1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright 1998, 2000 Marshall Kirk McKusick. 5 * Copyright 2009, 2010 Jeffrey W. Roberson <jeff@FreeBSD.org> 6 * All rights reserved. 7 * 8 * The soft updates code is derived from the appendix of a University 9 * of Michigan technical report (Gregory R. Ganger and Yale N. Patt, 10 * "Soft Updates: A Solution to the Metadata Update Problem in File 11 * Systems", CSE-TR-254-95, August 1995). 12 * 13 * Further information about soft updates can be obtained from: 14 * 15 * Marshall Kirk McKusick http://www.mckusick.com/softdep/ 16 * 1614 Oxford Street mckusick@mckusick.com 17 * Berkeley, CA 94709-1608 +1-510-843-9542 18 * USA 19 * 20 * Redistribution and use in source and binary forms, with or without 21 * modification, are permitted provided that the following conditions 22 * are met: 23 * 24 * 1. Redistributions of source code must retain the above copyright 25 * notice, this list of conditions and the following disclaimer. 26 * 2. Redistributions in binary form must reproduce the above copyright 27 * notice, this list of conditions and the following disclaimer in the 28 * documentation and/or other materials provided with the distribution. 29 * 30 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR 31 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 32 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 33 * IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT, 34 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 35 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS 36 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND 37 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR 38 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 39 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 40 * 41 * from: @(#)ffs_softdep.c 9.59 (McKusick) 6/21/00 42 */ 43 44 #include <sys/cdefs.h> 45 __FBSDID("$FreeBSD$"); 46 47 #include "opt_ffs.h" 48 #include "opt_quota.h" 49 #include "opt_ddb.h" 50 51 #include <sys/param.h> 52 #include <sys/kernel.h> 53 #include <sys/systm.h> 54 #include <sys/bio.h> 55 #include <sys/buf.h> 56 #include <sys/kdb.h> 57 #include <sys/kthread.h> 58 #include <sys/ktr.h> 59 #include <sys/limits.h> 60 #include <sys/lock.h> 61 #include <sys/malloc.h> 62 #include <sys/mount.h> 63 #include <sys/mutex.h> 64 #include <sys/namei.h> 65 #include <sys/priv.h> 66 #include <sys/proc.h> 67 #include <sys/racct.h> 68 #include <sys/rwlock.h> 69 #include <sys/stat.h> 70 #include <sys/sysctl.h> 71 #include <sys/syslog.h> 72 #include <sys/vnode.h> 73 #include <sys/conf.h> 74 75 #include <ufs/ufs/dir.h> 76 #include <ufs/ufs/extattr.h> 77 #include <ufs/ufs/quota.h> 78 #include <ufs/ufs/inode.h> 79 #include <ufs/ufs/ufsmount.h> 80 #include <ufs/ffs/fs.h> 81 #include <ufs/ffs/softdep.h> 82 #include <ufs/ffs/ffs_extern.h> 83 #include <ufs/ufs/ufs_extern.h> 84 85 #include <vm/vm.h> 86 #include <vm/vm_extern.h> 87 #include <vm/vm_object.h> 88 89 #include <geom/geom.h> 90 #include <geom/geom_vfs.h> 91 92 #include <ddb/ddb.h> 93 94 #define KTR_SUJ 0 /* Define to KTR_SPARE. */ 95 96 #ifndef SOFTUPDATES 97 98 int 99 softdep_flushfiles(struct mount *oldmnt, 100 int flags, 101 struct thread *td) 102 { 103 104 panic("softdep_flushfiles called"); 105 } 106 107 int 108 softdep_mount(struct vnode *devvp, 109 struct mount *mp, 110 struct fs *fs, 111 struct ucred *cred) 112 { 113 114 return (0); 115 } 116 117 void 118 softdep_initialize(void) 119 { 120 121 return; 122 } 123 124 void 125 softdep_uninitialize(void) 126 { 127 128 return; 129 } 130 131 void 132 softdep_unmount(struct mount *mp) 133 { 134 135 panic("softdep_unmount called"); 136 } 137 138 void 139 softdep_setup_sbupdate(struct ufsmount *ump, 140 struct fs *fs, 141 struct buf *bp) 142 { 143 144 panic("softdep_setup_sbupdate called"); 145 } 146 147 void 148 softdep_setup_inomapdep(struct buf *bp, 149 struct inode *ip, 150 ino_t newinum, 151 int mode) 152 { 153 154 panic("softdep_setup_inomapdep called"); 155 } 156 157 void 158 softdep_setup_blkmapdep(struct buf *bp, 159 struct mount *mp, 160 ufs2_daddr_t newblkno, 161 int frags, 162 int oldfrags) 163 { 164 165 panic("softdep_setup_blkmapdep called"); 166 } 167 168 void 169 softdep_setup_allocdirect(struct inode *ip, 170 ufs_lbn_t lbn, 171 ufs2_daddr_t newblkno, 172 ufs2_daddr_t oldblkno, 173 long newsize, 174 long oldsize, 175 struct buf *bp) 176 { 177 178 panic("softdep_setup_allocdirect called"); 179 } 180 181 void 182 softdep_setup_allocext(struct inode *ip, 183 ufs_lbn_t lbn, 184 ufs2_daddr_t newblkno, 185 ufs2_daddr_t oldblkno, 186 long newsize, 187 long oldsize, 188 struct buf *bp) 189 { 190 191 panic("softdep_setup_allocext called"); 192 } 193 194 void 195 softdep_setup_allocindir_page(struct inode *ip, 196 ufs_lbn_t lbn, 197 struct buf *bp, 198 int ptrno, 199 ufs2_daddr_t newblkno, 200 ufs2_daddr_t oldblkno, 201 struct buf *nbp) 202 { 203 204 panic("softdep_setup_allocindir_page called"); 205 } 206 207 void 208 softdep_setup_allocindir_meta(struct buf *nbp, 209 struct inode *ip, 210 struct buf *bp, 211 int ptrno, 212 ufs2_daddr_t newblkno) 213 { 214 215 panic("softdep_setup_allocindir_meta called"); 216 } 217 218 void 219 softdep_journal_freeblocks(struct inode *ip, 220 struct ucred *cred, 221 off_t length, 222 int flags) 223 { 224 225 panic("softdep_journal_freeblocks called"); 226 } 227 228 void 229 softdep_journal_fsync(struct inode *ip) 230 { 231 232 panic("softdep_journal_fsync called"); 233 } 234 235 void 236 softdep_setup_freeblocks(struct inode *ip, 237 off_t length, 238 int flags) 239 { 240 241 panic("softdep_setup_freeblocks called"); 242 } 243 244 void 245 softdep_freefile(struct vnode *pvp, 246 ino_t ino, 247 int mode) 248 { 249 250 panic("softdep_freefile called"); 251 } 252 253 int 254 softdep_setup_directory_add(struct buf *bp, 255 struct inode *dp, 256 off_t diroffset, 257 ino_t newinum, 258 struct buf *newdirbp, 259 int isnewblk) 260 { 261 262 panic("softdep_setup_directory_add called"); 263 } 264 265 void 266 softdep_change_directoryentry_offset(struct buf *bp, 267 struct inode *dp, 268 caddr_t base, 269 caddr_t oldloc, 270 caddr_t newloc, 271 int entrysize) 272 { 273 274 panic("softdep_change_directoryentry_offset called"); 275 } 276 277 void 278 softdep_setup_remove(struct buf *bp, 279 struct inode *dp, 280 struct inode *ip, 281 int isrmdir) 282 { 283 284 panic("softdep_setup_remove called"); 285 } 286 287 void 288 softdep_setup_directory_change(struct buf *bp, 289 struct inode *dp, 290 struct inode *ip, 291 ino_t newinum, 292 int isrmdir) 293 { 294 295 panic("softdep_setup_directory_change called"); 296 } 297 298 void 299 softdep_setup_blkfree(struct mount *mp, 300 struct buf *bp, 301 ufs2_daddr_t blkno, 302 int frags, 303 struct workhead *wkhd) 304 { 305 306 panic("%s called", __FUNCTION__); 307 } 308 309 void 310 softdep_setup_inofree(struct mount *mp, 311 struct buf *bp, 312 ino_t ino, 313 struct workhead *wkhd) 314 { 315 316 panic("%s called", __FUNCTION__); 317 } 318 319 void 320 softdep_setup_unlink(struct inode *dp, struct inode *ip) 321 { 322 323 panic("%s called", __FUNCTION__); 324 } 325 326 void 327 softdep_setup_link(struct inode *dp, struct inode *ip) 328 { 329 330 panic("%s called", __FUNCTION__); 331 } 332 333 void 334 softdep_revert_link(struct inode *dp, struct inode *ip) 335 { 336 337 panic("%s called", __FUNCTION__); 338 } 339 340 void 341 softdep_setup_rmdir(struct inode *dp, struct inode *ip) 342 { 343 344 panic("%s called", __FUNCTION__); 345 } 346 347 void 348 softdep_revert_rmdir(struct inode *dp, struct inode *ip) 349 { 350 351 panic("%s called", __FUNCTION__); 352 } 353 354 void 355 softdep_setup_create(struct inode *dp, struct inode *ip) 356 { 357 358 panic("%s called", __FUNCTION__); 359 } 360 361 void 362 softdep_revert_create(struct inode *dp, struct inode *ip) 363 { 364 365 panic("%s called", __FUNCTION__); 366 } 367 368 void 369 softdep_setup_mkdir(struct inode *dp, struct inode *ip) 370 { 371 372 panic("%s called", __FUNCTION__); 373 } 374 375 void 376 softdep_revert_mkdir(struct inode *dp, struct inode *ip) 377 { 378 379 panic("%s called", __FUNCTION__); 380 } 381 382 void 383 softdep_setup_dotdot_link(struct inode *dp, struct inode *ip) 384 { 385 386 panic("%s called", __FUNCTION__); 387 } 388 389 int 390 softdep_prealloc(struct vnode *vp, int waitok) 391 { 392 393 panic("%s called", __FUNCTION__); 394 } 395 396 int 397 softdep_journal_lookup(struct mount *mp, struct vnode **vpp) 398 { 399 400 return (ENOENT); 401 } 402 403 void 404 softdep_change_linkcnt(struct inode *ip) 405 { 406 407 panic("softdep_change_linkcnt called"); 408 } 409 410 void 411 softdep_load_inodeblock(struct inode *ip) 412 { 413 414 panic("softdep_load_inodeblock called"); 415 } 416 417 void 418 softdep_update_inodeblock(struct inode *ip, 419 struct buf *bp, 420 int waitfor) 421 { 422 423 panic("softdep_update_inodeblock called"); 424 } 425 426 int 427 softdep_fsync(struct vnode *vp) /* the "in_core" copy of the inode */ 428 { 429 430 return (0); 431 } 432 433 void 434 softdep_fsync_mountdev(struct vnode *vp) 435 { 436 437 return; 438 } 439 440 int 441 softdep_flushworklist(struct mount *oldmnt, 442 int *countp, 443 struct thread *td) 444 { 445 446 *countp = 0; 447 return (0); 448 } 449 450 int 451 softdep_sync_metadata(struct vnode *vp) 452 { 453 454 panic("softdep_sync_metadata called"); 455 } 456 457 int 458 softdep_sync_buf(struct vnode *vp, struct buf *bp, int waitfor) 459 { 460 461 panic("softdep_sync_buf called"); 462 } 463 464 int 465 softdep_slowdown(struct vnode *vp) 466 { 467 468 panic("softdep_slowdown called"); 469 } 470 471 int 472 softdep_request_cleanup(struct fs *fs, 473 struct vnode *vp, 474 struct ucred *cred, 475 int resource) 476 { 477 478 return (0); 479 } 480 481 int 482 softdep_check_suspend(struct mount *mp, 483 struct vnode *devvp, 484 int softdep_depcnt, 485 int softdep_accdepcnt, 486 int secondary_writes, 487 int secondary_accwrites) 488 { 489 struct bufobj *bo; 490 int error; 491 492 (void) softdep_depcnt, 493 (void) softdep_accdepcnt; 494 495 bo = &devvp->v_bufobj; 496 ASSERT_BO_WLOCKED(bo); 497 498 MNT_ILOCK(mp); 499 while (mp->mnt_secondary_writes != 0) { 500 BO_UNLOCK(bo); 501 msleep(&mp->mnt_secondary_writes, MNT_MTX(mp), 502 (PUSER - 1) | PDROP, "secwr", 0); 503 BO_LOCK(bo); 504 MNT_ILOCK(mp); 505 } 506 507 /* 508 * Reasons for needing more work before suspend: 509 * - Dirty buffers on devvp. 510 * - Secondary writes occurred after start of vnode sync loop 511 */ 512 error = 0; 513 if (bo->bo_numoutput > 0 || 514 bo->bo_dirty.bv_cnt > 0 || 515 secondary_writes != 0 || 516 mp->mnt_secondary_writes != 0 || 517 secondary_accwrites != mp->mnt_secondary_accwrites) 518 error = EAGAIN; 519 BO_UNLOCK(bo); 520 return (error); 521 } 522 523 void 524 softdep_get_depcounts(struct mount *mp, 525 int *softdepactivep, 526 int *softdepactiveaccp) 527 { 528 (void) mp; 529 *softdepactivep = 0; 530 *softdepactiveaccp = 0; 531 } 532 533 void 534 softdep_buf_append(struct buf *bp, struct workhead *wkhd) 535 { 536 537 panic("softdep_buf_appendwork called"); 538 } 539 540 void 541 softdep_inode_append(struct inode *ip, 542 struct ucred *cred, 543 struct workhead *wkhd) 544 { 545 546 panic("softdep_inode_appendwork called"); 547 } 548 549 void 550 softdep_freework(struct workhead *wkhd) 551 { 552 553 panic("softdep_freework called"); 554 } 555 556 int 557 softdep_prerename(struct vnode *fdvp, 558 struct vnode *fvp, 559 struct vnode *tdvp, 560 struct vnode *tvp) 561 { 562 563 panic("softdep_prerename called"); 564 } 565 566 int 567 softdep_prelink(struct vnode *dvp, 568 struct vnode *vp, 569 struct componentname *cnp) 570 { 571 572 panic("softdep_prelink called"); 573 } 574 575 #else 576 577 FEATURE(softupdates, "FFS soft-updates support"); 578 579 static SYSCTL_NODE(_debug, OID_AUTO, softdep, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 580 "soft updates stats"); 581 static SYSCTL_NODE(_debug_softdep, OID_AUTO, total, 582 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 583 "total dependencies allocated"); 584 static SYSCTL_NODE(_debug_softdep, OID_AUTO, highuse, 585 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 586 "high use dependencies allocated"); 587 static SYSCTL_NODE(_debug_softdep, OID_AUTO, current, 588 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 589 "current dependencies allocated"); 590 static SYSCTL_NODE(_debug_softdep, OID_AUTO, write, 591 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 592 "current dependencies written"); 593 594 unsigned long dep_current[D_LAST + 1]; 595 unsigned long dep_highuse[D_LAST + 1]; 596 unsigned long dep_total[D_LAST + 1]; 597 unsigned long dep_write[D_LAST + 1]; 598 599 #define SOFTDEP_TYPE(type, str, long) \ 600 static MALLOC_DEFINE(M_ ## type, #str, long); \ 601 SYSCTL_ULONG(_debug_softdep_total, OID_AUTO, str, CTLFLAG_RD, \ 602 &dep_total[D_ ## type], 0, ""); \ 603 SYSCTL_ULONG(_debug_softdep_current, OID_AUTO, str, CTLFLAG_RD, \ 604 &dep_current[D_ ## type], 0, ""); \ 605 SYSCTL_ULONG(_debug_softdep_highuse, OID_AUTO, str, CTLFLAG_RD, \ 606 &dep_highuse[D_ ## type], 0, ""); \ 607 SYSCTL_ULONG(_debug_softdep_write, OID_AUTO, str, CTLFLAG_RD, \ 608 &dep_write[D_ ## type], 0, ""); 609 610 SOFTDEP_TYPE(PAGEDEP, pagedep, "File page dependencies"); 611 SOFTDEP_TYPE(INODEDEP, inodedep, "Inode dependencies"); 612 SOFTDEP_TYPE(BMSAFEMAP, bmsafemap, 613 "Block or frag allocated from cyl group map"); 614 SOFTDEP_TYPE(NEWBLK, newblk, "New block or frag allocation dependency"); 615 SOFTDEP_TYPE(ALLOCDIRECT, allocdirect, "Block or frag dependency for an inode"); 616 SOFTDEP_TYPE(INDIRDEP, indirdep, "Indirect block dependencies"); 617 SOFTDEP_TYPE(ALLOCINDIR, allocindir, "Block dependency for an indirect block"); 618 SOFTDEP_TYPE(FREEFRAG, freefrag, "Previously used frag for an inode"); 619 SOFTDEP_TYPE(FREEBLKS, freeblks, "Blocks freed from an inode"); 620 SOFTDEP_TYPE(FREEFILE, freefile, "Inode deallocated"); 621 SOFTDEP_TYPE(DIRADD, diradd, "New directory entry"); 622 SOFTDEP_TYPE(MKDIR, mkdir, "New directory"); 623 SOFTDEP_TYPE(DIRREM, dirrem, "Directory entry deleted"); 624 SOFTDEP_TYPE(NEWDIRBLK, newdirblk, "Unclaimed new directory block"); 625 SOFTDEP_TYPE(FREEWORK, freework, "free an inode block"); 626 SOFTDEP_TYPE(FREEDEP, freedep, "track a block free"); 627 SOFTDEP_TYPE(JADDREF, jaddref, "Journal inode ref add"); 628 SOFTDEP_TYPE(JREMREF, jremref, "Journal inode ref remove"); 629 SOFTDEP_TYPE(JMVREF, jmvref, "Journal inode ref move"); 630 SOFTDEP_TYPE(JNEWBLK, jnewblk, "Journal new block"); 631 SOFTDEP_TYPE(JFREEBLK, jfreeblk, "Journal free block"); 632 SOFTDEP_TYPE(JFREEFRAG, jfreefrag, "Journal free frag"); 633 SOFTDEP_TYPE(JSEG, jseg, "Journal segment"); 634 SOFTDEP_TYPE(JSEGDEP, jsegdep, "Journal segment complete"); 635 SOFTDEP_TYPE(SBDEP, sbdep, "Superblock write dependency"); 636 SOFTDEP_TYPE(JTRUNC, jtrunc, "Journal inode truncation"); 637 SOFTDEP_TYPE(JFSYNC, jfsync, "Journal fsync complete"); 638 639 static MALLOC_DEFINE(M_SENTINEL, "sentinel", "Worklist sentinel"); 640 641 static MALLOC_DEFINE(M_SAVEDINO, "savedino", "Saved inodes"); 642 static MALLOC_DEFINE(M_JBLOCKS, "jblocks", "Journal block locations"); 643 static MALLOC_DEFINE(M_MOUNTDATA, "softdep", "Softdep per-mount data"); 644 645 #define M_SOFTDEP_FLAGS (M_WAITOK) 646 647 /* 648 * translate from workitem type to memory type 649 * MUST match the defines above, such that memtype[D_XXX] == M_XXX 650 */ 651 static struct malloc_type *memtype[] = { 652 NULL, 653 M_PAGEDEP, 654 M_INODEDEP, 655 M_BMSAFEMAP, 656 M_NEWBLK, 657 M_ALLOCDIRECT, 658 M_INDIRDEP, 659 M_ALLOCINDIR, 660 M_FREEFRAG, 661 M_FREEBLKS, 662 M_FREEFILE, 663 M_DIRADD, 664 M_MKDIR, 665 M_DIRREM, 666 M_NEWDIRBLK, 667 M_FREEWORK, 668 M_FREEDEP, 669 M_JADDREF, 670 M_JREMREF, 671 M_JMVREF, 672 M_JNEWBLK, 673 M_JFREEBLK, 674 M_JFREEFRAG, 675 M_JSEG, 676 M_JSEGDEP, 677 M_SBDEP, 678 M_JTRUNC, 679 M_JFSYNC, 680 M_SENTINEL 681 }; 682 683 #define DtoM(type) (memtype[type]) 684 685 /* 686 * Names of malloc types. 687 */ 688 #define TYPENAME(type) \ 689 ((unsigned)(type) <= D_LAST && (unsigned)(type) >= D_FIRST ? \ 690 memtype[type]->ks_shortdesc : "???") 691 /* 692 * End system adaptation definitions. 693 */ 694 695 #define DOTDOT_OFFSET offsetof(struct dirtemplate, dotdot_ino) 696 #define DOT_OFFSET offsetof(struct dirtemplate, dot_ino) 697 698 /* 699 * Internal function prototypes. 700 */ 701 static void check_clear_deps(struct mount *); 702 static void softdep_error(char *, int); 703 static int softdep_prerename_vnode(struct ufsmount *, struct vnode *); 704 static int softdep_process_worklist(struct mount *, int); 705 static int softdep_waitidle(struct mount *, int); 706 static void drain_output(struct vnode *); 707 static struct buf *getdirtybuf(struct buf *, struct rwlock *, int); 708 static int check_inodedep_free(struct inodedep *); 709 static void clear_remove(struct mount *); 710 static void clear_inodedeps(struct mount *); 711 static void unlinked_inodedep(struct mount *, struct inodedep *); 712 static void clear_unlinked_inodedep(struct inodedep *); 713 static struct inodedep *first_unlinked_inodedep(struct ufsmount *); 714 static int flush_pagedep_deps(struct vnode *, struct mount *, 715 struct diraddhd *, struct buf *); 716 static int free_pagedep(struct pagedep *); 717 static int flush_newblk_dep(struct vnode *, struct mount *, ufs_lbn_t); 718 static int flush_inodedep_deps(struct vnode *, struct mount *, ino_t); 719 static int flush_deplist(struct allocdirectlst *, int, int *); 720 static int sync_cgs(struct mount *, int); 721 static int handle_written_filepage(struct pagedep *, struct buf *, int); 722 static int handle_written_sbdep(struct sbdep *, struct buf *); 723 static void initiate_write_sbdep(struct sbdep *); 724 static void diradd_inode_written(struct diradd *, struct inodedep *); 725 static int handle_written_indirdep(struct indirdep *, struct buf *, 726 struct buf**, int); 727 static int handle_written_inodeblock(struct inodedep *, struct buf *, int); 728 static int jnewblk_rollforward(struct jnewblk *, struct fs *, struct cg *, 729 uint8_t *); 730 static int handle_written_bmsafemap(struct bmsafemap *, struct buf *, int); 731 static void handle_written_jaddref(struct jaddref *); 732 static void handle_written_jremref(struct jremref *); 733 static void handle_written_jseg(struct jseg *, struct buf *); 734 static void handle_written_jnewblk(struct jnewblk *); 735 static void handle_written_jblkdep(struct jblkdep *); 736 static void handle_written_jfreefrag(struct jfreefrag *); 737 static void complete_jseg(struct jseg *); 738 static void complete_jsegs(struct jseg *); 739 static void jseg_write(struct ufsmount *ump, struct jseg *, uint8_t *); 740 static void jaddref_write(struct jaddref *, struct jseg *, uint8_t *); 741 static void jremref_write(struct jremref *, struct jseg *, uint8_t *); 742 static void jmvref_write(struct jmvref *, struct jseg *, uint8_t *); 743 static void jtrunc_write(struct jtrunc *, struct jseg *, uint8_t *); 744 static void jfsync_write(struct jfsync *, struct jseg *, uint8_t *data); 745 static void jnewblk_write(struct jnewblk *, struct jseg *, uint8_t *); 746 static void jfreeblk_write(struct jfreeblk *, struct jseg *, uint8_t *); 747 static void jfreefrag_write(struct jfreefrag *, struct jseg *, uint8_t *); 748 static inline void inoref_write(struct inoref *, struct jseg *, 749 struct jrefrec *); 750 static void handle_allocdirect_partdone(struct allocdirect *, 751 struct workhead *); 752 static struct jnewblk *cancel_newblk(struct newblk *, struct worklist *, 753 struct workhead *); 754 static void indirdep_complete(struct indirdep *); 755 static int indirblk_lookup(struct mount *, ufs2_daddr_t); 756 static void indirblk_insert(struct freework *); 757 static void indirblk_remove(struct freework *); 758 static void handle_allocindir_partdone(struct allocindir *); 759 static void initiate_write_filepage(struct pagedep *, struct buf *); 760 static void initiate_write_indirdep(struct indirdep*, struct buf *); 761 static void handle_written_mkdir(struct mkdir *, int); 762 static int jnewblk_rollback(struct jnewblk *, struct fs *, struct cg *, 763 uint8_t *); 764 static void initiate_write_bmsafemap(struct bmsafemap *, struct buf *); 765 static void initiate_write_inodeblock_ufs1(struct inodedep *, struct buf *); 766 static void initiate_write_inodeblock_ufs2(struct inodedep *, struct buf *); 767 static void handle_workitem_freefile(struct freefile *); 768 static int handle_workitem_remove(struct dirrem *, int); 769 static struct dirrem *newdirrem(struct buf *, struct inode *, 770 struct inode *, int, struct dirrem **); 771 static struct indirdep *indirdep_lookup(struct mount *, struct inode *, 772 struct buf *); 773 static void cancel_indirdep(struct indirdep *, struct buf *, 774 struct freeblks *); 775 static void free_indirdep(struct indirdep *); 776 static void free_diradd(struct diradd *, struct workhead *); 777 static void merge_diradd(struct inodedep *, struct diradd *); 778 static void complete_diradd(struct diradd *); 779 static struct diradd *diradd_lookup(struct pagedep *, int); 780 static struct jremref *cancel_diradd_dotdot(struct inode *, struct dirrem *, 781 struct jremref *); 782 static struct jremref *cancel_mkdir_dotdot(struct inode *, struct dirrem *, 783 struct jremref *); 784 static void cancel_diradd(struct diradd *, struct dirrem *, struct jremref *, 785 struct jremref *, struct jremref *); 786 static void dirrem_journal(struct dirrem *, struct jremref *, struct jremref *, 787 struct jremref *); 788 static void cancel_allocindir(struct allocindir *, struct buf *bp, 789 struct freeblks *, int); 790 static int setup_trunc_indir(struct freeblks *, struct inode *, 791 ufs_lbn_t, ufs_lbn_t, ufs2_daddr_t); 792 static void complete_trunc_indir(struct freework *); 793 static void trunc_indirdep(struct indirdep *, struct freeblks *, struct buf *, 794 int); 795 static void complete_mkdir(struct mkdir *); 796 static void free_newdirblk(struct newdirblk *); 797 static void free_jremref(struct jremref *); 798 static void free_jaddref(struct jaddref *); 799 static void free_jsegdep(struct jsegdep *); 800 static void free_jsegs(struct jblocks *); 801 static void rele_jseg(struct jseg *); 802 static void free_jseg(struct jseg *, struct jblocks *); 803 static void free_jnewblk(struct jnewblk *); 804 static void free_jblkdep(struct jblkdep *); 805 static void free_jfreefrag(struct jfreefrag *); 806 static void free_freedep(struct freedep *); 807 static void journal_jremref(struct dirrem *, struct jremref *, 808 struct inodedep *); 809 static void cancel_jnewblk(struct jnewblk *, struct workhead *); 810 static int cancel_jaddref(struct jaddref *, struct inodedep *, 811 struct workhead *); 812 static void cancel_jfreefrag(struct jfreefrag *); 813 static inline void setup_freedirect(struct freeblks *, struct inode *, 814 int, int); 815 static inline void setup_freeext(struct freeblks *, struct inode *, int, int); 816 static inline void setup_freeindir(struct freeblks *, struct inode *, int, 817 ufs_lbn_t, int); 818 static inline struct freeblks *newfreeblks(struct mount *, struct inode *); 819 static void freeblks_free(struct ufsmount *, struct freeblks *, int); 820 static void indir_trunc(struct freework *, ufs2_daddr_t, ufs_lbn_t); 821 static ufs2_daddr_t blkcount(struct fs *, ufs2_daddr_t, off_t); 822 static int trunc_check_buf(struct buf *, int *, ufs_lbn_t, int, int); 823 static void trunc_dependencies(struct inode *, struct freeblks *, ufs_lbn_t, 824 int, int); 825 static void trunc_pages(struct inode *, off_t, ufs2_daddr_t, int); 826 static int cancel_pagedep(struct pagedep *, struct freeblks *, int); 827 static int deallocate_dependencies(struct buf *, struct freeblks *, int); 828 static void newblk_freefrag(struct newblk*); 829 static void free_newblk(struct newblk *); 830 static void cancel_allocdirect(struct allocdirectlst *, 831 struct allocdirect *, struct freeblks *); 832 static int check_inode_unwritten(struct inodedep *); 833 static int free_inodedep(struct inodedep *); 834 static void freework_freeblock(struct freework *, u_long); 835 static void freework_enqueue(struct freework *); 836 static int handle_workitem_freeblocks(struct freeblks *, int); 837 static int handle_complete_freeblocks(struct freeblks *, int); 838 static void handle_workitem_indirblk(struct freework *); 839 static void handle_written_freework(struct freework *); 840 static void merge_inode_lists(struct allocdirectlst *,struct allocdirectlst *); 841 static struct worklist *jnewblk_merge(struct worklist *, struct worklist *, 842 struct workhead *); 843 static struct freefrag *setup_allocindir_phase2(struct buf *, struct inode *, 844 struct inodedep *, struct allocindir *, ufs_lbn_t); 845 static struct allocindir *newallocindir(struct inode *, int, ufs2_daddr_t, 846 ufs2_daddr_t, ufs_lbn_t); 847 static void handle_workitem_freefrag(struct freefrag *); 848 static struct freefrag *newfreefrag(struct inode *, ufs2_daddr_t, long, 849 ufs_lbn_t, u_long); 850 static void allocdirect_merge(struct allocdirectlst *, 851 struct allocdirect *, struct allocdirect *); 852 static struct freefrag *allocindir_merge(struct allocindir *, 853 struct allocindir *); 854 static int bmsafemap_find(struct bmsafemap_hashhead *, int, 855 struct bmsafemap **); 856 static struct bmsafemap *bmsafemap_lookup(struct mount *, struct buf *, 857 int cg, struct bmsafemap *); 858 static int newblk_find(struct newblk_hashhead *, ufs2_daddr_t, int, 859 struct newblk **); 860 static int newblk_lookup(struct mount *, ufs2_daddr_t, int, struct newblk **); 861 static int inodedep_find(struct inodedep_hashhead *, ino_t, 862 struct inodedep **); 863 static int inodedep_lookup(struct mount *, ino_t, int, struct inodedep **); 864 static int pagedep_lookup(struct mount *, struct buf *bp, ino_t, ufs_lbn_t, 865 int, struct pagedep **); 866 static int pagedep_find(struct pagedep_hashhead *, ino_t, ufs_lbn_t, 867 struct pagedep **); 868 static void pause_timer(void *); 869 static int request_cleanup(struct mount *, int); 870 static int softdep_request_cleanup_flush(struct mount *, struct ufsmount *); 871 static void schedule_cleanup(struct mount *); 872 static void softdep_ast_cleanup_proc(struct thread *); 873 static struct ufsmount *softdep_bp_to_mp(struct buf *bp); 874 static int process_worklist_item(struct mount *, int, int); 875 static void process_removes(struct vnode *); 876 static void process_truncates(struct vnode *); 877 static void jwork_move(struct workhead *, struct workhead *); 878 static void jwork_insert(struct workhead *, struct jsegdep *); 879 static void add_to_worklist(struct worklist *, int); 880 static void wake_worklist(struct worklist *); 881 static void wait_worklist(struct worklist *, char *); 882 static void remove_from_worklist(struct worklist *); 883 static void softdep_flush(void *); 884 static void softdep_flushjournal(struct mount *); 885 static int softdep_speedup(struct ufsmount *); 886 static void worklist_speedup(struct mount *); 887 static int journal_mount(struct mount *, struct fs *, struct ucred *); 888 static void journal_unmount(struct ufsmount *); 889 static int journal_space(struct ufsmount *, int); 890 static void journal_suspend(struct ufsmount *); 891 static int journal_unsuspend(struct ufsmount *ump); 892 static void add_to_journal(struct worklist *); 893 static void remove_from_journal(struct worklist *); 894 static bool softdep_excess_items(struct ufsmount *, int); 895 static void softdep_process_journal(struct mount *, struct worklist *, int); 896 static struct jremref *newjremref(struct dirrem *, struct inode *, 897 struct inode *ip, off_t, nlink_t); 898 static struct jaddref *newjaddref(struct inode *, ino_t, off_t, int16_t, 899 uint16_t); 900 static inline void newinoref(struct inoref *, ino_t, ino_t, off_t, nlink_t, 901 uint16_t); 902 static inline struct jsegdep *inoref_jseg(struct inoref *); 903 static struct jmvref *newjmvref(struct inode *, ino_t, off_t, off_t); 904 static struct jfreeblk *newjfreeblk(struct freeblks *, ufs_lbn_t, 905 ufs2_daddr_t, int); 906 static void adjust_newfreework(struct freeblks *, int); 907 static struct jtrunc *newjtrunc(struct freeblks *, off_t, int); 908 static void move_newblock_dep(struct jaddref *, struct inodedep *); 909 static void cancel_jfreeblk(struct freeblks *, ufs2_daddr_t); 910 static struct jfreefrag *newjfreefrag(struct freefrag *, struct inode *, 911 ufs2_daddr_t, long, ufs_lbn_t); 912 static struct freework *newfreework(struct ufsmount *, struct freeblks *, 913 struct freework *, ufs_lbn_t, ufs2_daddr_t, int, int, int); 914 static int jwait(struct worklist *, int); 915 static struct inodedep *inodedep_lookup_ip(struct inode *); 916 static int bmsafemap_backgroundwrite(struct bmsafemap *, struct buf *); 917 static struct freefile *handle_bufwait(struct inodedep *, struct workhead *); 918 static void handle_jwork(struct workhead *); 919 static struct mkdir *setup_newdir(struct diradd *, ino_t, ino_t, struct buf *, 920 struct mkdir **); 921 static struct jblocks *jblocks_create(void); 922 static ufs2_daddr_t jblocks_alloc(struct jblocks *, int, int *); 923 static void jblocks_free(struct jblocks *, struct mount *, int); 924 static void jblocks_destroy(struct jblocks *); 925 static void jblocks_add(struct jblocks *, ufs2_daddr_t, int); 926 927 /* 928 * Exported softdep operations. 929 */ 930 static void softdep_disk_io_initiation(struct buf *); 931 static void softdep_disk_write_complete(struct buf *); 932 static void softdep_deallocate_dependencies(struct buf *); 933 static int softdep_count_dependencies(struct buf *bp, int); 934 935 /* 936 * Global lock over all of soft updates. 937 */ 938 static struct mtx lk; 939 MTX_SYSINIT(softdep_lock, &lk, "global softdep", MTX_DEF); 940 941 #define ACQUIRE_GBLLOCK(lk) mtx_lock(lk) 942 #define FREE_GBLLOCK(lk) mtx_unlock(lk) 943 #define GBLLOCK_OWNED(lk) mtx_assert((lk), MA_OWNED) 944 945 /* 946 * Per-filesystem soft-updates locking. 947 */ 948 #define LOCK_PTR(ump) (&(ump)->um_softdep->sd_fslock) 949 #define TRY_ACQUIRE_LOCK(ump) rw_try_wlock(&(ump)->um_softdep->sd_fslock) 950 #define ACQUIRE_LOCK(ump) rw_wlock(&(ump)->um_softdep->sd_fslock) 951 #define FREE_LOCK(ump) rw_wunlock(&(ump)->um_softdep->sd_fslock) 952 #define LOCK_OWNED(ump) rw_assert(&(ump)->um_softdep->sd_fslock, \ 953 RA_WLOCKED) 954 955 #define BUF_AREC(bp) lockallowrecurse(&(bp)->b_lock) 956 #define BUF_NOREC(bp) lockdisablerecurse(&(bp)->b_lock) 957 958 /* 959 * Worklist queue management. 960 * These routines require that the lock be held. 961 */ 962 #ifndef /* NOT */ INVARIANTS 963 #define WORKLIST_INSERT(head, item) do { \ 964 (item)->wk_state |= ONWORKLIST; \ 965 LIST_INSERT_HEAD(head, item, wk_list); \ 966 } while (0) 967 #define WORKLIST_REMOVE(item) do { \ 968 (item)->wk_state &= ~ONWORKLIST; \ 969 LIST_REMOVE(item, wk_list); \ 970 } while (0) 971 #define WORKLIST_INSERT_UNLOCKED WORKLIST_INSERT 972 #define WORKLIST_REMOVE_UNLOCKED WORKLIST_REMOVE 973 974 #else /* INVARIANTS */ 975 static void worklist_insert(struct workhead *, struct worklist *, int, 976 const char *, int); 977 static void worklist_remove(struct worklist *, int, const char *, int); 978 979 #define WORKLIST_INSERT(head, item) \ 980 worklist_insert(head, item, 1, __func__, __LINE__) 981 #define WORKLIST_INSERT_UNLOCKED(head, item)\ 982 worklist_insert(head, item, 0, __func__, __LINE__) 983 #define WORKLIST_REMOVE(item)\ 984 worklist_remove(item, 1, __func__, __LINE__) 985 #define WORKLIST_REMOVE_UNLOCKED(item)\ 986 worklist_remove(item, 0, __func__, __LINE__) 987 988 static void 989 worklist_insert(struct workhead *head, 990 struct worklist *item, 991 int locked, 992 const char *func, 993 int line) 994 { 995 996 if (locked) 997 LOCK_OWNED(VFSTOUFS(item->wk_mp)); 998 if (item->wk_state & ONWORKLIST) 999 panic("worklist_insert: %p %s(0x%X) already on list, " 1000 "added in function %s at line %d", 1001 item, TYPENAME(item->wk_type), item->wk_state, 1002 item->wk_func, item->wk_line); 1003 item->wk_state |= ONWORKLIST; 1004 item->wk_func = func; 1005 item->wk_line = line; 1006 LIST_INSERT_HEAD(head, item, wk_list); 1007 } 1008 1009 static void 1010 worklist_remove(struct worklist *item, 1011 int locked, 1012 const char *func, 1013 int line) 1014 { 1015 1016 if (locked) 1017 LOCK_OWNED(VFSTOUFS(item->wk_mp)); 1018 if ((item->wk_state & ONWORKLIST) == 0) 1019 panic("worklist_remove: %p %s(0x%X) not on list, " 1020 "removed in function %s at line %d", 1021 item, TYPENAME(item->wk_type), item->wk_state, 1022 item->wk_func, item->wk_line); 1023 item->wk_state &= ~ONWORKLIST; 1024 item->wk_func = func; 1025 item->wk_line = line; 1026 LIST_REMOVE(item, wk_list); 1027 } 1028 #endif /* INVARIANTS */ 1029 1030 /* 1031 * Merge two jsegdeps keeping only the oldest one as newer references 1032 * can't be discarded until after older references. 1033 */ 1034 static inline struct jsegdep * 1035 jsegdep_merge(struct jsegdep *one, struct jsegdep *two) 1036 { 1037 struct jsegdep *swp; 1038 1039 if (two == NULL) 1040 return (one); 1041 1042 if (one->jd_seg->js_seq > two->jd_seg->js_seq) { 1043 swp = one; 1044 one = two; 1045 two = swp; 1046 } 1047 WORKLIST_REMOVE(&two->jd_list); 1048 free_jsegdep(two); 1049 1050 return (one); 1051 } 1052 1053 /* 1054 * If two freedeps are compatible free one to reduce list size. 1055 */ 1056 static inline struct freedep * 1057 freedep_merge(struct freedep *one, struct freedep *two) 1058 { 1059 if (two == NULL) 1060 return (one); 1061 1062 if (one->fd_freework == two->fd_freework) { 1063 WORKLIST_REMOVE(&two->fd_list); 1064 free_freedep(two); 1065 } 1066 return (one); 1067 } 1068 1069 /* 1070 * Move journal work from one list to another. Duplicate freedeps and 1071 * jsegdeps are coalesced to keep the lists as small as possible. 1072 */ 1073 static void 1074 jwork_move(struct workhead *dst, struct workhead *src) 1075 { 1076 struct freedep *freedep; 1077 struct jsegdep *jsegdep; 1078 struct worklist *wkn; 1079 struct worklist *wk; 1080 1081 KASSERT(dst != src, 1082 ("jwork_move: dst == src")); 1083 freedep = NULL; 1084 jsegdep = NULL; 1085 LIST_FOREACH_SAFE(wk, dst, wk_list, wkn) { 1086 if (wk->wk_type == D_JSEGDEP) 1087 jsegdep = jsegdep_merge(WK_JSEGDEP(wk), jsegdep); 1088 else if (wk->wk_type == D_FREEDEP) 1089 freedep = freedep_merge(WK_FREEDEP(wk), freedep); 1090 } 1091 1092 while ((wk = LIST_FIRST(src)) != NULL) { 1093 WORKLIST_REMOVE(wk); 1094 WORKLIST_INSERT(dst, wk); 1095 if (wk->wk_type == D_JSEGDEP) { 1096 jsegdep = jsegdep_merge(WK_JSEGDEP(wk), jsegdep); 1097 continue; 1098 } 1099 if (wk->wk_type == D_FREEDEP) 1100 freedep = freedep_merge(WK_FREEDEP(wk), freedep); 1101 } 1102 } 1103 1104 static void 1105 jwork_insert(struct workhead *dst, struct jsegdep *jsegdep) 1106 { 1107 struct jsegdep *jsegdepn; 1108 struct worklist *wk; 1109 1110 LIST_FOREACH(wk, dst, wk_list) 1111 if (wk->wk_type == D_JSEGDEP) 1112 break; 1113 if (wk == NULL) { 1114 WORKLIST_INSERT(dst, &jsegdep->jd_list); 1115 return; 1116 } 1117 jsegdepn = WK_JSEGDEP(wk); 1118 if (jsegdep->jd_seg->js_seq < jsegdepn->jd_seg->js_seq) { 1119 WORKLIST_REMOVE(wk); 1120 free_jsegdep(jsegdepn); 1121 WORKLIST_INSERT(dst, &jsegdep->jd_list); 1122 } else 1123 free_jsegdep(jsegdep); 1124 } 1125 1126 /* 1127 * Routines for tracking and managing workitems. 1128 */ 1129 static void workitem_free(struct worklist *, int); 1130 static void workitem_alloc(struct worklist *, int, struct mount *); 1131 static void workitem_reassign(struct worklist *, int); 1132 1133 #define WORKITEM_FREE(item, type) \ 1134 workitem_free((struct worklist *)(item), (type)) 1135 #define WORKITEM_REASSIGN(item, type) \ 1136 workitem_reassign((struct worklist *)(item), (type)) 1137 1138 static void 1139 workitem_free(struct worklist *item, int type) 1140 { 1141 struct ufsmount *ump; 1142 1143 #ifdef INVARIANTS 1144 if (item->wk_state & ONWORKLIST) 1145 panic("workitem_free: %s(0x%X) still on list, " 1146 "added in function %s at line %d", 1147 TYPENAME(item->wk_type), item->wk_state, 1148 item->wk_func, item->wk_line); 1149 if (item->wk_type != type && type != D_NEWBLK) 1150 panic("workitem_free: type mismatch %s != %s", 1151 TYPENAME(item->wk_type), TYPENAME(type)); 1152 #endif 1153 if (item->wk_state & IOWAITING) 1154 wakeup(item); 1155 ump = VFSTOUFS(item->wk_mp); 1156 LOCK_OWNED(ump); 1157 KASSERT(ump->softdep_deps > 0, 1158 ("workitem_free: %s: softdep_deps going negative", 1159 ump->um_fs->fs_fsmnt)); 1160 if (--ump->softdep_deps == 0 && ump->softdep_req) 1161 wakeup(&ump->softdep_deps); 1162 KASSERT(dep_current[item->wk_type] > 0, 1163 ("workitem_free: %s: dep_current[%s] going negative", 1164 ump->um_fs->fs_fsmnt, TYPENAME(item->wk_type))); 1165 KASSERT(ump->softdep_curdeps[item->wk_type] > 0, 1166 ("workitem_free: %s: softdep_curdeps[%s] going negative", 1167 ump->um_fs->fs_fsmnt, TYPENAME(item->wk_type))); 1168 atomic_subtract_long(&dep_current[item->wk_type], 1); 1169 ump->softdep_curdeps[item->wk_type] -= 1; 1170 LIST_REMOVE(item, wk_all); 1171 free(item, DtoM(type)); 1172 } 1173 1174 static void 1175 workitem_alloc(struct worklist *item, 1176 int type, 1177 struct mount *mp) 1178 { 1179 struct ufsmount *ump; 1180 1181 item->wk_type = type; 1182 item->wk_mp = mp; 1183 item->wk_state = 0; 1184 1185 ump = VFSTOUFS(mp); 1186 ACQUIRE_GBLLOCK(&lk); 1187 dep_current[type]++; 1188 if (dep_current[type] > dep_highuse[type]) 1189 dep_highuse[type] = dep_current[type]; 1190 dep_total[type]++; 1191 FREE_GBLLOCK(&lk); 1192 ACQUIRE_LOCK(ump); 1193 ump->softdep_curdeps[type] += 1; 1194 ump->softdep_deps++; 1195 ump->softdep_accdeps++; 1196 LIST_INSERT_HEAD(&ump->softdep_alldeps[type], item, wk_all); 1197 FREE_LOCK(ump); 1198 } 1199 1200 static void 1201 workitem_reassign(struct worklist *item, int newtype) 1202 { 1203 struct ufsmount *ump; 1204 1205 ump = VFSTOUFS(item->wk_mp); 1206 LOCK_OWNED(ump); 1207 KASSERT(ump->softdep_curdeps[item->wk_type] > 0, 1208 ("workitem_reassign: %s: softdep_curdeps[%s] going negative", 1209 VFSTOUFS(item->wk_mp)->um_fs->fs_fsmnt, TYPENAME(item->wk_type))); 1210 ump->softdep_curdeps[item->wk_type] -= 1; 1211 ump->softdep_curdeps[newtype] += 1; 1212 KASSERT(dep_current[item->wk_type] > 0, 1213 ("workitem_reassign: %s: dep_current[%s] going negative", 1214 VFSTOUFS(item->wk_mp)->um_fs->fs_fsmnt, TYPENAME(item->wk_type))); 1215 ACQUIRE_GBLLOCK(&lk); 1216 dep_current[newtype]++; 1217 dep_current[item->wk_type]--; 1218 if (dep_current[newtype] > dep_highuse[newtype]) 1219 dep_highuse[newtype] = dep_current[newtype]; 1220 dep_total[newtype]++; 1221 FREE_GBLLOCK(&lk); 1222 item->wk_type = newtype; 1223 LIST_REMOVE(item, wk_all); 1224 LIST_INSERT_HEAD(&ump->softdep_alldeps[newtype], item, wk_all); 1225 } 1226 1227 /* 1228 * Workitem queue management 1229 */ 1230 static int max_softdeps; /* maximum number of structs before slowdown */ 1231 static int tickdelay = 2; /* number of ticks to pause during slowdown */ 1232 static int proc_waiting; /* tracks whether we have a timeout posted */ 1233 static int *stat_countp; /* statistic to count in proc_waiting timeout */ 1234 static struct callout softdep_callout; 1235 static int req_clear_inodedeps; /* syncer process flush some inodedeps */ 1236 static int req_clear_remove; /* syncer process flush some freeblks */ 1237 static int softdep_flushcache = 0; /* Should we do BIO_FLUSH? */ 1238 1239 /* 1240 * runtime statistics 1241 */ 1242 static int stat_flush_threads; /* number of softdep flushing threads */ 1243 static int stat_worklist_push; /* number of worklist cleanups */ 1244 static int stat_delayed_inact; /* number of delayed inactivation cleanups */ 1245 static int stat_blk_limit_push; /* number of times block limit neared */ 1246 static int stat_ino_limit_push; /* number of times inode limit neared */ 1247 static int stat_blk_limit_hit; /* number of times block slowdown imposed */ 1248 static int stat_ino_limit_hit; /* number of times inode slowdown imposed */ 1249 static int stat_sync_limit_hit; /* number of synchronous slowdowns imposed */ 1250 static int stat_indir_blk_ptrs; /* bufs redirtied as indir ptrs not written */ 1251 static int stat_inode_bitmap; /* bufs redirtied as inode bitmap not written */ 1252 static int stat_direct_blk_ptrs;/* bufs redirtied as direct ptrs not written */ 1253 static int stat_dir_entry; /* bufs redirtied as dir entry cannot write */ 1254 static int stat_jaddref; /* bufs redirtied as ino bitmap can not write */ 1255 static int stat_jnewblk; /* bufs redirtied as blk bitmap can not write */ 1256 static int stat_journal_min; /* Times hit journal min threshold */ 1257 static int stat_journal_low; /* Times hit journal low threshold */ 1258 static int stat_journal_wait; /* Times blocked in jwait(). */ 1259 static int stat_jwait_filepage; /* Times blocked in jwait() for filepage. */ 1260 static int stat_jwait_freeblks; /* Times blocked in jwait() for freeblks. */ 1261 static int stat_jwait_inode; /* Times blocked in jwait() for inodes. */ 1262 static int stat_jwait_newblk; /* Times blocked in jwait() for newblks. */ 1263 static int stat_cleanup_high_delay; /* Maximum cleanup delay (in ticks) */ 1264 static int stat_cleanup_blkrequests; /* Number of block cleanup requests */ 1265 static int stat_cleanup_inorequests; /* Number of inode cleanup requests */ 1266 static int stat_cleanup_retries; /* Number of cleanups that needed to flush */ 1267 static int stat_cleanup_failures; /* Number of cleanup requests that failed */ 1268 static int stat_emptyjblocks; /* Number of potentially empty journal blocks */ 1269 1270 SYSCTL_INT(_debug_softdep, OID_AUTO, max_softdeps, CTLFLAG_RW, 1271 &max_softdeps, 0, ""); 1272 SYSCTL_INT(_debug_softdep, OID_AUTO, tickdelay, CTLFLAG_RW, 1273 &tickdelay, 0, ""); 1274 SYSCTL_INT(_debug_softdep, OID_AUTO, flush_threads, CTLFLAG_RD, 1275 &stat_flush_threads, 0, ""); 1276 SYSCTL_INT(_debug_softdep, OID_AUTO, worklist_push, 1277 CTLFLAG_RW | CTLFLAG_STATS, &stat_worklist_push, 0,""); 1278 SYSCTL_INT(_debug_softdep, OID_AUTO, delayed_inactivations, CTLFLAG_RD, 1279 &stat_delayed_inact, 0, ""); 1280 SYSCTL_INT(_debug_softdep, OID_AUTO, blk_limit_push, 1281 CTLFLAG_RW | CTLFLAG_STATS, &stat_blk_limit_push, 0,""); 1282 SYSCTL_INT(_debug_softdep, OID_AUTO, ino_limit_push, 1283 CTLFLAG_RW | CTLFLAG_STATS, &stat_ino_limit_push, 0,""); 1284 SYSCTL_INT(_debug_softdep, OID_AUTO, blk_limit_hit, 1285 CTLFLAG_RW | CTLFLAG_STATS, &stat_blk_limit_hit, 0, ""); 1286 SYSCTL_INT(_debug_softdep, OID_AUTO, ino_limit_hit, 1287 CTLFLAG_RW | CTLFLAG_STATS, &stat_ino_limit_hit, 0, ""); 1288 SYSCTL_INT(_debug_softdep, OID_AUTO, sync_limit_hit, 1289 CTLFLAG_RW | CTLFLAG_STATS, &stat_sync_limit_hit, 0, ""); 1290 SYSCTL_INT(_debug_softdep, OID_AUTO, indir_blk_ptrs, 1291 CTLFLAG_RW | CTLFLAG_STATS, &stat_indir_blk_ptrs, 0, ""); 1292 SYSCTL_INT(_debug_softdep, OID_AUTO, inode_bitmap, 1293 CTLFLAG_RW | CTLFLAG_STATS, &stat_inode_bitmap, 0, ""); 1294 SYSCTL_INT(_debug_softdep, OID_AUTO, direct_blk_ptrs, 1295 CTLFLAG_RW | CTLFLAG_STATS, &stat_direct_blk_ptrs, 0, ""); 1296 SYSCTL_INT(_debug_softdep, OID_AUTO, dir_entry, 1297 CTLFLAG_RW | CTLFLAG_STATS, &stat_dir_entry, 0, ""); 1298 SYSCTL_INT(_debug_softdep, OID_AUTO, jaddref_rollback, 1299 CTLFLAG_RW | CTLFLAG_STATS, &stat_jaddref, 0, ""); 1300 SYSCTL_INT(_debug_softdep, OID_AUTO, jnewblk_rollback, 1301 CTLFLAG_RW | CTLFLAG_STATS, &stat_jnewblk, 0, ""); 1302 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_low, 1303 CTLFLAG_RW | CTLFLAG_STATS, &stat_journal_low, 0, ""); 1304 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_min, 1305 CTLFLAG_RW | CTLFLAG_STATS, &stat_journal_min, 0, ""); 1306 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_wait, 1307 CTLFLAG_RW | CTLFLAG_STATS, &stat_journal_wait, 0, ""); 1308 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_filepage, 1309 CTLFLAG_RW | CTLFLAG_STATS, &stat_jwait_filepage, 0, ""); 1310 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_freeblks, 1311 CTLFLAG_RW | CTLFLAG_STATS, &stat_jwait_freeblks, 0, ""); 1312 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_inode, 1313 CTLFLAG_RW | CTLFLAG_STATS, &stat_jwait_inode, 0, ""); 1314 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_newblk, 1315 CTLFLAG_RW | CTLFLAG_STATS, &stat_jwait_newblk, 0, ""); 1316 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_blkrequests, 1317 CTLFLAG_RW | CTLFLAG_STATS, &stat_cleanup_blkrequests, 0, ""); 1318 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_inorequests, 1319 CTLFLAG_RW | CTLFLAG_STATS, &stat_cleanup_inorequests, 0, ""); 1320 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_high_delay, 1321 CTLFLAG_RW | CTLFLAG_STATS, &stat_cleanup_high_delay, 0, ""); 1322 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_retries, 1323 CTLFLAG_RW | CTLFLAG_STATS, &stat_cleanup_retries, 0, ""); 1324 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_failures, 1325 CTLFLAG_RW | CTLFLAG_STATS, &stat_cleanup_failures, 0, ""); 1326 1327 SYSCTL_INT(_debug_softdep, OID_AUTO, flushcache, CTLFLAG_RW, 1328 &softdep_flushcache, 0, ""); 1329 SYSCTL_INT(_debug_softdep, OID_AUTO, emptyjblocks, CTLFLAG_RD, 1330 &stat_emptyjblocks, 0, ""); 1331 1332 SYSCTL_DECL(_vfs_ffs); 1333 1334 /* Whether to recompute the summary at mount time */ 1335 static int compute_summary_at_mount = 0; 1336 SYSCTL_INT(_vfs_ffs, OID_AUTO, compute_summary_at_mount, CTLFLAG_RW, 1337 &compute_summary_at_mount, 0, "Recompute summary at mount"); 1338 static int print_threads = 0; 1339 SYSCTL_INT(_debug_softdep, OID_AUTO, print_threads, CTLFLAG_RW, 1340 &print_threads, 0, "Notify flusher thread start/stop"); 1341 1342 /* List of all filesystems mounted with soft updates */ 1343 static TAILQ_HEAD(, mount_softdeps) softdepmounts; 1344 1345 static void 1346 get_parent_vp_unlock_bp(struct mount *mp, 1347 struct buf *bp, 1348 struct diraddhd *diraddhdp, 1349 struct diraddhd *unfinishedp) 1350 { 1351 struct diradd *dap; 1352 1353 /* 1354 * Requeue unfinished dependencies before 1355 * unlocking buffer, which could make 1356 * diraddhdp invalid. 1357 */ 1358 ACQUIRE_LOCK(VFSTOUFS(mp)); 1359 while ((dap = LIST_FIRST(unfinishedp)) != NULL) { 1360 LIST_REMOVE(dap, da_pdlist); 1361 LIST_INSERT_HEAD(diraddhdp, dap, da_pdlist); 1362 } 1363 FREE_LOCK(VFSTOUFS(mp)); 1364 1365 bp->b_vflags &= ~BV_SCANNED; 1366 BUF_NOREC(bp); 1367 BUF_UNLOCK(bp); 1368 } 1369 1370 /* 1371 * This function fetches inode inum on mount point mp. We already 1372 * hold a locked vnode vp, and might have a locked buffer bp belonging 1373 * to vp. 1374 1375 * We must not block on acquiring the new inode lock as we will get 1376 * into a lock-order reversal with the buffer lock and possibly get a 1377 * deadlock. Thus if we cannot instantiate the requested vnode 1378 * without sleeping on its lock, we must unlock the vnode and the 1379 * buffer before doing a blocking on the vnode lock. We return 1380 * ERELOOKUP if we have had to unlock either the vnode or the buffer so 1381 * that the caller can reassess its state. 1382 * 1383 * Top-level VFS code (for syscalls and other consumers, e.g. callers 1384 * of VOP_FSYNC() in syncer) check for ERELOOKUP and restart at safe 1385 * point. 1386 * 1387 * Since callers expect to operate on fully constructed vnode, we also 1388 * recheck v_data after relock, and return ENOENT if NULL. 1389 * 1390 * If unlocking bp, we must unroll dequeueing its unfinished 1391 * dependencies, and clear scan flag, before unlocking. If unlocking 1392 * vp while it is under deactivation, we re-queue deactivation. 1393 */ 1394 static int 1395 get_parent_vp(struct vnode *vp, 1396 struct mount *mp, 1397 ino_t inum, 1398 struct buf *bp, 1399 struct diraddhd *diraddhdp, 1400 struct diraddhd *unfinishedp, 1401 struct vnode **rvp) 1402 { 1403 struct vnode *pvp; 1404 int error; 1405 bool bplocked; 1406 1407 ASSERT_VOP_ELOCKED(vp, "child vnode must be locked"); 1408 for (bplocked = true, pvp = NULL;;) { 1409 error = ffs_vgetf(mp, inum, LK_EXCLUSIVE | LK_NOWAIT, &pvp, 1410 FFSV_FORCEINSMQ | FFSV_FORCEINODEDEP); 1411 if (error == 0) { 1412 /* 1413 * Since we could have unlocked vp, the inode 1414 * number could no longer indicate a 1415 * constructed node. In this case, we must 1416 * restart the syscall. 1417 */ 1418 if (VTOI(pvp)->i_mode == 0 || !bplocked) { 1419 if (bp != NULL && bplocked) 1420 get_parent_vp_unlock_bp(mp, bp, 1421 diraddhdp, unfinishedp); 1422 if (VTOI(pvp)->i_mode == 0) 1423 vgone(pvp); 1424 error = ERELOOKUP; 1425 goto out2; 1426 } 1427 goto out1; 1428 } 1429 if (bp != NULL && bplocked) { 1430 get_parent_vp_unlock_bp(mp, bp, diraddhdp, unfinishedp); 1431 bplocked = false; 1432 } 1433 1434 /* 1435 * Do not drop vnode lock while inactivating during 1436 * vunref. This would result in leaks of the VI flags 1437 * and reclaiming of non-truncated vnode. Instead, 1438 * re-schedule inactivation hoping that we would be 1439 * able to sync inode later. 1440 */ 1441 if ((vp->v_iflag & VI_DOINGINACT) != 0 && 1442 (vp->v_vflag & VV_UNREF) != 0) { 1443 VI_LOCK(vp); 1444 vp->v_iflag |= VI_OWEINACT; 1445 VI_UNLOCK(vp); 1446 return (ERELOOKUP); 1447 } 1448 1449 VOP_UNLOCK(vp); 1450 error = ffs_vgetf(mp, inum, LK_EXCLUSIVE, &pvp, 1451 FFSV_FORCEINSMQ | FFSV_FORCEINODEDEP); 1452 if (error != 0) { 1453 MPASS(error != ERELOOKUP); 1454 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 1455 break; 1456 } 1457 if (VTOI(pvp)->i_mode == 0) { 1458 vgone(pvp); 1459 vput(pvp); 1460 pvp = NULL; 1461 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 1462 error = ERELOOKUP; 1463 break; 1464 } 1465 error = vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT); 1466 if (error == 0) 1467 break; 1468 vput(pvp); 1469 pvp = NULL; 1470 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 1471 if (vp->v_data == NULL) { 1472 error = ENOENT; 1473 break; 1474 } 1475 } 1476 if (bp != NULL) { 1477 MPASS(!bplocked); 1478 error = ERELOOKUP; 1479 } 1480 out2: 1481 if (error != 0 && pvp != NULL) { 1482 vput(pvp); 1483 pvp = NULL; 1484 } 1485 out1: 1486 *rvp = pvp; 1487 ASSERT_VOP_ELOCKED(vp, "child vnode must be locked on return"); 1488 return (error); 1489 } 1490 1491 /* 1492 * This function cleans the worklist for a filesystem. 1493 * Each filesystem running with soft dependencies gets its own 1494 * thread to run in this function. The thread is started up in 1495 * softdep_mount and shutdown in softdep_unmount. They show up 1496 * as part of the kernel "bufdaemon" process whose process 1497 * entry is available in bufdaemonproc. 1498 */ 1499 static int searchfailed; 1500 extern struct proc *bufdaemonproc; 1501 static void 1502 softdep_flush(void *addr) 1503 { 1504 struct mount *mp; 1505 struct thread *td; 1506 struct ufsmount *ump; 1507 int cleanups; 1508 1509 td = curthread; 1510 td->td_pflags |= TDP_NORUNNINGBUF; 1511 mp = (struct mount *)addr; 1512 ump = VFSTOUFS(mp); 1513 atomic_add_int(&stat_flush_threads, 1); 1514 ACQUIRE_LOCK(ump); 1515 ump->softdep_flags &= ~FLUSH_STARTING; 1516 wakeup(&ump->softdep_flushtd); 1517 FREE_LOCK(ump); 1518 if (print_threads) { 1519 if (stat_flush_threads == 1) 1520 printf("Running %s at pid %d\n", bufdaemonproc->p_comm, 1521 bufdaemonproc->p_pid); 1522 printf("Start thread %s\n", td->td_name); 1523 } 1524 for (;;) { 1525 while (softdep_process_worklist(mp, 0) > 0 || 1526 (MOUNTEDSUJ(mp) && 1527 VFSTOUFS(mp)->softdep_jblocks->jb_suspended)) 1528 kthread_suspend_check(); 1529 ACQUIRE_LOCK(ump); 1530 if ((ump->softdep_flags & (FLUSH_CLEANUP | FLUSH_EXIT)) == 0) 1531 msleep(&ump->softdep_flushtd, LOCK_PTR(ump), PVM, 1532 "sdflush", hz / 2); 1533 ump->softdep_flags &= ~FLUSH_CLEANUP; 1534 /* 1535 * Check to see if we are done and need to exit. 1536 */ 1537 if ((ump->softdep_flags & FLUSH_EXIT) == 0) { 1538 FREE_LOCK(ump); 1539 continue; 1540 } 1541 ump->softdep_flags &= ~FLUSH_EXIT; 1542 cleanups = ump->um_softdep->sd_cleanups; 1543 FREE_LOCK(ump); 1544 wakeup(&ump->softdep_flags); 1545 if (print_threads) { 1546 printf("Stop thread %s: searchfailed %d, " 1547 "did cleanups %d\n", 1548 td->td_name, searchfailed, cleanups); 1549 } 1550 atomic_subtract_int(&stat_flush_threads, 1); 1551 kthread_exit(); 1552 panic("kthread_exit failed\n"); 1553 } 1554 } 1555 1556 static void 1557 worklist_speedup(struct mount *mp) 1558 { 1559 struct ufsmount *ump; 1560 1561 ump = VFSTOUFS(mp); 1562 LOCK_OWNED(ump); 1563 if ((ump->softdep_flags & (FLUSH_CLEANUP | FLUSH_EXIT)) == 0) 1564 ump->softdep_flags |= FLUSH_CLEANUP; 1565 wakeup(&ump->softdep_flushtd); 1566 } 1567 1568 static void 1569 softdep_send_speedup(struct ufsmount *ump, 1570 off_t shortage, 1571 u_int flags) 1572 { 1573 struct buf *bp; 1574 1575 if ((ump->um_flags & UM_CANSPEEDUP) == 0) 1576 return; 1577 1578 bp = malloc(sizeof(*bp), M_TRIM, M_WAITOK | M_ZERO); 1579 bp->b_iocmd = BIO_SPEEDUP; 1580 bp->b_ioflags = flags; 1581 bp->b_bcount = omin(shortage, LONG_MAX); 1582 g_vfs_strategy(ump->um_bo, bp); 1583 bufwait(bp); 1584 free(bp, M_TRIM); 1585 } 1586 1587 static int 1588 softdep_speedup(struct ufsmount *ump) 1589 { 1590 struct ufsmount *altump; 1591 struct mount_softdeps *sdp; 1592 1593 LOCK_OWNED(ump); 1594 worklist_speedup(ump->um_mountp); 1595 bd_speedup(); 1596 /* 1597 * If we have global shortages, then we need other 1598 * filesystems to help with the cleanup. Here we wakeup a 1599 * flusher thread for a filesystem that is over its fair 1600 * share of resources. 1601 */ 1602 if (req_clear_inodedeps || req_clear_remove) { 1603 ACQUIRE_GBLLOCK(&lk); 1604 TAILQ_FOREACH(sdp, &softdepmounts, sd_next) { 1605 if ((altump = sdp->sd_ump) == ump) 1606 continue; 1607 if (((req_clear_inodedeps && 1608 altump->softdep_curdeps[D_INODEDEP] > 1609 max_softdeps / stat_flush_threads) || 1610 (req_clear_remove && 1611 altump->softdep_curdeps[D_DIRREM] > 1612 (max_softdeps / 2) / stat_flush_threads)) && 1613 TRY_ACQUIRE_LOCK(altump)) 1614 break; 1615 } 1616 if (sdp == NULL) { 1617 searchfailed++; 1618 FREE_GBLLOCK(&lk); 1619 } else { 1620 /* 1621 * Move to the end of the list so we pick a 1622 * different one on out next try. 1623 */ 1624 TAILQ_REMOVE(&softdepmounts, sdp, sd_next); 1625 TAILQ_INSERT_TAIL(&softdepmounts, sdp, sd_next); 1626 FREE_GBLLOCK(&lk); 1627 if ((altump->softdep_flags & 1628 (FLUSH_CLEANUP | FLUSH_EXIT)) == 0) 1629 altump->softdep_flags |= FLUSH_CLEANUP; 1630 altump->um_softdep->sd_cleanups++; 1631 wakeup(&altump->softdep_flushtd); 1632 FREE_LOCK(altump); 1633 } 1634 } 1635 return (speedup_syncer()); 1636 } 1637 1638 /* 1639 * Add an item to the end of the work queue. 1640 * This routine requires that the lock be held. 1641 * This is the only routine that adds items to the list. 1642 * The following routine is the only one that removes items 1643 * and does so in order from first to last. 1644 */ 1645 1646 #define WK_HEAD 0x0001 /* Add to HEAD. */ 1647 #define WK_NODELAY 0x0002 /* Process immediately. */ 1648 1649 static void 1650 add_to_worklist(struct worklist *wk, int flags) 1651 { 1652 struct ufsmount *ump; 1653 1654 ump = VFSTOUFS(wk->wk_mp); 1655 LOCK_OWNED(ump); 1656 if (wk->wk_state & ONWORKLIST) 1657 panic("add_to_worklist: %s(0x%X) already on list", 1658 TYPENAME(wk->wk_type), wk->wk_state); 1659 wk->wk_state |= ONWORKLIST; 1660 if (ump->softdep_on_worklist == 0) { 1661 LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list); 1662 ump->softdep_worklist_tail = wk; 1663 } else if (flags & WK_HEAD) { 1664 LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list); 1665 } else { 1666 LIST_INSERT_AFTER(ump->softdep_worklist_tail, wk, wk_list); 1667 ump->softdep_worklist_tail = wk; 1668 } 1669 ump->softdep_on_worklist += 1; 1670 if (flags & WK_NODELAY) 1671 worklist_speedup(wk->wk_mp); 1672 } 1673 1674 /* 1675 * Remove the item to be processed. If we are removing the last 1676 * item on the list, we need to recalculate the tail pointer. 1677 */ 1678 static void 1679 remove_from_worklist(struct worklist *wk) 1680 { 1681 struct ufsmount *ump; 1682 1683 ump = VFSTOUFS(wk->wk_mp); 1684 if (ump->softdep_worklist_tail == wk) 1685 ump->softdep_worklist_tail = 1686 (struct worklist *)wk->wk_list.le_prev; 1687 WORKLIST_REMOVE(wk); 1688 ump->softdep_on_worklist -= 1; 1689 } 1690 1691 static void 1692 wake_worklist(struct worklist *wk) 1693 { 1694 if (wk->wk_state & IOWAITING) { 1695 wk->wk_state &= ~IOWAITING; 1696 wakeup(wk); 1697 } 1698 } 1699 1700 static void 1701 wait_worklist(struct worklist *wk, char *wmesg) 1702 { 1703 struct ufsmount *ump; 1704 1705 ump = VFSTOUFS(wk->wk_mp); 1706 wk->wk_state |= IOWAITING; 1707 msleep(wk, LOCK_PTR(ump), PVM, wmesg, 0); 1708 } 1709 1710 /* 1711 * Process that runs once per second to handle items in the background queue. 1712 * 1713 * Note that we ensure that everything is done in the order in which they 1714 * appear in the queue. The code below depends on this property to ensure 1715 * that blocks of a file are freed before the inode itself is freed. This 1716 * ordering ensures that no new <vfsid, inum, lbn> triples will be generated 1717 * until all the old ones have been purged from the dependency lists. 1718 */ 1719 static int 1720 softdep_process_worklist(struct mount *mp, int full) 1721 { 1722 int cnt, matchcnt; 1723 struct ufsmount *ump; 1724 long starttime; 1725 1726 KASSERT(mp != NULL, ("softdep_process_worklist: NULL mp")); 1727 ump = VFSTOUFS(mp); 1728 if (ump->um_softdep == NULL) 1729 return (0); 1730 matchcnt = 0; 1731 ACQUIRE_LOCK(ump); 1732 starttime = time_second; 1733 softdep_process_journal(mp, NULL, full ? MNT_WAIT : 0); 1734 check_clear_deps(mp); 1735 while (ump->softdep_on_worklist > 0) { 1736 if ((cnt = process_worklist_item(mp, 10, LK_NOWAIT)) == 0) 1737 break; 1738 else 1739 matchcnt += cnt; 1740 check_clear_deps(mp); 1741 /* 1742 * We do not generally want to stop for buffer space, but if 1743 * we are really being a buffer hog, we will stop and wait. 1744 */ 1745 if (should_yield()) { 1746 FREE_LOCK(ump); 1747 kern_yield(PRI_USER); 1748 bwillwrite(); 1749 ACQUIRE_LOCK(ump); 1750 } 1751 /* 1752 * Never allow processing to run for more than one 1753 * second. This gives the syncer thread the opportunity 1754 * to pause if appropriate. 1755 */ 1756 if (!full && starttime != time_second) 1757 break; 1758 } 1759 if (full == 0) 1760 journal_unsuspend(ump); 1761 FREE_LOCK(ump); 1762 return (matchcnt); 1763 } 1764 1765 /* 1766 * Process all removes associated with a vnode if we are running out of 1767 * journal space. Any other process which attempts to flush these will 1768 * be unable as we have the vnodes locked. 1769 */ 1770 static void 1771 process_removes(struct vnode *vp) 1772 { 1773 struct inodedep *inodedep; 1774 struct dirrem *dirrem; 1775 struct ufsmount *ump; 1776 struct mount *mp; 1777 ino_t inum; 1778 1779 mp = vp->v_mount; 1780 ump = VFSTOUFS(mp); 1781 LOCK_OWNED(ump); 1782 inum = VTOI(vp)->i_number; 1783 for (;;) { 1784 top: 1785 if (inodedep_lookup(mp, inum, 0, &inodedep) == 0) 1786 return; 1787 LIST_FOREACH(dirrem, &inodedep->id_dirremhd, dm_inonext) { 1788 /* 1789 * If another thread is trying to lock this vnode 1790 * it will fail but we must wait for it to do so 1791 * before we can proceed. 1792 */ 1793 if (dirrem->dm_state & INPROGRESS) { 1794 wait_worklist(&dirrem->dm_list, "pwrwait"); 1795 goto top; 1796 } 1797 if ((dirrem->dm_state & (COMPLETE | ONWORKLIST)) == 1798 (COMPLETE | ONWORKLIST)) 1799 break; 1800 } 1801 if (dirrem == NULL) 1802 return; 1803 remove_from_worklist(&dirrem->dm_list); 1804 FREE_LOCK(ump); 1805 if (vn_start_secondary_write(NULL, &mp, V_NOWAIT)) 1806 panic("process_removes: suspended filesystem"); 1807 handle_workitem_remove(dirrem, 0); 1808 vn_finished_secondary_write(mp); 1809 ACQUIRE_LOCK(ump); 1810 } 1811 } 1812 1813 /* 1814 * Process all truncations associated with a vnode if we are running out 1815 * of journal space. This is called when the vnode lock is already held 1816 * and no other process can clear the truncation. This function returns 1817 * a value greater than zero if it did any work. 1818 */ 1819 static void 1820 process_truncates(struct vnode *vp) 1821 { 1822 struct inodedep *inodedep; 1823 struct freeblks *freeblks; 1824 struct ufsmount *ump; 1825 struct mount *mp; 1826 ino_t inum; 1827 int cgwait; 1828 1829 mp = vp->v_mount; 1830 ump = VFSTOUFS(mp); 1831 LOCK_OWNED(ump); 1832 inum = VTOI(vp)->i_number; 1833 for (;;) { 1834 if (inodedep_lookup(mp, inum, 0, &inodedep) == 0) 1835 return; 1836 cgwait = 0; 1837 TAILQ_FOREACH(freeblks, &inodedep->id_freeblklst, fb_next) { 1838 /* Journal entries not yet written. */ 1839 if (!LIST_EMPTY(&freeblks->fb_jblkdephd)) { 1840 jwait(&LIST_FIRST( 1841 &freeblks->fb_jblkdephd)->jb_list, 1842 MNT_WAIT); 1843 break; 1844 } 1845 /* Another thread is executing this item. */ 1846 if (freeblks->fb_state & INPROGRESS) { 1847 wait_worklist(&freeblks->fb_list, "ptrwait"); 1848 break; 1849 } 1850 /* Freeblks is waiting on a inode write. */ 1851 if ((freeblks->fb_state & COMPLETE) == 0) { 1852 FREE_LOCK(ump); 1853 ffs_update(vp, 1); 1854 ACQUIRE_LOCK(ump); 1855 break; 1856 } 1857 if ((freeblks->fb_state & (ALLCOMPLETE | ONWORKLIST)) == 1858 (ALLCOMPLETE | ONWORKLIST)) { 1859 remove_from_worklist(&freeblks->fb_list); 1860 freeblks->fb_state |= INPROGRESS; 1861 FREE_LOCK(ump); 1862 if (vn_start_secondary_write(NULL, &mp, 1863 V_NOWAIT)) 1864 panic("process_truncates: " 1865 "suspended filesystem"); 1866 handle_workitem_freeblocks(freeblks, 0); 1867 vn_finished_secondary_write(mp); 1868 ACQUIRE_LOCK(ump); 1869 break; 1870 } 1871 if (freeblks->fb_cgwait) 1872 cgwait++; 1873 } 1874 if (cgwait) { 1875 FREE_LOCK(ump); 1876 sync_cgs(mp, MNT_WAIT); 1877 ffs_sync_snap(mp, MNT_WAIT); 1878 ACQUIRE_LOCK(ump); 1879 continue; 1880 } 1881 if (freeblks == NULL) 1882 break; 1883 } 1884 return; 1885 } 1886 1887 /* 1888 * Process one item on the worklist. 1889 */ 1890 static int 1891 process_worklist_item(struct mount *mp, 1892 int target, 1893 int flags) 1894 { 1895 struct worklist sentinel; 1896 struct worklist *wk; 1897 struct ufsmount *ump; 1898 int matchcnt; 1899 int error; 1900 1901 KASSERT(mp != NULL, ("process_worklist_item: NULL mp")); 1902 /* 1903 * If we are being called because of a process doing a 1904 * copy-on-write, then it is not safe to write as we may 1905 * recurse into the copy-on-write routine. 1906 */ 1907 if (curthread->td_pflags & TDP_COWINPROGRESS) 1908 return (-1); 1909 PHOLD(curproc); /* Don't let the stack go away. */ 1910 ump = VFSTOUFS(mp); 1911 LOCK_OWNED(ump); 1912 matchcnt = 0; 1913 sentinel.wk_mp = NULL; 1914 sentinel.wk_type = D_SENTINEL; 1915 LIST_INSERT_HEAD(&ump->softdep_workitem_pending, &sentinel, wk_list); 1916 for (wk = LIST_NEXT(&sentinel, wk_list); wk != NULL; 1917 wk = LIST_NEXT(&sentinel, wk_list)) { 1918 if (wk->wk_type == D_SENTINEL) { 1919 LIST_REMOVE(&sentinel, wk_list); 1920 LIST_INSERT_AFTER(wk, &sentinel, wk_list); 1921 continue; 1922 } 1923 if (wk->wk_state & INPROGRESS) 1924 panic("process_worklist_item: %p already in progress.", 1925 wk); 1926 wk->wk_state |= INPROGRESS; 1927 remove_from_worklist(wk); 1928 FREE_LOCK(ump); 1929 if (vn_start_secondary_write(NULL, &mp, V_NOWAIT)) 1930 panic("process_worklist_item: suspended filesystem"); 1931 switch (wk->wk_type) { 1932 case D_DIRREM: 1933 /* removal of a directory entry */ 1934 error = handle_workitem_remove(WK_DIRREM(wk), flags); 1935 break; 1936 1937 case D_FREEBLKS: 1938 /* releasing blocks and/or fragments from a file */ 1939 error = handle_workitem_freeblocks(WK_FREEBLKS(wk), 1940 flags); 1941 break; 1942 1943 case D_FREEFRAG: 1944 /* releasing a fragment when replaced as a file grows */ 1945 handle_workitem_freefrag(WK_FREEFRAG(wk)); 1946 error = 0; 1947 break; 1948 1949 case D_FREEFILE: 1950 /* releasing an inode when its link count drops to 0 */ 1951 handle_workitem_freefile(WK_FREEFILE(wk)); 1952 error = 0; 1953 break; 1954 1955 default: 1956 panic("%s_process_worklist: Unknown type %s", 1957 "softdep", TYPENAME(wk->wk_type)); 1958 /* NOTREACHED */ 1959 } 1960 vn_finished_secondary_write(mp); 1961 ACQUIRE_LOCK(ump); 1962 if (error == 0) { 1963 if (++matchcnt == target) 1964 break; 1965 continue; 1966 } 1967 /* 1968 * We have to retry the worklist item later. Wake up any 1969 * waiters who may be able to complete it immediately and 1970 * add the item back to the head so we don't try to execute 1971 * it again. 1972 */ 1973 wk->wk_state &= ~INPROGRESS; 1974 wake_worklist(wk); 1975 add_to_worklist(wk, WK_HEAD); 1976 } 1977 /* Sentinal could've become the tail from remove_from_worklist. */ 1978 if (ump->softdep_worklist_tail == &sentinel) 1979 ump->softdep_worklist_tail = 1980 (struct worklist *)sentinel.wk_list.le_prev; 1981 LIST_REMOVE(&sentinel, wk_list); 1982 PRELE(curproc); 1983 return (matchcnt); 1984 } 1985 1986 /* 1987 * Move dependencies from one buffer to another. 1988 */ 1989 int 1990 softdep_move_dependencies(struct buf *oldbp, struct buf *newbp) 1991 { 1992 struct worklist *wk, *wktail; 1993 struct ufsmount *ump; 1994 int dirty; 1995 1996 if ((wk = LIST_FIRST(&oldbp->b_dep)) == NULL) 1997 return (0); 1998 KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0, 1999 ("softdep_move_dependencies called on non-softdep filesystem")); 2000 dirty = 0; 2001 wktail = NULL; 2002 ump = VFSTOUFS(wk->wk_mp); 2003 ACQUIRE_LOCK(ump); 2004 while ((wk = LIST_FIRST(&oldbp->b_dep)) != NULL) { 2005 LIST_REMOVE(wk, wk_list); 2006 if (wk->wk_type == D_BMSAFEMAP && 2007 bmsafemap_backgroundwrite(WK_BMSAFEMAP(wk), newbp)) 2008 dirty = 1; 2009 if (wktail == NULL) 2010 LIST_INSERT_HEAD(&newbp->b_dep, wk, wk_list); 2011 else 2012 LIST_INSERT_AFTER(wktail, wk, wk_list); 2013 wktail = wk; 2014 } 2015 FREE_LOCK(ump); 2016 2017 return (dirty); 2018 } 2019 2020 /* 2021 * Purge the work list of all items associated with a particular mount point. 2022 */ 2023 int 2024 softdep_flushworklist(struct mount *oldmnt, 2025 int *countp, 2026 struct thread *td) 2027 { 2028 struct vnode *devvp; 2029 struct ufsmount *ump; 2030 int count, error; 2031 2032 /* 2033 * Alternately flush the block device associated with the mount 2034 * point and process any dependencies that the flushing 2035 * creates. We continue until no more worklist dependencies 2036 * are found. 2037 */ 2038 *countp = 0; 2039 error = 0; 2040 ump = VFSTOUFS(oldmnt); 2041 devvp = ump->um_devvp; 2042 while ((count = softdep_process_worklist(oldmnt, 1)) > 0) { 2043 *countp += count; 2044 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY); 2045 error = VOP_FSYNC(devvp, MNT_WAIT, td); 2046 VOP_UNLOCK(devvp); 2047 if (error != 0) 2048 break; 2049 } 2050 return (error); 2051 } 2052 2053 #define SU_WAITIDLE_RETRIES 20 2054 static int 2055 softdep_waitidle(struct mount *mp, int flags __unused) 2056 { 2057 struct ufsmount *ump; 2058 struct vnode *devvp; 2059 struct thread *td; 2060 int error, i; 2061 2062 ump = VFSTOUFS(mp); 2063 KASSERT(ump->um_softdep != NULL, 2064 ("softdep_waitidle called on non-softdep filesystem")); 2065 devvp = ump->um_devvp; 2066 td = curthread; 2067 error = 0; 2068 ACQUIRE_LOCK(ump); 2069 for (i = 0; i < SU_WAITIDLE_RETRIES && ump->softdep_deps != 0; i++) { 2070 ump->softdep_req = 1; 2071 KASSERT((flags & FORCECLOSE) == 0 || 2072 ump->softdep_on_worklist == 0, 2073 ("softdep_waitidle: work added after flush")); 2074 msleep(&ump->softdep_deps, LOCK_PTR(ump), PVM | PDROP, 2075 "softdeps", 10 * hz); 2076 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY); 2077 error = VOP_FSYNC(devvp, MNT_WAIT, td); 2078 VOP_UNLOCK(devvp); 2079 ACQUIRE_LOCK(ump); 2080 if (error != 0) 2081 break; 2082 } 2083 ump->softdep_req = 0; 2084 if (i == SU_WAITIDLE_RETRIES && error == 0 && ump->softdep_deps != 0) { 2085 error = EBUSY; 2086 printf("softdep_waitidle: Failed to flush worklist for %p\n", 2087 mp); 2088 } 2089 FREE_LOCK(ump); 2090 return (error); 2091 } 2092 2093 /* 2094 * Flush all vnodes and worklist items associated with a specified mount point. 2095 */ 2096 int 2097 softdep_flushfiles(struct mount *oldmnt, 2098 int flags, 2099 struct thread *td) 2100 { 2101 struct ufsmount *ump __unused; 2102 #ifdef QUOTA 2103 int i; 2104 #endif 2105 int error, early, depcount, loopcnt, retry_flush_count, retry; 2106 int morework; 2107 2108 ump = VFSTOUFS(oldmnt); 2109 KASSERT(ump->um_softdep != NULL, 2110 ("softdep_flushfiles called on non-softdep filesystem")); 2111 loopcnt = 10; 2112 retry_flush_count = 3; 2113 retry_flush: 2114 error = 0; 2115 2116 /* 2117 * Alternately flush the vnodes associated with the mount 2118 * point and process any dependencies that the flushing 2119 * creates. In theory, this loop can happen at most twice, 2120 * but we give it a few extra just to be sure. 2121 */ 2122 for (; loopcnt > 0; loopcnt--) { 2123 /* 2124 * Do another flush in case any vnodes were brought in 2125 * as part of the cleanup operations. 2126 */ 2127 early = retry_flush_count == 1 || (oldmnt->mnt_kern_flag & 2128 MNTK_UNMOUNT) == 0 ? 0 : EARLYFLUSH; 2129 if ((error = ffs_flushfiles(oldmnt, flags | early, td)) != 0) 2130 break; 2131 if ((error = softdep_flushworklist(oldmnt, &depcount, td)) != 0 || 2132 depcount == 0) 2133 break; 2134 } 2135 /* 2136 * If we are unmounting then it is an error to fail. If we 2137 * are simply trying to downgrade to read-only, then filesystem 2138 * activity can keep us busy forever, so we just fail with EBUSY. 2139 */ 2140 if (loopcnt == 0) { 2141 if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT) 2142 panic("softdep_flushfiles: looping"); 2143 error = EBUSY; 2144 } 2145 if (!error) 2146 error = softdep_waitidle(oldmnt, flags); 2147 if (!error) { 2148 if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT) { 2149 retry = 0; 2150 MNT_ILOCK(oldmnt); 2151 morework = oldmnt->mnt_nvnodelistsize > 0; 2152 #ifdef QUOTA 2153 UFS_LOCK(ump); 2154 for (i = 0; i < MAXQUOTAS; i++) { 2155 if (ump->um_quotas[i] != NULLVP) 2156 morework = 1; 2157 } 2158 UFS_UNLOCK(ump); 2159 #endif 2160 if (morework) { 2161 if (--retry_flush_count > 0) { 2162 retry = 1; 2163 loopcnt = 3; 2164 } else 2165 error = EBUSY; 2166 } 2167 MNT_IUNLOCK(oldmnt); 2168 if (retry) 2169 goto retry_flush; 2170 } 2171 } 2172 return (error); 2173 } 2174 2175 /* 2176 * Structure hashing. 2177 * 2178 * There are four types of structures that can be looked up: 2179 * 1) pagedep structures identified by mount point, inode number, 2180 * and logical block. 2181 * 2) inodedep structures identified by mount point and inode number. 2182 * 3) newblk structures identified by mount point and 2183 * physical block number. 2184 * 4) bmsafemap structures identified by mount point and 2185 * cylinder group number. 2186 * 2187 * The "pagedep" and "inodedep" dependency structures are hashed 2188 * separately from the file blocks and inodes to which they correspond. 2189 * This separation helps when the in-memory copy of an inode or 2190 * file block must be replaced. It also obviates the need to access 2191 * an inode or file page when simply updating (or de-allocating) 2192 * dependency structures. Lookup of newblk structures is needed to 2193 * find newly allocated blocks when trying to associate them with 2194 * their allocdirect or allocindir structure. 2195 * 2196 * The lookup routines optionally create and hash a new instance when 2197 * an existing entry is not found. The bmsafemap lookup routine always 2198 * allocates a new structure if an existing one is not found. 2199 */ 2200 #define DEPALLOC 0x0001 /* allocate structure if lookup fails */ 2201 2202 /* 2203 * Structures and routines associated with pagedep caching. 2204 */ 2205 #define PAGEDEP_HASH(ump, inum, lbn) \ 2206 (&(ump)->pagedep_hashtbl[((inum) + (lbn)) & (ump)->pagedep_hash_size]) 2207 2208 static int 2209 pagedep_find(struct pagedep_hashhead *pagedephd, 2210 ino_t ino, 2211 ufs_lbn_t lbn, 2212 struct pagedep **pagedeppp) 2213 { 2214 struct pagedep *pagedep; 2215 2216 LIST_FOREACH(pagedep, pagedephd, pd_hash) { 2217 if (ino == pagedep->pd_ino && lbn == pagedep->pd_lbn) { 2218 *pagedeppp = pagedep; 2219 return (1); 2220 } 2221 } 2222 *pagedeppp = NULL; 2223 return (0); 2224 } 2225 /* 2226 * Look up a pagedep. Return 1 if found, 0 otherwise. 2227 * If not found, allocate if DEPALLOC flag is passed. 2228 * Found or allocated entry is returned in pagedeppp. 2229 */ 2230 static int 2231 pagedep_lookup(struct mount *mp, 2232 struct buf *bp, 2233 ino_t ino, 2234 ufs_lbn_t lbn, 2235 int flags, 2236 struct pagedep **pagedeppp) 2237 { 2238 struct pagedep *pagedep; 2239 struct pagedep_hashhead *pagedephd; 2240 struct worklist *wk; 2241 struct ufsmount *ump; 2242 int ret; 2243 int i; 2244 2245 ump = VFSTOUFS(mp); 2246 LOCK_OWNED(ump); 2247 if (bp) { 2248 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 2249 if (wk->wk_type == D_PAGEDEP) { 2250 *pagedeppp = WK_PAGEDEP(wk); 2251 return (1); 2252 } 2253 } 2254 } 2255 pagedephd = PAGEDEP_HASH(ump, ino, lbn); 2256 ret = pagedep_find(pagedephd, ino, lbn, pagedeppp); 2257 if (ret) { 2258 if (((*pagedeppp)->pd_state & ONWORKLIST) == 0 && bp) 2259 WORKLIST_INSERT(&bp->b_dep, &(*pagedeppp)->pd_list); 2260 return (1); 2261 } 2262 if ((flags & DEPALLOC) == 0) 2263 return (0); 2264 FREE_LOCK(ump); 2265 pagedep = malloc(sizeof(struct pagedep), 2266 M_PAGEDEP, M_SOFTDEP_FLAGS|M_ZERO); 2267 workitem_alloc(&pagedep->pd_list, D_PAGEDEP, mp); 2268 ACQUIRE_LOCK(ump); 2269 ret = pagedep_find(pagedephd, ino, lbn, pagedeppp); 2270 if (*pagedeppp) { 2271 /* 2272 * This should never happen since we only create pagedeps 2273 * with the vnode lock held. Could be an assert. 2274 */ 2275 WORKITEM_FREE(pagedep, D_PAGEDEP); 2276 return (ret); 2277 } 2278 pagedep->pd_ino = ino; 2279 pagedep->pd_lbn = lbn; 2280 LIST_INIT(&pagedep->pd_dirremhd); 2281 LIST_INIT(&pagedep->pd_pendinghd); 2282 for (i = 0; i < DAHASHSZ; i++) 2283 LIST_INIT(&pagedep->pd_diraddhd[i]); 2284 LIST_INSERT_HEAD(pagedephd, pagedep, pd_hash); 2285 WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list); 2286 *pagedeppp = pagedep; 2287 return (0); 2288 } 2289 2290 /* 2291 * Structures and routines associated with inodedep caching. 2292 */ 2293 #define INODEDEP_HASH(ump, inum) \ 2294 (&(ump)->inodedep_hashtbl[(inum) & (ump)->inodedep_hash_size]) 2295 2296 static int 2297 inodedep_find(struct inodedep_hashhead *inodedephd, 2298 ino_t inum, 2299 struct inodedep **inodedeppp) 2300 { 2301 struct inodedep *inodedep; 2302 2303 LIST_FOREACH(inodedep, inodedephd, id_hash) 2304 if (inum == inodedep->id_ino) 2305 break; 2306 if (inodedep) { 2307 *inodedeppp = inodedep; 2308 return (1); 2309 } 2310 *inodedeppp = NULL; 2311 2312 return (0); 2313 } 2314 /* 2315 * Look up an inodedep. Return 1 if found, 0 if not found. 2316 * If not found, allocate if DEPALLOC flag is passed. 2317 * Found or allocated entry is returned in inodedeppp. 2318 */ 2319 static int 2320 inodedep_lookup(struct mount *mp, 2321 ino_t inum, 2322 int flags, 2323 struct inodedep **inodedeppp) 2324 { 2325 struct inodedep *inodedep; 2326 struct inodedep_hashhead *inodedephd; 2327 struct ufsmount *ump; 2328 struct fs *fs; 2329 2330 ump = VFSTOUFS(mp); 2331 LOCK_OWNED(ump); 2332 fs = ump->um_fs; 2333 inodedephd = INODEDEP_HASH(ump, inum); 2334 2335 if (inodedep_find(inodedephd, inum, inodedeppp)) 2336 return (1); 2337 if ((flags & DEPALLOC) == 0) 2338 return (0); 2339 /* 2340 * If the system is over its limit and our filesystem is 2341 * responsible for more than our share of that usage and 2342 * we are not in a rush, request some inodedep cleanup. 2343 */ 2344 if (softdep_excess_items(ump, D_INODEDEP)) 2345 schedule_cleanup(mp); 2346 else 2347 FREE_LOCK(ump); 2348 inodedep = malloc(sizeof(struct inodedep), 2349 M_INODEDEP, M_SOFTDEP_FLAGS); 2350 workitem_alloc(&inodedep->id_list, D_INODEDEP, mp); 2351 ACQUIRE_LOCK(ump); 2352 if (inodedep_find(inodedephd, inum, inodedeppp)) { 2353 WORKITEM_FREE(inodedep, D_INODEDEP); 2354 return (1); 2355 } 2356 inodedep->id_fs = fs; 2357 inodedep->id_ino = inum; 2358 inodedep->id_state = ALLCOMPLETE; 2359 inodedep->id_nlinkdelta = 0; 2360 inodedep->id_nlinkwrote = -1; 2361 inodedep->id_savedino1 = NULL; 2362 inodedep->id_savedsize = -1; 2363 inodedep->id_savedextsize = -1; 2364 inodedep->id_savednlink = -1; 2365 inodedep->id_bmsafemap = NULL; 2366 inodedep->id_mkdiradd = NULL; 2367 LIST_INIT(&inodedep->id_dirremhd); 2368 LIST_INIT(&inodedep->id_pendinghd); 2369 LIST_INIT(&inodedep->id_inowait); 2370 LIST_INIT(&inodedep->id_bufwait); 2371 TAILQ_INIT(&inodedep->id_inoreflst); 2372 TAILQ_INIT(&inodedep->id_inoupdt); 2373 TAILQ_INIT(&inodedep->id_newinoupdt); 2374 TAILQ_INIT(&inodedep->id_extupdt); 2375 TAILQ_INIT(&inodedep->id_newextupdt); 2376 TAILQ_INIT(&inodedep->id_freeblklst); 2377 LIST_INSERT_HEAD(inodedephd, inodedep, id_hash); 2378 *inodedeppp = inodedep; 2379 return (0); 2380 } 2381 2382 /* 2383 * Structures and routines associated with newblk caching. 2384 */ 2385 #define NEWBLK_HASH(ump, inum) \ 2386 (&(ump)->newblk_hashtbl[(inum) & (ump)->newblk_hash_size]) 2387 2388 static int 2389 newblk_find(struct newblk_hashhead *newblkhd, 2390 ufs2_daddr_t newblkno, 2391 int flags, 2392 struct newblk **newblkpp) 2393 { 2394 struct newblk *newblk; 2395 2396 LIST_FOREACH(newblk, newblkhd, nb_hash) { 2397 if (newblkno != newblk->nb_newblkno) 2398 continue; 2399 /* 2400 * If we're creating a new dependency don't match those that 2401 * have already been converted to allocdirects. This is for 2402 * a frag extend. 2403 */ 2404 if ((flags & DEPALLOC) && newblk->nb_list.wk_type != D_NEWBLK) 2405 continue; 2406 break; 2407 } 2408 if (newblk) { 2409 *newblkpp = newblk; 2410 return (1); 2411 } 2412 *newblkpp = NULL; 2413 return (0); 2414 } 2415 2416 /* 2417 * Look up a newblk. Return 1 if found, 0 if not found. 2418 * If not found, allocate if DEPALLOC flag is passed. 2419 * Found or allocated entry is returned in newblkpp. 2420 */ 2421 static int 2422 newblk_lookup(struct mount *mp, 2423 ufs2_daddr_t newblkno, 2424 int flags, 2425 struct newblk **newblkpp) 2426 { 2427 struct newblk *newblk; 2428 struct newblk_hashhead *newblkhd; 2429 struct ufsmount *ump; 2430 2431 ump = VFSTOUFS(mp); 2432 LOCK_OWNED(ump); 2433 newblkhd = NEWBLK_HASH(ump, newblkno); 2434 if (newblk_find(newblkhd, newblkno, flags, newblkpp)) 2435 return (1); 2436 if ((flags & DEPALLOC) == 0) 2437 return (0); 2438 if (softdep_excess_items(ump, D_NEWBLK) || 2439 softdep_excess_items(ump, D_ALLOCDIRECT) || 2440 softdep_excess_items(ump, D_ALLOCINDIR)) 2441 schedule_cleanup(mp); 2442 else 2443 FREE_LOCK(ump); 2444 newblk = malloc(sizeof(union allblk), M_NEWBLK, 2445 M_SOFTDEP_FLAGS | M_ZERO); 2446 workitem_alloc(&newblk->nb_list, D_NEWBLK, mp); 2447 ACQUIRE_LOCK(ump); 2448 if (newblk_find(newblkhd, newblkno, flags, newblkpp)) { 2449 WORKITEM_FREE(newblk, D_NEWBLK); 2450 return (1); 2451 } 2452 newblk->nb_freefrag = NULL; 2453 LIST_INIT(&newblk->nb_indirdeps); 2454 LIST_INIT(&newblk->nb_newdirblk); 2455 LIST_INIT(&newblk->nb_jwork); 2456 newblk->nb_state = ATTACHED; 2457 newblk->nb_newblkno = newblkno; 2458 LIST_INSERT_HEAD(newblkhd, newblk, nb_hash); 2459 *newblkpp = newblk; 2460 return (0); 2461 } 2462 2463 /* 2464 * Structures and routines associated with freed indirect block caching. 2465 */ 2466 #define INDIR_HASH(ump, blkno) \ 2467 (&(ump)->indir_hashtbl[(blkno) & (ump)->indir_hash_size]) 2468 2469 /* 2470 * Lookup an indirect block in the indir hash table. The freework is 2471 * removed and potentially freed. The caller must do a blocking journal 2472 * write before writing to the blkno. 2473 */ 2474 static int 2475 indirblk_lookup(struct mount *mp, ufs2_daddr_t blkno) 2476 { 2477 struct freework *freework; 2478 struct indir_hashhead *wkhd; 2479 struct ufsmount *ump; 2480 2481 ump = VFSTOUFS(mp); 2482 wkhd = INDIR_HASH(ump, blkno); 2483 TAILQ_FOREACH(freework, wkhd, fw_next) { 2484 if (freework->fw_blkno != blkno) 2485 continue; 2486 indirblk_remove(freework); 2487 return (1); 2488 } 2489 return (0); 2490 } 2491 2492 /* 2493 * Insert an indirect block represented by freework into the indirblk 2494 * hash table so that it may prevent the block from being re-used prior 2495 * to the journal being written. 2496 */ 2497 static void 2498 indirblk_insert(struct freework *freework) 2499 { 2500 struct jblocks *jblocks; 2501 struct jseg *jseg; 2502 struct ufsmount *ump; 2503 2504 ump = VFSTOUFS(freework->fw_list.wk_mp); 2505 jblocks = ump->softdep_jblocks; 2506 jseg = TAILQ_LAST(&jblocks->jb_segs, jseglst); 2507 if (jseg == NULL) 2508 return; 2509 2510 LIST_INSERT_HEAD(&jseg->js_indirs, freework, fw_segs); 2511 TAILQ_INSERT_HEAD(INDIR_HASH(ump, freework->fw_blkno), freework, 2512 fw_next); 2513 freework->fw_state &= ~DEPCOMPLETE; 2514 } 2515 2516 static void 2517 indirblk_remove(struct freework *freework) 2518 { 2519 struct ufsmount *ump; 2520 2521 ump = VFSTOUFS(freework->fw_list.wk_mp); 2522 LIST_REMOVE(freework, fw_segs); 2523 TAILQ_REMOVE(INDIR_HASH(ump, freework->fw_blkno), freework, fw_next); 2524 freework->fw_state |= DEPCOMPLETE; 2525 if ((freework->fw_state & ALLCOMPLETE) == ALLCOMPLETE) 2526 WORKITEM_FREE(freework, D_FREEWORK); 2527 } 2528 2529 /* 2530 * Executed during filesystem system initialization before 2531 * mounting any filesystems. 2532 */ 2533 void 2534 softdep_initialize(void) 2535 { 2536 2537 TAILQ_INIT(&softdepmounts); 2538 #ifdef __LP64__ 2539 max_softdeps = desiredvnodes * 4; 2540 #else 2541 max_softdeps = desiredvnodes * 2; 2542 #endif 2543 2544 /* initialise bioops hack */ 2545 bioops.io_start = softdep_disk_io_initiation; 2546 bioops.io_complete = softdep_disk_write_complete; 2547 bioops.io_deallocate = softdep_deallocate_dependencies; 2548 bioops.io_countdeps = softdep_count_dependencies; 2549 softdep_ast_cleanup = softdep_ast_cleanup_proc; 2550 2551 /* Initialize the callout with an mtx. */ 2552 callout_init_mtx(&softdep_callout, &lk, 0); 2553 } 2554 2555 /* 2556 * Executed after all filesystems have been unmounted during 2557 * filesystem module unload. 2558 */ 2559 void 2560 softdep_uninitialize(void) 2561 { 2562 2563 /* clear bioops hack */ 2564 bioops.io_start = NULL; 2565 bioops.io_complete = NULL; 2566 bioops.io_deallocate = NULL; 2567 bioops.io_countdeps = NULL; 2568 softdep_ast_cleanup = NULL; 2569 2570 callout_drain(&softdep_callout); 2571 } 2572 2573 /* 2574 * Called at mount time to notify the dependency code that a 2575 * filesystem wishes to use it. 2576 */ 2577 int 2578 softdep_mount(struct vnode *devvp, 2579 struct mount *mp, 2580 struct fs *fs, 2581 struct ucred *cred) 2582 { 2583 struct csum_total cstotal; 2584 struct mount_softdeps *sdp; 2585 struct ufsmount *ump; 2586 struct cg *cgp; 2587 struct buf *bp; 2588 u_int cyl, i; 2589 int error; 2590 2591 ump = VFSTOUFS(mp); 2592 2593 sdp = malloc(sizeof(struct mount_softdeps), M_MOUNTDATA, 2594 M_WAITOK | M_ZERO); 2595 rw_init(&sdp->sd_fslock, "SUrw"); 2596 sdp->sd_ump = ump; 2597 LIST_INIT(&sdp->sd_workitem_pending); 2598 LIST_INIT(&sdp->sd_journal_pending); 2599 TAILQ_INIT(&sdp->sd_unlinked); 2600 LIST_INIT(&sdp->sd_dirtycg); 2601 sdp->sd_worklist_tail = NULL; 2602 sdp->sd_on_worklist = 0; 2603 sdp->sd_deps = 0; 2604 LIST_INIT(&sdp->sd_mkdirlisthd); 2605 sdp->sd_pdhash = hashinit(desiredvnodes / 5, M_PAGEDEP, 2606 &sdp->sd_pdhashsize); 2607 sdp->sd_pdnextclean = 0; 2608 sdp->sd_idhash = hashinit(desiredvnodes, M_INODEDEP, 2609 &sdp->sd_idhashsize); 2610 sdp->sd_idnextclean = 0; 2611 sdp->sd_newblkhash = hashinit(max_softdeps / 2, M_NEWBLK, 2612 &sdp->sd_newblkhashsize); 2613 sdp->sd_bmhash = hashinit(1024, M_BMSAFEMAP, &sdp->sd_bmhashsize); 2614 i = 1 << (ffs(desiredvnodes / 10) - 1); 2615 sdp->sd_indirhash = malloc(i * sizeof(struct indir_hashhead), 2616 M_FREEWORK, M_WAITOK); 2617 sdp->sd_indirhashsize = i - 1; 2618 for (i = 0; i <= sdp->sd_indirhashsize; i++) 2619 TAILQ_INIT(&sdp->sd_indirhash[i]); 2620 for (i = 0; i <= D_LAST; i++) 2621 LIST_INIT(&sdp->sd_alldeps[i]); 2622 ACQUIRE_GBLLOCK(&lk); 2623 TAILQ_INSERT_TAIL(&softdepmounts, sdp, sd_next); 2624 FREE_GBLLOCK(&lk); 2625 2626 ump->um_softdep = sdp; 2627 MNT_ILOCK(mp); 2628 mp->mnt_flag = (mp->mnt_flag & ~MNT_ASYNC) | MNT_SOFTDEP; 2629 if ((mp->mnt_kern_flag & MNTK_SOFTDEP) == 0) { 2630 mp->mnt_kern_flag = (mp->mnt_kern_flag & ~MNTK_ASYNC) | 2631 MNTK_SOFTDEP | MNTK_NOASYNC; 2632 } 2633 MNT_IUNLOCK(mp); 2634 2635 if ((fs->fs_flags & FS_SUJ) && 2636 (error = journal_mount(mp, fs, cred)) != 0) { 2637 printf("Failed to start journal: %d\n", error); 2638 softdep_unmount(mp); 2639 return (error); 2640 } 2641 /* 2642 * Start our flushing thread in the bufdaemon process. 2643 */ 2644 ACQUIRE_LOCK(ump); 2645 ump->softdep_flags |= FLUSH_STARTING; 2646 FREE_LOCK(ump); 2647 kproc_kthread_add(&softdep_flush, mp, &bufdaemonproc, 2648 &ump->softdep_flushtd, 0, 0, "softdepflush", "%s worker", 2649 mp->mnt_stat.f_mntonname); 2650 ACQUIRE_LOCK(ump); 2651 while ((ump->softdep_flags & FLUSH_STARTING) != 0) { 2652 msleep(&ump->softdep_flushtd, LOCK_PTR(ump), PVM, "sdstart", 2653 hz / 2); 2654 } 2655 FREE_LOCK(ump); 2656 /* 2657 * When doing soft updates, the counters in the 2658 * superblock may have gotten out of sync. Recomputation 2659 * can take a long time and can be deferred for background 2660 * fsck. However, the old behavior of scanning the cylinder 2661 * groups and recalculating them at mount time is available 2662 * by setting vfs.ffs.compute_summary_at_mount to one. 2663 */ 2664 if (compute_summary_at_mount == 0 || fs->fs_clean != 0) 2665 return (0); 2666 bzero(&cstotal, sizeof cstotal); 2667 for (cyl = 0; cyl < fs->fs_ncg; cyl++) { 2668 if ((error = bread(devvp, fsbtodb(fs, cgtod(fs, cyl)), 2669 fs->fs_cgsize, cred, &bp)) != 0) { 2670 brelse(bp); 2671 softdep_unmount(mp); 2672 return (error); 2673 } 2674 cgp = (struct cg *)bp->b_data; 2675 cstotal.cs_nffree += cgp->cg_cs.cs_nffree; 2676 cstotal.cs_nbfree += cgp->cg_cs.cs_nbfree; 2677 cstotal.cs_nifree += cgp->cg_cs.cs_nifree; 2678 cstotal.cs_ndir += cgp->cg_cs.cs_ndir; 2679 fs->fs_cs(fs, cyl) = cgp->cg_cs; 2680 brelse(bp); 2681 } 2682 #ifdef INVARIANTS 2683 if (bcmp(&cstotal, &fs->fs_cstotal, sizeof cstotal)) 2684 printf("%s: superblock summary recomputed\n", fs->fs_fsmnt); 2685 #endif 2686 bcopy(&cstotal, &fs->fs_cstotal, sizeof cstotal); 2687 return (0); 2688 } 2689 2690 void 2691 softdep_unmount(struct mount *mp) 2692 { 2693 struct ufsmount *ump; 2694 struct mount_softdeps *ums; 2695 2696 ump = VFSTOUFS(mp); 2697 KASSERT(ump->um_softdep != NULL, 2698 ("softdep_unmount called on non-softdep filesystem")); 2699 MNT_ILOCK(mp); 2700 mp->mnt_flag &= ~MNT_SOFTDEP; 2701 if ((mp->mnt_flag & MNT_SUJ) == 0) { 2702 MNT_IUNLOCK(mp); 2703 } else { 2704 mp->mnt_flag &= ~MNT_SUJ; 2705 MNT_IUNLOCK(mp); 2706 journal_unmount(ump); 2707 } 2708 /* 2709 * Shut down our flushing thread. Check for NULL is if 2710 * softdep_mount errors out before the thread has been created. 2711 */ 2712 if (ump->softdep_flushtd != NULL) { 2713 ACQUIRE_LOCK(ump); 2714 ump->softdep_flags |= FLUSH_EXIT; 2715 wakeup(&ump->softdep_flushtd); 2716 while ((ump->softdep_flags & FLUSH_EXIT) != 0) { 2717 msleep(&ump->softdep_flags, LOCK_PTR(ump), PVM, 2718 "sdwait", 0); 2719 } 2720 KASSERT((ump->softdep_flags & FLUSH_EXIT) == 0, 2721 ("Thread shutdown failed")); 2722 FREE_LOCK(ump); 2723 } 2724 2725 /* 2726 * We are no longer have softdep structure attached to ump. 2727 */ 2728 ums = ump->um_softdep; 2729 ACQUIRE_GBLLOCK(&lk); 2730 TAILQ_REMOVE(&softdepmounts, ums, sd_next); 2731 FREE_GBLLOCK(&lk); 2732 ump->um_softdep = NULL; 2733 2734 KASSERT(ums->sd_on_journal == 0, 2735 ("ump %p ums %p on_journal %d", ump, ums, ums->sd_on_journal)); 2736 KASSERT(ums->sd_on_worklist == 0, 2737 ("ump %p ums %p on_worklist %d", ump, ums, ums->sd_on_worklist)); 2738 KASSERT(ums->sd_deps == 0, 2739 ("ump %p ums %p deps %d", ump, ums, ums->sd_deps)); 2740 2741 /* 2742 * Free up our resources. 2743 */ 2744 rw_destroy(&ums->sd_fslock); 2745 hashdestroy(ums->sd_pdhash, M_PAGEDEP, ums->sd_pdhashsize); 2746 hashdestroy(ums->sd_idhash, M_INODEDEP, ums->sd_idhashsize); 2747 hashdestroy(ums->sd_newblkhash, M_NEWBLK, ums->sd_newblkhashsize); 2748 hashdestroy(ums->sd_bmhash, M_BMSAFEMAP, ums->sd_bmhashsize); 2749 free(ums->sd_indirhash, M_FREEWORK); 2750 #ifdef INVARIANTS 2751 for (int i = 0; i <= D_LAST; i++) { 2752 KASSERT(ums->sd_curdeps[i] == 0, 2753 ("Unmount %s: Dep type %s != 0 (%ld)", ump->um_fs->fs_fsmnt, 2754 TYPENAME(i), ums->sd_curdeps[i])); 2755 KASSERT(LIST_EMPTY(&ums->sd_alldeps[i]), 2756 ("Unmount %s: Dep type %s not empty (%p)", 2757 ump->um_fs->fs_fsmnt, 2758 TYPENAME(i), LIST_FIRST(&ums->sd_alldeps[i]))); 2759 } 2760 #endif 2761 free(ums, M_MOUNTDATA); 2762 } 2763 2764 static struct jblocks * 2765 jblocks_create(void) 2766 { 2767 struct jblocks *jblocks; 2768 2769 jblocks = malloc(sizeof(*jblocks), M_JBLOCKS, M_WAITOK | M_ZERO); 2770 TAILQ_INIT(&jblocks->jb_segs); 2771 jblocks->jb_avail = 10; 2772 jblocks->jb_extent = malloc(sizeof(struct jextent) * jblocks->jb_avail, 2773 M_JBLOCKS, M_WAITOK | M_ZERO); 2774 2775 return (jblocks); 2776 } 2777 2778 static ufs2_daddr_t 2779 jblocks_alloc(struct jblocks *jblocks, 2780 int bytes, 2781 int *actual) 2782 { 2783 ufs2_daddr_t daddr; 2784 struct jextent *jext; 2785 int freecnt; 2786 int blocks; 2787 2788 blocks = bytes / DEV_BSIZE; 2789 jext = &jblocks->jb_extent[jblocks->jb_head]; 2790 freecnt = jext->je_blocks - jblocks->jb_off; 2791 if (freecnt == 0) { 2792 jblocks->jb_off = 0; 2793 if (++jblocks->jb_head > jblocks->jb_used) 2794 jblocks->jb_head = 0; 2795 jext = &jblocks->jb_extent[jblocks->jb_head]; 2796 freecnt = jext->je_blocks; 2797 } 2798 if (freecnt > blocks) 2799 freecnt = blocks; 2800 *actual = freecnt * DEV_BSIZE; 2801 daddr = jext->je_daddr + jblocks->jb_off; 2802 jblocks->jb_off += freecnt; 2803 jblocks->jb_free -= freecnt; 2804 2805 return (daddr); 2806 } 2807 2808 static void 2809 jblocks_free(struct jblocks *jblocks, 2810 struct mount *mp, 2811 int bytes) 2812 { 2813 2814 LOCK_OWNED(VFSTOUFS(mp)); 2815 jblocks->jb_free += bytes / DEV_BSIZE; 2816 if (jblocks->jb_suspended) 2817 worklist_speedup(mp); 2818 wakeup(jblocks); 2819 } 2820 2821 static void 2822 jblocks_destroy(struct jblocks *jblocks) 2823 { 2824 2825 if (jblocks->jb_extent) 2826 free(jblocks->jb_extent, M_JBLOCKS); 2827 free(jblocks, M_JBLOCKS); 2828 } 2829 2830 static void 2831 jblocks_add(struct jblocks *jblocks, 2832 ufs2_daddr_t daddr, 2833 int blocks) 2834 { 2835 struct jextent *jext; 2836 2837 jblocks->jb_blocks += blocks; 2838 jblocks->jb_free += blocks; 2839 jext = &jblocks->jb_extent[jblocks->jb_used]; 2840 /* Adding the first block. */ 2841 if (jext->je_daddr == 0) { 2842 jext->je_daddr = daddr; 2843 jext->je_blocks = blocks; 2844 return; 2845 } 2846 /* Extending the last extent. */ 2847 if (jext->je_daddr + jext->je_blocks == daddr) { 2848 jext->je_blocks += blocks; 2849 return; 2850 } 2851 /* Adding a new extent. */ 2852 if (++jblocks->jb_used == jblocks->jb_avail) { 2853 jblocks->jb_avail *= 2; 2854 jext = malloc(sizeof(struct jextent) * jblocks->jb_avail, 2855 M_JBLOCKS, M_WAITOK | M_ZERO); 2856 memcpy(jext, jblocks->jb_extent, 2857 sizeof(struct jextent) * jblocks->jb_used); 2858 free(jblocks->jb_extent, M_JBLOCKS); 2859 jblocks->jb_extent = jext; 2860 } 2861 jext = &jblocks->jb_extent[jblocks->jb_used]; 2862 jext->je_daddr = daddr; 2863 jext->je_blocks = blocks; 2864 return; 2865 } 2866 2867 int 2868 softdep_journal_lookup(struct mount *mp, struct vnode **vpp) 2869 { 2870 struct componentname cnp; 2871 struct vnode *dvp; 2872 ino_t sujournal; 2873 int error; 2874 2875 error = VFS_VGET(mp, UFS_ROOTINO, LK_EXCLUSIVE, &dvp); 2876 if (error) 2877 return (error); 2878 bzero(&cnp, sizeof(cnp)); 2879 cnp.cn_nameiop = LOOKUP; 2880 cnp.cn_flags = ISLASTCN; 2881 cnp.cn_cred = curthread->td_ucred; 2882 cnp.cn_pnbuf = SUJ_FILE; 2883 cnp.cn_nameptr = SUJ_FILE; 2884 cnp.cn_namelen = strlen(SUJ_FILE); 2885 error = ufs_lookup_ino(dvp, NULL, &cnp, &sujournal); 2886 vput(dvp); 2887 if (error != 0) 2888 return (error); 2889 error = VFS_VGET(mp, sujournal, LK_EXCLUSIVE, vpp); 2890 return (error); 2891 } 2892 2893 /* 2894 * Open and verify the journal file. 2895 */ 2896 static int 2897 journal_mount(struct mount *mp, 2898 struct fs *fs, 2899 struct ucred *cred) 2900 { 2901 struct jblocks *jblocks; 2902 struct ufsmount *ump; 2903 struct vnode *vp; 2904 struct inode *ip; 2905 ufs2_daddr_t blkno; 2906 int bcount; 2907 int error; 2908 int i; 2909 2910 ump = VFSTOUFS(mp); 2911 ump->softdep_journal_tail = NULL; 2912 ump->softdep_on_journal = 0; 2913 ump->softdep_accdeps = 0; 2914 ump->softdep_req = 0; 2915 ump->softdep_jblocks = NULL; 2916 error = softdep_journal_lookup(mp, &vp); 2917 if (error != 0) { 2918 printf("Failed to find journal. Use tunefs to create one\n"); 2919 return (error); 2920 } 2921 ip = VTOI(vp); 2922 if (ip->i_size < SUJ_MIN) { 2923 error = ENOSPC; 2924 goto out; 2925 } 2926 bcount = lblkno(fs, ip->i_size); /* Only use whole blocks. */ 2927 jblocks = jblocks_create(); 2928 for (i = 0; i < bcount; i++) { 2929 error = ufs_bmaparray(vp, i, &blkno, NULL, NULL, NULL); 2930 if (error) 2931 break; 2932 jblocks_add(jblocks, blkno, fsbtodb(fs, fs->fs_frag)); 2933 } 2934 if (error) { 2935 jblocks_destroy(jblocks); 2936 goto out; 2937 } 2938 jblocks->jb_low = jblocks->jb_free / 3; /* Reserve 33%. */ 2939 jblocks->jb_min = jblocks->jb_free / 10; /* Suspend at 10%. */ 2940 ump->softdep_jblocks = jblocks; 2941 2942 MNT_ILOCK(mp); 2943 mp->mnt_flag |= MNT_SUJ; 2944 MNT_IUNLOCK(mp); 2945 2946 /* 2947 * Only validate the journal contents if the 2948 * filesystem is clean, otherwise we write the logs 2949 * but they'll never be used. If the filesystem was 2950 * still dirty when we mounted it the journal is 2951 * invalid and a new journal can only be valid if it 2952 * starts from a clean mount. 2953 */ 2954 if (fs->fs_clean) { 2955 DIP_SET(ip, i_modrev, fs->fs_mtime); 2956 ip->i_flags |= IN_MODIFIED; 2957 ffs_update(vp, 1); 2958 } 2959 out: 2960 vput(vp); 2961 return (error); 2962 } 2963 2964 static void 2965 journal_unmount(struct ufsmount *ump) 2966 { 2967 2968 if (ump->softdep_jblocks) 2969 jblocks_destroy(ump->softdep_jblocks); 2970 ump->softdep_jblocks = NULL; 2971 } 2972 2973 /* 2974 * Called when a journal record is ready to be written. Space is allocated 2975 * and the journal entry is created when the journal is flushed to stable 2976 * store. 2977 */ 2978 static void 2979 add_to_journal(struct worklist *wk) 2980 { 2981 struct ufsmount *ump; 2982 2983 ump = VFSTOUFS(wk->wk_mp); 2984 LOCK_OWNED(ump); 2985 if (wk->wk_state & ONWORKLIST) 2986 panic("add_to_journal: %s(0x%X) already on list", 2987 TYPENAME(wk->wk_type), wk->wk_state); 2988 wk->wk_state |= ONWORKLIST | DEPCOMPLETE; 2989 if (LIST_EMPTY(&ump->softdep_journal_pending)) { 2990 ump->softdep_jblocks->jb_age = ticks; 2991 LIST_INSERT_HEAD(&ump->softdep_journal_pending, wk, wk_list); 2992 } else 2993 LIST_INSERT_AFTER(ump->softdep_journal_tail, wk, wk_list); 2994 ump->softdep_journal_tail = wk; 2995 ump->softdep_on_journal += 1; 2996 } 2997 2998 /* 2999 * Remove an arbitrary item for the journal worklist maintain the tail 3000 * pointer. This happens when a new operation obviates the need to 3001 * journal an old operation. 3002 */ 3003 static void 3004 remove_from_journal(struct worklist *wk) 3005 { 3006 struct ufsmount *ump; 3007 3008 ump = VFSTOUFS(wk->wk_mp); 3009 LOCK_OWNED(ump); 3010 #ifdef INVARIANTS 3011 { 3012 struct worklist *wkn; 3013 3014 LIST_FOREACH(wkn, &ump->softdep_journal_pending, wk_list) 3015 if (wkn == wk) 3016 break; 3017 if (wkn == NULL) 3018 panic("remove_from_journal: %p is not in journal", wk); 3019 } 3020 #endif 3021 /* 3022 * We emulate a TAILQ to save space in most structures which do not 3023 * require TAILQ semantics. Here we must update the tail position 3024 * when removing the tail which is not the final entry. This works 3025 * only if the worklist linkage are at the beginning of the structure. 3026 */ 3027 if (ump->softdep_journal_tail == wk) 3028 ump->softdep_journal_tail = 3029 (struct worklist *)wk->wk_list.le_prev; 3030 WORKLIST_REMOVE(wk); 3031 ump->softdep_on_journal -= 1; 3032 } 3033 3034 /* 3035 * Check for journal space as well as dependency limits so the prelink 3036 * code can throttle both journaled and non-journaled filesystems. 3037 * Threshold is 0 for low and 1 for min. 3038 */ 3039 static int 3040 journal_space(struct ufsmount *ump, int thresh) 3041 { 3042 struct jblocks *jblocks; 3043 int limit, avail; 3044 3045 jblocks = ump->softdep_jblocks; 3046 if (jblocks == NULL) 3047 return (1); 3048 /* 3049 * We use a tighter restriction here to prevent request_cleanup() 3050 * running in threads from running into locks we currently hold. 3051 * We have to be over the limit and our filesystem has to be 3052 * responsible for more than our share of that usage. 3053 */ 3054 limit = (max_softdeps / 10) * 9; 3055 if (dep_current[D_INODEDEP] > limit && 3056 ump->softdep_curdeps[D_INODEDEP] > limit / stat_flush_threads) 3057 return (0); 3058 if (thresh) 3059 thresh = jblocks->jb_min; 3060 else 3061 thresh = jblocks->jb_low; 3062 avail = (ump->softdep_on_journal * JREC_SIZE) / DEV_BSIZE; 3063 avail = jblocks->jb_free - avail; 3064 3065 return (avail > thresh); 3066 } 3067 3068 static void 3069 journal_suspend(struct ufsmount *ump) 3070 { 3071 struct jblocks *jblocks; 3072 struct mount *mp; 3073 bool set; 3074 3075 mp = UFSTOVFS(ump); 3076 if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) 3077 return; 3078 3079 jblocks = ump->softdep_jblocks; 3080 vfs_op_enter(mp); 3081 set = false; 3082 MNT_ILOCK(mp); 3083 if ((mp->mnt_kern_flag & MNTK_SUSPEND) == 0) { 3084 stat_journal_min++; 3085 mp->mnt_kern_flag |= MNTK_SUSPEND; 3086 mp->mnt_susp_owner = ump->softdep_flushtd; 3087 set = true; 3088 } 3089 jblocks->jb_suspended = 1; 3090 MNT_IUNLOCK(mp); 3091 if (!set) 3092 vfs_op_exit(mp); 3093 } 3094 3095 static int 3096 journal_unsuspend(struct ufsmount *ump) 3097 { 3098 struct jblocks *jblocks; 3099 struct mount *mp; 3100 3101 mp = UFSTOVFS(ump); 3102 jblocks = ump->softdep_jblocks; 3103 3104 if (jblocks != NULL && jblocks->jb_suspended && 3105 journal_space(ump, jblocks->jb_min)) { 3106 jblocks->jb_suspended = 0; 3107 FREE_LOCK(ump); 3108 mp->mnt_susp_owner = curthread; 3109 vfs_write_resume(mp, 0); 3110 ACQUIRE_LOCK(ump); 3111 return (1); 3112 } 3113 return (0); 3114 } 3115 3116 static void 3117 journal_check_space(struct ufsmount *ump) 3118 { 3119 struct mount *mp; 3120 3121 LOCK_OWNED(ump); 3122 3123 if (journal_space(ump, 0) == 0) { 3124 softdep_speedup(ump); 3125 mp = UFSTOVFS(ump); 3126 FREE_LOCK(ump); 3127 VFS_SYNC(mp, MNT_NOWAIT); 3128 ffs_sbupdate(ump, MNT_WAIT, 0); 3129 ACQUIRE_LOCK(ump); 3130 if (journal_space(ump, 1) == 0) 3131 journal_suspend(ump); 3132 } 3133 } 3134 3135 /* 3136 * Called before any allocation function to be certain that there is 3137 * sufficient space in the journal prior to creating any new records. 3138 * Since in the case of block allocation we may have multiple locked 3139 * buffers at the time of the actual allocation we can not block 3140 * when the journal records are created. Doing so would create a deadlock 3141 * if any of these buffers needed to be flushed to reclaim space. Instead 3142 * we require a sufficiently large amount of available space such that 3143 * each thread in the system could have passed this allocation check and 3144 * still have sufficient free space. With 20% of a minimum journal size 3145 * of 1MB we have 6553 records available. 3146 */ 3147 int 3148 softdep_prealloc(struct vnode *vp, int waitok) 3149 { 3150 struct ufsmount *ump; 3151 3152 KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0, 3153 ("softdep_prealloc called on non-softdep filesystem")); 3154 /* 3155 * Nothing to do if we are not running journaled soft updates. 3156 * If we currently hold the snapshot lock, we must avoid 3157 * handling other resources that could cause deadlock. Do not 3158 * touch quotas vnode since it is typically recursed with 3159 * other vnode locks held. 3160 */ 3161 if (DOINGSUJ(vp) == 0 || IS_SNAPSHOT(VTOI(vp)) || 3162 (vp->v_vflag & VV_SYSTEM) != 0) 3163 return (0); 3164 ump = VFSTOUFS(vp->v_mount); 3165 ACQUIRE_LOCK(ump); 3166 if (journal_space(ump, 0)) { 3167 FREE_LOCK(ump); 3168 return (0); 3169 } 3170 stat_journal_low++; 3171 FREE_LOCK(ump); 3172 if (waitok == MNT_NOWAIT) 3173 return (ENOSPC); 3174 /* 3175 * Attempt to sync this vnode once to flush any journal 3176 * work attached to it. 3177 */ 3178 if ((curthread->td_pflags & TDP_COWINPROGRESS) == 0) 3179 ffs_syncvnode(vp, waitok, 0); 3180 ACQUIRE_LOCK(ump); 3181 process_removes(vp); 3182 process_truncates(vp); 3183 journal_check_space(ump); 3184 FREE_LOCK(ump); 3185 3186 return (0); 3187 } 3188 3189 /* 3190 * Try hard to sync all data and metadata for the vnode, and workitems 3191 * flushing which might conflict with the vnode lock. This is a 3192 * helper for softdep_prerename(). 3193 */ 3194 static int 3195 softdep_prerename_vnode(struct ufsmount *ump, struct vnode *vp) 3196 { 3197 int error; 3198 3199 ASSERT_VOP_ELOCKED(vp, "prehandle"); 3200 if (vp->v_data == NULL) 3201 return (0); 3202 error = VOP_FSYNC(vp, MNT_WAIT, curthread); 3203 if (error != 0) 3204 return (error); 3205 ACQUIRE_LOCK(ump); 3206 process_removes(vp); 3207 process_truncates(vp); 3208 FREE_LOCK(ump); 3209 return (0); 3210 } 3211 3212 /* 3213 * Must be called from VOP_RENAME() after all vnodes are locked. 3214 * Ensures that there is enough journal space for rename. It is 3215 * sufficiently different from softdep_prelink() by having to handle 3216 * four vnodes. 3217 */ 3218 int 3219 softdep_prerename(struct vnode *fdvp, 3220 struct vnode *fvp, 3221 struct vnode *tdvp, 3222 struct vnode *tvp) 3223 { 3224 struct ufsmount *ump; 3225 int error; 3226 3227 ump = VFSTOUFS(fdvp->v_mount); 3228 3229 if (journal_space(ump, 0)) 3230 return (0); 3231 3232 VOP_UNLOCK(tdvp); 3233 VOP_UNLOCK(fvp); 3234 if (tvp != NULL && tvp != tdvp) 3235 VOP_UNLOCK(tvp); 3236 3237 error = softdep_prerename_vnode(ump, fdvp); 3238 VOP_UNLOCK(fdvp); 3239 if (error != 0) 3240 return (error); 3241 3242 VOP_LOCK(fvp, LK_EXCLUSIVE | LK_RETRY); 3243 error = softdep_prerename_vnode(ump, fvp); 3244 VOP_UNLOCK(fvp); 3245 if (error != 0) 3246 return (error); 3247 3248 if (tdvp != fdvp) { 3249 VOP_LOCK(tdvp, LK_EXCLUSIVE | LK_RETRY); 3250 error = softdep_prerename_vnode(ump, tdvp); 3251 VOP_UNLOCK(tdvp); 3252 if (error != 0) 3253 return (error); 3254 } 3255 3256 if (tvp != fvp && tvp != NULL) { 3257 VOP_LOCK(tvp, LK_EXCLUSIVE | LK_RETRY); 3258 error = softdep_prerename_vnode(ump, tvp); 3259 VOP_UNLOCK(tvp); 3260 if (error != 0) 3261 return (error); 3262 } 3263 3264 ACQUIRE_LOCK(ump); 3265 softdep_speedup(ump); 3266 process_worklist_item(UFSTOVFS(ump), 2, LK_NOWAIT); 3267 journal_check_space(ump); 3268 FREE_LOCK(ump); 3269 return (ERELOOKUP); 3270 } 3271 3272 /* 3273 * Before adjusting a link count on a vnode verify that we have sufficient 3274 * journal space. If not, process operations that depend on the currently 3275 * locked pair of vnodes to try to flush space as the syncer, buf daemon, 3276 * and softdep flush threads can not acquire these locks to reclaim space. 3277 * 3278 * Returns 0 if all owned locks are still valid and were not dropped 3279 * in the process, in other case it returns either an error from sync, 3280 * or ERELOOKUP if any of the locks were re-acquired. In the later 3281 * case, the state of the vnodes cannot be relied upon and our VFS 3282 * syscall must be restarted at top level from the lookup. 3283 */ 3284 int 3285 softdep_prelink(struct vnode *dvp, 3286 struct vnode *vp, 3287 struct componentname *cnp) 3288 { 3289 struct ufsmount *ump; 3290 struct nameidata *ndp; 3291 3292 ASSERT_VOP_ELOCKED(dvp, "prelink dvp"); 3293 if (vp != NULL) 3294 ASSERT_VOP_ELOCKED(vp, "prelink vp"); 3295 ump = VFSTOUFS(dvp->v_mount); 3296 3297 /* 3298 * Nothing to do if we have sufficient journal space. We skip 3299 * flushing when vp is a snapshot to avoid deadlock where 3300 * another thread is trying to update the inodeblock for dvp 3301 * and is waiting on snaplk that vp holds. 3302 */ 3303 if (journal_space(ump, 0) || (vp != NULL && IS_SNAPSHOT(VTOI(vp)))) 3304 return (0); 3305 3306 /* 3307 * Check if the journal space consumption can in theory be 3308 * accounted on dvp and vp. If the vnodes metadata was not 3309 * changed comparing with the previous round-trip into 3310 * softdep_prelink(), as indicated by the seqc generation 3311 * recorded in the nameidata, then there is no point in 3312 * starting the sync. 3313 */ 3314 ndp = __containerof(cnp, struct nameidata, ni_cnd); 3315 if (!seqc_in_modify(ndp->ni_dvp_seqc) && 3316 vn_seqc_consistent(dvp, ndp->ni_dvp_seqc) && 3317 (vp == NULL || (!seqc_in_modify(ndp->ni_vp_seqc) && 3318 vn_seqc_consistent(vp, ndp->ni_vp_seqc)))) 3319 return (0); 3320 3321 stat_journal_low++; 3322 if (vp != NULL) { 3323 VOP_UNLOCK(dvp); 3324 ffs_syncvnode(vp, MNT_NOWAIT, 0); 3325 vn_lock_pair(dvp, false, vp, true); 3326 if (dvp->v_data == NULL) 3327 goto out; 3328 } 3329 if (vp != NULL) 3330 VOP_UNLOCK(vp); 3331 ffs_syncvnode(dvp, MNT_WAIT, 0); 3332 /* Process vp before dvp as it may create .. removes. */ 3333 if (vp != NULL) { 3334 VOP_UNLOCK(dvp); 3335 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 3336 if (vp->v_data == NULL) { 3337 vn_lock_pair(dvp, false, vp, true); 3338 goto out; 3339 } 3340 ACQUIRE_LOCK(ump); 3341 process_removes(vp); 3342 process_truncates(vp); 3343 FREE_LOCK(ump); 3344 VOP_UNLOCK(vp); 3345 vn_lock(dvp, LK_EXCLUSIVE | LK_RETRY); 3346 if (dvp->v_data == NULL) { 3347 vn_lock_pair(dvp, true, vp, false); 3348 goto out; 3349 } 3350 } 3351 3352 ACQUIRE_LOCK(ump); 3353 process_removes(dvp); 3354 process_truncates(dvp); 3355 VOP_UNLOCK(dvp); 3356 softdep_speedup(ump); 3357 3358 process_worklist_item(UFSTOVFS(ump), 2, LK_NOWAIT); 3359 journal_check_space(ump); 3360 FREE_LOCK(ump); 3361 3362 vn_lock_pair(dvp, false, vp, false); 3363 out: 3364 ndp->ni_dvp_seqc = vn_seqc_read_any(dvp); 3365 if (vp != NULL) 3366 ndp->ni_vp_seqc = vn_seqc_read_any(vp); 3367 return (ERELOOKUP); 3368 } 3369 3370 static void 3371 jseg_write(struct ufsmount *ump, 3372 struct jseg *jseg, 3373 uint8_t *data) 3374 { 3375 struct jsegrec *rec; 3376 3377 rec = (struct jsegrec *)data; 3378 rec->jsr_seq = jseg->js_seq; 3379 rec->jsr_oldest = jseg->js_oldseq; 3380 rec->jsr_cnt = jseg->js_cnt; 3381 rec->jsr_blocks = jseg->js_size / ump->um_devvp->v_bufobj.bo_bsize; 3382 rec->jsr_crc = 0; 3383 rec->jsr_time = ump->um_fs->fs_mtime; 3384 } 3385 3386 static inline void 3387 inoref_write(struct inoref *inoref, 3388 struct jseg *jseg, 3389 struct jrefrec *rec) 3390 { 3391 3392 inoref->if_jsegdep->jd_seg = jseg; 3393 rec->jr_ino = inoref->if_ino; 3394 rec->jr_parent = inoref->if_parent; 3395 rec->jr_nlink = inoref->if_nlink; 3396 rec->jr_mode = inoref->if_mode; 3397 rec->jr_diroff = inoref->if_diroff; 3398 } 3399 3400 static void 3401 jaddref_write(struct jaddref *jaddref, 3402 struct jseg *jseg, 3403 uint8_t *data) 3404 { 3405 struct jrefrec *rec; 3406 3407 rec = (struct jrefrec *)data; 3408 rec->jr_op = JOP_ADDREF; 3409 inoref_write(&jaddref->ja_ref, jseg, rec); 3410 } 3411 3412 static void 3413 jremref_write(struct jremref *jremref, 3414 struct jseg *jseg, 3415 uint8_t *data) 3416 { 3417 struct jrefrec *rec; 3418 3419 rec = (struct jrefrec *)data; 3420 rec->jr_op = JOP_REMREF; 3421 inoref_write(&jremref->jr_ref, jseg, rec); 3422 } 3423 3424 static void 3425 jmvref_write(struct jmvref *jmvref, 3426 struct jseg *jseg, 3427 uint8_t *data) 3428 { 3429 struct jmvrec *rec; 3430 3431 rec = (struct jmvrec *)data; 3432 rec->jm_op = JOP_MVREF; 3433 rec->jm_ino = jmvref->jm_ino; 3434 rec->jm_parent = jmvref->jm_parent; 3435 rec->jm_oldoff = jmvref->jm_oldoff; 3436 rec->jm_newoff = jmvref->jm_newoff; 3437 } 3438 3439 static void 3440 jnewblk_write(struct jnewblk *jnewblk, 3441 struct jseg *jseg, 3442 uint8_t *data) 3443 { 3444 struct jblkrec *rec; 3445 3446 jnewblk->jn_jsegdep->jd_seg = jseg; 3447 rec = (struct jblkrec *)data; 3448 rec->jb_op = JOP_NEWBLK; 3449 rec->jb_ino = jnewblk->jn_ino; 3450 rec->jb_blkno = jnewblk->jn_blkno; 3451 rec->jb_lbn = jnewblk->jn_lbn; 3452 rec->jb_frags = jnewblk->jn_frags; 3453 rec->jb_oldfrags = jnewblk->jn_oldfrags; 3454 } 3455 3456 static void 3457 jfreeblk_write(struct jfreeblk *jfreeblk, 3458 struct jseg *jseg, 3459 uint8_t *data) 3460 { 3461 struct jblkrec *rec; 3462 3463 jfreeblk->jf_dep.jb_jsegdep->jd_seg = jseg; 3464 rec = (struct jblkrec *)data; 3465 rec->jb_op = JOP_FREEBLK; 3466 rec->jb_ino = jfreeblk->jf_ino; 3467 rec->jb_blkno = jfreeblk->jf_blkno; 3468 rec->jb_lbn = jfreeblk->jf_lbn; 3469 rec->jb_frags = jfreeblk->jf_frags; 3470 rec->jb_oldfrags = 0; 3471 } 3472 3473 static void 3474 jfreefrag_write(struct jfreefrag *jfreefrag, 3475 struct jseg *jseg, 3476 uint8_t *data) 3477 { 3478 struct jblkrec *rec; 3479 3480 jfreefrag->fr_jsegdep->jd_seg = jseg; 3481 rec = (struct jblkrec *)data; 3482 rec->jb_op = JOP_FREEBLK; 3483 rec->jb_ino = jfreefrag->fr_ino; 3484 rec->jb_blkno = jfreefrag->fr_blkno; 3485 rec->jb_lbn = jfreefrag->fr_lbn; 3486 rec->jb_frags = jfreefrag->fr_frags; 3487 rec->jb_oldfrags = 0; 3488 } 3489 3490 static void 3491 jtrunc_write(struct jtrunc *jtrunc, 3492 struct jseg *jseg, 3493 uint8_t *data) 3494 { 3495 struct jtrncrec *rec; 3496 3497 jtrunc->jt_dep.jb_jsegdep->jd_seg = jseg; 3498 rec = (struct jtrncrec *)data; 3499 rec->jt_op = JOP_TRUNC; 3500 rec->jt_ino = jtrunc->jt_ino; 3501 rec->jt_size = jtrunc->jt_size; 3502 rec->jt_extsize = jtrunc->jt_extsize; 3503 } 3504 3505 static void 3506 jfsync_write(struct jfsync *jfsync, 3507 struct jseg *jseg, 3508 uint8_t *data) 3509 { 3510 struct jtrncrec *rec; 3511 3512 rec = (struct jtrncrec *)data; 3513 rec->jt_op = JOP_SYNC; 3514 rec->jt_ino = jfsync->jfs_ino; 3515 rec->jt_size = jfsync->jfs_size; 3516 rec->jt_extsize = jfsync->jfs_extsize; 3517 } 3518 3519 static void 3520 softdep_flushjournal(struct mount *mp) 3521 { 3522 struct jblocks *jblocks; 3523 struct ufsmount *ump; 3524 3525 if (MOUNTEDSUJ(mp) == 0) 3526 return; 3527 ump = VFSTOUFS(mp); 3528 jblocks = ump->softdep_jblocks; 3529 ACQUIRE_LOCK(ump); 3530 while (ump->softdep_on_journal) { 3531 jblocks->jb_needseg = 1; 3532 softdep_process_journal(mp, NULL, MNT_WAIT); 3533 } 3534 FREE_LOCK(ump); 3535 } 3536 3537 static void softdep_synchronize_completed(struct bio *); 3538 static void softdep_synchronize(struct bio *, struct ufsmount *, void *); 3539 3540 static void 3541 softdep_synchronize_completed(struct bio *bp) 3542 { 3543 struct jseg *oldest; 3544 struct jseg *jseg; 3545 struct ufsmount *ump; 3546 3547 /* 3548 * caller1 marks the last segment written before we issued the 3549 * synchronize cache. 3550 */ 3551 jseg = bp->bio_caller1; 3552 if (jseg == NULL) { 3553 g_destroy_bio(bp); 3554 return; 3555 } 3556 ump = VFSTOUFS(jseg->js_list.wk_mp); 3557 ACQUIRE_LOCK(ump); 3558 oldest = NULL; 3559 /* 3560 * Mark all the journal entries waiting on the synchronize cache 3561 * as completed so they may continue on. 3562 */ 3563 while (jseg != NULL && (jseg->js_state & COMPLETE) == 0) { 3564 jseg->js_state |= COMPLETE; 3565 oldest = jseg; 3566 jseg = TAILQ_PREV(jseg, jseglst, js_next); 3567 } 3568 /* 3569 * Restart deferred journal entry processing from the oldest 3570 * completed jseg. 3571 */ 3572 if (oldest) 3573 complete_jsegs(oldest); 3574 3575 FREE_LOCK(ump); 3576 g_destroy_bio(bp); 3577 } 3578 3579 /* 3580 * Send BIO_FLUSH/SYNCHRONIZE CACHE to the device to enforce write ordering 3581 * barriers. The journal must be written prior to any blocks that depend 3582 * on it and the journal can not be released until the blocks have be 3583 * written. This code handles both barriers simultaneously. 3584 */ 3585 static void 3586 softdep_synchronize(struct bio *bp, 3587 struct ufsmount *ump, 3588 void *caller1) 3589 { 3590 3591 bp->bio_cmd = BIO_FLUSH; 3592 bp->bio_flags |= BIO_ORDERED; 3593 bp->bio_data = NULL; 3594 bp->bio_offset = ump->um_cp->provider->mediasize; 3595 bp->bio_length = 0; 3596 bp->bio_done = softdep_synchronize_completed; 3597 bp->bio_caller1 = caller1; 3598 g_io_request(bp, ump->um_cp); 3599 } 3600 3601 /* 3602 * Flush some journal records to disk. 3603 */ 3604 static void 3605 softdep_process_journal(struct mount *mp, 3606 struct worklist *needwk, 3607 int flags) 3608 { 3609 struct jblocks *jblocks; 3610 struct ufsmount *ump; 3611 struct worklist *wk; 3612 struct jseg *jseg; 3613 struct buf *bp; 3614 struct bio *bio; 3615 uint8_t *data; 3616 struct fs *fs; 3617 int shouldflush; 3618 int segwritten; 3619 int jrecmin; /* Minimum records per block. */ 3620 int jrecmax; /* Maximum records per block. */ 3621 int size; 3622 int cnt; 3623 int off; 3624 int devbsize; 3625 3626 ump = VFSTOUFS(mp); 3627 if (ump->um_softdep == NULL || ump->um_softdep->sd_jblocks == NULL) 3628 return; 3629 shouldflush = softdep_flushcache; 3630 bio = NULL; 3631 jseg = NULL; 3632 LOCK_OWNED(ump); 3633 fs = ump->um_fs; 3634 jblocks = ump->softdep_jblocks; 3635 devbsize = ump->um_devvp->v_bufobj.bo_bsize; 3636 /* 3637 * We write anywhere between a disk block and fs block. The upper 3638 * bound is picked to prevent buffer cache fragmentation and limit 3639 * processing time per I/O. 3640 */ 3641 jrecmin = (devbsize / JREC_SIZE) - 1; /* -1 for seg header */ 3642 jrecmax = (fs->fs_bsize / devbsize) * jrecmin; 3643 segwritten = 0; 3644 for (;;) { 3645 cnt = ump->softdep_on_journal; 3646 /* 3647 * Criteria for writing a segment: 3648 * 1) We have a full block. 3649 * 2) We're called from jwait() and haven't found the 3650 * journal item yet. 3651 * 3) Always write if needseg is set. 3652 * 4) If we are called from process_worklist and have 3653 * not yet written anything we write a partial block 3654 * to enforce a 1 second maximum latency on journal 3655 * entries. 3656 */ 3657 if (cnt < (jrecmax - 1) && needwk == NULL && 3658 jblocks->jb_needseg == 0 && (segwritten || cnt == 0)) 3659 break; 3660 cnt++; 3661 /* 3662 * Verify some free journal space. softdep_prealloc() should 3663 * guarantee that we don't run out so this is indicative of 3664 * a problem with the flow control. Try to recover 3665 * gracefully in any event. 3666 */ 3667 while (jblocks->jb_free == 0) { 3668 if (flags != MNT_WAIT) 3669 break; 3670 printf("softdep: Out of journal space!\n"); 3671 softdep_speedup(ump); 3672 msleep(jblocks, LOCK_PTR(ump), PRIBIO, "jblocks", hz); 3673 } 3674 FREE_LOCK(ump); 3675 jseg = malloc(sizeof(*jseg), M_JSEG, M_SOFTDEP_FLAGS); 3676 workitem_alloc(&jseg->js_list, D_JSEG, mp); 3677 LIST_INIT(&jseg->js_entries); 3678 LIST_INIT(&jseg->js_indirs); 3679 jseg->js_state = ATTACHED; 3680 if (shouldflush == 0) 3681 jseg->js_state |= COMPLETE; 3682 else if (bio == NULL) 3683 bio = g_alloc_bio(); 3684 jseg->js_jblocks = jblocks; 3685 bp = geteblk(fs->fs_bsize, 0); 3686 ACQUIRE_LOCK(ump); 3687 /* 3688 * If there was a race while we were allocating the block 3689 * and jseg the entry we care about was likely written. 3690 * We bail out in both the WAIT and NOWAIT case and assume 3691 * the caller will loop if the entry it cares about is 3692 * not written. 3693 */ 3694 cnt = ump->softdep_on_journal; 3695 if (cnt + jblocks->jb_needseg == 0 || jblocks->jb_free == 0) { 3696 bp->b_flags |= B_INVAL | B_NOCACHE; 3697 WORKITEM_FREE(jseg, D_JSEG); 3698 FREE_LOCK(ump); 3699 brelse(bp); 3700 ACQUIRE_LOCK(ump); 3701 break; 3702 } 3703 /* 3704 * Calculate the disk block size required for the available 3705 * records rounded to the min size. 3706 */ 3707 if (cnt == 0) 3708 size = devbsize; 3709 else if (cnt < jrecmax) 3710 size = howmany(cnt, jrecmin) * devbsize; 3711 else 3712 size = fs->fs_bsize; 3713 /* 3714 * Allocate a disk block for this journal data and account 3715 * for truncation of the requested size if enough contiguous 3716 * space was not available. 3717 */ 3718 bp->b_blkno = jblocks_alloc(jblocks, size, &size); 3719 bp->b_lblkno = bp->b_blkno; 3720 bp->b_offset = bp->b_blkno * DEV_BSIZE; 3721 bp->b_bcount = size; 3722 bp->b_flags &= ~B_INVAL; 3723 bp->b_flags |= B_VALIDSUSPWRT | B_NOCOPY; 3724 /* 3725 * Initialize our jseg with cnt records. Assign the next 3726 * sequence number to it and link it in-order. 3727 */ 3728 cnt = MIN(cnt, (size / devbsize) * jrecmin); 3729 jseg->js_buf = bp; 3730 jseg->js_cnt = cnt; 3731 jseg->js_refs = cnt + 1; /* Self ref. */ 3732 jseg->js_size = size; 3733 jseg->js_seq = jblocks->jb_nextseq++; 3734 if (jblocks->jb_oldestseg == NULL) 3735 jblocks->jb_oldestseg = jseg; 3736 jseg->js_oldseq = jblocks->jb_oldestseg->js_seq; 3737 TAILQ_INSERT_TAIL(&jblocks->jb_segs, jseg, js_next); 3738 if (jblocks->jb_writeseg == NULL) 3739 jblocks->jb_writeseg = jseg; 3740 /* 3741 * Start filling in records from the pending list. 3742 */ 3743 data = bp->b_data; 3744 off = 0; 3745 3746 /* 3747 * Always put a header on the first block. 3748 * XXX As with below, there might not be a chance to get 3749 * into the loop. Ensure that something valid is written. 3750 */ 3751 jseg_write(ump, jseg, data); 3752 off += JREC_SIZE; 3753 data = bp->b_data + off; 3754 3755 /* 3756 * XXX Something is wrong here. There's no work to do, 3757 * but we need to perform and I/O and allow it to complete 3758 * anyways. 3759 */ 3760 if (LIST_EMPTY(&ump->softdep_journal_pending)) 3761 stat_emptyjblocks++; 3762 3763 while ((wk = LIST_FIRST(&ump->softdep_journal_pending)) 3764 != NULL) { 3765 if (cnt == 0) 3766 break; 3767 /* Place a segment header on every device block. */ 3768 if ((off % devbsize) == 0) { 3769 jseg_write(ump, jseg, data); 3770 off += JREC_SIZE; 3771 data = bp->b_data + off; 3772 } 3773 if (wk == needwk) 3774 needwk = NULL; 3775 remove_from_journal(wk); 3776 wk->wk_state |= INPROGRESS; 3777 WORKLIST_INSERT(&jseg->js_entries, wk); 3778 switch (wk->wk_type) { 3779 case D_JADDREF: 3780 jaddref_write(WK_JADDREF(wk), jseg, data); 3781 break; 3782 case D_JREMREF: 3783 jremref_write(WK_JREMREF(wk), jseg, data); 3784 break; 3785 case D_JMVREF: 3786 jmvref_write(WK_JMVREF(wk), jseg, data); 3787 break; 3788 case D_JNEWBLK: 3789 jnewblk_write(WK_JNEWBLK(wk), jseg, data); 3790 break; 3791 case D_JFREEBLK: 3792 jfreeblk_write(WK_JFREEBLK(wk), jseg, data); 3793 break; 3794 case D_JFREEFRAG: 3795 jfreefrag_write(WK_JFREEFRAG(wk), jseg, data); 3796 break; 3797 case D_JTRUNC: 3798 jtrunc_write(WK_JTRUNC(wk), jseg, data); 3799 break; 3800 case D_JFSYNC: 3801 jfsync_write(WK_JFSYNC(wk), jseg, data); 3802 break; 3803 default: 3804 panic("process_journal: Unknown type %s", 3805 TYPENAME(wk->wk_type)); 3806 /* NOTREACHED */ 3807 } 3808 off += JREC_SIZE; 3809 data = bp->b_data + off; 3810 cnt--; 3811 } 3812 3813 /* Clear any remaining space so we don't leak kernel data */ 3814 if (size > off) 3815 bzero(data, size - off); 3816 3817 /* 3818 * Write this one buffer and continue. 3819 */ 3820 segwritten = 1; 3821 jblocks->jb_needseg = 0; 3822 WORKLIST_INSERT(&bp->b_dep, &jseg->js_list); 3823 FREE_LOCK(ump); 3824 bp->b_xflags |= BX_CVTENXIO; 3825 pbgetvp(ump->um_devvp, bp); 3826 /* 3827 * We only do the blocking wait once we find the journal 3828 * entry we're looking for. 3829 */ 3830 if (needwk == NULL && flags == MNT_WAIT) 3831 bwrite(bp); 3832 else 3833 bawrite(bp); 3834 ACQUIRE_LOCK(ump); 3835 } 3836 /* 3837 * If we wrote a segment issue a synchronize cache so the journal 3838 * is reflected on disk before the data is written. Since reclaiming 3839 * journal space also requires writing a journal record this 3840 * process also enforces a barrier before reclamation. 3841 */ 3842 if (segwritten && shouldflush) { 3843 softdep_synchronize(bio, ump, 3844 TAILQ_LAST(&jblocks->jb_segs, jseglst)); 3845 } else if (bio) 3846 g_destroy_bio(bio); 3847 /* 3848 * If we've suspended the filesystem because we ran out of journal 3849 * space either try to sync it here to make some progress or 3850 * unsuspend it if we already have. 3851 */ 3852 if (flags == 0 && jblocks->jb_suspended) { 3853 if (journal_unsuspend(ump)) 3854 return; 3855 FREE_LOCK(ump); 3856 VFS_SYNC(mp, MNT_NOWAIT); 3857 ffs_sbupdate(ump, MNT_WAIT, 0); 3858 ACQUIRE_LOCK(ump); 3859 } 3860 } 3861 3862 /* 3863 * Complete a jseg, allowing all dependencies awaiting journal writes 3864 * to proceed. Each journal dependency also attaches a jsegdep to dependent 3865 * structures so that the journal segment can be freed to reclaim space. 3866 */ 3867 static void 3868 complete_jseg(struct jseg *jseg) 3869 { 3870 struct worklist *wk; 3871 struct jmvref *jmvref; 3872 #ifdef INVARIANTS 3873 int i = 0; 3874 #endif 3875 3876 while ((wk = LIST_FIRST(&jseg->js_entries)) != NULL) { 3877 WORKLIST_REMOVE(wk); 3878 wk->wk_state &= ~INPROGRESS; 3879 wk->wk_state |= COMPLETE; 3880 KASSERT(i++ < jseg->js_cnt, 3881 ("handle_written_jseg: overflow %d >= %d", 3882 i - 1, jseg->js_cnt)); 3883 switch (wk->wk_type) { 3884 case D_JADDREF: 3885 handle_written_jaddref(WK_JADDREF(wk)); 3886 break; 3887 case D_JREMREF: 3888 handle_written_jremref(WK_JREMREF(wk)); 3889 break; 3890 case D_JMVREF: 3891 rele_jseg(jseg); /* No jsegdep. */ 3892 jmvref = WK_JMVREF(wk); 3893 LIST_REMOVE(jmvref, jm_deps); 3894 if ((jmvref->jm_pagedep->pd_state & ONWORKLIST) == 0) 3895 free_pagedep(jmvref->jm_pagedep); 3896 WORKITEM_FREE(jmvref, D_JMVREF); 3897 break; 3898 case D_JNEWBLK: 3899 handle_written_jnewblk(WK_JNEWBLK(wk)); 3900 break; 3901 case D_JFREEBLK: 3902 handle_written_jblkdep(&WK_JFREEBLK(wk)->jf_dep); 3903 break; 3904 case D_JTRUNC: 3905 handle_written_jblkdep(&WK_JTRUNC(wk)->jt_dep); 3906 break; 3907 case D_JFSYNC: 3908 rele_jseg(jseg); /* No jsegdep. */ 3909 WORKITEM_FREE(wk, D_JFSYNC); 3910 break; 3911 case D_JFREEFRAG: 3912 handle_written_jfreefrag(WK_JFREEFRAG(wk)); 3913 break; 3914 default: 3915 panic("handle_written_jseg: Unknown type %s", 3916 TYPENAME(wk->wk_type)); 3917 /* NOTREACHED */ 3918 } 3919 } 3920 /* Release the self reference so the structure may be freed. */ 3921 rele_jseg(jseg); 3922 } 3923 3924 /* 3925 * Determine which jsegs are ready for completion processing. Waits for 3926 * synchronize cache to complete as well as forcing in-order completion 3927 * of journal entries. 3928 */ 3929 static void 3930 complete_jsegs(struct jseg *jseg) 3931 { 3932 struct jblocks *jblocks; 3933 struct jseg *jsegn; 3934 3935 jblocks = jseg->js_jblocks; 3936 /* 3937 * Don't allow out of order completions. If this isn't the first 3938 * block wait for it to write before we're done. 3939 */ 3940 if (jseg != jblocks->jb_writeseg) 3941 return; 3942 /* Iterate through available jsegs processing their entries. */ 3943 while (jseg && (jseg->js_state & ALLCOMPLETE) == ALLCOMPLETE) { 3944 jblocks->jb_oldestwrseq = jseg->js_oldseq; 3945 jsegn = TAILQ_NEXT(jseg, js_next); 3946 complete_jseg(jseg); 3947 jseg = jsegn; 3948 } 3949 jblocks->jb_writeseg = jseg; 3950 /* 3951 * Attempt to free jsegs now that oldestwrseq may have advanced. 3952 */ 3953 free_jsegs(jblocks); 3954 } 3955 3956 /* 3957 * Mark a jseg as DEPCOMPLETE and throw away the buffer. Attempt to handle 3958 * the final completions. 3959 */ 3960 static void 3961 handle_written_jseg(struct jseg *jseg, struct buf *bp) 3962 { 3963 3964 if (jseg->js_refs == 0) 3965 panic("handle_written_jseg: No self-reference on %p", jseg); 3966 jseg->js_state |= DEPCOMPLETE; 3967 /* 3968 * We'll never need this buffer again, set flags so it will be 3969 * discarded. 3970 */ 3971 bp->b_flags |= B_INVAL | B_NOCACHE; 3972 pbrelvp(bp); 3973 complete_jsegs(jseg); 3974 } 3975 3976 static inline struct jsegdep * 3977 inoref_jseg(struct inoref *inoref) 3978 { 3979 struct jsegdep *jsegdep; 3980 3981 jsegdep = inoref->if_jsegdep; 3982 inoref->if_jsegdep = NULL; 3983 3984 return (jsegdep); 3985 } 3986 3987 /* 3988 * Called once a jremref has made it to stable store. The jremref is marked 3989 * complete and we attempt to free it. Any pagedeps writes sleeping waiting 3990 * for the jremref to complete will be awoken by free_jremref. 3991 */ 3992 static void 3993 handle_written_jremref(struct jremref *jremref) 3994 { 3995 struct inodedep *inodedep; 3996 struct jsegdep *jsegdep; 3997 struct dirrem *dirrem; 3998 3999 /* Grab the jsegdep. */ 4000 jsegdep = inoref_jseg(&jremref->jr_ref); 4001 /* 4002 * Remove us from the inoref list. 4003 */ 4004 if (inodedep_lookup(jremref->jr_list.wk_mp, jremref->jr_ref.if_ino, 4005 0, &inodedep) == 0) 4006 panic("handle_written_jremref: Lost inodedep"); 4007 TAILQ_REMOVE(&inodedep->id_inoreflst, &jremref->jr_ref, if_deps); 4008 /* 4009 * Complete the dirrem. 4010 */ 4011 dirrem = jremref->jr_dirrem; 4012 jremref->jr_dirrem = NULL; 4013 LIST_REMOVE(jremref, jr_deps); 4014 jsegdep->jd_state |= jremref->jr_state & MKDIR_PARENT; 4015 jwork_insert(&dirrem->dm_jwork, jsegdep); 4016 if (LIST_EMPTY(&dirrem->dm_jremrefhd) && 4017 (dirrem->dm_state & COMPLETE) != 0) 4018 add_to_worklist(&dirrem->dm_list, 0); 4019 free_jremref(jremref); 4020 } 4021 4022 /* 4023 * Called once a jaddref has made it to stable store. The dependency is 4024 * marked complete and any dependent structures are added to the inode 4025 * bufwait list to be completed as soon as it is written. If a bitmap write 4026 * depends on this entry we move the inode into the inodedephd of the 4027 * bmsafemap dependency and attempt to remove the jaddref from the bmsafemap. 4028 */ 4029 static void 4030 handle_written_jaddref(struct jaddref *jaddref) 4031 { 4032 struct jsegdep *jsegdep; 4033 struct inodedep *inodedep; 4034 struct diradd *diradd; 4035 struct mkdir *mkdir; 4036 4037 /* Grab the jsegdep. */ 4038 jsegdep = inoref_jseg(&jaddref->ja_ref); 4039 mkdir = NULL; 4040 diradd = NULL; 4041 if (inodedep_lookup(jaddref->ja_list.wk_mp, jaddref->ja_ino, 4042 0, &inodedep) == 0) 4043 panic("handle_written_jaddref: Lost inodedep."); 4044 if (jaddref->ja_diradd == NULL) 4045 panic("handle_written_jaddref: No dependency"); 4046 if (jaddref->ja_diradd->da_list.wk_type == D_DIRADD) { 4047 diradd = jaddref->ja_diradd; 4048 WORKLIST_INSERT(&inodedep->id_bufwait, &diradd->da_list); 4049 } else if (jaddref->ja_state & MKDIR_PARENT) { 4050 mkdir = jaddref->ja_mkdir; 4051 WORKLIST_INSERT(&inodedep->id_bufwait, &mkdir->md_list); 4052 } else if (jaddref->ja_state & MKDIR_BODY) 4053 mkdir = jaddref->ja_mkdir; 4054 else 4055 panic("handle_written_jaddref: Unknown dependency %p", 4056 jaddref->ja_diradd); 4057 jaddref->ja_diradd = NULL; /* also clears ja_mkdir */ 4058 /* 4059 * Remove us from the inode list. 4060 */ 4061 TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref, if_deps); 4062 /* 4063 * The mkdir may be waiting on the jaddref to clear before freeing. 4064 */ 4065 if (mkdir) { 4066 KASSERT(mkdir->md_list.wk_type == D_MKDIR, 4067 ("handle_written_jaddref: Incorrect type for mkdir %s", 4068 TYPENAME(mkdir->md_list.wk_type))); 4069 mkdir->md_jaddref = NULL; 4070 diradd = mkdir->md_diradd; 4071 mkdir->md_state |= DEPCOMPLETE; 4072 complete_mkdir(mkdir); 4073 } 4074 jwork_insert(&diradd->da_jwork, jsegdep); 4075 if (jaddref->ja_state & NEWBLOCK) { 4076 inodedep->id_state |= ONDEPLIST; 4077 LIST_INSERT_HEAD(&inodedep->id_bmsafemap->sm_inodedephd, 4078 inodedep, id_deps); 4079 } 4080 free_jaddref(jaddref); 4081 } 4082 4083 /* 4084 * Called once a jnewblk journal is written. The allocdirect or allocindir 4085 * is placed in the bmsafemap to await notification of a written bitmap. If 4086 * the operation was canceled we add the segdep to the appropriate 4087 * dependency to free the journal space once the canceling operation 4088 * completes. 4089 */ 4090 static void 4091 handle_written_jnewblk(struct jnewblk *jnewblk) 4092 { 4093 struct bmsafemap *bmsafemap; 4094 struct freefrag *freefrag; 4095 struct freework *freework; 4096 struct jsegdep *jsegdep; 4097 struct newblk *newblk; 4098 4099 /* Grab the jsegdep. */ 4100 jsegdep = jnewblk->jn_jsegdep; 4101 jnewblk->jn_jsegdep = NULL; 4102 if (jnewblk->jn_dep == NULL) 4103 panic("handle_written_jnewblk: No dependency for the segdep."); 4104 switch (jnewblk->jn_dep->wk_type) { 4105 case D_NEWBLK: 4106 case D_ALLOCDIRECT: 4107 case D_ALLOCINDIR: 4108 /* 4109 * Add the written block to the bmsafemap so it can 4110 * be notified when the bitmap is on disk. 4111 */ 4112 newblk = WK_NEWBLK(jnewblk->jn_dep); 4113 newblk->nb_jnewblk = NULL; 4114 if ((newblk->nb_state & GOINGAWAY) == 0) { 4115 bmsafemap = newblk->nb_bmsafemap; 4116 newblk->nb_state |= ONDEPLIST; 4117 LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, 4118 nb_deps); 4119 } 4120 jwork_insert(&newblk->nb_jwork, jsegdep); 4121 break; 4122 case D_FREEFRAG: 4123 /* 4124 * A newblock being removed by a freefrag when replaced by 4125 * frag extension. 4126 */ 4127 freefrag = WK_FREEFRAG(jnewblk->jn_dep); 4128 freefrag->ff_jdep = NULL; 4129 jwork_insert(&freefrag->ff_jwork, jsegdep); 4130 break; 4131 case D_FREEWORK: 4132 /* 4133 * A direct block was removed by truncate. 4134 */ 4135 freework = WK_FREEWORK(jnewblk->jn_dep); 4136 freework->fw_jnewblk = NULL; 4137 jwork_insert(&freework->fw_freeblks->fb_jwork, jsegdep); 4138 break; 4139 default: 4140 panic("handle_written_jnewblk: Unknown type %d.", 4141 jnewblk->jn_dep->wk_type); 4142 } 4143 jnewblk->jn_dep = NULL; 4144 free_jnewblk(jnewblk); 4145 } 4146 4147 /* 4148 * Cancel a jfreefrag that won't be needed, probably due to colliding with 4149 * an in-flight allocation that has not yet been committed. Divorce us 4150 * from the freefrag and mark it DEPCOMPLETE so that it may be added 4151 * to the worklist. 4152 */ 4153 static void 4154 cancel_jfreefrag(struct jfreefrag *jfreefrag) 4155 { 4156 struct freefrag *freefrag; 4157 4158 if (jfreefrag->fr_jsegdep) { 4159 free_jsegdep(jfreefrag->fr_jsegdep); 4160 jfreefrag->fr_jsegdep = NULL; 4161 } 4162 freefrag = jfreefrag->fr_freefrag; 4163 jfreefrag->fr_freefrag = NULL; 4164 free_jfreefrag(jfreefrag); 4165 freefrag->ff_state |= DEPCOMPLETE; 4166 CTR1(KTR_SUJ, "cancel_jfreefrag: blkno %jd", freefrag->ff_blkno); 4167 } 4168 4169 /* 4170 * Free a jfreefrag when the parent freefrag is rendered obsolete. 4171 */ 4172 static void 4173 free_jfreefrag(struct jfreefrag *jfreefrag) 4174 { 4175 4176 if (jfreefrag->fr_state & INPROGRESS) 4177 WORKLIST_REMOVE(&jfreefrag->fr_list); 4178 else if (jfreefrag->fr_state & ONWORKLIST) 4179 remove_from_journal(&jfreefrag->fr_list); 4180 if (jfreefrag->fr_freefrag != NULL) 4181 panic("free_jfreefrag: Still attached to a freefrag."); 4182 WORKITEM_FREE(jfreefrag, D_JFREEFRAG); 4183 } 4184 4185 /* 4186 * Called when the journal write for a jfreefrag completes. The parent 4187 * freefrag is added to the worklist if this completes its dependencies. 4188 */ 4189 static void 4190 handle_written_jfreefrag(struct jfreefrag *jfreefrag) 4191 { 4192 struct jsegdep *jsegdep; 4193 struct freefrag *freefrag; 4194 4195 /* Grab the jsegdep. */ 4196 jsegdep = jfreefrag->fr_jsegdep; 4197 jfreefrag->fr_jsegdep = NULL; 4198 freefrag = jfreefrag->fr_freefrag; 4199 if (freefrag == NULL) 4200 panic("handle_written_jfreefrag: No freefrag."); 4201 freefrag->ff_state |= DEPCOMPLETE; 4202 freefrag->ff_jdep = NULL; 4203 jwork_insert(&freefrag->ff_jwork, jsegdep); 4204 if ((freefrag->ff_state & ALLCOMPLETE) == ALLCOMPLETE) 4205 add_to_worklist(&freefrag->ff_list, 0); 4206 jfreefrag->fr_freefrag = NULL; 4207 free_jfreefrag(jfreefrag); 4208 } 4209 4210 /* 4211 * Called when the journal write for a jfreeblk completes. The jfreeblk 4212 * is removed from the freeblks list of pending journal writes and the 4213 * jsegdep is moved to the freeblks jwork to be completed when all blocks 4214 * have been reclaimed. 4215 */ 4216 static void 4217 handle_written_jblkdep(struct jblkdep *jblkdep) 4218 { 4219 struct freeblks *freeblks; 4220 struct jsegdep *jsegdep; 4221 4222 /* Grab the jsegdep. */ 4223 jsegdep = jblkdep->jb_jsegdep; 4224 jblkdep->jb_jsegdep = NULL; 4225 freeblks = jblkdep->jb_freeblks; 4226 LIST_REMOVE(jblkdep, jb_deps); 4227 jwork_insert(&freeblks->fb_jwork, jsegdep); 4228 /* 4229 * If the freeblks is all journaled, we can add it to the worklist. 4230 */ 4231 if (LIST_EMPTY(&freeblks->fb_jblkdephd) && 4232 (freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE) 4233 add_to_worklist(&freeblks->fb_list, WK_NODELAY); 4234 4235 free_jblkdep(jblkdep); 4236 } 4237 4238 static struct jsegdep * 4239 newjsegdep(struct worklist *wk) 4240 { 4241 struct jsegdep *jsegdep; 4242 4243 jsegdep = malloc(sizeof(*jsegdep), M_JSEGDEP, M_SOFTDEP_FLAGS); 4244 workitem_alloc(&jsegdep->jd_list, D_JSEGDEP, wk->wk_mp); 4245 jsegdep->jd_seg = NULL; 4246 4247 return (jsegdep); 4248 } 4249 4250 static struct jmvref * 4251 newjmvref(struct inode *dp, 4252 ino_t ino, 4253 off_t oldoff, 4254 off_t newoff) 4255 { 4256 struct jmvref *jmvref; 4257 4258 jmvref = malloc(sizeof(*jmvref), M_JMVREF, M_SOFTDEP_FLAGS); 4259 workitem_alloc(&jmvref->jm_list, D_JMVREF, ITOVFS(dp)); 4260 jmvref->jm_list.wk_state = ATTACHED | DEPCOMPLETE; 4261 jmvref->jm_parent = dp->i_number; 4262 jmvref->jm_ino = ino; 4263 jmvref->jm_oldoff = oldoff; 4264 jmvref->jm_newoff = newoff; 4265 4266 return (jmvref); 4267 } 4268 4269 /* 4270 * Allocate a new jremref that tracks the removal of ip from dp with the 4271 * directory entry offset of diroff. Mark the entry as ATTACHED and 4272 * DEPCOMPLETE as we have all the information required for the journal write 4273 * and the directory has already been removed from the buffer. The caller 4274 * is responsible for linking the jremref into the pagedep and adding it 4275 * to the journal to write. The MKDIR_PARENT flag is set if we're doing 4276 * a DOTDOT addition so handle_workitem_remove() can properly assign 4277 * the jsegdep when we're done. 4278 */ 4279 static struct jremref * 4280 newjremref(struct dirrem *dirrem, 4281 struct inode *dp, 4282 struct inode *ip, 4283 off_t diroff, 4284 nlink_t nlink) 4285 { 4286 struct jremref *jremref; 4287 4288 jremref = malloc(sizeof(*jremref), M_JREMREF, M_SOFTDEP_FLAGS); 4289 workitem_alloc(&jremref->jr_list, D_JREMREF, ITOVFS(dp)); 4290 jremref->jr_state = ATTACHED; 4291 newinoref(&jremref->jr_ref, ip->i_number, dp->i_number, diroff, 4292 nlink, ip->i_mode); 4293 jremref->jr_dirrem = dirrem; 4294 4295 return (jremref); 4296 } 4297 4298 static inline void 4299 newinoref(struct inoref *inoref, 4300 ino_t ino, 4301 ino_t parent, 4302 off_t diroff, 4303 nlink_t nlink, 4304 uint16_t mode) 4305 { 4306 4307 inoref->if_jsegdep = newjsegdep(&inoref->if_list); 4308 inoref->if_diroff = diroff; 4309 inoref->if_ino = ino; 4310 inoref->if_parent = parent; 4311 inoref->if_nlink = nlink; 4312 inoref->if_mode = mode; 4313 } 4314 4315 /* 4316 * Allocate a new jaddref to track the addition of ino to dp at diroff. The 4317 * directory offset may not be known until later. The caller is responsible 4318 * adding the entry to the journal when this information is available. nlink 4319 * should be the link count prior to the addition and mode is only required 4320 * to have the correct FMT. 4321 */ 4322 static struct jaddref * 4323 newjaddref(struct inode *dp, 4324 ino_t ino, 4325 off_t diroff, 4326 int16_t nlink, 4327 uint16_t mode) 4328 { 4329 struct jaddref *jaddref; 4330 4331 jaddref = malloc(sizeof(*jaddref), M_JADDREF, M_SOFTDEP_FLAGS); 4332 workitem_alloc(&jaddref->ja_list, D_JADDREF, ITOVFS(dp)); 4333 jaddref->ja_state = ATTACHED; 4334 jaddref->ja_mkdir = NULL; 4335 newinoref(&jaddref->ja_ref, ino, dp->i_number, diroff, nlink, mode); 4336 4337 return (jaddref); 4338 } 4339 4340 /* 4341 * Create a new free dependency for a freework. The caller is responsible 4342 * for adjusting the reference count when it has the lock held. The freedep 4343 * will track an outstanding bitmap write that will ultimately clear the 4344 * freework to continue. 4345 */ 4346 static struct freedep * 4347 newfreedep(struct freework *freework) 4348 { 4349 struct freedep *freedep; 4350 4351 freedep = malloc(sizeof(*freedep), M_FREEDEP, M_SOFTDEP_FLAGS); 4352 workitem_alloc(&freedep->fd_list, D_FREEDEP, freework->fw_list.wk_mp); 4353 freedep->fd_freework = freework; 4354 4355 return (freedep); 4356 } 4357 4358 /* 4359 * Free a freedep structure once the buffer it is linked to is written. If 4360 * this is the last reference to the freework schedule it for completion. 4361 */ 4362 static void 4363 free_freedep(struct freedep *freedep) 4364 { 4365 struct freework *freework; 4366 4367 freework = freedep->fd_freework; 4368 freework->fw_freeblks->fb_cgwait--; 4369 if (--freework->fw_ref == 0) 4370 freework_enqueue(freework); 4371 WORKITEM_FREE(freedep, D_FREEDEP); 4372 } 4373 4374 /* 4375 * Allocate a new freework structure that may be a level in an indirect 4376 * when parent is not NULL or a top level block when it is. The top level 4377 * freework structures are allocated without the per-filesystem lock held 4378 * and before the freeblks is visible outside of softdep_setup_freeblocks(). 4379 */ 4380 static struct freework * 4381 newfreework(struct ufsmount *ump, 4382 struct freeblks *freeblks, 4383 struct freework *parent, 4384 ufs_lbn_t lbn, 4385 ufs2_daddr_t nb, 4386 int frags, 4387 int off, 4388 int journal) 4389 { 4390 struct freework *freework; 4391 4392 freework = malloc(sizeof(*freework), M_FREEWORK, M_SOFTDEP_FLAGS); 4393 workitem_alloc(&freework->fw_list, D_FREEWORK, freeblks->fb_list.wk_mp); 4394 freework->fw_state = ATTACHED; 4395 freework->fw_jnewblk = NULL; 4396 freework->fw_freeblks = freeblks; 4397 freework->fw_parent = parent; 4398 freework->fw_lbn = lbn; 4399 freework->fw_blkno = nb; 4400 freework->fw_frags = frags; 4401 freework->fw_indir = NULL; 4402 freework->fw_ref = (MOUNTEDSUJ(UFSTOVFS(ump)) == 0 || 4403 lbn >= -UFS_NXADDR) ? 0 : NINDIR(ump->um_fs) + 1; 4404 freework->fw_start = freework->fw_off = off; 4405 if (journal) 4406 newjfreeblk(freeblks, lbn, nb, frags); 4407 if (parent == NULL) { 4408 ACQUIRE_LOCK(ump); 4409 WORKLIST_INSERT(&freeblks->fb_freeworkhd, &freework->fw_list); 4410 freeblks->fb_ref++; 4411 FREE_LOCK(ump); 4412 } 4413 4414 return (freework); 4415 } 4416 4417 /* 4418 * Eliminate a jfreeblk for a block that does not need journaling. 4419 */ 4420 static void 4421 cancel_jfreeblk(struct freeblks *freeblks, ufs2_daddr_t blkno) 4422 { 4423 struct jfreeblk *jfreeblk; 4424 struct jblkdep *jblkdep; 4425 4426 LIST_FOREACH(jblkdep, &freeblks->fb_jblkdephd, jb_deps) { 4427 if (jblkdep->jb_list.wk_type != D_JFREEBLK) 4428 continue; 4429 jfreeblk = WK_JFREEBLK(&jblkdep->jb_list); 4430 if (jfreeblk->jf_blkno == blkno) 4431 break; 4432 } 4433 if (jblkdep == NULL) 4434 return; 4435 CTR1(KTR_SUJ, "cancel_jfreeblk: blkno %jd", blkno); 4436 free_jsegdep(jblkdep->jb_jsegdep); 4437 LIST_REMOVE(jblkdep, jb_deps); 4438 WORKITEM_FREE(jfreeblk, D_JFREEBLK); 4439 } 4440 4441 /* 4442 * Allocate a new jfreeblk to journal top level block pointer when truncating 4443 * a file. The caller must add this to the worklist when the per-filesystem 4444 * lock is held. 4445 */ 4446 static struct jfreeblk * 4447 newjfreeblk(struct freeblks *freeblks, 4448 ufs_lbn_t lbn, 4449 ufs2_daddr_t blkno, 4450 int frags) 4451 { 4452 struct jfreeblk *jfreeblk; 4453 4454 jfreeblk = malloc(sizeof(*jfreeblk), M_JFREEBLK, M_SOFTDEP_FLAGS); 4455 workitem_alloc(&jfreeblk->jf_dep.jb_list, D_JFREEBLK, 4456 freeblks->fb_list.wk_mp); 4457 jfreeblk->jf_dep.jb_jsegdep = newjsegdep(&jfreeblk->jf_dep.jb_list); 4458 jfreeblk->jf_dep.jb_freeblks = freeblks; 4459 jfreeblk->jf_ino = freeblks->fb_inum; 4460 jfreeblk->jf_lbn = lbn; 4461 jfreeblk->jf_blkno = blkno; 4462 jfreeblk->jf_frags = frags; 4463 LIST_INSERT_HEAD(&freeblks->fb_jblkdephd, &jfreeblk->jf_dep, jb_deps); 4464 4465 return (jfreeblk); 4466 } 4467 4468 /* 4469 * The journal is only prepared to handle full-size block numbers, so we 4470 * have to adjust the record to reflect the change to a full-size block. 4471 * For example, suppose we have a block made up of fragments 8-15 and 4472 * want to free its last two fragments. We are given a request that says: 4473 * FREEBLK ino=5, blkno=14, lbn=0, frags=2, oldfrags=0 4474 * where frags are the number of fragments to free and oldfrags are the 4475 * number of fragments to keep. To block align it, we have to change it to 4476 * have a valid full-size blkno, so it becomes: 4477 * FREEBLK ino=5, blkno=8, lbn=0, frags=2, oldfrags=6 4478 */ 4479 static void 4480 adjust_newfreework(struct freeblks *freeblks, int frag_offset) 4481 { 4482 struct jfreeblk *jfreeblk; 4483 4484 KASSERT((LIST_FIRST(&freeblks->fb_jblkdephd) != NULL && 4485 LIST_FIRST(&freeblks->fb_jblkdephd)->jb_list.wk_type == D_JFREEBLK), 4486 ("adjust_newfreework: Missing freeblks dependency")); 4487 4488 jfreeblk = WK_JFREEBLK(LIST_FIRST(&freeblks->fb_jblkdephd)); 4489 jfreeblk->jf_blkno -= frag_offset; 4490 jfreeblk->jf_frags += frag_offset; 4491 } 4492 4493 /* 4494 * Allocate a new jtrunc to track a partial truncation. 4495 */ 4496 static struct jtrunc * 4497 newjtrunc(struct freeblks *freeblks, 4498 off_t size, 4499 int extsize) 4500 { 4501 struct jtrunc *jtrunc; 4502 4503 jtrunc = malloc(sizeof(*jtrunc), M_JTRUNC, M_SOFTDEP_FLAGS); 4504 workitem_alloc(&jtrunc->jt_dep.jb_list, D_JTRUNC, 4505 freeblks->fb_list.wk_mp); 4506 jtrunc->jt_dep.jb_jsegdep = newjsegdep(&jtrunc->jt_dep.jb_list); 4507 jtrunc->jt_dep.jb_freeblks = freeblks; 4508 jtrunc->jt_ino = freeblks->fb_inum; 4509 jtrunc->jt_size = size; 4510 jtrunc->jt_extsize = extsize; 4511 LIST_INSERT_HEAD(&freeblks->fb_jblkdephd, &jtrunc->jt_dep, jb_deps); 4512 4513 return (jtrunc); 4514 } 4515 4516 /* 4517 * If we're canceling a new bitmap we have to search for another ref 4518 * to move into the bmsafemap dep. This might be better expressed 4519 * with another structure. 4520 */ 4521 static void 4522 move_newblock_dep(struct jaddref *jaddref, struct inodedep *inodedep) 4523 { 4524 struct inoref *inoref; 4525 struct jaddref *jaddrefn; 4526 4527 jaddrefn = NULL; 4528 for (inoref = TAILQ_NEXT(&jaddref->ja_ref, if_deps); inoref; 4529 inoref = TAILQ_NEXT(inoref, if_deps)) { 4530 if ((jaddref->ja_state & NEWBLOCK) && 4531 inoref->if_list.wk_type == D_JADDREF) { 4532 jaddrefn = (struct jaddref *)inoref; 4533 break; 4534 } 4535 } 4536 if (jaddrefn == NULL) 4537 return; 4538 jaddrefn->ja_state &= ~(ATTACHED | UNDONE); 4539 jaddrefn->ja_state |= jaddref->ja_state & 4540 (ATTACHED | UNDONE | NEWBLOCK); 4541 jaddref->ja_state &= ~(ATTACHED | UNDONE | NEWBLOCK); 4542 jaddref->ja_state |= ATTACHED; 4543 LIST_REMOVE(jaddref, ja_bmdeps); 4544 LIST_INSERT_HEAD(&inodedep->id_bmsafemap->sm_jaddrefhd, jaddrefn, 4545 ja_bmdeps); 4546 } 4547 4548 /* 4549 * Cancel a jaddref either before it has been written or while it is being 4550 * written. This happens when a link is removed before the add reaches 4551 * the disk. The jaddref dependency is kept linked into the bmsafemap 4552 * and inode to prevent the link count or bitmap from reaching the disk 4553 * until handle_workitem_remove() re-adjusts the counts and bitmaps as 4554 * required. 4555 * 4556 * Returns 1 if the canceled addref requires journaling of the remove and 4557 * 0 otherwise. 4558 */ 4559 static int 4560 cancel_jaddref(struct jaddref *jaddref, 4561 struct inodedep *inodedep, 4562 struct workhead *wkhd) 4563 { 4564 struct inoref *inoref; 4565 struct jsegdep *jsegdep; 4566 int needsj; 4567 4568 KASSERT((jaddref->ja_state & COMPLETE) == 0, 4569 ("cancel_jaddref: Canceling complete jaddref")); 4570 if (jaddref->ja_state & (INPROGRESS | COMPLETE)) 4571 needsj = 1; 4572 else 4573 needsj = 0; 4574 if (inodedep == NULL) 4575 if (inodedep_lookup(jaddref->ja_list.wk_mp, jaddref->ja_ino, 4576 0, &inodedep) == 0) 4577 panic("cancel_jaddref: Lost inodedep"); 4578 /* 4579 * We must adjust the nlink of any reference operation that follows 4580 * us so that it is consistent with the in-memory reference. This 4581 * ensures that inode nlink rollbacks always have the correct link. 4582 */ 4583 if (needsj == 0) { 4584 for (inoref = TAILQ_NEXT(&jaddref->ja_ref, if_deps); inoref; 4585 inoref = TAILQ_NEXT(inoref, if_deps)) { 4586 if (inoref->if_state & GOINGAWAY) 4587 break; 4588 inoref->if_nlink--; 4589 } 4590 } 4591 jsegdep = inoref_jseg(&jaddref->ja_ref); 4592 if (jaddref->ja_state & NEWBLOCK) 4593 move_newblock_dep(jaddref, inodedep); 4594 wake_worklist(&jaddref->ja_list); 4595 jaddref->ja_mkdir = NULL; 4596 if (jaddref->ja_state & INPROGRESS) { 4597 jaddref->ja_state &= ~INPROGRESS; 4598 WORKLIST_REMOVE(&jaddref->ja_list); 4599 jwork_insert(wkhd, jsegdep); 4600 } else { 4601 free_jsegdep(jsegdep); 4602 if (jaddref->ja_state & DEPCOMPLETE) 4603 remove_from_journal(&jaddref->ja_list); 4604 } 4605 jaddref->ja_state |= (GOINGAWAY | DEPCOMPLETE); 4606 /* 4607 * Leave NEWBLOCK jaddrefs on the inodedep so handle_workitem_remove 4608 * can arrange for them to be freed with the bitmap. Otherwise we 4609 * no longer need this addref attached to the inoreflst and it 4610 * will incorrectly adjust nlink if we leave it. 4611 */ 4612 if ((jaddref->ja_state & NEWBLOCK) == 0) { 4613 TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref, 4614 if_deps); 4615 jaddref->ja_state |= COMPLETE; 4616 free_jaddref(jaddref); 4617 return (needsj); 4618 } 4619 /* 4620 * Leave the head of the list for jsegdeps for fast merging. 4621 */ 4622 if (LIST_FIRST(wkhd) != NULL) { 4623 jaddref->ja_state |= ONWORKLIST; 4624 LIST_INSERT_AFTER(LIST_FIRST(wkhd), &jaddref->ja_list, wk_list); 4625 } else 4626 WORKLIST_INSERT(wkhd, &jaddref->ja_list); 4627 4628 return (needsj); 4629 } 4630 4631 /* 4632 * Attempt to free a jaddref structure when some work completes. This 4633 * should only succeed once the entry is written and all dependencies have 4634 * been notified. 4635 */ 4636 static void 4637 free_jaddref(struct jaddref *jaddref) 4638 { 4639 4640 if ((jaddref->ja_state & ALLCOMPLETE) != ALLCOMPLETE) 4641 return; 4642 if (jaddref->ja_ref.if_jsegdep) 4643 panic("free_jaddref: segdep attached to jaddref %p(0x%X)\n", 4644 jaddref, jaddref->ja_state); 4645 if (jaddref->ja_state & NEWBLOCK) 4646 LIST_REMOVE(jaddref, ja_bmdeps); 4647 if (jaddref->ja_state & (INPROGRESS | ONWORKLIST)) 4648 panic("free_jaddref: Bad state %p(0x%X)", 4649 jaddref, jaddref->ja_state); 4650 if (jaddref->ja_mkdir != NULL) 4651 panic("free_jaddref: Work pending, 0x%X\n", jaddref->ja_state); 4652 WORKITEM_FREE(jaddref, D_JADDREF); 4653 } 4654 4655 /* 4656 * Free a jremref structure once it has been written or discarded. 4657 */ 4658 static void 4659 free_jremref(struct jremref *jremref) 4660 { 4661 4662 if (jremref->jr_ref.if_jsegdep) 4663 free_jsegdep(jremref->jr_ref.if_jsegdep); 4664 if (jremref->jr_state & INPROGRESS) 4665 panic("free_jremref: IO still pending"); 4666 WORKITEM_FREE(jremref, D_JREMREF); 4667 } 4668 4669 /* 4670 * Free a jnewblk structure. 4671 */ 4672 static void 4673 free_jnewblk(struct jnewblk *jnewblk) 4674 { 4675 4676 if ((jnewblk->jn_state & ALLCOMPLETE) != ALLCOMPLETE) 4677 return; 4678 LIST_REMOVE(jnewblk, jn_deps); 4679 if (jnewblk->jn_dep != NULL) 4680 panic("free_jnewblk: Dependency still attached."); 4681 WORKITEM_FREE(jnewblk, D_JNEWBLK); 4682 } 4683 4684 /* 4685 * Cancel a jnewblk which has been been made redundant by frag extension. 4686 */ 4687 static void 4688 cancel_jnewblk(struct jnewblk *jnewblk, struct workhead *wkhd) 4689 { 4690 struct jsegdep *jsegdep; 4691 4692 CTR1(KTR_SUJ, "cancel_jnewblk: blkno %jd", jnewblk->jn_blkno); 4693 jsegdep = jnewblk->jn_jsegdep; 4694 if (jnewblk->jn_jsegdep == NULL || jnewblk->jn_dep == NULL) 4695 panic("cancel_jnewblk: Invalid state"); 4696 jnewblk->jn_jsegdep = NULL; 4697 jnewblk->jn_dep = NULL; 4698 jnewblk->jn_state |= GOINGAWAY; 4699 if (jnewblk->jn_state & INPROGRESS) { 4700 jnewblk->jn_state &= ~INPROGRESS; 4701 WORKLIST_REMOVE(&jnewblk->jn_list); 4702 jwork_insert(wkhd, jsegdep); 4703 } else { 4704 free_jsegdep(jsegdep); 4705 remove_from_journal(&jnewblk->jn_list); 4706 } 4707 wake_worklist(&jnewblk->jn_list); 4708 WORKLIST_INSERT(wkhd, &jnewblk->jn_list); 4709 } 4710 4711 static void 4712 free_jblkdep(struct jblkdep *jblkdep) 4713 { 4714 4715 if (jblkdep->jb_list.wk_type == D_JFREEBLK) 4716 WORKITEM_FREE(jblkdep, D_JFREEBLK); 4717 else if (jblkdep->jb_list.wk_type == D_JTRUNC) 4718 WORKITEM_FREE(jblkdep, D_JTRUNC); 4719 else 4720 panic("free_jblkdep: Unexpected type %s", 4721 TYPENAME(jblkdep->jb_list.wk_type)); 4722 } 4723 4724 /* 4725 * Free a single jseg once it is no longer referenced in memory or on 4726 * disk. Reclaim journal blocks and dependencies waiting for the segment 4727 * to disappear. 4728 */ 4729 static void 4730 free_jseg(struct jseg *jseg, struct jblocks *jblocks) 4731 { 4732 struct freework *freework; 4733 4734 /* 4735 * Free freework structures that were lingering to indicate freed 4736 * indirect blocks that forced journal write ordering on reallocate. 4737 */ 4738 while ((freework = LIST_FIRST(&jseg->js_indirs)) != NULL) 4739 indirblk_remove(freework); 4740 if (jblocks->jb_oldestseg == jseg) 4741 jblocks->jb_oldestseg = TAILQ_NEXT(jseg, js_next); 4742 TAILQ_REMOVE(&jblocks->jb_segs, jseg, js_next); 4743 jblocks_free(jblocks, jseg->js_list.wk_mp, jseg->js_size); 4744 KASSERT(LIST_EMPTY(&jseg->js_entries), 4745 ("free_jseg: Freed jseg has valid entries.")); 4746 WORKITEM_FREE(jseg, D_JSEG); 4747 } 4748 4749 /* 4750 * Free all jsegs that meet the criteria for being reclaimed and update 4751 * oldestseg. 4752 */ 4753 static void 4754 free_jsegs(struct jblocks *jblocks) 4755 { 4756 struct jseg *jseg; 4757 4758 /* 4759 * Free only those jsegs which have none allocated before them to 4760 * preserve the journal space ordering. 4761 */ 4762 while ((jseg = TAILQ_FIRST(&jblocks->jb_segs)) != NULL) { 4763 /* 4764 * Only reclaim space when nothing depends on this journal 4765 * set and another set has written that it is no longer 4766 * valid. 4767 */ 4768 if (jseg->js_refs != 0) { 4769 jblocks->jb_oldestseg = jseg; 4770 return; 4771 } 4772 if ((jseg->js_state & ALLCOMPLETE) != ALLCOMPLETE) 4773 break; 4774 if (jseg->js_seq > jblocks->jb_oldestwrseq) 4775 break; 4776 /* 4777 * We can free jsegs that didn't write entries when 4778 * oldestwrseq == js_seq. 4779 */ 4780 if (jseg->js_seq == jblocks->jb_oldestwrseq && 4781 jseg->js_cnt != 0) 4782 break; 4783 free_jseg(jseg, jblocks); 4784 } 4785 /* 4786 * If we exited the loop above we still must discover the 4787 * oldest valid segment. 4788 */ 4789 if (jseg) 4790 for (jseg = jblocks->jb_oldestseg; jseg != NULL; 4791 jseg = TAILQ_NEXT(jseg, js_next)) 4792 if (jseg->js_refs != 0) 4793 break; 4794 jblocks->jb_oldestseg = jseg; 4795 /* 4796 * The journal has no valid records but some jsegs may still be 4797 * waiting on oldestwrseq to advance. We force a small record 4798 * out to permit these lingering records to be reclaimed. 4799 */ 4800 if (jblocks->jb_oldestseg == NULL && !TAILQ_EMPTY(&jblocks->jb_segs)) 4801 jblocks->jb_needseg = 1; 4802 } 4803 4804 /* 4805 * Release one reference to a jseg and free it if the count reaches 0. This 4806 * should eventually reclaim journal space as well. 4807 */ 4808 static void 4809 rele_jseg(struct jseg *jseg) 4810 { 4811 4812 KASSERT(jseg->js_refs > 0, 4813 ("free_jseg: Invalid refcnt %d", jseg->js_refs)); 4814 if (--jseg->js_refs != 0) 4815 return; 4816 free_jsegs(jseg->js_jblocks); 4817 } 4818 4819 /* 4820 * Release a jsegdep and decrement the jseg count. 4821 */ 4822 static void 4823 free_jsegdep(struct jsegdep *jsegdep) 4824 { 4825 4826 if (jsegdep->jd_seg) 4827 rele_jseg(jsegdep->jd_seg); 4828 WORKITEM_FREE(jsegdep, D_JSEGDEP); 4829 } 4830 4831 /* 4832 * Wait for a journal item to make it to disk. Initiate journal processing 4833 * if required. 4834 */ 4835 static int 4836 jwait(struct worklist *wk, int waitfor) 4837 { 4838 4839 LOCK_OWNED(VFSTOUFS(wk->wk_mp)); 4840 /* 4841 * Blocking journal waits cause slow synchronous behavior. Record 4842 * stats on the frequency of these blocking operations. 4843 */ 4844 if (waitfor == MNT_WAIT) { 4845 stat_journal_wait++; 4846 switch (wk->wk_type) { 4847 case D_JREMREF: 4848 case D_JMVREF: 4849 stat_jwait_filepage++; 4850 break; 4851 case D_JTRUNC: 4852 case D_JFREEBLK: 4853 stat_jwait_freeblks++; 4854 break; 4855 case D_JNEWBLK: 4856 stat_jwait_newblk++; 4857 break; 4858 case D_JADDREF: 4859 stat_jwait_inode++; 4860 break; 4861 default: 4862 break; 4863 } 4864 } 4865 /* 4866 * If IO has not started we process the journal. We can't mark the 4867 * worklist item as IOWAITING because we drop the lock while 4868 * processing the journal and the worklist entry may be freed after 4869 * this point. The caller may call back in and re-issue the request. 4870 */ 4871 if ((wk->wk_state & INPROGRESS) == 0) { 4872 softdep_process_journal(wk->wk_mp, wk, waitfor); 4873 if (waitfor != MNT_WAIT) 4874 return (EBUSY); 4875 return (0); 4876 } 4877 if (waitfor != MNT_WAIT) 4878 return (EBUSY); 4879 wait_worklist(wk, "jwait"); 4880 return (0); 4881 } 4882 4883 /* 4884 * Lookup an inodedep based on an inode pointer and set the nlinkdelta as 4885 * appropriate. This is a convenience function to reduce duplicate code 4886 * for the setup and revert functions below. 4887 */ 4888 static struct inodedep * 4889 inodedep_lookup_ip(struct inode *ip) 4890 { 4891 struct inodedep *inodedep; 4892 4893 KASSERT(ip->i_nlink >= ip->i_effnlink, 4894 ("inodedep_lookup_ip: bad delta")); 4895 (void) inodedep_lookup(ITOVFS(ip), ip->i_number, DEPALLOC, 4896 &inodedep); 4897 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 4898 KASSERT((inodedep->id_state & UNLINKED) == 0, ("inode unlinked")); 4899 4900 return (inodedep); 4901 } 4902 4903 /* 4904 * Called prior to creating a new inode and linking it to a directory. The 4905 * jaddref structure must already be allocated by softdep_setup_inomapdep 4906 * and it is discovered here so we can initialize the mode and update 4907 * nlinkdelta. 4908 */ 4909 void 4910 softdep_setup_create(struct inode *dp, struct inode *ip) 4911 { 4912 struct inodedep *inodedep; 4913 struct jaddref *jaddref __diagused; 4914 struct vnode *dvp; 4915 4916 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 4917 ("softdep_setup_create called on non-softdep filesystem")); 4918 KASSERT(ip->i_nlink == 1, 4919 ("softdep_setup_create: Invalid link count.")); 4920 dvp = ITOV(dp); 4921 ACQUIRE_LOCK(ITOUMP(dp)); 4922 inodedep = inodedep_lookup_ip(ip); 4923 if (DOINGSUJ(dvp)) { 4924 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 4925 inoreflst); 4926 KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number, 4927 ("softdep_setup_create: No addref structure present.")); 4928 } 4929 FREE_LOCK(ITOUMP(dp)); 4930 } 4931 4932 /* 4933 * Create a jaddref structure to track the addition of a DOTDOT link when 4934 * we are reparenting an inode as part of a rename. This jaddref will be 4935 * found by softdep_setup_directory_change. Adjusts nlinkdelta for 4936 * non-journaling softdep. 4937 */ 4938 void 4939 softdep_setup_dotdot_link(struct inode *dp, struct inode *ip) 4940 { 4941 struct inodedep *inodedep; 4942 struct jaddref *jaddref; 4943 struct vnode *dvp; 4944 4945 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 4946 ("softdep_setup_dotdot_link called on non-softdep filesystem")); 4947 dvp = ITOV(dp); 4948 jaddref = NULL; 4949 /* 4950 * We don't set MKDIR_PARENT as this is not tied to a mkdir and 4951 * is used as a normal link would be. 4952 */ 4953 if (DOINGSUJ(dvp)) 4954 jaddref = newjaddref(ip, dp->i_number, DOTDOT_OFFSET, 4955 dp->i_effnlink - 1, dp->i_mode); 4956 ACQUIRE_LOCK(ITOUMP(dp)); 4957 inodedep = inodedep_lookup_ip(dp); 4958 if (jaddref) 4959 TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref, 4960 if_deps); 4961 FREE_LOCK(ITOUMP(dp)); 4962 } 4963 4964 /* 4965 * Create a jaddref structure to track a new link to an inode. The directory 4966 * offset is not known until softdep_setup_directory_add or 4967 * softdep_setup_directory_change. Adjusts nlinkdelta for non-journaling 4968 * softdep. 4969 */ 4970 void 4971 softdep_setup_link(struct inode *dp, struct inode *ip) 4972 { 4973 struct inodedep *inodedep; 4974 struct jaddref *jaddref; 4975 struct vnode *dvp; 4976 4977 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 4978 ("softdep_setup_link called on non-softdep filesystem")); 4979 dvp = ITOV(dp); 4980 jaddref = NULL; 4981 if (DOINGSUJ(dvp)) 4982 jaddref = newjaddref(dp, ip->i_number, 0, ip->i_effnlink - 1, 4983 ip->i_mode); 4984 ACQUIRE_LOCK(ITOUMP(dp)); 4985 inodedep = inodedep_lookup_ip(ip); 4986 if (jaddref) 4987 TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref, 4988 if_deps); 4989 FREE_LOCK(ITOUMP(dp)); 4990 } 4991 4992 /* 4993 * Called to create the jaddref structures to track . and .. references as 4994 * well as lookup and further initialize the incomplete jaddref created 4995 * by softdep_setup_inomapdep when the inode was allocated. Adjusts 4996 * nlinkdelta for non-journaling softdep. 4997 */ 4998 void 4999 softdep_setup_mkdir(struct inode *dp, struct inode *ip) 5000 { 5001 struct inodedep *inodedep; 5002 struct jaddref *dotdotaddref; 5003 struct jaddref *dotaddref; 5004 struct jaddref *jaddref; 5005 struct vnode *dvp; 5006 5007 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 5008 ("softdep_setup_mkdir called on non-softdep filesystem")); 5009 dvp = ITOV(dp); 5010 dotaddref = dotdotaddref = NULL; 5011 if (DOINGSUJ(dvp)) { 5012 dotaddref = newjaddref(ip, ip->i_number, DOT_OFFSET, 1, 5013 ip->i_mode); 5014 dotaddref->ja_state |= MKDIR_BODY; 5015 dotdotaddref = newjaddref(ip, dp->i_number, DOTDOT_OFFSET, 5016 dp->i_effnlink - 1, dp->i_mode); 5017 dotdotaddref->ja_state |= MKDIR_PARENT; 5018 } 5019 ACQUIRE_LOCK(ITOUMP(dp)); 5020 inodedep = inodedep_lookup_ip(ip); 5021 if (DOINGSUJ(dvp)) { 5022 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 5023 inoreflst); 5024 KASSERT(jaddref != NULL, 5025 ("softdep_setup_mkdir: No addref structure present.")); 5026 KASSERT(jaddref->ja_parent == dp->i_number, 5027 ("softdep_setup_mkdir: bad parent %ju", 5028 (uintmax_t)jaddref->ja_parent)); 5029 TAILQ_INSERT_BEFORE(&jaddref->ja_ref, &dotaddref->ja_ref, 5030 if_deps); 5031 } 5032 inodedep = inodedep_lookup_ip(dp); 5033 if (DOINGSUJ(dvp)) 5034 TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, 5035 &dotdotaddref->ja_ref, if_deps); 5036 FREE_LOCK(ITOUMP(dp)); 5037 } 5038 5039 /* 5040 * Called to track nlinkdelta of the inode and parent directories prior to 5041 * unlinking a directory. 5042 */ 5043 void 5044 softdep_setup_rmdir(struct inode *dp, struct inode *ip) 5045 { 5046 5047 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 5048 ("softdep_setup_rmdir called on non-softdep filesystem")); 5049 ACQUIRE_LOCK(ITOUMP(dp)); 5050 (void) inodedep_lookup_ip(ip); 5051 (void) inodedep_lookup_ip(dp); 5052 FREE_LOCK(ITOUMP(dp)); 5053 } 5054 5055 /* 5056 * Called to track nlinkdelta of the inode and parent directories prior to 5057 * unlink. 5058 */ 5059 void 5060 softdep_setup_unlink(struct inode *dp, struct inode *ip) 5061 { 5062 5063 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 5064 ("softdep_setup_unlink called on non-softdep filesystem")); 5065 ACQUIRE_LOCK(ITOUMP(dp)); 5066 (void) inodedep_lookup_ip(ip); 5067 (void) inodedep_lookup_ip(dp); 5068 FREE_LOCK(ITOUMP(dp)); 5069 } 5070 5071 /* 5072 * Called to release the journal structures created by a failed non-directory 5073 * creation. Adjusts nlinkdelta for non-journaling softdep. 5074 */ 5075 void 5076 softdep_revert_create(struct inode *dp, struct inode *ip) 5077 { 5078 struct inodedep *inodedep; 5079 struct jaddref *jaddref; 5080 struct vnode *dvp; 5081 5082 KASSERT(MOUNTEDSOFTDEP(ITOVFS((dp))) != 0, 5083 ("softdep_revert_create called on non-softdep filesystem")); 5084 dvp = ITOV(dp); 5085 ACQUIRE_LOCK(ITOUMP(dp)); 5086 inodedep = inodedep_lookup_ip(ip); 5087 if (DOINGSUJ(dvp)) { 5088 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 5089 inoreflst); 5090 KASSERT(jaddref->ja_parent == dp->i_number, 5091 ("softdep_revert_create: addref parent mismatch")); 5092 cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait); 5093 } 5094 FREE_LOCK(ITOUMP(dp)); 5095 } 5096 5097 /* 5098 * Called to release the journal structures created by a failed link 5099 * addition. Adjusts nlinkdelta for non-journaling softdep. 5100 */ 5101 void 5102 softdep_revert_link(struct inode *dp, struct inode *ip) 5103 { 5104 struct inodedep *inodedep; 5105 struct jaddref *jaddref; 5106 struct vnode *dvp; 5107 5108 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 5109 ("softdep_revert_link called on non-softdep filesystem")); 5110 dvp = ITOV(dp); 5111 ACQUIRE_LOCK(ITOUMP(dp)); 5112 inodedep = inodedep_lookup_ip(ip); 5113 if (DOINGSUJ(dvp)) { 5114 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 5115 inoreflst); 5116 KASSERT(jaddref->ja_parent == dp->i_number, 5117 ("softdep_revert_link: addref parent mismatch")); 5118 cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait); 5119 } 5120 FREE_LOCK(ITOUMP(dp)); 5121 } 5122 5123 /* 5124 * Called to release the journal structures created by a failed mkdir 5125 * attempt. Adjusts nlinkdelta for non-journaling softdep. 5126 */ 5127 void 5128 softdep_revert_mkdir(struct inode *dp, struct inode *ip) 5129 { 5130 struct inodedep *inodedep; 5131 struct jaddref *jaddref; 5132 struct jaddref *dotaddref; 5133 struct vnode *dvp; 5134 5135 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 5136 ("softdep_revert_mkdir called on non-softdep filesystem")); 5137 dvp = ITOV(dp); 5138 5139 ACQUIRE_LOCK(ITOUMP(dp)); 5140 inodedep = inodedep_lookup_ip(dp); 5141 if (DOINGSUJ(dvp)) { 5142 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 5143 inoreflst); 5144 KASSERT(jaddref->ja_parent == ip->i_number, 5145 ("softdep_revert_mkdir: dotdot addref parent mismatch")); 5146 cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait); 5147 } 5148 inodedep = inodedep_lookup_ip(ip); 5149 if (DOINGSUJ(dvp)) { 5150 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 5151 inoreflst); 5152 KASSERT(jaddref->ja_parent == dp->i_number, 5153 ("softdep_revert_mkdir: addref parent mismatch")); 5154 dotaddref = (struct jaddref *)TAILQ_PREV(&jaddref->ja_ref, 5155 inoreflst, if_deps); 5156 cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait); 5157 KASSERT(dotaddref->ja_parent == ip->i_number, 5158 ("softdep_revert_mkdir: dot addref parent mismatch")); 5159 cancel_jaddref(dotaddref, inodedep, &inodedep->id_inowait); 5160 } 5161 FREE_LOCK(ITOUMP(dp)); 5162 } 5163 5164 /* 5165 * Called to correct nlinkdelta after a failed rmdir. 5166 */ 5167 void 5168 softdep_revert_rmdir(struct inode *dp, struct inode *ip) 5169 { 5170 5171 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 5172 ("softdep_revert_rmdir called on non-softdep filesystem")); 5173 ACQUIRE_LOCK(ITOUMP(dp)); 5174 (void) inodedep_lookup_ip(ip); 5175 (void) inodedep_lookup_ip(dp); 5176 FREE_LOCK(ITOUMP(dp)); 5177 } 5178 5179 /* 5180 * Protecting the freemaps (or bitmaps). 5181 * 5182 * To eliminate the need to execute fsck before mounting a filesystem 5183 * after a power failure, one must (conservatively) guarantee that the 5184 * on-disk copy of the bitmaps never indicate that a live inode or block is 5185 * free. So, when a block or inode is allocated, the bitmap should be 5186 * updated (on disk) before any new pointers. When a block or inode is 5187 * freed, the bitmap should not be updated until all pointers have been 5188 * reset. The latter dependency is handled by the delayed de-allocation 5189 * approach described below for block and inode de-allocation. The former 5190 * dependency is handled by calling the following procedure when a block or 5191 * inode is allocated. When an inode is allocated an "inodedep" is created 5192 * with its DEPCOMPLETE flag cleared until its bitmap is written to disk. 5193 * Each "inodedep" is also inserted into the hash indexing structure so 5194 * that any additional link additions can be made dependent on the inode 5195 * allocation. 5196 * 5197 * The ufs filesystem maintains a number of free block counts (e.g., per 5198 * cylinder group, per cylinder and per <cylinder, rotational position> pair) 5199 * in addition to the bitmaps. These counts are used to improve efficiency 5200 * during allocation and therefore must be consistent with the bitmaps. 5201 * There is no convenient way to guarantee post-crash consistency of these 5202 * counts with simple update ordering, for two main reasons: (1) The counts 5203 * and bitmaps for a single cylinder group block are not in the same disk 5204 * sector. If a disk write is interrupted (e.g., by power failure), one may 5205 * be written and the other not. (2) Some of the counts are located in the 5206 * superblock rather than the cylinder group block. So, we focus our soft 5207 * updates implementation on protecting the bitmaps. When mounting a 5208 * filesystem, we recompute the auxiliary counts from the bitmaps. 5209 */ 5210 5211 /* 5212 * Called just after updating the cylinder group block to allocate an inode. 5213 */ 5214 void 5215 softdep_setup_inomapdep( 5216 struct buf *bp, /* buffer for cylgroup block with inode map */ 5217 struct inode *ip, /* inode related to allocation */ 5218 ino_t newinum, /* new inode number being allocated */ 5219 int mode) 5220 { 5221 struct inodedep *inodedep; 5222 struct bmsafemap *bmsafemap; 5223 struct jaddref *jaddref; 5224 struct mount *mp; 5225 struct fs *fs; 5226 5227 mp = ITOVFS(ip); 5228 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 5229 ("softdep_setup_inomapdep called on non-softdep filesystem")); 5230 fs = VFSTOUFS(mp)->um_fs; 5231 jaddref = NULL; 5232 5233 /* 5234 * Allocate the journal reference add structure so that the bitmap 5235 * can be dependent on it. 5236 */ 5237 if (MOUNTEDSUJ(mp)) { 5238 jaddref = newjaddref(ip, newinum, 0, 0, mode); 5239 jaddref->ja_state |= NEWBLOCK; 5240 } 5241 5242 /* 5243 * Create a dependency for the newly allocated inode. 5244 * Panic if it already exists as something is seriously wrong. 5245 * Otherwise add it to the dependency list for the buffer holding 5246 * the cylinder group map from which it was allocated. 5247 * 5248 * We have to preallocate a bmsafemap entry in case it is needed 5249 * in bmsafemap_lookup since once we allocate the inodedep, we 5250 * have to finish initializing it before we can FREE_LOCK(). 5251 * By preallocating, we avoid FREE_LOCK() while doing a malloc 5252 * in bmsafemap_lookup. We cannot call bmsafemap_lookup before 5253 * creating the inodedep as it can be freed during the time 5254 * that we FREE_LOCK() while allocating the inodedep. We must 5255 * call workitem_alloc() before entering the locked section as 5256 * it also acquires the lock and we must avoid trying doing so 5257 * recursively. 5258 */ 5259 bmsafemap = malloc(sizeof(struct bmsafemap), 5260 M_BMSAFEMAP, M_SOFTDEP_FLAGS); 5261 workitem_alloc(&bmsafemap->sm_list, D_BMSAFEMAP, mp); 5262 ACQUIRE_LOCK(ITOUMP(ip)); 5263 if ((inodedep_lookup(mp, newinum, DEPALLOC, &inodedep))) 5264 panic("softdep_setup_inomapdep: dependency %p for new" 5265 "inode already exists", inodedep); 5266 bmsafemap = bmsafemap_lookup(mp, bp, ino_to_cg(fs, newinum), bmsafemap); 5267 if (jaddref) { 5268 LIST_INSERT_HEAD(&bmsafemap->sm_jaddrefhd, jaddref, ja_bmdeps); 5269 TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref, 5270 if_deps); 5271 } else { 5272 inodedep->id_state |= ONDEPLIST; 5273 LIST_INSERT_HEAD(&bmsafemap->sm_inodedephd, inodedep, id_deps); 5274 } 5275 inodedep->id_bmsafemap = bmsafemap; 5276 inodedep->id_state &= ~DEPCOMPLETE; 5277 FREE_LOCK(ITOUMP(ip)); 5278 } 5279 5280 /* 5281 * Called just after updating the cylinder group block to 5282 * allocate block or fragment. 5283 */ 5284 void 5285 softdep_setup_blkmapdep( 5286 struct buf *bp, /* buffer for cylgroup block with block map */ 5287 struct mount *mp, /* filesystem doing allocation */ 5288 ufs2_daddr_t newblkno, /* number of newly allocated block */ 5289 int frags, /* Number of fragments. */ 5290 int oldfrags) /* Previous number of fragments for extend. */ 5291 { 5292 struct newblk *newblk; 5293 struct bmsafemap *bmsafemap; 5294 struct jnewblk *jnewblk; 5295 struct ufsmount *ump; 5296 struct fs *fs; 5297 5298 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 5299 ("softdep_setup_blkmapdep called on non-softdep filesystem")); 5300 ump = VFSTOUFS(mp); 5301 fs = ump->um_fs; 5302 jnewblk = NULL; 5303 /* 5304 * Create a dependency for the newly allocated block. 5305 * Add it to the dependency list for the buffer holding 5306 * the cylinder group map from which it was allocated. 5307 */ 5308 if (MOUNTEDSUJ(mp)) { 5309 jnewblk = malloc(sizeof(*jnewblk), M_JNEWBLK, M_SOFTDEP_FLAGS); 5310 workitem_alloc(&jnewblk->jn_list, D_JNEWBLK, mp); 5311 jnewblk->jn_jsegdep = newjsegdep(&jnewblk->jn_list); 5312 jnewblk->jn_state = ATTACHED; 5313 jnewblk->jn_blkno = newblkno; 5314 jnewblk->jn_frags = frags; 5315 jnewblk->jn_oldfrags = oldfrags; 5316 #ifdef INVARIANTS 5317 { 5318 struct cg *cgp; 5319 uint8_t *blksfree; 5320 long bno; 5321 int i; 5322 5323 cgp = (struct cg *)bp->b_data; 5324 blksfree = cg_blksfree(cgp); 5325 bno = dtogd(fs, jnewblk->jn_blkno); 5326 for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; 5327 i++) { 5328 if (isset(blksfree, bno + i)) 5329 panic("softdep_setup_blkmapdep: " 5330 "free fragment %d from %d-%d " 5331 "state 0x%X dep %p", i, 5332 jnewblk->jn_oldfrags, 5333 jnewblk->jn_frags, 5334 jnewblk->jn_state, 5335 jnewblk->jn_dep); 5336 } 5337 } 5338 #endif 5339 } 5340 5341 CTR3(KTR_SUJ, 5342 "softdep_setup_blkmapdep: blkno %jd frags %d oldfrags %d", 5343 newblkno, frags, oldfrags); 5344 ACQUIRE_LOCK(ump); 5345 if (newblk_lookup(mp, newblkno, DEPALLOC, &newblk) != 0) 5346 panic("softdep_setup_blkmapdep: found block"); 5347 newblk->nb_bmsafemap = bmsafemap = bmsafemap_lookup(mp, bp, 5348 dtog(fs, newblkno), NULL); 5349 if (jnewblk) { 5350 jnewblk->jn_dep = (struct worklist *)newblk; 5351 LIST_INSERT_HEAD(&bmsafemap->sm_jnewblkhd, jnewblk, jn_deps); 5352 } else { 5353 newblk->nb_state |= ONDEPLIST; 5354 LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, nb_deps); 5355 } 5356 newblk->nb_bmsafemap = bmsafemap; 5357 newblk->nb_jnewblk = jnewblk; 5358 FREE_LOCK(ump); 5359 } 5360 5361 #define BMSAFEMAP_HASH(ump, cg) \ 5362 (&(ump)->bmsafemap_hashtbl[(cg) & (ump)->bmsafemap_hash_size]) 5363 5364 static int 5365 bmsafemap_find( 5366 struct bmsafemap_hashhead *bmsafemaphd, 5367 int cg, 5368 struct bmsafemap **bmsafemapp) 5369 { 5370 struct bmsafemap *bmsafemap; 5371 5372 LIST_FOREACH(bmsafemap, bmsafemaphd, sm_hash) 5373 if (bmsafemap->sm_cg == cg) 5374 break; 5375 if (bmsafemap) { 5376 *bmsafemapp = bmsafemap; 5377 return (1); 5378 } 5379 *bmsafemapp = NULL; 5380 5381 return (0); 5382 } 5383 5384 /* 5385 * Find the bmsafemap associated with a cylinder group buffer. 5386 * If none exists, create one. The buffer must be locked when 5387 * this routine is called and this routine must be called with 5388 * the softdep lock held. To avoid giving up the lock while 5389 * allocating a new bmsafemap, a preallocated bmsafemap may be 5390 * provided. If it is provided but not needed, it is freed. 5391 */ 5392 static struct bmsafemap * 5393 bmsafemap_lookup(struct mount *mp, 5394 struct buf *bp, 5395 int cg, 5396 struct bmsafemap *newbmsafemap) 5397 { 5398 struct bmsafemap_hashhead *bmsafemaphd; 5399 struct bmsafemap *bmsafemap, *collision; 5400 struct worklist *wk; 5401 struct ufsmount *ump; 5402 5403 ump = VFSTOUFS(mp); 5404 LOCK_OWNED(ump); 5405 KASSERT(bp != NULL, ("bmsafemap_lookup: missing buffer")); 5406 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 5407 if (wk->wk_type == D_BMSAFEMAP) { 5408 if (newbmsafemap) 5409 WORKITEM_FREE(newbmsafemap, D_BMSAFEMAP); 5410 return (WK_BMSAFEMAP(wk)); 5411 } 5412 } 5413 bmsafemaphd = BMSAFEMAP_HASH(ump, cg); 5414 if (bmsafemap_find(bmsafemaphd, cg, &bmsafemap) == 1) { 5415 if (newbmsafemap) 5416 WORKITEM_FREE(newbmsafemap, D_BMSAFEMAP); 5417 return (bmsafemap); 5418 } 5419 if (newbmsafemap) { 5420 bmsafemap = newbmsafemap; 5421 } else { 5422 FREE_LOCK(ump); 5423 bmsafemap = malloc(sizeof(struct bmsafemap), 5424 M_BMSAFEMAP, M_SOFTDEP_FLAGS); 5425 workitem_alloc(&bmsafemap->sm_list, D_BMSAFEMAP, mp); 5426 ACQUIRE_LOCK(ump); 5427 } 5428 bmsafemap->sm_buf = bp; 5429 LIST_INIT(&bmsafemap->sm_inodedephd); 5430 LIST_INIT(&bmsafemap->sm_inodedepwr); 5431 LIST_INIT(&bmsafemap->sm_newblkhd); 5432 LIST_INIT(&bmsafemap->sm_newblkwr); 5433 LIST_INIT(&bmsafemap->sm_jaddrefhd); 5434 LIST_INIT(&bmsafemap->sm_jnewblkhd); 5435 LIST_INIT(&bmsafemap->sm_freehd); 5436 LIST_INIT(&bmsafemap->sm_freewr); 5437 if (bmsafemap_find(bmsafemaphd, cg, &collision) == 1) { 5438 WORKITEM_FREE(bmsafemap, D_BMSAFEMAP); 5439 return (collision); 5440 } 5441 bmsafemap->sm_cg = cg; 5442 LIST_INSERT_HEAD(bmsafemaphd, bmsafemap, sm_hash); 5443 LIST_INSERT_HEAD(&ump->softdep_dirtycg, bmsafemap, sm_next); 5444 WORKLIST_INSERT(&bp->b_dep, &bmsafemap->sm_list); 5445 return (bmsafemap); 5446 } 5447 5448 /* 5449 * Direct block allocation dependencies. 5450 * 5451 * When a new block is allocated, the corresponding disk locations must be 5452 * initialized (with zeros or new data) before the on-disk inode points to 5453 * them. Also, the freemap from which the block was allocated must be 5454 * updated (on disk) before the inode's pointer. These two dependencies are 5455 * independent of each other and are needed for all file blocks and indirect 5456 * blocks that are pointed to directly by the inode. Just before the 5457 * "in-core" version of the inode is updated with a newly allocated block 5458 * number, a procedure (below) is called to setup allocation dependency 5459 * structures. These structures are removed when the corresponding 5460 * dependencies are satisfied or when the block allocation becomes obsolete 5461 * (i.e., the file is deleted, the block is de-allocated, or the block is a 5462 * fragment that gets upgraded). All of these cases are handled in 5463 * procedures described later. 5464 * 5465 * When a file extension causes a fragment to be upgraded, either to a larger 5466 * fragment or to a full block, the on-disk location may change (if the 5467 * previous fragment could not simply be extended). In this case, the old 5468 * fragment must be de-allocated, but not until after the inode's pointer has 5469 * been updated. In most cases, this is handled by later procedures, which 5470 * will construct a "freefrag" structure to be added to the workitem queue 5471 * when the inode update is complete (or obsolete). The main exception to 5472 * this is when an allocation occurs while a pending allocation dependency 5473 * (for the same block pointer) remains. This case is handled in the main 5474 * allocation dependency setup procedure by immediately freeing the 5475 * unreferenced fragments. 5476 */ 5477 void 5478 softdep_setup_allocdirect( 5479 struct inode *ip, /* inode to which block is being added */ 5480 ufs_lbn_t off, /* block pointer within inode */ 5481 ufs2_daddr_t newblkno, /* disk block number being added */ 5482 ufs2_daddr_t oldblkno, /* previous block number, 0 unless frag */ 5483 long newsize, /* size of new block */ 5484 long oldsize, /* size of new block */ 5485 struct buf *bp) /* bp for allocated block */ 5486 { 5487 struct allocdirect *adp, *oldadp; 5488 struct allocdirectlst *adphead; 5489 struct freefrag *freefrag; 5490 struct inodedep *inodedep; 5491 struct pagedep *pagedep; 5492 struct jnewblk *jnewblk; 5493 struct newblk *newblk; 5494 struct mount *mp; 5495 ufs_lbn_t lbn; 5496 5497 lbn = bp->b_lblkno; 5498 mp = ITOVFS(ip); 5499 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 5500 ("softdep_setup_allocdirect called on non-softdep filesystem")); 5501 if (oldblkno && oldblkno != newblkno) 5502 /* 5503 * The usual case is that a smaller fragment that 5504 * was just allocated has been replaced with a bigger 5505 * fragment or a full-size block. If it is marked as 5506 * B_DELWRI, the current contents have not been written 5507 * to disk. It is possible that the block was written 5508 * earlier, but very uncommon. If the block has never 5509 * been written, there is no need to send a BIO_DELETE 5510 * for it when it is freed. The gain from avoiding the 5511 * TRIMs for the common case of unwritten blocks far 5512 * exceeds the cost of the write amplification for the 5513 * uncommon case of failing to send a TRIM for a block 5514 * that had been written. 5515 */ 5516 freefrag = newfreefrag(ip, oldblkno, oldsize, lbn, 5517 (bp->b_flags & B_DELWRI) != 0 ? NOTRIM_KEY : SINGLETON_KEY); 5518 else 5519 freefrag = NULL; 5520 5521 CTR6(KTR_SUJ, 5522 "softdep_setup_allocdirect: ino %d blkno %jd oldblkno %jd " 5523 "off %jd newsize %ld oldsize %d", 5524 ip->i_number, newblkno, oldblkno, off, newsize, oldsize); 5525 ACQUIRE_LOCK(ITOUMP(ip)); 5526 if (off >= UFS_NDADDR) { 5527 if (lbn > 0) 5528 panic("softdep_setup_allocdirect: bad lbn %jd, off %jd", 5529 lbn, off); 5530 /* allocating an indirect block */ 5531 if (oldblkno != 0) 5532 panic("softdep_setup_allocdirect: non-zero indir"); 5533 } else { 5534 if (off != lbn) 5535 panic("softdep_setup_allocdirect: lbn %jd != off %jd", 5536 lbn, off); 5537 /* 5538 * Allocating a direct block. 5539 * 5540 * If we are allocating a directory block, then we must 5541 * allocate an associated pagedep to track additions and 5542 * deletions. 5543 */ 5544 if ((ip->i_mode & IFMT) == IFDIR) 5545 pagedep_lookup(mp, bp, ip->i_number, off, DEPALLOC, 5546 &pagedep); 5547 } 5548 if (newblk_lookup(mp, newblkno, 0, &newblk) == 0) 5549 panic("softdep_setup_allocdirect: lost block"); 5550 KASSERT(newblk->nb_list.wk_type == D_NEWBLK, 5551 ("softdep_setup_allocdirect: newblk already initialized")); 5552 /* 5553 * Convert the newblk to an allocdirect. 5554 */ 5555 WORKITEM_REASSIGN(newblk, D_ALLOCDIRECT); 5556 adp = (struct allocdirect *)newblk; 5557 newblk->nb_freefrag = freefrag; 5558 adp->ad_offset = off; 5559 adp->ad_oldblkno = oldblkno; 5560 adp->ad_newsize = newsize; 5561 adp->ad_oldsize = oldsize; 5562 5563 /* 5564 * Finish initializing the journal. 5565 */ 5566 if ((jnewblk = newblk->nb_jnewblk) != NULL) { 5567 jnewblk->jn_ino = ip->i_number; 5568 jnewblk->jn_lbn = lbn; 5569 add_to_journal(&jnewblk->jn_list); 5570 } 5571 if (freefrag && freefrag->ff_jdep != NULL && 5572 freefrag->ff_jdep->wk_type == D_JFREEFRAG) 5573 add_to_journal(freefrag->ff_jdep); 5574 inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep); 5575 adp->ad_inodedep = inodedep; 5576 5577 WORKLIST_INSERT(&bp->b_dep, &newblk->nb_list); 5578 /* 5579 * The list of allocdirects must be kept in sorted and ascending 5580 * order so that the rollback routines can quickly determine the 5581 * first uncommitted block (the size of the file stored on disk 5582 * ends at the end of the lowest committed fragment, or if there 5583 * are no fragments, at the end of the highest committed block). 5584 * Since files generally grow, the typical case is that the new 5585 * block is to be added at the end of the list. We speed this 5586 * special case by checking against the last allocdirect in the 5587 * list before laboriously traversing the list looking for the 5588 * insertion point. 5589 */ 5590 adphead = &inodedep->id_newinoupdt; 5591 oldadp = TAILQ_LAST(adphead, allocdirectlst); 5592 if (oldadp == NULL || oldadp->ad_offset <= off) { 5593 /* insert at end of list */ 5594 TAILQ_INSERT_TAIL(adphead, adp, ad_next); 5595 if (oldadp != NULL && oldadp->ad_offset == off) 5596 allocdirect_merge(adphead, adp, oldadp); 5597 FREE_LOCK(ITOUMP(ip)); 5598 return; 5599 } 5600 TAILQ_FOREACH(oldadp, adphead, ad_next) { 5601 if (oldadp->ad_offset >= off) 5602 break; 5603 } 5604 if (oldadp == NULL) 5605 panic("softdep_setup_allocdirect: lost entry"); 5606 /* insert in middle of list */ 5607 TAILQ_INSERT_BEFORE(oldadp, adp, ad_next); 5608 if (oldadp->ad_offset == off) 5609 allocdirect_merge(adphead, adp, oldadp); 5610 5611 FREE_LOCK(ITOUMP(ip)); 5612 } 5613 5614 /* 5615 * Merge a newer and older journal record to be stored either in a 5616 * newblock or freefrag. This handles aggregating journal records for 5617 * fragment allocation into a second record as well as replacing a 5618 * journal free with an aborted journal allocation. A segment for the 5619 * oldest record will be placed on wkhd if it has been written. If not 5620 * the segment for the newer record will suffice. 5621 */ 5622 static struct worklist * 5623 jnewblk_merge(struct worklist *new, 5624 struct worklist *old, 5625 struct workhead *wkhd) 5626 { 5627 struct jnewblk *njnewblk; 5628 struct jnewblk *jnewblk; 5629 5630 /* Handle NULLs to simplify callers. */ 5631 if (new == NULL) 5632 return (old); 5633 if (old == NULL) 5634 return (new); 5635 /* Replace a jfreefrag with a jnewblk. */ 5636 if (new->wk_type == D_JFREEFRAG) { 5637 if (WK_JNEWBLK(old)->jn_blkno != WK_JFREEFRAG(new)->fr_blkno) 5638 panic("jnewblk_merge: blkno mismatch: %p, %p", 5639 old, new); 5640 cancel_jfreefrag(WK_JFREEFRAG(new)); 5641 return (old); 5642 } 5643 if (old->wk_type != D_JNEWBLK || new->wk_type != D_JNEWBLK) 5644 panic("jnewblk_merge: Bad type: old %d new %d\n", 5645 old->wk_type, new->wk_type); 5646 /* 5647 * Handle merging of two jnewblk records that describe 5648 * different sets of fragments in the same block. 5649 */ 5650 jnewblk = WK_JNEWBLK(old); 5651 njnewblk = WK_JNEWBLK(new); 5652 if (jnewblk->jn_blkno != njnewblk->jn_blkno) 5653 panic("jnewblk_merge: Merging disparate blocks."); 5654 /* 5655 * The record may be rolled back in the cg. 5656 */ 5657 if (jnewblk->jn_state & UNDONE) { 5658 jnewblk->jn_state &= ~UNDONE; 5659 njnewblk->jn_state |= UNDONE; 5660 njnewblk->jn_state &= ~ATTACHED; 5661 } 5662 /* 5663 * We modify the newer addref and free the older so that if neither 5664 * has been written the most up-to-date copy will be on disk. If 5665 * both have been written but rolled back we only temporarily need 5666 * one of them to fix the bits when the cg write completes. 5667 */ 5668 jnewblk->jn_state |= ATTACHED | COMPLETE; 5669 njnewblk->jn_oldfrags = jnewblk->jn_oldfrags; 5670 cancel_jnewblk(jnewblk, wkhd); 5671 WORKLIST_REMOVE(&jnewblk->jn_list); 5672 free_jnewblk(jnewblk); 5673 return (new); 5674 } 5675 5676 /* 5677 * Replace an old allocdirect dependency with a newer one. 5678 */ 5679 static void 5680 allocdirect_merge( 5681 struct allocdirectlst *adphead, /* head of list holding allocdirects */ 5682 struct allocdirect *newadp, /* allocdirect being added */ 5683 struct allocdirect *oldadp) /* existing allocdirect being checked */ 5684 { 5685 struct worklist *wk; 5686 struct freefrag *freefrag; 5687 5688 freefrag = NULL; 5689 LOCK_OWNED(VFSTOUFS(newadp->ad_list.wk_mp)); 5690 if (newadp->ad_oldblkno != oldadp->ad_newblkno || 5691 newadp->ad_oldsize != oldadp->ad_newsize || 5692 newadp->ad_offset >= UFS_NDADDR) 5693 panic("%s %jd != new %jd || old size %ld != new %ld", 5694 "allocdirect_merge: old blkno", 5695 (intmax_t)newadp->ad_oldblkno, 5696 (intmax_t)oldadp->ad_newblkno, 5697 newadp->ad_oldsize, oldadp->ad_newsize); 5698 newadp->ad_oldblkno = oldadp->ad_oldblkno; 5699 newadp->ad_oldsize = oldadp->ad_oldsize; 5700 /* 5701 * If the old dependency had a fragment to free or had never 5702 * previously had a block allocated, then the new dependency 5703 * can immediately post its freefrag and adopt the old freefrag. 5704 * This action is done by swapping the freefrag dependencies. 5705 * The new dependency gains the old one's freefrag, and the 5706 * old one gets the new one and then immediately puts it on 5707 * the worklist when it is freed by free_newblk. It is 5708 * not possible to do this swap when the old dependency had a 5709 * non-zero size but no previous fragment to free. This condition 5710 * arises when the new block is an extension of the old block. 5711 * Here, the first part of the fragment allocated to the new 5712 * dependency is part of the block currently claimed on disk by 5713 * the old dependency, so cannot legitimately be freed until the 5714 * conditions for the new dependency are fulfilled. 5715 */ 5716 freefrag = newadp->ad_freefrag; 5717 if (oldadp->ad_freefrag != NULL || oldadp->ad_oldblkno == 0) { 5718 newadp->ad_freefrag = oldadp->ad_freefrag; 5719 oldadp->ad_freefrag = freefrag; 5720 } 5721 /* 5722 * If we are tracking a new directory-block allocation, 5723 * move it from the old allocdirect to the new allocdirect. 5724 */ 5725 if ((wk = LIST_FIRST(&oldadp->ad_newdirblk)) != NULL) { 5726 WORKLIST_REMOVE(wk); 5727 if (!LIST_EMPTY(&oldadp->ad_newdirblk)) 5728 panic("allocdirect_merge: extra newdirblk"); 5729 WORKLIST_INSERT(&newadp->ad_newdirblk, wk); 5730 } 5731 TAILQ_REMOVE(adphead, oldadp, ad_next); 5732 /* 5733 * We need to move any journal dependencies over to the freefrag 5734 * that releases this block if it exists. Otherwise we are 5735 * extending an existing block and we'll wait until that is 5736 * complete to release the journal space and extend the 5737 * new journal to cover this old space as well. 5738 */ 5739 if (freefrag == NULL) { 5740 if (oldadp->ad_newblkno != newadp->ad_newblkno) 5741 panic("allocdirect_merge: %jd != %jd", 5742 oldadp->ad_newblkno, newadp->ad_newblkno); 5743 newadp->ad_block.nb_jnewblk = (struct jnewblk *) 5744 jnewblk_merge(&newadp->ad_block.nb_jnewblk->jn_list, 5745 &oldadp->ad_block.nb_jnewblk->jn_list, 5746 &newadp->ad_block.nb_jwork); 5747 oldadp->ad_block.nb_jnewblk = NULL; 5748 cancel_newblk(&oldadp->ad_block, NULL, 5749 &newadp->ad_block.nb_jwork); 5750 } else { 5751 wk = (struct worklist *) cancel_newblk(&oldadp->ad_block, 5752 &freefrag->ff_list, &freefrag->ff_jwork); 5753 freefrag->ff_jdep = jnewblk_merge(freefrag->ff_jdep, wk, 5754 &freefrag->ff_jwork); 5755 } 5756 free_newblk(&oldadp->ad_block); 5757 } 5758 5759 /* 5760 * Allocate a jfreefrag structure to journal a single block free. 5761 */ 5762 static struct jfreefrag * 5763 newjfreefrag(struct freefrag *freefrag, 5764 struct inode *ip, 5765 ufs2_daddr_t blkno, 5766 long size, 5767 ufs_lbn_t lbn) 5768 { 5769 struct jfreefrag *jfreefrag; 5770 struct fs *fs; 5771 5772 fs = ITOFS(ip); 5773 jfreefrag = malloc(sizeof(struct jfreefrag), M_JFREEFRAG, 5774 M_SOFTDEP_FLAGS); 5775 workitem_alloc(&jfreefrag->fr_list, D_JFREEFRAG, ITOVFS(ip)); 5776 jfreefrag->fr_jsegdep = newjsegdep(&jfreefrag->fr_list); 5777 jfreefrag->fr_state = ATTACHED | DEPCOMPLETE; 5778 jfreefrag->fr_ino = ip->i_number; 5779 jfreefrag->fr_lbn = lbn; 5780 jfreefrag->fr_blkno = blkno; 5781 jfreefrag->fr_frags = numfrags(fs, size); 5782 jfreefrag->fr_freefrag = freefrag; 5783 5784 return (jfreefrag); 5785 } 5786 5787 /* 5788 * Allocate a new freefrag structure. 5789 */ 5790 static struct freefrag * 5791 newfreefrag(struct inode *ip, 5792 ufs2_daddr_t blkno, 5793 long size, 5794 ufs_lbn_t lbn, 5795 u_long key) 5796 { 5797 struct freefrag *freefrag; 5798 struct ufsmount *ump; 5799 struct fs *fs; 5800 5801 CTR4(KTR_SUJ, "newfreefrag: ino %d blkno %jd size %ld lbn %jd", 5802 ip->i_number, blkno, size, lbn); 5803 ump = ITOUMP(ip); 5804 fs = ump->um_fs; 5805 if (fragnum(fs, blkno) + numfrags(fs, size) > fs->fs_frag) 5806 panic("newfreefrag: frag size"); 5807 freefrag = malloc(sizeof(struct freefrag), 5808 M_FREEFRAG, M_SOFTDEP_FLAGS); 5809 workitem_alloc(&freefrag->ff_list, D_FREEFRAG, UFSTOVFS(ump)); 5810 freefrag->ff_state = ATTACHED; 5811 LIST_INIT(&freefrag->ff_jwork); 5812 freefrag->ff_inum = ip->i_number; 5813 freefrag->ff_vtype = ITOV(ip)->v_type; 5814 freefrag->ff_blkno = blkno; 5815 freefrag->ff_fragsize = size; 5816 freefrag->ff_key = key; 5817 5818 if (MOUNTEDSUJ(UFSTOVFS(ump))) { 5819 freefrag->ff_jdep = (struct worklist *) 5820 newjfreefrag(freefrag, ip, blkno, size, lbn); 5821 } else { 5822 freefrag->ff_state |= DEPCOMPLETE; 5823 freefrag->ff_jdep = NULL; 5824 } 5825 5826 return (freefrag); 5827 } 5828 5829 /* 5830 * This workitem de-allocates fragments that were replaced during 5831 * file block allocation. 5832 */ 5833 static void 5834 handle_workitem_freefrag(struct freefrag *freefrag) 5835 { 5836 struct ufsmount *ump = VFSTOUFS(freefrag->ff_list.wk_mp); 5837 struct workhead wkhd; 5838 5839 CTR3(KTR_SUJ, 5840 "handle_workitem_freefrag: ino %d blkno %jd size %ld", 5841 freefrag->ff_inum, freefrag->ff_blkno, freefrag->ff_fragsize); 5842 /* 5843 * It would be illegal to add new completion items to the 5844 * freefrag after it was schedule to be done so it must be 5845 * safe to modify the list head here. 5846 */ 5847 LIST_INIT(&wkhd); 5848 ACQUIRE_LOCK(ump); 5849 LIST_SWAP(&freefrag->ff_jwork, &wkhd, worklist, wk_list); 5850 /* 5851 * If the journal has not been written we must cancel it here. 5852 */ 5853 if (freefrag->ff_jdep) { 5854 if (freefrag->ff_jdep->wk_type != D_JNEWBLK) 5855 panic("handle_workitem_freefrag: Unexpected type %d\n", 5856 freefrag->ff_jdep->wk_type); 5857 cancel_jnewblk(WK_JNEWBLK(freefrag->ff_jdep), &wkhd); 5858 } 5859 FREE_LOCK(ump); 5860 ffs_blkfree(ump, ump->um_fs, ump->um_devvp, freefrag->ff_blkno, 5861 freefrag->ff_fragsize, freefrag->ff_inum, freefrag->ff_vtype, 5862 &wkhd, freefrag->ff_key); 5863 ACQUIRE_LOCK(ump); 5864 WORKITEM_FREE(freefrag, D_FREEFRAG); 5865 FREE_LOCK(ump); 5866 } 5867 5868 /* 5869 * Set up a dependency structure for an external attributes data block. 5870 * This routine follows much of the structure of softdep_setup_allocdirect. 5871 * See the description of softdep_setup_allocdirect above for details. 5872 */ 5873 void 5874 softdep_setup_allocext( 5875 struct inode *ip, 5876 ufs_lbn_t off, 5877 ufs2_daddr_t newblkno, 5878 ufs2_daddr_t oldblkno, 5879 long newsize, 5880 long oldsize, 5881 struct buf *bp) 5882 { 5883 struct allocdirect *adp, *oldadp; 5884 struct allocdirectlst *adphead; 5885 struct freefrag *freefrag; 5886 struct inodedep *inodedep; 5887 struct jnewblk *jnewblk; 5888 struct newblk *newblk; 5889 struct mount *mp; 5890 struct ufsmount *ump; 5891 ufs_lbn_t lbn; 5892 5893 mp = ITOVFS(ip); 5894 ump = VFSTOUFS(mp); 5895 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 5896 ("softdep_setup_allocext called on non-softdep filesystem")); 5897 KASSERT(off < UFS_NXADDR, 5898 ("softdep_setup_allocext: lbn %lld > UFS_NXADDR", (long long)off)); 5899 5900 lbn = bp->b_lblkno; 5901 if (oldblkno && oldblkno != newblkno) 5902 /* 5903 * The usual case is that a smaller fragment that 5904 * was just allocated has been replaced with a bigger 5905 * fragment or a full-size block. If it is marked as 5906 * B_DELWRI, the current contents have not been written 5907 * to disk. It is possible that the block was written 5908 * earlier, but very uncommon. If the block has never 5909 * been written, there is no need to send a BIO_DELETE 5910 * for it when it is freed. The gain from avoiding the 5911 * TRIMs for the common case of unwritten blocks far 5912 * exceeds the cost of the write amplification for the 5913 * uncommon case of failing to send a TRIM for a block 5914 * that had been written. 5915 */ 5916 freefrag = newfreefrag(ip, oldblkno, oldsize, lbn, 5917 (bp->b_flags & B_DELWRI) != 0 ? NOTRIM_KEY : SINGLETON_KEY); 5918 else 5919 freefrag = NULL; 5920 5921 ACQUIRE_LOCK(ump); 5922 if (newblk_lookup(mp, newblkno, 0, &newblk) == 0) 5923 panic("softdep_setup_allocext: lost block"); 5924 KASSERT(newblk->nb_list.wk_type == D_NEWBLK, 5925 ("softdep_setup_allocext: newblk already initialized")); 5926 /* 5927 * Convert the newblk to an allocdirect. 5928 */ 5929 WORKITEM_REASSIGN(newblk, D_ALLOCDIRECT); 5930 adp = (struct allocdirect *)newblk; 5931 newblk->nb_freefrag = freefrag; 5932 adp->ad_offset = off; 5933 adp->ad_oldblkno = oldblkno; 5934 adp->ad_newsize = newsize; 5935 adp->ad_oldsize = oldsize; 5936 adp->ad_state |= EXTDATA; 5937 5938 /* 5939 * Finish initializing the journal. 5940 */ 5941 if ((jnewblk = newblk->nb_jnewblk) != NULL) { 5942 jnewblk->jn_ino = ip->i_number; 5943 jnewblk->jn_lbn = lbn; 5944 add_to_journal(&jnewblk->jn_list); 5945 } 5946 if (freefrag && freefrag->ff_jdep != NULL && 5947 freefrag->ff_jdep->wk_type == D_JFREEFRAG) 5948 add_to_journal(freefrag->ff_jdep); 5949 inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep); 5950 adp->ad_inodedep = inodedep; 5951 5952 WORKLIST_INSERT(&bp->b_dep, &newblk->nb_list); 5953 /* 5954 * The list of allocdirects must be kept in sorted and ascending 5955 * order so that the rollback routines can quickly determine the 5956 * first uncommitted block (the size of the file stored on disk 5957 * ends at the end of the lowest committed fragment, or if there 5958 * are no fragments, at the end of the highest committed block). 5959 * Since files generally grow, the typical case is that the new 5960 * block is to be added at the end of the list. We speed this 5961 * special case by checking against the last allocdirect in the 5962 * list before laboriously traversing the list looking for the 5963 * insertion point. 5964 */ 5965 adphead = &inodedep->id_newextupdt; 5966 oldadp = TAILQ_LAST(adphead, allocdirectlst); 5967 if (oldadp == NULL || oldadp->ad_offset <= off) { 5968 /* insert at end of list */ 5969 TAILQ_INSERT_TAIL(adphead, adp, ad_next); 5970 if (oldadp != NULL && oldadp->ad_offset == off) 5971 allocdirect_merge(adphead, adp, oldadp); 5972 FREE_LOCK(ump); 5973 return; 5974 } 5975 TAILQ_FOREACH(oldadp, adphead, ad_next) { 5976 if (oldadp->ad_offset >= off) 5977 break; 5978 } 5979 if (oldadp == NULL) 5980 panic("softdep_setup_allocext: lost entry"); 5981 /* insert in middle of list */ 5982 TAILQ_INSERT_BEFORE(oldadp, adp, ad_next); 5983 if (oldadp->ad_offset == off) 5984 allocdirect_merge(adphead, adp, oldadp); 5985 FREE_LOCK(ump); 5986 } 5987 5988 /* 5989 * Indirect block allocation dependencies. 5990 * 5991 * The same dependencies that exist for a direct block also exist when 5992 * a new block is allocated and pointed to by an entry in a block of 5993 * indirect pointers. The undo/redo states described above are also 5994 * used here. Because an indirect block contains many pointers that 5995 * may have dependencies, a second copy of the entire in-memory indirect 5996 * block is kept. The buffer cache copy is always completely up-to-date. 5997 * The second copy, which is used only as a source for disk writes, 5998 * contains only the safe pointers (i.e., those that have no remaining 5999 * update dependencies). The second copy is freed when all pointers 6000 * are safe. The cache is not allowed to replace indirect blocks with 6001 * pending update dependencies. If a buffer containing an indirect 6002 * block with dependencies is written, these routines will mark it 6003 * dirty again. It can only be successfully written once all the 6004 * dependencies are removed. The ffs_fsync routine in conjunction with 6005 * softdep_sync_metadata work together to get all the dependencies 6006 * removed so that a file can be successfully written to disk. Three 6007 * procedures are used when setting up indirect block pointer 6008 * dependencies. The division is necessary because of the organization 6009 * of the "balloc" routine and because of the distinction between file 6010 * pages and file metadata blocks. 6011 */ 6012 6013 /* 6014 * Allocate a new allocindir structure. 6015 */ 6016 static struct allocindir * 6017 newallocindir( 6018 struct inode *ip, /* inode for file being extended */ 6019 int ptrno, /* offset of pointer in indirect block */ 6020 ufs2_daddr_t newblkno, /* disk block number being added */ 6021 ufs2_daddr_t oldblkno, /* previous block number, 0 if none */ 6022 ufs_lbn_t lbn) 6023 { 6024 struct newblk *newblk; 6025 struct allocindir *aip; 6026 struct freefrag *freefrag; 6027 struct jnewblk *jnewblk; 6028 6029 if (oldblkno) 6030 freefrag = newfreefrag(ip, oldblkno, ITOFS(ip)->fs_bsize, lbn, 6031 SINGLETON_KEY); 6032 else 6033 freefrag = NULL; 6034 ACQUIRE_LOCK(ITOUMP(ip)); 6035 if (newblk_lookup(ITOVFS(ip), newblkno, 0, &newblk) == 0) 6036 panic("new_allocindir: lost block"); 6037 KASSERT(newblk->nb_list.wk_type == D_NEWBLK, 6038 ("newallocindir: newblk already initialized")); 6039 WORKITEM_REASSIGN(newblk, D_ALLOCINDIR); 6040 newblk->nb_freefrag = freefrag; 6041 aip = (struct allocindir *)newblk; 6042 aip->ai_offset = ptrno; 6043 aip->ai_oldblkno = oldblkno; 6044 aip->ai_lbn = lbn; 6045 if ((jnewblk = newblk->nb_jnewblk) != NULL) { 6046 jnewblk->jn_ino = ip->i_number; 6047 jnewblk->jn_lbn = lbn; 6048 add_to_journal(&jnewblk->jn_list); 6049 } 6050 if (freefrag && freefrag->ff_jdep != NULL && 6051 freefrag->ff_jdep->wk_type == D_JFREEFRAG) 6052 add_to_journal(freefrag->ff_jdep); 6053 return (aip); 6054 } 6055 6056 /* 6057 * Called just before setting an indirect block pointer 6058 * to a newly allocated file page. 6059 */ 6060 void 6061 softdep_setup_allocindir_page( 6062 struct inode *ip, /* inode for file being extended */ 6063 ufs_lbn_t lbn, /* allocated block number within file */ 6064 struct buf *bp, /* buffer with indirect blk referencing page */ 6065 int ptrno, /* offset of pointer in indirect block */ 6066 ufs2_daddr_t newblkno, /* disk block number being added */ 6067 ufs2_daddr_t oldblkno, /* previous block number, 0 if none */ 6068 struct buf *nbp) /* buffer holding allocated page */ 6069 { 6070 struct inodedep *inodedep; 6071 struct freefrag *freefrag; 6072 struct allocindir *aip; 6073 struct pagedep *pagedep; 6074 struct mount *mp; 6075 struct ufsmount *ump; 6076 6077 mp = ITOVFS(ip); 6078 ump = VFSTOUFS(mp); 6079 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 6080 ("softdep_setup_allocindir_page called on non-softdep filesystem")); 6081 KASSERT(lbn == nbp->b_lblkno, 6082 ("softdep_setup_allocindir_page: lbn %jd != lblkno %jd", 6083 lbn, bp->b_lblkno)); 6084 CTR4(KTR_SUJ, 6085 "softdep_setup_allocindir_page: ino %d blkno %jd oldblkno %jd " 6086 "lbn %jd", ip->i_number, newblkno, oldblkno, lbn); 6087 ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_page"); 6088 aip = newallocindir(ip, ptrno, newblkno, oldblkno, lbn); 6089 (void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep); 6090 /* 6091 * If we are allocating a directory page, then we must 6092 * allocate an associated pagedep to track additions and 6093 * deletions. 6094 */ 6095 if ((ip->i_mode & IFMT) == IFDIR) 6096 pagedep_lookup(mp, nbp, ip->i_number, lbn, DEPALLOC, &pagedep); 6097 WORKLIST_INSERT(&nbp->b_dep, &aip->ai_block.nb_list); 6098 freefrag = setup_allocindir_phase2(bp, ip, inodedep, aip, lbn); 6099 FREE_LOCK(ump); 6100 if (freefrag) 6101 handle_workitem_freefrag(freefrag); 6102 } 6103 6104 /* 6105 * Called just before setting an indirect block pointer to a 6106 * newly allocated indirect block. 6107 */ 6108 void 6109 softdep_setup_allocindir_meta( 6110 struct buf *nbp, /* newly allocated indirect block */ 6111 struct inode *ip, /* inode for file being extended */ 6112 struct buf *bp, /* indirect block referencing allocated block */ 6113 int ptrno, /* offset of pointer in indirect block */ 6114 ufs2_daddr_t newblkno) /* disk block number being added */ 6115 { 6116 struct inodedep *inodedep; 6117 struct allocindir *aip; 6118 struct ufsmount *ump; 6119 ufs_lbn_t lbn; 6120 6121 ump = ITOUMP(ip); 6122 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 6123 ("softdep_setup_allocindir_meta called on non-softdep filesystem")); 6124 CTR3(KTR_SUJ, 6125 "softdep_setup_allocindir_meta: ino %d blkno %jd ptrno %d", 6126 ip->i_number, newblkno, ptrno); 6127 lbn = nbp->b_lblkno; 6128 ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_meta"); 6129 aip = newallocindir(ip, ptrno, newblkno, 0, lbn); 6130 inodedep_lookup(UFSTOVFS(ump), ip->i_number, DEPALLOC, &inodedep); 6131 WORKLIST_INSERT(&nbp->b_dep, &aip->ai_block.nb_list); 6132 if (setup_allocindir_phase2(bp, ip, inodedep, aip, lbn)) 6133 panic("softdep_setup_allocindir_meta: Block already existed"); 6134 FREE_LOCK(ump); 6135 } 6136 6137 static void 6138 indirdep_complete(struct indirdep *indirdep) 6139 { 6140 struct allocindir *aip; 6141 6142 LIST_REMOVE(indirdep, ir_next); 6143 indirdep->ir_state |= DEPCOMPLETE; 6144 6145 while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != NULL) { 6146 LIST_REMOVE(aip, ai_next); 6147 free_newblk(&aip->ai_block); 6148 } 6149 /* 6150 * If this indirdep is not attached to a buf it was simply waiting 6151 * on completion to clear completehd. free_indirdep() asserts 6152 * that nothing is dangling. 6153 */ 6154 if ((indirdep->ir_state & ONWORKLIST) == 0) 6155 free_indirdep(indirdep); 6156 } 6157 6158 static struct indirdep * 6159 indirdep_lookup(struct mount *mp, 6160 struct inode *ip, 6161 struct buf *bp) 6162 { 6163 struct indirdep *indirdep, *newindirdep; 6164 struct newblk *newblk; 6165 struct ufsmount *ump; 6166 struct worklist *wk; 6167 struct fs *fs; 6168 ufs2_daddr_t blkno; 6169 6170 ump = VFSTOUFS(mp); 6171 LOCK_OWNED(ump); 6172 indirdep = NULL; 6173 newindirdep = NULL; 6174 fs = ump->um_fs; 6175 for (;;) { 6176 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 6177 if (wk->wk_type != D_INDIRDEP) 6178 continue; 6179 indirdep = WK_INDIRDEP(wk); 6180 break; 6181 } 6182 /* Found on the buffer worklist, no new structure to free. */ 6183 if (indirdep != NULL && newindirdep == NULL) 6184 return (indirdep); 6185 if (indirdep != NULL && newindirdep != NULL) 6186 panic("indirdep_lookup: simultaneous create"); 6187 /* None found on the buffer and a new structure is ready. */ 6188 if (indirdep == NULL && newindirdep != NULL) 6189 break; 6190 /* None found and no new structure available. */ 6191 FREE_LOCK(ump); 6192 newindirdep = malloc(sizeof(struct indirdep), 6193 M_INDIRDEP, M_SOFTDEP_FLAGS); 6194 workitem_alloc(&newindirdep->ir_list, D_INDIRDEP, mp); 6195 newindirdep->ir_state = ATTACHED; 6196 if (I_IS_UFS1(ip)) 6197 newindirdep->ir_state |= UFS1FMT; 6198 TAILQ_INIT(&newindirdep->ir_trunc); 6199 newindirdep->ir_saveddata = NULL; 6200 LIST_INIT(&newindirdep->ir_deplisthd); 6201 LIST_INIT(&newindirdep->ir_donehd); 6202 LIST_INIT(&newindirdep->ir_writehd); 6203 LIST_INIT(&newindirdep->ir_completehd); 6204 if (bp->b_blkno == bp->b_lblkno) { 6205 ufs_bmaparray(bp->b_vp, bp->b_lblkno, &blkno, bp, 6206 NULL, NULL); 6207 bp->b_blkno = blkno; 6208 } 6209 newindirdep->ir_freeblks = NULL; 6210 newindirdep->ir_savebp = 6211 getblk(ump->um_devvp, bp->b_blkno, bp->b_bcount, 0, 0, 0); 6212 newindirdep->ir_bp = bp; 6213 BUF_KERNPROC(newindirdep->ir_savebp); 6214 bcopy(bp->b_data, newindirdep->ir_savebp->b_data, bp->b_bcount); 6215 ACQUIRE_LOCK(ump); 6216 } 6217 indirdep = newindirdep; 6218 WORKLIST_INSERT(&bp->b_dep, &indirdep->ir_list); 6219 /* 6220 * If the block is not yet allocated we don't set DEPCOMPLETE so 6221 * that we don't free dependencies until the pointers are valid. 6222 * This could search b_dep for D_ALLOCDIRECT/D_ALLOCINDIR rather 6223 * than using the hash. 6224 */ 6225 if (newblk_lookup(mp, dbtofsb(fs, bp->b_blkno), 0, &newblk)) 6226 LIST_INSERT_HEAD(&newblk->nb_indirdeps, indirdep, ir_next); 6227 else 6228 indirdep->ir_state |= DEPCOMPLETE; 6229 return (indirdep); 6230 } 6231 6232 /* 6233 * Called to finish the allocation of the "aip" allocated 6234 * by one of the two routines above. 6235 */ 6236 static struct freefrag * 6237 setup_allocindir_phase2( 6238 struct buf *bp, /* in-memory copy of the indirect block */ 6239 struct inode *ip, /* inode for file being extended */ 6240 struct inodedep *inodedep, /* Inodedep for ip */ 6241 struct allocindir *aip, /* allocindir allocated by the above routines */ 6242 ufs_lbn_t lbn) /* Logical block number for this block. */ 6243 { 6244 struct fs *fs __diagused; 6245 struct indirdep *indirdep; 6246 struct allocindir *oldaip; 6247 struct freefrag *freefrag; 6248 struct mount *mp; 6249 struct ufsmount *ump; 6250 6251 mp = ITOVFS(ip); 6252 ump = VFSTOUFS(mp); 6253 LOCK_OWNED(ump); 6254 fs = ump->um_fs; 6255 if (bp->b_lblkno >= 0) 6256 panic("setup_allocindir_phase2: not indir blk"); 6257 KASSERT(aip->ai_offset >= 0 && aip->ai_offset < NINDIR(fs), 6258 ("setup_allocindir_phase2: Bad offset %d", aip->ai_offset)); 6259 indirdep = indirdep_lookup(mp, ip, bp); 6260 KASSERT(indirdep->ir_savebp != NULL, 6261 ("setup_allocindir_phase2 NULL ir_savebp")); 6262 aip->ai_indirdep = indirdep; 6263 /* 6264 * Check for an unwritten dependency for this indirect offset. If 6265 * there is, merge the old dependency into the new one. This happens 6266 * as a result of reallocblk only. 6267 */ 6268 freefrag = NULL; 6269 if (aip->ai_oldblkno != 0) { 6270 LIST_FOREACH(oldaip, &indirdep->ir_deplisthd, ai_next) { 6271 if (oldaip->ai_offset == aip->ai_offset) { 6272 freefrag = allocindir_merge(aip, oldaip); 6273 goto done; 6274 } 6275 } 6276 LIST_FOREACH(oldaip, &indirdep->ir_donehd, ai_next) { 6277 if (oldaip->ai_offset == aip->ai_offset) { 6278 freefrag = allocindir_merge(aip, oldaip); 6279 goto done; 6280 } 6281 } 6282 } 6283 done: 6284 LIST_INSERT_HEAD(&indirdep->ir_deplisthd, aip, ai_next); 6285 return (freefrag); 6286 } 6287 6288 /* 6289 * Merge two allocindirs which refer to the same block. Move newblock 6290 * dependencies and setup the freefrags appropriately. 6291 */ 6292 static struct freefrag * 6293 allocindir_merge( 6294 struct allocindir *aip, 6295 struct allocindir *oldaip) 6296 { 6297 struct freefrag *freefrag; 6298 struct worklist *wk; 6299 6300 if (oldaip->ai_newblkno != aip->ai_oldblkno) 6301 panic("allocindir_merge: blkno"); 6302 aip->ai_oldblkno = oldaip->ai_oldblkno; 6303 freefrag = aip->ai_freefrag; 6304 aip->ai_freefrag = oldaip->ai_freefrag; 6305 oldaip->ai_freefrag = NULL; 6306 KASSERT(freefrag != NULL, ("setup_allocindir_phase2: No freefrag")); 6307 /* 6308 * If we are tracking a new directory-block allocation, 6309 * move it from the old allocindir to the new allocindir. 6310 */ 6311 if ((wk = LIST_FIRST(&oldaip->ai_newdirblk)) != NULL) { 6312 WORKLIST_REMOVE(wk); 6313 if (!LIST_EMPTY(&oldaip->ai_newdirblk)) 6314 panic("allocindir_merge: extra newdirblk"); 6315 WORKLIST_INSERT(&aip->ai_newdirblk, wk); 6316 } 6317 /* 6318 * We can skip journaling for this freefrag and just complete 6319 * any pending journal work for the allocindir that is being 6320 * removed after the freefrag completes. 6321 */ 6322 if (freefrag->ff_jdep) 6323 cancel_jfreefrag(WK_JFREEFRAG(freefrag->ff_jdep)); 6324 LIST_REMOVE(oldaip, ai_next); 6325 freefrag->ff_jdep = (struct worklist *)cancel_newblk(&oldaip->ai_block, 6326 &freefrag->ff_list, &freefrag->ff_jwork); 6327 free_newblk(&oldaip->ai_block); 6328 6329 return (freefrag); 6330 } 6331 6332 static inline void 6333 setup_freedirect( 6334 struct freeblks *freeblks, 6335 struct inode *ip, 6336 int i, 6337 int needj) 6338 { 6339 struct ufsmount *ump; 6340 ufs2_daddr_t blkno; 6341 int frags; 6342 6343 blkno = DIP(ip, i_db[i]); 6344 if (blkno == 0) 6345 return; 6346 DIP_SET(ip, i_db[i], 0); 6347 ump = ITOUMP(ip); 6348 frags = sblksize(ump->um_fs, ip->i_size, i); 6349 frags = numfrags(ump->um_fs, frags); 6350 newfreework(ump, freeblks, NULL, i, blkno, frags, 0, needj); 6351 } 6352 6353 static inline void 6354 setup_freeext( 6355 struct freeblks *freeblks, 6356 struct inode *ip, 6357 int i, 6358 int needj) 6359 { 6360 struct ufsmount *ump; 6361 ufs2_daddr_t blkno; 6362 int frags; 6363 6364 blkno = ip->i_din2->di_extb[i]; 6365 if (blkno == 0) 6366 return; 6367 ip->i_din2->di_extb[i] = 0; 6368 ump = ITOUMP(ip); 6369 frags = sblksize(ump->um_fs, ip->i_din2->di_extsize, i); 6370 frags = numfrags(ump->um_fs, frags); 6371 newfreework(ump, freeblks, NULL, -1 - i, blkno, frags, 0, needj); 6372 } 6373 6374 static inline void 6375 setup_freeindir( 6376 struct freeblks *freeblks, 6377 struct inode *ip, 6378 int i, 6379 ufs_lbn_t lbn, 6380 int needj) 6381 { 6382 struct ufsmount *ump; 6383 ufs2_daddr_t blkno; 6384 6385 blkno = DIP(ip, i_ib[i]); 6386 if (blkno == 0) 6387 return; 6388 DIP_SET(ip, i_ib[i], 0); 6389 ump = ITOUMP(ip); 6390 newfreework(ump, freeblks, NULL, lbn, blkno, ump->um_fs->fs_frag, 6391 0, needj); 6392 } 6393 6394 static inline struct freeblks * 6395 newfreeblks(struct mount *mp, struct inode *ip) 6396 { 6397 struct freeblks *freeblks; 6398 6399 freeblks = malloc(sizeof(struct freeblks), 6400 M_FREEBLKS, M_SOFTDEP_FLAGS|M_ZERO); 6401 workitem_alloc(&freeblks->fb_list, D_FREEBLKS, mp); 6402 LIST_INIT(&freeblks->fb_jblkdephd); 6403 LIST_INIT(&freeblks->fb_jwork); 6404 freeblks->fb_ref = 0; 6405 freeblks->fb_cgwait = 0; 6406 freeblks->fb_state = ATTACHED; 6407 freeblks->fb_uid = ip->i_uid; 6408 freeblks->fb_inum = ip->i_number; 6409 freeblks->fb_vtype = ITOV(ip)->v_type; 6410 freeblks->fb_modrev = DIP(ip, i_modrev); 6411 freeblks->fb_devvp = ITODEVVP(ip); 6412 freeblks->fb_chkcnt = 0; 6413 freeblks->fb_len = 0; 6414 6415 return (freeblks); 6416 } 6417 6418 static void 6419 trunc_indirdep( 6420 struct indirdep *indirdep, 6421 struct freeblks *freeblks, 6422 struct buf *bp, 6423 int off) 6424 { 6425 struct allocindir *aip, *aipn; 6426 6427 /* 6428 * The first set of allocindirs won't be in savedbp. 6429 */ 6430 LIST_FOREACH_SAFE(aip, &indirdep->ir_deplisthd, ai_next, aipn) 6431 if (aip->ai_offset > off) 6432 cancel_allocindir(aip, bp, freeblks, 1); 6433 LIST_FOREACH_SAFE(aip, &indirdep->ir_donehd, ai_next, aipn) 6434 if (aip->ai_offset > off) 6435 cancel_allocindir(aip, bp, freeblks, 1); 6436 /* 6437 * These will exist in savedbp. 6438 */ 6439 LIST_FOREACH_SAFE(aip, &indirdep->ir_writehd, ai_next, aipn) 6440 if (aip->ai_offset > off) 6441 cancel_allocindir(aip, NULL, freeblks, 0); 6442 LIST_FOREACH_SAFE(aip, &indirdep->ir_completehd, ai_next, aipn) 6443 if (aip->ai_offset > off) 6444 cancel_allocindir(aip, NULL, freeblks, 0); 6445 } 6446 6447 /* 6448 * Follow the chain of indirects down to lastlbn creating a freework 6449 * structure for each. This will be used to start indir_trunc() at 6450 * the right offset and create the journal records for the parrtial 6451 * truncation. A second step will handle the truncated dependencies. 6452 */ 6453 static int 6454 setup_trunc_indir( 6455 struct freeblks *freeblks, 6456 struct inode *ip, 6457 ufs_lbn_t lbn, 6458 ufs_lbn_t lastlbn, 6459 ufs2_daddr_t blkno) 6460 { 6461 struct indirdep *indirdep; 6462 struct indirdep *indirn; 6463 struct freework *freework; 6464 struct newblk *newblk; 6465 struct mount *mp; 6466 struct ufsmount *ump; 6467 struct buf *bp; 6468 uint8_t *start; 6469 uint8_t *end; 6470 ufs_lbn_t lbnadd; 6471 int level; 6472 int error; 6473 int off; 6474 6475 freework = NULL; 6476 if (blkno == 0) 6477 return (0); 6478 mp = freeblks->fb_list.wk_mp; 6479 ump = VFSTOUFS(mp); 6480 /* 6481 * Here, calls to VOP_BMAP() will fail. However, we already have 6482 * the on-disk address, so we just pass it to bread() instead of 6483 * having bread() attempt to calculate it using VOP_BMAP(). 6484 */ 6485 error = ffs_breadz(ump, ITOV(ip), lbn, blkptrtodb(ump, blkno), 6486 (int)mp->mnt_stat.f_iosize, NULL, NULL, 0, NOCRED, 0, NULL, &bp); 6487 if (error) 6488 return (error); 6489 level = lbn_level(lbn); 6490 lbnadd = lbn_offset(ump->um_fs, level); 6491 /* 6492 * Compute the offset of the last block we want to keep. Store 6493 * in the freework the first block we want to completely free. 6494 */ 6495 off = (lastlbn - -(lbn + level)) / lbnadd; 6496 if (off + 1 == NINDIR(ump->um_fs)) 6497 goto nowork; 6498 freework = newfreework(ump, freeblks, NULL, lbn, blkno, 0, off + 1, 0); 6499 /* 6500 * Link the freework into the indirdep. This will prevent any new 6501 * allocations from proceeding until we are finished with the 6502 * truncate and the block is written. 6503 */ 6504 ACQUIRE_LOCK(ump); 6505 indirdep = indirdep_lookup(mp, ip, bp); 6506 if (indirdep->ir_freeblks) 6507 panic("setup_trunc_indir: indirdep already truncated."); 6508 TAILQ_INSERT_TAIL(&indirdep->ir_trunc, freework, fw_next); 6509 freework->fw_indir = indirdep; 6510 /* 6511 * Cancel any allocindirs that will not make it to disk. 6512 * We have to do this for all copies of the indirdep that 6513 * live on this newblk. 6514 */ 6515 if ((indirdep->ir_state & DEPCOMPLETE) == 0) { 6516 if (newblk_lookup(mp, dbtofsb(ump->um_fs, bp->b_blkno), 0, 6517 &newblk) == 0) 6518 panic("setup_trunc_indir: lost block"); 6519 LIST_FOREACH(indirn, &newblk->nb_indirdeps, ir_next) 6520 trunc_indirdep(indirn, freeblks, bp, off); 6521 } else 6522 trunc_indirdep(indirdep, freeblks, bp, off); 6523 FREE_LOCK(ump); 6524 /* 6525 * Creation is protected by the buf lock. The saveddata is only 6526 * needed if a full truncation follows a partial truncation but it 6527 * is difficult to allocate in that case so we fetch it anyway. 6528 */ 6529 if (indirdep->ir_saveddata == NULL) 6530 indirdep->ir_saveddata = malloc(bp->b_bcount, M_INDIRDEP, 6531 M_SOFTDEP_FLAGS); 6532 nowork: 6533 /* Fetch the blkno of the child and the zero start offset. */ 6534 if (I_IS_UFS1(ip)) { 6535 blkno = ((ufs1_daddr_t *)bp->b_data)[off]; 6536 start = (uint8_t *)&((ufs1_daddr_t *)bp->b_data)[off+1]; 6537 } else { 6538 blkno = ((ufs2_daddr_t *)bp->b_data)[off]; 6539 start = (uint8_t *)&((ufs2_daddr_t *)bp->b_data)[off+1]; 6540 } 6541 if (freework) { 6542 /* Zero the truncated pointers. */ 6543 end = bp->b_data + bp->b_bcount; 6544 bzero(start, end - start); 6545 bdwrite(bp); 6546 } else 6547 bqrelse(bp); 6548 if (level == 0) 6549 return (0); 6550 lbn++; /* adjust level */ 6551 lbn -= (off * lbnadd); 6552 return setup_trunc_indir(freeblks, ip, lbn, lastlbn, blkno); 6553 } 6554 6555 /* 6556 * Complete the partial truncation of an indirect block setup by 6557 * setup_trunc_indir(). This zeros the truncated pointers in the saved 6558 * copy and writes them to disk before the freeblks is allowed to complete. 6559 */ 6560 static void 6561 complete_trunc_indir(struct freework *freework) 6562 { 6563 struct freework *fwn; 6564 struct indirdep *indirdep; 6565 struct ufsmount *ump; 6566 struct buf *bp; 6567 uintptr_t start; 6568 int count; 6569 6570 ump = VFSTOUFS(freework->fw_list.wk_mp); 6571 LOCK_OWNED(ump); 6572 indirdep = freework->fw_indir; 6573 for (;;) { 6574 bp = indirdep->ir_bp; 6575 /* See if the block was discarded. */ 6576 if (bp == NULL) 6577 break; 6578 /* Inline part of getdirtybuf(). We dont want bremfree. */ 6579 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) == 0) 6580 break; 6581 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, 6582 LOCK_PTR(ump)) == 0) 6583 BUF_UNLOCK(bp); 6584 ACQUIRE_LOCK(ump); 6585 } 6586 freework->fw_state |= DEPCOMPLETE; 6587 TAILQ_REMOVE(&indirdep->ir_trunc, freework, fw_next); 6588 /* 6589 * Zero the pointers in the saved copy. 6590 */ 6591 if (indirdep->ir_state & UFS1FMT) 6592 start = sizeof(ufs1_daddr_t); 6593 else 6594 start = sizeof(ufs2_daddr_t); 6595 start *= freework->fw_start; 6596 count = indirdep->ir_savebp->b_bcount - start; 6597 start += (uintptr_t)indirdep->ir_savebp->b_data; 6598 bzero((char *)start, count); 6599 /* 6600 * We need to start the next truncation in the list if it has not 6601 * been started yet. 6602 */ 6603 fwn = TAILQ_FIRST(&indirdep->ir_trunc); 6604 if (fwn != NULL) { 6605 if (fwn->fw_freeblks == indirdep->ir_freeblks) 6606 TAILQ_REMOVE(&indirdep->ir_trunc, fwn, fw_next); 6607 if ((fwn->fw_state & ONWORKLIST) == 0) 6608 freework_enqueue(fwn); 6609 } 6610 /* 6611 * If bp is NULL the block was fully truncated, restore 6612 * the saved block list otherwise free it if it is no 6613 * longer needed. 6614 */ 6615 if (TAILQ_EMPTY(&indirdep->ir_trunc)) { 6616 if (bp == NULL) 6617 bcopy(indirdep->ir_saveddata, 6618 indirdep->ir_savebp->b_data, 6619 indirdep->ir_savebp->b_bcount); 6620 free(indirdep->ir_saveddata, M_INDIRDEP); 6621 indirdep->ir_saveddata = NULL; 6622 } 6623 /* 6624 * When bp is NULL there is a full truncation pending. We 6625 * must wait for this full truncation to be journaled before 6626 * we can release this freework because the disk pointers will 6627 * never be written as zero. 6628 */ 6629 if (bp == NULL) { 6630 if (LIST_EMPTY(&indirdep->ir_freeblks->fb_jblkdephd)) 6631 handle_written_freework(freework); 6632 else 6633 WORKLIST_INSERT(&indirdep->ir_freeblks->fb_freeworkhd, 6634 &freework->fw_list); 6635 if (fwn == NULL) { 6636 freework->fw_indir = (void *)0x0000deadbeef0000; 6637 bp = indirdep->ir_savebp; 6638 indirdep->ir_savebp = NULL; 6639 free_indirdep(indirdep); 6640 FREE_LOCK(ump); 6641 brelse(bp); 6642 ACQUIRE_LOCK(ump); 6643 } 6644 } else { 6645 /* Complete when the real copy is written. */ 6646 WORKLIST_INSERT(&bp->b_dep, &freework->fw_list); 6647 BUF_UNLOCK(bp); 6648 } 6649 } 6650 6651 /* 6652 * Calculate the number of blocks we are going to release where datablocks 6653 * is the current total and length is the new file size. 6654 */ 6655 static ufs2_daddr_t 6656 blkcount(struct fs *fs, 6657 ufs2_daddr_t datablocks, 6658 off_t length) 6659 { 6660 off_t totblks, numblks; 6661 6662 totblks = 0; 6663 numblks = howmany(length, fs->fs_bsize); 6664 if (numblks <= UFS_NDADDR) { 6665 totblks = howmany(length, fs->fs_fsize); 6666 goto out; 6667 } 6668 totblks = blkstofrags(fs, numblks); 6669 numblks -= UFS_NDADDR; 6670 /* 6671 * Count all single, then double, then triple indirects required. 6672 * Subtracting one indirects worth of blocks for each pass 6673 * acknowledges one of each pointed to by the inode. 6674 */ 6675 for (;;) { 6676 totblks += blkstofrags(fs, howmany(numblks, NINDIR(fs))); 6677 numblks -= NINDIR(fs); 6678 if (numblks <= 0) 6679 break; 6680 numblks = howmany(numblks, NINDIR(fs)); 6681 } 6682 out: 6683 totblks = fsbtodb(fs, totblks); 6684 /* 6685 * Handle sparse files. We can't reclaim more blocks than the inode 6686 * references. We will correct it later in handle_complete_freeblks() 6687 * when we know the real count. 6688 */ 6689 if (totblks > datablocks) 6690 return (0); 6691 return (datablocks - totblks); 6692 } 6693 6694 /* 6695 * Handle freeblocks for journaled softupdate filesystems. 6696 * 6697 * Contrary to normal softupdates, we must preserve the block pointers in 6698 * indirects until their subordinates are free. This is to avoid journaling 6699 * every block that is freed which may consume more space than the journal 6700 * itself. The recovery program will see the free block journals at the 6701 * base of the truncated area and traverse them to reclaim space. The 6702 * pointers in the inode may be cleared immediately after the journal 6703 * records are written because each direct and indirect pointer in the 6704 * inode is recorded in a journal. This permits full truncation to proceed 6705 * asynchronously. The write order is journal -> inode -> cgs -> indirects. 6706 * 6707 * The algorithm is as follows: 6708 * 1) Traverse the in-memory state and create journal entries to release 6709 * the relevant blocks and full indirect trees. 6710 * 2) Traverse the indirect block chain adding partial truncation freework 6711 * records to indirects in the path to lastlbn. The freework will 6712 * prevent new allocation dependencies from being satisfied in this 6713 * indirect until the truncation completes. 6714 * 3) Read and lock the inode block, performing an update with the new size 6715 * and pointers. This prevents truncated data from becoming valid on 6716 * disk through step 4. 6717 * 4) Reap unsatisfied dependencies that are beyond the truncated area, 6718 * eliminate journal work for those records that do not require it. 6719 * 5) Schedule the journal records to be written followed by the inode block. 6720 * 6) Allocate any necessary frags for the end of file. 6721 * 7) Zero any partially truncated blocks. 6722 * 6723 * From this truncation proceeds asynchronously using the freework and 6724 * indir_trunc machinery. The file will not be extended again into a 6725 * partially truncated indirect block until all work is completed but 6726 * the normal dependency mechanism ensures that it is rolled back/forward 6727 * as appropriate. Further truncation may occur without delay and is 6728 * serialized in indir_trunc(). 6729 */ 6730 void 6731 softdep_journal_freeblocks( 6732 struct inode *ip, /* The inode whose length is to be reduced */ 6733 struct ucred *cred, 6734 off_t length, /* The new length for the file */ 6735 int flags) /* IO_EXT and/or IO_NORMAL */ 6736 { 6737 struct freeblks *freeblks, *fbn; 6738 struct worklist *wk, *wkn; 6739 struct inodedep *inodedep; 6740 struct jblkdep *jblkdep; 6741 struct allocdirect *adp, *adpn; 6742 struct ufsmount *ump; 6743 struct fs *fs; 6744 struct buf *bp; 6745 struct vnode *vp; 6746 struct mount *mp; 6747 daddr_t dbn; 6748 ufs2_daddr_t extblocks, datablocks; 6749 ufs_lbn_t tmpval, lbn, lastlbn; 6750 int frags, lastoff, iboff, allocblock, needj, error, i; 6751 6752 ump = ITOUMP(ip); 6753 mp = UFSTOVFS(ump); 6754 fs = ump->um_fs; 6755 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 6756 ("softdep_journal_freeblocks called on non-softdep filesystem")); 6757 vp = ITOV(ip); 6758 needj = 1; 6759 iboff = -1; 6760 allocblock = 0; 6761 extblocks = 0; 6762 datablocks = 0; 6763 frags = 0; 6764 freeblks = newfreeblks(mp, ip); 6765 ACQUIRE_LOCK(ump); 6766 /* 6767 * If we're truncating a removed file that will never be written 6768 * we don't need to journal the block frees. The canceled journals 6769 * for the allocations will suffice. 6770 */ 6771 inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep); 6772 if ((inodedep->id_state & (UNLINKED | DEPCOMPLETE)) == UNLINKED && 6773 length == 0) 6774 needj = 0; 6775 CTR3(KTR_SUJ, "softdep_journal_freeblks: ip %d length %ld needj %d", 6776 ip->i_number, length, needj); 6777 FREE_LOCK(ump); 6778 /* 6779 * Calculate the lbn that we are truncating to. This results in -1 6780 * if we're truncating the 0 bytes. So it is the last lbn we want 6781 * to keep, not the first lbn we want to truncate. 6782 */ 6783 lastlbn = lblkno(fs, length + fs->fs_bsize - 1) - 1; 6784 lastoff = blkoff(fs, length); 6785 /* 6786 * Compute frags we are keeping in lastlbn. 0 means all. 6787 */ 6788 if (lastlbn >= 0 && lastlbn < UFS_NDADDR) { 6789 frags = fragroundup(fs, lastoff); 6790 /* adp offset of last valid allocdirect. */ 6791 iboff = lastlbn; 6792 } else if (lastlbn > 0) 6793 iboff = UFS_NDADDR; 6794 if (fs->fs_magic == FS_UFS2_MAGIC) 6795 extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize)); 6796 /* 6797 * Handle normal data blocks and indirects. This section saves 6798 * values used after the inode update to complete frag and indirect 6799 * truncation. 6800 */ 6801 if ((flags & IO_NORMAL) != 0) { 6802 /* 6803 * Handle truncation of whole direct and indirect blocks. 6804 */ 6805 for (i = iboff + 1; i < UFS_NDADDR; i++) 6806 setup_freedirect(freeblks, ip, i, needj); 6807 for (i = 0, tmpval = NINDIR(fs), lbn = UFS_NDADDR; 6808 i < UFS_NIADDR; 6809 i++, lbn += tmpval, tmpval *= NINDIR(fs)) { 6810 /* Release a whole indirect tree. */ 6811 if (lbn > lastlbn) { 6812 setup_freeindir(freeblks, ip, i, -lbn -i, 6813 needj); 6814 continue; 6815 } 6816 iboff = i + UFS_NDADDR; 6817 /* 6818 * Traverse partially truncated indirect tree. 6819 */ 6820 if (lbn <= lastlbn && lbn + tmpval - 1 > lastlbn) 6821 setup_trunc_indir(freeblks, ip, -lbn - i, 6822 lastlbn, DIP(ip, i_ib[i])); 6823 } 6824 /* 6825 * Handle partial truncation to a frag boundary. 6826 */ 6827 if (frags) { 6828 ufs2_daddr_t blkno; 6829 long oldfrags; 6830 6831 oldfrags = blksize(fs, ip, lastlbn); 6832 blkno = DIP(ip, i_db[lastlbn]); 6833 if (blkno && oldfrags != frags) { 6834 oldfrags -= frags; 6835 oldfrags = numfrags(fs, oldfrags); 6836 blkno += numfrags(fs, frags); 6837 newfreework(ump, freeblks, NULL, lastlbn, 6838 blkno, oldfrags, 0, needj); 6839 if (needj) 6840 adjust_newfreework(freeblks, 6841 numfrags(fs, frags)); 6842 } else if (blkno == 0) 6843 allocblock = 1; 6844 } 6845 /* 6846 * Add a journal record for partial truncate if we are 6847 * handling indirect blocks. Non-indirects need no extra 6848 * journaling. 6849 */ 6850 if (length != 0 && lastlbn >= UFS_NDADDR) { 6851 UFS_INODE_SET_FLAG(ip, IN_TRUNCATED); 6852 newjtrunc(freeblks, length, 0); 6853 } 6854 ip->i_size = length; 6855 DIP_SET(ip, i_size, ip->i_size); 6856 UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE); 6857 datablocks = DIP(ip, i_blocks) - extblocks; 6858 if (length != 0) 6859 datablocks = blkcount(fs, datablocks, length); 6860 freeblks->fb_len = length; 6861 } 6862 if ((flags & IO_EXT) != 0) { 6863 for (i = 0; i < UFS_NXADDR; i++) 6864 setup_freeext(freeblks, ip, i, needj); 6865 ip->i_din2->di_extsize = 0; 6866 datablocks += extblocks; 6867 UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE); 6868 } 6869 #ifdef QUOTA 6870 /* Reference the quotas in case the block count is wrong in the end. */ 6871 quotaref(vp, freeblks->fb_quota); 6872 (void) chkdq(ip, -datablocks, NOCRED, FORCE); 6873 #endif 6874 freeblks->fb_chkcnt = -datablocks; 6875 UFS_LOCK(ump); 6876 fs->fs_pendingblocks += datablocks; 6877 UFS_UNLOCK(ump); 6878 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - datablocks); 6879 /* 6880 * Handle truncation of incomplete alloc direct dependencies. We 6881 * hold the inode block locked to prevent incomplete dependencies 6882 * from reaching the disk while we are eliminating those that 6883 * have been truncated. This is a partially inlined ffs_update(). 6884 */ 6885 ufs_itimes(vp); 6886 ip->i_flag &= ~(IN_LAZYACCESS | IN_LAZYMOD | IN_MODIFIED); 6887 dbn = fsbtodb(fs, ino_to_fsba(fs, ip->i_number)); 6888 error = ffs_breadz(ump, ump->um_devvp, dbn, dbn, (int)fs->fs_bsize, 6889 NULL, NULL, 0, cred, 0, NULL, &bp); 6890 if (error) { 6891 softdep_error("softdep_journal_freeblocks", error); 6892 return; 6893 } 6894 if (bp->b_bufsize == fs->fs_bsize) 6895 bp->b_flags |= B_CLUSTEROK; 6896 softdep_update_inodeblock(ip, bp, 0); 6897 if (ump->um_fstype == UFS1) { 6898 *((struct ufs1_dinode *)bp->b_data + 6899 ino_to_fsbo(fs, ip->i_number)) = *ip->i_din1; 6900 } else { 6901 ffs_update_dinode_ckhash(fs, ip->i_din2); 6902 *((struct ufs2_dinode *)bp->b_data + 6903 ino_to_fsbo(fs, ip->i_number)) = *ip->i_din2; 6904 } 6905 ACQUIRE_LOCK(ump); 6906 (void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep); 6907 if ((inodedep->id_state & IOSTARTED) != 0) 6908 panic("softdep_setup_freeblocks: inode busy"); 6909 /* 6910 * Add the freeblks structure to the list of operations that 6911 * must await the zero'ed inode being written to disk. If we 6912 * still have a bitmap dependency (needj), then the inode 6913 * has never been written to disk, so we can process the 6914 * freeblks below once we have deleted the dependencies. 6915 */ 6916 if (needj) 6917 WORKLIST_INSERT(&bp->b_dep, &freeblks->fb_list); 6918 else 6919 freeblks->fb_state |= COMPLETE; 6920 if ((flags & IO_NORMAL) != 0) { 6921 TAILQ_FOREACH_SAFE(adp, &inodedep->id_inoupdt, ad_next, adpn) { 6922 if (adp->ad_offset > iboff) 6923 cancel_allocdirect(&inodedep->id_inoupdt, adp, 6924 freeblks); 6925 /* 6926 * Truncate the allocdirect. We could eliminate 6927 * or modify journal records as well. 6928 */ 6929 else if (adp->ad_offset == iboff && frags) 6930 adp->ad_newsize = frags; 6931 } 6932 } 6933 if ((flags & IO_EXT) != 0) 6934 while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL) 6935 cancel_allocdirect(&inodedep->id_extupdt, adp, 6936 freeblks); 6937 /* 6938 * Scan the bufwait list for newblock dependencies that will never 6939 * make it to disk. 6940 */ 6941 LIST_FOREACH_SAFE(wk, &inodedep->id_bufwait, wk_list, wkn) { 6942 if (wk->wk_type != D_ALLOCDIRECT) 6943 continue; 6944 adp = WK_ALLOCDIRECT(wk); 6945 if (((flags & IO_NORMAL) != 0 && (adp->ad_offset > iboff)) || 6946 ((flags & IO_EXT) != 0 && (adp->ad_state & EXTDATA))) { 6947 cancel_jfreeblk(freeblks, adp->ad_newblkno); 6948 cancel_newblk(WK_NEWBLK(wk), NULL, &freeblks->fb_jwork); 6949 WORKLIST_INSERT(&freeblks->fb_freeworkhd, wk); 6950 } 6951 } 6952 /* 6953 * Add journal work. 6954 */ 6955 LIST_FOREACH(jblkdep, &freeblks->fb_jblkdephd, jb_deps) 6956 add_to_journal(&jblkdep->jb_list); 6957 FREE_LOCK(ump); 6958 bdwrite(bp); 6959 /* 6960 * Truncate dependency structures beyond length. 6961 */ 6962 trunc_dependencies(ip, freeblks, lastlbn, frags, flags); 6963 /* 6964 * This is only set when we need to allocate a fragment because 6965 * none existed at the end of a frag-sized file. It handles only 6966 * allocating a new, zero filled block. 6967 */ 6968 if (allocblock) { 6969 ip->i_size = length - lastoff; 6970 DIP_SET(ip, i_size, ip->i_size); 6971 error = UFS_BALLOC(vp, length - 1, 1, cred, BA_CLRBUF, &bp); 6972 if (error != 0) { 6973 softdep_error("softdep_journal_freeblks", error); 6974 return; 6975 } 6976 ip->i_size = length; 6977 DIP_SET(ip, i_size, length); 6978 UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE | IN_UPDATE); 6979 allocbuf(bp, frags); 6980 ffs_update(vp, 0); 6981 bawrite(bp); 6982 } else if (lastoff != 0 && vp->v_type != VDIR) { 6983 int size; 6984 6985 /* 6986 * Zero the end of a truncated frag or block. 6987 */ 6988 size = sblksize(fs, length, lastlbn); 6989 error = bread(vp, lastlbn, size, cred, &bp); 6990 if (error == 0) { 6991 bzero((char *)bp->b_data + lastoff, size - lastoff); 6992 bawrite(bp); 6993 } else if (!ffs_fsfail_cleanup(ump, error)) { 6994 softdep_error("softdep_journal_freeblks", error); 6995 return; 6996 } 6997 } 6998 ACQUIRE_LOCK(ump); 6999 inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep); 7000 TAILQ_INSERT_TAIL(&inodedep->id_freeblklst, freeblks, fb_next); 7001 freeblks->fb_state |= DEPCOMPLETE | ONDEPLIST; 7002 /* 7003 * We zero earlier truncations so they don't erroneously 7004 * update i_blocks. 7005 */ 7006 if (freeblks->fb_len == 0 && (flags & IO_NORMAL) != 0) 7007 TAILQ_FOREACH(fbn, &inodedep->id_freeblklst, fb_next) 7008 fbn->fb_len = 0; 7009 if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE && 7010 LIST_EMPTY(&freeblks->fb_jblkdephd)) 7011 freeblks->fb_state |= INPROGRESS; 7012 else 7013 freeblks = NULL; 7014 FREE_LOCK(ump); 7015 if (freeblks) 7016 handle_workitem_freeblocks(freeblks, 0); 7017 trunc_pages(ip, length, extblocks, flags); 7018 7019 } 7020 7021 /* 7022 * Flush a JOP_SYNC to the journal. 7023 */ 7024 void 7025 softdep_journal_fsync(struct inode *ip) 7026 { 7027 struct jfsync *jfsync; 7028 struct ufsmount *ump; 7029 7030 ump = ITOUMP(ip); 7031 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 7032 ("softdep_journal_fsync called on non-softdep filesystem")); 7033 if ((ip->i_flag & IN_TRUNCATED) == 0) 7034 return; 7035 ip->i_flag &= ~IN_TRUNCATED; 7036 jfsync = malloc(sizeof(*jfsync), M_JFSYNC, M_SOFTDEP_FLAGS | M_ZERO); 7037 workitem_alloc(&jfsync->jfs_list, D_JFSYNC, UFSTOVFS(ump)); 7038 jfsync->jfs_size = ip->i_size; 7039 jfsync->jfs_ino = ip->i_number; 7040 ACQUIRE_LOCK(ump); 7041 add_to_journal(&jfsync->jfs_list); 7042 jwait(&jfsync->jfs_list, MNT_WAIT); 7043 FREE_LOCK(ump); 7044 } 7045 7046 /* 7047 * Block de-allocation dependencies. 7048 * 7049 * When blocks are de-allocated, the on-disk pointers must be nullified before 7050 * the blocks are made available for use by other files. (The true 7051 * requirement is that old pointers must be nullified before new on-disk 7052 * pointers are set. We chose this slightly more stringent requirement to 7053 * reduce complexity.) Our implementation handles this dependency by updating 7054 * the inode (or indirect block) appropriately but delaying the actual block 7055 * de-allocation (i.e., freemap and free space count manipulation) until 7056 * after the updated versions reach stable storage. After the disk is 7057 * updated, the blocks can be safely de-allocated whenever it is convenient. 7058 * This implementation handles only the common case of reducing a file's 7059 * length to zero. Other cases are handled by the conventional synchronous 7060 * write approach. 7061 * 7062 * The ffs implementation with which we worked double-checks 7063 * the state of the block pointers and file size as it reduces 7064 * a file's length. Some of this code is replicated here in our 7065 * soft updates implementation. The freeblks->fb_chkcnt field is 7066 * used to transfer a part of this information to the procedure 7067 * that eventually de-allocates the blocks. 7068 * 7069 * This routine should be called from the routine that shortens 7070 * a file's length, before the inode's size or block pointers 7071 * are modified. It will save the block pointer information for 7072 * later release and zero the inode so that the calling routine 7073 * can release it. 7074 */ 7075 void 7076 softdep_setup_freeblocks( 7077 struct inode *ip, /* The inode whose length is to be reduced */ 7078 off_t length, /* The new length for the file */ 7079 int flags) /* IO_EXT and/or IO_NORMAL */ 7080 { 7081 struct ufs1_dinode *dp1; 7082 struct ufs2_dinode *dp2; 7083 struct freeblks *freeblks; 7084 struct inodedep *inodedep; 7085 struct allocdirect *adp; 7086 struct ufsmount *ump; 7087 struct buf *bp; 7088 struct fs *fs; 7089 ufs2_daddr_t extblocks, datablocks; 7090 struct mount *mp; 7091 int i, delay, error; 7092 ufs_lbn_t tmpval; 7093 ufs_lbn_t lbn; 7094 7095 ump = ITOUMP(ip); 7096 mp = UFSTOVFS(ump); 7097 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 7098 ("softdep_setup_freeblocks called on non-softdep filesystem")); 7099 CTR2(KTR_SUJ, "softdep_setup_freeblks: ip %d length %ld", 7100 ip->i_number, length); 7101 KASSERT(length == 0, ("softdep_setup_freeblocks: non-zero length")); 7102 fs = ump->um_fs; 7103 if ((error = bread(ump->um_devvp, 7104 fsbtodb(fs, ino_to_fsba(fs, ip->i_number)), 7105 (int)fs->fs_bsize, NOCRED, &bp)) != 0) { 7106 if (!ffs_fsfail_cleanup(ump, error)) 7107 softdep_error("softdep_setup_freeblocks", error); 7108 return; 7109 } 7110 freeblks = newfreeblks(mp, ip); 7111 extblocks = 0; 7112 datablocks = 0; 7113 if (fs->fs_magic == FS_UFS2_MAGIC) 7114 extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize)); 7115 if ((flags & IO_NORMAL) != 0) { 7116 for (i = 0; i < UFS_NDADDR; i++) 7117 setup_freedirect(freeblks, ip, i, 0); 7118 for (i = 0, tmpval = NINDIR(fs), lbn = UFS_NDADDR; 7119 i < UFS_NIADDR; 7120 i++, lbn += tmpval, tmpval *= NINDIR(fs)) 7121 setup_freeindir(freeblks, ip, i, -lbn -i, 0); 7122 ip->i_size = 0; 7123 DIP_SET(ip, i_size, 0); 7124 UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE); 7125 datablocks = DIP(ip, i_blocks) - extblocks; 7126 } 7127 if ((flags & IO_EXT) != 0) { 7128 for (i = 0; i < UFS_NXADDR; i++) 7129 setup_freeext(freeblks, ip, i, 0); 7130 ip->i_din2->di_extsize = 0; 7131 datablocks += extblocks; 7132 UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE); 7133 } 7134 #ifdef QUOTA 7135 /* Reference the quotas in case the block count is wrong in the end. */ 7136 quotaref(ITOV(ip), freeblks->fb_quota); 7137 (void) chkdq(ip, -datablocks, NOCRED, FORCE); 7138 #endif 7139 freeblks->fb_chkcnt = -datablocks; 7140 UFS_LOCK(ump); 7141 fs->fs_pendingblocks += datablocks; 7142 UFS_UNLOCK(ump); 7143 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - datablocks); 7144 /* 7145 * Push the zero'ed inode to its disk buffer so that we are free 7146 * to delete its dependencies below. Once the dependencies are gone 7147 * the buffer can be safely released. 7148 */ 7149 if (ump->um_fstype == UFS1) { 7150 dp1 = ((struct ufs1_dinode *)bp->b_data + 7151 ino_to_fsbo(fs, ip->i_number)); 7152 ip->i_din1->di_freelink = dp1->di_freelink; 7153 *dp1 = *ip->i_din1; 7154 } else { 7155 dp2 = ((struct ufs2_dinode *)bp->b_data + 7156 ino_to_fsbo(fs, ip->i_number)); 7157 ip->i_din2->di_freelink = dp2->di_freelink; 7158 ffs_update_dinode_ckhash(fs, ip->i_din2); 7159 *dp2 = *ip->i_din2; 7160 } 7161 /* 7162 * Find and eliminate any inode dependencies. 7163 */ 7164 ACQUIRE_LOCK(ump); 7165 (void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep); 7166 if ((inodedep->id_state & IOSTARTED) != 0) 7167 panic("softdep_setup_freeblocks: inode busy"); 7168 /* 7169 * Add the freeblks structure to the list of operations that 7170 * must await the zero'ed inode being written to disk. If we 7171 * still have a bitmap dependency (delay == 0), then the inode 7172 * has never been written to disk, so we can process the 7173 * freeblks below once we have deleted the dependencies. 7174 */ 7175 delay = (inodedep->id_state & DEPCOMPLETE); 7176 if (delay) 7177 WORKLIST_INSERT(&bp->b_dep, &freeblks->fb_list); 7178 else 7179 freeblks->fb_state |= COMPLETE; 7180 /* 7181 * Because the file length has been truncated to zero, any 7182 * pending block allocation dependency structures associated 7183 * with this inode are obsolete and can simply be de-allocated. 7184 * We must first merge the two dependency lists to get rid of 7185 * any duplicate freefrag structures, then purge the merged list. 7186 * If we still have a bitmap dependency, then the inode has never 7187 * been written to disk, so we can free any fragments without delay. 7188 */ 7189 if (flags & IO_NORMAL) { 7190 merge_inode_lists(&inodedep->id_newinoupdt, 7191 &inodedep->id_inoupdt); 7192 while ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL) 7193 cancel_allocdirect(&inodedep->id_inoupdt, adp, 7194 freeblks); 7195 } 7196 if (flags & IO_EXT) { 7197 merge_inode_lists(&inodedep->id_newextupdt, 7198 &inodedep->id_extupdt); 7199 while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL) 7200 cancel_allocdirect(&inodedep->id_extupdt, adp, 7201 freeblks); 7202 } 7203 FREE_LOCK(ump); 7204 bdwrite(bp); 7205 trunc_dependencies(ip, freeblks, -1, 0, flags); 7206 ACQUIRE_LOCK(ump); 7207 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0) 7208 (void) free_inodedep(inodedep); 7209 freeblks->fb_state |= DEPCOMPLETE; 7210 /* 7211 * If the inode with zeroed block pointers is now on disk 7212 * we can start freeing blocks. 7213 */ 7214 if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE) 7215 freeblks->fb_state |= INPROGRESS; 7216 else 7217 freeblks = NULL; 7218 FREE_LOCK(ump); 7219 if (freeblks) 7220 handle_workitem_freeblocks(freeblks, 0); 7221 trunc_pages(ip, length, extblocks, flags); 7222 } 7223 7224 /* 7225 * Eliminate pages from the page cache that back parts of this inode and 7226 * adjust the vnode pager's idea of our size. This prevents stale data 7227 * from hanging around in the page cache. 7228 */ 7229 static void 7230 trunc_pages( 7231 struct inode *ip, 7232 off_t length, 7233 ufs2_daddr_t extblocks, 7234 int flags) 7235 { 7236 struct vnode *vp; 7237 struct fs *fs; 7238 ufs_lbn_t lbn; 7239 off_t end, extend; 7240 7241 vp = ITOV(ip); 7242 fs = ITOFS(ip); 7243 extend = OFF_TO_IDX(lblktosize(fs, -extblocks)); 7244 if ((flags & IO_EXT) != 0) 7245 vn_pages_remove(vp, extend, 0); 7246 if ((flags & IO_NORMAL) == 0) 7247 return; 7248 BO_LOCK(&vp->v_bufobj); 7249 drain_output(vp); 7250 BO_UNLOCK(&vp->v_bufobj); 7251 /* 7252 * The vnode pager eliminates file pages we eliminate indirects 7253 * below. 7254 */ 7255 vnode_pager_setsize(vp, length); 7256 /* 7257 * Calculate the end based on the last indirect we want to keep. If 7258 * the block extends into indirects we can just use the negative of 7259 * its lbn. Doubles and triples exist at lower numbers so we must 7260 * be careful not to remove those, if they exist. double and triple 7261 * indirect lbns do not overlap with others so it is not important 7262 * to verify how many levels are required. 7263 */ 7264 lbn = lblkno(fs, length); 7265 if (lbn >= UFS_NDADDR) { 7266 /* Calculate the virtual lbn of the triple indirect. */ 7267 lbn = -lbn - (UFS_NIADDR - 1); 7268 end = OFF_TO_IDX(lblktosize(fs, lbn)); 7269 } else 7270 end = extend; 7271 vn_pages_remove(vp, OFF_TO_IDX(OFF_MAX), end); 7272 } 7273 7274 /* 7275 * See if the buf bp is in the range eliminated by truncation. 7276 */ 7277 static int 7278 trunc_check_buf( 7279 struct buf *bp, 7280 int *blkoffp, 7281 ufs_lbn_t lastlbn, 7282 int lastoff, 7283 int flags) 7284 { 7285 ufs_lbn_t lbn; 7286 7287 *blkoffp = 0; 7288 /* Only match ext/normal blocks as appropriate. */ 7289 if (((flags & IO_EXT) == 0 && (bp->b_xflags & BX_ALTDATA)) || 7290 ((flags & IO_NORMAL) == 0 && (bp->b_xflags & BX_ALTDATA) == 0)) 7291 return (0); 7292 /* ALTDATA is always a full truncation. */ 7293 if ((bp->b_xflags & BX_ALTDATA) != 0) 7294 return (1); 7295 /* -1 is full truncation. */ 7296 if (lastlbn == -1) 7297 return (1); 7298 /* 7299 * If this is a partial truncate we only want those 7300 * blocks and indirect blocks that cover the range 7301 * we're after. 7302 */ 7303 lbn = bp->b_lblkno; 7304 if (lbn < 0) 7305 lbn = -(lbn + lbn_level(lbn)); 7306 if (lbn < lastlbn) 7307 return (0); 7308 /* Here we only truncate lblkno if it's partial. */ 7309 if (lbn == lastlbn) { 7310 if (lastoff == 0) 7311 return (0); 7312 *blkoffp = lastoff; 7313 } 7314 return (1); 7315 } 7316 7317 /* 7318 * Eliminate any dependencies that exist in memory beyond lblkno:off 7319 */ 7320 static void 7321 trunc_dependencies( 7322 struct inode *ip, 7323 struct freeblks *freeblks, 7324 ufs_lbn_t lastlbn, 7325 int lastoff, 7326 int flags) 7327 { 7328 struct bufobj *bo; 7329 struct vnode *vp; 7330 struct buf *bp; 7331 int blkoff; 7332 7333 /* 7334 * We must wait for any I/O in progress to finish so that 7335 * all potential buffers on the dirty list will be visible. 7336 * Once they are all there, walk the list and get rid of 7337 * any dependencies. 7338 */ 7339 vp = ITOV(ip); 7340 bo = &vp->v_bufobj; 7341 BO_LOCK(bo); 7342 drain_output(vp); 7343 TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) 7344 bp->b_vflags &= ~BV_SCANNED; 7345 restart: 7346 TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) { 7347 if (bp->b_vflags & BV_SCANNED) 7348 continue; 7349 if (!trunc_check_buf(bp, &blkoff, lastlbn, lastoff, flags)) { 7350 bp->b_vflags |= BV_SCANNED; 7351 continue; 7352 } 7353 KASSERT(bp->b_bufobj == bo, ("Wrong object in buffer")); 7354 if ((bp = getdirtybuf(bp, BO_LOCKPTR(bo), MNT_WAIT)) == NULL) 7355 goto restart; 7356 BO_UNLOCK(bo); 7357 if (deallocate_dependencies(bp, freeblks, blkoff)) 7358 bqrelse(bp); 7359 else 7360 brelse(bp); 7361 BO_LOCK(bo); 7362 goto restart; 7363 } 7364 /* 7365 * Now do the work of vtruncbuf while also matching indirect blocks. 7366 */ 7367 TAILQ_FOREACH(bp, &bo->bo_clean.bv_hd, b_bobufs) 7368 bp->b_vflags &= ~BV_SCANNED; 7369 cleanrestart: 7370 TAILQ_FOREACH(bp, &bo->bo_clean.bv_hd, b_bobufs) { 7371 if (bp->b_vflags & BV_SCANNED) 7372 continue; 7373 if (!trunc_check_buf(bp, &blkoff, lastlbn, lastoff, flags)) { 7374 bp->b_vflags |= BV_SCANNED; 7375 continue; 7376 } 7377 if (BUF_LOCK(bp, 7378 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, 7379 BO_LOCKPTR(bo)) == ENOLCK) { 7380 BO_LOCK(bo); 7381 goto cleanrestart; 7382 } 7383 BO_LOCK(bo); 7384 bp->b_vflags |= BV_SCANNED; 7385 BO_UNLOCK(bo); 7386 bremfree(bp); 7387 if (blkoff != 0) { 7388 allocbuf(bp, blkoff); 7389 bqrelse(bp); 7390 } else { 7391 bp->b_flags |= B_INVAL | B_NOCACHE | B_RELBUF; 7392 brelse(bp); 7393 } 7394 BO_LOCK(bo); 7395 goto cleanrestart; 7396 } 7397 drain_output(vp); 7398 BO_UNLOCK(bo); 7399 } 7400 7401 static int 7402 cancel_pagedep( 7403 struct pagedep *pagedep, 7404 struct freeblks *freeblks, 7405 int blkoff) 7406 { 7407 struct jremref *jremref; 7408 struct jmvref *jmvref; 7409 struct dirrem *dirrem, *tmp; 7410 int i; 7411 7412 /* 7413 * Copy any directory remove dependencies to the list 7414 * to be processed after the freeblks proceeds. If 7415 * directory entry never made it to disk they 7416 * can be dumped directly onto the work list. 7417 */ 7418 LIST_FOREACH_SAFE(dirrem, &pagedep->pd_dirremhd, dm_next, tmp) { 7419 /* Skip this directory removal if it is intended to remain. */ 7420 if (dirrem->dm_offset < blkoff) 7421 continue; 7422 /* 7423 * If there are any dirrems we wait for the journal write 7424 * to complete and then restart the buf scan as the lock 7425 * has been dropped. 7426 */ 7427 while ((jremref = LIST_FIRST(&dirrem->dm_jremrefhd)) != NULL) { 7428 jwait(&jremref->jr_list, MNT_WAIT); 7429 return (ERESTART); 7430 } 7431 LIST_REMOVE(dirrem, dm_next); 7432 dirrem->dm_dirinum = pagedep->pd_ino; 7433 WORKLIST_INSERT(&freeblks->fb_freeworkhd, &dirrem->dm_list); 7434 } 7435 while ((jmvref = LIST_FIRST(&pagedep->pd_jmvrefhd)) != NULL) { 7436 jwait(&jmvref->jm_list, MNT_WAIT); 7437 return (ERESTART); 7438 } 7439 /* 7440 * When we're partially truncating a pagedep we just want to flush 7441 * journal entries and return. There can not be any adds in the 7442 * truncated portion of the directory and newblk must remain if 7443 * part of the block remains. 7444 */ 7445 if (blkoff != 0) { 7446 struct diradd *dap; 7447 7448 LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist) 7449 if (dap->da_offset > blkoff) 7450 panic("cancel_pagedep: diradd %p off %d > %d", 7451 dap, dap->da_offset, blkoff); 7452 for (i = 0; i < DAHASHSZ; i++) 7453 LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) 7454 if (dap->da_offset > blkoff) 7455 panic("cancel_pagedep: diradd %p off %d > %d", 7456 dap, dap->da_offset, blkoff); 7457 return (0); 7458 } 7459 /* 7460 * There should be no directory add dependencies present 7461 * as the directory could not be truncated until all 7462 * children were removed. 7463 */ 7464 KASSERT(LIST_FIRST(&pagedep->pd_pendinghd) == NULL, 7465 ("deallocate_dependencies: pendinghd != NULL")); 7466 for (i = 0; i < DAHASHSZ; i++) 7467 KASSERT(LIST_FIRST(&pagedep->pd_diraddhd[i]) == NULL, 7468 ("deallocate_dependencies: diraddhd != NULL")); 7469 if ((pagedep->pd_state & NEWBLOCK) != 0) 7470 free_newdirblk(pagedep->pd_newdirblk); 7471 if (free_pagedep(pagedep) == 0) 7472 panic("Failed to free pagedep %p", pagedep); 7473 return (0); 7474 } 7475 7476 /* 7477 * Reclaim any dependency structures from a buffer that is about to 7478 * be reallocated to a new vnode. The buffer must be locked, thus, 7479 * no I/O completion operations can occur while we are manipulating 7480 * its associated dependencies. The mutex is held so that other I/O's 7481 * associated with related dependencies do not occur. 7482 */ 7483 static int 7484 deallocate_dependencies( 7485 struct buf *bp, 7486 struct freeblks *freeblks, 7487 int off) 7488 { 7489 struct indirdep *indirdep; 7490 struct pagedep *pagedep; 7491 struct worklist *wk, *wkn; 7492 struct ufsmount *ump; 7493 7494 ump = softdep_bp_to_mp(bp); 7495 if (ump == NULL) 7496 goto done; 7497 ACQUIRE_LOCK(ump); 7498 LIST_FOREACH_SAFE(wk, &bp->b_dep, wk_list, wkn) { 7499 switch (wk->wk_type) { 7500 case D_INDIRDEP: 7501 indirdep = WK_INDIRDEP(wk); 7502 if (bp->b_lblkno >= 0 || 7503 bp->b_blkno != indirdep->ir_savebp->b_lblkno) 7504 panic("deallocate_dependencies: not indir"); 7505 cancel_indirdep(indirdep, bp, freeblks); 7506 continue; 7507 7508 case D_PAGEDEP: 7509 pagedep = WK_PAGEDEP(wk); 7510 if (cancel_pagedep(pagedep, freeblks, off)) { 7511 FREE_LOCK(ump); 7512 return (ERESTART); 7513 } 7514 continue; 7515 7516 case D_ALLOCINDIR: 7517 /* 7518 * Simply remove the allocindir, we'll find it via 7519 * the indirdep where we can clear pointers if 7520 * needed. 7521 */ 7522 WORKLIST_REMOVE(wk); 7523 continue; 7524 7525 case D_FREEWORK: 7526 /* 7527 * A truncation is waiting for the zero'd pointers 7528 * to be written. It can be freed when the freeblks 7529 * is journaled. 7530 */ 7531 WORKLIST_REMOVE(wk); 7532 wk->wk_state |= ONDEPLIST; 7533 WORKLIST_INSERT(&freeblks->fb_freeworkhd, wk); 7534 break; 7535 7536 case D_ALLOCDIRECT: 7537 if (off != 0) 7538 continue; 7539 /* FALLTHROUGH */ 7540 default: 7541 panic("deallocate_dependencies: Unexpected type %s", 7542 TYPENAME(wk->wk_type)); 7543 /* NOTREACHED */ 7544 } 7545 } 7546 FREE_LOCK(ump); 7547 done: 7548 /* 7549 * Don't throw away this buf, we were partially truncating and 7550 * some deps may always remain. 7551 */ 7552 if (off) { 7553 allocbuf(bp, off); 7554 bp->b_vflags |= BV_SCANNED; 7555 return (EBUSY); 7556 } 7557 bp->b_flags |= B_INVAL | B_NOCACHE; 7558 7559 return (0); 7560 } 7561 7562 /* 7563 * An allocdirect is being canceled due to a truncate. We must make sure 7564 * the journal entry is released in concert with the blkfree that releases 7565 * the storage. Completed journal entries must not be released until the 7566 * space is no longer pointed to by the inode or in the bitmap. 7567 */ 7568 static void 7569 cancel_allocdirect( 7570 struct allocdirectlst *adphead, 7571 struct allocdirect *adp, 7572 struct freeblks *freeblks) 7573 { 7574 struct freework *freework; 7575 struct newblk *newblk; 7576 struct worklist *wk; 7577 7578 TAILQ_REMOVE(adphead, adp, ad_next); 7579 newblk = (struct newblk *)adp; 7580 freework = NULL; 7581 /* 7582 * Find the correct freework structure. 7583 */ 7584 LIST_FOREACH(wk, &freeblks->fb_freeworkhd, wk_list) { 7585 if (wk->wk_type != D_FREEWORK) 7586 continue; 7587 freework = WK_FREEWORK(wk); 7588 if (freework->fw_blkno == newblk->nb_newblkno) 7589 break; 7590 } 7591 if (freework == NULL) 7592 panic("cancel_allocdirect: Freework not found"); 7593 /* 7594 * If a newblk exists at all we still have the journal entry that 7595 * initiated the allocation so we do not need to journal the free. 7596 */ 7597 cancel_jfreeblk(freeblks, freework->fw_blkno); 7598 /* 7599 * If the journal hasn't been written the jnewblk must be passed 7600 * to the call to ffs_blkfree that reclaims the space. We accomplish 7601 * this by linking the journal dependency into the freework to be 7602 * freed when freework_freeblock() is called. If the journal has 7603 * been written we can simply reclaim the journal space when the 7604 * freeblks work is complete. 7605 */ 7606 freework->fw_jnewblk = cancel_newblk(newblk, &freework->fw_list, 7607 &freeblks->fb_jwork); 7608 WORKLIST_INSERT(&freeblks->fb_freeworkhd, &newblk->nb_list); 7609 } 7610 7611 /* 7612 * Cancel a new block allocation. May be an indirect or direct block. We 7613 * remove it from various lists and return any journal record that needs to 7614 * be resolved by the caller. 7615 * 7616 * A special consideration is made for indirects which were never pointed 7617 * at on disk and will never be found once this block is released. 7618 */ 7619 static struct jnewblk * 7620 cancel_newblk( 7621 struct newblk *newblk, 7622 struct worklist *wk, 7623 struct workhead *wkhd) 7624 { 7625 struct jnewblk *jnewblk; 7626 7627 CTR1(KTR_SUJ, "cancel_newblk: blkno %jd", newblk->nb_newblkno); 7628 7629 newblk->nb_state |= GOINGAWAY; 7630 /* 7631 * Previously we traversed the completedhd on each indirdep 7632 * attached to this newblk to cancel them and gather journal 7633 * work. Since we need only the oldest journal segment and 7634 * the lowest point on the tree will always have the oldest 7635 * journal segment we are free to release the segments 7636 * of any subordinates and may leave the indirdep list to 7637 * indirdep_complete() when this newblk is freed. 7638 */ 7639 if (newblk->nb_state & ONDEPLIST) { 7640 newblk->nb_state &= ~ONDEPLIST; 7641 LIST_REMOVE(newblk, nb_deps); 7642 } 7643 if (newblk->nb_state & ONWORKLIST) 7644 WORKLIST_REMOVE(&newblk->nb_list); 7645 /* 7646 * If the journal entry hasn't been written we save a pointer to 7647 * the dependency that frees it until it is written or the 7648 * superseding operation completes. 7649 */ 7650 jnewblk = newblk->nb_jnewblk; 7651 if (jnewblk != NULL && wk != NULL) { 7652 newblk->nb_jnewblk = NULL; 7653 jnewblk->jn_dep = wk; 7654 } 7655 if (!LIST_EMPTY(&newblk->nb_jwork)) 7656 jwork_move(wkhd, &newblk->nb_jwork); 7657 /* 7658 * When truncating we must free the newdirblk early to remove 7659 * the pagedep from the hash before returning. 7660 */ 7661 if ((wk = LIST_FIRST(&newblk->nb_newdirblk)) != NULL) 7662 free_newdirblk(WK_NEWDIRBLK(wk)); 7663 if (!LIST_EMPTY(&newblk->nb_newdirblk)) 7664 panic("cancel_newblk: extra newdirblk"); 7665 7666 return (jnewblk); 7667 } 7668 7669 /* 7670 * Schedule the freefrag associated with a newblk to be released once 7671 * the pointers are written and the previous block is no longer needed. 7672 */ 7673 static void 7674 newblk_freefrag(struct newblk *newblk) 7675 { 7676 struct freefrag *freefrag; 7677 7678 if (newblk->nb_freefrag == NULL) 7679 return; 7680 freefrag = newblk->nb_freefrag; 7681 newblk->nb_freefrag = NULL; 7682 freefrag->ff_state |= COMPLETE; 7683 if ((freefrag->ff_state & ALLCOMPLETE) == ALLCOMPLETE) 7684 add_to_worklist(&freefrag->ff_list, 0); 7685 } 7686 7687 /* 7688 * Free a newblk. Generate a new freefrag work request if appropriate. 7689 * This must be called after the inode pointer and any direct block pointers 7690 * are valid or fully removed via truncate or frag extension. 7691 */ 7692 static void 7693 free_newblk(struct newblk *newblk) 7694 { 7695 struct indirdep *indirdep; 7696 struct worklist *wk; 7697 7698 KASSERT(newblk->nb_jnewblk == NULL, 7699 ("free_newblk: jnewblk %p still attached", newblk->nb_jnewblk)); 7700 KASSERT(newblk->nb_list.wk_type != D_NEWBLK, 7701 ("free_newblk: unclaimed newblk")); 7702 LOCK_OWNED(VFSTOUFS(newblk->nb_list.wk_mp)); 7703 newblk_freefrag(newblk); 7704 if (newblk->nb_state & ONDEPLIST) 7705 LIST_REMOVE(newblk, nb_deps); 7706 if (newblk->nb_state & ONWORKLIST) 7707 WORKLIST_REMOVE(&newblk->nb_list); 7708 LIST_REMOVE(newblk, nb_hash); 7709 if ((wk = LIST_FIRST(&newblk->nb_newdirblk)) != NULL) 7710 free_newdirblk(WK_NEWDIRBLK(wk)); 7711 if (!LIST_EMPTY(&newblk->nb_newdirblk)) 7712 panic("free_newblk: extra newdirblk"); 7713 while ((indirdep = LIST_FIRST(&newblk->nb_indirdeps)) != NULL) 7714 indirdep_complete(indirdep); 7715 handle_jwork(&newblk->nb_jwork); 7716 WORKITEM_FREE(newblk, D_NEWBLK); 7717 } 7718 7719 /* 7720 * Free a newdirblk. Clear the NEWBLOCK flag on its associated pagedep. 7721 */ 7722 static void 7723 free_newdirblk(struct newdirblk *newdirblk) 7724 { 7725 struct pagedep *pagedep; 7726 struct diradd *dap; 7727 struct worklist *wk; 7728 7729 LOCK_OWNED(VFSTOUFS(newdirblk->db_list.wk_mp)); 7730 WORKLIST_REMOVE(&newdirblk->db_list); 7731 /* 7732 * If the pagedep is still linked onto the directory buffer 7733 * dependency chain, then some of the entries on the 7734 * pd_pendinghd list may not be committed to disk yet. In 7735 * this case, we will simply clear the NEWBLOCK flag and 7736 * let the pd_pendinghd list be processed when the pagedep 7737 * is next written. If the pagedep is no longer on the buffer 7738 * dependency chain, then all the entries on the pd_pending 7739 * list are committed to disk and we can free them here. 7740 */ 7741 pagedep = newdirblk->db_pagedep; 7742 pagedep->pd_state &= ~NEWBLOCK; 7743 if ((pagedep->pd_state & ONWORKLIST) == 0) { 7744 while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL) 7745 free_diradd(dap, NULL); 7746 /* 7747 * If no dependencies remain, the pagedep will be freed. 7748 */ 7749 free_pagedep(pagedep); 7750 } 7751 /* Should only ever be one item in the list. */ 7752 while ((wk = LIST_FIRST(&newdirblk->db_mkdir)) != NULL) { 7753 WORKLIST_REMOVE(wk); 7754 handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY); 7755 } 7756 WORKITEM_FREE(newdirblk, D_NEWDIRBLK); 7757 } 7758 7759 /* 7760 * Prepare an inode to be freed. The actual free operation is not 7761 * done until the zero'ed inode has been written to disk. 7762 */ 7763 void 7764 softdep_freefile( 7765 struct vnode *pvp, 7766 ino_t ino, 7767 int mode) 7768 { 7769 struct inode *ip = VTOI(pvp); 7770 struct inodedep *inodedep; 7771 struct freefile *freefile; 7772 struct freeblks *freeblks; 7773 struct ufsmount *ump; 7774 7775 ump = ITOUMP(ip); 7776 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 7777 ("softdep_freefile called on non-softdep filesystem")); 7778 /* 7779 * This sets up the inode de-allocation dependency. 7780 */ 7781 freefile = malloc(sizeof(struct freefile), 7782 M_FREEFILE, M_SOFTDEP_FLAGS); 7783 workitem_alloc(&freefile->fx_list, D_FREEFILE, pvp->v_mount); 7784 freefile->fx_mode = mode; 7785 freefile->fx_oldinum = ino; 7786 freefile->fx_devvp = ump->um_devvp; 7787 LIST_INIT(&freefile->fx_jwork); 7788 UFS_LOCK(ump); 7789 ump->um_fs->fs_pendinginodes += 1; 7790 UFS_UNLOCK(ump); 7791 7792 /* 7793 * If the inodedep does not exist, then the zero'ed inode has 7794 * been written to disk. If the allocated inode has never been 7795 * written to disk, then the on-disk inode is zero'ed. In either 7796 * case we can free the file immediately. If the journal was 7797 * canceled before being written the inode will never make it to 7798 * disk and we must send the canceled journal entrys to 7799 * ffs_freefile() to be cleared in conjunction with the bitmap. 7800 * Any blocks waiting on the inode to write can be safely freed 7801 * here as it will never been written. 7802 */ 7803 ACQUIRE_LOCK(ump); 7804 inodedep_lookup(pvp->v_mount, ino, 0, &inodedep); 7805 if (inodedep) { 7806 /* 7807 * Clear out freeblks that no longer need to reference 7808 * this inode. 7809 */ 7810 while ((freeblks = 7811 TAILQ_FIRST(&inodedep->id_freeblklst)) != NULL) { 7812 TAILQ_REMOVE(&inodedep->id_freeblklst, freeblks, 7813 fb_next); 7814 freeblks->fb_state &= ~ONDEPLIST; 7815 } 7816 /* 7817 * Remove this inode from the unlinked list. 7818 */ 7819 if (inodedep->id_state & UNLINKED) { 7820 /* 7821 * Save the journal work to be freed with the bitmap 7822 * before we clear UNLINKED. Otherwise it can be lost 7823 * if the inode block is written. 7824 */ 7825 handle_bufwait(inodedep, &freefile->fx_jwork); 7826 clear_unlinked_inodedep(inodedep); 7827 /* 7828 * Re-acquire inodedep as we've dropped the 7829 * per-filesystem lock in clear_unlinked_inodedep(). 7830 */ 7831 inodedep_lookup(pvp->v_mount, ino, 0, &inodedep); 7832 } 7833 } 7834 if (inodedep == NULL || check_inode_unwritten(inodedep)) { 7835 FREE_LOCK(ump); 7836 handle_workitem_freefile(freefile); 7837 return; 7838 } 7839 if ((inodedep->id_state & DEPCOMPLETE) == 0) 7840 inodedep->id_state |= GOINGAWAY; 7841 WORKLIST_INSERT(&inodedep->id_inowait, &freefile->fx_list); 7842 FREE_LOCK(ump); 7843 if (ip->i_number == ino) 7844 UFS_INODE_SET_FLAG(ip, IN_MODIFIED); 7845 } 7846 7847 /* 7848 * Check to see if an inode has never been written to disk. If 7849 * so free the inodedep and return success, otherwise return failure. 7850 * 7851 * If we still have a bitmap dependency, then the inode has never 7852 * been written to disk. Drop the dependency as it is no longer 7853 * necessary since the inode is being deallocated. We set the 7854 * ALLCOMPLETE flags since the bitmap now properly shows that the 7855 * inode is not allocated. Even if the inode is actively being 7856 * written, it has been rolled back to its zero'ed state, so we 7857 * are ensured that a zero inode is what is on the disk. For short 7858 * lived files, this change will usually result in removing all the 7859 * dependencies from the inode so that it can be freed immediately. 7860 */ 7861 static int 7862 check_inode_unwritten(struct inodedep *inodedep) 7863 { 7864 7865 LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp)); 7866 7867 if ((inodedep->id_state & (DEPCOMPLETE | UNLINKED)) != 0 || 7868 !LIST_EMPTY(&inodedep->id_dirremhd) || 7869 !LIST_EMPTY(&inodedep->id_pendinghd) || 7870 !LIST_EMPTY(&inodedep->id_bufwait) || 7871 !LIST_EMPTY(&inodedep->id_inowait) || 7872 !TAILQ_EMPTY(&inodedep->id_inoreflst) || 7873 !TAILQ_EMPTY(&inodedep->id_inoupdt) || 7874 !TAILQ_EMPTY(&inodedep->id_newinoupdt) || 7875 !TAILQ_EMPTY(&inodedep->id_extupdt) || 7876 !TAILQ_EMPTY(&inodedep->id_newextupdt) || 7877 !TAILQ_EMPTY(&inodedep->id_freeblklst) || 7878 inodedep->id_mkdiradd != NULL || 7879 inodedep->id_nlinkdelta != 0) 7880 return (0); 7881 /* 7882 * Another process might be in initiate_write_inodeblock_ufs[12] 7883 * trying to allocate memory without holding "Softdep Lock". 7884 */ 7885 if ((inodedep->id_state & IOSTARTED) != 0 && 7886 inodedep->id_savedino1 == NULL) 7887 return (0); 7888 7889 if (inodedep->id_state & ONDEPLIST) 7890 LIST_REMOVE(inodedep, id_deps); 7891 inodedep->id_state &= ~ONDEPLIST; 7892 inodedep->id_state |= ALLCOMPLETE; 7893 inodedep->id_bmsafemap = NULL; 7894 if (inodedep->id_state & ONWORKLIST) 7895 WORKLIST_REMOVE(&inodedep->id_list); 7896 if (inodedep->id_savedino1 != NULL) { 7897 free(inodedep->id_savedino1, M_SAVEDINO); 7898 inodedep->id_savedino1 = NULL; 7899 } 7900 if (free_inodedep(inodedep) == 0) 7901 panic("check_inode_unwritten: busy inode"); 7902 return (1); 7903 } 7904 7905 static int 7906 check_inodedep_free(struct inodedep *inodedep) 7907 { 7908 7909 LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp)); 7910 if ((inodedep->id_state & ALLCOMPLETE) != ALLCOMPLETE || 7911 !LIST_EMPTY(&inodedep->id_dirremhd) || 7912 !LIST_EMPTY(&inodedep->id_pendinghd) || 7913 !LIST_EMPTY(&inodedep->id_bufwait) || 7914 !LIST_EMPTY(&inodedep->id_inowait) || 7915 !TAILQ_EMPTY(&inodedep->id_inoreflst) || 7916 !TAILQ_EMPTY(&inodedep->id_inoupdt) || 7917 !TAILQ_EMPTY(&inodedep->id_newinoupdt) || 7918 !TAILQ_EMPTY(&inodedep->id_extupdt) || 7919 !TAILQ_EMPTY(&inodedep->id_newextupdt) || 7920 !TAILQ_EMPTY(&inodedep->id_freeblklst) || 7921 inodedep->id_mkdiradd != NULL || 7922 inodedep->id_nlinkdelta != 0 || 7923 inodedep->id_savedino1 != NULL) 7924 return (0); 7925 return (1); 7926 } 7927 7928 /* 7929 * Try to free an inodedep structure. Return 1 if it could be freed. 7930 */ 7931 static int 7932 free_inodedep(struct inodedep *inodedep) 7933 { 7934 7935 LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp)); 7936 if ((inodedep->id_state & (ONWORKLIST | UNLINKED)) != 0 || 7937 !check_inodedep_free(inodedep)) 7938 return (0); 7939 if (inodedep->id_state & ONDEPLIST) 7940 LIST_REMOVE(inodedep, id_deps); 7941 LIST_REMOVE(inodedep, id_hash); 7942 WORKITEM_FREE(inodedep, D_INODEDEP); 7943 return (1); 7944 } 7945 7946 /* 7947 * Free the block referenced by a freework structure. The parent freeblks 7948 * structure is released and completed when the final cg bitmap reaches 7949 * the disk. This routine may be freeing a jnewblk which never made it to 7950 * disk in which case we do not have to wait as the operation is undone 7951 * in memory immediately. 7952 */ 7953 static void 7954 freework_freeblock(struct freework *freework, u_long key) 7955 { 7956 struct freeblks *freeblks; 7957 struct jnewblk *jnewblk; 7958 struct ufsmount *ump; 7959 struct workhead wkhd; 7960 struct fs *fs; 7961 int bsize; 7962 int needj; 7963 7964 ump = VFSTOUFS(freework->fw_list.wk_mp); 7965 LOCK_OWNED(ump); 7966 /* 7967 * Handle partial truncate separately. 7968 */ 7969 if (freework->fw_indir) { 7970 complete_trunc_indir(freework); 7971 return; 7972 } 7973 freeblks = freework->fw_freeblks; 7974 fs = ump->um_fs; 7975 needj = MOUNTEDSUJ(freeblks->fb_list.wk_mp) != 0; 7976 bsize = lfragtosize(fs, freework->fw_frags); 7977 LIST_INIT(&wkhd); 7978 /* 7979 * DEPCOMPLETE is cleared in indirblk_insert() if the block lives 7980 * on the indirblk hashtable and prevents premature freeing. 7981 */ 7982 freework->fw_state |= DEPCOMPLETE; 7983 /* 7984 * SUJ needs to wait for the segment referencing freed indirect 7985 * blocks to expire so that we know the checker will not confuse 7986 * a re-allocated indirect block with its old contents. 7987 */ 7988 if (needj && freework->fw_lbn <= -UFS_NDADDR) 7989 indirblk_insert(freework); 7990 /* 7991 * If we are canceling an existing jnewblk pass it to the free 7992 * routine, otherwise pass the freeblk which will ultimately 7993 * release the freeblks. If we're not journaling, we can just 7994 * free the freeblks immediately. 7995 */ 7996 jnewblk = freework->fw_jnewblk; 7997 if (jnewblk != NULL) { 7998 cancel_jnewblk(jnewblk, &wkhd); 7999 needj = 0; 8000 } else if (needj) { 8001 freework->fw_state |= DELAYEDFREE; 8002 freeblks->fb_cgwait++; 8003 WORKLIST_INSERT(&wkhd, &freework->fw_list); 8004 } 8005 FREE_LOCK(ump); 8006 freeblks_free(ump, freeblks, btodb(bsize)); 8007 CTR4(KTR_SUJ, 8008 "freework_freeblock: ino %jd blkno %jd lbn %jd size %d", 8009 freeblks->fb_inum, freework->fw_blkno, freework->fw_lbn, bsize); 8010 ffs_blkfree(ump, fs, freeblks->fb_devvp, freework->fw_blkno, bsize, 8011 freeblks->fb_inum, freeblks->fb_vtype, &wkhd, key); 8012 ACQUIRE_LOCK(ump); 8013 /* 8014 * The jnewblk will be discarded and the bits in the map never 8015 * made it to disk. We can immediately free the freeblk. 8016 */ 8017 if (needj == 0) 8018 handle_written_freework(freework); 8019 } 8020 8021 /* 8022 * We enqueue freework items that need processing back on the freeblks and 8023 * add the freeblks to the worklist. This makes it easier to find all work 8024 * required to flush a truncation in process_truncates(). 8025 */ 8026 static void 8027 freework_enqueue(struct freework *freework) 8028 { 8029 struct freeblks *freeblks; 8030 8031 freeblks = freework->fw_freeblks; 8032 if ((freework->fw_state & INPROGRESS) == 0) 8033 WORKLIST_INSERT(&freeblks->fb_freeworkhd, &freework->fw_list); 8034 if ((freeblks->fb_state & 8035 (ONWORKLIST | INPROGRESS | ALLCOMPLETE)) == ALLCOMPLETE && 8036 LIST_EMPTY(&freeblks->fb_jblkdephd)) 8037 add_to_worklist(&freeblks->fb_list, WK_NODELAY); 8038 } 8039 8040 /* 8041 * Start, continue, or finish the process of freeing an indirect block tree. 8042 * The free operation may be paused at any point with fw_off containing the 8043 * offset to restart from. This enables us to implement some flow control 8044 * for large truncates which may fan out and generate a huge number of 8045 * dependencies. 8046 */ 8047 static void 8048 handle_workitem_indirblk(struct freework *freework) 8049 { 8050 struct freeblks *freeblks; 8051 struct ufsmount *ump; 8052 struct fs *fs; 8053 8054 freeblks = freework->fw_freeblks; 8055 ump = VFSTOUFS(freeblks->fb_list.wk_mp); 8056 fs = ump->um_fs; 8057 if (freework->fw_state & DEPCOMPLETE) { 8058 handle_written_freework(freework); 8059 return; 8060 } 8061 if (freework->fw_off == NINDIR(fs)) { 8062 freework_freeblock(freework, SINGLETON_KEY); 8063 return; 8064 } 8065 freework->fw_state |= INPROGRESS; 8066 FREE_LOCK(ump); 8067 indir_trunc(freework, fsbtodb(fs, freework->fw_blkno), 8068 freework->fw_lbn); 8069 ACQUIRE_LOCK(ump); 8070 } 8071 8072 /* 8073 * Called when a freework structure attached to a cg buf is written. The 8074 * ref on either the parent or the freeblks structure is released and 8075 * the freeblks is added back to the worklist if there is more work to do. 8076 */ 8077 static void 8078 handle_written_freework(struct freework *freework) 8079 { 8080 struct freeblks *freeblks; 8081 struct freework *parent; 8082 8083 freeblks = freework->fw_freeblks; 8084 parent = freework->fw_parent; 8085 if (freework->fw_state & DELAYEDFREE) 8086 freeblks->fb_cgwait--; 8087 freework->fw_state |= COMPLETE; 8088 if ((freework->fw_state & ALLCOMPLETE) == ALLCOMPLETE) 8089 WORKITEM_FREE(freework, D_FREEWORK); 8090 if (parent) { 8091 if (--parent->fw_ref == 0) 8092 freework_enqueue(parent); 8093 return; 8094 } 8095 if (--freeblks->fb_ref != 0) 8096 return; 8097 if ((freeblks->fb_state & (ALLCOMPLETE | ONWORKLIST | INPROGRESS)) == 8098 ALLCOMPLETE && LIST_EMPTY(&freeblks->fb_jblkdephd)) 8099 add_to_worklist(&freeblks->fb_list, WK_NODELAY); 8100 } 8101 8102 /* 8103 * This workitem routine performs the block de-allocation. 8104 * The workitem is added to the pending list after the updated 8105 * inode block has been written to disk. As mentioned above, 8106 * checks regarding the number of blocks de-allocated (compared 8107 * to the number of blocks allocated for the file) are also 8108 * performed in this function. 8109 */ 8110 static int 8111 handle_workitem_freeblocks(struct freeblks *freeblks, int flags) 8112 { 8113 struct freework *freework; 8114 struct newblk *newblk; 8115 struct allocindir *aip; 8116 struct ufsmount *ump; 8117 struct worklist *wk; 8118 u_long key; 8119 8120 KASSERT(LIST_EMPTY(&freeblks->fb_jblkdephd), 8121 ("handle_workitem_freeblocks: Journal entries not written.")); 8122 ump = VFSTOUFS(freeblks->fb_list.wk_mp); 8123 key = ffs_blkrelease_start(ump, freeblks->fb_devvp, freeblks->fb_inum); 8124 ACQUIRE_LOCK(ump); 8125 while ((wk = LIST_FIRST(&freeblks->fb_freeworkhd)) != NULL) { 8126 WORKLIST_REMOVE(wk); 8127 switch (wk->wk_type) { 8128 case D_DIRREM: 8129 wk->wk_state |= COMPLETE; 8130 add_to_worklist(wk, 0); 8131 continue; 8132 8133 case D_ALLOCDIRECT: 8134 free_newblk(WK_NEWBLK(wk)); 8135 continue; 8136 8137 case D_ALLOCINDIR: 8138 aip = WK_ALLOCINDIR(wk); 8139 freework = NULL; 8140 if (aip->ai_state & DELAYEDFREE) { 8141 FREE_LOCK(ump); 8142 freework = newfreework(ump, freeblks, NULL, 8143 aip->ai_lbn, aip->ai_newblkno, 8144 ump->um_fs->fs_frag, 0, 0); 8145 ACQUIRE_LOCK(ump); 8146 } 8147 newblk = WK_NEWBLK(wk); 8148 if (newblk->nb_jnewblk) { 8149 freework->fw_jnewblk = newblk->nb_jnewblk; 8150 newblk->nb_jnewblk->jn_dep = &freework->fw_list; 8151 newblk->nb_jnewblk = NULL; 8152 } 8153 free_newblk(newblk); 8154 continue; 8155 8156 case D_FREEWORK: 8157 freework = WK_FREEWORK(wk); 8158 if (freework->fw_lbn <= -UFS_NDADDR) 8159 handle_workitem_indirblk(freework); 8160 else 8161 freework_freeblock(freework, key); 8162 continue; 8163 default: 8164 panic("handle_workitem_freeblocks: Unknown type %s", 8165 TYPENAME(wk->wk_type)); 8166 } 8167 } 8168 if (freeblks->fb_ref != 0) { 8169 freeblks->fb_state &= ~INPROGRESS; 8170 wake_worklist(&freeblks->fb_list); 8171 freeblks = NULL; 8172 } 8173 FREE_LOCK(ump); 8174 ffs_blkrelease_finish(ump, key); 8175 if (freeblks) 8176 return handle_complete_freeblocks(freeblks, flags); 8177 return (0); 8178 } 8179 8180 /* 8181 * Handle completion of block free via truncate. This allows fs_pending 8182 * to track the actual free block count more closely than if we only updated 8183 * it at the end. We must be careful to handle cases where the block count 8184 * on free was incorrect. 8185 */ 8186 static void 8187 freeblks_free(struct ufsmount *ump, 8188 struct freeblks *freeblks, 8189 int blocks) 8190 { 8191 struct fs *fs; 8192 ufs2_daddr_t remain; 8193 8194 UFS_LOCK(ump); 8195 remain = -freeblks->fb_chkcnt; 8196 freeblks->fb_chkcnt += blocks; 8197 if (remain > 0) { 8198 if (remain < blocks) 8199 blocks = remain; 8200 fs = ump->um_fs; 8201 fs->fs_pendingblocks -= blocks; 8202 } 8203 UFS_UNLOCK(ump); 8204 } 8205 8206 /* 8207 * Once all of the freework workitems are complete we can retire the 8208 * freeblocks dependency and any journal work awaiting completion. This 8209 * can not be called until all other dependencies are stable on disk. 8210 */ 8211 static int 8212 handle_complete_freeblocks(struct freeblks *freeblks, int flags) 8213 { 8214 struct inodedep *inodedep; 8215 struct inode *ip; 8216 struct vnode *vp; 8217 struct fs *fs; 8218 struct ufsmount *ump; 8219 ufs2_daddr_t spare; 8220 8221 ump = VFSTOUFS(freeblks->fb_list.wk_mp); 8222 fs = ump->um_fs; 8223 flags = LK_EXCLUSIVE | flags; 8224 spare = freeblks->fb_chkcnt; 8225 8226 /* 8227 * If we did not release the expected number of blocks we may have 8228 * to adjust the inode block count here. Only do so if it wasn't 8229 * a truncation to zero and the modrev still matches. 8230 */ 8231 if (spare && freeblks->fb_len != 0) { 8232 if (ffs_vgetf(freeblks->fb_list.wk_mp, freeblks->fb_inum, 8233 flags, &vp, FFSV_FORCEINSMQ | FFSV_FORCEINODEDEP) != 0) 8234 return (EBUSY); 8235 ip = VTOI(vp); 8236 if (ip->i_mode == 0) { 8237 vgone(vp); 8238 } else if (DIP(ip, i_modrev) == freeblks->fb_modrev) { 8239 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - spare); 8240 UFS_INODE_SET_FLAG(ip, IN_CHANGE); 8241 /* 8242 * We must wait so this happens before the 8243 * journal is reclaimed. 8244 */ 8245 ffs_update(vp, 1); 8246 } 8247 vput(vp); 8248 } 8249 if (spare < 0) { 8250 UFS_LOCK(ump); 8251 fs->fs_pendingblocks += spare; 8252 UFS_UNLOCK(ump); 8253 } 8254 #ifdef QUOTA 8255 /* Handle spare. */ 8256 if (spare) 8257 quotaadj(freeblks->fb_quota, ump, -spare); 8258 quotarele(freeblks->fb_quota); 8259 #endif 8260 ACQUIRE_LOCK(ump); 8261 if (freeblks->fb_state & ONDEPLIST) { 8262 inodedep_lookup(freeblks->fb_list.wk_mp, freeblks->fb_inum, 8263 0, &inodedep); 8264 TAILQ_REMOVE(&inodedep->id_freeblklst, freeblks, fb_next); 8265 freeblks->fb_state &= ~ONDEPLIST; 8266 if (TAILQ_EMPTY(&inodedep->id_freeblklst)) 8267 free_inodedep(inodedep); 8268 } 8269 /* 8270 * All of the freeblock deps must be complete prior to this call 8271 * so it's now safe to complete earlier outstanding journal entries. 8272 */ 8273 handle_jwork(&freeblks->fb_jwork); 8274 WORKITEM_FREE(freeblks, D_FREEBLKS); 8275 FREE_LOCK(ump); 8276 return (0); 8277 } 8278 8279 /* 8280 * Release blocks associated with the freeblks and stored in the indirect 8281 * block dbn. If level is greater than SINGLE, the block is an indirect block 8282 * and recursive calls to indirtrunc must be used to cleanse other indirect 8283 * blocks. 8284 * 8285 * This handles partial and complete truncation of blocks. Partial is noted 8286 * with goingaway == 0. In this case the freework is completed after the 8287 * zero'd indirects are written to disk. For full truncation the freework 8288 * is completed after the block is freed. 8289 */ 8290 static void 8291 indir_trunc(struct freework *freework, 8292 ufs2_daddr_t dbn, 8293 ufs_lbn_t lbn) 8294 { 8295 struct freework *nfreework; 8296 struct workhead wkhd; 8297 struct freeblks *freeblks; 8298 struct buf *bp; 8299 struct fs *fs; 8300 struct indirdep *indirdep; 8301 struct mount *mp; 8302 struct ufsmount *ump; 8303 ufs1_daddr_t *bap1; 8304 ufs2_daddr_t nb, nnb, *bap2; 8305 ufs_lbn_t lbnadd, nlbn; 8306 u_long key; 8307 int nblocks, ufs1fmt, freedblocks; 8308 int goingaway, freedeps, needj, level, cnt, i, error; 8309 8310 freeblks = freework->fw_freeblks; 8311 mp = freeblks->fb_list.wk_mp; 8312 ump = VFSTOUFS(mp); 8313 fs = ump->um_fs; 8314 /* 8315 * Get buffer of block pointers to be freed. There are three cases: 8316 * 8317 * 1) Partial truncate caches the indirdep pointer in the freework 8318 * which provides us a back copy to the save bp which holds the 8319 * pointers we want to clear. When this completes the zero 8320 * pointers are written to the real copy. 8321 * 2) The indirect is being completely truncated, cancel_indirdep() 8322 * eliminated the real copy and placed the indirdep on the saved 8323 * copy. The indirdep and buf are discarded when this completes. 8324 * 3) The indirect was not in memory, we read a copy off of the disk 8325 * using the devvp and drop and invalidate the buffer when we're 8326 * done. 8327 */ 8328 goingaway = 1; 8329 indirdep = NULL; 8330 if (freework->fw_indir != NULL) { 8331 goingaway = 0; 8332 indirdep = freework->fw_indir; 8333 bp = indirdep->ir_savebp; 8334 if (bp == NULL || bp->b_blkno != dbn) 8335 panic("indir_trunc: Bad saved buf %p blkno %jd", 8336 bp, (intmax_t)dbn); 8337 } else if ((bp = incore(&freeblks->fb_devvp->v_bufobj, dbn)) != NULL) { 8338 /* 8339 * The lock prevents the buf dep list from changing and 8340 * indirects on devvp should only ever have one dependency. 8341 */ 8342 indirdep = WK_INDIRDEP(LIST_FIRST(&bp->b_dep)); 8343 if (indirdep == NULL || (indirdep->ir_state & GOINGAWAY) == 0) 8344 panic("indir_trunc: Bad indirdep %p from buf %p", 8345 indirdep, bp); 8346 } else { 8347 error = ffs_breadz(ump, freeblks->fb_devvp, dbn, dbn, 8348 (int)fs->fs_bsize, NULL, NULL, 0, NOCRED, 0, NULL, &bp); 8349 if (error) 8350 return; 8351 } 8352 ACQUIRE_LOCK(ump); 8353 /* Protects against a race with complete_trunc_indir(). */ 8354 freework->fw_state &= ~INPROGRESS; 8355 /* 8356 * If we have an indirdep we need to enforce the truncation order 8357 * and discard it when it is complete. 8358 */ 8359 if (indirdep) { 8360 if (freework != TAILQ_FIRST(&indirdep->ir_trunc) && 8361 !TAILQ_EMPTY(&indirdep->ir_trunc)) { 8362 /* 8363 * Add the complete truncate to the list on the 8364 * indirdep to enforce in-order processing. 8365 */ 8366 if (freework->fw_indir == NULL) 8367 TAILQ_INSERT_TAIL(&indirdep->ir_trunc, 8368 freework, fw_next); 8369 FREE_LOCK(ump); 8370 return; 8371 } 8372 /* 8373 * If we're goingaway, free the indirdep. Otherwise it will 8374 * linger until the write completes. 8375 */ 8376 if (goingaway) { 8377 KASSERT(indirdep->ir_savebp == bp, 8378 ("indir_trunc: losing ir_savebp %p", 8379 indirdep->ir_savebp)); 8380 indirdep->ir_savebp = NULL; 8381 free_indirdep(indirdep); 8382 } 8383 } 8384 FREE_LOCK(ump); 8385 /* Initialize pointers depending on block size. */ 8386 if (ump->um_fstype == UFS1) { 8387 bap1 = (ufs1_daddr_t *)bp->b_data; 8388 nb = bap1[freework->fw_off]; 8389 ufs1fmt = 1; 8390 bap2 = NULL; 8391 } else { 8392 bap2 = (ufs2_daddr_t *)bp->b_data; 8393 nb = bap2[freework->fw_off]; 8394 ufs1fmt = 0; 8395 bap1 = NULL; 8396 } 8397 level = lbn_level(lbn); 8398 needj = MOUNTEDSUJ(UFSTOVFS(ump)) != 0; 8399 lbnadd = lbn_offset(fs, level); 8400 nblocks = btodb(fs->fs_bsize); 8401 nfreework = freework; 8402 freedeps = 0; 8403 cnt = 0; 8404 /* 8405 * Reclaim blocks. Traverses into nested indirect levels and 8406 * arranges for the current level to be freed when subordinates 8407 * are free when journaling. 8408 */ 8409 key = ffs_blkrelease_start(ump, freeblks->fb_devvp, freeblks->fb_inum); 8410 for (i = freework->fw_off; i < NINDIR(fs); i++, nb = nnb) { 8411 if (UFS_CHECK_BLKNO(mp, freeblks->fb_inum, nb, 8412 fs->fs_bsize) != 0) 8413 nb = 0; 8414 if (i != NINDIR(fs) - 1) { 8415 if (ufs1fmt) 8416 nnb = bap1[i+1]; 8417 else 8418 nnb = bap2[i+1]; 8419 } else 8420 nnb = 0; 8421 if (nb == 0) 8422 continue; 8423 cnt++; 8424 if (level != 0) { 8425 nlbn = (lbn + 1) - (i * lbnadd); 8426 if (needj != 0) { 8427 nfreework = newfreework(ump, freeblks, freework, 8428 nlbn, nb, fs->fs_frag, 0, 0); 8429 freedeps++; 8430 } 8431 indir_trunc(nfreework, fsbtodb(fs, nb), nlbn); 8432 } else { 8433 struct freedep *freedep; 8434 8435 /* 8436 * Attempt to aggregate freedep dependencies for 8437 * all blocks being released to the same CG. 8438 */ 8439 LIST_INIT(&wkhd); 8440 if (needj != 0 && 8441 (nnb == 0 || (dtog(fs, nb) != dtog(fs, nnb)))) { 8442 freedep = newfreedep(freework); 8443 WORKLIST_INSERT_UNLOCKED(&wkhd, 8444 &freedep->fd_list); 8445 freedeps++; 8446 } 8447 CTR3(KTR_SUJ, 8448 "indir_trunc: ino %jd blkno %jd size %d", 8449 freeblks->fb_inum, nb, fs->fs_bsize); 8450 ffs_blkfree(ump, fs, freeblks->fb_devvp, nb, 8451 fs->fs_bsize, freeblks->fb_inum, 8452 freeblks->fb_vtype, &wkhd, key); 8453 } 8454 } 8455 ffs_blkrelease_finish(ump, key); 8456 if (goingaway) { 8457 bp->b_flags |= B_INVAL | B_NOCACHE; 8458 brelse(bp); 8459 } 8460 freedblocks = 0; 8461 if (level == 0) 8462 freedblocks = (nblocks * cnt); 8463 if (needj == 0) 8464 freedblocks += nblocks; 8465 freeblks_free(ump, freeblks, freedblocks); 8466 /* 8467 * If we are journaling set up the ref counts and offset so this 8468 * indirect can be completed when its children are free. 8469 */ 8470 if (needj) { 8471 ACQUIRE_LOCK(ump); 8472 freework->fw_off = i; 8473 freework->fw_ref += freedeps; 8474 freework->fw_ref -= NINDIR(fs) + 1; 8475 if (level == 0) 8476 freeblks->fb_cgwait += freedeps; 8477 if (freework->fw_ref == 0) 8478 freework_freeblock(freework, SINGLETON_KEY); 8479 FREE_LOCK(ump); 8480 return; 8481 } 8482 /* 8483 * If we're not journaling we can free the indirect now. 8484 */ 8485 dbn = dbtofsb(fs, dbn); 8486 CTR3(KTR_SUJ, 8487 "indir_trunc 2: ino %jd blkno %jd size %d", 8488 freeblks->fb_inum, dbn, fs->fs_bsize); 8489 ffs_blkfree(ump, fs, freeblks->fb_devvp, dbn, fs->fs_bsize, 8490 freeblks->fb_inum, freeblks->fb_vtype, NULL, SINGLETON_KEY); 8491 /* Non SUJ softdep does single-threaded truncations. */ 8492 if (freework->fw_blkno == dbn) { 8493 freework->fw_state |= ALLCOMPLETE; 8494 ACQUIRE_LOCK(ump); 8495 handle_written_freework(freework); 8496 FREE_LOCK(ump); 8497 } 8498 return; 8499 } 8500 8501 /* 8502 * Cancel an allocindir when it is removed via truncation. When bp is not 8503 * NULL the indirect never appeared on disk and is scheduled to be freed 8504 * independently of the indir so we can more easily track journal work. 8505 */ 8506 static void 8507 cancel_allocindir( 8508 struct allocindir *aip, 8509 struct buf *bp, 8510 struct freeblks *freeblks, 8511 int trunc) 8512 { 8513 struct indirdep *indirdep; 8514 struct freefrag *freefrag; 8515 struct newblk *newblk; 8516 8517 newblk = (struct newblk *)aip; 8518 LIST_REMOVE(aip, ai_next); 8519 /* 8520 * We must eliminate the pointer in bp if it must be freed on its 8521 * own due to partial truncate or pending journal work. 8522 */ 8523 if (bp && (trunc || newblk->nb_jnewblk)) { 8524 /* 8525 * Clear the pointer and mark the aip to be freed 8526 * directly if it never existed on disk. 8527 */ 8528 aip->ai_state |= DELAYEDFREE; 8529 indirdep = aip->ai_indirdep; 8530 if (indirdep->ir_state & UFS1FMT) 8531 ((ufs1_daddr_t *)bp->b_data)[aip->ai_offset] = 0; 8532 else 8533 ((ufs2_daddr_t *)bp->b_data)[aip->ai_offset] = 0; 8534 } 8535 /* 8536 * When truncating the previous pointer will be freed via 8537 * savedbp. Eliminate the freefrag which would dup free. 8538 */ 8539 if (trunc && (freefrag = newblk->nb_freefrag) != NULL) { 8540 newblk->nb_freefrag = NULL; 8541 if (freefrag->ff_jdep) 8542 cancel_jfreefrag( 8543 WK_JFREEFRAG(freefrag->ff_jdep)); 8544 jwork_move(&freeblks->fb_jwork, &freefrag->ff_jwork); 8545 WORKITEM_FREE(freefrag, D_FREEFRAG); 8546 } 8547 /* 8548 * If the journal hasn't been written the jnewblk must be passed 8549 * to the call to ffs_blkfree that reclaims the space. We accomplish 8550 * this by leaving the journal dependency on the newblk to be freed 8551 * when a freework is created in handle_workitem_freeblocks(). 8552 */ 8553 cancel_newblk(newblk, NULL, &freeblks->fb_jwork); 8554 WORKLIST_INSERT(&freeblks->fb_freeworkhd, &newblk->nb_list); 8555 } 8556 8557 /* 8558 * Create the mkdir dependencies for . and .. in a new directory. Link them 8559 * in to a newdirblk so any subsequent additions are tracked properly. The 8560 * caller is responsible for adding the mkdir1 dependency to the journal 8561 * and updating id_mkdiradd. This function returns with the per-filesystem 8562 * lock held. 8563 */ 8564 static struct mkdir * 8565 setup_newdir( 8566 struct diradd *dap, 8567 ino_t newinum, 8568 ino_t dinum, 8569 struct buf *newdirbp, 8570 struct mkdir **mkdirp) 8571 { 8572 struct newblk *newblk; 8573 struct pagedep *pagedep; 8574 struct inodedep *inodedep; 8575 struct newdirblk *newdirblk; 8576 struct mkdir *mkdir1, *mkdir2; 8577 struct worklist *wk; 8578 struct jaddref *jaddref; 8579 struct ufsmount *ump; 8580 struct mount *mp; 8581 8582 mp = dap->da_list.wk_mp; 8583 ump = VFSTOUFS(mp); 8584 newdirblk = malloc(sizeof(struct newdirblk), M_NEWDIRBLK, 8585 M_SOFTDEP_FLAGS); 8586 workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp); 8587 LIST_INIT(&newdirblk->db_mkdir); 8588 mkdir1 = malloc(sizeof(struct mkdir), M_MKDIR, M_SOFTDEP_FLAGS); 8589 workitem_alloc(&mkdir1->md_list, D_MKDIR, mp); 8590 mkdir1->md_state = ATTACHED | MKDIR_BODY; 8591 mkdir1->md_diradd = dap; 8592 mkdir1->md_jaddref = NULL; 8593 mkdir2 = malloc(sizeof(struct mkdir), M_MKDIR, M_SOFTDEP_FLAGS); 8594 workitem_alloc(&mkdir2->md_list, D_MKDIR, mp); 8595 mkdir2->md_state = ATTACHED | MKDIR_PARENT; 8596 mkdir2->md_diradd = dap; 8597 mkdir2->md_jaddref = NULL; 8598 if (MOUNTEDSUJ(mp) == 0) { 8599 mkdir1->md_state |= DEPCOMPLETE; 8600 mkdir2->md_state |= DEPCOMPLETE; 8601 } 8602 /* 8603 * Dependency on "." and ".." being written to disk. 8604 */ 8605 mkdir1->md_buf = newdirbp; 8606 ACQUIRE_LOCK(VFSTOUFS(mp)); 8607 LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir1, md_mkdirs); 8608 /* 8609 * We must link the pagedep, allocdirect, and newdirblk for 8610 * the initial file page so the pointer to the new directory 8611 * is not written until the directory contents are live and 8612 * any subsequent additions are not marked live until the 8613 * block is reachable via the inode. 8614 */ 8615 if (pagedep_lookup(mp, newdirbp, newinum, 0, 0, &pagedep) == 0) 8616 panic("setup_newdir: lost pagedep"); 8617 LIST_FOREACH(wk, &newdirbp->b_dep, wk_list) 8618 if (wk->wk_type == D_ALLOCDIRECT) 8619 break; 8620 if (wk == NULL) 8621 panic("setup_newdir: lost allocdirect"); 8622 if (pagedep->pd_state & NEWBLOCK) 8623 panic("setup_newdir: NEWBLOCK already set"); 8624 newblk = WK_NEWBLK(wk); 8625 pagedep->pd_state |= NEWBLOCK; 8626 pagedep->pd_newdirblk = newdirblk; 8627 newdirblk->db_pagedep = pagedep; 8628 WORKLIST_INSERT(&newblk->nb_newdirblk, &newdirblk->db_list); 8629 WORKLIST_INSERT(&newdirblk->db_mkdir, &mkdir1->md_list); 8630 /* 8631 * Look up the inodedep for the parent directory so that we 8632 * can link mkdir2 into the pending dotdot jaddref or 8633 * the inode write if there is none. If the inode is 8634 * ALLCOMPLETE and no jaddref is present all dependencies have 8635 * been satisfied and mkdir2 can be freed. 8636 */ 8637 inodedep_lookup(mp, dinum, 0, &inodedep); 8638 if (MOUNTEDSUJ(mp)) { 8639 if (inodedep == NULL) 8640 panic("setup_newdir: Lost parent."); 8641 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 8642 inoreflst); 8643 KASSERT(jaddref != NULL && jaddref->ja_parent == newinum && 8644 (jaddref->ja_state & MKDIR_PARENT), 8645 ("setup_newdir: bad dotdot jaddref %p", jaddref)); 8646 LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir2, md_mkdirs); 8647 mkdir2->md_jaddref = jaddref; 8648 jaddref->ja_mkdir = mkdir2; 8649 } else if (inodedep == NULL || 8650 (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) { 8651 dap->da_state &= ~MKDIR_PARENT; 8652 WORKITEM_FREE(mkdir2, D_MKDIR); 8653 mkdir2 = NULL; 8654 } else { 8655 LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir2, md_mkdirs); 8656 WORKLIST_INSERT(&inodedep->id_bufwait, &mkdir2->md_list); 8657 } 8658 *mkdirp = mkdir2; 8659 8660 return (mkdir1); 8661 } 8662 8663 /* 8664 * Directory entry addition dependencies. 8665 * 8666 * When adding a new directory entry, the inode (with its incremented link 8667 * count) must be written to disk before the directory entry's pointer to it. 8668 * Also, if the inode is newly allocated, the corresponding freemap must be 8669 * updated (on disk) before the directory entry's pointer. These requirements 8670 * are met via undo/redo on the directory entry's pointer, which consists 8671 * simply of the inode number. 8672 * 8673 * As directory entries are added and deleted, the free space within a 8674 * directory block can become fragmented. The ufs filesystem will compact 8675 * a fragmented directory block to make space for a new entry. When this 8676 * occurs, the offsets of previously added entries change. Any "diradd" 8677 * dependency structures corresponding to these entries must be updated with 8678 * the new offsets. 8679 */ 8680 8681 /* 8682 * This routine is called after the in-memory inode's link 8683 * count has been incremented, but before the directory entry's 8684 * pointer to the inode has been set. 8685 */ 8686 int 8687 softdep_setup_directory_add( 8688 struct buf *bp, /* buffer containing directory block */ 8689 struct inode *dp, /* inode for directory */ 8690 off_t diroffset, /* offset of new entry in directory */ 8691 ino_t newinum, /* inode referenced by new directory entry */ 8692 struct buf *newdirbp, /* non-NULL => contents of new mkdir */ 8693 int isnewblk) /* entry is in a newly allocated block */ 8694 { 8695 int offset; /* offset of new entry within directory block */ 8696 ufs_lbn_t lbn; /* block in directory containing new entry */ 8697 struct fs *fs; 8698 struct diradd *dap; 8699 struct newblk *newblk; 8700 struct pagedep *pagedep; 8701 struct inodedep *inodedep; 8702 struct newdirblk *newdirblk; 8703 struct mkdir *mkdir1, *mkdir2; 8704 struct jaddref *jaddref; 8705 struct ufsmount *ump; 8706 struct mount *mp; 8707 int isindir; 8708 8709 mp = ITOVFS(dp); 8710 ump = VFSTOUFS(mp); 8711 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 8712 ("softdep_setup_directory_add called on non-softdep filesystem")); 8713 /* 8714 * Whiteouts have no dependencies. 8715 */ 8716 if (newinum == UFS_WINO) { 8717 if (newdirbp != NULL) 8718 bdwrite(newdirbp); 8719 return (0); 8720 } 8721 jaddref = NULL; 8722 mkdir1 = mkdir2 = NULL; 8723 fs = ump->um_fs; 8724 lbn = lblkno(fs, diroffset); 8725 offset = blkoff(fs, diroffset); 8726 dap = malloc(sizeof(struct diradd), M_DIRADD, 8727 M_SOFTDEP_FLAGS|M_ZERO); 8728 workitem_alloc(&dap->da_list, D_DIRADD, mp); 8729 dap->da_offset = offset; 8730 dap->da_newinum = newinum; 8731 dap->da_state = ATTACHED; 8732 LIST_INIT(&dap->da_jwork); 8733 isindir = bp->b_lblkno >= UFS_NDADDR; 8734 newdirblk = NULL; 8735 if (isnewblk && 8736 (isindir ? blkoff(fs, diroffset) : fragoff(fs, diroffset)) == 0) { 8737 newdirblk = malloc(sizeof(struct newdirblk), 8738 M_NEWDIRBLK, M_SOFTDEP_FLAGS); 8739 workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp); 8740 LIST_INIT(&newdirblk->db_mkdir); 8741 } 8742 /* 8743 * If we're creating a new directory setup the dependencies and set 8744 * the dap state to wait for them. Otherwise it's COMPLETE and 8745 * we can move on. 8746 */ 8747 if (newdirbp == NULL) { 8748 dap->da_state |= DEPCOMPLETE; 8749 ACQUIRE_LOCK(ump); 8750 } else { 8751 dap->da_state |= MKDIR_BODY | MKDIR_PARENT; 8752 mkdir1 = setup_newdir(dap, newinum, dp->i_number, newdirbp, 8753 &mkdir2); 8754 } 8755 /* 8756 * Link into parent directory pagedep to await its being written. 8757 */ 8758 pagedep_lookup(mp, bp, dp->i_number, lbn, DEPALLOC, &pagedep); 8759 #ifdef INVARIANTS 8760 if (diradd_lookup(pagedep, offset) != NULL) 8761 panic("softdep_setup_directory_add: %p already at off %d\n", 8762 diradd_lookup(pagedep, offset), offset); 8763 #endif 8764 dap->da_pagedep = pagedep; 8765 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], dap, 8766 da_pdlist); 8767 inodedep_lookup(mp, newinum, DEPALLOC, &inodedep); 8768 /* 8769 * If we're journaling, link the diradd into the jaddref so it 8770 * may be completed after the journal entry is written. Otherwise, 8771 * link the diradd into its inodedep. If the inode is not yet 8772 * written place it on the bufwait list, otherwise do the post-inode 8773 * write processing to put it on the id_pendinghd list. 8774 */ 8775 if (MOUNTEDSUJ(mp)) { 8776 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 8777 inoreflst); 8778 KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number, 8779 ("softdep_setup_directory_add: bad jaddref %p", jaddref)); 8780 jaddref->ja_diroff = diroffset; 8781 jaddref->ja_diradd = dap; 8782 add_to_journal(&jaddref->ja_list); 8783 } else if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) 8784 diradd_inode_written(dap, inodedep); 8785 else 8786 WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list); 8787 /* 8788 * Add the journal entries for . and .. links now that the primary 8789 * link is written. 8790 */ 8791 if (mkdir1 != NULL && MOUNTEDSUJ(mp)) { 8792 jaddref = (struct jaddref *)TAILQ_PREV(&jaddref->ja_ref, 8793 inoreflst, if_deps); 8794 KASSERT(jaddref != NULL && 8795 jaddref->ja_ino == jaddref->ja_parent && 8796 (jaddref->ja_state & MKDIR_BODY), 8797 ("softdep_setup_directory_add: bad dot jaddref %p", 8798 jaddref)); 8799 mkdir1->md_jaddref = jaddref; 8800 jaddref->ja_mkdir = mkdir1; 8801 /* 8802 * It is important that the dotdot journal entry 8803 * is added prior to the dot entry since dot writes 8804 * both the dot and dotdot links. These both must 8805 * be added after the primary link for the journal 8806 * to remain consistent. 8807 */ 8808 add_to_journal(&mkdir2->md_jaddref->ja_list); 8809 add_to_journal(&jaddref->ja_list); 8810 } 8811 /* 8812 * If we are adding a new directory remember this diradd so that if 8813 * we rename it we can keep the dot and dotdot dependencies. If 8814 * we are adding a new name for an inode that has a mkdiradd we 8815 * must be in rename and we have to move the dot and dotdot 8816 * dependencies to this new name. The old name is being orphaned 8817 * soon. 8818 */ 8819 if (mkdir1 != NULL) { 8820 if (inodedep->id_mkdiradd != NULL) 8821 panic("softdep_setup_directory_add: Existing mkdir"); 8822 inodedep->id_mkdiradd = dap; 8823 } else if (inodedep->id_mkdiradd) 8824 merge_diradd(inodedep, dap); 8825 if (newdirblk != NULL) { 8826 /* 8827 * There is nothing to do if we are already tracking 8828 * this block. 8829 */ 8830 if ((pagedep->pd_state & NEWBLOCK) != 0) { 8831 WORKITEM_FREE(newdirblk, D_NEWDIRBLK); 8832 FREE_LOCK(ump); 8833 return (0); 8834 } 8835 if (newblk_lookup(mp, dbtofsb(fs, bp->b_blkno), 0, &newblk) 8836 == 0) 8837 panic("softdep_setup_directory_add: lost entry"); 8838 WORKLIST_INSERT(&newblk->nb_newdirblk, &newdirblk->db_list); 8839 pagedep->pd_state |= NEWBLOCK; 8840 pagedep->pd_newdirblk = newdirblk; 8841 newdirblk->db_pagedep = pagedep; 8842 FREE_LOCK(ump); 8843 /* 8844 * If we extended into an indirect signal direnter to sync. 8845 */ 8846 if (isindir) 8847 return (1); 8848 return (0); 8849 } 8850 FREE_LOCK(ump); 8851 return (0); 8852 } 8853 8854 /* 8855 * This procedure is called to change the offset of a directory 8856 * entry when compacting a directory block which must be owned 8857 * exclusively by the caller. Note that the actual entry movement 8858 * must be done in this procedure to ensure that no I/O completions 8859 * occur while the move is in progress. 8860 */ 8861 void 8862 softdep_change_directoryentry_offset( 8863 struct buf *bp, /* Buffer holding directory block. */ 8864 struct inode *dp, /* inode for directory */ 8865 caddr_t base, /* address of dp->i_offset */ 8866 caddr_t oldloc, /* address of old directory location */ 8867 caddr_t newloc, /* address of new directory location */ 8868 int entrysize) /* size of directory entry */ 8869 { 8870 int offset, oldoffset, newoffset; 8871 struct pagedep *pagedep; 8872 struct jmvref *jmvref; 8873 struct diradd *dap; 8874 struct direct *de; 8875 struct mount *mp; 8876 struct ufsmount *ump; 8877 ufs_lbn_t lbn; 8878 int flags; 8879 8880 mp = ITOVFS(dp); 8881 ump = VFSTOUFS(mp); 8882 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 8883 ("softdep_change_directoryentry_offset called on " 8884 "non-softdep filesystem")); 8885 de = (struct direct *)oldloc; 8886 jmvref = NULL; 8887 flags = 0; 8888 /* 8889 * Moves are always journaled as it would be too complex to 8890 * determine if any affected adds or removes are present in the 8891 * journal. 8892 */ 8893 if (MOUNTEDSUJ(mp)) { 8894 flags = DEPALLOC; 8895 jmvref = newjmvref(dp, de->d_ino, 8896 I_OFFSET(dp) + (oldloc - base), 8897 I_OFFSET(dp) + (newloc - base)); 8898 } 8899 lbn = lblkno(ump->um_fs, I_OFFSET(dp)); 8900 offset = blkoff(ump->um_fs, I_OFFSET(dp)); 8901 oldoffset = offset + (oldloc - base); 8902 newoffset = offset + (newloc - base); 8903 ACQUIRE_LOCK(ump); 8904 if (pagedep_lookup(mp, bp, dp->i_number, lbn, flags, &pagedep) == 0) 8905 goto done; 8906 dap = diradd_lookup(pagedep, oldoffset); 8907 if (dap) { 8908 dap->da_offset = newoffset; 8909 newoffset = DIRADDHASH(newoffset); 8910 oldoffset = DIRADDHASH(oldoffset); 8911 if ((dap->da_state & ALLCOMPLETE) != ALLCOMPLETE && 8912 newoffset != oldoffset) { 8913 LIST_REMOVE(dap, da_pdlist); 8914 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[newoffset], 8915 dap, da_pdlist); 8916 } 8917 } 8918 done: 8919 if (jmvref) { 8920 jmvref->jm_pagedep = pagedep; 8921 LIST_INSERT_HEAD(&pagedep->pd_jmvrefhd, jmvref, jm_deps); 8922 add_to_journal(&jmvref->jm_list); 8923 } 8924 bcopy(oldloc, newloc, entrysize); 8925 FREE_LOCK(ump); 8926 } 8927 8928 /* 8929 * Move the mkdir dependencies and journal work from one diradd to another 8930 * when renaming a directory. The new name must depend on the mkdir deps 8931 * completing as the old name did. Directories can only have one valid link 8932 * at a time so one must be canonical. 8933 */ 8934 static void 8935 merge_diradd(struct inodedep *inodedep, struct diradd *newdap) 8936 { 8937 struct diradd *olddap; 8938 struct mkdir *mkdir, *nextmd; 8939 struct ufsmount *ump; 8940 short state; 8941 8942 olddap = inodedep->id_mkdiradd; 8943 inodedep->id_mkdiradd = newdap; 8944 if ((olddap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) { 8945 newdap->da_state &= ~DEPCOMPLETE; 8946 ump = VFSTOUFS(inodedep->id_list.wk_mp); 8947 for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir; 8948 mkdir = nextmd) { 8949 nextmd = LIST_NEXT(mkdir, md_mkdirs); 8950 if (mkdir->md_diradd != olddap) 8951 continue; 8952 mkdir->md_diradd = newdap; 8953 state = mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY); 8954 newdap->da_state |= state; 8955 olddap->da_state &= ~state; 8956 if ((olddap->da_state & 8957 (MKDIR_PARENT | MKDIR_BODY)) == 0) 8958 break; 8959 } 8960 if ((olddap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) 8961 panic("merge_diradd: unfound ref"); 8962 } 8963 /* 8964 * Any mkdir related journal items are not safe to be freed until 8965 * the new name is stable. 8966 */ 8967 jwork_move(&newdap->da_jwork, &olddap->da_jwork); 8968 olddap->da_state |= DEPCOMPLETE; 8969 complete_diradd(olddap); 8970 } 8971 8972 /* 8973 * Move the diradd to the pending list when all diradd dependencies are 8974 * complete. 8975 */ 8976 static void 8977 complete_diradd(struct diradd *dap) 8978 { 8979 struct pagedep *pagedep; 8980 8981 if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) { 8982 if (dap->da_state & DIRCHG) 8983 pagedep = dap->da_previous->dm_pagedep; 8984 else 8985 pagedep = dap->da_pagedep; 8986 LIST_REMOVE(dap, da_pdlist); 8987 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist); 8988 } 8989 } 8990 8991 /* 8992 * Cancel a diradd when a dirrem overlaps with it. We must cancel the journal 8993 * add entries and conditionally journal the remove. 8994 */ 8995 static void 8996 cancel_diradd( 8997 struct diradd *dap, 8998 struct dirrem *dirrem, 8999 struct jremref *jremref, 9000 struct jremref *dotremref, 9001 struct jremref *dotdotremref) 9002 { 9003 struct inodedep *inodedep; 9004 struct jaddref *jaddref; 9005 struct inoref *inoref; 9006 struct ufsmount *ump; 9007 struct mkdir *mkdir; 9008 9009 /* 9010 * If no remove references were allocated we're on a non-journaled 9011 * filesystem and can skip the cancel step. 9012 */ 9013 if (jremref == NULL) { 9014 free_diradd(dap, NULL); 9015 return; 9016 } 9017 /* 9018 * Cancel the primary name an free it if it does not require 9019 * journaling. 9020 */ 9021 if (inodedep_lookup(dap->da_list.wk_mp, dap->da_newinum, 9022 0, &inodedep) != 0) { 9023 /* Abort the addref that reference this diradd. */ 9024 TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) { 9025 if (inoref->if_list.wk_type != D_JADDREF) 9026 continue; 9027 jaddref = (struct jaddref *)inoref; 9028 if (jaddref->ja_diradd != dap) 9029 continue; 9030 if (cancel_jaddref(jaddref, inodedep, 9031 &dirrem->dm_jwork) == 0) { 9032 free_jremref(jremref); 9033 jremref = NULL; 9034 } 9035 break; 9036 } 9037 } 9038 /* 9039 * Cancel subordinate names and free them if they do not require 9040 * journaling. 9041 */ 9042 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) { 9043 ump = VFSTOUFS(dap->da_list.wk_mp); 9044 LIST_FOREACH(mkdir, &ump->softdep_mkdirlisthd, md_mkdirs) { 9045 if (mkdir->md_diradd != dap) 9046 continue; 9047 if ((jaddref = mkdir->md_jaddref) == NULL) 9048 continue; 9049 mkdir->md_jaddref = NULL; 9050 if (mkdir->md_state & MKDIR_PARENT) { 9051 if (cancel_jaddref(jaddref, NULL, 9052 &dirrem->dm_jwork) == 0) { 9053 free_jremref(dotdotremref); 9054 dotdotremref = NULL; 9055 } 9056 } else { 9057 if (cancel_jaddref(jaddref, inodedep, 9058 &dirrem->dm_jwork) == 0) { 9059 free_jremref(dotremref); 9060 dotremref = NULL; 9061 } 9062 } 9063 } 9064 } 9065 9066 if (jremref) 9067 journal_jremref(dirrem, jremref, inodedep); 9068 if (dotremref) 9069 journal_jremref(dirrem, dotremref, inodedep); 9070 if (dotdotremref) 9071 journal_jremref(dirrem, dotdotremref, NULL); 9072 jwork_move(&dirrem->dm_jwork, &dap->da_jwork); 9073 free_diradd(dap, &dirrem->dm_jwork); 9074 } 9075 9076 /* 9077 * Free a diradd dependency structure. 9078 */ 9079 static void 9080 free_diradd(struct diradd *dap, struct workhead *wkhd) 9081 { 9082 struct dirrem *dirrem; 9083 struct pagedep *pagedep; 9084 struct inodedep *inodedep; 9085 struct mkdir *mkdir, *nextmd; 9086 struct ufsmount *ump; 9087 9088 ump = VFSTOUFS(dap->da_list.wk_mp); 9089 LOCK_OWNED(ump); 9090 LIST_REMOVE(dap, da_pdlist); 9091 if (dap->da_state & ONWORKLIST) 9092 WORKLIST_REMOVE(&dap->da_list); 9093 if ((dap->da_state & DIRCHG) == 0) { 9094 pagedep = dap->da_pagedep; 9095 } else { 9096 dirrem = dap->da_previous; 9097 pagedep = dirrem->dm_pagedep; 9098 dirrem->dm_dirinum = pagedep->pd_ino; 9099 dirrem->dm_state |= COMPLETE; 9100 if (LIST_EMPTY(&dirrem->dm_jremrefhd)) 9101 add_to_worklist(&dirrem->dm_list, 0); 9102 } 9103 if (inodedep_lookup(pagedep->pd_list.wk_mp, dap->da_newinum, 9104 0, &inodedep) != 0) 9105 if (inodedep->id_mkdiradd == dap) 9106 inodedep->id_mkdiradd = NULL; 9107 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) { 9108 for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir; 9109 mkdir = nextmd) { 9110 nextmd = LIST_NEXT(mkdir, md_mkdirs); 9111 if (mkdir->md_diradd != dap) 9112 continue; 9113 dap->da_state &= 9114 ~(mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY)); 9115 LIST_REMOVE(mkdir, md_mkdirs); 9116 if (mkdir->md_state & ONWORKLIST) 9117 WORKLIST_REMOVE(&mkdir->md_list); 9118 if (mkdir->md_jaddref != NULL) 9119 panic("free_diradd: Unexpected jaddref"); 9120 WORKITEM_FREE(mkdir, D_MKDIR); 9121 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0) 9122 break; 9123 } 9124 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) 9125 panic("free_diradd: unfound ref"); 9126 } 9127 if (inodedep) 9128 free_inodedep(inodedep); 9129 /* 9130 * Free any journal segments waiting for the directory write. 9131 */ 9132 handle_jwork(&dap->da_jwork); 9133 WORKITEM_FREE(dap, D_DIRADD); 9134 } 9135 9136 /* 9137 * Directory entry removal dependencies. 9138 * 9139 * When removing a directory entry, the entry's inode pointer must be 9140 * zero'ed on disk before the corresponding inode's link count is decremented 9141 * (possibly freeing the inode for re-use). This dependency is handled by 9142 * updating the directory entry but delaying the inode count reduction until 9143 * after the directory block has been written to disk. After this point, the 9144 * inode count can be decremented whenever it is convenient. 9145 */ 9146 9147 /* 9148 * This routine should be called immediately after removing 9149 * a directory entry. The inode's link count should not be 9150 * decremented by the calling procedure -- the soft updates 9151 * code will do this task when it is safe. 9152 */ 9153 void 9154 softdep_setup_remove( 9155 struct buf *bp, /* buffer containing directory block */ 9156 struct inode *dp, /* inode for the directory being modified */ 9157 struct inode *ip, /* inode for directory entry being removed */ 9158 int isrmdir) /* indicates if doing RMDIR */ 9159 { 9160 struct dirrem *dirrem, *prevdirrem; 9161 struct inodedep *inodedep; 9162 struct ufsmount *ump; 9163 int direct; 9164 9165 ump = ITOUMP(ip); 9166 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 9167 ("softdep_setup_remove called on non-softdep filesystem")); 9168 /* 9169 * Allocate a new dirrem if appropriate and ACQUIRE_LOCK. We want 9170 * newdirrem() to setup the full directory remove which requires 9171 * isrmdir > 1. 9172 */ 9173 dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem); 9174 /* 9175 * Add the dirrem to the inodedep's pending remove list for quick 9176 * discovery later. 9177 */ 9178 if (inodedep_lookup(UFSTOVFS(ump), ip->i_number, 0, &inodedep) == 0) 9179 panic("softdep_setup_remove: Lost inodedep."); 9180 KASSERT((inodedep->id_state & UNLINKED) == 0, ("inode unlinked")); 9181 dirrem->dm_state |= ONDEPLIST; 9182 LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext); 9183 9184 /* 9185 * If the COMPLETE flag is clear, then there were no active 9186 * entries and we want to roll back to a zeroed entry until 9187 * the new inode is committed to disk. If the COMPLETE flag is 9188 * set then we have deleted an entry that never made it to 9189 * disk. If the entry we deleted resulted from a name change, 9190 * then the old name still resides on disk. We cannot delete 9191 * its inode (returned to us in prevdirrem) until the zeroed 9192 * directory entry gets to disk. The new inode has never been 9193 * referenced on the disk, so can be deleted immediately. 9194 */ 9195 if ((dirrem->dm_state & COMPLETE) == 0) { 9196 LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, dirrem, 9197 dm_next); 9198 FREE_LOCK(ump); 9199 } else { 9200 if (prevdirrem != NULL) 9201 LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, 9202 prevdirrem, dm_next); 9203 dirrem->dm_dirinum = dirrem->dm_pagedep->pd_ino; 9204 direct = LIST_EMPTY(&dirrem->dm_jremrefhd); 9205 FREE_LOCK(ump); 9206 if (direct) 9207 handle_workitem_remove(dirrem, 0); 9208 } 9209 } 9210 9211 /* 9212 * Check for an entry matching 'offset' on both the pd_dirraddhd list and the 9213 * pd_pendinghd list of a pagedep. 9214 */ 9215 static struct diradd * 9216 diradd_lookup(struct pagedep *pagedep, int offset) 9217 { 9218 struct diradd *dap; 9219 9220 LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(offset)], da_pdlist) 9221 if (dap->da_offset == offset) 9222 return (dap); 9223 LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist) 9224 if (dap->da_offset == offset) 9225 return (dap); 9226 return (NULL); 9227 } 9228 9229 /* 9230 * Search for a .. diradd dependency in a directory that is being removed. 9231 * If the directory was renamed to a new parent we have a diradd rather 9232 * than a mkdir for the .. entry. We need to cancel it now before 9233 * it is found in truncate(). 9234 */ 9235 static struct jremref * 9236 cancel_diradd_dotdot(struct inode *ip, 9237 struct dirrem *dirrem, 9238 struct jremref *jremref) 9239 { 9240 struct pagedep *pagedep; 9241 struct diradd *dap; 9242 struct worklist *wk; 9243 9244 if (pagedep_lookup(ITOVFS(ip), NULL, ip->i_number, 0, 0, &pagedep) == 0) 9245 return (jremref); 9246 dap = diradd_lookup(pagedep, DOTDOT_OFFSET); 9247 if (dap == NULL) 9248 return (jremref); 9249 cancel_diradd(dap, dirrem, jremref, NULL, NULL); 9250 /* 9251 * Mark any journal work as belonging to the parent so it is freed 9252 * with the .. reference. 9253 */ 9254 LIST_FOREACH(wk, &dirrem->dm_jwork, wk_list) 9255 wk->wk_state |= MKDIR_PARENT; 9256 return (NULL); 9257 } 9258 9259 /* 9260 * Cancel the MKDIR_PARENT mkdir component of a diradd when we're going to 9261 * replace it with a dirrem/diradd pair as a result of re-parenting a 9262 * directory. This ensures that we don't simultaneously have a mkdir and 9263 * a diradd for the same .. entry. 9264 */ 9265 static struct jremref * 9266 cancel_mkdir_dotdot(struct inode *ip, 9267 struct dirrem *dirrem, 9268 struct jremref *jremref) 9269 { 9270 struct inodedep *inodedep; 9271 struct jaddref *jaddref; 9272 struct ufsmount *ump; 9273 struct mkdir *mkdir; 9274 struct diradd *dap; 9275 struct mount *mp; 9276 9277 mp = ITOVFS(ip); 9278 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) 9279 return (jremref); 9280 dap = inodedep->id_mkdiradd; 9281 if (dap == NULL || (dap->da_state & MKDIR_PARENT) == 0) 9282 return (jremref); 9283 ump = VFSTOUFS(inodedep->id_list.wk_mp); 9284 for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir; 9285 mkdir = LIST_NEXT(mkdir, md_mkdirs)) 9286 if (mkdir->md_diradd == dap && mkdir->md_state & MKDIR_PARENT) 9287 break; 9288 if (mkdir == NULL) 9289 panic("cancel_mkdir_dotdot: Unable to find mkdir\n"); 9290 if ((jaddref = mkdir->md_jaddref) != NULL) { 9291 mkdir->md_jaddref = NULL; 9292 jaddref->ja_state &= ~MKDIR_PARENT; 9293 if (inodedep_lookup(mp, jaddref->ja_ino, 0, &inodedep) == 0) 9294 panic("cancel_mkdir_dotdot: Lost parent inodedep"); 9295 if (cancel_jaddref(jaddref, inodedep, &dirrem->dm_jwork)) { 9296 journal_jremref(dirrem, jremref, inodedep); 9297 jremref = NULL; 9298 } 9299 } 9300 if (mkdir->md_state & ONWORKLIST) 9301 WORKLIST_REMOVE(&mkdir->md_list); 9302 mkdir->md_state |= ALLCOMPLETE; 9303 complete_mkdir(mkdir); 9304 return (jremref); 9305 } 9306 9307 static void 9308 journal_jremref(struct dirrem *dirrem, 9309 struct jremref *jremref, 9310 struct inodedep *inodedep) 9311 { 9312 9313 if (inodedep == NULL) 9314 if (inodedep_lookup(jremref->jr_list.wk_mp, 9315 jremref->jr_ref.if_ino, 0, &inodedep) == 0) 9316 panic("journal_jremref: Lost inodedep"); 9317 LIST_INSERT_HEAD(&dirrem->dm_jremrefhd, jremref, jr_deps); 9318 TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jremref->jr_ref, if_deps); 9319 add_to_journal(&jremref->jr_list); 9320 } 9321 9322 static void 9323 dirrem_journal( 9324 struct dirrem *dirrem, 9325 struct jremref *jremref, 9326 struct jremref *dotremref, 9327 struct jremref *dotdotremref) 9328 { 9329 struct inodedep *inodedep; 9330 9331 if (inodedep_lookup(jremref->jr_list.wk_mp, jremref->jr_ref.if_ino, 0, 9332 &inodedep) == 0) 9333 panic("dirrem_journal: Lost inodedep"); 9334 journal_jremref(dirrem, jremref, inodedep); 9335 if (dotremref) 9336 journal_jremref(dirrem, dotremref, inodedep); 9337 if (dotdotremref) 9338 journal_jremref(dirrem, dotdotremref, NULL); 9339 } 9340 9341 /* 9342 * Allocate a new dirrem if appropriate and return it along with 9343 * its associated pagedep. Called without a lock, returns with lock. 9344 */ 9345 static struct dirrem * 9346 newdirrem( 9347 struct buf *bp, /* buffer containing directory block */ 9348 struct inode *dp, /* inode for the directory being modified */ 9349 struct inode *ip, /* inode for directory entry being removed */ 9350 int isrmdir, /* indicates if doing RMDIR */ 9351 struct dirrem **prevdirremp) /* previously referenced inode, if any */ 9352 { 9353 int offset; 9354 ufs_lbn_t lbn; 9355 struct diradd *dap; 9356 struct dirrem *dirrem; 9357 struct pagedep *pagedep; 9358 struct jremref *jremref; 9359 struct jremref *dotremref; 9360 struct jremref *dotdotremref; 9361 struct vnode *dvp; 9362 struct ufsmount *ump; 9363 9364 /* 9365 * Whiteouts have no deletion dependencies. 9366 */ 9367 if (ip == NULL) 9368 panic("newdirrem: whiteout"); 9369 dvp = ITOV(dp); 9370 ump = ITOUMP(dp); 9371 9372 /* 9373 * If the system is over its limit and our filesystem is 9374 * responsible for more than our share of that usage and 9375 * we are not a snapshot, request some inodedep cleanup. 9376 * Limiting the number of dirrem structures will also limit 9377 * the number of freefile and freeblks structures. 9378 */ 9379 ACQUIRE_LOCK(ump); 9380 if (!IS_SNAPSHOT(ip) && softdep_excess_items(ump, D_DIRREM)) 9381 schedule_cleanup(UFSTOVFS(ump)); 9382 else 9383 FREE_LOCK(ump); 9384 dirrem = malloc(sizeof(struct dirrem), M_DIRREM, M_SOFTDEP_FLAGS | 9385 M_ZERO); 9386 workitem_alloc(&dirrem->dm_list, D_DIRREM, dvp->v_mount); 9387 LIST_INIT(&dirrem->dm_jremrefhd); 9388 LIST_INIT(&dirrem->dm_jwork); 9389 dirrem->dm_state = isrmdir ? RMDIR : 0; 9390 dirrem->dm_oldinum = ip->i_number; 9391 *prevdirremp = NULL; 9392 /* 9393 * Allocate remove reference structures to track journal write 9394 * dependencies. We will always have one for the link and 9395 * when doing directories we will always have one more for dot. 9396 * When renaming a directory we skip the dotdot link change so 9397 * this is not needed. 9398 */ 9399 jremref = dotremref = dotdotremref = NULL; 9400 if (DOINGSUJ(dvp)) { 9401 if (isrmdir) { 9402 jremref = newjremref(dirrem, dp, ip, I_OFFSET(dp), 9403 ip->i_effnlink + 2); 9404 dotremref = newjremref(dirrem, ip, ip, DOT_OFFSET, 9405 ip->i_effnlink + 1); 9406 dotdotremref = newjremref(dirrem, ip, dp, DOTDOT_OFFSET, 9407 dp->i_effnlink + 1); 9408 dotdotremref->jr_state |= MKDIR_PARENT; 9409 } else 9410 jremref = newjremref(dirrem, dp, ip, I_OFFSET(dp), 9411 ip->i_effnlink + 1); 9412 } 9413 ACQUIRE_LOCK(ump); 9414 lbn = lblkno(ump->um_fs, I_OFFSET(dp)); 9415 offset = blkoff(ump->um_fs, I_OFFSET(dp)); 9416 pagedep_lookup(UFSTOVFS(ump), bp, dp->i_number, lbn, DEPALLOC, 9417 &pagedep); 9418 dirrem->dm_pagedep = pagedep; 9419 dirrem->dm_offset = offset; 9420 /* 9421 * If we're renaming a .. link to a new directory, cancel any 9422 * existing MKDIR_PARENT mkdir. If it has already been canceled 9423 * the jremref is preserved for any potential diradd in this 9424 * location. This can not coincide with a rmdir. 9425 */ 9426 if (I_OFFSET(dp) == DOTDOT_OFFSET) { 9427 if (isrmdir) 9428 panic("newdirrem: .. directory change during remove?"); 9429 jremref = cancel_mkdir_dotdot(dp, dirrem, jremref); 9430 } 9431 /* 9432 * If we're removing a directory search for the .. dependency now and 9433 * cancel it. Any pending journal work will be added to the dirrem 9434 * to be completed when the workitem remove completes. 9435 */ 9436 if (isrmdir) 9437 dotdotremref = cancel_diradd_dotdot(ip, dirrem, dotdotremref); 9438 /* 9439 * Check for a diradd dependency for the same directory entry. 9440 * If present, then both dependencies become obsolete and can 9441 * be de-allocated. 9442 */ 9443 dap = diradd_lookup(pagedep, offset); 9444 if (dap == NULL) { 9445 /* 9446 * Link the jremref structures into the dirrem so they are 9447 * written prior to the pagedep. 9448 */ 9449 if (jremref) 9450 dirrem_journal(dirrem, jremref, dotremref, 9451 dotdotremref); 9452 return (dirrem); 9453 } 9454 /* 9455 * Must be ATTACHED at this point. 9456 */ 9457 if ((dap->da_state & ATTACHED) == 0) 9458 panic("newdirrem: not ATTACHED"); 9459 if (dap->da_newinum != ip->i_number) 9460 panic("newdirrem: inum %ju should be %ju", 9461 (uintmax_t)ip->i_number, (uintmax_t)dap->da_newinum); 9462 /* 9463 * If we are deleting a changed name that never made it to disk, 9464 * then return the dirrem describing the previous inode (which 9465 * represents the inode currently referenced from this entry on disk). 9466 */ 9467 if ((dap->da_state & DIRCHG) != 0) { 9468 *prevdirremp = dap->da_previous; 9469 dap->da_state &= ~DIRCHG; 9470 dap->da_pagedep = pagedep; 9471 } 9472 /* 9473 * We are deleting an entry that never made it to disk. 9474 * Mark it COMPLETE so we can delete its inode immediately. 9475 */ 9476 dirrem->dm_state |= COMPLETE; 9477 cancel_diradd(dap, dirrem, jremref, dotremref, dotdotremref); 9478 #ifdef INVARIANTS 9479 if (isrmdir == 0) { 9480 struct worklist *wk; 9481 9482 LIST_FOREACH(wk, &dirrem->dm_jwork, wk_list) 9483 if (wk->wk_state & (MKDIR_BODY | MKDIR_PARENT)) 9484 panic("bad wk %p (0x%X)\n", wk, wk->wk_state); 9485 } 9486 #endif 9487 9488 return (dirrem); 9489 } 9490 9491 /* 9492 * Directory entry change dependencies. 9493 * 9494 * Changing an existing directory entry requires that an add operation 9495 * be completed first followed by a deletion. The semantics for the addition 9496 * are identical to the description of adding a new entry above except 9497 * that the rollback is to the old inode number rather than zero. Once 9498 * the addition dependency is completed, the removal is done as described 9499 * in the removal routine above. 9500 */ 9501 9502 /* 9503 * This routine should be called immediately after changing 9504 * a directory entry. The inode's link count should not be 9505 * decremented by the calling procedure -- the soft updates 9506 * code will perform this task when it is safe. 9507 */ 9508 void 9509 softdep_setup_directory_change( 9510 struct buf *bp, /* buffer containing directory block */ 9511 struct inode *dp, /* inode for the directory being modified */ 9512 struct inode *ip, /* inode for directory entry being removed */ 9513 ino_t newinum, /* new inode number for changed entry */ 9514 int isrmdir) /* indicates if doing RMDIR */ 9515 { 9516 int offset; 9517 struct diradd *dap = NULL; 9518 struct dirrem *dirrem, *prevdirrem; 9519 struct pagedep *pagedep; 9520 struct inodedep *inodedep; 9521 struct jaddref *jaddref; 9522 struct mount *mp; 9523 struct ufsmount *ump; 9524 9525 mp = ITOVFS(dp); 9526 ump = VFSTOUFS(mp); 9527 offset = blkoff(ump->um_fs, I_OFFSET(dp)); 9528 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 9529 ("softdep_setup_directory_change called on non-softdep filesystem")); 9530 9531 /* 9532 * Whiteouts do not need diradd dependencies. 9533 */ 9534 if (newinum != UFS_WINO) { 9535 dap = malloc(sizeof(struct diradd), 9536 M_DIRADD, M_SOFTDEP_FLAGS|M_ZERO); 9537 workitem_alloc(&dap->da_list, D_DIRADD, mp); 9538 dap->da_state = DIRCHG | ATTACHED | DEPCOMPLETE; 9539 dap->da_offset = offset; 9540 dap->da_newinum = newinum; 9541 LIST_INIT(&dap->da_jwork); 9542 } 9543 9544 /* 9545 * Allocate a new dirrem and ACQUIRE_LOCK. 9546 */ 9547 dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem); 9548 pagedep = dirrem->dm_pagedep; 9549 /* 9550 * The possible values for isrmdir: 9551 * 0 - non-directory file rename 9552 * 1 - directory rename within same directory 9553 * inum - directory rename to new directory of given inode number 9554 * When renaming to a new directory, we are both deleting and 9555 * creating a new directory entry, so the link count on the new 9556 * directory should not change. Thus we do not need the followup 9557 * dirrem which is usually done in handle_workitem_remove. We set 9558 * the DIRCHG flag to tell handle_workitem_remove to skip the 9559 * followup dirrem. 9560 */ 9561 if (isrmdir > 1) 9562 dirrem->dm_state |= DIRCHG; 9563 9564 /* 9565 * Whiteouts have no additional dependencies, 9566 * so just put the dirrem on the correct list. 9567 */ 9568 if (newinum == UFS_WINO) { 9569 if ((dirrem->dm_state & COMPLETE) == 0) { 9570 LIST_INSERT_HEAD(&pagedep->pd_dirremhd, dirrem, 9571 dm_next); 9572 } else { 9573 dirrem->dm_dirinum = pagedep->pd_ino; 9574 if (LIST_EMPTY(&dirrem->dm_jremrefhd)) 9575 add_to_worklist(&dirrem->dm_list, 0); 9576 } 9577 FREE_LOCK(ump); 9578 return; 9579 } 9580 /* 9581 * Add the dirrem to the inodedep's pending remove list for quick 9582 * discovery later. A valid nlinkdelta ensures that this lookup 9583 * will not fail. 9584 */ 9585 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) 9586 panic("softdep_setup_directory_change: Lost inodedep."); 9587 dirrem->dm_state |= ONDEPLIST; 9588 LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext); 9589 9590 /* 9591 * If the COMPLETE flag is clear, then there were no active 9592 * entries and we want to roll back to the previous inode until 9593 * the new inode is committed to disk. If the COMPLETE flag is 9594 * set, then we have deleted an entry that never made it to disk. 9595 * If the entry we deleted resulted from a name change, then the old 9596 * inode reference still resides on disk. Any rollback that we do 9597 * needs to be to that old inode (returned to us in prevdirrem). If 9598 * the entry we deleted resulted from a create, then there is 9599 * no entry on the disk, so we want to roll back to zero rather 9600 * than the uncommitted inode. In either of the COMPLETE cases we 9601 * want to immediately free the unwritten and unreferenced inode. 9602 */ 9603 if ((dirrem->dm_state & COMPLETE) == 0) { 9604 dap->da_previous = dirrem; 9605 } else { 9606 if (prevdirrem != NULL) { 9607 dap->da_previous = prevdirrem; 9608 } else { 9609 dap->da_state &= ~DIRCHG; 9610 dap->da_pagedep = pagedep; 9611 } 9612 dirrem->dm_dirinum = pagedep->pd_ino; 9613 if (LIST_EMPTY(&dirrem->dm_jremrefhd)) 9614 add_to_worklist(&dirrem->dm_list, 0); 9615 } 9616 /* 9617 * Lookup the jaddref for this journal entry. We must finish 9618 * initializing it and make the diradd write dependent on it. 9619 * If we're not journaling, put it on the id_bufwait list if the 9620 * inode is not yet written. If it is written, do the post-inode 9621 * write processing to put it on the id_pendinghd list. 9622 */ 9623 inodedep_lookup(mp, newinum, DEPALLOC, &inodedep); 9624 if (MOUNTEDSUJ(mp)) { 9625 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 9626 inoreflst); 9627 KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number, 9628 ("softdep_setup_directory_change: bad jaddref %p", 9629 jaddref)); 9630 jaddref->ja_diroff = I_OFFSET(dp); 9631 jaddref->ja_diradd = dap; 9632 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], 9633 dap, da_pdlist); 9634 add_to_journal(&jaddref->ja_list); 9635 } else if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) { 9636 dap->da_state |= COMPLETE; 9637 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist); 9638 WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list); 9639 } else { 9640 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], 9641 dap, da_pdlist); 9642 WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list); 9643 } 9644 /* 9645 * If we're making a new name for a directory that has not been 9646 * committed when need to move the dot and dotdot references to 9647 * this new name. 9648 */ 9649 if (inodedep->id_mkdiradd && I_OFFSET(dp) != DOTDOT_OFFSET) 9650 merge_diradd(inodedep, dap); 9651 FREE_LOCK(ump); 9652 } 9653 9654 /* 9655 * Called whenever the link count on an inode is changed. 9656 * It creates an inode dependency so that the new reference(s) 9657 * to the inode cannot be committed to disk until the updated 9658 * inode has been written. 9659 */ 9660 void 9661 softdep_change_linkcnt( 9662 struct inode *ip) /* the inode with the increased link count */ 9663 { 9664 struct inodedep *inodedep; 9665 struct ufsmount *ump; 9666 9667 ump = ITOUMP(ip); 9668 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 9669 ("softdep_change_linkcnt called on non-softdep filesystem")); 9670 ACQUIRE_LOCK(ump); 9671 inodedep_lookup(UFSTOVFS(ump), ip->i_number, DEPALLOC, &inodedep); 9672 if (ip->i_nlink < ip->i_effnlink) 9673 panic("softdep_change_linkcnt: bad delta"); 9674 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 9675 FREE_LOCK(ump); 9676 } 9677 9678 /* 9679 * Attach a sbdep dependency to the superblock buf so that we can keep 9680 * track of the head of the linked list of referenced but unlinked inodes. 9681 */ 9682 void 9683 softdep_setup_sbupdate( 9684 struct ufsmount *ump, 9685 struct fs *fs, 9686 struct buf *bp) 9687 { 9688 struct sbdep *sbdep; 9689 struct worklist *wk; 9690 9691 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 9692 ("softdep_setup_sbupdate called on non-softdep filesystem")); 9693 LIST_FOREACH(wk, &bp->b_dep, wk_list) 9694 if (wk->wk_type == D_SBDEP) 9695 break; 9696 if (wk != NULL) 9697 return; 9698 sbdep = malloc(sizeof(struct sbdep), M_SBDEP, M_SOFTDEP_FLAGS); 9699 workitem_alloc(&sbdep->sb_list, D_SBDEP, UFSTOVFS(ump)); 9700 sbdep->sb_fs = fs; 9701 sbdep->sb_ump = ump; 9702 ACQUIRE_LOCK(ump); 9703 WORKLIST_INSERT(&bp->b_dep, &sbdep->sb_list); 9704 FREE_LOCK(ump); 9705 } 9706 9707 /* 9708 * Return the first unlinked inodedep which is ready to be the head of the 9709 * list. The inodedep and all those after it must have valid next pointers. 9710 */ 9711 static struct inodedep * 9712 first_unlinked_inodedep(struct ufsmount *ump) 9713 { 9714 struct inodedep *inodedep; 9715 struct inodedep *idp; 9716 9717 LOCK_OWNED(ump); 9718 for (inodedep = TAILQ_LAST(&ump->softdep_unlinked, inodedeplst); 9719 inodedep; inodedep = idp) { 9720 if ((inodedep->id_state & UNLINKNEXT) == 0) 9721 return (NULL); 9722 idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked); 9723 if (idp == NULL || (idp->id_state & UNLINKNEXT) == 0) 9724 break; 9725 if ((inodedep->id_state & UNLINKPREV) == 0) 9726 break; 9727 } 9728 return (inodedep); 9729 } 9730 9731 /* 9732 * Set the sujfree unlinked head pointer prior to writing a superblock. 9733 */ 9734 static void 9735 initiate_write_sbdep(struct sbdep *sbdep) 9736 { 9737 struct inodedep *inodedep; 9738 struct fs *bpfs; 9739 struct fs *fs; 9740 9741 bpfs = sbdep->sb_fs; 9742 fs = sbdep->sb_ump->um_fs; 9743 inodedep = first_unlinked_inodedep(sbdep->sb_ump); 9744 if (inodedep) { 9745 fs->fs_sujfree = inodedep->id_ino; 9746 inodedep->id_state |= UNLINKPREV; 9747 } else 9748 fs->fs_sujfree = 0; 9749 bpfs->fs_sujfree = fs->fs_sujfree; 9750 /* 9751 * Because we have made changes to the superblock, we need to 9752 * recompute its check-hash. 9753 */ 9754 bpfs->fs_ckhash = ffs_calc_sbhash(bpfs); 9755 } 9756 9757 /* 9758 * After a superblock is written determine whether it must be written again 9759 * due to a changing unlinked list head. 9760 */ 9761 static int 9762 handle_written_sbdep(struct sbdep *sbdep, struct buf *bp) 9763 { 9764 struct inodedep *inodedep; 9765 struct fs *fs; 9766 9767 LOCK_OWNED(sbdep->sb_ump); 9768 fs = sbdep->sb_fs; 9769 /* 9770 * If the superblock doesn't match the in-memory list start over. 9771 */ 9772 inodedep = first_unlinked_inodedep(sbdep->sb_ump); 9773 if ((inodedep && fs->fs_sujfree != inodedep->id_ino) || 9774 (inodedep == NULL && fs->fs_sujfree != 0)) { 9775 bdirty(bp); 9776 return (1); 9777 } 9778 WORKITEM_FREE(sbdep, D_SBDEP); 9779 if (fs->fs_sujfree == 0) 9780 return (0); 9781 /* 9782 * Now that we have a record of this inode in stable store allow it 9783 * to be written to free up pending work. Inodes may see a lot of 9784 * write activity after they are unlinked which we must not hold up. 9785 */ 9786 for (; inodedep != NULL; inodedep = TAILQ_NEXT(inodedep, id_unlinked)) { 9787 if ((inodedep->id_state & UNLINKLINKS) != UNLINKLINKS) 9788 panic("handle_written_sbdep: Bad inodedep %p (0x%X)", 9789 inodedep, inodedep->id_state); 9790 if (inodedep->id_state & UNLINKONLIST) 9791 break; 9792 inodedep->id_state |= DEPCOMPLETE | UNLINKONLIST; 9793 } 9794 9795 return (0); 9796 } 9797 9798 /* 9799 * Mark an inodedep as unlinked and insert it into the in-memory unlinked list. 9800 */ 9801 static void 9802 unlinked_inodedep( struct mount *mp, struct inodedep *inodedep) 9803 { 9804 struct ufsmount *ump; 9805 9806 ump = VFSTOUFS(mp); 9807 LOCK_OWNED(ump); 9808 if (MOUNTEDSUJ(mp) == 0) 9809 return; 9810 ump->um_fs->fs_fmod = 1; 9811 if (inodedep->id_state & UNLINKED) 9812 panic("unlinked_inodedep: %p already unlinked\n", inodedep); 9813 inodedep->id_state |= UNLINKED; 9814 TAILQ_INSERT_HEAD(&ump->softdep_unlinked, inodedep, id_unlinked); 9815 } 9816 9817 /* 9818 * Remove an inodedep from the unlinked inodedep list. This may require 9819 * disk writes if the inode has made it that far. 9820 */ 9821 static void 9822 clear_unlinked_inodedep( struct inodedep *inodedep) 9823 { 9824 struct ufs2_dinode *dip; 9825 struct ufsmount *ump; 9826 struct inodedep *idp; 9827 struct inodedep *idn; 9828 struct fs *fs, *bpfs; 9829 struct buf *bp; 9830 daddr_t dbn; 9831 ino_t ino; 9832 ino_t nino; 9833 ino_t pino; 9834 int error; 9835 9836 ump = VFSTOUFS(inodedep->id_list.wk_mp); 9837 fs = ump->um_fs; 9838 ino = inodedep->id_ino; 9839 error = 0; 9840 for (;;) { 9841 LOCK_OWNED(ump); 9842 KASSERT((inodedep->id_state & UNLINKED) != 0, 9843 ("clear_unlinked_inodedep: inodedep %p not unlinked", 9844 inodedep)); 9845 /* 9846 * If nothing has yet been written simply remove us from 9847 * the in memory list and return. This is the most common 9848 * case where handle_workitem_remove() loses the final 9849 * reference. 9850 */ 9851 if ((inodedep->id_state & UNLINKLINKS) == 0) 9852 break; 9853 /* 9854 * If we have a NEXT pointer and no PREV pointer we can simply 9855 * clear NEXT's PREV and remove ourselves from the list. Be 9856 * careful not to clear PREV if the superblock points at 9857 * next as well. 9858 */ 9859 idn = TAILQ_NEXT(inodedep, id_unlinked); 9860 if ((inodedep->id_state & UNLINKLINKS) == UNLINKNEXT) { 9861 if (idn && fs->fs_sujfree != idn->id_ino) 9862 idn->id_state &= ~UNLINKPREV; 9863 break; 9864 } 9865 /* 9866 * Here we have an inodedep which is actually linked into 9867 * the list. We must remove it by forcing a write to the 9868 * link before us, whether it be the superblock or an inode. 9869 * Unfortunately the list may change while we're waiting 9870 * on the buf lock for either resource so we must loop until 9871 * we lock the right one. If both the superblock and an 9872 * inode point to this inode we must clear the inode first 9873 * followed by the superblock. 9874 */ 9875 idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked); 9876 pino = 0; 9877 if (idp && (idp->id_state & UNLINKNEXT)) 9878 pino = idp->id_ino; 9879 FREE_LOCK(ump); 9880 if (pino == 0) { 9881 bp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc), 9882 (int)fs->fs_sbsize, 0, 0, 0); 9883 } else { 9884 dbn = fsbtodb(fs, ino_to_fsba(fs, pino)); 9885 error = ffs_breadz(ump, ump->um_devvp, dbn, dbn, 9886 (int)fs->fs_bsize, NULL, NULL, 0, NOCRED, 0, NULL, 9887 &bp); 9888 } 9889 ACQUIRE_LOCK(ump); 9890 if (error) 9891 break; 9892 /* If the list has changed restart the loop. */ 9893 idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked); 9894 nino = 0; 9895 if (idp && (idp->id_state & UNLINKNEXT)) 9896 nino = idp->id_ino; 9897 if (nino != pino || 9898 (inodedep->id_state & UNLINKPREV) != UNLINKPREV) { 9899 FREE_LOCK(ump); 9900 brelse(bp); 9901 ACQUIRE_LOCK(ump); 9902 continue; 9903 } 9904 nino = 0; 9905 idn = TAILQ_NEXT(inodedep, id_unlinked); 9906 if (idn) 9907 nino = idn->id_ino; 9908 /* 9909 * Remove us from the in memory list. After this we cannot 9910 * access the inodedep. 9911 */ 9912 KASSERT((inodedep->id_state & UNLINKED) != 0, 9913 ("clear_unlinked_inodedep: inodedep %p not unlinked", 9914 inodedep)); 9915 inodedep->id_state &= ~(UNLINKED | UNLINKLINKS | UNLINKONLIST); 9916 TAILQ_REMOVE(&ump->softdep_unlinked, inodedep, id_unlinked); 9917 FREE_LOCK(ump); 9918 /* 9919 * The predecessor's next pointer is manually updated here 9920 * so that the NEXT flag is never cleared for an element 9921 * that is in the list. 9922 */ 9923 if (pino == 0) { 9924 bcopy((caddr_t)fs, bp->b_data, (u_int)fs->fs_sbsize); 9925 bpfs = (struct fs *)bp->b_data; 9926 ffs_oldfscompat_write(bpfs, ump); 9927 softdep_setup_sbupdate(ump, bpfs, bp); 9928 /* 9929 * Because we may have made changes to the superblock, 9930 * we need to recompute its check-hash. 9931 */ 9932 bpfs->fs_ckhash = ffs_calc_sbhash(bpfs); 9933 } else if (fs->fs_magic == FS_UFS1_MAGIC) { 9934 ((struct ufs1_dinode *)bp->b_data + 9935 ino_to_fsbo(fs, pino))->di_freelink = nino; 9936 } else { 9937 dip = (struct ufs2_dinode *)bp->b_data + 9938 ino_to_fsbo(fs, pino); 9939 dip->di_freelink = nino; 9940 ffs_update_dinode_ckhash(fs, dip); 9941 } 9942 /* 9943 * If the bwrite fails we have no recourse to recover. The 9944 * filesystem is corrupted already. 9945 */ 9946 bwrite(bp); 9947 ACQUIRE_LOCK(ump); 9948 /* 9949 * If the superblock pointer still needs to be cleared force 9950 * a write here. 9951 */ 9952 if (fs->fs_sujfree == ino) { 9953 FREE_LOCK(ump); 9954 bp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc), 9955 (int)fs->fs_sbsize, 0, 0, 0); 9956 bcopy((caddr_t)fs, bp->b_data, (u_int)fs->fs_sbsize); 9957 bpfs = (struct fs *)bp->b_data; 9958 ffs_oldfscompat_write(bpfs, ump); 9959 softdep_setup_sbupdate(ump, bpfs, bp); 9960 /* 9961 * Because we may have made changes to the superblock, 9962 * we need to recompute its check-hash. 9963 */ 9964 bpfs->fs_ckhash = ffs_calc_sbhash(bpfs); 9965 bwrite(bp); 9966 ACQUIRE_LOCK(ump); 9967 } 9968 9969 if (fs->fs_sujfree != ino) 9970 return; 9971 panic("clear_unlinked_inodedep: Failed to clear free head"); 9972 } 9973 if (inodedep->id_ino == fs->fs_sujfree) 9974 panic("clear_unlinked_inodedep: Freeing head of free list"); 9975 inodedep->id_state &= ~(UNLINKED | UNLINKLINKS | UNLINKONLIST); 9976 TAILQ_REMOVE(&ump->softdep_unlinked, inodedep, id_unlinked); 9977 return; 9978 } 9979 9980 /* 9981 * This workitem decrements the inode's link count. 9982 * If the link count reaches zero, the file is removed. 9983 */ 9984 static int 9985 handle_workitem_remove(struct dirrem *dirrem, int flags) 9986 { 9987 struct inodedep *inodedep; 9988 struct workhead dotdotwk; 9989 struct worklist *wk; 9990 struct ufsmount *ump; 9991 struct mount *mp; 9992 struct vnode *vp; 9993 struct inode *ip; 9994 ino_t oldinum; 9995 9996 if (dirrem->dm_state & ONWORKLIST) 9997 panic("handle_workitem_remove: dirrem %p still on worklist", 9998 dirrem); 9999 oldinum = dirrem->dm_oldinum; 10000 mp = dirrem->dm_list.wk_mp; 10001 ump = VFSTOUFS(mp); 10002 flags |= LK_EXCLUSIVE; 10003 if (ffs_vgetf(mp, oldinum, flags, &vp, FFSV_FORCEINSMQ | 10004 FFSV_FORCEINODEDEP) != 0) 10005 return (EBUSY); 10006 ip = VTOI(vp); 10007 MPASS(ip->i_mode != 0); 10008 ACQUIRE_LOCK(ump); 10009 if ((inodedep_lookup(mp, oldinum, 0, &inodedep)) == 0) 10010 panic("handle_workitem_remove: lost inodedep"); 10011 if (dirrem->dm_state & ONDEPLIST) 10012 LIST_REMOVE(dirrem, dm_inonext); 10013 KASSERT(LIST_EMPTY(&dirrem->dm_jremrefhd), 10014 ("handle_workitem_remove: Journal entries not written.")); 10015 10016 /* 10017 * Move all dependencies waiting on the remove to complete 10018 * from the dirrem to the inode inowait list to be completed 10019 * after the inode has been updated and written to disk. 10020 * 10021 * Any marked MKDIR_PARENT are saved to be completed when the 10022 * dotdot ref is removed unless DIRCHG is specified. For 10023 * directory change operations there will be no further 10024 * directory writes and the jsegdeps need to be moved along 10025 * with the rest to be completed when the inode is free or 10026 * stable in the inode free list. 10027 */ 10028 LIST_INIT(&dotdotwk); 10029 while ((wk = LIST_FIRST(&dirrem->dm_jwork)) != NULL) { 10030 WORKLIST_REMOVE(wk); 10031 if ((dirrem->dm_state & DIRCHG) == 0 && 10032 wk->wk_state & MKDIR_PARENT) { 10033 wk->wk_state &= ~MKDIR_PARENT; 10034 WORKLIST_INSERT(&dotdotwk, wk); 10035 continue; 10036 } 10037 WORKLIST_INSERT(&inodedep->id_inowait, wk); 10038 } 10039 LIST_SWAP(&dirrem->dm_jwork, &dotdotwk, worklist, wk_list); 10040 /* 10041 * Normal file deletion. 10042 */ 10043 if ((dirrem->dm_state & RMDIR) == 0) { 10044 ip->i_nlink--; 10045 KASSERT(ip->i_nlink >= 0, ("handle_workitem_remove: file ino " 10046 "%ju negative i_nlink %d", (intmax_t)ip->i_number, 10047 ip->i_nlink)); 10048 DIP_SET(ip, i_nlink, ip->i_nlink); 10049 UFS_INODE_SET_FLAG(ip, IN_CHANGE); 10050 if (ip->i_nlink < ip->i_effnlink) 10051 panic("handle_workitem_remove: bad file delta"); 10052 if (ip->i_nlink == 0) 10053 unlinked_inodedep(mp, inodedep); 10054 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 10055 KASSERT(LIST_EMPTY(&dirrem->dm_jwork), 10056 ("handle_workitem_remove: worklist not empty. %s", 10057 TYPENAME(LIST_FIRST(&dirrem->dm_jwork)->wk_type))); 10058 WORKITEM_FREE(dirrem, D_DIRREM); 10059 FREE_LOCK(ump); 10060 goto out; 10061 } 10062 /* 10063 * Directory deletion. Decrement reference count for both the 10064 * just deleted parent directory entry and the reference for ".". 10065 * Arrange to have the reference count on the parent decremented 10066 * to account for the loss of "..". 10067 */ 10068 ip->i_nlink -= 2; 10069 KASSERT(ip->i_nlink >= 0, ("handle_workitem_remove: directory ino " 10070 "%ju negative i_nlink %d", (intmax_t)ip->i_number, ip->i_nlink)); 10071 DIP_SET(ip, i_nlink, ip->i_nlink); 10072 UFS_INODE_SET_FLAG(ip, IN_CHANGE); 10073 if (ip->i_nlink < ip->i_effnlink) 10074 panic("handle_workitem_remove: bad dir delta"); 10075 if (ip->i_nlink == 0) 10076 unlinked_inodedep(mp, inodedep); 10077 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 10078 /* 10079 * Rename a directory to a new parent. Since, we are both deleting 10080 * and creating a new directory entry, the link count on the new 10081 * directory should not change. Thus we skip the followup dirrem. 10082 */ 10083 if (dirrem->dm_state & DIRCHG) { 10084 KASSERT(LIST_EMPTY(&dirrem->dm_jwork), 10085 ("handle_workitem_remove: DIRCHG and worklist not empty.")); 10086 WORKITEM_FREE(dirrem, D_DIRREM); 10087 FREE_LOCK(ump); 10088 goto out; 10089 } 10090 dirrem->dm_state = ONDEPLIST; 10091 dirrem->dm_oldinum = dirrem->dm_dirinum; 10092 /* 10093 * Place the dirrem on the parent's diremhd list. 10094 */ 10095 if (inodedep_lookup(mp, dirrem->dm_oldinum, 0, &inodedep) == 0) 10096 panic("handle_workitem_remove: lost dir inodedep"); 10097 LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext); 10098 /* 10099 * If the allocated inode has never been written to disk, then 10100 * the on-disk inode is zero'ed and we can remove the file 10101 * immediately. When journaling if the inode has been marked 10102 * unlinked and not DEPCOMPLETE we know it can never be written. 10103 */ 10104 inodedep_lookup(mp, oldinum, 0, &inodedep); 10105 if (inodedep == NULL || 10106 (inodedep->id_state & (DEPCOMPLETE | UNLINKED)) == UNLINKED || 10107 check_inode_unwritten(inodedep)) { 10108 FREE_LOCK(ump); 10109 vput(vp); 10110 return handle_workitem_remove(dirrem, flags); 10111 } 10112 WORKLIST_INSERT(&inodedep->id_inowait, &dirrem->dm_list); 10113 FREE_LOCK(ump); 10114 UFS_INODE_SET_FLAG(ip, IN_CHANGE); 10115 out: 10116 ffs_update(vp, 0); 10117 vput(vp); 10118 return (0); 10119 } 10120 10121 /* 10122 * Inode de-allocation dependencies. 10123 * 10124 * When an inode's link count is reduced to zero, it can be de-allocated. We 10125 * found it convenient to postpone de-allocation until after the inode is 10126 * written to disk with its new link count (zero). At this point, all of the 10127 * on-disk inode's block pointers are nullified and, with careful dependency 10128 * list ordering, all dependencies related to the inode will be satisfied and 10129 * the corresponding dependency structures de-allocated. So, if/when the 10130 * inode is reused, there will be no mixing of old dependencies with new 10131 * ones. This artificial dependency is set up by the block de-allocation 10132 * procedure above (softdep_setup_freeblocks) and completed by the 10133 * following procedure. 10134 */ 10135 static void 10136 handle_workitem_freefile(struct freefile *freefile) 10137 { 10138 struct workhead wkhd; 10139 struct fs *fs; 10140 struct ufsmount *ump; 10141 int error; 10142 #ifdef INVARIANTS 10143 struct inodedep *idp; 10144 #endif 10145 10146 ump = VFSTOUFS(freefile->fx_list.wk_mp); 10147 fs = ump->um_fs; 10148 #ifdef INVARIANTS 10149 ACQUIRE_LOCK(ump); 10150 error = inodedep_lookup(UFSTOVFS(ump), freefile->fx_oldinum, 0, &idp); 10151 FREE_LOCK(ump); 10152 if (error) 10153 panic("handle_workitem_freefile: inodedep %p survived", idp); 10154 #endif 10155 UFS_LOCK(ump); 10156 fs->fs_pendinginodes -= 1; 10157 UFS_UNLOCK(ump); 10158 LIST_INIT(&wkhd); 10159 LIST_SWAP(&freefile->fx_jwork, &wkhd, worklist, wk_list); 10160 if ((error = ffs_freefile(ump, fs, freefile->fx_devvp, 10161 freefile->fx_oldinum, freefile->fx_mode, &wkhd)) != 0) 10162 softdep_error("handle_workitem_freefile", error); 10163 ACQUIRE_LOCK(ump); 10164 WORKITEM_FREE(freefile, D_FREEFILE); 10165 FREE_LOCK(ump); 10166 } 10167 10168 /* 10169 * Helper function which unlinks marker element from work list and returns 10170 * the next element on the list. 10171 */ 10172 static __inline struct worklist * 10173 markernext(struct worklist *marker) 10174 { 10175 struct worklist *next; 10176 10177 next = LIST_NEXT(marker, wk_list); 10178 LIST_REMOVE(marker, wk_list); 10179 return next; 10180 } 10181 10182 /* 10183 * Disk writes. 10184 * 10185 * The dependency structures constructed above are most actively used when file 10186 * system blocks are written to disk. No constraints are placed on when a 10187 * block can be written, but unsatisfied update dependencies are made safe by 10188 * modifying (or replacing) the source memory for the duration of the disk 10189 * write. When the disk write completes, the memory block is again brought 10190 * up-to-date. 10191 * 10192 * In-core inode structure reclamation. 10193 * 10194 * Because there are a finite number of "in-core" inode structures, they are 10195 * reused regularly. By transferring all inode-related dependencies to the 10196 * in-memory inode block and indexing them separately (via "inodedep"s), we 10197 * can allow "in-core" inode structures to be reused at any time and avoid 10198 * any increase in contention. 10199 * 10200 * Called just before entering the device driver to initiate a new disk I/O. 10201 * The buffer must be locked, thus, no I/O completion operations can occur 10202 * while we are manipulating its associated dependencies. 10203 */ 10204 static void 10205 softdep_disk_io_initiation( 10206 struct buf *bp) /* structure describing disk write to occur */ 10207 { 10208 struct worklist *wk; 10209 struct worklist marker; 10210 struct inodedep *inodedep; 10211 struct freeblks *freeblks; 10212 struct jblkdep *jblkdep; 10213 struct newblk *newblk; 10214 struct ufsmount *ump; 10215 10216 /* 10217 * We only care about write operations. There should never 10218 * be dependencies for reads. 10219 */ 10220 if (bp->b_iocmd != BIO_WRITE) 10221 panic("softdep_disk_io_initiation: not write"); 10222 10223 if (bp->b_vflags & BV_BKGRDINPROG) 10224 panic("softdep_disk_io_initiation: Writing buffer with " 10225 "background write in progress: %p", bp); 10226 10227 ump = softdep_bp_to_mp(bp); 10228 if (ump == NULL) 10229 return; 10230 10231 marker.wk_type = D_LAST + 1; /* Not a normal workitem */ 10232 PHOLD(curproc); /* Don't swap out kernel stack */ 10233 ACQUIRE_LOCK(ump); 10234 /* 10235 * Do any necessary pre-I/O processing. 10236 */ 10237 for (wk = LIST_FIRST(&bp->b_dep); wk != NULL; 10238 wk = markernext(&marker)) { 10239 LIST_INSERT_AFTER(wk, &marker, wk_list); 10240 switch (wk->wk_type) { 10241 case D_PAGEDEP: 10242 initiate_write_filepage(WK_PAGEDEP(wk), bp); 10243 continue; 10244 10245 case D_INODEDEP: 10246 inodedep = WK_INODEDEP(wk); 10247 if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC) 10248 initiate_write_inodeblock_ufs1(inodedep, bp); 10249 else 10250 initiate_write_inodeblock_ufs2(inodedep, bp); 10251 continue; 10252 10253 case D_INDIRDEP: 10254 initiate_write_indirdep(WK_INDIRDEP(wk), bp); 10255 continue; 10256 10257 case D_BMSAFEMAP: 10258 initiate_write_bmsafemap(WK_BMSAFEMAP(wk), bp); 10259 continue; 10260 10261 case D_JSEG: 10262 WK_JSEG(wk)->js_buf = NULL; 10263 continue; 10264 10265 case D_FREEBLKS: 10266 freeblks = WK_FREEBLKS(wk); 10267 jblkdep = LIST_FIRST(&freeblks->fb_jblkdephd); 10268 /* 10269 * We have to wait for the freeblks to be journaled 10270 * before we can write an inodeblock with updated 10271 * pointers. Be careful to arrange the marker so 10272 * we revisit the freeblks if it's not removed by 10273 * the first jwait(). 10274 */ 10275 if (jblkdep != NULL) { 10276 LIST_REMOVE(&marker, wk_list); 10277 LIST_INSERT_BEFORE(wk, &marker, wk_list); 10278 jwait(&jblkdep->jb_list, MNT_WAIT); 10279 } 10280 continue; 10281 case D_ALLOCDIRECT: 10282 case D_ALLOCINDIR: 10283 /* 10284 * We have to wait for the jnewblk to be journaled 10285 * before we can write to a block if the contents 10286 * may be confused with an earlier file's indirect 10287 * at recovery time. Handle the marker as described 10288 * above. 10289 */ 10290 newblk = WK_NEWBLK(wk); 10291 if (newblk->nb_jnewblk != NULL && 10292 indirblk_lookup(newblk->nb_list.wk_mp, 10293 newblk->nb_newblkno)) { 10294 LIST_REMOVE(&marker, wk_list); 10295 LIST_INSERT_BEFORE(wk, &marker, wk_list); 10296 jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT); 10297 } 10298 continue; 10299 10300 case D_SBDEP: 10301 initiate_write_sbdep(WK_SBDEP(wk)); 10302 continue; 10303 10304 case D_MKDIR: 10305 case D_FREEWORK: 10306 case D_FREEDEP: 10307 case D_JSEGDEP: 10308 continue; 10309 10310 default: 10311 panic("handle_disk_io_initiation: Unexpected type %s", 10312 TYPENAME(wk->wk_type)); 10313 /* NOTREACHED */ 10314 } 10315 } 10316 FREE_LOCK(ump); 10317 PRELE(curproc); /* Allow swapout of kernel stack */ 10318 } 10319 10320 /* 10321 * Called from within the procedure above to deal with unsatisfied 10322 * allocation dependencies in a directory. The buffer must be locked, 10323 * thus, no I/O completion operations can occur while we are 10324 * manipulating its associated dependencies. 10325 */ 10326 static void 10327 initiate_write_filepage(struct pagedep *pagedep, struct buf *bp) 10328 { 10329 struct jremref *jremref; 10330 struct jmvref *jmvref; 10331 struct dirrem *dirrem; 10332 struct diradd *dap; 10333 struct direct *ep; 10334 int i; 10335 10336 if (pagedep->pd_state & IOSTARTED) { 10337 /* 10338 * This can only happen if there is a driver that does not 10339 * understand chaining. Here biodone will reissue the call 10340 * to strategy for the incomplete buffers. 10341 */ 10342 printf("initiate_write_filepage: already started\n"); 10343 return; 10344 } 10345 pagedep->pd_state |= IOSTARTED; 10346 /* 10347 * Wait for all journal remove dependencies to hit the disk. 10348 * We can not allow any potentially conflicting directory adds 10349 * to be visible before removes and rollback is too difficult. 10350 * The per-filesystem lock may be dropped and re-acquired, however 10351 * we hold the buf locked so the dependency can not go away. 10352 */ 10353 LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next) 10354 while ((jremref = LIST_FIRST(&dirrem->dm_jremrefhd)) != NULL) 10355 jwait(&jremref->jr_list, MNT_WAIT); 10356 while ((jmvref = LIST_FIRST(&pagedep->pd_jmvrefhd)) != NULL) 10357 jwait(&jmvref->jm_list, MNT_WAIT); 10358 for (i = 0; i < DAHASHSZ; i++) { 10359 LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) { 10360 ep = (struct direct *) 10361 ((char *)bp->b_data + dap->da_offset); 10362 if (ep->d_ino != dap->da_newinum) 10363 panic("%s: dir inum %ju != new %ju", 10364 "initiate_write_filepage", 10365 (uintmax_t)ep->d_ino, 10366 (uintmax_t)dap->da_newinum); 10367 if (dap->da_state & DIRCHG) 10368 ep->d_ino = dap->da_previous->dm_oldinum; 10369 else 10370 ep->d_ino = 0; 10371 dap->da_state &= ~ATTACHED; 10372 dap->da_state |= UNDONE; 10373 } 10374 } 10375 } 10376 10377 /* 10378 * Version of initiate_write_inodeblock that handles UFS1 dinodes. 10379 * Note that any bug fixes made to this routine must be done in the 10380 * version found below. 10381 * 10382 * Called from within the procedure above to deal with unsatisfied 10383 * allocation dependencies in an inodeblock. The buffer must be 10384 * locked, thus, no I/O completion operations can occur while we 10385 * are manipulating its associated dependencies. 10386 */ 10387 static void 10388 initiate_write_inodeblock_ufs1( 10389 struct inodedep *inodedep, 10390 struct buf *bp) /* The inode block */ 10391 { 10392 struct allocdirect *adp, *lastadp; 10393 struct ufs1_dinode *dp; 10394 struct ufs1_dinode *sip; 10395 struct inoref *inoref; 10396 struct ufsmount *ump; 10397 struct fs *fs; 10398 ufs_lbn_t i; 10399 #ifdef INVARIANTS 10400 ufs_lbn_t prevlbn = 0; 10401 #endif 10402 int deplist __diagused; 10403 10404 if (inodedep->id_state & IOSTARTED) 10405 panic("initiate_write_inodeblock_ufs1: already started"); 10406 inodedep->id_state |= IOSTARTED; 10407 fs = inodedep->id_fs; 10408 ump = VFSTOUFS(inodedep->id_list.wk_mp); 10409 LOCK_OWNED(ump); 10410 dp = (struct ufs1_dinode *)bp->b_data + 10411 ino_to_fsbo(fs, inodedep->id_ino); 10412 10413 /* 10414 * If we're on the unlinked list but have not yet written our 10415 * next pointer initialize it here. 10416 */ 10417 if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) { 10418 struct inodedep *inon; 10419 10420 inon = TAILQ_NEXT(inodedep, id_unlinked); 10421 dp->di_freelink = inon ? inon->id_ino : 0; 10422 } 10423 /* 10424 * If the bitmap is not yet written, then the allocated 10425 * inode cannot be written to disk. 10426 */ 10427 if ((inodedep->id_state & DEPCOMPLETE) == 0) { 10428 if (inodedep->id_savedino1 != NULL) 10429 panic("initiate_write_inodeblock_ufs1: I/O underway"); 10430 FREE_LOCK(ump); 10431 sip = malloc(sizeof(struct ufs1_dinode), 10432 M_SAVEDINO, M_SOFTDEP_FLAGS); 10433 ACQUIRE_LOCK(ump); 10434 inodedep->id_savedino1 = sip; 10435 *inodedep->id_savedino1 = *dp; 10436 bzero((caddr_t)dp, sizeof(struct ufs1_dinode)); 10437 dp->di_gen = inodedep->id_savedino1->di_gen; 10438 dp->di_freelink = inodedep->id_savedino1->di_freelink; 10439 return; 10440 } 10441 /* 10442 * If no dependencies, then there is nothing to roll back. 10443 */ 10444 inodedep->id_savedsize = dp->di_size; 10445 inodedep->id_savedextsize = 0; 10446 inodedep->id_savednlink = dp->di_nlink; 10447 if (TAILQ_EMPTY(&inodedep->id_inoupdt) && 10448 TAILQ_EMPTY(&inodedep->id_inoreflst)) 10449 return; 10450 /* 10451 * Revert the link count to that of the first unwritten journal entry. 10452 */ 10453 inoref = TAILQ_FIRST(&inodedep->id_inoreflst); 10454 if (inoref) 10455 dp->di_nlink = inoref->if_nlink; 10456 /* 10457 * Set the dependencies to busy. 10458 */ 10459 for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 10460 adp = TAILQ_NEXT(adp, ad_next)) { 10461 #ifdef INVARIANTS 10462 if (deplist != 0 && prevlbn >= adp->ad_offset) 10463 panic("softdep_write_inodeblock: lbn order"); 10464 prevlbn = adp->ad_offset; 10465 if (adp->ad_offset < UFS_NDADDR && 10466 dp->di_db[adp->ad_offset] != adp->ad_newblkno) 10467 panic("initiate_write_inodeblock_ufs1: " 10468 "direct pointer #%jd mismatch %d != %jd", 10469 (intmax_t)adp->ad_offset, 10470 dp->di_db[adp->ad_offset], 10471 (intmax_t)adp->ad_newblkno); 10472 if (adp->ad_offset >= UFS_NDADDR && 10473 dp->di_ib[adp->ad_offset - UFS_NDADDR] != adp->ad_newblkno) 10474 panic("initiate_write_inodeblock_ufs1: " 10475 "indirect pointer #%jd mismatch %d != %jd", 10476 (intmax_t)adp->ad_offset - UFS_NDADDR, 10477 dp->di_ib[adp->ad_offset - UFS_NDADDR], 10478 (intmax_t)adp->ad_newblkno); 10479 deplist |= 1 << adp->ad_offset; 10480 if ((adp->ad_state & ATTACHED) == 0) 10481 panic("initiate_write_inodeblock_ufs1: " 10482 "Unknown state 0x%x", adp->ad_state); 10483 #endif /* INVARIANTS */ 10484 adp->ad_state &= ~ATTACHED; 10485 adp->ad_state |= UNDONE; 10486 } 10487 /* 10488 * The on-disk inode cannot claim to be any larger than the last 10489 * fragment that has been written. Otherwise, the on-disk inode 10490 * might have fragments that were not the last block in the file 10491 * which would corrupt the filesystem. 10492 */ 10493 for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 10494 lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) { 10495 if (adp->ad_offset >= UFS_NDADDR) 10496 break; 10497 dp->di_db[adp->ad_offset] = adp->ad_oldblkno; 10498 /* keep going until hitting a rollback to a frag */ 10499 if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize) 10500 continue; 10501 dp->di_size = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize; 10502 for (i = adp->ad_offset + 1; i < UFS_NDADDR; i++) { 10503 #ifdef INVARIANTS 10504 if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0) 10505 panic("initiate_write_inodeblock_ufs1: " 10506 "lost dep1"); 10507 #endif /* INVARIANTS */ 10508 dp->di_db[i] = 0; 10509 } 10510 for (i = 0; i < UFS_NIADDR; i++) { 10511 #ifdef INVARIANTS 10512 if (dp->di_ib[i] != 0 && 10513 (deplist & ((1 << UFS_NDADDR) << i)) == 0) 10514 panic("initiate_write_inodeblock_ufs1: " 10515 "lost dep2"); 10516 #endif /* INVARIANTS */ 10517 dp->di_ib[i] = 0; 10518 } 10519 return; 10520 } 10521 /* 10522 * If we have zero'ed out the last allocated block of the file, 10523 * roll back the size to the last currently allocated block. 10524 * We know that this last allocated block is a full-sized as 10525 * we already checked for fragments in the loop above. 10526 */ 10527 if (lastadp != NULL && 10528 dp->di_size <= (lastadp->ad_offset + 1) * fs->fs_bsize) { 10529 for (i = lastadp->ad_offset; i >= 0; i--) 10530 if (dp->di_db[i] != 0) 10531 break; 10532 dp->di_size = (i + 1) * fs->fs_bsize; 10533 } 10534 /* 10535 * The only dependencies are for indirect blocks. 10536 * 10537 * The file size for indirect block additions is not guaranteed. 10538 * Such a guarantee would be non-trivial to achieve. The conventional 10539 * synchronous write implementation also does not make this guarantee. 10540 * Fsck should catch and fix discrepancies. Arguably, the file size 10541 * can be over-estimated without destroying integrity when the file 10542 * moves into the indirect blocks (i.e., is large). If we want to 10543 * postpone fsck, we are stuck with this argument. 10544 */ 10545 for (; adp; adp = TAILQ_NEXT(adp, ad_next)) 10546 dp->di_ib[adp->ad_offset - UFS_NDADDR] = 0; 10547 } 10548 10549 /* 10550 * Version of initiate_write_inodeblock that handles UFS2 dinodes. 10551 * Note that any bug fixes made to this routine must be done in the 10552 * version found above. 10553 * 10554 * Called from within the procedure above to deal with unsatisfied 10555 * allocation dependencies in an inodeblock. The buffer must be 10556 * locked, thus, no I/O completion operations can occur while we 10557 * are manipulating its associated dependencies. 10558 */ 10559 static void 10560 initiate_write_inodeblock_ufs2( 10561 struct inodedep *inodedep, 10562 struct buf *bp) /* The inode block */ 10563 { 10564 struct allocdirect *adp, *lastadp; 10565 struct ufs2_dinode *dp; 10566 struct ufs2_dinode *sip; 10567 struct inoref *inoref; 10568 struct ufsmount *ump; 10569 struct fs *fs; 10570 ufs_lbn_t i; 10571 #ifdef INVARIANTS 10572 ufs_lbn_t prevlbn = 0; 10573 #endif 10574 int deplist __diagused; 10575 10576 if (inodedep->id_state & IOSTARTED) 10577 panic("initiate_write_inodeblock_ufs2: already started"); 10578 inodedep->id_state |= IOSTARTED; 10579 fs = inodedep->id_fs; 10580 ump = VFSTOUFS(inodedep->id_list.wk_mp); 10581 LOCK_OWNED(ump); 10582 dp = (struct ufs2_dinode *)bp->b_data + 10583 ino_to_fsbo(fs, inodedep->id_ino); 10584 10585 /* 10586 * If we're on the unlinked list but have not yet written our 10587 * next pointer initialize it here. 10588 */ 10589 if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) { 10590 struct inodedep *inon; 10591 10592 inon = TAILQ_NEXT(inodedep, id_unlinked); 10593 dp->di_freelink = inon ? inon->id_ino : 0; 10594 ffs_update_dinode_ckhash(fs, dp); 10595 } 10596 /* 10597 * If the bitmap is not yet written, then the allocated 10598 * inode cannot be written to disk. 10599 */ 10600 if ((inodedep->id_state & DEPCOMPLETE) == 0) { 10601 if (inodedep->id_savedino2 != NULL) 10602 panic("initiate_write_inodeblock_ufs2: I/O underway"); 10603 FREE_LOCK(ump); 10604 sip = malloc(sizeof(struct ufs2_dinode), 10605 M_SAVEDINO, M_SOFTDEP_FLAGS); 10606 ACQUIRE_LOCK(ump); 10607 inodedep->id_savedino2 = sip; 10608 *inodedep->id_savedino2 = *dp; 10609 bzero((caddr_t)dp, sizeof(struct ufs2_dinode)); 10610 dp->di_gen = inodedep->id_savedino2->di_gen; 10611 dp->di_freelink = inodedep->id_savedino2->di_freelink; 10612 return; 10613 } 10614 /* 10615 * If no dependencies, then there is nothing to roll back. 10616 */ 10617 inodedep->id_savedsize = dp->di_size; 10618 inodedep->id_savedextsize = dp->di_extsize; 10619 inodedep->id_savednlink = dp->di_nlink; 10620 if (TAILQ_EMPTY(&inodedep->id_inoupdt) && 10621 TAILQ_EMPTY(&inodedep->id_extupdt) && 10622 TAILQ_EMPTY(&inodedep->id_inoreflst)) 10623 return; 10624 /* 10625 * Revert the link count to that of the first unwritten journal entry. 10626 */ 10627 inoref = TAILQ_FIRST(&inodedep->id_inoreflst); 10628 if (inoref) 10629 dp->di_nlink = inoref->if_nlink; 10630 10631 /* 10632 * Set the ext data dependencies to busy. 10633 */ 10634 for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; 10635 adp = TAILQ_NEXT(adp, ad_next)) { 10636 #ifdef INVARIANTS 10637 if (deplist != 0 && prevlbn >= adp->ad_offset) 10638 panic("initiate_write_inodeblock_ufs2: lbn order"); 10639 prevlbn = adp->ad_offset; 10640 if (dp->di_extb[adp->ad_offset] != adp->ad_newblkno) 10641 panic("initiate_write_inodeblock_ufs2: " 10642 "ext pointer #%jd mismatch %jd != %jd", 10643 (intmax_t)adp->ad_offset, 10644 (intmax_t)dp->di_extb[adp->ad_offset], 10645 (intmax_t)adp->ad_newblkno); 10646 deplist |= 1 << adp->ad_offset; 10647 if ((adp->ad_state & ATTACHED) == 0) 10648 panic("initiate_write_inodeblock_ufs2: Unknown " 10649 "state 0x%x", adp->ad_state); 10650 #endif /* INVARIANTS */ 10651 adp->ad_state &= ~ATTACHED; 10652 adp->ad_state |= UNDONE; 10653 } 10654 /* 10655 * The on-disk inode cannot claim to be any larger than the last 10656 * fragment that has been written. Otherwise, the on-disk inode 10657 * might have fragments that were not the last block in the ext 10658 * data which would corrupt the filesystem. 10659 */ 10660 for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; 10661 lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) { 10662 dp->di_extb[adp->ad_offset] = adp->ad_oldblkno; 10663 /* keep going until hitting a rollback to a frag */ 10664 if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize) 10665 continue; 10666 dp->di_extsize = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize; 10667 for (i = adp->ad_offset + 1; i < UFS_NXADDR; i++) { 10668 #ifdef INVARIANTS 10669 if (dp->di_extb[i] != 0 && (deplist & (1 << i)) == 0) 10670 panic("initiate_write_inodeblock_ufs2: " 10671 "lost dep1"); 10672 #endif /* INVARIANTS */ 10673 dp->di_extb[i] = 0; 10674 } 10675 lastadp = NULL; 10676 break; 10677 } 10678 /* 10679 * If we have zero'ed out the last allocated block of the ext 10680 * data, roll back the size to the last currently allocated block. 10681 * We know that this last allocated block is a full-sized as 10682 * we already checked for fragments in the loop above. 10683 */ 10684 if (lastadp != NULL && 10685 dp->di_extsize <= (lastadp->ad_offset + 1) * fs->fs_bsize) { 10686 for (i = lastadp->ad_offset; i >= 0; i--) 10687 if (dp->di_extb[i] != 0) 10688 break; 10689 dp->di_extsize = (i + 1) * fs->fs_bsize; 10690 } 10691 /* 10692 * Set the file data dependencies to busy. 10693 */ 10694 for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 10695 adp = TAILQ_NEXT(adp, ad_next)) { 10696 #ifdef INVARIANTS 10697 if (deplist != 0 && prevlbn >= adp->ad_offset) 10698 panic("softdep_write_inodeblock: lbn order"); 10699 if ((adp->ad_state & ATTACHED) == 0) 10700 panic("inodedep %p and adp %p not attached", inodedep, adp); 10701 prevlbn = adp->ad_offset; 10702 if (!ffs_fsfail_cleanup(ump, 0) && 10703 adp->ad_offset < UFS_NDADDR && 10704 dp->di_db[adp->ad_offset] != adp->ad_newblkno) 10705 panic("initiate_write_inodeblock_ufs2: " 10706 "direct pointer #%jd mismatch %jd != %jd", 10707 (intmax_t)adp->ad_offset, 10708 (intmax_t)dp->di_db[adp->ad_offset], 10709 (intmax_t)adp->ad_newblkno); 10710 if (!ffs_fsfail_cleanup(ump, 0) && 10711 adp->ad_offset >= UFS_NDADDR && 10712 dp->di_ib[adp->ad_offset - UFS_NDADDR] != adp->ad_newblkno) 10713 panic("initiate_write_inodeblock_ufs2: " 10714 "indirect pointer #%jd mismatch %jd != %jd", 10715 (intmax_t)adp->ad_offset - UFS_NDADDR, 10716 (intmax_t)dp->di_ib[adp->ad_offset - UFS_NDADDR], 10717 (intmax_t)adp->ad_newblkno); 10718 deplist |= 1 << adp->ad_offset; 10719 if ((adp->ad_state & ATTACHED) == 0) 10720 panic("initiate_write_inodeblock_ufs2: Unknown " 10721 "state 0x%x", adp->ad_state); 10722 #endif /* INVARIANTS */ 10723 adp->ad_state &= ~ATTACHED; 10724 adp->ad_state |= UNDONE; 10725 } 10726 /* 10727 * The on-disk inode cannot claim to be any larger than the last 10728 * fragment that has been written. Otherwise, the on-disk inode 10729 * might have fragments that were not the last block in the file 10730 * which would corrupt the filesystem. 10731 */ 10732 for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 10733 lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) { 10734 if (adp->ad_offset >= UFS_NDADDR) 10735 break; 10736 dp->di_db[adp->ad_offset] = adp->ad_oldblkno; 10737 /* keep going until hitting a rollback to a frag */ 10738 if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize) 10739 continue; 10740 dp->di_size = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize; 10741 for (i = adp->ad_offset + 1; i < UFS_NDADDR; i++) { 10742 #ifdef INVARIANTS 10743 if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0) 10744 panic("initiate_write_inodeblock_ufs2: " 10745 "lost dep2"); 10746 #endif /* INVARIANTS */ 10747 dp->di_db[i] = 0; 10748 } 10749 for (i = 0; i < UFS_NIADDR; i++) { 10750 #ifdef INVARIANTS 10751 if (dp->di_ib[i] != 0 && 10752 (deplist & ((1 << UFS_NDADDR) << i)) == 0) 10753 panic("initiate_write_inodeblock_ufs2: " 10754 "lost dep3"); 10755 #endif /* INVARIANTS */ 10756 dp->di_ib[i] = 0; 10757 } 10758 ffs_update_dinode_ckhash(fs, dp); 10759 return; 10760 } 10761 /* 10762 * If we have zero'ed out the last allocated block of the file, 10763 * roll back the size to the last currently allocated block. 10764 * We know that this last allocated block is a full-sized as 10765 * we already checked for fragments in the loop above. 10766 */ 10767 if (lastadp != NULL && 10768 dp->di_size <= (lastadp->ad_offset + 1) * fs->fs_bsize) { 10769 for (i = lastadp->ad_offset; i >= 0; i--) 10770 if (dp->di_db[i] != 0) 10771 break; 10772 dp->di_size = (i + 1) * fs->fs_bsize; 10773 } 10774 /* 10775 * The only dependencies are for indirect blocks. 10776 * 10777 * The file size for indirect block additions is not guaranteed. 10778 * Such a guarantee would be non-trivial to achieve. The conventional 10779 * synchronous write implementation also does not make this guarantee. 10780 * Fsck should catch and fix discrepancies. Arguably, the file size 10781 * can be over-estimated without destroying integrity when the file 10782 * moves into the indirect blocks (i.e., is large). If we want to 10783 * postpone fsck, we are stuck with this argument. 10784 */ 10785 for (; adp; adp = TAILQ_NEXT(adp, ad_next)) 10786 dp->di_ib[adp->ad_offset - UFS_NDADDR] = 0; 10787 ffs_update_dinode_ckhash(fs, dp); 10788 } 10789 10790 /* 10791 * Cancel an indirdep as a result of truncation. Release all of the 10792 * children allocindirs and place their journal work on the appropriate 10793 * list. 10794 */ 10795 static void 10796 cancel_indirdep( 10797 struct indirdep *indirdep, 10798 struct buf *bp, 10799 struct freeblks *freeblks) 10800 { 10801 struct allocindir *aip; 10802 10803 /* 10804 * None of the indirect pointers will ever be visible, 10805 * so they can simply be tossed. GOINGAWAY ensures 10806 * that allocated pointers will be saved in the buffer 10807 * cache until they are freed. Note that they will 10808 * only be able to be found by their physical address 10809 * since the inode mapping the logical address will 10810 * be gone. The save buffer used for the safe copy 10811 * was allocated in setup_allocindir_phase2 using 10812 * the physical address so it could be used for this 10813 * purpose. Hence we swap the safe copy with the real 10814 * copy, allowing the safe copy to be freed and holding 10815 * on to the real copy for later use in indir_trunc. 10816 */ 10817 if (indirdep->ir_state & GOINGAWAY) 10818 panic("cancel_indirdep: already gone"); 10819 if ((indirdep->ir_state & DEPCOMPLETE) == 0) { 10820 indirdep->ir_state |= DEPCOMPLETE; 10821 LIST_REMOVE(indirdep, ir_next); 10822 } 10823 indirdep->ir_state |= GOINGAWAY; 10824 /* 10825 * Pass in bp for blocks still have journal writes 10826 * pending so we can cancel them on their own. 10827 */ 10828 while ((aip = LIST_FIRST(&indirdep->ir_deplisthd)) != NULL) 10829 cancel_allocindir(aip, bp, freeblks, 0); 10830 while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != NULL) 10831 cancel_allocindir(aip, NULL, freeblks, 0); 10832 while ((aip = LIST_FIRST(&indirdep->ir_writehd)) != NULL) 10833 cancel_allocindir(aip, NULL, freeblks, 0); 10834 while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != NULL) 10835 cancel_allocindir(aip, NULL, freeblks, 0); 10836 /* 10837 * If there are pending partial truncations we need to keep the 10838 * old block copy around until they complete. This is because 10839 * the current b_data is not a perfect superset of the available 10840 * blocks. 10841 */ 10842 if (TAILQ_EMPTY(&indirdep->ir_trunc)) 10843 bcopy(bp->b_data, indirdep->ir_savebp->b_data, bp->b_bcount); 10844 else 10845 bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount); 10846 WORKLIST_REMOVE(&indirdep->ir_list); 10847 WORKLIST_INSERT(&indirdep->ir_savebp->b_dep, &indirdep->ir_list); 10848 indirdep->ir_bp = NULL; 10849 indirdep->ir_freeblks = freeblks; 10850 } 10851 10852 /* 10853 * Free an indirdep once it no longer has new pointers to track. 10854 */ 10855 static void 10856 free_indirdep(struct indirdep *indirdep) 10857 { 10858 10859 KASSERT(TAILQ_EMPTY(&indirdep->ir_trunc), 10860 ("free_indirdep: Indir trunc list not empty.")); 10861 KASSERT(LIST_EMPTY(&indirdep->ir_completehd), 10862 ("free_indirdep: Complete head not empty.")); 10863 KASSERT(LIST_EMPTY(&indirdep->ir_writehd), 10864 ("free_indirdep: write head not empty.")); 10865 KASSERT(LIST_EMPTY(&indirdep->ir_donehd), 10866 ("free_indirdep: done head not empty.")); 10867 KASSERT(LIST_EMPTY(&indirdep->ir_deplisthd), 10868 ("free_indirdep: deplist head not empty.")); 10869 KASSERT((indirdep->ir_state & DEPCOMPLETE), 10870 ("free_indirdep: %p still on newblk list.", indirdep)); 10871 KASSERT(indirdep->ir_saveddata == NULL, 10872 ("free_indirdep: %p still has saved data.", indirdep)); 10873 KASSERT(indirdep->ir_savebp == NULL, 10874 ("free_indirdep: %p still has savebp buffer.", indirdep)); 10875 if (indirdep->ir_state & ONWORKLIST) 10876 WORKLIST_REMOVE(&indirdep->ir_list); 10877 WORKITEM_FREE(indirdep, D_INDIRDEP); 10878 } 10879 10880 /* 10881 * Called before a write to an indirdep. This routine is responsible for 10882 * rolling back pointers to a safe state which includes only those 10883 * allocindirs which have been completed. 10884 */ 10885 static void 10886 initiate_write_indirdep(struct indirdep *indirdep, struct buf *bp) 10887 { 10888 struct ufsmount *ump; 10889 10890 indirdep->ir_state |= IOSTARTED; 10891 if (indirdep->ir_state & GOINGAWAY) 10892 panic("disk_io_initiation: indirdep gone"); 10893 /* 10894 * If there are no remaining dependencies, this will be writing 10895 * the real pointers. 10896 */ 10897 if (LIST_EMPTY(&indirdep->ir_deplisthd) && 10898 TAILQ_EMPTY(&indirdep->ir_trunc)) 10899 return; 10900 /* 10901 * Replace up-to-date version with safe version. 10902 */ 10903 if (indirdep->ir_saveddata == NULL) { 10904 ump = VFSTOUFS(indirdep->ir_list.wk_mp); 10905 LOCK_OWNED(ump); 10906 FREE_LOCK(ump); 10907 indirdep->ir_saveddata = malloc(bp->b_bcount, M_INDIRDEP, 10908 M_SOFTDEP_FLAGS); 10909 ACQUIRE_LOCK(ump); 10910 } 10911 indirdep->ir_state &= ~ATTACHED; 10912 indirdep->ir_state |= UNDONE; 10913 bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount); 10914 bcopy(indirdep->ir_savebp->b_data, bp->b_data, 10915 bp->b_bcount); 10916 } 10917 10918 /* 10919 * Called when an inode has been cleared in a cg bitmap. This finally 10920 * eliminates any canceled jaddrefs 10921 */ 10922 void 10923 softdep_setup_inofree(struct mount *mp, 10924 struct buf *bp, 10925 ino_t ino, 10926 struct workhead *wkhd) 10927 { 10928 struct worklist *wk, *wkn; 10929 struct inodedep *inodedep; 10930 struct ufsmount *ump; 10931 uint8_t *inosused; 10932 struct cg *cgp; 10933 struct fs *fs; 10934 10935 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 10936 ("softdep_setup_inofree called on non-softdep filesystem")); 10937 ump = VFSTOUFS(mp); 10938 ACQUIRE_LOCK(ump); 10939 if (!ffs_fsfail_cleanup(ump, 0)) { 10940 fs = ump->um_fs; 10941 cgp = (struct cg *)bp->b_data; 10942 inosused = cg_inosused(cgp); 10943 if (isset(inosused, ino % fs->fs_ipg)) 10944 panic("softdep_setup_inofree: inode %ju not freed.", 10945 (uintmax_t)ino); 10946 } 10947 if (inodedep_lookup(mp, ino, 0, &inodedep)) 10948 panic("softdep_setup_inofree: ino %ju has existing inodedep %p", 10949 (uintmax_t)ino, inodedep); 10950 if (wkhd) { 10951 LIST_FOREACH_SAFE(wk, wkhd, wk_list, wkn) { 10952 if (wk->wk_type != D_JADDREF) 10953 continue; 10954 WORKLIST_REMOVE(wk); 10955 /* 10956 * We can free immediately even if the jaddref 10957 * isn't attached in a background write as now 10958 * the bitmaps are reconciled. 10959 */ 10960 wk->wk_state |= COMPLETE | ATTACHED; 10961 free_jaddref(WK_JADDREF(wk)); 10962 } 10963 jwork_move(&bp->b_dep, wkhd); 10964 } 10965 FREE_LOCK(ump); 10966 } 10967 10968 /* 10969 * Called via ffs_blkfree() after a set of frags has been cleared from a cg 10970 * map. Any dependencies waiting for the write to clear are added to the 10971 * buf's list and any jnewblks that are being canceled are discarded 10972 * immediately. 10973 */ 10974 void 10975 softdep_setup_blkfree( 10976 struct mount *mp, 10977 struct buf *bp, 10978 ufs2_daddr_t blkno, 10979 int frags, 10980 struct workhead *wkhd) 10981 { 10982 struct bmsafemap *bmsafemap; 10983 struct jnewblk *jnewblk; 10984 struct ufsmount *ump; 10985 struct worklist *wk; 10986 struct fs *fs; 10987 #ifdef INVARIANTS 10988 uint8_t *blksfree; 10989 struct cg *cgp; 10990 ufs2_daddr_t jstart; 10991 ufs2_daddr_t jend; 10992 ufs2_daddr_t end; 10993 long bno; 10994 int i; 10995 #endif 10996 10997 CTR3(KTR_SUJ, 10998 "softdep_setup_blkfree: blkno %jd frags %d wk head %p", 10999 blkno, frags, wkhd); 11000 11001 ump = VFSTOUFS(mp); 11002 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 11003 ("softdep_setup_blkfree called on non-softdep filesystem")); 11004 ACQUIRE_LOCK(ump); 11005 /* Lookup the bmsafemap so we track when it is dirty. */ 11006 fs = ump->um_fs; 11007 bmsafemap = bmsafemap_lookup(mp, bp, dtog(fs, blkno), NULL); 11008 /* 11009 * Detach any jnewblks which have been canceled. They must linger 11010 * until the bitmap is cleared again by ffs_blkfree() to prevent 11011 * an unjournaled allocation from hitting the disk. 11012 */ 11013 if (wkhd) { 11014 while ((wk = LIST_FIRST(wkhd)) != NULL) { 11015 CTR2(KTR_SUJ, 11016 "softdep_setup_blkfree: blkno %jd wk type %d", 11017 blkno, wk->wk_type); 11018 WORKLIST_REMOVE(wk); 11019 if (wk->wk_type != D_JNEWBLK) { 11020 WORKLIST_INSERT(&bmsafemap->sm_freehd, wk); 11021 continue; 11022 } 11023 jnewblk = WK_JNEWBLK(wk); 11024 KASSERT(jnewblk->jn_state & GOINGAWAY, 11025 ("softdep_setup_blkfree: jnewblk not canceled.")); 11026 #ifdef INVARIANTS 11027 /* 11028 * Assert that this block is free in the bitmap 11029 * before we discard the jnewblk. 11030 */ 11031 cgp = (struct cg *)bp->b_data; 11032 blksfree = cg_blksfree(cgp); 11033 bno = dtogd(fs, jnewblk->jn_blkno); 11034 for (i = jnewblk->jn_oldfrags; 11035 i < jnewblk->jn_frags; i++) { 11036 if (isset(blksfree, bno + i)) 11037 continue; 11038 panic("softdep_setup_blkfree: not free"); 11039 } 11040 #endif 11041 /* 11042 * Even if it's not attached we can free immediately 11043 * as the new bitmap is correct. 11044 */ 11045 wk->wk_state |= COMPLETE | ATTACHED; 11046 free_jnewblk(jnewblk); 11047 } 11048 } 11049 11050 #ifdef INVARIANTS 11051 /* 11052 * Assert that we are not freeing a block which has an outstanding 11053 * allocation dependency. 11054 */ 11055 fs = VFSTOUFS(mp)->um_fs; 11056 bmsafemap = bmsafemap_lookup(mp, bp, dtog(fs, blkno), NULL); 11057 end = blkno + frags; 11058 LIST_FOREACH(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps) { 11059 /* 11060 * Don't match against blocks that will be freed when the 11061 * background write is done. 11062 */ 11063 if ((jnewblk->jn_state & (ATTACHED | COMPLETE | DEPCOMPLETE)) == 11064 (COMPLETE | DEPCOMPLETE)) 11065 continue; 11066 jstart = jnewblk->jn_blkno + jnewblk->jn_oldfrags; 11067 jend = jnewblk->jn_blkno + jnewblk->jn_frags; 11068 if ((blkno >= jstart && blkno < jend) || 11069 (end > jstart && end <= jend)) { 11070 printf("state 0x%X %jd - %d %d dep %p\n", 11071 jnewblk->jn_state, jnewblk->jn_blkno, 11072 jnewblk->jn_oldfrags, jnewblk->jn_frags, 11073 jnewblk->jn_dep); 11074 panic("softdep_setup_blkfree: " 11075 "%jd-%jd(%d) overlaps with %jd-%jd", 11076 blkno, end, frags, jstart, jend); 11077 } 11078 } 11079 #endif 11080 FREE_LOCK(ump); 11081 } 11082 11083 /* 11084 * Revert a block allocation when the journal record that describes it 11085 * is not yet written. 11086 */ 11087 static int 11088 jnewblk_rollback( 11089 struct jnewblk *jnewblk, 11090 struct fs *fs, 11091 struct cg *cgp, 11092 uint8_t *blksfree) 11093 { 11094 ufs1_daddr_t fragno; 11095 long cgbno, bbase; 11096 int frags, blk; 11097 int i; 11098 11099 frags = 0; 11100 cgbno = dtogd(fs, jnewblk->jn_blkno); 11101 /* 11102 * We have to test which frags need to be rolled back. We may 11103 * be operating on a stale copy when doing background writes. 11104 */ 11105 for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; i++) 11106 if (isclr(blksfree, cgbno + i)) 11107 frags++; 11108 if (frags == 0) 11109 return (0); 11110 /* 11111 * This is mostly ffs_blkfree() sans some validation and 11112 * superblock updates. 11113 */ 11114 if (frags == fs->fs_frag) { 11115 fragno = fragstoblks(fs, cgbno); 11116 ffs_setblock(fs, blksfree, fragno); 11117 ffs_clusteracct(fs, cgp, fragno, 1); 11118 cgp->cg_cs.cs_nbfree++; 11119 } else { 11120 cgbno += jnewblk->jn_oldfrags; 11121 bbase = cgbno - fragnum(fs, cgbno); 11122 /* Decrement the old frags. */ 11123 blk = blkmap(fs, blksfree, bbase); 11124 ffs_fragacct(fs, blk, cgp->cg_frsum, -1); 11125 /* Deallocate the fragment */ 11126 for (i = 0; i < frags; i++) 11127 setbit(blksfree, cgbno + i); 11128 cgp->cg_cs.cs_nffree += frags; 11129 /* Add back in counts associated with the new frags */ 11130 blk = blkmap(fs, blksfree, bbase); 11131 ffs_fragacct(fs, blk, cgp->cg_frsum, 1); 11132 /* If a complete block has been reassembled, account for it. */ 11133 fragno = fragstoblks(fs, bbase); 11134 if (ffs_isblock(fs, blksfree, fragno)) { 11135 cgp->cg_cs.cs_nffree -= fs->fs_frag; 11136 ffs_clusteracct(fs, cgp, fragno, 1); 11137 cgp->cg_cs.cs_nbfree++; 11138 } 11139 } 11140 stat_jnewblk++; 11141 jnewblk->jn_state &= ~ATTACHED; 11142 jnewblk->jn_state |= UNDONE; 11143 11144 return (frags); 11145 } 11146 11147 static void 11148 initiate_write_bmsafemap( 11149 struct bmsafemap *bmsafemap, 11150 struct buf *bp) /* The cg block. */ 11151 { 11152 struct jaddref *jaddref; 11153 struct jnewblk *jnewblk; 11154 uint8_t *inosused; 11155 uint8_t *blksfree; 11156 struct cg *cgp; 11157 struct fs *fs; 11158 ino_t ino; 11159 11160 /* 11161 * If this is a background write, we did this at the time that 11162 * the copy was made, so do not need to do it again. 11163 */ 11164 if (bmsafemap->sm_state & IOSTARTED) 11165 return; 11166 bmsafemap->sm_state |= IOSTARTED; 11167 /* 11168 * Clear any inode allocations which are pending journal writes. 11169 */ 11170 if (LIST_FIRST(&bmsafemap->sm_jaddrefhd) != NULL) { 11171 cgp = (struct cg *)bp->b_data; 11172 fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs; 11173 inosused = cg_inosused(cgp); 11174 LIST_FOREACH(jaddref, &bmsafemap->sm_jaddrefhd, ja_bmdeps) { 11175 ino = jaddref->ja_ino % fs->fs_ipg; 11176 if (isset(inosused, ino)) { 11177 if ((jaddref->ja_mode & IFMT) == IFDIR) 11178 cgp->cg_cs.cs_ndir--; 11179 cgp->cg_cs.cs_nifree++; 11180 clrbit(inosused, ino); 11181 jaddref->ja_state &= ~ATTACHED; 11182 jaddref->ja_state |= UNDONE; 11183 stat_jaddref++; 11184 } else 11185 panic("initiate_write_bmsafemap: inode %ju " 11186 "marked free", (uintmax_t)jaddref->ja_ino); 11187 } 11188 } 11189 /* 11190 * Clear any block allocations which are pending journal writes. 11191 */ 11192 if (LIST_FIRST(&bmsafemap->sm_jnewblkhd) != NULL) { 11193 cgp = (struct cg *)bp->b_data; 11194 fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs; 11195 blksfree = cg_blksfree(cgp); 11196 LIST_FOREACH(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps) { 11197 if (jnewblk_rollback(jnewblk, fs, cgp, blksfree)) 11198 continue; 11199 panic("initiate_write_bmsafemap: block %jd " 11200 "marked free", jnewblk->jn_blkno); 11201 } 11202 } 11203 /* 11204 * Move allocation lists to the written lists so they can be 11205 * cleared once the block write is complete. 11206 */ 11207 LIST_SWAP(&bmsafemap->sm_inodedephd, &bmsafemap->sm_inodedepwr, 11208 inodedep, id_deps); 11209 LIST_SWAP(&bmsafemap->sm_newblkhd, &bmsafemap->sm_newblkwr, 11210 newblk, nb_deps); 11211 LIST_SWAP(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr, worklist, 11212 wk_list); 11213 } 11214 11215 void 11216 softdep_handle_error(struct buf *bp) 11217 { 11218 struct ufsmount *ump; 11219 11220 ump = softdep_bp_to_mp(bp); 11221 if (ump == NULL) 11222 return; 11223 11224 if (ffs_fsfail_cleanup(ump, bp->b_error)) { 11225 /* 11226 * No future writes will succeed, so the on-disk image is safe. 11227 * Pretend that this write succeeded so that the softdep state 11228 * will be cleaned up naturally. 11229 */ 11230 bp->b_ioflags &= ~BIO_ERROR; 11231 bp->b_error = 0; 11232 } 11233 } 11234 11235 /* 11236 * This routine is called during the completion interrupt 11237 * service routine for a disk write (from the procedure called 11238 * by the device driver to inform the filesystem caches of 11239 * a request completion). It should be called early in this 11240 * procedure, before the block is made available to other 11241 * processes or other routines are called. 11242 * 11243 */ 11244 static void 11245 softdep_disk_write_complete( 11246 struct buf *bp) /* describes the completed disk write */ 11247 { 11248 struct worklist *wk; 11249 struct worklist *owk; 11250 struct ufsmount *ump; 11251 struct workhead reattach; 11252 struct freeblks *freeblks; 11253 struct buf *sbp; 11254 11255 ump = softdep_bp_to_mp(bp); 11256 KASSERT(LIST_EMPTY(&bp->b_dep) || ump != NULL, 11257 ("softdep_disk_write_complete: softdep_bp_to_mp returned NULL " 11258 "with outstanding dependencies for buffer %p", bp)); 11259 if (ump == NULL) 11260 return; 11261 if ((bp->b_ioflags & BIO_ERROR) != 0) 11262 softdep_handle_error(bp); 11263 /* 11264 * If an error occurred while doing the write, then the data 11265 * has not hit the disk and the dependencies cannot be processed. 11266 * But we do have to go through and roll forward any dependencies 11267 * that were rolled back before the disk write. 11268 */ 11269 sbp = NULL; 11270 ACQUIRE_LOCK(ump); 11271 if ((bp->b_ioflags & BIO_ERROR) != 0 && (bp->b_flags & B_INVAL) == 0) { 11272 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 11273 switch (wk->wk_type) { 11274 case D_PAGEDEP: 11275 handle_written_filepage(WK_PAGEDEP(wk), bp, 0); 11276 continue; 11277 11278 case D_INODEDEP: 11279 handle_written_inodeblock(WK_INODEDEP(wk), 11280 bp, 0); 11281 continue; 11282 11283 case D_BMSAFEMAP: 11284 handle_written_bmsafemap(WK_BMSAFEMAP(wk), 11285 bp, 0); 11286 continue; 11287 11288 case D_INDIRDEP: 11289 handle_written_indirdep(WK_INDIRDEP(wk), 11290 bp, &sbp, 0); 11291 continue; 11292 default: 11293 /* nothing to roll forward */ 11294 continue; 11295 } 11296 } 11297 FREE_LOCK(ump); 11298 if (sbp) 11299 brelse(sbp); 11300 return; 11301 } 11302 LIST_INIT(&reattach); 11303 11304 /* 11305 * Ump SU lock must not be released anywhere in this code segment. 11306 */ 11307 owk = NULL; 11308 while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) { 11309 WORKLIST_REMOVE(wk); 11310 atomic_add_long(&dep_write[wk->wk_type], 1); 11311 if (wk == owk) 11312 panic("duplicate worklist: %p\n", wk); 11313 owk = wk; 11314 switch (wk->wk_type) { 11315 case D_PAGEDEP: 11316 if (handle_written_filepage(WK_PAGEDEP(wk), bp, 11317 WRITESUCCEEDED)) 11318 WORKLIST_INSERT(&reattach, wk); 11319 continue; 11320 11321 case D_INODEDEP: 11322 if (handle_written_inodeblock(WK_INODEDEP(wk), bp, 11323 WRITESUCCEEDED)) 11324 WORKLIST_INSERT(&reattach, wk); 11325 continue; 11326 11327 case D_BMSAFEMAP: 11328 if (handle_written_bmsafemap(WK_BMSAFEMAP(wk), bp, 11329 WRITESUCCEEDED)) 11330 WORKLIST_INSERT(&reattach, wk); 11331 continue; 11332 11333 case D_MKDIR: 11334 handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY); 11335 continue; 11336 11337 case D_ALLOCDIRECT: 11338 wk->wk_state |= COMPLETE; 11339 handle_allocdirect_partdone(WK_ALLOCDIRECT(wk), NULL); 11340 continue; 11341 11342 case D_ALLOCINDIR: 11343 wk->wk_state |= COMPLETE; 11344 handle_allocindir_partdone(WK_ALLOCINDIR(wk)); 11345 continue; 11346 11347 case D_INDIRDEP: 11348 if (handle_written_indirdep(WK_INDIRDEP(wk), bp, &sbp, 11349 WRITESUCCEEDED)) 11350 WORKLIST_INSERT(&reattach, wk); 11351 continue; 11352 11353 case D_FREEBLKS: 11354 wk->wk_state |= COMPLETE; 11355 freeblks = WK_FREEBLKS(wk); 11356 if ((wk->wk_state & ALLCOMPLETE) == ALLCOMPLETE && 11357 LIST_EMPTY(&freeblks->fb_jblkdephd)) 11358 add_to_worklist(wk, WK_NODELAY); 11359 continue; 11360 11361 case D_FREEWORK: 11362 handle_written_freework(WK_FREEWORK(wk)); 11363 break; 11364 11365 case D_JSEGDEP: 11366 free_jsegdep(WK_JSEGDEP(wk)); 11367 continue; 11368 11369 case D_JSEG: 11370 handle_written_jseg(WK_JSEG(wk), bp); 11371 continue; 11372 11373 case D_SBDEP: 11374 if (handle_written_sbdep(WK_SBDEP(wk), bp)) 11375 WORKLIST_INSERT(&reattach, wk); 11376 continue; 11377 11378 case D_FREEDEP: 11379 free_freedep(WK_FREEDEP(wk)); 11380 continue; 11381 11382 default: 11383 panic("handle_disk_write_complete: Unknown type %s", 11384 TYPENAME(wk->wk_type)); 11385 /* NOTREACHED */ 11386 } 11387 } 11388 /* 11389 * Reattach any requests that must be redone. 11390 */ 11391 while ((wk = LIST_FIRST(&reattach)) != NULL) { 11392 WORKLIST_REMOVE(wk); 11393 WORKLIST_INSERT(&bp->b_dep, wk); 11394 } 11395 FREE_LOCK(ump); 11396 if (sbp) 11397 brelse(sbp); 11398 } 11399 11400 /* 11401 * Called from within softdep_disk_write_complete above. 11402 */ 11403 static void 11404 handle_allocdirect_partdone( 11405 struct allocdirect *adp, /* the completed allocdirect */ 11406 struct workhead *wkhd) /* Work to do when inode is writtne. */ 11407 { 11408 struct allocdirectlst *listhead; 11409 struct allocdirect *listadp; 11410 struct inodedep *inodedep; 11411 long bsize; 11412 11413 LOCK_OWNED(VFSTOUFS(adp->ad_block.nb_list.wk_mp)); 11414 if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE) 11415 return; 11416 /* 11417 * The on-disk inode cannot claim to be any larger than the last 11418 * fragment that has been written. Otherwise, the on-disk inode 11419 * might have fragments that were not the last block in the file 11420 * which would corrupt the filesystem. Thus, we cannot free any 11421 * allocdirects after one whose ad_oldblkno claims a fragment as 11422 * these blocks must be rolled back to zero before writing the inode. 11423 * We check the currently active set of allocdirects in id_inoupdt 11424 * or id_extupdt as appropriate. 11425 */ 11426 inodedep = adp->ad_inodedep; 11427 bsize = inodedep->id_fs->fs_bsize; 11428 if (adp->ad_state & EXTDATA) 11429 listhead = &inodedep->id_extupdt; 11430 else 11431 listhead = &inodedep->id_inoupdt; 11432 TAILQ_FOREACH(listadp, listhead, ad_next) { 11433 /* found our block */ 11434 if (listadp == adp) 11435 break; 11436 /* continue if ad_oldlbn is not a fragment */ 11437 if (listadp->ad_oldsize == 0 || 11438 listadp->ad_oldsize == bsize) 11439 continue; 11440 /* hit a fragment */ 11441 return; 11442 } 11443 /* 11444 * If we have reached the end of the current list without 11445 * finding the just finished dependency, then it must be 11446 * on the future dependency list. Future dependencies cannot 11447 * be freed until they are moved to the current list. 11448 */ 11449 if (listadp == NULL) { 11450 #ifdef INVARIANTS 11451 if (adp->ad_state & EXTDATA) 11452 listhead = &inodedep->id_newextupdt; 11453 else 11454 listhead = &inodedep->id_newinoupdt; 11455 TAILQ_FOREACH(listadp, listhead, ad_next) 11456 /* found our block */ 11457 if (listadp == adp) 11458 break; 11459 if (listadp == NULL) 11460 panic("handle_allocdirect_partdone: lost dep"); 11461 #endif /* INVARIANTS */ 11462 return; 11463 } 11464 /* 11465 * If we have found the just finished dependency, then queue 11466 * it along with anything that follows it that is complete. 11467 * Since the pointer has not yet been written in the inode 11468 * as the dependency prevents it, place the allocdirect on the 11469 * bufwait list where it will be freed once the pointer is 11470 * valid. 11471 */ 11472 if (wkhd == NULL) 11473 wkhd = &inodedep->id_bufwait; 11474 for (; adp; adp = listadp) { 11475 listadp = TAILQ_NEXT(adp, ad_next); 11476 if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE) 11477 return; 11478 TAILQ_REMOVE(listhead, adp, ad_next); 11479 WORKLIST_INSERT(wkhd, &adp->ad_block.nb_list); 11480 } 11481 } 11482 11483 /* 11484 * Called from within softdep_disk_write_complete above. This routine 11485 * completes successfully written allocindirs. 11486 */ 11487 static void 11488 handle_allocindir_partdone( 11489 struct allocindir *aip) /* the completed allocindir */ 11490 { 11491 struct indirdep *indirdep; 11492 11493 if ((aip->ai_state & ALLCOMPLETE) != ALLCOMPLETE) 11494 return; 11495 indirdep = aip->ai_indirdep; 11496 LIST_REMOVE(aip, ai_next); 11497 /* 11498 * Don't set a pointer while the buffer is undergoing IO or while 11499 * we have active truncations. 11500 */ 11501 if (indirdep->ir_state & UNDONE || !TAILQ_EMPTY(&indirdep->ir_trunc)) { 11502 LIST_INSERT_HEAD(&indirdep->ir_donehd, aip, ai_next); 11503 return; 11504 } 11505 if (indirdep->ir_state & UFS1FMT) 11506 ((ufs1_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] = 11507 aip->ai_newblkno; 11508 else 11509 ((ufs2_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] = 11510 aip->ai_newblkno; 11511 /* 11512 * Await the pointer write before freeing the allocindir. 11513 */ 11514 LIST_INSERT_HEAD(&indirdep->ir_writehd, aip, ai_next); 11515 } 11516 11517 /* 11518 * Release segments held on a jwork list. 11519 */ 11520 static void 11521 handle_jwork(struct workhead *wkhd) 11522 { 11523 struct worklist *wk; 11524 11525 while ((wk = LIST_FIRST(wkhd)) != NULL) { 11526 WORKLIST_REMOVE(wk); 11527 switch (wk->wk_type) { 11528 case D_JSEGDEP: 11529 free_jsegdep(WK_JSEGDEP(wk)); 11530 continue; 11531 case D_FREEDEP: 11532 free_freedep(WK_FREEDEP(wk)); 11533 continue; 11534 case D_FREEFRAG: 11535 rele_jseg(WK_JSEG(WK_FREEFRAG(wk)->ff_jdep)); 11536 WORKITEM_FREE(wk, D_FREEFRAG); 11537 continue; 11538 case D_FREEWORK: 11539 handle_written_freework(WK_FREEWORK(wk)); 11540 continue; 11541 default: 11542 panic("handle_jwork: Unknown type %s\n", 11543 TYPENAME(wk->wk_type)); 11544 } 11545 } 11546 } 11547 11548 /* 11549 * Handle the bufwait list on an inode when it is safe to release items 11550 * held there. This normally happens after an inode block is written but 11551 * may be delayed and handled later if there are pending journal items that 11552 * are not yet safe to be released. 11553 */ 11554 static struct freefile * 11555 handle_bufwait( 11556 struct inodedep *inodedep, 11557 struct workhead *refhd) 11558 { 11559 struct jaddref *jaddref; 11560 struct freefile *freefile; 11561 struct worklist *wk; 11562 11563 freefile = NULL; 11564 while ((wk = LIST_FIRST(&inodedep->id_bufwait)) != NULL) { 11565 WORKLIST_REMOVE(wk); 11566 switch (wk->wk_type) { 11567 case D_FREEFILE: 11568 /* 11569 * We defer adding freefile to the worklist 11570 * until all other additions have been made to 11571 * ensure that it will be done after all the 11572 * old blocks have been freed. 11573 */ 11574 if (freefile != NULL) 11575 panic("handle_bufwait: freefile"); 11576 freefile = WK_FREEFILE(wk); 11577 continue; 11578 11579 case D_MKDIR: 11580 handle_written_mkdir(WK_MKDIR(wk), MKDIR_PARENT); 11581 continue; 11582 11583 case D_DIRADD: 11584 diradd_inode_written(WK_DIRADD(wk), inodedep); 11585 continue; 11586 11587 case D_FREEFRAG: 11588 wk->wk_state |= COMPLETE; 11589 if ((wk->wk_state & ALLCOMPLETE) == ALLCOMPLETE) 11590 add_to_worklist(wk, 0); 11591 continue; 11592 11593 case D_DIRREM: 11594 wk->wk_state |= COMPLETE; 11595 add_to_worklist(wk, 0); 11596 continue; 11597 11598 case D_ALLOCDIRECT: 11599 case D_ALLOCINDIR: 11600 free_newblk(WK_NEWBLK(wk)); 11601 continue; 11602 11603 case D_JNEWBLK: 11604 wk->wk_state |= COMPLETE; 11605 free_jnewblk(WK_JNEWBLK(wk)); 11606 continue; 11607 11608 /* 11609 * Save freed journal segments and add references on 11610 * the supplied list which will delay their release 11611 * until the cg bitmap is cleared on disk. 11612 */ 11613 case D_JSEGDEP: 11614 if (refhd == NULL) 11615 free_jsegdep(WK_JSEGDEP(wk)); 11616 else 11617 WORKLIST_INSERT(refhd, wk); 11618 continue; 11619 11620 case D_JADDREF: 11621 jaddref = WK_JADDREF(wk); 11622 TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref, 11623 if_deps); 11624 /* 11625 * Transfer any jaddrefs to the list to be freed with 11626 * the bitmap if we're handling a removed file. 11627 */ 11628 if (refhd == NULL) { 11629 wk->wk_state |= COMPLETE; 11630 free_jaddref(jaddref); 11631 } else 11632 WORKLIST_INSERT(refhd, wk); 11633 continue; 11634 11635 default: 11636 panic("handle_bufwait: Unknown type %p(%s)", 11637 wk, TYPENAME(wk->wk_type)); 11638 /* NOTREACHED */ 11639 } 11640 } 11641 return (freefile); 11642 } 11643 /* 11644 * Called from within softdep_disk_write_complete above to restore 11645 * in-memory inode block contents to their most up-to-date state. Note 11646 * that this routine is always called from interrupt level with further 11647 * interrupts from this device blocked. 11648 * 11649 * If the write did not succeed, we will do all the roll-forward 11650 * operations, but we will not take the actions that will allow its 11651 * dependencies to be processed. 11652 */ 11653 static int 11654 handle_written_inodeblock( 11655 struct inodedep *inodedep, 11656 struct buf *bp, /* buffer containing the inode block */ 11657 int flags) 11658 { 11659 struct freefile *freefile; 11660 struct allocdirect *adp, *nextadp; 11661 struct ufs1_dinode *dp1 = NULL; 11662 struct ufs2_dinode *dp2 = NULL; 11663 struct workhead wkhd; 11664 int hadchanges, fstype; 11665 ino_t freelink; 11666 11667 LIST_INIT(&wkhd); 11668 hadchanges = 0; 11669 freefile = NULL; 11670 if ((inodedep->id_state & IOSTARTED) == 0) 11671 panic("handle_written_inodeblock: not started"); 11672 inodedep->id_state &= ~IOSTARTED; 11673 if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC) { 11674 fstype = UFS1; 11675 dp1 = (struct ufs1_dinode *)bp->b_data + 11676 ino_to_fsbo(inodedep->id_fs, inodedep->id_ino); 11677 freelink = dp1->di_freelink; 11678 } else { 11679 fstype = UFS2; 11680 dp2 = (struct ufs2_dinode *)bp->b_data + 11681 ino_to_fsbo(inodedep->id_fs, inodedep->id_ino); 11682 freelink = dp2->di_freelink; 11683 } 11684 /* 11685 * Leave this inodeblock dirty until it's in the list. 11686 */ 11687 if ((inodedep->id_state & (UNLINKED | UNLINKONLIST)) == UNLINKED && 11688 (flags & WRITESUCCEEDED)) { 11689 struct inodedep *inon; 11690 11691 inon = TAILQ_NEXT(inodedep, id_unlinked); 11692 if ((inon == NULL && freelink == 0) || 11693 (inon && inon->id_ino == freelink)) { 11694 if (inon) 11695 inon->id_state |= UNLINKPREV; 11696 inodedep->id_state |= UNLINKNEXT; 11697 } 11698 hadchanges = 1; 11699 } 11700 /* 11701 * If we had to rollback the inode allocation because of 11702 * bitmaps being incomplete, then simply restore it. 11703 * Keep the block dirty so that it will not be reclaimed until 11704 * all associated dependencies have been cleared and the 11705 * corresponding updates written to disk. 11706 */ 11707 if (inodedep->id_savedino1 != NULL) { 11708 hadchanges = 1; 11709 if (fstype == UFS1) 11710 *dp1 = *inodedep->id_savedino1; 11711 else 11712 *dp2 = *inodedep->id_savedino2; 11713 free(inodedep->id_savedino1, M_SAVEDINO); 11714 inodedep->id_savedino1 = NULL; 11715 if ((bp->b_flags & B_DELWRI) == 0) 11716 stat_inode_bitmap++; 11717 bdirty(bp); 11718 /* 11719 * If the inode is clear here and GOINGAWAY it will never 11720 * be written. Process the bufwait and clear any pending 11721 * work which may include the freefile. 11722 */ 11723 if (inodedep->id_state & GOINGAWAY) 11724 goto bufwait; 11725 return (1); 11726 } 11727 if (flags & WRITESUCCEEDED) 11728 inodedep->id_state |= COMPLETE; 11729 /* 11730 * Roll forward anything that had to be rolled back before 11731 * the inode could be updated. 11732 */ 11733 for (adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; adp = nextadp) { 11734 nextadp = TAILQ_NEXT(adp, ad_next); 11735 if (adp->ad_state & ATTACHED) 11736 panic("handle_written_inodeblock: new entry"); 11737 if (fstype == UFS1) { 11738 if (adp->ad_offset < UFS_NDADDR) { 11739 if (dp1->di_db[adp->ad_offset]!=adp->ad_oldblkno) 11740 panic("%s %s #%jd mismatch %d != %jd", 11741 "handle_written_inodeblock:", 11742 "direct pointer", 11743 (intmax_t)adp->ad_offset, 11744 dp1->di_db[adp->ad_offset], 11745 (intmax_t)adp->ad_oldblkno); 11746 dp1->di_db[adp->ad_offset] = adp->ad_newblkno; 11747 } else { 11748 if (dp1->di_ib[adp->ad_offset - UFS_NDADDR] != 11749 0) 11750 panic("%s: %s #%jd allocated as %d", 11751 "handle_written_inodeblock", 11752 "indirect pointer", 11753 (intmax_t)adp->ad_offset - 11754 UFS_NDADDR, 11755 dp1->di_ib[adp->ad_offset - 11756 UFS_NDADDR]); 11757 dp1->di_ib[adp->ad_offset - UFS_NDADDR] = 11758 adp->ad_newblkno; 11759 } 11760 } else { 11761 if (adp->ad_offset < UFS_NDADDR) { 11762 if (dp2->di_db[adp->ad_offset]!=adp->ad_oldblkno) 11763 panic("%s: %s #%jd %s %jd != %jd", 11764 "handle_written_inodeblock", 11765 "direct pointer", 11766 (intmax_t)adp->ad_offset, "mismatch", 11767 (intmax_t)dp2->di_db[adp->ad_offset], 11768 (intmax_t)adp->ad_oldblkno); 11769 dp2->di_db[adp->ad_offset] = adp->ad_newblkno; 11770 } else { 11771 if (dp2->di_ib[adp->ad_offset - UFS_NDADDR] != 11772 0) 11773 panic("%s: %s #%jd allocated as %jd", 11774 "handle_written_inodeblock", 11775 "indirect pointer", 11776 (intmax_t)adp->ad_offset - 11777 UFS_NDADDR, 11778 (intmax_t) 11779 dp2->di_ib[adp->ad_offset - 11780 UFS_NDADDR]); 11781 dp2->di_ib[adp->ad_offset - UFS_NDADDR] = 11782 adp->ad_newblkno; 11783 } 11784 } 11785 adp->ad_state &= ~UNDONE; 11786 adp->ad_state |= ATTACHED; 11787 hadchanges = 1; 11788 } 11789 for (adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; adp = nextadp) { 11790 nextadp = TAILQ_NEXT(adp, ad_next); 11791 if (adp->ad_state & ATTACHED) 11792 panic("handle_written_inodeblock: new entry"); 11793 if (dp2->di_extb[adp->ad_offset] != adp->ad_oldblkno) 11794 panic("%s: direct pointers #%jd %s %jd != %jd", 11795 "handle_written_inodeblock", 11796 (intmax_t)adp->ad_offset, "mismatch", 11797 (intmax_t)dp2->di_extb[adp->ad_offset], 11798 (intmax_t)adp->ad_oldblkno); 11799 dp2->di_extb[adp->ad_offset] = adp->ad_newblkno; 11800 adp->ad_state &= ~UNDONE; 11801 adp->ad_state |= ATTACHED; 11802 hadchanges = 1; 11803 } 11804 if (hadchanges && (bp->b_flags & B_DELWRI) == 0) 11805 stat_direct_blk_ptrs++; 11806 /* 11807 * Reset the file size to its most up-to-date value. 11808 */ 11809 if (inodedep->id_savedsize == -1 || inodedep->id_savedextsize == -1) 11810 panic("handle_written_inodeblock: bad size"); 11811 if (inodedep->id_savednlink > UFS_LINK_MAX) 11812 panic("handle_written_inodeblock: Invalid link count " 11813 "%jd for inodedep %p", (uintmax_t)inodedep->id_savednlink, 11814 inodedep); 11815 if (fstype == UFS1) { 11816 if (dp1->di_nlink != inodedep->id_savednlink) { 11817 dp1->di_nlink = inodedep->id_savednlink; 11818 hadchanges = 1; 11819 } 11820 if (dp1->di_size != inodedep->id_savedsize) { 11821 dp1->di_size = inodedep->id_savedsize; 11822 hadchanges = 1; 11823 } 11824 } else { 11825 if (dp2->di_nlink != inodedep->id_savednlink) { 11826 dp2->di_nlink = inodedep->id_savednlink; 11827 hadchanges = 1; 11828 } 11829 if (dp2->di_size != inodedep->id_savedsize) { 11830 dp2->di_size = inodedep->id_savedsize; 11831 hadchanges = 1; 11832 } 11833 if (dp2->di_extsize != inodedep->id_savedextsize) { 11834 dp2->di_extsize = inodedep->id_savedextsize; 11835 hadchanges = 1; 11836 } 11837 } 11838 inodedep->id_savedsize = -1; 11839 inodedep->id_savedextsize = -1; 11840 inodedep->id_savednlink = -1; 11841 /* 11842 * If there were any rollbacks in the inode block, then it must be 11843 * marked dirty so that its will eventually get written back in 11844 * its correct form. 11845 */ 11846 if (hadchanges) { 11847 if (fstype == UFS2) 11848 ffs_update_dinode_ckhash(inodedep->id_fs, dp2); 11849 bdirty(bp); 11850 } 11851 bufwait: 11852 /* 11853 * If the write did not succeed, we have done all the roll-forward 11854 * operations, but we cannot take the actions that will allow its 11855 * dependencies to be processed. 11856 */ 11857 if ((flags & WRITESUCCEEDED) == 0) 11858 return (hadchanges); 11859 /* 11860 * Process any allocdirects that completed during the update. 11861 */ 11862 if ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL) 11863 handle_allocdirect_partdone(adp, &wkhd); 11864 if ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL) 11865 handle_allocdirect_partdone(adp, &wkhd); 11866 /* 11867 * Process deallocations that were held pending until the 11868 * inode had been written to disk. Freeing of the inode 11869 * is delayed until after all blocks have been freed to 11870 * avoid creation of new <vfsid, inum, lbn> triples 11871 * before the old ones have been deleted. Completely 11872 * unlinked inodes are not processed until the unlinked 11873 * inode list is written or the last reference is removed. 11874 */ 11875 if ((inodedep->id_state & (UNLINKED | UNLINKONLIST)) != UNLINKED) { 11876 freefile = handle_bufwait(inodedep, NULL); 11877 if (freefile && !LIST_EMPTY(&wkhd)) { 11878 WORKLIST_INSERT(&wkhd, &freefile->fx_list); 11879 freefile = NULL; 11880 } 11881 } 11882 /* 11883 * Move rolled forward dependency completions to the bufwait list 11884 * now that those that were already written have been processed. 11885 */ 11886 if (!LIST_EMPTY(&wkhd) && hadchanges == 0) 11887 panic("handle_written_inodeblock: bufwait but no changes"); 11888 jwork_move(&inodedep->id_bufwait, &wkhd); 11889 11890 if (freefile != NULL) { 11891 /* 11892 * If the inode is goingaway it was never written. Fake up 11893 * the state here so free_inodedep() can succeed. 11894 */ 11895 if (inodedep->id_state & GOINGAWAY) 11896 inodedep->id_state |= COMPLETE | DEPCOMPLETE; 11897 if (free_inodedep(inodedep) == 0) 11898 panic("handle_written_inodeblock: live inodedep %p", 11899 inodedep); 11900 add_to_worklist(&freefile->fx_list, 0); 11901 return (0); 11902 } 11903 11904 /* 11905 * If no outstanding dependencies, free it. 11906 */ 11907 if (free_inodedep(inodedep) || 11908 (TAILQ_FIRST(&inodedep->id_inoreflst) == 0 && 11909 TAILQ_FIRST(&inodedep->id_inoupdt) == 0 && 11910 TAILQ_FIRST(&inodedep->id_extupdt) == 0 && 11911 LIST_FIRST(&inodedep->id_bufwait) == 0)) 11912 return (0); 11913 return (hadchanges); 11914 } 11915 11916 /* 11917 * Perform needed roll-forwards and kick off any dependencies that 11918 * can now be processed. 11919 * 11920 * If the write did not succeed, we will do all the roll-forward 11921 * operations, but we will not take the actions that will allow its 11922 * dependencies to be processed. 11923 */ 11924 static int 11925 handle_written_indirdep( 11926 struct indirdep *indirdep, 11927 struct buf *bp, 11928 struct buf **bpp, 11929 int flags) 11930 { 11931 struct allocindir *aip; 11932 struct buf *sbp; 11933 int chgs; 11934 11935 if (indirdep->ir_state & GOINGAWAY) 11936 panic("handle_written_indirdep: indirdep gone"); 11937 if ((indirdep->ir_state & IOSTARTED) == 0) 11938 panic("handle_written_indirdep: IO not started"); 11939 chgs = 0; 11940 /* 11941 * If there were rollbacks revert them here. 11942 */ 11943 if (indirdep->ir_saveddata) { 11944 bcopy(indirdep->ir_saveddata, bp->b_data, bp->b_bcount); 11945 if (TAILQ_EMPTY(&indirdep->ir_trunc)) { 11946 free(indirdep->ir_saveddata, M_INDIRDEP); 11947 indirdep->ir_saveddata = NULL; 11948 } 11949 chgs = 1; 11950 } 11951 indirdep->ir_state &= ~(UNDONE | IOSTARTED); 11952 indirdep->ir_state |= ATTACHED; 11953 /* 11954 * If the write did not succeed, we have done all the roll-forward 11955 * operations, but we cannot take the actions that will allow its 11956 * dependencies to be processed. 11957 */ 11958 if ((flags & WRITESUCCEEDED) == 0) { 11959 stat_indir_blk_ptrs++; 11960 bdirty(bp); 11961 return (1); 11962 } 11963 /* 11964 * Move allocindirs with written pointers to the completehd if 11965 * the indirdep's pointer is not yet written. Otherwise 11966 * free them here. 11967 */ 11968 while ((aip = LIST_FIRST(&indirdep->ir_writehd)) != NULL) { 11969 LIST_REMOVE(aip, ai_next); 11970 if ((indirdep->ir_state & DEPCOMPLETE) == 0) { 11971 LIST_INSERT_HEAD(&indirdep->ir_completehd, aip, 11972 ai_next); 11973 newblk_freefrag(&aip->ai_block); 11974 continue; 11975 } 11976 free_newblk(&aip->ai_block); 11977 } 11978 /* 11979 * Move allocindirs that have finished dependency processing from 11980 * the done list to the write list after updating the pointers. 11981 */ 11982 if (TAILQ_EMPTY(&indirdep->ir_trunc)) { 11983 while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != NULL) { 11984 handle_allocindir_partdone(aip); 11985 if (aip == LIST_FIRST(&indirdep->ir_donehd)) 11986 panic("disk_write_complete: not gone"); 11987 chgs = 1; 11988 } 11989 } 11990 /* 11991 * Preserve the indirdep if there were any changes or if it is not 11992 * yet valid on disk. 11993 */ 11994 if (chgs) { 11995 stat_indir_blk_ptrs++; 11996 bdirty(bp); 11997 return (1); 11998 } 11999 /* 12000 * If there were no changes we can discard the savedbp and detach 12001 * ourselves from the buf. We are only carrying completed pointers 12002 * in this case. 12003 */ 12004 sbp = indirdep->ir_savebp; 12005 sbp->b_flags |= B_INVAL | B_NOCACHE; 12006 indirdep->ir_savebp = NULL; 12007 indirdep->ir_bp = NULL; 12008 if (*bpp != NULL) 12009 panic("handle_written_indirdep: bp already exists."); 12010 *bpp = sbp; 12011 /* 12012 * The indirdep may not be freed until its parent points at it. 12013 */ 12014 if (indirdep->ir_state & DEPCOMPLETE) 12015 free_indirdep(indirdep); 12016 12017 return (0); 12018 } 12019 12020 /* 12021 * Process a diradd entry after its dependent inode has been written. 12022 */ 12023 static void 12024 diradd_inode_written( 12025 struct diradd *dap, 12026 struct inodedep *inodedep) 12027 { 12028 12029 LOCK_OWNED(VFSTOUFS(dap->da_list.wk_mp)); 12030 dap->da_state |= COMPLETE; 12031 complete_diradd(dap); 12032 WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list); 12033 } 12034 12035 /* 12036 * Returns true if the bmsafemap will have rollbacks when written. Must only 12037 * be called with the per-filesystem lock and the buf lock on the cg held. 12038 */ 12039 static int 12040 bmsafemap_backgroundwrite( 12041 struct bmsafemap *bmsafemap, 12042 struct buf *bp) 12043 { 12044 int dirty; 12045 12046 LOCK_OWNED(VFSTOUFS(bmsafemap->sm_list.wk_mp)); 12047 dirty = !LIST_EMPTY(&bmsafemap->sm_jaddrefhd) | 12048 !LIST_EMPTY(&bmsafemap->sm_jnewblkhd); 12049 /* 12050 * If we're initiating a background write we need to process the 12051 * rollbacks as they exist now, not as they exist when IO starts. 12052 * No other consumers will look at the contents of the shadowed 12053 * buf so this is safe to do here. 12054 */ 12055 if (bp->b_xflags & BX_BKGRDMARKER) 12056 initiate_write_bmsafemap(bmsafemap, bp); 12057 12058 return (dirty); 12059 } 12060 12061 /* 12062 * Re-apply an allocation when a cg write is complete. 12063 */ 12064 static int 12065 jnewblk_rollforward( 12066 struct jnewblk *jnewblk, 12067 struct fs *fs, 12068 struct cg *cgp, 12069 uint8_t *blksfree) 12070 { 12071 ufs1_daddr_t fragno; 12072 ufs2_daddr_t blkno; 12073 long cgbno, bbase; 12074 int frags, blk; 12075 int i; 12076 12077 frags = 0; 12078 cgbno = dtogd(fs, jnewblk->jn_blkno); 12079 for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; i++) { 12080 if (isclr(blksfree, cgbno + i)) 12081 panic("jnewblk_rollforward: re-allocated fragment"); 12082 frags++; 12083 } 12084 if (frags == fs->fs_frag) { 12085 blkno = fragstoblks(fs, cgbno); 12086 ffs_clrblock(fs, blksfree, (long)blkno); 12087 ffs_clusteracct(fs, cgp, blkno, -1); 12088 cgp->cg_cs.cs_nbfree--; 12089 } else { 12090 bbase = cgbno - fragnum(fs, cgbno); 12091 cgbno += jnewblk->jn_oldfrags; 12092 /* If a complete block had been reassembled, account for it. */ 12093 fragno = fragstoblks(fs, bbase); 12094 if (ffs_isblock(fs, blksfree, fragno)) { 12095 cgp->cg_cs.cs_nffree += fs->fs_frag; 12096 ffs_clusteracct(fs, cgp, fragno, -1); 12097 cgp->cg_cs.cs_nbfree--; 12098 } 12099 /* Decrement the old frags. */ 12100 blk = blkmap(fs, blksfree, bbase); 12101 ffs_fragacct(fs, blk, cgp->cg_frsum, -1); 12102 /* Allocate the fragment */ 12103 for (i = 0; i < frags; i++) 12104 clrbit(blksfree, cgbno + i); 12105 cgp->cg_cs.cs_nffree -= frags; 12106 /* Add back in counts associated with the new frags */ 12107 blk = blkmap(fs, blksfree, bbase); 12108 ffs_fragacct(fs, blk, cgp->cg_frsum, 1); 12109 } 12110 return (frags); 12111 } 12112 12113 /* 12114 * Complete a write to a bmsafemap structure. Roll forward any bitmap 12115 * changes if it's not a background write. Set all written dependencies 12116 * to DEPCOMPLETE and free the structure if possible. 12117 * 12118 * If the write did not succeed, we will do all the roll-forward 12119 * operations, but we will not take the actions that will allow its 12120 * dependencies to be processed. 12121 */ 12122 static int 12123 handle_written_bmsafemap( 12124 struct bmsafemap *bmsafemap, 12125 struct buf *bp, 12126 int flags) 12127 { 12128 struct newblk *newblk; 12129 struct inodedep *inodedep; 12130 struct jaddref *jaddref, *jatmp; 12131 struct jnewblk *jnewblk, *jntmp; 12132 struct ufsmount *ump; 12133 uint8_t *inosused; 12134 uint8_t *blksfree; 12135 struct cg *cgp; 12136 struct fs *fs; 12137 ino_t ino; 12138 int foreground; 12139 int chgs; 12140 12141 if ((bmsafemap->sm_state & IOSTARTED) == 0) 12142 panic("handle_written_bmsafemap: Not started\n"); 12143 ump = VFSTOUFS(bmsafemap->sm_list.wk_mp); 12144 chgs = 0; 12145 bmsafemap->sm_state &= ~IOSTARTED; 12146 foreground = (bp->b_xflags & BX_BKGRDMARKER) == 0; 12147 /* 12148 * If write was successful, release journal work that was waiting 12149 * on the write. Otherwise move the work back. 12150 */ 12151 if (flags & WRITESUCCEEDED) 12152 handle_jwork(&bmsafemap->sm_freewr); 12153 else 12154 LIST_CONCAT(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr, 12155 worklist, wk_list); 12156 12157 /* 12158 * Restore unwritten inode allocation pending jaddref writes. 12159 */ 12160 if (!LIST_EMPTY(&bmsafemap->sm_jaddrefhd)) { 12161 cgp = (struct cg *)bp->b_data; 12162 fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs; 12163 inosused = cg_inosused(cgp); 12164 LIST_FOREACH_SAFE(jaddref, &bmsafemap->sm_jaddrefhd, 12165 ja_bmdeps, jatmp) { 12166 if ((jaddref->ja_state & UNDONE) == 0) 12167 continue; 12168 ino = jaddref->ja_ino % fs->fs_ipg; 12169 if (isset(inosused, ino)) 12170 panic("handle_written_bmsafemap: " 12171 "re-allocated inode"); 12172 /* Do the roll-forward only if it's a real copy. */ 12173 if (foreground) { 12174 if ((jaddref->ja_mode & IFMT) == IFDIR) 12175 cgp->cg_cs.cs_ndir++; 12176 cgp->cg_cs.cs_nifree--; 12177 setbit(inosused, ino); 12178 chgs = 1; 12179 } 12180 jaddref->ja_state &= ~UNDONE; 12181 jaddref->ja_state |= ATTACHED; 12182 free_jaddref(jaddref); 12183 } 12184 } 12185 /* 12186 * Restore any block allocations which are pending journal writes. 12187 */ 12188 if (LIST_FIRST(&bmsafemap->sm_jnewblkhd) != NULL) { 12189 cgp = (struct cg *)bp->b_data; 12190 fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs; 12191 blksfree = cg_blksfree(cgp); 12192 LIST_FOREACH_SAFE(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps, 12193 jntmp) { 12194 if ((jnewblk->jn_state & UNDONE) == 0) 12195 continue; 12196 /* Do the roll-forward only if it's a real copy. */ 12197 if (foreground && 12198 jnewblk_rollforward(jnewblk, fs, cgp, blksfree)) 12199 chgs = 1; 12200 jnewblk->jn_state &= ~(UNDONE | NEWBLOCK); 12201 jnewblk->jn_state |= ATTACHED; 12202 free_jnewblk(jnewblk); 12203 } 12204 } 12205 /* 12206 * If the write did not succeed, we have done all the roll-forward 12207 * operations, but we cannot take the actions that will allow its 12208 * dependencies to be processed. 12209 */ 12210 if ((flags & WRITESUCCEEDED) == 0) { 12211 LIST_CONCAT(&bmsafemap->sm_newblkhd, &bmsafemap->sm_newblkwr, 12212 newblk, nb_deps); 12213 LIST_CONCAT(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr, 12214 worklist, wk_list); 12215 if (foreground) 12216 bdirty(bp); 12217 return (1); 12218 } 12219 while ((newblk = LIST_FIRST(&bmsafemap->sm_newblkwr))) { 12220 newblk->nb_state |= DEPCOMPLETE; 12221 newblk->nb_state &= ~ONDEPLIST; 12222 newblk->nb_bmsafemap = NULL; 12223 LIST_REMOVE(newblk, nb_deps); 12224 if (newblk->nb_list.wk_type == D_ALLOCDIRECT) 12225 handle_allocdirect_partdone( 12226 WK_ALLOCDIRECT(&newblk->nb_list), NULL); 12227 else if (newblk->nb_list.wk_type == D_ALLOCINDIR) 12228 handle_allocindir_partdone( 12229 WK_ALLOCINDIR(&newblk->nb_list)); 12230 else if (newblk->nb_list.wk_type != D_NEWBLK) 12231 panic("handle_written_bmsafemap: Unexpected type: %s", 12232 TYPENAME(newblk->nb_list.wk_type)); 12233 } 12234 while ((inodedep = LIST_FIRST(&bmsafemap->sm_inodedepwr)) != NULL) { 12235 inodedep->id_state |= DEPCOMPLETE; 12236 inodedep->id_state &= ~ONDEPLIST; 12237 LIST_REMOVE(inodedep, id_deps); 12238 inodedep->id_bmsafemap = NULL; 12239 } 12240 LIST_REMOVE(bmsafemap, sm_next); 12241 if (chgs == 0 && LIST_EMPTY(&bmsafemap->sm_jaddrefhd) && 12242 LIST_EMPTY(&bmsafemap->sm_jnewblkhd) && 12243 LIST_EMPTY(&bmsafemap->sm_newblkhd) && 12244 LIST_EMPTY(&bmsafemap->sm_inodedephd) && 12245 LIST_EMPTY(&bmsafemap->sm_freehd)) { 12246 LIST_REMOVE(bmsafemap, sm_hash); 12247 WORKITEM_FREE(bmsafemap, D_BMSAFEMAP); 12248 return (0); 12249 } 12250 LIST_INSERT_HEAD(&ump->softdep_dirtycg, bmsafemap, sm_next); 12251 if (foreground) 12252 bdirty(bp); 12253 return (1); 12254 } 12255 12256 /* 12257 * Try to free a mkdir dependency. 12258 */ 12259 static void 12260 complete_mkdir(struct mkdir *mkdir) 12261 { 12262 struct diradd *dap; 12263 12264 if ((mkdir->md_state & ALLCOMPLETE) != ALLCOMPLETE) 12265 return; 12266 LIST_REMOVE(mkdir, md_mkdirs); 12267 dap = mkdir->md_diradd; 12268 dap->da_state &= ~(mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY)); 12269 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0) { 12270 dap->da_state |= DEPCOMPLETE; 12271 complete_diradd(dap); 12272 } 12273 WORKITEM_FREE(mkdir, D_MKDIR); 12274 } 12275 12276 /* 12277 * Handle the completion of a mkdir dependency. 12278 */ 12279 static void 12280 handle_written_mkdir(struct mkdir *mkdir, int type) 12281 { 12282 12283 if ((mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY)) != type) 12284 panic("handle_written_mkdir: bad type"); 12285 mkdir->md_state |= COMPLETE; 12286 complete_mkdir(mkdir); 12287 } 12288 12289 static int 12290 free_pagedep(struct pagedep *pagedep) 12291 { 12292 int i; 12293 12294 if (pagedep->pd_state & NEWBLOCK) 12295 return (0); 12296 if (!LIST_EMPTY(&pagedep->pd_dirremhd)) 12297 return (0); 12298 for (i = 0; i < DAHASHSZ; i++) 12299 if (!LIST_EMPTY(&pagedep->pd_diraddhd[i])) 12300 return (0); 12301 if (!LIST_EMPTY(&pagedep->pd_pendinghd)) 12302 return (0); 12303 if (!LIST_EMPTY(&pagedep->pd_jmvrefhd)) 12304 return (0); 12305 if (pagedep->pd_state & ONWORKLIST) 12306 WORKLIST_REMOVE(&pagedep->pd_list); 12307 LIST_REMOVE(pagedep, pd_hash); 12308 WORKITEM_FREE(pagedep, D_PAGEDEP); 12309 12310 return (1); 12311 } 12312 12313 /* 12314 * Called from within softdep_disk_write_complete above. 12315 * A write operation was just completed. Removed inodes can 12316 * now be freed and associated block pointers may be committed. 12317 * Note that this routine is always called from interrupt level 12318 * with further interrupts from this device blocked. 12319 * 12320 * If the write did not succeed, we will do all the roll-forward 12321 * operations, but we will not take the actions that will allow its 12322 * dependencies to be processed. 12323 */ 12324 static int 12325 handle_written_filepage( 12326 struct pagedep *pagedep, 12327 struct buf *bp, /* buffer containing the written page */ 12328 int flags) 12329 { 12330 struct dirrem *dirrem; 12331 struct diradd *dap, *nextdap; 12332 struct direct *ep; 12333 int i, chgs; 12334 12335 if ((pagedep->pd_state & IOSTARTED) == 0) 12336 panic("handle_written_filepage: not started"); 12337 pagedep->pd_state &= ~IOSTARTED; 12338 if ((flags & WRITESUCCEEDED) == 0) 12339 goto rollforward; 12340 /* 12341 * Process any directory removals that have been committed. 12342 */ 12343 while ((dirrem = LIST_FIRST(&pagedep->pd_dirremhd)) != NULL) { 12344 LIST_REMOVE(dirrem, dm_next); 12345 dirrem->dm_state |= COMPLETE; 12346 dirrem->dm_dirinum = pagedep->pd_ino; 12347 KASSERT(LIST_EMPTY(&dirrem->dm_jremrefhd), 12348 ("handle_written_filepage: Journal entries not written.")); 12349 add_to_worklist(&dirrem->dm_list, 0); 12350 } 12351 /* 12352 * Free any directory additions that have been committed. 12353 * If it is a newly allocated block, we have to wait until 12354 * the on-disk directory inode claims the new block. 12355 */ 12356 if ((pagedep->pd_state & NEWBLOCK) == 0) 12357 while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL) 12358 free_diradd(dap, NULL); 12359 rollforward: 12360 /* 12361 * Uncommitted directory entries must be restored. 12362 */ 12363 for (chgs = 0, i = 0; i < DAHASHSZ; i++) { 12364 for (dap = LIST_FIRST(&pagedep->pd_diraddhd[i]); dap; 12365 dap = nextdap) { 12366 nextdap = LIST_NEXT(dap, da_pdlist); 12367 if (dap->da_state & ATTACHED) 12368 panic("handle_written_filepage: attached"); 12369 ep = (struct direct *) 12370 ((char *)bp->b_data + dap->da_offset); 12371 ep->d_ino = dap->da_newinum; 12372 dap->da_state &= ~UNDONE; 12373 dap->da_state |= ATTACHED; 12374 chgs = 1; 12375 /* 12376 * If the inode referenced by the directory has 12377 * been written out, then the dependency can be 12378 * moved to the pending list. 12379 */ 12380 if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) { 12381 LIST_REMOVE(dap, da_pdlist); 12382 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, 12383 da_pdlist); 12384 } 12385 } 12386 } 12387 /* 12388 * If there were any rollbacks in the directory, then it must be 12389 * marked dirty so that its will eventually get written back in 12390 * its correct form. 12391 */ 12392 if (chgs || (flags & WRITESUCCEEDED) == 0) { 12393 if ((bp->b_flags & B_DELWRI) == 0) 12394 stat_dir_entry++; 12395 bdirty(bp); 12396 return (1); 12397 } 12398 /* 12399 * If we are not waiting for a new directory block to be 12400 * claimed by its inode, then the pagedep will be freed. 12401 * Otherwise it will remain to track any new entries on 12402 * the page in case they are fsync'ed. 12403 */ 12404 free_pagedep(pagedep); 12405 return (0); 12406 } 12407 12408 /* 12409 * Writing back in-core inode structures. 12410 * 12411 * The filesystem only accesses an inode's contents when it occupies an 12412 * "in-core" inode structure. These "in-core" structures are separate from 12413 * the page frames used to cache inode blocks. Only the latter are 12414 * transferred to/from the disk. So, when the updated contents of the 12415 * "in-core" inode structure are copied to the corresponding in-memory inode 12416 * block, the dependencies are also transferred. The following procedure is 12417 * called when copying a dirty "in-core" inode to a cached inode block. 12418 */ 12419 12420 /* 12421 * Called when an inode is loaded from disk. If the effective link count 12422 * differed from the actual link count when it was last flushed, then we 12423 * need to ensure that the correct effective link count is put back. 12424 */ 12425 void 12426 softdep_load_inodeblock( 12427 struct inode *ip) /* the "in_core" copy of the inode */ 12428 { 12429 struct inodedep *inodedep; 12430 struct ufsmount *ump; 12431 12432 ump = ITOUMP(ip); 12433 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 12434 ("softdep_load_inodeblock called on non-softdep filesystem")); 12435 /* 12436 * Check for alternate nlink count. 12437 */ 12438 ip->i_effnlink = ip->i_nlink; 12439 ACQUIRE_LOCK(ump); 12440 if (inodedep_lookup(UFSTOVFS(ump), ip->i_number, 0, &inodedep) == 0) { 12441 FREE_LOCK(ump); 12442 return; 12443 } 12444 if (ip->i_nlink != inodedep->id_nlinkwrote && 12445 inodedep->id_nlinkwrote != -1) { 12446 KASSERT(ip->i_nlink == 0 && 12447 (ump->um_flags & UM_FSFAIL_CLEANUP) != 0, 12448 ("read bad i_nlink value")); 12449 ip->i_effnlink = ip->i_nlink = inodedep->id_nlinkwrote; 12450 } 12451 ip->i_effnlink -= inodedep->id_nlinkdelta; 12452 KASSERT(ip->i_effnlink >= 0, 12453 ("softdep_load_inodeblock: negative i_effnlink")); 12454 FREE_LOCK(ump); 12455 } 12456 12457 /* 12458 * This routine is called just before the "in-core" inode 12459 * information is to be copied to the in-memory inode block. 12460 * Recall that an inode block contains several inodes. If 12461 * the force flag is set, then the dependencies will be 12462 * cleared so that the update can always be made. Note that 12463 * the buffer is locked when this routine is called, so we 12464 * will never be in the middle of writing the inode block 12465 * to disk. 12466 */ 12467 void 12468 softdep_update_inodeblock( 12469 struct inode *ip, /* the "in_core" copy of the inode */ 12470 struct buf *bp, /* the buffer containing the inode block */ 12471 int waitfor) /* nonzero => update must be allowed */ 12472 { 12473 struct inodedep *inodedep; 12474 struct inoref *inoref; 12475 struct ufsmount *ump; 12476 struct worklist *wk; 12477 struct mount *mp; 12478 struct buf *ibp; 12479 struct fs *fs; 12480 int error; 12481 12482 ump = ITOUMP(ip); 12483 mp = UFSTOVFS(ump); 12484 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 12485 ("softdep_update_inodeblock called on non-softdep filesystem")); 12486 fs = ump->um_fs; 12487 /* 12488 * Preserve the freelink that is on disk. clear_unlinked_inodedep() 12489 * does not have access to the in-core ip so must write directly into 12490 * the inode block buffer when setting freelink. 12491 */ 12492 if (fs->fs_magic == FS_UFS1_MAGIC) 12493 DIP_SET(ip, i_freelink, ((struct ufs1_dinode *)bp->b_data + 12494 ino_to_fsbo(fs, ip->i_number))->di_freelink); 12495 else 12496 DIP_SET(ip, i_freelink, ((struct ufs2_dinode *)bp->b_data + 12497 ino_to_fsbo(fs, ip->i_number))->di_freelink); 12498 /* 12499 * If the effective link count is not equal to the actual link 12500 * count, then we must track the difference in an inodedep while 12501 * the inode is (potentially) tossed out of the cache. Otherwise, 12502 * if there is no existing inodedep, then there are no dependencies 12503 * to track. 12504 */ 12505 ACQUIRE_LOCK(ump); 12506 again: 12507 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) { 12508 FREE_LOCK(ump); 12509 if (ip->i_effnlink != ip->i_nlink) 12510 panic("softdep_update_inodeblock: bad link count"); 12511 return; 12512 } 12513 KASSERT(ip->i_nlink >= inodedep->id_nlinkdelta, 12514 ("softdep_update_inodeblock inconsistent ip %p i_nlink %d " 12515 "inodedep %p id_nlinkdelta %jd", 12516 ip, ip->i_nlink, inodedep, (intmax_t)inodedep->id_nlinkdelta)); 12517 inodedep->id_nlinkwrote = ip->i_nlink; 12518 if (inodedep->id_nlinkdelta != ip->i_nlink - ip->i_effnlink) 12519 panic("softdep_update_inodeblock: bad delta"); 12520 /* 12521 * If we're flushing all dependencies we must also move any waiting 12522 * for journal writes onto the bufwait list prior to I/O. 12523 */ 12524 if (waitfor) { 12525 TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) { 12526 if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY)) 12527 == DEPCOMPLETE) { 12528 jwait(&inoref->if_list, MNT_WAIT); 12529 goto again; 12530 } 12531 } 12532 } 12533 /* 12534 * Changes have been initiated. Anything depending on these 12535 * changes cannot occur until this inode has been written. 12536 */ 12537 inodedep->id_state &= ~COMPLETE; 12538 if ((inodedep->id_state & ONWORKLIST) == 0) 12539 WORKLIST_INSERT(&bp->b_dep, &inodedep->id_list); 12540 /* 12541 * Any new dependencies associated with the incore inode must 12542 * now be moved to the list associated with the buffer holding 12543 * the in-memory copy of the inode. Once merged process any 12544 * allocdirects that are completed by the merger. 12545 */ 12546 merge_inode_lists(&inodedep->id_newinoupdt, &inodedep->id_inoupdt); 12547 if (!TAILQ_EMPTY(&inodedep->id_inoupdt)) 12548 handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_inoupdt), 12549 NULL); 12550 merge_inode_lists(&inodedep->id_newextupdt, &inodedep->id_extupdt); 12551 if (!TAILQ_EMPTY(&inodedep->id_extupdt)) 12552 handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_extupdt), 12553 NULL); 12554 /* 12555 * Now that the inode has been pushed into the buffer, the 12556 * operations dependent on the inode being written to disk 12557 * can be moved to the id_bufwait so that they will be 12558 * processed when the buffer I/O completes. 12559 */ 12560 while ((wk = LIST_FIRST(&inodedep->id_inowait)) != NULL) { 12561 WORKLIST_REMOVE(wk); 12562 WORKLIST_INSERT(&inodedep->id_bufwait, wk); 12563 } 12564 /* 12565 * Newly allocated inodes cannot be written until the bitmap 12566 * that allocates them have been written (indicated by 12567 * DEPCOMPLETE being set in id_state). If we are doing a 12568 * forced sync (e.g., an fsync on a file), we force the bitmap 12569 * to be written so that the update can be done. 12570 */ 12571 if (waitfor == 0) { 12572 FREE_LOCK(ump); 12573 return; 12574 } 12575 retry: 12576 if ((inodedep->id_state & (DEPCOMPLETE | GOINGAWAY)) != 0) { 12577 FREE_LOCK(ump); 12578 return; 12579 } 12580 ibp = inodedep->id_bmsafemap->sm_buf; 12581 ibp = getdirtybuf(ibp, LOCK_PTR(ump), MNT_WAIT); 12582 if (ibp == NULL) { 12583 /* 12584 * If ibp came back as NULL, the dependency could have been 12585 * freed while we slept. Look it up again, and check to see 12586 * that it has completed. 12587 */ 12588 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0) 12589 goto retry; 12590 FREE_LOCK(ump); 12591 return; 12592 } 12593 FREE_LOCK(ump); 12594 if ((error = bwrite(ibp)) != 0) 12595 softdep_error("softdep_update_inodeblock: bwrite", error); 12596 } 12597 12598 /* 12599 * Merge the a new inode dependency list (such as id_newinoupdt) into an 12600 * old inode dependency list (such as id_inoupdt). 12601 */ 12602 static void 12603 merge_inode_lists( 12604 struct allocdirectlst *newlisthead, 12605 struct allocdirectlst *oldlisthead) 12606 { 12607 struct allocdirect *listadp, *newadp; 12608 12609 newadp = TAILQ_FIRST(newlisthead); 12610 if (newadp != NULL) 12611 LOCK_OWNED(VFSTOUFS(newadp->ad_block.nb_list.wk_mp)); 12612 for (listadp = TAILQ_FIRST(oldlisthead); listadp && newadp;) { 12613 if (listadp->ad_offset < newadp->ad_offset) { 12614 listadp = TAILQ_NEXT(listadp, ad_next); 12615 continue; 12616 } 12617 TAILQ_REMOVE(newlisthead, newadp, ad_next); 12618 TAILQ_INSERT_BEFORE(listadp, newadp, ad_next); 12619 if (listadp->ad_offset == newadp->ad_offset) { 12620 allocdirect_merge(oldlisthead, newadp, 12621 listadp); 12622 listadp = newadp; 12623 } 12624 newadp = TAILQ_FIRST(newlisthead); 12625 } 12626 while ((newadp = TAILQ_FIRST(newlisthead)) != NULL) { 12627 TAILQ_REMOVE(newlisthead, newadp, ad_next); 12628 TAILQ_INSERT_TAIL(oldlisthead, newadp, ad_next); 12629 } 12630 } 12631 12632 /* 12633 * If we are doing an fsync, then we must ensure that any directory 12634 * entries for the inode have been written after the inode gets to disk. 12635 */ 12636 int 12637 softdep_fsync( 12638 struct vnode *vp) /* the "in_core" copy of the inode */ 12639 { 12640 struct inodedep *inodedep; 12641 struct pagedep *pagedep; 12642 struct inoref *inoref; 12643 struct ufsmount *ump; 12644 struct worklist *wk; 12645 struct diradd *dap; 12646 struct mount *mp; 12647 struct vnode *pvp; 12648 struct inode *ip; 12649 struct buf *bp; 12650 struct fs *fs; 12651 struct thread *td = curthread; 12652 int error, flushparent, pagedep_new_block; 12653 ino_t parentino; 12654 ufs_lbn_t lbn; 12655 12656 ip = VTOI(vp); 12657 mp = vp->v_mount; 12658 ump = VFSTOUFS(mp); 12659 fs = ump->um_fs; 12660 if (MOUNTEDSOFTDEP(mp) == 0) 12661 return (0); 12662 ACQUIRE_LOCK(ump); 12663 restart: 12664 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) { 12665 FREE_LOCK(ump); 12666 return (0); 12667 } 12668 TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) { 12669 if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY)) 12670 == DEPCOMPLETE) { 12671 jwait(&inoref->if_list, MNT_WAIT); 12672 goto restart; 12673 } 12674 } 12675 if (!LIST_EMPTY(&inodedep->id_inowait) || 12676 !TAILQ_EMPTY(&inodedep->id_extupdt) || 12677 !TAILQ_EMPTY(&inodedep->id_newextupdt) || 12678 !TAILQ_EMPTY(&inodedep->id_inoupdt) || 12679 !TAILQ_EMPTY(&inodedep->id_newinoupdt)) 12680 panic("softdep_fsync: pending ops %p", inodedep); 12681 for (error = 0, flushparent = 0; ; ) { 12682 if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) == NULL) 12683 break; 12684 if (wk->wk_type != D_DIRADD) 12685 panic("softdep_fsync: Unexpected type %s", 12686 TYPENAME(wk->wk_type)); 12687 dap = WK_DIRADD(wk); 12688 /* 12689 * Flush our parent if this directory entry has a MKDIR_PARENT 12690 * dependency or is contained in a newly allocated block. 12691 */ 12692 if (dap->da_state & DIRCHG) 12693 pagedep = dap->da_previous->dm_pagedep; 12694 else 12695 pagedep = dap->da_pagedep; 12696 parentino = pagedep->pd_ino; 12697 lbn = pagedep->pd_lbn; 12698 if ((dap->da_state & (MKDIR_BODY | COMPLETE)) != COMPLETE) 12699 panic("softdep_fsync: dirty"); 12700 if ((dap->da_state & MKDIR_PARENT) || 12701 (pagedep->pd_state & NEWBLOCK)) 12702 flushparent = 1; 12703 else 12704 flushparent = 0; 12705 /* 12706 * If we are being fsync'ed as part of vgone'ing this vnode, 12707 * then we will not be able to release and recover the 12708 * vnode below, so we just have to give up on writing its 12709 * directory entry out. It will eventually be written, just 12710 * not now, but then the user was not asking to have it 12711 * written, so we are not breaking any promises. 12712 */ 12713 if (VN_IS_DOOMED(vp)) 12714 break; 12715 /* 12716 * We prevent deadlock by always fetching inodes from the 12717 * root, moving down the directory tree. Thus, when fetching 12718 * our parent directory, we first try to get the lock. If 12719 * that fails, we must unlock ourselves before requesting 12720 * the lock on our parent. See the comment in ufs_lookup 12721 * for details on possible races. 12722 */ 12723 FREE_LOCK(ump); 12724 error = get_parent_vp(vp, mp, parentino, NULL, NULL, NULL, 12725 &pvp); 12726 if (error == ERELOOKUP) 12727 error = 0; 12728 if (error != 0) 12729 return (error); 12730 /* 12731 * All MKDIR_PARENT dependencies and all the NEWBLOCK pagedeps 12732 * that are contained in direct blocks will be resolved by 12733 * doing a ffs_update. Pagedeps contained in indirect blocks 12734 * may require a complete sync'ing of the directory. So, we 12735 * try the cheap and fast ffs_update first, and if that fails, 12736 * then we do the slower ffs_syncvnode of the directory. 12737 */ 12738 if (flushparent) { 12739 int locked; 12740 12741 if ((error = ffs_update(pvp, 1)) != 0) { 12742 vput(pvp); 12743 return (error); 12744 } 12745 ACQUIRE_LOCK(ump); 12746 locked = 1; 12747 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0) { 12748 if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) != NULL) { 12749 if (wk->wk_type != D_DIRADD) 12750 panic("softdep_fsync: Unexpected type %s", 12751 TYPENAME(wk->wk_type)); 12752 dap = WK_DIRADD(wk); 12753 if (dap->da_state & DIRCHG) 12754 pagedep = dap->da_previous->dm_pagedep; 12755 else 12756 pagedep = dap->da_pagedep; 12757 pagedep_new_block = pagedep->pd_state & NEWBLOCK; 12758 FREE_LOCK(ump); 12759 locked = 0; 12760 if (pagedep_new_block && (error = 12761 ffs_syncvnode(pvp, MNT_WAIT, 0))) { 12762 vput(pvp); 12763 return (error); 12764 } 12765 } 12766 } 12767 if (locked) 12768 FREE_LOCK(ump); 12769 } 12770 /* 12771 * Flush directory page containing the inode's name. 12772 */ 12773 error = bread(pvp, lbn, blksize(fs, VTOI(pvp), lbn), td->td_ucred, 12774 &bp); 12775 if (error == 0) 12776 error = bwrite(bp); 12777 else 12778 brelse(bp); 12779 vput(pvp); 12780 if (!ffs_fsfail_cleanup(ump, error)) 12781 return (error); 12782 ACQUIRE_LOCK(ump); 12783 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) 12784 break; 12785 } 12786 FREE_LOCK(ump); 12787 return (0); 12788 } 12789 12790 /* 12791 * Flush all the dirty bitmaps associated with the block device 12792 * before flushing the rest of the dirty blocks so as to reduce 12793 * the number of dependencies that will have to be rolled back. 12794 * 12795 * XXX Unused? 12796 */ 12797 void 12798 softdep_fsync_mountdev(struct vnode *vp) 12799 { 12800 struct buf *bp, *nbp; 12801 struct worklist *wk; 12802 struct bufobj *bo; 12803 12804 if (!vn_isdisk(vp)) 12805 panic("softdep_fsync_mountdev: vnode not a disk"); 12806 bo = &vp->v_bufobj; 12807 restart: 12808 BO_LOCK(bo); 12809 TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) { 12810 /* 12811 * If it is already scheduled, skip to the next buffer. 12812 */ 12813 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL)) 12814 continue; 12815 12816 if ((bp->b_flags & B_DELWRI) == 0) 12817 panic("softdep_fsync_mountdev: not dirty"); 12818 /* 12819 * We are only interested in bitmaps with outstanding 12820 * dependencies. 12821 */ 12822 if ((wk = LIST_FIRST(&bp->b_dep)) == NULL || 12823 wk->wk_type != D_BMSAFEMAP || 12824 (bp->b_vflags & BV_BKGRDINPROG)) { 12825 BUF_UNLOCK(bp); 12826 continue; 12827 } 12828 BO_UNLOCK(bo); 12829 bremfree(bp); 12830 (void) bawrite(bp); 12831 goto restart; 12832 } 12833 drain_output(vp); 12834 BO_UNLOCK(bo); 12835 } 12836 12837 /* 12838 * Sync all cylinder groups that were dirty at the time this function is 12839 * called. Newly dirtied cgs will be inserted before the sentinel. This 12840 * is used to flush freedep activity that may be holding up writes to a 12841 * indirect block. 12842 */ 12843 static int 12844 sync_cgs(struct mount *mp, int waitfor) 12845 { 12846 struct bmsafemap *bmsafemap; 12847 struct bmsafemap *sentinel; 12848 struct ufsmount *ump; 12849 struct buf *bp; 12850 int error; 12851 12852 sentinel = malloc(sizeof(*sentinel), M_BMSAFEMAP, M_ZERO | M_WAITOK); 12853 sentinel->sm_cg = -1; 12854 ump = VFSTOUFS(mp); 12855 error = 0; 12856 ACQUIRE_LOCK(ump); 12857 LIST_INSERT_HEAD(&ump->softdep_dirtycg, sentinel, sm_next); 12858 for (bmsafemap = LIST_NEXT(sentinel, sm_next); bmsafemap != NULL; 12859 bmsafemap = LIST_NEXT(sentinel, sm_next)) { 12860 /* Skip sentinels and cgs with no work to release. */ 12861 if (bmsafemap->sm_cg == -1 || 12862 (LIST_EMPTY(&bmsafemap->sm_freehd) && 12863 LIST_EMPTY(&bmsafemap->sm_freewr))) { 12864 LIST_REMOVE(sentinel, sm_next); 12865 LIST_INSERT_AFTER(bmsafemap, sentinel, sm_next); 12866 continue; 12867 } 12868 /* 12869 * If we don't get the lock and we're waiting try again, if 12870 * not move on to the next buf and try to sync it. 12871 */ 12872 bp = getdirtybuf(bmsafemap->sm_buf, LOCK_PTR(ump), waitfor); 12873 if (bp == NULL && waitfor == MNT_WAIT) 12874 continue; 12875 LIST_REMOVE(sentinel, sm_next); 12876 LIST_INSERT_AFTER(bmsafemap, sentinel, sm_next); 12877 if (bp == NULL) 12878 continue; 12879 FREE_LOCK(ump); 12880 if (waitfor == MNT_NOWAIT) 12881 bawrite(bp); 12882 else 12883 error = bwrite(bp); 12884 ACQUIRE_LOCK(ump); 12885 if (error) 12886 break; 12887 } 12888 LIST_REMOVE(sentinel, sm_next); 12889 FREE_LOCK(ump); 12890 free(sentinel, M_BMSAFEMAP); 12891 return (error); 12892 } 12893 12894 /* 12895 * This routine is called when we are trying to synchronously flush a 12896 * file. This routine must eliminate any filesystem metadata dependencies 12897 * so that the syncing routine can succeed. 12898 */ 12899 int 12900 softdep_sync_metadata(struct vnode *vp) 12901 { 12902 struct inode *ip; 12903 int error; 12904 12905 ip = VTOI(vp); 12906 KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0, 12907 ("softdep_sync_metadata called on non-softdep filesystem")); 12908 /* 12909 * Ensure that any direct block dependencies have been cleared, 12910 * truncations are started, and inode references are journaled. 12911 */ 12912 ACQUIRE_LOCK(VFSTOUFS(vp->v_mount)); 12913 /* 12914 * Write all journal records to prevent rollbacks on devvp. 12915 */ 12916 if (vp->v_type == VCHR) 12917 softdep_flushjournal(vp->v_mount); 12918 error = flush_inodedep_deps(vp, vp->v_mount, ip->i_number); 12919 /* 12920 * Ensure that all truncates are written so we won't find deps on 12921 * indirect blocks. 12922 */ 12923 process_truncates(vp); 12924 FREE_LOCK(VFSTOUFS(vp->v_mount)); 12925 12926 return (error); 12927 } 12928 12929 /* 12930 * This routine is called when we are attempting to sync a buf with 12931 * dependencies. If waitfor is MNT_NOWAIT it attempts to schedule any 12932 * other IO it can but returns EBUSY if the buffer is not yet able to 12933 * be written. Dependencies which will not cause rollbacks will always 12934 * return 0. 12935 */ 12936 int 12937 softdep_sync_buf(struct vnode *vp, 12938 struct buf *bp, 12939 int waitfor) 12940 { 12941 struct indirdep *indirdep; 12942 struct pagedep *pagedep; 12943 struct allocindir *aip; 12944 struct newblk *newblk; 12945 struct ufsmount *ump; 12946 struct buf *nbp; 12947 struct worklist *wk; 12948 int i, error; 12949 12950 KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0, 12951 ("softdep_sync_buf called on non-softdep filesystem")); 12952 /* 12953 * For VCHR we just don't want to force flush any dependencies that 12954 * will cause rollbacks. 12955 */ 12956 if (vp->v_type == VCHR) { 12957 if (waitfor == MNT_NOWAIT && softdep_count_dependencies(bp, 0)) 12958 return (EBUSY); 12959 return (0); 12960 } 12961 ump = VFSTOUFS(vp->v_mount); 12962 ACQUIRE_LOCK(ump); 12963 /* 12964 * As we hold the buffer locked, none of its dependencies 12965 * will disappear. 12966 */ 12967 error = 0; 12968 top: 12969 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 12970 switch (wk->wk_type) { 12971 case D_ALLOCDIRECT: 12972 case D_ALLOCINDIR: 12973 newblk = WK_NEWBLK(wk); 12974 if (newblk->nb_jnewblk != NULL) { 12975 if (waitfor == MNT_NOWAIT) { 12976 error = EBUSY; 12977 goto out_unlock; 12978 } 12979 jwait(&newblk->nb_jnewblk->jn_list, waitfor); 12980 goto top; 12981 } 12982 if (newblk->nb_state & DEPCOMPLETE || 12983 waitfor == MNT_NOWAIT) 12984 continue; 12985 nbp = newblk->nb_bmsafemap->sm_buf; 12986 nbp = getdirtybuf(nbp, LOCK_PTR(ump), waitfor); 12987 if (nbp == NULL) 12988 goto top; 12989 FREE_LOCK(ump); 12990 if ((error = bwrite(nbp)) != 0) 12991 goto out; 12992 ACQUIRE_LOCK(ump); 12993 continue; 12994 12995 case D_INDIRDEP: 12996 indirdep = WK_INDIRDEP(wk); 12997 if (waitfor == MNT_NOWAIT) { 12998 if (!TAILQ_EMPTY(&indirdep->ir_trunc) || 12999 !LIST_EMPTY(&indirdep->ir_deplisthd)) { 13000 error = EBUSY; 13001 goto out_unlock; 13002 } 13003 } 13004 if (!TAILQ_EMPTY(&indirdep->ir_trunc)) 13005 panic("softdep_sync_buf: truncation pending."); 13006 restart: 13007 LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) { 13008 newblk = (struct newblk *)aip; 13009 if (newblk->nb_jnewblk != NULL) { 13010 jwait(&newblk->nb_jnewblk->jn_list, 13011 waitfor); 13012 goto restart; 13013 } 13014 if (newblk->nb_state & DEPCOMPLETE) 13015 continue; 13016 nbp = newblk->nb_bmsafemap->sm_buf; 13017 nbp = getdirtybuf(nbp, LOCK_PTR(ump), waitfor); 13018 if (nbp == NULL) 13019 goto restart; 13020 FREE_LOCK(ump); 13021 if ((error = bwrite(nbp)) != 0) 13022 goto out; 13023 ACQUIRE_LOCK(ump); 13024 goto restart; 13025 } 13026 continue; 13027 13028 case D_PAGEDEP: 13029 /* 13030 * Only flush directory entries in synchronous passes. 13031 */ 13032 if (waitfor != MNT_WAIT) { 13033 error = EBUSY; 13034 goto out_unlock; 13035 } 13036 /* 13037 * While syncing snapshots, we must allow recursive 13038 * lookups. 13039 */ 13040 BUF_AREC(bp); 13041 /* 13042 * We are trying to sync a directory that may 13043 * have dependencies on both its own metadata 13044 * and/or dependencies on the inodes of any 13045 * recently allocated files. We walk its diradd 13046 * lists pushing out the associated inode. 13047 */ 13048 pagedep = WK_PAGEDEP(wk); 13049 for (i = 0; i < DAHASHSZ; i++) { 13050 if (LIST_FIRST(&pagedep->pd_diraddhd[i]) == 0) 13051 continue; 13052 error = flush_pagedep_deps(vp, wk->wk_mp, 13053 &pagedep->pd_diraddhd[i], bp); 13054 if (error != 0) { 13055 if (error != ERELOOKUP) 13056 BUF_NOREC(bp); 13057 goto out_unlock; 13058 } 13059 } 13060 BUF_NOREC(bp); 13061 continue; 13062 13063 case D_FREEWORK: 13064 case D_FREEDEP: 13065 case D_JSEGDEP: 13066 case D_JNEWBLK: 13067 continue; 13068 13069 default: 13070 panic("softdep_sync_buf: Unknown type %s", 13071 TYPENAME(wk->wk_type)); 13072 /* NOTREACHED */ 13073 } 13074 } 13075 out_unlock: 13076 FREE_LOCK(ump); 13077 out: 13078 return (error); 13079 } 13080 13081 /* 13082 * Flush the dependencies associated with an inodedep. 13083 */ 13084 static int 13085 flush_inodedep_deps( 13086 struct vnode *vp, 13087 struct mount *mp, 13088 ino_t ino) 13089 { 13090 struct inodedep *inodedep; 13091 struct inoref *inoref; 13092 struct ufsmount *ump; 13093 int error, waitfor; 13094 13095 /* 13096 * This work is done in two passes. The first pass grabs most 13097 * of the buffers and begins asynchronously writing them. The 13098 * only way to wait for these asynchronous writes is to sleep 13099 * on the filesystem vnode which may stay busy for a long time 13100 * if the filesystem is active. So, instead, we make a second 13101 * pass over the dependencies blocking on each write. In the 13102 * usual case we will be blocking against a write that we 13103 * initiated, so when it is done the dependency will have been 13104 * resolved. Thus the second pass is expected to end quickly. 13105 * We give a brief window at the top of the loop to allow 13106 * any pending I/O to complete. 13107 */ 13108 ump = VFSTOUFS(mp); 13109 LOCK_OWNED(ump); 13110 for (error = 0, waitfor = MNT_NOWAIT; ; ) { 13111 if (error) 13112 return (error); 13113 FREE_LOCK(ump); 13114 ACQUIRE_LOCK(ump); 13115 restart: 13116 if (inodedep_lookup(mp, ino, 0, &inodedep) == 0) 13117 return (0); 13118 TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) { 13119 if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY)) 13120 == DEPCOMPLETE) { 13121 jwait(&inoref->if_list, MNT_WAIT); 13122 goto restart; 13123 } 13124 } 13125 if (flush_deplist(&inodedep->id_inoupdt, waitfor, &error) || 13126 flush_deplist(&inodedep->id_newinoupdt, waitfor, &error) || 13127 flush_deplist(&inodedep->id_extupdt, waitfor, &error) || 13128 flush_deplist(&inodedep->id_newextupdt, waitfor, &error)) 13129 continue; 13130 /* 13131 * If pass2, we are done, otherwise do pass 2. 13132 */ 13133 if (waitfor == MNT_WAIT) 13134 break; 13135 waitfor = MNT_WAIT; 13136 } 13137 /* 13138 * Try freeing inodedep in case all dependencies have been removed. 13139 */ 13140 if (inodedep_lookup(mp, ino, 0, &inodedep) != 0) 13141 (void) free_inodedep(inodedep); 13142 return (0); 13143 } 13144 13145 /* 13146 * Flush an inode dependency list. 13147 */ 13148 static int 13149 flush_deplist( 13150 struct allocdirectlst *listhead, 13151 int waitfor, 13152 int *errorp) 13153 { 13154 struct allocdirect *adp; 13155 struct newblk *newblk; 13156 struct ufsmount *ump; 13157 struct buf *bp; 13158 13159 if ((adp = TAILQ_FIRST(listhead)) == NULL) 13160 return (0); 13161 ump = VFSTOUFS(adp->ad_list.wk_mp); 13162 LOCK_OWNED(ump); 13163 TAILQ_FOREACH(adp, listhead, ad_next) { 13164 newblk = (struct newblk *)adp; 13165 if (newblk->nb_jnewblk != NULL) { 13166 jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT); 13167 return (1); 13168 } 13169 if (newblk->nb_state & DEPCOMPLETE) 13170 continue; 13171 bp = newblk->nb_bmsafemap->sm_buf; 13172 bp = getdirtybuf(bp, LOCK_PTR(ump), waitfor); 13173 if (bp == NULL) { 13174 if (waitfor == MNT_NOWAIT) 13175 continue; 13176 return (1); 13177 } 13178 FREE_LOCK(ump); 13179 if (waitfor == MNT_NOWAIT) 13180 bawrite(bp); 13181 else 13182 *errorp = bwrite(bp); 13183 ACQUIRE_LOCK(ump); 13184 return (1); 13185 } 13186 return (0); 13187 } 13188 13189 /* 13190 * Flush dependencies associated with an allocdirect block. 13191 */ 13192 static int 13193 flush_newblk_dep( 13194 struct vnode *vp, 13195 struct mount *mp, 13196 ufs_lbn_t lbn) 13197 { 13198 struct newblk *newblk; 13199 struct ufsmount *ump; 13200 struct bufobj *bo; 13201 struct inode *ip; 13202 struct buf *bp; 13203 ufs2_daddr_t blkno; 13204 int error; 13205 13206 error = 0; 13207 bo = &vp->v_bufobj; 13208 ip = VTOI(vp); 13209 blkno = DIP(ip, i_db[lbn]); 13210 if (blkno == 0) 13211 panic("flush_newblk_dep: Missing block"); 13212 ump = VFSTOUFS(mp); 13213 ACQUIRE_LOCK(ump); 13214 /* 13215 * Loop until all dependencies related to this block are satisfied. 13216 * We must be careful to restart after each sleep in case a write 13217 * completes some part of this process for us. 13218 */ 13219 for (;;) { 13220 if (newblk_lookup(mp, blkno, 0, &newblk) == 0) { 13221 FREE_LOCK(ump); 13222 break; 13223 } 13224 if (newblk->nb_list.wk_type != D_ALLOCDIRECT) 13225 panic("flush_newblk_dep: Bad newblk %p", newblk); 13226 /* 13227 * Flush the journal. 13228 */ 13229 if (newblk->nb_jnewblk != NULL) { 13230 jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT); 13231 continue; 13232 } 13233 /* 13234 * Write the bitmap dependency. 13235 */ 13236 if ((newblk->nb_state & DEPCOMPLETE) == 0) { 13237 bp = newblk->nb_bmsafemap->sm_buf; 13238 bp = getdirtybuf(bp, LOCK_PTR(ump), MNT_WAIT); 13239 if (bp == NULL) 13240 continue; 13241 FREE_LOCK(ump); 13242 error = bwrite(bp); 13243 if (error) 13244 break; 13245 ACQUIRE_LOCK(ump); 13246 continue; 13247 } 13248 /* 13249 * Write the buffer. 13250 */ 13251 FREE_LOCK(ump); 13252 BO_LOCK(bo); 13253 bp = gbincore(bo, lbn); 13254 if (bp != NULL) { 13255 error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL | 13256 LK_INTERLOCK, BO_LOCKPTR(bo)); 13257 if (error == ENOLCK) { 13258 ACQUIRE_LOCK(ump); 13259 error = 0; 13260 continue; /* Slept, retry */ 13261 } 13262 if (error != 0) 13263 break; /* Failed */ 13264 if (bp->b_flags & B_DELWRI) { 13265 bremfree(bp); 13266 error = bwrite(bp); 13267 if (error) 13268 break; 13269 } else 13270 BUF_UNLOCK(bp); 13271 } else 13272 BO_UNLOCK(bo); 13273 /* 13274 * We have to wait for the direct pointers to 13275 * point at the newdirblk before the dependency 13276 * will go away. 13277 */ 13278 error = ffs_update(vp, 1); 13279 if (error) 13280 break; 13281 ACQUIRE_LOCK(ump); 13282 } 13283 return (error); 13284 } 13285 13286 /* 13287 * Eliminate a pagedep dependency by flushing out all its diradd dependencies. 13288 */ 13289 static int 13290 flush_pagedep_deps( 13291 struct vnode *pvp, 13292 struct mount *mp, 13293 struct diraddhd *diraddhdp, 13294 struct buf *locked_bp) 13295 { 13296 struct inodedep *inodedep; 13297 struct inoref *inoref; 13298 struct ufsmount *ump; 13299 struct diradd *dap; 13300 struct vnode *vp; 13301 int error = 0; 13302 struct buf *bp; 13303 ino_t inum; 13304 struct diraddhd unfinished; 13305 13306 LIST_INIT(&unfinished); 13307 ump = VFSTOUFS(mp); 13308 LOCK_OWNED(ump); 13309 restart: 13310 while ((dap = LIST_FIRST(diraddhdp)) != NULL) { 13311 /* 13312 * Flush ourselves if this directory entry 13313 * has a MKDIR_PARENT dependency. 13314 */ 13315 if (dap->da_state & MKDIR_PARENT) { 13316 FREE_LOCK(ump); 13317 if ((error = ffs_update(pvp, 1)) != 0) 13318 break; 13319 ACQUIRE_LOCK(ump); 13320 /* 13321 * If that cleared dependencies, go on to next. 13322 */ 13323 if (dap != LIST_FIRST(diraddhdp)) 13324 continue; 13325 /* 13326 * All MKDIR_PARENT dependencies and all the 13327 * NEWBLOCK pagedeps that are contained in direct 13328 * blocks were resolved by doing above ffs_update. 13329 * Pagedeps contained in indirect blocks may 13330 * require a complete sync'ing of the directory. 13331 * We are in the midst of doing a complete sync, 13332 * so if they are not resolved in this pass we 13333 * defer them for now as they will be sync'ed by 13334 * our caller shortly. 13335 */ 13336 LIST_REMOVE(dap, da_pdlist); 13337 LIST_INSERT_HEAD(&unfinished, dap, da_pdlist); 13338 continue; 13339 } 13340 /* 13341 * A newly allocated directory must have its "." and 13342 * ".." entries written out before its name can be 13343 * committed in its parent. 13344 */ 13345 inum = dap->da_newinum; 13346 if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0) 13347 panic("flush_pagedep_deps: lost inode1"); 13348 /* 13349 * Wait for any pending journal adds to complete so we don't 13350 * cause rollbacks while syncing. 13351 */ 13352 TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) { 13353 if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY)) 13354 == DEPCOMPLETE) { 13355 jwait(&inoref->if_list, MNT_WAIT); 13356 goto restart; 13357 } 13358 } 13359 if (dap->da_state & MKDIR_BODY) { 13360 FREE_LOCK(ump); 13361 error = get_parent_vp(pvp, mp, inum, locked_bp, 13362 diraddhdp, &unfinished, &vp); 13363 if (error != 0) 13364 break; 13365 error = flush_newblk_dep(vp, mp, 0); 13366 /* 13367 * If we still have the dependency we might need to 13368 * update the vnode to sync the new link count to 13369 * disk. 13370 */ 13371 if (error == 0 && dap == LIST_FIRST(diraddhdp)) 13372 error = ffs_update(vp, 1); 13373 vput(vp); 13374 if (error != 0) 13375 break; 13376 ACQUIRE_LOCK(ump); 13377 /* 13378 * If that cleared dependencies, go on to next. 13379 */ 13380 if (dap != LIST_FIRST(diraddhdp)) 13381 continue; 13382 if (dap->da_state & MKDIR_BODY) { 13383 inodedep_lookup(UFSTOVFS(ump), inum, 0, 13384 &inodedep); 13385 panic("flush_pagedep_deps: MKDIR_BODY " 13386 "inodedep %p dap %p vp %p", 13387 inodedep, dap, vp); 13388 } 13389 } 13390 /* 13391 * Flush the inode on which the directory entry depends. 13392 * Having accounted for MKDIR_PARENT and MKDIR_BODY above, 13393 * the only remaining dependency is that the updated inode 13394 * count must get pushed to disk. The inode has already 13395 * been pushed into its inode buffer (via VOP_UPDATE) at 13396 * the time of the reference count change. So we need only 13397 * locate that buffer, ensure that there will be no rollback 13398 * caused by a bitmap dependency, then write the inode buffer. 13399 */ 13400 retry: 13401 if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0) 13402 panic("flush_pagedep_deps: lost inode"); 13403 /* 13404 * If the inode still has bitmap dependencies, 13405 * push them to disk. 13406 */ 13407 if ((inodedep->id_state & (DEPCOMPLETE | GOINGAWAY)) == 0) { 13408 bp = inodedep->id_bmsafemap->sm_buf; 13409 bp = getdirtybuf(bp, LOCK_PTR(ump), MNT_WAIT); 13410 if (bp == NULL) 13411 goto retry; 13412 FREE_LOCK(ump); 13413 if ((error = bwrite(bp)) != 0) 13414 break; 13415 ACQUIRE_LOCK(ump); 13416 if (dap != LIST_FIRST(diraddhdp)) 13417 continue; 13418 } 13419 /* 13420 * If the inode is still sitting in a buffer waiting 13421 * to be written or waiting for the link count to be 13422 * adjusted update it here to flush it to disk. 13423 */ 13424 if (dap == LIST_FIRST(diraddhdp)) { 13425 FREE_LOCK(ump); 13426 error = get_parent_vp(pvp, mp, inum, locked_bp, 13427 diraddhdp, &unfinished, &vp); 13428 if (error != 0) 13429 break; 13430 error = ffs_update(vp, 1); 13431 vput(vp); 13432 if (error) 13433 break; 13434 ACQUIRE_LOCK(ump); 13435 } 13436 /* 13437 * If we have failed to get rid of all the dependencies 13438 * then something is seriously wrong. 13439 */ 13440 if (dap == LIST_FIRST(diraddhdp)) { 13441 inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep); 13442 panic("flush_pagedep_deps: failed to flush " 13443 "inodedep %p ino %ju dap %p", 13444 inodedep, (uintmax_t)inum, dap); 13445 } 13446 } 13447 if (error) 13448 ACQUIRE_LOCK(ump); 13449 while ((dap = LIST_FIRST(&unfinished)) != NULL) { 13450 LIST_REMOVE(dap, da_pdlist); 13451 LIST_INSERT_HEAD(diraddhdp, dap, da_pdlist); 13452 } 13453 return (error); 13454 } 13455 13456 /* 13457 * A large burst of file addition or deletion activity can drive the 13458 * memory load excessively high. First attempt to slow things down 13459 * using the techniques below. If that fails, this routine requests 13460 * the offending operations to fall back to running synchronously 13461 * until the memory load returns to a reasonable level. 13462 */ 13463 int 13464 softdep_slowdown(struct vnode *vp) 13465 { 13466 struct ufsmount *ump; 13467 int jlow; 13468 int max_softdeps_hard; 13469 13470 KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0, 13471 ("softdep_slowdown called on non-softdep filesystem")); 13472 ump = VFSTOUFS(vp->v_mount); 13473 ACQUIRE_LOCK(ump); 13474 jlow = 0; 13475 /* 13476 * Check for journal space if needed. 13477 */ 13478 if (DOINGSUJ(vp)) { 13479 if (journal_space(ump, 0) == 0) 13480 jlow = 1; 13481 } 13482 /* 13483 * If the system is under its limits and our filesystem is 13484 * not responsible for more than our share of the usage and 13485 * we are not low on journal space, then no need to slow down. 13486 */ 13487 max_softdeps_hard = max_softdeps * 11 / 10; 13488 if (dep_current[D_DIRREM] < max_softdeps_hard / 2 && 13489 dep_current[D_INODEDEP] < max_softdeps_hard && 13490 dep_current[D_INDIRDEP] < max_softdeps_hard / 1000 && 13491 dep_current[D_FREEBLKS] < max_softdeps_hard && jlow == 0 && 13492 ump->softdep_curdeps[D_DIRREM] < 13493 (max_softdeps_hard / 2) / stat_flush_threads && 13494 ump->softdep_curdeps[D_INODEDEP] < 13495 max_softdeps_hard / stat_flush_threads && 13496 ump->softdep_curdeps[D_INDIRDEP] < 13497 (max_softdeps_hard / 1000) / stat_flush_threads && 13498 ump->softdep_curdeps[D_FREEBLKS] < 13499 max_softdeps_hard / stat_flush_threads) { 13500 FREE_LOCK(ump); 13501 return (0); 13502 } 13503 /* 13504 * If the journal is low or our filesystem is over its limit 13505 * then speedup the cleanup. 13506 */ 13507 if (ump->softdep_curdeps[D_INDIRDEP] < 13508 (max_softdeps_hard / 1000) / stat_flush_threads || jlow) 13509 softdep_speedup(ump); 13510 stat_sync_limit_hit += 1; 13511 FREE_LOCK(ump); 13512 /* 13513 * We only slow down the rate at which new dependencies are 13514 * generated if we are not using journaling. With journaling, 13515 * the cleanup should always be sufficient to keep things 13516 * under control. 13517 */ 13518 if (DOINGSUJ(vp)) 13519 return (0); 13520 return (1); 13521 } 13522 13523 static int 13524 softdep_request_cleanup_filter(struct vnode *vp, void *arg __unused) 13525 { 13526 return ((vp->v_iflag & VI_OWEINACT) != 0 && vp->v_usecount == 0 && 13527 ((vp->v_vflag & VV_NOSYNC) != 0 || VTOI(vp)->i_effnlink == 0)); 13528 } 13529 13530 static void 13531 softdep_request_cleanup_inactivate(struct mount *mp) 13532 { 13533 struct vnode *vp, *mvp; 13534 int error; 13535 13536 MNT_VNODE_FOREACH_LAZY(vp, mp, mvp, softdep_request_cleanup_filter, 13537 NULL) { 13538 vholdl(vp); 13539 vn_lock(vp, LK_EXCLUSIVE | LK_INTERLOCK | LK_RETRY); 13540 VI_LOCK(vp); 13541 if (IS_UFS(vp) && vp->v_usecount == 0) { 13542 while ((vp->v_iflag & VI_OWEINACT) != 0) { 13543 error = vinactive(vp); 13544 if (error != 0 && error != ERELOOKUP) 13545 break; 13546 } 13547 atomic_add_int(&stat_delayed_inact, 1); 13548 } 13549 VOP_UNLOCK(vp); 13550 vdropl(vp); 13551 } 13552 } 13553 13554 /* 13555 * Called by the allocation routines when they are about to fail 13556 * in the hope that we can free up the requested resource (inodes 13557 * or disk space). 13558 * 13559 * First check to see if the work list has anything on it. If it has, 13560 * clean up entries until we successfully free the requested resource. 13561 * Because this process holds inodes locked, we cannot handle any remove 13562 * requests that might block on a locked inode as that could lead to 13563 * deadlock. If the worklist yields none of the requested resource, 13564 * start syncing out vnodes to free up the needed space. 13565 */ 13566 int 13567 softdep_request_cleanup( 13568 struct fs *fs, 13569 struct vnode *vp, 13570 struct ucred *cred, 13571 int resource) 13572 { 13573 struct ufsmount *ump; 13574 struct mount *mp; 13575 long starttime; 13576 ufs2_daddr_t needed; 13577 int error, failed_vnode; 13578 13579 /* 13580 * If we are being called because of a process doing a 13581 * copy-on-write, then it is not safe to process any 13582 * worklist items as we will recurse into the copyonwrite 13583 * routine. This will result in an incoherent snapshot. 13584 * If the vnode that we hold is a snapshot, we must avoid 13585 * handling other resources that could cause deadlock. 13586 */ 13587 if ((curthread->td_pflags & TDP_COWINPROGRESS) || IS_SNAPSHOT(VTOI(vp))) 13588 return (0); 13589 13590 if (resource == FLUSH_BLOCKS_WAIT) 13591 stat_cleanup_blkrequests += 1; 13592 else 13593 stat_cleanup_inorequests += 1; 13594 13595 mp = vp->v_mount; 13596 ump = VFSTOUFS(mp); 13597 mtx_assert(UFS_MTX(ump), MA_OWNED); 13598 UFS_UNLOCK(ump); 13599 error = ffs_update(vp, 1); 13600 if (error != 0 || MOUNTEDSOFTDEP(mp) == 0) { 13601 UFS_LOCK(ump); 13602 return (0); 13603 } 13604 /* 13605 * If we are in need of resources, start by cleaning up 13606 * any block removals associated with our inode. 13607 */ 13608 ACQUIRE_LOCK(ump); 13609 process_removes(vp); 13610 process_truncates(vp); 13611 FREE_LOCK(ump); 13612 /* 13613 * Now clean up at least as many resources as we will need. 13614 * 13615 * When requested to clean up inodes, the number that are needed 13616 * is set by the number of simultaneous writers (mnt_writeopcount) 13617 * plus a bit of slop (2) in case some more writers show up while 13618 * we are cleaning. 13619 * 13620 * When requested to free up space, the amount of space that 13621 * we need is enough blocks to allocate a full-sized segment 13622 * (fs_contigsumsize). The number of such segments that will 13623 * be needed is set by the number of simultaneous writers 13624 * (mnt_writeopcount) plus a bit of slop (2) in case some more 13625 * writers show up while we are cleaning. 13626 * 13627 * Additionally, if we are unpriviledged and allocating space, 13628 * we need to ensure that we clean up enough blocks to get the 13629 * needed number of blocks over the threshold of the minimum 13630 * number of blocks required to be kept free by the filesystem 13631 * (fs_minfree). 13632 */ 13633 if (resource == FLUSH_INODES_WAIT) { 13634 needed = vfs_mount_fetch_counter(vp->v_mount, 13635 MNT_COUNT_WRITEOPCOUNT) + 2; 13636 } else if (resource == FLUSH_BLOCKS_WAIT) { 13637 needed = (vfs_mount_fetch_counter(vp->v_mount, 13638 MNT_COUNT_WRITEOPCOUNT) + 2) * fs->fs_contigsumsize; 13639 if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE)) 13640 needed += fragstoblks(fs, 13641 roundup((fs->fs_dsize * fs->fs_minfree / 100) - 13642 fs->fs_cstotal.cs_nffree, fs->fs_frag)); 13643 } else { 13644 printf("softdep_request_cleanup: Unknown resource type %d\n", 13645 resource); 13646 UFS_LOCK(ump); 13647 return (0); 13648 } 13649 starttime = time_second; 13650 retry: 13651 if (resource == FLUSH_BLOCKS_WAIT && 13652 fs->fs_cstotal.cs_nbfree <= needed) 13653 softdep_send_speedup(ump, needed * fs->fs_bsize, 13654 BIO_SPEEDUP_TRIM); 13655 if ((resource == FLUSH_BLOCKS_WAIT && ump->softdep_on_worklist > 0 && 13656 fs->fs_cstotal.cs_nbfree <= needed) || 13657 (resource == FLUSH_INODES_WAIT && fs->fs_pendinginodes > 0 && 13658 fs->fs_cstotal.cs_nifree <= needed)) { 13659 ACQUIRE_LOCK(ump); 13660 if (ump->softdep_on_worklist > 0 && 13661 process_worklist_item(UFSTOVFS(ump), 13662 ump->softdep_on_worklist, LK_NOWAIT) != 0) 13663 stat_worklist_push += 1; 13664 FREE_LOCK(ump); 13665 } 13666 13667 /* 13668 * Check that there are vnodes pending inactivation. As they 13669 * have been unlinked, inactivating them will free up their 13670 * inodes. 13671 */ 13672 ACQUIRE_LOCK(ump); 13673 if (resource == FLUSH_INODES_WAIT && 13674 fs->fs_cstotal.cs_nifree <= needed && 13675 fs->fs_pendinginodes <= needed) { 13676 if ((ump->um_softdep->sd_flags & FLUSH_DI_ACTIVE) == 0) { 13677 ump->um_softdep->sd_flags |= FLUSH_DI_ACTIVE; 13678 FREE_LOCK(ump); 13679 softdep_request_cleanup_inactivate(mp); 13680 ACQUIRE_LOCK(ump); 13681 ump->um_softdep->sd_flags &= ~FLUSH_DI_ACTIVE; 13682 wakeup(&ump->um_softdep->sd_flags); 13683 } else { 13684 while ((ump->um_softdep->sd_flags & 13685 FLUSH_DI_ACTIVE) != 0) { 13686 msleep(&ump->um_softdep->sd_flags, 13687 LOCK_PTR(ump), PVM, "ffsvina", hz); 13688 } 13689 } 13690 } 13691 FREE_LOCK(ump); 13692 13693 /* 13694 * If we still need resources and there are no more worklist 13695 * entries to process to obtain them, we have to start flushing 13696 * the dirty vnodes to force the release of additional requests 13697 * to the worklist that we can then process to reap addition 13698 * resources. We walk the vnodes associated with the mount point 13699 * until we get the needed worklist requests that we can reap. 13700 * 13701 * If there are several threads all needing to clean the same 13702 * mount point, only one is allowed to walk the mount list. 13703 * When several threads all try to walk the same mount list, 13704 * they end up competing with each other and often end up in 13705 * livelock. This approach ensures that forward progress is 13706 * made at the cost of occational ENOSPC errors being returned 13707 * that might otherwise have been avoided. 13708 */ 13709 error = 1; 13710 if ((resource == FLUSH_BLOCKS_WAIT && 13711 fs->fs_cstotal.cs_nbfree <= needed) || 13712 (resource == FLUSH_INODES_WAIT && fs->fs_pendinginodes > 0 && 13713 fs->fs_cstotal.cs_nifree <= needed)) { 13714 ACQUIRE_LOCK(ump); 13715 if ((ump->um_softdep->sd_flags & FLUSH_RC_ACTIVE) == 0) { 13716 ump->um_softdep->sd_flags |= FLUSH_RC_ACTIVE; 13717 FREE_LOCK(ump); 13718 failed_vnode = softdep_request_cleanup_flush(mp, ump); 13719 ACQUIRE_LOCK(ump); 13720 ump->um_softdep->sd_flags &= ~FLUSH_RC_ACTIVE; 13721 wakeup(&ump->um_softdep->sd_flags); 13722 FREE_LOCK(ump); 13723 if (ump->softdep_on_worklist > 0) { 13724 stat_cleanup_retries += 1; 13725 if (!failed_vnode) 13726 goto retry; 13727 } 13728 } else { 13729 while ((ump->um_softdep->sd_flags & 13730 FLUSH_RC_ACTIVE) != 0) { 13731 msleep(&ump->um_softdep->sd_flags, 13732 LOCK_PTR(ump), PVM, "ffsrca", hz); 13733 } 13734 FREE_LOCK(ump); 13735 error = 0; 13736 } 13737 stat_cleanup_failures += 1; 13738 } 13739 if (time_second - starttime > stat_cleanup_high_delay) 13740 stat_cleanup_high_delay = time_second - starttime; 13741 UFS_LOCK(ump); 13742 return (error); 13743 } 13744 13745 /* 13746 * Scan the vnodes for the specified mount point flushing out any 13747 * vnodes that can be locked without waiting. Finally, try to flush 13748 * the device associated with the mount point if it can be locked 13749 * without waiting. 13750 * 13751 * We return 0 if we were able to lock every vnode in our scan. 13752 * If we had to skip one or more vnodes, we return 1. 13753 */ 13754 static int 13755 softdep_request_cleanup_flush(struct mount *mp, struct ufsmount *ump) 13756 { 13757 struct thread *td; 13758 struct vnode *lvp, *mvp; 13759 int failed_vnode; 13760 13761 failed_vnode = 0; 13762 td = curthread; 13763 MNT_VNODE_FOREACH_ALL(lvp, mp, mvp) { 13764 if (TAILQ_FIRST(&lvp->v_bufobj.bo_dirty.bv_hd) == 0) { 13765 VI_UNLOCK(lvp); 13766 continue; 13767 } 13768 if (vget(lvp, LK_EXCLUSIVE | LK_INTERLOCK | LK_NOWAIT) != 0) { 13769 failed_vnode = 1; 13770 continue; 13771 } 13772 if (lvp->v_vflag & VV_NOSYNC) { /* unlinked */ 13773 vput(lvp); 13774 continue; 13775 } 13776 (void) ffs_syncvnode(lvp, MNT_NOWAIT, 0); 13777 vput(lvp); 13778 } 13779 lvp = ump->um_devvp; 13780 if (vn_lock(lvp, LK_EXCLUSIVE | LK_NOWAIT) == 0) { 13781 VOP_FSYNC(lvp, MNT_NOWAIT, td); 13782 VOP_UNLOCK(lvp); 13783 } 13784 return (failed_vnode); 13785 } 13786 13787 static bool 13788 softdep_excess_items(struct ufsmount *ump, int item) 13789 { 13790 13791 KASSERT(item >= 0 && item < D_LAST, ("item %d", item)); 13792 return (dep_current[item] > max_softdeps && 13793 ump->softdep_curdeps[item] > max_softdeps / 13794 stat_flush_threads); 13795 } 13796 13797 static void 13798 schedule_cleanup(struct mount *mp) 13799 { 13800 struct ufsmount *ump; 13801 struct thread *td; 13802 13803 ump = VFSTOUFS(mp); 13804 LOCK_OWNED(ump); 13805 FREE_LOCK(ump); 13806 td = curthread; 13807 if ((td->td_pflags & TDP_KTHREAD) != 0 && 13808 (td->td_proc->p_flag2 & P2_AST_SU) == 0) { 13809 /* 13810 * No ast is delivered to kernel threads, so nobody 13811 * would deref the mp. Some kernel threads 13812 * explicitly check for AST, e.g. NFS daemon does 13813 * this in the serving loop. 13814 */ 13815 return; 13816 } 13817 if (td->td_su != NULL) 13818 vfs_rel(td->td_su); 13819 vfs_ref(mp); 13820 td->td_su = mp; 13821 thread_lock(td); 13822 td->td_flags |= TDF_ASTPENDING; 13823 thread_unlock(td); 13824 } 13825 13826 static void 13827 softdep_ast_cleanup_proc(struct thread *td) 13828 { 13829 struct mount *mp; 13830 struct ufsmount *ump; 13831 int error; 13832 bool req; 13833 13834 while ((mp = td->td_su) != NULL) { 13835 td->td_su = NULL; 13836 error = vfs_busy(mp, MBF_NOWAIT); 13837 vfs_rel(mp); 13838 if (error != 0) 13839 return; 13840 if (ffs_own_mount(mp) && MOUNTEDSOFTDEP(mp)) { 13841 ump = VFSTOUFS(mp); 13842 for (;;) { 13843 req = false; 13844 ACQUIRE_LOCK(ump); 13845 if (softdep_excess_items(ump, D_INODEDEP)) { 13846 req = true; 13847 request_cleanup(mp, FLUSH_INODES); 13848 } 13849 if (softdep_excess_items(ump, D_DIRREM)) { 13850 req = true; 13851 request_cleanup(mp, FLUSH_BLOCKS); 13852 } 13853 FREE_LOCK(ump); 13854 if (softdep_excess_items(ump, D_NEWBLK) || 13855 softdep_excess_items(ump, D_ALLOCDIRECT) || 13856 softdep_excess_items(ump, D_ALLOCINDIR)) { 13857 error = vn_start_write(NULL, &mp, 13858 V_WAIT); 13859 if (error == 0) { 13860 req = true; 13861 VFS_SYNC(mp, MNT_WAIT); 13862 vn_finished_write(mp); 13863 } 13864 } 13865 if ((td->td_pflags & TDP_KTHREAD) != 0 || !req) 13866 break; 13867 } 13868 } 13869 vfs_unbusy(mp); 13870 } 13871 if ((mp = td->td_su) != NULL) { 13872 td->td_su = NULL; 13873 vfs_rel(mp); 13874 } 13875 } 13876 13877 /* 13878 * If memory utilization has gotten too high, deliberately slow things 13879 * down and speed up the I/O processing. 13880 */ 13881 static int 13882 request_cleanup(struct mount *mp, int resource) 13883 { 13884 struct thread *td = curthread; 13885 struct ufsmount *ump; 13886 13887 ump = VFSTOUFS(mp); 13888 LOCK_OWNED(ump); 13889 /* 13890 * We never hold up the filesystem syncer or buf daemon. 13891 */ 13892 if (td->td_pflags & (TDP_SOFTDEP|TDP_NORUNNINGBUF)) 13893 return (0); 13894 /* 13895 * First check to see if the work list has gotten backlogged. 13896 * If it has, co-opt this process to help clean up two entries. 13897 * Because this process may hold inodes locked, we cannot 13898 * handle any remove requests that might block on a locked 13899 * inode as that could lead to deadlock. We set TDP_SOFTDEP 13900 * to avoid recursively processing the worklist. 13901 */ 13902 if (ump->softdep_on_worklist > max_softdeps / 10) { 13903 td->td_pflags |= TDP_SOFTDEP; 13904 process_worklist_item(mp, 2, LK_NOWAIT); 13905 td->td_pflags &= ~TDP_SOFTDEP; 13906 stat_worklist_push += 2; 13907 return(1); 13908 } 13909 /* 13910 * Next, we attempt to speed up the syncer process. If that 13911 * is successful, then we allow the process to continue. 13912 */ 13913 if (softdep_speedup(ump) && 13914 resource != FLUSH_BLOCKS_WAIT && 13915 resource != FLUSH_INODES_WAIT) 13916 return(0); 13917 /* 13918 * If we are resource constrained on inode dependencies, try 13919 * flushing some dirty inodes. Otherwise, we are constrained 13920 * by file deletions, so try accelerating flushes of directories 13921 * with removal dependencies. We would like to do the cleanup 13922 * here, but we probably hold an inode locked at this point and 13923 * that might deadlock against one that we try to clean. So, 13924 * the best that we can do is request the syncer daemon to do 13925 * the cleanup for us. 13926 */ 13927 switch (resource) { 13928 case FLUSH_INODES: 13929 case FLUSH_INODES_WAIT: 13930 ACQUIRE_GBLLOCK(&lk); 13931 stat_ino_limit_push += 1; 13932 req_clear_inodedeps += 1; 13933 FREE_GBLLOCK(&lk); 13934 stat_countp = &stat_ino_limit_hit; 13935 break; 13936 13937 case FLUSH_BLOCKS: 13938 case FLUSH_BLOCKS_WAIT: 13939 ACQUIRE_GBLLOCK(&lk); 13940 stat_blk_limit_push += 1; 13941 req_clear_remove += 1; 13942 FREE_GBLLOCK(&lk); 13943 stat_countp = &stat_blk_limit_hit; 13944 break; 13945 13946 default: 13947 panic("request_cleanup: unknown type"); 13948 } 13949 /* 13950 * Hopefully the syncer daemon will catch up and awaken us. 13951 * We wait at most tickdelay before proceeding in any case. 13952 */ 13953 ACQUIRE_GBLLOCK(&lk); 13954 FREE_LOCK(ump); 13955 proc_waiting += 1; 13956 if (callout_pending(&softdep_callout) == FALSE) 13957 callout_reset(&softdep_callout, tickdelay > 2 ? tickdelay : 2, 13958 pause_timer, 0); 13959 13960 if ((td->td_pflags & TDP_KTHREAD) == 0) 13961 msleep((caddr_t)&proc_waiting, &lk, PPAUSE, "softupdate", 0); 13962 proc_waiting -= 1; 13963 FREE_GBLLOCK(&lk); 13964 ACQUIRE_LOCK(ump); 13965 return (1); 13966 } 13967 13968 /* 13969 * Awaken processes pausing in request_cleanup and clear proc_waiting 13970 * to indicate that there is no longer a timer running. Pause_timer 13971 * will be called with the global softdep mutex (&lk) locked. 13972 */ 13973 static void 13974 pause_timer(void *arg) 13975 { 13976 13977 GBLLOCK_OWNED(&lk); 13978 /* 13979 * The callout_ API has acquired mtx and will hold it around this 13980 * function call. 13981 */ 13982 *stat_countp += proc_waiting; 13983 wakeup(&proc_waiting); 13984 } 13985 13986 /* 13987 * If requested, try removing inode or removal dependencies. 13988 */ 13989 static void 13990 check_clear_deps(struct mount *mp) 13991 { 13992 struct ufsmount *ump; 13993 bool suj_susp; 13994 13995 /* 13996 * Tell the lower layers that any TRIM or WRITE transactions that have 13997 * been delayed for performance reasons should proceed to help alleviate 13998 * the shortage faster. The race between checking req_* and the softdep 13999 * mutex (lk) is fine since this is an advisory operation that at most 14000 * causes deferred work to be done sooner. 14001 */ 14002 ump = VFSTOUFS(mp); 14003 suj_susp = ump->um_softdep->sd_jblocks != NULL && 14004 ump->softdep_jblocks->jb_suspended; 14005 if (req_clear_remove || req_clear_inodedeps || suj_susp) { 14006 FREE_LOCK(ump); 14007 softdep_send_speedup(ump, 0, BIO_SPEEDUP_TRIM | BIO_SPEEDUP_WRITE); 14008 ACQUIRE_LOCK(ump); 14009 } 14010 14011 /* 14012 * If we are suspended, it may be because of our using 14013 * too many inodedeps, so help clear them out. 14014 */ 14015 if (suj_susp) 14016 clear_inodedeps(mp); 14017 14018 /* 14019 * General requests for cleanup of backed up dependencies 14020 */ 14021 ACQUIRE_GBLLOCK(&lk); 14022 if (req_clear_inodedeps) { 14023 req_clear_inodedeps -= 1; 14024 FREE_GBLLOCK(&lk); 14025 clear_inodedeps(mp); 14026 ACQUIRE_GBLLOCK(&lk); 14027 wakeup(&proc_waiting); 14028 } 14029 if (req_clear_remove) { 14030 req_clear_remove -= 1; 14031 FREE_GBLLOCK(&lk); 14032 clear_remove(mp); 14033 ACQUIRE_GBLLOCK(&lk); 14034 wakeup(&proc_waiting); 14035 } 14036 FREE_GBLLOCK(&lk); 14037 } 14038 14039 /* 14040 * Flush out a directory with at least one removal dependency in an effort to 14041 * reduce the number of dirrem, freefile, and freeblks dependency structures. 14042 */ 14043 static void 14044 clear_remove(struct mount *mp) 14045 { 14046 struct pagedep_hashhead *pagedephd; 14047 struct pagedep *pagedep; 14048 struct ufsmount *ump; 14049 struct vnode *vp; 14050 struct bufobj *bo; 14051 int error, cnt; 14052 ino_t ino; 14053 14054 ump = VFSTOUFS(mp); 14055 LOCK_OWNED(ump); 14056 14057 for (cnt = 0; cnt <= ump->pagedep_hash_size; cnt++) { 14058 pagedephd = &ump->pagedep_hashtbl[ump->pagedep_nextclean++]; 14059 if (ump->pagedep_nextclean > ump->pagedep_hash_size) 14060 ump->pagedep_nextclean = 0; 14061 LIST_FOREACH(pagedep, pagedephd, pd_hash) { 14062 if (LIST_EMPTY(&pagedep->pd_dirremhd)) 14063 continue; 14064 ino = pagedep->pd_ino; 14065 if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) 14066 continue; 14067 FREE_LOCK(ump); 14068 14069 /* 14070 * Let unmount clear deps 14071 */ 14072 error = vfs_busy(mp, MBF_NOWAIT); 14073 if (error != 0) 14074 goto finish_write; 14075 error = ffs_vgetf(mp, ino, LK_EXCLUSIVE, &vp, 14076 FFSV_FORCEINSMQ | FFSV_FORCEINODEDEP); 14077 vfs_unbusy(mp); 14078 if (error != 0) { 14079 softdep_error("clear_remove: vget", error); 14080 goto finish_write; 14081 } 14082 MPASS(VTOI(vp)->i_mode != 0); 14083 if ((error = ffs_syncvnode(vp, MNT_NOWAIT, 0))) 14084 softdep_error("clear_remove: fsync", error); 14085 bo = &vp->v_bufobj; 14086 BO_LOCK(bo); 14087 drain_output(vp); 14088 BO_UNLOCK(bo); 14089 vput(vp); 14090 finish_write: 14091 vn_finished_write(mp); 14092 ACQUIRE_LOCK(ump); 14093 return; 14094 } 14095 } 14096 } 14097 14098 /* 14099 * Clear out a block of dirty inodes in an effort to reduce 14100 * the number of inodedep dependency structures. 14101 */ 14102 static void 14103 clear_inodedeps(struct mount *mp) 14104 { 14105 struct inodedep_hashhead *inodedephd; 14106 struct inodedep *inodedep; 14107 struct ufsmount *ump; 14108 struct vnode *vp; 14109 struct fs *fs; 14110 int error, cnt; 14111 ino_t firstino, lastino, ino; 14112 14113 ump = VFSTOUFS(mp); 14114 fs = ump->um_fs; 14115 LOCK_OWNED(ump); 14116 /* 14117 * Pick a random inode dependency to be cleared. 14118 * We will then gather up all the inodes in its block 14119 * that have dependencies and flush them out. 14120 */ 14121 for (cnt = 0; cnt <= ump->inodedep_hash_size; cnt++) { 14122 inodedephd = &ump->inodedep_hashtbl[ump->inodedep_nextclean++]; 14123 if (ump->inodedep_nextclean > ump->inodedep_hash_size) 14124 ump->inodedep_nextclean = 0; 14125 if ((inodedep = LIST_FIRST(inodedephd)) != NULL) 14126 break; 14127 } 14128 if (inodedep == NULL) 14129 return; 14130 /* 14131 * Find the last inode in the block with dependencies. 14132 */ 14133 firstino = rounddown2(inodedep->id_ino, INOPB(fs)); 14134 for (lastino = firstino + INOPB(fs) - 1; lastino > firstino; lastino--) 14135 if (inodedep_lookup(mp, lastino, 0, &inodedep) != 0) 14136 break; 14137 /* 14138 * Asynchronously push all but the last inode with dependencies. 14139 * Synchronously push the last inode with dependencies to ensure 14140 * that the inode block gets written to free up the inodedeps. 14141 */ 14142 for (ino = firstino; ino <= lastino; ino++) { 14143 if (inodedep_lookup(mp, ino, 0, &inodedep) == 0) 14144 continue; 14145 if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) 14146 continue; 14147 FREE_LOCK(ump); 14148 error = vfs_busy(mp, MBF_NOWAIT); /* Let unmount clear deps */ 14149 if (error != 0) { 14150 vn_finished_write(mp); 14151 ACQUIRE_LOCK(ump); 14152 return; 14153 } 14154 if ((error = ffs_vgetf(mp, ino, LK_EXCLUSIVE, &vp, 14155 FFSV_FORCEINSMQ | FFSV_FORCEINODEDEP)) != 0) { 14156 softdep_error("clear_inodedeps: vget", error); 14157 vfs_unbusy(mp); 14158 vn_finished_write(mp); 14159 ACQUIRE_LOCK(ump); 14160 return; 14161 } 14162 vfs_unbusy(mp); 14163 if (VTOI(vp)->i_mode == 0) { 14164 vgone(vp); 14165 } else if (ino == lastino) { 14166 do { 14167 error = ffs_syncvnode(vp, MNT_WAIT, 0); 14168 } while (error == ERELOOKUP); 14169 if (error != 0) 14170 softdep_error("clear_inodedeps: fsync1", error); 14171 } else { 14172 if ((error = ffs_syncvnode(vp, MNT_NOWAIT, 0))) 14173 softdep_error("clear_inodedeps: fsync2", error); 14174 BO_LOCK(&vp->v_bufobj); 14175 drain_output(vp); 14176 BO_UNLOCK(&vp->v_bufobj); 14177 } 14178 vput(vp); 14179 vn_finished_write(mp); 14180 ACQUIRE_LOCK(ump); 14181 } 14182 } 14183 14184 void 14185 softdep_buf_append(struct buf *bp, struct workhead *wkhd) 14186 { 14187 struct worklist *wk; 14188 struct ufsmount *ump; 14189 14190 if ((wk = LIST_FIRST(wkhd)) == NULL) 14191 return; 14192 KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0, 14193 ("softdep_buf_append called on non-softdep filesystem")); 14194 ump = VFSTOUFS(wk->wk_mp); 14195 ACQUIRE_LOCK(ump); 14196 while ((wk = LIST_FIRST(wkhd)) != NULL) { 14197 WORKLIST_REMOVE(wk); 14198 WORKLIST_INSERT(&bp->b_dep, wk); 14199 } 14200 FREE_LOCK(ump); 14201 14202 } 14203 14204 void 14205 softdep_inode_append( 14206 struct inode *ip, 14207 struct ucred *cred, 14208 struct workhead *wkhd) 14209 { 14210 struct buf *bp; 14211 struct fs *fs; 14212 struct ufsmount *ump; 14213 int error; 14214 14215 ump = ITOUMP(ip); 14216 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 14217 ("softdep_inode_append called on non-softdep filesystem")); 14218 fs = ump->um_fs; 14219 error = bread(ump->um_devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)), 14220 (int)fs->fs_bsize, cred, &bp); 14221 if (error) { 14222 bqrelse(bp); 14223 softdep_freework(wkhd); 14224 return; 14225 } 14226 softdep_buf_append(bp, wkhd); 14227 bqrelse(bp); 14228 } 14229 14230 void 14231 softdep_freework(struct workhead *wkhd) 14232 { 14233 struct worklist *wk; 14234 struct ufsmount *ump; 14235 14236 if ((wk = LIST_FIRST(wkhd)) == NULL) 14237 return; 14238 KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0, 14239 ("softdep_freework called on non-softdep filesystem")); 14240 ump = VFSTOUFS(wk->wk_mp); 14241 ACQUIRE_LOCK(ump); 14242 handle_jwork(wkhd); 14243 FREE_LOCK(ump); 14244 } 14245 14246 static struct ufsmount * 14247 softdep_bp_to_mp(struct buf *bp) 14248 { 14249 struct mount *mp; 14250 struct vnode *vp; 14251 14252 if (LIST_EMPTY(&bp->b_dep)) 14253 return (NULL); 14254 vp = bp->b_vp; 14255 KASSERT(vp != NULL, 14256 ("%s, buffer with dependencies lacks vnode", __func__)); 14257 14258 /* 14259 * The ump mount point is stable after we get a correct 14260 * pointer, since bp is locked and this prevents unmount from 14261 * proceeding. But to get to it, we cannot dereference bp->b_dep 14262 * head wk_mp, because we do not yet own SU ump lock and 14263 * workitem might be freed while dereferenced. 14264 */ 14265 retry: 14266 switch (vp->v_type) { 14267 case VCHR: 14268 VI_LOCK(vp); 14269 mp = vp->v_type == VCHR ? vp->v_rdev->si_mountpt : NULL; 14270 VI_UNLOCK(vp); 14271 if (mp == NULL) 14272 goto retry; 14273 break; 14274 case VREG: 14275 case VDIR: 14276 case VLNK: 14277 case VFIFO: 14278 case VSOCK: 14279 mp = vp->v_mount; 14280 break; 14281 case VBLK: 14282 vn_printf(vp, "softdep_bp_to_mp: unexpected block device\n"); 14283 /* FALLTHROUGH */ 14284 case VNON: 14285 case VBAD: 14286 case VMARKER: 14287 mp = NULL; 14288 break; 14289 default: 14290 vn_printf(vp, "unknown vnode type"); 14291 mp = NULL; 14292 break; 14293 } 14294 return (VFSTOUFS(mp)); 14295 } 14296 14297 /* 14298 * Function to determine if the buffer has outstanding dependencies 14299 * that will cause a roll-back if the buffer is written. If wantcount 14300 * is set, return number of dependencies, otherwise just yes or no. 14301 */ 14302 static int 14303 softdep_count_dependencies(struct buf *bp, int wantcount) 14304 { 14305 struct worklist *wk; 14306 struct ufsmount *ump; 14307 struct bmsafemap *bmsafemap; 14308 struct freework *freework; 14309 struct inodedep *inodedep; 14310 struct indirdep *indirdep; 14311 struct freeblks *freeblks; 14312 struct allocindir *aip; 14313 struct pagedep *pagedep; 14314 struct dirrem *dirrem; 14315 struct newblk *newblk; 14316 struct mkdir *mkdir; 14317 struct diradd *dap; 14318 int i, retval; 14319 14320 ump = softdep_bp_to_mp(bp); 14321 if (ump == NULL) 14322 return (0); 14323 retval = 0; 14324 ACQUIRE_LOCK(ump); 14325 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 14326 switch (wk->wk_type) { 14327 case D_INODEDEP: 14328 inodedep = WK_INODEDEP(wk); 14329 if ((inodedep->id_state & DEPCOMPLETE) == 0) { 14330 /* bitmap allocation dependency */ 14331 retval += 1; 14332 if (!wantcount) 14333 goto out; 14334 } 14335 if (TAILQ_FIRST(&inodedep->id_inoupdt)) { 14336 /* direct block pointer dependency */ 14337 retval += 1; 14338 if (!wantcount) 14339 goto out; 14340 } 14341 if (TAILQ_FIRST(&inodedep->id_extupdt)) { 14342 /* direct block pointer dependency */ 14343 retval += 1; 14344 if (!wantcount) 14345 goto out; 14346 } 14347 if (TAILQ_FIRST(&inodedep->id_inoreflst)) { 14348 /* Add reference dependency. */ 14349 retval += 1; 14350 if (!wantcount) 14351 goto out; 14352 } 14353 continue; 14354 14355 case D_INDIRDEP: 14356 indirdep = WK_INDIRDEP(wk); 14357 14358 TAILQ_FOREACH(freework, &indirdep->ir_trunc, fw_next) { 14359 /* indirect truncation dependency */ 14360 retval += 1; 14361 if (!wantcount) 14362 goto out; 14363 } 14364 14365 LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) { 14366 /* indirect block pointer dependency */ 14367 retval += 1; 14368 if (!wantcount) 14369 goto out; 14370 } 14371 continue; 14372 14373 case D_PAGEDEP: 14374 pagedep = WK_PAGEDEP(wk); 14375 LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next) { 14376 if (LIST_FIRST(&dirrem->dm_jremrefhd)) { 14377 /* Journal remove ref dependency. */ 14378 retval += 1; 14379 if (!wantcount) 14380 goto out; 14381 } 14382 } 14383 for (i = 0; i < DAHASHSZ; i++) { 14384 LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) { 14385 /* directory entry dependency */ 14386 retval += 1; 14387 if (!wantcount) 14388 goto out; 14389 } 14390 } 14391 continue; 14392 14393 case D_BMSAFEMAP: 14394 bmsafemap = WK_BMSAFEMAP(wk); 14395 if (LIST_FIRST(&bmsafemap->sm_jaddrefhd)) { 14396 /* Add reference dependency. */ 14397 retval += 1; 14398 if (!wantcount) 14399 goto out; 14400 } 14401 if (LIST_FIRST(&bmsafemap->sm_jnewblkhd)) { 14402 /* Allocate block dependency. */ 14403 retval += 1; 14404 if (!wantcount) 14405 goto out; 14406 } 14407 continue; 14408 14409 case D_FREEBLKS: 14410 freeblks = WK_FREEBLKS(wk); 14411 if (LIST_FIRST(&freeblks->fb_jblkdephd)) { 14412 /* Freeblk journal dependency. */ 14413 retval += 1; 14414 if (!wantcount) 14415 goto out; 14416 } 14417 continue; 14418 14419 case D_ALLOCDIRECT: 14420 case D_ALLOCINDIR: 14421 newblk = WK_NEWBLK(wk); 14422 if (newblk->nb_jnewblk) { 14423 /* Journal allocate dependency. */ 14424 retval += 1; 14425 if (!wantcount) 14426 goto out; 14427 } 14428 continue; 14429 14430 case D_MKDIR: 14431 mkdir = WK_MKDIR(wk); 14432 if (mkdir->md_jaddref) { 14433 /* Journal reference dependency. */ 14434 retval += 1; 14435 if (!wantcount) 14436 goto out; 14437 } 14438 continue; 14439 14440 case D_FREEWORK: 14441 case D_FREEDEP: 14442 case D_JSEGDEP: 14443 case D_JSEG: 14444 case D_SBDEP: 14445 /* never a dependency on these blocks */ 14446 continue; 14447 14448 default: 14449 panic("softdep_count_dependencies: Unexpected type %s", 14450 TYPENAME(wk->wk_type)); 14451 /* NOTREACHED */ 14452 } 14453 } 14454 out: 14455 FREE_LOCK(ump); 14456 return (retval); 14457 } 14458 14459 /* 14460 * Acquire exclusive access to a buffer. 14461 * Must be called with a locked mtx parameter. 14462 * Return acquired buffer or NULL on failure. 14463 */ 14464 static struct buf * 14465 getdirtybuf(struct buf *bp, 14466 struct rwlock *lock, 14467 int waitfor) 14468 { 14469 int error; 14470 14471 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0) { 14472 if (waitfor != MNT_WAIT) 14473 return (NULL); 14474 error = BUF_LOCK(bp, 14475 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, lock); 14476 /* 14477 * Even if we successfully acquire bp here, we have dropped 14478 * lock, which may violates our guarantee. 14479 */ 14480 if (error == 0) 14481 BUF_UNLOCK(bp); 14482 else if (error != ENOLCK) 14483 panic("getdirtybuf: inconsistent lock: %d", error); 14484 rw_wlock(lock); 14485 return (NULL); 14486 } 14487 if ((bp->b_vflags & BV_BKGRDINPROG) != 0) { 14488 if (lock != BO_LOCKPTR(bp->b_bufobj) && waitfor == MNT_WAIT) { 14489 rw_wunlock(lock); 14490 BO_LOCK(bp->b_bufobj); 14491 BUF_UNLOCK(bp); 14492 if ((bp->b_vflags & BV_BKGRDINPROG) != 0) { 14493 bp->b_vflags |= BV_BKGRDWAIT; 14494 msleep(&bp->b_xflags, BO_LOCKPTR(bp->b_bufobj), 14495 PRIBIO | PDROP, "getbuf", 0); 14496 } else 14497 BO_UNLOCK(bp->b_bufobj); 14498 rw_wlock(lock); 14499 return (NULL); 14500 } 14501 BUF_UNLOCK(bp); 14502 if (waitfor != MNT_WAIT) 14503 return (NULL); 14504 #ifdef DEBUG_VFS_LOCKS 14505 if (bp->b_vp->v_type != VCHR) 14506 ASSERT_BO_WLOCKED(bp->b_bufobj); 14507 #endif 14508 bp->b_vflags |= BV_BKGRDWAIT; 14509 rw_sleep(&bp->b_xflags, lock, PRIBIO, "getbuf", 0); 14510 return (NULL); 14511 } 14512 if ((bp->b_flags & B_DELWRI) == 0) { 14513 BUF_UNLOCK(bp); 14514 return (NULL); 14515 } 14516 bremfree(bp); 14517 return (bp); 14518 } 14519 14520 /* 14521 * Check if it is safe to suspend the file system now. On entry, 14522 * the vnode interlock for devvp should be held. Return 0 with 14523 * the mount interlock held if the file system can be suspended now, 14524 * otherwise return EAGAIN with the mount interlock held. 14525 */ 14526 int 14527 softdep_check_suspend(struct mount *mp, 14528 struct vnode *devvp, 14529 int softdep_depcnt, 14530 int softdep_accdepcnt, 14531 int secondary_writes, 14532 int secondary_accwrites) 14533 { 14534 struct buf *bp; 14535 struct bufobj *bo; 14536 struct ufsmount *ump; 14537 struct inodedep *inodedep; 14538 struct indirdep *indirdep; 14539 struct worklist *wk, *nextwk; 14540 int error, unlinked; 14541 14542 bo = &devvp->v_bufobj; 14543 ASSERT_BO_WLOCKED(bo); 14544 14545 /* 14546 * If we are not running with soft updates, then we need only 14547 * deal with secondary writes as we try to suspend. 14548 */ 14549 if (MOUNTEDSOFTDEP(mp) == 0) { 14550 MNT_ILOCK(mp); 14551 while (mp->mnt_secondary_writes != 0) { 14552 BO_UNLOCK(bo); 14553 msleep(&mp->mnt_secondary_writes, MNT_MTX(mp), 14554 (PUSER - 1) | PDROP, "secwr", 0); 14555 BO_LOCK(bo); 14556 MNT_ILOCK(mp); 14557 } 14558 14559 /* 14560 * Reasons for needing more work before suspend: 14561 * - Dirty buffers on devvp. 14562 * - Secondary writes occurred after start of vnode sync loop 14563 */ 14564 error = 0; 14565 if (bo->bo_numoutput > 0 || 14566 bo->bo_dirty.bv_cnt > 0 || 14567 secondary_writes != 0 || 14568 mp->mnt_secondary_writes != 0 || 14569 secondary_accwrites != mp->mnt_secondary_accwrites) 14570 error = EAGAIN; 14571 BO_UNLOCK(bo); 14572 return (error); 14573 } 14574 14575 /* 14576 * If we are running with soft updates, then we need to coordinate 14577 * with them as we try to suspend. 14578 */ 14579 ump = VFSTOUFS(mp); 14580 for (;;) { 14581 if (!TRY_ACQUIRE_LOCK(ump)) { 14582 BO_UNLOCK(bo); 14583 ACQUIRE_LOCK(ump); 14584 FREE_LOCK(ump); 14585 BO_LOCK(bo); 14586 continue; 14587 } 14588 MNT_ILOCK(mp); 14589 if (mp->mnt_secondary_writes != 0) { 14590 FREE_LOCK(ump); 14591 BO_UNLOCK(bo); 14592 msleep(&mp->mnt_secondary_writes, 14593 MNT_MTX(mp), 14594 (PUSER - 1) | PDROP, "secwr", 0); 14595 BO_LOCK(bo); 14596 continue; 14597 } 14598 break; 14599 } 14600 14601 unlinked = 0; 14602 if (MOUNTEDSUJ(mp)) { 14603 for (inodedep = TAILQ_FIRST(&ump->softdep_unlinked); 14604 inodedep != NULL; 14605 inodedep = TAILQ_NEXT(inodedep, id_unlinked)) { 14606 if ((inodedep->id_state & (UNLINKED | UNLINKLINKS | 14607 UNLINKONLIST)) != (UNLINKED | UNLINKLINKS | 14608 UNLINKONLIST) || 14609 !check_inodedep_free(inodedep)) 14610 continue; 14611 unlinked++; 14612 } 14613 } 14614 14615 /* 14616 * XXX Check for orphaned indirdep dependency structures. 14617 * 14618 * During forcible unmount after a disk failure there is a 14619 * bug that causes one or more indirdep dependency structures 14620 * to fail to be deallocated. We check for them here and clean 14621 * them up so that the unmount can succeed. 14622 */ 14623 if ((ump->um_flags & UM_FSFAIL_CLEANUP) != 0 && ump->softdep_deps > 0 && 14624 ump->softdep_deps == ump->softdep_curdeps[D_INDIRDEP]) { 14625 LIST_FOREACH_SAFE(wk, &ump->softdep_alldeps[D_INDIRDEP], 14626 wk_all, nextwk) { 14627 indirdep = WK_INDIRDEP(wk); 14628 if ((indirdep->ir_state & (GOINGAWAY | DEPCOMPLETE)) != 14629 (GOINGAWAY | DEPCOMPLETE) || 14630 !TAILQ_EMPTY(&indirdep->ir_trunc) || 14631 !LIST_EMPTY(&indirdep->ir_completehd) || 14632 !LIST_EMPTY(&indirdep->ir_writehd) || 14633 !LIST_EMPTY(&indirdep->ir_donehd) || 14634 !LIST_EMPTY(&indirdep->ir_deplisthd) || 14635 indirdep->ir_saveddata != NULL || 14636 indirdep->ir_savebp == NULL) { 14637 printf("%s: skipping orphaned indirdep %p\n", 14638 __FUNCTION__, indirdep); 14639 continue; 14640 } 14641 printf("%s: freeing orphaned indirdep %p\n", 14642 __FUNCTION__, indirdep); 14643 bp = indirdep->ir_savebp; 14644 indirdep->ir_savebp = NULL; 14645 free_indirdep(indirdep); 14646 FREE_LOCK(ump); 14647 brelse(bp); 14648 while (!TRY_ACQUIRE_LOCK(ump)) { 14649 BO_UNLOCK(bo); 14650 ACQUIRE_LOCK(ump); 14651 FREE_LOCK(ump); 14652 BO_LOCK(bo); 14653 } 14654 } 14655 } 14656 14657 /* 14658 * Reasons for needing more work before suspend: 14659 * - Dirty buffers on devvp. 14660 * - Dependency structures still exist 14661 * - Softdep activity occurred after start of vnode sync loop 14662 * - Secondary writes occurred after start of vnode sync loop 14663 */ 14664 error = 0; 14665 if (bo->bo_numoutput > 0 || 14666 bo->bo_dirty.bv_cnt > 0 || 14667 softdep_depcnt != unlinked || 14668 ump->softdep_deps != unlinked || 14669 softdep_accdepcnt != ump->softdep_accdeps || 14670 secondary_writes != 0 || 14671 mp->mnt_secondary_writes != 0 || 14672 secondary_accwrites != mp->mnt_secondary_accwrites) 14673 error = EAGAIN; 14674 FREE_LOCK(ump); 14675 BO_UNLOCK(bo); 14676 return (error); 14677 } 14678 14679 /* 14680 * Get the number of dependency structures for the file system, both 14681 * the current number and the total number allocated. These will 14682 * later be used to detect that softdep processing has occurred. 14683 */ 14684 void 14685 softdep_get_depcounts(struct mount *mp, 14686 int *softdep_depsp, 14687 int *softdep_accdepsp) 14688 { 14689 struct ufsmount *ump; 14690 14691 if (MOUNTEDSOFTDEP(mp) == 0) { 14692 *softdep_depsp = 0; 14693 *softdep_accdepsp = 0; 14694 return; 14695 } 14696 ump = VFSTOUFS(mp); 14697 ACQUIRE_LOCK(ump); 14698 *softdep_depsp = ump->softdep_deps; 14699 *softdep_accdepsp = ump->softdep_accdeps; 14700 FREE_LOCK(ump); 14701 } 14702 14703 /* 14704 * Wait for pending output on a vnode to complete. 14705 */ 14706 static void 14707 drain_output(struct vnode *vp) 14708 { 14709 14710 ASSERT_VOP_LOCKED(vp, "drain_output"); 14711 (void)bufobj_wwait(&vp->v_bufobj, 0, 0); 14712 } 14713 14714 /* 14715 * Called whenever a buffer that is being invalidated or reallocated 14716 * contains dependencies. This should only happen if an I/O error has 14717 * occurred. The routine is called with the buffer locked. 14718 */ 14719 static void 14720 softdep_deallocate_dependencies(struct buf *bp) 14721 { 14722 14723 if ((bp->b_ioflags & BIO_ERROR) == 0) 14724 panic("softdep_deallocate_dependencies: dangling deps"); 14725 if (bp->b_vp != NULL && bp->b_vp->v_mount != NULL) 14726 softdep_error(bp->b_vp->v_mount->mnt_stat.f_mntonname, bp->b_error); 14727 else 14728 printf("softdep_deallocate_dependencies: " 14729 "got error %d while accessing filesystem\n", bp->b_error); 14730 if (bp->b_error != ENXIO) 14731 panic("softdep_deallocate_dependencies: unrecovered I/O error"); 14732 } 14733 14734 /* 14735 * Function to handle asynchronous write errors in the filesystem. 14736 */ 14737 static void 14738 softdep_error(char *func, int error) 14739 { 14740 14741 /* XXX should do something better! */ 14742 printf("%s: got error %d while accessing filesystem\n", func, error); 14743 } 14744 14745 #ifdef DDB 14746 14747 /* exported to ffs_vfsops.c */ 14748 extern void db_print_ffs(struct ufsmount *ump); 14749 void 14750 db_print_ffs(struct ufsmount *ump) 14751 { 14752 db_printf("mp %p (%s) devvp %p\n", ump->um_mountp, 14753 ump->um_mountp->mnt_stat.f_mntonname, ump->um_devvp); 14754 db_printf(" fs %p ", ump->um_fs); 14755 14756 if (ump->um_softdep != NULL) { 14757 db_printf("su_wl %d su_deps %d su_req %d\n", 14758 ump->softdep_on_worklist, ump->softdep_deps, 14759 ump->softdep_req); 14760 } else { 14761 db_printf("su disabled\n"); 14762 } 14763 } 14764 14765 static void 14766 worklist_print(struct worklist *wk, int verbose) 14767 { 14768 14769 if (!verbose) { 14770 db_printf("%s: %p state 0x%b\n", TYPENAME(wk->wk_type), wk, 14771 (u_int)wk->wk_state, PRINT_SOFTDEP_FLAGS); 14772 return; 14773 } 14774 db_printf("worklist: %p type %s state 0x%b next %p\n ", wk, 14775 TYPENAME(wk->wk_type), (u_int)wk->wk_state, PRINT_SOFTDEP_FLAGS, 14776 LIST_NEXT(wk, wk_list)); 14777 db_print_ffs(VFSTOUFS(wk->wk_mp)); 14778 } 14779 14780 static void 14781 inodedep_print(struct inodedep *inodedep, int verbose) 14782 { 14783 14784 worklist_print(&inodedep->id_list, 0); 14785 db_printf(" fs %p ino %jd inoblk %jd delta %jd nlink %jd\n", 14786 inodedep->id_fs, 14787 (intmax_t)inodedep->id_ino, 14788 (intmax_t)fsbtodb(inodedep->id_fs, 14789 ino_to_fsba(inodedep->id_fs, inodedep->id_ino)), 14790 (intmax_t)inodedep->id_nlinkdelta, 14791 (intmax_t)inodedep->id_savednlink); 14792 14793 if (verbose == 0) 14794 return; 14795 14796 db_printf(" bmsafemap %p, mkdiradd %p, inoreflst %p\n", 14797 inodedep->id_bmsafemap, 14798 inodedep->id_mkdiradd, 14799 TAILQ_FIRST(&inodedep->id_inoreflst)); 14800 db_printf(" dirremhd %p, pendinghd %p, bufwait %p\n", 14801 LIST_FIRST(&inodedep->id_dirremhd), 14802 LIST_FIRST(&inodedep->id_pendinghd), 14803 LIST_FIRST(&inodedep->id_bufwait)); 14804 db_printf(" inowait %p, inoupdt %p, newinoupdt %p\n", 14805 LIST_FIRST(&inodedep->id_inowait), 14806 TAILQ_FIRST(&inodedep->id_inoupdt), 14807 TAILQ_FIRST(&inodedep->id_newinoupdt)); 14808 db_printf(" extupdt %p, newextupdt %p, freeblklst %p\n", 14809 TAILQ_FIRST(&inodedep->id_extupdt), 14810 TAILQ_FIRST(&inodedep->id_newextupdt), 14811 TAILQ_FIRST(&inodedep->id_freeblklst)); 14812 db_printf(" saveino %p, savedsize %jd, savedextsize %jd\n", 14813 inodedep->id_savedino1, 14814 (intmax_t)inodedep->id_savedsize, 14815 (intmax_t)inodedep->id_savedextsize); 14816 } 14817 14818 static void 14819 newblk_print(struct newblk *nbp) 14820 { 14821 14822 worklist_print(&nbp->nb_list, 0); 14823 db_printf(" newblkno %jd\n", (intmax_t)nbp->nb_newblkno); 14824 db_printf(" jnewblk %p, bmsafemap %p, freefrag %p\n", 14825 &nbp->nb_jnewblk, 14826 &nbp->nb_bmsafemap, 14827 &nbp->nb_freefrag); 14828 db_printf(" indirdeps %p, newdirblk %p, jwork %p\n", 14829 LIST_FIRST(&nbp->nb_indirdeps), 14830 LIST_FIRST(&nbp->nb_newdirblk), 14831 LIST_FIRST(&nbp->nb_jwork)); 14832 } 14833 14834 static void 14835 allocdirect_print(struct allocdirect *adp) 14836 { 14837 14838 newblk_print(&adp->ad_block); 14839 db_printf(" oldblkno %jd, oldsize %ld, newsize %ld\n", 14840 adp->ad_oldblkno, adp->ad_oldsize, adp->ad_newsize); 14841 db_printf(" offset %d, inodedep %p\n", 14842 adp->ad_offset, adp->ad_inodedep); 14843 } 14844 14845 static void 14846 allocindir_print(struct allocindir *aip) 14847 { 14848 14849 newblk_print(&aip->ai_block); 14850 db_printf(" oldblkno %jd, lbn %jd\n", 14851 (intmax_t)aip->ai_oldblkno, (intmax_t)aip->ai_lbn); 14852 db_printf(" offset %d, indirdep %p\n", 14853 aip->ai_offset, aip->ai_indirdep); 14854 } 14855 14856 static void 14857 mkdir_print(struct mkdir *mkdir) 14858 { 14859 14860 worklist_print(&mkdir->md_list, 0); 14861 db_printf(" diradd %p, jaddref %p, buf %p\n", 14862 mkdir->md_diradd, mkdir->md_jaddref, mkdir->md_buf); 14863 } 14864 14865 DB_SHOW_COMMAND(sd_inodedep, db_show_sd_inodedep) 14866 { 14867 14868 if (have_addr == 0) { 14869 db_printf("inodedep address required\n"); 14870 return; 14871 } 14872 inodedep_print((struct inodedep*)addr, 1); 14873 } 14874 14875 DB_SHOW_COMMAND(sd_allinodedeps, db_show_sd_allinodedeps) 14876 { 14877 struct inodedep_hashhead *inodedephd; 14878 struct inodedep *inodedep; 14879 struct ufsmount *ump; 14880 int cnt; 14881 14882 if (have_addr == 0) { 14883 db_printf("ufsmount address required\n"); 14884 return; 14885 } 14886 ump = (struct ufsmount *)addr; 14887 for (cnt = 0; cnt < ump->inodedep_hash_size; cnt++) { 14888 inodedephd = &ump->inodedep_hashtbl[cnt]; 14889 LIST_FOREACH(inodedep, inodedephd, id_hash) { 14890 inodedep_print(inodedep, 0); 14891 } 14892 } 14893 } 14894 14895 DB_SHOW_COMMAND(sd_worklist, db_show_sd_worklist) 14896 { 14897 14898 if (have_addr == 0) { 14899 db_printf("worklist address required\n"); 14900 return; 14901 } 14902 worklist_print((struct worklist *)addr, 1); 14903 } 14904 14905 DB_SHOW_COMMAND(sd_workhead, db_show_sd_workhead) 14906 { 14907 struct worklist *wk; 14908 struct workhead *wkhd; 14909 14910 if (have_addr == 0) { 14911 db_printf("worklist address required " 14912 "(for example value in bp->b_dep)\n"); 14913 return; 14914 } 14915 /* 14916 * We often do not have the address of the worklist head but 14917 * instead a pointer to its first entry (e.g., we have the 14918 * contents of bp->b_dep rather than &bp->b_dep). But the back 14919 * pointer of bp->b_dep will point at the head of the list, so 14920 * we cheat and use that instead. If we are in the middle of 14921 * a list we will still get the same result, so nothing 14922 * unexpected will result. 14923 */ 14924 wk = (struct worklist *)addr; 14925 if (wk == NULL) 14926 return; 14927 wkhd = (struct workhead *)wk->wk_list.le_prev; 14928 LIST_FOREACH(wk, wkhd, wk_list) { 14929 switch(wk->wk_type) { 14930 case D_INODEDEP: 14931 inodedep_print(WK_INODEDEP(wk), 0); 14932 continue; 14933 case D_ALLOCDIRECT: 14934 allocdirect_print(WK_ALLOCDIRECT(wk)); 14935 continue; 14936 case D_ALLOCINDIR: 14937 allocindir_print(WK_ALLOCINDIR(wk)); 14938 continue; 14939 case D_MKDIR: 14940 mkdir_print(WK_MKDIR(wk)); 14941 continue; 14942 default: 14943 worklist_print(wk, 0); 14944 continue; 14945 } 14946 } 14947 } 14948 14949 DB_SHOW_COMMAND(sd_mkdir, db_show_sd_mkdir) 14950 { 14951 if (have_addr == 0) { 14952 db_printf("mkdir address required\n"); 14953 return; 14954 } 14955 mkdir_print((struct mkdir *)addr); 14956 } 14957 14958 DB_SHOW_COMMAND(sd_mkdir_list, db_show_sd_mkdir_list) 14959 { 14960 struct mkdirlist *mkdirlisthd; 14961 struct mkdir *mkdir; 14962 14963 if (have_addr == 0) { 14964 db_printf("mkdir listhead address required\n"); 14965 return; 14966 } 14967 mkdirlisthd = (struct mkdirlist *)addr; 14968 LIST_FOREACH(mkdir, mkdirlisthd, md_mkdirs) { 14969 mkdir_print(mkdir); 14970 if (mkdir->md_diradd != NULL) { 14971 db_printf(" "); 14972 worklist_print(&mkdir->md_diradd->da_list, 0); 14973 } 14974 if (mkdir->md_jaddref != NULL) { 14975 db_printf(" "); 14976 worklist_print(&mkdir->md_jaddref->ja_list, 0); 14977 } 14978 } 14979 } 14980 14981 DB_SHOW_COMMAND(sd_allocdirect, db_show_sd_allocdirect) 14982 { 14983 if (have_addr == 0) { 14984 db_printf("allocdirect address required\n"); 14985 return; 14986 } 14987 allocdirect_print((struct allocdirect *)addr); 14988 } 14989 14990 DB_SHOW_COMMAND(sd_allocindir, db_show_sd_allocindir) 14991 { 14992 if (have_addr == 0) { 14993 db_printf("allocindir address required\n"); 14994 return; 14995 } 14996 allocindir_print((struct allocindir *)addr); 14997 } 14998 14999 #endif /* DDB */ 15000 15001 #endif /* SOFTUPDATES */ 15002