1 /*- 2 * Copyright 1998, 2000 Marshall Kirk McKusick. 3 * Copyright 2009, 2010 Jeffrey W. Roberson <jeff@FreeBSD.org> 4 * All rights reserved. 5 * 6 * The soft updates code is derived from the appendix of a University 7 * of Michigan technical report (Gregory R. Ganger and Yale N. Patt, 8 * "Soft Updates: A Solution to the Metadata Update Problem in File 9 * Systems", CSE-TR-254-95, August 1995). 10 * 11 * Further information about soft updates can be obtained from: 12 * 13 * Marshall Kirk McKusick http://www.mckusick.com/softdep/ 14 * 1614 Oxford Street mckusick@mckusick.com 15 * Berkeley, CA 94709-1608 +1-510-843-9542 16 * USA 17 * 18 * Redistribution and use in source and binary forms, with or without 19 * modification, are permitted provided that the following conditions 20 * are met: 21 * 22 * 1. Redistributions of source code must retain the above copyright 23 * notice, this list of conditions and the following disclaimer. 24 * 2. Redistributions in binary form must reproduce the above copyright 25 * notice, this list of conditions and the following disclaimer in the 26 * documentation and/or other materials provided with the distribution. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR 29 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 30 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 31 * IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT, 32 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 33 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS 34 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND 35 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR 36 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 37 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 38 * 39 * from: @(#)ffs_softdep.c 9.59 (McKusick) 6/21/00 40 */ 41 42 #include <sys/cdefs.h> 43 __FBSDID("$FreeBSD$"); 44 45 #include "opt_ffs.h" 46 #include "opt_quota.h" 47 #include "opt_ddb.h" 48 49 /* 50 * For now we want the safety net that the DEBUG flag provides. 51 */ 52 #ifndef DEBUG 53 #define DEBUG 54 #endif 55 56 #include <sys/param.h> 57 #include <sys/kernel.h> 58 #include <sys/systm.h> 59 #include <sys/bio.h> 60 #include <sys/buf.h> 61 #include <sys/kdb.h> 62 #include <sys/kthread.h> 63 #include <sys/ktr.h> 64 #include <sys/limits.h> 65 #include <sys/lock.h> 66 #include <sys/malloc.h> 67 #include <sys/mount.h> 68 #include <sys/mutex.h> 69 #include <sys/namei.h> 70 #include <sys/priv.h> 71 #include <sys/proc.h> 72 #include <sys/rwlock.h> 73 #include <sys/stat.h> 74 #include <sys/sysctl.h> 75 #include <sys/syslog.h> 76 #include <sys/vnode.h> 77 #include <sys/conf.h> 78 79 #include <ufs/ufs/dir.h> 80 #include <ufs/ufs/extattr.h> 81 #include <ufs/ufs/quota.h> 82 #include <ufs/ufs/inode.h> 83 #include <ufs/ufs/ufsmount.h> 84 #include <ufs/ffs/fs.h> 85 #include <ufs/ffs/softdep.h> 86 #include <ufs/ffs/ffs_extern.h> 87 #include <ufs/ufs/ufs_extern.h> 88 89 #include <vm/vm.h> 90 #include <vm/vm_extern.h> 91 #include <vm/vm_object.h> 92 93 #include <geom/geom.h> 94 95 #include <ddb/ddb.h> 96 97 #define KTR_SUJ 0 /* Define to KTR_SPARE. */ 98 99 #ifndef SOFTUPDATES 100 101 int 102 softdep_flushfiles(oldmnt, flags, td) 103 struct mount *oldmnt; 104 int flags; 105 struct thread *td; 106 { 107 108 panic("softdep_flushfiles called"); 109 } 110 111 int 112 softdep_mount(devvp, mp, fs, cred) 113 struct vnode *devvp; 114 struct mount *mp; 115 struct fs *fs; 116 struct ucred *cred; 117 { 118 119 return (0); 120 } 121 122 void 123 softdep_initialize() 124 { 125 126 return; 127 } 128 129 void 130 softdep_uninitialize() 131 { 132 133 return; 134 } 135 136 void 137 softdep_unmount(mp) 138 struct mount *mp; 139 { 140 141 } 142 143 void 144 softdep_setup_sbupdate(ump, fs, bp) 145 struct ufsmount *ump; 146 struct fs *fs; 147 struct buf *bp; 148 { 149 } 150 151 void 152 softdep_setup_inomapdep(bp, ip, newinum, mode) 153 struct buf *bp; 154 struct inode *ip; 155 ino_t newinum; 156 int mode; 157 { 158 159 panic("softdep_setup_inomapdep called"); 160 } 161 162 void 163 softdep_setup_blkmapdep(bp, mp, newblkno, frags, oldfrags) 164 struct buf *bp; 165 struct mount *mp; 166 ufs2_daddr_t newblkno; 167 int frags; 168 int oldfrags; 169 { 170 171 panic("softdep_setup_blkmapdep called"); 172 } 173 174 void 175 softdep_setup_allocdirect(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp) 176 struct inode *ip; 177 ufs_lbn_t lbn; 178 ufs2_daddr_t newblkno; 179 ufs2_daddr_t oldblkno; 180 long newsize; 181 long oldsize; 182 struct buf *bp; 183 { 184 185 panic("softdep_setup_allocdirect called"); 186 } 187 188 void 189 softdep_setup_allocext(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp) 190 struct inode *ip; 191 ufs_lbn_t lbn; 192 ufs2_daddr_t newblkno; 193 ufs2_daddr_t oldblkno; 194 long newsize; 195 long oldsize; 196 struct buf *bp; 197 { 198 199 panic("softdep_setup_allocext called"); 200 } 201 202 void 203 softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp) 204 struct inode *ip; 205 ufs_lbn_t lbn; 206 struct buf *bp; 207 int ptrno; 208 ufs2_daddr_t newblkno; 209 ufs2_daddr_t oldblkno; 210 struct buf *nbp; 211 { 212 213 panic("softdep_setup_allocindir_page called"); 214 } 215 216 void 217 softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno) 218 struct buf *nbp; 219 struct inode *ip; 220 struct buf *bp; 221 int ptrno; 222 ufs2_daddr_t newblkno; 223 { 224 225 panic("softdep_setup_allocindir_meta called"); 226 } 227 228 void 229 softdep_journal_freeblocks(ip, cred, length, flags) 230 struct inode *ip; 231 struct ucred *cred; 232 off_t length; 233 int flags; 234 { 235 236 panic("softdep_journal_freeblocks called"); 237 } 238 239 void 240 softdep_journal_fsync(ip) 241 struct inode *ip; 242 { 243 244 panic("softdep_journal_fsync called"); 245 } 246 247 void 248 softdep_setup_freeblocks(ip, length, flags) 249 struct inode *ip; 250 off_t length; 251 int flags; 252 { 253 254 panic("softdep_setup_freeblocks called"); 255 } 256 257 void 258 softdep_freefile(pvp, ino, mode) 259 struct vnode *pvp; 260 ino_t ino; 261 int mode; 262 { 263 264 panic("softdep_freefile called"); 265 } 266 267 int 268 softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk) 269 struct buf *bp; 270 struct inode *dp; 271 off_t diroffset; 272 ino_t newinum; 273 struct buf *newdirbp; 274 int isnewblk; 275 { 276 277 panic("softdep_setup_directory_add called"); 278 } 279 280 void 281 softdep_change_directoryentry_offset(bp, dp, base, oldloc, newloc, entrysize) 282 struct buf *bp; 283 struct inode *dp; 284 caddr_t base; 285 caddr_t oldloc; 286 caddr_t newloc; 287 int entrysize; 288 { 289 290 panic("softdep_change_directoryentry_offset called"); 291 } 292 293 void 294 softdep_setup_remove(bp, dp, ip, isrmdir) 295 struct buf *bp; 296 struct inode *dp; 297 struct inode *ip; 298 int isrmdir; 299 { 300 301 panic("softdep_setup_remove called"); 302 } 303 304 void 305 softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir) 306 struct buf *bp; 307 struct inode *dp; 308 struct inode *ip; 309 ino_t newinum; 310 int isrmdir; 311 { 312 313 panic("softdep_setup_directory_change called"); 314 } 315 316 void 317 softdep_setup_blkfree(mp, bp, blkno, frags, wkhd) 318 struct mount *mp; 319 struct buf *bp; 320 ufs2_daddr_t blkno; 321 int frags; 322 struct workhead *wkhd; 323 { 324 325 panic("%s called", __FUNCTION__); 326 } 327 328 void 329 softdep_setup_inofree(mp, bp, ino, wkhd) 330 struct mount *mp; 331 struct buf *bp; 332 ino_t ino; 333 struct workhead *wkhd; 334 { 335 336 panic("%s called", __FUNCTION__); 337 } 338 339 void 340 softdep_setup_unlink(dp, ip) 341 struct inode *dp; 342 struct inode *ip; 343 { 344 345 panic("%s called", __FUNCTION__); 346 } 347 348 void 349 softdep_setup_link(dp, ip) 350 struct inode *dp; 351 struct inode *ip; 352 { 353 354 panic("%s called", __FUNCTION__); 355 } 356 357 void 358 softdep_revert_link(dp, ip) 359 struct inode *dp; 360 struct inode *ip; 361 { 362 363 panic("%s called", __FUNCTION__); 364 } 365 366 void 367 softdep_setup_rmdir(dp, ip) 368 struct inode *dp; 369 struct inode *ip; 370 { 371 372 panic("%s called", __FUNCTION__); 373 } 374 375 void 376 softdep_revert_rmdir(dp, ip) 377 struct inode *dp; 378 struct inode *ip; 379 { 380 381 panic("%s called", __FUNCTION__); 382 } 383 384 void 385 softdep_setup_create(dp, ip) 386 struct inode *dp; 387 struct inode *ip; 388 { 389 390 panic("%s called", __FUNCTION__); 391 } 392 393 void 394 softdep_revert_create(dp, ip) 395 struct inode *dp; 396 struct inode *ip; 397 { 398 399 panic("%s called", __FUNCTION__); 400 } 401 402 void 403 softdep_setup_mkdir(dp, ip) 404 struct inode *dp; 405 struct inode *ip; 406 { 407 408 panic("%s called", __FUNCTION__); 409 } 410 411 void 412 softdep_revert_mkdir(dp, ip) 413 struct inode *dp; 414 struct inode *ip; 415 { 416 417 panic("%s called", __FUNCTION__); 418 } 419 420 void 421 softdep_setup_dotdot_link(dp, ip) 422 struct inode *dp; 423 struct inode *ip; 424 { 425 426 panic("%s called", __FUNCTION__); 427 } 428 429 int 430 softdep_prealloc(vp, waitok) 431 struct vnode *vp; 432 int waitok; 433 { 434 435 panic("%s called", __FUNCTION__); 436 437 return (0); 438 } 439 440 int 441 softdep_journal_lookup(mp, vpp) 442 struct mount *mp; 443 struct vnode **vpp; 444 { 445 446 return (ENOENT); 447 } 448 449 void 450 softdep_change_linkcnt(ip) 451 struct inode *ip; 452 { 453 454 panic("softdep_change_linkcnt called"); 455 } 456 457 void 458 softdep_load_inodeblock(ip) 459 struct inode *ip; 460 { 461 462 panic("softdep_load_inodeblock called"); 463 } 464 465 void 466 softdep_update_inodeblock(ip, bp, waitfor) 467 struct inode *ip; 468 struct buf *bp; 469 int waitfor; 470 { 471 472 panic("softdep_update_inodeblock called"); 473 } 474 475 int 476 softdep_fsync(vp) 477 struct vnode *vp; /* the "in_core" copy of the inode */ 478 { 479 480 return (0); 481 } 482 483 void 484 softdep_fsync_mountdev(vp) 485 struct vnode *vp; 486 { 487 488 return; 489 } 490 491 int 492 softdep_flushworklist(oldmnt, countp, td) 493 struct mount *oldmnt; 494 int *countp; 495 struct thread *td; 496 { 497 498 *countp = 0; 499 return (0); 500 } 501 502 int 503 softdep_sync_metadata(struct vnode *vp) 504 { 505 506 return (0); 507 } 508 509 int 510 softdep_sync_buf(struct vnode *vp, struct buf *bp, int waitfor) 511 { 512 513 return (0); 514 } 515 516 int 517 softdep_slowdown(vp) 518 struct vnode *vp; 519 { 520 521 panic("softdep_slowdown called"); 522 } 523 524 void 525 softdep_releasefile(ip) 526 struct inode *ip; /* inode with the zero effective link count */ 527 { 528 529 panic("softdep_releasefile called"); 530 } 531 532 int 533 softdep_request_cleanup(fs, vp, cred, resource) 534 struct fs *fs; 535 struct vnode *vp; 536 struct ucred *cred; 537 int resource; 538 { 539 540 return (0); 541 } 542 543 int 544 softdep_check_suspend(struct mount *mp, 545 struct vnode *devvp, 546 int softdep_deps, 547 int softdep_accdeps, 548 int secondary_writes, 549 int secondary_accwrites) 550 { 551 struct bufobj *bo; 552 int error; 553 554 (void) softdep_deps, 555 (void) softdep_accdeps; 556 557 bo = &devvp->v_bufobj; 558 ASSERT_BO_WLOCKED(bo); 559 560 MNT_ILOCK(mp); 561 while (mp->mnt_secondary_writes != 0) { 562 BO_UNLOCK(bo); 563 msleep(&mp->mnt_secondary_writes, MNT_MTX(mp), 564 (PUSER - 1) | PDROP, "secwr", 0); 565 BO_LOCK(bo); 566 MNT_ILOCK(mp); 567 } 568 569 /* 570 * Reasons for needing more work before suspend: 571 * - Dirty buffers on devvp. 572 * - Secondary writes occurred after start of vnode sync loop 573 */ 574 error = 0; 575 if (bo->bo_numoutput > 0 || 576 bo->bo_dirty.bv_cnt > 0 || 577 secondary_writes != 0 || 578 mp->mnt_secondary_writes != 0 || 579 secondary_accwrites != mp->mnt_secondary_accwrites) 580 error = EAGAIN; 581 BO_UNLOCK(bo); 582 return (error); 583 } 584 585 void 586 softdep_get_depcounts(struct mount *mp, 587 int *softdepactivep, 588 int *softdepactiveaccp) 589 { 590 (void) mp; 591 *softdepactivep = 0; 592 *softdepactiveaccp = 0; 593 } 594 595 void 596 softdep_buf_append(bp, wkhd) 597 struct buf *bp; 598 struct workhead *wkhd; 599 { 600 601 panic("softdep_buf_appendwork called"); 602 } 603 604 void 605 softdep_inode_append(ip, cred, wkhd) 606 struct inode *ip; 607 struct ucred *cred; 608 struct workhead *wkhd; 609 { 610 611 panic("softdep_inode_appendwork called"); 612 } 613 614 void 615 softdep_freework(wkhd) 616 struct workhead *wkhd; 617 { 618 619 panic("softdep_freework called"); 620 } 621 622 #else 623 624 FEATURE(softupdates, "FFS soft-updates support"); 625 626 /* 627 * These definitions need to be adapted to the system to which 628 * this file is being ported. 629 */ 630 631 #define M_SOFTDEP_FLAGS (M_WAITOK) 632 633 #define D_PAGEDEP 0 634 #define D_INODEDEP 1 635 #define D_BMSAFEMAP 2 636 #define D_NEWBLK 3 637 #define D_ALLOCDIRECT 4 638 #define D_INDIRDEP 5 639 #define D_ALLOCINDIR 6 640 #define D_FREEFRAG 7 641 #define D_FREEBLKS 8 642 #define D_FREEFILE 9 643 #define D_DIRADD 10 644 #define D_MKDIR 11 645 #define D_DIRREM 12 646 #define D_NEWDIRBLK 13 647 #define D_FREEWORK 14 648 #define D_FREEDEP 15 649 #define D_JADDREF 16 650 #define D_JREMREF 17 651 #define D_JMVREF 18 652 #define D_JNEWBLK 19 653 #define D_JFREEBLK 20 654 #define D_JFREEFRAG 21 655 #define D_JSEG 22 656 #define D_JSEGDEP 23 657 #define D_SBDEP 24 658 #define D_JTRUNC 25 659 #define D_JFSYNC 26 660 #define D_SENTINEL 27 661 #define D_LAST D_SENTINEL 662 663 unsigned long dep_current[D_LAST + 1]; 664 unsigned long dep_highuse[D_LAST + 1]; 665 unsigned long dep_total[D_LAST + 1]; 666 unsigned long dep_write[D_LAST + 1]; 667 668 static SYSCTL_NODE(_debug, OID_AUTO, softdep, CTLFLAG_RW, 0, 669 "soft updates stats"); 670 static SYSCTL_NODE(_debug_softdep, OID_AUTO, total, CTLFLAG_RW, 0, 671 "total dependencies allocated"); 672 static SYSCTL_NODE(_debug_softdep, OID_AUTO, highuse, CTLFLAG_RW, 0, 673 "high use dependencies allocated"); 674 static SYSCTL_NODE(_debug_softdep, OID_AUTO, current, CTLFLAG_RW, 0, 675 "current dependencies allocated"); 676 static SYSCTL_NODE(_debug_softdep, OID_AUTO, write, CTLFLAG_RW, 0, 677 "current dependencies written"); 678 679 #define SOFTDEP_TYPE(type, str, long) \ 680 static MALLOC_DEFINE(M_ ## type, #str, long); \ 681 SYSCTL_ULONG(_debug_softdep_total, OID_AUTO, str, CTLFLAG_RD, \ 682 &dep_total[D_ ## type], 0, ""); \ 683 SYSCTL_ULONG(_debug_softdep_current, OID_AUTO, str, CTLFLAG_RD, \ 684 &dep_current[D_ ## type], 0, ""); \ 685 SYSCTL_ULONG(_debug_softdep_highuse, OID_AUTO, str, CTLFLAG_RD, \ 686 &dep_highuse[D_ ## type], 0, ""); \ 687 SYSCTL_ULONG(_debug_softdep_write, OID_AUTO, str, CTLFLAG_RD, \ 688 &dep_write[D_ ## type], 0, ""); 689 690 SOFTDEP_TYPE(PAGEDEP, pagedep, "File page dependencies"); 691 SOFTDEP_TYPE(INODEDEP, inodedep, "Inode dependencies"); 692 SOFTDEP_TYPE(BMSAFEMAP, bmsafemap, 693 "Block or frag allocated from cyl group map"); 694 SOFTDEP_TYPE(NEWBLK, newblk, "New block or frag allocation dependency"); 695 SOFTDEP_TYPE(ALLOCDIRECT, allocdirect, "Block or frag dependency for an inode"); 696 SOFTDEP_TYPE(INDIRDEP, indirdep, "Indirect block dependencies"); 697 SOFTDEP_TYPE(ALLOCINDIR, allocindir, "Block dependency for an indirect block"); 698 SOFTDEP_TYPE(FREEFRAG, freefrag, "Previously used frag for an inode"); 699 SOFTDEP_TYPE(FREEBLKS, freeblks, "Blocks freed from an inode"); 700 SOFTDEP_TYPE(FREEFILE, freefile, "Inode deallocated"); 701 SOFTDEP_TYPE(DIRADD, diradd, "New directory entry"); 702 SOFTDEP_TYPE(MKDIR, mkdir, "New directory"); 703 SOFTDEP_TYPE(DIRREM, dirrem, "Directory entry deleted"); 704 SOFTDEP_TYPE(NEWDIRBLK, newdirblk, "Unclaimed new directory block"); 705 SOFTDEP_TYPE(FREEWORK, freework, "free an inode block"); 706 SOFTDEP_TYPE(FREEDEP, freedep, "track a block free"); 707 SOFTDEP_TYPE(JADDREF, jaddref, "Journal inode ref add"); 708 SOFTDEP_TYPE(JREMREF, jremref, "Journal inode ref remove"); 709 SOFTDEP_TYPE(JMVREF, jmvref, "Journal inode ref move"); 710 SOFTDEP_TYPE(JNEWBLK, jnewblk, "Journal new block"); 711 SOFTDEP_TYPE(JFREEBLK, jfreeblk, "Journal free block"); 712 SOFTDEP_TYPE(JFREEFRAG, jfreefrag, "Journal free frag"); 713 SOFTDEP_TYPE(JSEG, jseg, "Journal segment"); 714 SOFTDEP_TYPE(JSEGDEP, jsegdep, "Journal segment complete"); 715 SOFTDEP_TYPE(SBDEP, sbdep, "Superblock write dependency"); 716 SOFTDEP_TYPE(JTRUNC, jtrunc, "Journal inode truncation"); 717 SOFTDEP_TYPE(JFSYNC, jfsync, "Journal fsync complete"); 718 719 static MALLOC_DEFINE(M_SENTINEL, "sentinel", "Worklist sentinel"); 720 721 static MALLOC_DEFINE(M_SAVEDINO, "savedino", "Saved inodes"); 722 static MALLOC_DEFINE(M_JBLOCKS, "jblocks", "Journal block locations"); 723 724 /* 725 * translate from workitem type to memory type 726 * MUST match the defines above, such that memtype[D_XXX] == M_XXX 727 */ 728 static struct malloc_type *memtype[] = { 729 M_PAGEDEP, 730 M_INODEDEP, 731 M_BMSAFEMAP, 732 M_NEWBLK, 733 M_ALLOCDIRECT, 734 M_INDIRDEP, 735 M_ALLOCINDIR, 736 M_FREEFRAG, 737 M_FREEBLKS, 738 M_FREEFILE, 739 M_DIRADD, 740 M_MKDIR, 741 M_DIRREM, 742 M_NEWDIRBLK, 743 M_FREEWORK, 744 M_FREEDEP, 745 M_JADDREF, 746 M_JREMREF, 747 M_JMVREF, 748 M_JNEWBLK, 749 M_JFREEBLK, 750 M_JFREEFRAG, 751 M_JSEG, 752 M_JSEGDEP, 753 M_SBDEP, 754 M_JTRUNC, 755 M_JFSYNC, 756 M_SENTINEL 757 }; 758 759 static LIST_HEAD(mkdirlist, mkdir) mkdirlisthd; 760 761 #define DtoM(type) (memtype[type]) 762 763 /* 764 * Names of malloc types. 765 */ 766 #define TYPENAME(type) \ 767 ((unsigned)(type) <= D_LAST ? memtype[type]->ks_shortdesc : "???") 768 /* 769 * End system adaptation definitions. 770 */ 771 772 #define DOTDOT_OFFSET offsetof(struct dirtemplate, dotdot_ino) 773 #define DOT_OFFSET offsetof(struct dirtemplate, dot_ino) 774 775 /* 776 * Forward declarations. 777 */ 778 struct inodedep_hashhead; 779 struct newblk_hashhead; 780 struct pagedep_hashhead; 781 struct bmsafemap_hashhead; 782 783 /* 784 * Private journaling structures. 785 */ 786 struct jblocks { 787 struct jseglst jb_segs; /* TAILQ of current segments. */ 788 struct jseg *jb_writeseg; /* Next write to complete. */ 789 struct jseg *jb_oldestseg; /* Oldest segment with valid entries. */ 790 struct jextent *jb_extent; /* Extent array. */ 791 uint64_t jb_nextseq; /* Next sequence number. */ 792 uint64_t jb_oldestwrseq; /* Oldest written sequence number. */ 793 uint8_t jb_needseg; /* Need a forced segment. */ 794 uint8_t jb_suspended; /* Did journal suspend writes? */ 795 int jb_avail; /* Available extents. */ 796 int jb_used; /* Last used extent. */ 797 int jb_head; /* Allocator head. */ 798 int jb_off; /* Allocator extent offset. */ 799 int jb_blocks; /* Total disk blocks covered. */ 800 int jb_free; /* Total disk blocks free. */ 801 int jb_min; /* Minimum free space. */ 802 int jb_low; /* Low on space. */ 803 int jb_age; /* Insertion time of oldest rec. */ 804 }; 805 806 struct jextent { 807 ufs2_daddr_t je_daddr; /* Disk block address. */ 808 int je_blocks; /* Disk block count. */ 809 }; 810 811 /* 812 * Internal function prototypes. 813 */ 814 static void softdep_error(char *, int); 815 static void drain_output(struct vnode *); 816 static struct buf *getdirtybuf(struct buf *, struct rwlock *, int); 817 static void clear_remove(void); 818 static void clear_inodedeps(void); 819 static void unlinked_inodedep(struct mount *, struct inodedep *); 820 static void clear_unlinked_inodedep(struct inodedep *); 821 static struct inodedep *first_unlinked_inodedep(struct ufsmount *); 822 static int flush_pagedep_deps(struct vnode *, struct mount *, 823 struct diraddhd *); 824 static int free_pagedep(struct pagedep *); 825 static int flush_newblk_dep(struct vnode *, struct mount *, ufs_lbn_t); 826 static int flush_inodedep_deps(struct vnode *, struct mount *, ino_t); 827 static int flush_deplist(struct allocdirectlst *, int, int *); 828 static int sync_cgs(struct mount *, int); 829 static int handle_written_filepage(struct pagedep *, struct buf *); 830 static int handle_written_sbdep(struct sbdep *, struct buf *); 831 static void initiate_write_sbdep(struct sbdep *); 832 static void diradd_inode_written(struct diradd *, struct inodedep *); 833 static int handle_written_indirdep(struct indirdep *, struct buf *, 834 struct buf**); 835 static int handle_written_inodeblock(struct inodedep *, struct buf *); 836 static int jnewblk_rollforward(struct jnewblk *, struct fs *, struct cg *, 837 uint8_t *); 838 static int handle_written_bmsafemap(struct bmsafemap *, struct buf *); 839 static void handle_written_jaddref(struct jaddref *); 840 static void handle_written_jremref(struct jremref *); 841 static void handle_written_jseg(struct jseg *, struct buf *); 842 static void handle_written_jnewblk(struct jnewblk *); 843 static void handle_written_jblkdep(struct jblkdep *); 844 static void handle_written_jfreefrag(struct jfreefrag *); 845 static void complete_jseg(struct jseg *); 846 static void complete_jsegs(struct jseg *); 847 static void jseg_write(struct ufsmount *ump, struct jseg *, uint8_t *); 848 static void jaddref_write(struct jaddref *, struct jseg *, uint8_t *); 849 static void jremref_write(struct jremref *, struct jseg *, uint8_t *); 850 static void jmvref_write(struct jmvref *, struct jseg *, uint8_t *); 851 static void jtrunc_write(struct jtrunc *, struct jseg *, uint8_t *); 852 static void jfsync_write(struct jfsync *, struct jseg *, uint8_t *data); 853 static void jnewblk_write(struct jnewblk *, struct jseg *, uint8_t *); 854 static void jfreeblk_write(struct jfreeblk *, struct jseg *, uint8_t *); 855 static void jfreefrag_write(struct jfreefrag *, struct jseg *, uint8_t *); 856 static inline void inoref_write(struct inoref *, struct jseg *, 857 struct jrefrec *); 858 static void handle_allocdirect_partdone(struct allocdirect *, 859 struct workhead *); 860 static struct jnewblk *cancel_newblk(struct newblk *, struct worklist *, 861 struct workhead *); 862 static void indirdep_complete(struct indirdep *); 863 static int indirblk_lookup(struct mount *, ufs2_daddr_t); 864 static void indirblk_insert(struct freework *); 865 static void indirblk_remove(struct freework *); 866 static void handle_allocindir_partdone(struct allocindir *); 867 static void initiate_write_filepage(struct pagedep *, struct buf *); 868 static void initiate_write_indirdep(struct indirdep*, struct buf *); 869 static void handle_written_mkdir(struct mkdir *, int); 870 static int jnewblk_rollback(struct jnewblk *, struct fs *, struct cg *, 871 uint8_t *); 872 static void initiate_write_bmsafemap(struct bmsafemap *, struct buf *); 873 static void initiate_write_inodeblock_ufs1(struct inodedep *, struct buf *); 874 static void initiate_write_inodeblock_ufs2(struct inodedep *, struct buf *); 875 static void handle_workitem_freefile(struct freefile *); 876 static int handle_workitem_remove(struct dirrem *, int); 877 static struct dirrem *newdirrem(struct buf *, struct inode *, 878 struct inode *, int, struct dirrem **); 879 static struct indirdep *indirdep_lookup(struct mount *, struct inode *, 880 struct buf *); 881 static void cancel_indirdep(struct indirdep *, struct buf *, 882 struct freeblks *); 883 static void free_indirdep(struct indirdep *); 884 static void free_diradd(struct diradd *, struct workhead *); 885 static void merge_diradd(struct inodedep *, struct diradd *); 886 static void complete_diradd(struct diradd *); 887 static struct diradd *diradd_lookup(struct pagedep *, int); 888 static struct jremref *cancel_diradd_dotdot(struct inode *, struct dirrem *, 889 struct jremref *); 890 static struct jremref *cancel_mkdir_dotdot(struct inode *, struct dirrem *, 891 struct jremref *); 892 static void cancel_diradd(struct diradd *, struct dirrem *, struct jremref *, 893 struct jremref *, struct jremref *); 894 static void dirrem_journal(struct dirrem *, struct jremref *, struct jremref *, 895 struct jremref *); 896 static void cancel_allocindir(struct allocindir *, struct buf *bp, 897 struct freeblks *, int); 898 static int setup_trunc_indir(struct freeblks *, struct inode *, 899 ufs_lbn_t, ufs_lbn_t, ufs2_daddr_t); 900 static void complete_trunc_indir(struct freework *); 901 static void trunc_indirdep(struct indirdep *, struct freeblks *, struct buf *, 902 int); 903 static void complete_mkdir(struct mkdir *); 904 static void free_newdirblk(struct newdirblk *); 905 static void free_jremref(struct jremref *); 906 static void free_jaddref(struct jaddref *); 907 static void free_jsegdep(struct jsegdep *); 908 static void free_jsegs(struct jblocks *); 909 static void rele_jseg(struct jseg *); 910 static void free_jseg(struct jseg *, struct jblocks *); 911 static void free_jnewblk(struct jnewblk *); 912 static void free_jblkdep(struct jblkdep *); 913 static void free_jfreefrag(struct jfreefrag *); 914 static void free_freedep(struct freedep *); 915 static void journal_jremref(struct dirrem *, struct jremref *, 916 struct inodedep *); 917 static void cancel_jnewblk(struct jnewblk *, struct workhead *); 918 static int cancel_jaddref(struct jaddref *, struct inodedep *, 919 struct workhead *); 920 static void cancel_jfreefrag(struct jfreefrag *); 921 static inline void setup_freedirect(struct freeblks *, struct inode *, 922 int, int); 923 static inline void setup_freeext(struct freeblks *, struct inode *, int, int); 924 static inline void setup_freeindir(struct freeblks *, struct inode *, int, 925 ufs_lbn_t, int); 926 static inline struct freeblks *newfreeblks(struct mount *, struct inode *); 927 static void freeblks_free(struct ufsmount *, struct freeblks *, int); 928 static void indir_trunc(struct freework *, ufs2_daddr_t, ufs_lbn_t); 929 ufs2_daddr_t blkcount(struct fs *, ufs2_daddr_t, off_t); 930 static int trunc_check_buf(struct buf *, int *, ufs_lbn_t, int, int); 931 static void trunc_dependencies(struct inode *, struct freeblks *, ufs_lbn_t, 932 int, int); 933 static void trunc_pages(struct inode *, off_t, ufs2_daddr_t, int); 934 static int cancel_pagedep(struct pagedep *, struct freeblks *, int); 935 static int deallocate_dependencies(struct buf *, struct freeblks *, int); 936 static void newblk_freefrag(struct newblk*); 937 static void free_newblk(struct newblk *); 938 static void cancel_allocdirect(struct allocdirectlst *, 939 struct allocdirect *, struct freeblks *); 940 static int check_inode_unwritten(struct inodedep *); 941 static int free_inodedep(struct inodedep *); 942 static void freework_freeblock(struct freework *); 943 static void freework_enqueue(struct freework *); 944 static int handle_workitem_freeblocks(struct freeblks *, int); 945 static int handle_complete_freeblocks(struct freeblks *, int); 946 static void handle_workitem_indirblk(struct freework *); 947 static void handle_written_freework(struct freework *); 948 static void merge_inode_lists(struct allocdirectlst *,struct allocdirectlst *); 949 static struct worklist *jnewblk_merge(struct worklist *, struct worklist *, 950 struct workhead *); 951 static struct freefrag *setup_allocindir_phase2(struct buf *, struct inode *, 952 struct inodedep *, struct allocindir *, ufs_lbn_t); 953 static struct allocindir *newallocindir(struct inode *, int, ufs2_daddr_t, 954 ufs2_daddr_t, ufs_lbn_t); 955 static void handle_workitem_freefrag(struct freefrag *); 956 static struct freefrag *newfreefrag(struct inode *, ufs2_daddr_t, long, 957 ufs_lbn_t); 958 static void allocdirect_merge(struct allocdirectlst *, 959 struct allocdirect *, struct allocdirect *); 960 static struct freefrag *allocindir_merge(struct allocindir *, 961 struct allocindir *); 962 static int bmsafemap_find(struct bmsafemap_hashhead *, struct mount *, int, 963 struct bmsafemap **); 964 static struct bmsafemap *bmsafemap_lookup(struct mount *, struct buf *, 965 int cg, struct bmsafemap *); 966 static int newblk_find(struct newblk_hashhead *, struct mount *, ufs2_daddr_t, 967 int, struct newblk **); 968 static int newblk_lookup(struct mount *, ufs2_daddr_t, int, struct newblk **); 969 static int inodedep_find(struct inodedep_hashhead *, struct fs *, ino_t, 970 struct inodedep **); 971 static int inodedep_lookup(struct mount *, ino_t, int, struct inodedep **); 972 static int pagedep_lookup(struct mount *, struct buf *bp, ino_t, ufs_lbn_t, 973 int, struct pagedep **); 974 static int pagedep_find(struct pagedep_hashhead *, ino_t, ufs_lbn_t, 975 struct mount *mp, int, struct pagedep **); 976 static void pause_timer(void *); 977 static int request_cleanup(struct mount *, int); 978 static int process_worklist_item(struct mount *, int, int); 979 static void process_removes(struct vnode *); 980 static void process_truncates(struct vnode *); 981 static void jwork_move(struct workhead *, struct workhead *); 982 static void jwork_insert(struct workhead *, struct jsegdep *); 983 static void add_to_worklist(struct worklist *, int); 984 static void wake_worklist(struct worklist *); 985 static void wait_worklist(struct worklist *, char *); 986 static void remove_from_worklist(struct worklist *); 987 static void softdep_flush(void); 988 static void softdep_flushjournal(struct mount *); 989 static int softdep_speedup(void); 990 static void worklist_speedup(void); 991 static int journal_mount(struct mount *, struct fs *, struct ucred *); 992 static void journal_unmount(struct mount *); 993 static int journal_space(struct ufsmount *, int); 994 static void journal_suspend(struct ufsmount *); 995 static int journal_unsuspend(struct ufsmount *ump); 996 static void softdep_prelink(struct vnode *, struct vnode *); 997 static void add_to_journal(struct worklist *); 998 static void remove_from_journal(struct worklist *); 999 static void softdep_process_journal(struct mount *, struct worklist *, int); 1000 static struct jremref *newjremref(struct dirrem *, struct inode *, 1001 struct inode *ip, off_t, nlink_t); 1002 static struct jaddref *newjaddref(struct inode *, ino_t, off_t, int16_t, 1003 uint16_t); 1004 static inline void newinoref(struct inoref *, ino_t, ino_t, off_t, nlink_t, 1005 uint16_t); 1006 static inline struct jsegdep *inoref_jseg(struct inoref *); 1007 static struct jmvref *newjmvref(struct inode *, ino_t, off_t, off_t); 1008 static struct jfreeblk *newjfreeblk(struct freeblks *, ufs_lbn_t, 1009 ufs2_daddr_t, int); 1010 static struct jtrunc *newjtrunc(struct freeblks *, off_t, int); 1011 static void move_newblock_dep(struct jaddref *, struct inodedep *); 1012 static void cancel_jfreeblk(struct freeblks *, ufs2_daddr_t); 1013 static struct jfreefrag *newjfreefrag(struct freefrag *, struct inode *, 1014 ufs2_daddr_t, long, ufs_lbn_t); 1015 static struct freework *newfreework(struct ufsmount *, struct freeblks *, 1016 struct freework *, ufs_lbn_t, ufs2_daddr_t, int, int, int); 1017 static int jwait(struct worklist *, int); 1018 static struct inodedep *inodedep_lookup_ip(struct inode *); 1019 static int bmsafemap_backgroundwrite(struct bmsafemap *, struct buf *); 1020 static struct freefile *handle_bufwait(struct inodedep *, struct workhead *); 1021 static void handle_jwork(struct workhead *); 1022 static struct mkdir *setup_newdir(struct diradd *, ino_t, ino_t, struct buf *, 1023 struct mkdir **); 1024 static struct jblocks *jblocks_create(void); 1025 static ufs2_daddr_t jblocks_alloc(struct jblocks *, int, int *); 1026 static void jblocks_free(struct jblocks *, struct mount *, int); 1027 static void jblocks_destroy(struct jblocks *); 1028 static void jblocks_add(struct jblocks *, ufs2_daddr_t, int); 1029 1030 /* 1031 * Exported softdep operations. 1032 */ 1033 static void softdep_disk_io_initiation(struct buf *); 1034 static void softdep_disk_write_complete(struct buf *); 1035 static void softdep_deallocate_dependencies(struct buf *); 1036 static int softdep_count_dependencies(struct buf *bp, int); 1037 1038 static struct rwlock lk; 1039 RW_SYSINIT(softdep_lock, &lk, "Softdep Lock"); 1040 1041 #define TRY_ACQUIRE_LOCK(lk) rw_try_wlock(lk) 1042 #define ACQUIRE_LOCK(lk) rw_wlock(lk) 1043 #define FREE_LOCK(lk) rw_wunlock(lk) 1044 1045 #define BUF_AREC(bp) lockallowrecurse(&(bp)->b_lock) 1046 #define BUF_NOREC(bp) lockdisablerecurse(&(bp)->b_lock) 1047 1048 /* 1049 * Worklist queue management. 1050 * These routines require that the lock be held. 1051 */ 1052 #ifndef /* NOT */ DEBUG 1053 #define WORKLIST_INSERT(head, item) do { \ 1054 (item)->wk_state |= ONWORKLIST; \ 1055 LIST_INSERT_HEAD(head, item, wk_list); \ 1056 } while (0) 1057 #define WORKLIST_REMOVE(item) do { \ 1058 (item)->wk_state &= ~ONWORKLIST; \ 1059 LIST_REMOVE(item, wk_list); \ 1060 } while (0) 1061 #define WORKLIST_INSERT_UNLOCKED WORKLIST_INSERT 1062 #define WORKLIST_REMOVE_UNLOCKED WORKLIST_REMOVE 1063 1064 #else /* DEBUG */ 1065 static void worklist_insert(struct workhead *, struct worklist *, int); 1066 static void worklist_remove(struct worklist *, int); 1067 1068 #define WORKLIST_INSERT(head, item) worklist_insert(head, item, 1) 1069 #define WORKLIST_INSERT_UNLOCKED(head, item) worklist_insert(head, item, 0) 1070 #define WORKLIST_REMOVE(item) worklist_remove(item, 1) 1071 #define WORKLIST_REMOVE_UNLOCKED(item) worklist_remove(item, 0) 1072 1073 static void 1074 worklist_insert(head, item, locked) 1075 struct workhead *head; 1076 struct worklist *item; 1077 int locked; 1078 { 1079 1080 if (locked) 1081 rw_assert(&lk, RA_WLOCKED); 1082 if (item->wk_state & ONWORKLIST) 1083 panic("worklist_insert: %p %s(0x%X) already on list", 1084 item, TYPENAME(item->wk_type), item->wk_state); 1085 item->wk_state |= ONWORKLIST; 1086 LIST_INSERT_HEAD(head, item, wk_list); 1087 } 1088 1089 static void 1090 worklist_remove(item, locked) 1091 struct worklist *item; 1092 int locked; 1093 { 1094 1095 if (locked) 1096 rw_assert(&lk, RA_WLOCKED); 1097 if ((item->wk_state & ONWORKLIST) == 0) 1098 panic("worklist_remove: %p %s(0x%X) not on list", 1099 item, TYPENAME(item->wk_type), item->wk_state); 1100 item->wk_state &= ~ONWORKLIST; 1101 LIST_REMOVE(item, wk_list); 1102 } 1103 #endif /* DEBUG */ 1104 1105 /* 1106 * Merge two jsegdeps keeping only the oldest one as newer references 1107 * can't be discarded until after older references. 1108 */ 1109 static inline struct jsegdep * 1110 jsegdep_merge(struct jsegdep *one, struct jsegdep *two) 1111 { 1112 struct jsegdep *swp; 1113 1114 if (two == NULL) 1115 return (one); 1116 1117 if (one->jd_seg->js_seq > two->jd_seg->js_seq) { 1118 swp = one; 1119 one = two; 1120 two = swp; 1121 } 1122 WORKLIST_REMOVE(&two->jd_list); 1123 free_jsegdep(two); 1124 1125 return (one); 1126 } 1127 1128 /* 1129 * If two freedeps are compatible free one to reduce list size. 1130 */ 1131 static inline struct freedep * 1132 freedep_merge(struct freedep *one, struct freedep *two) 1133 { 1134 if (two == NULL) 1135 return (one); 1136 1137 if (one->fd_freework == two->fd_freework) { 1138 WORKLIST_REMOVE(&two->fd_list); 1139 free_freedep(two); 1140 } 1141 return (one); 1142 } 1143 1144 /* 1145 * Move journal work from one list to another. Duplicate freedeps and 1146 * jsegdeps are coalesced to keep the lists as small as possible. 1147 */ 1148 static void 1149 jwork_move(dst, src) 1150 struct workhead *dst; 1151 struct workhead *src; 1152 { 1153 struct freedep *freedep; 1154 struct jsegdep *jsegdep; 1155 struct worklist *wkn; 1156 struct worklist *wk; 1157 1158 KASSERT(dst != src, 1159 ("jwork_move: dst == src")); 1160 freedep = NULL; 1161 jsegdep = NULL; 1162 LIST_FOREACH_SAFE(wk, dst, wk_list, wkn) { 1163 if (wk->wk_type == D_JSEGDEP) 1164 jsegdep = jsegdep_merge(WK_JSEGDEP(wk), jsegdep); 1165 if (wk->wk_type == D_FREEDEP) 1166 freedep = freedep_merge(WK_FREEDEP(wk), freedep); 1167 } 1168 1169 rw_assert(&lk, RA_WLOCKED); 1170 while ((wk = LIST_FIRST(src)) != NULL) { 1171 WORKLIST_REMOVE(wk); 1172 WORKLIST_INSERT(dst, wk); 1173 if (wk->wk_type == D_JSEGDEP) { 1174 jsegdep = jsegdep_merge(WK_JSEGDEP(wk), jsegdep); 1175 continue; 1176 } 1177 if (wk->wk_type == D_FREEDEP) 1178 freedep = freedep_merge(WK_FREEDEP(wk), freedep); 1179 } 1180 } 1181 1182 static void 1183 jwork_insert(dst, jsegdep) 1184 struct workhead *dst; 1185 struct jsegdep *jsegdep; 1186 { 1187 struct jsegdep *jsegdepn; 1188 struct worklist *wk; 1189 1190 LIST_FOREACH(wk, dst, wk_list) 1191 if (wk->wk_type == D_JSEGDEP) 1192 break; 1193 if (wk == NULL) { 1194 WORKLIST_INSERT(dst, &jsegdep->jd_list); 1195 return; 1196 } 1197 jsegdepn = WK_JSEGDEP(wk); 1198 if (jsegdep->jd_seg->js_seq < jsegdepn->jd_seg->js_seq) { 1199 WORKLIST_REMOVE(wk); 1200 free_jsegdep(jsegdepn); 1201 WORKLIST_INSERT(dst, &jsegdep->jd_list); 1202 } else 1203 free_jsegdep(jsegdep); 1204 } 1205 1206 /* 1207 * Routines for tracking and managing workitems. 1208 */ 1209 static void workitem_free(struct worklist *, int); 1210 static void workitem_alloc(struct worklist *, int, struct mount *); 1211 static void workitem_reassign(struct worklist *, int); 1212 1213 #define WORKITEM_FREE(item, type) \ 1214 workitem_free((struct worklist *)(item), (type)) 1215 #define WORKITEM_REASSIGN(item, type) \ 1216 workitem_reassign((struct worklist *)(item), (type)) 1217 1218 static void 1219 workitem_free(item, type) 1220 struct worklist *item; 1221 int type; 1222 { 1223 struct ufsmount *ump; 1224 rw_assert(&lk, RA_WLOCKED); 1225 1226 #ifdef DEBUG 1227 if (item->wk_state & ONWORKLIST) 1228 panic("workitem_free: %s(0x%X) still on list", 1229 TYPENAME(item->wk_type), item->wk_state); 1230 if (item->wk_type != type && type != D_NEWBLK) 1231 panic("workitem_free: type mismatch %s != %s", 1232 TYPENAME(item->wk_type), TYPENAME(type)); 1233 #endif 1234 if (item->wk_state & IOWAITING) 1235 wakeup(item); 1236 ump = VFSTOUFS(item->wk_mp); 1237 KASSERT(ump->softdep_deps > 0, 1238 ("workitem_free: %s: softdep_deps going negative", 1239 ump->um_fs->fs_fsmnt)); 1240 if (--ump->softdep_deps == 0 && ump->softdep_req) 1241 wakeup(&ump->softdep_deps); 1242 KASSERT(dep_current[item->wk_type] > 0, 1243 ("workitem_free: %s: dep_current[%s] going negative", 1244 ump->um_fs->fs_fsmnt, TYPENAME(item->wk_type))); 1245 dep_current[item->wk_type]--; 1246 free(item, DtoM(type)); 1247 } 1248 1249 static void 1250 workitem_alloc(item, type, mp) 1251 struct worklist *item; 1252 int type; 1253 struct mount *mp; 1254 { 1255 struct ufsmount *ump; 1256 1257 item->wk_type = type; 1258 item->wk_mp = mp; 1259 item->wk_state = 0; 1260 1261 ump = VFSTOUFS(mp); 1262 ACQUIRE_LOCK(&lk); 1263 dep_current[type]++; 1264 if (dep_current[type] > dep_highuse[type]) 1265 dep_highuse[type] = dep_current[type]; 1266 dep_total[type]++; 1267 ump->softdep_deps++; 1268 ump->softdep_accdeps++; 1269 FREE_LOCK(&lk); 1270 } 1271 1272 static void 1273 workitem_reassign(item, newtype) 1274 struct worklist *item; 1275 int newtype; 1276 { 1277 1278 KASSERT(dep_current[item->wk_type] > 0, 1279 ("workitem_reassign: %s: dep_current[%s] going negative", 1280 VFSTOUFS(item->wk_mp)->um_fs->fs_fsmnt, TYPENAME(item->wk_type))); 1281 dep_current[item->wk_type]--; 1282 dep_current[newtype]++; 1283 if (dep_current[newtype] > dep_highuse[newtype]) 1284 dep_highuse[newtype] = dep_current[newtype]; 1285 dep_total[newtype]++; 1286 item->wk_type = newtype; 1287 } 1288 1289 /* 1290 * Workitem queue management 1291 */ 1292 static int max_softdeps; /* maximum number of structs before slowdown */ 1293 static int maxindirdeps = 50; /* max number of indirdeps before slowdown */ 1294 static int tickdelay = 2; /* number of ticks to pause during slowdown */ 1295 static int proc_waiting; /* tracks whether we have a timeout posted */ 1296 static int *stat_countp; /* statistic to count in proc_waiting timeout */ 1297 static struct callout softdep_callout; 1298 static int req_pending; 1299 static int req_clear_inodedeps; /* syncer process flush some inodedeps */ 1300 static int req_clear_remove; /* syncer process flush some freeblks */ 1301 static int softdep_flushcache = 0; /* Should we do BIO_FLUSH? */ 1302 1303 /* 1304 * runtime statistics 1305 */ 1306 static int stat_worklist_push; /* number of worklist cleanups */ 1307 static int stat_blk_limit_push; /* number of times block limit neared */ 1308 static int stat_ino_limit_push; /* number of times inode limit neared */ 1309 static int stat_blk_limit_hit; /* number of times block slowdown imposed */ 1310 static int stat_ino_limit_hit; /* number of times inode slowdown imposed */ 1311 static int stat_sync_limit_hit; /* number of synchronous slowdowns imposed */ 1312 static int stat_indir_blk_ptrs; /* bufs redirtied as indir ptrs not written */ 1313 static int stat_inode_bitmap; /* bufs redirtied as inode bitmap not written */ 1314 static int stat_direct_blk_ptrs;/* bufs redirtied as direct ptrs not written */ 1315 static int stat_dir_entry; /* bufs redirtied as dir entry cannot write */ 1316 static int stat_jaddref; /* bufs redirtied as ino bitmap can not write */ 1317 static int stat_jnewblk; /* bufs redirtied as blk bitmap can not write */ 1318 static int stat_journal_min; /* Times hit journal min threshold */ 1319 static int stat_journal_low; /* Times hit journal low threshold */ 1320 static int stat_journal_wait; /* Times blocked in jwait(). */ 1321 static int stat_jwait_filepage; /* Times blocked in jwait() for filepage. */ 1322 static int stat_jwait_freeblks; /* Times blocked in jwait() for freeblks. */ 1323 static int stat_jwait_inode; /* Times blocked in jwait() for inodes. */ 1324 static int stat_jwait_newblk; /* Times blocked in jwait() for newblks. */ 1325 static int stat_cleanup_high_delay; /* Maximum cleanup delay (in ticks) */ 1326 static int stat_cleanup_blkrequests; /* Number of block cleanup requests */ 1327 static int stat_cleanup_inorequests; /* Number of inode cleanup requests */ 1328 static int stat_cleanup_retries; /* Number of cleanups that needed to flush */ 1329 static int stat_cleanup_failures; /* Number of cleanup requests that failed */ 1330 1331 SYSCTL_INT(_debug_softdep, OID_AUTO, max_softdeps, CTLFLAG_RW, 1332 &max_softdeps, 0, ""); 1333 SYSCTL_INT(_debug_softdep, OID_AUTO, tickdelay, CTLFLAG_RW, 1334 &tickdelay, 0, ""); 1335 SYSCTL_INT(_debug_softdep, OID_AUTO, maxindirdeps, CTLFLAG_RW, 1336 &maxindirdeps, 0, ""); 1337 SYSCTL_INT(_debug_softdep, OID_AUTO, worklist_push, CTLFLAG_RW, 1338 &stat_worklist_push, 0,""); 1339 SYSCTL_INT(_debug_softdep, OID_AUTO, blk_limit_push, CTLFLAG_RW, 1340 &stat_blk_limit_push, 0,""); 1341 SYSCTL_INT(_debug_softdep, OID_AUTO, ino_limit_push, CTLFLAG_RW, 1342 &stat_ino_limit_push, 0,""); 1343 SYSCTL_INT(_debug_softdep, OID_AUTO, blk_limit_hit, CTLFLAG_RW, 1344 &stat_blk_limit_hit, 0, ""); 1345 SYSCTL_INT(_debug_softdep, OID_AUTO, ino_limit_hit, CTLFLAG_RW, 1346 &stat_ino_limit_hit, 0, ""); 1347 SYSCTL_INT(_debug_softdep, OID_AUTO, sync_limit_hit, CTLFLAG_RW, 1348 &stat_sync_limit_hit, 0, ""); 1349 SYSCTL_INT(_debug_softdep, OID_AUTO, indir_blk_ptrs, CTLFLAG_RW, 1350 &stat_indir_blk_ptrs, 0, ""); 1351 SYSCTL_INT(_debug_softdep, OID_AUTO, inode_bitmap, CTLFLAG_RW, 1352 &stat_inode_bitmap, 0, ""); 1353 SYSCTL_INT(_debug_softdep, OID_AUTO, direct_blk_ptrs, CTLFLAG_RW, 1354 &stat_direct_blk_ptrs, 0, ""); 1355 SYSCTL_INT(_debug_softdep, OID_AUTO, dir_entry, CTLFLAG_RW, 1356 &stat_dir_entry, 0, ""); 1357 SYSCTL_INT(_debug_softdep, OID_AUTO, jaddref_rollback, CTLFLAG_RW, 1358 &stat_jaddref, 0, ""); 1359 SYSCTL_INT(_debug_softdep, OID_AUTO, jnewblk_rollback, CTLFLAG_RW, 1360 &stat_jnewblk, 0, ""); 1361 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_low, CTLFLAG_RW, 1362 &stat_journal_low, 0, ""); 1363 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_min, CTLFLAG_RW, 1364 &stat_journal_min, 0, ""); 1365 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_wait, CTLFLAG_RW, 1366 &stat_journal_wait, 0, ""); 1367 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_filepage, CTLFLAG_RW, 1368 &stat_jwait_filepage, 0, ""); 1369 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_freeblks, CTLFLAG_RW, 1370 &stat_jwait_freeblks, 0, ""); 1371 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_inode, CTLFLAG_RW, 1372 &stat_jwait_inode, 0, ""); 1373 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_newblk, CTLFLAG_RW, 1374 &stat_jwait_newblk, 0, ""); 1375 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_blkrequests, CTLFLAG_RW, 1376 &stat_cleanup_blkrequests, 0, ""); 1377 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_inorequests, CTLFLAG_RW, 1378 &stat_cleanup_inorequests, 0, ""); 1379 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_high_delay, CTLFLAG_RW, 1380 &stat_cleanup_high_delay, 0, ""); 1381 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_retries, CTLFLAG_RW, 1382 &stat_cleanup_retries, 0, ""); 1383 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_failures, CTLFLAG_RW, 1384 &stat_cleanup_failures, 0, ""); 1385 SYSCTL_INT(_debug_softdep, OID_AUTO, flushcache, CTLFLAG_RW, 1386 &softdep_flushcache, 0, ""); 1387 1388 SYSCTL_DECL(_vfs_ffs); 1389 1390 LIST_HEAD(bmsafemap_hashhead, bmsafemap) *bmsafemap_hashtbl; 1391 static u_long bmsafemap_hash; /* size of hash table - 1 */ 1392 1393 static int compute_summary_at_mount = 0; /* Whether to recompute the summary at mount time */ 1394 SYSCTL_INT(_vfs_ffs, OID_AUTO, compute_summary_at_mount, CTLFLAG_RW, 1395 &compute_summary_at_mount, 0, "Recompute summary at mount"); 1396 1397 static struct proc *softdepproc; 1398 static struct kproc_desc softdep_kp = { 1399 "softdepflush", 1400 softdep_flush, 1401 &softdepproc 1402 }; 1403 SYSINIT(sdproc, SI_SUB_KTHREAD_UPDATE, SI_ORDER_ANY, kproc_start, 1404 &softdep_kp); 1405 1406 static void 1407 softdep_flush(void) 1408 { 1409 struct mount *nmp; 1410 struct mount *mp; 1411 struct ufsmount *ump; 1412 struct thread *td; 1413 int remaining; 1414 int progress; 1415 1416 td = curthread; 1417 td->td_pflags |= TDP_NORUNNINGBUF; 1418 1419 for (;;) { 1420 kproc_suspend_check(softdepproc); 1421 ACQUIRE_LOCK(&lk); 1422 /* 1423 * If requested, try removing inode or removal dependencies. 1424 */ 1425 if (req_clear_inodedeps) { 1426 clear_inodedeps(); 1427 req_clear_inodedeps -= 1; 1428 wakeup_one(&proc_waiting); 1429 } 1430 if (req_clear_remove) { 1431 clear_remove(); 1432 req_clear_remove -= 1; 1433 wakeup_one(&proc_waiting); 1434 } 1435 FREE_LOCK(&lk); 1436 remaining = progress = 0; 1437 mtx_lock(&mountlist_mtx); 1438 for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) { 1439 nmp = TAILQ_NEXT(mp, mnt_list); 1440 if (MOUNTEDSOFTDEP(mp) == 0) 1441 continue; 1442 if (vfs_busy(mp, MBF_NOWAIT | MBF_MNTLSTLOCK)) 1443 continue; 1444 progress += softdep_process_worklist(mp, 0); 1445 ump = VFSTOUFS(mp); 1446 remaining += ump->softdep_on_worklist; 1447 mtx_lock(&mountlist_mtx); 1448 nmp = TAILQ_NEXT(mp, mnt_list); 1449 vfs_unbusy(mp); 1450 } 1451 mtx_unlock(&mountlist_mtx); 1452 if (remaining && progress) 1453 continue; 1454 ACQUIRE_LOCK(&lk); 1455 if (!req_pending) 1456 msleep(&req_pending, &lk, PVM, "sdflush", hz); 1457 req_pending = 0; 1458 FREE_LOCK(&lk); 1459 } 1460 } 1461 1462 static void 1463 worklist_speedup(void) 1464 { 1465 rw_assert(&lk, RA_WLOCKED); 1466 if (req_pending == 0) { 1467 req_pending = 1; 1468 wakeup(&req_pending); 1469 } 1470 } 1471 1472 static int 1473 softdep_speedup(void) 1474 { 1475 1476 worklist_speedup(); 1477 bd_speedup(); 1478 return speedup_syncer(); 1479 } 1480 1481 /* 1482 * Add an item to the end of the work queue. 1483 * This routine requires that the lock be held. 1484 * This is the only routine that adds items to the list. 1485 * The following routine is the only one that removes items 1486 * and does so in order from first to last. 1487 */ 1488 1489 #define WK_HEAD 0x0001 /* Add to HEAD. */ 1490 #define WK_NODELAY 0x0002 /* Process immediately. */ 1491 1492 static void 1493 add_to_worklist(wk, flags) 1494 struct worklist *wk; 1495 int flags; 1496 { 1497 struct ufsmount *ump; 1498 1499 rw_assert(&lk, RA_WLOCKED); 1500 ump = VFSTOUFS(wk->wk_mp); 1501 if (wk->wk_state & ONWORKLIST) 1502 panic("add_to_worklist: %s(0x%X) already on list", 1503 TYPENAME(wk->wk_type), wk->wk_state); 1504 wk->wk_state |= ONWORKLIST; 1505 if (ump->softdep_on_worklist == 0) { 1506 LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list); 1507 ump->softdep_worklist_tail = wk; 1508 } else if (flags & WK_HEAD) { 1509 LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list); 1510 } else { 1511 LIST_INSERT_AFTER(ump->softdep_worklist_tail, wk, wk_list); 1512 ump->softdep_worklist_tail = wk; 1513 } 1514 ump->softdep_on_worklist += 1; 1515 if (flags & WK_NODELAY) 1516 worklist_speedup(); 1517 } 1518 1519 /* 1520 * Remove the item to be processed. If we are removing the last 1521 * item on the list, we need to recalculate the tail pointer. 1522 */ 1523 static void 1524 remove_from_worklist(wk) 1525 struct worklist *wk; 1526 { 1527 struct ufsmount *ump; 1528 1529 ump = VFSTOUFS(wk->wk_mp); 1530 WORKLIST_REMOVE(wk); 1531 if (ump->softdep_worklist_tail == wk) 1532 ump->softdep_worklist_tail = 1533 (struct worklist *)wk->wk_list.le_prev; 1534 ump->softdep_on_worklist -= 1; 1535 } 1536 1537 static void 1538 wake_worklist(wk) 1539 struct worklist *wk; 1540 { 1541 if (wk->wk_state & IOWAITING) { 1542 wk->wk_state &= ~IOWAITING; 1543 wakeup(wk); 1544 } 1545 } 1546 1547 static void 1548 wait_worklist(wk, wmesg) 1549 struct worklist *wk; 1550 char *wmesg; 1551 { 1552 1553 wk->wk_state |= IOWAITING; 1554 msleep(wk, &lk, PVM, wmesg, 0); 1555 } 1556 1557 /* 1558 * Process that runs once per second to handle items in the background queue. 1559 * 1560 * Note that we ensure that everything is done in the order in which they 1561 * appear in the queue. The code below depends on this property to ensure 1562 * that blocks of a file are freed before the inode itself is freed. This 1563 * ordering ensures that no new <vfsid, inum, lbn> triples will be generated 1564 * until all the old ones have been purged from the dependency lists. 1565 */ 1566 int 1567 softdep_process_worklist(mp, full) 1568 struct mount *mp; 1569 int full; 1570 { 1571 int cnt, matchcnt; 1572 struct ufsmount *ump; 1573 long starttime; 1574 1575 KASSERT(mp != NULL, ("softdep_process_worklist: NULL mp")); 1576 /* 1577 * Record the process identifier of our caller so that we can give 1578 * this process preferential treatment in request_cleanup below. 1579 */ 1580 matchcnt = 0; 1581 ump = VFSTOUFS(mp); 1582 ACQUIRE_LOCK(&lk); 1583 starttime = time_second; 1584 softdep_process_journal(mp, NULL, full?MNT_WAIT:0); 1585 while (ump->softdep_on_worklist > 0) { 1586 if ((cnt = process_worklist_item(mp, 10, LK_NOWAIT)) == 0) 1587 break; 1588 else 1589 matchcnt += cnt; 1590 /* 1591 * If requested, try removing inode or removal dependencies. 1592 */ 1593 if (req_clear_inodedeps) { 1594 clear_inodedeps(); 1595 req_clear_inodedeps -= 1; 1596 wakeup_one(&proc_waiting); 1597 } 1598 if (req_clear_remove) { 1599 clear_remove(); 1600 req_clear_remove -= 1; 1601 wakeup_one(&proc_waiting); 1602 } 1603 /* 1604 * We do not generally want to stop for buffer space, but if 1605 * we are really being a buffer hog, we will stop and wait. 1606 */ 1607 if (should_yield()) { 1608 FREE_LOCK(&lk); 1609 kern_yield(PRI_USER); 1610 bwillwrite(); 1611 ACQUIRE_LOCK(&lk); 1612 } 1613 /* 1614 * Never allow processing to run for more than one 1615 * second. Otherwise the other mountpoints may get 1616 * excessively backlogged. 1617 */ 1618 if (!full && starttime != time_second) 1619 break; 1620 } 1621 if (full == 0) 1622 journal_unsuspend(ump); 1623 FREE_LOCK(&lk); 1624 return (matchcnt); 1625 } 1626 1627 /* 1628 * Process all removes associated with a vnode if we are running out of 1629 * journal space. Any other process which attempts to flush these will 1630 * be unable as we have the vnodes locked. 1631 */ 1632 static void 1633 process_removes(vp) 1634 struct vnode *vp; 1635 { 1636 struct inodedep *inodedep; 1637 struct dirrem *dirrem; 1638 struct mount *mp; 1639 ino_t inum; 1640 1641 rw_assert(&lk, RA_WLOCKED); 1642 1643 mp = vp->v_mount; 1644 inum = VTOI(vp)->i_number; 1645 for (;;) { 1646 top: 1647 if (inodedep_lookup(mp, inum, 0, &inodedep) == 0) 1648 return; 1649 LIST_FOREACH(dirrem, &inodedep->id_dirremhd, dm_inonext) { 1650 /* 1651 * If another thread is trying to lock this vnode 1652 * it will fail but we must wait for it to do so 1653 * before we can proceed. 1654 */ 1655 if (dirrem->dm_state & INPROGRESS) { 1656 wait_worklist(&dirrem->dm_list, "pwrwait"); 1657 goto top; 1658 } 1659 if ((dirrem->dm_state & (COMPLETE | ONWORKLIST)) == 1660 (COMPLETE | ONWORKLIST)) 1661 break; 1662 } 1663 if (dirrem == NULL) 1664 return; 1665 remove_from_worklist(&dirrem->dm_list); 1666 FREE_LOCK(&lk); 1667 if (vn_start_secondary_write(NULL, &mp, V_NOWAIT)) 1668 panic("process_removes: suspended filesystem"); 1669 handle_workitem_remove(dirrem, 0); 1670 vn_finished_secondary_write(mp); 1671 ACQUIRE_LOCK(&lk); 1672 } 1673 } 1674 1675 /* 1676 * Process all truncations associated with a vnode if we are running out 1677 * of journal space. This is called when the vnode lock is already held 1678 * and no other process can clear the truncation. This function returns 1679 * a value greater than zero if it did any work. 1680 */ 1681 static void 1682 process_truncates(vp) 1683 struct vnode *vp; 1684 { 1685 struct inodedep *inodedep; 1686 struct freeblks *freeblks; 1687 struct mount *mp; 1688 ino_t inum; 1689 int cgwait; 1690 1691 rw_assert(&lk, RA_WLOCKED); 1692 1693 mp = vp->v_mount; 1694 inum = VTOI(vp)->i_number; 1695 for (;;) { 1696 if (inodedep_lookup(mp, inum, 0, &inodedep) == 0) 1697 return; 1698 cgwait = 0; 1699 TAILQ_FOREACH(freeblks, &inodedep->id_freeblklst, fb_next) { 1700 /* Journal entries not yet written. */ 1701 if (!LIST_EMPTY(&freeblks->fb_jblkdephd)) { 1702 jwait(&LIST_FIRST( 1703 &freeblks->fb_jblkdephd)->jb_list, 1704 MNT_WAIT); 1705 break; 1706 } 1707 /* Another thread is executing this item. */ 1708 if (freeblks->fb_state & INPROGRESS) { 1709 wait_worklist(&freeblks->fb_list, "ptrwait"); 1710 break; 1711 } 1712 /* Freeblks is waiting on a inode write. */ 1713 if ((freeblks->fb_state & COMPLETE) == 0) { 1714 FREE_LOCK(&lk); 1715 ffs_update(vp, 1); 1716 ACQUIRE_LOCK(&lk); 1717 break; 1718 } 1719 if ((freeblks->fb_state & (ALLCOMPLETE | ONWORKLIST)) == 1720 (ALLCOMPLETE | ONWORKLIST)) { 1721 remove_from_worklist(&freeblks->fb_list); 1722 freeblks->fb_state |= INPROGRESS; 1723 FREE_LOCK(&lk); 1724 if (vn_start_secondary_write(NULL, &mp, 1725 V_NOWAIT)) 1726 panic("process_truncates: " 1727 "suspended filesystem"); 1728 handle_workitem_freeblocks(freeblks, 0); 1729 vn_finished_secondary_write(mp); 1730 ACQUIRE_LOCK(&lk); 1731 break; 1732 } 1733 if (freeblks->fb_cgwait) 1734 cgwait++; 1735 } 1736 if (cgwait) { 1737 FREE_LOCK(&lk); 1738 sync_cgs(mp, MNT_WAIT); 1739 ffs_sync_snap(mp, MNT_WAIT); 1740 ACQUIRE_LOCK(&lk); 1741 continue; 1742 } 1743 if (freeblks == NULL) 1744 break; 1745 } 1746 return; 1747 } 1748 1749 /* 1750 * Process one item on the worklist. 1751 */ 1752 static int 1753 process_worklist_item(mp, target, flags) 1754 struct mount *mp; 1755 int target; 1756 int flags; 1757 { 1758 struct worklist sentinel; 1759 struct worklist *wk; 1760 struct ufsmount *ump; 1761 int matchcnt; 1762 int error; 1763 1764 rw_assert(&lk, RA_WLOCKED); 1765 KASSERT(mp != NULL, ("process_worklist_item: NULL mp")); 1766 /* 1767 * If we are being called because of a process doing a 1768 * copy-on-write, then it is not safe to write as we may 1769 * recurse into the copy-on-write routine. 1770 */ 1771 if (curthread->td_pflags & TDP_COWINPROGRESS) 1772 return (-1); 1773 PHOLD(curproc); /* Don't let the stack go away. */ 1774 ump = VFSTOUFS(mp); 1775 matchcnt = 0; 1776 sentinel.wk_mp = NULL; 1777 sentinel.wk_type = D_SENTINEL; 1778 LIST_INSERT_HEAD(&ump->softdep_workitem_pending, &sentinel, wk_list); 1779 for (wk = LIST_NEXT(&sentinel, wk_list); wk != NULL; 1780 wk = LIST_NEXT(&sentinel, wk_list)) { 1781 if (wk->wk_type == D_SENTINEL) { 1782 LIST_REMOVE(&sentinel, wk_list); 1783 LIST_INSERT_AFTER(wk, &sentinel, wk_list); 1784 continue; 1785 } 1786 if (wk->wk_state & INPROGRESS) 1787 panic("process_worklist_item: %p already in progress.", 1788 wk); 1789 wk->wk_state |= INPROGRESS; 1790 remove_from_worklist(wk); 1791 FREE_LOCK(&lk); 1792 if (vn_start_secondary_write(NULL, &mp, V_NOWAIT)) 1793 panic("process_worklist_item: suspended filesystem"); 1794 switch (wk->wk_type) { 1795 case D_DIRREM: 1796 /* removal of a directory entry */ 1797 error = handle_workitem_remove(WK_DIRREM(wk), flags); 1798 break; 1799 1800 case D_FREEBLKS: 1801 /* releasing blocks and/or fragments from a file */ 1802 error = handle_workitem_freeblocks(WK_FREEBLKS(wk), 1803 flags); 1804 break; 1805 1806 case D_FREEFRAG: 1807 /* releasing a fragment when replaced as a file grows */ 1808 handle_workitem_freefrag(WK_FREEFRAG(wk)); 1809 error = 0; 1810 break; 1811 1812 case D_FREEFILE: 1813 /* releasing an inode when its link count drops to 0 */ 1814 handle_workitem_freefile(WK_FREEFILE(wk)); 1815 error = 0; 1816 break; 1817 1818 default: 1819 panic("%s_process_worklist: Unknown type %s", 1820 "softdep", TYPENAME(wk->wk_type)); 1821 /* NOTREACHED */ 1822 } 1823 vn_finished_secondary_write(mp); 1824 ACQUIRE_LOCK(&lk); 1825 if (error == 0) { 1826 if (++matchcnt == target) 1827 break; 1828 continue; 1829 } 1830 /* 1831 * We have to retry the worklist item later. Wake up any 1832 * waiters who may be able to complete it immediately and 1833 * add the item back to the head so we don't try to execute 1834 * it again. 1835 */ 1836 wk->wk_state &= ~INPROGRESS; 1837 wake_worklist(wk); 1838 add_to_worklist(wk, WK_HEAD); 1839 } 1840 LIST_REMOVE(&sentinel, wk_list); 1841 /* Sentinal could've become the tail from remove_from_worklist. */ 1842 if (ump->softdep_worklist_tail == &sentinel) 1843 ump->softdep_worklist_tail = 1844 (struct worklist *)sentinel.wk_list.le_prev; 1845 PRELE(curproc); 1846 return (matchcnt); 1847 } 1848 1849 /* 1850 * Move dependencies from one buffer to another. 1851 */ 1852 int 1853 softdep_move_dependencies(oldbp, newbp) 1854 struct buf *oldbp; 1855 struct buf *newbp; 1856 { 1857 struct worklist *wk, *wktail; 1858 int dirty; 1859 1860 dirty = 0; 1861 wktail = NULL; 1862 ACQUIRE_LOCK(&lk); 1863 while ((wk = LIST_FIRST(&oldbp->b_dep)) != NULL) { 1864 LIST_REMOVE(wk, wk_list); 1865 if (wk->wk_type == D_BMSAFEMAP && 1866 bmsafemap_backgroundwrite(WK_BMSAFEMAP(wk), newbp)) 1867 dirty = 1; 1868 if (wktail == 0) 1869 LIST_INSERT_HEAD(&newbp->b_dep, wk, wk_list); 1870 else 1871 LIST_INSERT_AFTER(wktail, wk, wk_list); 1872 wktail = wk; 1873 } 1874 FREE_LOCK(&lk); 1875 1876 return (dirty); 1877 } 1878 1879 /* 1880 * Purge the work list of all items associated with a particular mount point. 1881 */ 1882 int 1883 softdep_flushworklist(oldmnt, countp, td) 1884 struct mount *oldmnt; 1885 int *countp; 1886 struct thread *td; 1887 { 1888 struct vnode *devvp; 1889 int count, error = 0; 1890 struct ufsmount *ump; 1891 1892 /* 1893 * Alternately flush the block device associated with the mount 1894 * point and process any dependencies that the flushing 1895 * creates. We continue until no more worklist dependencies 1896 * are found. 1897 */ 1898 *countp = 0; 1899 ump = VFSTOUFS(oldmnt); 1900 devvp = ump->um_devvp; 1901 while ((count = softdep_process_worklist(oldmnt, 1)) > 0) { 1902 *countp += count; 1903 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY); 1904 error = VOP_FSYNC(devvp, MNT_WAIT, td); 1905 VOP_UNLOCK(devvp, 0); 1906 if (error) 1907 break; 1908 } 1909 return (error); 1910 } 1911 1912 int 1913 softdep_waitidle(struct mount *mp) 1914 { 1915 struct ufsmount *ump; 1916 int error; 1917 int i; 1918 1919 ump = VFSTOUFS(mp); 1920 ACQUIRE_LOCK(&lk); 1921 for (i = 0; i < 10 && ump->softdep_deps; i++) { 1922 ump->softdep_req = 1; 1923 if (ump->softdep_on_worklist) 1924 panic("softdep_waitidle: work added after flush."); 1925 msleep(&ump->softdep_deps, &lk, PVM, "softdeps", 1); 1926 } 1927 ump->softdep_req = 0; 1928 FREE_LOCK(&lk); 1929 error = 0; 1930 if (i == 10) { 1931 error = EBUSY; 1932 printf("softdep_waitidle: Failed to flush worklist for %p\n", 1933 mp); 1934 } 1935 1936 return (error); 1937 } 1938 1939 /* 1940 * Flush all vnodes and worklist items associated with a specified mount point. 1941 */ 1942 int 1943 softdep_flushfiles(oldmnt, flags, td) 1944 struct mount *oldmnt; 1945 int flags; 1946 struct thread *td; 1947 { 1948 #ifdef QUOTA 1949 struct ufsmount *ump; 1950 int i; 1951 #endif 1952 int error, early, depcount, loopcnt, retry_flush_count, retry; 1953 int morework; 1954 1955 loopcnt = 10; 1956 retry_flush_count = 3; 1957 retry_flush: 1958 error = 0; 1959 1960 /* 1961 * Alternately flush the vnodes associated with the mount 1962 * point and process any dependencies that the flushing 1963 * creates. In theory, this loop can happen at most twice, 1964 * but we give it a few extra just to be sure. 1965 */ 1966 for (; loopcnt > 0; loopcnt--) { 1967 /* 1968 * Do another flush in case any vnodes were brought in 1969 * as part of the cleanup operations. 1970 */ 1971 early = retry_flush_count == 1 || (oldmnt->mnt_kern_flag & 1972 MNTK_UNMOUNT) == 0 ? 0 : EARLYFLUSH; 1973 if ((error = ffs_flushfiles(oldmnt, flags | early, td)) != 0) 1974 break; 1975 if ((error = softdep_flushworklist(oldmnt, &depcount, td)) != 0 || 1976 depcount == 0) 1977 break; 1978 } 1979 /* 1980 * If we are unmounting then it is an error to fail. If we 1981 * are simply trying to downgrade to read-only, then filesystem 1982 * activity can keep us busy forever, so we just fail with EBUSY. 1983 */ 1984 if (loopcnt == 0) { 1985 if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT) 1986 panic("softdep_flushfiles: looping"); 1987 error = EBUSY; 1988 } 1989 if (!error) 1990 error = softdep_waitidle(oldmnt); 1991 if (!error) { 1992 if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT) { 1993 retry = 0; 1994 MNT_ILOCK(oldmnt); 1995 KASSERT((oldmnt->mnt_kern_flag & MNTK_NOINSMNTQ) != 0, 1996 ("softdep_flushfiles: !MNTK_NOINSMNTQ")); 1997 morework = oldmnt->mnt_nvnodelistsize > 0; 1998 #ifdef QUOTA 1999 ump = VFSTOUFS(oldmnt); 2000 UFS_LOCK(ump); 2001 for (i = 0; i < MAXQUOTAS; i++) { 2002 if (ump->um_quotas[i] != NULLVP) 2003 morework = 1; 2004 } 2005 UFS_UNLOCK(ump); 2006 #endif 2007 if (morework) { 2008 if (--retry_flush_count > 0) { 2009 retry = 1; 2010 loopcnt = 3; 2011 } else 2012 error = EBUSY; 2013 } 2014 MNT_IUNLOCK(oldmnt); 2015 if (retry) 2016 goto retry_flush; 2017 } 2018 } 2019 return (error); 2020 } 2021 2022 /* 2023 * Structure hashing. 2024 * 2025 * There are three types of structures that can be looked up: 2026 * 1) pagedep structures identified by mount point, inode number, 2027 * and logical block. 2028 * 2) inodedep structures identified by mount point and inode number. 2029 * 3) newblk structures identified by mount point and 2030 * physical block number. 2031 * 2032 * The "pagedep" and "inodedep" dependency structures are hashed 2033 * separately from the file blocks and inodes to which they correspond. 2034 * This separation helps when the in-memory copy of an inode or 2035 * file block must be replaced. It also obviates the need to access 2036 * an inode or file page when simply updating (or de-allocating) 2037 * dependency structures. Lookup of newblk structures is needed to 2038 * find newly allocated blocks when trying to associate them with 2039 * their allocdirect or allocindir structure. 2040 * 2041 * The lookup routines optionally create and hash a new instance when 2042 * an existing entry is not found. 2043 */ 2044 #define DEPALLOC 0x0001 /* allocate structure if lookup fails */ 2045 #define NODELAY 0x0002 /* cannot do background work */ 2046 2047 /* 2048 * Structures and routines associated with pagedep caching. 2049 */ 2050 LIST_HEAD(pagedep_hashhead, pagedep) *pagedep_hashtbl; 2051 u_long pagedep_hash; /* size of hash table - 1 */ 2052 #define PAGEDEP_HASH(mp, inum, lbn) \ 2053 (&pagedep_hashtbl[((((register_t)(mp)) >> 13) + (inum) + (lbn)) & \ 2054 pagedep_hash]) 2055 2056 static int 2057 pagedep_find(pagedephd, ino, lbn, mp, flags, pagedeppp) 2058 struct pagedep_hashhead *pagedephd; 2059 ino_t ino; 2060 ufs_lbn_t lbn; 2061 struct mount *mp; 2062 int flags; 2063 struct pagedep **pagedeppp; 2064 { 2065 struct pagedep *pagedep; 2066 2067 LIST_FOREACH(pagedep, pagedephd, pd_hash) { 2068 if (ino == pagedep->pd_ino && lbn == pagedep->pd_lbn && 2069 mp == pagedep->pd_list.wk_mp) { 2070 *pagedeppp = pagedep; 2071 return (1); 2072 } 2073 } 2074 *pagedeppp = NULL; 2075 return (0); 2076 } 2077 /* 2078 * Look up a pagedep. Return 1 if found, 0 otherwise. 2079 * If not found, allocate if DEPALLOC flag is passed. 2080 * Found or allocated entry is returned in pagedeppp. 2081 * This routine must be called with splbio interrupts blocked. 2082 */ 2083 static int 2084 pagedep_lookup(mp, bp, ino, lbn, flags, pagedeppp) 2085 struct mount *mp; 2086 struct buf *bp; 2087 ino_t ino; 2088 ufs_lbn_t lbn; 2089 int flags; 2090 struct pagedep **pagedeppp; 2091 { 2092 struct pagedep *pagedep; 2093 struct pagedep_hashhead *pagedephd; 2094 struct worklist *wk; 2095 int ret; 2096 int i; 2097 2098 rw_assert(&lk, RA_WLOCKED); 2099 if (bp) { 2100 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 2101 if (wk->wk_type == D_PAGEDEP) { 2102 *pagedeppp = WK_PAGEDEP(wk); 2103 return (1); 2104 } 2105 } 2106 } 2107 pagedephd = PAGEDEP_HASH(mp, ino, lbn); 2108 ret = pagedep_find(pagedephd, ino, lbn, mp, flags, pagedeppp); 2109 if (ret) { 2110 if (((*pagedeppp)->pd_state & ONWORKLIST) == 0 && bp) 2111 WORKLIST_INSERT(&bp->b_dep, &(*pagedeppp)->pd_list); 2112 return (1); 2113 } 2114 if ((flags & DEPALLOC) == 0) 2115 return (0); 2116 FREE_LOCK(&lk); 2117 pagedep = malloc(sizeof(struct pagedep), 2118 M_PAGEDEP, M_SOFTDEP_FLAGS|M_ZERO); 2119 workitem_alloc(&pagedep->pd_list, D_PAGEDEP, mp); 2120 ACQUIRE_LOCK(&lk); 2121 ret = pagedep_find(pagedephd, ino, lbn, mp, flags, pagedeppp); 2122 if (*pagedeppp) { 2123 /* 2124 * This should never happen since we only create pagedeps 2125 * with the vnode lock held. Could be an assert. 2126 */ 2127 WORKITEM_FREE(pagedep, D_PAGEDEP); 2128 return (ret); 2129 } 2130 pagedep->pd_ino = ino; 2131 pagedep->pd_lbn = lbn; 2132 LIST_INIT(&pagedep->pd_dirremhd); 2133 LIST_INIT(&pagedep->pd_pendinghd); 2134 for (i = 0; i < DAHASHSZ; i++) 2135 LIST_INIT(&pagedep->pd_diraddhd[i]); 2136 LIST_INSERT_HEAD(pagedephd, pagedep, pd_hash); 2137 WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list); 2138 *pagedeppp = pagedep; 2139 return (0); 2140 } 2141 2142 /* 2143 * Structures and routines associated with inodedep caching. 2144 */ 2145 LIST_HEAD(inodedep_hashhead, inodedep) *inodedep_hashtbl; 2146 static u_long inodedep_hash; /* size of hash table - 1 */ 2147 #define INODEDEP_HASH(fs, inum) \ 2148 (&inodedep_hashtbl[((((register_t)(fs)) >> 13) + (inum)) & inodedep_hash]) 2149 2150 static int 2151 inodedep_find(inodedephd, fs, inum, inodedeppp) 2152 struct inodedep_hashhead *inodedephd; 2153 struct fs *fs; 2154 ino_t inum; 2155 struct inodedep **inodedeppp; 2156 { 2157 struct inodedep *inodedep; 2158 2159 LIST_FOREACH(inodedep, inodedephd, id_hash) 2160 if (inum == inodedep->id_ino && fs == inodedep->id_fs) 2161 break; 2162 if (inodedep) { 2163 *inodedeppp = inodedep; 2164 return (1); 2165 } 2166 *inodedeppp = NULL; 2167 2168 return (0); 2169 } 2170 /* 2171 * Look up an inodedep. Return 1 if found, 0 if not found. 2172 * If not found, allocate if DEPALLOC flag is passed. 2173 * Found or allocated entry is returned in inodedeppp. 2174 * This routine must be called with splbio interrupts blocked. 2175 */ 2176 static int 2177 inodedep_lookup(mp, inum, flags, inodedeppp) 2178 struct mount *mp; 2179 ino_t inum; 2180 int flags; 2181 struct inodedep **inodedeppp; 2182 { 2183 struct inodedep *inodedep; 2184 struct inodedep_hashhead *inodedephd; 2185 struct fs *fs; 2186 2187 rw_assert(&lk, RA_WLOCKED); 2188 fs = VFSTOUFS(mp)->um_fs; 2189 inodedephd = INODEDEP_HASH(fs, inum); 2190 2191 if (inodedep_find(inodedephd, fs, inum, inodedeppp)) 2192 return (1); 2193 if ((flags & DEPALLOC) == 0) 2194 return (0); 2195 /* 2196 * If we are over our limit, try to improve the situation. 2197 */ 2198 if (dep_current[D_INODEDEP] > max_softdeps && (flags & NODELAY) == 0) 2199 request_cleanup(mp, FLUSH_INODES); 2200 FREE_LOCK(&lk); 2201 inodedep = malloc(sizeof(struct inodedep), 2202 M_INODEDEP, M_SOFTDEP_FLAGS); 2203 workitem_alloc(&inodedep->id_list, D_INODEDEP, mp); 2204 ACQUIRE_LOCK(&lk); 2205 if (inodedep_find(inodedephd, fs, inum, inodedeppp)) { 2206 WORKITEM_FREE(inodedep, D_INODEDEP); 2207 return (1); 2208 } 2209 inodedep->id_fs = fs; 2210 inodedep->id_ino = inum; 2211 inodedep->id_state = ALLCOMPLETE; 2212 inodedep->id_nlinkdelta = 0; 2213 inodedep->id_savedino1 = NULL; 2214 inodedep->id_savedsize = -1; 2215 inodedep->id_savedextsize = -1; 2216 inodedep->id_savednlink = -1; 2217 inodedep->id_bmsafemap = NULL; 2218 inodedep->id_mkdiradd = NULL; 2219 LIST_INIT(&inodedep->id_dirremhd); 2220 LIST_INIT(&inodedep->id_pendinghd); 2221 LIST_INIT(&inodedep->id_inowait); 2222 LIST_INIT(&inodedep->id_bufwait); 2223 TAILQ_INIT(&inodedep->id_inoreflst); 2224 TAILQ_INIT(&inodedep->id_inoupdt); 2225 TAILQ_INIT(&inodedep->id_newinoupdt); 2226 TAILQ_INIT(&inodedep->id_extupdt); 2227 TAILQ_INIT(&inodedep->id_newextupdt); 2228 TAILQ_INIT(&inodedep->id_freeblklst); 2229 LIST_INSERT_HEAD(inodedephd, inodedep, id_hash); 2230 *inodedeppp = inodedep; 2231 return (0); 2232 } 2233 2234 /* 2235 * Structures and routines associated with newblk caching. 2236 */ 2237 LIST_HEAD(newblk_hashhead, newblk) *newblk_hashtbl; 2238 u_long newblk_hash; /* size of hash table - 1 */ 2239 #define NEWBLK_HASH(fs, inum) \ 2240 (&newblk_hashtbl[((((register_t)(fs)) >> 13) + (inum)) & newblk_hash]) 2241 2242 static int 2243 newblk_find(newblkhd, mp, newblkno, flags, newblkpp) 2244 struct newblk_hashhead *newblkhd; 2245 struct mount *mp; 2246 ufs2_daddr_t newblkno; 2247 int flags; 2248 struct newblk **newblkpp; 2249 { 2250 struct newblk *newblk; 2251 2252 LIST_FOREACH(newblk, newblkhd, nb_hash) { 2253 if (newblkno != newblk->nb_newblkno) 2254 continue; 2255 if (mp != newblk->nb_list.wk_mp) 2256 continue; 2257 /* 2258 * If we're creating a new dependency don't match those that 2259 * have already been converted to allocdirects. This is for 2260 * a frag extend. 2261 */ 2262 if ((flags & DEPALLOC) && newblk->nb_list.wk_type != D_NEWBLK) 2263 continue; 2264 break; 2265 } 2266 if (newblk) { 2267 *newblkpp = newblk; 2268 return (1); 2269 } 2270 *newblkpp = NULL; 2271 return (0); 2272 } 2273 2274 /* 2275 * Look up a newblk. Return 1 if found, 0 if not found. 2276 * If not found, allocate if DEPALLOC flag is passed. 2277 * Found or allocated entry is returned in newblkpp. 2278 */ 2279 static int 2280 newblk_lookup(mp, newblkno, flags, newblkpp) 2281 struct mount *mp; 2282 ufs2_daddr_t newblkno; 2283 int flags; 2284 struct newblk **newblkpp; 2285 { 2286 struct newblk *newblk; 2287 struct newblk_hashhead *newblkhd; 2288 2289 newblkhd = NEWBLK_HASH(VFSTOUFS(mp)->um_fs, newblkno); 2290 if (newblk_find(newblkhd, mp, newblkno, flags, newblkpp)) 2291 return (1); 2292 if ((flags & DEPALLOC) == 0) 2293 return (0); 2294 FREE_LOCK(&lk); 2295 newblk = malloc(sizeof(union allblk), M_NEWBLK, 2296 M_SOFTDEP_FLAGS | M_ZERO); 2297 workitem_alloc(&newblk->nb_list, D_NEWBLK, mp); 2298 ACQUIRE_LOCK(&lk); 2299 if (newblk_find(newblkhd, mp, newblkno, flags, newblkpp)) { 2300 WORKITEM_FREE(newblk, D_NEWBLK); 2301 return (1); 2302 } 2303 newblk->nb_freefrag = NULL; 2304 LIST_INIT(&newblk->nb_indirdeps); 2305 LIST_INIT(&newblk->nb_newdirblk); 2306 LIST_INIT(&newblk->nb_jwork); 2307 newblk->nb_state = ATTACHED; 2308 newblk->nb_newblkno = newblkno; 2309 LIST_INSERT_HEAD(newblkhd, newblk, nb_hash); 2310 *newblkpp = newblk; 2311 return (0); 2312 } 2313 2314 /* 2315 * Structures and routines associated with freed indirect block caching. 2316 */ 2317 struct freeworklst *indir_hashtbl; 2318 u_long indir_hash; /* size of hash table - 1 */ 2319 #define INDIR_HASH(mp, blkno) \ 2320 (&indir_hashtbl[((((register_t)(mp)) >> 13) + (blkno)) & indir_hash]) 2321 2322 /* 2323 * Lookup an indirect block in the indir hash table. The freework is 2324 * removed and potentially freed. The caller must do a blocking journal 2325 * write before writing to the blkno. 2326 */ 2327 static int 2328 indirblk_lookup(mp, blkno) 2329 struct mount *mp; 2330 ufs2_daddr_t blkno; 2331 { 2332 struct freework *freework; 2333 struct freeworklst *wkhd; 2334 2335 wkhd = INDIR_HASH(mp, blkno); 2336 TAILQ_FOREACH(freework, wkhd, fw_next) { 2337 if (freework->fw_blkno != blkno) 2338 continue; 2339 if (freework->fw_list.wk_mp != mp) 2340 continue; 2341 indirblk_remove(freework); 2342 return (1); 2343 } 2344 return (0); 2345 } 2346 2347 /* 2348 * Insert an indirect block represented by freework into the indirblk 2349 * hash table so that it may prevent the block from being re-used prior 2350 * to the journal being written. 2351 */ 2352 static void 2353 indirblk_insert(freework) 2354 struct freework *freework; 2355 { 2356 struct jblocks *jblocks; 2357 struct jseg *jseg; 2358 2359 jblocks = VFSTOUFS(freework->fw_list.wk_mp)->softdep_jblocks; 2360 jseg = TAILQ_LAST(&jblocks->jb_segs, jseglst); 2361 if (jseg == NULL) 2362 return; 2363 2364 LIST_INSERT_HEAD(&jseg->js_indirs, freework, fw_segs); 2365 TAILQ_INSERT_HEAD(INDIR_HASH(freework->fw_list.wk_mp, 2366 freework->fw_blkno), freework, fw_next); 2367 freework->fw_state &= ~DEPCOMPLETE; 2368 } 2369 2370 static void 2371 indirblk_remove(freework) 2372 struct freework *freework; 2373 { 2374 2375 LIST_REMOVE(freework, fw_segs); 2376 TAILQ_REMOVE(INDIR_HASH(freework->fw_list.wk_mp, 2377 freework->fw_blkno), freework, fw_next); 2378 freework->fw_state |= DEPCOMPLETE; 2379 if ((freework->fw_state & ALLCOMPLETE) == ALLCOMPLETE) 2380 WORKITEM_FREE(freework, D_FREEWORK); 2381 } 2382 2383 /* 2384 * Executed during filesystem system initialization before 2385 * mounting any filesystems. 2386 */ 2387 void 2388 softdep_initialize() 2389 { 2390 int i; 2391 2392 LIST_INIT(&mkdirlisthd); 2393 max_softdeps = desiredvnodes * 4; 2394 pagedep_hashtbl = hashinit(desiredvnodes / 5, M_PAGEDEP, &pagedep_hash); 2395 inodedep_hashtbl = hashinit(desiredvnodes, M_INODEDEP, &inodedep_hash); 2396 newblk_hashtbl = hashinit(max_softdeps / 2, M_NEWBLK, &newblk_hash); 2397 bmsafemap_hashtbl = hashinit(1024, M_BMSAFEMAP, &bmsafemap_hash); 2398 i = 1 << (ffs(desiredvnodes / 10) - 1); 2399 indir_hashtbl = malloc(i * sizeof(indir_hashtbl[0]), M_FREEWORK, 2400 M_WAITOK); 2401 indir_hash = i - 1; 2402 for (i = 0; i <= indir_hash; i++) 2403 TAILQ_INIT(&indir_hashtbl[i]); 2404 2405 /* initialise bioops hack */ 2406 bioops.io_start = softdep_disk_io_initiation; 2407 bioops.io_complete = softdep_disk_write_complete; 2408 bioops.io_deallocate = softdep_deallocate_dependencies; 2409 bioops.io_countdeps = softdep_count_dependencies; 2410 2411 /* Initialize the callout with an mtx. */ 2412 callout_init_mtx(&softdep_callout, &lk, 0); 2413 } 2414 2415 /* 2416 * Executed after all filesystems have been unmounted during 2417 * filesystem module unload. 2418 */ 2419 void 2420 softdep_uninitialize() 2421 { 2422 2423 callout_drain(&softdep_callout); 2424 hashdestroy(pagedep_hashtbl, M_PAGEDEP, pagedep_hash); 2425 hashdestroy(inodedep_hashtbl, M_INODEDEP, inodedep_hash); 2426 hashdestroy(newblk_hashtbl, M_NEWBLK, newblk_hash); 2427 hashdestroy(bmsafemap_hashtbl, M_BMSAFEMAP, bmsafemap_hash); 2428 free(indir_hashtbl, M_FREEWORK); 2429 } 2430 2431 /* 2432 * Called at mount time to notify the dependency code that a 2433 * filesystem wishes to use it. 2434 */ 2435 int 2436 softdep_mount(devvp, mp, fs, cred) 2437 struct vnode *devvp; 2438 struct mount *mp; 2439 struct fs *fs; 2440 struct ucred *cred; 2441 { 2442 struct csum_total cstotal; 2443 struct ufsmount *ump; 2444 struct cg *cgp; 2445 struct buf *bp; 2446 int error, cyl; 2447 2448 MNT_ILOCK(mp); 2449 mp->mnt_flag = (mp->mnt_flag & ~MNT_ASYNC) | MNT_SOFTDEP; 2450 if ((mp->mnt_kern_flag & MNTK_SOFTDEP) == 0) { 2451 mp->mnt_kern_flag = (mp->mnt_kern_flag & ~MNTK_ASYNC) | 2452 MNTK_SOFTDEP | MNTK_NOASYNC; 2453 } 2454 MNT_IUNLOCK(mp); 2455 ump = VFSTOUFS(mp); 2456 LIST_INIT(&ump->softdep_workitem_pending); 2457 LIST_INIT(&ump->softdep_journal_pending); 2458 TAILQ_INIT(&ump->softdep_unlinked); 2459 LIST_INIT(&ump->softdep_dirtycg); 2460 ump->softdep_worklist_tail = NULL; 2461 ump->softdep_on_worklist = 0; 2462 ump->softdep_deps = 0; 2463 if ((fs->fs_flags & FS_SUJ) && 2464 (error = journal_mount(mp, fs, cred)) != 0) { 2465 printf("Failed to start journal: %d\n", error); 2466 return (error); 2467 } 2468 /* 2469 * When doing soft updates, the counters in the 2470 * superblock may have gotten out of sync. Recomputation 2471 * can take a long time and can be deferred for background 2472 * fsck. However, the old behavior of scanning the cylinder 2473 * groups and recalculating them at mount time is available 2474 * by setting vfs.ffs.compute_summary_at_mount to one. 2475 */ 2476 if (compute_summary_at_mount == 0 || fs->fs_clean != 0) 2477 return (0); 2478 bzero(&cstotal, sizeof cstotal); 2479 for (cyl = 0; cyl < fs->fs_ncg; cyl++) { 2480 if ((error = bread(devvp, fsbtodb(fs, cgtod(fs, cyl)), 2481 fs->fs_cgsize, cred, &bp)) != 0) { 2482 brelse(bp); 2483 return (error); 2484 } 2485 cgp = (struct cg *)bp->b_data; 2486 cstotal.cs_nffree += cgp->cg_cs.cs_nffree; 2487 cstotal.cs_nbfree += cgp->cg_cs.cs_nbfree; 2488 cstotal.cs_nifree += cgp->cg_cs.cs_nifree; 2489 cstotal.cs_ndir += cgp->cg_cs.cs_ndir; 2490 fs->fs_cs(fs, cyl) = cgp->cg_cs; 2491 brelse(bp); 2492 } 2493 #ifdef DEBUG 2494 if (bcmp(&cstotal, &fs->fs_cstotal, sizeof cstotal)) 2495 printf("%s: superblock summary recomputed\n", fs->fs_fsmnt); 2496 #endif 2497 bcopy(&cstotal, &fs->fs_cstotal, sizeof cstotal); 2498 return (0); 2499 } 2500 2501 void 2502 softdep_unmount(mp) 2503 struct mount *mp; 2504 { 2505 2506 MNT_ILOCK(mp); 2507 mp->mnt_flag &= ~MNT_SOFTDEP; 2508 if (MOUNTEDSUJ(mp) == 0) { 2509 MNT_IUNLOCK(mp); 2510 return; 2511 } 2512 mp->mnt_flag &= ~MNT_SUJ; 2513 MNT_IUNLOCK(mp); 2514 journal_unmount(mp); 2515 } 2516 2517 static struct jblocks * 2518 jblocks_create(void) 2519 { 2520 struct jblocks *jblocks; 2521 2522 jblocks = malloc(sizeof(*jblocks), M_JBLOCKS, M_WAITOK | M_ZERO); 2523 TAILQ_INIT(&jblocks->jb_segs); 2524 jblocks->jb_avail = 10; 2525 jblocks->jb_extent = malloc(sizeof(struct jextent) * jblocks->jb_avail, 2526 M_JBLOCKS, M_WAITOK | M_ZERO); 2527 2528 return (jblocks); 2529 } 2530 2531 static ufs2_daddr_t 2532 jblocks_alloc(jblocks, bytes, actual) 2533 struct jblocks *jblocks; 2534 int bytes; 2535 int *actual; 2536 { 2537 ufs2_daddr_t daddr; 2538 struct jextent *jext; 2539 int freecnt; 2540 int blocks; 2541 2542 blocks = bytes / DEV_BSIZE; 2543 jext = &jblocks->jb_extent[jblocks->jb_head]; 2544 freecnt = jext->je_blocks - jblocks->jb_off; 2545 if (freecnt == 0) { 2546 jblocks->jb_off = 0; 2547 if (++jblocks->jb_head > jblocks->jb_used) 2548 jblocks->jb_head = 0; 2549 jext = &jblocks->jb_extent[jblocks->jb_head]; 2550 freecnt = jext->je_blocks; 2551 } 2552 if (freecnt > blocks) 2553 freecnt = blocks; 2554 *actual = freecnt * DEV_BSIZE; 2555 daddr = jext->je_daddr + jblocks->jb_off; 2556 jblocks->jb_off += freecnt; 2557 jblocks->jb_free -= freecnt; 2558 2559 return (daddr); 2560 } 2561 2562 static void 2563 jblocks_free(jblocks, mp, bytes) 2564 struct jblocks *jblocks; 2565 struct mount *mp; 2566 int bytes; 2567 { 2568 2569 jblocks->jb_free += bytes / DEV_BSIZE; 2570 if (jblocks->jb_suspended) 2571 worklist_speedup(); 2572 wakeup(jblocks); 2573 } 2574 2575 static void 2576 jblocks_destroy(jblocks) 2577 struct jblocks *jblocks; 2578 { 2579 2580 if (jblocks->jb_extent) 2581 free(jblocks->jb_extent, M_JBLOCKS); 2582 free(jblocks, M_JBLOCKS); 2583 } 2584 2585 static void 2586 jblocks_add(jblocks, daddr, blocks) 2587 struct jblocks *jblocks; 2588 ufs2_daddr_t daddr; 2589 int blocks; 2590 { 2591 struct jextent *jext; 2592 2593 jblocks->jb_blocks += blocks; 2594 jblocks->jb_free += blocks; 2595 jext = &jblocks->jb_extent[jblocks->jb_used]; 2596 /* Adding the first block. */ 2597 if (jext->je_daddr == 0) { 2598 jext->je_daddr = daddr; 2599 jext->je_blocks = blocks; 2600 return; 2601 } 2602 /* Extending the last extent. */ 2603 if (jext->je_daddr + jext->je_blocks == daddr) { 2604 jext->je_blocks += blocks; 2605 return; 2606 } 2607 /* Adding a new extent. */ 2608 if (++jblocks->jb_used == jblocks->jb_avail) { 2609 jblocks->jb_avail *= 2; 2610 jext = malloc(sizeof(struct jextent) * jblocks->jb_avail, 2611 M_JBLOCKS, M_WAITOK | M_ZERO); 2612 memcpy(jext, jblocks->jb_extent, 2613 sizeof(struct jextent) * jblocks->jb_used); 2614 free(jblocks->jb_extent, M_JBLOCKS); 2615 jblocks->jb_extent = jext; 2616 } 2617 jext = &jblocks->jb_extent[jblocks->jb_used]; 2618 jext->je_daddr = daddr; 2619 jext->je_blocks = blocks; 2620 return; 2621 } 2622 2623 int 2624 softdep_journal_lookup(mp, vpp) 2625 struct mount *mp; 2626 struct vnode **vpp; 2627 { 2628 struct componentname cnp; 2629 struct vnode *dvp; 2630 ino_t sujournal; 2631 int error; 2632 2633 error = VFS_VGET(mp, ROOTINO, LK_EXCLUSIVE, &dvp); 2634 if (error) 2635 return (error); 2636 bzero(&cnp, sizeof(cnp)); 2637 cnp.cn_nameiop = LOOKUP; 2638 cnp.cn_flags = ISLASTCN; 2639 cnp.cn_thread = curthread; 2640 cnp.cn_cred = curthread->td_ucred; 2641 cnp.cn_pnbuf = SUJ_FILE; 2642 cnp.cn_nameptr = SUJ_FILE; 2643 cnp.cn_namelen = strlen(SUJ_FILE); 2644 error = ufs_lookup_ino(dvp, NULL, &cnp, &sujournal); 2645 vput(dvp); 2646 if (error != 0) 2647 return (error); 2648 error = VFS_VGET(mp, sujournal, LK_EXCLUSIVE, vpp); 2649 return (error); 2650 } 2651 2652 /* 2653 * Open and verify the journal file. 2654 */ 2655 static int 2656 journal_mount(mp, fs, cred) 2657 struct mount *mp; 2658 struct fs *fs; 2659 struct ucred *cred; 2660 { 2661 struct jblocks *jblocks; 2662 struct vnode *vp; 2663 struct inode *ip; 2664 ufs2_daddr_t blkno; 2665 int bcount; 2666 int error; 2667 int i; 2668 2669 error = softdep_journal_lookup(mp, &vp); 2670 if (error != 0) { 2671 printf("Failed to find journal. Use tunefs to create one\n"); 2672 return (error); 2673 } 2674 ip = VTOI(vp); 2675 if (ip->i_size < SUJ_MIN) { 2676 error = ENOSPC; 2677 goto out; 2678 } 2679 bcount = lblkno(fs, ip->i_size); /* Only use whole blocks. */ 2680 jblocks = jblocks_create(); 2681 for (i = 0; i < bcount; i++) { 2682 error = ufs_bmaparray(vp, i, &blkno, NULL, NULL, NULL); 2683 if (error) 2684 break; 2685 jblocks_add(jblocks, blkno, fsbtodb(fs, fs->fs_frag)); 2686 } 2687 if (error) { 2688 jblocks_destroy(jblocks); 2689 goto out; 2690 } 2691 jblocks->jb_low = jblocks->jb_free / 3; /* Reserve 33%. */ 2692 jblocks->jb_min = jblocks->jb_free / 10; /* Suspend at 10%. */ 2693 VFSTOUFS(mp)->softdep_jblocks = jblocks; 2694 out: 2695 if (error == 0) { 2696 MNT_ILOCK(mp); 2697 mp->mnt_flag |= MNT_SUJ; 2698 mp->mnt_flag &= ~MNT_SOFTDEP; 2699 MNT_IUNLOCK(mp); 2700 /* 2701 * Only validate the journal contents if the 2702 * filesystem is clean, otherwise we write the logs 2703 * but they'll never be used. If the filesystem was 2704 * still dirty when we mounted it the journal is 2705 * invalid and a new journal can only be valid if it 2706 * starts from a clean mount. 2707 */ 2708 if (fs->fs_clean) { 2709 DIP_SET(ip, i_modrev, fs->fs_mtime); 2710 ip->i_flags |= IN_MODIFIED; 2711 ffs_update(vp, 1); 2712 } 2713 } 2714 vput(vp); 2715 return (error); 2716 } 2717 2718 static void 2719 journal_unmount(mp) 2720 struct mount *mp; 2721 { 2722 struct ufsmount *ump; 2723 2724 ump = VFSTOUFS(mp); 2725 if (ump->softdep_jblocks) 2726 jblocks_destroy(ump->softdep_jblocks); 2727 ump->softdep_jblocks = NULL; 2728 } 2729 2730 /* 2731 * Called when a journal record is ready to be written. Space is allocated 2732 * and the journal entry is created when the journal is flushed to stable 2733 * store. 2734 */ 2735 static void 2736 add_to_journal(wk) 2737 struct worklist *wk; 2738 { 2739 struct ufsmount *ump; 2740 2741 rw_assert(&lk, RA_WLOCKED); 2742 ump = VFSTOUFS(wk->wk_mp); 2743 if (wk->wk_state & ONWORKLIST) 2744 panic("add_to_journal: %s(0x%X) already on list", 2745 TYPENAME(wk->wk_type), wk->wk_state); 2746 wk->wk_state |= ONWORKLIST | DEPCOMPLETE; 2747 if (LIST_EMPTY(&ump->softdep_journal_pending)) { 2748 ump->softdep_jblocks->jb_age = ticks; 2749 LIST_INSERT_HEAD(&ump->softdep_journal_pending, wk, wk_list); 2750 } else 2751 LIST_INSERT_AFTER(ump->softdep_journal_tail, wk, wk_list); 2752 ump->softdep_journal_tail = wk; 2753 ump->softdep_on_journal += 1; 2754 } 2755 2756 /* 2757 * Remove an arbitrary item for the journal worklist maintain the tail 2758 * pointer. This happens when a new operation obviates the need to 2759 * journal an old operation. 2760 */ 2761 static void 2762 remove_from_journal(wk) 2763 struct worklist *wk; 2764 { 2765 struct ufsmount *ump; 2766 2767 rw_assert(&lk, RA_WLOCKED); 2768 ump = VFSTOUFS(wk->wk_mp); 2769 #ifdef SUJ_DEBUG 2770 { 2771 struct worklist *wkn; 2772 2773 LIST_FOREACH(wkn, &ump->softdep_journal_pending, wk_list) 2774 if (wkn == wk) 2775 break; 2776 if (wkn == NULL) 2777 panic("remove_from_journal: %p is not in journal", wk); 2778 } 2779 #endif 2780 /* 2781 * We emulate a TAILQ to save space in most structures which do not 2782 * require TAILQ semantics. Here we must update the tail position 2783 * when removing the tail which is not the final entry. This works 2784 * only if the worklist linkage are at the beginning of the structure. 2785 */ 2786 if (ump->softdep_journal_tail == wk) 2787 ump->softdep_journal_tail = 2788 (struct worklist *)wk->wk_list.le_prev; 2789 2790 WORKLIST_REMOVE(wk); 2791 ump->softdep_on_journal -= 1; 2792 } 2793 2794 /* 2795 * Check for journal space as well as dependency limits so the prelink 2796 * code can throttle both journaled and non-journaled filesystems. 2797 * Threshold is 0 for low and 1 for min. 2798 */ 2799 static int 2800 journal_space(ump, thresh) 2801 struct ufsmount *ump; 2802 int thresh; 2803 { 2804 struct jblocks *jblocks; 2805 int avail; 2806 2807 jblocks = ump->softdep_jblocks; 2808 if (jblocks == NULL) 2809 return (1); 2810 /* 2811 * We use a tighter restriction here to prevent request_cleanup() 2812 * running in threads from running into locks we currently hold. 2813 */ 2814 if (dep_current[D_INODEDEP] > (max_softdeps / 10) * 9) 2815 return (0); 2816 if (thresh) 2817 thresh = jblocks->jb_min; 2818 else 2819 thresh = jblocks->jb_low; 2820 avail = (ump->softdep_on_journal * JREC_SIZE) / DEV_BSIZE; 2821 avail = jblocks->jb_free - avail; 2822 2823 return (avail > thresh); 2824 } 2825 2826 static void 2827 journal_suspend(ump) 2828 struct ufsmount *ump; 2829 { 2830 struct jblocks *jblocks; 2831 struct mount *mp; 2832 2833 mp = UFSTOVFS(ump); 2834 jblocks = ump->softdep_jblocks; 2835 MNT_ILOCK(mp); 2836 if ((mp->mnt_kern_flag & MNTK_SUSPEND) == 0) { 2837 stat_journal_min++; 2838 mp->mnt_kern_flag |= MNTK_SUSPEND; 2839 mp->mnt_susp_owner = FIRST_THREAD_IN_PROC(softdepproc); 2840 } 2841 jblocks->jb_suspended = 1; 2842 MNT_IUNLOCK(mp); 2843 } 2844 2845 static int 2846 journal_unsuspend(struct ufsmount *ump) 2847 { 2848 struct jblocks *jblocks; 2849 struct mount *mp; 2850 2851 mp = UFSTOVFS(ump); 2852 jblocks = ump->softdep_jblocks; 2853 2854 if (jblocks != NULL && jblocks->jb_suspended && 2855 journal_space(ump, jblocks->jb_min)) { 2856 jblocks->jb_suspended = 0; 2857 FREE_LOCK(&lk); 2858 mp->mnt_susp_owner = curthread; 2859 vfs_write_resume(mp, 0); 2860 ACQUIRE_LOCK(&lk); 2861 return (1); 2862 } 2863 return (0); 2864 } 2865 2866 /* 2867 * Called before any allocation function to be certain that there is 2868 * sufficient space in the journal prior to creating any new records. 2869 * Since in the case of block allocation we may have multiple locked 2870 * buffers at the time of the actual allocation we can not block 2871 * when the journal records are created. Doing so would create a deadlock 2872 * if any of these buffers needed to be flushed to reclaim space. Instead 2873 * we require a sufficiently large amount of available space such that 2874 * each thread in the system could have passed this allocation check and 2875 * still have sufficient free space. With 20% of a minimum journal size 2876 * of 1MB we have 6553 records available. 2877 */ 2878 int 2879 softdep_prealloc(vp, waitok) 2880 struct vnode *vp; 2881 int waitok; 2882 { 2883 struct ufsmount *ump; 2884 2885 /* 2886 * Nothing to do if we are not running journaled soft updates. 2887 * If we currently hold the snapshot lock, we must avoid handling 2888 * other resources that could cause deadlock. 2889 */ 2890 if (DOINGSUJ(vp) == 0 || IS_SNAPSHOT(VTOI(vp))) 2891 return (0); 2892 ump = VFSTOUFS(vp->v_mount); 2893 ACQUIRE_LOCK(&lk); 2894 if (journal_space(ump, 0)) { 2895 FREE_LOCK(&lk); 2896 return (0); 2897 } 2898 stat_journal_low++; 2899 FREE_LOCK(&lk); 2900 if (waitok == MNT_NOWAIT) 2901 return (ENOSPC); 2902 /* 2903 * Attempt to sync this vnode once to flush any journal 2904 * work attached to it. 2905 */ 2906 if ((curthread->td_pflags & TDP_COWINPROGRESS) == 0) 2907 ffs_syncvnode(vp, waitok, 0); 2908 ACQUIRE_LOCK(&lk); 2909 process_removes(vp); 2910 process_truncates(vp); 2911 if (journal_space(ump, 0) == 0) { 2912 softdep_speedup(); 2913 if (journal_space(ump, 1) == 0) 2914 journal_suspend(ump); 2915 } 2916 FREE_LOCK(&lk); 2917 2918 return (0); 2919 } 2920 2921 /* 2922 * Before adjusting a link count on a vnode verify that we have sufficient 2923 * journal space. If not, process operations that depend on the currently 2924 * locked pair of vnodes to try to flush space as the syncer, buf daemon, 2925 * and softdep flush threads can not acquire these locks to reclaim space. 2926 */ 2927 static void 2928 softdep_prelink(dvp, vp) 2929 struct vnode *dvp; 2930 struct vnode *vp; 2931 { 2932 struct ufsmount *ump; 2933 2934 ump = VFSTOUFS(dvp->v_mount); 2935 rw_assert(&lk, RA_WLOCKED); 2936 /* 2937 * Nothing to do if we have sufficient journal space. 2938 * If we currently hold the snapshot lock, we must avoid 2939 * handling other resources that could cause deadlock. 2940 */ 2941 if (journal_space(ump, 0) || (vp && IS_SNAPSHOT(VTOI(vp)))) 2942 return; 2943 stat_journal_low++; 2944 FREE_LOCK(&lk); 2945 if (vp) 2946 ffs_syncvnode(vp, MNT_NOWAIT, 0); 2947 ffs_syncvnode(dvp, MNT_WAIT, 0); 2948 ACQUIRE_LOCK(&lk); 2949 /* Process vp before dvp as it may create .. removes. */ 2950 if (vp) { 2951 process_removes(vp); 2952 process_truncates(vp); 2953 } 2954 process_removes(dvp); 2955 process_truncates(dvp); 2956 softdep_speedup(); 2957 process_worklist_item(UFSTOVFS(ump), 2, LK_NOWAIT); 2958 if (journal_space(ump, 0) == 0) { 2959 softdep_speedup(); 2960 if (journal_space(ump, 1) == 0) 2961 journal_suspend(ump); 2962 } 2963 } 2964 2965 static void 2966 jseg_write(ump, jseg, data) 2967 struct ufsmount *ump; 2968 struct jseg *jseg; 2969 uint8_t *data; 2970 { 2971 struct jsegrec *rec; 2972 2973 rec = (struct jsegrec *)data; 2974 rec->jsr_seq = jseg->js_seq; 2975 rec->jsr_oldest = jseg->js_oldseq; 2976 rec->jsr_cnt = jseg->js_cnt; 2977 rec->jsr_blocks = jseg->js_size / ump->um_devvp->v_bufobj.bo_bsize; 2978 rec->jsr_crc = 0; 2979 rec->jsr_time = ump->um_fs->fs_mtime; 2980 } 2981 2982 static inline void 2983 inoref_write(inoref, jseg, rec) 2984 struct inoref *inoref; 2985 struct jseg *jseg; 2986 struct jrefrec *rec; 2987 { 2988 2989 inoref->if_jsegdep->jd_seg = jseg; 2990 rec->jr_ino = inoref->if_ino; 2991 rec->jr_parent = inoref->if_parent; 2992 rec->jr_nlink = inoref->if_nlink; 2993 rec->jr_mode = inoref->if_mode; 2994 rec->jr_diroff = inoref->if_diroff; 2995 } 2996 2997 static void 2998 jaddref_write(jaddref, jseg, data) 2999 struct jaddref *jaddref; 3000 struct jseg *jseg; 3001 uint8_t *data; 3002 { 3003 struct jrefrec *rec; 3004 3005 rec = (struct jrefrec *)data; 3006 rec->jr_op = JOP_ADDREF; 3007 inoref_write(&jaddref->ja_ref, jseg, rec); 3008 } 3009 3010 static void 3011 jremref_write(jremref, jseg, data) 3012 struct jremref *jremref; 3013 struct jseg *jseg; 3014 uint8_t *data; 3015 { 3016 struct jrefrec *rec; 3017 3018 rec = (struct jrefrec *)data; 3019 rec->jr_op = JOP_REMREF; 3020 inoref_write(&jremref->jr_ref, jseg, rec); 3021 } 3022 3023 static void 3024 jmvref_write(jmvref, jseg, data) 3025 struct jmvref *jmvref; 3026 struct jseg *jseg; 3027 uint8_t *data; 3028 { 3029 struct jmvrec *rec; 3030 3031 rec = (struct jmvrec *)data; 3032 rec->jm_op = JOP_MVREF; 3033 rec->jm_ino = jmvref->jm_ino; 3034 rec->jm_parent = jmvref->jm_parent; 3035 rec->jm_oldoff = jmvref->jm_oldoff; 3036 rec->jm_newoff = jmvref->jm_newoff; 3037 } 3038 3039 static void 3040 jnewblk_write(jnewblk, jseg, data) 3041 struct jnewblk *jnewblk; 3042 struct jseg *jseg; 3043 uint8_t *data; 3044 { 3045 struct jblkrec *rec; 3046 3047 jnewblk->jn_jsegdep->jd_seg = jseg; 3048 rec = (struct jblkrec *)data; 3049 rec->jb_op = JOP_NEWBLK; 3050 rec->jb_ino = jnewblk->jn_ino; 3051 rec->jb_blkno = jnewblk->jn_blkno; 3052 rec->jb_lbn = jnewblk->jn_lbn; 3053 rec->jb_frags = jnewblk->jn_frags; 3054 rec->jb_oldfrags = jnewblk->jn_oldfrags; 3055 } 3056 3057 static void 3058 jfreeblk_write(jfreeblk, jseg, data) 3059 struct jfreeblk *jfreeblk; 3060 struct jseg *jseg; 3061 uint8_t *data; 3062 { 3063 struct jblkrec *rec; 3064 3065 jfreeblk->jf_dep.jb_jsegdep->jd_seg = jseg; 3066 rec = (struct jblkrec *)data; 3067 rec->jb_op = JOP_FREEBLK; 3068 rec->jb_ino = jfreeblk->jf_ino; 3069 rec->jb_blkno = jfreeblk->jf_blkno; 3070 rec->jb_lbn = jfreeblk->jf_lbn; 3071 rec->jb_frags = jfreeblk->jf_frags; 3072 rec->jb_oldfrags = 0; 3073 } 3074 3075 static void 3076 jfreefrag_write(jfreefrag, jseg, data) 3077 struct jfreefrag *jfreefrag; 3078 struct jseg *jseg; 3079 uint8_t *data; 3080 { 3081 struct jblkrec *rec; 3082 3083 jfreefrag->fr_jsegdep->jd_seg = jseg; 3084 rec = (struct jblkrec *)data; 3085 rec->jb_op = JOP_FREEBLK; 3086 rec->jb_ino = jfreefrag->fr_ino; 3087 rec->jb_blkno = jfreefrag->fr_blkno; 3088 rec->jb_lbn = jfreefrag->fr_lbn; 3089 rec->jb_frags = jfreefrag->fr_frags; 3090 rec->jb_oldfrags = 0; 3091 } 3092 3093 static void 3094 jtrunc_write(jtrunc, jseg, data) 3095 struct jtrunc *jtrunc; 3096 struct jseg *jseg; 3097 uint8_t *data; 3098 { 3099 struct jtrncrec *rec; 3100 3101 jtrunc->jt_dep.jb_jsegdep->jd_seg = jseg; 3102 rec = (struct jtrncrec *)data; 3103 rec->jt_op = JOP_TRUNC; 3104 rec->jt_ino = jtrunc->jt_ino; 3105 rec->jt_size = jtrunc->jt_size; 3106 rec->jt_extsize = jtrunc->jt_extsize; 3107 } 3108 3109 static void 3110 jfsync_write(jfsync, jseg, data) 3111 struct jfsync *jfsync; 3112 struct jseg *jseg; 3113 uint8_t *data; 3114 { 3115 struct jtrncrec *rec; 3116 3117 rec = (struct jtrncrec *)data; 3118 rec->jt_op = JOP_SYNC; 3119 rec->jt_ino = jfsync->jfs_ino; 3120 rec->jt_size = jfsync->jfs_size; 3121 rec->jt_extsize = jfsync->jfs_extsize; 3122 } 3123 3124 static void 3125 softdep_flushjournal(mp) 3126 struct mount *mp; 3127 { 3128 struct jblocks *jblocks; 3129 struct ufsmount *ump; 3130 3131 if (MOUNTEDSUJ(mp) == 0) 3132 return; 3133 ump = VFSTOUFS(mp); 3134 jblocks = ump->softdep_jblocks; 3135 ACQUIRE_LOCK(&lk); 3136 while (ump->softdep_on_journal) { 3137 jblocks->jb_needseg = 1; 3138 softdep_process_journal(mp, NULL, MNT_WAIT); 3139 } 3140 FREE_LOCK(&lk); 3141 } 3142 3143 static void softdep_synchronize_completed(struct bio *); 3144 static void softdep_synchronize(struct bio *, struct ufsmount *, void *); 3145 3146 static void 3147 softdep_synchronize_completed(bp) 3148 struct bio *bp; 3149 { 3150 struct jseg *oldest; 3151 struct jseg *jseg; 3152 3153 /* 3154 * caller1 marks the last segment written before we issued the 3155 * synchronize cache. 3156 */ 3157 jseg = bp->bio_caller1; 3158 oldest = NULL; 3159 ACQUIRE_LOCK(&lk); 3160 /* 3161 * Mark all the journal entries waiting on the synchronize cache 3162 * as completed so they may continue on. 3163 */ 3164 while (jseg != NULL && (jseg->js_state & COMPLETE) == 0) { 3165 jseg->js_state |= COMPLETE; 3166 oldest = jseg; 3167 jseg = TAILQ_PREV(jseg, jseglst, js_next); 3168 } 3169 /* 3170 * Restart deferred journal entry processing from the oldest 3171 * completed jseg. 3172 */ 3173 if (oldest) 3174 complete_jsegs(oldest); 3175 3176 FREE_LOCK(&lk); 3177 g_destroy_bio(bp); 3178 } 3179 3180 /* 3181 * Send BIO_FLUSH/SYNCHRONIZE CACHE to the device to enforce write ordering 3182 * barriers. The journal must be written prior to any blocks that depend 3183 * on it and the journal can not be released until the blocks have be 3184 * written. This code handles both barriers simultaneously. 3185 */ 3186 static void 3187 softdep_synchronize(bp, ump, caller1) 3188 struct bio *bp; 3189 struct ufsmount *ump; 3190 void *caller1; 3191 { 3192 3193 bp->bio_cmd = BIO_FLUSH; 3194 bp->bio_flags |= BIO_ORDERED; 3195 bp->bio_data = NULL; 3196 bp->bio_offset = ump->um_cp->provider->mediasize; 3197 bp->bio_length = 0; 3198 bp->bio_done = softdep_synchronize_completed; 3199 bp->bio_caller1 = caller1; 3200 g_io_request(bp, 3201 (struct g_consumer *)ump->um_devvp->v_bufobj.bo_private); 3202 } 3203 3204 /* 3205 * Flush some journal records to disk. 3206 */ 3207 static void 3208 softdep_process_journal(mp, needwk, flags) 3209 struct mount *mp; 3210 struct worklist *needwk; 3211 int flags; 3212 { 3213 struct jblocks *jblocks; 3214 struct ufsmount *ump; 3215 struct worklist *wk; 3216 struct jseg *jseg; 3217 struct buf *bp; 3218 struct bio *bio; 3219 uint8_t *data; 3220 struct fs *fs; 3221 int shouldflush; 3222 int segwritten; 3223 int jrecmin; /* Minimum records per block. */ 3224 int jrecmax; /* Maximum records per block. */ 3225 int size; 3226 int cnt; 3227 int off; 3228 int devbsize; 3229 3230 if (MOUNTEDSUJ(mp) == 0) 3231 return; 3232 shouldflush = softdep_flushcache; 3233 bio = NULL; 3234 jseg = NULL; 3235 ump = VFSTOUFS(mp); 3236 fs = ump->um_fs; 3237 jblocks = ump->softdep_jblocks; 3238 devbsize = ump->um_devvp->v_bufobj.bo_bsize; 3239 /* 3240 * We write anywhere between a disk block and fs block. The upper 3241 * bound is picked to prevent buffer cache fragmentation and limit 3242 * processing time per I/O. 3243 */ 3244 jrecmin = (devbsize / JREC_SIZE) - 1; /* -1 for seg header */ 3245 jrecmax = (fs->fs_bsize / devbsize) * jrecmin; 3246 segwritten = 0; 3247 for (;;) { 3248 cnt = ump->softdep_on_journal; 3249 /* 3250 * Criteria for writing a segment: 3251 * 1) We have a full block. 3252 * 2) We're called from jwait() and haven't found the 3253 * journal item yet. 3254 * 3) Always write if needseg is set. 3255 * 4) If we are called from process_worklist and have 3256 * not yet written anything we write a partial block 3257 * to enforce a 1 second maximum latency on journal 3258 * entries. 3259 */ 3260 if (cnt < (jrecmax - 1) && needwk == NULL && 3261 jblocks->jb_needseg == 0 && (segwritten || cnt == 0)) 3262 break; 3263 cnt++; 3264 /* 3265 * Verify some free journal space. softdep_prealloc() should 3266 * guarantee that we don't run out so this is indicative of 3267 * a problem with the flow control. Try to recover 3268 * gracefully in any event. 3269 */ 3270 while (jblocks->jb_free == 0) { 3271 if (flags != MNT_WAIT) 3272 break; 3273 printf("softdep: Out of journal space!\n"); 3274 softdep_speedup(); 3275 msleep(jblocks, &lk, PRIBIO, "jblocks", hz); 3276 } 3277 FREE_LOCK(&lk); 3278 jseg = malloc(sizeof(*jseg), M_JSEG, M_SOFTDEP_FLAGS); 3279 workitem_alloc(&jseg->js_list, D_JSEG, mp); 3280 LIST_INIT(&jseg->js_entries); 3281 LIST_INIT(&jseg->js_indirs); 3282 jseg->js_state = ATTACHED; 3283 if (shouldflush == 0) 3284 jseg->js_state |= COMPLETE; 3285 else if (bio == NULL) 3286 bio = g_alloc_bio(); 3287 jseg->js_jblocks = jblocks; 3288 bp = geteblk(fs->fs_bsize, 0); 3289 ACQUIRE_LOCK(&lk); 3290 /* 3291 * If there was a race while we were allocating the block 3292 * and jseg the entry we care about was likely written. 3293 * We bail out in both the WAIT and NOWAIT case and assume 3294 * the caller will loop if the entry it cares about is 3295 * not written. 3296 */ 3297 cnt = ump->softdep_on_journal; 3298 if (cnt + jblocks->jb_needseg == 0 || jblocks->jb_free == 0) { 3299 bp->b_flags |= B_INVAL | B_NOCACHE; 3300 WORKITEM_FREE(jseg, D_JSEG); 3301 FREE_LOCK(&lk); 3302 brelse(bp); 3303 ACQUIRE_LOCK(&lk); 3304 break; 3305 } 3306 /* 3307 * Calculate the disk block size required for the available 3308 * records rounded to the min size. 3309 */ 3310 if (cnt == 0) 3311 size = devbsize; 3312 else if (cnt < jrecmax) 3313 size = howmany(cnt, jrecmin) * devbsize; 3314 else 3315 size = fs->fs_bsize; 3316 /* 3317 * Allocate a disk block for this journal data and account 3318 * for truncation of the requested size if enough contiguous 3319 * space was not available. 3320 */ 3321 bp->b_blkno = jblocks_alloc(jblocks, size, &size); 3322 bp->b_lblkno = bp->b_blkno; 3323 bp->b_offset = bp->b_blkno * DEV_BSIZE; 3324 bp->b_bcount = size; 3325 bp->b_flags &= ~B_INVAL; 3326 bp->b_flags |= B_VALIDSUSPWRT | B_NOCOPY; 3327 /* 3328 * Initialize our jseg with cnt records. Assign the next 3329 * sequence number to it and link it in-order. 3330 */ 3331 cnt = MIN(cnt, (size / devbsize) * jrecmin); 3332 jseg->js_buf = bp; 3333 jseg->js_cnt = cnt; 3334 jseg->js_refs = cnt + 1; /* Self ref. */ 3335 jseg->js_size = size; 3336 jseg->js_seq = jblocks->jb_nextseq++; 3337 if (jblocks->jb_oldestseg == NULL) 3338 jblocks->jb_oldestseg = jseg; 3339 jseg->js_oldseq = jblocks->jb_oldestseg->js_seq; 3340 TAILQ_INSERT_TAIL(&jblocks->jb_segs, jseg, js_next); 3341 if (jblocks->jb_writeseg == NULL) 3342 jblocks->jb_writeseg = jseg; 3343 /* 3344 * Start filling in records from the pending list. 3345 */ 3346 data = bp->b_data; 3347 off = 0; 3348 while ((wk = LIST_FIRST(&ump->softdep_journal_pending)) 3349 != NULL) { 3350 if (cnt == 0) 3351 break; 3352 /* Place a segment header on every device block. */ 3353 if ((off % devbsize) == 0) { 3354 jseg_write(ump, jseg, data); 3355 off += JREC_SIZE; 3356 data = bp->b_data + off; 3357 } 3358 if (wk == needwk) 3359 needwk = NULL; 3360 remove_from_journal(wk); 3361 wk->wk_state |= INPROGRESS; 3362 WORKLIST_INSERT(&jseg->js_entries, wk); 3363 switch (wk->wk_type) { 3364 case D_JADDREF: 3365 jaddref_write(WK_JADDREF(wk), jseg, data); 3366 break; 3367 case D_JREMREF: 3368 jremref_write(WK_JREMREF(wk), jseg, data); 3369 break; 3370 case D_JMVREF: 3371 jmvref_write(WK_JMVREF(wk), jseg, data); 3372 break; 3373 case D_JNEWBLK: 3374 jnewblk_write(WK_JNEWBLK(wk), jseg, data); 3375 break; 3376 case D_JFREEBLK: 3377 jfreeblk_write(WK_JFREEBLK(wk), jseg, data); 3378 break; 3379 case D_JFREEFRAG: 3380 jfreefrag_write(WK_JFREEFRAG(wk), jseg, data); 3381 break; 3382 case D_JTRUNC: 3383 jtrunc_write(WK_JTRUNC(wk), jseg, data); 3384 break; 3385 case D_JFSYNC: 3386 jfsync_write(WK_JFSYNC(wk), jseg, data); 3387 break; 3388 default: 3389 panic("process_journal: Unknown type %s", 3390 TYPENAME(wk->wk_type)); 3391 /* NOTREACHED */ 3392 } 3393 off += JREC_SIZE; 3394 data = bp->b_data + off; 3395 cnt--; 3396 } 3397 /* 3398 * Write this one buffer and continue. 3399 */ 3400 segwritten = 1; 3401 jblocks->jb_needseg = 0; 3402 WORKLIST_INSERT(&bp->b_dep, &jseg->js_list); 3403 FREE_LOCK(&lk); 3404 pbgetvp(ump->um_devvp, bp); 3405 /* 3406 * We only do the blocking wait once we find the journal 3407 * entry we're looking for. 3408 */ 3409 if (needwk == NULL && flags == MNT_WAIT) 3410 bwrite(bp); 3411 else 3412 bawrite(bp); 3413 ACQUIRE_LOCK(&lk); 3414 } 3415 /* 3416 * If we wrote a segment issue a synchronize cache so the journal 3417 * is reflected on disk before the data is written. Since reclaiming 3418 * journal space also requires writing a journal record this 3419 * process also enforces a barrier before reclamation. 3420 */ 3421 if (segwritten && shouldflush) { 3422 softdep_synchronize(bio, ump, 3423 TAILQ_LAST(&jblocks->jb_segs, jseglst)); 3424 } else if (bio) 3425 g_destroy_bio(bio); 3426 /* 3427 * If we've suspended the filesystem because we ran out of journal 3428 * space either try to sync it here to make some progress or 3429 * unsuspend it if we already have. 3430 */ 3431 if (flags == 0 && jblocks->jb_suspended) { 3432 if (journal_unsuspend(ump)) 3433 return; 3434 FREE_LOCK(&lk); 3435 VFS_SYNC(mp, MNT_NOWAIT); 3436 ffs_sbupdate(ump, MNT_WAIT, 0); 3437 ACQUIRE_LOCK(&lk); 3438 } 3439 } 3440 3441 /* 3442 * Complete a jseg, allowing all dependencies awaiting journal writes 3443 * to proceed. Each journal dependency also attaches a jsegdep to dependent 3444 * structures so that the journal segment can be freed to reclaim space. 3445 */ 3446 static void 3447 complete_jseg(jseg) 3448 struct jseg *jseg; 3449 { 3450 struct worklist *wk; 3451 struct jmvref *jmvref; 3452 int waiting; 3453 #ifdef INVARIANTS 3454 int i = 0; 3455 #endif 3456 3457 while ((wk = LIST_FIRST(&jseg->js_entries)) != NULL) { 3458 WORKLIST_REMOVE(wk); 3459 waiting = wk->wk_state & IOWAITING; 3460 wk->wk_state &= ~(INPROGRESS | IOWAITING); 3461 wk->wk_state |= COMPLETE; 3462 KASSERT(i++ < jseg->js_cnt, 3463 ("handle_written_jseg: overflow %d >= %d", 3464 i - 1, jseg->js_cnt)); 3465 switch (wk->wk_type) { 3466 case D_JADDREF: 3467 handle_written_jaddref(WK_JADDREF(wk)); 3468 break; 3469 case D_JREMREF: 3470 handle_written_jremref(WK_JREMREF(wk)); 3471 break; 3472 case D_JMVREF: 3473 rele_jseg(jseg); /* No jsegdep. */ 3474 jmvref = WK_JMVREF(wk); 3475 LIST_REMOVE(jmvref, jm_deps); 3476 if ((jmvref->jm_pagedep->pd_state & ONWORKLIST) == 0) 3477 free_pagedep(jmvref->jm_pagedep); 3478 WORKITEM_FREE(jmvref, D_JMVREF); 3479 break; 3480 case D_JNEWBLK: 3481 handle_written_jnewblk(WK_JNEWBLK(wk)); 3482 break; 3483 case D_JFREEBLK: 3484 handle_written_jblkdep(&WK_JFREEBLK(wk)->jf_dep); 3485 break; 3486 case D_JTRUNC: 3487 handle_written_jblkdep(&WK_JTRUNC(wk)->jt_dep); 3488 break; 3489 case D_JFSYNC: 3490 rele_jseg(jseg); /* No jsegdep. */ 3491 WORKITEM_FREE(wk, D_JFSYNC); 3492 break; 3493 case D_JFREEFRAG: 3494 handle_written_jfreefrag(WK_JFREEFRAG(wk)); 3495 break; 3496 default: 3497 panic("handle_written_jseg: Unknown type %s", 3498 TYPENAME(wk->wk_type)); 3499 /* NOTREACHED */ 3500 } 3501 if (waiting) 3502 wakeup(wk); 3503 } 3504 /* Release the self reference so the structure may be freed. */ 3505 rele_jseg(jseg); 3506 } 3507 3508 /* 3509 * Determine which jsegs are ready for completion processing. Waits for 3510 * synchronize cache to complete as well as forcing in-order completion 3511 * of journal entries. 3512 */ 3513 static void 3514 complete_jsegs(jseg) 3515 struct jseg *jseg; 3516 { 3517 struct jblocks *jblocks; 3518 struct jseg *jsegn; 3519 3520 jblocks = jseg->js_jblocks; 3521 /* 3522 * Don't allow out of order completions. If this isn't the first 3523 * block wait for it to write before we're done. 3524 */ 3525 if (jseg != jblocks->jb_writeseg) 3526 return; 3527 /* Iterate through available jsegs processing their entries. */ 3528 while (jseg && (jseg->js_state & ALLCOMPLETE) == ALLCOMPLETE) { 3529 jblocks->jb_oldestwrseq = jseg->js_oldseq; 3530 jsegn = TAILQ_NEXT(jseg, js_next); 3531 complete_jseg(jseg); 3532 jseg = jsegn; 3533 } 3534 jblocks->jb_writeseg = jseg; 3535 /* 3536 * Attempt to free jsegs now that oldestwrseq may have advanced. 3537 */ 3538 free_jsegs(jblocks); 3539 } 3540 3541 /* 3542 * Mark a jseg as DEPCOMPLETE and throw away the buffer. Attempt to handle 3543 * the final completions. 3544 */ 3545 static void 3546 handle_written_jseg(jseg, bp) 3547 struct jseg *jseg; 3548 struct buf *bp; 3549 { 3550 3551 if (jseg->js_refs == 0) 3552 panic("handle_written_jseg: No self-reference on %p", jseg); 3553 jseg->js_state |= DEPCOMPLETE; 3554 /* 3555 * We'll never need this buffer again, set flags so it will be 3556 * discarded. 3557 */ 3558 bp->b_flags |= B_INVAL | B_NOCACHE; 3559 pbrelvp(bp); 3560 complete_jsegs(jseg); 3561 } 3562 3563 static inline struct jsegdep * 3564 inoref_jseg(inoref) 3565 struct inoref *inoref; 3566 { 3567 struct jsegdep *jsegdep; 3568 3569 jsegdep = inoref->if_jsegdep; 3570 inoref->if_jsegdep = NULL; 3571 3572 return (jsegdep); 3573 } 3574 3575 /* 3576 * Called once a jremref has made it to stable store. The jremref is marked 3577 * complete and we attempt to free it. Any pagedeps writes sleeping waiting 3578 * for the jremref to complete will be awoken by free_jremref. 3579 */ 3580 static void 3581 handle_written_jremref(jremref) 3582 struct jremref *jremref; 3583 { 3584 struct inodedep *inodedep; 3585 struct jsegdep *jsegdep; 3586 struct dirrem *dirrem; 3587 3588 /* Grab the jsegdep. */ 3589 jsegdep = inoref_jseg(&jremref->jr_ref); 3590 /* 3591 * Remove us from the inoref list. 3592 */ 3593 if (inodedep_lookup(jremref->jr_list.wk_mp, jremref->jr_ref.if_ino, 3594 0, &inodedep) == 0) 3595 panic("handle_written_jremref: Lost inodedep"); 3596 TAILQ_REMOVE(&inodedep->id_inoreflst, &jremref->jr_ref, if_deps); 3597 /* 3598 * Complete the dirrem. 3599 */ 3600 dirrem = jremref->jr_dirrem; 3601 jremref->jr_dirrem = NULL; 3602 LIST_REMOVE(jremref, jr_deps); 3603 jsegdep->jd_state |= jremref->jr_state & MKDIR_PARENT; 3604 jwork_insert(&dirrem->dm_jwork, jsegdep); 3605 if (LIST_EMPTY(&dirrem->dm_jremrefhd) && 3606 (dirrem->dm_state & COMPLETE) != 0) 3607 add_to_worklist(&dirrem->dm_list, 0); 3608 free_jremref(jremref); 3609 } 3610 3611 /* 3612 * Called once a jaddref has made it to stable store. The dependency is 3613 * marked complete and any dependent structures are added to the inode 3614 * bufwait list to be completed as soon as it is written. If a bitmap write 3615 * depends on this entry we move the inode into the inodedephd of the 3616 * bmsafemap dependency and attempt to remove the jaddref from the bmsafemap. 3617 */ 3618 static void 3619 handle_written_jaddref(jaddref) 3620 struct jaddref *jaddref; 3621 { 3622 struct jsegdep *jsegdep; 3623 struct inodedep *inodedep; 3624 struct diradd *diradd; 3625 struct mkdir *mkdir; 3626 3627 /* Grab the jsegdep. */ 3628 jsegdep = inoref_jseg(&jaddref->ja_ref); 3629 mkdir = NULL; 3630 diradd = NULL; 3631 if (inodedep_lookup(jaddref->ja_list.wk_mp, jaddref->ja_ino, 3632 0, &inodedep) == 0) 3633 panic("handle_written_jaddref: Lost inodedep."); 3634 if (jaddref->ja_diradd == NULL) 3635 panic("handle_written_jaddref: No dependency"); 3636 if (jaddref->ja_diradd->da_list.wk_type == D_DIRADD) { 3637 diradd = jaddref->ja_diradd; 3638 WORKLIST_INSERT(&inodedep->id_bufwait, &diradd->da_list); 3639 } else if (jaddref->ja_state & MKDIR_PARENT) { 3640 mkdir = jaddref->ja_mkdir; 3641 WORKLIST_INSERT(&inodedep->id_bufwait, &mkdir->md_list); 3642 } else if (jaddref->ja_state & MKDIR_BODY) 3643 mkdir = jaddref->ja_mkdir; 3644 else 3645 panic("handle_written_jaddref: Unknown dependency %p", 3646 jaddref->ja_diradd); 3647 jaddref->ja_diradd = NULL; /* also clears ja_mkdir */ 3648 /* 3649 * Remove us from the inode list. 3650 */ 3651 TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref, if_deps); 3652 /* 3653 * The mkdir may be waiting on the jaddref to clear before freeing. 3654 */ 3655 if (mkdir) { 3656 KASSERT(mkdir->md_list.wk_type == D_MKDIR, 3657 ("handle_written_jaddref: Incorrect type for mkdir %s", 3658 TYPENAME(mkdir->md_list.wk_type))); 3659 mkdir->md_jaddref = NULL; 3660 diradd = mkdir->md_diradd; 3661 mkdir->md_state |= DEPCOMPLETE; 3662 complete_mkdir(mkdir); 3663 } 3664 jwork_insert(&diradd->da_jwork, jsegdep); 3665 if (jaddref->ja_state & NEWBLOCK) { 3666 inodedep->id_state |= ONDEPLIST; 3667 LIST_INSERT_HEAD(&inodedep->id_bmsafemap->sm_inodedephd, 3668 inodedep, id_deps); 3669 } 3670 free_jaddref(jaddref); 3671 } 3672 3673 /* 3674 * Called once a jnewblk journal is written. The allocdirect or allocindir 3675 * is placed in the bmsafemap to await notification of a written bitmap. If 3676 * the operation was canceled we add the segdep to the appropriate 3677 * dependency to free the journal space once the canceling operation 3678 * completes. 3679 */ 3680 static void 3681 handle_written_jnewblk(jnewblk) 3682 struct jnewblk *jnewblk; 3683 { 3684 struct bmsafemap *bmsafemap; 3685 struct freefrag *freefrag; 3686 struct freework *freework; 3687 struct jsegdep *jsegdep; 3688 struct newblk *newblk; 3689 3690 /* Grab the jsegdep. */ 3691 jsegdep = jnewblk->jn_jsegdep; 3692 jnewblk->jn_jsegdep = NULL; 3693 if (jnewblk->jn_dep == NULL) 3694 panic("handle_written_jnewblk: No dependency for the segdep."); 3695 switch (jnewblk->jn_dep->wk_type) { 3696 case D_NEWBLK: 3697 case D_ALLOCDIRECT: 3698 case D_ALLOCINDIR: 3699 /* 3700 * Add the written block to the bmsafemap so it can 3701 * be notified when the bitmap is on disk. 3702 */ 3703 newblk = WK_NEWBLK(jnewblk->jn_dep); 3704 newblk->nb_jnewblk = NULL; 3705 if ((newblk->nb_state & GOINGAWAY) == 0) { 3706 bmsafemap = newblk->nb_bmsafemap; 3707 newblk->nb_state |= ONDEPLIST; 3708 LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, 3709 nb_deps); 3710 } 3711 jwork_insert(&newblk->nb_jwork, jsegdep); 3712 break; 3713 case D_FREEFRAG: 3714 /* 3715 * A newblock being removed by a freefrag when replaced by 3716 * frag extension. 3717 */ 3718 freefrag = WK_FREEFRAG(jnewblk->jn_dep); 3719 freefrag->ff_jdep = NULL; 3720 jwork_insert(&freefrag->ff_jwork, jsegdep); 3721 break; 3722 case D_FREEWORK: 3723 /* 3724 * A direct block was removed by truncate. 3725 */ 3726 freework = WK_FREEWORK(jnewblk->jn_dep); 3727 freework->fw_jnewblk = NULL; 3728 jwork_insert(&freework->fw_freeblks->fb_jwork, jsegdep); 3729 break; 3730 default: 3731 panic("handle_written_jnewblk: Unknown type %d.", 3732 jnewblk->jn_dep->wk_type); 3733 } 3734 jnewblk->jn_dep = NULL; 3735 free_jnewblk(jnewblk); 3736 } 3737 3738 /* 3739 * Cancel a jfreefrag that won't be needed, probably due to colliding with 3740 * an in-flight allocation that has not yet been committed. Divorce us 3741 * from the freefrag and mark it DEPCOMPLETE so that it may be added 3742 * to the worklist. 3743 */ 3744 static void 3745 cancel_jfreefrag(jfreefrag) 3746 struct jfreefrag *jfreefrag; 3747 { 3748 struct freefrag *freefrag; 3749 3750 if (jfreefrag->fr_jsegdep) { 3751 free_jsegdep(jfreefrag->fr_jsegdep); 3752 jfreefrag->fr_jsegdep = NULL; 3753 } 3754 freefrag = jfreefrag->fr_freefrag; 3755 jfreefrag->fr_freefrag = NULL; 3756 free_jfreefrag(jfreefrag); 3757 freefrag->ff_state |= DEPCOMPLETE; 3758 CTR1(KTR_SUJ, "cancel_jfreefrag: blkno %jd", freefrag->ff_blkno); 3759 } 3760 3761 /* 3762 * Free a jfreefrag when the parent freefrag is rendered obsolete. 3763 */ 3764 static void 3765 free_jfreefrag(jfreefrag) 3766 struct jfreefrag *jfreefrag; 3767 { 3768 3769 if (jfreefrag->fr_state & INPROGRESS) 3770 WORKLIST_REMOVE(&jfreefrag->fr_list); 3771 else if (jfreefrag->fr_state & ONWORKLIST) 3772 remove_from_journal(&jfreefrag->fr_list); 3773 if (jfreefrag->fr_freefrag != NULL) 3774 panic("free_jfreefrag: Still attached to a freefrag."); 3775 WORKITEM_FREE(jfreefrag, D_JFREEFRAG); 3776 } 3777 3778 /* 3779 * Called when the journal write for a jfreefrag completes. The parent 3780 * freefrag is added to the worklist if this completes its dependencies. 3781 */ 3782 static void 3783 handle_written_jfreefrag(jfreefrag) 3784 struct jfreefrag *jfreefrag; 3785 { 3786 struct jsegdep *jsegdep; 3787 struct freefrag *freefrag; 3788 3789 /* Grab the jsegdep. */ 3790 jsegdep = jfreefrag->fr_jsegdep; 3791 jfreefrag->fr_jsegdep = NULL; 3792 freefrag = jfreefrag->fr_freefrag; 3793 if (freefrag == NULL) 3794 panic("handle_written_jfreefrag: No freefrag."); 3795 freefrag->ff_state |= DEPCOMPLETE; 3796 freefrag->ff_jdep = NULL; 3797 jwork_insert(&freefrag->ff_jwork, jsegdep); 3798 if ((freefrag->ff_state & ALLCOMPLETE) == ALLCOMPLETE) 3799 add_to_worklist(&freefrag->ff_list, 0); 3800 jfreefrag->fr_freefrag = NULL; 3801 free_jfreefrag(jfreefrag); 3802 } 3803 3804 /* 3805 * Called when the journal write for a jfreeblk completes. The jfreeblk 3806 * is removed from the freeblks list of pending journal writes and the 3807 * jsegdep is moved to the freeblks jwork to be completed when all blocks 3808 * have been reclaimed. 3809 */ 3810 static void 3811 handle_written_jblkdep(jblkdep) 3812 struct jblkdep *jblkdep; 3813 { 3814 struct freeblks *freeblks; 3815 struct jsegdep *jsegdep; 3816 3817 /* Grab the jsegdep. */ 3818 jsegdep = jblkdep->jb_jsegdep; 3819 jblkdep->jb_jsegdep = NULL; 3820 freeblks = jblkdep->jb_freeblks; 3821 LIST_REMOVE(jblkdep, jb_deps); 3822 jwork_insert(&freeblks->fb_jwork, jsegdep); 3823 /* 3824 * If the freeblks is all journaled, we can add it to the worklist. 3825 */ 3826 if (LIST_EMPTY(&freeblks->fb_jblkdephd) && 3827 (freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE) 3828 add_to_worklist(&freeblks->fb_list, WK_NODELAY); 3829 3830 free_jblkdep(jblkdep); 3831 } 3832 3833 static struct jsegdep * 3834 newjsegdep(struct worklist *wk) 3835 { 3836 struct jsegdep *jsegdep; 3837 3838 jsegdep = malloc(sizeof(*jsegdep), M_JSEGDEP, M_SOFTDEP_FLAGS); 3839 workitem_alloc(&jsegdep->jd_list, D_JSEGDEP, wk->wk_mp); 3840 jsegdep->jd_seg = NULL; 3841 3842 return (jsegdep); 3843 } 3844 3845 static struct jmvref * 3846 newjmvref(dp, ino, oldoff, newoff) 3847 struct inode *dp; 3848 ino_t ino; 3849 off_t oldoff; 3850 off_t newoff; 3851 { 3852 struct jmvref *jmvref; 3853 3854 jmvref = malloc(sizeof(*jmvref), M_JMVREF, M_SOFTDEP_FLAGS); 3855 workitem_alloc(&jmvref->jm_list, D_JMVREF, UFSTOVFS(dp->i_ump)); 3856 jmvref->jm_list.wk_state = ATTACHED | DEPCOMPLETE; 3857 jmvref->jm_parent = dp->i_number; 3858 jmvref->jm_ino = ino; 3859 jmvref->jm_oldoff = oldoff; 3860 jmvref->jm_newoff = newoff; 3861 3862 return (jmvref); 3863 } 3864 3865 /* 3866 * Allocate a new jremref that tracks the removal of ip from dp with the 3867 * directory entry offset of diroff. Mark the entry as ATTACHED and 3868 * DEPCOMPLETE as we have all the information required for the journal write 3869 * and the directory has already been removed from the buffer. The caller 3870 * is responsible for linking the jremref into the pagedep and adding it 3871 * to the journal to write. The MKDIR_PARENT flag is set if we're doing 3872 * a DOTDOT addition so handle_workitem_remove() can properly assign 3873 * the jsegdep when we're done. 3874 */ 3875 static struct jremref * 3876 newjremref(struct dirrem *dirrem, struct inode *dp, struct inode *ip, 3877 off_t diroff, nlink_t nlink) 3878 { 3879 struct jremref *jremref; 3880 3881 jremref = malloc(sizeof(*jremref), M_JREMREF, M_SOFTDEP_FLAGS); 3882 workitem_alloc(&jremref->jr_list, D_JREMREF, UFSTOVFS(dp->i_ump)); 3883 jremref->jr_state = ATTACHED; 3884 newinoref(&jremref->jr_ref, ip->i_number, dp->i_number, diroff, 3885 nlink, ip->i_mode); 3886 jremref->jr_dirrem = dirrem; 3887 3888 return (jremref); 3889 } 3890 3891 static inline void 3892 newinoref(struct inoref *inoref, ino_t ino, ino_t parent, off_t diroff, 3893 nlink_t nlink, uint16_t mode) 3894 { 3895 3896 inoref->if_jsegdep = newjsegdep(&inoref->if_list); 3897 inoref->if_diroff = diroff; 3898 inoref->if_ino = ino; 3899 inoref->if_parent = parent; 3900 inoref->if_nlink = nlink; 3901 inoref->if_mode = mode; 3902 } 3903 3904 /* 3905 * Allocate a new jaddref to track the addition of ino to dp at diroff. The 3906 * directory offset may not be known until later. The caller is responsible 3907 * adding the entry to the journal when this information is available. nlink 3908 * should be the link count prior to the addition and mode is only required 3909 * to have the correct FMT. 3910 */ 3911 static struct jaddref * 3912 newjaddref(struct inode *dp, ino_t ino, off_t diroff, int16_t nlink, 3913 uint16_t mode) 3914 { 3915 struct jaddref *jaddref; 3916 3917 jaddref = malloc(sizeof(*jaddref), M_JADDREF, M_SOFTDEP_FLAGS); 3918 workitem_alloc(&jaddref->ja_list, D_JADDREF, UFSTOVFS(dp->i_ump)); 3919 jaddref->ja_state = ATTACHED; 3920 jaddref->ja_mkdir = NULL; 3921 newinoref(&jaddref->ja_ref, ino, dp->i_number, diroff, nlink, mode); 3922 3923 return (jaddref); 3924 } 3925 3926 /* 3927 * Create a new free dependency for a freework. The caller is responsible 3928 * for adjusting the reference count when it has the lock held. The freedep 3929 * will track an outstanding bitmap write that will ultimately clear the 3930 * freework to continue. 3931 */ 3932 static struct freedep * 3933 newfreedep(struct freework *freework) 3934 { 3935 struct freedep *freedep; 3936 3937 freedep = malloc(sizeof(*freedep), M_FREEDEP, M_SOFTDEP_FLAGS); 3938 workitem_alloc(&freedep->fd_list, D_FREEDEP, freework->fw_list.wk_mp); 3939 freedep->fd_freework = freework; 3940 3941 return (freedep); 3942 } 3943 3944 /* 3945 * Free a freedep structure once the buffer it is linked to is written. If 3946 * this is the last reference to the freework schedule it for completion. 3947 */ 3948 static void 3949 free_freedep(freedep) 3950 struct freedep *freedep; 3951 { 3952 struct freework *freework; 3953 3954 freework = freedep->fd_freework; 3955 freework->fw_freeblks->fb_cgwait--; 3956 if (--freework->fw_ref == 0) 3957 freework_enqueue(freework); 3958 WORKITEM_FREE(freedep, D_FREEDEP); 3959 } 3960 3961 /* 3962 * Allocate a new freework structure that may be a level in an indirect 3963 * when parent is not NULL or a top level block when it is. The top level 3964 * freework structures are allocated without lk held and before the freeblks 3965 * is visible outside of softdep_setup_freeblocks(). 3966 */ 3967 static struct freework * 3968 newfreework(ump, freeblks, parent, lbn, nb, frags, off, journal) 3969 struct ufsmount *ump; 3970 struct freeblks *freeblks; 3971 struct freework *parent; 3972 ufs_lbn_t lbn; 3973 ufs2_daddr_t nb; 3974 int frags; 3975 int off; 3976 int journal; 3977 { 3978 struct freework *freework; 3979 3980 freework = malloc(sizeof(*freework), M_FREEWORK, M_SOFTDEP_FLAGS); 3981 workitem_alloc(&freework->fw_list, D_FREEWORK, freeblks->fb_list.wk_mp); 3982 freework->fw_state = ATTACHED; 3983 freework->fw_jnewblk = NULL; 3984 freework->fw_freeblks = freeblks; 3985 freework->fw_parent = parent; 3986 freework->fw_lbn = lbn; 3987 freework->fw_blkno = nb; 3988 freework->fw_frags = frags; 3989 freework->fw_indir = NULL; 3990 freework->fw_ref = (MOUNTEDSUJ(UFSTOVFS(ump)) == 0 || lbn >= -NXADDR) 3991 ? 0 : NINDIR(ump->um_fs) + 1; 3992 freework->fw_start = freework->fw_off = off; 3993 if (journal) 3994 newjfreeblk(freeblks, lbn, nb, frags); 3995 if (parent == NULL) { 3996 ACQUIRE_LOCK(&lk); 3997 WORKLIST_INSERT(&freeblks->fb_freeworkhd, &freework->fw_list); 3998 freeblks->fb_ref++; 3999 FREE_LOCK(&lk); 4000 } 4001 4002 return (freework); 4003 } 4004 4005 /* 4006 * Eliminate a jfreeblk for a block that does not need journaling. 4007 */ 4008 static void 4009 cancel_jfreeblk(freeblks, blkno) 4010 struct freeblks *freeblks; 4011 ufs2_daddr_t blkno; 4012 { 4013 struct jfreeblk *jfreeblk; 4014 struct jblkdep *jblkdep; 4015 4016 LIST_FOREACH(jblkdep, &freeblks->fb_jblkdephd, jb_deps) { 4017 if (jblkdep->jb_list.wk_type != D_JFREEBLK) 4018 continue; 4019 jfreeblk = WK_JFREEBLK(&jblkdep->jb_list); 4020 if (jfreeblk->jf_blkno == blkno) 4021 break; 4022 } 4023 if (jblkdep == NULL) 4024 return; 4025 CTR1(KTR_SUJ, "cancel_jfreeblk: blkno %jd", blkno); 4026 free_jsegdep(jblkdep->jb_jsegdep); 4027 LIST_REMOVE(jblkdep, jb_deps); 4028 WORKITEM_FREE(jfreeblk, D_JFREEBLK); 4029 } 4030 4031 /* 4032 * Allocate a new jfreeblk to journal top level block pointer when truncating 4033 * a file. The caller must add this to the worklist when lk is held. 4034 */ 4035 static struct jfreeblk * 4036 newjfreeblk(freeblks, lbn, blkno, frags) 4037 struct freeblks *freeblks; 4038 ufs_lbn_t lbn; 4039 ufs2_daddr_t blkno; 4040 int frags; 4041 { 4042 struct jfreeblk *jfreeblk; 4043 4044 jfreeblk = malloc(sizeof(*jfreeblk), M_JFREEBLK, M_SOFTDEP_FLAGS); 4045 workitem_alloc(&jfreeblk->jf_dep.jb_list, D_JFREEBLK, 4046 freeblks->fb_list.wk_mp); 4047 jfreeblk->jf_dep.jb_jsegdep = newjsegdep(&jfreeblk->jf_dep.jb_list); 4048 jfreeblk->jf_dep.jb_freeblks = freeblks; 4049 jfreeblk->jf_ino = freeblks->fb_inum; 4050 jfreeblk->jf_lbn = lbn; 4051 jfreeblk->jf_blkno = blkno; 4052 jfreeblk->jf_frags = frags; 4053 LIST_INSERT_HEAD(&freeblks->fb_jblkdephd, &jfreeblk->jf_dep, jb_deps); 4054 4055 return (jfreeblk); 4056 } 4057 4058 /* 4059 * Allocate a new jtrunc to track a partial truncation. 4060 */ 4061 static struct jtrunc * 4062 newjtrunc(freeblks, size, extsize) 4063 struct freeblks *freeblks; 4064 off_t size; 4065 int extsize; 4066 { 4067 struct jtrunc *jtrunc; 4068 4069 jtrunc = malloc(sizeof(*jtrunc), M_JTRUNC, M_SOFTDEP_FLAGS); 4070 workitem_alloc(&jtrunc->jt_dep.jb_list, D_JTRUNC, 4071 freeblks->fb_list.wk_mp); 4072 jtrunc->jt_dep.jb_jsegdep = newjsegdep(&jtrunc->jt_dep.jb_list); 4073 jtrunc->jt_dep.jb_freeblks = freeblks; 4074 jtrunc->jt_ino = freeblks->fb_inum; 4075 jtrunc->jt_size = size; 4076 jtrunc->jt_extsize = extsize; 4077 LIST_INSERT_HEAD(&freeblks->fb_jblkdephd, &jtrunc->jt_dep, jb_deps); 4078 4079 return (jtrunc); 4080 } 4081 4082 /* 4083 * If we're canceling a new bitmap we have to search for another ref 4084 * to move into the bmsafemap dep. This might be better expressed 4085 * with another structure. 4086 */ 4087 static void 4088 move_newblock_dep(jaddref, inodedep) 4089 struct jaddref *jaddref; 4090 struct inodedep *inodedep; 4091 { 4092 struct inoref *inoref; 4093 struct jaddref *jaddrefn; 4094 4095 jaddrefn = NULL; 4096 for (inoref = TAILQ_NEXT(&jaddref->ja_ref, if_deps); inoref; 4097 inoref = TAILQ_NEXT(inoref, if_deps)) { 4098 if ((jaddref->ja_state & NEWBLOCK) && 4099 inoref->if_list.wk_type == D_JADDREF) { 4100 jaddrefn = (struct jaddref *)inoref; 4101 break; 4102 } 4103 } 4104 if (jaddrefn == NULL) 4105 return; 4106 jaddrefn->ja_state &= ~(ATTACHED | UNDONE); 4107 jaddrefn->ja_state |= jaddref->ja_state & 4108 (ATTACHED | UNDONE | NEWBLOCK); 4109 jaddref->ja_state &= ~(ATTACHED | UNDONE | NEWBLOCK); 4110 jaddref->ja_state |= ATTACHED; 4111 LIST_REMOVE(jaddref, ja_bmdeps); 4112 LIST_INSERT_HEAD(&inodedep->id_bmsafemap->sm_jaddrefhd, jaddrefn, 4113 ja_bmdeps); 4114 } 4115 4116 /* 4117 * Cancel a jaddref either before it has been written or while it is being 4118 * written. This happens when a link is removed before the add reaches 4119 * the disk. The jaddref dependency is kept linked into the bmsafemap 4120 * and inode to prevent the link count or bitmap from reaching the disk 4121 * until handle_workitem_remove() re-adjusts the counts and bitmaps as 4122 * required. 4123 * 4124 * Returns 1 if the canceled addref requires journaling of the remove and 4125 * 0 otherwise. 4126 */ 4127 static int 4128 cancel_jaddref(jaddref, inodedep, wkhd) 4129 struct jaddref *jaddref; 4130 struct inodedep *inodedep; 4131 struct workhead *wkhd; 4132 { 4133 struct inoref *inoref; 4134 struct jsegdep *jsegdep; 4135 int needsj; 4136 4137 KASSERT((jaddref->ja_state & COMPLETE) == 0, 4138 ("cancel_jaddref: Canceling complete jaddref")); 4139 if (jaddref->ja_state & (INPROGRESS | COMPLETE)) 4140 needsj = 1; 4141 else 4142 needsj = 0; 4143 if (inodedep == NULL) 4144 if (inodedep_lookup(jaddref->ja_list.wk_mp, jaddref->ja_ino, 4145 0, &inodedep) == 0) 4146 panic("cancel_jaddref: Lost inodedep"); 4147 /* 4148 * We must adjust the nlink of any reference operation that follows 4149 * us so that it is consistent with the in-memory reference. This 4150 * ensures that inode nlink rollbacks always have the correct link. 4151 */ 4152 if (needsj == 0) { 4153 for (inoref = TAILQ_NEXT(&jaddref->ja_ref, if_deps); inoref; 4154 inoref = TAILQ_NEXT(inoref, if_deps)) { 4155 if (inoref->if_state & GOINGAWAY) 4156 break; 4157 inoref->if_nlink--; 4158 } 4159 } 4160 jsegdep = inoref_jseg(&jaddref->ja_ref); 4161 if (jaddref->ja_state & NEWBLOCK) 4162 move_newblock_dep(jaddref, inodedep); 4163 wake_worklist(&jaddref->ja_list); 4164 jaddref->ja_mkdir = NULL; 4165 if (jaddref->ja_state & INPROGRESS) { 4166 jaddref->ja_state &= ~INPROGRESS; 4167 WORKLIST_REMOVE(&jaddref->ja_list); 4168 jwork_insert(wkhd, jsegdep); 4169 } else { 4170 free_jsegdep(jsegdep); 4171 if (jaddref->ja_state & DEPCOMPLETE) 4172 remove_from_journal(&jaddref->ja_list); 4173 } 4174 jaddref->ja_state |= (GOINGAWAY | DEPCOMPLETE); 4175 /* 4176 * Leave NEWBLOCK jaddrefs on the inodedep so handle_workitem_remove 4177 * can arrange for them to be freed with the bitmap. Otherwise we 4178 * no longer need this addref attached to the inoreflst and it 4179 * will incorrectly adjust nlink if we leave it. 4180 */ 4181 if ((jaddref->ja_state & NEWBLOCK) == 0) { 4182 TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref, 4183 if_deps); 4184 jaddref->ja_state |= COMPLETE; 4185 free_jaddref(jaddref); 4186 return (needsj); 4187 } 4188 /* 4189 * Leave the head of the list for jsegdeps for fast merging. 4190 */ 4191 if (LIST_FIRST(wkhd) != NULL) { 4192 jaddref->ja_state |= ONWORKLIST; 4193 LIST_INSERT_AFTER(LIST_FIRST(wkhd), &jaddref->ja_list, wk_list); 4194 } else 4195 WORKLIST_INSERT(wkhd, &jaddref->ja_list); 4196 4197 return (needsj); 4198 } 4199 4200 /* 4201 * Attempt to free a jaddref structure when some work completes. This 4202 * should only succeed once the entry is written and all dependencies have 4203 * been notified. 4204 */ 4205 static void 4206 free_jaddref(jaddref) 4207 struct jaddref *jaddref; 4208 { 4209 4210 if ((jaddref->ja_state & ALLCOMPLETE) != ALLCOMPLETE) 4211 return; 4212 if (jaddref->ja_ref.if_jsegdep) 4213 panic("free_jaddref: segdep attached to jaddref %p(0x%X)\n", 4214 jaddref, jaddref->ja_state); 4215 if (jaddref->ja_state & NEWBLOCK) 4216 LIST_REMOVE(jaddref, ja_bmdeps); 4217 if (jaddref->ja_state & (INPROGRESS | ONWORKLIST)) 4218 panic("free_jaddref: Bad state %p(0x%X)", 4219 jaddref, jaddref->ja_state); 4220 if (jaddref->ja_mkdir != NULL) 4221 panic("free_jaddref: Work pending, 0x%X\n", jaddref->ja_state); 4222 WORKITEM_FREE(jaddref, D_JADDREF); 4223 } 4224 4225 /* 4226 * Free a jremref structure once it has been written or discarded. 4227 */ 4228 static void 4229 free_jremref(jremref) 4230 struct jremref *jremref; 4231 { 4232 4233 if (jremref->jr_ref.if_jsegdep) 4234 free_jsegdep(jremref->jr_ref.if_jsegdep); 4235 if (jremref->jr_state & INPROGRESS) 4236 panic("free_jremref: IO still pending"); 4237 WORKITEM_FREE(jremref, D_JREMREF); 4238 } 4239 4240 /* 4241 * Free a jnewblk structure. 4242 */ 4243 static void 4244 free_jnewblk(jnewblk) 4245 struct jnewblk *jnewblk; 4246 { 4247 4248 if ((jnewblk->jn_state & ALLCOMPLETE) != ALLCOMPLETE) 4249 return; 4250 LIST_REMOVE(jnewblk, jn_deps); 4251 if (jnewblk->jn_dep != NULL) 4252 panic("free_jnewblk: Dependency still attached."); 4253 WORKITEM_FREE(jnewblk, D_JNEWBLK); 4254 } 4255 4256 /* 4257 * Cancel a jnewblk which has been been made redundant by frag extension. 4258 */ 4259 static void 4260 cancel_jnewblk(jnewblk, wkhd) 4261 struct jnewblk *jnewblk; 4262 struct workhead *wkhd; 4263 { 4264 struct jsegdep *jsegdep; 4265 4266 CTR1(KTR_SUJ, "cancel_jnewblk: blkno %jd", jnewblk->jn_blkno); 4267 jsegdep = jnewblk->jn_jsegdep; 4268 if (jnewblk->jn_jsegdep == NULL || jnewblk->jn_dep == NULL) 4269 panic("cancel_jnewblk: Invalid state"); 4270 jnewblk->jn_jsegdep = NULL; 4271 jnewblk->jn_dep = NULL; 4272 jnewblk->jn_state |= GOINGAWAY; 4273 if (jnewblk->jn_state & INPROGRESS) { 4274 jnewblk->jn_state &= ~INPROGRESS; 4275 WORKLIST_REMOVE(&jnewblk->jn_list); 4276 jwork_insert(wkhd, jsegdep); 4277 } else { 4278 free_jsegdep(jsegdep); 4279 remove_from_journal(&jnewblk->jn_list); 4280 } 4281 wake_worklist(&jnewblk->jn_list); 4282 WORKLIST_INSERT(wkhd, &jnewblk->jn_list); 4283 } 4284 4285 static void 4286 free_jblkdep(jblkdep) 4287 struct jblkdep *jblkdep; 4288 { 4289 4290 if (jblkdep->jb_list.wk_type == D_JFREEBLK) 4291 WORKITEM_FREE(jblkdep, D_JFREEBLK); 4292 else if (jblkdep->jb_list.wk_type == D_JTRUNC) 4293 WORKITEM_FREE(jblkdep, D_JTRUNC); 4294 else 4295 panic("free_jblkdep: Unexpected type %s", 4296 TYPENAME(jblkdep->jb_list.wk_type)); 4297 } 4298 4299 /* 4300 * Free a single jseg once it is no longer referenced in memory or on 4301 * disk. Reclaim journal blocks and dependencies waiting for the segment 4302 * to disappear. 4303 */ 4304 static void 4305 free_jseg(jseg, jblocks) 4306 struct jseg *jseg; 4307 struct jblocks *jblocks; 4308 { 4309 struct freework *freework; 4310 4311 /* 4312 * Free freework structures that were lingering to indicate freed 4313 * indirect blocks that forced journal write ordering on reallocate. 4314 */ 4315 while ((freework = LIST_FIRST(&jseg->js_indirs)) != NULL) 4316 indirblk_remove(freework); 4317 if (jblocks->jb_oldestseg == jseg) 4318 jblocks->jb_oldestseg = TAILQ_NEXT(jseg, js_next); 4319 TAILQ_REMOVE(&jblocks->jb_segs, jseg, js_next); 4320 jblocks_free(jblocks, jseg->js_list.wk_mp, jseg->js_size); 4321 KASSERT(LIST_EMPTY(&jseg->js_entries), 4322 ("free_jseg: Freed jseg has valid entries.")); 4323 WORKITEM_FREE(jseg, D_JSEG); 4324 } 4325 4326 /* 4327 * Free all jsegs that meet the criteria for being reclaimed and update 4328 * oldestseg. 4329 */ 4330 static void 4331 free_jsegs(jblocks) 4332 struct jblocks *jblocks; 4333 { 4334 struct jseg *jseg; 4335 4336 /* 4337 * Free only those jsegs which have none allocated before them to 4338 * preserve the journal space ordering. 4339 */ 4340 while ((jseg = TAILQ_FIRST(&jblocks->jb_segs)) != NULL) { 4341 /* 4342 * Only reclaim space when nothing depends on this journal 4343 * set and another set has written that it is no longer 4344 * valid. 4345 */ 4346 if (jseg->js_refs != 0) { 4347 jblocks->jb_oldestseg = jseg; 4348 return; 4349 } 4350 if ((jseg->js_state & ALLCOMPLETE) != ALLCOMPLETE) 4351 break; 4352 if (jseg->js_seq > jblocks->jb_oldestwrseq) 4353 break; 4354 /* 4355 * We can free jsegs that didn't write entries when 4356 * oldestwrseq == js_seq. 4357 */ 4358 if (jseg->js_seq == jblocks->jb_oldestwrseq && 4359 jseg->js_cnt != 0) 4360 break; 4361 free_jseg(jseg, jblocks); 4362 } 4363 /* 4364 * If we exited the loop above we still must discover the 4365 * oldest valid segment. 4366 */ 4367 if (jseg) 4368 for (jseg = jblocks->jb_oldestseg; jseg != NULL; 4369 jseg = TAILQ_NEXT(jseg, js_next)) 4370 if (jseg->js_refs != 0) 4371 break; 4372 jblocks->jb_oldestseg = jseg; 4373 /* 4374 * The journal has no valid records but some jsegs may still be 4375 * waiting on oldestwrseq to advance. We force a small record 4376 * out to permit these lingering records to be reclaimed. 4377 */ 4378 if (jblocks->jb_oldestseg == NULL && !TAILQ_EMPTY(&jblocks->jb_segs)) 4379 jblocks->jb_needseg = 1; 4380 } 4381 4382 /* 4383 * Release one reference to a jseg and free it if the count reaches 0. This 4384 * should eventually reclaim journal space as well. 4385 */ 4386 static void 4387 rele_jseg(jseg) 4388 struct jseg *jseg; 4389 { 4390 4391 KASSERT(jseg->js_refs > 0, 4392 ("free_jseg: Invalid refcnt %d", jseg->js_refs)); 4393 if (--jseg->js_refs != 0) 4394 return; 4395 free_jsegs(jseg->js_jblocks); 4396 } 4397 4398 /* 4399 * Release a jsegdep and decrement the jseg count. 4400 */ 4401 static void 4402 free_jsegdep(jsegdep) 4403 struct jsegdep *jsegdep; 4404 { 4405 4406 if (jsegdep->jd_seg) 4407 rele_jseg(jsegdep->jd_seg); 4408 WORKITEM_FREE(jsegdep, D_JSEGDEP); 4409 } 4410 4411 /* 4412 * Wait for a journal item to make it to disk. Initiate journal processing 4413 * if required. 4414 */ 4415 static int 4416 jwait(wk, waitfor) 4417 struct worklist *wk; 4418 int waitfor; 4419 { 4420 4421 /* 4422 * Blocking journal waits cause slow synchronous behavior. Record 4423 * stats on the frequency of these blocking operations. 4424 */ 4425 if (waitfor == MNT_WAIT) { 4426 stat_journal_wait++; 4427 switch (wk->wk_type) { 4428 case D_JREMREF: 4429 case D_JMVREF: 4430 stat_jwait_filepage++; 4431 break; 4432 case D_JTRUNC: 4433 case D_JFREEBLK: 4434 stat_jwait_freeblks++; 4435 break; 4436 case D_JNEWBLK: 4437 stat_jwait_newblk++; 4438 break; 4439 case D_JADDREF: 4440 stat_jwait_inode++; 4441 break; 4442 default: 4443 break; 4444 } 4445 } 4446 /* 4447 * If IO has not started we process the journal. We can't mark the 4448 * worklist item as IOWAITING because we drop the lock while 4449 * processing the journal and the worklist entry may be freed after 4450 * this point. The caller may call back in and re-issue the request. 4451 */ 4452 if ((wk->wk_state & INPROGRESS) == 0) { 4453 softdep_process_journal(wk->wk_mp, wk, waitfor); 4454 if (waitfor != MNT_WAIT) 4455 return (EBUSY); 4456 return (0); 4457 } 4458 if (waitfor != MNT_WAIT) 4459 return (EBUSY); 4460 wait_worklist(wk, "jwait"); 4461 return (0); 4462 } 4463 4464 /* 4465 * Lookup an inodedep based on an inode pointer and set the nlinkdelta as 4466 * appropriate. This is a convenience function to reduce duplicate code 4467 * for the setup and revert functions below. 4468 */ 4469 static struct inodedep * 4470 inodedep_lookup_ip(ip) 4471 struct inode *ip; 4472 { 4473 struct inodedep *inodedep; 4474 int dflags; 4475 4476 KASSERT(ip->i_nlink >= ip->i_effnlink, 4477 ("inodedep_lookup_ip: bad delta")); 4478 dflags = DEPALLOC; 4479 if (IS_SNAPSHOT(ip)) 4480 dflags |= NODELAY; 4481 (void) inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, dflags, 4482 &inodedep); 4483 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 4484 KASSERT((inodedep->id_state & UNLINKED) == 0, ("inode unlinked")); 4485 4486 return (inodedep); 4487 } 4488 4489 /* 4490 * Called prior to creating a new inode and linking it to a directory. The 4491 * jaddref structure must already be allocated by softdep_setup_inomapdep 4492 * and it is discovered here so we can initialize the mode and update 4493 * nlinkdelta. 4494 */ 4495 void 4496 softdep_setup_create(dp, ip) 4497 struct inode *dp; 4498 struct inode *ip; 4499 { 4500 struct inodedep *inodedep; 4501 struct jaddref *jaddref; 4502 struct vnode *dvp; 4503 4504 KASSERT(ip->i_nlink == 1, 4505 ("softdep_setup_create: Invalid link count.")); 4506 dvp = ITOV(dp); 4507 ACQUIRE_LOCK(&lk); 4508 inodedep = inodedep_lookup_ip(ip); 4509 if (DOINGSUJ(dvp)) { 4510 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 4511 inoreflst); 4512 KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number, 4513 ("softdep_setup_create: No addref structure present.")); 4514 } 4515 softdep_prelink(dvp, NULL); 4516 FREE_LOCK(&lk); 4517 } 4518 4519 /* 4520 * Create a jaddref structure to track the addition of a DOTDOT link when 4521 * we are reparenting an inode as part of a rename. This jaddref will be 4522 * found by softdep_setup_directory_change. Adjusts nlinkdelta for 4523 * non-journaling softdep. 4524 */ 4525 void 4526 softdep_setup_dotdot_link(dp, ip) 4527 struct inode *dp; 4528 struct inode *ip; 4529 { 4530 struct inodedep *inodedep; 4531 struct jaddref *jaddref; 4532 struct vnode *dvp; 4533 struct vnode *vp; 4534 4535 dvp = ITOV(dp); 4536 vp = ITOV(ip); 4537 jaddref = NULL; 4538 /* 4539 * We don't set MKDIR_PARENT as this is not tied to a mkdir and 4540 * is used as a normal link would be. 4541 */ 4542 if (DOINGSUJ(dvp)) 4543 jaddref = newjaddref(ip, dp->i_number, DOTDOT_OFFSET, 4544 dp->i_effnlink - 1, dp->i_mode); 4545 ACQUIRE_LOCK(&lk); 4546 inodedep = inodedep_lookup_ip(dp); 4547 if (jaddref) 4548 TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref, 4549 if_deps); 4550 softdep_prelink(dvp, ITOV(ip)); 4551 FREE_LOCK(&lk); 4552 } 4553 4554 /* 4555 * Create a jaddref structure to track a new link to an inode. The directory 4556 * offset is not known until softdep_setup_directory_add or 4557 * softdep_setup_directory_change. Adjusts nlinkdelta for non-journaling 4558 * softdep. 4559 */ 4560 void 4561 softdep_setup_link(dp, ip) 4562 struct inode *dp; 4563 struct inode *ip; 4564 { 4565 struct inodedep *inodedep; 4566 struct jaddref *jaddref; 4567 struct vnode *dvp; 4568 4569 dvp = ITOV(dp); 4570 jaddref = NULL; 4571 if (DOINGSUJ(dvp)) 4572 jaddref = newjaddref(dp, ip->i_number, 0, ip->i_effnlink - 1, 4573 ip->i_mode); 4574 ACQUIRE_LOCK(&lk); 4575 inodedep = inodedep_lookup_ip(ip); 4576 if (jaddref) 4577 TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref, 4578 if_deps); 4579 softdep_prelink(dvp, ITOV(ip)); 4580 FREE_LOCK(&lk); 4581 } 4582 4583 /* 4584 * Called to create the jaddref structures to track . and .. references as 4585 * well as lookup and further initialize the incomplete jaddref created 4586 * by softdep_setup_inomapdep when the inode was allocated. Adjusts 4587 * nlinkdelta for non-journaling softdep. 4588 */ 4589 void 4590 softdep_setup_mkdir(dp, ip) 4591 struct inode *dp; 4592 struct inode *ip; 4593 { 4594 struct inodedep *inodedep; 4595 struct jaddref *dotdotaddref; 4596 struct jaddref *dotaddref; 4597 struct jaddref *jaddref; 4598 struct vnode *dvp; 4599 4600 dvp = ITOV(dp); 4601 dotaddref = dotdotaddref = NULL; 4602 if (DOINGSUJ(dvp)) { 4603 dotaddref = newjaddref(ip, ip->i_number, DOT_OFFSET, 1, 4604 ip->i_mode); 4605 dotaddref->ja_state |= MKDIR_BODY; 4606 dotdotaddref = newjaddref(ip, dp->i_number, DOTDOT_OFFSET, 4607 dp->i_effnlink - 1, dp->i_mode); 4608 dotdotaddref->ja_state |= MKDIR_PARENT; 4609 } 4610 ACQUIRE_LOCK(&lk); 4611 inodedep = inodedep_lookup_ip(ip); 4612 if (DOINGSUJ(dvp)) { 4613 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 4614 inoreflst); 4615 KASSERT(jaddref != NULL, 4616 ("softdep_setup_mkdir: No addref structure present.")); 4617 KASSERT(jaddref->ja_parent == dp->i_number, 4618 ("softdep_setup_mkdir: bad parent %ju", 4619 (uintmax_t)jaddref->ja_parent)); 4620 TAILQ_INSERT_BEFORE(&jaddref->ja_ref, &dotaddref->ja_ref, 4621 if_deps); 4622 } 4623 inodedep = inodedep_lookup_ip(dp); 4624 if (DOINGSUJ(dvp)) 4625 TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, 4626 &dotdotaddref->ja_ref, if_deps); 4627 softdep_prelink(ITOV(dp), NULL); 4628 FREE_LOCK(&lk); 4629 } 4630 4631 /* 4632 * Called to track nlinkdelta of the inode and parent directories prior to 4633 * unlinking a directory. 4634 */ 4635 void 4636 softdep_setup_rmdir(dp, ip) 4637 struct inode *dp; 4638 struct inode *ip; 4639 { 4640 struct vnode *dvp; 4641 4642 dvp = ITOV(dp); 4643 ACQUIRE_LOCK(&lk); 4644 (void) inodedep_lookup_ip(ip); 4645 (void) inodedep_lookup_ip(dp); 4646 softdep_prelink(dvp, ITOV(ip)); 4647 FREE_LOCK(&lk); 4648 } 4649 4650 /* 4651 * Called to track nlinkdelta of the inode and parent directories prior to 4652 * unlink. 4653 */ 4654 void 4655 softdep_setup_unlink(dp, ip) 4656 struct inode *dp; 4657 struct inode *ip; 4658 { 4659 struct vnode *dvp; 4660 4661 dvp = ITOV(dp); 4662 ACQUIRE_LOCK(&lk); 4663 (void) inodedep_lookup_ip(ip); 4664 (void) inodedep_lookup_ip(dp); 4665 softdep_prelink(dvp, ITOV(ip)); 4666 FREE_LOCK(&lk); 4667 } 4668 4669 /* 4670 * Called to release the journal structures created by a failed non-directory 4671 * creation. Adjusts nlinkdelta for non-journaling softdep. 4672 */ 4673 void 4674 softdep_revert_create(dp, ip) 4675 struct inode *dp; 4676 struct inode *ip; 4677 { 4678 struct inodedep *inodedep; 4679 struct jaddref *jaddref; 4680 struct vnode *dvp; 4681 4682 dvp = ITOV(dp); 4683 ACQUIRE_LOCK(&lk); 4684 inodedep = inodedep_lookup_ip(ip); 4685 if (DOINGSUJ(dvp)) { 4686 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 4687 inoreflst); 4688 KASSERT(jaddref->ja_parent == dp->i_number, 4689 ("softdep_revert_create: addref parent mismatch")); 4690 cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait); 4691 } 4692 FREE_LOCK(&lk); 4693 } 4694 4695 /* 4696 * Called to release the journal structures created by a failed dotdot link 4697 * creation. Adjusts nlinkdelta for non-journaling softdep. 4698 */ 4699 void 4700 softdep_revert_dotdot_link(dp, ip) 4701 struct inode *dp; 4702 struct inode *ip; 4703 { 4704 struct inodedep *inodedep; 4705 struct jaddref *jaddref; 4706 struct vnode *dvp; 4707 4708 dvp = ITOV(dp); 4709 ACQUIRE_LOCK(&lk); 4710 inodedep = inodedep_lookup_ip(dp); 4711 if (DOINGSUJ(dvp)) { 4712 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 4713 inoreflst); 4714 KASSERT(jaddref->ja_parent == ip->i_number, 4715 ("softdep_revert_dotdot_link: addref parent mismatch")); 4716 cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait); 4717 } 4718 FREE_LOCK(&lk); 4719 } 4720 4721 /* 4722 * Called to release the journal structures created by a failed link 4723 * addition. Adjusts nlinkdelta for non-journaling softdep. 4724 */ 4725 void 4726 softdep_revert_link(dp, ip) 4727 struct inode *dp; 4728 struct inode *ip; 4729 { 4730 struct inodedep *inodedep; 4731 struct jaddref *jaddref; 4732 struct vnode *dvp; 4733 4734 dvp = ITOV(dp); 4735 ACQUIRE_LOCK(&lk); 4736 inodedep = inodedep_lookup_ip(ip); 4737 if (DOINGSUJ(dvp)) { 4738 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 4739 inoreflst); 4740 KASSERT(jaddref->ja_parent == dp->i_number, 4741 ("softdep_revert_link: addref parent mismatch")); 4742 cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait); 4743 } 4744 FREE_LOCK(&lk); 4745 } 4746 4747 /* 4748 * Called to release the journal structures created by a failed mkdir 4749 * attempt. Adjusts nlinkdelta for non-journaling softdep. 4750 */ 4751 void 4752 softdep_revert_mkdir(dp, ip) 4753 struct inode *dp; 4754 struct inode *ip; 4755 { 4756 struct inodedep *inodedep; 4757 struct jaddref *jaddref; 4758 struct jaddref *dotaddref; 4759 struct vnode *dvp; 4760 4761 dvp = ITOV(dp); 4762 4763 ACQUIRE_LOCK(&lk); 4764 inodedep = inodedep_lookup_ip(dp); 4765 if (DOINGSUJ(dvp)) { 4766 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 4767 inoreflst); 4768 KASSERT(jaddref->ja_parent == ip->i_number, 4769 ("softdep_revert_mkdir: dotdot addref parent mismatch")); 4770 cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait); 4771 } 4772 inodedep = inodedep_lookup_ip(ip); 4773 if (DOINGSUJ(dvp)) { 4774 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 4775 inoreflst); 4776 KASSERT(jaddref->ja_parent == dp->i_number, 4777 ("softdep_revert_mkdir: addref parent mismatch")); 4778 dotaddref = (struct jaddref *)TAILQ_PREV(&jaddref->ja_ref, 4779 inoreflst, if_deps); 4780 cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait); 4781 KASSERT(dotaddref->ja_parent == ip->i_number, 4782 ("softdep_revert_mkdir: dot addref parent mismatch")); 4783 cancel_jaddref(dotaddref, inodedep, &inodedep->id_inowait); 4784 } 4785 FREE_LOCK(&lk); 4786 } 4787 4788 /* 4789 * Called to correct nlinkdelta after a failed rmdir. 4790 */ 4791 void 4792 softdep_revert_rmdir(dp, ip) 4793 struct inode *dp; 4794 struct inode *ip; 4795 { 4796 4797 ACQUIRE_LOCK(&lk); 4798 (void) inodedep_lookup_ip(ip); 4799 (void) inodedep_lookup_ip(dp); 4800 FREE_LOCK(&lk); 4801 } 4802 4803 /* 4804 * Protecting the freemaps (or bitmaps). 4805 * 4806 * To eliminate the need to execute fsck before mounting a filesystem 4807 * after a power failure, one must (conservatively) guarantee that the 4808 * on-disk copy of the bitmaps never indicate that a live inode or block is 4809 * free. So, when a block or inode is allocated, the bitmap should be 4810 * updated (on disk) before any new pointers. When a block or inode is 4811 * freed, the bitmap should not be updated until all pointers have been 4812 * reset. The latter dependency is handled by the delayed de-allocation 4813 * approach described below for block and inode de-allocation. The former 4814 * dependency is handled by calling the following procedure when a block or 4815 * inode is allocated. When an inode is allocated an "inodedep" is created 4816 * with its DEPCOMPLETE flag cleared until its bitmap is written to disk. 4817 * Each "inodedep" is also inserted into the hash indexing structure so 4818 * that any additional link additions can be made dependent on the inode 4819 * allocation. 4820 * 4821 * The ufs filesystem maintains a number of free block counts (e.g., per 4822 * cylinder group, per cylinder and per <cylinder, rotational position> pair) 4823 * in addition to the bitmaps. These counts are used to improve efficiency 4824 * during allocation and therefore must be consistent with the bitmaps. 4825 * There is no convenient way to guarantee post-crash consistency of these 4826 * counts with simple update ordering, for two main reasons: (1) The counts 4827 * and bitmaps for a single cylinder group block are not in the same disk 4828 * sector. If a disk write is interrupted (e.g., by power failure), one may 4829 * be written and the other not. (2) Some of the counts are located in the 4830 * superblock rather than the cylinder group block. So, we focus our soft 4831 * updates implementation on protecting the bitmaps. When mounting a 4832 * filesystem, we recompute the auxiliary counts from the bitmaps. 4833 */ 4834 4835 /* 4836 * Called just after updating the cylinder group block to allocate an inode. 4837 */ 4838 void 4839 softdep_setup_inomapdep(bp, ip, newinum, mode) 4840 struct buf *bp; /* buffer for cylgroup block with inode map */ 4841 struct inode *ip; /* inode related to allocation */ 4842 ino_t newinum; /* new inode number being allocated */ 4843 int mode; 4844 { 4845 struct inodedep *inodedep; 4846 struct bmsafemap *bmsafemap; 4847 struct jaddref *jaddref; 4848 struct mount *mp; 4849 struct fs *fs; 4850 4851 mp = UFSTOVFS(ip->i_ump); 4852 fs = ip->i_ump->um_fs; 4853 jaddref = NULL; 4854 4855 /* 4856 * Allocate the journal reference add structure so that the bitmap 4857 * can be dependent on it. 4858 */ 4859 if (MOUNTEDSUJ(mp)) { 4860 jaddref = newjaddref(ip, newinum, 0, 0, mode); 4861 jaddref->ja_state |= NEWBLOCK; 4862 } 4863 4864 /* 4865 * Create a dependency for the newly allocated inode. 4866 * Panic if it already exists as something is seriously wrong. 4867 * Otherwise add it to the dependency list for the buffer holding 4868 * the cylinder group map from which it was allocated. 4869 * 4870 * We have to preallocate a bmsafemap entry in case it is needed 4871 * in bmsafemap_lookup since once we allocate the inodedep, we 4872 * have to finish initializing it before we can FREE_LOCK(). 4873 * By preallocating, we avoid FREE_LOCK() while doing a malloc 4874 * in bmsafemap_lookup. We cannot call bmsafemap_lookup before 4875 * creating the inodedep as it can be freed during the time 4876 * that we FREE_LOCK() while allocating the inodedep. We must 4877 * call workitem_alloc() before entering the locked section as 4878 * it also acquires the lock and we must avoid trying doing so 4879 * recursively. 4880 */ 4881 bmsafemap = malloc(sizeof(struct bmsafemap), 4882 M_BMSAFEMAP, M_SOFTDEP_FLAGS); 4883 workitem_alloc(&bmsafemap->sm_list, D_BMSAFEMAP, mp); 4884 ACQUIRE_LOCK(&lk); 4885 if ((inodedep_lookup(mp, newinum, DEPALLOC | NODELAY, &inodedep))) 4886 panic("softdep_setup_inomapdep: dependency %p for new" 4887 "inode already exists", inodedep); 4888 bmsafemap = bmsafemap_lookup(mp, bp, ino_to_cg(fs, newinum), bmsafemap); 4889 if (jaddref) { 4890 LIST_INSERT_HEAD(&bmsafemap->sm_jaddrefhd, jaddref, ja_bmdeps); 4891 TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref, 4892 if_deps); 4893 } else { 4894 inodedep->id_state |= ONDEPLIST; 4895 LIST_INSERT_HEAD(&bmsafemap->sm_inodedephd, inodedep, id_deps); 4896 } 4897 inodedep->id_bmsafemap = bmsafemap; 4898 inodedep->id_state &= ~DEPCOMPLETE; 4899 FREE_LOCK(&lk); 4900 } 4901 4902 /* 4903 * Called just after updating the cylinder group block to 4904 * allocate block or fragment. 4905 */ 4906 void 4907 softdep_setup_blkmapdep(bp, mp, newblkno, frags, oldfrags) 4908 struct buf *bp; /* buffer for cylgroup block with block map */ 4909 struct mount *mp; /* filesystem doing allocation */ 4910 ufs2_daddr_t newblkno; /* number of newly allocated block */ 4911 int frags; /* Number of fragments. */ 4912 int oldfrags; /* Previous number of fragments for extend. */ 4913 { 4914 struct newblk *newblk; 4915 struct bmsafemap *bmsafemap; 4916 struct jnewblk *jnewblk; 4917 struct fs *fs; 4918 4919 fs = VFSTOUFS(mp)->um_fs; 4920 jnewblk = NULL; 4921 /* 4922 * Create a dependency for the newly allocated block. 4923 * Add it to the dependency list for the buffer holding 4924 * the cylinder group map from which it was allocated. 4925 */ 4926 if (MOUNTEDSUJ(mp)) { 4927 jnewblk = malloc(sizeof(*jnewblk), M_JNEWBLK, M_SOFTDEP_FLAGS); 4928 workitem_alloc(&jnewblk->jn_list, D_JNEWBLK, mp); 4929 jnewblk->jn_jsegdep = newjsegdep(&jnewblk->jn_list); 4930 jnewblk->jn_state = ATTACHED; 4931 jnewblk->jn_blkno = newblkno; 4932 jnewblk->jn_frags = frags; 4933 jnewblk->jn_oldfrags = oldfrags; 4934 #ifdef SUJ_DEBUG 4935 { 4936 struct cg *cgp; 4937 uint8_t *blksfree; 4938 long bno; 4939 int i; 4940 4941 cgp = (struct cg *)bp->b_data; 4942 blksfree = cg_blksfree(cgp); 4943 bno = dtogd(fs, jnewblk->jn_blkno); 4944 for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; 4945 i++) { 4946 if (isset(blksfree, bno + i)) 4947 panic("softdep_setup_blkmapdep: " 4948 "free fragment %d from %d-%d " 4949 "state 0x%X dep %p", i, 4950 jnewblk->jn_oldfrags, 4951 jnewblk->jn_frags, 4952 jnewblk->jn_state, 4953 jnewblk->jn_dep); 4954 } 4955 } 4956 #endif 4957 } 4958 4959 CTR3(KTR_SUJ, 4960 "softdep_setup_blkmapdep: blkno %jd frags %d oldfrags %d", 4961 newblkno, frags, oldfrags); 4962 ACQUIRE_LOCK(&lk); 4963 if (newblk_lookup(mp, newblkno, DEPALLOC, &newblk) != 0) 4964 panic("softdep_setup_blkmapdep: found block"); 4965 newblk->nb_bmsafemap = bmsafemap = bmsafemap_lookup(mp, bp, 4966 dtog(fs, newblkno), NULL); 4967 if (jnewblk) { 4968 jnewblk->jn_dep = (struct worklist *)newblk; 4969 LIST_INSERT_HEAD(&bmsafemap->sm_jnewblkhd, jnewblk, jn_deps); 4970 } else { 4971 newblk->nb_state |= ONDEPLIST; 4972 LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, nb_deps); 4973 } 4974 newblk->nb_bmsafemap = bmsafemap; 4975 newblk->nb_jnewblk = jnewblk; 4976 FREE_LOCK(&lk); 4977 } 4978 4979 #define BMSAFEMAP_HASH(fs, cg) \ 4980 (&bmsafemap_hashtbl[((((register_t)(fs)) >> 13) + (cg)) & bmsafemap_hash]) 4981 4982 static int 4983 bmsafemap_find(bmsafemaphd, mp, cg, bmsafemapp) 4984 struct bmsafemap_hashhead *bmsafemaphd; 4985 struct mount *mp; 4986 int cg; 4987 struct bmsafemap **bmsafemapp; 4988 { 4989 struct bmsafemap *bmsafemap; 4990 4991 LIST_FOREACH(bmsafemap, bmsafemaphd, sm_hash) 4992 if (bmsafemap->sm_list.wk_mp == mp && bmsafemap->sm_cg == cg) 4993 break; 4994 if (bmsafemap) { 4995 *bmsafemapp = bmsafemap; 4996 return (1); 4997 } 4998 *bmsafemapp = NULL; 4999 5000 return (0); 5001 } 5002 5003 /* 5004 * Find the bmsafemap associated with a cylinder group buffer. 5005 * If none exists, create one. The buffer must be locked when 5006 * this routine is called and this routine must be called with 5007 * the softdep lock held. To avoid giving up the lock while 5008 * allocating a new bmsafemap, a preallocated bmsafemap may be 5009 * provided. If it is provided but not needed, it is freed. 5010 */ 5011 static struct bmsafemap * 5012 bmsafemap_lookup(mp, bp, cg, newbmsafemap) 5013 struct mount *mp; 5014 struct buf *bp; 5015 int cg; 5016 struct bmsafemap *newbmsafemap; 5017 { 5018 struct bmsafemap_hashhead *bmsafemaphd; 5019 struct bmsafemap *bmsafemap, *collision; 5020 struct worklist *wk; 5021 struct fs *fs; 5022 5023 rw_assert(&lk, RA_WLOCKED); 5024 KASSERT(bp != NULL, ("bmsafemap_lookup: missing buffer")); 5025 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 5026 if (wk->wk_type == D_BMSAFEMAP) { 5027 if (newbmsafemap) 5028 WORKITEM_FREE(newbmsafemap, D_BMSAFEMAP); 5029 return (WK_BMSAFEMAP(wk)); 5030 } 5031 } 5032 fs = VFSTOUFS(mp)->um_fs; 5033 bmsafemaphd = BMSAFEMAP_HASH(fs, cg); 5034 if (bmsafemap_find(bmsafemaphd, mp, cg, &bmsafemap) == 1) { 5035 if (newbmsafemap) 5036 WORKITEM_FREE(newbmsafemap, D_BMSAFEMAP); 5037 return (bmsafemap); 5038 } 5039 if (newbmsafemap) { 5040 bmsafemap = newbmsafemap; 5041 } else { 5042 FREE_LOCK(&lk); 5043 bmsafemap = malloc(sizeof(struct bmsafemap), 5044 M_BMSAFEMAP, M_SOFTDEP_FLAGS); 5045 workitem_alloc(&bmsafemap->sm_list, D_BMSAFEMAP, mp); 5046 ACQUIRE_LOCK(&lk); 5047 } 5048 bmsafemap->sm_buf = bp; 5049 LIST_INIT(&bmsafemap->sm_inodedephd); 5050 LIST_INIT(&bmsafemap->sm_inodedepwr); 5051 LIST_INIT(&bmsafemap->sm_newblkhd); 5052 LIST_INIT(&bmsafemap->sm_newblkwr); 5053 LIST_INIT(&bmsafemap->sm_jaddrefhd); 5054 LIST_INIT(&bmsafemap->sm_jnewblkhd); 5055 LIST_INIT(&bmsafemap->sm_freehd); 5056 LIST_INIT(&bmsafemap->sm_freewr); 5057 if (bmsafemap_find(bmsafemaphd, mp, cg, &collision) == 1) { 5058 WORKITEM_FREE(bmsafemap, D_BMSAFEMAP); 5059 return (collision); 5060 } 5061 bmsafemap->sm_cg = cg; 5062 LIST_INSERT_HEAD(bmsafemaphd, bmsafemap, sm_hash); 5063 LIST_INSERT_HEAD(&VFSTOUFS(mp)->softdep_dirtycg, bmsafemap, sm_next); 5064 WORKLIST_INSERT(&bp->b_dep, &bmsafemap->sm_list); 5065 return (bmsafemap); 5066 } 5067 5068 /* 5069 * Direct block allocation dependencies. 5070 * 5071 * When a new block is allocated, the corresponding disk locations must be 5072 * initialized (with zeros or new data) before the on-disk inode points to 5073 * them. Also, the freemap from which the block was allocated must be 5074 * updated (on disk) before the inode's pointer. These two dependencies are 5075 * independent of each other and are needed for all file blocks and indirect 5076 * blocks that are pointed to directly by the inode. Just before the 5077 * "in-core" version of the inode is updated with a newly allocated block 5078 * number, a procedure (below) is called to setup allocation dependency 5079 * structures. These structures are removed when the corresponding 5080 * dependencies are satisfied or when the block allocation becomes obsolete 5081 * (i.e., the file is deleted, the block is de-allocated, or the block is a 5082 * fragment that gets upgraded). All of these cases are handled in 5083 * procedures described later. 5084 * 5085 * When a file extension causes a fragment to be upgraded, either to a larger 5086 * fragment or to a full block, the on-disk location may change (if the 5087 * previous fragment could not simply be extended). In this case, the old 5088 * fragment must be de-allocated, but not until after the inode's pointer has 5089 * been updated. In most cases, this is handled by later procedures, which 5090 * will construct a "freefrag" structure to be added to the workitem queue 5091 * when the inode update is complete (or obsolete). The main exception to 5092 * this is when an allocation occurs while a pending allocation dependency 5093 * (for the same block pointer) remains. This case is handled in the main 5094 * allocation dependency setup procedure by immediately freeing the 5095 * unreferenced fragments. 5096 */ 5097 void 5098 softdep_setup_allocdirect(ip, off, newblkno, oldblkno, newsize, oldsize, bp) 5099 struct inode *ip; /* inode to which block is being added */ 5100 ufs_lbn_t off; /* block pointer within inode */ 5101 ufs2_daddr_t newblkno; /* disk block number being added */ 5102 ufs2_daddr_t oldblkno; /* previous block number, 0 unless frag */ 5103 long newsize; /* size of new block */ 5104 long oldsize; /* size of new block */ 5105 struct buf *bp; /* bp for allocated block */ 5106 { 5107 struct allocdirect *adp, *oldadp; 5108 struct allocdirectlst *adphead; 5109 struct freefrag *freefrag; 5110 struct inodedep *inodedep; 5111 struct pagedep *pagedep; 5112 struct jnewblk *jnewblk; 5113 struct newblk *newblk; 5114 struct mount *mp; 5115 ufs_lbn_t lbn; 5116 5117 lbn = bp->b_lblkno; 5118 mp = UFSTOVFS(ip->i_ump); 5119 if (oldblkno && oldblkno != newblkno) 5120 freefrag = newfreefrag(ip, oldblkno, oldsize, lbn); 5121 else 5122 freefrag = NULL; 5123 5124 CTR6(KTR_SUJ, 5125 "softdep_setup_allocdirect: ino %d blkno %jd oldblkno %jd " 5126 "off %jd newsize %ld oldsize %d", 5127 ip->i_number, newblkno, oldblkno, off, newsize, oldsize); 5128 ACQUIRE_LOCK(&lk); 5129 if (off >= NDADDR) { 5130 if (lbn > 0) 5131 panic("softdep_setup_allocdirect: bad lbn %jd, off %jd", 5132 lbn, off); 5133 /* allocating an indirect block */ 5134 if (oldblkno != 0) 5135 panic("softdep_setup_allocdirect: non-zero indir"); 5136 } else { 5137 if (off != lbn) 5138 panic("softdep_setup_allocdirect: lbn %jd != off %jd", 5139 lbn, off); 5140 /* 5141 * Allocating a direct block. 5142 * 5143 * If we are allocating a directory block, then we must 5144 * allocate an associated pagedep to track additions and 5145 * deletions. 5146 */ 5147 if ((ip->i_mode & IFMT) == IFDIR) 5148 pagedep_lookup(mp, bp, ip->i_number, off, DEPALLOC, 5149 &pagedep); 5150 } 5151 if (newblk_lookup(mp, newblkno, 0, &newblk) == 0) 5152 panic("softdep_setup_allocdirect: lost block"); 5153 KASSERT(newblk->nb_list.wk_type == D_NEWBLK, 5154 ("softdep_setup_allocdirect: newblk already initialized")); 5155 /* 5156 * Convert the newblk to an allocdirect. 5157 */ 5158 WORKITEM_REASSIGN(newblk, D_ALLOCDIRECT); 5159 adp = (struct allocdirect *)newblk; 5160 newblk->nb_freefrag = freefrag; 5161 adp->ad_offset = off; 5162 adp->ad_oldblkno = oldblkno; 5163 adp->ad_newsize = newsize; 5164 adp->ad_oldsize = oldsize; 5165 5166 /* 5167 * Finish initializing the journal. 5168 */ 5169 if ((jnewblk = newblk->nb_jnewblk) != NULL) { 5170 jnewblk->jn_ino = ip->i_number; 5171 jnewblk->jn_lbn = lbn; 5172 add_to_journal(&jnewblk->jn_list); 5173 } 5174 if (freefrag && freefrag->ff_jdep != NULL && 5175 freefrag->ff_jdep->wk_type == D_JFREEFRAG) 5176 add_to_journal(freefrag->ff_jdep); 5177 inodedep_lookup(mp, ip->i_number, DEPALLOC | NODELAY, &inodedep); 5178 adp->ad_inodedep = inodedep; 5179 5180 WORKLIST_INSERT(&bp->b_dep, &newblk->nb_list); 5181 /* 5182 * The list of allocdirects must be kept in sorted and ascending 5183 * order so that the rollback routines can quickly determine the 5184 * first uncommitted block (the size of the file stored on disk 5185 * ends at the end of the lowest committed fragment, or if there 5186 * are no fragments, at the end of the highest committed block). 5187 * Since files generally grow, the typical case is that the new 5188 * block is to be added at the end of the list. We speed this 5189 * special case by checking against the last allocdirect in the 5190 * list before laboriously traversing the list looking for the 5191 * insertion point. 5192 */ 5193 adphead = &inodedep->id_newinoupdt; 5194 oldadp = TAILQ_LAST(adphead, allocdirectlst); 5195 if (oldadp == NULL || oldadp->ad_offset <= off) { 5196 /* insert at end of list */ 5197 TAILQ_INSERT_TAIL(adphead, adp, ad_next); 5198 if (oldadp != NULL && oldadp->ad_offset == off) 5199 allocdirect_merge(adphead, adp, oldadp); 5200 FREE_LOCK(&lk); 5201 return; 5202 } 5203 TAILQ_FOREACH(oldadp, adphead, ad_next) { 5204 if (oldadp->ad_offset >= off) 5205 break; 5206 } 5207 if (oldadp == NULL) 5208 panic("softdep_setup_allocdirect: lost entry"); 5209 /* insert in middle of list */ 5210 TAILQ_INSERT_BEFORE(oldadp, adp, ad_next); 5211 if (oldadp->ad_offset == off) 5212 allocdirect_merge(adphead, adp, oldadp); 5213 5214 FREE_LOCK(&lk); 5215 } 5216 5217 /* 5218 * Merge a newer and older journal record to be stored either in a 5219 * newblock or freefrag. This handles aggregating journal records for 5220 * fragment allocation into a second record as well as replacing a 5221 * journal free with an aborted journal allocation. A segment for the 5222 * oldest record will be placed on wkhd if it has been written. If not 5223 * the segment for the newer record will suffice. 5224 */ 5225 static struct worklist * 5226 jnewblk_merge(new, old, wkhd) 5227 struct worklist *new; 5228 struct worklist *old; 5229 struct workhead *wkhd; 5230 { 5231 struct jnewblk *njnewblk; 5232 struct jnewblk *jnewblk; 5233 5234 /* Handle NULLs to simplify callers. */ 5235 if (new == NULL) 5236 return (old); 5237 if (old == NULL) 5238 return (new); 5239 /* Replace a jfreefrag with a jnewblk. */ 5240 if (new->wk_type == D_JFREEFRAG) { 5241 if (WK_JNEWBLK(old)->jn_blkno != WK_JFREEFRAG(new)->fr_blkno) 5242 panic("jnewblk_merge: blkno mismatch: %p, %p", 5243 old, new); 5244 cancel_jfreefrag(WK_JFREEFRAG(new)); 5245 return (old); 5246 } 5247 if (old->wk_type != D_JNEWBLK || new->wk_type != D_JNEWBLK) 5248 panic("jnewblk_merge: Bad type: old %d new %d\n", 5249 old->wk_type, new->wk_type); 5250 /* 5251 * Handle merging of two jnewblk records that describe 5252 * different sets of fragments in the same block. 5253 */ 5254 jnewblk = WK_JNEWBLK(old); 5255 njnewblk = WK_JNEWBLK(new); 5256 if (jnewblk->jn_blkno != njnewblk->jn_blkno) 5257 panic("jnewblk_merge: Merging disparate blocks."); 5258 /* 5259 * The record may be rolled back in the cg. 5260 */ 5261 if (jnewblk->jn_state & UNDONE) { 5262 jnewblk->jn_state &= ~UNDONE; 5263 njnewblk->jn_state |= UNDONE; 5264 njnewblk->jn_state &= ~ATTACHED; 5265 } 5266 /* 5267 * We modify the newer addref and free the older so that if neither 5268 * has been written the most up-to-date copy will be on disk. If 5269 * both have been written but rolled back we only temporarily need 5270 * one of them to fix the bits when the cg write completes. 5271 */ 5272 jnewblk->jn_state |= ATTACHED | COMPLETE; 5273 njnewblk->jn_oldfrags = jnewblk->jn_oldfrags; 5274 cancel_jnewblk(jnewblk, wkhd); 5275 WORKLIST_REMOVE(&jnewblk->jn_list); 5276 free_jnewblk(jnewblk); 5277 return (new); 5278 } 5279 5280 /* 5281 * Replace an old allocdirect dependency with a newer one. 5282 * This routine must be called with splbio interrupts blocked. 5283 */ 5284 static void 5285 allocdirect_merge(adphead, newadp, oldadp) 5286 struct allocdirectlst *adphead; /* head of list holding allocdirects */ 5287 struct allocdirect *newadp; /* allocdirect being added */ 5288 struct allocdirect *oldadp; /* existing allocdirect being checked */ 5289 { 5290 struct worklist *wk; 5291 struct freefrag *freefrag; 5292 5293 freefrag = NULL; 5294 rw_assert(&lk, RA_WLOCKED); 5295 if (newadp->ad_oldblkno != oldadp->ad_newblkno || 5296 newadp->ad_oldsize != oldadp->ad_newsize || 5297 newadp->ad_offset >= NDADDR) 5298 panic("%s %jd != new %jd || old size %ld != new %ld", 5299 "allocdirect_merge: old blkno", 5300 (intmax_t)newadp->ad_oldblkno, 5301 (intmax_t)oldadp->ad_newblkno, 5302 newadp->ad_oldsize, oldadp->ad_newsize); 5303 newadp->ad_oldblkno = oldadp->ad_oldblkno; 5304 newadp->ad_oldsize = oldadp->ad_oldsize; 5305 /* 5306 * If the old dependency had a fragment to free or had never 5307 * previously had a block allocated, then the new dependency 5308 * can immediately post its freefrag and adopt the old freefrag. 5309 * This action is done by swapping the freefrag dependencies. 5310 * The new dependency gains the old one's freefrag, and the 5311 * old one gets the new one and then immediately puts it on 5312 * the worklist when it is freed by free_newblk. It is 5313 * not possible to do this swap when the old dependency had a 5314 * non-zero size but no previous fragment to free. This condition 5315 * arises when the new block is an extension of the old block. 5316 * Here, the first part of the fragment allocated to the new 5317 * dependency is part of the block currently claimed on disk by 5318 * the old dependency, so cannot legitimately be freed until the 5319 * conditions for the new dependency are fulfilled. 5320 */ 5321 freefrag = newadp->ad_freefrag; 5322 if (oldadp->ad_freefrag != NULL || oldadp->ad_oldblkno == 0) { 5323 newadp->ad_freefrag = oldadp->ad_freefrag; 5324 oldadp->ad_freefrag = freefrag; 5325 } 5326 /* 5327 * If we are tracking a new directory-block allocation, 5328 * move it from the old allocdirect to the new allocdirect. 5329 */ 5330 if ((wk = LIST_FIRST(&oldadp->ad_newdirblk)) != NULL) { 5331 WORKLIST_REMOVE(wk); 5332 if (!LIST_EMPTY(&oldadp->ad_newdirblk)) 5333 panic("allocdirect_merge: extra newdirblk"); 5334 WORKLIST_INSERT(&newadp->ad_newdirblk, wk); 5335 } 5336 TAILQ_REMOVE(adphead, oldadp, ad_next); 5337 /* 5338 * We need to move any journal dependencies over to the freefrag 5339 * that releases this block if it exists. Otherwise we are 5340 * extending an existing block and we'll wait until that is 5341 * complete to release the journal space and extend the 5342 * new journal to cover this old space as well. 5343 */ 5344 if (freefrag == NULL) { 5345 if (oldadp->ad_newblkno != newadp->ad_newblkno) 5346 panic("allocdirect_merge: %jd != %jd", 5347 oldadp->ad_newblkno, newadp->ad_newblkno); 5348 newadp->ad_block.nb_jnewblk = (struct jnewblk *) 5349 jnewblk_merge(&newadp->ad_block.nb_jnewblk->jn_list, 5350 &oldadp->ad_block.nb_jnewblk->jn_list, 5351 &newadp->ad_block.nb_jwork); 5352 oldadp->ad_block.nb_jnewblk = NULL; 5353 cancel_newblk(&oldadp->ad_block, NULL, 5354 &newadp->ad_block.nb_jwork); 5355 } else { 5356 wk = (struct worklist *) cancel_newblk(&oldadp->ad_block, 5357 &freefrag->ff_list, &freefrag->ff_jwork); 5358 freefrag->ff_jdep = jnewblk_merge(freefrag->ff_jdep, wk, 5359 &freefrag->ff_jwork); 5360 } 5361 free_newblk(&oldadp->ad_block); 5362 } 5363 5364 /* 5365 * Allocate a jfreefrag structure to journal a single block free. 5366 */ 5367 static struct jfreefrag * 5368 newjfreefrag(freefrag, ip, blkno, size, lbn) 5369 struct freefrag *freefrag; 5370 struct inode *ip; 5371 ufs2_daddr_t blkno; 5372 long size; 5373 ufs_lbn_t lbn; 5374 { 5375 struct jfreefrag *jfreefrag; 5376 struct fs *fs; 5377 5378 fs = ip->i_fs; 5379 jfreefrag = malloc(sizeof(struct jfreefrag), M_JFREEFRAG, 5380 M_SOFTDEP_FLAGS); 5381 workitem_alloc(&jfreefrag->fr_list, D_JFREEFRAG, UFSTOVFS(ip->i_ump)); 5382 jfreefrag->fr_jsegdep = newjsegdep(&jfreefrag->fr_list); 5383 jfreefrag->fr_state = ATTACHED | DEPCOMPLETE; 5384 jfreefrag->fr_ino = ip->i_number; 5385 jfreefrag->fr_lbn = lbn; 5386 jfreefrag->fr_blkno = blkno; 5387 jfreefrag->fr_frags = numfrags(fs, size); 5388 jfreefrag->fr_freefrag = freefrag; 5389 5390 return (jfreefrag); 5391 } 5392 5393 /* 5394 * Allocate a new freefrag structure. 5395 */ 5396 static struct freefrag * 5397 newfreefrag(ip, blkno, size, lbn) 5398 struct inode *ip; 5399 ufs2_daddr_t blkno; 5400 long size; 5401 ufs_lbn_t lbn; 5402 { 5403 struct freefrag *freefrag; 5404 struct fs *fs; 5405 5406 CTR4(KTR_SUJ, "newfreefrag: ino %d blkno %jd size %ld lbn %jd", 5407 ip->i_number, blkno, size, lbn); 5408 fs = ip->i_fs; 5409 if (fragnum(fs, blkno) + numfrags(fs, size) > fs->fs_frag) 5410 panic("newfreefrag: frag size"); 5411 freefrag = malloc(sizeof(struct freefrag), 5412 M_FREEFRAG, M_SOFTDEP_FLAGS); 5413 workitem_alloc(&freefrag->ff_list, D_FREEFRAG, UFSTOVFS(ip->i_ump)); 5414 freefrag->ff_state = ATTACHED; 5415 LIST_INIT(&freefrag->ff_jwork); 5416 freefrag->ff_inum = ip->i_number; 5417 freefrag->ff_vtype = ITOV(ip)->v_type; 5418 freefrag->ff_blkno = blkno; 5419 freefrag->ff_fragsize = size; 5420 5421 if (MOUNTEDSUJ(UFSTOVFS(ip->i_ump))) { 5422 freefrag->ff_jdep = (struct worklist *) 5423 newjfreefrag(freefrag, ip, blkno, size, lbn); 5424 } else { 5425 freefrag->ff_state |= DEPCOMPLETE; 5426 freefrag->ff_jdep = NULL; 5427 } 5428 5429 return (freefrag); 5430 } 5431 5432 /* 5433 * This workitem de-allocates fragments that were replaced during 5434 * file block allocation. 5435 */ 5436 static void 5437 handle_workitem_freefrag(freefrag) 5438 struct freefrag *freefrag; 5439 { 5440 struct ufsmount *ump = VFSTOUFS(freefrag->ff_list.wk_mp); 5441 struct workhead wkhd; 5442 5443 CTR3(KTR_SUJ, 5444 "handle_workitem_freefrag: ino %d blkno %jd size %ld", 5445 freefrag->ff_inum, freefrag->ff_blkno, freefrag->ff_fragsize); 5446 /* 5447 * It would be illegal to add new completion items to the 5448 * freefrag after it was schedule to be done so it must be 5449 * safe to modify the list head here. 5450 */ 5451 LIST_INIT(&wkhd); 5452 ACQUIRE_LOCK(&lk); 5453 LIST_SWAP(&freefrag->ff_jwork, &wkhd, worklist, wk_list); 5454 /* 5455 * If the journal has not been written we must cancel it here. 5456 */ 5457 if (freefrag->ff_jdep) { 5458 if (freefrag->ff_jdep->wk_type != D_JNEWBLK) 5459 panic("handle_workitem_freefrag: Unexpected type %d\n", 5460 freefrag->ff_jdep->wk_type); 5461 cancel_jnewblk(WK_JNEWBLK(freefrag->ff_jdep), &wkhd); 5462 } 5463 FREE_LOCK(&lk); 5464 ffs_blkfree(ump, ump->um_fs, ump->um_devvp, freefrag->ff_blkno, 5465 freefrag->ff_fragsize, freefrag->ff_inum, freefrag->ff_vtype, &wkhd); 5466 ACQUIRE_LOCK(&lk); 5467 WORKITEM_FREE(freefrag, D_FREEFRAG); 5468 FREE_LOCK(&lk); 5469 } 5470 5471 /* 5472 * Set up a dependency structure for an external attributes data block. 5473 * This routine follows much of the structure of softdep_setup_allocdirect. 5474 * See the description of softdep_setup_allocdirect above for details. 5475 */ 5476 void 5477 softdep_setup_allocext(ip, off, newblkno, oldblkno, newsize, oldsize, bp) 5478 struct inode *ip; 5479 ufs_lbn_t off; 5480 ufs2_daddr_t newblkno; 5481 ufs2_daddr_t oldblkno; 5482 long newsize; 5483 long oldsize; 5484 struct buf *bp; 5485 { 5486 struct allocdirect *adp, *oldadp; 5487 struct allocdirectlst *adphead; 5488 struct freefrag *freefrag; 5489 struct inodedep *inodedep; 5490 struct jnewblk *jnewblk; 5491 struct newblk *newblk; 5492 struct mount *mp; 5493 ufs_lbn_t lbn; 5494 5495 if (off >= NXADDR) 5496 panic("softdep_setup_allocext: lbn %lld > NXADDR", 5497 (long long)off); 5498 5499 lbn = bp->b_lblkno; 5500 mp = UFSTOVFS(ip->i_ump); 5501 if (oldblkno && oldblkno != newblkno) 5502 freefrag = newfreefrag(ip, oldblkno, oldsize, lbn); 5503 else 5504 freefrag = NULL; 5505 5506 ACQUIRE_LOCK(&lk); 5507 if (newblk_lookup(mp, newblkno, 0, &newblk) == 0) 5508 panic("softdep_setup_allocext: lost block"); 5509 KASSERT(newblk->nb_list.wk_type == D_NEWBLK, 5510 ("softdep_setup_allocext: newblk already initialized")); 5511 /* 5512 * Convert the newblk to an allocdirect. 5513 */ 5514 WORKITEM_REASSIGN(newblk, D_ALLOCDIRECT); 5515 adp = (struct allocdirect *)newblk; 5516 newblk->nb_freefrag = freefrag; 5517 adp->ad_offset = off; 5518 adp->ad_oldblkno = oldblkno; 5519 adp->ad_newsize = newsize; 5520 adp->ad_oldsize = oldsize; 5521 adp->ad_state |= EXTDATA; 5522 5523 /* 5524 * Finish initializing the journal. 5525 */ 5526 if ((jnewblk = newblk->nb_jnewblk) != NULL) { 5527 jnewblk->jn_ino = ip->i_number; 5528 jnewblk->jn_lbn = lbn; 5529 add_to_journal(&jnewblk->jn_list); 5530 } 5531 if (freefrag && freefrag->ff_jdep != NULL && 5532 freefrag->ff_jdep->wk_type == D_JFREEFRAG) 5533 add_to_journal(freefrag->ff_jdep); 5534 inodedep_lookup(mp, ip->i_number, DEPALLOC | NODELAY, &inodedep); 5535 adp->ad_inodedep = inodedep; 5536 5537 WORKLIST_INSERT(&bp->b_dep, &newblk->nb_list); 5538 /* 5539 * The list of allocdirects must be kept in sorted and ascending 5540 * order so that the rollback routines can quickly determine the 5541 * first uncommitted block (the size of the file stored on disk 5542 * ends at the end of the lowest committed fragment, or if there 5543 * are no fragments, at the end of the highest committed block). 5544 * Since files generally grow, the typical case is that the new 5545 * block is to be added at the end of the list. We speed this 5546 * special case by checking against the last allocdirect in the 5547 * list before laboriously traversing the list looking for the 5548 * insertion point. 5549 */ 5550 adphead = &inodedep->id_newextupdt; 5551 oldadp = TAILQ_LAST(adphead, allocdirectlst); 5552 if (oldadp == NULL || oldadp->ad_offset <= off) { 5553 /* insert at end of list */ 5554 TAILQ_INSERT_TAIL(adphead, adp, ad_next); 5555 if (oldadp != NULL && oldadp->ad_offset == off) 5556 allocdirect_merge(adphead, adp, oldadp); 5557 FREE_LOCK(&lk); 5558 return; 5559 } 5560 TAILQ_FOREACH(oldadp, adphead, ad_next) { 5561 if (oldadp->ad_offset >= off) 5562 break; 5563 } 5564 if (oldadp == NULL) 5565 panic("softdep_setup_allocext: lost entry"); 5566 /* insert in middle of list */ 5567 TAILQ_INSERT_BEFORE(oldadp, adp, ad_next); 5568 if (oldadp->ad_offset == off) 5569 allocdirect_merge(adphead, adp, oldadp); 5570 FREE_LOCK(&lk); 5571 } 5572 5573 /* 5574 * Indirect block allocation dependencies. 5575 * 5576 * The same dependencies that exist for a direct block also exist when 5577 * a new block is allocated and pointed to by an entry in a block of 5578 * indirect pointers. The undo/redo states described above are also 5579 * used here. Because an indirect block contains many pointers that 5580 * may have dependencies, a second copy of the entire in-memory indirect 5581 * block is kept. The buffer cache copy is always completely up-to-date. 5582 * The second copy, which is used only as a source for disk writes, 5583 * contains only the safe pointers (i.e., those that have no remaining 5584 * update dependencies). The second copy is freed when all pointers 5585 * are safe. The cache is not allowed to replace indirect blocks with 5586 * pending update dependencies. If a buffer containing an indirect 5587 * block with dependencies is written, these routines will mark it 5588 * dirty again. It can only be successfully written once all the 5589 * dependencies are removed. The ffs_fsync routine in conjunction with 5590 * softdep_sync_metadata work together to get all the dependencies 5591 * removed so that a file can be successfully written to disk. Three 5592 * procedures are used when setting up indirect block pointer 5593 * dependencies. The division is necessary because of the organization 5594 * of the "balloc" routine and because of the distinction between file 5595 * pages and file metadata blocks. 5596 */ 5597 5598 /* 5599 * Allocate a new allocindir structure. 5600 */ 5601 static struct allocindir * 5602 newallocindir(ip, ptrno, newblkno, oldblkno, lbn) 5603 struct inode *ip; /* inode for file being extended */ 5604 int ptrno; /* offset of pointer in indirect block */ 5605 ufs2_daddr_t newblkno; /* disk block number being added */ 5606 ufs2_daddr_t oldblkno; /* previous block number, 0 if none */ 5607 ufs_lbn_t lbn; 5608 { 5609 struct newblk *newblk; 5610 struct allocindir *aip; 5611 struct freefrag *freefrag; 5612 struct jnewblk *jnewblk; 5613 5614 if (oldblkno) 5615 freefrag = newfreefrag(ip, oldblkno, ip->i_fs->fs_bsize, lbn); 5616 else 5617 freefrag = NULL; 5618 ACQUIRE_LOCK(&lk); 5619 if (newblk_lookup(UFSTOVFS(ip->i_ump), newblkno, 0, &newblk) == 0) 5620 panic("new_allocindir: lost block"); 5621 KASSERT(newblk->nb_list.wk_type == D_NEWBLK, 5622 ("newallocindir: newblk already initialized")); 5623 WORKITEM_REASSIGN(newblk, D_ALLOCINDIR); 5624 newblk->nb_freefrag = freefrag; 5625 aip = (struct allocindir *)newblk; 5626 aip->ai_offset = ptrno; 5627 aip->ai_oldblkno = oldblkno; 5628 aip->ai_lbn = lbn; 5629 if ((jnewblk = newblk->nb_jnewblk) != NULL) { 5630 jnewblk->jn_ino = ip->i_number; 5631 jnewblk->jn_lbn = lbn; 5632 add_to_journal(&jnewblk->jn_list); 5633 } 5634 if (freefrag && freefrag->ff_jdep != NULL && 5635 freefrag->ff_jdep->wk_type == D_JFREEFRAG) 5636 add_to_journal(freefrag->ff_jdep); 5637 return (aip); 5638 } 5639 5640 /* 5641 * Called just before setting an indirect block pointer 5642 * to a newly allocated file page. 5643 */ 5644 void 5645 softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp) 5646 struct inode *ip; /* inode for file being extended */ 5647 ufs_lbn_t lbn; /* allocated block number within file */ 5648 struct buf *bp; /* buffer with indirect blk referencing page */ 5649 int ptrno; /* offset of pointer in indirect block */ 5650 ufs2_daddr_t newblkno; /* disk block number being added */ 5651 ufs2_daddr_t oldblkno; /* previous block number, 0 if none */ 5652 struct buf *nbp; /* buffer holding allocated page */ 5653 { 5654 struct inodedep *inodedep; 5655 struct freefrag *freefrag; 5656 struct allocindir *aip; 5657 struct pagedep *pagedep; 5658 struct mount *mp; 5659 int dflags; 5660 5661 if (lbn != nbp->b_lblkno) 5662 panic("softdep_setup_allocindir_page: lbn %jd != lblkno %jd", 5663 lbn, bp->b_lblkno); 5664 CTR4(KTR_SUJ, 5665 "softdep_setup_allocindir_page: ino %d blkno %jd oldblkno %jd " 5666 "lbn %jd", ip->i_number, newblkno, oldblkno, lbn); 5667 ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_page"); 5668 mp = UFSTOVFS(ip->i_ump); 5669 aip = newallocindir(ip, ptrno, newblkno, oldblkno, lbn); 5670 dflags = DEPALLOC; 5671 if (IS_SNAPSHOT(ip)) 5672 dflags |= NODELAY; 5673 (void) inodedep_lookup(mp, ip->i_number, dflags, &inodedep); 5674 /* 5675 * If we are allocating a directory page, then we must 5676 * allocate an associated pagedep to track additions and 5677 * deletions. 5678 */ 5679 if ((ip->i_mode & IFMT) == IFDIR) 5680 pagedep_lookup(mp, nbp, ip->i_number, lbn, DEPALLOC, &pagedep); 5681 WORKLIST_INSERT(&nbp->b_dep, &aip->ai_block.nb_list); 5682 freefrag = setup_allocindir_phase2(bp, ip, inodedep, aip, lbn); 5683 FREE_LOCK(&lk); 5684 if (freefrag) 5685 handle_workitem_freefrag(freefrag); 5686 } 5687 5688 /* 5689 * Called just before setting an indirect block pointer to a 5690 * newly allocated indirect block. 5691 */ 5692 void 5693 softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno) 5694 struct buf *nbp; /* newly allocated indirect block */ 5695 struct inode *ip; /* inode for file being extended */ 5696 struct buf *bp; /* indirect block referencing allocated block */ 5697 int ptrno; /* offset of pointer in indirect block */ 5698 ufs2_daddr_t newblkno; /* disk block number being added */ 5699 { 5700 struct inodedep *inodedep; 5701 struct allocindir *aip; 5702 ufs_lbn_t lbn; 5703 int dflags; 5704 5705 CTR3(KTR_SUJ, 5706 "softdep_setup_allocindir_meta: ino %d blkno %jd ptrno %d", 5707 ip->i_number, newblkno, ptrno); 5708 lbn = nbp->b_lblkno; 5709 ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_meta"); 5710 aip = newallocindir(ip, ptrno, newblkno, 0, lbn); 5711 dflags = DEPALLOC; 5712 if (IS_SNAPSHOT(ip)) 5713 dflags |= NODELAY; 5714 inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, dflags, &inodedep); 5715 WORKLIST_INSERT(&nbp->b_dep, &aip->ai_block.nb_list); 5716 if (setup_allocindir_phase2(bp, ip, inodedep, aip, lbn)) 5717 panic("softdep_setup_allocindir_meta: Block already existed"); 5718 FREE_LOCK(&lk); 5719 } 5720 5721 static void 5722 indirdep_complete(indirdep) 5723 struct indirdep *indirdep; 5724 { 5725 struct allocindir *aip; 5726 5727 LIST_REMOVE(indirdep, ir_next); 5728 indirdep->ir_state |= DEPCOMPLETE; 5729 5730 while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != NULL) { 5731 LIST_REMOVE(aip, ai_next); 5732 free_newblk(&aip->ai_block); 5733 } 5734 /* 5735 * If this indirdep is not attached to a buf it was simply waiting 5736 * on completion to clear completehd. free_indirdep() asserts 5737 * that nothing is dangling. 5738 */ 5739 if ((indirdep->ir_state & ONWORKLIST) == 0) 5740 free_indirdep(indirdep); 5741 } 5742 5743 static struct indirdep * 5744 indirdep_lookup(mp, ip, bp) 5745 struct mount *mp; 5746 struct inode *ip; 5747 struct buf *bp; 5748 { 5749 struct indirdep *indirdep, *newindirdep; 5750 struct newblk *newblk; 5751 struct worklist *wk; 5752 struct fs *fs; 5753 ufs2_daddr_t blkno; 5754 5755 rw_assert(&lk, RA_WLOCKED); 5756 indirdep = NULL; 5757 newindirdep = NULL; 5758 fs = ip->i_fs; 5759 for (;;) { 5760 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 5761 if (wk->wk_type != D_INDIRDEP) 5762 continue; 5763 indirdep = WK_INDIRDEP(wk); 5764 break; 5765 } 5766 /* Found on the buffer worklist, no new structure to free. */ 5767 if (indirdep != NULL && newindirdep == NULL) 5768 return (indirdep); 5769 if (indirdep != NULL && newindirdep != NULL) 5770 panic("indirdep_lookup: simultaneous create"); 5771 /* None found on the buffer and a new structure is ready. */ 5772 if (indirdep == NULL && newindirdep != NULL) 5773 break; 5774 /* None found and no new structure available. */ 5775 FREE_LOCK(&lk); 5776 newindirdep = malloc(sizeof(struct indirdep), 5777 M_INDIRDEP, M_SOFTDEP_FLAGS); 5778 workitem_alloc(&newindirdep->ir_list, D_INDIRDEP, mp); 5779 newindirdep->ir_state = ATTACHED; 5780 if (ip->i_ump->um_fstype == UFS1) 5781 newindirdep->ir_state |= UFS1FMT; 5782 TAILQ_INIT(&newindirdep->ir_trunc); 5783 newindirdep->ir_saveddata = NULL; 5784 LIST_INIT(&newindirdep->ir_deplisthd); 5785 LIST_INIT(&newindirdep->ir_donehd); 5786 LIST_INIT(&newindirdep->ir_writehd); 5787 LIST_INIT(&newindirdep->ir_completehd); 5788 if (bp->b_blkno == bp->b_lblkno) { 5789 ufs_bmaparray(bp->b_vp, bp->b_lblkno, &blkno, bp, 5790 NULL, NULL); 5791 bp->b_blkno = blkno; 5792 } 5793 newindirdep->ir_freeblks = NULL; 5794 newindirdep->ir_savebp = 5795 getblk(ip->i_devvp, bp->b_blkno, bp->b_bcount, 0, 0, 0); 5796 newindirdep->ir_bp = bp; 5797 BUF_KERNPROC(newindirdep->ir_savebp); 5798 bcopy(bp->b_data, newindirdep->ir_savebp->b_data, bp->b_bcount); 5799 ACQUIRE_LOCK(&lk); 5800 } 5801 indirdep = newindirdep; 5802 WORKLIST_INSERT(&bp->b_dep, &indirdep->ir_list); 5803 /* 5804 * If the block is not yet allocated we don't set DEPCOMPLETE so 5805 * that we don't free dependencies until the pointers are valid. 5806 * This could search b_dep for D_ALLOCDIRECT/D_ALLOCINDIR rather 5807 * than using the hash. 5808 */ 5809 if (newblk_lookup(mp, dbtofsb(fs, bp->b_blkno), 0, &newblk)) 5810 LIST_INSERT_HEAD(&newblk->nb_indirdeps, indirdep, ir_next); 5811 else 5812 indirdep->ir_state |= DEPCOMPLETE; 5813 return (indirdep); 5814 } 5815 5816 /* 5817 * Called to finish the allocation of the "aip" allocated 5818 * by one of the two routines above. 5819 */ 5820 static struct freefrag * 5821 setup_allocindir_phase2(bp, ip, inodedep, aip, lbn) 5822 struct buf *bp; /* in-memory copy of the indirect block */ 5823 struct inode *ip; /* inode for file being extended */ 5824 struct inodedep *inodedep; /* Inodedep for ip */ 5825 struct allocindir *aip; /* allocindir allocated by the above routines */ 5826 ufs_lbn_t lbn; /* Logical block number for this block. */ 5827 { 5828 struct fs *fs; 5829 struct indirdep *indirdep; 5830 struct allocindir *oldaip; 5831 struct freefrag *freefrag; 5832 struct mount *mp; 5833 5834 rw_assert(&lk, RA_WLOCKED); 5835 mp = UFSTOVFS(ip->i_ump); 5836 fs = ip->i_fs; 5837 if (bp->b_lblkno >= 0) 5838 panic("setup_allocindir_phase2: not indir blk"); 5839 KASSERT(aip->ai_offset >= 0 && aip->ai_offset < NINDIR(fs), 5840 ("setup_allocindir_phase2: Bad offset %d", aip->ai_offset)); 5841 indirdep = indirdep_lookup(mp, ip, bp); 5842 KASSERT(indirdep->ir_savebp != NULL, 5843 ("setup_allocindir_phase2 NULL ir_savebp")); 5844 aip->ai_indirdep = indirdep; 5845 /* 5846 * Check for an unwritten dependency for this indirect offset. If 5847 * there is, merge the old dependency into the new one. This happens 5848 * as a result of reallocblk only. 5849 */ 5850 freefrag = NULL; 5851 if (aip->ai_oldblkno != 0) { 5852 LIST_FOREACH(oldaip, &indirdep->ir_deplisthd, ai_next) { 5853 if (oldaip->ai_offset == aip->ai_offset) { 5854 freefrag = allocindir_merge(aip, oldaip); 5855 goto done; 5856 } 5857 } 5858 LIST_FOREACH(oldaip, &indirdep->ir_donehd, ai_next) { 5859 if (oldaip->ai_offset == aip->ai_offset) { 5860 freefrag = allocindir_merge(aip, oldaip); 5861 goto done; 5862 } 5863 } 5864 } 5865 done: 5866 LIST_INSERT_HEAD(&indirdep->ir_deplisthd, aip, ai_next); 5867 return (freefrag); 5868 } 5869 5870 /* 5871 * Merge two allocindirs which refer to the same block. Move newblock 5872 * dependencies and setup the freefrags appropriately. 5873 */ 5874 static struct freefrag * 5875 allocindir_merge(aip, oldaip) 5876 struct allocindir *aip; 5877 struct allocindir *oldaip; 5878 { 5879 struct freefrag *freefrag; 5880 struct worklist *wk; 5881 5882 if (oldaip->ai_newblkno != aip->ai_oldblkno) 5883 panic("allocindir_merge: blkno"); 5884 aip->ai_oldblkno = oldaip->ai_oldblkno; 5885 freefrag = aip->ai_freefrag; 5886 aip->ai_freefrag = oldaip->ai_freefrag; 5887 oldaip->ai_freefrag = NULL; 5888 KASSERT(freefrag != NULL, ("setup_allocindir_phase2: No freefrag")); 5889 /* 5890 * If we are tracking a new directory-block allocation, 5891 * move it from the old allocindir to the new allocindir. 5892 */ 5893 if ((wk = LIST_FIRST(&oldaip->ai_newdirblk)) != NULL) { 5894 WORKLIST_REMOVE(wk); 5895 if (!LIST_EMPTY(&oldaip->ai_newdirblk)) 5896 panic("allocindir_merge: extra newdirblk"); 5897 WORKLIST_INSERT(&aip->ai_newdirblk, wk); 5898 } 5899 /* 5900 * We can skip journaling for this freefrag and just complete 5901 * any pending journal work for the allocindir that is being 5902 * removed after the freefrag completes. 5903 */ 5904 if (freefrag->ff_jdep) 5905 cancel_jfreefrag(WK_JFREEFRAG(freefrag->ff_jdep)); 5906 LIST_REMOVE(oldaip, ai_next); 5907 freefrag->ff_jdep = (struct worklist *)cancel_newblk(&oldaip->ai_block, 5908 &freefrag->ff_list, &freefrag->ff_jwork); 5909 free_newblk(&oldaip->ai_block); 5910 5911 return (freefrag); 5912 } 5913 5914 static inline void 5915 setup_freedirect(freeblks, ip, i, needj) 5916 struct freeblks *freeblks; 5917 struct inode *ip; 5918 int i; 5919 int needj; 5920 { 5921 ufs2_daddr_t blkno; 5922 int frags; 5923 5924 blkno = DIP(ip, i_db[i]); 5925 if (blkno == 0) 5926 return; 5927 DIP_SET(ip, i_db[i], 0); 5928 frags = sblksize(ip->i_fs, ip->i_size, i); 5929 frags = numfrags(ip->i_fs, frags); 5930 newfreework(ip->i_ump, freeblks, NULL, i, blkno, frags, 0, needj); 5931 } 5932 5933 static inline void 5934 setup_freeext(freeblks, ip, i, needj) 5935 struct freeblks *freeblks; 5936 struct inode *ip; 5937 int i; 5938 int needj; 5939 { 5940 ufs2_daddr_t blkno; 5941 int frags; 5942 5943 blkno = ip->i_din2->di_extb[i]; 5944 if (blkno == 0) 5945 return; 5946 ip->i_din2->di_extb[i] = 0; 5947 frags = sblksize(ip->i_fs, ip->i_din2->di_extsize, i); 5948 frags = numfrags(ip->i_fs, frags); 5949 newfreework(ip->i_ump, freeblks, NULL, -1 - i, blkno, frags, 0, needj); 5950 } 5951 5952 static inline void 5953 setup_freeindir(freeblks, ip, i, lbn, needj) 5954 struct freeblks *freeblks; 5955 struct inode *ip; 5956 int i; 5957 ufs_lbn_t lbn; 5958 int needj; 5959 { 5960 ufs2_daddr_t blkno; 5961 5962 blkno = DIP(ip, i_ib[i]); 5963 if (blkno == 0) 5964 return; 5965 DIP_SET(ip, i_ib[i], 0); 5966 newfreework(ip->i_ump, freeblks, NULL, lbn, blkno, ip->i_fs->fs_frag, 5967 0, needj); 5968 } 5969 5970 static inline struct freeblks * 5971 newfreeblks(mp, ip) 5972 struct mount *mp; 5973 struct inode *ip; 5974 { 5975 struct freeblks *freeblks; 5976 5977 freeblks = malloc(sizeof(struct freeblks), 5978 M_FREEBLKS, M_SOFTDEP_FLAGS|M_ZERO); 5979 workitem_alloc(&freeblks->fb_list, D_FREEBLKS, mp); 5980 LIST_INIT(&freeblks->fb_jblkdephd); 5981 LIST_INIT(&freeblks->fb_jwork); 5982 freeblks->fb_ref = 0; 5983 freeblks->fb_cgwait = 0; 5984 freeblks->fb_state = ATTACHED; 5985 freeblks->fb_uid = ip->i_uid; 5986 freeblks->fb_inum = ip->i_number; 5987 freeblks->fb_vtype = ITOV(ip)->v_type; 5988 freeblks->fb_modrev = DIP(ip, i_modrev); 5989 freeblks->fb_devvp = ip->i_devvp; 5990 freeblks->fb_chkcnt = 0; 5991 freeblks->fb_len = 0; 5992 5993 return (freeblks); 5994 } 5995 5996 static void 5997 trunc_indirdep(indirdep, freeblks, bp, off) 5998 struct indirdep *indirdep; 5999 struct freeblks *freeblks; 6000 struct buf *bp; 6001 int off; 6002 { 6003 struct allocindir *aip, *aipn; 6004 6005 /* 6006 * The first set of allocindirs won't be in savedbp. 6007 */ 6008 LIST_FOREACH_SAFE(aip, &indirdep->ir_deplisthd, ai_next, aipn) 6009 if (aip->ai_offset > off) 6010 cancel_allocindir(aip, bp, freeblks, 1); 6011 LIST_FOREACH_SAFE(aip, &indirdep->ir_donehd, ai_next, aipn) 6012 if (aip->ai_offset > off) 6013 cancel_allocindir(aip, bp, freeblks, 1); 6014 /* 6015 * These will exist in savedbp. 6016 */ 6017 LIST_FOREACH_SAFE(aip, &indirdep->ir_writehd, ai_next, aipn) 6018 if (aip->ai_offset > off) 6019 cancel_allocindir(aip, NULL, freeblks, 0); 6020 LIST_FOREACH_SAFE(aip, &indirdep->ir_completehd, ai_next, aipn) 6021 if (aip->ai_offset > off) 6022 cancel_allocindir(aip, NULL, freeblks, 0); 6023 } 6024 6025 /* 6026 * Follow the chain of indirects down to lastlbn creating a freework 6027 * structure for each. This will be used to start indir_trunc() at 6028 * the right offset and create the journal records for the parrtial 6029 * truncation. A second step will handle the truncated dependencies. 6030 */ 6031 static int 6032 setup_trunc_indir(freeblks, ip, lbn, lastlbn, blkno) 6033 struct freeblks *freeblks; 6034 struct inode *ip; 6035 ufs_lbn_t lbn; 6036 ufs_lbn_t lastlbn; 6037 ufs2_daddr_t blkno; 6038 { 6039 struct indirdep *indirdep; 6040 struct indirdep *indirn; 6041 struct freework *freework; 6042 struct newblk *newblk; 6043 struct mount *mp; 6044 struct buf *bp; 6045 uint8_t *start; 6046 uint8_t *end; 6047 ufs_lbn_t lbnadd; 6048 int level; 6049 int error; 6050 int off; 6051 6052 6053 freework = NULL; 6054 if (blkno == 0) 6055 return (0); 6056 mp = freeblks->fb_list.wk_mp; 6057 bp = getblk(ITOV(ip), lbn, mp->mnt_stat.f_iosize, 0, 0, 0); 6058 if ((bp->b_flags & B_CACHE) == 0) { 6059 bp->b_blkno = blkptrtodb(VFSTOUFS(mp), blkno); 6060 bp->b_iocmd = BIO_READ; 6061 bp->b_flags &= ~B_INVAL; 6062 bp->b_ioflags &= ~BIO_ERROR; 6063 vfs_busy_pages(bp, 0); 6064 bp->b_iooffset = dbtob(bp->b_blkno); 6065 bstrategy(bp); 6066 curthread->td_ru.ru_inblock++; 6067 error = bufwait(bp); 6068 if (error) { 6069 brelse(bp); 6070 return (error); 6071 } 6072 } 6073 level = lbn_level(lbn); 6074 lbnadd = lbn_offset(ip->i_fs, level); 6075 /* 6076 * Compute the offset of the last block we want to keep. Store 6077 * in the freework the first block we want to completely free. 6078 */ 6079 off = (lastlbn - -(lbn + level)) / lbnadd; 6080 if (off + 1 == NINDIR(ip->i_fs)) 6081 goto nowork; 6082 freework = newfreework(ip->i_ump, freeblks, NULL, lbn, blkno, 0, off+1, 6083 0); 6084 /* 6085 * Link the freework into the indirdep. This will prevent any new 6086 * allocations from proceeding until we are finished with the 6087 * truncate and the block is written. 6088 */ 6089 ACQUIRE_LOCK(&lk); 6090 indirdep = indirdep_lookup(mp, ip, bp); 6091 if (indirdep->ir_freeblks) 6092 panic("setup_trunc_indir: indirdep already truncated."); 6093 TAILQ_INSERT_TAIL(&indirdep->ir_trunc, freework, fw_next); 6094 freework->fw_indir = indirdep; 6095 /* 6096 * Cancel any allocindirs that will not make it to disk. 6097 * We have to do this for all copies of the indirdep that 6098 * live on this newblk. 6099 */ 6100 if ((indirdep->ir_state & DEPCOMPLETE) == 0) { 6101 newblk_lookup(mp, dbtofsb(ip->i_fs, bp->b_blkno), 0, &newblk); 6102 LIST_FOREACH(indirn, &newblk->nb_indirdeps, ir_next) 6103 trunc_indirdep(indirn, freeblks, bp, off); 6104 } else 6105 trunc_indirdep(indirdep, freeblks, bp, off); 6106 FREE_LOCK(&lk); 6107 /* 6108 * Creation is protected by the buf lock. The saveddata is only 6109 * needed if a full truncation follows a partial truncation but it 6110 * is difficult to allocate in that case so we fetch it anyway. 6111 */ 6112 if (indirdep->ir_saveddata == NULL) 6113 indirdep->ir_saveddata = malloc(bp->b_bcount, M_INDIRDEP, 6114 M_SOFTDEP_FLAGS); 6115 nowork: 6116 /* Fetch the blkno of the child and the zero start offset. */ 6117 if (ip->i_ump->um_fstype == UFS1) { 6118 blkno = ((ufs1_daddr_t *)bp->b_data)[off]; 6119 start = (uint8_t *)&((ufs1_daddr_t *)bp->b_data)[off+1]; 6120 } else { 6121 blkno = ((ufs2_daddr_t *)bp->b_data)[off]; 6122 start = (uint8_t *)&((ufs2_daddr_t *)bp->b_data)[off+1]; 6123 } 6124 if (freework) { 6125 /* Zero the truncated pointers. */ 6126 end = bp->b_data + bp->b_bcount; 6127 bzero(start, end - start); 6128 bdwrite(bp); 6129 } else 6130 bqrelse(bp); 6131 if (level == 0) 6132 return (0); 6133 lbn++; /* adjust level */ 6134 lbn -= (off * lbnadd); 6135 return setup_trunc_indir(freeblks, ip, lbn, lastlbn, blkno); 6136 } 6137 6138 /* 6139 * Complete the partial truncation of an indirect block setup by 6140 * setup_trunc_indir(). This zeros the truncated pointers in the saved 6141 * copy and writes them to disk before the freeblks is allowed to complete. 6142 */ 6143 static void 6144 complete_trunc_indir(freework) 6145 struct freework *freework; 6146 { 6147 struct freework *fwn; 6148 struct indirdep *indirdep; 6149 struct buf *bp; 6150 uintptr_t start; 6151 int count; 6152 6153 indirdep = freework->fw_indir; 6154 for (;;) { 6155 bp = indirdep->ir_bp; 6156 /* See if the block was discarded. */ 6157 if (bp == NULL) 6158 break; 6159 /* Inline part of getdirtybuf(). We dont want bremfree. */ 6160 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) == 0) 6161 break; 6162 if (BUF_LOCK(bp, 6163 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, &lk) == 0) 6164 BUF_UNLOCK(bp); 6165 ACQUIRE_LOCK(&lk); 6166 } 6167 rw_assert(&lk, RA_WLOCKED); 6168 freework->fw_state |= DEPCOMPLETE; 6169 TAILQ_REMOVE(&indirdep->ir_trunc, freework, fw_next); 6170 /* 6171 * Zero the pointers in the saved copy. 6172 */ 6173 if (indirdep->ir_state & UFS1FMT) 6174 start = sizeof(ufs1_daddr_t); 6175 else 6176 start = sizeof(ufs2_daddr_t); 6177 start *= freework->fw_start; 6178 count = indirdep->ir_savebp->b_bcount - start; 6179 start += (uintptr_t)indirdep->ir_savebp->b_data; 6180 bzero((char *)start, count); 6181 /* 6182 * We need to start the next truncation in the list if it has not 6183 * been started yet. 6184 */ 6185 fwn = TAILQ_FIRST(&indirdep->ir_trunc); 6186 if (fwn != NULL) { 6187 if (fwn->fw_freeblks == indirdep->ir_freeblks) 6188 TAILQ_REMOVE(&indirdep->ir_trunc, fwn, fw_next); 6189 if ((fwn->fw_state & ONWORKLIST) == 0) 6190 freework_enqueue(fwn); 6191 } 6192 /* 6193 * If bp is NULL the block was fully truncated, restore 6194 * the saved block list otherwise free it if it is no 6195 * longer needed. 6196 */ 6197 if (TAILQ_EMPTY(&indirdep->ir_trunc)) { 6198 if (bp == NULL) 6199 bcopy(indirdep->ir_saveddata, 6200 indirdep->ir_savebp->b_data, 6201 indirdep->ir_savebp->b_bcount); 6202 free(indirdep->ir_saveddata, M_INDIRDEP); 6203 indirdep->ir_saveddata = NULL; 6204 } 6205 /* 6206 * When bp is NULL there is a full truncation pending. We 6207 * must wait for this full truncation to be journaled before 6208 * we can release this freework because the disk pointers will 6209 * never be written as zero. 6210 */ 6211 if (bp == NULL) { 6212 if (LIST_EMPTY(&indirdep->ir_freeblks->fb_jblkdephd)) 6213 handle_written_freework(freework); 6214 else 6215 WORKLIST_INSERT(&indirdep->ir_freeblks->fb_freeworkhd, 6216 &freework->fw_list); 6217 } else { 6218 /* Complete when the real copy is written. */ 6219 WORKLIST_INSERT(&bp->b_dep, &freework->fw_list); 6220 BUF_UNLOCK(bp); 6221 } 6222 } 6223 6224 /* 6225 * Calculate the number of blocks we are going to release where datablocks 6226 * is the current total and length is the new file size. 6227 */ 6228 ufs2_daddr_t 6229 blkcount(fs, datablocks, length) 6230 struct fs *fs; 6231 ufs2_daddr_t datablocks; 6232 off_t length; 6233 { 6234 off_t totblks, numblks; 6235 6236 totblks = 0; 6237 numblks = howmany(length, fs->fs_bsize); 6238 if (numblks <= NDADDR) { 6239 totblks = howmany(length, fs->fs_fsize); 6240 goto out; 6241 } 6242 totblks = blkstofrags(fs, numblks); 6243 numblks -= NDADDR; 6244 /* 6245 * Count all single, then double, then triple indirects required. 6246 * Subtracting one indirects worth of blocks for each pass 6247 * acknowledges one of each pointed to by the inode. 6248 */ 6249 for (;;) { 6250 totblks += blkstofrags(fs, howmany(numblks, NINDIR(fs))); 6251 numblks -= NINDIR(fs); 6252 if (numblks <= 0) 6253 break; 6254 numblks = howmany(numblks, NINDIR(fs)); 6255 } 6256 out: 6257 totblks = fsbtodb(fs, totblks); 6258 /* 6259 * Handle sparse files. We can't reclaim more blocks than the inode 6260 * references. We will correct it later in handle_complete_freeblks() 6261 * when we know the real count. 6262 */ 6263 if (totblks > datablocks) 6264 return (0); 6265 return (datablocks - totblks); 6266 } 6267 6268 /* 6269 * Handle freeblocks for journaled softupdate filesystems. 6270 * 6271 * Contrary to normal softupdates, we must preserve the block pointers in 6272 * indirects until their subordinates are free. This is to avoid journaling 6273 * every block that is freed which may consume more space than the journal 6274 * itself. The recovery program will see the free block journals at the 6275 * base of the truncated area and traverse them to reclaim space. The 6276 * pointers in the inode may be cleared immediately after the journal 6277 * records are written because each direct and indirect pointer in the 6278 * inode is recorded in a journal. This permits full truncation to proceed 6279 * asynchronously. The write order is journal -> inode -> cgs -> indirects. 6280 * 6281 * The algorithm is as follows: 6282 * 1) Traverse the in-memory state and create journal entries to release 6283 * the relevant blocks and full indirect trees. 6284 * 2) Traverse the indirect block chain adding partial truncation freework 6285 * records to indirects in the path to lastlbn. The freework will 6286 * prevent new allocation dependencies from being satisfied in this 6287 * indirect until the truncation completes. 6288 * 3) Read and lock the inode block, performing an update with the new size 6289 * and pointers. This prevents truncated data from becoming valid on 6290 * disk through step 4. 6291 * 4) Reap unsatisfied dependencies that are beyond the truncated area, 6292 * eliminate journal work for those records that do not require it. 6293 * 5) Schedule the journal records to be written followed by the inode block. 6294 * 6) Allocate any necessary frags for the end of file. 6295 * 7) Zero any partially truncated blocks. 6296 * 6297 * From this truncation proceeds asynchronously using the freework and 6298 * indir_trunc machinery. The file will not be extended again into a 6299 * partially truncated indirect block until all work is completed but 6300 * the normal dependency mechanism ensures that it is rolled back/forward 6301 * as appropriate. Further truncation may occur without delay and is 6302 * serialized in indir_trunc(). 6303 */ 6304 void 6305 softdep_journal_freeblocks(ip, cred, length, flags) 6306 struct inode *ip; /* The inode whose length is to be reduced */ 6307 struct ucred *cred; 6308 off_t length; /* The new length for the file */ 6309 int flags; /* IO_EXT and/or IO_NORMAL */ 6310 { 6311 struct freeblks *freeblks, *fbn; 6312 struct worklist *wk, *wkn; 6313 struct inodedep *inodedep; 6314 struct jblkdep *jblkdep; 6315 struct allocdirect *adp, *adpn; 6316 struct fs *fs; 6317 struct buf *bp; 6318 struct vnode *vp; 6319 struct mount *mp; 6320 ufs2_daddr_t extblocks, datablocks; 6321 ufs_lbn_t tmpval, lbn, lastlbn; 6322 int frags, lastoff, iboff, allocblock, needj, dflags, error, i; 6323 6324 fs = ip->i_fs; 6325 mp = UFSTOVFS(ip->i_ump); 6326 vp = ITOV(ip); 6327 needj = 1; 6328 iboff = -1; 6329 allocblock = 0; 6330 extblocks = 0; 6331 datablocks = 0; 6332 frags = 0; 6333 freeblks = newfreeblks(mp, ip); 6334 ACQUIRE_LOCK(&lk); 6335 /* 6336 * If we're truncating a removed file that will never be written 6337 * we don't need to journal the block frees. The canceled journals 6338 * for the allocations will suffice. 6339 */ 6340 dflags = DEPALLOC; 6341 if (IS_SNAPSHOT(ip)) 6342 dflags |= NODELAY; 6343 inodedep_lookup(mp, ip->i_number, dflags, &inodedep); 6344 if ((inodedep->id_state & (UNLINKED | DEPCOMPLETE)) == UNLINKED && 6345 length == 0) 6346 needj = 0; 6347 CTR3(KTR_SUJ, "softdep_journal_freeblks: ip %d length %ld needj %d", 6348 ip->i_number, length, needj); 6349 FREE_LOCK(&lk); 6350 /* 6351 * Calculate the lbn that we are truncating to. This results in -1 6352 * if we're truncating the 0 bytes. So it is the last lbn we want 6353 * to keep, not the first lbn we want to truncate. 6354 */ 6355 lastlbn = lblkno(fs, length + fs->fs_bsize - 1) - 1; 6356 lastoff = blkoff(fs, length); 6357 /* 6358 * Compute frags we are keeping in lastlbn. 0 means all. 6359 */ 6360 if (lastlbn >= 0 && lastlbn < NDADDR) { 6361 frags = fragroundup(fs, lastoff); 6362 /* adp offset of last valid allocdirect. */ 6363 iboff = lastlbn; 6364 } else if (lastlbn > 0) 6365 iboff = NDADDR; 6366 if (fs->fs_magic == FS_UFS2_MAGIC) 6367 extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize)); 6368 /* 6369 * Handle normal data blocks and indirects. This section saves 6370 * values used after the inode update to complete frag and indirect 6371 * truncation. 6372 */ 6373 if ((flags & IO_NORMAL) != 0) { 6374 /* 6375 * Handle truncation of whole direct and indirect blocks. 6376 */ 6377 for (i = iboff + 1; i < NDADDR; i++) 6378 setup_freedirect(freeblks, ip, i, needj); 6379 for (i = 0, tmpval = NINDIR(fs), lbn = NDADDR; i < NIADDR; 6380 i++, lbn += tmpval, tmpval *= NINDIR(fs)) { 6381 /* Release a whole indirect tree. */ 6382 if (lbn > lastlbn) { 6383 setup_freeindir(freeblks, ip, i, -lbn -i, 6384 needj); 6385 continue; 6386 } 6387 iboff = i + NDADDR; 6388 /* 6389 * Traverse partially truncated indirect tree. 6390 */ 6391 if (lbn <= lastlbn && lbn + tmpval - 1 > lastlbn) 6392 setup_trunc_indir(freeblks, ip, -lbn - i, 6393 lastlbn, DIP(ip, i_ib[i])); 6394 } 6395 /* 6396 * Handle partial truncation to a frag boundary. 6397 */ 6398 if (frags) { 6399 ufs2_daddr_t blkno; 6400 long oldfrags; 6401 6402 oldfrags = blksize(fs, ip, lastlbn); 6403 blkno = DIP(ip, i_db[lastlbn]); 6404 if (blkno && oldfrags != frags) { 6405 oldfrags -= frags; 6406 oldfrags = numfrags(ip->i_fs, oldfrags); 6407 blkno += numfrags(ip->i_fs, frags); 6408 newfreework(ip->i_ump, freeblks, NULL, lastlbn, 6409 blkno, oldfrags, 0, needj); 6410 } else if (blkno == 0) 6411 allocblock = 1; 6412 } 6413 /* 6414 * Add a journal record for partial truncate if we are 6415 * handling indirect blocks. Non-indirects need no extra 6416 * journaling. 6417 */ 6418 if (length != 0 && lastlbn >= NDADDR) { 6419 ip->i_flag |= IN_TRUNCATED; 6420 newjtrunc(freeblks, length, 0); 6421 } 6422 ip->i_size = length; 6423 DIP_SET(ip, i_size, ip->i_size); 6424 datablocks = DIP(ip, i_blocks) - extblocks; 6425 if (length != 0) 6426 datablocks = blkcount(ip->i_fs, datablocks, length); 6427 freeblks->fb_len = length; 6428 } 6429 if ((flags & IO_EXT) != 0) { 6430 for (i = 0; i < NXADDR; i++) 6431 setup_freeext(freeblks, ip, i, needj); 6432 ip->i_din2->di_extsize = 0; 6433 datablocks += extblocks; 6434 } 6435 #ifdef QUOTA 6436 /* Reference the quotas in case the block count is wrong in the end. */ 6437 quotaref(vp, freeblks->fb_quota); 6438 (void) chkdq(ip, -datablocks, NOCRED, 0); 6439 #endif 6440 freeblks->fb_chkcnt = -datablocks; 6441 UFS_LOCK(ip->i_ump); 6442 fs->fs_pendingblocks += datablocks; 6443 UFS_UNLOCK(ip->i_ump); 6444 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - datablocks); 6445 /* 6446 * Handle truncation of incomplete alloc direct dependencies. We 6447 * hold the inode block locked to prevent incomplete dependencies 6448 * from reaching the disk while we are eliminating those that 6449 * have been truncated. This is a partially inlined ffs_update(). 6450 */ 6451 ufs_itimes(vp); 6452 ip->i_flag &= ~(IN_LAZYACCESS | IN_LAZYMOD | IN_MODIFIED); 6453 error = bread(ip->i_devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)), 6454 (int)fs->fs_bsize, cred, &bp); 6455 if (error) { 6456 brelse(bp); 6457 softdep_error("softdep_journal_freeblocks", error); 6458 return; 6459 } 6460 if (bp->b_bufsize == fs->fs_bsize) 6461 bp->b_flags |= B_CLUSTEROK; 6462 softdep_update_inodeblock(ip, bp, 0); 6463 if (ip->i_ump->um_fstype == UFS1) 6464 *((struct ufs1_dinode *)bp->b_data + 6465 ino_to_fsbo(fs, ip->i_number)) = *ip->i_din1; 6466 else 6467 *((struct ufs2_dinode *)bp->b_data + 6468 ino_to_fsbo(fs, ip->i_number)) = *ip->i_din2; 6469 ACQUIRE_LOCK(&lk); 6470 (void) inodedep_lookup(mp, ip->i_number, dflags, &inodedep); 6471 if ((inodedep->id_state & IOSTARTED) != 0) 6472 panic("softdep_setup_freeblocks: inode busy"); 6473 /* 6474 * Add the freeblks structure to the list of operations that 6475 * must await the zero'ed inode being written to disk. If we 6476 * still have a bitmap dependency (needj), then the inode 6477 * has never been written to disk, so we can process the 6478 * freeblks below once we have deleted the dependencies. 6479 */ 6480 if (needj) 6481 WORKLIST_INSERT(&bp->b_dep, &freeblks->fb_list); 6482 else 6483 freeblks->fb_state |= COMPLETE; 6484 if ((flags & IO_NORMAL) != 0) { 6485 TAILQ_FOREACH_SAFE(adp, &inodedep->id_inoupdt, ad_next, adpn) { 6486 if (adp->ad_offset > iboff) 6487 cancel_allocdirect(&inodedep->id_inoupdt, adp, 6488 freeblks); 6489 /* 6490 * Truncate the allocdirect. We could eliminate 6491 * or modify journal records as well. 6492 */ 6493 else if (adp->ad_offset == iboff && frags) 6494 adp->ad_newsize = frags; 6495 } 6496 } 6497 if ((flags & IO_EXT) != 0) 6498 while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != 0) 6499 cancel_allocdirect(&inodedep->id_extupdt, adp, 6500 freeblks); 6501 /* 6502 * Scan the bufwait list for newblock dependencies that will never 6503 * make it to disk. 6504 */ 6505 LIST_FOREACH_SAFE(wk, &inodedep->id_bufwait, wk_list, wkn) { 6506 if (wk->wk_type != D_ALLOCDIRECT) 6507 continue; 6508 adp = WK_ALLOCDIRECT(wk); 6509 if (((flags & IO_NORMAL) != 0 && (adp->ad_offset > iboff)) || 6510 ((flags & IO_EXT) != 0 && (adp->ad_state & EXTDATA))) { 6511 cancel_jfreeblk(freeblks, adp->ad_newblkno); 6512 cancel_newblk(WK_NEWBLK(wk), NULL, &freeblks->fb_jwork); 6513 WORKLIST_INSERT(&freeblks->fb_freeworkhd, wk); 6514 } 6515 } 6516 /* 6517 * Add journal work. 6518 */ 6519 LIST_FOREACH(jblkdep, &freeblks->fb_jblkdephd, jb_deps) 6520 add_to_journal(&jblkdep->jb_list); 6521 FREE_LOCK(&lk); 6522 bdwrite(bp); 6523 /* 6524 * Truncate dependency structures beyond length. 6525 */ 6526 trunc_dependencies(ip, freeblks, lastlbn, frags, flags); 6527 /* 6528 * This is only set when we need to allocate a fragment because 6529 * none existed at the end of a frag-sized file. It handles only 6530 * allocating a new, zero filled block. 6531 */ 6532 if (allocblock) { 6533 ip->i_size = length - lastoff; 6534 DIP_SET(ip, i_size, ip->i_size); 6535 error = UFS_BALLOC(vp, length - 1, 1, cred, BA_CLRBUF, &bp); 6536 if (error != 0) { 6537 softdep_error("softdep_journal_freeblks", error); 6538 return; 6539 } 6540 ip->i_size = length; 6541 DIP_SET(ip, i_size, length); 6542 ip->i_flag |= IN_CHANGE | IN_UPDATE; 6543 allocbuf(bp, frags); 6544 ffs_update(vp, 0); 6545 bawrite(bp); 6546 } else if (lastoff != 0 && vp->v_type != VDIR) { 6547 int size; 6548 6549 /* 6550 * Zero the end of a truncated frag or block. 6551 */ 6552 size = sblksize(fs, length, lastlbn); 6553 error = bread(vp, lastlbn, size, cred, &bp); 6554 if (error) { 6555 softdep_error("softdep_journal_freeblks", error); 6556 return; 6557 } 6558 bzero((char *)bp->b_data + lastoff, size - lastoff); 6559 bawrite(bp); 6560 6561 } 6562 ACQUIRE_LOCK(&lk); 6563 inodedep_lookup(mp, ip->i_number, dflags, &inodedep); 6564 TAILQ_INSERT_TAIL(&inodedep->id_freeblklst, freeblks, fb_next); 6565 freeblks->fb_state |= DEPCOMPLETE | ONDEPLIST; 6566 /* 6567 * We zero earlier truncations so they don't erroneously 6568 * update i_blocks. 6569 */ 6570 if (freeblks->fb_len == 0 && (flags & IO_NORMAL) != 0) 6571 TAILQ_FOREACH(fbn, &inodedep->id_freeblklst, fb_next) 6572 fbn->fb_len = 0; 6573 if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE && 6574 LIST_EMPTY(&freeblks->fb_jblkdephd)) 6575 freeblks->fb_state |= INPROGRESS; 6576 else 6577 freeblks = NULL; 6578 FREE_LOCK(&lk); 6579 if (freeblks) 6580 handle_workitem_freeblocks(freeblks, 0); 6581 trunc_pages(ip, length, extblocks, flags); 6582 6583 } 6584 6585 /* 6586 * Flush a JOP_SYNC to the journal. 6587 */ 6588 void 6589 softdep_journal_fsync(ip) 6590 struct inode *ip; 6591 { 6592 struct jfsync *jfsync; 6593 6594 if ((ip->i_flag & IN_TRUNCATED) == 0) 6595 return; 6596 ip->i_flag &= ~IN_TRUNCATED; 6597 jfsync = malloc(sizeof(*jfsync), M_JFSYNC, M_SOFTDEP_FLAGS | M_ZERO); 6598 workitem_alloc(&jfsync->jfs_list, D_JFSYNC, UFSTOVFS(ip->i_ump)); 6599 jfsync->jfs_size = ip->i_size; 6600 jfsync->jfs_ino = ip->i_number; 6601 ACQUIRE_LOCK(&lk); 6602 add_to_journal(&jfsync->jfs_list); 6603 jwait(&jfsync->jfs_list, MNT_WAIT); 6604 FREE_LOCK(&lk); 6605 } 6606 6607 /* 6608 * Block de-allocation dependencies. 6609 * 6610 * When blocks are de-allocated, the on-disk pointers must be nullified before 6611 * the blocks are made available for use by other files. (The true 6612 * requirement is that old pointers must be nullified before new on-disk 6613 * pointers are set. We chose this slightly more stringent requirement to 6614 * reduce complexity.) Our implementation handles this dependency by updating 6615 * the inode (or indirect block) appropriately but delaying the actual block 6616 * de-allocation (i.e., freemap and free space count manipulation) until 6617 * after the updated versions reach stable storage. After the disk is 6618 * updated, the blocks can be safely de-allocated whenever it is convenient. 6619 * This implementation handles only the common case of reducing a file's 6620 * length to zero. Other cases are handled by the conventional synchronous 6621 * write approach. 6622 * 6623 * The ffs implementation with which we worked double-checks 6624 * the state of the block pointers and file size as it reduces 6625 * a file's length. Some of this code is replicated here in our 6626 * soft updates implementation. The freeblks->fb_chkcnt field is 6627 * used to transfer a part of this information to the procedure 6628 * that eventually de-allocates the blocks. 6629 * 6630 * This routine should be called from the routine that shortens 6631 * a file's length, before the inode's size or block pointers 6632 * are modified. It will save the block pointer information for 6633 * later release and zero the inode so that the calling routine 6634 * can release it. 6635 */ 6636 void 6637 softdep_setup_freeblocks(ip, length, flags) 6638 struct inode *ip; /* The inode whose length is to be reduced */ 6639 off_t length; /* The new length for the file */ 6640 int flags; /* IO_EXT and/or IO_NORMAL */ 6641 { 6642 struct ufs1_dinode *dp1; 6643 struct ufs2_dinode *dp2; 6644 struct freeblks *freeblks; 6645 struct inodedep *inodedep; 6646 struct allocdirect *adp; 6647 struct buf *bp; 6648 struct fs *fs; 6649 ufs2_daddr_t extblocks, datablocks; 6650 struct mount *mp; 6651 int i, delay, error, dflags; 6652 ufs_lbn_t tmpval; 6653 ufs_lbn_t lbn; 6654 6655 CTR2(KTR_SUJ, "softdep_setup_freeblks: ip %d length %ld", 6656 ip->i_number, length); 6657 fs = ip->i_fs; 6658 mp = UFSTOVFS(ip->i_ump); 6659 if (length != 0) 6660 panic("softdep_setup_freeblocks: non-zero length"); 6661 freeblks = newfreeblks(mp, ip); 6662 extblocks = 0; 6663 datablocks = 0; 6664 if (fs->fs_magic == FS_UFS2_MAGIC) 6665 extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize)); 6666 if ((flags & IO_NORMAL) != 0) { 6667 for (i = 0; i < NDADDR; i++) 6668 setup_freedirect(freeblks, ip, i, 0); 6669 for (i = 0, tmpval = NINDIR(fs), lbn = NDADDR; i < NIADDR; 6670 i++, lbn += tmpval, tmpval *= NINDIR(fs)) 6671 setup_freeindir(freeblks, ip, i, -lbn -i, 0); 6672 ip->i_size = 0; 6673 DIP_SET(ip, i_size, 0); 6674 datablocks = DIP(ip, i_blocks) - extblocks; 6675 } 6676 if ((flags & IO_EXT) != 0) { 6677 for (i = 0; i < NXADDR; i++) 6678 setup_freeext(freeblks, ip, i, 0); 6679 ip->i_din2->di_extsize = 0; 6680 datablocks += extblocks; 6681 } 6682 #ifdef QUOTA 6683 /* Reference the quotas in case the block count is wrong in the end. */ 6684 quotaref(ITOV(ip), freeblks->fb_quota); 6685 (void) chkdq(ip, -datablocks, NOCRED, 0); 6686 #endif 6687 freeblks->fb_chkcnt = -datablocks; 6688 UFS_LOCK(ip->i_ump); 6689 fs->fs_pendingblocks += datablocks; 6690 UFS_UNLOCK(ip->i_ump); 6691 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - datablocks); 6692 /* 6693 * Push the zero'ed inode to to its disk buffer so that we are free 6694 * to delete its dependencies below. Once the dependencies are gone 6695 * the buffer can be safely released. 6696 */ 6697 if ((error = bread(ip->i_devvp, 6698 fsbtodb(fs, ino_to_fsba(fs, ip->i_number)), 6699 (int)fs->fs_bsize, NOCRED, &bp)) != 0) { 6700 brelse(bp); 6701 softdep_error("softdep_setup_freeblocks", error); 6702 } 6703 if (ip->i_ump->um_fstype == UFS1) { 6704 dp1 = ((struct ufs1_dinode *)bp->b_data + 6705 ino_to_fsbo(fs, ip->i_number)); 6706 ip->i_din1->di_freelink = dp1->di_freelink; 6707 *dp1 = *ip->i_din1; 6708 } else { 6709 dp2 = ((struct ufs2_dinode *)bp->b_data + 6710 ino_to_fsbo(fs, ip->i_number)); 6711 ip->i_din2->di_freelink = dp2->di_freelink; 6712 *dp2 = *ip->i_din2; 6713 } 6714 /* 6715 * Find and eliminate any inode dependencies. 6716 */ 6717 ACQUIRE_LOCK(&lk); 6718 dflags = DEPALLOC; 6719 if (IS_SNAPSHOT(ip)) 6720 dflags |= NODELAY; 6721 (void) inodedep_lookup(mp, ip->i_number, dflags, &inodedep); 6722 if ((inodedep->id_state & IOSTARTED) != 0) 6723 panic("softdep_setup_freeblocks: inode busy"); 6724 /* 6725 * Add the freeblks structure to the list of operations that 6726 * must await the zero'ed inode being written to disk. If we 6727 * still have a bitmap dependency (delay == 0), then the inode 6728 * has never been written to disk, so we can process the 6729 * freeblks below once we have deleted the dependencies. 6730 */ 6731 delay = (inodedep->id_state & DEPCOMPLETE); 6732 if (delay) 6733 WORKLIST_INSERT(&bp->b_dep, &freeblks->fb_list); 6734 else 6735 freeblks->fb_state |= COMPLETE; 6736 /* 6737 * Because the file length has been truncated to zero, any 6738 * pending block allocation dependency structures associated 6739 * with this inode are obsolete and can simply be de-allocated. 6740 * We must first merge the two dependency lists to get rid of 6741 * any duplicate freefrag structures, then purge the merged list. 6742 * If we still have a bitmap dependency, then the inode has never 6743 * been written to disk, so we can free any fragments without delay. 6744 */ 6745 if (flags & IO_NORMAL) { 6746 merge_inode_lists(&inodedep->id_newinoupdt, 6747 &inodedep->id_inoupdt); 6748 while ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != 0) 6749 cancel_allocdirect(&inodedep->id_inoupdt, adp, 6750 freeblks); 6751 } 6752 if (flags & IO_EXT) { 6753 merge_inode_lists(&inodedep->id_newextupdt, 6754 &inodedep->id_extupdt); 6755 while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != 0) 6756 cancel_allocdirect(&inodedep->id_extupdt, adp, 6757 freeblks); 6758 } 6759 FREE_LOCK(&lk); 6760 bdwrite(bp); 6761 trunc_dependencies(ip, freeblks, -1, 0, flags); 6762 ACQUIRE_LOCK(&lk); 6763 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0) 6764 (void) free_inodedep(inodedep); 6765 freeblks->fb_state |= DEPCOMPLETE; 6766 /* 6767 * If the inode with zeroed block pointers is now on disk 6768 * we can start freeing blocks. 6769 */ 6770 if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE) 6771 freeblks->fb_state |= INPROGRESS; 6772 else 6773 freeblks = NULL; 6774 FREE_LOCK(&lk); 6775 if (freeblks) 6776 handle_workitem_freeblocks(freeblks, 0); 6777 trunc_pages(ip, length, extblocks, flags); 6778 } 6779 6780 /* 6781 * Eliminate pages from the page cache that back parts of this inode and 6782 * adjust the vnode pager's idea of our size. This prevents stale data 6783 * from hanging around in the page cache. 6784 */ 6785 static void 6786 trunc_pages(ip, length, extblocks, flags) 6787 struct inode *ip; 6788 off_t length; 6789 ufs2_daddr_t extblocks; 6790 int flags; 6791 { 6792 struct vnode *vp; 6793 struct fs *fs; 6794 ufs_lbn_t lbn; 6795 off_t end, extend; 6796 6797 vp = ITOV(ip); 6798 fs = ip->i_fs; 6799 extend = OFF_TO_IDX(lblktosize(fs, -extblocks)); 6800 if ((flags & IO_EXT) != 0) 6801 vn_pages_remove(vp, extend, 0); 6802 if ((flags & IO_NORMAL) == 0) 6803 return; 6804 BO_LOCK(&vp->v_bufobj); 6805 drain_output(vp); 6806 BO_UNLOCK(&vp->v_bufobj); 6807 /* 6808 * The vnode pager eliminates file pages we eliminate indirects 6809 * below. 6810 */ 6811 vnode_pager_setsize(vp, length); 6812 /* 6813 * Calculate the end based on the last indirect we want to keep. If 6814 * the block extends into indirects we can just use the negative of 6815 * its lbn. Doubles and triples exist at lower numbers so we must 6816 * be careful not to remove those, if they exist. double and triple 6817 * indirect lbns do not overlap with others so it is not important 6818 * to verify how many levels are required. 6819 */ 6820 lbn = lblkno(fs, length); 6821 if (lbn >= NDADDR) { 6822 /* Calculate the virtual lbn of the triple indirect. */ 6823 lbn = -lbn - (NIADDR - 1); 6824 end = OFF_TO_IDX(lblktosize(fs, lbn)); 6825 } else 6826 end = extend; 6827 vn_pages_remove(vp, OFF_TO_IDX(OFF_MAX), end); 6828 } 6829 6830 /* 6831 * See if the buf bp is in the range eliminated by truncation. 6832 */ 6833 static int 6834 trunc_check_buf(bp, blkoffp, lastlbn, lastoff, flags) 6835 struct buf *bp; 6836 int *blkoffp; 6837 ufs_lbn_t lastlbn; 6838 int lastoff; 6839 int flags; 6840 { 6841 ufs_lbn_t lbn; 6842 6843 *blkoffp = 0; 6844 /* Only match ext/normal blocks as appropriate. */ 6845 if (((flags & IO_EXT) == 0 && (bp->b_xflags & BX_ALTDATA)) || 6846 ((flags & IO_NORMAL) == 0 && (bp->b_xflags & BX_ALTDATA) == 0)) 6847 return (0); 6848 /* ALTDATA is always a full truncation. */ 6849 if ((bp->b_xflags & BX_ALTDATA) != 0) 6850 return (1); 6851 /* -1 is full truncation. */ 6852 if (lastlbn == -1) 6853 return (1); 6854 /* 6855 * If this is a partial truncate we only want those 6856 * blocks and indirect blocks that cover the range 6857 * we're after. 6858 */ 6859 lbn = bp->b_lblkno; 6860 if (lbn < 0) 6861 lbn = -(lbn + lbn_level(lbn)); 6862 if (lbn < lastlbn) 6863 return (0); 6864 /* Here we only truncate lblkno if it's partial. */ 6865 if (lbn == lastlbn) { 6866 if (lastoff == 0) 6867 return (0); 6868 *blkoffp = lastoff; 6869 } 6870 return (1); 6871 } 6872 6873 /* 6874 * Eliminate any dependencies that exist in memory beyond lblkno:off 6875 */ 6876 static void 6877 trunc_dependencies(ip, freeblks, lastlbn, lastoff, flags) 6878 struct inode *ip; 6879 struct freeblks *freeblks; 6880 ufs_lbn_t lastlbn; 6881 int lastoff; 6882 int flags; 6883 { 6884 struct bufobj *bo; 6885 struct vnode *vp; 6886 struct buf *bp; 6887 struct fs *fs; 6888 int blkoff; 6889 6890 /* 6891 * We must wait for any I/O in progress to finish so that 6892 * all potential buffers on the dirty list will be visible. 6893 * Once they are all there, walk the list and get rid of 6894 * any dependencies. 6895 */ 6896 fs = ip->i_fs; 6897 vp = ITOV(ip); 6898 bo = &vp->v_bufobj; 6899 BO_LOCK(bo); 6900 drain_output(vp); 6901 TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) 6902 bp->b_vflags &= ~BV_SCANNED; 6903 restart: 6904 TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) { 6905 if (bp->b_vflags & BV_SCANNED) 6906 continue; 6907 if (!trunc_check_buf(bp, &blkoff, lastlbn, lastoff, flags)) { 6908 bp->b_vflags |= BV_SCANNED; 6909 continue; 6910 } 6911 if ((bp = getdirtybuf(bp, BO_LOCKPTR(bo), MNT_WAIT)) == NULL) 6912 goto restart; 6913 BO_UNLOCK(bo); 6914 if (deallocate_dependencies(bp, freeblks, blkoff)) 6915 bqrelse(bp); 6916 else 6917 brelse(bp); 6918 BO_LOCK(bo); 6919 goto restart; 6920 } 6921 /* 6922 * Now do the work of vtruncbuf while also matching indirect blocks. 6923 */ 6924 TAILQ_FOREACH(bp, &bo->bo_clean.bv_hd, b_bobufs) 6925 bp->b_vflags &= ~BV_SCANNED; 6926 cleanrestart: 6927 TAILQ_FOREACH(bp, &bo->bo_clean.bv_hd, b_bobufs) { 6928 if (bp->b_vflags & BV_SCANNED) 6929 continue; 6930 if (!trunc_check_buf(bp, &blkoff, lastlbn, lastoff, flags)) { 6931 bp->b_vflags |= BV_SCANNED; 6932 continue; 6933 } 6934 if (BUF_LOCK(bp, 6935 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, 6936 BO_LOCKPTR(bo)) == ENOLCK) { 6937 BO_LOCK(bo); 6938 goto cleanrestart; 6939 } 6940 bp->b_vflags |= BV_SCANNED; 6941 bremfree(bp); 6942 if (blkoff != 0) { 6943 allocbuf(bp, blkoff); 6944 bqrelse(bp); 6945 } else { 6946 bp->b_flags |= B_INVAL | B_NOCACHE | B_RELBUF; 6947 brelse(bp); 6948 } 6949 BO_LOCK(bo); 6950 goto cleanrestart; 6951 } 6952 drain_output(vp); 6953 BO_UNLOCK(bo); 6954 } 6955 6956 static int 6957 cancel_pagedep(pagedep, freeblks, blkoff) 6958 struct pagedep *pagedep; 6959 struct freeblks *freeblks; 6960 int blkoff; 6961 { 6962 struct jremref *jremref; 6963 struct jmvref *jmvref; 6964 struct dirrem *dirrem, *tmp; 6965 int i; 6966 6967 /* 6968 * Copy any directory remove dependencies to the list 6969 * to be processed after the freeblks proceeds. If 6970 * directory entry never made it to disk they 6971 * can be dumped directly onto the work list. 6972 */ 6973 LIST_FOREACH_SAFE(dirrem, &pagedep->pd_dirremhd, dm_next, tmp) { 6974 /* Skip this directory removal if it is intended to remain. */ 6975 if (dirrem->dm_offset < blkoff) 6976 continue; 6977 /* 6978 * If there are any dirrems we wait for the journal write 6979 * to complete and then restart the buf scan as the lock 6980 * has been dropped. 6981 */ 6982 while ((jremref = LIST_FIRST(&dirrem->dm_jremrefhd)) != NULL) { 6983 jwait(&jremref->jr_list, MNT_WAIT); 6984 return (ERESTART); 6985 } 6986 LIST_REMOVE(dirrem, dm_next); 6987 dirrem->dm_dirinum = pagedep->pd_ino; 6988 WORKLIST_INSERT(&freeblks->fb_freeworkhd, &dirrem->dm_list); 6989 } 6990 while ((jmvref = LIST_FIRST(&pagedep->pd_jmvrefhd)) != NULL) { 6991 jwait(&jmvref->jm_list, MNT_WAIT); 6992 return (ERESTART); 6993 } 6994 /* 6995 * When we're partially truncating a pagedep we just want to flush 6996 * journal entries and return. There can not be any adds in the 6997 * truncated portion of the directory and newblk must remain if 6998 * part of the block remains. 6999 */ 7000 if (blkoff != 0) { 7001 struct diradd *dap; 7002 7003 LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist) 7004 if (dap->da_offset > blkoff) 7005 panic("cancel_pagedep: diradd %p off %d > %d", 7006 dap, dap->da_offset, blkoff); 7007 for (i = 0; i < DAHASHSZ; i++) 7008 LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) 7009 if (dap->da_offset > blkoff) 7010 panic("cancel_pagedep: diradd %p off %d > %d", 7011 dap, dap->da_offset, blkoff); 7012 return (0); 7013 } 7014 /* 7015 * There should be no directory add dependencies present 7016 * as the directory could not be truncated until all 7017 * children were removed. 7018 */ 7019 KASSERT(LIST_FIRST(&pagedep->pd_pendinghd) == NULL, 7020 ("deallocate_dependencies: pendinghd != NULL")); 7021 for (i = 0; i < DAHASHSZ; i++) 7022 KASSERT(LIST_FIRST(&pagedep->pd_diraddhd[i]) == NULL, 7023 ("deallocate_dependencies: diraddhd != NULL")); 7024 if ((pagedep->pd_state & NEWBLOCK) != 0) 7025 free_newdirblk(pagedep->pd_newdirblk); 7026 if (free_pagedep(pagedep) == 0) 7027 panic("Failed to free pagedep %p", pagedep); 7028 return (0); 7029 } 7030 7031 /* 7032 * Reclaim any dependency structures from a buffer that is about to 7033 * be reallocated to a new vnode. The buffer must be locked, thus, 7034 * no I/O completion operations can occur while we are manipulating 7035 * its associated dependencies. The mutex is held so that other I/O's 7036 * associated with related dependencies do not occur. 7037 */ 7038 static int 7039 deallocate_dependencies(bp, freeblks, off) 7040 struct buf *bp; 7041 struct freeblks *freeblks; 7042 int off; 7043 { 7044 struct indirdep *indirdep; 7045 struct pagedep *pagedep; 7046 struct allocdirect *adp; 7047 struct worklist *wk, *wkn; 7048 7049 ACQUIRE_LOCK(&lk); 7050 LIST_FOREACH_SAFE(wk, &bp->b_dep, wk_list, wkn) { 7051 switch (wk->wk_type) { 7052 case D_INDIRDEP: 7053 indirdep = WK_INDIRDEP(wk); 7054 if (bp->b_lblkno >= 0 || 7055 bp->b_blkno != indirdep->ir_savebp->b_lblkno) 7056 panic("deallocate_dependencies: not indir"); 7057 cancel_indirdep(indirdep, bp, freeblks); 7058 continue; 7059 7060 case D_PAGEDEP: 7061 pagedep = WK_PAGEDEP(wk); 7062 if (cancel_pagedep(pagedep, freeblks, off)) { 7063 FREE_LOCK(&lk); 7064 return (ERESTART); 7065 } 7066 continue; 7067 7068 case D_ALLOCINDIR: 7069 /* 7070 * Simply remove the allocindir, we'll find it via 7071 * the indirdep where we can clear pointers if 7072 * needed. 7073 */ 7074 WORKLIST_REMOVE(wk); 7075 continue; 7076 7077 case D_FREEWORK: 7078 /* 7079 * A truncation is waiting for the zero'd pointers 7080 * to be written. It can be freed when the freeblks 7081 * is journaled. 7082 */ 7083 WORKLIST_REMOVE(wk); 7084 wk->wk_state |= ONDEPLIST; 7085 WORKLIST_INSERT(&freeblks->fb_freeworkhd, wk); 7086 break; 7087 7088 case D_ALLOCDIRECT: 7089 adp = WK_ALLOCDIRECT(wk); 7090 if (off != 0) 7091 continue; 7092 /* FALLTHROUGH */ 7093 default: 7094 panic("deallocate_dependencies: Unexpected type %s", 7095 TYPENAME(wk->wk_type)); 7096 /* NOTREACHED */ 7097 } 7098 } 7099 FREE_LOCK(&lk); 7100 /* 7101 * Don't throw away this buf, we were partially truncating and 7102 * some deps may always remain. 7103 */ 7104 if (off) { 7105 allocbuf(bp, off); 7106 bp->b_vflags |= BV_SCANNED; 7107 return (EBUSY); 7108 } 7109 bp->b_flags |= B_INVAL | B_NOCACHE; 7110 7111 return (0); 7112 } 7113 7114 /* 7115 * An allocdirect is being canceled due to a truncate. We must make sure 7116 * the journal entry is released in concert with the blkfree that releases 7117 * the storage. Completed journal entries must not be released until the 7118 * space is no longer pointed to by the inode or in the bitmap. 7119 */ 7120 static void 7121 cancel_allocdirect(adphead, adp, freeblks) 7122 struct allocdirectlst *adphead; 7123 struct allocdirect *adp; 7124 struct freeblks *freeblks; 7125 { 7126 struct freework *freework; 7127 struct newblk *newblk; 7128 struct worklist *wk; 7129 7130 TAILQ_REMOVE(adphead, adp, ad_next); 7131 newblk = (struct newblk *)adp; 7132 freework = NULL; 7133 /* 7134 * Find the correct freework structure. 7135 */ 7136 LIST_FOREACH(wk, &freeblks->fb_freeworkhd, wk_list) { 7137 if (wk->wk_type != D_FREEWORK) 7138 continue; 7139 freework = WK_FREEWORK(wk); 7140 if (freework->fw_blkno == newblk->nb_newblkno) 7141 break; 7142 } 7143 if (freework == NULL) 7144 panic("cancel_allocdirect: Freework not found"); 7145 /* 7146 * If a newblk exists at all we still have the journal entry that 7147 * initiated the allocation so we do not need to journal the free. 7148 */ 7149 cancel_jfreeblk(freeblks, freework->fw_blkno); 7150 /* 7151 * If the journal hasn't been written the jnewblk must be passed 7152 * to the call to ffs_blkfree that reclaims the space. We accomplish 7153 * this by linking the journal dependency into the freework to be 7154 * freed when freework_freeblock() is called. If the journal has 7155 * been written we can simply reclaim the journal space when the 7156 * freeblks work is complete. 7157 */ 7158 freework->fw_jnewblk = cancel_newblk(newblk, &freework->fw_list, 7159 &freeblks->fb_jwork); 7160 WORKLIST_INSERT(&freeblks->fb_freeworkhd, &newblk->nb_list); 7161 } 7162 7163 7164 /* 7165 * Cancel a new block allocation. May be an indirect or direct block. We 7166 * remove it from various lists and return any journal record that needs to 7167 * be resolved by the caller. 7168 * 7169 * A special consideration is made for indirects which were never pointed 7170 * at on disk and will never be found once this block is released. 7171 */ 7172 static struct jnewblk * 7173 cancel_newblk(newblk, wk, wkhd) 7174 struct newblk *newblk; 7175 struct worklist *wk; 7176 struct workhead *wkhd; 7177 { 7178 struct jnewblk *jnewblk; 7179 7180 CTR1(KTR_SUJ, "cancel_newblk: blkno %jd", newblk->nb_newblkno); 7181 7182 newblk->nb_state |= GOINGAWAY; 7183 /* 7184 * Previously we traversed the completedhd on each indirdep 7185 * attached to this newblk to cancel them and gather journal 7186 * work. Since we need only the oldest journal segment and 7187 * the lowest point on the tree will always have the oldest 7188 * journal segment we are free to release the segments 7189 * of any subordinates and may leave the indirdep list to 7190 * indirdep_complete() when this newblk is freed. 7191 */ 7192 if (newblk->nb_state & ONDEPLIST) { 7193 newblk->nb_state &= ~ONDEPLIST; 7194 LIST_REMOVE(newblk, nb_deps); 7195 } 7196 if (newblk->nb_state & ONWORKLIST) 7197 WORKLIST_REMOVE(&newblk->nb_list); 7198 /* 7199 * If the journal entry hasn't been written we save a pointer to 7200 * the dependency that frees it until it is written or the 7201 * superseding operation completes. 7202 */ 7203 jnewblk = newblk->nb_jnewblk; 7204 if (jnewblk != NULL && wk != NULL) { 7205 newblk->nb_jnewblk = NULL; 7206 jnewblk->jn_dep = wk; 7207 } 7208 if (!LIST_EMPTY(&newblk->nb_jwork)) 7209 jwork_move(wkhd, &newblk->nb_jwork); 7210 /* 7211 * When truncating we must free the newdirblk early to remove 7212 * the pagedep from the hash before returning. 7213 */ 7214 if ((wk = LIST_FIRST(&newblk->nb_newdirblk)) != NULL) 7215 free_newdirblk(WK_NEWDIRBLK(wk)); 7216 if (!LIST_EMPTY(&newblk->nb_newdirblk)) 7217 panic("cancel_newblk: extra newdirblk"); 7218 7219 return (jnewblk); 7220 } 7221 7222 /* 7223 * Schedule the freefrag associated with a newblk to be released once 7224 * the pointers are written and the previous block is no longer needed. 7225 */ 7226 static void 7227 newblk_freefrag(newblk) 7228 struct newblk *newblk; 7229 { 7230 struct freefrag *freefrag; 7231 7232 if (newblk->nb_freefrag == NULL) 7233 return; 7234 freefrag = newblk->nb_freefrag; 7235 newblk->nb_freefrag = NULL; 7236 freefrag->ff_state |= COMPLETE; 7237 if ((freefrag->ff_state & ALLCOMPLETE) == ALLCOMPLETE) 7238 add_to_worklist(&freefrag->ff_list, 0); 7239 } 7240 7241 /* 7242 * Free a newblk. Generate a new freefrag work request if appropriate. 7243 * This must be called after the inode pointer and any direct block pointers 7244 * are valid or fully removed via truncate or frag extension. 7245 */ 7246 static void 7247 free_newblk(newblk) 7248 struct newblk *newblk; 7249 { 7250 struct indirdep *indirdep; 7251 struct worklist *wk; 7252 7253 KASSERT(newblk->nb_jnewblk == NULL, 7254 ("free_newblk: jnewblk %p still attached", newblk->nb_jnewblk)); 7255 KASSERT(newblk->nb_list.wk_type != D_NEWBLK, 7256 ("free_newblk: unclaimed newblk")); 7257 rw_assert(&lk, RA_WLOCKED); 7258 newblk_freefrag(newblk); 7259 if (newblk->nb_state & ONDEPLIST) 7260 LIST_REMOVE(newblk, nb_deps); 7261 if (newblk->nb_state & ONWORKLIST) 7262 WORKLIST_REMOVE(&newblk->nb_list); 7263 LIST_REMOVE(newblk, nb_hash); 7264 if ((wk = LIST_FIRST(&newblk->nb_newdirblk)) != NULL) 7265 free_newdirblk(WK_NEWDIRBLK(wk)); 7266 if (!LIST_EMPTY(&newblk->nb_newdirblk)) 7267 panic("free_newblk: extra newdirblk"); 7268 while ((indirdep = LIST_FIRST(&newblk->nb_indirdeps)) != NULL) 7269 indirdep_complete(indirdep); 7270 handle_jwork(&newblk->nb_jwork); 7271 WORKITEM_FREE(newblk, D_NEWBLK); 7272 } 7273 7274 /* 7275 * Free a newdirblk. Clear the NEWBLOCK flag on its associated pagedep. 7276 * This routine must be called with splbio interrupts blocked. 7277 */ 7278 static void 7279 free_newdirblk(newdirblk) 7280 struct newdirblk *newdirblk; 7281 { 7282 struct pagedep *pagedep; 7283 struct diradd *dap; 7284 struct worklist *wk; 7285 7286 rw_assert(&lk, RA_WLOCKED); 7287 WORKLIST_REMOVE(&newdirblk->db_list); 7288 /* 7289 * If the pagedep is still linked onto the directory buffer 7290 * dependency chain, then some of the entries on the 7291 * pd_pendinghd list may not be committed to disk yet. In 7292 * this case, we will simply clear the NEWBLOCK flag and 7293 * let the pd_pendinghd list be processed when the pagedep 7294 * is next written. If the pagedep is no longer on the buffer 7295 * dependency chain, then all the entries on the pd_pending 7296 * list are committed to disk and we can free them here. 7297 */ 7298 pagedep = newdirblk->db_pagedep; 7299 pagedep->pd_state &= ~NEWBLOCK; 7300 if ((pagedep->pd_state & ONWORKLIST) == 0) { 7301 while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL) 7302 free_diradd(dap, NULL); 7303 /* 7304 * If no dependencies remain, the pagedep will be freed. 7305 */ 7306 free_pagedep(pagedep); 7307 } 7308 /* Should only ever be one item in the list. */ 7309 while ((wk = LIST_FIRST(&newdirblk->db_mkdir)) != NULL) { 7310 WORKLIST_REMOVE(wk); 7311 handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY); 7312 } 7313 WORKITEM_FREE(newdirblk, D_NEWDIRBLK); 7314 } 7315 7316 /* 7317 * Prepare an inode to be freed. The actual free operation is not 7318 * done until the zero'ed inode has been written to disk. 7319 */ 7320 void 7321 softdep_freefile(pvp, ino, mode) 7322 struct vnode *pvp; 7323 ino_t ino; 7324 int mode; 7325 { 7326 struct inode *ip = VTOI(pvp); 7327 struct inodedep *inodedep; 7328 struct freefile *freefile; 7329 struct freeblks *freeblks; 7330 7331 /* 7332 * This sets up the inode de-allocation dependency. 7333 */ 7334 freefile = malloc(sizeof(struct freefile), 7335 M_FREEFILE, M_SOFTDEP_FLAGS); 7336 workitem_alloc(&freefile->fx_list, D_FREEFILE, pvp->v_mount); 7337 freefile->fx_mode = mode; 7338 freefile->fx_oldinum = ino; 7339 freefile->fx_devvp = ip->i_devvp; 7340 LIST_INIT(&freefile->fx_jwork); 7341 UFS_LOCK(ip->i_ump); 7342 ip->i_fs->fs_pendinginodes += 1; 7343 UFS_UNLOCK(ip->i_ump); 7344 7345 /* 7346 * If the inodedep does not exist, then the zero'ed inode has 7347 * been written to disk. If the allocated inode has never been 7348 * written to disk, then the on-disk inode is zero'ed. In either 7349 * case we can free the file immediately. If the journal was 7350 * canceled before being written the inode will never make it to 7351 * disk and we must send the canceled journal entrys to 7352 * ffs_freefile() to be cleared in conjunction with the bitmap. 7353 * Any blocks waiting on the inode to write can be safely freed 7354 * here as it will never been written. 7355 */ 7356 ACQUIRE_LOCK(&lk); 7357 inodedep_lookup(pvp->v_mount, ino, 0, &inodedep); 7358 if (inodedep) { 7359 /* 7360 * Clear out freeblks that no longer need to reference 7361 * this inode. 7362 */ 7363 while ((freeblks = 7364 TAILQ_FIRST(&inodedep->id_freeblklst)) != NULL) { 7365 TAILQ_REMOVE(&inodedep->id_freeblklst, freeblks, 7366 fb_next); 7367 freeblks->fb_state &= ~ONDEPLIST; 7368 } 7369 /* 7370 * Remove this inode from the unlinked list. 7371 */ 7372 if (inodedep->id_state & UNLINKED) { 7373 /* 7374 * Save the journal work to be freed with the bitmap 7375 * before we clear UNLINKED. Otherwise it can be lost 7376 * if the inode block is written. 7377 */ 7378 handle_bufwait(inodedep, &freefile->fx_jwork); 7379 clear_unlinked_inodedep(inodedep); 7380 /* Re-acquire inodedep as we've dropped lk. */ 7381 inodedep_lookup(pvp->v_mount, ino, 0, &inodedep); 7382 } 7383 } 7384 if (inodedep == NULL || check_inode_unwritten(inodedep)) { 7385 FREE_LOCK(&lk); 7386 handle_workitem_freefile(freefile); 7387 return; 7388 } 7389 if ((inodedep->id_state & DEPCOMPLETE) == 0) 7390 inodedep->id_state |= GOINGAWAY; 7391 WORKLIST_INSERT(&inodedep->id_inowait, &freefile->fx_list); 7392 FREE_LOCK(&lk); 7393 if (ip->i_number == ino) 7394 ip->i_flag |= IN_MODIFIED; 7395 } 7396 7397 /* 7398 * Check to see if an inode has never been written to disk. If 7399 * so free the inodedep and return success, otherwise return failure. 7400 * This routine must be called with splbio interrupts blocked. 7401 * 7402 * If we still have a bitmap dependency, then the inode has never 7403 * been written to disk. Drop the dependency as it is no longer 7404 * necessary since the inode is being deallocated. We set the 7405 * ALLCOMPLETE flags since the bitmap now properly shows that the 7406 * inode is not allocated. Even if the inode is actively being 7407 * written, it has been rolled back to its zero'ed state, so we 7408 * are ensured that a zero inode is what is on the disk. For short 7409 * lived files, this change will usually result in removing all the 7410 * dependencies from the inode so that it can be freed immediately. 7411 */ 7412 static int 7413 check_inode_unwritten(inodedep) 7414 struct inodedep *inodedep; 7415 { 7416 7417 rw_assert(&lk, RA_WLOCKED); 7418 7419 if ((inodedep->id_state & (DEPCOMPLETE | UNLINKED)) != 0 || 7420 !LIST_EMPTY(&inodedep->id_dirremhd) || 7421 !LIST_EMPTY(&inodedep->id_pendinghd) || 7422 !LIST_EMPTY(&inodedep->id_bufwait) || 7423 !LIST_EMPTY(&inodedep->id_inowait) || 7424 !TAILQ_EMPTY(&inodedep->id_inoreflst) || 7425 !TAILQ_EMPTY(&inodedep->id_inoupdt) || 7426 !TAILQ_EMPTY(&inodedep->id_newinoupdt) || 7427 !TAILQ_EMPTY(&inodedep->id_extupdt) || 7428 !TAILQ_EMPTY(&inodedep->id_newextupdt) || 7429 !TAILQ_EMPTY(&inodedep->id_freeblklst) || 7430 inodedep->id_mkdiradd != NULL || 7431 inodedep->id_nlinkdelta != 0) 7432 return (0); 7433 /* 7434 * Another process might be in initiate_write_inodeblock_ufs[12] 7435 * trying to allocate memory without holding "Softdep Lock". 7436 */ 7437 if ((inodedep->id_state & IOSTARTED) != 0 && 7438 inodedep->id_savedino1 == NULL) 7439 return (0); 7440 7441 if (inodedep->id_state & ONDEPLIST) 7442 LIST_REMOVE(inodedep, id_deps); 7443 inodedep->id_state &= ~ONDEPLIST; 7444 inodedep->id_state |= ALLCOMPLETE; 7445 inodedep->id_bmsafemap = NULL; 7446 if (inodedep->id_state & ONWORKLIST) 7447 WORKLIST_REMOVE(&inodedep->id_list); 7448 if (inodedep->id_savedino1 != NULL) { 7449 free(inodedep->id_savedino1, M_SAVEDINO); 7450 inodedep->id_savedino1 = NULL; 7451 } 7452 if (free_inodedep(inodedep) == 0) 7453 panic("check_inode_unwritten: busy inode"); 7454 return (1); 7455 } 7456 7457 /* 7458 * Try to free an inodedep structure. Return 1 if it could be freed. 7459 */ 7460 static int 7461 free_inodedep(inodedep) 7462 struct inodedep *inodedep; 7463 { 7464 7465 rw_assert(&lk, RA_WLOCKED); 7466 if ((inodedep->id_state & (ONWORKLIST | UNLINKED)) != 0 || 7467 (inodedep->id_state & ALLCOMPLETE) != ALLCOMPLETE || 7468 !LIST_EMPTY(&inodedep->id_dirremhd) || 7469 !LIST_EMPTY(&inodedep->id_pendinghd) || 7470 !LIST_EMPTY(&inodedep->id_bufwait) || 7471 !LIST_EMPTY(&inodedep->id_inowait) || 7472 !TAILQ_EMPTY(&inodedep->id_inoreflst) || 7473 !TAILQ_EMPTY(&inodedep->id_inoupdt) || 7474 !TAILQ_EMPTY(&inodedep->id_newinoupdt) || 7475 !TAILQ_EMPTY(&inodedep->id_extupdt) || 7476 !TAILQ_EMPTY(&inodedep->id_newextupdt) || 7477 !TAILQ_EMPTY(&inodedep->id_freeblklst) || 7478 inodedep->id_mkdiradd != NULL || 7479 inodedep->id_nlinkdelta != 0 || 7480 inodedep->id_savedino1 != NULL) 7481 return (0); 7482 if (inodedep->id_state & ONDEPLIST) 7483 LIST_REMOVE(inodedep, id_deps); 7484 LIST_REMOVE(inodedep, id_hash); 7485 WORKITEM_FREE(inodedep, D_INODEDEP); 7486 return (1); 7487 } 7488 7489 /* 7490 * Free the block referenced by a freework structure. The parent freeblks 7491 * structure is released and completed when the final cg bitmap reaches 7492 * the disk. This routine may be freeing a jnewblk which never made it to 7493 * disk in which case we do not have to wait as the operation is undone 7494 * in memory immediately. 7495 */ 7496 static void 7497 freework_freeblock(freework) 7498 struct freework *freework; 7499 { 7500 struct freeblks *freeblks; 7501 struct jnewblk *jnewblk; 7502 struct ufsmount *ump; 7503 struct workhead wkhd; 7504 struct fs *fs; 7505 int bsize; 7506 int needj; 7507 7508 rw_assert(&lk, RA_WLOCKED); 7509 /* 7510 * Handle partial truncate separately. 7511 */ 7512 if (freework->fw_indir) { 7513 complete_trunc_indir(freework); 7514 return; 7515 } 7516 freeblks = freework->fw_freeblks; 7517 ump = VFSTOUFS(freeblks->fb_list.wk_mp); 7518 fs = ump->um_fs; 7519 needj = MOUNTEDSUJ(freeblks->fb_list.wk_mp) != 0; 7520 bsize = lfragtosize(fs, freework->fw_frags); 7521 LIST_INIT(&wkhd); 7522 /* 7523 * DEPCOMPLETE is cleared in indirblk_insert() if the block lives 7524 * on the indirblk hashtable and prevents premature freeing. 7525 */ 7526 freework->fw_state |= DEPCOMPLETE; 7527 /* 7528 * SUJ needs to wait for the segment referencing freed indirect 7529 * blocks to expire so that we know the checker will not confuse 7530 * a re-allocated indirect block with its old contents. 7531 */ 7532 if (needj && freework->fw_lbn <= -NDADDR) 7533 indirblk_insert(freework); 7534 /* 7535 * If we are canceling an existing jnewblk pass it to the free 7536 * routine, otherwise pass the freeblk which will ultimately 7537 * release the freeblks. If we're not journaling, we can just 7538 * free the freeblks immediately. 7539 */ 7540 jnewblk = freework->fw_jnewblk; 7541 if (jnewblk != NULL) { 7542 cancel_jnewblk(jnewblk, &wkhd); 7543 needj = 0; 7544 } else if (needj) { 7545 freework->fw_state |= DELAYEDFREE; 7546 freeblks->fb_cgwait++; 7547 WORKLIST_INSERT(&wkhd, &freework->fw_list); 7548 } 7549 FREE_LOCK(&lk); 7550 freeblks_free(ump, freeblks, btodb(bsize)); 7551 CTR4(KTR_SUJ, 7552 "freework_freeblock: ino %d blkno %jd lbn %jd size %ld", 7553 freeblks->fb_inum, freework->fw_blkno, freework->fw_lbn, bsize); 7554 ffs_blkfree(ump, fs, freeblks->fb_devvp, freework->fw_blkno, bsize, 7555 freeblks->fb_inum, freeblks->fb_vtype, &wkhd); 7556 ACQUIRE_LOCK(&lk); 7557 /* 7558 * The jnewblk will be discarded and the bits in the map never 7559 * made it to disk. We can immediately free the freeblk. 7560 */ 7561 if (needj == 0) 7562 handle_written_freework(freework); 7563 } 7564 7565 /* 7566 * We enqueue freework items that need processing back on the freeblks and 7567 * add the freeblks to the worklist. This makes it easier to find all work 7568 * required to flush a truncation in process_truncates(). 7569 */ 7570 static void 7571 freework_enqueue(freework) 7572 struct freework *freework; 7573 { 7574 struct freeblks *freeblks; 7575 7576 freeblks = freework->fw_freeblks; 7577 if ((freework->fw_state & INPROGRESS) == 0) 7578 WORKLIST_INSERT(&freeblks->fb_freeworkhd, &freework->fw_list); 7579 if ((freeblks->fb_state & 7580 (ONWORKLIST | INPROGRESS | ALLCOMPLETE)) == ALLCOMPLETE && 7581 LIST_EMPTY(&freeblks->fb_jblkdephd)) 7582 add_to_worklist(&freeblks->fb_list, WK_NODELAY); 7583 } 7584 7585 /* 7586 * Start, continue, or finish the process of freeing an indirect block tree. 7587 * The free operation may be paused at any point with fw_off containing the 7588 * offset to restart from. This enables us to implement some flow control 7589 * for large truncates which may fan out and generate a huge number of 7590 * dependencies. 7591 */ 7592 static void 7593 handle_workitem_indirblk(freework) 7594 struct freework *freework; 7595 { 7596 struct freeblks *freeblks; 7597 struct ufsmount *ump; 7598 struct fs *fs; 7599 7600 freeblks = freework->fw_freeblks; 7601 ump = VFSTOUFS(freeblks->fb_list.wk_mp); 7602 fs = ump->um_fs; 7603 if (freework->fw_state & DEPCOMPLETE) { 7604 handle_written_freework(freework); 7605 return; 7606 } 7607 if (freework->fw_off == NINDIR(fs)) { 7608 freework_freeblock(freework); 7609 return; 7610 } 7611 freework->fw_state |= INPROGRESS; 7612 FREE_LOCK(&lk); 7613 indir_trunc(freework, fsbtodb(fs, freework->fw_blkno), 7614 freework->fw_lbn); 7615 ACQUIRE_LOCK(&lk); 7616 } 7617 7618 /* 7619 * Called when a freework structure attached to a cg buf is written. The 7620 * ref on either the parent or the freeblks structure is released and 7621 * the freeblks is added back to the worklist if there is more work to do. 7622 */ 7623 static void 7624 handle_written_freework(freework) 7625 struct freework *freework; 7626 { 7627 struct freeblks *freeblks; 7628 struct freework *parent; 7629 7630 freeblks = freework->fw_freeblks; 7631 parent = freework->fw_parent; 7632 if (freework->fw_state & DELAYEDFREE) 7633 freeblks->fb_cgwait--; 7634 freework->fw_state |= COMPLETE; 7635 if ((freework->fw_state & ALLCOMPLETE) == ALLCOMPLETE) 7636 WORKITEM_FREE(freework, D_FREEWORK); 7637 if (parent) { 7638 if (--parent->fw_ref == 0) 7639 freework_enqueue(parent); 7640 return; 7641 } 7642 if (--freeblks->fb_ref != 0) 7643 return; 7644 if ((freeblks->fb_state & (ALLCOMPLETE | ONWORKLIST | INPROGRESS)) == 7645 ALLCOMPLETE && LIST_EMPTY(&freeblks->fb_jblkdephd)) 7646 add_to_worklist(&freeblks->fb_list, WK_NODELAY); 7647 } 7648 7649 /* 7650 * This workitem routine performs the block de-allocation. 7651 * The workitem is added to the pending list after the updated 7652 * inode block has been written to disk. As mentioned above, 7653 * checks regarding the number of blocks de-allocated (compared 7654 * to the number of blocks allocated for the file) are also 7655 * performed in this function. 7656 */ 7657 static int 7658 handle_workitem_freeblocks(freeblks, flags) 7659 struct freeblks *freeblks; 7660 int flags; 7661 { 7662 struct freework *freework; 7663 struct newblk *newblk; 7664 struct allocindir *aip; 7665 struct ufsmount *ump; 7666 struct worklist *wk; 7667 7668 KASSERT(LIST_EMPTY(&freeblks->fb_jblkdephd), 7669 ("handle_workitem_freeblocks: Journal entries not written.")); 7670 ump = VFSTOUFS(freeblks->fb_list.wk_mp); 7671 ACQUIRE_LOCK(&lk); 7672 while ((wk = LIST_FIRST(&freeblks->fb_freeworkhd)) != NULL) { 7673 WORKLIST_REMOVE(wk); 7674 switch (wk->wk_type) { 7675 case D_DIRREM: 7676 wk->wk_state |= COMPLETE; 7677 add_to_worklist(wk, 0); 7678 continue; 7679 7680 case D_ALLOCDIRECT: 7681 free_newblk(WK_NEWBLK(wk)); 7682 continue; 7683 7684 case D_ALLOCINDIR: 7685 aip = WK_ALLOCINDIR(wk); 7686 freework = NULL; 7687 if (aip->ai_state & DELAYEDFREE) { 7688 FREE_LOCK(&lk); 7689 freework = newfreework(ump, freeblks, NULL, 7690 aip->ai_lbn, aip->ai_newblkno, 7691 ump->um_fs->fs_frag, 0, 0); 7692 ACQUIRE_LOCK(&lk); 7693 } 7694 newblk = WK_NEWBLK(wk); 7695 if (newblk->nb_jnewblk) { 7696 freework->fw_jnewblk = newblk->nb_jnewblk; 7697 newblk->nb_jnewblk->jn_dep = &freework->fw_list; 7698 newblk->nb_jnewblk = NULL; 7699 } 7700 free_newblk(newblk); 7701 continue; 7702 7703 case D_FREEWORK: 7704 freework = WK_FREEWORK(wk); 7705 if (freework->fw_lbn <= -NDADDR) 7706 handle_workitem_indirblk(freework); 7707 else 7708 freework_freeblock(freework); 7709 continue; 7710 default: 7711 panic("handle_workitem_freeblocks: Unknown type %s", 7712 TYPENAME(wk->wk_type)); 7713 } 7714 } 7715 if (freeblks->fb_ref != 0) { 7716 freeblks->fb_state &= ~INPROGRESS; 7717 wake_worklist(&freeblks->fb_list); 7718 freeblks = NULL; 7719 } 7720 FREE_LOCK(&lk); 7721 if (freeblks) 7722 return handle_complete_freeblocks(freeblks, flags); 7723 return (0); 7724 } 7725 7726 /* 7727 * Handle completion of block free via truncate. This allows fs_pending 7728 * to track the actual free block count more closely than if we only updated 7729 * it at the end. We must be careful to handle cases where the block count 7730 * on free was incorrect. 7731 */ 7732 static void 7733 freeblks_free(ump, freeblks, blocks) 7734 struct ufsmount *ump; 7735 struct freeblks *freeblks; 7736 int blocks; 7737 { 7738 struct fs *fs; 7739 ufs2_daddr_t remain; 7740 7741 UFS_LOCK(ump); 7742 remain = -freeblks->fb_chkcnt; 7743 freeblks->fb_chkcnt += blocks; 7744 if (remain > 0) { 7745 if (remain < blocks) 7746 blocks = remain; 7747 fs = ump->um_fs; 7748 fs->fs_pendingblocks -= blocks; 7749 } 7750 UFS_UNLOCK(ump); 7751 } 7752 7753 /* 7754 * Once all of the freework workitems are complete we can retire the 7755 * freeblocks dependency and any journal work awaiting completion. This 7756 * can not be called until all other dependencies are stable on disk. 7757 */ 7758 static int 7759 handle_complete_freeblocks(freeblks, flags) 7760 struct freeblks *freeblks; 7761 int flags; 7762 { 7763 struct inodedep *inodedep; 7764 struct inode *ip; 7765 struct vnode *vp; 7766 struct fs *fs; 7767 struct ufsmount *ump; 7768 ufs2_daddr_t spare; 7769 7770 ump = VFSTOUFS(freeblks->fb_list.wk_mp); 7771 fs = ump->um_fs; 7772 flags = LK_EXCLUSIVE | flags; 7773 spare = freeblks->fb_chkcnt; 7774 7775 /* 7776 * If we did not release the expected number of blocks we may have 7777 * to adjust the inode block count here. Only do so if it wasn't 7778 * a truncation to zero and the modrev still matches. 7779 */ 7780 if (spare && freeblks->fb_len != 0) { 7781 if (ffs_vgetf(freeblks->fb_list.wk_mp, freeblks->fb_inum, 7782 flags, &vp, FFSV_FORCEINSMQ) != 0) 7783 return (EBUSY); 7784 ip = VTOI(vp); 7785 if (DIP(ip, i_modrev) == freeblks->fb_modrev) { 7786 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - spare); 7787 ip->i_flag |= IN_CHANGE; 7788 /* 7789 * We must wait so this happens before the 7790 * journal is reclaimed. 7791 */ 7792 ffs_update(vp, 1); 7793 } 7794 vput(vp); 7795 } 7796 if (spare < 0) { 7797 UFS_LOCK(ump); 7798 fs->fs_pendingblocks += spare; 7799 UFS_UNLOCK(ump); 7800 } 7801 #ifdef QUOTA 7802 /* Handle spare. */ 7803 if (spare) 7804 quotaadj(freeblks->fb_quota, ump, -spare); 7805 quotarele(freeblks->fb_quota); 7806 #endif 7807 ACQUIRE_LOCK(&lk); 7808 if (freeblks->fb_state & ONDEPLIST) { 7809 inodedep_lookup(freeblks->fb_list.wk_mp, freeblks->fb_inum, 7810 0, &inodedep); 7811 TAILQ_REMOVE(&inodedep->id_freeblklst, freeblks, fb_next); 7812 freeblks->fb_state &= ~ONDEPLIST; 7813 if (TAILQ_EMPTY(&inodedep->id_freeblklst)) 7814 free_inodedep(inodedep); 7815 } 7816 /* 7817 * All of the freeblock deps must be complete prior to this call 7818 * so it's now safe to complete earlier outstanding journal entries. 7819 */ 7820 handle_jwork(&freeblks->fb_jwork); 7821 WORKITEM_FREE(freeblks, D_FREEBLKS); 7822 FREE_LOCK(&lk); 7823 return (0); 7824 } 7825 7826 /* 7827 * Release blocks associated with the freeblks and stored in the indirect 7828 * block dbn. If level is greater than SINGLE, the block is an indirect block 7829 * and recursive calls to indirtrunc must be used to cleanse other indirect 7830 * blocks. 7831 * 7832 * This handles partial and complete truncation of blocks. Partial is noted 7833 * with goingaway == 0. In this case the freework is completed after the 7834 * zero'd indirects are written to disk. For full truncation the freework 7835 * is completed after the block is freed. 7836 */ 7837 static void 7838 indir_trunc(freework, dbn, lbn) 7839 struct freework *freework; 7840 ufs2_daddr_t dbn; 7841 ufs_lbn_t lbn; 7842 { 7843 struct freework *nfreework; 7844 struct workhead wkhd; 7845 struct freeblks *freeblks; 7846 struct buf *bp; 7847 struct fs *fs; 7848 struct indirdep *indirdep; 7849 struct ufsmount *ump; 7850 ufs1_daddr_t *bap1 = 0; 7851 ufs2_daddr_t nb, nnb, *bap2 = 0; 7852 ufs_lbn_t lbnadd, nlbn; 7853 int i, nblocks, ufs1fmt; 7854 int freedblocks; 7855 int goingaway; 7856 int freedeps; 7857 int needj; 7858 int level; 7859 int cnt; 7860 7861 freeblks = freework->fw_freeblks; 7862 ump = VFSTOUFS(freeblks->fb_list.wk_mp); 7863 fs = ump->um_fs; 7864 /* 7865 * Get buffer of block pointers to be freed. There are three cases: 7866 * 7867 * 1) Partial truncate caches the indirdep pointer in the freework 7868 * which provides us a back copy to the save bp which holds the 7869 * pointers we want to clear. When this completes the zero 7870 * pointers are written to the real copy. 7871 * 2) The indirect is being completely truncated, cancel_indirdep() 7872 * eliminated the real copy and placed the indirdep on the saved 7873 * copy. The indirdep and buf are discarded when this completes. 7874 * 3) The indirect was not in memory, we read a copy off of the disk 7875 * using the devvp and drop and invalidate the buffer when we're 7876 * done. 7877 */ 7878 goingaway = 1; 7879 indirdep = NULL; 7880 if (freework->fw_indir != NULL) { 7881 goingaway = 0; 7882 indirdep = freework->fw_indir; 7883 bp = indirdep->ir_savebp; 7884 if (bp == NULL || bp->b_blkno != dbn) 7885 panic("indir_trunc: Bad saved buf %p blkno %jd", 7886 bp, (intmax_t)dbn); 7887 } else if ((bp = incore(&freeblks->fb_devvp->v_bufobj, dbn)) != NULL) { 7888 /* 7889 * The lock prevents the buf dep list from changing and 7890 * indirects on devvp should only ever have one dependency. 7891 */ 7892 indirdep = WK_INDIRDEP(LIST_FIRST(&bp->b_dep)); 7893 if (indirdep == NULL || (indirdep->ir_state & GOINGAWAY) == 0) 7894 panic("indir_trunc: Bad indirdep %p from buf %p", 7895 indirdep, bp); 7896 } else if (bread(freeblks->fb_devvp, dbn, (int)fs->fs_bsize, 7897 NOCRED, &bp) != 0) { 7898 brelse(bp); 7899 return; 7900 } 7901 ACQUIRE_LOCK(&lk); 7902 /* Protects against a race with complete_trunc_indir(). */ 7903 freework->fw_state &= ~INPROGRESS; 7904 /* 7905 * If we have an indirdep we need to enforce the truncation order 7906 * and discard it when it is complete. 7907 */ 7908 if (indirdep) { 7909 if (freework != TAILQ_FIRST(&indirdep->ir_trunc) && 7910 !TAILQ_EMPTY(&indirdep->ir_trunc)) { 7911 /* 7912 * Add the complete truncate to the list on the 7913 * indirdep to enforce in-order processing. 7914 */ 7915 if (freework->fw_indir == NULL) 7916 TAILQ_INSERT_TAIL(&indirdep->ir_trunc, 7917 freework, fw_next); 7918 FREE_LOCK(&lk); 7919 return; 7920 } 7921 /* 7922 * If we're goingaway, free the indirdep. Otherwise it will 7923 * linger until the write completes. 7924 */ 7925 if (goingaway) { 7926 free_indirdep(indirdep); 7927 ump->um_numindirdeps -= 1; 7928 } 7929 } 7930 FREE_LOCK(&lk); 7931 /* Initialize pointers depending on block size. */ 7932 if (ump->um_fstype == UFS1) { 7933 bap1 = (ufs1_daddr_t *)bp->b_data; 7934 nb = bap1[freework->fw_off]; 7935 ufs1fmt = 1; 7936 } else { 7937 bap2 = (ufs2_daddr_t *)bp->b_data; 7938 nb = bap2[freework->fw_off]; 7939 ufs1fmt = 0; 7940 } 7941 level = lbn_level(lbn); 7942 needj = MOUNTEDSUJ(UFSTOVFS(ump)) != 0; 7943 lbnadd = lbn_offset(fs, level); 7944 nblocks = btodb(fs->fs_bsize); 7945 nfreework = freework; 7946 freedeps = 0; 7947 cnt = 0; 7948 /* 7949 * Reclaim blocks. Traverses into nested indirect levels and 7950 * arranges for the current level to be freed when subordinates 7951 * are free when journaling. 7952 */ 7953 for (i = freework->fw_off; i < NINDIR(fs); i++, nb = nnb) { 7954 if (i != NINDIR(fs) - 1) { 7955 if (ufs1fmt) 7956 nnb = bap1[i+1]; 7957 else 7958 nnb = bap2[i+1]; 7959 } else 7960 nnb = 0; 7961 if (nb == 0) 7962 continue; 7963 cnt++; 7964 if (level != 0) { 7965 nlbn = (lbn + 1) - (i * lbnadd); 7966 if (needj != 0) { 7967 nfreework = newfreework(ump, freeblks, freework, 7968 nlbn, nb, fs->fs_frag, 0, 0); 7969 freedeps++; 7970 } 7971 indir_trunc(nfreework, fsbtodb(fs, nb), nlbn); 7972 } else { 7973 struct freedep *freedep; 7974 7975 /* 7976 * Attempt to aggregate freedep dependencies for 7977 * all blocks being released to the same CG. 7978 */ 7979 LIST_INIT(&wkhd); 7980 if (needj != 0 && 7981 (nnb == 0 || (dtog(fs, nb) != dtog(fs, nnb)))) { 7982 freedep = newfreedep(freework); 7983 WORKLIST_INSERT_UNLOCKED(&wkhd, 7984 &freedep->fd_list); 7985 freedeps++; 7986 } 7987 CTR3(KTR_SUJ, 7988 "indir_trunc: ino %d blkno %jd size %ld", 7989 freeblks->fb_inum, nb, fs->fs_bsize); 7990 ffs_blkfree(ump, fs, freeblks->fb_devvp, nb, 7991 fs->fs_bsize, freeblks->fb_inum, 7992 freeblks->fb_vtype, &wkhd); 7993 } 7994 } 7995 if (goingaway) { 7996 bp->b_flags |= B_INVAL | B_NOCACHE; 7997 brelse(bp); 7998 } 7999 freedblocks = 0; 8000 if (level == 0) 8001 freedblocks = (nblocks * cnt); 8002 if (needj == 0) 8003 freedblocks += nblocks; 8004 freeblks_free(ump, freeblks, freedblocks); 8005 /* 8006 * If we are journaling set up the ref counts and offset so this 8007 * indirect can be completed when its children are free. 8008 */ 8009 if (needj) { 8010 ACQUIRE_LOCK(&lk); 8011 freework->fw_off = i; 8012 freework->fw_ref += freedeps; 8013 freework->fw_ref -= NINDIR(fs) + 1; 8014 if (level == 0) 8015 freeblks->fb_cgwait += freedeps; 8016 if (freework->fw_ref == 0) 8017 freework_freeblock(freework); 8018 FREE_LOCK(&lk); 8019 return; 8020 } 8021 /* 8022 * If we're not journaling we can free the indirect now. 8023 */ 8024 dbn = dbtofsb(fs, dbn); 8025 CTR3(KTR_SUJ, 8026 "indir_trunc 2: ino %d blkno %jd size %ld", 8027 freeblks->fb_inum, dbn, fs->fs_bsize); 8028 ffs_blkfree(ump, fs, freeblks->fb_devvp, dbn, fs->fs_bsize, 8029 freeblks->fb_inum, freeblks->fb_vtype, NULL); 8030 /* Non SUJ softdep does single-threaded truncations. */ 8031 if (freework->fw_blkno == dbn) { 8032 freework->fw_state |= ALLCOMPLETE; 8033 ACQUIRE_LOCK(&lk); 8034 handle_written_freework(freework); 8035 FREE_LOCK(&lk); 8036 } 8037 return; 8038 } 8039 8040 /* 8041 * Cancel an allocindir when it is removed via truncation. When bp is not 8042 * NULL the indirect never appeared on disk and is scheduled to be freed 8043 * independently of the indir so we can more easily track journal work. 8044 */ 8045 static void 8046 cancel_allocindir(aip, bp, freeblks, trunc) 8047 struct allocindir *aip; 8048 struct buf *bp; 8049 struct freeblks *freeblks; 8050 int trunc; 8051 { 8052 struct indirdep *indirdep; 8053 struct freefrag *freefrag; 8054 struct newblk *newblk; 8055 8056 newblk = (struct newblk *)aip; 8057 LIST_REMOVE(aip, ai_next); 8058 /* 8059 * We must eliminate the pointer in bp if it must be freed on its 8060 * own due to partial truncate or pending journal work. 8061 */ 8062 if (bp && (trunc || newblk->nb_jnewblk)) { 8063 /* 8064 * Clear the pointer and mark the aip to be freed 8065 * directly if it never existed on disk. 8066 */ 8067 aip->ai_state |= DELAYEDFREE; 8068 indirdep = aip->ai_indirdep; 8069 if (indirdep->ir_state & UFS1FMT) 8070 ((ufs1_daddr_t *)bp->b_data)[aip->ai_offset] = 0; 8071 else 8072 ((ufs2_daddr_t *)bp->b_data)[aip->ai_offset] = 0; 8073 } 8074 /* 8075 * When truncating the previous pointer will be freed via 8076 * savedbp. Eliminate the freefrag which would dup free. 8077 */ 8078 if (trunc && (freefrag = newblk->nb_freefrag) != NULL) { 8079 newblk->nb_freefrag = NULL; 8080 if (freefrag->ff_jdep) 8081 cancel_jfreefrag( 8082 WK_JFREEFRAG(freefrag->ff_jdep)); 8083 jwork_move(&freeblks->fb_jwork, &freefrag->ff_jwork); 8084 WORKITEM_FREE(freefrag, D_FREEFRAG); 8085 } 8086 /* 8087 * If the journal hasn't been written the jnewblk must be passed 8088 * to the call to ffs_blkfree that reclaims the space. We accomplish 8089 * this by leaving the journal dependency on the newblk to be freed 8090 * when a freework is created in handle_workitem_freeblocks(). 8091 */ 8092 cancel_newblk(newblk, NULL, &freeblks->fb_jwork); 8093 WORKLIST_INSERT(&freeblks->fb_freeworkhd, &newblk->nb_list); 8094 } 8095 8096 /* 8097 * Create the mkdir dependencies for . and .. in a new directory. Link them 8098 * in to a newdirblk so any subsequent additions are tracked properly. The 8099 * caller is responsible for adding the mkdir1 dependency to the journal 8100 * and updating id_mkdiradd. This function returns with lk held. 8101 */ 8102 static struct mkdir * 8103 setup_newdir(dap, newinum, dinum, newdirbp, mkdirp) 8104 struct diradd *dap; 8105 ino_t newinum; 8106 ino_t dinum; 8107 struct buf *newdirbp; 8108 struct mkdir **mkdirp; 8109 { 8110 struct newblk *newblk; 8111 struct pagedep *pagedep; 8112 struct inodedep *inodedep; 8113 struct newdirblk *newdirblk = 0; 8114 struct mkdir *mkdir1, *mkdir2; 8115 struct worklist *wk; 8116 struct jaddref *jaddref; 8117 struct mount *mp; 8118 8119 mp = dap->da_list.wk_mp; 8120 newdirblk = malloc(sizeof(struct newdirblk), M_NEWDIRBLK, 8121 M_SOFTDEP_FLAGS); 8122 workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp); 8123 LIST_INIT(&newdirblk->db_mkdir); 8124 mkdir1 = malloc(sizeof(struct mkdir), M_MKDIR, M_SOFTDEP_FLAGS); 8125 workitem_alloc(&mkdir1->md_list, D_MKDIR, mp); 8126 mkdir1->md_state = ATTACHED | MKDIR_BODY; 8127 mkdir1->md_diradd = dap; 8128 mkdir1->md_jaddref = NULL; 8129 mkdir2 = malloc(sizeof(struct mkdir), M_MKDIR, M_SOFTDEP_FLAGS); 8130 workitem_alloc(&mkdir2->md_list, D_MKDIR, mp); 8131 mkdir2->md_state = ATTACHED | MKDIR_PARENT; 8132 mkdir2->md_diradd = dap; 8133 mkdir2->md_jaddref = NULL; 8134 if (MOUNTEDSUJ(mp) == 0) { 8135 mkdir1->md_state |= DEPCOMPLETE; 8136 mkdir2->md_state |= DEPCOMPLETE; 8137 } 8138 /* 8139 * Dependency on "." and ".." being written to disk. 8140 */ 8141 mkdir1->md_buf = newdirbp; 8142 ACQUIRE_LOCK(&lk); 8143 LIST_INSERT_HEAD(&mkdirlisthd, mkdir1, md_mkdirs); 8144 /* 8145 * We must link the pagedep, allocdirect, and newdirblk for 8146 * the initial file page so the pointer to the new directory 8147 * is not written until the directory contents are live and 8148 * any subsequent additions are not marked live until the 8149 * block is reachable via the inode. 8150 */ 8151 if (pagedep_lookup(mp, newdirbp, newinum, 0, 0, &pagedep) == 0) 8152 panic("setup_newdir: lost pagedep"); 8153 LIST_FOREACH(wk, &newdirbp->b_dep, wk_list) 8154 if (wk->wk_type == D_ALLOCDIRECT) 8155 break; 8156 if (wk == NULL) 8157 panic("setup_newdir: lost allocdirect"); 8158 if (pagedep->pd_state & NEWBLOCK) 8159 panic("setup_newdir: NEWBLOCK already set"); 8160 newblk = WK_NEWBLK(wk); 8161 pagedep->pd_state |= NEWBLOCK; 8162 pagedep->pd_newdirblk = newdirblk; 8163 newdirblk->db_pagedep = pagedep; 8164 WORKLIST_INSERT(&newblk->nb_newdirblk, &newdirblk->db_list); 8165 WORKLIST_INSERT(&newdirblk->db_mkdir, &mkdir1->md_list); 8166 /* 8167 * Look up the inodedep for the parent directory so that we 8168 * can link mkdir2 into the pending dotdot jaddref or 8169 * the inode write if there is none. If the inode is 8170 * ALLCOMPLETE and no jaddref is present all dependencies have 8171 * been satisfied and mkdir2 can be freed. 8172 */ 8173 inodedep_lookup(mp, dinum, 0, &inodedep); 8174 if (MOUNTEDSUJ(mp)) { 8175 if (inodedep == NULL) 8176 panic("setup_newdir: Lost parent."); 8177 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 8178 inoreflst); 8179 KASSERT(jaddref != NULL && jaddref->ja_parent == newinum && 8180 (jaddref->ja_state & MKDIR_PARENT), 8181 ("setup_newdir: bad dotdot jaddref %p", jaddref)); 8182 LIST_INSERT_HEAD(&mkdirlisthd, mkdir2, md_mkdirs); 8183 mkdir2->md_jaddref = jaddref; 8184 jaddref->ja_mkdir = mkdir2; 8185 } else if (inodedep == NULL || 8186 (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) { 8187 dap->da_state &= ~MKDIR_PARENT; 8188 WORKITEM_FREE(mkdir2, D_MKDIR); 8189 mkdir2 = NULL; 8190 } else { 8191 LIST_INSERT_HEAD(&mkdirlisthd, mkdir2, md_mkdirs); 8192 WORKLIST_INSERT(&inodedep->id_bufwait, &mkdir2->md_list); 8193 } 8194 *mkdirp = mkdir2; 8195 8196 return (mkdir1); 8197 } 8198 8199 /* 8200 * Directory entry addition dependencies. 8201 * 8202 * When adding a new directory entry, the inode (with its incremented link 8203 * count) must be written to disk before the directory entry's pointer to it. 8204 * Also, if the inode is newly allocated, the corresponding freemap must be 8205 * updated (on disk) before the directory entry's pointer. These requirements 8206 * are met via undo/redo on the directory entry's pointer, which consists 8207 * simply of the inode number. 8208 * 8209 * As directory entries are added and deleted, the free space within a 8210 * directory block can become fragmented. The ufs filesystem will compact 8211 * a fragmented directory block to make space for a new entry. When this 8212 * occurs, the offsets of previously added entries change. Any "diradd" 8213 * dependency structures corresponding to these entries must be updated with 8214 * the new offsets. 8215 */ 8216 8217 /* 8218 * This routine is called after the in-memory inode's link 8219 * count has been incremented, but before the directory entry's 8220 * pointer to the inode has been set. 8221 */ 8222 int 8223 softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk) 8224 struct buf *bp; /* buffer containing directory block */ 8225 struct inode *dp; /* inode for directory */ 8226 off_t diroffset; /* offset of new entry in directory */ 8227 ino_t newinum; /* inode referenced by new directory entry */ 8228 struct buf *newdirbp; /* non-NULL => contents of new mkdir */ 8229 int isnewblk; /* entry is in a newly allocated block */ 8230 { 8231 int offset; /* offset of new entry within directory block */ 8232 ufs_lbn_t lbn; /* block in directory containing new entry */ 8233 struct fs *fs; 8234 struct diradd *dap; 8235 struct newblk *newblk; 8236 struct pagedep *pagedep; 8237 struct inodedep *inodedep; 8238 struct newdirblk *newdirblk = 0; 8239 struct mkdir *mkdir1, *mkdir2; 8240 struct jaddref *jaddref; 8241 struct mount *mp; 8242 int isindir; 8243 8244 /* 8245 * Whiteouts have no dependencies. 8246 */ 8247 if (newinum == WINO) { 8248 if (newdirbp != NULL) 8249 bdwrite(newdirbp); 8250 return (0); 8251 } 8252 jaddref = NULL; 8253 mkdir1 = mkdir2 = NULL; 8254 mp = UFSTOVFS(dp->i_ump); 8255 fs = dp->i_fs; 8256 lbn = lblkno(fs, diroffset); 8257 offset = blkoff(fs, diroffset); 8258 dap = malloc(sizeof(struct diradd), M_DIRADD, 8259 M_SOFTDEP_FLAGS|M_ZERO); 8260 workitem_alloc(&dap->da_list, D_DIRADD, mp); 8261 dap->da_offset = offset; 8262 dap->da_newinum = newinum; 8263 dap->da_state = ATTACHED; 8264 LIST_INIT(&dap->da_jwork); 8265 isindir = bp->b_lblkno >= NDADDR; 8266 if (isnewblk && 8267 (isindir ? blkoff(fs, diroffset) : fragoff(fs, diroffset)) == 0) { 8268 newdirblk = malloc(sizeof(struct newdirblk), 8269 M_NEWDIRBLK, M_SOFTDEP_FLAGS); 8270 workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp); 8271 LIST_INIT(&newdirblk->db_mkdir); 8272 } 8273 /* 8274 * If we're creating a new directory setup the dependencies and set 8275 * the dap state to wait for them. Otherwise it's COMPLETE and 8276 * we can move on. 8277 */ 8278 if (newdirbp == NULL) { 8279 dap->da_state |= DEPCOMPLETE; 8280 ACQUIRE_LOCK(&lk); 8281 } else { 8282 dap->da_state |= MKDIR_BODY | MKDIR_PARENT; 8283 mkdir1 = setup_newdir(dap, newinum, dp->i_number, newdirbp, 8284 &mkdir2); 8285 } 8286 /* 8287 * Link into parent directory pagedep to await its being written. 8288 */ 8289 pagedep_lookup(mp, bp, dp->i_number, lbn, DEPALLOC, &pagedep); 8290 #ifdef DEBUG 8291 if (diradd_lookup(pagedep, offset) != NULL) 8292 panic("softdep_setup_directory_add: %p already at off %d\n", 8293 diradd_lookup(pagedep, offset), offset); 8294 #endif 8295 dap->da_pagedep = pagedep; 8296 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], dap, 8297 da_pdlist); 8298 inodedep_lookup(mp, newinum, DEPALLOC | NODELAY, &inodedep); 8299 /* 8300 * If we're journaling, link the diradd into the jaddref so it 8301 * may be completed after the journal entry is written. Otherwise, 8302 * link the diradd into its inodedep. If the inode is not yet 8303 * written place it on the bufwait list, otherwise do the post-inode 8304 * write processing to put it on the id_pendinghd list. 8305 */ 8306 if (MOUNTEDSUJ(mp)) { 8307 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 8308 inoreflst); 8309 KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number, 8310 ("softdep_setup_directory_add: bad jaddref %p", jaddref)); 8311 jaddref->ja_diroff = diroffset; 8312 jaddref->ja_diradd = dap; 8313 add_to_journal(&jaddref->ja_list); 8314 } else if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) 8315 diradd_inode_written(dap, inodedep); 8316 else 8317 WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list); 8318 /* 8319 * Add the journal entries for . and .. links now that the primary 8320 * link is written. 8321 */ 8322 if (mkdir1 != NULL && MOUNTEDSUJ(mp)) { 8323 jaddref = (struct jaddref *)TAILQ_PREV(&jaddref->ja_ref, 8324 inoreflst, if_deps); 8325 KASSERT(jaddref != NULL && 8326 jaddref->ja_ino == jaddref->ja_parent && 8327 (jaddref->ja_state & MKDIR_BODY), 8328 ("softdep_setup_directory_add: bad dot jaddref %p", 8329 jaddref)); 8330 mkdir1->md_jaddref = jaddref; 8331 jaddref->ja_mkdir = mkdir1; 8332 /* 8333 * It is important that the dotdot journal entry 8334 * is added prior to the dot entry since dot writes 8335 * both the dot and dotdot links. These both must 8336 * be added after the primary link for the journal 8337 * to remain consistent. 8338 */ 8339 add_to_journal(&mkdir2->md_jaddref->ja_list); 8340 add_to_journal(&jaddref->ja_list); 8341 } 8342 /* 8343 * If we are adding a new directory remember this diradd so that if 8344 * we rename it we can keep the dot and dotdot dependencies. If 8345 * we are adding a new name for an inode that has a mkdiradd we 8346 * must be in rename and we have to move the dot and dotdot 8347 * dependencies to this new name. The old name is being orphaned 8348 * soon. 8349 */ 8350 if (mkdir1 != NULL) { 8351 if (inodedep->id_mkdiradd != NULL) 8352 panic("softdep_setup_directory_add: Existing mkdir"); 8353 inodedep->id_mkdiradd = dap; 8354 } else if (inodedep->id_mkdiradd) 8355 merge_diradd(inodedep, dap); 8356 if (newdirblk) { 8357 /* 8358 * There is nothing to do if we are already tracking 8359 * this block. 8360 */ 8361 if ((pagedep->pd_state & NEWBLOCK) != 0) { 8362 WORKITEM_FREE(newdirblk, D_NEWDIRBLK); 8363 FREE_LOCK(&lk); 8364 return (0); 8365 } 8366 if (newblk_lookup(mp, dbtofsb(fs, bp->b_blkno), 0, &newblk) 8367 == 0) 8368 panic("softdep_setup_directory_add: lost entry"); 8369 WORKLIST_INSERT(&newblk->nb_newdirblk, &newdirblk->db_list); 8370 pagedep->pd_state |= NEWBLOCK; 8371 pagedep->pd_newdirblk = newdirblk; 8372 newdirblk->db_pagedep = pagedep; 8373 FREE_LOCK(&lk); 8374 /* 8375 * If we extended into an indirect signal direnter to sync. 8376 */ 8377 if (isindir) 8378 return (1); 8379 return (0); 8380 } 8381 FREE_LOCK(&lk); 8382 return (0); 8383 } 8384 8385 /* 8386 * This procedure is called to change the offset of a directory 8387 * entry when compacting a directory block which must be owned 8388 * exclusively by the caller. Note that the actual entry movement 8389 * must be done in this procedure to ensure that no I/O completions 8390 * occur while the move is in progress. 8391 */ 8392 void 8393 softdep_change_directoryentry_offset(bp, dp, base, oldloc, newloc, entrysize) 8394 struct buf *bp; /* Buffer holding directory block. */ 8395 struct inode *dp; /* inode for directory */ 8396 caddr_t base; /* address of dp->i_offset */ 8397 caddr_t oldloc; /* address of old directory location */ 8398 caddr_t newloc; /* address of new directory location */ 8399 int entrysize; /* size of directory entry */ 8400 { 8401 int offset, oldoffset, newoffset; 8402 struct pagedep *pagedep; 8403 struct jmvref *jmvref; 8404 struct diradd *dap; 8405 struct direct *de; 8406 struct mount *mp; 8407 ufs_lbn_t lbn; 8408 int flags; 8409 8410 mp = UFSTOVFS(dp->i_ump); 8411 de = (struct direct *)oldloc; 8412 jmvref = NULL; 8413 flags = 0; 8414 /* 8415 * Moves are always journaled as it would be too complex to 8416 * determine if any affected adds or removes are present in the 8417 * journal. 8418 */ 8419 if (MOUNTEDSUJ(mp)) { 8420 flags = DEPALLOC; 8421 jmvref = newjmvref(dp, de->d_ino, 8422 dp->i_offset + (oldloc - base), 8423 dp->i_offset + (newloc - base)); 8424 } 8425 lbn = lblkno(dp->i_fs, dp->i_offset); 8426 offset = blkoff(dp->i_fs, dp->i_offset); 8427 oldoffset = offset + (oldloc - base); 8428 newoffset = offset + (newloc - base); 8429 ACQUIRE_LOCK(&lk); 8430 if (pagedep_lookup(mp, bp, dp->i_number, lbn, flags, &pagedep) == 0) 8431 goto done; 8432 dap = diradd_lookup(pagedep, oldoffset); 8433 if (dap) { 8434 dap->da_offset = newoffset; 8435 newoffset = DIRADDHASH(newoffset); 8436 oldoffset = DIRADDHASH(oldoffset); 8437 if ((dap->da_state & ALLCOMPLETE) != ALLCOMPLETE && 8438 newoffset != oldoffset) { 8439 LIST_REMOVE(dap, da_pdlist); 8440 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[newoffset], 8441 dap, da_pdlist); 8442 } 8443 } 8444 done: 8445 if (jmvref) { 8446 jmvref->jm_pagedep = pagedep; 8447 LIST_INSERT_HEAD(&pagedep->pd_jmvrefhd, jmvref, jm_deps); 8448 add_to_journal(&jmvref->jm_list); 8449 } 8450 bcopy(oldloc, newloc, entrysize); 8451 FREE_LOCK(&lk); 8452 } 8453 8454 /* 8455 * Move the mkdir dependencies and journal work from one diradd to another 8456 * when renaming a directory. The new name must depend on the mkdir deps 8457 * completing as the old name did. Directories can only have one valid link 8458 * at a time so one must be canonical. 8459 */ 8460 static void 8461 merge_diradd(inodedep, newdap) 8462 struct inodedep *inodedep; 8463 struct diradd *newdap; 8464 { 8465 struct diradd *olddap; 8466 struct mkdir *mkdir, *nextmd; 8467 short state; 8468 8469 olddap = inodedep->id_mkdiradd; 8470 inodedep->id_mkdiradd = newdap; 8471 if ((olddap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) { 8472 newdap->da_state &= ~DEPCOMPLETE; 8473 for (mkdir = LIST_FIRST(&mkdirlisthd); mkdir; mkdir = nextmd) { 8474 nextmd = LIST_NEXT(mkdir, md_mkdirs); 8475 if (mkdir->md_diradd != olddap) 8476 continue; 8477 mkdir->md_diradd = newdap; 8478 state = mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY); 8479 newdap->da_state |= state; 8480 olddap->da_state &= ~state; 8481 if ((olddap->da_state & 8482 (MKDIR_PARENT | MKDIR_BODY)) == 0) 8483 break; 8484 } 8485 if ((olddap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) 8486 panic("merge_diradd: unfound ref"); 8487 } 8488 /* 8489 * Any mkdir related journal items are not safe to be freed until 8490 * the new name is stable. 8491 */ 8492 jwork_move(&newdap->da_jwork, &olddap->da_jwork); 8493 olddap->da_state |= DEPCOMPLETE; 8494 complete_diradd(olddap); 8495 } 8496 8497 /* 8498 * Move the diradd to the pending list when all diradd dependencies are 8499 * complete. 8500 */ 8501 static void 8502 complete_diradd(dap) 8503 struct diradd *dap; 8504 { 8505 struct pagedep *pagedep; 8506 8507 if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) { 8508 if (dap->da_state & DIRCHG) 8509 pagedep = dap->da_previous->dm_pagedep; 8510 else 8511 pagedep = dap->da_pagedep; 8512 LIST_REMOVE(dap, da_pdlist); 8513 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist); 8514 } 8515 } 8516 8517 /* 8518 * Cancel a diradd when a dirrem overlaps with it. We must cancel the journal 8519 * add entries and conditonally journal the remove. 8520 */ 8521 static void 8522 cancel_diradd(dap, dirrem, jremref, dotremref, dotdotremref) 8523 struct diradd *dap; 8524 struct dirrem *dirrem; 8525 struct jremref *jremref; 8526 struct jremref *dotremref; 8527 struct jremref *dotdotremref; 8528 { 8529 struct inodedep *inodedep; 8530 struct jaddref *jaddref; 8531 struct inoref *inoref; 8532 struct mkdir *mkdir; 8533 8534 /* 8535 * If no remove references were allocated we're on a non-journaled 8536 * filesystem and can skip the cancel step. 8537 */ 8538 if (jremref == NULL) { 8539 free_diradd(dap, NULL); 8540 return; 8541 } 8542 /* 8543 * Cancel the primary name an free it if it does not require 8544 * journaling. 8545 */ 8546 if (inodedep_lookup(dap->da_list.wk_mp, dap->da_newinum, 8547 0, &inodedep) != 0) { 8548 /* Abort the addref that reference this diradd. */ 8549 TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) { 8550 if (inoref->if_list.wk_type != D_JADDREF) 8551 continue; 8552 jaddref = (struct jaddref *)inoref; 8553 if (jaddref->ja_diradd != dap) 8554 continue; 8555 if (cancel_jaddref(jaddref, inodedep, 8556 &dirrem->dm_jwork) == 0) { 8557 free_jremref(jremref); 8558 jremref = NULL; 8559 } 8560 break; 8561 } 8562 } 8563 /* 8564 * Cancel subordinate names and free them if they do not require 8565 * journaling. 8566 */ 8567 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) { 8568 LIST_FOREACH(mkdir, &mkdirlisthd, md_mkdirs) { 8569 if (mkdir->md_diradd != dap) 8570 continue; 8571 if ((jaddref = mkdir->md_jaddref) == NULL) 8572 continue; 8573 mkdir->md_jaddref = NULL; 8574 if (mkdir->md_state & MKDIR_PARENT) { 8575 if (cancel_jaddref(jaddref, NULL, 8576 &dirrem->dm_jwork) == 0) { 8577 free_jremref(dotdotremref); 8578 dotdotremref = NULL; 8579 } 8580 } else { 8581 if (cancel_jaddref(jaddref, inodedep, 8582 &dirrem->dm_jwork) == 0) { 8583 free_jremref(dotremref); 8584 dotremref = NULL; 8585 } 8586 } 8587 } 8588 } 8589 8590 if (jremref) 8591 journal_jremref(dirrem, jremref, inodedep); 8592 if (dotremref) 8593 journal_jremref(dirrem, dotremref, inodedep); 8594 if (dotdotremref) 8595 journal_jremref(dirrem, dotdotremref, NULL); 8596 jwork_move(&dirrem->dm_jwork, &dap->da_jwork); 8597 free_diradd(dap, &dirrem->dm_jwork); 8598 } 8599 8600 /* 8601 * Free a diradd dependency structure. This routine must be called 8602 * with splbio interrupts blocked. 8603 */ 8604 static void 8605 free_diradd(dap, wkhd) 8606 struct diradd *dap; 8607 struct workhead *wkhd; 8608 { 8609 struct dirrem *dirrem; 8610 struct pagedep *pagedep; 8611 struct inodedep *inodedep; 8612 struct mkdir *mkdir, *nextmd; 8613 8614 rw_assert(&lk, RA_WLOCKED); 8615 LIST_REMOVE(dap, da_pdlist); 8616 if (dap->da_state & ONWORKLIST) 8617 WORKLIST_REMOVE(&dap->da_list); 8618 if ((dap->da_state & DIRCHG) == 0) { 8619 pagedep = dap->da_pagedep; 8620 } else { 8621 dirrem = dap->da_previous; 8622 pagedep = dirrem->dm_pagedep; 8623 dirrem->dm_dirinum = pagedep->pd_ino; 8624 dirrem->dm_state |= COMPLETE; 8625 if (LIST_EMPTY(&dirrem->dm_jremrefhd)) 8626 add_to_worklist(&dirrem->dm_list, 0); 8627 } 8628 if (inodedep_lookup(pagedep->pd_list.wk_mp, dap->da_newinum, 8629 0, &inodedep) != 0) 8630 if (inodedep->id_mkdiradd == dap) 8631 inodedep->id_mkdiradd = NULL; 8632 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) { 8633 for (mkdir = LIST_FIRST(&mkdirlisthd); mkdir; mkdir = nextmd) { 8634 nextmd = LIST_NEXT(mkdir, md_mkdirs); 8635 if (mkdir->md_diradd != dap) 8636 continue; 8637 dap->da_state &= 8638 ~(mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY)); 8639 LIST_REMOVE(mkdir, md_mkdirs); 8640 if (mkdir->md_state & ONWORKLIST) 8641 WORKLIST_REMOVE(&mkdir->md_list); 8642 if (mkdir->md_jaddref != NULL) 8643 panic("free_diradd: Unexpected jaddref"); 8644 WORKITEM_FREE(mkdir, D_MKDIR); 8645 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0) 8646 break; 8647 } 8648 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) 8649 panic("free_diradd: unfound ref"); 8650 } 8651 if (inodedep) 8652 free_inodedep(inodedep); 8653 /* 8654 * Free any journal segments waiting for the directory write. 8655 */ 8656 handle_jwork(&dap->da_jwork); 8657 WORKITEM_FREE(dap, D_DIRADD); 8658 } 8659 8660 /* 8661 * Directory entry removal dependencies. 8662 * 8663 * When removing a directory entry, the entry's inode pointer must be 8664 * zero'ed on disk before the corresponding inode's link count is decremented 8665 * (possibly freeing the inode for re-use). This dependency is handled by 8666 * updating the directory entry but delaying the inode count reduction until 8667 * after the directory block has been written to disk. After this point, the 8668 * inode count can be decremented whenever it is convenient. 8669 */ 8670 8671 /* 8672 * This routine should be called immediately after removing 8673 * a directory entry. The inode's link count should not be 8674 * decremented by the calling procedure -- the soft updates 8675 * code will do this task when it is safe. 8676 */ 8677 void 8678 softdep_setup_remove(bp, dp, ip, isrmdir) 8679 struct buf *bp; /* buffer containing directory block */ 8680 struct inode *dp; /* inode for the directory being modified */ 8681 struct inode *ip; /* inode for directory entry being removed */ 8682 int isrmdir; /* indicates if doing RMDIR */ 8683 { 8684 struct dirrem *dirrem, *prevdirrem; 8685 struct inodedep *inodedep; 8686 int direct; 8687 8688 /* 8689 * Allocate a new dirrem if appropriate and ACQUIRE_LOCK. We want 8690 * newdirrem() to setup the full directory remove which requires 8691 * isrmdir > 1. 8692 */ 8693 dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem); 8694 /* 8695 * Add the dirrem to the inodedep's pending remove list for quick 8696 * discovery later. 8697 */ 8698 if (inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, 0, 8699 &inodedep) == 0) 8700 panic("softdep_setup_remove: Lost inodedep."); 8701 KASSERT((inodedep->id_state & UNLINKED) == 0, ("inode unlinked")); 8702 dirrem->dm_state |= ONDEPLIST; 8703 LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext); 8704 8705 /* 8706 * If the COMPLETE flag is clear, then there were no active 8707 * entries and we want to roll back to a zeroed entry until 8708 * the new inode is committed to disk. If the COMPLETE flag is 8709 * set then we have deleted an entry that never made it to 8710 * disk. If the entry we deleted resulted from a name change, 8711 * then the old name still resides on disk. We cannot delete 8712 * its inode (returned to us in prevdirrem) until the zeroed 8713 * directory entry gets to disk. The new inode has never been 8714 * referenced on the disk, so can be deleted immediately. 8715 */ 8716 if ((dirrem->dm_state & COMPLETE) == 0) { 8717 LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, dirrem, 8718 dm_next); 8719 FREE_LOCK(&lk); 8720 } else { 8721 if (prevdirrem != NULL) 8722 LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, 8723 prevdirrem, dm_next); 8724 dirrem->dm_dirinum = dirrem->dm_pagedep->pd_ino; 8725 direct = LIST_EMPTY(&dirrem->dm_jremrefhd); 8726 FREE_LOCK(&lk); 8727 if (direct) 8728 handle_workitem_remove(dirrem, 0); 8729 } 8730 } 8731 8732 /* 8733 * Check for an entry matching 'offset' on both the pd_dirraddhd list and the 8734 * pd_pendinghd list of a pagedep. 8735 */ 8736 static struct diradd * 8737 diradd_lookup(pagedep, offset) 8738 struct pagedep *pagedep; 8739 int offset; 8740 { 8741 struct diradd *dap; 8742 8743 LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(offset)], da_pdlist) 8744 if (dap->da_offset == offset) 8745 return (dap); 8746 LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist) 8747 if (dap->da_offset == offset) 8748 return (dap); 8749 return (NULL); 8750 } 8751 8752 /* 8753 * Search for a .. diradd dependency in a directory that is being removed. 8754 * If the directory was renamed to a new parent we have a diradd rather 8755 * than a mkdir for the .. entry. We need to cancel it now before 8756 * it is found in truncate(). 8757 */ 8758 static struct jremref * 8759 cancel_diradd_dotdot(ip, dirrem, jremref) 8760 struct inode *ip; 8761 struct dirrem *dirrem; 8762 struct jremref *jremref; 8763 { 8764 struct pagedep *pagedep; 8765 struct diradd *dap; 8766 struct worklist *wk; 8767 8768 if (pagedep_lookup(UFSTOVFS(ip->i_ump), NULL, ip->i_number, 0, 0, 8769 &pagedep) == 0) 8770 return (jremref); 8771 dap = diradd_lookup(pagedep, DOTDOT_OFFSET); 8772 if (dap == NULL) 8773 return (jremref); 8774 cancel_diradd(dap, dirrem, jremref, NULL, NULL); 8775 /* 8776 * Mark any journal work as belonging to the parent so it is freed 8777 * with the .. reference. 8778 */ 8779 LIST_FOREACH(wk, &dirrem->dm_jwork, wk_list) 8780 wk->wk_state |= MKDIR_PARENT; 8781 return (NULL); 8782 } 8783 8784 /* 8785 * Cancel the MKDIR_PARENT mkdir component of a diradd when we're going to 8786 * replace it with a dirrem/diradd pair as a result of re-parenting a 8787 * directory. This ensures that we don't simultaneously have a mkdir and 8788 * a diradd for the same .. entry. 8789 */ 8790 static struct jremref * 8791 cancel_mkdir_dotdot(ip, dirrem, jremref) 8792 struct inode *ip; 8793 struct dirrem *dirrem; 8794 struct jremref *jremref; 8795 { 8796 struct inodedep *inodedep; 8797 struct jaddref *jaddref; 8798 struct mkdir *mkdir; 8799 struct diradd *dap; 8800 8801 if (inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, 0, 8802 &inodedep) == 0) 8803 return (jremref); 8804 dap = inodedep->id_mkdiradd; 8805 if (dap == NULL || (dap->da_state & MKDIR_PARENT) == 0) 8806 return (jremref); 8807 for (mkdir = LIST_FIRST(&mkdirlisthd); mkdir; 8808 mkdir = LIST_NEXT(mkdir, md_mkdirs)) 8809 if (mkdir->md_diradd == dap && mkdir->md_state & MKDIR_PARENT) 8810 break; 8811 if (mkdir == NULL) 8812 panic("cancel_mkdir_dotdot: Unable to find mkdir\n"); 8813 if ((jaddref = mkdir->md_jaddref) != NULL) { 8814 mkdir->md_jaddref = NULL; 8815 jaddref->ja_state &= ~MKDIR_PARENT; 8816 if (inodedep_lookup(UFSTOVFS(ip->i_ump), jaddref->ja_ino, 0, 8817 &inodedep) == 0) 8818 panic("cancel_mkdir_dotdot: Lost parent inodedep"); 8819 if (cancel_jaddref(jaddref, inodedep, &dirrem->dm_jwork)) { 8820 journal_jremref(dirrem, jremref, inodedep); 8821 jremref = NULL; 8822 } 8823 } 8824 if (mkdir->md_state & ONWORKLIST) 8825 WORKLIST_REMOVE(&mkdir->md_list); 8826 mkdir->md_state |= ALLCOMPLETE; 8827 complete_mkdir(mkdir); 8828 return (jremref); 8829 } 8830 8831 static void 8832 journal_jremref(dirrem, jremref, inodedep) 8833 struct dirrem *dirrem; 8834 struct jremref *jremref; 8835 struct inodedep *inodedep; 8836 { 8837 8838 if (inodedep == NULL) 8839 if (inodedep_lookup(jremref->jr_list.wk_mp, 8840 jremref->jr_ref.if_ino, 0, &inodedep) == 0) 8841 panic("journal_jremref: Lost inodedep"); 8842 LIST_INSERT_HEAD(&dirrem->dm_jremrefhd, jremref, jr_deps); 8843 TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jremref->jr_ref, if_deps); 8844 add_to_journal(&jremref->jr_list); 8845 } 8846 8847 static void 8848 dirrem_journal(dirrem, jremref, dotremref, dotdotremref) 8849 struct dirrem *dirrem; 8850 struct jremref *jremref; 8851 struct jremref *dotremref; 8852 struct jremref *dotdotremref; 8853 { 8854 struct inodedep *inodedep; 8855 8856 8857 if (inodedep_lookup(jremref->jr_list.wk_mp, jremref->jr_ref.if_ino, 0, 8858 &inodedep) == 0) 8859 panic("dirrem_journal: Lost inodedep"); 8860 journal_jremref(dirrem, jremref, inodedep); 8861 if (dotremref) 8862 journal_jremref(dirrem, dotremref, inodedep); 8863 if (dotdotremref) 8864 journal_jremref(dirrem, dotdotremref, NULL); 8865 } 8866 8867 /* 8868 * Allocate a new dirrem if appropriate and return it along with 8869 * its associated pagedep. Called without a lock, returns with lock. 8870 */ 8871 static struct dirrem * 8872 newdirrem(bp, dp, ip, isrmdir, prevdirremp) 8873 struct buf *bp; /* buffer containing directory block */ 8874 struct inode *dp; /* inode for the directory being modified */ 8875 struct inode *ip; /* inode for directory entry being removed */ 8876 int isrmdir; /* indicates if doing RMDIR */ 8877 struct dirrem **prevdirremp; /* previously referenced inode, if any */ 8878 { 8879 int offset; 8880 ufs_lbn_t lbn; 8881 struct diradd *dap; 8882 struct dirrem *dirrem; 8883 struct pagedep *pagedep; 8884 struct jremref *jremref; 8885 struct jremref *dotremref; 8886 struct jremref *dotdotremref; 8887 struct vnode *dvp; 8888 8889 /* 8890 * Whiteouts have no deletion dependencies. 8891 */ 8892 if (ip == NULL) 8893 panic("newdirrem: whiteout"); 8894 dvp = ITOV(dp); 8895 /* 8896 * If we are over our limit, try to improve the situation. 8897 * Limiting the number of dirrem structures will also limit 8898 * the number of freefile and freeblks structures. 8899 */ 8900 ACQUIRE_LOCK(&lk); 8901 if (!IS_SNAPSHOT(ip) && dep_current[D_DIRREM] > max_softdeps / 2) 8902 (void) request_cleanup(ITOV(dp)->v_mount, FLUSH_BLOCKS); 8903 FREE_LOCK(&lk); 8904 dirrem = malloc(sizeof(struct dirrem), 8905 M_DIRREM, M_SOFTDEP_FLAGS|M_ZERO); 8906 workitem_alloc(&dirrem->dm_list, D_DIRREM, dvp->v_mount); 8907 LIST_INIT(&dirrem->dm_jremrefhd); 8908 LIST_INIT(&dirrem->dm_jwork); 8909 dirrem->dm_state = isrmdir ? RMDIR : 0; 8910 dirrem->dm_oldinum = ip->i_number; 8911 *prevdirremp = NULL; 8912 /* 8913 * Allocate remove reference structures to track journal write 8914 * dependencies. We will always have one for the link and 8915 * when doing directories we will always have one more for dot. 8916 * When renaming a directory we skip the dotdot link change so 8917 * this is not needed. 8918 */ 8919 jremref = dotremref = dotdotremref = NULL; 8920 if (DOINGSUJ(dvp)) { 8921 if (isrmdir) { 8922 jremref = newjremref(dirrem, dp, ip, dp->i_offset, 8923 ip->i_effnlink + 2); 8924 dotremref = newjremref(dirrem, ip, ip, DOT_OFFSET, 8925 ip->i_effnlink + 1); 8926 dotdotremref = newjremref(dirrem, ip, dp, DOTDOT_OFFSET, 8927 dp->i_effnlink + 1); 8928 dotdotremref->jr_state |= MKDIR_PARENT; 8929 } else 8930 jremref = newjremref(dirrem, dp, ip, dp->i_offset, 8931 ip->i_effnlink + 1); 8932 } 8933 ACQUIRE_LOCK(&lk); 8934 lbn = lblkno(dp->i_fs, dp->i_offset); 8935 offset = blkoff(dp->i_fs, dp->i_offset); 8936 pagedep_lookup(UFSTOVFS(dp->i_ump), bp, dp->i_number, lbn, DEPALLOC, 8937 &pagedep); 8938 dirrem->dm_pagedep = pagedep; 8939 dirrem->dm_offset = offset; 8940 /* 8941 * If we're renaming a .. link to a new directory, cancel any 8942 * existing MKDIR_PARENT mkdir. If it has already been canceled 8943 * the jremref is preserved for any potential diradd in this 8944 * location. This can not coincide with a rmdir. 8945 */ 8946 if (dp->i_offset == DOTDOT_OFFSET) { 8947 if (isrmdir) 8948 panic("newdirrem: .. directory change during remove?"); 8949 jremref = cancel_mkdir_dotdot(dp, dirrem, jremref); 8950 } 8951 /* 8952 * If we're removing a directory search for the .. dependency now and 8953 * cancel it. Any pending journal work will be added to the dirrem 8954 * to be completed when the workitem remove completes. 8955 */ 8956 if (isrmdir) 8957 dotdotremref = cancel_diradd_dotdot(ip, dirrem, dotdotremref); 8958 /* 8959 * Check for a diradd dependency for the same directory entry. 8960 * If present, then both dependencies become obsolete and can 8961 * be de-allocated. 8962 */ 8963 dap = diradd_lookup(pagedep, offset); 8964 if (dap == NULL) { 8965 /* 8966 * Link the jremref structures into the dirrem so they are 8967 * written prior to the pagedep. 8968 */ 8969 if (jremref) 8970 dirrem_journal(dirrem, jremref, dotremref, 8971 dotdotremref); 8972 return (dirrem); 8973 } 8974 /* 8975 * Must be ATTACHED at this point. 8976 */ 8977 if ((dap->da_state & ATTACHED) == 0) 8978 panic("newdirrem: not ATTACHED"); 8979 if (dap->da_newinum != ip->i_number) 8980 panic("newdirrem: inum %ju should be %ju", 8981 (uintmax_t)ip->i_number, (uintmax_t)dap->da_newinum); 8982 /* 8983 * If we are deleting a changed name that never made it to disk, 8984 * then return the dirrem describing the previous inode (which 8985 * represents the inode currently referenced from this entry on disk). 8986 */ 8987 if ((dap->da_state & DIRCHG) != 0) { 8988 *prevdirremp = dap->da_previous; 8989 dap->da_state &= ~DIRCHG; 8990 dap->da_pagedep = pagedep; 8991 } 8992 /* 8993 * We are deleting an entry that never made it to disk. 8994 * Mark it COMPLETE so we can delete its inode immediately. 8995 */ 8996 dirrem->dm_state |= COMPLETE; 8997 cancel_diradd(dap, dirrem, jremref, dotremref, dotdotremref); 8998 #ifdef SUJ_DEBUG 8999 if (isrmdir == 0) { 9000 struct worklist *wk; 9001 9002 LIST_FOREACH(wk, &dirrem->dm_jwork, wk_list) 9003 if (wk->wk_state & (MKDIR_BODY | MKDIR_PARENT)) 9004 panic("bad wk %p (0x%X)\n", wk, wk->wk_state); 9005 } 9006 #endif 9007 9008 return (dirrem); 9009 } 9010 9011 /* 9012 * Directory entry change dependencies. 9013 * 9014 * Changing an existing directory entry requires that an add operation 9015 * be completed first followed by a deletion. The semantics for the addition 9016 * are identical to the description of adding a new entry above except 9017 * that the rollback is to the old inode number rather than zero. Once 9018 * the addition dependency is completed, the removal is done as described 9019 * in the removal routine above. 9020 */ 9021 9022 /* 9023 * This routine should be called immediately after changing 9024 * a directory entry. The inode's link count should not be 9025 * decremented by the calling procedure -- the soft updates 9026 * code will perform this task when it is safe. 9027 */ 9028 void 9029 softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir) 9030 struct buf *bp; /* buffer containing directory block */ 9031 struct inode *dp; /* inode for the directory being modified */ 9032 struct inode *ip; /* inode for directory entry being removed */ 9033 ino_t newinum; /* new inode number for changed entry */ 9034 int isrmdir; /* indicates if doing RMDIR */ 9035 { 9036 int offset; 9037 struct diradd *dap = NULL; 9038 struct dirrem *dirrem, *prevdirrem; 9039 struct pagedep *pagedep; 9040 struct inodedep *inodedep; 9041 struct jaddref *jaddref; 9042 struct mount *mp; 9043 9044 offset = blkoff(dp->i_fs, dp->i_offset); 9045 mp = UFSTOVFS(dp->i_ump); 9046 9047 /* 9048 * Whiteouts do not need diradd dependencies. 9049 */ 9050 if (newinum != WINO) { 9051 dap = malloc(sizeof(struct diradd), 9052 M_DIRADD, M_SOFTDEP_FLAGS|M_ZERO); 9053 workitem_alloc(&dap->da_list, D_DIRADD, mp); 9054 dap->da_state = DIRCHG | ATTACHED | DEPCOMPLETE; 9055 dap->da_offset = offset; 9056 dap->da_newinum = newinum; 9057 LIST_INIT(&dap->da_jwork); 9058 } 9059 9060 /* 9061 * Allocate a new dirrem and ACQUIRE_LOCK. 9062 */ 9063 dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem); 9064 pagedep = dirrem->dm_pagedep; 9065 /* 9066 * The possible values for isrmdir: 9067 * 0 - non-directory file rename 9068 * 1 - directory rename within same directory 9069 * inum - directory rename to new directory of given inode number 9070 * When renaming to a new directory, we are both deleting and 9071 * creating a new directory entry, so the link count on the new 9072 * directory should not change. Thus we do not need the followup 9073 * dirrem which is usually done in handle_workitem_remove. We set 9074 * the DIRCHG flag to tell handle_workitem_remove to skip the 9075 * followup dirrem. 9076 */ 9077 if (isrmdir > 1) 9078 dirrem->dm_state |= DIRCHG; 9079 9080 /* 9081 * Whiteouts have no additional dependencies, 9082 * so just put the dirrem on the correct list. 9083 */ 9084 if (newinum == WINO) { 9085 if ((dirrem->dm_state & COMPLETE) == 0) { 9086 LIST_INSERT_HEAD(&pagedep->pd_dirremhd, dirrem, 9087 dm_next); 9088 } else { 9089 dirrem->dm_dirinum = pagedep->pd_ino; 9090 if (LIST_EMPTY(&dirrem->dm_jremrefhd)) 9091 add_to_worklist(&dirrem->dm_list, 0); 9092 } 9093 FREE_LOCK(&lk); 9094 return; 9095 } 9096 /* 9097 * Add the dirrem to the inodedep's pending remove list for quick 9098 * discovery later. A valid nlinkdelta ensures that this lookup 9099 * will not fail. 9100 */ 9101 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) 9102 panic("softdep_setup_directory_change: Lost inodedep."); 9103 dirrem->dm_state |= ONDEPLIST; 9104 LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext); 9105 9106 /* 9107 * If the COMPLETE flag is clear, then there were no active 9108 * entries and we want to roll back to the previous inode until 9109 * the new inode is committed to disk. If the COMPLETE flag is 9110 * set, then we have deleted an entry that never made it to disk. 9111 * If the entry we deleted resulted from a name change, then the old 9112 * inode reference still resides on disk. Any rollback that we do 9113 * needs to be to that old inode (returned to us in prevdirrem). If 9114 * the entry we deleted resulted from a create, then there is 9115 * no entry on the disk, so we want to roll back to zero rather 9116 * than the uncommitted inode. In either of the COMPLETE cases we 9117 * want to immediately free the unwritten and unreferenced inode. 9118 */ 9119 if ((dirrem->dm_state & COMPLETE) == 0) { 9120 dap->da_previous = dirrem; 9121 } else { 9122 if (prevdirrem != NULL) { 9123 dap->da_previous = prevdirrem; 9124 } else { 9125 dap->da_state &= ~DIRCHG; 9126 dap->da_pagedep = pagedep; 9127 } 9128 dirrem->dm_dirinum = pagedep->pd_ino; 9129 if (LIST_EMPTY(&dirrem->dm_jremrefhd)) 9130 add_to_worklist(&dirrem->dm_list, 0); 9131 } 9132 /* 9133 * Lookup the jaddref for this journal entry. We must finish 9134 * initializing it and make the diradd write dependent on it. 9135 * If we're not journaling, put it on the id_bufwait list if the 9136 * inode is not yet written. If it is written, do the post-inode 9137 * write processing to put it on the id_pendinghd list. 9138 */ 9139 inodedep_lookup(mp, newinum, DEPALLOC | NODELAY, &inodedep); 9140 if (MOUNTEDSUJ(mp)) { 9141 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 9142 inoreflst); 9143 KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number, 9144 ("softdep_setup_directory_change: bad jaddref %p", 9145 jaddref)); 9146 jaddref->ja_diroff = dp->i_offset; 9147 jaddref->ja_diradd = dap; 9148 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], 9149 dap, da_pdlist); 9150 add_to_journal(&jaddref->ja_list); 9151 } else if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) { 9152 dap->da_state |= COMPLETE; 9153 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist); 9154 WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list); 9155 } else { 9156 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], 9157 dap, da_pdlist); 9158 WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list); 9159 } 9160 /* 9161 * If we're making a new name for a directory that has not been 9162 * committed when need to move the dot and dotdot references to 9163 * this new name. 9164 */ 9165 if (inodedep->id_mkdiradd && dp->i_offset != DOTDOT_OFFSET) 9166 merge_diradd(inodedep, dap); 9167 FREE_LOCK(&lk); 9168 } 9169 9170 /* 9171 * Called whenever the link count on an inode is changed. 9172 * It creates an inode dependency so that the new reference(s) 9173 * to the inode cannot be committed to disk until the updated 9174 * inode has been written. 9175 */ 9176 void 9177 softdep_change_linkcnt(ip) 9178 struct inode *ip; /* the inode with the increased link count */ 9179 { 9180 struct inodedep *inodedep; 9181 int dflags; 9182 9183 ACQUIRE_LOCK(&lk); 9184 dflags = DEPALLOC; 9185 if (IS_SNAPSHOT(ip)) 9186 dflags |= NODELAY; 9187 inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, dflags, &inodedep); 9188 if (ip->i_nlink < ip->i_effnlink) 9189 panic("softdep_change_linkcnt: bad delta"); 9190 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 9191 FREE_LOCK(&lk); 9192 } 9193 9194 /* 9195 * Attach a sbdep dependency to the superblock buf so that we can keep 9196 * track of the head of the linked list of referenced but unlinked inodes. 9197 */ 9198 void 9199 softdep_setup_sbupdate(ump, fs, bp) 9200 struct ufsmount *ump; 9201 struct fs *fs; 9202 struct buf *bp; 9203 { 9204 struct sbdep *sbdep; 9205 struct worklist *wk; 9206 9207 if (MOUNTEDSUJ(UFSTOVFS(ump)) == 0) 9208 return; 9209 LIST_FOREACH(wk, &bp->b_dep, wk_list) 9210 if (wk->wk_type == D_SBDEP) 9211 break; 9212 if (wk != NULL) 9213 return; 9214 sbdep = malloc(sizeof(struct sbdep), M_SBDEP, M_SOFTDEP_FLAGS); 9215 workitem_alloc(&sbdep->sb_list, D_SBDEP, UFSTOVFS(ump)); 9216 sbdep->sb_fs = fs; 9217 sbdep->sb_ump = ump; 9218 ACQUIRE_LOCK(&lk); 9219 WORKLIST_INSERT(&bp->b_dep, &sbdep->sb_list); 9220 FREE_LOCK(&lk); 9221 } 9222 9223 /* 9224 * Return the first unlinked inodedep which is ready to be the head of the 9225 * list. The inodedep and all those after it must have valid next pointers. 9226 */ 9227 static struct inodedep * 9228 first_unlinked_inodedep(ump) 9229 struct ufsmount *ump; 9230 { 9231 struct inodedep *inodedep; 9232 struct inodedep *idp; 9233 9234 rw_assert(&lk, RA_WLOCKED); 9235 for (inodedep = TAILQ_LAST(&ump->softdep_unlinked, inodedeplst); 9236 inodedep; inodedep = idp) { 9237 if ((inodedep->id_state & UNLINKNEXT) == 0) 9238 return (NULL); 9239 idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked); 9240 if (idp == NULL || (idp->id_state & UNLINKNEXT) == 0) 9241 break; 9242 if ((inodedep->id_state & UNLINKPREV) == 0) 9243 break; 9244 } 9245 return (inodedep); 9246 } 9247 9248 /* 9249 * Set the sujfree unlinked head pointer prior to writing a superblock. 9250 */ 9251 static void 9252 initiate_write_sbdep(sbdep) 9253 struct sbdep *sbdep; 9254 { 9255 struct inodedep *inodedep; 9256 struct fs *bpfs; 9257 struct fs *fs; 9258 9259 bpfs = sbdep->sb_fs; 9260 fs = sbdep->sb_ump->um_fs; 9261 inodedep = first_unlinked_inodedep(sbdep->sb_ump); 9262 if (inodedep) { 9263 fs->fs_sujfree = inodedep->id_ino; 9264 inodedep->id_state |= UNLINKPREV; 9265 } else 9266 fs->fs_sujfree = 0; 9267 bpfs->fs_sujfree = fs->fs_sujfree; 9268 } 9269 9270 /* 9271 * After a superblock is written determine whether it must be written again 9272 * due to a changing unlinked list head. 9273 */ 9274 static int 9275 handle_written_sbdep(sbdep, bp) 9276 struct sbdep *sbdep; 9277 struct buf *bp; 9278 { 9279 struct inodedep *inodedep; 9280 struct mount *mp; 9281 struct fs *fs; 9282 9283 rw_assert(&lk, RA_WLOCKED); 9284 fs = sbdep->sb_fs; 9285 mp = UFSTOVFS(sbdep->sb_ump); 9286 /* 9287 * If the superblock doesn't match the in-memory list start over. 9288 */ 9289 inodedep = first_unlinked_inodedep(sbdep->sb_ump); 9290 if ((inodedep && fs->fs_sujfree != inodedep->id_ino) || 9291 (inodedep == NULL && fs->fs_sujfree != 0)) { 9292 bdirty(bp); 9293 return (1); 9294 } 9295 WORKITEM_FREE(sbdep, D_SBDEP); 9296 if (fs->fs_sujfree == 0) 9297 return (0); 9298 /* 9299 * Now that we have a record of this inode in stable store allow it 9300 * to be written to free up pending work. Inodes may see a lot of 9301 * write activity after they are unlinked which we must not hold up. 9302 */ 9303 for (; inodedep != NULL; inodedep = TAILQ_NEXT(inodedep, id_unlinked)) { 9304 if ((inodedep->id_state & UNLINKLINKS) != UNLINKLINKS) 9305 panic("handle_written_sbdep: Bad inodedep %p (0x%X)", 9306 inodedep, inodedep->id_state); 9307 if (inodedep->id_state & UNLINKONLIST) 9308 break; 9309 inodedep->id_state |= DEPCOMPLETE | UNLINKONLIST; 9310 } 9311 9312 return (0); 9313 } 9314 9315 /* 9316 * Mark an inodedep as unlinked and insert it into the in-memory unlinked list. 9317 */ 9318 static void 9319 unlinked_inodedep(mp, inodedep) 9320 struct mount *mp; 9321 struct inodedep *inodedep; 9322 { 9323 struct ufsmount *ump; 9324 9325 rw_assert(&lk, RA_WLOCKED); 9326 if (MOUNTEDSUJ(mp) == 0) 9327 return; 9328 ump = VFSTOUFS(mp); 9329 ump->um_fs->fs_fmod = 1; 9330 if (inodedep->id_state & UNLINKED) 9331 panic("unlinked_inodedep: %p already unlinked\n", inodedep); 9332 inodedep->id_state |= UNLINKED; 9333 TAILQ_INSERT_HEAD(&ump->softdep_unlinked, inodedep, id_unlinked); 9334 } 9335 9336 /* 9337 * Remove an inodedep from the unlinked inodedep list. This may require 9338 * disk writes if the inode has made it that far. 9339 */ 9340 static void 9341 clear_unlinked_inodedep(inodedep) 9342 struct inodedep *inodedep; 9343 { 9344 struct ufsmount *ump; 9345 struct inodedep *idp; 9346 struct inodedep *idn; 9347 struct fs *fs; 9348 struct buf *bp; 9349 ino_t ino; 9350 ino_t nino; 9351 ino_t pino; 9352 int error; 9353 9354 ump = VFSTOUFS(inodedep->id_list.wk_mp); 9355 fs = ump->um_fs; 9356 ino = inodedep->id_ino; 9357 error = 0; 9358 for (;;) { 9359 rw_assert(&lk, RA_WLOCKED); 9360 KASSERT((inodedep->id_state & UNLINKED) != 0, 9361 ("clear_unlinked_inodedep: inodedep %p not unlinked", 9362 inodedep)); 9363 /* 9364 * If nothing has yet been written simply remove us from 9365 * the in memory list and return. This is the most common 9366 * case where handle_workitem_remove() loses the final 9367 * reference. 9368 */ 9369 if ((inodedep->id_state & UNLINKLINKS) == 0) 9370 break; 9371 /* 9372 * If we have a NEXT pointer and no PREV pointer we can simply 9373 * clear NEXT's PREV and remove ourselves from the list. Be 9374 * careful not to clear PREV if the superblock points at 9375 * next as well. 9376 */ 9377 idn = TAILQ_NEXT(inodedep, id_unlinked); 9378 if ((inodedep->id_state & UNLINKLINKS) == UNLINKNEXT) { 9379 if (idn && fs->fs_sujfree != idn->id_ino) 9380 idn->id_state &= ~UNLINKPREV; 9381 break; 9382 } 9383 /* 9384 * Here we have an inodedep which is actually linked into 9385 * the list. We must remove it by forcing a write to the 9386 * link before us, whether it be the superblock or an inode. 9387 * Unfortunately the list may change while we're waiting 9388 * on the buf lock for either resource so we must loop until 9389 * we lock the right one. If both the superblock and an 9390 * inode point to this inode we must clear the inode first 9391 * followed by the superblock. 9392 */ 9393 idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked); 9394 pino = 0; 9395 if (idp && (idp->id_state & UNLINKNEXT)) 9396 pino = idp->id_ino; 9397 FREE_LOCK(&lk); 9398 if (pino == 0) { 9399 bp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc), 9400 (int)fs->fs_sbsize, 0, 0, 0); 9401 } else { 9402 error = bread(ump->um_devvp, 9403 fsbtodb(fs, ino_to_fsba(fs, pino)), 9404 (int)fs->fs_bsize, NOCRED, &bp); 9405 if (error) 9406 brelse(bp); 9407 } 9408 ACQUIRE_LOCK(&lk); 9409 if (error) 9410 break; 9411 /* If the list has changed restart the loop. */ 9412 idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked); 9413 nino = 0; 9414 if (idp && (idp->id_state & UNLINKNEXT)) 9415 nino = idp->id_ino; 9416 if (nino != pino || 9417 (inodedep->id_state & UNLINKPREV) != UNLINKPREV) { 9418 FREE_LOCK(&lk); 9419 brelse(bp); 9420 ACQUIRE_LOCK(&lk); 9421 continue; 9422 } 9423 nino = 0; 9424 idn = TAILQ_NEXT(inodedep, id_unlinked); 9425 if (idn) 9426 nino = idn->id_ino; 9427 /* 9428 * Remove us from the in memory list. After this we cannot 9429 * access the inodedep. 9430 */ 9431 KASSERT((inodedep->id_state & UNLINKED) != 0, 9432 ("clear_unlinked_inodedep: inodedep %p not unlinked", 9433 inodedep)); 9434 inodedep->id_state &= ~(UNLINKED | UNLINKLINKS | UNLINKONLIST); 9435 TAILQ_REMOVE(&ump->softdep_unlinked, inodedep, id_unlinked); 9436 FREE_LOCK(&lk); 9437 /* 9438 * The predecessor's next pointer is manually updated here 9439 * so that the NEXT flag is never cleared for an element 9440 * that is in the list. 9441 */ 9442 if (pino == 0) { 9443 bcopy((caddr_t)fs, bp->b_data, (u_int)fs->fs_sbsize); 9444 ffs_oldfscompat_write((struct fs *)bp->b_data, ump); 9445 softdep_setup_sbupdate(ump, (struct fs *)bp->b_data, 9446 bp); 9447 } else if (fs->fs_magic == FS_UFS1_MAGIC) 9448 ((struct ufs1_dinode *)bp->b_data + 9449 ino_to_fsbo(fs, pino))->di_freelink = nino; 9450 else 9451 ((struct ufs2_dinode *)bp->b_data + 9452 ino_to_fsbo(fs, pino))->di_freelink = nino; 9453 /* 9454 * If the bwrite fails we have no recourse to recover. The 9455 * filesystem is corrupted already. 9456 */ 9457 bwrite(bp); 9458 ACQUIRE_LOCK(&lk); 9459 /* 9460 * If the superblock pointer still needs to be cleared force 9461 * a write here. 9462 */ 9463 if (fs->fs_sujfree == ino) { 9464 FREE_LOCK(&lk); 9465 bp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc), 9466 (int)fs->fs_sbsize, 0, 0, 0); 9467 bcopy((caddr_t)fs, bp->b_data, (u_int)fs->fs_sbsize); 9468 ffs_oldfscompat_write((struct fs *)bp->b_data, ump); 9469 softdep_setup_sbupdate(ump, (struct fs *)bp->b_data, 9470 bp); 9471 bwrite(bp); 9472 ACQUIRE_LOCK(&lk); 9473 } 9474 9475 if (fs->fs_sujfree != ino) 9476 return; 9477 panic("clear_unlinked_inodedep: Failed to clear free head"); 9478 } 9479 if (inodedep->id_ino == fs->fs_sujfree) 9480 panic("clear_unlinked_inodedep: Freeing head of free list"); 9481 inodedep->id_state &= ~(UNLINKED | UNLINKLINKS | UNLINKONLIST); 9482 TAILQ_REMOVE(&ump->softdep_unlinked, inodedep, id_unlinked); 9483 return; 9484 } 9485 9486 /* 9487 * This workitem decrements the inode's link count. 9488 * If the link count reaches zero, the file is removed. 9489 */ 9490 static int 9491 handle_workitem_remove(dirrem, flags) 9492 struct dirrem *dirrem; 9493 int flags; 9494 { 9495 struct inodedep *inodedep; 9496 struct workhead dotdotwk; 9497 struct worklist *wk; 9498 struct ufsmount *ump; 9499 struct mount *mp; 9500 struct vnode *vp; 9501 struct inode *ip; 9502 ino_t oldinum; 9503 9504 if (dirrem->dm_state & ONWORKLIST) 9505 panic("handle_workitem_remove: dirrem %p still on worklist", 9506 dirrem); 9507 oldinum = dirrem->dm_oldinum; 9508 mp = dirrem->dm_list.wk_mp; 9509 ump = VFSTOUFS(mp); 9510 flags |= LK_EXCLUSIVE; 9511 if (ffs_vgetf(mp, oldinum, flags, &vp, FFSV_FORCEINSMQ) != 0) 9512 return (EBUSY); 9513 ip = VTOI(vp); 9514 ACQUIRE_LOCK(&lk); 9515 if ((inodedep_lookup(mp, oldinum, 0, &inodedep)) == 0) 9516 panic("handle_workitem_remove: lost inodedep"); 9517 if (dirrem->dm_state & ONDEPLIST) 9518 LIST_REMOVE(dirrem, dm_inonext); 9519 KASSERT(LIST_EMPTY(&dirrem->dm_jremrefhd), 9520 ("handle_workitem_remove: Journal entries not written.")); 9521 9522 /* 9523 * Move all dependencies waiting on the remove to complete 9524 * from the dirrem to the inode inowait list to be completed 9525 * after the inode has been updated and written to disk. Any 9526 * marked MKDIR_PARENT are saved to be completed when the .. ref 9527 * is removed. 9528 */ 9529 LIST_INIT(&dotdotwk); 9530 while ((wk = LIST_FIRST(&dirrem->dm_jwork)) != NULL) { 9531 WORKLIST_REMOVE(wk); 9532 if (wk->wk_state & MKDIR_PARENT) { 9533 wk->wk_state &= ~MKDIR_PARENT; 9534 WORKLIST_INSERT(&dotdotwk, wk); 9535 continue; 9536 } 9537 WORKLIST_INSERT(&inodedep->id_inowait, wk); 9538 } 9539 LIST_SWAP(&dirrem->dm_jwork, &dotdotwk, worklist, wk_list); 9540 /* 9541 * Normal file deletion. 9542 */ 9543 if ((dirrem->dm_state & RMDIR) == 0) { 9544 ip->i_nlink--; 9545 DIP_SET(ip, i_nlink, ip->i_nlink); 9546 ip->i_flag |= IN_CHANGE; 9547 if (ip->i_nlink < ip->i_effnlink) 9548 panic("handle_workitem_remove: bad file delta"); 9549 if (ip->i_nlink == 0) 9550 unlinked_inodedep(mp, inodedep); 9551 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 9552 KASSERT(LIST_EMPTY(&dirrem->dm_jwork), 9553 ("handle_workitem_remove: worklist not empty. %s", 9554 TYPENAME(LIST_FIRST(&dirrem->dm_jwork)->wk_type))); 9555 WORKITEM_FREE(dirrem, D_DIRREM); 9556 FREE_LOCK(&lk); 9557 goto out; 9558 } 9559 /* 9560 * Directory deletion. Decrement reference count for both the 9561 * just deleted parent directory entry and the reference for ".". 9562 * Arrange to have the reference count on the parent decremented 9563 * to account for the loss of "..". 9564 */ 9565 ip->i_nlink -= 2; 9566 DIP_SET(ip, i_nlink, ip->i_nlink); 9567 ip->i_flag |= IN_CHANGE; 9568 if (ip->i_nlink < ip->i_effnlink) 9569 panic("handle_workitem_remove: bad dir delta"); 9570 if (ip->i_nlink == 0) 9571 unlinked_inodedep(mp, inodedep); 9572 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 9573 /* 9574 * Rename a directory to a new parent. Since, we are both deleting 9575 * and creating a new directory entry, the link count on the new 9576 * directory should not change. Thus we skip the followup dirrem. 9577 */ 9578 if (dirrem->dm_state & DIRCHG) { 9579 KASSERT(LIST_EMPTY(&dirrem->dm_jwork), 9580 ("handle_workitem_remove: DIRCHG and worklist not empty.")); 9581 WORKITEM_FREE(dirrem, D_DIRREM); 9582 FREE_LOCK(&lk); 9583 goto out; 9584 } 9585 dirrem->dm_state = ONDEPLIST; 9586 dirrem->dm_oldinum = dirrem->dm_dirinum; 9587 /* 9588 * Place the dirrem on the parent's diremhd list. 9589 */ 9590 if (inodedep_lookup(mp, dirrem->dm_oldinum, 0, &inodedep) == 0) 9591 panic("handle_workitem_remove: lost dir inodedep"); 9592 LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext); 9593 /* 9594 * If the allocated inode has never been written to disk, then 9595 * the on-disk inode is zero'ed and we can remove the file 9596 * immediately. When journaling if the inode has been marked 9597 * unlinked and not DEPCOMPLETE we know it can never be written. 9598 */ 9599 inodedep_lookup(mp, oldinum, 0, &inodedep); 9600 if (inodedep == NULL || 9601 (inodedep->id_state & (DEPCOMPLETE | UNLINKED)) == UNLINKED || 9602 check_inode_unwritten(inodedep)) { 9603 FREE_LOCK(&lk); 9604 vput(vp); 9605 return handle_workitem_remove(dirrem, flags); 9606 } 9607 WORKLIST_INSERT(&inodedep->id_inowait, &dirrem->dm_list); 9608 FREE_LOCK(&lk); 9609 ip->i_flag |= IN_CHANGE; 9610 out: 9611 ffs_update(vp, 0); 9612 vput(vp); 9613 return (0); 9614 } 9615 9616 /* 9617 * Inode de-allocation dependencies. 9618 * 9619 * When an inode's link count is reduced to zero, it can be de-allocated. We 9620 * found it convenient to postpone de-allocation until after the inode is 9621 * written to disk with its new link count (zero). At this point, all of the 9622 * on-disk inode's block pointers are nullified and, with careful dependency 9623 * list ordering, all dependencies related to the inode will be satisfied and 9624 * the corresponding dependency structures de-allocated. So, if/when the 9625 * inode is reused, there will be no mixing of old dependencies with new 9626 * ones. This artificial dependency is set up by the block de-allocation 9627 * procedure above (softdep_setup_freeblocks) and completed by the 9628 * following procedure. 9629 */ 9630 static void 9631 handle_workitem_freefile(freefile) 9632 struct freefile *freefile; 9633 { 9634 struct workhead wkhd; 9635 struct fs *fs; 9636 struct inodedep *idp; 9637 struct ufsmount *ump; 9638 int error; 9639 9640 ump = VFSTOUFS(freefile->fx_list.wk_mp); 9641 fs = ump->um_fs; 9642 #ifdef DEBUG 9643 ACQUIRE_LOCK(&lk); 9644 error = inodedep_lookup(UFSTOVFS(ump), freefile->fx_oldinum, 0, &idp); 9645 FREE_LOCK(&lk); 9646 if (error) 9647 panic("handle_workitem_freefile: inodedep %p survived", idp); 9648 #endif 9649 UFS_LOCK(ump); 9650 fs->fs_pendinginodes -= 1; 9651 UFS_UNLOCK(ump); 9652 LIST_INIT(&wkhd); 9653 LIST_SWAP(&freefile->fx_jwork, &wkhd, worklist, wk_list); 9654 if ((error = ffs_freefile(ump, fs, freefile->fx_devvp, 9655 freefile->fx_oldinum, freefile->fx_mode, &wkhd)) != 0) 9656 softdep_error("handle_workitem_freefile", error); 9657 ACQUIRE_LOCK(&lk); 9658 WORKITEM_FREE(freefile, D_FREEFILE); 9659 FREE_LOCK(&lk); 9660 } 9661 9662 9663 /* 9664 * Helper function which unlinks marker element from work list and returns 9665 * the next element on the list. 9666 */ 9667 static __inline struct worklist * 9668 markernext(struct worklist *marker) 9669 { 9670 struct worklist *next; 9671 9672 next = LIST_NEXT(marker, wk_list); 9673 LIST_REMOVE(marker, wk_list); 9674 return next; 9675 } 9676 9677 /* 9678 * Disk writes. 9679 * 9680 * The dependency structures constructed above are most actively used when file 9681 * system blocks are written to disk. No constraints are placed on when a 9682 * block can be written, but unsatisfied update dependencies are made safe by 9683 * modifying (or replacing) the source memory for the duration of the disk 9684 * write. When the disk write completes, the memory block is again brought 9685 * up-to-date. 9686 * 9687 * In-core inode structure reclamation. 9688 * 9689 * Because there are a finite number of "in-core" inode structures, they are 9690 * reused regularly. By transferring all inode-related dependencies to the 9691 * in-memory inode block and indexing them separately (via "inodedep"s), we 9692 * can allow "in-core" inode structures to be reused at any time and avoid 9693 * any increase in contention. 9694 * 9695 * Called just before entering the device driver to initiate a new disk I/O. 9696 * The buffer must be locked, thus, no I/O completion operations can occur 9697 * while we are manipulating its associated dependencies. 9698 */ 9699 static void 9700 softdep_disk_io_initiation(bp) 9701 struct buf *bp; /* structure describing disk write to occur */ 9702 { 9703 struct worklist *wk; 9704 struct worklist marker; 9705 struct inodedep *inodedep; 9706 struct freeblks *freeblks; 9707 struct jblkdep *jblkdep; 9708 struct newblk *newblk; 9709 9710 /* 9711 * We only care about write operations. There should never 9712 * be dependencies for reads. 9713 */ 9714 if (bp->b_iocmd != BIO_WRITE) 9715 panic("softdep_disk_io_initiation: not write"); 9716 9717 if (bp->b_vflags & BV_BKGRDINPROG) 9718 panic("softdep_disk_io_initiation: Writing buffer with " 9719 "background write in progress: %p", bp); 9720 9721 marker.wk_type = D_LAST + 1; /* Not a normal workitem */ 9722 PHOLD(curproc); /* Don't swap out kernel stack */ 9723 9724 ACQUIRE_LOCK(&lk); 9725 /* 9726 * Do any necessary pre-I/O processing. 9727 */ 9728 for (wk = LIST_FIRST(&bp->b_dep); wk != NULL; 9729 wk = markernext(&marker)) { 9730 LIST_INSERT_AFTER(wk, &marker, wk_list); 9731 switch (wk->wk_type) { 9732 9733 case D_PAGEDEP: 9734 initiate_write_filepage(WK_PAGEDEP(wk), bp); 9735 continue; 9736 9737 case D_INODEDEP: 9738 inodedep = WK_INODEDEP(wk); 9739 if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC) 9740 initiate_write_inodeblock_ufs1(inodedep, bp); 9741 else 9742 initiate_write_inodeblock_ufs2(inodedep, bp); 9743 continue; 9744 9745 case D_INDIRDEP: 9746 initiate_write_indirdep(WK_INDIRDEP(wk), bp); 9747 continue; 9748 9749 case D_BMSAFEMAP: 9750 initiate_write_bmsafemap(WK_BMSAFEMAP(wk), bp); 9751 continue; 9752 9753 case D_JSEG: 9754 WK_JSEG(wk)->js_buf = NULL; 9755 continue; 9756 9757 case D_FREEBLKS: 9758 freeblks = WK_FREEBLKS(wk); 9759 jblkdep = LIST_FIRST(&freeblks->fb_jblkdephd); 9760 /* 9761 * We have to wait for the freeblks to be journaled 9762 * before we can write an inodeblock with updated 9763 * pointers. Be careful to arrange the marker so 9764 * we revisit the freeblks if it's not removed by 9765 * the first jwait(). 9766 */ 9767 if (jblkdep != NULL) { 9768 LIST_REMOVE(&marker, wk_list); 9769 LIST_INSERT_BEFORE(wk, &marker, wk_list); 9770 jwait(&jblkdep->jb_list, MNT_WAIT); 9771 } 9772 continue; 9773 case D_ALLOCDIRECT: 9774 case D_ALLOCINDIR: 9775 /* 9776 * We have to wait for the jnewblk to be journaled 9777 * before we can write to a block if the contents 9778 * may be confused with an earlier file's indirect 9779 * at recovery time. Handle the marker as described 9780 * above. 9781 */ 9782 newblk = WK_NEWBLK(wk); 9783 if (newblk->nb_jnewblk != NULL && 9784 indirblk_lookup(newblk->nb_list.wk_mp, 9785 newblk->nb_newblkno)) { 9786 LIST_REMOVE(&marker, wk_list); 9787 LIST_INSERT_BEFORE(wk, &marker, wk_list); 9788 jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT); 9789 } 9790 continue; 9791 9792 case D_SBDEP: 9793 initiate_write_sbdep(WK_SBDEP(wk)); 9794 continue; 9795 9796 case D_MKDIR: 9797 case D_FREEWORK: 9798 case D_FREEDEP: 9799 case D_JSEGDEP: 9800 continue; 9801 9802 default: 9803 panic("handle_disk_io_initiation: Unexpected type %s", 9804 TYPENAME(wk->wk_type)); 9805 /* NOTREACHED */ 9806 } 9807 } 9808 FREE_LOCK(&lk); 9809 PRELE(curproc); /* Allow swapout of kernel stack */ 9810 } 9811 9812 /* 9813 * Called from within the procedure above to deal with unsatisfied 9814 * allocation dependencies in a directory. The buffer must be locked, 9815 * thus, no I/O completion operations can occur while we are 9816 * manipulating its associated dependencies. 9817 */ 9818 static void 9819 initiate_write_filepage(pagedep, bp) 9820 struct pagedep *pagedep; 9821 struct buf *bp; 9822 { 9823 struct jremref *jremref; 9824 struct jmvref *jmvref; 9825 struct dirrem *dirrem; 9826 struct diradd *dap; 9827 struct direct *ep; 9828 int i; 9829 9830 if (pagedep->pd_state & IOSTARTED) { 9831 /* 9832 * This can only happen if there is a driver that does not 9833 * understand chaining. Here biodone will reissue the call 9834 * to strategy for the incomplete buffers. 9835 */ 9836 printf("initiate_write_filepage: already started\n"); 9837 return; 9838 } 9839 pagedep->pd_state |= IOSTARTED; 9840 /* 9841 * Wait for all journal remove dependencies to hit the disk. 9842 * We can not allow any potentially conflicting directory adds 9843 * to be visible before removes and rollback is too difficult. 9844 * lk may be dropped and re-acquired, however we hold the buf 9845 * locked so the dependency can not go away. 9846 */ 9847 LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next) 9848 while ((jremref = LIST_FIRST(&dirrem->dm_jremrefhd)) != NULL) 9849 jwait(&jremref->jr_list, MNT_WAIT); 9850 while ((jmvref = LIST_FIRST(&pagedep->pd_jmvrefhd)) != NULL) 9851 jwait(&jmvref->jm_list, MNT_WAIT); 9852 for (i = 0; i < DAHASHSZ; i++) { 9853 LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) { 9854 ep = (struct direct *) 9855 ((char *)bp->b_data + dap->da_offset); 9856 if (ep->d_ino != dap->da_newinum) 9857 panic("%s: dir inum %ju != new %ju", 9858 "initiate_write_filepage", 9859 (uintmax_t)ep->d_ino, 9860 (uintmax_t)dap->da_newinum); 9861 if (dap->da_state & DIRCHG) 9862 ep->d_ino = dap->da_previous->dm_oldinum; 9863 else 9864 ep->d_ino = 0; 9865 dap->da_state &= ~ATTACHED; 9866 dap->da_state |= UNDONE; 9867 } 9868 } 9869 } 9870 9871 /* 9872 * Version of initiate_write_inodeblock that handles UFS1 dinodes. 9873 * Note that any bug fixes made to this routine must be done in the 9874 * version found below. 9875 * 9876 * Called from within the procedure above to deal with unsatisfied 9877 * allocation dependencies in an inodeblock. The buffer must be 9878 * locked, thus, no I/O completion operations can occur while we 9879 * are manipulating its associated dependencies. 9880 */ 9881 static void 9882 initiate_write_inodeblock_ufs1(inodedep, bp) 9883 struct inodedep *inodedep; 9884 struct buf *bp; /* The inode block */ 9885 { 9886 struct allocdirect *adp, *lastadp; 9887 struct ufs1_dinode *dp; 9888 struct ufs1_dinode *sip; 9889 struct inoref *inoref; 9890 struct fs *fs; 9891 ufs_lbn_t i; 9892 #ifdef INVARIANTS 9893 ufs_lbn_t prevlbn = 0; 9894 #endif 9895 int deplist; 9896 9897 if (inodedep->id_state & IOSTARTED) 9898 panic("initiate_write_inodeblock_ufs1: already started"); 9899 inodedep->id_state |= IOSTARTED; 9900 fs = inodedep->id_fs; 9901 dp = (struct ufs1_dinode *)bp->b_data + 9902 ino_to_fsbo(fs, inodedep->id_ino); 9903 9904 /* 9905 * If we're on the unlinked list but have not yet written our 9906 * next pointer initialize it here. 9907 */ 9908 if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) { 9909 struct inodedep *inon; 9910 9911 inon = TAILQ_NEXT(inodedep, id_unlinked); 9912 dp->di_freelink = inon ? inon->id_ino : 0; 9913 } 9914 /* 9915 * If the bitmap is not yet written, then the allocated 9916 * inode cannot be written to disk. 9917 */ 9918 if ((inodedep->id_state & DEPCOMPLETE) == 0) { 9919 if (inodedep->id_savedino1 != NULL) 9920 panic("initiate_write_inodeblock_ufs1: I/O underway"); 9921 FREE_LOCK(&lk); 9922 sip = malloc(sizeof(struct ufs1_dinode), 9923 M_SAVEDINO, M_SOFTDEP_FLAGS); 9924 ACQUIRE_LOCK(&lk); 9925 inodedep->id_savedino1 = sip; 9926 *inodedep->id_savedino1 = *dp; 9927 bzero((caddr_t)dp, sizeof(struct ufs1_dinode)); 9928 dp->di_gen = inodedep->id_savedino1->di_gen; 9929 dp->di_freelink = inodedep->id_savedino1->di_freelink; 9930 return; 9931 } 9932 /* 9933 * If no dependencies, then there is nothing to roll back. 9934 */ 9935 inodedep->id_savedsize = dp->di_size; 9936 inodedep->id_savedextsize = 0; 9937 inodedep->id_savednlink = dp->di_nlink; 9938 if (TAILQ_EMPTY(&inodedep->id_inoupdt) && 9939 TAILQ_EMPTY(&inodedep->id_inoreflst)) 9940 return; 9941 /* 9942 * Revert the link count to that of the first unwritten journal entry. 9943 */ 9944 inoref = TAILQ_FIRST(&inodedep->id_inoreflst); 9945 if (inoref) 9946 dp->di_nlink = inoref->if_nlink; 9947 /* 9948 * Set the dependencies to busy. 9949 */ 9950 for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 9951 adp = TAILQ_NEXT(adp, ad_next)) { 9952 #ifdef INVARIANTS 9953 if (deplist != 0 && prevlbn >= adp->ad_offset) 9954 panic("softdep_write_inodeblock: lbn order"); 9955 prevlbn = adp->ad_offset; 9956 if (adp->ad_offset < NDADDR && 9957 dp->di_db[adp->ad_offset] != adp->ad_newblkno) 9958 panic("%s: direct pointer #%jd mismatch %d != %jd", 9959 "softdep_write_inodeblock", 9960 (intmax_t)adp->ad_offset, 9961 dp->di_db[adp->ad_offset], 9962 (intmax_t)adp->ad_newblkno); 9963 if (adp->ad_offset >= NDADDR && 9964 dp->di_ib[adp->ad_offset - NDADDR] != adp->ad_newblkno) 9965 panic("%s: indirect pointer #%jd mismatch %d != %jd", 9966 "softdep_write_inodeblock", 9967 (intmax_t)adp->ad_offset - NDADDR, 9968 dp->di_ib[adp->ad_offset - NDADDR], 9969 (intmax_t)adp->ad_newblkno); 9970 deplist |= 1 << adp->ad_offset; 9971 if ((adp->ad_state & ATTACHED) == 0) 9972 panic("softdep_write_inodeblock: Unknown state 0x%x", 9973 adp->ad_state); 9974 #endif /* INVARIANTS */ 9975 adp->ad_state &= ~ATTACHED; 9976 adp->ad_state |= UNDONE; 9977 } 9978 /* 9979 * The on-disk inode cannot claim to be any larger than the last 9980 * fragment that has been written. Otherwise, the on-disk inode 9981 * might have fragments that were not the last block in the file 9982 * which would corrupt the filesystem. 9983 */ 9984 for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 9985 lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) { 9986 if (adp->ad_offset >= NDADDR) 9987 break; 9988 dp->di_db[adp->ad_offset] = adp->ad_oldblkno; 9989 /* keep going until hitting a rollback to a frag */ 9990 if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize) 9991 continue; 9992 dp->di_size = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize; 9993 for (i = adp->ad_offset + 1; i < NDADDR; i++) { 9994 #ifdef INVARIANTS 9995 if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0) 9996 panic("softdep_write_inodeblock: lost dep1"); 9997 #endif /* INVARIANTS */ 9998 dp->di_db[i] = 0; 9999 } 10000 for (i = 0; i < NIADDR; i++) { 10001 #ifdef INVARIANTS 10002 if (dp->di_ib[i] != 0 && 10003 (deplist & ((1 << NDADDR) << i)) == 0) 10004 panic("softdep_write_inodeblock: lost dep2"); 10005 #endif /* INVARIANTS */ 10006 dp->di_ib[i] = 0; 10007 } 10008 return; 10009 } 10010 /* 10011 * If we have zero'ed out the last allocated block of the file, 10012 * roll back the size to the last currently allocated block. 10013 * We know that this last allocated block is a full-sized as 10014 * we already checked for fragments in the loop above. 10015 */ 10016 if (lastadp != NULL && 10017 dp->di_size <= (lastadp->ad_offset + 1) * fs->fs_bsize) { 10018 for (i = lastadp->ad_offset; i >= 0; i--) 10019 if (dp->di_db[i] != 0) 10020 break; 10021 dp->di_size = (i + 1) * fs->fs_bsize; 10022 } 10023 /* 10024 * The only dependencies are for indirect blocks. 10025 * 10026 * The file size for indirect block additions is not guaranteed. 10027 * Such a guarantee would be non-trivial to achieve. The conventional 10028 * synchronous write implementation also does not make this guarantee. 10029 * Fsck should catch and fix discrepancies. Arguably, the file size 10030 * can be over-estimated without destroying integrity when the file 10031 * moves into the indirect blocks (i.e., is large). If we want to 10032 * postpone fsck, we are stuck with this argument. 10033 */ 10034 for (; adp; adp = TAILQ_NEXT(adp, ad_next)) 10035 dp->di_ib[adp->ad_offset - NDADDR] = 0; 10036 } 10037 10038 /* 10039 * Version of initiate_write_inodeblock that handles UFS2 dinodes. 10040 * Note that any bug fixes made to this routine must be done in the 10041 * version found above. 10042 * 10043 * Called from within the procedure above to deal with unsatisfied 10044 * allocation dependencies in an inodeblock. The buffer must be 10045 * locked, thus, no I/O completion operations can occur while we 10046 * are manipulating its associated dependencies. 10047 */ 10048 static void 10049 initiate_write_inodeblock_ufs2(inodedep, bp) 10050 struct inodedep *inodedep; 10051 struct buf *bp; /* The inode block */ 10052 { 10053 struct allocdirect *adp, *lastadp; 10054 struct ufs2_dinode *dp; 10055 struct ufs2_dinode *sip; 10056 struct inoref *inoref; 10057 struct fs *fs; 10058 ufs_lbn_t i; 10059 #ifdef INVARIANTS 10060 ufs_lbn_t prevlbn = 0; 10061 #endif 10062 int deplist; 10063 10064 if (inodedep->id_state & IOSTARTED) 10065 panic("initiate_write_inodeblock_ufs2: already started"); 10066 inodedep->id_state |= IOSTARTED; 10067 fs = inodedep->id_fs; 10068 dp = (struct ufs2_dinode *)bp->b_data + 10069 ino_to_fsbo(fs, inodedep->id_ino); 10070 10071 /* 10072 * If we're on the unlinked list but have not yet written our 10073 * next pointer initialize it here. 10074 */ 10075 if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) { 10076 struct inodedep *inon; 10077 10078 inon = TAILQ_NEXT(inodedep, id_unlinked); 10079 dp->di_freelink = inon ? inon->id_ino : 0; 10080 } 10081 /* 10082 * If the bitmap is not yet written, then the allocated 10083 * inode cannot be written to disk. 10084 */ 10085 if ((inodedep->id_state & DEPCOMPLETE) == 0) { 10086 if (inodedep->id_savedino2 != NULL) 10087 panic("initiate_write_inodeblock_ufs2: I/O underway"); 10088 FREE_LOCK(&lk); 10089 sip = malloc(sizeof(struct ufs2_dinode), 10090 M_SAVEDINO, M_SOFTDEP_FLAGS); 10091 ACQUIRE_LOCK(&lk); 10092 inodedep->id_savedino2 = sip; 10093 *inodedep->id_savedino2 = *dp; 10094 bzero((caddr_t)dp, sizeof(struct ufs2_dinode)); 10095 dp->di_gen = inodedep->id_savedino2->di_gen; 10096 dp->di_freelink = inodedep->id_savedino2->di_freelink; 10097 return; 10098 } 10099 /* 10100 * If no dependencies, then there is nothing to roll back. 10101 */ 10102 inodedep->id_savedsize = dp->di_size; 10103 inodedep->id_savedextsize = dp->di_extsize; 10104 inodedep->id_savednlink = dp->di_nlink; 10105 if (TAILQ_EMPTY(&inodedep->id_inoupdt) && 10106 TAILQ_EMPTY(&inodedep->id_extupdt) && 10107 TAILQ_EMPTY(&inodedep->id_inoreflst)) 10108 return; 10109 /* 10110 * Revert the link count to that of the first unwritten journal entry. 10111 */ 10112 inoref = TAILQ_FIRST(&inodedep->id_inoreflst); 10113 if (inoref) 10114 dp->di_nlink = inoref->if_nlink; 10115 10116 /* 10117 * Set the ext data dependencies to busy. 10118 */ 10119 for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; 10120 adp = TAILQ_NEXT(adp, ad_next)) { 10121 #ifdef INVARIANTS 10122 if (deplist != 0 && prevlbn >= adp->ad_offset) 10123 panic("softdep_write_inodeblock: lbn order"); 10124 prevlbn = adp->ad_offset; 10125 if (dp->di_extb[adp->ad_offset] != adp->ad_newblkno) 10126 panic("%s: direct pointer #%jd mismatch %jd != %jd", 10127 "softdep_write_inodeblock", 10128 (intmax_t)adp->ad_offset, 10129 (intmax_t)dp->di_extb[adp->ad_offset], 10130 (intmax_t)adp->ad_newblkno); 10131 deplist |= 1 << adp->ad_offset; 10132 if ((adp->ad_state & ATTACHED) == 0) 10133 panic("softdep_write_inodeblock: Unknown state 0x%x", 10134 adp->ad_state); 10135 #endif /* INVARIANTS */ 10136 adp->ad_state &= ~ATTACHED; 10137 adp->ad_state |= UNDONE; 10138 } 10139 /* 10140 * The on-disk inode cannot claim to be any larger than the last 10141 * fragment that has been written. Otherwise, the on-disk inode 10142 * might have fragments that were not the last block in the ext 10143 * data which would corrupt the filesystem. 10144 */ 10145 for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; 10146 lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) { 10147 dp->di_extb[adp->ad_offset] = adp->ad_oldblkno; 10148 /* keep going until hitting a rollback to a frag */ 10149 if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize) 10150 continue; 10151 dp->di_extsize = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize; 10152 for (i = adp->ad_offset + 1; i < NXADDR; i++) { 10153 #ifdef INVARIANTS 10154 if (dp->di_extb[i] != 0 && (deplist & (1 << i)) == 0) 10155 panic("softdep_write_inodeblock: lost dep1"); 10156 #endif /* INVARIANTS */ 10157 dp->di_extb[i] = 0; 10158 } 10159 lastadp = NULL; 10160 break; 10161 } 10162 /* 10163 * If we have zero'ed out the last allocated block of the ext 10164 * data, roll back the size to the last currently allocated block. 10165 * We know that this last allocated block is a full-sized as 10166 * we already checked for fragments in the loop above. 10167 */ 10168 if (lastadp != NULL && 10169 dp->di_extsize <= (lastadp->ad_offset + 1) * fs->fs_bsize) { 10170 for (i = lastadp->ad_offset; i >= 0; i--) 10171 if (dp->di_extb[i] != 0) 10172 break; 10173 dp->di_extsize = (i + 1) * fs->fs_bsize; 10174 } 10175 /* 10176 * Set the file data dependencies to busy. 10177 */ 10178 for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 10179 adp = TAILQ_NEXT(adp, ad_next)) { 10180 #ifdef INVARIANTS 10181 if (deplist != 0 && prevlbn >= adp->ad_offset) 10182 panic("softdep_write_inodeblock: lbn order"); 10183 if ((adp->ad_state & ATTACHED) == 0) 10184 panic("inodedep %p and adp %p not attached", inodedep, adp); 10185 prevlbn = adp->ad_offset; 10186 if (adp->ad_offset < NDADDR && 10187 dp->di_db[adp->ad_offset] != adp->ad_newblkno) 10188 panic("%s: direct pointer #%jd mismatch %jd != %jd", 10189 "softdep_write_inodeblock", 10190 (intmax_t)adp->ad_offset, 10191 (intmax_t)dp->di_db[adp->ad_offset], 10192 (intmax_t)adp->ad_newblkno); 10193 if (adp->ad_offset >= NDADDR && 10194 dp->di_ib[adp->ad_offset - NDADDR] != adp->ad_newblkno) 10195 panic("%s indirect pointer #%jd mismatch %jd != %jd", 10196 "softdep_write_inodeblock:", 10197 (intmax_t)adp->ad_offset - NDADDR, 10198 (intmax_t)dp->di_ib[adp->ad_offset - NDADDR], 10199 (intmax_t)adp->ad_newblkno); 10200 deplist |= 1 << adp->ad_offset; 10201 if ((adp->ad_state & ATTACHED) == 0) 10202 panic("softdep_write_inodeblock: Unknown state 0x%x", 10203 adp->ad_state); 10204 #endif /* INVARIANTS */ 10205 adp->ad_state &= ~ATTACHED; 10206 adp->ad_state |= UNDONE; 10207 } 10208 /* 10209 * The on-disk inode cannot claim to be any larger than the last 10210 * fragment that has been written. Otherwise, the on-disk inode 10211 * might have fragments that were not the last block in the file 10212 * which would corrupt the filesystem. 10213 */ 10214 for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 10215 lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) { 10216 if (adp->ad_offset >= NDADDR) 10217 break; 10218 dp->di_db[adp->ad_offset] = adp->ad_oldblkno; 10219 /* keep going until hitting a rollback to a frag */ 10220 if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize) 10221 continue; 10222 dp->di_size = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize; 10223 for (i = adp->ad_offset + 1; i < NDADDR; i++) { 10224 #ifdef INVARIANTS 10225 if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0) 10226 panic("softdep_write_inodeblock: lost dep2"); 10227 #endif /* INVARIANTS */ 10228 dp->di_db[i] = 0; 10229 } 10230 for (i = 0; i < NIADDR; i++) { 10231 #ifdef INVARIANTS 10232 if (dp->di_ib[i] != 0 && 10233 (deplist & ((1 << NDADDR) << i)) == 0) 10234 panic("softdep_write_inodeblock: lost dep3"); 10235 #endif /* INVARIANTS */ 10236 dp->di_ib[i] = 0; 10237 } 10238 return; 10239 } 10240 /* 10241 * If we have zero'ed out the last allocated block of the file, 10242 * roll back the size to the last currently allocated block. 10243 * We know that this last allocated block is a full-sized as 10244 * we already checked for fragments in the loop above. 10245 */ 10246 if (lastadp != NULL && 10247 dp->di_size <= (lastadp->ad_offset + 1) * fs->fs_bsize) { 10248 for (i = lastadp->ad_offset; i >= 0; i--) 10249 if (dp->di_db[i] != 0) 10250 break; 10251 dp->di_size = (i + 1) * fs->fs_bsize; 10252 } 10253 /* 10254 * The only dependencies are for indirect blocks. 10255 * 10256 * The file size for indirect block additions is not guaranteed. 10257 * Such a guarantee would be non-trivial to achieve. The conventional 10258 * synchronous write implementation also does not make this guarantee. 10259 * Fsck should catch and fix discrepancies. Arguably, the file size 10260 * can be over-estimated without destroying integrity when the file 10261 * moves into the indirect blocks (i.e., is large). If we want to 10262 * postpone fsck, we are stuck with this argument. 10263 */ 10264 for (; adp; adp = TAILQ_NEXT(adp, ad_next)) 10265 dp->di_ib[adp->ad_offset - NDADDR] = 0; 10266 } 10267 10268 /* 10269 * Cancel an indirdep as a result of truncation. Release all of the 10270 * children allocindirs and place their journal work on the appropriate 10271 * list. 10272 */ 10273 static void 10274 cancel_indirdep(indirdep, bp, freeblks) 10275 struct indirdep *indirdep; 10276 struct buf *bp; 10277 struct freeblks *freeblks; 10278 { 10279 struct allocindir *aip; 10280 10281 /* 10282 * None of the indirect pointers will ever be visible, 10283 * so they can simply be tossed. GOINGAWAY ensures 10284 * that allocated pointers will be saved in the buffer 10285 * cache until they are freed. Note that they will 10286 * only be able to be found by their physical address 10287 * since the inode mapping the logical address will 10288 * be gone. The save buffer used for the safe copy 10289 * was allocated in setup_allocindir_phase2 using 10290 * the physical address so it could be used for this 10291 * purpose. Hence we swap the safe copy with the real 10292 * copy, allowing the safe copy to be freed and holding 10293 * on to the real copy for later use in indir_trunc. 10294 */ 10295 if (indirdep->ir_state & GOINGAWAY) 10296 panic("cancel_indirdep: already gone"); 10297 if ((indirdep->ir_state & DEPCOMPLETE) == 0) { 10298 indirdep->ir_state |= DEPCOMPLETE; 10299 LIST_REMOVE(indirdep, ir_next); 10300 } 10301 indirdep->ir_state |= GOINGAWAY; 10302 VFSTOUFS(indirdep->ir_list.wk_mp)->um_numindirdeps += 1; 10303 /* 10304 * Pass in bp for blocks still have journal writes 10305 * pending so we can cancel them on their own. 10306 */ 10307 while ((aip = LIST_FIRST(&indirdep->ir_deplisthd)) != 0) 10308 cancel_allocindir(aip, bp, freeblks, 0); 10309 while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != 0) 10310 cancel_allocindir(aip, NULL, freeblks, 0); 10311 while ((aip = LIST_FIRST(&indirdep->ir_writehd)) != 0) 10312 cancel_allocindir(aip, NULL, freeblks, 0); 10313 while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != 0) 10314 cancel_allocindir(aip, NULL, freeblks, 0); 10315 /* 10316 * If there are pending partial truncations we need to keep the 10317 * old block copy around until they complete. This is because 10318 * the current b_data is not a perfect superset of the available 10319 * blocks. 10320 */ 10321 if (TAILQ_EMPTY(&indirdep->ir_trunc)) 10322 bcopy(bp->b_data, indirdep->ir_savebp->b_data, bp->b_bcount); 10323 else 10324 bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount); 10325 WORKLIST_REMOVE(&indirdep->ir_list); 10326 WORKLIST_INSERT(&indirdep->ir_savebp->b_dep, &indirdep->ir_list); 10327 indirdep->ir_bp = NULL; 10328 indirdep->ir_freeblks = freeblks; 10329 } 10330 10331 /* 10332 * Free an indirdep once it no longer has new pointers to track. 10333 */ 10334 static void 10335 free_indirdep(indirdep) 10336 struct indirdep *indirdep; 10337 { 10338 10339 KASSERT(TAILQ_EMPTY(&indirdep->ir_trunc), 10340 ("free_indirdep: Indir trunc list not empty.")); 10341 KASSERT(LIST_EMPTY(&indirdep->ir_completehd), 10342 ("free_indirdep: Complete head not empty.")); 10343 KASSERT(LIST_EMPTY(&indirdep->ir_writehd), 10344 ("free_indirdep: write head not empty.")); 10345 KASSERT(LIST_EMPTY(&indirdep->ir_donehd), 10346 ("free_indirdep: done head not empty.")); 10347 KASSERT(LIST_EMPTY(&indirdep->ir_deplisthd), 10348 ("free_indirdep: deplist head not empty.")); 10349 KASSERT((indirdep->ir_state & DEPCOMPLETE), 10350 ("free_indirdep: %p still on newblk list.", indirdep)); 10351 KASSERT(indirdep->ir_saveddata == NULL, 10352 ("free_indirdep: %p still has saved data.", indirdep)); 10353 if (indirdep->ir_state & ONWORKLIST) 10354 WORKLIST_REMOVE(&indirdep->ir_list); 10355 WORKITEM_FREE(indirdep, D_INDIRDEP); 10356 } 10357 10358 /* 10359 * Called before a write to an indirdep. This routine is responsible for 10360 * rolling back pointers to a safe state which includes only those 10361 * allocindirs which have been completed. 10362 */ 10363 static void 10364 initiate_write_indirdep(indirdep, bp) 10365 struct indirdep *indirdep; 10366 struct buf *bp; 10367 { 10368 10369 indirdep->ir_state |= IOSTARTED; 10370 if (indirdep->ir_state & GOINGAWAY) 10371 panic("disk_io_initiation: indirdep gone"); 10372 /* 10373 * If there are no remaining dependencies, this will be writing 10374 * the real pointers. 10375 */ 10376 if (LIST_EMPTY(&indirdep->ir_deplisthd) && 10377 TAILQ_EMPTY(&indirdep->ir_trunc)) 10378 return; 10379 /* 10380 * Replace up-to-date version with safe version. 10381 */ 10382 if (indirdep->ir_saveddata == NULL) { 10383 FREE_LOCK(&lk); 10384 indirdep->ir_saveddata = malloc(bp->b_bcount, M_INDIRDEP, 10385 M_SOFTDEP_FLAGS); 10386 ACQUIRE_LOCK(&lk); 10387 } 10388 indirdep->ir_state &= ~ATTACHED; 10389 indirdep->ir_state |= UNDONE; 10390 bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount); 10391 bcopy(indirdep->ir_savebp->b_data, bp->b_data, 10392 bp->b_bcount); 10393 } 10394 10395 /* 10396 * Called when an inode has been cleared in a cg bitmap. This finally 10397 * eliminates any canceled jaddrefs 10398 */ 10399 void 10400 softdep_setup_inofree(mp, bp, ino, wkhd) 10401 struct mount *mp; 10402 struct buf *bp; 10403 ino_t ino; 10404 struct workhead *wkhd; 10405 { 10406 struct worklist *wk, *wkn; 10407 struct inodedep *inodedep; 10408 uint8_t *inosused; 10409 struct cg *cgp; 10410 struct fs *fs; 10411 10412 ACQUIRE_LOCK(&lk); 10413 fs = VFSTOUFS(mp)->um_fs; 10414 cgp = (struct cg *)bp->b_data; 10415 inosused = cg_inosused(cgp); 10416 if (isset(inosused, ino % fs->fs_ipg)) 10417 panic("softdep_setup_inofree: inode %ju not freed.", 10418 (uintmax_t)ino); 10419 if (inodedep_lookup(mp, ino, 0, &inodedep)) 10420 panic("softdep_setup_inofree: ino %ju has existing inodedep %p", 10421 (uintmax_t)ino, inodedep); 10422 if (wkhd) { 10423 LIST_FOREACH_SAFE(wk, wkhd, wk_list, wkn) { 10424 if (wk->wk_type != D_JADDREF) 10425 continue; 10426 WORKLIST_REMOVE(wk); 10427 /* 10428 * We can free immediately even if the jaddref 10429 * isn't attached in a background write as now 10430 * the bitmaps are reconciled. 10431 */ 10432 wk->wk_state |= COMPLETE | ATTACHED; 10433 free_jaddref(WK_JADDREF(wk)); 10434 } 10435 jwork_move(&bp->b_dep, wkhd); 10436 } 10437 FREE_LOCK(&lk); 10438 } 10439 10440 10441 /* 10442 * Called via ffs_blkfree() after a set of frags has been cleared from a cg 10443 * map. Any dependencies waiting for the write to clear are added to the 10444 * buf's list and any jnewblks that are being canceled are discarded 10445 * immediately. 10446 */ 10447 void 10448 softdep_setup_blkfree(mp, bp, blkno, frags, wkhd) 10449 struct mount *mp; 10450 struct buf *bp; 10451 ufs2_daddr_t blkno; 10452 int frags; 10453 struct workhead *wkhd; 10454 { 10455 struct bmsafemap *bmsafemap; 10456 struct jnewblk *jnewblk; 10457 struct worklist *wk; 10458 struct fs *fs; 10459 #ifdef SUJ_DEBUG 10460 uint8_t *blksfree; 10461 struct cg *cgp; 10462 ufs2_daddr_t jstart; 10463 ufs2_daddr_t jend; 10464 ufs2_daddr_t end; 10465 long bno; 10466 int i; 10467 #endif 10468 10469 CTR3(KTR_SUJ, 10470 "softdep_setup_blkfree: blkno %jd frags %d wk head %p", 10471 blkno, frags, wkhd); 10472 10473 ACQUIRE_LOCK(&lk); 10474 /* Lookup the bmsafemap so we track when it is dirty. */ 10475 fs = VFSTOUFS(mp)->um_fs; 10476 bmsafemap = bmsafemap_lookup(mp, bp, dtog(fs, blkno), NULL); 10477 /* 10478 * Detach any jnewblks which have been canceled. They must linger 10479 * until the bitmap is cleared again by ffs_blkfree() to prevent 10480 * an unjournaled allocation from hitting the disk. 10481 */ 10482 if (wkhd) { 10483 while ((wk = LIST_FIRST(wkhd)) != NULL) { 10484 CTR2(KTR_SUJ, 10485 "softdep_setup_blkfree: blkno %jd wk type %d", 10486 blkno, wk->wk_type); 10487 WORKLIST_REMOVE(wk); 10488 if (wk->wk_type != D_JNEWBLK) { 10489 WORKLIST_INSERT(&bmsafemap->sm_freehd, wk); 10490 continue; 10491 } 10492 jnewblk = WK_JNEWBLK(wk); 10493 KASSERT(jnewblk->jn_state & GOINGAWAY, 10494 ("softdep_setup_blkfree: jnewblk not canceled.")); 10495 #ifdef SUJ_DEBUG 10496 /* 10497 * Assert that this block is free in the bitmap 10498 * before we discard the jnewblk. 10499 */ 10500 cgp = (struct cg *)bp->b_data; 10501 blksfree = cg_blksfree(cgp); 10502 bno = dtogd(fs, jnewblk->jn_blkno); 10503 for (i = jnewblk->jn_oldfrags; 10504 i < jnewblk->jn_frags; i++) { 10505 if (isset(blksfree, bno + i)) 10506 continue; 10507 panic("softdep_setup_blkfree: not free"); 10508 } 10509 #endif 10510 /* 10511 * Even if it's not attached we can free immediately 10512 * as the new bitmap is correct. 10513 */ 10514 wk->wk_state |= COMPLETE | ATTACHED; 10515 free_jnewblk(jnewblk); 10516 } 10517 } 10518 10519 #ifdef SUJ_DEBUG 10520 /* 10521 * Assert that we are not freeing a block which has an outstanding 10522 * allocation dependency. 10523 */ 10524 fs = VFSTOUFS(mp)->um_fs; 10525 bmsafemap = bmsafemap_lookup(mp, bp, dtog(fs, blkno), NULL); 10526 end = blkno + frags; 10527 LIST_FOREACH(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps) { 10528 /* 10529 * Don't match against blocks that will be freed when the 10530 * background write is done. 10531 */ 10532 if ((jnewblk->jn_state & (ATTACHED | COMPLETE | DEPCOMPLETE)) == 10533 (COMPLETE | DEPCOMPLETE)) 10534 continue; 10535 jstart = jnewblk->jn_blkno + jnewblk->jn_oldfrags; 10536 jend = jnewblk->jn_blkno + jnewblk->jn_frags; 10537 if ((blkno >= jstart && blkno < jend) || 10538 (end > jstart && end <= jend)) { 10539 printf("state 0x%X %jd - %d %d dep %p\n", 10540 jnewblk->jn_state, jnewblk->jn_blkno, 10541 jnewblk->jn_oldfrags, jnewblk->jn_frags, 10542 jnewblk->jn_dep); 10543 panic("softdep_setup_blkfree: " 10544 "%jd-%jd(%d) overlaps with %jd-%jd", 10545 blkno, end, frags, jstart, jend); 10546 } 10547 } 10548 #endif 10549 FREE_LOCK(&lk); 10550 } 10551 10552 /* 10553 * Revert a block allocation when the journal record that describes it 10554 * is not yet written. 10555 */ 10556 int 10557 jnewblk_rollback(jnewblk, fs, cgp, blksfree) 10558 struct jnewblk *jnewblk; 10559 struct fs *fs; 10560 struct cg *cgp; 10561 uint8_t *blksfree; 10562 { 10563 ufs1_daddr_t fragno; 10564 long cgbno, bbase; 10565 int frags, blk; 10566 int i; 10567 10568 frags = 0; 10569 cgbno = dtogd(fs, jnewblk->jn_blkno); 10570 /* 10571 * We have to test which frags need to be rolled back. We may 10572 * be operating on a stale copy when doing background writes. 10573 */ 10574 for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; i++) 10575 if (isclr(blksfree, cgbno + i)) 10576 frags++; 10577 if (frags == 0) 10578 return (0); 10579 /* 10580 * This is mostly ffs_blkfree() sans some validation and 10581 * superblock updates. 10582 */ 10583 if (frags == fs->fs_frag) { 10584 fragno = fragstoblks(fs, cgbno); 10585 ffs_setblock(fs, blksfree, fragno); 10586 ffs_clusteracct(fs, cgp, fragno, 1); 10587 cgp->cg_cs.cs_nbfree++; 10588 } else { 10589 cgbno += jnewblk->jn_oldfrags; 10590 bbase = cgbno - fragnum(fs, cgbno); 10591 /* Decrement the old frags. */ 10592 blk = blkmap(fs, blksfree, bbase); 10593 ffs_fragacct(fs, blk, cgp->cg_frsum, -1); 10594 /* Deallocate the fragment */ 10595 for (i = 0; i < frags; i++) 10596 setbit(blksfree, cgbno + i); 10597 cgp->cg_cs.cs_nffree += frags; 10598 /* Add back in counts associated with the new frags */ 10599 blk = blkmap(fs, blksfree, bbase); 10600 ffs_fragacct(fs, blk, cgp->cg_frsum, 1); 10601 /* If a complete block has been reassembled, account for it. */ 10602 fragno = fragstoblks(fs, bbase); 10603 if (ffs_isblock(fs, blksfree, fragno)) { 10604 cgp->cg_cs.cs_nffree -= fs->fs_frag; 10605 ffs_clusteracct(fs, cgp, fragno, 1); 10606 cgp->cg_cs.cs_nbfree++; 10607 } 10608 } 10609 stat_jnewblk++; 10610 jnewblk->jn_state &= ~ATTACHED; 10611 jnewblk->jn_state |= UNDONE; 10612 10613 return (frags); 10614 } 10615 10616 static void 10617 initiate_write_bmsafemap(bmsafemap, bp) 10618 struct bmsafemap *bmsafemap; 10619 struct buf *bp; /* The cg block. */ 10620 { 10621 struct jaddref *jaddref; 10622 struct jnewblk *jnewblk; 10623 uint8_t *inosused; 10624 uint8_t *blksfree; 10625 struct cg *cgp; 10626 struct fs *fs; 10627 ino_t ino; 10628 10629 if (bmsafemap->sm_state & IOSTARTED) 10630 return; 10631 bmsafemap->sm_state |= IOSTARTED; 10632 /* 10633 * Clear any inode allocations which are pending journal writes. 10634 */ 10635 if (LIST_FIRST(&bmsafemap->sm_jaddrefhd) != NULL) { 10636 cgp = (struct cg *)bp->b_data; 10637 fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs; 10638 inosused = cg_inosused(cgp); 10639 LIST_FOREACH(jaddref, &bmsafemap->sm_jaddrefhd, ja_bmdeps) { 10640 ino = jaddref->ja_ino % fs->fs_ipg; 10641 if (isset(inosused, ino)) { 10642 if ((jaddref->ja_mode & IFMT) == IFDIR) 10643 cgp->cg_cs.cs_ndir--; 10644 cgp->cg_cs.cs_nifree++; 10645 clrbit(inosused, ino); 10646 jaddref->ja_state &= ~ATTACHED; 10647 jaddref->ja_state |= UNDONE; 10648 stat_jaddref++; 10649 } else 10650 panic("initiate_write_bmsafemap: inode %ju " 10651 "marked free", (uintmax_t)jaddref->ja_ino); 10652 } 10653 } 10654 /* 10655 * Clear any block allocations which are pending journal writes. 10656 */ 10657 if (LIST_FIRST(&bmsafemap->sm_jnewblkhd) != NULL) { 10658 cgp = (struct cg *)bp->b_data; 10659 fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs; 10660 blksfree = cg_blksfree(cgp); 10661 LIST_FOREACH(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps) { 10662 if (jnewblk_rollback(jnewblk, fs, cgp, blksfree)) 10663 continue; 10664 panic("initiate_write_bmsafemap: block %jd " 10665 "marked free", jnewblk->jn_blkno); 10666 } 10667 } 10668 /* 10669 * Move allocation lists to the written lists so they can be 10670 * cleared once the block write is complete. 10671 */ 10672 LIST_SWAP(&bmsafemap->sm_inodedephd, &bmsafemap->sm_inodedepwr, 10673 inodedep, id_deps); 10674 LIST_SWAP(&bmsafemap->sm_newblkhd, &bmsafemap->sm_newblkwr, 10675 newblk, nb_deps); 10676 LIST_SWAP(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr, worklist, 10677 wk_list); 10678 } 10679 10680 /* 10681 * This routine is called during the completion interrupt 10682 * service routine for a disk write (from the procedure called 10683 * by the device driver to inform the filesystem caches of 10684 * a request completion). It should be called early in this 10685 * procedure, before the block is made available to other 10686 * processes or other routines are called. 10687 * 10688 */ 10689 static void 10690 softdep_disk_write_complete(bp) 10691 struct buf *bp; /* describes the completed disk write */ 10692 { 10693 struct worklist *wk; 10694 struct worklist *owk; 10695 struct workhead reattach; 10696 struct freeblks *freeblks; 10697 struct buf *sbp; 10698 10699 /* 10700 * If an error occurred while doing the write, then the data 10701 * has not hit the disk and the dependencies cannot be unrolled. 10702 */ 10703 if ((bp->b_ioflags & BIO_ERROR) != 0 && (bp->b_flags & B_INVAL) == 0) 10704 return; 10705 LIST_INIT(&reattach); 10706 /* 10707 * This lock must not be released anywhere in this code segment. 10708 */ 10709 sbp = NULL; 10710 owk = NULL; 10711 ACQUIRE_LOCK(&lk); 10712 while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) { 10713 WORKLIST_REMOVE(wk); 10714 dep_write[wk->wk_type]++; 10715 if (wk == owk) 10716 panic("duplicate worklist: %p\n", wk); 10717 owk = wk; 10718 switch (wk->wk_type) { 10719 10720 case D_PAGEDEP: 10721 if (handle_written_filepage(WK_PAGEDEP(wk), bp)) 10722 WORKLIST_INSERT(&reattach, wk); 10723 continue; 10724 10725 case D_INODEDEP: 10726 if (handle_written_inodeblock(WK_INODEDEP(wk), bp)) 10727 WORKLIST_INSERT(&reattach, wk); 10728 continue; 10729 10730 case D_BMSAFEMAP: 10731 if (handle_written_bmsafemap(WK_BMSAFEMAP(wk), bp)) 10732 WORKLIST_INSERT(&reattach, wk); 10733 continue; 10734 10735 case D_MKDIR: 10736 handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY); 10737 continue; 10738 10739 case D_ALLOCDIRECT: 10740 wk->wk_state |= COMPLETE; 10741 handle_allocdirect_partdone(WK_ALLOCDIRECT(wk), NULL); 10742 continue; 10743 10744 case D_ALLOCINDIR: 10745 wk->wk_state |= COMPLETE; 10746 handle_allocindir_partdone(WK_ALLOCINDIR(wk)); 10747 continue; 10748 10749 case D_INDIRDEP: 10750 if (handle_written_indirdep(WK_INDIRDEP(wk), bp, &sbp)) 10751 WORKLIST_INSERT(&reattach, wk); 10752 continue; 10753 10754 case D_FREEBLKS: 10755 wk->wk_state |= COMPLETE; 10756 freeblks = WK_FREEBLKS(wk); 10757 if ((wk->wk_state & ALLCOMPLETE) == ALLCOMPLETE && 10758 LIST_EMPTY(&freeblks->fb_jblkdephd)) 10759 add_to_worklist(wk, WK_NODELAY); 10760 continue; 10761 10762 case D_FREEWORK: 10763 handle_written_freework(WK_FREEWORK(wk)); 10764 break; 10765 10766 case D_JSEGDEP: 10767 free_jsegdep(WK_JSEGDEP(wk)); 10768 continue; 10769 10770 case D_JSEG: 10771 handle_written_jseg(WK_JSEG(wk), bp); 10772 continue; 10773 10774 case D_SBDEP: 10775 if (handle_written_sbdep(WK_SBDEP(wk), bp)) 10776 WORKLIST_INSERT(&reattach, wk); 10777 continue; 10778 10779 case D_FREEDEP: 10780 free_freedep(WK_FREEDEP(wk)); 10781 continue; 10782 10783 default: 10784 panic("handle_disk_write_complete: Unknown type %s", 10785 TYPENAME(wk->wk_type)); 10786 /* NOTREACHED */ 10787 } 10788 } 10789 /* 10790 * Reattach any requests that must be redone. 10791 */ 10792 while ((wk = LIST_FIRST(&reattach)) != NULL) { 10793 WORKLIST_REMOVE(wk); 10794 WORKLIST_INSERT(&bp->b_dep, wk); 10795 } 10796 FREE_LOCK(&lk); 10797 if (sbp) 10798 brelse(sbp); 10799 } 10800 10801 /* 10802 * Called from within softdep_disk_write_complete above. Note that 10803 * this routine is always called from interrupt level with further 10804 * splbio interrupts blocked. 10805 */ 10806 static void 10807 handle_allocdirect_partdone(adp, wkhd) 10808 struct allocdirect *adp; /* the completed allocdirect */ 10809 struct workhead *wkhd; /* Work to do when inode is writtne. */ 10810 { 10811 struct allocdirectlst *listhead; 10812 struct allocdirect *listadp; 10813 struct inodedep *inodedep; 10814 long bsize; 10815 10816 if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE) 10817 return; 10818 /* 10819 * The on-disk inode cannot claim to be any larger than the last 10820 * fragment that has been written. Otherwise, the on-disk inode 10821 * might have fragments that were not the last block in the file 10822 * which would corrupt the filesystem. Thus, we cannot free any 10823 * allocdirects after one whose ad_oldblkno claims a fragment as 10824 * these blocks must be rolled back to zero before writing the inode. 10825 * We check the currently active set of allocdirects in id_inoupdt 10826 * or id_extupdt as appropriate. 10827 */ 10828 inodedep = adp->ad_inodedep; 10829 bsize = inodedep->id_fs->fs_bsize; 10830 if (adp->ad_state & EXTDATA) 10831 listhead = &inodedep->id_extupdt; 10832 else 10833 listhead = &inodedep->id_inoupdt; 10834 TAILQ_FOREACH(listadp, listhead, ad_next) { 10835 /* found our block */ 10836 if (listadp == adp) 10837 break; 10838 /* continue if ad_oldlbn is not a fragment */ 10839 if (listadp->ad_oldsize == 0 || 10840 listadp->ad_oldsize == bsize) 10841 continue; 10842 /* hit a fragment */ 10843 return; 10844 } 10845 /* 10846 * If we have reached the end of the current list without 10847 * finding the just finished dependency, then it must be 10848 * on the future dependency list. Future dependencies cannot 10849 * be freed until they are moved to the current list. 10850 */ 10851 if (listadp == NULL) { 10852 #ifdef DEBUG 10853 if (adp->ad_state & EXTDATA) 10854 listhead = &inodedep->id_newextupdt; 10855 else 10856 listhead = &inodedep->id_newinoupdt; 10857 TAILQ_FOREACH(listadp, listhead, ad_next) 10858 /* found our block */ 10859 if (listadp == adp) 10860 break; 10861 if (listadp == NULL) 10862 panic("handle_allocdirect_partdone: lost dep"); 10863 #endif /* DEBUG */ 10864 return; 10865 } 10866 /* 10867 * If we have found the just finished dependency, then queue 10868 * it along with anything that follows it that is complete. 10869 * Since the pointer has not yet been written in the inode 10870 * as the dependency prevents it, place the allocdirect on the 10871 * bufwait list where it will be freed once the pointer is 10872 * valid. 10873 */ 10874 if (wkhd == NULL) 10875 wkhd = &inodedep->id_bufwait; 10876 for (; adp; adp = listadp) { 10877 listadp = TAILQ_NEXT(adp, ad_next); 10878 if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE) 10879 return; 10880 TAILQ_REMOVE(listhead, adp, ad_next); 10881 WORKLIST_INSERT(wkhd, &adp->ad_block.nb_list); 10882 } 10883 } 10884 10885 /* 10886 * Called from within softdep_disk_write_complete above. This routine 10887 * completes successfully written allocindirs. 10888 */ 10889 static void 10890 handle_allocindir_partdone(aip) 10891 struct allocindir *aip; /* the completed allocindir */ 10892 { 10893 struct indirdep *indirdep; 10894 10895 if ((aip->ai_state & ALLCOMPLETE) != ALLCOMPLETE) 10896 return; 10897 indirdep = aip->ai_indirdep; 10898 LIST_REMOVE(aip, ai_next); 10899 /* 10900 * Don't set a pointer while the buffer is undergoing IO or while 10901 * we have active truncations. 10902 */ 10903 if (indirdep->ir_state & UNDONE || !TAILQ_EMPTY(&indirdep->ir_trunc)) { 10904 LIST_INSERT_HEAD(&indirdep->ir_donehd, aip, ai_next); 10905 return; 10906 } 10907 if (indirdep->ir_state & UFS1FMT) 10908 ((ufs1_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] = 10909 aip->ai_newblkno; 10910 else 10911 ((ufs2_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] = 10912 aip->ai_newblkno; 10913 /* 10914 * Await the pointer write before freeing the allocindir. 10915 */ 10916 LIST_INSERT_HEAD(&indirdep->ir_writehd, aip, ai_next); 10917 } 10918 10919 /* 10920 * Release segments held on a jwork list. 10921 */ 10922 static void 10923 handle_jwork(wkhd) 10924 struct workhead *wkhd; 10925 { 10926 struct worklist *wk; 10927 10928 while ((wk = LIST_FIRST(wkhd)) != NULL) { 10929 WORKLIST_REMOVE(wk); 10930 switch (wk->wk_type) { 10931 case D_JSEGDEP: 10932 free_jsegdep(WK_JSEGDEP(wk)); 10933 continue; 10934 case D_FREEDEP: 10935 free_freedep(WK_FREEDEP(wk)); 10936 continue; 10937 case D_FREEFRAG: 10938 rele_jseg(WK_JSEG(WK_FREEFRAG(wk)->ff_jdep)); 10939 WORKITEM_FREE(wk, D_FREEFRAG); 10940 continue; 10941 case D_FREEWORK: 10942 handle_written_freework(WK_FREEWORK(wk)); 10943 continue; 10944 default: 10945 panic("handle_jwork: Unknown type %s\n", 10946 TYPENAME(wk->wk_type)); 10947 } 10948 } 10949 } 10950 10951 /* 10952 * Handle the bufwait list on an inode when it is safe to release items 10953 * held there. This normally happens after an inode block is written but 10954 * may be delayed and handled later if there are pending journal items that 10955 * are not yet safe to be released. 10956 */ 10957 static struct freefile * 10958 handle_bufwait(inodedep, refhd) 10959 struct inodedep *inodedep; 10960 struct workhead *refhd; 10961 { 10962 struct jaddref *jaddref; 10963 struct freefile *freefile; 10964 struct worklist *wk; 10965 10966 freefile = NULL; 10967 while ((wk = LIST_FIRST(&inodedep->id_bufwait)) != NULL) { 10968 WORKLIST_REMOVE(wk); 10969 switch (wk->wk_type) { 10970 case D_FREEFILE: 10971 /* 10972 * We defer adding freefile to the worklist 10973 * until all other additions have been made to 10974 * ensure that it will be done after all the 10975 * old blocks have been freed. 10976 */ 10977 if (freefile != NULL) 10978 panic("handle_bufwait: freefile"); 10979 freefile = WK_FREEFILE(wk); 10980 continue; 10981 10982 case D_MKDIR: 10983 handle_written_mkdir(WK_MKDIR(wk), MKDIR_PARENT); 10984 continue; 10985 10986 case D_DIRADD: 10987 diradd_inode_written(WK_DIRADD(wk), inodedep); 10988 continue; 10989 10990 case D_FREEFRAG: 10991 wk->wk_state |= COMPLETE; 10992 if ((wk->wk_state & ALLCOMPLETE) == ALLCOMPLETE) 10993 add_to_worklist(wk, 0); 10994 continue; 10995 10996 case D_DIRREM: 10997 wk->wk_state |= COMPLETE; 10998 add_to_worklist(wk, 0); 10999 continue; 11000 11001 case D_ALLOCDIRECT: 11002 case D_ALLOCINDIR: 11003 free_newblk(WK_NEWBLK(wk)); 11004 continue; 11005 11006 case D_JNEWBLK: 11007 wk->wk_state |= COMPLETE; 11008 free_jnewblk(WK_JNEWBLK(wk)); 11009 continue; 11010 11011 /* 11012 * Save freed journal segments and add references on 11013 * the supplied list which will delay their release 11014 * until the cg bitmap is cleared on disk. 11015 */ 11016 case D_JSEGDEP: 11017 if (refhd == NULL) 11018 free_jsegdep(WK_JSEGDEP(wk)); 11019 else 11020 WORKLIST_INSERT(refhd, wk); 11021 continue; 11022 11023 case D_JADDREF: 11024 jaddref = WK_JADDREF(wk); 11025 TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref, 11026 if_deps); 11027 /* 11028 * Transfer any jaddrefs to the list to be freed with 11029 * the bitmap if we're handling a removed file. 11030 */ 11031 if (refhd == NULL) { 11032 wk->wk_state |= COMPLETE; 11033 free_jaddref(jaddref); 11034 } else 11035 WORKLIST_INSERT(refhd, wk); 11036 continue; 11037 11038 default: 11039 panic("handle_bufwait: Unknown type %p(%s)", 11040 wk, TYPENAME(wk->wk_type)); 11041 /* NOTREACHED */ 11042 } 11043 } 11044 return (freefile); 11045 } 11046 /* 11047 * Called from within softdep_disk_write_complete above to restore 11048 * in-memory inode block contents to their most up-to-date state. Note 11049 * that this routine is always called from interrupt level with further 11050 * splbio interrupts blocked. 11051 */ 11052 static int 11053 handle_written_inodeblock(inodedep, bp) 11054 struct inodedep *inodedep; 11055 struct buf *bp; /* buffer containing the inode block */ 11056 { 11057 struct freefile *freefile; 11058 struct allocdirect *adp, *nextadp; 11059 struct ufs1_dinode *dp1 = NULL; 11060 struct ufs2_dinode *dp2 = NULL; 11061 struct workhead wkhd; 11062 int hadchanges, fstype; 11063 ino_t freelink; 11064 11065 LIST_INIT(&wkhd); 11066 hadchanges = 0; 11067 freefile = NULL; 11068 if ((inodedep->id_state & IOSTARTED) == 0) 11069 panic("handle_written_inodeblock: not started"); 11070 inodedep->id_state &= ~IOSTARTED; 11071 if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC) { 11072 fstype = UFS1; 11073 dp1 = (struct ufs1_dinode *)bp->b_data + 11074 ino_to_fsbo(inodedep->id_fs, inodedep->id_ino); 11075 freelink = dp1->di_freelink; 11076 } else { 11077 fstype = UFS2; 11078 dp2 = (struct ufs2_dinode *)bp->b_data + 11079 ino_to_fsbo(inodedep->id_fs, inodedep->id_ino); 11080 freelink = dp2->di_freelink; 11081 } 11082 /* 11083 * Leave this inodeblock dirty until it's in the list. 11084 */ 11085 if ((inodedep->id_state & (UNLINKED | UNLINKONLIST)) == UNLINKED) { 11086 struct inodedep *inon; 11087 11088 inon = TAILQ_NEXT(inodedep, id_unlinked); 11089 if ((inon == NULL && freelink == 0) || 11090 (inon && inon->id_ino == freelink)) { 11091 if (inon) 11092 inon->id_state |= UNLINKPREV; 11093 inodedep->id_state |= UNLINKNEXT; 11094 } 11095 hadchanges = 1; 11096 } 11097 /* 11098 * If we had to rollback the inode allocation because of 11099 * bitmaps being incomplete, then simply restore it. 11100 * Keep the block dirty so that it will not be reclaimed until 11101 * all associated dependencies have been cleared and the 11102 * corresponding updates written to disk. 11103 */ 11104 if (inodedep->id_savedino1 != NULL) { 11105 hadchanges = 1; 11106 if (fstype == UFS1) 11107 *dp1 = *inodedep->id_savedino1; 11108 else 11109 *dp2 = *inodedep->id_savedino2; 11110 free(inodedep->id_savedino1, M_SAVEDINO); 11111 inodedep->id_savedino1 = NULL; 11112 if ((bp->b_flags & B_DELWRI) == 0) 11113 stat_inode_bitmap++; 11114 bdirty(bp); 11115 /* 11116 * If the inode is clear here and GOINGAWAY it will never 11117 * be written. Process the bufwait and clear any pending 11118 * work which may include the freefile. 11119 */ 11120 if (inodedep->id_state & GOINGAWAY) 11121 goto bufwait; 11122 return (1); 11123 } 11124 inodedep->id_state |= COMPLETE; 11125 /* 11126 * Roll forward anything that had to be rolled back before 11127 * the inode could be updated. 11128 */ 11129 for (adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; adp = nextadp) { 11130 nextadp = TAILQ_NEXT(adp, ad_next); 11131 if (adp->ad_state & ATTACHED) 11132 panic("handle_written_inodeblock: new entry"); 11133 if (fstype == UFS1) { 11134 if (adp->ad_offset < NDADDR) { 11135 if (dp1->di_db[adp->ad_offset]!=adp->ad_oldblkno) 11136 panic("%s %s #%jd mismatch %d != %jd", 11137 "handle_written_inodeblock:", 11138 "direct pointer", 11139 (intmax_t)adp->ad_offset, 11140 dp1->di_db[adp->ad_offset], 11141 (intmax_t)adp->ad_oldblkno); 11142 dp1->di_db[adp->ad_offset] = adp->ad_newblkno; 11143 } else { 11144 if (dp1->di_ib[adp->ad_offset - NDADDR] != 0) 11145 panic("%s: %s #%jd allocated as %d", 11146 "handle_written_inodeblock", 11147 "indirect pointer", 11148 (intmax_t)adp->ad_offset - NDADDR, 11149 dp1->di_ib[adp->ad_offset - NDADDR]); 11150 dp1->di_ib[adp->ad_offset - NDADDR] = 11151 adp->ad_newblkno; 11152 } 11153 } else { 11154 if (adp->ad_offset < NDADDR) { 11155 if (dp2->di_db[adp->ad_offset]!=adp->ad_oldblkno) 11156 panic("%s: %s #%jd %s %jd != %jd", 11157 "handle_written_inodeblock", 11158 "direct pointer", 11159 (intmax_t)adp->ad_offset, "mismatch", 11160 (intmax_t)dp2->di_db[adp->ad_offset], 11161 (intmax_t)adp->ad_oldblkno); 11162 dp2->di_db[adp->ad_offset] = adp->ad_newblkno; 11163 } else { 11164 if (dp2->di_ib[adp->ad_offset - NDADDR] != 0) 11165 panic("%s: %s #%jd allocated as %jd", 11166 "handle_written_inodeblock", 11167 "indirect pointer", 11168 (intmax_t)adp->ad_offset - NDADDR, 11169 (intmax_t) 11170 dp2->di_ib[adp->ad_offset - NDADDR]); 11171 dp2->di_ib[adp->ad_offset - NDADDR] = 11172 adp->ad_newblkno; 11173 } 11174 } 11175 adp->ad_state &= ~UNDONE; 11176 adp->ad_state |= ATTACHED; 11177 hadchanges = 1; 11178 } 11179 for (adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; adp = nextadp) { 11180 nextadp = TAILQ_NEXT(adp, ad_next); 11181 if (adp->ad_state & ATTACHED) 11182 panic("handle_written_inodeblock: new entry"); 11183 if (dp2->di_extb[adp->ad_offset] != adp->ad_oldblkno) 11184 panic("%s: direct pointers #%jd %s %jd != %jd", 11185 "handle_written_inodeblock", 11186 (intmax_t)adp->ad_offset, "mismatch", 11187 (intmax_t)dp2->di_extb[adp->ad_offset], 11188 (intmax_t)adp->ad_oldblkno); 11189 dp2->di_extb[adp->ad_offset] = adp->ad_newblkno; 11190 adp->ad_state &= ~UNDONE; 11191 adp->ad_state |= ATTACHED; 11192 hadchanges = 1; 11193 } 11194 if (hadchanges && (bp->b_flags & B_DELWRI) == 0) 11195 stat_direct_blk_ptrs++; 11196 /* 11197 * Reset the file size to its most up-to-date value. 11198 */ 11199 if (inodedep->id_savedsize == -1 || inodedep->id_savedextsize == -1) 11200 panic("handle_written_inodeblock: bad size"); 11201 if (inodedep->id_savednlink > LINK_MAX) 11202 panic("handle_written_inodeblock: Invalid link count " 11203 "%d for inodedep %p", inodedep->id_savednlink, inodedep); 11204 if (fstype == UFS1) { 11205 if (dp1->di_nlink != inodedep->id_savednlink) { 11206 dp1->di_nlink = inodedep->id_savednlink; 11207 hadchanges = 1; 11208 } 11209 if (dp1->di_size != inodedep->id_savedsize) { 11210 dp1->di_size = inodedep->id_savedsize; 11211 hadchanges = 1; 11212 } 11213 } else { 11214 if (dp2->di_nlink != inodedep->id_savednlink) { 11215 dp2->di_nlink = inodedep->id_savednlink; 11216 hadchanges = 1; 11217 } 11218 if (dp2->di_size != inodedep->id_savedsize) { 11219 dp2->di_size = inodedep->id_savedsize; 11220 hadchanges = 1; 11221 } 11222 if (dp2->di_extsize != inodedep->id_savedextsize) { 11223 dp2->di_extsize = inodedep->id_savedextsize; 11224 hadchanges = 1; 11225 } 11226 } 11227 inodedep->id_savedsize = -1; 11228 inodedep->id_savedextsize = -1; 11229 inodedep->id_savednlink = -1; 11230 /* 11231 * If there were any rollbacks in the inode block, then it must be 11232 * marked dirty so that its will eventually get written back in 11233 * its correct form. 11234 */ 11235 if (hadchanges) 11236 bdirty(bp); 11237 bufwait: 11238 /* 11239 * Process any allocdirects that completed during the update. 11240 */ 11241 if ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL) 11242 handle_allocdirect_partdone(adp, &wkhd); 11243 if ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL) 11244 handle_allocdirect_partdone(adp, &wkhd); 11245 /* 11246 * Process deallocations that were held pending until the 11247 * inode had been written to disk. Freeing of the inode 11248 * is delayed until after all blocks have been freed to 11249 * avoid creation of new <vfsid, inum, lbn> triples 11250 * before the old ones have been deleted. Completely 11251 * unlinked inodes are not processed until the unlinked 11252 * inode list is written or the last reference is removed. 11253 */ 11254 if ((inodedep->id_state & (UNLINKED | UNLINKONLIST)) != UNLINKED) { 11255 freefile = handle_bufwait(inodedep, NULL); 11256 if (freefile && !LIST_EMPTY(&wkhd)) { 11257 WORKLIST_INSERT(&wkhd, &freefile->fx_list); 11258 freefile = NULL; 11259 } 11260 } 11261 /* 11262 * Move rolled forward dependency completions to the bufwait list 11263 * now that those that were already written have been processed. 11264 */ 11265 if (!LIST_EMPTY(&wkhd) && hadchanges == 0) 11266 panic("handle_written_inodeblock: bufwait but no changes"); 11267 jwork_move(&inodedep->id_bufwait, &wkhd); 11268 11269 if (freefile != NULL) { 11270 /* 11271 * If the inode is goingaway it was never written. Fake up 11272 * the state here so free_inodedep() can succeed. 11273 */ 11274 if (inodedep->id_state & GOINGAWAY) 11275 inodedep->id_state |= COMPLETE | DEPCOMPLETE; 11276 if (free_inodedep(inodedep) == 0) 11277 panic("handle_written_inodeblock: live inodedep %p", 11278 inodedep); 11279 add_to_worklist(&freefile->fx_list, 0); 11280 return (0); 11281 } 11282 11283 /* 11284 * If no outstanding dependencies, free it. 11285 */ 11286 if (free_inodedep(inodedep) || 11287 (TAILQ_FIRST(&inodedep->id_inoreflst) == 0 && 11288 TAILQ_FIRST(&inodedep->id_inoupdt) == 0 && 11289 TAILQ_FIRST(&inodedep->id_extupdt) == 0 && 11290 LIST_FIRST(&inodedep->id_bufwait) == 0)) 11291 return (0); 11292 return (hadchanges); 11293 } 11294 11295 static int 11296 handle_written_indirdep(indirdep, bp, bpp) 11297 struct indirdep *indirdep; 11298 struct buf *bp; 11299 struct buf **bpp; 11300 { 11301 struct allocindir *aip; 11302 struct buf *sbp; 11303 int chgs; 11304 11305 if (indirdep->ir_state & GOINGAWAY) 11306 panic("handle_written_indirdep: indirdep gone"); 11307 if ((indirdep->ir_state & IOSTARTED) == 0) 11308 panic("handle_written_indirdep: IO not started"); 11309 chgs = 0; 11310 /* 11311 * If there were rollbacks revert them here. 11312 */ 11313 if (indirdep->ir_saveddata) { 11314 bcopy(indirdep->ir_saveddata, bp->b_data, bp->b_bcount); 11315 if (TAILQ_EMPTY(&indirdep->ir_trunc)) { 11316 free(indirdep->ir_saveddata, M_INDIRDEP); 11317 indirdep->ir_saveddata = NULL; 11318 } 11319 chgs = 1; 11320 } 11321 indirdep->ir_state &= ~(UNDONE | IOSTARTED); 11322 indirdep->ir_state |= ATTACHED; 11323 /* 11324 * Move allocindirs with written pointers to the completehd if 11325 * the indirdep's pointer is not yet written. Otherwise 11326 * free them here. 11327 */ 11328 while ((aip = LIST_FIRST(&indirdep->ir_writehd)) != 0) { 11329 LIST_REMOVE(aip, ai_next); 11330 if ((indirdep->ir_state & DEPCOMPLETE) == 0) { 11331 LIST_INSERT_HEAD(&indirdep->ir_completehd, aip, 11332 ai_next); 11333 newblk_freefrag(&aip->ai_block); 11334 continue; 11335 } 11336 free_newblk(&aip->ai_block); 11337 } 11338 /* 11339 * Move allocindirs that have finished dependency processing from 11340 * the done list to the write list after updating the pointers. 11341 */ 11342 if (TAILQ_EMPTY(&indirdep->ir_trunc)) { 11343 while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != 0) { 11344 handle_allocindir_partdone(aip); 11345 if (aip == LIST_FIRST(&indirdep->ir_donehd)) 11346 panic("disk_write_complete: not gone"); 11347 chgs = 1; 11348 } 11349 } 11350 /* 11351 * Preserve the indirdep if there were any changes or if it is not 11352 * yet valid on disk. 11353 */ 11354 if (chgs) { 11355 stat_indir_blk_ptrs++; 11356 bdirty(bp); 11357 return (1); 11358 } 11359 /* 11360 * If there were no changes we can discard the savedbp and detach 11361 * ourselves from the buf. We are only carrying completed pointers 11362 * in this case. 11363 */ 11364 sbp = indirdep->ir_savebp; 11365 sbp->b_flags |= B_INVAL | B_NOCACHE; 11366 indirdep->ir_savebp = NULL; 11367 indirdep->ir_bp = NULL; 11368 if (*bpp != NULL) 11369 panic("handle_written_indirdep: bp already exists."); 11370 *bpp = sbp; 11371 /* 11372 * The indirdep may not be freed until its parent points at it. 11373 */ 11374 if (indirdep->ir_state & DEPCOMPLETE) 11375 free_indirdep(indirdep); 11376 11377 return (0); 11378 } 11379 11380 /* 11381 * Process a diradd entry after its dependent inode has been written. 11382 * This routine must be called with splbio interrupts blocked. 11383 */ 11384 static void 11385 diradd_inode_written(dap, inodedep) 11386 struct diradd *dap; 11387 struct inodedep *inodedep; 11388 { 11389 11390 dap->da_state |= COMPLETE; 11391 complete_diradd(dap); 11392 WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list); 11393 } 11394 11395 /* 11396 * Returns true if the bmsafemap will have rollbacks when written. Must 11397 * only be called with lk and the buf lock on the cg held. 11398 */ 11399 static int 11400 bmsafemap_backgroundwrite(bmsafemap, bp) 11401 struct bmsafemap *bmsafemap; 11402 struct buf *bp; 11403 { 11404 int dirty; 11405 11406 dirty = !LIST_EMPTY(&bmsafemap->sm_jaddrefhd) | 11407 !LIST_EMPTY(&bmsafemap->sm_jnewblkhd); 11408 /* 11409 * If we're initiating a background write we need to process the 11410 * rollbacks as they exist now, not as they exist when IO starts. 11411 * No other consumers will look at the contents of the shadowed 11412 * buf so this is safe to do here. 11413 */ 11414 if (bp->b_xflags & BX_BKGRDMARKER) 11415 initiate_write_bmsafemap(bmsafemap, bp); 11416 11417 return (dirty); 11418 } 11419 11420 /* 11421 * Re-apply an allocation when a cg write is complete. 11422 */ 11423 static int 11424 jnewblk_rollforward(jnewblk, fs, cgp, blksfree) 11425 struct jnewblk *jnewblk; 11426 struct fs *fs; 11427 struct cg *cgp; 11428 uint8_t *blksfree; 11429 { 11430 ufs1_daddr_t fragno; 11431 ufs2_daddr_t blkno; 11432 long cgbno, bbase; 11433 int frags, blk; 11434 int i; 11435 11436 frags = 0; 11437 cgbno = dtogd(fs, jnewblk->jn_blkno); 11438 for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; i++) { 11439 if (isclr(blksfree, cgbno + i)) 11440 panic("jnewblk_rollforward: re-allocated fragment"); 11441 frags++; 11442 } 11443 if (frags == fs->fs_frag) { 11444 blkno = fragstoblks(fs, cgbno); 11445 ffs_clrblock(fs, blksfree, (long)blkno); 11446 ffs_clusteracct(fs, cgp, blkno, -1); 11447 cgp->cg_cs.cs_nbfree--; 11448 } else { 11449 bbase = cgbno - fragnum(fs, cgbno); 11450 cgbno += jnewblk->jn_oldfrags; 11451 /* If a complete block had been reassembled, account for it. */ 11452 fragno = fragstoblks(fs, bbase); 11453 if (ffs_isblock(fs, blksfree, fragno)) { 11454 cgp->cg_cs.cs_nffree += fs->fs_frag; 11455 ffs_clusteracct(fs, cgp, fragno, -1); 11456 cgp->cg_cs.cs_nbfree--; 11457 } 11458 /* Decrement the old frags. */ 11459 blk = blkmap(fs, blksfree, bbase); 11460 ffs_fragacct(fs, blk, cgp->cg_frsum, -1); 11461 /* Allocate the fragment */ 11462 for (i = 0; i < frags; i++) 11463 clrbit(blksfree, cgbno + i); 11464 cgp->cg_cs.cs_nffree -= frags; 11465 /* Add back in counts associated with the new frags */ 11466 blk = blkmap(fs, blksfree, bbase); 11467 ffs_fragacct(fs, blk, cgp->cg_frsum, 1); 11468 } 11469 return (frags); 11470 } 11471 11472 /* 11473 * Complete a write to a bmsafemap structure. Roll forward any bitmap 11474 * changes if it's not a background write. Set all written dependencies 11475 * to DEPCOMPLETE and free the structure if possible. 11476 */ 11477 static int 11478 handle_written_bmsafemap(bmsafemap, bp) 11479 struct bmsafemap *bmsafemap; 11480 struct buf *bp; 11481 { 11482 struct newblk *newblk; 11483 struct inodedep *inodedep; 11484 struct jaddref *jaddref, *jatmp; 11485 struct jnewblk *jnewblk, *jntmp; 11486 struct ufsmount *ump; 11487 uint8_t *inosused; 11488 uint8_t *blksfree; 11489 struct cg *cgp; 11490 struct fs *fs; 11491 ino_t ino; 11492 int foreground; 11493 int chgs; 11494 11495 if ((bmsafemap->sm_state & IOSTARTED) == 0) 11496 panic("initiate_write_bmsafemap: Not started\n"); 11497 ump = VFSTOUFS(bmsafemap->sm_list.wk_mp); 11498 chgs = 0; 11499 bmsafemap->sm_state &= ~IOSTARTED; 11500 foreground = (bp->b_xflags & BX_BKGRDMARKER) == 0; 11501 /* 11502 * Release journal work that was waiting on the write. 11503 */ 11504 handle_jwork(&bmsafemap->sm_freewr); 11505 11506 /* 11507 * Restore unwritten inode allocation pending jaddref writes. 11508 */ 11509 if (!LIST_EMPTY(&bmsafemap->sm_jaddrefhd)) { 11510 cgp = (struct cg *)bp->b_data; 11511 fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs; 11512 inosused = cg_inosused(cgp); 11513 LIST_FOREACH_SAFE(jaddref, &bmsafemap->sm_jaddrefhd, 11514 ja_bmdeps, jatmp) { 11515 if ((jaddref->ja_state & UNDONE) == 0) 11516 continue; 11517 ino = jaddref->ja_ino % fs->fs_ipg; 11518 if (isset(inosused, ino)) 11519 panic("handle_written_bmsafemap: " 11520 "re-allocated inode"); 11521 /* Do the roll-forward only if it's a real copy. */ 11522 if (foreground) { 11523 if ((jaddref->ja_mode & IFMT) == IFDIR) 11524 cgp->cg_cs.cs_ndir++; 11525 cgp->cg_cs.cs_nifree--; 11526 setbit(inosused, ino); 11527 chgs = 1; 11528 } 11529 jaddref->ja_state &= ~UNDONE; 11530 jaddref->ja_state |= ATTACHED; 11531 free_jaddref(jaddref); 11532 } 11533 } 11534 /* 11535 * Restore any block allocations which are pending journal writes. 11536 */ 11537 if (LIST_FIRST(&bmsafemap->sm_jnewblkhd) != NULL) { 11538 cgp = (struct cg *)bp->b_data; 11539 fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs; 11540 blksfree = cg_blksfree(cgp); 11541 LIST_FOREACH_SAFE(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps, 11542 jntmp) { 11543 if ((jnewblk->jn_state & UNDONE) == 0) 11544 continue; 11545 /* Do the roll-forward only if it's a real copy. */ 11546 if (foreground && 11547 jnewblk_rollforward(jnewblk, fs, cgp, blksfree)) 11548 chgs = 1; 11549 jnewblk->jn_state &= ~(UNDONE | NEWBLOCK); 11550 jnewblk->jn_state |= ATTACHED; 11551 free_jnewblk(jnewblk); 11552 } 11553 } 11554 while ((newblk = LIST_FIRST(&bmsafemap->sm_newblkwr))) { 11555 newblk->nb_state |= DEPCOMPLETE; 11556 newblk->nb_state &= ~ONDEPLIST; 11557 newblk->nb_bmsafemap = NULL; 11558 LIST_REMOVE(newblk, nb_deps); 11559 if (newblk->nb_list.wk_type == D_ALLOCDIRECT) 11560 handle_allocdirect_partdone( 11561 WK_ALLOCDIRECT(&newblk->nb_list), NULL); 11562 else if (newblk->nb_list.wk_type == D_ALLOCINDIR) 11563 handle_allocindir_partdone( 11564 WK_ALLOCINDIR(&newblk->nb_list)); 11565 else if (newblk->nb_list.wk_type != D_NEWBLK) 11566 panic("handle_written_bmsafemap: Unexpected type: %s", 11567 TYPENAME(newblk->nb_list.wk_type)); 11568 } 11569 while ((inodedep = LIST_FIRST(&bmsafemap->sm_inodedepwr)) != NULL) { 11570 inodedep->id_state |= DEPCOMPLETE; 11571 inodedep->id_state &= ~ONDEPLIST; 11572 LIST_REMOVE(inodedep, id_deps); 11573 inodedep->id_bmsafemap = NULL; 11574 } 11575 LIST_REMOVE(bmsafemap, sm_next); 11576 if (chgs == 0 && LIST_EMPTY(&bmsafemap->sm_jaddrefhd) && 11577 LIST_EMPTY(&bmsafemap->sm_jnewblkhd) && 11578 LIST_EMPTY(&bmsafemap->sm_newblkhd) && 11579 LIST_EMPTY(&bmsafemap->sm_inodedephd) && 11580 LIST_EMPTY(&bmsafemap->sm_freehd)) { 11581 LIST_REMOVE(bmsafemap, sm_hash); 11582 WORKITEM_FREE(bmsafemap, D_BMSAFEMAP); 11583 return (0); 11584 } 11585 LIST_INSERT_HEAD(&ump->softdep_dirtycg, bmsafemap, sm_next); 11586 if (foreground) 11587 bdirty(bp); 11588 return (1); 11589 } 11590 11591 /* 11592 * Try to free a mkdir dependency. 11593 */ 11594 static void 11595 complete_mkdir(mkdir) 11596 struct mkdir *mkdir; 11597 { 11598 struct diradd *dap; 11599 11600 if ((mkdir->md_state & ALLCOMPLETE) != ALLCOMPLETE) 11601 return; 11602 LIST_REMOVE(mkdir, md_mkdirs); 11603 dap = mkdir->md_diradd; 11604 dap->da_state &= ~(mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY)); 11605 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0) { 11606 dap->da_state |= DEPCOMPLETE; 11607 complete_diradd(dap); 11608 } 11609 WORKITEM_FREE(mkdir, D_MKDIR); 11610 } 11611 11612 /* 11613 * Handle the completion of a mkdir dependency. 11614 */ 11615 static void 11616 handle_written_mkdir(mkdir, type) 11617 struct mkdir *mkdir; 11618 int type; 11619 { 11620 11621 if ((mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY)) != type) 11622 panic("handle_written_mkdir: bad type"); 11623 mkdir->md_state |= COMPLETE; 11624 complete_mkdir(mkdir); 11625 } 11626 11627 static int 11628 free_pagedep(pagedep) 11629 struct pagedep *pagedep; 11630 { 11631 int i; 11632 11633 if (pagedep->pd_state & NEWBLOCK) 11634 return (0); 11635 if (!LIST_EMPTY(&pagedep->pd_dirremhd)) 11636 return (0); 11637 for (i = 0; i < DAHASHSZ; i++) 11638 if (!LIST_EMPTY(&pagedep->pd_diraddhd[i])) 11639 return (0); 11640 if (!LIST_EMPTY(&pagedep->pd_pendinghd)) 11641 return (0); 11642 if (!LIST_EMPTY(&pagedep->pd_jmvrefhd)) 11643 return (0); 11644 if (pagedep->pd_state & ONWORKLIST) 11645 WORKLIST_REMOVE(&pagedep->pd_list); 11646 LIST_REMOVE(pagedep, pd_hash); 11647 WORKITEM_FREE(pagedep, D_PAGEDEP); 11648 11649 return (1); 11650 } 11651 11652 /* 11653 * Called from within softdep_disk_write_complete above. 11654 * A write operation was just completed. Removed inodes can 11655 * now be freed and associated block pointers may be committed. 11656 * Note that this routine is always called from interrupt level 11657 * with further splbio interrupts blocked. 11658 */ 11659 static int 11660 handle_written_filepage(pagedep, bp) 11661 struct pagedep *pagedep; 11662 struct buf *bp; /* buffer containing the written page */ 11663 { 11664 struct dirrem *dirrem; 11665 struct diradd *dap, *nextdap; 11666 struct direct *ep; 11667 int i, chgs; 11668 11669 if ((pagedep->pd_state & IOSTARTED) == 0) 11670 panic("handle_written_filepage: not started"); 11671 pagedep->pd_state &= ~IOSTARTED; 11672 /* 11673 * Process any directory removals that have been committed. 11674 */ 11675 while ((dirrem = LIST_FIRST(&pagedep->pd_dirremhd)) != NULL) { 11676 LIST_REMOVE(dirrem, dm_next); 11677 dirrem->dm_state |= COMPLETE; 11678 dirrem->dm_dirinum = pagedep->pd_ino; 11679 KASSERT(LIST_EMPTY(&dirrem->dm_jremrefhd), 11680 ("handle_written_filepage: Journal entries not written.")); 11681 add_to_worklist(&dirrem->dm_list, 0); 11682 } 11683 /* 11684 * Free any directory additions that have been committed. 11685 * If it is a newly allocated block, we have to wait until 11686 * the on-disk directory inode claims the new block. 11687 */ 11688 if ((pagedep->pd_state & NEWBLOCK) == 0) 11689 while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL) 11690 free_diradd(dap, NULL); 11691 /* 11692 * Uncommitted directory entries must be restored. 11693 */ 11694 for (chgs = 0, i = 0; i < DAHASHSZ; i++) { 11695 for (dap = LIST_FIRST(&pagedep->pd_diraddhd[i]); dap; 11696 dap = nextdap) { 11697 nextdap = LIST_NEXT(dap, da_pdlist); 11698 if (dap->da_state & ATTACHED) 11699 panic("handle_written_filepage: attached"); 11700 ep = (struct direct *) 11701 ((char *)bp->b_data + dap->da_offset); 11702 ep->d_ino = dap->da_newinum; 11703 dap->da_state &= ~UNDONE; 11704 dap->da_state |= ATTACHED; 11705 chgs = 1; 11706 /* 11707 * If the inode referenced by the directory has 11708 * been written out, then the dependency can be 11709 * moved to the pending list. 11710 */ 11711 if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) { 11712 LIST_REMOVE(dap, da_pdlist); 11713 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, 11714 da_pdlist); 11715 } 11716 } 11717 } 11718 /* 11719 * If there were any rollbacks in the directory, then it must be 11720 * marked dirty so that its will eventually get written back in 11721 * its correct form. 11722 */ 11723 if (chgs) { 11724 if ((bp->b_flags & B_DELWRI) == 0) 11725 stat_dir_entry++; 11726 bdirty(bp); 11727 return (1); 11728 } 11729 /* 11730 * If we are not waiting for a new directory block to be 11731 * claimed by its inode, then the pagedep will be freed. 11732 * Otherwise it will remain to track any new entries on 11733 * the page in case they are fsync'ed. 11734 */ 11735 free_pagedep(pagedep); 11736 return (0); 11737 } 11738 11739 /* 11740 * Writing back in-core inode structures. 11741 * 11742 * The filesystem only accesses an inode's contents when it occupies an 11743 * "in-core" inode structure. These "in-core" structures are separate from 11744 * the page frames used to cache inode blocks. Only the latter are 11745 * transferred to/from the disk. So, when the updated contents of the 11746 * "in-core" inode structure are copied to the corresponding in-memory inode 11747 * block, the dependencies are also transferred. The following procedure is 11748 * called when copying a dirty "in-core" inode to a cached inode block. 11749 */ 11750 11751 /* 11752 * Called when an inode is loaded from disk. If the effective link count 11753 * differed from the actual link count when it was last flushed, then we 11754 * need to ensure that the correct effective link count is put back. 11755 */ 11756 void 11757 softdep_load_inodeblock(ip) 11758 struct inode *ip; /* the "in_core" copy of the inode */ 11759 { 11760 struct inodedep *inodedep; 11761 11762 /* 11763 * Check for alternate nlink count. 11764 */ 11765 ip->i_effnlink = ip->i_nlink; 11766 ACQUIRE_LOCK(&lk); 11767 if (inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, 0, 11768 &inodedep) == 0) { 11769 FREE_LOCK(&lk); 11770 return; 11771 } 11772 ip->i_effnlink -= inodedep->id_nlinkdelta; 11773 FREE_LOCK(&lk); 11774 } 11775 11776 /* 11777 * This routine is called just before the "in-core" inode 11778 * information is to be copied to the in-memory inode block. 11779 * Recall that an inode block contains several inodes. If 11780 * the force flag is set, then the dependencies will be 11781 * cleared so that the update can always be made. Note that 11782 * the buffer is locked when this routine is called, so we 11783 * will never be in the middle of writing the inode block 11784 * to disk. 11785 */ 11786 void 11787 softdep_update_inodeblock(ip, bp, waitfor) 11788 struct inode *ip; /* the "in_core" copy of the inode */ 11789 struct buf *bp; /* the buffer containing the inode block */ 11790 int waitfor; /* nonzero => update must be allowed */ 11791 { 11792 struct inodedep *inodedep; 11793 struct inoref *inoref; 11794 struct worklist *wk; 11795 struct mount *mp; 11796 struct buf *ibp; 11797 struct fs *fs; 11798 int error; 11799 11800 mp = UFSTOVFS(ip->i_ump); 11801 fs = ip->i_fs; 11802 /* 11803 * Preserve the freelink that is on disk. clear_unlinked_inodedep() 11804 * does not have access to the in-core ip so must write directly into 11805 * the inode block buffer when setting freelink. 11806 */ 11807 if (fs->fs_magic == FS_UFS1_MAGIC) 11808 DIP_SET(ip, i_freelink, ((struct ufs1_dinode *)bp->b_data + 11809 ino_to_fsbo(fs, ip->i_number))->di_freelink); 11810 else 11811 DIP_SET(ip, i_freelink, ((struct ufs2_dinode *)bp->b_data + 11812 ino_to_fsbo(fs, ip->i_number))->di_freelink); 11813 /* 11814 * If the effective link count is not equal to the actual link 11815 * count, then we must track the difference in an inodedep while 11816 * the inode is (potentially) tossed out of the cache. Otherwise, 11817 * if there is no existing inodedep, then there are no dependencies 11818 * to track. 11819 */ 11820 ACQUIRE_LOCK(&lk); 11821 again: 11822 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) { 11823 FREE_LOCK(&lk); 11824 if (ip->i_effnlink != ip->i_nlink) 11825 panic("softdep_update_inodeblock: bad link count"); 11826 return; 11827 } 11828 if (inodedep->id_nlinkdelta != ip->i_nlink - ip->i_effnlink) 11829 panic("softdep_update_inodeblock: bad delta"); 11830 /* 11831 * If we're flushing all dependencies we must also move any waiting 11832 * for journal writes onto the bufwait list prior to I/O. 11833 */ 11834 if (waitfor) { 11835 TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) { 11836 if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY)) 11837 == DEPCOMPLETE) { 11838 jwait(&inoref->if_list, MNT_WAIT); 11839 goto again; 11840 } 11841 } 11842 } 11843 /* 11844 * Changes have been initiated. Anything depending on these 11845 * changes cannot occur until this inode has been written. 11846 */ 11847 inodedep->id_state &= ~COMPLETE; 11848 if ((inodedep->id_state & ONWORKLIST) == 0) 11849 WORKLIST_INSERT(&bp->b_dep, &inodedep->id_list); 11850 /* 11851 * Any new dependencies associated with the incore inode must 11852 * now be moved to the list associated with the buffer holding 11853 * the in-memory copy of the inode. Once merged process any 11854 * allocdirects that are completed by the merger. 11855 */ 11856 merge_inode_lists(&inodedep->id_newinoupdt, &inodedep->id_inoupdt); 11857 if (!TAILQ_EMPTY(&inodedep->id_inoupdt)) 11858 handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_inoupdt), 11859 NULL); 11860 merge_inode_lists(&inodedep->id_newextupdt, &inodedep->id_extupdt); 11861 if (!TAILQ_EMPTY(&inodedep->id_extupdt)) 11862 handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_extupdt), 11863 NULL); 11864 /* 11865 * Now that the inode has been pushed into the buffer, the 11866 * operations dependent on the inode being written to disk 11867 * can be moved to the id_bufwait so that they will be 11868 * processed when the buffer I/O completes. 11869 */ 11870 while ((wk = LIST_FIRST(&inodedep->id_inowait)) != NULL) { 11871 WORKLIST_REMOVE(wk); 11872 WORKLIST_INSERT(&inodedep->id_bufwait, wk); 11873 } 11874 /* 11875 * Newly allocated inodes cannot be written until the bitmap 11876 * that allocates them have been written (indicated by 11877 * DEPCOMPLETE being set in id_state). If we are doing a 11878 * forced sync (e.g., an fsync on a file), we force the bitmap 11879 * to be written so that the update can be done. 11880 */ 11881 if (waitfor == 0) { 11882 FREE_LOCK(&lk); 11883 return; 11884 } 11885 retry: 11886 if ((inodedep->id_state & (DEPCOMPLETE | GOINGAWAY)) != 0) { 11887 FREE_LOCK(&lk); 11888 return; 11889 } 11890 ibp = inodedep->id_bmsafemap->sm_buf; 11891 ibp = getdirtybuf(ibp, &lk, MNT_WAIT); 11892 if (ibp == NULL) { 11893 /* 11894 * If ibp came back as NULL, the dependency could have been 11895 * freed while we slept. Look it up again, and check to see 11896 * that it has completed. 11897 */ 11898 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0) 11899 goto retry; 11900 FREE_LOCK(&lk); 11901 return; 11902 } 11903 FREE_LOCK(&lk); 11904 if ((error = bwrite(ibp)) != 0) 11905 softdep_error("softdep_update_inodeblock: bwrite", error); 11906 } 11907 11908 /* 11909 * Merge the a new inode dependency list (such as id_newinoupdt) into an 11910 * old inode dependency list (such as id_inoupdt). This routine must be 11911 * called with splbio interrupts blocked. 11912 */ 11913 static void 11914 merge_inode_lists(newlisthead, oldlisthead) 11915 struct allocdirectlst *newlisthead; 11916 struct allocdirectlst *oldlisthead; 11917 { 11918 struct allocdirect *listadp, *newadp; 11919 11920 newadp = TAILQ_FIRST(newlisthead); 11921 for (listadp = TAILQ_FIRST(oldlisthead); listadp && newadp;) { 11922 if (listadp->ad_offset < newadp->ad_offset) { 11923 listadp = TAILQ_NEXT(listadp, ad_next); 11924 continue; 11925 } 11926 TAILQ_REMOVE(newlisthead, newadp, ad_next); 11927 TAILQ_INSERT_BEFORE(listadp, newadp, ad_next); 11928 if (listadp->ad_offset == newadp->ad_offset) { 11929 allocdirect_merge(oldlisthead, newadp, 11930 listadp); 11931 listadp = newadp; 11932 } 11933 newadp = TAILQ_FIRST(newlisthead); 11934 } 11935 while ((newadp = TAILQ_FIRST(newlisthead)) != NULL) { 11936 TAILQ_REMOVE(newlisthead, newadp, ad_next); 11937 TAILQ_INSERT_TAIL(oldlisthead, newadp, ad_next); 11938 } 11939 } 11940 11941 /* 11942 * If we are doing an fsync, then we must ensure that any directory 11943 * entries for the inode have been written after the inode gets to disk. 11944 */ 11945 int 11946 softdep_fsync(vp) 11947 struct vnode *vp; /* the "in_core" copy of the inode */ 11948 { 11949 struct inodedep *inodedep; 11950 struct pagedep *pagedep; 11951 struct inoref *inoref; 11952 struct worklist *wk; 11953 struct diradd *dap; 11954 struct mount *mp; 11955 struct vnode *pvp; 11956 struct inode *ip; 11957 struct buf *bp; 11958 struct fs *fs; 11959 struct thread *td = curthread; 11960 int error, flushparent, pagedep_new_block; 11961 ino_t parentino; 11962 ufs_lbn_t lbn; 11963 11964 ip = VTOI(vp); 11965 fs = ip->i_fs; 11966 mp = vp->v_mount; 11967 ACQUIRE_LOCK(&lk); 11968 restart: 11969 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) { 11970 FREE_LOCK(&lk); 11971 return (0); 11972 } 11973 TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) { 11974 if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY)) 11975 == DEPCOMPLETE) { 11976 jwait(&inoref->if_list, MNT_WAIT); 11977 goto restart; 11978 } 11979 } 11980 if (!LIST_EMPTY(&inodedep->id_inowait) || 11981 !TAILQ_EMPTY(&inodedep->id_extupdt) || 11982 !TAILQ_EMPTY(&inodedep->id_newextupdt) || 11983 !TAILQ_EMPTY(&inodedep->id_inoupdt) || 11984 !TAILQ_EMPTY(&inodedep->id_newinoupdt)) 11985 panic("softdep_fsync: pending ops %p", inodedep); 11986 for (error = 0, flushparent = 0; ; ) { 11987 if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) == NULL) 11988 break; 11989 if (wk->wk_type != D_DIRADD) 11990 panic("softdep_fsync: Unexpected type %s", 11991 TYPENAME(wk->wk_type)); 11992 dap = WK_DIRADD(wk); 11993 /* 11994 * Flush our parent if this directory entry has a MKDIR_PARENT 11995 * dependency or is contained in a newly allocated block. 11996 */ 11997 if (dap->da_state & DIRCHG) 11998 pagedep = dap->da_previous->dm_pagedep; 11999 else 12000 pagedep = dap->da_pagedep; 12001 parentino = pagedep->pd_ino; 12002 lbn = pagedep->pd_lbn; 12003 if ((dap->da_state & (MKDIR_BODY | COMPLETE)) != COMPLETE) 12004 panic("softdep_fsync: dirty"); 12005 if ((dap->da_state & MKDIR_PARENT) || 12006 (pagedep->pd_state & NEWBLOCK)) 12007 flushparent = 1; 12008 else 12009 flushparent = 0; 12010 /* 12011 * If we are being fsync'ed as part of vgone'ing this vnode, 12012 * then we will not be able to release and recover the 12013 * vnode below, so we just have to give up on writing its 12014 * directory entry out. It will eventually be written, just 12015 * not now, but then the user was not asking to have it 12016 * written, so we are not breaking any promises. 12017 */ 12018 if (vp->v_iflag & VI_DOOMED) 12019 break; 12020 /* 12021 * We prevent deadlock by always fetching inodes from the 12022 * root, moving down the directory tree. Thus, when fetching 12023 * our parent directory, we first try to get the lock. If 12024 * that fails, we must unlock ourselves before requesting 12025 * the lock on our parent. See the comment in ufs_lookup 12026 * for details on possible races. 12027 */ 12028 FREE_LOCK(&lk); 12029 if (ffs_vgetf(mp, parentino, LK_NOWAIT | LK_EXCLUSIVE, &pvp, 12030 FFSV_FORCEINSMQ)) { 12031 error = vfs_busy(mp, MBF_NOWAIT); 12032 if (error != 0) { 12033 vfs_ref(mp); 12034 VOP_UNLOCK(vp, 0); 12035 error = vfs_busy(mp, 0); 12036 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 12037 vfs_rel(mp); 12038 if (error != 0) 12039 return (ENOENT); 12040 if (vp->v_iflag & VI_DOOMED) { 12041 vfs_unbusy(mp); 12042 return (ENOENT); 12043 } 12044 } 12045 VOP_UNLOCK(vp, 0); 12046 error = ffs_vgetf(mp, parentino, LK_EXCLUSIVE, 12047 &pvp, FFSV_FORCEINSMQ); 12048 vfs_unbusy(mp); 12049 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 12050 if (vp->v_iflag & VI_DOOMED) { 12051 if (error == 0) 12052 vput(pvp); 12053 error = ENOENT; 12054 } 12055 if (error != 0) 12056 return (error); 12057 } 12058 /* 12059 * All MKDIR_PARENT dependencies and all the NEWBLOCK pagedeps 12060 * that are contained in direct blocks will be resolved by 12061 * doing a ffs_update. Pagedeps contained in indirect blocks 12062 * may require a complete sync'ing of the directory. So, we 12063 * try the cheap and fast ffs_update first, and if that fails, 12064 * then we do the slower ffs_syncvnode of the directory. 12065 */ 12066 if (flushparent) { 12067 int locked; 12068 12069 if ((error = ffs_update(pvp, 1)) != 0) { 12070 vput(pvp); 12071 return (error); 12072 } 12073 ACQUIRE_LOCK(&lk); 12074 locked = 1; 12075 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0) { 12076 if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) != NULL) { 12077 if (wk->wk_type != D_DIRADD) 12078 panic("softdep_fsync: Unexpected type %s", 12079 TYPENAME(wk->wk_type)); 12080 dap = WK_DIRADD(wk); 12081 if (dap->da_state & DIRCHG) 12082 pagedep = dap->da_previous->dm_pagedep; 12083 else 12084 pagedep = dap->da_pagedep; 12085 pagedep_new_block = pagedep->pd_state & NEWBLOCK; 12086 FREE_LOCK(&lk); 12087 locked = 0; 12088 if (pagedep_new_block && (error = 12089 ffs_syncvnode(pvp, MNT_WAIT, 0))) { 12090 vput(pvp); 12091 return (error); 12092 } 12093 } 12094 } 12095 if (locked) 12096 FREE_LOCK(&lk); 12097 } 12098 /* 12099 * Flush directory page containing the inode's name. 12100 */ 12101 error = bread(pvp, lbn, blksize(fs, VTOI(pvp), lbn), td->td_ucred, 12102 &bp); 12103 if (error == 0) 12104 error = bwrite(bp); 12105 else 12106 brelse(bp); 12107 vput(pvp); 12108 if (error != 0) 12109 return (error); 12110 ACQUIRE_LOCK(&lk); 12111 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) 12112 break; 12113 } 12114 FREE_LOCK(&lk); 12115 return (0); 12116 } 12117 12118 /* 12119 * Flush all the dirty bitmaps associated with the block device 12120 * before flushing the rest of the dirty blocks so as to reduce 12121 * the number of dependencies that will have to be rolled back. 12122 * 12123 * XXX Unused? 12124 */ 12125 void 12126 softdep_fsync_mountdev(vp) 12127 struct vnode *vp; 12128 { 12129 struct buf *bp, *nbp; 12130 struct worklist *wk; 12131 struct bufobj *bo; 12132 12133 if (!vn_isdisk(vp, NULL)) 12134 panic("softdep_fsync_mountdev: vnode not a disk"); 12135 bo = &vp->v_bufobj; 12136 restart: 12137 BO_LOCK(bo); 12138 ACQUIRE_LOCK(&lk); 12139 TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) { 12140 /* 12141 * If it is already scheduled, skip to the next buffer. 12142 */ 12143 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL)) 12144 continue; 12145 12146 if ((bp->b_flags & B_DELWRI) == 0) 12147 panic("softdep_fsync_mountdev: not dirty"); 12148 /* 12149 * We are only interested in bitmaps with outstanding 12150 * dependencies. 12151 */ 12152 if ((wk = LIST_FIRST(&bp->b_dep)) == NULL || 12153 wk->wk_type != D_BMSAFEMAP || 12154 (bp->b_vflags & BV_BKGRDINPROG)) { 12155 BUF_UNLOCK(bp); 12156 continue; 12157 } 12158 FREE_LOCK(&lk); 12159 BO_UNLOCK(bo); 12160 bremfree(bp); 12161 (void) bawrite(bp); 12162 goto restart; 12163 } 12164 FREE_LOCK(&lk); 12165 drain_output(vp); 12166 BO_UNLOCK(bo); 12167 } 12168 12169 /* 12170 * Sync all cylinder groups that were dirty at the time this function is 12171 * called. Newly dirtied cgs will be inserted before the sentinel. This 12172 * is used to flush freedep activity that may be holding up writes to a 12173 * indirect block. 12174 */ 12175 static int 12176 sync_cgs(mp, waitfor) 12177 struct mount *mp; 12178 int waitfor; 12179 { 12180 struct bmsafemap *bmsafemap; 12181 struct bmsafemap *sentinel; 12182 struct ufsmount *ump; 12183 struct buf *bp; 12184 int error; 12185 12186 sentinel = malloc(sizeof(*sentinel), M_BMSAFEMAP, M_ZERO | M_WAITOK); 12187 sentinel->sm_cg = -1; 12188 ump = VFSTOUFS(mp); 12189 error = 0; 12190 ACQUIRE_LOCK(&lk); 12191 LIST_INSERT_HEAD(&ump->softdep_dirtycg, sentinel, sm_next); 12192 for (bmsafemap = LIST_NEXT(sentinel, sm_next); bmsafemap != NULL; 12193 bmsafemap = LIST_NEXT(sentinel, sm_next)) { 12194 /* Skip sentinels and cgs with no work to release. */ 12195 if (bmsafemap->sm_cg == -1 || 12196 (LIST_EMPTY(&bmsafemap->sm_freehd) && 12197 LIST_EMPTY(&bmsafemap->sm_freewr))) { 12198 LIST_REMOVE(sentinel, sm_next); 12199 LIST_INSERT_AFTER(bmsafemap, sentinel, sm_next); 12200 continue; 12201 } 12202 /* 12203 * If we don't get the lock and we're waiting try again, if 12204 * not move on to the next buf and try to sync it. 12205 */ 12206 bp = getdirtybuf(bmsafemap->sm_buf, &lk, waitfor); 12207 if (bp == NULL && waitfor == MNT_WAIT) 12208 continue; 12209 LIST_REMOVE(sentinel, sm_next); 12210 LIST_INSERT_AFTER(bmsafemap, sentinel, sm_next); 12211 if (bp == NULL) 12212 continue; 12213 FREE_LOCK(&lk); 12214 if (waitfor == MNT_NOWAIT) 12215 bawrite(bp); 12216 else 12217 error = bwrite(bp); 12218 ACQUIRE_LOCK(&lk); 12219 if (error) 12220 break; 12221 } 12222 LIST_REMOVE(sentinel, sm_next); 12223 FREE_LOCK(&lk); 12224 free(sentinel, M_BMSAFEMAP); 12225 return (error); 12226 } 12227 12228 /* 12229 * This routine is called when we are trying to synchronously flush a 12230 * file. This routine must eliminate any filesystem metadata dependencies 12231 * so that the syncing routine can succeed. 12232 */ 12233 int 12234 softdep_sync_metadata(struct vnode *vp) 12235 { 12236 int error; 12237 12238 /* 12239 * Ensure that any direct block dependencies have been cleared, 12240 * truncations are started, and inode references are journaled. 12241 */ 12242 ACQUIRE_LOCK(&lk); 12243 /* 12244 * Write all journal records to prevent rollbacks on devvp. 12245 */ 12246 if (vp->v_type == VCHR) 12247 softdep_flushjournal(vp->v_mount); 12248 error = flush_inodedep_deps(vp, vp->v_mount, VTOI(vp)->i_number); 12249 /* 12250 * Ensure that all truncates are written so we won't find deps on 12251 * indirect blocks. 12252 */ 12253 process_truncates(vp); 12254 FREE_LOCK(&lk); 12255 12256 return (error); 12257 } 12258 12259 /* 12260 * This routine is called when we are attempting to sync a buf with 12261 * dependencies. If waitfor is MNT_NOWAIT it attempts to schedule any 12262 * other IO it can but returns EBUSY if the buffer is not yet able to 12263 * be written. Dependencies which will not cause rollbacks will always 12264 * return 0. 12265 */ 12266 int 12267 softdep_sync_buf(struct vnode *vp, struct buf *bp, int waitfor) 12268 { 12269 struct indirdep *indirdep; 12270 struct pagedep *pagedep; 12271 struct allocindir *aip; 12272 struct newblk *newblk; 12273 struct buf *nbp; 12274 struct worklist *wk; 12275 int i, error; 12276 12277 /* 12278 * For VCHR we just don't want to force flush any dependencies that 12279 * will cause rollbacks. 12280 */ 12281 if (vp->v_type == VCHR) { 12282 if (waitfor == MNT_NOWAIT && softdep_count_dependencies(bp, 0)) 12283 return (EBUSY); 12284 return (0); 12285 } 12286 ACQUIRE_LOCK(&lk); 12287 /* 12288 * As we hold the buffer locked, none of its dependencies 12289 * will disappear. 12290 */ 12291 error = 0; 12292 top: 12293 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 12294 switch (wk->wk_type) { 12295 12296 case D_ALLOCDIRECT: 12297 case D_ALLOCINDIR: 12298 newblk = WK_NEWBLK(wk); 12299 if (newblk->nb_jnewblk != NULL) { 12300 if (waitfor == MNT_NOWAIT) { 12301 error = EBUSY; 12302 goto out_unlock; 12303 } 12304 jwait(&newblk->nb_jnewblk->jn_list, waitfor); 12305 goto top; 12306 } 12307 if (newblk->nb_state & DEPCOMPLETE || 12308 waitfor == MNT_NOWAIT) 12309 continue; 12310 nbp = newblk->nb_bmsafemap->sm_buf; 12311 nbp = getdirtybuf(nbp, &lk, waitfor); 12312 if (nbp == NULL) 12313 goto top; 12314 FREE_LOCK(&lk); 12315 if ((error = bwrite(nbp)) != 0) 12316 goto out; 12317 ACQUIRE_LOCK(&lk); 12318 continue; 12319 12320 case D_INDIRDEP: 12321 indirdep = WK_INDIRDEP(wk); 12322 if (waitfor == MNT_NOWAIT) { 12323 if (!TAILQ_EMPTY(&indirdep->ir_trunc) || 12324 !LIST_EMPTY(&indirdep->ir_deplisthd)) { 12325 error = EBUSY; 12326 goto out_unlock; 12327 } 12328 } 12329 if (!TAILQ_EMPTY(&indirdep->ir_trunc)) 12330 panic("softdep_sync_buf: truncation pending."); 12331 restart: 12332 LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) { 12333 newblk = (struct newblk *)aip; 12334 if (newblk->nb_jnewblk != NULL) { 12335 jwait(&newblk->nb_jnewblk->jn_list, 12336 waitfor); 12337 goto restart; 12338 } 12339 if (newblk->nb_state & DEPCOMPLETE) 12340 continue; 12341 nbp = newblk->nb_bmsafemap->sm_buf; 12342 nbp = getdirtybuf(nbp, &lk, waitfor); 12343 if (nbp == NULL) 12344 goto restart; 12345 FREE_LOCK(&lk); 12346 if ((error = bwrite(nbp)) != 0) 12347 goto out; 12348 ACQUIRE_LOCK(&lk); 12349 goto restart; 12350 } 12351 continue; 12352 12353 case D_PAGEDEP: 12354 /* 12355 * Only flush directory entries in synchronous passes. 12356 */ 12357 if (waitfor != MNT_WAIT) { 12358 error = EBUSY; 12359 goto out_unlock; 12360 } 12361 /* 12362 * While syncing snapshots, we must allow recursive 12363 * lookups. 12364 */ 12365 BUF_AREC(bp); 12366 /* 12367 * We are trying to sync a directory that may 12368 * have dependencies on both its own metadata 12369 * and/or dependencies on the inodes of any 12370 * recently allocated files. We walk its diradd 12371 * lists pushing out the associated inode. 12372 */ 12373 pagedep = WK_PAGEDEP(wk); 12374 for (i = 0; i < DAHASHSZ; i++) { 12375 if (LIST_FIRST(&pagedep->pd_diraddhd[i]) == 0) 12376 continue; 12377 if ((error = flush_pagedep_deps(vp, wk->wk_mp, 12378 &pagedep->pd_diraddhd[i]))) { 12379 BUF_NOREC(bp); 12380 goto out_unlock; 12381 } 12382 } 12383 BUF_NOREC(bp); 12384 continue; 12385 12386 case D_FREEWORK: 12387 case D_FREEDEP: 12388 case D_JSEGDEP: 12389 case D_JNEWBLK: 12390 continue; 12391 12392 default: 12393 panic("softdep_sync_buf: Unknown type %s", 12394 TYPENAME(wk->wk_type)); 12395 /* NOTREACHED */ 12396 } 12397 } 12398 out_unlock: 12399 FREE_LOCK(&lk); 12400 out: 12401 return (error); 12402 } 12403 12404 /* 12405 * Flush the dependencies associated with an inodedep. 12406 * Called with splbio blocked. 12407 */ 12408 static int 12409 flush_inodedep_deps(vp, mp, ino) 12410 struct vnode *vp; 12411 struct mount *mp; 12412 ino_t ino; 12413 { 12414 struct inodedep *inodedep; 12415 struct inoref *inoref; 12416 int error, waitfor; 12417 12418 /* 12419 * This work is done in two passes. The first pass grabs most 12420 * of the buffers and begins asynchronously writing them. The 12421 * only way to wait for these asynchronous writes is to sleep 12422 * on the filesystem vnode which may stay busy for a long time 12423 * if the filesystem is active. So, instead, we make a second 12424 * pass over the dependencies blocking on each write. In the 12425 * usual case we will be blocking against a write that we 12426 * initiated, so when it is done the dependency will have been 12427 * resolved. Thus the second pass is expected to end quickly. 12428 * We give a brief window at the top of the loop to allow 12429 * any pending I/O to complete. 12430 */ 12431 for (error = 0, waitfor = MNT_NOWAIT; ; ) { 12432 if (error) 12433 return (error); 12434 FREE_LOCK(&lk); 12435 ACQUIRE_LOCK(&lk); 12436 restart: 12437 if (inodedep_lookup(mp, ino, 0, &inodedep) == 0) 12438 return (0); 12439 TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) { 12440 if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY)) 12441 == DEPCOMPLETE) { 12442 jwait(&inoref->if_list, MNT_WAIT); 12443 goto restart; 12444 } 12445 } 12446 if (flush_deplist(&inodedep->id_inoupdt, waitfor, &error) || 12447 flush_deplist(&inodedep->id_newinoupdt, waitfor, &error) || 12448 flush_deplist(&inodedep->id_extupdt, waitfor, &error) || 12449 flush_deplist(&inodedep->id_newextupdt, waitfor, &error)) 12450 continue; 12451 /* 12452 * If pass2, we are done, otherwise do pass 2. 12453 */ 12454 if (waitfor == MNT_WAIT) 12455 break; 12456 waitfor = MNT_WAIT; 12457 } 12458 /* 12459 * Try freeing inodedep in case all dependencies have been removed. 12460 */ 12461 if (inodedep_lookup(mp, ino, 0, &inodedep) != 0) 12462 (void) free_inodedep(inodedep); 12463 return (0); 12464 } 12465 12466 /* 12467 * Flush an inode dependency list. 12468 * Called with splbio blocked. 12469 */ 12470 static int 12471 flush_deplist(listhead, waitfor, errorp) 12472 struct allocdirectlst *listhead; 12473 int waitfor; 12474 int *errorp; 12475 { 12476 struct allocdirect *adp; 12477 struct newblk *newblk; 12478 struct buf *bp; 12479 12480 rw_assert(&lk, RA_WLOCKED); 12481 TAILQ_FOREACH(adp, listhead, ad_next) { 12482 newblk = (struct newblk *)adp; 12483 if (newblk->nb_jnewblk != NULL) { 12484 jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT); 12485 return (1); 12486 } 12487 if (newblk->nb_state & DEPCOMPLETE) 12488 continue; 12489 bp = newblk->nb_bmsafemap->sm_buf; 12490 bp = getdirtybuf(bp, &lk, waitfor); 12491 if (bp == NULL) { 12492 if (waitfor == MNT_NOWAIT) 12493 continue; 12494 return (1); 12495 } 12496 FREE_LOCK(&lk); 12497 if (waitfor == MNT_NOWAIT) 12498 bawrite(bp); 12499 else 12500 *errorp = bwrite(bp); 12501 ACQUIRE_LOCK(&lk); 12502 return (1); 12503 } 12504 return (0); 12505 } 12506 12507 /* 12508 * Flush dependencies associated with an allocdirect block. 12509 */ 12510 static int 12511 flush_newblk_dep(vp, mp, lbn) 12512 struct vnode *vp; 12513 struct mount *mp; 12514 ufs_lbn_t lbn; 12515 { 12516 struct newblk *newblk; 12517 struct bufobj *bo; 12518 struct inode *ip; 12519 struct buf *bp; 12520 ufs2_daddr_t blkno; 12521 int error; 12522 12523 error = 0; 12524 bo = &vp->v_bufobj; 12525 ip = VTOI(vp); 12526 blkno = DIP(ip, i_db[lbn]); 12527 if (blkno == 0) 12528 panic("flush_newblk_dep: Missing block"); 12529 ACQUIRE_LOCK(&lk); 12530 /* 12531 * Loop until all dependencies related to this block are satisfied. 12532 * We must be careful to restart after each sleep in case a write 12533 * completes some part of this process for us. 12534 */ 12535 for (;;) { 12536 if (newblk_lookup(mp, blkno, 0, &newblk) == 0) { 12537 FREE_LOCK(&lk); 12538 break; 12539 } 12540 if (newblk->nb_list.wk_type != D_ALLOCDIRECT) 12541 panic("flush_newblk_deps: Bad newblk %p", newblk); 12542 /* 12543 * Flush the journal. 12544 */ 12545 if (newblk->nb_jnewblk != NULL) { 12546 jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT); 12547 continue; 12548 } 12549 /* 12550 * Write the bitmap dependency. 12551 */ 12552 if ((newblk->nb_state & DEPCOMPLETE) == 0) { 12553 bp = newblk->nb_bmsafemap->sm_buf; 12554 bp = getdirtybuf(bp, &lk, MNT_WAIT); 12555 if (bp == NULL) 12556 continue; 12557 FREE_LOCK(&lk); 12558 error = bwrite(bp); 12559 if (error) 12560 break; 12561 ACQUIRE_LOCK(&lk); 12562 continue; 12563 } 12564 /* 12565 * Write the buffer. 12566 */ 12567 FREE_LOCK(&lk); 12568 BO_LOCK(bo); 12569 bp = gbincore(bo, lbn); 12570 if (bp != NULL) { 12571 error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL | 12572 LK_INTERLOCK, BO_LOCKPTR(bo)); 12573 if (error == ENOLCK) { 12574 ACQUIRE_LOCK(&lk); 12575 continue; /* Slept, retry */ 12576 } 12577 if (error != 0) 12578 break; /* Failed */ 12579 if (bp->b_flags & B_DELWRI) { 12580 bremfree(bp); 12581 error = bwrite(bp); 12582 if (error) 12583 break; 12584 } else 12585 BUF_UNLOCK(bp); 12586 } else 12587 BO_UNLOCK(bo); 12588 /* 12589 * We have to wait for the direct pointers to 12590 * point at the newdirblk before the dependency 12591 * will go away. 12592 */ 12593 error = ffs_update(vp, 1); 12594 if (error) 12595 break; 12596 ACQUIRE_LOCK(&lk); 12597 } 12598 return (error); 12599 } 12600 12601 /* 12602 * Eliminate a pagedep dependency by flushing out all its diradd dependencies. 12603 * Called with splbio blocked. 12604 */ 12605 static int 12606 flush_pagedep_deps(pvp, mp, diraddhdp) 12607 struct vnode *pvp; 12608 struct mount *mp; 12609 struct diraddhd *diraddhdp; 12610 { 12611 struct inodedep *inodedep; 12612 struct inoref *inoref; 12613 struct ufsmount *ump; 12614 struct diradd *dap; 12615 struct vnode *vp; 12616 int error = 0; 12617 struct buf *bp; 12618 ino_t inum; 12619 12620 ump = VFSTOUFS(mp); 12621 restart: 12622 while ((dap = LIST_FIRST(diraddhdp)) != NULL) { 12623 /* 12624 * Flush ourselves if this directory entry 12625 * has a MKDIR_PARENT dependency. 12626 */ 12627 if (dap->da_state & MKDIR_PARENT) { 12628 FREE_LOCK(&lk); 12629 if ((error = ffs_update(pvp, 1)) != 0) 12630 break; 12631 ACQUIRE_LOCK(&lk); 12632 /* 12633 * If that cleared dependencies, go on to next. 12634 */ 12635 if (dap != LIST_FIRST(diraddhdp)) 12636 continue; 12637 if (dap->da_state & MKDIR_PARENT) 12638 panic("flush_pagedep_deps: MKDIR_PARENT"); 12639 } 12640 /* 12641 * A newly allocated directory must have its "." and 12642 * ".." entries written out before its name can be 12643 * committed in its parent. 12644 */ 12645 inum = dap->da_newinum; 12646 if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0) 12647 panic("flush_pagedep_deps: lost inode1"); 12648 /* 12649 * Wait for any pending journal adds to complete so we don't 12650 * cause rollbacks while syncing. 12651 */ 12652 TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) { 12653 if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY)) 12654 == DEPCOMPLETE) { 12655 jwait(&inoref->if_list, MNT_WAIT); 12656 goto restart; 12657 } 12658 } 12659 if (dap->da_state & MKDIR_BODY) { 12660 FREE_LOCK(&lk); 12661 if ((error = ffs_vgetf(mp, inum, LK_EXCLUSIVE, &vp, 12662 FFSV_FORCEINSMQ))) 12663 break; 12664 error = flush_newblk_dep(vp, mp, 0); 12665 /* 12666 * If we still have the dependency we might need to 12667 * update the vnode to sync the new link count to 12668 * disk. 12669 */ 12670 if (error == 0 && dap == LIST_FIRST(diraddhdp)) 12671 error = ffs_update(vp, 1); 12672 vput(vp); 12673 if (error != 0) 12674 break; 12675 ACQUIRE_LOCK(&lk); 12676 /* 12677 * If that cleared dependencies, go on to next. 12678 */ 12679 if (dap != LIST_FIRST(diraddhdp)) 12680 continue; 12681 if (dap->da_state & MKDIR_BODY) { 12682 inodedep_lookup(UFSTOVFS(ump), inum, 0, 12683 &inodedep); 12684 panic("flush_pagedep_deps: MKDIR_BODY " 12685 "inodedep %p dap %p vp %p", 12686 inodedep, dap, vp); 12687 } 12688 } 12689 /* 12690 * Flush the inode on which the directory entry depends. 12691 * Having accounted for MKDIR_PARENT and MKDIR_BODY above, 12692 * the only remaining dependency is that the updated inode 12693 * count must get pushed to disk. The inode has already 12694 * been pushed into its inode buffer (via VOP_UPDATE) at 12695 * the time of the reference count change. So we need only 12696 * locate that buffer, ensure that there will be no rollback 12697 * caused by a bitmap dependency, then write the inode buffer. 12698 */ 12699 retry: 12700 if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0) 12701 panic("flush_pagedep_deps: lost inode"); 12702 /* 12703 * If the inode still has bitmap dependencies, 12704 * push them to disk. 12705 */ 12706 if ((inodedep->id_state & (DEPCOMPLETE | GOINGAWAY)) == 0) { 12707 bp = inodedep->id_bmsafemap->sm_buf; 12708 bp = getdirtybuf(bp, &lk, MNT_WAIT); 12709 if (bp == NULL) 12710 goto retry; 12711 FREE_LOCK(&lk); 12712 if ((error = bwrite(bp)) != 0) 12713 break; 12714 ACQUIRE_LOCK(&lk); 12715 if (dap != LIST_FIRST(diraddhdp)) 12716 continue; 12717 } 12718 /* 12719 * If the inode is still sitting in a buffer waiting 12720 * to be written or waiting for the link count to be 12721 * adjusted update it here to flush it to disk. 12722 */ 12723 if (dap == LIST_FIRST(diraddhdp)) { 12724 FREE_LOCK(&lk); 12725 if ((error = ffs_vgetf(mp, inum, LK_EXCLUSIVE, &vp, 12726 FFSV_FORCEINSMQ))) 12727 break; 12728 error = ffs_update(vp, 1); 12729 vput(vp); 12730 if (error) 12731 break; 12732 ACQUIRE_LOCK(&lk); 12733 } 12734 /* 12735 * If we have failed to get rid of all the dependencies 12736 * then something is seriously wrong. 12737 */ 12738 if (dap == LIST_FIRST(diraddhdp)) { 12739 inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep); 12740 panic("flush_pagedep_deps: failed to flush " 12741 "inodedep %p ino %ju dap %p", 12742 inodedep, (uintmax_t)inum, dap); 12743 } 12744 } 12745 if (error) 12746 ACQUIRE_LOCK(&lk); 12747 return (error); 12748 } 12749 12750 /* 12751 * A large burst of file addition or deletion activity can drive the 12752 * memory load excessively high. First attempt to slow things down 12753 * using the techniques below. If that fails, this routine requests 12754 * the offending operations to fall back to running synchronously 12755 * until the memory load returns to a reasonable level. 12756 */ 12757 int 12758 softdep_slowdown(vp) 12759 struct vnode *vp; 12760 { 12761 struct ufsmount *ump; 12762 int jlow; 12763 int max_softdeps_hard; 12764 12765 ACQUIRE_LOCK(&lk); 12766 jlow = 0; 12767 /* 12768 * Check for journal space if needed. 12769 */ 12770 if (DOINGSUJ(vp)) { 12771 ump = VFSTOUFS(vp->v_mount); 12772 if (journal_space(ump, 0) == 0) 12773 jlow = 1; 12774 } 12775 max_softdeps_hard = max_softdeps * 11 / 10; 12776 if (dep_current[D_DIRREM] < max_softdeps_hard / 2 && 12777 dep_current[D_INODEDEP] < max_softdeps_hard && 12778 VFSTOUFS(vp->v_mount)->um_numindirdeps < maxindirdeps && 12779 dep_current[D_FREEBLKS] < max_softdeps_hard && jlow == 0) { 12780 FREE_LOCK(&lk); 12781 return (0); 12782 } 12783 if (VFSTOUFS(vp->v_mount)->um_numindirdeps >= maxindirdeps || jlow) 12784 softdep_speedup(); 12785 stat_sync_limit_hit += 1; 12786 FREE_LOCK(&lk); 12787 if (DOINGSUJ(vp)) 12788 return (0); 12789 return (1); 12790 } 12791 12792 /* 12793 * Called by the allocation routines when they are about to fail 12794 * in the hope that we can free up the requested resource (inodes 12795 * or disk space). 12796 * 12797 * First check to see if the work list has anything on it. If it has, 12798 * clean up entries until we successfully free the requested resource. 12799 * Because this process holds inodes locked, we cannot handle any remove 12800 * requests that might block on a locked inode as that could lead to 12801 * deadlock. If the worklist yields none of the requested resource, 12802 * start syncing out vnodes to free up the needed space. 12803 */ 12804 int 12805 softdep_request_cleanup(fs, vp, cred, resource) 12806 struct fs *fs; 12807 struct vnode *vp; 12808 struct ucred *cred; 12809 int resource; 12810 { 12811 struct ufsmount *ump; 12812 struct mount *mp; 12813 struct vnode *lvp, *mvp; 12814 long starttime; 12815 ufs2_daddr_t needed; 12816 int error; 12817 12818 /* 12819 * If we are being called because of a process doing a 12820 * copy-on-write, then it is not safe to process any 12821 * worklist items as we will recurse into the copyonwrite 12822 * routine. This will result in an incoherent snapshot. 12823 * If the vnode that we hold is a snapshot, we must avoid 12824 * handling other resources that could cause deadlock. 12825 */ 12826 if ((curthread->td_pflags & TDP_COWINPROGRESS) || IS_SNAPSHOT(VTOI(vp))) 12827 return (0); 12828 12829 if (resource == FLUSH_BLOCKS_WAIT) 12830 stat_cleanup_blkrequests += 1; 12831 else 12832 stat_cleanup_inorequests += 1; 12833 12834 mp = vp->v_mount; 12835 ump = VFSTOUFS(mp); 12836 mtx_assert(UFS_MTX(ump), MA_OWNED); 12837 UFS_UNLOCK(ump); 12838 error = ffs_update(vp, 1); 12839 if (error != 0) { 12840 UFS_LOCK(ump); 12841 return (0); 12842 } 12843 /* 12844 * If we are in need of resources, consider pausing for 12845 * tickdelay to give ourselves some breathing room. 12846 */ 12847 ACQUIRE_LOCK(&lk); 12848 process_removes(vp); 12849 process_truncates(vp); 12850 request_cleanup(UFSTOVFS(ump), resource); 12851 FREE_LOCK(&lk); 12852 /* 12853 * Now clean up at least as many resources as we will need. 12854 * 12855 * When requested to clean up inodes, the number that are needed 12856 * is set by the number of simultaneous writers (mnt_writeopcount) 12857 * plus a bit of slop (2) in case some more writers show up while 12858 * we are cleaning. 12859 * 12860 * When requested to free up space, the amount of space that 12861 * we need is enough blocks to allocate a full-sized segment 12862 * (fs_contigsumsize). The number of such segments that will 12863 * be needed is set by the number of simultaneous writers 12864 * (mnt_writeopcount) plus a bit of slop (2) in case some more 12865 * writers show up while we are cleaning. 12866 * 12867 * Additionally, if we are unpriviledged and allocating space, 12868 * we need to ensure that we clean up enough blocks to get the 12869 * needed number of blocks over the threshhold of the minimum 12870 * number of blocks required to be kept free by the filesystem 12871 * (fs_minfree). 12872 */ 12873 if (resource == FLUSH_INODES_WAIT) { 12874 needed = vp->v_mount->mnt_writeopcount + 2; 12875 } else if (resource == FLUSH_BLOCKS_WAIT) { 12876 needed = (vp->v_mount->mnt_writeopcount + 2) * 12877 fs->fs_contigsumsize; 12878 if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE, 0)) 12879 needed += fragstoblks(fs, 12880 roundup((fs->fs_dsize * fs->fs_minfree / 100) - 12881 fs->fs_cstotal.cs_nffree, fs->fs_frag)); 12882 } else { 12883 UFS_LOCK(ump); 12884 printf("softdep_request_cleanup: Unknown resource type %d\n", 12885 resource); 12886 return (0); 12887 } 12888 starttime = time_second; 12889 retry: 12890 if ((resource == FLUSH_BLOCKS_WAIT && ump->softdep_on_worklist > 0 && 12891 fs->fs_cstotal.cs_nbfree <= needed) || 12892 (resource == FLUSH_INODES_WAIT && fs->fs_pendinginodes > 0 && 12893 fs->fs_cstotal.cs_nifree <= needed)) { 12894 ACQUIRE_LOCK(&lk); 12895 if (ump->softdep_on_worklist > 0 && 12896 process_worklist_item(UFSTOVFS(ump), 12897 ump->softdep_on_worklist, LK_NOWAIT) != 0) 12898 stat_worklist_push += 1; 12899 FREE_LOCK(&lk); 12900 } 12901 /* 12902 * If we still need resources and there are no more worklist 12903 * entries to process to obtain them, we have to start flushing 12904 * the dirty vnodes to force the release of additional requests 12905 * to the worklist that we can then process to reap addition 12906 * resources. We walk the vnodes associated with the mount point 12907 * until we get the needed worklist requests that we can reap. 12908 */ 12909 if ((resource == FLUSH_BLOCKS_WAIT && 12910 fs->fs_cstotal.cs_nbfree <= needed) || 12911 (resource == FLUSH_INODES_WAIT && fs->fs_pendinginodes > 0 && 12912 fs->fs_cstotal.cs_nifree <= needed)) { 12913 MNT_VNODE_FOREACH_ALL(lvp, mp, mvp) { 12914 if (TAILQ_FIRST(&lvp->v_bufobj.bo_dirty.bv_hd) == 0) { 12915 VI_UNLOCK(lvp); 12916 continue; 12917 } 12918 if (vget(lvp, LK_EXCLUSIVE | LK_INTERLOCK | LK_NOWAIT, 12919 curthread)) 12920 continue; 12921 if (lvp->v_vflag & VV_NOSYNC) { /* unlinked */ 12922 vput(lvp); 12923 continue; 12924 } 12925 (void) ffs_syncvnode(lvp, MNT_NOWAIT, 0); 12926 vput(lvp); 12927 } 12928 lvp = ump->um_devvp; 12929 if (vn_lock(lvp, LK_EXCLUSIVE | LK_NOWAIT) == 0) { 12930 VOP_FSYNC(lvp, MNT_NOWAIT, curthread); 12931 VOP_UNLOCK(lvp, 0); 12932 } 12933 if (ump->softdep_on_worklist > 0) { 12934 stat_cleanup_retries += 1; 12935 goto retry; 12936 } 12937 stat_cleanup_failures += 1; 12938 } 12939 if (time_second - starttime > stat_cleanup_high_delay) 12940 stat_cleanup_high_delay = time_second - starttime; 12941 UFS_LOCK(ump); 12942 return (1); 12943 } 12944 12945 /* 12946 * If memory utilization has gotten too high, deliberately slow things 12947 * down and speed up the I/O processing. 12948 */ 12949 extern struct thread *syncertd; 12950 static int 12951 request_cleanup(mp, resource) 12952 struct mount *mp; 12953 int resource; 12954 { 12955 struct thread *td = curthread; 12956 struct ufsmount *ump; 12957 12958 rw_assert(&lk, RA_WLOCKED); 12959 /* 12960 * We never hold up the filesystem syncer or buf daemon. 12961 */ 12962 if (td->td_pflags & (TDP_SOFTDEP|TDP_NORUNNINGBUF)) 12963 return (0); 12964 ump = VFSTOUFS(mp); 12965 /* 12966 * First check to see if the work list has gotten backlogged. 12967 * If it has, co-opt this process to help clean up two entries. 12968 * Because this process may hold inodes locked, we cannot 12969 * handle any remove requests that might block on a locked 12970 * inode as that could lead to deadlock. We set TDP_SOFTDEP 12971 * to avoid recursively processing the worklist. 12972 */ 12973 if (ump->softdep_on_worklist > max_softdeps / 10) { 12974 td->td_pflags |= TDP_SOFTDEP; 12975 process_worklist_item(mp, 2, LK_NOWAIT); 12976 td->td_pflags &= ~TDP_SOFTDEP; 12977 stat_worklist_push += 2; 12978 return(1); 12979 } 12980 /* 12981 * Next, we attempt to speed up the syncer process. If that 12982 * is successful, then we allow the process to continue. 12983 */ 12984 if (softdep_speedup() && 12985 resource != FLUSH_BLOCKS_WAIT && 12986 resource != FLUSH_INODES_WAIT) 12987 return(0); 12988 /* 12989 * If we are resource constrained on inode dependencies, try 12990 * flushing some dirty inodes. Otherwise, we are constrained 12991 * by file deletions, so try accelerating flushes of directories 12992 * with removal dependencies. We would like to do the cleanup 12993 * here, but we probably hold an inode locked at this point and 12994 * that might deadlock against one that we try to clean. So, 12995 * the best that we can do is request the syncer daemon to do 12996 * the cleanup for us. 12997 */ 12998 switch (resource) { 12999 13000 case FLUSH_INODES: 13001 case FLUSH_INODES_WAIT: 13002 stat_ino_limit_push += 1; 13003 req_clear_inodedeps += 1; 13004 stat_countp = &stat_ino_limit_hit; 13005 break; 13006 13007 case FLUSH_BLOCKS: 13008 case FLUSH_BLOCKS_WAIT: 13009 stat_blk_limit_push += 1; 13010 req_clear_remove += 1; 13011 stat_countp = &stat_blk_limit_hit; 13012 break; 13013 13014 default: 13015 panic("request_cleanup: unknown type"); 13016 } 13017 /* 13018 * Hopefully the syncer daemon will catch up and awaken us. 13019 * We wait at most tickdelay before proceeding in any case. 13020 */ 13021 proc_waiting += 1; 13022 if (callout_pending(&softdep_callout) == FALSE) 13023 callout_reset(&softdep_callout, tickdelay > 2 ? tickdelay : 2, 13024 pause_timer, 0); 13025 13026 msleep((caddr_t)&proc_waiting, &lk, PPAUSE, "softupdate", 0); 13027 proc_waiting -= 1; 13028 return (1); 13029 } 13030 13031 /* 13032 * Awaken processes pausing in request_cleanup and clear proc_waiting 13033 * to indicate that there is no longer a timer running. 13034 */ 13035 static void 13036 pause_timer(arg) 13037 void *arg; 13038 { 13039 13040 /* 13041 * The callout_ API has acquired mtx and will hold it around this 13042 * function call. 13043 */ 13044 *stat_countp += 1; 13045 wakeup_one(&proc_waiting); 13046 if (proc_waiting > 0) 13047 callout_reset(&softdep_callout, tickdelay > 2 ? tickdelay : 2, 13048 pause_timer, 0); 13049 } 13050 13051 /* 13052 * Flush out a directory with at least one removal dependency in an effort to 13053 * reduce the number of dirrem, freefile, and freeblks dependency structures. 13054 */ 13055 static void 13056 clear_remove(void) 13057 { 13058 struct pagedep_hashhead *pagedephd; 13059 struct pagedep *pagedep; 13060 static int next = 0; 13061 struct mount *mp; 13062 struct vnode *vp; 13063 struct bufobj *bo; 13064 int error, cnt; 13065 ino_t ino; 13066 13067 rw_assert(&lk, RA_WLOCKED); 13068 13069 for (cnt = 0; cnt <= pagedep_hash; cnt++) { 13070 pagedephd = &pagedep_hashtbl[next++]; 13071 if (next > pagedep_hash) 13072 next = 0; 13073 LIST_FOREACH(pagedep, pagedephd, pd_hash) { 13074 if (LIST_EMPTY(&pagedep->pd_dirremhd)) 13075 continue; 13076 mp = pagedep->pd_list.wk_mp; 13077 ino = pagedep->pd_ino; 13078 if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) 13079 continue; 13080 FREE_LOCK(&lk); 13081 13082 /* 13083 * Let unmount clear deps 13084 */ 13085 error = vfs_busy(mp, MBF_NOWAIT); 13086 if (error != 0) 13087 goto finish_write; 13088 error = ffs_vgetf(mp, ino, LK_EXCLUSIVE, &vp, 13089 FFSV_FORCEINSMQ); 13090 vfs_unbusy(mp); 13091 if (error != 0) { 13092 softdep_error("clear_remove: vget", error); 13093 goto finish_write; 13094 } 13095 if ((error = ffs_syncvnode(vp, MNT_NOWAIT, 0))) 13096 softdep_error("clear_remove: fsync", error); 13097 bo = &vp->v_bufobj; 13098 BO_LOCK(bo); 13099 drain_output(vp); 13100 BO_UNLOCK(bo); 13101 vput(vp); 13102 finish_write: 13103 vn_finished_write(mp); 13104 ACQUIRE_LOCK(&lk); 13105 return; 13106 } 13107 } 13108 } 13109 13110 /* 13111 * Clear out a block of dirty inodes in an effort to reduce 13112 * the number of inodedep dependency structures. 13113 */ 13114 static void 13115 clear_inodedeps(void) 13116 { 13117 struct inodedep_hashhead *inodedephd; 13118 struct inodedep *inodedep; 13119 static int next = 0; 13120 struct mount *mp; 13121 struct vnode *vp; 13122 struct fs *fs; 13123 int error, cnt; 13124 ino_t firstino, lastino, ino; 13125 13126 rw_assert(&lk, RA_WLOCKED); 13127 /* 13128 * Pick a random inode dependency to be cleared. 13129 * We will then gather up all the inodes in its block 13130 * that have dependencies and flush them out. 13131 */ 13132 for (cnt = 0; cnt <= inodedep_hash; cnt++) { 13133 inodedephd = &inodedep_hashtbl[next++]; 13134 if (next > inodedep_hash) 13135 next = 0; 13136 if ((inodedep = LIST_FIRST(inodedephd)) != NULL) 13137 break; 13138 } 13139 if (inodedep == NULL) 13140 return; 13141 fs = inodedep->id_fs; 13142 mp = inodedep->id_list.wk_mp; 13143 /* 13144 * Find the last inode in the block with dependencies. 13145 */ 13146 firstino = inodedep->id_ino & ~(INOPB(fs) - 1); 13147 for (lastino = firstino + INOPB(fs) - 1; lastino > firstino; lastino--) 13148 if (inodedep_lookup(mp, lastino, 0, &inodedep) != 0) 13149 break; 13150 /* 13151 * Asynchronously push all but the last inode with dependencies. 13152 * Synchronously push the last inode with dependencies to ensure 13153 * that the inode block gets written to free up the inodedeps. 13154 */ 13155 for (ino = firstino; ino <= lastino; ino++) { 13156 if (inodedep_lookup(mp, ino, 0, &inodedep) == 0) 13157 continue; 13158 if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) 13159 continue; 13160 FREE_LOCK(&lk); 13161 error = vfs_busy(mp, MBF_NOWAIT); /* Let unmount clear deps */ 13162 if (error != 0) { 13163 vn_finished_write(mp); 13164 ACQUIRE_LOCK(&lk); 13165 return; 13166 } 13167 if ((error = ffs_vgetf(mp, ino, LK_EXCLUSIVE, &vp, 13168 FFSV_FORCEINSMQ)) != 0) { 13169 softdep_error("clear_inodedeps: vget", error); 13170 vfs_unbusy(mp); 13171 vn_finished_write(mp); 13172 ACQUIRE_LOCK(&lk); 13173 return; 13174 } 13175 vfs_unbusy(mp); 13176 if (ino == lastino) { 13177 if ((error = ffs_syncvnode(vp, MNT_WAIT, 0))) 13178 softdep_error("clear_inodedeps: fsync1", error); 13179 } else { 13180 if ((error = ffs_syncvnode(vp, MNT_NOWAIT, 0))) 13181 softdep_error("clear_inodedeps: fsync2", error); 13182 BO_LOCK(&vp->v_bufobj); 13183 drain_output(vp); 13184 BO_UNLOCK(&vp->v_bufobj); 13185 } 13186 vput(vp); 13187 vn_finished_write(mp); 13188 ACQUIRE_LOCK(&lk); 13189 } 13190 } 13191 13192 void 13193 softdep_buf_append(bp, wkhd) 13194 struct buf *bp; 13195 struct workhead *wkhd; 13196 { 13197 struct worklist *wk; 13198 13199 ACQUIRE_LOCK(&lk); 13200 while ((wk = LIST_FIRST(wkhd)) != NULL) { 13201 WORKLIST_REMOVE(wk); 13202 WORKLIST_INSERT(&bp->b_dep, wk); 13203 } 13204 FREE_LOCK(&lk); 13205 13206 } 13207 13208 void 13209 softdep_inode_append(ip, cred, wkhd) 13210 struct inode *ip; 13211 struct ucred *cred; 13212 struct workhead *wkhd; 13213 { 13214 struct buf *bp; 13215 struct fs *fs; 13216 int error; 13217 13218 fs = ip->i_fs; 13219 error = bread(ip->i_devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)), 13220 (int)fs->fs_bsize, cred, &bp); 13221 if (error) { 13222 bqrelse(bp); 13223 softdep_freework(wkhd); 13224 return; 13225 } 13226 softdep_buf_append(bp, wkhd); 13227 bqrelse(bp); 13228 } 13229 13230 void 13231 softdep_freework(wkhd) 13232 struct workhead *wkhd; 13233 { 13234 13235 ACQUIRE_LOCK(&lk); 13236 handle_jwork(wkhd); 13237 FREE_LOCK(&lk); 13238 } 13239 13240 /* 13241 * Function to determine if the buffer has outstanding dependencies 13242 * that will cause a roll-back if the buffer is written. If wantcount 13243 * is set, return number of dependencies, otherwise just yes or no. 13244 */ 13245 static int 13246 softdep_count_dependencies(bp, wantcount) 13247 struct buf *bp; 13248 int wantcount; 13249 { 13250 struct worklist *wk; 13251 struct bmsafemap *bmsafemap; 13252 struct freework *freework; 13253 struct inodedep *inodedep; 13254 struct indirdep *indirdep; 13255 struct freeblks *freeblks; 13256 struct allocindir *aip; 13257 struct pagedep *pagedep; 13258 struct dirrem *dirrem; 13259 struct newblk *newblk; 13260 struct mkdir *mkdir; 13261 struct diradd *dap; 13262 int i, retval; 13263 13264 retval = 0; 13265 ACQUIRE_LOCK(&lk); 13266 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 13267 switch (wk->wk_type) { 13268 13269 case D_INODEDEP: 13270 inodedep = WK_INODEDEP(wk); 13271 if ((inodedep->id_state & DEPCOMPLETE) == 0) { 13272 /* bitmap allocation dependency */ 13273 retval += 1; 13274 if (!wantcount) 13275 goto out; 13276 } 13277 if (TAILQ_FIRST(&inodedep->id_inoupdt)) { 13278 /* direct block pointer dependency */ 13279 retval += 1; 13280 if (!wantcount) 13281 goto out; 13282 } 13283 if (TAILQ_FIRST(&inodedep->id_extupdt)) { 13284 /* direct block pointer dependency */ 13285 retval += 1; 13286 if (!wantcount) 13287 goto out; 13288 } 13289 if (TAILQ_FIRST(&inodedep->id_inoreflst)) { 13290 /* Add reference dependency. */ 13291 retval += 1; 13292 if (!wantcount) 13293 goto out; 13294 } 13295 continue; 13296 13297 case D_INDIRDEP: 13298 indirdep = WK_INDIRDEP(wk); 13299 13300 TAILQ_FOREACH(freework, &indirdep->ir_trunc, fw_next) { 13301 /* indirect truncation dependency */ 13302 retval += 1; 13303 if (!wantcount) 13304 goto out; 13305 } 13306 13307 LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) { 13308 /* indirect block pointer dependency */ 13309 retval += 1; 13310 if (!wantcount) 13311 goto out; 13312 } 13313 continue; 13314 13315 case D_PAGEDEP: 13316 pagedep = WK_PAGEDEP(wk); 13317 LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next) { 13318 if (LIST_FIRST(&dirrem->dm_jremrefhd)) { 13319 /* Journal remove ref dependency. */ 13320 retval += 1; 13321 if (!wantcount) 13322 goto out; 13323 } 13324 } 13325 for (i = 0; i < DAHASHSZ; i++) { 13326 13327 LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) { 13328 /* directory entry dependency */ 13329 retval += 1; 13330 if (!wantcount) 13331 goto out; 13332 } 13333 } 13334 continue; 13335 13336 case D_BMSAFEMAP: 13337 bmsafemap = WK_BMSAFEMAP(wk); 13338 if (LIST_FIRST(&bmsafemap->sm_jaddrefhd)) { 13339 /* Add reference dependency. */ 13340 retval += 1; 13341 if (!wantcount) 13342 goto out; 13343 } 13344 if (LIST_FIRST(&bmsafemap->sm_jnewblkhd)) { 13345 /* Allocate block dependency. */ 13346 retval += 1; 13347 if (!wantcount) 13348 goto out; 13349 } 13350 continue; 13351 13352 case D_FREEBLKS: 13353 freeblks = WK_FREEBLKS(wk); 13354 if (LIST_FIRST(&freeblks->fb_jblkdephd)) { 13355 /* Freeblk journal dependency. */ 13356 retval += 1; 13357 if (!wantcount) 13358 goto out; 13359 } 13360 continue; 13361 13362 case D_ALLOCDIRECT: 13363 case D_ALLOCINDIR: 13364 newblk = WK_NEWBLK(wk); 13365 if (newblk->nb_jnewblk) { 13366 /* Journal allocate dependency. */ 13367 retval += 1; 13368 if (!wantcount) 13369 goto out; 13370 } 13371 continue; 13372 13373 case D_MKDIR: 13374 mkdir = WK_MKDIR(wk); 13375 if (mkdir->md_jaddref) { 13376 /* Journal reference dependency. */ 13377 retval += 1; 13378 if (!wantcount) 13379 goto out; 13380 } 13381 continue; 13382 13383 case D_FREEWORK: 13384 case D_FREEDEP: 13385 case D_JSEGDEP: 13386 case D_JSEG: 13387 case D_SBDEP: 13388 /* never a dependency on these blocks */ 13389 continue; 13390 13391 default: 13392 panic("softdep_count_dependencies: Unexpected type %s", 13393 TYPENAME(wk->wk_type)); 13394 /* NOTREACHED */ 13395 } 13396 } 13397 out: 13398 FREE_LOCK(&lk); 13399 return retval; 13400 } 13401 13402 /* 13403 * Acquire exclusive access to a buffer. 13404 * Must be called with a locked mtx parameter. 13405 * Return acquired buffer or NULL on failure. 13406 */ 13407 static struct buf * 13408 getdirtybuf(bp, lock, waitfor) 13409 struct buf *bp; 13410 struct rwlock *lock; 13411 int waitfor; 13412 { 13413 int error; 13414 13415 rw_assert(lock, RA_WLOCKED); 13416 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0) { 13417 if (waitfor != MNT_WAIT) 13418 return (NULL); 13419 error = BUF_LOCK(bp, 13420 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, lock); 13421 /* 13422 * Even if we sucessfully acquire bp here, we have dropped 13423 * lock, which may violates our guarantee. 13424 */ 13425 if (error == 0) 13426 BUF_UNLOCK(bp); 13427 else if (error != ENOLCK) 13428 panic("getdirtybuf: inconsistent lock: %d", error); 13429 rw_wlock(lock); 13430 return (NULL); 13431 } 13432 if ((bp->b_vflags & BV_BKGRDINPROG) != 0) { 13433 if (lock == &lk && waitfor == MNT_WAIT) { 13434 rw_wunlock(lock); 13435 BO_LOCK(bp->b_bufobj); 13436 BUF_UNLOCK(bp); 13437 if ((bp->b_vflags & BV_BKGRDINPROG) != 0) { 13438 bp->b_vflags |= BV_BKGRDWAIT; 13439 msleep(&bp->b_xflags, BO_LOCKPTR(bp->b_bufobj), 13440 PRIBIO | PDROP, "getbuf", 0); 13441 } else 13442 BO_UNLOCK(bp->b_bufobj); 13443 rw_wlock(lock); 13444 return (NULL); 13445 } 13446 BUF_UNLOCK(bp); 13447 if (waitfor != MNT_WAIT) 13448 return (NULL); 13449 /* 13450 * The lock argument must be bp->b_vp's mutex in 13451 * this case. 13452 */ 13453 #ifdef DEBUG_VFS_LOCKS 13454 if (bp->b_vp->v_type != VCHR) 13455 ASSERT_BO_WLOCKED(bp->b_bufobj); 13456 #endif 13457 bp->b_vflags |= BV_BKGRDWAIT; 13458 rw_sleep(&bp->b_xflags, lock, PRIBIO, "getbuf", 0); 13459 return (NULL); 13460 } 13461 if ((bp->b_flags & B_DELWRI) == 0) { 13462 BUF_UNLOCK(bp); 13463 return (NULL); 13464 } 13465 bremfree(bp); 13466 return (bp); 13467 } 13468 13469 13470 /* 13471 * Check if it is safe to suspend the file system now. On entry, 13472 * the vnode interlock for devvp should be held. Return 0 with 13473 * the mount interlock held if the file system can be suspended now, 13474 * otherwise return EAGAIN with the mount interlock held. 13475 */ 13476 int 13477 softdep_check_suspend(struct mount *mp, 13478 struct vnode *devvp, 13479 int softdep_deps, 13480 int softdep_accdeps, 13481 int secondary_writes, 13482 int secondary_accwrites) 13483 { 13484 struct bufobj *bo; 13485 struct ufsmount *ump; 13486 int error; 13487 13488 ump = VFSTOUFS(mp); 13489 bo = &devvp->v_bufobj; 13490 ASSERT_BO_WLOCKED(bo); 13491 13492 for (;;) { 13493 if (!TRY_ACQUIRE_LOCK(&lk)) { 13494 BO_UNLOCK(bo); 13495 ACQUIRE_LOCK(&lk); 13496 FREE_LOCK(&lk); 13497 BO_LOCK(bo); 13498 continue; 13499 } 13500 MNT_ILOCK(mp); 13501 if (mp->mnt_secondary_writes != 0) { 13502 FREE_LOCK(&lk); 13503 BO_UNLOCK(bo); 13504 msleep(&mp->mnt_secondary_writes, 13505 MNT_MTX(mp), 13506 (PUSER - 1) | PDROP, "secwr", 0); 13507 BO_LOCK(bo); 13508 continue; 13509 } 13510 break; 13511 } 13512 13513 /* 13514 * Reasons for needing more work before suspend: 13515 * - Dirty buffers on devvp. 13516 * - Softdep activity occurred after start of vnode sync loop 13517 * - Secondary writes occurred after start of vnode sync loop 13518 */ 13519 error = 0; 13520 if (bo->bo_numoutput > 0 || 13521 bo->bo_dirty.bv_cnt > 0 || 13522 softdep_deps != 0 || 13523 ump->softdep_deps != 0 || 13524 softdep_accdeps != ump->softdep_accdeps || 13525 secondary_writes != 0 || 13526 mp->mnt_secondary_writes != 0 || 13527 secondary_accwrites != mp->mnt_secondary_accwrites) 13528 error = EAGAIN; 13529 FREE_LOCK(&lk); 13530 BO_UNLOCK(bo); 13531 return (error); 13532 } 13533 13534 13535 /* 13536 * Get the number of dependency structures for the file system, both 13537 * the current number and the total number allocated. These will 13538 * later be used to detect that softdep processing has occurred. 13539 */ 13540 void 13541 softdep_get_depcounts(struct mount *mp, 13542 int *softdep_depsp, 13543 int *softdep_accdepsp) 13544 { 13545 struct ufsmount *ump; 13546 13547 ump = VFSTOUFS(mp); 13548 ACQUIRE_LOCK(&lk); 13549 *softdep_depsp = ump->softdep_deps; 13550 *softdep_accdepsp = ump->softdep_accdeps; 13551 FREE_LOCK(&lk); 13552 } 13553 13554 /* 13555 * Wait for pending output on a vnode to complete. 13556 * Must be called with vnode lock and interlock locked. 13557 * 13558 * XXX: Should just be a call to bufobj_wwait(). 13559 */ 13560 static void 13561 drain_output(vp) 13562 struct vnode *vp; 13563 { 13564 struct bufobj *bo; 13565 13566 bo = &vp->v_bufobj; 13567 ASSERT_VOP_LOCKED(vp, "drain_output"); 13568 ASSERT_BO_WLOCKED(bo); 13569 13570 while (bo->bo_numoutput) { 13571 bo->bo_flag |= BO_WWAIT; 13572 msleep((caddr_t)&bo->bo_numoutput, 13573 BO_LOCKPTR(bo), PRIBIO + 1, "drainvp", 0); 13574 } 13575 } 13576 13577 /* 13578 * Called whenever a buffer that is being invalidated or reallocated 13579 * contains dependencies. This should only happen if an I/O error has 13580 * occurred. The routine is called with the buffer locked. 13581 */ 13582 static void 13583 softdep_deallocate_dependencies(bp) 13584 struct buf *bp; 13585 { 13586 13587 if ((bp->b_ioflags & BIO_ERROR) == 0) 13588 panic("softdep_deallocate_dependencies: dangling deps"); 13589 if (bp->b_vp != NULL && bp->b_vp->v_mount != NULL) 13590 softdep_error(bp->b_vp->v_mount->mnt_stat.f_mntonname, bp->b_error); 13591 else 13592 printf("softdep_deallocate_dependencies: " 13593 "got error %d while accessing filesystem\n", bp->b_error); 13594 if (bp->b_error != ENXIO) 13595 panic("softdep_deallocate_dependencies: unrecovered I/O error"); 13596 } 13597 13598 /* 13599 * Function to handle asynchronous write errors in the filesystem. 13600 */ 13601 static void 13602 softdep_error(func, error) 13603 char *func; 13604 int error; 13605 { 13606 13607 /* XXX should do something better! */ 13608 printf("%s: got error %d while accessing filesystem\n", func, error); 13609 } 13610 13611 #ifdef DDB 13612 13613 static void 13614 inodedep_print(struct inodedep *inodedep, int verbose) 13615 { 13616 db_printf("%p fs %p st %x ino %jd inoblk %jd delta %d nlink %d" 13617 " saveino %p\n", 13618 inodedep, inodedep->id_fs, inodedep->id_state, 13619 (intmax_t)inodedep->id_ino, 13620 (intmax_t)fsbtodb(inodedep->id_fs, 13621 ino_to_fsba(inodedep->id_fs, inodedep->id_ino)), 13622 inodedep->id_nlinkdelta, inodedep->id_savednlink, 13623 inodedep->id_savedino1); 13624 13625 if (verbose == 0) 13626 return; 13627 13628 db_printf("\tpendinghd %p, bufwait %p, inowait %p, inoreflst %p, " 13629 "mkdiradd %p\n", 13630 LIST_FIRST(&inodedep->id_pendinghd), 13631 LIST_FIRST(&inodedep->id_bufwait), 13632 LIST_FIRST(&inodedep->id_inowait), 13633 TAILQ_FIRST(&inodedep->id_inoreflst), 13634 inodedep->id_mkdiradd); 13635 db_printf("\tinoupdt %p, newinoupdt %p, extupdt %p, newextupdt %p\n", 13636 TAILQ_FIRST(&inodedep->id_inoupdt), 13637 TAILQ_FIRST(&inodedep->id_newinoupdt), 13638 TAILQ_FIRST(&inodedep->id_extupdt), 13639 TAILQ_FIRST(&inodedep->id_newextupdt)); 13640 } 13641 13642 DB_SHOW_COMMAND(inodedep, db_show_inodedep) 13643 { 13644 13645 if (have_addr == 0) { 13646 db_printf("Address required\n"); 13647 return; 13648 } 13649 inodedep_print((struct inodedep*)addr, 1); 13650 } 13651 13652 DB_SHOW_COMMAND(inodedeps, db_show_inodedeps) 13653 { 13654 struct inodedep_hashhead *inodedephd; 13655 struct inodedep *inodedep; 13656 struct fs *fs; 13657 int cnt; 13658 13659 fs = have_addr ? (struct fs *)addr : NULL; 13660 for (cnt = 0; cnt < inodedep_hash; cnt++) { 13661 inodedephd = &inodedep_hashtbl[cnt]; 13662 LIST_FOREACH(inodedep, inodedephd, id_hash) { 13663 if (fs != NULL && fs != inodedep->id_fs) 13664 continue; 13665 inodedep_print(inodedep, 0); 13666 } 13667 } 13668 } 13669 13670 DB_SHOW_COMMAND(worklist, db_show_worklist) 13671 { 13672 struct worklist *wk; 13673 13674 if (have_addr == 0) { 13675 db_printf("Address required\n"); 13676 return; 13677 } 13678 wk = (struct worklist *)addr; 13679 printf("worklist: %p type %s state 0x%X\n", 13680 wk, TYPENAME(wk->wk_type), wk->wk_state); 13681 } 13682 13683 DB_SHOW_COMMAND(workhead, db_show_workhead) 13684 { 13685 struct workhead *wkhd; 13686 struct worklist *wk; 13687 int i; 13688 13689 if (have_addr == 0) { 13690 db_printf("Address required\n"); 13691 return; 13692 } 13693 wkhd = (struct workhead *)addr; 13694 wk = LIST_FIRST(wkhd); 13695 for (i = 0; i < 100 && wk != NULL; i++, wk = LIST_NEXT(wk, wk_list)) 13696 db_printf("worklist: %p type %s state 0x%X", 13697 wk, TYPENAME(wk->wk_type), wk->wk_state); 13698 if (i == 100) 13699 db_printf("workhead overflow"); 13700 printf("\n"); 13701 } 13702 13703 13704 DB_SHOW_COMMAND(mkdirs, db_show_mkdirs) 13705 { 13706 struct jaddref *jaddref; 13707 struct diradd *diradd; 13708 struct mkdir *mkdir; 13709 13710 LIST_FOREACH(mkdir, &mkdirlisthd, md_mkdirs) { 13711 diradd = mkdir->md_diradd; 13712 db_printf("mkdir: %p state 0x%X dap %p state 0x%X", 13713 mkdir, mkdir->md_state, diradd, diradd->da_state); 13714 if ((jaddref = mkdir->md_jaddref) != NULL) 13715 db_printf(" jaddref %p jaddref state 0x%X", 13716 jaddref, jaddref->ja_state); 13717 db_printf("\n"); 13718 } 13719 } 13720 13721 #endif /* DDB */ 13722 13723 #endif /* SOFTUPDATES */ 13724