE_LOCK(ump);
1971 	return (error);
1972 }
1973 
1974 /*
1975  * Flush all vnodes and worklist items associated with a specified mount point.
1976  */
1977 int
1978 softdep_flushfiles(oldmnt, flags, td)
1979 	struct mount *oldmnt;
1980 	int flags;
1981 	struct thread *td;
1982 {
1983 #ifdef QUOTA
1984 	struct ufsmount *ump;
1985 	int i;
1986 #endif
1987 	int error, early, depcount, loopcnt, retry_flush_count, retry;
1988 	int morework;
1989 
1990 	KASSERT(MOUNTEDSOFTDEP(oldmnt) != 0,
1991 	    ("softdep_flushfiles called on non-softdep filesystem"));
1992 	loopcnt = 10;
1993 	retry_flush_count = 3;
1994 retry_flush:
1995 	error = 0;
1996 
1997 	/*
1998 	 * Alternately flush the vnodes associated with the mount
1999 	 * point and process any dependencies that the flushing
2000 	 * creates. In theory, this loop can happen at most twice,
2001 	 * but we give it a few extra just to be sure.
2002 	 */
2003 	for (; loopcnt > 0; loopcnt--) {
2004 		/*
2005 		 * Do another flush in case any vnodes were brought in
2006 		 * as part of the cleanup operations.
2007 		 */
2008 		early = retry_flush_count == 1 || (oldmnt->mnt_kern_flag &
2009 		    MNTK_UNMOUNT) == 0 ? 0 : EARLYFLUSH;
2010 		if ((error = ffs_flushfiles(oldmnt, flags | early, td)) != 0)
2011 			break;
2012 		if ((error = softdep_flushworklist(oldmnt, &depcount, td)) != 0 ||
2013 		    depcount == 0)
2014 			break;
2015 	}
2016 	/*
2017 	 * If we are unmounting then it is an error to fail. If we
2018 	 * are simply trying to downgrade to read-only, then filesystem
2019 	 * activity can keep us busy forever, so we just fail with EBUSY.
2020 	 */
2021 	if (loopcnt == 0) {
2022 		if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT)
2023 			panic("softdep_flushfiles: looping");
2024 		error = EBUSY;
2025 	}
2026 	if (!error)
2027 		error = softdep_waitidle(oldmnt, flags);
2028 	if (!error) {
2029 		if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT) {
2030 			retry = 0;
2031 			MNT_ILOCK(oldmnt);
2032 			morework = oldmnt->mnt_nvnodelistsize > 0;
2033 #ifdef QUOTA
2034 			ump = VFSTOUFS(oldmnt);
2035 			UFS_LOCK(ump);
2036 			for (i = 0; i < MAXQUOTAS; i++) {
2037 				if (ump->um_quotas[i] != NULLVP)
2038 					morework = 1;
2039 			}
2040 			UFS_UNLOCK(ump);
2041 #endif
2042 			if (morework) {
2043 				if (--retry_flush_count > 0) {
2044 					retry = 1;
2045 					loopcnt = 3;
2046 				} else
2047 					error = EBUSY;
2048 			}
2049 			MNT_IUNLOCK(oldmnt);
2050 			if (retry)
2051 				goto retry_flush;
2052 		}
2053 	}
2054 	return (error);
2055 }
2056 
2057 /*
2058  * Structure hashing.
2059  *
2060  * There are four types of structures that can be looked up:
2061  *	1) pagedep structures identified by mount point, inode number,
2062  *	   and logical block.
2063  *	2) inodedep structures identified by mount point and inode number.
2064  *	3) newblk structures identified by mount point and
2065  *	   physical block number.
2066  *	4) bmsafemap structures identified by mount point and
2067  *	   cylinder group number.
2068  *
2069  * The "pagedep" and "inodedep" dependency structures are hashed
2070  * separately from the file blocks and inodes to which they correspond.
2071  * This separation helps when the in-memory copy of an inode or
2072  * file block must be replaced. It also obviates the need to access
2073  * an inode or file page when simply updating (or de-allocating)
2074  * dependency structures. Lookup of newblk structures is needed to
2075  * find newly allocated blocks when trying to associate them with
2076  * their allocdirect or allocindir structure.
2077  *
2078  * The lookup routines optionally create and hash a new instance when
2079  * an existing entry is not found. The bmsafemap lookup routine always
2080  * allocates a new structure if an existing one is not found.
2081  */
2082 #define DEPALLOC	0x0001	/* allocate structure if lookup fails */
2083 
2084 /*
2085  * Structures and routines associated with pagedep caching.
2086  */
2087 #define	PAGEDEP_HASH(ump, inum, lbn) \
2088 	(&(ump)->pagedep_hashtbl[((inum) + (lbn)) & (ump)->pagedep_hash_size])
2089 
2090 static int
2091 pagedep_find(pagedephd, ino, lbn, pagedeppp)
2092 	struct pagedep_hashhead *pagedephd;
2093 	ino_t ino;
2094 	ufs_lbn_t lbn;
2095 	struct pagedep **pagedeppp;
2096 {
2097 	struct pagedep *pagedep;
2098 
2099 	LIST_FOREACH(pagedep, pagedephd, pd_hash) {
2100 		if (ino == pagedep->pd_ino && lbn == pagedep->pd_lbn) {
2101 			*pagedeppp = pagedep;
2102 			return (1);
2103 		}
2104 	}
2105 	*pagedeppp = NULL;
2106 	return (0);
2107 }
2108 /*
2109  * Look up a pagedep. Return 1 if found, 0 otherwise.
2110  * If not found, allocate if DEPALLOC flag is passed.
2111  * Found or allocated entry is returned in pagedeppp.
2112  */
2113 static int
2114 pagedep_lookup(mp, bp, ino, lbn, flags, pagedeppp)
2115 	struct mount *mp;
2116 	struct buf *bp;
2117 	ino_t ino;
2118 	ufs_lbn_t lbn;
2119 	int flags;
2120 	struct pagedep **pagedeppp;
2121 {
2122 	struct pagedep *pagedep;
2123 	struct pagedep_hashhead *pagedephd;
2124 	struct worklist *wk;
2125 	struct ufsmount *ump;
2126 	int ret;
2127 	int i;
2128 
2129 	ump = VFSTOUFS(mp);
2130 	LOCK_OWNED(ump);
2131 	if (bp) {
2132 		LIST_FOREACH(wk, &bp->b_dep, wk_list) {
2133 			if (wk->wk_type == D_PAGEDEP) {
2134 				*pagedeppp = WK_PAGEDEP(wk);
2135 				return (1);
2136 			}
2137 		}
2138 	}
2139 	pagedephd = PAGEDEP_HASH(ump, ino, lbn);
2140 	ret = pagedep_find(pagedephd, ino, lbn, pagedeppp);
2141 	if (ret) {
2142 		if (((*pagedeppp)->pd_state & ONWORKLIST) == 0 && bp)
2143 			WORKLIST_INSERT(&bp->b_dep, &(*pagedeppp)->pd_list);
2144 		return (1);
2145 	}
2146 	if ((flags & DEPALLOC) == 0)
2147 		return (0);
2148 	FREE_LOCK(ump);
2149 	pagedep = malloc(sizeof(struct pagedep),
2150 	    M_PAGEDEP, M_SOFTDEP_FLAGS|M_ZERO);
2151 	workitem_alloc(&pagedep->pd_list, D_PAGEDEP, mp);
2152 	ACQUIRE_LOCK(ump);
2153 	ret = pagedep_find(pagedephd, ino, lbn, pagedeppp);
2154 	if (*pagedeppp) {
2155 		/*
2156 		 * This should never happen since we only create pagedeps
2157 		 * with the vnode lock held.  Could be an assert.
2158 		 */
2159 		WORKITEM_FREE(pagedep, D_PAGEDEP);
2160 		return (ret);
2161 	}
2162 	pagedep->pd_ino = ino;
2163 	pagedep->pd_lbn = lbn;
2164 	LIST_INIT(&pagedep->pd_dirremhd);
2165 	LIST_INIT(&pagedep->pd_pendinghd);
2166 	for (i = 0; i < DAHASHSZ; i++)
2167 		LIST_INIT(&pagedep->pd_diraddhd[i]);
2168 	LIST_INSERT_HEAD(pagedephd, pagedep, pd_hash);
2169 	WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list);
2170 	*pagedeppp = pagedep;
2171 	return (0);
2172 }
2173 
2174 /*
2175  * Structures and routines associated with inodedep caching.
2176  */
2177 #define	INODEDEP_HASH(ump, inum) \
2178       (&(ump)->inodedep_hashtbl[(inum) & (ump)->inodedep_hash_size])
2179 
2180 static int
2181 inodedep_find(inodedephd, inum, inodedeppp)
2182 	struct inodedep_hashhead *inodedephd;
2183 	ino_t inum;
2184 	struct inodedep **inodedeppp;
2185 {
2186 	struct inodedep *inodedep;
2187 
2188 	LIST_FOREACH(inodedep, inodedephd, id_hash)
2189 		if (inum == inodedep->id_ino)
2190 			break;
2191 	if (inodedep) {
2192 		*inodedeppp = inodedep;
2193 		return (1);
2194 	}
2195 	*inodedeppp = NULL;
2196 
2197 	return (0);
2198 }
2199 /*
2200  * Look up an inodedep. Return 1 if found, 0 if not found.
2201  * If not found, allocate if DEPALLOC flag is passed.
2202  * Found or allocated entry is returned in inodedeppp.
2203  */
2204 static int
2205 inodedep_lookup(mp, inum, flags, inodedeppp)
2206 	struct mount *mp;
2207 	ino_t inum;
2208 	int flags;
2209 	struct inodedep **inodedeppp;
2210 {
2211 	struct inodedep *inodedep;
2212 	struct inodedep_hashhead *inodedephd;
2213 	struct ufsmount *ump;
2214 	struct fs *fs;
2215 
2216 	ump = VFSTOUFS(mp);
2217 	LOCK_OWNED(ump);
2218 	fs = ump->um_fs;
2219 	inodedephd = INODEDEP_HASH(ump, inum);
2220 
2221 	if (inodedep_find(inodedephd, inum, inodedeppp))
2222 		return (1);
2223 	if ((flags & DEPALLOC) == 0)
2224 		return (0);
2225 	/*
2226 	 * If the system is over its limit and our filesystem is
2227 	 * responsible for more than our share of that usage and
2228 	 * we are not in a rush, request some inodedep cleanup.
2229 	 */
2230 	if (softdep_excess_items(ump, D_INODEDEP))
2231 		schedule_cleanup(mp);
2232 	else
2233 		FREE_LOCK(ump);
2234 	inodedep = malloc(sizeof(struct inodedep),
2235 		M_INODEDEP, M_SOFTDEP_FLAGS);
2236 	workitem_alloc(&inodedep->id_list, D_INODEDEP, mp);
2237 	ACQUIRE_LOCK(ump);
2238 	if (inodedep_find(inodedephd, inum, inodedeppp)) {
2239 		WORKITEM_FREE(inodedep, D_INODEDEP);
2240 		return (1);
2241 	}
2242 	inodedep->id_fs = fs;
2243 	inodedep->id_ino = inum;
2244 	inodedep->id_state = ALLCOMPLETE;
2245 	inodedep->id_nlinkdelta = 0;
2246 	inodedep->id_savedino1 = NULL;
2247 	inodedep->id_savedsize = -1;
2248 	inodedep->id_savedextsize = -1;
2249 	inodedep->id_savednlink = -1;
2250 	inodedep->id_bmsafemap = NULL;
2251 	inodedep->id_mkdiradd = NULL;
2252 	LIST_INIT(&inodedep->id_dirremhd);
2253 	LIST_INIT(&inodedep->id_pendinghd);
2254 	LIST_INIT(&inodedep->id_inowait);
2255 	LIST_INIT(&inodedep->id_bufwait);
2256 	TAILQ_INIT(&inodedep->id_inoreflst);
2257 	TAILQ_INIT(&inodedep->id_inoupdt);
2258 	TAILQ_INIT(&inodedep->id_newinoupdt);
2259 	TAILQ_INIT(&inodedep->id_extupdt);
2260 	TAILQ_INIT(&inodedep->id_newextupdt);
2261 	TAILQ_INIT(&inodedep->id_freeblklst);
2262 	LIST_INSERT_HEAD(inodedephd, inodedep, id_hash);
2263 	*inodedeppp = inodedep;
2264 	return (0);
2265 }
2266 
2267 /*
2268  * Structures and routines associated with newblk caching.
2269  */
2270 #define	NEWBLK_HASH(ump, inum) \
2271 	(&(ump)->newblk_hashtbl[(inum) & (ump)->newblk_hash_size])
2272 
2273 static int
2274 newblk_find(newblkhd, newblkno, flags, newblkpp)
2275 	struct newblk_hashhead *newblkhd;
2276 	ufs2_daddr_t newblkno;
2277 	int flags;
2278 	struct newblk **newblkpp;
2279 {
2280 	struct newblk *newblk;
2281 
2282 	LIST_FOREACH(newblk, newblkhd, nb_hash) {
2283 		if (newblkno != newblk->nb_newblkno)
2284 			continue;
2285 		/*
2286 		 * If we're creating a new dependency don't match those that
2287 		 * have already been converted to allocdirects.  This is for
2288 		 * a frag extend.
2289 		 */
2290 		if ((flags & DEPALLOC) && newblk->nb_list.wk_type != D_NEWBLK)
2291 			continue;
2292 		break;
2293 	}
2294 	if (newblk) {
2295 		*newblkpp = newblk;
2296 		return (1);
2297 	}
2298 	*newblkpp = NULL;
2299 	return (0);
2300 }
2301 
2302 /*
2303  * Look up a newblk. Return 1 if found, 0 if not found.
2304  * If not found, allocate if DEPALLOC flag is passed.
2305  * Found or allocated entry is returned in newblkpp.
2306  */
2307 static int
2308 newblk_lookup(mp, newblkno, flags, newblkpp)
2309 	struct mount *mp;
2310 	ufs2_daddr_t newblkno;
2311 	int flags;
2312 	struct newblk **newblkpp;
2313 {
2314 	struct newblk *newblk;
2315 	struct newblk_hashhead *newblkhd;
2316 	struct ufsmount *ump;
2317 
2318 	ump = VFSTOUFS(mp);
2319 	LOCK_OWNED(ump);
2320 	newblkhd = NEWBLK_HASH(ump, newblkno);
2321 	if (newblk_find(newblkhd, newblkno, flags, newblkpp))
2322 		return (1);
2323 	if ((flags & DEPALLOC) == 0)
2324 		return (0);
2325 	if (softdep_excess_items(ump, D_NEWBLK) ||
2326 	    softdep_excess_items(ump, D_ALLOCDIRECT) ||
2327 	    softdep_excess_items(ump, D_ALLOCINDIR))
2328 		schedule_cleanup(mp);
2329 	else
2330 		FREE_LOCK(ump);
2331 	newblk = malloc(sizeof(union allblk), M_NEWBLK,
2332 	    M_SOFTDEP_FLAGS | M_ZERO);
2333 	workitem_alloc(&newblk->nb_list, D_NEWBLK, mp);
2334 	ACQUIRE_LOCK(ump);
2335 	if (newblk_find(newblkhd, newblkno, flags, newblkpp)) {
2336 		WORKITEM_FREE(newblk, D_NEWBLK);
2337 		return (1);
2338 	}
2339 	newblk->nb_freefrag = NULL;
2340 	LIST_INIT(&newblk->nb_indirdeps);
2341 	LIST_INIT(&newblk->nb_newdirblk);
2342 	LIST_INIT(&newblk->nb_jwork);
2343 	newblk->nb_state = ATTACHED;
2344 	newblk->nb_newblkno = newblkno;
2345 	LIST_INSERT_HEAD(newblkhd, newblk, nb_hash);
2346 	*newblkpp = newblk;
2347 	return (0);
2348 }
2349 
2350 /*
2351  * Structures and routines associated with freed indirect block caching.
2352  */
2353 #define	INDIR_HASH(ump, blkno) \
2354 	(&(ump)->indir_hashtbl[(blkno) & (ump)->indir_hash_size])
2355 
2356 /*
2357  * Lookup an indirect block in the indir hash table.  The freework is
2358  * removed and potentially freed.  The caller must do a blocking journal
2359  * write before writing to the blkno.
2360  */
2361 static int
2362 indirblk_lookup(mp, blkno)
2363 	struct mount *mp;
2364 	ufs2_daddr_t blkno;
2365 {
2366 	struct freework *freework;
2367 	struct indir_hashhead *wkhd;
2368 	struct ufsmount *ump;
2369 
2370 	ump = VFSTOUFS(mp);
2371 	wkhd = INDIR_HASH(ump, blkno);
2372 	TAILQ_FOREACH(freework, wkhd, fw_next) {
2373 		if (freework->fw_blkno != blkno)
2374 			continue;
2375 		indirblk_remove(freework);
2376 		return (1);
2377 	}
2378 	return (0);
2379 }
2380 
2381 /*
2382  * Insert an indirect block represented by freework into the indirblk
2383  * hash table so that it may prevent the block from being re-used prior
2384  * to the journal being written.
2385  */
2386 static void
2387 indirblk_insert(freework)
2388 	struct freework *freework;
2389 {
2390 	struct jblocks *jblocks;
2391 	struct jseg *jseg;
2392 	struct ufsmount *ump;
2393 
2394 	ump = VFSTOUFS(freework->fw_list.wk_mp);
2395 	jblocks = ump->softdep_jblocks;
2396 	jseg = TAILQ_LAST(&jblocks->jb_segs, jseglst);
2397 	if (jseg == NULL)
2398 		return;
2399 
2400 	LIST_INSERT_HEAD(&jseg->js_indirs, freework, fw_segs);
2401 	TAILQ_INSERT_HEAD(INDIR_HASH(ump, freework->fw_blkno), freework,
2402 	    fw_next);
2403 	freework->fw_state &= ~DEPCOMPLETE;
2404 }
2405 
2406 static void
2407 indirblk_remove(freework)
2408 	struct freework *freework;
2409 {
2410 	struct ufsmount *ump;
2411 
2412 	ump = VFSTOUFS(freework->fw_list.wk_mp);
2413 	LIST_REMOVE(freework, fw_segs);
2414 	TAILQ_REMOVE(INDIR_HASH(ump, freework->fw_blkno), freework, fw_next);
2415 	freework->fw_state |= DEPCOMPLETE;
2416 	if ((freework->fw_state & ALLCOMPLETE) == ALLCOMPLETE)
2417 		WORKITEM_FREE(freework, D_FREEWORK);
2418 }
2419 
2420 /*
2421  * Executed during filesystem system initialization before
2422  * mounting any filesystems.
2423  */
2424 void
2425 softdep_initialize()
2426 {
2427 
2428 	TAILQ_INIT(&softdepmounts);
2429 #ifdef __LP64__
2430 	max_softdeps = desiredvnodes * 4;
2431 #else
2432 	max_softdeps = desiredvnodes * 2;
2433 #endif
2434 
2435 	/* initialise bioops hack */
2436 	bioops.io_start = softdep_disk_io_initiation;
2437 	bioops.io_complete = softdep_disk_write_complete;
2438 	bioops.io_deallocate = softdep_deallocate_dependencies;
2439 	bioops.io_countdeps = softdep_count_dependencies;
2440 	softdep_ast_cleanup = softdep_ast_cleanup_proc;
2441 
2442 	/* Initialize the callout with an mtx. */
2443 	callout_init_mtx(&softdep_callout, &lk, 0);
2444 }
2445 
2446 /*
2447  * Executed after all filesystems have been unmounted during
2448  * filesystem module unload.
2449  */
2450 void
2451 softdep_uninitialize()
2452 {
2453 
2454 	/* clear bioops hack */
2455 	bioops.io_start = NULL;
2456 	bioops.io_complete = NULL;
2457 	bioops.io_deallocate = NULL;
2458 	bioops.io_countdeps = NULL;
2459 	softdep_ast_cleanup = NULL;
2460 
2461 	callout_drain(&softdep_callout);
2462 }
2463 
2464 /*
2465  * Called at mount time to notify the dependency code that a
2466  * filesystem wishes to use it.
2467  */
2468 int
2469 softdep_mount(devvp, mp, fs, cred)
2470 	struct vnode *devvp;
2471 	struct mount *mp;
2472 	struct fs *fs;
2473 	struct ucred *cred;
2474 {
2475 	struct csum_total cstotal;
2476 	struct mount_softdeps *sdp;
2477 	struct ufsmount *ump;
2478 	struct cg *cgp;
2479 	struct buf *bp;
2480 	u_int cyl, i;
2481 	int error;
2482 
2483 	sdp = malloc(sizeof(struct mount_softdeps), M_MOUNTDATA,
2484 	    M_WAITOK | M_ZERO);
2485 	MNT_ILOCK(mp);
2486 	mp->mnt_flag = (mp->mnt_flag & ~MNT_ASYNC) | MNT_SOFTDEP;
2487 	if ((mp->mnt_kern_flag & MNTK_SOFTDEP) == 0) {
2488 		mp->mnt_kern_flag = (mp->mnt_kern_flag & ~MNTK_ASYNC) |
2489 			MNTK_SOFTDEP | MNTK_NOASYNC;
2490 	}
2491 	ump = VFSTOUFS(mp);
2492 	ump->um_softdep = sdp;
2493 	MNT_IUNLOCK(mp);
2494 	rw_init(LOCK_PTR(ump), "per-fs softdep");
2495 	sdp->sd_ump = ump;
2496 	LIST_INIT(&ump->softdep_workitem_pending);
2497 	LIST_INIT(&ump->softdep_journal_pending);
2498 	TAILQ_INIT(&ump->softdep_unlinked);
2499 	LIST_INIT(&ump->softdep_dirtycg);
2500 	ump->softdep_worklist_tail = NULL;
2501 	ump->softdep_on_worklist = 0;
2502 	ump->softdep_deps = 0;
2503 	LIST_INIT(&ump->softdep_mkdirlisthd);
2504 	ump->pagedep_hashtbl = hashinit(desiredvnodes / 5, M_PAGEDEP,
2505 	    &ump->pagedep_hash_size);
2506 	ump->pagedep_nextclean = 0;
2507 	ump->inodedep_hashtbl = hashinit(desiredvnodes, M_INODEDEP,
2508 	    &ump->inodedep_hash_size);
2509 	ump->inodedep_nextclean = 0;
2510 	ump->newblk_hashtbl = hashinit(max_softdeps / 2,  M_NEWBLK,
2511 	    &ump->newblk_hash_size);
2512 	ump->bmsafemap_hashtbl = hashinit(1024, M_BMSAFEMAP,
2513 	    &ump->bmsafemap_hash_size);
2514 	i = 1 << (ffs(desiredvnodes / 10) - 1);
2515 	ump->indir_hashtbl = malloc(i * sizeof(struct indir_hashhead),
2516 	    M_FREEWORK, M_WAITOK);
2517 	ump->indir_hash_size = i - 1;
2518 	for (i = 0; i <= ump->indir_hash_size; i++)
2519 		TAILQ_INIT(&ump->indir_hashtbl[i]);
2520 	ACQUIRE_GBLLOCK(&lk);
2521 	TAILQ_INSERT_TAIL(&softdepmounts, sdp, sd_next);
2522 	FREE_GBLLOCK(&lk);
2523 	if ((fs->fs_flags & FS_SUJ) &&
2524 	    (error = journal_mount(mp, fs, cred)) != 0) {
2525 		printf("Failed to start journal: %d\n", error);
2526 		softdep_unmount(mp);
2527 		return (error);
2528 	}
2529 	/*
2530 	 * Start our flushing thread in the bufdaemon process.
2531 	 */
2532 	ACQUIRE_LOCK(ump);
2533 	ump->softdep_flags |= FLUSH_STARTING;
2534 	FREE_LOCK(ump);
2535 	kproc_kthread_add(&softdep_flush, mp, &bufdaemonproc,
2536 	    &ump->softdep_flushtd, 0, 0, "softdepflush", "%s worker",
2537 	    mp->mnt_stat.f_mntonname);
2538 	ACQUIRE_LOCK(ump);
2539 	while ((ump->softdep_flags & FLUSH_STARTING) != 0) {
2540 		msleep(&ump->softdep_flushtd, LOCK_PTR(ump), PVM, "sdstart",
2541 		    hz / 2);
2542 	}
2543 	FREE_LOCK(ump);
2544 	/*
2545 	 * When doing soft updates, the counters in the
2546 	 * superblock may have gotten out of sync. Recomputation
2547 	 * can take a long time and can be deferred for background
2548 	 * fsck.  However, the old behavior of scanning the cylinder
2549 	 * groups and recalculating them at mount time is available
2550 	 * by setting vfs.ffs.compute_summary_at_mount to one.
2551 	 */
2552 	if (compute_summary_at_mount == 0 || fs->fs_clean != 0)
2553 		return (0);
2554 	bzero(&cstotal, sizeof cstotal);
2555 	for (cyl = 0; cyl < fs->fs_ncg; cyl++) {
2556 		if ((error = bread(devvp, fsbtodb(fs, cgtod(fs, cyl)),
2557 		    fs->fs_cgsize, cred, &bp)) != 0) {
2558 			brelse(bp);
2559 			softdep_unmount(mp);
2560 			return (error);
2561 		}
2562 		cgp = (struct cg *)bp->b_data;
2563 		cstotal.cs_nffree += cgp->cg_cs.cs_nffree;
2564 		cstotal.cs_nbfree += cgp->cg_cs.cs_nbfree;
2565 		cstotal.cs_nifree += cgp->cg_cs.cs_nifree;
2566 		cstotal.cs_ndir += cgp->cg_cs.cs_ndir;
2567 		fs->fs_cs(fs, cyl) = cgp->cg_cs;
2568 		brelse(bp);
2569 	}
2570 #ifdef INVARIANTS
2571 	if (bcmp(&cstotal, &fs->fs_cstotal, sizeof cstotal))
2572 		printf("%s: superblock summary recomputed\n", fs->fs_fsmnt);
2573 #endif
2574 	bcopy(&cstotal, &fs->fs_cstotal, sizeof cstotal);
2575 	return (0);
2576 }
2577 
2578 void
2579 softdep_unmount(mp)
2580 	struct mount *mp;
2581 {
2582 	struct ufsmount *ump;
2583 #ifdef INVARIANTS
2584 	int i;
2585 #endif
2586 
2587 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
2588 	    ("softdep_unmount called on non-softdep filesystem"));
2589 	ump = VFSTOUFS(mp);
2590 	MNT_ILOCK(mp);
2591 	mp->mnt_flag &= ~MNT_SOFTDEP;
2592 	if (MOUNTEDSUJ(mp) == 0) {
2593 		MNT_IUNLOCK(mp);
2594 	} else {
2595 		mp->mnt_flag &= ~MNT_SUJ;
2596 		MNT_IUNLOCK(mp);
2597 		journal_unmount(ump);
2598 	}
2599 	/*
2600 	 * Shut down our flushing thread. Check for NULL is if
2601 	 * softdep_mount errors out before the thread has been created.
2602 	 */
2603 	if (ump->softdep_flushtd != NULL) {
2604 		ACQUIRE_LOCK(ump);
2605 		ump->softdep_flags |= FLUSH_EXIT;
2606 		wakeup(&ump->softdep_flushtd);
2607 		msleep(&ump->softdep_flags, LOCK_PTR(ump), PVM | PDROP,
2608 		    "sdwait", 0);
2609 		KASSERT((ump->softdep_flags & FLUSH_EXIT) == 0,
2610 		    ("Thread shutdown failed"));
2611 	}
2612 	/*
2613 	 * Free up our resources.
2614 	 */
2615 	ACQUIRE_GBLLOCK(&lk);
2616 	TAILQ_REMOVE(&softdepmounts, ump->um_softdep, sd_next);
2617 	FREE_GBLLOCK(&lk);
2618 	rw_destroy(LOCK_PTR(ump));
2619 	hashdestroy(ump->pagedep_hashtbl, M_PAGEDEP, ump->pagedep_hash_size);
2620 	hashdestroy(ump->inodedep_hashtbl, M_INODEDEP, ump->inodedep_hash_size);
2621 	hashdestroy(ump->newblk_hashtbl, M_NEWBLK, ump->newblk_hash_size);
2622 	hashdestroy(ump->bmsafemap_hashtbl, M_BMSAFEMAP,
2623 	    ump->bmsafemap_hash_size);
2624 	free(ump->indir_hashtbl, M_FREEWORK);
2625 #ifdef INVARIANTS
2626 	for (i = 0; i <= D_LAST; i++)
2627 		KASSERT(ump->softdep_curdeps[i] == 0,
2628 		    ("Unmount %s: Dep type %s != 0 (%ld)", ump->um_fs->fs_fsmnt,
2629 		    TYPENAME(i), ump->softdep_curdeps[i]));
2630 #endif
2631 	free(ump->um_softdep, M_MOUNTDATA);
2632 }
2633 
2634 static struct jblocks *
2635 jblocks_create(void)
2636 {
2637 	struct jblocks *jblocks;
2638 
2639 	jblocks = malloc(sizeof(*jblocks), M_JBLOCKS, M_WAITOK | M_ZERO);
2640 	TAILQ_INIT(&jblocks->jb_segs);
2641 	jblocks->jb_avail = 10;
2642 	jblocks->jb_extent = malloc(sizeof(struct jextent) * jblocks->jb_avail,
2643 	    M_JBLOCKS, M_WAITOK | M_ZERO);
2644 
2645 	return (jblocks);
2646 }
2647 
2648 static ufs2_daddr_t
2649 jblocks_alloc(jblocks, bytes, actual)
2650 	struct jblocks *jblocks;
2651 	int bytes;
2652 	int *actual;
2653 {
2654 	ufs2_daddr_t daddr;
2655 	struct jextent *jext;
2656 	int freecnt;
2657 	int blocks;
2658 
2659 	blocks = bytes / DEV_BSIZE;
2660 	jext = &jblocks->jb_extent[jblocks->jb_head];
2661 	freecnt = jext->je_blocks - jblocks->jb_off;
2662 	if (freecnt == 0) {
2663 		jblocks->jb_off = 0;
2664 		if (++jblocks->jb_head > jblocks->jb_used)
2665 			jblocks->jb_head = 0;
2666 		jext = &jblocks->jb_extent[jblocks->jb_head];
2667 		freecnt = jext->je_blocks;
2668 	}
2669 	if (freecnt > blocks)
2670 		freecnt = blocks;
2671 	*actual = freecnt * DEV_BSIZE;
2672 	daddr = jext->je_daddr + jblocks->jb_off;
2673 	jblocks->jb_off += freecnt;
2674 	jblocks->jb_free -= freecnt;
2675 
2676 	return (daddr);
2677 }
2678 
2679 static void
2680 jblocks_free(jblocks, mp, bytes)
2681 	struct jblocks *jblocks;
2682 	struct mount *mp;
2683 	int bytes;
2684 {
2685 
2686 	LOCK_OWNED(VFSTOUFS(mp));
2687 	jblocks->jb_free += bytes / DEV_BSIZE;
2688 	if (jblocks->jb_suspended)
2689 		worklist_speedup(mp);
2690 	wakeup(jblocks);
2691 }
2692 
2693 static void
2694 jblocks_destroy(jblocks)
2695 	struct jblocks *jblocks;
2696 {
2697 
2698 	if (jblocks->jb_extent)
2699 		free(jblocks->jb_extent, M_JBLOCKS);
2700 	free(jblocks, M_JBLOCKS);
2701 }
2702 
2703 static void
2704 jblocks_add(jblocks, daddr, blocks)
2705 	struct jblocks *jblocks;
2706 	ufs2_daddr_t daddr;
2707 	int blocks;
2708 {
2709 	struct jextent *jext;
2710 
2711 	jblocks->jb_blocks += blocks;
2712 	jblocks->jb_free += blocks;
2713 	jext = &jblocks->jb_extent[jblocks->jb_used];
2714 	/* Adding the first block. */
2715 	if (jext->je_daddr == 0) {
2716 		jext->je_daddr = daddr;
2717 		jext->je_blocks = blocks;
2718 		return;
2719 	}
2720 	/* Extending the last extent. */
2721 	if (jext->je_daddr + jext->je_blocks == daddr) {
2722 		jext->je_blocks += blocks;
2723 		return;
2724 	}
2725 	/* Adding a new extent. */
2726 	if (++jblocks->jb_used == jblocks->jb_avail) {
2727 		jblocks->jb_avail *= 2;
2728 		jext = malloc(sizeof(struct jextent) * jblocks->jb_avail,
2729 		    M_JBLOCKS, M_WAITOK | M_ZERO);
2730 		memcpy(jext, jblocks->jb_extent,
2731 		    sizeof(struct jextent) * jblocks->jb_used);
2732 		free(jblocks->jb_extent, M_JBLOCKS);
2733 		jblocks->jb_extent = jext;
2734 	}
2735 	jext = &jblocks->jb_extent[jblocks->jb_used];
2736 	jext->je_daddr = daddr;
2737 	jext->je_blocks = blocks;
2738 	return;
2739 }
2740 
2741 int
2742 softdep_journal_lookup(mp, vpp)
2743 	struct mount *mp;
2744 	struct vnode **vpp;
2745 {
2746 	struct componentname cnp;
2747 	struct vnode *dvp;
2748 	ino_t sujournal;
2749 	int error;
2750 
2751 	error = VFS_VGET(mp, UFS_ROOTINO, LK_EXCLUSIVE, &dvp);
2752 	if (error)
2753 		return (error);
2754 	bzero(&cnp, sizeof(cnp));
2755 	cnp.cn_nameiop = LOOKUP;
2756 	cnp.cn_flags = ISLASTCN;
2757 	cnp.cn_thread = curthread;
2758 	cnp.cn_cred = curthread->td_ucred;
2759 	cnp.cn_pnbuf = SUJ_FILE;
2760 	cnp.cn_nameptr = SUJ_FILE;
2761 	cnp.cn_namelen = strlen(SUJ_FILE);
2762 	error = ufs_lookup_ino(dvp, NULL, &cnp, &sujournal);
2763 	vput(dvp);
2764 	if (error != 0)
2765 		return (error);
2766 	error = VFS_VGET(mp, sujournal, LK_EXCLUSIVE, vpp);
2767 	return (error);
2768 }
2769 
2770 /*
2771  * Open and verify the journal file.
2772  */
2773 static int
2774 journal_mount(mp, fs, cred)
2775 	struct mount *mp;
2776 	struct fs *fs;
2777 	struct ucred *cred;
2778 {
2779 	struct jblocks *jblocks;
2780 	struct ufsmount *ump;
2781 	struct vnode *vp;
2782 	struct inode *ip;
2783 	ufs2_daddr_t blkno;
2784 	int bcount;
2785 	int error;
2786 	int i;
2787 
2788 	ump = VFSTOUFS(mp);
2789 	ump->softdep_journal_tail = NULL;
2790 	ump->softdep_on_journal = 0;
2791 	ump->softdep_accdeps = 0;
2792 	ump->softdep_req = 0;
2793 	ump->softdep_jblocks = NULL;
2794 	error = softdep_journal_lookup(mp, &vp);
2795 	if (error != 0) {
2796 		printf("Failed to find journal.  Use tunefs to create one\n");
2797 		return (error);
2798 	}
2799 	ip = VTOI(vp);
2800 	if (ip->i_size < SUJ_MIN) {
2801 		error = ENOSPC;
2802 		goto out;
2803 	}
2804 	bcount = lblkno(fs, ip->i_size);	/* Only use whole blocks. */
2805 	jblocks = jblocks_create();
2806 	for (i = 0; i < bcount; i++) {
2807 		error = ufs_bmaparray(vp, i, &blkno, NULL, NULL, NULL);
2808 		if (error)
2809 			break;
2810 		jblocks_add(jblocks, blkno, fsbtodb(fs, fs->fs_frag));
2811 	}
2812 	if (error) {
2813 		jblocks_destroy(jblocks);
2814 		goto out;
2815 	}
2816 	jblocks->jb_low = jblocks->jb_free / 3;	/* Reserve 33%. */
2817 	jblocks->jb_min = jblocks->jb_free / 10; /* Suspend at 10%. */
2818 	ump->softdep_jblocks = jblocks;
2819 out:
2820 	if (error == 0) {
2821 		MNT_ILOCK(mp);
2822 		mp->mnt_flag |= MNT_SUJ;
2823 		mp->mnt_flag &= ~MNT_SOFTDEP;
2824 		MNT_IUNLOCK(mp);
2825 		/*
2826 		 * Only validate the journal contents if the
2827 		 * filesystem is clean, otherwise we write the logs
2828 		 * but they'll never be used.  If the filesystem was
2829 		 * still dirty when we mounted it the journal is
2830 		 * invalid and a new journal can only be valid if it
2831 		 * starts from a clean mount.
2832 		 */
2833 		if (fs->fs_clean) {
2834 			DIP_SET(ip, i_modrev, fs->fs_mtime);
2835 			ip->i_flags |= IN_MODIFIED;
2836 			ffs_update(vp, 1);
2837 		}
2838 	}
2839 	vput(vp);
2840 	return (error);
2841 }
2842 
2843 static void
2844 journal_unmount(ump)
2845 	struct ufsmount *ump;
2846 {
2847 
2848 	if (ump->softdep_jblocks)
2849 		jblocks_destroy(ump->softdep_jblocks);
2850 	ump->softdep_jblocks = NULL;
2851 }
2852 
2853 /*
2854  * Called when a journal record is ready to be written.  Space is allocated
2855  * and the journal entry is created when the journal is flushed to stable
2856  * store.
2857  */
2858 static void
2859 add_to_journal(wk)
2860 	struct worklist *wk;
2861 {
2862 	struct ufsmount *ump;
2863 
2864 	ump = VFSTOUFS(wk->wk_mp);
2865 	LOCK_OWNED(ump);
2866 	if (wk->wk_state & ONWORKLIST)
2867 		panic("add_to_journal: %s(0x%X) already on list",
2868 		    TYPENAME(wk->wk_type), wk->wk_state);
2869 	wk->wk_state |= ONWORKLIST | DEPCOMPLETE;
2870 	if (LIST_EMPTY(&ump->softdep_journal_pending)) {
2871 		ump->softdep_jblocks->jb_age = ticks;
2872 		LIST_INSERT_HEAD(&ump->softdep_journal_pending, wk, wk_list);
2873 	} else
2874 		LIST_INSERT_AFTER(ump->softdep_journal_tail, wk, wk_list);
2875 	ump->softdep_journal_tail = wk;
2876 	ump->softdep_on_journal += 1;
2877 }
2878 
2879 /*
2880  * Remove an arbitrary item for the journal worklist maintain the tail
2881  * pointer.  This happens when a new operation obviates the need to
2882  * journal an old operation.
2883  */
2884 static void
2885 remove_from_journal(wk)
2886 	struct worklist *wk;
2887 {
2888 	struct ufsmount *ump;
2889 
2890 	ump = VFSTOUFS(wk->wk_mp);
2891 	LOCK_OWNED(ump);
2892 #ifdef INVARIANTS
2893 	{
2894 		struct worklist *wkn;
2895 
2896 		LIST_FOREACH(wkn, &ump->softdep_journal_pending, wk_list)
2897 			if (wkn == wk)
2898 				break;
2899 		if (wkn == NULL)
2900 			panic("remove_from_journal: %p is not in journal", wk);
2901 	}
2902 #endif
2903 	/*
2904 	 * We emulate a TAILQ to save space in most structures which do not
2905 	 * require TAILQ semantics.  Here we must update the tail position
2906 	 * when removing the tail which is not the final entry. This works
2907 	 * only if the worklist linkage are at the beginning of the structure.
2908 	 */
2909 	if (ump->softdep_journal_tail == wk)
2910 		ump->softdep_journal_tail =
2911 		    (struct worklist *)wk->wk_list.le_prev;
2912 	WORKLIST_REMOVE(wk);
2913 	ump->softdep_on_journal -= 1;
2914 }
2915 
2916 /*
2917  * Check for journal space as well as dependency limits so the prelink
2918  * code can throttle both journaled and non-journaled filesystems.
2919  * Threshold is 0 for low and 1 for min.
2920  */
2921 static int
2922 journal_space(ump, thresh)
2923 	struct ufsmount *ump;
2924 	int thresh;
2925 {
2926 	struct jblocks *jblocks;
2927 	int limit, avail;
2928 
2929 	jblocks = ump->softdep_jblocks;
2930 	if (jblocks == NULL)
2931 		return (1);
2932 	/*
2933 	 * We use a tighter restriction here to prevent request_cleanup()
2934 	 * running in threads from running into locks we currently hold.
2935 	 * We have to be over the limit and our filesystem has to be
2936 	 * responsible for more than our share of that usage.
2937 	 */
2938 	limit = (max_softdeps / 10) * 9;
2939 	if (dep_current[D_INODEDEP] > limit &&
2940 	    ump->softdep_curdeps[D_INODEDEP] > limit / stat_flush_threads)
2941 		return (0);
2942 	if (thresh)
2943 		thresh = jblocks->jb_min;
2944 	else
2945 		thresh = jblocks->jb_low;
2946 	avail = (ump->softdep_on_journal * JREC_SIZE) / DEV_BSIZE;
2947 	avail = jblocks->jb_free - avail;
2948 
2949 	return (avail > thresh);
2950 }
2951 
2952 static void
2953 journal_suspend(ump)
2954 	struct ufsmount *ump;
2955 {
2956 	struct jblocks *jblocks;
2957 	struct mount *mp;
2958 	bool set;
2959 
2960 	mp = UFSTOVFS(ump);
2961 	if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0)
2962 		return;
2963 
2964 	jblocks = ump->softdep_jblocks;
2965 	vfs_op_enter(mp);
2966 	set = false;
2967 	MNT_ILOCK(mp);
2968 	if ((mp->mnt_kern_flag & MNTK_SUSPEND) == 0) {
2969 		stat_journal_min++;
2970 		mp->mnt_kern_flag |= MNTK_SUSPEND;
2971 		mp->mnt_susp_owner = ump->softdep_flushtd;
2972 		set = true;
2973 	}
2974 	jblocks->jb_suspended = 1;
2975 	MNT_IUNLOCK(mp);
2976 	if (!set)
2977 		vfs_op_exit(mp);
2978 }
2979 
2980 static int
2981 journal_unsuspend(struct ufsmount *ump)
2982 {
2983 	struct jblocks *jblocks;
2984 	struct mount *mp;
2985 
2986 	mp = UFSTOVFS(ump);
2987 	jblocks = ump->softdep_jblocks;
2988 
2989 	if (jblocks != NULL && jblocks->jb_suspended &&
2990 	    journal_space(ump, jblocks->jb_min)) {
2991 		jblocks->jb_suspended = 0;
2992 		FREE_LOCK(ump);
2993 		mp->mnt_susp_owner = curthread;
2994 		vfs_write_resume(mp, 0);
2995 		ACQUIRE_LOCK(ump);
2996 		return (1);
2997 	}
2998 	return (0);
2999 }
3000 
3001 /*
3002  * Called before any allocation function to be certain that there is
3003  * sufficient space in the journal prior to creating any new records.
3004  * Since in the case of block allocation we may have multiple locked
3005  * buffers at the time of the actual allocation we can not block
3006  * when the journal records are created.  Doing so would create a deadlock
3007  * if any of these buffers needed to be flushed to reclaim space.  Instead
3008  * we require a sufficiently large amount of available space such that
3009  * each thread in the system could have passed this allocation check and
3010  * still have sufficient free space.  With 20% of a minimum journal size
3011  * of 1MB we have 6553 records available.
3012  */
3013 int
3014 softdep_prealloc(vp, waitok)
3015 	struct vnode *vp;
3016 	int waitok;
3017 {
3018 	struct ufsmount *ump;
3019 
3020 	KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0,
3021 	    ("softdep_prealloc called on non-softdep filesystem"));
3022 	/*
3023 	 * Nothing to do if we are not running journaled soft updates.
3024 	 * If we currently hold the snapshot lock, we must avoid
3025 	 * handling other resources that could cause deadlock.  Do not
3026 	 * touch quotas vnode since it is typically recursed with
3027 	 * other vnode locks held.
3028 	 */
3029 	if (DOINGSUJ(vp) == 0 || IS_SNAPSHOT(VTOI(vp)) ||
3030 	    (vp->v_vflag & VV_SYSTEM) != 0)
3031 		return (0);
3032 	ump = VFSTOUFS(vp->v_mount);
3033 	ACQUIRE_LOCK(ump);
3034 	if (journal_space(ump, 0)) {
3035 		FREE_LOCK(ump);
3036 		return (0);
3037 	}
3038 	stat_journal_low++;
3039 	FREE_LOCK(ump);
3040 	if (waitok == MNT_NOWAIT)
3041 		return (ENOSPC);
3042 	/*
3043 	 * Attempt to sync this vnode once to flush any journal
3044 	 * work attached to it.
3045 	 */
3046 	if ((curthread->td_pflags & TDP_COWINPROGRESS) == 0)
3047 		ffs_syncvnode(vp, waitok, 0);
3048 	ACQUIRE_LOCK(ump);
3049 	process_removes(vp);
3050 	process_truncates(vp);
3051 	if (journal_space(ump, 0) == 0) {
3052 		softdep_speedup(ump);
3053 		if (journal_space(ump, 1) == 0)
3054 			journal_suspend(ump);
3055 	}
3056 	FREE_LOCK(ump);
3057 
3058 	return (0);
3059 }
3060 
3061 /*
3062  * Before adjusting a link count on a vnode verify that we have sufficient
3063  * journal space.  If not, process operations that depend on the currently
3064  * locked pair of vnodes to try to flush space as the syncer, buf daemon,
3065  * and softdep flush threads can not acquire these locks to reclaim space.
3066  */
3067 static void
3068 softdep_prelink(dvp, vp)
3069 	struct vnode *dvp;
3070 	struct vnode *vp;
3071 {
3072 	struct ufsmount *ump;
3073 
3074 	ump = VFSTOUFS(dvp->v_mount);
3075 	LOCK_OWNED(ump);
3076 	/*
3077 	 * Nothing to do if we have sufficient journal space.
3078 	 * If we currently hold the snapshot lock, we must avoid
3079 	 * handling other resources that could cause deadlock.
3080 	 */
3081 	if (journal_space(ump, 0) || (vp && IS_SNAPSHOT(VTOI(vp))))
3082 		return;
3083 	stat_journal_low++;
3084 	FREE_LOCK(ump);
3085 	if (vp)
3086 		ffs_syncvnode(vp, MNT_NOWAIT, 0);
3087 	ffs_syncvnode(dvp, MNT_WAIT, 0);
3088 	ACQUIRE_LOCK(ump);
3089 	/* Process vp before dvp as it may create .. removes. */
3090 	if (vp) {
3091 		process_removes(vp);
3092 		process_truncates(vp);
3093 	}
3094 	process_removes(dvp);
3095 	process_truncates(dvp);
3096 	softdep_speedup(ump);
3097 	process_worklist_item(UFSTOVFS(ump), 2, LK_NOWAIT);
3098 	if (journal_space(ump, 0) == 0) {
3099 		softdep_speedup(ump);
3100 		if (journal_space(ump, 1) == 0)
3101 			journal_suspend(ump);
3102 	}
3103 }
3104 
3105 static void
3106 jseg_write(ump, jseg, data)
3107 	struct ufsmount *ump;
3108 	struct jseg *jseg;
3109 	uint8_t *data;
3110 {
3111 	struct jsegrec *rec;
3112 
3113 	rec = (struct jsegrec *)data;
3114 	rec->jsr_seq = jseg->js_seq;
3115 	rec->jsr_oldest = jseg->js_oldseq;
3116 	rec->jsr_cnt = jseg->js_cnt;
3117 	rec->jsr_blocks = jseg->js_size / ump->um_devvp->v_bufobj.bo_bsize;
3118 	rec->jsr_crc = 0;
3119 	rec->jsr_time = ump->um_fs->fs_mtime;
3120 }
3121 
3122 static inline void
3123 inoref_write(inoref, jseg, rec)
3124 	struct inoref *inoref;
3125 	struct jseg *jseg;
3126 	struct jrefrec *rec;
3127 {
3128 
3129 	inoref->if_jsegdep->jd_seg = jseg;
3130 	rec->jr_ino = inoref->if_ino;
3131 	rec->jr_parent = inoref->if_parent;
3132 	rec->jr_nlink = inoref->if_nlink;
3133 	rec->jr_mode = inoref->if_mode;
3134 	rec->jr_diroff = inoref->if_diroff;
3135 }
3136 
3137 static void
3138 jaddref_write(jaddref, jseg, data)
3139 	struct jaddref *jaddref;
3140 	struct jseg *jseg;
3141 	uint8_t *data;
3142 {
3143 	struct jrefrec *rec;
3144 
3145 	rec = (struct jrefrec *)data;
3146 	rec->jr_op = JOP_ADDREF;
3147 	inoref_write(&jaddref->ja_ref, jseg, rec);
3148 }
3149 
3150 static void
3151 jremref_write(jremref, jseg, data)
3152 	struct jremref *jremref;
3153 	struct jseg *jseg;
3154 	uint8_t *data;
3155 {
3156 	struct jrefrec *rec;
3157 
3158 	rec = (struct jrefrec *)data;
3159 	rec->jr_op = JOP_REMREF;
3160 	inoref_write(&jremref->jr_ref, jseg, rec);
3161 }
3162 
3163 static void
3164 jmvref_write(jmvref, jseg, data)
3165 	struct jmvref *jmvref;
3166 	struct jseg *jseg;
3167 	uint8_t *data;
3168 {
3169 	struct jmvrec *rec;
3170 
3171 	rec = (struct jmvrec *)data;
3172 	rec->jm_op = JOP_MVREF;
3173 	rec->jm_ino = jmvref->jm_ino;
3174 	rec->jm_parent = jmvref->jm_parent;
3175 	rec->jm_oldoff = jmvref->jm_oldoff;
3176 	rec->jm_newoff = jmvref->jm_newoff;
3177 }
3178 
3179 static void
3180 jnewblk_write(jnewblk, jseg, data)
3181 	struct jnewblk *jnewblk;
3182 	struct jseg *jseg;
3183 	uint8_t *data;
3184 {
3185 	struct jblkrec *rec;
3186 
3187 	jnewblk->jn_jsegdep->jd_seg = jseg;
3188 	rec = (struct jblkrec *)data;
3189 	rec->jb_op = JOP_NEWBLK;
3190 	rec->jb_ino = jnewblk->jn_ino;
3191 	rec->jb_blkno = jnewblk->jn_blkno;
3192 	rec->jb_lbn = jnewblk->jn_lbn;
3193 	rec->jb_frags = jnewblk->jn_frags;
3194 	rec->jb_oldfrags = jnewblk->jn_oldfrags;
3195 }
3196 
3197 static void
3198 jfreeblk_write(jfreeblk, jseg, data)
3199 	struct jfreeblk *jfreeblk;
3200 	struct jseg *jseg;
3201 	uint8_t *data;
3202 {
3203 	struct jblkrec *rec;
3204 
3205 	jfreeblk->jf_dep.jb_jsegdep->jd_seg = jseg;
3206 	rec = (struct jblkrec *)data;
3207 	rec->jb_op = JOP_FREEBLK;
3208 	rec->jb_ino = jfreeblk->jf_ino;
3209 	rec->jb_blkno = jfreeblk->jf_blkno;
3210 	rec->jb_lbn = jfreeblk->jf_lbn;
3211 	rec->jb_frags = jfreeblk->jf_frags;
3212 	rec->jb_oldfrags = 0;
3213 }
3214 
3215 static void
3216 jfreefrag_write(jfreefrag, jseg, data)
3217 	struct jfreefrag *jfreefrag;
3218 	struct jseg *jseg;
3219 	uint8_t *data;
3220 {
3221 	struct jblkrec *rec;
3222 
3223 	jfreefrag->fr_jsegdep->jd_seg = jseg;
3224 	rec = (struct jblkrec *)data;
3225 	rec->jb_op = JOP_FREEBLK;
3226 	rec->jb_ino = jfreefrag->fr_ino;
3227 	rec->jb_blkno = jfreefrag->fr_blkno;
3228 	rec->jb_lbn = jfreefrag->fr_lbn;
3229 	rec->jb_frags = jfreefrag->fr_frags;
3230 	rec->jb_oldfrags = 0;
3231 }
3232 
3233 static void
3234 jtrunc_write(jtrunc, jseg, data)
3235 	struct jtrunc *jtrunc;
3236 	struct jseg *jseg;
3237 	uint8_t *data;
3238 {
3239 	struct jtrncrec *rec;
3240 
3241 	jtrunc->jt_dep.jb_jsegdep->jd_seg = jseg;
3242 	rec = (struct jtrncrec *)data;
3243 	rec->jt_op = JOP_TRUNC;
3244 	rec->jt_ino = jtrunc->jt_ino;
3245 	rec->jt_size = jtrunc->jt_size;
3246 	rec->jt_extsize = jtrunc->jt_extsize;
3247 }
3248 
3249 static void
3250 jfsync_write(jfsync, jseg, data)
3251 	struct jfsync *jfsync;
3252 	struct jseg *jseg;
3253 	uint8_t *data;
3254 {
3255 	struct jtrncrec *rec;
3256 
3257 	rec = (struct jtrncrec *)data;
3258 	rec->jt_op = JOP_SYNC;
3259 	rec->jt_ino = jfsync->jfs_ino;
3260 	rec->jt_size = jfsync->jfs_size;
3261 	rec->jt_extsize = jfsync->jfs_extsize;
3262 }
3263 
3264 static void
3265 softdep_flushjournal(mp)
3266 	struct mount *mp;
3267 {
3268 	struct jblocks *jblocks;
3269 	struct ufsmount *ump;
3270 
3271 	if (MOUNTEDSUJ(mp) == 0)
3272 		return;
3273 	ump = VFSTOUFS(mp);
3274 	jblocks = ump->softdep_jblocks;
3275 	ACQUIRE_LOCK(ump);
3276 	while (ump->softdep_on_journal) {
3277 		jblocks->jb_needseg = 1;
3278 		softdep_process_journal(mp, NULL, MNT_WAIT);
3279 	}
3280 	FREE_LOCK(ump);
3281 }
3282 
3283 static void softdep_synchronize_completed(struct bio *);
3284 static void softdep_synchronize(struct bio *, struct ufsmount *, void *);
3285 
3286 static void
3287 softdep_synchronize_completed(bp)
3288         struct bio *bp;
3289 {
3290 	struct jseg *oldest;
3291 	struct jseg *jseg;
3292 	struct ufsmount *ump;
3293 
3294 	/*
3295 	 * caller1 marks the last segment written before we issued the
3296 	 * synchronize cache.
3297 	 */
3298 	jseg = bp->bio_caller1;
3299 	if (jseg == NULL) {
3300 		g_destroy_bio(bp);
3301 		return;
3302 	}
3303 	ump = VFSTOUFS(jseg->js_list.wk_mp);
3304 	ACQUIRE_LOCK(ump);
3305 	oldest = NULL;
3306 	/*
3307 	 * Mark all the journal entries waiting on the synchronize cache
3308 	 * as completed so they may continue on.
3309 	 */
3310 	while (jseg != NULL && (jseg->js_state & COMPLETE) == 0) {
3311 		jseg->js_state |= COMPLETE;
3312 		oldest = jseg;
3313 		jseg = TAILQ_PREV(jseg, jseglst, js_next);
3314 	}
3315 	/*
3316 	 * Restart deferred journal entry processing from the oldest
3317 	 * completed jseg.
3318 	 */
3319 	if (oldest)
3320 		complete_jsegs(oldest);
3321 
3322 	FREE_LOCK(ump);
3323 	g_destroy_bio(bp);
3324 }
3325 
3326 /*
3327  * Send BIO_FLUSH/SYNCHRONIZE CACHE to the device to enforce write ordering
3328  * barriers.  The journal must be written prior to any blocks that depend
3329  * on it and the journal can not be released until the blocks have be
3330  * written.  This code handles both barriers simultaneously.
3331  */
3332 static void
3333 softdep_synchronize(bp, ump, caller1)
3334 	struct bio *bp;
3335 	struct ufsmount *ump;
3336 	void *caller1;
3337 {
3338 
3339 	bp->bio_cmd = BIO_FLUSH;
3340 	bp->bio_flags |= BIO_ORDERED;
3341 	bp->bio_data = NULL;
3342 	bp->bio_offset = ump->um_cp->provider->mediasize;
3343 	bp->bio_length = 0;
3344 	bp->bio_done = softdep_synchronize_completed;
3345 	bp->bio_caller1 = caller1;
3346 	g_io_request(bp,
3347 	    (struct g_consumer *)ump->um_devvp->v_bufobj.bo_private);
3348 }
3349 
3350 /*
3351  * Flush some journal records to disk.
3352  */
3353 static void
3354 softdep_process_journal(mp, needwk, flags)
3355 	struct mount *mp;
3356 	struct worklist *needwk;
3357 	int flags;
3358 {
3359 	struct jblocks *jblocks;
3360 	struct ufsmount *ump;
3361 	struct worklist *wk;
3362 	struct jseg *jseg;
3363 	struct buf *bp;
3364 	struct bio *bio;
3365 	uint8_t *data;
3366 	struct fs *fs;
3367 	int shouldflush;
3368 	int segwritten;
3369 	int jrecmin;	/* Minimum records per block. */
3370 	int jrecmax;	/* Maximum records per block. */
3371 	int size;
3372 	int cnt;
3373 	int off;
3374 	int devbsize;
3375 
3376 	if (MOUNTEDSUJ(mp) == 0)
3377 		return;
3378 	shouldflush = softdep_flushcache;
3379 	bio = NULL;
3380 	jseg = NULL;
3381 	ump = VFSTOUFS(mp);
3382 	LOCK_OWNED(ump);
3383 	fs = ump->um_fs;
3384 	jblocks = ump->softdep_jblocks;
3385 	devbsize = ump->um_devvp->v_bufobj.bo_bsize;
3386 	/*
3387 	 * We write anywhere between a disk block and fs block.  The upper
3388 	 * bound is picked to prevent buffer cache fragmentation and limit
3389 	 * processing time per I/O.
3390 	 */
3391 	jrecmin = (devbsize / JREC_SIZE) - 1; /* -1 for seg header */
3392 	jrecmax = (fs->fs_bsize / devbsize) * jrecmin;
3393 	segwritten = 0;
3394 	for (;;) {
3395 		cnt = ump->softdep_on_journal;
3396 		/*
3397 		 * Criteria for writing a segment:
3398 		 * 1) We have a full block.
3399 		 * 2) We're called from jwait() and haven't found the
3400 		 *    journal item yet.
3401 		 * 3) Always write if needseg is set.
3402 		 * 4) If we are called from process_worklist and have
3403 		 *    not yet written anything we write a partial block
3404 		 *    to enforce a 1 second maximum latency on journal
3405 		 *    entries.
3406 		 */
3407 		if (cnt < (jrecmax - 1) && needwk == NULL &&
3408 		    jblocks->jb_needseg == 0 && (segwritten || cnt == 0))
3409 			break;
3410 		cnt++;
3411 		/*
3412 		 * Verify some free journal space.  softdep_prealloc() should
3413 		 * guarantee that we don't run out so this is indicative of
3414 		 * a problem with the flow control.  Try to recover
3415 		 * gracefully in any event.
3416 		 */
3417 		while (jblocks->jb_free == 0) {
3418 			if (flags != MNT_WAIT)
3419 				break;
3420 			printf("softdep: Out of journal space!\n");
3421 			softdep_speedup(ump);
3422 			msleep(jblocks, LOCK_PTR(ump), PRIBIO, "jblocks", hz);
3423 		}
3424 		FREE_LOCK(ump);
3425 		jseg = malloc(sizeof(*jseg), M_JSEG, M_SOFTDEP_FLAGS);
3426 		workitem_alloc(&jseg->js_list, D_JSEG, mp);
3427 		LIST_INIT(&jseg->js_entries);
3428 		LIST_INIT(&jseg->js_indirs);
3429 		jseg->js_state = ATTACHED;
3430 		if (shouldflush == 0)
3431 			jseg->js_state |= COMPLETE;
3432 		else if (bio == NULL)
3433 			bio = g_alloc_bio();
3434 		jseg->js_jblocks = jblocks;
3435 		bp = geteblk(fs->fs_bsize, 0);
3436 		ACQUIRE_LOCK(ump);
3437 		/*
3438 		 * If there was a race while we were allocating the block
3439 		 * and jseg the entry we care about was likely written.
3440 		 * We bail out in both the WAIT and NOWAIT case and assume
3441 		 * the caller will loop if the entry it cares about is
3442 		 * not written.
3443 		 */
3444 		cnt = ump->softdep_on_journal;
3445 		if (cnt + jblocks->jb_needseg == 0 || jblocks->jb_free == 0) {
3446 			bp->b_flags |= B_INVAL | B_NOCACHE;
3447 			WORKITEM_FREE(jseg, D_JSEG);
3448 			FREE_LOCK(ump);
3449 			brelse(bp);
3450 			ACQUIRE_LOCK(ump);
3451 			break;
3452 		}
3453 		/*
3454 		 * Calculate the disk block size required for the available
3455 		 * records rounded to the min size.
3456 		 */
3457 		if (cnt == 0)
3458 			size = devbsize;
3459 		else if (cnt < jrecmax)
3460 			size = howmany(cnt, jrecmin) * devbsize;
3461 		else
3462 			size = fs->fs_bsize;
3463 		/*
3464 		 * Allocate a disk block for this journal data and account
3465 		 * for truncation of the requested size if enough contiguous
3466 		 * space was not available.
3467 		 */
3468 		bp->b_blkno = jblocks_alloc(jblocks, size, &size);
3469 		bp->b_lblkno = bp->b_blkno;
3470 		bp->b_offset = bp->b_blkno * DEV_BSIZE;
3471 		bp->b_bcount = size;
3472 		bp->b_flags &= ~B_INVAL;
3473 		bp->b_flags |= B_VALIDSUSPWRT | B_NOCOPY;
3474 		/*
3475 		 * Initialize our jseg with cnt records.  Assign the next
3476 		 * sequence number to it and link it in-order.
3477 		 */
3478 		cnt = MIN(cnt, (size / devbsize) * jrecmin);
3479 		jseg->js_buf = bp;
3480 		jseg->js_cnt = cnt;
3481 		jseg->js_refs = cnt + 1;	/* Self ref. */
3482 		jseg->js_size = size;
3483 		jseg->js_seq = jblocks->jb_nextseq++;
3484 		if (jblocks->jb_oldestseg == NULL)
3485 			jblocks->jb_oldestseg = jseg;
3486 		jseg->js_oldseq = jblocks->jb_oldestseg->js_seq;
3487 		TAILQ_INSERT_TAIL(&jblocks->jb_segs, jseg, js_next);
3488 		if (jblocks->jb_writeseg == NULL)
3489 			jblocks->jb_writeseg = jseg;
3490 		/*
3491 		 * Start filling in records from the pending list.
3492 		 */
3493 		data = bp->b_data;
3494 		off = 0;
3495 
3496 		/*
3497 		 * Always put a header on the first block.
3498 		 * XXX As with below, there might not be a chance to get
3499 		 * into the loop.  Ensure that something valid is written.
3500 		 */
3501 		jseg_write(ump, jseg, data);
3502 		off += JREC_SIZE;
3503 		data = bp->b_data + off;
3504 
3505 		/*
3506 		 * XXX Something is wrong here.  There's no work to do,
3507 		 * but we need to perform and I/O and allow it to complete
3508 		 * anyways.
3509 		 */
3510 		if (LIST_EMPTY(&ump->softdep_journal_pending))
3511 			stat_emptyjblocks++;
3512 
3513 		while ((wk = LIST_FIRST(&ump->softdep_journal_pending))
3514 		    != NULL) {
3515 			if (cnt == 0)
3516 				break;
3517 			/* Place a segment header on every device block. */
3518 			if ((off % devbsize) == 0) {
3519 				jseg_write(ump, jseg, data);
3520 				off += JREC_SIZE;
3521 				data = bp->b_data + off;
3522 			}
3523 			if (wk == needwk)
3524 				needwk = NULL;
3525 			remove_from_journal(wk);
3526 			wk->wk_state |= INPROGRESS;
3527 			WORKLIST_INSERT(&jseg->js_entries, wk);
3528 			switch (wk->wk_type) {
3529 			case D_JADDREF:
3530 				jaddref_write(WK_JADDREF(wk), jseg, data);
3531 				break;
3532 			case D_JREMREF:
3533 				jremref_write(WK_JREMREF(wk), jseg, data);
3534 				break;
3535 			case D_JMVREF:
3536 				jmvref_write(WK_JMVREF(wk), jseg, data);
3537 				break;
3538 			case D_JNEWBLK:
3539 				jnewblk_write(WK_JNEWBLK(wk), jseg, data);
3540 				break;
3541 			case D_JFREEBLK:
3542 				jfreeblk_write(WK_JFREEBLK(wk), jseg, data);
3543 				break;
3544 			case D_JFREEFRAG:
3545 				jfreefrag_write(WK_JFREEFRAG(wk), jseg, data);
3546 				break;
3547 			case D_JTRUNC:
3548 				jtrunc_write(WK_JTRUNC(wk), jseg, data);
3549 				break;
3550 			case D_JFSYNC:
3551 				jfsync_write(WK_JFSYNC(wk), jseg, data);
3552 				break;
3553 			default:
3554 				panic("process_journal: Unknown type %s",
3555 				    TYPENAME(wk->wk_type));
3556 				/* NOTREACHED */
3557 			}
3558 			off += JREC_SIZE;
3559 			data = bp->b_data + off;
3560 			cnt--;
3561 		}
3562 
3563 		/* Clear any remaining space so we don't leak kernel data */
3564 		if (size > off)
3565 			bzero(data, size - off);
3566 
3567 		/*
3568 		 * Write this one buffer and continue.
3569 		 */
3570 		segwritten = 1;
3571 		jblocks->jb_needseg = 0;
3572 		WORKLIST_INSERT(&bp->b_dep, &jseg->js_list);
3573 		FREE_LOCK(ump);
3574 		pbgetvp(ump->um_devvp, bp);
3575 		/*
3576 		 * We only do the blocking wait once we find the journal
3577 		 * entry we're looking for.
3578 		 */
3579 		if (needwk == NULL && flags == MNT_WAIT)
3580 			bwrite(bp);
3581 		else
3582 			bawrite(bp);
3583 		ACQUIRE_LOCK(ump);
3584 	}
3585 	/*
3586 	 * If we wrote a segment issue a synchronize cache so the journal
3587 	 * is reflected on disk before the data is written.  Since reclaiming
3588 	 * journal space also requires writing a journal record this
3589 	 * process also enforces a barrier before reclamation.
3590 	 */
3591 	if (segwritten && shouldflush) {
3592 		softdep_synchronize(bio, ump,
3593 		    TAILQ_LAST(&jblocks->jb_segs, jseglst));
3594 	} else if (bio)
3595 		g_destroy_bio(bio);
3596 	/*
3597 	 * If we've suspended the filesystem because we ran out of journal
3598 	 * space either try to sync it here to make some progress or
3599 	 * unsuspend it if we already have.
3600 	 */
3601 	if (flags == 0 && jblocks->jb_suspended) {
3602 		if (journal_unsuspend(ump))
3603 			return;
3604 		FREE_LOCK(ump);
3605 		VFS_SYNC(mp, MNT_NOWAIT);
3606 		ffs_sbupdate(ump, MNT_WAIT, 0);
3607 		ACQUIRE_LOCK(ump);
3608 	}
3609 }
3610 
3611 /*
3612  * Complete a jseg, allowing all dependencies awaiting journal writes
3613  * to proceed.  Each journal dependency also attaches a jsegdep to dependent
3614  * structures so that the journal segment can be freed to reclaim space.
3615  */
3616 static void
3617 complete_jseg(jseg)
3618 	struct jseg *jseg;
3619 {
3620 	struct worklist *wk;
3621 	struct jmvref *jmvref;
3622 #ifdef INVARIANTS
3623 	int i = 0;
3624 #endif
3625 
3626 	while ((wk = LIST_FIRST(&jseg->js_entries)) != NULL) {
3627 		WORKLIST_REMOVE(wk);
3628 		wk->wk_state &= ~INPROGRESS;
3629 		wk->wk_state |= COMPLETE;
3630 		KASSERT(i++ < jseg->js_cnt,
3631 		    ("handle_written_jseg: overflow %d >= %d",
3632 		    i - 1, jseg->js_cnt));
3633 		switch (wk->wk_type) {
3634 		case D_JADDREF:
3635 			handle_written_jaddref(WK_JADDREF(wk));
3636 			break;
3637 		case D_JREMREF:
3638 			handle_written_jremref(WK_JREMREF(wk));
3639 			break;
3640 		case D_JMVREF:
3641 			rele_jseg(jseg);	/* No jsegdep. */
3642 			jmvref = WK_JMVREF(wk);
3643 			LIST_REMOVE(jmvref, jm_deps);
3644 			if ((jmvref->jm_pagedep->pd_state & ONWORKLIST) == 0)
3645 				free_pagedep(jmvref->jm_pagedep);
3646 			WORKITEM_FREE(jmvref, D_JMVREF);
3647 			break;
3648 		case D_JNEWBLK:
3649 			handle_written_jnewblk(WK_JNEWBLK(wk));
3650 			break;
3651 		case D_JFREEBLK:
3652 			handle_written_jblkdep(&WK_JFREEBLK(wk)->jf_dep);
3653 			break;
3654 		case D_JTRUNC:
3655 			handle_written_jblkdep(&WK_JTRUNC(wk)->jt_dep);
3656 			break;
3657 		case D_JFSYNC:
3658 			rele_jseg(jseg);	/* No jsegdep. */
3659 			WORKITEM_FREE(wk, D_JFSYNC);
3660 			break;
3661 		case D_JFREEFRAG:
3662 			handle_written_jfreefrag(WK_JFREEFRAG(wk));
3663 			break;
3664 		default:
3665 			panic("handle_written_jseg: Unknown type %s",
3666 			    TYPENAME(wk->wk_type));
3667 			/* NOTREACHED */
3668 		}
3669 	}
3670 	/* Release the self reference so the structure may be freed. */
3671 	rele_jseg(jseg);
3672 }
3673 
3674 /*
3675  * Determine which jsegs are ready for completion processing.  Waits for
3676  * synchronize cache to complete as well as forcing in-order completion
3677  * of journal entries.
3678  */
3679 static void
3680 complete_jsegs(jseg)
3681 	struct jseg *jseg;
3682 {
3683 	struct jblocks *jblocks;
3684 	struct jseg *jsegn;
3685 
3686 	jblocks = jseg->js_jblocks;
3687 	/*
3688 	 * Don't allow out of order completions.  If this isn't the first
3689 	 * block wait for it to write before we're done.
3690 	 */
3691 	if (jseg != jblocks->jb_writeseg)
3692 		return;
3693 	/* Iterate through available jsegs processing their entries. */
3694 	while (jseg && (jseg->js_state & ALLCOMPLETE) == ALLCOMPLETE) {
3695 		jblocks->jb_oldestwrseq = jseg->js_oldseq;
3696 		jsegn = TAILQ_NEXT(jseg, js_next);
3697 		complete_jseg(jseg);
3698 		jseg = jsegn;
3699 	}
3700 	jblocks->jb_writeseg = jseg;
3701 	/*
3702 	 * Attempt to free jsegs now that oldestwrseq may have advanced.
3703 	 */
3704 	free_jsegs(jblocks);
3705 }
3706 
3707 /*
3708  * Mark a jseg as DEPCOMPLETE and throw away the buffer.  Attempt to handle
3709  * the final completions.
3710  */
3711 static void
3712 handle_written_jseg(jseg, bp)
3713 	struct jseg *jseg;
3714 	struct buf *bp;
3715 {
3716 
3717 	if (jseg->js_refs == 0)
3718 		panic("handle_written_jseg: No self-reference on %p", jseg);
3719 	jseg->js_state |= DEPCOMPLETE;
3720 	/*
3721 	 * We'll never need this buffer again, set flags so it will be
3722 	 * discarded.
3723 	 */
3724 	bp->b_flags |= B_INVAL | B_NOCACHE;
3725 	pbrelvp(bp);
3726 	complete_jsegs(jseg);
3727 }
3728 
3729 static inline struct jsegdep *
3730 inoref_jseg(inoref)
3731 	struct inoref *inoref;
3732 {
3733 	struct jsegdep *jsegdep;
3734 
3735 	jsegdep = inoref->if_jsegdep;
3736 	inoref->if_jsegdep = NULL;
3737 
3738 	return (jsegdep);
3739 }
3740 
3741 /*
3742  * Called once a jremref has made it to stable store.  The jremref is marked
3743  * complete and we attempt to free it.  Any pagedeps writes sleeping waiting
3744  * for the jremref to complete will be awoken by free_jremref.
3745  */
3746 static void
3747 handle_written_jremref(jremref)
3748 	struct jremref *jremref;
3749 {
3750 	struct inodedep *inodedep;
3751 	struct jsegdep *jsegdep;
3752 	struct dirrem *dirrem;
3753 
3754 	/* Grab the jsegdep. */
3755 	jsegdep = inoref_jseg(&jremref->jr_ref);
3756 	/*
3757 	 * Remove us from the inoref list.
3758 	 */
3759 	if (inodedep_lookup(jremref->jr_list.wk_mp, jremref->jr_ref.if_ino,
3760 	    0, &inodedep) == 0)
3761 		panic("handle_written_jremref: Lost inodedep");
3762 	TAILQ_REMOVE(&inodedep->id_inoreflst, &jremref->jr_ref, if_deps);
3763 	/*
3764 	 * Complete the dirrem.
3765 	 */
3766 	dirrem = jremref->jr_dirrem;
3767 	jremref->jr_dirrem = NULL;
3768 	LIST_REMOVE(jremref, jr_deps);
3769 	jsegdep->jd_state |= jremref->jr_state & MKDIR_PARENT;
3770 	jwork_insert(&dirrem->dm_jwork, jsegdep);
3771 	if (LIST_EMPTY(&dirrem->dm_jremrefhd) &&
3772 	    (dirrem->dm_state & COMPLETE) != 0)
3773 		add_to_worklist(&dirrem->dm_list, 0);
3774 	free_jremref(jremref);
3775 }
3776 
3777 /*
3778  * Called once a jaddref has made it to stable store.  The dependency is
3779  * marked complete and any dependent structures are added to the inode
3780  * bufwait list to be completed as soon as it is written.  If a bitmap write
3781  * depends on this entry we move the inode into the inodedephd of the
3782  * bmsafemap dependency and attempt to remove the jaddref from the bmsafemap.
3783  */
3784 static void
3785 handle_written_jaddref(jaddref)
3786 	struct jaddref *jaddref;
3787 {
3788 	struct jsegdep *jsegdep;
3789 	struct inodedep *inodedep;
3790 	struct diradd *diradd;
3791 	struct mkdir *mkdir;
3792 
3793 	/* Grab the jsegdep. */
3794 	jsegdep = inoref_jseg(&jaddref->ja_ref);
3795 	mkdir = NULL;
3796 	diradd = NULL;
3797 	if (inodedep_lookup(jaddref->ja_list.wk_mp, jaddref->ja_ino,
3798 	    0, &inodedep) == 0)
3799 		panic("handle_written_jaddref: Lost inodedep.");
3800 	if (jaddref->ja_diradd == NULL)
3801 		panic("handle_written_jaddref: No dependency");
3802 	if (jaddref->ja_diradd->da_list.wk_type == D_DIRADD) {
3803 		diradd = jaddref->ja_diradd;
3804 		WORKLIST_INSERT(&inodedep->id_bufwait, &diradd->da_list);
3805 	} else if (jaddref->ja_state & MKDIR_PARENT) {
3806 		mkdir = jaddref->ja_mkdir;
3807 		WORKLIST_INSERT(&inodedep->id_bufwait, &mkdir->md_list);
3808 	} else if (jaddref->ja_state & MKDIR_BODY)
3809 		mkdir = jaddref->ja_mkdir;
3810 	else
3811 		panic("handle_written_jaddref: Unknown dependency %p",
3812 		    jaddref->ja_diradd);
3813 	jaddref->ja_diradd = NULL;	/* also clears ja_mkdir */
3814 	/*
3815 	 * Remove us from the inode list.
3816 	 */
3817 	TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref, if_deps);
3818 	/*
3819 	 * The mkdir may be waiting on the jaddref to clear before freeing.
3820 	 */
3821 	if (mkdir) {
3822 		KASSERT(mkdir->md_list.wk_type == D_MKDIR,
3823 		    ("handle_written_jaddref: Incorrect type for mkdir %s",
3824 		    TYPENAME(mkdir->md_list.wk_type)));
3825 		mkdir->md_jaddref = NULL;
3826 		diradd = mkdir->md_diradd;
3827 		mkdir->md_state |= DEPCOMPLETE;
3828 		complete_mkdir(mkdir);
3829 	}
3830 	jwork_insert(&diradd->da_jwork, jsegdep);
3831 	if (jaddref->ja_state & NEWBLOCK) {
3832 		inodedep->id_state |= ONDEPLIST;
3833 		LIST_INSERT_HEAD(&inodedep->id_bmsafemap->sm_inodedephd,
3834 		    inodedep, id_deps);
3835 	}
3836 	free_jaddref(jaddref);
3837 }
3838 
3839 /*
3840  * Called once a jnewblk journal is written.  The allocdirect or allocindir
3841  * is placed in the bmsafemap to await notification of a written bitmap.  If
3842  * the operation was canceled we add the segdep to the appropriate
3843  * dependency to free the journal space once the canceling operation
3844  * completes.
3845  */
3846 static void
3847 handle_written_jnewblk(jnewblk)
3848 	struct jnewblk *jnewblk;
3849 {
3850 	struct bmsafemap *bmsafemap;
3851 	struct freefrag *freefrag;
3852 	struct freework *freework;
3853 	struct jsegdep *jsegdep;
3854 	struct newblk *newblk;
3855 
3856 	/* Grab the jsegdep. */
3857 	jsegdep = jnewblk->jn_jsegdep;
3858 	jnewblk->jn_jsegdep = NULL;
3859 	if (jnewblk->jn_dep == NULL)
3860 		panic("handle_written_jnewblk: No dependency for the segdep.");
3861 	switch (jnewblk->jn_dep->wk_type) {
3862 	case D_NEWBLK:
3863 	case D_ALLOCDIRECT:
3864 	case D_ALLOCINDIR:
3865 		/*
3866 		 * Add the written block to the bmsafemap so it can
3867 		 * be notified when the bitmap is on disk.
3868 		 */
3869 		newblk = WK_NEWBLK(jnewblk->jn_dep);
3870 		newblk->nb_jnewblk = NULL;
3871 		if ((newblk->nb_state & GOINGAWAY) == 0) {
3872 			bmsafemap = newblk->nb_bmsafemap;
3873 			newblk->nb_state |= ONDEPLIST;
3874 			LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk,
3875 			    nb_deps);
3876 		}
3877 		jwork_insert(&newblk->nb_jwork, jsegdep);
3878 		break;
3879 	case D_FREEFRAG:
3880 		/*
3881 		 * A newblock being removed by a freefrag when replaced by
3882 		 * frag extension.
3883 		 */
3884 		freefrag = WK_FREEFRAG(jnewblk->jn_dep);
3885 		freefrag->ff_jdep = NULL;
3886 		jwork_insert(&freefrag->ff_jwork, jsegdep);
3887 		break;
3888 	case D_FREEWORK:
3889 		/*
3890 		 * A direct block was removed by truncate.
3891 		 */
3892 		freework = WK_FREEWORK(jnewblk->jn_dep);
3893 		freework->fw_jnewblk = NULL;
3894 		jwork_insert(&freework->fw_freeblks->fb_jwork, jsegdep);
3895 		break;
3896 	default:
3897 		panic("handle_written_jnewblk: Unknown type %d.",
3898 		    jnewblk->jn_dep->wk_type);
3899 	}
3900 	jnewblk->jn_dep = NULL;
3901 	free_jnewblk(jnewblk);
3902 }
3903 
3904 /*
3905  * Cancel a jfreefrag that won't be needed, probably due to colliding with
3906  * an in-flight allocation that has not yet been committed.  Divorce us
3907  * from the freefrag and mark it DEPCOMPLETE so that it may be added
3908  * to the worklist.
3909  */
3910 static void
3911 cancel_jfreefrag(jfreefrag)
3912 	struct jfreefrag *jfreefrag;
3913 {
3914 	struct freefrag *freefrag;
3915 
3916 	if (jfreefrag->fr_jsegdep) {
3917 		free_jsegdep(jfreefrag->fr_jsegdep);
3918 		jfreefrag->fr_jsegdep = NULL;
3919 	}
3920 	freefrag = jfreefrag->fr_freefrag;
3921 	jfreefrag->fr_freefrag = NULL;
3922 	free_jfreefrag(jfreefrag);
3923 	freefrag->ff_state |= DEPCOMPLETE;
3924 	CTR1(KTR_SUJ, "cancel_jfreefrag: blkno %jd", freefrag->ff_blkno);
3925 }
3926 
3927 /*
3928  * Free a jfreefrag when the parent freefrag is rendered obsolete.
3929  */
3930 static void
3931 free_jfreefrag(jfreefrag)
3932 	struct jfreefrag *jfreefrag;
3933 {
3934 
3935 	if (jfreefrag->fr_state & INPROGRESS)
3936 		WORKLIST_REMOVE(&jfreefrag->fr_list);
3937 	else if (jfreefrag->fr_state & ONWORKLIST)
3938 		remove_from_journal(&jfreefrag->fr_list);
3939 	if (jfreefrag->fr_freefrag != NULL)
3940 		panic("free_jfreefrag:  Still attached to a freefrag.");
3941 	WORKITEM_FREE(jfreefrag, D_JFREEFRAG);
3942 }
3943 
3944 /*
3945  * Called when the journal write for a jfreefrag completes.  The parent
3946  * freefrag is added to the worklist if this completes its dependencies.
3947  */
3948 static void
3949 handle_written_jfreefrag(jfreefrag)
3950 	struct jfreefrag *jfreefrag;
3951 {
3952 	struct jsegdep *jsegdep;
3953 	struct freefrag *freefrag;
3954 
3955 	/* Grab the jsegdep. */
3956 	jsegdep = jfreefrag->fr_jsegdep;
3957 	jfreefrag->fr_jsegdep = NULL;
3958 	freefrag = jfreefrag->fr_freefrag;
3959 	if (freefrag == NULL)
3960 		panic("handle_written_jfreefrag: No freefrag.");
3961 	freefrag->ff_state |= DEPCOMPLETE;
3962 	freefrag->ff_jdep = NULL;
3963 	jwork_insert(&freefrag->ff_jwork, jsegdep);
3964 	if ((freefrag->ff_state & ALLCOMPLETE) == ALLCOMPLETE)
3965 		add_to_worklist(&freefrag->ff_list, 0);
3966 	jfreefrag->fr_freefrag = NULL;
3967 	free_jfreefrag(jfreefrag);
3968 }
3969 
3970 /*
3971  * Called when the journal write for a jfreeblk completes.  The jfreeblk
3972  * is removed from the freeblks list of pending journal writes and the
3973  * jsegdep is moved to the freeblks jwork to be completed when all blocks
3974  * have been reclaimed.
3975  */
3976 static void
3977 handle_written_jblkdep(jblkdep)
3978 	struct jblkdep *jblkdep;
3979 {
3980 	struct freeblks *freeblks;
3981 	struct jsegdep *jsegdep;
3982 
3983 	/* Grab the jsegdep. */
3984 	jsegdep = jblkdep->jb_jsegdep;
3985 	jblkdep->jb_jsegdep = NULL;
3986 	freeblks = jblkdep->jb_freeblks;
3987 	LIST_REMOVE(jblkdep, jb_deps);
3988 	jwork_insert(&freeblks->fb_jwork, jsegdep);
3989 	/*
3990 	 * If the freeblks is all journaled, we can add it to the worklist.
3991 	 */
3992 	if (LIST_EMPTY(&freeblks->fb_jblkdephd) &&
3993 	    (freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE)
3994 		add_to_worklist(&freeblks->fb_list, WK_NODELAY);
3995 
3996 	free_jblkdep(jblkdep);
3997 }
3998 
3999 static struct jsegdep *
4000 newjsegdep(struct worklist *wk)
4001 {
4002 	struct jsegdep *jsegdep;
4003 
4004 	jsegdep = malloc(sizeof(*jsegdep), M_JSEGDEP, M_SOFTDEP_FLAGS);
4005 	workitem_alloc(&jsegdep->jd_list, D_JSEGDEP, wk->wk_mp);
4006 	jsegdep->jd_seg = NULL;
4007 
4008 	return (jsegdep);
4009 }
4010 
4011 static struct jmvref *
4012 newjmvref(dp, ino, oldoff, newoff)
4013 	struct inode *dp;
4014 	ino_t ino;
4015 	off_t oldoff;
4016 	off_t newoff;
4017 {
4018 	struct jmvref *jmvref;
4019 
4020 	jmvref = malloc(sizeof(*jmvref), M_JMVREF, M_SOFTDEP_FLAGS);
4021 	workitem_alloc(&jmvref->jm_list, D_JMVREF, ITOVFS(dp));
4022 	jmvref->jm_list.wk_state = ATTACHED | DEPCOMPLETE;
4023 	jmvref->jm_parent = dp->i_number;
4024 	jmvref->jm_ino = ino;
4025 	jmvref->jm_oldoff = oldoff;
4026 	jmvref->jm_newoff = newoff;
4027 
4028 	return (jmvref);
4029 }
4030 
4031 /*
4032  * Allocate a new jremref that tracks the removal of ip from dp with the
4033  * directory entry offset of diroff.  Mark the entry as ATTACHED and
4034  * DEPCOMPLETE as we have all the information required for the journal write
4035  * and the directory has already been removed from the buffer.  The caller
4036  * is responsible for linking the jremref into the pagedep and adding it
4037  * to the journal to write.  The MKDIR_PARENT flag is set if we're doing
4038  * a DOTDOT addition so handle_workitem_remove() can properly assign
4039  * the jsegdep when we're done.
4040  */
4041 static struct jremref *
4042 newjremref(struct dirrem *dirrem, struct inode *dp, struct inode *ip,
4043     off_t diroff, nlink_t nlink)
4044 {
4045 	struct jremref *jremref;
4046 
4047 	jremref = malloc(sizeof(*jremref), M_JREMREF, M_SOFTDEP_FLAGS);
4048 	workitem_alloc(&jremref->jr_list, D_JREMREF, ITOVFS(dp));
4049 	jremref->jr_state = ATTACHED;
4050 	newinoref(&jremref->jr_ref, ip->i_number, dp->i_number, diroff,
4051 	   nlink, ip->i_mode);
4052 	jremref->jr_dirrem = dirrem;
4053 
4054 	return (jremref);
4055 }
4056 
4057 static inline void
4058 newinoref(struct inoref *inoref, ino_t ino, ino_t parent, off_t diroff,
4059     nlink_t nlink, uint16_t mode)
4060 {
4061 
4062 	inoref->if_jsegdep = newjsegdep(&inoref->if_list);
4063 	inoref->if_diroff = diroff;
4064 	inoref->if_ino = ino;
4065 	inoref->if_parent = parent;
4066 	inoref->if_nlink = nlink;
4067 	inoref->if_mode = mode;
4068 }
4069 
4070 /*
4071  * Allocate a new jaddref to track the addition of ino to dp at diroff.  The
4072  * directory offset may not be known until later.  The caller is responsible
4073  * adding the entry to the journal when this information is available.  nlink
4074  * should be the link count prior to the addition and mode is only required
4075  * to have the correct FMT.
4076  */
4077 static struct jaddref *
4078 newjaddref(struct inode *dp, ino_t ino, off_t diroff, int16_t nlink,
4079     uint16_t mode)
4080 {
4081 	struct jaddref *jaddref;
4082 
4083 	jaddref = malloc(sizeof(*jaddref), M_JADDREF, M_SOFTDEP_FLAGS);
4084 	workitem_alloc(&jaddref->ja_list, D_JADDREF, ITOVFS(dp));
4085 	jaddref->ja_state = ATTACHED;
4086 	jaddref->ja_mkdir = NULL;
4087 	newinoref(&jaddref->ja_ref, ino, dp->i_number, diroff, nlink, mode);
4088 
4089 	return (jaddref);
4090 }
4091 
4092 /*
4093  * Create a new free dependency for a freework.  The caller is responsible
4094  * for adjusting the reference count when it has the lock held.  The freedep
4095  * will track an outstanding bitmap write that will ultimately clear the
4096  * freework to continue.
4097  */
4098 static struct freedep *
4099 newfreedep(struct freework *freework)
4100 {
4101 	struct freedep *freedep;
4102 
4103 	freedep = malloc(sizeof(*freedep), M_FREEDEP, M_SOFTDEP_FLAGS);
4104 	workitem_alloc(&freedep->fd_list, D_FREEDEP, freework->fw_list.wk_mp);
4105 	freedep->fd_freework = freework;
4106 
4107 	return (freedep);
4108 }
4109 
4110 /*
4111  * Free a freedep structure once the buffer it is linked to is written.  If
4112  * this is the last reference to the freework schedule it for completion.
4113  */
4114 static void
4115 free_freedep(freedep)
4116 	struct freedep *freedep;
4117 {
4118 	struct freework *freework;
4119 
4120 	freework = freedep->fd_freework;
4121 	freework->fw_freeblks->fb_cgwait--;
4122 	if (--freework->fw_ref == 0)
4123 		freework_enqueue(freework);
4124 	WORKITEM_FREE(freedep, D_FREEDEP);
4125 }
4126 
4127 /*
4128  * Allocate a new freework structure that may be a level in an indirect
4129  * when parent is not NULL or a top level block when it is.  The top level
4130  * freework structures are allocated without the per-filesystem lock held
4131  * and before the freeblks is visible outside of softdep_setup_freeblocks().
4132  */
4133 static struct freework *
4134 newfreework(ump, freeblks, parent, lbn, nb, frags, off, journal)
4135 	struct ufsmount *ump;
4136 	struct freeblks *freeblks;
4137 	struct freework *parent;
4138 	ufs_lbn_t lbn;
4139 	ufs2_daddr_t nb;
4140 	int frags;
4141 	int off;
4142 	int journal;
4143 {
4144 	struct freework *freework;
4145 
4146 	freework = malloc(sizeof(*freework), M_FREEWORK, M_SOFTDEP_FLAGS);
4147 	workitem_alloc(&freework->fw_list, D_FREEWORK, freeblks->fb_list.wk_mp);
4148 	freework->fw_state = ATTACHED;
4149 	freework->fw_jnewblk = NULL;
4150 	freework->fw_freeblks = freeblks;
4151 	freework->fw_parent = parent;
4152 	freework->fw_lbn = lbn;
4153 	freework->fw_blkno = nb;
4154 	freework->fw_frags = frags;
4155 	freework->fw_indir = NULL;
4156 	freework->fw_ref = (MOUNTEDSUJ(UFSTOVFS(ump)) == 0 ||
4157 	    lbn >= -UFS_NXADDR) ? 0 : NINDIR(ump->um_fs) + 1;
4158 	freework->fw_start = freework->fw_off = off;
4159 	if (journal)
4160 		newjfreeblk(freeblks, lbn, nb, frags);
4161 	if (parent == NULL) {
4162 		ACQUIRE_LOCK(ump);
4163 		WORKLIST_INSERT(&freeblks->fb_freeworkhd, &freework->fw_list);
4164 		freeblks->fb_ref++;
4165 		FREE_LOCK(ump);
4166 	}
4167 
4168 	return (freework);
4169 }
4170 
4171 /*
4172  * Eliminate a jfreeblk for a block that does not need journaling.
4173  */
4174 static void
4175 cancel_jfreeblk(freeblks, blkno)
4176 	struct freeblks *freeblks;
4177 	ufs2_daddr_t blkno;
4178 {
4179 	struct jfreeblk *jfreeblk;
4180 	struct jblkdep *jblkdep;
4181 
4182 	LIST_FOREACH(jblkdep, &freeblks->fb_jblkdephd, jb_deps) {
4183 		if (jblkdep->jb_list.wk_type != D_JFREEBLK)
4184 			continue;
4185 		jfreeblk = WK_JFREEBLK(&jblkdep->jb_list);
4186 		if (jfreeblk->jf_blkno == blkno)
4187 			break;
4188 	}
4189 	if (jblkdep == NULL)
4190 		return;
4191 	CTR1(KTR_SUJ, "cancel_jfreeblk: blkno %jd", blkno);
4192 	free_jsegdep(jblkdep->jb_jsegdep);
4193 	LIST_REMOVE(jblkdep, jb_deps);
4194 	WORKITEM_FREE(jfreeblk, D_JFREEBLK);
4195 }
4196 
4197 /*
4198  * Allocate a new jfreeblk to journal top level block pointer when truncating
4199  * a file.  The caller must add this to the worklist when the per-filesystem
4200  * lock is held.
4201  */
4202 static struct jfreeblk *
4203 newjfreeblk(freeblks, lbn, blkno, frags)
4204 	struct freeblks *freeblks;
4205 	ufs_lbn_t lbn;
4206 	ufs2_daddr_t blkno;
4207 	int frags;
4208 {
4209 	struct jfreeblk *jfreeblk;
4210 
4211 	jfreeblk = malloc(sizeof(*jfreeblk), M_JFREEBLK, M_SOFTDEP_FLAGS);
4212 	workitem_alloc(&jfreeblk->jf_dep.jb_list, D_JFREEBLK,
4213 	    freeblks->fb_list.wk_mp);
4214 	jfreeblk->jf_dep.jb_jsegdep = newjsegdep(&jfreeblk->jf_dep.jb_list);
4215 	jfreeblk->jf_dep.jb_freeblks = freeblks;
4216 	jfreeblk->jf_ino = freeblks->fb_inum;
4217 	jfreeblk->jf_lbn = lbn;
4218 	jfreeblk->jf_blkno = blkno;
4219 	jfreeblk->jf_frags = frags;
4220 	LIST_INSERT_HEAD(&freeblks->fb_jblkdephd, &jfreeblk->jf_dep, jb_deps);
4221 
4222 	return (jfreeblk);
4223 }
4224 
4225 /*
4226  * The journal is only prepared to handle full-size block numbers, so we
4227  * have to adjust the record to reflect the change to a full-size block.
4228  * For example, suppose we have a block made up of fragments 8-15 and
4229  * want to free its last two fragments. We are given a request that says:
4230  *     FREEBLK ino=5, blkno=14, lbn=0, frags=2, oldfrags=0
4231  * where frags are the number of fragments to free and oldfrags are the
4232  * number of fragments to keep. To block align it, we have to change it to
4233  * have a valid full-size blkno, so it becomes:
4234  *     FREEBLK ino=5, blkno=8, lbn=0, frags=2, oldfrags=6
4235  */
4236 static void
4237 adjust_newfreework(freeblks, frag_offset)
4238 	struct freeblks *freeblks;
4239 	int frag_offset;
4240 {
4241 	struct jfreeblk *jfreeblk;
4242 
4243 	KASSERT((LIST_FIRST(&freeblks->fb_jblkdephd) != NULL &&
4244 	    LIST_FIRST(&freeblks->fb_jblkdephd)->jb_list.wk_type == D_JFREEBLK),
4245 	    ("adjust_newfreework: Missing freeblks dependency"));
4246 
4247 	jfreeblk = WK_JFREEBLK(LIST_FIRST(&freeblks->fb_jblkdephd));
4248 	jfreeblk->jf_blkno -= frag_offset;
4249 	jfreeblk->jf_frags += frag_offset;
4250 }
4251 
4252 /*
4253  * Allocate a new jtrunc to track a partial truncation.
4254  */
4255 static struct jtrunc *
4256 newjtrunc(freeblks, size, extsize)
4257 	struct freeblks *freeblks;
4258 	off_t size;
4259 	int extsize;
4260 {
4261 	struct jtrunc *jtrunc;
4262 
4263 	jtrunc = malloc(sizeof(*jtrunc), M_JTRUNC, M_SOFTDEP_FLAGS);
4264 	workitem_alloc(&jtrunc->jt_dep.jb_list, D_JTRUNC,
4265 	    freeblks->fb_list.wk_mp);
4266 	jtrunc->jt_dep.jb_jsegdep = newjsegdep(&jtrunc->jt_dep.jb_list);
4267 	jtrunc->jt_dep.jb_freeblks = freeblks;
4268 	jtrunc->jt_ino = freeblks->fb_inum;
4269 	jtrunc->jt_size = size;
4270 	jtrunc->jt_extsize = extsize;
4271 	LIST_INSERT_HEAD(&freeblks->fb_jblkdephd, &jtrunc->jt_dep, jb_deps);
4272 
4273 	return (jtrunc);
4274 }
4275 
4276 /*
4277  * If we're canceling a new bitmap we have to search for another ref
4278  * to move into the bmsafemap dep.  This might be better expressed
4279  * with another structure.
4280  */
4281 static void
4282 move_newblock_dep(jaddref, inodedep)
4283 	struct jaddref *jaddref;
4284 	struct inodedep *inodedep;
4285 {
4286 	struct inoref *inoref;
4287 	struct jaddref *jaddrefn;
4288 
4289 	jaddrefn = NULL;
4290 	for (inoref = TAILQ_NEXT(&jaddref->ja_ref, if_deps); inoref;
4291 	    inoref = TAILQ_NEXT(inoref, if_deps)) {
4292 		if ((jaddref->ja_state & NEWBLOCK) &&
4293 		    inoref->if_list.wk_type == D_JADDREF) {
4294 			jaddrefn = (struct jaddref *)inoref;
4295 			break;
4296 		}
4297 	}
4298 	if (jaddrefn == NULL)
4299 		return;
4300 	jaddrefn->ja_state &= ~(ATTACHED | UNDONE);
4301 	jaddrefn->ja_state |= jaddref->ja_state &
4302 	    (ATTACHED | UNDONE | NEWBLOCK);
4303 	jaddref->ja_state &= ~(ATTACHED | UNDONE | NEWBLOCK);
4304 	jaddref->ja_state |= ATTACHED;
4305 	LIST_REMOVE(jaddref, ja_bmdeps);
4306 	LIST_INSERT_HEAD(&inodedep->id_bmsafemap->sm_jaddrefhd, jaddrefn,
4307 	    ja_bmdeps);
4308 }
4309 
4310 /*
4311  * Cancel a jaddref either before it has been written or while it is being
4312  * written.  This happens when a link is removed before the add reaches
4313  * the disk.  The jaddref dependency is kept linked into the bmsafemap
4314  * and inode to prevent the link count or bitmap from reaching the disk
4315  * until handle_workitem_remove() re-adjusts the counts and bitmaps as
4316  * required.
4317  *
4318  * Returns 1 if the canceled addref requires journaling of the remove and
4319  * 0 otherwise.
4320  */
4321 static int
4322 cancel_jaddref(jaddref, inodedep, wkhd)
4323 	struct jaddref *jaddref;
4324 	struct inodedep *inodedep;
4325 	struct workhead *wkhd;
4326 {
4327 	struct inoref *inoref;
4328 	struct jsegdep *jsegdep;
4329 	int needsj;
4330 
4331 	KASSERT((jaddref->ja_state & COMPLETE) == 0,
4332 	    ("cancel_jaddref: Canceling complete jaddref"));
4333 	if (jaddref->ja_state & (INPROGRESS | COMPLETE))
4334 		needsj = 1;
4335 	else
4336 		needsj = 0;
4337 	if (inodedep == NULL)
4338 		if (inodedep_lookup(jaddref->ja_list.wk_mp, jaddref->ja_ino,
4339 		    0, &inodedep) == 0)
4340 			panic("cancel_jaddref: Lost inodedep");
4341 	/*
4342 	 * We must adjust the nlink of any reference operation that follows
4343 	 * us so that it is consistent with the in-memory reference.  This
4344 	 * ensures that inode nlink rollbacks always have the correct link.
4345 	 */
4346 	if (needsj == 0) {
4347 		for (inoref = TAILQ_NEXT(&jaddref->ja_ref, if_deps); inoref;
4348 		    inoref = TAILQ_NEXT(inoref, if_deps)) {
4349 			if (inoref->if_state & GOINGAWAY)
4350 				break;
4351 			inoref->if_nlink--;
4352 		}
4353 	}
4354 	jsegdep = inoref_jseg(&jaddref->ja_ref);
4355 	if (jaddref->ja_state & NEWBLOCK)
4356 		move_newblock_dep(jaddref, inodedep);
4357 	wake_worklist(&jaddref->ja_list);
4358 	jaddref->ja_mkdir = NULL;
4359 	if (jaddref->ja_state & INPROGRESS) {
4360 		jaddref->ja_state &= ~INPROGRESS;
4361 		WORKLIST_REMOVE(&jaddref->ja_list);
4362 		jwork_insert(wkhd, jsegdep);
4363 	} else {
4364 		free_jsegdep(jsegdep);
4365 		if (jaddref->ja_state & DEPCOMPLETE)
4366 			remove_from_journal(&jaddref->ja_list);
4367 	}
4368 	jaddref->ja_state |= (GOINGAWAY | DEPCOMPLETE);
4369 	/*
4370 	 * Leave NEWBLOCK jaddrefs on the inodedep so handle_workitem_remove
4371 	 * can arrange for them to be freed with the bitmap.  Otherwise we
4372 	 * no longer need this addref attached to the inoreflst and it
4373 	 * will incorrectly adjust nlink if we leave it.
4374 	 */
4375 	if ((jaddref->ja_state & NEWBLOCK) == 0) {
4376 		TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref,
4377 		    if_deps);
4378 		jaddref->ja_state |= COMPLETE;
4379 		free_jaddref(jaddref);
4380 		return (needsj);
4381 	}
4382 	/*
4383 	 * Leave the head of the list for jsegdeps for fast merging.
4384 	 */
4385 	if (LIST_FIRST(wkhd) != NULL) {
4386 		jaddref->ja_state |= ONWORKLIST;
4387 		LIST_INSERT_AFTER(LIST_FIRST(wkhd), &jaddref->ja_list, wk_list);
4388 	} else
4389 		WORKLIST_INSERT(wkhd, &jaddref->ja_list);
4390 
4391 	return (needsj);
4392 }
4393 
4394 /*
4395  * Attempt to free a jaddref structure when some work completes.  This
4396  * should only succeed once the entry is written and all dependencies have
4397  * been notified.
4398  */
4399 static void
4400 free_jaddref(jaddref)
4401 	struct jaddref *jaddref;
4402 {
4403 
4404 	if ((jaddref->ja_state & ALLCOMPLETE) != ALLCOMPLETE)
4405 		return;
4406 	if (jaddref->ja_ref.if_jsegdep)
4407 		panic("free_jaddref: segdep attached to jaddref %p(0x%X)\n",
4408 		    jaddref, jaddref->ja_state);
4409 	if (jaddref->ja_state & NEWBLOCK)
4410 		LIST_REMOVE(jaddref, ja_bmdeps);
4411 	if (jaddref->ja_state & (INPROGRESS | ONWORKLIST))
4412 		panic("free_jaddref: Bad state %p(0x%X)",
4413 		    jaddref, jaddref->ja_state);
4414 	if (jaddref->ja_mkdir != NULL)
4415 		panic("free_jaddref: Work pending, 0x%X\n", jaddref->ja_state);
4416 	WORKITEM_FREE(jaddref, D_JADDREF);
4417 }
4418 
4419 /*
4420  * Free a jremref structure once it has been written or discarded.
4421  */
4422 static void
4423 free_jremref(jremref)
4424 	struct jremref *jremref;
4425 {
4426 
4427 	if (jremref->jr_ref.if_jsegdep)
4428 		free_jsegdep(jremref->jr_ref.if_jsegdep);
4429 	if (jremref->jr_state & INPROGRESS)
4430 		panic("free_jremref: IO still pending");
4431 	WORKITEM_FREE(jremref, D_JREMREF);
4432 }
4433 
4434 /*
4435  * Free a jnewblk structure.
4436  */
4437 static void
4438 free_jnewblk(jnewblk)
4439 	struct jnewblk *jnewblk;
4440 {
4441 
4442 	if ((jnewblk->jn_state & ALLCOMPLETE) != ALLCOMPLETE)
4443 		return;
4444 	LIST_REMOVE(jnewblk, jn_deps);
4445 	if (jnewblk->jn_dep != NULL)
4446 		panic("free_jnewblk: Dependency still attached.");
4447 	WORKITEM_FREE(jnewblk, D_JNEWBLK);
4448 }
4449 
4450 /*
4451  * Cancel a jnewblk which has been been made redundant by frag extension.
4452  */
4453 static void
4454 cancel_jnewblk(jnewblk, wkhd)
4455 	struct jnewblk *jnewblk;
4456 	struct workhead *wkhd;
4457 {
4458 	struct jsegdep *jsegdep;
4459 
4460 	CTR1(KTR_SUJ, "cancel_jnewblk: blkno %jd", jnewblk->jn_blkno);
4461 	jsegdep = jnewblk->jn_jsegdep;
4462 	if (jnewblk->jn_jsegdep == NULL || jnewblk->jn_dep == NULL)
4463 		panic("cancel_jnewblk: Invalid state");
4464 	jnewblk->jn_jsegdep  = NULL;
4465 	jnewblk->jn_dep = NULL;
4466 	jnewblk->jn_state |= GOINGAWAY;
4467 	if (jnewblk->jn_state & INPROGRESS) {
4468 		jnewblk->jn_state &= ~INPROGRESS;
4469 		WORKLIST_REMOVE(&jnewblk->jn_list);
4470 		jwork_insert(wkhd, jsegdep);
4471 	} else {
4472 		free_jsegdep(jsegdep);
4473 		remove_from_journal(&jnewblk->jn_list);
4474 	}
4475 	wake_worklist(&jnewblk->jn_list);
4476 	WORKLIST_INSERT(wkhd, &jnewblk->jn_list);
4477 }
4478 
4479 static void
4480 free_jblkdep(jblkdep)
4481 	struct jblkdep *jblkdep;
4482 {
4483 
4484 	if (jblkdep->jb_list.wk_type == D_JFREEBLK)
4485 		WORKITEM_FREE(jblkdep, D_JFREEBLK);
4486 	else if (jblkdep->jb_list.wk_type == D_JTRUNC)
4487 		WORKITEM_FREE(jblkdep, D_JTRUNC);
4488 	else
4489 		panic("free_jblkdep: Unexpected type %s",
4490 		    TYPENAME(jblkdep->jb_list.wk_type));
4491 }
4492 
4493 /*
4494  * Free a single jseg once it is no longer referenced in memory or on
4495  * disk.  Reclaim journal blocks and dependencies waiting for the segment
4496  * to disappear.
4497  */
4498 static void
4499 free_jseg(jseg, jblocks)
4500 	struct jseg *jseg;
4501 	struct jblocks *jblocks;
4502 {
4503 	struct freework *freework;
4504 
4505 	/*
4506 	 * Free freework structures that were lingering to indicate freed
4507 	 * indirect blocks that forced journal write ordering on reallocate.
4508 	 */
4509 	while ((freework = LIST_FIRST(&jseg->js_indirs)) != NULL)
4510 		indirblk_remove(freework);
4511 	if (jblocks->jb_oldestseg == jseg)
4512 		jblocks->jb_oldestseg = TAILQ_NEXT(jseg, js_next);
4513 	TAILQ_REMOVE(&jblocks->jb_segs, jseg, js_next);
4514 	jblocks_free(jblocks, jseg->js_list.wk_mp, jseg->js_size);
4515 	KASSERT(LIST_EMPTY(&jseg->js_entries),
4516 	    ("free_jseg: Freed jseg has valid entries."));
4517 	WORKITEM_FREE(jseg, D_JSEG);
4518 }
4519 
4520 /*
4521  * Free all jsegs that meet the criteria for being reclaimed and update
4522  * oldestseg.
4523  */
4524 static void
4525 free_jsegs(jblocks)
4526 	struct jblocks *jblocks;
4527 {
4528 	struct jseg *jseg;
4529 
4530 	/*
4531 	 * Free only those jsegs which have none allocated before them to
4532 	 * preserve the journal space ordering.
4533 	 */
4534 	while ((jseg = TAILQ_FIRST(&jblocks->jb_segs)) != NULL) {
4535 		/*
4536 		 * Only reclaim space when nothing depends on this journal
4537 		 * set and another set has written that it is no longer
4538 		 * valid.
4539 		 */
4540 		if (jseg->js_refs != 0) {
4541 			jblocks->jb_oldestseg = jseg;
4542 			return;
4543 		}
4544 		if ((jseg->js_state & ALLCOMPLETE) != ALLCOMPLETE)
4545 			break;
4546 		if (jseg->js_seq > jblocks->jb_oldestwrseq)
4547 			break;
4548 		/*
4549 		 * We can free jsegs that didn't write entries when
4550 		 * oldestwrseq == js_seq.
4551 		 */
4552 		if (jseg->js_seq == jblocks->jb_oldestwrseq &&
4553 		    jseg->js_cnt != 0)
4554 			break;
4555 		free_jseg(jseg, jblocks);
4556 	}
4557 	/*
4558 	 * If we exited the loop above we still must discover the
4559 	 * oldest valid segment.
4560 	 */
4561 	if (jseg)
4562 		for (jseg = jblocks->jb_oldestseg; jseg != NULL;
4563 		     jseg = TAILQ_NEXT(jseg, js_next))
4564 			if (jseg->js_refs != 0)
4565 				break;
4566 	jblocks->jb_oldestseg = jseg;
4567 	/*
4568 	 * The journal has no valid records but some jsegs may still be
4569 	 * waiting on oldestwrseq to advance.  We force a small record
4570 	 * out to permit these lingering records to be reclaimed.
4571 	 */
4572 	if (jblocks->jb_oldestseg == NULL && !TAILQ_EMPTY(&jblocks->jb_segs))
4573 		jblocks->jb_needseg = 1;
4574 }
4575 
4576 /*
4577  * Release one reference to a jseg and free it if the count reaches 0.  This
4578  * should eventually reclaim journal space as well.
4579  */
4580 static void
4581 rele_jseg(jseg)
4582 	struct jseg *jseg;
4583 {
4584 
4585 	KASSERT(jseg->js_refs > 0,
4586 	    ("free_jseg: Invalid refcnt %d", jseg->js_refs));
4587 	if (--jseg->js_refs != 0)
4588 		return;
4589 	free_jsegs(jseg->js_jblocks);
4590 }
4591 
4592 /*
4593  * Release a jsegdep and decrement the jseg count.
4594  */
4595 static void
4596 free_jsegdep(jsegdep)
4597 	struct jsegdep *jsegdep;
4598 {
4599 
4600 	if (jsegdep->jd_seg)
4601 		rele_jseg(jsegdep->jd_seg);
4602 	WORKITEM_FREE(jsegdep, D_JSEGDEP);
4603 }
4604 
4605 /*
4606  * Wait for a journal item to make it to disk.  Initiate journal processing
4607  * if required.
4608  */
4609 static int
4610 jwait(wk, waitfor)
4611 	struct worklist *wk;
4612 	int waitfor;
4613 {
4614 
4615 	LOCK_OWNED(VFSTOUFS(wk->wk_mp));
4616 	/*
4617 	 * Blocking journal waits cause slow synchronous behavior.  Record
4618 	 * stats on the frequency of these blocking operations.
4619 	 */
4620 	if (waitfor == MNT_WAIT) {
4621 		stat_journal_wait++;
4622 		switch (wk->wk_type) {
4623 		case D_JREMREF:
4624 		case D_JMVREF:
4625 			stat_jwait_filepage++;
4626 			break;
4627 		case D_JTRUNC:
4628 		case D_JFREEBLK:
4629 			stat_jwait_freeblks++;
4630 			break;
4631 		case D_JNEWBLK:
4632 			stat_jwait_newblk++;
4633 			break;
4634 		case D_JADDREF:
4635 			stat_jwait_inode++;
4636 			break;
4637 		default:
4638 			break;
4639 		}
4640 	}
4641 	/*
4642 	 * If IO has not started we process the journal.  We can't mark the
4643 	 * worklist item as IOWAITING because we drop the lock while
4644 	 * processing the journal and the worklist entry may be freed after
4645 	 * this point.  The caller may call back in and re-issue the request.
4646 	 */
4647 	if ((wk->wk_state & INPROGRESS) == 0) {
4648 		softdep_process_journal(wk->wk_mp, wk, waitfor);
4649 		if (waitfor != MNT_WAIT)
4650 			return (EBUSY);
4651 		return (0);
4652 	}
4653 	if (waitfor != MNT_WAIT)
4654 		return (EBUSY);
4655 	wait_worklist(wk, "jwait");
4656 	return (0);
4657 }
4658 
4659 /*
4660  * Lookup an inodedep based on an inode pointer and set the nlinkdelta as
4661  * appropriate.  This is a convenience function to reduce duplicate code
4662  * for the setup and revert functions below.
4663  */
4664 static struct inodedep *
4665 inodedep_lookup_ip(ip)
4666 	struct inode *ip;
4667 {
4668 	struct inodedep *inodedep;
4669 
4670 	KASSERT(ip->i_nlink >= ip->i_effnlink,
4671 	    ("inodedep_lookup_ip: bad delta"));
4672 	(void) inodedep_lookup(ITOVFS(ip), ip->i_number, DEPALLOC,
4673 	    &inodedep);
4674 	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
4675 	KASSERT((inodedep->id_state & UNLINKED) == 0, ("inode unlinked"));
4676 
4677 	return (inodedep);
4678 }
4679 
4680 /*
4681  * Called prior to creating a new inode and linking it to a directory.  The
4682  * jaddref structure must already be allocated by softdep_setup_inomapdep
4683  * and it is discovered here so we can initialize the mode and update
4684  * nlinkdelta.
4685  */
4686 void
4687 softdep_setup_create(dp, ip)
4688 	struct inode *dp;
4689 	struct inode *ip;
4690 {
4691 	struct inodedep *inodedep;
4692 	struct jaddref *jaddref;
4693 	struct vnode *dvp;
4694 
4695 	KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
4696 	    ("softdep_setup_create called on non-softdep filesystem"));
4697 	KASSERT(ip->i_nlink == 1,
4698 	    ("softdep_setup_create: Invalid link count."));
4699 	dvp = ITOV(dp);
4700 	ACQUIRE_LOCK(ITOUMP(dp));
4701 	inodedep = inodedep_lookup_ip(ip);
4702 	if (DOINGSUJ(dvp)) {
4703 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4704 		    inoreflst);
4705 		KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number,
4706 		    ("softdep_setup_create: No addref structure present."));
4707 	}
4708 	softdep_prelink(dvp, NULL);
4709 	FREE_LOCK(ITOUMP(dp));
4710 }
4711 
4712 /*
4713  * Create a jaddref structure to track the addition of a DOTDOT link when
4714  * we are reparenting an inode as part of a rename.  This jaddref will be
4715  * found by softdep_setup_directory_change.  Adjusts nlinkdelta for
4716  * non-journaling softdep.
4717  */
4718 void
4719 softdep_setup_dotdot_link(dp, ip)
4720 	struct inode *dp;
4721 	struct inode *ip;
4722 {
4723 	struct inodedep *inodedep;
4724 	struct jaddref *jaddref;
4725 	struct vnode *dvp;
4726 
4727 	KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
4728 	    ("softdep_setup_dotdot_link called on non-softdep filesystem"));
4729 	dvp = ITOV(dp);
4730 	jaddref = NULL;
4731 	/*
4732 	 * We don't set MKDIR_PARENT as this is not tied to a mkdir and
4733 	 * is used as a normal link would be.
4734 	 */
4735 	if (DOINGSUJ(dvp))
4736 		jaddref = newjaddref(ip, dp->i_number, DOTDOT_OFFSET,
4737 		    dp->i_effnlink - 1, dp->i_mode);
4738 	ACQUIRE_LOCK(ITOUMP(dp));
4739 	inodedep = inodedep_lookup_ip(dp);
4740 	if (jaddref)
4741 		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref,
4742 		    if_deps);
4743 	softdep_prelink(dvp, ITOV(ip));
4744 	FREE_LOCK(ITOUMP(dp));
4745 }
4746 
4747 /*
4748  * Create a jaddref structure to track a new link to an inode.  The directory
4749  * offset is not known until softdep_setup_directory_add or
4750  * softdep_setup_directory_change.  Adjusts nlinkdelta for non-journaling
4751  * softdep.
4752  */
4753 void
4754 softdep_setup_link(dp, ip)
4755 	struct inode *dp;
4756 	struct inode *ip;
4757 {
4758 	struct inodedep *inodedep;
4759 	struct jaddref *jaddref;
4760 	struct vnode *dvp;
4761 
4762 	KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
4763 	    ("softdep_setup_link called on non-softdep filesystem"));
4764 	dvp = ITOV(dp);
4765 	jaddref = NULL;
4766 	if (DOINGSUJ(dvp))
4767 		jaddref = newjaddref(dp, ip->i_number, 0, ip->i_effnlink - 1,
4768 		    ip->i_mode);
4769 	ACQUIRE_LOCK(ITOUMP(dp));
4770 	inodedep = inodedep_lookup_ip(ip);
4771 	if (jaddref)
4772 		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref,
4773 		    if_deps);
4774 	softdep_prelink(dvp, ITOV(ip));
4775 	FREE_LOCK(ITOUMP(dp));
4776 }
4777 
4778 /*
4779  * Called to create the jaddref structures to track . and .. references as
4780  * well as lookup and further initialize the incomplete jaddref created
4781  * by softdep_setup_inomapdep when the inode was allocated.  Adjusts
4782  * nlinkdelta for non-journaling softdep.
4783  */
4784 void
4785 softdep_setup_mkdir(dp, ip)
4786 	struct inode *dp;
4787 	struct inode *ip;
4788 {
4789 	struct inodedep *inodedep;
4790 	struct jaddref *dotdotaddref;
4791 	struct jaddref *dotaddref;
4792 	struct jaddref *jaddref;
4793 	struct vnode *dvp;
4794 
4795 	KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
4796 	    ("softdep_setup_mkdir called on non-softdep filesystem"));
4797 	dvp = ITOV(dp);
4798 	dotaddref = dotdotaddref = NULL;
4799 	if (DOINGSUJ(dvp)) {
4800 		dotaddref = newjaddref(ip, ip->i_number, DOT_OFFSET, 1,
4801 		    ip->i_mode);
4802 		dotaddref->ja_state |= MKDIR_BODY;
4803 		dotdotaddref = newjaddref(ip, dp->i_number, DOTDOT_OFFSET,
4804 		    dp->i_effnlink - 1, dp->i_mode);
4805 		dotdotaddref->ja_state |= MKDIR_PARENT;
4806 	}
4807 	ACQUIRE_LOCK(ITOUMP(dp));
4808 	inodedep = inodedep_lookup_ip(ip);
4809 	if (DOINGSUJ(dvp)) {
4810 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4811 		    inoreflst);
4812 		KASSERT(jaddref != NULL,
4813 		    ("softdep_setup_mkdir: No addref structure present."));
4814 		KASSERT(jaddref->ja_parent == dp->i_number,
4815 		    ("softdep_setup_mkdir: bad parent %ju",
4816 		    (uintmax_t)jaddref->ja_parent));
4817 		TAILQ_INSERT_BEFORE(&jaddref->ja_ref, &dotaddref->ja_ref,
4818 		    if_deps);
4819 	}
4820 	inodedep = inodedep_lookup_ip(dp);
4821 	if (DOINGSUJ(dvp))
4822 		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst,
4823 		    &dotdotaddref->ja_ref, if_deps);
4824 	softdep_prelink(ITOV(dp), NULL);
4825 	FREE_LOCK(ITOUMP(dp));
4826 }
4827 
4828 /*
4829  * Called to track nlinkdelta of the inode and parent directories prior to
4830  * unlinking a directory.
4831  */
4832 void
4833 softdep_setup_rmdir(dp, ip)
4834 	struct inode *dp;
4835 	struct inode *ip;
4836 {
4837 	struct vnode *dvp;
4838 
4839 	KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
4840 	    ("softdep_setup_rmdir called on non-softdep filesystem"));
4841 	dvp = ITOV(dp);
4842 	ACQUIRE_LOCK(ITOUMP(dp));
4843 	(void) inodedep_lookup_ip(ip);
4844 	(void) inodedep_lookup_ip(dp);
4845 	softdep_prelink(dvp, ITOV(ip));
4846 	FREE_LOCK(ITOUMP(dp));
4847 }
4848 
4849 /*
4850  * Called to track nlinkdelta of the inode and parent directories prior to
4851  * unlink.
4852  */
4853 void
4854 softdep_setup_unlink(dp, ip)
4855 	struct inode *dp;
4856 	struct inode *ip;
4857 {
4858 	struct vnode *dvp;
4859 
4860 	KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
4861 	    ("softdep_setup_unlink called on non-softdep filesystem"));
4862 	dvp = ITOV(dp);
4863 	ACQUIRE_LOCK(ITOUMP(dp));
4864 	(void) inodedep_lookup_ip(ip);
4865 	(void) inodedep_lookup_ip(dp);
4866 	softdep_prelink(dvp, ITOV(ip));
4867 	FREE_LOCK(ITOUMP(dp));
4868 }
4869 
4870 /*
4871  * Called to release the journal structures created by a failed non-directory
4872  * creation.  Adjusts nlinkdelta for non-journaling softdep.
4873  */
4874 void
4875 softdep_revert_create(dp, ip)
4876 	struct inode *dp;
4877 	struct inode *ip;
4878 {
4879 	struct inodedep *inodedep;
4880 	struct jaddref *jaddref;
4881 	struct vnode *dvp;
4882 
4883 	KASSERT(MOUNTEDSOFTDEP(ITOVFS((dp))) != 0,
4884 	    ("softdep_revert_create called on non-softdep filesystem"));
4885 	dvp = ITOV(dp);
4886 	ACQUIRE_LOCK(ITOUMP(dp));
4887 	inodedep = inodedep_lookup_ip(ip);
4888 	if (DOINGSUJ(dvp)) {
4889 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4890 		    inoreflst);
4891 		KASSERT(jaddref->ja_parent == dp->i_number,
4892 		    ("softdep_revert_create: addref parent mismatch"));
4893 		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4894 	}
4895 	FREE_LOCK(ITOUMP(dp));
4896 }
4897 
4898 /*
4899  * Called to release the journal structures created by a failed link
4900  * addition.  Adjusts nlinkdelta for non-journaling softdep.
4901  */
4902 void
4903 softdep_revert_link(dp, ip)
4904 	struct inode *dp;
4905 	struct inode *ip;
4906 {
4907 	struct inodedep *inodedep;
4908 	struct jaddref *jaddref;
4909 	struct vnode *dvp;
4910 
4911 	KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
4912 	    ("softdep_revert_link called on non-softdep filesystem"));
4913 	dvp = ITOV(dp);
4914 	ACQUIRE_LOCK(ITOUMP(dp));
4915 	inodedep = inodedep_lookup_ip(ip);
4916 	if (DOINGSUJ(dvp)) {
4917 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4918 		    inoreflst);
4919 		KASSERT(jaddref->ja_parent == dp->i_number,
4920 		    ("softdep_revert_link: addref parent mismatch"));
4921 		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4922 	}
4923 	FREE_LOCK(ITOUMP(dp));
4924 }
4925 
4926 /*
4927  * Called to release the journal structures created by a failed mkdir
4928  * attempt.  Adjusts nlinkdelta for non-journaling softdep.
4929  */
4930 void
4931 softdep_revert_mkdir(dp, ip)
4932 	struct inode *dp;
4933 	struct inode *ip;
4934 {
4935 	struct inodedep *inodedep;
4936 	struct jaddref *jaddref;
4937 	struct jaddref *dotaddref;
4938 	struct vnode *dvp;
4939 
4940 	KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
4941 	    ("softdep_revert_mkdir called on non-softdep filesystem"));
4942 	dvp = ITOV(dp);
4943 
4944 	ACQUIRE_LOCK(ITOUMP(dp));
4945 	inodedep = inodedep_lookup_ip(dp);
4946 	if (DOINGSUJ(dvp)) {
4947 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4948 		    inoreflst);
4949 		KASSERT(jaddref->ja_parent == ip->i_number,
4950 		    ("softdep_revert_mkdir: dotdot addref parent mismatch"));
4951 		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4952 	}
4953 	inodedep = inodedep_lookup_ip(ip);
4954 	if (DOINGSUJ(dvp)) {
4955 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4956 		    inoreflst);
4957 		KASSERT(jaddref->ja_parent == dp->i_number,
4958 		    ("softdep_revert_mkdir: addref parent mismatch"));
4959 		dotaddref = (struct jaddref *)TAILQ_PREV(&jaddref->ja_ref,
4960 		    inoreflst, if_deps);
4961 		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4962 		KASSERT(dotaddref->ja_parent == ip->i_number,
4963 		    ("softdep_revert_mkdir: dot addref parent mismatch"));
4964 		cancel_jaddref(dotaddref, inodedep, &inodedep->id_inowait);
4965 	}
4966 	FREE_LOCK(ITOUMP(dp));
4967 }
4968 
4969 /*
4970  * Called to correct nlinkdelta after a failed rmdir.
4971  */
4972 void
4973 softdep_revert_rmdir(dp, ip)
4974 	struct inode *dp;
4975 	struct inode *ip;
4976 {
4977 
4978 	KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0,
4979 	    ("softdep_revert_rmdir called on non-softdep filesystem"));
4980 	ACQUIRE_LOCK(ITOUMP(dp));
4981 	(void) inodedep_lookup_ip(ip);
4982 	(void) inodedep_lookup_ip(dp);
4983 	FREE_LOCK(ITOUMP(dp));
4984 }
4985 
4986 /*
4987  * Protecting the freemaps (or bitmaps).
4988  *
4989  * To eliminate the need to execute fsck before mounting a filesystem
4990  * after a power failure, one must (conservatively) guarantee that the
4991  * on-disk copy of the bitmaps never indicate that a live inode or block is
4992  * free.  So, when a block or inode is allocated, the bitmap should be
4993  * updated (on disk) before any new pointers.  When a block or inode is
4994  * freed, the bitmap should not be updated until all pointers have been
4995  * reset.  The latter dependency is handled by the delayed de-allocation
4996  * approach described below for block and inode de-allocation.  The former
4997  * dependency is handled by calling the following procedure when a block or
4998  * inode is allocated. When an inode is allocated an "inodedep" is created
4999  * with its DEPCOMPLETE flag cleared until its bitmap is written to disk.
5000  * Each "inodedep" is also inserted into the hash indexing structure so
5001  * that any additional link additions can be made dependent on the inode
5002  * allocation.
5003  *
5004  * The ufs filesystem maintains a number of free block counts (e.g., per
5005  * cylinder group, per cylinder and per <cylinder, rotational position> pair)
5006  * in addition to the bitmaps.  These counts are used to improve efficiency
5007  * during allocation and therefore must be consistent with the bitmaps.
5008  * There is no convenient way to guarantee post-crash consistency of these
5009  * counts with simple update ordering, for two main reasons: (1) The counts
5010  * and bitmaps for a single cylinder group block are not in the same disk
5011  * sector.  If a disk write is interrupted (e.g., by power failure), one may
5012  * be written and the other not.  (2) Some of the counts are located in the
5013  * superblock rather than the cylinder group block. So, we focus our soft
5014  * updates implementation on protecting the bitmaps. When mounting a
5015  * filesystem, we recompute the auxiliary counts from the bitmaps.
5016  */
5017 
5018 /*
5019  * Called just after updating the cylinder group block to allocate an inode.
5020  */
5021 void
5022 softdep_setup_inomapdep(bp, ip, newinum, mode)
5023 	struct buf *bp;		/* buffer for cylgroup block with inode map */
5024 	struct inode *ip;	/* inode related to allocation */
5025 	ino_t newinum;		/* new inode number being allocated */
5026 	int mode;
5027 {
5028 	struct inodedep *inodedep;
5029 	struct bmsafemap *bmsafemap;
5030 	struct jaddref *jaddref;
5031 	struct mount *mp;
5032 	struct fs *fs;
5033 
5034 	mp = ITOVFS(ip);
5035 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
5036 	    ("softdep_setup_inomapdep called on non-softdep filesystem"));
5037 	fs = VFSTOUFS(mp)->um_fs;
5038 	jaddref = NULL;
5039 
5040 	/*
5041 	 * Allocate the journal reference add structure so that the bitmap
5042 	 * can be dependent on it.
5043 	 */
5044 	if (MOUNTEDSUJ(mp)) {
5045 		jaddref = newjaddref(ip, newinum, 0, 0, mode);
5046 		jaddref->ja_state |= NEWBLOCK;
5047 	}
5048 
5049 	/*
5050 	 * Create a dependency for the newly allocated inode.
5051 	 * Panic if it already exists as something is seriously wrong.
5052 	 * Otherwise add it to the dependency list for the buffer holding
5053 	 * the cylinder group map from which it was allocated.
5054 	 *
5055 	 * We have to preallocate a bmsafemap entry in case it is needed
5056 	 * in bmsafemap_lookup since once we allocate the inodedep, we
5057 	 * have to finish initializing it before we can FREE_LOCK().
5058 	 * By preallocating, we avoid FREE_LOCK() while doing a malloc
5059 	 * in bmsafemap_lookup. We cannot call bmsafemap_lookup before
5060 	 * creating the inodedep as it can be freed during the time
5061 	 * that we FREE_LOCK() while allocating the inodedep. We must
5062 	 * call workitem_alloc() before entering the locked section as
5063 	 * it also acquires the lock and we must avoid trying doing so
5064 	 * recursively.
5065 	 */
5066 	bmsafemap = malloc(sizeof(struct bmsafemap),
5067 	    M_BMSAFEMAP, M_SOFTDEP_FLAGS);
5068 	workitem_alloc(&bmsafemap->sm_list, D_BMSAFEMAP, mp);
5069 	ACQUIRE_LOCK(ITOUMP(ip));
5070 	if ((inodedep_lookup(mp, newinum, DEPALLOC, &inodedep)))
5071 		panic("softdep_setup_inomapdep: dependency %p for new"
5072 		    "inode already exists", inodedep);
5073 	bmsafemap = bmsafemap_lookup(mp, bp, ino_to_cg(fs, newinum), bmsafemap);
5074 	if (jaddref) {
5075 		LIST_INSERT_HEAD(&bmsafemap->sm_jaddrefhd, jaddref, ja_bmdeps);
5076 		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref,
5077 		    if_deps);
5078 	} else {
5079 		inodedep->id_state |= ONDEPLIST;
5080 		LIST_INSERT_HEAD(&bmsafemap->sm_inodedephd, inodedep, id_deps);
5081 	}
5082 	inodedep->id_bmsafemap = bmsafemap;
5083 	inodedep->id_state &= ~DEPCOMPLETE;
5084 	FREE_LOCK(ITOUMP(ip));
5085 }
5086 
5087 /*
5088  * Called just after updating the cylinder group block to
5089  * allocate block or fragment.
5090  */
5091 void
5092 softdep_setup_blkmapdep(bp, mp, newblkno, frags, oldfrags)
5093 	struct buf *bp;		/* buffer for cylgroup block with block map */
5094 	struct mount *mp;	/* filesystem doing allocation */
5095 	ufs2_daddr_t newblkno;	/* number of newly allocated block */
5096 	int frags;		/* Number of fragments. */
5097 	int oldfrags;		/* Previous number of fragments for extend. */
5098 {
5099 	struct newblk *newblk;
5100 	struct bmsafemap *bmsafemap;
5101 	struct jnewblk *jnewblk;
5102 	struct ufsmount *ump;
5103 	struct fs *fs;
5104 
5105 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
5106 	    ("softdep_setup_blkmapdep called on non-softdep filesystem"));
5107 	ump = VFSTOUFS(mp);
5108 	fs = ump->um_fs;
5109 	jnewblk = NULL;
5110 	/*
5111 	 * Create a dependency for the newly allocated block.
5112 	 * Add it to the dependency list for the buffer holding
5113 	 * the cylinder group map from which it was allocated.
5114 	 */
5115 	if (MOUNTEDSUJ(mp)) {
5116 		jnewblk = malloc(sizeof(*jnewblk), M_JNEWBLK, M_SOFTDEP_FLAGS);
5117 		workitem_alloc(&jnewblk->jn_list, D_JNEWBLK, mp);
5118 		jnewblk->jn_jsegdep = newjsegdep(&jnewblk->jn_list);
5119 		jnewblk->jn_state = ATTACHED;
5120 		jnewblk->jn_blkno = newblkno;
5121 		jnewblk->jn_frags = frags;
5122 		jnewblk->jn_oldfrags = oldfrags;
5123 #ifdef INVARIANTS
5124 		{
5125 			struct cg *cgp;
5126 			uint8_t *blksfree;
5127 			long bno;
5128 			int i;
5129 
5130 			cgp = (struct cg *)bp->b_data;
5131 			blksfree = cg_blksfree(cgp);
5132 			bno = dtogd(fs, jnewblk->jn_blkno);
5133 			for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags;
5134 			    i++) {
5135 				if (isset(blksfree, bno + i))
5136 					panic("softdep_setup_blkmapdep: "
5137 					    "free fragment %d from %d-%d "
5138 					    "state 0x%X dep %p", i,
5139 					    jnewblk->jn_oldfrags,
5140 					    jnewblk->jn_frags,
5141 					    jnewblk->jn_state,
5142 					    jnewblk->jn_dep);
5143 			}
5144 		}
5145 #endif
5146 	}
5147 
5148 	CTR3(KTR_SUJ,
5149 	    "softdep_setup_blkmapdep: blkno %jd frags %d oldfrags %d",
5150 	    newblkno, frags, oldfrags);
5151 	ACQUIRE_LOCK(ump);
5152 	if (newblk_lookup(mp, newblkno, DEPALLOC, &newblk) != 0)
5153 		panic("softdep_setup_blkmapdep: found block");
5154 	newblk->nb_bmsafemap = bmsafemap = bmsafemap_lookup(mp, bp,
5155 	    dtog(fs, newblkno), NULL);
5156 	if (jnewblk) {
5157 		jnewblk->jn_dep = (struct worklist *)newblk;
5158 		LIST_INSERT_HEAD(&bmsafemap->sm_jnewblkhd, jnewblk, jn_deps);
5159 	} else {
5160 		newblk->nb_state |= ONDEPLIST;
5161 		LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, nb_deps);
5162 	}
5163 	newblk->nb_bmsafemap = bmsafemap;
5164 	newblk->nb_jnewblk = jnewblk;
5165 	FREE_LOCK(ump);
5166 }
5167 
5168 #define	BMSAFEMAP_HASH(ump, cg) \
5169       (&(ump)->bmsafemap_hashtbl[(cg) & (ump)->bmsafemap_hash_size])
5170 
5171 static int
5172 bmsafemap_find(bmsafemaphd, cg, bmsafemapp)
5173 	struct bmsafemap_hashhead *bmsafemaphd;
5174 	int cg;
5175 	struct bmsafemap **bmsafemapp;
5176 {
5177 	struct bmsafemap *bmsafemap;
5178 
5179 	LIST_FOREACH(bmsafemap, bmsafemaphd, sm_hash)
5180 		if (bmsafemap->sm_cg == cg)
5181 			break;
5182 	if (bmsafemap) {
5183 		*bmsafemapp = bmsafemap;
5184 		return (1);
5185 	}
5186 	*bmsafemapp = NULL;
5187 
5188 	return (0);
5189 }
5190 
5191 /*
5192  * Find the bmsafemap associated with a cylinder group buffer.
5193  * If none exists, create one. The buffer must be locked when
5194  * this routine is called and this routine must be called with
5195  * the softdep lock held. To avoid giving up the lock while
5196  * allocating a new bmsafemap, a preallocated bmsafemap may be
5197  * provided. If it is provided but not needed, it is freed.
5198  */
5199 static struct bmsafemap *
5200 bmsafemap_lookup(mp, bp, cg, newbmsafemap)
5201 	struct mount *mp;
5202 	struct buf *bp;
5203 	int cg;
5204 	struct bmsafemap *newbmsafemap;
5205 {
5206 	struct bmsafemap_hashhead *bmsafemaphd;
5207 	struct bmsafemap *bmsafemap, *collision;
5208 	struct worklist *wk;
5209 	struct ufsmount *ump;
5210 
5211 	ump = VFSTOUFS(mp);
5212 	LOCK_OWNED(ump);
5213 	KASSERT(bp != NULL, ("bmsafemap_lookup: missing buffer"));
5214 	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
5215 		if (wk->wk_type == D_BMSAFEMAP) {
5216 			if (newbmsafemap)
5217 				WORKITEM_FREE(newbmsafemap, D_BMSAFEMAP);
5218 			return (WK_BMSAFEMAP(wk));
5219 		}
5220 	}
5221 	bmsafemaphd = BMSAFEMAP_HASH(ump, cg);
5222 	if (bmsafemap_find(bmsafemaphd, cg, &bmsafemap) == 1) {
5223 		if (newbmsafemap)
5224 			WORKITEM_FREE(newbmsafemap, D_BMSAFEMAP);
5225 		return (bmsafemap);
5226 	}
5227 	if (newbmsafemap) {
5228 		bmsafemap = newbmsafemap;
5229 	} else {
5230 		FREE_LOCK(ump);
5231 		bmsafemap = malloc(sizeof(struct bmsafemap),
5232 			M_BMSAFEMAP, M_SOFTDEP_FLAGS);
5233 		workitem_alloc(&bmsafemap->sm_list, D_BMSAFEMAP, mp);
5234 		ACQUIRE_LOCK(ump);
5235 	}
5236 	bmsafemap->sm_buf = bp;
5237 	LIST_INIT(&bmsafemap->sm_inodedephd);
5238 	LIST_INIT(&bmsafemap->sm_inodedepwr);
5239 	LIST_INIT(&bmsafemap->sm_newblkhd);
5240 	LIST_INIT(&bmsafemap->sm_newblkwr);
5241 	LIST_INIT(&bmsafemap->sm_jaddrefhd);
5242 	LIST_INIT(&bmsafemap->sm_jnewblkhd);
5243 	LIST_INIT(&bmsafemap->sm_freehd);
5244 	LIST_INIT(&bmsafemap->sm_freewr);
5245 	if (bmsafemap_find(bmsafemaphd, cg, &collision) == 1) {
5246 		WORKITEM_FREE(bmsafemap, D_BMSAFEMAP);
5247 		return (collision);
5248 	}
5249 	bmsafemap->sm_cg = cg;
5250 	LIST_INSERT_HEAD(bmsafemaphd, bmsafemap, sm_hash);
5251 	LIST_INSERT_HEAD(&ump->softdep_dirtycg, bmsafemap, sm_next);
5252 	WORKLIST_INSERT(&bp->b_dep, &bmsafemap->sm_list);
5253 	return (bmsafemap);
5254 }
5255 
5256 /*
5257  * Direct block allocation dependencies.
5258  *
5259  * When a new block is allocated, the corresponding disk locations must be
5260  * initialized (with zeros or new data) before the on-disk inode points to
5261  * them.  Also, the freemap from which the block was allocated must be
5262  * updated (on disk) before the inode's pointer. These two dependencies are
5263  * independent of each other and are needed for all file blocks and indirect
5264  * blocks that are pointed to directly by the inode.  Just before the
5265  * "in-core" version of the inode is updated with a newly allocated block
5266  * number, a procedure (below) is called to setup allocation dependency
5267  * structures.  These structures are removed when the corresponding
5268  * dependencies are satisfied or when the block allocation becomes obsolete
5269  * (i.e., the file is deleted, the block is de-allocated, or the block is a
5270  * fragment that gets upgraded).  All of these cases are handled in
5271  * procedures described later.
5272  *
5273  * When a file extension causes a fragment to be upgraded, either to a larger
5274  * fragment or to a full block, the on-disk location may change (if the
5275  * previous fragment could not simply be extended). In this case, the old
5276  * fragment must be de-allocated, but not until after the inode's pointer has
5277  * been updated. In most cases, this is handled by later procedures, which
5278  * will construct a "freefrag" structure to be added to the workitem queue
5279  * when the inode update is complete (or obsolete).  The main exception to
5280  * this is when an allocation occurs while a pending allocation dependency
5281  * (for the same block pointer) remains.  This case is handled in the main
5282  * allocation dependency setup procedure by immediately freeing the
5283  * unreferenced fragments.
5284  */
5285 void
5286 softdep_setup_allocdirect(ip, off, newblkno, oldblkno, newsize, oldsize, bp)
5287 	struct inode *ip;	/* inode to which block is being added */
5288 	ufs_lbn_t off;		/* block pointer within inode */
5289 	ufs2_daddr_t newblkno;	/* disk block number being added */
5290 	ufs2_daddr_t oldblkno;	/* previous block number, 0 unless frag */
5291 	long newsize;		/* size of new block */
5292 	long oldsize;		/* size of new block */
5293 	struct buf *bp;		/* bp for allocated block */
5294 {
5295 	struct allocdirect *adp, *oldadp;
5296 	struct allocdirectlst *adphead;
5297 	struct freefrag *freefrag;
5298 	struct inodedep *inodedep;
5299 	struct pagedep *pagedep;
5300 	struct jnewblk *jnewblk;
5301 	struct newblk *newblk;
5302 	struct mount *mp;
5303 	ufs_lbn_t lbn;
5304 
5305 	lbn = bp->b_lblkno;
5306 	mp = ITOVFS(ip);
5307 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
5308 	    ("softdep_setup_allocdirect called on non-softdep filesystem"));
5309 	if (oldblkno && oldblkno != newblkno)
5310 		/*
5311 		 * The usual case is that a smaller fragment that
5312 		 * was just allocated has been replaced with a bigger
5313 		 * fragment or a full-size block. If it is marked as
5314 		 * B_DELWRI, the current contents have not been written
5315 		 * to disk. It is possible that the block was written
5316 		 * earlier, but very uncommon. If the block has never
5317 		 * been written, there is no need to send a BIO_DELETE
5318 		 * for it when it is freed. The gain from avoiding the
5319 		 * TRIMs for the common case of unwritten blocks far
5320 		 * exceeds the cost of the write amplification for the
5321 		 * uncommon case of failing to send a TRIM for a block
5322 		 * that had been written.
5323 		 */
5324 		freefrag = newfreefrag(ip, oldblkno, oldsize, lbn,
5325 		    (bp->b_flags & B_DELWRI) != 0 ? NOTRIM_KEY : SINGLETON_KEY);
5326 	else
5327 		freefrag = NULL;
5328 
5329 	CTR6(KTR_SUJ,
5330 	    "softdep_setup_allocdirect: ino %d blkno %jd oldblkno %jd "
5331 	    "off %jd newsize %ld oldsize %d",
5332 	    ip->i_number, newblkno, oldblkno, off, newsize, oldsize);
5333 	ACQUIRE_LOCK(ITOUMP(ip));
5334 	if (off >= UFS_NDADDR) {
5335 		if (lbn > 0)
5336 			panic("softdep_setup_allocdirect: bad lbn %jd, off %jd",
5337 			    lbn, off);
5338 		/* allocating an indirect block */
5339 		if (oldblkno != 0)
5340 			panic("softdep_setup_allocdirect: non-zero indir");
5341 	} else {
5342 		if (off != lbn)
5343 			panic("softdep_setup_allocdirect: lbn %jd != off %jd",
5344 			    lbn, off);
5345 		/*
5346 		 * Allocating a direct block.
5347 		 *
5348 		 * If we are allocating a directory block, then we must
5349 		 * allocate an associated pagedep to track additions and
5350 		 * deletions.
5351 		 */
5352 		if ((ip->i_mode & IFMT) == IFDIR)
5353 			pagedep_lookup(mp, bp, ip->i_number, off, DEPALLOC,
5354 			    &pagedep);
5355 	}
5356 	if (newblk_lookup(mp, newblkno, 0, &newblk) == 0)
5357 		panic("softdep_setup_allocdirect: lost block");
5358 	KASSERT(newblk->nb_list.wk_type == D_NEWBLK,
5359 	    ("softdep_setup_allocdirect: newblk already initialized"));
5360 	/*
5361 	 * Convert the newblk to an allocdirect.
5362 	 */
5363 	WORKITEM_REASSIGN(newblk, D_ALLOCDIRECT);
5364 	adp = (struct allocdirect *)newblk;
5365 	newblk->nb_freefrag = freefrag;
5366 	adp->ad_offset = off;
5367 	adp->ad_oldblkno = oldblkno;
5368 	adp->ad_newsize = newsize;
5369 	adp->ad_oldsize = oldsize;
5370 
5371 	/*
5372 	 * Finish initializing the journal.
5373 	 */
5374 	if ((jnewblk = newblk->nb_jnewblk) != NULL) {
5375 		jnewblk->jn_ino = ip->i_number;
5376 		jnewblk->jn_lbn = lbn;
5377 		add_to_journal(&jnewblk->jn_list);
5378 	}
5379 	if (freefrag && freefrag->ff_jdep != NULL &&
5380 	    freefrag->ff_jdep->wk_type == D_JFREEFRAG)
5381 		add_to_journal(freefrag->ff_jdep);
5382 	inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
5383 	adp->ad_inodedep = inodedep;
5384 
5385 	WORKLIST_INSERT(&bp->b_dep, &newblk->nb_list);
5386 	/*
5387 	 * The list of allocdirects must be kept in sorted and ascending
5388 	 * order so that the rollback routines can quickly determine the
5389 	 * first uncommitted block (the size of the file stored on disk
5390 	 * ends at the end of the lowest committed fragment, or if there
5391 	 * are no fragments, at the end of the highest committed block).
5392 	 * Since files generally grow, the typical case is that the new
5393 	 * block is to be added at the end of the list. We speed this
5394 	 * special case by checking against the last allocdirect in the
5395 	 * list before laboriously traversing the list looking for the
5396 	 * insertion point.
5397 	 */
5398 	adphead = &inodedep->id_newinoupdt;
5399 	oldadp = TAILQ_LAST(adphead, allocdirectlst);
5400 	if (oldadp == NULL || oldadp->ad_offset <= off) {
5401 		/* insert at end of list */
5402 		TAILQ_INSERT_TAIL(adphead, adp, ad_next);
5403 		if (oldadp != NULL && oldadp->ad_offset == off)
5404 			allocdirect_merge(adphead, adp, oldadp);
5405 		FREE_LOCK(ITOUMP(ip));
5406 		return;
5407 	}
5408 	TAILQ_FOREACH(oldadp, adphead, ad_next) {
5409 		if (oldadp->ad_offset >= off)
5410 			break;
5411 	}
5412 	if (oldadp == NULL)
5413 		panic("softdep_setup_allocdirect: lost entry");
5414 	/* insert in middle of list */
5415 	TAILQ_INSERT_BEFORE(oldadp, adp, ad_next);
5416 	if (oldadp->ad_offset == off)
5417 		allocdirect_merge(adphead, adp, oldadp);
5418 
5419 	FREE_LOCK(ITOUMP(ip));
5420 }
5421 
5422 /*
5423  * Merge a newer and older journal record to be stored either in a
5424  * newblock or freefrag.  This handles aggregating journal records for
5425  * fragment allocation into a second record as well as replacing a
5426  * journal free with an aborted journal allocation.  A segment for the
5427  * oldest record will be placed on wkhd if it has been written.  If not
5428  * the segment for the newer record will suffice.
5429  */
5430 static struct worklist *
5431 jnewblk_merge(new, old, wkhd)
5432 	struct worklist *new;
5433 	struct worklist *old;
5434 	struct workhead *wkhd;
5435 {
5436 	struct jnewblk *njnewblk;
5437 	struct jnewblk *jnewblk;
5438 
5439 	/* Handle NULLs to simplify callers. */
5440 	if (new == NULL)
5441 		return (old);
5442 	if (old == NULL)
5443 		return (new);
5444 	/* Replace a jfreefrag with a jnewblk. */
5445 	if (new->wk_type == D_JFREEFRAG) {
5446 		if (WK_JNEWBLK(old)->jn_blkno != WK_JFREEFRAG(new)->fr_blkno)
5447 			panic("jnewblk_merge: blkno mismatch: %p, %p",
5448 			    old, new);
5449 		cancel_jfreefrag(WK_JFREEFRAG(new));
5450 		return (old);
5451 	}
5452 	if (old->wk_type != D_JNEWBLK || new->wk_type != D_JNEWBLK)
5453 		panic("jnewblk_merge: Bad type: old %d new %d\n",
5454 		    old->wk_type, new->wk_type);
5455 	/*
5456 	 * Handle merging of two jnewblk records that describe
5457 	 * different sets of fragments in the same block.
5458 	 */
5459 	jnewblk = WK_JNEWBLK(old);
5460 	njnewblk = WK_JNEWBLK(new);
5461 	if (jnewblk->jn_blkno != njnewblk->jn_blkno)
5462 		panic("jnewblk_merge: Merging disparate blocks.");
5463 	/*
5464 	 * The record may be rolled back in the cg.
5465 	 */
5466 	if (jnewblk->jn_state & UNDONE) {
5467 		jnewblk->jn_state &= ~UNDONE;
5468 		njnewblk->jn_state |= UNDONE;
5469 		njnewblk->jn_state &= ~ATTACHED;
5470 	}
5471 	/*
5472 	 * We modify the newer addref and free the older so that if neither
5473 	 * has been written the most up-to-date copy will be on disk.  If
5474 	 * both have been written but rolled back we only temporarily need
5475 	 * one of them to fix the bits when the cg write completes.
5476 	 */
5477 	jnewblk->jn_state |= ATTACHED | COMPLETE;
5478 	njnewblk->jn_oldfrags = jnewblk->jn_oldfrags;
5479 	cancel_jnewblk(jnewblk, wkhd);
5480 	WORKLIST_REMOVE(&jnewblk->jn_list);
5481 	free_jnewblk(jnewblk);
5482 	return (new);
5483 }
5484 
5485 /*
5486  * Replace an old allocdirect dependency with a newer one.
5487  */
5488 static void
5489 allocdirect_merge(adphead, newadp, oldadp)
5490 	struct allocdirectlst *adphead;	/* head of list holding allocdirects */
5491 	struct allocdirect *newadp;	/* allocdirect being added */
5492 	struct allocdirect *oldadp;	/* existing allocdirect being checked */
5493 {
5494 	struct worklist *wk;
5495 	struct freefrag *freefrag;
5496 
5497 	freefrag = NULL;
5498 	LOCK_OWNED(VFSTOUFS(newadp->ad_list.wk_mp));
5499 	if (newadp->ad_oldblkno != oldadp->ad_newblkno ||
5500 	    newadp->ad_oldsize != oldadp->ad_newsize ||
5501 	    newadp->ad_offset >= UFS_NDADDR)
5502 		panic("%s %jd != new %jd || old size %ld != new %ld",
5503 		    "allocdirect_merge: old blkno",
5504 		    (intmax_t)newadp->ad_oldblkno,
5505 		    (intmax_t)oldadp->ad_newblkno,
5506 		    newadp->ad_oldsize, oldadp->ad_newsize);
5507 	newadp->ad_oldblkno = oldadp->ad_oldblkno;
5508 	newadp->ad_oldsize = oldadp->ad_oldsize;
5509 	/*
5510 	 * If the old dependency had a fragment to free or had never
5511 	 * previously had a block allocated, then the new dependency
5512 	 * can immediately post its freefrag and adopt the old freefrag.
5513 	 * This action is done by swapping the freefrag dependencies.
5514 	 * The new dependency gains the old one's freefrag, and the
5515 	 * old one gets the new one and then immediately puts it on
5516 	 * the worklist when it is freed by free_newblk. It is
5517 	 * not possible to do this swap when the old dependency had a
5518 	 * non-zero size but no previous fragment to free. This condition
5519 	 * arises when the new block is an extension of the old block.
5520 	 * Here, the first part of the fragment allocated to the new
5521 	 * dependency is part of the block currently claimed on disk by
5522 	 * the old dependency, so cannot legitimately be freed until the
5523 	 * conditions for the new dependency are fulfilled.
5524 	 */
5525 	freefrag = newadp->ad_freefrag;
5526 	if (oldadp->ad_freefrag != NULL || oldadp->ad_oldblkno == 0) {
5527 		newadp->ad_freefrag = oldadp->ad_freefrag;
5528 		oldadp->ad_freefrag = freefrag;
5529 	}
5530 	/*
5531 	 * If we are tracking a new directory-block allocation,
5532 	 * move it from the old allocdirect to the new allocdirect.
5533 	 */
5534 	if ((wk = LIST_FIRST(&oldadp->ad_newdirblk)) != NULL) {
5535 		WORKLIST_REMOVE(wk);
5536 		if (!LIST_EMPTY(&oldadp->ad_newdirblk))
5537 			panic("allocdirect_merge: extra newdirblk");
5538 		WORKLIST_INSERT(&newadp->ad_newdirblk, wk);
5539 	}
5540 	TAILQ_REMOVE(adphead, oldadp, ad_next);
5541 	/*
5542 	 * We need to move any journal dependencies over to the freefrag
5543 	 * that releases this block if it exists.  Otherwise we are
5544 	 * extending an existing block and we'll wait until that is
5545 	 * complete to release the journal space and extend the
5546 	 * new journal to cover this old space as well.
5547 	 */
5548 	if (freefrag == NULL) {
5549 		if (oldadp->ad_newblkno != newadp->ad_newblkno)
5550 			panic("allocdirect_merge: %jd != %jd",
5551 			    oldadp->ad_newblkno, newadp->ad_newblkno);
5552 		newadp->ad_block.nb_jnewblk = (struct jnewblk *)
5553 		    jnewblk_merge(&newadp->ad_block.nb_jnewblk->jn_list,
5554 		    &oldadp->ad_block.nb_jnewblk->jn_list,
5555 		    &newadp->ad_block.nb_jwork);
5556 		oldadp->ad_block.nb_jnewblk = NULL;
5557 		cancel_newblk(&oldadp->ad_block, NULL,
5558 		    &newadp->ad_block.nb_jwork);
5559 	} else {
5560 		wk = (struct worklist *) cancel_newblk(&oldadp->ad_block,
5561 		    &freefrag->ff_list, &freefrag->ff_jwork);
5562 		freefrag->ff_jdep = jnewblk_merge(freefrag->ff_jdep, wk,
5563 		    &freefrag->ff_jwork);
5564 	}
5565 	free_newblk(&oldadp->ad_block);
5566 }
5567 
5568 /*
5569  * Allocate a jfreefrag structure to journal a single block free.
5570  */
5571 static struct jfreefrag *
5572 newjfreefrag(freefrag, ip, blkno, size, lbn)
5573 	struct freefrag *freefrag;
5574 	struct inode *ip;
5575 	ufs2_daddr_t blkno;
5576 	long size;
5577 	ufs_lbn_t lbn;
5578 {
5579 	struct jfreefrag *jfreefrag;
5580 	struct fs *fs;
5581 
5582 	fs = ITOFS(ip);
5583 	jfreefrag = malloc(sizeof(struct jfreefrag), M_JFREEFRAG,
5584 	    M_SOFTDEP_FLAGS);
5585 	workitem_alloc(&jfreefrag->fr_list, D_JFREEFRAG, ITOVFS(ip));
5586 	jfreefrag->fr_jsegdep = newjsegdep(&jfreefrag->fr_list);
5587 	jfreefrag->fr_state = ATTACHED | DEPCOMPLETE;
5588 	jfreefrag->fr_ino = ip->i_number;
5589 	jfreefrag->fr_lbn = lbn;
5590 	jfreefrag->fr_blkno = blkno;
5591 	jfreefrag->fr_frags = numfrags(fs, size);
5592 	jfreefrag->fr_freefrag = freefrag;
5593 
5594 	return (jfreefrag);
5595 }
5596 
5597 /*
5598  * Allocate a new freefrag structure.
5599  */
5600 static struct freefrag *
5601 newfreefrag(ip, blkno, size, lbn, key)
5602 	struct inode *ip;
5603 	ufs2_daddr_t blkno;
5604 	long size;
5605 	ufs_lbn_t lbn;
5606 	u_long key;
5607 {
5608 	struct freefrag *freefrag;
5609 	struct ufsmount *ump;
5610 	struct fs *fs;
5611 
5612 	CTR4(KTR_SUJ, "newfreefrag: ino %d blkno %jd size %ld lbn %jd",
5613 	    ip->i_number, blkno, size, lbn);
5614 	ump = ITOUMP(ip);
5615 	fs = ump->um_fs;
5616 	if (fragnum(fs, blkno) + numfrags(fs, size) > fs->fs_frag)
5617 		panic("newfreefrag: frag size");
5618 	freefrag = malloc(sizeof(struct freefrag),
5619 	    M_FREEFRAG, M_SOFTDEP_FLAGS);
5620 	workitem_alloc(&freefrag->ff_list, D_FREEFRAG, UFSTOVFS(ump));
5621 	freefrag->ff_state = ATTACHED;
5622 	LIST_INIT(&freefrag->ff_jwork);
5623 	freefrag->ff_inum = ip->i_number;
5624 	freefrag->ff_vtype = ITOV(ip)->v_type;
5625 	freefrag->ff_blkno = blkno;
5626 	freefrag->ff_fragsize = size;
5627 	freefrag->ff_key = key;
5628 
5629 	if (MOUNTEDSUJ(UFSTOVFS(ump))) {
5630 		freefrag->ff_jdep = (struct worklist *)
5631 		    newjfreefrag(freefrag, ip, blkno, size, lbn);
5632 	} else {
5633 		freefrag->ff_state |= DEPCOMPLETE;
5634 		freefrag->ff_jdep = NULL;
5635 	}
5636 
5637 	return (freefrag);
5638 }
5639 
5640 /*
5641  * This workitem de-allocates fragments that were replaced during
5642  * file block allocation.
5643  */
5644 static void
5645 handle_workitem_freefrag(freefrag)
5646 	struct freefrag *freefrag;
5647 {
5648 	struct ufsmount *ump = VFSTOUFS(freefrag->ff_list.wk_mp);
5649 	struct workhead wkhd;
5650 
5651 	CTR3(KTR_SUJ,
5652 	    "handle_workitem_freefrag: ino %d blkno %jd size %ld",
5653 	    freefrag->ff_inum, freefrag->ff_blkno, freefrag->ff_fragsize);
5654 	/*
5655 	 * It would be illegal to add new completion items to the
5656 	 * freefrag after it was schedule to be done so it must be
5657 	 * safe to modify the list head here.
5658 	 */
5659 	LIST_INIT(&wkhd);
5660 	ACQUIRE_LOCK(ump);
5661 	LIST_SWAP(&freefrag->ff_jwork, &wkhd, worklist, wk_list);
5662 	/*
5663 	 * If the journal has not been written we must cancel it here.
5664 	 */
5665 	if (freefrag->ff_jdep) {
5666 		if (freefrag->ff_jdep->wk_type != D_JNEWBLK)
5667 			panic("handle_workitem_freefrag: Unexpected type %d\n",
5668 			    freefrag->ff_jdep->wk_type);
5669 		cancel_jnewblk(WK_JNEWBLK(freefrag->ff_jdep), &wkhd);
5670 	}
5671 	FREE_LOCK(ump);
5672 	ffs_blkfree(ump, ump->um_fs, ump->um_devvp, freefrag->ff_blkno,
5673 	   freefrag->ff_fragsize, freefrag->ff_inum, freefrag->ff_vtype,
5674 	   &wkhd, freefrag->ff_key);
5675 	ACQUIRE_LOCK(ump);
5676 	WORKITEM_FREE(freefrag, D_FREEFRAG);
5677 	FREE_LOCK(ump);
5678 }
5679 
5680 /*
5681  * Set up a dependency structure for an external attributes data block.
5682  * This routine follows much of the structure of softdep_setup_allocdirect.
5683  * See the description of softdep_setup_allocdirect above for details.
5684  */
5685 void
5686 softdep_setup_allocext(ip, off, newblkno, oldblkno, newsize, oldsize, bp)
5687 	struct inode *ip;
5688 	ufs_lbn_t off;
5689 	ufs2_daddr_t newblkno;
5690 	ufs2_daddr_t oldblkno;
5691 	long newsize;
5692 	long oldsize;
5693 	struct buf *bp;
5694 {
5695 	struct allocdirect *adp, *oldadp;
5696 	struct allocdirectlst *adphead;
5697 	struct freefrag *freefrag;
5698 	struct inodedep *inodedep;
5699 	struct jnewblk *jnewblk;
5700 	struct newblk *newblk;
5701 	struct mount *mp;
5702 	struct ufsmount *ump;
5703 	ufs_lbn_t lbn;
5704 
5705 	mp = ITOVFS(ip);
5706 	ump = VFSTOUFS(mp);
5707 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
5708 	    ("softdep_setup_allocext called on non-softdep filesystem"));
5709 	KASSERT(off < UFS_NXADDR,
5710 	    ("softdep_setup_allocext: lbn %lld > UFS_NXADDR", (long long)off));
5711 
5712 	lbn = bp->b_lblkno;
5713 	if (oldblkno && oldblkno != newblkno)
5714 		/*
5715 		 * The usual case is that a smaller fragment that
5716 		 * was just allocated has been replaced with a bigger
5717 		 * fragment or a full-size block. If it is marked as
5718 		 * B_DELWRI, the current contents have not been written
5719 		 * to disk. It is possible that the block was written
5720 		 * earlier, but very uncommon. If the block has never
5721 		 * been written, there is no need to send a BIO_DELETE
5722 		 * for it when it is freed. The gain from avoiding the
5723 		 * TRIMs for the common case of unwritten blocks far
5724 		 * exceeds the cost of the write amplification for the
5725 		 * uncommon case of failing to send a TRIM for a block
5726 		 * that had been written.
5727 		 */
5728 		freefrag = newfreefrag(ip, oldblkno, oldsize, lbn,
5729 		    (bp->b_flags & B_DELWRI) != 0 ? NOTRIM_KEY : SINGLETON_KEY);
5730 	else
5731 		freefrag = NULL;
5732 
5733 	ACQUIRE_LOCK(ump);
5734 	if (newblk_lookup(mp, newblkno, 0, &newblk) == 0)
5735 		panic("softdep_setup_allocext: lost block");
5736 	KASSERT(newblk->nb_list.wk_type == D_NEWBLK,
5737 	    ("softdep_setup_allocext: newblk already initialized"));
5738 	/*
5739 	 * Convert the newblk to an allocdirect.
5740 	 */
5741 	WORKITEM_REASSIGN(newblk, D_ALLOCDIRECT);
5742 	adp = (struct allocdirect *)newblk;
5743 	newblk->nb_freefrag = freefrag;
5744 	adp->ad_offset = off;
5745 	adp->ad_oldblkno = oldblkno;
5746 	adp->ad_newsize = newsize;
5747 	adp->ad_oldsize = oldsize;
5748 	adp->ad_state |=  EXTDATA;
5749 
5750 	/*
5751 	 * Finish initializing the journal.
5752 	 */
5753 	if ((jnewblk = newblk->nb_jnewblk) != NULL) {
5754 		jnewblk->jn_ino = ip->i_number;
5755 		jnewblk->jn_lbn = lbn;
5756 		add_to_journal(&jnewblk->jn_list);
5757 	}
5758 	if (freefrag && freefrag->ff_jdep != NULL &&
5759 	    freefrag->ff_jdep->wk_type == D_JFREEFRAG)
5760 		add_to_journal(freefrag->ff_jdep);
5761 	inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
5762 	adp->ad_inodedep = inodedep;
5763 
5764 	WORKLIST_INSERT(&bp->b_dep, &newblk->nb_list);
5765 	/*
5766 	 * The list of allocdirects must be kept in sorted and ascending
5767 	 * order so that the rollback routines can quickly determine the
5768 	 * first uncommitted block (the size of the file stored on disk
5769 	 * ends at the end of the lowest committed fragment, or if there
5770 	 * are no fragments, at the end of the highest committed block).
5771 	 * Since files generally grow, the typical case is that the new
5772 	 * block is to be added at the end of the list. We speed this
5773 	 * special case by checking against the last allocdirect in the
5774 	 * list before laboriously traversing the list looking for the
5775 	 * insertion point.
5776 	 */
5777 	adphead = &inodedep->id_newextupdt;
5778 	oldadp = TAILQ_LAST(adphead, allocdirectlst);
5779 	if (oldadp == NULL || oldadp->ad_offset <= off) {
5780 		/* insert at end of list */
5781 		TAILQ_INSERT_TAIL(adphead, adp, ad_next);
5782 		if (oldadp != NULL && oldadp->ad_offset == off)
5783 			allocdirect_merge(adphead, adp, oldadp);
5784 		FREE_LOCK(ump);
5785 		return;
5786 	}
5787 	TAILQ_FOREACH(oldadp, adphead, ad_next) {
5788 		if (oldadp->ad_offset >= off)
5789 			break;
5790 	}
5791 	if (oldadp == NULL)
5792 		panic("softdep_setup_allocext: lost entry");
5793 	/* insert in middle of list */
5794 	TAILQ_INSERT_BEFORE(oldadp, adp, ad_next);
5795 	if (oldadp->ad_offset == off)
5796 		allocdirect_merge(adphead, adp, oldadp);
5797 	FREE_LOCK(ump);
5798 }
5799 
5800 /*
5801  * Indirect block allocation dependencies.
5802  *
5803  * The same dependencies that exist for a direct block also exist when
5804  * a new block is allocated and pointed to by an entry in a block of
5805  * indirect pointers. The undo/redo states described above are also
5806  * used here. Because an indirect block contains many pointers that
5807  * may have dependencies, a second copy of the entire in-memory indirect
5808  * block is kept. The buffer cache copy is always completely up-to-date.
5809  * The second copy, which is used only as a source for disk writes,
5810  * contains only the safe pointers (i.e., those that have no remaining
5811  * update dependencies). The second copy is freed when all pointers
5812  * are safe. The cache is not allowed to replace indirect blocks with
5813  * pending update dependencies. If a buffer containing an indirect
5814  * block with dependencies is written, these routines will mark it
5815  * dirty again. It can only be successfully written once all the
5816  * dependencies are removed. The ffs_fsync routine in conjunction with
5817  * softdep_sync_metadata work together to get all the dependencies
5818  * removed so that a file can be successfully written to disk. Three
5819  * procedures are used when setting up indirect block pointer
5820  * dependencies. The division is necessary because of the organization
5821  * of the "balloc" routine and because of the distinction between file
5822  * pages and file metadata blocks.
5823  */
5824 
5825 /*
5826  * Allocate a new allocindir structure.
5827  */
5828 static struct allocindir *
5829 newallocindir(ip, ptrno, newblkno, oldblkno, lbn)
5830 	struct inode *ip;	/* inode for file being extended */
5831 	int ptrno;		/* offset of pointer in indirect block */
5832 	ufs2_daddr_t newblkno;	/* disk block number being added */
5833 	ufs2_daddr_t oldblkno;	/* previous block number, 0 if none */
5834 	ufs_lbn_t lbn;
5835 {
5836 	struct newblk *newblk;
5837 	struct allocindir *aip;
5838 	struct freefrag *freefrag;
5839 	struct jnewblk *jnewblk;
5840 
5841 	if (oldblkno)
5842 		freefrag = newfreefrag(ip, oldblkno, ITOFS(ip)->fs_bsize, lbn,
5843 		    SINGLETON_KEY);
5844 	else
5845 		freefrag = NULL;
5846 	ACQUIRE_LOCK(ITOUMP(ip));
5847 	if (newblk_lookup(ITOVFS(ip), newblkno, 0, &newblk) == 0)
5848 		panic("new_allocindir: lost block");
5849 	KASSERT(newblk->nb_list.wk_type == D_NEWBLK,
5850 	    ("newallocindir: newblk already initialized"));
5851 	WORKITEM_REASSIGN(newblk, D_ALLOCINDIR);
5852 	newblk->nb_freefrag = freefrag;
5853 	aip = (struct allocindir *)newblk;
5854 	aip->ai_offset = ptrno;
5855 	aip->ai_oldblkno = oldblkno;
5856 	aip->ai_lbn = lbn;
5857 	if ((jnewblk = newblk->nb_jnewblk) != NULL) {
5858 		jnewblk->jn_ino = ip->i_number;
5859 		jnewblk->jn_lbn = lbn;
5860 		add_to_journal(&jnewblk->jn_list);
5861 	}
5862 	if (freefrag && freefrag->ff_jdep != NULL &&
5863 	    freefrag->ff_jdep->wk_type == D_JFREEFRAG)
5864 		add_to_journal(freefrag->ff_jdep);
5865 	return (aip);
5866 }
5867 
5868 /*
5869  * Called just before setting an indirect block pointer
5870  * to a newly allocated file page.
5871  */
5872 void
5873 softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp)
5874 	struct inode *ip;	/* inode for file being extended */
5875 	ufs_lbn_t lbn;		/* allocated block number within file */
5876 	struct buf *bp;		/* buffer with indirect blk referencing page */
5877 	int ptrno;		/* offset of pointer in indirect block */
5878 	ufs2_daddr_t newblkno;	/* disk block number being added */
5879 	ufs2_daddr_t oldblkno;	/* previous block number, 0 if none */
5880 	struct buf *nbp;	/* buffer holding allocated page */
5881 {
5882 	struct inodedep *inodedep;
5883 	struct freefrag *freefrag;
5884 	struct allocindir *aip;
5885 	struct pagedep *pagedep;
5886 	struct mount *mp;
5887 	struct ufsmount *ump;
5888 
5889 	mp = ITOVFS(ip);
5890 	ump = VFSTOUFS(mp);
5891 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
5892 	    ("softdep_setup_allocindir_page called on non-softdep filesystem"));
5893 	KASSERT(lbn == nbp->b_lblkno,
5894 	    ("softdep_setup_allocindir_page: lbn %jd != lblkno %jd",
5895 	    lbn, bp->b_lblkno));
5896 	CTR4(KTR_SUJ,
5897 	    "softdep_setup_allocindir_page: ino %d blkno %jd oldblkno %jd "
5898 	    "lbn %jd", ip->i_number, newblkno, oldblkno, lbn);
5899 	ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_page");
5900 	aip = newallocindir(ip, ptrno, newblkno, oldblkno, lbn);
5901 	(void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
5902 	/*
5903 	 * If we are allocating a directory page, then we must
5904 	 * allocate an associated pagedep to track additions and
5905 	 * deletions.
5906 	 */
5907 	if ((ip->i_mode & IFMT) == IFDIR)
5908 		pagedep_lookup(mp, nbp, ip->i_number, lbn, DEPALLOC, &pagedep);
5909 	WORKLIST_INSERT(&nbp->b_dep, &aip->ai_block.nb_list);
5910 	freefrag = setup_allocindir_phase2(bp, ip, inodedep, aip, lbn);
5911 	FREE_LOCK(ump);
5912 	if (freefrag)
5913 		handle_workitem_freefrag(freefrag);
5914 }
5915 
5916 /*
5917  * Called just before setting an indirect block pointer to a
5918  * newly allocated indirect block.
5919  */
5920 void
5921 softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno)
5922 	struct buf *nbp;	/* newly allocated indirect block */
5923 	struct inode *ip;	/* inode for file being extended */
5924 	struct buf *bp;		/* indirect block referencing allocated block */
5925 	int ptrno;		/* offset of pointer in indirect block */
5926 	ufs2_daddr_t newblkno;	/* disk block number being added */
5927 {
5928 	struct inodedep *inodedep;
5929 	struct allocindir *aip;
5930 	struct ufsmount *ump;
5931 	ufs_lbn_t lbn;
5932 
5933 	ump = ITOUMP(ip);
5934 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
5935 	    ("softdep_setup_allocindir_meta called on non-softdep filesystem"));
5936 	CTR3(KTR_SUJ,
5937 	    "softdep_setup_allocindir_meta: ino %d blkno %jd ptrno %d",
5938 	    ip->i_number, newblkno, ptrno);
5939 	lbn = nbp->b_lblkno;
5940 	ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_meta");
5941 	aip = newallocindir(ip, ptrno, newblkno, 0, lbn);
5942 	inodedep_lookup(UFSTOVFS(ump), ip->i_number, DEPALLOC, &inodedep);
5943 	WORKLIST_INSERT(&nbp->b_dep, &aip->ai_block.nb_list);
5944 	if (setup_allocindir_phase2(bp, ip, inodedep, aip, lbn))
5945 		panic("softdep_setup_allocindir_meta: Block already existed");
5946 	FREE_LOCK(ump);
5947 }
5948 
5949 static void
5950 indirdep_complete(indirdep)
5951 	struct indirdep *indirdep;
5952 {
5953 	struct allocindir *aip;
5954 
5955 	LIST_REMOVE(indirdep, ir_next);
5956 	indirdep->ir_state |= DEPCOMPLETE;
5957 
5958 	while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != NULL) {
5959 		LIST_REMOVE(aip, ai_next);
5960 		free_newblk(&aip->ai_block);
5961 	}
5962 	/*
5963 	 * If this indirdep is not attached to a buf it was simply waiting
5964 	 * on completion to clear completehd.  free_indirdep() asserts
5965 	 * that nothing is dangling.
5966 	 */
5967 	if ((indirdep->ir_state & ONWORKLIST) == 0)
5968 		free_indirdep(indirdep);
5969 }
5970 
5971 static struct indirdep *
5972 indirdep_lookup(mp, ip, bp)
5973 	struct mount *mp;
5974 	struct inode *ip;
5975 	struct buf *bp;
5976 {
5977 	struct indirdep *indirdep, *newindirdep;
5978 	struct newblk *newblk;
5979 	struct ufsmount *ump;
5980 	struct worklist *wk;
5981 	struct fs *fs;
5982 	ufs2_daddr_t blkno;
5983 
5984 	ump = VFSTOUFS(mp);
5985 	LOCK_OWNED(ump);
5986 	indirdep = NULL;
5987 	newindirdep = NULL;
5988 	fs = ump->um_fs;
5989 	for (;;) {
5990 		LIST_FOREACH(wk, &bp->b_dep, wk_list) {
5991 			if (wk->wk_type != D_INDIRDEP)
5992 				continue;
5993 			indirdep = WK_INDIRDEP(wk);
5994 			break;
5995 		}
5996 		/* Found on the buffer worklist, no new structure to free. */
5997 		if (indirdep != NULL && newindirdep == NULL)
5998 			return (indirdep);
5999 		if (indirdep != NULL && newindirdep != NULL)
6000 			panic("indirdep_lookup: simultaneous create");
6001 		/* None found on the buffer and a new structure is ready. */
6002 		if (indirdep == NULL && newindirdep != NULL)
6003 			break;
6004 		/* None found and no new structure available. */
6005 		FREE_LOCK(ump);
6006 		newindirdep = malloc(sizeof(struct indirdep),
6007 		    M_INDIRDEP, M_SOFTDEP_FLAGS);
6008 		workitem_alloc(&newindirdep->ir_list, D_INDIRDEP, mp);
6009 		newindirdep->ir_state = ATTACHED;
6010 		if (I_IS_UFS1(ip))
6011 			newindirdep->ir_state |= UFS1FMT;
6012 		TAILQ_INIT(&newindirdep->ir_trunc);
6013 		newindirdep->ir_saveddata = NULL;
6014 		LIST_INIT(&newindirdep->ir_deplisthd);
6015 		LIST_INIT(&newindirdep->ir_donehd);
6016 		LIST_INIT(&newindirdep->ir_writehd);
6017 		LIST_INIT(&newindirdep->ir_completehd);
6018 		if (bp->b_blkno == bp->b_lblkno) {
6019 			ufs_bmaparray(bp->b_vp, bp->b_lblkno, &blkno, bp,
6020 			    NULL, NULL);
6021 			bp->b_blkno = blkno;
6022 		}
6023 		newindirdep->ir_freeblks = NULL;
6024 		newindirdep->ir_savebp =
6025 		    getblk(ump->um_devvp, bp->b_blkno, bp->b_bcount, 0, 0, 0);
6026 		newindirdep->ir_bp = bp;
6027 		BUF_KERNPROC(newindirdep->ir_savebp);
6028 		bcopy(bp->b_data, newindirdep->ir_savebp->b_data, bp->b_bcount);
6029 		ACQUIRE_LOCK(ump);
6030 	}
6031 	indirdep = newindirdep;
6032 	WORKLIST_INSERT(&bp->b_dep, &indirdep->ir_list);
6033 	/*
6034 	 * If the block is not yet allocated we don't set DEPCOMPLETE so
6035 	 * that we don't free dependencies until the pointers are valid.
6036 	 * This could search b_dep for D_ALLOCDIRECT/D_ALLOCINDIR rather
6037 	 * than using the hash.
6038 	 */
6039 	if (newblk_lookup(mp, dbtofsb(fs, bp->b_blkno), 0, &newblk))
6040 		LIST_INSERT_HEAD(&newblk->nb_indirdeps, indirdep, ir_next);
6041 	else
6042 		indirdep->ir_state |= DEPCOMPLETE;
6043 	return (indirdep);
6044 }
6045 
6046 /*
6047  * Called to finish the allocation of the "aip" allocated
6048  * by one of the two routines above.
6049  */
6050 static struct freefrag *
6051 setup_allocindir_phase2(bp, ip, inodedep, aip, lbn)
6052 	struct buf *bp;		/* in-memory copy of the indirect block */
6053 	struct inode *ip;	/* inode for file being extended */
6054 	struct inodedep *inodedep; /* Inodedep for ip */
6055 	struct allocindir *aip;	/* allocindir allocated by the above routines */
6056 	ufs_lbn_t lbn;		/* Logical block number for this block. */
6057 {
6058 	struct fs *fs;
6059 	struct indirdep *indirdep;
6060 	struct allocindir *oldaip;
6061 	struct freefrag *freefrag;
6062 	struct mount *mp;
6063 	struct ufsmount *ump;
6064 
6065 	mp = ITOVFS(ip);
6066 	ump = VFSTOUFS(mp);
6067 	LOCK_OWNED(ump);
6068 	fs = ump->um_fs;
6069 	if (bp->b_lblkno >= 0)
6070 		panic("setup_allocindir_phase2: not indir blk");
6071 	KASSERT(aip->ai_offset >= 0 && aip->ai_offset < NINDIR(fs),
6072 	    ("setup_allocindir_phase2: Bad offset %d", aip->ai_offset));
6073 	indirdep = indirdep_lookup(mp, ip, bp);
6074 	KASSERT(indirdep->ir_savebp != NULL,
6075 	    ("setup_allocindir_phase2 NULL ir_savebp"));
6076 	aip->ai_indirdep = indirdep;
6077 	/*
6078 	 * Check for an unwritten dependency for this indirect offset.  If
6079 	 * there is, merge the old dependency into the new one.  This happens
6080 	 * as a result of reallocblk only.
6081 	 */
6082 	freefrag = NULL;
6083 	if (aip->ai_oldblkno != 0) {
6084 		LIST_FOREACH(oldaip, &indirdep->ir_deplisthd, ai_next) {
6085 			if (oldaip->ai_offset == aip->ai_offset) {
6086 				freefrag = allocindir_merge(aip, oldaip);
6087 				goto done;
6088 			}
6089 		}
6090 		LIST_FOREACH(oldaip, &indirdep->ir_donehd, ai_next) {
6091 			if (oldaip->ai_offset == aip->ai_offset) {
6092 				freefrag = allocindir_merge(aip, oldaip);
6093 				goto done;
6094 			}
6095 		}
6096 	}
6097 done:
6098 	LIST_INSERT_HEAD(&indirdep->ir_deplisthd, aip, ai_next);
6099 	return (freefrag);
6100 }
6101 
6102 /*
6103  * Merge two allocindirs which refer to the same block.  Move newblock
6104  * dependencies and setup the freefrags appropriately.
6105  */
6106 static struct freefrag *
6107 allocindir_merge(aip, oldaip)
6108 	struct allocindir *aip;
6109 	struct allocindir *oldaip;
6110 {
6111 	struct freefrag *freefrag;
6112 	struct worklist *wk;
6113 
6114 	if (oldaip->ai_newblkno != aip->ai_oldblkno)
6115 		panic("allocindir_merge: blkno");
6116 	aip->ai_oldblkno = oldaip->ai_oldblkno;
6117 	freefrag = aip->ai_freefrag;
6118 	aip->ai_freefrag = oldaip->ai_freefrag;
6119 	oldaip->ai_freefrag = NULL;
6120 	KASSERT(freefrag != NULL, ("setup_allocindir_phase2: No freefrag"));
6121 	/*
6122 	 * If we are tracking a new directory-block allocation,
6123 	 * move it from the old allocindir to the new allocindir.
6124 	 */
6125 	if ((wk = LIST_FIRST(&oldaip->ai_newdirblk)) != NULL) {
6126 		WORKLIST_REMOVE(wk);
6127 		if (!LIST_EMPTY(&oldaip->ai_newdirblk))
6128 			panic("allocindir_merge: extra newdirblk");
6129 		WORKLIST_INSERT(&aip->ai_newdirblk, wk);
6130 	}
6131 	/*
6132 	 * We can skip journaling for this freefrag and just complete
6133 	 * any pending journal work for the allocindir that is being
6134 	 * removed after the freefrag completes.
6135 	 */
6136 	if (freefrag->ff_jdep)
6137 		cancel_jfreefrag(WK_JFREEFRAG(freefrag->ff_jdep));
6138 	LIST_REMOVE(oldaip, ai_next);
6139 	freefrag->ff_jdep = (struct worklist *)cancel_newblk(&oldaip->ai_block,
6140 	    &freefrag->ff_list, &freefrag->ff_jwork);
6141 	free_newblk(&oldaip->ai_block);
6142 
6143 	return (freefrag);
6144 }
6145 
6146 static inline void
6147 setup_freedirect(freeblks, ip, i, needj)
6148 	struct freeblks *freeblks;
6149 	struct inode *ip;
6150 	int i;
6151 	int needj;
6152 {
6153 	struct ufsmount *ump;
6154 	ufs2_daddr_t blkno;
6155 	int frags;
6156 
6157 	blkno = DIP(ip, i_db[i]);
6158 	if (blkno == 0)
6159 		return;
6160 	DIP_SET(ip, i_db[i], 0);
6161 	ump = ITOUMP(ip);
6162 	frags = sblksize(ump->um_fs, ip->i_size, i);
6163 	frags = numfrags(ump->um_fs, frags);
6164 	newfreework(ump, freeblks, NULL, i, blkno, frags, 0, needj);
6165 }
6166 
6167 static inline void
6168 setup_freeext(freeblks, ip, i, needj)
6169 	struct freeblks *freeblks;
6170 	struct inode *ip;
6171 	int i;
6172 	int needj;
6173 {
6174 	struct ufsmount *ump;
6175 	ufs2_daddr_t blkno;
6176 	int frags;
6177 
6178 	blkno = ip->i_din2->di_extb[i];
6179 	if (blkno == 0)
6180 		return;
6181 	ip->i_din2->di_extb[i] = 0;
6182 	ump = ITOUMP(ip);
6183 	frags = sblksize(ump->um_fs, ip->i_din2->di_extsize, i);
6184 	frags = numfrags(ump->um_fs, frags);
6185 	newfreework(ump, freeblks, NULL, -1 - i, blkno, frags, 0, needj);
6186 }
6187 
6188 static inline void
6189 setup_freeindir(freeblks, ip, i, lbn, needj)
6190 	struct freeblks *freeblks;
6191 	struct inode *ip;
6192 	int i;
6193 	ufs_lbn_t lbn;
6194 	int needj;
6195 {
6196 	struct ufsmount *ump;
6197 	ufs2_daddr_t blkno;
6198 
6199 	blkno = DIP(ip, i_ib[i]);
6200 	if (blkno == 0)
6201 		return;
6202 	DIP_SET(ip, i_ib[i], 0);
6203 	ump = ITOUMP(ip);
6204 	newfreework(ump, freeblks, NULL, lbn, blkno, ump->um_fs->fs_frag,
6205 	    0, needj);
6206 }
6207 
6208 static inline struct freeblks *
6209 newfreeblks(mp, ip)
6210 	struct mount *mp;
6211 	struct inode *ip;
6212 {
6213 	struct freeblks *freeblks;
6214 
6215 	freeblks = malloc(sizeof(struct freeblks),
6216 		M_FREEBLKS, M_SOFTDEP_FLAGS|M_ZERO);
6217 	workitem_alloc(&freeblks->fb_list, D_FREEBLKS, mp);
6218 	LIST_INIT(&freeblks->fb_jblkdephd);
6219 	LIST_INIT(&freeblks->fb_jwork);
6220 	freeblks->fb_ref = 0;
6221 	freeblks->fb_cgwait = 0;
6222 	freeblks->fb_state = ATTACHED;
6223 	freeblks->fb_uid = ip->i_uid;
6224 	freeblks->fb_inum = ip->i_number;
6225 	freeblks->fb_vtype = ITOV(ip)->v_type;
6226 	freeblks->fb_modrev = DIP(ip, i_modrev);
6227 	freeblks->fb_devvp = ITODEVVP(ip);
6228 	freeblks->fb_chkcnt = 0;
6229 	freeblks->fb_len = 0;
6230 
6231 	return (freeblks);
6232 }
6233 
6234 static void
6235 trunc_indirdep(indirdep, freeblks, bp, off)
6236 	struct indirdep *indirdep;
6237 	struct freeblks *freeblks;
6238 	struct buf *bp;
6239 	int off;
6240 {
6241 	struct allocindir *aip, *aipn;
6242 
6243 	/*
6244 	 * The first set of allocindirs won't be in savedbp.
6245 	 */
6246 	LIST_FOREACH_SAFE(aip, &indirdep->ir_deplisthd, ai_next, aipn)
6247 		if (aip->ai_offset > off)
6248 			cancel_allocindir(aip, bp, freeblks, 1);
6249 	LIST_FOREACH_SAFE(aip, &indirdep->ir_donehd, ai_next, aipn)
6250 		if (aip->ai_offset > off)
6251 			cancel_allocindir(aip, bp, freeblks, 1);
6252 	/*
6253 	 * These will exist in savedbp.
6254 	 */
6255 	LIST_FOREACH_SAFE(aip, &indirdep->ir_writehd, ai_next, aipn)
6256 		if (aip->ai_offset > off)
6257 			cancel_allocindir(aip, NULL, freeblks, 0);
6258 	LIST_FOREACH_SAFE(aip, &indirdep->ir_completehd, ai_next, aipn)
6259 		if (aip->ai_offset > off)
6260 			cancel_allocindir(aip, NULL, freeblks, 0);
6261 }
6262 
6263 /*
6264  * Follow the chain of indirects down to lastlbn creating a freework
6265  * structure for each.  This will be used to start indir_trunc() at
6266  * the right offset and create the journal records for the parrtial
6267  * truncation.  A second step will handle the truncated dependencies.
6268  */
6269 static int
6270 setup_trunc_indir(freeblks, ip, lbn, lastlbn, blkno)
6271 	struct freeblks *freeblks;
6272 	struct inode *ip;
6273 	ufs_lbn_t lbn;
6274 	ufs_lbn_t lastlbn;
6275 	ufs2_daddr_t blkno;
6276 {
6277 	struct indirdep *indirdep;
6278 	struct indirdep *indirn;
6279 	struct freework *freework;
6280 	struct newblk *newblk;
6281 	struct mount *mp;
6282 	struct ufsmount *ump;
6283 	struct buf *bp;
6284 	uint8_t *start;
6285 	uint8_t *end;
6286 	ufs_lbn_t lbnadd;
6287 	int level;
6288 	int error;
6289 	int off;
6290 
6291 
6292 	freework = NULL;
6293 	if (blkno == 0)
6294 		return (0);
6295 	mp = freeblks->fb_list.wk_mp;
6296 	ump = VFSTOUFS(mp);
6297 	/*
6298 	 * Here, calls to VOP_BMAP() will fail.  However, we already have
6299 	 * the on-disk address, so we just pass it to bread() instead of
6300 	 * having bread() attempt to calculate it using VOP_BMAP().
6301 	 */
6302 	error = breadn_flags(ITOV(ip), lbn, blkptrtodb(ump, blkno),
6303 	    (int)mp->mnt_stat.f_iosize, NULL, NULL, 0, NOCRED, 0, NULL, &bp);
6304 	if (error)
6305 		return (error);
6306 	level = lbn_level(lbn);
6307 	lbnadd = lbn_offset(ump->um_fs, level);
6308 	/*
6309 	 * Compute the offset of the last block we want to keep.  Store
6310 	 * in the freework the first block we want to completely free.
6311 	 */
6312 	off = (lastlbn - -(lbn + level)) / lbnadd;
6313 	if (off + 1 == NINDIR(ump->um_fs))
6314 		goto nowork;
6315 	freework = newfreework(ump, freeblks, NULL, lbn, blkno, 0, off + 1, 0);
6316 	/*
6317 	 * Link the freework into the indirdep.  This will prevent any new
6318 	 * allocations from proceeding until we are finished with the
6319 	 * truncate and the block is written.
6320 	 */
6321 	ACQUIRE_LOCK(ump);
6322 	indirdep = indirdep_lookup(mp, ip, bp);
6323 	if (indirdep->ir_freeblks)
6324 		panic("setup_trunc_indir: indirdep already truncated.");
6325 	TAILQ_INSERT_TAIL(&indirdep->ir_trunc, freework, fw_next);
6326 	freework->fw_indir = indirdep;
6327 	/*
6328 	 * Cancel any allocindirs that will not make it to disk.
6329 	 * We have to do this for all copies of the indirdep that
6330 	 * live on this newblk.
6331 	 */
6332 	if ((indirdep->ir_state & DEPCOMPLETE) == 0) {
6333 		if (newblk_lookup(mp, dbtofsb(ump->um_fs, bp->b_blkno), 0,
6334 		    &newblk) == 0)
6335 			panic("setup_trunc_indir: lost block");
6336 		LIST_FOREACH(indirn, &newblk->nb_indirdeps, ir_next)
6337 			trunc_indirdep(indirn, freeblks, bp, off);
6338 	} else
6339 		trunc_indirdep(indirdep, freeblks, bp, off);
6340 	FREE_LOCK(ump);
6341 	/*
6342 	 * Creation is protected by the buf lock. The saveddata is only
6343 	 * needed if a full truncation follows a partial truncation but it
6344 	 * is difficult to allocate in that case so we fetch it anyway.
6345 	 */
6346 	if (indirdep->ir_saveddata == NULL)
6347 		indirdep->ir_saveddata = malloc(bp->b_bcount, M_INDIRDEP,
6348 		    M_SOFTDEP_FLAGS);
6349 nowork:
6350 	/* Fetch the blkno of the child and the zero start offset. */
6351 	if (I_IS_UFS1(ip)) {
6352 		blkno = ((ufs1_daddr_t *)bp->b_data)[off];
6353 		start = (uint8_t *)&((ufs1_daddr_t *)bp->b_data)[off+1];
6354 	} else {
6355 		blkno = ((ufs2_daddr_t *)bp->b_data)[off];
6356 		start = (uint8_t *)&((ufs2_daddr_t *)bp->b_data)[off+1];
6357 	}
6358 	if (freework) {
6359 		/* Zero the truncated pointers. */
6360 		end = bp->b_data + bp->b_bcount;
6361 		bzero(start, end - start);
6362 		bdwrite(bp);
6363 	} else
6364 		bqrelse(bp);
6365 	if (level == 0)
6366 		return (0);
6367 	lbn++; /* adjust level */
6368 	lbn -= (off * lbnadd);
6369 	return setup_trunc_indir(freeblks, ip, lbn, lastlbn, blkno);
6370 }
6371 
6372 /*
6373  * Complete the partial truncation of an indirect block setup by
6374  * setup_trunc_indir().  This zeros the truncated pointers in the saved
6375  * copy and writes them to disk before the freeblks is allowed to complete.
6376  */
6377 static void
6378 complete_trunc_indir(freework)
6379 	struct freework *freework;
6380 {
6381 	struct freework *fwn;
6382 	struct indirdep *indirdep;
6383 	struct ufsmount *ump;
6384 	struct buf *bp;
6385 	uintptr_t start;
6386 	int count;
6387 
6388 	ump = VFSTOUFS(freework->fw_list.wk_mp);
6389 	LOCK_OWNED(ump);
6390 	indirdep = freework->fw_indir;
6391 	for (;;) {
6392 		bp = indirdep->ir_bp;
6393 		/* See if the block was discarded. */
6394 		if (bp == NULL)
6395 			break;
6396 		/* Inline part of getdirtybuf().  We dont want bremfree. */
6397 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) == 0)
6398 			break;
6399 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
6400 		    LOCK_PTR(ump)) == 0)
6401 			BUF_UNLOCK(bp);
6402 		ACQUIRE_LOCK(ump);
6403 	}
6404 	freework->fw_state |= DEPCOMPLETE;
6405 	TAILQ_REMOVE(&indirdep->ir_trunc, freework, fw_next);
6406 	/*
6407 	 * Zero the pointers in the saved copy.
6408 	 */
6409 	if (indirdep->ir_state & UFS1FMT)
6410 		start = sizeof(ufs1_daddr_t);
6411 	else
6412 		start = sizeof(ufs2_daddr_t);
6413 	start *= freework->fw_start;
6414 	count = indirdep->ir_savebp->b_bcount - start;
6415 	start += (uintptr_t)indirdep->ir_savebp->b_data;
6416 	bzero((char *)start, count);
6417 	/*
6418 	 * We need to start the next truncation in the list if it has not
6419 	 * been started yet.
6420 	 */
6421 	fwn = TAILQ_FIRST(&indirdep->ir_trunc);
6422 	if (fwn != NULL) {
6423 		if (fwn->fw_freeblks == indirdep->ir_freeblks)
6424 			TAILQ_REMOVE(&indirdep->ir_trunc, fwn, fw_next);
6425 		if ((fwn->fw_state & ONWORKLIST) == 0)
6426 			freework_enqueue(fwn);
6427 	}
6428 	/*
6429 	 * If bp is NULL the block was fully truncated, restore
6430 	 * the saved block list otherwise free it if it is no
6431 	 * longer needed.
6432 	 */
6433 	if (TAILQ_EMPTY(&indirdep->ir_trunc)) {
6434 		if (bp == NULL)
6435 			bcopy(indirdep->ir_saveddata,
6436 			    indirdep->ir_savebp->b_data,
6437 			    indirdep->ir_savebp->b_bcount);
6438 		free(indirdep->ir_saveddata, M_INDIRDEP);
6439 		indirdep->ir_saveddata = NULL;
6440 	}
6441 	/*
6442 	 * When bp is NULL there is a full truncation pending.  We
6443 	 * must wait for this full truncation to be journaled before
6444 	 * we can release this freework because the disk pointers will
6445 	 * never be written as zero.
6446 	 */
6447 	if (bp == NULL)  {
6448 		if (LIST_EMPTY(&indirdep->ir_freeblks->fb_jblkdephd))
6449 			handle_written_freework(freework);
6450 		else
6451 			WORKLIST_INSERT(&indirdep->ir_freeblks->fb_freeworkhd,
6452 			   &freework->fw_list);
6453 	} else {
6454 		/* Complete when the real copy is written. */
6455 		WORKLIST_INSERT(&bp->b_dep, &freework->fw_list);
6456 		BUF_UNLOCK(bp);
6457 	}
6458 }
6459 
6460 /*
6461  * Calculate the number of blocks we are going to release where datablocks
6462  * is the current total and length is the new file size.
6463  */
6464 static ufs2_daddr_t
6465 blkcount(fs, datablocks, length)
6466 	struct fs *fs;
6467 	ufs2_daddr_t datablocks;
6468 	off_t length;
6469 {
6470 	off_t totblks, numblks;
6471 
6472 	totblks = 0;
6473 	numblks = howmany(length, fs->fs_bsize);
6474 	if (numblks <= UFS_NDADDR) {
6475 		totblks = howmany(length, fs->fs_fsize);
6476 		goto out;
6477 	}
6478         totblks = blkstofrags(fs, numblks);
6479 	numblks -= UFS_NDADDR;
6480 	/*
6481 	 * Count all single, then double, then triple indirects required.
6482 	 * Subtracting one indirects worth of blocks for each pass
6483 	 * acknowledges one of each pointed to by the inode.
6484 	 */
6485 	for (;;) {
6486 		totblks += blkstofrags(fs, howmany(numblks, NINDIR(fs)));
6487 		numblks -= NINDIR(fs);
6488 		if (numblks <= 0)
6489 			break;
6490 		numblks = howmany(numblks, NINDIR(fs));
6491 	}
6492 out:
6493 	totblks = fsbtodb(fs, totblks);
6494 	/*
6495 	 * Handle sparse files.  We can't reclaim more blocks than the inode
6496 	 * references.  We will correct it later in handle_complete_freeblks()
6497 	 * when we know the real count.
6498 	 */
6499 	if (totblks > datablocks)
6500 		return (0);
6501 	return (datablocks - totblks);
6502 }
6503 
6504 /*
6505  * Handle freeblocks for journaled softupdate filesystems.
6506  *
6507  * Contrary to normal softupdates, we must preserve the block pointers in
6508  * indirects until their subordinates are free.  This is to avoid journaling
6509  * every block that is freed which may consume more space than the journal
6510  * itself.  The recovery program will see the free block journals at the
6511  * base of the truncated area and traverse them to reclaim space.  The
6512  * pointers in the inode may be cleared immediately after the journal
6513  * records are written because each direct and indirect pointer in the
6514  * inode is recorded in a journal.  This permits full truncation to proceed
6515  * asynchronously.  The write order is journal -> inode -> cgs -> indirects.
6516  *
6517  * The algorithm is as follows:
6518  * 1) Traverse the in-memory state and create journal entries to release
6519  *    the relevant blocks and full indirect trees.
6520  * 2) Traverse the indirect block chain adding partial truncation freework
6521  *    records to indirects in the path to lastlbn.  The freework will
6522  *    prevent new allocation dependencies from being satisfied in this
6523  *    indirect until the truncation completes.
6524  * 3) Read and lock the inode block, performing an update with the new size
6525  *    and pointers.  This prevents truncated data from becoming valid on
6526  *    disk through step 4.
6527  * 4) Reap unsatisfied dependencies that are beyond the truncated area,
6528  *    eliminate journal work for those records that do not require it.
6529  * 5) Schedule the journal records to be written followed by the inode block.
6530  * 6) Allocate any necessary frags for the end of file.
6531  * 7) Zero any partially truncated blocks.
6532  *
6533  * From this truncation proceeds asynchronously using the freework and
6534  * indir_trunc machinery.  The file will not be extended again into a
6535  * partially truncated indirect block until all work is completed but
6536  * the normal dependency mechanism ensures that it is rolled back/forward
6537  * as appropriate.  Further truncation may occur without delay and is
6538  * serialized in indir_trunc().
6539  */
6540 void
6541 softdep_journal_freeblocks(ip, cred, length, flags)
6542 	struct inode *ip;	/* The inode whose length is to be reduced */
6543 	struct ucred *cred;
6544 	off_t length;		/* The new length for the file */
6545 	int flags;		/* IO_EXT and/or IO_NORMAL */
6546 {
6547 	struct freeblks *freeblks, *fbn;
6548 	struct worklist *wk, *wkn;
6549 	struct inodedep *inodedep;
6550 	struct jblkdep *jblkdep;
6551 	struct allocdirect *adp, *adpn;
6552 	struct ufsmount *ump;
6553 	struct fs *fs;
6554 	struct buf *bp;
6555 	struct vnode *vp;
6556 	struct mount *mp;
6557 	ufs2_daddr_t extblocks, datablocks;
6558 	ufs_lbn_t tmpval, lbn, lastlbn;
6559 	int frags, lastoff, iboff, allocblock, needj, error, i;
6560 
6561 	ump = ITOUMP(ip);
6562 	mp = UFSTOVFS(ump);
6563 	fs = ump->um_fs;
6564 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
6565 	    ("softdep_journal_freeblocks called on non-softdep filesystem"));
6566 	vp = ITOV(ip);
6567 	needj = 1;
6568 	iboff = -1;
6569 	allocblock = 0;
6570 	extblocks = 0;
6571 	datablocks = 0;
6572 	frags = 0;
6573 	freeblks = newfreeblks(mp, ip);
6574 	ACQUIRE_LOCK(ump);
6575 	/*
6576 	 * If we're truncating a removed file that will never be written
6577 	 * we don't need to journal the block frees.  The canceled journals
6578 	 * for the allocations will suffice.
6579 	 */
6580 	inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
6581 	if ((inodedep->id_state & (UNLINKED | DEPCOMPLETE)) == UNLINKED &&
6582 	    length == 0)
6583 		needj = 0;
6584 	CTR3(KTR_SUJ, "softdep_journal_freeblks: ip %d length %ld needj %d",
6585 	    ip->i_number, length, needj);
6586 	FREE_LOCK(ump);
6587 	/*
6588 	 * Calculate the lbn that we are truncating to.  This results in -1
6589 	 * if we're truncating the 0 bytes.  So it is the last lbn we want
6590 	 * to keep, not the first lbn we want to truncate.
6591 	 */
6592 	lastlbn = lblkno(fs, length + fs->fs_bsize - 1) - 1;
6593 	lastoff = blkoff(fs, length);
6594 	/*
6595 	 * Compute frags we are keeping in lastlbn.  0 means all.
6596 	 */
6597 	if (lastlbn >= 0 && lastlbn < UFS_NDADDR) {
6598 		frags = fragroundup(fs, lastoff);
6599 		/* adp offset of last valid allocdirect. */
6600 		iboff = lastlbn;
6601 	} else if (lastlbn > 0)
6602 		iboff = UFS_NDADDR;
6603 	if (fs->fs_magic == FS_UFS2_MAGIC)
6604 		extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize));
6605 	/*
6606 	 * Handle normal data blocks and indirects.  This section saves
6607 	 * values used after the inode update to complete frag and indirect
6608 	 * truncation.
6609 	 */
6610 	if ((flags & IO_NORMAL) != 0) {
6611 		/*
6612 		 * Handle truncation of whole direct and indirect blocks.
6613 		 */
6614 		for (i = iboff + 1; i < UFS_NDADDR; i++)
6615 			setup_freedirect(freeblks, ip, i, needj);
6616 		for (i = 0, tmpval = NINDIR(fs), lbn = UFS_NDADDR;
6617 		    i < UFS_NIADDR;
6618 		    i++, lbn += tmpval, tmpval *= NINDIR(fs)) {
6619 			/* Release a whole indirect tree. */
6620 			if (lbn > lastlbn) {
6621 				setup_freeindir(freeblks, ip, i, -lbn -i,
6622 				    needj);
6623 				continue;
6624 			}
6625 			iboff = i + UFS_NDADDR;
6626 			/*
6627 			 * Traverse partially truncated indirect tree.
6628 			 */
6629 			if (lbn <= lastlbn && lbn + tmpval - 1 > lastlbn)
6630 				setup_trunc_indir(freeblks, ip, -lbn - i,
6631 				    lastlbn, DIP(ip, i_ib[i]));
6632 		}
6633 		/*
6634 		 * Handle partial truncation to a frag boundary.
6635 		 */
6636 		if (frags) {
6637 			ufs2_daddr_t blkno;
6638 			long oldfrags;
6639 
6640 			oldfrags = blksize(fs, ip, lastlbn);
6641 			blkno = DIP(ip, i_db[lastlbn]);
6642 			if (blkno && oldfrags != frags) {
6643 				oldfrags -= frags;
6644 				oldfrags = numfrags(fs, oldfrags);
6645 				blkno += numfrags(fs, frags);
6646 				newfreework(ump, freeblks, NULL, lastlbn,
6647 				    blkno, oldfrags, 0, needj);
6648 				if (needj)
6649 					adjust_newfreework(freeblks,
6650 					    numfrags(fs, frags));
6651 			} else if (blkno == 0)
6652 				allocblock = 1;
6653 		}
6654 		/*
6655 		 * Add a journal record for partial truncate if we are
6656 		 * handling indirect blocks.  Non-indirects need no extra
6657 		 * journaling.
6658 		 */
6659 		if (length != 0 && lastlbn >= UFS_NDADDR) {
6660 			ip->i_flag |= IN_TRUNCATED;
6661 			newjtrunc(freeblks, length, 0);
6662 		}
6663 		ip->i_size = length;
6664 		DIP_SET(ip, i_size, ip->i_size);
6665 		datablocks = DIP(ip, i_blocks) - extblocks;
6666 		if (length != 0)
6667 			datablocks = blkcount(fs, datablocks, length);
6668 		freeblks->fb_len = length;
6669 	}
6670 	if ((flags & IO_EXT) != 0) {
6671 		for (i = 0; i < UFS_NXADDR; i++)
6672 			setup_freeext(freeblks, ip, i, needj);
6673 		ip->i_din2->di_extsize = 0;
6674 		datablocks += extblocks;
6675 	}
6676 #ifdef QUOTA
6677 	/* Reference the quotas in case the block count is wrong in the end. */
6678 	quotaref(vp, freeblks->fb_quota);
6679 	(void) chkdq(ip, -datablocks, NOCRED, FORCE);
6680 #endif
6681 	freeblks->fb_chkcnt = -datablocks;
6682 	UFS_LOCK(ump);
6683 	fs->fs_pendingblocks += datablocks;
6684 	UFS_UNLOCK(ump);
6685 	DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - datablocks);
6686 	/*
6687 	 * Handle truncation of incomplete alloc direct dependencies.  We
6688 	 * hold the inode block locked to prevent incomplete dependencies
6689 	 * from reaching the disk while we are eliminating those that
6690 	 * have been truncated.  This is a partially inlined ffs_update().
6691 	 */
6692 	ufs_itimes(vp);
6693 	ip->i_flag &= ~(IN_LAZYACCESS | IN_LAZYMOD | IN_MODIFIED);
6694 	error = bread(ump->um_devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
6695 	    (int)fs->fs_bsize, cred, &bp);
6696 	if (error) {
6697 		softdep_error("softdep_journal_freeblocks", error);
6698 		return;
6699 	}
6700 	if (bp->b_bufsize == fs->fs_bsize)
6701 		bp->b_flags |= B_CLUSTEROK;
6702 	softdep_update_inodeblock(ip, bp, 0);
6703 	if (ump->um_fstype == UFS1) {
6704 		*((struct ufs1_dinode *)bp->b_data +
6705 		    ino_to_fsbo(fs, ip->i_number)) = *ip->i_din1;
6706 	} else {
6707 		ffs_update_dinode_ckhash(fs, ip->i_din2);
6708 		*((struct ufs2_dinode *)bp->b_data +
6709 		    ino_to_fsbo(fs, ip->i_number)) = *ip->i_din2;
6710 	}
6711 	ACQUIRE_LOCK(ump);
6712 	(void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
6713 	if ((inodedep->id_state & IOSTARTED) != 0)
6714 		panic("softdep_setup_freeblocks: inode busy");
6715 	/*
6716 	 * Add the freeblks structure to the list of operations that
6717 	 * must await the zero'ed inode being written to disk. If we
6718 	 * still have a bitmap dependency (needj), then the inode
6719 	 * has never been written to disk, so we can process the
6720 	 * freeblks below once we have deleted the dependencies.
6721 	 */
6722 	if (needj)
6723 		WORKLIST_INSERT(&bp->b_dep, &freeblks->fb_list);
6724 	else
6725 		freeblks->fb_state |= COMPLETE;
6726 	if ((flags & IO_NORMAL) != 0) {
6727 		TAILQ_FOREACH_SAFE(adp, &inodedep->id_inoupdt, ad_next, adpn) {
6728 			if (adp->ad_offset > iboff)
6729 				cancel_allocdirect(&inodedep->id_inoupdt, adp,
6730 				    freeblks);
6731 			/*
6732 			 * Truncate the allocdirect.  We could eliminate
6733 			 * or modify journal records as well.
6734 			 */
6735 			else if (adp->ad_offset == iboff && frags)
6736 				adp->ad_newsize = frags;
6737 		}
6738 	}
6739 	if ((flags & IO_EXT) != 0)
6740 		while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL)
6741 			cancel_allocdirect(&inodedep->id_extupdt, adp,
6742 			    freeblks);
6743 	/*
6744 	 * Scan the bufwait list for newblock dependencies that will never
6745 	 * make it to disk.
6746 	 */
6747 	LIST_FOREACH_SAFE(wk, &inodedep->id_bufwait, wk_list, wkn) {
6748 		if (wk->wk_type != D_ALLOCDIRECT)
6749 			continue;
6750 		adp = WK_ALLOCDIRECT(wk);
6751 		if (((flags & IO_NORMAL) != 0 && (adp->ad_offset > iboff)) ||
6752 		    ((flags & IO_EXT) != 0 && (adp->ad_state & EXTDATA))) {
6753 			cancel_jfreeblk(freeblks, adp->ad_newblkno);
6754 			cancel_newblk(WK_NEWBLK(wk), NULL, &freeblks->fb_jwork);
6755 			WORKLIST_INSERT(&freeblks->fb_freeworkhd, wk);
6756 		}
6757 	}
6758 	/*
6759 	 * Add journal work.
6760 	 */
6761 	LIST_FOREACH(jblkdep, &freeblks->fb_jblkdephd, jb_deps)
6762 		add_to_journal(&jblkdep->jb_list);
6763 	FREE_LOCK(ump);
6764 	bdwrite(bp);
6765 	/*
6766 	 * Truncate dependency structures beyond length.
6767 	 */
6768 	trunc_dependencies(ip, freeblks, lastlbn, frags, flags);
6769 	/*
6770 	 * This is only set when we need to allocate a fragment because
6771 	 * none existed at the end of a frag-sized file.  It handles only
6772 	 * allocating a new, zero filled block.
6773 	 */
6774 	if (allocblock) {
6775 		ip->i_size = length - lastoff;
6776 		DIP_SET(ip, i_size, ip->i_size);
6777 		error = UFS_BALLOC(vp, length - 1, 1, cred, BA_CLRBUF, &bp);
6778 		if (error != 0) {
6779 			softdep_error("softdep_journal_freeblks", error);
6780 			return;
6781 		}
6782 		ip->i_size = length;
6783 		DIP_SET(ip, i_size, length);
6784 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
6785 		allocbuf(bp, frags);
6786 		ffs_update(vp, 0);
6787 		bawrite(bp);
6788 	} else if (lastoff != 0 && vp->v_type != VDIR) {
6789 		int size;
6790 
6791 		/*
6792 		 * Zero the end of a truncated frag or block.
6793 		 */
6794 		size = sblksize(fs, length, lastlbn);
6795 		error = bread(vp, lastlbn, size, cred, &bp);
6796 		if (error) {
6797 			softdep_error("softdep_journal_freeblks", error);
6798 			return;
6799 		}
6800 		bzero((char *)bp->b_data + lastoff, size - lastoff);
6801 		bawrite(bp);
6802 
6803 	}
6804 	ACQUIRE_LOCK(ump);
6805 	inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
6806 	TAILQ_INSERT_TAIL(&inodedep->id_freeblklst, freeblks, fb_next);
6807 	freeblks->fb_state |= DEPCOMPLETE | ONDEPLIST;
6808 	/*
6809 	 * We zero earlier truncations so they don't erroneously
6810 	 * update i_blocks.
6811 	 */
6812 	if (freeblks->fb_len == 0 && (flags & IO_NORMAL) != 0)
6813 		TAILQ_FOREACH(fbn, &inodedep->id_freeblklst, fb_next)
6814 			fbn->fb_len = 0;
6815 	if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE &&
6816 	    LIST_EMPTY(&freeblks->fb_jblkdephd))
6817 		freeblks->fb_state |= INPROGRESS;
6818 	else
6819 		freeblks = NULL;
6820 	FREE_LOCK(ump);
6821 	if (freeblks)
6822 		handle_workitem_freeblocks(freeblks, 0);
6823 	trunc_pages(ip, length, extblocks, flags);
6824 
6825 }
6826 
6827 /*
6828  * Flush a JOP_SYNC to the journal.
6829  */
6830 void
6831 softdep_journal_fsync(ip)
6832 	struct inode *ip;
6833 {
6834 	struct jfsync *jfsync;
6835 	struct ufsmount *ump;
6836 
6837 	ump = ITOUMP(ip);
6838 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
6839 	    ("softdep_journal_fsync called on non-softdep filesystem"));
6840 	if ((ip->i_flag & IN_TRUNCATED) == 0)
6841 		return;
6842 	ip->i_flag &= ~IN_TRUNCATED;
6843 	jfsync = malloc(sizeof(*jfsync), M_JFSYNC, M_SOFTDEP_FLAGS | M_ZERO);
6844 	workitem_alloc(&jfsync->jfs_list, D_JFSYNC, UFSTOVFS(ump));
6845 	jfsync->jfs_size = ip->i_size;
6846 	jfsync->jfs_ino = ip->i_number;
6847 	ACQUIRE_LOCK(ump);
6848 	add_to_journal(&jfsync->jfs_list);
6849 	jwait(&jfsync->jfs_list, MNT_WAIT);
6850 	FREE_LOCK(ump);
6851 }
6852 
6853 /*
6854  * Block de-allocation dependencies.
6855  *
6856  * When blocks are de-allocated, the on-disk pointers must be nullified before
6857  * the blocks are made available for use by other files.  (The true
6858  * requirement is that old pointers must be nullified before new on-disk
6859  * pointers are set.  We chose this slightly more stringent requirement to
6860  * reduce complexity.) Our implementation handles this dependency by updating
6861  * the inode (or indirect block) appropriately but delaying the actual block
6862  * de-allocation (i.e., freemap and free space count manipulation) until
6863  * after the updated versions reach stable storage.  After the disk is
6864  * updated, the blocks can be safely de-allocated whenever it is convenient.
6865  * This implementation handles only the common case of reducing a file's
6866  * length to zero. Other cases are handled by the conventional synchronous
6867  * write approach.
6868  *
6869  * The ffs implementation with which we worked double-checks
6870  * the state of the block pointers and file size as it reduces
6871  * a file's length.  Some of this code is replicated here in our
6872  * soft updates implementation.  The freeblks->fb_chkcnt field is
6873  * used to transfer a part of this information to the procedure
6874  * that eventually de-allocates the blocks.
6875  *
6876  * This routine should be called from the routine that shortens
6877  * a file's length, before the inode's size or block pointers
6878  * are modified. It will save the block pointer information for
6879  * later release and zero the inode so that the calling routine
6880  * can release it.
6881  */
6882 void
6883 softdep_setup_freeblocks(ip, length, flags)
6884 	struct inode *ip;	/* The inode whose length is to be reduced */
6885 	off_t length;		/* The new length for the file */
6886 	int flags;		/* IO_EXT and/or IO_NORMAL */
6887 {
6888 	struct ufs1_dinode *dp1;
6889 	struct ufs2_dinode *dp2;
6890 	struct freeblks *freeblks;
6891 	struct inodedep *inodedep;
6892 	struct allocdirect *adp;
6893 	struct ufsmount *ump;
6894 	struct buf *bp;
6895 	struct fs *fs;
6896 	ufs2_daddr_t extblocks, datablocks;
6897 	struct mount *mp;
6898 	int i, delay, error;
6899 	ufs_lbn_t tmpval;
6900 	ufs_lbn_t lbn;
6901 
6902 	ump = ITOUMP(ip);
6903 	mp = UFSTOVFS(ump);
6904 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
6905 	    ("softdep_setup_freeblocks called on non-softdep filesystem"));
6906 	CTR2(KTR_SUJ, "softdep_setup_freeblks: ip %d length %ld",
6907 	    ip->i_number, length);
6908 	KASSERT(length == 0, ("softdep_setup_freeblocks: non-zero length"));
6909 	fs = ump->um_fs;
6910 	if ((error = bread(ump->um_devvp,
6911 	    fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
6912 	    (int)fs->fs_bsize, NOCRED, &bp)) != 0) {
6913 		brelse(bp);
6914 		softdep_error("softdep_setup_freeblocks", error);
6915 		return;
6916 	}
6917 	freeblks = newfreeblks(mp, ip);
6918 	extblocks = 0;
6919 	datablocks = 0;
6920 	if (fs->fs_magic == FS_UFS2_MAGIC)
6921 		extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize));
6922 	if ((flags & IO_NORMAL) != 0) {
6923 		for (i = 0; i < UFS_NDADDR; i++)
6924 			setup_freedirect(freeblks, ip, i, 0);
6925 		for (i = 0, tmpval = NINDIR(fs), lbn = UFS_NDADDR;
6926 		    i < UFS_NIADDR;
6927 		    i++, lbn += tmpval, tmpval *= NINDIR(fs))
6928 			setup_freeindir(freeblks, ip, i, -lbn -i, 0);
6929 		ip->i_size = 0;
6930 		DIP_SET(ip, i_size, 0);
6931 		datablocks = DIP(ip, i_blocks) - extblocks;
6932 	}
6933 	if ((flags & IO_EXT) != 0) {
6934 		for (i = 0; i < UFS_NXADDR; i++)
6935 			setup_freeext(freeblks, ip, i, 0);
6936 		ip->i_din2->di_extsize = 0;
6937 		datablocks += extblocks;
6938 	}
6939 #ifdef QUOTA
6940 	/* Reference the quotas in case the block count is wrong in the end. */
6941 	quotaref(ITOV(ip), freeblks->fb_quota);
6942 	(void) chkdq(ip, -datablocks, NOCRED, FORCE);
6943 #endif
6944 	freeblks->fb_chkcnt = -datablocks;
6945 	UFS_LOCK(ump);
6946 	fs->fs_pendingblocks += datablocks;
6947 	UFS_UNLOCK(ump);
6948 	DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - datablocks);
6949 	/*
6950 	 * Push the zero'ed inode to its disk buffer so that we are free
6951 	 * to delete its dependencies below. Once the dependencies are gone
6952 	 * the buffer can be safely released.
6953 	 */
6954 	if (ump->um_fstype == UFS1) {
6955 		dp1 = ((struct ufs1_dinode *)bp->b_data +
6956 		    ino_to_fsbo(fs, ip->i_number));
6957 		ip->i_din1->di_freelink = dp1->di_freelink;
6958 		*dp1 = *ip->i_din1;
6959 	} else {
6960 		dp2 = ((struct ufs2_dinode *)bp->b_data +
6961 		    ino_to_fsbo(fs, ip->i_number));
6962 		ip->i_din2->di_freelink = dp2->di_freelink;
6963 		ffs_update_dinode_ckhash(fs, ip->i_din2);
6964 		*dp2 = *ip->i_din2;
6965 	}
6966 	/*
6967 	 * Find and eliminate any inode dependencies.
6968 	 */
6969 	ACQUIRE_LOCK(ump);
6970 	(void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep);
6971 	if ((inodedep->id_state & IOSTARTED) != 0)
6972 		panic("softdep_setup_freeblocks: inode busy");
6973 	/*
6974 	 * Add the freeblks structure to the list of operations that
6975 	 * must await the zero'ed inode being written to disk. If we
6976 	 * still have a bitmap dependency (delay == 0), then the inode
6977 	 * has never been written to disk, so we can process the
6978 	 * freeblks below once we have deleted the dependencies.
6979 	 */
6980 	delay = (inodedep->id_state & DEPCOMPLETE);
6981 	if (delay)
6982 		WORKLIST_INSERT(&bp->b_dep, &freeblks->fb_list);
6983 	else
6984 		freeblks->fb_state |= COMPLETE;
6985 	/*
6986 	 * Because the file length has been truncated to zero, any
6987 	 * pending block allocation dependency structures associated
6988 	 * with this inode are obsolete and can simply be de-allocated.
6989 	 * We must first merge the two dependency lists to get rid of
6990 	 * any duplicate freefrag structures, then purge the merged list.
6991 	 * If we still have a bitmap dependency, then the inode has never
6992 	 * been written to disk, so we can free any fragments without delay.
6993 	 */
6994 	if (flags & IO_NORMAL) {
6995 		merge_inode_lists(&inodedep->id_newinoupdt,
6996 		    &inodedep->id_inoupdt);
6997 		while ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL)
6998 			cancel_allocdirect(&inodedep->id_inoupdt, adp,
6999 			    freeblks);
7000 	}
7001 	if (flags & IO_EXT) {
7002 		merge_inode_lists(&inodedep->id_newextupdt,
7003 		    &inodedep->id_extupdt);
7004 		while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL)
7005 			cancel_allocdirect(&inodedep->id_extupdt, adp,
7006 			    freeblks);
7007 	}
7008 	FREE_LOCK(ump);
7009 	bdwrite(bp);
7010 	trunc_dependencies(ip, freeblks, -1, 0, flags);
7011 	ACQUIRE_LOCK(ump);
7012 	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0)
7013 		(void) free_inodedep(inodedep);
7014 	freeblks->fb_state |= DEPCOMPLETE;
7015 	/*
7016 	 * If the inode with zeroed block pointers is now on disk
7017 	 * we can start freeing blocks.
7018 	 */
7019 	if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE)
7020 		freeblks->fb_state |= INPROGRESS;
7021 	else
7022 		freeblks = NULL;
7023 	FREE_LOCK(ump);
7024 	if (freeblks)
7025 		handle_workitem_freeblocks(freeblks, 0);
7026 	trunc_pages(ip, length, extblocks, flags);
7027 }
7028 
7029 /*
7030  * Eliminate pages from the page cache that back parts of this inode and
7031  * adjust the vnode pager's idea of our size.  This prevents stale data
7032  * from hanging around in the page cache.
7033  */
7034 static void
7035 trunc_pages(ip, length, extblocks, flags)
7036 	struct inode *ip;
7037 	off_t length;
7038 	ufs2_daddr_t extblocks;
7039 	int flags;
7040 {
7041 	struct vnode *vp;
7042 	struct fs *fs;
7043 	ufs_lbn_t lbn;
7044 	off_t end, extend;
7045 
7046 	vp = ITOV(ip);
7047 	fs = ITOFS(ip);
7048 	extend = OFF_TO_IDX(lblktosize(fs, -extblocks));
7049 	if ((flags & IO_EXT) != 0)
7050 		vn_pages_remove(vp, extend, 0);
7051 	if ((flags & IO_NORMAL) == 0)
7052 		return;
7053 	BO_LOCK(&vp->v_bufobj);
7054 	drain_output(vp);
7055 	BO_UNLOCK(&vp->v_bufobj);
7056 	/*
7057 	 * The vnode pager eliminates file pages we eliminate indirects
7058 	 * below.
7059 	 */
7060 	vnode_pager_setsize(vp, length);
7061 	/*
7062 	 * Calculate the end based on the last indirect we want to keep.  If
7063 	 * the block extends into indirects we can just use the negative of
7064 	 * its lbn.  Doubles and triples exist at lower numbers so we must
7065 	 * be careful not to remove those, if they exist.  double and triple
7066 	 * indirect lbns do not overlap with others so it is not important
7067 	 * to verify how many levels are required.
7068 	 */
7069 	lbn = lblkno(fs, length);
7070 	if (lbn >= UFS_NDADDR) {
7071 		/* Calculate the virtual lbn of the triple indirect. */
7072 		lbn = -lbn - (UFS_NIADDR - 1);
7073 		end = OFF_TO_IDX(lblktosize(fs, lbn));
7074 	} else
7075 		end = extend;
7076 	vn_pages_remove(vp, OFF_TO_IDX(OFF_MAX), end);
7077 }
7078 
7079 /*
7080  * See if the buf bp is in the range eliminated by truncation.
7081  */
7082 static int
7083 trunc_check_buf(bp, blkoffp, lastlbn, lastoff, flags)
7084 	struct buf *bp;
7085 	int *blkoffp;
7086 	ufs_lbn_t lastlbn;
7087 	int lastoff;
7088 	int flags;
7089 {
7090 	ufs_lbn_t lbn;
7091 
7092 	*blkoffp = 0;
7093 	/* Only match ext/normal blocks as appropriate. */
7094 	if (((flags & IO_EXT) == 0 && (bp->b_xflags & BX_ALTDATA)) ||
7095 	    ((flags & IO_NORMAL) == 0 && (bp->b_xflags & BX_ALTDATA) == 0))
7096 		return (0);
7097 	/* ALTDATA is always a full truncation. */
7098 	if ((bp->b_xflags & BX_ALTDATA) != 0)
7099 		return (1);
7100 	/* -1 is full truncation. */
7101 	if (lastlbn == -1)
7102 		return (1);
7103 	/*
7104 	 * If this is a partial truncate we only want those
7105 	 * blocks and indirect blocks that cover the range
7106 	 * we're after.
7107 	 */
7108 	lbn = bp->b_lblkno;
7109 	if (lbn < 0)
7110 		lbn = -(lbn + lbn_level(lbn));
7111 	if (lbn < lastlbn)
7112 		return (0);
7113 	/* Here we only truncate lblkno if it's partial. */
7114 	if (lbn == lastlbn) {
7115 		if (lastoff == 0)
7116 			return (0);
7117 		*blkoffp = lastoff;
7118 	}
7119 	return (1);
7120 }
7121 
7122 /*
7123  * Eliminate any dependencies that exist in memory beyond lblkno:off
7124  */
7125 static void
7126 trunc_dependencies(ip, freeblks, lastlbn, lastoff, flags)
7127 	struct inode *ip;
7128 	struct freeblks *freeblks;
7129 	ufs_lbn_t lastlbn;
7130 	int lastoff;
7131 	int flags;
7132 {
7133 	struct bufobj *bo;
7134 	struct vnode *vp;
7135 	struct buf *bp;
7136 	int blkoff;
7137 
7138 	/*
7139 	 * We must wait for any I/O in progress to finish so that
7140 	 * all potential buffers on the dirty list will be visible.
7141 	 * Once they are all there, walk the list and get rid of
7142 	 * any dependencies.
7143 	 */
7144 	vp = ITOV(ip);
7145 	bo = &vp->v_bufobj;
7146 	BO_LOCK(bo);
7147 	drain_output(vp);
7148 	TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs)
7149 		bp->b_vflags &= ~BV_SCANNED;
7150 restart:
7151 	TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) {
7152 		if (bp->b_vflags & BV_SCANNED)
7153 			continue;
7154 		if (!trunc_check_buf(bp, &blkoff, lastlbn, lastoff, flags)) {
7155 			bp->b_vflags |= BV_SCANNED;
7156 			continue;
7157 		}
7158 		KASSERT(bp->b_bufobj == bo, ("Wrong object in buffer"));
7159 		if ((bp = getdirtybuf(bp, BO_LOCKPTR(bo), MNT_WAIT)) == NULL)
7160 			goto restart;
7161 		BO_UNLOCK(bo);
7162 		if (deallocate_dependencies(bp, freeblks, blkoff))
7163 			bqrelse(bp);
7164 		else
7165 			brelse(bp);
7166 		BO_LOCK(bo);
7167 		goto restart;
7168 	}
7169 	/*
7170 	 * Now do the work of vtruncbuf while also matching indirect blocks.
7171 	 */
7172 	TAILQ_FOREACH(bp, &bo->bo_clean.bv_hd, b_bobufs)
7173 		bp->b_vflags &= ~BV_SCANNED;
7174 cleanrestart:
7175 	TAILQ_FOREACH(bp, &bo->bo_clean.bv_hd, b_bobufs) {
7176 		if (bp->b_vflags & BV_SCANNED)
7177 			continue;
7178 		if (!trunc_check_buf(bp, &blkoff, lastlbn, lastoff, flags)) {
7179 			bp->b_vflags |= BV_SCANNED;
7180 			continue;
7181 		}
7182 		if (BUF_LOCK(bp,
7183 		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
7184 		    BO_LOCKPTR(bo)) == ENOLCK) {
7185 			BO_LOCK(bo);
7186 			goto cleanrestart;
7187 		}
7188 		bp->b_vflags |= BV_SCANNED;
7189 		bremfree(bp);
7190 		if (blkoff != 0) {
7191 			allocbuf(bp, blkoff);
7192 			bqrelse(bp);
7193 		} else {
7194 			bp->b_flags |= B_INVAL | B_NOCACHE | B_RELBUF;
7195 			brelse(bp);
7196 		}
7197 		BO_LOCK(bo);
7198 		goto cleanrestart;
7199 	}
7200 	drain_output(vp);
7201 	BO_UNLOCK(bo);
7202 }
7203 
7204 static int
7205 cancel_pagedep(pagedep, freeblks, blkoff)
7206 	struct pagedep *pagedep;
7207 	struct freeblks *freeblks;
7208 	int blkoff;
7209 {
7210 	struct jremref *jremref;
7211 	struct jmvref *jmvref;
7212 	struct dirrem *dirrem, *tmp;
7213 	int i;
7214 
7215 	/*
7216 	 * Copy any directory remove dependencies to the list
7217 	 * to be processed after the freeblks proceeds.  If
7218 	 * directory entry never made it to disk they
7219 	 * can be dumped directly onto the work list.
7220 	 */
7221 	LIST_FOREACH_SAFE(dirrem, &pagedep->pd_dirremhd, dm_next, tmp) {
7222 		/* Skip this directory removal if it is intended to remain. */
7223 		if (dirrem->dm_offset < blkoff)
7224 			continue;
7225 		/*
7226 		 * If there are any dirrems we wait for the journal write
7227 		 * to complete and then restart the buf scan as the lock
7228 		 * has been dropped.
7229 		 */
7230 		while ((jremref = LIST_FIRST(&dirrem->dm_jremrefhd)) != NULL) {
7231 			jwait(&jremref->jr_list, MNT_WAIT);
7232 			return (ERESTART);
7233 		}
7234 		LIST_REMOVE(dirrem, dm_next);
7235 		dirrem->dm_dirinum = pagedep->pd_ino;
7236 		WORKLIST_INSERT(&freeblks->fb_freeworkhd, &dirrem->dm_list);
7237 	}
7238 	while ((jmvref = LIST_FIRST(&pagedep->pd_jmvrefhd)) != NULL) {
7239 		jwait(&jmvref->jm_list, MNT_WAIT);
7240 		return (ERESTART);
7241 	}
7242 	/*
7243 	 * When we're partially truncating a pagedep we just want to flush
7244 	 * journal entries and return.  There can not be any adds in the
7245 	 * truncated portion of the directory and newblk must remain if
7246 	 * part of the block remains.
7247 	 */
7248 	if (blkoff != 0) {
7249 		struct diradd *dap;
7250 
7251 		LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist)
7252 			if (dap->da_offset > blkoff)
7253 				panic("cancel_pagedep: diradd %p off %d > %d",
7254 				    dap, dap->da_offset, blkoff);
7255 		for (i = 0; i < DAHASHSZ; i++)
7256 			LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist)
7257 				if (dap->da_offset > blkoff)
7258 					panic("cancel_pagedep: diradd %p off %d > %d",
7259 					    dap, dap->da_offset, blkoff);
7260 		return (0);
7261 	}
7262 	/*
7263 	 * There should be no directory add dependencies present
7264 	 * as the directory could not be truncated until all
7265 	 * children were removed.
7266 	 */
7267 	KASSERT(LIST_FIRST(&pagedep->pd_pendinghd) == NULL,
7268 	    ("deallocate_dependencies: pendinghd != NULL"));
7269 	for (i = 0; i < DAHASHSZ; i++)
7270 		KASSERT(LIST_FIRST(&pagedep->pd_diraddhd[i]) == NULL,
7271 		    ("deallocate_dependencies: diraddhd != NULL"));
7272 	if ((pagedep->pd_state & NEWBLOCK) != 0)
7273 		free_newdirblk(pagedep->pd_newdirblk);
7274 	if (free_pagedep(pagedep) == 0)
7275 		panic("Failed to free pagedep %p", pagedep);
7276 	return (0);
7277 }
7278 
7279 /*
7280  * Reclaim any dependency structures from a buffer that is about to
7281  * be reallocated to a new vnode. The buffer must be locked, thus,
7282  * no I/O completion operations can occur while we are manipulating
7283  * its associated dependencies. The mutex is held so that other I/O's
7284  * associated with related dependencies do not occur.
7285  */
7286 static int
7287 deallocate_dependencies(bp, freeblks, off)
7288 	struct buf *bp;
7289 	struct freeblks *freeblks;
7290 	int off;
7291 {
7292 	struct indirdep *indirdep;
7293 	struct pagedep *pagedep;
7294 	struct worklist *wk, *wkn;
7295 	struct ufsmount *ump;
7296 
7297 	ump = softdep_bp_to_mp(bp);
7298 	if (ump == NULL)
7299 		goto done;
7300 	ACQUIRE_LOCK(ump);
7301 	LIST_FOREACH_SAFE(wk, &bp->b_dep, wk_list, wkn) {
7302 		switch (wk->wk_type) {
7303 		case D_INDIRDEP:
7304 			indirdep = WK_INDIRDEP(wk);
7305 			if (bp->b_lblkno >= 0 ||
7306 			    bp->b_blkno != indirdep->ir_savebp->b_lblkno)
7307 				panic("deallocate_dependencies: not indir");
7308 			cancel_indirdep(indirdep, bp, freeblks);
7309 			continue;
7310 
7311 		case D_PAGEDEP:
7312 			pagedep = WK_PAGEDEP(wk);
7313 			if (cancel_pagedep(pagedep, freeblks, off)) {
7314 				FREE_LOCK(ump);
7315 				return (ERESTART);
7316 			}
7317 			continue;
7318 
7319 		case D_ALLOCINDIR:
7320 			/*
7321 			 * Simply remove the allocindir, we'll find it via
7322 			 * the indirdep where we can clear pointers if
7323 			 * needed.
7324 			 */
7325 			WORKLIST_REMOVE(wk);
7326 			continue;
7327 
7328 		case D_FREEWORK:
7329 			/*
7330 			 * A truncation is waiting for the zero'd pointers
7331 			 * to be written.  It can be freed when the freeblks
7332 			 * is journaled.
7333 			 */
7334 			WORKLIST_REMOVE(wk);
7335 			wk->wk_state |= ONDEPLIST;
7336 			WORKLIST_INSERT(&freeblks->fb_freeworkhd, wk);
7337 			break;
7338 
7339 		case D_ALLOCDIRECT:
7340 			if (off != 0)
7341 				continue;
7342 			/* FALLTHROUGH */
7343 		default:
7344 			panic("deallocate_dependencies: Unexpected type %s",
7345 			    TYPENAME(wk->wk_type));
7346 			/* NOTREACHED */
7347 		}
7348 	}
7349 	FREE_LOCK(ump);
7350 done:
7351 	/*
7352 	 * Don't throw away this buf, we were partially truncating and
7353 	 * some deps may always remain.
7354 	 */
7355 	if (off) {
7356 		allocbuf(bp, off);
7357 		bp->b_vflags |= BV_SCANNED;
7358 		return (EBUSY);
7359 	}
7360 	bp->b_flags |= B_INVAL | B_NOCACHE;
7361 
7362 	return (0);
7363 }
7364 
7365 /*
7366  * An allocdirect is being canceled due to a truncate.  We must make sure
7367  * the journal entry is released in concert with the blkfree that releases
7368  * the storage.  Completed journal entries must not be released until the
7369  * space is no longer pointed to by the inode or in the bitmap.
7370  */
7371 static void
7372 cancel_allocdirect(adphead, adp, freeblks)
7373 	struct allocdirectlst *adphead;
7374 	struct allocdirect *adp;
7375 	struct freeblks *freeblks;
7376 {
7377 	struct freework *freework;
7378 	struct newblk *newblk;
7379 	struct worklist *wk;
7380 
7381 	TAILQ_REMOVE(adphead, adp, ad_next);
7382 	newblk = (struct newblk *)adp;
7383 	freework = NULL;
7384 	/*
7385 	 * Find the correct freework structure.
7386 	 */
7387 	LIST_FOREACH(wk, &freeblks->fb_freeworkhd, wk_list) {
7388 		if (wk->wk_type != D_FREEWORK)
7389 			continue;
7390 		freework = WK_FREEWORK(wk);
7391 		if (freework->fw_blkno == newblk->nb_newblkno)
7392 			break;
7393 	}
7394 	if (freework == NULL)
7395 		panic("cancel_allocdirect: Freework not found");
7396 	/*
7397 	 * If a newblk exists at all we still have the journal entry that
7398 	 * initiated the allocation so we do not need to journal the free.
7399 	 */
7400 	cancel_jfreeblk(freeblks, freework->fw_blkno);
7401 	/*
7402 	 * If the journal hasn't been written the jnewblk must be passed
7403 	 * to the call to ffs_blkfree that reclaims the space.  We accomplish
7404 	 * this by linking the journal dependency into the freework to be
7405 	 * freed when freework_freeblock() is called.  If the journal has
7406 	 * been written we can simply reclaim the journal space when the
7407 	 * freeblks work is complete.
7408 	 */
7409 	freework->fw_jnewblk = cancel_newblk(newblk, &freework->fw_list,
7410 	    &freeblks->fb_jwork);
7411 	WORKLIST_INSERT(&freeblks->fb_freeworkhd, &newblk->nb_list);
7412 }
7413 
7414 
7415 /*
7416  * Cancel a new block allocation.  May be an indirect or direct block.  We
7417  * remove it from various lists and return any journal record that needs to
7418  * be resolved by the caller.
7419  *
7420  * A special consideration is made for indirects which were never pointed
7421  * at on disk and will never be found once this block is released.
7422  */
7423 static struct jnewblk *
7424 cancel_newblk(newblk, wk, wkhd)
7425 	struct newblk *newblk;
7426 	struct worklist *wk;
7427 	struct workhead *wkhd;
7428 {
7429 	struct jnewblk *jnewblk;
7430 
7431 	CTR1(KTR_SUJ, "cancel_newblk: blkno %jd", newblk->nb_newblkno);
7432 
7433 	newblk->nb_state |= GOINGAWAY;
7434 	/*
7435 	 * Previously we traversed the completedhd on each indirdep
7436 	 * attached to this newblk to cancel them and gather journal
7437 	 * work.  Since we need only the oldest journal segment and
7438 	 * the lowest point on the tree will always have the oldest
7439 	 * journal segment we are free to release the segments
7440 	 * of any subordinates and may leave the indirdep list to
7441 	 * indirdep_complete() when this newblk is freed.
7442 	 */
7443 	if (newblk->nb_state & ONDEPLIST) {
7444 		newblk->nb_state &= ~ONDEPLIST;
7445 		LIST_REMOVE(newblk, nb_deps);
7446 	}
7447 	if (newblk->nb_state & ONWORKLIST)
7448 		WORKLIST_REMOVE(&newblk->nb_list);
7449 	/*
7450 	 * If the journal entry hasn't been written we save a pointer to
7451 	 * the dependency that frees it until it is written or the
7452 	 * superseding operation completes.
7453 	 */
7454 	jnewblk = newblk->nb_jnewblk;
7455 	if (jnewblk != NULL && wk != NULL) {
7456 		newblk->nb_jnewblk = NULL;
7457 		jnewblk->jn_dep = wk;
7458 	}
7459 	if (!LIST_EMPTY(&newblk->nb_jwork))
7460 		jwork_move(wkhd, &newblk->nb_jwork);
7461 	/*
7462 	 * When truncating we must free the newdirblk early to remove
7463 	 * the pagedep from the hash before returning.
7464 	 */
7465 	if ((wk = LIST_FIRST(&newblk->nb_newdirblk)) != NULL)
7466 		free_newdirblk(WK_NEWDIRBLK(wk));
7467 	if (!LIST_EMPTY(&newblk->nb_newdirblk))
7468 		panic("cancel_newblk: extra newdirblk");
7469 
7470 	return (jnewblk);
7471 }
7472 
7473 /*
7474  * Schedule the freefrag associated with a newblk to be released once
7475  * the pointers are written and the previous block is no longer needed.
7476  */
7477 static void
7478 newblk_freefrag(newblk)
7479 	struct newblk *newblk;
7480 {
7481 	struct freefrag *freefrag;
7482 
7483 	if (newblk->nb_freefrag == NULL)
7484 		return;
7485 	freefrag = newblk->nb_freefrag;
7486 	newblk->nb_freefrag = NULL;
7487 	freefrag->ff_state |= COMPLETE;
7488 	if ((freefrag->ff_state & ALLCOMPLETE) == ALLCOMPLETE)
7489 		add_to_worklist(&freefrag->ff_list, 0);
7490 }
7491 
7492 /*
7493  * Free a newblk. Generate a new freefrag work request if appropriate.
7494  * This must be called after the inode pointer and any direct block pointers
7495  * are valid or fully removed via truncate or frag extension.
7496  */
7497 static void
7498 free_newblk(newblk)
7499 	struct newblk *newblk;
7500 {
7501 	struct indirdep *indirdep;
7502 	struct worklist *wk;
7503 
7504 	KASSERT(newblk->nb_jnewblk == NULL,
7505 	    ("free_newblk: jnewblk %p still attached", newblk->nb_jnewblk));
7506 	KASSERT(newblk->nb_list.wk_type != D_NEWBLK,
7507 	    ("free_newblk: unclaimed newblk"));
7508 	LOCK_OWNED(VFSTOUFS(newblk->nb_list.wk_mp));
7509 	newblk_freefrag(newblk);
7510 	if (newblk->nb_state & ONDEPLIST)
7511 		LIST_REMOVE(newblk, nb_deps);
7512 	if (newblk->nb_state & ONWORKLIST)
7513 		WORKLIST_REMOVE(&newblk->nb_list);
7514 	LIST_REMOVE(newblk, nb_hash);
7515 	if ((wk = LIST_FIRST(&newblk->nb_newdirblk)) != NULL)
7516 		free_newdirblk(WK_NEWDIRBLK(wk));
7517 	if (!LIST_EMPTY(&newblk->nb_newdirblk))
7518 		panic("free_newblk: extra newdirblk");
7519 	while ((indirdep = LIST_FIRST(&newblk->nb_indirdeps)) != NULL)
7520 		indirdep_complete(indirdep);
7521 	handle_jwork(&newblk->nb_jwork);
7522 	WORKITEM_FREE(newblk, D_NEWBLK);
7523 }
7524 
7525 /*
7526  * Free a newdirblk. Clear the NEWBLOCK flag on its associated pagedep.
7527  */
7528 static void
7529 free_newdirblk(newdirblk)
7530 	struct newdirblk *newdirblk;
7531 {
7532 	struct pagedep *pagedep;
7533 	struct diradd *dap;
7534 	struct worklist *wk;
7535 
7536 	LOCK_OWNED(VFSTOUFS(newdirblk->db_list.wk_mp));
7537 	WORKLIST_REMOVE(&newdirblk->db_list);
7538 	/*
7539 	 * If the pagedep is still linked onto the directory buffer
7540 	 * dependency chain, then some of the entries on the
7541 	 * pd_pendinghd list may not be committed to disk yet. In
7542 	 * this case, we will simply clear the NEWBLOCK flag and
7543 	 * let the pd_pendinghd list be processed when the pagedep
7544 	 * is next written. If the pagedep is no longer on the buffer
7545 	 * dependency chain, then all the entries on the pd_pending
7546 	 * list are committed to disk and we can free them here.
7547 	 */
7548 	pagedep = newdirblk->db_pagedep;
7549 	pagedep->pd_state &= ~NEWBLOCK;
7550 	if ((pagedep->pd_state & ONWORKLIST) == 0) {
7551 		while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL)
7552 			free_diradd(dap, NULL);
7553 		/*
7554 		 * If no dependencies remain, the pagedep will be freed.
7555 		 */
7556 		free_pagedep(pagedep);
7557 	}
7558 	/* Should only ever be one item in the list. */
7559 	while ((wk = LIST_FIRST(&newdirblk->db_mkdir)) != NULL) {
7560 		WORKLIST_REMOVE(wk);
7561 		handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY);
7562 	}
7563 	WORKITEM_FREE(newdirblk, D_NEWDIRBLK);
7564 }
7565 
7566 /*
7567  * Prepare an inode to be freed. The actual free operation is not
7568  * done until the zero'ed inode has been written to disk.
7569  */
7570 void
7571 softdep_freefile(pvp, ino, mode)
7572 	struct vnode *pvp;
7573 	ino_t ino;
7574 	int mode;
7575 {
7576 	struct inode *ip = VTOI(pvp);
7577 	struct inodedep *inodedep;
7578 	struct freefile *freefile;
7579 	struct freeblks *freeblks;
7580 	struct ufsmount *ump;
7581 
7582 	ump = ITOUMP(ip);
7583 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
7584 	    ("softdep_freefile called on non-softdep filesystem"));
7585 	/*
7586 	 * This sets up the inode de-allocation dependency.
7587 	 */
7588 	freefile = malloc(sizeof(struct freefile),
7589 		M_FREEFILE, M_SOFTDEP_FLAGS);
7590 	workitem_alloc(&freefile->fx_list, D_FREEFILE, pvp->v_mount);
7591 	freefile->fx_mode = mode;
7592 	freefile->fx_oldinum = ino;
7593 	freefile->fx_devvp = ump->um_devvp;
7594 	LIST_INIT(&freefile->fx_jwork);
7595 	UFS_LOCK(ump);
7596 	ump->um_fs->fs_pendinginodes += 1;
7597 	UFS_UNLOCK(ump);
7598 
7599 	/*
7600 	 * If the inodedep does not exist, then the zero'ed inode has
7601 	 * been written to disk. If the allocated inode has never been
7602 	 * written to disk, then the on-disk inode is zero'ed. In either
7603 	 * case we can free the file immediately.  If the journal was
7604 	 * canceled before being written the inode will never make it to
7605 	 * disk and we must send the canceled journal entrys to
7606 	 * ffs_freefile() to be cleared in conjunction with the bitmap.
7607 	 * Any blocks waiting on the inode to write can be safely freed
7608 	 * here as it will never been written.
7609 	 */
7610 	ACQUIRE_LOCK(ump);
7611 	inodedep_lookup(pvp->v_mount, ino, 0, &inodedep);
7612 	if (inodedep) {
7613 		/*
7614 		 * Clear out freeblks that no longer need to reference
7615 		 * this inode.
7616 		 */
7617 		while ((freeblks =
7618 		    TAILQ_FIRST(&inodedep->id_freeblklst)) != NULL) {
7619 			TAILQ_REMOVE(&inodedep->id_freeblklst, freeblks,
7620 			    fb_next);
7621 			freeblks->fb_state &= ~ONDEPLIST;
7622 		}
7623 		/*
7624 		 * Remove this inode from the unlinked list.
7625 		 */
7626 		if (inodedep->id_state & UNLINKED) {
7627 			/*
7628 			 * Save the journal work to be freed with the bitmap
7629 			 * before we clear UNLINKED.  Otherwise it can be lost
7630 			 * if the inode block is written.
7631 			 */
7632 			handle_bufwait(inodedep, &freefile->fx_jwork);
7633 			clear_unlinked_inodedep(inodedep);
7634 			/*
7635 			 * Re-acquire inodedep as we've dropped the
7636 			 * per-filesystem lock in clear_unlinked_inodedep().
7637 			 */
7638 			inodedep_lookup(pvp->v_mount, ino, 0, &inodedep);
7639 		}
7640 	}
7641 	if (inodedep == NULL || check_inode_unwritten(inodedep)) {
7642 		FREE_LOCK(ump);
7643 		handle_workitem_freefile(freefile);
7644 		return;
7645 	}
7646 	if ((inodedep->id_state & DEPCOMPLETE) == 0)
7647 		inodedep->id_state |= GOINGAWAY;
7648 	WORKLIST_INSERT(&inodedep->id_inowait, &freefile->fx_list);
7649 	FREE_LOCK(ump);
7650 	if (ip->i_number == ino)
7651 		ip->i_flag |= IN_MODIFIED;
7652 }
7653 
7654 /*
7655  * Check to see if an inode has never been written to disk. If
7656  * so free the inodedep and return success, otherwise return failure.
7657  *
7658  * If we still have a bitmap dependency, then the inode has never
7659  * been written to disk. Drop the dependency as it is no longer
7660  * necessary since the inode is being deallocated. We set the
7661  * ALLCOMPLETE flags since the bitmap now properly shows that the
7662  * inode is not allocated. Even if the inode is actively being
7663  * written, it has been rolled back to its zero'ed state, so we
7664  * are ensured that a zero inode is what is on the disk. For short
7665  * lived files, this change will usually result in removing all the
7666  * dependencies from the inode so that it can be freed immediately.
7667  */
7668 static int
7669 check_inode_unwritten(inodedep)
7670 	struct inodedep *inodedep;
7671 {
7672 
7673 	LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp));
7674 
7675 	if ((inodedep->id_state & (DEPCOMPLETE | UNLINKED)) != 0 ||
7676 	    !LIST_EMPTY(&inodedep->id_dirremhd) ||
7677 	    !LIST_EMPTY(&inodedep->id_pendinghd) ||
7678 	    !LIST_EMPTY(&inodedep->id_bufwait) ||
7679 	    !LIST_EMPTY(&inodedep->id_inowait) ||
7680 	    !TAILQ_EMPTY(&inodedep->id_inoreflst) ||
7681 	    !TAILQ_EMPTY(&inodedep->id_inoupdt) ||
7682 	    !TAILQ_EMPTY(&inodedep->id_newinoupdt) ||
7683 	    !TAILQ_EMPTY(&inodedep->id_extupdt) ||
7684 	    !TAILQ_EMPTY(&inodedep->id_newextupdt) ||
7685 	    !TAILQ_EMPTY(&inodedep->id_freeblklst) ||
7686 	    inodedep->id_mkdiradd != NULL ||
7687 	    inodedep->id_nlinkdelta != 0)
7688 		return (0);
7689 	/*
7690 	 * Another process might be in initiate_write_inodeblock_ufs[12]
7691 	 * trying to allocate memory without holding "Softdep Lock".
7692 	 */
7693 	if ((inodedep->id_state & IOSTARTED) != 0 &&
7694 	    inodedep->id_savedino1 == NULL)
7695 		return (0);
7696 
7697 	if (inodedep->id_state & ONDEPLIST)
7698 		LIST_REMOVE(inodedep, id_deps);
7699 	inodedep->id_state &= ~ONDEPLIST;
7700 	inodedep->id_state |= ALLCOMPLETE;
7701 	inodedep->id_bmsafemap = NULL;
7702 	if (inodedep->id_state & ONWORKLIST)
7703 		WORKLIST_REMOVE(&inodedep->id_list);
7704 	if (inodedep->id_savedino1 != NULL) {
7705 		free(inodedep->id_savedino1, M_SAVEDINO);
7706 		inodedep->id_savedino1 = NULL;
7707 	}
7708 	if (free_inodedep(inodedep) == 0)
7709 		panic("check_inode_unwritten: busy inode");
7710 	return (1);
7711 }
7712 
7713 static int
7714 check_inodedep_free(inodedep)
7715 	struct inodedep *inodedep;
7716 {
7717 
7718 	LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp));
7719 	if ((inodedep->id_state & ALLCOMPLETE) != ALLCOMPLETE ||
7720 	    !LIST_EMPTY(&inodedep->id_dirremhd) ||
7721 	    !LIST_EMPTY(&inodedep->id_pendinghd) ||
7722 	    !LIST_EMPTY(&inodedep->id_bufwait) ||
7723 	    !LIST_EMPTY(&inodedep->id_inowait) ||
7724 	    !TAILQ_EMPTY(&inodedep->id_inoreflst) ||
7725 	    !TAILQ_EMPTY(&inodedep->id_inoupdt) ||
7726 	    !TAILQ_EMPTY(&inodedep->id_newinoupdt) ||
7727 	    !TAILQ_EMPTY(&inodedep->id_extupdt) ||
7728 	    !TAILQ_EMPTY(&inodedep->id_newextupdt) ||
7729 	    !TAILQ_EMPTY(&inodedep->id_freeblklst) ||
7730 	    inodedep->id_mkdiradd != NULL ||
7731 	    inodedep->id_nlinkdelta != 0 ||
7732 	    inodedep->id_savedino1 != NULL)
7733 		return (0);
7734 	return (1);
7735 }
7736 
7737 /*
7738  * Try to free an inodedep structure. Return 1 if it could be freed.
7739  */
7740 static int
7741 free_inodedep(inodedep)
7742 	struct inodedep *inodedep;
7743 {
7744 
7745 	LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp));
7746 	if ((inodedep->id_state & (ONWORKLIST | UNLINKED)) != 0 ||
7747 	    !check_inodedep_free(inodedep))
7748 		return (0);
7749 	if (inodedep->id_state & ONDEPLIST)
7750 		LIST_REMOVE(inodedep, id_deps);
7751 	LIST_REMOVE(inodedep, id_hash);
7752 	WORKITEM_FREE(inodedep, D_INODEDEP);
7753 	return (1);
7754 }
7755 
7756 /*
7757  * Free the block referenced by a freework structure.  The parent freeblks
7758  * structure is released and completed when the final cg bitmap reaches
7759  * the disk.  This routine may be freeing a jnewblk which never made it to
7760  * disk in which case we do not have to wait as the operation is undone
7761  * in memory immediately.
7762  */
7763 static void
7764 freework_freeblock(freework, key)
7765 	struct freework *freework;
7766 	u_long key;
7767 {
7768 	struct freeblks *freeblks;
7769 	struct jnewblk *jnewblk;
7770 	struct ufsmount *ump;
7771 	struct workhead wkhd;
7772 	struct fs *fs;
7773 	int bsize;
7774 	int needj;
7775 
7776 	ump = VFSTOUFS(freework->fw_list.wk_mp);
7777 	LOCK_OWNED(ump);
7778 	/*
7779 	 * Handle partial truncate separately.
7780 	 */
7781 	if (freework->fw_indir) {
7782 		complete_trunc_indir(freework);
7783 		return;
7784 	}
7785 	freeblks = freework->fw_freeblks;
7786 	fs = ump->um_fs;
7787 	needj = MOUNTEDSUJ(freeblks->fb_list.wk_mp) != 0;
7788 	bsize = lfragtosize(fs, freework->fw_frags);
7789 	LIST_INIT(&wkhd);
7790 	/*
7791 	 * DEPCOMPLETE is cleared in indirblk_insert() if the block lives
7792 	 * on the indirblk hashtable and prevents premature freeing.
7793 	 */
7794 	freework->fw_state |= DEPCOMPLETE;
7795 	/*
7796 	 * SUJ needs to wait for the segment referencing freed indirect
7797 	 * blocks to expire so that we know the checker will not confuse
7798 	 * a re-allocated indirect block with its old contents.
7799 	 */
7800 	if (needj && freework->fw_lbn <= -UFS_NDADDR)
7801 		indirblk_insert(freework);
7802 	/*
7803 	 * If we are canceling an existing jnewblk pass it to the free
7804 	 * routine, otherwise pass the freeblk which will ultimately
7805 	 * release the freeblks.  If we're not journaling, we can just
7806 	 * free the freeblks immediately.
7807 	 */
7808 	jnewblk = freework->fw_jnewblk;
7809 	if (jnewblk != NULL) {
7810 		cancel_jnewblk(jnewblk, &wkhd);
7811 		needj = 0;
7812 	} else if (needj) {
7813 		freework->fw_state |= DELAYEDFREE;
7814 		freeblks->fb_cgwait++;
7815 		WORKLIST_INSERT(&wkhd, &freework->fw_list);
7816 	}
7817 	FREE_LOCK(ump);
7818 	freeblks_free(ump, freeblks, btodb(bsize));
7819 	CTR4(KTR_SUJ,
7820 	    "freework_freeblock: ino %jd blkno %jd lbn %jd size %d",
7821 	    freeblks->fb_inum, freework->fw_blkno, freework->fw_lbn, bsize);
7822 	ffs_blkfree(ump, fs, freeblks->fb_devvp, freework->fw_blkno, bsize,
7823 	    freeblks->fb_inum, freeblks->fb_vtype, &wkhd, key);
7824 	ACQUIRE_LOCK(ump);
7825 	/*
7826 	 * The jnewblk will be discarded and the bits in the map never
7827 	 * made it to disk.  We can immediately free the freeblk.
7828 	 */
7829 	if (needj == 0)
7830 		handle_written_freework(freework);
7831 }
7832 
7833 /*
7834  * We enqueue freework items that need processing back on the freeblks and
7835  * add the freeblks to the worklist.  This makes it easier to find all work
7836  * required to flush a truncation in process_truncates().
7837  */
7838 static void
7839 freework_enqueue(freework)
7840 	struct freework *freework;
7841 {
7842 	struct freeblks *freeblks;
7843 
7844 	freeblks = freework->fw_freeblks;
7845 	if ((freework->fw_state & INPROGRESS) == 0)
7846 		WORKLIST_INSERT(&freeblks->fb_freeworkhd, &freework->fw_list);
7847 	if ((freeblks->fb_state &
7848 	    (ONWORKLIST | INPROGRESS | ALLCOMPLETE)) == ALLCOMPLETE &&
7849 	    LIST_EMPTY(&freeblks->fb_jblkdephd))
7850 		add_to_worklist(&freeblks->fb_list, WK_NODELAY);
7851 }
7852 
7853 /*
7854  * Start, continue, or finish the process of freeing an indirect block tree.
7855  * The free operation may be paused at any point with fw_off containing the
7856  * offset to restart from.  This enables us to implement some flow control
7857  * for large truncates which may fan out and generate a huge number of
7858  * dependencies.
7859  */
7860 static void
7861 handle_workitem_indirblk(freework)
7862 	struct freework *freework;
7863 {
7864 	struct freeblks *freeblks;
7865 	struct ufsmount *ump;
7866 	struct fs *fs;
7867 
7868 	freeblks = freework->fw_freeblks;
7869 	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
7870 	fs = ump->um_fs;
7871 	if (freework->fw_state & DEPCOMPLETE) {
7872 		handle_written_freework(freework);
7873 		return;
7874 	}
7875 	if (freework->fw_off == NINDIR(fs)) {
7876 		freework_freeblock(freework, SINGLETON_KEY);
7877 		return;
7878 	}
7879 	freework->fw_state |= INPROGRESS;
7880 	FREE_LOCK(ump);
7881 	indir_trunc(freework, fsbtodb(fs, freework->fw_blkno),
7882 	    freework->fw_lbn);
7883 	ACQUIRE_LOCK(ump);
7884 }
7885 
7886 /*
7887  * Called when a freework structure attached to a cg buf is written.  The
7888  * ref on either the parent or the freeblks structure is released and
7889  * the freeblks is added back to the worklist if there is more work to do.
7890  */
7891 static void
7892 handle_written_freework(freework)
7893 	struct freework *freework;
7894 {
7895 	struct freeblks *freeblks;
7896 	struct freework *parent;
7897 
7898 	freeblks = freework->fw_freeblks;
7899 	parent = freework->fw_parent;
7900 	if (freework->fw_state & DELAYEDFREE)
7901 		freeblks->fb_cgwait--;
7902 	freework->fw_state |= COMPLETE;
7903 	if ((freework->fw_state & ALLCOMPLETE) == ALLCOMPLETE)
7904 		WORKITEM_FREE(freework, D_FREEWORK);
7905 	if (parent) {
7906 		if (--parent->fw_ref == 0)
7907 			freework_enqueue(parent);
7908 		return;
7909 	}
7910 	if (--freeblks->fb_ref != 0)
7911 		return;
7912 	if ((freeblks->fb_state & (ALLCOMPLETE | ONWORKLIST | INPROGRESS)) ==
7913 	    ALLCOMPLETE && LIST_EMPTY(&freeblks->fb_jblkdephd))
7914 		add_to_worklist(&freeblks->fb_list, WK_NODELAY);
7915 }
7916 
7917 /*
7918  * This workitem routine performs the block de-allocation.
7919  * The workitem is added to the pending list after the updated
7920  * inode block has been written to disk.  As mentioned above,
7921  * checks regarding the number of blocks de-allocated (compared
7922  * to the number of blocks allocated for the file) are also
7923  * performed in this function.
7924  */
7925 static int
7926 handle_workitem_freeblocks(freeblks, flags)
7927 	struct freeblks *freeblks;
7928 	int flags;
7929 {
7930 	struct freework *freework;
7931 	struct newblk *newblk;
7932 	struct allocindir *aip;
7933 	struct ufsmount *ump;
7934 	struct worklist *wk;
7935 	u_long key;
7936 
7937 	KASSERT(LIST_EMPTY(&freeblks->fb_jblkdephd),
7938 	    ("handle_workitem_freeblocks: Journal entries not written."));
7939 	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
7940 	key = ffs_blkrelease_start(ump, freeblks->fb_devvp, freeblks->fb_inum);
7941 	ACQUIRE_LOCK(ump);
7942 	while ((wk = LIST_FIRST(&freeblks->fb_freeworkhd)) != NULL) {
7943 		WORKLIST_REMOVE(wk);
7944 		switch (wk->wk_type) {
7945 		case D_DIRREM:
7946 			wk->wk_state |= COMPLETE;
7947 			add_to_worklist(wk, 0);
7948 			continue;
7949 
7950 		case D_ALLOCDIRECT:
7951 			free_newblk(WK_NEWBLK(wk));
7952 			continue;
7953 
7954 		case D_ALLOCINDIR:
7955 			aip = WK_ALLOCINDIR(wk);
7956 			freework = NULL;
7957 			if (aip->ai_state & DELAYEDFREE) {
7958 				FREE_LOCK(ump);
7959 				freework = newfreework(ump, freeblks, NULL,
7960 				    aip->ai_lbn, aip->ai_newblkno,
7961 				    ump->um_fs->fs_frag, 0, 0);
7962 				ACQUIRE_LOCK(ump);
7963 			}
7964 			newblk = WK_NEWBLK(wk);
7965 			if (newblk->nb_jnewblk) {
7966 				freework->fw_jnewblk = newblk->nb_jnewblk;
7967 				newblk->nb_jnewblk->jn_dep = &freework->fw_list;
7968 				newblk->nb_jnewblk = NULL;
7969 			}
7970 			free_newblk(newblk);
7971 			continue;
7972 
7973 		case D_FREEWORK:
7974 			freework = WK_FREEWORK(wk);
7975 			if (freework->fw_lbn <= -UFS_NDADDR)
7976 				handle_workitem_indirblk(freework);
7977 			else
7978 				freework_freeblock(freework, key);
7979 			continue;
7980 		default:
7981 			panic("handle_workitem_freeblocks: Unknown type %s",
7982 			    TYPENAME(wk->wk_type));
7983 		}
7984 	}
7985 	if (freeblks->fb_ref != 0) {
7986 		freeblks->fb_state &= ~INPROGRESS;
7987 		wake_worklist(&freeblks->fb_list);
7988 		freeblks = NULL;
7989 	}
7990 	FREE_LOCK(ump);
7991 	ffs_blkrelease_finish(ump, key);
7992 	if (freeblks)
7993 		return handle_complete_freeblocks(freeblks, flags);
7994 	return (0);
7995 }
7996 
7997 /*
7998  * Handle completion of block free via truncate.  This allows fs_pending
7999  * to track the actual free block count more closely than if we only updated
8000  * it at the end.  We must be careful to handle cases where the block count
8001  * on free was incorrect.
8002  */
8003 static void
8004 freeblks_free(ump, freeblks, blocks)
8005 	struct ufsmount *ump;
8006 	struct freeblks *freeblks;
8007 	int blocks;
8008 {
8009 	struct fs *fs;
8010 	ufs2_daddr_t remain;
8011 
8012 	UFS_LOCK(ump);
8013 	remain = -freeblks->fb_chkcnt;
8014 	freeblks->fb_chkcnt += blocks;
8015 	if (remain > 0) {
8016 		if (remain < blocks)
8017 			blocks = remain;
8018 		fs = ump->um_fs;
8019 		fs->fs_pendingblocks -= blocks;
8020 	}
8021 	UFS_UNLOCK(ump);
8022 }
8023 
8024 /*
8025  * Once all of the freework workitems are complete we can retire the
8026  * freeblocks dependency and any journal work awaiting completion.  This
8027  * can not be called until all other dependencies are stable on disk.
8028  */
8029 static int
8030 handle_complete_freeblocks(freeblks, flags)
8031 	struct freeblks *freeblks;
8032 	int flags;
8033 {
8034 	struct inodedep *inodedep;
8035 	struct inode *ip;
8036 	struct vnode *vp;
8037 	struct fs *fs;
8038 	struct ufsmount *ump;
8039 	ufs2_daddr_t spare;
8040 
8041 	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
8042 	fs = ump->um_fs;
8043 	flags = LK_EXCLUSIVE | flags;
8044 	spare = freeblks->fb_chkcnt;
8045 
8046 	/*
8047 	 * If we did not release the expected number of blocks we may have
8048 	 * to adjust the inode block count here.  Only do so if it wasn't
8049 	 * a truncation to zero and the modrev still matches.
8050 	 */
8051 	if (spare && freeblks->fb_len != 0) {
8052 		if (ffs_vgetf(freeblks->fb_list.wk_mp, freeblks->fb_inum,
8053 		    flags, &vp, FFSV_FORCEINSMQ) != 0)
8054 			return (EBUSY);
8055 		ip = VTOI(vp);
8056 		if (DIP(ip, i_modrev) == freeblks->fb_modrev) {
8057 			DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - spare);
8058 			ip->i_flag |= IN_CHANGE;
8059 			/*
8060 			 * We must wait so this happens before the
8061 			 * journal is reclaimed.
8062 			 */
8063 			ffs_update(vp, 1);
8064 		}
8065 		vput(vp);
8066 	}
8067 	if (spare < 0) {
8068 		UFS_LOCK(ump);
8069 		fs->fs_pendingblocks += spare;
8070 		UFS_UNLOCK(ump);
8071 	}
8072 #ifdef QUOTA
8073 	/* Handle spare. */
8074 	if (spare)
8075 		quotaadj(freeblks->fb_quota, ump, -spare);
8076 	quotarele(freeblks->fb_quota);
8077 #endif
8078 	ACQUIRE_LOCK(ump);
8079 	if (freeblks->fb_state & ONDEPLIST) {
8080 		inodedep_lookup(freeblks->fb_list.wk_mp, freeblks->fb_inum,
8081 		    0, &inodedep);
8082 		TAILQ_REMOVE(&inodedep->id_freeblklst, freeblks, fb_next);
8083 		freeblks->fb_state &= ~ONDEPLIST;
8084 		if (TAILQ_EMPTY(&inodedep->id_freeblklst))
8085 			free_inodedep(inodedep);
8086 	}
8087 	/*
8088 	 * All of the freeblock deps must be complete prior to this call
8089 	 * so it's now safe to complete earlier outstanding journal entries.
8090 	 */
8091 	handle_jwork(&freeblks->fb_jwork);
8092 	WORKITEM_FREE(freeblks, D_FREEBLKS);
8093 	FREE_LOCK(ump);
8094 	return (0);
8095 }
8096 
8097 /*
8098  * Release blocks associated with the freeblks and stored in the indirect
8099  * block dbn. If level is greater than SINGLE, the block is an indirect block
8100  * and recursive calls to indirtrunc must be used to cleanse other indirect
8101  * blocks.
8102  *
8103  * This handles partial and complete truncation of blocks.  Partial is noted
8104  * with goingaway == 0.  In this case the freework is completed after the
8105  * zero'd indirects are written to disk.  For full truncation the freework
8106  * is completed after the block is freed.
8107  */
8108 static void
8109 indir_trunc(freework, dbn, lbn)
8110 	struct freework *freework;
8111 	ufs2_daddr_t dbn;
8112 	ufs_lbn_t lbn;
8113 {
8114 	struct freework *nfreework;
8115 	struct workhead wkhd;
8116 	struct freeblks *freeblks;
8117 	struct buf *bp;
8118 	struct fs *fs;
8119 	struct indirdep *indirdep;
8120 	struct mount *mp;
8121 	struct ufsmount *ump;
8122 	ufs1_daddr_t *bap1;
8123 	ufs2_daddr_t nb, nnb, *bap2;
8124 	ufs_lbn_t lbnadd, nlbn;
8125 	u_long key;
8126 	int nblocks, ufs1fmt, freedblocks;
8127 	int goingaway, freedeps, needj, level, cnt, i;
8128 
8129 	freeblks = freework->fw_freeblks;
8130 	mp = freeblks->fb_list.wk_mp;
8131 	ump = VFSTOUFS(mp);
8132 	fs = ump->um_fs;
8133 	/*
8134 	 * Get buffer of block pointers to be freed.  There are three cases:
8135 	 *
8136 	 * 1) Partial truncate caches the indirdep pointer in the freework
8137 	 *    which provides us a back copy to the save bp which holds the
8138 	 *    pointers we want to clear.  When this completes the zero
8139 	 *    pointers are written to the real copy.
8140 	 * 2) The indirect is being completely truncated, cancel_indirdep()
8141 	 *    eliminated the real copy and placed the indirdep on the saved
8142 	 *    copy.  The indirdep and buf are discarded when this completes.
8143 	 * 3) The indirect was not in memory, we read a copy off of the disk
8144 	 *    using the devvp and drop and invalidate the buffer when we're
8145 	 *    done.
8146 	 */
8147 	goingaway = 1;
8148 	indirdep = NULL;
8149 	if (freework->fw_indir != NULL) {
8150 		goingaway = 0;
8151 		indirdep = freework->fw_indir;
8152 		bp = indirdep->ir_savebp;
8153 		if (bp == NULL || bp->b_blkno != dbn)
8154 			panic("indir_trunc: Bad saved buf %p blkno %jd",
8155 			    bp, (intmax_t)dbn);
8156 	} else if ((bp = incore(&freeblks->fb_devvp->v_bufobj, dbn)) != NULL) {
8157 		/*
8158 		 * The lock prevents the buf dep list from changing and
8159 	 	 * indirects on devvp should only ever have one dependency.
8160 		 */
8161 		indirdep = WK_INDIRDEP(LIST_FIRST(&bp->b_dep));
8162 		if (indirdep == NULL || (indirdep->ir_state & GOINGAWAY) == 0)
8163 			panic("indir_trunc: Bad indirdep %p from buf %p",
8164 			    indirdep, bp);
8165 	} else if (bread(freeblks->fb_devvp, dbn, (int)fs->fs_bsize,
8166 	    NOCRED, &bp) != 0) {
8167 		brelse(bp);
8168 		return;
8169 	}
8170 	ACQUIRE_LOCK(ump);
8171 	/* Protects against a race with complete_trunc_indir(). */
8172 	freework->fw_state &= ~INPROGRESS;
8173 	/*
8174 	 * If we have an indirdep we need to enforce the truncation order
8175 	 * and discard it when it is complete.
8176 	 */
8177 	if (indirdep) {
8178 		if (freework != TAILQ_FIRST(&indirdep->ir_trunc) &&
8179 		    !TAILQ_EMPTY(&indirdep->ir_trunc)) {
8180 			/*
8181 			 * Add the complete truncate to the list on the
8182 			 * indirdep to enforce in-order processing.
8183 			 */
8184 			if (freework->fw_indir == NULL)
8185 				TAILQ_INSERT_TAIL(&indirdep->ir_trunc,
8186 				    freework, fw_next);
8187 			FREE_LOCK(ump);
8188 			return;
8189 		}
8190 		/*
8191 		 * If we're goingaway, free the indirdep.  Otherwise it will
8192 		 * linger until the write completes.
8193 		 */
8194 		if (goingaway)
8195 			free_indirdep(indirdep);
8196 	}
8197 	FREE_LOCK(ump);
8198 	/* Initialize pointers depending on block size. */
8199 	if (ump->um_fstype == UFS1) {
8200 		bap1 = (ufs1_daddr_t *)bp->b_data;
8201 		nb = bap1[freework->fw_off];
8202 		ufs1fmt = 1;
8203 		bap2 = NULL;
8204 	} else {
8205 		bap2 = (ufs2_daddr_t *)bp->b_data;
8206 		nb = bap2[freework->fw_off];
8207 		ufs1fmt = 0;
8208 		bap1 = NULL;
8209 	}
8210 	level = lbn_level(lbn);
8211 	needj = MOUNTEDSUJ(UFSTOVFS(ump)) != 0;
8212 	lbnadd = lbn_offset(fs, level);
8213 	nblocks = btodb(fs->fs_bsize);
8214 	nfreework = freework;
8215 	freedeps = 0;
8216 	cnt = 0;
8217 	/*
8218 	 * Reclaim blocks.  Traverses into nested indirect levels and
8219 	 * arranges for the current level to be freed when subordinates
8220 	 * are free when journaling.
8221 	 */
8222 	key = ffs_blkrelease_start(ump, freeblks->fb_devvp, freeblks->fb_inum);
8223 	for (i = freework->fw_off; i < NINDIR(fs); i++, nb = nnb) {
8224 		if (UFS_CHECK_BLKNO(mp, freeblks->fb_inum, nb,
8225 		    fs->fs_bsize) != 0)
8226 			nb = 0;
8227 		if (i != NINDIR(fs) - 1) {
8228 			if (ufs1fmt)
8229 				nnb = bap1[i+1];
8230 			else
8231 				nnb = bap2[i+1];
8232 		} else
8233 			nnb = 0;
8234 		if (nb == 0)
8235 			continue;
8236 		cnt++;
8237 		if (level != 0) {
8238 			nlbn = (lbn + 1) - (i * lbnadd);
8239 			if (needj != 0) {
8240 				nfreework = newfreework(ump, freeblks, freework,
8241 				    nlbn, nb, fs->fs_frag, 0, 0);
8242 				freedeps++;
8243 			}
8244 			indir_trunc(nfreework, fsbtodb(fs, nb), nlbn);
8245 		} else {
8246 			struct freedep *freedep;
8247 
8248 			/*
8249 			 * Attempt to aggregate freedep dependencies for
8250 			 * all blocks being released to the same CG.
8251 			 */
8252 			LIST_INIT(&wkhd);
8253 			if (needj != 0 &&
8254 			    (nnb == 0 || (dtog(fs, nb) != dtog(fs, nnb)))) {
8255 				freedep = newfreedep(freework);
8256 				WORKLIST_INSERT_UNLOCKED(&wkhd,
8257 				    &freedep->fd_list);
8258 				freedeps++;
8259 			}
8260 			CTR3(KTR_SUJ,
8261 			    "indir_trunc: ino %jd blkno %jd size %d",
8262 			    freeblks->fb_inum, nb, fs->fs_bsize);
8263 			ffs_blkfree(ump, fs, freeblks->fb_devvp, nb,
8264 			    fs->fs_bsize, freeblks->fb_inum,
8265 			    freeblks->fb_vtype, &wkhd, key);
8266 		}
8267 	}
8268 	ffs_blkrelease_finish(ump, key);
8269 	if (goingaway) {
8270 		bp->b_flags |= B_INVAL | B_NOCACHE;
8271 		brelse(bp);
8272 	}
8273 	freedblocks = 0;
8274 	if (level == 0)
8275 		freedblocks = (nblocks * cnt);
8276 	if (needj == 0)
8277 		freedblocks += nblocks;
8278 	freeblks_free(ump, freeblks, freedblocks);
8279 	/*
8280 	 * If we are journaling set up the ref counts and offset so this
8281 	 * indirect can be completed when its children are free.
8282 	 */
8283 	if (needj) {
8284 		ACQUIRE_LOCK(ump);
8285 		freework->fw_off = i;
8286 		freework->fw_ref += freedeps;
8287 		freework->fw_ref -= NINDIR(fs) + 1;
8288 		if (level == 0)
8289 			freeblks->fb_cgwait += freedeps;
8290 		if (freework->fw_ref == 0)
8291 			freework_freeblock(freework, SINGLETON_KEY);
8292 		FREE_LOCK(ump);
8293 		return;
8294 	}
8295 	/*
8296 	 * If we're not journaling we can free the indirect now.
8297 	 */
8298 	dbn = dbtofsb(fs, dbn);
8299 	CTR3(KTR_SUJ,
8300 	    "indir_trunc 2: ino %jd blkno %jd size %d",
8301 	    freeblks->fb_inum, dbn, fs->fs_bsize);
8302 	ffs_blkfree(ump, fs, freeblks->fb_devvp, dbn, fs->fs_bsize,
8303 	    freeblks->fb_inum, freeblks->fb_vtype, NULL, SINGLETON_KEY);
8304 	/* Non SUJ softdep does single-threaded truncations. */
8305 	if (freework->fw_blkno == dbn) {
8306 		freework->fw_state |= ALLCOMPLETE;
8307 		ACQUIRE_LOCK(ump);
8308 		handle_written_freework(freework);
8309 		FREE_LOCK(ump);
8310 	}
8311 	return;
8312 }
8313 
8314 /*
8315  * Cancel an allocindir when it is removed via truncation.  When bp is not
8316  * NULL the indirect never appeared on disk and is scheduled to be freed
8317  * independently of the indir so we can more easily track journal work.
8318  */
8319 static void
8320 cancel_allocindir(aip, bp, freeblks, trunc)
8321 	struct allocindir *aip;
8322 	struct buf *bp;
8323 	struct freeblks *freeblks;
8324 	int trunc;
8325 {
8326 	struct indirdep *indirdep;
8327 	struct freefrag *freefrag;
8328 	struct newblk *newblk;
8329 
8330 	newblk = (struct newblk *)aip;
8331 	LIST_REMOVE(aip, ai_next);
8332 	/*
8333 	 * We must eliminate the pointer in bp if it must be freed on its
8334 	 * own due to partial truncate or pending journal work.
8335 	 */
8336 	if (bp && (trunc || newblk->nb_jnewblk)) {
8337 		/*
8338 		 * Clear the pointer and mark the aip to be freed
8339 		 * directly if it never existed on disk.
8340 		 */
8341 		aip->ai_state |= DELAYEDFREE;
8342 		indirdep = aip->ai_indirdep;
8343 		if (indirdep->ir_state & UFS1FMT)
8344 			((ufs1_daddr_t *)bp->b_data)[aip->ai_offset] = 0;
8345 		else
8346 			((ufs2_daddr_t *)bp->b_data)[aip->ai_offset] = 0;
8347 	}
8348 	/*
8349 	 * When truncating the previous pointer will be freed via
8350 	 * savedbp.  Eliminate the freefrag which would dup free.
8351 	 */
8352 	if (trunc && (freefrag = newblk->nb_freefrag) != NULL) {
8353 		newblk->nb_freefrag = NULL;
8354 		if (freefrag->ff_jdep)
8355 			cancel_jfreefrag(
8356 			    WK_JFREEFRAG(freefrag->ff_jdep));
8357 		jwork_move(&freeblks->fb_jwork, &freefrag->ff_jwork);
8358 		WORKITEM_FREE(freefrag, D_FREEFRAG);
8359 	}
8360 	/*
8361 	 * If the journal hasn't been written the jnewblk must be passed
8362 	 * to the call to ffs_blkfree that reclaims the space.  We accomplish
8363 	 * this by leaving the journal dependency on the newblk to be freed
8364 	 * when a freework is created in handle_workitem_freeblocks().
8365 	 */
8366 	cancel_newblk(newblk, NULL, &freeblks->fb_jwork);
8367 	WORKLIST_INSERT(&freeblks->fb_freeworkhd, &newblk->nb_list);
8368 }
8369 
8370 /*
8371  * Create the mkdir dependencies for . and .. in a new directory.  Link them
8372  * in to a newdirblk so any subsequent additions are tracked properly.  The
8373  * caller is responsible for adding the mkdir1 dependency to the journal
8374  * and updating id_mkdiradd.  This function returns with the per-filesystem
8375  * lock held.
8376  */
8377 static struct mkdir *
8378 setup_newdir(dap, newinum, dinum, newdirbp, mkdirp)
8379 	struct diradd *dap;
8380 	ino_t newinum;
8381 	ino_t dinum;
8382 	struct buf *newdirbp;
8383 	struct mkdir **mkdirp;
8384 {
8385 	struct newblk *newblk;
8386 	struct pagedep *pagedep;
8387 	struct inodedep *inodedep;
8388 	struct newdirblk *newdirblk;
8389 	struct mkdir *mkdir1, *mkdir2;
8390 	struct worklist *wk;
8391 	struct jaddref *jaddref;
8392 	struct ufsmount *ump;
8393 	struct mount *mp;
8394 
8395 	mp = dap->da_list.wk_mp;
8396 	ump = VFSTOUFS(mp);
8397 	newdirblk = malloc(sizeof(struct newdirblk), M_NEWDIRBLK,
8398 	    M_SOFTDEP_FLAGS);
8399 	workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp);
8400 	LIST_INIT(&newdirblk->db_mkdir);
8401 	mkdir1 = malloc(sizeof(struct mkdir), M_MKDIR, M_SOFTDEP_FLAGS);
8402 	workitem_alloc(&mkdir1->md_list, D_MKDIR, mp);
8403 	mkdir1->md_state = ATTACHED | MKDIR_BODY;
8404 	mkdir1->md_diradd = dap;
8405 	mkdir1->md_jaddref = NULL;
8406 	mkdir2 = malloc(sizeof(struct mkdir), M_MKDIR, M_SOFTDEP_FLAGS);
8407 	workitem_alloc(&mkdir2->md_list, D_MKDIR, mp);
8408 	mkdir2->md_state = ATTACHED | MKDIR_PARENT;
8409 	mkdir2->md_diradd = dap;
8410 	mkdir2->md_jaddref = NULL;
8411 	if (MOUNTEDSUJ(mp) == 0) {
8412 		mkdir1->md_state |= DEPCOMPLETE;
8413 		mkdir2->md_state |= DEPCOMPLETE;
8414 	}
8415 	/*
8416 	 * Dependency on "." and ".." being written to disk.
8417 	 */
8418 	mkdir1->md_buf = newdirbp;
8419 	ACQUIRE_LOCK(VFSTOUFS(mp));
8420 	LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir1, md_mkdirs);
8421 	/*
8422 	 * We must link the pagedep, allocdirect, and newdirblk for
8423 	 * the initial file page so the pointer to the new directory
8424 	 * is not written until the directory contents are live and
8425 	 * any subsequent additions are not marked live until the
8426 	 * block is reachable via the inode.
8427 	 */
8428 	if (pagedep_lookup(mp, newdirbp, newinum, 0, 0, &pagedep) == 0)
8429 		panic("setup_newdir: lost pagedep");
8430 	LIST_FOREACH(wk, &newdirbp->b_dep, wk_list)
8431 		if (wk->wk_type == D_ALLOCDIRECT)
8432 			break;
8433 	if (wk == NULL)
8434 		panic("setup_newdir: lost allocdirect");
8435 	if (pagedep->pd_state & NEWBLOCK)
8436 		panic("setup_newdir: NEWBLOCK already set");
8437 	newblk = WK_NEWBLK(wk);
8438 	pagedep->pd_state |= NEWBLOCK;
8439 	pagedep->pd_newdirblk = newdirblk;
8440 	newdirblk->db_pagedep = pagedep;
8441 	WORKLIST_INSERT(&newblk->nb_newdirblk, &newdirblk->db_list);
8442 	WORKLIST_INSERT(&newdirblk->db_mkdir, &mkdir1->md_list);
8443 	/*
8444 	 * Look up the inodedep for the parent directory so that we
8445 	 * can link mkdir2 into the pending dotdot jaddref or
8446 	 * the inode write if there is none.  If the inode is
8447 	 * ALLCOMPLETE and no jaddref is present all dependencies have
8448 	 * been satisfied and mkdir2 can be freed.
8449 	 */
8450 	inodedep_lookup(mp, dinum, 0, &inodedep);
8451 	if (MOUNTEDSUJ(mp)) {
8452 		if (inodedep == NULL)
8453 			panic("setup_newdir: Lost parent.");
8454 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
8455 		    inoreflst);
8456 		KASSERT(jaddref != NULL && jaddref->ja_parent == newinum &&
8457 		    (jaddref->ja_state & MKDIR_PARENT),
8458 		    ("setup_newdir: bad dotdot jaddref %p", jaddref));
8459 		LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir2, md_mkdirs);
8460 		mkdir2->md_jaddref = jaddref;
8461 		jaddref->ja_mkdir = mkdir2;
8462 	} else if (inodedep == NULL ||
8463 	    (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) {
8464 		dap->da_state &= ~MKDIR_PARENT;
8465 		WORKITEM_FREE(mkdir2, D_MKDIR);
8466 		mkdir2 = NULL;
8467 	} else {
8468 		LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir2, md_mkdirs);
8469 		WORKLIST_INSERT(&inodedep->id_bufwait, &mkdir2->md_list);
8470 	}
8471 	*mkdirp = mkdir2;
8472 
8473 	return (mkdir1);
8474 }
8475 
8476 /*
8477  * Directory entry addition dependencies.
8478  *
8479  * When adding a new directory entry, the inode (with its incremented link
8480  * count) must be written to disk before the directory entry's pointer to it.
8481  * Also, if the inode is newly allocated, the corresponding freemap must be
8482  * updated (on disk) before the directory entry's pointer. These requirements
8483  * are met via undo/redo on the directory entry's pointer, which consists
8484  * simply of the inode number.
8485  *
8486  * As directory entries are added and deleted, the free space within a
8487  * directory block can become fragmented.  The ufs filesystem will compact
8488  * a fragmented directory block to make space for a new entry. When this
8489  * occurs, the offsets of previously added entries change. Any "diradd"
8490  * dependency structures corresponding to these entries must be updated with
8491  * the new offsets.
8492  */
8493 
8494 /*
8495  * This routine is called after the in-memory inode's link
8496  * count has been incremented, but before the directory entry's
8497  * pointer to the inode has been set.
8498  */
8499 int
8500 softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk)
8501 	struct buf *bp;		/* buffer containing directory block */
8502 	struct inode *dp;	/* inode for directory */
8503 	off_t diroffset;	/* offset of new entry in directory */
8504 	ino_t newinum;		/* inode referenced by new directory entry */
8505 	struct buf *newdirbp;	/* non-NULL => contents of new mkdir */
8506 	int isnewblk;		/* entry is in a newly allocated block */
8507 {
8508 	int offset;		/* offset of new entry within directory block */
8509 	ufs_lbn_t lbn;		/* block in directory containing new entry */
8510 	struct fs *fs;
8511 	struct diradd *dap;
8512 	struct newblk *newblk;
8513 	struct pagedep *pagedep;
8514 	struct inodedep *inodedep;
8515 	struct newdirblk *newdirblk;
8516 	struct mkdir *mkdir1, *mkdir2;
8517 	struct jaddref *jaddref;
8518 	struct ufsmount *ump;
8519 	struct mount *mp;
8520 	int isindir;
8521 
8522 	mp = ITOVFS(dp);
8523 	ump = VFSTOUFS(mp);
8524 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
8525 	    ("softdep_setup_directory_add called on non-softdep filesystem"));
8526 	/*
8527 	 * Whiteouts have no dependencies.
8528 	 */
8529 	if (newinum == UFS_WINO) {
8530 		if (newdirbp != NULL)
8531 			bdwrite(newdirbp);
8532 		return (0);
8533 	}
8534 	jaddref = NULL;
8535 	mkdir1 = mkdir2 = NULL;
8536 	fs = ump->um_fs;
8537 	lbn = lblkno(fs, diroffset);
8538 	offset = blkoff(fs, diroffset);
8539 	dap = malloc(sizeof(struct diradd), M_DIRADD,
8540 		M_SOFTDEP_FLAGS|M_ZERO);
8541 	workitem_alloc(&dap->da_list, D_DIRADD, mp);
8542 	dap->da_offset = offset;
8543 	dap->da_newinum = newinum;
8544 	dap->da_state = ATTACHED;
8545 	LIST_INIT(&dap->da_jwork);
8546 	isindir = bp->b_lblkno >= UFS_NDADDR;
8547 	newdirblk = NULL;
8548 	if (isnewblk &&
8549 	    (isindir ? blkoff(fs, diroffset) : fragoff(fs, diroffset)) == 0) {
8550 		newdirblk = malloc(sizeof(struct newdirblk),
8551 		    M_NEWDIRBLK, M_SOFTDEP_FLAGS);
8552 		workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp);
8553 		LIST_INIT(&newdirblk->db_mkdir);
8554 	}
8555 	/*
8556 	 * If we're creating a new directory setup the dependencies and set
8557 	 * the dap state to wait for them.  Otherwise it's COMPLETE and
8558 	 * we can move on.
8559 	 */
8560 	if (newdirbp == NULL) {
8561 		dap->da_state |= DEPCOMPLETE;
8562 		ACQUIRE_LOCK(ump);
8563 	} else {
8564 		dap->da_state |= MKDIR_BODY | MKDIR_PARENT;
8565 		mkdir1 = setup_newdir(dap, newinum, dp->i_number, newdirbp,
8566 		    &mkdir2);
8567 	}
8568 	/*
8569 	 * Link into parent directory pagedep to await its being written.
8570 	 */
8571 	pagedep_lookup(mp, bp, dp->i_number, lbn, DEPALLOC, &pagedep);
8572 #ifdef INVARIANTS
8573 	if (diradd_lookup(pagedep, offset) != NULL)
8574 		panic("softdep_setup_directory_add: %p already at off %d\n",
8575 		    diradd_lookup(pagedep, offset), offset);
8576 #endif
8577 	dap->da_pagedep = pagedep;
8578 	LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], dap,
8579 	    da_pdlist);
8580 	inodedep_lookup(mp, newinum, DEPALLOC, &inodedep);
8581 	/*
8582 	 * If we're journaling, link the diradd into the jaddref so it
8583 	 * may be completed after the journal entry is written.  Otherwise,
8584 	 * link the diradd into its inodedep.  If the inode is not yet
8585 	 * written place it on the bufwait list, otherwise do the post-inode
8586 	 * write processing to put it on the id_pendinghd list.
8587 	 */
8588 	if (MOUNTEDSUJ(mp)) {
8589 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
8590 		    inoreflst);
8591 		KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number,
8592 		    ("softdep_setup_directory_add: bad jaddref %p", jaddref));
8593 		jaddref->ja_diroff = diroffset;
8594 		jaddref->ja_diradd = dap;
8595 		add_to_journal(&jaddref->ja_list);
8596 	} else if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE)
8597 		diradd_inode_written(dap, inodedep);
8598 	else
8599 		WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list);
8600 	/*
8601 	 * Add the journal entries for . and .. links now that the primary
8602 	 * link is written.
8603 	 */
8604 	if (mkdir1 != NULL && MOUNTEDSUJ(mp)) {
8605 		jaddref = (struct jaddref *)TAILQ_PREV(&jaddref->ja_ref,
8606 		    inoreflst, if_deps);
8607 		KASSERT(jaddref != NULL &&
8608 		    jaddref->ja_ino == jaddref->ja_parent &&
8609 		    (jaddref->ja_state & MKDIR_BODY),
8610 		    ("softdep_setup_directory_add: bad dot jaddref %p",
8611 		    jaddref));
8612 		mkdir1->md_jaddref = jaddref;
8613 		jaddref->ja_mkdir = mkdir1;
8614 		/*
8615 		 * It is important that the dotdot journal entry
8616 		 * is added prior to the dot entry since dot writes
8617 		 * both the dot and dotdot links.  These both must
8618 		 * be added after the primary link for the journal
8619 		 * to remain consistent.
8620 		 */
8621 		add_to_journal(&mkdir2->md_jaddref->ja_list);
8622 		add_to_journal(&jaddref->ja_list);
8623 	}
8624 	/*
8625 	 * If we are adding a new directory remember this diradd so that if
8626 	 * we rename it we can keep the dot and dotdot dependencies.  If
8627 	 * we are adding a new name for an inode that has a mkdiradd we
8628 	 * must be in rename and we have to move the dot and dotdot
8629 	 * dependencies to this new name.  The old name is being orphaned
8630 	 * soon.
8631 	 */
8632 	if (mkdir1 != NULL) {
8633 		if (inodedep->id_mkdiradd != NULL)
8634 			panic("softdep_setup_directory_add: Existing mkdir");
8635 		inodedep->id_mkdiradd = dap;
8636 	} else if (inodedep->id_mkdiradd)
8637 		merge_diradd(inodedep, dap);
8638 	if (newdirblk != NULL) {
8639 		/*
8640 		 * There is nothing to do if we are already tracking
8641 		 * this block.
8642 		 */
8643 		if ((pagedep->pd_state & NEWBLOCK) != 0) {
8644 			WORKITEM_FREE(newdirblk, D_NEWDIRBLK);
8645 			FREE_LOCK(ump);
8646 			return (0);
8647 		}
8648 		if (newblk_lookup(mp, dbtofsb(fs, bp->b_blkno), 0, &newblk)
8649 		    == 0)
8650 			panic("softdep_setup_directory_add: lost entry");
8651 		WORKLIST_INSERT(&newblk->nb_newdirblk, &newdirblk->db_list);
8652 		pagedep->pd_state |= NEWBLOCK;
8653 		pagedep->pd_newdirblk = newdirblk;
8654 		newdirblk->db_pagedep = pagedep;
8655 		FREE_LOCK(ump);
8656 		/*
8657 		 * If we extended into an indirect signal direnter to sync.
8658 		 */
8659 		if (isindir)
8660 			return (1);
8661 		return (0);
8662 	}
8663 	FREE_LOCK(ump);
8664 	return (0);
8665 }
8666 
8667 /*
8668  * This procedure is called to change the offset of a directory
8669  * entry when compacting a directory block which must be owned
8670  * exclusively by the caller. Note that the actual entry movement
8671  * must be done in this procedure to ensure that no I/O completions
8672  * occur while the move is in progress.
8673  */
8674 void
8675 softdep_change_directoryentry_offset(bp, dp, base, oldloc, newloc, entrysize)
8676 	struct buf *bp;		/* Buffer holding directory block. */
8677 	struct inode *dp;	/* inode for directory */
8678 	caddr_t base;		/* address of dp->i_offset */
8679 	caddr_t oldloc;		/* address of old directory location */
8680 	caddr_t newloc;		/* address of new directory location */
8681 	int entrysize;		/* size of directory entry */
8682 {
8683 	int offset, oldoffset, newoffset;
8684 	struct pagedep *pagedep;
8685 	struct jmvref *jmvref;
8686 	struct diradd *dap;
8687 	struct direct *de;
8688 	struct mount *mp;
8689 	struct ufsmount *ump;
8690 	ufs_lbn_t lbn;
8691 	int flags;
8692 
8693 	mp = ITOVFS(dp);
8694 	ump = VFSTOUFS(mp);
8695 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
8696 	    ("softdep_change_directoryentry_offset called on "
8697 	     "non-softdep filesystem"));
8698 	de = (struct direct *)oldloc;
8699 	jmvref = NULL;
8700 	flags = 0;
8701 	/*
8702 	 * Moves are always journaled as it would be too complex to
8703 	 * determine if any affected adds or removes are present in the
8704 	 * journal.
8705 	 */
8706 	if (MOUNTEDSUJ(mp)) {
8707 		flags = DEPALLOC;
8708 		jmvref = newjmvref(dp, de->d_ino,
8709 		    dp->i_offset + (oldloc - base),
8710 		    dp->i_offset + (newloc - base));
8711 	}
8712 	lbn = lblkno(ump->um_fs, dp->i_offset);
8713 	offset = blkoff(ump->um_fs, dp->i_offset);
8714 	oldoffset = offset + (oldloc - base);
8715 	newoffset = offset + (newloc - base);
8716 	ACQUIRE_LOCK(ump);
8717 	if (pagedep_lookup(mp, bp, dp->i_number, lbn, flags, &pagedep) == 0)
8718 		goto done;
8719 	dap = diradd_lookup(pagedep, oldoffset);
8720 	if (dap) {
8721 		dap->da_offset = newoffset;
8722 		newoffset = DIRADDHASH(newoffset);
8723 		oldoffset = DIRADDHASH(oldoffset);
8724 		if ((dap->da_state & ALLCOMPLETE) != ALLCOMPLETE &&
8725 		    newoffset != oldoffset) {
8726 			LIST_REMOVE(dap, da_pdlist);
8727 			LIST_INSERT_HEAD(&pagedep->pd_diraddhd[newoffset],
8728 			    dap, da_pdlist);
8729 		}
8730 	}
8731 done:
8732 	if (jmvref) {
8733 		jmvref->jm_pagedep = pagedep;
8734 		LIST_INSERT_HEAD(&pagedep->pd_jmvrefhd, jmvref, jm_deps);
8735 		add_to_journal(&jmvref->jm_list);
8736 	}
8737 	bcopy(oldloc, newloc, entrysize);
8738 	FREE_LOCK(ump);
8739 }
8740 
8741 /*
8742  * Move the mkdir dependencies and journal work from one diradd to another
8743  * when renaming a directory.  The new name must depend on the mkdir deps
8744  * completing as the old name did.  Directories can only have one valid link
8745  * at a time so one must be canonical.
8746  */
8747 static void
8748 merge_diradd(inodedep, newdap)
8749 	struct inodedep *inodedep;
8750 	struct diradd *newdap;
8751 {
8752 	struct diradd *olddap;
8753 	struct mkdir *mkdir, *nextmd;
8754 	struct ufsmount *ump;
8755 	short state;
8756 
8757 	olddap = inodedep->id_mkdiradd;
8758 	inodedep->id_mkdiradd = newdap;
8759 	if ((olddap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
8760 		newdap->da_state &= ~DEPCOMPLETE;
8761 		ump = VFSTOUFS(inodedep->id_list.wk_mp);
8762 		for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir;
8763 		     mkdir = nextmd) {
8764 			nextmd = LIST_NEXT(mkdir, md_mkdirs);
8765 			if (mkdir->md_diradd != olddap)
8766 				continue;
8767 			mkdir->md_diradd = newdap;
8768 			state = mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY);
8769 			newdap->da_state |= state;
8770 			olddap->da_state &= ~state;
8771 			if ((olddap->da_state &
8772 			    (MKDIR_PARENT | MKDIR_BODY)) == 0)
8773 				break;
8774 		}
8775 		if ((olddap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0)
8776 			panic("merge_diradd: unfound ref");
8777 	}
8778 	/*
8779 	 * Any mkdir related journal items are not safe to be freed until
8780 	 * the new name is stable.
8781 	 */
8782 	jwork_move(&newdap->da_jwork, &olddap->da_jwork);
8783 	olddap->da_state |= DEPCOMPLETE;
8784 	complete_diradd(olddap);
8785 }
8786 
8787 /*
8788  * Move the diradd to the pending list when all diradd dependencies are
8789  * complete.
8790  */
8791 static void
8792 complete_diradd(dap)
8793 	struct diradd *dap;
8794 {
8795 	struct pagedep *pagedep;
8796 
8797 	if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
8798 		if (dap->da_state & DIRCHG)
8799 			pagedep = dap->da_previous->dm_pagedep;
8800 		else
8801 			pagedep = dap->da_pagedep;
8802 		LIST_REMOVE(dap, da_pdlist);
8803 		LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
8804 	}
8805 }
8806 
8807 /*
8808  * Cancel a diradd when a dirrem overlaps with it.  We must cancel the journal
8809  * add entries and conditonally journal the remove.
8810  */
8811 static void
8812 cancel_diradd(dap, dirrem, jremref, dotremref, dotdotremref)
8813 	struct diradd *dap;
8814 	struct dirrem *dirrem;
8815 	struct jremref *jremref;
8816 	struct jremref *dotremref;
8817 	struct jremref *dotdotremref;
8818 {
8819 	struct inodedep *inodedep;
8820 	struct jaddref *jaddref;
8821 	struct inoref *inoref;
8822 	struct ufsmount *ump;
8823 	struct mkdir *mkdir;
8824 
8825 	/*
8826 	 * If no remove references were allocated we're on a non-journaled
8827 	 * filesystem and can skip the cancel step.
8828 	 */
8829 	if (jremref == NULL) {
8830 		free_diradd(dap, NULL);
8831 		return;
8832 	}
8833 	/*
8834 	 * Cancel the primary name an free it if it does not require
8835 	 * journaling.
8836 	 */
8837 	if (inodedep_lookup(dap->da_list.wk_mp, dap->da_newinum,
8838 	    0, &inodedep) != 0) {
8839 		/* Abort the addref that reference this diradd.  */
8840 		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
8841 			if (inoref->if_list.wk_type != D_JADDREF)
8842 				continue;
8843 			jaddref = (struct jaddref *)inoref;
8844 			if (jaddref->ja_diradd != dap)
8845 				continue;
8846 			if (cancel_jaddref(jaddref, inodedep,
8847 			    &dirrem->dm_jwork) == 0) {
8848 				free_jremref(jremref);
8849 				jremref = NULL;
8850 			}
8851 			break;
8852 		}
8853 	}
8854 	/*
8855 	 * Cancel subordinate names and free them if they do not require
8856 	 * journaling.
8857 	 */
8858 	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
8859 		ump = VFSTOUFS(dap->da_list.wk_mp);
8860 		LIST_FOREACH(mkdir, &ump->softdep_mkdirlisthd, md_mkdirs) {
8861 			if (mkdir->md_diradd != dap)
8862 				continue;
8863 			if ((jaddref = mkdir->md_jaddref) == NULL)
8864 				continue;
8865 			mkdir->md_jaddref = NULL;
8866 			if (mkdir->md_state & MKDIR_PARENT) {
8867 				if (cancel_jaddref(jaddref, NULL,
8868 				    &dirrem->dm_jwork) == 0) {
8869 					free_jremref(dotdotremref);
8870 					dotdotremref = NULL;
8871 				}
8872 			} else {
8873 				if (cancel_jaddref(jaddref, inodedep,
8874 				    &dirrem->dm_jwork) == 0) {
8875 					free_jremref(dotremref);
8876 					dotremref = NULL;
8877 				}
8878 			}
8879 		}
8880 	}
8881 
8882 	if (jremref)
8883 		journal_jremref(dirrem, jremref, inodedep);
8884 	if (dotremref)
8885 		journal_jremref(dirrem, dotremref, inodedep);
8886 	if (dotdotremref)
8887 		journal_jremref(dirrem, dotdotremref, NULL);
8888 	jwork_move(&dirrem->dm_jwork, &dap->da_jwork);
8889 	free_diradd(dap, &dirrem->dm_jwork);
8890 }
8891 
8892 /*
8893  * Free a diradd dependency structure.
8894  */
8895 static void
8896 free_diradd(dap, wkhd)
8897 	struct diradd *dap;
8898 	struct workhead *wkhd;
8899 {
8900 	struct dirrem *dirrem;
8901 	struct pagedep *pagedep;
8902 	struct inodedep *inodedep;
8903 	struct mkdir *mkdir, *nextmd;
8904 	struct ufsmount *ump;
8905 
8906 	ump = VFSTOUFS(dap->da_list.wk_mp);
8907 	LOCK_OWNED(ump);
8908 	LIST_REMOVE(dap, da_pdlist);
8909 	if (dap->da_state & ONWORKLIST)
8910 		WORKLIST_REMOVE(&dap->da_list);
8911 	if ((dap->da_state & DIRCHG) == 0) {
8912 		pagedep = dap->da_pagedep;
8913 	} else {
8914 		dirrem = dap->da_previous;
8915 		pagedep = dirrem->dm_pagedep;
8916 		dirrem->dm_dirinum = pagedep->pd_ino;
8917 		dirrem->dm_state |= COMPLETE;
8918 		if (LIST_EMPTY(&dirrem->dm_jremrefhd))
8919 			add_to_worklist(&dirrem->dm_list, 0);
8920 	}
8921 	if (inodedep_lookup(pagedep->pd_list.wk_mp, dap->da_newinum,
8922 	    0, &inodedep) != 0)
8923 		if (inodedep->id_mkdiradd == dap)
8924 			inodedep->id_mkdiradd = NULL;
8925 	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
8926 		for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir;
8927 		     mkdir = nextmd) {
8928 			nextmd = LIST_NEXT(mkdir, md_mkdirs);
8929 			if (mkdir->md_diradd != dap)
8930 				continue;
8931 			dap->da_state &=
8932 			    ~(mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY));
8933 			LIST_REMOVE(mkdir, md_mkdirs);
8934 			if (mkdir->md_state & ONWORKLIST)
8935 				WORKLIST_REMOVE(&mkdir->md_list);
8936 			if (mkdir->md_jaddref != NULL)
8937 				panic("free_diradd: Unexpected jaddref");
8938 			WORKITEM_FREE(mkdir, D_MKDIR);
8939 			if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0)
8940 				break;
8941 		}
8942 		if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0)
8943 			panic("free_diradd: unfound ref");
8944 	}
8945 	if (inodedep)
8946 		free_inodedep(inodedep);
8947 	/*
8948 	 * Free any journal segments waiting for the directory write.
8949 	 */
8950 	handle_jwork(&dap->da_jwork);
8951 	WORKITEM_FREE(dap, D_DIRADD);
8952 }
8953 
8954 /*
8955  * Directory entry removal dependencies.
8956  *
8957  * When removing a directory entry, the entry's inode pointer must be
8958  * zero'ed on disk before the corresponding inode's link count is decremented
8959  * (possibly freeing the inode for re-use). This dependency is handled by
8960  * updating the directory entry but delaying the inode count reduction until
8961  * after the directory block has been written to disk. After this point, the
8962  * inode count can be decremented whenever it is convenient.
8963  */
8964 
8965 /*
8966  * This routine should be called immediately after removing
8967  * a directory entry.  The inode's link count should not be
8968  * decremented by the calling procedure -- the soft updates
8969  * code will do this task when it is safe.
8970  */
8971 void
8972 softdep_setup_remove(bp, dp, ip, isrmdir)
8973 	struct buf *bp;		/* buffer containing directory block */
8974 	struct inode *dp;	/* inode for the directory being modified */
8975 	struct inode *ip;	/* inode for directory entry being removed */
8976 	int isrmdir;		/* indicates if doing RMDIR */
8977 {
8978 	struct dirrem *dirrem, *prevdirrem;
8979 	struct inodedep *inodedep;
8980 	struct ufsmount *ump;
8981 	int direct;
8982 
8983 	ump = ITOUMP(ip);
8984 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
8985 	    ("softdep_setup_remove called on non-softdep filesystem"));
8986 	/*
8987 	 * Allocate a new dirrem if appropriate and ACQUIRE_LOCK.  We want
8988 	 * newdirrem() to setup the full directory remove which requires
8989 	 * isrmdir > 1.
8990 	 */
8991 	dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem);
8992 	/*
8993 	 * Add the dirrem to the inodedep's pending remove list for quick
8994 	 * discovery later.
8995 	 */
8996 	if (inodedep_lookup(UFSTOVFS(ump), ip->i_number, 0, &inodedep) == 0)
8997 		panic("softdep_setup_remove: Lost inodedep.");
8998 	KASSERT((inodedep->id_state & UNLINKED) == 0, ("inode unlinked"));
8999 	dirrem->dm_state |= ONDEPLIST;
9000 	LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext);
9001 
9002 	/*
9003 	 * If the COMPLETE flag is clear, then there were no active
9004 	 * entries and we want to roll back to a zeroed entry until
9005 	 * the new inode is committed to disk. If the COMPLETE flag is
9006 	 * set then we have deleted an entry that never made it to
9007 	 * disk. If the entry we deleted resulted from a name change,
9008 	 * then the old name still resides on disk. We cannot delete
9009 	 * its inode (returned to us in prevdirrem) until the zeroed
9010 	 * directory entry gets to disk. The new inode has never been
9011 	 * referenced on the disk, so can be deleted immediately.
9012 	 */
9013 	if ((dirrem->dm_state & COMPLETE) == 0) {
9014 		LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, dirrem,
9015 		    dm_next);
9016 		FREE_LOCK(ump);
9017 	} else {
9018 		if (prevdirrem != NULL)
9019 			LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd,
9020 			    prevdirrem, dm_next);
9021 		dirrem->dm_dirinum = dirrem->dm_pagedep->pd_ino;
9022 		direct = LIST_EMPTY(&dirrem->dm_jremrefhd);
9023 		FREE_LOCK(ump);
9024 		if (direct)
9025 			handle_workitem_remove(dirrem, 0);
9026 	}
9027 }
9028 
9029 /*
9030  * Check for an entry matching 'offset' on both the pd_dirraddhd list and the
9031  * pd_pendinghd list of a pagedep.
9032  */
9033 static struct diradd *
9034 diradd_lookup(pagedep, offset)
9035 	struct pagedep *pagedep;
9036 	int offset;
9037 {
9038 	struct diradd *dap;
9039 
9040 	LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(offset)], da_pdlist)
9041 		if (dap->da_offset == offset)
9042 			return (dap);
9043 	LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist)
9044 		if (dap->da_offset == offset)
9045 			return (dap);
9046 	return (NULL);
9047 }
9048 
9049 /*
9050  * Search for a .. diradd dependency in a directory that is being removed.
9051  * If the directory was renamed to a new parent we have a diradd rather
9052  * than a mkdir for the .. entry.  We need to cancel it now before
9053  * it is found in truncate().
9054  */
9055 static struct jremref *
9056 cancel_diradd_dotdot(ip, dirrem, jremref)
9057 	struct inode *ip;
9058 	struct dirrem *dirrem;
9059 	struct jremref *jremref;
9060 {
9061 	struct pagedep *pagedep;
9062 	struct diradd *dap;
9063 	struct worklist *wk;
9064 
9065 	if (pagedep_lookup(ITOVFS(ip), NULL, ip->i_number, 0, 0, &pagedep) == 0)
9066 		return (jremref);
9067 	dap = diradd_lookup(pagedep, DOTDOT_OFFSET);
9068 	if (dap == NULL)
9069 		return (jremref);
9070 	cancel_diradd(dap, dirrem, jremref, NULL, NULL);
9071 	/*
9072 	 * Mark any journal work as belonging to the parent so it is freed
9073 	 * with the .. reference.
9074 	 */
9075 	LIST_FOREACH(wk, &dirrem->dm_jwork, wk_list)
9076 		wk->wk_state |= MKDIR_PARENT;
9077 	return (NULL);
9078 }
9079 
9080 /*
9081  * Cancel the MKDIR_PARENT mkdir component of a diradd when we're going to
9082  * replace it with a dirrem/diradd pair as a result of re-parenting a
9083  * directory.  This ensures that we don't simultaneously have a mkdir and
9084  * a diradd for the same .. entry.
9085  */
9086 static struct jremref *
9087 cancel_mkdir_dotdot(ip, dirrem, jremref)
9088 	struct inode *ip;
9089 	struct dirrem *dirrem;
9090 	struct jremref *jremref;
9091 {
9092 	struct inodedep *inodedep;
9093 	struct jaddref *jaddref;
9094 	struct ufsmount *ump;
9095 	struct mkdir *mkdir;
9096 	struct diradd *dap;
9097 	struct mount *mp;
9098 
9099 	mp = ITOVFS(ip);
9100 	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0)
9101 		return (jremref);
9102 	dap = inodedep->id_mkdiradd;
9103 	if (dap == NULL || (dap->da_state & MKDIR_PARENT) == 0)
9104 		return (jremref);
9105 	ump = VFSTOUFS(inodedep->id_list.wk_mp);
9106 	for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir;
9107 	    mkdir = LIST_NEXT(mkdir, md_mkdirs))
9108 		if (mkdir->md_diradd == dap && mkdir->md_state & MKDIR_PARENT)
9109 			break;
9110 	if (mkdir == NULL)
9111 		panic("cancel_mkdir_dotdot: Unable to find mkdir\n");
9112 	if ((jaddref = mkdir->md_jaddref) != NULL) {
9113 		mkdir->md_jaddref = NULL;
9114 		jaddref->ja_state &= ~MKDIR_PARENT;
9115 		if (inodedep_lookup(mp, jaddref->ja_ino, 0, &inodedep) == 0)
9116 			panic("cancel_mkdir_dotdot: Lost parent inodedep");
9117 		if (cancel_jaddref(jaddref, inodedep, &dirrem->dm_jwork)) {
9118 			journal_jremref(dirrem, jremref, inodedep);
9119 			jremref = NULL;
9120 		}
9121 	}
9122 	if (mkdir->md_state & ONWORKLIST)
9123 		WORKLIST_REMOVE(&mkdir->md_list);
9124 	mkdir->md_state |= ALLCOMPLETE;
9125 	complete_mkdir(mkdir);
9126 	return (jremref);
9127 }
9128 
9129 static void
9130 journal_jremref(dirrem, jremref, inodedep)
9131 	struct dirrem *dirrem;
9132 	struct jremref *jremref;
9133 	struct inodedep *inodedep;
9134 {
9135 
9136 	if (inodedep == NULL)
9137 		if (inodedep_lookup(jremref->jr_list.wk_mp,
9138 		    jremref->jr_ref.if_ino, 0, &inodedep) == 0)
9139 			panic("journal_jremref: Lost inodedep");
9140 	LIST_INSERT_HEAD(&dirrem->dm_jremrefhd, jremref, jr_deps);
9141 	TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jremref->jr_ref, if_deps);
9142 	add_to_journal(&jremref->jr_list);
9143 }
9144 
9145 static void
9146 dirrem_journal(dirrem, jremref, dotremref, dotdotremref)
9147 	struct dirrem *dirrem;
9148 	struct jremref *jremref;
9149 	struct jremref *dotremref;
9150 	struct jremref *dotdotremref;
9151 {
9152 	struct inodedep *inodedep;
9153 
9154 
9155 	if (inodedep_lookup(jremref->jr_list.wk_mp, jremref->jr_ref.if_ino, 0,
9156 	    &inodedep) == 0)
9157 		panic("dirrem_journal: Lost inodedep");
9158 	journal_jremref(dirrem, jremref, inodedep);
9159 	if (dotremref)
9160 		journal_jremref(dirrem, dotremref, inodedep);
9161 	if (dotdotremref)
9162 		journal_jremref(dirrem, dotdotremref, NULL);
9163 }
9164 
9165 /*
9166  * Allocate a new dirrem if appropriate and return it along with
9167  * its associated pagedep. Called without a lock, returns with lock.
9168  */
9169 static struct dirrem *
9170 newdirrem(bp, dp, ip, isrmdir, prevdirremp)
9171 	struct buf *bp;		/* buffer containing directory block */
9172 	struct inode *dp;	/* inode for the directory being modified */
9173 	struct inode *ip;	/* inode for directory entry being removed */
9174 	int isrmdir;		/* indicates if doing RMDIR */
9175 	struct dirrem **prevdirremp; /* previously referenced inode, if any */
9176 {
9177 	int offset;
9178 	ufs_lbn_t lbn;
9179 	struct diradd *dap;
9180 	struct dirrem *dirrem;
9181 	struct pagedep *pagedep;
9182 	struct jremref *jremref;
9183 	struct jremref *dotremref;
9184 	struct jremref *dotdotremref;
9185 	struct vnode *dvp;
9186 	struct ufsmount *ump;
9187 
9188 	/*
9189 	 * Whiteouts have no deletion dependencies.
9190 	 */
9191 	if (ip == NULL)
9192 		panic("newdirrem: whiteout");
9193 	dvp = ITOV(dp);
9194 	ump = ITOUMP(dp);
9195 
9196 	/*
9197 	 * If the system is over its limit and our filesystem is
9198 	 * responsible for more than our share of that usage and
9199 	 * we are not a snapshot, request some inodedep cleanup.
9200 	 * Limiting the number of dirrem structures will also limit
9201 	 * the number of freefile and freeblks structures.
9202 	 */
9203 	ACQUIRE_LOCK(ump);
9204 	if (!IS_SNAPSHOT(ip) && softdep_excess_items(ump, D_DIRREM))
9205 		schedule_cleanup(UFSTOVFS(ump));
9206 	else
9207 		FREE_LOCK(ump);
9208 	dirrem = malloc(sizeof(struct dirrem), M_DIRREM, M_SOFTDEP_FLAGS |
9209 	    M_ZERO);
9210 	workitem_alloc(&dirrem->dm_list, D_DIRREM, dvp->v_mount);
9211 	LIST_INIT(&dirrem->dm_jremrefhd);
9212 	LIST_INIT(&dirrem->dm_jwork);
9213 	dirrem->dm_state = isrmdir ? RMDIR : 0;
9214 	dirrem->dm_oldinum = ip->i_number;
9215 	*prevdirremp = NULL;
9216 	/*
9217 	 * Allocate remove reference structures to track journal write
9218 	 * dependencies.  We will always have one for the link and
9219 	 * when doing directories we will always have one more for dot.
9220 	 * When renaming a directory we skip the dotdot link change so
9221 	 * this is not needed.
9222 	 */
9223 	jremref = dotremref = dotdotremref = NULL;
9224 	if (DOINGSUJ(dvp)) {
9225 		if (isrmdir) {
9226 			jremref = newjremref(dirrem, dp, ip, dp->i_offset,
9227 			    ip->i_effnlink + 2);
9228 			dotremref = newjremref(dirrem, ip, ip, DOT_OFFSET,
9229 			    ip->i_effnlink + 1);
9230 			dotdotremref = newjremref(dirrem, ip, dp, DOTDOT_OFFSET,
9231 			    dp->i_effnlink + 1);
9232 			dotdotremref->jr_state |= MKDIR_PARENT;
9233 		} else
9234 			jremref = newjremref(dirrem, dp, ip, dp->i_offset,
9235 			    ip->i_effnlink + 1);
9236 	}
9237 	ACQUIRE_LOCK(ump);
9238 	lbn = lblkno(ump->um_fs, dp->i_offset);
9239 	offset = blkoff(ump->um_fs, dp->i_offset);
9240 	pagedep_lookup(UFSTOVFS(ump), bp, dp->i_number, lbn, DEPALLOC,
9241 	    &pagedep);
9242 	dirrem->dm_pagedep = pagedep;
9243 	dirrem->dm_offset = offset;
9244 	/*
9245 	 * If we're renaming a .. link to a new directory, cancel any
9246 	 * existing MKDIR_PARENT mkdir.  If it has already been canceled
9247 	 * the jremref is preserved for any potential diradd in this
9248 	 * location.  This can not coincide with a rmdir.
9249 	 */
9250 	if (dp->i_offset == DOTDOT_OFFSET) {
9251 		if (isrmdir)
9252 			panic("newdirrem: .. directory change during remove?");
9253 		jremref = cancel_mkdir_dotdot(dp, dirrem, jremref);
9254 	}
9255 	/*
9256 	 * If we're removing a directory search for the .. dependency now and
9257 	 * cancel it.  Any pending journal work will be added to the dirrem
9258 	 * to be completed when the workitem remove completes.
9259 	 */
9260 	if (isrmdir)
9261 		dotdotremref = cancel_diradd_dotdot(ip, dirrem, dotdotremref);
9262 	/*
9263 	 * Check for a diradd dependency for the same directory entry.
9264 	 * If present, then both dependencies become obsolete and can
9265 	 * be de-allocated.
9266 	 */
9267 	dap = diradd_lookup(pagedep, offset);
9268 	if (dap == NULL) {
9269 		/*
9270 		 * Link the jremref structures into the dirrem so they are
9271 		 * written prior to the pagedep.
9272 		 */
9273 		if (jremref)
9274 			dirrem_journal(dirrem, jremref, dotremref,
9275 			    dotdotremref);
9276 		return (dirrem);
9277 	}
9278 	/*
9279 	 * Must be ATTACHED at this point.
9280 	 */
9281 	if ((dap->da_state & ATTACHED) == 0)
9282 		panic("newdirrem: not ATTACHED");
9283 	if (dap->da_newinum != ip->i_number)
9284 		panic("newdirrem: inum %ju should be %ju",
9285 		    (uintmax_t)ip->i_number, (uintmax_t)dap->da_newinum);
9286 	/*
9287 	 * If we are deleting a changed name that never made it to disk,
9288 	 * then return the dirrem describing the previous inode (which
9289 	 * represents the inode currently referenced from this entry on disk).
9290 	 */
9291 	if ((dap->da_state & DIRCHG) != 0) {
9292 		*prevdirremp = dap->da_previous;
9293 		dap->da_state &= ~DIRCHG;
9294 		dap->da_pagedep = pagedep;
9295 	}
9296 	/*
9297 	 * We are deleting an entry that never made it to disk.
9298 	 * Mark it COMPLETE so we can delete its inode immediately.
9299 	 */
9300 	dirrem->dm_state |= COMPLETE;
9301 	cancel_diradd(dap, dirrem, jremref, dotremref, dotdotremref);
9302 #ifdef INVARIANTS
9303 	if (isrmdir == 0) {
9304 		struct worklist *wk;
9305 
9306 		LIST_FOREACH(wk, &dirrem->dm_jwork, wk_list)
9307 			if (wk->wk_state & (MKDIR_BODY | MKDIR_PARENT))
9308 				panic("bad wk %p (0x%X)\n", wk, wk->wk_state);
9309 	}
9310 #endif
9311 
9312 	return (dirrem);
9313 }
9314 
9315 /*
9316  * Directory entry change dependencies.
9317  *
9318  * Changing an existing directory entry requires that an add operation
9319  * be completed first followed by a deletion. The semantics for the addition
9320  * are identical to the description of adding a new entry above except
9321  * that the rollback is to the old inode number rather than zero. Once
9322  * the addition dependency is completed, the removal is done as described
9323  * in the removal routine above.
9324  */
9325 
9326 /*
9327  * This routine should be called immediately after changing
9328  * a directory entry.  The inode's link count should not be
9329  * decremented by the calling procedure -- the soft updates
9330  * code will perform this task when it is safe.
9331  */
9332 void
9333 softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir)
9334 	struct buf *bp;		/* buffer containing directory block */
9335 	struct inode *dp;	/* inode for the directory being modified */
9336 	struct inode *ip;	/* inode for directory entry being removed */
9337 	ino_t newinum;		/* new inode number for changed entry */
9338 	int isrmdir;		/* indicates if doing RMDIR */
9339 {
9340 	int offset;
9341 	struct diradd *dap = NULL;
9342 	struct dirrem *dirrem, *prevdirrem;
9343 	struct pagedep *pagedep;
9344 	struct inodedep *inodedep;
9345 	struct jaddref *jaddref;
9346 	struct mount *mp;
9347 	struct ufsmount *ump;
9348 
9349 	mp = ITOVFS(dp);
9350 	ump = VFSTOUFS(mp);
9351 	offset = blkoff(ump->um_fs, dp->i_offset);
9352 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
9353 	   ("softdep_setup_directory_change called on non-softdep filesystem"));
9354 
9355 	/*
9356 	 * Whiteouts do not need diradd dependencies.
9357 	 */
9358 	if (newinum != UFS_WINO) {
9359 		dap = malloc(sizeof(struct diradd),
9360 		    M_DIRADD, M_SOFTDEP_FLAGS|M_ZERO);
9361 		workitem_alloc(&dap->da_list, D_DIRADD, mp);
9362 		dap->da_state = DIRCHG | ATTACHED | DEPCOMPLETE;
9363 		dap->da_offset = offset;
9364 		dap->da_newinum = newinum;
9365 		LIST_INIT(&dap->da_jwork);
9366 	}
9367 
9368 	/*
9369 	 * Allocate a new dirrem and ACQUIRE_LOCK.
9370 	 */
9371 	dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem);
9372 	pagedep = dirrem->dm_pagedep;
9373 	/*
9374 	 * The possible values for isrmdir:
9375 	 *	0 - non-directory file rename
9376 	 *	1 - directory rename within same directory
9377 	 *   inum - directory rename to new directory of given inode number
9378 	 * When renaming to a new directory, we are both deleting and
9379 	 * creating a new directory entry, so the link count on the new
9380 	 * directory should not change. Thus we do not need the followup
9381 	 * dirrem which is usually done in handle_workitem_remove. We set
9382 	 * the DIRCHG flag to tell handle_workitem_remove to skip the
9383 	 * followup dirrem.
9384 	 */
9385 	if (isrmdir > 1)
9386 		dirrem->dm_state |= DIRCHG;
9387 
9388 	/*
9389 	 * Whiteouts have no additional dependencies,
9390 	 * so just put the dirrem on the correct list.
9391 	 */
9392 	if (newinum == UFS_WINO) {
9393 		if ((dirrem->dm_state & COMPLETE) == 0) {
9394 			LIST_INSERT_HEAD(&pagedep->pd_dirremhd, dirrem,
9395 			    dm_next);
9396 		} else {
9397 			dirrem->dm_dirinum = pagedep->pd_ino;
9398 			if (LIST_EMPTY(&dirrem->dm_jremrefhd))
9399 				add_to_worklist(&dirrem->dm_list, 0);
9400 		}
9401 		FREE_LOCK(ump);
9402 		return;
9403 	}
9404 	/*
9405 	 * Add the dirrem to the inodedep's pending remove list for quick
9406 	 * discovery later.  A valid nlinkdelta ensures that this lookup
9407 	 * will not fail.
9408 	 */
9409 	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0)
9410 		panic("softdep_setup_directory_change: Lost inodedep.");
9411 	dirrem->dm_state |= ONDEPLIST;
9412 	LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext);
9413 
9414 	/*
9415 	 * If the COMPLETE flag is clear, then there were no active
9416 	 * entries and we want to roll back to the previous inode until
9417 	 * the new inode is committed to disk. If the COMPLETE flag is
9418 	 * set, then we have deleted an entry that never made it to disk.
9419 	 * If the entry we deleted resulted from a name change, then the old
9420 	 * inode reference still resides on disk. Any rollback that we do
9421 	 * needs to be to that old inode (returned to us in prevdirrem). If
9422 	 * the entry we deleted resulted from a create, then there is
9423 	 * no entry on the disk, so we want to roll back to zero rather
9424 	 * than the uncommitted inode. In either of the COMPLETE cases we
9425 	 * want to immediately free the unwritten and unreferenced inode.
9426 	 */
9427 	if ((dirrem->dm_state & COMPLETE) == 0) {
9428 		dap->da_previous = dirrem;
9429 	} else {
9430 		if (prevdirrem != NULL) {
9431 			dap->da_previous = prevdirrem;
9432 		} else {
9433 			dap->da_state &= ~DIRCHG;
9434 			dap->da_pagedep = pagedep;
9435 		}
9436 		dirrem->dm_dirinum = pagedep->pd_ino;
9437 		if (LIST_EMPTY(&dirrem->dm_jremrefhd))
9438 			add_to_worklist(&dirrem->dm_list, 0);
9439 	}
9440 	/*
9441 	 * Lookup the jaddref for this journal entry.  We must finish
9442 	 * initializing it and make the diradd write dependent on it.
9443 	 * If we're not journaling, put it on the id_bufwait list if the
9444 	 * inode is not yet written. If it is written, do the post-inode
9445 	 * write processing to put it on the id_pendinghd list.
9446 	 */
9447 	inodedep_lookup(mp, newinum, DEPALLOC, &inodedep);
9448 	if (MOUNTEDSUJ(mp)) {
9449 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
9450 		    inoreflst);
9451 		KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number,
9452 		    ("softdep_setup_directory_change: bad jaddref %p",
9453 		    jaddref));
9454 		jaddref->ja_diroff = dp->i_offset;
9455 		jaddref->ja_diradd = dap;
9456 		LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)],
9457 		    dap, da_pdlist);
9458 		add_to_journal(&jaddref->ja_list);
9459 	} else if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) {
9460 		dap->da_state |= COMPLETE;
9461 		LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
9462 		WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list);
9463 	} else {
9464 		LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)],
9465 		    dap, da_pdlist);
9466 		WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list);
9467 	}
9468 	/*
9469 	 * If we're making a new name for a directory that has not been
9470 	 * committed when need to move the dot and dotdot references to
9471 	 * this new name.
9472 	 */
9473 	if (inodedep->id_mkdiradd && dp->i_offset != DOTDOT_OFFSET)
9474 		merge_diradd(inodedep, dap);
9475 	FREE_LOCK(ump);
9476 }
9477 
9478 /*
9479  * Called whenever the link count on an inode is changed.
9480  * It creates an inode dependency so that the new reference(s)
9481  * to the inode cannot be committed to disk until the updated
9482  * inode has been written.
9483  */
9484 void
9485 softdep_change_linkcnt(ip)
9486 	struct inode *ip;	/* the inode with the increased link count */
9487 {
9488 	struct inodedep *inodedep;
9489 	struct ufsmount *ump;
9490 
9491 	ump = ITOUMP(ip);
9492 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
9493 	    ("softdep_change_linkcnt called on non-softdep filesystem"));
9494 	ACQUIRE_LOCK(ump);
9495 	inodedep_lookup(UFSTOVFS(ump), ip->i_number, DEPALLOC, &inodedep);
9496 	if (ip->i_nlink < ip->i_effnlink)
9497 		panic("softdep_change_linkcnt: bad delta");
9498 	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
9499 	FREE_LOCK(ump);
9500 }
9501 
9502 /*
9503  * Attach a sbdep dependency to the superblock buf so that we can keep
9504  * track of the head of the linked list of referenced but unlinked inodes.
9505  */
9506 void
9507 softdep_setup_sbupdate(ump, fs, bp)
9508 	struct ufsmount *ump;
9509 	struct fs *fs;
9510 	struct buf *bp;
9511 {
9512 	struct sbdep *sbdep;
9513 	struct worklist *wk;
9514 
9515 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
9516 	    ("softdep_setup_sbupdate called on non-softdep filesystem"));
9517 	LIST_FOREACH(wk, &bp->b_dep, wk_list)
9518 		if (wk->wk_type == D_SBDEP)
9519 			break;
9520 	if (wk != NULL)
9521 		return;
9522 	sbdep = malloc(sizeof(struct sbdep), M_SBDEP, M_SOFTDEP_FLAGS);
9523 	workitem_alloc(&sbdep->sb_list, D_SBDEP, UFSTOVFS(ump));
9524 	sbdep->sb_fs = fs;
9525 	sbdep->sb_ump = ump;
9526 	ACQUIRE_LOCK(ump);
9527 	WORKLIST_INSERT(&bp->b_dep, &sbdep->sb_list);
9528 	FREE_LOCK(ump);
9529 }
9530 
9531 /*
9532  * Return the first unlinked inodedep which is ready to be the head of the
9533  * list.  The inodedep and all those after it must have valid next pointers.
9534  */
9535 static struct inodedep *
9536 first_unlinked_inodedep(ump)
9537 	struct ufsmount *ump;
9538 {
9539 	struct inodedep *inodedep;
9540 	struct inodedep *idp;
9541 
9542 	LOCK_OWNED(ump);
9543 	for (inodedep = TAILQ_LAST(&ump->softdep_unlinked, inodedeplst);
9544 	    inodedep; inodedep = idp) {
9545 		if ((inodedep->id_state & UNLINKNEXT) == 0)
9546 			return (NULL);
9547 		idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked);
9548 		if (idp == NULL || (idp->id_state & UNLINKNEXT) == 0)
9549 			break;
9550 		if ((inodedep->id_state & UNLINKPREV) == 0)
9551 			break;
9552 	}
9553 	return (inodedep);
9554 }
9555 
9556 /*
9557  * Set the sujfree unlinked head pointer prior to writing a superblock.
9558  */
9559 static void
9560 initiate_write_sbdep(sbdep)
9561 	struct sbdep *sbdep;
9562 {
9563 	struct inodedep *inodedep;
9564 	struct fs *bpfs;
9565 	struct fs *fs;
9566 
9567 	bpfs = sbdep->sb_fs;
9568 	fs = sbdep->sb_ump->um_fs;
9569 	inodedep = first_unlinked_inodedep(sbdep->sb_ump);
9570 	if (inodedep) {
9571 		fs->fs_sujfree = inodedep->id_ino;
9572 		inodedep->id_state |= UNLINKPREV;
9573 	} else
9574 		fs->fs_sujfree = 0;
9575 	bpfs->fs_sujfree = fs->fs_sujfree;
9576 	/*
9577 	 * Because we have made changes to the superblock, we need to
9578 	 * recompute its check-hash.
9579 	 */
9580 	bpfs->fs_ckhash = ffs_calc_sbhash(bpfs);
9581 }
9582 
9583 /*
9584  * After a superblock is written determine whether it must be written again
9585  * due to a changing unlinked list head.
9586  */
9587 static int
9588 handle_written_sbdep(sbdep, bp)
9589 	struct sbdep *sbdep;
9590 	struct buf *bp;
9591 {
9592 	struct inodedep *inodedep;
9593 	struct fs *fs;
9594 
9595 	LOCK_OWNED(sbdep->sb_ump);
9596 	fs = sbdep->sb_fs;
9597 	/*
9598 	 * If the superblock doesn't match the in-memory list start over.
9599 	 */
9600 	inodedep = first_unlinked_inodedep(sbdep->sb_ump);
9601 	if ((inodedep && fs->fs_sujfree != inodedep->id_ino) ||
9602 	    (inodedep == NULL && fs->fs_sujfree != 0)) {
9603 		bdirty(bp);
9604 		return (1);
9605 	}
9606 	WORKITEM_FREE(sbdep, D_SBDEP);
9607 	if (fs->fs_sujfree == 0)
9608 		return (0);
9609 	/*
9610 	 * Now that we have a record of this inode in stable store allow it
9611 	 * to be written to free up pending work.  Inodes may see a lot of
9612 	 * write activity after they are unlinked which we must not hold up.
9613 	 */
9614 	for (; inodedep != NULL; inodedep = TAILQ_NEXT(inodedep, id_unlinked)) {
9615 		if ((inodedep->id_state & UNLINKLINKS) != UNLINKLINKS)
9616 			panic("handle_written_sbdep: Bad inodedep %p (0x%X)",
9617 			    inodedep, inodedep->id_state);
9618 		if (inodedep->id_state & UNLINKONLIST)
9619 			break;
9620 		inodedep->id_state |= DEPCOMPLETE | UNLINKONLIST;
9621 	}
9622 
9623 	return (0);
9624 }
9625 
9626 /*
9627  * Mark an inodedep as unlinked and insert it into the in-memory unlinked list.
9628  */
9629 static void
9630 unlinked_inodedep(mp, inodedep)
9631 	struct mount *mp;
9632 	struct inodedep *inodedep;
9633 {
9634 	struct ufsmount *ump;
9635 
9636 	ump = VFSTOUFS(mp);
9637 	LOCK_OWNED(ump);
9638 	if (MOUNTEDSUJ(mp) == 0)
9639 		return;
9640 	ump->um_fs->fs_fmod = 1;
9641 	if (inodedep->id_state & UNLINKED)
9642 		panic("unlinked_inodedep: %p already unlinked\n", inodedep);
9643 	inodedep->id_state |= UNLINKED;
9644 	TAILQ_INSERT_HEAD(&ump->softdep_unlinked, inodedep, id_unlinked);
9645 }
9646 
9647 /*
9648  * Remove an inodedep from the unlinked inodedep list.  This may require
9649  * disk writes if the inode has made it that far.
9650  */
9651 static void
9652 clear_unlinked_inodedep(inodedep)
9653 	struct inodedep *inodedep;
9654 {
9655 	struct ufs2_dinode *dip;
9656 	struct ufsmount *ump;
9657 	struct inodedep *idp;
9658 	struct inodedep *idn;
9659 	struct fs *fs, *bpfs;
9660 	struct buf *bp;
9661 	ino_t ino;
9662 	ino_t nino;
9663 	ino_t pino;
9664 	int error;
9665 
9666 	ump = VFSTOUFS(inodedep->id_list.wk_mp);
9667 	fs = ump->um_fs;
9668 	ino = inodedep->id_ino;
9669 	error = 0;
9670 	for (;;) {
9671 		LOCK_OWNED(ump);
9672 		KASSERT((inodedep->id_state & UNLINKED) != 0,
9673 		    ("clear_unlinked_inodedep: inodedep %p not unlinked",
9674 		    inodedep));
9675 		/*
9676 		 * If nothing has yet been written simply remove us from
9677 		 * the in memory list and return.  This is the most common
9678 		 * case where handle_workitem_remove() loses the final
9679 		 * reference.
9680 		 */
9681 		if ((inodedep->id_state & UNLINKLINKS) == 0)
9682 			break;
9683 		/*
9684 		 * If we have a NEXT pointer and no PREV pointer we can simply
9685 		 * clear NEXT's PREV and remove ourselves from the list.  Be
9686 		 * careful not to clear PREV if the superblock points at
9687 		 * next as well.
9688 		 */
9689 		idn = TAILQ_NEXT(inodedep, id_unlinked);
9690 		if ((inodedep->id_state & UNLINKLINKS) == UNLINKNEXT) {
9691 			if (idn && fs->fs_sujfree != idn->id_ino)
9692 				idn->id_state &= ~UNLINKPREV;
9693 			break;
9694 		}
9695 		/*
9696 		 * Here we have an inodedep which is actually linked into
9697 		 * the list.  We must remove it by forcing a write to the
9698 		 * link before us, whether it be the superblock or an inode.
9699 		 * Unfortunately the list may change while we're waiting
9700 		 * on the buf lock for either resource so we must loop until
9701 		 * we lock the right one.  If both the superblock and an
9702 		 * inode point to this inode we must clear the inode first
9703 		 * followed by the superblock.
9704 		 */
9705 		idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked);
9706 		pino = 0;
9707 		if (idp && (idp->id_state & UNLINKNEXT))
9708 			pino = idp->id_ino;
9709 		FREE_LOCK(ump);
9710 		if (pino == 0) {
9711 			bp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc),
9712 			    (int)fs->fs_sbsize, 0, 0, 0);
9713 		} else {
9714 			error = bread(ump->um_devvp,
9715 			    fsbtodb(fs, ino_to_fsba(fs, pino)),
9716 			    (int)fs->fs_bsize, NOCRED, &bp);
9717 			if (error)
9718 				brelse(bp);
9719 		}
9720 		ACQUIRE_LOCK(ump);
9721 		if (error)
9722 			break;
9723 		/* If the list has changed restart the loop. */
9724 		idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked);
9725 		nino = 0;
9726 		if (idp && (idp->id_state & UNLINKNEXT))
9727 			nino = idp->id_ino;
9728 		if (nino != pino ||
9729 		    (inodedep->id_state & UNLINKPREV) != UNLINKPREV) {
9730 			FREE_LOCK(ump);
9731 			brelse(bp);
9732 			ACQUIRE_LOCK(ump);
9733 			continue;
9734 		}
9735 		nino = 0;
9736 		idn = TAILQ_NEXT(inodedep, id_unlinked);
9737 		if (idn)
9738 			nino = idn->id_ino;
9739 		/*
9740 		 * Remove us from the in memory list.  After this we cannot
9741 		 * access the inodedep.
9742 		 */
9743 		KASSERT((inodedep->id_state & UNLINKED) != 0,
9744 		    ("clear_unlinked_inodedep: inodedep %p not unlinked",
9745 		    inodedep));
9746 		inodedep->id_state &= ~(UNLINKED | UNLINKLINKS | UNLINKONLIST);
9747 		TAILQ_REMOVE(&ump->softdep_unlinked, inodedep, id_unlinked);
9748 		FREE_LOCK(ump);
9749 		/*
9750 		 * The predecessor's next pointer is manually updated here
9751 		 * so that the NEXT flag is never cleared for an element
9752 		 * that is in the list.
9753 		 */
9754 		if (pino == 0) {
9755 			bcopy((caddr_t)fs, bp->b_data, (u_int)fs->fs_sbsize);
9756 			bpfs = (struct fs *)bp->b_data;
9757 			ffs_oldfscompat_write(bpfs, ump);
9758 			softdep_setup_sbupdate(ump, bpfs, bp);
9759 			/*
9760 			 * Because we may have made changes to the superblock,
9761 			 * we need to recompute its check-hash.
9762 			 */
9763 			bpfs->fs_ckhash = ffs_calc_sbhash(bpfs);
9764 		} else if (fs->fs_magic == FS_UFS1_MAGIC) {
9765 			((struct ufs1_dinode *)bp->b_data +
9766 			    ino_to_fsbo(fs, pino))->di_freelink = nino;
9767 		} else {
9768 			dip = (struct ufs2_dinode *)bp->b_data +
9769 			    ino_to_fsbo(fs, pino);
9770 			dip->di_freelink = nino;
9771 			ffs_update_dinode_ckhash(fs, dip);
9772 		}
9773 		/*
9774 		 * If the bwrite fails we have no recourse to recover.  The
9775 		 * filesystem is corrupted already.
9776 		 */
9777 		bwrite(bp);
9778 		ACQUIRE_LOCK(ump);
9779 		/*
9780 		 * If the superblock pointer still needs to be cleared force
9781 		 * a write here.
9782 		 */
9783 		if (fs->fs_sujfree == ino) {
9784 			FREE_LOCK(ump);
9785 			bp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc),
9786 			    (int)fs->fs_sbsize, 0, 0, 0);
9787 			bcopy((caddr_t)fs, bp->b_data, (u_int)fs->fs_sbsize);
9788 			bpfs = (struct fs *)bp->b_data;
9789 			ffs_oldfscompat_write(bpfs, ump);
9790 			softdep_setup_sbupdate(ump, bpfs, bp);
9791 			/*
9792 			 * Because we may have made changes to the superblock,
9793 			 * we need to recompute its check-hash.
9794 			 */
9795 			bpfs->fs_ckhash = ffs_calc_sbhash(bpfs);
9796 			bwrite(bp);
9797 			ACQUIRE_LOCK(ump);
9798 		}
9799 
9800 		if (fs->fs_sujfree != ino)
9801 			return;
9802 		panic("clear_unlinked_inodedep: Failed to clear free head");
9803 	}
9804 	if (inodedep->id_ino == fs->fs_sujfree)
9805 		panic("clear_unlinked_inodedep: Freeing head of free list");
9806 	inodedep->id_state &= ~(UNLINKED | UNLINKLINKS | UNLINKONLIST);
9807 	TAILQ_REMOVE(&ump->softdep_unlinked, inodedep, id_unlinked);
9808 	return;
9809 }
9810 
9811 /*
9812  * This workitem decrements the inode's link count.
9813  * If the link count reaches zero, the file is removed.
9814  */
9815 static int
9816 handle_workitem_remove(dirrem, flags)
9817 	struct dirrem *dirrem;
9818 	int flags;
9819 {
9820 	struct inodedep *inodedep;
9821 	struct workhead dotdotwk;
9822 	struct worklist *wk;
9823 	struct ufsmount *ump;
9824 	struct mount *mp;
9825 	struct vnode *vp;
9826 	struct inode *ip;
9827 	ino_t oldinum;
9828 
9829 	if (dirrem->dm_state & ONWORKLIST)
9830 		panic("handle_workitem_remove: dirrem %p still on worklist",
9831 		    dirrem);
9832 	oldinum = dirrem->dm_oldinum;
9833 	mp = dirrem->dm_list.wk_mp;
9834 	ump = VFSTOUFS(mp);
9835 	flags |= LK_EXCLUSIVE;
9836 	if (ffs_vgetf(mp, oldinum, flags, &vp, FFSV_FORCEINSMQ) != 0)
9837 		return (EBUSY);
9838 	ip = VTOI(vp);
9839 	ACQUIRE_LOCK(ump);
9840 	if ((inodedep_lookup(mp, oldinum, 0, &inodedep)) == 0)
9841 		panic("handle_workitem_remove: lost inodedep");
9842 	if (dirrem->dm_state & ONDEPLIST)
9843 		LIST_REMOVE(dirrem, dm_inonext);
9844 	KASSERT(LIST_EMPTY(&dirrem->dm_jremrefhd),
9845 	    ("handle_workitem_remove:  Journal entries not written."));
9846 
9847 	/*
9848 	 * Move all dependencies waiting on the remove to complete
9849 	 * from the dirrem to the inode inowait list to be completed
9850 	 * after the inode has been updated and written to disk.  Any
9851 	 * marked MKDIR_PARENT are saved to be completed when the .. ref
9852 	 * is removed.
9853 	 */
9854 	LIST_INIT(&dotdotwk);
9855 	while ((wk = LIST_FIRST(&dirrem->dm_jwork)) != NULL) {
9856 		WORKLIST_REMOVE(wk);
9857 		if (wk->wk_state & MKDIR_PARENT) {
9858 			wk->wk_state &= ~MKDIR_PARENT;
9859 			WORKLIST_INSERT(&dotdotwk, wk);
9860 			continue;
9861 		}
9862 		WORKLIST_INSERT(&inodedep->id_inowait, wk);
9863 	}
9864 	LIST_SWAP(&dirrem->dm_jwork, &dotdotwk, worklist, wk_list);
9865 	/*
9866 	 * Normal file deletion.
9867 	 */
9868 	if ((dirrem->dm_state & RMDIR) == 0) {
9869 		ip->i_nlink--;
9870 		KASSERT(ip->i_nlink >= 0, ("handle_workitem_remove: file ino "
9871 		    "%ju negative i_nlink %d", (intmax_t)ip->i_number,
9872 		    ip->i_nlink));
9873 		DIP_SET(ip, i_nlink, ip->i_nlink);
9874 		ip->i_flag |= IN_CHANGE;
9875 		if (ip->i_nlink < ip->i_effnlink)
9876 			panic("handle_workitem_remove: bad file delta");
9877 		if (ip->i_nlink == 0)
9878 			unlinked_inodedep(mp, inodedep);
9879 		inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
9880 		KASSERT(LIST_EMPTY(&dirrem->dm_jwork),
9881 		    ("handle_workitem_remove: worklist not empty. %s",
9882 		    TYPENAME(LIST_FIRST(&dirrem->dm_jwork)->wk_type)));
9883 		WORKITEM_FREE(dirrem, D_DIRREM);
9884 		FREE_LOCK(ump);
9885 		goto out;
9886 	}
9887 	/*
9888 	 * Directory deletion. Decrement reference count for both the
9889 	 * just deleted parent directory entry and the reference for ".".
9890 	 * Arrange to have the reference count on the parent decremented
9891 	 * to account for the loss of "..".
9892 	 */
9893 	ip->i_nlink -= 2;
9894 	KASSERT(ip->i_nlink >= 0, ("handle_workitem_remove: directory ino "
9895 	    "%ju negative i_nlink %d", (intmax_t)ip->i_number, ip->i_nlink));
9896 	DIP_SET(ip, i_nlink, ip->i_nlink);
9897 	ip->i_flag |= IN_CHANGE;
9898 	if (ip->i_nlink < ip->i_effnlink)
9899 		panic("handle_workitem_remove: bad dir delta");
9900 	if (ip->i_nlink == 0)
9901 		unlinked_inodedep(mp, inodedep);
9902 	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
9903 	/*
9904 	 * Rename a directory to a new parent. Since, we are both deleting
9905 	 * and creating a new directory entry, the link count on the new
9906 	 * directory should not change. Thus we skip the followup dirrem.
9907 	 */
9908 	if (dirrem->dm_state & DIRCHG) {
9909 		KASSERT(LIST_EMPTY(&dirrem->dm_jwork),
9910 		    ("handle_workitem_remove: DIRCHG and worklist not empty."));
9911 		WORKITEM_FREE(dirrem, D_DIRREM);
9912 		FREE_LOCK(ump);
9913 		goto out;
9914 	}
9915 	dirrem->dm_state = ONDEPLIST;
9916 	dirrem->dm_oldinum = dirrem->dm_dirinum;
9917 	/*
9918 	 * Place the dirrem on the parent's diremhd list.
9919 	 */
9920 	if (inodedep_lookup(mp, dirrem->dm_oldinum, 0, &inodedep) == 0)
9921 		panic("handle_workitem_remove: lost dir inodedep");
9922 	LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext);
9923 	/*
9924 	 * If the allocated inode has never been written to disk, then
9925 	 * the on-disk inode is zero'ed and we can remove the file
9926 	 * immediately.  When journaling if the inode has been marked
9927 	 * unlinked and not DEPCOMPLETE we know it can never be written.
9928 	 */
9929 	inodedep_lookup(mp, oldinum, 0, &inodedep);
9930 	if (inodedep == NULL ||
9931 	    (inodedep->id_state & (DEPCOMPLETE | UNLINKED)) == UNLINKED ||
9932 	    check_inode_unwritten(inodedep)) {
9933 		FREE_LOCK(ump);
9934 		vput(vp);
9935 		return handle_workitem_remove(dirrem, flags);
9936 	}
9937 	WORKLIST_INSERT(&inodedep->id_inowait, &dirrem->dm_list);
9938 	FREE_LOCK(ump);
9939 	ip->i_flag |= IN_CHANGE;
9940 out:
9941 	ffs_update(vp, 0);
9942 	vput(vp);
9943 	return (0);
9944 }
9945 
9946 /*
9947  * Inode de-allocation dependencies.
9948  *
9949  * When an inode's link count is reduced to zero, it can be de-allocated. We
9950  * found it convenient to postpone de-allocation until after the inode is
9951  * written to disk with its new link count (zero).  At this point, all of the
9952  * on-disk inode's block pointers are nullified and, with careful dependency
9953  * list ordering, all dependencies related to the inode will be satisfied and
9954  * the corresponding dependency structures de-allocated.  So, if/when the
9955  * inode is reused, there will be no mixing of old dependencies with new
9956  * ones.  This artificial dependency is set up by the block de-allocation
9957  * procedure above (softdep_setup_freeblocks) and completed by the
9958  * following procedure.
9959  */
9960 static void
9961 handle_workitem_freefile(freefile)
9962 	struct freefile *freefile;
9963 {
9964 	struct workhead wkhd;
9965 	struct fs *fs;
9966 	struct ufsmount *ump;
9967 	int error;
9968 #ifdef INVARIANTS
9969 	struct inodedep *idp;
9970 #endif
9971 
9972 	ump = VFSTOUFS(freefile->fx_list.wk_mp);
9973 	fs = ump->um_fs;
9974 #ifdef INVARIANTS
9975 	ACQUIRE_LOCK(ump);
9976 	error = inodedep_lookup(UFSTOVFS(ump), freefile->fx_oldinum, 0, &idp);
9977 	FREE_LOCK(ump);
9978 	if (error)
9979 		panic("handle_workitem_freefile: inodedep %p survived", idp);
9980 #endif
9981 	UFS_LOCK(ump);
9982 	fs->fs_pendinginodes -= 1;
9983 	UFS_UNLOCK(ump);
9984 	LIST_INIT(&wkhd);
9985 	LIST_SWAP(&freefile->fx_jwork, &wkhd, worklist, wk_list);
9986 	if ((error = ffs_freefile(ump, fs, freefile->fx_devvp,
9987 	    freefile->fx_oldinum, freefile->fx_mode, &wkhd)) != 0)
9988 		softdep_error("handle_workitem_freefile", error);
9989 	ACQUIRE_LOCK(ump);
9990 	WORKITEM_FREE(freefile, D_FREEFILE);
9991 	FREE_LOCK(ump);
9992 }
9993 
9994 
9995 /*
9996  * Helper function which unlinks marker element from work list and returns
9997  * the next element on the list.
9998  */
9999 static __inline struct worklist *
10000 markernext(struct worklist *marker)
10001 {
10002 	struct worklist *next;
10003 
10004 	next = LIST_NEXT(marker, wk_list);
10005 	LIST_REMOVE(marker, wk_list);
10006 	return next;
10007 }
10008 
10009 /*
10010  * Disk writes.
10011  *
10012  * The dependency structures constructed above are most actively used when file
10013  * system blocks are written to disk.  No constraints are placed on when a
10014  * block can be written, but unsatisfied update dependencies are made safe by
10015  * modifying (or replacing) the source memory for the duration of the disk
10016  * write.  When the disk write completes, the memory block is again brought
10017  * up-to-date.
10018  *
10019  * In-core inode structure reclamation.
10020  *
10021  * Because there are a finite number of "in-core" inode structures, they are
10022  * reused regularly.  By transferring all inode-related dependencies to the
10023  * in-memory inode block and indexing them separately (via "inodedep"s), we
10024  * can allow "in-core" inode structures to be reused at any time and avoid
10025  * any increase in contention.
10026  *
10027  * Called just before entering the device driver to initiate a new disk I/O.
10028  * The buffer must be locked, thus, no I/O completion operations can occur
10029  * while we are manipulating its associated dependencies.
10030  */
10031 static void
10032 softdep_disk_io_initiation(bp)
10033 	struct buf *bp;		/* structure describing disk write to occur */
10034 {
10035 	struct worklist *wk;
10036 	struct worklist marker;
10037 	struct inodedep *inodedep;
10038 	struct freeblks *freeblks;
10039 	struct jblkdep *jblkdep;
10040 	struct newblk *newblk;
10041 	struct ufsmount *ump;
10042 
10043 	/*
10044 	 * We only care about write operations. There should never
10045 	 * be dependencies for reads.
10046 	 */
10047 	if (bp->b_iocmd != BIO_WRITE)
10048 		panic("softdep_disk_io_initiation: not write");
10049 
10050 	if (bp->b_vflags & BV_BKGRDINPROG)
10051 		panic("softdep_disk_io_initiation: Writing buffer with "
10052 		    "background write in progress: %p", bp);
10053 
10054 	ump = softdep_bp_to_mp(bp);
10055 	if (ump == NULL)
10056 		return;
10057 
10058 	marker.wk_type = D_LAST + 1;	/* Not a normal workitem */
10059 	PHOLD(curproc);			/* Don't swap out kernel stack */
10060 	ACQUIRE_LOCK(ump);
10061 	/*
10062 	 * Do any necessary pre-I/O processing.
10063 	 */
10064 	for (wk = LIST_FIRST(&bp->b_dep); wk != NULL;
10065 	     wk = markernext(&marker)) {
10066 		LIST_INSERT_AFTER(wk, &marker, wk_list);
10067 		switch (wk->wk_type) {
10068 
10069 		case D_PAGEDEP:
10070 			initiate_write_filepage(WK_PAGEDEP(wk), bp);
10071 			continue;
10072 
10073 		case D_INODEDEP:
10074 			inodedep = WK_INODEDEP(wk);
10075 			if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC)
10076 				initiate_write_inodeblock_ufs1(inodedep, bp);
10077 			else
10078 				initiate_write_inodeblock_ufs2(inodedep, bp);
10079 			continue;
10080 
10081 		case D_INDIRDEP:
10082 			initiate_write_indirdep(WK_INDIRDEP(wk), bp);
10083 			continue;
10084 
10085 		case D_BMSAFEMAP:
10086 			initiate_write_bmsafemap(WK_BMSAFEMAP(wk), bp);
10087 			continue;
10088 
10089 		case D_JSEG:
10090 			WK_JSEG(wk)->js_buf = NULL;
10091 			continue;
10092 
10093 		case D_FREEBLKS:
10094 			freeblks = WK_FREEBLKS(wk);
10095 			jblkdep = LIST_FIRST(&freeblks->fb_jblkdephd);
10096 			/*
10097 			 * We have to wait for the freeblks to be journaled
10098 			 * before we can write an inodeblock with updated
10099 			 * pointers.  Be careful to arrange the marker so
10100 			 * we revisit the freeblks if it's not removed by
10101 			 * the first jwait().
10102 			 */
10103 			if (jblkdep != NULL) {
10104 				LIST_REMOVE(&marker, wk_list);
10105 				LIST_INSERT_BEFORE(wk, &marker, wk_list);
10106 				jwait(&jblkdep->jb_list, MNT_WAIT);
10107 			}
10108 			continue;
10109 		case D_ALLOCDIRECT:
10110 		case D_ALLOCINDIR:
10111 			/*
10112 			 * We have to wait for the jnewblk to be journaled
10113 			 * before we can write to a block if the contents
10114 			 * may be confused with an earlier file's indirect
10115 			 * at recovery time.  Handle the marker as described
10116 			 * above.
10117 			 */
10118 			newblk = WK_NEWBLK(wk);
10119 			if (newblk->nb_jnewblk != NULL &&
10120 			    indirblk_lookup(newblk->nb_list.wk_mp,
10121 			    newblk->nb_newblkno)) {
10122 				LIST_REMOVE(&marker, wk_list);
10123 				LIST_INSERT_BEFORE(wk, &marker, wk_list);
10124 				jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT);
10125 			}
10126 			continue;
10127 
10128 		case D_SBDEP:
10129 			initiate_write_sbdep(WK_SBDEP(wk));
10130 			continue;
10131 
10132 		case D_MKDIR:
10133 		case D_FREEWORK:
10134 		case D_FREEDEP:
10135 		case D_JSEGDEP:
10136 			continue;
10137 
10138 		default:
10139 			panic("handle_disk_io_initiation: Unexpected type %s",
10140 			    TYPENAME(wk->wk_type));
10141 			/* NOTREACHED */
10142 		}
10143 	}
10144 	FREE_LOCK(ump);
10145 	PRELE(curproc);			/* Allow swapout of kernel stack */
10146 }
10147 
10148 /*
10149  * Called from within the procedure above to deal with unsatisfied
10150  * allocation dependencies in a directory. The buffer must be locked,
10151  * thus, no I/O completion operations can occur while we are
10152  * manipulating its associated dependencies.
10153  */
10154 static void
10155 initiate_write_filepage(pagedep, bp)
10156 	struct pagedep *pagedep;
10157 	struct buf *bp;
10158 {
10159 	struct jremref *jremref;
10160 	struct jmvref *jmvref;
10161 	struct dirrem *dirrem;
10162 	struct diradd *dap;
10163 	struct direct *ep;
10164 	int i;
10165 
10166 	if (pagedep->pd_state & IOSTARTED) {
10167 		/*
10168 		 * This can only happen if there is a driver that does not
10169 		 * understand chaining. Here biodone will reissue the call
10170 		 * to strategy for the incomplete buffers.
10171 		 */
10172 		printf("initiate_write_filepage: already started\n");
10173 		return;
10174 	}
10175 	pagedep->pd_state |= IOSTARTED;
10176 	/*
10177 	 * Wait for all journal remove dependencies to hit the disk.
10178 	 * We can not allow any potentially conflicting directory adds
10179 	 * to be visible before removes and rollback is too difficult.
10180 	 * The per-filesystem lock may be dropped and re-acquired, however
10181 	 * we hold the buf locked so the dependency can not go away.
10182 	 */
10183 	LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next)
10184 		while ((jremref = LIST_FIRST(&dirrem->dm_jremrefhd)) != NULL)
10185 			jwait(&jremref->jr_list, MNT_WAIT);
10186 	while ((jmvref = LIST_FIRST(&pagedep->pd_jmvrefhd)) != NULL)
10187 		jwait(&jmvref->jm_list, MNT_WAIT);
10188 	for (i = 0; i < DAHASHSZ; i++) {
10189 		LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) {
10190 			ep = (struct direct *)
10191 			    ((char *)bp->b_data + dap->da_offset);
10192 			if (ep->d_ino != dap->da_newinum)
10193 				panic("%s: dir inum %ju != new %ju",
10194 				    "initiate_write_filepage",
10195 				    (uintmax_t)ep->d_ino,
10196 				    (uintmax_t)dap->da_newinum);
10197 			if (dap->da_state & DIRCHG)
10198 				ep->d_ino = dap->da_previous->dm_oldinum;
10199 			else
10200 				ep->d_ino = 0;
10201 			dap->da_state &= ~ATTACHED;
10202 			dap->da_state |= UNDONE;
10203 		}
10204 	}
10205 }
10206 
10207 /*
10208  * Version of initiate_write_inodeblock that handles UFS1 dinodes.
10209  * Note that any bug fixes made to this routine must be done in the
10210  * version found below.
10211  *
10212  * Called from within the procedure above to deal with unsatisfied
10213  * allocation dependencies in an inodeblock. The buffer must be
10214  * locked, thus, no I/O completion operations can occur while we
10215  * are manipulating its associated dependencies.
10216  */
10217 static void
10218 initiate_write_inodeblock_ufs1(inodedep, bp)
10219 	struct inodedep *inodedep;
10220 	struct buf *bp;			/* The inode block */
10221 {
10222 	struct allocdirect *adp, *lastadp;
10223 	struct ufs1_dinode *dp;
10224 	struct ufs1_dinode *sip;
10225 	struct inoref *inoref;
10226 	struct ufsmount *ump;
10227 	struct fs *fs;
10228 	ufs_lbn_t i;
10229 #ifdef INVARIANTS
10230 	ufs_lbn_t prevlbn = 0;
10231 #endif
10232 	int deplist;
10233 
10234 	if (inodedep->id_state & IOSTARTED)
10235 		panic("initiate_write_inodeblock_ufs1: already started");
10236 	inodedep->id_state |= IOSTARTED;
10237 	fs = inodedep->id_fs;
10238 	ump = VFSTOUFS(inodedep->id_list.wk_mp);
10239 	LOCK_OWNED(ump);
10240 	dp = (struct ufs1_dinode *)bp->b_data +
10241 	    ino_to_fsbo(fs, inodedep->id_ino);
10242 
10243 	/*
10244 	 * If we're on the unlinked list but have not yet written our
10245 	 * next pointer initialize it here.
10246 	 */
10247 	if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) {
10248 		struct inodedep *inon;
10249 
10250 		inon = TAILQ_NEXT(inodedep, id_unlinked);
10251 		dp->di_freelink = inon ? inon->id_ino : 0;
10252 	}
10253 	/*
10254 	 * If the bitmap is not yet written, then the allocated
10255 	 * inode cannot be written to disk.
10256 	 */
10257 	if ((inodedep->id_state & DEPCOMPLETE) == 0) {
10258 		if (inodedep->id_savedino1 != NULL)
10259 			panic("initiate_write_inodeblock_ufs1: I/O underway");
10260 		FREE_LOCK(ump);
10261 		sip = malloc(sizeof(struct ufs1_dinode),
10262 		    M_SAVEDINO, M_SOFTDEP_FLAGS);
10263 		ACQUIRE_LOCK(ump);
10264 		inodedep->id_savedino1 = sip;
10265 		*inodedep->id_savedino1 = *dp;
10266 		bzero((caddr_t)dp, sizeof(struct ufs1_dinode));
10267 		dp->di_gen = inodedep->id_savedino1->di_gen;
10268 		dp->di_freelink = inodedep->id_savedino1->di_freelink;
10269 		return;
10270 	}
10271 	/*
10272 	 * If no dependencies, then there is nothing to roll back.
10273 	 */
10274 	inodedep->id_savedsize = dp->di_size;
10275 	inodedep->id_savedextsize = 0;
10276 	inodedep->id_savednlink = dp->di_nlink;
10277 	if (TAILQ_EMPTY(&inodedep->id_inoupdt) &&
10278 	    TAILQ_EMPTY(&inodedep->id_inoreflst))
10279 		return;
10280 	/*
10281 	 * Revert the link count to that of the first unwritten journal entry.
10282 	 */
10283 	inoref = TAILQ_FIRST(&inodedep->id_inoreflst);
10284 	if (inoref)
10285 		dp->di_nlink = inoref->if_nlink;
10286 	/*
10287 	 * Set the dependencies to busy.
10288 	 */
10289 	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
10290 	     adp = TAILQ_NEXT(adp, ad_next)) {
10291 #ifdef INVARIANTS
10292 		if (deplist != 0 && prevlbn >= adp->ad_offset)
10293 			panic("softdep_write_inodeblock: lbn order");
10294 		prevlbn = adp->ad_offset;
10295 		if (adp->ad_offset < UFS_NDADDR &&
10296 		    dp->di_db[adp->ad_offset] != adp->ad_newblkno)
10297 			panic("initiate_write_inodeblock_ufs1: "
10298 			    "direct pointer #%jd mismatch %d != %jd",
10299 			    (intmax_t)adp->ad_offset,
10300 			    dp->di_db[adp->ad_offset],
10301 			    (intmax_t)adp->ad_newblkno);
10302 		if (adp->ad_offset >= UFS_NDADDR &&
10303 		    dp->di_ib[adp->ad_offset - UFS_NDADDR] != adp->ad_newblkno)
10304 			panic("initiate_write_inodeblock_ufs1: "
10305 			    "indirect pointer #%jd mismatch %d != %jd",
10306 			    (intmax_t)adp->ad_offset - UFS_NDADDR,
10307 			    dp->di_ib[adp->ad_offset - UFS_NDADDR],
10308 			    (intmax_t)adp->ad_newblkno);
10309 		deplist |= 1 << adp->ad_offset;
10310 		if ((adp->ad_state & ATTACHED) == 0)
10311 			panic("initiate_write_inodeblock_ufs1: "
10312 			    "Unknown state 0x%x", adp->ad_state);
10313 #endif /* INVARIANTS */
10314 		adp->ad_state &= ~ATTACHED;
10315 		adp->ad_state |= UNDONE;
10316 	}
10317 	/*
10318 	 * The on-disk inode cannot claim to be any larger than the last
10319 	 * fragment that has been written. Otherwise, the on-disk inode
10320 	 * might have fragments that were not the last block in the file
10321 	 * which would corrupt the filesystem.
10322 	 */
10323 	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
10324 	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
10325 		if (adp->ad_offset >= UFS_NDADDR)
10326 			break;
10327 		dp->di_db[adp->ad_offset] = adp->ad_oldblkno;
10328 		/* keep going until hitting a rollback to a frag */
10329 		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
10330 			continue;
10331 		dp->di_size = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize;
10332 		for (i = adp->ad_offset + 1; i < UFS_NDADDR; i++) {
10333 #ifdef INVARIANTS
10334 			if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0)
10335 				panic("initiate_write_inodeblock_ufs1: "
10336 				    "lost dep1");
10337 #endif /* INVARIANTS */
10338 			dp->di_db[i] = 0;
10339 		}
10340 		for (i = 0; i < UFS_NIADDR; i++) {
10341 #ifdef INVARIANTS
10342 			if (dp->di_ib[i] != 0 &&
10343 			    (deplist & ((1 << UFS_NDADDR) << i)) == 0)
10344 				panic("initiate_write_inodeblock_ufs1: "
10345 				    "lost dep2");
10346 #endif /* INVARIANTS */
10347 			dp->di_ib[i] = 0;
10348 		}
10349 		return;
10350 	}
10351 	/*
10352 	 * If we have zero'ed out the last allocated block of the file,
10353 	 * roll back the size to the last currently allocated block.
10354 	 * We know that this last allocated block is a full-sized as
10355 	 * we already checked for fragments in the loop above.
10356 	 */
10357 	if (lastadp != NULL &&
10358 	    dp->di_size <= (lastadp->ad_offset + 1) * fs->fs_bsize) {
10359 		for (i = lastadp->ad_offset; i >= 0; i--)
10360 			if (dp->di_db[i] != 0)
10361 				break;
10362 		dp->di_size = (i + 1) * fs->fs_bsize;
10363 	}
10364 	/*
10365 	 * The only dependencies are for indirect blocks.
10366 	 *
10367 	 * The file size for indirect block additions is not guaranteed.
10368 	 * Such a guarantee would be non-trivial to achieve. The conventional
10369 	 * synchronous write implementation also does not make this guarantee.
10370 	 * Fsck should catch and fix discrepancies. Arguably, the file size
10371 	 * can be over-estimated without destroying integrity when the file
10372 	 * moves into the indirect blocks (i.e., is large). If we want to
10373 	 * postpone fsck, we are stuck with this argument.
10374 	 */
10375 	for (; adp; adp = TAILQ_NEXT(adp, ad_next))
10376 		dp->di_ib[adp->ad_offset - UFS_NDADDR] = 0;
10377 }
10378 
10379 /*
10380  * Version of initiate_write_inodeblock that handles UFS2 dinodes.
10381  * Note that any bug fixes made to this routine must be done in the
10382  * version found above.
10383  *
10384  * Called from within the procedure above to deal with unsatisfied
10385  * allocation dependencies in an inodeblock. The buffer must be
10386  * locked, thus, no I/O completion operations can occur while we
10387  * are manipulating its associated dependencies.
10388  */
10389 static void
10390 initiate_write_inodeblock_ufs2(inodedep, bp)
10391 	struct inodedep *inodedep;
10392 	struct buf *bp;			/* The inode block */
10393 {
10394 	struct allocdirect *adp, *lastadp;
10395 	struct ufs2_dinode *dp;
10396 	struct ufs2_dinode *sip;
10397 	struct inoref *inoref;
10398 	struct ufsmount *ump;
10399 	struct fs *fs;
10400 	ufs_lbn_t i;
10401 #ifdef INVARIANTS
10402 	ufs_lbn_t prevlbn = 0;
10403 #endif
10404 	int deplist;
10405 
10406 	if (inodedep->id_state & IOSTARTED)
10407 		panic("initiate_write_inodeblock_ufs2: already started");
10408 	inodedep->id_state |= IOSTARTED;
10409 	fs = inodedep->id_fs;
10410 	ump = VFSTOUFS(inodedep->id_list.wk_mp);
10411 	LOCK_OWNED(ump);
10412 	dp = (struct ufs2_dinode *)bp->b_data +
10413 	    ino_to_fsbo(fs, inodedep->id_ino);
10414 
10415 	/*
10416 	 * If we're on the unlinked list but have not yet written our
10417 	 * next pointer initialize it here.
10418 	 */
10419 	if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) {
10420 		struct inodedep *inon;
10421 
10422 		inon = TAILQ_NEXT(inodedep, id_unlinked);
10423 		dp->di_freelink = inon ? inon->id_ino : 0;
10424 		ffs_update_dinode_ckhash(fs, dp);
10425 	}
10426 	/*
10427 	 * If the bitmap is not yet written, then the allocated
10428 	 * inode cannot be written to disk.
10429 	 */
10430 	if ((inodedep->id_state & DEPCOMPLETE) == 0) {
10431 		if (inodedep->id_savedino2 != NULL)
10432 			panic("initiate_write_inodeblock_ufs2: I/O underway");
10433 		FREE_LOCK(ump);
10434 		sip = malloc(sizeof(struct ufs2_dinode),
10435 		    M_SAVEDINO, M_SOFTDEP_FLAGS);
10436 		ACQUIRE_LOCK(ump);
10437 		inodedep->id_savedino2 = sip;
10438 		*inodedep->id_savedino2 = *dp;
10439 		bzero((caddr_t)dp, sizeof(struct ufs2_dinode));
10440 		dp->di_gen = inodedep->id_savedino2->di_gen;
10441 		dp->di_freelink = inodedep->id_savedino2->di_freelink;
10442 		return;
10443 	}
10444 	/*
10445 	 * If no dependencies, then there is nothing to roll back.
10446 	 */
10447 	inodedep->id_savedsize = dp->di_size;
10448 	inodedep->id_savedextsize = dp->di_extsize;
10449 	inodedep->id_savednlink = dp->di_nlink;
10450 	if (TAILQ_EMPTY(&inodedep->id_inoupdt) &&
10451 	    TAILQ_EMPTY(&inodedep->id_extupdt) &&
10452 	    TAILQ_EMPTY(&inodedep->id_inoreflst))
10453 		return;
10454 	/*
10455 	 * Revert the link count to that of the first unwritten journal entry.
10456 	 */
10457 	inoref = TAILQ_FIRST(&inodedep->id_inoreflst);
10458 	if (inoref)
10459 		dp->di_nlink = inoref->if_nlink;
10460 
10461 	/*
10462 	 * Set the ext data dependencies to busy.
10463 	 */
10464 	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp;
10465 	     adp = TAILQ_NEXT(adp, ad_next)) {
10466 #ifdef INVARIANTS
10467 		if (deplist != 0 && prevlbn >= adp->ad_offset)
10468 			panic("initiate_write_inodeblock_ufs2: lbn order");
10469 		prevlbn = adp->ad_offset;
10470 		if (dp->di_extb[adp->ad_offset] != adp->ad_newblkno)
10471 			panic("initiate_write_inodeblock_ufs2: "
10472 			    "ext pointer #%jd mismatch %jd != %jd",
10473 			    (intmax_t)adp->ad_offset,
10474 			    (intmax_t)dp->di_extb[adp->ad_offset],
10475 			    (intmax_t)adp->ad_newblkno);
10476 		deplist |= 1 << adp->ad_offset;
10477 		if ((adp->ad_state & ATTACHED) == 0)
10478 			panic("initiate_write_inodeblock_ufs2: Unknown "
10479 			    "state 0x%x", adp->ad_state);
10480 #endif /* INVARIANTS */
10481 		adp->ad_state &= ~ATTACHED;
10482 		adp->ad_state |= UNDONE;
10483 	}
10484 	/*
10485 	 * The on-disk inode cannot claim to be any larger than the last
10486 	 * fragment that has been written. Otherwise, the on-disk inode
10487 	 * might have fragments that were not the last block in the ext
10488 	 * data which would corrupt the filesystem.
10489 	 */
10490 	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp;
10491 	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
10492 		dp->di_extb[adp->ad_offset] = adp->ad_oldblkno;
10493 		/* keep going until hitting a rollback to a frag */
10494 		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
10495 			continue;
10496 		dp->di_extsize = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize;
10497 		for (i = adp->ad_offset + 1; i < UFS_NXADDR; i++) {
10498 #ifdef INVARIANTS
10499 			if (dp->di_extb[i] != 0 && (deplist & (1 << i)) == 0)
10500 				panic("initiate_write_inodeblock_ufs2: "
10501 				    "lost dep1");
10502 #endif /* INVARIANTS */
10503 			dp->di_extb[i] = 0;
10504 		}
10505 		lastadp = NULL;
10506 		break;
10507 	}
10508 	/*
10509 	 * If we have zero'ed out the last allocated block of the ext
10510 	 * data, roll back the size to the last currently allocated block.
10511 	 * We know that this last allocated block is a full-sized as
10512 	 * we already checked for fragments in the loop above.
10513 	 */
10514 	if (lastadp != NULL &&
10515 	    dp->di_extsize <= (lastadp->ad_offset + 1) * fs->fs_bsize) {
10516 		for (i = lastadp->ad_offset; i >= 0; i--)
10517 			if (dp->di_extb[i] != 0)
10518 				break;
10519 		dp->di_extsize = (i + 1) * fs->fs_bsize;
10520 	}
10521 	/*
10522 	 * Set the file data dependencies to busy.
10523 	 */
10524 	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
10525 	     adp = TAILQ_NEXT(adp, ad_next)) {
10526 #ifdef INVARIANTS
10527 		if (deplist != 0 && prevlbn >= adp->ad_offset)
10528 			panic("softdep_write_inodeblock: lbn order");
10529 		if ((adp->ad_state & ATTACHED) == 0)
10530 			panic("inodedep %p and adp %p not attached", inodedep, adp);
10531 		prevlbn = adp->ad_offset;
10532 		if (adp->ad_offset < UFS_NDADDR &&
10533 		    dp->di_db[adp->ad_offset] != adp->ad_newblkno)
10534 			panic("initiate_write_inodeblock_ufs2: "
10535 			    "direct pointer #%jd mismatch %jd != %jd",
10536 			    (intmax_t)adp->ad_offset,
10537 			    (intmax_t)dp->di_db[adp->ad_offset],
10538 			    (intmax_t)adp->ad_newblkno);
10539 		if (adp->ad_offset >= UFS_NDADDR &&
10540 		    dp->di_ib[adp->ad_offset - UFS_NDADDR] != adp->ad_newblkno)
10541 			panic("initiate_write_inodeblock_ufs2: "
10542 			    "indirect pointer #%jd mismatch %jd != %jd",
10543 			    (intmax_t)adp->ad_offset - UFS_NDADDR,
10544 			    (intmax_t)dp->di_ib[adp->ad_offset - UFS_NDADDR],
10545 			    (intmax_t)adp->ad_newblkno);
10546 		deplist |= 1 << adp->ad_offset;
10547 		if ((adp->ad_state & ATTACHED) == 0)
10548 			panic("initiate_write_inodeblock_ufs2: Unknown "
10549 			     "state 0x%x", adp->ad_state);
10550 #endif /* INVARIANTS */
10551 		adp->ad_state &= ~ATTACHED;
10552 		adp->ad_state |= UNDONE;
10553 	}
10554 	/*
10555 	 * The on-disk inode cannot claim to be any larger than the last
10556 	 * fragment that has been written. Otherwise, the on-disk inode
10557 	 * might have fragments that were not the last block in the file
10558 	 * which would corrupt the filesystem.
10559 	 */
10560 	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
10561 	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
10562 		if (adp->ad_offset >= UFS_NDADDR)
10563 			break;
10564 		dp->di_db[adp->ad_offset] = adp->ad_oldblkno;
10565 		/* keep going until hitting a rollback to a frag */
10566 		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
10567 			continue;
10568 		dp->di_size = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize;
10569 		for (i = adp->ad_offset + 1; i < UFS_NDADDR; i++) {
10570 #ifdef INVARIANTS
10571 			if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0)
10572 				panic("initiate_write_inodeblock_ufs2: "
10573 				    "lost dep2");
10574 #endif /* INVARIANTS */
10575 			dp->di_db[i] = 0;
10576 		}
10577 		for (i = 0; i < UFS_NIADDR; i++) {
10578 #ifdef INVARIANTS
10579 			if (dp->di_ib[i] != 0 &&
10580 			    (deplist & ((1 << UFS_NDADDR) << i)) == 0)
10581 				panic("initiate_write_inodeblock_ufs2: "
10582 				    "lost dep3");
10583 #endif /* INVARIANTS */
10584 			dp->di_ib[i] = 0;
10585 		}
10586 		ffs_update_dinode_ckhash(fs, dp);
10587 		return;
10588 	}
10589 	/*
10590 	 * If we have zero'ed out the last allocated block of the file,
10591 	 * roll back the size to the last currently allocated block.
10592 	 * We know that this last allocated block is a full-sized as
10593 	 * we already checked for fragments in the loop above.
10594 	 */
10595 	if (lastadp != NULL &&
10596 	    dp->di_size <= (lastadp->ad_offset + 1) * fs->fs_bsize) {
10597 		for (i = lastadp->ad_offset; i >= 0; i--)
10598 			if (dp->di_db[i] != 0)
10599 				break;
10600 		dp->di_size = (i + 1) * fs->fs_bsize;
10601 	}
10602 	/*
10603 	 * The only dependencies are for indirect blocks.
10604 	 *
10605 	 * The file size for indirect block additions is not guaranteed.
10606 	 * Such a guarantee would be non-trivial to achieve. The conventional
10607 	 * synchronous write implementation also does not make this guarantee.
10608 	 * Fsck should catch and fix discrepancies. Arguably, the file size
10609 	 * can be over-estimated without destroying integrity when the file
10610 	 * moves into the indirect blocks (i.e., is large). If we want to
10611 	 * postpone fsck, we are stuck with this argument.
10612 	 */
10613 	for (; adp; adp = TAILQ_NEXT(adp, ad_next))
10614 		dp->di_ib[adp->ad_offset - UFS_NDADDR] = 0;
10615 	ffs_update_dinode_ckhash(fs, dp);
10616 }
10617 
10618 /*
10619  * Cancel an indirdep as a result of truncation.  Release all of the
10620  * children allocindirs and place their journal work on the appropriate
10621  * list.
10622  */
10623 static void
10624 cancel_indirdep(indirdep, bp, freeblks)
10625 	struct indirdep *indirdep;
10626 	struct buf *bp;
10627 	struct freeblks *freeblks;
10628 {
10629 	struct allocindir *aip;
10630 
10631 	/*
10632 	 * None of the indirect pointers will ever be visible,
10633 	 * so they can simply be tossed. GOINGAWAY ensures
10634 	 * that allocated pointers will be saved in the buffer
10635 	 * cache until they are freed. Note that they will
10636 	 * only be able to be found by their physical address
10637 	 * since the inode mapping the logical address will
10638 	 * be gone. The save buffer used for the safe copy
10639 	 * was allocated in setup_allocindir_phase2 using
10640 	 * the physical address so it could be used for this
10641 	 * purpose. Hence we swap the safe copy with the real
10642 	 * copy, allowing the safe copy to be freed and holding
10643 	 * on to the real copy for later use in indir_trunc.
10644 	 */
10645 	if (indirdep->ir_state & GOINGAWAY)
10646 		panic("cancel_indirdep: already gone");
10647 	if ((indirdep->ir_state & DEPCOMPLETE) == 0) {
10648 		indirdep->ir_state |= DEPCOMPLETE;
10649 		LIST_REMOVE(indirdep, ir_next);
10650 	}
10651 	indirdep->ir_state |= GOINGAWAY;
10652 	/*
10653 	 * Pass in bp for blocks still have journal writes
10654 	 * pending so we can cancel them on their own.
10655 	 */
10656 	while ((aip = LIST_FIRST(&indirdep->ir_deplisthd)) != NULL)
10657 		cancel_allocindir(aip, bp, freeblks, 0);
10658 	while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != NULL)
10659 		cancel_allocindir(aip, NULL, freeblks, 0);
10660 	while ((aip = LIST_FIRST(&indirdep->ir_writehd)) != NULL)
10661 		cancel_allocindir(aip, NULL, freeblks, 0);
10662 	while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != NULL)
10663 		cancel_allocindir(aip, NULL, freeblks, 0);
10664 	/*
10665 	 * If there are pending partial truncations we need to keep the
10666 	 * old block copy around until they complete.  This is because
10667 	 * the current b_data is not a perfect superset of the available
10668 	 * blocks.
10669 	 */
10670 	if (TAILQ_EMPTY(&indirdep->ir_trunc))
10671 		bcopy(bp->b_data, indirdep->ir_savebp->b_data, bp->b_bcount);
10672 	else
10673 		bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount);
10674 	WORKLIST_REMOVE(&indirdep->ir_list);
10675 	WORKLIST_INSERT(&indirdep->ir_savebp->b_dep, &indirdep->ir_list);
10676 	indirdep->ir_bp = NULL;
10677 	indirdep->ir_freeblks = freeblks;
10678 }
10679 
10680 /*
10681  * Free an indirdep once it no longer has new pointers to track.
10682  */
10683 static void
10684 free_indirdep(indirdep)
10685 	struct indirdep *indirdep;
10686 {
10687 
10688 	KASSERT(TAILQ_EMPTY(&indirdep->ir_trunc),
10689 	    ("free_indirdep: Indir trunc list not empty."));
10690 	KASSERT(LIST_EMPTY(&indirdep->ir_completehd),
10691 	    ("free_indirdep: Complete head not empty."));
10692 	KASSERT(LIST_EMPTY(&indirdep->ir_writehd),
10693 	    ("free_indirdep: write head not empty."));
10694 	KASSERT(LIST_EMPTY(&indirdep->ir_donehd),
10695 	    ("free_indirdep: done head not empty."));
10696 	KASSERT(LIST_EMPTY(&indirdep->ir_deplisthd),
10697 	    ("free_indirdep: deplist head not empty."));
10698 	KASSERT((indirdep->ir_state & DEPCOMPLETE),
10699 	    ("free_indirdep: %p still on newblk list.", indirdep));
10700 	KASSERT(indirdep->ir_saveddata == NULL,
10701 	    ("free_indirdep: %p still has saved data.", indirdep));
10702 	if (indirdep->ir_state & ONWORKLIST)
10703 		WORKLIST_REMOVE(&indirdep->ir_list);
10704 	WORKITEM_FREE(indirdep, D_INDIRDEP);
10705 }
10706 
10707 /*
10708  * Called before a write to an indirdep.  This routine is responsible for
10709  * rolling back pointers to a safe state which includes only those
10710  * allocindirs which have been completed.
10711  */
10712 static void
10713 initiate_write_indirdep(indirdep, bp)
10714 	struct indirdep *indirdep;
10715 	struct buf *bp;
10716 {
10717 	struct ufsmount *ump;
10718 
10719 	indirdep->ir_state |= IOSTARTED;
10720 	if (indirdep->ir_state & GOINGAWAY)
10721 		panic("disk_io_initiation: indirdep gone");
10722 	/*
10723 	 * If there are no remaining dependencies, this will be writing
10724 	 * the real pointers.
10725 	 */
10726 	if (LIST_EMPTY(&indirdep->ir_deplisthd) &&
10727 	    TAILQ_EMPTY(&indirdep->ir_trunc))
10728 		return;
10729 	/*
10730 	 * Replace up-to-date version with safe version.
10731 	 */
10732 	if (indirdep->ir_saveddata == NULL) {
10733 		ump = VFSTOUFS(indirdep->ir_list.wk_mp);
10734 		LOCK_OWNED(ump);
10735 		FREE_LOCK(ump);
10736 		indirdep->ir_saveddata = malloc(bp->b_bcount, M_INDIRDEP,
10737 		    M_SOFTDEP_FLAGS);
10738 		ACQUIRE_LOCK(ump);
10739 	}
10740 	indirdep->ir_state &= ~ATTACHED;
10741 	indirdep->ir_state |= UNDONE;
10742 	bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount);
10743 	bcopy(indirdep->ir_savebp->b_data, bp->b_data,
10744 	    bp->b_bcount);
10745 }
10746 
10747 /*
10748  * Called when an inode has been cleared in a cg bitmap.  This finally
10749  * eliminates any canceled jaddrefs
10750  */
10751 void
10752 softdep_setup_inofree(mp, bp, ino, wkhd)
10753 	struct mount *mp;
10754 	struct buf *bp;
10755 	ino_t ino;
10756 	struct workhead *wkhd;
10757 {
10758 	struct worklist *wk, *wkn;
10759 	struct inodedep *inodedep;
10760 	struct ufsmount *ump;
10761 	uint8_t *inosused;
10762 	struct cg *cgp;
10763 	struct fs *fs;
10764 
10765 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
10766 	    ("softdep_setup_inofree called on non-softdep filesystem"));
10767 	ump = VFSTOUFS(mp);
10768 	ACQUIRE_LOCK(ump);
10769 	fs = ump->um_fs;
10770 	cgp = (struct cg *)bp->b_data;
10771 	inosused = cg_inosused(cgp);
10772 	if (isset(inosused, ino % fs->fs_ipg))
10773 		panic("softdep_setup_inofree: inode %ju not freed.",
10774 		    (uintmax_t)ino);
10775 	if (inodedep_lookup(mp, ino, 0, &inodedep))
10776 		panic("softdep_setup_inofree: ino %ju has existing inodedep %p",
10777 		    (uintmax_t)ino, inodedep);
10778 	if (wkhd) {
10779 		LIST_FOREACH_SAFE(wk, wkhd, wk_list, wkn) {
10780 			if (wk->wk_type != D_JADDREF)
10781 				continue;
10782 			WORKLIST_REMOVE(wk);
10783 			/*
10784 			 * We can free immediately even if the jaddref
10785 			 * isn't attached in a background write as now
10786 			 * the bitmaps are reconciled.
10787 			 */
10788 			wk->wk_state |= COMPLETE | ATTACHED;
10789 			free_jaddref(WK_JADDREF(wk));
10790 		}
10791 		jwork_move(&bp->b_dep, wkhd);
10792 	}
10793 	FREE_LOCK(ump);
10794 }
10795 
10796 /*
10797  * Called via ffs_blkfree() after a set of frags has been cleared from a cg
10798  * map.  Any dependencies waiting for the write to clear are added to the
10799  * buf's list and any jnewblks that are being canceled are discarded
10800  * immediately.
10801  */
10802 void
10803 softdep_setup_blkfree(mp, bp, blkno, frags, wkhd)
10804 	struct mount *mp;
10805 	struct buf *bp;
10806 	ufs2_daddr_t blkno;
10807 	int frags;
10808 	struct workhead *wkhd;
10809 {
10810 	struct bmsafemap *bmsafemap;
10811 	struct jnewblk *jnewblk;
10812 	struct ufsmount *ump;
10813 	struct worklist *wk;
10814 	struct fs *fs;
10815 #ifdef INVARIANTS
10816 	uint8_t *blksfree;
10817 	struct cg *cgp;
10818 	ufs2_daddr_t jstart;
10819 	ufs2_daddr_t jend;
10820 	ufs2_daddr_t end;
10821 	long bno;
10822 	int i;
10823 #endif
10824 
10825 	CTR3(KTR_SUJ,
10826 	    "softdep_setup_blkfree: blkno %jd frags %d wk head %p",
10827 	    blkno, frags, wkhd);
10828 
10829 	ump = VFSTOUFS(mp);
10830 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
10831 	    ("softdep_setup_blkfree called on non-softdep filesystem"));
10832 	ACQUIRE_LOCK(ump);
10833 	/* Lookup the bmsafemap so we track when it is dirty. */
10834 	fs = ump->um_fs;
10835 	bmsafemap = bmsafemap_lookup(mp, bp, dtog(fs, blkno), NULL);
10836 	/*
10837 	 * Detach any jnewblks which have been canceled.  They must linger
10838 	 * until the bitmap is cleared again by ffs_blkfree() to prevent
10839 	 * an unjournaled allocation from hitting the disk.
10840 	 */
10841 	if (wkhd) {
10842 		while ((wk = LIST_FIRST(wkhd)) != NULL) {
10843 			CTR2(KTR_SUJ,
10844 			    "softdep_setup_blkfree: blkno %jd wk type %d",
10845 			    blkno, wk->wk_type);
10846 			WORKLIST_REMOVE(wk);
10847 			if (wk->wk_type != D_JNEWBLK) {
10848 				WORKLIST_INSERT(&bmsafemap->sm_freehd, wk);
10849 				continue;
10850 			}
10851 			jnewblk = WK_JNEWBLK(wk);
10852 			KASSERT(jnewblk->jn_state & GOINGAWAY,
10853 			    ("softdep_setup_blkfree: jnewblk not canceled."));
10854 #ifdef INVARIANTS
10855 			/*
10856 			 * Assert that this block is free in the bitmap
10857 			 * before we discard the jnewblk.
10858 			 */
10859 			cgp = (struct cg *)bp->b_data;
10860 			blksfree = cg_blksfree(cgp);
10861 			bno = dtogd(fs, jnewblk->jn_blkno);
10862 			for (i = jnewblk->jn_oldfrags;
10863 			    i < jnewblk->jn_frags; i++) {
10864 				if (isset(blksfree, bno + i))
10865 					continue;
10866 				panic("softdep_setup_blkfree: not free");
10867 			}
10868 #endif
10869 			/*
10870 			 * Even if it's not attached we can free immediately
10871 			 * as the new bitmap is correct.
10872 			 */
10873 			wk->wk_state |= COMPLETE | ATTACHED;
10874 			free_jnewblk(jnewblk);
10875 		}
10876 	}
10877 
10878 #ifdef INVARIANTS
10879 	/*
10880 	 * Assert that we are not freeing a block which has an outstanding
10881 	 * allocation dependency.
10882 	 */
10883 	fs = VFSTOUFS(mp)->um_fs;
10884 	bmsafemap = bmsafemap_lookup(mp, bp, dtog(fs, blkno), NULL);
10885 	end = blkno + frags;
10886 	LIST_FOREACH(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps) {
10887 		/*
10888 		 * Don't match against blocks that will be freed when the
10889 		 * background write is done.
10890 		 */
10891 		if ((jnewblk->jn_state & (ATTACHED | COMPLETE | DEPCOMPLETE)) ==
10892 		    (COMPLETE | DEPCOMPLETE))
10893 			continue;
10894 		jstart = jnewblk->jn_blkno + jnewblk->jn_oldfrags;
10895 		jend = jnewblk->jn_blkno + jnewblk->jn_frags;
10896 		if ((blkno >= jstart && blkno < jend) ||
10897 		    (end > jstart && end <= jend)) {
10898 			printf("state 0x%X %jd - %d %d dep %p\n",
10899 			    jnewblk->jn_state, jnewblk->jn_blkno,
10900 			    jnewblk->jn_oldfrags, jnewblk->jn_frags,
10901 			    jnewblk->jn_dep);
10902 			panic("softdep_setup_blkfree: "
10903 			    "%jd-%jd(%d) overlaps with %jd-%jd",
10904 			    blkno, end, frags, jstart, jend);
10905 		}
10906 	}
10907 #endif
10908 	FREE_LOCK(ump);
10909 }
10910 
10911 /*
10912  * Revert a block allocation when the journal record that describes it
10913  * is not yet written.
10914  */
10915 static int
10916 jnewblk_rollback(jnewblk, fs, cgp, blksfree)
10917 	struct jnewblk *jnewblk;
10918 	struct fs *fs;
10919 	struct cg *cgp;
10920 	uint8_t *blksfree;
10921 {
10922 	ufs1_daddr_t fragno;
10923 	long cgbno, bbase;
10924 	int frags, blk;
10925 	int i;
10926 
10927 	frags = 0;
10928 	cgbno = dtogd(fs, jnewblk->jn_blkno);
10929 	/*
10930 	 * We have to test which frags need to be rolled back.  We may
10931 	 * be operating on a stale copy when doing background writes.
10932 	 */
10933 	for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; i++)
10934 		if (isclr(blksfree, cgbno + i))
10935 			frags++;
10936 	if (frags == 0)
10937 		return (0);
10938 	/*
10939 	 * This is mostly ffs_blkfree() sans some validation and
10940 	 * superblock updates.
10941 	 */
10942 	if (frags == fs->fs_frag) {
10943 		fragno = fragstoblks(fs, cgbno);
10944 		ffs_setblock(fs, blksfree, fragno);
10945 		ffs_clusteracct(fs, cgp, fragno, 1);
10946 		cgp->cg_cs.cs_nbfree++;
10947 	} else {
10948 		cgbno += jnewblk->jn_oldfrags;
10949 		bbase = cgbno - fragnum(fs, cgbno);
10950 		/* Decrement the old frags.  */
10951 		blk = blkmap(fs, blksfree, bbase);
10952 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
10953 		/* Deallocate the fragment */
10954 		for (i = 0; i < frags; i++)
10955 			setbit(blksfree, cgbno + i);
10956 		cgp->cg_cs.cs_nffree += frags;
10957 		/* Add back in counts associated with the new frags */
10958 		blk = blkmap(fs, blksfree, bbase);
10959 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
10960 		/* If a complete block has been reassembled, account for it. */
10961 		fragno = fragstoblks(fs, bbase);
10962 		if (ffs_isblock(fs, blksfree, fragno)) {
10963 			cgp->cg_cs.cs_nffree -= fs->fs_frag;
10964 			ffs_clusteracct(fs, cgp, fragno, 1);
10965 			cgp->cg_cs.cs_nbfree++;
10966 		}
10967 	}
10968 	stat_jnewblk++;
10969 	jnewblk->jn_state &= ~ATTACHED;
10970 	jnewblk->jn_state |= UNDONE;
10971 
10972 	return (frags);
10973 }
10974 
10975 static void
10976 initiate_write_bmsafemap(bmsafemap, bp)
10977 	struct bmsafemap *bmsafemap;
10978 	struct buf *bp;			/* The cg block. */
10979 {
10980 	struct jaddref *jaddref;
10981 	struct jnewblk *jnewblk;
10982 	uint8_t *inosused;
10983 	uint8_t *blksfree;
10984 	struct cg *cgp;
10985 	struct fs *fs;
10986 	ino_t ino;
10987 
10988 	/*
10989 	 * If this is a background write, we did this at the time that
10990 	 * the copy was made, so do not need to do it again.
10991 	 */
10992 	if (bmsafemap->sm_state & IOSTARTED)
10993 		return;
10994 	bmsafemap->sm_state |= IOSTARTED;
10995 	/*
10996 	 * Clear any inode allocations which are pending journal writes.
10997 	 */
10998 	if (LIST_FIRST(&bmsafemap->sm_jaddrefhd) != NULL) {
10999 		cgp = (struct cg *)bp->b_data;
11000 		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
11001 		inosused = cg_inosused(cgp);
11002 		LIST_FOREACH(jaddref, &bmsafemap->sm_jaddrefhd, ja_bmdeps) {
11003 			ino = jaddref->ja_ino % fs->fs_ipg;
11004 			if (isset(inosused, ino)) {
11005 				if ((jaddref->ja_mode & IFMT) == IFDIR)
11006 					cgp->cg_cs.cs_ndir--;
11007 				cgp->cg_cs.cs_nifree++;
11008 				clrbit(inosused, ino);
11009 				jaddref->ja_state &= ~ATTACHED;
11010 				jaddref->ja_state |= UNDONE;
11011 				stat_jaddref++;
11012 			} else
11013 				panic("initiate_write_bmsafemap: inode %ju "
11014 				    "marked free", (uintmax_t)jaddref->ja_ino);
11015 		}
11016 	}
11017 	/*
11018 	 * Clear any block allocations which are pending journal writes.
11019 	 */
11020 	if (LIST_FIRST(&bmsafemap->sm_jnewblkhd) != NULL) {
11021 		cgp = (struct cg *)bp->b_data;
11022 		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
11023 		blksfree = cg_blksfree(cgp);
11024 		LIST_FOREACH(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps) {
11025 			if (jnewblk_rollback(jnewblk, fs, cgp, blksfree))
11026 				continue;
11027 			panic("initiate_write_bmsafemap: block %jd "
11028 			    "marked free", jnewblk->jn_blkno);
11029 		}
11030 	}
11031 	/*
11032 	 * Move allocation lists to the written lists so they can be
11033 	 * cleared once the block write is complete.
11034 	 */
11035 	LIST_SWAP(&bmsafemap->sm_inodedephd, &bmsafemap->sm_inodedepwr,
11036 	    inodedep, id_deps);
11037 	LIST_SWAP(&bmsafemap->sm_newblkhd, &bmsafemap->sm_newblkwr,
11038 	    newblk, nb_deps);
11039 	LIST_SWAP(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr, worklist,
11040 	    wk_list);
11041 }
11042 
11043 /*
11044  * This routine is called during the completion interrupt
11045  * service routine for a disk write (from the procedure called
11046  * by the device driver to inform the filesystem caches of
11047  * a request completion).  It should be called early in this
11048  * procedure, before the block is made available to other
11049  * processes or other routines are called.
11050  *
11051  */
11052 static void
11053 softdep_disk_write_complete(bp)
11054 	struct buf *bp;		/* describes the completed disk write */
11055 {
11056 	struct worklist *wk;
11057 	struct worklist *owk;
11058 	struct ufsmount *ump;
11059 	struct workhead reattach;
11060 	struct freeblks *freeblks;
11061 	struct buf *sbp;
11062 
11063 	ump = softdep_bp_to_mp(bp);
11064 	KASSERT(LIST_EMPTY(&bp->b_dep) || ump != NULL,
11065 	    ("softdep_disk_write_complete: softdep_bp_to_mp returned NULL "
11066 	     "with outstanding dependencies for buffer %p", bp));
11067 	if (ump == NULL)
11068 		return;
11069 	/*
11070 	 * If an error occurred while doing the write, then the data
11071 	 * has not hit the disk and the dependencies cannot be processed.
11072 	 * But we do have to go through and roll forward any dependencies
11073 	 * that were rolled back before the disk write.
11074 	 */
11075 	sbp = NULL;
11076 	ACQUIRE_LOCK(ump);
11077 	if ((bp->b_ioflags & BIO_ERROR) != 0 && (bp->b_flags & B_INVAL) == 0) {
11078 		LIST_FOREACH(wk, &bp->b_dep, wk_list) {
11079 			switch (wk->wk_type) {
11080 
11081 			case D_PAGEDEP:
11082 				handle_written_filepage(WK_PAGEDEP(wk), bp, 0);
11083 				continue;
11084 
11085 			case D_INODEDEP:
11086 				handle_written_inodeblock(WK_INODEDEP(wk),
11087 				    bp, 0);
11088 				continue;
11089 
11090 			case D_BMSAFEMAP:
11091 				handle_written_bmsafemap(WK_BMSAFEMAP(wk),
11092 				    bp, 0);
11093 				continue;
11094 
11095 			case D_INDIRDEP:
11096 				handle_written_indirdep(WK_INDIRDEP(wk),
11097 				    bp, &sbp, 0);
11098 				continue;
11099 			default:
11100 				/* nothing to roll forward */
11101 				continue;
11102 			}
11103 		}
11104 		FREE_LOCK(ump);
11105 		if (sbp)
11106 			brelse(sbp);
11107 		return;
11108 	}
11109 	LIST_INIT(&reattach);
11110 
11111 	/*
11112 	 * Ump SU lock must not be released anywhere in this code segment.
11113 	 */
11114 	owk = NULL;
11115 	while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) {
11116 		WORKLIST_REMOVE(wk);
11117 		atomic_add_long(&dep_write[wk->wk_type], 1);
11118 		if (wk == owk)
11119 			panic("duplicate worklist: %p\n", wk);
11120 		owk = wk;
11121 		switch (wk->wk_type) {
11122 
11123 		case D_PAGEDEP:
11124 			if (handle_written_filepage(WK_PAGEDEP(wk), bp,
11125 			    WRITESUCCEEDED))
11126 				WORKLIST_INSERT(&reattach, wk);
11127 			continue;
11128 
11129 		case D_INODEDEP:
11130 			if (handle_written_inodeblock(WK_INODEDEP(wk), bp,
11131 			    WRITESUCCEEDED))
11132 				WORKLIST_INSERT(&reattach, wk);
11133 			continue;
11134 
11135 		case D_BMSAFEMAP:
11136 			if (handle_written_bmsafemap(WK_BMSAFEMAP(wk), bp,
11137 			    WRITESUCCEEDED))
11138 				WORKLIST_INSERT(&reattach, wk);
11139 			continue;
11140 
11141 		case D_MKDIR:
11142 			handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY);
11143 			continue;
11144 
11145 		case D_ALLOCDIRECT:
11146 			wk->wk_state |= COMPLETE;
11147 			handle_allocdirect_partdone(WK_ALLOCDIRECT(wk), NULL);
11148 			continue;
11149 
11150 		case D_ALLOCINDIR:
11151 			wk->wk_state |= COMPLETE;
11152 			handle_allocindir_partdone(WK_ALLOCINDIR(wk));
11153 			continue;
11154 
11155 		case D_INDIRDEP:
11156 			if (handle_written_indirdep(WK_INDIRDEP(wk), bp, &sbp,
11157 			    WRITESUCCEEDED))
11158 				WORKLIST_INSERT(&reattach, wk);
11159 			continue;
11160 
11161 		case D_FREEBLKS:
11162 			wk->wk_state |= COMPLETE;
11163 			freeblks = WK_FREEBLKS(wk);
11164 			if ((wk->wk_state & ALLCOMPLETE) == ALLCOMPLETE &&
11165 			    LIST_EMPTY(&freeblks->fb_jblkdephd))
11166 				add_to_worklist(wk, WK_NODELAY);
11167 			continue;
11168 
11169 		case D_FREEWORK:
11170 			handle_written_freework(WK_FREEWORK(wk));
11171 			break;
11172 
11173 		case D_JSEGDEP:
11174 			free_jsegdep(WK_JSEGDEP(wk));
11175 			continue;
11176 
11177 		case D_JSEG:
11178 			handle_written_jseg(WK_JSEG(wk), bp);
11179 			continue;
11180 
11181 		case D_SBDEP:
11182 			if (handle_written_sbdep(WK_SBDEP(wk), bp))
11183 				WORKLIST_INSERT(&reattach, wk);
11184 			continue;
11185 
11186 		case D_FREEDEP:
11187 			free_freedep(WK_FREEDEP(wk));
11188 			continue;
11189 
11190 		default:
11191 			panic("handle_disk_write_complete: Unknown type %s",
11192 			    TYPENAME(wk->wk_type));
11193 			/* NOTREACHED */
11194 		}
11195 	}
11196 	/*
11197 	 * Reattach any requests that must be redone.
11198 	 */
11199 	while ((wk = LIST_FIRST(&reattach)) != NULL) {
11200 		WORKLIST_REMOVE(wk);
11201 		WORKLIST_INSERT(&bp->b_dep, wk);
11202 	}
11203 	FREE_LOCK(ump);
11204 	if (sbp)
11205 		brelse(sbp);
11206 }
11207 
11208 /*
11209  * Called from within softdep_disk_write_complete above.
11210  */
11211 static void
11212 handle_allocdirect_partdone(adp, wkhd)
11213 	struct allocdirect *adp;	/* the completed allocdirect */
11214 	struct workhead *wkhd;		/* Work to do when inode is writtne. */
11215 {
11216 	struct allocdirectlst *listhead;
11217 	struct allocdirect *listadp;
11218 	struct inodedep *inodedep;
11219 	long bsize;
11220 
11221 	LOCK_OWNED(VFSTOUFS(adp->ad_block.nb_list.wk_mp));
11222 	if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE)
11223 		return;
11224 	/*
11225 	 * The on-disk inode cannot claim to be any larger than the last
11226 	 * fragment that has been written. Otherwise, the on-disk inode
11227 	 * might have fragments that were not the last block in the file
11228 	 * which would corrupt the filesystem. Thus, we cannot free any
11229 	 * allocdirects after one whose ad_oldblkno claims a fragment as
11230 	 * these blocks must be rolled back to zero before writing the inode.
11231 	 * We check the currently active set of allocdirects in id_inoupdt
11232 	 * or id_extupdt as appropriate.
11233 	 */
11234 	inodedep = adp->ad_inodedep;
11235 	bsize = inodedep->id_fs->fs_bsize;
11236 	if (adp->ad_state & EXTDATA)
11237 		listhead = &inodedep->id_extupdt;
11238 	else
11239 		listhead = &inodedep->id_inoupdt;
11240 	TAILQ_FOREACH(listadp, listhead, ad_next) {
11241 		/* found our block */
11242 		if (listadp == adp)
11243 			break;
11244 		/* continue if ad_oldlbn is not a fragment */
11245 		if (listadp->ad_oldsize == 0 ||
11246 		    listadp->ad_oldsize == bsize)
11247 			continue;
11248 		/* hit a fragment */
11249 		return;
11250 	}
11251 	/*
11252 	 * If we have reached the end of the current list without
11253 	 * finding the just finished dependency, then it must be
11254 	 * on the future dependency list. Future dependencies cannot
11255 	 * be freed until they are moved to the current list.
11256 	 */
11257 	if (listadp == NULL) {
11258 #ifdef INVARIANTS
11259 		if (adp->ad_state & EXTDATA)
11260 			listhead = &inodedep->id_newextupdt;
11261 		else
11262 			listhead = &inodedep->id_newinoupdt;
11263 		TAILQ_FOREACH(listadp, listhead, ad_next)
11264 			/* found our block */
11265 			if (listadp == adp)
11266 				break;
11267 		if (listadp == NULL)
11268 			panic("handle_allocdirect_partdone: lost dep");
11269 #endif /* INVARIANTS */
11270 		return;
11271 	}
11272 	/*
11273 	 * If we have found the just finished dependency, then queue
11274 	 * it along with anything that follows it that is complete.
11275 	 * Since the pointer has not yet been written in the inode
11276 	 * as the dependency prevents it, place the allocdirect on the
11277 	 * bufwait list where it will be freed once the pointer is
11278 	 * valid.
11279 	 */
11280 	if (wkhd == NULL)
11281 		wkhd = &inodedep->id_bufwait;
11282 	for (; adp; adp = listadp) {
11283 		listadp = TAILQ_NEXT(adp, ad_next);
11284 		if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE)
11285 			return;
11286 		TAILQ_REMOVE(listhead, adp, ad_next);
11287 		WORKLIST_INSERT(wkhd, &adp->ad_block.nb_list);
11288 	}
11289 }
11290 
11291 /*
11292  * Called from within softdep_disk_write_complete above.  This routine
11293  * completes successfully written allocindirs.
11294  */
11295 static void
11296 handle_allocindir_partdone(aip)
11297 	struct allocindir *aip;		/* the completed allocindir */
11298 {
11299 	struct indirdep *indirdep;
11300 
11301 	if ((aip->ai_state & ALLCOMPLETE) != ALLCOMPLETE)
11302 		return;
11303 	indirdep = aip->ai_indirdep;
11304 	LIST_REMOVE(aip, ai_next);
11305 	/*
11306 	 * Don't set a pointer while the buffer is undergoing IO or while
11307 	 * we have active truncations.
11308 	 */
11309 	if (indirdep->ir_state & UNDONE || !TAILQ_EMPTY(&indirdep->ir_trunc)) {
11310 		LIST_INSERT_HEAD(&indirdep->ir_donehd, aip, ai_next);
11311 		return;
11312 	}
11313 	if (indirdep->ir_state & UFS1FMT)
11314 		((ufs1_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] =
11315 		    aip->ai_newblkno;
11316 	else
11317 		((ufs2_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] =
11318 		    aip->ai_newblkno;
11319 	/*
11320 	 * Await the pointer write before freeing the allocindir.
11321 	 */
11322 	LIST_INSERT_HEAD(&indirdep->ir_writehd, aip, ai_next);
11323 }
11324 
11325 /*
11326  * Release segments held on a jwork list.
11327  */
11328 static void
11329 handle_jwork(wkhd)
11330 	struct workhead *wkhd;
11331 {
11332 	struct worklist *wk;
11333 
11334 	while ((wk = LIST_FIRST(wkhd)) != NULL) {
11335 		WORKLIST_REMOVE(wk);
11336 		switch (wk->wk_type) {
11337 		case D_JSEGDEP:
11338 			free_jsegdep(WK_JSEGDEP(wk));
11339 			continue;
11340 		case D_FREEDEP:
11341 			free_freedep(WK_FREEDEP(wk));
11342 			continue;
11343 		case D_FREEFRAG:
11344 			rele_jseg(WK_JSEG(WK_FREEFRAG(wk)->ff_jdep));
11345 			WORKITEM_FREE(wk, D_FREEFRAG);
11346 			continue;
11347 		case D_FREEWORK:
11348 			handle_written_freework(WK_FREEWORK(wk));
11349 			continue;
11350 		default:
11351 			panic("handle_jwork: Unknown type %s\n",
11352 			    TYPENAME(wk->wk_type));
11353 		}
11354 	}
11355 }
11356 
11357 /*
11358  * Handle the bufwait list on an inode when it is safe to release items
11359  * held there.  This normally happens after an inode block is written but
11360  * may be delayed and handled later if there are pending journal items that
11361  * are not yet safe to be released.
11362  */
11363 static struct freefile *
11364 handle_bufwait(inodedep, refhd)
11365 	struct inodedep *inodedep;
11366 	struct workhead *refhd;
11367 {
11368 	struct jaddref *jaddref;
11369 	struct freefile *freefile;
11370 	struct worklist *wk;
11371 
11372 	freefile = NULL;
11373 	while ((wk = LIST_FIRST(&inodedep->id_bufwait)) != NULL) {
11374 		WORKLIST_REMOVE(wk);
11375 		switch (wk->wk_type) {
11376 		case D_FREEFILE:
11377 			/*
11378 			 * We defer adding freefile to the worklist
11379 			 * until all other additions have been made to
11380 			 * ensure that it will be done after all the
11381 			 * old blocks have been freed.
11382 			 */
11383 			if (freefile != NULL)
11384 				panic("handle_bufwait: freefile");
11385 			freefile = WK_FREEFILE(wk);
11386 			continue;
11387 
11388 		case D_MKDIR:
11389 			handle_written_mkdir(WK_MKDIR(wk), MKDIR_PARENT);
11390 			continue;
11391 
11392 		case D_DIRADD:
11393 			diradd_inode_written(WK_DIRADD(wk), inodedep);
11394 			continue;
11395 
11396 		case D_FREEFRAG:
11397 			wk->wk_state |= COMPLETE;
11398 			if ((wk->wk_state & ALLCOMPLETE) == ALLCOMPLETE)
11399 				add_to_worklist(wk, 0);
11400 			continue;
11401 
11402 		case D_DIRREM:
11403 			wk->wk_state |= COMPLETE;
11404 			add_to_worklist(wk, 0);
11405 			continue;
11406 
11407 		case D_ALLOCDIRECT:
11408 		case D_ALLOCINDIR:
11409 			free_newblk(WK_NEWBLK(wk));
11410 			continue;
11411 
11412 		case D_JNEWBLK:
11413 			wk->wk_state |= COMPLETE;
11414 			free_jnewblk(WK_JNEWBLK(wk));
11415 			continue;
11416 
11417 		/*
11418 		 * Save freed journal segments and add references on
11419 		 * the supplied list which will delay their release
11420 		 * until the cg bitmap is cleared on disk.
11421 		 */
11422 		case D_JSEGDEP:
11423 			if (refhd == NULL)
11424 				free_jsegdep(WK_JSEGDEP(wk));
11425 			else
11426 				WORKLIST_INSERT(refhd, wk);
11427 			continue;
11428 
11429 		case D_JADDREF:
11430 			jaddref = WK_JADDREF(wk);
11431 			TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref,
11432 			    if_deps);
11433 			/*
11434 			 * Transfer any jaddrefs to the list to be freed with
11435 			 * the bitmap if we're handling a removed file.
11436 			 */
11437 			if (refhd == NULL) {
11438 				wk->wk_state |= COMPLETE;
11439 				free_jaddref(jaddref);
11440 			} else
11441 				WORKLIST_INSERT(refhd, wk);
11442 			continue;
11443 
11444 		default:
11445 			panic("handle_bufwait: Unknown type %p(%s)",
11446 			    wk, TYPENAME(wk->wk_type));
11447 			/* NOTREACHED */
11448 		}
11449 	}
11450 	return (freefile);
11451 }
11452 /*
11453  * Called from within softdep_disk_write_complete above to restore
11454  * in-memory inode block contents to their most up-to-date state. Note
11455  * that this routine is always called from interrupt level with further
11456  * interrupts from this device blocked.
11457  *
11458  * If the write did not succeed, we will do all the roll-forward
11459  * operations, but we will not take the actions that will allow its
11460  * dependencies to be processed.
11461  */
11462 static int
11463 handle_written_inodeblock(inodedep, bp, flags)
11464 	struct inodedep *inodedep;
11465 	struct buf *bp;		/* buffer containing the inode block */
11466 	int flags;
11467 {
11468 	struct freefile *freefile;
11469 	struct allocdirect *adp, *nextadp;
11470 	struct ufs1_dinode *dp1 = NULL;
11471 	struct ufs2_dinode *dp2 = NULL;
11472 	struct workhead wkhd;
11473 	int hadchanges, fstype;
11474 	ino_t freelink;
11475 
11476 	LIST_INIT(&wkhd);
11477 	hadchanges = 0;
11478 	freefile = NULL;
11479 	if ((inodedep->id_state & IOSTARTED) == 0)
11480 		panic("handle_written_inodeblock: not started");
11481 	inodedep->id_state &= ~IOSTARTED;
11482 	if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC) {
11483 		fstype = UFS1;
11484 		dp1 = (struct ufs1_dinode *)bp->b_data +
11485 		    ino_to_fsbo(inodedep->id_fs, inodedep->id_ino);
11486 		freelink = dp1->di_freelink;
11487 	} else {
11488 		fstype = UFS2;
11489 		dp2 = (struct ufs2_dinode *)bp->b_data +
11490 		    ino_to_fsbo(inodedep->id_fs, inodedep->id_ino);
11491 		freelink = dp2->di_freelink;
11492 	}
11493 	/*
11494 	 * Leave this inodeblock dirty until it's in the list.
11495 	 */
11496 	if ((inodedep->id_state & (UNLINKED | UNLINKONLIST)) == UNLINKED &&
11497 	    (flags & WRITESUCCEEDED)) {
11498 		struct inodedep *inon;
11499 
11500 		inon = TAILQ_NEXT(inodedep, id_unlinked);
11501 		if ((inon == NULL && freelink == 0) ||
11502 		    (inon && inon->id_ino == freelink)) {
11503 			if (inon)
11504 				inon->id_state |= UNLINKPREV;
11505 			inodedep->id_state |= UNLINKNEXT;
11506 		}
11507 		hadchanges = 1;
11508 	}
11509 	/*
11510 	 * If we had to rollback the inode allocation because of
11511 	 * bitmaps being incomplete, then simply restore it.
11512 	 * Keep the block dirty so that it will not be reclaimed until
11513 	 * all associated dependencies have been cleared and the
11514 	 * corresponding updates written to disk.
11515 	 */
11516 	if (inodedep->id_savedino1 != NULL) {
11517 		hadchanges = 1;
11518 		if (fstype == UFS1)
11519 			*dp1 = *inodedep->id_savedino1;
11520 		else
11521 			*dp2 = *inodedep->id_savedino2;
11522 		free(inodedep->id_savedino1, M_SAVEDINO);
11523 		inodedep->id_savedino1 = NULL;
11524 		if ((bp->b_flags & B_DELWRI) == 0)
11525 			stat_inode_bitmap++;
11526 		bdirty(bp);
11527 		/*
11528 		 * If the inode is clear here and GOINGAWAY it will never
11529 		 * be written.  Process the bufwait and clear any pending
11530 		 * work which may include the freefile.
11531 		 */
11532 		if (inodedep->id_state & GOINGAWAY)
11533 			goto bufwait;
11534 		return (1);
11535 	}
11536 	if (flags & WRITESUCCEEDED)
11537 		inodedep->id_state |= COMPLETE;
11538 	/*
11539 	 * Roll forward anything that had to be rolled back before
11540 	 * the inode could be updated.
11541 	 */
11542 	for (adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; adp = nextadp) {
11543 		nextadp = TAILQ_NEXT(adp, ad_next);
11544 		if (adp->ad_state & ATTACHED)
11545 			panic("handle_written_inodeblock: new entry");
11546 		if (fstype == UFS1) {
11547 			if (adp->ad_offset < UFS_NDADDR) {
11548 				if (dp1->di_db[adp->ad_offset]!=adp->ad_oldblkno)
11549 					panic("%s %s #%jd mismatch %d != %jd",
11550 					    "handle_written_inodeblock:",
11551 					    "direct pointer",
11552 					    (intmax_t)adp->ad_offset,
11553 					    dp1->di_db[adp->ad_offset],
11554 					    (intmax_t)adp->ad_oldblkno);
11555 				dp1->di_db[adp->ad_offset] = adp->ad_newblkno;
11556 			} else {
11557 				if (dp1->di_ib[adp->ad_offset - UFS_NDADDR] !=
11558 				    0)
11559 					panic("%s: %s #%jd allocated as %d",
11560 					    "handle_written_inodeblock",
11561 					    "indirect pointer",
11562 					    (intmax_t)adp->ad_offset -
11563 					    UFS_NDADDR,
11564 					    dp1->di_ib[adp->ad_offset -
11565 					    UFS_NDADDR]);
11566 				dp1->di_ib[adp->ad_offset - UFS_NDADDR] =
11567 				    adp->ad_newblkno;
11568 			}
11569 		} else {
11570 			if (adp->ad_offset < UFS_NDADDR) {
11571 				if (dp2->di_db[adp->ad_offset]!=adp->ad_oldblkno)
11572 					panic("%s: %s #%jd %s %jd != %jd",
11573 					    "handle_written_inodeblock",
11574 					    "direct pointer",
11575 					    (intmax_t)adp->ad_offset, "mismatch",
11576 					    (intmax_t)dp2->di_db[adp->ad_offset],
11577 					    (intmax_t)adp->ad_oldblkno);
11578 				dp2->di_db[adp->ad_offset] = adp->ad_newblkno;
11579 			} else {
11580 				if (dp2->di_ib[adp->ad_offset - UFS_NDADDR] !=
11581 				    0)
11582 					panic("%s: %s #%jd allocated as %jd",
11583 					    "handle_written_inodeblock",
11584 					    "indirect pointer",
11585 					    (intmax_t)adp->ad_offset -
11586 					    UFS_NDADDR,
11587 					    (intmax_t)
11588 					    dp2->di_ib[adp->ad_offset -
11589 					    UFS_NDADDR]);
11590 				dp2->di_ib[adp->ad_offset - UFS_NDADDR] =
11591 				    adp->ad_newblkno;
11592 			}
11593 		}
11594 		adp->ad_state &= ~UNDONE;
11595 		adp->ad_state |= ATTACHED;
11596 		hadchanges = 1;
11597 	}
11598 	for (adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; adp = nextadp) {
11599 		nextadp = TAILQ_NEXT(adp, ad_next);
11600 		if (adp->ad_state & ATTACHED)
11601 			panic("handle_written_inodeblock: new entry");
11602 		if (dp2->di_extb[adp->ad_offset] != adp->ad_oldblkno)
11603 			panic("%s: direct pointers #%jd %s %jd != %jd",
11604 			    "handle_written_inodeblock",
11605 			    (intmax_t)adp->ad_offset, "mismatch",
11606 			    (intmax_t)dp2->di_extb[adp->ad_offset],
11607 			    (intmax_t)adp->ad_oldblkno);
11608 		dp2->di_extb[adp->ad_offset] = adp->ad_newblkno;
11609 		adp->ad_state &= ~UNDONE;
11610 		adp->ad_state |= ATTACHED;
11611 		hadchanges = 1;
11612 	}
11613 	if (hadchanges && (bp->b_flags & B_DELWRI) == 0)
11614 		stat_direct_blk_ptrs++;
11615 	/*
11616 	 * Reset the file size to its most up-to-date value.
11617 	 */
11618 	if (inodedep->id_savedsize == -1 || inodedep->id_savedextsize == -1)
11619 		panic("handle_written_inodeblock: bad size");
11620 	if (inodedep->id_savednlink > UFS_LINK_MAX)
11621 		panic("handle_written_inodeblock: Invalid link count "
11622 		    "%jd for inodedep %p", (uintmax_t)inodedep->id_savednlink,
11623 		    inodedep);
11624 	if (fstype == UFS1) {
11625 		if (dp1->di_nlink != inodedep->id_savednlink) {
11626 			dp1->di_nlink = inodedep->id_savednlink;
11627 			hadchanges = 1;
11628 		}
11629 		if (dp1->di_size != inodedep->id_savedsize) {
11630 			dp1->di_size = inodedep->id_savedsize;
11631 			hadchanges = 1;
11632 		}
11633 	} else {
11634 		if (dp2->di_nlink != inodedep->id_savednlink) {
11635 			dp2->di_nlink = inodedep->id_savednlink;
11636 			hadchanges = 1;
11637 		}
11638 		if (dp2->di_size != inodedep->id_savedsize) {
11639 			dp2->di_size = inodedep->id_savedsize;
11640 			hadchanges = 1;
11641 		}
11642 		if (dp2->di_extsize != inodedep->id_savedextsize) {
11643 			dp2->di_extsize = inodedep->id_savedextsize;
11644 			hadchanges = 1;
11645 		}
11646 	}
11647 	inodedep->id_savedsize = -1;
11648 	inodedep->id_savedextsize = -1;
11649 	inodedep->id_savednlink = -1;
11650 	/*
11651 	 * If there were any rollbacks in the inode block, then it must be
11652 	 * marked dirty so that its will eventually get written back in
11653 	 * its correct form.
11654 	 */
11655 	if (hadchanges) {
11656 		if (fstype == UFS2)
11657 			ffs_update_dinode_ckhash(inodedep->id_fs, dp2);
11658 		bdirty(bp);
11659 	}
11660 bufwait:
11661 	/*
11662 	 * If the write did not succeed, we have done all the roll-forward
11663 	 * operations, but we cannot take the actions that will allow its
11664 	 * dependencies to be processed.
11665 	 */
11666 	if ((flags & WRITESUCCEEDED) == 0)
11667 		return (hadchanges);
11668 	/*
11669 	 * Process any allocdirects that completed during the update.
11670 	 */
11671 	if ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL)
11672 		handle_allocdirect_partdone(adp, &wkhd);
11673 	if ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL)
11674 		handle_allocdirect_partdone(adp, &wkhd);
11675 	/*
11676 	 * Process deallocations that were held pending until the
11677 	 * inode had been written to disk. Freeing of the inode
11678 	 * is delayed until after all blocks have been freed to
11679 	 * avoid creation of new <vfsid, inum, lbn> triples
11680 	 * before the old ones have been deleted.  Completely
11681 	 * unlinked inodes are not processed until the unlinked
11682 	 * inode list is written or the last reference is removed.
11683 	 */
11684 	if ((inodedep->id_state & (UNLINKED | UNLINKONLIST)) != UNLINKED) {
11685 		freefile = handle_bufwait(inodedep, NULL);
11686 		if (freefile && !LIST_EMPTY(&wkhd)) {
11687 			WORKLIST_INSERT(&wkhd, &freefile->fx_list);
11688 			freefile = NULL;
11689 		}
11690 	}
11691 	/*
11692 	 * Move rolled forward dependency completions to the bufwait list
11693 	 * now that those that were already written have been processed.
11694 	 */
11695 	if (!LIST_EMPTY(&wkhd) && hadchanges == 0)
11696 		panic("handle_written_inodeblock: bufwait but no changes");
11697 	jwork_move(&inodedep->id_bufwait, &wkhd);
11698 
11699 	if (freefile != NULL) {
11700 		/*
11701 		 * If the inode is goingaway it was never written.  Fake up
11702 		 * the state here so free_inodedep() can succeed.
11703 		 */
11704 		if (inodedep->id_state & GOINGAWAY)
11705 			inodedep->id_state |= COMPLETE | DEPCOMPLETE;
11706 		if (free_inodedep(inodedep) == 0)
11707 			panic("handle_written_inodeblock: live inodedep %p",
11708 			    inodedep);
11709 		add_to_worklist(&freefile->fx_list, 0);
11710 		return (0);
11711 	}
11712 
11713 	/*
11714 	 * If no outstanding dependencies, free it.
11715 	 */
11716 	if (free_inodedep(inodedep) ||
11717 	    (TAILQ_FIRST(&inodedep->id_inoreflst) == 0 &&
11718 	     TAILQ_FIRST(&inodedep->id_inoupdt) == 0 &&
11719 	     TAILQ_FIRST(&inodedep->id_extupdt) == 0 &&
11720 	     LIST_FIRST(&inodedep->id_bufwait) == 0))
11721 		return (0);
11722 	return (hadchanges);
11723 }
11724 
11725 /*
11726  * Perform needed roll-forwards and kick off any dependencies that
11727  * can now be processed.
11728  *
11729  * If the write did not succeed, we will do all the roll-forward
11730  * operations, but we will not take the actions that will allow its
11731  * dependencies to be processed.
11732  */
11733 static int
11734 handle_written_indirdep(indirdep, bp, bpp, flags)
11735 	struct indirdep *indirdep;
11736 	struct buf *bp;
11737 	struct buf **bpp;
11738 	int flags;
11739 {
11740 	struct allocindir *aip;
11741 	struct buf *sbp;
11742 	int chgs;
11743 
11744 	if (indirdep->ir_state & GOINGAWAY)
11745 		panic("handle_written_indirdep: indirdep gone");
11746 	if ((indirdep->ir_state & IOSTARTED) == 0)
11747 		panic("handle_written_indirdep: IO not started");
11748 	chgs = 0;
11749 	/*
11750 	 * If there were rollbacks revert them here.
11751 	 */
11752 	if (indirdep->ir_saveddata) {
11753 		bcopy(indirdep->ir_saveddata, bp->b_data, bp->b_bcount);
11754 		if (TAILQ_EMPTY(&indirdep->ir_trunc)) {
11755 			free(indirdep->ir_saveddata, M_INDIRDEP);
11756 			indirdep->ir_saveddata = NULL;
11757 		}
11758 		chgs = 1;
11759 	}
11760 	indirdep->ir_state &= ~(UNDONE | IOSTARTED);
11761 	indirdep->ir_state |= ATTACHED;
11762 	/*
11763 	 * If the write did not succeed, we have done all the roll-forward
11764 	 * operations, but we cannot take the actions that will allow its
11765 	 * dependencies to be processed.
11766 	 */
11767 	if ((flags & WRITESUCCEEDED) == 0) {
11768 		stat_indir_blk_ptrs++;
11769 		bdirty(bp);
11770 		return (1);
11771 	}
11772 	/*
11773 	 * Move allocindirs with written pointers to the completehd if
11774 	 * the indirdep's pointer is not yet written.  Otherwise
11775 	 * free them here.
11776 	 */
11777 	while ((aip = LIST_FIRST(&indirdep->ir_writehd)) != NULL) {
11778 		LIST_REMOVE(aip, ai_next);
11779 		if ((indirdep->ir_state & DEPCOMPLETE) == 0) {
11780 			LIST_INSERT_HEAD(&indirdep->ir_completehd, aip,
11781 			    ai_next);
11782 			newblk_freefrag(&aip->ai_block);
11783 			continue;
11784 		}
11785 		free_newblk(&aip->ai_block);
11786 	}
11787 	/*
11788 	 * Move allocindirs that have finished dependency processing from
11789 	 * the done list to the write list after updating the pointers.
11790 	 */
11791 	if (TAILQ_EMPTY(&indirdep->ir_trunc)) {
11792 		while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != NULL) {
11793 			handle_allocindir_partdone(aip);
11794 			if (aip == LIST_FIRST(&indirdep->ir_donehd))
11795 				panic("disk_write_complete: not gone");
11796 			chgs = 1;
11797 		}
11798 	}
11799 	/*
11800 	 * Preserve the indirdep if there were any changes or if it is not
11801 	 * yet valid on disk.
11802 	 */
11803 	if (chgs) {
11804 		stat_indir_blk_ptrs++;
11805 		bdirty(bp);
11806 		return (1);
11807 	}
11808 	/*
11809 	 * If there were no changes we can discard the savedbp and detach
11810 	 * ourselves from the buf.  We are only carrying completed pointers
11811 	 * in this case.
11812 	 */
11813 	sbp = indirdep->ir_savebp;
11814 	sbp->b_flags |= B_INVAL | B_NOCACHE;
11815 	indirdep->ir_savebp = NULL;
11816 	indirdep->ir_bp = NULL;
11817 	if (*bpp != NULL)
11818 		panic("handle_written_indirdep: bp already exists.");
11819 	*bpp = sbp;
11820 	/*
11821 	 * The indirdep may not be freed until its parent points at it.
11822 	 */
11823 	if (indirdep->ir_state & DEPCOMPLETE)
11824 		free_indirdep(indirdep);
11825 
11826 	return (0);
11827 }
11828 
11829 /*
11830  * Process a diradd entry after its dependent inode has been written.
11831  */
11832 static void
11833 diradd_inode_written(dap, inodedep)
11834 	struct diradd *dap;
11835 	struct inodedep *inodedep;
11836 {
11837 
11838 	LOCK_OWNED(VFSTOUFS(dap->da_list.wk_mp));
11839 	dap->da_state |= COMPLETE;
11840 	complete_diradd(dap);
11841 	WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list);
11842 }
11843 
11844 /*
11845  * Returns true if the bmsafemap will have rollbacks when written.  Must only
11846  * be called with the per-filesystem lock and the buf lock on the cg held.
11847  */
11848 static int
11849 bmsafemap_backgroundwrite(bmsafemap, bp)
11850 	struct bmsafemap *bmsafemap;
11851 	struct buf *bp;
11852 {
11853 	int dirty;
11854 
11855 	LOCK_OWNED(VFSTOUFS(bmsafemap->sm_list.wk_mp));
11856 	dirty = !LIST_EMPTY(&bmsafemap->sm_jaddrefhd) |
11857 	    !LIST_EMPTY(&bmsafemap->sm_jnewblkhd);
11858 	/*
11859 	 * If we're initiating a background write we need to process the
11860 	 * rollbacks as they exist now, not as they exist when IO starts.
11861 	 * No other consumers will look at the contents of the shadowed
11862 	 * buf so this is safe to do here.
11863 	 */
11864 	if (bp->b_xflags & BX_BKGRDMARKER)
11865 		initiate_write_bmsafemap(bmsafemap, bp);
11866 
11867 	return (dirty);
11868 }
11869 
11870 /*
11871  * Re-apply an allocation when a cg write is complete.
11872  */
11873 static int
11874 jnewblk_rollforward(jnewblk, fs, cgp, blksfree)
11875 	struct jnewblk *jnewblk;
11876 	struct fs *fs;
11877 	struct cg *cgp;
11878 	uint8_t *blksfree;
11879 {
11880 	ufs1_daddr_t fragno;
11881 	ufs2_daddr_t blkno;
11882 	long cgbno, bbase;
11883 	int frags, blk;
11884 	int i;
11885 
11886 	frags = 0;
11887 	cgbno = dtogd(fs, jnewblk->jn_blkno);
11888 	for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; i++) {
11889 		if (isclr(blksfree, cgbno + i))
11890 			panic("jnewblk_rollforward: re-allocated fragment");
11891 		frags++;
11892 	}
11893 	if (frags == fs->fs_frag) {
11894 		blkno = fragstoblks(fs, cgbno);
11895 		ffs_clrblock(fs, blksfree, (long)blkno);
11896 		ffs_clusteracct(fs, cgp, blkno, -1);
11897 		cgp->cg_cs.cs_nbfree--;
11898 	} else {
11899 		bbase = cgbno - fragnum(fs, cgbno);
11900 		cgbno += jnewblk->jn_oldfrags;
11901                 /* If a complete block had been reassembled, account for it. */
11902 		fragno = fragstoblks(fs, bbase);
11903 		if (ffs_isblock(fs, blksfree, fragno)) {
11904 			cgp->cg_cs.cs_nffree += fs->fs_frag;
11905 			ffs_clusteracct(fs, cgp, fragno, -1);
11906 			cgp->cg_cs.cs_nbfree--;
11907 		}
11908 		/* Decrement the old frags.  */
11909 		blk = blkmap(fs, blksfree, bbase);
11910 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
11911 		/* Allocate the fragment */
11912 		for (i = 0; i < frags; i++)
11913 			clrbit(blksfree, cgbno + i);
11914 		cgp->cg_cs.cs_nffree -= frags;
11915 		/* Add back in counts associated with the new frags */
11916 		blk = blkmap(fs, blksfree, bbase);
11917 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
11918 	}
11919 	return (frags);
11920 }
11921 
11922 /*
11923  * Complete a write to a bmsafemap structure.  Roll forward any bitmap
11924  * changes if it's not a background write.  Set all written dependencies
11925  * to DEPCOMPLETE and free the structure if possible.
11926  *
11927  * If the write did not succeed, we will do all the roll-forward
11928  * operations, but we will not take the actions that will allow its
11929  * dependencies to be processed.
11930  */
11931 static int
11932 handle_written_bmsafemap(bmsafemap, bp, flags)
11933 	struct bmsafemap *bmsafemap;
11934 	struct buf *bp;
11935 	int flags;
11936 {
11937 	struct newblk *newblk;
11938 	struct inodedep *inodedep;
11939 	struct jaddref *jaddref, *jatmp;
11940 	struct jnewblk *jnewblk, *jntmp;
11941 	struct ufsmount *ump;
11942 	uint8_t *inosused;
11943 	uint8_t *blksfree;
11944 	struct cg *cgp;
11945 	struct fs *fs;
11946 	ino_t ino;
11947 	int foreground;
11948 	int chgs;
11949 
11950 	if ((bmsafemap->sm_state & IOSTARTED) == 0)
11951 		panic("handle_written_bmsafemap: Not started\n");
11952 	ump = VFSTOUFS(bmsafemap->sm_list.wk_mp);
11953 	chgs = 0;
11954 	bmsafemap->sm_state &= ~IOSTARTED;
11955 	foreground = (bp->b_xflags & BX_BKGRDMARKER) == 0;
11956 	/*
11957 	 * If write was successful, release journal work that was waiting
11958 	 * on the write. Otherwise move the work back.
11959 	 */
11960 	if (flags & WRITESUCCEEDED)
11961 		handle_jwork(&bmsafemap->sm_freewr);
11962 	else
11963 		LIST_CONCAT(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr,
11964 		    worklist, wk_list);
11965 
11966 	/*
11967 	 * Restore unwritten inode allocation pending jaddref writes.
11968 	 */
11969 	if (!LIST_EMPTY(&bmsafemap->sm_jaddrefhd)) {
11970 		cgp = (struct cg *)bp->b_data;
11971 		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
11972 		inosused = cg_inosused(cgp);
11973 		LIST_FOREACH_SAFE(jaddref, &bmsafemap->sm_jaddrefhd,
11974 		    ja_bmdeps, jatmp) {
11975 			if ((jaddref->ja_state & UNDONE) == 0)
11976 				continue;
11977 			ino = jaddref->ja_ino % fs->fs_ipg;
11978 			if (isset(inosused, ino))
11979 				panic("handle_written_bmsafemap: "
11980 				    "re-allocated inode");
11981 			/* Do the roll-forward only if it's a real copy. */
11982 			if (foreground) {
11983 				if ((jaddref->ja_mode & IFMT) == IFDIR)
11984 					cgp->cg_cs.cs_ndir++;
11985 				cgp->cg_cs.cs_nifree--;
11986 				setbit(inosused, ino);
11987 				chgs = 1;
11988 			}
11989 			jaddref->ja_state &= ~UNDONE;
11990 			jaddref->ja_state |= ATTACHED;
11991 			free_jaddref(jaddref);
11992 		}
11993 	}
11994 	/*
11995 	 * Restore any block allocations which are pending journal writes.
11996 	 */
11997 	if (LIST_FIRST(&bmsafemap->sm_jnewblkhd) != NULL) {
11998 		cgp = (struct cg *)bp->b_data;
11999 		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
12000 		blksfree = cg_blksfree(cgp);
12001 		LIST_FOREACH_SAFE(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps,
12002 		    jntmp) {
12003 			if ((jnewblk->jn_state & UNDONE) == 0)
12004 				continue;
12005 			/* Do the roll-forward only if it's a real copy. */
12006 			if (foreground &&
12007 			    jnewblk_rollforward(jnewblk, fs, cgp, blksfree))
12008 				chgs = 1;
12009 			jnewblk->jn_state &= ~(UNDONE | NEWBLOCK);
12010 			jnewblk->jn_state |= ATTACHED;
12011 			free_jnewblk(jnewblk);
12012 		}
12013 	}
12014 	/*
12015 	 * If the write did not succeed, we have done all the roll-forward
12016 	 * operations, but we cannot take the actions that will allow its
12017 	 * dependencies to be processed.
12018 	 */
12019 	if ((flags & WRITESUCCEEDED) == 0) {
12020 		LIST_CONCAT(&bmsafemap->sm_newblkhd, &bmsafemap->sm_newblkwr,
12021 		    newblk, nb_deps);
12022 		LIST_CONCAT(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr,
12023 		    worklist, wk_list);
12024 		if (foreground)
12025 			bdirty(bp);
12026 		return (1);
12027 	}
12028 	while ((newblk = LIST_FIRST(&bmsafemap->sm_newblkwr))) {
12029 		newblk->nb_state |= DEPCOMPLETE;
12030 		newblk->nb_state &= ~ONDEPLIST;
12031 		newblk->nb_bmsafemap = NULL;
12032 		LIST_REMOVE(newblk, nb_deps);
12033 		if (newblk->nb_list.wk_type == D_ALLOCDIRECT)
12034 			handle_allocdirect_partdone(
12035 			    WK_ALLOCDIRECT(&newblk->nb_list), NULL);
12036 		else if (newblk->nb_list.wk_type == D_ALLOCINDIR)
12037 			handle_allocindir_partdone(
12038 			    WK_ALLOCINDIR(&newblk->nb_list));
12039 		else if (newblk->nb_list.wk_type != D_NEWBLK)
12040 			panic("handle_written_bmsafemap: Unexpected type: %s",
12041 			    TYPENAME(newblk->nb_list.wk_type));
12042 	}
12043 	while ((inodedep = LIST_FIRST(&bmsafemap->sm_inodedepwr)) != NULL) {
12044 		inodedep->id_state |= DEPCOMPLETE;
12045 		inodedep->id_state &= ~ONDEPLIST;
12046 		LIST_REMOVE(inodedep, id_deps);
12047 		inodedep->id_bmsafemap = NULL;
12048 	}
12049 	LIST_REMOVE(bmsafemap, sm_next);
12050 	if (chgs == 0 && LIST_EMPTY(&bmsafemap->sm_jaddrefhd) &&
12051 	    LIST_EMPTY(&bmsafemap->sm_jnewblkhd) &&
12052 	    LIST_EMPTY(&bmsafemap->sm_newblkhd) &&
12053 	    LIST_EMPTY(&bmsafemap->sm_inodedephd) &&
12054 	    LIST_EMPTY(&bmsafemap->sm_freehd)) {
12055 		LIST_REMOVE(bmsafemap, sm_hash);
12056 		WORKITEM_FREE(bmsafemap, D_BMSAFEMAP);
12057 		return (0);
12058 	}
12059 	LIST_INSERT_HEAD(&ump->softdep_dirtycg, bmsafemap, sm_next);
12060 	if (foreground)
12061 		bdirty(bp);
12062 	return (1);
12063 }
12064 
12065 /*
12066  * Try to free a mkdir dependency.
12067  */
12068 static void
12069 complete_mkdir(mkdir)
12070 	struct mkdir *mkdir;
12071 {
12072 	struct diradd *dap;
12073 
12074 	if ((mkdir->md_state & ALLCOMPLETE) != ALLCOMPLETE)
12075 		return;
12076 	LIST_REMOVE(mkdir, md_mkdirs);
12077 	dap = mkdir->md_diradd;
12078 	dap->da_state &= ~(mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY));
12079 	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0) {
12080 		dap->da_state |= DEPCOMPLETE;
12081 		complete_diradd(dap);
12082 	}
12083 	WORKITEM_FREE(mkdir, D_MKDIR);
12084 }
12085 
12086 /*
12087  * Handle the completion of a mkdir dependency.
12088  */
12089 static void
12090 handle_written_mkdir(mkdir, type)
12091 	struct mkdir *mkdir;
12092 	int type;
12093 {
12094 
12095 	if ((mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY)) != type)
12096 		panic("handle_written_mkdir: bad type");
12097 	mkdir->md_state |= COMPLETE;
12098 	complete_mkdir(mkdir);
12099 }
12100 
12101 static int
12102 free_pagedep(pagedep)
12103 	struct pagedep *pagedep;
12104 {
12105 	int i;
12106 
12107 	if (pagedep->pd_state & NEWBLOCK)
12108 		return (0);
12109 	if (!LIST_EMPTY(&pagedep->pd_dirremhd))
12110 		return (0);
12111 	for (i = 0; i < DAHASHSZ; i++)
12112 		if (!LIST_EMPTY(&pagedep->pd_diraddhd[i]))
12113 			return (0);
12114 	if (!LIST_EMPTY(&pagedep->pd_pendinghd))
12115 		return (0);
12116 	if (!LIST_EMPTY(&pagedep->pd_jmvrefhd))
12117 		return (0);
12118 	if (pagedep->pd_state & ONWORKLIST)
12119 		WORKLIST_REMOVE(&pagedep->pd_list);
12120 	LIST_REMOVE(pagedep, pd_hash);
12121 	WORKITEM_FREE(pagedep, D_PAGEDEP);
12122 
12123 	return (1);
12124 }
12125 
12126 /*
12127  * Called from within softdep_disk_write_complete above.
12128  * A write operation was just completed. Removed inodes can
12129  * now be freed and associated block pointers may be committed.
12130  * Note that this routine is always called from interrupt level
12131  * with further interrupts from this device blocked.
12132  *
12133  * If the write did not succeed, we will do all the roll-forward
12134  * operations, but we will not take the actions that will allow its
12135  * dependencies to be processed.
12136  */
12137 static int
12138 handle_written_filepage(pagedep, bp, flags)
12139 	struct pagedep *pagedep;
12140 	struct buf *bp;		/* buffer containing the written page */
12141 	int flags;
12142 {
12143 	struct dirrem *dirrem;
12144 	struct diradd *dap, *nextdap;
12145 	struct direct *ep;
12146 	int i, chgs;
12147 
12148 	if ((pagedep->pd_state & IOSTARTED) == 0)
12149 		panic("handle_written_filepage: not started");
12150 	pagedep->pd_state &= ~IOSTARTED;
12151 	if ((flags & WRITESUCCEEDED) == 0)
12152 		goto rollforward;
12153 	/*
12154 	 * Process any directory removals that have been committed.
12155 	 */
12156 	while ((dirrem = LIST_FIRST(&pagedep->pd_dirremhd)) != NULL) {
12157 		LIST_REMOVE(dirrem, dm_next);
12158 		dirrem->dm_state |= COMPLETE;
12159 		dirrem->dm_dirinum = pagedep->pd_ino;
12160 		KASSERT(LIST_EMPTY(&dirrem->dm_jremrefhd),
12161 		    ("handle_written_filepage: Journal entries not written."));
12162 		add_to_worklist(&dirrem->dm_list, 0);
12163 	}
12164 	/*
12165 	 * Free any directory additions that have been committed.
12166 	 * If it is a newly allocated block, we have to wait until
12167 	 * the on-disk directory inode claims the new block.
12168 	 */
12169 	if ((pagedep->pd_state & NEWBLOCK) == 0)
12170 		while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL)
12171 			free_diradd(dap, NULL);
12172 rollforward:
12173 	/*
12174 	 * Uncommitted directory entries must be restored.
12175 	 */
12176 	for (chgs = 0, i = 0; i < DAHASHSZ; i++) {
12177 		for (dap = LIST_FIRST(&pagedep->pd_diraddhd[i]); dap;
12178 		     dap = nextdap) {
12179 			nextdap = LIST_NEXT(dap, da_pdlist);
12180 			if (dap->da_state & ATTACHED)
12181 				panic("handle_written_filepage: attached");
12182 			ep = (struct direct *)
12183 			    ((char *)bp->b_data + dap->da_offset);
12184 			ep->d_ino = dap->da_newinum;
12185 			dap->da_state &= ~UNDONE;
12186 			dap->da_state |= ATTACHED;
12187 			chgs = 1;
12188 			/*
12189 			 * If the inode referenced by the directory has
12190 			 * been written out, then the dependency can be
12191 			 * moved to the pending list.
12192 			 */
12193 			if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
12194 				LIST_REMOVE(dap, da_pdlist);
12195 				LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap,
12196 				    da_pdlist);
12197 			}
12198 		}
12199 	}
12200 	/*
12201 	 * If there were any rollbacks in the directory, then it must be
12202 	 * marked dirty so that its will eventually get written back in
12203 	 * its correct form.
12204 	 */
12205 	if (chgs || (flags & WRITESUCCEEDED) == 0) {
12206 		if ((bp->b_flags & B_DELWRI) == 0)
12207 			stat_dir_entry++;
12208 		bdirty(bp);
12209 		return (1);
12210 	}
12211 	/*
12212 	 * If we are not waiting for a new directory block to be
12213 	 * claimed by its inode, then the pagedep will be freed.
12214 	 * Otherwise it will remain to track any new entries on
12215 	 * the page in case they are fsync'ed.
12216 	 */
12217 	free_pagedep(pagedep);
12218 	return (0);
12219 }
12220 
12221 /*
12222  * Writing back in-core inode structures.
12223  *
12224  * The filesystem only accesses an inode's contents when it occupies an
12225  * "in-core" inode structure.  These "in-core" structures are separate from
12226  * the page frames used to cache inode blocks.  Only the latter are
12227  * transferred to/from the disk.  So, when the updated contents of the
12228  * "in-core" inode structure are copied to the corresponding in-memory inode
12229  * block, the dependencies are also transferred.  The following procedure is
12230  * called when copying a dirty "in-core" inode to a cached inode block.
12231  */
12232 
12233 /*
12234  * Called when an inode is loaded from disk. If the effective link count
12235  * differed from the actual link count when it was last flushed, then we
12236  * need to ensure that the correct effective link count is put back.
12237  */
12238 void
12239 softdep_load_inodeblock(ip)
12240 	struct inode *ip;	/* the "in_core" copy of the inode */
12241 {
12242 	struct inodedep *inodedep;
12243 	struct ufsmount *ump;
12244 
12245 	ump = ITOUMP(ip);
12246 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
12247 	    ("softdep_load_inodeblock called on non-softdep filesystem"));
12248 	/*
12249 	 * Check for alternate nlink count.
12250 	 */
12251 	ip->i_effnlink = ip->i_nlink;
12252 	ACQUIRE_LOCK(ump);
12253 	if (inodedep_lookup(UFSTOVFS(ump), ip->i_number, 0, &inodedep) == 0) {
12254 		FREE_LOCK(ump);
12255 		return;
12256 	}
12257 	ip->i_effnlink -= inodedep->id_nlinkdelta;
12258 	KASSERT(ip->i_effnlink >= 0,
12259 	    ("softdep_load_inodeblock: negative i_effnlink"));
12260 	FREE_LOCK(ump);
12261 }
12262 
12263 /*
12264  * This routine is called just before the "in-core" inode
12265  * information is to be copied to the in-memory inode block.
12266  * Recall that an inode block contains several inodes. If
12267  * the force flag is set, then the dependencies will be
12268  * cleared so that the update can always be made. Note that
12269  * the buffer is locked when this routine is called, so we
12270  * will never be in the middle of writing the inode block
12271  * to disk.
12272  */
12273 void
12274 softdep_update_inodeblock(ip, bp, waitfor)
12275 	struct inode *ip;	/* the "in_core" copy of the inode */
12276 	struct buf *bp;		/* the buffer containing the inode block */
12277 	int waitfor;		/* nonzero => update must be allowed */
12278 {
12279 	struct inodedep *inodedep;
12280 	struct inoref *inoref;
12281 	struct ufsmount *ump;
12282 	struct worklist *wk;
12283 	struct mount *mp;
12284 	struct buf *ibp;
12285 	struct fs *fs;
12286 	int error;
12287 
12288 	ump = ITOUMP(ip);
12289 	mp = UFSTOVFS(ump);
12290 	KASSERT(MOUNTEDSOFTDEP(mp) != 0,
12291 	    ("softdep_update_inodeblock called on non-softdep filesystem"));
12292 	fs = ump->um_fs;
12293 	/*
12294 	 * Preserve the freelink that is on disk.  clear_unlinked_inodedep()
12295 	 * does not have access to the in-core ip so must write directly into
12296 	 * the inode block buffer when setting freelink.
12297 	 */
12298 	if (fs->fs_magic == FS_UFS1_MAGIC)
12299 		DIP_SET(ip, i_freelink, ((struct ufs1_dinode *)bp->b_data +
12300 		    ino_to_fsbo(fs, ip->i_number))->di_freelink);
12301 	else
12302 		DIP_SET(ip, i_freelink, ((struct ufs2_dinode *)bp->b_data +
12303 		    ino_to_fsbo(fs, ip->i_number))->di_freelink);
12304 	/*
12305 	 * If the effective link count is not equal to the actual link
12306 	 * count, then we must track the difference in an inodedep while
12307 	 * the inode is (potentially) tossed out of the cache. Otherwise,
12308 	 * if there is no existing inodedep, then there are no dependencies
12309 	 * to track.
12310 	 */
12311 	ACQUIRE_LOCK(ump);
12312 again:
12313 	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) {
12314 		FREE_LOCK(ump);
12315 		if (ip->i_effnlink != ip->i_nlink)
12316 			panic("softdep_update_inodeblock: bad link count");
12317 		return;
12318 	}
12319 	if (inodedep->id_nlinkdelta != ip->i_nlink - ip->i_effnlink)
12320 		panic("softdep_update_inodeblock: bad delta");
12321 	/*
12322 	 * If we're flushing all dependencies we must also move any waiting
12323 	 * for journal writes onto the bufwait list prior to I/O.
12324 	 */
12325 	if (waitfor) {
12326 		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
12327 			if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
12328 			    == DEPCOMPLETE) {
12329 				jwait(&inoref->if_list, MNT_WAIT);
12330 				goto again;
12331 			}
12332 		}
12333 	}
12334 	/*
12335 	 * Changes have been initiated. Anything depending on these
12336 	 * changes cannot occur until this inode has been written.
12337 	 */
12338 	inodedep->id_state &= ~COMPLETE;
12339 	if ((inodedep->id_state & ONWORKLIST) == 0)
12340 		WORKLIST_INSERT(&bp->b_dep, &inodedep->id_list);
12341 	/*
12342 	 * Any new dependencies associated with the incore inode must
12343 	 * now be moved to the list associated with the buffer holding
12344 	 * the in-memory copy of the inode. Once merged process any
12345 	 * allocdirects that are completed by the merger.
12346 	 */
12347 	merge_inode_lists(&inodedep->id_newinoupdt, &inodedep->id_inoupdt);
12348 	if (!TAILQ_EMPTY(&inodedep->id_inoupdt))
12349 		handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_inoupdt),
12350 		    NULL);
12351 	merge_inode_lists(&inodedep->id_newextupdt, &inodedep->id_extupdt);
12352 	if (!TAILQ_EMPTY(&inodedep->id_extupdt))
12353 		handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_extupdt),
12354 		    NULL);
12355 	/*
12356 	 * Now that the inode has been pushed into the buffer, the
12357 	 * operations dependent on the inode being written to disk
12358 	 * can be moved to the id_bufwait so that they will be
12359 	 * processed when the buffer I/O completes.
12360 	 */
12361 	while ((wk = LIST_FIRST(&inodedep->id_inowait)) != NULL) {
12362 		WORKLIST_REMOVE(wk);
12363 		WORKLIST_INSERT(&inodedep->id_bufwait, wk);
12364 	}
12365 	/*
12366 	 * Newly allocated inodes cannot be written until the bitmap
12367 	 * that allocates them have been written (indicated by
12368 	 * DEPCOMPLETE being set in id_state). If we are doing a
12369 	 * forced sync (e.g., an fsync on a file), we force the bitmap
12370 	 * to be written so that the update can be done.
12371 	 */
12372 	if (waitfor == 0) {
12373 		FREE_LOCK(ump);
12374 		return;
12375 	}
12376 retry:
12377 	if ((inodedep->id_state & (DEPCOMPLETE | GOINGAWAY)) != 0) {
12378 		FREE_LOCK(ump);
12379 		return;
12380 	}
12381 	ibp = inodedep->id_bmsafemap->sm_buf;
12382 	ibp = getdirtybuf(ibp, LOCK_PTR(ump), MNT_WAIT);
12383 	if (ibp == NULL) {
12384 		/*
12385 		 * If ibp came back as NULL, the dependency could have been
12386 		 * freed while we slept.  Look it up again, and check to see
12387 		 * that it has completed.
12388 		 */
12389 		if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0)
12390 			goto retry;
12391 		FREE_LOCK(ump);
12392 		return;
12393 	}
12394 	FREE_LOCK(ump);
12395 	if ((error = bwrite(ibp)) != 0)
12396 		softdep_error("softdep_update_inodeblock: bwrite", error);
12397 }
12398 
12399 /*
12400  * Merge the a new inode dependency list (such as id_newinoupdt) into an
12401  * old inode dependency list (such as id_inoupdt).
12402  */
12403 static void
12404 merge_inode_lists(newlisthead, oldlisthead)
12405 	struct allocdirectlst *newlisthead;
12406 	struct allocdirectlst *oldlisthead;
12407 {
12408 	struct allocdirect *listadp, *newadp;
12409 
12410 	newadp = TAILQ_FIRST(newlisthead);
12411 	if (newadp != NULL)
12412 		LOCK_OWNED(VFSTOUFS(newadp->ad_block.nb_list.wk_mp));
12413 	for (listadp = TAILQ_FIRST(oldlisthead); listadp && newadp;) {
12414 		if (listadp->ad_offset < newadp->ad_offset) {
12415 			listadp = TAILQ_NEXT(listadp, ad_next);
12416 			continue;
12417 		}
12418 		TAILQ_REMOVE(newlisthead, newadp, ad_next);
12419 		TAILQ_INSERT_BEFORE(listadp, newadp, ad_next);
12420 		if (listadp->ad_offset == newadp->ad_offset) {
12421 			allocdirect_merge(oldlisthead, newadp,
12422 			    listadp);
12423 			listadp = newadp;
12424 		}
12425 		newadp = TAILQ_FIRST(newlisthead);
12426 	}
12427 	while ((newadp = TAILQ_FIRST(newlisthead)) != NULL) {
12428 		TAILQ_REMOVE(newlisthead, newadp, ad_next);
12429 		TAILQ_INSERT_TAIL(oldlisthead, newadp, ad_next);
12430 	}
12431 }
12432 
12433 /*
12434  * If we are doing an fsync, then we must ensure that any directory
12435  * entries for the inode have been written after the inode gets to disk.
12436  */
12437 int
12438 softdep_fsync(vp)
12439 	struct vnode *vp;	/* the "in_core" copy of the inode */
12440 {
12441 	struct inodedep *inodedep;
12442 	struct pagedep *pagedep;
12443 	struct inoref *inoref;
12444 	struct ufsmount *ump;
12445 	struct worklist *wk;
12446 	struct diradd *dap;
12447 	struct mount *mp;
12448 	struct vnode *pvp;
12449 	struct inode *ip;
12450 	struct buf *bp;
12451 	struct fs *fs;
12452 	struct thread *td = curthread;
12453 	int error, flushparent, pagedep_new_block;
12454 	ino_t parentino;
12455 	ufs_lbn_t lbn;
12456 
12457 	ip = VTOI(vp);
12458 	mp = vp->v_mount;
12459 	ump = VFSTOUFS(mp);
12460 	fs = ump->um_fs;
12461 	if (MOUNTEDSOFTDEP(mp) == 0)
12462 		return (0);
12463 	ACQUIRE_LOCK(ump);
12464 restart:
12465 	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) {
12466 		FREE_LOCK(ump);
12467 		return (0);
12468 	}
12469 	TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
12470 		if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
12471 		    == DEPCOMPLETE) {
12472 			jwait(&inoref->if_list, MNT_WAIT);
12473 			goto restart;
12474 		}
12475 	}
12476 	if (!LIST_EMPTY(&inodedep->id_inowait) ||
12477 	    !TAILQ_EMPTY(&inodedep->id_extupdt) ||
12478 	    !TAILQ_EMPTY(&inodedep->id_newextupdt) ||
12479 	    !TAILQ_EMPTY(&inodedep->id_inoupdt) ||
12480 	    !TAILQ_EMPTY(&inodedep->id_newinoupdt))
12481 		panic("softdep_fsync: pending ops %p", inodedep);
12482 	for (error = 0, flushparent = 0; ; ) {
12483 		if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) == NULL)
12484 			break;
12485 		if (wk->wk_type != D_DIRADD)
12486 			panic("softdep_fsync: Unexpected type %s",
12487 			    TYPENAME(wk->wk_type));
12488 		dap = WK_DIRADD(wk);
12489 		/*
12490 		 * Flush our parent if this directory entry has a MKDIR_PARENT
12491 		 * dependency or is contained in a newly allocated block.
12492 		 */
12493 		if (dap->da_state & DIRCHG)
12494 			pagedep = dap->da_previous->dm_pagedep;
12495 		else
12496 			pagedep = dap->da_pagedep;
12497 		parentino = pagedep->pd_ino;
12498 		lbn = pagedep->pd_lbn;
12499 		if ((dap->da_state & (MKDIR_BODY | COMPLETE)) != COMPLETE)
12500 			panic("softdep_fsync: dirty");
12501 		if ((dap->da_state & MKDIR_PARENT) ||
12502 		    (pagedep->pd_state & NEWBLOCK))
12503 			flushparent = 1;
12504 		else
12505 			flushparent = 0;
12506 		/*
12507 		 * If we are being fsync'ed as part of vgone'ing this vnode,
12508 		 * then we will not be able to release and recover the
12509 		 * vnode below, so we just have to give up on writing its
12510 		 * directory entry out. It will eventually be written, just
12511 		 * not now, but then the user was not asking to have it
12512 		 * written, so we are not breaking any promises.
12513 		 */
12514 		if (VN_IS_DOOMED(vp))
12515 			break;
12516 		/*
12517 		 * We prevent deadlock by always fetching inodes from the
12518 		 * root, moving down the directory tree. Thus, when fetching
12519 		 * our parent directory, we first try to get the lock. If
12520 		 * that fails, we must unlock ourselves before requesting
12521 		 * the lock on our parent. See the comment in ufs_lookup
12522 		 * for details on possible races.
12523 		 */
12524 		FREE_LOCK(ump);
12525 		if (ffs_vgetf(mp, parentino, LK_NOWAIT | LK_EXCLUSIVE, &pvp,
12526 		    FFSV_FORCEINSMQ)) {
12527 			/*
12528 			 * Unmount cannot proceed after unlock because
12529 			 * caller must have called vn_start_write().
12530 			 */
12531 			VOP_UNLOCK(vp, 0);
12532 			error = ffs_vgetf(mp, parentino, LK_EXCLUSIVE,
12533 			    &pvp, FFSV_FORCEINSMQ);
12534 			vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
12535 			if (VN_IS_DOOMED(vp)) {
12536 				if (error == 0)
12537 					vput(pvp);
12538 				error = ENOENT;
12539 			}
12540 			if (error != 0)
12541 				return (error);
12542 		}
12543 		/*
12544 		 * All MKDIR_PARENT dependencies and all the NEWBLOCK pagedeps
12545 		 * that are contained in direct blocks will be resolved by
12546 		 * doing a ffs_update. Pagedeps contained in indirect blocks
12547 		 * may require a complete sync'ing of the directory. So, we
12548 		 * try the cheap and fast ffs_update first, and if that fails,
12549 		 * then we do the slower ffs_syncvnode of the directory.
12550 		 */
12551 		if (flushparent) {
12552 			int locked;
12553 
12554 			if ((error = ffs_update(pvp, 1)) != 0) {
12555 				vput(pvp);
12556 				return (error);
12557 			}
12558 			ACQUIRE_LOCK(ump);
12559 			locked = 1;
12560 			if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0) {
12561 				if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) != NULL) {
12562 					if (wk->wk_type != D_DIRADD)
12563 						panic("softdep_fsync: Unexpected type %s",
12564 						      TYPENAME(wk->wk_type));
12565 					dap = WK_DIRADD(wk);
12566 					if (dap->da_state & DIRCHG)
12567 						pagedep = dap->da_previous->dm_pagedep;
12568 					else
12569 						pagedep = dap->da_pagedep;
12570 					pagedep_new_block = pagedep->pd_state & NEWBLOCK;
12571 					FREE_LOCK(ump);
12572 					locked = 0;
12573 					if (pagedep_new_block && (error =
12574 					    ffs_syncvnode(pvp, MNT_WAIT, 0))) {
12575 						vput(pvp);
12576 						return (error);
12577 					}
12578 				}
12579 			}
12580 			if (locked)
12581 				FREE_LOCK(ump);
12582 		}
12583 		/*
12584 		 * Flush directory page containing the inode's name.
12585 		 */
12586 		error = bread(pvp, lbn, blksize(fs, VTOI(pvp), lbn), td->td_ucred,
12587 		    &bp);
12588 		if (error == 0)
12589 			error = bwrite(bp);
12590 		else
12591 			brelse(bp);
12592 		vput(pvp);
12593 		if (error != 0)
12594 			return (error);
12595 		ACQUIRE_LOCK(ump);
12596 		if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0)
12597 			break;
12598 	}
12599 	FREE_LOCK(ump);
12600 	return (0);
12601 }
12602 
12603 /*
12604  * Flush all the dirty bitmaps associated with the block device
12605  * before flushing the rest of the dirty blocks so as to reduce
12606  * the number of dependencies that will have to be rolled back.
12607  *
12608  * XXX Unused?
12609  */
12610 void
12611 softdep_fsync_mountdev(vp)
12612 	struct vnode *vp;
12613 {
12614 	struct buf *bp, *nbp;
12615 	struct worklist *wk;
12616 	struct bufobj *bo;
12617 
12618 	if (!vn_isdisk(vp, NULL))
12619 		panic("softdep_fsync_mountdev: vnode not a disk");
12620 	bo = &vp->v_bufobj;
12621 restart:
12622 	BO_LOCK(bo);
12623 	TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
12624 		/*
12625 		 * If it is already scheduled, skip to the next buffer.
12626 		 */
12627 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL))
12628 			continue;
12629 
12630 		if ((bp->b_flags & B_DELWRI) == 0)
12631 			panic("softdep_fsync_mountdev: not dirty");
12632 		/*
12633 		 * We are only interested in bitmaps with outstanding
12634 		 * dependencies.
12635 		 */
12636 		if ((wk = LIST_FIRST(&bp->b_dep)) == NULL ||
12637 		    wk->wk_type != D_BMSAFEMAP ||
12638 		    (bp->b_vflags & BV_BKGRDINPROG)) {
12639 			BUF_UNLOCK(bp);
12640 			continue;
12641 		}
12642 		BO_UNLOCK(bo);
12643 		bremfree(bp);
12644 		(void) bawrite(bp);
12645 		goto restart;
12646 	}
12647 	drain_output(vp);
12648 	BO_UNLOCK(bo);
12649 }
12650 
12651 /*
12652  * Sync all cylinder groups that were dirty at the time this function is
12653  * called.  Newly dirtied cgs will be inserted before the sentinel.  This
12654  * is used to flush freedep activity that may be holding up writes to a
12655  * indirect block.
12656  */
12657 static int
12658 sync_cgs(mp, waitfor)
12659 	struct mount *mp;
12660 	int waitfor;
12661 {
12662 	struct bmsafemap *bmsafemap;
12663 	struct bmsafemap *sentinel;
12664 	struct ufsmount *ump;
12665 	struct buf *bp;
12666 	int error;
12667 
12668 	sentinel = malloc(sizeof(*sentinel), M_BMSAFEMAP, M_ZERO | M_WAITOK);
12669 	sentinel->sm_cg = -1;
12670 	ump = VFSTOUFS(mp);
12671 	error = 0;
12672 	ACQUIRE_LOCK(ump);
12673 	LIST_INSERT_HEAD(&ump->softdep_dirtycg, sentinel, sm_next);
12674 	for (bmsafemap = LIST_NEXT(sentinel, sm_next); bmsafemap != NULL;
12675 	    bmsafemap = LIST_NEXT(sentinel, sm_next)) {
12676 		/* Skip sentinels and cgs with no work to release. */
12677 		if (bmsafemap->sm_cg == -1 ||
12678 		    (LIST_EMPTY(&bmsafemap->sm_freehd) &&
12679 		    LIST_EMPTY(&bmsafemap->sm_freewr))) {
12680 			LIST_REMOVE(sentinel, sm_next);
12681 			LIST_INSERT_AFTER(bmsafemap, sentinel, sm_next);
12682 			continue;
12683 		}
12684 		/*
12685 		 * If we don't get the lock and we're waiting try again, if
12686 		 * not move on to the next buf and try to sync it.
12687 		 */
12688 		bp = getdirtybuf(bmsafemap->sm_buf, LOCK_PTR(ump), waitfor);
12689 		if (bp == NULL && waitfor == MNT_WAIT)
12690 			continue;
12691 		LIST_REMOVE(sentinel, sm_next);
12692 		LIST_INSERT_AFTER(bmsafemap, sentinel, sm_next);
12693 		if (bp == NULL)
12694 			continue;
12695 		FREE_LOCK(ump);
12696 		if (waitfor == MNT_NOWAIT)
12697 			bawrite(bp);
12698 		else
12699 			error = bwrite(bp);
12700 		ACQUIRE_LOCK(ump);
12701 		if (error)
12702 			break;
12703 	}
12704 	LIST_REMOVE(sentinel, sm_next);
12705 	FREE_LOCK(ump);
12706 	free(sentinel, M_BMSAFEMAP);
12707 	return (error);
12708 }
12709 
12710 /*
12711  * This routine is called when we are trying to synchronously flush a
12712  * file. This routine must eliminate any filesystem metadata dependencies
12713  * so that the syncing routine can succeed.
12714  */
12715 int
12716 softdep_sync_metadata(struct vnode *vp)
12717 {
12718 	struct inode *ip;
12719 	int error;
12720 
12721 	ip = VTOI(vp);
12722 	KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0,
12723 	    ("softdep_sync_metadata called on non-softdep filesystem"));
12724 	/*
12725 	 * Ensure that any direct block dependencies have been cleared,
12726 	 * truncations are started, and inode references are journaled.
12727 	 */
12728 	ACQUIRE_LOCK(VFSTOUFS(vp->v_mount));
12729 	/*
12730 	 * Write all journal records to prevent rollbacks on devvp.
12731 	 */
12732 	if (vp->v_type == VCHR)
12733 		softdep_flushjournal(vp->v_mount);
12734 	error = flush_inodedep_deps(vp, vp->v_mount, ip->i_number);
12735 	/*
12736 	 * Ensure that all truncates are written so we won't find deps on
12737 	 * indirect blocks.
12738 	 */
12739 	process_truncates(vp);
12740 	FREE_LOCK(VFSTOUFS(vp->v_mount));
12741 
12742 	return (error);
12743 }
12744 
12745 /*
12746  * This routine is called when we are attempting to sync a buf with
12747  * dependencies.  If waitfor is MNT_NOWAIT it attempts to schedule any
12748  * other IO it can but returns EBUSY if the buffer is not yet able to
12749  * be written.  Dependencies which will not cause rollbacks will always
12750  * return 0.
12751  */
12752 int
12753 softdep_sync_buf(struct vnode *vp, struct buf *bp, int waitfor)
12754 {
12755 	struct indirdep *indirdep;
12756 	struct pagedep *pagedep;
12757 	struct allocindir *aip;
12758 	struct newblk *newblk;
12759 	struct ufsmount *ump;
12760 	struct buf *nbp;
12761 	struct worklist *wk;
12762 	int i, error;
12763 
12764 	KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0,
12765 	    ("softdep_sync_buf called on non-softdep filesystem"));
12766 	/*
12767 	 * For VCHR we just don't want to force flush any dependencies that
12768 	 * will cause rollbacks.
12769 	 */
12770 	if (vp->v_type == VCHR) {
12771 		if (waitfor == MNT_NOWAIT && softdep_count_dependencies(bp, 0))
12772 			return (EBUSY);
12773 		return (0);
12774 	}
12775 	ump = VFSTOUFS(vp->v_mount);
12776 	ACQUIRE_LOCK(ump);
12777 	/*
12778 	 * As we hold the buffer locked, none of its dependencies
12779 	 * will disappear.
12780 	 */
12781 	error = 0;
12782 top:
12783 	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
12784 		switch (wk->wk_type) {
12785 
12786 		case D_ALLOCDIRECT:
12787 		case D_ALLOCINDIR:
12788 			newblk = WK_NEWBLK(wk);
12789 			if (newblk->nb_jnewblk != NULL) {
12790 				if (waitfor == MNT_NOWAIT) {
12791 					error = EBUSY;
12792 					goto out_unlock;
12793 				}
12794 				jwait(&newblk->nb_jnewblk->jn_list, waitfor);
12795 				goto top;
12796 			}
12797 			if (newblk->nb_state & DEPCOMPLETE ||
12798 			    waitfor == MNT_NOWAIT)
12799 				continue;
12800 			nbp = newblk->nb_bmsafemap->sm_buf;
12801 			nbp = getdirtybuf(nbp, LOCK_PTR(ump), waitfor);
12802 			if (nbp == NULL)
12803 				goto top;
12804 			FREE_LOCK(ump);
12805 			if ((error = bwrite(nbp)) != 0)
12806 				goto out;
12807 			ACQUIRE_LOCK(ump);
12808 			continue;
12809 
12810 		case D_INDIRDEP:
12811 			indirdep = WK_INDIRDEP(wk);
12812 			if (waitfor == MNT_NOWAIT) {
12813 				if (!TAILQ_EMPTY(&indirdep->ir_trunc) ||
12814 				    !LIST_EMPTY(&indirdep->ir_deplisthd)) {
12815 					error = EBUSY;
12816 					goto out_unlock;
12817 				}
12818 			}
12819 			if (!TAILQ_EMPTY(&indirdep->ir_trunc))
12820 				panic("softdep_sync_buf: truncation pending.");
12821 		restart:
12822 			LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) {
12823 				newblk = (struct newblk *)aip;
12824 				if (newblk->nb_jnewblk != NULL) {
12825 					jwait(&newblk->nb_jnewblk->jn_list,
12826 					    waitfor);
12827 					goto restart;
12828 				}
12829 				if (newblk->nb_state & DEPCOMPLETE)
12830 					continue;
12831 				nbp = newblk->nb_bmsafemap->sm_buf;
12832 				nbp = getdirtybuf(nbp, LOCK_PTR(ump), waitfor);
12833 				if (nbp == NULL)
12834 					goto restart;
12835 				FREE_LOCK(ump);
12836 				if ((error = bwrite(nbp)) != 0)
12837 					goto out;
12838 				ACQUIRE_LOCK(ump);
12839 				goto restart;
12840 			}
12841 			continue;
12842 
12843 		case D_PAGEDEP:
12844 			/*
12845 			 * Only flush directory entries in synchronous passes.
12846 			 */
12847 			if (waitfor != MNT_WAIT) {
12848 				error = EBUSY;
12849 				goto out_unlock;
12850 			}
12851 			/*
12852 			 * While syncing snapshots, we must allow recursive
12853 			 * lookups.
12854 			 */
12855 			BUF_AREC(bp);
12856 			/*
12857 			 * We are trying to sync a directory that may
12858 			 * have dependencies on both its own metadata
12859 			 * and/or dependencies on the inodes of any
12860 			 * recently allocated files. We walk its diradd
12861 			 * lists pushing out the associated inode.
12862 			 */
12863 			pagedep = WK_PAGEDEP(wk);
12864 			for (i = 0; i < DAHASHSZ; i++) {
12865 				if (LIST_FIRST(&pagedep->pd_diraddhd[i]) == 0)
12866 					continue;
12867 				if ((error = flush_pagedep_deps(vp, wk->wk_mp,
12868 				    &pagedep->pd_diraddhd[i]))) {
12869 					BUF_NOREC(bp);
12870 					goto out_unlock;
12871 				}
12872 			}
12873 			BUF_NOREC(bp);
12874 			continue;
12875 
12876 		case D_FREEWORK:
12877 		case D_FREEDEP:
12878 		case D_JSEGDEP:
12879 		case D_JNEWBLK:
12880 			continue;
12881 
12882 		default:
12883 			panic("softdep_sync_buf: Unknown type %s",
12884 			    TYPENAME(wk->wk_type));
12885 			/* NOTREACHED */
12886 		}
12887 	}
12888 out_unlock:
12889 	FREE_LOCK(ump);
12890 out:
12891 	return (error);
12892 }
12893 
12894 /*
12895  * Flush the dependencies associated with an inodedep.
12896  */
12897 static int
12898 flush_inodedep_deps(vp, mp, ino)
12899 	struct vnode *vp;
12900 	struct mount *mp;
12901 	ino_t ino;
12902 {
12903 	struct inodedep *inodedep;
12904 	struct inoref *inoref;
12905 	struct ufsmount *ump;
12906 	int error, waitfor;
12907 
12908 	/*
12909 	 * This work is done in two passes. The first pass grabs most
12910 	 * of the buffers and begins asynchronously writing them. The
12911 	 * only way to wait for these asynchronous writes is to sleep
12912 	 * on the filesystem vnode which may stay busy for a long time
12913 	 * if the filesystem is active. So, instead, we make a second
12914 	 * pass over the dependencies blocking on each write. In the
12915 	 * usual case we will be blocking against a write that we
12916 	 * initiated, so when it is done the dependency will have been
12917 	 * resolved. Thus the second pass is expected to end quickly.
12918 	 * We give a brief window at the top of the loop to allow
12919 	 * any pending I/O to complete.
12920 	 */
12921 	ump = VFSTOUFS(mp);
12922 	LOCK_OWNED(ump);
12923 	for (error = 0, waitfor = MNT_NOWAIT; ; ) {
12924 		if (error)
12925 			return (error);
12926 		FREE_LOCK(ump);
12927 		ACQUIRE_LOCK(ump);
12928 restart:
12929 		if (inodedep_lookup(mp, ino, 0, &inodedep) == 0)
12930 			return (0);
12931 		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
12932 			if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
12933 			    == DEPCOMPLETE) {
12934 				jwait(&inoref->if_list, MNT_WAIT);
12935 				goto restart;
12936 			}
12937 		}
12938 		if (flush_deplist(&inodedep->id_inoupdt, waitfor, &error) ||
12939 		    flush_deplist(&inodedep->id_newinoupdt, waitfor, &error) ||
12940 		    flush_deplist(&inodedep->id_extupdt, waitfor, &error) ||
12941 		    flush_deplist(&inodedep->id_newextupdt, waitfor, &error))
12942 			continue;
12943 		/*
12944 		 * If pass2, we are done, otherwise do pass 2.
12945 		 */
12946 		if (waitfor == MNT_WAIT)
12947 			break;
12948 		waitfor = MNT_WAIT;
12949 	}
12950 	/*
12951 	 * Try freeing inodedep in case all dependencies have been removed.
12952 	 */
12953 	if (inodedep_lookup(mp, ino, 0, &inodedep) != 0)
12954 		(void) free_inodedep(inodedep);
12955 	return (0);
12956 }
12957 
12958 /*
12959  * Flush an inode dependency list.
12960  */
12961 static int
12962 flush_deplist(listhead, waitfor, errorp)
12963 	struct allocdirectlst *listhead;
12964 	int waitfor;
12965 	int *errorp;
12966 {
12967 	struct allocdirect *adp;
12968 	struct newblk *newblk;
12969 	struct ufsmount *ump;
12970 	struct buf *bp;
12971 
12972 	if ((adp = TAILQ_FIRST(listhead)) == NULL)
12973 		return (0);
12974 	ump = VFSTOUFS(adp->ad_list.wk_mp);
12975 	LOCK_OWNED(ump);
12976 	TAILQ_FOREACH(adp, listhead, ad_next) {
12977 		newblk = (struct newblk *)adp;
12978 		if (newblk->nb_jnewblk != NULL) {
12979 			jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT);
12980 			return (1);
12981 		}
12982 		if (newblk->nb_state & DEPCOMPLETE)
12983 			continue;
12984 		bp = newblk->nb_bmsafemap->sm_buf;
12985 		bp = getdirtybuf(bp, LOCK_PTR(ump), waitfor);
12986 		if (bp == NULL) {
12987 			if (waitfor == MNT_NOWAIT)
12988 				continue;
12989 			return (1);
12990 		}
12991 		FREE_LOCK(ump);
12992 		if (waitfor == MNT_NOWAIT)
12993 			bawrite(bp);
12994 		else
12995 			*errorp = bwrite(bp);
12996 		ACQUIRE_LOCK(ump);
12997 		return (1);
12998 	}
12999 	return (0);
13000 }
13001 
13002 /*
13003  * Flush dependencies associated with an allocdirect block.
13004  */
13005 static int
13006 flush_newblk_dep(vp, mp, lbn)
13007 	struct vnode *vp;
13008 	struct mount *mp;
13009 	ufs_lbn_t lbn;
13010 {
13011 	struct newblk *newblk;
13012 	struct ufsmount *ump;
13013 	struct bufobj *bo;
13014 	struct inode *ip;
13015 	struct buf *bp;
13016 	ufs2_daddr_t blkno;
13017 	int error;
13018 
13019 	error = 0;
13020 	bo = &vp->v_bufobj;
13021 	ip = VTOI(vp);
13022 	blkno = DIP(ip, i_db[lbn]);
13023 	if (blkno == 0)
13024 		panic("flush_newblk_dep: Missing block");
13025 	ump = VFSTOUFS(mp);
13026 	ACQUIRE_LOCK(ump);
13027 	/*
13028 	 * Loop until all dependencies related to this block are satisfied.
13029 	 * We must be careful to restart after each sleep in case a write
13030 	 * completes some part of this process for us.
13031 	 */
13032 	for (;;) {
13033 		if (newblk_lookup(mp, blkno, 0, &newblk) == 0) {
13034 			FREE_LOCK(ump);
13035 			break;
13036 		}
13037 		if (newblk->nb_list.wk_type != D_ALLOCDIRECT)
13038 			panic("flush_newblk_dep: Bad newblk %p", newblk);
13039 		/*
13040 		 * Flush the journal.
13041 		 */
13042 		if (newblk->nb_jnewblk != NULL) {
13043 			jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT);
13044 			continue;
13045 		}
13046 		/*
13047 		 * Write the bitmap dependency.
13048 		 */
13049 		if ((newblk->nb_state & DEPCOMPLETE) == 0) {
13050 			bp = newblk->nb_bmsafemap->sm_buf;
13051 			bp = getdirtybuf(bp, LOCK_PTR(ump), MNT_WAIT);
13052 			if (bp == NULL)
13053 				continue;
13054 			FREE_LOCK(ump);
13055 			error = bwrite(bp);
13056 			if (error)
13057 				break;
13058 			ACQUIRE_LOCK(ump);
13059 			continue;
13060 		}
13061 		/*
13062 		 * Write the buffer.
13063 		 */
13064 		FREE_LOCK(ump);
13065 		BO_LOCK(bo);
13066 		bp = gbincore(bo, lbn);
13067 		if (bp != NULL) {
13068 			error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL |
13069 			    LK_INTERLOCK, BO_LOCKPTR(bo));
13070 			if (error == ENOLCK) {
13071 				ACQUIRE_LOCK(ump);
13072 				error = 0;
13073 				continue; /* Slept, retry */
13074 			}
13075 			if (error != 0)
13076 				break;	/* Failed */
13077 			if (bp->b_flags & B_DELWRI) {
13078 				bremfree(bp);
13079 				error = bwrite(bp);
13080 				if (error)
13081 					break;
13082 			} else
13083 				BUF_UNLOCK(bp);
13084 		} else
13085 			BO_UNLOCK(bo);
13086 		/*
13087 		 * We have to wait for the direct pointers to
13088 		 * point at the newdirblk before the dependency
13089 		 * will go away.
13090 		 */
13091 		error = ffs_update(vp, 1);
13092 		if (error)
13093 			break;
13094 		ACQUIRE_LOCK(ump);
13095 	}
13096 	return (error);
13097 }
13098 
13099 /*
13100  * Eliminate a pagedep dependency by flushing out all its diradd dependencies.
13101  */
13102 static int
13103 flush_pagedep_deps(pvp, mp, diraddhdp)
13104 	struct vnode *pvp;
13105 	struct mount *mp;
13106 	struct diraddhd *diraddhdp;
13107 {
13108 	struct inodedep *inodedep;
13109 	struct inoref *inoref;
13110 	struct ufsmount *ump;
13111 	struct diradd *dap;
13112 	struct vnode *vp;
13113 	int error = 0;
13114 	struct buf *bp;
13115 	ino_t inum;
13116 	struct diraddhd unfinished;
13117 
13118 	LIST_INIT(&unfinished);
13119 	ump = VFSTOUFS(mp);
13120 	LOCK_OWNED(ump);
13121 restart:
13122 	while ((dap = LIST_FIRST(diraddhdp)) != NULL) {
13123 		/*
13124 		 * Flush ourselves if this directory entry
13125 		 * has a MKDIR_PARENT dependency.
13126 		 */
13127 		if (dap->da_state & MKDIR_PARENT) {
13128 			FREE_LOCK(ump);
13129 			if ((error = ffs_update(pvp, 1)) != 0)
13130 				break;
13131 			ACQUIRE_LOCK(ump);
13132 			/*
13133 			 * If that cleared dependencies, go on to next.
13134 			 */
13135 			if (dap != LIST_FIRST(diraddhdp))
13136 				continue;
13137 			/*
13138 			 * All MKDIR_PARENT dependencies and all the
13139 			 * NEWBLOCK pagedeps that are contained in direct
13140 			 * blocks were resolved by doing above ffs_update.
13141 			 * Pagedeps contained in indirect blocks may
13142 			 * require a complete sync'ing of the directory.
13143 			 * We are in the midst of doing a complete sync,
13144 			 * so if they are not resolved in this pass we
13145 			 * defer them for now as they will be sync'ed by
13146 			 * our caller shortly.
13147 			 */
13148 			LIST_REMOVE(dap, da_pdlist);
13149 			LIST_INSERT_HEAD(&unfinished, dap, da_pdlist);
13150 			continue;
13151 		}
13152 		/*
13153 		 * A newly allocated directory must have its "." and
13154 		 * ".." entries written out before its name can be
13155 		 * committed in its parent.
13156 		 */
13157 		inum = dap->da_newinum;
13158 		if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0)
13159 			panic("flush_pagedep_deps: lost inode1");
13160 		/*
13161 		 * Wait for any pending journal adds to complete so we don't
13162 		 * cause rollbacks while syncing.
13163 		 */
13164 		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
13165 			if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
13166 			    == DEPCOMPLETE) {
13167 				jwait(&inoref->if_list, MNT_WAIT);
13168 				goto restart;
13169 			}
13170 		}
13171 		if (dap->da_state & MKDIR_BODY) {
13172 			FREE_LOCK(ump);
13173 			if ((error = ffs_vgetf(mp, inum, LK_EXCLUSIVE, &vp,
13174 			    FFSV_FORCEINSMQ)))
13175 				break;
13176 			error = flush_newblk_dep(vp, mp, 0);
13177 			/*
13178 			 * If we still have the dependency we might need to
13179 			 * update the vnode to sync the new link count to
13180 			 * disk.
13181 			 */
13182 			if (error == 0 && dap == LIST_FIRST(diraddhdp))
13183 				error = ffs_update(vp, 1);
13184 			vput(vp);
13185 			if (error != 0)
13186 				break;
13187 			ACQUIRE_LOCK(ump);
13188 			/*
13189 			 * If that cleared dependencies, go on to next.
13190 			 */
13191 			if (dap != LIST_FIRST(diraddhdp))
13192 				continue;
13193 			if (dap->da_state & MKDIR_BODY) {
13194 				inodedep_lookup(UFSTOVFS(ump), inum, 0,
13195 				    &inodedep);
13196 				panic("flush_pagedep_deps: MKDIR_BODY "
13197 				    "inodedep %p dap %p vp %p",
13198 				    inodedep, dap, vp);
13199 			}
13200 		}
13201 		/*
13202 		 * Flush the inode on which the directory entry depends.
13203 		 * Having accounted for MKDIR_PARENT and MKDIR_BODY above,
13204 		 * the only remaining dependency is that the updated inode
13205 		 * count must get pushed to disk. The inode has already
13206 		 * been pushed into its inode buffer (via VOP_UPDATE) at
13207 		 * the time of the reference count change. So we need only
13208 		 * locate that buffer, ensure that there will be no rollback
13209 		 * caused by a bitmap dependency, then write the inode buffer.
13210 		 */
13211 retry:
13212 		if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0)
13213 			panic("flush_pagedep_deps: lost inode");
13214 		/*
13215 		 * If the inode still has bitmap dependencies,
13216 		 * push them to disk.
13217 		 */
13218 		if ((inodedep->id_state & (DEPCOMPLETE | GOINGAWAY)) == 0) {
13219 			bp = inodedep->id_bmsafemap->sm_buf;
13220 			bp = getdirtybuf(bp, LOCK_PTR(ump), MNT_WAIT);
13221 			if (bp == NULL)
13222 				goto retry;
13223 			FREE_LOCK(ump);
13224 			if ((error = bwrite(bp)) != 0)
13225 				break;
13226 			ACQUIRE_LOCK(ump);
13227 			if (dap != LIST_FIRST(diraddhdp))
13228 				continue;
13229 		}
13230 		/*
13231 		 * If the inode is still sitting in a buffer waiting
13232 		 * to be written or waiting for the link count to be
13233 		 * adjusted update it here to flush it to disk.
13234 		 */
13235 		if (dap == LIST_FIRST(diraddhdp)) {
13236 			FREE_LOCK(ump);
13237 			if ((error = ffs_vgetf(mp, inum, LK_EXCLUSIVE, &vp,
13238 			    FFSV_FORCEINSMQ)))
13239 				break;
13240 			error = ffs_update(vp, 1);
13241 			vput(vp);
13242 			if (error)
13243 				break;
13244 			ACQUIRE_LOCK(ump);
13245 		}
13246 		/*
13247 		 * If we have failed to get rid of all the dependencies
13248 		 * then something is seriously wrong.
13249 		 */
13250 		if (dap == LIST_FIRST(diraddhdp)) {
13251 			inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep);
13252 			panic("flush_pagedep_deps: failed to flush "
13253 			    "inodedep %p ino %ju dap %p",
13254 			    inodedep, (uintmax_t)inum, dap);
13255 		}
13256 	}
13257 	if (error)
13258 		ACQUIRE_LOCK(ump);
13259 	while ((dap = LIST_FIRST(&unfinished)) != NULL) {
13260 		LIST_REMOVE(dap, da_pdlist);
13261 		LIST_INSERT_HEAD(diraddhdp, dap, da_pdlist);
13262 	}
13263 	return (error);
13264 }
13265 
13266 /*
13267  * A large burst of file addition or deletion activity can drive the
13268  * memory load excessively high. First attempt to slow things down
13269  * using the techniques below. If that fails, this routine requests
13270  * the offending operations to fall back to running synchronously
13271  * until the memory load returns to a reasonable level.
13272  */
13273 int
13274 softdep_slowdown(vp)
13275 	struct vnode *vp;
13276 {
13277 	struct ufsmount *ump;
13278 	int jlow;
13279 	int max_softdeps_hard;
13280 
13281 	KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0,
13282 	    ("softdep_slowdown called on non-softdep filesystem"));
13283 	ump = VFSTOUFS(vp->v_mount);
13284 	ACQUIRE_LOCK(ump);
13285 	jlow = 0;
13286 	/*
13287 	 * Check for journal space if needed.
13288 	 */
13289 	if (DOINGSUJ(vp)) {
13290 		if (journal_space(ump, 0) == 0)
13291 			jlow = 1;
13292 	}
13293 	/*
13294 	 * If the system is under its limits and our filesystem is
13295 	 * not responsible for more than our share of the usage and
13296 	 * we are not low on journal space, then no need to slow down.
13297 	 */
13298 	max_softdeps_hard = max_softdeps * 11 / 10;
13299 	if (dep_current[D_DIRREM] < max_softdeps_hard / 2 &&
13300 	    dep_current[D_INODEDEP] < max_softdeps_hard &&
13301 	    dep_current[D_INDIRDEP] < max_softdeps_hard / 1000 &&
13302 	    dep_current[D_FREEBLKS] < max_softdeps_hard && jlow == 0 &&
13303 	    ump->softdep_curdeps[D_DIRREM] <
13304 	    (max_softdeps_hard / 2) / stat_flush_threads &&
13305 	    ump->softdep_curdeps[D_INODEDEP] <
13306 	    max_softdeps_hard / stat_flush_threads &&
13307 	    ump->softdep_curdeps[D_INDIRDEP] <
13308 	    (max_softdeps_hard / 1000) / stat_flush_threads &&
13309 	    ump->softdep_curdeps[D_FREEBLKS] <
13310 	    max_softdeps_hard / stat_flush_threads) {
13311 		FREE_LOCK(ump);
13312   		return (0);
13313 	}
13314 	/*
13315 	 * If the journal is low or our filesystem is over its limit
13316 	 * then speedup the cleanup.
13317 	 */
13318 	if (ump->softdep_curdeps[D_INDIRDEP] <
13319 	    (max_softdeps_hard / 1000) / stat_flush_threads || jlow)
13320 		softdep_speedup(ump);
13321 	stat_sync_limit_hit += 1;
13322 	FREE_LOCK(ump);
13323 	/*
13324 	 * We only slow down the rate at which new dependencies are
13325 	 * generated if we are not using journaling. With journaling,
13326 	 * the cleanup should always be sufficient to keep things
13327 	 * under control.
13328 	 */
13329 	if (DOINGSUJ(vp))
13330 		return (0);
13331 	return (1);
13332 }
13333 
13334 /*
13335  * Called by the allocation routines when they are about to fail
13336  * in the hope that we can free up the requested resource (inodes
13337  * or disk space).
13338  *
13339  * First check to see if the work list has anything on it. If it has,
13340  * clean up entries until we successfully free the requested resource.
13341  * Because this process holds inodes locked, we cannot handle any remove
13342  * requests that might block on a locked inode as that could lead to
13343  * deadlock. If the worklist yields none of the requested resource,
13344  * start syncing out vnodes to free up the needed space.
13345  */
13346 int
13347 softdep_request_cleanup(fs, vp, cred, resource)
13348 	struct fs *fs;
13349 	struct vnode *vp;
13350 	struct ucred *cred;
13351 	int resource;
13352 {
13353 	struct ufsmount *ump;
13354 	struct mount *mp;
13355 	long starttime;
13356 	ufs2_daddr_t needed;
13357 	int error, failed_vnode;
13358 
13359 	/*
13360 	 * If we are being called because of a process doing a
13361 	 * copy-on-write, then it is not safe to process any
13362 	 * worklist items as we will recurse into the copyonwrite
13363 	 * routine.  This will result in an incoherent snapshot.
13364 	 * If the vnode that we hold is a snapshot, we must avoid
13365 	 * handling other resources that could cause deadlock.
13366 	 */
13367 	if ((curthread->td_pflags & TDP_COWINPROGRESS) || IS_SNAPSHOT(VTOI(vp)))
13368 		return (0);
13369 
13370 	if (resource == FLUSH_BLOCKS_WAIT)
13371 		stat_cleanup_blkrequests += 1;
13372 	else
13373 		stat_cleanup_inorequests += 1;
13374 
13375 	mp = vp->v_mount;
13376 	ump = VFSTOUFS(mp);
13377 	mtx_assert(UFS_MTX(ump), MA_OWNED);
13378 	UFS_UNLOCK(ump);
13379 	error = ffs_update(vp, 1);
13380 	if (error != 0 || MOUNTEDSOFTDEP(mp) == 0) {
13381 		UFS_LOCK(ump);
13382 		return (0);
13383 	}
13384 	/*
13385 	 * If we are in need of resources, start by cleaning up
13386 	 * any block removals associated with our inode.
13387 	 */
13388 	ACQUIRE_LOCK(ump);
13389 	process_removes(vp);
13390 	process_truncates(vp);
13391 	FREE_LOCK(ump);
13392 	/*
13393 	 * Now clean up at least as many resources as we will need.
13394 	 *
13395 	 * When requested to clean up inodes, the number that are needed
13396 	 * is set by the number of simultaneous writers (mnt_writeopcount)
13397 	 * plus a bit of slop (2) in case some more writers show up while
13398 	 * we are cleaning.
13399 	 *
13400 	 * When requested to free up space, the amount of space that
13401 	 * we need is enough blocks to allocate a full-sized segment
13402 	 * (fs_contigsumsize). The number of such segments that will
13403 	 * be needed is set by the number of simultaneous writers
13404 	 * (mnt_writeopcount) plus a bit of slop (2) in case some more
13405 	 * writers show up while we are cleaning.
13406 	 *
13407 	 * Additionally, if we are unpriviledged and allocating space,
13408 	 * we need to ensure that we clean up enough blocks to get the
13409 	 * needed number of blocks over the threshold of the minimum
13410 	 * number of blocks required to be kept free by the filesystem
13411 	 * (fs_minfree).
13412 	 */
13413 	if (resource == FLUSH_INODES_WAIT) {
13414 		needed = vfs_mount_fetch_counter(vp->v_mount,
13415 		    MNT_COUNT_WRITEOPCOUNT) + 2;
13416 	} else if (resource == FLUSH_BLOCKS_WAIT) {
13417 		needed = (vfs_mount_fetch_counter(vp->v_mount,
13418 		    MNT_COUNT_WRITEOPCOUNT) + 2) * fs->fs_contigsumsize;
13419 		if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE))
13420 			needed += fragstoblks(fs,
13421 			    roundup((fs->fs_dsize * fs->fs_minfree / 100) -
13422 			    fs->fs_cstotal.cs_nffree, fs->fs_frag));
13423 	} else {
13424 		printf("softdep_request_cleanup: Unknown resource type %d\n",
13425 		    resource);
13426 		UFS_LOCK(ump);
13427 		return (0);
13428 	}
13429 	starttime = time_second;
13430 retry:
13431 	if ((resource == FLUSH_BLOCKS_WAIT && ump->softdep_on_worklist > 0 &&
13432 	    fs->fs_cstotal.cs_nbfree <= needed) ||
13433 	    (resource == FLUSH_INODES_WAIT && fs->fs_pendinginodes > 0 &&
13434 	    fs->fs_cstotal.cs_nifree <= needed)) {
13435 		ACQUIRE_LOCK(ump);
13436 		if (ump->softdep_on_worklist > 0 &&
13437 		    process_worklist_item(UFSTOVFS(ump),
13438 		    ump->softdep_on_worklist, LK_NOWAIT) != 0)
13439 			stat_worklist_push += 1;
13440 		FREE_LOCK(ump);
13441 	}
13442 	/*
13443 	 * If we still need resources and there are no more worklist
13444 	 * entries to process to obtain them, we have to start flushing
13445 	 * the dirty vnodes to force the release of additional requests
13446 	 * to the worklist that we can then process to reap addition
13447 	 * resources. We walk the vnodes associated with the mount point
13448 	 * until we get the needed worklist requests that we can reap.
13449 	 *
13450 	 * If there are several threads all needing to clean the same
13451 	 * mount point, only one is allowed to walk the mount list.
13452 	 * When several threads all try to walk the same mount list,
13453 	 * they end up competing with each other and often end up in
13454 	 * livelock. This approach ensures that forward progress is
13455 	 * made at the cost of occational ENOSPC errors being returned
13456 	 * that might otherwise have been avoided.
13457 	 */
13458 	error = 1;
13459 	if ((resource == FLUSH_BLOCKS_WAIT &&
13460 	     fs->fs_cstotal.cs_nbfree <= needed) ||
13461 	    (resource == FLUSH_INODES_WAIT && fs->fs_pendinginodes > 0 &&
13462 	     fs->fs_cstotal.cs_nifree <= needed)) {
13463 		ACQUIRE_LOCK(ump);
13464 		if ((ump->um_softdep->sd_flags & FLUSH_RC_ACTIVE) == 0) {
13465 			ump->um_softdep->sd_flags |= FLUSH_RC_ACTIVE;
13466 			FREE_LOCK(ump);
13467 			failed_vnode = softdep_request_cleanup_flush(mp, ump);
13468 			ACQUIRE_LOCK(ump);
13469 			ump->um_softdep->sd_flags &= ~FLUSH_RC_ACTIVE;
13470 			FREE_LOCK(ump);
13471 			if (ump->softdep_on_worklist > 0) {
13472 				stat_cleanup_retries += 1;
13473 				if (!failed_vnode)
13474 					goto retry;
13475 			}
13476 		} else {
13477 			FREE_LOCK(ump);
13478 			error = 0;
13479 		}
13480 		stat_cleanup_failures += 1;
13481 	}
13482 	if (time_second - starttime > stat_cleanup_high_delay)
13483 		stat_cleanup_high_delay = time_second - starttime;
13484 	UFS_LOCK(ump);
13485 	return (error);
13486 }
13487 
13488 /*
13489  * Scan the vnodes for the specified mount point flushing out any
13490  * vnodes that can be locked without waiting. Finally, try to flush
13491  * the device associated with the mount point if it can be locked
13492  * without waiting.
13493  *
13494  * We return 0 if we were able to lock every vnode in our scan.
13495  * If we had to skip one or more vnodes, we return 1.
13496  */
13497 static int
13498 softdep_request_cleanup_flush(mp, ump)
13499 	struct mount *mp;
13500 	struct ufsmount *ump;
13501 {
13502 	struct thread *td;
13503 	struct vnode *lvp, *mvp;
13504 	int failed_vnode;
13505 
13506 	failed_vnode = 0;
13507 	td = curthread;
13508 	MNT_VNODE_FOREACH_ALL(lvp, mp, mvp) {
13509 		if (TAILQ_FIRST(&lvp->v_bufobj.bo_dirty.bv_hd) == 0) {
13510 			VI_UNLOCK(lvp);
13511 			continue;
13512 		}
13513 		if (vget(lvp, LK_EXCLUSIVE | LK_INTERLOCK | LK_NOWAIT,
13514 		    td) != 0) {
13515 			failed_vnode = 1;
13516 			continue;
13517 		}
13518 		if (lvp->v_vflag & VV_NOSYNC) {	/* unlinked */
13519 			vput(lvp);
13520 			continue;
13521 		}
13522 		(void) ffs_syncvnode(lvp, MNT_NOWAIT, 0);
13523 		vput(lvp);
13524 	}
13525 	lvp = ump->um_devvp;
13526 	if (vn_lock(lvp, LK_EXCLUSIVE | LK_NOWAIT) == 0) {
13527 		VOP_FSYNC(lvp, MNT_NOWAIT, td);
13528 		VOP_UNLOCK(lvp, 0);
13529 	}
13530 	return (failed_vnode);
13531 }
13532 
13533 static bool
13534 softdep_excess_items(struct ufsmount *ump, int item)
13535 {
13536 
13537 	KASSERT(item >= 0 && item < D_LAST, ("item %d", item));
13538 	return (dep_current[item] > max_softdeps &&
13539 	    ump->softdep_curdeps[item] > max_softdeps /
13540 	    stat_flush_threads);
13541 }
13542 
13543 static void
13544 schedule_cleanup(struct mount *mp)
13545 {
13546 	struct ufsmount *ump;
13547 	struct thread *td;
13548 
13549 	ump = VFSTOUFS(mp);
13550 	LOCK_OWNED(ump);
13551 	FREE_LOCK(ump);
13552 	td = curthread;
13553 	if ((td->td_pflags & TDP_KTHREAD) != 0 &&
13554 	    (td->td_proc->p_flag2 & P2_AST_SU) == 0) {
13555 		/*
13556 		 * No ast is delivered to kernel threads, so nobody
13557 		 * would deref the mp.  Some kernel threads
13558 		 * explicitely check for AST, e.g. NFS daemon does
13559 		 * this in the serving loop.
13560 		 */
13561 		return;
13562 	}
13563 	if (td->td_su != NULL)
13564 		vfs_rel(td->td_su);
13565 	vfs_ref(mp);
13566 	td->td_su = mp;
13567 	thread_lock(td);
13568 	td->td_flags |= TDF_ASTPENDING;
13569 	thread_unlock(td);
13570 }
13571 
13572 static void
13573 softdep_ast_cleanup_proc(struct thread *td)
13574 {
13575 	struct mount *mp;
13576 	struct ufsmount *ump;
13577 	int error;
13578 	bool req;
13579 
13580 	while ((mp = td->td_su) != NULL) {
13581 		td->td_su = NULL;
13582 		error = vfs_busy(mp, MBF_NOWAIT);
13583 		vfs_rel(mp);
13584 		if (error != 0)
13585 			return;
13586 		if (ffs_own_mount(mp) && MOUNTEDSOFTDEP(mp)) {
13587 			ump = VFSTOUFS(mp);
13588 			for (;;) {
13589 				req = false;
13590 				ACQUIRE_LOCK(ump);
13591 				if (softdep_excess_items(ump, D_INODEDEP)) {
13592 					req = true;
13593 					request_cleanup(mp, FLUSH_INODES);
13594 				}
13595 				if (softdep_excess_items(ump, D_DIRREM)) {
13596 					req = true;
13597 					request_cleanup(mp, FLUSH_BLOCKS);
13598 				}
13599 				FREE_LOCK(ump);
13600 				if (softdep_excess_items(ump, D_NEWBLK) ||
13601 				    softdep_excess_items(ump, D_ALLOCDIRECT) ||
13602 				    softdep_excess_items(ump, D_ALLOCINDIR)) {
13603 					error = vn_start_write(NULL, &mp,
13604 					    V_WAIT);
13605 					if (error == 0) {
13606 						req = true;
13607 						VFS_SYNC(mp, MNT_WAIT);
13608 						vn_finished_write(mp);
13609 					}
13610 				}
13611 				if ((td->td_pflags & TDP_KTHREAD) != 0 || !req)
13612 					break;
13613 			}
13614 		}
13615 		vfs_unbusy(mp);
13616 	}
13617 	if ((mp = td->td_su) != NULL) {
13618 		td->td_su = NULL;
13619 		vfs_rel(mp);
13620 	}
13621 }
13622 
13623 /*
13624  * If memory utilization has gotten too high, deliberately slow things
13625  * down and speed up the I/O processing.
13626  */
13627 static int
13628 request_cleanup(mp, resource)
13629 	struct mount *mp;
13630 	int resource;
13631 {
13632 	struct thread *td = curthread;
13633 	struct ufsmount *ump;
13634 
13635 	ump = VFSTOUFS(mp);
13636 	LOCK_OWNED(ump);
13637 	/*
13638 	 * We never hold up the filesystem syncer or buf daemon.
13639 	 */
13640 	if (td->td_pflags & (TDP_SOFTDEP|TDP_NORUNNINGBUF))
13641 		return (0);
13642 	/*
13643 	 * First check to see if the work list has gotten backlogged.
13644 	 * If it has, co-opt this process to help clean up two entries.
13645 	 * Because this process may hold inodes locked, we cannot
13646 	 * handle any remove requests that might block on a locked
13647 	 * inode as that could lead to deadlock.  We set TDP_SOFTDEP
13648 	 * to avoid recursively processing the worklist.
13649 	 */
13650 	if (ump->softdep_on_worklist > max_softdeps / 10) {
13651 		td->td_pflags |= TDP_SOFTDEP;
13652 		process_worklist_item(mp, 2, LK_NOWAIT);
13653 		td->td_pflags &= ~TDP_SOFTDEP;
13654 		stat_worklist_push += 2;
13655 		return(1);
13656 	}
13657 	/*
13658 	 * Next, we attempt to speed up the syncer process. If that
13659 	 * is successful, then we allow the process to continue.
13660 	 */
13661 	if (softdep_speedup(ump) &&
13662 	    resource != FLUSH_BLOCKS_WAIT &&
13663 	    resource != FLUSH_INODES_WAIT)
13664 		return(0);
13665 	/*
13666 	 * If we are resource constrained on inode dependencies, try
13667 	 * flushing some dirty inodes. Otherwise, we are constrained
13668 	 * by file deletions, so try accelerating flushes of directories
13669 	 * with removal dependencies. We would like to do the cleanup
13670 	 * here, but we probably hold an inode locked at this point and
13671 	 * that might deadlock against one that we try to clean. So,
13672 	 * the best that we can do is request the syncer daemon to do
13673 	 * the cleanup for us.
13674 	 */
13675 	switch (resource) {
13676 
13677 	case FLUSH_INODES:
13678 	case FLUSH_INODES_WAIT:
13679 		ACQUIRE_GBLLOCK(&lk);
13680 		stat_ino_limit_push += 1;
13681 		req_clear_inodedeps += 1;
13682 		FREE_GBLLOCK(&lk);
13683 		stat_countp = &stat_ino_limit_hit;
13684 		break;
13685 
13686 	case FLUSH_BLOCKS:
13687 	case FLUSH_BLOCKS_WAIT:
13688 		ACQUIRE_GBLLOCK(&lk);
13689 		stat_blk_limit_push += 1;
13690 		req_clear_remove += 1;
13691 		FREE_GBLLOCK(&lk);
13692 		stat_countp = &stat_blk_limit_hit;
13693 		break;
13694 
13695 	default:
13696 		panic("request_cleanup: unknown type");
13697 	}
13698 	/*
13699 	 * Hopefully the syncer daemon will catch up and awaken us.
13700 	 * We wait at most tickdelay before proceeding in any case.
13701 	 */
13702 	ACQUIRE_GBLLOCK(&lk);
13703 	FREE_LOCK(ump);
13704 	proc_waiting += 1;
13705 	if (callout_pending(&softdep_callout) == FALSE)
13706 		callout_reset(&softdep_callout, tickdelay > 2 ? tickdelay : 2,
13707 		    pause_timer, 0);
13708 
13709 	if ((td->td_pflags & TDP_KTHREAD) == 0)
13710 		msleep((caddr_t)&proc_waiting, &lk, PPAUSE, "softupdate", 0);
13711 	proc_waiting -= 1;
13712 	FREE_GBLLOCK(&lk);
13713 	ACQUIRE_LOCK(ump);
13714 	return (1);
13715 }
13716 
13717 /*
13718  * Awaken processes pausing in request_cleanup and clear proc_waiting
13719  * to indicate that there is no longer a timer running. Pause_timer
13720  * will be called with the global softdep mutex (&lk) locked.
13721  */
13722 static void
13723 pause_timer(arg)
13724 	void *arg;
13725 {
13726 
13727 	GBLLOCK_OWNED(&lk);
13728 	/*
13729 	 * The callout_ API has acquired mtx and will hold it around this
13730 	 * function call.
13731 	 */
13732 	*stat_countp += proc_waiting;
13733 	wakeup(&proc_waiting);
13734 }
13735 
13736 /*
13737  * If requested, try removing inode or removal dependencies.
13738  */
13739 static void
13740 check_clear_deps(mp)
13741 	struct mount *mp;
13742 {
13743 
13744 	/*
13745 	 * If we are suspended, it may be because of our using
13746 	 * too many inodedeps, so help clear them out.
13747 	 */
13748 	if (MOUNTEDSUJ(mp) && VFSTOUFS(mp)->softdep_jblocks->jb_suspended)
13749 		clear_inodedeps(mp);
13750 	/*
13751 	 * General requests for cleanup of backed up dependencies
13752 	 */
13753 	ACQUIRE_GBLLOCK(&lk);
13754 	if (req_clear_inodedeps) {
13755 		req_clear_inodedeps -= 1;
13756 		FREE_GBLLOCK(&lk);
13757 		clear_inodedeps(mp);
13758 		ACQUIRE_GBLLOCK(&lk);
13759 		wakeup(&proc_waiting);
13760 	}
13761 	if (req_clear_remove) {
13762 		req_clear_remove -= 1;
13763 		FREE_GBLLOCK(&lk);
13764 		clear_remove(mp);
13765 		ACQUIRE_GBLLOCK(&lk);
13766 		wakeup(&proc_waiting);
13767 	}
13768 	FREE_GBLLOCK(&lk);
13769 }
13770 
13771 /*
13772  * Flush out a directory with at least one removal dependency in an effort to
13773  * reduce the number of dirrem, freefile, and freeblks dependency structures.
13774  */
13775 static void
13776 clear_remove(mp)
13777 	struct mount *mp;
13778 {
13779 	struct pagedep_hashhead *pagedephd;
13780 	struct pagedep *pagedep;
13781 	struct ufsmount *ump;
13782 	struct vnode *vp;
13783 	struct bufobj *bo;
13784 	int error, cnt;
13785 	ino_t ino;
13786 
13787 	ump = VFSTOUFS(mp);
13788 	LOCK_OWNED(ump);
13789 
13790 	for (cnt = 0; cnt <= ump->pagedep_hash_size; cnt++) {
13791 		pagedephd = &ump->pagedep_hashtbl[ump->pagedep_nextclean++];
13792 		if (ump->pagedep_nextclean > ump->pagedep_hash_size)
13793 			ump->pagedep_nextclean = 0;
13794 		LIST_FOREACH(pagedep, pagedephd, pd_hash) {
13795 			if (LIST_EMPTY(&pagedep->pd_dirremhd))
13796 				continue;
13797 			ino = pagedep->pd_ino;
13798 			if (vn_start_write(NULL, &mp, V_NOWAIT) != 0)
13799 				continue;
13800 			FREE_LOCK(ump);
13801 
13802 			/*
13803 			 * Let unmount clear deps
13804 			 */
13805 			error = vfs_busy(mp, MBF_NOWAIT);
13806 			if (error != 0)
13807 				goto finish_write;
13808 			error = ffs_vgetf(mp, ino, LK_EXCLUSIVE, &vp,
13809 			     FFSV_FORCEINSMQ);
13810 			vfs_unbusy(mp);
13811 			if (error != 0) {
13812 				softdep_error("clear_remove: vget", error);
13813 				goto finish_write;
13814 			}
13815 			if ((error = ffs_syncvnode(vp, MNT_NOWAIT, 0)))
13816 				softdep_error("clear_remove: fsync", error);
13817 			bo = &vp->v_bufobj;
13818 			BO_LOCK(bo);
13819 			drain_output(vp);
13820 			BO_UNLOCK(bo);
13821 			vput(vp);
13822 		finish_write:
13823 			vn_finished_write(mp);
13824 			ACQUIRE_LOCK(ump);
13825 			return;
13826 		}
13827 	}
13828 }
13829 
13830 /*
13831  * Clear out a block of dirty inodes in an effort to reduce
13832  * the number of inodedep dependency structures.
13833  */
13834 static void
13835 clear_inodedeps(mp)
13836 	struct mount *mp;
13837 {
13838 	struct inodedep_hashhead *inodedephd;
13839 	struct inodedep *inodedep;
13840 	struct ufsmount *ump;
13841 	struct vnode *vp;
13842 	struct fs *fs;
13843 	int error, cnt;
13844 	ino_t firstino, lastino, ino;
13845 
13846 	ump = VFSTOUFS(mp);
13847 	fs = ump->um_fs;
13848 	LOCK_OWNED(ump);
13849 	/*
13850 	 * Pick a random inode dependency to be cleared.
13851 	 * We will then gather up all the inodes in its block
13852 	 * that have dependencies and flush them out.
13853 	 */
13854 	for (cnt = 0; cnt <= ump->inodedep_hash_size; cnt++) {
13855 		inodedephd = &ump->inodedep_hashtbl[ump->inodedep_nextclean++];
13856 		if (ump->inodedep_nextclean > ump->inodedep_hash_size)
13857 			ump->inodedep_nextclean = 0;
13858 		if ((inodedep = LIST_FIRST(inodedephd)) != NULL)
13859 			break;
13860 	}
13861 	if (inodedep == NULL)
13862 		return;
13863 	/*
13864 	 * Find the last inode in the block with dependencies.
13865 	 */
13866 	firstino = rounddown2(inodedep->id_ino, INOPB(fs));
13867 	for (lastino = firstino + INOPB(fs) - 1; lastino > firstino; lastino--)
13868 		if (inodedep_lookup(mp, lastino, 0, &inodedep) != 0)
13869 			break;
13870 	/*
13871 	 * Asynchronously push all but the last inode with dependencies.
13872 	 * Synchronously push the last inode with dependencies to ensure
13873 	 * that the inode block gets written to free up the inodedeps.
13874 	 */
13875 	for (ino = firstino; ino <= lastino; ino++) {
13876 		if (inodedep_lookup(mp, ino, 0, &inodedep) == 0)
13877 			continue;
13878 		if (vn_start_write(NULL, &mp, V_NOWAIT) != 0)
13879 			continue;
13880 		FREE_LOCK(ump);
13881 		error = vfs_busy(mp, MBF_NOWAIT); /* Let unmount clear deps */
13882 		if (error != 0) {
13883 			vn_finished_write(mp);
13884 			ACQUIRE_LOCK(ump);
13885 			return;
13886 		}
13887 		if ((error = ffs_vgetf(mp, ino, LK_EXCLUSIVE, &vp,
13888 		    FFSV_FORCEINSMQ)) != 0) {
13889 			softdep_error("clear_inodedeps: vget", error);
13890 			vfs_unbusy(mp);
13891 			vn_finished_write(mp);
13892 			ACQUIRE_LOCK(ump);
13893 			return;
13894 		}
13895 		vfs_unbusy(mp);
13896 		if (ino == lastino) {
13897 			if ((error = ffs_syncvnode(vp, MNT_WAIT, 0)))
13898 				softdep_error("clear_inodedeps: fsync1", error);
13899 		} else {
13900 			if ((error = ffs_syncvnode(vp, MNT_NOWAIT, 0)))
13901 				softdep_error("clear_inodedeps: fsync2", error);
13902 			BO_LOCK(&vp->v_bufobj);
13903 			drain_output(vp);
13904 			BO_UNLOCK(&vp->v_bufobj);
13905 		}
13906 		vput(vp);
13907 		vn_finished_write(mp);
13908 		ACQUIRE_LOCK(ump);
13909 	}
13910 }
13911 
13912 void
13913 softdep_buf_append(bp, wkhd)
13914 	struct buf *bp;
13915 	struct workhead *wkhd;
13916 {
13917 	struct worklist *wk;
13918 	struct ufsmount *ump;
13919 
13920 	if ((wk = LIST_FIRST(wkhd)) == NULL)
13921 		return;
13922 	KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0,
13923 	    ("softdep_buf_append called on non-softdep filesystem"));
13924 	ump = VFSTOUFS(wk->wk_mp);
13925 	ACQUIRE_LOCK(ump);
13926 	while ((wk = LIST_FIRST(wkhd)) != NULL) {
13927 		WORKLIST_REMOVE(wk);
13928 		WORKLIST_INSERT(&bp->b_dep, wk);
13929 	}
13930 	FREE_LOCK(ump);
13931 
13932 }
13933 
13934 void
13935 softdep_inode_append(ip, cred, wkhd)
13936 	struct inode *ip;
13937 	struct ucred *cred;
13938 	struct workhead *wkhd;
13939 {
13940 	struct buf *bp;
13941 	struct fs *fs;
13942 	struct ufsmount *ump;
13943 	int error;
13944 
13945 	ump = ITOUMP(ip);
13946 	KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0,
13947 	    ("softdep_inode_append called on non-softdep filesystem"));
13948 	fs = ump->um_fs;
13949 	error = bread(ump->um_devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
13950 	    (int)fs->fs_bsize, cred, &bp);
13951 	if (error) {
13952 		bqrelse(bp);
13953 		softdep_freework(wkhd);
13954 		return;
13955 	}
13956 	softdep_buf_append(bp, wkhd);
13957 	bqrelse(bp);
13958 }
13959 
13960 void
13961 softdep_freework(wkhd)
13962 	struct workhead *wkhd;
13963 {
13964 	struct worklist *wk;
13965 	struct ufsmount *ump;
13966 
13967 	if ((wk = LIST_FIRST(wkhd)) == NULL)
13968 		return;
13969 	KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0,
13970 	    ("softdep_freework called on non-softdep filesystem"));
13971 	ump = VFSTOUFS(wk->wk_mp);
13972 	ACQUIRE_LOCK(ump);
13973 	handle_jwork(wkhd);
13974 	FREE_LOCK(ump);
13975 }
13976 
13977 static struct ufsmount *
13978 softdep_bp_to_mp(bp)
13979 	struct buf *bp;
13980 {
13981 	struct mount *mp;
13982 	struct vnode *vp;
13983 
13984 	if (LIST_EMPTY(&bp->b_dep))
13985 		return (NULL);
13986 	vp = bp->b_vp;
13987 	KASSERT(vp != NULL,
13988 	    ("%s, buffer with dependencies lacks vnode", __func__));
13989 
13990 	/*
13991 	 * The ump mount point is stable after we get a correct
13992 	 * pointer, since bp is locked and this prevents unmount from
13993 	 * proceeding.  But to get to it, we cannot dereference bp->b_dep
13994 	 * head wk_mp, because we do not yet own SU ump lock and
13995 	 * workitem might be freed while dereferenced.
13996 	 */
13997 retry:
13998 	switch (vp->v_type) {
13999 	case VCHR:
14000 		VI_LOCK(vp);
14001 		mp = vp->v_type == VCHR ? vp->v_rdev->si_mountpt : NULL;
14002 		VI_UNLOCK(vp);
14003 		if (mp == NULL)
14004 			goto retry;
14005 		break;
14006 	case VREG:
14007 	case VDIR:
14008 	case VLNK:
14009 	case VFIFO:
14010 	case VSOCK:
14011 		mp = vp->v_mount;
14012 		break;
14013 	case VBLK:
14014 		vn_printf(vp, "softdep_bp_to_mp: unexpected block device\n");
14015 		/* FALLTHROUGH */
14016 	case VNON:
14017 	case VBAD:
14018 	case VMARKER:
14019 		mp = NULL;
14020 		break;
14021 	default:
14022 		vn_printf(vp, "unknown vnode type");
14023 		mp = NULL;
14024 		break;
14025 	}
14026 	return (VFSTOUFS(mp));
14027 }
14028 
14029 /*
14030  * Function to determine if the buffer has outstanding dependencies
14031  * that will cause a roll-back if the buffer is written. If wantcount
14032  * is set, return number of dependencies, otherwise just yes or no.
14033  */
14034 static int
14035 softdep_count_dependencies(bp, wantcount)
14036 	struct buf *bp;
14037 	int wantcount;
14038 {
14039 	struct worklist *wk;
14040 	struct ufsmount *ump;
14041 	struct bmsafemap *bmsafemap;
14042 	struct freework *freework;
14043 	struct inodedep *inodedep;
14044 	struct indirdep *indirdep;
14045 	struct freeblks *freeblks;
14046 	struct allocindir *aip;
14047 	struct pagedep *pagedep;
14048 	struct dirrem *dirrem;
14049 	struct newblk *newblk;
14050 	struct mkdir *mkdir;
14051 	struct diradd *dap;
14052 	int i, retval;
14053 
14054 	ump = softdep_bp_to_mp(bp);
14055 	if (ump == NULL)
14056 		return (0);
14057 	retval = 0;
14058 	ACQUIRE_LOCK(ump);
14059 	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
14060 		switch (wk->wk_type) {
14061 
14062 		case D_INODEDEP:
14063 			inodedep = WK_INODEDEP(wk);
14064 			if ((inodedep->id_state & DEPCOMPLETE) == 0) {
14065 				/* bitmap allocation dependency */
14066 				retval += 1;
14067 				if (!wantcount)
14068 					goto out;
14069 			}
14070 			if (TAILQ_FIRST(&inodedep->id_inoupdt)) {
14071 				/* direct block pointer dependency */
14072 				retval += 1;
14073 				if (!wantcount)
14074 					goto out;
14075 			}
14076 			if (TAILQ_FIRST(&inodedep->id_extupdt)) {
14077 				/* direct block pointer dependency */
14078 				retval += 1;
14079 				if (!wantcount)
14080 					goto out;
14081 			}
14082 			if (TAILQ_FIRST(&inodedep->id_inoreflst)) {
14083 				/* Add reference dependency. */
14084 				retval += 1;
14085 				if (!wantcount)
14086 					goto out;
14087 			}
14088 			continue;
14089 
14090 		case D_INDIRDEP:
14091 			indirdep = WK_INDIRDEP(wk);
14092 
14093 			TAILQ_FOREACH(freework, &indirdep->ir_trunc, fw_next) {
14094 				/* indirect truncation dependency */
14095 				retval += 1;
14096 				if (!wantcount)
14097 					goto out;
14098 			}
14099 
14100 			LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) {
14101 				/* indirect block pointer dependency */
14102 				retval += 1;
14103 				if (!wantcount)
14104 					goto out;
14105 			}
14106 			continue;
14107 
14108 		case D_PAGEDEP:
14109 			pagedep = WK_PAGEDEP(wk);
14110 			LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next) {
14111 				if (LIST_FIRST(&dirrem->dm_jremrefhd)) {
14112 					/* Journal remove ref dependency. */
14113 					retval += 1;
14114 					if (!wantcount)
14115 						goto out;
14116 				}
14117 			}
14118 			for (i = 0; i < DAHASHSZ; i++) {
14119 
14120 				LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) {
14121 					/* directory entry dependency */
14122 					retval += 1;
14123 					if (!wantcount)
14124 						goto out;
14125 				}
14126 			}
14127 			continue;
14128 
14129 		case D_BMSAFEMAP:
14130 			bmsafemap = WK_BMSAFEMAP(wk);
14131 			if (LIST_FIRST(&bmsafemap->sm_jaddrefhd)) {
14132 				/* Add reference dependency. */
14133 				retval += 1;
14134 				if (!wantcount)
14135 					goto out;
14136 			}
14137 			if (LIST_FIRST(&bmsafemap->sm_jnewblkhd)) {
14138 				/* Allocate block dependency. */
14139 				retval += 1;
14140 				if (!wantcount)
14141 					goto out;
14142 			}
14143 			continue;
14144 
14145 		case D_FREEBLKS:
14146 			freeblks = WK_FREEBLKS(wk);
14147 			if (LIST_FIRST(&freeblks->fb_jblkdephd)) {
14148 				/* Freeblk journal dependency. */
14149 				retval += 1;
14150 				if (!wantcount)
14151 					goto out;
14152 			}
14153 			continue;
14154 
14155 		case D_ALLOCDIRECT:
14156 		case D_ALLOCINDIR:
14157 			newblk = WK_NEWBLK(wk);
14158 			if (newblk->nb_jnewblk) {
14159 				/* Journal allocate dependency. */
14160 				retval += 1;
14161 				if (!wantcount)
14162 					goto out;
14163 			}
14164 			continue;
14165 
14166 		case D_MKDIR:
14167 			mkdir = WK_MKDIR(wk);
14168 			if (mkdir->md_jaddref) {
14169 				/* Journal reference dependency. */
14170 				retval += 1;
14171 				if (!wantcount)
14172 					goto out;
14173 			}
14174 			continue;
14175 
14176 		case D_FREEWORK:
14177 		case D_FREEDEP:
14178 		case D_JSEGDEP:
14179 		case D_JSEG:
14180 		case D_SBDEP:
14181 			/* never a dependency on these blocks */
14182 			continue;
14183 
14184 		default:
14185 			panic("softdep_count_dependencies: Unexpected type %s",
14186 			    TYPENAME(wk->wk_type));
14187 			/* NOTREACHED */
14188 		}
14189 	}
14190 out:
14191 	FREE_LOCK(ump);
14192 	return (retval);
14193 }
14194 
14195 /*
14196  * Acquire exclusive access to a buffer.
14197  * Must be called with a locked mtx parameter.
14198  * Return acquired buffer or NULL on failure.
14199  */
14200 static struct buf *
14201 getdirtybuf(bp, lock, waitfor)
14202 	struct buf *bp;
14203 	struct rwlock *lock;
14204 	int waitfor;
14205 {
14206 	int error;
14207 
14208 	if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0) {
14209 		if (waitfor != MNT_WAIT)
14210 			return (NULL);
14211 		error = BUF_LOCK(bp,
14212 		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, lock);
14213 		/*
14214 		 * Even if we successfully acquire bp here, we have dropped
14215 		 * lock, which may violates our guarantee.
14216 		 */
14217 		if (error == 0)
14218 			BUF_UNLOCK(bp);
14219 		else if (error != ENOLCK)
14220 			panic("getdirtybuf: inconsistent lock: %d", error);
14221 		rw_wlock(lock);
14222 		return (NULL);
14223 	}
14224 	if ((bp->b_vflags & BV_BKGRDINPROG) != 0) {
14225 		if (lock != BO_LOCKPTR(bp->b_bufobj) && waitfor == MNT_WAIT) {
14226 			rw_wunlock(lock);
14227 			BO_LOCK(bp->b_bufobj);
14228 			BUF_UNLOCK(bp);
14229 			if ((bp->b_vflags & BV_BKGRDINPROG) != 0) {
14230 				bp->b_vflags |= BV_BKGRDWAIT;
14231 				msleep(&bp->b_xflags, BO_LOCKPTR(bp->b_bufobj),
14232 				       PRIBIO | PDROP, "getbuf", 0);
14233 			} else
14234 				BO_UNLOCK(bp->b_bufobj);
14235 			rw_wlock(lock);
14236 			return (NULL);
14237 		}
14238 		BUF_UNLOCK(bp);
14239 		if (waitfor != MNT_WAIT)
14240 			return (NULL);
14241 #ifdef DEBUG_VFS_LOCKS
14242 		if (bp->b_vp->v_type != VCHR)
14243 			ASSERT_BO_WLOCKED(bp->b_bufobj);
14244 #endif
14245 		bp->b_vflags |= BV_BKGRDWAIT;
14246 		rw_sleep(&bp->b_xflags, lock, PRIBIO, "getbuf", 0);
14247 		return (NULL);
14248 	}
14249 	if ((bp->b_flags & B_DELWRI) == 0) {
14250 		BUF_UNLOCK(bp);
14251 		return (NULL);
14252 	}
14253 	bremfree(bp);
14254 	return (bp);
14255 }
14256 
14257 
14258 /*
14259  * Check if it is safe to suspend the file system now.  On entry,
14260  * the vnode interlock for devvp should be held.  Return 0 with
14261  * the mount interlock held if the file system can be suspended now,
14262  * otherwise return EAGAIN with the mount interlock held.
14263  */
14264 int
14265 softdep_check_suspend(struct mount *mp,
14266 		      struct vnode *devvp,
14267 		      int softdep_depcnt,
14268 		      int softdep_accdepcnt,
14269 		      int secondary_writes,
14270 		      int secondary_accwrites)
14271 {
14272 	struct bufobj *bo;
14273 	struct ufsmount *ump;
14274 	struct inodedep *inodedep;
14275 	int error, unlinked;
14276 
14277 	bo = &devvp->v_bufobj;
14278 	ASSERT_BO_WLOCKED(bo);
14279 
14280 	/*
14281 	 * If we are not running with soft updates, then we need only
14282 	 * deal with secondary writes as we try to suspend.
14283 	 */
14284 	if (MOUNTEDSOFTDEP(mp) == 0) {
14285 		MNT_ILOCK(mp);
14286 		while (mp->mnt_secondary_writes != 0) {
14287 			BO_UNLOCK(bo);
14288 			msleep(&mp->mnt_secondary_writes, MNT_MTX(mp),
14289 			    (PUSER - 1) | PDROP, "secwr", 0);
14290 			BO_LOCK(bo);
14291 			MNT_ILOCK(mp);
14292 		}
14293 
14294 		/*
14295 		 * Reasons for needing more work before suspend:
14296 		 * - Dirty buffers on devvp.
14297 		 * - Secondary writes occurred after start of vnode sync loop
14298 		 */
14299 		error = 0;
14300 		if (bo->bo_numoutput > 0 ||
14301 		    bo->bo_dirty.bv_cnt > 0 ||
14302 		    secondary_writes != 0 ||
14303 		    mp->mnt_secondary_writes != 0 ||
14304 		    secondary_accwrites != mp->mnt_secondary_accwrites)
14305 			error = EAGAIN;
14306 		BO_UNLOCK(bo);
14307 		return (error);
14308 	}
14309 
14310 	/*
14311 	 * If we are running with soft updates, then we need to coordinate
14312 	 * with them as we try to suspend.
14313 	 */
14314 	ump = VFSTOUFS(mp);
14315 	for (;;) {
14316 		if (!TRY_ACQUIRE_LOCK(ump)) {
14317 			BO_UNLOCK(bo);
14318 			ACQUIRE_LOCK(ump);
14319 			FREE_LOCK(ump);
14320 			BO_LOCK(bo);
14321 			continue;
14322 		}
14323 		MNT_ILOCK(mp);
14324 		if (mp->mnt_secondary_writes != 0) {
14325 			FREE_LOCK(ump);
14326 			BO_UNLOCK(bo);
14327 			msleep(&mp->mnt_secondary_writes,
14328 			       MNT_MTX(mp),
14329 			       (PUSER - 1) | PDROP, "secwr", 0);
14330 			BO_LOCK(bo);
14331 			continue;
14332 		}
14333 		break;
14334 	}
14335 
14336 	unlinked = 0;
14337 	if (MOUNTEDSUJ(mp)) {
14338 		for (inodedep = TAILQ_FIRST(&ump->softdep_unlinked);
14339 		    inodedep != NULL;
14340 		    inodedep = TAILQ_NEXT(inodedep, id_unlinked)) {
14341 			if ((inodedep->id_state & (UNLINKED | UNLINKLINKS |
14342 			    UNLINKONLIST)) != (UNLINKED | UNLINKLINKS |
14343 			    UNLINKONLIST) ||
14344 			    !check_inodedep_free(inodedep))
14345 				continue;
14346 			unlinked++;
14347 		}
14348 	}
14349 
14350 	/*
14351 	 * Reasons for needing more work before suspend:
14352 	 * - Dirty buffers on devvp.
14353 	 * - Softdep activity occurred after start of vnode sync loop
14354 	 * - Secondary writes occurred after start of vnode sync loop
14355 	 */
14356 	error = 0;
14357 	if (bo->bo_numoutput > 0 ||
14358 	    bo->bo_dirty.bv_cnt > 0 ||
14359 	    softdep_depcnt != unlinked ||
14360 	    ump->softdep_deps != unlinked ||
14361 	    softdep_accdepcnt != ump->softdep_accdeps ||
14362 	    secondary_writes != 0 ||
14363 	    mp->mnt_secondary_writes != 0 ||
14364 	    secondary_accwrites != mp->mnt_secondary_accwrites)
14365 		error = EAGAIN;
14366 	FREE_LOCK(ump);
14367 	BO_UNLOCK(bo);
14368 	return (error);
14369 }
14370 
14371 
14372 /*
14373  * Get the number of dependency structures for the file system, both
14374  * the current number and the total number allocated.  These will
14375  * later be used to detect that softdep processing has occurred.
14376  */
14377 void
14378 softdep_get_depcounts(struct mount *mp,
14379 		      int *softdep_depsp,
14380 		      int *softdep_accdepsp)
14381 {
14382 	struct ufsmount *ump;
14383 
14384 	if (MOUNTEDSOFTDEP(mp) == 0) {
14385 		*softdep_depsp = 0;
14386 		*softdep_accdepsp = 0;
14387 		return;
14388 	}
14389 	ump = VFSTOUFS(mp);
14390 	ACQUIRE_LOCK(ump);
14391 	*softdep_depsp = ump->softdep_deps;
14392 	*softdep_accdepsp = ump->softdep_accdeps;
14393 	FREE_LOCK(ump);
14394 }
14395 
14396 /*
14397  * Wait for pending output on a vnode to complete.
14398  */
14399 static void
14400 drain_output(vp)
14401 	struct vnode *vp;
14402 {
14403 
14404 	ASSERT_VOP_LOCKED(vp, "drain_output");
14405 	(void)bufobj_wwait(&vp->v_bufobj, 0, 0);
14406 }
14407 
14408 /*
14409  * Called whenever a buffer that is being invalidated or reallocated
14410  * contains dependencies. This should only happen if an I/O error has
14411  * occurred. The routine is called with the buffer locked.
14412  */
14413 static void
14414 softdep_deallocate_dependencies(bp)
14415 	struct buf *bp;
14416 {
14417 
14418 	if ((bp->b_ioflags & BIO_ERROR) == 0)
14419 		panic("softdep_deallocate_dependencies: dangling deps");
14420 	if (bp->b_vp != NULL && bp->b_vp->v_mount != NULL)
14421 		softdep_error(bp->b_vp->v_mount->mnt_stat.f_mntonname, bp->b_error);
14422 	else
14423 		printf("softdep_deallocate_dependencies: "
14424 		    "got error %d while accessing filesystem\n", bp->b_error);
14425 	if (bp->b_error != ENXIO)
14426 		panic("softdep_deallocate_dependencies: unrecovered I/O error");
14427 }
14428 
14429 /*
14430  * Function to handle asynchronous write errors in the filesystem.
14431  */
14432 static void
14433 softdep_error(func, error)
14434 	char *func;
14435 	int error;
14436 {
14437 
14438 	/* XXX should do something better! */
14439 	printf("%s: got error %d while accessing filesystem\n", func, error);
14440 }
14441 
14442 #ifdef DDB
14443 
14444 /* exported to ffs_vfsops.c */
14445 extern void db_print_ffs(struct ufsmount *ump);
14446 void
14447 db_print_ffs(struct ufsmount *ump)
14448 {
14449 	db_printf("mp %p (%s) devvp %p\n", ump->um_mountp,
14450 	    ump->um_mountp->mnt_stat.f_mntonname, ump->um_devvp);
14451 	db_printf("    fs %p su_wl %d su_deps %d su_req %d\n",
14452 	    ump->um_fs, ump->softdep_on_worklist,
14453 	    ump->softdep_deps, ump->softdep_req);
14454 }
14455 
14456 static void
14457 worklist_print(struct worklist *wk, int verbose)
14458 {
14459 
14460 	if (!verbose) {
14461 		db_printf("%s: %p state 0x%b\n", TYPENAME(wk->wk_type), wk,
14462 		    (u_int)wk->wk_state, PRINT_SOFTDEP_FLAGS);
14463 		return;
14464 	}
14465 	db_printf("worklist: %p type %s state 0x%b next %p\n    ", wk,
14466 	    TYPENAME(wk->wk_type), (u_int)wk->wk_state, PRINT_SOFTDEP_FLAGS,
14467 	    LIST_NEXT(wk, wk_list));
14468 	db_print_ffs(VFSTOUFS(wk->wk_mp));
14469 }
14470 
14471 static void
14472 inodedep_print(struct inodedep *inodedep, int verbose)
14473 {
14474 
14475 	worklist_print(&inodedep->id_list, 0);
14476 	db_printf("    fs %p ino %jd inoblk %jd delta %jd nlink %jd\n",
14477 	    inodedep->id_fs,
14478 	    (intmax_t)inodedep->id_ino,
14479 	    (intmax_t)fsbtodb(inodedep->id_fs,
14480 	        ino_to_fsba(inodedep->id_fs, inodedep->id_ino)),
14481 	    (intmax_t)inodedep->id_nlinkdelta,
14482 	    (intmax_t)inodedep->id_savednlink);
14483 
14484 	if (verbose == 0)
14485 		return;
14486 
14487 	db_printf("    bmsafemap %p, mkdiradd %p, inoreflst %p\n",
14488 	    inodedep->id_bmsafemap,
14489 	    inodedep->id_mkdiradd,
14490 	    TAILQ_FIRST(&inodedep->id_inoreflst));
14491 	db_printf("    dirremhd %p, pendinghd %p, bufwait %p\n",
14492 	    LIST_FIRST(&inodedep->id_dirremhd),
14493 	    LIST_FIRST(&inodedep->id_pendinghd),
14494 	    LIST_FIRST(&inodedep->id_bufwait));
14495 	db_printf("    inowait %p, inoupdt %p, newinoupdt %p\n",
14496 	    LIST_FIRST(&inodedep->id_inowait),
14497 	    TAILQ_FIRST(&inodedep->id_inoupdt),
14498 	    TAILQ_FIRST(&inodedep->id_newinoupdt));
14499 	db_printf("    extupdt %p, newextupdt %p, freeblklst %p\n",
14500 	    TAILQ_FIRST(&inodedep->id_extupdt),
14501 	    TAILQ_FIRST(&inodedep->id_newextupdt),
14502 	    TAILQ_FIRST(&inodedep->id_freeblklst));
14503 	db_printf("    saveino %p, savedsize %jd, savedextsize %jd\n",
14504 	    inodedep->id_savedino1,
14505 	    (intmax_t)inodedep->id_savedsize,
14506 	    (intmax_t)inodedep->id_savedextsize);
14507 }
14508 
14509 static void
14510 newblk_print(struct newblk *nbp)
14511 {
14512 
14513 	worklist_print(&nbp->nb_list, 0);
14514 	db_printf("    newblkno %jd\n", (intmax_t)nbp->nb_newblkno);
14515 	db_printf("    jnewblk %p, bmsafemap %p, freefrag %p\n",
14516 	    &nbp->nb_jnewblk,
14517 	    &nbp->nb_bmsafemap,
14518 	    &nbp->nb_freefrag);
14519 	db_printf("    indirdeps %p, newdirblk %p, jwork %p\n",
14520 	    LIST_FIRST(&nbp->nb_indirdeps),
14521 	    LIST_FIRST(&nbp->nb_newdirblk),
14522 	    LIST_FIRST(&nbp->nb_jwork));
14523 }
14524 
14525 static void
14526 allocdirect_print(struct allocdirect *adp)
14527 {
14528 
14529 	newblk_print(&adp->ad_block);
14530 	db_printf("    oldblkno %jd, oldsize %ld, newsize %ld\n",
14531 	    adp->ad_oldblkno, adp->ad_oldsize, adp->ad_newsize);
14532 	db_printf("    offset %d, inodedep %p\n",
14533 	    adp->ad_offset, adp->ad_inodedep);
14534 }
14535 
14536 static void
14537 allocindir_print(struct allocindir *aip)
14538 {
14539 
14540 	newblk_print(&aip->ai_block);
14541 	db_printf("    oldblkno %jd, lbn %jd\n",
14542 	    (intmax_t)aip->ai_oldblkno, (intmax_t)aip->ai_lbn);
14543 	db_printf("    offset %d, indirdep %p\n",
14544 	    aip->ai_offset, aip->ai_indirdep);
14545 }
14546 
14547 static void
14548 mkdir_print(struct mkdir *mkdir)
14549 {
14550 
14551 	worklist_print(&mkdir->md_list, 0);
14552 	db_printf("    diradd %p, jaddref %p, buf %p\n",
14553 		mkdir->md_diradd, mkdir->md_jaddref, mkdir->md_buf);
14554 }
14555 
14556 DB_SHOW_COMMAND(sd_inodedep, db_show_sd_inodedep)
14557 {
14558 
14559 	if (have_addr == 0) {
14560 		db_printf("inodedep address required\n");
14561 		return;
14562 	}
14563 	inodedep_print((struct inodedep*)addr, 1);
14564 }
14565 
14566 DB_SHOW_COMMAND(sd_allinodedeps, db_show_sd_allinodedeps)
14567 {
14568 	struct inodedep_hashhead *inodedephd;
14569 	struct inodedep *inodedep;
14570 	struct ufsmount *ump;
14571 	int cnt;
14572 
14573 	if (have_addr == 0) {
14574 		db_printf("ufsmount address required\n");
14575 		return;
14576 	}
14577 	ump = (struct ufsmount *)addr;
14578 	for (cnt = 0; cnt < ump->inodedep_hash_size; cnt++) {
14579 		inodedephd = &ump->inodedep_hashtbl[cnt];
14580 		LIST_FOREACH(inodedep, inodedephd, id_hash) {
14581 			inodedep_print(inodedep, 0);
14582 		}
14583 	}
14584 }
14585 
14586 DB_SHOW_COMMAND(sd_worklist, db_show_sd_worklist)
14587 {
14588 
14589 	if (have_addr == 0) {
14590 		db_printf("worklist address required\n");
14591 		return;
14592 	}
14593 	worklist_print((struct worklist *)addr, 1);
14594 }
14595 
14596 DB_SHOW_COMMAND(sd_workhead, db_show_sd_workhead)
14597 {
14598 	struct worklist *wk;
14599 	struct workhead *wkhd;
14600 
14601 	if (have_addr == 0) {
14602 		db_printf("worklist address required "
14603 		    "(for example value in bp->b_dep)\n");
14604 		return;
14605 	}
14606 	/*
14607 	 * We often do not have the address of the worklist head but
14608 	 * instead a pointer to its first entry (e.g., we have the
14609 	 * contents of bp->b_dep rather than &bp->b_dep). But the back
14610 	 * pointer of bp->b_dep will point at the head of the list, so
14611 	 * we cheat and use that instead. If we are in the middle of
14612 	 * a list we will still get the same result, so nothing
14613 	 * unexpected will result.
14614 	 */
14615 	wk = (struct worklist *)addr;
14616 	if (wk == NULL)
14617 		return;
14618 	wkhd = (struct workhead *)wk->wk_list.le_prev;
14619 	LIST_FOREACH(wk, wkhd, wk_list) {
14620 		switch(wk->wk_type) {
14621 		case D_INODEDEP:
14622 			inodedep_print(WK_INODEDEP(wk), 0);
14623 			continue;
14624 		case D_ALLOCDIRECT:
14625 			allocdirect_print(WK_ALLOCDIRECT(wk));
14626 			continue;
14627 		case D_ALLOCINDIR:
14628 			allocindir_print(WK_ALLOCINDIR(wk));
14629 			continue;
14630 		case D_MKDIR:
14631 			mkdir_print(WK_MKDIR(wk));
14632 			continue;
14633 		default:
14634 			worklist_print(wk, 0);
14635 			continue;
14636 		}
14637 	}
14638 }
14639 
14640 DB_SHOW_COMMAND(sd_mkdir, db_show_sd_mkdir)
14641 {
14642 	if (have_addr == 0) {
14643 		db_printf("mkdir address required\n");
14644 		return;
14645 	}
14646 	mkdir_print((struct mkdir *)addr);
14647 }
14648 
14649 DB_SHOW_COMMAND(sd_mkdir_list, db_show_sd_mkdir_list)
14650 {
14651 	struct mkdirlist *mkdirlisthd;
14652 	struct mkdir *mkdir;
14653 
14654 	if (have_addr == 0) {
14655 		db_printf("mkdir listhead address required\n");
14656 		return;
14657 	}
14658 	mkdirlisthd = (struct mkdirlist *)addr;
14659 	LIST_FOREACH(mkdir, mkdirlisthd, md_mkdirs) {
14660 		mkdir_print(mkdir);
14661 		if (mkdir->md_diradd != NULL) {
14662 			db_printf("    ");
14663 			worklist_print(&mkdir->md_diradd->da_list, 0);
14664 		}
14665 		if (mkdir->md_jaddref != NULL) {
14666 			db_printf("    ");
14667 			worklist_print(&mkdir->md_jaddref->ja_list, 0);
14668 		}
14669 	}
14670 }
14671 
14672 DB_SHOW_COMMAND(sd_allocdirect, db_show_sd_allocdirect)
14673 {
14674 	if (have_addr == 0) {
14675 		db_printf("allocdirect address required\n");
14676 		return;
14677 	}
14678 	allocdirect_print((struct allocdirect *)addr);
14679 }
14680 
14681 DB_SHOW_COMMAND(sd_allocindir, db_show_sd_allocindir)
14682 {
14683 	if (have_addr == 0) {
14684 		db_printf("allocindir address required\n");
14685 		return;
14686 	}
14687 	allocindir_print((struct allocindir *)addr);
14688 }
14689 
14690 #endif /* DDB */
14691 
14692 #endif /* SOFTUPDATES */
14693