xref: /freebsd/sys/ufs/ffs/ffs_softdep.c (revision d184218c18d067f8fd47203f54ab02a7b2ed9b11)
1 /*-
2  * Copyright 1998, 2000 Marshall Kirk McKusick.
3  * Copyright 2009, 2010 Jeffrey W. Roberson <jeff@FreeBSD.org>
4  * All rights reserved.
5  *
6  * The soft updates code is derived from the appendix of a University
7  * of Michigan technical report (Gregory R. Ganger and Yale N. Patt,
8  * "Soft Updates: A Solution to the Metadata Update Problem in File
9  * Systems", CSE-TR-254-95, August 1995).
10  *
11  * Further information about soft updates can be obtained from:
12  *
13  *	Marshall Kirk McKusick		http://www.mckusick.com/softdep/
14  *	1614 Oxford Street		mckusick@mckusick.com
15  *	Berkeley, CA 94709-1608		+1-510-843-9542
16  *	USA
17  *
18  * Redistribution and use in source and binary forms, with or without
19  * modification, are permitted provided that the following conditions
20  * are met:
21  *
22  * 1. Redistributions of source code must retain the above copyright
23  *    notice, this list of conditions and the following disclaimer.
24  * 2. Redistributions in binary form must reproduce the above copyright
25  *    notice, this list of conditions and the following disclaimer in the
26  *    documentation and/or other materials provided with the distribution.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR
29  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
30  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
31  * IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT,
32  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
33  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
34  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
35  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
36  * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
37  * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
38  *
39  *	from: @(#)ffs_softdep.c	9.59 (McKusick) 6/21/00
40  */
41 
42 #include <sys/cdefs.h>
43 __FBSDID("$FreeBSD$");
44 
45 #include "opt_ffs.h"
46 #include "opt_quota.h"
47 #include "opt_ddb.h"
48 
49 /*
50  * For now we want the safety net that the DEBUG flag provides.
51  */
52 #ifndef DEBUG
53 #define DEBUG
54 #endif
55 
56 #include <sys/param.h>
57 #include <sys/kernel.h>
58 #include <sys/systm.h>
59 #include <sys/bio.h>
60 #include <sys/buf.h>
61 #include <sys/kdb.h>
62 #include <sys/kthread.h>
63 #include <sys/ktr.h>
64 #include <sys/limits.h>
65 #include <sys/lock.h>
66 #include <sys/malloc.h>
67 #include <sys/mount.h>
68 #include <sys/mutex.h>
69 #include <sys/namei.h>
70 #include <sys/priv.h>
71 #include <sys/proc.h>
72 #include <sys/stat.h>
73 #include <sys/sysctl.h>
74 #include <sys/syslog.h>
75 #include <sys/vnode.h>
76 #include <sys/conf.h>
77 
78 #include <ufs/ufs/dir.h>
79 #include <ufs/ufs/extattr.h>
80 #include <ufs/ufs/quota.h>
81 #include <ufs/ufs/inode.h>
82 #include <ufs/ufs/ufsmount.h>
83 #include <ufs/ffs/fs.h>
84 #include <ufs/ffs/softdep.h>
85 #include <ufs/ffs/ffs_extern.h>
86 #include <ufs/ufs/ufs_extern.h>
87 
88 #include <vm/vm.h>
89 #include <vm/vm_extern.h>
90 #include <vm/vm_object.h>
91 
92 #include <geom/geom.h>
93 
94 #include <ddb/ddb.h>
95 
96 #define	KTR_SUJ	0	/* Define to KTR_SPARE. */
97 
98 #ifndef SOFTUPDATES
99 
100 int
101 softdep_flushfiles(oldmnt, flags, td)
102 	struct mount *oldmnt;
103 	int flags;
104 	struct thread *td;
105 {
106 
107 	panic("softdep_flushfiles called");
108 }
109 
110 int
111 softdep_mount(devvp, mp, fs, cred)
112 	struct vnode *devvp;
113 	struct mount *mp;
114 	struct fs *fs;
115 	struct ucred *cred;
116 {
117 
118 	return (0);
119 }
120 
121 void
122 softdep_initialize()
123 {
124 
125 	return;
126 }
127 
128 void
129 softdep_uninitialize()
130 {
131 
132 	return;
133 }
134 
135 void
136 softdep_unmount(mp)
137 	struct mount *mp;
138 {
139 
140 }
141 
142 void
143 softdep_setup_sbupdate(ump, fs, bp)
144 	struct ufsmount *ump;
145 	struct fs *fs;
146 	struct buf *bp;
147 {
148 }
149 
150 void
151 softdep_setup_inomapdep(bp, ip, newinum, mode)
152 	struct buf *bp;
153 	struct inode *ip;
154 	ino_t newinum;
155 	int mode;
156 {
157 
158 	panic("softdep_setup_inomapdep called");
159 }
160 
161 void
162 softdep_setup_blkmapdep(bp, mp, newblkno, frags, oldfrags)
163 	struct buf *bp;
164 	struct mount *mp;
165 	ufs2_daddr_t newblkno;
166 	int frags;
167 	int oldfrags;
168 {
169 
170 	panic("softdep_setup_blkmapdep called");
171 }
172 
173 void
174 softdep_setup_allocdirect(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp)
175 	struct inode *ip;
176 	ufs_lbn_t lbn;
177 	ufs2_daddr_t newblkno;
178 	ufs2_daddr_t oldblkno;
179 	long newsize;
180 	long oldsize;
181 	struct buf *bp;
182 {
183 
184 	panic("softdep_setup_allocdirect called");
185 }
186 
187 void
188 softdep_setup_allocext(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp)
189 	struct inode *ip;
190 	ufs_lbn_t lbn;
191 	ufs2_daddr_t newblkno;
192 	ufs2_daddr_t oldblkno;
193 	long newsize;
194 	long oldsize;
195 	struct buf *bp;
196 {
197 
198 	panic("softdep_setup_allocext called");
199 }
200 
201 void
202 softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp)
203 	struct inode *ip;
204 	ufs_lbn_t lbn;
205 	struct buf *bp;
206 	int ptrno;
207 	ufs2_daddr_t newblkno;
208 	ufs2_daddr_t oldblkno;
209 	struct buf *nbp;
210 {
211 
212 	panic("softdep_setup_allocindir_page called");
213 }
214 
215 void
216 softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno)
217 	struct buf *nbp;
218 	struct inode *ip;
219 	struct buf *bp;
220 	int ptrno;
221 	ufs2_daddr_t newblkno;
222 {
223 
224 	panic("softdep_setup_allocindir_meta called");
225 }
226 
227 void
228 softdep_journal_freeblocks(ip, cred, length, flags)
229 	struct inode *ip;
230 	struct ucred *cred;
231 	off_t length;
232 	int flags;
233 {
234 
235 	panic("softdep_journal_freeblocks called");
236 }
237 
238 void
239 softdep_journal_fsync(ip)
240 	struct inode *ip;
241 {
242 
243 	panic("softdep_journal_fsync called");
244 }
245 
246 void
247 softdep_setup_freeblocks(ip, length, flags)
248 	struct inode *ip;
249 	off_t length;
250 	int flags;
251 {
252 
253 	panic("softdep_setup_freeblocks called");
254 }
255 
256 void
257 softdep_freefile(pvp, ino, mode)
258 		struct vnode *pvp;
259 		ino_t ino;
260 		int mode;
261 {
262 
263 	panic("softdep_freefile called");
264 }
265 
266 int
267 softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk)
268 	struct buf *bp;
269 	struct inode *dp;
270 	off_t diroffset;
271 	ino_t newinum;
272 	struct buf *newdirbp;
273 	int isnewblk;
274 {
275 
276 	panic("softdep_setup_directory_add called");
277 }
278 
279 void
280 softdep_change_directoryentry_offset(bp, dp, base, oldloc, newloc, entrysize)
281 	struct buf *bp;
282 	struct inode *dp;
283 	caddr_t base;
284 	caddr_t oldloc;
285 	caddr_t newloc;
286 	int entrysize;
287 {
288 
289 	panic("softdep_change_directoryentry_offset called");
290 }
291 
292 void
293 softdep_setup_remove(bp, dp, ip, isrmdir)
294 	struct buf *bp;
295 	struct inode *dp;
296 	struct inode *ip;
297 	int isrmdir;
298 {
299 
300 	panic("softdep_setup_remove called");
301 }
302 
303 void
304 softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir)
305 	struct buf *bp;
306 	struct inode *dp;
307 	struct inode *ip;
308 	ino_t newinum;
309 	int isrmdir;
310 {
311 
312 	panic("softdep_setup_directory_change called");
313 }
314 
315 void
316 softdep_setup_blkfree(mp, bp, blkno, frags, wkhd)
317 	struct mount *mp;
318 	struct buf *bp;
319 	ufs2_daddr_t blkno;
320 	int frags;
321 	struct workhead *wkhd;
322 {
323 
324 	panic("%s called", __FUNCTION__);
325 }
326 
327 void
328 softdep_setup_inofree(mp, bp, ino, wkhd)
329 	struct mount *mp;
330 	struct buf *bp;
331 	ino_t ino;
332 	struct workhead *wkhd;
333 {
334 
335 	panic("%s called", __FUNCTION__);
336 }
337 
338 void
339 softdep_setup_unlink(dp, ip)
340 	struct inode *dp;
341 	struct inode *ip;
342 {
343 
344 	panic("%s called", __FUNCTION__);
345 }
346 
347 void
348 softdep_setup_link(dp, ip)
349 	struct inode *dp;
350 	struct inode *ip;
351 {
352 
353 	panic("%s called", __FUNCTION__);
354 }
355 
356 void
357 softdep_revert_link(dp, ip)
358 	struct inode *dp;
359 	struct inode *ip;
360 {
361 
362 	panic("%s called", __FUNCTION__);
363 }
364 
365 void
366 softdep_setup_rmdir(dp, ip)
367 	struct inode *dp;
368 	struct inode *ip;
369 {
370 
371 	panic("%s called", __FUNCTION__);
372 }
373 
374 void
375 softdep_revert_rmdir(dp, ip)
376 	struct inode *dp;
377 	struct inode *ip;
378 {
379 
380 	panic("%s called", __FUNCTION__);
381 }
382 
383 void
384 softdep_setup_create(dp, ip)
385 	struct inode *dp;
386 	struct inode *ip;
387 {
388 
389 	panic("%s called", __FUNCTION__);
390 }
391 
392 void
393 softdep_revert_create(dp, ip)
394 	struct inode *dp;
395 	struct inode *ip;
396 {
397 
398 	panic("%s called", __FUNCTION__);
399 }
400 
401 void
402 softdep_setup_mkdir(dp, ip)
403 	struct inode *dp;
404 	struct inode *ip;
405 {
406 
407 	panic("%s called", __FUNCTION__);
408 }
409 
410 void
411 softdep_revert_mkdir(dp, ip)
412 	struct inode *dp;
413 	struct inode *ip;
414 {
415 
416 	panic("%s called", __FUNCTION__);
417 }
418 
419 void
420 softdep_setup_dotdot_link(dp, ip)
421 	struct inode *dp;
422 	struct inode *ip;
423 {
424 
425 	panic("%s called", __FUNCTION__);
426 }
427 
428 int
429 softdep_prealloc(vp, waitok)
430 	struct vnode *vp;
431 	int waitok;
432 {
433 
434 	panic("%s called", __FUNCTION__);
435 
436 	return (0);
437 }
438 
439 int
440 softdep_journal_lookup(mp, vpp)
441 	struct mount *mp;
442 	struct vnode **vpp;
443 {
444 
445 	return (ENOENT);
446 }
447 
448 void
449 softdep_change_linkcnt(ip)
450 	struct inode *ip;
451 {
452 
453 	panic("softdep_change_linkcnt called");
454 }
455 
456 void
457 softdep_load_inodeblock(ip)
458 	struct inode *ip;
459 {
460 
461 	panic("softdep_load_inodeblock called");
462 }
463 
464 void
465 softdep_update_inodeblock(ip, bp, waitfor)
466 	struct inode *ip;
467 	struct buf *bp;
468 	int waitfor;
469 {
470 
471 	panic("softdep_update_inodeblock called");
472 }
473 
474 int
475 softdep_fsync(vp)
476 	struct vnode *vp;	/* the "in_core" copy of the inode */
477 {
478 
479 	return (0);
480 }
481 
482 void
483 softdep_fsync_mountdev(vp)
484 	struct vnode *vp;
485 {
486 
487 	return;
488 }
489 
490 int
491 softdep_flushworklist(oldmnt, countp, td)
492 	struct mount *oldmnt;
493 	int *countp;
494 	struct thread *td;
495 {
496 
497 	*countp = 0;
498 	return (0);
499 }
500 
501 int
502 softdep_sync_metadata(struct vnode *vp)
503 {
504 
505 	return (0);
506 }
507 
508 int
509 softdep_sync_buf(struct vnode *vp, struct buf *bp, int waitfor)
510 {
511 
512 	return (0);
513 }
514 
515 int
516 softdep_slowdown(vp)
517 	struct vnode *vp;
518 {
519 
520 	panic("softdep_slowdown called");
521 }
522 
523 void
524 softdep_releasefile(ip)
525 	struct inode *ip;	/* inode with the zero effective link count */
526 {
527 
528 	panic("softdep_releasefile called");
529 }
530 
531 int
532 softdep_request_cleanup(fs, vp, cred, resource)
533 	struct fs *fs;
534 	struct vnode *vp;
535 	struct ucred *cred;
536 	int resource;
537 {
538 
539 	return (0);
540 }
541 
542 int
543 softdep_check_suspend(struct mount *mp,
544 		      struct vnode *devvp,
545 		      int softdep_deps,
546 		      int softdep_accdeps,
547 		      int secondary_writes,
548 		      int secondary_accwrites)
549 {
550 	struct bufobj *bo;
551 	int error;
552 
553 	(void) softdep_deps,
554 	(void) softdep_accdeps;
555 
556 	bo = &devvp->v_bufobj;
557 	ASSERT_BO_LOCKED(bo);
558 
559 	MNT_ILOCK(mp);
560 	while (mp->mnt_secondary_writes != 0) {
561 		BO_UNLOCK(bo);
562 		msleep(&mp->mnt_secondary_writes, MNT_MTX(mp),
563 		    (PUSER - 1) | PDROP, "secwr", 0);
564 		BO_LOCK(bo);
565 		MNT_ILOCK(mp);
566 	}
567 
568 	/*
569 	 * Reasons for needing more work before suspend:
570 	 * - Dirty buffers on devvp.
571 	 * - Secondary writes occurred after start of vnode sync loop
572 	 */
573 	error = 0;
574 	if (bo->bo_numoutput > 0 ||
575 	    bo->bo_dirty.bv_cnt > 0 ||
576 	    secondary_writes != 0 ||
577 	    mp->mnt_secondary_writes != 0 ||
578 	    secondary_accwrites != mp->mnt_secondary_accwrites)
579 		error = EAGAIN;
580 	BO_UNLOCK(bo);
581 	return (error);
582 }
583 
584 void
585 softdep_get_depcounts(struct mount *mp,
586 		      int *softdepactivep,
587 		      int *softdepactiveaccp)
588 {
589 	(void) mp;
590 	*softdepactivep = 0;
591 	*softdepactiveaccp = 0;
592 }
593 
594 void
595 softdep_buf_append(bp, wkhd)
596 	struct buf *bp;
597 	struct workhead *wkhd;
598 {
599 
600 	panic("softdep_buf_appendwork called");
601 }
602 
603 void
604 softdep_inode_append(ip, cred, wkhd)
605 	struct inode *ip;
606 	struct ucred *cred;
607 	struct workhead *wkhd;
608 {
609 
610 	panic("softdep_inode_appendwork called");
611 }
612 
613 void
614 softdep_freework(wkhd)
615 	struct workhead *wkhd;
616 {
617 
618 	panic("softdep_freework called");
619 }
620 
621 #else
622 
623 FEATURE(softupdates, "FFS soft-updates support");
624 
625 /*
626  * These definitions need to be adapted to the system to which
627  * this file is being ported.
628  */
629 
630 #define M_SOFTDEP_FLAGS	(M_WAITOK)
631 
632 #define	D_PAGEDEP	0
633 #define	D_INODEDEP	1
634 #define	D_BMSAFEMAP	2
635 #define	D_NEWBLK	3
636 #define	D_ALLOCDIRECT	4
637 #define	D_INDIRDEP	5
638 #define	D_ALLOCINDIR	6
639 #define	D_FREEFRAG	7
640 #define	D_FREEBLKS	8
641 #define	D_FREEFILE	9
642 #define	D_DIRADD	10
643 #define	D_MKDIR		11
644 #define	D_DIRREM	12
645 #define	D_NEWDIRBLK	13
646 #define	D_FREEWORK	14
647 #define	D_FREEDEP	15
648 #define	D_JADDREF	16
649 #define	D_JREMREF	17
650 #define	D_JMVREF	18
651 #define	D_JNEWBLK	19
652 #define	D_JFREEBLK	20
653 #define	D_JFREEFRAG	21
654 #define	D_JSEG		22
655 #define	D_JSEGDEP	23
656 #define	D_SBDEP		24
657 #define	D_JTRUNC	25
658 #define	D_JFSYNC	26
659 #define	D_SENTINAL	27
660 #define	D_LAST		D_SENTINAL
661 
662 unsigned long dep_current[D_LAST + 1];
663 unsigned long dep_total[D_LAST + 1];
664 unsigned long dep_write[D_LAST + 1];
665 
666 
667 static SYSCTL_NODE(_debug, OID_AUTO, softdep, CTLFLAG_RW, 0,
668     "soft updates stats");
669 static SYSCTL_NODE(_debug_softdep, OID_AUTO, total, CTLFLAG_RW, 0,
670     "total dependencies allocated");
671 static SYSCTL_NODE(_debug_softdep, OID_AUTO, current, CTLFLAG_RW, 0,
672     "current dependencies allocated");
673 static SYSCTL_NODE(_debug_softdep, OID_AUTO, write, CTLFLAG_RW, 0,
674     "current dependencies written");
675 
676 #define	SOFTDEP_TYPE(type, str, long)					\
677     static MALLOC_DEFINE(M_ ## type, #str, long);			\
678     SYSCTL_ULONG(_debug_softdep_total, OID_AUTO, str, CTLFLAG_RD,	\
679 	&dep_total[D_ ## type], 0, "");					\
680     SYSCTL_ULONG(_debug_softdep_current, OID_AUTO, str, CTLFLAG_RD, 	\
681 	&dep_current[D_ ## type], 0, "");				\
682     SYSCTL_ULONG(_debug_softdep_write, OID_AUTO, str, CTLFLAG_RD, 	\
683 	&dep_write[D_ ## type], 0, "");
684 
685 SOFTDEP_TYPE(PAGEDEP, pagedep, "File page dependencies");
686 SOFTDEP_TYPE(INODEDEP, inodedep, "Inode dependencies");
687 SOFTDEP_TYPE(BMSAFEMAP, bmsafemap,
688     "Block or frag allocated from cyl group map");
689 SOFTDEP_TYPE(NEWBLK, newblk, "New block or frag allocation dependency");
690 SOFTDEP_TYPE(ALLOCDIRECT, allocdirect, "Block or frag dependency for an inode");
691 SOFTDEP_TYPE(INDIRDEP, indirdep, "Indirect block dependencies");
692 SOFTDEP_TYPE(ALLOCINDIR, allocindir, "Block dependency for an indirect block");
693 SOFTDEP_TYPE(FREEFRAG, freefrag, "Previously used frag for an inode");
694 SOFTDEP_TYPE(FREEBLKS, freeblks, "Blocks freed from an inode");
695 SOFTDEP_TYPE(FREEFILE, freefile, "Inode deallocated");
696 SOFTDEP_TYPE(DIRADD, diradd, "New directory entry");
697 SOFTDEP_TYPE(MKDIR, mkdir, "New directory");
698 SOFTDEP_TYPE(DIRREM, dirrem, "Directory entry deleted");
699 SOFTDEP_TYPE(NEWDIRBLK, newdirblk, "Unclaimed new directory block");
700 SOFTDEP_TYPE(FREEWORK, freework, "free an inode block");
701 SOFTDEP_TYPE(FREEDEP, freedep, "track a block free");
702 SOFTDEP_TYPE(JADDREF, jaddref, "Journal inode ref add");
703 SOFTDEP_TYPE(JREMREF, jremref, "Journal inode ref remove");
704 SOFTDEP_TYPE(JMVREF, jmvref, "Journal inode ref move");
705 SOFTDEP_TYPE(JNEWBLK, jnewblk, "Journal new block");
706 SOFTDEP_TYPE(JFREEBLK, jfreeblk, "Journal free block");
707 SOFTDEP_TYPE(JFREEFRAG, jfreefrag, "Journal free frag");
708 SOFTDEP_TYPE(JSEG, jseg, "Journal segment");
709 SOFTDEP_TYPE(JSEGDEP, jsegdep, "Journal segment complete");
710 SOFTDEP_TYPE(SBDEP, sbdep, "Superblock write dependency");
711 SOFTDEP_TYPE(JTRUNC, jtrunc, "Journal inode truncation");
712 SOFTDEP_TYPE(JFSYNC, jfsync, "Journal fsync complete");
713 
714 static MALLOC_DEFINE(M_SAVEDINO, "savedino", "Saved inodes");
715 static MALLOC_DEFINE(M_JBLOCKS, "jblocks", "Journal block locations");
716 
717 /*
718  * translate from workitem type to memory type
719  * MUST match the defines above, such that memtype[D_XXX] == M_XXX
720  */
721 static struct malloc_type *memtype[] = {
722 	M_PAGEDEP,
723 	M_INODEDEP,
724 	M_BMSAFEMAP,
725 	M_NEWBLK,
726 	M_ALLOCDIRECT,
727 	M_INDIRDEP,
728 	M_ALLOCINDIR,
729 	M_FREEFRAG,
730 	M_FREEBLKS,
731 	M_FREEFILE,
732 	M_DIRADD,
733 	M_MKDIR,
734 	M_DIRREM,
735 	M_NEWDIRBLK,
736 	M_FREEWORK,
737 	M_FREEDEP,
738 	M_JADDREF,
739 	M_JREMREF,
740 	M_JMVREF,
741 	M_JNEWBLK,
742 	M_JFREEBLK,
743 	M_JFREEFRAG,
744 	M_JSEG,
745 	M_JSEGDEP,
746 	M_SBDEP,
747 	M_JTRUNC,
748 	M_JFSYNC
749 };
750 
751 static LIST_HEAD(mkdirlist, mkdir) mkdirlisthd;
752 
753 #define DtoM(type) (memtype[type])
754 
755 /*
756  * Names of malloc types.
757  */
758 #define TYPENAME(type)  \
759 	((unsigned)(type) <= D_LAST ? memtype[type]->ks_shortdesc : "???")
760 /*
761  * End system adaptation definitions.
762  */
763 
764 #define	DOTDOT_OFFSET	offsetof(struct dirtemplate, dotdot_ino)
765 #define	DOT_OFFSET	offsetof(struct dirtemplate, dot_ino)
766 
767 /*
768  * Forward declarations.
769  */
770 struct inodedep_hashhead;
771 struct newblk_hashhead;
772 struct pagedep_hashhead;
773 struct bmsafemap_hashhead;
774 
775 /*
776  * Private journaling structures.
777  */
778 struct jblocks {
779 	struct jseglst	jb_segs;	/* TAILQ of current segments. */
780 	struct jseg	*jb_writeseg;	/* Next write to complete. */
781 	struct jseg	*jb_oldestseg;	/* Oldest segment with valid entries. */
782 	struct jextent	*jb_extent;	/* Extent array. */
783 	uint64_t	jb_nextseq;	/* Next sequence number. */
784 	uint64_t	jb_oldestwrseq;	/* Oldest written sequence number. */
785 	uint8_t		jb_needseg;	/* Need a forced segment. */
786 	uint8_t		jb_suspended;	/* Did journal suspend writes? */
787 	int		jb_avail;	/* Available extents. */
788 	int		jb_used;	/* Last used extent. */
789 	int		jb_head;	/* Allocator head. */
790 	int		jb_off;		/* Allocator extent offset. */
791 	int		jb_blocks;	/* Total disk blocks covered. */
792 	int		jb_free;	/* Total disk blocks free. */
793 	int		jb_min;		/* Minimum free space. */
794 	int		jb_low;		/* Low on space. */
795 	int		jb_age;		/* Insertion time of oldest rec. */
796 };
797 
798 struct jextent {
799 	ufs2_daddr_t	je_daddr;	/* Disk block address. */
800 	int		je_blocks;	/* Disk block count. */
801 };
802 
803 /*
804  * Internal function prototypes.
805  */
806 static	void softdep_error(char *, int);
807 static	void drain_output(struct vnode *);
808 static	struct buf *getdirtybuf(struct buf *, struct mtx *, int);
809 static	void clear_remove(void);
810 static	void clear_inodedeps(void);
811 static	void unlinked_inodedep(struct mount *, struct inodedep *);
812 static	void clear_unlinked_inodedep(struct inodedep *);
813 static	struct inodedep *first_unlinked_inodedep(struct ufsmount *);
814 static	int flush_pagedep_deps(struct vnode *, struct mount *,
815 	    struct diraddhd *);
816 static	int free_pagedep(struct pagedep *);
817 static	int flush_newblk_dep(struct vnode *, struct mount *, ufs_lbn_t);
818 static	int flush_inodedep_deps(struct vnode *, struct mount *, ino_t);
819 static	int flush_deplist(struct allocdirectlst *, int, int *);
820 static	int sync_cgs(struct mount *, int);
821 static	int handle_written_filepage(struct pagedep *, struct buf *);
822 static	int handle_written_sbdep(struct sbdep *, struct buf *);
823 static	void initiate_write_sbdep(struct sbdep *);
824 static  void diradd_inode_written(struct diradd *, struct inodedep *);
825 static	int handle_written_indirdep(struct indirdep *, struct buf *,
826 	    struct buf**);
827 static	int handle_written_inodeblock(struct inodedep *, struct buf *);
828 static	int jnewblk_rollforward(struct jnewblk *, struct fs *, struct cg *,
829 	    uint8_t *);
830 static	int handle_written_bmsafemap(struct bmsafemap *, struct buf *);
831 static	void handle_written_jaddref(struct jaddref *);
832 static	void handle_written_jremref(struct jremref *);
833 static	void handle_written_jseg(struct jseg *, struct buf *);
834 static	void handle_written_jnewblk(struct jnewblk *);
835 static	void handle_written_jblkdep(struct jblkdep *);
836 static	void handle_written_jfreefrag(struct jfreefrag *);
837 static	void complete_jseg(struct jseg *);
838 static	void complete_jsegs(struct jseg *);
839 static	void jseg_write(struct ufsmount *ump, struct jseg *, uint8_t *);
840 static	void jaddref_write(struct jaddref *, struct jseg *, uint8_t *);
841 static	void jremref_write(struct jremref *, struct jseg *, uint8_t *);
842 static	void jmvref_write(struct jmvref *, struct jseg *, uint8_t *);
843 static	void jtrunc_write(struct jtrunc *, struct jseg *, uint8_t *);
844 static	void jfsync_write(struct jfsync *, struct jseg *, uint8_t *data);
845 static	void jnewblk_write(struct jnewblk *, struct jseg *, uint8_t *);
846 static	void jfreeblk_write(struct jfreeblk *, struct jseg *, uint8_t *);
847 static	void jfreefrag_write(struct jfreefrag *, struct jseg *, uint8_t *);
848 static	inline void inoref_write(struct inoref *, struct jseg *,
849 	    struct jrefrec *);
850 static	void handle_allocdirect_partdone(struct allocdirect *,
851 	    struct workhead *);
852 static	struct jnewblk *cancel_newblk(struct newblk *, struct worklist *,
853 	    struct workhead *);
854 static	void indirdep_complete(struct indirdep *);
855 static	int indirblk_lookup(struct mount *, ufs2_daddr_t);
856 static	void indirblk_insert(struct freework *);
857 static	void indirblk_remove(struct freework *);
858 static	void handle_allocindir_partdone(struct allocindir *);
859 static	void initiate_write_filepage(struct pagedep *, struct buf *);
860 static	void initiate_write_indirdep(struct indirdep*, struct buf *);
861 static	void handle_written_mkdir(struct mkdir *, int);
862 static	int jnewblk_rollback(struct jnewblk *, struct fs *, struct cg *,
863 	    uint8_t *);
864 static	void initiate_write_bmsafemap(struct bmsafemap *, struct buf *);
865 static	void initiate_write_inodeblock_ufs1(struct inodedep *, struct buf *);
866 static	void initiate_write_inodeblock_ufs2(struct inodedep *, struct buf *);
867 static	void handle_workitem_freefile(struct freefile *);
868 static	int handle_workitem_remove(struct dirrem *, int);
869 static	struct dirrem *newdirrem(struct buf *, struct inode *,
870 	    struct inode *, int, struct dirrem **);
871 static	struct indirdep *indirdep_lookup(struct mount *, struct inode *,
872 	    struct buf *);
873 static	void cancel_indirdep(struct indirdep *, struct buf *,
874 	    struct freeblks *);
875 static	void free_indirdep(struct indirdep *);
876 static	void free_diradd(struct diradd *, struct workhead *);
877 static	void merge_diradd(struct inodedep *, struct diradd *);
878 static	void complete_diradd(struct diradd *);
879 static	struct diradd *diradd_lookup(struct pagedep *, int);
880 static	struct jremref *cancel_diradd_dotdot(struct inode *, struct dirrem *,
881 	    struct jremref *);
882 static	struct jremref *cancel_mkdir_dotdot(struct inode *, struct dirrem *,
883 	    struct jremref *);
884 static	void cancel_diradd(struct diradd *, struct dirrem *, struct jremref *,
885 	    struct jremref *, struct jremref *);
886 static	void dirrem_journal(struct dirrem *, struct jremref *, struct jremref *,
887 	    struct jremref *);
888 static	void cancel_allocindir(struct allocindir *, struct buf *bp,
889 	    struct freeblks *, int);
890 static	int setup_trunc_indir(struct freeblks *, struct inode *,
891 	    ufs_lbn_t, ufs_lbn_t, ufs2_daddr_t);
892 static	void complete_trunc_indir(struct freework *);
893 static	void trunc_indirdep(struct indirdep *, struct freeblks *, struct buf *,
894 	    int);
895 static	void complete_mkdir(struct mkdir *);
896 static	void free_newdirblk(struct newdirblk *);
897 static	void free_jremref(struct jremref *);
898 static	void free_jaddref(struct jaddref *);
899 static	void free_jsegdep(struct jsegdep *);
900 static	void free_jsegs(struct jblocks *);
901 static	void rele_jseg(struct jseg *);
902 static	void free_jseg(struct jseg *, struct jblocks *);
903 static	void free_jnewblk(struct jnewblk *);
904 static	void free_jblkdep(struct jblkdep *);
905 static	void free_jfreefrag(struct jfreefrag *);
906 static	void free_freedep(struct freedep *);
907 static	void journal_jremref(struct dirrem *, struct jremref *,
908 	    struct inodedep *);
909 static	void cancel_jnewblk(struct jnewblk *, struct workhead *);
910 static	int cancel_jaddref(struct jaddref *, struct inodedep *,
911 	    struct workhead *);
912 static	void cancel_jfreefrag(struct jfreefrag *);
913 static	inline void setup_freedirect(struct freeblks *, struct inode *,
914 	    int, int);
915 static	inline void setup_freeext(struct freeblks *, struct inode *, int, int);
916 static	inline void setup_freeindir(struct freeblks *, struct inode *, int,
917 	    ufs_lbn_t, int);
918 static	inline struct freeblks *newfreeblks(struct mount *, struct inode *);
919 static	void freeblks_free(struct ufsmount *, struct freeblks *, int);
920 static	void indir_trunc(struct freework *, ufs2_daddr_t, ufs_lbn_t);
921 ufs2_daddr_t blkcount(struct fs *, ufs2_daddr_t, off_t);
922 static	int trunc_check_buf(struct buf *, int *, ufs_lbn_t, int, int);
923 static	void trunc_dependencies(struct inode *, struct freeblks *, ufs_lbn_t,
924 	    int, int);
925 static	void trunc_pages(struct inode *, off_t, ufs2_daddr_t, int);
926 static 	int cancel_pagedep(struct pagedep *, struct freeblks *, int);
927 static	int deallocate_dependencies(struct buf *, struct freeblks *, int);
928 static	void newblk_freefrag(struct newblk*);
929 static	void free_newblk(struct newblk *);
930 static	void cancel_allocdirect(struct allocdirectlst *,
931 	    struct allocdirect *, struct freeblks *);
932 static	int check_inode_unwritten(struct inodedep *);
933 static	int free_inodedep(struct inodedep *);
934 static	void freework_freeblock(struct freework *);
935 static	void freework_enqueue(struct freework *);
936 static	int handle_workitem_freeblocks(struct freeblks *, int);
937 static	int handle_complete_freeblocks(struct freeblks *, int);
938 static	void handle_workitem_indirblk(struct freework *);
939 static	void handle_written_freework(struct freework *);
940 static	void merge_inode_lists(struct allocdirectlst *,struct allocdirectlst *);
941 static	struct worklist *jnewblk_merge(struct worklist *, struct worklist *,
942 	    struct workhead *);
943 static	struct freefrag *setup_allocindir_phase2(struct buf *, struct inode *,
944 	    struct inodedep *, struct allocindir *, ufs_lbn_t);
945 static	struct allocindir *newallocindir(struct inode *, int, ufs2_daddr_t,
946 	    ufs2_daddr_t, ufs_lbn_t);
947 static	void handle_workitem_freefrag(struct freefrag *);
948 static	struct freefrag *newfreefrag(struct inode *, ufs2_daddr_t, long,
949 	    ufs_lbn_t);
950 static	void allocdirect_merge(struct allocdirectlst *,
951 	    struct allocdirect *, struct allocdirect *);
952 static	struct freefrag *allocindir_merge(struct allocindir *,
953 	    struct allocindir *);
954 static	int bmsafemap_find(struct bmsafemap_hashhead *, struct mount *, int,
955 	    struct bmsafemap **);
956 static	struct bmsafemap *bmsafemap_lookup(struct mount *, struct buf *,
957 	    int cg, struct bmsafemap *);
958 static	int newblk_find(struct newblk_hashhead *, struct mount *, ufs2_daddr_t,
959 	    int, struct newblk **);
960 static	int newblk_lookup(struct mount *, ufs2_daddr_t, int, struct newblk **);
961 static	int inodedep_find(struct inodedep_hashhead *, struct fs *, ino_t,
962 	    struct inodedep **);
963 static	int inodedep_lookup(struct mount *, ino_t, int, struct inodedep **);
964 static	int pagedep_lookup(struct mount *, struct buf *bp, ino_t, ufs_lbn_t,
965 	    int, struct pagedep **);
966 static	int pagedep_find(struct pagedep_hashhead *, ino_t, ufs_lbn_t,
967 	    struct mount *mp, int, struct pagedep **);
968 static	void pause_timer(void *);
969 static	int request_cleanup(struct mount *, int);
970 static	int process_worklist_item(struct mount *, int, int);
971 static	void process_removes(struct vnode *);
972 static	void process_truncates(struct vnode *);
973 static	void jwork_move(struct workhead *, struct workhead *);
974 static	void jwork_insert(struct workhead *, struct jsegdep *);
975 static	void add_to_worklist(struct worklist *, int);
976 static	void wake_worklist(struct worklist *);
977 static	void wait_worklist(struct worklist *, char *);
978 static	void remove_from_worklist(struct worklist *);
979 static	void softdep_flush(void);
980 static	void softdep_flushjournal(struct mount *);
981 static	int softdep_speedup(void);
982 static	void worklist_speedup(void);
983 static	int journal_mount(struct mount *, struct fs *, struct ucred *);
984 static	void journal_unmount(struct mount *);
985 static	int journal_space(struct ufsmount *, int);
986 static	void journal_suspend(struct ufsmount *);
987 static	int journal_unsuspend(struct ufsmount *ump);
988 static	void softdep_prelink(struct vnode *, struct vnode *);
989 static	void add_to_journal(struct worklist *);
990 static	void remove_from_journal(struct worklist *);
991 static	void softdep_process_journal(struct mount *, struct worklist *, int);
992 static	struct jremref *newjremref(struct dirrem *, struct inode *,
993 	    struct inode *ip, off_t, nlink_t);
994 static	struct jaddref *newjaddref(struct inode *, ino_t, off_t, int16_t,
995 	    uint16_t);
996 static	inline void newinoref(struct inoref *, ino_t, ino_t, off_t, nlink_t,
997 	    uint16_t);
998 static	inline struct jsegdep *inoref_jseg(struct inoref *);
999 static	struct jmvref *newjmvref(struct inode *, ino_t, off_t, off_t);
1000 static	struct jfreeblk *newjfreeblk(struct freeblks *, ufs_lbn_t,
1001 	    ufs2_daddr_t, int);
1002 static	struct jtrunc *newjtrunc(struct freeblks *, off_t, int);
1003 static	void move_newblock_dep(struct jaddref *, struct inodedep *);
1004 static	void cancel_jfreeblk(struct freeblks *, ufs2_daddr_t);
1005 static	struct jfreefrag *newjfreefrag(struct freefrag *, struct inode *,
1006 	    ufs2_daddr_t, long, ufs_lbn_t);
1007 static	struct freework *newfreework(struct ufsmount *, struct freeblks *,
1008 	    struct freework *, ufs_lbn_t, ufs2_daddr_t, int, int, int);
1009 static	int jwait(struct worklist *, int);
1010 static	struct inodedep *inodedep_lookup_ip(struct inode *);
1011 static	int bmsafemap_backgroundwrite(struct bmsafemap *, struct buf *);
1012 static	struct freefile *handle_bufwait(struct inodedep *, struct workhead *);
1013 static	void handle_jwork(struct workhead *);
1014 static	struct mkdir *setup_newdir(struct diradd *, ino_t, ino_t, struct buf *,
1015 	    struct mkdir **);
1016 static	struct jblocks *jblocks_create(void);
1017 static	ufs2_daddr_t jblocks_alloc(struct jblocks *, int, int *);
1018 static	void jblocks_free(struct jblocks *, struct mount *, int);
1019 static	void jblocks_destroy(struct jblocks *);
1020 static	void jblocks_add(struct jblocks *, ufs2_daddr_t, int);
1021 
1022 /*
1023  * Exported softdep operations.
1024  */
1025 static	void softdep_disk_io_initiation(struct buf *);
1026 static	void softdep_disk_write_complete(struct buf *);
1027 static	void softdep_deallocate_dependencies(struct buf *);
1028 static	int softdep_count_dependencies(struct buf *bp, int);
1029 
1030 static struct mtx lk;
1031 MTX_SYSINIT(softdep_lock, &lk, "Softdep Lock", MTX_DEF);
1032 
1033 #define TRY_ACQUIRE_LOCK(lk)		mtx_trylock(lk)
1034 #define ACQUIRE_LOCK(lk)		mtx_lock(lk)
1035 #define FREE_LOCK(lk)			mtx_unlock(lk)
1036 
1037 #define	BUF_AREC(bp)			lockallowrecurse(&(bp)->b_lock)
1038 #define	BUF_NOREC(bp)			lockdisablerecurse(&(bp)->b_lock)
1039 
1040 /*
1041  * Worklist queue management.
1042  * These routines require that the lock be held.
1043  */
1044 #ifndef /* NOT */ DEBUG
1045 #define WORKLIST_INSERT(head, item) do {	\
1046 	(item)->wk_state |= ONWORKLIST;		\
1047 	LIST_INSERT_HEAD(head, item, wk_list);	\
1048 } while (0)
1049 #define WORKLIST_REMOVE(item) do {		\
1050 	(item)->wk_state &= ~ONWORKLIST;	\
1051 	LIST_REMOVE(item, wk_list);		\
1052 } while (0)
1053 #define WORKLIST_INSERT_UNLOCKED	WORKLIST_INSERT
1054 #define WORKLIST_REMOVE_UNLOCKED	WORKLIST_REMOVE
1055 
1056 #else /* DEBUG */
1057 static	void worklist_insert(struct workhead *, struct worklist *, int);
1058 static	void worklist_remove(struct worklist *, int);
1059 
1060 #define WORKLIST_INSERT(head, item) worklist_insert(head, item, 1)
1061 #define WORKLIST_INSERT_UNLOCKED(head, item) worklist_insert(head, item, 0)
1062 #define WORKLIST_REMOVE(item) worklist_remove(item, 1)
1063 #define WORKLIST_REMOVE_UNLOCKED(item) worklist_remove(item, 0)
1064 
1065 static void
1066 worklist_insert(head, item, locked)
1067 	struct workhead *head;
1068 	struct worklist *item;
1069 	int locked;
1070 {
1071 
1072 	if (locked)
1073 		mtx_assert(&lk, MA_OWNED);
1074 	if (item->wk_state & ONWORKLIST)
1075 		panic("worklist_insert: %p %s(0x%X) already on list",
1076 		    item, TYPENAME(item->wk_type), item->wk_state);
1077 	item->wk_state |= ONWORKLIST;
1078 	LIST_INSERT_HEAD(head, item, wk_list);
1079 }
1080 
1081 static void
1082 worklist_remove(item, locked)
1083 	struct worklist *item;
1084 	int locked;
1085 {
1086 
1087 	if (locked)
1088 		mtx_assert(&lk, MA_OWNED);
1089 	if ((item->wk_state & ONWORKLIST) == 0)
1090 		panic("worklist_remove: %p %s(0x%X) not on list",
1091 		    item, TYPENAME(item->wk_type), item->wk_state);
1092 	item->wk_state &= ~ONWORKLIST;
1093 	LIST_REMOVE(item, wk_list);
1094 }
1095 #endif /* DEBUG */
1096 
1097 /*
1098  * Merge two jsegdeps keeping only the oldest one as newer references
1099  * can't be discarded until after older references.
1100  */
1101 static inline struct jsegdep *
1102 jsegdep_merge(struct jsegdep *one, struct jsegdep *two)
1103 {
1104 	struct jsegdep *swp;
1105 
1106 	if (two == NULL)
1107 		return (one);
1108 
1109 	if (one->jd_seg->js_seq > two->jd_seg->js_seq) {
1110 		swp = one;
1111 		one = two;
1112 		two = swp;
1113 	}
1114 	WORKLIST_REMOVE(&two->jd_list);
1115 	free_jsegdep(two);
1116 
1117 	return (one);
1118 }
1119 
1120 /*
1121  * If two freedeps are compatible free one to reduce list size.
1122  */
1123 static inline struct freedep *
1124 freedep_merge(struct freedep *one, struct freedep *two)
1125 {
1126 	if (two == NULL)
1127 		return (one);
1128 
1129 	if (one->fd_freework == two->fd_freework) {
1130 		WORKLIST_REMOVE(&two->fd_list);
1131 		free_freedep(two);
1132 	}
1133 	return (one);
1134 }
1135 
1136 /*
1137  * Move journal work from one list to another.  Duplicate freedeps and
1138  * jsegdeps are coalesced to keep the lists as small as possible.
1139  */
1140 static void
1141 jwork_move(dst, src)
1142 	struct workhead *dst;
1143 	struct workhead *src;
1144 {
1145 	struct freedep *freedep;
1146 	struct jsegdep *jsegdep;
1147 	struct worklist *wkn;
1148 	struct worklist *wk;
1149 
1150 	KASSERT(dst != src,
1151 	    ("jwork_move: dst == src"));
1152 	freedep = NULL;
1153 	jsegdep = NULL;
1154 	LIST_FOREACH_SAFE(wk, dst, wk_list, wkn) {
1155 		if (wk->wk_type == D_JSEGDEP)
1156 			jsegdep = jsegdep_merge(WK_JSEGDEP(wk), jsegdep);
1157 		if (wk->wk_type == D_FREEDEP)
1158 			freedep = freedep_merge(WK_FREEDEP(wk), freedep);
1159 	}
1160 
1161 	mtx_assert(&lk, MA_OWNED);
1162 	while ((wk = LIST_FIRST(src)) != NULL) {
1163 		WORKLIST_REMOVE(wk);
1164 		WORKLIST_INSERT(dst, wk);
1165 		if (wk->wk_type == D_JSEGDEP) {
1166 			jsegdep = jsegdep_merge(WK_JSEGDEP(wk), jsegdep);
1167 			continue;
1168 		}
1169 		if (wk->wk_type == D_FREEDEP)
1170 			freedep = freedep_merge(WK_FREEDEP(wk), freedep);
1171 	}
1172 }
1173 
1174 static void
1175 jwork_insert(dst, jsegdep)
1176 	struct workhead *dst;
1177 	struct jsegdep *jsegdep;
1178 {
1179 	struct jsegdep *jsegdepn;
1180 	struct worklist *wk;
1181 
1182 	LIST_FOREACH(wk, dst, wk_list)
1183 		if (wk->wk_type == D_JSEGDEP)
1184 			break;
1185 	if (wk == NULL) {
1186 		WORKLIST_INSERT(dst, &jsegdep->jd_list);
1187 		return;
1188 	}
1189 	jsegdepn = WK_JSEGDEP(wk);
1190 	if (jsegdep->jd_seg->js_seq < jsegdepn->jd_seg->js_seq) {
1191 		WORKLIST_REMOVE(wk);
1192 		free_jsegdep(jsegdepn);
1193 		WORKLIST_INSERT(dst, &jsegdep->jd_list);
1194 	} else
1195 		free_jsegdep(jsegdep);
1196 }
1197 
1198 /*
1199  * Routines for tracking and managing workitems.
1200  */
1201 static	void workitem_free(struct worklist *, int);
1202 static	void workitem_alloc(struct worklist *, int, struct mount *);
1203 
1204 #define	WORKITEM_FREE(item, type) workitem_free((struct worklist *)(item), (type))
1205 
1206 static void
1207 workitem_free(item, type)
1208 	struct worklist *item;
1209 	int type;
1210 {
1211 	struct ufsmount *ump;
1212 	mtx_assert(&lk, MA_OWNED);
1213 
1214 #ifdef DEBUG
1215 	if (item->wk_state & ONWORKLIST)
1216 		panic("workitem_free: %s(0x%X) still on list",
1217 		    TYPENAME(item->wk_type), item->wk_state);
1218 	if (item->wk_type != type)
1219 		panic("workitem_free: type mismatch %s != %s",
1220 		    TYPENAME(item->wk_type), TYPENAME(type));
1221 #endif
1222 	if (item->wk_state & IOWAITING)
1223 		wakeup(item);
1224 	ump = VFSTOUFS(item->wk_mp);
1225 	if (--ump->softdep_deps == 0 && ump->softdep_req)
1226 		wakeup(&ump->softdep_deps);
1227 	dep_current[type]--;
1228 	free(item, DtoM(type));
1229 }
1230 
1231 static void
1232 workitem_alloc(item, type, mp)
1233 	struct worklist *item;
1234 	int type;
1235 	struct mount *mp;
1236 {
1237 	struct ufsmount *ump;
1238 
1239 	item->wk_type = type;
1240 	item->wk_mp = mp;
1241 	item->wk_state = 0;
1242 
1243 	ump = VFSTOUFS(mp);
1244 	ACQUIRE_LOCK(&lk);
1245 	dep_current[type]++;
1246 	dep_total[type]++;
1247 	ump->softdep_deps++;
1248 	ump->softdep_accdeps++;
1249 	FREE_LOCK(&lk);
1250 }
1251 
1252 /*
1253  * Workitem queue management
1254  */
1255 static int max_softdeps;	/* maximum number of structs before slowdown */
1256 static int maxindirdeps = 50;	/* max number of indirdeps before slowdown */
1257 static int tickdelay = 2;	/* number of ticks to pause during slowdown */
1258 static int proc_waiting;	/* tracks whether we have a timeout posted */
1259 static int *stat_countp;	/* statistic to count in proc_waiting timeout */
1260 static struct callout softdep_callout;
1261 static int req_pending;
1262 static int req_clear_inodedeps;	/* syncer process flush some inodedeps */
1263 static int req_clear_remove;	/* syncer process flush some freeblks */
1264 static int softdep_flushcache = 0; /* Should we do BIO_FLUSH? */
1265 
1266 /*
1267  * runtime statistics
1268  */
1269 static int stat_worklist_push;	/* number of worklist cleanups */
1270 static int stat_blk_limit_push;	/* number of times block limit neared */
1271 static int stat_ino_limit_push;	/* number of times inode limit neared */
1272 static int stat_blk_limit_hit;	/* number of times block slowdown imposed */
1273 static int stat_ino_limit_hit;	/* number of times inode slowdown imposed */
1274 static int stat_sync_limit_hit;	/* number of synchronous slowdowns imposed */
1275 static int stat_indir_blk_ptrs;	/* bufs redirtied as indir ptrs not written */
1276 static int stat_inode_bitmap;	/* bufs redirtied as inode bitmap not written */
1277 static int stat_direct_blk_ptrs;/* bufs redirtied as direct ptrs not written */
1278 static int stat_dir_entry;	/* bufs redirtied as dir entry cannot write */
1279 static int stat_jaddref;	/* bufs redirtied as ino bitmap can not write */
1280 static int stat_jnewblk;	/* bufs redirtied as blk bitmap can not write */
1281 static int stat_journal_min;	/* Times hit journal min threshold */
1282 static int stat_journal_low;	/* Times hit journal low threshold */
1283 static int stat_journal_wait;	/* Times blocked in jwait(). */
1284 static int stat_jwait_filepage;	/* Times blocked in jwait() for filepage. */
1285 static int stat_jwait_freeblks;	/* Times blocked in jwait() for freeblks. */
1286 static int stat_jwait_inode;	/* Times blocked in jwait() for inodes. */
1287 static int stat_jwait_newblk;	/* Times blocked in jwait() for newblks. */
1288 static int stat_cleanup_high_delay; /* Maximum cleanup delay (in ticks) */
1289 static int stat_cleanup_blkrequests; /* Number of block cleanup requests */
1290 static int stat_cleanup_inorequests; /* Number of inode cleanup requests */
1291 static int stat_cleanup_retries; /* Number of cleanups that needed to flush */
1292 static int stat_cleanup_failures; /* Number of cleanup requests that failed */
1293 
1294 SYSCTL_INT(_debug_softdep, OID_AUTO, max_softdeps, CTLFLAG_RW,
1295     &max_softdeps, 0, "");
1296 SYSCTL_INT(_debug_softdep, OID_AUTO, tickdelay, CTLFLAG_RW,
1297     &tickdelay, 0, "");
1298 SYSCTL_INT(_debug_softdep, OID_AUTO, maxindirdeps, CTLFLAG_RW,
1299     &maxindirdeps, 0, "");
1300 SYSCTL_INT(_debug_softdep, OID_AUTO, worklist_push, CTLFLAG_RW,
1301     &stat_worklist_push, 0,"");
1302 SYSCTL_INT(_debug_softdep, OID_AUTO, blk_limit_push, CTLFLAG_RW,
1303     &stat_blk_limit_push, 0,"");
1304 SYSCTL_INT(_debug_softdep, OID_AUTO, ino_limit_push, CTLFLAG_RW,
1305     &stat_ino_limit_push, 0,"");
1306 SYSCTL_INT(_debug_softdep, OID_AUTO, blk_limit_hit, CTLFLAG_RW,
1307     &stat_blk_limit_hit, 0, "");
1308 SYSCTL_INT(_debug_softdep, OID_AUTO, ino_limit_hit, CTLFLAG_RW,
1309     &stat_ino_limit_hit, 0, "");
1310 SYSCTL_INT(_debug_softdep, OID_AUTO, sync_limit_hit, CTLFLAG_RW,
1311     &stat_sync_limit_hit, 0, "");
1312 SYSCTL_INT(_debug_softdep, OID_AUTO, indir_blk_ptrs, CTLFLAG_RW,
1313     &stat_indir_blk_ptrs, 0, "");
1314 SYSCTL_INT(_debug_softdep, OID_AUTO, inode_bitmap, CTLFLAG_RW,
1315     &stat_inode_bitmap, 0, "");
1316 SYSCTL_INT(_debug_softdep, OID_AUTO, direct_blk_ptrs, CTLFLAG_RW,
1317     &stat_direct_blk_ptrs, 0, "");
1318 SYSCTL_INT(_debug_softdep, OID_AUTO, dir_entry, CTLFLAG_RW,
1319     &stat_dir_entry, 0, "");
1320 SYSCTL_INT(_debug_softdep, OID_AUTO, jaddref_rollback, CTLFLAG_RW,
1321     &stat_jaddref, 0, "");
1322 SYSCTL_INT(_debug_softdep, OID_AUTO, jnewblk_rollback, CTLFLAG_RW,
1323     &stat_jnewblk, 0, "");
1324 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_low, CTLFLAG_RW,
1325     &stat_journal_low, 0, "");
1326 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_min, CTLFLAG_RW,
1327     &stat_journal_min, 0, "");
1328 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_wait, CTLFLAG_RW,
1329     &stat_journal_wait, 0, "");
1330 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_filepage, CTLFLAG_RW,
1331     &stat_jwait_filepage, 0, "");
1332 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_freeblks, CTLFLAG_RW,
1333     &stat_jwait_freeblks, 0, "");
1334 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_inode, CTLFLAG_RW,
1335     &stat_jwait_inode, 0, "");
1336 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_newblk, CTLFLAG_RW,
1337     &stat_jwait_newblk, 0, "");
1338 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_blkrequests, CTLFLAG_RW,
1339     &stat_cleanup_blkrequests, 0, "");
1340 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_inorequests, CTLFLAG_RW,
1341     &stat_cleanup_inorequests, 0, "");
1342 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_high_delay, CTLFLAG_RW,
1343     &stat_cleanup_high_delay, 0, "");
1344 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_retries, CTLFLAG_RW,
1345     &stat_cleanup_retries, 0, "");
1346 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_failures, CTLFLAG_RW,
1347     &stat_cleanup_failures, 0, "");
1348 SYSCTL_INT(_debug_softdep, OID_AUTO, flushcache, CTLFLAG_RW,
1349     &softdep_flushcache, 0, "");
1350 
1351 SYSCTL_DECL(_vfs_ffs);
1352 
1353 LIST_HEAD(bmsafemap_hashhead, bmsafemap) *bmsafemap_hashtbl;
1354 static u_long	bmsafemap_hash;	/* size of hash table - 1 */
1355 
1356 static int compute_summary_at_mount = 0;	/* Whether to recompute the summary at mount time */
1357 SYSCTL_INT(_vfs_ffs, OID_AUTO, compute_summary_at_mount, CTLFLAG_RW,
1358 	   &compute_summary_at_mount, 0, "Recompute summary at mount");
1359 
1360 static struct proc *softdepproc;
1361 static struct kproc_desc softdep_kp = {
1362 	"softdepflush",
1363 	softdep_flush,
1364 	&softdepproc
1365 };
1366 SYSINIT(sdproc, SI_SUB_KTHREAD_UPDATE, SI_ORDER_ANY, kproc_start,
1367     &softdep_kp);
1368 
1369 static void
1370 softdep_flush(void)
1371 {
1372 	struct mount *nmp;
1373 	struct mount *mp;
1374 	struct ufsmount *ump;
1375 	struct thread *td;
1376 	int remaining;
1377 	int progress;
1378 
1379 	td = curthread;
1380 	td->td_pflags |= TDP_NORUNNINGBUF;
1381 
1382 	for (;;) {
1383 		kproc_suspend_check(softdepproc);
1384 		ACQUIRE_LOCK(&lk);
1385 		/*
1386 		 * If requested, try removing inode or removal dependencies.
1387 		 */
1388 		if (req_clear_inodedeps) {
1389 			clear_inodedeps();
1390 			req_clear_inodedeps -= 1;
1391 			wakeup_one(&proc_waiting);
1392 		}
1393 		if (req_clear_remove) {
1394 			clear_remove();
1395 			req_clear_remove -= 1;
1396 			wakeup_one(&proc_waiting);
1397 		}
1398 		FREE_LOCK(&lk);
1399 		remaining = progress = 0;
1400 		mtx_lock(&mountlist_mtx);
1401 		for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp)  {
1402 			nmp = TAILQ_NEXT(mp, mnt_list);
1403 			if (MOUNTEDSOFTDEP(mp) == 0)
1404 				continue;
1405 			if (vfs_busy(mp, MBF_NOWAIT | MBF_MNTLSTLOCK))
1406 				continue;
1407 			progress += softdep_process_worklist(mp, 0);
1408 			ump = VFSTOUFS(mp);
1409 			remaining += ump->softdep_on_worklist;
1410 			mtx_lock(&mountlist_mtx);
1411 			nmp = TAILQ_NEXT(mp, mnt_list);
1412 			vfs_unbusy(mp);
1413 		}
1414 		mtx_unlock(&mountlist_mtx);
1415 		if (remaining && progress)
1416 			continue;
1417 		ACQUIRE_LOCK(&lk);
1418 		if (!req_pending)
1419 			msleep(&req_pending, &lk, PVM, "sdflush", hz);
1420 		req_pending = 0;
1421 		FREE_LOCK(&lk);
1422 	}
1423 }
1424 
1425 static void
1426 worklist_speedup(void)
1427 {
1428 	mtx_assert(&lk, MA_OWNED);
1429 	if (req_pending == 0) {
1430 		req_pending = 1;
1431 		wakeup(&req_pending);
1432 	}
1433 }
1434 
1435 static int
1436 softdep_speedup(void)
1437 {
1438 
1439 	worklist_speedup();
1440 	bd_speedup();
1441 	return speedup_syncer();
1442 }
1443 
1444 /*
1445  * Add an item to the end of the work queue.
1446  * This routine requires that the lock be held.
1447  * This is the only routine that adds items to the list.
1448  * The following routine is the only one that removes items
1449  * and does so in order from first to last.
1450  */
1451 
1452 #define	WK_HEAD		0x0001	/* Add to HEAD. */
1453 #define	WK_NODELAY	0x0002	/* Process immediately. */
1454 
1455 static void
1456 add_to_worklist(wk, flags)
1457 	struct worklist *wk;
1458 	int flags;
1459 {
1460 	struct ufsmount *ump;
1461 
1462 	mtx_assert(&lk, MA_OWNED);
1463 	ump = VFSTOUFS(wk->wk_mp);
1464 	if (wk->wk_state & ONWORKLIST)
1465 		panic("add_to_worklist: %s(0x%X) already on list",
1466 		    TYPENAME(wk->wk_type), wk->wk_state);
1467 	wk->wk_state |= ONWORKLIST;
1468 	if (ump->softdep_on_worklist == 0) {
1469 		LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list);
1470 		ump->softdep_worklist_tail = wk;
1471 	} else if (flags & WK_HEAD) {
1472 		LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list);
1473 	} else {
1474 		LIST_INSERT_AFTER(ump->softdep_worklist_tail, wk, wk_list);
1475 		ump->softdep_worklist_tail = wk;
1476 	}
1477 	ump->softdep_on_worklist += 1;
1478 	if (flags & WK_NODELAY)
1479 		worklist_speedup();
1480 }
1481 
1482 /*
1483  * Remove the item to be processed. If we are removing the last
1484  * item on the list, we need to recalculate the tail pointer.
1485  */
1486 static void
1487 remove_from_worklist(wk)
1488 	struct worklist *wk;
1489 {
1490 	struct ufsmount *ump;
1491 
1492 	ump = VFSTOUFS(wk->wk_mp);
1493 	WORKLIST_REMOVE(wk);
1494 	if (ump->softdep_worklist_tail == wk)
1495 		ump->softdep_worklist_tail =
1496 		    (struct worklist *)wk->wk_list.le_prev;
1497 	ump->softdep_on_worklist -= 1;
1498 }
1499 
1500 static void
1501 wake_worklist(wk)
1502 	struct worklist *wk;
1503 {
1504 	if (wk->wk_state & IOWAITING) {
1505 		wk->wk_state &= ~IOWAITING;
1506 		wakeup(wk);
1507 	}
1508 }
1509 
1510 static void
1511 wait_worklist(wk, wmesg)
1512 	struct worklist *wk;
1513 	char *wmesg;
1514 {
1515 
1516 	wk->wk_state |= IOWAITING;
1517 	msleep(wk, &lk, PVM, wmesg, 0);
1518 }
1519 
1520 /*
1521  * Process that runs once per second to handle items in the background queue.
1522  *
1523  * Note that we ensure that everything is done in the order in which they
1524  * appear in the queue. The code below depends on this property to ensure
1525  * that blocks of a file are freed before the inode itself is freed. This
1526  * ordering ensures that no new <vfsid, inum, lbn> triples will be generated
1527  * until all the old ones have been purged from the dependency lists.
1528  */
1529 int
1530 softdep_process_worklist(mp, full)
1531 	struct mount *mp;
1532 	int full;
1533 {
1534 	int cnt, matchcnt;
1535 	struct ufsmount *ump;
1536 	long starttime;
1537 
1538 	KASSERT(mp != NULL, ("softdep_process_worklist: NULL mp"));
1539 	/*
1540 	 * Record the process identifier of our caller so that we can give
1541 	 * this process preferential treatment in request_cleanup below.
1542 	 */
1543 	matchcnt = 0;
1544 	ump = VFSTOUFS(mp);
1545 	ACQUIRE_LOCK(&lk);
1546 	starttime = time_second;
1547 	softdep_process_journal(mp, NULL, full?MNT_WAIT:0);
1548 	while (ump->softdep_on_worklist > 0) {
1549 		if ((cnt = process_worklist_item(mp, 10, LK_NOWAIT)) == 0)
1550 			break;
1551 		else
1552 			matchcnt += cnt;
1553 		/*
1554 		 * If requested, try removing inode or removal dependencies.
1555 		 */
1556 		if (req_clear_inodedeps) {
1557 			clear_inodedeps();
1558 			req_clear_inodedeps -= 1;
1559 			wakeup_one(&proc_waiting);
1560 		}
1561 		if (req_clear_remove) {
1562 			clear_remove();
1563 			req_clear_remove -= 1;
1564 			wakeup_one(&proc_waiting);
1565 		}
1566 		/*
1567 		 * We do not generally want to stop for buffer space, but if
1568 		 * we are really being a buffer hog, we will stop and wait.
1569 		 */
1570 		if (should_yield()) {
1571 			FREE_LOCK(&lk);
1572 			kern_yield(PRI_USER);
1573 			bwillwrite();
1574 			ACQUIRE_LOCK(&lk);
1575 		}
1576 		/*
1577 		 * Never allow processing to run for more than one
1578 		 * second. Otherwise the other mountpoints may get
1579 		 * excessively backlogged.
1580 		 */
1581 		if (!full && starttime != time_second)
1582 			break;
1583 	}
1584 	if (full == 0)
1585 		journal_unsuspend(ump);
1586 	FREE_LOCK(&lk);
1587 	return (matchcnt);
1588 }
1589 
1590 /*
1591  * Process all removes associated with a vnode if we are running out of
1592  * journal space.  Any other process which attempts to flush these will
1593  * be unable as we have the vnodes locked.
1594  */
1595 static void
1596 process_removes(vp)
1597 	struct vnode *vp;
1598 {
1599 	struct inodedep *inodedep;
1600 	struct dirrem *dirrem;
1601 	struct mount *mp;
1602 	ino_t inum;
1603 
1604 	mtx_assert(&lk, MA_OWNED);
1605 
1606 	mp = vp->v_mount;
1607 	inum = VTOI(vp)->i_number;
1608 	for (;;) {
1609 top:
1610 		if (inodedep_lookup(mp, inum, 0, &inodedep) == 0)
1611 			return;
1612 		LIST_FOREACH(dirrem, &inodedep->id_dirremhd, dm_inonext) {
1613 			/*
1614 			 * If another thread is trying to lock this vnode
1615 			 * it will fail but we must wait for it to do so
1616 			 * before we can proceed.
1617 			 */
1618 			if (dirrem->dm_state & INPROGRESS) {
1619 				wait_worklist(&dirrem->dm_list, "pwrwait");
1620 				goto top;
1621 			}
1622 			if ((dirrem->dm_state & (COMPLETE | ONWORKLIST)) ==
1623 			    (COMPLETE | ONWORKLIST))
1624 				break;
1625 		}
1626 		if (dirrem == NULL)
1627 			return;
1628 		remove_from_worklist(&dirrem->dm_list);
1629 		FREE_LOCK(&lk);
1630 		if (vn_start_secondary_write(NULL, &mp, V_NOWAIT))
1631 			panic("process_removes: suspended filesystem");
1632 		handle_workitem_remove(dirrem, 0);
1633 		vn_finished_secondary_write(mp);
1634 		ACQUIRE_LOCK(&lk);
1635 	}
1636 }
1637 
1638 /*
1639  * Process all truncations associated with a vnode if we are running out
1640  * of journal space.  This is called when the vnode lock is already held
1641  * and no other process can clear the truncation.  This function returns
1642  * a value greater than zero if it did any work.
1643  */
1644 static void
1645 process_truncates(vp)
1646 	struct vnode *vp;
1647 {
1648 	struct inodedep *inodedep;
1649 	struct freeblks *freeblks;
1650 	struct mount *mp;
1651 	ino_t inum;
1652 	int cgwait;
1653 
1654 	mtx_assert(&lk, MA_OWNED);
1655 
1656 	mp = vp->v_mount;
1657 	inum = VTOI(vp)->i_number;
1658 	for (;;) {
1659 		if (inodedep_lookup(mp, inum, 0, &inodedep) == 0)
1660 			return;
1661 		cgwait = 0;
1662 		TAILQ_FOREACH(freeblks, &inodedep->id_freeblklst, fb_next) {
1663 			/* Journal entries not yet written.  */
1664 			if (!LIST_EMPTY(&freeblks->fb_jblkdephd)) {
1665 				jwait(&LIST_FIRST(
1666 				    &freeblks->fb_jblkdephd)->jb_list,
1667 				    MNT_WAIT);
1668 				break;
1669 			}
1670 			/* Another thread is executing this item. */
1671 			if (freeblks->fb_state & INPROGRESS) {
1672 				wait_worklist(&freeblks->fb_list, "ptrwait");
1673 				break;
1674 			}
1675 			/* Freeblks is waiting on a inode write. */
1676 			if ((freeblks->fb_state & COMPLETE) == 0) {
1677 				FREE_LOCK(&lk);
1678 				ffs_update(vp, 1);
1679 				ACQUIRE_LOCK(&lk);
1680 				break;
1681 			}
1682 			if ((freeblks->fb_state & (ALLCOMPLETE | ONWORKLIST)) ==
1683 			    (ALLCOMPLETE | ONWORKLIST)) {
1684 				remove_from_worklist(&freeblks->fb_list);
1685 				freeblks->fb_state |= INPROGRESS;
1686 				FREE_LOCK(&lk);
1687 				if (vn_start_secondary_write(NULL, &mp,
1688 				    V_NOWAIT))
1689 					panic("process_truncates: "
1690 					    "suspended filesystem");
1691 				handle_workitem_freeblocks(freeblks, 0);
1692 				vn_finished_secondary_write(mp);
1693 				ACQUIRE_LOCK(&lk);
1694 				break;
1695 			}
1696 			if (freeblks->fb_cgwait)
1697 				cgwait++;
1698 		}
1699 		if (cgwait) {
1700 			FREE_LOCK(&lk);
1701 			sync_cgs(mp, MNT_WAIT);
1702 			ffs_sync_snap(mp, MNT_WAIT);
1703 			ACQUIRE_LOCK(&lk);
1704 			continue;
1705 		}
1706 		if (freeblks == NULL)
1707 			break;
1708 	}
1709 	return;
1710 }
1711 
1712 /*
1713  * Process one item on the worklist.
1714  */
1715 static int
1716 process_worklist_item(mp, target, flags)
1717 	struct mount *mp;
1718 	int target;
1719 	int flags;
1720 {
1721 	struct worklist sintenel;
1722 	struct worklist *wk;
1723 	struct ufsmount *ump;
1724 	int matchcnt;
1725 	int error;
1726 
1727 	mtx_assert(&lk, MA_OWNED);
1728 	KASSERT(mp != NULL, ("process_worklist_item: NULL mp"));
1729 	/*
1730 	 * If we are being called because of a process doing a
1731 	 * copy-on-write, then it is not safe to write as we may
1732 	 * recurse into the copy-on-write routine.
1733 	 */
1734 	if (curthread->td_pflags & TDP_COWINPROGRESS)
1735 		return (-1);
1736 	PHOLD(curproc);	/* Don't let the stack go away. */
1737 	ump = VFSTOUFS(mp);
1738 	matchcnt = 0;
1739 	sintenel.wk_mp = NULL;
1740 	sintenel.wk_type = D_SENTINAL;
1741 	LIST_INSERT_HEAD(&ump->softdep_workitem_pending, &sintenel, wk_list);
1742 	for (wk = LIST_NEXT(&sintenel, wk_list); wk != NULL;
1743 	    wk = LIST_NEXT(&sintenel, wk_list)) {
1744 		if (wk->wk_type == D_SENTINAL) {
1745 			LIST_REMOVE(&sintenel, wk_list);
1746 			LIST_INSERT_AFTER(wk, &sintenel, wk_list);
1747 			continue;
1748 		}
1749 		if (wk->wk_state & INPROGRESS)
1750 			panic("process_worklist_item: %p already in progress.",
1751 			    wk);
1752 		wk->wk_state |= INPROGRESS;
1753 		remove_from_worklist(wk);
1754 		FREE_LOCK(&lk);
1755 		if (vn_start_secondary_write(NULL, &mp, V_NOWAIT))
1756 			panic("process_worklist_item: suspended filesystem");
1757 		switch (wk->wk_type) {
1758 		case D_DIRREM:
1759 			/* removal of a directory entry */
1760 			error = handle_workitem_remove(WK_DIRREM(wk), flags);
1761 			break;
1762 
1763 		case D_FREEBLKS:
1764 			/* releasing blocks and/or fragments from a file */
1765 			error = handle_workitem_freeblocks(WK_FREEBLKS(wk),
1766 			    flags);
1767 			break;
1768 
1769 		case D_FREEFRAG:
1770 			/* releasing a fragment when replaced as a file grows */
1771 			handle_workitem_freefrag(WK_FREEFRAG(wk));
1772 			error = 0;
1773 			break;
1774 
1775 		case D_FREEFILE:
1776 			/* releasing an inode when its link count drops to 0 */
1777 			handle_workitem_freefile(WK_FREEFILE(wk));
1778 			error = 0;
1779 			break;
1780 
1781 		default:
1782 			panic("%s_process_worklist: Unknown type %s",
1783 			    "softdep", TYPENAME(wk->wk_type));
1784 			/* NOTREACHED */
1785 		}
1786 		vn_finished_secondary_write(mp);
1787 		ACQUIRE_LOCK(&lk);
1788 		if (error == 0) {
1789 			if (++matchcnt == target)
1790 				break;
1791 			continue;
1792 		}
1793 		/*
1794 		 * We have to retry the worklist item later.  Wake up any
1795 		 * waiters who may be able to complete it immediately and
1796 		 * add the item back to the head so we don't try to execute
1797 		 * it again.
1798 		 */
1799 		wk->wk_state &= ~INPROGRESS;
1800 		wake_worklist(wk);
1801 		add_to_worklist(wk, WK_HEAD);
1802 	}
1803 	LIST_REMOVE(&sintenel, wk_list);
1804 	/* Sentinal could've become the tail from remove_from_worklist. */
1805 	if (ump->softdep_worklist_tail == &sintenel)
1806 		ump->softdep_worklist_tail =
1807 		    (struct worklist *)sintenel.wk_list.le_prev;
1808 	PRELE(curproc);
1809 	return (matchcnt);
1810 }
1811 
1812 /*
1813  * Move dependencies from one buffer to another.
1814  */
1815 int
1816 softdep_move_dependencies(oldbp, newbp)
1817 	struct buf *oldbp;
1818 	struct buf *newbp;
1819 {
1820 	struct worklist *wk, *wktail;
1821 	int dirty;
1822 
1823 	dirty = 0;
1824 	wktail = NULL;
1825 	ACQUIRE_LOCK(&lk);
1826 	while ((wk = LIST_FIRST(&oldbp->b_dep)) != NULL) {
1827 		LIST_REMOVE(wk, wk_list);
1828 		if (wk->wk_type == D_BMSAFEMAP &&
1829 		    bmsafemap_backgroundwrite(WK_BMSAFEMAP(wk), newbp))
1830 			dirty = 1;
1831 		if (wktail == 0)
1832 			LIST_INSERT_HEAD(&newbp->b_dep, wk, wk_list);
1833 		else
1834 			LIST_INSERT_AFTER(wktail, wk, wk_list);
1835 		wktail = wk;
1836 	}
1837 	FREE_LOCK(&lk);
1838 
1839 	return (dirty);
1840 }
1841 
1842 /*
1843  * Purge the work list of all items associated with a particular mount point.
1844  */
1845 int
1846 softdep_flushworklist(oldmnt, countp, td)
1847 	struct mount *oldmnt;
1848 	int *countp;
1849 	struct thread *td;
1850 {
1851 	struct vnode *devvp;
1852 	int count, error = 0;
1853 	struct ufsmount *ump;
1854 
1855 	/*
1856 	 * Alternately flush the block device associated with the mount
1857 	 * point and process any dependencies that the flushing
1858 	 * creates. We continue until no more worklist dependencies
1859 	 * are found.
1860 	 */
1861 	*countp = 0;
1862 	ump = VFSTOUFS(oldmnt);
1863 	devvp = ump->um_devvp;
1864 	while ((count = softdep_process_worklist(oldmnt, 1)) > 0) {
1865 		*countp += count;
1866 		vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
1867 		error = VOP_FSYNC(devvp, MNT_WAIT, td);
1868 		VOP_UNLOCK(devvp, 0);
1869 		if (error)
1870 			break;
1871 	}
1872 	return (error);
1873 }
1874 
1875 int
1876 softdep_waitidle(struct mount *mp)
1877 {
1878 	struct ufsmount *ump;
1879 	int error;
1880 	int i;
1881 
1882 	ump = VFSTOUFS(mp);
1883 	ACQUIRE_LOCK(&lk);
1884 	for (i = 0; i < 10 && ump->softdep_deps; i++) {
1885 		ump->softdep_req = 1;
1886 		if (ump->softdep_on_worklist)
1887 			panic("softdep_waitidle: work added after flush.");
1888 		msleep(&ump->softdep_deps, &lk, PVM, "softdeps", 1);
1889 	}
1890 	ump->softdep_req = 0;
1891 	FREE_LOCK(&lk);
1892 	error = 0;
1893 	if (i == 10) {
1894 		error = EBUSY;
1895 		printf("softdep_waitidle: Failed to flush worklist for %p\n",
1896 		    mp);
1897 	}
1898 
1899 	return (error);
1900 }
1901 
1902 /*
1903  * Flush all vnodes and worklist items associated with a specified mount point.
1904  */
1905 int
1906 softdep_flushfiles(oldmnt, flags, td)
1907 	struct mount *oldmnt;
1908 	int flags;
1909 	struct thread *td;
1910 {
1911 #ifdef QUOTA
1912 	struct ufsmount *ump;
1913 	int i;
1914 #endif
1915 	int error, early, depcount, loopcnt, retry_flush_count, retry;
1916 	int morework;
1917 
1918 	loopcnt = 10;
1919 	retry_flush_count = 3;
1920 retry_flush:
1921 	error = 0;
1922 
1923 	/*
1924 	 * Alternately flush the vnodes associated with the mount
1925 	 * point and process any dependencies that the flushing
1926 	 * creates. In theory, this loop can happen at most twice,
1927 	 * but we give it a few extra just to be sure.
1928 	 */
1929 	for (; loopcnt > 0; loopcnt--) {
1930 		/*
1931 		 * Do another flush in case any vnodes were brought in
1932 		 * as part of the cleanup operations.
1933 		 */
1934 		early = retry_flush_count == 1 || (oldmnt->mnt_kern_flag &
1935 		    MNTK_UNMOUNT) == 0 ? 0 : EARLYFLUSH;
1936 		if ((error = ffs_flushfiles(oldmnt, flags | early, td)) != 0)
1937 			break;
1938 		if ((error = softdep_flushworklist(oldmnt, &depcount, td)) != 0 ||
1939 		    depcount == 0)
1940 			break;
1941 	}
1942 	/*
1943 	 * If we are unmounting then it is an error to fail. If we
1944 	 * are simply trying to downgrade to read-only, then filesystem
1945 	 * activity can keep us busy forever, so we just fail with EBUSY.
1946 	 */
1947 	if (loopcnt == 0) {
1948 		if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT)
1949 			panic("softdep_flushfiles: looping");
1950 		error = EBUSY;
1951 	}
1952 	if (!error)
1953 		error = softdep_waitidle(oldmnt);
1954 	if (!error) {
1955 		if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT) {
1956 			retry = 0;
1957 			MNT_ILOCK(oldmnt);
1958 			KASSERT((oldmnt->mnt_kern_flag & MNTK_NOINSMNTQ) != 0,
1959 			    ("softdep_flushfiles: !MNTK_NOINSMNTQ"));
1960 			morework = oldmnt->mnt_nvnodelistsize > 0;
1961 #ifdef QUOTA
1962 			ump = VFSTOUFS(oldmnt);
1963 			UFS_LOCK(ump);
1964 			for (i = 0; i < MAXQUOTAS; i++) {
1965 				if (ump->um_quotas[i] != NULLVP)
1966 					morework = 1;
1967 			}
1968 			UFS_UNLOCK(ump);
1969 #endif
1970 			if (morework) {
1971 				if (--retry_flush_count > 0) {
1972 					retry = 1;
1973 					loopcnt = 3;
1974 				} else
1975 					error = EBUSY;
1976 			}
1977 			MNT_IUNLOCK(oldmnt);
1978 			if (retry)
1979 				goto retry_flush;
1980 		}
1981 	}
1982 	return (error);
1983 }
1984 
1985 /*
1986  * Structure hashing.
1987  *
1988  * There are three types of structures that can be looked up:
1989  *	1) pagedep structures identified by mount point, inode number,
1990  *	   and logical block.
1991  *	2) inodedep structures identified by mount point and inode number.
1992  *	3) newblk structures identified by mount point and
1993  *	   physical block number.
1994  *
1995  * The "pagedep" and "inodedep" dependency structures are hashed
1996  * separately from the file blocks and inodes to which they correspond.
1997  * This separation helps when the in-memory copy of an inode or
1998  * file block must be replaced. It also obviates the need to access
1999  * an inode or file page when simply updating (or de-allocating)
2000  * dependency structures. Lookup of newblk structures is needed to
2001  * find newly allocated blocks when trying to associate them with
2002  * their allocdirect or allocindir structure.
2003  *
2004  * The lookup routines optionally create and hash a new instance when
2005  * an existing entry is not found.
2006  */
2007 #define DEPALLOC	0x0001	/* allocate structure if lookup fails */
2008 #define NODELAY		0x0002	/* cannot do background work */
2009 
2010 /*
2011  * Structures and routines associated with pagedep caching.
2012  */
2013 LIST_HEAD(pagedep_hashhead, pagedep) *pagedep_hashtbl;
2014 u_long	pagedep_hash;		/* size of hash table - 1 */
2015 #define	PAGEDEP_HASH(mp, inum, lbn) \
2016 	(&pagedep_hashtbl[((((register_t)(mp)) >> 13) + (inum) + (lbn)) & \
2017 	    pagedep_hash])
2018 
2019 static int
2020 pagedep_find(pagedephd, ino, lbn, mp, flags, pagedeppp)
2021 	struct pagedep_hashhead *pagedephd;
2022 	ino_t ino;
2023 	ufs_lbn_t lbn;
2024 	struct mount *mp;
2025 	int flags;
2026 	struct pagedep **pagedeppp;
2027 {
2028 	struct pagedep *pagedep;
2029 
2030 	LIST_FOREACH(pagedep, pagedephd, pd_hash) {
2031 		if (ino == pagedep->pd_ino && lbn == pagedep->pd_lbn &&
2032 		    mp == pagedep->pd_list.wk_mp) {
2033 			*pagedeppp = pagedep;
2034 			return (1);
2035 		}
2036 	}
2037 	*pagedeppp = NULL;
2038 	return (0);
2039 }
2040 /*
2041  * Look up a pagedep. Return 1 if found, 0 otherwise.
2042  * If not found, allocate if DEPALLOC flag is passed.
2043  * Found or allocated entry is returned in pagedeppp.
2044  * This routine must be called with splbio interrupts blocked.
2045  */
2046 static int
2047 pagedep_lookup(mp, bp, ino, lbn, flags, pagedeppp)
2048 	struct mount *mp;
2049 	struct buf *bp;
2050 	ino_t ino;
2051 	ufs_lbn_t lbn;
2052 	int flags;
2053 	struct pagedep **pagedeppp;
2054 {
2055 	struct pagedep *pagedep;
2056 	struct pagedep_hashhead *pagedephd;
2057 	struct worklist *wk;
2058 	int ret;
2059 	int i;
2060 
2061 	mtx_assert(&lk, MA_OWNED);
2062 	if (bp) {
2063 		LIST_FOREACH(wk, &bp->b_dep, wk_list) {
2064 			if (wk->wk_type == D_PAGEDEP) {
2065 				*pagedeppp = WK_PAGEDEP(wk);
2066 				return (1);
2067 			}
2068 		}
2069 	}
2070 	pagedephd = PAGEDEP_HASH(mp, ino, lbn);
2071 	ret = pagedep_find(pagedephd, ino, lbn, mp, flags, pagedeppp);
2072 	if (ret) {
2073 		if (((*pagedeppp)->pd_state & ONWORKLIST) == 0 && bp)
2074 			WORKLIST_INSERT(&bp->b_dep, &(*pagedeppp)->pd_list);
2075 		return (1);
2076 	}
2077 	if ((flags & DEPALLOC) == 0)
2078 		return (0);
2079 	FREE_LOCK(&lk);
2080 	pagedep = malloc(sizeof(struct pagedep),
2081 	    M_PAGEDEP, M_SOFTDEP_FLAGS|M_ZERO);
2082 	workitem_alloc(&pagedep->pd_list, D_PAGEDEP, mp);
2083 	ACQUIRE_LOCK(&lk);
2084 	ret = pagedep_find(pagedephd, ino, lbn, mp, flags, pagedeppp);
2085 	if (*pagedeppp) {
2086 		/*
2087 		 * This should never happen since we only create pagedeps
2088 		 * with the vnode lock held.  Could be an assert.
2089 		 */
2090 		WORKITEM_FREE(pagedep, D_PAGEDEP);
2091 		return (ret);
2092 	}
2093 	pagedep->pd_ino = ino;
2094 	pagedep->pd_lbn = lbn;
2095 	LIST_INIT(&pagedep->pd_dirremhd);
2096 	LIST_INIT(&pagedep->pd_pendinghd);
2097 	for (i = 0; i < DAHASHSZ; i++)
2098 		LIST_INIT(&pagedep->pd_diraddhd[i]);
2099 	LIST_INSERT_HEAD(pagedephd, pagedep, pd_hash);
2100 	WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list);
2101 	*pagedeppp = pagedep;
2102 	return (0);
2103 }
2104 
2105 /*
2106  * Structures and routines associated with inodedep caching.
2107  */
2108 LIST_HEAD(inodedep_hashhead, inodedep) *inodedep_hashtbl;
2109 static u_long	inodedep_hash;	/* size of hash table - 1 */
2110 #define	INODEDEP_HASH(fs, inum) \
2111       (&inodedep_hashtbl[((((register_t)(fs)) >> 13) + (inum)) & inodedep_hash])
2112 
2113 static int
2114 inodedep_find(inodedephd, fs, inum, inodedeppp)
2115 	struct inodedep_hashhead *inodedephd;
2116 	struct fs *fs;
2117 	ino_t inum;
2118 	struct inodedep **inodedeppp;
2119 {
2120 	struct inodedep *inodedep;
2121 
2122 	LIST_FOREACH(inodedep, inodedephd, id_hash)
2123 		if (inum == inodedep->id_ino && fs == inodedep->id_fs)
2124 			break;
2125 	if (inodedep) {
2126 		*inodedeppp = inodedep;
2127 		return (1);
2128 	}
2129 	*inodedeppp = NULL;
2130 
2131 	return (0);
2132 }
2133 /*
2134  * Look up an inodedep. Return 1 if found, 0 if not found.
2135  * If not found, allocate if DEPALLOC flag is passed.
2136  * Found or allocated entry is returned in inodedeppp.
2137  * This routine must be called with splbio interrupts blocked.
2138  */
2139 static int
2140 inodedep_lookup(mp, inum, flags, inodedeppp)
2141 	struct mount *mp;
2142 	ino_t inum;
2143 	int flags;
2144 	struct inodedep **inodedeppp;
2145 {
2146 	struct inodedep *inodedep;
2147 	struct inodedep_hashhead *inodedephd;
2148 	struct fs *fs;
2149 
2150 	mtx_assert(&lk, MA_OWNED);
2151 	fs = VFSTOUFS(mp)->um_fs;
2152 	inodedephd = INODEDEP_HASH(fs, inum);
2153 
2154 	if (inodedep_find(inodedephd, fs, inum, inodedeppp))
2155 		return (1);
2156 	if ((flags & DEPALLOC) == 0)
2157 		return (0);
2158 	/*
2159 	 * If we are over our limit, try to improve the situation.
2160 	 */
2161 	if (dep_current[D_INODEDEP] > max_softdeps && (flags & NODELAY) == 0)
2162 		request_cleanup(mp, FLUSH_INODES);
2163 	FREE_LOCK(&lk);
2164 	inodedep = malloc(sizeof(struct inodedep),
2165 		M_INODEDEP, M_SOFTDEP_FLAGS);
2166 	workitem_alloc(&inodedep->id_list, D_INODEDEP, mp);
2167 	ACQUIRE_LOCK(&lk);
2168 	if (inodedep_find(inodedephd, fs, inum, inodedeppp)) {
2169 		WORKITEM_FREE(inodedep, D_INODEDEP);
2170 		return (1);
2171 	}
2172 	inodedep->id_fs = fs;
2173 	inodedep->id_ino = inum;
2174 	inodedep->id_state = ALLCOMPLETE;
2175 	inodedep->id_nlinkdelta = 0;
2176 	inodedep->id_savedino1 = NULL;
2177 	inodedep->id_savedsize = -1;
2178 	inodedep->id_savedextsize = -1;
2179 	inodedep->id_savednlink = -1;
2180 	inodedep->id_bmsafemap = NULL;
2181 	inodedep->id_mkdiradd = NULL;
2182 	LIST_INIT(&inodedep->id_dirremhd);
2183 	LIST_INIT(&inodedep->id_pendinghd);
2184 	LIST_INIT(&inodedep->id_inowait);
2185 	LIST_INIT(&inodedep->id_bufwait);
2186 	TAILQ_INIT(&inodedep->id_inoreflst);
2187 	TAILQ_INIT(&inodedep->id_inoupdt);
2188 	TAILQ_INIT(&inodedep->id_newinoupdt);
2189 	TAILQ_INIT(&inodedep->id_extupdt);
2190 	TAILQ_INIT(&inodedep->id_newextupdt);
2191 	TAILQ_INIT(&inodedep->id_freeblklst);
2192 	LIST_INSERT_HEAD(inodedephd, inodedep, id_hash);
2193 	*inodedeppp = inodedep;
2194 	return (0);
2195 }
2196 
2197 /*
2198  * Structures and routines associated with newblk caching.
2199  */
2200 LIST_HEAD(newblk_hashhead, newblk) *newblk_hashtbl;
2201 u_long	newblk_hash;		/* size of hash table - 1 */
2202 #define	NEWBLK_HASH(fs, inum) \
2203 	(&newblk_hashtbl[((((register_t)(fs)) >> 13) + (inum)) & newblk_hash])
2204 
2205 static int
2206 newblk_find(newblkhd, mp, newblkno, flags, newblkpp)
2207 	struct newblk_hashhead *newblkhd;
2208 	struct mount *mp;
2209 	ufs2_daddr_t newblkno;
2210 	int flags;
2211 	struct newblk **newblkpp;
2212 {
2213 	struct newblk *newblk;
2214 
2215 	LIST_FOREACH(newblk, newblkhd, nb_hash) {
2216 		if (newblkno != newblk->nb_newblkno)
2217 			continue;
2218 		if (mp != newblk->nb_list.wk_mp)
2219 			continue;
2220 		/*
2221 		 * If we're creating a new dependency don't match those that
2222 		 * have already been converted to allocdirects.  This is for
2223 		 * a frag extend.
2224 		 */
2225 		if ((flags & DEPALLOC) && newblk->nb_list.wk_type != D_NEWBLK)
2226 			continue;
2227 		break;
2228 	}
2229 	if (newblk) {
2230 		*newblkpp = newblk;
2231 		return (1);
2232 	}
2233 	*newblkpp = NULL;
2234 	return (0);
2235 }
2236 
2237 /*
2238  * Look up a newblk. Return 1 if found, 0 if not found.
2239  * If not found, allocate if DEPALLOC flag is passed.
2240  * Found or allocated entry is returned in newblkpp.
2241  */
2242 static int
2243 newblk_lookup(mp, newblkno, flags, newblkpp)
2244 	struct mount *mp;
2245 	ufs2_daddr_t newblkno;
2246 	int flags;
2247 	struct newblk **newblkpp;
2248 {
2249 	struct newblk *newblk;
2250 	struct newblk_hashhead *newblkhd;
2251 
2252 	newblkhd = NEWBLK_HASH(VFSTOUFS(mp)->um_fs, newblkno);
2253 	if (newblk_find(newblkhd, mp, newblkno, flags, newblkpp))
2254 		return (1);
2255 	if ((flags & DEPALLOC) == 0)
2256 		return (0);
2257 	FREE_LOCK(&lk);
2258 	newblk = malloc(sizeof(union allblk), M_NEWBLK,
2259 	    M_SOFTDEP_FLAGS | M_ZERO);
2260 	workitem_alloc(&newblk->nb_list, D_NEWBLK, mp);
2261 	ACQUIRE_LOCK(&lk);
2262 	if (newblk_find(newblkhd, mp, newblkno, flags, newblkpp)) {
2263 		WORKITEM_FREE(newblk, D_NEWBLK);
2264 		return (1);
2265 	}
2266 	newblk->nb_freefrag = NULL;
2267 	LIST_INIT(&newblk->nb_indirdeps);
2268 	LIST_INIT(&newblk->nb_newdirblk);
2269 	LIST_INIT(&newblk->nb_jwork);
2270 	newblk->nb_state = ATTACHED;
2271 	newblk->nb_newblkno = newblkno;
2272 	LIST_INSERT_HEAD(newblkhd, newblk, nb_hash);
2273 	*newblkpp = newblk;
2274 	return (0);
2275 }
2276 
2277 /*
2278  * Structures and routines associated with freed indirect block caching.
2279  */
2280 struct freeworklst *indir_hashtbl;
2281 u_long	indir_hash;		/* size of hash table - 1 */
2282 #define	INDIR_HASH(mp, blkno) \
2283 	(&indir_hashtbl[((((register_t)(mp)) >> 13) + (blkno)) & indir_hash])
2284 
2285 /*
2286  * Lookup an indirect block in the indir hash table.  The freework is
2287  * removed and potentially freed.  The caller must do a blocking journal
2288  * write before writing to the blkno.
2289  */
2290 static int
2291 indirblk_lookup(mp, blkno)
2292 	struct mount *mp;
2293 	ufs2_daddr_t blkno;
2294 {
2295 	struct freework *freework;
2296 	struct freeworklst *wkhd;
2297 
2298 	wkhd = INDIR_HASH(mp, blkno);
2299 	TAILQ_FOREACH(freework, wkhd, fw_next) {
2300 		if (freework->fw_blkno != blkno)
2301 			continue;
2302 		if (freework->fw_list.wk_mp != mp)
2303 			continue;
2304 		indirblk_remove(freework);
2305 		return (1);
2306 	}
2307 	return (0);
2308 }
2309 
2310 /*
2311  * Insert an indirect block represented by freework into the indirblk
2312  * hash table so that it may prevent the block from being re-used prior
2313  * to the journal being written.
2314  */
2315 static void
2316 indirblk_insert(freework)
2317 	struct freework *freework;
2318 {
2319 	struct jblocks *jblocks;
2320 	struct jseg *jseg;
2321 
2322 	jblocks = VFSTOUFS(freework->fw_list.wk_mp)->softdep_jblocks;
2323 	jseg = TAILQ_LAST(&jblocks->jb_segs, jseglst);
2324 	if (jseg == NULL)
2325 		return;
2326 
2327 	LIST_INSERT_HEAD(&jseg->js_indirs, freework, fw_segs);
2328 	TAILQ_INSERT_HEAD(INDIR_HASH(freework->fw_list.wk_mp,
2329 	    freework->fw_blkno), freework, fw_next);
2330 	freework->fw_state &= ~DEPCOMPLETE;
2331 }
2332 
2333 static void
2334 indirblk_remove(freework)
2335 	struct freework *freework;
2336 {
2337 
2338 	LIST_REMOVE(freework, fw_segs);
2339 	TAILQ_REMOVE(INDIR_HASH(freework->fw_list.wk_mp,
2340 	    freework->fw_blkno), freework, fw_next);
2341 	freework->fw_state |= DEPCOMPLETE;
2342 	if ((freework->fw_state & ALLCOMPLETE) == ALLCOMPLETE)
2343 		WORKITEM_FREE(freework, D_FREEWORK);
2344 }
2345 
2346 /*
2347  * Executed during filesystem system initialization before
2348  * mounting any filesystems.
2349  */
2350 void
2351 softdep_initialize()
2352 {
2353 	int i;
2354 
2355 	LIST_INIT(&mkdirlisthd);
2356 	max_softdeps = desiredvnodes * 4;
2357 	pagedep_hashtbl = hashinit(desiredvnodes / 5, M_PAGEDEP, &pagedep_hash);
2358 	inodedep_hashtbl = hashinit(desiredvnodes, M_INODEDEP, &inodedep_hash);
2359 	newblk_hashtbl = hashinit(desiredvnodes / 5,  M_NEWBLK, &newblk_hash);
2360 	bmsafemap_hashtbl = hashinit(1024, M_BMSAFEMAP, &bmsafemap_hash);
2361 	i = 1 << (ffs(desiredvnodes / 10) - 1);
2362 	indir_hashtbl = malloc(i * sizeof(indir_hashtbl[0]), M_FREEWORK,
2363 	    M_WAITOK);
2364 	indir_hash = i - 1;
2365 	for (i = 0; i <= indir_hash; i++)
2366 		TAILQ_INIT(&indir_hashtbl[i]);
2367 
2368 	/* initialise bioops hack */
2369 	bioops.io_start = softdep_disk_io_initiation;
2370 	bioops.io_complete = softdep_disk_write_complete;
2371 	bioops.io_deallocate = softdep_deallocate_dependencies;
2372 	bioops.io_countdeps = softdep_count_dependencies;
2373 
2374 	/* Initialize the callout with an mtx. */
2375 	callout_init_mtx(&softdep_callout, &lk, 0);
2376 }
2377 
2378 /*
2379  * Executed after all filesystems have been unmounted during
2380  * filesystem module unload.
2381  */
2382 void
2383 softdep_uninitialize()
2384 {
2385 
2386 	callout_drain(&softdep_callout);
2387 	hashdestroy(pagedep_hashtbl, M_PAGEDEP, pagedep_hash);
2388 	hashdestroy(inodedep_hashtbl, M_INODEDEP, inodedep_hash);
2389 	hashdestroy(newblk_hashtbl, M_NEWBLK, newblk_hash);
2390 	hashdestroy(bmsafemap_hashtbl, M_BMSAFEMAP, bmsafemap_hash);
2391 	free(indir_hashtbl, M_FREEWORK);
2392 }
2393 
2394 /*
2395  * Called at mount time to notify the dependency code that a
2396  * filesystem wishes to use it.
2397  */
2398 int
2399 softdep_mount(devvp, mp, fs, cred)
2400 	struct vnode *devvp;
2401 	struct mount *mp;
2402 	struct fs *fs;
2403 	struct ucred *cred;
2404 {
2405 	struct csum_total cstotal;
2406 	struct ufsmount *ump;
2407 	struct cg *cgp;
2408 	struct buf *bp;
2409 	int error, cyl;
2410 
2411 	MNT_ILOCK(mp);
2412 	mp->mnt_flag = (mp->mnt_flag & ~MNT_ASYNC) | MNT_SOFTDEP;
2413 	if ((mp->mnt_kern_flag & MNTK_SOFTDEP) == 0) {
2414 		mp->mnt_kern_flag = (mp->mnt_kern_flag & ~MNTK_ASYNC) |
2415 			MNTK_SOFTDEP | MNTK_NOASYNC;
2416 	}
2417 	MNT_IUNLOCK(mp);
2418 	ump = VFSTOUFS(mp);
2419 	LIST_INIT(&ump->softdep_workitem_pending);
2420 	LIST_INIT(&ump->softdep_journal_pending);
2421 	TAILQ_INIT(&ump->softdep_unlinked);
2422 	LIST_INIT(&ump->softdep_dirtycg);
2423 	ump->softdep_worklist_tail = NULL;
2424 	ump->softdep_on_worklist = 0;
2425 	ump->softdep_deps = 0;
2426 	if ((fs->fs_flags & FS_SUJ) &&
2427 	    (error = journal_mount(mp, fs, cred)) != 0) {
2428 		printf("Failed to start journal: %d\n", error);
2429 		return (error);
2430 	}
2431 	/*
2432 	 * When doing soft updates, the counters in the
2433 	 * superblock may have gotten out of sync. Recomputation
2434 	 * can take a long time and can be deferred for background
2435 	 * fsck.  However, the old behavior of scanning the cylinder
2436 	 * groups and recalculating them at mount time is available
2437 	 * by setting vfs.ffs.compute_summary_at_mount to one.
2438 	 */
2439 	if (compute_summary_at_mount == 0 || fs->fs_clean != 0)
2440 		return (0);
2441 	bzero(&cstotal, sizeof cstotal);
2442 	for (cyl = 0; cyl < fs->fs_ncg; cyl++) {
2443 		if ((error = bread(devvp, fsbtodb(fs, cgtod(fs, cyl)),
2444 		    fs->fs_cgsize, cred, &bp)) != 0) {
2445 			brelse(bp);
2446 			return (error);
2447 		}
2448 		cgp = (struct cg *)bp->b_data;
2449 		cstotal.cs_nffree += cgp->cg_cs.cs_nffree;
2450 		cstotal.cs_nbfree += cgp->cg_cs.cs_nbfree;
2451 		cstotal.cs_nifree += cgp->cg_cs.cs_nifree;
2452 		cstotal.cs_ndir += cgp->cg_cs.cs_ndir;
2453 		fs->fs_cs(fs, cyl) = cgp->cg_cs;
2454 		brelse(bp);
2455 	}
2456 #ifdef DEBUG
2457 	if (bcmp(&cstotal, &fs->fs_cstotal, sizeof cstotal))
2458 		printf("%s: superblock summary recomputed\n", fs->fs_fsmnt);
2459 #endif
2460 	bcopy(&cstotal, &fs->fs_cstotal, sizeof cstotal);
2461 	return (0);
2462 }
2463 
2464 void
2465 softdep_unmount(mp)
2466 	struct mount *mp;
2467 {
2468 
2469 	MNT_ILOCK(mp);
2470 	mp->mnt_flag &= ~MNT_SOFTDEP;
2471 	if (MOUNTEDSUJ(mp) == 0) {
2472 		MNT_IUNLOCK(mp);
2473 		return;
2474 	}
2475 	mp->mnt_flag &= ~MNT_SUJ;
2476 	MNT_IUNLOCK(mp);
2477 	journal_unmount(mp);
2478 }
2479 
2480 static struct jblocks *
2481 jblocks_create(void)
2482 {
2483 	struct jblocks *jblocks;
2484 
2485 	jblocks = malloc(sizeof(*jblocks), M_JBLOCKS, M_WAITOK | M_ZERO);
2486 	TAILQ_INIT(&jblocks->jb_segs);
2487 	jblocks->jb_avail = 10;
2488 	jblocks->jb_extent = malloc(sizeof(struct jextent) * jblocks->jb_avail,
2489 	    M_JBLOCKS, M_WAITOK | M_ZERO);
2490 
2491 	return (jblocks);
2492 }
2493 
2494 static ufs2_daddr_t
2495 jblocks_alloc(jblocks, bytes, actual)
2496 	struct jblocks *jblocks;
2497 	int bytes;
2498 	int *actual;
2499 {
2500 	ufs2_daddr_t daddr;
2501 	struct jextent *jext;
2502 	int freecnt;
2503 	int blocks;
2504 
2505 	blocks = bytes / DEV_BSIZE;
2506 	jext = &jblocks->jb_extent[jblocks->jb_head];
2507 	freecnt = jext->je_blocks - jblocks->jb_off;
2508 	if (freecnt == 0) {
2509 		jblocks->jb_off = 0;
2510 		if (++jblocks->jb_head > jblocks->jb_used)
2511 			jblocks->jb_head = 0;
2512 		jext = &jblocks->jb_extent[jblocks->jb_head];
2513 		freecnt = jext->je_blocks;
2514 	}
2515 	if (freecnt > blocks)
2516 		freecnt = blocks;
2517 	*actual = freecnt * DEV_BSIZE;
2518 	daddr = jext->je_daddr + jblocks->jb_off;
2519 	jblocks->jb_off += freecnt;
2520 	jblocks->jb_free -= freecnt;
2521 
2522 	return (daddr);
2523 }
2524 
2525 static void
2526 jblocks_free(jblocks, mp, bytes)
2527 	struct jblocks *jblocks;
2528 	struct mount *mp;
2529 	int bytes;
2530 {
2531 
2532 	jblocks->jb_free += bytes / DEV_BSIZE;
2533 	if (jblocks->jb_suspended)
2534 		worklist_speedup();
2535 	wakeup(jblocks);
2536 }
2537 
2538 static void
2539 jblocks_destroy(jblocks)
2540 	struct jblocks *jblocks;
2541 {
2542 
2543 	if (jblocks->jb_extent)
2544 		free(jblocks->jb_extent, M_JBLOCKS);
2545 	free(jblocks, M_JBLOCKS);
2546 }
2547 
2548 static void
2549 jblocks_add(jblocks, daddr, blocks)
2550 	struct jblocks *jblocks;
2551 	ufs2_daddr_t daddr;
2552 	int blocks;
2553 {
2554 	struct jextent *jext;
2555 
2556 	jblocks->jb_blocks += blocks;
2557 	jblocks->jb_free += blocks;
2558 	jext = &jblocks->jb_extent[jblocks->jb_used];
2559 	/* Adding the first block. */
2560 	if (jext->je_daddr == 0) {
2561 		jext->je_daddr = daddr;
2562 		jext->je_blocks = blocks;
2563 		return;
2564 	}
2565 	/* Extending the last extent. */
2566 	if (jext->je_daddr + jext->je_blocks == daddr) {
2567 		jext->je_blocks += blocks;
2568 		return;
2569 	}
2570 	/* Adding a new extent. */
2571 	if (++jblocks->jb_used == jblocks->jb_avail) {
2572 		jblocks->jb_avail *= 2;
2573 		jext = malloc(sizeof(struct jextent) * jblocks->jb_avail,
2574 		    M_JBLOCKS, M_WAITOK | M_ZERO);
2575 		memcpy(jext, jblocks->jb_extent,
2576 		    sizeof(struct jextent) * jblocks->jb_used);
2577 		free(jblocks->jb_extent, M_JBLOCKS);
2578 		jblocks->jb_extent = jext;
2579 	}
2580 	jext = &jblocks->jb_extent[jblocks->jb_used];
2581 	jext->je_daddr = daddr;
2582 	jext->je_blocks = blocks;
2583 	return;
2584 }
2585 
2586 int
2587 softdep_journal_lookup(mp, vpp)
2588 	struct mount *mp;
2589 	struct vnode **vpp;
2590 {
2591 	struct componentname cnp;
2592 	struct vnode *dvp;
2593 	ino_t sujournal;
2594 	int error;
2595 
2596 	error = VFS_VGET(mp, ROOTINO, LK_EXCLUSIVE, &dvp);
2597 	if (error)
2598 		return (error);
2599 	bzero(&cnp, sizeof(cnp));
2600 	cnp.cn_nameiop = LOOKUP;
2601 	cnp.cn_flags = ISLASTCN;
2602 	cnp.cn_thread = curthread;
2603 	cnp.cn_cred = curthread->td_ucred;
2604 	cnp.cn_pnbuf = SUJ_FILE;
2605 	cnp.cn_nameptr = SUJ_FILE;
2606 	cnp.cn_namelen = strlen(SUJ_FILE);
2607 	error = ufs_lookup_ino(dvp, NULL, &cnp, &sujournal);
2608 	vput(dvp);
2609 	if (error != 0)
2610 		return (error);
2611 	error = VFS_VGET(mp, sujournal, LK_EXCLUSIVE, vpp);
2612 	return (error);
2613 }
2614 
2615 /*
2616  * Open and verify the journal file.
2617  */
2618 static int
2619 journal_mount(mp, fs, cred)
2620 	struct mount *mp;
2621 	struct fs *fs;
2622 	struct ucred *cred;
2623 {
2624 	struct jblocks *jblocks;
2625 	struct vnode *vp;
2626 	struct inode *ip;
2627 	ufs2_daddr_t blkno;
2628 	int bcount;
2629 	int error;
2630 	int i;
2631 
2632 	error = softdep_journal_lookup(mp, &vp);
2633 	if (error != 0) {
2634 		printf("Failed to find journal.  Use tunefs to create one\n");
2635 		return (error);
2636 	}
2637 	ip = VTOI(vp);
2638 	if (ip->i_size < SUJ_MIN) {
2639 		error = ENOSPC;
2640 		goto out;
2641 	}
2642 	bcount = lblkno(fs, ip->i_size);	/* Only use whole blocks. */
2643 	jblocks = jblocks_create();
2644 	for (i = 0; i < bcount; i++) {
2645 		error = ufs_bmaparray(vp, i, &blkno, NULL, NULL, NULL);
2646 		if (error)
2647 			break;
2648 		jblocks_add(jblocks, blkno, fsbtodb(fs, fs->fs_frag));
2649 	}
2650 	if (error) {
2651 		jblocks_destroy(jblocks);
2652 		goto out;
2653 	}
2654 	jblocks->jb_low = jblocks->jb_free / 3;	/* Reserve 33%. */
2655 	jblocks->jb_min = jblocks->jb_free / 10; /* Suspend at 10%. */
2656 	VFSTOUFS(mp)->softdep_jblocks = jblocks;
2657 out:
2658 	if (error == 0) {
2659 		MNT_ILOCK(mp);
2660 		mp->mnt_flag |= MNT_SUJ;
2661 		mp->mnt_flag &= ~MNT_SOFTDEP;
2662 		MNT_IUNLOCK(mp);
2663 		/*
2664 		 * Only validate the journal contents if the
2665 		 * filesystem is clean, otherwise we write the logs
2666 		 * but they'll never be used.  If the filesystem was
2667 		 * still dirty when we mounted it the journal is
2668 		 * invalid and a new journal can only be valid if it
2669 		 * starts from a clean mount.
2670 		 */
2671 		if (fs->fs_clean) {
2672 			DIP_SET(ip, i_modrev, fs->fs_mtime);
2673 			ip->i_flags |= IN_MODIFIED;
2674 			ffs_update(vp, 1);
2675 		}
2676 	}
2677 	vput(vp);
2678 	return (error);
2679 }
2680 
2681 static void
2682 journal_unmount(mp)
2683 	struct mount *mp;
2684 {
2685 	struct ufsmount *ump;
2686 
2687 	ump = VFSTOUFS(mp);
2688 	if (ump->softdep_jblocks)
2689 		jblocks_destroy(ump->softdep_jblocks);
2690 	ump->softdep_jblocks = NULL;
2691 }
2692 
2693 /*
2694  * Called when a journal record is ready to be written.  Space is allocated
2695  * and the journal entry is created when the journal is flushed to stable
2696  * store.
2697  */
2698 static void
2699 add_to_journal(wk)
2700 	struct worklist *wk;
2701 {
2702 	struct ufsmount *ump;
2703 
2704 	mtx_assert(&lk, MA_OWNED);
2705 	ump = VFSTOUFS(wk->wk_mp);
2706 	if (wk->wk_state & ONWORKLIST)
2707 		panic("add_to_journal: %s(0x%X) already on list",
2708 		    TYPENAME(wk->wk_type), wk->wk_state);
2709 	wk->wk_state |= ONWORKLIST | DEPCOMPLETE;
2710 	if (LIST_EMPTY(&ump->softdep_journal_pending)) {
2711 		ump->softdep_jblocks->jb_age = ticks;
2712 		LIST_INSERT_HEAD(&ump->softdep_journal_pending, wk, wk_list);
2713 	} else
2714 		LIST_INSERT_AFTER(ump->softdep_journal_tail, wk, wk_list);
2715 	ump->softdep_journal_tail = wk;
2716 	ump->softdep_on_journal += 1;
2717 }
2718 
2719 /*
2720  * Remove an arbitrary item for the journal worklist maintain the tail
2721  * pointer.  This happens when a new operation obviates the need to
2722  * journal an old operation.
2723  */
2724 static void
2725 remove_from_journal(wk)
2726 	struct worklist *wk;
2727 {
2728 	struct ufsmount *ump;
2729 
2730 	mtx_assert(&lk, MA_OWNED);
2731 	ump = VFSTOUFS(wk->wk_mp);
2732 #ifdef SUJ_DEBUG
2733 	{
2734 		struct worklist *wkn;
2735 
2736 		LIST_FOREACH(wkn, &ump->softdep_journal_pending, wk_list)
2737 			if (wkn == wk)
2738 				break;
2739 		if (wkn == NULL)
2740 			panic("remove_from_journal: %p is not in journal", wk);
2741 	}
2742 #endif
2743 	/*
2744 	 * We emulate a TAILQ to save space in most structures which do not
2745 	 * require TAILQ semantics.  Here we must update the tail position
2746 	 * when removing the tail which is not the final entry. This works
2747 	 * only if the worklist linkage are at the beginning of the structure.
2748 	 */
2749 	if (ump->softdep_journal_tail == wk)
2750 		ump->softdep_journal_tail =
2751 		    (struct worklist *)wk->wk_list.le_prev;
2752 
2753 	WORKLIST_REMOVE(wk);
2754 	ump->softdep_on_journal -= 1;
2755 }
2756 
2757 /*
2758  * Check for journal space as well as dependency limits so the prelink
2759  * code can throttle both journaled and non-journaled filesystems.
2760  * Threshold is 0 for low and 1 for min.
2761  */
2762 static int
2763 journal_space(ump, thresh)
2764 	struct ufsmount *ump;
2765 	int thresh;
2766 {
2767 	struct jblocks *jblocks;
2768 	int avail;
2769 
2770 	jblocks = ump->softdep_jblocks;
2771 	if (jblocks == NULL)
2772 		return (1);
2773 	/*
2774 	 * We use a tighter restriction here to prevent request_cleanup()
2775 	 * running in threads from running into locks we currently hold.
2776 	 */
2777 	if (dep_current[D_INODEDEP] > (max_softdeps / 10) * 9)
2778 		return (0);
2779 	if (thresh)
2780 		thresh = jblocks->jb_min;
2781 	else
2782 		thresh = jblocks->jb_low;
2783 	avail = (ump->softdep_on_journal * JREC_SIZE) / DEV_BSIZE;
2784 	avail = jblocks->jb_free - avail;
2785 
2786 	return (avail > thresh);
2787 }
2788 
2789 static void
2790 journal_suspend(ump)
2791 	struct ufsmount *ump;
2792 {
2793 	struct jblocks *jblocks;
2794 	struct mount *mp;
2795 
2796 	mp = UFSTOVFS(ump);
2797 	jblocks = ump->softdep_jblocks;
2798 	MNT_ILOCK(mp);
2799 	if ((mp->mnt_kern_flag & MNTK_SUSPEND) == 0) {
2800 		stat_journal_min++;
2801 		mp->mnt_kern_flag |= MNTK_SUSPEND;
2802 		mp->mnt_susp_owner = FIRST_THREAD_IN_PROC(softdepproc);
2803 	}
2804 	jblocks->jb_suspended = 1;
2805 	MNT_IUNLOCK(mp);
2806 }
2807 
2808 static int
2809 journal_unsuspend(struct ufsmount *ump)
2810 {
2811 	struct jblocks *jblocks;
2812 	struct mount *mp;
2813 
2814 	mp = UFSTOVFS(ump);
2815 	jblocks = ump->softdep_jblocks;
2816 
2817 	if (jblocks != NULL && jblocks->jb_suspended &&
2818 	    journal_space(ump, jblocks->jb_min)) {
2819 		jblocks->jb_suspended = 0;
2820 		FREE_LOCK(&lk);
2821 		mp->mnt_susp_owner = curthread;
2822 		vfs_write_resume(mp, 0);
2823 		ACQUIRE_LOCK(&lk);
2824 		return (1);
2825 	}
2826 	return (0);
2827 }
2828 
2829 /*
2830  * Called before any allocation function to be certain that there is
2831  * sufficient space in the journal prior to creating any new records.
2832  * Since in the case of block allocation we may have multiple locked
2833  * buffers at the time of the actual allocation we can not block
2834  * when the journal records are created.  Doing so would create a deadlock
2835  * if any of these buffers needed to be flushed to reclaim space.  Instead
2836  * we require a sufficiently large amount of available space such that
2837  * each thread in the system could have passed this allocation check and
2838  * still have sufficient free space.  With 20% of a minimum journal size
2839  * of 1MB we have 6553 records available.
2840  */
2841 int
2842 softdep_prealloc(vp, waitok)
2843 	struct vnode *vp;
2844 	int waitok;
2845 {
2846 	struct ufsmount *ump;
2847 
2848 	/*
2849 	 * Nothing to do if we are not running journaled soft updates.
2850 	 * If we currently hold the snapshot lock, we must avoid handling
2851 	 * other resources that could cause deadlock.
2852 	 */
2853 	if (DOINGSUJ(vp) == 0 || IS_SNAPSHOT(VTOI(vp)))
2854 		return (0);
2855 	ump = VFSTOUFS(vp->v_mount);
2856 	ACQUIRE_LOCK(&lk);
2857 	if (journal_space(ump, 0)) {
2858 		FREE_LOCK(&lk);
2859 		return (0);
2860 	}
2861 	stat_journal_low++;
2862 	FREE_LOCK(&lk);
2863 	if (waitok == MNT_NOWAIT)
2864 		return (ENOSPC);
2865 	/*
2866 	 * Attempt to sync this vnode once to flush any journal
2867 	 * work attached to it.
2868 	 */
2869 	if ((curthread->td_pflags & TDP_COWINPROGRESS) == 0)
2870 		ffs_syncvnode(vp, waitok, 0);
2871 	ACQUIRE_LOCK(&lk);
2872 	process_removes(vp);
2873 	process_truncates(vp);
2874 	if (journal_space(ump, 0) == 0) {
2875 		softdep_speedup();
2876 		if (journal_space(ump, 1) == 0)
2877 			journal_suspend(ump);
2878 	}
2879 	FREE_LOCK(&lk);
2880 
2881 	return (0);
2882 }
2883 
2884 /*
2885  * Before adjusting a link count on a vnode verify that we have sufficient
2886  * journal space.  If not, process operations that depend on the currently
2887  * locked pair of vnodes to try to flush space as the syncer, buf daemon,
2888  * and softdep flush threads can not acquire these locks to reclaim space.
2889  */
2890 static void
2891 softdep_prelink(dvp, vp)
2892 	struct vnode *dvp;
2893 	struct vnode *vp;
2894 {
2895 	struct ufsmount *ump;
2896 
2897 	ump = VFSTOUFS(dvp->v_mount);
2898 	mtx_assert(&lk, MA_OWNED);
2899 	/*
2900 	 * Nothing to do if we have sufficient journal space.
2901 	 * If we currently hold the snapshot lock, we must avoid
2902 	 * handling other resources that could cause deadlock.
2903 	 */
2904 	if (journal_space(ump, 0) || (vp && IS_SNAPSHOT(VTOI(vp))))
2905 		return;
2906 	stat_journal_low++;
2907 	FREE_LOCK(&lk);
2908 	if (vp)
2909 		ffs_syncvnode(vp, MNT_NOWAIT, 0);
2910 	ffs_syncvnode(dvp, MNT_WAIT, 0);
2911 	ACQUIRE_LOCK(&lk);
2912 	/* Process vp before dvp as it may create .. removes. */
2913 	if (vp) {
2914 		process_removes(vp);
2915 		process_truncates(vp);
2916 	}
2917 	process_removes(dvp);
2918 	process_truncates(dvp);
2919 	softdep_speedup();
2920 	process_worklist_item(UFSTOVFS(ump), 2, LK_NOWAIT);
2921 	if (journal_space(ump, 0) == 0) {
2922 		softdep_speedup();
2923 		if (journal_space(ump, 1) == 0)
2924 			journal_suspend(ump);
2925 	}
2926 }
2927 
2928 static void
2929 jseg_write(ump, jseg, data)
2930 	struct ufsmount *ump;
2931 	struct jseg *jseg;
2932 	uint8_t *data;
2933 {
2934 	struct jsegrec *rec;
2935 
2936 	rec = (struct jsegrec *)data;
2937 	rec->jsr_seq = jseg->js_seq;
2938 	rec->jsr_oldest = jseg->js_oldseq;
2939 	rec->jsr_cnt = jseg->js_cnt;
2940 	rec->jsr_blocks = jseg->js_size / ump->um_devvp->v_bufobj.bo_bsize;
2941 	rec->jsr_crc = 0;
2942 	rec->jsr_time = ump->um_fs->fs_mtime;
2943 }
2944 
2945 static inline void
2946 inoref_write(inoref, jseg, rec)
2947 	struct inoref *inoref;
2948 	struct jseg *jseg;
2949 	struct jrefrec *rec;
2950 {
2951 
2952 	inoref->if_jsegdep->jd_seg = jseg;
2953 	rec->jr_ino = inoref->if_ino;
2954 	rec->jr_parent = inoref->if_parent;
2955 	rec->jr_nlink = inoref->if_nlink;
2956 	rec->jr_mode = inoref->if_mode;
2957 	rec->jr_diroff = inoref->if_diroff;
2958 }
2959 
2960 static void
2961 jaddref_write(jaddref, jseg, data)
2962 	struct jaddref *jaddref;
2963 	struct jseg *jseg;
2964 	uint8_t *data;
2965 {
2966 	struct jrefrec *rec;
2967 
2968 	rec = (struct jrefrec *)data;
2969 	rec->jr_op = JOP_ADDREF;
2970 	inoref_write(&jaddref->ja_ref, jseg, rec);
2971 }
2972 
2973 static void
2974 jremref_write(jremref, jseg, data)
2975 	struct jremref *jremref;
2976 	struct jseg *jseg;
2977 	uint8_t *data;
2978 {
2979 	struct jrefrec *rec;
2980 
2981 	rec = (struct jrefrec *)data;
2982 	rec->jr_op = JOP_REMREF;
2983 	inoref_write(&jremref->jr_ref, jseg, rec);
2984 }
2985 
2986 static void
2987 jmvref_write(jmvref, jseg, data)
2988 	struct jmvref *jmvref;
2989 	struct jseg *jseg;
2990 	uint8_t *data;
2991 {
2992 	struct jmvrec *rec;
2993 
2994 	rec = (struct jmvrec *)data;
2995 	rec->jm_op = JOP_MVREF;
2996 	rec->jm_ino = jmvref->jm_ino;
2997 	rec->jm_parent = jmvref->jm_parent;
2998 	rec->jm_oldoff = jmvref->jm_oldoff;
2999 	rec->jm_newoff = jmvref->jm_newoff;
3000 }
3001 
3002 static void
3003 jnewblk_write(jnewblk, jseg, data)
3004 	struct jnewblk *jnewblk;
3005 	struct jseg *jseg;
3006 	uint8_t *data;
3007 {
3008 	struct jblkrec *rec;
3009 
3010 	jnewblk->jn_jsegdep->jd_seg = jseg;
3011 	rec = (struct jblkrec *)data;
3012 	rec->jb_op = JOP_NEWBLK;
3013 	rec->jb_ino = jnewblk->jn_ino;
3014 	rec->jb_blkno = jnewblk->jn_blkno;
3015 	rec->jb_lbn = jnewblk->jn_lbn;
3016 	rec->jb_frags = jnewblk->jn_frags;
3017 	rec->jb_oldfrags = jnewblk->jn_oldfrags;
3018 }
3019 
3020 static void
3021 jfreeblk_write(jfreeblk, jseg, data)
3022 	struct jfreeblk *jfreeblk;
3023 	struct jseg *jseg;
3024 	uint8_t *data;
3025 {
3026 	struct jblkrec *rec;
3027 
3028 	jfreeblk->jf_dep.jb_jsegdep->jd_seg = jseg;
3029 	rec = (struct jblkrec *)data;
3030 	rec->jb_op = JOP_FREEBLK;
3031 	rec->jb_ino = jfreeblk->jf_ino;
3032 	rec->jb_blkno = jfreeblk->jf_blkno;
3033 	rec->jb_lbn = jfreeblk->jf_lbn;
3034 	rec->jb_frags = jfreeblk->jf_frags;
3035 	rec->jb_oldfrags = 0;
3036 }
3037 
3038 static void
3039 jfreefrag_write(jfreefrag, jseg, data)
3040 	struct jfreefrag *jfreefrag;
3041 	struct jseg *jseg;
3042 	uint8_t *data;
3043 {
3044 	struct jblkrec *rec;
3045 
3046 	jfreefrag->fr_jsegdep->jd_seg = jseg;
3047 	rec = (struct jblkrec *)data;
3048 	rec->jb_op = JOP_FREEBLK;
3049 	rec->jb_ino = jfreefrag->fr_ino;
3050 	rec->jb_blkno = jfreefrag->fr_blkno;
3051 	rec->jb_lbn = jfreefrag->fr_lbn;
3052 	rec->jb_frags = jfreefrag->fr_frags;
3053 	rec->jb_oldfrags = 0;
3054 }
3055 
3056 static void
3057 jtrunc_write(jtrunc, jseg, data)
3058 	struct jtrunc *jtrunc;
3059 	struct jseg *jseg;
3060 	uint8_t *data;
3061 {
3062 	struct jtrncrec *rec;
3063 
3064 	jtrunc->jt_dep.jb_jsegdep->jd_seg = jseg;
3065 	rec = (struct jtrncrec *)data;
3066 	rec->jt_op = JOP_TRUNC;
3067 	rec->jt_ino = jtrunc->jt_ino;
3068 	rec->jt_size = jtrunc->jt_size;
3069 	rec->jt_extsize = jtrunc->jt_extsize;
3070 }
3071 
3072 static void
3073 jfsync_write(jfsync, jseg, data)
3074 	struct jfsync *jfsync;
3075 	struct jseg *jseg;
3076 	uint8_t *data;
3077 {
3078 	struct jtrncrec *rec;
3079 
3080 	rec = (struct jtrncrec *)data;
3081 	rec->jt_op = JOP_SYNC;
3082 	rec->jt_ino = jfsync->jfs_ino;
3083 	rec->jt_size = jfsync->jfs_size;
3084 	rec->jt_extsize = jfsync->jfs_extsize;
3085 }
3086 
3087 static void
3088 softdep_flushjournal(mp)
3089 	struct mount *mp;
3090 {
3091 	struct jblocks *jblocks;
3092 	struct ufsmount *ump;
3093 
3094 	if (MOUNTEDSUJ(mp) == 0)
3095 		return;
3096 	ump = VFSTOUFS(mp);
3097 	jblocks = ump->softdep_jblocks;
3098 	ACQUIRE_LOCK(&lk);
3099 	while (ump->softdep_on_journal) {
3100 		jblocks->jb_needseg = 1;
3101 		softdep_process_journal(mp, NULL, MNT_WAIT);
3102 	}
3103 	FREE_LOCK(&lk);
3104 }
3105 
3106 static void softdep_synchronize_completed(struct bio *);
3107 static void softdep_synchronize(struct bio *, struct ufsmount *, void *);
3108 
3109 static void
3110 softdep_synchronize_completed(bp)
3111         struct bio *bp;
3112 {
3113 	struct jseg *oldest;
3114 	struct jseg *jseg;
3115 
3116 	/*
3117 	 * caller1 marks the last segment written before we issued the
3118 	 * synchronize cache.
3119 	 */
3120 	jseg = bp->bio_caller1;
3121 	oldest = NULL;
3122 	ACQUIRE_LOCK(&lk);
3123 	/*
3124 	 * Mark all the journal entries waiting on the synchronize cache
3125 	 * as completed so they may continue on.
3126 	 */
3127 	while (jseg != NULL && (jseg->js_state & COMPLETE) == 0) {
3128 		jseg->js_state |= COMPLETE;
3129 		oldest = jseg;
3130 		jseg = TAILQ_PREV(jseg, jseglst, js_next);
3131 	}
3132 	/*
3133 	 * Restart deferred journal entry processing from the oldest
3134 	 * completed jseg.
3135 	 */
3136 	if (oldest)
3137 		complete_jsegs(oldest);
3138 
3139 	FREE_LOCK(&lk);
3140 	g_destroy_bio(bp);
3141 }
3142 
3143 /*
3144  * Send BIO_FLUSH/SYNCHRONIZE CACHE to the device to enforce write ordering
3145  * barriers.  The journal must be written prior to any blocks that depend
3146  * on it and the journal can not be released until the blocks have be
3147  * written.  This code handles both barriers simultaneously.
3148  */
3149 static void
3150 softdep_synchronize(bp, ump, caller1)
3151 	struct bio *bp;
3152 	struct ufsmount *ump;
3153 	void *caller1;
3154 {
3155 
3156 	bp->bio_cmd = BIO_FLUSH;
3157 	bp->bio_flags |= BIO_ORDERED;
3158 	bp->bio_data = NULL;
3159 	bp->bio_offset = ump->um_cp->provider->mediasize;
3160 	bp->bio_length = 0;
3161 	bp->bio_done = softdep_synchronize_completed;
3162 	bp->bio_caller1 = caller1;
3163 	g_io_request(bp,
3164 	    (struct g_consumer *)ump->um_devvp->v_bufobj.bo_private);
3165 }
3166 
3167 /*
3168  * Flush some journal records to disk.
3169  */
3170 static void
3171 softdep_process_journal(mp, needwk, flags)
3172 	struct mount *mp;
3173 	struct worklist *needwk;
3174 	int flags;
3175 {
3176 	struct jblocks *jblocks;
3177 	struct ufsmount *ump;
3178 	struct worklist *wk;
3179 	struct jseg *jseg;
3180 	struct buf *bp;
3181 	struct bio *bio;
3182 	uint8_t *data;
3183 	struct fs *fs;
3184 	int shouldflush;
3185 	int segwritten;
3186 	int jrecmin;	/* Minimum records per block. */
3187 	int jrecmax;	/* Maximum records per block. */
3188 	int size;
3189 	int cnt;
3190 	int off;
3191 	int devbsize;
3192 
3193 	if (MOUNTEDSUJ(mp) == 0)
3194 		return;
3195 	shouldflush = softdep_flushcache;
3196 	bio = NULL;
3197 	jseg = NULL;
3198 	ump = VFSTOUFS(mp);
3199 	fs = ump->um_fs;
3200 	jblocks = ump->softdep_jblocks;
3201 	devbsize = ump->um_devvp->v_bufobj.bo_bsize;
3202 	/*
3203 	 * We write anywhere between a disk block and fs block.  The upper
3204 	 * bound is picked to prevent buffer cache fragmentation and limit
3205 	 * processing time per I/O.
3206 	 */
3207 	jrecmin = (devbsize / JREC_SIZE) - 1; /* -1 for seg header */
3208 	jrecmax = (fs->fs_bsize / devbsize) * jrecmin;
3209 	segwritten = 0;
3210 	for (;;) {
3211 		cnt = ump->softdep_on_journal;
3212 		/*
3213 		 * Criteria for writing a segment:
3214 		 * 1) We have a full block.
3215 		 * 2) We're called from jwait() and haven't found the
3216 		 *    journal item yet.
3217 		 * 3) Always write if needseg is set.
3218 		 * 4) If we are called from process_worklist and have
3219 		 *    not yet written anything we write a partial block
3220 		 *    to enforce a 1 second maximum latency on journal
3221 		 *    entries.
3222 		 */
3223 		if (cnt < (jrecmax - 1) && needwk == NULL &&
3224 		    jblocks->jb_needseg == 0 && (segwritten || cnt == 0))
3225 			break;
3226 		cnt++;
3227 		/*
3228 		 * Verify some free journal space.  softdep_prealloc() should
3229 	 	 * guarantee that we don't run out so this is indicative of
3230 		 * a problem with the flow control.  Try to recover
3231 		 * gracefully in any event.
3232 		 */
3233 		while (jblocks->jb_free == 0) {
3234 			if (flags != MNT_WAIT)
3235 				break;
3236 			printf("softdep: Out of journal space!\n");
3237 			softdep_speedup();
3238 			msleep(jblocks, &lk, PRIBIO, "jblocks", hz);
3239 		}
3240 		FREE_LOCK(&lk);
3241 		jseg = malloc(sizeof(*jseg), M_JSEG, M_SOFTDEP_FLAGS);
3242 		workitem_alloc(&jseg->js_list, D_JSEG, mp);
3243 		LIST_INIT(&jseg->js_entries);
3244 		LIST_INIT(&jseg->js_indirs);
3245 		jseg->js_state = ATTACHED;
3246 		if (shouldflush == 0)
3247 			jseg->js_state |= COMPLETE;
3248 		else if (bio == NULL)
3249 			bio = g_alloc_bio();
3250 		jseg->js_jblocks = jblocks;
3251 		bp = geteblk(fs->fs_bsize, 0);
3252 		ACQUIRE_LOCK(&lk);
3253 		/*
3254 		 * If there was a race while we were allocating the block
3255 		 * and jseg the entry we care about was likely written.
3256 		 * We bail out in both the WAIT and NOWAIT case and assume
3257 		 * the caller will loop if the entry it cares about is
3258 		 * not written.
3259 		 */
3260 		cnt = ump->softdep_on_journal;
3261 		if (cnt + jblocks->jb_needseg == 0 || jblocks->jb_free == 0) {
3262 			bp->b_flags |= B_INVAL | B_NOCACHE;
3263 			WORKITEM_FREE(jseg, D_JSEG);
3264 			FREE_LOCK(&lk);
3265 			brelse(bp);
3266 			ACQUIRE_LOCK(&lk);
3267 			break;
3268 		}
3269 		/*
3270 		 * Calculate the disk block size required for the available
3271 		 * records rounded to the min size.
3272 		 */
3273 		if (cnt == 0)
3274 			size = devbsize;
3275 		else if (cnt < jrecmax)
3276 			size = howmany(cnt, jrecmin) * devbsize;
3277 		else
3278 			size = fs->fs_bsize;
3279 		/*
3280 		 * Allocate a disk block for this journal data and account
3281 		 * for truncation of the requested size if enough contiguous
3282 		 * space was not available.
3283 		 */
3284 		bp->b_blkno = jblocks_alloc(jblocks, size, &size);
3285 		bp->b_lblkno = bp->b_blkno;
3286 		bp->b_offset = bp->b_blkno * DEV_BSIZE;
3287 		bp->b_bcount = size;
3288 		bp->b_flags &= ~B_INVAL;
3289 		bp->b_flags |= B_VALIDSUSPWRT | B_NOCOPY;
3290 		/*
3291 		 * Initialize our jseg with cnt records.  Assign the next
3292 		 * sequence number to it and link it in-order.
3293 		 */
3294 		cnt = MIN(cnt, (size / devbsize) * jrecmin);
3295 		jseg->js_buf = bp;
3296 		jseg->js_cnt = cnt;
3297 		jseg->js_refs = cnt + 1;	/* Self ref. */
3298 		jseg->js_size = size;
3299 		jseg->js_seq = jblocks->jb_nextseq++;
3300 		if (jblocks->jb_oldestseg == NULL)
3301 			jblocks->jb_oldestseg = jseg;
3302 		jseg->js_oldseq = jblocks->jb_oldestseg->js_seq;
3303 		TAILQ_INSERT_TAIL(&jblocks->jb_segs, jseg, js_next);
3304 		if (jblocks->jb_writeseg == NULL)
3305 			jblocks->jb_writeseg = jseg;
3306 		/*
3307 		 * Start filling in records from the pending list.
3308 		 */
3309 		data = bp->b_data;
3310 		off = 0;
3311 		while ((wk = LIST_FIRST(&ump->softdep_journal_pending))
3312 		    != NULL) {
3313 			if (cnt == 0)
3314 				break;
3315 			/* Place a segment header on every device block. */
3316 			if ((off % devbsize) == 0) {
3317 				jseg_write(ump, jseg, data);
3318 				off += JREC_SIZE;
3319 				data = bp->b_data + off;
3320 			}
3321 			if (wk == needwk)
3322 				needwk = NULL;
3323 			remove_from_journal(wk);
3324 			wk->wk_state |= INPROGRESS;
3325 			WORKLIST_INSERT(&jseg->js_entries, wk);
3326 			switch (wk->wk_type) {
3327 			case D_JADDREF:
3328 				jaddref_write(WK_JADDREF(wk), jseg, data);
3329 				break;
3330 			case D_JREMREF:
3331 				jremref_write(WK_JREMREF(wk), jseg, data);
3332 				break;
3333 			case D_JMVREF:
3334 				jmvref_write(WK_JMVREF(wk), jseg, data);
3335 				break;
3336 			case D_JNEWBLK:
3337 				jnewblk_write(WK_JNEWBLK(wk), jseg, data);
3338 				break;
3339 			case D_JFREEBLK:
3340 				jfreeblk_write(WK_JFREEBLK(wk), jseg, data);
3341 				break;
3342 			case D_JFREEFRAG:
3343 				jfreefrag_write(WK_JFREEFRAG(wk), jseg, data);
3344 				break;
3345 			case D_JTRUNC:
3346 				jtrunc_write(WK_JTRUNC(wk), jseg, data);
3347 				break;
3348 			case D_JFSYNC:
3349 				jfsync_write(WK_JFSYNC(wk), jseg, data);
3350 				break;
3351 			default:
3352 				panic("process_journal: Unknown type %s",
3353 				    TYPENAME(wk->wk_type));
3354 				/* NOTREACHED */
3355 			}
3356 			off += JREC_SIZE;
3357 			data = bp->b_data + off;
3358 			cnt--;
3359 		}
3360 		/*
3361 		 * Write this one buffer and continue.
3362 		 */
3363 		segwritten = 1;
3364 		jblocks->jb_needseg = 0;
3365 		WORKLIST_INSERT(&bp->b_dep, &jseg->js_list);
3366 		FREE_LOCK(&lk);
3367 		pbgetvp(ump->um_devvp, bp);
3368 		/*
3369 		 * We only do the blocking wait once we find the journal
3370 		 * entry we're looking for.
3371 		 */
3372 		if (needwk == NULL && flags == MNT_WAIT)
3373 			bwrite(bp);
3374 		else
3375 			bawrite(bp);
3376 		ACQUIRE_LOCK(&lk);
3377 	}
3378 	/*
3379 	 * If we wrote a segment issue a synchronize cache so the journal
3380 	 * is reflected on disk before the data is written.  Since reclaiming
3381 	 * journal space also requires writing a journal record this
3382 	 * process also enforces a barrier before reclamation.
3383 	 */
3384 	if (segwritten && shouldflush) {
3385 		softdep_synchronize(bio, ump,
3386 		    TAILQ_LAST(&jblocks->jb_segs, jseglst));
3387 	} else if (bio)
3388 		g_destroy_bio(bio);
3389 	/*
3390 	 * If we've suspended the filesystem because we ran out of journal
3391 	 * space either try to sync it here to make some progress or
3392 	 * unsuspend it if we already have.
3393 	 */
3394 	if (flags == 0 && jblocks->jb_suspended) {
3395 		if (journal_unsuspend(ump))
3396 			return;
3397 		FREE_LOCK(&lk);
3398 		VFS_SYNC(mp, MNT_NOWAIT);
3399 		ffs_sbupdate(ump, MNT_WAIT, 0);
3400 		ACQUIRE_LOCK(&lk);
3401 	}
3402 }
3403 
3404 /*
3405  * Complete a jseg, allowing all dependencies awaiting journal writes
3406  * to proceed.  Each journal dependency also attaches a jsegdep to dependent
3407  * structures so that the journal segment can be freed to reclaim space.
3408  */
3409 static void
3410 complete_jseg(jseg)
3411 	struct jseg *jseg;
3412 {
3413 	struct worklist *wk;
3414 	struct jmvref *jmvref;
3415 	int waiting;
3416 #ifdef INVARIANTS
3417 	int i = 0;
3418 #endif
3419 
3420 	while ((wk = LIST_FIRST(&jseg->js_entries)) != NULL) {
3421 		WORKLIST_REMOVE(wk);
3422 		waiting = wk->wk_state & IOWAITING;
3423 		wk->wk_state &= ~(INPROGRESS | IOWAITING);
3424 		wk->wk_state |= COMPLETE;
3425 		KASSERT(i++ < jseg->js_cnt,
3426 		    ("handle_written_jseg: overflow %d >= %d",
3427 		    i - 1, jseg->js_cnt));
3428 		switch (wk->wk_type) {
3429 		case D_JADDREF:
3430 			handle_written_jaddref(WK_JADDREF(wk));
3431 			break;
3432 		case D_JREMREF:
3433 			handle_written_jremref(WK_JREMREF(wk));
3434 			break;
3435 		case D_JMVREF:
3436 			rele_jseg(jseg);	/* No jsegdep. */
3437 			jmvref = WK_JMVREF(wk);
3438 			LIST_REMOVE(jmvref, jm_deps);
3439 			if ((jmvref->jm_pagedep->pd_state & ONWORKLIST) == 0)
3440 				free_pagedep(jmvref->jm_pagedep);
3441 			WORKITEM_FREE(jmvref, D_JMVREF);
3442 			break;
3443 		case D_JNEWBLK:
3444 			handle_written_jnewblk(WK_JNEWBLK(wk));
3445 			break;
3446 		case D_JFREEBLK:
3447 			handle_written_jblkdep(&WK_JFREEBLK(wk)->jf_dep);
3448 			break;
3449 		case D_JTRUNC:
3450 			handle_written_jblkdep(&WK_JTRUNC(wk)->jt_dep);
3451 			break;
3452 		case D_JFSYNC:
3453 			rele_jseg(jseg);	/* No jsegdep. */
3454 			WORKITEM_FREE(wk, D_JFSYNC);
3455 			break;
3456 		case D_JFREEFRAG:
3457 			handle_written_jfreefrag(WK_JFREEFRAG(wk));
3458 			break;
3459 		default:
3460 			panic("handle_written_jseg: Unknown type %s",
3461 			    TYPENAME(wk->wk_type));
3462 			/* NOTREACHED */
3463 		}
3464 		if (waiting)
3465 			wakeup(wk);
3466 	}
3467 	/* Release the self reference so the structure may be freed. */
3468 	rele_jseg(jseg);
3469 }
3470 
3471 /*
3472  * Determine which jsegs are ready for completion processing.  Waits for
3473  * synchronize cache to complete as well as forcing in-order completion
3474  * of journal entries.
3475  */
3476 static void
3477 complete_jsegs(jseg)
3478 	struct jseg *jseg;
3479 {
3480 	struct jblocks *jblocks;
3481 	struct jseg *jsegn;
3482 
3483 	jblocks = jseg->js_jblocks;
3484 	/*
3485 	 * Don't allow out of order completions.  If this isn't the first
3486 	 * block wait for it to write before we're done.
3487 	 */
3488 	if (jseg != jblocks->jb_writeseg)
3489 		return;
3490 	/* Iterate through available jsegs processing their entries. */
3491 	while (jseg && (jseg->js_state & ALLCOMPLETE) == ALLCOMPLETE) {
3492 		jblocks->jb_oldestwrseq = jseg->js_oldseq;
3493 		jsegn = TAILQ_NEXT(jseg, js_next);
3494 		complete_jseg(jseg);
3495 		jseg = jsegn;
3496 	}
3497 	jblocks->jb_writeseg = jseg;
3498 	/*
3499 	 * Attempt to free jsegs now that oldestwrseq may have advanced.
3500 	 */
3501 	free_jsegs(jblocks);
3502 }
3503 
3504 /*
3505  * Mark a jseg as DEPCOMPLETE and throw away the buffer.  Attempt to handle
3506  * the final completions.
3507  */
3508 static void
3509 handle_written_jseg(jseg, bp)
3510 	struct jseg *jseg;
3511 	struct buf *bp;
3512 {
3513 
3514 	if (jseg->js_refs == 0)
3515 		panic("handle_written_jseg: No self-reference on %p", jseg);
3516 	jseg->js_state |= DEPCOMPLETE;
3517 	/*
3518 	 * We'll never need this buffer again, set flags so it will be
3519 	 * discarded.
3520 	 */
3521 	bp->b_flags |= B_INVAL | B_NOCACHE;
3522 	pbrelvp(bp);
3523 	complete_jsegs(jseg);
3524 }
3525 
3526 static inline struct jsegdep *
3527 inoref_jseg(inoref)
3528 	struct inoref *inoref;
3529 {
3530 	struct jsegdep *jsegdep;
3531 
3532 	jsegdep = inoref->if_jsegdep;
3533 	inoref->if_jsegdep = NULL;
3534 
3535 	return (jsegdep);
3536 }
3537 
3538 /*
3539  * Called once a jremref has made it to stable store.  The jremref is marked
3540  * complete and we attempt to free it.  Any pagedeps writes sleeping waiting
3541  * for the jremref to complete will be awoken by free_jremref.
3542  */
3543 static void
3544 handle_written_jremref(jremref)
3545 	struct jremref *jremref;
3546 {
3547 	struct inodedep *inodedep;
3548 	struct jsegdep *jsegdep;
3549 	struct dirrem *dirrem;
3550 
3551 	/* Grab the jsegdep. */
3552 	jsegdep = inoref_jseg(&jremref->jr_ref);
3553 	/*
3554 	 * Remove us from the inoref list.
3555 	 */
3556 	if (inodedep_lookup(jremref->jr_list.wk_mp, jremref->jr_ref.if_ino,
3557 	    0, &inodedep) == 0)
3558 		panic("handle_written_jremref: Lost inodedep");
3559 	TAILQ_REMOVE(&inodedep->id_inoreflst, &jremref->jr_ref, if_deps);
3560 	/*
3561 	 * Complete the dirrem.
3562 	 */
3563 	dirrem = jremref->jr_dirrem;
3564 	jremref->jr_dirrem = NULL;
3565 	LIST_REMOVE(jremref, jr_deps);
3566 	jsegdep->jd_state |= jremref->jr_state & MKDIR_PARENT;
3567 	jwork_insert(&dirrem->dm_jwork, jsegdep);
3568 	if (LIST_EMPTY(&dirrem->dm_jremrefhd) &&
3569 	    (dirrem->dm_state & COMPLETE) != 0)
3570 		add_to_worklist(&dirrem->dm_list, 0);
3571 	free_jremref(jremref);
3572 }
3573 
3574 /*
3575  * Called once a jaddref has made it to stable store.  The dependency is
3576  * marked complete and any dependent structures are added to the inode
3577  * bufwait list to be completed as soon as it is written.  If a bitmap write
3578  * depends on this entry we move the inode into the inodedephd of the
3579  * bmsafemap dependency and attempt to remove the jaddref from the bmsafemap.
3580  */
3581 static void
3582 handle_written_jaddref(jaddref)
3583 	struct jaddref *jaddref;
3584 {
3585 	struct jsegdep *jsegdep;
3586 	struct inodedep *inodedep;
3587 	struct diradd *diradd;
3588 	struct mkdir *mkdir;
3589 
3590 	/* Grab the jsegdep. */
3591 	jsegdep = inoref_jseg(&jaddref->ja_ref);
3592 	mkdir = NULL;
3593 	diradd = NULL;
3594 	if (inodedep_lookup(jaddref->ja_list.wk_mp, jaddref->ja_ino,
3595 	    0, &inodedep) == 0)
3596 		panic("handle_written_jaddref: Lost inodedep.");
3597 	if (jaddref->ja_diradd == NULL)
3598 		panic("handle_written_jaddref: No dependency");
3599 	if (jaddref->ja_diradd->da_list.wk_type == D_DIRADD) {
3600 		diradd = jaddref->ja_diradd;
3601 		WORKLIST_INSERT(&inodedep->id_bufwait, &diradd->da_list);
3602 	} else if (jaddref->ja_state & MKDIR_PARENT) {
3603 		mkdir = jaddref->ja_mkdir;
3604 		WORKLIST_INSERT(&inodedep->id_bufwait, &mkdir->md_list);
3605 	} else if (jaddref->ja_state & MKDIR_BODY)
3606 		mkdir = jaddref->ja_mkdir;
3607 	else
3608 		panic("handle_written_jaddref: Unknown dependency %p",
3609 		    jaddref->ja_diradd);
3610 	jaddref->ja_diradd = NULL;	/* also clears ja_mkdir */
3611 	/*
3612 	 * Remove us from the inode list.
3613 	 */
3614 	TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref, if_deps);
3615 	/*
3616 	 * The mkdir may be waiting on the jaddref to clear before freeing.
3617 	 */
3618 	if (mkdir) {
3619 		KASSERT(mkdir->md_list.wk_type == D_MKDIR,
3620 		    ("handle_written_jaddref: Incorrect type for mkdir %s",
3621 		    TYPENAME(mkdir->md_list.wk_type)));
3622 		mkdir->md_jaddref = NULL;
3623 		diradd = mkdir->md_diradd;
3624 		mkdir->md_state |= DEPCOMPLETE;
3625 		complete_mkdir(mkdir);
3626 	}
3627 	jwork_insert(&diradd->da_jwork, jsegdep);
3628 	if (jaddref->ja_state & NEWBLOCK) {
3629 		inodedep->id_state |= ONDEPLIST;
3630 		LIST_INSERT_HEAD(&inodedep->id_bmsafemap->sm_inodedephd,
3631 		    inodedep, id_deps);
3632 	}
3633 	free_jaddref(jaddref);
3634 }
3635 
3636 /*
3637  * Called once a jnewblk journal is written.  The allocdirect or allocindir
3638  * is placed in the bmsafemap to await notification of a written bitmap.  If
3639  * the operation was canceled we add the segdep to the appropriate
3640  * dependency to free the journal space once the canceling operation
3641  * completes.
3642  */
3643 static void
3644 handle_written_jnewblk(jnewblk)
3645 	struct jnewblk *jnewblk;
3646 {
3647 	struct bmsafemap *bmsafemap;
3648 	struct freefrag *freefrag;
3649 	struct freework *freework;
3650 	struct jsegdep *jsegdep;
3651 	struct newblk *newblk;
3652 
3653 	/* Grab the jsegdep. */
3654 	jsegdep = jnewblk->jn_jsegdep;
3655 	jnewblk->jn_jsegdep = NULL;
3656 	if (jnewblk->jn_dep == NULL)
3657 		panic("handle_written_jnewblk: No dependency for the segdep.");
3658 	switch (jnewblk->jn_dep->wk_type) {
3659 	case D_NEWBLK:
3660 	case D_ALLOCDIRECT:
3661 	case D_ALLOCINDIR:
3662 		/*
3663 		 * Add the written block to the bmsafemap so it can
3664 		 * be notified when the bitmap is on disk.
3665 		 */
3666 		newblk = WK_NEWBLK(jnewblk->jn_dep);
3667 		newblk->nb_jnewblk = NULL;
3668 		if ((newblk->nb_state & GOINGAWAY) == 0) {
3669 			bmsafemap = newblk->nb_bmsafemap;
3670 			newblk->nb_state |= ONDEPLIST;
3671 			LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk,
3672 			    nb_deps);
3673 		}
3674 		jwork_insert(&newblk->nb_jwork, jsegdep);
3675 		break;
3676 	case D_FREEFRAG:
3677 		/*
3678 		 * A newblock being removed by a freefrag when replaced by
3679 		 * frag extension.
3680 		 */
3681 		freefrag = WK_FREEFRAG(jnewblk->jn_dep);
3682 		freefrag->ff_jdep = NULL;
3683 		jwork_insert(&freefrag->ff_jwork, jsegdep);
3684 		break;
3685 	case D_FREEWORK:
3686 		/*
3687 		 * A direct block was removed by truncate.
3688 		 */
3689 		freework = WK_FREEWORK(jnewblk->jn_dep);
3690 		freework->fw_jnewblk = NULL;
3691 		jwork_insert(&freework->fw_freeblks->fb_jwork, jsegdep);
3692 		break;
3693 	default:
3694 		panic("handle_written_jnewblk: Unknown type %d.",
3695 		    jnewblk->jn_dep->wk_type);
3696 	}
3697 	jnewblk->jn_dep = NULL;
3698 	free_jnewblk(jnewblk);
3699 }
3700 
3701 /*
3702  * Cancel a jfreefrag that won't be needed, probably due to colliding with
3703  * an in-flight allocation that has not yet been committed.  Divorce us
3704  * from the freefrag and mark it DEPCOMPLETE so that it may be added
3705  * to the worklist.
3706  */
3707 static void
3708 cancel_jfreefrag(jfreefrag)
3709 	struct jfreefrag *jfreefrag;
3710 {
3711 	struct freefrag *freefrag;
3712 
3713 	if (jfreefrag->fr_jsegdep) {
3714 		free_jsegdep(jfreefrag->fr_jsegdep);
3715 		jfreefrag->fr_jsegdep = NULL;
3716 	}
3717 	freefrag = jfreefrag->fr_freefrag;
3718 	jfreefrag->fr_freefrag = NULL;
3719 	free_jfreefrag(jfreefrag);
3720 	freefrag->ff_state |= DEPCOMPLETE;
3721 	CTR1(KTR_SUJ, "cancel_jfreefrag: blkno %jd", freefrag->ff_blkno);
3722 }
3723 
3724 /*
3725  * Free a jfreefrag when the parent freefrag is rendered obsolete.
3726  */
3727 static void
3728 free_jfreefrag(jfreefrag)
3729 	struct jfreefrag *jfreefrag;
3730 {
3731 
3732 	if (jfreefrag->fr_state & INPROGRESS)
3733 		WORKLIST_REMOVE(&jfreefrag->fr_list);
3734 	else if (jfreefrag->fr_state & ONWORKLIST)
3735 		remove_from_journal(&jfreefrag->fr_list);
3736 	if (jfreefrag->fr_freefrag != NULL)
3737 		panic("free_jfreefrag:  Still attached to a freefrag.");
3738 	WORKITEM_FREE(jfreefrag, D_JFREEFRAG);
3739 }
3740 
3741 /*
3742  * Called when the journal write for a jfreefrag completes.  The parent
3743  * freefrag is added to the worklist if this completes its dependencies.
3744  */
3745 static void
3746 handle_written_jfreefrag(jfreefrag)
3747 	struct jfreefrag *jfreefrag;
3748 {
3749 	struct jsegdep *jsegdep;
3750 	struct freefrag *freefrag;
3751 
3752 	/* Grab the jsegdep. */
3753 	jsegdep = jfreefrag->fr_jsegdep;
3754 	jfreefrag->fr_jsegdep = NULL;
3755 	freefrag = jfreefrag->fr_freefrag;
3756 	if (freefrag == NULL)
3757 		panic("handle_written_jfreefrag: No freefrag.");
3758 	freefrag->ff_state |= DEPCOMPLETE;
3759 	freefrag->ff_jdep = NULL;
3760 	jwork_insert(&freefrag->ff_jwork, jsegdep);
3761 	if ((freefrag->ff_state & ALLCOMPLETE) == ALLCOMPLETE)
3762 		add_to_worklist(&freefrag->ff_list, 0);
3763 	jfreefrag->fr_freefrag = NULL;
3764 	free_jfreefrag(jfreefrag);
3765 }
3766 
3767 /*
3768  * Called when the journal write for a jfreeblk completes.  The jfreeblk
3769  * is removed from the freeblks list of pending journal writes and the
3770  * jsegdep is moved to the freeblks jwork to be completed when all blocks
3771  * have been reclaimed.
3772  */
3773 static void
3774 handle_written_jblkdep(jblkdep)
3775 	struct jblkdep *jblkdep;
3776 {
3777 	struct freeblks *freeblks;
3778 	struct jsegdep *jsegdep;
3779 
3780 	/* Grab the jsegdep. */
3781 	jsegdep = jblkdep->jb_jsegdep;
3782 	jblkdep->jb_jsegdep = NULL;
3783 	freeblks = jblkdep->jb_freeblks;
3784 	LIST_REMOVE(jblkdep, jb_deps);
3785 	jwork_insert(&freeblks->fb_jwork, jsegdep);
3786 	/*
3787 	 * If the freeblks is all journaled, we can add it to the worklist.
3788 	 */
3789 	if (LIST_EMPTY(&freeblks->fb_jblkdephd) &&
3790 	    (freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE)
3791 		add_to_worklist(&freeblks->fb_list, WK_NODELAY);
3792 
3793 	free_jblkdep(jblkdep);
3794 }
3795 
3796 static struct jsegdep *
3797 newjsegdep(struct worklist *wk)
3798 {
3799 	struct jsegdep *jsegdep;
3800 
3801 	jsegdep = malloc(sizeof(*jsegdep), M_JSEGDEP, M_SOFTDEP_FLAGS);
3802 	workitem_alloc(&jsegdep->jd_list, D_JSEGDEP, wk->wk_mp);
3803 	jsegdep->jd_seg = NULL;
3804 
3805 	return (jsegdep);
3806 }
3807 
3808 static struct jmvref *
3809 newjmvref(dp, ino, oldoff, newoff)
3810 	struct inode *dp;
3811 	ino_t ino;
3812 	off_t oldoff;
3813 	off_t newoff;
3814 {
3815 	struct jmvref *jmvref;
3816 
3817 	jmvref = malloc(sizeof(*jmvref), M_JMVREF, M_SOFTDEP_FLAGS);
3818 	workitem_alloc(&jmvref->jm_list, D_JMVREF, UFSTOVFS(dp->i_ump));
3819 	jmvref->jm_list.wk_state = ATTACHED | DEPCOMPLETE;
3820 	jmvref->jm_parent = dp->i_number;
3821 	jmvref->jm_ino = ino;
3822 	jmvref->jm_oldoff = oldoff;
3823 	jmvref->jm_newoff = newoff;
3824 
3825 	return (jmvref);
3826 }
3827 
3828 /*
3829  * Allocate a new jremref that tracks the removal of ip from dp with the
3830  * directory entry offset of diroff.  Mark the entry as ATTACHED and
3831  * DEPCOMPLETE as we have all the information required for the journal write
3832  * and the directory has already been removed from the buffer.  The caller
3833  * is responsible for linking the jremref into the pagedep and adding it
3834  * to the journal to write.  The MKDIR_PARENT flag is set if we're doing
3835  * a DOTDOT addition so handle_workitem_remove() can properly assign
3836  * the jsegdep when we're done.
3837  */
3838 static struct jremref *
3839 newjremref(struct dirrem *dirrem, struct inode *dp, struct inode *ip,
3840     off_t diroff, nlink_t nlink)
3841 {
3842 	struct jremref *jremref;
3843 
3844 	jremref = malloc(sizeof(*jremref), M_JREMREF, M_SOFTDEP_FLAGS);
3845 	workitem_alloc(&jremref->jr_list, D_JREMREF, UFSTOVFS(dp->i_ump));
3846 	jremref->jr_state = ATTACHED;
3847 	newinoref(&jremref->jr_ref, ip->i_number, dp->i_number, diroff,
3848 	   nlink, ip->i_mode);
3849 	jremref->jr_dirrem = dirrem;
3850 
3851 	return (jremref);
3852 }
3853 
3854 static inline void
3855 newinoref(struct inoref *inoref, ino_t ino, ino_t parent, off_t diroff,
3856     nlink_t nlink, uint16_t mode)
3857 {
3858 
3859 	inoref->if_jsegdep = newjsegdep(&inoref->if_list);
3860 	inoref->if_diroff = diroff;
3861 	inoref->if_ino = ino;
3862 	inoref->if_parent = parent;
3863 	inoref->if_nlink = nlink;
3864 	inoref->if_mode = mode;
3865 }
3866 
3867 /*
3868  * Allocate a new jaddref to track the addition of ino to dp at diroff.  The
3869  * directory offset may not be known until later.  The caller is responsible
3870  * adding the entry to the journal when this information is available.  nlink
3871  * should be the link count prior to the addition and mode is only required
3872  * to have the correct FMT.
3873  */
3874 static struct jaddref *
3875 newjaddref(struct inode *dp, ino_t ino, off_t diroff, int16_t nlink,
3876     uint16_t mode)
3877 {
3878 	struct jaddref *jaddref;
3879 
3880 	jaddref = malloc(sizeof(*jaddref), M_JADDREF, M_SOFTDEP_FLAGS);
3881 	workitem_alloc(&jaddref->ja_list, D_JADDREF, UFSTOVFS(dp->i_ump));
3882 	jaddref->ja_state = ATTACHED;
3883 	jaddref->ja_mkdir = NULL;
3884 	newinoref(&jaddref->ja_ref, ino, dp->i_number, diroff, nlink, mode);
3885 
3886 	return (jaddref);
3887 }
3888 
3889 /*
3890  * Create a new free dependency for a freework.  The caller is responsible
3891  * for adjusting the reference count when it has the lock held.  The freedep
3892  * will track an outstanding bitmap write that will ultimately clear the
3893  * freework to continue.
3894  */
3895 static struct freedep *
3896 newfreedep(struct freework *freework)
3897 {
3898 	struct freedep *freedep;
3899 
3900 	freedep = malloc(sizeof(*freedep), M_FREEDEP, M_SOFTDEP_FLAGS);
3901 	workitem_alloc(&freedep->fd_list, D_FREEDEP, freework->fw_list.wk_mp);
3902 	freedep->fd_freework = freework;
3903 
3904 	return (freedep);
3905 }
3906 
3907 /*
3908  * Free a freedep structure once the buffer it is linked to is written.  If
3909  * this is the last reference to the freework schedule it for completion.
3910  */
3911 static void
3912 free_freedep(freedep)
3913 	struct freedep *freedep;
3914 {
3915 	struct freework *freework;
3916 
3917 	freework = freedep->fd_freework;
3918 	freework->fw_freeblks->fb_cgwait--;
3919 	if (--freework->fw_ref == 0)
3920 		freework_enqueue(freework);
3921 	WORKITEM_FREE(freedep, D_FREEDEP);
3922 }
3923 
3924 /*
3925  * Allocate a new freework structure that may be a level in an indirect
3926  * when parent is not NULL or a top level block when it is.  The top level
3927  * freework structures are allocated without lk held and before the freeblks
3928  * is visible outside of softdep_setup_freeblocks().
3929  */
3930 static struct freework *
3931 newfreework(ump, freeblks, parent, lbn, nb, frags, off, journal)
3932 	struct ufsmount *ump;
3933 	struct freeblks *freeblks;
3934 	struct freework *parent;
3935 	ufs_lbn_t lbn;
3936 	ufs2_daddr_t nb;
3937 	int frags;
3938 	int off;
3939 	int journal;
3940 {
3941 	struct freework *freework;
3942 
3943 	freework = malloc(sizeof(*freework), M_FREEWORK, M_SOFTDEP_FLAGS);
3944 	workitem_alloc(&freework->fw_list, D_FREEWORK, freeblks->fb_list.wk_mp);
3945 	freework->fw_state = ATTACHED;
3946 	freework->fw_jnewblk = NULL;
3947 	freework->fw_freeblks = freeblks;
3948 	freework->fw_parent = parent;
3949 	freework->fw_lbn = lbn;
3950 	freework->fw_blkno = nb;
3951 	freework->fw_frags = frags;
3952 	freework->fw_indir = NULL;
3953 	freework->fw_ref = (MOUNTEDSUJ(UFSTOVFS(ump)) == 0 || lbn >= -NXADDR)
3954 		? 0 : NINDIR(ump->um_fs) + 1;
3955 	freework->fw_start = freework->fw_off = off;
3956 	if (journal)
3957 		newjfreeblk(freeblks, lbn, nb, frags);
3958 	if (parent == NULL) {
3959 		ACQUIRE_LOCK(&lk);
3960 		WORKLIST_INSERT(&freeblks->fb_freeworkhd, &freework->fw_list);
3961 		freeblks->fb_ref++;
3962 		FREE_LOCK(&lk);
3963 	}
3964 
3965 	return (freework);
3966 }
3967 
3968 /*
3969  * Eliminate a jfreeblk for a block that does not need journaling.
3970  */
3971 static void
3972 cancel_jfreeblk(freeblks, blkno)
3973 	struct freeblks *freeblks;
3974 	ufs2_daddr_t blkno;
3975 {
3976 	struct jfreeblk *jfreeblk;
3977 	struct jblkdep *jblkdep;
3978 
3979 	LIST_FOREACH(jblkdep, &freeblks->fb_jblkdephd, jb_deps) {
3980 		if (jblkdep->jb_list.wk_type != D_JFREEBLK)
3981 			continue;
3982 		jfreeblk = WK_JFREEBLK(&jblkdep->jb_list);
3983 		if (jfreeblk->jf_blkno == blkno)
3984 			break;
3985 	}
3986 	if (jblkdep == NULL)
3987 		return;
3988 	CTR1(KTR_SUJ, "cancel_jfreeblk: blkno %jd", blkno);
3989 	free_jsegdep(jblkdep->jb_jsegdep);
3990 	LIST_REMOVE(jblkdep, jb_deps);
3991 	WORKITEM_FREE(jfreeblk, D_JFREEBLK);
3992 }
3993 
3994 /*
3995  * Allocate a new jfreeblk to journal top level block pointer when truncating
3996  * a file.  The caller must add this to the worklist when lk is held.
3997  */
3998 static struct jfreeblk *
3999 newjfreeblk(freeblks, lbn, blkno, frags)
4000 	struct freeblks *freeblks;
4001 	ufs_lbn_t lbn;
4002 	ufs2_daddr_t blkno;
4003 	int frags;
4004 {
4005 	struct jfreeblk *jfreeblk;
4006 
4007 	jfreeblk = malloc(sizeof(*jfreeblk), M_JFREEBLK, M_SOFTDEP_FLAGS);
4008 	workitem_alloc(&jfreeblk->jf_dep.jb_list, D_JFREEBLK,
4009 	    freeblks->fb_list.wk_mp);
4010 	jfreeblk->jf_dep.jb_jsegdep = newjsegdep(&jfreeblk->jf_dep.jb_list);
4011 	jfreeblk->jf_dep.jb_freeblks = freeblks;
4012 	jfreeblk->jf_ino = freeblks->fb_inum;
4013 	jfreeblk->jf_lbn = lbn;
4014 	jfreeblk->jf_blkno = blkno;
4015 	jfreeblk->jf_frags = frags;
4016 	LIST_INSERT_HEAD(&freeblks->fb_jblkdephd, &jfreeblk->jf_dep, jb_deps);
4017 
4018 	return (jfreeblk);
4019 }
4020 
4021 /*
4022  * Allocate a new jtrunc to track a partial truncation.
4023  */
4024 static struct jtrunc *
4025 newjtrunc(freeblks, size, extsize)
4026 	struct freeblks *freeblks;
4027 	off_t size;
4028 	int extsize;
4029 {
4030 	struct jtrunc *jtrunc;
4031 
4032 	jtrunc = malloc(sizeof(*jtrunc), M_JTRUNC, M_SOFTDEP_FLAGS);
4033 	workitem_alloc(&jtrunc->jt_dep.jb_list, D_JTRUNC,
4034 	    freeblks->fb_list.wk_mp);
4035 	jtrunc->jt_dep.jb_jsegdep = newjsegdep(&jtrunc->jt_dep.jb_list);
4036 	jtrunc->jt_dep.jb_freeblks = freeblks;
4037 	jtrunc->jt_ino = freeblks->fb_inum;
4038 	jtrunc->jt_size = size;
4039 	jtrunc->jt_extsize = extsize;
4040 	LIST_INSERT_HEAD(&freeblks->fb_jblkdephd, &jtrunc->jt_dep, jb_deps);
4041 
4042 	return (jtrunc);
4043 }
4044 
4045 /*
4046  * If we're canceling a new bitmap we have to search for another ref
4047  * to move into the bmsafemap dep.  This might be better expressed
4048  * with another structure.
4049  */
4050 static void
4051 move_newblock_dep(jaddref, inodedep)
4052 	struct jaddref *jaddref;
4053 	struct inodedep *inodedep;
4054 {
4055 	struct inoref *inoref;
4056 	struct jaddref *jaddrefn;
4057 
4058 	jaddrefn = NULL;
4059 	for (inoref = TAILQ_NEXT(&jaddref->ja_ref, if_deps); inoref;
4060 	    inoref = TAILQ_NEXT(inoref, if_deps)) {
4061 		if ((jaddref->ja_state & NEWBLOCK) &&
4062 		    inoref->if_list.wk_type == D_JADDREF) {
4063 			jaddrefn = (struct jaddref *)inoref;
4064 			break;
4065 		}
4066 	}
4067 	if (jaddrefn == NULL)
4068 		return;
4069 	jaddrefn->ja_state &= ~(ATTACHED | UNDONE);
4070 	jaddrefn->ja_state |= jaddref->ja_state &
4071 	    (ATTACHED | UNDONE | NEWBLOCK);
4072 	jaddref->ja_state &= ~(ATTACHED | UNDONE | NEWBLOCK);
4073 	jaddref->ja_state |= ATTACHED;
4074 	LIST_REMOVE(jaddref, ja_bmdeps);
4075 	LIST_INSERT_HEAD(&inodedep->id_bmsafemap->sm_jaddrefhd, jaddrefn,
4076 	    ja_bmdeps);
4077 }
4078 
4079 /*
4080  * Cancel a jaddref either before it has been written or while it is being
4081  * written.  This happens when a link is removed before the add reaches
4082  * the disk.  The jaddref dependency is kept linked into the bmsafemap
4083  * and inode to prevent the link count or bitmap from reaching the disk
4084  * until handle_workitem_remove() re-adjusts the counts and bitmaps as
4085  * required.
4086  *
4087  * Returns 1 if the canceled addref requires journaling of the remove and
4088  * 0 otherwise.
4089  */
4090 static int
4091 cancel_jaddref(jaddref, inodedep, wkhd)
4092 	struct jaddref *jaddref;
4093 	struct inodedep *inodedep;
4094 	struct workhead *wkhd;
4095 {
4096 	struct inoref *inoref;
4097 	struct jsegdep *jsegdep;
4098 	int needsj;
4099 
4100 	KASSERT((jaddref->ja_state & COMPLETE) == 0,
4101 	    ("cancel_jaddref: Canceling complete jaddref"));
4102 	if (jaddref->ja_state & (INPROGRESS | COMPLETE))
4103 		needsj = 1;
4104 	else
4105 		needsj = 0;
4106 	if (inodedep == NULL)
4107 		if (inodedep_lookup(jaddref->ja_list.wk_mp, jaddref->ja_ino,
4108 		    0, &inodedep) == 0)
4109 			panic("cancel_jaddref: Lost inodedep");
4110 	/*
4111 	 * We must adjust the nlink of any reference operation that follows
4112 	 * us so that it is consistent with the in-memory reference.  This
4113 	 * ensures that inode nlink rollbacks always have the correct link.
4114 	 */
4115 	if (needsj == 0) {
4116 		for (inoref = TAILQ_NEXT(&jaddref->ja_ref, if_deps); inoref;
4117 		    inoref = TAILQ_NEXT(inoref, if_deps)) {
4118 			if (inoref->if_state & GOINGAWAY)
4119 				break;
4120 			inoref->if_nlink--;
4121 		}
4122 	}
4123 	jsegdep = inoref_jseg(&jaddref->ja_ref);
4124 	if (jaddref->ja_state & NEWBLOCK)
4125 		move_newblock_dep(jaddref, inodedep);
4126 	wake_worklist(&jaddref->ja_list);
4127 	jaddref->ja_mkdir = NULL;
4128 	if (jaddref->ja_state & INPROGRESS) {
4129 		jaddref->ja_state &= ~INPROGRESS;
4130 		WORKLIST_REMOVE(&jaddref->ja_list);
4131 		jwork_insert(wkhd, jsegdep);
4132 	} else {
4133 		free_jsegdep(jsegdep);
4134 		if (jaddref->ja_state & DEPCOMPLETE)
4135 			remove_from_journal(&jaddref->ja_list);
4136 	}
4137 	jaddref->ja_state |= (GOINGAWAY | DEPCOMPLETE);
4138 	/*
4139 	 * Leave NEWBLOCK jaddrefs on the inodedep so handle_workitem_remove
4140 	 * can arrange for them to be freed with the bitmap.  Otherwise we
4141 	 * no longer need this addref attached to the inoreflst and it
4142 	 * will incorrectly adjust nlink if we leave it.
4143 	 */
4144 	if ((jaddref->ja_state & NEWBLOCK) == 0) {
4145 		TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref,
4146 		    if_deps);
4147 		jaddref->ja_state |= COMPLETE;
4148 		free_jaddref(jaddref);
4149 		return (needsj);
4150 	}
4151 	/*
4152 	 * Leave the head of the list for jsegdeps for fast merging.
4153 	 */
4154 	if (LIST_FIRST(wkhd) != NULL) {
4155 		jaddref->ja_state |= ONWORKLIST;
4156 		LIST_INSERT_AFTER(LIST_FIRST(wkhd), &jaddref->ja_list, wk_list);
4157 	} else
4158 		WORKLIST_INSERT(wkhd, &jaddref->ja_list);
4159 
4160 	return (needsj);
4161 }
4162 
4163 /*
4164  * Attempt to free a jaddref structure when some work completes.  This
4165  * should only succeed once the entry is written and all dependencies have
4166  * been notified.
4167  */
4168 static void
4169 free_jaddref(jaddref)
4170 	struct jaddref *jaddref;
4171 {
4172 
4173 	if ((jaddref->ja_state & ALLCOMPLETE) != ALLCOMPLETE)
4174 		return;
4175 	if (jaddref->ja_ref.if_jsegdep)
4176 		panic("free_jaddref: segdep attached to jaddref %p(0x%X)\n",
4177 		    jaddref, jaddref->ja_state);
4178 	if (jaddref->ja_state & NEWBLOCK)
4179 		LIST_REMOVE(jaddref, ja_bmdeps);
4180 	if (jaddref->ja_state & (INPROGRESS | ONWORKLIST))
4181 		panic("free_jaddref: Bad state %p(0x%X)",
4182 		    jaddref, jaddref->ja_state);
4183 	if (jaddref->ja_mkdir != NULL)
4184 		panic("free_jaddref: Work pending, 0x%X\n", jaddref->ja_state);
4185 	WORKITEM_FREE(jaddref, D_JADDREF);
4186 }
4187 
4188 /*
4189  * Free a jremref structure once it has been written or discarded.
4190  */
4191 static void
4192 free_jremref(jremref)
4193 	struct jremref *jremref;
4194 {
4195 
4196 	if (jremref->jr_ref.if_jsegdep)
4197 		free_jsegdep(jremref->jr_ref.if_jsegdep);
4198 	if (jremref->jr_state & INPROGRESS)
4199 		panic("free_jremref: IO still pending");
4200 	WORKITEM_FREE(jremref, D_JREMREF);
4201 }
4202 
4203 /*
4204  * Free a jnewblk structure.
4205  */
4206 static void
4207 free_jnewblk(jnewblk)
4208 	struct jnewblk *jnewblk;
4209 {
4210 
4211 	if ((jnewblk->jn_state & ALLCOMPLETE) != ALLCOMPLETE)
4212 		return;
4213 	LIST_REMOVE(jnewblk, jn_deps);
4214 	if (jnewblk->jn_dep != NULL)
4215 		panic("free_jnewblk: Dependency still attached.");
4216 	WORKITEM_FREE(jnewblk, D_JNEWBLK);
4217 }
4218 
4219 /*
4220  * Cancel a jnewblk which has been been made redundant by frag extension.
4221  */
4222 static void
4223 cancel_jnewblk(jnewblk, wkhd)
4224 	struct jnewblk *jnewblk;
4225 	struct workhead *wkhd;
4226 {
4227 	struct jsegdep *jsegdep;
4228 
4229 	CTR1(KTR_SUJ, "cancel_jnewblk: blkno %jd", jnewblk->jn_blkno);
4230 	jsegdep = jnewblk->jn_jsegdep;
4231 	if (jnewblk->jn_jsegdep == NULL || jnewblk->jn_dep == NULL)
4232 		panic("cancel_jnewblk: Invalid state");
4233 	jnewblk->jn_jsegdep  = NULL;
4234 	jnewblk->jn_dep = NULL;
4235 	jnewblk->jn_state |= GOINGAWAY;
4236 	if (jnewblk->jn_state & INPROGRESS) {
4237 		jnewblk->jn_state &= ~INPROGRESS;
4238 		WORKLIST_REMOVE(&jnewblk->jn_list);
4239 		jwork_insert(wkhd, jsegdep);
4240 	} else {
4241 		free_jsegdep(jsegdep);
4242 		remove_from_journal(&jnewblk->jn_list);
4243 	}
4244 	wake_worklist(&jnewblk->jn_list);
4245 	WORKLIST_INSERT(wkhd, &jnewblk->jn_list);
4246 }
4247 
4248 static void
4249 free_jblkdep(jblkdep)
4250 	struct jblkdep *jblkdep;
4251 {
4252 
4253 	if (jblkdep->jb_list.wk_type == D_JFREEBLK)
4254 		WORKITEM_FREE(jblkdep, D_JFREEBLK);
4255 	else if (jblkdep->jb_list.wk_type == D_JTRUNC)
4256 		WORKITEM_FREE(jblkdep, D_JTRUNC);
4257 	else
4258 		panic("free_jblkdep: Unexpected type %s",
4259 		    TYPENAME(jblkdep->jb_list.wk_type));
4260 }
4261 
4262 /*
4263  * Free a single jseg once it is no longer referenced in memory or on
4264  * disk.  Reclaim journal blocks and dependencies waiting for the segment
4265  * to disappear.
4266  */
4267 static void
4268 free_jseg(jseg, jblocks)
4269 	struct jseg *jseg;
4270 	struct jblocks *jblocks;
4271 {
4272 	struct freework *freework;
4273 
4274 	/*
4275 	 * Free freework structures that were lingering to indicate freed
4276 	 * indirect blocks that forced journal write ordering on reallocate.
4277 	 */
4278 	while ((freework = LIST_FIRST(&jseg->js_indirs)) != NULL)
4279 		indirblk_remove(freework);
4280 	if (jblocks->jb_oldestseg == jseg)
4281 		jblocks->jb_oldestseg = TAILQ_NEXT(jseg, js_next);
4282 	TAILQ_REMOVE(&jblocks->jb_segs, jseg, js_next);
4283 	jblocks_free(jblocks, jseg->js_list.wk_mp, jseg->js_size);
4284 	KASSERT(LIST_EMPTY(&jseg->js_entries),
4285 	    ("free_jseg: Freed jseg has valid entries."));
4286 	WORKITEM_FREE(jseg, D_JSEG);
4287 }
4288 
4289 /*
4290  * Free all jsegs that meet the criteria for being reclaimed and update
4291  * oldestseg.
4292  */
4293 static void
4294 free_jsegs(jblocks)
4295 	struct jblocks *jblocks;
4296 {
4297 	struct jseg *jseg;
4298 
4299 	/*
4300 	 * Free only those jsegs which have none allocated before them to
4301 	 * preserve the journal space ordering.
4302 	 */
4303 	while ((jseg = TAILQ_FIRST(&jblocks->jb_segs)) != NULL) {
4304 		/*
4305 		 * Only reclaim space when nothing depends on this journal
4306 		 * set and another set has written that it is no longer
4307 		 * valid.
4308 		 */
4309 		if (jseg->js_refs != 0) {
4310 			jblocks->jb_oldestseg = jseg;
4311 			return;
4312 		}
4313 		if ((jseg->js_state & ALLCOMPLETE) != ALLCOMPLETE)
4314 			break;
4315 		if (jseg->js_seq > jblocks->jb_oldestwrseq)
4316 			break;
4317 		/*
4318 		 * We can free jsegs that didn't write entries when
4319 		 * oldestwrseq == js_seq.
4320 		 */
4321 		if (jseg->js_seq == jblocks->jb_oldestwrseq &&
4322 		    jseg->js_cnt != 0)
4323 			break;
4324 		free_jseg(jseg, jblocks);
4325 	}
4326 	/*
4327 	 * If we exited the loop above we still must discover the
4328 	 * oldest valid segment.
4329 	 */
4330 	if (jseg)
4331 		for (jseg = jblocks->jb_oldestseg; jseg != NULL;
4332 		     jseg = TAILQ_NEXT(jseg, js_next))
4333 			if (jseg->js_refs != 0)
4334 				break;
4335 	jblocks->jb_oldestseg = jseg;
4336 	/*
4337 	 * The journal has no valid records but some jsegs may still be
4338 	 * waiting on oldestwrseq to advance.  We force a small record
4339 	 * out to permit these lingering records to be reclaimed.
4340 	 */
4341 	if (jblocks->jb_oldestseg == NULL && !TAILQ_EMPTY(&jblocks->jb_segs))
4342 		jblocks->jb_needseg = 1;
4343 }
4344 
4345 /*
4346  * Release one reference to a jseg and free it if the count reaches 0.  This
4347  * should eventually reclaim journal space as well.
4348  */
4349 static void
4350 rele_jseg(jseg)
4351 	struct jseg *jseg;
4352 {
4353 
4354 	KASSERT(jseg->js_refs > 0,
4355 	    ("free_jseg: Invalid refcnt %d", jseg->js_refs));
4356 	if (--jseg->js_refs != 0)
4357 		return;
4358 	free_jsegs(jseg->js_jblocks);
4359 }
4360 
4361 /*
4362  * Release a jsegdep and decrement the jseg count.
4363  */
4364 static void
4365 free_jsegdep(jsegdep)
4366 	struct jsegdep *jsegdep;
4367 {
4368 
4369 	if (jsegdep->jd_seg)
4370 		rele_jseg(jsegdep->jd_seg);
4371 	WORKITEM_FREE(jsegdep, D_JSEGDEP);
4372 }
4373 
4374 /*
4375  * Wait for a journal item to make it to disk.  Initiate journal processing
4376  * if required.
4377  */
4378 static int
4379 jwait(wk, waitfor)
4380 	struct worklist *wk;
4381 	int waitfor;
4382 {
4383 
4384 	/*
4385 	 * Blocking journal waits cause slow synchronous behavior.  Record
4386 	 * stats on the frequency of these blocking operations.
4387 	 */
4388 	if (waitfor == MNT_WAIT) {
4389 		stat_journal_wait++;
4390 		switch (wk->wk_type) {
4391 		case D_JREMREF:
4392 		case D_JMVREF:
4393 			stat_jwait_filepage++;
4394 			break;
4395 		case D_JTRUNC:
4396 		case D_JFREEBLK:
4397 			stat_jwait_freeblks++;
4398 			break;
4399 		case D_JNEWBLK:
4400 			stat_jwait_newblk++;
4401 			break;
4402 		case D_JADDREF:
4403 			stat_jwait_inode++;
4404 			break;
4405 		default:
4406 			break;
4407 		}
4408 	}
4409 	/*
4410 	 * If IO has not started we process the journal.  We can't mark the
4411 	 * worklist item as IOWAITING because we drop the lock while
4412 	 * processing the journal and the worklist entry may be freed after
4413 	 * this point.  The caller may call back in and re-issue the request.
4414 	 */
4415 	if ((wk->wk_state & INPROGRESS) == 0) {
4416 		softdep_process_journal(wk->wk_mp, wk, waitfor);
4417 		if (waitfor != MNT_WAIT)
4418 			return (EBUSY);
4419 		return (0);
4420 	}
4421 	if (waitfor != MNT_WAIT)
4422 		return (EBUSY);
4423 	wait_worklist(wk, "jwait");
4424 	return (0);
4425 }
4426 
4427 /*
4428  * Lookup an inodedep based on an inode pointer and set the nlinkdelta as
4429  * appropriate.  This is a convenience function to reduce duplicate code
4430  * for the setup and revert functions below.
4431  */
4432 static struct inodedep *
4433 inodedep_lookup_ip(ip)
4434 	struct inode *ip;
4435 {
4436 	struct inodedep *inodedep;
4437 	int dflags;
4438 
4439 	KASSERT(ip->i_nlink >= ip->i_effnlink,
4440 	    ("inodedep_lookup_ip: bad delta"));
4441 	dflags = DEPALLOC;
4442 	if (IS_SNAPSHOT(ip))
4443 		dflags |= NODELAY;
4444 	(void) inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, dflags,
4445 	    &inodedep);
4446 	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
4447 	KASSERT((inodedep->id_state & UNLINKED) == 0, ("inode unlinked"));
4448 
4449 	return (inodedep);
4450 }
4451 
4452 /*
4453  * Called prior to creating a new inode and linking it to a directory.  The
4454  * jaddref structure must already be allocated by softdep_setup_inomapdep
4455  * and it is discovered here so we can initialize the mode and update
4456  * nlinkdelta.
4457  */
4458 void
4459 softdep_setup_create(dp, ip)
4460 	struct inode *dp;
4461 	struct inode *ip;
4462 {
4463 	struct inodedep *inodedep;
4464 	struct jaddref *jaddref;
4465 	struct vnode *dvp;
4466 
4467 	KASSERT(ip->i_nlink == 1,
4468 	    ("softdep_setup_create: Invalid link count."));
4469 	dvp = ITOV(dp);
4470 	ACQUIRE_LOCK(&lk);
4471 	inodedep = inodedep_lookup_ip(ip);
4472 	if (DOINGSUJ(dvp)) {
4473 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4474 		    inoreflst);
4475 		KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number,
4476 		    ("softdep_setup_create: No addref structure present."));
4477 	}
4478 	softdep_prelink(dvp, NULL);
4479 	FREE_LOCK(&lk);
4480 }
4481 
4482 /*
4483  * Create a jaddref structure to track the addition of a DOTDOT link when
4484  * we are reparenting an inode as part of a rename.  This jaddref will be
4485  * found by softdep_setup_directory_change.  Adjusts nlinkdelta for
4486  * non-journaling softdep.
4487  */
4488 void
4489 softdep_setup_dotdot_link(dp, ip)
4490 	struct inode *dp;
4491 	struct inode *ip;
4492 {
4493 	struct inodedep *inodedep;
4494 	struct jaddref *jaddref;
4495 	struct vnode *dvp;
4496 	struct vnode *vp;
4497 
4498 	dvp = ITOV(dp);
4499 	vp = ITOV(ip);
4500 	jaddref = NULL;
4501 	/*
4502 	 * We don't set MKDIR_PARENT as this is not tied to a mkdir and
4503 	 * is used as a normal link would be.
4504 	 */
4505 	if (DOINGSUJ(dvp))
4506 		jaddref = newjaddref(ip, dp->i_number, DOTDOT_OFFSET,
4507 		    dp->i_effnlink - 1, dp->i_mode);
4508 	ACQUIRE_LOCK(&lk);
4509 	inodedep = inodedep_lookup_ip(dp);
4510 	if (jaddref)
4511 		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref,
4512 		    if_deps);
4513 	softdep_prelink(dvp, ITOV(ip));
4514 	FREE_LOCK(&lk);
4515 }
4516 
4517 /*
4518  * Create a jaddref structure to track a new link to an inode.  The directory
4519  * offset is not known until softdep_setup_directory_add or
4520  * softdep_setup_directory_change.  Adjusts nlinkdelta for non-journaling
4521  * softdep.
4522  */
4523 void
4524 softdep_setup_link(dp, ip)
4525 	struct inode *dp;
4526 	struct inode *ip;
4527 {
4528 	struct inodedep *inodedep;
4529 	struct jaddref *jaddref;
4530 	struct vnode *dvp;
4531 
4532 	dvp = ITOV(dp);
4533 	jaddref = NULL;
4534 	if (DOINGSUJ(dvp))
4535 		jaddref = newjaddref(dp, ip->i_number, 0, ip->i_effnlink - 1,
4536 		    ip->i_mode);
4537 	ACQUIRE_LOCK(&lk);
4538 	inodedep = inodedep_lookup_ip(ip);
4539 	if (jaddref)
4540 		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref,
4541 		    if_deps);
4542 	softdep_prelink(dvp, ITOV(ip));
4543 	FREE_LOCK(&lk);
4544 }
4545 
4546 /*
4547  * Called to create the jaddref structures to track . and .. references as
4548  * well as lookup and further initialize the incomplete jaddref created
4549  * by softdep_setup_inomapdep when the inode was allocated.  Adjusts
4550  * nlinkdelta for non-journaling softdep.
4551  */
4552 void
4553 softdep_setup_mkdir(dp, ip)
4554 	struct inode *dp;
4555 	struct inode *ip;
4556 {
4557 	struct inodedep *inodedep;
4558 	struct jaddref *dotdotaddref;
4559 	struct jaddref *dotaddref;
4560 	struct jaddref *jaddref;
4561 	struct vnode *dvp;
4562 
4563 	dvp = ITOV(dp);
4564 	dotaddref = dotdotaddref = NULL;
4565 	if (DOINGSUJ(dvp)) {
4566 		dotaddref = newjaddref(ip, ip->i_number, DOT_OFFSET, 1,
4567 		    ip->i_mode);
4568 		dotaddref->ja_state |= MKDIR_BODY;
4569 		dotdotaddref = newjaddref(ip, dp->i_number, DOTDOT_OFFSET,
4570 		    dp->i_effnlink - 1, dp->i_mode);
4571 		dotdotaddref->ja_state |= MKDIR_PARENT;
4572 	}
4573 	ACQUIRE_LOCK(&lk);
4574 	inodedep = inodedep_lookup_ip(ip);
4575 	if (DOINGSUJ(dvp)) {
4576 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4577 		    inoreflst);
4578 		KASSERT(jaddref != NULL,
4579 		    ("softdep_setup_mkdir: No addref structure present."));
4580 		KASSERT(jaddref->ja_parent == dp->i_number,
4581 		    ("softdep_setup_mkdir: bad parent %ju",
4582 		    (uintmax_t)jaddref->ja_parent));
4583 		TAILQ_INSERT_BEFORE(&jaddref->ja_ref, &dotaddref->ja_ref,
4584 		    if_deps);
4585 	}
4586 	inodedep = inodedep_lookup_ip(dp);
4587 	if (DOINGSUJ(dvp))
4588 		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst,
4589 		    &dotdotaddref->ja_ref, if_deps);
4590 	softdep_prelink(ITOV(dp), NULL);
4591 	FREE_LOCK(&lk);
4592 }
4593 
4594 /*
4595  * Called to track nlinkdelta of the inode and parent directories prior to
4596  * unlinking a directory.
4597  */
4598 void
4599 softdep_setup_rmdir(dp, ip)
4600 	struct inode *dp;
4601 	struct inode *ip;
4602 {
4603 	struct vnode *dvp;
4604 
4605 	dvp = ITOV(dp);
4606 	ACQUIRE_LOCK(&lk);
4607 	(void) inodedep_lookup_ip(ip);
4608 	(void) inodedep_lookup_ip(dp);
4609 	softdep_prelink(dvp, ITOV(ip));
4610 	FREE_LOCK(&lk);
4611 }
4612 
4613 /*
4614  * Called to track nlinkdelta of the inode and parent directories prior to
4615  * unlink.
4616  */
4617 void
4618 softdep_setup_unlink(dp, ip)
4619 	struct inode *dp;
4620 	struct inode *ip;
4621 {
4622 	struct vnode *dvp;
4623 
4624 	dvp = ITOV(dp);
4625 	ACQUIRE_LOCK(&lk);
4626 	(void) inodedep_lookup_ip(ip);
4627 	(void) inodedep_lookup_ip(dp);
4628 	softdep_prelink(dvp, ITOV(ip));
4629 	FREE_LOCK(&lk);
4630 }
4631 
4632 /*
4633  * Called to release the journal structures created by a failed non-directory
4634  * creation.  Adjusts nlinkdelta for non-journaling softdep.
4635  */
4636 void
4637 softdep_revert_create(dp, ip)
4638 	struct inode *dp;
4639 	struct inode *ip;
4640 {
4641 	struct inodedep *inodedep;
4642 	struct jaddref *jaddref;
4643 	struct vnode *dvp;
4644 
4645 	dvp = ITOV(dp);
4646 	ACQUIRE_LOCK(&lk);
4647 	inodedep = inodedep_lookup_ip(ip);
4648 	if (DOINGSUJ(dvp)) {
4649 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4650 		    inoreflst);
4651 		KASSERT(jaddref->ja_parent == dp->i_number,
4652 		    ("softdep_revert_create: addref parent mismatch"));
4653 		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4654 	}
4655 	FREE_LOCK(&lk);
4656 }
4657 
4658 /*
4659  * Called to release the journal structures created by a failed dotdot link
4660  * creation.  Adjusts nlinkdelta for non-journaling softdep.
4661  */
4662 void
4663 softdep_revert_dotdot_link(dp, ip)
4664 	struct inode *dp;
4665 	struct inode *ip;
4666 {
4667 	struct inodedep *inodedep;
4668 	struct jaddref *jaddref;
4669 	struct vnode *dvp;
4670 
4671 	dvp = ITOV(dp);
4672 	ACQUIRE_LOCK(&lk);
4673 	inodedep = inodedep_lookup_ip(dp);
4674 	if (DOINGSUJ(dvp)) {
4675 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4676 		    inoreflst);
4677 		KASSERT(jaddref->ja_parent == ip->i_number,
4678 		    ("softdep_revert_dotdot_link: addref parent mismatch"));
4679 		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4680 	}
4681 	FREE_LOCK(&lk);
4682 }
4683 
4684 /*
4685  * Called to release the journal structures created by a failed link
4686  * addition.  Adjusts nlinkdelta for non-journaling softdep.
4687  */
4688 void
4689 softdep_revert_link(dp, ip)
4690 	struct inode *dp;
4691 	struct inode *ip;
4692 {
4693 	struct inodedep *inodedep;
4694 	struct jaddref *jaddref;
4695 	struct vnode *dvp;
4696 
4697 	dvp = ITOV(dp);
4698 	ACQUIRE_LOCK(&lk);
4699 	inodedep = inodedep_lookup_ip(ip);
4700 	if (DOINGSUJ(dvp)) {
4701 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4702 		    inoreflst);
4703 		KASSERT(jaddref->ja_parent == dp->i_number,
4704 		    ("softdep_revert_link: addref parent mismatch"));
4705 		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4706 	}
4707 	FREE_LOCK(&lk);
4708 }
4709 
4710 /*
4711  * Called to release the journal structures created by a failed mkdir
4712  * attempt.  Adjusts nlinkdelta for non-journaling softdep.
4713  */
4714 void
4715 softdep_revert_mkdir(dp, ip)
4716 	struct inode *dp;
4717 	struct inode *ip;
4718 {
4719 	struct inodedep *inodedep;
4720 	struct jaddref *jaddref;
4721 	struct jaddref *dotaddref;
4722 	struct vnode *dvp;
4723 
4724 	dvp = ITOV(dp);
4725 
4726 	ACQUIRE_LOCK(&lk);
4727 	inodedep = inodedep_lookup_ip(dp);
4728 	if (DOINGSUJ(dvp)) {
4729 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4730 		    inoreflst);
4731 		KASSERT(jaddref->ja_parent == ip->i_number,
4732 		    ("softdep_revert_mkdir: dotdot addref parent mismatch"));
4733 		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4734 	}
4735 	inodedep = inodedep_lookup_ip(ip);
4736 	if (DOINGSUJ(dvp)) {
4737 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4738 		    inoreflst);
4739 		KASSERT(jaddref->ja_parent == dp->i_number,
4740 		    ("softdep_revert_mkdir: addref parent mismatch"));
4741 		dotaddref = (struct jaddref *)TAILQ_PREV(&jaddref->ja_ref,
4742 		    inoreflst, if_deps);
4743 		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4744 		KASSERT(dotaddref->ja_parent == ip->i_number,
4745 		    ("softdep_revert_mkdir: dot addref parent mismatch"));
4746 		cancel_jaddref(dotaddref, inodedep, &inodedep->id_inowait);
4747 	}
4748 	FREE_LOCK(&lk);
4749 }
4750 
4751 /*
4752  * Called to correct nlinkdelta after a failed rmdir.
4753  */
4754 void
4755 softdep_revert_rmdir(dp, ip)
4756 	struct inode *dp;
4757 	struct inode *ip;
4758 {
4759 
4760 	ACQUIRE_LOCK(&lk);
4761 	(void) inodedep_lookup_ip(ip);
4762 	(void) inodedep_lookup_ip(dp);
4763 	FREE_LOCK(&lk);
4764 }
4765 
4766 /*
4767  * Protecting the freemaps (or bitmaps).
4768  *
4769  * To eliminate the need to execute fsck before mounting a filesystem
4770  * after a power failure, one must (conservatively) guarantee that the
4771  * on-disk copy of the bitmaps never indicate that a live inode or block is
4772  * free.  So, when a block or inode is allocated, the bitmap should be
4773  * updated (on disk) before any new pointers.  When a block or inode is
4774  * freed, the bitmap should not be updated until all pointers have been
4775  * reset.  The latter dependency is handled by the delayed de-allocation
4776  * approach described below for block and inode de-allocation.  The former
4777  * dependency is handled by calling the following procedure when a block or
4778  * inode is allocated. When an inode is allocated an "inodedep" is created
4779  * with its DEPCOMPLETE flag cleared until its bitmap is written to disk.
4780  * Each "inodedep" is also inserted into the hash indexing structure so
4781  * that any additional link additions can be made dependent on the inode
4782  * allocation.
4783  *
4784  * The ufs filesystem maintains a number of free block counts (e.g., per
4785  * cylinder group, per cylinder and per <cylinder, rotational position> pair)
4786  * in addition to the bitmaps.  These counts are used to improve efficiency
4787  * during allocation and therefore must be consistent with the bitmaps.
4788  * There is no convenient way to guarantee post-crash consistency of these
4789  * counts with simple update ordering, for two main reasons: (1) The counts
4790  * and bitmaps for a single cylinder group block are not in the same disk
4791  * sector.  If a disk write is interrupted (e.g., by power failure), one may
4792  * be written and the other not.  (2) Some of the counts are located in the
4793  * superblock rather than the cylinder group block. So, we focus our soft
4794  * updates implementation on protecting the bitmaps. When mounting a
4795  * filesystem, we recompute the auxiliary counts from the bitmaps.
4796  */
4797 
4798 /*
4799  * Called just after updating the cylinder group block to allocate an inode.
4800  */
4801 void
4802 softdep_setup_inomapdep(bp, ip, newinum, mode)
4803 	struct buf *bp;		/* buffer for cylgroup block with inode map */
4804 	struct inode *ip;	/* inode related to allocation */
4805 	ino_t newinum;		/* new inode number being allocated */
4806 	int mode;
4807 {
4808 	struct inodedep *inodedep;
4809 	struct bmsafemap *bmsafemap;
4810 	struct jaddref *jaddref;
4811 	struct mount *mp;
4812 	struct fs *fs;
4813 
4814 	mp = UFSTOVFS(ip->i_ump);
4815 	fs = ip->i_ump->um_fs;
4816 	jaddref = NULL;
4817 
4818 	/*
4819 	 * Allocate the journal reference add structure so that the bitmap
4820 	 * can be dependent on it.
4821 	 */
4822 	if (MOUNTEDSUJ(mp)) {
4823 		jaddref = newjaddref(ip, newinum, 0, 0, mode);
4824 		jaddref->ja_state |= NEWBLOCK;
4825 	}
4826 
4827 	/*
4828 	 * Create a dependency for the newly allocated inode.
4829 	 * Panic if it already exists as something is seriously wrong.
4830 	 * Otherwise add it to the dependency list for the buffer holding
4831 	 * the cylinder group map from which it was allocated.
4832 	 *
4833 	 * We have to preallocate a bmsafemap entry in case it is needed
4834 	 * in bmsafemap_lookup since once we allocate the inodedep, we
4835 	 * have to finish initializing it before we can FREE_LOCK().
4836 	 * By preallocating, we avoid FREE_LOCK() while doing a malloc
4837 	 * in bmsafemap_lookup. We cannot call bmsafemap_lookup before
4838 	 * creating the inodedep as it can be freed during the time
4839 	 * that we FREE_LOCK() while allocating the inodedep. We must
4840 	 * call workitem_alloc() before entering the locked section as
4841 	 * it also acquires the lock and we must avoid trying doing so
4842 	 * recursively.
4843 	 */
4844 	bmsafemap = malloc(sizeof(struct bmsafemap),
4845 	    M_BMSAFEMAP, M_SOFTDEP_FLAGS);
4846 	workitem_alloc(&bmsafemap->sm_list, D_BMSAFEMAP, mp);
4847 	ACQUIRE_LOCK(&lk);
4848 	if ((inodedep_lookup(mp, newinum, DEPALLOC | NODELAY, &inodedep)))
4849 		panic("softdep_setup_inomapdep: dependency %p for new"
4850 		    "inode already exists", inodedep);
4851 	bmsafemap = bmsafemap_lookup(mp, bp, ino_to_cg(fs, newinum), bmsafemap);
4852 	if (jaddref) {
4853 		LIST_INSERT_HEAD(&bmsafemap->sm_jaddrefhd, jaddref, ja_bmdeps);
4854 		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref,
4855 		    if_deps);
4856 	} else {
4857 		inodedep->id_state |= ONDEPLIST;
4858 		LIST_INSERT_HEAD(&bmsafemap->sm_inodedephd, inodedep, id_deps);
4859 	}
4860 	inodedep->id_bmsafemap = bmsafemap;
4861 	inodedep->id_state &= ~DEPCOMPLETE;
4862 	FREE_LOCK(&lk);
4863 }
4864 
4865 /*
4866  * Called just after updating the cylinder group block to
4867  * allocate block or fragment.
4868  */
4869 void
4870 softdep_setup_blkmapdep(bp, mp, newblkno, frags, oldfrags)
4871 	struct buf *bp;		/* buffer for cylgroup block with block map */
4872 	struct mount *mp;	/* filesystem doing allocation */
4873 	ufs2_daddr_t newblkno;	/* number of newly allocated block */
4874 	int frags;		/* Number of fragments. */
4875 	int oldfrags;		/* Previous number of fragments for extend. */
4876 {
4877 	struct newblk *newblk;
4878 	struct bmsafemap *bmsafemap;
4879 	struct jnewblk *jnewblk;
4880 	struct fs *fs;
4881 
4882 	fs = VFSTOUFS(mp)->um_fs;
4883 	jnewblk = NULL;
4884 	/*
4885 	 * Create a dependency for the newly allocated block.
4886 	 * Add it to the dependency list for the buffer holding
4887 	 * the cylinder group map from which it was allocated.
4888 	 */
4889 	if (MOUNTEDSUJ(mp)) {
4890 		jnewblk = malloc(sizeof(*jnewblk), M_JNEWBLK, M_SOFTDEP_FLAGS);
4891 		workitem_alloc(&jnewblk->jn_list, D_JNEWBLK, mp);
4892 		jnewblk->jn_jsegdep = newjsegdep(&jnewblk->jn_list);
4893 		jnewblk->jn_state = ATTACHED;
4894 		jnewblk->jn_blkno = newblkno;
4895 		jnewblk->jn_frags = frags;
4896 		jnewblk->jn_oldfrags = oldfrags;
4897 #ifdef SUJ_DEBUG
4898 		{
4899 			struct cg *cgp;
4900 			uint8_t *blksfree;
4901 			long bno;
4902 			int i;
4903 
4904 			cgp = (struct cg *)bp->b_data;
4905 			blksfree = cg_blksfree(cgp);
4906 			bno = dtogd(fs, jnewblk->jn_blkno);
4907 			for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags;
4908 			    i++) {
4909 				if (isset(blksfree, bno + i))
4910 					panic("softdep_setup_blkmapdep: "
4911 					    "free fragment %d from %d-%d "
4912 					    "state 0x%X dep %p", i,
4913 					    jnewblk->jn_oldfrags,
4914 					    jnewblk->jn_frags,
4915 					    jnewblk->jn_state,
4916 					    jnewblk->jn_dep);
4917 			}
4918 		}
4919 #endif
4920 	}
4921 
4922 	CTR3(KTR_SUJ,
4923 	    "softdep_setup_blkmapdep: blkno %jd frags %d oldfrags %d",
4924 	    newblkno, frags, oldfrags);
4925 	ACQUIRE_LOCK(&lk);
4926 	if (newblk_lookup(mp, newblkno, DEPALLOC, &newblk) != 0)
4927 		panic("softdep_setup_blkmapdep: found block");
4928 	newblk->nb_bmsafemap = bmsafemap = bmsafemap_lookup(mp, bp,
4929 	    dtog(fs, newblkno), NULL);
4930 	if (jnewblk) {
4931 		jnewblk->jn_dep = (struct worklist *)newblk;
4932 		LIST_INSERT_HEAD(&bmsafemap->sm_jnewblkhd, jnewblk, jn_deps);
4933 	} else {
4934 		newblk->nb_state |= ONDEPLIST;
4935 		LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, nb_deps);
4936 	}
4937 	newblk->nb_bmsafemap = bmsafemap;
4938 	newblk->nb_jnewblk = jnewblk;
4939 	FREE_LOCK(&lk);
4940 }
4941 
4942 #define	BMSAFEMAP_HASH(fs, cg) \
4943       (&bmsafemap_hashtbl[((((register_t)(fs)) >> 13) + (cg)) & bmsafemap_hash])
4944 
4945 static int
4946 bmsafemap_find(bmsafemaphd, mp, cg, bmsafemapp)
4947 	struct bmsafemap_hashhead *bmsafemaphd;
4948 	struct mount *mp;
4949 	int cg;
4950 	struct bmsafemap **bmsafemapp;
4951 {
4952 	struct bmsafemap *bmsafemap;
4953 
4954 	LIST_FOREACH(bmsafemap, bmsafemaphd, sm_hash)
4955 		if (bmsafemap->sm_list.wk_mp == mp && bmsafemap->sm_cg == cg)
4956 			break;
4957 	if (bmsafemap) {
4958 		*bmsafemapp = bmsafemap;
4959 		return (1);
4960 	}
4961 	*bmsafemapp = NULL;
4962 
4963 	return (0);
4964 }
4965 
4966 /*
4967  * Find the bmsafemap associated with a cylinder group buffer.
4968  * If none exists, create one. The buffer must be locked when
4969  * this routine is called and this routine must be called with
4970  * the softdep lock held. To avoid giving up the lock while
4971  * allocating a new bmsafemap, a preallocated bmsafemap may be
4972  * provided. If it is provided but not needed, it is freed.
4973  */
4974 static struct bmsafemap *
4975 bmsafemap_lookup(mp, bp, cg, newbmsafemap)
4976 	struct mount *mp;
4977 	struct buf *bp;
4978 	int cg;
4979 	struct bmsafemap *newbmsafemap;
4980 {
4981 	struct bmsafemap_hashhead *bmsafemaphd;
4982 	struct bmsafemap *bmsafemap, *collision;
4983 	struct worklist *wk;
4984 	struct fs *fs;
4985 
4986 	mtx_assert(&lk, MA_OWNED);
4987 	if (bp)
4988 		LIST_FOREACH(wk, &bp->b_dep, wk_list)
4989 			if (wk->wk_type == D_BMSAFEMAP) {
4990 				if (newbmsafemap)
4991 					WORKITEM_FREE(newbmsafemap,D_BMSAFEMAP);
4992 				return (WK_BMSAFEMAP(wk));
4993 			}
4994 	fs = VFSTOUFS(mp)->um_fs;
4995 	bmsafemaphd = BMSAFEMAP_HASH(fs, cg);
4996 	if (bmsafemap_find(bmsafemaphd, mp, cg, &bmsafemap) == 1) {
4997 		if (newbmsafemap)
4998 			WORKITEM_FREE(newbmsafemap, D_BMSAFEMAP);
4999 		return (bmsafemap);
5000 	}
5001 	if (newbmsafemap) {
5002 		bmsafemap = newbmsafemap;
5003 	} else {
5004 		FREE_LOCK(&lk);
5005 		bmsafemap = malloc(sizeof(struct bmsafemap),
5006 			M_BMSAFEMAP, M_SOFTDEP_FLAGS);
5007 		workitem_alloc(&bmsafemap->sm_list, D_BMSAFEMAP, mp);
5008 		ACQUIRE_LOCK(&lk);
5009 	}
5010 	bmsafemap->sm_buf = bp;
5011 	LIST_INIT(&bmsafemap->sm_inodedephd);
5012 	LIST_INIT(&bmsafemap->sm_inodedepwr);
5013 	LIST_INIT(&bmsafemap->sm_newblkhd);
5014 	LIST_INIT(&bmsafemap->sm_newblkwr);
5015 	LIST_INIT(&bmsafemap->sm_jaddrefhd);
5016 	LIST_INIT(&bmsafemap->sm_jnewblkhd);
5017 	LIST_INIT(&bmsafemap->sm_freehd);
5018 	LIST_INIT(&bmsafemap->sm_freewr);
5019 	if (bmsafemap_find(bmsafemaphd, mp, cg, &collision) == 1) {
5020 		WORKITEM_FREE(bmsafemap, D_BMSAFEMAP);
5021 		return (collision);
5022 	}
5023 	bmsafemap->sm_cg = cg;
5024 	LIST_INSERT_HEAD(bmsafemaphd, bmsafemap, sm_hash);
5025 	LIST_INSERT_HEAD(&VFSTOUFS(mp)->softdep_dirtycg, bmsafemap, sm_next);
5026 	WORKLIST_INSERT(&bp->b_dep, &bmsafemap->sm_list);
5027 	return (bmsafemap);
5028 }
5029 
5030 /*
5031  * Direct block allocation dependencies.
5032  *
5033  * When a new block is allocated, the corresponding disk locations must be
5034  * initialized (with zeros or new data) before the on-disk inode points to
5035  * them.  Also, the freemap from which the block was allocated must be
5036  * updated (on disk) before the inode's pointer. These two dependencies are
5037  * independent of each other and are needed for all file blocks and indirect
5038  * blocks that are pointed to directly by the inode.  Just before the
5039  * "in-core" version of the inode is updated with a newly allocated block
5040  * number, a procedure (below) is called to setup allocation dependency
5041  * structures.  These structures are removed when the corresponding
5042  * dependencies are satisfied or when the block allocation becomes obsolete
5043  * (i.e., the file is deleted, the block is de-allocated, or the block is a
5044  * fragment that gets upgraded).  All of these cases are handled in
5045  * procedures described later.
5046  *
5047  * When a file extension causes a fragment to be upgraded, either to a larger
5048  * fragment or to a full block, the on-disk location may change (if the
5049  * previous fragment could not simply be extended). In this case, the old
5050  * fragment must be de-allocated, but not until after the inode's pointer has
5051  * been updated. In most cases, this is handled by later procedures, which
5052  * will construct a "freefrag" structure to be added to the workitem queue
5053  * when the inode update is complete (or obsolete).  The main exception to
5054  * this is when an allocation occurs while a pending allocation dependency
5055  * (for the same block pointer) remains.  This case is handled in the main
5056  * allocation dependency setup procedure by immediately freeing the
5057  * unreferenced fragments.
5058  */
5059 void
5060 softdep_setup_allocdirect(ip, off, newblkno, oldblkno, newsize, oldsize, bp)
5061 	struct inode *ip;	/* inode to which block is being added */
5062 	ufs_lbn_t off;		/* block pointer within inode */
5063 	ufs2_daddr_t newblkno;	/* disk block number being added */
5064 	ufs2_daddr_t oldblkno;	/* previous block number, 0 unless frag */
5065 	long newsize;		/* size of new block */
5066 	long oldsize;		/* size of new block */
5067 	struct buf *bp;		/* bp for allocated block */
5068 {
5069 	struct allocdirect *adp, *oldadp;
5070 	struct allocdirectlst *adphead;
5071 	struct freefrag *freefrag;
5072 	struct inodedep *inodedep;
5073 	struct pagedep *pagedep;
5074 	struct jnewblk *jnewblk;
5075 	struct newblk *newblk;
5076 	struct mount *mp;
5077 	ufs_lbn_t lbn;
5078 
5079 	lbn = bp->b_lblkno;
5080 	mp = UFSTOVFS(ip->i_ump);
5081 	if (oldblkno && oldblkno != newblkno)
5082 		freefrag = newfreefrag(ip, oldblkno, oldsize, lbn);
5083 	else
5084 		freefrag = NULL;
5085 
5086 	CTR6(KTR_SUJ,
5087 	    "softdep_setup_allocdirect: ino %d blkno %jd oldblkno %jd "
5088 	    "off %jd newsize %ld oldsize %d",
5089 	    ip->i_number, newblkno, oldblkno, off, newsize, oldsize);
5090 	ACQUIRE_LOCK(&lk);
5091 	if (off >= NDADDR) {
5092 		if (lbn > 0)
5093 			panic("softdep_setup_allocdirect: bad lbn %jd, off %jd",
5094 			    lbn, off);
5095 		/* allocating an indirect block */
5096 		if (oldblkno != 0)
5097 			panic("softdep_setup_allocdirect: non-zero indir");
5098 	} else {
5099 		if (off != lbn)
5100 			panic("softdep_setup_allocdirect: lbn %jd != off %jd",
5101 			    lbn, off);
5102 		/*
5103 		 * Allocating a direct block.
5104 		 *
5105 		 * If we are allocating a directory block, then we must
5106 		 * allocate an associated pagedep to track additions and
5107 		 * deletions.
5108 		 */
5109 		if ((ip->i_mode & IFMT) == IFDIR)
5110 			pagedep_lookup(mp, bp, ip->i_number, off, DEPALLOC,
5111 			    &pagedep);
5112 	}
5113 	if (newblk_lookup(mp, newblkno, 0, &newblk) == 0)
5114 		panic("softdep_setup_allocdirect: lost block");
5115 	KASSERT(newblk->nb_list.wk_type == D_NEWBLK,
5116 	    ("softdep_setup_allocdirect: newblk already initialized"));
5117 	/*
5118 	 * Convert the newblk to an allocdirect.
5119 	 */
5120 	newblk->nb_list.wk_type = D_ALLOCDIRECT;
5121 	adp = (struct allocdirect *)newblk;
5122 	newblk->nb_freefrag = freefrag;
5123 	adp->ad_offset = off;
5124 	adp->ad_oldblkno = oldblkno;
5125 	adp->ad_newsize = newsize;
5126 	adp->ad_oldsize = oldsize;
5127 
5128 	/*
5129 	 * Finish initializing the journal.
5130 	 */
5131 	if ((jnewblk = newblk->nb_jnewblk) != NULL) {
5132 		jnewblk->jn_ino = ip->i_number;
5133 		jnewblk->jn_lbn = lbn;
5134 		add_to_journal(&jnewblk->jn_list);
5135 	}
5136 	if (freefrag && freefrag->ff_jdep != NULL &&
5137 	    freefrag->ff_jdep->wk_type == D_JFREEFRAG)
5138 		add_to_journal(freefrag->ff_jdep);
5139 	inodedep_lookup(mp, ip->i_number, DEPALLOC | NODELAY, &inodedep);
5140 	adp->ad_inodedep = inodedep;
5141 
5142 	WORKLIST_INSERT(&bp->b_dep, &newblk->nb_list);
5143 	/*
5144 	 * The list of allocdirects must be kept in sorted and ascending
5145 	 * order so that the rollback routines can quickly determine the
5146 	 * first uncommitted block (the size of the file stored on disk
5147 	 * ends at the end of the lowest committed fragment, or if there
5148 	 * are no fragments, at the end of the highest committed block).
5149 	 * Since files generally grow, the typical case is that the new
5150 	 * block is to be added at the end of the list. We speed this
5151 	 * special case by checking against the last allocdirect in the
5152 	 * list before laboriously traversing the list looking for the
5153 	 * insertion point.
5154 	 */
5155 	adphead = &inodedep->id_newinoupdt;
5156 	oldadp = TAILQ_LAST(adphead, allocdirectlst);
5157 	if (oldadp == NULL || oldadp->ad_offset <= off) {
5158 		/* insert at end of list */
5159 		TAILQ_INSERT_TAIL(adphead, adp, ad_next);
5160 		if (oldadp != NULL && oldadp->ad_offset == off)
5161 			allocdirect_merge(adphead, adp, oldadp);
5162 		FREE_LOCK(&lk);
5163 		return;
5164 	}
5165 	TAILQ_FOREACH(oldadp, adphead, ad_next) {
5166 		if (oldadp->ad_offset >= off)
5167 			break;
5168 	}
5169 	if (oldadp == NULL)
5170 		panic("softdep_setup_allocdirect: lost entry");
5171 	/* insert in middle of list */
5172 	TAILQ_INSERT_BEFORE(oldadp, adp, ad_next);
5173 	if (oldadp->ad_offset == off)
5174 		allocdirect_merge(adphead, adp, oldadp);
5175 
5176 	FREE_LOCK(&lk);
5177 }
5178 
5179 /*
5180  * Merge a newer and older journal record to be stored either in a
5181  * newblock or freefrag.  This handles aggregating journal records for
5182  * fragment allocation into a second record as well as replacing a
5183  * journal free with an aborted journal allocation.  A segment for the
5184  * oldest record will be placed on wkhd if it has been written.  If not
5185  * the segment for the newer record will suffice.
5186  */
5187 static struct worklist *
5188 jnewblk_merge(new, old, wkhd)
5189 	struct worklist *new;
5190 	struct worklist *old;
5191 	struct workhead *wkhd;
5192 {
5193 	struct jnewblk *njnewblk;
5194 	struct jnewblk *jnewblk;
5195 
5196 	/* Handle NULLs to simplify callers. */
5197 	if (new == NULL)
5198 		return (old);
5199 	if (old == NULL)
5200 		return (new);
5201 	/* Replace a jfreefrag with a jnewblk. */
5202 	if (new->wk_type == D_JFREEFRAG) {
5203 		if (WK_JNEWBLK(old)->jn_blkno != WK_JFREEFRAG(new)->fr_blkno)
5204 			panic("jnewblk_merge: blkno mismatch: %p, %p",
5205 			    old, new);
5206 		cancel_jfreefrag(WK_JFREEFRAG(new));
5207 		return (old);
5208 	}
5209 	if (old->wk_type != D_JNEWBLK || new->wk_type != D_JNEWBLK)
5210 		panic("jnewblk_merge: Bad type: old %d new %d\n",
5211 		    old->wk_type, new->wk_type);
5212 	/*
5213 	 * Handle merging of two jnewblk records that describe
5214 	 * different sets of fragments in the same block.
5215 	 */
5216 	jnewblk = WK_JNEWBLK(old);
5217 	njnewblk = WK_JNEWBLK(new);
5218 	if (jnewblk->jn_blkno != njnewblk->jn_blkno)
5219 		panic("jnewblk_merge: Merging disparate blocks.");
5220 	/*
5221 	 * The record may be rolled back in the cg.
5222 	 */
5223 	if (jnewblk->jn_state & UNDONE) {
5224 		jnewblk->jn_state &= ~UNDONE;
5225 		njnewblk->jn_state |= UNDONE;
5226 		njnewblk->jn_state &= ~ATTACHED;
5227 	}
5228 	/*
5229 	 * We modify the newer addref and free the older so that if neither
5230 	 * has been written the most up-to-date copy will be on disk.  If
5231 	 * both have been written but rolled back we only temporarily need
5232 	 * one of them to fix the bits when the cg write completes.
5233 	 */
5234 	jnewblk->jn_state |= ATTACHED | COMPLETE;
5235 	njnewblk->jn_oldfrags = jnewblk->jn_oldfrags;
5236 	cancel_jnewblk(jnewblk, wkhd);
5237 	WORKLIST_REMOVE(&jnewblk->jn_list);
5238 	free_jnewblk(jnewblk);
5239 	return (new);
5240 }
5241 
5242 /*
5243  * Replace an old allocdirect dependency with a newer one.
5244  * This routine must be called with splbio interrupts blocked.
5245  */
5246 static void
5247 allocdirect_merge(adphead, newadp, oldadp)
5248 	struct allocdirectlst *adphead;	/* head of list holding allocdirects */
5249 	struct allocdirect *newadp;	/* allocdirect being added */
5250 	struct allocdirect *oldadp;	/* existing allocdirect being checked */
5251 {
5252 	struct worklist *wk;
5253 	struct freefrag *freefrag;
5254 
5255 	freefrag = NULL;
5256 	mtx_assert(&lk, MA_OWNED);
5257 	if (newadp->ad_oldblkno != oldadp->ad_newblkno ||
5258 	    newadp->ad_oldsize != oldadp->ad_newsize ||
5259 	    newadp->ad_offset >= NDADDR)
5260 		panic("%s %jd != new %jd || old size %ld != new %ld",
5261 		    "allocdirect_merge: old blkno",
5262 		    (intmax_t)newadp->ad_oldblkno,
5263 		    (intmax_t)oldadp->ad_newblkno,
5264 		    newadp->ad_oldsize, oldadp->ad_newsize);
5265 	newadp->ad_oldblkno = oldadp->ad_oldblkno;
5266 	newadp->ad_oldsize = oldadp->ad_oldsize;
5267 	/*
5268 	 * If the old dependency had a fragment to free or had never
5269 	 * previously had a block allocated, then the new dependency
5270 	 * can immediately post its freefrag and adopt the old freefrag.
5271 	 * This action is done by swapping the freefrag dependencies.
5272 	 * The new dependency gains the old one's freefrag, and the
5273 	 * old one gets the new one and then immediately puts it on
5274 	 * the worklist when it is freed by free_newblk. It is
5275 	 * not possible to do this swap when the old dependency had a
5276 	 * non-zero size but no previous fragment to free. This condition
5277 	 * arises when the new block is an extension of the old block.
5278 	 * Here, the first part of the fragment allocated to the new
5279 	 * dependency is part of the block currently claimed on disk by
5280 	 * the old dependency, so cannot legitimately be freed until the
5281 	 * conditions for the new dependency are fulfilled.
5282 	 */
5283 	freefrag = newadp->ad_freefrag;
5284 	if (oldadp->ad_freefrag != NULL || oldadp->ad_oldblkno == 0) {
5285 		newadp->ad_freefrag = oldadp->ad_freefrag;
5286 		oldadp->ad_freefrag = freefrag;
5287 	}
5288 	/*
5289 	 * If we are tracking a new directory-block allocation,
5290 	 * move it from the old allocdirect to the new allocdirect.
5291 	 */
5292 	if ((wk = LIST_FIRST(&oldadp->ad_newdirblk)) != NULL) {
5293 		WORKLIST_REMOVE(wk);
5294 		if (!LIST_EMPTY(&oldadp->ad_newdirblk))
5295 			panic("allocdirect_merge: extra newdirblk");
5296 		WORKLIST_INSERT(&newadp->ad_newdirblk, wk);
5297 	}
5298 	TAILQ_REMOVE(adphead, oldadp, ad_next);
5299 	/*
5300 	 * We need to move any journal dependencies over to the freefrag
5301 	 * that releases this block if it exists.  Otherwise we are
5302 	 * extending an existing block and we'll wait until that is
5303 	 * complete to release the journal space and extend the
5304 	 * new journal to cover this old space as well.
5305 	 */
5306 	if (freefrag == NULL) {
5307 		if (oldadp->ad_newblkno != newadp->ad_newblkno)
5308 			panic("allocdirect_merge: %jd != %jd",
5309 			    oldadp->ad_newblkno, newadp->ad_newblkno);
5310 		newadp->ad_block.nb_jnewblk = (struct jnewblk *)
5311 		    jnewblk_merge(&newadp->ad_block.nb_jnewblk->jn_list,
5312 		    &oldadp->ad_block.nb_jnewblk->jn_list,
5313 		    &newadp->ad_block.nb_jwork);
5314 		oldadp->ad_block.nb_jnewblk = NULL;
5315 		cancel_newblk(&oldadp->ad_block, NULL,
5316 		    &newadp->ad_block.nb_jwork);
5317 	} else {
5318 		wk = (struct worklist *) cancel_newblk(&oldadp->ad_block,
5319 		    &freefrag->ff_list, &freefrag->ff_jwork);
5320 		freefrag->ff_jdep = jnewblk_merge(freefrag->ff_jdep, wk,
5321 		    &freefrag->ff_jwork);
5322 	}
5323 	free_newblk(&oldadp->ad_block);
5324 }
5325 
5326 /*
5327  * Allocate a jfreefrag structure to journal a single block free.
5328  */
5329 static struct jfreefrag *
5330 newjfreefrag(freefrag, ip, blkno, size, lbn)
5331 	struct freefrag *freefrag;
5332 	struct inode *ip;
5333 	ufs2_daddr_t blkno;
5334 	long size;
5335 	ufs_lbn_t lbn;
5336 {
5337 	struct jfreefrag *jfreefrag;
5338 	struct fs *fs;
5339 
5340 	fs = ip->i_fs;
5341 	jfreefrag = malloc(sizeof(struct jfreefrag), M_JFREEFRAG,
5342 	    M_SOFTDEP_FLAGS);
5343 	workitem_alloc(&jfreefrag->fr_list, D_JFREEFRAG, UFSTOVFS(ip->i_ump));
5344 	jfreefrag->fr_jsegdep = newjsegdep(&jfreefrag->fr_list);
5345 	jfreefrag->fr_state = ATTACHED | DEPCOMPLETE;
5346 	jfreefrag->fr_ino = ip->i_number;
5347 	jfreefrag->fr_lbn = lbn;
5348 	jfreefrag->fr_blkno = blkno;
5349 	jfreefrag->fr_frags = numfrags(fs, size);
5350 	jfreefrag->fr_freefrag = freefrag;
5351 
5352 	return (jfreefrag);
5353 }
5354 
5355 /*
5356  * Allocate a new freefrag structure.
5357  */
5358 static struct freefrag *
5359 newfreefrag(ip, blkno, size, lbn)
5360 	struct inode *ip;
5361 	ufs2_daddr_t blkno;
5362 	long size;
5363 	ufs_lbn_t lbn;
5364 {
5365 	struct freefrag *freefrag;
5366 	struct fs *fs;
5367 
5368 	CTR4(KTR_SUJ, "newfreefrag: ino %d blkno %jd size %ld lbn %jd",
5369 	    ip->i_number, blkno, size, lbn);
5370 	fs = ip->i_fs;
5371 	if (fragnum(fs, blkno) + numfrags(fs, size) > fs->fs_frag)
5372 		panic("newfreefrag: frag size");
5373 	freefrag = malloc(sizeof(struct freefrag),
5374 	    M_FREEFRAG, M_SOFTDEP_FLAGS);
5375 	workitem_alloc(&freefrag->ff_list, D_FREEFRAG, UFSTOVFS(ip->i_ump));
5376 	freefrag->ff_state = ATTACHED;
5377 	LIST_INIT(&freefrag->ff_jwork);
5378 	freefrag->ff_inum = ip->i_number;
5379 	freefrag->ff_vtype = ITOV(ip)->v_type;
5380 	freefrag->ff_blkno = blkno;
5381 	freefrag->ff_fragsize = size;
5382 
5383 	if (MOUNTEDSUJ(UFSTOVFS(ip->i_ump))) {
5384 		freefrag->ff_jdep = (struct worklist *)
5385 		    newjfreefrag(freefrag, ip, blkno, size, lbn);
5386 	} else {
5387 		freefrag->ff_state |= DEPCOMPLETE;
5388 		freefrag->ff_jdep = NULL;
5389 	}
5390 
5391 	return (freefrag);
5392 }
5393 
5394 /*
5395  * This workitem de-allocates fragments that were replaced during
5396  * file block allocation.
5397  */
5398 static void
5399 handle_workitem_freefrag(freefrag)
5400 	struct freefrag *freefrag;
5401 {
5402 	struct ufsmount *ump = VFSTOUFS(freefrag->ff_list.wk_mp);
5403 	struct workhead wkhd;
5404 
5405 	CTR3(KTR_SUJ,
5406 	    "handle_workitem_freefrag: ino %d blkno %jd size %ld",
5407 	    freefrag->ff_inum, freefrag->ff_blkno, freefrag->ff_fragsize);
5408 	/*
5409 	 * It would be illegal to add new completion items to the
5410 	 * freefrag after it was schedule to be done so it must be
5411 	 * safe to modify the list head here.
5412 	 */
5413 	LIST_INIT(&wkhd);
5414 	ACQUIRE_LOCK(&lk);
5415 	LIST_SWAP(&freefrag->ff_jwork, &wkhd, worklist, wk_list);
5416 	/*
5417 	 * If the journal has not been written we must cancel it here.
5418 	 */
5419 	if (freefrag->ff_jdep) {
5420 		if (freefrag->ff_jdep->wk_type != D_JNEWBLK)
5421 			panic("handle_workitem_freefrag: Unexpected type %d\n",
5422 			    freefrag->ff_jdep->wk_type);
5423 		cancel_jnewblk(WK_JNEWBLK(freefrag->ff_jdep), &wkhd);
5424 	}
5425 	FREE_LOCK(&lk);
5426 	ffs_blkfree(ump, ump->um_fs, ump->um_devvp, freefrag->ff_blkno,
5427 	   freefrag->ff_fragsize, freefrag->ff_inum, freefrag->ff_vtype, &wkhd);
5428 	ACQUIRE_LOCK(&lk);
5429 	WORKITEM_FREE(freefrag, D_FREEFRAG);
5430 	FREE_LOCK(&lk);
5431 }
5432 
5433 /*
5434  * Set up a dependency structure for an external attributes data block.
5435  * This routine follows much of the structure of softdep_setup_allocdirect.
5436  * See the description of softdep_setup_allocdirect above for details.
5437  */
5438 void
5439 softdep_setup_allocext(ip, off, newblkno, oldblkno, newsize, oldsize, bp)
5440 	struct inode *ip;
5441 	ufs_lbn_t off;
5442 	ufs2_daddr_t newblkno;
5443 	ufs2_daddr_t oldblkno;
5444 	long newsize;
5445 	long oldsize;
5446 	struct buf *bp;
5447 {
5448 	struct allocdirect *adp, *oldadp;
5449 	struct allocdirectlst *adphead;
5450 	struct freefrag *freefrag;
5451 	struct inodedep *inodedep;
5452 	struct jnewblk *jnewblk;
5453 	struct newblk *newblk;
5454 	struct mount *mp;
5455 	ufs_lbn_t lbn;
5456 
5457 	if (off >= NXADDR)
5458 		panic("softdep_setup_allocext: lbn %lld > NXADDR",
5459 		    (long long)off);
5460 
5461 	lbn = bp->b_lblkno;
5462 	mp = UFSTOVFS(ip->i_ump);
5463 	if (oldblkno && oldblkno != newblkno)
5464 		freefrag = newfreefrag(ip, oldblkno, oldsize, lbn);
5465 	else
5466 		freefrag = NULL;
5467 
5468 	ACQUIRE_LOCK(&lk);
5469 	if (newblk_lookup(mp, newblkno, 0, &newblk) == 0)
5470 		panic("softdep_setup_allocext: lost block");
5471 	KASSERT(newblk->nb_list.wk_type == D_NEWBLK,
5472 	    ("softdep_setup_allocext: newblk already initialized"));
5473 	/*
5474 	 * Convert the newblk to an allocdirect.
5475 	 */
5476 	newblk->nb_list.wk_type = D_ALLOCDIRECT;
5477 	adp = (struct allocdirect *)newblk;
5478 	newblk->nb_freefrag = freefrag;
5479 	adp->ad_offset = off;
5480 	adp->ad_oldblkno = oldblkno;
5481 	adp->ad_newsize = newsize;
5482 	adp->ad_oldsize = oldsize;
5483 	adp->ad_state |=  EXTDATA;
5484 
5485 	/*
5486 	 * Finish initializing the journal.
5487 	 */
5488 	if ((jnewblk = newblk->nb_jnewblk) != NULL) {
5489 		jnewblk->jn_ino = ip->i_number;
5490 		jnewblk->jn_lbn = lbn;
5491 		add_to_journal(&jnewblk->jn_list);
5492 	}
5493 	if (freefrag && freefrag->ff_jdep != NULL &&
5494 	    freefrag->ff_jdep->wk_type == D_JFREEFRAG)
5495 		add_to_journal(freefrag->ff_jdep);
5496 	inodedep_lookup(mp, ip->i_number, DEPALLOC | NODELAY, &inodedep);
5497 	adp->ad_inodedep = inodedep;
5498 
5499 	WORKLIST_INSERT(&bp->b_dep, &newblk->nb_list);
5500 	/*
5501 	 * The list of allocdirects must be kept in sorted and ascending
5502 	 * order so that the rollback routines can quickly determine the
5503 	 * first uncommitted block (the size of the file stored on disk
5504 	 * ends at the end of the lowest committed fragment, or if there
5505 	 * are no fragments, at the end of the highest committed block).
5506 	 * Since files generally grow, the typical case is that the new
5507 	 * block is to be added at the end of the list. We speed this
5508 	 * special case by checking against the last allocdirect in the
5509 	 * list before laboriously traversing the list looking for the
5510 	 * insertion point.
5511 	 */
5512 	adphead = &inodedep->id_newextupdt;
5513 	oldadp = TAILQ_LAST(adphead, allocdirectlst);
5514 	if (oldadp == NULL || oldadp->ad_offset <= off) {
5515 		/* insert at end of list */
5516 		TAILQ_INSERT_TAIL(adphead, adp, ad_next);
5517 		if (oldadp != NULL && oldadp->ad_offset == off)
5518 			allocdirect_merge(adphead, adp, oldadp);
5519 		FREE_LOCK(&lk);
5520 		return;
5521 	}
5522 	TAILQ_FOREACH(oldadp, adphead, ad_next) {
5523 		if (oldadp->ad_offset >= off)
5524 			break;
5525 	}
5526 	if (oldadp == NULL)
5527 		panic("softdep_setup_allocext: lost entry");
5528 	/* insert in middle of list */
5529 	TAILQ_INSERT_BEFORE(oldadp, adp, ad_next);
5530 	if (oldadp->ad_offset == off)
5531 		allocdirect_merge(adphead, adp, oldadp);
5532 	FREE_LOCK(&lk);
5533 }
5534 
5535 /*
5536  * Indirect block allocation dependencies.
5537  *
5538  * The same dependencies that exist for a direct block also exist when
5539  * a new block is allocated and pointed to by an entry in a block of
5540  * indirect pointers. The undo/redo states described above are also
5541  * used here. Because an indirect block contains many pointers that
5542  * may have dependencies, a second copy of the entire in-memory indirect
5543  * block is kept. The buffer cache copy is always completely up-to-date.
5544  * The second copy, which is used only as a source for disk writes,
5545  * contains only the safe pointers (i.e., those that have no remaining
5546  * update dependencies). The second copy is freed when all pointers
5547  * are safe. The cache is not allowed to replace indirect blocks with
5548  * pending update dependencies. If a buffer containing an indirect
5549  * block with dependencies is written, these routines will mark it
5550  * dirty again. It can only be successfully written once all the
5551  * dependencies are removed. The ffs_fsync routine in conjunction with
5552  * softdep_sync_metadata work together to get all the dependencies
5553  * removed so that a file can be successfully written to disk. Three
5554  * procedures are used when setting up indirect block pointer
5555  * dependencies. The division is necessary because of the organization
5556  * of the "balloc" routine and because of the distinction between file
5557  * pages and file metadata blocks.
5558  */
5559 
5560 /*
5561  * Allocate a new allocindir structure.
5562  */
5563 static struct allocindir *
5564 newallocindir(ip, ptrno, newblkno, oldblkno, lbn)
5565 	struct inode *ip;	/* inode for file being extended */
5566 	int ptrno;		/* offset of pointer in indirect block */
5567 	ufs2_daddr_t newblkno;	/* disk block number being added */
5568 	ufs2_daddr_t oldblkno;	/* previous block number, 0 if none */
5569 	ufs_lbn_t lbn;
5570 {
5571 	struct newblk *newblk;
5572 	struct allocindir *aip;
5573 	struct freefrag *freefrag;
5574 	struct jnewblk *jnewblk;
5575 
5576 	if (oldblkno)
5577 		freefrag = newfreefrag(ip, oldblkno, ip->i_fs->fs_bsize, lbn);
5578 	else
5579 		freefrag = NULL;
5580 	ACQUIRE_LOCK(&lk);
5581 	if (newblk_lookup(UFSTOVFS(ip->i_ump), newblkno, 0, &newblk) == 0)
5582 		panic("new_allocindir: lost block");
5583 	KASSERT(newblk->nb_list.wk_type == D_NEWBLK,
5584 	    ("newallocindir: newblk already initialized"));
5585 	newblk->nb_list.wk_type = D_ALLOCINDIR;
5586 	newblk->nb_freefrag = freefrag;
5587 	aip = (struct allocindir *)newblk;
5588 	aip->ai_offset = ptrno;
5589 	aip->ai_oldblkno = oldblkno;
5590 	aip->ai_lbn = lbn;
5591 	if ((jnewblk = newblk->nb_jnewblk) != NULL) {
5592 		jnewblk->jn_ino = ip->i_number;
5593 		jnewblk->jn_lbn = lbn;
5594 		add_to_journal(&jnewblk->jn_list);
5595 	}
5596 	if (freefrag && freefrag->ff_jdep != NULL &&
5597 	    freefrag->ff_jdep->wk_type == D_JFREEFRAG)
5598 		add_to_journal(freefrag->ff_jdep);
5599 	return (aip);
5600 }
5601 
5602 /*
5603  * Called just before setting an indirect block pointer
5604  * to a newly allocated file page.
5605  */
5606 void
5607 softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp)
5608 	struct inode *ip;	/* inode for file being extended */
5609 	ufs_lbn_t lbn;		/* allocated block number within file */
5610 	struct buf *bp;		/* buffer with indirect blk referencing page */
5611 	int ptrno;		/* offset of pointer in indirect block */
5612 	ufs2_daddr_t newblkno;	/* disk block number being added */
5613 	ufs2_daddr_t oldblkno;	/* previous block number, 0 if none */
5614 	struct buf *nbp;	/* buffer holding allocated page */
5615 {
5616 	struct inodedep *inodedep;
5617 	struct freefrag *freefrag;
5618 	struct allocindir *aip;
5619 	struct pagedep *pagedep;
5620 	struct mount *mp;
5621 	int dflags;
5622 
5623 	if (lbn != nbp->b_lblkno)
5624 		panic("softdep_setup_allocindir_page: lbn %jd != lblkno %jd",
5625 		    lbn, bp->b_lblkno);
5626 	CTR4(KTR_SUJ,
5627 	    "softdep_setup_allocindir_page: ino %d blkno %jd oldblkno %jd "
5628 	    "lbn %jd", ip->i_number, newblkno, oldblkno, lbn);
5629 	ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_page");
5630 	mp = UFSTOVFS(ip->i_ump);
5631 	aip = newallocindir(ip, ptrno, newblkno, oldblkno, lbn);
5632 	dflags = DEPALLOC;
5633 	if (IS_SNAPSHOT(ip))
5634 		dflags |= NODELAY;
5635 	(void) inodedep_lookup(mp, ip->i_number, dflags, &inodedep);
5636 	/*
5637 	 * If we are allocating a directory page, then we must
5638 	 * allocate an associated pagedep to track additions and
5639 	 * deletions.
5640 	 */
5641 	if ((ip->i_mode & IFMT) == IFDIR)
5642 		pagedep_lookup(mp, nbp, ip->i_number, lbn, DEPALLOC, &pagedep);
5643 	WORKLIST_INSERT(&nbp->b_dep, &aip->ai_block.nb_list);
5644 	freefrag = setup_allocindir_phase2(bp, ip, inodedep, aip, lbn);
5645 	FREE_LOCK(&lk);
5646 	if (freefrag)
5647 		handle_workitem_freefrag(freefrag);
5648 }
5649 
5650 /*
5651  * Called just before setting an indirect block pointer to a
5652  * newly allocated indirect block.
5653  */
5654 void
5655 softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno)
5656 	struct buf *nbp;	/* newly allocated indirect block */
5657 	struct inode *ip;	/* inode for file being extended */
5658 	struct buf *bp;		/* indirect block referencing allocated block */
5659 	int ptrno;		/* offset of pointer in indirect block */
5660 	ufs2_daddr_t newblkno;	/* disk block number being added */
5661 {
5662 	struct inodedep *inodedep;
5663 	struct allocindir *aip;
5664 	ufs_lbn_t lbn;
5665 	int dflags;
5666 
5667 	CTR3(KTR_SUJ,
5668 	    "softdep_setup_allocindir_meta: ino %d blkno %jd ptrno %d",
5669 	    ip->i_number, newblkno, ptrno);
5670 	lbn = nbp->b_lblkno;
5671 	ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_meta");
5672 	aip = newallocindir(ip, ptrno, newblkno, 0, lbn);
5673 	dflags = DEPALLOC;
5674 	if (IS_SNAPSHOT(ip))
5675 		dflags |= NODELAY;
5676 	inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, dflags, &inodedep);
5677 	WORKLIST_INSERT(&nbp->b_dep, &aip->ai_block.nb_list);
5678 	if (setup_allocindir_phase2(bp, ip, inodedep, aip, lbn))
5679 		panic("softdep_setup_allocindir_meta: Block already existed");
5680 	FREE_LOCK(&lk);
5681 }
5682 
5683 static void
5684 indirdep_complete(indirdep)
5685 	struct indirdep *indirdep;
5686 {
5687 	struct allocindir *aip;
5688 
5689 	LIST_REMOVE(indirdep, ir_next);
5690 	indirdep->ir_state |= DEPCOMPLETE;
5691 
5692 	while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != NULL) {
5693 		LIST_REMOVE(aip, ai_next);
5694 		free_newblk(&aip->ai_block);
5695 	}
5696 	/*
5697 	 * If this indirdep is not attached to a buf it was simply waiting
5698 	 * on completion to clear completehd.  free_indirdep() asserts
5699 	 * that nothing is dangling.
5700 	 */
5701 	if ((indirdep->ir_state & ONWORKLIST) == 0)
5702 		free_indirdep(indirdep);
5703 }
5704 
5705 static struct indirdep *
5706 indirdep_lookup(mp, ip, bp)
5707 	struct mount *mp;
5708 	struct inode *ip;
5709 	struct buf *bp;
5710 {
5711 	struct indirdep *indirdep, *newindirdep;
5712 	struct newblk *newblk;
5713 	struct worklist *wk;
5714 	struct fs *fs;
5715 	ufs2_daddr_t blkno;
5716 
5717 	mtx_assert(&lk, MA_OWNED);
5718 	indirdep = NULL;
5719 	newindirdep = NULL;
5720 	fs = ip->i_fs;
5721 	for (;;) {
5722 		LIST_FOREACH(wk, &bp->b_dep, wk_list) {
5723 			if (wk->wk_type != D_INDIRDEP)
5724 				continue;
5725 			indirdep = WK_INDIRDEP(wk);
5726 			break;
5727 		}
5728 		/* Found on the buffer worklist, no new structure to free. */
5729 		if (indirdep != NULL && newindirdep == NULL)
5730 			return (indirdep);
5731 		if (indirdep != NULL && newindirdep != NULL)
5732 			panic("indirdep_lookup: simultaneous create");
5733 		/* None found on the buffer and a new structure is ready. */
5734 		if (indirdep == NULL && newindirdep != NULL)
5735 			break;
5736 		/* None found and no new structure available. */
5737 		FREE_LOCK(&lk);
5738 		newindirdep = malloc(sizeof(struct indirdep),
5739 		    M_INDIRDEP, M_SOFTDEP_FLAGS);
5740 		workitem_alloc(&newindirdep->ir_list, D_INDIRDEP, mp);
5741 		newindirdep->ir_state = ATTACHED;
5742 		if (ip->i_ump->um_fstype == UFS1)
5743 			newindirdep->ir_state |= UFS1FMT;
5744 		TAILQ_INIT(&newindirdep->ir_trunc);
5745 		newindirdep->ir_saveddata = NULL;
5746 		LIST_INIT(&newindirdep->ir_deplisthd);
5747 		LIST_INIT(&newindirdep->ir_donehd);
5748 		LIST_INIT(&newindirdep->ir_writehd);
5749 		LIST_INIT(&newindirdep->ir_completehd);
5750 		if (bp->b_blkno == bp->b_lblkno) {
5751 			ufs_bmaparray(bp->b_vp, bp->b_lblkno, &blkno, bp,
5752 			    NULL, NULL);
5753 			bp->b_blkno = blkno;
5754 		}
5755 		newindirdep->ir_freeblks = NULL;
5756 		newindirdep->ir_savebp =
5757 		    getblk(ip->i_devvp, bp->b_blkno, bp->b_bcount, 0, 0, 0);
5758 		newindirdep->ir_bp = bp;
5759 		BUF_KERNPROC(newindirdep->ir_savebp);
5760 		bcopy(bp->b_data, newindirdep->ir_savebp->b_data, bp->b_bcount);
5761 		ACQUIRE_LOCK(&lk);
5762 	}
5763 	indirdep = newindirdep;
5764 	WORKLIST_INSERT(&bp->b_dep, &indirdep->ir_list);
5765 	/*
5766 	 * If the block is not yet allocated we don't set DEPCOMPLETE so
5767 	 * that we don't free dependencies until the pointers are valid.
5768 	 * This could search b_dep for D_ALLOCDIRECT/D_ALLOCINDIR rather
5769 	 * than using the hash.
5770 	 */
5771 	if (newblk_lookup(mp, dbtofsb(fs, bp->b_blkno), 0, &newblk))
5772 		LIST_INSERT_HEAD(&newblk->nb_indirdeps, indirdep, ir_next);
5773 	else
5774 		indirdep->ir_state |= DEPCOMPLETE;
5775 	return (indirdep);
5776 }
5777 
5778 /*
5779  * Called to finish the allocation of the "aip" allocated
5780  * by one of the two routines above.
5781  */
5782 static struct freefrag *
5783 setup_allocindir_phase2(bp, ip, inodedep, aip, lbn)
5784 	struct buf *bp;		/* in-memory copy of the indirect block */
5785 	struct inode *ip;	/* inode for file being extended */
5786 	struct inodedep *inodedep; /* Inodedep for ip */
5787 	struct allocindir *aip;	/* allocindir allocated by the above routines */
5788 	ufs_lbn_t lbn;		/* Logical block number for this block. */
5789 {
5790 	struct fs *fs;
5791 	struct indirdep *indirdep;
5792 	struct allocindir *oldaip;
5793 	struct freefrag *freefrag;
5794 	struct mount *mp;
5795 
5796 	mtx_assert(&lk, MA_OWNED);
5797 	mp = UFSTOVFS(ip->i_ump);
5798 	fs = ip->i_fs;
5799 	if (bp->b_lblkno >= 0)
5800 		panic("setup_allocindir_phase2: not indir blk");
5801 	KASSERT(aip->ai_offset >= 0 && aip->ai_offset < NINDIR(fs),
5802 	    ("setup_allocindir_phase2: Bad offset %d", aip->ai_offset));
5803 	indirdep = indirdep_lookup(mp, ip, bp);
5804 	KASSERT(indirdep->ir_savebp != NULL,
5805 	    ("setup_allocindir_phase2 NULL ir_savebp"));
5806 	aip->ai_indirdep = indirdep;
5807 	/*
5808 	 * Check for an unwritten dependency for this indirect offset.  If
5809 	 * there is, merge the old dependency into the new one.  This happens
5810 	 * as a result of reallocblk only.
5811 	 */
5812 	freefrag = NULL;
5813 	if (aip->ai_oldblkno != 0) {
5814 		LIST_FOREACH(oldaip, &indirdep->ir_deplisthd, ai_next) {
5815 			if (oldaip->ai_offset == aip->ai_offset) {
5816 				freefrag = allocindir_merge(aip, oldaip);
5817 				goto done;
5818 			}
5819 		}
5820 		LIST_FOREACH(oldaip, &indirdep->ir_donehd, ai_next) {
5821 			if (oldaip->ai_offset == aip->ai_offset) {
5822 				freefrag = allocindir_merge(aip, oldaip);
5823 				goto done;
5824 			}
5825 		}
5826 	}
5827 done:
5828 	LIST_INSERT_HEAD(&indirdep->ir_deplisthd, aip, ai_next);
5829 	return (freefrag);
5830 }
5831 
5832 /*
5833  * Merge two allocindirs which refer to the same block.  Move newblock
5834  * dependencies and setup the freefrags appropriately.
5835  */
5836 static struct freefrag *
5837 allocindir_merge(aip, oldaip)
5838 	struct allocindir *aip;
5839 	struct allocindir *oldaip;
5840 {
5841 	struct freefrag *freefrag;
5842 	struct worklist *wk;
5843 
5844 	if (oldaip->ai_newblkno != aip->ai_oldblkno)
5845 		panic("allocindir_merge: blkno");
5846 	aip->ai_oldblkno = oldaip->ai_oldblkno;
5847 	freefrag = aip->ai_freefrag;
5848 	aip->ai_freefrag = oldaip->ai_freefrag;
5849 	oldaip->ai_freefrag = NULL;
5850 	KASSERT(freefrag != NULL, ("setup_allocindir_phase2: No freefrag"));
5851 	/*
5852 	 * If we are tracking a new directory-block allocation,
5853 	 * move it from the old allocindir to the new allocindir.
5854 	 */
5855 	if ((wk = LIST_FIRST(&oldaip->ai_newdirblk)) != NULL) {
5856 		WORKLIST_REMOVE(wk);
5857 		if (!LIST_EMPTY(&oldaip->ai_newdirblk))
5858 			panic("allocindir_merge: extra newdirblk");
5859 		WORKLIST_INSERT(&aip->ai_newdirblk, wk);
5860 	}
5861 	/*
5862 	 * We can skip journaling for this freefrag and just complete
5863 	 * any pending journal work for the allocindir that is being
5864 	 * removed after the freefrag completes.
5865 	 */
5866 	if (freefrag->ff_jdep)
5867 		cancel_jfreefrag(WK_JFREEFRAG(freefrag->ff_jdep));
5868 	LIST_REMOVE(oldaip, ai_next);
5869 	freefrag->ff_jdep = (struct worklist *)cancel_newblk(&oldaip->ai_block,
5870 	    &freefrag->ff_list, &freefrag->ff_jwork);
5871 	free_newblk(&oldaip->ai_block);
5872 
5873 	return (freefrag);
5874 }
5875 
5876 static inline void
5877 setup_freedirect(freeblks, ip, i, needj)
5878 	struct freeblks *freeblks;
5879 	struct inode *ip;
5880 	int i;
5881 	int needj;
5882 {
5883 	ufs2_daddr_t blkno;
5884 	int frags;
5885 
5886 	blkno = DIP(ip, i_db[i]);
5887 	if (blkno == 0)
5888 		return;
5889 	DIP_SET(ip, i_db[i], 0);
5890 	frags = sblksize(ip->i_fs, ip->i_size, i);
5891 	frags = numfrags(ip->i_fs, frags);
5892 	newfreework(ip->i_ump, freeblks, NULL, i, blkno, frags, 0, needj);
5893 }
5894 
5895 static inline void
5896 setup_freeext(freeblks, ip, i, needj)
5897 	struct freeblks *freeblks;
5898 	struct inode *ip;
5899 	int i;
5900 	int needj;
5901 {
5902 	ufs2_daddr_t blkno;
5903 	int frags;
5904 
5905 	blkno = ip->i_din2->di_extb[i];
5906 	if (blkno == 0)
5907 		return;
5908 	ip->i_din2->di_extb[i] = 0;
5909 	frags = sblksize(ip->i_fs, ip->i_din2->di_extsize, i);
5910 	frags = numfrags(ip->i_fs, frags);
5911 	newfreework(ip->i_ump, freeblks, NULL, -1 - i, blkno, frags, 0, needj);
5912 }
5913 
5914 static inline void
5915 setup_freeindir(freeblks, ip, i, lbn, needj)
5916 	struct freeblks *freeblks;
5917 	struct inode *ip;
5918 	int i;
5919 	ufs_lbn_t lbn;
5920 	int needj;
5921 {
5922 	ufs2_daddr_t blkno;
5923 
5924 	blkno = DIP(ip, i_ib[i]);
5925 	if (blkno == 0)
5926 		return;
5927 	DIP_SET(ip, i_ib[i], 0);
5928 	newfreework(ip->i_ump, freeblks, NULL, lbn, blkno, ip->i_fs->fs_frag,
5929 	    0, needj);
5930 }
5931 
5932 static inline struct freeblks *
5933 newfreeblks(mp, ip)
5934 	struct mount *mp;
5935 	struct inode *ip;
5936 {
5937 	struct freeblks *freeblks;
5938 
5939 	freeblks = malloc(sizeof(struct freeblks),
5940 		M_FREEBLKS, M_SOFTDEP_FLAGS|M_ZERO);
5941 	workitem_alloc(&freeblks->fb_list, D_FREEBLKS, mp);
5942 	LIST_INIT(&freeblks->fb_jblkdephd);
5943 	LIST_INIT(&freeblks->fb_jwork);
5944 	freeblks->fb_ref = 0;
5945 	freeblks->fb_cgwait = 0;
5946 	freeblks->fb_state = ATTACHED;
5947 	freeblks->fb_uid = ip->i_uid;
5948 	freeblks->fb_inum = ip->i_number;
5949 	freeblks->fb_vtype = ITOV(ip)->v_type;
5950 	freeblks->fb_modrev = DIP(ip, i_modrev);
5951 	freeblks->fb_devvp = ip->i_devvp;
5952 	freeblks->fb_chkcnt = 0;
5953 	freeblks->fb_len = 0;
5954 
5955 	return (freeblks);
5956 }
5957 
5958 static void
5959 trunc_indirdep(indirdep, freeblks, bp, off)
5960 	struct indirdep *indirdep;
5961 	struct freeblks *freeblks;
5962 	struct buf *bp;
5963 	int off;
5964 {
5965 	struct allocindir *aip, *aipn;
5966 
5967 	/*
5968 	 * The first set of allocindirs won't be in savedbp.
5969 	 */
5970 	LIST_FOREACH_SAFE(aip, &indirdep->ir_deplisthd, ai_next, aipn)
5971 		if (aip->ai_offset > off)
5972 			cancel_allocindir(aip, bp, freeblks, 1);
5973 	LIST_FOREACH_SAFE(aip, &indirdep->ir_donehd, ai_next, aipn)
5974 		if (aip->ai_offset > off)
5975 			cancel_allocindir(aip, bp, freeblks, 1);
5976 	/*
5977 	 * These will exist in savedbp.
5978 	 */
5979 	LIST_FOREACH_SAFE(aip, &indirdep->ir_writehd, ai_next, aipn)
5980 		if (aip->ai_offset > off)
5981 			cancel_allocindir(aip, NULL, freeblks, 0);
5982 	LIST_FOREACH_SAFE(aip, &indirdep->ir_completehd, ai_next, aipn)
5983 		if (aip->ai_offset > off)
5984 			cancel_allocindir(aip, NULL, freeblks, 0);
5985 }
5986 
5987 /*
5988  * Follow the chain of indirects down to lastlbn creating a freework
5989  * structure for each.  This will be used to start indir_trunc() at
5990  * the right offset and create the journal records for the parrtial
5991  * truncation.  A second step will handle the truncated dependencies.
5992  */
5993 static int
5994 setup_trunc_indir(freeblks, ip, lbn, lastlbn, blkno)
5995 	struct freeblks *freeblks;
5996 	struct inode *ip;
5997 	ufs_lbn_t lbn;
5998 	ufs_lbn_t lastlbn;
5999 	ufs2_daddr_t blkno;
6000 {
6001 	struct indirdep *indirdep;
6002 	struct indirdep *indirn;
6003 	struct freework *freework;
6004 	struct newblk *newblk;
6005 	struct mount *mp;
6006 	struct buf *bp;
6007 	uint8_t *start;
6008 	uint8_t *end;
6009 	ufs_lbn_t lbnadd;
6010 	int level;
6011 	int error;
6012 	int off;
6013 
6014 
6015 	freework = NULL;
6016 	if (blkno == 0)
6017 		return (0);
6018 	mp = freeblks->fb_list.wk_mp;
6019 	bp = getblk(ITOV(ip), lbn, mp->mnt_stat.f_iosize, 0, 0, 0);
6020 	if ((bp->b_flags & B_CACHE) == 0) {
6021 		bp->b_blkno = blkptrtodb(VFSTOUFS(mp), blkno);
6022 		bp->b_iocmd = BIO_READ;
6023 		bp->b_flags &= ~B_INVAL;
6024 		bp->b_ioflags &= ~BIO_ERROR;
6025 		vfs_busy_pages(bp, 0);
6026 		bp->b_iooffset = dbtob(bp->b_blkno);
6027 		bstrategy(bp);
6028 		curthread->td_ru.ru_inblock++;
6029 		error = bufwait(bp);
6030 		if (error) {
6031 			brelse(bp);
6032 			return (error);
6033 		}
6034 	}
6035 	level = lbn_level(lbn);
6036 	lbnadd = lbn_offset(ip->i_fs, level);
6037 	/*
6038 	 * Compute the offset of the last block we want to keep.  Store
6039 	 * in the freework the first block we want to completely free.
6040 	 */
6041 	off = (lastlbn - -(lbn + level)) / lbnadd;
6042 	if (off + 1 == NINDIR(ip->i_fs))
6043 		goto nowork;
6044 	freework = newfreework(ip->i_ump, freeblks, NULL, lbn, blkno, 0, off+1,
6045 	    0);
6046 	/*
6047 	 * Link the freework into the indirdep.  This will prevent any new
6048 	 * allocations from proceeding until we are finished with the
6049 	 * truncate and the block is written.
6050 	 */
6051 	ACQUIRE_LOCK(&lk);
6052 	indirdep = indirdep_lookup(mp, ip, bp);
6053 	if (indirdep->ir_freeblks)
6054 		panic("setup_trunc_indir: indirdep already truncated.");
6055 	TAILQ_INSERT_TAIL(&indirdep->ir_trunc, freework, fw_next);
6056 	freework->fw_indir = indirdep;
6057 	/*
6058 	 * Cancel any allocindirs that will not make it to disk.
6059 	 * We have to do this for all copies of the indirdep that
6060 	 * live on this newblk.
6061 	 */
6062 	if ((indirdep->ir_state & DEPCOMPLETE) == 0) {
6063 		newblk_lookup(mp, dbtofsb(ip->i_fs, bp->b_blkno), 0, &newblk);
6064 		LIST_FOREACH(indirn, &newblk->nb_indirdeps, ir_next)
6065 			trunc_indirdep(indirn, freeblks, bp, off);
6066 	} else
6067 		trunc_indirdep(indirdep, freeblks, bp, off);
6068 	FREE_LOCK(&lk);
6069 	/*
6070 	 * Creation is protected by the buf lock. The saveddata is only
6071 	 * needed if a full truncation follows a partial truncation but it
6072 	 * is difficult to allocate in that case so we fetch it anyway.
6073 	 */
6074 	if (indirdep->ir_saveddata == NULL)
6075 		indirdep->ir_saveddata = malloc(bp->b_bcount, M_INDIRDEP,
6076 		    M_SOFTDEP_FLAGS);
6077 nowork:
6078 	/* Fetch the blkno of the child and the zero start offset. */
6079 	if (ip->i_ump->um_fstype == UFS1) {
6080 		blkno = ((ufs1_daddr_t *)bp->b_data)[off];
6081 		start = (uint8_t *)&((ufs1_daddr_t *)bp->b_data)[off+1];
6082 	} else {
6083 		blkno = ((ufs2_daddr_t *)bp->b_data)[off];
6084 		start = (uint8_t *)&((ufs2_daddr_t *)bp->b_data)[off+1];
6085 	}
6086 	if (freework) {
6087 		/* Zero the truncated pointers. */
6088 		end = bp->b_data + bp->b_bcount;
6089 		bzero(start, end - start);
6090 		bdwrite(bp);
6091 	} else
6092 		bqrelse(bp);
6093 	if (level == 0)
6094 		return (0);
6095 	lbn++; /* adjust level */
6096 	lbn -= (off * lbnadd);
6097 	return setup_trunc_indir(freeblks, ip, lbn, lastlbn, blkno);
6098 }
6099 
6100 /*
6101  * Complete the partial truncation of an indirect block setup by
6102  * setup_trunc_indir().  This zeros the truncated pointers in the saved
6103  * copy and writes them to disk before the freeblks is allowed to complete.
6104  */
6105 static void
6106 complete_trunc_indir(freework)
6107 	struct freework *freework;
6108 {
6109 	struct freework *fwn;
6110 	struct indirdep *indirdep;
6111 	struct buf *bp;
6112 	uintptr_t start;
6113 	int count;
6114 
6115 	indirdep = freework->fw_indir;
6116 	for (;;) {
6117 		bp = indirdep->ir_bp;
6118 		/* See if the block was discarded. */
6119 		if (bp == NULL)
6120 			break;
6121 		/* Inline part of getdirtybuf().  We dont want bremfree. */
6122 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) == 0)
6123 			break;
6124 		if (BUF_LOCK(bp,
6125 		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, &lk) == 0)
6126 			BUF_UNLOCK(bp);
6127 		ACQUIRE_LOCK(&lk);
6128 	}
6129 	mtx_assert(&lk, MA_OWNED);
6130 	freework->fw_state |= DEPCOMPLETE;
6131 	TAILQ_REMOVE(&indirdep->ir_trunc, freework, fw_next);
6132 	/*
6133 	 * Zero the pointers in the saved copy.
6134 	 */
6135 	if (indirdep->ir_state & UFS1FMT)
6136 		start = sizeof(ufs1_daddr_t);
6137 	else
6138 		start = sizeof(ufs2_daddr_t);
6139 	start *= freework->fw_start;
6140 	count = indirdep->ir_savebp->b_bcount - start;
6141 	start += (uintptr_t)indirdep->ir_savebp->b_data;
6142 	bzero((char *)start, count);
6143 	/*
6144 	 * We need to start the next truncation in the list if it has not
6145 	 * been started yet.
6146 	 */
6147 	fwn = TAILQ_FIRST(&indirdep->ir_trunc);
6148 	if (fwn != NULL) {
6149 		if (fwn->fw_freeblks == indirdep->ir_freeblks)
6150 			TAILQ_REMOVE(&indirdep->ir_trunc, fwn, fw_next);
6151 		if ((fwn->fw_state & ONWORKLIST) == 0)
6152 			freework_enqueue(fwn);
6153 	}
6154 	/*
6155 	 * If bp is NULL the block was fully truncated, restore
6156 	 * the saved block list otherwise free it if it is no
6157 	 * longer needed.
6158 	 */
6159 	if (TAILQ_EMPTY(&indirdep->ir_trunc)) {
6160 		if (bp == NULL)
6161 			bcopy(indirdep->ir_saveddata,
6162 			    indirdep->ir_savebp->b_data,
6163 			    indirdep->ir_savebp->b_bcount);
6164 		free(indirdep->ir_saveddata, M_INDIRDEP);
6165 		indirdep->ir_saveddata = NULL;
6166 	}
6167 	/*
6168 	 * When bp is NULL there is a full truncation pending.  We
6169 	 * must wait for this full truncation to be journaled before
6170 	 * we can release this freework because the disk pointers will
6171 	 * never be written as zero.
6172 	 */
6173 	if (bp == NULL)  {
6174 		if (LIST_EMPTY(&indirdep->ir_freeblks->fb_jblkdephd))
6175 			handle_written_freework(freework);
6176 		else
6177 			WORKLIST_INSERT(&indirdep->ir_freeblks->fb_freeworkhd,
6178 			   &freework->fw_list);
6179 	} else {
6180 		/* Complete when the real copy is written. */
6181 		WORKLIST_INSERT(&bp->b_dep, &freework->fw_list);
6182 		BUF_UNLOCK(bp);
6183 	}
6184 }
6185 
6186 /*
6187  * Calculate the number of blocks we are going to release where datablocks
6188  * is the current total and length is the new file size.
6189  */
6190 ufs2_daddr_t
6191 blkcount(fs, datablocks, length)
6192 	struct fs *fs;
6193 	ufs2_daddr_t datablocks;
6194 	off_t length;
6195 {
6196 	off_t totblks, numblks;
6197 
6198 	totblks = 0;
6199 	numblks = howmany(length, fs->fs_bsize);
6200 	if (numblks <= NDADDR) {
6201 		totblks = howmany(length, fs->fs_fsize);
6202 		goto out;
6203 	}
6204         totblks = blkstofrags(fs, numblks);
6205 	numblks -= NDADDR;
6206 	/*
6207 	 * Count all single, then double, then triple indirects required.
6208 	 * Subtracting one indirects worth of blocks for each pass
6209 	 * acknowledges one of each pointed to by the inode.
6210 	 */
6211 	for (;;) {
6212 		totblks += blkstofrags(fs, howmany(numblks, NINDIR(fs)));
6213 		numblks -= NINDIR(fs);
6214 		if (numblks <= 0)
6215 			break;
6216 		numblks = howmany(numblks, NINDIR(fs));
6217 	}
6218 out:
6219 	totblks = fsbtodb(fs, totblks);
6220 	/*
6221 	 * Handle sparse files.  We can't reclaim more blocks than the inode
6222 	 * references.  We will correct it later in handle_complete_freeblks()
6223 	 * when we know the real count.
6224 	 */
6225 	if (totblks > datablocks)
6226 		return (0);
6227 	return (datablocks - totblks);
6228 }
6229 
6230 /*
6231  * Handle freeblocks for journaled softupdate filesystems.
6232  *
6233  * Contrary to normal softupdates, we must preserve the block pointers in
6234  * indirects until their subordinates are free.  This is to avoid journaling
6235  * every block that is freed which may consume more space than the journal
6236  * itself.  The recovery program will see the free block journals at the
6237  * base of the truncated area and traverse them to reclaim space.  The
6238  * pointers in the inode may be cleared immediately after the journal
6239  * records are written because each direct and indirect pointer in the
6240  * inode is recorded in a journal.  This permits full truncation to proceed
6241  * asynchronously.  The write order is journal -> inode -> cgs -> indirects.
6242  *
6243  * The algorithm is as follows:
6244  * 1) Traverse the in-memory state and create journal entries to release
6245  *    the relevant blocks and full indirect trees.
6246  * 2) Traverse the indirect block chain adding partial truncation freework
6247  *    records to indirects in the path to lastlbn.  The freework will
6248  *    prevent new allocation dependencies from being satisfied in this
6249  *    indirect until the truncation completes.
6250  * 3) Read and lock the inode block, performing an update with the new size
6251  *    and pointers.  This prevents truncated data from becoming valid on
6252  *    disk through step 4.
6253  * 4) Reap unsatisfied dependencies that are beyond the truncated area,
6254  *    eliminate journal work for those records that do not require it.
6255  * 5) Schedule the journal records to be written followed by the inode block.
6256  * 6) Allocate any necessary frags for the end of file.
6257  * 7) Zero any partially truncated blocks.
6258  *
6259  * From this truncation proceeds asynchronously using the freework and
6260  * indir_trunc machinery.  The file will not be extended again into a
6261  * partially truncated indirect block until all work is completed but
6262  * the normal dependency mechanism ensures that it is rolled back/forward
6263  * as appropriate.  Further truncation may occur without delay and is
6264  * serialized in indir_trunc().
6265  */
6266 void
6267 softdep_journal_freeblocks(ip, cred, length, flags)
6268 	struct inode *ip;	/* The inode whose length is to be reduced */
6269 	struct ucred *cred;
6270 	off_t length;		/* The new length for the file */
6271 	int flags;		/* IO_EXT and/or IO_NORMAL */
6272 {
6273 	struct freeblks *freeblks, *fbn;
6274 	struct worklist *wk, *wkn;
6275 	struct inodedep *inodedep;
6276 	struct jblkdep *jblkdep;
6277 	struct allocdirect *adp, *adpn;
6278 	struct fs *fs;
6279 	struct buf *bp;
6280 	struct vnode *vp;
6281 	struct mount *mp;
6282 	ufs2_daddr_t extblocks, datablocks;
6283 	ufs_lbn_t tmpval, lbn, lastlbn;
6284 	int frags, lastoff, iboff, allocblock, needj, dflags, error, i;
6285 
6286 	fs = ip->i_fs;
6287 	mp = UFSTOVFS(ip->i_ump);
6288 	vp = ITOV(ip);
6289 	needj = 1;
6290 	iboff = -1;
6291 	allocblock = 0;
6292 	extblocks = 0;
6293 	datablocks = 0;
6294 	frags = 0;
6295 	freeblks = newfreeblks(mp, ip);
6296 	ACQUIRE_LOCK(&lk);
6297 	/*
6298 	 * If we're truncating a removed file that will never be written
6299 	 * we don't need to journal the block frees.  The canceled journals
6300 	 * for the allocations will suffice.
6301 	 */
6302 	dflags = DEPALLOC;
6303 	if (IS_SNAPSHOT(ip))
6304 		dflags |= NODELAY;
6305 	inodedep_lookup(mp, ip->i_number, dflags, &inodedep);
6306 	if ((inodedep->id_state & (UNLINKED | DEPCOMPLETE)) == UNLINKED &&
6307 	    length == 0)
6308 		needj = 0;
6309 	CTR3(KTR_SUJ, "softdep_journal_freeblks: ip %d length %ld needj %d",
6310 	    ip->i_number, length, needj);
6311 	FREE_LOCK(&lk);
6312 	/*
6313 	 * Calculate the lbn that we are truncating to.  This results in -1
6314 	 * if we're truncating the 0 bytes.  So it is the last lbn we want
6315 	 * to keep, not the first lbn we want to truncate.
6316 	 */
6317 	lastlbn = lblkno(fs, length + fs->fs_bsize - 1) - 1;
6318 	lastoff = blkoff(fs, length);
6319 	/*
6320 	 * Compute frags we are keeping in lastlbn.  0 means all.
6321 	 */
6322 	if (lastlbn >= 0 && lastlbn < NDADDR) {
6323 		frags = fragroundup(fs, lastoff);
6324 		/* adp offset of last valid allocdirect. */
6325 		iboff = lastlbn;
6326 	} else if (lastlbn > 0)
6327 		iboff = NDADDR;
6328 	if (fs->fs_magic == FS_UFS2_MAGIC)
6329 		extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize));
6330 	/*
6331 	 * Handle normal data blocks and indirects.  This section saves
6332 	 * values used after the inode update to complete frag and indirect
6333 	 * truncation.
6334 	 */
6335 	if ((flags & IO_NORMAL) != 0) {
6336 		/*
6337 		 * Handle truncation of whole direct and indirect blocks.
6338 		 */
6339 		for (i = iboff + 1; i < NDADDR; i++)
6340 			setup_freedirect(freeblks, ip, i, needj);
6341 		for (i = 0, tmpval = NINDIR(fs), lbn = NDADDR; i < NIADDR;
6342 		    i++, lbn += tmpval, tmpval *= NINDIR(fs)) {
6343 			/* Release a whole indirect tree. */
6344 			if (lbn > lastlbn) {
6345 				setup_freeindir(freeblks, ip, i, -lbn -i,
6346 				    needj);
6347 				continue;
6348 			}
6349 			iboff = i + NDADDR;
6350 			/*
6351 			 * Traverse partially truncated indirect tree.
6352 			 */
6353 			if (lbn <= lastlbn && lbn + tmpval - 1 > lastlbn)
6354 				setup_trunc_indir(freeblks, ip, -lbn - i,
6355 				    lastlbn, DIP(ip, i_ib[i]));
6356 		}
6357 		/*
6358 		 * Handle partial truncation to a frag boundary.
6359 		 */
6360 		if (frags) {
6361 			ufs2_daddr_t blkno;
6362 			long oldfrags;
6363 
6364 			oldfrags = blksize(fs, ip, lastlbn);
6365 			blkno = DIP(ip, i_db[lastlbn]);
6366 			if (blkno && oldfrags != frags) {
6367 				oldfrags -= frags;
6368 				oldfrags = numfrags(ip->i_fs, oldfrags);
6369 				blkno += numfrags(ip->i_fs, frags);
6370 				newfreework(ip->i_ump, freeblks, NULL, lastlbn,
6371 				    blkno, oldfrags, 0, needj);
6372 			} else if (blkno == 0)
6373 				allocblock = 1;
6374 		}
6375 		/*
6376 		 * Add a journal record for partial truncate if we are
6377 		 * handling indirect blocks.  Non-indirects need no extra
6378 		 * journaling.
6379 		 */
6380 		if (length != 0 && lastlbn >= NDADDR) {
6381 			ip->i_flag |= IN_TRUNCATED;
6382 			newjtrunc(freeblks, length, 0);
6383 		}
6384 		ip->i_size = length;
6385 		DIP_SET(ip, i_size, ip->i_size);
6386 		datablocks = DIP(ip, i_blocks) - extblocks;
6387 		if (length != 0)
6388 			datablocks = blkcount(ip->i_fs, datablocks, length);
6389 		freeblks->fb_len = length;
6390 	}
6391 	if ((flags & IO_EXT) != 0) {
6392 		for (i = 0; i < NXADDR; i++)
6393 			setup_freeext(freeblks, ip, i, needj);
6394 		ip->i_din2->di_extsize = 0;
6395 		datablocks += extblocks;
6396 	}
6397 #ifdef QUOTA
6398 	/* Reference the quotas in case the block count is wrong in the end. */
6399 	quotaref(vp, freeblks->fb_quota);
6400 	(void) chkdq(ip, -datablocks, NOCRED, 0);
6401 #endif
6402 	freeblks->fb_chkcnt = -datablocks;
6403 	UFS_LOCK(ip->i_ump);
6404 	fs->fs_pendingblocks += datablocks;
6405 	UFS_UNLOCK(ip->i_ump);
6406 	DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - datablocks);
6407 	/*
6408 	 * Handle truncation of incomplete alloc direct dependencies.  We
6409 	 * hold the inode block locked to prevent incomplete dependencies
6410 	 * from reaching the disk while we are eliminating those that
6411 	 * have been truncated.  This is a partially inlined ffs_update().
6412 	 */
6413 	ufs_itimes(vp);
6414 	ip->i_flag &= ~(IN_LAZYACCESS | IN_LAZYMOD | IN_MODIFIED);
6415 	error = bread(ip->i_devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
6416 	    (int)fs->fs_bsize, cred, &bp);
6417 	if (error) {
6418 		brelse(bp);
6419 		softdep_error("softdep_journal_freeblocks", error);
6420 		return;
6421 	}
6422 	if (bp->b_bufsize == fs->fs_bsize)
6423 		bp->b_flags |= B_CLUSTEROK;
6424 	softdep_update_inodeblock(ip, bp, 0);
6425 	if (ip->i_ump->um_fstype == UFS1)
6426 		*((struct ufs1_dinode *)bp->b_data +
6427 		    ino_to_fsbo(fs, ip->i_number)) = *ip->i_din1;
6428 	else
6429 		*((struct ufs2_dinode *)bp->b_data +
6430 		    ino_to_fsbo(fs, ip->i_number)) = *ip->i_din2;
6431 	ACQUIRE_LOCK(&lk);
6432 	(void) inodedep_lookup(mp, ip->i_number, dflags, &inodedep);
6433 	if ((inodedep->id_state & IOSTARTED) != 0)
6434 		panic("softdep_setup_freeblocks: inode busy");
6435 	/*
6436 	 * Add the freeblks structure to the list of operations that
6437 	 * must await the zero'ed inode being written to disk. If we
6438 	 * still have a bitmap dependency (needj), then the inode
6439 	 * has never been written to disk, so we can process the
6440 	 * freeblks below once we have deleted the dependencies.
6441 	 */
6442 	if (needj)
6443 		WORKLIST_INSERT(&bp->b_dep, &freeblks->fb_list);
6444 	else
6445 		freeblks->fb_state |= COMPLETE;
6446 	if ((flags & IO_NORMAL) != 0) {
6447 		TAILQ_FOREACH_SAFE(adp, &inodedep->id_inoupdt, ad_next, adpn) {
6448 			if (adp->ad_offset > iboff)
6449 				cancel_allocdirect(&inodedep->id_inoupdt, adp,
6450 				    freeblks);
6451 			/*
6452 			 * Truncate the allocdirect.  We could eliminate
6453 			 * or modify journal records as well.
6454 			 */
6455 			else if (adp->ad_offset == iboff && frags)
6456 				adp->ad_newsize = frags;
6457 		}
6458 	}
6459 	if ((flags & IO_EXT) != 0)
6460 		while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != 0)
6461 			cancel_allocdirect(&inodedep->id_extupdt, adp,
6462 			    freeblks);
6463 	/*
6464 	 * Scan the bufwait list for newblock dependencies that will never
6465 	 * make it to disk.
6466 	 */
6467 	LIST_FOREACH_SAFE(wk, &inodedep->id_bufwait, wk_list, wkn) {
6468 		if (wk->wk_type != D_ALLOCDIRECT)
6469 			continue;
6470 		adp = WK_ALLOCDIRECT(wk);
6471 		if (((flags & IO_NORMAL) != 0 && (adp->ad_offset > iboff)) ||
6472 		    ((flags & IO_EXT) != 0 && (adp->ad_state & EXTDATA))) {
6473 			cancel_jfreeblk(freeblks, adp->ad_newblkno);
6474 			cancel_newblk(WK_NEWBLK(wk), NULL, &freeblks->fb_jwork);
6475 			WORKLIST_INSERT(&freeblks->fb_freeworkhd, wk);
6476 		}
6477 	}
6478 	/*
6479 	 * Add journal work.
6480 	 */
6481 	LIST_FOREACH(jblkdep, &freeblks->fb_jblkdephd, jb_deps)
6482 		add_to_journal(&jblkdep->jb_list);
6483 	FREE_LOCK(&lk);
6484 	bdwrite(bp);
6485 	/*
6486 	 * Truncate dependency structures beyond length.
6487 	 */
6488 	trunc_dependencies(ip, freeblks, lastlbn, frags, flags);
6489 	/*
6490 	 * This is only set when we need to allocate a fragment because
6491 	 * none existed at the end of a frag-sized file.  It handles only
6492 	 * allocating a new, zero filled block.
6493 	 */
6494 	if (allocblock) {
6495 		ip->i_size = length - lastoff;
6496 		DIP_SET(ip, i_size, ip->i_size);
6497 		error = UFS_BALLOC(vp, length - 1, 1, cred, BA_CLRBUF, &bp);
6498 		if (error != 0) {
6499 			softdep_error("softdep_journal_freeblks", error);
6500 			return;
6501 		}
6502 		ip->i_size = length;
6503 		DIP_SET(ip, i_size, length);
6504 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
6505 		allocbuf(bp, frags);
6506 		ffs_update(vp, 0);
6507 		bawrite(bp);
6508 	} else if (lastoff != 0 && vp->v_type != VDIR) {
6509 		int size;
6510 
6511 		/*
6512 		 * Zero the end of a truncated frag or block.
6513 		 */
6514 		size = sblksize(fs, length, lastlbn);
6515 		error = bread(vp, lastlbn, size, cred, &bp);
6516 		if (error) {
6517 			softdep_error("softdep_journal_freeblks", error);
6518 			return;
6519 		}
6520 		bzero((char *)bp->b_data + lastoff, size - lastoff);
6521 		bawrite(bp);
6522 
6523 	}
6524 	ACQUIRE_LOCK(&lk);
6525 	inodedep_lookup(mp, ip->i_number, dflags, &inodedep);
6526 	TAILQ_INSERT_TAIL(&inodedep->id_freeblklst, freeblks, fb_next);
6527 	freeblks->fb_state |= DEPCOMPLETE | ONDEPLIST;
6528 	/*
6529 	 * We zero earlier truncations so they don't erroneously
6530 	 * update i_blocks.
6531 	 */
6532 	if (freeblks->fb_len == 0 && (flags & IO_NORMAL) != 0)
6533 		TAILQ_FOREACH(fbn, &inodedep->id_freeblklst, fb_next)
6534 			fbn->fb_len = 0;
6535 	if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE &&
6536 	    LIST_EMPTY(&freeblks->fb_jblkdephd))
6537 		freeblks->fb_state |= INPROGRESS;
6538 	else
6539 		freeblks = NULL;
6540 	FREE_LOCK(&lk);
6541 	if (freeblks)
6542 		handle_workitem_freeblocks(freeblks, 0);
6543 	trunc_pages(ip, length, extblocks, flags);
6544 
6545 }
6546 
6547 /*
6548  * Flush a JOP_SYNC to the journal.
6549  */
6550 void
6551 softdep_journal_fsync(ip)
6552 	struct inode *ip;
6553 {
6554 	struct jfsync *jfsync;
6555 
6556 	if ((ip->i_flag & IN_TRUNCATED) == 0)
6557 		return;
6558 	ip->i_flag &= ~IN_TRUNCATED;
6559 	jfsync = malloc(sizeof(*jfsync), M_JFSYNC, M_SOFTDEP_FLAGS | M_ZERO);
6560 	workitem_alloc(&jfsync->jfs_list, D_JFSYNC, UFSTOVFS(ip->i_ump));
6561 	jfsync->jfs_size = ip->i_size;
6562 	jfsync->jfs_ino = ip->i_number;
6563 	ACQUIRE_LOCK(&lk);
6564 	add_to_journal(&jfsync->jfs_list);
6565 	jwait(&jfsync->jfs_list, MNT_WAIT);
6566 	FREE_LOCK(&lk);
6567 }
6568 
6569 /*
6570  * Block de-allocation dependencies.
6571  *
6572  * When blocks are de-allocated, the on-disk pointers must be nullified before
6573  * the blocks are made available for use by other files.  (The true
6574  * requirement is that old pointers must be nullified before new on-disk
6575  * pointers are set.  We chose this slightly more stringent requirement to
6576  * reduce complexity.) Our implementation handles this dependency by updating
6577  * the inode (or indirect block) appropriately but delaying the actual block
6578  * de-allocation (i.e., freemap and free space count manipulation) until
6579  * after the updated versions reach stable storage.  After the disk is
6580  * updated, the blocks can be safely de-allocated whenever it is convenient.
6581  * This implementation handles only the common case of reducing a file's
6582  * length to zero. Other cases are handled by the conventional synchronous
6583  * write approach.
6584  *
6585  * The ffs implementation with which we worked double-checks
6586  * the state of the block pointers and file size as it reduces
6587  * a file's length.  Some of this code is replicated here in our
6588  * soft updates implementation.  The freeblks->fb_chkcnt field is
6589  * used to transfer a part of this information to the procedure
6590  * that eventually de-allocates the blocks.
6591  *
6592  * This routine should be called from the routine that shortens
6593  * a file's length, before the inode's size or block pointers
6594  * are modified. It will save the block pointer information for
6595  * later release and zero the inode so that the calling routine
6596  * can release it.
6597  */
6598 void
6599 softdep_setup_freeblocks(ip, length, flags)
6600 	struct inode *ip;	/* The inode whose length is to be reduced */
6601 	off_t length;		/* The new length for the file */
6602 	int flags;		/* IO_EXT and/or IO_NORMAL */
6603 {
6604 	struct ufs1_dinode *dp1;
6605 	struct ufs2_dinode *dp2;
6606 	struct freeblks *freeblks;
6607 	struct inodedep *inodedep;
6608 	struct allocdirect *adp;
6609 	struct buf *bp;
6610 	struct fs *fs;
6611 	ufs2_daddr_t extblocks, datablocks;
6612 	struct mount *mp;
6613 	int i, delay, error, dflags;
6614 	ufs_lbn_t tmpval;
6615 	ufs_lbn_t lbn;
6616 
6617 	CTR2(KTR_SUJ, "softdep_setup_freeblks: ip %d length %ld",
6618 	    ip->i_number, length);
6619 	fs = ip->i_fs;
6620 	mp = UFSTOVFS(ip->i_ump);
6621 	if (length != 0)
6622 		panic("softdep_setup_freeblocks: non-zero length");
6623 	freeblks = newfreeblks(mp, ip);
6624 	extblocks = 0;
6625 	datablocks = 0;
6626 	if (fs->fs_magic == FS_UFS2_MAGIC)
6627 		extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize));
6628 	if ((flags & IO_NORMAL) != 0) {
6629 		for (i = 0; i < NDADDR; i++)
6630 			setup_freedirect(freeblks, ip, i, 0);
6631 		for (i = 0, tmpval = NINDIR(fs), lbn = NDADDR; i < NIADDR;
6632 		    i++, lbn += tmpval, tmpval *= NINDIR(fs))
6633 			setup_freeindir(freeblks, ip, i, -lbn -i, 0);
6634 		ip->i_size = 0;
6635 		DIP_SET(ip, i_size, 0);
6636 		datablocks = DIP(ip, i_blocks) - extblocks;
6637 	}
6638 	if ((flags & IO_EXT) != 0) {
6639 		for (i = 0; i < NXADDR; i++)
6640 			setup_freeext(freeblks, ip, i, 0);
6641 		ip->i_din2->di_extsize = 0;
6642 		datablocks += extblocks;
6643 	}
6644 #ifdef QUOTA
6645 	/* Reference the quotas in case the block count is wrong in the end. */
6646 	quotaref(ITOV(ip), freeblks->fb_quota);
6647 	(void) chkdq(ip, -datablocks, NOCRED, 0);
6648 #endif
6649 	freeblks->fb_chkcnt = -datablocks;
6650 	UFS_LOCK(ip->i_ump);
6651 	fs->fs_pendingblocks += datablocks;
6652 	UFS_UNLOCK(ip->i_ump);
6653 	DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - datablocks);
6654 	/*
6655 	 * Push the zero'ed inode to to its disk buffer so that we are free
6656 	 * to delete its dependencies below. Once the dependencies are gone
6657 	 * the buffer can be safely released.
6658 	 */
6659 	if ((error = bread(ip->i_devvp,
6660 	    fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
6661 	    (int)fs->fs_bsize, NOCRED, &bp)) != 0) {
6662 		brelse(bp);
6663 		softdep_error("softdep_setup_freeblocks", error);
6664 	}
6665 	if (ip->i_ump->um_fstype == UFS1) {
6666 		dp1 = ((struct ufs1_dinode *)bp->b_data +
6667 		    ino_to_fsbo(fs, ip->i_number));
6668 		ip->i_din1->di_freelink = dp1->di_freelink;
6669 		*dp1 = *ip->i_din1;
6670 	} else {
6671 		dp2 = ((struct ufs2_dinode *)bp->b_data +
6672 		    ino_to_fsbo(fs, ip->i_number));
6673 		ip->i_din2->di_freelink = dp2->di_freelink;
6674 		*dp2 = *ip->i_din2;
6675 	}
6676 	/*
6677 	 * Find and eliminate any inode dependencies.
6678 	 */
6679 	ACQUIRE_LOCK(&lk);
6680 	dflags = DEPALLOC;
6681 	if (IS_SNAPSHOT(ip))
6682 		dflags |= NODELAY;
6683 	(void) inodedep_lookup(mp, ip->i_number, dflags, &inodedep);
6684 	if ((inodedep->id_state & IOSTARTED) != 0)
6685 		panic("softdep_setup_freeblocks: inode busy");
6686 	/*
6687 	 * Add the freeblks structure to the list of operations that
6688 	 * must await the zero'ed inode being written to disk. If we
6689 	 * still have a bitmap dependency (delay == 0), then the inode
6690 	 * has never been written to disk, so we can process the
6691 	 * freeblks below once we have deleted the dependencies.
6692 	 */
6693 	delay = (inodedep->id_state & DEPCOMPLETE);
6694 	if (delay)
6695 		WORKLIST_INSERT(&bp->b_dep, &freeblks->fb_list);
6696 	else
6697 		freeblks->fb_state |= COMPLETE;
6698 	/*
6699 	 * Because the file length has been truncated to zero, any
6700 	 * pending block allocation dependency structures associated
6701 	 * with this inode are obsolete and can simply be de-allocated.
6702 	 * We must first merge the two dependency lists to get rid of
6703 	 * any duplicate freefrag structures, then purge the merged list.
6704 	 * If we still have a bitmap dependency, then the inode has never
6705 	 * been written to disk, so we can free any fragments without delay.
6706 	 */
6707 	if (flags & IO_NORMAL) {
6708 		merge_inode_lists(&inodedep->id_newinoupdt,
6709 		    &inodedep->id_inoupdt);
6710 		while ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != 0)
6711 			cancel_allocdirect(&inodedep->id_inoupdt, adp,
6712 			    freeblks);
6713 	}
6714 	if (flags & IO_EXT) {
6715 		merge_inode_lists(&inodedep->id_newextupdt,
6716 		    &inodedep->id_extupdt);
6717 		while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != 0)
6718 			cancel_allocdirect(&inodedep->id_extupdt, adp,
6719 			    freeblks);
6720 	}
6721 	FREE_LOCK(&lk);
6722 	bdwrite(bp);
6723 	trunc_dependencies(ip, freeblks, -1, 0, flags);
6724 	ACQUIRE_LOCK(&lk);
6725 	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0)
6726 		(void) free_inodedep(inodedep);
6727 	freeblks->fb_state |= DEPCOMPLETE;
6728 	/*
6729 	 * If the inode with zeroed block pointers is now on disk
6730 	 * we can start freeing blocks.
6731 	 */
6732 	if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE)
6733 		freeblks->fb_state |= INPROGRESS;
6734 	else
6735 		freeblks = NULL;
6736 	FREE_LOCK(&lk);
6737 	if (freeblks)
6738 		handle_workitem_freeblocks(freeblks, 0);
6739 	trunc_pages(ip, length, extblocks, flags);
6740 }
6741 
6742 /*
6743  * Eliminate pages from the page cache that back parts of this inode and
6744  * adjust the vnode pager's idea of our size.  This prevents stale data
6745  * from hanging around in the page cache.
6746  */
6747 static void
6748 trunc_pages(ip, length, extblocks, flags)
6749 	struct inode *ip;
6750 	off_t length;
6751 	ufs2_daddr_t extblocks;
6752 	int flags;
6753 {
6754 	struct vnode *vp;
6755 	struct fs *fs;
6756 	ufs_lbn_t lbn;
6757 	off_t end, extend;
6758 
6759 	vp = ITOV(ip);
6760 	fs = ip->i_fs;
6761 	extend = OFF_TO_IDX(lblktosize(fs, -extblocks));
6762 	if ((flags & IO_EXT) != 0)
6763 		vn_pages_remove(vp, extend, 0);
6764 	if ((flags & IO_NORMAL) == 0)
6765 		return;
6766 	BO_LOCK(&vp->v_bufobj);
6767 	drain_output(vp);
6768 	BO_UNLOCK(&vp->v_bufobj);
6769 	/*
6770 	 * The vnode pager eliminates file pages we eliminate indirects
6771 	 * below.
6772 	 */
6773 	vnode_pager_setsize(vp, length);
6774 	/*
6775 	 * Calculate the end based on the last indirect we want to keep.  If
6776 	 * the block extends into indirects we can just use the negative of
6777 	 * its lbn.  Doubles and triples exist at lower numbers so we must
6778 	 * be careful not to remove those, if they exist.  double and triple
6779 	 * indirect lbns do not overlap with others so it is not important
6780 	 * to verify how many levels are required.
6781 	 */
6782 	lbn = lblkno(fs, length);
6783 	if (lbn >= NDADDR) {
6784 		/* Calculate the virtual lbn of the triple indirect. */
6785 		lbn = -lbn - (NIADDR - 1);
6786 		end = OFF_TO_IDX(lblktosize(fs, lbn));
6787 	} else
6788 		end = extend;
6789 	vn_pages_remove(vp, OFF_TO_IDX(OFF_MAX), end);
6790 }
6791 
6792 /*
6793  * See if the buf bp is in the range eliminated by truncation.
6794  */
6795 static int
6796 trunc_check_buf(bp, blkoffp, lastlbn, lastoff, flags)
6797 	struct buf *bp;
6798 	int *blkoffp;
6799 	ufs_lbn_t lastlbn;
6800 	int lastoff;
6801 	int flags;
6802 {
6803 	ufs_lbn_t lbn;
6804 
6805 	*blkoffp = 0;
6806 	/* Only match ext/normal blocks as appropriate. */
6807 	if (((flags & IO_EXT) == 0 && (bp->b_xflags & BX_ALTDATA)) ||
6808 	    ((flags & IO_NORMAL) == 0 && (bp->b_xflags & BX_ALTDATA) == 0))
6809 		return (0);
6810 	/* ALTDATA is always a full truncation. */
6811 	if ((bp->b_xflags & BX_ALTDATA) != 0)
6812 		return (1);
6813 	/* -1 is full truncation. */
6814 	if (lastlbn == -1)
6815 		return (1);
6816 	/*
6817 	 * If this is a partial truncate we only want those
6818 	 * blocks and indirect blocks that cover the range
6819 	 * we're after.
6820 	 */
6821 	lbn = bp->b_lblkno;
6822 	if (lbn < 0)
6823 		lbn = -(lbn + lbn_level(lbn));
6824 	if (lbn < lastlbn)
6825 		return (0);
6826 	/* Here we only truncate lblkno if it's partial. */
6827 	if (lbn == lastlbn) {
6828 		if (lastoff == 0)
6829 			return (0);
6830 		*blkoffp = lastoff;
6831 	}
6832 	return (1);
6833 }
6834 
6835 /*
6836  * Eliminate any dependencies that exist in memory beyond lblkno:off
6837  */
6838 static void
6839 trunc_dependencies(ip, freeblks, lastlbn, lastoff, flags)
6840 	struct inode *ip;
6841 	struct freeblks *freeblks;
6842 	ufs_lbn_t lastlbn;
6843 	int lastoff;
6844 	int flags;
6845 {
6846 	struct bufobj *bo;
6847 	struct vnode *vp;
6848 	struct buf *bp;
6849 	struct fs *fs;
6850 	int blkoff;
6851 
6852 	/*
6853 	 * We must wait for any I/O in progress to finish so that
6854 	 * all potential buffers on the dirty list will be visible.
6855 	 * Once they are all there, walk the list and get rid of
6856 	 * any dependencies.
6857 	 */
6858 	fs = ip->i_fs;
6859 	vp = ITOV(ip);
6860 	bo = &vp->v_bufobj;
6861 	BO_LOCK(bo);
6862 	drain_output(vp);
6863 	TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs)
6864 		bp->b_vflags &= ~BV_SCANNED;
6865 restart:
6866 	TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) {
6867 		if (bp->b_vflags & BV_SCANNED)
6868 			continue;
6869 		if (!trunc_check_buf(bp, &blkoff, lastlbn, lastoff, flags)) {
6870 			bp->b_vflags |= BV_SCANNED;
6871 			continue;
6872 		}
6873 		if ((bp = getdirtybuf(bp, BO_MTX(bo), MNT_WAIT)) == NULL)
6874 			goto restart;
6875 		BO_UNLOCK(bo);
6876 		if (deallocate_dependencies(bp, freeblks, blkoff))
6877 			bqrelse(bp);
6878 		else
6879 			brelse(bp);
6880 		BO_LOCK(bo);
6881 		goto restart;
6882 	}
6883 	/*
6884 	 * Now do the work of vtruncbuf while also matching indirect blocks.
6885 	 */
6886 	TAILQ_FOREACH(bp, &bo->bo_clean.bv_hd, b_bobufs)
6887 		bp->b_vflags &= ~BV_SCANNED;
6888 cleanrestart:
6889 	TAILQ_FOREACH(bp, &bo->bo_clean.bv_hd, b_bobufs) {
6890 		if (bp->b_vflags & BV_SCANNED)
6891 			continue;
6892 		if (!trunc_check_buf(bp, &blkoff, lastlbn, lastoff, flags)) {
6893 			bp->b_vflags |= BV_SCANNED;
6894 			continue;
6895 		}
6896 		if (BUF_LOCK(bp,
6897 		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
6898 		    BO_MTX(bo)) == ENOLCK) {
6899 			BO_LOCK(bo);
6900 			goto cleanrestart;
6901 		}
6902 		bp->b_vflags |= BV_SCANNED;
6903 		BO_LOCK(bo);
6904 		bremfree(bp);
6905 		BO_UNLOCK(bo);
6906 		if (blkoff != 0) {
6907 			allocbuf(bp, blkoff);
6908 			bqrelse(bp);
6909 		} else {
6910 			bp->b_flags |= B_INVAL | B_NOCACHE | B_RELBUF;
6911 			brelse(bp);
6912 		}
6913 		BO_LOCK(bo);
6914 		goto cleanrestart;
6915 	}
6916 	drain_output(vp);
6917 	BO_UNLOCK(bo);
6918 }
6919 
6920 static int
6921 cancel_pagedep(pagedep, freeblks, blkoff)
6922 	struct pagedep *pagedep;
6923 	struct freeblks *freeblks;
6924 	int blkoff;
6925 {
6926 	struct jremref *jremref;
6927 	struct jmvref *jmvref;
6928 	struct dirrem *dirrem, *tmp;
6929 	int i;
6930 
6931 	/*
6932 	 * Copy any directory remove dependencies to the list
6933 	 * to be processed after the freeblks proceeds.  If
6934 	 * directory entry never made it to disk they
6935 	 * can be dumped directly onto the work list.
6936 	 */
6937 	LIST_FOREACH_SAFE(dirrem, &pagedep->pd_dirremhd, dm_next, tmp) {
6938 		/* Skip this directory removal if it is intended to remain. */
6939 		if (dirrem->dm_offset < blkoff)
6940 			continue;
6941 		/*
6942 		 * If there are any dirrems we wait for the journal write
6943 		 * to complete and then restart the buf scan as the lock
6944 		 * has been dropped.
6945 		 */
6946 		while ((jremref = LIST_FIRST(&dirrem->dm_jremrefhd)) != NULL) {
6947 			jwait(&jremref->jr_list, MNT_WAIT);
6948 			return (ERESTART);
6949 		}
6950 		LIST_REMOVE(dirrem, dm_next);
6951 		dirrem->dm_dirinum = pagedep->pd_ino;
6952 		WORKLIST_INSERT(&freeblks->fb_freeworkhd, &dirrem->dm_list);
6953 	}
6954 	while ((jmvref = LIST_FIRST(&pagedep->pd_jmvrefhd)) != NULL) {
6955 		jwait(&jmvref->jm_list, MNT_WAIT);
6956 		return (ERESTART);
6957 	}
6958 	/*
6959 	 * When we're partially truncating a pagedep we just want to flush
6960 	 * journal entries and return.  There can not be any adds in the
6961 	 * truncated portion of the directory and newblk must remain if
6962 	 * part of the block remains.
6963 	 */
6964 	if (blkoff != 0) {
6965 		struct diradd *dap;
6966 
6967 		LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist)
6968 			if (dap->da_offset > blkoff)
6969 				panic("cancel_pagedep: diradd %p off %d > %d",
6970 				    dap, dap->da_offset, blkoff);
6971 		for (i = 0; i < DAHASHSZ; i++)
6972 			LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist)
6973 				if (dap->da_offset > blkoff)
6974 					panic("cancel_pagedep: diradd %p off %d > %d",
6975 					    dap, dap->da_offset, blkoff);
6976 		return (0);
6977 	}
6978 	/*
6979 	 * There should be no directory add dependencies present
6980 	 * as the directory could not be truncated until all
6981 	 * children were removed.
6982 	 */
6983 	KASSERT(LIST_FIRST(&pagedep->pd_pendinghd) == NULL,
6984 	    ("deallocate_dependencies: pendinghd != NULL"));
6985 	for (i = 0; i < DAHASHSZ; i++)
6986 		KASSERT(LIST_FIRST(&pagedep->pd_diraddhd[i]) == NULL,
6987 		    ("deallocate_dependencies: diraddhd != NULL"));
6988 	if ((pagedep->pd_state & NEWBLOCK) != 0)
6989 		free_newdirblk(pagedep->pd_newdirblk);
6990 	if (free_pagedep(pagedep) == 0)
6991 		panic("Failed to free pagedep %p", pagedep);
6992 	return (0);
6993 }
6994 
6995 /*
6996  * Reclaim any dependency structures from a buffer that is about to
6997  * be reallocated to a new vnode. The buffer must be locked, thus,
6998  * no I/O completion operations can occur while we are manipulating
6999  * its associated dependencies. The mutex is held so that other I/O's
7000  * associated with related dependencies do not occur.
7001  */
7002 static int
7003 deallocate_dependencies(bp, freeblks, off)
7004 	struct buf *bp;
7005 	struct freeblks *freeblks;
7006 	int off;
7007 {
7008 	struct indirdep *indirdep;
7009 	struct pagedep *pagedep;
7010 	struct allocdirect *adp;
7011 	struct worklist *wk, *wkn;
7012 
7013 	ACQUIRE_LOCK(&lk);
7014 	LIST_FOREACH_SAFE(wk, &bp->b_dep, wk_list, wkn) {
7015 		switch (wk->wk_type) {
7016 		case D_INDIRDEP:
7017 			indirdep = WK_INDIRDEP(wk);
7018 			if (bp->b_lblkno >= 0 ||
7019 			    bp->b_blkno != indirdep->ir_savebp->b_lblkno)
7020 				panic("deallocate_dependencies: not indir");
7021 			cancel_indirdep(indirdep, bp, freeblks);
7022 			continue;
7023 
7024 		case D_PAGEDEP:
7025 			pagedep = WK_PAGEDEP(wk);
7026 			if (cancel_pagedep(pagedep, freeblks, off)) {
7027 				FREE_LOCK(&lk);
7028 				return (ERESTART);
7029 			}
7030 			continue;
7031 
7032 		case D_ALLOCINDIR:
7033 			/*
7034 			 * Simply remove the allocindir, we'll find it via
7035 			 * the indirdep where we can clear pointers if
7036 			 * needed.
7037 			 */
7038 			WORKLIST_REMOVE(wk);
7039 			continue;
7040 
7041 		case D_FREEWORK:
7042 			/*
7043 			 * A truncation is waiting for the zero'd pointers
7044 			 * to be written.  It can be freed when the freeblks
7045 			 * is journaled.
7046 			 */
7047 			WORKLIST_REMOVE(wk);
7048 			wk->wk_state |= ONDEPLIST;
7049 			WORKLIST_INSERT(&freeblks->fb_freeworkhd, wk);
7050 			break;
7051 
7052 		case D_ALLOCDIRECT:
7053 			adp = WK_ALLOCDIRECT(wk);
7054 			if (off != 0)
7055 				continue;
7056 			/* FALLTHROUGH */
7057 		default:
7058 			panic("deallocate_dependencies: Unexpected type %s",
7059 			    TYPENAME(wk->wk_type));
7060 			/* NOTREACHED */
7061 		}
7062 	}
7063 	FREE_LOCK(&lk);
7064 	/*
7065 	 * Don't throw away this buf, we were partially truncating and
7066 	 * some deps may always remain.
7067 	 */
7068 	if (off) {
7069 		allocbuf(bp, off);
7070 		bp->b_vflags |= BV_SCANNED;
7071 		return (EBUSY);
7072 	}
7073 	bp->b_flags |= B_INVAL | B_NOCACHE;
7074 
7075 	return (0);
7076 }
7077 
7078 /*
7079  * An allocdirect is being canceled due to a truncate.  We must make sure
7080  * the journal entry is released in concert with the blkfree that releases
7081  * the storage.  Completed journal entries must not be released until the
7082  * space is no longer pointed to by the inode or in the bitmap.
7083  */
7084 static void
7085 cancel_allocdirect(adphead, adp, freeblks)
7086 	struct allocdirectlst *adphead;
7087 	struct allocdirect *adp;
7088 	struct freeblks *freeblks;
7089 {
7090 	struct freework *freework;
7091 	struct newblk *newblk;
7092 	struct worklist *wk;
7093 
7094 	TAILQ_REMOVE(adphead, adp, ad_next);
7095 	newblk = (struct newblk *)adp;
7096 	freework = NULL;
7097 	/*
7098 	 * Find the correct freework structure.
7099 	 */
7100 	LIST_FOREACH(wk, &freeblks->fb_freeworkhd, wk_list) {
7101 		if (wk->wk_type != D_FREEWORK)
7102 			continue;
7103 		freework = WK_FREEWORK(wk);
7104 		if (freework->fw_blkno == newblk->nb_newblkno)
7105 			break;
7106 	}
7107 	if (freework == NULL)
7108 		panic("cancel_allocdirect: Freework not found");
7109 	/*
7110 	 * If a newblk exists at all we still have the journal entry that
7111 	 * initiated the allocation so we do not need to journal the free.
7112 	 */
7113 	cancel_jfreeblk(freeblks, freework->fw_blkno);
7114 	/*
7115 	 * If the journal hasn't been written the jnewblk must be passed
7116 	 * to the call to ffs_blkfree that reclaims the space.  We accomplish
7117 	 * this by linking the journal dependency into the freework to be
7118 	 * freed when freework_freeblock() is called.  If the journal has
7119 	 * been written we can simply reclaim the journal space when the
7120 	 * freeblks work is complete.
7121 	 */
7122 	freework->fw_jnewblk = cancel_newblk(newblk, &freework->fw_list,
7123 	    &freeblks->fb_jwork);
7124 	WORKLIST_INSERT(&freeblks->fb_freeworkhd, &newblk->nb_list);
7125 }
7126 
7127 
7128 /*
7129  * Cancel a new block allocation.  May be an indirect or direct block.  We
7130  * remove it from various lists and return any journal record that needs to
7131  * be resolved by the caller.
7132  *
7133  * A special consideration is made for indirects which were never pointed
7134  * at on disk and will never be found once this block is released.
7135  */
7136 static struct jnewblk *
7137 cancel_newblk(newblk, wk, wkhd)
7138 	struct newblk *newblk;
7139 	struct worklist *wk;
7140 	struct workhead *wkhd;
7141 {
7142 	struct jnewblk *jnewblk;
7143 
7144 	CTR1(KTR_SUJ, "cancel_newblk: blkno %jd", newblk->nb_newblkno);
7145 
7146 	newblk->nb_state |= GOINGAWAY;
7147 	/*
7148 	 * Previously we traversed the completedhd on each indirdep
7149 	 * attached to this newblk to cancel them and gather journal
7150 	 * work.  Since we need only the oldest journal segment and
7151 	 * the lowest point on the tree will always have the oldest
7152 	 * journal segment we are free to release the segments
7153 	 * of any subordinates and may leave the indirdep list to
7154 	 * indirdep_complete() when this newblk is freed.
7155 	 */
7156 	if (newblk->nb_state & ONDEPLIST) {
7157 		newblk->nb_state &= ~ONDEPLIST;
7158 		LIST_REMOVE(newblk, nb_deps);
7159 	}
7160 	if (newblk->nb_state & ONWORKLIST)
7161 		WORKLIST_REMOVE(&newblk->nb_list);
7162 	/*
7163 	 * If the journal entry hasn't been written we save a pointer to
7164 	 * the dependency that frees it until it is written or the
7165 	 * superseding operation completes.
7166 	 */
7167 	jnewblk = newblk->nb_jnewblk;
7168 	if (jnewblk != NULL && wk != NULL) {
7169 		newblk->nb_jnewblk = NULL;
7170 		jnewblk->jn_dep = wk;
7171 	}
7172 	if (!LIST_EMPTY(&newblk->nb_jwork))
7173 		jwork_move(wkhd, &newblk->nb_jwork);
7174 	/*
7175 	 * When truncating we must free the newdirblk early to remove
7176 	 * the pagedep from the hash before returning.
7177 	 */
7178 	if ((wk = LIST_FIRST(&newblk->nb_newdirblk)) != NULL)
7179 		free_newdirblk(WK_NEWDIRBLK(wk));
7180 	if (!LIST_EMPTY(&newblk->nb_newdirblk))
7181 		panic("cancel_newblk: extra newdirblk");
7182 
7183 	return (jnewblk);
7184 }
7185 
7186 /*
7187  * Schedule the freefrag associated with a newblk to be released once
7188  * the pointers are written and the previous block is no longer needed.
7189  */
7190 static void
7191 newblk_freefrag(newblk)
7192 	struct newblk *newblk;
7193 {
7194 	struct freefrag *freefrag;
7195 
7196 	if (newblk->nb_freefrag == NULL)
7197 		return;
7198 	freefrag = newblk->nb_freefrag;
7199 	newblk->nb_freefrag = NULL;
7200 	freefrag->ff_state |= COMPLETE;
7201 	if ((freefrag->ff_state & ALLCOMPLETE) == ALLCOMPLETE)
7202 		add_to_worklist(&freefrag->ff_list, 0);
7203 }
7204 
7205 /*
7206  * Free a newblk. Generate a new freefrag work request if appropriate.
7207  * This must be called after the inode pointer and any direct block pointers
7208  * are valid or fully removed via truncate or frag extension.
7209  */
7210 static void
7211 free_newblk(newblk)
7212 	struct newblk *newblk;
7213 {
7214 	struct indirdep *indirdep;
7215 	struct worklist *wk;
7216 
7217 	KASSERT(newblk->nb_jnewblk == NULL,
7218 	    ("free_newblk; jnewblk %p still attached", newblk->nb_jnewblk));
7219 	mtx_assert(&lk, MA_OWNED);
7220 	newblk_freefrag(newblk);
7221 	if (newblk->nb_state & ONDEPLIST)
7222 		LIST_REMOVE(newblk, nb_deps);
7223 	if (newblk->nb_state & ONWORKLIST)
7224 		WORKLIST_REMOVE(&newblk->nb_list);
7225 	LIST_REMOVE(newblk, nb_hash);
7226 	if ((wk = LIST_FIRST(&newblk->nb_newdirblk)) != NULL)
7227 		free_newdirblk(WK_NEWDIRBLK(wk));
7228 	if (!LIST_EMPTY(&newblk->nb_newdirblk))
7229 		panic("free_newblk: extra newdirblk");
7230 	while ((indirdep = LIST_FIRST(&newblk->nb_indirdeps)) != NULL)
7231 		indirdep_complete(indirdep);
7232 	handle_jwork(&newblk->nb_jwork);
7233 	newblk->nb_list.wk_type = D_NEWBLK;
7234 	WORKITEM_FREE(newblk, D_NEWBLK);
7235 }
7236 
7237 /*
7238  * Free a newdirblk. Clear the NEWBLOCK flag on its associated pagedep.
7239  * This routine must be called with splbio interrupts blocked.
7240  */
7241 static void
7242 free_newdirblk(newdirblk)
7243 	struct newdirblk *newdirblk;
7244 {
7245 	struct pagedep *pagedep;
7246 	struct diradd *dap;
7247 	struct worklist *wk;
7248 
7249 	mtx_assert(&lk, MA_OWNED);
7250 	WORKLIST_REMOVE(&newdirblk->db_list);
7251 	/*
7252 	 * If the pagedep is still linked onto the directory buffer
7253 	 * dependency chain, then some of the entries on the
7254 	 * pd_pendinghd list may not be committed to disk yet. In
7255 	 * this case, we will simply clear the NEWBLOCK flag and
7256 	 * let the pd_pendinghd list be processed when the pagedep
7257 	 * is next written. If the pagedep is no longer on the buffer
7258 	 * dependency chain, then all the entries on the pd_pending
7259 	 * list are committed to disk and we can free them here.
7260 	 */
7261 	pagedep = newdirblk->db_pagedep;
7262 	pagedep->pd_state &= ~NEWBLOCK;
7263 	if ((pagedep->pd_state & ONWORKLIST) == 0) {
7264 		while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL)
7265 			free_diradd(dap, NULL);
7266 		/*
7267 		 * If no dependencies remain, the pagedep will be freed.
7268 		 */
7269 		free_pagedep(pagedep);
7270 	}
7271 	/* Should only ever be one item in the list. */
7272 	while ((wk = LIST_FIRST(&newdirblk->db_mkdir)) != NULL) {
7273 		WORKLIST_REMOVE(wk);
7274 		handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY);
7275 	}
7276 	WORKITEM_FREE(newdirblk, D_NEWDIRBLK);
7277 }
7278 
7279 /*
7280  * Prepare an inode to be freed. The actual free operation is not
7281  * done until the zero'ed inode has been written to disk.
7282  */
7283 void
7284 softdep_freefile(pvp, ino, mode)
7285 	struct vnode *pvp;
7286 	ino_t ino;
7287 	int mode;
7288 {
7289 	struct inode *ip = VTOI(pvp);
7290 	struct inodedep *inodedep;
7291 	struct freefile *freefile;
7292 	struct freeblks *freeblks;
7293 
7294 	/*
7295 	 * This sets up the inode de-allocation dependency.
7296 	 */
7297 	freefile = malloc(sizeof(struct freefile),
7298 		M_FREEFILE, M_SOFTDEP_FLAGS);
7299 	workitem_alloc(&freefile->fx_list, D_FREEFILE, pvp->v_mount);
7300 	freefile->fx_mode = mode;
7301 	freefile->fx_oldinum = ino;
7302 	freefile->fx_devvp = ip->i_devvp;
7303 	LIST_INIT(&freefile->fx_jwork);
7304 	UFS_LOCK(ip->i_ump);
7305 	ip->i_fs->fs_pendinginodes += 1;
7306 	UFS_UNLOCK(ip->i_ump);
7307 
7308 	/*
7309 	 * If the inodedep does not exist, then the zero'ed inode has
7310 	 * been written to disk. If the allocated inode has never been
7311 	 * written to disk, then the on-disk inode is zero'ed. In either
7312 	 * case we can free the file immediately.  If the journal was
7313 	 * canceled before being written the inode will never make it to
7314 	 * disk and we must send the canceled journal entrys to
7315 	 * ffs_freefile() to be cleared in conjunction with the bitmap.
7316 	 * Any blocks waiting on the inode to write can be safely freed
7317 	 * here as it will never been written.
7318 	 */
7319 	ACQUIRE_LOCK(&lk);
7320 	inodedep_lookup(pvp->v_mount, ino, 0, &inodedep);
7321 	if (inodedep) {
7322 		/*
7323 		 * Clear out freeblks that no longer need to reference
7324 		 * this inode.
7325 		 */
7326 		while ((freeblks =
7327 		    TAILQ_FIRST(&inodedep->id_freeblklst)) != NULL) {
7328 			TAILQ_REMOVE(&inodedep->id_freeblklst, freeblks,
7329 			    fb_next);
7330 			freeblks->fb_state &= ~ONDEPLIST;
7331 		}
7332 		/*
7333 		 * Remove this inode from the unlinked list.
7334 		 */
7335 		if (inodedep->id_state & UNLINKED) {
7336 			/*
7337 			 * Save the journal work to be freed with the bitmap
7338 			 * before we clear UNLINKED.  Otherwise it can be lost
7339 			 * if the inode block is written.
7340 			 */
7341 			handle_bufwait(inodedep, &freefile->fx_jwork);
7342 			clear_unlinked_inodedep(inodedep);
7343 			/* Re-acquire inodedep as we've dropped lk. */
7344 			inodedep_lookup(pvp->v_mount, ino, 0, &inodedep);
7345 		}
7346 	}
7347 	if (inodedep == NULL || check_inode_unwritten(inodedep)) {
7348 		FREE_LOCK(&lk);
7349 		handle_workitem_freefile(freefile);
7350 		return;
7351 	}
7352 	if ((inodedep->id_state & DEPCOMPLETE) == 0)
7353 		inodedep->id_state |= GOINGAWAY;
7354 	WORKLIST_INSERT(&inodedep->id_inowait, &freefile->fx_list);
7355 	FREE_LOCK(&lk);
7356 	if (ip->i_number == ino)
7357 		ip->i_flag |= IN_MODIFIED;
7358 }
7359 
7360 /*
7361  * Check to see if an inode has never been written to disk. If
7362  * so free the inodedep and return success, otherwise return failure.
7363  * This routine must be called with splbio interrupts blocked.
7364  *
7365  * If we still have a bitmap dependency, then the inode has never
7366  * been written to disk. Drop the dependency as it is no longer
7367  * necessary since the inode is being deallocated. We set the
7368  * ALLCOMPLETE flags since the bitmap now properly shows that the
7369  * inode is not allocated. Even if the inode is actively being
7370  * written, it has been rolled back to its zero'ed state, so we
7371  * are ensured that a zero inode is what is on the disk. For short
7372  * lived files, this change will usually result in removing all the
7373  * dependencies from the inode so that it can be freed immediately.
7374  */
7375 static int
7376 check_inode_unwritten(inodedep)
7377 	struct inodedep *inodedep;
7378 {
7379 
7380 	mtx_assert(&lk, MA_OWNED);
7381 
7382 	if ((inodedep->id_state & (DEPCOMPLETE | UNLINKED)) != 0 ||
7383 	    !LIST_EMPTY(&inodedep->id_dirremhd) ||
7384 	    !LIST_EMPTY(&inodedep->id_pendinghd) ||
7385 	    !LIST_EMPTY(&inodedep->id_bufwait) ||
7386 	    !LIST_EMPTY(&inodedep->id_inowait) ||
7387 	    !TAILQ_EMPTY(&inodedep->id_inoreflst) ||
7388 	    !TAILQ_EMPTY(&inodedep->id_inoupdt) ||
7389 	    !TAILQ_EMPTY(&inodedep->id_newinoupdt) ||
7390 	    !TAILQ_EMPTY(&inodedep->id_extupdt) ||
7391 	    !TAILQ_EMPTY(&inodedep->id_newextupdt) ||
7392 	    !TAILQ_EMPTY(&inodedep->id_freeblklst) ||
7393 	    inodedep->id_mkdiradd != NULL ||
7394 	    inodedep->id_nlinkdelta != 0)
7395 		return (0);
7396 	/*
7397 	 * Another process might be in initiate_write_inodeblock_ufs[12]
7398 	 * trying to allocate memory without holding "Softdep Lock".
7399 	 */
7400 	if ((inodedep->id_state & IOSTARTED) != 0 &&
7401 	    inodedep->id_savedino1 == NULL)
7402 		return (0);
7403 
7404 	if (inodedep->id_state & ONDEPLIST)
7405 		LIST_REMOVE(inodedep, id_deps);
7406 	inodedep->id_state &= ~ONDEPLIST;
7407 	inodedep->id_state |= ALLCOMPLETE;
7408 	inodedep->id_bmsafemap = NULL;
7409 	if (inodedep->id_state & ONWORKLIST)
7410 		WORKLIST_REMOVE(&inodedep->id_list);
7411 	if (inodedep->id_savedino1 != NULL) {
7412 		free(inodedep->id_savedino1, M_SAVEDINO);
7413 		inodedep->id_savedino1 = NULL;
7414 	}
7415 	if (free_inodedep(inodedep) == 0)
7416 		panic("check_inode_unwritten: busy inode");
7417 	return (1);
7418 }
7419 
7420 /*
7421  * Try to free an inodedep structure. Return 1 if it could be freed.
7422  */
7423 static int
7424 free_inodedep(inodedep)
7425 	struct inodedep *inodedep;
7426 {
7427 
7428 	mtx_assert(&lk, MA_OWNED);
7429 	if ((inodedep->id_state & (ONWORKLIST | UNLINKED)) != 0 ||
7430 	    (inodedep->id_state & ALLCOMPLETE) != ALLCOMPLETE ||
7431 	    !LIST_EMPTY(&inodedep->id_dirremhd) ||
7432 	    !LIST_EMPTY(&inodedep->id_pendinghd) ||
7433 	    !LIST_EMPTY(&inodedep->id_bufwait) ||
7434 	    !LIST_EMPTY(&inodedep->id_inowait) ||
7435 	    !TAILQ_EMPTY(&inodedep->id_inoreflst) ||
7436 	    !TAILQ_EMPTY(&inodedep->id_inoupdt) ||
7437 	    !TAILQ_EMPTY(&inodedep->id_newinoupdt) ||
7438 	    !TAILQ_EMPTY(&inodedep->id_extupdt) ||
7439 	    !TAILQ_EMPTY(&inodedep->id_newextupdt) ||
7440 	    !TAILQ_EMPTY(&inodedep->id_freeblklst) ||
7441 	    inodedep->id_mkdiradd != NULL ||
7442 	    inodedep->id_nlinkdelta != 0 ||
7443 	    inodedep->id_savedino1 != NULL)
7444 		return (0);
7445 	if (inodedep->id_state & ONDEPLIST)
7446 		LIST_REMOVE(inodedep, id_deps);
7447 	LIST_REMOVE(inodedep, id_hash);
7448 	WORKITEM_FREE(inodedep, D_INODEDEP);
7449 	return (1);
7450 }
7451 
7452 /*
7453  * Free the block referenced by a freework structure.  The parent freeblks
7454  * structure is released and completed when the final cg bitmap reaches
7455  * the disk.  This routine may be freeing a jnewblk which never made it to
7456  * disk in which case we do not have to wait as the operation is undone
7457  * in memory immediately.
7458  */
7459 static void
7460 freework_freeblock(freework)
7461 	struct freework *freework;
7462 {
7463 	struct freeblks *freeblks;
7464 	struct jnewblk *jnewblk;
7465 	struct ufsmount *ump;
7466 	struct workhead wkhd;
7467 	struct fs *fs;
7468 	int bsize;
7469 	int needj;
7470 
7471 	mtx_assert(&lk, MA_OWNED);
7472 	/*
7473 	 * Handle partial truncate separately.
7474 	 */
7475 	if (freework->fw_indir) {
7476 		complete_trunc_indir(freework);
7477 		return;
7478 	}
7479 	freeblks = freework->fw_freeblks;
7480 	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
7481 	fs = ump->um_fs;
7482 	needj = MOUNTEDSUJ(freeblks->fb_list.wk_mp) != 0;
7483 	bsize = lfragtosize(fs, freework->fw_frags);
7484 	LIST_INIT(&wkhd);
7485 	/*
7486 	 * DEPCOMPLETE is cleared in indirblk_insert() if the block lives
7487 	 * on the indirblk hashtable and prevents premature freeing.
7488 	 */
7489 	freework->fw_state |= DEPCOMPLETE;
7490 	/*
7491 	 * SUJ needs to wait for the segment referencing freed indirect
7492 	 * blocks to expire so that we know the checker will not confuse
7493 	 * a re-allocated indirect block with its old contents.
7494 	 */
7495 	if (needj && freework->fw_lbn <= -NDADDR)
7496 		indirblk_insert(freework);
7497 	/*
7498 	 * If we are canceling an existing jnewblk pass it to the free
7499 	 * routine, otherwise pass the freeblk which will ultimately
7500 	 * release the freeblks.  If we're not journaling, we can just
7501 	 * free the freeblks immediately.
7502 	 */
7503 	jnewblk = freework->fw_jnewblk;
7504 	if (jnewblk != NULL) {
7505 		cancel_jnewblk(jnewblk, &wkhd);
7506 		needj = 0;
7507 	} else if (needj) {
7508 		freework->fw_state |= DELAYEDFREE;
7509 		freeblks->fb_cgwait++;
7510 		WORKLIST_INSERT(&wkhd, &freework->fw_list);
7511 	}
7512 	FREE_LOCK(&lk);
7513 	freeblks_free(ump, freeblks, btodb(bsize));
7514 	CTR4(KTR_SUJ,
7515 	    "freework_freeblock: ino %d blkno %jd lbn %jd size %ld",
7516 	    freeblks->fb_inum, freework->fw_blkno, freework->fw_lbn, bsize);
7517 	ffs_blkfree(ump, fs, freeblks->fb_devvp, freework->fw_blkno, bsize,
7518 	    freeblks->fb_inum, freeblks->fb_vtype, &wkhd);
7519 	ACQUIRE_LOCK(&lk);
7520 	/*
7521 	 * The jnewblk will be discarded and the bits in the map never
7522 	 * made it to disk.  We can immediately free the freeblk.
7523 	 */
7524 	if (needj == 0)
7525 		handle_written_freework(freework);
7526 }
7527 
7528 /*
7529  * We enqueue freework items that need processing back on the freeblks and
7530  * add the freeblks to the worklist.  This makes it easier to find all work
7531  * required to flush a truncation in process_truncates().
7532  */
7533 static void
7534 freework_enqueue(freework)
7535 	struct freework *freework;
7536 {
7537 	struct freeblks *freeblks;
7538 
7539 	freeblks = freework->fw_freeblks;
7540 	if ((freework->fw_state & INPROGRESS) == 0)
7541 		WORKLIST_INSERT(&freeblks->fb_freeworkhd, &freework->fw_list);
7542 	if ((freeblks->fb_state &
7543 	    (ONWORKLIST | INPROGRESS | ALLCOMPLETE)) == ALLCOMPLETE &&
7544 	    LIST_EMPTY(&freeblks->fb_jblkdephd))
7545 		add_to_worklist(&freeblks->fb_list, WK_NODELAY);
7546 }
7547 
7548 /*
7549  * Start, continue, or finish the process of freeing an indirect block tree.
7550  * The free operation may be paused at any point with fw_off containing the
7551  * offset to restart from.  This enables us to implement some flow control
7552  * for large truncates which may fan out and generate a huge number of
7553  * dependencies.
7554  */
7555 static void
7556 handle_workitem_indirblk(freework)
7557 	struct freework *freework;
7558 {
7559 	struct freeblks *freeblks;
7560 	struct ufsmount *ump;
7561 	struct fs *fs;
7562 
7563 	freeblks = freework->fw_freeblks;
7564 	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
7565 	fs = ump->um_fs;
7566 	if (freework->fw_state & DEPCOMPLETE) {
7567 		handle_written_freework(freework);
7568 		return;
7569 	}
7570 	if (freework->fw_off == NINDIR(fs)) {
7571 		freework_freeblock(freework);
7572 		return;
7573 	}
7574 	freework->fw_state |= INPROGRESS;
7575 	FREE_LOCK(&lk);
7576 	indir_trunc(freework, fsbtodb(fs, freework->fw_blkno),
7577 	    freework->fw_lbn);
7578 	ACQUIRE_LOCK(&lk);
7579 }
7580 
7581 /*
7582  * Called when a freework structure attached to a cg buf is written.  The
7583  * ref on either the parent or the freeblks structure is released and
7584  * the freeblks is added back to the worklist if there is more work to do.
7585  */
7586 static void
7587 handle_written_freework(freework)
7588 	struct freework *freework;
7589 {
7590 	struct freeblks *freeblks;
7591 	struct freework *parent;
7592 
7593 	freeblks = freework->fw_freeblks;
7594 	parent = freework->fw_parent;
7595 	if (freework->fw_state & DELAYEDFREE)
7596 		freeblks->fb_cgwait--;
7597 	freework->fw_state |= COMPLETE;
7598 	if ((freework->fw_state & ALLCOMPLETE) == ALLCOMPLETE)
7599 		WORKITEM_FREE(freework, D_FREEWORK);
7600 	if (parent) {
7601 		if (--parent->fw_ref == 0)
7602 			freework_enqueue(parent);
7603 		return;
7604 	}
7605 	if (--freeblks->fb_ref != 0)
7606 		return;
7607 	if ((freeblks->fb_state & (ALLCOMPLETE | ONWORKLIST | INPROGRESS)) ==
7608 	    ALLCOMPLETE && LIST_EMPTY(&freeblks->fb_jblkdephd))
7609 		add_to_worklist(&freeblks->fb_list, WK_NODELAY);
7610 }
7611 
7612 /*
7613  * This workitem routine performs the block de-allocation.
7614  * The workitem is added to the pending list after the updated
7615  * inode block has been written to disk.  As mentioned above,
7616  * checks regarding the number of blocks de-allocated (compared
7617  * to the number of blocks allocated for the file) are also
7618  * performed in this function.
7619  */
7620 static int
7621 handle_workitem_freeblocks(freeblks, flags)
7622 	struct freeblks *freeblks;
7623 	int flags;
7624 {
7625 	struct freework *freework;
7626 	struct newblk *newblk;
7627 	struct allocindir *aip;
7628 	struct ufsmount *ump;
7629 	struct worklist *wk;
7630 
7631 	KASSERT(LIST_EMPTY(&freeblks->fb_jblkdephd),
7632 	    ("handle_workitem_freeblocks: Journal entries not written."));
7633 	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
7634 	ACQUIRE_LOCK(&lk);
7635 	while ((wk = LIST_FIRST(&freeblks->fb_freeworkhd)) != NULL) {
7636 		WORKLIST_REMOVE(wk);
7637 		switch (wk->wk_type) {
7638 		case D_DIRREM:
7639 			wk->wk_state |= COMPLETE;
7640 			add_to_worklist(wk, 0);
7641 			continue;
7642 
7643 		case D_ALLOCDIRECT:
7644 			free_newblk(WK_NEWBLK(wk));
7645 			continue;
7646 
7647 		case D_ALLOCINDIR:
7648 			aip = WK_ALLOCINDIR(wk);
7649 			freework = NULL;
7650 			if (aip->ai_state & DELAYEDFREE) {
7651 				FREE_LOCK(&lk);
7652 				freework = newfreework(ump, freeblks, NULL,
7653 				    aip->ai_lbn, aip->ai_newblkno,
7654 				    ump->um_fs->fs_frag, 0, 0);
7655 				ACQUIRE_LOCK(&lk);
7656 			}
7657 			newblk = WK_NEWBLK(wk);
7658 			if (newblk->nb_jnewblk) {
7659 				freework->fw_jnewblk = newblk->nb_jnewblk;
7660 				newblk->nb_jnewblk->jn_dep = &freework->fw_list;
7661 				newblk->nb_jnewblk = NULL;
7662 			}
7663 			free_newblk(newblk);
7664 			continue;
7665 
7666 		case D_FREEWORK:
7667 			freework = WK_FREEWORK(wk);
7668 			if (freework->fw_lbn <= -NDADDR)
7669 				handle_workitem_indirblk(freework);
7670 			else
7671 				freework_freeblock(freework);
7672 			continue;
7673 		default:
7674 			panic("handle_workitem_freeblocks: Unknown type %s",
7675 			    TYPENAME(wk->wk_type));
7676 		}
7677 	}
7678 	if (freeblks->fb_ref != 0) {
7679 		freeblks->fb_state &= ~INPROGRESS;
7680 		wake_worklist(&freeblks->fb_list);
7681 		freeblks = NULL;
7682 	}
7683 	FREE_LOCK(&lk);
7684 	if (freeblks)
7685 		return handle_complete_freeblocks(freeblks, flags);
7686 	return (0);
7687 }
7688 
7689 /*
7690  * Handle completion of block free via truncate.  This allows fs_pending
7691  * to track the actual free block count more closely than if we only updated
7692  * it at the end.  We must be careful to handle cases where the block count
7693  * on free was incorrect.
7694  */
7695 static void
7696 freeblks_free(ump, freeblks, blocks)
7697 	struct ufsmount *ump;
7698 	struct freeblks *freeblks;
7699 	int blocks;
7700 {
7701 	struct fs *fs;
7702 	ufs2_daddr_t remain;
7703 
7704 	UFS_LOCK(ump);
7705 	remain = -freeblks->fb_chkcnt;
7706 	freeblks->fb_chkcnt += blocks;
7707 	if (remain > 0) {
7708 		if (remain < blocks)
7709 			blocks = remain;
7710 		fs = ump->um_fs;
7711 		fs->fs_pendingblocks -= blocks;
7712 	}
7713 	UFS_UNLOCK(ump);
7714 }
7715 
7716 /*
7717  * Once all of the freework workitems are complete we can retire the
7718  * freeblocks dependency and any journal work awaiting completion.  This
7719  * can not be called until all other dependencies are stable on disk.
7720  */
7721 static int
7722 handle_complete_freeblocks(freeblks, flags)
7723 	struct freeblks *freeblks;
7724 	int flags;
7725 {
7726 	struct inodedep *inodedep;
7727 	struct inode *ip;
7728 	struct vnode *vp;
7729 	struct fs *fs;
7730 	struct ufsmount *ump;
7731 	ufs2_daddr_t spare;
7732 
7733 	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
7734 	fs = ump->um_fs;
7735 	flags = LK_EXCLUSIVE | flags;
7736 	spare = freeblks->fb_chkcnt;
7737 
7738 	/*
7739 	 * If we did not release the expected number of blocks we may have
7740 	 * to adjust the inode block count here.  Only do so if it wasn't
7741 	 * a truncation to zero and the modrev still matches.
7742 	 */
7743 	if (spare && freeblks->fb_len != 0) {
7744 		if (ffs_vgetf(freeblks->fb_list.wk_mp, freeblks->fb_inum,
7745 		    flags, &vp, FFSV_FORCEINSMQ) != 0)
7746 			return (EBUSY);
7747 		ip = VTOI(vp);
7748 		if (DIP(ip, i_modrev) == freeblks->fb_modrev) {
7749 			DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - spare);
7750 			ip->i_flag |= IN_CHANGE;
7751 			/*
7752 			 * We must wait so this happens before the
7753 			 * journal is reclaimed.
7754 			 */
7755 			ffs_update(vp, 1);
7756 		}
7757 		vput(vp);
7758 	}
7759 	if (spare < 0) {
7760 		UFS_LOCK(ump);
7761 		fs->fs_pendingblocks += spare;
7762 		UFS_UNLOCK(ump);
7763 	}
7764 #ifdef QUOTA
7765 	/* Handle spare. */
7766 	if (spare)
7767 		quotaadj(freeblks->fb_quota, ump, -spare);
7768 	quotarele(freeblks->fb_quota);
7769 #endif
7770 	ACQUIRE_LOCK(&lk);
7771 	if (freeblks->fb_state & ONDEPLIST) {
7772 		inodedep_lookup(freeblks->fb_list.wk_mp, freeblks->fb_inum,
7773 		    0, &inodedep);
7774 		TAILQ_REMOVE(&inodedep->id_freeblklst, freeblks, fb_next);
7775 		freeblks->fb_state &= ~ONDEPLIST;
7776 		if (TAILQ_EMPTY(&inodedep->id_freeblklst))
7777 			free_inodedep(inodedep);
7778 	}
7779 	/*
7780 	 * All of the freeblock deps must be complete prior to this call
7781 	 * so it's now safe to complete earlier outstanding journal entries.
7782 	 */
7783 	handle_jwork(&freeblks->fb_jwork);
7784 	WORKITEM_FREE(freeblks, D_FREEBLKS);
7785 	FREE_LOCK(&lk);
7786 	return (0);
7787 }
7788 
7789 /*
7790  * Release blocks associated with the freeblks and stored in the indirect
7791  * block dbn. If level is greater than SINGLE, the block is an indirect block
7792  * and recursive calls to indirtrunc must be used to cleanse other indirect
7793  * blocks.
7794  *
7795  * This handles partial and complete truncation of blocks.  Partial is noted
7796  * with goingaway == 0.  In this case the freework is completed after the
7797  * zero'd indirects are written to disk.  For full truncation the freework
7798  * is completed after the block is freed.
7799  */
7800 static void
7801 indir_trunc(freework, dbn, lbn)
7802 	struct freework *freework;
7803 	ufs2_daddr_t dbn;
7804 	ufs_lbn_t lbn;
7805 {
7806 	struct freework *nfreework;
7807 	struct workhead wkhd;
7808 	struct freeblks *freeblks;
7809 	struct buf *bp;
7810 	struct fs *fs;
7811 	struct indirdep *indirdep;
7812 	struct ufsmount *ump;
7813 	ufs1_daddr_t *bap1 = 0;
7814 	ufs2_daddr_t nb, nnb, *bap2 = 0;
7815 	ufs_lbn_t lbnadd, nlbn;
7816 	int i, nblocks, ufs1fmt;
7817 	int freedblocks;
7818 	int goingaway;
7819 	int freedeps;
7820 	int needj;
7821 	int level;
7822 	int cnt;
7823 
7824 	freeblks = freework->fw_freeblks;
7825 	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
7826 	fs = ump->um_fs;
7827 	/*
7828 	 * Get buffer of block pointers to be freed.  There are three cases:
7829 	 *
7830 	 * 1) Partial truncate caches the indirdep pointer in the freework
7831 	 *    which provides us a back copy to the save bp which holds the
7832 	 *    pointers we want to clear.  When this completes the zero
7833 	 *    pointers are written to the real copy.
7834 	 * 2) The indirect is being completely truncated, cancel_indirdep()
7835 	 *    eliminated the real copy and placed the indirdep on the saved
7836 	 *    copy.  The indirdep and buf are discarded when this completes.
7837 	 * 3) The indirect was not in memory, we read a copy off of the disk
7838 	 *    using the devvp and drop and invalidate the buffer when we're
7839 	 *    done.
7840 	 */
7841 	goingaway = 1;
7842 	indirdep = NULL;
7843 	if (freework->fw_indir != NULL) {
7844 		goingaway = 0;
7845 		indirdep = freework->fw_indir;
7846 		bp = indirdep->ir_savebp;
7847 		if (bp == NULL || bp->b_blkno != dbn)
7848 			panic("indir_trunc: Bad saved buf %p blkno %jd",
7849 			    bp, (intmax_t)dbn);
7850 	} else if ((bp = incore(&freeblks->fb_devvp->v_bufobj, dbn)) != NULL) {
7851 		/*
7852 		 * The lock prevents the buf dep list from changing and
7853 	 	 * indirects on devvp should only ever have one dependency.
7854 		 */
7855 		indirdep = WK_INDIRDEP(LIST_FIRST(&bp->b_dep));
7856 		if (indirdep == NULL || (indirdep->ir_state & GOINGAWAY) == 0)
7857 			panic("indir_trunc: Bad indirdep %p from buf %p",
7858 			    indirdep, bp);
7859 	} else if (bread(freeblks->fb_devvp, dbn, (int)fs->fs_bsize,
7860 	    NOCRED, &bp) != 0) {
7861 		brelse(bp);
7862 		return;
7863 	}
7864 	ACQUIRE_LOCK(&lk);
7865 	/* Protects against a race with complete_trunc_indir(). */
7866 	freework->fw_state &= ~INPROGRESS;
7867 	/*
7868 	 * If we have an indirdep we need to enforce the truncation order
7869 	 * and discard it when it is complete.
7870 	 */
7871 	if (indirdep) {
7872 		if (freework != TAILQ_FIRST(&indirdep->ir_trunc) &&
7873 		    !TAILQ_EMPTY(&indirdep->ir_trunc)) {
7874 			/*
7875 			 * Add the complete truncate to the list on the
7876 			 * indirdep to enforce in-order processing.
7877 			 */
7878 			if (freework->fw_indir == NULL)
7879 				TAILQ_INSERT_TAIL(&indirdep->ir_trunc,
7880 				    freework, fw_next);
7881 			FREE_LOCK(&lk);
7882 			return;
7883 		}
7884 		/*
7885 		 * If we're goingaway, free the indirdep.  Otherwise it will
7886 		 * linger until the write completes.
7887 		 */
7888 		if (goingaway) {
7889 			free_indirdep(indirdep);
7890 			ump->um_numindirdeps -= 1;
7891 		}
7892 	}
7893 	FREE_LOCK(&lk);
7894 	/* Initialize pointers depending on block size. */
7895 	if (ump->um_fstype == UFS1) {
7896 		bap1 = (ufs1_daddr_t *)bp->b_data;
7897 		nb = bap1[freework->fw_off];
7898 		ufs1fmt = 1;
7899 	} else {
7900 		bap2 = (ufs2_daddr_t *)bp->b_data;
7901 		nb = bap2[freework->fw_off];
7902 		ufs1fmt = 0;
7903 	}
7904 	level = lbn_level(lbn);
7905 	needj = MOUNTEDSUJ(UFSTOVFS(ump)) != 0;
7906 	lbnadd = lbn_offset(fs, level);
7907 	nblocks = btodb(fs->fs_bsize);
7908 	nfreework = freework;
7909 	freedeps = 0;
7910 	cnt = 0;
7911 	/*
7912 	 * Reclaim blocks.  Traverses into nested indirect levels and
7913 	 * arranges for the current level to be freed when subordinates
7914 	 * are free when journaling.
7915 	 */
7916 	for (i = freework->fw_off; i < NINDIR(fs); i++, nb = nnb) {
7917 		if (i != NINDIR(fs) - 1) {
7918 			if (ufs1fmt)
7919 				nnb = bap1[i+1];
7920 			else
7921 				nnb = bap2[i+1];
7922 		} else
7923 			nnb = 0;
7924 		if (nb == 0)
7925 			continue;
7926 		cnt++;
7927 		if (level != 0) {
7928 			nlbn = (lbn + 1) - (i * lbnadd);
7929 			if (needj != 0) {
7930 				nfreework = newfreework(ump, freeblks, freework,
7931 				    nlbn, nb, fs->fs_frag, 0, 0);
7932 				freedeps++;
7933 			}
7934 			indir_trunc(nfreework, fsbtodb(fs, nb), nlbn);
7935 		} else {
7936 			struct freedep *freedep;
7937 
7938 			/*
7939 			 * Attempt to aggregate freedep dependencies for
7940 			 * all blocks being released to the same CG.
7941 			 */
7942 			LIST_INIT(&wkhd);
7943 			if (needj != 0 &&
7944 			    (nnb == 0 || (dtog(fs, nb) != dtog(fs, nnb)))) {
7945 				freedep = newfreedep(freework);
7946 				WORKLIST_INSERT_UNLOCKED(&wkhd,
7947 				    &freedep->fd_list);
7948 				freedeps++;
7949 			}
7950 			CTR3(KTR_SUJ,
7951 			    "indir_trunc: ino %d blkno %jd size %ld",
7952 			    freeblks->fb_inum, nb, fs->fs_bsize);
7953 			ffs_blkfree(ump, fs, freeblks->fb_devvp, nb,
7954 			    fs->fs_bsize, freeblks->fb_inum,
7955 			    freeblks->fb_vtype, &wkhd);
7956 		}
7957 	}
7958 	if (goingaway) {
7959 		bp->b_flags |= B_INVAL | B_NOCACHE;
7960 		brelse(bp);
7961 	}
7962 	freedblocks = 0;
7963 	if (level == 0)
7964 		freedblocks = (nblocks * cnt);
7965 	if (needj == 0)
7966 		freedblocks += nblocks;
7967 	freeblks_free(ump, freeblks, freedblocks);
7968 	/*
7969 	 * If we are journaling set up the ref counts and offset so this
7970 	 * indirect can be completed when its children are free.
7971 	 */
7972 	if (needj) {
7973 		ACQUIRE_LOCK(&lk);
7974 		freework->fw_off = i;
7975 		freework->fw_ref += freedeps;
7976 		freework->fw_ref -= NINDIR(fs) + 1;
7977 		if (level == 0)
7978 			freeblks->fb_cgwait += freedeps;
7979 		if (freework->fw_ref == 0)
7980 			freework_freeblock(freework);
7981 		FREE_LOCK(&lk);
7982 		return;
7983 	}
7984 	/*
7985 	 * If we're not journaling we can free the indirect now.
7986 	 */
7987 	dbn = dbtofsb(fs, dbn);
7988 	CTR3(KTR_SUJ,
7989 	    "indir_trunc 2: ino %d blkno %jd size %ld",
7990 	    freeblks->fb_inum, dbn, fs->fs_bsize);
7991 	ffs_blkfree(ump, fs, freeblks->fb_devvp, dbn, fs->fs_bsize,
7992 	    freeblks->fb_inum, freeblks->fb_vtype, NULL);
7993 	/* Non SUJ softdep does single-threaded truncations. */
7994 	if (freework->fw_blkno == dbn) {
7995 		freework->fw_state |= ALLCOMPLETE;
7996 		ACQUIRE_LOCK(&lk);
7997 		handle_written_freework(freework);
7998 		FREE_LOCK(&lk);
7999 	}
8000 	return;
8001 }
8002 
8003 /*
8004  * Cancel an allocindir when it is removed via truncation.  When bp is not
8005  * NULL the indirect never appeared on disk and is scheduled to be freed
8006  * independently of the indir so we can more easily track journal work.
8007  */
8008 static void
8009 cancel_allocindir(aip, bp, freeblks, trunc)
8010 	struct allocindir *aip;
8011 	struct buf *bp;
8012 	struct freeblks *freeblks;
8013 	int trunc;
8014 {
8015 	struct indirdep *indirdep;
8016 	struct freefrag *freefrag;
8017 	struct newblk *newblk;
8018 
8019 	newblk = (struct newblk *)aip;
8020 	LIST_REMOVE(aip, ai_next);
8021 	/*
8022 	 * We must eliminate the pointer in bp if it must be freed on its
8023 	 * own due to partial truncate or pending journal work.
8024 	 */
8025 	if (bp && (trunc || newblk->nb_jnewblk)) {
8026 		/*
8027 		 * Clear the pointer and mark the aip to be freed
8028 		 * directly if it never existed on disk.
8029 		 */
8030 		aip->ai_state |= DELAYEDFREE;
8031 		indirdep = aip->ai_indirdep;
8032 		if (indirdep->ir_state & UFS1FMT)
8033 			((ufs1_daddr_t *)bp->b_data)[aip->ai_offset] = 0;
8034 		else
8035 			((ufs2_daddr_t *)bp->b_data)[aip->ai_offset] = 0;
8036 	}
8037 	/*
8038 	 * When truncating the previous pointer will be freed via
8039 	 * savedbp.  Eliminate the freefrag which would dup free.
8040 	 */
8041 	if (trunc && (freefrag = newblk->nb_freefrag) != NULL) {
8042 		newblk->nb_freefrag = NULL;
8043 		if (freefrag->ff_jdep)
8044 			cancel_jfreefrag(
8045 			    WK_JFREEFRAG(freefrag->ff_jdep));
8046 		jwork_move(&freeblks->fb_jwork, &freefrag->ff_jwork);
8047 		WORKITEM_FREE(freefrag, D_FREEFRAG);
8048 	}
8049 	/*
8050 	 * If the journal hasn't been written the jnewblk must be passed
8051 	 * to the call to ffs_blkfree that reclaims the space.  We accomplish
8052 	 * this by leaving the journal dependency on the newblk to be freed
8053 	 * when a freework is created in handle_workitem_freeblocks().
8054 	 */
8055 	cancel_newblk(newblk, NULL, &freeblks->fb_jwork);
8056 	WORKLIST_INSERT(&freeblks->fb_freeworkhd, &newblk->nb_list);
8057 }
8058 
8059 /*
8060  * Create the mkdir dependencies for . and .. in a new directory.  Link them
8061  * in to a newdirblk so any subsequent additions are tracked properly.  The
8062  * caller is responsible for adding the mkdir1 dependency to the journal
8063  * and updating id_mkdiradd.  This function returns with lk held.
8064  */
8065 static struct mkdir *
8066 setup_newdir(dap, newinum, dinum, newdirbp, mkdirp)
8067 	struct diradd *dap;
8068 	ino_t newinum;
8069 	ino_t dinum;
8070 	struct buf *newdirbp;
8071 	struct mkdir **mkdirp;
8072 {
8073 	struct newblk *newblk;
8074 	struct pagedep *pagedep;
8075 	struct inodedep *inodedep;
8076 	struct newdirblk *newdirblk = 0;
8077 	struct mkdir *mkdir1, *mkdir2;
8078 	struct worklist *wk;
8079 	struct jaddref *jaddref;
8080 	struct mount *mp;
8081 
8082 	mp = dap->da_list.wk_mp;
8083 	newdirblk = malloc(sizeof(struct newdirblk), M_NEWDIRBLK,
8084 	    M_SOFTDEP_FLAGS);
8085 	workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp);
8086 	LIST_INIT(&newdirblk->db_mkdir);
8087 	mkdir1 = malloc(sizeof(struct mkdir), M_MKDIR, M_SOFTDEP_FLAGS);
8088 	workitem_alloc(&mkdir1->md_list, D_MKDIR, mp);
8089 	mkdir1->md_state = ATTACHED | MKDIR_BODY;
8090 	mkdir1->md_diradd = dap;
8091 	mkdir1->md_jaddref = NULL;
8092 	mkdir2 = malloc(sizeof(struct mkdir), M_MKDIR, M_SOFTDEP_FLAGS);
8093 	workitem_alloc(&mkdir2->md_list, D_MKDIR, mp);
8094 	mkdir2->md_state = ATTACHED | MKDIR_PARENT;
8095 	mkdir2->md_diradd = dap;
8096 	mkdir2->md_jaddref = NULL;
8097 	if (MOUNTEDSUJ(mp) == 0) {
8098 		mkdir1->md_state |= DEPCOMPLETE;
8099 		mkdir2->md_state |= DEPCOMPLETE;
8100 	}
8101 	/*
8102 	 * Dependency on "." and ".." being written to disk.
8103 	 */
8104 	mkdir1->md_buf = newdirbp;
8105 	ACQUIRE_LOCK(&lk);
8106 	LIST_INSERT_HEAD(&mkdirlisthd, mkdir1, md_mkdirs);
8107 	/*
8108 	 * We must link the pagedep, allocdirect, and newdirblk for
8109 	 * the initial file page so the pointer to the new directory
8110 	 * is not written until the directory contents are live and
8111 	 * any subsequent additions are not marked live until the
8112 	 * block is reachable via the inode.
8113 	 */
8114 	if (pagedep_lookup(mp, newdirbp, newinum, 0, 0, &pagedep) == 0)
8115 		panic("setup_newdir: lost pagedep");
8116 	LIST_FOREACH(wk, &newdirbp->b_dep, wk_list)
8117 		if (wk->wk_type == D_ALLOCDIRECT)
8118 			break;
8119 	if (wk == NULL)
8120 		panic("setup_newdir: lost allocdirect");
8121 	if (pagedep->pd_state & NEWBLOCK)
8122 		panic("setup_newdir: NEWBLOCK already set");
8123 	newblk = WK_NEWBLK(wk);
8124 	pagedep->pd_state |= NEWBLOCK;
8125 	pagedep->pd_newdirblk = newdirblk;
8126 	newdirblk->db_pagedep = pagedep;
8127 	WORKLIST_INSERT(&newblk->nb_newdirblk, &newdirblk->db_list);
8128 	WORKLIST_INSERT(&newdirblk->db_mkdir, &mkdir1->md_list);
8129 	/*
8130 	 * Look up the inodedep for the parent directory so that we
8131 	 * can link mkdir2 into the pending dotdot jaddref or
8132 	 * the inode write if there is none.  If the inode is
8133 	 * ALLCOMPLETE and no jaddref is present all dependencies have
8134 	 * been satisfied and mkdir2 can be freed.
8135 	 */
8136 	inodedep_lookup(mp, dinum, 0, &inodedep);
8137 	if (MOUNTEDSUJ(mp)) {
8138 		if (inodedep == NULL)
8139 			panic("setup_newdir: Lost parent.");
8140 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
8141 		    inoreflst);
8142 		KASSERT(jaddref != NULL && jaddref->ja_parent == newinum &&
8143 		    (jaddref->ja_state & MKDIR_PARENT),
8144 		    ("setup_newdir: bad dotdot jaddref %p", jaddref));
8145 		LIST_INSERT_HEAD(&mkdirlisthd, mkdir2, md_mkdirs);
8146 		mkdir2->md_jaddref = jaddref;
8147 		jaddref->ja_mkdir = mkdir2;
8148 	} else if (inodedep == NULL ||
8149 	    (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) {
8150 		dap->da_state &= ~MKDIR_PARENT;
8151 		WORKITEM_FREE(mkdir2, D_MKDIR);
8152 	} else {
8153 		LIST_INSERT_HEAD(&mkdirlisthd, mkdir2, md_mkdirs);
8154 		WORKLIST_INSERT(&inodedep->id_bufwait, &mkdir2->md_list);
8155 	}
8156 	*mkdirp = mkdir2;
8157 
8158 	return (mkdir1);
8159 }
8160 
8161 /*
8162  * Directory entry addition dependencies.
8163  *
8164  * When adding a new directory entry, the inode (with its incremented link
8165  * count) must be written to disk before the directory entry's pointer to it.
8166  * Also, if the inode is newly allocated, the corresponding freemap must be
8167  * updated (on disk) before the directory entry's pointer. These requirements
8168  * are met via undo/redo on the directory entry's pointer, which consists
8169  * simply of the inode number.
8170  *
8171  * As directory entries are added and deleted, the free space within a
8172  * directory block can become fragmented.  The ufs filesystem will compact
8173  * a fragmented directory block to make space for a new entry. When this
8174  * occurs, the offsets of previously added entries change. Any "diradd"
8175  * dependency structures corresponding to these entries must be updated with
8176  * the new offsets.
8177  */
8178 
8179 /*
8180  * This routine is called after the in-memory inode's link
8181  * count has been incremented, but before the directory entry's
8182  * pointer to the inode has been set.
8183  */
8184 int
8185 softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk)
8186 	struct buf *bp;		/* buffer containing directory block */
8187 	struct inode *dp;	/* inode for directory */
8188 	off_t diroffset;	/* offset of new entry in directory */
8189 	ino_t newinum;		/* inode referenced by new directory entry */
8190 	struct buf *newdirbp;	/* non-NULL => contents of new mkdir */
8191 	int isnewblk;		/* entry is in a newly allocated block */
8192 {
8193 	int offset;		/* offset of new entry within directory block */
8194 	ufs_lbn_t lbn;		/* block in directory containing new entry */
8195 	struct fs *fs;
8196 	struct diradd *dap;
8197 	struct newblk *newblk;
8198 	struct pagedep *pagedep;
8199 	struct inodedep *inodedep;
8200 	struct newdirblk *newdirblk = 0;
8201 	struct mkdir *mkdir1, *mkdir2;
8202 	struct jaddref *jaddref;
8203 	struct mount *mp;
8204 	int isindir;
8205 
8206 	/*
8207 	 * Whiteouts have no dependencies.
8208 	 */
8209 	if (newinum == WINO) {
8210 		if (newdirbp != NULL)
8211 			bdwrite(newdirbp);
8212 		return (0);
8213 	}
8214 	jaddref = NULL;
8215 	mkdir1 = mkdir2 = NULL;
8216 	mp = UFSTOVFS(dp->i_ump);
8217 	fs = dp->i_fs;
8218 	lbn = lblkno(fs, diroffset);
8219 	offset = blkoff(fs, diroffset);
8220 	dap = malloc(sizeof(struct diradd), M_DIRADD,
8221 		M_SOFTDEP_FLAGS|M_ZERO);
8222 	workitem_alloc(&dap->da_list, D_DIRADD, mp);
8223 	dap->da_offset = offset;
8224 	dap->da_newinum = newinum;
8225 	dap->da_state = ATTACHED;
8226 	LIST_INIT(&dap->da_jwork);
8227 	isindir = bp->b_lblkno >= NDADDR;
8228 	if (isnewblk &&
8229 	    (isindir ? blkoff(fs, diroffset) : fragoff(fs, diroffset)) == 0) {
8230 		newdirblk = malloc(sizeof(struct newdirblk),
8231 		    M_NEWDIRBLK, M_SOFTDEP_FLAGS);
8232 		workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp);
8233 		LIST_INIT(&newdirblk->db_mkdir);
8234 	}
8235 	/*
8236 	 * If we're creating a new directory setup the dependencies and set
8237 	 * the dap state to wait for them.  Otherwise it's COMPLETE and
8238 	 * we can move on.
8239 	 */
8240 	if (newdirbp == NULL) {
8241 		dap->da_state |= DEPCOMPLETE;
8242 		ACQUIRE_LOCK(&lk);
8243 	} else {
8244 		dap->da_state |= MKDIR_BODY | MKDIR_PARENT;
8245 		mkdir1 = setup_newdir(dap, newinum, dp->i_number, newdirbp,
8246 		    &mkdir2);
8247 	}
8248 	/*
8249 	 * Link into parent directory pagedep to await its being written.
8250 	 */
8251 	pagedep_lookup(mp, bp, dp->i_number, lbn, DEPALLOC, &pagedep);
8252 #ifdef DEBUG
8253 	if (diradd_lookup(pagedep, offset) != NULL)
8254 		panic("softdep_setup_directory_add: %p already at off %d\n",
8255 		    diradd_lookup(pagedep, offset), offset);
8256 #endif
8257 	dap->da_pagedep = pagedep;
8258 	LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], dap,
8259 	    da_pdlist);
8260 	inodedep_lookup(mp, newinum, DEPALLOC | NODELAY, &inodedep);
8261 	/*
8262 	 * If we're journaling, link the diradd into the jaddref so it
8263 	 * may be completed after the journal entry is written.  Otherwise,
8264 	 * link the diradd into its inodedep.  If the inode is not yet
8265 	 * written place it on the bufwait list, otherwise do the post-inode
8266 	 * write processing to put it on the id_pendinghd list.
8267 	 */
8268 	if (MOUNTEDSUJ(mp)) {
8269 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
8270 		    inoreflst);
8271 		KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number,
8272 		    ("softdep_setup_directory_add: bad jaddref %p", jaddref));
8273 		jaddref->ja_diroff = diroffset;
8274 		jaddref->ja_diradd = dap;
8275 		add_to_journal(&jaddref->ja_list);
8276 	} else if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE)
8277 		diradd_inode_written(dap, inodedep);
8278 	else
8279 		WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list);
8280 	/*
8281 	 * Add the journal entries for . and .. links now that the primary
8282 	 * link is written.
8283 	 */
8284 	if (mkdir1 != NULL && MOUNTEDSUJ(mp)) {
8285 		jaddref = (struct jaddref *)TAILQ_PREV(&jaddref->ja_ref,
8286 		    inoreflst, if_deps);
8287 		KASSERT(jaddref != NULL &&
8288 		    jaddref->ja_ino == jaddref->ja_parent &&
8289 		    (jaddref->ja_state & MKDIR_BODY),
8290 		    ("softdep_setup_directory_add: bad dot jaddref %p",
8291 		    jaddref));
8292 		mkdir1->md_jaddref = jaddref;
8293 		jaddref->ja_mkdir = mkdir1;
8294 		/*
8295 		 * It is important that the dotdot journal entry
8296 		 * is added prior to the dot entry since dot writes
8297 		 * both the dot and dotdot links.  These both must
8298 		 * be added after the primary link for the journal
8299 		 * to remain consistent.
8300 		 */
8301 		add_to_journal(&mkdir2->md_jaddref->ja_list);
8302 		add_to_journal(&jaddref->ja_list);
8303 	}
8304 	/*
8305 	 * If we are adding a new directory remember this diradd so that if
8306 	 * we rename it we can keep the dot and dotdot dependencies.  If
8307 	 * we are adding a new name for an inode that has a mkdiradd we
8308 	 * must be in rename and we have to move the dot and dotdot
8309 	 * dependencies to this new name.  The old name is being orphaned
8310 	 * soon.
8311 	 */
8312 	if (mkdir1 != NULL) {
8313 		if (inodedep->id_mkdiradd != NULL)
8314 			panic("softdep_setup_directory_add: Existing mkdir");
8315 		inodedep->id_mkdiradd = dap;
8316 	} else if (inodedep->id_mkdiradd)
8317 		merge_diradd(inodedep, dap);
8318 	if (newdirblk) {
8319 		/*
8320 		 * There is nothing to do if we are already tracking
8321 		 * this block.
8322 		 */
8323 		if ((pagedep->pd_state & NEWBLOCK) != 0) {
8324 			WORKITEM_FREE(newdirblk, D_NEWDIRBLK);
8325 			FREE_LOCK(&lk);
8326 			return (0);
8327 		}
8328 		if (newblk_lookup(mp, dbtofsb(fs, bp->b_blkno), 0, &newblk)
8329 		    == 0)
8330 			panic("softdep_setup_directory_add: lost entry");
8331 		WORKLIST_INSERT(&newblk->nb_newdirblk, &newdirblk->db_list);
8332 		pagedep->pd_state |= NEWBLOCK;
8333 		pagedep->pd_newdirblk = newdirblk;
8334 		newdirblk->db_pagedep = pagedep;
8335 		FREE_LOCK(&lk);
8336 		/*
8337 		 * If we extended into an indirect signal direnter to sync.
8338 		 */
8339 		if (isindir)
8340 			return (1);
8341 		return (0);
8342 	}
8343 	FREE_LOCK(&lk);
8344 	return (0);
8345 }
8346 
8347 /*
8348  * This procedure is called to change the offset of a directory
8349  * entry when compacting a directory block which must be owned
8350  * exclusively by the caller. Note that the actual entry movement
8351  * must be done in this procedure to ensure that no I/O completions
8352  * occur while the move is in progress.
8353  */
8354 void
8355 softdep_change_directoryentry_offset(bp, dp, base, oldloc, newloc, entrysize)
8356 	struct buf *bp;		/* Buffer holding directory block. */
8357 	struct inode *dp;	/* inode for directory */
8358 	caddr_t base;		/* address of dp->i_offset */
8359 	caddr_t oldloc;		/* address of old directory location */
8360 	caddr_t newloc;		/* address of new directory location */
8361 	int entrysize;		/* size of directory entry */
8362 {
8363 	int offset, oldoffset, newoffset;
8364 	struct pagedep *pagedep;
8365 	struct jmvref *jmvref;
8366 	struct diradd *dap;
8367 	struct direct *de;
8368 	struct mount *mp;
8369 	ufs_lbn_t lbn;
8370 	int flags;
8371 
8372 	mp = UFSTOVFS(dp->i_ump);
8373 	de = (struct direct *)oldloc;
8374 	jmvref = NULL;
8375 	flags = 0;
8376 	/*
8377 	 * Moves are always journaled as it would be too complex to
8378 	 * determine if any affected adds or removes are present in the
8379 	 * journal.
8380 	 */
8381 	if (MOUNTEDSUJ(mp)) {
8382 		flags = DEPALLOC;
8383 		jmvref = newjmvref(dp, de->d_ino,
8384 		    dp->i_offset + (oldloc - base),
8385 		    dp->i_offset + (newloc - base));
8386 	}
8387 	lbn = lblkno(dp->i_fs, dp->i_offset);
8388 	offset = blkoff(dp->i_fs, dp->i_offset);
8389 	oldoffset = offset + (oldloc - base);
8390 	newoffset = offset + (newloc - base);
8391 	ACQUIRE_LOCK(&lk);
8392 	if (pagedep_lookup(mp, bp, dp->i_number, lbn, flags, &pagedep) == 0)
8393 		goto done;
8394 	dap = diradd_lookup(pagedep, oldoffset);
8395 	if (dap) {
8396 		dap->da_offset = newoffset;
8397 		newoffset = DIRADDHASH(newoffset);
8398 		oldoffset = DIRADDHASH(oldoffset);
8399 		if ((dap->da_state & ALLCOMPLETE) != ALLCOMPLETE &&
8400 		    newoffset != oldoffset) {
8401 			LIST_REMOVE(dap, da_pdlist);
8402 			LIST_INSERT_HEAD(&pagedep->pd_diraddhd[newoffset],
8403 			    dap, da_pdlist);
8404 		}
8405 	}
8406 done:
8407 	if (jmvref) {
8408 		jmvref->jm_pagedep = pagedep;
8409 		LIST_INSERT_HEAD(&pagedep->pd_jmvrefhd, jmvref, jm_deps);
8410 		add_to_journal(&jmvref->jm_list);
8411 	}
8412 	bcopy(oldloc, newloc, entrysize);
8413 	FREE_LOCK(&lk);
8414 }
8415 
8416 /*
8417  * Move the mkdir dependencies and journal work from one diradd to another
8418  * when renaming a directory.  The new name must depend on the mkdir deps
8419  * completing as the old name did.  Directories can only have one valid link
8420  * at a time so one must be canonical.
8421  */
8422 static void
8423 merge_diradd(inodedep, newdap)
8424 	struct inodedep *inodedep;
8425 	struct diradd *newdap;
8426 {
8427 	struct diradd *olddap;
8428 	struct mkdir *mkdir, *nextmd;
8429 	short state;
8430 
8431 	olddap = inodedep->id_mkdiradd;
8432 	inodedep->id_mkdiradd = newdap;
8433 	if ((olddap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
8434 		newdap->da_state &= ~DEPCOMPLETE;
8435 		for (mkdir = LIST_FIRST(&mkdirlisthd); mkdir; mkdir = nextmd) {
8436 			nextmd = LIST_NEXT(mkdir, md_mkdirs);
8437 			if (mkdir->md_diradd != olddap)
8438 				continue;
8439 			mkdir->md_diradd = newdap;
8440 			state = mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY);
8441 			newdap->da_state |= state;
8442 			olddap->da_state &= ~state;
8443 			if ((olddap->da_state &
8444 			    (MKDIR_PARENT | MKDIR_BODY)) == 0)
8445 				break;
8446 		}
8447 		if ((olddap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0)
8448 			panic("merge_diradd: unfound ref");
8449 	}
8450 	/*
8451 	 * Any mkdir related journal items are not safe to be freed until
8452 	 * the new name is stable.
8453 	 */
8454 	jwork_move(&newdap->da_jwork, &olddap->da_jwork);
8455 	olddap->da_state |= DEPCOMPLETE;
8456 	complete_diradd(olddap);
8457 }
8458 
8459 /*
8460  * Move the diradd to the pending list when all diradd dependencies are
8461  * complete.
8462  */
8463 static void
8464 complete_diradd(dap)
8465 	struct diradd *dap;
8466 {
8467 	struct pagedep *pagedep;
8468 
8469 	if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
8470 		if (dap->da_state & DIRCHG)
8471 			pagedep = dap->da_previous->dm_pagedep;
8472 		else
8473 			pagedep = dap->da_pagedep;
8474 		LIST_REMOVE(dap, da_pdlist);
8475 		LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
8476 	}
8477 }
8478 
8479 /*
8480  * Cancel a diradd when a dirrem overlaps with it.  We must cancel the journal
8481  * add entries and conditonally journal the remove.
8482  */
8483 static void
8484 cancel_diradd(dap, dirrem, jremref, dotremref, dotdotremref)
8485 	struct diradd *dap;
8486 	struct dirrem *dirrem;
8487 	struct jremref *jremref;
8488 	struct jremref *dotremref;
8489 	struct jremref *dotdotremref;
8490 {
8491 	struct inodedep *inodedep;
8492 	struct jaddref *jaddref;
8493 	struct inoref *inoref;
8494 	struct mkdir *mkdir;
8495 
8496 	/*
8497 	 * If no remove references were allocated we're on a non-journaled
8498 	 * filesystem and can skip the cancel step.
8499 	 */
8500 	if (jremref == NULL) {
8501 		free_diradd(dap, NULL);
8502 		return;
8503 	}
8504 	/*
8505 	 * Cancel the primary name an free it if it does not require
8506 	 * journaling.
8507 	 */
8508 	if (inodedep_lookup(dap->da_list.wk_mp, dap->da_newinum,
8509 	    0, &inodedep) != 0) {
8510 		/* Abort the addref that reference this diradd.  */
8511 		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
8512 			if (inoref->if_list.wk_type != D_JADDREF)
8513 				continue;
8514 			jaddref = (struct jaddref *)inoref;
8515 			if (jaddref->ja_diradd != dap)
8516 				continue;
8517 			if (cancel_jaddref(jaddref, inodedep,
8518 			    &dirrem->dm_jwork) == 0) {
8519 				free_jremref(jremref);
8520 				jremref = NULL;
8521 			}
8522 			break;
8523 		}
8524 	}
8525 	/*
8526 	 * Cancel subordinate names and free them if they do not require
8527 	 * journaling.
8528 	 */
8529 	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
8530 		LIST_FOREACH(mkdir, &mkdirlisthd, md_mkdirs) {
8531 			if (mkdir->md_diradd != dap)
8532 				continue;
8533 			if ((jaddref = mkdir->md_jaddref) == NULL)
8534 				continue;
8535 			mkdir->md_jaddref = NULL;
8536 			if (mkdir->md_state & MKDIR_PARENT) {
8537 				if (cancel_jaddref(jaddref, NULL,
8538 				    &dirrem->dm_jwork) == 0) {
8539 					free_jremref(dotdotremref);
8540 					dotdotremref = NULL;
8541 				}
8542 			} else {
8543 				if (cancel_jaddref(jaddref, inodedep,
8544 				    &dirrem->dm_jwork) == 0) {
8545 					free_jremref(dotremref);
8546 					dotremref = NULL;
8547 				}
8548 			}
8549 		}
8550 	}
8551 
8552 	if (jremref)
8553 		journal_jremref(dirrem, jremref, inodedep);
8554 	if (dotremref)
8555 		journal_jremref(dirrem, dotremref, inodedep);
8556 	if (dotdotremref)
8557 		journal_jremref(dirrem, dotdotremref, NULL);
8558 	jwork_move(&dirrem->dm_jwork, &dap->da_jwork);
8559 	free_diradd(dap, &dirrem->dm_jwork);
8560 }
8561 
8562 /*
8563  * Free a diradd dependency structure. This routine must be called
8564  * with splbio interrupts blocked.
8565  */
8566 static void
8567 free_diradd(dap, wkhd)
8568 	struct diradd *dap;
8569 	struct workhead *wkhd;
8570 {
8571 	struct dirrem *dirrem;
8572 	struct pagedep *pagedep;
8573 	struct inodedep *inodedep;
8574 	struct mkdir *mkdir, *nextmd;
8575 
8576 	mtx_assert(&lk, MA_OWNED);
8577 	LIST_REMOVE(dap, da_pdlist);
8578 	if (dap->da_state & ONWORKLIST)
8579 		WORKLIST_REMOVE(&dap->da_list);
8580 	if ((dap->da_state & DIRCHG) == 0) {
8581 		pagedep = dap->da_pagedep;
8582 	} else {
8583 		dirrem = dap->da_previous;
8584 		pagedep = dirrem->dm_pagedep;
8585 		dirrem->dm_dirinum = pagedep->pd_ino;
8586 		dirrem->dm_state |= COMPLETE;
8587 		if (LIST_EMPTY(&dirrem->dm_jremrefhd))
8588 			add_to_worklist(&dirrem->dm_list, 0);
8589 	}
8590 	if (inodedep_lookup(pagedep->pd_list.wk_mp, dap->da_newinum,
8591 	    0, &inodedep) != 0)
8592 		if (inodedep->id_mkdiradd == dap)
8593 			inodedep->id_mkdiradd = NULL;
8594 	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
8595 		for (mkdir = LIST_FIRST(&mkdirlisthd); mkdir; mkdir = nextmd) {
8596 			nextmd = LIST_NEXT(mkdir, md_mkdirs);
8597 			if (mkdir->md_diradd != dap)
8598 				continue;
8599 			dap->da_state &=
8600 			    ~(mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY));
8601 			LIST_REMOVE(mkdir, md_mkdirs);
8602 			if (mkdir->md_state & ONWORKLIST)
8603 				WORKLIST_REMOVE(&mkdir->md_list);
8604 			if (mkdir->md_jaddref != NULL)
8605 				panic("free_diradd: Unexpected jaddref");
8606 			WORKITEM_FREE(mkdir, D_MKDIR);
8607 			if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0)
8608 				break;
8609 		}
8610 		if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0)
8611 			panic("free_diradd: unfound ref");
8612 	}
8613 	if (inodedep)
8614 		free_inodedep(inodedep);
8615 	/*
8616 	 * Free any journal segments waiting for the directory write.
8617 	 */
8618 	handle_jwork(&dap->da_jwork);
8619 	WORKITEM_FREE(dap, D_DIRADD);
8620 }
8621 
8622 /*
8623  * Directory entry removal dependencies.
8624  *
8625  * When removing a directory entry, the entry's inode pointer must be
8626  * zero'ed on disk before the corresponding inode's link count is decremented
8627  * (possibly freeing the inode for re-use). This dependency is handled by
8628  * updating the directory entry but delaying the inode count reduction until
8629  * after the directory block has been written to disk. After this point, the
8630  * inode count can be decremented whenever it is convenient.
8631  */
8632 
8633 /*
8634  * This routine should be called immediately after removing
8635  * a directory entry.  The inode's link count should not be
8636  * decremented by the calling procedure -- the soft updates
8637  * code will do this task when it is safe.
8638  */
8639 void
8640 softdep_setup_remove(bp, dp, ip, isrmdir)
8641 	struct buf *bp;		/* buffer containing directory block */
8642 	struct inode *dp;	/* inode for the directory being modified */
8643 	struct inode *ip;	/* inode for directory entry being removed */
8644 	int isrmdir;		/* indicates if doing RMDIR */
8645 {
8646 	struct dirrem *dirrem, *prevdirrem;
8647 	struct inodedep *inodedep;
8648 	int direct;
8649 
8650 	/*
8651 	 * Allocate a new dirrem if appropriate and ACQUIRE_LOCK.  We want
8652 	 * newdirrem() to setup the full directory remove which requires
8653 	 * isrmdir > 1.
8654 	 */
8655 	dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem);
8656 	/*
8657 	 * Add the dirrem to the inodedep's pending remove list for quick
8658 	 * discovery later.
8659 	 */
8660 	if (inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, 0,
8661 	    &inodedep) == 0)
8662 		panic("softdep_setup_remove: Lost inodedep.");
8663 	KASSERT((inodedep->id_state & UNLINKED) == 0, ("inode unlinked"));
8664 	dirrem->dm_state |= ONDEPLIST;
8665 	LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext);
8666 
8667 	/*
8668 	 * If the COMPLETE flag is clear, then there were no active
8669 	 * entries and we want to roll back to a zeroed entry until
8670 	 * the new inode is committed to disk. If the COMPLETE flag is
8671 	 * set then we have deleted an entry that never made it to
8672 	 * disk. If the entry we deleted resulted from a name change,
8673 	 * then the old name still resides on disk. We cannot delete
8674 	 * its inode (returned to us in prevdirrem) until the zeroed
8675 	 * directory entry gets to disk. The new inode has never been
8676 	 * referenced on the disk, so can be deleted immediately.
8677 	 */
8678 	if ((dirrem->dm_state & COMPLETE) == 0) {
8679 		LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, dirrem,
8680 		    dm_next);
8681 		FREE_LOCK(&lk);
8682 	} else {
8683 		if (prevdirrem != NULL)
8684 			LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd,
8685 			    prevdirrem, dm_next);
8686 		dirrem->dm_dirinum = dirrem->dm_pagedep->pd_ino;
8687 		direct = LIST_EMPTY(&dirrem->dm_jremrefhd);
8688 		FREE_LOCK(&lk);
8689 		if (direct)
8690 			handle_workitem_remove(dirrem, 0);
8691 	}
8692 }
8693 
8694 /*
8695  * Check for an entry matching 'offset' on both the pd_dirraddhd list and the
8696  * pd_pendinghd list of a pagedep.
8697  */
8698 static struct diradd *
8699 diradd_lookup(pagedep, offset)
8700 	struct pagedep *pagedep;
8701 	int offset;
8702 {
8703 	struct diradd *dap;
8704 
8705 	LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(offset)], da_pdlist)
8706 		if (dap->da_offset == offset)
8707 			return (dap);
8708 	LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist)
8709 		if (dap->da_offset == offset)
8710 			return (dap);
8711 	return (NULL);
8712 }
8713 
8714 /*
8715  * Search for a .. diradd dependency in a directory that is being removed.
8716  * If the directory was renamed to a new parent we have a diradd rather
8717  * than a mkdir for the .. entry.  We need to cancel it now before
8718  * it is found in truncate().
8719  */
8720 static struct jremref *
8721 cancel_diradd_dotdot(ip, dirrem, jremref)
8722 	struct inode *ip;
8723 	struct dirrem *dirrem;
8724 	struct jremref *jremref;
8725 {
8726 	struct pagedep *pagedep;
8727 	struct diradd *dap;
8728 	struct worklist *wk;
8729 
8730 	if (pagedep_lookup(UFSTOVFS(ip->i_ump), NULL, ip->i_number, 0, 0,
8731 	    &pagedep) == 0)
8732 		return (jremref);
8733 	dap = diradd_lookup(pagedep, DOTDOT_OFFSET);
8734 	if (dap == NULL)
8735 		return (jremref);
8736 	cancel_diradd(dap, dirrem, jremref, NULL, NULL);
8737 	/*
8738 	 * Mark any journal work as belonging to the parent so it is freed
8739 	 * with the .. reference.
8740 	 */
8741 	LIST_FOREACH(wk, &dirrem->dm_jwork, wk_list)
8742 		wk->wk_state |= MKDIR_PARENT;
8743 	return (NULL);
8744 }
8745 
8746 /*
8747  * Cancel the MKDIR_PARENT mkdir component of a diradd when we're going to
8748  * replace it with a dirrem/diradd pair as a result of re-parenting a
8749  * directory.  This ensures that we don't simultaneously have a mkdir and
8750  * a diradd for the same .. entry.
8751  */
8752 static struct jremref *
8753 cancel_mkdir_dotdot(ip, dirrem, jremref)
8754 	struct inode *ip;
8755 	struct dirrem *dirrem;
8756 	struct jremref *jremref;
8757 {
8758 	struct inodedep *inodedep;
8759 	struct jaddref *jaddref;
8760 	struct mkdir *mkdir;
8761 	struct diradd *dap;
8762 
8763 	if (inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, 0,
8764 	    &inodedep) == 0)
8765 		return (jremref);
8766 	dap = inodedep->id_mkdiradd;
8767 	if (dap == NULL || (dap->da_state & MKDIR_PARENT) == 0)
8768 		return (jremref);
8769 	for (mkdir = LIST_FIRST(&mkdirlisthd); mkdir;
8770 	    mkdir = LIST_NEXT(mkdir, md_mkdirs))
8771 		if (mkdir->md_diradd == dap && mkdir->md_state & MKDIR_PARENT)
8772 			break;
8773 	if (mkdir == NULL)
8774 		panic("cancel_mkdir_dotdot: Unable to find mkdir\n");
8775 	if ((jaddref = mkdir->md_jaddref) != NULL) {
8776 		mkdir->md_jaddref = NULL;
8777 		jaddref->ja_state &= ~MKDIR_PARENT;
8778 		if (inodedep_lookup(UFSTOVFS(ip->i_ump), jaddref->ja_ino, 0,
8779 		    &inodedep) == 0)
8780 			panic("cancel_mkdir_dotdot: Lost parent inodedep");
8781 		if (cancel_jaddref(jaddref, inodedep, &dirrem->dm_jwork)) {
8782 			journal_jremref(dirrem, jremref, inodedep);
8783 			jremref = NULL;
8784 		}
8785 	}
8786 	if (mkdir->md_state & ONWORKLIST)
8787 		WORKLIST_REMOVE(&mkdir->md_list);
8788 	mkdir->md_state |= ALLCOMPLETE;
8789 	complete_mkdir(mkdir);
8790 	return (jremref);
8791 }
8792 
8793 static void
8794 journal_jremref(dirrem, jremref, inodedep)
8795 	struct dirrem *dirrem;
8796 	struct jremref *jremref;
8797 	struct inodedep *inodedep;
8798 {
8799 
8800 	if (inodedep == NULL)
8801 		if (inodedep_lookup(jremref->jr_list.wk_mp,
8802 		    jremref->jr_ref.if_ino, 0, &inodedep) == 0)
8803 			panic("journal_jremref: Lost inodedep");
8804 	LIST_INSERT_HEAD(&dirrem->dm_jremrefhd, jremref, jr_deps);
8805 	TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jremref->jr_ref, if_deps);
8806 	add_to_journal(&jremref->jr_list);
8807 }
8808 
8809 static void
8810 dirrem_journal(dirrem, jremref, dotremref, dotdotremref)
8811 	struct dirrem *dirrem;
8812 	struct jremref *jremref;
8813 	struct jremref *dotremref;
8814 	struct jremref *dotdotremref;
8815 {
8816 	struct inodedep *inodedep;
8817 
8818 
8819 	if (inodedep_lookup(jremref->jr_list.wk_mp, jremref->jr_ref.if_ino, 0,
8820 	    &inodedep) == 0)
8821 		panic("dirrem_journal: Lost inodedep");
8822 	journal_jremref(dirrem, jremref, inodedep);
8823 	if (dotremref)
8824 		journal_jremref(dirrem, dotremref, inodedep);
8825 	if (dotdotremref)
8826 		journal_jremref(dirrem, dotdotremref, NULL);
8827 }
8828 
8829 /*
8830  * Allocate a new dirrem if appropriate and return it along with
8831  * its associated pagedep. Called without a lock, returns with lock.
8832  */
8833 static struct dirrem *
8834 newdirrem(bp, dp, ip, isrmdir, prevdirremp)
8835 	struct buf *bp;		/* buffer containing directory block */
8836 	struct inode *dp;	/* inode for the directory being modified */
8837 	struct inode *ip;	/* inode for directory entry being removed */
8838 	int isrmdir;		/* indicates if doing RMDIR */
8839 	struct dirrem **prevdirremp; /* previously referenced inode, if any */
8840 {
8841 	int offset;
8842 	ufs_lbn_t lbn;
8843 	struct diradd *dap;
8844 	struct dirrem *dirrem;
8845 	struct pagedep *pagedep;
8846 	struct jremref *jremref;
8847 	struct jremref *dotremref;
8848 	struct jremref *dotdotremref;
8849 	struct vnode *dvp;
8850 
8851 	/*
8852 	 * Whiteouts have no deletion dependencies.
8853 	 */
8854 	if (ip == NULL)
8855 		panic("newdirrem: whiteout");
8856 	dvp = ITOV(dp);
8857 	/*
8858 	 * If we are over our limit, try to improve the situation.
8859 	 * Limiting the number of dirrem structures will also limit
8860 	 * the number of freefile and freeblks structures.
8861 	 */
8862 	ACQUIRE_LOCK(&lk);
8863 	if (!IS_SNAPSHOT(ip) && dep_current[D_DIRREM] > max_softdeps / 2)
8864 		(void) request_cleanup(ITOV(dp)->v_mount, FLUSH_BLOCKS);
8865 	FREE_LOCK(&lk);
8866 	dirrem = malloc(sizeof(struct dirrem),
8867 		M_DIRREM, M_SOFTDEP_FLAGS|M_ZERO);
8868 	workitem_alloc(&dirrem->dm_list, D_DIRREM, dvp->v_mount);
8869 	LIST_INIT(&dirrem->dm_jremrefhd);
8870 	LIST_INIT(&dirrem->dm_jwork);
8871 	dirrem->dm_state = isrmdir ? RMDIR : 0;
8872 	dirrem->dm_oldinum = ip->i_number;
8873 	*prevdirremp = NULL;
8874 	/*
8875 	 * Allocate remove reference structures to track journal write
8876 	 * dependencies.  We will always have one for the link and
8877 	 * when doing directories we will always have one more for dot.
8878 	 * When renaming a directory we skip the dotdot link change so
8879 	 * this is not needed.
8880 	 */
8881 	jremref = dotremref = dotdotremref = NULL;
8882 	if (DOINGSUJ(dvp)) {
8883 		if (isrmdir) {
8884 			jremref = newjremref(dirrem, dp, ip, dp->i_offset,
8885 			    ip->i_effnlink + 2);
8886 			dotremref = newjremref(dirrem, ip, ip, DOT_OFFSET,
8887 			    ip->i_effnlink + 1);
8888 			dotdotremref = newjremref(dirrem, ip, dp, DOTDOT_OFFSET,
8889 			    dp->i_effnlink + 1);
8890 			dotdotremref->jr_state |= MKDIR_PARENT;
8891 		} else
8892 			jremref = newjremref(dirrem, dp, ip, dp->i_offset,
8893 			    ip->i_effnlink + 1);
8894 	}
8895 	ACQUIRE_LOCK(&lk);
8896 	lbn = lblkno(dp->i_fs, dp->i_offset);
8897 	offset = blkoff(dp->i_fs, dp->i_offset);
8898 	pagedep_lookup(UFSTOVFS(dp->i_ump), bp, dp->i_number, lbn, DEPALLOC,
8899 	    &pagedep);
8900 	dirrem->dm_pagedep = pagedep;
8901 	dirrem->dm_offset = offset;
8902 	/*
8903 	 * If we're renaming a .. link to a new directory, cancel any
8904 	 * existing MKDIR_PARENT mkdir.  If it has already been canceled
8905 	 * the jremref is preserved for any potential diradd in this
8906 	 * location.  This can not coincide with a rmdir.
8907 	 */
8908 	if (dp->i_offset == DOTDOT_OFFSET) {
8909 		if (isrmdir)
8910 			panic("newdirrem: .. directory change during remove?");
8911 		jremref = cancel_mkdir_dotdot(dp, dirrem, jremref);
8912 	}
8913 	/*
8914 	 * If we're removing a directory search for the .. dependency now and
8915 	 * cancel it.  Any pending journal work will be added to the dirrem
8916 	 * to be completed when the workitem remove completes.
8917 	 */
8918 	if (isrmdir)
8919 		dotdotremref = cancel_diradd_dotdot(ip, dirrem, dotdotremref);
8920 	/*
8921 	 * Check for a diradd dependency for the same directory entry.
8922 	 * If present, then both dependencies become obsolete and can
8923 	 * be de-allocated.
8924 	 */
8925 	dap = diradd_lookup(pagedep, offset);
8926 	if (dap == NULL) {
8927 		/*
8928 		 * Link the jremref structures into the dirrem so they are
8929 		 * written prior to the pagedep.
8930 		 */
8931 		if (jremref)
8932 			dirrem_journal(dirrem, jremref, dotremref,
8933 			    dotdotremref);
8934 		return (dirrem);
8935 	}
8936 	/*
8937 	 * Must be ATTACHED at this point.
8938 	 */
8939 	if ((dap->da_state & ATTACHED) == 0)
8940 		panic("newdirrem: not ATTACHED");
8941 	if (dap->da_newinum != ip->i_number)
8942 		panic("newdirrem: inum %ju should be %ju",
8943 		    (uintmax_t)ip->i_number, (uintmax_t)dap->da_newinum);
8944 	/*
8945 	 * If we are deleting a changed name that never made it to disk,
8946 	 * then return the dirrem describing the previous inode (which
8947 	 * represents the inode currently referenced from this entry on disk).
8948 	 */
8949 	if ((dap->da_state & DIRCHG) != 0) {
8950 		*prevdirremp = dap->da_previous;
8951 		dap->da_state &= ~DIRCHG;
8952 		dap->da_pagedep = pagedep;
8953 	}
8954 	/*
8955 	 * We are deleting an entry that never made it to disk.
8956 	 * Mark it COMPLETE so we can delete its inode immediately.
8957 	 */
8958 	dirrem->dm_state |= COMPLETE;
8959 	cancel_diradd(dap, dirrem, jremref, dotremref, dotdotremref);
8960 #ifdef SUJ_DEBUG
8961 	if (isrmdir == 0) {
8962 		struct worklist *wk;
8963 
8964 		LIST_FOREACH(wk, &dirrem->dm_jwork, wk_list)
8965 			if (wk->wk_state & (MKDIR_BODY | MKDIR_PARENT))
8966 				panic("bad wk %p (0x%X)\n", wk, wk->wk_state);
8967 	}
8968 #endif
8969 
8970 	return (dirrem);
8971 }
8972 
8973 /*
8974  * Directory entry change dependencies.
8975  *
8976  * Changing an existing directory entry requires that an add operation
8977  * be completed first followed by a deletion. The semantics for the addition
8978  * are identical to the description of adding a new entry above except
8979  * that the rollback is to the old inode number rather than zero. Once
8980  * the addition dependency is completed, the removal is done as described
8981  * in the removal routine above.
8982  */
8983 
8984 /*
8985  * This routine should be called immediately after changing
8986  * a directory entry.  The inode's link count should not be
8987  * decremented by the calling procedure -- the soft updates
8988  * code will perform this task when it is safe.
8989  */
8990 void
8991 softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir)
8992 	struct buf *bp;		/* buffer containing directory block */
8993 	struct inode *dp;	/* inode for the directory being modified */
8994 	struct inode *ip;	/* inode for directory entry being removed */
8995 	ino_t newinum;		/* new inode number for changed entry */
8996 	int isrmdir;		/* indicates if doing RMDIR */
8997 {
8998 	int offset;
8999 	struct diradd *dap = NULL;
9000 	struct dirrem *dirrem, *prevdirrem;
9001 	struct pagedep *pagedep;
9002 	struct inodedep *inodedep;
9003 	struct jaddref *jaddref;
9004 	struct mount *mp;
9005 
9006 	offset = blkoff(dp->i_fs, dp->i_offset);
9007 	mp = UFSTOVFS(dp->i_ump);
9008 
9009 	/*
9010 	 * Whiteouts do not need diradd dependencies.
9011 	 */
9012 	if (newinum != WINO) {
9013 		dap = malloc(sizeof(struct diradd),
9014 		    M_DIRADD, M_SOFTDEP_FLAGS|M_ZERO);
9015 		workitem_alloc(&dap->da_list, D_DIRADD, mp);
9016 		dap->da_state = DIRCHG | ATTACHED | DEPCOMPLETE;
9017 		dap->da_offset = offset;
9018 		dap->da_newinum = newinum;
9019 		LIST_INIT(&dap->da_jwork);
9020 	}
9021 
9022 	/*
9023 	 * Allocate a new dirrem and ACQUIRE_LOCK.
9024 	 */
9025 	dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem);
9026 	pagedep = dirrem->dm_pagedep;
9027 	/*
9028 	 * The possible values for isrmdir:
9029 	 *	0 - non-directory file rename
9030 	 *	1 - directory rename within same directory
9031 	 *   inum - directory rename to new directory of given inode number
9032 	 * When renaming to a new directory, we are both deleting and
9033 	 * creating a new directory entry, so the link count on the new
9034 	 * directory should not change. Thus we do not need the followup
9035 	 * dirrem which is usually done in handle_workitem_remove. We set
9036 	 * the DIRCHG flag to tell handle_workitem_remove to skip the
9037 	 * followup dirrem.
9038 	 */
9039 	if (isrmdir > 1)
9040 		dirrem->dm_state |= DIRCHG;
9041 
9042 	/*
9043 	 * Whiteouts have no additional dependencies,
9044 	 * so just put the dirrem on the correct list.
9045 	 */
9046 	if (newinum == WINO) {
9047 		if ((dirrem->dm_state & COMPLETE) == 0) {
9048 			LIST_INSERT_HEAD(&pagedep->pd_dirremhd, dirrem,
9049 			    dm_next);
9050 		} else {
9051 			dirrem->dm_dirinum = pagedep->pd_ino;
9052 			if (LIST_EMPTY(&dirrem->dm_jremrefhd))
9053 				add_to_worklist(&dirrem->dm_list, 0);
9054 		}
9055 		FREE_LOCK(&lk);
9056 		return;
9057 	}
9058 	/*
9059 	 * Add the dirrem to the inodedep's pending remove list for quick
9060 	 * discovery later.  A valid nlinkdelta ensures that this lookup
9061 	 * will not fail.
9062 	 */
9063 	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0)
9064 		panic("softdep_setup_directory_change: Lost inodedep.");
9065 	dirrem->dm_state |= ONDEPLIST;
9066 	LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext);
9067 
9068 	/*
9069 	 * If the COMPLETE flag is clear, then there were no active
9070 	 * entries and we want to roll back to the previous inode until
9071 	 * the new inode is committed to disk. If the COMPLETE flag is
9072 	 * set, then we have deleted an entry that never made it to disk.
9073 	 * If the entry we deleted resulted from a name change, then the old
9074 	 * inode reference still resides on disk. Any rollback that we do
9075 	 * needs to be to that old inode (returned to us in prevdirrem). If
9076 	 * the entry we deleted resulted from a create, then there is
9077 	 * no entry on the disk, so we want to roll back to zero rather
9078 	 * than the uncommitted inode. In either of the COMPLETE cases we
9079 	 * want to immediately free the unwritten and unreferenced inode.
9080 	 */
9081 	if ((dirrem->dm_state & COMPLETE) == 0) {
9082 		dap->da_previous = dirrem;
9083 	} else {
9084 		if (prevdirrem != NULL) {
9085 			dap->da_previous = prevdirrem;
9086 		} else {
9087 			dap->da_state &= ~DIRCHG;
9088 			dap->da_pagedep = pagedep;
9089 		}
9090 		dirrem->dm_dirinum = pagedep->pd_ino;
9091 		if (LIST_EMPTY(&dirrem->dm_jremrefhd))
9092 			add_to_worklist(&dirrem->dm_list, 0);
9093 	}
9094 	/*
9095 	 * Lookup the jaddref for this journal entry.  We must finish
9096 	 * initializing it and make the diradd write dependent on it.
9097 	 * If we're not journaling, put it on the id_bufwait list if the
9098 	 * inode is not yet written. If it is written, do the post-inode
9099 	 * write processing to put it on the id_pendinghd list.
9100 	 */
9101 	inodedep_lookup(mp, newinum, DEPALLOC | NODELAY, &inodedep);
9102 	if (MOUNTEDSUJ(mp)) {
9103 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
9104 		    inoreflst);
9105 		KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number,
9106 		    ("softdep_setup_directory_change: bad jaddref %p",
9107 		    jaddref));
9108 		jaddref->ja_diroff = dp->i_offset;
9109 		jaddref->ja_diradd = dap;
9110 		LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)],
9111 		    dap, da_pdlist);
9112 		add_to_journal(&jaddref->ja_list);
9113 	} else if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) {
9114 		dap->da_state |= COMPLETE;
9115 		LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
9116 		WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list);
9117 	} else {
9118 		LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)],
9119 		    dap, da_pdlist);
9120 		WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list);
9121 	}
9122 	/*
9123 	 * If we're making a new name for a directory that has not been
9124 	 * committed when need to move the dot and dotdot references to
9125 	 * this new name.
9126 	 */
9127 	if (inodedep->id_mkdiradd && dp->i_offset != DOTDOT_OFFSET)
9128 		merge_diradd(inodedep, dap);
9129 	FREE_LOCK(&lk);
9130 }
9131 
9132 /*
9133  * Called whenever the link count on an inode is changed.
9134  * It creates an inode dependency so that the new reference(s)
9135  * to the inode cannot be committed to disk until the updated
9136  * inode has been written.
9137  */
9138 void
9139 softdep_change_linkcnt(ip)
9140 	struct inode *ip;	/* the inode with the increased link count */
9141 {
9142 	struct inodedep *inodedep;
9143 	int dflags;
9144 
9145 	ACQUIRE_LOCK(&lk);
9146 	dflags = DEPALLOC;
9147 	if (IS_SNAPSHOT(ip))
9148 		dflags |= NODELAY;
9149 	inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, dflags, &inodedep);
9150 	if (ip->i_nlink < ip->i_effnlink)
9151 		panic("softdep_change_linkcnt: bad delta");
9152 	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
9153 	FREE_LOCK(&lk);
9154 }
9155 
9156 /*
9157  * Attach a sbdep dependency to the superblock buf so that we can keep
9158  * track of the head of the linked list of referenced but unlinked inodes.
9159  */
9160 void
9161 softdep_setup_sbupdate(ump, fs, bp)
9162 	struct ufsmount *ump;
9163 	struct fs *fs;
9164 	struct buf *bp;
9165 {
9166 	struct sbdep *sbdep;
9167 	struct worklist *wk;
9168 
9169 	if (MOUNTEDSUJ(UFSTOVFS(ump)) == 0)
9170 		return;
9171 	LIST_FOREACH(wk, &bp->b_dep, wk_list)
9172 		if (wk->wk_type == D_SBDEP)
9173 			break;
9174 	if (wk != NULL)
9175 		return;
9176 	sbdep = malloc(sizeof(struct sbdep), M_SBDEP, M_SOFTDEP_FLAGS);
9177 	workitem_alloc(&sbdep->sb_list, D_SBDEP, UFSTOVFS(ump));
9178 	sbdep->sb_fs = fs;
9179 	sbdep->sb_ump = ump;
9180 	ACQUIRE_LOCK(&lk);
9181 	WORKLIST_INSERT(&bp->b_dep, &sbdep->sb_list);
9182 	FREE_LOCK(&lk);
9183 }
9184 
9185 /*
9186  * Return the first unlinked inodedep which is ready to be the head of the
9187  * list.  The inodedep and all those after it must have valid next pointers.
9188  */
9189 static struct inodedep *
9190 first_unlinked_inodedep(ump)
9191 	struct ufsmount *ump;
9192 {
9193 	struct inodedep *inodedep;
9194 	struct inodedep *idp;
9195 
9196 	mtx_assert(&lk, MA_OWNED);
9197 	for (inodedep = TAILQ_LAST(&ump->softdep_unlinked, inodedeplst);
9198 	    inodedep; inodedep = idp) {
9199 		if ((inodedep->id_state & UNLINKNEXT) == 0)
9200 			return (NULL);
9201 		idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked);
9202 		if (idp == NULL || (idp->id_state & UNLINKNEXT) == 0)
9203 			break;
9204 		if ((inodedep->id_state & UNLINKPREV) == 0)
9205 			break;
9206 	}
9207 	return (inodedep);
9208 }
9209 
9210 /*
9211  * Set the sujfree unlinked head pointer prior to writing a superblock.
9212  */
9213 static void
9214 initiate_write_sbdep(sbdep)
9215 	struct sbdep *sbdep;
9216 {
9217 	struct inodedep *inodedep;
9218 	struct fs *bpfs;
9219 	struct fs *fs;
9220 
9221 	bpfs = sbdep->sb_fs;
9222 	fs = sbdep->sb_ump->um_fs;
9223 	inodedep = first_unlinked_inodedep(sbdep->sb_ump);
9224 	if (inodedep) {
9225 		fs->fs_sujfree = inodedep->id_ino;
9226 		inodedep->id_state |= UNLINKPREV;
9227 	} else
9228 		fs->fs_sujfree = 0;
9229 	bpfs->fs_sujfree = fs->fs_sujfree;
9230 }
9231 
9232 /*
9233  * After a superblock is written determine whether it must be written again
9234  * due to a changing unlinked list head.
9235  */
9236 static int
9237 handle_written_sbdep(sbdep, bp)
9238 	struct sbdep *sbdep;
9239 	struct buf *bp;
9240 {
9241 	struct inodedep *inodedep;
9242 	struct mount *mp;
9243 	struct fs *fs;
9244 
9245 	mtx_assert(&lk, MA_OWNED);
9246 	fs = sbdep->sb_fs;
9247 	mp = UFSTOVFS(sbdep->sb_ump);
9248 	/*
9249 	 * If the superblock doesn't match the in-memory list start over.
9250 	 */
9251 	inodedep = first_unlinked_inodedep(sbdep->sb_ump);
9252 	if ((inodedep && fs->fs_sujfree != inodedep->id_ino) ||
9253 	    (inodedep == NULL && fs->fs_sujfree != 0)) {
9254 		bdirty(bp);
9255 		return (1);
9256 	}
9257 	WORKITEM_FREE(sbdep, D_SBDEP);
9258 	if (fs->fs_sujfree == 0)
9259 		return (0);
9260 	/*
9261 	 * Now that we have a record of this inode in stable store allow it
9262 	 * to be written to free up pending work.  Inodes may see a lot of
9263 	 * write activity after they are unlinked which we must not hold up.
9264 	 */
9265 	for (; inodedep != NULL; inodedep = TAILQ_NEXT(inodedep, id_unlinked)) {
9266 		if ((inodedep->id_state & UNLINKLINKS) != UNLINKLINKS)
9267 			panic("handle_written_sbdep: Bad inodedep %p (0x%X)",
9268 			    inodedep, inodedep->id_state);
9269 		if (inodedep->id_state & UNLINKONLIST)
9270 			break;
9271 		inodedep->id_state |= DEPCOMPLETE | UNLINKONLIST;
9272 	}
9273 
9274 	return (0);
9275 }
9276 
9277 /*
9278  * Mark an inodedep as unlinked and insert it into the in-memory unlinked list.
9279  */
9280 static void
9281 unlinked_inodedep(mp, inodedep)
9282 	struct mount *mp;
9283 	struct inodedep *inodedep;
9284 {
9285 	struct ufsmount *ump;
9286 
9287 	mtx_assert(&lk, MA_OWNED);
9288 	if (MOUNTEDSUJ(mp) == 0)
9289 		return;
9290 	ump = VFSTOUFS(mp);
9291 	ump->um_fs->fs_fmod = 1;
9292 	if (inodedep->id_state & UNLINKED)
9293 		panic("unlinked_inodedep: %p already unlinked\n", inodedep);
9294 	inodedep->id_state |= UNLINKED;
9295 	TAILQ_INSERT_HEAD(&ump->softdep_unlinked, inodedep, id_unlinked);
9296 }
9297 
9298 /*
9299  * Remove an inodedep from the unlinked inodedep list.  This may require
9300  * disk writes if the inode has made it that far.
9301  */
9302 static void
9303 clear_unlinked_inodedep(inodedep)
9304 	struct inodedep *inodedep;
9305 {
9306 	struct ufsmount *ump;
9307 	struct inodedep *idp;
9308 	struct inodedep *idn;
9309 	struct fs *fs;
9310 	struct buf *bp;
9311 	ino_t ino;
9312 	ino_t nino;
9313 	ino_t pino;
9314 	int error;
9315 
9316 	ump = VFSTOUFS(inodedep->id_list.wk_mp);
9317 	fs = ump->um_fs;
9318 	ino = inodedep->id_ino;
9319 	error = 0;
9320 	for (;;) {
9321 		mtx_assert(&lk, MA_OWNED);
9322 		KASSERT((inodedep->id_state & UNLINKED) != 0,
9323 		    ("clear_unlinked_inodedep: inodedep %p not unlinked",
9324 		    inodedep));
9325 		/*
9326 		 * If nothing has yet been written simply remove us from
9327 		 * the in memory list and return.  This is the most common
9328 		 * case where handle_workitem_remove() loses the final
9329 		 * reference.
9330 		 */
9331 		if ((inodedep->id_state & UNLINKLINKS) == 0)
9332 			break;
9333 		/*
9334 		 * If we have a NEXT pointer and no PREV pointer we can simply
9335 		 * clear NEXT's PREV and remove ourselves from the list.  Be
9336 		 * careful not to clear PREV if the superblock points at
9337 		 * next as well.
9338 		 */
9339 		idn = TAILQ_NEXT(inodedep, id_unlinked);
9340 		if ((inodedep->id_state & UNLINKLINKS) == UNLINKNEXT) {
9341 			if (idn && fs->fs_sujfree != idn->id_ino)
9342 				idn->id_state &= ~UNLINKPREV;
9343 			break;
9344 		}
9345 		/*
9346 		 * Here we have an inodedep which is actually linked into
9347 		 * the list.  We must remove it by forcing a write to the
9348 		 * link before us, whether it be the superblock or an inode.
9349 		 * Unfortunately the list may change while we're waiting
9350 		 * on the buf lock for either resource so we must loop until
9351 		 * we lock the right one.  If both the superblock and an
9352 		 * inode point to this inode we must clear the inode first
9353 		 * followed by the superblock.
9354 		 */
9355 		idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked);
9356 		pino = 0;
9357 		if (idp && (idp->id_state & UNLINKNEXT))
9358 			pino = idp->id_ino;
9359 		FREE_LOCK(&lk);
9360 		if (pino == 0)
9361 			bp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc),
9362 			    (int)fs->fs_sbsize, 0, 0, 0);
9363 		else
9364 			error = bread(ump->um_devvp,
9365 			    fsbtodb(fs, ino_to_fsba(fs, pino)),
9366 			    (int)fs->fs_bsize, NOCRED, &bp);
9367 		ACQUIRE_LOCK(&lk);
9368 		if (error)
9369 			break;
9370 		/* If the list has changed restart the loop. */
9371 		idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked);
9372 		nino = 0;
9373 		if (idp && (idp->id_state & UNLINKNEXT))
9374 			nino = idp->id_ino;
9375 		if (nino != pino ||
9376 		    (inodedep->id_state & UNLINKPREV) != UNLINKPREV) {
9377 			FREE_LOCK(&lk);
9378 			brelse(bp);
9379 			ACQUIRE_LOCK(&lk);
9380 			continue;
9381 		}
9382 		nino = 0;
9383 		idn = TAILQ_NEXT(inodedep, id_unlinked);
9384 		if (idn)
9385 			nino = idn->id_ino;
9386 		/*
9387 		 * Remove us from the in memory list.  After this we cannot
9388 		 * access the inodedep.
9389 		 */
9390 		KASSERT((inodedep->id_state & UNLINKED) != 0,
9391 		    ("clear_unlinked_inodedep: inodedep %p not unlinked",
9392 		    inodedep));
9393 		inodedep->id_state &= ~(UNLINKED | UNLINKLINKS | UNLINKONLIST);
9394 		TAILQ_REMOVE(&ump->softdep_unlinked, inodedep, id_unlinked);
9395 		FREE_LOCK(&lk);
9396 		/*
9397 		 * The predecessor's next pointer is manually updated here
9398 		 * so that the NEXT flag is never cleared for an element
9399 		 * that is in the list.
9400 		 */
9401 		if (pino == 0) {
9402 			bcopy((caddr_t)fs, bp->b_data, (u_int)fs->fs_sbsize);
9403 			ffs_oldfscompat_write((struct fs *)bp->b_data, ump);
9404 			softdep_setup_sbupdate(ump, (struct fs *)bp->b_data,
9405 			    bp);
9406 		} else if (fs->fs_magic == FS_UFS1_MAGIC)
9407 			((struct ufs1_dinode *)bp->b_data +
9408 			    ino_to_fsbo(fs, pino))->di_freelink = nino;
9409 		else
9410 			((struct ufs2_dinode *)bp->b_data +
9411 			    ino_to_fsbo(fs, pino))->di_freelink = nino;
9412 		/*
9413 		 * If the bwrite fails we have no recourse to recover.  The
9414 		 * filesystem is corrupted already.
9415 		 */
9416 		bwrite(bp);
9417 		ACQUIRE_LOCK(&lk);
9418 		/*
9419 		 * If the superblock pointer still needs to be cleared force
9420 		 * a write here.
9421 		 */
9422 		if (fs->fs_sujfree == ino) {
9423 			FREE_LOCK(&lk);
9424 			bp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc),
9425 			    (int)fs->fs_sbsize, 0, 0, 0);
9426 			bcopy((caddr_t)fs, bp->b_data, (u_int)fs->fs_sbsize);
9427 			ffs_oldfscompat_write((struct fs *)bp->b_data, ump);
9428 			softdep_setup_sbupdate(ump, (struct fs *)bp->b_data,
9429 			    bp);
9430 			bwrite(bp);
9431 			ACQUIRE_LOCK(&lk);
9432 		}
9433 
9434 		if (fs->fs_sujfree != ino)
9435 			return;
9436 		panic("clear_unlinked_inodedep: Failed to clear free head");
9437 	}
9438 	if (inodedep->id_ino == fs->fs_sujfree)
9439 		panic("clear_unlinked_inodedep: Freeing head of free list");
9440 	inodedep->id_state &= ~(UNLINKED | UNLINKLINKS | UNLINKONLIST);
9441 	TAILQ_REMOVE(&ump->softdep_unlinked, inodedep, id_unlinked);
9442 	return;
9443 }
9444 
9445 /*
9446  * This workitem decrements the inode's link count.
9447  * If the link count reaches zero, the file is removed.
9448  */
9449 static int
9450 handle_workitem_remove(dirrem, flags)
9451 	struct dirrem *dirrem;
9452 	int flags;
9453 {
9454 	struct inodedep *inodedep;
9455 	struct workhead dotdotwk;
9456 	struct worklist *wk;
9457 	struct ufsmount *ump;
9458 	struct mount *mp;
9459 	struct vnode *vp;
9460 	struct inode *ip;
9461 	ino_t oldinum;
9462 
9463 	if (dirrem->dm_state & ONWORKLIST)
9464 		panic("handle_workitem_remove: dirrem %p still on worklist",
9465 		    dirrem);
9466 	oldinum = dirrem->dm_oldinum;
9467 	mp = dirrem->dm_list.wk_mp;
9468 	ump = VFSTOUFS(mp);
9469 	flags |= LK_EXCLUSIVE;
9470 	if (ffs_vgetf(mp, oldinum, flags, &vp, FFSV_FORCEINSMQ) != 0)
9471 		return (EBUSY);
9472 	ip = VTOI(vp);
9473 	ACQUIRE_LOCK(&lk);
9474 	if ((inodedep_lookup(mp, oldinum, 0, &inodedep)) == 0)
9475 		panic("handle_workitem_remove: lost inodedep");
9476 	if (dirrem->dm_state & ONDEPLIST)
9477 		LIST_REMOVE(dirrem, dm_inonext);
9478 	KASSERT(LIST_EMPTY(&dirrem->dm_jremrefhd),
9479 	    ("handle_workitem_remove:  Journal entries not written."));
9480 
9481 	/*
9482 	 * Move all dependencies waiting on the remove to complete
9483 	 * from the dirrem to the inode inowait list to be completed
9484 	 * after the inode has been updated and written to disk.  Any
9485 	 * marked MKDIR_PARENT are saved to be completed when the .. ref
9486 	 * is removed.
9487 	 */
9488 	LIST_INIT(&dotdotwk);
9489 	while ((wk = LIST_FIRST(&dirrem->dm_jwork)) != NULL) {
9490 		WORKLIST_REMOVE(wk);
9491 		if (wk->wk_state & MKDIR_PARENT) {
9492 			wk->wk_state &= ~MKDIR_PARENT;
9493 			WORKLIST_INSERT(&dotdotwk, wk);
9494 			continue;
9495 		}
9496 		WORKLIST_INSERT(&inodedep->id_inowait, wk);
9497 	}
9498 	LIST_SWAP(&dirrem->dm_jwork, &dotdotwk, worklist, wk_list);
9499 	/*
9500 	 * Normal file deletion.
9501 	 */
9502 	if ((dirrem->dm_state & RMDIR) == 0) {
9503 		ip->i_nlink--;
9504 		DIP_SET(ip, i_nlink, ip->i_nlink);
9505 		ip->i_flag |= IN_CHANGE;
9506 		if (ip->i_nlink < ip->i_effnlink)
9507 			panic("handle_workitem_remove: bad file delta");
9508 		if (ip->i_nlink == 0)
9509 			unlinked_inodedep(mp, inodedep);
9510 		inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
9511 		KASSERT(LIST_EMPTY(&dirrem->dm_jwork),
9512 		    ("handle_workitem_remove: worklist not empty. %s",
9513 		    TYPENAME(LIST_FIRST(&dirrem->dm_jwork)->wk_type)));
9514 		WORKITEM_FREE(dirrem, D_DIRREM);
9515 		FREE_LOCK(&lk);
9516 		goto out;
9517 	}
9518 	/*
9519 	 * Directory deletion. Decrement reference count for both the
9520 	 * just deleted parent directory entry and the reference for ".".
9521 	 * Arrange to have the reference count on the parent decremented
9522 	 * to account for the loss of "..".
9523 	 */
9524 	ip->i_nlink -= 2;
9525 	DIP_SET(ip, i_nlink, ip->i_nlink);
9526 	ip->i_flag |= IN_CHANGE;
9527 	if (ip->i_nlink < ip->i_effnlink)
9528 		panic("handle_workitem_remove: bad dir delta");
9529 	if (ip->i_nlink == 0)
9530 		unlinked_inodedep(mp, inodedep);
9531 	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
9532 	/*
9533 	 * Rename a directory to a new parent. Since, we are both deleting
9534 	 * and creating a new directory entry, the link count on the new
9535 	 * directory should not change. Thus we skip the followup dirrem.
9536 	 */
9537 	if (dirrem->dm_state & DIRCHG) {
9538 		KASSERT(LIST_EMPTY(&dirrem->dm_jwork),
9539 		    ("handle_workitem_remove: DIRCHG and worklist not empty."));
9540 		WORKITEM_FREE(dirrem, D_DIRREM);
9541 		FREE_LOCK(&lk);
9542 		goto out;
9543 	}
9544 	dirrem->dm_state = ONDEPLIST;
9545 	dirrem->dm_oldinum = dirrem->dm_dirinum;
9546 	/*
9547 	 * Place the dirrem on the parent's diremhd list.
9548 	 */
9549 	if (inodedep_lookup(mp, dirrem->dm_oldinum, 0, &inodedep) == 0)
9550 		panic("handle_workitem_remove: lost dir inodedep");
9551 	LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext);
9552 	/*
9553 	 * If the allocated inode has never been written to disk, then
9554 	 * the on-disk inode is zero'ed and we can remove the file
9555 	 * immediately.  When journaling if the inode has been marked
9556 	 * unlinked and not DEPCOMPLETE we know it can never be written.
9557 	 */
9558 	inodedep_lookup(mp, oldinum, 0, &inodedep);
9559 	if (inodedep == NULL ||
9560 	    (inodedep->id_state & (DEPCOMPLETE | UNLINKED)) == UNLINKED ||
9561 	    check_inode_unwritten(inodedep)) {
9562 		FREE_LOCK(&lk);
9563 		vput(vp);
9564 		return handle_workitem_remove(dirrem, flags);
9565 	}
9566 	WORKLIST_INSERT(&inodedep->id_inowait, &dirrem->dm_list);
9567 	FREE_LOCK(&lk);
9568 	ip->i_flag |= IN_CHANGE;
9569 out:
9570 	ffs_update(vp, 0);
9571 	vput(vp);
9572 	return (0);
9573 }
9574 
9575 /*
9576  * Inode de-allocation dependencies.
9577  *
9578  * When an inode's link count is reduced to zero, it can be de-allocated. We
9579  * found it convenient to postpone de-allocation until after the inode is
9580  * written to disk with its new link count (zero).  At this point, all of the
9581  * on-disk inode's block pointers are nullified and, with careful dependency
9582  * list ordering, all dependencies related to the inode will be satisfied and
9583  * the corresponding dependency structures de-allocated.  So, if/when the
9584  * inode is reused, there will be no mixing of old dependencies with new
9585  * ones.  This artificial dependency is set up by the block de-allocation
9586  * procedure above (softdep_setup_freeblocks) and completed by the
9587  * following procedure.
9588  */
9589 static void
9590 handle_workitem_freefile(freefile)
9591 	struct freefile *freefile;
9592 {
9593 	struct workhead wkhd;
9594 	struct fs *fs;
9595 	struct inodedep *idp;
9596 	struct ufsmount *ump;
9597 	int error;
9598 
9599 	ump = VFSTOUFS(freefile->fx_list.wk_mp);
9600 	fs = ump->um_fs;
9601 #ifdef DEBUG
9602 	ACQUIRE_LOCK(&lk);
9603 	error = inodedep_lookup(UFSTOVFS(ump), freefile->fx_oldinum, 0, &idp);
9604 	FREE_LOCK(&lk);
9605 	if (error)
9606 		panic("handle_workitem_freefile: inodedep %p survived", idp);
9607 #endif
9608 	UFS_LOCK(ump);
9609 	fs->fs_pendinginodes -= 1;
9610 	UFS_UNLOCK(ump);
9611 	LIST_INIT(&wkhd);
9612 	LIST_SWAP(&freefile->fx_jwork, &wkhd, worklist, wk_list);
9613 	if ((error = ffs_freefile(ump, fs, freefile->fx_devvp,
9614 	    freefile->fx_oldinum, freefile->fx_mode, &wkhd)) != 0)
9615 		softdep_error("handle_workitem_freefile", error);
9616 	ACQUIRE_LOCK(&lk);
9617 	WORKITEM_FREE(freefile, D_FREEFILE);
9618 	FREE_LOCK(&lk);
9619 }
9620 
9621 
9622 /*
9623  * Helper function which unlinks marker element from work list and returns
9624  * the next element on the list.
9625  */
9626 static __inline struct worklist *
9627 markernext(struct worklist *marker)
9628 {
9629 	struct worklist *next;
9630 
9631 	next = LIST_NEXT(marker, wk_list);
9632 	LIST_REMOVE(marker, wk_list);
9633 	return next;
9634 }
9635 
9636 /*
9637  * Disk writes.
9638  *
9639  * The dependency structures constructed above are most actively used when file
9640  * system blocks are written to disk.  No constraints are placed on when a
9641  * block can be written, but unsatisfied update dependencies are made safe by
9642  * modifying (or replacing) the source memory for the duration of the disk
9643  * write.  When the disk write completes, the memory block is again brought
9644  * up-to-date.
9645  *
9646  * In-core inode structure reclamation.
9647  *
9648  * Because there are a finite number of "in-core" inode structures, they are
9649  * reused regularly.  By transferring all inode-related dependencies to the
9650  * in-memory inode block and indexing them separately (via "inodedep"s), we
9651  * can allow "in-core" inode structures to be reused at any time and avoid
9652  * any increase in contention.
9653  *
9654  * Called just before entering the device driver to initiate a new disk I/O.
9655  * The buffer must be locked, thus, no I/O completion operations can occur
9656  * while we are manipulating its associated dependencies.
9657  */
9658 static void
9659 softdep_disk_io_initiation(bp)
9660 	struct buf *bp;		/* structure describing disk write to occur */
9661 {
9662 	struct worklist *wk;
9663 	struct worklist marker;
9664 	struct inodedep *inodedep;
9665 	struct freeblks *freeblks;
9666 	struct jblkdep *jblkdep;
9667 	struct newblk *newblk;
9668 
9669 	/*
9670 	 * We only care about write operations. There should never
9671 	 * be dependencies for reads.
9672 	 */
9673 	if (bp->b_iocmd != BIO_WRITE)
9674 		panic("softdep_disk_io_initiation: not write");
9675 
9676 	if (bp->b_vflags & BV_BKGRDINPROG)
9677 		panic("softdep_disk_io_initiation: Writing buffer with "
9678 		    "background write in progress: %p", bp);
9679 
9680 	marker.wk_type = D_LAST + 1;	/* Not a normal workitem */
9681 	PHOLD(curproc);			/* Don't swap out kernel stack */
9682 
9683 	ACQUIRE_LOCK(&lk);
9684 	/*
9685 	 * Do any necessary pre-I/O processing.
9686 	 */
9687 	for (wk = LIST_FIRST(&bp->b_dep); wk != NULL;
9688 	     wk = markernext(&marker)) {
9689 		LIST_INSERT_AFTER(wk, &marker, wk_list);
9690 		switch (wk->wk_type) {
9691 
9692 		case D_PAGEDEP:
9693 			initiate_write_filepage(WK_PAGEDEP(wk), bp);
9694 			continue;
9695 
9696 		case D_INODEDEP:
9697 			inodedep = WK_INODEDEP(wk);
9698 			if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC)
9699 				initiate_write_inodeblock_ufs1(inodedep, bp);
9700 			else
9701 				initiate_write_inodeblock_ufs2(inodedep, bp);
9702 			continue;
9703 
9704 		case D_INDIRDEP:
9705 			initiate_write_indirdep(WK_INDIRDEP(wk), bp);
9706 			continue;
9707 
9708 		case D_BMSAFEMAP:
9709 			initiate_write_bmsafemap(WK_BMSAFEMAP(wk), bp);
9710 			continue;
9711 
9712 		case D_JSEG:
9713 			WK_JSEG(wk)->js_buf = NULL;
9714 			continue;
9715 
9716 		case D_FREEBLKS:
9717 			freeblks = WK_FREEBLKS(wk);
9718 			jblkdep = LIST_FIRST(&freeblks->fb_jblkdephd);
9719 			/*
9720 			 * We have to wait for the freeblks to be journaled
9721 			 * before we can write an inodeblock with updated
9722 			 * pointers.  Be careful to arrange the marker so
9723 			 * we revisit the freeblks if it's not removed by
9724 			 * the first jwait().
9725 			 */
9726 			if (jblkdep != NULL) {
9727 				LIST_REMOVE(&marker, wk_list);
9728 				LIST_INSERT_BEFORE(wk, &marker, wk_list);
9729 				jwait(&jblkdep->jb_list, MNT_WAIT);
9730 			}
9731 			continue;
9732 		case D_ALLOCDIRECT:
9733 		case D_ALLOCINDIR:
9734 			/*
9735 			 * We have to wait for the jnewblk to be journaled
9736 			 * before we can write to a block if the contents
9737 			 * may be confused with an earlier file's indirect
9738 			 * at recovery time.  Handle the marker as described
9739 			 * above.
9740 			 */
9741 			newblk = WK_NEWBLK(wk);
9742 			if (newblk->nb_jnewblk != NULL &&
9743 			    indirblk_lookup(newblk->nb_list.wk_mp,
9744 			    newblk->nb_newblkno)) {
9745 				LIST_REMOVE(&marker, wk_list);
9746 				LIST_INSERT_BEFORE(wk, &marker, wk_list);
9747 				jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT);
9748 			}
9749 			continue;
9750 
9751 		case D_SBDEP:
9752 			initiate_write_sbdep(WK_SBDEP(wk));
9753 			continue;
9754 
9755 		case D_MKDIR:
9756 		case D_FREEWORK:
9757 		case D_FREEDEP:
9758 		case D_JSEGDEP:
9759 			continue;
9760 
9761 		default:
9762 			panic("handle_disk_io_initiation: Unexpected type %s",
9763 			    TYPENAME(wk->wk_type));
9764 			/* NOTREACHED */
9765 		}
9766 	}
9767 	FREE_LOCK(&lk);
9768 	PRELE(curproc);			/* Allow swapout of kernel stack */
9769 }
9770 
9771 /*
9772  * Called from within the procedure above to deal with unsatisfied
9773  * allocation dependencies in a directory. The buffer must be locked,
9774  * thus, no I/O completion operations can occur while we are
9775  * manipulating its associated dependencies.
9776  */
9777 static void
9778 initiate_write_filepage(pagedep, bp)
9779 	struct pagedep *pagedep;
9780 	struct buf *bp;
9781 {
9782 	struct jremref *jremref;
9783 	struct jmvref *jmvref;
9784 	struct dirrem *dirrem;
9785 	struct diradd *dap;
9786 	struct direct *ep;
9787 	int i;
9788 
9789 	if (pagedep->pd_state & IOSTARTED) {
9790 		/*
9791 		 * This can only happen if there is a driver that does not
9792 		 * understand chaining. Here biodone will reissue the call
9793 		 * to strategy for the incomplete buffers.
9794 		 */
9795 		printf("initiate_write_filepage: already started\n");
9796 		return;
9797 	}
9798 	pagedep->pd_state |= IOSTARTED;
9799 	/*
9800 	 * Wait for all journal remove dependencies to hit the disk.
9801 	 * We can not allow any potentially conflicting directory adds
9802 	 * to be visible before removes and rollback is too difficult.
9803 	 * lk may be dropped and re-acquired, however we hold the buf
9804 	 * locked so the dependency can not go away.
9805 	 */
9806 	LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next)
9807 		while ((jremref = LIST_FIRST(&dirrem->dm_jremrefhd)) != NULL)
9808 			jwait(&jremref->jr_list, MNT_WAIT);
9809 	while ((jmvref = LIST_FIRST(&pagedep->pd_jmvrefhd)) != NULL)
9810 		jwait(&jmvref->jm_list, MNT_WAIT);
9811 	for (i = 0; i < DAHASHSZ; i++) {
9812 		LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) {
9813 			ep = (struct direct *)
9814 			    ((char *)bp->b_data + dap->da_offset);
9815 			if (ep->d_ino != dap->da_newinum)
9816 				panic("%s: dir inum %ju != new %ju",
9817 				    "initiate_write_filepage",
9818 				    (uintmax_t)ep->d_ino,
9819 				    (uintmax_t)dap->da_newinum);
9820 			if (dap->da_state & DIRCHG)
9821 				ep->d_ino = dap->da_previous->dm_oldinum;
9822 			else
9823 				ep->d_ino = 0;
9824 			dap->da_state &= ~ATTACHED;
9825 			dap->da_state |= UNDONE;
9826 		}
9827 	}
9828 }
9829 
9830 /*
9831  * Version of initiate_write_inodeblock that handles UFS1 dinodes.
9832  * Note that any bug fixes made to this routine must be done in the
9833  * version found below.
9834  *
9835  * Called from within the procedure above to deal with unsatisfied
9836  * allocation dependencies in an inodeblock. The buffer must be
9837  * locked, thus, no I/O completion operations can occur while we
9838  * are manipulating its associated dependencies.
9839  */
9840 static void
9841 initiate_write_inodeblock_ufs1(inodedep, bp)
9842 	struct inodedep *inodedep;
9843 	struct buf *bp;			/* The inode block */
9844 {
9845 	struct allocdirect *adp, *lastadp;
9846 	struct ufs1_dinode *dp;
9847 	struct ufs1_dinode *sip;
9848 	struct inoref *inoref;
9849 	struct fs *fs;
9850 	ufs_lbn_t i;
9851 #ifdef INVARIANTS
9852 	ufs_lbn_t prevlbn = 0;
9853 #endif
9854 	int deplist;
9855 
9856 	if (inodedep->id_state & IOSTARTED)
9857 		panic("initiate_write_inodeblock_ufs1: already started");
9858 	inodedep->id_state |= IOSTARTED;
9859 	fs = inodedep->id_fs;
9860 	dp = (struct ufs1_dinode *)bp->b_data +
9861 	    ino_to_fsbo(fs, inodedep->id_ino);
9862 
9863 	/*
9864 	 * If we're on the unlinked list but have not yet written our
9865 	 * next pointer initialize it here.
9866 	 */
9867 	if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) {
9868 		struct inodedep *inon;
9869 
9870 		inon = TAILQ_NEXT(inodedep, id_unlinked);
9871 		dp->di_freelink = inon ? inon->id_ino : 0;
9872 	}
9873 	/*
9874 	 * If the bitmap is not yet written, then the allocated
9875 	 * inode cannot be written to disk.
9876 	 */
9877 	if ((inodedep->id_state & DEPCOMPLETE) == 0) {
9878 		if (inodedep->id_savedino1 != NULL)
9879 			panic("initiate_write_inodeblock_ufs1: I/O underway");
9880 		FREE_LOCK(&lk);
9881 		sip = malloc(sizeof(struct ufs1_dinode),
9882 		    M_SAVEDINO, M_SOFTDEP_FLAGS);
9883 		ACQUIRE_LOCK(&lk);
9884 		inodedep->id_savedino1 = sip;
9885 		*inodedep->id_savedino1 = *dp;
9886 		bzero((caddr_t)dp, sizeof(struct ufs1_dinode));
9887 		dp->di_gen = inodedep->id_savedino1->di_gen;
9888 		dp->di_freelink = inodedep->id_savedino1->di_freelink;
9889 		return;
9890 	}
9891 	/*
9892 	 * If no dependencies, then there is nothing to roll back.
9893 	 */
9894 	inodedep->id_savedsize = dp->di_size;
9895 	inodedep->id_savedextsize = 0;
9896 	inodedep->id_savednlink = dp->di_nlink;
9897 	if (TAILQ_EMPTY(&inodedep->id_inoupdt) &&
9898 	    TAILQ_EMPTY(&inodedep->id_inoreflst))
9899 		return;
9900 	/*
9901 	 * Revert the link count to that of the first unwritten journal entry.
9902 	 */
9903 	inoref = TAILQ_FIRST(&inodedep->id_inoreflst);
9904 	if (inoref)
9905 		dp->di_nlink = inoref->if_nlink;
9906 	/*
9907 	 * Set the dependencies to busy.
9908 	 */
9909 	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
9910 	     adp = TAILQ_NEXT(adp, ad_next)) {
9911 #ifdef INVARIANTS
9912 		if (deplist != 0 && prevlbn >= adp->ad_offset)
9913 			panic("softdep_write_inodeblock: lbn order");
9914 		prevlbn = adp->ad_offset;
9915 		if (adp->ad_offset < NDADDR &&
9916 		    dp->di_db[adp->ad_offset] != adp->ad_newblkno)
9917 			panic("%s: direct pointer #%jd mismatch %d != %jd",
9918 			    "softdep_write_inodeblock",
9919 			    (intmax_t)adp->ad_offset,
9920 			    dp->di_db[adp->ad_offset],
9921 			    (intmax_t)adp->ad_newblkno);
9922 		if (adp->ad_offset >= NDADDR &&
9923 		    dp->di_ib[adp->ad_offset - NDADDR] != adp->ad_newblkno)
9924 			panic("%s: indirect pointer #%jd mismatch %d != %jd",
9925 			    "softdep_write_inodeblock",
9926 			    (intmax_t)adp->ad_offset - NDADDR,
9927 			    dp->di_ib[adp->ad_offset - NDADDR],
9928 			    (intmax_t)adp->ad_newblkno);
9929 		deplist |= 1 << adp->ad_offset;
9930 		if ((adp->ad_state & ATTACHED) == 0)
9931 			panic("softdep_write_inodeblock: Unknown state 0x%x",
9932 			    adp->ad_state);
9933 #endif /* INVARIANTS */
9934 		adp->ad_state &= ~ATTACHED;
9935 		adp->ad_state |= UNDONE;
9936 	}
9937 	/*
9938 	 * The on-disk inode cannot claim to be any larger than the last
9939 	 * fragment that has been written. Otherwise, the on-disk inode
9940 	 * might have fragments that were not the last block in the file
9941 	 * which would corrupt the filesystem.
9942 	 */
9943 	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
9944 	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
9945 		if (adp->ad_offset >= NDADDR)
9946 			break;
9947 		dp->di_db[adp->ad_offset] = adp->ad_oldblkno;
9948 		/* keep going until hitting a rollback to a frag */
9949 		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
9950 			continue;
9951 		dp->di_size = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize;
9952 		for (i = adp->ad_offset + 1; i < NDADDR; i++) {
9953 #ifdef INVARIANTS
9954 			if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0)
9955 				panic("softdep_write_inodeblock: lost dep1");
9956 #endif /* INVARIANTS */
9957 			dp->di_db[i] = 0;
9958 		}
9959 		for (i = 0; i < NIADDR; i++) {
9960 #ifdef INVARIANTS
9961 			if (dp->di_ib[i] != 0 &&
9962 			    (deplist & ((1 << NDADDR) << i)) == 0)
9963 				panic("softdep_write_inodeblock: lost dep2");
9964 #endif /* INVARIANTS */
9965 			dp->di_ib[i] = 0;
9966 		}
9967 		return;
9968 	}
9969 	/*
9970 	 * If we have zero'ed out the last allocated block of the file,
9971 	 * roll back the size to the last currently allocated block.
9972 	 * We know that this last allocated block is a full-sized as
9973 	 * we already checked for fragments in the loop above.
9974 	 */
9975 	if (lastadp != NULL &&
9976 	    dp->di_size <= (lastadp->ad_offset + 1) * fs->fs_bsize) {
9977 		for (i = lastadp->ad_offset; i >= 0; i--)
9978 			if (dp->di_db[i] != 0)
9979 				break;
9980 		dp->di_size = (i + 1) * fs->fs_bsize;
9981 	}
9982 	/*
9983 	 * The only dependencies are for indirect blocks.
9984 	 *
9985 	 * The file size for indirect block additions is not guaranteed.
9986 	 * Such a guarantee would be non-trivial to achieve. The conventional
9987 	 * synchronous write implementation also does not make this guarantee.
9988 	 * Fsck should catch and fix discrepancies. Arguably, the file size
9989 	 * can be over-estimated without destroying integrity when the file
9990 	 * moves into the indirect blocks (i.e., is large). If we want to
9991 	 * postpone fsck, we are stuck with this argument.
9992 	 */
9993 	for (; adp; adp = TAILQ_NEXT(adp, ad_next))
9994 		dp->di_ib[adp->ad_offset - NDADDR] = 0;
9995 }
9996 
9997 /*
9998  * Version of initiate_write_inodeblock that handles UFS2 dinodes.
9999  * Note that any bug fixes made to this routine must be done in the
10000  * version found above.
10001  *
10002  * Called from within the procedure above to deal with unsatisfied
10003  * allocation dependencies in an inodeblock. The buffer must be
10004  * locked, thus, no I/O completion operations can occur while we
10005  * are manipulating its associated dependencies.
10006  */
10007 static void
10008 initiate_write_inodeblock_ufs2(inodedep, bp)
10009 	struct inodedep *inodedep;
10010 	struct buf *bp;			/* The inode block */
10011 {
10012 	struct allocdirect *adp, *lastadp;
10013 	struct ufs2_dinode *dp;
10014 	struct ufs2_dinode *sip;
10015 	struct inoref *inoref;
10016 	struct fs *fs;
10017 	ufs_lbn_t i;
10018 #ifdef INVARIANTS
10019 	ufs_lbn_t prevlbn = 0;
10020 #endif
10021 	int deplist;
10022 
10023 	if (inodedep->id_state & IOSTARTED)
10024 		panic("initiate_write_inodeblock_ufs2: already started");
10025 	inodedep->id_state |= IOSTARTED;
10026 	fs = inodedep->id_fs;
10027 	dp = (struct ufs2_dinode *)bp->b_data +
10028 	    ino_to_fsbo(fs, inodedep->id_ino);
10029 
10030 	/*
10031 	 * If we're on the unlinked list but have not yet written our
10032 	 * next pointer initialize it here.
10033 	 */
10034 	if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) {
10035 		struct inodedep *inon;
10036 
10037 		inon = TAILQ_NEXT(inodedep, id_unlinked);
10038 		dp->di_freelink = inon ? inon->id_ino : 0;
10039 	}
10040 	/*
10041 	 * If the bitmap is not yet written, then the allocated
10042 	 * inode cannot be written to disk.
10043 	 */
10044 	if ((inodedep->id_state & DEPCOMPLETE) == 0) {
10045 		if (inodedep->id_savedino2 != NULL)
10046 			panic("initiate_write_inodeblock_ufs2: I/O underway");
10047 		FREE_LOCK(&lk);
10048 		sip = malloc(sizeof(struct ufs2_dinode),
10049 		    M_SAVEDINO, M_SOFTDEP_FLAGS);
10050 		ACQUIRE_LOCK(&lk);
10051 		inodedep->id_savedino2 = sip;
10052 		*inodedep->id_savedino2 = *dp;
10053 		bzero((caddr_t)dp, sizeof(struct ufs2_dinode));
10054 		dp->di_gen = inodedep->id_savedino2->di_gen;
10055 		dp->di_freelink = inodedep->id_savedino2->di_freelink;
10056 		return;
10057 	}
10058 	/*
10059 	 * If no dependencies, then there is nothing to roll back.
10060 	 */
10061 	inodedep->id_savedsize = dp->di_size;
10062 	inodedep->id_savedextsize = dp->di_extsize;
10063 	inodedep->id_savednlink = dp->di_nlink;
10064 	if (TAILQ_EMPTY(&inodedep->id_inoupdt) &&
10065 	    TAILQ_EMPTY(&inodedep->id_extupdt) &&
10066 	    TAILQ_EMPTY(&inodedep->id_inoreflst))
10067 		return;
10068 	/*
10069 	 * Revert the link count to that of the first unwritten journal entry.
10070 	 */
10071 	inoref = TAILQ_FIRST(&inodedep->id_inoreflst);
10072 	if (inoref)
10073 		dp->di_nlink = inoref->if_nlink;
10074 
10075 	/*
10076 	 * Set the ext data dependencies to busy.
10077 	 */
10078 	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp;
10079 	     adp = TAILQ_NEXT(adp, ad_next)) {
10080 #ifdef INVARIANTS
10081 		if (deplist != 0 && prevlbn >= adp->ad_offset)
10082 			panic("softdep_write_inodeblock: lbn order");
10083 		prevlbn = adp->ad_offset;
10084 		if (dp->di_extb[adp->ad_offset] != adp->ad_newblkno)
10085 			panic("%s: direct pointer #%jd mismatch %jd != %jd",
10086 			    "softdep_write_inodeblock",
10087 			    (intmax_t)adp->ad_offset,
10088 			    (intmax_t)dp->di_extb[adp->ad_offset],
10089 			    (intmax_t)adp->ad_newblkno);
10090 		deplist |= 1 << adp->ad_offset;
10091 		if ((adp->ad_state & ATTACHED) == 0)
10092 			panic("softdep_write_inodeblock: Unknown state 0x%x",
10093 			    adp->ad_state);
10094 #endif /* INVARIANTS */
10095 		adp->ad_state &= ~ATTACHED;
10096 		adp->ad_state |= UNDONE;
10097 	}
10098 	/*
10099 	 * The on-disk inode cannot claim to be any larger than the last
10100 	 * fragment that has been written. Otherwise, the on-disk inode
10101 	 * might have fragments that were not the last block in the ext
10102 	 * data which would corrupt the filesystem.
10103 	 */
10104 	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp;
10105 	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
10106 		dp->di_extb[adp->ad_offset] = adp->ad_oldblkno;
10107 		/* keep going until hitting a rollback to a frag */
10108 		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
10109 			continue;
10110 		dp->di_extsize = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize;
10111 		for (i = adp->ad_offset + 1; i < NXADDR; i++) {
10112 #ifdef INVARIANTS
10113 			if (dp->di_extb[i] != 0 && (deplist & (1 << i)) == 0)
10114 				panic("softdep_write_inodeblock: lost dep1");
10115 #endif /* INVARIANTS */
10116 			dp->di_extb[i] = 0;
10117 		}
10118 		lastadp = NULL;
10119 		break;
10120 	}
10121 	/*
10122 	 * If we have zero'ed out the last allocated block of the ext
10123 	 * data, roll back the size to the last currently allocated block.
10124 	 * We know that this last allocated block is a full-sized as
10125 	 * we already checked for fragments in the loop above.
10126 	 */
10127 	if (lastadp != NULL &&
10128 	    dp->di_extsize <= (lastadp->ad_offset + 1) * fs->fs_bsize) {
10129 		for (i = lastadp->ad_offset; i >= 0; i--)
10130 			if (dp->di_extb[i] != 0)
10131 				break;
10132 		dp->di_extsize = (i + 1) * fs->fs_bsize;
10133 	}
10134 	/*
10135 	 * Set the file data dependencies to busy.
10136 	 */
10137 	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
10138 	     adp = TAILQ_NEXT(adp, ad_next)) {
10139 #ifdef INVARIANTS
10140 		if (deplist != 0 && prevlbn >= adp->ad_offset)
10141 			panic("softdep_write_inodeblock: lbn order");
10142 		if ((adp->ad_state & ATTACHED) == 0)
10143 			panic("inodedep %p and adp %p not attached", inodedep, adp);
10144 		prevlbn = adp->ad_offset;
10145 		if (adp->ad_offset < NDADDR &&
10146 		    dp->di_db[adp->ad_offset] != adp->ad_newblkno)
10147 			panic("%s: direct pointer #%jd mismatch %jd != %jd",
10148 			    "softdep_write_inodeblock",
10149 			    (intmax_t)adp->ad_offset,
10150 			    (intmax_t)dp->di_db[adp->ad_offset],
10151 			    (intmax_t)adp->ad_newblkno);
10152 		if (adp->ad_offset >= NDADDR &&
10153 		    dp->di_ib[adp->ad_offset - NDADDR] != adp->ad_newblkno)
10154 			panic("%s indirect pointer #%jd mismatch %jd != %jd",
10155 			    "softdep_write_inodeblock:",
10156 			    (intmax_t)adp->ad_offset - NDADDR,
10157 			    (intmax_t)dp->di_ib[adp->ad_offset - NDADDR],
10158 			    (intmax_t)adp->ad_newblkno);
10159 		deplist |= 1 << adp->ad_offset;
10160 		if ((adp->ad_state & ATTACHED) == 0)
10161 			panic("softdep_write_inodeblock: Unknown state 0x%x",
10162 			    adp->ad_state);
10163 #endif /* INVARIANTS */
10164 		adp->ad_state &= ~ATTACHED;
10165 		adp->ad_state |= UNDONE;
10166 	}
10167 	/*
10168 	 * The on-disk inode cannot claim to be any larger than the last
10169 	 * fragment that has been written. Otherwise, the on-disk inode
10170 	 * might have fragments that were not the last block in the file
10171 	 * which would corrupt the filesystem.
10172 	 */
10173 	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
10174 	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
10175 		if (adp->ad_offset >= NDADDR)
10176 			break;
10177 		dp->di_db[adp->ad_offset] = adp->ad_oldblkno;
10178 		/* keep going until hitting a rollback to a frag */
10179 		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
10180 			continue;
10181 		dp->di_size = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize;
10182 		for (i = adp->ad_offset + 1; i < NDADDR; i++) {
10183 #ifdef INVARIANTS
10184 			if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0)
10185 				panic("softdep_write_inodeblock: lost dep2");
10186 #endif /* INVARIANTS */
10187 			dp->di_db[i] = 0;
10188 		}
10189 		for (i = 0; i < NIADDR; i++) {
10190 #ifdef INVARIANTS
10191 			if (dp->di_ib[i] != 0 &&
10192 			    (deplist & ((1 << NDADDR) << i)) == 0)
10193 				panic("softdep_write_inodeblock: lost dep3");
10194 #endif /* INVARIANTS */
10195 			dp->di_ib[i] = 0;
10196 		}
10197 		return;
10198 	}
10199 	/*
10200 	 * If we have zero'ed out the last allocated block of the file,
10201 	 * roll back the size to the last currently allocated block.
10202 	 * We know that this last allocated block is a full-sized as
10203 	 * we already checked for fragments in the loop above.
10204 	 */
10205 	if (lastadp != NULL &&
10206 	    dp->di_size <= (lastadp->ad_offset + 1) * fs->fs_bsize) {
10207 		for (i = lastadp->ad_offset; i >= 0; i--)
10208 			if (dp->di_db[i] != 0)
10209 				break;
10210 		dp->di_size = (i + 1) * fs->fs_bsize;
10211 	}
10212 	/*
10213 	 * The only dependencies are for indirect blocks.
10214 	 *
10215 	 * The file size for indirect block additions is not guaranteed.
10216 	 * Such a guarantee would be non-trivial to achieve. The conventional
10217 	 * synchronous write implementation also does not make this guarantee.
10218 	 * Fsck should catch and fix discrepancies. Arguably, the file size
10219 	 * can be over-estimated without destroying integrity when the file
10220 	 * moves into the indirect blocks (i.e., is large). If we want to
10221 	 * postpone fsck, we are stuck with this argument.
10222 	 */
10223 	for (; adp; adp = TAILQ_NEXT(adp, ad_next))
10224 		dp->di_ib[adp->ad_offset - NDADDR] = 0;
10225 }
10226 
10227 /*
10228  * Cancel an indirdep as a result of truncation.  Release all of the
10229  * children allocindirs and place their journal work on the appropriate
10230  * list.
10231  */
10232 static void
10233 cancel_indirdep(indirdep, bp, freeblks)
10234 	struct indirdep *indirdep;
10235 	struct buf *bp;
10236 	struct freeblks *freeblks;
10237 {
10238 	struct allocindir *aip;
10239 
10240 	/*
10241 	 * None of the indirect pointers will ever be visible,
10242 	 * so they can simply be tossed. GOINGAWAY ensures
10243 	 * that allocated pointers will be saved in the buffer
10244 	 * cache until they are freed. Note that they will
10245 	 * only be able to be found by their physical address
10246 	 * since the inode mapping the logical address will
10247 	 * be gone. The save buffer used for the safe copy
10248 	 * was allocated in setup_allocindir_phase2 using
10249 	 * the physical address so it could be used for this
10250 	 * purpose. Hence we swap the safe copy with the real
10251 	 * copy, allowing the safe copy to be freed and holding
10252 	 * on to the real copy for later use in indir_trunc.
10253 	 */
10254 	if (indirdep->ir_state & GOINGAWAY)
10255 		panic("cancel_indirdep: already gone");
10256 	if ((indirdep->ir_state & DEPCOMPLETE) == 0) {
10257 		indirdep->ir_state |= DEPCOMPLETE;
10258 		LIST_REMOVE(indirdep, ir_next);
10259 	}
10260 	indirdep->ir_state |= GOINGAWAY;
10261 	VFSTOUFS(indirdep->ir_list.wk_mp)->um_numindirdeps += 1;
10262 	/*
10263 	 * Pass in bp for blocks still have journal writes
10264 	 * pending so we can cancel them on their own.
10265 	 */
10266 	while ((aip = LIST_FIRST(&indirdep->ir_deplisthd)) != 0)
10267 		cancel_allocindir(aip, bp, freeblks, 0);
10268 	while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != 0)
10269 		cancel_allocindir(aip, NULL, freeblks, 0);
10270 	while ((aip = LIST_FIRST(&indirdep->ir_writehd)) != 0)
10271 		cancel_allocindir(aip, NULL, freeblks, 0);
10272 	while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != 0)
10273 		cancel_allocindir(aip, NULL, freeblks, 0);
10274 	/*
10275 	 * If there are pending partial truncations we need to keep the
10276 	 * old block copy around until they complete.  This is because
10277 	 * the current b_data is not a perfect superset of the available
10278 	 * blocks.
10279 	 */
10280 	if (TAILQ_EMPTY(&indirdep->ir_trunc))
10281 		bcopy(bp->b_data, indirdep->ir_savebp->b_data, bp->b_bcount);
10282 	else
10283 		bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount);
10284 	WORKLIST_REMOVE(&indirdep->ir_list);
10285 	WORKLIST_INSERT(&indirdep->ir_savebp->b_dep, &indirdep->ir_list);
10286 	indirdep->ir_bp = NULL;
10287 	indirdep->ir_freeblks = freeblks;
10288 }
10289 
10290 /*
10291  * Free an indirdep once it no longer has new pointers to track.
10292  */
10293 static void
10294 free_indirdep(indirdep)
10295 	struct indirdep *indirdep;
10296 {
10297 
10298 	KASSERT(TAILQ_EMPTY(&indirdep->ir_trunc),
10299 	    ("free_indirdep: Indir trunc list not empty."));
10300 	KASSERT(LIST_EMPTY(&indirdep->ir_completehd),
10301 	    ("free_indirdep: Complete head not empty."));
10302 	KASSERT(LIST_EMPTY(&indirdep->ir_writehd),
10303 	    ("free_indirdep: write head not empty."));
10304 	KASSERT(LIST_EMPTY(&indirdep->ir_donehd),
10305 	    ("free_indirdep: done head not empty."));
10306 	KASSERT(LIST_EMPTY(&indirdep->ir_deplisthd),
10307 	    ("free_indirdep: deplist head not empty."));
10308 	KASSERT((indirdep->ir_state & DEPCOMPLETE),
10309 	    ("free_indirdep: %p still on newblk list.", indirdep));
10310 	KASSERT(indirdep->ir_saveddata == NULL,
10311 	    ("free_indirdep: %p still has saved data.", indirdep));
10312 	if (indirdep->ir_state & ONWORKLIST)
10313 		WORKLIST_REMOVE(&indirdep->ir_list);
10314 	WORKITEM_FREE(indirdep, D_INDIRDEP);
10315 }
10316 
10317 /*
10318  * Called before a write to an indirdep.  This routine is responsible for
10319  * rolling back pointers to a safe state which includes only those
10320  * allocindirs which have been completed.
10321  */
10322 static void
10323 initiate_write_indirdep(indirdep, bp)
10324 	struct indirdep *indirdep;
10325 	struct buf *bp;
10326 {
10327 
10328 	indirdep->ir_state |= IOSTARTED;
10329 	if (indirdep->ir_state & GOINGAWAY)
10330 		panic("disk_io_initiation: indirdep gone");
10331 	/*
10332 	 * If there are no remaining dependencies, this will be writing
10333 	 * the real pointers.
10334 	 */
10335 	if (LIST_EMPTY(&indirdep->ir_deplisthd) &&
10336 	    TAILQ_EMPTY(&indirdep->ir_trunc))
10337 		return;
10338 	/*
10339 	 * Replace up-to-date version with safe version.
10340 	 */
10341 	if (indirdep->ir_saveddata == NULL) {
10342 		FREE_LOCK(&lk);
10343 		indirdep->ir_saveddata = malloc(bp->b_bcount, M_INDIRDEP,
10344 		    M_SOFTDEP_FLAGS);
10345 		ACQUIRE_LOCK(&lk);
10346 	}
10347 	indirdep->ir_state &= ~ATTACHED;
10348 	indirdep->ir_state |= UNDONE;
10349 	bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount);
10350 	bcopy(indirdep->ir_savebp->b_data, bp->b_data,
10351 	    bp->b_bcount);
10352 }
10353 
10354 /*
10355  * Called when an inode has been cleared in a cg bitmap.  This finally
10356  * eliminates any canceled jaddrefs
10357  */
10358 void
10359 softdep_setup_inofree(mp, bp, ino, wkhd)
10360 	struct mount *mp;
10361 	struct buf *bp;
10362 	ino_t ino;
10363 	struct workhead *wkhd;
10364 {
10365 	struct worklist *wk, *wkn;
10366 	struct inodedep *inodedep;
10367 	uint8_t *inosused;
10368 	struct cg *cgp;
10369 	struct fs *fs;
10370 
10371 	ACQUIRE_LOCK(&lk);
10372 	fs = VFSTOUFS(mp)->um_fs;
10373 	cgp = (struct cg *)bp->b_data;
10374 	inosused = cg_inosused(cgp);
10375 	if (isset(inosused, ino % fs->fs_ipg))
10376 		panic("softdep_setup_inofree: inode %ju not freed.",
10377 		    (uintmax_t)ino);
10378 	if (inodedep_lookup(mp, ino, 0, &inodedep))
10379 		panic("softdep_setup_inofree: ino %ju has existing inodedep %p",
10380 		    (uintmax_t)ino, inodedep);
10381 	if (wkhd) {
10382 		LIST_FOREACH_SAFE(wk, wkhd, wk_list, wkn) {
10383 			if (wk->wk_type != D_JADDREF)
10384 				continue;
10385 			WORKLIST_REMOVE(wk);
10386 			/*
10387 			 * We can free immediately even if the jaddref
10388 			 * isn't attached in a background write as now
10389 			 * the bitmaps are reconciled.
10390 		 	 */
10391 			wk->wk_state |= COMPLETE | ATTACHED;
10392 			free_jaddref(WK_JADDREF(wk));
10393 		}
10394 		jwork_move(&bp->b_dep, wkhd);
10395 	}
10396 	FREE_LOCK(&lk);
10397 }
10398 
10399 
10400 /*
10401  * Called via ffs_blkfree() after a set of frags has been cleared from a cg
10402  * map.  Any dependencies waiting for the write to clear are added to the
10403  * buf's list and any jnewblks that are being canceled are discarded
10404  * immediately.
10405  */
10406 void
10407 softdep_setup_blkfree(mp, bp, blkno, frags, wkhd)
10408 	struct mount *mp;
10409 	struct buf *bp;
10410 	ufs2_daddr_t blkno;
10411 	int frags;
10412 	struct workhead *wkhd;
10413 {
10414 	struct bmsafemap *bmsafemap;
10415 	struct jnewblk *jnewblk;
10416 	struct worklist *wk;
10417 	struct fs *fs;
10418 #ifdef SUJ_DEBUG
10419 	uint8_t *blksfree;
10420 	struct cg *cgp;
10421 	ufs2_daddr_t jstart;
10422 	ufs2_daddr_t jend;
10423 	ufs2_daddr_t end;
10424 	long bno;
10425 	int i;
10426 #endif
10427 
10428 	CTR3(KTR_SUJ,
10429 	    "softdep_setup_blkfree: blkno %jd frags %d wk head %p",
10430 	    blkno, frags, wkhd);
10431 
10432 	ACQUIRE_LOCK(&lk);
10433 	/* Lookup the bmsafemap so we track when it is dirty. */
10434 	fs = VFSTOUFS(mp)->um_fs;
10435 	bmsafemap = bmsafemap_lookup(mp, bp, dtog(fs, blkno), NULL);
10436 	/*
10437 	 * Detach any jnewblks which have been canceled.  They must linger
10438 	 * until the bitmap is cleared again by ffs_blkfree() to prevent
10439 	 * an unjournaled allocation from hitting the disk.
10440 	 */
10441 	if (wkhd) {
10442 		while ((wk = LIST_FIRST(wkhd)) != NULL) {
10443 			CTR2(KTR_SUJ,
10444 			    "softdep_setup_blkfree: blkno %jd wk type %d",
10445 			    blkno, wk->wk_type);
10446 			WORKLIST_REMOVE(wk);
10447 			if (wk->wk_type != D_JNEWBLK) {
10448 				WORKLIST_INSERT(&bmsafemap->sm_freehd, wk);
10449 				continue;
10450 			}
10451 			jnewblk = WK_JNEWBLK(wk);
10452 			KASSERT(jnewblk->jn_state & GOINGAWAY,
10453 			    ("softdep_setup_blkfree: jnewblk not canceled."));
10454 #ifdef SUJ_DEBUG
10455 			/*
10456 			 * Assert that this block is free in the bitmap
10457 			 * before we discard the jnewblk.
10458 			 */
10459 			cgp = (struct cg *)bp->b_data;
10460 			blksfree = cg_blksfree(cgp);
10461 			bno = dtogd(fs, jnewblk->jn_blkno);
10462 			for (i = jnewblk->jn_oldfrags;
10463 			    i < jnewblk->jn_frags; i++) {
10464 				if (isset(blksfree, bno + i))
10465 					continue;
10466 				panic("softdep_setup_blkfree: not free");
10467 			}
10468 #endif
10469 			/*
10470 			 * Even if it's not attached we can free immediately
10471 			 * as the new bitmap is correct.
10472 			 */
10473 			wk->wk_state |= COMPLETE | ATTACHED;
10474 			free_jnewblk(jnewblk);
10475 		}
10476 	}
10477 
10478 #ifdef SUJ_DEBUG
10479 	/*
10480 	 * Assert that we are not freeing a block which has an outstanding
10481 	 * allocation dependency.
10482 	 */
10483 	fs = VFSTOUFS(mp)->um_fs;
10484 	bmsafemap = bmsafemap_lookup(mp, bp, dtog(fs, blkno), NULL);
10485 	end = blkno + frags;
10486 	LIST_FOREACH(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps) {
10487 		/*
10488 		 * Don't match against blocks that will be freed when the
10489 		 * background write is done.
10490 		 */
10491 		if ((jnewblk->jn_state & (ATTACHED | COMPLETE | DEPCOMPLETE)) ==
10492 		    (COMPLETE | DEPCOMPLETE))
10493 			continue;
10494 		jstart = jnewblk->jn_blkno + jnewblk->jn_oldfrags;
10495 		jend = jnewblk->jn_blkno + jnewblk->jn_frags;
10496 		if ((blkno >= jstart && blkno < jend) ||
10497 		    (end > jstart && end <= jend)) {
10498 			printf("state 0x%X %jd - %d %d dep %p\n",
10499 			    jnewblk->jn_state, jnewblk->jn_blkno,
10500 			    jnewblk->jn_oldfrags, jnewblk->jn_frags,
10501 			    jnewblk->jn_dep);
10502 			panic("softdep_setup_blkfree: "
10503 			    "%jd-%jd(%d) overlaps with %jd-%jd",
10504 			    blkno, end, frags, jstart, jend);
10505 		}
10506 	}
10507 #endif
10508 	FREE_LOCK(&lk);
10509 }
10510 
10511 /*
10512  * Revert a block allocation when the journal record that describes it
10513  * is not yet written.
10514  */
10515 int
10516 jnewblk_rollback(jnewblk, fs, cgp, blksfree)
10517 	struct jnewblk *jnewblk;
10518 	struct fs *fs;
10519 	struct cg *cgp;
10520 	uint8_t *blksfree;
10521 {
10522 	ufs1_daddr_t fragno;
10523 	long cgbno, bbase;
10524 	int frags, blk;
10525 	int i;
10526 
10527 	frags = 0;
10528 	cgbno = dtogd(fs, jnewblk->jn_blkno);
10529 	/*
10530 	 * We have to test which frags need to be rolled back.  We may
10531 	 * be operating on a stale copy when doing background writes.
10532 	 */
10533 	for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; i++)
10534 		if (isclr(blksfree, cgbno + i))
10535 			frags++;
10536 	if (frags == 0)
10537 		return (0);
10538 	/*
10539 	 * This is mostly ffs_blkfree() sans some validation and
10540 	 * superblock updates.
10541 	 */
10542 	if (frags == fs->fs_frag) {
10543 		fragno = fragstoblks(fs, cgbno);
10544 		ffs_setblock(fs, blksfree, fragno);
10545 		ffs_clusteracct(fs, cgp, fragno, 1);
10546 		cgp->cg_cs.cs_nbfree++;
10547 	} else {
10548 		cgbno += jnewblk->jn_oldfrags;
10549 		bbase = cgbno - fragnum(fs, cgbno);
10550 		/* Decrement the old frags.  */
10551 		blk = blkmap(fs, blksfree, bbase);
10552 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
10553 		/* Deallocate the fragment */
10554 		for (i = 0; i < frags; i++)
10555 			setbit(blksfree, cgbno + i);
10556 		cgp->cg_cs.cs_nffree += frags;
10557 		/* Add back in counts associated with the new frags */
10558 		blk = blkmap(fs, blksfree, bbase);
10559 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
10560                 /* If a complete block has been reassembled, account for it. */
10561 		fragno = fragstoblks(fs, bbase);
10562 		if (ffs_isblock(fs, blksfree, fragno)) {
10563 			cgp->cg_cs.cs_nffree -= fs->fs_frag;
10564 			ffs_clusteracct(fs, cgp, fragno, 1);
10565 			cgp->cg_cs.cs_nbfree++;
10566 		}
10567 	}
10568 	stat_jnewblk++;
10569 	jnewblk->jn_state &= ~ATTACHED;
10570 	jnewblk->jn_state |= UNDONE;
10571 
10572 	return (frags);
10573 }
10574 
10575 static void
10576 initiate_write_bmsafemap(bmsafemap, bp)
10577 	struct bmsafemap *bmsafemap;
10578 	struct buf *bp;			/* The cg block. */
10579 {
10580 	struct jaddref *jaddref;
10581 	struct jnewblk *jnewblk;
10582 	uint8_t *inosused;
10583 	uint8_t *blksfree;
10584 	struct cg *cgp;
10585 	struct fs *fs;
10586 	ino_t ino;
10587 
10588 	if (bmsafemap->sm_state & IOSTARTED)
10589 		return;
10590 	bmsafemap->sm_state |= IOSTARTED;
10591 	/*
10592 	 * Clear any inode allocations which are pending journal writes.
10593 	 */
10594 	if (LIST_FIRST(&bmsafemap->sm_jaddrefhd) != NULL) {
10595 		cgp = (struct cg *)bp->b_data;
10596 		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
10597 		inosused = cg_inosused(cgp);
10598 		LIST_FOREACH(jaddref, &bmsafemap->sm_jaddrefhd, ja_bmdeps) {
10599 			ino = jaddref->ja_ino % fs->fs_ipg;
10600 			if (isset(inosused, ino)) {
10601 				if ((jaddref->ja_mode & IFMT) == IFDIR)
10602 					cgp->cg_cs.cs_ndir--;
10603 				cgp->cg_cs.cs_nifree++;
10604 				clrbit(inosused, ino);
10605 				jaddref->ja_state &= ~ATTACHED;
10606 				jaddref->ja_state |= UNDONE;
10607 				stat_jaddref++;
10608 			} else
10609 				panic("initiate_write_bmsafemap: inode %ju "
10610 				    "marked free", (uintmax_t)jaddref->ja_ino);
10611 		}
10612 	}
10613 	/*
10614 	 * Clear any block allocations which are pending journal writes.
10615 	 */
10616 	if (LIST_FIRST(&bmsafemap->sm_jnewblkhd) != NULL) {
10617 		cgp = (struct cg *)bp->b_data;
10618 		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
10619 		blksfree = cg_blksfree(cgp);
10620 		LIST_FOREACH(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps) {
10621 			if (jnewblk_rollback(jnewblk, fs, cgp, blksfree))
10622 				continue;
10623 			panic("initiate_write_bmsafemap: block %jd "
10624 			    "marked free", jnewblk->jn_blkno);
10625 		}
10626 	}
10627 	/*
10628 	 * Move allocation lists to the written lists so they can be
10629 	 * cleared once the block write is complete.
10630 	 */
10631 	LIST_SWAP(&bmsafemap->sm_inodedephd, &bmsafemap->sm_inodedepwr,
10632 	    inodedep, id_deps);
10633 	LIST_SWAP(&bmsafemap->sm_newblkhd, &bmsafemap->sm_newblkwr,
10634 	    newblk, nb_deps);
10635 	LIST_SWAP(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr, worklist,
10636 	    wk_list);
10637 }
10638 
10639 /*
10640  * This routine is called during the completion interrupt
10641  * service routine for a disk write (from the procedure called
10642  * by the device driver to inform the filesystem caches of
10643  * a request completion).  It should be called early in this
10644  * procedure, before the block is made available to other
10645  * processes or other routines are called.
10646  *
10647  */
10648 static void
10649 softdep_disk_write_complete(bp)
10650 	struct buf *bp;		/* describes the completed disk write */
10651 {
10652 	struct worklist *wk;
10653 	struct worklist *owk;
10654 	struct workhead reattach;
10655 	struct freeblks *freeblks;
10656 	struct buf *sbp;
10657 
10658 	/*
10659 	 * If an error occurred while doing the write, then the data
10660 	 * has not hit the disk and the dependencies cannot be unrolled.
10661 	 */
10662 	if ((bp->b_ioflags & BIO_ERROR) != 0 && (bp->b_flags & B_INVAL) == 0)
10663 		return;
10664 	LIST_INIT(&reattach);
10665 	/*
10666 	 * This lock must not be released anywhere in this code segment.
10667 	 */
10668 	sbp = NULL;
10669 	owk = NULL;
10670 	ACQUIRE_LOCK(&lk);
10671 	while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) {
10672 		WORKLIST_REMOVE(wk);
10673 		dep_write[wk->wk_type]++;
10674 		if (wk == owk)
10675 			panic("duplicate worklist: %p\n", wk);
10676 		owk = wk;
10677 		switch (wk->wk_type) {
10678 
10679 		case D_PAGEDEP:
10680 			if (handle_written_filepage(WK_PAGEDEP(wk), bp))
10681 				WORKLIST_INSERT(&reattach, wk);
10682 			continue;
10683 
10684 		case D_INODEDEP:
10685 			if (handle_written_inodeblock(WK_INODEDEP(wk), bp))
10686 				WORKLIST_INSERT(&reattach, wk);
10687 			continue;
10688 
10689 		case D_BMSAFEMAP:
10690 			if (handle_written_bmsafemap(WK_BMSAFEMAP(wk), bp))
10691 				WORKLIST_INSERT(&reattach, wk);
10692 			continue;
10693 
10694 		case D_MKDIR:
10695 			handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY);
10696 			continue;
10697 
10698 		case D_ALLOCDIRECT:
10699 			wk->wk_state |= COMPLETE;
10700 			handle_allocdirect_partdone(WK_ALLOCDIRECT(wk), NULL);
10701 			continue;
10702 
10703 		case D_ALLOCINDIR:
10704 			wk->wk_state |= COMPLETE;
10705 			handle_allocindir_partdone(WK_ALLOCINDIR(wk));
10706 			continue;
10707 
10708 		case D_INDIRDEP:
10709 			if (handle_written_indirdep(WK_INDIRDEP(wk), bp, &sbp))
10710 				WORKLIST_INSERT(&reattach, wk);
10711 			continue;
10712 
10713 		case D_FREEBLKS:
10714 			wk->wk_state |= COMPLETE;
10715 			freeblks = WK_FREEBLKS(wk);
10716 			if ((wk->wk_state & ALLCOMPLETE) == ALLCOMPLETE &&
10717 			    LIST_EMPTY(&freeblks->fb_jblkdephd))
10718 				add_to_worklist(wk, WK_NODELAY);
10719 			continue;
10720 
10721 		case D_FREEWORK:
10722 			handle_written_freework(WK_FREEWORK(wk));
10723 			break;
10724 
10725 		case D_JSEGDEP:
10726 			free_jsegdep(WK_JSEGDEP(wk));
10727 			continue;
10728 
10729 		case D_JSEG:
10730 			handle_written_jseg(WK_JSEG(wk), bp);
10731 			continue;
10732 
10733 		case D_SBDEP:
10734 			if (handle_written_sbdep(WK_SBDEP(wk), bp))
10735 				WORKLIST_INSERT(&reattach, wk);
10736 			continue;
10737 
10738 		case D_FREEDEP:
10739 			free_freedep(WK_FREEDEP(wk));
10740 			continue;
10741 
10742 		default:
10743 			panic("handle_disk_write_complete: Unknown type %s",
10744 			    TYPENAME(wk->wk_type));
10745 			/* NOTREACHED */
10746 		}
10747 	}
10748 	/*
10749 	 * Reattach any requests that must be redone.
10750 	 */
10751 	while ((wk = LIST_FIRST(&reattach)) != NULL) {
10752 		WORKLIST_REMOVE(wk);
10753 		WORKLIST_INSERT(&bp->b_dep, wk);
10754 	}
10755 	FREE_LOCK(&lk);
10756 	if (sbp)
10757 		brelse(sbp);
10758 }
10759 
10760 /*
10761  * Called from within softdep_disk_write_complete above. Note that
10762  * this routine is always called from interrupt level with further
10763  * splbio interrupts blocked.
10764  */
10765 static void
10766 handle_allocdirect_partdone(adp, wkhd)
10767 	struct allocdirect *adp;	/* the completed allocdirect */
10768 	struct workhead *wkhd;		/* Work to do when inode is writtne. */
10769 {
10770 	struct allocdirectlst *listhead;
10771 	struct allocdirect *listadp;
10772 	struct inodedep *inodedep;
10773 	long bsize;
10774 
10775 	if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE)
10776 		return;
10777 	/*
10778 	 * The on-disk inode cannot claim to be any larger than the last
10779 	 * fragment that has been written. Otherwise, the on-disk inode
10780 	 * might have fragments that were not the last block in the file
10781 	 * which would corrupt the filesystem. Thus, we cannot free any
10782 	 * allocdirects after one whose ad_oldblkno claims a fragment as
10783 	 * these blocks must be rolled back to zero before writing the inode.
10784 	 * We check the currently active set of allocdirects in id_inoupdt
10785 	 * or id_extupdt as appropriate.
10786 	 */
10787 	inodedep = adp->ad_inodedep;
10788 	bsize = inodedep->id_fs->fs_bsize;
10789 	if (adp->ad_state & EXTDATA)
10790 		listhead = &inodedep->id_extupdt;
10791 	else
10792 		listhead = &inodedep->id_inoupdt;
10793 	TAILQ_FOREACH(listadp, listhead, ad_next) {
10794 		/* found our block */
10795 		if (listadp == adp)
10796 			break;
10797 		/* continue if ad_oldlbn is not a fragment */
10798 		if (listadp->ad_oldsize == 0 ||
10799 		    listadp->ad_oldsize == bsize)
10800 			continue;
10801 		/* hit a fragment */
10802 		return;
10803 	}
10804 	/*
10805 	 * If we have reached the end of the current list without
10806 	 * finding the just finished dependency, then it must be
10807 	 * on the future dependency list. Future dependencies cannot
10808 	 * be freed until they are moved to the current list.
10809 	 */
10810 	if (listadp == NULL) {
10811 #ifdef DEBUG
10812 		if (adp->ad_state & EXTDATA)
10813 			listhead = &inodedep->id_newextupdt;
10814 		else
10815 			listhead = &inodedep->id_newinoupdt;
10816 		TAILQ_FOREACH(listadp, listhead, ad_next)
10817 			/* found our block */
10818 			if (listadp == adp)
10819 				break;
10820 		if (listadp == NULL)
10821 			panic("handle_allocdirect_partdone: lost dep");
10822 #endif /* DEBUG */
10823 		return;
10824 	}
10825 	/*
10826 	 * If we have found the just finished dependency, then queue
10827 	 * it along with anything that follows it that is complete.
10828 	 * Since the pointer has not yet been written in the inode
10829 	 * as the dependency prevents it, place the allocdirect on the
10830 	 * bufwait list where it will be freed once the pointer is
10831 	 * valid.
10832 	 */
10833 	if (wkhd == NULL)
10834 		wkhd = &inodedep->id_bufwait;
10835 	for (; adp; adp = listadp) {
10836 		listadp = TAILQ_NEXT(adp, ad_next);
10837 		if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE)
10838 			return;
10839 		TAILQ_REMOVE(listhead, adp, ad_next);
10840 		WORKLIST_INSERT(wkhd, &adp->ad_block.nb_list);
10841 	}
10842 }
10843 
10844 /*
10845  * Called from within softdep_disk_write_complete above.  This routine
10846  * completes successfully written allocindirs.
10847  */
10848 static void
10849 handle_allocindir_partdone(aip)
10850 	struct allocindir *aip;		/* the completed allocindir */
10851 {
10852 	struct indirdep *indirdep;
10853 
10854 	if ((aip->ai_state & ALLCOMPLETE) != ALLCOMPLETE)
10855 		return;
10856 	indirdep = aip->ai_indirdep;
10857 	LIST_REMOVE(aip, ai_next);
10858 	/*
10859 	 * Don't set a pointer while the buffer is undergoing IO or while
10860 	 * we have active truncations.
10861 	 */
10862 	if (indirdep->ir_state & UNDONE || !TAILQ_EMPTY(&indirdep->ir_trunc)) {
10863 		LIST_INSERT_HEAD(&indirdep->ir_donehd, aip, ai_next);
10864 		return;
10865 	}
10866 	if (indirdep->ir_state & UFS1FMT)
10867 		((ufs1_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] =
10868 		    aip->ai_newblkno;
10869 	else
10870 		((ufs2_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] =
10871 		    aip->ai_newblkno;
10872 	/*
10873 	 * Await the pointer write before freeing the allocindir.
10874 	 */
10875 	LIST_INSERT_HEAD(&indirdep->ir_writehd, aip, ai_next);
10876 }
10877 
10878 /*
10879  * Release segments held on a jwork list.
10880  */
10881 static void
10882 handle_jwork(wkhd)
10883 	struct workhead *wkhd;
10884 {
10885 	struct worklist *wk;
10886 
10887 	while ((wk = LIST_FIRST(wkhd)) != NULL) {
10888 		WORKLIST_REMOVE(wk);
10889 		switch (wk->wk_type) {
10890 		case D_JSEGDEP:
10891 			free_jsegdep(WK_JSEGDEP(wk));
10892 			continue;
10893 		case D_FREEDEP:
10894 			free_freedep(WK_FREEDEP(wk));
10895 			continue;
10896 		case D_FREEFRAG:
10897 			rele_jseg(WK_JSEG(WK_FREEFRAG(wk)->ff_jdep));
10898 			WORKITEM_FREE(wk, D_FREEFRAG);
10899 			continue;
10900 		case D_FREEWORK:
10901 			handle_written_freework(WK_FREEWORK(wk));
10902 			continue;
10903 		default:
10904 			panic("handle_jwork: Unknown type %s\n",
10905 			    TYPENAME(wk->wk_type));
10906 		}
10907 	}
10908 }
10909 
10910 /*
10911  * Handle the bufwait list on an inode when it is safe to release items
10912  * held there.  This normally happens after an inode block is written but
10913  * may be delayed and handled later if there are pending journal items that
10914  * are not yet safe to be released.
10915  */
10916 static struct freefile *
10917 handle_bufwait(inodedep, refhd)
10918 	struct inodedep *inodedep;
10919 	struct workhead *refhd;
10920 {
10921 	struct jaddref *jaddref;
10922 	struct freefile *freefile;
10923 	struct worklist *wk;
10924 
10925 	freefile = NULL;
10926 	while ((wk = LIST_FIRST(&inodedep->id_bufwait)) != NULL) {
10927 		WORKLIST_REMOVE(wk);
10928 		switch (wk->wk_type) {
10929 		case D_FREEFILE:
10930 			/*
10931 			 * We defer adding freefile to the worklist
10932 			 * until all other additions have been made to
10933 			 * ensure that it will be done after all the
10934 			 * old blocks have been freed.
10935 			 */
10936 			if (freefile != NULL)
10937 				panic("handle_bufwait: freefile");
10938 			freefile = WK_FREEFILE(wk);
10939 			continue;
10940 
10941 		case D_MKDIR:
10942 			handle_written_mkdir(WK_MKDIR(wk), MKDIR_PARENT);
10943 			continue;
10944 
10945 		case D_DIRADD:
10946 			diradd_inode_written(WK_DIRADD(wk), inodedep);
10947 			continue;
10948 
10949 		case D_FREEFRAG:
10950 			wk->wk_state |= COMPLETE;
10951 			if ((wk->wk_state & ALLCOMPLETE) == ALLCOMPLETE)
10952 				add_to_worklist(wk, 0);
10953 			continue;
10954 
10955 		case D_DIRREM:
10956 			wk->wk_state |= COMPLETE;
10957 			add_to_worklist(wk, 0);
10958 			continue;
10959 
10960 		case D_ALLOCDIRECT:
10961 		case D_ALLOCINDIR:
10962 			free_newblk(WK_NEWBLK(wk));
10963 			continue;
10964 
10965 		case D_JNEWBLK:
10966 			wk->wk_state |= COMPLETE;
10967 			free_jnewblk(WK_JNEWBLK(wk));
10968 			continue;
10969 
10970 		/*
10971 		 * Save freed journal segments and add references on
10972 		 * the supplied list which will delay their release
10973 		 * until the cg bitmap is cleared on disk.
10974 		 */
10975 		case D_JSEGDEP:
10976 			if (refhd == NULL)
10977 				free_jsegdep(WK_JSEGDEP(wk));
10978 			else
10979 				WORKLIST_INSERT(refhd, wk);
10980 			continue;
10981 
10982 		case D_JADDREF:
10983 			jaddref = WK_JADDREF(wk);
10984 			TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref,
10985 			    if_deps);
10986 			/*
10987 			 * Transfer any jaddrefs to the list to be freed with
10988 			 * the bitmap if we're handling a removed file.
10989 			 */
10990 			if (refhd == NULL) {
10991 				wk->wk_state |= COMPLETE;
10992 				free_jaddref(jaddref);
10993 			} else
10994 				WORKLIST_INSERT(refhd, wk);
10995 			continue;
10996 
10997 		default:
10998 			panic("handle_bufwait: Unknown type %p(%s)",
10999 			    wk, TYPENAME(wk->wk_type));
11000 			/* NOTREACHED */
11001 		}
11002 	}
11003 	return (freefile);
11004 }
11005 /*
11006  * Called from within softdep_disk_write_complete above to restore
11007  * in-memory inode block contents to their most up-to-date state. Note
11008  * that this routine is always called from interrupt level with further
11009  * splbio interrupts blocked.
11010  */
11011 static int
11012 handle_written_inodeblock(inodedep, bp)
11013 	struct inodedep *inodedep;
11014 	struct buf *bp;		/* buffer containing the inode block */
11015 {
11016 	struct freefile *freefile;
11017 	struct allocdirect *adp, *nextadp;
11018 	struct ufs1_dinode *dp1 = NULL;
11019 	struct ufs2_dinode *dp2 = NULL;
11020 	struct workhead wkhd;
11021 	int hadchanges, fstype;
11022 	ino_t freelink;
11023 
11024 	LIST_INIT(&wkhd);
11025 	hadchanges = 0;
11026 	freefile = NULL;
11027 	if ((inodedep->id_state & IOSTARTED) == 0)
11028 		panic("handle_written_inodeblock: not started");
11029 	inodedep->id_state &= ~IOSTARTED;
11030 	if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC) {
11031 		fstype = UFS1;
11032 		dp1 = (struct ufs1_dinode *)bp->b_data +
11033 		    ino_to_fsbo(inodedep->id_fs, inodedep->id_ino);
11034 		freelink = dp1->di_freelink;
11035 	} else {
11036 		fstype = UFS2;
11037 		dp2 = (struct ufs2_dinode *)bp->b_data +
11038 		    ino_to_fsbo(inodedep->id_fs, inodedep->id_ino);
11039 		freelink = dp2->di_freelink;
11040 	}
11041 	/*
11042 	 * Leave this inodeblock dirty until it's in the list.
11043 	 */
11044 	if ((inodedep->id_state & (UNLINKED | UNLINKONLIST)) == UNLINKED) {
11045 		struct inodedep *inon;
11046 
11047 		inon = TAILQ_NEXT(inodedep, id_unlinked);
11048 		if ((inon == NULL && freelink == 0) ||
11049 		    (inon && inon->id_ino == freelink)) {
11050 			if (inon)
11051 				inon->id_state |= UNLINKPREV;
11052 			inodedep->id_state |= UNLINKNEXT;
11053 		}
11054 		hadchanges = 1;
11055 	}
11056 	/*
11057 	 * If we had to rollback the inode allocation because of
11058 	 * bitmaps being incomplete, then simply restore it.
11059 	 * Keep the block dirty so that it will not be reclaimed until
11060 	 * all associated dependencies have been cleared and the
11061 	 * corresponding updates written to disk.
11062 	 */
11063 	if (inodedep->id_savedino1 != NULL) {
11064 		hadchanges = 1;
11065 		if (fstype == UFS1)
11066 			*dp1 = *inodedep->id_savedino1;
11067 		else
11068 			*dp2 = *inodedep->id_savedino2;
11069 		free(inodedep->id_savedino1, M_SAVEDINO);
11070 		inodedep->id_savedino1 = NULL;
11071 		if ((bp->b_flags & B_DELWRI) == 0)
11072 			stat_inode_bitmap++;
11073 		bdirty(bp);
11074 		/*
11075 		 * If the inode is clear here and GOINGAWAY it will never
11076 		 * be written.  Process the bufwait and clear any pending
11077 		 * work which may include the freefile.
11078 		 */
11079 		if (inodedep->id_state & GOINGAWAY)
11080 			goto bufwait;
11081 		return (1);
11082 	}
11083 	inodedep->id_state |= COMPLETE;
11084 	/*
11085 	 * Roll forward anything that had to be rolled back before
11086 	 * the inode could be updated.
11087 	 */
11088 	for (adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; adp = nextadp) {
11089 		nextadp = TAILQ_NEXT(adp, ad_next);
11090 		if (adp->ad_state & ATTACHED)
11091 			panic("handle_written_inodeblock: new entry");
11092 		if (fstype == UFS1) {
11093 			if (adp->ad_offset < NDADDR) {
11094 				if (dp1->di_db[adp->ad_offset]!=adp->ad_oldblkno)
11095 					panic("%s %s #%jd mismatch %d != %jd",
11096 					    "handle_written_inodeblock:",
11097 					    "direct pointer",
11098 					    (intmax_t)adp->ad_offset,
11099 					    dp1->di_db[adp->ad_offset],
11100 					    (intmax_t)adp->ad_oldblkno);
11101 				dp1->di_db[adp->ad_offset] = adp->ad_newblkno;
11102 			} else {
11103 				if (dp1->di_ib[adp->ad_offset - NDADDR] != 0)
11104 					panic("%s: %s #%jd allocated as %d",
11105 					    "handle_written_inodeblock",
11106 					    "indirect pointer",
11107 					    (intmax_t)adp->ad_offset - NDADDR,
11108 					    dp1->di_ib[adp->ad_offset - NDADDR]);
11109 				dp1->di_ib[adp->ad_offset - NDADDR] =
11110 				    adp->ad_newblkno;
11111 			}
11112 		} else {
11113 			if (adp->ad_offset < NDADDR) {
11114 				if (dp2->di_db[adp->ad_offset]!=adp->ad_oldblkno)
11115 					panic("%s: %s #%jd %s %jd != %jd",
11116 					    "handle_written_inodeblock",
11117 					    "direct pointer",
11118 					    (intmax_t)adp->ad_offset, "mismatch",
11119 					    (intmax_t)dp2->di_db[adp->ad_offset],
11120 					    (intmax_t)adp->ad_oldblkno);
11121 				dp2->di_db[adp->ad_offset] = adp->ad_newblkno;
11122 			} else {
11123 				if (dp2->di_ib[adp->ad_offset - NDADDR] != 0)
11124 					panic("%s: %s #%jd allocated as %jd",
11125 					    "handle_written_inodeblock",
11126 					    "indirect pointer",
11127 					    (intmax_t)adp->ad_offset - NDADDR,
11128 					    (intmax_t)
11129 					    dp2->di_ib[adp->ad_offset - NDADDR]);
11130 				dp2->di_ib[adp->ad_offset - NDADDR] =
11131 				    adp->ad_newblkno;
11132 			}
11133 		}
11134 		adp->ad_state &= ~UNDONE;
11135 		adp->ad_state |= ATTACHED;
11136 		hadchanges = 1;
11137 	}
11138 	for (adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; adp = nextadp) {
11139 		nextadp = TAILQ_NEXT(adp, ad_next);
11140 		if (adp->ad_state & ATTACHED)
11141 			panic("handle_written_inodeblock: new entry");
11142 		if (dp2->di_extb[adp->ad_offset] != adp->ad_oldblkno)
11143 			panic("%s: direct pointers #%jd %s %jd != %jd",
11144 			    "handle_written_inodeblock",
11145 			    (intmax_t)adp->ad_offset, "mismatch",
11146 			    (intmax_t)dp2->di_extb[adp->ad_offset],
11147 			    (intmax_t)adp->ad_oldblkno);
11148 		dp2->di_extb[adp->ad_offset] = adp->ad_newblkno;
11149 		adp->ad_state &= ~UNDONE;
11150 		adp->ad_state |= ATTACHED;
11151 		hadchanges = 1;
11152 	}
11153 	if (hadchanges && (bp->b_flags & B_DELWRI) == 0)
11154 		stat_direct_blk_ptrs++;
11155 	/*
11156 	 * Reset the file size to its most up-to-date value.
11157 	 */
11158 	if (inodedep->id_savedsize == -1 || inodedep->id_savedextsize == -1)
11159 		panic("handle_written_inodeblock: bad size");
11160 	if (inodedep->id_savednlink > LINK_MAX)
11161 		panic("handle_written_inodeblock: Invalid link count "
11162 		    "%d for inodedep %p", inodedep->id_savednlink, inodedep);
11163 	if (fstype == UFS1) {
11164 		if (dp1->di_nlink != inodedep->id_savednlink) {
11165 			dp1->di_nlink = inodedep->id_savednlink;
11166 			hadchanges = 1;
11167 		}
11168 		if (dp1->di_size != inodedep->id_savedsize) {
11169 			dp1->di_size = inodedep->id_savedsize;
11170 			hadchanges = 1;
11171 		}
11172 	} else {
11173 		if (dp2->di_nlink != inodedep->id_savednlink) {
11174 			dp2->di_nlink = inodedep->id_savednlink;
11175 			hadchanges = 1;
11176 		}
11177 		if (dp2->di_size != inodedep->id_savedsize) {
11178 			dp2->di_size = inodedep->id_savedsize;
11179 			hadchanges = 1;
11180 		}
11181 		if (dp2->di_extsize != inodedep->id_savedextsize) {
11182 			dp2->di_extsize = inodedep->id_savedextsize;
11183 			hadchanges = 1;
11184 		}
11185 	}
11186 	inodedep->id_savedsize = -1;
11187 	inodedep->id_savedextsize = -1;
11188 	inodedep->id_savednlink = -1;
11189 	/*
11190 	 * If there were any rollbacks in the inode block, then it must be
11191 	 * marked dirty so that its will eventually get written back in
11192 	 * its correct form.
11193 	 */
11194 	if (hadchanges)
11195 		bdirty(bp);
11196 bufwait:
11197 	/*
11198 	 * Process any allocdirects that completed during the update.
11199 	 */
11200 	if ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL)
11201 		handle_allocdirect_partdone(adp, &wkhd);
11202 	if ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL)
11203 		handle_allocdirect_partdone(adp, &wkhd);
11204 	/*
11205 	 * Process deallocations that were held pending until the
11206 	 * inode had been written to disk. Freeing of the inode
11207 	 * is delayed until after all blocks have been freed to
11208 	 * avoid creation of new <vfsid, inum, lbn> triples
11209 	 * before the old ones have been deleted.  Completely
11210 	 * unlinked inodes are not processed until the unlinked
11211 	 * inode list is written or the last reference is removed.
11212 	 */
11213 	if ((inodedep->id_state & (UNLINKED | UNLINKONLIST)) != UNLINKED) {
11214 		freefile = handle_bufwait(inodedep, NULL);
11215 		if (freefile && !LIST_EMPTY(&wkhd)) {
11216 			WORKLIST_INSERT(&wkhd, &freefile->fx_list);
11217 			freefile = NULL;
11218 		}
11219 	}
11220 	/*
11221 	 * Move rolled forward dependency completions to the bufwait list
11222 	 * now that those that were already written have been processed.
11223 	 */
11224 	if (!LIST_EMPTY(&wkhd) && hadchanges == 0)
11225 		panic("handle_written_inodeblock: bufwait but no changes");
11226 	jwork_move(&inodedep->id_bufwait, &wkhd);
11227 
11228 	if (freefile != NULL) {
11229 		/*
11230 		 * If the inode is goingaway it was never written.  Fake up
11231 		 * the state here so free_inodedep() can succeed.
11232 		 */
11233 		if (inodedep->id_state & GOINGAWAY)
11234 			inodedep->id_state |= COMPLETE | DEPCOMPLETE;
11235 		if (free_inodedep(inodedep) == 0)
11236 			panic("handle_written_inodeblock: live inodedep %p",
11237 			    inodedep);
11238 		add_to_worklist(&freefile->fx_list, 0);
11239 		return (0);
11240 	}
11241 
11242 	/*
11243 	 * If no outstanding dependencies, free it.
11244 	 */
11245 	if (free_inodedep(inodedep) ||
11246 	    (TAILQ_FIRST(&inodedep->id_inoreflst) == 0 &&
11247 	     TAILQ_FIRST(&inodedep->id_inoupdt) == 0 &&
11248 	     TAILQ_FIRST(&inodedep->id_extupdt) == 0 &&
11249 	     LIST_FIRST(&inodedep->id_bufwait) == 0))
11250 		return (0);
11251 	return (hadchanges);
11252 }
11253 
11254 static int
11255 handle_written_indirdep(indirdep, bp, bpp)
11256 	struct indirdep *indirdep;
11257 	struct buf *bp;
11258 	struct buf **bpp;
11259 {
11260 	struct allocindir *aip;
11261 	struct buf *sbp;
11262 	int chgs;
11263 
11264 	if (indirdep->ir_state & GOINGAWAY)
11265 		panic("handle_written_indirdep: indirdep gone");
11266 	if ((indirdep->ir_state & IOSTARTED) == 0)
11267 		panic("handle_written_indirdep: IO not started");
11268 	chgs = 0;
11269 	/*
11270 	 * If there were rollbacks revert them here.
11271 	 */
11272 	if (indirdep->ir_saveddata) {
11273 		bcopy(indirdep->ir_saveddata, bp->b_data, bp->b_bcount);
11274 		if (TAILQ_EMPTY(&indirdep->ir_trunc)) {
11275 			free(indirdep->ir_saveddata, M_INDIRDEP);
11276 			indirdep->ir_saveddata = NULL;
11277 		}
11278 		chgs = 1;
11279 	}
11280 	indirdep->ir_state &= ~(UNDONE | IOSTARTED);
11281 	indirdep->ir_state |= ATTACHED;
11282 	/*
11283 	 * Move allocindirs with written pointers to the completehd if
11284 	 * the indirdep's pointer is not yet written.  Otherwise
11285 	 * free them here.
11286 	 */
11287 	while ((aip = LIST_FIRST(&indirdep->ir_writehd)) != 0) {
11288 		LIST_REMOVE(aip, ai_next);
11289 		if ((indirdep->ir_state & DEPCOMPLETE) == 0) {
11290 			LIST_INSERT_HEAD(&indirdep->ir_completehd, aip,
11291 			    ai_next);
11292 			newblk_freefrag(&aip->ai_block);
11293 			continue;
11294 		}
11295 		free_newblk(&aip->ai_block);
11296 	}
11297 	/*
11298 	 * Move allocindirs that have finished dependency processing from
11299 	 * the done list to the write list after updating the pointers.
11300 	 */
11301 	if (TAILQ_EMPTY(&indirdep->ir_trunc)) {
11302 		while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != 0) {
11303 			handle_allocindir_partdone(aip);
11304 			if (aip == LIST_FIRST(&indirdep->ir_donehd))
11305 				panic("disk_write_complete: not gone");
11306 			chgs = 1;
11307 		}
11308 	}
11309 	/*
11310 	 * Preserve the indirdep if there were any changes or if it is not
11311 	 * yet valid on disk.
11312 	 */
11313 	if (chgs) {
11314 		stat_indir_blk_ptrs++;
11315 		bdirty(bp);
11316 		return (1);
11317 	}
11318 	/*
11319 	 * If there were no changes we can discard the savedbp and detach
11320 	 * ourselves from the buf.  We are only carrying completed pointers
11321 	 * in this case.
11322 	 */
11323 	sbp = indirdep->ir_savebp;
11324 	sbp->b_flags |= B_INVAL | B_NOCACHE;
11325 	indirdep->ir_savebp = NULL;
11326 	indirdep->ir_bp = NULL;
11327 	if (*bpp != NULL)
11328 		panic("handle_written_indirdep: bp already exists.");
11329 	*bpp = sbp;
11330 	/*
11331 	 * The indirdep may not be freed until its parent points at it.
11332 	 */
11333 	if (indirdep->ir_state & DEPCOMPLETE)
11334 		free_indirdep(indirdep);
11335 
11336 	return (0);
11337 }
11338 
11339 /*
11340  * Process a diradd entry after its dependent inode has been written.
11341  * This routine must be called with splbio interrupts blocked.
11342  */
11343 static void
11344 diradd_inode_written(dap, inodedep)
11345 	struct diradd *dap;
11346 	struct inodedep *inodedep;
11347 {
11348 
11349 	dap->da_state |= COMPLETE;
11350 	complete_diradd(dap);
11351 	WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list);
11352 }
11353 
11354 /*
11355  * Returns true if the bmsafemap will have rollbacks when written.  Must
11356  * only be called with lk and the buf lock on the cg held.
11357  */
11358 static int
11359 bmsafemap_backgroundwrite(bmsafemap, bp)
11360 	struct bmsafemap *bmsafemap;
11361 	struct buf *bp;
11362 {
11363 	int dirty;
11364 
11365 	dirty = !LIST_EMPTY(&bmsafemap->sm_jaddrefhd) |
11366 	    !LIST_EMPTY(&bmsafemap->sm_jnewblkhd);
11367 	/*
11368 	 * If we're initiating a background write we need to process the
11369 	 * rollbacks as they exist now, not as they exist when IO starts.
11370 	 * No other consumers will look at the contents of the shadowed
11371 	 * buf so this is safe to do here.
11372 	 */
11373 	if (bp->b_xflags & BX_BKGRDMARKER)
11374 		initiate_write_bmsafemap(bmsafemap, bp);
11375 
11376 	return (dirty);
11377 }
11378 
11379 /*
11380  * Re-apply an allocation when a cg write is complete.
11381  */
11382 static int
11383 jnewblk_rollforward(jnewblk, fs, cgp, blksfree)
11384 	struct jnewblk *jnewblk;
11385 	struct fs *fs;
11386 	struct cg *cgp;
11387 	uint8_t *blksfree;
11388 {
11389 	ufs1_daddr_t fragno;
11390 	ufs2_daddr_t blkno;
11391 	long cgbno, bbase;
11392 	int frags, blk;
11393 	int i;
11394 
11395 	frags = 0;
11396 	cgbno = dtogd(fs, jnewblk->jn_blkno);
11397 	for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; i++) {
11398 		if (isclr(blksfree, cgbno + i))
11399 			panic("jnewblk_rollforward: re-allocated fragment");
11400 		frags++;
11401 	}
11402 	if (frags == fs->fs_frag) {
11403 		blkno = fragstoblks(fs, cgbno);
11404 		ffs_clrblock(fs, blksfree, (long)blkno);
11405 		ffs_clusteracct(fs, cgp, blkno, -1);
11406 		cgp->cg_cs.cs_nbfree--;
11407 	} else {
11408 		bbase = cgbno - fragnum(fs, cgbno);
11409 		cgbno += jnewblk->jn_oldfrags;
11410                 /* If a complete block had been reassembled, account for it. */
11411 		fragno = fragstoblks(fs, bbase);
11412 		if (ffs_isblock(fs, blksfree, fragno)) {
11413 			cgp->cg_cs.cs_nffree += fs->fs_frag;
11414 			ffs_clusteracct(fs, cgp, fragno, -1);
11415 			cgp->cg_cs.cs_nbfree--;
11416 		}
11417 		/* Decrement the old frags.  */
11418 		blk = blkmap(fs, blksfree, bbase);
11419 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
11420 		/* Allocate the fragment */
11421 		for (i = 0; i < frags; i++)
11422 			clrbit(blksfree, cgbno + i);
11423 		cgp->cg_cs.cs_nffree -= frags;
11424 		/* Add back in counts associated with the new frags */
11425 		blk = blkmap(fs, blksfree, bbase);
11426 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
11427 	}
11428 	return (frags);
11429 }
11430 
11431 /*
11432  * Complete a write to a bmsafemap structure.  Roll forward any bitmap
11433  * changes if it's not a background write.  Set all written dependencies
11434  * to DEPCOMPLETE and free the structure if possible.
11435  */
11436 static int
11437 handle_written_bmsafemap(bmsafemap, bp)
11438 	struct bmsafemap *bmsafemap;
11439 	struct buf *bp;
11440 {
11441 	struct newblk *newblk;
11442 	struct inodedep *inodedep;
11443 	struct jaddref *jaddref, *jatmp;
11444 	struct jnewblk *jnewblk, *jntmp;
11445 	struct ufsmount *ump;
11446 	uint8_t *inosused;
11447 	uint8_t *blksfree;
11448 	struct cg *cgp;
11449 	struct fs *fs;
11450 	ino_t ino;
11451 	int foreground;
11452 	int chgs;
11453 
11454 	if ((bmsafemap->sm_state & IOSTARTED) == 0)
11455 		panic("initiate_write_bmsafemap: Not started\n");
11456 	ump = VFSTOUFS(bmsafemap->sm_list.wk_mp);
11457 	chgs = 0;
11458 	bmsafemap->sm_state &= ~IOSTARTED;
11459 	foreground = (bp->b_xflags & BX_BKGRDMARKER) == 0;
11460 	/*
11461 	 * Release journal work that was waiting on the write.
11462 	 */
11463 	handle_jwork(&bmsafemap->sm_freewr);
11464 
11465 	/*
11466 	 * Restore unwritten inode allocation pending jaddref writes.
11467 	 */
11468 	if (!LIST_EMPTY(&bmsafemap->sm_jaddrefhd)) {
11469 		cgp = (struct cg *)bp->b_data;
11470 		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
11471 		inosused = cg_inosused(cgp);
11472 		LIST_FOREACH_SAFE(jaddref, &bmsafemap->sm_jaddrefhd,
11473 		    ja_bmdeps, jatmp) {
11474 			if ((jaddref->ja_state & UNDONE) == 0)
11475 				continue;
11476 			ino = jaddref->ja_ino % fs->fs_ipg;
11477 			if (isset(inosused, ino))
11478 				panic("handle_written_bmsafemap: "
11479 				    "re-allocated inode");
11480 			/* Do the roll-forward only if it's a real copy. */
11481 			if (foreground) {
11482 				if ((jaddref->ja_mode & IFMT) == IFDIR)
11483 					cgp->cg_cs.cs_ndir++;
11484 				cgp->cg_cs.cs_nifree--;
11485 				setbit(inosused, ino);
11486 				chgs = 1;
11487 			}
11488 			jaddref->ja_state &= ~UNDONE;
11489 			jaddref->ja_state |= ATTACHED;
11490 			free_jaddref(jaddref);
11491 		}
11492 	}
11493 	/*
11494 	 * Restore any block allocations which are pending journal writes.
11495 	 */
11496 	if (LIST_FIRST(&bmsafemap->sm_jnewblkhd) != NULL) {
11497 		cgp = (struct cg *)bp->b_data;
11498 		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
11499 		blksfree = cg_blksfree(cgp);
11500 		LIST_FOREACH_SAFE(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps,
11501 		    jntmp) {
11502 			if ((jnewblk->jn_state & UNDONE) == 0)
11503 				continue;
11504 			/* Do the roll-forward only if it's a real copy. */
11505 			if (foreground &&
11506 			    jnewblk_rollforward(jnewblk, fs, cgp, blksfree))
11507 				chgs = 1;
11508 			jnewblk->jn_state &= ~(UNDONE | NEWBLOCK);
11509 			jnewblk->jn_state |= ATTACHED;
11510 			free_jnewblk(jnewblk);
11511 		}
11512 	}
11513 	while ((newblk = LIST_FIRST(&bmsafemap->sm_newblkwr))) {
11514 		newblk->nb_state |= DEPCOMPLETE;
11515 		newblk->nb_state &= ~ONDEPLIST;
11516 		newblk->nb_bmsafemap = NULL;
11517 		LIST_REMOVE(newblk, nb_deps);
11518 		if (newblk->nb_list.wk_type == D_ALLOCDIRECT)
11519 			handle_allocdirect_partdone(
11520 			    WK_ALLOCDIRECT(&newblk->nb_list), NULL);
11521 		else if (newblk->nb_list.wk_type == D_ALLOCINDIR)
11522 			handle_allocindir_partdone(
11523 			    WK_ALLOCINDIR(&newblk->nb_list));
11524 		else if (newblk->nb_list.wk_type != D_NEWBLK)
11525 			panic("handle_written_bmsafemap: Unexpected type: %s",
11526 			    TYPENAME(newblk->nb_list.wk_type));
11527 	}
11528 	while ((inodedep = LIST_FIRST(&bmsafemap->sm_inodedepwr)) != NULL) {
11529 		inodedep->id_state |= DEPCOMPLETE;
11530 		inodedep->id_state &= ~ONDEPLIST;
11531 		LIST_REMOVE(inodedep, id_deps);
11532 		inodedep->id_bmsafemap = NULL;
11533 	}
11534 	LIST_REMOVE(bmsafemap, sm_next);
11535 	if (chgs == 0 && LIST_EMPTY(&bmsafemap->sm_jaddrefhd) &&
11536 	    LIST_EMPTY(&bmsafemap->sm_jnewblkhd) &&
11537 	    LIST_EMPTY(&bmsafemap->sm_newblkhd) &&
11538 	    LIST_EMPTY(&bmsafemap->sm_inodedephd) &&
11539 	    LIST_EMPTY(&bmsafemap->sm_freehd)) {
11540 		LIST_REMOVE(bmsafemap, sm_hash);
11541 		WORKITEM_FREE(bmsafemap, D_BMSAFEMAP);
11542 		return (0);
11543 	}
11544 	LIST_INSERT_HEAD(&ump->softdep_dirtycg, bmsafemap, sm_next);
11545 	if (foreground)
11546 		bdirty(bp);
11547 	return (1);
11548 }
11549 
11550 /*
11551  * Try to free a mkdir dependency.
11552  */
11553 static void
11554 complete_mkdir(mkdir)
11555 	struct mkdir *mkdir;
11556 {
11557 	struct diradd *dap;
11558 
11559 	if ((mkdir->md_state & ALLCOMPLETE) != ALLCOMPLETE)
11560 		return;
11561 	LIST_REMOVE(mkdir, md_mkdirs);
11562 	dap = mkdir->md_diradd;
11563 	dap->da_state &= ~(mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY));
11564 	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0) {
11565 		dap->da_state |= DEPCOMPLETE;
11566 		complete_diradd(dap);
11567 	}
11568 	WORKITEM_FREE(mkdir, D_MKDIR);
11569 }
11570 
11571 /*
11572  * Handle the completion of a mkdir dependency.
11573  */
11574 static void
11575 handle_written_mkdir(mkdir, type)
11576 	struct mkdir *mkdir;
11577 	int type;
11578 {
11579 
11580 	if ((mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY)) != type)
11581 		panic("handle_written_mkdir: bad type");
11582 	mkdir->md_state |= COMPLETE;
11583 	complete_mkdir(mkdir);
11584 }
11585 
11586 static int
11587 free_pagedep(pagedep)
11588 	struct pagedep *pagedep;
11589 {
11590 	int i;
11591 
11592 	if (pagedep->pd_state & NEWBLOCK)
11593 		return (0);
11594 	if (!LIST_EMPTY(&pagedep->pd_dirremhd))
11595 		return (0);
11596 	for (i = 0; i < DAHASHSZ; i++)
11597 		if (!LIST_EMPTY(&pagedep->pd_diraddhd[i]))
11598 			return (0);
11599 	if (!LIST_EMPTY(&pagedep->pd_pendinghd))
11600 		return (0);
11601 	if (!LIST_EMPTY(&pagedep->pd_jmvrefhd))
11602 		return (0);
11603 	if (pagedep->pd_state & ONWORKLIST)
11604 		WORKLIST_REMOVE(&pagedep->pd_list);
11605 	LIST_REMOVE(pagedep, pd_hash);
11606 	WORKITEM_FREE(pagedep, D_PAGEDEP);
11607 
11608 	return (1);
11609 }
11610 
11611 /*
11612  * Called from within softdep_disk_write_complete above.
11613  * A write operation was just completed. Removed inodes can
11614  * now be freed and associated block pointers may be committed.
11615  * Note that this routine is always called from interrupt level
11616  * with further splbio interrupts blocked.
11617  */
11618 static int
11619 handle_written_filepage(pagedep, bp)
11620 	struct pagedep *pagedep;
11621 	struct buf *bp;		/* buffer containing the written page */
11622 {
11623 	struct dirrem *dirrem;
11624 	struct diradd *dap, *nextdap;
11625 	struct direct *ep;
11626 	int i, chgs;
11627 
11628 	if ((pagedep->pd_state & IOSTARTED) == 0)
11629 		panic("handle_written_filepage: not started");
11630 	pagedep->pd_state &= ~IOSTARTED;
11631 	/*
11632 	 * Process any directory removals that have been committed.
11633 	 */
11634 	while ((dirrem = LIST_FIRST(&pagedep->pd_dirremhd)) != NULL) {
11635 		LIST_REMOVE(dirrem, dm_next);
11636 		dirrem->dm_state |= COMPLETE;
11637 		dirrem->dm_dirinum = pagedep->pd_ino;
11638 		KASSERT(LIST_EMPTY(&dirrem->dm_jremrefhd),
11639 		    ("handle_written_filepage: Journal entries not written."));
11640 		add_to_worklist(&dirrem->dm_list, 0);
11641 	}
11642 	/*
11643 	 * Free any directory additions that have been committed.
11644 	 * If it is a newly allocated block, we have to wait until
11645 	 * the on-disk directory inode claims the new block.
11646 	 */
11647 	if ((pagedep->pd_state & NEWBLOCK) == 0)
11648 		while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL)
11649 			free_diradd(dap, NULL);
11650 	/*
11651 	 * Uncommitted directory entries must be restored.
11652 	 */
11653 	for (chgs = 0, i = 0; i < DAHASHSZ; i++) {
11654 		for (dap = LIST_FIRST(&pagedep->pd_diraddhd[i]); dap;
11655 		     dap = nextdap) {
11656 			nextdap = LIST_NEXT(dap, da_pdlist);
11657 			if (dap->da_state & ATTACHED)
11658 				panic("handle_written_filepage: attached");
11659 			ep = (struct direct *)
11660 			    ((char *)bp->b_data + dap->da_offset);
11661 			ep->d_ino = dap->da_newinum;
11662 			dap->da_state &= ~UNDONE;
11663 			dap->da_state |= ATTACHED;
11664 			chgs = 1;
11665 			/*
11666 			 * If the inode referenced by the directory has
11667 			 * been written out, then the dependency can be
11668 			 * moved to the pending list.
11669 			 */
11670 			if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
11671 				LIST_REMOVE(dap, da_pdlist);
11672 				LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap,
11673 				    da_pdlist);
11674 			}
11675 		}
11676 	}
11677 	/*
11678 	 * If there were any rollbacks in the directory, then it must be
11679 	 * marked dirty so that its will eventually get written back in
11680 	 * its correct form.
11681 	 */
11682 	if (chgs) {
11683 		if ((bp->b_flags & B_DELWRI) == 0)
11684 			stat_dir_entry++;
11685 		bdirty(bp);
11686 		return (1);
11687 	}
11688 	/*
11689 	 * If we are not waiting for a new directory block to be
11690 	 * claimed by its inode, then the pagedep will be freed.
11691 	 * Otherwise it will remain to track any new entries on
11692 	 * the page in case they are fsync'ed.
11693 	 */
11694 	free_pagedep(pagedep);
11695 	return (0);
11696 }
11697 
11698 /*
11699  * Writing back in-core inode structures.
11700  *
11701  * The filesystem only accesses an inode's contents when it occupies an
11702  * "in-core" inode structure.  These "in-core" structures are separate from
11703  * the page frames used to cache inode blocks.  Only the latter are
11704  * transferred to/from the disk.  So, when the updated contents of the
11705  * "in-core" inode structure are copied to the corresponding in-memory inode
11706  * block, the dependencies are also transferred.  The following procedure is
11707  * called when copying a dirty "in-core" inode to a cached inode block.
11708  */
11709 
11710 /*
11711  * Called when an inode is loaded from disk. If the effective link count
11712  * differed from the actual link count when it was last flushed, then we
11713  * need to ensure that the correct effective link count is put back.
11714  */
11715 void
11716 softdep_load_inodeblock(ip)
11717 	struct inode *ip;	/* the "in_core" copy of the inode */
11718 {
11719 	struct inodedep *inodedep;
11720 
11721 	/*
11722 	 * Check for alternate nlink count.
11723 	 */
11724 	ip->i_effnlink = ip->i_nlink;
11725 	ACQUIRE_LOCK(&lk);
11726 	if (inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, 0,
11727 	    &inodedep) == 0) {
11728 		FREE_LOCK(&lk);
11729 		return;
11730 	}
11731 	ip->i_effnlink -= inodedep->id_nlinkdelta;
11732 	FREE_LOCK(&lk);
11733 }
11734 
11735 /*
11736  * This routine is called just before the "in-core" inode
11737  * information is to be copied to the in-memory inode block.
11738  * Recall that an inode block contains several inodes. If
11739  * the force flag is set, then the dependencies will be
11740  * cleared so that the update can always be made. Note that
11741  * the buffer is locked when this routine is called, so we
11742  * will never be in the middle of writing the inode block
11743  * to disk.
11744  */
11745 void
11746 softdep_update_inodeblock(ip, bp, waitfor)
11747 	struct inode *ip;	/* the "in_core" copy of the inode */
11748 	struct buf *bp;		/* the buffer containing the inode block */
11749 	int waitfor;		/* nonzero => update must be allowed */
11750 {
11751 	struct inodedep *inodedep;
11752 	struct inoref *inoref;
11753 	struct worklist *wk;
11754 	struct mount *mp;
11755 	struct buf *ibp;
11756 	struct fs *fs;
11757 	int error;
11758 
11759 	mp = UFSTOVFS(ip->i_ump);
11760 	fs = ip->i_fs;
11761 	/*
11762 	 * Preserve the freelink that is on disk.  clear_unlinked_inodedep()
11763 	 * does not have access to the in-core ip so must write directly into
11764 	 * the inode block buffer when setting freelink.
11765 	 */
11766 	if (fs->fs_magic == FS_UFS1_MAGIC)
11767 		DIP_SET(ip, i_freelink, ((struct ufs1_dinode *)bp->b_data +
11768 		    ino_to_fsbo(fs, ip->i_number))->di_freelink);
11769 	else
11770 		DIP_SET(ip, i_freelink, ((struct ufs2_dinode *)bp->b_data +
11771 		    ino_to_fsbo(fs, ip->i_number))->di_freelink);
11772 	/*
11773 	 * If the effective link count is not equal to the actual link
11774 	 * count, then we must track the difference in an inodedep while
11775 	 * the inode is (potentially) tossed out of the cache. Otherwise,
11776 	 * if there is no existing inodedep, then there are no dependencies
11777 	 * to track.
11778 	 */
11779 	ACQUIRE_LOCK(&lk);
11780 again:
11781 	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) {
11782 		FREE_LOCK(&lk);
11783 		if (ip->i_effnlink != ip->i_nlink)
11784 			panic("softdep_update_inodeblock: bad link count");
11785 		return;
11786 	}
11787 	if (inodedep->id_nlinkdelta != ip->i_nlink - ip->i_effnlink)
11788 		panic("softdep_update_inodeblock: bad delta");
11789 	/*
11790 	 * If we're flushing all dependencies we must also move any waiting
11791 	 * for journal writes onto the bufwait list prior to I/O.
11792 	 */
11793 	if (waitfor) {
11794 		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
11795 			if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
11796 			    == DEPCOMPLETE) {
11797 				jwait(&inoref->if_list, MNT_WAIT);
11798 				goto again;
11799 			}
11800 		}
11801 	}
11802 	/*
11803 	 * Changes have been initiated. Anything depending on these
11804 	 * changes cannot occur until this inode has been written.
11805 	 */
11806 	inodedep->id_state &= ~COMPLETE;
11807 	if ((inodedep->id_state & ONWORKLIST) == 0)
11808 		WORKLIST_INSERT(&bp->b_dep, &inodedep->id_list);
11809 	/*
11810 	 * Any new dependencies associated with the incore inode must
11811 	 * now be moved to the list associated with the buffer holding
11812 	 * the in-memory copy of the inode. Once merged process any
11813 	 * allocdirects that are completed by the merger.
11814 	 */
11815 	merge_inode_lists(&inodedep->id_newinoupdt, &inodedep->id_inoupdt);
11816 	if (!TAILQ_EMPTY(&inodedep->id_inoupdt))
11817 		handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_inoupdt),
11818 		    NULL);
11819 	merge_inode_lists(&inodedep->id_newextupdt, &inodedep->id_extupdt);
11820 	if (!TAILQ_EMPTY(&inodedep->id_extupdt))
11821 		handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_extupdt),
11822 		    NULL);
11823 	/*
11824 	 * Now that the inode has been pushed into the buffer, the
11825 	 * operations dependent on the inode being written to disk
11826 	 * can be moved to the id_bufwait so that they will be
11827 	 * processed when the buffer I/O completes.
11828 	 */
11829 	while ((wk = LIST_FIRST(&inodedep->id_inowait)) != NULL) {
11830 		WORKLIST_REMOVE(wk);
11831 		WORKLIST_INSERT(&inodedep->id_bufwait, wk);
11832 	}
11833 	/*
11834 	 * Newly allocated inodes cannot be written until the bitmap
11835 	 * that allocates them have been written (indicated by
11836 	 * DEPCOMPLETE being set in id_state). If we are doing a
11837 	 * forced sync (e.g., an fsync on a file), we force the bitmap
11838 	 * to be written so that the update can be done.
11839 	 */
11840 	if (waitfor == 0) {
11841 		FREE_LOCK(&lk);
11842 		return;
11843 	}
11844 retry:
11845 	if ((inodedep->id_state & (DEPCOMPLETE | GOINGAWAY)) != 0) {
11846 		FREE_LOCK(&lk);
11847 		return;
11848 	}
11849 	ibp = inodedep->id_bmsafemap->sm_buf;
11850 	ibp = getdirtybuf(ibp, &lk, MNT_WAIT);
11851 	if (ibp == NULL) {
11852 		/*
11853 		 * If ibp came back as NULL, the dependency could have been
11854 		 * freed while we slept.  Look it up again, and check to see
11855 		 * that it has completed.
11856 		 */
11857 		if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0)
11858 			goto retry;
11859 		FREE_LOCK(&lk);
11860 		return;
11861 	}
11862 	FREE_LOCK(&lk);
11863 	if ((error = bwrite(ibp)) != 0)
11864 		softdep_error("softdep_update_inodeblock: bwrite", error);
11865 }
11866 
11867 /*
11868  * Merge the a new inode dependency list (such as id_newinoupdt) into an
11869  * old inode dependency list (such as id_inoupdt). This routine must be
11870  * called with splbio interrupts blocked.
11871  */
11872 static void
11873 merge_inode_lists(newlisthead, oldlisthead)
11874 	struct allocdirectlst *newlisthead;
11875 	struct allocdirectlst *oldlisthead;
11876 {
11877 	struct allocdirect *listadp, *newadp;
11878 
11879 	newadp = TAILQ_FIRST(newlisthead);
11880 	for (listadp = TAILQ_FIRST(oldlisthead); listadp && newadp;) {
11881 		if (listadp->ad_offset < newadp->ad_offset) {
11882 			listadp = TAILQ_NEXT(listadp, ad_next);
11883 			continue;
11884 		}
11885 		TAILQ_REMOVE(newlisthead, newadp, ad_next);
11886 		TAILQ_INSERT_BEFORE(listadp, newadp, ad_next);
11887 		if (listadp->ad_offset == newadp->ad_offset) {
11888 			allocdirect_merge(oldlisthead, newadp,
11889 			    listadp);
11890 			listadp = newadp;
11891 		}
11892 		newadp = TAILQ_FIRST(newlisthead);
11893 	}
11894 	while ((newadp = TAILQ_FIRST(newlisthead)) != NULL) {
11895 		TAILQ_REMOVE(newlisthead, newadp, ad_next);
11896 		TAILQ_INSERT_TAIL(oldlisthead, newadp, ad_next);
11897 	}
11898 }
11899 
11900 /*
11901  * If we are doing an fsync, then we must ensure that any directory
11902  * entries for the inode have been written after the inode gets to disk.
11903  */
11904 int
11905 softdep_fsync(vp)
11906 	struct vnode *vp;	/* the "in_core" copy of the inode */
11907 {
11908 	struct inodedep *inodedep;
11909 	struct pagedep *pagedep;
11910 	struct inoref *inoref;
11911 	struct worklist *wk;
11912 	struct diradd *dap;
11913 	struct mount *mp;
11914 	struct vnode *pvp;
11915 	struct inode *ip;
11916 	struct buf *bp;
11917 	struct fs *fs;
11918 	struct thread *td = curthread;
11919 	int error, flushparent, pagedep_new_block;
11920 	ino_t parentino;
11921 	ufs_lbn_t lbn;
11922 
11923 	ip = VTOI(vp);
11924 	fs = ip->i_fs;
11925 	mp = vp->v_mount;
11926 	ACQUIRE_LOCK(&lk);
11927 restart:
11928 	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) {
11929 		FREE_LOCK(&lk);
11930 		return (0);
11931 	}
11932 	TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
11933 		if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
11934 		    == DEPCOMPLETE) {
11935 			jwait(&inoref->if_list, MNT_WAIT);
11936 			goto restart;
11937 		}
11938 	}
11939 	if (!LIST_EMPTY(&inodedep->id_inowait) ||
11940 	    !TAILQ_EMPTY(&inodedep->id_extupdt) ||
11941 	    !TAILQ_EMPTY(&inodedep->id_newextupdt) ||
11942 	    !TAILQ_EMPTY(&inodedep->id_inoupdt) ||
11943 	    !TAILQ_EMPTY(&inodedep->id_newinoupdt))
11944 		panic("softdep_fsync: pending ops %p", inodedep);
11945 	for (error = 0, flushparent = 0; ; ) {
11946 		if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) == NULL)
11947 			break;
11948 		if (wk->wk_type != D_DIRADD)
11949 			panic("softdep_fsync: Unexpected type %s",
11950 			    TYPENAME(wk->wk_type));
11951 		dap = WK_DIRADD(wk);
11952 		/*
11953 		 * Flush our parent if this directory entry has a MKDIR_PARENT
11954 		 * dependency or is contained in a newly allocated block.
11955 		 */
11956 		if (dap->da_state & DIRCHG)
11957 			pagedep = dap->da_previous->dm_pagedep;
11958 		else
11959 			pagedep = dap->da_pagedep;
11960 		parentino = pagedep->pd_ino;
11961 		lbn = pagedep->pd_lbn;
11962 		if ((dap->da_state & (MKDIR_BODY | COMPLETE)) != COMPLETE)
11963 			panic("softdep_fsync: dirty");
11964 		if ((dap->da_state & MKDIR_PARENT) ||
11965 		    (pagedep->pd_state & NEWBLOCK))
11966 			flushparent = 1;
11967 		else
11968 			flushparent = 0;
11969 		/*
11970 		 * If we are being fsync'ed as part of vgone'ing this vnode,
11971 		 * then we will not be able to release and recover the
11972 		 * vnode below, so we just have to give up on writing its
11973 		 * directory entry out. It will eventually be written, just
11974 		 * not now, but then the user was not asking to have it
11975 		 * written, so we are not breaking any promises.
11976 		 */
11977 		if (vp->v_iflag & VI_DOOMED)
11978 			break;
11979 		/*
11980 		 * We prevent deadlock by always fetching inodes from the
11981 		 * root, moving down the directory tree. Thus, when fetching
11982 		 * our parent directory, we first try to get the lock. If
11983 		 * that fails, we must unlock ourselves before requesting
11984 		 * the lock on our parent. See the comment in ufs_lookup
11985 		 * for details on possible races.
11986 		 */
11987 		FREE_LOCK(&lk);
11988 		if (ffs_vgetf(mp, parentino, LK_NOWAIT | LK_EXCLUSIVE, &pvp,
11989 		    FFSV_FORCEINSMQ)) {
11990 			error = vfs_busy(mp, MBF_NOWAIT);
11991 			if (error != 0) {
11992 				vfs_ref(mp);
11993 				VOP_UNLOCK(vp, 0);
11994 				error = vfs_busy(mp, 0);
11995 				vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
11996 				vfs_rel(mp);
11997 				if (error != 0)
11998 					return (ENOENT);
11999 				if (vp->v_iflag & VI_DOOMED) {
12000 					vfs_unbusy(mp);
12001 					return (ENOENT);
12002 				}
12003 			}
12004 			VOP_UNLOCK(vp, 0);
12005 			error = ffs_vgetf(mp, parentino, LK_EXCLUSIVE,
12006 			    &pvp, FFSV_FORCEINSMQ);
12007 			vfs_unbusy(mp);
12008 			vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
12009 			if (vp->v_iflag & VI_DOOMED) {
12010 				if (error == 0)
12011 					vput(pvp);
12012 				error = ENOENT;
12013 			}
12014 			if (error != 0)
12015 				return (error);
12016 		}
12017 		/*
12018 		 * All MKDIR_PARENT dependencies and all the NEWBLOCK pagedeps
12019 		 * that are contained in direct blocks will be resolved by
12020 		 * doing a ffs_update. Pagedeps contained in indirect blocks
12021 		 * may require a complete sync'ing of the directory. So, we
12022 		 * try the cheap and fast ffs_update first, and if that fails,
12023 		 * then we do the slower ffs_syncvnode of the directory.
12024 		 */
12025 		if (flushparent) {
12026 			int locked;
12027 
12028 			if ((error = ffs_update(pvp, 1)) != 0) {
12029 				vput(pvp);
12030 				return (error);
12031 			}
12032 			ACQUIRE_LOCK(&lk);
12033 			locked = 1;
12034 			if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0) {
12035 				if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) != NULL) {
12036 					if (wk->wk_type != D_DIRADD)
12037 						panic("softdep_fsync: Unexpected type %s",
12038 						      TYPENAME(wk->wk_type));
12039 					dap = WK_DIRADD(wk);
12040 					if (dap->da_state & DIRCHG)
12041 						pagedep = dap->da_previous->dm_pagedep;
12042 					else
12043 						pagedep = dap->da_pagedep;
12044 					pagedep_new_block = pagedep->pd_state & NEWBLOCK;
12045 					FREE_LOCK(&lk);
12046 					locked = 0;
12047 					if (pagedep_new_block && (error =
12048 					    ffs_syncvnode(pvp, MNT_WAIT, 0))) {
12049 						vput(pvp);
12050 						return (error);
12051 					}
12052 				}
12053 			}
12054 			if (locked)
12055 				FREE_LOCK(&lk);
12056 		}
12057 		/*
12058 		 * Flush directory page containing the inode's name.
12059 		 */
12060 		error = bread(pvp, lbn, blksize(fs, VTOI(pvp), lbn), td->td_ucred,
12061 		    &bp);
12062 		if (error == 0)
12063 			error = bwrite(bp);
12064 		else
12065 			brelse(bp);
12066 		vput(pvp);
12067 		if (error != 0)
12068 			return (error);
12069 		ACQUIRE_LOCK(&lk);
12070 		if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0)
12071 			break;
12072 	}
12073 	FREE_LOCK(&lk);
12074 	return (0);
12075 }
12076 
12077 /*
12078  * Flush all the dirty bitmaps associated with the block device
12079  * before flushing the rest of the dirty blocks so as to reduce
12080  * the number of dependencies that will have to be rolled back.
12081  *
12082  * XXX Unused?
12083  */
12084 void
12085 softdep_fsync_mountdev(vp)
12086 	struct vnode *vp;
12087 {
12088 	struct buf *bp, *nbp;
12089 	struct worklist *wk;
12090 	struct bufobj *bo;
12091 
12092 	if (!vn_isdisk(vp, NULL))
12093 		panic("softdep_fsync_mountdev: vnode not a disk");
12094 	bo = &vp->v_bufobj;
12095 restart:
12096 	BO_LOCK(bo);
12097 	ACQUIRE_LOCK(&lk);
12098 	TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
12099 		/*
12100 		 * If it is already scheduled, skip to the next buffer.
12101 		 */
12102 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL))
12103 			continue;
12104 
12105 		if ((bp->b_flags & B_DELWRI) == 0)
12106 			panic("softdep_fsync_mountdev: not dirty");
12107 		/*
12108 		 * We are only interested in bitmaps with outstanding
12109 		 * dependencies.
12110 		 */
12111 		if ((wk = LIST_FIRST(&bp->b_dep)) == NULL ||
12112 		    wk->wk_type != D_BMSAFEMAP ||
12113 		    (bp->b_vflags & BV_BKGRDINPROG)) {
12114 			BUF_UNLOCK(bp);
12115 			continue;
12116 		}
12117 		FREE_LOCK(&lk);
12118 		BO_UNLOCK(bo);
12119 		bremfree(bp);
12120 		(void) bawrite(bp);
12121 		goto restart;
12122 	}
12123 	FREE_LOCK(&lk);
12124 	drain_output(vp);
12125 	BO_UNLOCK(bo);
12126 }
12127 
12128 /*
12129  * Sync all cylinder groups that were dirty at the time this function is
12130  * called.  Newly dirtied cgs will be inserted before the sintenel.  This
12131  * is used to flush freedep activity that may be holding up writes to a
12132  * indirect block.
12133  */
12134 static int
12135 sync_cgs(mp, waitfor)
12136 	struct mount *mp;
12137 	int waitfor;
12138 {
12139 	struct bmsafemap *bmsafemap;
12140 	struct bmsafemap *sintenel;
12141 	struct ufsmount *ump;
12142 	struct buf *bp;
12143 	int error;
12144 
12145 	sintenel = malloc(sizeof(*sintenel), M_BMSAFEMAP, M_ZERO | M_WAITOK);
12146 	sintenel->sm_cg = -1;
12147 	ump = VFSTOUFS(mp);
12148 	error = 0;
12149 	ACQUIRE_LOCK(&lk);
12150 	LIST_INSERT_HEAD(&ump->softdep_dirtycg, sintenel, sm_next);
12151 	for (bmsafemap = LIST_NEXT(sintenel, sm_next); bmsafemap != NULL;
12152 	    bmsafemap = LIST_NEXT(sintenel, sm_next)) {
12153 		/* Skip sintenels and cgs with no work to release. */
12154 		if (bmsafemap->sm_cg == -1 ||
12155 		    (LIST_EMPTY(&bmsafemap->sm_freehd) &&
12156 		    LIST_EMPTY(&bmsafemap->sm_freewr))) {
12157 			LIST_REMOVE(sintenel, sm_next);
12158 			LIST_INSERT_AFTER(bmsafemap, sintenel, sm_next);
12159 			continue;
12160 		}
12161 		/*
12162 		 * If we don't get the lock and we're waiting try again, if
12163 		 * not move on to the next buf and try to sync it.
12164 		 */
12165 		bp = getdirtybuf(bmsafemap->sm_buf, &lk, waitfor);
12166 		if (bp == NULL && waitfor == MNT_WAIT)
12167 			continue;
12168 		LIST_REMOVE(sintenel, sm_next);
12169 		LIST_INSERT_AFTER(bmsafemap, sintenel, sm_next);
12170 		if (bp == NULL)
12171 			continue;
12172 		FREE_LOCK(&lk);
12173 		if (waitfor == MNT_NOWAIT)
12174 			bawrite(bp);
12175 		else
12176 			error = bwrite(bp);
12177 		ACQUIRE_LOCK(&lk);
12178 		if (error)
12179 			break;
12180 	}
12181 	LIST_REMOVE(sintenel, sm_next);
12182 	FREE_LOCK(&lk);
12183 	free(sintenel, M_BMSAFEMAP);
12184 	return (error);
12185 }
12186 
12187 /*
12188  * This routine is called when we are trying to synchronously flush a
12189  * file. This routine must eliminate any filesystem metadata dependencies
12190  * so that the syncing routine can succeed.
12191  */
12192 int
12193 softdep_sync_metadata(struct vnode *vp)
12194 {
12195 	int error;
12196 
12197 	/*
12198 	 * Ensure that any direct block dependencies have been cleared,
12199 	 * truncations are started, and inode references are journaled.
12200 	 */
12201 	ACQUIRE_LOCK(&lk);
12202 	/*
12203 	 * Write all journal records to prevent rollbacks on devvp.
12204 	 */
12205 	if (vp->v_type == VCHR)
12206 		softdep_flushjournal(vp->v_mount);
12207 	error = flush_inodedep_deps(vp, vp->v_mount, VTOI(vp)->i_number);
12208 	/*
12209 	 * Ensure that all truncates are written so we won't find deps on
12210 	 * indirect blocks.
12211 	 */
12212 	process_truncates(vp);
12213 	FREE_LOCK(&lk);
12214 
12215 	return (error);
12216 }
12217 
12218 /*
12219  * This routine is called when we are attempting to sync a buf with
12220  * dependencies.  If waitfor is MNT_NOWAIT it attempts to schedule any
12221  * other IO it can but returns EBUSY if the buffer is not yet able to
12222  * be written.  Dependencies which will not cause rollbacks will always
12223  * return 0.
12224  */
12225 int
12226 softdep_sync_buf(struct vnode *vp, struct buf *bp, int waitfor)
12227 {
12228 	struct indirdep *indirdep;
12229 	struct pagedep *pagedep;
12230 	struct allocindir *aip;
12231 	struct newblk *newblk;
12232 	struct buf *nbp;
12233 	struct worklist *wk;
12234 	int i, error;
12235 
12236 	/*
12237 	 * For VCHR we just don't want to force flush any dependencies that
12238 	 * will cause rollbacks.
12239 	 */
12240 	if (vp->v_type == VCHR) {
12241 		if (waitfor == MNT_NOWAIT && softdep_count_dependencies(bp, 0))
12242 			return (EBUSY);
12243 		return (0);
12244 	}
12245 	ACQUIRE_LOCK(&lk);
12246 	/*
12247 	 * As we hold the buffer locked, none of its dependencies
12248 	 * will disappear.
12249 	 */
12250 	error = 0;
12251 top:
12252 	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
12253 		switch (wk->wk_type) {
12254 
12255 		case D_ALLOCDIRECT:
12256 		case D_ALLOCINDIR:
12257 			newblk = WK_NEWBLK(wk);
12258 			if (newblk->nb_jnewblk != NULL) {
12259 				if (waitfor == MNT_NOWAIT) {
12260 					error = EBUSY;
12261 					goto out_unlock;
12262 				}
12263 				jwait(&newblk->nb_jnewblk->jn_list, waitfor);
12264 				goto top;
12265 			}
12266 			if (newblk->nb_state & DEPCOMPLETE ||
12267 			    waitfor == MNT_NOWAIT)
12268 				continue;
12269 			nbp = newblk->nb_bmsafemap->sm_buf;
12270 			nbp = getdirtybuf(nbp, &lk, waitfor);
12271 			if (nbp == NULL)
12272 				goto top;
12273 			FREE_LOCK(&lk);
12274 			if ((error = bwrite(nbp)) != 0)
12275 				goto out;
12276 			ACQUIRE_LOCK(&lk);
12277 			continue;
12278 
12279 		case D_INDIRDEP:
12280 			indirdep = WK_INDIRDEP(wk);
12281 			if (waitfor == MNT_NOWAIT) {
12282 				if (!TAILQ_EMPTY(&indirdep->ir_trunc) ||
12283 				    !LIST_EMPTY(&indirdep->ir_deplisthd)) {
12284 					error = EBUSY;
12285 					goto out_unlock;
12286 				}
12287 			}
12288 			if (!TAILQ_EMPTY(&indirdep->ir_trunc))
12289 				panic("softdep_sync_buf: truncation pending.");
12290 		restart:
12291 			LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) {
12292 				newblk = (struct newblk *)aip;
12293 				if (newblk->nb_jnewblk != NULL) {
12294 					jwait(&newblk->nb_jnewblk->jn_list,
12295 					    waitfor);
12296 					goto restart;
12297 				}
12298 				if (newblk->nb_state & DEPCOMPLETE)
12299 					continue;
12300 				nbp = newblk->nb_bmsafemap->sm_buf;
12301 				nbp = getdirtybuf(nbp, &lk, waitfor);
12302 				if (nbp == NULL)
12303 					goto restart;
12304 				FREE_LOCK(&lk);
12305 				if ((error = bwrite(nbp)) != 0)
12306 					goto out;
12307 				ACQUIRE_LOCK(&lk);
12308 				goto restart;
12309 			}
12310 			continue;
12311 
12312 		case D_PAGEDEP:
12313 			/*
12314 			 * Only flush directory entries in synchronous passes.
12315 			 */
12316 			if (waitfor != MNT_WAIT) {
12317 				error = EBUSY;
12318 				goto out_unlock;
12319 			}
12320 			/*
12321 			 * While syncing snapshots, we must allow recursive
12322 			 * lookups.
12323 			 */
12324 			BUF_AREC(bp);
12325 			/*
12326 			 * We are trying to sync a directory that may
12327 			 * have dependencies on both its own metadata
12328 			 * and/or dependencies on the inodes of any
12329 			 * recently allocated files. We walk its diradd
12330 			 * lists pushing out the associated inode.
12331 			 */
12332 			pagedep = WK_PAGEDEP(wk);
12333 			for (i = 0; i < DAHASHSZ; i++) {
12334 				if (LIST_FIRST(&pagedep->pd_diraddhd[i]) == 0)
12335 					continue;
12336 				if ((error = flush_pagedep_deps(vp, wk->wk_mp,
12337 				    &pagedep->pd_diraddhd[i]))) {
12338 					BUF_NOREC(bp);
12339 					goto out_unlock;
12340 				}
12341 			}
12342 			BUF_NOREC(bp);
12343 			continue;
12344 
12345 		case D_FREEWORK:
12346 		case D_FREEDEP:
12347 		case D_JSEGDEP:
12348 		case D_JNEWBLK:
12349 			continue;
12350 
12351 		default:
12352 			panic("softdep_sync_buf: Unknown type %s",
12353 			    TYPENAME(wk->wk_type));
12354 			/* NOTREACHED */
12355 		}
12356 	}
12357 out_unlock:
12358 	FREE_LOCK(&lk);
12359 out:
12360 	return (error);
12361 }
12362 
12363 /*
12364  * Flush the dependencies associated with an inodedep.
12365  * Called with splbio blocked.
12366  */
12367 static int
12368 flush_inodedep_deps(vp, mp, ino)
12369 	struct vnode *vp;
12370 	struct mount *mp;
12371 	ino_t ino;
12372 {
12373 	struct inodedep *inodedep;
12374 	struct inoref *inoref;
12375 	int error, waitfor;
12376 
12377 	/*
12378 	 * This work is done in two passes. The first pass grabs most
12379 	 * of the buffers and begins asynchronously writing them. The
12380 	 * only way to wait for these asynchronous writes is to sleep
12381 	 * on the filesystem vnode which may stay busy for a long time
12382 	 * if the filesystem is active. So, instead, we make a second
12383 	 * pass over the dependencies blocking on each write. In the
12384 	 * usual case we will be blocking against a write that we
12385 	 * initiated, so when it is done the dependency will have been
12386 	 * resolved. Thus the second pass is expected to end quickly.
12387 	 * We give a brief window at the top of the loop to allow
12388 	 * any pending I/O to complete.
12389 	 */
12390 	for (error = 0, waitfor = MNT_NOWAIT; ; ) {
12391 		if (error)
12392 			return (error);
12393 		FREE_LOCK(&lk);
12394 		ACQUIRE_LOCK(&lk);
12395 restart:
12396 		if (inodedep_lookup(mp, ino, 0, &inodedep) == 0)
12397 			return (0);
12398 		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
12399 			if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
12400 			    == DEPCOMPLETE) {
12401 				jwait(&inoref->if_list, MNT_WAIT);
12402 				goto restart;
12403 			}
12404 		}
12405 		if (flush_deplist(&inodedep->id_inoupdt, waitfor, &error) ||
12406 		    flush_deplist(&inodedep->id_newinoupdt, waitfor, &error) ||
12407 		    flush_deplist(&inodedep->id_extupdt, waitfor, &error) ||
12408 		    flush_deplist(&inodedep->id_newextupdt, waitfor, &error))
12409 			continue;
12410 		/*
12411 		 * If pass2, we are done, otherwise do pass 2.
12412 		 */
12413 		if (waitfor == MNT_WAIT)
12414 			break;
12415 		waitfor = MNT_WAIT;
12416 	}
12417 	/*
12418 	 * Try freeing inodedep in case all dependencies have been removed.
12419 	 */
12420 	if (inodedep_lookup(mp, ino, 0, &inodedep) != 0)
12421 		(void) free_inodedep(inodedep);
12422 	return (0);
12423 }
12424 
12425 /*
12426  * Flush an inode dependency list.
12427  * Called with splbio blocked.
12428  */
12429 static int
12430 flush_deplist(listhead, waitfor, errorp)
12431 	struct allocdirectlst *listhead;
12432 	int waitfor;
12433 	int *errorp;
12434 {
12435 	struct allocdirect *adp;
12436 	struct newblk *newblk;
12437 	struct buf *bp;
12438 
12439 	mtx_assert(&lk, MA_OWNED);
12440 	TAILQ_FOREACH(adp, listhead, ad_next) {
12441 		newblk = (struct newblk *)adp;
12442 		if (newblk->nb_jnewblk != NULL) {
12443 			jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT);
12444 			return (1);
12445 		}
12446 		if (newblk->nb_state & DEPCOMPLETE)
12447 			continue;
12448 		bp = newblk->nb_bmsafemap->sm_buf;
12449 		bp = getdirtybuf(bp, &lk, waitfor);
12450 		if (bp == NULL) {
12451 			if (waitfor == MNT_NOWAIT)
12452 				continue;
12453 			return (1);
12454 		}
12455 		FREE_LOCK(&lk);
12456 		if (waitfor == MNT_NOWAIT)
12457 			bawrite(bp);
12458 		else
12459 			*errorp = bwrite(bp);
12460 		ACQUIRE_LOCK(&lk);
12461 		return (1);
12462 	}
12463 	return (0);
12464 }
12465 
12466 /*
12467  * Flush dependencies associated with an allocdirect block.
12468  */
12469 static int
12470 flush_newblk_dep(vp, mp, lbn)
12471 	struct vnode *vp;
12472 	struct mount *mp;
12473 	ufs_lbn_t lbn;
12474 {
12475 	struct newblk *newblk;
12476 	struct bufobj *bo;
12477 	struct inode *ip;
12478 	struct buf *bp;
12479 	ufs2_daddr_t blkno;
12480 	int error;
12481 
12482 	error = 0;
12483 	bo = &vp->v_bufobj;
12484 	ip = VTOI(vp);
12485 	blkno = DIP(ip, i_db[lbn]);
12486 	if (blkno == 0)
12487 		panic("flush_newblk_dep: Missing block");
12488 	ACQUIRE_LOCK(&lk);
12489 	/*
12490 	 * Loop until all dependencies related to this block are satisfied.
12491 	 * We must be careful to restart after each sleep in case a write
12492 	 * completes some part of this process for us.
12493 	 */
12494 	for (;;) {
12495 		if (newblk_lookup(mp, blkno, 0, &newblk) == 0) {
12496 			FREE_LOCK(&lk);
12497 			break;
12498 		}
12499 		if (newblk->nb_list.wk_type != D_ALLOCDIRECT)
12500 			panic("flush_newblk_deps: Bad newblk %p", newblk);
12501 		/*
12502 		 * Flush the journal.
12503 		 */
12504 		if (newblk->nb_jnewblk != NULL) {
12505 			jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT);
12506 			continue;
12507 		}
12508 		/*
12509 		 * Write the bitmap dependency.
12510 		 */
12511 		if ((newblk->nb_state & DEPCOMPLETE) == 0) {
12512 			bp = newblk->nb_bmsafemap->sm_buf;
12513 			bp = getdirtybuf(bp, &lk, MNT_WAIT);
12514 			if (bp == NULL)
12515 				continue;
12516 			FREE_LOCK(&lk);
12517 			error = bwrite(bp);
12518 			if (error)
12519 				break;
12520 			ACQUIRE_LOCK(&lk);
12521 			continue;
12522 		}
12523 		/*
12524 		 * Write the buffer.
12525 		 */
12526 		FREE_LOCK(&lk);
12527 		BO_LOCK(bo);
12528 		bp = gbincore(bo, lbn);
12529 		if (bp != NULL) {
12530 			error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL |
12531 			    LK_INTERLOCK, BO_MTX(bo));
12532 			if (error == ENOLCK) {
12533 				ACQUIRE_LOCK(&lk);
12534 				continue; /* Slept, retry */
12535 			}
12536 			if (error != 0)
12537 				break;	/* Failed */
12538 			if (bp->b_flags & B_DELWRI) {
12539 				bremfree(bp);
12540 				error = bwrite(bp);
12541 				if (error)
12542 					break;
12543 			} else
12544 				BUF_UNLOCK(bp);
12545 		} else
12546 			BO_UNLOCK(bo);
12547 		/*
12548 		 * We have to wait for the direct pointers to
12549 		 * point at the newdirblk before the dependency
12550 		 * will go away.
12551 		 */
12552 		error = ffs_update(vp, 1);
12553 		if (error)
12554 			break;
12555 		ACQUIRE_LOCK(&lk);
12556 	}
12557 	return (error);
12558 }
12559 
12560 /*
12561  * Eliminate a pagedep dependency by flushing out all its diradd dependencies.
12562  * Called with splbio blocked.
12563  */
12564 static int
12565 flush_pagedep_deps(pvp, mp, diraddhdp)
12566 	struct vnode *pvp;
12567 	struct mount *mp;
12568 	struct diraddhd *diraddhdp;
12569 {
12570 	struct inodedep *inodedep;
12571 	struct inoref *inoref;
12572 	struct ufsmount *ump;
12573 	struct diradd *dap;
12574 	struct vnode *vp;
12575 	int error = 0;
12576 	struct buf *bp;
12577 	ino_t inum;
12578 
12579 	ump = VFSTOUFS(mp);
12580 restart:
12581 	while ((dap = LIST_FIRST(diraddhdp)) != NULL) {
12582 		/*
12583 		 * Flush ourselves if this directory entry
12584 		 * has a MKDIR_PARENT dependency.
12585 		 */
12586 		if (dap->da_state & MKDIR_PARENT) {
12587 			FREE_LOCK(&lk);
12588 			if ((error = ffs_update(pvp, 1)) != 0)
12589 				break;
12590 			ACQUIRE_LOCK(&lk);
12591 			/*
12592 			 * If that cleared dependencies, go on to next.
12593 			 */
12594 			if (dap != LIST_FIRST(diraddhdp))
12595 				continue;
12596 			if (dap->da_state & MKDIR_PARENT)
12597 				panic("flush_pagedep_deps: MKDIR_PARENT");
12598 		}
12599 		/*
12600 		 * A newly allocated directory must have its "." and
12601 		 * ".." entries written out before its name can be
12602 		 * committed in its parent.
12603 		 */
12604 		inum = dap->da_newinum;
12605 		if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0)
12606 			panic("flush_pagedep_deps: lost inode1");
12607 		/*
12608 		 * Wait for any pending journal adds to complete so we don't
12609 		 * cause rollbacks while syncing.
12610 		 */
12611 		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
12612 			if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
12613 			    == DEPCOMPLETE) {
12614 				jwait(&inoref->if_list, MNT_WAIT);
12615 				goto restart;
12616 			}
12617 		}
12618 		if (dap->da_state & MKDIR_BODY) {
12619 			FREE_LOCK(&lk);
12620 			if ((error = ffs_vgetf(mp, inum, LK_EXCLUSIVE, &vp,
12621 			    FFSV_FORCEINSMQ)))
12622 				break;
12623 			error = flush_newblk_dep(vp, mp, 0);
12624 			/*
12625 			 * If we still have the dependency we might need to
12626 			 * update the vnode to sync the new link count to
12627 			 * disk.
12628 			 */
12629 			if (error == 0 && dap == LIST_FIRST(diraddhdp))
12630 				error = ffs_update(vp, 1);
12631 			vput(vp);
12632 			if (error != 0)
12633 				break;
12634 			ACQUIRE_LOCK(&lk);
12635 			/*
12636 			 * If that cleared dependencies, go on to next.
12637 			 */
12638 			if (dap != LIST_FIRST(diraddhdp))
12639 				continue;
12640 			if (dap->da_state & MKDIR_BODY) {
12641 				inodedep_lookup(UFSTOVFS(ump), inum, 0,
12642 				    &inodedep);
12643 				panic("flush_pagedep_deps: MKDIR_BODY "
12644 				    "inodedep %p dap %p vp %p",
12645 				    inodedep, dap, vp);
12646 			}
12647 		}
12648 		/*
12649 		 * Flush the inode on which the directory entry depends.
12650 		 * Having accounted for MKDIR_PARENT and MKDIR_BODY above,
12651 		 * the only remaining dependency is that the updated inode
12652 		 * count must get pushed to disk. The inode has already
12653 		 * been pushed into its inode buffer (via VOP_UPDATE) at
12654 		 * the time of the reference count change. So we need only
12655 		 * locate that buffer, ensure that there will be no rollback
12656 		 * caused by a bitmap dependency, then write the inode buffer.
12657 		 */
12658 retry:
12659 		if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0)
12660 			panic("flush_pagedep_deps: lost inode");
12661 		/*
12662 		 * If the inode still has bitmap dependencies,
12663 		 * push them to disk.
12664 		 */
12665 		if ((inodedep->id_state & (DEPCOMPLETE | GOINGAWAY)) == 0) {
12666 			bp = inodedep->id_bmsafemap->sm_buf;
12667 			bp = getdirtybuf(bp, &lk, MNT_WAIT);
12668 			if (bp == NULL)
12669 				goto retry;
12670 			FREE_LOCK(&lk);
12671 			if ((error = bwrite(bp)) != 0)
12672 				break;
12673 			ACQUIRE_LOCK(&lk);
12674 			if (dap != LIST_FIRST(diraddhdp))
12675 				continue;
12676 		}
12677 		/*
12678 		 * If the inode is still sitting in a buffer waiting
12679 		 * to be written or waiting for the link count to be
12680 		 * adjusted update it here to flush it to disk.
12681 		 */
12682 		if (dap == LIST_FIRST(diraddhdp)) {
12683 			FREE_LOCK(&lk);
12684 			if ((error = ffs_vgetf(mp, inum, LK_EXCLUSIVE, &vp,
12685 			    FFSV_FORCEINSMQ)))
12686 				break;
12687 			error = ffs_update(vp, 1);
12688 			vput(vp);
12689 			if (error)
12690 				break;
12691 			ACQUIRE_LOCK(&lk);
12692 		}
12693 		/*
12694 		 * If we have failed to get rid of all the dependencies
12695 		 * then something is seriously wrong.
12696 		 */
12697 		if (dap == LIST_FIRST(diraddhdp)) {
12698 			inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep);
12699 			panic("flush_pagedep_deps: failed to flush "
12700 			    "inodedep %p ino %ju dap %p",
12701 			    inodedep, (uintmax_t)inum, dap);
12702 		}
12703 	}
12704 	if (error)
12705 		ACQUIRE_LOCK(&lk);
12706 	return (error);
12707 }
12708 
12709 /*
12710  * A large burst of file addition or deletion activity can drive the
12711  * memory load excessively high. First attempt to slow things down
12712  * using the techniques below. If that fails, this routine requests
12713  * the offending operations to fall back to running synchronously
12714  * until the memory load returns to a reasonable level.
12715  */
12716 int
12717 softdep_slowdown(vp)
12718 	struct vnode *vp;
12719 {
12720 	struct ufsmount *ump;
12721 	int jlow;
12722 	int max_softdeps_hard;
12723 
12724 	ACQUIRE_LOCK(&lk);
12725 	jlow = 0;
12726 	/*
12727 	 * Check for journal space if needed.
12728 	 */
12729 	if (DOINGSUJ(vp)) {
12730 		ump = VFSTOUFS(vp->v_mount);
12731 		if (journal_space(ump, 0) == 0)
12732 			jlow = 1;
12733 	}
12734 	max_softdeps_hard = max_softdeps * 11 / 10;
12735 	if (dep_current[D_DIRREM] < max_softdeps_hard / 2 &&
12736 	    dep_current[D_INODEDEP] < max_softdeps_hard &&
12737 	    VFSTOUFS(vp->v_mount)->um_numindirdeps < maxindirdeps &&
12738 	    dep_current[D_FREEBLKS] < max_softdeps_hard && jlow == 0) {
12739 		FREE_LOCK(&lk);
12740   		return (0);
12741 	}
12742 	if (VFSTOUFS(vp->v_mount)->um_numindirdeps >= maxindirdeps || jlow)
12743 		softdep_speedup();
12744 	stat_sync_limit_hit += 1;
12745 	FREE_LOCK(&lk);
12746 	if (DOINGSUJ(vp))
12747 		return (0);
12748 	return (1);
12749 }
12750 
12751 /*
12752  * Called by the allocation routines when they are about to fail
12753  * in the hope that we can free up the requested resource (inodes
12754  * or disk space).
12755  *
12756  * First check to see if the work list has anything on it. If it has,
12757  * clean up entries until we successfully free the requested resource.
12758  * Because this process holds inodes locked, we cannot handle any remove
12759  * requests that might block on a locked inode as that could lead to
12760  * deadlock. If the worklist yields none of the requested resource,
12761  * start syncing out vnodes to free up the needed space.
12762  */
12763 int
12764 softdep_request_cleanup(fs, vp, cred, resource)
12765 	struct fs *fs;
12766 	struct vnode *vp;
12767 	struct ucred *cred;
12768 	int resource;
12769 {
12770 	struct ufsmount *ump;
12771 	struct mount *mp;
12772 	struct vnode *lvp, *mvp;
12773 	long starttime;
12774 	ufs2_daddr_t needed;
12775 	int error;
12776 
12777 	/*
12778 	 * If we are being called because of a process doing a
12779 	 * copy-on-write, then it is not safe to process any
12780 	 * worklist items as we will recurse into the copyonwrite
12781 	 * routine.  This will result in an incoherent snapshot.
12782 	 * If the vnode that we hold is a snapshot, we must avoid
12783 	 * handling other resources that could cause deadlock.
12784 	 */
12785 	if ((curthread->td_pflags & TDP_COWINPROGRESS) || IS_SNAPSHOT(VTOI(vp)))
12786 		return (0);
12787 
12788 	if (resource == FLUSH_BLOCKS_WAIT)
12789 		stat_cleanup_blkrequests += 1;
12790 	else
12791 		stat_cleanup_inorequests += 1;
12792 
12793 	mp = vp->v_mount;
12794 	ump = VFSTOUFS(mp);
12795 	mtx_assert(UFS_MTX(ump), MA_OWNED);
12796 	UFS_UNLOCK(ump);
12797 	error = ffs_update(vp, 1);
12798 	if (error != 0) {
12799 		UFS_LOCK(ump);
12800 		return (0);
12801 	}
12802 	/*
12803 	 * If we are in need of resources, consider pausing for
12804 	 * tickdelay to give ourselves some breathing room.
12805 	 */
12806 	ACQUIRE_LOCK(&lk);
12807 	process_removes(vp);
12808 	process_truncates(vp);
12809 	request_cleanup(UFSTOVFS(ump), resource);
12810 	FREE_LOCK(&lk);
12811 	/*
12812 	 * Now clean up at least as many resources as we will need.
12813 	 *
12814 	 * When requested to clean up inodes, the number that are needed
12815 	 * is set by the number of simultaneous writers (mnt_writeopcount)
12816 	 * plus a bit of slop (2) in case some more writers show up while
12817 	 * we are cleaning.
12818 	 *
12819 	 * When requested to free up space, the amount of space that
12820 	 * we need is enough blocks to allocate a full-sized segment
12821 	 * (fs_contigsumsize). The number of such segments that will
12822 	 * be needed is set by the number of simultaneous writers
12823 	 * (mnt_writeopcount) plus a bit of slop (2) in case some more
12824 	 * writers show up while we are cleaning.
12825 	 *
12826 	 * Additionally, if we are unpriviledged and allocating space,
12827 	 * we need to ensure that we clean up enough blocks to get the
12828 	 * needed number of blocks over the threshhold of the minimum
12829 	 * number of blocks required to be kept free by the filesystem
12830 	 * (fs_minfree).
12831 	 */
12832 	if (resource == FLUSH_INODES_WAIT) {
12833 		needed = vp->v_mount->mnt_writeopcount + 2;
12834 	} else if (resource == FLUSH_BLOCKS_WAIT) {
12835 		needed = (vp->v_mount->mnt_writeopcount + 2) *
12836 		    fs->fs_contigsumsize;
12837 		if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE, 0))
12838 			needed += fragstoblks(fs,
12839 			    roundup((fs->fs_dsize * fs->fs_minfree / 100) -
12840 			    fs->fs_cstotal.cs_nffree, fs->fs_frag));
12841 	} else {
12842 		UFS_LOCK(ump);
12843 		printf("softdep_request_cleanup: Unknown resource type %d\n",
12844 		    resource);
12845 		return (0);
12846 	}
12847 	starttime = time_second;
12848 retry:
12849 	if ((resource == FLUSH_BLOCKS_WAIT && ump->softdep_on_worklist > 0 &&
12850 	    fs->fs_cstotal.cs_nbfree <= needed) ||
12851 	    (resource == FLUSH_INODES_WAIT && fs->fs_pendinginodes > 0 &&
12852 	    fs->fs_cstotal.cs_nifree <= needed)) {
12853 		ACQUIRE_LOCK(&lk);
12854 		if (ump->softdep_on_worklist > 0 &&
12855 		    process_worklist_item(UFSTOVFS(ump),
12856 		    ump->softdep_on_worklist, LK_NOWAIT) != 0)
12857 			stat_worklist_push += 1;
12858 		FREE_LOCK(&lk);
12859 	}
12860 	/*
12861 	 * If we still need resources and there are no more worklist
12862 	 * entries to process to obtain them, we have to start flushing
12863 	 * the dirty vnodes to force the release of additional requests
12864 	 * to the worklist that we can then process to reap addition
12865 	 * resources. We walk the vnodes associated with the mount point
12866 	 * until we get the needed worklist requests that we can reap.
12867 	 */
12868 	if ((resource == FLUSH_BLOCKS_WAIT &&
12869 	     fs->fs_cstotal.cs_nbfree <= needed) ||
12870 	    (resource == FLUSH_INODES_WAIT && fs->fs_pendinginodes > 0 &&
12871 	     fs->fs_cstotal.cs_nifree <= needed)) {
12872 		MNT_VNODE_FOREACH_ALL(lvp, mp, mvp) {
12873 			if (TAILQ_FIRST(&lvp->v_bufobj.bo_dirty.bv_hd) == 0) {
12874 				VI_UNLOCK(lvp);
12875 				continue;
12876 			}
12877 			if (vget(lvp, LK_EXCLUSIVE | LK_INTERLOCK | LK_NOWAIT,
12878 			    curthread))
12879 				continue;
12880 			if (lvp->v_vflag & VV_NOSYNC) {	/* unlinked */
12881 				vput(lvp);
12882 				continue;
12883 			}
12884 			(void) ffs_syncvnode(lvp, MNT_NOWAIT, 0);
12885 			vput(lvp);
12886 		}
12887 		lvp = ump->um_devvp;
12888 		if (vn_lock(lvp, LK_EXCLUSIVE | LK_NOWAIT) == 0) {
12889 			VOP_FSYNC(lvp, MNT_NOWAIT, curthread);
12890 			VOP_UNLOCK(lvp, 0);
12891 		}
12892 		if (ump->softdep_on_worklist > 0) {
12893 			stat_cleanup_retries += 1;
12894 			goto retry;
12895 		}
12896 		stat_cleanup_failures += 1;
12897 	}
12898 	if (time_second - starttime > stat_cleanup_high_delay)
12899 		stat_cleanup_high_delay = time_second - starttime;
12900 	UFS_LOCK(ump);
12901 	return (1);
12902 }
12903 
12904 /*
12905  * If memory utilization has gotten too high, deliberately slow things
12906  * down and speed up the I/O processing.
12907  */
12908 extern struct thread *syncertd;
12909 static int
12910 request_cleanup(mp, resource)
12911 	struct mount *mp;
12912 	int resource;
12913 {
12914 	struct thread *td = curthread;
12915 	struct ufsmount *ump;
12916 
12917 	mtx_assert(&lk, MA_OWNED);
12918 	/*
12919 	 * We never hold up the filesystem syncer or buf daemon.
12920 	 */
12921 	if (td->td_pflags & (TDP_SOFTDEP|TDP_NORUNNINGBUF))
12922 		return (0);
12923 	ump = VFSTOUFS(mp);
12924 	/*
12925 	 * First check to see if the work list has gotten backlogged.
12926 	 * If it has, co-opt this process to help clean up two entries.
12927 	 * Because this process may hold inodes locked, we cannot
12928 	 * handle any remove requests that might block on a locked
12929 	 * inode as that could lead to deadlock.  We set TDP_SOFTDEP
12930 	 * to avoid recursively processing the worklist.
12931 	 */
12932 	if (ump->softdep_on_worklist > max_softdeps / 10) {
12933 		td->td_pflags |= TDP_SOFTDEP;
12934 		process_worklist_item(mp, 2, LK_NOWAIT);
12935 		td->td_pflags &= ~TDP_SOFTDEP;
12936 		stat_worklist_push += 2;
12937 		return(1);
12938 	}
12939 	/*
12940 	 * Next, we attempt to speed up the syncer process. If that
12941 	 * is successful, then we allow the process to continue.
12942 	 */
12943 	if (softdep_speedup() &&
12944 	    resource != FLUSH_BLOCKS_WAIT &&
12945 	    resource != FLUSH_INODES_WAIT)
12946 		return(0);
12947 	/*
12948 	 * If we are resource constrained on inode dependencies, try
12949 	 * flushing some dirty inodes. Otherwise, we are constrained
12950 	 * by file deletions, so try accelerating flushes of directories
12951 	 * with removal dependencies. We would like to do the cleanup
12952 	 * here, but we probably hold an inode locked at this point and
12953 	 * that might deadlock against one that we try to clean. So,
12954 	 * the best that we can do is request the syncer daemon to do
12955 	 * the cleanup for us.
12956 	 */
12957 	switch (resource) {
12958 
12959 	case FLUSH_INODES:
12960 	case FLUSH_INODES_WAIT:
12961 		stat_ino_limit_push += 1;
12962 		req_clear_inodedeps += 1;
12963 		stat_countp = &stat_ino_limit_hit;
12964 		break;
12965 
12966 	case FLUSH_BLOCKS:
12967 	case FLUSH_BLOCKS_WAIT:
12968 		stat_blk_limit_push += 1;
12969 		req_clear_remove += 1;
12970 		stat_countp = &stat_blk_limit_hit;
12971 		break;
12972 
12973 	default:
12974 		panic("request_cleanup: unknown type");
12975 	}
12976 	/*
12977 	 * Hopefully the syncer daemon will catch up and awaken us.
12978 	 * We wait at most tickdelay before proceeding in any case.
12979 	 */
12980 	proc_waiting += 1;
12981 	if (callout_pending(&softdep_callout) == FALSE)
12982 		callout_reset(&softdep_callout, tickdelay > 2 ? tickdelay : 2,
12983 		    pause_timer, 0);
12984 
12985 	msleep((caddr_t)&proc_waiting, &lk, PPAUSE, "softupdate", 0);
12986 	proc_waiting -= 1;
12987 	return (1);
12988 }
12989 
12990 /*
12991  * Awaken processes pausing in request_cleanup and clear proc_waiting
12992  * to indicate that there is no longer a timer running.
12993  */
12994 static void
12995 pause_timer(arg)
12996 	void *arg;
12997 {
12998 
12999 	/*
13000 	 * The callout_ API has acquired mtx and will hold it around this
13001 	 * function call.
13002 	 */
13003 	*stat_countp += 1;
13004 	wakeup_one(&proc_waiting);
13005 	if (proc_waiting > 0)
13006 		callout_reset(&softdep_callout, tickdelay > 2 ? tickdelay : 2,
13007 		    pause_timer, 0);
13008 }
13009 
13010 /*
13011  * Flush out a directory with at least one removal dependency in an effort to
13012  * reduce the number of dirrem, freefile, and freeblks dependency structures.
13013  */
13014 static void
13015 clear_remove(void)
13016 {
13017 	struct pagedep_hashhead *pagedephd;
13018 	struct pagedep *pagedep;
13019 	static int next = 0;
13020 	struct mount *mp;
13021 	struct vnode *vp;
13022 	struct bufobj *bo;
13023 	int error, cnt;
13024 	ino_t ino;
13025 
13026 	mtx_assert(&lk, MA_OWNED);
13027 
13028 	for (cnt = 0; cnt <= pagedep_hash; cnt++) {
13029 		pagedephd = &pagedep_hashtbl[next++];
13030 		if (next > pagedep_hash)
13031 			next = 0;
13032 		LIST_FOREACH(pagedep, pagedephd, pd_hash) {
13033 			if (LIST_EMPTY(&pagedep->pd_dirremhd))
13034 				continue;
13035 			mp = pagedep->pd_list.wk_mp;
13036 			ino = pagedep->pd_ino;
13037 			if (vn_start_write(NULL, &mp, V_NOWAIT) != 0)
13038 				continue;
13039 			FREE_LOCK(&lk);
13040 
13041 			/*
13042 			 * Let unmount clear deps
13043 			 */
13044 			error = vfs_busy(mp, MBF_NOWAIT);
13045 			if (error != 0)
13046 				goto finish_write;
13047 			error = ffs_vgetf(mp, ino, LK_EXCLUSIVE, &vp,
13048 			     FFSV_FORCEINSMQ);
13049 			vfs_unbusy(mp);
13050 			if (error != 0) {
13051 				softdep_error("clear_remove: vget", error);
13052 				goto finish_write;
13053 			}
13054 			if ((error = ffs_syncvnode(vp, MNT_NOWAIT, 0)))
13055 				softdep_error("clear_remove: fsync", error);
13056 			bo = &vp->v_bufobj;
13057 			BO_LOCK(bo);
13058 			drain_output(vp);
13059 			BO_UNLOCK(bo);
13060 			vput(vp);
13061 		finish_write:
13062 			vn_finished_write(mp);
13063 			ACQUIRE_LOCK(&lk);
13064 			return;
13065 		}
13066 	}
13067 }
13068 
13069 /*
13070  * Clear out a block of dirty inodes in an effort to reduce
13071  * the number of inodedep dependency structures.
13072  */
13073 static void
13074 clear_inodedeps(void)
13075 {
13076 	struct inodedep_hashhead *inodedephd;
13077 	struct inodedep *inodedep;
13078 	static int next = 0;
13079 	struct mount *mp;
13080 	struct vnode *vp;
13081 	struct fs *fs;
13082 	int error, cnt;
13083 	ino_t firstino, lastino, ino;
13084 
13085 	mtx_assert(&lk, MA_OWNED);
13086 	/*
13087 	 * Pick a random inode dependency to be cleared.
13088 	 * We will then gather up all the inodes in its block
13089 	 * that have dependencies and flush them out.
13090 	 */
13091 	for (cnt = 0; cnt <= inodedep_hash; cnt++) {
13092 		inodedephd = &inodedep_hashtbl[next++];
13093 		if (next > inodedep_hash)
13094 			next = 0;
13095 		if ((inodedep = LIST_FIRST(inodedephd)) != NULL)
13096 			break;
13097 	}
13098 	if (inodedep == NULL)
13099 		return;
13100 	fs = inodedep->id_fs;
13101 	mp = inodedep->id_list.wk_mp;
13102 	/*
13103 	 * Find the last inode in the block with dependencies.
13104 	 */
13105 	firstino = inodedep->id_ino & ~(INOPB(fs) - 1);
13106 	for (lastino = firstino + INOPB(fs) - 1; lastino > firstino; lastino--)
13107 		if (inodedep_lookup(mp, lastino, 0, &inodedep) != 0)
13108 			break;
13109 	/*
13110 	 * Asynchronously push all but the last inode with dependencies.
13111 	 * Synchronously push the last inode with dependencies to ensure
13112 	 * that the inode block gets written to free up the inodedeps.
13113 	 */
13114 	for (ino = firstino; ino <= lastino; ino++) {
13115 		if (inodedep_lookup(mp, ino, 0, &inodedep) == 0)
13116 			continue;
13117 		if (vn_start_write(NULL, &mp, V_NOWAIT) != 0)
13118 			continue;
13119 		FREE_LOCK(&lk);
13120 		error = vfs_busy(mp, MBF_NOWAIT); /* Let unmount clear deps */
13121 		if (error != 0) {
13122 			vn_finished_write(mp);
13123 			ACQUIRE_LOCK(&lk);
13124 			return;
13125 		}
13126 		if ((error = ffs_vgetf(mp, ino, LK_EXCLUSIVE, &vp,
13127 		    FFSV_FORCEINSMQ)) != 0) {
13128 			softdep_error("clear_inodedeps: vget", error);
13129 			vfs_unbusy(mp);
13130 			vn_finished_write(mp);
13131 			ACQUIRE_LOCK(&lk);
13132 			return;
13133 		}
13134 		vfs_unbusy(mp);
13135 		if (ino == lastino) {
13136 			if ((error = ffs_syncvnode(vp, MNT_WAIT, 0)))
13137 				softdep_error("clear_inodedeps: fsync1", error);
13138 		} else {
13139 			if ((error = ffs_syncvnode(vp, MNT_NOWAIT, 0)))
13140 				softdep_error("clear_inodedeps: fsync2", error);
13141 			BO_LOCK(&vp->v_bufobj);
13142 			drain_output(vp);
13143 			BO_UNLOCK(&vp->v_bufobj);
13144 		}
13145 		vput(vp);
13146 		vn_finished_write(mp);
13147 		ACQUIRE_LOCK(&lk);
13148 	}
13149 }
13150 
13151 void
13152 softdep_buf_append(bp, wkhd)
13153 	struct buf *bp;
13154 	struct workhead *wkhd;
13155 {
13156 	struct worklist *wk;
13157 
13158 	ACQUIRE_LOCK(&lk);
13159 	while ((wk = LIST_FIRST(wkhd)) != NULL) {
13160 		WORKLIST_REMOVE(wk);
13161 		WORKLIST_INSERT(&bp->b_dep, wk);
13162 	}
13163 	FREE_LOCK(&lk);
13164 
13165 }
13166 
13167 void
13168 softdep_inode_append(ip, cred, wkhd)
13169 	struct inode *ip;
13170 	struct ucred *cred;
13171 	struct workhead *wkhd;
13172 {
13173 	struct buf *bp;
13174 	struct fs *fs;
13175 	int error;
13176 
13177 	fs = ip->i_fs;
13178 	error = bread(ip->i_devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
13179 	    (int)fs->fs_bsize, cred, &bp);
13180 	if (error) {
13181 		softdep_freework(wkhd);
13182 		return;
13183 	}
13184 	softdep_buf_append(bp, wkhd);
13185 	bqrelse(bp);
13186 }
13187 
13188 void
13189 softdep_freework(wkhd)
13190 	struct workhead *wkhd;
13191 {
13192 
13193 	ACQUIRE_LOCK(&lk);
13194 	handle_jwork(wkhd);
13195 	FREE_LOCK(&lk);
13196 }
13197 
13198 /*
13199  * Function to determine if the buffer has outstanding dependencies
13200  * that will cause a roll-back if the buffer is written. If wantcount
13201  * is set, return number of dependencies, otherwise just yes or no.
13202  */
13203 static int
13204 softdep_count_dependencies(bp, wantcount)
13205 	struct buf *bp;
13206 	int wantcount;
13207 {
13208 	struct worklist *wk;
13209 	struct bmsafemap *bmsafemap;
13210 	struct freework *freework;
13211 	struct inodedep *inodedep;
13212 	struct indirdep *indirdep;
13213 	struct freeblks *freeblks;
13214 	struct allocindir *aip;
13215 	struct pagedep *pagedep;
13216 	struct dirrem *dirrem;
13217 	struct newblk *newblk;
13218 	struct mkdir *mkdir;
13219 	struct diradd *dap;
13220 	int i, retval;
13221 
13222 	retval = 0;
13223 	ACQUIRE_LOCK(&lk);
13224 	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
13225 		switch (wk->wk_type) {
13226 
13227 		case D_INODEDEP:
13228 			inodedep = WK_INODEDEP(wk);
13229 			if ((inodedep->id_state & DEPCOMPLETE) == 0) {
13230 				/* bitmap allocation dependency */
13231 				retval += 1;
13232 				if (!wantcount)
13233 					goto out;
13234 			}
13235 			if (TAILQ_FIRST(&inodedep->id_inoupdt)) {
13236 				/* direct block pointer dependency */
13237 				retval += 1;
13238 				if (!wantcount)
13239 					goto out;
13240 			}
13241 			if (TAILQ_FIRST(&inodedep->id_extupdt)) {
13242 				/* direct block pointer dependency */
13243 				retval += 1;
13244 				if (!wantcount)
13245 					goto out;
13246 			}
13247 			if (TAILQ_FIRST(&inodedep->id_inoreflst)) {
13248 				/* Add reference dependency. */
13249 				retval += 1;
13250 				if (!wantcount)
13251 					goto out;
13252 			}
13253 			continue;
13254 
13255 		case D_INDIRDEP:
13256 			indirdep = WK_INDIRDEP(wk);
13257 
13258 			TAILQ_FOREACH(freework, &indirdep->ir_trunc, fw_next) {
13259 				/* indirect truncation dependency */
13260 				retval += 1;
13261 				if (!wantcount)
13262 					goto out;
13263 			}
13264 
13265 			LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) {
13266 				/* indirect block pointer dependency */
13267 				retval += 1;
13268 				if (!wantcount)
13269 					goto out;
13270 			}
13271 			continue;
13272 
13273 		case D_PAGEDEP:
13274 			pagedep = WK_PAGEDEP(wk);
13275 			LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next) {
13276 				if (LIST_FIRST(&dirrem->dm_jremrefhd)) {
13277 					/* Journal remove ref dependency. */
13278 					retval += 1;
13279 					if (!wantcount)
13280 						goto out;
13281 				}
13282 			}
13283 			for (i = 0; i < DAHASHSZ; i++) {
13284 
13285 				LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) {
13286 					/* directory entry dependency */
13287 					retval += 1;
13288 					if (!wantcount)
13289 						goto out;
13290 				}
13291 			}
13292 			continue;
13293 
13294 		case D_BMSAFEMAP:
13295 			bmsafemap = WK_BMSAFEMAP(wk);
13296 			if (LIST_FIRST(&bmsafemap->sm_jaddrefhd)) {
13297 				/* Add reference dependency. */
13298 				retval += 1;
13299 				if (!wantcount)
13300 					goto out;
13301 			}
13302 			if (LIST_FIRST(&bmsafemap->sm_jnewblkhd)) {
13303 				/* Allocate block dependency. */
13304 				retval += 1;
13305 				if (!wantcount)
13306 					goto out;
13307 			}
13308 			continue;
13309 
13310 		case D_FREEBLKS:
13311 			freeblks = WK_FREEBLKS(wk);
13312 			if (LIST_FIRST(&freeblks->fb_jblkdephd)) {
13313 				/* Freeblk journal dependency. */
13314 				retval += 1;
13315 				if (!wantcount)
13316 					goto out;
13317 			}
13318 			continue;
13319 
13320 		case D_ALLOCDIRECT:
13321 		case D_ALLOCINDIR:
13322 			newblk = WK_NEWBLK(wk);
13323 			if (newblk->nb_jnewblk) {
13324 				/* Journal allocate dependency. */
13325 				retval += 1;
13326 				if (!wantcount)
13327 					goto out;
13328 			}
13329 			continue;
13330 
13331 		case D_MKDIR:
13332 			mkdir = WK_MKDIR(wk);
13333 			if (mkdir->md_jaddref) {
13334 				/* Journal reference dependency. */
13335 				retval += 1;
13336 				if (!wantcount)
13337 					goto out;
13338 			}
13339 			continue;
13340 
13341 		case D_FREEWORK:
13342 		case D_FREEDEP:
13343 		case D_JSEGDEP:
13344 		case D_JSEG:
13345 		case D_SBDEP:
13346 			/* never a dependency on these blocks */
13347 			continue;
13348 
13349 		default:
13350 			panic("softdep_count_dependencies: Unexpected type %s",
13351 			    TYPENAME(wk->wk_type));
13352 			/* NOTREACHED */
13353 		}
13354 	}
13355 out:
13356 	FREE_LOCK(&lk);
13357 	return retval;
13358 }
13359 
13360 /*
13361  * Acquire exclusive access to a buffer.
13362  * Must be called with a locked mtx parameter.
13363  * Return acquired buffer or NULL on failure.
13364  */
13365 static struct buf *
13366 getdirtybuf(bp, mtx, waitfor)
13367 	struct buf *bp;
13368 	struct mtx *mtx;
13369 	int waitfor;
13370 {
13371 	int error;
13372 
13373 	mtx_assert(mtx, MA_OWNED);
13374 	if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0) {
13375 		if (waitfor != MNT_WAIT)
13376 			return (NULL);
13377 		error = BUF_LOCK(bp,
13378 		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, mtx);
13379 		/*
13380 		 * Even if we sucessfully acquire bp here, we have dropped
13381 		 * mtx, which may violates our guarantee.
13382 		 */
13383 		if (error == 0)
13384 			BUF_UNLOCK(bp);
13385 		else if (error != ENOLCK)
13386 			panic("getdirtybuf: inconsistent lock: %d", error);
13387 		mtx_lock(mtx);
13388 		return (NULL);
13389 	}
13390 	if ((bp->b_vflags & BV_BKGRDINPROG) != 0) {
13391 		if (mtx == &lk && waitfor == MNT_WAIT) {
13392 			mtx_unlock(mtx);
13393 			BO_LOCK(bp->b_bufobj);
13394 			BUF_UNLOCK(bp);
13395 			if ((bp->b_vflags & BV_BKGRDINPROG) != 0) {
13396 				bp->b_vflags |= BV_BKGRDWAIT;
13397 				msleep(&bp->b_xflags, BO_MTX(bp->b_bufobj),
13398 				       PRIBIO | PDROP, "getbuf", 0);
13399 			} else
13400 				BO_UNLOCK(bp->b_bufobj);
13401 			mtx_lock(mtx);
13402 			return (NULL);
13403 		}
13404 		BUF_UNLOCK(bp);
13405 		if (waitfor != MNT_WAIT)
13406 			return (NULL);
13407 		/*
13408 		 * The mtx argument must be bp->b_vp's mutex in
13409 		 * this case.
13410 		 */
13411 #ifdef	DEBUG_VFS_LOCKS
13412 		if (bp->b_vp->v_type != VCHR)
13413 			ASSERT_BO_LOCKED(bp->b_bufobj);
13414 #endif
13415 		bp->b_vflags |= BV_BKGRDWAIT;
13416 		msleep(&bp->b_xflags, mtx, PRIBIO, "getbuf", 0);
13417 		return (NULL);
13418 	}
13419 	if ((bp->b_flags & B_DELWRI) == 0) {
13420 		BUF_UNLOCK(bp);
13421 		return (NULL);
13422 	}
13423 	bremfree(bp);
13424 	return (bp);
13425 }
13426 
13427 
13428 /*
13429  * Check if it is safe to suspend the file system now.  On entry,
13430  * the vnode interlock for devvp should be held.  Return 0 with
13431  * the mount interlock held if the file system can be suspended now,
13432  * otherwise return EAGAIN with the mount interlock held.
13433  */
13434 int
13435 softdep_check_suspend(struct mount *mp,
13436 		      struct vnode *devvp,
13437 		      int softdep_deps,
13438 		      int softdep_accdeps,
13439 		      int secondary_writes,
13440 		      int secondary_accwrites)
13441 {
13442 	struct bufobj *bo;
13443 	struct ufsmount *ump;
13444 	int error;
13445 
13446 	ump = VFSTOUFS(mp);
13447 	bo = &devvp->v_bufobj;
13448 	ASSERT_BO_LOCKED(bo);
13449 
13450 	for (;;) {
13451 		if (!TRY_ACQUIRE_LOCK(&lk)) {
13452 			BO_UNLOCK(bo);
13453 			ACQUIRE_LOCK(&lk);
13454 			FREE_LOCK(&lk);
13455 			BO_LOCK(bo);
13456 			continue;
13457 		}
13458 		MNT_ILOCK(mp);
13459 		if (mp->mnt_secondary_writes != 0) {
13460 			FREE_LOCK(&lk);
13461 			BO_UNLOCK(bo);
13462 			msleep(&mp->mnt_secondary_writes,
13463 			       MNT_MTX(mp),
13464 			       (PUSER - 1) | PDROP, "secwr", 0);
13465 			BO_LOCK(bo);
13466 			continue;
13467 		}
13468 		break;
13469 	}
13470 
13471 	/*
13472 	 * Reasons for needing more work before suspend:
13473 	 * - Dirty buffers on devvp.
13474 	 * - Softdep activity occurred after start of vnode sync loop
13475 	 * - Secondary writes occurred after start of vnode sync loop
13476 	 */
13477 	error = 0;
13478 	if (bo->bo_numoutput > 0 ||
13479 	    bo->bo_dirty.bv_cnt > 0 ||
13480 	    softdep_deps != 0 ||
13481 	    ump->softdep_deps != 0 ||
13482 	    softdep_accdeps != ump->softdep_accdeps ||
13483 	    secondary_writes != 0 ||
13484 	    mp->mnt_secondary_writes != 0 ||
13485 	    secondary_accwrites != mp->mnt_secondary_accwrites)
13486 		error = EAGAIN;
13487 	FREE_LOCK(&lk);
13488 	BO_UNLOCK(bo);
13489 	return (error);
13490 }
13491 
13492 
13493 /*
13494  * Get the number of dependency structures for the file system, both
13495  * the current number and the total number allocated.  These will
13496  * later be used to detect that softdep processing has occurred.
13497  */
13498 void
13499 softdep_get_depcounts(struct mount *mp,
13500 		      int *softdep_depsp,
13501 		      int *softdep_accdepsp)
13502 {
13503 	struct ufsmount *ump;
13504 
13505 	ump = VFSTOUFS(mp);
13506 	ACQUIRE_LOCK(&lk);
13507 	*softdep_depsp = ump->softdep_deps;
13508 	*softdep_accdepsp = ump->softdep_accdeps;
13509 	FREE_LOCK(&lk);
13510 }
13511 
13512 /*
13513  * Wait for pending output on a vnode to complete.
13514  * Must be called with vnode lock and interlock locked.
13515  *
13516  * XXX: Should just be a call to bufobj_wwait().
13517  */
13518 static void
13519 drain_output(vp)
13520 	struct vnode *vp;
13521 {
13522 	struct bufobj *bo;
13523 
13524 	bo = &vp->v_bufobj;
13525 	ASSERT_VOP_LOCKED(vp, "drain_output");
13526 	ASSERT_BO_LOCKED(bo);
13527 
13528 	while (bo->bo_numoutput) {
13529 		bo->bo_flag |= BO_WWAIT;
13530 		msleep((caddr_t)&bo->bo_numoutput,
13531 		    BO_MTX(bo), PRIBIO + 1, "drainvp", 0);
13532 	}
13533 }
13534 
13535 /*
13536  * Called whenever a buffer that is being invalidated or reallocated
13537  * contains dependencies. This should only happen if an I/O error has
13538  * occurred. The routine is called with the buffer locked.
13539  */
13540 static void
13541 softdep_deallocate_dependencies(bp)
13542 	struct buf *bp;
13543 {
13544 
13545 	if ((bp->b_ioflags & BIO_ERROR) == 0)
13546 		panic("softdep_deallocate_dependencies: dangling deps");
13547 	if (bp->b_vp != NULL && bp->b_vp->v_mount != NULL)
13548 		softdep_error(bp->b_vp->v_mount->mnt_stat.f_mntonname, bp->b_error);
13549 	else
13550 		printf("softdep_deallocate_dependencies: "
13551 		    "got error %d while accessing filesystem\n", bp->b_error);
13552 	if (bp->b_error != ENXIO)
13553 		panic("softdep_deallocate_dependencies: unrecovered I/O error");
13554 }
13555 
13556 /*
13557  * Function to handle asynchronous write errors in the filesystem.
13558  */
13559 static void
13560 softdep_error(func, error)
13561 	char *func;
13562 	int error;
13563 {
13564 
13565 	/* XXX should do something better! */
13566 	printf("%s: got error %d while accessing filesystem\n", func, error);
13567 }
13568 
13569 #ifdef DDB
13570 
13571 static void
13572 inodedep_print(struct inodedep *inodedep, int verbose)
13573 {
13574 	db_printf("%p fs %p st %x ino %jd inoblk %jd delta %d nlink %d"
13575 	    " saveino %p\n",
13576 	    inodedep, inodedep->id_fs, inodedep->id_state,
13577 	    (intmax_t)inodedep->id_ino,
13578 	    (intmax_t)fsbtodb(inodedep->id_fs,
13579 	    ino_to_fsba(inodedep->id_fs, inodedep->id_ino)),
13580 	    inodedep->id_nlinkdelta, inodedep->id_savednlink,
13581 	    inodedep->id_savedino1);
13582 
13583 	if (verbose == 0)
13584 		return;
13585 
13586 	db_printf("\tpendinghd %p, bufwait %p, inowait %p, inoreflst %p, "
13587 	    "mkdiradd %p\n",
13588 	    LIST_FIRST(&inodedep->id_pendinghd),
13589 	    LIST_FIRST(&inodedep->id_bufwait),
13590 	    LIST_FIRST(&inodedep->id_inowait),
13591 	    TAILQ_FIRST(&inodedep->id_inoreflst),
13592 	    inodedep->id_mkdiradd);
13593 	db_printf("\tinoupdt %p, newinoupdt %p, extupdt %p, newextupdt %p\n",
13594 	    TAILQ_FIRST(&inodedep->id_inoupdt),
13595 	    TAILQ_FIRST(&inodedep->id_newinoupdt),
13596 	    TAILQ_FIRST(&inodedep->id_extupdt),
13597 	    TAILQ_FIRST(&inodedep->id_newextupdt));
13598 }
13599 
13600 DB_SHOW_COMMAND(inodedep, db_show_inodedep)
13601 {
13602 
13603 	if (have_addr == 0) {
13604 		db_printf("Address required\n");
13605 		return;
13606 	}
13607 	inodedep_print((struct inodedep*)addr, 1);
13608 }
13609 
13610 DB_SHOW_COMMAND(inodedeps, db_show_inodedeps)
13611 {
13612 	struct inodedep_hashhead *inodedephd;
13613 	struct inodedep *inodedep;
13614 	struct fs *fs;
13615 	int cnt;
13616 
13617 	fs = have_addr ? (struct fs *)addr : NULL;
13618 	for (cnt = 0; cnt < inodedep_hash; cnt++) {
13619 		inodedephd = &inodedep_hashtbl[cnt];
13620 		LIST_FOREACH(inodedep, inodedephd, id_hash) {
13621 			if (fs != NULL && fs != inodedep->id_fs)
13622 				continue;
13623 			inodedep_print(inodedep, 0);
13624 		}
13625 	}
13626 }
13627 
13628 DB_SHOW_COMMAND(worklist, db_show_worklist)
13629 {
13630 	struct worklist *wk;
13631 
13632 	if (have_addr == 0) {
13633 		db_printf("Address required\n");
13634 		return;
13635 	}
13636 	wk = (struct worklist *)addr;
13637 	printf("worklist: %p type %s state 0x%X\n",
13638 	    wk, TYPENAME(wk->wk_type), wk->wk_state);
13639 }
13640 
13641 DB_SHOW_COMMAND(workhead, db_show_workhead)
13642 {
13643 	struct workhead *wkhd;
13644 	struct worklist *wk;
13645 	int i;
13646 
13647 	if (have_addr == 0) {
13648 		db_printf("Address required\n");
13649 		return;
13650 	}
13651 	wkhd = (struct workhead *)addr;
13652 	wk = LIST_FIRST(wkhd);
13653 	for (i = 0; i < 100 && wk != NULL; i++, wk = LIST_NEXT(wk, wk_list))
13654 		db_printf("worklist: %p type %s state 0x%X",
13655 		    wk, TYPENAME(wk->wk_type), wk->wk_state);
13656 	if (i == 100)
13657 		db_printf("workhead overflow");
13658 	printf("\n");
13659 }
13660 
13661 
13662 DB_SHOW_COMMAND(mkdirs, db_show_mkdirs)
13663 {
13664 	struct jaddref *jaddref;
13665 	struct diradd *diradd;
13666 	struct mkdir *mkdir;
13667 
13668 	LIST_FOREACH(mkdir, &mkdirlisthd, md_mkdirs) {
13669 		diradd = mkdir->md_diradd;
13670 		db_printf("mkdir: %p state 0x%X dap %p state 0x%X",
13671 		    mkdir, mkdir->md_state, diradd, diradd->da_state);
13672 		if ((jaddref = mkdir->md_jaddref) != NULL)
13673 			db_printf(" jaddref %p jaddref state 0x%X",
13674 			    jaddref, jaddref->ja_state);
13675 		db_printf("\n");
13676 	}
13677 }
13678 
13679 #endif /* DDB */
13680 
13681 #endif /* SOFTUPDATES */
13682