xref: /freebsd/sys/ufs/ffs/ffs_softdep.c (revision ce3adf4362fcca6a43e500b2531f0038adbfbd21)
1 /*-
2  * Copyright 1998, 2000 Marshall Kirk McKusick.
3  * Copyright 2009, 2010 Jeffrey W. Roberson <jeff@FreeBSD.org>
4  * All rights reserved.
5  *
6  * The soft updates code is derived from the appendix of a University
7  * of Michigan technical report (Gregory R. Ganger and Yale N. Patt,
8  * "Soft Updates: A Solution to the Metadata Update Problem in File
9  * Systems", CSE-TR-254-95, August 1995).
10  *
11  * Further information about soft updates can be obtained from:
12  *
13  *	Marshall Kirk McKusick		http://www.mckusick.com/softdep/
14  *	1614 Oxford Street		mckusick@mckusick.com
15  *	Berkeley, CA 94709-1608		+1-510-843-9542
16  *	USA
17  *
18  * Redistribution and use in source and binary forms, with or without
19  * modification, are permitted provided that the following conditions
20  * are met:
21  *
22  * 1. Redistributions of source code must retain the above copyright
23  *    notice, this list of conditions and the following disclaimer.
24  * 2. Redistributions in binary form must reproduce the above copyright
25  *    notice, this list of conditions and the following disclaimer in the
26  *    documentation and/or other materials provided with the distribution.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR
29  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
30  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
31  * IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT,
32  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
33  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
34  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
35  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
36  * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
37  * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
38  *
39  *	from: @(#)ffs_softdep.c	9.59 (McKusick) 6/21/00
40  */
41 
42 #include <sys/cdefs.h>
43 __FBSDID("$FreeBSD$");
44 
45 #include "opt_ffs.h"
46 #include "opt_quota.h"
47 #include "opt_ddb.h"
48 
49 /*
50  * For now we want the safety net that the DEBUG flag provides.
51  */
52 #ifndef DEBUG
53 #define DEBUG
54 #endif
55 
56 #include <sys/param.h>
57 #include <sys/kernel.h>
58 #include <sys/systm.h>
59 #include <sys/bio.h>
60 #include <sys/buf.h>
61 #include <sys/kdb.h>
62 #include <sys/kthread.h>
63 #include <sys/ktr.h>
64 #include <sys/limits.h>
65 #include <sys/lock.h>
66 #include <sys/malloc.h>
67 #include <sys/mount.h>
68 #include <sys/mutex.h>
69 #include <sys/namei.h>
70 #include <sys/priv.h>
71 #include <sys/proc.h>
72 #include <sys/rwlock.h>
73 #include <sys/stat.h>
74 #include <sys/sysctl.h>
75 #include <sys/syslog.h>
76 #include <sys/vnode.h>
77 #include <sys/conf.h>
78 
79 #include <ufs/ufs/dir.h>
80 #include <ufs/ufs/extattr.h>
81 #include <ufs/ufs/quota.h>
82 #include <ufs/ufs/inode.h>
83 #include <ufs/ufs/ufsmount.h>
84 #include <ufs/ffs/fs.h>
85 #include <ufs/ffs/softdep.h>
86 #include <ufs/ffs/ffs_extern.h>
87 #include <ufs/ufs/ufs_extern.h>
88 
89 #include <vm/vm.h>
90 #include <vm/vm_extern.h>
91 #include <vm/vm_object.h>
92 
93 #include <geom/geom.h>
94 
95 #include <ddb/ddb.h>
96 
97 #define	KTR_SUJ	0	/* Define to KTR_SPARE. */
98 
99 #ifndef SOFTUPDATES
100 
101 int
102 softdep_flushfiles(oldmnt, flags, td)
103 	struct mount *oldmnt;
104 	int flags;
105 	struct thread *td;
106 {
107 
108 	panic("softdep_flushfiles called");
109 }
110 
111 int
112 softdep_mount(devvp, mp, fs, cred)
113 	struct vnode *devvp;
114 	struct mount *mp;
115 	struct fs *fs;
116 	struct ucred *cred;
117 {
118 
119 	return (0);
120 }
121 
122 void
123 softdep_initialize()
124 {
125 
126 	return;
127 }
128 
129 void
130 softdep_uninitialize()
131 {
132 
133 	return;
134 }
135 
136 void
137 softdep_unmount(mp)
138 	struct mount *mp;
139 {
140 
141 }
142 
143 void
144 softdep_setup_sbupdate(ump, fs, bp)
145 	struct ufsmount *ump;
146 	struct fs *fs;
147 	struct buf *bp;
148 {
149 }
150 
151 void
152 softdep_setup_inomapdep(bp, ip, newinum, mode)
153 	struct buf *bp;
154 	struct inode *ip;
155 	ino_t newinum;
156 	int mode;
157 {
158 
159 	panic("softdep_setup_inomapdep called");
160 }
161 
162 void
163 softdep_setup_blkmapdep(bp, mp, newblkno, frags, oldfrags)
164 	struct buf *bp;
165 	struct mount *mp;
166 	ufs2_daddr_t newblkno;
167 	int frags;
168 	int oldfrags;
169 {
170 
171 	panic("softdep_setup_blkmapdep called");
172 }
173 
174 void
175 softdep_setup_allocdirect(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp)
176 	struct inode *ip;
177 	ufs_lbn_t lbn;
178 	ufs2_daddr_t newblkno;
179 	ufs2_daddr_t oldblkno;
180 	long newsize;
181 	long oldsize;
182 	struct buf *bp;
183 {
184 
185 	panic("softdep_setup_allocdirect called");
186 }
187 
188 void
189 softdep_setup_allocext(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp)
190 	struct inode *ip;
191 	ufs_lbn_t lbn;
192 	ufs2_daddr_t newblkno;
193 	ufs2_daddr_t oldblkno;
194 	long newsize;
195 	long oldsize;
196 	struct buf *bp;
197 {
198 
199 	panic("softdep_setup_allocext called");
200 }
201 
202 void
203 softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp)
204 	struct inode *ip;
205 	ufs_lbn_t lbn;
206 	struct buf *bp;
207 	int ptrno;
208 	ufs2_daddr_t newblkno;
209 	ufs2_daddr_t oldblkno;
210 	struct buf *nbp;
211 {
212 
213 	panic("softdep_setup_allocindir_page called");
214 }
215 
216 void
217 softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno)
218 	struct buf *nbp;
219 	struct inode *ip;
220 	struct buf *bp;
221 	int ptrno;
222 	ufs2_daddr_t newblkno;
223 {
224 
225 	panic("softdep_setup_allocindir_meta called");
226 }
227 
228 void
229 softdep_journal_freeblocks(ip, cred, length, flags)
230 	struct inode *ip;
231 	struct ucred *cred;
232 	off_t length;
233 	int flags;
234 {
235 
236 	panic("softdep_journal_freeblocks called");
237 }
238 
239 void
240 softdep_journal_fsync(ip)
241 	struct inode *ip;
242 {
243 
244 	panic("softdep_journal_fsync called");
245 }
246 
247 void
248 softdep_setup_freeblocks(ip, length, flags)
249 	struct inode *ip;
250 	off_t length;
251 	int flags;
252 {
253 
254 	panic("softdep_setup_freeblocks called");
255 }
256 
257 void
258 softdep_freefile(pvp, ino, mode)
259 		struct vnode *pvp;
260 		ino_t ino;
261 		int mode;
262 {
263 
264 	panic("softdep_freefile called");
265 }
266 
267 int
268 softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk)
269 	struct buf *bp;
270 	struct inode *dp;
271 	off_t diroffset;
272 	ino_t newinum;
273 	struct buf *newdirbp;
274 	int isnewblk;
275 {
276 
277 	panic("softdep_setup_directory_add called");
278 }
279 
280 void
281 softdep_change_directoryentry_offset(bp, dp, base, oldloc, newloc, entrysize)
282 	struct buf *bp;
283 	struct inode *dp;
284 	caddr_t base;
285 	caddr_t oldloc;
286 	caddr_t newloc;
287 	int entrysize;
288 {
289 
290 	panic("softdep_change_directoryentry_offset called");
291 }
292 
293 void
294 softdep_setup_remove(bp, dp, ip, isrmdir)
295 	struct buf *bp;
296 	struct inode *dp;
297 	struct inode *ip;
298 	int isrmdir;
299 {
300 
301 	panic("softdep_setup_remove called");
302 }
303 
304 void
305 softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir)
306 	struct buf *bp;
307 	struct inode *dp;
308 	struct inode *ip;
309 	ino_t newinum;
310 	int isrmdir;
311 {
312 
313 	panic("softdep_setup_directory_change called");
314 }
315 
316 void
317 softdep_setup_blkfree(mp, bp, blkno, frags, wkhd)
318 	struct mount *mp;
319 	struct buf *bp;
320 	ufs2_daddr_t blkno;
321 	int frags;
322 	struct workhead *wkhd;
323 {
324 
325 	panic("%s called", __FUNCTION__);
326 }
327 
328 void
329 softdep_setup_inofree(mp, bp, ino, wkhd)
330 	struct mount *mp;
331 	struct buf *bp;
332 	ino_t ino;
333 	struct workhead *wkhd;
334 {
335 
336 	panic("%s called", __FUNCTION__);
337 }
338 
339 void
340 softdep_setup_unlink(dp, ip)
341 	struct inode *dp;
342 	struct inode *ip;
343 {
344 
345 	panic("%s called", __FUNCTION__);
346 }
347 
348 void
349 softdep_setup_link(dp, ip)
350 	struct inode *dp;
351 	struct inode *ip;
352 {
353 
354 	panic("%s called", __FUNCTION__);
355 }
356 
357 void
358 softdep_revert_link(dp, ip)
359 	struct inode *dp;
360 	struct inode *ip;
361 {
362 
363 	panic("%s called", __FUNCTION__);
364 }
365 
366 void
367 softdep_setup_rmdir(dp, ip)
368 	struct inode *dp;
369 	struct inode *ip;
370 {
371 
372 	panic("%s called", __FUNCTION__);
373 }
374 
375 void
376 softdep_revert_rmdir(dp, ip)
377 	struct inode *dp;
378 	struct inode *ip;
379 {
380 
381 	panic("%s called", __FUNCTION__);
382 }
383 
384 void
385 softdep_setup_create(dp, ip)
386 	struct inode *dp;
387 	struct inode *ip;
388 {
389 
390 	panic("%s called", __FUNCTION__);
391 }
392 
393 void
394 softdep_revert_create(dp, ip)
395 	struct inode *dp;
396 	struct inode *ip;
397 {
398 
399 	panic("%s called", __FUNCTION__);
400 }
401 
402 void
403 softdep_setup_mkdir(dp, ip)
404 	struct inode *dp;
405 	struct inode *ip;
406 {
407 
408 	panic("%s called", __FUNCTION__);
409 }
410 
411 void
412 softdep_revert_mkdir(dp, ip)
413 	struct inode *dp;
414 	struct inode *ip;
415 {
416 
417 	panic("%s called", __FUNCTION__);
418 }
419 
420 void
421 softdep_setup_dotdot_link(dp, ip)
422 	struct inode *dp;
423 	struct inode *ip;
424 {
425 
426 	panic("%s called", __FUNCTION__);
427 }
428 
429 int
430 softdep_prealloc(vp, waitok)
431 	struct vnode *vp;
432 	int waitok;
433 {
434 
435 	panic("%s called", __FUNCTION__);
436 
437 	return (0);
438 }
439 
440 int
441 softdep_journal_lookup(mp, vpp)
442 	struct mount *mp;
443 	struct vnode **vpp;
444 {
445 
446 	return (ENOENT);
447 }
448 
449 void
450 softdep_change_linkcnt(ip)
451 	struct inode *ip;
452 {
453 
454 	panic("softdep_change_linkcnt called");
455 }
456 
457 void
458 softdep_load_inodeblock(ip)
459 	struct inode *ip;
460 {
461 
462 	panic("softdep_load_inodeblock called");
463 }
464 
465 void
466 softdep_update_inodeblock(ip, bp, waitfor)
467 	struct inode *ip;
468 	struct buf *bp;
469 	int waitfor;
470 {
471 
472 	panic("softdep_update_inodeblock called");
473 }
474 
475 int
476 softdep_fsync(vp)
477 	struct vnode *vp;	/* the "in_core" copy of the inode */
478 {
479 
480 	return (0);
481 }
482 
483 void
484 softdep_fsync_mountdev(vp)
485 	struct vnode *vp;
486 {
487 
488 	return;
489 }
490 
491 int
492 softdep_flushworklist(oldmnt, countp, td)
493 	struct mount *oldmnt;
494 	int *countp;
495 	struct thread *td;
496 {
497 
498 	*countp = 0;
499 	return (0);
500 }
501 
502 int
503 softdep_sync_metadata(struct vnode *vp)
504 {
505 
506 	return (0);
507 }
508 
509 int
510 softdep_sync_buf(struct vnode *vp, struct buf *bp, int waitfor)
511 {
512 
513 	return (0);
514 }
515 
516 int
517 softdep_slowdown(vp)
518 	struct vnode *vp;
519 {
520 
521 	panic("softdep_slowdown called");
522 }
523 
524 void
525 softdep_releasefile(ip)
526 	struct inode *ip;	/* inode with the zero effective link count */
527 {
528 
529 	panic("softdep_releasefile called");
530 }
531 
532 int
533 softdep_request_cleanup(fs, vp, cred, resource)
534 	struct fs *fs;
535 	struct vnode *vp;
536 	struct ucred *cred;
537 	int resource;
538 {
539 
540 	return (0);
541 }
542 
543 int
544 softdep_check_suspend(struct mount *mp,
545 		      struct vnode *devvp,
546 		      int softdep_deps,
547 		      int softdep_accdeps,
548 		      int secondary_writes,
549 		      int secondary_accwrites)
550 {
551 	struct bufobj *bo;
552 	int error;
553 
554 	(void) softdep_deps,
555 	(void) softdep_accdeps;
556 
557 	bo = &devvp->v_bufobj;
558 	ASSERT_BO_WLOCKED(bo);
559 
560 	MNT_ILOCK(mp);
561 	while (mp->mnt_secondary_writes != 0) {
562 		BO_UNLOCK(bo);
563 		msleep(&mp->mnt_secondary_writes, MNT_MTX(mp),
564 		    (PUSER - 1) | PDROP, "secwr", 0);
565 		BO_LOCK(bo);
566 		MNT_ILOCK(mp);
567 	}
568 
569 	/*
570 	 * Reasons for needing more work before suspend:
571 	 * - Dirty buffers on devvp.
572 	 * - Secondary writes occurred after start of vnode sync loop
573 	 */
574 	error = 0;
575 	if (bo->bo_numoutput > 0 ||
576 	    bo->bo_dirty.bv_cnt > 0 ||
577 	    secondary_writes != 0 ||
578 	    mp->mnt_secondary_writes != 0 ||
579 	    secondary_accwrites != mp->mnt_secondary_accwrites)
580 		error = EAGAIN;
581 	BO_UNLOCK(bo);
582 	return (error);
583 }
584 
585 void
586 softdep_get_depcounts(struct mount *mp,
587 		      int *softdepactivep,
588 		      int *softdepactiveaccp)
589 {
590 	(void) mp;
591 	*softdepactivep = 0;
592 	*softdepactiveaccp = 0;
593 }
594 
595 void
596 softdep_buf_append(bp, wkhd)
597 	struct buf *bp;
598 	struct workhead *wkhd;
599 {
600 
601 	panic("softdep_buf_appendwork called");
602 }
603 
604 void
605 softdep_inode_append(ip, cred, wkhd)
606 	struct inode *ip;
607 	struct ucred *cred;
608 	struct workhead *wkhd;
609 {
610 
611 	panic("softdep_inode_appendwork called");
612 }
613 
614 void
615 softdep_freework(wkhd)
616 	struct workhead *wkhd;
617 {
618 
619 	panic("softdep_freework called");
620 }
621 
622 #else
623 
624 FEATURE(softupdates, "FFS soft-updates support");
625 
626 /*
627  * These definitions need to be adapted to the system to which
628  * this file is being ported.
629  */
630 
631 #define M_SOFTDEP_FLAGS	(M_WAITOK)
632 
633 #define	D_PAGEDEP	0
634 #define	D_INODEDEP	1
635 #define	D_BMSAFEMAP	2
636 #define	D_NEWBLK	3
637 #define	D_ALLOCDIRECT	4
638 #define	D_INDIRDEP	5
639 #define	D_ALLOCINDIR	6
640 #define	D_FREEFRAG	7
641 #define	D_FREEBLKS	8
642 #define	D_FREEFILE	9
643 #define	D_DIRADD	10
644 #define	D_MKDIR		11
645 #define	D_DIRREM	12
646 #define	D_NEWDIRBLK	13
647 #define	D_FREEWORK	14
648 #define	D_FREEDEP	15
649 #define	D_JADDREF	16
650 #define	D_JREMREF	17
651 #define	D_JMVREF	18
652 #define	D_JNEWBLK	19
653 #define	D_JFREEBLK	20
654 #define	D_JFREEFRAG	21
655 #define	D_JSEG		22
656 #define	D_JSEGDEP	23
657 #define	D_SBDEP		24
658 #define	D_JTRUNC	25
659 #define	D_JFSYNC	26
660 #define	D_SENTINEL	27
661 #define	D_LAST		D_SENTINEL
662 
663 unsigned long dep_current[D_LAST + 1];
664 unsigned long dep_highuse[D_LAST + 1];
665 unsigned long dep_total[D_LAST + 1];
666 unsigned long dep_write[D_LAST + 1];
667 
668 static SYSCTL_NODE(_debug, OID_AUTO, softdep, CTLFLAG_RW, 0,
669     "soft updates stats");
670 static SYSCTL_NODE(_debug_softdep, OID_AUTO, total, CTLFLAG_RW, 0,
671     "total dependencies allocated");
672 static SYSCTL_NODE(_debug_softdep, OID_AUTO, highuse, CTLFLAG_RW, 0,
673     "high use dependencies allocated");
674 static SYSCTL_NODE(_debug_softdep, OID_AUTO, current, CTLFLAG_RW, 0,
675     "current dependencies allocated");
676 static SYSCTL_NODE(_debug_softdep, OID_AUTO, write, CTLFLAG_RW, 0,
677     "current dependencies written");
678 
679 #define	SOFTDEP_TYPE(type, str, long)					\
680     static MALLOC_DEFINE(M_ ## type, #str, long);			\
681     SYSCTL_ULONG(_debug_softdep_total, OID_AUTO, str, CTLFLAG_RD,	\
682 	&dep_total[D_ ## type], 0, "");					\
683     SYSCTL_ULONG(_debug_softdep_current, OID_AUTO, str, CTLFLAG_RD, 	\
684 	&dep_current[D_ ## type], 0, "");				\
685     SYSCTL_ULONG(_debug_softdep_highuse, OID_AUTO, str, CTLFLAG_RD, 	\
686 	&dep_highuse[D_ ## type], 0, "");				\
687     SYSCTL_ULONG(_debug_softdep_write, OID_AUTO, str, CTLFLAG_RD, 	\
688 	&dep_write[D_ ## type], 0, "");
689 
690 SOFTDEP_TYPE(PAGEDEP, pagedep, "File page dependencies");
691 SOFTDEP_TYPE(INODEDEP, inodedep, "Inode dependencies");
692 SOFTDEP_TYPE(BMSAFEMAP, bmsafemap,
693     "Block or frag allocated from cyl group map");
694 SOFTDEP_TYPE(NEWBLK, newblk, "New block or frag allocation dependency");
695 SOFTDEP_TYPE(ALLOCDIRECT, allocdirect, "Block or frag dependency for an inode");
696 SOFTDEP_TYPE(INDIRDEP, indirdep, "Indirect block dependencies");
697 SOFTDEP_TYPE(ALLOCINDIR, allocindir, "Block dependency for an indirect block");
698 SOFTDEP_TYPE(FREEFRAG, freefrag, "Previously used frag for an inode");
699 SOFTDEP_TYPE(FREEBLKS, freeblks, "Blocks freed from an inode");
700 SOFTDEP_TYPE(FREEFILE, freefile, "Inode deallocated");
701 SOFTDEP_TYPE(DIRADD, diradd, "New directory entry");
702 SOFTDEP_TYPE(MKDIR, mkdir, "New directory");
703 SOFTDEP_TYPE(DIRREM, dirrem, "Directory entry deleted");
704 SOFTDEP_TYPE(NEWDIRBLK, newdirblk, "Unclaimed new directory block");
705 SOFTDEP_TYPE(FREEWORK, freework, "free an inode block");
706 SOFTDEP_TYPE(FREEDEP, freedep, "track a block free");
707 SOFTDEP_TYPE(JADDREF, jaddref, "Journal inode ref add");
708 SOFTDEP_TYPE(JREMREF, jremref, "Journal inode ref remove");
709 SOFTDEP_TYPE(JMVREF, jmvref, "Journal inode ref move");
710 SOFTDEP_TYPE(JNEWBLK, jnewblk, "Journal new block");
711 SOFTDEP_TYPE(JFREEBLK, jfreeblk, "Journal free block");
712 SOFTDEP_TYPE(JFREEFRAG, jfreefrag, "Journal free frag");
713 SOFTDEP_TYPE(JSEG, jseg, "Journal segment");
714 SOFTDEP_TYPE(JSEGDEP, jsegdep, "Journal segment complete");
715 SOFTDEP_TYPE(SBDEP, sbdep, "Superblock write dependency");
716 SOFTDEP_TYPE(JTRUNC, jtrunc, "Journal inode truncation");
717 SOFTDEP_TYPE(JFSYNC, jfsync, "Journal fsync complete");
718 
719 static MALLOC_DEFINE(M_SENTINEL, "sentinel", "Worklist sentinel");
720 
721 static MALLOC_DEFINE(M_SAVEDINO, "savedino", "Saved inodes");
722 static MALLOC_DEFINE(M_JBLOCKS, "jblocks", "Journal block locations");
723 
724 /*
725  * translate from workitem type to memory type
726  * MUST match the defines above, such that memtype[D_XXX] == M_XXX
727  */
728 static struct malloc_type *memtype[] = {
729 	M_PAGEDEP,
730 	M_INODEDEP,
731 	M_BMSAFEMAP,
732 	M_NEWBLK,
733 	M_ALLOCDIRECT,
734 	M_INDIRDEP,
735 	M_ALLOCINDIR,
736 	M_FREEFRAG,
737 	M_FREEBLKS,
738 	M_FREEFILE,
739 	M_DIRADD,
740 	M_MKDIR,
741 	M_DIRREM,
742 	M_NEWDIRBLK,
743 	M_FREEWORK,
744 	M_FREEDEP,
745 	M_JADDREF,
746 	M_JREMREF,
747 	M_JMVREF,
748 	M_JNEWBLK,
749 	M_JFREEBLK,
750 	M_JFREEFRAG,
751 	M_JSEG,
752 	M_JSEGDEP,
753 	M_SBDEP,
754 	M_JTRUNC,
755 	M_JFSYNC,
756 	M_SENTINEL
757 };
758 
759 static LIST_HEAD(mkdirlist, mkdir) mkdirlisthd;
760 
761 #define DtoM(type) (memtype[type])
762 
763 /*
764  * Names of malloc types.
765  */
766 #define TYPENAME(type)  \
767 	((unsigned)(type) <= D_LAST ? memtype[type]->ks_shortdesc : "???")
768 /*
769  * End system adaptation definitions.
770  */
771 
772 #define	DOTDOT_OFFSET	offsetof(struct dirtemplate, dotdot_ino)
773 #define	DOT_OFFSET	offsetof(struct dirtemplate, dot_ino)
774 
775 /*
776  * Forward declarations.
777  */
778 struct inodedep_hashhead;
779 struct newblk_hashhead;
780 struct pagedep_hashhead;
781 struct bmsafemap_hashhead;
782 
783 /*
784  * Private journaling structures.
785  */
786 struct jblocks {
787 	struct jseglst	jb_segs;	/* TAILQ of current segments. */
788 	struct jseg	*jb_writeseg;	/* Next write to complete. */
789 	struct jseg	*jb_oldestseg;	/* Oldest segment with valid entries. */
790 	struct jextent	*jb_extent;	/* Extent array. */
791 	uint64_t	jb_nextseq;	/* Next sequence number. */
792 	uint64_t	jb_oldestwrseq;	/* Oldest written sequence number. */
793 	uint8_t		jb_needseg;	/* Need a forced segment. */
794 	uint8_t		jb_suspended;	/* Did journal suspend writes? */
795 	int		jb_avail;	/* Available extents. */
796 	int		jb_used;	/* Last used extent. */
797 	int		jb_head;	/* Allocator head. */
798 	int		jb_off;		/* Allocator extent offset. */
799 	int		jb_blocks;	/* Total disk blocks covered. */
800 	int		jb_free;	/* Total disk blocks free. */
801 	int		jb_min;		/* Minimum free space. */
802 	int		jb_low;		/* Low on space. */
803 	int		jb_age;		/* Insertion time of oldest rec. */
804 };
805 
806 struct jextent {
807 	ufs2_daddr_t	je_daddr;	/* Disk block address. */
808 	int		je_blocks;	/* Disk block count. */
809 };
810 
811 /*
812  * Internal function prototypes.
813  */
814 static	void softdep_error(char *, int);
815 static	void drain_output(struct vnode *);
816 static	struct buf *getdirtybuf(struct buf *, struct rwlock *, int);
817 static	void clear_remove(void);
818 static	void clear_inodedeps(void);
819 static	void unlinked_inodedep(struct mount *, struct inodedep *);
820 static	void clear_unlinked_inodedep(struct inodedep *);
821 static	struct inodedep *first_unlinked_inodedep(struct ufsmount *);
822 static	int flush_pagedep_deps(struct vnode *, struct mount *,
823 	    struct diraddhd *);
824 static	int free_pagedep(struct pagedep *);
825 static	int flush_newblk_dep(struct vnode *, struct mount *, ufs_lbn_t);
826 static	int flush_inodedep_deps(struct vnode *, struct mount *, ino_t);
827 static	int flush_deplist(struct allocdirectlst *, int, int *);
828 static	int sync_cgs(struct mount *, int);
829 static	int handle_written_filepage(struct pagedep *, struct buf *);
830 static	int handle_written_sbdep(struct sbdep *, struct buf *);
831 static	void initiate_write_sbdep(struct sbdep *);
832 static  void diradd_inode_written(struct diradd *, struct inodedep *);
833 static	int handle_written_indirdep(struct indirdep *, struct buf *,
834 	    struct buf**);
835 static	int handle_written_inodeblock(struct inodedep *, struct buf *);
836 static	int jnewblk_rollforward(struct jnewblk *, struct fs *, struct cg *,
837 	    uint8_t *);
838 static	int handle_written_bmsafemap(struct bmsafemap *, struct buf *);
839 static	void handle_written_jaddref(struct jaddref *);
840 static	void handle_written_jremref(struct jremref *);
841 static	void handle_written_jseg(struct jseg *, struct buf *);
842 static	void handle_written_jnewblk(struct jnewblk *);
843 static	void handle_written_jblkdep(struct jblkdep *);
844 static	void handle_written_jfreefrag(struct jfreefrag *);
845 static	void complete_jseg(struct jseg *);
846 static	void complete_jsegs(struct jseg *);
847 static	void jseg_write(struct ufsmount *ump, struct jseg *, uint8_t *);
848 static	void jaddref_write(struct jaddref *, struct jseg *, uint8_t *);
849 static	void jremref_write(struct jremref *, struct jseg *, uint8_t *);
850 static	void jmvref_write(struct jmvref *, struct jseg *, uint8_t *);
851 static	void jtrunc_write(struct jtrunc *, struct jseg *, uint8_t *);
852 static	void jfsync_write(struct jfsync *, struct jseg *, uint8_t *data);
853 static	void jnewblk_write(struct jnewblk *, struct jseg *, uint8_t *);
854 static	void jfreeblk_write(struct jfreeblk *, struct jseg *, uint8_t *);
855 static	void jfreefrag_write(struct jfreefrag *, struct jseg *, uint8_t *);
856 static	inline void inoref_write(struct inoref *, struct jseg *,
857 	    struct jrefrec *);
858 static	void handle_allocdirect_partdone(struct allocdirect *,
859 	    struct workhead *);
860 static	struct jnewblk *cancel_newblk(struct newblk *, struct worklist *,
861 	    struct workhead *);
862 static	void indirdep_complete(struct indirdep *);
863 static	int indirblk_lookup(struct mount *, ufs2_daddr_t);
864 static	void indirblk_insert(struct freework *);
865 static	void indirblk_remove(struct freework *);
866 static	void handle_allocindir_partdone(struct allocindir *);
867 static	void initiate_write_filepage(struct pagedep *, struct buf *);
868 static	void initiate_write_indirdep(struct indirdep*, struct buf *);
869 static	void handle_written_mkdir(struct mkdir *, int);
870 static	int jnewblk_rollback(struct jnewblk *, struct fs *, struct cg *,
871 	    uint8_t *);
872 static	void initiate_write_bmsafemap(struct bmsafemap *, struct buf *);
873 static	void initiate_write_inodeblock_ufs1(struct inodedep *, struct buf *);
874 static	void initiate_write_inodeblock_ufs2(struct inodedep *, struct buf *);
875 static	void handle_workitem_freefile(struct freefile *);
876 static	int handle_workitem_remove(struct dirrem *, int);
877 static	struct dirrem *newdirrem(struct buf *, struct inode *,
878 	    struct inode *, int, struct dirrem **);
879 static	struct indirdep *indirdep_lookup(struct mount *, struct inode *,
880 	    struct buf *);
881 static	void cancel_indirdep(struct indirdep *, struct buf *,
882 	    struct freeblks *);
883 static	void free_indirdep(struct indirdep *);
884 static	void free_diradd(struct diradd *, struct workhead *);
885 static	void merge_diradd(struct inodedep *, struct diradd *);
886 static	void complete_diradd(struct diradd *);
887 static	struct diradd *diradd_lookup(struct pagedep *, int);
888 static	struct jremref *cancel_diradd_dotdot(struct inode *, struct dirrem *,
889 	    struct jremref *);
890 static	struct jremref *cancel_mkdir_dotdot(struct inode *, struct dirrem *,
891 	    struct jremref *);
892 static	void cancel_diradd(struct diradd *, struct dirrem *, struct jremref *,
893 	    struct jremref *, struct jremref *);
894 static	void dirrem_journal(struct dirrem *, struct jremref *, struct jremref *,
895 	    struct jremref *);
896 static	void cancel_allocindir(struct allocindir *, struct buf *bp,
897 	    struct freeblks *, int);
898 static	int setup_trunc_indir(struct freeblks *, struct inode *,
899 	    ufs_lbn_t, ufs_lbn_t, ufs2_daddr_t);
900 static	void complete_trunc_indir(struct freework *);
901 static	void trunc_indirdep(struct indirdep *, struct freeblks *, struct buf *,
902 	    int);
903 static	void complete_mkdir(struct mkdir *);
904 static	void free_newdirblk(struct newdirblk *);
905 static	void free_jremref(struct jremref *);
906 static	void free_jaddref(struct jaddref *);
907 static	void free_jsegdep(struct jsegdep *);
908 static	void free_jsegs(struct jblocks *);
909 static	void rele_jseg(struct jseg *);
910 static	void free_jseg(struct jseg *, struct jblocks *);
911 static	void free_jnewblk(struct jnewblk *);
912 static	void free_jblkdep(struct jblkdep *);
913 static	void free_jfreefrag(struct jfreefrag *);
914 static	void free_freedep(struct freedep *);
915 static	void journal_jremref(struct dirrem *, struct jremref *,
916 	    struct inodedep *);
917 static	void cancel_jnewblk(struct jnewblk *, struct workhead *);
918 static	int cancel_jaddref(struct jaddref *, struct inodedep *,
919 	    struct workhead *);
920 static	void cancel_jfreefrag(struct jfreefrag *);
921 static	inline void setup_freedirect(struct freeblks *, struct inode *,
922 	    int, int);
923 static	inline void setup_freeext(struct freeblks *, struct inode *, int, int);
924 static	inline void setup_freeindir(struct freeblks *, struct inode *, int,
925 	    ufs_lbn_t, int);
926 static	inline struct freeblks *newfreeblks(struct mount *, struct inode *);
927 static	void freeblks_free(struct ufsmount *, struct freeblks *, int);
928 static	void indir_trunc(struct freework *, ufs2_daddr_t, ufs_lbn_t);
929 ufs2_daddr_t blkcount(struct fs *, ufs2_daddr_t, off_t);
930 static	int trunc_check_buf(struct buf *, int *, ufs_lbn_t, int, int);
931 static	void trunc_dependencies(struct inode *, struct freeblks *, ufs_lbn_t,
932 	    int, int);
933 static	void trunc_pages(struct inode *, off_t, ufs2_daddr_t, int);
934 static 	int cancel_pagedep(struct pagedep *, struct freeblks *, int);
935 static	int deallocate_dependencies(struct buf *, struct freeblks *, int);
936 static	void newblk_freefrag(struct newblk*);
937 static	void free_newblk(struct newblk *);
938 static	void cancel_allocdirect(struct allocdirectlst *,
939 	    struct allocdirect *, struct freeblks *);
940 static	int check_inode_unwritten(struct inodedep *);
941 static	int free_inodedep(struct inodedep *);
942 static	void freework_freeblock(struct freework *);
943 static	void freework_enqueue(struct freework *);
944 static	int handle_workitem_freeblocks(struct freeblks *, int);
945 static	int handle_complete_freeblocks(struct freeblks *, int);
946 static	void handle_workitem_indirblk(struct freework *);
947 static	void handle_written_freework(struct freework *);
948 static	void merge_inode_lists(struct allocdirectlst *,struct allocdirectlst *);
949 static	struct worklist *jnewblk_merge(struct worklist *, struct worklist *,
950 	    struct workhead *);
951 static	struct freefrag *setup_allocindir_phase2(struct buf *, struct inode *,
952 	    struct inodedep *, struct allocindir *, ufs_lbn_t);
953 static	struct allocindir *newallocindir(struct inode *, int, ufs2_daddr_t,
954 	    ufs2_daddr_t, ufs_lbn_t);
955 static	void handle_workitem_freefrag(struct freefrag *);
956 static	struct freefrag *newfreefrag(struct inode *, ufs2_daddr_t, long,
957 	    ufs_lbn_t);
958 static	void allocdirect_merge(struct allocdirectlst *,
959 	    struct allocdirect *, struct allocdirect *);
960 static	struct freefrag *allocindir_merge(struct allocindir *,
961 	    struct allocindir *);
962 static	int bmsafemap_find(struct bmsafemap_hashhead *, struct mount *, int,
963 	    struct bmsafemap **);
964 static	struct bmsafemap *bmsafemap_lookup(struct mount *, struct buf *,
965 	    int cg, struct bmsafemap *);
966 static	int newblk_find(struct newblk_hashhead *, struct mount *, ufs2_daddr_t,
967 	    int, struct newblk **);
968 static	int newblk_lookup(struct mount *, ufs2_daddr_t, int, struct newblk **);
969 static	int inodedep_find(struct inodedep_hashhead *, struct fs *, ino_t,
970 	    struct inodedep **);
971 static	int inodedep_lookup(struct mount *, ino_t, int, struct inodedep **);
972 static	int pagedep_lookup(struct mount *, struct buf *bp, ino_t, ufs_lbn_t,
973 	    int, struct pagedep **);
974 static	int pagedep_find(struct pagedep_hashhead *, ino_t, ufs_lbn_t,
975 	    struct mount *mp, int, struct pagedep **);
976 static	void pause_timer(void *);
977 static	int request_cleanup(struct mount *, int);
978 static	int process_worklist_item(struct mount *, int, int);
979 static	void process_removes(struct vnode *);
980 static	void process_truncates(struct vnode *);
981 static	void jwork_move(struct workhead *, struct workhead *);
982 static	void jwork_insert(struct workhead *, struct jsegdep *);
983 static	void add_to_worklist(struct worklist *, int);
984 static	void wake_worklist(struct worklist *);
985 static	void wait_worklist(struct worklist *, char *);
986 static	void remove_from_worklist(struct worklist *);
987 static	void softdep_flush(void);
988 static	void softdep_flushjournal(struct mount *);
989 static	int softdep_speedup(void);
990 static	void worklist_speedup(void);
991 static	int journal_mount(struct mount *, struct fs *, struct ucred *);
992 static	void journal_unmount(struct mount *);
993 static	int journal_space(struct ufsmount *, int);
994 static	void journal_suspend(struct ufsmount *);
995 static	int journal_unsuspend(struct ufsmount *ump);
996 static	void softdep_prelink(struct vnode *, struct vnode *);
997 static	void add_to_journal(struct worklist *);
998 static	void remove_from_journal(struct worklist *);
999 static	void softdep_process_journal(struct mount *, struct worklist *, int);
1000 static	struct jremref *newjremref(struct dirrem *, struct inode *,
1001 	    struct inode *ip, off_t, nlink_t);
1002 static	struct jaddref *newjaddref(struct inode *, ino_t, off_t, int16_t,
1003 	    uint16_t);
1004 static	inline void newinoref(struct inoref *, ino_t, ino_t, off_t, nlink_t,
1005 	    uint16_t);
1006 static	inline struct jsegdep *inoref_jseg(struct inoref *);
1007 static	struct jmvref *newjmvref(struct inode *, ino_t, off_t, off_t);
1008 static	struct jfreeblk *newjfreeblk(struct freeblks *, ufs_lbn_t,
1009 	    ufs2_daddr_t, int);
1010 static	struct jtrunc *newjtrunc(struct freeblks *, off_t, int);
1011 static	void move_newblock_dep(struct jaddref *, struct inodedep *);
1012 static	void cancel_jfreeblk(struct freeblks *, ufs2_daddr_t);
1013 static	struct jfreefrag *newjfreefrag(struct freefrag *, struct inode *,
1014 	    ufs2_daddr_t, long, ufs_lbn_t);
1015 static	struct freework *newfreework(struct ufsmount *, struct freeblks *,
1016 	    struct freework *, ufs_lbn_t, ufs2_daddr_t, int, int, int);
1017 static	int jwait(struct worklist *, int);
1018 static	struct inodedep *inodedep_lookup_ip(struct inode *);
1019 static	int bmsafemap_backgroundwrite(struct bmsafemap *, struct buf *);
1020 static	struct freefile *handle_bufwait(struct inodedep *, struct workhead *);
1021 static	void handle_jwork(struct workhead *);
1022 static	struct mkdir *setup_newdir(struct diradd *, ino_t, ino_t, struct buf *,
1023 	    struct mkdir **);
1024 static	struct jblocks *jblocks_create(void);
1025 static	ufs2_daddr_t jblocks_alloc(struct jblocks *, int, int *);
1026 static	void jblocks_free(struct jblocks *, struct mount *, int);
1027 static	void jblocks_destroy(struct jblocks *);
1028 static	void jblocks_add(struct jblocks *, ufs2_daddr_t, int);
1029 
1030 /*
1031  * Exported softdep operations.
1032  */
1033 static	void softdep_disk_io_initiation(struct buf *);
1034 static	void softdep_disk_write_complete(struct buf *);
1035 static	void softdep_deallocate_dependencies(struct buf *);
1036 static	int softdep_count_dependencies(struct buf *bp, int);
1037 
1038 static struct rwlock lk;
1039 RW_SYSINIT(softdep_lock, &lk, "Softdep Lock");
1040 
1041 #define TRY_ACQUIRE_LOCK(lk)		rw_try_wlock(lk)
1042 #define ACQUIRE_LOCK(lk)		rw_wlock(lk)
1043 #define FREE_LOCK(lk)			rw_wunlock(lk)
1044 
1045 #define	BUF_AREC(bp)			lockallowrecurse(&(bp)->b_lock)
1046 #define	BUF_NOREC(bp)			lockdisablerecurse(&(bp)->b_lock)
1047 
1048 /*
1049  * Worklist queue management.
1050  * These routines require that the lock be held.
1051  */
1052 #ifndef /* NOT */ DEBUG
1053 #define WORKLIST_INSERT(head, item) do {	\
1054 	(item)->wk_state |= ONWORKLIST;		\
1055 	LIST_INSERT_HEAD(head, item, wk_list);	\
1056 } while (0)
1057 #define WORKLIST_REMOVE(item) do {		\
1058 	(item)->wk_state &= ~ONWORKLIST;	\
1059 	LIST_REMOVE(item, wk_list);		\
1060 } while (0)
1061 #define WORKLIST_INSERT_UNLOCKED	WORKLIST_INSERT
1062 #define WORKLIST_REMOVE_UNLOCKED	WORKLIST_REMOVE
1063 
1064 #else /* DEBUG */
1065 static	void worklist_insert(struct workhead *, struct worklist *, int);
1066 static	void worklist_remove(struct worklist *, int);
1067 
1068 #define WORKLIST_INSERT(head, item) worklist_insert(head, item, 1)
1069 #define WORKLIST_INSERT_UNLOCKED(head, item) worklist_insert(head, item, 0)
1070 #define WORKLIST_REMOVE(item) worklist_remove(item, 1)
1071 #define WORKLIST_REMOVE_UNLOCKED(item) worklist_remove(item, 0)
1072 
1073 static void
1074 worklist_insert(head, item, locked)
1075 	struct workhead *head;
1076 	struct worklist *item;
1077 	int locked;
1078 {
1079 
1080 	if (locked)
1081 		rw_assert(&lk, RA_WLOCKED);
1082 	if (item->wk_state & ONWORKLIST)
1083 		panic("worklist_insert: %p %s(0x%X) already on list",
1084 		    item, TYPENAME(item->wk_type), item->wk_state);
1085 	item->wk_state |= ONWORKLIST;
1086 	LIST_INSERT_HEAD(head, item, wk_list);
1087 }
1088 
1089 static void
1090 worklist_remove(item, locked)
1091 	struct worklist *item;
1092 	int locked;
1093 {
1094 
1095 	if (locked)
1096 		rw_assert(&lk, RA_WLOCKED);
1097 	if ((item->wk_state & ONWORKLIST) == 0)
1098 		panic("worklist_remove: %p %s(0x%X) not on list",
1099 		    item, TYPENAME(item->wk_type), item->wk_state);
1100 	item->wk_state &= ~ONWORKLIST;
1101 	LIST_REMOVE(item, wk_list);
1102 }
1103 #endif /* DEBUG */
1104 
1105 /*
1106  * Merge two jsegdeps keeping only the oldest one as newer references
1107  * can't be discarded until after older references.
1108  */
1109 static inline struct jsegdep *
1110 jsegdep_merge(struct jsegdep *one, struct jsegdep *two)
1111 {
1112 	struct jsegdep *swp;
1113 
1114 	if (two == NULL)
1115 		return (one);
1116 
1117 	if (one->jd_seg->js_seq > two->jd_seg->js_seq) {
1118 		swp = one;
1119 		one = two;
1120 		two = swp;
1121 	}
1122 	WORKLIST_REMOVE(&two->jd_list);
1123 	free_jsegdep(two);
1124 
1125 	return (one);
1126 }
1127 
1128 /*
1129  * If two freedeps are compatible free one to reduce list size.
1130  */
1131 static inline struct freedep *
1132 freedep_merge(struct freedep *one, struct freedep *two)
1133 {
1134 	if (two == NULL)
1135 		return (one);
1136 
1137 	if (one->fd_freework == two->fd_freework) {
1138 		WORKLIST_REMOVE(&two->fd_list);
1139 		free_freedep(two);
1140 	}
1141 	return (one);
1142 }
1143 
1144 /*
1145  * Move journal work from one list to another.  Duplicate freedeps and
1146  * jsegdeps are coalesced to keep the lists as small as possible.
1147  */
1148 static void
1149 jwork_move(dst, src)
1150 	struct workhead *dst;
1151 	struct workhead *src;
1152 {
1153 	struct freedep *freedep;
1154 	struct jsegdep *jsegdep;
1155 	struct worklist *wkn;
1156 	struct worklist *wk;
1157 
1158 	KASSERT(dst != src,
1159 	    ("jwork_move: dst == src"));
1160 	freedep = NULL;
1161 	jsegdep = NULL;
1162 	LIST_FOREACH_SAFE(wk, dst, wk_list, wkn) {
1163 		if (wk->wk_type == D_JSEGDEP)
1164 			jsegdep = jsegdep_merge(WK_JSEGDEP(wk), jsegdep);
1165 		if (wk->wk_type == D_FREEDEP)
1166 			freedep = freedep_merge(WK_FREEDEP(wk), freedep);
1167 	}
1168 
1169 	rw_assert(&lk, RA_WLOCKED);
1170 	while ((wk = LIST_FIRST(src)) != NULL) {
1171 		WORKLIST_REMOVE(wk);
1172 		WORKLIST_INSERT(dst, wk);
1173 		if (wk->wk_type == D_JSEGDEP) {
1174 			jsegdep = jsegdep_merge(WK_JSEGDEP(wk), jsegdep);
1175 			continue;
1176 		}
1177 		if (wk->wk_type == D_FREEDEP)
1178 			freedep = freedep_merge(WK_FREEDEP(wk), freedep);
1179 	}
1180 }
1181 
1182 static void
1183 jwork_insert(dst, jsegdep)
1184 	struct workhead *dst;
1185 	struct jsegdep *jsegdep;
1186 {
1187 	struct jsegdep *jsegdepn;
1188 	struct worklist *wk;
1189 
1190 	LIST_FOREACH(wk, dst, wk_list)
1191 		if (wk->wk_type == D_JSEGDEP)
1192 			break;
1193 	if (wk == NULL) {
1194 		WORKLIST_INSERT(dst, &jsegdep->jd_list);
1195 		return;
1196 	}
1197 	jsegdepn = WK_JSEGDEP(wk);
1198 	if (jsegdep->jd_seg->js_seq < jsegdepn->jd_seg->js_seq) {
1199 		WORKLIST_REMOVE(wk);
1200 		free_jsegdep(jsegdepn);
1201 		WORKLIST_INSERT(dst, &jsegdep->jd_list);
1202 	} else
1203 		free_jsegdep(jsegdep);
1204 }
1205 
1206 /*
1207  * Routines for tracking and managing workitems.
1208  */
1209 static	void workitem_free(struct worklist *, int);
1210 static	void workitem_alloc(struct worklist *, int, struct mount *);
1211 static	void workitem_reassign(struct worklist *, int);
1212 
1213 #define	WORKITEM_FREE(item, type) \
1214 	workitem_free((struct worklist *)(item), (type))
1215 #define	WORKITEM_REASSIGN(item, type) \
1216 	workitem_reassign((struct worklist *)(item), (type))
1217 
1218 static void
1219 workitem_free(item, type)
1220 	struct worklist *item;
1221 	int type;
1222 {
1223 	struct ufsmount *ump;
1224 	rw_assert(&lk, RA_WLOCKED);
1225 
1226 #ifdef DEBUG
1227 	if (item->wk_state & ONWORKLIST)
1228 		panic("workitem_free: %s(0x%X) still on list",
1229 		    TYPENAME(item->wk_type), item->wk_state);
1230 	if (item->wk_type != type && type != D_NEWBLK)
1231 		panic("workitem_free: type mismatch %s != %s",
1232 		    TYPENAME(item->wk_type), TYPENAME(type));
1233 #endif
1234 	if (item->wk_state & IOWAITING)
1235 		wakeup(item);
1236 	ump = VFSTOUFS(item->wk_mp);
1237 	KASSERT(ump->softdep_deps > 0,
1238 	    ("workitem_free: %s: softdep_deps going negative",
1239 	    ump->um_fs->fs_fsmnt));
1240 	if (--ump->softdep_deps == 0 && ump->softdep_req)
1241 		wakeup(&ump->softdep_deps);
1242 	KASSERT(dep_current[item->wk_type] > 0,
1243 	    ("workitem_free: %s: dep_current[%s] going negative",
1244 	    ump->um_fs->fs_fsmnt, TYPENAME(item->wk_type)));
1245 	dep_current[item->wk_type]--;
1246 	free(item, DtoM(type));
1247 }
1248 
1249 static void
1250 workitem_alloc(item, type, mp)
1251 	struct worklist *item;
1252 	int type;
1253 	struct mount *mp;
1254 {
1255 	struct ufsmount *ump;
1256 
1257 	item->wk_type = type;
1258 	item->wk_mp = mp;
1259 	item->wk_state = 0;
1260 
1261 	ump = VFSTOUFS(mp);
1262 	ACQUIRE_LOCK(&lk);
1263 	dep_current[type]++;
1264 	if (dep_current[type] > dep_highuse[type])
1265 		dep_highuse[type] = dep_current[type];
1266 	dep_total[type]++;
1267 	ump->softdep_deps++;
1268 	ump->softdep_accdeps++;
1269 	FREE_LOCK(&lk);
1270 }
1271 
1272 static void
1273 workitem_reassign(item, newtype)
1274 	struct worklist *item;
1275 	int newtype;
1276 {
1277 
1278 	KASSERT(dep_current[item->wk_type] > 0,
1279 	    ("workitem_reassign: %s: dep_current[%s] going negative",
1280 	    VFSTOUFS(item->wk_mp)->um_fs->fs_fsmnt, TYPENAME(item->wk_type)));
1281 	dep_current[item->wk_type]--;
1282 	dep_current[newtype]++;
1283 	if (dep_current[newtype] > dep_highuse[newtype])
1284 		dep_highuse[newtype] = dep_current[newtype];
1285 	dep_total[newtype]++;
1286 	item->wk_type = newtype;
1287 }
1288 
1289 /*
1290  * Workitem queue management
1291  */
1292 static int max_softdeps;	/* maximum number of structs before slowdown */
1293 static int maxindirdeps = 50;	/* max number of indirdeps before slowdown */
1294 static int tickdelay = 2;	/* number of ticks to pause during slowdown */
1295 static int proc_waiting;	/* tracks whether we have a timeout posted */
1296 static int *stat_countp;	/* statistic to count in proc_waiting timeout */
1297 static struct callout softdep_callout;
1298 static int req_pending;
1299 static int req_clear_inodedeps;	/* syncer process flush some inodedeps */
1300 static int req_clear_remove;	/* syncer process flush some freeblks */
1301 static int softdep_flushcache = 0; /* Should we do BIO_FLUSH? */
1302 
1303 /*
1304  * runtime statistics
1305  */
1306 static int stat_worklist_push;	/* number of worklist cleanups */
1307 static int stat_blk_limit_push;	/* number of times block limit neared */
1308 static int stat_ino_limit_push;	/* number of times inode limit neared */
1309 static int stat_blk_limit_hit;	/* number of times block slowdown imposed */
1310 static int stat_ino_limit_hit;	/* number of times inode slowdown imposed */
1311 static int stat_sync_limit_hit;	/* number of synchronous slowdowns imposed */
1312 static int stat_indir_blk_ptrs;	/* bufs redirtied as indir ptrs not written */
1313 static int stat_inode_bitmap;	/* bufs redirtied as inode bitmap not written */
1314 static int stat_direct_blk_ptrs;/* bufs redirtied as direct ptrs not written */
1315 static int stat_dir_entry;	/* bufs redirtied as dir entry cannot write */
1316 static int stat_jaddref;	/* bufs redirtied as ino bitmap can not write */
1317 static int stat_jnewblk;	/* bufs redirtied as blk bitmap can not write */
1318 static int stat_journal_min;	/* Times hit journal min threshold */
1319 static int stat_journal_low;	/* Times hit journal low threshold */
1320 static int stat_journal_wait;	/* Times blocked in jwait(). */
1321 static int stat_jwait_filepage;	/* Times blocked in jwait() for filepage. */
1322 static int stat_jwait_freeblks;	/* Times blocked in jwait() for freeblks. */
1323 static int stat_jwait_inode;	/* Times blocked in jwait() for inodes. */
1324 static int stat_jwait_newblk;	/* Times blocked in jwait() for newblks. */
1325 static int stat_cleanup_high_delay; /* Maximum cleanup delay (in ticks) */
1326 static int stat_cleanup_blkrequests; /* Number of block cleanup requests */
1327 static int stat_cleanup_inorequests; /* Number of inode cleanup requests */
1328 static int stat_cleanup_retries; /* Number of cleanups that needed to flush */
1329 static int stat_cleanup_failures; /* Number of cleanup requests that failed */
1330 
1331 SYSCTL_INT(_debug_softdep, OID_AUTO, max_softdeps, CTLFLAG_RW,
1332     &max_softdeps, 0, "");
1333 SYSCTL_INT(_debug_softdep, OID_AUTO, tickdelay, CTLFLAG_RW,
1334     &tickdelay, 0, "");
1335 SYSCTL_INT(_debug_softdep, OID_AUTO, maxindirdeps, CTLFLAG_RW,
1336     &maxindirdeps, 0, "");
1337 SYSCTL_INT(_debug_softdep, OID_AUTO, worklist_push, CTLFLAG_RW,
1338     &stat_worklist_push, 0,"");
1339 SYSCTL_INT(_debug_softdep, OID_AUTO, blk_limit_push, CTLFLAG_RW,
1340     &stat_blk_limit_push, 0,"");
1341 SYSCTL_INT(_debug_softdep, OID_AUTO, ino_limit_push, CTLFLAG_RW,
1342     &stat_ino_limit_push, 0,"");
1343 SYSCTL_INT(_debug_softdep, OID_AUTO, blk_limit_hit, CTLFLAG_RW,
1344     &stat_blk_limit_hit, 0, "");
1345 SYSCTL_INT(_debug_softdep, OID_AUTO, ino_limit_hit, CTLFLAG_RW,
1346     &stat_ino_limit_hit, 0, "");
1347 SYSCTL_INT(_debug_softdep, OID_AUTO, sync_limit_hit, CTLFLAG_RW,
1348     &stat_sync_limit_hit, 0, "");
1349 SYSCTL_INT(_debug_softdep, OID_AUTO, indir_blk_ptrs, CTLFLAG_RW,
1350     &stat_indir_blk_ptrs, 0, "");
1351 SYSCTL_INT(_debug_softdep, OID_AUTO, inode_bitmap, CTLFLAG_RW,
1352     &stat_inode_bitmap, 0, "");
1353 SYSCTL_INT(_debug_softdep, OID_AUTO, direct_blk_ptrs, CTLFLAG_RW,
1354     &stat_direct_blk_ptrs, 0, "");
1355 SYSCTL_INT(_debug_softdep, OID_AUTO, dir_entry, CTLFLAG_RW,
1356     &stat_dir_entry, 0, "");
1357 SYSCTL_INT(_debug_softdep, OID_AUTO, jaddref_rollback, CTLFLAG_RW,
1358     &stat_jaddref, 0, "");
1359 SYSCTL_INT(_debug_softdep, OID_AUTO, jnewblk_rollback, CTLFLAG_RW,
1360     &stat_jnewblk, 0, "");
1361 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_low, CTLFLAG_RW,
1362     &stat_journal_low, 0, "");
1363 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_min, CTLFLAG_RW,
1364     &stat_journal_min, 0, "");
1365 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_wait, CTLFLAG_RW,
1366     &stat_journal_wait, 0, "");
1367 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_filepage, CTLFLAG_RW,
1368     &stat_jwait_filepage, 0, "");
1369 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_freeblks, CTLFLAG_RW,
1370     &stat_jwait_freeblks, 0, "");
1371 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_inode, CTLFLAG_RW,
1372     &stat_jwait_inode, 0, "");
1373 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_newblk, CTLFLAG_RW,
1374     &stat_jwait_newblk, 0, "");
1375 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_blkrequests, CTLFLAG_RW,
1376     &stat_cleanup_blkrequests, 0, "");
1377 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_inorequests, CTLFLAG_RW,
1378     &stat_cleanup_inorequests, 0, "");
1379 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_high_delay, CTLFLAG_RW,
1380     &stat_cleanup_high_delay, 0, "");
1381 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_retries, CTLFLAG_RW,
1382     &stat_cleanup_retries, 0, "");
1383 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_failures, CTLFLAG_RW,
1384     &stat_cleanup_failures, 0, "");
1385 SYSCTL_INT(_debug_softdep, OID_AUTO, flushcache, CTLFLAG_RW,
1386     &softdep_flushcache, 0, "");
1387 
1388 SYSCTL_DECL(_vfs_ffs);
1389 
1390 LIST_HEAD(bmsafemap_hashhead, bmsafemap) *bmsafemap_hashtbl;
1391 static u_long	bmsafemap_hash;	/* size of hash table - 1 */
1392 
1393 static int compute_summary_at_mount = 0;	/* Whether to recompute the summary at mount time */
1394 SYSCTL_INT(_vfs_ffs, OID_AUTO, compute_summary_at_mount, CTLFLAG_RW,
1395 	   &compute_summary_at_mount, 0, "Recompute summary at mount");
1396 
1397 static struct proc *softdepproc;
1398 static struct kproc_desc softdep_kp = {
1399 	"softdepflush",
1400 	softdep_flush,
1401 	&softdepproc
1402 };
1403 SYSINIT(sdproc, SI_SUB_KTHREAD_UPDATE, SI_ORDER_ANY, kproc_start,
1404     &softdep_kp);
1405 
1406 static void
1407 softdep_flush(void)
1408 {
1409 	struct mount *nmp;
1410 	struct mount *mp;
1411 	struct ufsmount *ump;
1412 	struct thread *td;
1413 	int remaining;
1414 	int progress;
1415 
1416 	td = curthread;
1417 	td->td_pflags |= TDP_NORUNNINGBUF;
1418 
1419 	for (;;) {
1420 		kproc_suspend_check(softdepproc);
1421 		ACQUIRE_LOCK(&lk);
1422 		/*
1423 		 * If requested, try removing inode or removal dependencies.
1424 		 */
1425 		if (req_clear_inodedeps) {
1426 			clear_inodedeps();
1427 			req_clear_inodedeps -= 1;
1428 			wakeup_one(&proc_waiting);
1429 		}
1430 		if (req_clear_remove) {
1431 			clear_remove();
1432 			req_clear_remove -= 1;
1433 			wakeup_one(&proc_waiting);
1434 		}
1435 		FREE_LOCK(&lk);
1436 		remaining = progress = 0;
1437 		mtx_lock(&mountlist_mtx);
1438 		for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp)  {
1439 			nmp = TAILQ_NEXT(mp, mnt_list);
1440 			if (MOUNTEDSOFTDEP(mp) == 0)
1441 				continue;
1442 			if (vfs_busy(mp, MBF_NOWAIT | MBF_MNTLSTLOCK))
1443 				continue;
1444 			progress += softdep_process_worklist(mp, 0);
1445 			ump = VFSTOUFS(mp);
1446 			remaining += ump->softdep_on_worklist;
1447 			mtx_lock(&mountlist_mtx);
1448 			nmp = TAILQ_NEXT(mp, mnt_list);
1449 			vfs_unbusy(mp);
1450 		}
1451 		mtx_unlock(&mountlist_mtx);
1452 		if (remaining && progress)
1453 			continue;
1454 		ACQUIRE_LOCK(&lk);
1455 		if (!req_pending)
1456 			msleep(&req_pending, &lk, PVM, "sdflush", hz);
1457 		req_pending = 0;
1458 		FREE_LOCK(&lk);
1459 	}
1460 }
1461 
1462 static void
1463 worklist_speedup(void)
1464 {
1465 	rw_assert(&lk, RA_WLOCKED);
1466 	if (req_pending == 0) {
1467 		req_pending = 1;
1468 		wakeup(&req_pending);
1469 	}
1470 }
1471 
1472 static int
1473 softdep_speedup(void)
1474 {
1475 
1476 	worklist_speedup();
1477 	bd_speedup();
1478 	return speedup_syncer();
1479 }
1480 
1481 /*
1482  * Add an item to the end of the work queue.
1483  * This routine requires that the lock be held.
1484  * This is the only routine that adds items to the list.
1485  * The following routine is the only one that removes items
1486  * and does so in order from first to last.
1487  */
1488 
1489 #define	WK_HEAD		0x0001	/* Add to HEAD. */
1490 #define	WK_NODELAY	0x0002	/* Process immediately. */
1491 
1492 static void
1493 add_to_worklist(wk, flags)
1494 	struct worklist *wk;
1495 	int flags;
1496 {
1497 	struct ufsmount *ump;
1498 
1499 	rw_assert(&lk, RA_WLOCKED);
1500 	ump = VFSTOUFS(wk->wk_mp);
1501 	if (wk->wk_state & ONWORKLIST)
1502 		panic("add_to_worklist: %s(0x%X) already on list",
1503 		    TYPENAME(wk->wk_type), wk->wk_state);
1504 	wk->wk_state |= ONWORKLIST;
1505 	if (ump->softdep_on_worklist == 0) {
1506 		LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list);
1507 		ump->softdep_worklist_tail = wk;
1508 	} else if (flags & WK_HEAD) {
1509 		LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list);
1510 	} else {
1511 		LIST_INSERT_AFTER(ump->softdep_worklist_tail, wk, wk_list);
1512 		ump->softdep_worklist_tail = wk;
1513 	}
1514 	ump->softdep_on_worklist += 1;
1515 	if (flags & WK_NODELAY)
1516 		worklist_speedup();
1517 }
1518 
1519 /*
1520  * Remove the item to be processed. If we are removing the last
1521  * item on the list, we need to recalculate the tail pointer.
1522  */
1523 static void
1524 remove_from_worklist(wk)
1525 	struct worklist *wk;
1526 {
1527 	struct ufsmount *ump;
1528 
1529 	ump = VFSTOUFS(wk->wk_mp);
1530 	WORKLIST_REMOVE(wk);
1531 	if (ump->softdep_worklist_tail == wk)
1532 		ump->softdep_worklist_tail =
1533 		    (struct worklist *)wk->wk_list.le_prev;
1534 	ump->softdep_on_worklist -= 1;
1535 }
1536 
1537 static void
1538 wake_worklist(wk)
1539 	struct worklist *wk;
1540 {
1541 	if (wk->wk_state & IOWAITING) {
1542 		wk->wk_state &= ~IOWAITING;
1543 		wakeup(wk);
1544 	}
1545 }
1546 
1547 static void
1548 wait_worklist(wk, wmesg)
1549 	struct worklist *wk;
1550 	char *wmesg;
1551 {
1552 
1553 	wk->wk_state |= IOWAITING;
1554 	msleep(wk, &lk, PVM, wmesg, 0);
1555 }
1556 
1557 /*
1558  * Process that runs once per second to handle items in the background queue.
1559  *
1560  * Note that we ensure that everything is done in the order in which they
1561  * appear in the queue. The code below depends on this property to ensure
1562  * that blocks of a file are freed before the inode itself is freed. This
1563  * ordering ensures that no new <vfsid, inum, lbn> triples will be generated
1564  * until all the old ones have been purged from the dependency lists.
1565  */
1566 int
1567 softdep_process_worklist(mp, full)
1568 	struct mount *mp;
1569 	int full;
1570 {
1571 	int cnt, matchcnt;
1572 	struct ufsmount *ump;
1573 	long starttime;
1574 
1575 	KASSERT(mp != NULL, ("softdep_process_worklist: NULL mp"));
1576 	/*
1577 	 * Record the process identifier of our caller so that we can give
1578 	 * this process preferential treatment in request_cleanup below.
1579 	 */
1580 	matchcnt = 0;
1581 	ump = VFSTOUFS(mp);
1582 	ACQUIRE_LOCK(&lk);
1583 	starttime = time_second;
1584 	softdep_process_journal(mp, NULL, full?MNT_WAIT:0);
1585 	while (ump->softdep_on_worklist > 0) {
1586 		if ((cnt = process_worklist_item(mp, 10, LK_NOWAIT)) == 0)
1587 			break;
1588 		else
1589 			matchcnt += cnt;
1590 		/*
1591 		 * If requested, try removing inode or removal dependencies.
1592 		 */
1593 		if (req_clear_inodedeps) {
1594 			clear_inodedeps();
1595 			req_clear_inodedeps -= 1;
1596 			wakeup_one(&proc_waiting);
1597 		}
1598 		if (req_clear_remove) {
1599 			clear_remove();
1600 			req_clear_remove -= 1;
1601 			wakeup_one(&proc_waiting);
1602 		}
1603 		/*
1604 		 * We do not generally want to stop for buffer space, but if
1605 		 * we are really being a buffer hog, we will stop and wait.
1606 		 */
1607 		if (should_yield()) {
1608 			FREE_LOCK(&lk);
1609 			kern_yield(PRI_USER);
1610 			bwillwrite();
1611 			ACQUIRE_LOCK(&lk);
1612 		}
1613 		/*
1614 		 * Never allow processing to run for more than one
1615 		 * second. Otherwise the other mountpoints may get
1616 		 * excessively backlogged.
1617 		 */
1618 		if (!full && starttime != time_second)
1619 			break;
1620 	}
1621 	if (full == 0)
1622 		journal_unsuspend(ump);
1623 	FREE_LOCK(&lk);
1624 	return (matchcnt);
1625 }
1626 
1627 /*
1628  * Process all removes associated with a vnode if we are running out of
1629  * journal space.  Any other process which attempts to flush these will
1630  * be unable as we have the vnodes locked.
1631  */
1632 static void
1633 process_removes(vp)
1634 	struct vnode *vp;
1635 {
1636 	struct inodedep *inodedep;
1637 	struct dirrem *dirrem;
1638 	struct mount *mp;
1639 	ino_t inum;
1640 
1641 	rw_assert(&lk, RA_WLOCKED);
1642 
1643 	mp = vp->v_mount;
1644 	inum = VTOI(vp)->i_number;
1645 	for (;;) {
1646 top:
1647 		if (inodedep_lookup(mp, inum, 0, &inodedep) == 0)
1648 			return;
1649 		LIST_FOREACH(dirrem, &inodedep->id_dirremhd, dm_inonext) {
1650 			/*
1651 			 * If another thread is trying to lock this vnode
1652 			 * it will fail but we must wait for it to do so
1653 			 * before we can proceed.
1654 			 */
1655 			if (dirrem->dm_state & INPROGRESS) {
1656 				wait_worklist(&dirrem->dm_list, "pwrwait");
1657 				goto top;
1658 			}
1659 			if ((dirrem->dm_state & (COMPLETE | ONWORKLIST)) ==
1660 			    (COMPLETE | ONWORKLIST))
1661 				break;
1662 		}
1663 		if (dirrem == NULL)
1664 			return;
1665 		remove_from_worklist(&dirrem->dm_list);
1666 		FREE_LOCK(&lk);
1667 		if (vn_start_secondary_write(NULL, &mp, V_NOWAIT))
1668 			panic("process_removes: suspended filesystem");
1669 		handle_workitem_remove(dirrem, 0);
1670 		vn_finished_secondary_write(mp);
1671 		ACQUIRE_LOCK(&lk);
1672 	}
1673 }
1674 
1675 /*
1676  * Process all truncations associated with a vnode if we are running out
1677  * of journal space.  This is called when the vnode lock is already held
1678  * and no other process can clear the truncation.  This function returns
1679  * a value greater than zero if it did any work.
1680  */
1681 static void
1682 process_truncates(vp)
1683 	struct vnode *vp;
1684 {
1685 	struct inodedep *inodedep;
1686 	struct freeblks *freeblks;
1687 	struct mount *mp;
1688 	ino_t inum;
1689 	int cgwait;
1690 
1691 	rw_assert(&lk, RA_WLOCKED);
1692 
1693 	mp = vp->v_mount;
1694 	inum = VTOI(vp)->i_number;
1695 	for (;;) {
1696 		if (inodedep_lookup(mp, inum, 0, &inodedep) == 0)
1697 			return;
1698 		cgwait = 0;
1699 		TAILQ_FOREACH(freeblks, &inodedep->id_freeblklst, fb_next) {
1700 			/* Journal entries not yet written.  */
1701 			if (!LIST_EMPTY(&freeblks->fb_jblkdephd)) {
1702 				jwait(&LIST_FIRST(
1703 				    &freeblks->fb_jblkdephd)->jb_list,
1704 				    MNT_WAIT);
1705 				break;
1706 			}
1707 			/* Another thread is executing this item. */
1708 			if (freeblks->fb_state & INPROGRESS) {
1709 				wait_worklist(&freeblks->fb_list, "ptrwait");
1710 				break;
1711 			}
1712 			/* Freeblks is waiting on a inode write. */
1713 			if ((freeblks->fb_state & COMPLETE) == 0) {
1714 				FREE_LOCK(&lk);
1715 				ffs_update(vp, 1);
1716 				ACQUIRE_LOCK(&lk);
1717 				break;
1718 			}
1719 			if ((freeblks->fb_state & (ALLCOMPLETE | ONWORKLIST)) ==
1720 			    (ALLCOMPLETE | ONWORKLIST)) {
1721 				remove_from_worklist(&freeblks->fb_list);
1722 				freeblks->fb_state |= INPROGRESS;
1723 				FREE_LOCK(&lk);
1724 				if (vn_start_secondary_write(NULL, &mp,
1725 				    V_NOWAIT))
1726 					panic("process_truncates: "
1727 					    "suspended filesystem");
1728 				handle_workitem_freeblocks(freeblks, 0);
1729 				vn_finished_secondary_write(mp);
1730 				ACQUIRE_LOCK(&lk);
1731 				break;
1732 			}
1733 			if (freeblks->fb_cgwait)
1734 				cgwait++;
1735 		}
1736 		if (cgwait) {
1737 			FREE_LOCK(&lk);
1738 			sync_cgs(mp, MNT_WAIT);
1739 			ffs_sync_snap(mp, MNT_WAIT);
1740 			ACQUIRE_LOCK(&lk);
1741 			continue;
1742 		}
1743 		if (freeblks == NULL)
1744 			break;
1745 	}
1746 	return;
1747 }
1748 
1749 /*
1750  * Process one item on the worklist.
1751  */
1752 static int
1753 process_worklist_item(mp, target, flags)
1754 	struct mount *mp;
1755 	int target;
1756 	int flags;
1757 {
1758 	struct worklist sentinel;
1759 	struct worklist *wk;
1760 	struct ufsmount *ump;
1761 	int matchcnt;
1762 	int error;
1763 
1764 	rw_assert(&lk, RA_WLOCKED);
1765 	KASSERT(mp != NULL, ("process_worklist_item: NULL mp"));
1766 	/*
1767 	 * If we are being called because of a process doing a
1768 	 * copy-on-write, then it is not safe to write as we may
1769 	 * recurse into the copy-on-write routine.
1770 	 */
1771 	if (curthread->td_pflags & TDP_COWINPROGRESS)
1772 		return (-1);
1773 	PHOLD(curproc);	/* Don't let the stack go away. */
1774 	ump = VFSTOUFS(mp);
1775 	matchcnt = 0;
1776 	sentinel.wk_mp = NULL;
1777 	sentinel.wk_type = D_SENTINEL;
1778 	LIST_INSERT_HEAD(&ump->softdep_workitem_pending, &sentinel, wk_list);
1779 	for (wk = LIST_NEXT(&sentinel, wk_list); wk != NULL;
1780 	    wk = LIST_NEXT(&sentinel, wk_list)) {
1781 		if (wk->wk_type == D_SENTINEL) {
1782 			LIST_REMOVE(&sentinel, wk_list);
1783 			LIST_INSERT_AFTER(wk, &sentinel, wk_list);
1784 			continue;
1785 		}
1786 		if (wk->wk_state & INPROGRESS)
1787 			panic("process_worklist_item: %p already in progress.",
1788 			    wk);
1789 		wk->wk_state |= INPROGRESS;
1790 		remove_from_worklist(wk);
1791 		FREE_LOCK(&lk);
1792 		if (vn_start_secondary_write(NULL, &mp, V_NOWAIT))
1793 			panic("process_worklist_item: suspended filesystem");
1794 		switch (wk->wk_type) {
1795 		case D_DIRREM:
1796 			/* removal of a directory entry */
1797 			error = handle_workitem_remove(WK_DIRREM(wk), flags);
1798 			break;
1799 
1800 		case D_FREEBLKS:
1801 			/* releasing blocks and/or fragments from a file */
1802 			error = handle_workitem_freeblocks(WK_FREEBLKS(wk),
1803 			    flags);
1804 			break;
1805 
1806 		case D_FREEFRAG:
1807 			/* releasing a fragment when replaced as a file grows */
1808 			handle_workitem_freefrag(WK_FREEFRAG(wk));
1809 			error = 0;
1810 			break;
1811 
1812 		case D_FREEFILE:
1813 			/* releasing an inode when its link count drops to 0 */
1814 			handle_workitem_freefile(WK_FREEFILE(wk));
1815 			error = 0;
1816 			break;
1817 
1818 		default:
1819 			panic("%s_process_worklist: Unknown type %s",
1820 			    "softdep", TYPENAME(wk->wk_type));
1821 			/* NOTREACHED */
1822 		}
1823 		vn_finished_secondary_write(mp);
1824 		ACQUIRE_LOCK(&lk);
1825 		if (error == 0) {
1826 			if (++matchcnt == target)
1827 				break;
1828 			continue;
1829 		}
1830 		/*
1831 		 * We have to retry the worklist item later.  Wake up any
1832 		 * waiters who may be able to complete it immediately and
1833 		 * add the item back to the head so we don't try to execute
1834 		 * it again.
1835 		 */
1836 		wk->wk_state &= ~INPROGRESS;
1837 		wake_worklist(wk);
1838 		add_to_worklist(wk, WK_HEAD);
1839 	}
1840 	LIST_REMOVE(&sentinel, wk_list);
1841 	/* Sentinal could've become the tail from remove_from_worklist. */
1842 	if (ump->softdep_worklist_tail == &sentinel)
1843 		ump->softdep_worklist_tail =
1844 		    (struct worklist *)sentinel.wk_list.le_prev;
1845 	PRELE(curproc);
1846 	return (matchcnt);
1847 }
1848 
1849 /*
1850  * Move dependencies from one buffer to another.
1851  */
1852 int
1853 softdep_move_dependencies(oldbp, newbp)
1854 	struct buf *oldbp;
1855 	struct buf *newbp;
1856 {
1857 	struct worklist *wk, *wktail;
1858 	int dirty;
1859 
1860 	dirty = 0;
1861 	wktail = NULL;
1862 	ACQUIRE_LOCK(&lk);
1863 	while ((wk = LIST_FIRST(&oldbp->b_dep)) != NULL) {
1864 		LIST_REMOVE(wk, wk_list);
1865 		if (wk->wk_type == D_BMSAFEMAP &&
1866 		    bmsafemap_backgroundwrite(WK_BMSAFEMAP(wk), newbp))
1867 			dirty = 1;
1868 		if (wktail == 0)
1869 			LIST_INSERT_HEAD(&newbp->b_dep, wk, wk_list);
1870 		else
1871 			LIST_INSERT_AFTER(wktail, wk, wk_list);
1872 		wktail = wk;
1873 	}
1874 	FREE_LOCK(&lk);
1875 
1876 	return (dirty);
1877 }
1878 
1879 /*
1880  * Purge the work list of all items associated with a particular mount point.
1881  */
1882 int
1883 softdep_flushworklist(oldmnt, countp, td)
1884 	struct mount *oldmnt;
1885 	int *countp;
1886 	struct thread *td;
1887 {
1888 	struct vnode *devvp;
1889 	int count, error = 0;
1890 	struct ufsmount *ump;
1891 
1892 	/*
1893 	 * Alternately flush the block device associated with the mount
1894 	 * point and process any dependencies that the flushing
1895 	 * creates. We continue until no more worklist dependencies
1896 	 * are found.
1897 	 */
1898 	*countp = 0;
1899 	ump = VFSTOUFS(oldmnt);
1900 	devvp = ump->um_devvp;
1901 	while ((count = softdep_process_worklist(oldmnt, 1)) > 0) {
1902 		*countp += count;
1903 		vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
1904 		error = VOP_FSYNC(devvp, MNT_WAIT, td);
1905 		VOP_UNLOCK(devvp, 0);
1906 		if (error)
1907 			break;
1908 	}
1909 	return (error);
1910 }
1911 
1912 int
1913 softdep_waitidle(struct mount *mp)
1914 {
1915 	struct ufsmount *ump;
1916 	int error;
1917 	int i;
1918 
1919 	ump = VFSTOUFS(mp);
1920 	ACQUIRE_LOCK(&lk);
1921 	for (i = 0; i < 10 && ump->softdep_deps; i++) {
1922 		ump->softdep_req = 1;
1923 		if (ump->softdep_on_worklist)
1924 			panic("softdep_waitidle: work added after flush.");
1925 		msleep(&ump->softdep_deps, &lk, PVM, "softdeps", 1);
1926 	}
1927 	ump->softdep_req = 0;
1928 	FREE_LOCK(&lk);
1929 	error = 0;
1930 	if (i == 10) {
1931 		error = EBUSY;
1932 		printf("softdep_waitidle: Failed to flush worklist for %p\n",
1933 		    mp);
1934 	}
1935 
1936 	return (error);
1937 }
1938 
1939 /*
1940  * Flush all vnodes and worklist items associated with a specified mount point.
1941  */
1942 int
1943 softdep_flushfiles(oldmnt, flags, td)
1944 	struct mount *oldmnt;
1945 	int flags;
1946 	struct thread *td;
1947 {
1948 #ifdef QUOTA
1949 	struct ufsmount *ump;
1950 	int i;
1951 #endif
1952 	int error, early, depcount, loopcnt, retry_flush_count, retry;
1953 	int morework;
1954 
1955 	loopcnt = 10;
1956 	retry_flush_count = 3;
1957 retry_flush:
1958 	error = 0;
1959 
1960 	/*
1961 	 * Alternately flush the vnodes associated with the mount
1962 	 * point and process any dependencies that the flushing
1963 	 * creates. In theory, this loop can happen at most twice,
1964 	 * but we give it a few extra just to be sure.
1965 	 */
1966 	for (; loopcnt > 0; loopcnt--) {
1967 		/*
1968 		 * Do another flush in case any vnodes were brought in
1969 		 * as part of the cleanup operations.
1970 		 */
1971 		early = retry_flush_count == 1 || (oldmnt->mnt_kern_flag &
1972 		    MNTK_UNMOUNT) == 0 ? 0 : EARLYFLUSH;
1973 		if ((error = ffs_flushfiles(oldmnt, flags | early, td)) != 0)
1974 			break;
1975 		if ((error = softdep_flushworklist(oldmnt, &depcount, td)) != 0 ||
1976 		    depcount == 0)
1977 			break;
1978 	}
1979 	/*
1980 	 * If we are unmounting then it is an error to fail. If we
1981 	 * are simply trying to downgrade to read-only, then filesystem
1982 	 * activity can keep us busy forever, so we just fail with EBUSY.
1983 	 */
1984 	if (loopcnt == 0) {
1985 		if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT)
1986 			panic("softdep_flushfiles: looping");
1987 		error = EBUSY;
1988 	}
1989 	if (!error)
1990 		error = softdep_waitidle(oldmnt);
1991 	if (!error) {
1992 		if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT) {
1993 			retry = 0;
1994 			MNT_ILOCK(oldmnt);
1995 			KASSERT((oldmnt->mnt_kern_flag & MNTK_NOINSMNTQ) != 0,
1996 			    ("softdep_flushfiles: !MNTK_NOINSMNTQ"));
1997 			morework = oldmnt->mnt_nvnodelistsize > 0;
1998 #ifdef QUOTA
1999 			ump = VFSTOUFS(oldmnt);
2000 			UFS_LOCK(ump);
2001 			for (i = 0; i < MAXQUOTAS; i++) {
2002 				if (ump->um_quotas[i] != NULLVP)
2003 					morework = 1;
2004 			}
2005 			UFS_UNLOCK(ump);
2006 #endif
2007 			if (morework) {
2008 				if (--retry_flush_count > 0) {
2009 					retry = 1;
2010 					loopcnt = 3;
2011 				} else
2012 					error = EBUSY;
2013 			}
2014 			MNT_IUNLOCK(oldmnt);
2015 			if (retry)
2016 				goto retry_flush;
2017 		}
2018 	}
2019 	return (error);
2020 }
2021 
2022 /*
2023  * Structure hashing.
2024  *
2025  * There are three types of structures that can be looked up:
2026  *	1) pagedep structures identified by mount point, inode number,
2027  *	   and logical block.
2028  *	2) inodedep structures identified by mount point and inode number.
2029  *	3) newblk structures identified by mount point and
2030  *	   physical block number.
2031  *
2032  * The "pagedep" and "inodedep" dependency structures are hashed
2033  * separately from the file blocks and inodes to which they correspond.
2034  * This separation helps when the in-memory copy of an inode or
2035  * file block must be replaced. It also obviates the need to access
2036  * an inode or file page when simply updating (or de-allocating)
2037  * dependency structures. Lookup of newblk structures is needed to
2038  * find newly allocated blocks when trying to associate them with
2039  * their allocdirect or allocindir structure.
2040  *
2041  * The lookup routines optionally create and hash a new instance when
2042  * an existing entry is not found.
2043  */
2044 #define DEPALLOC	0x0001	/* allocate structure if lookup fails */
2045 #define NODELAY		0x0002	/* cannot do background work */
2046 
2047 /*
2048  * Structures and routines associated with pagedep caching.
2049  */
2050 LIST_HEAD(pagedep_hashhead, pagedep) *pagedep_hashtbl;
2051 u_long	pagedep_hash;		/* size of hash table - 1 */
2052 #define	PAGEDEP_HASH(mp, inum, lbn) \
2053 	(&pagedep_hashtbl[((((register_t)(mp)) >> 13) + (inum) + (lbn)) & \
2054 	    pagedep_hash])
2055 
2056 static int
2057 pagedep_find(pagedephd, ino, lbn, mp, flags, pagedeppp)
2058 	struct pagedep_hashhead *pagedephd;
2059 	ino_t ino;
2060 	ufs_lbn_t lbn;
2061 	struct mount *mp;
2062 	int flags;
2063 	struct pagedep **pagedeppp;
2064 {
2065 	struct pagedep *pagedep;
2066 
2067 	LIST_FOREACH(pagedep, pagedephd, pd_hash) {
2068 		if (ino == pagedep->pd_ino && lbn == pagedep->pd_lbn &&
2069 		    mp == pagedep->pd_list.wk_mp) {
2070 			*pagedeppp = pagedep;
2071 			return (1);
2072 		}
2073 	}
2074 	*pagedeppp = NULL;
2075 	return (0);
2076 }
2077 /*
2078  * Look up a pagedep. Return 1 if found, 0 otherwise.
2079  * If not found, allocate if DEPALLOC flag is passed.
2080  * Found or allocated entry is returned in pagedeppp.
2081  * This routine must be called with splbio interrupts blocked.
2082  */
2083 static int
2084 pagedep_lookup(mp, bp, ino, lbn, flags, pagedeppp)
2085 	struct mount *mp;
2086 	struct buf *bp;
2087 	ino_t ino;
2088 	ufs_lbn_t lbn;
2089 	int flags;
2090 	struct pagedep **pagedeppp;
2091 {
2092 	struct pagedep *pagedep;
2093 	struct pagedep_hashhead *pagedephd;
2094 	struct worklist *wk;
2095 	int ret;
2096 	int i;
2097 
2098 	rw_assert(&lk, RA_WLOCKED);
2099 	if (bp) {
2100 		LIST_FOREACH(wk, &bp->b_dep, wk_list) {
2101 			if (wk->wk_type == D_PAGEDEP) {
2102 				*pagedeppp = WK_PAGEDEP(wk);
2103 				return (1);
2104 			}
2105 		}
2106 	}
2107 	pagedephd = PAGEDEP_HASH(mp, ino, lbn);
2108 	ret = pagedep_find(pagedephd, ino, lbn, mp, flags, pagedeppp);
2109 	if (ret) {
2110 		if (((*pagedeppp)->pd_state & ONWORKLIST) == 0 && bp)
2111 			WORKLIST_INSERT(&bp->b_dep, &(*pagedeppp)->pd_list);
2112 		return (1);
2113 	}
2114 	if ((flags & DEPALLOC) == 0)
2115 		return (0);
2116 	FREE_LOCK(&lk);
2117 	pagedep = malloc(sizeof(struct pagedep),
2118 	    M_PAGEDEP, M_SOFTDEP_FLAGS|M_ZERO);
2119 	workitem_alloc(&pagedep->pd_list, D_PAGEDEP, mp);
2120 	ACQUIRE_LOCK(&lk);
2121 	ret = pagedep_find(pagedephd, ino, lbn, mp, flags, pagedeppp);
2122 	if (*pagedeppp) {
2123 		/*
2124 		 * This should never happen since we only create pagedeps
2125 		 * with the vnode lock held.  Could be an assert.
2126 		 */
2127 		WORKITEM_FREE(pagedep, D_PAGEDEP);
2128 		return (ret);
2129 	}
2130 	pagedep->pd_ino = ino;
2131 	pagedep->pd_lbn = lbn;
2132 	LIST_INIT(&pagedep->pd_dirremhd);
2133 	LIST_INIT(&pagedep->pd_pendinghd);
2134 	for (i = 0; i < DAHASHSZ; i++)
2135 		LIST_INIT(&pagedep->pd_diraddhd[i]);
2136 	LIST_INSERT_HEAD(pagedephd, pagedep, pd_hash);
2137 	WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list);
2138 	*pagedeppp = pagedep;
2139 	return (0);
2140 }
2141 
2142 /*
2143  * Structures and routines associated with inodedep caching.
2144  */
2145 LIST_HEAD(inodedep_hashhead, inodedep) *inodedep_hashtbl;
2146 static u_long	inodedep_hash;	/* size of hash table - 1 */
2147 #define	INODEDEP_HASH(fs, inum) \
2148       (&inodedep_hashtbl[((((register_t)(fs)) >> 13) + (inum)) & inodedep_hash])
2149 
2150 static int
2151 inodedep_find(inodedephd, fs, inum, inodedeppp)
2152 	struct inodedep_hashhead *inodedephd;
2153 	struct fs *fs;
2154 	ino_t inum;
2155 	struct inodedep **inodedeppp;
2156 {
2157 	struct inodedep *inodedep;
2158 
2159 	LIST_FOREACH(inodedep, inodedephd, id_hash)
2160 		if (inum == inodedep->id_ino && fs == inodedep->id_fs)
2161 			break;
2162 	if (inodedep) {
2163 		*inodedeppp = inodedep;
2164 		return (1);
2165 	}
2166 	*inodedeppp = NULL;
2167 
2168 	return (0);
2169 }
2170 /*
2171  * Look up an inodedep. Return 1 if found, 0 if not found.
2172  * If not found, allocate if DEPALLOC flag is passed.
2173  * Found or allocated entry is returned in inodedeppp.
2174  * This routine must be called with splbio interrupts blocked.
2175  */
2176 static int
2177 inodedep_lookup(mp, inum, flags, inodedeppp)
2178 	struct mount *mp;
2179 	ino_t inum;
2180 	int flags;
2181 	struct inodedep **inodedeppp;
2182 {
2183 	struct inodedep *inodedep;
2184 	struct inodedep_hashhead *inodedephd;
2185 	struct fs *fs;
2186 
2187 	rw_assert(&lk, RA_WLOCKED);
2188 	fs = VFSTOUFS(mp)->um_fs;
2189 	inodedephd = INODEDEP_HASH(fs, inum);
2190 
2191 	if (inodedep_find(inodedephd, fs, inum, inodedeppp))
2192 		return (1);
2193 	if ((flags & DEPALLOC) == 0)
2194 		return (0);
2195 	/*
2196 	 * If we are over our limit, try to improve the situation.
2197 	 */
2198 	if (dep_current[D_INODEDEP] > max_softdeps && (flags & NODELAY) == 0)
2199 		request_cleanup(mp, FLUSH_INODES);
2200 	FREE_LOCK(&lk);
2201 	inodedep = malloc(sizeof(struct inodedep),
2202 		M_INODEDEP, M_SOFTDEP_FLAGS);
2203 	workitem_alloc(&inodedep->id_list, D_INODEDEP, mp);
2204 	ACQUIRE_LOCK(&lk);
2205 	if (inodedep_find(inodedephd, fs, inum, inodedeppp)) {
2206 		WORKITEM_FREE(inodedep, D_INODEDEP);
2207 		return (1);
2208 	}
2209 	inodedep->id_fs = fs;
2210 	inodedep->id_ino = inum;
2211 	inodedep->id_state = ALLCOMPLETE;
2212 	inodedep->id_nlinkdelta = 0;
2213 	inodedep->id_savedino1 = NULL;
2214 	inodedep->id_savedsize = -1;
2215 	inodedep->id_savedextsize = -1;
2216 	inodedep->id_savednlink = -1;
2217 	inodedep->id_bmsafemap = NULL;
2218 	inodedep->id_mkdiradd = NULL;
2219 	LIST_INIT(&inodedep->id_dirremhd);
2220 	LIST_INIT(&inodedep->id_pendinghd);
2221 	LIST_INIT(&inodedep->id_inowait);
2222 	LIST_INIT(&inodedep->id_bufwait);
2223 	TAILQ_INIT(&inodedep->id_inoreflst);
2224 	TAILQ_INIT(&inodedep->id_inoupdt);
2225 	TAILQ_INIT(&inodedep->id_newinoupdt);
2226 	TAILQ_INIT(&inodedep->id_extupdt);
2227 	TAILQ_INIT(&inodedep->id_newextupdt);
2228 	TAILQ_INIT(&inodedep->id_freeblklst);
2229 	LIST_INSERT_HEAD(inodedephd, inodedep, id_hash);
2230 	*inodedeppp = inodedep;
2231 	return (0);
2232 }
2233 
2234 /*
2235  * Structures and routines associated with newblk caching.
2236  */
2237 LIST_HEAD(newblk_hashhead, newblk) *newblk_hashtbl;
2238 u_long	newblk_hash;		/* size of hash table - 1 */
2239 #define	NEWBLK_HASH(fs, inum) \
2240 	(&newblk_hashtbl[((((register_t)(fs)) >> 13) + (inum)) & newblk_hash])
2241 
2242 static int
2243 newblk_find(newblkhd, mp, newblkno, flags, newblkpp)
2244 	struct newblk_hashhead *newblkhd;
2245 	struct mount *mp;
2246 	ufs2_daddr_t newblkno;
2247 	int flags;
2248 	struct newblk **newblkpp;
2249 {
2250 	struct newblk *newblk;
2251 
2252 	LIST_FOREACH(newblk, newblkhd, nb_hash) {
2253 		if (newblkno != newblk->nb_newblkno)
2254 			continue;
2255 		if (mp != newblk->nb_list.wk_mp)
2256 			continue;
2257 		/*
2258 		 * If we're creating a new dependency don't match those that
2259 		 * have already been converted to allocdirects.  This is for
2260 		 * a frag extend.
2261 		 */
2262 		if ((flags & DEPALLOC) && newblk->nb_list.wk_type != D_NEWBLK)
2263 			continue;
2264 		break;
2265 	}
2266 	if (newblk) {
2267 		*newblkpp = newblk;
2268 		return (1);
2269 	}
2270 	*newblkpp = NULL;
2271 	return (0);
2272 }
2273 
2274 /*
2275  * Look up a newblk. Return 1 if found, 0 if not found.
2276  * If not found, allocate if DEPALLOC flag is passed.
2277  * Found or allocated entry is returned in newblkpp.
2278  */
2279 static int
2280 newblk_lookup(mp, newblkno, flags, newblkpp)
2281 	struct mount *mp;
2282 	ufs2_daddr_t newblkno;
2283 	int flags;
2284 	struct newblk **newblkpp;
2285 {
2286 	struct newblk *newblk;
2287 	struct newblk_hashhead *newblkhd;
2288 
2289 	newblkhd = NEWBLK_HASH(VFSTOUFS(mp)->um_fs, newblkno);
2290 	if (newblk_find(newblkhd, mp, newblkno, flags, newblkpp))
2291 		return (1);
2292 	if ((flags & DEPALLOC) == 0)
2293 		return (0);
2294 	FREE_LOCK(&lk);
2295 	newblk = malloc(sizeof(union allblk), M_NEWBLK,
2296 	    M_SOFTDEP_FLAGS | M_ZERO);
2297 	workitem_alloc(&newblk->nb_list, D_NEWBLK, mp);
2298 	ACQUIRE_LOCK(&lk);
2299 	if (newblk_find(newblkhd, mp, newblkno, flags, newblkpp)) {
2300 		WORKITEM_FREE(newblk, D_NEWBLK);
2301 		return (1);
2302 	}
2303 	newblk->nb_freefrag = NULL;
2304 	LIST_INIT(&newblk->nb_indirdeps);
2305 	LIST_INIT(&newblk->nb_newdirblk);
2306 	LIST_INIT(&newblk->nb_jwork);
2307 	newblk->nb_state = ATTACHED;
2308 	newblk->nb_newblkno = newblkno;
2309 	LIST_INSERT_HEAD(newblkhd, newblk, nb_hash);
2310 	*newblkpp = newblk;
2311 	return (0);
2312 }
2313 
2314 /*
2315  * Structures and routines associated with freed indirect block caching.
2316  */
2317 struct freeworklst *indir_hashtbl;
2318 u_long	indir_hash;		/* size of hash table - 1 */
2319 #define	INDIR_HASH(mp, blkno) \
2320 	(&indir_hashtbl[((((register_t)(mp)) >> 13) + (blkno)) & indir_hash])
2321 
2322 /*
2323  * Lookup an indirect block in the indir hash table.  The freework is
2324  * removed and potentially freed.  The caller must do a blocking journal
2325  * write before writing to the blkno.
2326  */
2327 static int
2328 indirblk_lookup(mp, blkno)
2329 	struct mount *mp;
2330 	ufs2_daddr_t blkno;
2331 {
2332 	struct freework *freework;
2333 	struct freeworklst *wkhd;
2334 
2335 	wkhd = INDIR_HASH(mp, blkno);
2336 	TAILQ_FOREACH(freework, wkhd, fw_next) {
2337 		if (freework->fw_blkno != blkno)
2338 			continue;
2339 		if (freework->fw_list.wk_mp != mp)
2340 			continue;
2341 		indirblk_remove(freework);
2342 		return (1);
2343 	}
2344 	return (0);
2345 }
2346 
2347 /*
2348  * Insert an indirect block represented by freework into the indirblk
2349  * hash table so that it may prevent the block from being re-used prior
2350  * to the journal being written.
2351  */
2352 static void
2353 indirblk_insert(freework)
2354 	struct freework *freework;
2355 {
2356 	struct jblocks *jblocks;
2357 	struct jseg *jseg;
2358 
2359 	jblocks = VFSTOUFS(freework->fw_list.wk_mp)->softdep_jblocks;
2360 	jseg = TAILQ_LAST(&jblocks->jb_segs, jseglst);
2361 	if (jseg == NULL)
2362 		return;
2363 
2364 	LIST_INSERT_HEAD(&jseg->js_indirs, freework, fw_segs);
2365 	TAILQ_INSERT_HEAD(INDIR_HASH(freework->fw_list.wk_mp,
2366 	    freework->fw_blkno), freework, fw_next);
2367 	freework->fw_state &= ~DEPCOMPLETE;
2368 }
2369 
2370 static void
2371 indirblk_remove(freework)
2372 	struct freework *freework;
2373 {
2374 
2375 	LIST_REMOVE(freework, fw_segs);
2376 	TAILQ_REMOVE(INDIR_HASH(freework->fw_list.wk_mp,
2377 	    freework->fw_blkno), freework, fw_next);
2378 	freework->fw_state |= DEPCOMPLETE;
2379 	if ((freework->fw_state & ALLCOMPLETE) == ALLCOMPLETE)
2380 		WORKITEM_FREE(freework, D_FREEWORK);
2381 }
2382 
2383 /*
2384  * Executed during filesystem system initialization before
2385  * mounting any filesystems.
2386  */
2387 void
2388 softdep_initialize()
2389 {
2390 	int i;
2391 
2392 	LIST_INIT(&mkdirlisthd);
2393 	max_softdeps = desiredvnodes * 4;
2394 	pagedep_hashtbl = hashinit(desiredvnodes / 5, M_PAGEDEP, &pagedep_hash);
2395 	inodedep_hashtbl = hashinit(desiredvnodes, M_INODEDEP, &inodedep_hash);
2396 	newblk_hashtbl = hashinit(max_softdeps / 2,  M_NEWBLK, &newblk_hash);
2397 	bmsafemap_hashtbl = hashinit(1024, M_BMSAFEMAP, &bmsafemap_hash);
2398 	i = 1 << (ffs(desiredvnodes / 10) - 1);
2399 	indir_hashtbl = malloc(i * sizeof(indir_hashtbl[0]), M_FREEWORK,
2400 	    M_WAITOK);
2401 	indir_hash = i - 1;
2402 	for (i = 0; i <= indir_hash; i++)
2403 		TAILQ_INIT(&indir_hashtbl[i]);
2404 
2405 	/* initialise bioops hack */
2406 	bioops.io_start = softdep_disk_io_initiation;
2407 	bioops.io_complete = softdep_disk_write_complete;
2408 	bioops.io_deallocate = softdep_deallocate_dependencies;
2409 	bioops.io_countdeps = softdep_count_dependencies;
2410 
2411 	/* Initialize the callout with an mtx. */
2412 	callout_init_mtx(&softdep_callout, &lk, 0);
2413 }
2414 
2415 /*
2416  * Executed after all filesystems have been unmounted during
2417  * filesystem module unload.
2418  */
2419 void
2420 softdep_uninitialize()
2421 {
2422 
2423 	callout_drain(&softdep_callout);
2424 	hashdestroy(pagedep_hashtbl, M_PAGEDEP, pagedep_hash);
2425 	hashdestroy(inodedep_hashtbl, M_INODEDEP, inodedep_hash);
2426 	hashdestroy(newblk_hashtbl, M_NEWBLK, newblk_hash);
2427 	hashdestroy(bmsafemap_hashtbl, M_BMSAFEMAP, bmsafemap_hash);
2428 	free(indir_hashtbl, M_FREEWORK);
2429 }
2430 
2431 /*
2432  * Called at mount time to notify the dependency code that a
2433  * filesystem wishes to use it.
2434  */
2435 int
2436 softdep_mount(devvp, mp, fs, cred)
2437 	struct vnode *devvp;
2438 	struct mount *mp;
2439 	struct fs *fs;
2440 	struct ucred *cred;
2441 {
2442 	struct csum_total cstotal;
2443 	struct ufsmount *ump;
2444 	struct cg *cgp;
2445 	struct buf *bp;
2446 	int error, cyl;
2447 
2448 	MNT_ILOCK(mp);
2449 	mp->mnt_flag = (mp->mnt_flag & ~MNT_ASYNC) | MNT_SOFTDEP;
2450 	if ((mp->mnt_kern_flag & MNTK_SOFTDEP) == 0) {
2451 		mp->mnt_kern_flag = (mp->mnt_kern_flag & ~MNTK_ASYNC) |
2452 			MNTK_SOFTDEP | MNTK_NOASYNC;
2453 	}
2454 	MNT_IUNLOCK(mp);
2455 	ump = VFSTOUFS(mp);
2456 	LIST_INIT(&ump->softdep_workitem_pending);
2457 	LIST_INIT(&ump->softdep_journal_pending);
2458 	TAILQ_INIT(&ump->softdep_unlinked);
2459 	LIST_INIT(&ump->softdep_dirtycg);
2460 	ump->softdep_worklist_tail = NULL;
2461 	ump->softdep_on_worklist = 0;
2462 	ump->softdep_deps = 0;
2463 	if ((fs->fs_flags & FS_SUJ) &&
2464 	    (error = journal_mount(mp, fs, cred)) != 0) {
2465 		printf("Failed to start journal: %d\n", error);
2466 		return (error);
2467 	}
2468 	/*
2469 	 * When doing soft updates, the counters in the
2470 	 * superblock may have gotten out of sync. Recomputation
2471 	 * can take a long time and can be deferred for background
2472 	 * fsck.  However, the old behavior of scanning the cylinder
2473 	 * groups and recalculating them at mount time is available
2474 	 * by setting vfs.ffs.compute_summary_at_mount to one.
2475 	 */
2476 	if (compute_summary_at_mount == 0 || fs->fs_clean != 0)
2477 		return (0);
2478 	bzero(&cstotal, sizeof cstotal);
2479 	for (cyl = 0; cyl < fs->fs_ncg; cyl++) {
2480 		if ((error = bread(devvp, fsbtodb(fs, cgtod(fs, cyl)),
2481 		    fs->fs_cgsize, cred, &bp)) != 0) {
2482 			brelse(bp);
2483 			return (error);
2484 		}
2485 		cgp = (struct cg *)bp->b_data;
2486 		cstotal.cs_nffree += cgp->cg_cs.cs_nffree;
2487 		cstotal.cs_nbfree += cgp->cg_cs.cs_nbfree;
2488 		cstotal.cs_nifree += cgp->cg_cs.cs_nifree;
2489 		cstotal.cs_ndir += cgp->cg_cs.cs_ndir;
2490 		fs->fs_cs(fs, cyl) = cgp->cg_cs;
2491 		brelse(bp);
2492 	}
2493 #ifdef DEBUG
2494 	if (bcmp(&cstotal, &fs->fs_cstotal, sizeof cstotal))
2495 		printf("%s: superblock summary recomputed\n", fs->fs_fsmnt);
2496 #endif
2497 	bcopy(&cstotal, &fs->fs_cstotal, sizeof cstotal);
2498 	return (0);
2499 }
2500 
2501 void
2502 softdep_unmount(mp)
2503 	struct mount *mp;
2504 {
2505 
2506 	MNT_ILOCK(mp);
2507 	mp->mnt_flag &= ~MNT_SOFTDEP;
2508 	if (MOUNTEDSUJ(mp) == 0) {
2509 		MNT_IUNLOCK(mp);
2510 		return;
2511 	}
2512 	mp->mnt_flag &= ~MNT_SUJ;
2513 	MNT_IUNLOCK(mp);
2514 	journal_unmount(mp);
2515 }
2516 
2517 static struct jblocks *
2518 jblocks_create(void)
2519 {
2520 	struct jblocks *jblocks;
2521 
2522 	jblocks = malloc(sizeof(*jblocks), M_JBLOCKS, M_WAITOK | M_ZERO);
2523 	TAILQ_INIT(&jblocks->jb_segs);
2524 	jblocks->jb_avail = 10;
2525 	jblocks->jb_extent = malloc(sizeof(struct jextent) * jblocks->jb_avail,
2526 	    M_JBLOCKS, M_WAITOK | M_ZERO);
2527 
2528 	return (jblocks);
2529 }
2530 
2531 static ufs2_daddr_t
2532 jblocks_alloc(jblocks, bytes, actual)
2533 	struct jblocks *jblocks;
2534 	int bytes;
2535 	int *actual;
2536 {
2537 	ufs2_daddr_t daddr;
2538 	struct jextent *jext;
2539 	int freecnt;
2540 	int blocks;
2541 
2542 	blocks = bytes / DEV_BSIZE;
2543 	jext = &jblocks->jb_extent[jblocks->jb_head];
2544 	freecnt = jext->je_blocks - jblocks->jb_off;
2545 	if (freecnt == 0) {
2546 		jblocks->jb_off = 0;
2547 		if (++jblocks->jb_head > jblocks->jb_used)
2548 			jblocks->jb_head = 0;
2549 		jext = &jblocks->jb_extent[jblocks->jb_head];
2550 		freecnt = jext->je_blocks;
2551 	}
2552 	if (freecnt > blocks)
2553 		freecnt = blocks;
2554 	*actual = freecnt * DEV_BSIZE;
2555 	daddr = jext->je_daddr + jblocks->jb_off;
2556 	jblocks->jb_off += freecnt;
2557 	jblocks->jb_free -= freecnt;
2558 
2559 	return (daddr);
2560 }
2561 
2562 static void
2563 jblocks_free(jblocks, mp, bytes)
2564 	struct jblocks *jblocks;
2565 	struct mount *mp;
2566 	int bytes;
2567 {
2568 
2569 	jblocks->jb_free += bytes / DEV_BSIZE;
2570 	if (jblocks->jb_suspended)
2571 		worklist_speedup();
2572 	wakeup(jblocks);
2573 }
2574 
2575 static void
2576 jblocks_destroy(jblocks)
2577 	struct jblocks *jblocks;
2578 {
2579 
2580 	if (jblocks->jb_extent)
2581 		free(jblocks->jb_extent, M_JBLOCKS);
2582 	free(jblocks, M_JBLOCKS);
2583 }
2584 
2585 static void
2586 jblocks_add(jblocks, daddr, blocks)
2587 	struct jblocks *jblocks;
2588 	ufs2_daddr_t daddr;
2589 	int blocks;
2590 {
2591 	struct jextent *jext;
2592 
2593 	jblocks->jb_blocks += blocks;
2594 	jblocks->jb_free += blocks;
2595 	jext = &jblocks->jb_extent[jblocks->jb_used];
2596 	/* Adding the first block. */
2597 	if (jext->je_daddr == 0) {
2598 		jext->je_daddr = daddr;
2599 		jext->je_blocks = blocks;
2600 		return;
2601 	}
2602 	/* Extending the last extent. */
2603 	if (jext->je_daddr + jext->je_blocks == daddr) {
2604 		jext->je_blocks += blocks;
2605 		return;
2606 	}
2607 	/* Adding a new extent. */
2608 	if (++jblocks->jb_used == jblocks->jb_avail) {
2609 		jblocks->jb_avail *= 2;
2610 		jext = malloc(sizeof(struct jextent) * jblocks->jb_avail,
2611 		    M_JBLOCKS, M_WAITOK | M_ZERO);
2612 		memcpy(jext, jblocks->jb_extent,
2613 		    sizeof(struct jextent) * jblocks->jb_used);
2614 		free(jblocks->jb_extent, M_JBLOCKS);
2615 		jblocks->jb_extent = jext;
2616 	}
2617 	jext = &jblocks->jb_extent[jblocks->jb_used];
2618 	jext->je_daddr = daddr;
2619 	jext->je_blocks = blocks;
2620 	return;
2621 }
2622 
2623 int
2624 softdep_journal_lookup(mp, vpp)
2625 	struct mount *mp;
2626 	struct vnode **vpp;
2627 {
2628 	struct componentname cnp;
2629 	struct vnode *dvp;
2630 	ino_t sujournal;
2631 	int error;
2632 
2633 	error = VFS_VGET(mp, ROOTINO, LK_EXCLUSIVE, &dvp);
2634 	if (error)
2635 		return (error);
2636 	bzero(&cnp, sizeof(cnp));
2637 	cnp.cn_nameiop = LOOKUP;
2638 	cnp.cn_flags = ISLASTCN;
2639 	cnp.cn_thread = curthread;
2640 	cnp.cn_cred = curthread->td_ucred;
2641 	cnp.cn_pnbuf = SUJ_FILE;
2642 	cnp.cn_nameptr = SUJ_FILE;
2643 	cnp.cn_namelen = strlen(SUJ_FILE);
2644 	error = ufs_lookup_ino(dvp, NULL, &cnp, &sujournal);
2645 	vput(dvp);
2646 	if (error != 0)
2647 		return (error);
2648 	error = VFS_VGET(mp, sujournal, LK_EXCLUSIVE, vpp);
2649 	return (error);
2650 }
2651 
2652 /*
2653  * Open and verify the journal file.
2654  */
2655 static int
2656 journal_mount(mp, fs, cred)
2657 	struct mount *mp;
2658 	struct fs *fs;
2659 	struct ucred *cred;
2660 {
2661 	struct jblocks *jblocks;
2662 	struct vnode *vp;
2663 	struct inode *ip;
2664 	ufs2_daddr_t blkno;
2665 	int bcount;
2666 	int error;
2667 	int i;
2668 
2669 	error = softdep_journal_lookup(mp, &vp);
2670 	if (error != 0) {
2671 		printf("Failed to find journal.  Use tunefs to create one\n");
2672 		return (error);
2673 	}
2674 	ip = VTOI(vp);
2675 	if (ip->i_size < SUJ_MIN) {
2676 		error = ENOSPC;
2677 		goto out;
2678 	}
2679 	bcount = lblkno(fs, ip->i_size);	/* Only use whole blocks. */
2680 	jblocks = jblocks_create();
2681 	for (i = 0; i < bcount; i++) {
2682 		error = ufs_bmaparray(vp, i, &blkno, NULL, NULL, NULL);
2683 		if (error)
2684 			break;
2685 		jblocks_add(jblocks, blkno, fsbtodb(fs, fs->fs_frag));
2686 	}
2687 	if (error) {
2688 		jblocks_destroy(jblocks);
2689 		goto out;
2690 	}
2691 	jblocks->jb_low = jblocks->jb_free / 3;	/* Reserve 33%. */
2692 	jblocks->jb_min = jblocks->jb_free / 10; /* Suspend at 10%. */
2693 	VFSTOUFS(mp)->softdep_jblocks = jblocks;
2694 out:
2695 	if (error == 0) {
2696 		MNT_ILOCK(mp);
2697 		mp->mnt_flag |= MNT_SUJ;
2698 		mp->mnt_flag &= ~MNT_SOFTDEP;
2699 		MNT_IUNLOCK(mp);
2700 		/*
2701 		 * Only validate the journal contents if the
2702 		 * filesystem is clean, otherwise we write the logs
2703 		 * but they'll never be used.  If the filesystem was
2704 		 * still dirty when we mounted it the journal is
2705 		 * invalid and a new journal can only be valid if it
2706 		 * starts from a clean mount.
2707 		 */
2708 		if (fs->fs_clean) {
2709 			DIP_SET(ip, i_modrev, fs->fs_mtime);
2710 			ip->i_flags |= IN_MODIFIED;
2711 			ffs_update(vp, 1);
2712 		}
2713 	}
2714 	vput(vp);
2715 	return (error);
2716 }
2717 
2718 static void
2719 journal_unmount(mp)
2720 	struct mount *mp;
2721 {
2722 	struct ufsmount *ump;
2723 
2724 	ump = VFSTOUFS(mp);
2725 	if (ump->softdep_jblocks)
2726 		jblocks_destroy(ump->softdep_jblocks);
2727 	ump->softdep_jblocks = NULL;
2728 }
2729 
2730 /*
2731  * Called when a journal record is ready to be written.  Space is allocated
2732  * and the journal entry is created when the journal is flushed to stable
2733  * store.
2734  */
2735 static void
2736 add_to_journal(wk)
2737 	struct worklist *wk;
2738 {
2739 	struct ufsmount *ump;
2740 
2741 	rw_assert(&lk, RA_WLOCKED);
2742 	ump = VFSTOUFS(wk->wk_mp);
2743 	if (wk->wk_state & ONWORKLIST)
2744 		panic("add_to_journal: %s(0x%X) already on list",
2745 		    TYPENAME(wk->wk_type), wk->wk_state);
2746 	wk->wk_state |= ONWORKLIST | DEPCOMPLETE;
2747 	if (LIST_EMPTY(&ump->softdep_journal_pending)) {
2748 		ump->softdep_jblocks->jb_age = ticks;
2749 		LIST_INSERT_HEAD(&ump->softdep_journal_pending, wk, wk_list);
2750 	} else
2751 		LIST_INSERT_AFTER(ump->softdep_journal_tail, wk, wk_list);
2752 	ump->softdep_journal_tail = wk;
2753 	ump->softdep_on_journal += 1;
2754 }
2755 
2756 /*
2757  * Remove an arbitrary item for the journal worklist maintain the tail
2758  * pointer.  This happens when a new operation obviates the need to
2759  * journal an old operation.
2760  */
2761 static void
2762 remove_from_journal(wk)
2763 	struct worklist *wk;
2764 {
2765 	struct ufsmount *ump;
2766 
2767 	rw_assert(&lk, RA_WLOCKED);
2768 	ump = VFSTOUFS(wk->wk_mp);
2769 #ifdef SUJ_DEBUG
2770 	{
2771 		struct worklist *wkn;
2772 
2773 		LIST_FOREACH(wkn, &ump->softdep_journal_pending, wk_list)
2774 			if (wkn == wk)
2775 				break;
2776 		if (wkn == NULL)
2777 			panic("remove_from_journal: %p is not in journal", wk);
2778 	}
2779 #endif
2780 	/*
2781 	 * We emulate a TAILQ to save space in most structures which do not
2782 	 * require TAILQ semantics.  Here we must update the tail position
2783 	 * when removing the tail which is not the final entry. This works
2784 	 * only if the worklist linkage are at the beginning of the structure.
2785 	 */
2786 	if (ump->softdep_journal_tail == wk)
2787 		ump->softdep_journal_tail =
2788 		    (struct worklist *)wk->wk_list.le_prev;
2789 
2790 	WORKLIST_REMOVE(wk);
2791 	ump->softdep_on_journal -= 1;
2792 }
2793 
2794 /*
2795  * Check for journal space as well as dependency limits so the prelink
2796  * code can throttle both journaled and non-journaled filesystems.
2797  * Threshold is 0 for low and 1 for min.
2798  */
2799 static int
2800 journal_space(ump, thresh)
2801 	struct ufsmount *ump;
2802 	int thresh;
2803 {
2804 	struct jblocks *jblocks;
2805 	int avail;
2806 
2807 	jblocks = ump->softdep_jblocks;
2808 	if (jblocks == NULL)
2809 		return (1);
2810 	/*
2811 	 * We use a tighter restriction here to prevent request_cleanup()
2812 	 * running in threads from running into locks we currently hold.
2813 	 */
2814 	if (dep_current[D_INODEDEP] > (max_softdeps / 10) * 9)
2815 		return (0);
2816 	if (thresh)
2817 		thresh = jblocks->jb_min;
2818 	else
2819 		thresh = jblocks->jb_low;
2820 	avail = (ump->softdep_on_journal * JREC_SIZE) / DEV_BSIZE;
2821 	avail = jblocks->jb_free - avail;
2822 
2823 	return (avail > thresh);
2824 }
2825 
2826 static void
2827 journal_suspend(ump)
2828 	struct ufsmount *ump;
2829 {
2830 	struct jblocks *jblocks;
2831 	struct mount *mp;
2832 
2833 	mp = UFSTOVFS(ump);
2834 	jblocks = ump->softdep_jblocks;
2835 	MNT_ILOCK(mp);
2836 	if ((mp->mnt_kern_flag & MNTK_SUSPEND) == 0) {
2837 		stat_journal_min++;
2838 		mp->mnt_kern_flag |= MNTK_SUSPEND;
2839 		mp->mnt_susp_owner = FIRST_THREAD_IN_PROC(softdepproc);
2840 	}
2841 	jblocks->jb_suspended = 1;
2842 	MNT_IUNLOCK(mp);
2843 }
2844 
2845 static int
2846 journal_unsuspend(struct ufsmount *ump)
2847 {
2848 	struct jblocks *jblocks;
2849 	struct mount *mp;
2850 
2851 	mp = UFSTOVFS(ump);
2852 	jblocks = ump->softdep_jblocks;
2853 
2854 	if (jblocks != NULL && jblocks->jb_suspended &&
2855 	    journal_space(ump, jblocks->jb_min)) {
2856 		jblocks->jb_suspended = 0;
2857 		FREE_LOCK(&lk);
2858 		mp->mnt_susp_owner = curthread;
2859 		vfs_write_resume(mp, 0);
2860 		ACQUIRE_LOCK(&lk);
2861 		return (1);
2862 	}
2863 	return (0);
2864 }
2865 
2866 /*
2867  * Called before any allocation function to be certain that there is
2868  * sufficient space in the journal prior to creating any new records.
2869  * Since in the case of block allocation we may have multiple locked
2870  * buffers at the time of the actual allocation we can not block
2871  * when the journal records are created.  Doing so would create a deadlock
2872  * if any of these buffers needed to be flushed to reclaim space.  Instead
2873  * we require a sufficiently large amount of available space such that
2874  * each thread in the system could have passed this allocation check and
2875  * still have sufficient free space.  With 20% of a minimum journal size
2876  * of 1MB we have 6553 records available.
2877  */
2878 int
2879 softdep_prealloc(vp, waitok)
2880 	struct vnode *vp;
2881 	int waitok;
2882 {
2883 	struct ufsmount *ump;
2884 
2885 	/*
2886 	 * Nothing to do if we are not running journaled soft updates.
2887 	 * If we currently hold the snapshot lock, we must avoid handling
2888 	 * other resources that could cause deadlock.
2889 	 */
2890 	if (DOINGSUJ(vp) == 0 || IS_SNAPSHOT(VTOI(vp)))
2891 		return (0);
2892 	ump = VFSTOUFS(vp->v_mount);
2893 	ACQUIRE_LOCK(&lk);
2894 	if (journal_space(ump, 0)) {
2895 		FREE_LOCK(&lk);
2896 		return (0);
2897 	}
2898 	stat_journal_low++;
2899 	FREE_LOCK(&lk);
2900 	if (waitok == MNT_NOWAIT)
2901 		return (ENOSPC);
2902 	/*
2903 	 * Attempt to sync this vnode once to flush any journal
2904 	 * work attached to it.
2905 	 */
2906 	if ((curthread->td_pflags & TDP_COWINPROGRESS) == 0)
2907 		ffs_syncvnode(vp, waitok, 0);
2908 	ACQUIRE_LOCK(&lk);
2909 	process_removes(vp);
2910 	process_truncates(vp);
2911 	if (journal_space(ump, 0) == 0) {
2912 		softdep_speedup();
2913 		if (journal_space(ump, 1) == 0)
2914 			journal_suspend(ump);
2915 	}
2916 	FREE_LOCK(&lk);
2917 
2918 	return (0);
2919 }
2920 
2921 /*
2922  * Before adjusting a link count on a vnode verify that we have sufficient
2923  * journal space.  If not, process operations that depend on the currently
2924  * locked pair of vnodes to try to flush space as the syncer, buf daemon,
2925  * and softdep flush threads can not acquire these locks to reclaim space.
2926  */
2927 static void
2928 softdep_prelink(dvp, vp)
2929 	struct vnode *dvp;
2930 	struct vnode *vp;
2931 {
2932 	struct ufsmount *ump;
2933 
2934 	ump = VFSTOUFS(dvp->v_mount);
2935 	rw_assert(&lk, RA_WLOCKED);
2936 	/*
2937 	 * Nothing to do if we have sufficient journal space.
2938 	 * If we currently hold the snapshot lock, we must avoid
2939 	 * handling other resources that could cause deadlock.
2940 	 */
2941 	if (journal_space(ump, 0) || (vp && IS_SNAPSHOT(VTOI(vp))))
2942 		return;
2943 	stat_journal_low++;
2944 	FREE_LOCK(&lk);
2945 	if (vp)
2946 		ffs_syncvnode(vp, MNT_NOWAIT, 0);
2947 	ffs_syncvnode(dvp, MNT_WAIT, 0);
2948 	ACQUIRE_LOCK(&lk);
2949 	/* Process vp before dvp as it may create .. removes. */
2950 	if (vp) {
2951 		process_removes(vp);
2952 		process_truncates(vp);
2953 	}
2954 	process_removes(dvp);
2955 	process_truncates(dvp);
2956 	softdep_speedup();
2957 	process_worklist_item(UFSTOVFS(ump), 2, LK_NOWAIT);
2958 	if (journal_space(ump, 0) == 0) {
2959 		softdep_speedup();
2960 		if (journal_space(ump, 1) == 0)
2961 			journal_suspend(ump);
2962 	}
2963 }
2964 
2965 static void
2966 jseg_write(ump, jseg, data)
2967 	struct ufsmount *ump;
2968 	struct jseg *jseg;
2969 	uint8_t *data;
2970 {
2971 	struct jsegrec *rec;
2972 
2973 	rec = (struct jsegrec *)data;
2974 	rec->jsr_seq = jseg->js_seq;
2975 	rec->jsr_oldest = jseg->js_oldseq;
2976 	rec->jsr_cnt = jseg->js_cnt;
2977 	rec->jsr_blocks = jseg->js_size / ump->um_devvp->v_bufobj.bo_bsize;
2978 	rec->jsr_crc = 0;
2979 	rec->jsr_time = ump->um_fs->fs_mtime;
2980 }
2981 
2982 static inline void
2983 inoref_write(inoref, jseg, rec)
2984 	struct inoref *inoref;
2985 	struct jseg *jseg;
2986 	struct jrefrec *rec;
2987 {
2988 
2989 	inoref->if_jsegdep->jd_seg = jseg;
2990 	rec->jr_ino = inoref->if_ino;
2991 	rec->jr_parent = inoref->if_parent;
2992 	rec->jr_nlink = inoref->if_nlink;
2993 	rec->jr_mode = inoref->if_mode;
2994 	rec->jr_diroff = inoref->if_diroff;
2995 }
2996 
2997 static void
2998 jaddref_write(jaddref, jseg, data)
2999 	struct jaddref *jaddref;
3000 	struct jseg *jseg;
3001 	uint8_t *data;
3002 {
3003 	struct jrefrec *rec;
3004 
3005 	rec = (struct jrefrec *)data;
3006 	rec->jr_op = JOP_ADDREF;
3007 	inoref_write(&jaddref->ja_ref, jseg, rec);
3008 }
3009 
3010 static void
3011 jremref_write(jremref, jseg, data)
3012 	struct jremref *jremref;
3013 	struct jseg *jseg;
3014 	uint8_t *data;
3015 {
3016 	struct jrefrec *rec;
3017 
3018 	rec = (struct jrefrec *)data;
3019 	rec->jr_op = JOP_REMREF;
3020 	inoref_write(&jremref->jr_ref, jseg, rec);
3021 }
3022 
3023 static void
3024 jmvref_write(jmvref, jseg, data)
3025 	struct jmvref *jmvref;
3026 	struct jseg *jseg;
3027 	uint8_t *data;
3028 {
3029 	struct jmvrec *rec;
3030 
3031 	rec = (struct jmvrec *)data;
3032 	rec->jm_op = JOP_MVREF;
3033 	rec->jm_ino = jmvref->jm_ino;
3034 	rec->jm_parent = jmvref->jm_parent;
3035 	rec->jm_oldoff = jmvref->jm_oldoff;
3036 	rec->jm_newoff = jmvref->jm_newoff;
3037 }
3038 
3039 static void
3040 jnewblk_write(jnewblk, jseg, data)
3041 	struct jnewblk *jnewblk;
3042 	struct jseg *jseg;
3043 	uint8_t *data;
3044 {
3045 	struct jblkrec *rec;
3046 
3047 	jnewblk->jn_jsegdep->jd_seg = jseg;
3048 	rec = (struct jblkrec *)data;
3049 	rec->jb_op = JOP_NEWBLK;
3050 	rec->jb_ino = jnewblk->jn_ino;
3051 	rec->jb_blkno = jnewblk->jn_blkno;
3052 	rec->jb_lbn = jnewblk->jn_lbn;
3053 	rec->jb_frags = jnewblk->jn_frags;
3054 	rec->jb_oldfrags = jnewblk->jn_oldfrags;
3055 }
3056 
3057 static void
3058 jfreeblk_write(jfreeblk, jseg, data)
3059 	struct jfreeblk *jfreeblk;
3060 	struct jseg *jseg;
3061 	uint8_t *data;
3062 {
3063 	struct jblkrec *rec;
3064 
3065 	jfreeblk->jf_dep.jb_jsegdep->jd_seg = jseg;
3066 	rec = (struct jblkrec *)data;
3067 	rec->jb_op = JOP_FREEBLK;
3068 	rec->jb_ino = jfreeblk->jf_ino;
3069 	rec->jb_blkno = jfreeblk->jf_blkno;
3070 	rec->jb_lbn = jfreeblk->jf_lbn;
3071 	rec->jb_frags = jfreeblk->jf_frags;
3072 	rec->jb_oldfrags = 0;
3073 }
3074 
3075 static void
3076 jfreefrag_write(jfreefrag, jseg, data)
3077 	struct jfreefrag *jfreefrag;
3078 	struct jseg *jseg;
3079 	uint8_t *data;
3080 {
3081 	struct jblkrec *rec;
3082 
3083 	jfreefrag->fr_jsegdep->jd_seg = jseg;
3084 	rec = (struct jblkrec *)data;
3085 	rec->jb_op = JOP_FREEBLK;
3086 	rec->jb_ino = jfreefrag->fr_ino;
3087 	rec->jb_blkno = jfreefrag->fr_blkno;
3088 	rec->jb_lbn = jfreefrag->fr_lbn;
3089 	rec->jb_frags = jfreefrag->fr_frags;
3090 	rec->jb_oldfrags = 0;
3091 }
3092 
3093 static void
3094 jtrunc_write(jtrunc, jseg, data)
3095 	struct jtrunc *jtrunc;
3096 	struct jseg *jseg;
3097 	uint8_t *data;
3098 {
3099 	struct jtrncrec *rec;
3100 
3101 	jtrunc->jt_dep.jb_jsegdep->jd_seg = jseg;
3102 	rec = (struct jtrncrec *)data;
3103 	rec->jt_op = JOP_TRUNC;
3104 	rec->jt_ino = jtrunc->jt_ino;
3105 	rec->jt_size = jtrunc->jt_size;
3106 	rec->jt_extsize = jtrunc->jt_extsize;
3107 }
3108 
3109 static void
3110 jfsync_write(jfsync, jseg, data)
3111 	struct jfsync *jfsync;
3112 	struct jseg *jseg;
3113 	uint8_t *data;
3114 {
3115 	struct jtrncrec *rec;
3116 
3117 	rec = (struct jtrncrec *)data;
3118 	rec->jt_op = JOP_SYNC;
3119 	rec->jt_ino = jfsync->jfs_ino;
3120 	rec->jt_size = jfsync->jfs_size;
3121 	rec->jt_extsize = jfsync->jfs_extsize;
3122 }
3123 
3124 static void
3125 softdep_flushjournal(mp)
3126 	struct mount *mp;
3127 {
3128 	struct jblocks *jblocks;
3129 	struct ufsmount *ump;
3130 
3131 	if (MOUNTEDSUJ(mp) == 0)
3132 		return;
3133 	ump = VFSTOUFS(mp);
3134 	jblocks = ump->softdep_jblocks;
3135 	ACQUIRE_LOCK(&lk);
3136 	while (ump->softdep_on_journal) {
3137 		jblocks->jb_needseg = 1;
3138 		softdep_process_journal(mp, NULL, MNT_WAIT);
3139 	}
3140 	FREE_LOCK(&lk);
3141 }
3142 
3143 static void softdep_synchronize_completed(struct bio *);
3144 static void softdep_synchronize(struct bio *, struct ufsmount *, void *);
3145 
3146 static void
3147 softdep_synchronize_completed(bp)
3148         struct bio *bp;
3149 {
3150 	struct jseg *oldest;
3151 	struct jseg *jseg;
3152 
3153 	/*
3154 	 * caller1 marks the last segment written before we issued the
3155 	 * synchronize cache.
3156 	 */
3157 	jseg = bp->bio_caller1;
3158 	oldest = NULL;
3159 	ACQUIRE_LOCK(&lk);
3160 	/*
3161 	 * Mark all the journal entries waiting on the synchronize cache
3162 	 * as completed so they may continue on.
3163 	 */
3164 	while (jseg != NULL && (jseg->js_state & COMPLETE) == 0) {
3165 		jseg->js_state |= COMPLETE;
3166 		oldest = jseg;
3167 		jseg = TAILQ_PREV(jseg, jseglst, js_next);
3168 	}
3169 	/*
3170 	 * Restart deferred journal entry processing from the oldest
3171 	 * completed jseg.
3172 	 */
3173 	if (oldest)
3174 		complete_jsegs(oldest);
3175 
3176 	FREE_LOCK(&lk);
3177 	g_destroy_bio(bp);
3178 }
3179 
3180 /*
3181  * Send BIO_FLUSH/SYNCHRONIZE CACHE to the device to enforce write ordering
3182  * barriers.  The journal must be written prior to any blocks that depend
3183  * on it and the journal can not be released until the blocks have be
3184  * written.  This code handles both barriers simultaneously.
3185  */
3186 static void
3187 softdep_synchronize(bp, ump, caller1)
3188 	struct bio *bp;
3189 	struct ufsmount *ump;
3190 	void *caller1;
3191 {
3192 
3193 	bp->bio_cmd = BIO_FLUSH;
3194 	bp->bio_flags |= BIO_ORDERED;
3195 	bp->bio_data = NULL;
3196 	bp->bio_offset = ump->um_cp->provider->mediasize;
3197 	bp->bio_length = 0;
3198 	bp->bio_done = softdep_synchronize_completed;
3199 	bp->bio_caller1 = caller1;
3200 	g_io_request(bp,
3201 	    (struct g_consumer *)ump->um_devvp->v_bufobj.bo_private);
3202 }
3203 
3204 /*
3205  * Flush some journal records to disk.
3206  */
3207 static void
3208 softdep_process_journal(mp, needwk, flags)
3209 	struct mount *mp;
3210 	struct worklist *needwk;
3211 	int flags;
3212 {
3213 	struct jblocks *jblocks;
3214 	struct ufsmount *ump;
3215 	struct worklist *wk;
3216 	struct jseg *jseg;
3217 	struct buf *bp;
3218 	struct bio *bio;
3219 	uint8_t *data;
3220 	struct fs *fs;
3221 	int shouldflush;
3222 	int segwritten;
3223 	int jrecmin;	/* Minimum records per block. */
3224 	int jrecmax;	/* Maximum records per block. */
3225 	int size;
3226 	int cnt;
3227 	int off;
3228 	int devbsize;
3229 
3230 	if (MOUNTEDSUJ(mp) == 0)
3231 		return;
3232 	shouldflush = softdep_flushcache;
3233 	bio = NULL;
3234 	jseg = NULL;
3235 	ump = VFSTOUFS(mp);
3236 	fs = ump->um_fs;
3237 	jblocks = ump->softdep_jblocks;
3238 	devbsize = ump->um_devvp->v_bufobj.bo_bsize;
3239 	/*
3240 	 * We write anywhere between a disk block and fs block.  The upper
3241 	 * bound is picked to prevent buffer cache fragmentation and limit
3242 	 * processing time per I/O.
3243 	 */
3244 	jrecmin = (devbsize / JREC_SIZE) - 1; /* -1 for seg header */
3245 	jrecmax = (fs->fs_bsize / devbsize) * jrecmin;
3246 	segwritten = 0;
3247 	for (;;) {
3248 		cnt = ump->softdep_on_journal;
3249 		/*
3250 		 * Criteria for writing a segment:
3251 		 * 1) We have a full block.
3252 		 * 2) We're called from jwait() and haven't found the
3253 		 *    journal item yet.
3254 		 * 3) Always write if needseg is set.
3255 		 * 4) If we are called from process_worklist and have
3256 		 *    not yet written anything we write a partial block
3257 		 *    to enforce a 1 second maximum latency on journal
3258 		 *    entries.
3259 		 */
3260 		if (cnt < (jrecmax - 1) && needwk == NULL &&
3261 		    jblocks->jb_needseg == 0 && (segwritten || cnt == 0))
3262 			break;
3263 		cnt++;
3264 		/*
3265 		 * Verify some free journal space.  softdep_prealloc() should
3266 	 	 * guarantee that we don't run out so this is indicative of
3267 		 * a problem with the flow control.  Try to recover
3268 		 * gracefully in any event.
3269 		 */
3270 		while (jblocks->jb_free == 0) {
3271 			if (flags != MNT_WAIT)
3272 				break;
3273 			printf("softdep: Out of journal space!\n");
3274 			softdep_speedup();
3275 			msleep(jblocks, &lk, PRIBIO, "jblocks", hz);
3276 		}
3277 		FREE_LOCK(&lk);
3278 		jseg = malloc(sizeof(*jseg), M_JSEG, M_SOFTDEP_FLAGS);
3279 		workitem_alloc(&jseg->js_list, D_JSEG, mp);
3280 		LIST_INIT(&jseg->js_entries);
3281 		LIST_INIT(&jseg->js_indirs);
3282 		jseg->js_state = ATTACHED;
3283 		if (shouldflush == 0)
3284 			jseg->js_state |= COMPLETE;
3285 		else if (bio == NULL)
3286 			bio = g_alloc_bio();
3287 		jseg->js_jblocks = jblocks;
3288 		bp = geteblk(fs->fs_bsize, 0);
3289 		ACQUIRE_LOCK(&lk);
3290 		/*
3291 		 * If there was a race while we were allocating the block
3292 		 * and jseg the entry we care about was likely written.
3293 		 * We bail out in both the WAIT and NOWAIT case and assume
3294 		 * the caller will loop if the entry it cares about is
3295 		 * not written.
3296 		 */
3297 		cnt = ump->softdep_on_journal;
3298 		if (cnt + jblocks->jb_needseg == 0 || jblocks->jb_free == 0) {
3299 			bp->b_flags |= B_INVAL | B_NOCACHE;
3300 			WORKITEM_FREE(jseg, D_JSEG);
3301 			FREE_LOCK(&lk);
3302 			brelse(bp);
3303 			ACQUIRE_LOCK(&lk);
3304 			break;
3305 		}
3306 		/*
3307 		 * Calculate the disk block size required for the available
3308 		 * records rounded to the min size.
3309 		 */
3310 		if (cnt == 0)
3311 			size = devbsize;
3312 		else if (cnt < jrecmax)
3313 			size = howmany(cnt, jrecmin) * devbsize;
3314 		else
3315 			size = fs->fs_bsize;
3316 		/*
3317 		 * Allocate a disk block for this journal data and account
3318 		 * for truncation of the requested size if enough contiguous
3319 		 * space was not available.
3320 		 */
3321 		bp->b_blkno = jblocks_alloc(jblocks, size, &size);
3322 		bp->b_lblkno = bp->b_blkno;
3323 		bp->b_offset = bp->b_blkno * DEV_BSIZE;
3324 		bp->b_bcount = size;
3325 		bp->b_flags &= ~B_INVAL;
3326 		bp->b_flags |= B_VALIDSUSPWRT | B_NOCOPY;
3327 		/*
3328 		 * Initialize our jseg with cnt records.  Assign the next
3329 		 * sequence number to it and link it in-order.
3330 		 */
3331 		cnt = MIN(cnt, (size / devbsize) * jrecmin);
3332 		jseg->js_buf = bp;
3333 		jseg->js_cnt = cnt;
3334 		jseg->js_refs = cnt + 1;	/* Self ref. */
3335 		jseg->js_size = size;
3336 		jseg->js_seq = jblocks->jb_nextseq++;
3337 		if (jblocks->jb_oldestseg == NULL)
3338 			jblocks->jb_oldestseg = jseg;
3339 		jseg->js_oldseq = jblocks->jb_oldestseg->js_seq;
3340 		TAILQ_INSERT_TAIL(&jblocks->jb_segs, jseg, js_next);
3341 		if (jblocks->jb_writeseg == NULL)
3342 			jblocks->jb_writeseg = jseg;
3343 		/*
3344 		 * Start filling in records from the pending list.
3345 		 */
3346 		data = bp->b_data;
3347 		off = 0;
3348 		while ((wk = LIST_FIRST(&ump->softdep_journal_pending))
3349 		    != NULL) {
3350 			if (cnt == 0)
3351 				break;
3352 			/* Place a segment header on every device block. */
3353 			if ((off % devbsize) == 0) {
3354 				jseg_write(ump, jseg, data);
3355 				off += JREC_SIZE;
3356 				data = bp->b_data + off;
3357 			}
3358 			if (wk == needwk)
3359 				needwk = NULL;
3360 			remove_from_journal(wk);
3361 			wk->wk_state |= INPROGRESS;
3362 			WORKLIST_INSERT(&jseg->js_entries, wk);
3363 			switch (wk->wk_type) {
3364 			case D_JADDREF:
3365 				jaddref_write(WK_JADDREF(wk), jseg, data);
3366 				break;
3367 			case D_JREMREF:
3368 				jremref_write(WK_JREMREF(wk), jseg, data);
3369 				break;
3370 			case D_JMVREF:
3371 				jmvref_write(WK_JMVREF(wk), jseg, data);
3372 				break;
3373 			case D_JNEWBLK:
3374 				jnewblk_write(WK_JNEWBLK(wk), jseg, data);
3375 				break;
3376 			case D_JFREEBLK:
3377 				jfreeblk_write(WK_JFREEBLK(wk), jseg, data);
3378 				break;
3379 			case D_JFREEFRAG:
3380 				jfreefrag_write(WK_JFREEFRAG(wk), jseg, data);
3381 				break;
3382 			case D_JTRUNC:
3383 				jtrunc_write(WK_JTRUNC(wk), jseg, data);
3384 				break;
3385 			case D_JFSYNC:
3386 				jfsync_write(WK_JFSYNC(wk), jseg, data);
3387 				break;
3388 			default:
3389 				panic("process_journal: Unknown type %s",
3390 				    TYPENAME(wk->wk_type));
3391 				/* NOTREACHED */
3392 			}
3393 			off += JREC_SIZE;
3394 			data = bp->b_data + off;
3395 			cnt--;
3396 		}
3397 		/*
3398 		 * Write this one buffer and continue.
3399 		 */
3400 		segwritten = 1;
3401 		jblocks->jb_needseg = 0;
3402 		WORKLIST_INSERT(&bp->b_dep, &jseg->js_list);
3403 		FREE_LOCK(&lk);
3404 		pbgetvp(ump->um_devvp, bp);
3405 		/*
3406 		 * We only do the blocking wait once we find the journal
3407 		 * entry we're looking for.
3408 		 */
3409 		if (needwk == NULL && flags == MNT_WAIT)
3410 			bwrite(bp);
3411 		else
3412 			bawrite(bp);
3413 		ACQUIRE_LOCK(&lk);
3414 	}
3415 	/*
3416 	 * If we wrote a segment issue a synchronize cache so the journal
3417 	 * is reflected on disk before the data is written.  Since reclaiming
3418 	 * journal space also requires writing a journal record this
3419 	 * process also enforces a barrier before reclamation.
3420 	 */
3421 	if (segwritten && shouldflush) {
3422 		softdep_synchronize(bio, ump,
3423 		    TAILQ_LAST(&jblocks->jb_segs, jseglst));
3424 	} else if (bio)
3425 		g_destroy_bio(bio);
3426 	/*
3427 	 * If we've suspended the filesystem because we ran out of journal
3428 	 * space either try to sync it here to make some progress or
3429 	 * unsuspend it if we already have.
3430 	 */
3431 	if (flags == 0 && jblocks->jb_suspended) {
3432 		if (journal_unsuspend(ump))
3433 			return;
3434 		FREE_LOCK(&lk);
3435 		VFS_SYNC(mp, MNT_NOWAIT);
3436 		ffs_sbupdate(ump, MNT_WAIT, 0);
3437 		ACQUIRE_LOCK(&lk);
3438 	}
3439 }
3440 
3441 /*
3442  * Complete a jseg, allowing all dependencies awaiting journal writes
3443  * to proceed.  Each journal dependency also attaches a jsegdep to dependent
3444  * structures so that the journal segment can be freed to reclaim space.
3445  */
3446 static void
3447 complete_jseg(jseg)
3448 	struct jseg *jseg;
3449 {
3450 	struct worklist *wk;
3451 	struct jmvref *jmvref;
3452 	int waiting;
3453 #ifdef INVARIANTS
3454 	int i = 0;
3455 #endif
3456 
3457 	while ((wk = LIST_FIRST(&jseg->js_entries)) != NULL) {
3458 		WORKLIST_REMOVE(wk);
3459 		waiting = wk->wk_state & IOWAITING;
3460 		wk->wk_state &= ~(INPROGRESS | IOWAITING);
3461 		wk->wk_state |= COMPLETE;
3462 		KASSERT(i++ < jseg->js_cnt,
3463 		    ("handle_written_jseg: overflow %d >= %d",
3464 		    i - 1, jseg->js_cnt));
3465 		switch (wk->wk_type) {
3466 		case D_JADDREF:
3467 			handle_written_jaddref(WK_JADDREF(wk));
3468 			break;
3469 		case D_JREMREF:
3470 			handle_written_jremref(WK_JREMREF(wk));
3471 			break;
3472 		case D_JMVREF:
3473 			rele_jseg(jseg);	/* No jsegdep. */
3474 			jmvref = WK_JMVREF(wk);
3475 			LIST_REMOVE(jmvref, jm_deps);
3476 			if ((jmvref->jm_pagedep->pd_state & ONWORKLIST) == 0)
3477 				free_pagedep(jmvref->jm_pagedep);
3478 			WORKITEM_FREE(jmvref, D_JMVREF);
3479 			break;
3480 		case D_JNEWBLK:
3481 			handle_written_jnewblk(WK_JNEWBLK(wk));
3482 			break;
3483 		case D_JFREEBLK:
3484 			handle_written_jblkdep(&WK_JFREEBLK(wk)->jf_dep);
3485 			break;
3486 		case D_JTRUNC:
3487 			handle_written_jblkdep(&WK_JTRUNC(wk)->jt_dep);
3488 			break;
3489 		case D_JFSYNC:
3490 			rele_jseg(jseg);	/* No jsegdep. */
3491 			WORKITEM_FREE(wk, D_JFSYNC);
3492 			break;
3493 		case D_JFREEFRAG:
3494 			handle_written_jfreefrag(WK_JFREEFRAG(wk));
3495 			break;
3496 		default:
3497 			panic("handle_written_jseg: Unknown type %s",
3498 			    TYPENAME(wk->wk_type));
3499 			/* NOTREACHED */
3500 		}
3501 		if (waiting)
3502 			wakeup(wk);
3503 	}
3504 	/* Release the self reference so the structure may be freed. */
3505 	rele_jseg(jseg);
3506 }
3507 
3508 /*
3509  * Determine which jsegs are ready for completion processing.  Waits for
3510  * synchronize cache to complete as well as forcing in-order completion
3511  * of journal entries.
3512  */
3513 static void
3514 complete_jsegs(jseg)
3515 	struct jseg *jseg;
3516 {
3517 	struct jblocks *jblocks;
3518 	struct jseg *jsegn;
3519 
3520 	jblocks = jseg->js_jblocks;
3521 	/*
3522 	 * Don't allow out of order completions.  If this isn't the first
3523 	 * block wait for it to write before we're done.
3524 	 */
3525 	if (jseg != jblocks->jb_writeseg)
3526 		return;
3527 	/* Iterate through available jsegs processing their entries. */
3528 	while (jseg && (jseg->js_state & ALLCOMPLETE) == ALLCOMPLETE) {
3529 		jblocks->jb_oldestwrseq = jseg->js_oldseq;
3530 		jsegn = TAILQ_NEXT(jseg, js_next);
3531 		complete_jseg(jseg);
3532 		jseg = jsegn;
3533 	}
3534 	jblocks->jb_writeseg = jseg;
3535 	/*
3536 	 * Attempt to free jsegs now that oldestwrseq may have advanced.
3537 	 */
3538 	free_jsegs(jblocks);
3539 }
3540 
3541 /*
3542  * Mark a jseg as DEPCOMPLETE and throw away the buffer.  Attempt to handle
3543  * the final completions.
3544  */
3545 static void
3546 handle_written_jseg(jseg, bp)
3547 	struct jseg *jseg;
3548 	struct buf *bp;
3549 {
3550 
3551 	if (jseg->js_refs == 0)
3552 		panic("handle_written_jseg: No self-reference on %p", jseg);
3553 	jseg->js_state |= DEPCOMPLETE;
3554 	/*
3555 	 * We'll never need this buffer again, set flags so it will be
3556 	 * discarded.
3557 	 */
3558 	bp->b_flags |= B_INVAL | B_NOCACHE;
3559 	pbrelvp(bp);
3560 	complete_jsegs(jseg);
3561 }
3562 
3563 static inline struct jsegdep *
3564 inoref_jseg(inoref)
3565 	struct inoref *inoref;
3566 {
3567 	struct jsegdep *jsegdep;
3568 
3569 	jsegdep = inoref->if_jsegdep;
3570 	inoref->if_jsegdep = NULL;
3571 
3572 	return (jsegdep);
3573 }
3574 
3575 /*
3576  * Called once a jremref has made it to stable store.  The jremref is marked
3577  * complete and we attempt to free it.  Any pagedeps writes sleeping waiting
3578  * for the jremref to complete will be awoken by free_jremref.
3579  */
3580 static void
3581 handle_written_jremref(jremref)
3582 	struct jremref *jremref;
3583 {
3584 	struct inodedep *inodedep;
3585 	struct jsegdep *jsegdep;
3586 	struct dirrem *dirrem;
3587 
3588 	/* Grab the jsegdep. */
3589 	jsegdep = inoref_jseg(&jremref->jr_ref);
3590 	/*
3591 	 * Remove us from the inoref list.
3592 	 */
3593 	if (inodedep_lookup(jremref->jr_list.wk_mp, jremref->jr_ref.if_ino,
3594 	    0, &inodedep) == 0)
3595 		panic("handle_written_jremref: Lost inodedep");
3596 	TAILQ_REMOVE(&inodedep->id_inoreflst, &jremref->jr_ref, if_deps);
3597 	/*
3598 	 * Complete the dirrem.
3599 	 */
3600 	dirrem = jremref->jr_dirrem;
3601 	jremref->jr_dirrem = NULL;
3602 	LIST_REMOVE(jremref, jr_deps);
3603 	jsegdep->jd_state |= jremref->jr_state & MKDIR_PARENT;
3604 	jwork_insert(&dirrem->dm_jwork, jsegdep);
3605 	if (LIST_EMPTY(&dirrem->dm_jremrefhd) &&
3606 	    (dirrem->dm_state & COMPLETE) != 0)
3607 		add_to_worklist(&dirrem->dm_list, 0);
3608 	free_jremref(jremref);
3609 }
3610 
3611 /*
3612  * Called once a jaddref has made it to stable store.  The dependency is
3613  * marked complete and any dependent structures are added to the inode
3614  * bufwait list to be completed as soon as it is written.  If a bitmap write
3615  * depends on this entry we move the inode into the inodedephd of the
3616  * bmsafemap dependency and attempt to remove the jaddref from the bmsafemap.
3617  */
3618 static void
3619 handle_written_jaddref(jaddref)
3620 	struct jaddref *jaddref;
3621 {
3622 	struct jsegdep *jsegdep;
3623 	struct inodedep *inodedep;
3624 	struct diradd *diradd;
3625 	struct mkdir *mkdir;
3626 
3627 	/* Grab the jsegdep. */
3628 	jsegdep = inoref_jseg(&jaddref->ja_ref);
3629 	mkdir = NULL;
3630 	diradd = NULL;
3631 	if (inodedep_lookup(jaddref->ja_list.wk_mp, jaddref->ja_ino,
3632 	    0, &inodedep) == 0)
3633 		panic("handle_written_jaddref: Lost inodedep.");
3634 	if (jaddref->ja_diradd == NULL)
3635 		panic("handle_written_jaddref: No dependency");
3636 	if (jaddref->ja_diradd->da_list.wk_type == D_DIRADD) {
3637 		diradd = jaddref->ja_diradd;
3638 		WORKLIST_INSERT(&inodedep->id_bufwait, &diradd->da_list);
3639 	} else if (jaddref->ja_state & MKDIR_PARENT) {
3640 		mkdir = jaddref->ja_mkdir;
3641 		WORKLIST_INSERT(&inodedep->id_bufwait, &mkdir->md_list);
3642 	} else if (jaddref->ja_state & MKDIR_BODY)
3643 		mkdir = jaddref->ja_mkdir;
3644 	else
3645 		panic("handle_written_jaddref: Unknown dependency %p",
3646 		    jaddref->ja_diradd);
3647 	jaddref->ja_diradd = NULL;	/* also clears ja_mkdir */
3648 	/*
3649 	 * Remove us from the inode list.
3650 	 */
3651 	TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref, if_deps);
3652 	/*
3653 	 * The mkdir may be waiting on the jaddref to clear before freeing.
3654 	 */
3655 	if (mkdir) {
3656 		KASSERT(mkdir->md_list.wk_type == D_MKDIR,
3657 		    ("handle_written_jaddref: Incorrect type for mkdir %s",
3658 		    TYPENAME(mkdir->md_list.wk_type)));
3659 		mkdir->md_jaddref = NULL;
3660 		diradd = mkdir->md_diradd;
3661 		mkdir->md_state |= DEPCOMPLETE;
3662 		complete_mkdir(mkdir);
3663 	}
3664 	jwork_insert(&diradd->da_jwork, jsegdep);
3665 	if (jaddref->ja_state & NEWBLOCK) {
3666 		inodedep->id_state |= ONDEPLIST;
3667 		LIST_INSERT_HEAD(&inodedep->id_bmsafemap->sm_inodedephd,
3668 		    inodedep, id_deps);
3669 	}
3670 	free_jaddref(jaddref);
3671 }
3672 
3673 /*
3674  * Called once a jnewblk journal is written.  The allocdirect or allocindir
3675  * is placed in the bmsafemap to await notification of a written bitmap.  If
3676  * the operation was canceled we add the segdep to the appropriate
3677  * dependency to free the journal space once the canceling operation
3678  * completes.
3679  */
3680 static void
3681 handle_written_jnewblk(jnewblk)
3682 	struct jnewblk *jnewblk;
3683 {
3684 	struct bmsafemap *bmsafemap;
3685 	struct freefrag *freefrag;
3686 	struct freework *freework;
3687 	struct jsegdep *jsegdep;
3688 	struct newblk *newblk;
3689 
3690 	/* Grab the jsegdep. */
3691 	jsegdep = jnewblk->jn_jsegdep;
3692 	jnewblk->jn_jsegdep = NULL;
3693 	if (jnewblk->jn_dep == NULL)
3694 		panic("handle_written_jnewblk: No dependency for the segdep.");
3695 	switch (jnewblk->jn_dep->wk_type) {
3696 	case D_NEWBLK:
3697 	case D_ALLOCDIRECT:
3698 	case D_ALLOCINDIR:
3699 		/*
3700 		 * Add the written block to the bmsafemap so it can
3701 		 * be notified when the bitmap is on disk.
3702 		 */
3703 		newblk = WK_NEWBLK(jnewblk->jn_dep);
3704 		newblk->nb_jnewblk = NULL;
3705 		if ((newblk->nb_state & GOINGAWAY) == 0) {
3706 			bmsafemap = newblk->nb_bmsafemap;
3707 			newblk->nb_state |= ONDEPLIST;
3708 			LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk,
3709 			    nb_deps);
3710 		}
3711 		jwork_insert(&newblk->nb_jwork, jsegdep);
3712 		break;
3713 	case D_FREEFRAG:
3714 		/*
3715 		 * A newblock being removed by a freefrag when replaced by
3716 		 * frag extension.
3717 		 */
3718 		freefrag = WK_FREEFRAG(jnewblk->jn_dep);
3719 		freefrag->ff_jdep = NULL;
3720 		jwork_insert(&freefrag->ff_jwork, jsegdep);
3721 		break;
3722 	case D_FREEWORK:
3723 		/*
3724 		 * A direct block was removed by truncate.
3725 		 */
3726 		freework = WK_FREEWORK(jnewblk->jn_dep);
3727 		freework->fw_jnewblk = NULL;
3728 		jwork_insert(&freework->fw_freeblks->fb_jwork, jsegdep);
3729 		break;
3730 	default:
3731 		panic("handle_written_jnewblk: Unknown type %d.",
3732 		    jnewblk->jn_dep->wk_type);
3733 	}
3734 	jnewblk->jn_dep = NULL;
3735 	free_jnewblk(jnewblk);
3736 }
3737 
3738 /*
3739  * Cancel a jfreefrag that won't be needed, probably due to colliding with
3740  * an in-flight allocation that has not yet been committed.  Divorce us
3741  * from the freefrag and mark it DEPCOMPLETE so that it may be added
3742  * to the worklist.
3743  */
3744 static void
3745 cancel_jfreefrag(jfreefrag)
3746 	struct jfreefrag *jfreefrag;
3747 {
3748 	struct freefrag *freefrag;
3749 
3750 	if (jfreefrag->fr_jsegdep) {
3751 		free_jsegdep(jfreefrag->fr_jsegdep);
3752 		jfreefrag->fr_jsegdep = NULL;
3753 	}
3754 	freefrag = jfreefrag->fr_freefrag;
3755 	jfreefrag->fr_freefrag = NULL;
3756 	free_jfreefrag(jfreefrag);
3757 	freefrag->ff_state |= DEPCOMPLETE;
3758 	CTR1(KTR_SUJ, "cancel_jfreefrag: blkno %jd", freefrag->ff_blkno);
3759 }
3760 
3761 /*
3762  * Free a jfreefrag when the parent freefrag is rendered obsolete.
3763  */
3764 static void
3765 free_jfreefrag(jfreefrag)
3766 	struct jfreefrag *jfreefrag;
3767 {
3768 
3769 	if (jfreefrag->fr_state & INPROGRESS)
3770 		WORKLIST_REMOVE(&jfreefrag->fr_list);
3771 	else if (jfreefrag->fr_state & ONWORKLIST)
3772 		remove_from_journal(&jfreefrag->fr_list);
3773 	if (jfreefrag->fr_freefrag != NULL)
3774 		panic("free_jfreefrag:  Still attached to a freefrag.");
3775 	WORKITEM_FREE(jfreefrag, D_JFREEFRAG);
3776 }
3777 
3778 /*
3779  * Called when the journal write for a jfreefrag completes.  The parent
3780  * freefrag is added to the worklist if this completes its dependencies.
3781  */
3782 static void
3783 handle_written_jfreefrag(jfreefrag)
3784 	struct jfreefrag *jfreefrag;
3785 {
3786 	struct jsegdep *jsegdep;
3787 	struct freefrag *freefrag;
3788 
3789 	/* Grab the jsegdep. */
3790 	jsegdep = jfreefrag->fr_jsegdep;
3791 	jfreefrag->fr_jsegdep = NULL;
3792 	freefrag = jfreefrag->fr_freefrag;
3793 	if (freefrag == NULL)
3794 		panic("handle_written_jfreefrag: No freefrag.");
3795 	freefrag->ff_state |= DEPCOMPLETE;
3796 	freefrag->ff_jdep = NULL;
3797 	jwork_insert(&freefrag->ff_jwork, jsegdep);
3798 	if ((freefrag->ff_state & ALLCOMPLETE) == ALLCOMPLETE)
3799 		add_to_worklist(&freefrag->ff_list, 0);
3800 	jfreefrag->fr_freefrag = NULL;
3801 	free_jfreefrag(jfreefrag);
3802 }
3803 
3804 /*
3805  * Called when the journal write for a jfreeblk completes.  The jfreeblk
3806  * is removed from the freeblks list of pending journal writes and the
3807  * jsegdep is moved to the freeblks jwork to be completed when all blocks
3808  * have been reclaimed.
3809  */
3810 static void
3811 handle_written_jblkdep(jblkdep)
3812 	struct jblkdep *jblkdep;
3813 {
3814 	struct freeblks *freeblks;
3815 	struct jsegdep *jsegdep;
3816 
3817 	/* Grab the jsegdep. */
3818 	jsegdep = jblkdep->jb_jsegdep;
3819 	jblkdep->jb_jsegdep = NULL;
3820 	freeblks = jblkdep->jb_freeblks;
3821 	LIST_REMOVE(jblkdep, jb_deps);
3822 	jwork_insert(&freeblks->fb_jwork, jsegdep);
3823 	/*
3824 	 * If the freeblks is all journaled, we can add it to the worklist.
3825 	 */
3826 	if (LIST_EMPTY(&freeblks->fb_jblkdephd) &&
3827 	    (freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE)
3828 		add_to_worklist(&freeblks->fb_list, WK_NODELAY);
3829 
3830 	free_jblkdep(jblkdep);
3831 }
3832 
3833 static struct jsegdep *
3834 newjsegdep(struct worklist *wk)
3835 {
3836 	struct jsegdep *jsegdep;
3837 
3838 	jsegdep = malloc(sizeof(*jsegdep), M_JSEGDEP, M_SOFTDEP_FLAGS);
3839 	workitem_alloc(&jsegdep->jd_list, D_JSEGDEP, wk->wk_mp);
3840 	jsegdep->jd_seg = NULL;
3841 
3842 	return (jsegdep);
3843 }
3844 
3845 static struct jmvref *
3846 newjmvref(dp, ino, oldoff, newoff)
3847 	struct inode *dp;
3848 	ino_t ino;
3849 	off_t oldoff;
3850 	off_t newoff;
3851 {
3852 	struct jmvref *jmvref;
3853 
3854 	jmvref = malloc(sizeof(*jmvref), M_JMVREF, M_SOFTDEP_FLAGS);
3855 	workitem_alloc(&jmvref->jm_list, D_JMVREF, UFSTOVFS(dp->i_ump));
3856 	jmvref->jm_list.wk_state = ATTACHED | DEPCOMPLETE;
3857 	jmvref->jm_parent = dp->i_number;
3858 	jmvref->jm_ino = ino;
3859 	jmvref->jm_oldoff = oldoff;
3860 	jmvref->jm_newoff = newoff;
3861 
3862 	return (jmvref);
3863 }
3864 
3865 /*
3866  * Allocate a new jremref that tracks the removal of ip from dp with the
3867  * directory entry offset of diroff.  Mark the entry as ATTACHED and
3868  * DEPCOMPLETE as we have all the information required for the journal write
3869  * and the directory has already been removed from the buffer.  The caller
3870  * is responsible for linking the jremref into the pagedep and adding it
3871  * to the journal to write.  The MKDIR_PARENT flag is set if we're doing
3872  * a DOTDOT addition so handle_workitem_remove() can properly assign
3873  * the jsegdep when we're done.
3874  */
3875 static struct jremref *
3876 newjremref(struct dirrem *dirrem, struct inode *dp, struct inode *ip,
3877     off_t diroff, nlink_t nlink)
3878 {
3879 	struct jremref *jremref;
3880 
3881 	jremref = malloc(sizeof(*jremref), M_JREMREF, M_SOFTDEP_FLAGS);
3882 	workitem_alloc(&jremref->jr_list, D_JREMREF, UFSTOVFS(dp->i_ump));
3883 	jremref->jr_state = ATTACHED;
3884 	newinoref(&jremref->jr_ref, ip->i_number, dp->i_number, diroff,
3885 	   nlink, ip->i_mode);
3886 	jremref->jr_dirrem = dirrem;
3887 
3888 	return (jremref);
3889 }
3890 
3891 static inline void
3892 newinoref(struct inoref *inoref, ino_t ino, ino_t parent, off_t diroff,
3893     nlink_t nlink, uint16_t mode)
3894 {
3895 
3896 	inoref->if_jsegdep = newjsegdep(&inoref->if_list);
3897 	inoref->if_diroff = diroff;
3898 	inoref->if_ino = ino;
3899 	inoref->if_parent = parent;
3900 	inoref->if_nlink = nlink;
3901 	inoref->if_mode = mode;
3902 }
3903 
3904 /*
3905  * Allocate a new jaddref to track the addition of ino to dp at diroff.  The
3906  * directory offset may not be known until later.  The caller is responsible
3907  * adding the entry to the journal when this information is available.  nlink
3908  * should be the link count prior to the addition and mode is only required
3909  * to have the correct FMT.
3910  */
3911 static struct jaddref *
3912 newjaddref(struct inode *dp, ino_t ino, off_t diroff, int16_t nlink,
3913     uint16_t mode)
3914 {
3915 	struct jaddref *jaddref;
3916 
3917 	jaddref = malloc(sizeof(*jaddref), M_JADDREF, M_SOFTDEP_FLAGS);
3918 	workitem_alloc(&jaddref->ja_list, D_JADDREF, UFSTOVFS(dp->i_ump));
3919 	jaddref->ja_state = ATTACHED;
3920 	jaddref->ja_mkdir = NULL;
3921 	newinoref(&jaddref->ja_ref, ino, dp->i_number, diroff, nlink, mode);
3922 
3923 	return (jaddref);
3924 }
3925 
3926 /*
3927  * Create a new free dependency for a freework.  The caller is responsible
3928  * for adjusting the reference count when it has the lock held.  The freedep
3929  * will track an outstanding bitmap write that will ultimately clear the
3930  * freework to continue.
3931  */
3932 static struct freedep *
3933 newfreedep(struct freework *freework)
3934 {
3935 	struct freedep *freedep;
3936 
3937 	freedep = malloc(sizeof(*freedep), M_FREEDEP, M_SOFTDEP_FLAGS);
3938 	workitem_alloc(&freedep->fd_list, D_FREEDEP, freework->fw_list.wk_mp);
3939 	freedep->fd_freework = freework;
3940 
3941 	return (freedep);
3942 }
3943 
3944 /*
3945  * Free a freedep structure once the buffer it is linked to is written.  If
3946  * this is the last reference to the freework schedule it for completion.
3947  */
3948 static void
3949 free_freedep(freedep)
3950 	struct freedep *freedep;
3951 {
3952 	struct freework *freework;
3953 
3954 	freework = freedep->fd_freework;
3955 	freework->fw_freeblks->fb_cgwait--;
3956 	if (--freework->fw_ref == 0)
3957 		freework_enqueue(freework);
3958 	WORKITEM_FREE(freedep, D_FREEDEP);
3959 }
3960 
3961 /*
3962  * Allocate a new freework structure that may be a level in an indirect
3963  * when parent is not NULL or a top level block when it is.  The top level
3964  * freework structures are allocated without lk held and before the freeblks
3965  * is visible outside of softdep_setup_freeblocks().
3966  */
3967 static struct freework *
3968 newfreework(ump, freeblks, parent, lbn, nb, frags, off, journal)
3969 	struct ufsmount *ump;
3970 	struct freeblks *freeblks;
3971 	struct freework *parent;
3972 	ufs_lbn_t lbn;
3973 	ufs2_daddr_t nb;
3974 	int frags;
3975 	int off;
3976 	int journal;
3977 {
3978 	struct freework *freework;
3979 
3980 	freework = malloc(sizeof(*freework), M_FREEWORK, M_SOFTDEP_FLAGS);
3981 	workitem_alloc(&freework->fw_list, D_FREEWORK, freeblks->fb_list.wk_mp);
3982 	freework->fw_state = ATTACHED;
3983 	freework->fw_jnewblk = NULL;
3984 	freework->fw_freeblks = freeblks;
3985 	freework->fw_parent = parent;
3986 	freework->fw_lbn = lbn;
3987 	freework->fw_blkno = nb;
3988 	freework->fw_frags = frags;
3989 	freework->fw_indir = NULL;
3990 	freework->fw_ref = (MOUNTEDSUJ(UFSTOVFS(ump)) == 0 || lbn >= -NXADDR)
3991 		? 0 : NINDIR(ump->um_fs) + 1;
3992 	freework->fw_start = freework->fw_off = off;
3993 	if (journal)
3994 		newjfreeblk(freeblks, lbn, nb, frags);
3995 	if (parent == NULL) {
3996 		ACQUIRE_LOCK(&lk);
3997 		WORKLIST_INSERT(&freeblks->fb_freeworkhd, &freework->fw_list);
3998 		freeblks->fb_ref++;
3999 		FREE_LOCK(&lk);
4000 	}
4001 
4002 	return (freework);
4003 }
4004 
4005 /*
4006  * Eliminate a jfreeblk for a block that does not need journaling.
4007  */
4008 static void
4009 cancel_jfreeblk(freeblks, blkno)
4010 	struct freeblks *freeblks;
4011 	ufs2_daddr_t blkno;
4012 {
4013 	struct jfreeblk *jfreeblk;
4014 	struct jblkdep *jblkdep;
4015 
4016 	LIST_FOREACH(jblkdep, &freeblks->fb_jblkdephd, jb_deps) {
4017 		if (jblkdep->jb_list.wk_type != D_JFREEBLK)
4018 			continue;
4019 		jfreeblk = WK_JFREEBLK(&jblkdep->jb_list);
4020 		if (jfreeblk->jf_blkno == blkno)
4021 			break;
4022 	}
4023 	if (jblkdep == NULL)
4024 		return;
4025 	CTR1(KTR_SUJ, "cancel_jfreeblk: blkno %jd", blkno);
4026 	free_jsegdep(jblkdep->jb_jsegdep);
4027 	LIST_REMOVE(jblkdep, jb_deps);
4028 	WORKITEM_FREE(jfreeblk, D_JFREEBLK);
4029 }
4030 
4031 /*
4032  * Allocate a new jfreeblk to journal top level block pointer when truncating
4033  * a file.  The caller must add this to the worklist when lk is held.
4034  */
4035 static struct jfreeblk *
4036 newjfreeblk(freeblks, lbn, blkno, frags)
4037 	struct freeblks *freeblks;
4038 	ufs_lbn_t lbn;
4039 	ufs2_daddr_t blkno;
4040 	int frags;
4041 {
4042 	struct jfreeblk *jfreeblk;
4043 
4044 	jfreeblk = malloc(sizeof(*jfreeblk), M_JFREEBLK, M_SOFTDEP_FLAGS);
4045 	workitem_alloc(&jfreeblk->jf_dep.jb_list, D_JFREEBLK,
4046 	    freeblks->fb_list.wk_mp);
4047 	jfreeblk->jf_dep.jb_jsegdep = newjsegdep(&jfreeblk->jf_dep.jb_list);
4048 	jfreeblk->jf_dep.jb_freeblks = freeblks;
4049 	jfreeblk->jf_ino = freeblks->fb_inum;
4050 	jfreeblk->jf_lbn = lbn;
4051 	jfreeblk->jf_blkno = blkno;
4052 	jfreeblk->jf_frags = frags;
4053 	LIST_INSERT_HEAD(&freeblks->fb_jblkdephd, &jfreeblk->jf_dep, jb_deps);
4054 
4055 	return (jfreeblk);
4056 }
4057 
4058 /*
4059  * Allocate a new jtrunc to track a partial truncation.
4060  */
4061 static struct jtrunc *
4062 newjtrunc(freeblks, size, extsize)
4063 	struct freeblks *freeblks;
4064 	off_t size;
4065 	int extsize;
4066 {
4067 	struct jtrunc *jtrunc;
4068 
4069 	jtrunc = malloc(sizeof(*jtrunc), M_JTRUNC, M_SOFTDEP_FLAGS);
4070 	workitem_alloc(&jtrunc->jt_dep.jb_list, D_JTRUNC,
4071 	    freeblks->fb_list.wk_mp);
4072 	jtrunc->jt_dep.jb_jsegdep = newjsegdep(&jtrunc->jt_dep.jb_list);
4073 	jtrunc->jt_dep.jb_freeblks = freeblks;
4074 	jtrunc->jt_ino = freeblks->fb_inum;
4075 	jtrunc->jt_size = size;
4076 	jtrunc->jt_extsize = extsize;
4077 	LIST_INSERT_HEAD(&freeblks->fb_jblkdephd, &jtrunc->jt_dep, jb_deps);
4078 
4079 	return (jtrunc);
4080 }
4081 
4082 /*
4083  * If we're canceling a new bitmap we have to search for another ref
4084  * to move into the bmsafemap dep.  This might be better expressed
4085  * with another structure.
4086  */
4087 static void
4088 move_newblock_dep(jaddref, inodedep)
4089 	struct jaddref *jaddref;
4090 	struct inodedep *inodedep;
4091 {
4092 	struct inoref *inoref;
4093 	struct jaddref *jaddrefn;
4094 
4095 	jaddrefn = NULL;
4096 	for (inoref = TAILQ_NEXT(&jaddref->ja_ref, if_deps); inoref;
4097 	    inoref = TAILQ_NEXT(inoref, if_deps)) {
4098 		if ((jaddref->ja_state & NEWBLOCK) &&
4099 		    inoref->if_list.wk_type == D_JADDREF) {
4100 			jaddrefn = (struct jaddref *)inoref;
4101 			break;
4102 		}
4103 	}
4104 	if (jaddrefn == NULL)
4105 		return;
4106 	jaddrefn->ja_state &= ~(ATTACHED | UNDONE);
4107 	jaddrefn->ja_state |= jaddref->ja_state &
4108 	    (ATTACHED | UNDONE | NEWBLOCK);
4109 	jaddref->ja_state &= ~(ATTACHED | UNDONE | NEWBLOCK);
4110 	jaddref->ja_state |= ATTACHED;
4111 	LIST_REMOVE(jaddref, ja_bmdeps);
4112 	LIST_INSERT_HEAD(&inodedep->id_bmsafemap->sm_jaddrefhd, jaddrefn,
4113 	    ja_bmdeps);
4114 }
4115 
4116 /*
4117  * Cancel a jaddref either before it has been written or while it is being
4118  * written.  This happens when a link is removed before the add reaches
4119  * the disk.  The jaddref dependency is kept linked into the bmsafemap
4120  * and inode to prevent the link count or bitmap from reaching the disk
4121  * until handle_workitem_remove() re-adjusts the counts and bitmaps as
4122  * required.
4123  *
4124  * Returns 1 if the canceled addref requires journaling of the remove and
4125  * 0 otherwise.
4126  */
4127 static int
4128 cancel_jaddref(jaddref, inodedep, wkhd)
4129 	struct jaddref *jaddref;
4130 	struct inodedep *inodedep;
4131 	struct workhead *wkhd;
4132 {
4133 	struct inoref *inoref;
4134 	struct jsegdep *jsegdep;
4135 	int needsj;
4136 
4137 	KASSERT((jaddref->ja_state & COMPLETE) == 0,
4138 	    ("cancel_jaddref: Canceling complete jaddref"));
4139 	if (jaddref->ja_state & (INPROGRESS | COMPLETE))
4140 		needsj = 1;
4141 	else
4142 		needsj = 0;
4143 	if (inodedep == NULL)
4144 		if (inodedep_lookup(jaddref->ja_list.wk_mp, jaddref->ja_ino,
4145 		    0, &inodedep) == 0)
4146 			panic("cancel_jaddref: Lost inodedep");
4147 	/*
4148 	 * We must adjust the nlink of any reference operation that follows
4149 	 * us so that it is consistent with the in-memory reference.  This
4150 	 * ensures that inode nlink rollbacks always have the correct link.
4151 	 */
4152 	if (needsj == 0) {
4153 		for (inoref = TAILQ_NEXT(&jaddref->ja_ref, if_deps); inoref;
4154 		    inoref = TAILQ_NEXT(inoref, if_deps)) {
4155 			if (inoref->if_state & GOINGAWAY)
4156 				break;
4157 			inoref->if_nlink--;
4158 		}
4159 	}
4160 	jsegdep = inoref_jseg(&jaddref->ja_ref);
4161 	if (jaddref->ja_state & NEWBLOCK)
4162 		move_newblock_dep(jaddref, inodedep);
4163 	wake_worklist(&jaddref->ja_list);
4164 	jaddref->ja_mkdir = NULL;
4165 	if (jaddref->ja_state & INPROGRESS) {
4166 		jaddref->ja_state &= ~INPROGRESS;
4167 		WORKLIST_REMOVE(&jaddref->ja_list);
4168 		jwork_insert(wkhd, jsegdep);
4169 	} else {
4170 		free_jsegdep(jsegdep);
4171 		if (jaddref->ja_state & DEPCOMPLETE)
4172 			remove_from_journal(&jaddref->ja_list);
4173 	}
4174 	jaddref->ja_state |= (GOINGAWAY | DEPCOMPLETE);
4175 	/*
4176 	 * Leave NEWBLOCK jaddrefs on the inodedep so handle_workitem_remove
4177 	 * can arrange for them to be freed with the bitmap.  Otherwise we
4178 	 * no longer need this addref attached to the inoreflst and it
4179 	 * will incorrectly adjust nlink if we leave it.
4180 	 */
4181 	if ((jaddref->ja_state & NEWBLOCK) == 0) {
4182 		TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref,
4183 		    if_deps);
4184 		jaddref->ja_state |= COMPLETE;
4185 		free_jaddref(jaddref);
4186 		return (needsj);
4187 	}
4188 	/*
4189 	 * Leave the head of the list for jsegdeps for fast merging.
4190 	 */
4191 	if (LIST_FIRST(wkhd) != NULL) {
4192 		jaddref->ja_state |= ONWORKLIST;
4193 		LIST_INSERT_AFTER(LIST_FIRST(wkhd), &jaddref->ja_list, wk_list);
4194 	} else
4195 		WORKLIST_INSERT(wkhd, &jaddref->ja_list);
4196 
4197 	return (needsj);
4198 }
4199 
4200 /*
4201  * Attempt to free a jaddref structure when some work completes.  This
4202  * should only succeed once the entry is written and all dependencies have
4203  * been notified.
4204  */
4205 static void
4206 free_jaddref(jaddref)
4207 	struct jaddref *jaddref;
4208 {
4209 
4210 	if ((jaddref->ja_state & ALLCOMPLETE) != ALLCOMPLETE)
4211 		return;
4212 	if (jaddref->ja_ref.if_jsegdep)
4213 		panic("free_jaddref: segdep attached to jaddref %p(0x%X)\n",
4214 		    jaddref, jaddref->ja_state);
4215 	if (jaddref->ja_state & NEWBLOCK)
4216 		LIST_REMOVE(jaddref, ja_bmdeps);
4217 	if (jaddref->ja_state & (INPROGRESS | ONWORKLIST))
4218 		panic("free_jaddref: Bad state %p(0x%X)",
4219 		    jaddref, jaddref->ja_state);
4220 	if (jaddref->ja_mkdir != NULL)
4221 		panic("free_jaddref: Work pending, 0x%X\n", jaddref->ja_state);
4222 	WORKITEM_FREE(jaddref, D_JADDREF);
4223 }
4224 
4225 /*
4226  * Free a jremref structure once it has been written or discarded.
4227  */
4228 static void
4229 free_jremref(jremref)
4230 	struct jremref *jremref;
4231 {
4232 
4233 	if (jremref->jr_ref.if_jsegdep)
4234 		free_jsegdep(jremref->jr_ref.if_jsegdep);
4235 	if (jremref->jr_state & INPROGRESS)
4236 		panic("free_jremref: IO still pending");
4237 	WORKITEM_FREE(jremref, D_JREMREF);
4238 }
4239 
4240 /*
4241  * Free a jnewblk structure.
4242  */
4243 static void
4244 free_jnewblk(jnewblk)
4245 	struct jnewblk *jnewblk;
4246 {
4247 
4248 	if ((jnewblk->jn_state & ALLCOMPLETE) != ALLCOMPLETE)
4249 		return;
4250 	LIST_REMOVE(jnewblk, jn_deps);
4251 	if (jnewblk->jn_dep != NULL)
4252 		panic("free_jnewblk: Dependency still attached.");
4253 	WORKITEM_FREE(jnewblk, D_JNEWBLK);
4254 }
4255 
4256 /*
4257  * Cancel a jnewblk which has been been made redundant by frag extension.
4258  */
4259 static void
4260 cancel_jnewblk(jnewblk, wkhd)
4261 	struct jnewblk *jnewblk;
4262 	struct workhead *wkhd;
4263 {
4264 	struct jsegdep *jsegdep;
4265 
4266 	CTR1(KTR_SUJ, "cancel_jnewblk: blkno %jd", jnewblk->jn_blkno);
4267 	jsegdep = jnewblk->jn_jsegdep;
4268 	if (jnewblk->jn_jsegdep == NULL || jnewblk->jn_dep == NULL)
4269 		panic("cancel_jnewblk: Invalid state");
4270 	jnewblk->jn_jsegdep  = NULL;
4271 	jnewblk->jn_dep = NULL;
4272 	jnewblk->jn_state |= GOINGAWAY;
4273 	if (jnewblk->jn_state & INPROGRESS) {
4274 		jnewblk->jn_state &= ~INPROGRESS;
4275 		WORKLIST_REMOVE(&jnewblk->jn_list);
4276 		jwork_insert(wkhd, jsegdep);
4277 	} else {
4278 		free_jsegdep(jsegdep);
4279 		remove_from_journal(&jnewblk->jn_list);
4280 	}
4281 	wake_worklist(&jnewblk->jn_list);
4282 	WORKLIST_INSERT(wkhd, &jnewblk->jn_list);
4283 }
4284 
4285 static void
4286 free_jblkdep(jblkdep)
4287 	struct jblkdep *jblkdep;
4288 {
4289 
4290 	if (jblkdep->jb_list.wk_type == D_JFREEBLK)
4291 		WORKITEM_FREE(jblkdep, D_JFREEBLK);
4292 	else if (jblkdep->jb_list.wk_type == D_JTRUNC)
4293 		WORKITEM_FREE(jblkdep, D_JTRUNC);
4294 	else
4295 		panic("free_jblkdep: Unexpected type %s",
4296 		    TYPENAME(jblkdep->jb_list.wk_type));
4297 }
4298 
4299 /*
4300  * Free a single jseg once it is no longer referenced in memory or on
4301  * disk.  Reclaim journal blocks and dependencies waiting for the segment
4302  * to disappear.
4303  */
4304 static void
4305 free_jseg(jseg, jblocks)
4306 	struct jseg *jseg;
4307 	struct jblocks *jblocks;
4308 {
4309 	struct freework *freework;
4310 
4311 	/*
4312 	 * Free freework structures that were lingering to indicate freed
4313 	 * indirect blocks that forced journal write ordering on reallocate.
4314 	 */
4315 	while ((freework = LIST_FIRST(&jseg->js_indirs)) != NULL)
4316 		indirblk_remove(freework);
4317 	if (jblocks->jb_oldestseg == jseg)
4318 		jblocks->jb_oldestseg = TAILQ_NEXT(jseg, js_next);
4319 	TAILQ_REMOVE(&jblocks->jb_segs, jseg, js_next);
4320 	jblocks_free(jblocks, jseg->js_list.wk_mp, jseg->js_size);
4321 	KASSERT(LIST_EMPTY(&jseg->js_entries),
4322 	    ("free_jseg: Freed jseg has valid entries."));
4323 	WORKITEM_FREE(jseg, D_JSEG);
4324 }
4325 
4326 /*
4327  * Free all jsegs that meet the criteria for being reclaimed and update
4328  * oldestseg.
4329  */
4330 static void
4331 free_jsegs(jblocks)
4332 	struct jblocks *jblocks;
4333 {
4334 	struct jseg *jseg;
4335 
4336 	/*
4337 	 * Free only those jsegs which have none allocated before them to
4338 	 * preserve the journal space ordering.
4339 	 */
4340 	while ((jseg = TAILQ_FIRST(&jblocks->jb_segs)) != NULL) {
4341 		/*
4342 		 * Only reclaim space when nothing depends on this journal
4343 		 * set and another set has written that it is no longer
4344 		 * valid.
4345 		 */
4346 		if (jseg->js_refs != 0) {
4347 			jblocks->jb_oldestseg = jseg;
4348 			return;
4349 		}
4350 		if ((jseg->js_state & ALLCOMPLETE) != ALLCOMPLETE)
4351 			break;
4352 		if (jseg->js_seq > jblocks->jb_oldestwrseq)
4353 			break;
4354 		/*
4355 		 * We can free jsegs that didn't write entries when
4356 		 * oldestwrseq == js_seq.
4357 		 */
4358 		if (jseg->js_seq == jblocks->jb_oldestwrseq &&
4359 		    jseg->js_cnt != 0)
4360 			break;
4361 		free_jseg(jseg, jblocks);
4362 	}
4363 	/*
4364 	 * If we exited the loop above we still must discover the
4365 	 * oldest valid segment.
4366 	 */
4367 	if (jseg)
4368 		for (jseg = jblocks->jb_oldestseg; jseg != NULL;
4369 		     jseg = TAILQ_NEXT(jseg, js_next))
4370 			if (jseg->js_refs != 0)
4371 				break;
4372 	jblocks->jb_oldestseg = jseg;
4373 	/*
4374 	 * The journal has no valid records but some jsegs may still be
4375 	 * waiting on oldestwrseq to advance.  We force a small record
4376 	 * out to permit these lingering records to be reclaimed.
4377 	 */
4378 	if (jblocks->jb_oldestseg == NULL && !TAILQ_EMPTY(&jblocks->jb_segs))
4379 		jblocks->jb_needseg = 1;
4380 }
4381 
4382 /*
4383  * Release one reference to a jseg and free it if the count reaches 0.  This
4384  * should eventually reclaim journal space as well.
4385  */
4386 static void
4387 rele_jseg(jseg)
4388 	struct jseg *jseg;
4389 {
4390 
4391 	KASSERT(jseg->js_refs > 0,
4392 	    ("free_jseg: Invalid refcnt %d", jseg->js_refs));
4393 	if (--jseg->js_refs != 0)
4394 		return;
4395 	free_jsegs(jseg->js_jblocks);
4396 }
4397 
4398 /*
4399  * Release a jsegdep and decrement the jseg count.
4400  */
4401 static void
4402 free_jsegdep(jsegdep)
4403 	struct jsegdep *jsegdep;
4404 {
4405 
4406 	if (jsegdep->jd_seg)
4407 		rele_jseg(jsegdep->jd_seg);
4408 	WORKITEM_FREE(jsegdep, D_JSEGDEP);
4409 }
4410 
4411 /*
4412  * Wait for a journal item to make it to disk.  Initiate journal processing
4413  * if required.
4414  */
4415 static int
4416 jwait(wk, waitfor)
4417 	struct worklist *wk;
4418 	int waitfor;
4419 {
4420 
4421 	/*
4422 	 * Blocking journal waits cause slow synchronous behavior.  Record
4423 	 * stats on the frequency of these blocking operations.
4424 	 */
4425 	if (waitfor == MNT_WAIT) {
4426 		stat_journal_wait++;
4427 		switch (wk->wk_type) {
4428 		case D_JREMREF:
4429 		case D_JMVREF:
4430 			stat_jwait_filepage++;
4431 			break;
4432 		case D_JTRUNC:
4433 		case D_JFREEBLK:
4434 			stat_jwait_freeblks++;
4435 			break;
4436 		case D_JNEWBLK:
4437 			stat_jwait_newblk++;
4438 			break;
4439 		case D_JADDREF:
4440 			stat_jwait_inode++;
4441 			break;
4442 		default:
4443 			break;
4444 		}
4445 	}
4446 	/*
4447 	 * If IO has not started we process the journal.  We can't mark the
4448 	 * worklist item as IOWAITING because we drop the lock while
4449 	 * processing the journal and the worklist entry may be freed after
4450 	 * this point.  The caller may call back in and re-issue the request.
4451 	 */
4452 	if ((wk->wk_state & INPROGRESS) == 0) {
4453 		softdep_process_journal(wk->wk_mp, wk, waitfor);
4454 		if (waitfor != MNT_WAIT)
4455 			return (EBUSY);
4456 		return (0);
4457 	}
4458 	if (waitfor != MNT_WAIT)
4459 		return (EBUSY);
4460 	wait_worklist(wk, "jwait");
4461 	return (0);
4462 }
4463 
4464 /*
4465  * Lookup an inodedep based on an inode pointer and set the nlinkdelta as
4466  * appropriate.  This is a convenience function to reduce duplicate code
4467  * for the setup and revert functions below.
4468  */
4469 static struct inodedep *
4470 inodedep_lookup_ip(ip)
4471 	struct inode *ip;
4472 {
4473 	struct inodedep *inodedep;
4474 	int dflags;
4475 
4476 	KASSERT(ip->i_nlink >= ip->i_effnlink,
4477 	    ("inodedep_lookup_ip: bad delta"));
4478 	dflags = DEPALLOC;
4479 	if (IS_SNAPSHOT(ip))
4480 		dflags |= NODELAY;
4481 	(void) inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, dflags,
4482 	    &inodedep);
4483 	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
4484 	KASSERT((inodedep->id_state & UNLINKED) == 0, ("inode unlinked"));
4485 
4486 	return (inodedep);
4487 }
4488 
4489 /*
4490  * Called prior to creating a new inode and linking it to a directory.  The
4491  * jaddref structure must already be allocated by softdep_setup_inomapdep
4492  * and it is discovered here so we can initialize the mode and update
4493  * nlinkdelta.
4494  */
4495 void
4496 softdep_setup_create(dp, ip)
4497 	struct inode *dp;
4498 	struct inode *ip;
4499 {
4500 	struct inodedep *inodedep;
4501 	struct jaddref *jaddref;
4502 	struct vnode *dvp;
4503 
4504 	KASSERT(ip->i_nlink == 1,
4505 	    ("softdep_setup_create: Invalid link count."));
4506 	dvp = ITOV(dp);
4507 	ACQUIRE_LOCK(&lk);
4508 	inodedep = inodedep_lookup_ip(ip);
4509 	if (DOINGSUJ(dvp)) {
4510 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4511 		    inoreflst);
4512 		KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number,
4513 		    ("softdep_setup_create: No addref structure present."));
4514 	}
4515 	softdep_prelink(dvp, NULL);
4516 	FREE_LOCK(&lk);
4517 }
4518 
4519 /*
4520  * Create a jaddref structure to track the addition of a DOTDOT link when
4521  * we are reparenting an inode as part of a rename.  This jaddref will be
4522  * found by softdep_setup_directory_change.  Adjusts nlinkdelta for
4523  * non-journaling softdep.
4524  */
4525 void
4526 softdep_setup_dotdot_link(dp, ip)
4527 	struct inode *dp;
4528 	struct inode *ip;
4529 {
4530 	struct inodedep *inodedep;
4531 	struct jaddref *jaddref;
4532 	struct vnode *dvp;
4533 	struct vnode *vp;
4534 
4535 	dvp = ITOV(dp);
4536 	vp = ITOV(ip);
4537 	jaddref = NULL;
4538 	/*
4539 	 * We don't set MKDIR_PARENT as this is not tied to a mkdir and
4540 	 * is used as a normal link would be.
4541 	 */
4542 	if (DOINGSUJ(dvp))
4543 		jaddref = newjaddref(ip, dp->i_number, DOTDOT_OFFSET,
4544 		    dp->i_effnlink - 1, dp->i_mode);
4545 	ACQUIRE_LOCK(&lk);
4546 	inodedep = inodedep_lookup_ip(dp);
4547 	if (jaddref)
4548 		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref,
4549 		    if_deps);
4550 	softdep_prelink(dvp, ITOV(ip));
4551 	FREE_LOCK(&lk);
4552 }
4553 
4554 /*
4555  * Create a jaddref structure to track a new link to an inode.  The directory
4556  * offset is not known until softdep_setup_directory_add or
4557  * softdep_setup_directory_change.  Adjusts nlinkdelta for non-journaling
4558  * softdep.
4559  */
4560 void
4561 softdep_setup_link(dp, ip)
4562 	struct inode *dp;
4563 	struct inode *ip;
4564 {
4565 	struct inodedep *inodedep;
4566 	struct jaddref *jaddref;
4567 	struct vnode *dvp;
4568 
4569 	dvp = ITOV(dp);
4570 	jaddref = NULL;
4571 	if (DOINGSUJ(dvp))
4572 		jaddref = newjaddref(dp, ip->i_number, 0, ip->i_effnlink - 1,
4573 		    ip->i_mode);
4574 	ACQUIRE_LOCK(&lk);
4575 	inodedep = inodedep_lookup_ip(ip);
4576 	if (jaddref)
4577 		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref,
4578 		    if_deps);
4579 	softdep_prelink(dvp, ITOV(ip));
4580 	FREE_LOCK(&lk);
4581 }
4582 
4583 /*
4584  * Called to create the jaddref structures to track . and .. references as
4585  * well as lookup and further initialize the incomplete jaddref created
4586  * by softdep_setup_inomapdep when the inode was allocated.  Adjusts
4587  * nlinkdelta for non-journaling softdep.
4588  */
4589 void
4590 softdep_setup_mkdir(dp, ip)
4591 	struct inode *dp;
4592 	struct inode *ip;
4593 {
4594 	struct inodedep *inodedep;
4595 	struct jaddref *dotdotaddref;
4596 	struct jaddref *dotaddref;
4597 	struct jaddref *jaddref;
4598 	struct vnode *dvp;
4599 
4600 	dvp = ITOV(dp);
4601 	dotaddref = dotdotaddref = NULL;
4602 	if (DOINGSUJ(dvp)) {
4603 		dotaddref = newjaddref(ip, ip->i_number, DOT_OFFSET, 1,
4604 		    ip->i_mode);
4605 		dotaddref->ja_state |= MKDIR_BODY;
4606 		dotdotaddref = newjaddref(ip, dp->i_number, DOTDOT_OFFSET,
4607 		    dp->i_effnlink - 1, dp->i_mode);
4608 		dotdotaddref->ja_state |= MKDIR_PARENT;
4609 	}
4610 	ACQUIRE_LOCK(&lk);
4611 	inodedep = inodedep_lookup_ip(ip);
4612 	if (DOINGSUJ(dvp)) {
4613 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4614 		    inoreflst);
4615 		KASSERT(jaddref != NULL,
4616 		    ("softdep_setup_mkdir: No addref structure present."));
4617 		KASSERT(jaddref->ja_parent == dp->i_number,
4618 		    ("softdep_setup_mkdir: bad parent %ju",
4619 		    (uintmax_t)jaddref->ja_parent));
4620 		TAILQ_INSERT_BEFORE(&jaddref->ja_ref, &dotaddref->ja_ref,
4621 		    if_deps);
4622 	}
4623 	inodedep = inodedep_lookup_ip(dp);
4624 	if (DOINGSUJ(dvp))
4625 		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst,
4626 		    &dotdotaddref->ja_ref, if_deps);
4627 	softdep_prelink(ITOV(dp), NULL);
4628 	FREE_LOCK(&lk);
4629 }
4630 
4631 /*
4632  * Called to track nlinkdelta of the inode and parent directories prior to
4633  * unlinking a directory.
4634  */
4635 void
4636 softdep_setup_rmdir(dp, ip)
4637 	struct inode *dp;
4638 	struct inode *ip;
4639 {
4640 	struct vnode *dvp;
4641 
4642 	dvp = ITOV(dp);
4643 	ACQUIRE_LOCK(&lk);
4644 	(void) inodedep_lookup_ip(ip);
4645 	(void) inodedep_lookup_ip(dp);
4646 	softdep_prelink(dvp, ITOV(ip));
4647 	FREE_LOCK(&lk);
4648 }
4649 
4650 /*
4651  * Called to track nlinkdelta of the inode and parent directories prior to
4652  * unlink.
4653  */
4654 void
4655 softdep_setup_unlink(dp, ip)
4656 	struct inode *dp;
4657 	struct inode *ip;
4658 {
4659 	struct vnode *dvp;
4660 
4661 	dvp = ITOV(dp);
4662 	ACQUIRE_LOCK(&lk);
4663 	(void) inodedep_lookup_ip(ip);
4664 	(void) inodedep_lookup_ip(dp);
4665 	softdep_prelink(dvp, ITOV(ip));
4666 	FREE_LOCK(&lk);
4667 }
4668 
4669 /*
4670  * Called to release the journal structures created by a failed non-directory
4671  * creation.  Adjusts nlinkdelta for non-journaling softdep.
4672  */
4673 void
4674 softdep_revert_create(dp, ip)
4675 	struct inode *dp;
4676 	struct inode *ip;
4677 {
4678 	struct inodedep *inodedep;
4679 	struct jaddref *jaddref;
4680 	struct vnode *dvp;
4681 
4682 	dvp = ITOV(dp);
4683 	ACQUIRE_LOCK(&lk);
4684 	inodedep = inodedep_lookup_ip(ip);
4685 	if (DOINGSUJ(dvp)) {
4686 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4687 		    inoreflst);
4688 		KASSERT(jaddref->ja_parent == dp->i_number,
4689 		    ("softdep_revert_create: addref parent mismatch"));
4690 		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4691 	}
4692 	FREE_LOCK(&lk);
4693 }
4694 
4695 /*
4696  * Called to release the journal structures created by a failed dotdot link
4697  * creation.  Adjusts nlinkdelta for non-journaling softdep.
4698  */
4699 void
4700 softdep_revert_dotdot_link(dp, ip)
4701 	struct inode *dp;
4702 	struct inode *ip;
4703 {
4704 	struct inodedep *inodedep;
4705 	struct jaddref *jaddref;
4706 	struct vnode *dvp;
4707 
4708 	dvp = ITOV(dp);
4709 	ACQUIRE_LOCK(&lk);
4710 	inodedep = inodedep_lookup_ip(dp);
4711 	if (DOINGSUJ(dvp)) {
4712 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4713 		    inoreflst);
4714 		KASSERT(jaddref->ja_parent == ip->i_number,
4715 		    ("softdep_revert_dotdot_link: addref parent mismatch"));
4716 		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4717 	}
4718 	FREE_LOCK(&lk);
4719 }
4720 
4721 /*
4722  * Called to release the journal structures created by a failed link
4723  * addition.  Adjusts nlinkdelta for non-journaling softdep.
4724  */
4725 void
4726 softdep_revert_link(dp, ip)
4727 	struct inode *dp;
4728 	struct inode *ip;
4729 {
4730 	struct inodedep *inodedep;
4731 	struct jaddref *jaddref;
4732 	struct vnode *dvp;
4733 
4734 	dvp = ITOV(dp);
4735 	ACQUIRE_LOCK(&lk);
4736 	inodedep = inodedep_lookup_ip(ip);
4737 	if (DOINGSUJ(dvp)) {
4738 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4739 		    inoreflst);
4740 		KASSERT(jaddref->ja_parent == dp->i_number,
4741 		    ("softdep_revert_link: addref parent mismatch"));
4742 		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4743 	}
4744 	FREE_LOCK(&lk);
4745 }
4746 
4747 /*
4748  * Called to release the journal structures created by a failed mkdir
4749  * attempt.  Adjusts nlinkdelta for non-journaling softdep.
4750  */
4751 void
4752 softdep_revert_mkdir(dp, ip)
4753 	struct inode *dp;
4754 	struct inode *ip;
4755 {
4756 	struct inodedep *inodedep;
4757 	struct jaddref *jaddref;
4758 	struct jaddref *dotaddref;
4759 	struct vnode *dvp;
4760 
4761 	dvp = ITOV(dp);
4762 
4763 	ACQUIRE_LOCK(&lk);
4764 	inodedep = inodedep_lookup_ip(dp);
4765 	if (DOINGSUJ(dvp)) {
4766 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4767 		    inoreflst);
4768 		KASSERT(jaddref->ja_parent == ip->i_number,
4769 		    ("softdep_revert_mkdir: dotdot addref parent mismatch"));
4770 		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4771 	}
4772 	inodedep = inodedep_lookup_ip(ip);
4773 	if (DOINGSUJ(dvp)) {
4774 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
4775 		    inoreflst);
4776 		KASSERT(jaddref->ja_parent == dp->i_number,
4777 		    ("softdep_revert_mkdir: addref parent mismatch"));
4778 		dotaddref = (struct jaddref *)TAILQ_PREV(&jaddref->ja_ref,
4779 		    inoreflst, if_deps);
4780 		cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait);
4781 		KASSERT(dotaddref->ja_parent == ip->i_number,
4782 		    ("softdep_revert_mkdir: dot addref parent mismatch"));
4783 		cancel_jaddref(dotaddref, inodedep, &inodedep->id_inowait);
4784 	}
4785 	FREE_LOCK(&lk);
4786 }
4787 
4788 /*
4789  * Called to correct nlinkdelta after a failed rmdir.
4790  */
4791 void
4792 softdep_revert_rmdir(dp, ip)
4793 	struct inode *dp;
4794 	struct inode *ip;
4795 {
4796 
4797 	ACQUIRE_LOCK(&lk);
4798 	(void) inodedep_lookup_ip(ip);
4799 	(void) inodedep_lookup_ip(dp);
4800 	FREE_LOCK(&lk);
4801 }
4802 
4803 /*
4804  * Protecting the freemaps (or bitmaps).
4805  *
4806  * To eliminate the need to execute fsck before mounting a filesystem
4807  * after a power failure, one must (conservatively) guarantee that the
4808  * on-disk copy of the bitmaps never indicate that a live inode or block is
4809  * free.  So, when a block or inode is allocated, the bitmap should be
4810  * updated (on disk) before any new pointers.  When a block or inode is
4811  * freed, the bitmap should not be updated until all pointers have been
4812  * reset.  The latter dependency is handled by the delayed de-allocation
4813  * approach described below for block and inode de-allocation.  The former
4814  * dependency is handled by calling the following procedure when a block or
4815  * inode is allocated. When an inode is allocated an "inodedep" is created
4816  * with its DEPCOMPLETE flag cleared until its bitmap is written to disk.
4817  * Each "inodedep" is also inserted into the hash indexing structure so
4818  * that any additional link additions can be made dependent on the inode
4819  * allocation.
4820  *
4821  * The ufs filesystem maintains a number of free block counts (e.g., per
4822  * cylinder group, per cylinder and per <cylinder, rotational position> pair)
4823  * in addition to the bitmaps.  These counts are used to improve efficiency
4824  * during allocation and therefore must be consistent with the bitmaps.
4825  * There is no convenient way to guarantee post-crash consistency of these
4826  * counts with simple update ordering, for two main reasons: (1) The counts
4827  * and bitmaps for a single cylinder group block are not in the same disk
4828  * sector.  If a disk write is interrupted (e.g., by power failure), one may
4829  * be written and the other not.  (2) Some of the counts are located in the
4830  * superblock rather than the cylinder group block. So, we focus our soft
4831  * updates implementation on protecting the bitmaps. When mounting a
4832  * filesystem, we recompute the auxiliary counts from the bitmaps.
4833  */
4834 
4835 /*
4836  * Called just after updating the cylinder group block to allocate an inode.
4837  */
4838 void
4839 softdep_setup_inomapdep(bp, ip, newinum, mode)
4840 	struct buf *bp;		/* buffer for cylgroup block with inode map */
4841 	struct inode *ip;	/* inode related to allocation */
4842 	ino_t newinum;		/* new inode number being allocated */
4843 	int mode;
4844 {
4845 	struct inodedep *inodedep;
4846 	struct bmsafemap *bmsafemap;
4847 	struct jaddref *jaddref;
4848 	struct mount *mp;
4849 	struct fs *fs;
4850 
4851 	mp = UFSTOVFS(ip->i_ump);
4852 	fs = ip->i_ump->um_fs;
4853 	jaddref = NULL;
4854 
4855 	/*
4856 	 * Allocate the journal reference add structure so that the bitmap
4857 	 * can be dependent on it.
4858 	 */
4859 	if (MOUNTEDSUJ(mp)) {
4860 		jaddref = newjaddref(ip, newinum, 0, 0, mode);
4861 		jaddref->ja_state |= NEWBLOCK;
4862 	}
4863 
4864 	/*
4865 	 * Create a dependency for the newly allocated inode.
4866 	 * Panic if it already exists as something is seriously wrong.
4867 	 * Otherwise add it to the dependency list for the buffer holding
4868 	 * the cylinder group map from which it was allocated.
4869 	 *
4870 	 * We have to preallocate a bmsafemap entry in case it is needed
4871 	 * in bmsafemap_lookup since once we allocate the inodedep, we
4872 	 * have to finish initializing it before we can FREE_LOCK().
4873 	 * By preallocating, we avoid FREE_LOCK() while doing a malloc
4874 	 * in bmsafemap_lookup. We cannot call bmsafemap_lookup before
4875 	 * creating the inodedep as it can be freed during the time
4876 	 * that we FREE_LOCK() while allocating the inodedep. We must
4877 	 * call workitem_alloc() before entering the locked section as
4878 	 * it also acquires the lock and we must avoid trying doing so
4879 	 * recursively.
4880 	 */
4881 	bmsafemap = malloc(sizeof(struct bmsafemap),
4882 	    M_BMSAFEMAP, M_SOFTDEP_FLAGS);
4883 	workitem_alloc(&bmsafemap->sm_list, D_BMSAFEMAP, mp);
4884 	ACQUIRE_LOCK(&lk);
4885 	if ((inodedep_lookup(mp, newinum, DEPALLOC | NODELAY, &inodedep)))
4886 		panic("softdep_setup_inomapdep: dependency %p for new"
4887 		    "inode already exists", inodedep);
4888 	bmsafemap = bmsafemap_lookup(mp, bp, ino_to_cg(fs, newinum), bmsafemap);
4889 	if (jaddref) {
4890 		LIST_INSERT_HEAD(&bmsafemap->sm_jaddrefhd, jaddref, ja_bmdeps);
4891 		TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref,
4892 		    if_deps);
4893 	} else {
4894 		inodedep->id_state |= ONDEPLIST;
4895 		LIST_INSERT_HEAD(&bmsafemap->sm_inodedephd, inodedep, id_deps);
4896 	}
4897 	inodedep->id_bmsafemap = bmsafemap;
4898 	inodedep->id_state &= ~DEPCOMPLETE;
4899 	FREE_LOCK(&lk);
4900 }
4901 
4902 /*
4903  * Called just after updating the cylinder group block to
4904  * allocate block or fragment.
4905  */
4906 void
4907 softdep_setup_blkmapdep(bp, mp, newblkno, frags, oldfrags)
4908 	struct buf *bp;		/* buffer for cylgroup block with block map */
4909 	struct mount *mp;	/* filesystem doing allocation */
4910 	ufs2_daddr_t newblkno;	/* number of newly allocated block */
4911 	int frags;		/* Number of fragments. */
4912 	int oldfrags;		/* Previous number of fragments for extend. */
4913 {
4914 	struct newblk *newblk;
4915 	struct bmsafemap *bmsafemap;
4916 	struct jnewblk *jnewblk;
4917 	struct fs *fs;
4918 
4919 	fs = VFSTOUFS(mp)->um_fs;
4920 	jnewblk = NULL;
4921 	/*
4922 	 * Create a dependency for the newly allocated block.
4923 	 * Add it to the dependency list for the buffer holding
4924 	 * the cylinder group map from which it was allocated.
4925 	 */
4926 	if (MOUNTEDSUJ(mp)) {
4927 		jnewblk = malloc(sizeof(*jnewblk), M_JNEWBLK, M_SOFTDEP_FLAGS);
4928 		workitem_alloc(&jnewblk->jn_list, D_JNEWBLK, mp);
4929 		jnewblk->jn_jsegdep = newjsegdep(&jnewblk->jn_list);
4930 		jnewblk->jn_state = ATTACHED;
4931 		jnewblk->jn_blkno = newblkno;
4932 		jnewblk->jn_frags = frags;
4933 		jnewblk->jn_oldfrags = oldfrags;
4934 #ifdef SUJ_DEBUG
4935 		{
4936 			struct cg *cgp;
4937 			uint8_t *blksfree;
4938 			long bno;
4939 			int i;
4940 
4941 			cgp = (struct cg *)bp->b_data;
4942 			blksfree = cg_blksfree(cgp);
4943 			bno = dtogd(fs, jnewblk->jn_blkno);
4944 			for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags;
4945 			    i++) {
4946 				if (isset(blksfree, bno + i))
4947 					panic("softdep_setup_blkmapdep: "
4948 					    "free fragment %d from %d-%d "
4949 					    "state 0x%X dep %p", i,
4950 					    jnewblk->jn_oldfrags,
4951 					    jnewblk->jn_frags,
4952 					    jnewblk->jn_state,
4953 					    jnewblk->jn_dep);
4954 			}
4955 		}
4956 #endif
4957 	}
4958 
4959 	CTR3(KTR_SUJ,
4960 	    "softdep_setup_blkmapdep: blkno %jd frags %d oldfrags %d",
4961 	    newblkno, frags, oldfrags);
4962 	ACQUIRE_LOCK(&lk);
4963 	if (newblk_lookup(mp, newblkno, DEPALLOC, &newblk) != 0)
4964 		panic("softdep_setup_blkmapdep: found block");
4965 	newblk->nb_bmsafemap = bmsafemap = bmsafemap_lookup(mp, bp,
4966 	    dtog(fs, newblkno), NULL);
4967 	if (jnewblk) {
4968 		jnewblk->jn_dep = (struct worklist *)newblk;
4969 		LIST_INSERT_HEAD(&bmsafemap->sm_jnewblkhd, jnewblk, jn_deps);
4970 	} else {
4971 		newblk->nb_state |= ONDEPLIST;
4972 		LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, nb_deps);
4973 	}
4974 	newblk->nb_bmsafemap = bmsafemap;
4975 	newblk->nb_jnewblk = jnewblk;
4976 	FREE_LOCK(&lk);
4977 }
4978 
4979 #define	BMSAFEMAP_HASH(fs, cg) \
4980       (&bmsafemap_hashtbl[((((register_t)(fs)) >> 13) + (cg)) & bmsafemap_hash])
4981 
4982 static int
4983 bmsafemap_find(bmsafemaphd, mp, cg, bmsafemapp)
4984 	struct bmsafemap_hashhead *bmsafemaphd;
4985 	struct mount *mp;
4986 	int cg;
4987 	struct bmsafemap **bmsafemapp;
4988 {
4989 	struct bmsafemap *bmsafemap;
4990 
4991 	LIST_FOREACH(bmsafemap, bmsafemaphd, sm_hash)
4992 		if (bmsafemap->sm_list.wk_mp == mp && bmsafemap->sm_cg == cg)
4993 			break;
4994 	if (bmsafemap) {
4995 		*bmsafemapp = bmsafemap;
4996 		return (1);
4997 	}
4998 	*bmsafemapp = NULL;
4999 
5000 	return (0);
5001 }
5002 
5003 /*
5004  * Find the bmsafemap associated with a cylinder group buffer.
5005  * If none exists, create one. The buffer must be locked when
5006  * this routine is called and this routine must be called with
5007  * the softdep lock held. To avoid giving up the lock while
5008  * allocating a new bmsafemap, a preallocated bmsafemap may be
5009  * provided. If it is provided but not needed, it is freed.
5010  */
5011 static struct bmsafemap *
5012 bmsafemap_lookup(mp, bp, cg, newbmsafemap)
5013 	struct mount *mp;
5014 	struct buf *bp;
5015 	int cg;
5016 	struct bmsafemap *newbmsafemap;
5017 {
5018 	struct bmsafemap_hashhead *bmsafemaphd;
5019 	struct bmsafemap *bmsafemap, *collision;
5020 	struct worklist *wk;
5021 	struct fs *fs;
5022 
5023 	rw_assert(&lk, RA_WLOCKED);
5024 	KASSERT(bp != NULL, ("bmsafemap_lookup: missing buffer"));
5025 	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
5026 		if (wk->wk_type == D_BMSAFEMAP) {
5027 			if (newbmsafemap)
5028 				WORKITEM_FREE(newbmsafemap, D_BMSAFEMAP);
5029 			return (WK_BMSAFEMAP(wk));
5030 		}
5031 	}
5032 	fs = VFSTOUFS(mp)->um_fs;
5033 	bmsafemaphd = BMSAFEMAP_HASH(fs, cg);
5034 	if (bmsafemap_find(bmsafemaphd, mp, cg, &bmsafemap) == 1) {
5035 		if (newbmsafemap)
5036 			WORKITEM_FREE(newbmsafemap, D_BMSAFEMAP);
5037 		return (bmsafemap);
5038 	}
5039 	if (newbmsafemap) {
5040 		bmsafemap = newbmsafemap;
5041 	} else {
5042 		FREE_LOCK(&lk);
5043 		bmsafemap = malloc(sizeof(struct bmsafemap),
5044 			M_BMSAFEMAP, M_SOFTDEP_FLAGS);
5045 		workitem_alloc(&bmsafemap->sm_list, D_BMSAFEMAP, mp);
5046 		ACQUIRE_LOCK(&lk);
5047 	}
5048 	bmsafemap->sm_buf = bp;
5049 	LIST_INIT(&bmsafemap->sm_inodedephd);
5050 	LIST_INIT(&bmsafemap->sm_inodedepwr);
5051 	LIST_INIT(&bmsafemap->sm_newblkhd);
5052 	LIST_INIT(&bmsafemap->sm_newblkwr);
5053 	LIST_INIT(&bmsafemap->sm_jaddrefhd);
5054 	LIST_INIT(&bmsafemap->sm_jnewblkhd);
5055 	LIST_INIT(&bmsafemap->sm_freehd);
5056 	LIST_INIT(&bmsafemap->sm_freewr);
5057 	if (bmsafemap_find(bmsafemaphd, mp, cg, &collision) == 1) {
5058 		WORKITEM_FREE(bmsafemap, D_BMSAFEMAP);
5059 		return (collision);
5060 	}
5061 	bmsafemap->sm_cg = cg;
5062 	LIST_INSERT_HEAD(bmsafemaphd, bmsafemap, sm_hash);
5063 	LIST_INSERT_HEAD(&VFSTOUFS(mp)->softdep_dirtycg, bmsafemap, sm_next);
5064 	WORKLIST_INSERT(&bp->b_dep, &bmsafemap->sm_list);
5065 	return (bmsafemap);
5066 }
5067 
5068 /*
5069  * Direct block allocation dependencies.
5070  *
5071  * When a new block is allocated, the corresponding disk locations must be
5072  * initialized (with zeros or new data) before the on-disk inode points to
5073  * them.  Also, the freemap from which the block was allocated must be
5074  * updated (on disk) before the inode's pointer. These two dependencies are
5075  * independent of each other and are needed for all file blocks and indirect
5076  * blocks that are pointed to directly by the inode.  Just before the
5077  * "in-core" version of the inode is updated with a newly allocated block
5078  * number, a procedure (below) is called to setup allocation dependency
5079  * structures.  These structures are removed when the corresponding
5080  * dependencies are satisfied or when the block allocation becomes obsolete
5081  * (i.e., the file is deleted, the block is de-allocated, or the block is a
5082  * fragment that gets upgraded).  All of these cases are handled in
5083  * procedures described later.
5084  *
5085  * When a file extension causes a fragment to be upgraded, either to a larger
5086  * fragment or to a full block, the on-disk location may change (if the
5087  * previous fragment could not simply be extended). In this case, the old
5088  * fragment must be de-allocated, but not until after the inode's pointer has
5089  * been updated. In most cases, this is handled by later procedures, which
5090  * will construct a "freefrag" structure to be added to the workitem queue
5091  * when the inode update is complete (or obsolete).  The main exception to
5092  * this is when an allocation occurs while a pending allocation dependency
5093  * (for the same block pointer) remains.  This case is handled in the main
5094  * allocation dependency setup procedure by immediately freeing the
5095  * unreferenced fragments.
5096  */
5097 void
5098 softdep_setup_allocdirect(ip, off, newblkno, oldblkno, newsize, oldsize, bp)
5099 	struct inode *ip;	/* inode to which block is being added */
5100 	ufs_lbn_t off;		/* block pointer within inode */
5101 	ufs2_daddr_t newblkno;	/* disk block number being added */
5102 	ufs2_daddr_t oldblkno;	/* previous block number, 0 unless frag */
5103 	long newsize;		/* size of new block */
5104 	long oldsize;		/* size of new block */
5105 	struct buf *bp;		/* bp for allocated block */
5106 {
5107 	struct allocdirect *adp, *oldadp;
5108 	struct allocdirectlst *adphead;
5109 	struct freefrag *freefrag;
5110 	struct inodedep *inodedep;
5111 	struct pagedep *pagedep;
5112 	struct jnewblk *jnewblk;
5113 	struct newblk *newblk;
5114 	struct mount *mp;
5115 	ufs_lbn_t lbn;
5116 
5117 	lbn = bp->b_lblkno;
5118 	mp = UFSTOVFS(ip->i_ump);
5119 	if (oldblkno && oldblkno != newblkno)
5120 		freefrag = newfreefrag(ip, oldblkno, oldsize, lbn);
5121 	else
5122 		freefrag = NULL;
5123 
5124 	CTR6(KTR_SUJ,
5125 	    "softdep_setup_allocdirect: ino %d blkno %jd oldblkno %jd "
5126 	    "off %jd newsize %ld oldsize %d",
5127 	    ip->i_number, newblkno, oldblkno, off, newsize, oldsize);
5128 	ACQUIRE_LOCK(&lk);
5129 	if (off >= NDADDR) {
5130 		if (lbn > 0)
5131 			panic("softdep_setup_allocdirect: bad lbn %jd, off %jd",
5132 			    lbn, off);
5133 		/* allocating an indirect block */
5134 		if (oldblkno != 0)
5135 			panic("softdep_setup_allocdirect: non-zero indir");
5136 	} else {
5137 		if (off != lbn)
5138 			panic("softdep_setup_allocdirect: lbn %jd != off %jd",
5139 			    lbn, off);
5140 		/*
5141 		 * Allocating a direct block.
5142 		 *
5143 		 * If we are allocating a directory block, then we must
5144 		 * allocate an associated pagedep to track additions and
5145 		 * deletions.
5146 		 */
5147 		if ((ip->i_mode & IFMT) == IFDIR)
5148 			pagedep_lookup(mp, bp, ip->i_number, off, DEPALLOC,
5149 			    &pagedep);
5150 	}
5151 	if (newblk_lookup(mp, newblkno, 0, &newblk) == 0)
5152 		panic("softdep_setup_allocdirect: lost block");
5153 	KASSERT(newblk->nb_list.wk_type == D_NEWBLK,
5154 	    ("softdep_setup_allocdirect: newblk already initialized"));
5155 	/*
5156 	 * Convert the newblk to an allocdirect.
5157 	 */
5158 	WORKITEM_REASSIGN(newblk, D_ALLOCDIRECT);
5159 	adp = (struct allocdirect *)newblk;
5160 	newblk->nb_freefrag = freefrag;
5161 	adp->ad_offset = off;
5162 	adp->ad_oldblkno = oldblkno;
5163 	adp->ad_newsize = newsize;
5164 	adp->ad_oldsize = oldsize;
5165 
5166 	/*
5167 	 * Finish initializing the journal.
5168 	 */
5169 	if ((jnewblk = newblk->nb_jnewblk) != NULL) {
5170 		jnewblk->jn_ino = ip->i_number;
5171 		jnewblk->jn_lbn = lbn;
5172 		add_to_journal(&jnewblk->jn_list);
5173 	}
5174 	if (freefrag && freefrag->ff_jdep != NULL &&
5175 	    freefrag->ff_jdep->wk_type == D_JFREEFRAG)
5176 		add_to_journal(freefrag->ff_jdep);
5177 	inodedep_lookup(mp, ip->i_number, DEPALLOC | NODELAY, &inodedep);
5178 	adp->ad_inodedep = inodedep;
5179 
5180 	WORKLIST_INSERT(&bp->b_dep, &newblk->nb_list);
5181 	/*
5182 	 * The list of allocdirects must be kept in sorted and ascending
5183 	 * order so that the rollback routines can quickly determine the
5184 	 * first uncommitted block (the size of the file stored on disk
5185 	 * ends at the end of the lowest committed fragment, or if there
5186 	 * are no fragments, at the end of the highest committed block).
5187 	 * Since files generally grow, the typical case is that the new
5188 	 * block is to be added at the end of the list. We speed this
5189 	 * special case by checking against the last allocdirect in the
5190 	 * list before laboriously traversing the list looking for the
5191 	 * insertion point.
5192 	 */
5193 	adphead = &inodedep->id_newinoupdt;
5194 	oldadp = TAILQ_LAST(adphead, allocdirectlst);
5195 	if (oldadp == NULL || oldadp->ad_offset <= off) {
5196 		/* insert at end of list */
5197 		TAILQ_INSERT_TAIL(adphead, adp, ad_next);
5198 		if (oldadp != NULL && oldadp->ad_offset == off)
5199 			allocdirect_merge(adphead, adp, oldadp);
5200 		FREE_LOCK(&lk);
5201 		return;
5202 	}
5203 	TAILQ_FOREACH(oldadp, adphead, ad_next) {
5204 		if (oldadp->ad_offset >= off)
5205 			break;
5206 	}
5207 	if (oldadp == NULL)
5208 		panic("softdep_setup_allocdirect: lost entry");
5209 	/* insert in middle of list */
5210 	TAILQ_INSERT_BEFORE(oldadp, adp, ad_next);
5211 	if (oldadp->ad_offset == off)
5212 		allocdirect_merge(adphead, adp, oldadp);
5213 
5214 	FREE_LOCK(&lk);
5215 }
5216 
5217 /*
5218  * Merge a newer and older journal record to be stored either in a
5219  * newblock or freefrag.  This handles aggregating journal records for
5220  * fragment allocation into a second record as well as replacing a
5221  * journal free with an aborted journal allocation.  A segment for the
5222  * oldest record will be placed on wkhd if it has been written.  If not
5223  * the segment for the newer record will suffice.
5224  */
5225 static struct worklist *
5226 jnewblk_merge(new, old, wkhd)
5227 	struct worklist *new;
5228 	struct worklist *old;
5229 	struct workhead *wkhd;
5230 {
5231 	struct jnewblk *njnewblk;
5232 	struct jnewblk *jnewblk;
5233 
5234 	/* Handle NULLs to simplify callers. */
5235 	if (new == NULL)
5236 		return (old);
5237 	if (old == NULL)
5238 		return (new);
5239 	/* Replace a jfreefrag with a jnewblk. */
5240 	if (new->wk_type == D_JFREEFRAG) {
5241 		if (WK_JNEWBLK(old)->jn_blkno != WK_JFREEFRAG(new)->fr_blkno)
5242 			panic("jnewblk_merge: blkno mismatch: %p, %p",
5243 			    old, new);
5244 		cancel_jfreefrag(WK_JFREEFRAG(new));
5245 		return (old);
5246 	}
5247 	if (old->wk_type != D_JNEWBLK || new->wk_type != D_JNEWBLK)
5248 		panic("jnewblk_merge: Bad type: old %d new %d\n",
5249 		    old->wk_type, new->wk_type);
5250 	/*
5251 	 * Handle merging of two jnewblk records that describe
5252 	 * different sets of fragments in the same block.
5253 	 */
5254 	jnewblk = WK_JNEWBLK(old);
5255 	njnewblk = WK_JNEWBLK(new);
5256 	if (jnewblk->jn_blkno != njnewblk->jn_blkno)
5257 		panic("jnewblk_merge: Merging disparate blocks.");
5258 	/*
5259 	 * The record may be rolled back in the cg.
5260 	 */
5261 	if (jnewblk->jn_state & UNDONE) {
5262 		jnewblk->jn_state &= ~UNDONE;
5263 		njnewblk->jn_state |= UNDONE;
5264 		njnewblk->jn_state &= ~ATTACHED;
5265 	}
5266 	/*
5267 	 * We modify the newer addref and free the older so that if neither
5268 	 * has been written the most up-to-date copy will be on disk.  If
5269 	 * both have been written but rolled back we only temporarily need
5270 	 * one of them to fix the bits when the cg write completes.
5271 	 */
5272 	jnewblk->jn_state |= ATTACHED | COMPLETE;
5273 	njnewblk->jn_oldfrags = jnewblk->jn_oldfrags;
5274 	cancel_jnewblk(jnewblk, wkhd);
5275 	WORKLIST_REMOVE(&jnewblk->jn_list);
5276 	free_jnewblk(jnewblk);
5277 	return (new);
5278 }
5279 
5280 /*
5281  * Replace an old allocdirect dependency with a newer one.
5282  * This routine must be called with splbio interrupts blocked.
5283  */
5284 static void
5285 allocdirect_merge(adphead, newadp, oldadp)
5286 	struct allocdirectlst *adphead;	/* head of list holding allocdirects */
5287 	struct allocdirect *newadp;	/* allocdirect being added */
5288 	struct allocdirect *oldadp;	/* existing allocdirect being checked */
5289 {
5290 	struct worklist *wk;
5291 	struct freefrag *freefrag;
5292 
5293 	freefrag = NULL;
5294 	rw_assert(&lk, RA_WLOCKED);
5295 	if (newadp->ad_oldblkno != oldadp->ad_newblkno ||
5296 	    newadp->ad_oldsize != oldadp->ad_newsize ||
5297 	    newadp->ad_offset >= NDADDR)
5298 		panic("%s %jd != new %jd || old size %ld != new %ld",
5299 		    "allocdirect_merge: old blkno",
5300 		    (intmax_t)newadp->ad_oldblkno,
5301 		    (intmax_t)oldadp->ad_newblkno,
5302 		    newadp->ad_oldsize, oldadp->ad_newsize);
5303 	newadp->ad_oldblkno = oldadp->ad_oldblkno;
5304 	newadp->ad_oldsize = oldadp->ad_oldsize;
5305 	/*
5306 	 * If the old dependency had a fragment to free or had never
5307 	 * previously had a block allocated, then the new dependency
5308 	 * can immediately post its freefrag and adopt the old freefrag.
5309 	 * This action is done by swapping the freefrag dependencies.
5310 	 * The new dependency gains the old one's freefrag, and the
5311 	 * old one gets the new one and then immediately puts it on
5312 	 * the worklist when it is freed by free_newblk. It is
5313 	 * not possible to do this swap when the old dependency had a
5314 	 * non-zero size but no previous fragment to free. This condition
5315 	 * arises when the new block is an extension of the old block.
5316 	 * Here, the first part of the fragment allocated to the new
5317 	 * dependency is part of the block currently claimed on disk by
5318 	 * the old dependency, so cannot legitimately be freed until the
5319 	 * conditions for the new dependency are fulfilled.
5320 	 */
5321 	freefrag = newadp->ad_freefrag;
5322 	if (oldadp->ad_freefrag != NULL || oldadp->ad_oldblkno == 0) {
5323 		newadp->ad_freefrag = oldadp->ad_freefrag;
5324 		oldadp->ad_freefrag = freefrag;
5325 	}
5326 	/*
5327 	 * If we are tracking a new directory-block allocation,
5328 	 * move it from the old allocdirect to the new allocdirect.
5329 	 */
5330 	if ((wk = LIST_FIRST(&oldadp->ad_newdirblk)) != NULL) {
5331 		WORKLIST_REMOVE(wk);
5332 		if (!LIST_EMPTY(&oldadp->ad_newdirblk))
5333 			panic("allocdirect_merge: extra newdirblk");
5334 		WORKLIST_INSERT(&newadp->ad_newdirblk, wk);
5335 	}
5336 	TAILQ_REMOVE(adphead, oldadp, ad_next);
5337 	/*
5338 	 * We need to move any journal dependencies over to the freefrag
5339 	 * that releases this block if it exists.  Otherwise we are
5340 	 * extending an existing block and we'll wait until that is
5341 	 * complete to release the journal space and extend the
5342 	 * new journal to cover this old space as well.
5343 	 */
5344 	if (freefrag == NULL) {
5345 		if (oldadp->ad_newblkno != newadp->ad_newblkno)
5346 			panic("allocdirect_merge: %jd != %jd",
5347 			    oldadp->ad_newblkno, newadp->ad_newblkno);
5348 		newadp->ad_block.nb_jnewblk = (struct jnewblk *)
5349 		    jnewblk_merge(&newadp->ad_block.nb_jnewblk->jn_list,
5350 		    &oldadp->ad_block.nb_jnewblk->jn_list,
5351 		    &newadp->ad_block.nb_jwork);
5352 		oldadp->ad_block.nb_jnewblk = NULL;
5353 		cancel_newblk(&oldadp->ad_block, NULL,
5354 		    &newadp->ad_block.nb_jwork);
5355 	} else {
5356 		wk = (struct worklist *) cancel_newblk(&oldadp->ad_block,
5357 		    &freefrag->ff_list, &freefrag->ff_jwork);
5358 		freefrag->ff_jdep = jnewblk_merge(freefrag->ff_jdep, wk,
5359 		    &freefrag->ff_jwork);
5360 	}
5361 	free_newblk(&oldadp->ad_block);
5362 }
5363 
5364 /*
5365  * Allocate a jfreefrag structure to journal a single block free.
5366  */
5367 static struct jfreefrag *
5368 newjfreefrag(freefrag, ip, blkno, size, lbn)
5369 	struct freefrag *freefrag;
5370 	struct inode *ip;
5371 	ufs2_daddr_t blkno;
5372 	long size;
5373 	ufs_lbn_t lbn;
5374 {
5375 	struct jfreefrag *jfreefrag;
5376 	struct fs *fs;
5377 
5378 	fs = ip->i_fs;
5379 	jfreefrag = malloc(sizeof(struct jfreefrag), M_JFREEFRAG,
5380 	    M_SOFTDEP_FLAGS);
5381 	workitem_alloc(&jfreefrag->fr_list, D_JFREEFRAG, UFSTOVFS(ip->i_ump));
5382 	jfreefrag->fr_jsegdep = newjsegdep(&jfreefrag->fr_list);
5383 	jfreefrag->fr_state = ATTACHED | DEPCOMPLETE;
5384 	jfreefrag->fr_ino = ip->i_number;
5385 	jfreefrag->fr_lbn = lbn;
5386 	jfreefrag->fr_blkno = blkno;
5387 	jfreefrag->fr_frags = numfrags(fs, size);
5388 	jfreefrag->fr_freefrag = freefrag;
5389 
5390 	return (jfreefrag);
5391 }
5392 
5393 /*
5394  * Allocate a new freefrag structure.
5395  */
5396 static struct freefrag *
5397 newfreefrag(ip, blkno, size, lbn)
5398 	struct inode *ip;
5399 	ufs2_daddr_t blkno;
5400 	long size;
5401 	ufs_lbn_t lbn;
5402 {
5403 	struct freefrag *freefrag;
5404 	struct fs *fs;
5405 
5406 	CTR4(KTR_SUJ, "newfreefrag: ino %d blkno %jd size %ld lbn %jd",
5407 	    ip->i_number, blkno, size, lbn);
5408 	fs = ip->i_fs;
5409 	if (fragnum(fs, blkno) + numfrags(fs, size) > fs->fs_frag)
5410 		panic("newfreefrag: frag size");
5411 	freefrag = malloc(sizeof(struct freefrag),
5412 	    M_FREEFRAG, M_SOFTDEP_FLAGS);
5413 	workitem_alloc(&freefrag->ff_list, D_FREEFRAG, UFSTOVFS(ip->i_ump));
5414 	freefrag->ff_state = ATTACHED;
5415 	LIST_INIT(&freefrag->ff_jwork);
5416 	freefrag->ff_inum = ip->i_number;
5417 	freefrag->ff_vtype = ITOV(ip)->v_type;
5418 	freefrag->ff_blkno = blkno;
5419 	freefrag->ff_fragsize = size;
5420 
5421 	if (MOUNTEDSUJ(UFSTOVFS(ip->i_ump))) {
5422 		freefrag->ff_jdep = (struct worklist *)
5423 		    newjfreefrag(freefrag, ip, blkno, size, lbn);
5424 	} else {
5425 		freefrag->ff_state |= DEPCOMPLETE;
5426 		freefrag->ff_jdep = NULL;
5427 	}
5428 
5429 	return (freefrag);
5430 }
5431 
5432 /*
5433  * This workitem de-allocates fragments that were replaced during
5434  * file block allocation.
5435  */
5436 static void
5437 handle_workitem_freefrag(freefrag)
5438 	struct freefrag *freefrag;
5439 {
5440 	struct ufsmount *ump = VFSTOUFS(freefrag->ff_list.wk_mp);
5441 	struct workhead wkhd;
5442 
5443 	CTR3(KTR_SUJ,
5444 	    "handle_workitem_freefrag: ino %d blkno %jd size %ld",
5445 	    freefrag->ff_inum, freefrag->ff_blkno, freefrag->ff_fragsize);
5446 	/*
5447 	 * It would be illegal to add new completion items to the
5448 	 * freefrag after it was schedule to be done so it must be
5449 	 * safe to modify the list head here.
5450 	 */
5451 	LIST_INIT(&wkhd);
5452 	ACQUIRE_LOCK(&lk);
5453 	LIST_SWAP(&freefrag->ff_jwork, &wkhd, worklist, wk_list);
5454 	/*
5455 	 * If the journal has not been written we must cancel it here.
5456 	 */
5457 	if (freefrag->ff_jdep) {
5458 		if (freefrag->ff_jdep->wk_type != D_JNEWBLK)
5459 			panic("handle_workitem_freefrag: Unexpected type %d\n",
5460 			    freefrag->ff_jdep->wk_type);
5461 		cancel_jnewblk(WK_JNEWBLK(freefrag->ff_jdep), &wkhd);
5462 	}
5463 	FREE_LOCK(&lk);
5464 	ffs_blkfree(ump, ump->um_fs, ump->um_devvp, freefrag->ff_blkno,
5465 	   freefrag->ff_fragsize, freefrag->ff_inum, freefrag->ff_vtype, &wkhd);
5466 	ACQUIRE_LOCK(&lk);
5467 	WORKITEM_FREE(freefrag, D_FREEFRAG);
5468 	FREE_LOCK(&lk);
5469 }
5470 
5471 /*
5472  * Set up a dependency structure for an external attributes data block.
5473  * This routine follows much of the structure of softdep_setup_allocdirect.
5474  * See the description of softdep_setup_allocdirect above for details.
5475  */
5476 void
5477 softdep_setup_allocext(ip, off, newblkno, oldblkno, newsize, oldsize, bp)
5478 	struct inode *ip;
5479 	ufs_lbn_t off;
5480 	ufs2_daddr_t newblkno;
5481 	ufs2_daddr_t oldblkno;
5482 	long newsize;
5483 	long oldsize;
5484 	struct buf *bp;
5485 {
5486 	struct allocdirect *adp, *oldadp;
5487 	struct allocdirectlst *adphead;
5488 	struct freefrag *freefrag;
5489 	struct inodedep *inodedep;
5490 	struct jnewblk *jnewblk;
5491 	struct newblk *newblk;
5492 	struct mount *mp;
5493 	ufs_lbn_t lbn;
5494 
5495 	if (off >= NXADDR)
5496 		panic("softdep_setup_allocext: lbn %lld > NXADDR",
5497 		    (long long)off);
5498 
5499 	lbn = bp->b_lblkno;
5500 	mp = UFSTOVFS(ip->i_ump);
5501 	if (oldblkno && oldblkno != newblkno)
5502 		freefrag = newfreefrag(ip, oldblkno, oldsize, lbn);
5503 	else
5504 		freefrag = NULL;
5505 
5506 	ACQUIRE_LOCK(&lk);
5507 	if (newblk_lookup(mp, newblkno, 0, &newblk) == 0)
5508 		panic("softdep_setup_allocext: lost block");
5509 	KASSERT(newblk->nb_list.wk_type == D_NEWBLK,
5510 	    ("softdep_setup_allocext: newblk already initialized"));
5511 	/*
5512 	 * Convert the newblk to an allocdirect.
5513 	 */
5514 	WORKITEM_REASSIGN(newblk, D_ALLOCDIRECT);
5515 	adp = (struct allocdirect *)newblk;
5516 	newblk->nb_freefrag = freefrag;
5517 	adp->ad_offset = off;
5518 	adp->ad_oldblkno = oldblkno;
5519 	adp->ad_newsize = newsize;
5520 	adp->ad_oldsize = oldsize;
5521 	adp->ad_state |=  EXTDATA;
5522 
5523 	/*
5524 	 * Finish initializing the journal.
5525 	 */
5526 	if ((jnewblk = newblk->nb_jnewblk) != NULL) {
5527 		jnewblk->jn_ino = ip->i_number;
5528 		jnewblk->jn_lbn = lbn;
5529 		add_to_journal(&jnewblk->jn_list);
5530 	}
5531 	if (freefrag && freefrag->ff_jdep != NULL &&
5532 	    freefrag->ff_jdep->wk_type == D_JFREEFRAG)
5533 		add_to_journal(freefrag->ff_jdep);
5534 	inodedep_lookup(mp, ip->i_number, DEPALLOC | NODELAY, &inodedep);
5535 	adp->ad_inodedep = inodedep;
5536 
5537 	WORKLIST_INSERT(&bp->b_dep, &newblk->nb_list);
5538 	/*
5539 	 * The list of allocdirects must be kept in sorted and ascending
5540 	 * order so that the rollback routines can quickly determine the
5541 	 * first uncommitted block (the size of the file stored on disk
5542 	 * ends at the end of the lowest committed fragment, or if there
5543 	 * are no fragments, at the end of the highest committed block).
5544 	 * Since files generally grow, the typical case is that the new
5545 	 * block is to be added at the end of the list. We speed this
5546 	 * special case by checking against the last allocdirect in the
5547 	 * list before laboriously traversing the list looking for the
5548 	 * insertion point.
5549 	 */
5550 	adphead = &inodedep->id_newextupdt;
5551 	oldadp = TAILQ_LAST(adphead, allocdirectlst);
5552 	if (oldadp == NULL || oldadp->ad_offset <= off) {
5553 		/* insert at end of list */
5554 		TAILQ_INSERT_TAIL(adphead, adp, ad_next);
5555 		if (oldadp != NULL && oldadp->ad_offset == off)
5556 			allocdirect_merge(adphead, adp, oldadp);
5557 		FREE_LOCK(&lk);
5558 		return;
5559 	}
5560 	TAILQ_FOREACH(oldadp, adphead, ad_next) {
5561 		if (oldadp->ad_offset >= off)
5562 			break;
5563 	}
5564 	if (oldadp == NULL)
5565 		panic("softdep_setup_allocext: lost entry");
5566 	/* insert in middle of list */
5567 	TAILQ_INSERT_BEFORE(oldadp, adp, ad_next);
5568 	if (oldadp->ad_offset == off)
5569 		allocdirect_merge(adphead, adp, oldadp);
5570 	FREE_LOCK(&lk);
5571 }
5572 
5573 /*
5574  * Indirect block allocation dependencies.
5575  *
5576  * The same dependencies that exist for a direct block also exist when
5577  * a new block is allocated and pointed to by an entry in a block of
5578  * indirect pointers. The undo/redo states described above are also
5579  * used here. Because an indirect block contains many pointers that
5580  * may have dependencies, a second copy of the entire in-memory indirect
5581  * block is kept. The buffer cache copy is always completely up-to-date.
5582  * The second copy, which is used only as a source for disk writes,
5583  * contains only the safe pointers (i.e., those that have no remaining
5584  * update dependencies). The second copy is freed when all pointers
5585  * are safe. The cache is not allowed to replace indirect blocks with
5586  * pending update dependencies. If a buffer containing an indirect
5587  * block with dependencies is written, these routines will mark it
5588  * dirty again. It can only be successfully written once all the
5589  * dependencies are removed. The ffs_fsync routine in conjunction with
5590  * softdep_sync_metadata work together to get all the dependencies
5591  * removed so that a file can be successfully written to disk. Three
5592  * procedures are used when setting up indirect block pointer
5593  * dependencies. The division is necessary because of the organization
5594  * of the "balloc" routine and because of the distinction between file
5595  * pages and file metadata blocks.
5596  */
5597 
5598 /*
5599  * Allocate a new allocindir structure.
5600  */
5601 static struct allocindir *
5602 newallocindir(ip, ptrno, newblkno, oldblkno, lbn)
5603 	struct inode *ip;	/* inode for file being extended */
5604 	int ptrno;		/* offset of pointer in indirect block */
5605 	ufs2_daddr_t newblkno;	/* disk block number being added */
5606 	ufs2_daddr_t oldblkno;	/* previous block number, 0 if none */
5607 	ufs_lbn_t lbn;
5608 {
5609 	struct newblk *newblk;
5610 	struct allocindir *aip;
5611 	struct freefrag *freefrag;
5612 	struct jnewblk *jnewblk;
5613 
5614 	if (oldblkno)
5615 		freefrag = newfreefrag(ip, oldblkno, ip->i_fs->fs_bsize, lbn);
5616 	else
5617 		freefrag = NULL;
5618 	ACQUIRE_LOCK(&lk);
5619 	if (newblk_lookup(UFSTOVFS(ip->i_ump), newblkno, 0, &newblk) == 0)
5620 		panic("new_allocindir: lost block");
5621 	KASSERT(newblk->nb_list.wk_type == D_NEWBLK,
5622 	    ("newallocindir: newblk already initialized"));
5623 	WORKITEM_REASSIGN(newblk, D_ALLOCINDIR);
5624 	newblk->nb_freefrag = freefrag;
5625 	aip = (struct allocindir *)newblk;
5626 	aip->ai_offset = ptrno;
5627 	aip->ai_oldblkno = oldblkno;
5628 	aip->ai_lbn = lbn;
5629 	if ((jnewblk = newblk->nb_jnewblk) != NULL) {
5630 		jnewblk->jn_ino = ip->i_number;
5631 		jnewblk->jn_lbn = lbn;
5632 		add_to_journal(&jnewblk->jn_list);
5633 	}
5634 	if (freefrag && freefrag->ff_jdep != NULL &&
5635 	    freefrag->ff_jdep->wk_type == D_JFREEFRAG)
5636 		add_to_journal(freefrag->ff_jdep);
5637 	return (aip);
5638 }
5639 
5640 /*
5641  * Called just before setting an indirect block pointer
5642  * to a newly allocated file page.
5643  */
5644 void
5645 softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp)
5646 	struct inode *ip;	/* inode for file being extended */
5647 	ufs_lbn_t lbn;		/* allocated block number within file */
5648 	struct buf *bp;		/* buffer with indirect blk referencing page */
5649 	int ptrno;		/* offset of pointer in indirect block */
5650 	ufs2_daddr_t newblkno;	/* disk block number being added */
5651 	ufs2_daddr_t oldblkno;	/* previous block number, 0 if none */
5652 	struct buf *nbp;	/* buffer holding allocated page */
5653 {
5654 	struct inodedep *inodedep;
5655 	struct freefrag *freefrag;
5656 	struct allocindir *aip;
5657 	struct pagedep *pagedep;
5658 	struct mount *mp;
5659 	int dflags;
5660 
5661 	if (lbn != nbp->b_lblkno)
5662 		panic("softdep_setup_allocindir_page: lbn %jd != lblkno %jd",
5663 		    lbn, bp->b_lblkno);
5664 	CTR4(KTR_SUJ,
5665 	    "softdep_setup_allocindir_page: ino %d blkno %jd oldblkno %jd "
5666 	    "lbn %jd", ip->i_number, newblkno, oldblkno, lbn);
5667 	ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_page");
5668 	mp = UFSTOVFS(ip->i_ump);
5669 	aip = newallocindir(ip, ptrno, newblkno, oldblkno, lbn);
5670 	dflags = DEPALLOC;
5671 	if (IS_SNAPSHOT(ip))
5672 		dflags |= NODELAY;
5673 	(void) inodedep_lookup(mp, ip->i_number, dflags, &inodedep);
5674 	/*
5675 	 * If we are allocating a directory page, then we must
5676 	 * allocate an associated pagedep to track additions and
5677 	 * deletions.
5678 	 */
5679 	if ((ip->i_mode & IFMT) == IFDIR)
5680 		pagedep_lookup(mp, nbp, ip->i_number, lbn, DEPALLOC, &pagedep);
5681 	WORKLIST_INSERT(&nbp->b_dep, &aip->ai_block.nb_list);
5682 	freefrag = setup_allocindir_phase2(bp, ip, inodedep, aip, lbn);
5683 	FREE_LOCK(&lk);
5684 	if (freefrag)
5685 		handle_workitem_freefrag(freefrag);
5686 }
5687 
5688 /*
5689  * Called just before setting an indirect block pointer to a
5690  * newly allocated indirect block.
5691  */
5692 void
5693 softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno)
5694 	struct buf *nbp;	/* newly allocated indirect block */
5695 	struct inode *ip;	/* inode for file being extended */
5696 	struct buf *bp;		/* indirect block referencing allocated block */
5697 	int ptrno;		/* offset of pointer in indirect block */
5698 	ufs2_daddr_t newblkno;	/* disk block number being added */
5699 {
5700 	struct inodedep *inodedep;
5701 	struct allocindir *aip;
5702 	ufs_lbn_t lbn;
5703 	int dflags;
5704 
5705 	CTR3(KTR_SUJ,
5706 	    "softdep_setup_allocindir_meta: ino %d blkno %jd ptrno %d",
5707 	    ip->i_number, newblkno, ptrno);
5708 	lbn = nbp->b_lblkno;
5709 	ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_meta");
5710 	aip = newallocindir(ip, ptrno, newblkno, 0, lbn);
5711 	dflags = DEPALLOC;
5712 	if (IS_SNAPSHOT(ip))
5713 		dflags |= NODELAY;
5714 	inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, dflags, &inodedep);
5715 	WORKLIST_INSERT(&nbp->b_dep, &aip->ai_block.nb_list);
5716 	if (setup_allocindir_phase2(bp, ip, inodedep, aip, lbn))
5717 		panic("softdep_setup_allocindir_meta: Block already existed");
5718 	FREE_LOCK(&lk);
5719 }
5720 
5721 static void
5722 indirdep_complete(indirdep)
5723 	struct indirdep *indirdep;
5724 {
5725 	struct allocindir *aip;
5726 
5727 	LIST_REMOVE(indirdep, ir_next);
5728 	indirdep->ir_state |= DEPCOMPLETE;
5729 
5730 	while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != NULL) {
5731 		LIST_REMOVE(aip, ai_next);
5732 		free_newblk(&aip->ai_block);
5733 	}
5734 	/*
5735 	 * If this indirdep is not attached to a buf it was simply waiting
5736 	 * on completion to clear completehd.  free_indirdep() asserts
5737 	 * that nothing is dangling.
5738 	 */
5739 	if ((indirdep->ir_state & ONWORKLIST) == 0)
5740 		free_indirdep(indirdep);
5741 }
5742 
5743 static struct indirdep *
5744 indirdep_lookup(mp, ip, bp)
5745 	struct mount *mp;
5746 	struct inode *ip;
5747 	struct buf *bp;
5748 {
5749 	struct indirdep *indirdep, *newindirdep;
5750 	struct newblk *newblk;
5751 	struct worklist *wk;
5752 	struct fs *fs;
5753 	ufs2_daddr_t blkno;
5754 
5755 	rw_assert(&lk, RA_WLOCKED);
5756 	indirdep = NULL;
5757 	newindirdep = NULL;
5758 	fs = ip->i_fs;
5759 	for (;;) {
5760 		LIST_FOREACH(wk, &bp->b_dep, wk_list) {
5761 			if (wk->wk_type != D_INDIRDEP)
5762 				continue;
5763 			indirdep = WK_INDIRDEP(wk);
5764 			break;
5765 		}
5766 		/* Found on the buffer worklist, no new structure to free. */
5767 		if (indirdep != NULL && newindirdep == NULL)
5768 			return (indirdep);
5769 		if (indirdep != NULL && newindirdep != NULL)
5770 			panic("indirdep_lookup: simultaneous create");
5771 		/* None found on the buffer and a new structure is ready. */
5772 		if (indirdep == NULL && newindirdep != NULL)
5773 			break;
5774 		/* None found and no new structure available. */
5775 		FREE_LOCK(&lk);
5776 		newindirdep = malloc(sizeof(struct indirdep),
5777 		    M_INDIRDEP, M_SOFTDEP_FLAGS);
5778 		workitem_alloc(&newindirdep->ir_list, D_INDIRDEP, mp);
5779 		newindirdep->ir_state = ATTACHED;
5780 		if (ip->i_ump->um_fstype == UFS1)
5781 			newindirdep->ir_state |= UFS1FMT;
5782 		TAILQ_INIT(&newindirdep->ir_trunc);
5783 		newindirdep->ir_saveddata = NULL;
5784 		LIST_INIT(&newindirdep->ir_deplisthd);
5785 		LIST_INIT(&newindirdep->ir_donehd);
5786 		LIST_INIT(&newindirdep->ir_writehd);
5787 		LIST_INIT(&newindirdep->ir_completehd);
5788 		if (bp->b_blkno == bp->b_lblkno) {
5789 			ufs_bmaparray(bp->b_vp, bp->b_lblkno, &blkno, bp,
5790 			    NULL, NULL);
5791 			bp->b_blkno = blkno;
5792 		}
5793 		newindirdep->ir_freeblks = NULL;
5794 		newindirdep->ir_savebp =
5795 		    getblk(ip->i_devvp, bp->b_blkno, bp->b_bcount, 0, 0, 0);
5796 		newindirdep->ir_bp = bp;
5797 		BUF_KERNPROC(newindirdep->ir_savebp);
5798 		bcopy(bp->b_data, newindirdep->ir_savebp->b_data, bp->b_bcount);
5799 		ACQUIRE_LOCK(&lk);
5800 	}
5801 	indirdep = newindirdep;
5802 	WORKLIST_INSERT(&bp->b_dep, &indirdep->ir_list);
5803 	/*
5804 	 * If the block is not yet allocated we don't set DEPCOMPLETE so
5805 	 * that we don't free dependencies until the pointers are valid.
5806 	 * This could search b_dep for D_ALLOCDIRECT/D_ALLOCINDIR rather
5807 	 * than using the hash.
5808 	 */
5809 	if (newblk_lookup(mp, dbtofsb(fs, bp->b_blkno), 0, &newblk))
5810 		LIST_INSERT_HEAD(&newblk->nb_indirdeps, indirdep, ir_next);
5811 	else
5812 		indirdep->ir_state |= DEPCOMPLETE;
5813 	return (indirdep);
5814 }
5815 
5816 /*
5817  * Called to finish the allocation of the "aip" allocated
5818  * by one of the two routines above.
5819  */
5820 static struct freefrag *
5821 setup_allocindir_phase2(bp, ip, inodedep, aip, lbn)
5822 	struct buf *bp;		/* in-memory copy of the indirect block */
5823 	struct inode *ip;	/* inode for file being extended */
5824 	struct inodedep *inodedep; /* Inodedep for ip */
5825 	struct allocindir *aip;	/* allocindir allocated by the above routines */
5826 	ufs_lbn_t lbn;		/* Logical block number for this block. */
5827 {
5828 	struct fs *fs;
5829 	struct indirdep *indirdep;
5830 	struct allocindir *oldaip;
5831 	struct freefrag *freefrag;
5832 	struct mount *mp;
5833 
5834 	rw_assert(&lk, RA_WLOCKED);
5835 	mp = UFSTOVFS(ip->i_ump);
5836 	fs = ip->i_fs;
5837 	if (bp->b_lblkno >= 0)
5838 		panic("setup_allocindir_phase2: not indir blk");
5839 	KASSERT(aip->ai_offset >= 0 && aip->ai_offset < NINDIR(fs),
5840 	    ("setup_allocindir_phase2: Bad offset %d", aip->ai_offset));
5841 	indirdep = indirdep_lookup(mp, ip, bp);
5842 	KASSERT(indirdep->ir_savebp != NULL,
5843 	    ("setup_allocindir_phase2 NULL ir_savebp"));
5844 	aip->ai_indirdep = indirdep;
5845 	/*
5846 	 * Check for an unwritten dependency for this indirect offset.  If
5847 	 * there is, merge the old dependency into the new one.  This happens
5848 	 * as a result of reallocblk only.
5849 	 */
5850 	freefrag = NULL;
5851 	if (aip->ai_oldblkno != 0) {
5852 		LIST_FOREACH(oldaip, &indirdep->ir_deplisthd, ai_next) {
5853 			if (oldaip->ai_offset == aip->ai_offset) {
5854 				freefrag = allocindir_merge(aip, oldaip);
5855 				goto done;
5856 			}
5857 		}
5858 		LIST_FOREACH(oldaip, &indirdep->ir_donehd, ai_next) {
5859 			if (oldaip->ai_offset == aip->ai_offset) {
5860 				freefrag = allocindir_merge(aip, oldaip);
5861 				goto done;
5862 			}
5863 		}
5864 	}
5865 done:
5866 	LIST_INSERT_HEAD(&indirdep->ir_deplisthd, aip, ai_next);
5867 	return (freefrag);
5868 }
5869 
5870 /*
5871  * Merge two allocindirs which refer to the same block.  Move newblock
5872  * dependencies and setup the freefrags appropriately.
5873  */
5874 static struct freefrag *
5875 allocindir_merge(aip, oldaip)
5876 	struct allocindir *aip;
5877 	struct allocindir *oldaip;
5878 {
5879 	struct freefrag *freefrag;
5880 	struct worklist *wk;
5881 
5882 	if (oldaip->ai_newblkno != aip->ai_oldblkno)
5883 		panic("allocindir_merge: blkno");
5884 	aip->ai_oldblkno = oldaip->ai_oldblkno;
5885 	freefrag = aip->ai_freefrag;
5886 	aip->ai_freefrag = oldaip->ai_freefrag;
5887 	oldaip->ai_freefrag = NULL;
5888 	KASSERT(freefrag != NULL, ("setup_allocindir_phase2: No freefrag"));
5889 	/*
5890 	 * If we are tracking a new directory-block allocation,
5891 	 * move it from the old allocindir to the new allocindir.
5892 	 */
5893 	if ((wk = LIST_FIRST(&oldaip->ai_newdirblk)) != NULL) {
5894 		WORKLIST_REMOVE(wk);
5895 		if (!LIST_EMPTY(&oldaip->ai_newdirblk))
5896 			panic("allocindir_merge: extra newdirblk");
5897 		WORKLIST_INSERT(&aip->ai_newdirblk, wk);
5898 	}
5899 	/*
5900 	 * We can skip journaling for this freefrag and just complete
5901 	 * any pending journal work for the allocindir that is being
5902 	 * removed after the freefrag completes.
5903 	 */
5904 	if (freefrag->ff_jdep)
5905 		cancel_jfreefrag(WK_JFREEFRAG(freefrag->ff_jdep));
5906 	LIST_REMOVE(oldaip, ai_next);
5907 	freefrag->ff_jdep = (struct worklist *)cancel_newblk(&oldaip->ai_block,
5908 	    &freefrag->ff_list, &freefrag->ff_jwork);
5909 	free_newblk(&oldaip->ai_block);
5910 
5911 	return (freefrag);
5912 }
5913 
5914 static inline void
5915 setup_freedirect(freeblks, ip, i, needj)
5916 	struct freeblks *freeblks;
5917 	struct inode *ip;
5918 	int i;
5919 	int needj;
5920 {
5921 	ufs2_daddr_t blkno;
5922 	int frags;
5923 
5924 	blkno = DIP(ip, i_db[i]);
5925 	if (blkno == 0)
5926 		return;
5927 	DIP_SET(ip, i_db[i], 0);
5928 	frags = sblksize(ip->i_fs, ip->i_size, i);
5929 	frags = numfrags(ip->i_fs, frags);
5930 	newfreework(ip->i_ump, freeblks, NULL, i, blkno, frags, 0, needj);
5931 }
5932 
5933 static inline void
5934 setup_freeext(freeblks, ip, i, needj)
5935 	struct freeblks *freeblks;
5936 	struct inode *ip;
5937 	int i;
5938 	int needj;
5939 {
5940 	ufs2_daddr_t blkno;
5941 	int frags;
5942 
5943 	blkno = ip->i_din2->di_extb[i];
5944 	if (blkno == 0)
5945 		return;
5946 	ip->i_din2->di_extb[i] = 0;
5947 	frags = sblksize(ip->i_fs, ip->i_din2->di_extsize, i);
5948 	frags = numfrags(ip->i_fs, frags);
5949 	newfreework(ip->i_ump, freeblks, NULL, -1 - i, blkno, frags, 0, needj);
5950 }
5951 
5952 static inline void
5953 setup_freeindir(freeblks, ip, i, lbn, needj)
5954 	struct freeblks *freeblks;
5955 	struct inode *ip;
5956 	int i;
5957 	ufs_lbn_t lbn;
5958 	int needj;
5959 {
5960 	ufs2_daddr_t blkno;
5961 
5962 	blkno = DIP(ip, i_ib[i]);
5963 	if (blkno == 0)
5964 		return;
5965 	DIP_SET(ip, i_ib[i], 0);
5966 	newfreework(ip->i_ump, freeblks, NULL, lbn, blkno, ip->i_fs->fs_frag,
5967 	    0, needj);
5968 }
5969 
5970 static inline struct freeblks *
5971 newfreeblks(mp, ip)
5972 	struct mount *mp;
5973 	struct inode *ip;
5974 {
5975 	struct freeblks *freeblks;
5976 
5977 	freeblks = malloc(sizeof(struct freeblks),
5978 		M_FREEBLKS, M_SOFTDEP_FLAGS|M_ZERO);
5979 	workitem_alloc(&freeblks->fb_list, D_FREEBLKS, mp);
5980 	LIST_INIT(&freeblks->fb_jblkdephd);
5981 	LIST_INIT(&freeblks->fb_jwork);
5982 	freeblks->fb_ref = 0;
5983 	freeblks->fb_cgwait = 0;
5984 	freeblks->fb_state = ATTACHED;
5985 	freeblks->fb_uid = ip->i_uid;
5986 	freeblks->fb_inum = ip->i_number;
5987 	freeblks->fb_vtype = ITOV(ip)->v_type;
5988 	freeblks->fb_modrev = DIP(ip, i_modrev);
5989 	freeblks->fb_devvp = ip->i_devvp;
5990 	freeblks->fb_chkcnt = 0;
5991 	freeblks->fb_len = 0;
5992 
5993 	return (freeblks);
5994 }
5995 
5996 static void
5997 trunc_indirdep(indirdep, freeblks, bp, off)
5998 	struct indirdep *indirdep;
5999 	struct freeblks *freeblks;
6000 	struct buf *bp;
6001 	int off;
6002 {
6003 	struct allocindir *aip, *aipn;
6004 
6005 	/*
6006 	 * The first set of allocindirs won't be in savedbp.
6007 	 */
6008 	LIST_FOREACH_SAFE(aip, &indirdep->ir_deplisthd, ai_next, aipn)
6009 		if (aip->ai_offset > off)
6010 			cancel_allocindir(aip, bp, freeblks, 1);
6011 	LIST_FOREACH_SAFE(aip, &indirdep->ir_donehd, ai_next, aipn)
6012 		if (aip->ai_offset > off)
6013 			cancel_allocindir(aip, bp, freeblks, 1);
6014 	/*
6015 	 * These will exist in savedbp.
6016 	 */
6017 	LIST_FOREACH_SAFE(aip, &indirdep->ir_writehd, ai_next, aipn)
6018 		if (aip->ai_offset > off)
6019 			cancel_allocindir(aip, NULL, freeblks, 0);
6020 	LIST_FOREACH_SAFE(aip, &indirdep->ir_completehd, ai_next, aipn)
6021 		if (aip->ai_offset > off)
6022 			cancel_allocindir(aip, NULL, freeblks, 0);
6023 }
6024 
6025 /*
6026  * Follow the chain of indirects down to lastlbn creating a freework
6027  * structure for each.  This will be used to start indir_trunc() at
6028  * the right offset and create the journal records for the parrtial
6029  * truncation.  A second step will handle the truncated dependencies.
6030  */
6031 static int
6032 setup_trunc_indir(freeblks, ip, lbn, lastlbn, blkno)
6033 	struct freeblks *freeblks;
6034 	struct inode *ip;
6035 	ufs_lbn_t lbn;
6036 	ufs_lbn_t lastlbn;
6037 	ufs2_daddr_t blkno;
6038 {
6039 	struct indirdep *indirdep;
6040 	struct indirdep *indirn;
6041 	struct freework *freework;
6042 	struct newblk *newblk;
6043 	struct mount *mp;
6044 	struct buf *bp;
6045 	uint8_t *start;
6046 	uint8_t *end;
6047 	ufs_lbn_t lbnadd;
6048 	int level;
6049 	int error;
6050 	int off;
6051 
6052 
6053 	freework = NULL;
6054 	if (blkno == 0)
6055 		return (0);
6056 	mp = freeblks->fb_list.wk_mp;
6057 	bp = getblk(ITOV(ip), lbn, mp->mnt_stat.f_iosize, 0, 0, 0);
6058 	if ((bp->b_flags & B_CACHE) == 0) {
6059 		bp->b_blkno = blkptrtodb(VFSTOUFS(mp), blkno);
6060 		bp->b_iocmd = BIO_READ;
6061 		bp->b_flags &= ~B_INVAL;
6062 		bp->b_ioflags &= ~BIO_ERROR;
6063 		vfs_busy_pages(bp, 0);
6064 		bp->b_iooffset = dbtob(bp->b_blkno);
6065 		bstrategy(bp);
6066 		curthread->td_ru.ru_inblock++;
6067 		error = bufwait(bp);
6068 		if (error) {
6069 			brelse(bp);
6070 			return (error);
6071 		}
6072 	}
6073 	level = lbn_level(lbn);
6074 	lbnadd = lbn_offset(ip->i_fs, level);
6075 	/*
6076 	 * Compute the offset of the last block we want to keep.  Store
6077 	 * in the freework the first block we want to completely free.
6078 	 */
6079 	off = (lastlbn - -(lbn + level)) / lbnadd;
6080 	if (off + 1 == NINDIR(ip->i_fs))
6081 		goto nowork;
6082 	freework = newfreework(ip->i_ump, freeblks, NULL, lbn, blkno, 0, off+1,
6083 	    0);
6084 	/*
6085 	 * Link the freework into the indirdep.  This will prevent any new
6086 	 * allocations from proceeding until we are finished with the
6087 	 * truncate and the block is written.
6088 	 */
6089 	ACQUIRE_LOCK(&lk);
6090 	indirdep = indirdep_lookup(mp, ip, bp);
6091 	if (indirdep->ir_freeblks)
6092 		panic("setup_trunc_indir: indirdep already truncated.");
6093 	TAILQ_INSERT_TAIL(&indirdep->ir_trunc, freework, fw_next);
6094 	freework->fw_indir = indirdep;
6095 	/*
6096 	 * Cancel any allocindirs that will not make it to disk.
6097 	 * We have to do this for all copies of the indirdep that
6098 	 * live on this newblk.
6099 	 */
6100 	if ((indirdep->ir_state & DEPCOMPLETE) == 0) {
6101 		newblk_lookup(mp, dbtofsb(ip->i_fs, bp->b_blkno), 0, &newblk);
6102 		LIST_FOREACH(indirn, &newblk->nb_indirdeps, ir_next)
6103 			trunc_indirdep(indirn, freeblks, bp, off);
6104 	} else
6105 		trunc_indirdep(indirdep, freeblks, bp, off);
6106 	FREE_LOCK(&lk);
6107 	/*
6108 	 * Creation is protected by the buf lock. The saveddata is only
6109 	 * needed if a full truncation follows a partial truncation but it
6110 	 * is difficult to allocate in that case so we fetch it anyway.
6111 	 */
6112 	if (indirdep->ir_saveddata == NULL)
6113 		indirdep->ir_saveddata = malloc(bp->b_bcount, M_INDIRDEP,
6114 		    M_SOFTDEP_FLAGS);
6115 nowork:
6116 	/* Fetch the blkno of the child and the zero start offset. */
6117 	if (ip->i_ump->um_fstype == UFS1) {
6118 		blkno = ((ufs1_daddr_t *)bp->b_data)[off];
6119 		start = (uint8_t *)&((ufs1_daddr_t *)bp->b_data)[off+1];
6120 	} else {
6121 		blkno = ((ufs2_daddr_t *)bp->b_data)[off];
6122 		start = (uint8_t *)&((ufs2_daddr_t *)bp->b_data)[off+1];
6123 	}
6124 	if (freework) {
6125 		/* Zero the truncated pointers. */
6126 		end = bp->b_data + bp->b_bcount;
6127 		bzero(start, end - start);
6128 		bdwrite(bp);
6129 	} else
6130 		bqrelse(bp);
6131 	if (level == 0)
6132 		return (0);
6133 	lbn++; /* adjust level */
6134 	lbn -= (off * lbnadd);
6135 	return setup_trunc_indir(freeblks, ip, lbn, lastlbn, blkno);
6136 }
6137 
6138 /*
6139  * Complete the partial truncation of an indirect block setup by
6140  * setup_trunc_indir().  This zeros the truncated pointers in the saved
6141  * copy and writes them to disk before the freeblks is allowed to complete.
6142  */
6143 static void
6144 complete_trunc_indir(freework)
6145 	struct freework *freework;
6146 {
6147 	struct freework *fwn;
6148 	struct indirdep *indirdep;
6149 	struct buf *bp;
6150 	uintptr_t start;
6151 	int count;
6152 
6153 	indirdep = freework->fw_indir;
6154 	for (;;) {
6155 		bp = indirdep->ir_bp;
6156 		/* See if the block was discarded. */
6157 		if (bp == NULL)
6158 			break;
6159 		/* Inline part of getdirtybuf().  We dont want bremfree. */
6160 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) == 0)
6161 			break;
6162 		if (BUF_LOCK(bp,
6163 		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, &lk) == 0)
6164 			BUF_UNLOCK(bp);
6165 		ACQUIRE_LOCK(&lk);
6166 	}
6167 	rw_assert(&lk, RA_WLOCKED);
6168 	freework->fw_state |= DEPCOMPLETE;
6169 	TAILQ_REMOVE(&indirdep->ir_trunc, freework, fw_next);
6170 	/*
6171 	 * Zero the pointers in the saved copy.
6172 	 */
6173 	if (indirdep->ir_state & UFS1FMT)
6174 		start = sizeof(ufs1_daddr_t);
6175 	else
6176 		start = sizeof(ufs2_daddr_t);
6177 	start *= freework->fw_start;
6178 	count = indirdep->ir_savebp->b_bcount - start;
6179 	start += (uintptr_t)indirdep->ir_savebp->b_data;
6180 	bzero((char *)start, count);
6181 	/*
6182 	 * We need to start the next truncation in the list if it has not
6183 	 * been started yet.
6184 	 */
6185 	fwn = TAILQ_FIRST(&indirdep->ir_trunc);
6186 	if (fwn != NULL) {
6187 		if (fwn->fw_freeblks == indirdep->ir_freeblks)
6188 			TAILQ_REMOVE(&indirdep->ir_trunc, fwn, fw_next);
6189 		if ((fwn->fw_state & ONWORKLIST) == 0)
6190 			freework_enqueue(fwn);
6191 	}
6192 	/*
6193 	 * If bp is NULL the block was fully truncated, restore
6194 	 * the saved block list otherwise free it if it is no
6195 	 * longer needed.
6196 	 */
6197 	if (TAILQ_EMPTY(&indirdep->ir_trunc)) {
6198 		if (bp == NULL)
6199 			bcopy(indirdep->ir_saveddata,
6200 			    indirdep->ir_savebp->b_data,
6201 			    indirdep->ir_savebp->b_bcount);
6202 		free(indirdep->ir_saveddata, M_INDIRDEP);
6203 		indirdep->ir_saveddata = NULL;
6204 	}
6205 	/*
6206 	 * When bp is NULL there is a full truncation pending.  We
6207 	 * must wait for this full truncation to be journaled before
6208 	 * we can release this freework because the disk pointers will
6209 	 * never be written as zero.
6210 	 */
6211 	if (bp == NULL)  {
6212 		if (LIST_EMPTY(&indirdep->ir_freeblks->fb_jblkdephd))
6213 			handle_written_freework(freework);
6214 		else
6215 			WORKLIST_INSERT(&indirdep->ir_freeblks->fb_freeworkhd,
6216 			   &freework->fw_list);
6217 	} else {
6218 		/* Complete when the real copy is written. */
6219 		WORKLIST_INSERT(&bp->b_dep, &freework->fw_list);
6220 		BUF_UNLOCK(bp);
6221 	}
6222 }
6223 
6224 /*
6225  * Calculate the number of blocks we are going to release where datablocks
6226  * is the current total and length is the new file size.
6227  */
6228 ufs2_daddr_t
6229 blkcount(fs, datablocks, length)
6230 	struct fs *fs;
6231 	ufs2_daddr_t datablocks;
6232 	off_t length;
6233 {
6234 	off_t totblks, numblks;
6235 
6236 	totblks = 0;
6237 	numblks = howmany(length, fs->fs_bsize);
6238 	if (numblks <= NDADDR) {
6239 		totblks = howmany(length, fs->fs_fsize);
6240 		goto out;
6241 	}
6242         totblks = blkstofrags(fs, numblks);
6243 	numblks -= NDADDR;
6244 	/*
6245 	 * Count all single, then double, then triple indirects required.
6246 	 * Subtracting one indirects worth of blocks for each pass
6247 	 * acknowledges one of each pointed to by the inode.
6248 	 */
6249 	for (;;) {
6250 		totblks += blkstofrags(fs, howmany(numblks, NINDIR(fs)));
6251 		numblks -= NINDIR(fs);
6252 		if (numblks <= 0)
6253 			break;
6254 		numblks = howmany(numblks, NINDIR(fs));
6255 	}
6256 out:
6257 	totblks = fsbtodb(fs, totblks);
6258 	/*
6259 	 * Handle sparse files.  We can't reclaim more blocks than the inode
6260 	 * references.  We will correct it later in handle_complete_freeblks()
6261 	 * when we know the real count.
6262 	 */
6263 	if (totblks > datablocks)
6264 		return (0);
6265 	return (datablocks - totblks);
6266 }
6267 
6268 /*
6269  * Handle freeblocks for journaled softupdate filesystems.
6270  *
6271  * Contrary to normal softupdates, we must preserve the block pointers in
6272  * indirects until their subordinates are free.  This is to avoid journaling
6273  * every block that is freed which may consume more space than the journal
6274  * itself.  The recovery program will see the free block journals at the
6275  * base of the truncated area and traverse them to reclaim space.  The
6276  * pointers in the inode may be cleared immediately after the journal
6277  * records are written because each direct and indirect pointer in the
6278  * inode is recorded in a journal.  This permits full truncation to proceed
6279  * asynchronously.  The write order is journal -> inode -> cgs -> indirects.
6280  *
6281  * The algorithm is as follows:
6282  * 1) Traverse the in-memory state and create journal entries to release
6283  *    the relevant blocks and full indirect trees.
6284  * 2) Traverse the indirect block chain adding partial truncation freework
6285  *    records to indirects in the path to lastlbn.  The freework will
6286  *    prevent new allocation dependencies from being satisfied in this
6287  *    indirect until the truncation completes.
6288  * 3) Read and lock the inode block, performing an update with the new size
6289  *    and pointers.  This prevents truncated data from becoming valid on
6290  *    disk through step 4.
6291  * 4) Reap unsatisfied dependencies that are beyond the truncated area,
6292  *    eliminate journal work for those records that do not require it.
6293  * 5) Schedule the journal records to be written followed by the inode block.
6294  * 6) Allocate any necessary frags for the end of file.
6295  * 7) Zero any partially truncated blocks.
6296  *
6297  * From this truncation proceeds asynchronously using the freework and
6298  * indir_trunc machinery.  The file will not be extended again into a
6299  * partially truncated indirect block until all work is completed but
6300  * the normal dependency mechanism ensures that it is rolled back/forward
6301  * as appropriate.  Further truncation may occur without delay and is
6302  * serialized in indir_trunc().
6303  */
6304 void
6305 softdep_journal_freeblocks(ip, cred, length, flags)
6306 	struct inode *ip;	/* The inode whose length is to be reduced */
6307 	struct ucred *cred;
6308 	off_t length;		/* The new length for the file */
6309 	int flags;		/* IO_EXT and/or IO_NORMAL */
6310 {
6311 	struct freeblks *freeblks, *fbn;
6312 	struct worklist *wk, *wkn;
6313 	struct inodedep *inodedep;
6314 	struct jblkdep *jblkdep;
6315 	struct allocdirect *adp, *adpn;
6316 	struct fs *fs;
6317 	struct buf *bp;
6318 	struct vnode *vp;
6319 	struct mount *mp;
6320 	ufs2_daddr_t extblocks, datablocks;
6321 	ufs_lbn_t tmpval, lbn, lastlbn;
6322 	int frags, lastoff, iboff, allocblock, needj, dflags, error, i;
6323 
6324 	fs = ip->i_fs;
6325 	mp = UFSTOVFS(ip->i_ump);
6326 	vp = ITOV(ip);
6327 	needj = 1;
6328 	iboff = -1;
6329 	allocblock = 0;
6330 	extblocks = 0;
6331 	datablocks = 0;
6332 	frags = 0;
6333 	freeblks = newfreeblks(mp, ip);
6334 	ACQUIRE_LOCK(&lk);
6335 	/*
6336 	 * If we're truncating a removed file that will never be written
6337 	 * we don't need to journal the block frees.  The canceled journals
6338 	 * for the allocations will suffice.
6339 	 */
6340 	dflags = DEPALLOC;
6341 	if (IS_SNAPSHOT(ip))
6342 		dflags |= NODELAY;
6343 	inodedep_lookup(mp, ip->i_number, dflags, &inodedep);
6344 	if ((inodedep->id_state & (UNLINKED | DEPCOMPLETE)) == UNLINKED &&
6345 	    length == 0)
6346 		needj = 0;
6347 	CTR3(KTR_SUJ, "softdep_journal_freeblks: ip %d length %ld needj %d",
6348 	    ip->i_number, length, needj);
6349 	FREE_LOCK(&lk);
6350 	/*
6351 	 * Calculate the lbn that we are truncating to.  This results in -1
6352 	 * if we're truncating the 0 bytes.  So it is the last lbn we want
6353 	 * to keep, not the first lbn we want to truncate.
6354 	 */
6355 	lastlbn = lblkno(fs, length + fs->fs_bsize - 1) - 1;
6356 	lastoff = blkoff(fs, length);
6357 	/*
6358 	 * Compute frags we are keeping in lastlbn.  0 means all.
6359 	 */
6360 	if (lastlbn >= 0 && lastlbn < NDADDR) {
6361 		frags = fragroundup(fs, lastoff);
6362 		/* adp offset of last valid allocdirect. */
6363 		iboff = lastlbn;
6364 	} else if (lastlbn > 0)
6365 		iboff = NDADDR;
6366 	if (fs->fs_magic == FS_UFS2_MAGIC)
6367 		extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize));
6368 	/*
6369 	 * Handle normal data blocks and indirects.  This section saves
6370 	 * values used after the inode update to complete frag and indirect
6371 	 * truncation.
6372 	 */
6373 	if ((flags & IO_NORMAL) != 0) {
6374 		/*
6375 		 * Handle truncation of whole direct and indirect blocks.
6376 		 */
6377 		for (i = iboff + 1; i < NDADDR; i++)
6378 			setup_freedirect(freeblks, ip, i, needj);
6379 		for (i = 0, tmpval = NINDIR(fs), lbn = NDADDR; i < NIADDR;
6380 		    i++, lbn += tmpval, tmpval *= NINDIR(fs)) {
6381 			/* Release a whole indirect tree. */
6382 			if (lbn > lastlbn) {
6383 				setup_freeindir(freeblks, ip, i, -lbn -i,
6384 				    needj);
6385 				continue;
6386 			}
6387 			iboff = i + NDADDR;
6388 			/*
6389 			 * Traverse partially truncated indirect tree.
6390 			 */
6391 			if (lbn <= lastlbn && lbn + tmpval - 1 > lastlbn)
6392 				setup_trunc_indir(freeblks, ip, -lbn - i,
6393 				    lastlbn, DIP(ip, i_ib[i]));
6394 		}
6395 		/*
6396 		 * Handle partial truncation to a frag boundary.
6397 		 */
6398 		if (frags) {
6399 			ufs2_daddr_t blkno;
6400 			long oldfrags;
6401 
6402 			oldfrags = blksize(fs, ip, lastlbn);
6403 			blkno = DIP(ip, i_db[lastlbn]);
6404 			if (blkno && oldfrags != frags) {
6405 				oldfrags -= frags;
6406 				oldfrags = numfrags(ip->i_fs, oldfrags);
6407 				blkno += numfrags(ip->i_fs, frags);
6408 				newfreework(ip->i_ump, freeblks, NULL, lastlbn,
6409 				    blkno, oldfrags, 0, needj);
6410 			} else if (blkno == 0)
6411 				allocblock = 1;
6412 		}
6413 		/*
6414 		 * Add a journal record for partial truncate if we are
6415 		 * handling indirect blocks.  Non-indirects need no extra
6416 		 * journaling.
6417 		 */
6418 		if (length != 0 && lastlbn >= NDADDR) {
6419 			ip->i_flag |= IN_TRUNCATED;
6420 			newjtrunc(freeblks, length, 0);
6421 		}
6422 		ip->i_size = length;
6423 		DIP_SET(ip, i_size, ip->i_size);
6424 		datablocks = DIP(ip, i_blocks) - extblocks;
6425 		if (length != 0)
6426 			datablocks = blkcount(ip->i_fs, datablocks, length);
6427 		freeblks->fb_len = length;
6428 	}
6429 	if ((flags & IO_EXT) != 0) {
6430 		for (i = 0; i < NXADDR; i++)
6431 			setup_freeext(freeblks, ip, i, needj);
6432 		ip->i_din2->di_extsize = 0;
6433 		datablocks += extblocks;
6434 	}
6435 #ifdef QUOTA
6436 	/* Reference the quotas in case the block count is wrong in the end. */
6437 	quotaref(vp, freeblks->fb_quota);
6438 	(void) chkdq(ip, -datablocks, NOCRED, 0);
6439 #endif
6440 	freeblks->fb_chkcnt = -datablocks;
6441 	UFS_LOCK(ip->i_ump);
6442 	fs->fs_pendingblocks += datablocks;
6443 	UFS_UNLOCK(ip->i_ump);
6444 	DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - datablocks);
6445 	/*
6446 	 * Handle truncation of incomplete alloc direct dependencies.  We
6447 	 * hold the inode block locked to prevent incomplete dependencies
6448 	 * from reaching the disk while we are eliminating those that
6449 	 * have been truncated.  This is a partially inlined ffs_update().
6450 	 */
6451 	ufs_itimes(vp);
6452 	ip->i_flag &= ~(IN_LAZYACCESS | IN_LAZYMOD | IN_MODIFIED);
6453 	error = bread(ip->i_devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
6454 	    (int)fs->fs_bsize, cred, &bp);
6455 	if (error) {
6456 		brelse(bp);
6457 		softdep_error("softdep_journal_freeblocks", error);
6458 		return;
6459 	}
6460 	if (bp->b_bufsize == fs->fs_bsize)
6461 		bp->b_flags |= B_CLUSTEROK;
6462 	softdep_update_inodeblock(ip, bp, 0);
6463 	if (ip->i_ump->um_fstype == UFS1)
6464 		*((struct ufs1_dinode *)bp->b_data +
6465 		    ino_to_fsbo(fs, ip->i_number)) = *ip->i_din1;
6466 	else
6467 		*((struct ufs2_dinode *)bp->b_data +
6468 		    ino_to_fsbo(fs, ip->i_number)) = *ip->i_din2;
6469 	ACQUIRE_LOCK(&lk);
6470 	(void) inodedep_lookup(mp, ip->i_number, dflags, &inodedep);
6471 	if ((inodedep->id_state & IOSTARTED) != 0)
6472 		panic("softdep_setup_freeblocks: inode busy");
6473 	/*
6474 	 * Add the freeblks structure to the list of operations that
6475 	 * must await the zero'ed inode being written to disk. If we
6476 	 * still have a bitmap dependency (needj), then the inode
6477 	 * has never been written to disk, so we can process the
6478 	 * freeblks below once we have deleted the dependencies.
6479 	 */
6480 	if (needj)
6481 		WORKLIST_INSERT(&bp->b_dep, &freeblks->fb_list);
6482 	else
6483 		freeblks->fb_state |= COMPLETE;
6484 	if ((flags & IO_NORMAL) != 0) {
6485 		TAILQ_FOREACH_SAFE(adp, &inodedep->id_inoupdt, ad_next, adpn) {
6486 			if (adp->ad_offset > iboff)
6487 				cancel_allocdirect(&inodedep->id_inoupdt, adp,
6488 				    freeblks);
6489 			/*
6490 			 * Truncate the allocdirect.  We could eliminate
6491 			 * or modify journal records as well.
6492 			 */
6493 			else if (adp->ad_offset == iboff && frags)
6494 				adp->ad_newsize = frags;
6495 		}
6496 	}
6497 	if ((flags & IO_EXT) != 0)
6498 		while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != 0)
6499 			cancel_allocdirect(&inodedep->id_extupdt, adp,
6500 			    freeblks);
6501 	/*
6502 	 * Scan the bufwait list for newblock dependencies that will never
6503 	 * make it to disk.
6504 	 */
6505 	LIST_FOREACH_SAFE(wk, &inodedep->id_bufwait, wk_list, wkn) {
6506 		if (wk->wk_type != D_ALLOCDIRECT)
6507 			continue;
6508 		adp = WK_ALLOCDIRECT(wk);
6509 		if (((flags & IO_NORMAL) != 0 && (adp->ad_offset > iboff)) ||
6510 		    ((flags & IO_EXT) != 0 && (adp->ad_state & EXTDATA))) {
6511 			cancel_jfreeblk(freeblks, adp->ad_newblkno);
6512 			cancel_newblk(WK_NEWBLK(wk), NULL, &freeblks->fb_jwork);
6513 			WORKLIST_INSERT(&freeblks->fb_freeworkhd, wk);
6514 		}
6515 	}
6516 	/*
6517 	 * Add journal work.
6518 	 */
6519 	LIST_FOREACH(jblkdep, &freeblks->fb_jblkdephd, jb_deps)
6520 		add_to_journal(&jblkdep->jb_list);
6521 	FREE_LOCK(&lk);
6522 	bdwrite(bp);
6523 	/*
6524 	 * Truncate dependency structures beyond length.
6525 	 */
6526 	trunc_dependencies(ip, freeblks, lastlbn, frags, flags);
6527 	/*
6528 	 * This is only set when we need to allocate a fragment because
6529 	 * none existed at the end of a frag-sized file.  It handles only
6530 	 * allocating a new, zero filled block.
6531 	 */
6532 	if (allocblock) {
6533 		ip->i_size = length - lastoff;
6534 		DIP_SET(ip, i_size, ip->i_size);
6535 		error = UFS_BALLOC(vp, length - 1, 1, cred, BA_CLRBUF, &bp);
6536 		if (error != 0) {
6537 			softdep_error("softdep_journal_freeblks", error);
6538 			return;
6539 		}
6540 		ip->i_size = length;
6541 		DIP_SET(ip, i_size, length);
6542 		ip->i_flag |= IN_CHANGE | IN_UPDATE;
6543 		allocbuf(bp, frags);
6544 		ffs_update(vp, 0);
6545 		bawrite(bp);
6546 	} else if (lastoff != 0 && vp->v_type != VDIR) {
6547 		int size;
6548 
6549 		/*
6550 		 * Zero the end of a truncated frag or block.
6551 		 */
6552 		size = sblksize(fs, length, lastlbn);
6553 		error = bread(vp, lastlbn, size, cred, &bp);
6554 		if (error) {
6555 			softdep_error("softdep_journal_freeblks", error);
6556 			return;
6557 		}
6558 		bzero((char *)bp->b_data + lastoff, size - lastoff);
6559 		bawrite(bp);
6560 
6561 	}
6562 	ACQUIRE_LOCK(&lk);
6563 	inodedep_lookup(mp, ip->i_number, dflags, &inodedep);
6564 	TAILQ_INSERT_TAIL(&inodedep->id_freeblklst, freeblks, fb_next);
6565 	freeblks->fb_state |= DEPCOMPLETE | ONDEPLIST;
6566 	/*
6567 	 * We zero earlier truncations so they don't erroneously
6568 	 * update i_blocks.
6569 	 */
6570 	if (freeblks->fb_len == 0 && (flags & IO_NORMAL) != 0)
6571 		TAILQ_FOREACH(fbn, &inodedep->id_freeblklst, fb_next)
6572 			fbn->fb_len = 0;
6573 	if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE &&
6574 	    LIST_EMPTY(&freeblks->fb_jblkdephd))
6575 		freeblks->fb_state |= INPROGRESS;
6576 	else
6577 		freeblks = NULL;
6578 	FREE_LOCK(&lk);
6579 	if (freeblks)
6580 		handle_workitem_freeblocks(freeblks, 0);
6581 	trunc_pages(ip, length, extblocks, flags);
6582 
6583 }
6584 
6585 /*
6586  * Flush a JOP_SYNC to the journal.
6587  */
6588 void
6589 softdep_journal_fsync(ip)
6590 	struct inode *ip;
6591 {
6592 	struct jfsync *jfsync;
6593 
6594 	if ((ip->i_flag & IN_TRUNCATED) == 0)
6595 		return;
6596 	ip->i_flag &= ~IN_TRUNCATED;
6597 	jfsync = malloc(sizeof(*jfsync), M_JFSYNC, M_SOFTDEP_FLAGS | M_ZERO);
6598 	workitem_alloc(&jfsync->jfs_list, D_JFSYNC, UFSTOVFS(ip->i_ump));
6599 	jfsync->jfs_size = ip->i_size;
6600 	jfsync->jfs_ino = ip->i_number;
6601 	ACQUIRE_LOCK(&lk);
6602 	add_to_journal(&jfsync->jfs_list);
6603 	jwait(&jfsync->jfs_list, MNT_WAIT);
6604 	FREE_LOCK(&lk);
6605 }
6606 
6607 /*
6608  * Block de-allocation dependencies.
6609  *
6610  * When blocks are de-allocated, the on-disk pointers must be nullified before
6611  * the blocks are made available for use by other files.  (The true
6612  * requirement is that old pointers must be nullified before new on-disk
6613  * pointers are set.  We chose this slightly more stringent requirement to
6614  * reduce complexity.) Our implementation handles this dependency by updating
6615  * the inode (or indirect block) appropriately but delaying the actual block
6616  * de-allocation (i.e., freemap and free space count manipulation) until
6617  * after the updated versions reach stable storage.  After the disk is
6618  * updated, the blocks can be safely de-allocated whenever it is convenient.
6619  * This implementation handles only the common case of reducing a file's
6620  * length to zero. Other cases are handled by the conventional synchronous
6621  * write approach.
6622  *
6623  * The ffs implementation with which we worked double-checks
6624  * the state of the block pointers and file size as it reduces
6625  * a file's length.  Some of this code is replicated here in our
6626  * soft updates implementation.  The freeblks->fb_chkcnt field is
6627  * used to transfer a part of this information to the procedure
6628  * that eventually de-allocates the blocks.
6629  *
6630  * This routine should be called from the routine that shortens
6631  * a file's length, before the inode's size or block pointers
6632  * are modified. It will save the block pointer information for
6633  * later release and zero the inode so that the calling routine
6634  * can release it.
6635  */
6636 void
6637 softdep_setup_freeblocks(ip, length, flags)
6638 	struct inode *ip;	/* The inode whose length is to be reduced */
6639 	off_t length;		/* The new length for the file */
6640 	int flags;		/* IO_EXT and/or IO_NORMAL */
6641 {
6642 	struct ufs1_dinode *dp1;
6643 	struct ufs2_dinode *dp2;
6644 	struct freeblks *freeblks;
6645 	struct inodedep *inodedep;
6646 	struct allocdirect *adp;
6647 	struct buf *bp;
6648 	struct fs *fs;
6649 	ufs2_daddr_t extblocks, datablocks;
6650 	struct mount *mp;
6651 	int i, delay, error, dflags;
6652 	ufs_lbn_t tmpval;
6653 	ufs_lbn_t lbn;
6654 
6655 	CTR2(KTR_SUJ, "softdep_setup_freeblks: ip %d length %ld",
6656 	    ip->i_number, length);
6657 	fs = ip->i_fs;
6658 	mp = UFSTOVFS(ip->i_ump);
6659 	if (length != 0)
6660 		panic("softdep_setup_freeblocks: non-zero length");
6661 	freeblks = newfreeblks(mp, ip);
6662 	extblocks = 0;
6663 	datablocks = 0;
6664 	if (fs->fs_magic == FS_UFS2_MAGIC)
6665 		extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize));
6666 	if ((flags & IO_NORMAL) != 0) {
6667 		for (i = 0; i < NDADDR; i++)
6668 			setup_freedirect(freeblks, ip, i, 0);
6669 		for (i = 0, tmpval = NINDIR(fs), lbn = NDADDR; i < NIADDR;
6670 		    i++, lbn += tmpval, tmpval *= NINDIR(fs))
6671 			setup_freeindir(freeblks, ip, i, -lbn -i, 0);
6672 		ip->i_size = 0;
6673 		DIP_SET(ip, i_size, 0);
6674 		datablocks = DIP(ip, i_blocks) - extblocks;
6675 	}
6676 	if ((flags & IO_EXT) != 0) {
6677 		for (i = 0; i < NXADDR; i++)
6678 			setup_freeext(freeblks, ip, i, 0);
6679 		ip->i_din2->di_extsize = 0;
6680 		datablocks += extblocks;
6681 	}
6682 #ifdef QUOTA
6683 	/* Reference the quotas in case the block count is wrong in the end. */
6684 	quotaref(ITOV(ip), freeblks->fb_quota);
6685 	(void) chkdq(ip, -datablocks, NOCRED, 0);
6686 #endif
6687 	freeblks->fb_chkcnt = -datablocks;
6688 	UFS_LOCK(ip->i_ump);
6689 	fs->fs_pendingblocks += datablocks;
6690 	UFS_UNLOCK(ip->i_ump);
6691 	DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - datablocks);
6692 	/*
6693 	 * Push the zero'ed inode to to its disk buffer so that we are free
6694 	 * to delete its dependencies below. Once the dependencies are gone
6695 	 * the buffer can be safely released.
6696 	 */
6697 	if ((error = bread(ip->i_devvp,
6698 	    fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
6699 	    (int)fs->fs_bsize, NOCRED, &bp)) != 0) {
6700 		brelse(bp);
6701 		softdep_error("softdep_setup_freeblocks", error);
6702 	}
6703 	if (ip->i_ump->um_fstype == UFS1) {
6704 		dp1 = ((struct ufs1_dinode *)bp->b_data +
6705 		    ino_to_fsbo(fs, ip->i_number));
6706 		ip->i_din1->di_freelink = dp1->di_freelink;
6707 		*dp1 = *ip->i_din1;
6708 	} else {
6709 		dp2 = ((struct ufs2_dinode *)bp->b_data +
6710 		    ino_to_fsbo(fs, ip->i_number));
6711 		ip->i_din2->di_freelink = dp2->di_freelink;
6712 		*dp2 = *ip->i_din2;
6713 	}
6714 	/*
6715 	 * Find and eliminate any inode dependencies.
6716 	 */
6717 	ACQUIRE_LOCK(&lk);
6718 	dflags = DEPALLOC;
6719 	if (IS_SNAPSHOT(ip))
6720 		dflags |= NODELAY;
6721 	(void) inodedep_lookup(mp, ip->i_number, dflags, &inodedep);
6722 	if ((inodedep->id_state & IOSTARTED) != 0)
6723 		panic("softdep_setup_freeblocks: inode busy");
6724 	/*
6725 	 * Add the freeblks structure to the list of operations that
6726 	 * must await the zero'ed inode being written to disk. If we
6727 	 * still have a bitmap dependency (delay == 0), then the inode
6728 	 * has never been written to disk, so we can process the
6729 	 * freeblks below once we have deleted the dependencies.
6730 	 */
6731 	delay = (inodedep->id_state & DEPCOMPLETE);
6732 	if (delay)
6733 		WORKLIST_INSERT(&bp->b_dep, &freeblks->fb_list);
6734 	else
6735 		freeblks->fb_state |= COMPLETE;
6736 	/*
6737 	 * Because the file length has been truncated to zero, any
6738 	 * pending block allocation dependency structures associated
6739 	 * with this inode are obsolete and can simply be de-allocated.
6740 	 * We must first merge the two dependency lists to get rid of
6741 	 * any duplicate freefrag structures, then purge the merged list.
6742 	 * If we still have a bitmap dependency, then the inode has never
6743 	 * been written to disk, so we can free any fragments without delay.
6744 	 */
6745 	if (flags & IO_NORMAL) {
6746 		merge_inode_lists(&inodedep->id_newinoupdt,
6747 		    &inodedep->id_inoupdt);
6748 		while ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != 0)
6749 			cancel_allocdirect(&inodedep->id_inoupdt, adp,
6750 			    freeblks);
6751 	}
6752 	if (flags & IO_EXT) {
6753 		merge_inode_lists(&inodedep->id_newextupdt,
6754 		    &inodedep->id_extupdt);
6755 		while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != 0)
6756 			cancel_allocdirect(&inodedep->id_extupdt, adp,
6757 			    freeblks);
6758 	}
6759 	FREE_LOCK(&lk);
6760 	bdwrite(bp);
6761 	trunc_dependencies(ip, freeblks, -1, 0, flags);
6762 	ACQUIRE_LOCK(&lk);
6763 	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0)
6764 		(void) free_inodedep(inodedep);
6765 	freeblks->fb_state |= DEPCOMPLETE;
6766 	/*
6767 	 * If the inode with zeroed block pointers is now on disk
6768 	 * we can start freeing blocks.
6769 	 */
6770 	if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE)
6771 		freeblks->fb_state |= INPROGRESS;
6772 	else
6773 		freeblks = NULL;
6774 	FREE_LOCK(&lk);
6775 	if (freeblks)
6776 		handle_workitem_freeblocks(freeblks, 0);
6777 	trunc_pages(ip, length, extblocks, flags);
6778 }
6779 
6780 /*
6781  * Eliminate pages from the page cache that back parts of this inode and
6782  * adjust the vnode pager's idea of our size.  This prevents stale data
6783  * from hanging around in the page cache.
6784  */
6785 static void
6786 trunc_pages(ip, length, extblocks, flags)
6787 	struct inode *ip;
6788 	off_t length;
6789 	ufs2_daddr_t extblocks;
6790 	int flags;
6791 {
6792 	struct vnode *vp;
6793 	struct fs *fs;
6794 	ufs_lbn_t lbn;
6795 	off_t end, extend;
6796 
6797 	vp = ITOV(ip);
6798 	fs = ip->i_fs;
6799 	extend = OFF_TO_IDX(lblktosize(fs, -extblocks));
6800 	if ((flags & IO_EXT) != 0)
6801 		vn_pages_remove(vp, extend, 0);
6802 	if ((flags & IO_NORMAL) == 0)
6803 		return;
6804 	BO_LOCK(&vp->v_bufobj);
6805 	drain_output(vp);
6806 	BO_UNLOCK(&vp->v_bufobj);
6807 	/*
6808 	 * The vnode pager eliminates file pages we eliminate indirects
6809 	 * below.
6810 	 */
6811 	vnode_pager_setsize(vp, length);
6812 	/*
6813 	 * Calculate the end based on the last indirect we want to keep.  If
6814 	 * the block extends into indirects we can just use the negative of
6815 	 * its lbn.  Doubles and triples exist at lower numbers so we must
6816 	 * be careful not to remove those, if they exist.  double and triple
6817 	 * indirect lbns do not overlap with others so it is not important
6818 	 * to verify how many levels are required.
6819 	 */
6820 	lbn = lblkno(fs, length);
6821 	if (lbn >= NDADDR) {
6822 		/* Calculate the virtual lbn of the triple indirect. */
6823 		lbn = -lbn - (NIADDR - 1);
6824 		end = OFF_TO_IDX(lblktosize(fs, lbn));
6825 	} else
6826 		end = extend;
6827 	vn_pages_remove(vp, OFF_TO_IDX(OFF_MAX), end);
6828 }
6829 
6830 /*
6831  * See if the buf bp is in the range eliminated by truncation.
6832  */
6833 static int
6834 trunc_check_buf(bp, blkoffp, lastlbn, lastoff, flags)
6835 	struct buf *bp;
6836 	int *blkoffp;
6837 	ufs_lbn_t lastlbn;
6838 	int lastoff;
6839 	int flags;
6840 {
6841 	ufs_lbn_t lbn;
6842 
6843 	*blkoffp = 0;
6844 	/* Only match ext/normal blocks as appropriate. */
6845 	if (((flags & IO_EXT) == 0 && (bp->b_xflags & BX_ALTDATA)) ||
6846 	    ((flags & IO_NORMAL) == 0 && (bp->b_xflags & BX_ALTDATA) == 0))
6847 		return (0);
6848 	/* ALTDATA is always a full truncation. */
6849 	if ((bp->b_xflags & BX_ALTDATA) != 0)
6850 		return (1);
6851 	/* -1 is full truncation. */
6852 	if (lastlbn == -1)
6853 		return (1);
6854 	/*
6855 	 * If this is a partial truncate we only want those
6856 	 * blocks and indirect blocks that cover the range
6857 	 * we're after.
6858 	 */
6859 	lbn = bp->b_lblkno;
6860 	if (lbn < 0)
6861 		lbn = -(lbn + lbn_level(lbn));
6862 	if (lbn < lastlbn)
6863 		return (0);
6864 	/* Here we only truncate lblkno if it's partial. */
6865 	if (lbn == lastlbn) {
6866 		if (lastoff == 0)
6867 			return (0);
6868 		*blkoffp = lastoff;
6869 	}
6870 	return (1);
6871 }
6872 
6873 /*
6874  * Eliminate any dependencies that exist in memory beyond lblkno:off
6875  */
6876 static void
6877 trunc_dependencies(ip, freeblks, lastlbn, lastoff, flags)
6878 	struct inode *ip;
6879 	struct freeblks *freeblks;
6880 	ufs_lbn_t lastlbn;
6881 	int lastoff;
6882 	int flags;
6883 {
6884 	struct bufobj *bo;
6885 	struct vnode *vp;
6886 	struct buf *bp;
6887 	struct fs *fs;
6888 	int blkoff;
6889 
6890 	/*
6891 	 * We must wait for any I/O in progress to finish so that
6892 	 * all potential buffers on the dirty list will be visible.
6893 	 * Once they are all there, walk the list and get rid of
6894 	 * any dependencies.
6895 	 */
6896 	fs = ip->i_fs;
6897 	vp = ITOV(ip);
6898 	bo = &vp->v_bufobj;
6899 	BO_LOCK(bo);
6900 	drain_output(vp);
6901 	TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs)
6902 		bp->b_vflags &= ~BV_SCANNED;
6903 restart:
6904 	TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) {
6905 		if (bp->b_vflags & BV_SCANNED)
6906 			continue;
6907 		if (!trunc_check_buf(bp, &blkoff, lastlbn, lastoff, flags)) {
6908 			bp->b_vflags |= BV_SCANNED;
6909 			continue;
6910 		}
6911 		if ((bp = getdirtybuf(bp, BO_LOCKPTR(bo), MNT_WAIT)) == NULL)
6912 			goto restart;
6913 		BO_UNLOCK(bo);
6914 		if (deallocate_dependencies(bp, freeblks, blkoff))
6915 			bqrelse(bp);
6916 		else
6917 			brelse(bp);
6918 		BO_LOCK(bo);
6919 		goto restart;
6920 	}
6921 	/*
6922 	 * Now do the work of vtruncbuf while also matching indirect blocks.
6923 	 */
6924 	TAILQ_FOREACH(bp, &bo->bo_clean.bv_hd, b_bobufs)
6925 		bp->b_vflags &= ~BV_SCANNED;
6926 cleanrestart:
6927 	TAILQ_FOREACH(bp, &bo->bo_clean.bv_hd, b_bobufs) {
6928 		if (bp->b_vflags & BV_SCANNED)
6929 			continue;
6930 		if (!trunc_check_buf(bp, &blkoff, lastlbn, lastoff, flags)) {
6931 			bp->b_vflags |= BV_SCANNED;
6932 			continue;
6933 		}
6934 		if (BUF_LOCK(bp,
6935 		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
6936 		    BO_LOCKPTR(bo)) == ENOLCK) {
6937 			BO_LOCK(bo);
6938 			goto cleanrestart;
6939 		}
6940 		bp->b_vflags |= BV_SCANNED;
6941 		bremfree(bp);
6942 		if (blkoff != 0) {
6943 			allocbuf(bp, blkoff);
6944 			bqrelse(bp);
6945 		} else {
6946 			bp->b_flags |= B_INVAL | B_NOCACHE | B_RELBUF;
6947 			brelse(bp);
6948 		}
6949 		BO_LOCK(bo);
6950 		goto cleanrestart;
6951 	}
6952 	drain_output(vp);
6953 	BO_UNLOCK(bo);
6954 }
6955 
6956 static int
6957 cancel_pagedep(pagedep, freeblks, blkoff)
6958 	struct pagedep *pagedep;
6959 	struct freeblks *freeblks;
6960 	int blkoff;
6961 {
6962 	struct jremref *jremref;
6963 	struct jmvref *jmvref;
6964 	struct dirrem *dirrem, *tmp;
6965 	int i;
6966 
6967 	/*
6968 	 * Copy any directory remove dependencies to the list
6969 	 * to be processed after the freeblks proceeds.  If
6970 	 * directory entry never made it to disk they
6971 	 * can be dumped directly onto the work list.
6972 	 */
6973 	LIST_FOREACH_SAFE(dirrem, &pagedep->pd_dirremhd, dm_next, tmp) {
6974 		/* Skip this directory removal if it is intended to remain. */
6975 		if (dirrem->dm_offset < blkoff)
6976 			continue;
6977 		/*
6978 		 * If there are any dirrems we wait for the journal write
6979 		 * to complete and then restart the buf scan as the lock
6980 		 * has been dropped.
6981 		 */
6982 		while ((jremref = LIST_FIRST(&dirrem->dm_jremrefhd)) != NULL) {
6983 			jwait(&jremref->jr_list, MNT_WAIT);
6984 			return (ERESTART);
6985 		}
6986 		LIST_REMOVE(dirrem, dm_next);
6987 		dirrem->dm_dirinum = pagedep->pd_ino;
6988 		WORKLIST_INSERT(&freeblks->fb_freeworkhd, &dirrem->dm_list);
6989 	}
6990 	while ((jmvref = LIST_FIRST(&pagedep->pd_jmvrefhd)) != NULL) {
6991 		jwait(&jmvref->jm_list, MNT_WAIT);
6992 		return (ERESTART);
6993 	}
6994 	/*
6995 	 * When we're partially truncating a pagedep we just want to flush
6996 	 * journal entries and return.  There can not be any adds in the
6997 	 * truncated portion of the directory and newblk must remain if
6998 	 * part of the block remains.
6999 	 */
7000 	if (blkoff != 0) {
7001 		struct diradd *dap;
7002 
7003 		LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist)
7004 			if (dap->da_offset > blkoff)
7005 				panic("cancel_pagedep: diradd %p off %d > %d",
7006 				    dap, dap->da_offset, blkoff);
7007 		for (i = 0; i < DAHASHSZ; i++)
7008 			LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist)
7009 				if (dap->da_offset > blkoff)
7010 					panic("cancel_pagedep: diradd %p off %d > %d",
7011 					    dap, dap->da_offset, blkoff);
7012 		return (0);
7013 	}
7014 	/*
7015 	 * There should be no directory add dependencies present
7016 	 * as the directory could not be truncated until all
7017 	 * children were removed.
7018 	 */
7019 	KASSERT(LIST_FIRST(&pagedep->pd_pendinghd) == NULL,
7020 	    ("deallocate_dependencies: pendinghd != NULL"));
7021 	for (i = 0; i < DAHASHSZ; i++)
7022 		KASSERT(LIST_FIRST(&pagedep->pd_diraddhd[i]) == NULL,
7023 		    ("deallocate_dependencies: diraddhd != NULL"));
7024 	if ((pagedep->pd_state & NEWBLOCK) != 0)
7025 		free_newdirblk(pagedep->pd_newdirblk);
7026 	if (free_pagedep(pagedep) == 0)
7027 		panic("Failed to free pagedep %p", pagedep);
7028 	return (0);
7029 }
7030 
7031 /*
7032  * Reclaim any dependency structures from a buffer that is about to
7033  * be reallocated to a new vnode. The buffer must be locked, thus,
7034  * no I/O completion operations can occur while we are manipulating
7035  * its associated dependencies. The mutex is held so that other I/O's
7036  * associated with related dependencies do not occur.
7037  */
7038 static int
7039 deallocate_dependencies(bp, freeblks, off)
7040 	struct buf *bp;
7041 	struct freeblks *freeblks;
7042 	int off;
7043 {
7044 	struct indirdep *indirdep;
7045 	struct pagedep *pagedep;
7046 	struct allocdirect *adp;
7047 	struct worklist *wk, *wkn;
7048 
7049 	ACQUIRE_LOCK(&lk);
7050 	LIST_FOREACH_SAFE(wk, &bp->b_dep, wk_list, wkn) {
7051 		switch (wk->wk_type) {
7052 		case D_INDIRDEP:
7053 			indirdep = WK_INDIRDEP(wk);
7054 			if (bp->b_lblkno >= 0 ||
7055 			    bp->b_blkno != indirdep->ir_savebp->b_lblkno)
7056 				panic("deallocate_dependencies: not indir");
7057 			cancel_indirdep(indirdep, bp, freeblks);
7058 			continue;
7059 
7060 		case D_PAGEDEP:
7061 			pagedep = WK_PAGEDEP(wk);
7062 			if (cancel_pagedep(pagedep, freeblks, off)) {
7063 				FREE_LOCK(&lk);
7064 				return (ERESTART);
7065 			}
7066 			continue;
7067 
7068 		case D_ALLOCINDIR:
7069 			/*
7070 			 * Simply remove the allocindir, we'll find it via
7071 			 * the indirdep where we can clear pointers if
7072 			 * needed.
7073 			 */
7074 			WORKLIST_REMOVE(wk);
7075 			continue;
7076 
7077 		case D_FREEWORK:
7078 			/*
7079 			 * A truncation is waiting for the zero'd pointers
7080 			 * to be written.  It can be freed when the freeblks
7081 			 * is journaled.
7082 			 */
7083 			WORKLIST_REMOVE(wk);
7084 			wk->wk_state |= ONDEPLIST;
7085 			WORKLIST_INSERT(&freeblks->fb_freeworkhd, wk);
7086 			break;
7087 
7088 		case D_ALLOCDIRECT:
7089 			adp = WK_ALLOCDIRECT(wk);
7090 			if (off != 0)
7091 				continue;
7092 			/* FALLTHROUGH */
7093 		default:
7094 			panic("deallocate_dependencies: Unexpected type %s",
7095 			    TYPENAME(wk->wk_type));
7096 			/* NOTREACHED */
7097 		}
7098 	}
7099 	FREE_LOCK(&lk);
7100 	/*
7101 	 * Don't throw away this buf, we were partially truncating and
7102 	 * some deps may always remain.
7103 	 */
7104 	if (off) {
7105 		allocbuf(bp, off);
7106 		bp->b_vflags |= BV_SCANNED;
7107 		return (EBUSY);
7108 	}
7109 	bp->b_flags |= B_INVAL | B_NOCACHE;
7110 
7111 	return (0);
7112 }
7113 
7114 /*
7115  * An allocdirect is being canceled due to a truncate.  We must make sure
7116  * the journal entry is released in concert with the blkfree that releases
7117  * the storage.  Completed journal entries must not be released until the
7118  * space is no longer pointed to by the inode or in the bitmap.
7119  */
7120 static void
7121 cancel_allocdirect(adphead, adp, freeblks)
7122 	struct allocdirectlst *adphead;
7123 	struct allocdirect *adp;
7124 	struct freeblks *freeblks;
7125 {
7126 	struct freework *freework;
7127 	struct newblk *newblk;
7128 	struct worklist *wk;
7129 
7130 	TAILQ_REMOVE(adphead, adp, ad_next);
7131 	newblk = (struct newblk *)adp;
7132 	freework = NULL;
7133 	/*
7134 	 * Find the correct freework structure.
7135 	 */
7136 	LIST_FOREACH(wk, &freeblks->fb_freeworkhd, wk_list) {
7137 		if (wk->wk_type != D_FREEWORK)
7138 			continue;
7139 		freework = WK_FREEWORK(wk);
7140 		if (freework->fw_blkno == newblk->nb_newblkno)
7141 			break;
7142 	}
7143 	if (freework == NULL)
7144 		panic("cancel_allocdirect: Freework not found");
7145 	/*
7146 	 * If a newblk exists at all we still have the journal entry that
7147 	 * initiated the allocation so we do not need to journal the free.
7148 	 */
7149 	cancel_jfreeblk(freeblks, freework->fw_blkno);
7150 	/*
7151 	 * If the journal hasn't been written the jnewblk must be passed
7152 	 * to the call to ffs_blkfree that reclaims the space.  We accomplish
7153 	 * this by linking the journal dependency into the freework to be
7154 	 * freed when freework_freeblock() is called.  If the journal has
7155 	 * been written we can simply reclaim the journal space when the
7156 	 * freeblks work is complete.
7157 	 */
7158 	freework->fw_jnewblk = cancel_newblk(newblk, &freework->fw_list,
7159 	    &freeblks->fb_jwork);
7160 	WORKLIST_INSERT(&freeblks->fb_freeworkhd, &newblk->nb_list);
7161 }
7162 
7163 
7164 /*
7165  * Cancel a new block allocation.  May be an indirect or direct block.  We
7166  * remove it from various lists and return any journal record that needs to
7167  * be resolved by the caller.
7168  *
7169  * A special consideration is made for indirects which were never pointed
7170  * at on disk and will never be found once this block is released.
7171  */
7172 static struct jnewblk *
7173 cancel_newblk(newblk, wk, wkhd)
7174 	struct newblk *newblk;
7175 	struct worklist *wk;
7176 	struct workhead *wkhd;
7177 {
7178 	struct jnewblk *jnewblk;
7179 
7180 	CTR1(KTR_SUJ, "cancel_newblk: blkno %jd", newblk->nb_newblkno);
7181 
7182 	newblk->nb_state |= GOINGAWAY;
7183 	/*
7184 	 * Previously we traversed the completedhd on each indirdep
7185 	 * attached to this newblk to cancel them and gather journal
7186 	 * work.  Since we need only the oldest journal segment and
7187 	 * the lowest point on the tree will always have the oldest
7188 	 * journal segment we are free to release the segments
7189 	 * of any subordinates and may leave the indirdep list to
7190 	 * indirdep_complete() when this newblk is freed.
7191 	 */
7192 	if (newblk->nb_state & ONDEPLIST) {
7193 		newblk->nb_state &= ~ONDEPLIST;
7194 		LIST_REMOVE(newblk, nb_deps);
7195 	}
7196 	if (newblk->nb_state & ONWORKLIST)
7197 		WORKLIST_REMOVE(&newblk->nb_list);
7198 	/*
7199 	 * If the journal entry hasn't been written we save a pointer to
7200 	 * the dependency that frees it until it is written or the
7201 	 * superseding operation completes.
7202 	 */
7203 	jnewblk = newblk->nb_jnewblk;
7204 	if (jnewblk != NULL && wk != NULL) {
7205 		newblk->nb_jnewblk = NULL;
7206 		jnewblk->jn_dep = wk;
7207 	}
7208 	if (!LIST_EMPTY(&newblk->nb_jwork))
7209 		jwork_move(wkhd, &newblk->nb_jwork);
7210 	/*
7211 	 * When truncating we must free the newdirblk early to remove
7212 	 * the pagedep from the hash before returning.
7213 	 */
7214 	if ((wk = LIST_FIRST(&newblk->nb_newdirblk)) != NULL)
7215 		free_newdirblk(WK_NEWDIRBLK(wk));
7216 	if (!LIST_EMPTY(&newblk->nb_newdirblk))
7217 		panic("cancel_newblk: extra newdirblk");
7218 
7219 	return (jnewblk);
7220 }
7221 
7222 /*
7223  * Schedule the freefrag associated with a newblk to be released once
7224  * the pointers are written and the previous block is no longer needed.
7225  */
7226 static void
7227 newblk_freefrag(newblk)
7228 	struct newblk *newblk;
7229 {
7230 	struct freefrag *freefrag;
7231 
7232 	if (newblk->nb_freefrag == NULL)
7233 		return;
7234 	freefrag = newblk->nb_freefrag;
7235 	newblk->nb_freefrag = NULL;
7236 	freefrag->ff_state |= COMPLETE;
7237 	if ((freefrag->ff_state & ALLCOMPLETE) == ALLCOMPLETE)
7238 		add_to_worklist(&freefrag->ff_list, 0);
7239 }
7240 
7241 /*
7242  * Free a newblk. Generate a new freefrag work request if appropriate.
7243  * This must be called after the inode pointer and any direct block pointers
7244  * are valid or fully removed via truncate or frag extension.
7245  */
7246 static void
7247 free_newblk(newblk)
7248 	struct newblk *newblk;
7249 {
7250 	struct indirdep *indirdep;
7251 	struct worklist *wk;
7252 
7253 	KASSERT(newblk->nb_jnewblk == NULL,
7254 	    ("free_newblk: jnewblk %p still attached", newblk->nb_jnewblk));
7255 	KASSERT(newblk->nb_list.wk_type != D_NEWBLK,
7256 	    ("free_newblk: unclaimed newblk"));
7257 	rw_assert(&lk, RA_WLOCKED);
7258 	newblk_freefrag(newblk);
7259 	if (newblk->nb_state & ONDEPLIST)
7260 		LIST_REMOVE(newblk, nb_deps);
7261 	if (newblk->nb_state & ONWORKLIST)
7262 		WORKLIST_REMOVE(&newblk->nb_list);
7263 	LIST_REMOVE(newblk, nb_hash);
7264 	if ((wk = LIST_FIRST(&newblk->nb_newdirblk)) != NULL)
7265 		free_newdirblk(WK_NEWDIRBLK(wk));
7266 	if (!LIST_EMPTY(&newblk->nb_newdirblk))
7267 		panic("free_newblk: extra newdirblk");
7268 	while ((indirdep = LIST_FIRST(&newblk->nb_indirdeps)) != NULL)
7269 		indirdep_complete(indirdep);
7270 	handle_jwork(&newblk->nb_jwork);
7271 	WORKITEM_FREE(newblk, D_NEWBLK);
7272 }
7273 
7274 /*
7275  * Free a newdirblk. Clear the NEWBLOCK flag on its associated pagedep.
7276  * This routine must be called with splbio interrupts blocked.
7277  */
7278 static void
7279 free_newdirblk(newdirblk)
7280 	struct newdirblk *newdirblk;
7281 {
7282 	struct pagedep *pagedep;
7283 	struct diradd *dap;
7284 	struct worklist *wk;
7285 
7286 	rw_assert(&lk, RA_WLOCKED);
7287 	WORKLIST_REMOVE(&newdirblk->db_list);
7288 	/*
7289 	 * If the pagedep is still linked onto the directory buffer
7290 	 * dependency chain, then some of the entries on the
7291 	 * pd_pendinghd list may not be committed to disk yet. In
7292 	 * this case, we will simply clear the NEWBLOCK flag and
7293 	 * let the pd_pendinghd list be processed when the pagedep
7294 	 * is next written. If the pagedep is no longer on the buffer
7295 	 * dependency chain, then all the entries on the pd_pending
7296 	 * list are committed to disk and we can free them here.
7297 	 */
7298 	pagedep = newdirblk->db_pagedep;
7299 	pagedep->pd_state &= ~NEWBLOCK;
7300 	if ((pagedep->pd_state & ONWORKLIST) == 0) {
7301 		while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL)
7302 			free_diradd(dap, NULL);
7303 		/*
7304 		 * If no dependencies remain, the pagedep will be freed.
7305 		 */
7306 		free_pagedep(pagedep);
7307 	}
7308 	/* Should only ever be one item in the list. */
7309 	while ((wk = LIST_FIRST(&newdirblk->db_mkdir)) != NULL) {
7310 		WORKLIST_REMOVE(wk);
7311 		handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY);
7312 	}
7313 	WORKITEM_FREE(newdirblk, D_NEWDIRBLK);
7314 }
7315 
7316 /*
7317  * Prepare an inode to be freed. The actual free operation is not
7318  * done until the zero'ed inode has been written to disk.
7319  */
7320 void
7321 softdep_freefile(pvp, ino, mode)
7322 	struct vnode *pvp;
7323 	ino_t ino;
7324 	int mode;
7325 {
7326 	struct inode *ip = VTOI(pvp);
7327 	struct inodedep *inodedep;
7328 	struct freefile *freefile;
7329 	struct freeblks *freeblks;
7330 
7331 	/*
7332 	 * This sets up the inode de-allocation dependency.
7333 	 */
7334 	freefile = malloc(sizeof(struct freefile),
7335 		M_FREEFILE, M_SOFTDEP_FLAGS);
7336 	workitem_alloc(&freefile->fx_list, D_FREEFILE, pvp->v_mount);
7337 	freefile->fx_mode = mode;
7338 	freefile->fx_oldinum = ino;
7339 	freefile->fx_devvp = ip->i_devvp;
7340 	LIST_INIT(&freefile->fx_jwork);
7341 	UFS_LOCK(ip->i_ump);
7342 	ip->i_fs->fs_pendinginodes += 1;
7343 	UFS_UNLOCK(ip->i_ump);
7344 
7345 	/*
7346 	 * If the inodedep does not exist, then the zero'ed inode has
7347 	 * been written to disk. If the allocated inode has never been
7348 	 * written to disk, then the on-disk inode is zero'ed. In either
7349 	 * case we can free the file immediately.  If the journal was
7350 	 * canceled before being written the inode will never make it to
7351 	 * disk and we must send the canceled journal entrys to
7352 	 * ffs_freefile() to be cleared in conjunction with the bitmap.
7353 	 * Any blocks waiting on the inode to write can be safely freed
7354 	 * here as it will never been written.
7355 	 */
7356 	ACQUIRE_LOCK(&lk);
7357 	inodedep_lookup(pvp->v_mount, ino, 0, &inodedep);
7358 	if (inodedep) {
7359 		/*
7360 		 * Clear out freeblks that no longer need to reference
7361 		 * this inode.
7362 		 */
7363 		while ((freeblks =
7364 		    TAILQ_FIRST(&inodedep->id_freeblklst)) != NULL) {
7365 			TAILQ_REMOVE(&inodedep->id_freeblklst, freeblks,
7366 			    fb_next);
7367 			freeblks->fb_state &= ~ONDEPLIST;
7368 		}
7369 		/*
7370 		 * Remove this inode from the unlinked list.
7371 		 */
7372 		if (inodedep->id_state & UNLINKED) {
7373 			/*
7374 			 * Save the journal work to be freed with the bitmap
7375 			 * before we clear UNLINKED.  Otherwise it can be lost
7376 			 * if the inode block is written.
7377 			 */
7378 			handle_bufwait(inodedep, &freefile->fx_jwork);
7379 			clear_unlinked_inodedep(inodedep);
7380 			/* Re-acquire inodedep as we've dropped lk. */
7381 			inodedep_lookup(pvp->v_mount, ino, 0, &inodedep);
7382 		}
7383 	}
7384 	if (inodedep == NULL || check_inode_unwritten(inodedep)) {
7385 		FREE_LOCK(&lk);
7386 		handle_workitem_freefile(freefile);
7387 		return;
7388 	}
7389 	if ((inodedep->id_state & DEPCOMPLETE) == 0)
7390 		inodedep->id_state |= GOINGAWAY;
7391 	WORKLIST_INSERT(&inodedep->id_inowait, &freefile->fx_list);
7392 	FREE_LOCK(&lk);
7393 	if (ip->i_number == ino)
7394 		ip->i_flag |= IN_MODIFIED;
7395 }
7396 
7397 /*
7398  * Check to see if an inode has never been written to disk. If
7399  * so free the inodedep and return success, otherwise return failure.
7400  * This routine must be called with splbio interrupts blocked.
7401  *
7402  * If we still have a bitmap dependency, then the inode has never
7403  * been written to disk. Drop the dependency as it is no longer
7404  * necessary since the inode is being deallocated. We set the
7405  * ALLCOMPLETE flags since the bitmap now properly shows that the
7406  * inode is not allocated. Even if the inode is actively being
7407  * written, it has been rolled back to its zero'ed state, so we
7408  * are ensured that a zero inode is what is on the disk. For short
7409  * lived files, this change will usually result in removing all the
7410  * dependencies from the inode so that it can be freed immediately.
7411  */
7412 static int
7413 check_inode_unwritten(inodedep)
7414 	struct inodedep *inodedep;
7415 {
7416 
7417 	rw_assert(&lk, RA_WLOCKED);
7418 
7419 	if ((inodedep->id_state & (DEPCOMPLETE | UNLINKED)) != 0 ||
7420 	    !LIST_EMPTY(&inodedep->id_dirremhd) ||
7421 	    !LIST_EMPTY(&inodedep->id_pendinghd) ||
7422 	    !LIST_EMPTY(&inodedep->id_bufwait) ||
7423 	    !LIST_EMPTY(&inodedep->id_inowait) ||
7424 	    !TAILQ_EMPTY(&inodedep->id_inoreflst) ||
7425 	    !TAILQ_EMPTY(&inodedep->id_inoupdt) ||
7426 	    !TAILQ_EMPTY(&inodedep->id_newinoupdt) ||
7427 	    !TAILQ_EMPTY(&inodedep->id_extupdt) ||
7428 	    !TAILQ_EMPTY(&inodedep->id_newextupdt) ||
7429 	    !TAILQ_EMPTY(&inodedep->id_freeblklst) ||
7430 	    inodedep->id_mkdiradd != NULL ||
7431 	    inodedep->id_nlinkdelta != 0)
7432 		return (0);
7433 	/*
7434 	 * Another process might be in initiate_write_inodeblock_ufs[12]
7435 	 * trying to allocate memory without holding "Softdep Lock".
7436 	 */
7437 	if ((inodedep->id_state & IOSTARTED) != 0 &&
7438 	    inodedep->id_savedino1 == NULL)
7439 		return (0);
7440 
7441 	if (inodedep->id_state & ONDEPLIST)
7442 		LIST_REMOVE(inodedep, id_deps);
7443 	inodedep->id_state &= ~ONDEPLIST;
7444 	inodedep->id_state |= ALLCOMPLETE;
7445 	inodedep->id_bmsafemap = NULL;
7446 	if (inodedep->id_state & ONWORKLIST)
7447 		WORKLIST_REMOVE(&inodedep->id_list);
7448 	if (inodedep->id_savedino1 != NULL) {
7449 		free(inodedep->id_savedino1, M_SAVEDINO);
7450 		inodedep->id_savedino1 = NULL;
7451 	}
7452 	if (free_inodedep(inodedep) == 0)
7453 		panic("check_inode_unwritten: busy inode");
7454 	return (1);
7455 }
7456 
7457 /*
7458  * Try to free an inodedep structure. Return 1 if it could be freed.
7459  */
7460 static int
7461 free_inodedep(inodedep)
7462 	struct inodedep *inodedep;
7463 {
7464 
7465 	rw_assert(&lk, RA_WLOCKED);
7466 	if ((inodedep->id_state & (ONWORKLIST | UNLINKED)) != 0 ||
7467 	    (inodedep->id_state & ALLCOMPLETE) != ALLCOMPLETE ||
7468 	    !LIST_EMPTY(&inodedep->id_dirremhd) ||
7469 	    !LIST_EMPTY(&inodedep->id_pendinghd) ||
7470 	    !LIST_EMPTY(&inodedep->id_bufwait) ||
7471 	    !LIST_EMPTY(&inodedep->id_inowait) ||
7472 	    !TAILQ_EMPTY(&inodedep->id_inoreflst) ||
7473 	    !TAILQ_EMPTY(&inodedep->id_inoupdt) ||
7474 	    !TAILQ_EMPTY(&inodedep->id_newinoupdt) ||
7475 	    !TAILQ_EMPTY(&inodedep->id_extupdt) ||
7476 	    !TAILQ_EMPTY(&inodedep->id_newextupdt) ||
7477 	    !TAILQ_EMPTY(&inodedep->id_freeblklst) ||
7478 	    inodedep->id_mkdiradd != NULL ||
7479 	    inodedep->id_nlinkdelta != 0 ||
7480 	    inodedep->id_savedino1 != NULL)
7481 		return (0);
7482 	if (inodedep->id_state & ONDEPLIST)
7483 		LIST_REMOVE(inodedep, id_deps);
7484 	LIST_REMOVE(inodedep, id_hash);
7485 	WORKITEM_FREE(inodedep, D_INODEDEP);
7486 	return (1);
7487 }
7488 
7489 /*
7490  * Free the block referenced by a freework structure.  The parent freeblks
7491  * structure is released and completed when the final cg bitmap reaches
7492  * the disk.  This routine may be freeing a jnewblk which never made it to
7493  * disk in which case we do not have to wait as the operation is undone
7494  * in memory immediately.
7495  */
7496 static void
7497 freework_freeblock(freework)
7498 	struct freework *freework;
7499 {
7500 	struct freeblks *freeblks;
7501 	struct jnewblk *jnewblk;
7502 	struct ufsmount *ump;
7503 	struct workhead wkhd;
7504 	struct fs *fs;
7505 	int bsize;
7506 	int needj;
7507 
7508 	rw_assert(&lk, RA_WLOCKED);
7509 	/*
7510 	 * Handle partial truncate separately.
7511 	 */
7512 	if (freework->fw_indir) {
7513 		complete_trunc_indir(freework);
7514 		return;
7515 	}
7516 	freeblks = freework->fw_freeblks;
7517 	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
7518 	fs = ump->um_fs;
7519 	needj = MOUNTEDSUJ(freeblks->fb_list.wk_mp) != 0;
7520 	bsize = lfragtosize(fs, freework->fw_frags);
7521 	LIST_INIT(&wkhd);
7522 	/*
7523 	 * DEPCOMPLETE is cleared in indirblk_insert() if the block lives
7524 	 * on the indirblk hashtable and prevents premature freeing.
7525 	 */
7526 	freework->fw_state |= DEPCOMPLETE;
7527 	/*
7528 	 * SUJ needs to wait for the segment referencing freed indirect
7529 	 * blocks to expire so that we know the checker will not confuse
7530 	 * a re-allocated indirect block with its old contents.
7531 	 */
7532 	if (needj && freework->fw_lbn <= -NDADDR)
7533 		indirblk_insert(freework);
7534 	/*
7535 	 * If we are canceling an existing jnewblk pass it to the free
7536 	 * routine, otherwise pass the freeblk which will ultimately
7537 	 * release the freeblks.  If we're not journaling, we can just
7538 	 * free the freeblks immediately.
7539 	 */
7540 	jnewblk = freework->fw_jnewblk;
7541 	if (jnewblk != NULL) {
7542 		cancel_jnewblk(jnewblk, &wkhd);
7543 		needj = 0;
7544 	} else if (needj) {
7545 		freework->fw_state |= DELAYEDFREE;
7546 		freeblks->fb_cgwait++;
7547 		WORKLIST_INSERT(&wkhd, &freework->fw_list);
7548 	}
7549 	FREE_LOCK(&lk);
7550 	freeblks_free(ump, freeblks, btodb(bsize));
7551 	CTR4(KTR_SUJ,
7552 	    "freework_freeblock: ino %d blkno %jd lbn %jd size %ld",
7553 	    freeblks->fb_inum, freework->fw_blkno, freework->fw_lbn, bsize);
7554 	ffs_blkfree(ump, fs, freeblks->fb_devvp, freework->fw_blkno, bsize,
7555 	    freeblks->fb_inum, freeblks->fb_vtype, &wkhd);
7556 	ACQUIRE_LOCK(&lk);
7557 	/*
7558 	 * The jnewblk will be discarded and the bits in the map never
7559 	 * made it to disk.  We can immediately free the freeblk.
7560 	 */
7561 	if (needj == 0)
7562 		handle_written_freework(freework);
7563 }
7564 
7565 /*
7566  * We enqueue freework items that need processing back on the freeblks and
7567  * add the freeblks to the worklist.  This makes it easier to find all work
7568  * required to flush a truncation in process_truncates().
7569  */
7570 static void
7571 freework_enqueue(freework)
7572 	struct freework *freework;
7573 {
7574 	struct freeblks *freeblks;
7575 
7576 	freeblks = freework->fw_freeblks;
7577 	if ((freework->fw_state & INPROGRESS) == 0)
7578 		WORKLIST_INSERT(&freeblks->fb_freeworkhd, &freework->fw_list);
7579 	if ((freeblks->fb_state &
7580 	    (ONWORKLIST | INPROGRESS | ALLCOMPLETE)) == ALLCOMPLETE &&
7581 	    LIST_EMPTY(&freeblks->fb_jblkdephd))
7582 		add_to_worklist(&freeblks->fb_list, WK_NODELAY);
7583 }
7584 
7585 /*
7586  * Start, continue, or finish the process of freeing an indirect block tree.
7587  * The free operation may be paused at any point with fw_off containing the
7588  * offset to restart from.  This enables us to implement some flow control
7589  * for large truncates which may fan out and generate a huge number of
7590  * dependencies.
7591  */
7592 static void
7593 handle_workitem_indirblk(freework)
7594 	struct freework *freework;
7595 {
7596 	struct freeblks *freeblks;
7597 	struct ufsmount *ump;
7598 	struct fs *fs;
7599 
7600 	freeblks = freework->fw_freeblks;
7601 	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
7602 	fs = ump->um_fs;
7603 	if (freework->fw_state & DEPCOMPLETE) {
7604 		handle_written_freework(freework);
7605 		return;
7606 	}
7607 	if (freework->fw_off == NINDIR(fs)) {
7608 		freework_freeblock(freework);
7609 		return;
7610 	}
7611 	freework->fw_state |= INPROGRESS;
7612 	FREE_LOCK(&lk);
7613 	indir_trunc(freework, fsbtodb(fs, freework->fw_blkno),
7614 	    freework->fw_lbn);
7615 	ACQUIRE_LOCK(&lk);
7616 }
7617 
7618 /*
7619  * Called when a freework structure attached to a cg buf is written.  The
7620  * ref on either the parent or the freeblks structure is released and
7621  * the freeblks is added back to the worklist if there is more work to do.
7622  */
7623 static void
7624 handle_written_freework(freework)
7625 	struct freework *freework;
7626 {
7627 	struct freeblks *freeblks;
7628 	struct freework *parent;
7629 
7630 	freeblks = freework->fw_freeblks;
7631 	parent = freework->fw_parent;
7632 	if (freework->fw_state & DELAYEDFREE)
7633 		freeblks->fb_cgwait--;
7634 	freework->fw_state |= COMPLETE;
7635 	if ((freework->fw_state & ALLCOMPLETE) == ALLCOMPLETE)
7636 		WORKITEM_FREE(freework, D_FREEWORK);
7637 	if (parent) {
7638 		if (--parent->fw_ref == 0)
7639 			freework_enqueue(parent);
7640 		return;
7641 	}
7642 	if (--freeblks->fb_ref != 0)
7643 		return;
7644 	if ((freeblks->fb_state & (ALLCOMPLETE | ONWORKLIST | INPROGRESS)) ==
7645 	    ALLCOMPLETE && LIST_EMPTY(&freeblks->fb_jblkdephd))
7646 		add_to_worklist(&freeblks->fb_list, WK_NODELAY);
7647 }
7648 
7649 /*
7650  * This workitem routine performs the block de-allocation.
7651  * The workitem is added to the pending list after the updated
7652  * inode block has been written to disk.  As mentioned above,
7653  * checks regarding the number of blocks de-allocated (compared
7654  * to the number of blocks allocated for the file) are also
7655  * performed in this function.
7656  */
7657 static int
7658 handle_workitem_freeblocks(freeblks, flags)
7659 	struct freeblks *freeblks;
7660 	int flags;
7661 {
7662 	struct freework *freework;
7663 	struct newblk *newblk;
7664 	struct allocindir *aip;
7665 	struct ufsmount *ump;
7666 	struct worklist *wk;
7667 
7668 	KASSERT(LIST_EMPTY(&freeblks->fb_jblkdephd),
7669 	    ("handle_workitem_freeblocks: Journal entries not written."));
7670 	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
7671 	ACQUIRE_LOCK(&lk);
7672 	while ((wk = LIST_FIRST(&freeblks->fb_freeworkhd)) != NULL) {
7673 		WORKLIST_REMOVE(wk);
7674 		switch (wk->wk_type) {
7675 		case D_DIRREM:
7676 			wk->wk_state |= COMPLETE;
7677 			add_to_worklist(wk, 0);
7678 			continue;
7679 
7680 		case D_ALLOCDIRECT:
7681 			free_newblk(WK_NEWBLK(wk));
7682 			continue;
7683 
7684 		case D_ALLOCINDIR:
7685 			aip = WK_ALLOCINDIR(wk);
7686 			freework = NULL;
7687 			if (aip->ai_state & DELAYEDFREE) {
7688 				FREE_LOCK(&lk);
7689 				freework = newfreework(ump, freeblks, NULL,
7690 				    aip->ai_lbn, aip->ai_newblkno,
7691 				    ump->um_fs->fs_frag, 0, 0);
7692 				ACQUIRE_LOCK(&lk);
7693 			}
7694 			newblk = WK_NEWBLK(wk);
7695 			if (newblk->nb_jnewblk) {
7696 				freework->fw_jnewblk = newblk->nb_jnewblk;
7697 				newblk->nb_jnewblk->jn_dep = &freework->fw_list;
7698 				newblk->nb_jnewblk = NULL;
7699 			}
7700 			free_newblk(newblk);
7701 			continue;
7702 
7703 		case D_FREEWORK:
7704 			freework = WK_FREEWORK(wk);
7705 			if (freework->fw_lbn <= -NDADDR)
7706 				handle_workitem_indirblk(freework);
7707 			else
7708 				freework_freeblock(freework);
7709 			continue;
7710 		default:
7711 			panic("handle_workitem_freeblocks: Unknown type %s",
7712 			    TYPENAME(wk->wk_type));
7713 		}
7714 	}
7715 	if (freeblks->fb_ref != 0) {
7716 		freeblks->fb_state &= ~INPROGRESS;
7717 		wake_worklist(&freeblks->fb_list);
7718 		freeblks = NULL;
7719 	}
7720 	FREE_LOCK(&lk);
7721 	if (freeblks)
7722 		return handle_complete_freeblocks(freeblks, flags);
7723 	return (0);
7724 }
7725 
7726 /*
7727  * Handle completion of block free via truncate.  This allows fs_pending
7728  * to track the actual free block count more closely than if we only updated
7729  * it at the end.  We must be careful to handle cases where the block count
7730  * on free was incorrect.
7731  */
7732 static void
7733 freeblks_free(ump, freeblks, blocks)
7734 	struct ufsmount *ump;
7735 	struct freeblks *freeblks;
7736 	int blocks;
7737 {
7738 	struct fs *fs;
7739 	ufs2_daddr_t remain;
7740 
7741 	UFS_LOCK(ump);
7742 	remain = -freeblks->fb_chkcnt;
7743 	freeblks->fb_chkcnt += blocks;
7744 	if (remain > 0) {
7745 		if (remain < blocks)
7746 			blocks = remain;
7747 		fs = ump->um_fs;
7748 		fs->fs_pendingblocks -= blocks;
7749 	}
7750 	UFS_UNLOCK(ump);
7751 }
7752 
7753 /*
7754  * Once all of the freework workitems are complete we can retire the
7755  * freeblocks dependency and any journal work awaiting completion.  This
7756  * can not be called until all other dependencies are stable on disk.
7757  */
7758 static int
7759 handle_complete_freeblocks(freeblks, flags)
7760 	struct freeblks *freeblks;
7761 	int flags;
7762 {
7763 	struct inodedep *inodedep;
7764 	struct inode *ip;
7765 	struct vnode *vp;
7766 	struct fs *fs;
7767 	struct ufsmount *ump;
7768 	ufs2_daddr_t spare;
7769 
7770 	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
7771 	fs = ump->um_fs;
7772 	flags = LK_EXCLUSIVE | flags;
7773 	spare = freeblks->fb_chkcnt;
7774 
7775 	/*
7776 	 * If we did not release the expected number of blocks we may have
7777 	 * to adjust the inode block count here.  Only do so if it wasn't
7778 	 * a truncation to zero and the modrev still matches.
7779 	 */
7780 	if (spare && freeblks->fb_len != 0) {
7781 		if (ffs_vgetf(freeblks->fb_list.wk_mp, freeblks->fb_inum,
7782 		    flags, &vp, FFSV_FORCEINSMQ) != 0)
7783 			return (EBUSY);
7784 		ip = VTOI(vp);
7785 		if (DIP(ip, i_modrev) == freeblks->fb_modrev) {
7786 			DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - spare);
7787 			ip->i_flag |= IN_CHANGE;
7788 			/*
7789 			 * We must wait so this happens before the
7790 			 * journal is reclaimed.
7791 			 */
7792 			ffs_update(vp, 1);
7793 		}
7794 		vput(vp);
7795 	}
7796 	if (spare < 0) {
7797 		UFS_LOCK(ump);
7798 		fs->fs_pendingblocks += spare;
7799 		UFS_UNLOCK(ump);
7800 	}
7801 #ifdef QUOTA
7802 	/* Handle spare. */
7803 	if (spare)
7804 		quotaadj(freeblks->fb_quota, ump, -spare);
7805 	quotarele(freeblks->fb_quota);
7806 #endif
7807 	ACQUIRE_LOCK(&lk);
7808 	if (freeblks->fb_state & ONDEPLIST) {
7809 		inodedep_lookup(freeblks->fb_list.wk_mp, freeblks->fb_inum,
7810 		    0, &inodedep);
7811 		TAILQ_REMOVE(&inodedep->id_freeblklst, freeblks, fb_next);
7812 		freeblks->fb_state &= ~ONDEPLIST;
7813 		if (TAILQ_EMPTY(&inodedep->id_freeblklst))
7814 			free_inodedep(inodedep);
7815 	}
7816 	/*
7817 	 * All of the freeblock deps must be complete prior to this call
7818 	 * so it's now safe to complete earlier outstanding journal entries.
7819 	 */
7820 	handle_jwork(&freeblks->fb_jwork);
7821 	WORKITEM_FREE(freeblks, D_FREEBLKS);
7822 	FREE_LOCK(&lk);
7823 	return (0);
7824 }
7825 
7826 /*
7827  * Release blocks associated with the freeblks and stored in the indirect
7828  * block dbn. If level is greater than SINGLE, the block is an indirect block
7829  * and recursive calls to indirtrunc must be used to cleanse other indirect
7830  * blocks.
7831  *
7832  * This handles partial and complete truncation of blocks.  Partial is noted
7833  * with goingaway == 0.  In this case the freework is completed after the
7834  * zero'd indirects are written to disk.  For full truncation the freework
7835  * is completed after the block is freed.
7836  */
7837 static void
7838 indir_trunc(freework, dbn, lbn)
7839 	struct freework *freework;
7840 	ufs2_daddr_t dbn;
7841 	ufs_lbn_t lbn;
7842 {
7843 	struct freework *nfreework;
7844 	struct workhead wkhd;
7845 	struct freeblks *freeblks;
7846 	struct buf *bp;
7847 	struct fs *fs;
7848 	struct indirdep *indirdep;
7849 	struct ufsmount *ump;
7850 	ufs1_daddr_t *bap1 = 0;
7851 	ufs2_daddr_t nb, nnb, *bap2 = 0;
7852 	ufs_lbn_t lbnadd, nlbn;
7853 	int i, nblocks, ufs1fmt;
7854 	int freedblocks;
7855 	int goingaway;
7856 	int freedeps;
7857 	int needj;
7858 	int level;
7859 	int cnt;
7860 
7861 	freeblks = freework->fw_freeblks;
7862 	ump = VFSTOUFS(freeblks->fb_list.wk_mp);
7863 	fs = ump->um_fs;
7864 	/*
7865 	 * Get buffer of block pointers to be freed.  There are three cases:
7866 	 *
7867 	 * 1) Partial truncate caches the indirdep pointer in the freework
7868 	 *    which provides us a back copy to the save bp which holds the
7869 	 *    pointers we want to clear.  When this completes the zero
7870 	 *    pointers are written to the real copy.
7871 	 * 2) The indirect is being completely truncated, cancel_indirdep()
7872 	 *    eliminated the real copy and placed the indirdep on the saved
7873 	 *    copy.  The indirdep and buf are discarded when this completes.
7874 	 * 3) The indirect was not in memory, we read a copy off of the disk
7875 	 *    using the devvp and drop and invalidate the buffer when we're
7876 	 *    done.
7877 	 */
7878 	goingaway = 1;
7879 	indirdep = NULL;
7880 	if (freework->fw_indir != NULL) {
7881 		goingaway = 0;
7882 		indirdep = freework->fw_indir;
7883 		bp = indirdep->ir_savebp;
7884 		if (bp == NULL || bp->b_blkno != dbn)
7885 			panic("indir_trunc: Bad saved buf %p blkno %jd",
7886 			    bp, (intmax_t)dbn);
7887 	} else if ((bp = incore(&freeblks->fb_devvp->v_bufobj, dbn)) != NULL) {
7888 		/*
7889 		 * The lock prevents the buf dep list from changing and
7890 	 	 * indirects on devvp should only ever have one dependency.
7891 		 */
7892 		indirdep = WK_INDIRDEP(LIST_FIRST(&bp->b_dep));
7893 		if (indirdep == NULL || (indirdep->ir_state & GOINGAWAY) == 0)
7894 			panic("indir_trunc: Bad indirdep %p from buf %p",
7895 			    indirdep, bp);
7896 	} else if (bread(freeblks->fb_devvp, dbn, (int)fs->fs_bsize,
7897 	    NOCRED, &bp) != 0) {
7898 		brelse(bp);
7899 		return;
7900 	}
7901 	ACQUIRE_LOCK(&lk);
7902 	/* Protects against a race with complete_trunc_indir(). */
7903 	freework->fw_state &= ~INPROGRESS;
7904 	/*
7905 	 * If we have an indirdep we need to enforce the truncation order
7906 	 * and discard it when it is complete.
7907 	 */
7908 	if (indirdep) {
7909 		if (freework != TAILQ_FIRST(&indirdep->ir_trunc) &&
7910 		    !TAILQ_EMPTY(&indirdep->ir_trunc)) {
7911 			/*
7912 			 * Add the complete truncate to the list on the
7913 			 * indirdep to enforce in-order processing.
7914 			 */
7915 			if (freework->fw_indir == NULL)
7916 				TAILQ_INSERT_TAIL(&indirdep->ir_trunc,
7917 				    freework, fw_next);
7918 			FREE_LOCK(&lk);
7919 			return;
7920 		}
7921 		/*
7922 		 * If we're goingaway, free the indirdep.  Otherwise it will
7923 		 * linger until the write completes.
7924 		 */
7925 		if (goingaway) {
7926 			free_indirdep(indirdep);
7927 			ump->um_numindirdeps -= 1;
7928 		}
7929 	}
7930 	FREE_LOCK(&lk);
7931 	/* Initialize pointers depending on block size. */
7932 	if (ump->um_fstype == UFS1) {
7933 		bap1 = (ufs1_daddr_t *)bp->b_data;
7934 		nb = bap1[freework->fw_off];
7935 		ufs1fmt = 1;
7936 	} else {
7937 		bap2 = (ufs2_daddr_t *)bp->b_data;
7938 		nb = bap2[freework->fw_off];
7939 		ufs1fmt = 0;
7940 	}
7941 	level = lbn_level(lbn);
7942 	needj = MOUNTEDSUJ(UFSTOVFS(ump)) != 0;
7943 	lbnadd = lbn_offset(fs, level);
7944 	nblocks = btodb(fs->fs_bsize);
7945 	nfreework = freework;
7946 	freedeps = 0;
7947 	cnt = 0;
7948 	/*
7949 	 * Reclaim blocks.  Traverses into nested indirect levels and
7950 	 * arranges for the current level to be freed when subordinates
7951 	 * are free when journaling.
7952 	 */
7953 	for (i = freework->fw_off; i < NINDIR(fs); i++, nb = nnb) {
7954 		if (i != NINDIR(fs) - 1) {
7955 			if (ufs1fmt)
7956 				nnb = bap1[i+1];
7957 			else
7958 				nnb = bap2[i+1];
7959 		} else
7960 			nnb = 0;
7961 		if (nb == 0)
7962 			continue;
7963 		cnt++;
7964 		if (level != 0) {
7965 			nlbn = (lbn + 1) - (i * lbnadd);
7966 			if (needj != 0) {
7967 				nfreework = newfreework(ump, freeblks, freework,
7968 				    nlbn, nb, fs->fs_frag, 0, 0);
7969 				freedeps++;
7970 			}
7971 			indir_trunc(nfreework, fsbtodb(fs, nb), nlbn);
7972 		} else {
7973 			struct freedep *freedep;
7974 
7975 			/*
7976 			 * Attempt to aggregate freedep dependencies for
7977 			 * all blocks being released to the same CG.
7978 			 */
7979 			LIST_INIT(&wkhd);
7980 			if (needj != 0 &&
7981 			    (nnb == 0 || (dtog(fs, nb) != dtog(fs, nnb)))) {
7982 				freedep = newfreedep(freework);
7983 				WORKLIST_INSERT_UNLOCKED(&wkhd,
7984 				    &freedep->fd_list);
7985 				freedeps++;
7986 			}
7987 			CTR3(KTR_SUJ,
7988 			    "indir_trunc: ino %d blkno %jd size %ld",
7989 			    freeblks->fb_inum, nb, fs->fs_bsize);
7990 			ffs_blkfree(ump, fs, freeblks->fb_devvp, nb,
7991 			    fs->fs_bsize, freeblks->fb_inum,
7992 			    freeblks->fb_vtype, &wkhd);
7993 		}
7994 	}
7995 	if (goingaway) {
7996 		bp->b_flags |= B_INVAL | B_NOCACHE;
7997 		brelse(bp);
7998 	}
7999 	freedblocks = 0;
8000 	if (level == 0)
8001 		freedblocks = (nblocks * cnt);
8002 	if (needj == 0)
8003 		freedblocks += nblocks;
8004 	freeblks_free(ump, freeblks, freedblocks);
8005 	/*
8006 	 * If we are journaling set up the ref counts and offset so this
8007 	 * indirect can be completed when its children are free.
8008 	 */
8009 	if (needj) {
8010 		ACQUIRE_LOCK(&lk);
8011 		freework->fw_off = i;
8012 		freework->fw_ref += freedeps;
8013 		freework->fw_ref -= NINDIR(fs) + 1;
8014 		if (level == 0)
8015 			freeblks->fb_cgwait += freedeps;
8016 		if (freework->fw_ref == 0)
8017 			freework_freeblock(freework);
8018 		FREE_LOCK(&lk);
8019 		return;
8020 	}
8021 	/*
8022 	 * If we're not journaling we can free the indirect now.
8023 	 */
8024 	dbn = dbtofsb(fs, dbn);
8025 	CTR3(KTR_SUJ,
8026 	    "indir_trunc 2: ino %d blkno %jd size %ld",
8027 	    freeblks->fb_inum, dbn, fs->fs_bsize);
8028 	ffs_blkfree(ump, fs, freeblks->fb_devvp, dbn, fs->fs_bsize,
8029 	    freeblks->fb_inum, freeblks->fb_vtype, NULL);
8030 	/* Non SUJ softdep does single-threaded truncations. */
8031 	if (freework->fw_blkno == dbn) {
8032 		freework->fw_state |= ALLCOMPLETE;
8033 		ACQUIRE_LOCK(&lk);
8034 		handle_written_freework(freework);
8035 		FREE_LOCK(&lk);
8036 	}
8037 	return;
8038 }
8039 
8040 /*
8041  * Cancel an allocindir when it is removed via truncation.  When bp is not
8042  * NULL the indirect never appeared on disk and is scheduled to be freed
8043  * independently of the indir so we can more easily track journal work.
8044  */
8045 static void
8046 cancel_allocindir(aip, bp, freeblks, trunc)
8047 	struct allocindir *aip;
8048 	struct buf *bp;
8049 	struct freeblks *freeblks;
8050 	int trunc;
8051 {
8052 	struct indirdep *indirdep;
8053 	struct freefrag *freefrag;
8054 	struct newblk *newblk;
8055 
8056 	newblk = (struct newblk *)aip;
8057 	LIST_REMOVE(aip, ai_next);
8058 	/*
8059 	 * We must eliminate the pointer in bp if it must be freed on its
8060 	 * own due to partial truncate or pending journal work.
8061 	 */
8062 	if (bp && (trunc || newblk->nb_jnewblk)) {
8063 		/*
8064 		 * Clear the pointer and mark the aip to be freed
8065 		 * directly if it never existed on disk.
8066 		 */
8067 		aip->ai_state |= DELAYEDFREE;
8068 		indirdep = aip->ai_indirdep;
8069 		if (indirdep->ir_state & UFS1FMT)
8070 			((ufs1_daddr_t *)bp->b_data)[aip->ai_offset] = 0;
8071 		else
8072 			((ufs2_daddr_t *)bp->b_data)[aip->ai_offset] = 0;
8073 	}
8074 	/*
8075 	 * When truncating the previous pointer will be freed via
8076 	 * savedbp.  Eliminate the freefrag which would dup free.
8077 	 */
8078 	if (trunc && (freefrag = newblk->nb_freefrag) != NULL) {
8079 		newblk->nb_freefrag = NULL;
8080 		if (freefrag->ff_jdep)
8081 			cancel_jfreefrag(
8082 			    WK_JFREEFRAG(freefrag->ff_jdep));
8083 		jwork_move(&freeblks->fb_jwork, &freefrag->ff_jwork);
8084 		WORKITEM_FREE(freefrag, D_FREEFRAG);
8085 	}
8086 	/*
8087 	 * If the journal hasn't been written the jnewblk must be passed
8088 	 * to the call to ffs_blkfree that reclaims the space.  We accomplish
8089 	 * this by leaving the journal dependency on the newblk to be freed
8090 	 * when a freework is created in handle_workitem_freeblocks().
8091 	 */
8092 	cancel_newblk(newblk, NULL, &freeblks->fb_jwork);
8093 	WORKLIST_INSERT(&freeblks->fb_freeworkhd, &newblk->nb_list);
8094 }
8095 
8096 /*
8097  * Create the mkdir dependencies for . and .. in a new directory.  Link them
8098  * in to a newdirblk so any subsequent additions are tracked properly.  The
8099  * caller is responsible for adding the mkdir1 dependency to the journal
8100  * and updating id_mkdiradd.  This function returns with lk held.
8101  */
8102 static struct mkdir *
8103 setup_newdir(dap, newinum, dinum, newdirbp, mkdirp)
8104 	struct diradd *dap;
8105 	ino_t newinum;
8106 	ino_t dinum;
8107 	struct buf *newdirbp;
8108 	struct mkdir **mkdirp;
8109 {
8110 	struct newblk *newblk;
8111 	struct pagedep *pagedep;
8112 	struct inodedep *inodedep;
8113 	struct newdirblk *newdirblk = 0;
8114 	struct mkdir *mkdir1, *mkdir2;
8115 	struct worklist *wk;
8116 	struct jaddref *jaddref;
8117 	struct mount *mp;
8118 
8119 	mp = dap->da_list.wk_mp;
8120 	newdirblk = malloc(sizeof(struct newdirblk), M_NEWDIRBLK,
8121 	    M_SOFTDEP_FLAGS);
8122 	workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp);
8123 	LIST_INIT(&newdirblk->db_mkdir);
8124 	mkdir1 = malloc(sizeof(struct mkdir), M_MKDIR, M_SOFTDEP_FLAGS);
8125 	workitem_alloc(&mkdir1->md_list, D_MKDIR, mp);
8126 	mkdir1->md_state = ATTACHED | MKDIR_BODY;
8127 	mkdir1->md_diradd = dap;
8128 	mkdir1->md_jaddref = NULL;
8129 	mkdir2 = malloc(sizeof(struct mkdir), M_MKDIR, M_SOFTDEP_FLAGS);
8130 	workitem_alloc(&mkdir2->md_list, D_MKDIR, mp);
8131 	mkdir2->md_state = ATTACHED | MKDIR_PARENT;
8132 	mkdir2->md_diradd = dap;
8133 	mkdir2->md_jaddref = NULL;
8134 	if (MOUNTEDSUJ(mp) == 0) {
8135 		mkdir1->md_state |= DEPCOMPLETE;
8136 		mkdir2->md_state |= DEPCOMPLETE;
8137 	}
8138 	/*
8139 	 * Dependency on "." and ".." being written to disk.
8140 	 */
8141 	mkdir1->md_buf = newdirbp;
8142 	ACQUIRE_LOCK(&lk);
8143 	LIST_INSERT_HEAD(&mkdirlisthd, mkdir1, md_mkdirs);
8144 	/*
8145 	 * We must link the pagedep, allocdirect, and newdirblk for
8146 	 * the initial file page so the pointer to the new directory
8147 	 * is not written until the directory contents are live and
8148 	 * any subsequent additions are not marked live until the
8149 	 * block is reachable via the inode.
8150 	 */
8151 	if (pagedep_lookup(mp, newdirbp, newinum, 0, 0, &pagedep) == 0)
8152 		panic("setup_newdir: lost pagedep");
8153 	LIST_FOREACH(wk, &newdirbp->b_dep, wk_list)
8154 		if (wk->wk_type == D_ALLOCDIRECT)
8155 			break;
8156 	if (wk == NULL)
8157 		panic("setup_newdir: lost allocdirect");
8158 	if (pagedep->pd_state & NEWBLOCK)
8159 		panic("setup_newdir: NEWBLOCK already set");
8160 	newblk = WK_NEWBLK(wk);
8161 	pagedep->pd_state |= NEWBLOCK;
8162 	pagedep->pd_newdirblk = newdirblk;
8163 	newdirblk->db_pagedep = pagedep;
8164 	WORKLIST_INSERT(&newblk->nb_newdirblk, &newdirblk->db_list);
8165 	WORKLIST_INSERT(&newdirblk->db_mkdir, &mkdir1->md_list);
8166 	/*
8167 	 * Look up the inodedep for the parent directory so that we
8168 	 * can link mkdir2 into the pending dotdot jaddref or
8169 	 * the inode write if there is none.  If the inode is
8170 	 * ALLCOMPLETE and no jaddref is present all dependencies have
8171 	 * been satisfied and mkdir2 can be freed.
8172 	 */
8173 	inodedep_lookup(mp, dinum, 0, &inodedep);
8174 	if (MOUNTEDSUJ(mp)) {
8175 		if (inodedep == NULL)
8176 			panic("setup_newdir: Lost parent.");
8177 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
8178 		    inoreflst);
8179 		KASSERT(jaddref != NULL && jaddref->ja_parent == newinum &&
8180 		    (jaddref->ja_state & MKDIR_PARENT),
8181 		    ("setup_newdir: bad dotdot jaddref %p", jaddref));
8182 		LIST_INSERT_HEAD(&mkdirlisthd, mkdir2, md_mkdirs);
8183 		mkdir2->md_jaddref = jaddref;
8184 		jaddref->ja_mkdir = mkdir2;
8185 	} else if (inodedep == NULL ||
8186 	    (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) {
8187 		dap->da_state &= ~MKDIR_PARENT;
8188 		WORKITEM_FREE(mkdir2, D_MKDIR);
8189 		mkdir2 = NULL;
8190 	} else {
8191 		LIST_INSERT_HEAD(&mkdirlisthd, mkdir2, md_mkdirs);
8192 		WORKLIST_INSERT(&inodedep->id_bufwait, &mkdir2->md_list);
8193 	}
8194 	*mkdirp = mkdir2;
8195 
8196 	return (mkdir1);
8197 }
8198 
8199 /*
8200  * Directory entry addition dependencies.
8201  *
8202  * When adding a new directory entry, the inode (with its incremented link
8203  * count) must be written to disk before the directory entry's pointer to it.
8204  * Also, if the inode is newly allocated, the corresponding freemap must be
8205  * updated (on disk) before the directory entry's pointer. These requirements
8206  * are met via undo/redo on the directory entry's pointer, which consists
8207  * simply of the inode number.
8208  *
8209  * As directory entries are added and deleted, the free space within a
8210  * directory block can become fragmented.  The ufs filesystem will compact
8211  * a fragmented directory block to make space for a new entry. When this
8212  * occurs, the offsets of previously added entries change. Any "diradd"
8213  * dependency structures corresponding to these entries must be updated with
8214  * the new offsets.
8215  */
8216 
8217 /*
8218  * This routine is called after the in-memory inode's link
8219  * count has been incremented, but before the directory entry's
8220  * pointer to the inode has been set.
8221  */
8222 int
8223 softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk)
8224 	struct buf *bp;		/* buffer containing directory block */
8225 	struct inode *dp;	/* inode for directory */
8226 	off_t diroffset;	/* offset of new entry in directory */
8227 	ino_t newinum;		/* inode referenced by new directory entry */
8228 	struct buf *newdirbp;	/* non-NULL => contents of new mkdir */
8229 	int isnewblk;		/* entry is in a newly allocated block */
8230 {
8231 	int offset;		/* offset of new entry within directory block */
8232 	ufs_lbn_t lbn;		/* block in directory containing new entry */
8233 	struct fs *fs;
8234 	struct diradd *dap;
8235 	struct newblk *newblk;
8236 	struct pagedep *pagedep;
8237 	struct inodedep *inodedep;
8238 	struct newdirblk *newdirblk = 0;
8239 	struct mkdir *mkdir1, *mkdir2;
8240 	struct jaddref *jaddref;
8241 	struct mount *mp;
8242 	int isindir;
8243 
8244 	/*
8245 	 * Whiteouts have no dependencies.
8246 	 */
8247 	if (newinum == WINO) {
8248 		if (newdirbp != NULL)
8249 			bdwrite(newdirbp);
8250 		return (0);
8251 	}
8252 	jaddref = NULL;
8253 	mkdir1 = mkdir2 = NULL;
8254 	mp = UFSTOVFS(dp->i_ump);
8255 	fs = dp->i_fs;
8256 	lbn = lblkno(fs, diroffset);
8257 	offset = blkoff(fs, diroffset);
8258 	dap = malloc(sizeof(struct diradd), M_DIRADD,
8259 		M_SOFTDEP_FLAGS|M_ZERO);
8260 	workitem_alloc(&dap->da_list, D_DIRADD, mp);
8261 	dap->da_offset = offset;
8262 	dap->da_newinum = newinum;
8263 	dap->da_state = ATTACHED;
8264 	LIST_INIT(&dap->da_jwork);
8265 	isindir = bp->b_lblkno >= NDADDR;
8266 	if (isnewblk &&
8267 	    (isindir ? blkoff(fs, diroffset) : fragoff(fs, diroffset)) == 0) {
8268 		newdirblk = malloc(sizeof(struct newdirblk),
8269 		    M_NEWDIRBLK, M_SOFTDEP_FLAGS);
8270 		workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp);
8271 		LIST_INIT(&newdirblk->db_mkdir);
8272 	}
8273 	/*
8274 	 * If we're creating a new directory setup the dependencies and set
8275 	 * the dap state to wait for them.  Otherwise it's COMPLETE and
8276 	 * we can move on.
8277 	 */
8278 	if (newdirbp == NULL) {
8279 		dap->da_state |= DEPCOMPLETE;
8280 		ACQUIRE_LOCK(&lk);
8281 	} else {
8282 		dap->da_state |= MKDIR_BODY | MKDIR_PARENT;
8283 		mkdir1 = setup_newdir(dap, newinum, dp->i_number, newdirbp,
8284 		    &mkdir2);
8285 	}
8286 	/*
8287 	 * Link into parent directory pagedep to await its being written.
8288 	 */
8289 	pagedep_lookup(mp, bp, dp->i_number, lbn, DEPALLOC, &pagedep);
8290 #ifdef DEBUG
8291 	if (diradd_lookup(pagedep, offset) != NULL)
8292 		panic("softdep_setup_directory_add: %p already at off %d\n",
8293 		    diradd_lookup(pagedep, offset), offset);
8294 #endif
8295 	dap->da_pagedep = pagedep;
8296 	LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], dap,
8297 	    da_pdlist);
8298 	inodedep_lookup(mp, newinum, DEPALLOC | NODELAY, &inodedep);
8299 	/*
8300 	 * If we're journaling, link the diradd into the jaddref so it
8301 	 * may be completed after the journal entry is written.  Otherwise,
8302 	 * link the diradd into its inodedep.  If the inode is not yet
8303 	 * written place it on the bufwait list, otherwise do the post-inode
8304 	 * write processing to put it on the id_pendinghd list.
8305 	 */
8306 	if (MOUNTEDSUJ(mp)) {
8307 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
8308 		    inoreflst);
8309 		KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number,
8310 		    ("softdep_setup_directory_add: bad jaddref %p", jaddref));
8311 		jaddref->ja_diroff = diroffset;
8312 		jaddref->ja_diradd = dap;
8313 		add_to_journal(&jaddref->ja_list);
8314 	} else if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE)
8315 		diradd_inode_written(dap, inodedep);
8316 	else
8317 		WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list);
8318 	/*
8319 	 * Add the journal entries for . and .. links now that the primary
8320 	 * link is written.
8321 	 */
8322 	if (mkdir1 != NULL && MOUNTEDSUJ(mp)) {
8323 		jaddref = (struct jaddref *)TAILQ_PREV(&jaddref->ja_ref,
8324 		    inoreflst, if_deps);
8325 		KASSERT(jaddref != NULL &&
8326 		    jaddref->ja_ino == jaddref->ja_parent &&
8327 		    (jaddref->ja_state & MKDIR_BODY),
8328 		    ("softdep_setup_directory_add: bad dot jaddref %p",
8329 		    jaddref));
8330 		mkdir1->md_jaddref = jaddref;
8331 		jaddref->ja_mkdir = mkdir1;
8332 		/*
8333 		 * It is important that the dotdot journal entry
8334 		 * is added prior to the dot entry since dot writes
8335 		 * both the dot and dotdot links.  These both must
8336 		 * be added after the primary link for the journal
8337 		 * to remain consistent.
8338 		 */
8339 		add_to_journal(&mkdir2->md_jaddref->ja_list);
8340 		add_to_journal(&jaddref->ja_list);
8341 	}
8342 	/*
8343 	 * If we are adding a new directory remember this diradd so that if
8344 	 * we rename it we can keep the dot and dotdot dependencies.  If
8345 	 * we are adding a new name for an inode that has a mkdiradd we
8346 	 * must be in rename and we have to move the dot and dotdot
8347 	 * dependencies to this new name.  The old name is being orphaned
8348 	 * soon.
8349 	 */
8350 	if (mkdir1 != NULL) {
8351 		if (inodedep->id_mkdiradd != NULL)
8352 			panic("softdep_setup_directory_add: Existing mkdir");
8353 		inodedep->id_mkdiradd = dap;
8354 	} else if (inodedep->id_mkdiradd)
8355 		merge_diradd(inodedep, dap);
8356 	if (newdirblk) {
8357 		/*
8358 		 * There is nothing to do if we are already tracking
8359 		 * this block.
8360 		 */
8361 		if ((pagedep->pd_state & NEWBLOCK) != 0) {
8362 			WORKITEM_FREE(newdirblk, D_NEWDIRBLK);
8363 			FREE_LOCK(&lk);
8364 			return (0);
8365 		}
8366 		if (newblk_lookup(mp, dbtofsb(fs, bp->b_blkno), 0, &newblk)
8367 		    == 0)
8368 			panic("softdep_setup_directory_add: lost entry");
8369 		WORKLIST_INSERT(&newblk->nb_newdirblk, &newdirblk->db_list);
8370 		pagedep->pd_state |= NEWBLOCK;
8371 		pagedep->pd_newdirblk = newdirblk;
8372 		newdirblk->db_pagedep = pagedep;
8373 		FREE_LOCK(&lk);
8374 		/*
8375 		 * If we extended into an indirect signal direnter to sync.
8376 		 */
8377 		if (isindir)
8378 			return (1);
8379 		return (0);
8380 	}
8381 	FREE_LOCK(&lk);
8382 	return (0);
8383 }
8384 
8385 /*
8386  * This procedure is called to change the offset of a directory
8387  * entry when compacting a directory block which must be owned
8388  * exclusively by the caller. Note that the actual entry movement
8389  * must be done in this procedure to ensure that no I/O completions
8390  * occur while the move is in progress.
8391  */
8392 void
8393 softdep_change_directoryentry_offset(bp, dp, base, oldloc, newloc, entrysize)
8394 	struct buf *bp;		/* Buffer holding directory block. */
8395 	struct inode *dp;	/* inode for directory */
8396 	caddr_t base;		/* address of dp->i_offset */
8397 	caddr_t oldloc;		/* address of old directory location */
8398 	caddr_t newloc;		/* address of new directory location */
8399 	int entrysize;		/* size of directory entry */
8400 {
8401 	int offset, oldoffset, newoffset;
8402 	struct pagedep *pagedep;
8403 	struct jmvref *jmvref;
8404 	struct diradd *dap;
8405 	struct direct *de;
8406 	struct mount *mp;
8407 	ufs_lbn_t lbn;
8408 	int flags;
8409 
8410 	mp = UFSTOVFS(dp->i_ump);
8411 	de = (struct direct *)oldloc;
8412 	jmvref = NULL;
8413 	flags = 0;
8414 	/*
8415 	 * Moves are always journaled as it would be too complex to
8416 	 * determine if any affected adds or removes are present in the
8417 	 * journal.
8418 	 */
8419 	if (MOUNTEDSUJ(mp)) {
8420 		flags = DEPALLOC;
8421 		jmvref = newjmvref(dp, de->d_ino,
8422 		    dp->i_offset + (oldloc - base),
8423 		    dp->i_offset + (newloc - base));
8424 	}
8425 	lbn = lblkno(dp->i_fs, dp->i_offset);
8426 	offset = blkoff(dp->i_fs, dp->i_offset);
8427 	oldoffset = offset + (oldloc - base);
8428 	newoffset = offset + (newloc - base);
8429 	ACQUIRE_LOCK(&lk);
8430 	if (pagedep_lookup(mp, bp, dp->i_number, lbn, flags, &pagedep) == 0)
8431 		goto done;
8432 	dap = diradd_lookup(pagedep, oldoffset);
8433 	if (dap) {
8434 		dap->da_offset = newoffset;
8435 		newoffset = DIRADDHASH(newoffset);
8436 		oldoffset = DIRADDHASH(oldoffset);
8437 		if ((dap->da_state & ALLCOMPLETE) != ALLCOMPLETE &&
8438 		    newoffset != oldoffset) {
8439 			LIST_REMOVE(dap, da_pdlist);
8440 			LIST_INSERT_HEAD(&pagedep->pd_diraddhd[newoffset],
8441 			    dap, da_pdlist);
8442 		}
8443 	}
8444 done:
8445 	if (jmvref) {
8446 		jmvref->jm_pagedep = pagedep;
8447 		LIST_INSERT_HEAD(&pagedep->pd_jmvrefhd, jmvref, jm_deps);
8448 		add_to_journal(&jmvref->jm_list);
8449 	}
8450 	bcopy(oldloc, newloc, entrysize);
8451 	FREE_LOCK(&lk);
8452 }
8453 
8454 /*
8455  * Move the mkdir dependencies and journal work from one diradd to another
8456  * when renaming a directory.  The new name must depend on the mkdir deps
8457  * completing as the old name did.  Directories can only have one valid link
8458  * at a time so one must be canonical.
8459  */
8460 static void
8461 merge_diradd(inodedep, newdap)
8462 	struct inodedep *inodedep;
8463 	struct diradd *newdap;
8464 {
8465 	struct diradd *olddap;
8466 	struct mkdir *mkdir, *nextmd;
8467 	short state;
8468 
8469 	olddap = inodedep->id_mkdiradd;
8470 	inodedep->id_mkdiradd = newdap;
8471 	if ((olddap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
8472 		newdap->da_state &= ~DEPCOMPLETE;
8473 		for (mkdir = LIST_FIRST(&mkdirlisthd); mkdir; mkdir = nextmd) {
8474 			nextmd = LIST_NEXT(mkdir, md_mkdirs);
8475 			if (mkdir->md_diradd != olddap)
8476 				continue;
8477 			mkdir->md_diradd = newdap;
8478 			state = mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY);
8479 			newdap->da_state |= state;
8480 			olddap->da_state &= ~state;
8481 			if ((olddap->da_state &
8482 			    (MKDIR_PARENT | MKDIR_BODY)) == 0)
8483 				break;
8484 		}
8485 		if ((olddap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0)
8486 			panic("merge_diradd: unfound ref");
8487 	}
8488 	/*
8489 	 * Any mkdir related journal items are not safe to be freed until
8490 	 * the new name is stable.
8491 	 */
8492 	jwork_move(&newdap->da_jwork, &olddap->da_jwork);
8493 	olddap->da_state |= DEPCOMPLETE;
8494 	complete_diradd(olddap);
8495 }
8496 
8497 /*
8498  * Move the diradd to the pending list when all diradd dependencies are
8499  * complete.
8500  */
8501 static void
8502 complete_diradd(dap)
8503 	struct diradd *dap;
8504 {
8505 	struct pagedep *pagedep;
8506 
8507 	if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
8508 		if (dap->da_state & DIRCHG)
8509 			pagedep = dap->da_previous->dm_pagedep;
8510 		else
8511 			pagedep = dap->da_pagedep;
8512 		LIST_REMOVE(dap, da_pdlist);
8513 		LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
8514 	}
8515 }
8516 
8517 /*
8518  * Cancel a diradd when a dirrem overlaps with it.  We must cancel the journal
8519  * add entries and conditonally journal the remove.
8520  */
8521 static void
8522 cancel_diradd(dap, dirrem, jremref, dotremref, dotdotremref)
8523 	struct diradd *dap;
8524 	struct dirrem *dirrem;
8525 	struct jremref *jremref;
8526 	struct jremref *dotremref;
8527 	struct jremref *dotdotremref;
8528 {
8529 	struct inodedep *inodedep;
8530 	struct jaddref *jaddref;
8531 	struct inoref *inoref;
8532 	struct mkdir *mkdir;
8533 
8534 	/*
8535 	 * If no remove references were allocated we're on a non-journaled
8536 	 * filesystem and can skip the cancel step.
8537 	 */
8538 	if (jremref == NULL) {
8539 		free_diradd(dap, NULL);
8540 		return;
8541 	}
8542 	/*
8543 	 * Cancel the primary name an free it if it does not require
8544 	 * journaling.
8545 	 */
8546 	if (inodedep_lookup(dap->da_list.wk_mp, dap->da_newinum,
8547 	    0, &inodedep) != 0) {
8548 		/* Abort the addref that reference this diradd.  */
8549 		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
8550 			if (inoref->if_list.wk_type != D_JADDREF)
8551 				continue;
8552 			jaddref = (struct jaddref *)inoref;
8553 			if (jaddref->ja_diradd != dap)
8554 				continue;
8555 			if (cancel_jaddref(jaddref, inodedep,
8556 			    &dirrem->dm_jwork) == 0) {
8557 				free_jremref(jremref);
8558 				jremref = NULL;
8559 			}
8560 			break;
8561 		}
8562 	}
8563 	/*
8564 	 * Cancel subordinate names and free them if they do not require
8565 	 * journaling.
8566 	 */
8567 	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
8568 		LIST_FOREACH(mkdir, &mkdirlisthd, md_mkdirs) {
8569 			if (mkdir->md_diradd != dap)
8570 				continue;
8571 			if ((jaddref = mkdir->md_jaddref) == NULL)
8572 				continue;
8573 			mkdir->md_jaddref = NULL;
8574 			if (mkdir->md_state & MKDIR_PARENT) {
8575 				if (cancel_jaddref(jaddref, NULL,
8576 				    &dirrem->dm_jwork) == 0) {
8577 					free_jremref(dotdotremref);
8578 					dotdotremref = NULL;
8579 				}
8580 			} else {
8581 				if (cancel_jaddref(jaddref, inodedep,
8582 				    &dirrem->dm_jwork) == 0) {
8583 					free_jremref(dotremref);
8584 					dotremref = NULL;
8585 				}
8586 			}
8587 		}
8588 	}
8589 
8590 	if (jremref)
8591 		journal_jremref(dirrem, jremref, inodedep);
8592 	if (dotremref)
8593 		journal_jremref(dirrem, dotremref, inodedep);
8594 	if (dotdotremref)
8595 		journal_jremref(dirrem, dotdotremref, NULL);
8596 	jwork_move(&dirrem->dm_jwork, &dap->da_jwork);
8597 	free_diradd(dap, &dirrem->dm_jwork);
8598 }
8599 
8600 /*
8601  * Free a diradd dependency structure. This routine must be called
8602  * with splbio interrupts blocked.
8603  */
8604 static void
8605 free_diradd(dap, wkhd)
8606 	struct diradd *dap;
8607 	struct workhead *wkhd;
8608 {
8609 	struct dirrem *dirrem;
8610 	struct pagedep *pagedep;
8611 	struct inodedep *inodedep;
8612 	struct mkdir *mkdir, *nextmd;
8613 
8614 	rw_assert(&lk, RA_WLOCKED);
8615 	LIST_REMOVE(dap, da_pdlist);
8616 	if (dap->da_state & ONWORKLIST)
8617 		WORKLIST_REMOVE(&dap->da_list);
8618 	if ((dap->da_state & DIRCHG) == 0) {
8619 		pagedep = dap->da_pagedep;
8620 	} else {
8621 		dirrem = dap->da_previous;
8622 		pagedep = dirrem->dm_pagedep;
8623 		dirrem->dm_dirinum = pagedep->pd_ino;
8624 		dirrem->dm_state |= COMPLETE;
8625 		if (LIST_EMPTY(&dirrem->dm_jremrefhd))
8626 			add_to_worklist(&dirrem->dm_list, 0);
8627 	}
8628 	if (inodedep_lookup(pagedep->pd_list.wk_mp, dap->da_newinum,
8629 	    0, &inodedep) != 0)
8630 		if (inodedep->id_mkdiradd == dap)
8631 			inodedep->id_mkdiradd = NULL;
8632 	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
8633 		for (mkdir = LIST_FIRST(&mkdirlisthd); mkdir; mkdir = nextmd) {
8634 			nextmd = LIST_NEXT(mkdir, md_mkdirs);
8635 			if (mkdir->md_diradd != dap)
8636 				continue;
8637 			dap->da_state &=
8638 			    ~(mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY));
8639 			LIST_REMOVE(mkdir, md_mkdirs);
8640 			if (mkdir->md_state & ONWORKLIST)
8641 				WORKLIST_REMOVE(&mkdir->md_list);
8642 			if (mkdir->md_jaddref != NULL)
8643 				panic("free_diradd: Unexpected jaddref");
8644 			WORKITEM_FREE(mkdir, D_MKDIR);
8645 			if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0)
8646 				break;
8647 		}
8648 		if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0)
8649 			panic("free_diradd: unfound ref");
8650 	}
8651 	if (inodedep)
8652 		free_inodedep(inodedep);
8653 	/*
8654 	 * Free any journal segments waiting for the directory write.
8655 	 */
8656 	handle_jwork(&dap->da_jwork);
8657 	WORKITEM_FREE(dap, D_DIRADD);
8658 }
8659 
8660 /*
8661  * Directory entry removal dependencies.
8662  *
8663  * When removing a directory entry, the entry's inode pointer must be
8664  * zero'ed on disk before the corresponding inode's link count is decremented
8665  * (possibly freeing the inode for re-use). This dependency is handled by
8666  * updating the directory entry but delaying the inode count reduction until
8667  * after the directory block has been written to disk. After this point, the
8668  * inode count can be decremented whenever it is convenient.
8669  */
8670 
8671 /*
8672  * This routine should be called immediately after removing
8673  * a directory entry.  The inode's link count should not be
8674  * decremented by the calling procedure -- the soft updates
8675  * code will do this task when it is safe.
8676  */
8677 void
8678 softdep_setup_remove(bp, dp, ip, isrmdir)
8679 	struct buf *bp;		/* buffer containing directory block */
8680 	struct inode *dp;	/* inode for the directory being modified */
8681 	struct inode *ip;	/* inode for directory entry being removed */
8682 	int isrmdir;		/* indicates if doing RMDIR */
8683 {
8684 	struct dirrem *dirrem, *prevdirrem;
8685 	struct inodedep *inodedep;
8686 	int direct;
8687 
8688 	/*
8689 	 * Allocate a new dirrem if appropriate and ACQUIRE_LOCK.  We want
8690 	 * newdirrem() to setup the full directory remove which requires
8691 	 * isrmdir > 1.
8692 	 */
8693 	dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem);
8694 	/*
8695 	 * Add the dirrem to the inodedep's pending remove list for quick
8696 	 * discovery later.
8697 	 */
8698 	if (inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, 0,
8699 	    &inodedep) == 0)
8700 		panic("softdep_setup_remove: Lost inodedep.");
8701 	KASSERT((inodedep->id_state & UNLINKED) == 0, ("inode unlinked"));
8702 	dirrem->dm_state |= ONDEPLIST;
8703 	LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext);
8704 
8705 	/*
8706 	 * If the COMPLETE flag is clear, then there were no active
8707 	 * entries and we want to roll back to a zeroed entry until
8708 	 * the new inode is committed to disk. If the COMPLETE flag is
8709 	 * set then we have deleted an entry that never made it to
8710 	 * disk. If the entry we deleted resulted from a name change,
8711 	 * then the old name still resides on disk. We cannot delete
8712 	 * its inode (returned to us in prevdirrem) until the zeroed
8713 	 * directory entry gets to disk. The new inode has never been
8714 	 * referenced on the disk, so can be deleted immediately.
8715 	 */
8716 	if ((dirrem->dm_state & COMPLETE) == 0) {
8717 		LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, dirrem,
8718 		    dm_next);
8719 		FREE_LOCK(&lk);
8720 	} else {
8721 		if (prevdirrem != NULL)
8722 			LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd,
8723 			    prevdirrem, dm_next);
8724 		dirrem->dm_dirinum = dirrem->dm_pagedep->pd_ino;
8725 		direct = LIST_EMPTY(&dirrem->dm_jremrefhd);
8726 		FREE_LOCK(&lk);
8727 		if (direct)
8728 			handle_workitem_remove(dirrem, 0);
8729 	}
8730 }
8731 
8732 /*
8733  * Check for an entry matching 'offset' on both the pd_dirraddhd list and the
8734  * pd_pendinghd list of a pagedep.
8735  */
8736 static struct diradd *
8737 diradd_lookup(pagedep, offset)
8738 	struct pagedep *pagedep;
8739 	int offset;
8740 {
8741 	struct diradd *dap;
8742 
8743 	LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(offset)], da_pdlist)
8744 		if (dap->da_offset == offset)
8745 			return (dap);
8746 	LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist)
8747 		if (dap->da_offset == offset)
8748 			return (dap);
8749 	return (NULL);
8750 }
8751 
8752 /*
8753  * Search for a .. diradd dependency in a directory that is being removed.
8754  * If the directory was renamed to a new parent we have a diradd rather
8755  * than a mkdir for the .. entry.  We need to cancel it now before
8756  * it is found in truncate().
8757  */
8758 static struct jremref *
8759 cancel_diradd_dotdot(ip, dirrem, jremref)
8760 	struct inode *ip;
8761 	struct dirrem *dirrem;
8762 	struct jremref *jremref;
8763 {
8764 	struct pagedep *pagedep;
8765 	struct diradd *dap;
8766 	struct worklist *wk;
8767 
8768 	if (pagedep_lookup(UFSTOVFS(ip->i_ump), NULL, ip->i_number, 0, 0,
8769 	    &pagedep) == 0)
8770 		return (jremref);
8771 	dap = diradd_lookup(pagedep, DOTDOT_OFFSET);
8772 	if (dap == NULL)
8773 		return (jremref);
8774 	cancel_diradd(dap, dirrem, jremref, NULL, NULL);
8775 	/*
8776 	 * Mark any journal work as belonging to the parent so it is freed
8777 	 * with the .. reference.
8778 	 */
8779 	LIST_FOREACH(wk, &dirrem->dm_jwork, wk_list)
8780 		wk->wk_state |= MKDIR_PARENT;
8781 	return (NULL);
8782 }
8783 
8784 /*
8785  * Cancel the MKDIR_PARENT mkdir component of a diradd when we're going to
8786  * replace it with a dirrem/diradd pair as a result of re-parenting a
8787  * directory.  This ensures that we don't simultaneously have a mkdir and
8788  * a diradd for the same .. entry.
8789  */
8790 static struct jremref *
8791 cancel_mkdir_dotdot(ip, dirrem, jremref)
8792 	struct inode *ip;
8793 	struct dirrem *dirrem;
8794 	struct jremref *jremref;
8795 {
8796 	struct inodedep *inodedep;
8797 	struct jaddref *jaddref;
8798 	struct mkdir *mkdir;
8799 	struct diradd *dap;
8800 
8801 	if (inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, 0,
8802 	    &inodedep) == 0)
8803 		return (jremref);
8804 	dap = inodedep->id_mkdiradd;
8805 	if (dap == NULL || (dap->da_state & MKDIR_PARENT) == 0)
8806 		return (jremref);
8807 	for (mkdir = LIST_FIRST(&mkdirlisthd); mkdir;
8808 	    mkdir = LIST_NEXT(mkdir, md_mkdirs))
8809 		if (mkdir->md_diradd == dap && mkdir->md_state & MKDIR_PARENT)
8810 			break;
8811 	if (mkdir == NULL)
8812 		panic("cancel_mkdir_dotdot: Unable to find mkdir\n");
8813 	if ((jaddref = mkdir->md_jaddref) != NULL) {
8814 		mkdir->md_jaddref = NULL;
8815 		jaddref->ja_state &= ~MKDIR_PARENT;
8816 		if (inodedep_lookup(UFSTOVFS(ip->i_ump), jaddref->ja_ino, 0,
8817 		    &inodedep) == 0)
8818 			panic("cancel_mkdir_dotdot: Lost parent inodedep");
8819 		if (cancel_jaddref(jaddref, inodedep, &dirrem->dm_jwork)) {
8820 			journal_jremref(dirrem, jremref, inodedep);
8821 			jremref = NULL;
8822 		}
8823 	}
8824 	if (mkdir->md_state & ONWORKLIST)
8825 		WORKLIST_REMOVE(&mkdir->md_list);
8826 	mkdir->md_state |= ALLCOMPLETE;
8827 	complete_mkdir(mkdir);
8828 	return (jremref);
8829 }
8830 
8831 static void
8832 journal_jremref(dirrem, jremref, inodedep)
8833 	struct dirrem *dirrem;
8834 	struct jremref *jremref;
8835 	struct inodedep *inodedep;
8836 {
8837 
8838 	if (inodedep == NULL)
8839 		if (inodedep_lookup(jremref->jr_list.wk_mp,
8840 		    jremref->jr_ref.if_ino, 0, &inodedep) == 0)
8841 			panic("journal_jremref: Lost inodedep");
8842 	LIST_INSERT_HEAD(&dirrem->dm_jremrefhd, jremref, jr_deps);
8843 	TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jremref->jr_ref, if_deps);
8844 	add_to_journal(&jremref->jr_list);
8845 }
8846 
8847 static void
8848 dirrem_journal(dirrem, jremref, dotremref, dotdotremref)
8849 	struct dirrem *dirrem;
8850 	struct jremref *jremref;
8851 	struct jremref *dotremref;
8852 	struct jremref *dotdotremref;
8853 {
8854 	struct inodedep *inodedep;
8855 
8856 
8857 	if (inodedep_lookup(jremref->jr_list.wk_mp, jremref->jr_ref.if_ino, 0,
8858 	    &inodedep) == 0)
8859 		panic("dirrem_journal: Lost inodedep");
8860 	journal_jremref(dirrem, jremref, inodedep);
8861 	if (dotremref)
8862 		journal_jremref(dirrem, dotremref, inodedep);
8863 	if (dotdotremref)
8864 		journal_jremref(dirrem, dotdotremref, NULL);
8865 }
8866 
8867 /*
8868  * Allocate a new dirrem if appropriate and return it along with
8869  * its associated pagedep. Called without a lock, returns with lock.
8870  */
8871 static struct dirrem *
8872 newdirrem(bp, dp, ip, isrmdir, prevdirremp)
8873 	struct buf *bp;		/* buffer containing directory block */
8874 	struct inode *dp;	/* inode for the directory being modified */
8875 	struct inode *ip;	/* inode for directory entry being removed */
8876 	int isrmdir;		/* indicates if doing RMDIR */
8877 	struct dirrem **prevdirremp; /* previously referenced inode, if any */
8878 {
8879 	int offset;
8880 	ufs_lbn_t lbn;
8881 	struct diradd *dap;
8882 	struct dirrem *dirrem;
8883 	struct pagedep *pagedep;
8884 	struct jremref *jremref;
8885 	struct jremref *dotremref;
8886 	struct jremref *dotdotremref;
8887 	struct vnode *dvp;
8888 
8889 	/*
8890 	 * Whiteouts have no deletion dependencies.
8891 	 */
8892 	if (ip == NULL)
8893 		panic("newdirrem: whiteout");
8894 	dvp = ITOV(dp);
8895 	/*
8896 	 * If we are over our limit, try to improve the situation.
8897 	 * Limiting the number of dirrem structures will also limit
8898 	 * the number of freefile and freeblks structures.
8899 	 */
8900 	ACQUIRE_LOCK(&lk);
8901 	if (!IS_SNAPSHOT(ip) && dep_current[D_DIRREM] > max_softdeps / 2)
8902 		(void) request_cleanup(ITOV(dp)->v_mount, FLUSH_BLOCKS);
8903 	FREE_LOCK(&lk);
8904 	dirrem = malloc(sizeof(struct dirrem),
8905 		M_DIRREM, M_SOFTDEP_FLAGS|M_ZERO);
8906 	workitem_alloc(&dirrem->dm_list, D_DIRREM, dvp->v_mount);
8907 	LIST_INIT(&dirrem->dm_jremrefhd);
8908 	LIST_INIT(&dirrem->dm_jwork);
8909 	dirrem->dm_state = isrmdir ? RMDIR : 0;
8910 	dirrem->dm_oldinum = ip->i_number;
8911 	*prevdirremp = NULL;
8912 	/*
8913 	 * Allocate remove reference structures to track journal write
8914 	 * dependencies.  We will always have one for the link and
8915 	 * when doing directories we will always have one more for dot.
8916 	 * When renaming a directory we skip the dotdot link change so
8917 	 * this is not needed.
8918 	 */
8919 	jremref = dotremref = dotdotremref = NULL;
8920 	if (DOINGSUJ(dvp)) {
8921 		if (isrmdir) {
8922 			jremref = newjremref(dirrem, dp, ip, dp->i_offset,
8923 			    ip->i_effnlink + 2);
8924 			dotremref = newjremref(dirrem, ip, ip, DOT_OFFSET,
8925 			    ip->i_effnlink + 1);
8926 			dotdotremref = newjremref(dirrem, ip, dp, DOTDOT_OFFSET,
8927 			    dp->i_effnlink + 1);
8928 			dotdotremref->jr_state |= MKDIR_PARENT;
8929 		} else
8930 			jremref = newjremref(dirrem, dp, ip, dp->i_offset,
8931 			    ip->i_effnlink + 1);
8932 	}
8933 	ACQUIRE_LOCK(&lk);
8934 	lbn = lblkno(dp->i_fs, dp->i_offset);
8935 	offset = blkoff(dp->i_fs, dp->i_offset);
8936 	pagedep_lookup(UFSTOVFS(dp->i_ump), bp, dp->i_number, lbn, DEPALLOC,
8937 	    &pagedep);
8938 	dirrem->dm_pagedep = pagedep;
8939 	dirrem->dm_offset = offset;
8940 	/*
8941 	 * If we're renaming a .. link to a new directory, cancel any
8942 	 * existing MKDIR_PARENT mkdir.  If it has already been canceled
8943 	 * the jremref is preserved for any potential diradd in this
8944 	 * location.  This can not coincide with a rmdir.
8945 	 */
8946 	if (dp->i_offset == DOTDOT_OFFSET) {
8947 		if (isrmdir)
8948 			panic("newdirrem: .. directory change during remove?");
8949 		jremref = cancel_mkdir_dotdot(dp, dirrem, jremref);
8950 	}
8951 	/*
8952 	 * If we're removing a directory search for the .. dependency now and
8953 	 * cancel it.  Any pending journal work will be added to the dirrem
8954 	 * to be completed when the workitem remove completes.
8955 	 */
8956 	if (isrmdir)
8957 		dotdotremref = cancel_diradd_dotdot(ip, dirrem, dotdotremref);
8958 	/*
8959 	 * Check for a diradd dependency for the same directory entry.
8960 	 * If present, then both dependencies become obsolete and can
8961 	 * be de-allocated.
8962 	 */
8963 	dap = diradd_lookup(pagedep, offset);
8964 	if (dap == NULL) {
8965 		/*
8966 		 * Link the jremref structures into the dirrem so they are
8967 		 * written prior to the pagedep.
8968 		 */
8969 		if (jremref)
8970 			dirrem_journal(dirrem, jremref, dotremref,
8971 			    dotdotremref);
8972 		return (dirrem);
8973 	}
8974 	/*
8975 	 * Must be ATTACHED at this point.
8976 	 */
8977 	if ((dap->da_state & ATTACHED) == 0)
8978 		panic("newdirrem: not ATTACHED");
8979 	if (dap->da_newinum != ip->i_number)
8980 		panic("newdirrem: inum %ju should be %ju",
8981 		    (uintmax_t)ip->i_number, (uintmax_t)dap->da_newinum);
8982 	/*
8983 	 * If we are deleting a changed name that never made it to disk,
8984 	 * then return the dirrem describing the previous inode (which
8985 	 * represents the inode currently referenced from this entry on disk).
8986 	 */
8987 	if ((dap->da_state & DIRCHG) != 0) {
8988 		*prevdirremp = dap->da_previous;
8989 		dap->da_state &= ~DIRCHG;
8990 		dap->da_pagedep = pagedep;
8991 	}
8992 	/*
8993 	 * We are deleting an entry that never made it to disk.
8994 	 * Mark it COMPLETE so we can delete its inode immediately.
8995 	 */
8996 	dirrem->dm_state |= COMPLETE;
8997 	cancel_diradd(dap, dirrem, jremref, dotremref, dotdotremref);
8998 #ifdef SUJ_DEBUG
8999 	if (isrmdir == 0) {
9000 		struct worklist *wk;
9001 
9002 		LIST_FOREACH(wk, &dirrem->dm_jwork, wk_list)
9003 			if (wk->wk_state & (MKDIR_BODY | MKDIR_PARENT))
9004 				panic("bad wk %p (0x%X)\n", wk, wk->wk_state);
9005 	}
9006 #endif
9007 
9008 	return (dirrem);
9009 }
9010 
9011 /*
9012  * Directory entry change dependencies.
9013  *
9014  * Changing an existing directory entry requires that an add operation
9015  * be completed first followed by a deletion. The semantics for the addition
9016  * are identical to the description of adding a new entry above except
9017  * that the rollback is to the old inode number rather than zero. Once
9018  * the addition dependency is completed, the removal is done as described
9019  * in the removal routine above.
9020  */
9021 
9022 /*
9023  * This routine should be called immediately after changing
9024  * a directory entry.  The inode's link count should not be
9025  * decremented by the calling procedure -- the soft updates
9026  * code will perform this task when it is safe.
9027  */
9028 void
9029 softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir)
9030 	struct buf *bp;		/* buffer containing directory block */
9031 	struct inode *dp;	/* inode for the directory being modified */
9032 	struct inode *ip;	/* inode for directory entry being removed */
9033 	ino_t newinum;		/* new inode number for changed entry */
9034 	int isrmdir;		/* indicates if doing RMDIR */
9035 {
9036 	int offset;
9037 	struct diradd *dap = NULL;
9038 	struct dirrem *dirrem, *prevdirrem;
9039 	struct pagedep *pagedep;
9040 	struct inodedep *inodedep;
9041 	struct jaddref *jaddref;
9042 	struct mount *mp;
9043 
9044 	offset = blkoff(dp->i_fs, dp->i_offset);
9045 	mp = UFSTOVFS(dp->i_ump);
9046 
9047 	/*
9048 	 * Whiteouts do not need diradd dependencies.
9049 	 */
9050 	if (newinum != WINO) {
9051 		dap = malloc(sizeof(struct diradd),
9052 		    M_DIRADD, M_SOFTDEP_FLAGS|M_ZERO);
9053 		workitem_alloc(&dap->da_list, D_DIRADD, mp);
9054 		dap->da_state = DIRCHG | ATTACHED | DEPCOMPLETE;
9055 		dap->da_offset = offset;
9056 		dap->da_newinum = newinum;
9057 		LIST_INIT(&dap->da_jwork);
9058 	}
9059 
9060 	/*
9061 	 * Allocate a new dirrem and ACQUIRE_LOCK.
9062 	 */
9063 	dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem);
9064 	pagedep = dirrem->dm_pagedep;
9065 	/*
9066 	 * The possible values for isrmdir:
9067 	 *	0 - non-directory file rename
9068 	 *	1 - directory rename within same directory
9069 	 *   inum - directory rename to new directory of given inode number
9070 	 * When renaming to a new directory, we are both deleting and
9071 	 * creating a new directory entry, so the link count on the new
9072 	 * directory should not change. Thus we do not need the followup
9073 	 * dirrem which is usually done in handle_workitem_remove. We set
9074 	 * the DIRCHG flag to tell handle_workitem_remove to skip the
9075 	 * followup dirrem.
9076 	 */
9077 	if (isrmdir > 1)
9078 		dirrem->dm_state |= DIRCHG;
9079 
9080 	/*
9081 	 * Whiteouts have no additional dependencies,
9082 	 * so just put the dirrem on the correct list.
9083 	 */
9084 	if (newinum == WINO) {
9085 		if ((dirrem->dm_state & COMPLETE) == 0) {
9086 			LIST_INSERT_HEAD(&pagedep->pd_dirremhd, dirrem,
9087 			    dm_next);
9088 		} else {
9089 			dirrem->dm_dirinum = pagedep->pd_ino;
9090 			if (LIST_EMPTY(&dirrem->dm_jremrefhd))
9091 				add_to_worklist(&dirrem->dm_list, 0);
9092 		}
9093 		FREE_LOCK(&lk);
9094 		return;
9095 	}
9096 	/*
9097 	 * Add the dirrem to the inodedep's pending remove list for quick
9098 	 * discovery later.  A valid nlinkdelta ensures that this lookup
9099 	 * will not fail.
9100 	 */
9101 	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0)
9102 		panic("softdep_setup_directory_change: Lost inodedep.");
9103 	dirrem->dm_state |= ONDEPLIST;
9104 	LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext);
9105 
9106 	/*
9107 	 * If the COMPLETE flag is clear, then there were no active
9108 	 * entries and we want to roll back to the previous inode until
9109 	 * the new inode is committed to disk. If the COMPLETE flag is
9110 	 * set, then we have deleted an entry that never made it to disk.
9111 	 * If the entry we deleted resulted from a name change, then the old
9112 	 * inode reference still resides on disk. Any rollback that we do
9113 	 * needs to be to that old inode (returned to us in prevdirrem). If
9114 	 * the entry we deleted resulted from a create, then there is
9115 	 * no entry on the disk, so we want to roll back to zero rather
9116 	 * than the uncommitted inode. In either of the COMPLETE cases we
9117 	 * want to immediately free the unwritten and unreferenced inode.
9118 	 */
9119 	if ((dirrem->dm_state & COMPLETE) == 0) {
9120 		dap->da_previous = dirrem;
9121 	} else {
9122 		if (prevdirrem != NULL) {
9123 			dap->da_previous = prevdirrem;
9124 		} else {
9125 			dap->da_state &= ~DIRCHG;
9126 			dap->da_pagedep = pagedep;
9127 		}
9128 		dirrem->dm_dirinum = pagedep->pd_ino;
9129 		if (LIST_EMPTY(&dirrem->dm_jremrefhd))
9130 			add_to_worklist(&dirrem->dm_list, 0);
9131 	}
9132 	/*
9133 	 * Lookup the jaddref for this journal entry.  We must finish
9134 	 * initializing it and make the diradd write dependent on it.
9135 	 * If we're not journaling, put it on the id_bufwait list if the
9136 	 * inode is not yet written. If it is written, do the post-inode
9137 	 * write processing to put it on the id_pendinghd list.
9138 	 */
9139 	inodedep_lookup(mp, newinum, DEPALLOC | NODELAY, &inodedep);
9140 	if (MOUNTEDSUJ(mp)) {
9141 		jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst,
9142 		    inoreflst);
9143 		KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number,
9144 		    ("softdep_setup_directory_change: bad jaddref %p",
9145 		    jaddref));
9146 		jaddref->ja_diroff = dp->i_offset;
9147 		jaddref->ja_diradd = dap;
9148 		LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)],
9149 		    dap, da_pdlist);
9150 		add_to_journal(&jaddref->ja_list);
9151 	} else if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) {
9152 		dap->da_state |= COMPLETE;
9153 		LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
9154 		WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list);
9155 	} else {
9156 		LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)],
9157 		    dap, da_pdlist);
9158 		WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list);
9159 	}
9160 	/*
9161 	 * If we're making a new name for a directory that has not been
9162 	 * committed when need to move the dot and dotdot references to
9163 	 * this new name.
9164 	 */
9165 	if (inodedep->id_mkdiradd && dp->i_offset != DOTDOT_OFFSET)
9166 		merge_diradd(inodedep, dap);
9167 	FREE_LOCK(&lk);
9168 }
9169 
9170 /*
9171  * Called whenever the link count on an inode is changed.
9172  * It creates an inode dependency so that the new reference(s)
9173  * to the inode cannot be committed to disk until the updated
9174  * inode has been written.
9175  */
9176 void
9177 softdep_change_linkcnt(ip)
9178 	struct inode *ip;	/* the inode with the increased link count */
9179 {
9180 	struct inodedep *inodedep;
9181 	int dflags;
9182 
9183 	ACQUIRE_LOCK(&lk);
9184 	dflags = DEPALLOC;
9185 	if (IS_SNAPSHOT(ip))
9186 		dflags |= NODELAY;
9187 	inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, dflags, &inodedep);
9188 	if (ip->i_nlink < ip->i_effnlink)
9189 		panic("softdep_change_linkcnt: bad delta");
9190 	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
9191 	FREE_LOCK(&lk);
9192 }
9193 
9194 /*
9195  * Attach a sbdep dependency to the superblock buf so that we can keep
9196  * track of the head of the linked list of referenced but unlinked inodes.
9197  */
9198 void
9199 softdep_setup_sbupdate(ump, fs, bp)
9200 	struct ufsmount *ump;
9201 	struct fs *fs;
9202 	struct buf *bp;
9203 {
9204 	struct sbdep *sbdep;
9205 	struct worklist *wk;
9206 
9207 	if (MOUNTEDSUJ(UFSTOVFS(ump)) == 0)
9208 		return;
9209 	LIST_FOREACH(wk, &bp->b_dep, wk_list)
9210 		if (wk->wk_type == D_SBDEP)
9211 			break;
9212 	if (wk != NULL)
9213 		return;
9214 	sbdep = malloc(sizeof(struct sbdep), M_SBDEP, M_SOFTDEP_FLAGS);
9215 	workitem_alloc(&sbdep->sb_list, D_SBDEP, UFSTOVFS(ump));
9216 	sbdep->sb_fs = fs;
9217 	sbdep->sb_ump = ump;
9218 	ACQUIRE_LOCK(&lk);
9219 	WORKLIST_INSERT(&bp->b_dep, &sbdep->sb_list);
9220 	FREE_LOCK(&lk);
9221 }
9222 
9223 /*
9224  * Return the first unlinked inodedep which is ready to be the head of the
9225  * list.  The inodedep and all those after it must have valid next pointers.
9226  */
9227 static struct inodedep *
9228 first_unlinked_inodedep(ump)
9229 	struct ufsmount *ump;
9230 {
9231 	struct inodedep *inodedep;
9232 	struct inodedep *idp;
9233 
9234 	rw_assert(&lk, RA_WLOCKED);
9235 	for (inodedep = TAILQ_LAST(&ump->softdep_unlinked, inodedeplst);
9236 	    inodedep; inodedep = idp) {
9237 		if ((inodedep->id_state & UNLINKNEXT) == 0)
9238 			return (NULL);
9239 		idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked);
9240 		if (idp == NULL || (idp->id_state & UNLINKNEXT) == 0)
9241 			break;
9242 		if ((inodedep->id_state & UNLINKPREV) == 0)
9243 			break;
9244 	}
9245 	return (inodedep);
9246 }
9247 
9248 /*
9249  * Set the sujfree unlinked head pointer prior to writing a superblock.
9250  */
9251 static void
9252 initiate_write_sbdep(sbdep)
9253 	struct sbdep *sbdep;
9254 {
9255 	struct inodedep *inodedep;
9256 	struct fs *bpfs;
9257 	struct fs *fs;
9258 
9259 	bpfs = sbdep->sb_fs;
9260 	fs = sbdep->sb_ump->um_fs;
9261 	inodedep = first_unlinked_inodedep(sbdep->sb_ump);
9262 	if (inodedep) {
9263 		fs->fs_sujfree = inodedep->id_ino;
9264 		inodedep->id_state |= UNLINKPREV;
9265 	} else
9266 		fs->fs_sujfree = 0;
9267 	bpfs->fs_sujfree = fs->fs_sujfree;
9268 }
9269 
9270 /*
9271  * After a superblock is written determine whether it must be written again
9272  * due to a changing unlinked list head.
9273  */
9274 static int
9275 handle_written_sbdep(sbdep, bp)
9276 	struct sbdep *sbdep;
9277 	struct buf *bp;
9278 {
9279 	struct inodedep *inodedep;
9280 	struct mount *mp;
9281 	struct fs *fs;
9282 
9283 	rw_assert(&lk, RA_WLOCKED);
9284 	fs = sbdep->sb_fs;
9285 	mp = UFSTOVFS(sbdep->sb_ump);
9286 	/*
9287 	 * If the superblock doesn't match the in-memory list start over.
9288 	 */
9289 	inodedep = first_unlinked_inodedep(sbdep->sb_ump);
9290 	if ((inodedep && fs->fs_sujfree != inodedep->id_ino) ||
9291 	    (inodedep == NULL && fs->fs_sujfree != 0)) {
9292 		bdirty(bp);
9293 		return (1);
9294 	}
9295 	WORKITEM_FREE(sbdep, D_SBDEP);
9296 	if (fs->fs_sujfree == 0)
9297 		return (0);
9298 	/*
9299 	 * Now that we have a record of this inode in stable store allow it
9300 	 * to be written to free up pending work.  Inodes may see a lot of
9301 	 * write activity after they are unlinked which we must not hold up.
9302 	 */
9303 	for (; inodedep != NULL; inodedep = TAILQ_NEXT(inodedep, id_unlinked)) {
9304 		if ((inodedep->id_state & UNLINKLINKS) != UNLINKLINKS)
9305 			panic("handle_written_sbdep: Bad inodedep %p (0x%X)",
9306 			    inodedep, inodedep->id_state);
9307 		if (inodedep->id_state & UNLINKONLIST)
9308 			break;
9309 		inodedep->id_state |= DEPCOMPLETE | UNLINKONLIST;
9310 	}
9311 
9312 	return (0);
9313 }
9314 
9315 /*
9316  * Mark an inodedep as unlinked and insert it into the in-memory unlinked list.
9317  */
9318 static void
9319 unlinked_inodedep(mp, inodedep)
9320 	struct mount *mp;
9321 	struct inodedep *inodedep;
9322 {
9323 	struct ufsmount *ump;
9324 
9325 	rw_assert(&lk, RA_WLOCKED);
9326 	if (MOUNTEDSUJ(mp) == 0)
9327 		return;
9328 	ump = VFSTOUFS(mp);
9329 	ump->um_fs->fs_fmod = 1;
9330 	if (inodedep->id_state & UNLINKED)
9331 		panic("unlinked_inodedep: %p already unlinked\n", inodedep);
9332 	inodedep->id_state |= UNLINKED;
9333 	TAILQ_INSERT_HEAD(&ump->softdep_unlinked, inodedep, id_unlinked);
9334 }
9335 
9336 /*
9337  * Remove an inodedep from the unlinked inodedep list.  This may require
9338  * disk writes if the inode has made it that far.
9339  */
9340 static void
9341 clear_unlinked_inodedep(inodedep)
9342 	struct inodedep *inodedep;
9343 {
9344 	struct ufsmount *ump;
9345 	struct inodedep *idp;
9346 	struct inodedep *idn;
9347 	struct fs *fs;
9348 	struct buf *bp;
9349 	ino_t ino;
9350 	ino_t nino;
9351 	ino_t pino;
9352 	int error;
9353 
9354 	ump = VFSTOUFS(inodedep->id_list.wk_mp);
9355 	fs = ump->um_fs;
9356 	ino = inodedep->id_ino;
9357 	error = 0;
9358 	for (;;) {
9359 		rw_assert(&lk, RA_WLOCKED);
9360 		KASSERT((inodedep->id_state & UNLINKED) != 0,
9361 		    ("clear_unlinked_inodedep: inodedep %p not unlinked",
9362 		    inodedep));
9363 		/*
9364 		 * If nothing has yet been written simply remove us from
9365 		 * the in memory list and return.  This is the most common
9366 		 * case where handle_workitem_remove() loses the final
9367 		 * reference.
9368 		 */
9369 		if ((inodedep->id_state & UNLINKLINKS) == 0)
9370 			break;
9371 		/*
9372 		 * If we have a NEXT pointer and no PREV pointer we can simply
9373 		 * clear NEXT's PREV and remove ourselves from the list.  Be
9374 		 * careful not to clear PREV if the superblock points at
9375 		 * next as well.
9376 		 */
9377 		idn = TAILQ_NEXT(inodedep, id_unlinked);
9378 		if ((inodedep->id_state & UNLINKLINKS) == UNLINKNEXT) {
9379 			if (idn && fs->fs_sujfree != idn->id_ino)
9380 				idn->id_state &= ~UNLINKPREV;
9381 			break;
9382 		}
9383 		/*
9384 		 * Here we have an inodedep which is actually linked into
9385 		 * the list.  We must remove it by forcing a write to the
9386 		 * link before us, whether it be the superblock or an inode.
9387 		 * Unfortunately the list may change while we're waiting
9388 		 * on the buf lock for either resource so we must loop until
9389 		 * we lock the right one.  If both the superblock and an
9390 		 * inode point to this inode we must clear the inode first
9391 		 * followed by the superblock.
9392 		 */
9393 		idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked);
9394 		pino = 0;
9395 		if (idp && (idp->id_state & UNLINKNEXT))
9396 			pino = idp->id_ino;
9397 		FREE_LOCK(&lk);
9398 		if (pino == 0) {
9399 			bp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc),
9400 			    (int)fs->fs_sbsize, 0, 0, 0);
9401 		} else {
9402 			error = bread(ump->um_devvp,
9403 			    fsbtodb(fs, ino_to_fsba(fs, pino)),
9404 			    (int)fs->fs_bsize, NOCRED, &bp);
9405 			if (error)
9406 				brelse(bp);
9407 		}
9408 		ACQUIRE_LOCK(&lk);
9409 		if (error)
9410 			break;
9411 		/* If the list has changed restart the loop. */
9412 		idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked);
9413 		nino = 0;
9414 		if (idp && (idp->id_state & UNLINKNEXT))
9415 			nino = idp->id_ino;
9416 		if (nino != pino ||
9417 		    (inodedep->id_state & UNLINKPREV) != UNLINKPREV) {
9418 			FREE_LOCK(&lk);
9419 			brelse(bp);
9420 			ACQUIRE_LOCK(&lk);
9421 			continue;
9422 		}
9423 		nino = 0;
9424 		idn = TAILQ_NEXT(inodedep, id_unlinked);
9425 		if (idn)
9426 			nino = idn->id_ino;
9427 		/*
9428 		 * Remove us from the in memory list.  After this we cannot
9429 		 * access the inodedep.
9430 		 */
9431 		KASSERT((inodedep->id_state & UNLINKED) != 0,
9432 		    ("clear_unlinked_inodedep: inodedep %p not unlinked",
9433 		    inodedep));
9434 		inodedep->id_state &= ~(UNLINKED | UNLINKLINKS | UNLINKONLIST);
9435 		TAILQ_REMOVE(&ump->softdep_unlinked, inodedep, id_unlinked);
9436 		FREE_LOCK(&lk);
9437 		/*
9438 		 * The predecessor's next pointer is manually updated here
9439 		 * so that the NEXT flag is never cleared for an element
9440 		 * that is in the list.
9441 		 */
9442 		if (pino == 0) {
9443 			bcopy((caddr_t)fs, bp->b_data, (u_int)fs->fs_sbsize);
9444 			ffs_oldfscompat_write((struct fs *)bp->b_data, ump);
9445 			softdep_setup_sbupdate(ump, (struct fs *)bp->b_data,
9446 			    bp);
9447 		} else if (fs->fs_magic == FS_UFS1_MAGIC)
9448 			((struct ufs1_dinode *)bp->b_data +
9449 			    ino_to_fsbo(fs, pino))->di_freelink = nino;
9450 		else
9451 			((struct ufs2_dinode *)bp->b_data +
9452 			    ino_to_fsbo(fs, pino))->di_freelink = nino;
9453 		/*
9454 		 * If the bwrite fails we have no recourse to recover.  The
9455 		 * filesystem is corrupted already.
9456 		 */
9457 		bwrite(bp);
9458 		ACQUIRE_LOCK(&lk);
9459 		/*
9460 		 * If the superblock pointer still needs to be cleared force
9461 		 * a write here.
9462 		 */
9463 		if (fs->fs_sujfree == ino) {
9464 			FREE_LOCK(&lk);
9465 			bp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc),
9466 			    (int)fs->fs_sbsize, 0, 0, 0);
9467 			bcopy((caddr_t)fs, bp->b_data, (u_int)fs->fs_sbsize);
9468 			ffs_oldfscompat_write((struct fs *)bp->b_data, ump);
9469 			softdep_setup_sbupdate(ump, (struct fs *)bp->b_data,
9470 			    bp);
9471 			bwrite(bp);
9472 			ACQUIRE_LOCK(&lk);
9473 		}
9474 
9475 		if (fs->fs_sujfree != ino)
9476 			return;
9477 		panic("clear_unlinked_inodedep: Failed to clear free head");
9478 	}
9479 	if (inodedep->id_ino == fs->fs_sujfree)
9480 		panic("clear_unlinked_inodedep: Freeing head of free list");
9481 	inodedep->id_state &= ~(UNLINKED | UNLINKLINKS | UNLINKONLIST);
9482 	TAILQ_REMOVE(&ump->softdep_unlinked, inodedep, id_unlinked);
9483 	return;
9484 }
9485 
9486 /*
9487  * This workitem decrements the inode's link count.
9488  * If the link count reaches zero, the file is removed.
9489  */
9490 static int
9491 handle_workitem_remove(dirrem, flags)
9492 	struct dirrem *dirrem;
9493 	int flags;
9494 {
9495 	struct inodedep *inodedep;
9496 	struct workhead dotdotwk;
9497 	struct worklist *wk;
9498 	struct ufsmount *ump;
9499 	struct mount *mp;
9500 	struct vnode *vp;
9501 	struct inode *ip;
9502 	ino_t oldinum;
9503 
9504 	if (dirrem->dm_state & ONWORKLIST)
9505 		panic("handle_workitem_remove: dirrem %p still on worklist",
9506 		    dirrem);
9507 	oldinum = dirrem->dm_oldinum;
9508 	mp = dirrem->dm_list.wk_mp;
9509 	ump = VFSTOUFS(mp);
9510 	flags |= LK_EXCLUSIVE;
9511 	if (ffs_vgetf(mp, oldinum, flags, &vp, FFSV_FORCEINSMQ) != 0)
9512 		return (EBUSY);
9513 	ip = VTOI(vp);
9514 	ACQUIRE_LOCK(&lk);
9515 	if ((inodedep_lookup(mp, oldinum, 0, &inodedep)) == 0)
9516 		panic("handle_workitem_remove: lost inodedep");
9517 	if (dirrem->dm_state & ONDEPLIST)
9518 		LIST_REMOVE(dirrem, dm_inonext);
9519 	KASSERT(LIST_EMPTY(&dirrem->dm_jremrefhd),
9520 	    ("handle_workitem_remove:  Journal entries not written."));
9521 
9522 	/*
9523 	 * Move all dependencies waiting on the remove to complete
9524 	 * from the dirrem to the inode inowait list to be completed
9525 	 * after the inode has been updated and written to disk.  Any
9526 	 * marked MKDIR_PARENT are saved to be completed when the .. ref
9527 	 * is removed.
9528 	 */
9529 	LIST_INIT(&dotdotwk);
9530 	while ((wk = LIST_FIRST(&dirrem->dm_jwork)) != NULL) {
9531 		WORKLIST_REMOVE(wk);
9532 		if (wk->wk_state & MKDIR_PARENT) {
9533 			wk->wk_state &= ~MKDIR_PARENT;
9534 			WORKLIST_INSERT(&dotdotwk, wk);
9535 			continue;
9536 		}
9537 		WORKLIST_INSERT(&inodedep->id_inowait, wk);
9538 	}
9539 	LIST_SWAP(&dirrem->dm_jwork, &dotdotwk, worklist, wk_list);
9540 	/*
9541 	 * Normal file deletion.
9542 	 */
9543 	if ((dirrem->dm_state & RMDIR) == 0) {
9544 		ip->i_nlink--;
9545 		DIP_SET(ip, i_nlink, ip->i_nlink);
9546 		ip->i_flag |= IN_CHANGE;
9547 		if (ip->i_nlink < ip->i_effnlink)
9548 			panic("handle_workitem_remove: bad file delta");
9549 		if (ip->i_nlink == 0)
9550 			unlinked_inodedep(mp, inodedep);
9551 		inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
9552 		KASSERT(LIST_EMPTY(&dirrem->dm_jwork),
9553 		    ("handle_workitem_remove: worklist not empty. %s",
9554 		    TYPENAME(LIST_FIRST(&dirrem->dm_jwork)->wk_type)));
9555 		WORKITEM_FREE(dirrem, D_DIRREM);
9556 		FREE_LOCK(&lk);
9557 		goto out;
9558 	}
9559 	/*
9560 	 * Directory deletion. Decrement reference count for both the
9561 	 * just deleted parent directory entry and the reference for ".".
9562 	 * Arrange to have the reference count on the parent decremented
9563 	 * to account for the loss of "..".
9564 	 */
9565 	ip->i_nlink -= 2;
9566 	DIP_SET(ip, i_nlink, ip->i_nlink);
9567 	ip->i_flag |= IN_CHANGE;
9568 	if (ip->i_nlink < ip->i_effnlink)
9569 		panic("handle_workitem_remove: bad dir delta");
9570 	if (ip->i_nlink == 0)
9571 		unlinked_inodedep(mp, inodedep);
9572 	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
9573 	/*
9574 	 * Rename a directory to a new parent. Since, we are both deleting
9575 	 * and creating a new directory entry, the link count on the new
9576 	 * directory should not change. Thus we skip the followup dirrem.
9577 	 */
9578 	if (dirrem->dm_state & DIRCHG) {
9579 		KASSERT(LIST_EMPTY(&dirrem->dm_jwork),
9580 		    ("handle_workitem_remove: DIRCHG and worklist not empty."));
9581 		WORKITEM_FREE(dirrem, D_DIRREM);
9582 		FREE_LOCK(&lk);
9583 		goto out;
9584 	}
9585 	dirrem->dm_state = ONDEPLIST;
9586 	dirrem->dm_oldinum = dirrem->dm_dirinum;
9587 	/*
9588 	 * Place the dirrem on the parent's diremhd list.
9589 	 */
9590 	if (inodedep_lookup(mp, dirrem->dm_oldinum, 0, &inodedep) == 0)
9591 		panic("handle_workitem_remove: lost dir inodedep");
9592 	LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext);
9593 	/*
9594 	 * If the allocated inode has never been written to disk, then
9595 	 * the on-disk inode is zero'ed and we can remove the file
9596 	 * immediately.  When journaling if the inode has been marked
9597 	 * unlinked and not DEPCOMPLETE we know it can never be written.
9598 	 */
9599 	inodedep_lookup(mp, oldinum, 0, &inodedep);
9600 	if (inodedep == NULL ||
9601 	    (inodedep->id_state & (DEPCOMPLETE | UNLINKED)) == UNLINKED ||
9602 	    check_inode_unwritten(inodedep)) {
9603 		FREE_LOCK(&lk);
9604 		vput(vp);
9605 		return handle_workitem_remove(dirrem, flags);
9606 	}
9607 	WORKLIST_INSERT(&inodedep->id_inowait, &dirrem->dm_list);
9608 	FREE_LOCK(&lk);
9609 	ip->i_flag |= IN_CHANGE;
9610 out:
9611 	ffs_update(vp, 0);
9612 	vput(vp);
9613 	return (0);
9614 }
9615 
9616 /*
9617  * Inode de-allocation dependencies.
9618  *
9619  * When an inode's link count is reduced to zero, it can be de-allocated. We
9620  * found it convenient to postpone de-allocation until after the inode is
9621  * written to disk with its new link count (zero).  At this point, all of the
9622  * on-disk inode's block pointers are nullified and, with careful dependency
9623  * list ordering, all dependencies related to the inode will be satisfied and
9624  * the corresponding dependency structures de-allocated.  So, if/when the
9625  * inode is reused, there will be no mixing of old dependencies with new
9626  * ones.  This artificial dependency is set up by the block de-allocation
9627  * procedure above (softdep_setup_freeblocks) and completed by the
9628  * following procedure.
9629  */
9630 static void
9631 handle_workitem_freefile(freefile)
9632 	struct freefile *freefile;
9633 {
9634 	struct workhead wkhd;
9635 	struct fs *fs;
9636 	struct inodedep *idp;
9637 	struct ufsmount *ump;
9638 	int error;
9639 
9640 	ump = VFSTOUFS(freefile->fx_list.wk_mp);
9641 	fs = ump->um_fs;
9642 #ifdef DEBUG
9643 	ACQUIRE_LOCK(&lk);
9644 	error = inodedep_lookup(UFSTOVFS(ump), freefile->fx_oldinum, 0, &idp);
9645 	FREE_LOCK(&lk);
9646 	if (error)
9647 		panic("handle_workitem_freefile: inodedep %p survived", idp);
9648 #endif
9649 	UFS_LOCK(ump);
9650 	fs->fs_pendinginodes -= 1;
9651 	UFS_UNLOCK(ump);
9652 	LIST_INIT(&wkhd);
9653 	LIST_SWAP(&freefile->fx_jwork, &wkhd, worklist, wk_list);
9654 	if ((error = ffs_freefile(ump, fs, freefile->fx_devvp,
9655 	    freefile->fx_oldinum, freefile->fx_mode, &wkhd)) != 0)
9656 		softdep_error("handle_workitem_freefile", error);
9657 	ACQUIRE_LOCK(&lk);
9658 	WORKITEM_FREE(freefile, D_FREEFILE);
9659 	FREE_LOCK(&lk);
9660 }
9661 
9662 
9663 /*
9664  * Helper function which unlinks marker element from work list and returns
9665  * the next element on the list.
9666  */
9667 static __inline struct worklist *
9668 markernext(struct worklist *marker)
9669 {
9670 	struct worklist *next;
9671 
9672 	next = LIST_NEXT(marker, wk_list);
9673 	LIST_REMOVE(marker, wk_list);
9674 	return next;
9675 }
9676 
9677 /*
9678  * Disk writes.
9679  *
9680  * The dependency structures constructed above are most actively used when file
9681  * system blocks are written to disk.  No constraints are placed on when a
9682  * block can be written, but unsatisfied update dependencies are made safe by
9683  * modifying (or replacing) the source memory for the duration of the disk
9684  * write.  When the disk write completes, the memory block is again brought
9685  * up-to-date.
9686  *
9687  * In-core inode structure reclamation.
9688  *
9689  * Because there are a finite number of "in-core" inode structures, they are
9690  * reused regularly.  By transferring all inode-related dependencies to the
9691  * in-memory inode block and indexing them separately (via "inodedep"s), we
9692  * can allow "in-core" inode structures to be reused at any time and avoid
9693  * any increase in contention.
9694  *
9695  * Called just before entering the device driver to initiate a new disk I/O.
9696  * The buffer must be locked, thus, no I/O completion operations can occur
9697  * while we are manipulating its associated dependencies.
9698  */
9699 static void
9700 softdep_disk_io_initiation(bp)
9701 	struct buf *bp;		/* structure describing disk write to occur */
9702 {
9703 	struct worklist *wk;
9704 	struct worklist marker;
9705 	struct inodedep *inodedep;
9706 	struct freeblks *freeblks;
9707 	struct jblkdep *jblkdep;
9708 	struct newblk *newblk;
9709 
9710 	/*
9711 	 * We only care about write operations. There should never
9712 	 * be dependencies for reads.
9713 	 */
9714 	if (bp->b_iocmd != BIO_WRITE)
9715 		panic("softdep_disk_io_initiation: not write");
9716 
9717 	if (bp->b_vflags & BV_BKGRDINPROG)
9718 		panic("softdep_disk_io_initiation: Writing buffer with "
9719 		    "background write in progress: %p", bp);
9720 
9721 	marker.wk_type = D_LAST + 1;	/* Not a normal workitem */
9722 	PHOLD(curproc);			/* Don't swap out kernel stack */
9723 
9724 	ACQUIRE_LOCK(&lk);
9725 	/*
9726 	 * Do any necessary pre-I/O processing.
9727 	 */
9728 	for (wk = LIST_FIRST(&bp->b_dep); wk != NULL;
9729 	     wk = markernext(&marker)) {
9730 		LIST_INSERT_AFTER(wk, &marker, wk_list);
9731 		switch (wk->wk_type) {
9732 
9733 		case D_PAGEDEP:
9734 			initiate_write_filepage(WK_PAGEDEP(wk), bp);
9735 			continue;
9736 
9737 		case D_INODEDEP:
9738 			inodedep = WK_INODEDEP(wk);
9739 			if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC)
9740 				initiate_write_inodeblock_ufs1(inodedep, bp);
9741 			else
9742 				initiate_write_inodeblock_ufs2(inodedep, bp);
9743 			continue;
9744 
9745 		case D_INDIRDEP:
9746 			initiate_write_indirdep(WK_INDIRDEP(wk), bp);
9747 			continue;
9748 
9749 		case D_BMSAFEMAP:
9750 			initiate_write_bmsafemap(WK_BMSAFEMAP(wk), bp);
9751 			continue;
9752 
9753 		case D_JSEG:
9754 			WK_JSEG(wk)->js_buf = NULL;
9755 			continue;
9756 
9757 		case D_FREEBLKS:
9758 			freeblks = WK_FREEBLKS(wk);
9759 			jblkdep = LIST_FIRST(&freeblks->fb_jblkdephd);
9760 			/*
9761 			 * We have to wait for the freeblks to be journaled
9762 			 * before we can write an inodeblock with updated
9763 			 * pointers.  Be careful to arrange the marker so
9764 			 * we revisit the freeblks if it's not removed by
9765 			 * the first jwait().
9766 			 */
9767 			if (jblkdep != NULL) {
9768 				LIST_REMOVE(&marker, wk_list);
9769 				LIST_INSERT_BEFORE(wk, &marker, wk_list);
9770 				jwait(&jblkdep->jb_list, MNT_WAIT);
9771 			}
9772 			continue;
9773 		case D_ALLOCDIRECT:
9774 		case D_ALLOCINDIR:
9775 			/*
9776 			 * We have to wait for the jnewblk to be journaled
9777 			 * before we can write to a block if the contents
9778 			 * may be confused with an earlier file's indirect
9779 			 * at recovery time.  Handle the marker as described
9780 			 * above.
9781 			 */
9782 			newblk = WK_NEWBLK(wk);
9783 			if (newblk->nb_jnewblk != NULL &&
9784 			    indirblk_lookup(newblk->nb_list.wk_mp,
9785 			    newblk->nb_newblkno)) {
9786 				LIST_REMOVE(&marker, wk_list);
9787 				LIST_INSERT_BEFORE(wk, &marker, wk_list);
9788 				jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT);
9789 			}
9790 			continue;
9791 
9792 		case D_SBDEP:
9793 			initiate_write_sbdep(WK_SBDEP(wk));
9794 			continue;
9795 
9796 		case D_MKDIR:
9797 		case D_FREEWORK:
9798 		case D_FREEDEP:
9799 		case D_JSEGDEP:
9800 			continue;
9801 
9802 		default:
9803 			panic("handle_disk_io_initiation: Unexpected type %s",
9804 			    TYPENAME(wk->wk_type));
9805 			/* NOTREACHED */
9806 		}
9807 	}
9808 	FREE_LOCK(&lk);
9809 	PRELE(curproc);			/* Allow swapout of kernel stack */
9810 }
9811 
9812 /*
9813  * Called from within the procedure above to deal with unsatisfied
9814  * allocation dependencies in a directory. The buffer must be locked,
9815  * thus, no I/O completion operations can occur while we are
9816  * manipulating its associated dependencies.
9817  */
9818 static void
9819 initiate_write_filepage(pagedep, bp)
9820 	struct pagedep *pagedep;
9821 	struct buf *bp;
9822 {
9823 	struct jremref *jremref;
9824 	struct jmvref *jmvref;
9825 	struct dirrem *dirrem;
9826 	struct diradd *dap;
9827 	struct direct *ep;
9828 	int i;
9829 
9830 	if (pagedep->pd_state & IOSTARTED) {
9831 		/*
9832 		 * This can only happen if there is a driver that does not
9833 		 * understand chaining. Here biodone will reissue the call
9834 		 * to strategy for the incomplete buffers.
9835 		 */
9836 		printf("initiate_write_filepage: already started\n");
9837 		return;
9838 	}
9839 	pagedep->pd_state |= IOSTARTED;
9840 	/*
9841 	 * Wait for all journal remove dependencies to hit the disk.
9842 	 * We can not allow any potentially conflicting directory adds
9843 	 * to be visible before removes and rollback is too difficult.
9844 	 * lk may be dropped and re-acquired, however we hold the buf
9845 	 * locked so the dependency can not go away.
9846 	 */
9847 	LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next)
9848 		while ((jremref = LIST_FIRST(&dirrem->dm_jremrefhd)) != NULL)
9849 			jwait(&jremref->jr_list, MNT_WAIT);
9850 	while ((jmvref = LIST_FIRST(&pagedep->pd_jmvrefhd)) != NULL)
9851 		jwait(&jmvref->jm_list, MNT_WAIT);
9852 	for (i = 0; i < DAHASHSZ; i++) {
9853 		LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) {
9854 			ep = (struct direct *)
9855 			    ((char *)bp->b_data + dap->da_offset);
9856 			if (ep->d_ino != dap->da_newinum)
9857 				panic("%s: dir inum %ju != new %ju",
9858 				    "initiate_write_filepage",
9859 				    (uintmax_t)ep->d_ino,
9860 				    (uintmax_t)dap->da_newinum);
9861 			if (dap->da_state & DIRCHG)
9862 				ep->d_ino = dap->da_previous->dm_oldinum;
9863 			else
9864 				ep->d_ino = 0;
9865 			dap->da_state &= ~ATTACHED;
9866 			dap->da_state |= UNDONE;
9867 		}
9868 	}
9869 }
9870 
9871 /*
9872  * Version of initiate_write_inodeblock that handles UFS1 dinodes.
9873  * Note that any bug fixes made to this routine must be done in the
9874  * version found below.
9875  *
9876  * Called from within the procedure above to deal with unsatisfied
9877  * allocation dependencies in an inodeblock. The buffer must be
9878  * locked, thus, no I/O completion operations can occur while we
9879  * are manipulating its associated dependencies.
9880  */
9881 static void
9882 initiate_write_inodeblock_ufs1(inodedep, bp)
9883 	struct inodedep *inodedep;
9884 	struct buf *bp;			/* The inode block */
9885 {
9886 	struct allocdirect *adp, *lastadp;
9887 	struct ufs1_dinode *dp;
9888 	struct ufs1_dinode *sip;
9889 	struct inoref *inoref;
9890 	struct fs *fs;
9891 	ufs_lbn_t i;
9892 #ifdef INVARIANTS
9893 	ufs_lbn_t prevlbn = 0;
9894 #endif
9895 	int deplist;
9896 
9897 	if (inodedep->id_state & IOSTARTED)
9898 		panic("initiate_write_inodeblock_ufs1: already started");
9899 	inodedep->id_state |= IOSTARTED;
9900 	fs = inodedep->id_fs;
9901 	dp = (struct ufs1_dinode *)bp->b_data +
9902 	    ino_to_fsbo(fs, inodedep->id_ino);
9903 
9904 	/*
9905 	 * If we're on the unlinked list but have not yet written our
9906 	 * next pointer initialize it here.
9907 	 */
9908 	if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) {
9909 		struct inodedep *inon;
9910 
9911 		inon = TAILQ_NEXT(inodedep, id_unlinked);
9912 		dp->di_freelink = inon ? inon->id_ino : 0;
9913 	}
9914 	/*
9915 	 * If the bitmap is not yet written, then the allocated
9916 	 * inode cannot be written to disk.
9917 	 */
9918 	if ((inodedep->id_state & DEPCOMPLETE) == 0) {
9919 		if (inodedep->id_savedino1 != NULL)
9920 			panic("initiate_write_inodeblock_ufs1: I/O underway");
9921 		FREE_LOCK(&lk);
9922 		sip = malloc(sizeof(struct ufs1_dinode),
9923 		    M_SAVEDINO, M_SOFTDEP_FLAGS);
9924 		ACQUIRE_LOCK(&lk);
9925 		inodedep->id_savedino1 = sip;
9926 		*inodedep->id_savedino1 = *dp;
9927 		bzero((caddr_t)dp, sizeof(struct ufs1_dinode));
9928 		dp->di_gen = inodedep->id_savedino1->di_gen;
9929 		dp->di_freelink = inodedep->id_savedino1->di_freelink;
9930 		return;
9931 	}
9932 	/*
9933 	 * If no dependencies, then there is nothing to roll back.
9934 	 */
9935 	inodedep->id_savedsize = dp->di_size;
9936 	inodedep->id_savedextsize = 0;
9937 	inodedep->id_savednlink = dp->di_nlink;
9938 	if (TAILQ_EMPTY(&inodedep->id_inoupdt) &&
9939 	    TAILQ_EMPTY(&inodedep->id_inoreflst))
9940 		return;
9941 	/*
9942 	 * Revert the link count to that of the first unwritten journal entry.
9943 	 */
9944 	inoref = TAILQ_FIRST(&inodedep->id_inoreflst);
9945 	if (inoref)
9946 		dp->di_nlink = inoref->if_nlink;
9947 	/*
9948 	 * Set the dependencies to busy.
9949 	 */
9950 	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
9951 	     adp = TAILQ_NEXT(adp, ad_next)) {
9952 #ifdef INVARIANTS
9953 		if (deplist != 0 && prevlbn >= adp->ad_offset)
9954 			panic("softdep_write_inodeblock: lbn order");
9955 		prevlbn = adp->ad_offset;
9956 		if (adp->ad_offset < NDADDR &&
9957 		    dp->di_db[adp->ad_offset] != adp->ad_newblkno)
9958 			panic("%s: direct pointer #%jd mismatch %d != %jd",
9959 			    "softdep_write_inodeblock",
9960 			    (intmax_t)adp->ad_offset,
9961 			    dp->di_db[adp->ad_offset],
9962 			    (intmax_t)adp->ad_newblkno);
9963 		if (adp->ad_offset >= NDADDR &&
9964 		    dp->di_ib[adp->ad_offset - NDADDR] != adp->ad_newblkno)
9965 			panic("%s: indirect pointer #%jd mismatch %d != %jd",
9966 			    "softdep_write_inodeblock",
9967 			    (intmax_t)adp->ad_offset - NDADDR,
9968 			    dp->di_ib[adp->ad_offset - NDADDR],
9969 			    (intmax_t)adp->ad_newblkno);
9970 		deplist |= 1 << adp->ad_offset;
9971 		if ((adp->ad_state & ATTACHED) == 0)
9972 			panic("softdep_write_inodeblock: Unknown state 0x%x",
9973 			    adp->ad_state);
9974 #endif /* INVARIANTS */
9975 		adp->ad_state &= ~ATTACHED;
9976 		adp->ad_state |= UNDONE;
9977 	}
9978 	/*
9979 	 * The on-disk inode cannot claim to be any larger than the last
9980 	 * fragment that has been written. Otherwise, the on-disk inode
9981 	 * might have fragments that were not the last block in the file
9982 	 * which would corrupt the filesystem.
9983 	 */
9984 	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
9985 	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
9986 		if (adp->ad_offset >= NDADDR)
9987 			break;
9988 		dp->di_db[adp->ad_offset] = adp->ad_oldblkno;
9989 		/* keep going until hitting a rollback to a frag */
9990 		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
9991 			continue;
9992 		dp->di_size = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize;
9993 		for (i = adp->ad_offset + 1; i < NDADDR; i++) {
9994 #ifdef INVARIANTS
9995 			if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0)
9996 				panic("softdep_write_inodeblock: lost dep1");
9997 #endif /* INVARIANTS */
9998 			dp->di_db[i] = 0;
9999 		}
10000 		for (i = 0; i < NIADDR; i++) {
10001 #ifdef INVARIANTS
10002 			if (dp->di_ib[i] != 0 &&
10003 			    (deplist & ((1 << NDADDR) << i)) == 0)
10004 				panic("softdep_write_inodeblock: lost dep2");
10005 #endif /* INVARIANTS */
10006 			dp->di_ib[i] = 0;
10007 		}
10008 		return;
10009 	}
10010 	/*
10011 	 * If we have zero'ed out the last allocated block of the file,
10012 	 * roll back the size to the last currently allocated block.
10013 	 * We know that this last allocated block is a full-sized as
10014 	 * we already checked for fragments in the loop above.
10015 	 */
10016 	if (lastadp != NULL &&
10017 	    dp->di_size <= (lastadp->ad_offset + 1) * fs->fs_bsize) {
10018 		for (i = lastadp->ad_offset; i >= 0; i--)
10019 			if (dp->di_db[i] != 0)
10020 				break;
10021 		dp->di_size = (i + 1) * fs->fs_bsize;
10022 	}
10023 	/*
10024 	 * The only dependencies are for indirect blocks.
10025 	 *
10026 	 * The file size for indirect block additions is not guaranteed.
10027 	 * Such a guarantee would be non-trivial to achieve. The conventional
10028 	 * synchronous write implementation also does not make this guarantee.
10029 	 * Fsck should catch and fix discrepancies. Arguably, the file size
10030 	 * can be over-estimated without destroying integrity when the file
10031 	 * moves into the indirect blocks (i.e., is large). If we want to
10032 	 * postpone fsck, we are stuck with this argument.
10033 	 */
10034 	for (; adp; adp = TAILQ_NEXT(adp, ad_next))
10035 		dp->di_ib[adp->ad_offset - NDADDR] = 0;
10036 }
10037 
10038 /*
10039  * Version of initiate_write_inodeblock that handles UFS2 dinodes.
10040  * Note that any bug fixes made to this routine must be done in the
10041  * version found above.
10042  *
10043  * Called from within the procedure above to deal with unsatisfied
10044  * allocation dependencies in an inodeblock. The buffer must be
10045  * locked, thus, no I/O completion operations can occur while we
10046  * are manipulating its associated dependencies.
10047  */
10048 static void
10049 initiate_write_inodeblock_ufs2(inodedep, bp)
10050 	struct inodedep *inodedep;
10051 	struct buf *bp;			/* The inode block */
10052 {
10053 	struct allocdirect *adp, *lastadp;
10054 	struct ufs2_dinode *dp;
10055 	struct ufs2_dinode *sip;
10056 	struct inoref *inoref;
10057 	struct fs *fs;
10058 	ufs_lbn_t i;
10059 #ifdef INVARIANTS
10060 	ufs_lbn_t prevlbn = 0;
10061 #endif
10062 	int deplist;
10063 
10064 	if (inodedep->id_state & IOSTARTED)
10065 		panic("initiate_write_inodeblock_ufs2: already started");
10066 	inodedep->id_state |= IOSTARTED;
10067 	fs = inodedep->id_fs;
10068 	dp = (struct ufs2_dinode *)bp->b_data +
10069 	    ino_to_fsbo(fs, inodedep->id_ino);
10070 
10071 	/*
10072 	 * If we're on the unlinked list but have not yet written our
10073 	 * next pointer initialize it here.
10074 	 */
10075 	if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) {
10076 		struct inodedep *inon;
10077 
10078 		inon = TAILQ_NEXT(inodedep, id_unlinked);
10079 		dp->di_freelink = inon ? inon->id_ino : 0;
10080 	}
10081 	/*
10082 	 * If the bitmap is not yet written, then the allocated
10083 	 * inode cannot be written to disk.
10084 	 */
10085 	if ((inodedep->id_state & DEPCOMPLETE) == 0) {
10086 		if (inodedep->id_savedino2 != NULL)
10087 			panic("initiate_write_inodeblock_ufs2: I/O underway");
10088 		FREE_LOCK(&lk);
10089 		sip = malloc(sizeof(struct ufs2_dinode),
10090 		    M_SAVEDINO, M_SOFTDEP_FLAGS);
10091 		ACQUIRE_LOCK(&lk);
10092 		inodedep->id_savedino2 = sip;
10093 		*inodedep->id_savedino2 = *dp;
10094 		bzero((caddr_t)dp, sizeof(struct ufs2_dinode));
10095 		dp->di_gen = inodedep->id_savedino2->di_gen;
10096 		dp->di_freelink = inodedep->id_savedino2->di_freelink;
10097 		return;
10098 	}
10099 	/*
10100 	 * If no dependencies, then there is nothing to roll back.
10101 	 */
10102 	inodedep->id_savedsize = dp->di_size;
10103 	inodedep->id_savedextsize = dp->di_extsize;
10104 	inodedep->id_savednlink = dp->di_nlink;
10105 	if (TAILQ_EMPTY(&inodedep->id_inoupdt) &&
10106 	    TAILQ_EMPTY(&inodedep->id_extupdt) &&
10107 	    TAILQ_EMPTY(&inodedep->id_inoreflst))
10108 		return;
10109 	/*
10110 	 * Revert the link count to that of the first unwritten journal entry.
10111 	 */
10112 	inoref = TAILQ_FIRST(&inodedep->id_inoreflst);
10113 	if (inoref)
10114 		dp->di_nlink = inoref->if_nlink;
10115 
10116 	/*
10117 	 * Set the ext data dependencies to busy.
10118 	 */
10119 	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp;
10120 	     adp = TAILQ_NEXT(adp, ad_next)) {
10121 #ifdef INVARIANTS
10122 		if (deplist != 0 && prevlbn >= adp->ad_offset)
10123 			panic("softdep_write_inodeblock: lbn order");
10124 		prevlbn = adp->ad_offset;
10125 		if (dp->di_extb[adp->ad_offset] != adp->ad_newblkno)
10126 			panic("%s: direct pointer #%jd mismatch %jd != %jd",
10127 			    "softdep_write_inodeblock",
10128 			    (intmax_t)adp->ad_offset,
10129 			    (intmax_t)dp->di_extb[adp->ad_offset],
10130 			    (intmax_t)adp->ad_newblkno);
10131 		deplist |= 1 << adp->ad_offset;
10132 		if ((adp->ad_state & ATTACHED) == 0)
10133 			panic("softdep_write_inodeblock: Unknown state 0x%x",
10134 			    adp->ad_state);
10135 #endif /* INVARIANTS */
10136 		adp->ad_state &= ~ATTACHED;
10137 		adp->ad_state |= UNDONE;
10138 	}
10139 	/*
10140 	 * The on-disk inode cannot claim to be any larger than the last
10141 	 * fragment that has been written. Otherwise, the on-disk inode
10142 	 * might have fragments that were not the last block in the ext
10143 	 * data which would corrupt the filesystem.
10144 	 */
10145 	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp;
10146 	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
10147 		dp->di_extb[adp->ad_offset] = adp->ad_oldblkno;
10148 		/* keep going until hitting a rollback to a frag */
10149 		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
10150 			continue;
10151 		dp->di_extsize = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize;
10152 		for (i = adp->ad_offset + 1; i < NXADDR; i++) {
10153 #ifdef INVARIANTS
10154 			if (dp->di_extb[i] != 0 && (deplist & (1 << i)) == 0)
10155 				panic("softdep_write_inodeblock: lost dep1");
10156 #endif /* INVARIANTS */
10157 			dp->di_extb[i] = 0;
10158 		}
10159 		lastadp = NULL;
10160 		break;
10161 	}
10162 	/*
10163 	 * If we have zero'ed out the last allocated block of the ext
10164 	 * data, roll back the size to the last currently allocated block.
10165 	 * We know that this last allocated block is a full-sized as
10166 	 * we already checked for fragments in the loop above.
10167 	 */
10168 	if (lastadp != NULL &&
10169 	    dp->di_extsize <= (lastadp->ad_offset + 1) * fs->fs_bsize) {
10170 		for (i = lastadp->ad_offset; i >= 0; i--)
10171 			if (dp->di_extb[i] != 0)
10172 				break;
10173 		dp->di_extsize = (i + 1) * fs->fs_bsize;
10174 	}
10175 	/*
10176 	 * Set the file data dependencies to busy.
10177 	 */
10178 	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
10179 	     adp = TAILQ_NEXT(adp, ad_next)) {
10180 #ifdef INVARIANTS
10181 		if (deplist != 0 && prevlbn >= adp->ad_offset)
10182 			panic("softdep_write_inodeblock: lbn order");
10183 		if ((adp->ad_state & ATTACHED) == 0)
10184 			panic("inodedep %p and adp %p not attached", inodedep, adp);
10185 		prevlbn = adp->ad_offset;
10186 		if (adp->ad_offset < NDADDR &&
10187 		    dp->di_db[adp->ad_offset] != adp->ad_newblkno)
10188 			panic("%s: direct pointer #%jd mismatch %jd != %jd",
10189 			    "softdep_write_inodeblock",
10190 			    (intmax_t)adp->ad_offset,
10191 			    (intmax_t)dp->di_db[adp->ad_offset],
10192 			    (intmax_t)adp->ad_newblkno);
10193 		if (adp->ad_offset >= NDADDR &&
10194 		    dp->di_ib[adp->ad_offset - NDADDR] != adp->ad_newblkno)
10195 			panic("%s indirect pointer #%jd mismatch %jd != %jd",
10196 			    "softdep_write_inodeblock:",
10197 			    (intmax_t)adp->ad_offset - NDADDR,
10198 			    (intmax_t)dp->di_ib[adp->ad_offset - NDADDR],
10199 			    (intmax_t)adp->ad_newblkno);
10200 		deplist |= 1 << adp->ad_offset;
10201 		if ((adp->ad_state & ATTACHED) == 0)
10202 			panic("softdep_write_inodeblock: Unknown state 0x%x",
10203 			    adp->ad_state);
10204 #endif /* INVARIANTS */
10205 		adp->ad_state &= ~ATTACHED;
10206 		adp->ad_state |= UNDONE;
10207 	}
10208 	/*
10209 	 * The on-disk inode cannot claim to be any larger than the last
10210 	 * fragment that has been written. Otherwise, the on-disk inode
10211 	 * might have fragments that were not the last block in the file
10212 	 * which would corrupt the filesystem.
10213 	 */
10214 	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
10215 	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
10216 		if (adp->ad_offset >= NDADDR)
10217 			break;
10218 		dp->di_db[adp->ad_offset] = adp->ad_oldblkno;
10219 		/* keep going until hitting a rollback to a frag */
10220 		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
10221 			continue;
10222 		dp->di_size = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize;
10223 		for (i = adp->ad_offset + 1; i < NDADDR; i++) {
10224 #ifdef INVARIANTS
10225 			if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0)
10226 				panic("softdep_write_inodeblock: lost dep2");
10227 #endif /* INVARIANTS */
10228 			dp->di_db[i] = 0;
10229 		}
10230 		for (i = 0; i < NIADDR; i++) {
10231 #ifdef INVARIANTS
10232 			if (dp->di_ib[i] != 0 &&
10233 			    (deplist & ((1 << NDADDR) << i)) == 0)
10234 				panic("softdep_write_inodeblock: lost dep3");
10235 #endif /* INVARIANTS */
10236 			dp->di_ib[i] = 0;
10237 		}
10238 		return;
10239 	}
10240 	/*
10241 	 * If we have zero'ed out the last allocated block of the file,
10242 	 * roll back the size to the last currently allocated block.
10243 	 * We know that this last allocated block is a full-sized as
10244 	 * we already checked for fragments in the loop above.
10245 	 */
10246 	if (lastadp != NULL &&
10247 	    dp->di_size <= (lastadp->ad_offset + 1) * fs->fs_bsize) {
10248 		for (i = lastadp->ad_offset; i >= 0; i--)
10249 			if (dp->di_db[i] != 0)
10250 				break;
10251 		dp->di_size = (i + 1) * fs->fs_bsize;
10252 	}
10253 	/*
10254 	 * The only dependencies are for indirect blocks.
10255 	 *
10256 	 * The file size for indirect block additions is not guaranteed.
10257 	 * Such a guarantee would be non-trivial to achieve. The conventional
10258 	 * synchronous write implementation also does not make this guarantee.
10259 	 * Fsck should catch and fix discrepancies. Arguably, the file size
10260 	 * can be over-estimated without destroying integrity when the file
10261 	 * moves into the indirect blocks (i.e., is large). If we want to
10262 	 * postpone fsck, we are stuck with this argument.
10263 	 */
10264 	for (; adp; adp = TAILQ_NEXT(adp, ad_next))
10265 		dp->di_ib[adp->ad_offset - NDADDR] = 0;
10266 }
10267 
10268 /*
10269  * Cancel an indirdep as a result of truncation.  Release all of the
10270  * children allocindirs and place their journal work on the appropriate
10271  * list.
10272  */
10273 static void
10274 cancel_indirdep(indirdep, bp, freeblks)
10275 	struct indirdep *indirdep;
10276 	struct buf *bp;
10277 	struct freeblks *freeblks;
10278 {
10279 	struct allocindir *aip;
10280 
10281 	/*
10282 	 * None of the indirect pointers will ever be visible,
10283 	 * so they can simply be tossed. GOINGAWAY ensures
10284 	 * that allocated pointers will be saved in the buffer
10285 	 * cache until they are freed. Note that they will
10286 	 * only be able to be found by their physical address
10287 	 * since the inode mapping the logical address will
10288 	 * be gone. The save buffer used for the safe copy
10289 	 * was allocated in setup_allocindir_phase2 using
10290 	 * the physical address so it could be used for this
10291 	 * purpose. Hence we swap the safe copy with the real
10292 	 * copy, allowing the safe copy to be freed and holding
10293 	 * on to the real copy for later use in indir_trunc.
10294 	 */
10295 	if (indirdep->ir_state & GOINGAWAY)
10296 		panic("cancel_indirdep: already gone");
10297 	if ((indirdep->ir_state & DEPCOMPLETE) == 0) {
10298 		indirdep->ir_state |= DEPCOMPLETE;
10299 		LIST_REMOVE(indirdep, ir_next);
10300 	}
10301 	indirdep->ir_state |= GOINGAWAY;
10302 	VFSTOUFS(indirdep->ir_list.wk_mp)->um_numindirdeps += 1;
10303 	/*
10304 	 * Pass in bp for blocks still have journal writes
10305 	 * pending so we can cancel them on their own.
10306 	 */
10307 	while ((aip = LIST_FIRST(&indirdep->ir_deplisthd)) != 0)
10308 		cancel_allocindir(aip, bp, freeblks, 0);
10309 	while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != 0)
10310 		cancel_allocindir(aip, NULL, freeblks, 0);
10311 	while ((aip = LIST_FIRST(&indirdep->ir_writehd)) != 0)
10312 		cancel_allocindir(aip, NULL, freeblks, 0);
10313 	while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != 0)
10314 		cancel_allocindir(aip, NULL, freeblks, 0);
10315 	/*
10316 	 * If there are pending partial truncations we need to keep the
10317 	 * old block copy around until they complete.  This is because
10318 	 * the current b_data is not a perfect superset of the available
10319 	 * blocks.
10320 	 */
10321 	if (TAILQ_EMPTY(&indirdep->ir_trunc))
10322 		bcopy(bp->b_data, indirdep->ir_savebp->b_data, bp->b_bcount);
10323 	else
10324 		bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount);
10325 	WORKLIST_REMOVE(&indirdep->ir_list);
10326 	WORKLIST_INSERT(&indirdep->ir_savebp->b_dep, &indirdep->ir_list);
10327 	indirdep->ir_bp = NULL;
10328 	indirdep->ir_freeblks = freeblks;
10329 }
10330 
10331 /*
10332  * Free an indirdep once it no longer has new pointers to track.
10333  */
10334 static void
10335 free_indirdep(indirdep)
10336 	struct indirdep *indirdep;
10337 {
10338 
10339 	KASSERT(TAILQ_EMPTY(&indirdep->ir_trunc),
10340 	    ("free_indirdep: Indir trunc list not empty."));
10341 	KASSERT(LIST_EMPTY(&indirdep->ir_completehd),
10342 	    ("free_indirdep: Complete head not empty."));
10343 	KASSERT(LIST_EMPTY(&indirdep->ir_writehd),
10344 	    ("free_indirdep: write head not empty."));
10345 	KASSERT(LIST_EMPTY(&indirdep->ir_donehd),
10346 	    ("free_indirdep: done head not empty."));
10347 	KASSERT(LIST_EMPTY(&indirdep->ir_deplisthd),
10348 	    ("free_indirdep: deplist head not empty."));
10349 	KASSERT((indirdep->ir_state & DEPCOMPLETE),
10350 	    ("free_indirdep: %p still on newblk list.", indirdep));
10351 	KASSERT(indirdep->ir_saveddata == NULL,
10352 	    ("free_indirdep: %p still has saved data.", indirdep));
10353 	if (indirdep->ir_state & ONWORKLIST)
10354 		WORKLIST_REMOVE(&indirdep->ir_list);
10355 	WORKITEM_FREE(indirdep, D_INDIRDEP);
10356 }
10357 
10358 /*
10359  * Called before a write to an indirdep.  This routine is responsible for
10360  * rolling back pointers to a safe state which includes only those
10361  * allocindirs which have been completed.
10362  */
10363 static void
10364 initiate_write_indirdep(indirdep, bp)
10365 	struct indirdep *indirdep;
10366 	struct buf *bp;
10367 {
10368 
10369 	indirdep->ir_state |= IOSTARTED;
10370 	if (indirdep->ir_state & GOINGAWAY)
10371 		panic("disk_io_initiation: indirdep gone");
10372 	/*
10373 	 * If there are no remaining dependencies, this will be writing
10374 	 * the real pointers.
10375 	 */
10376 	if (LIST_EMPTY(&indirdep->ir_deplisthd) &&
10377 	    TAILQ_EMPTY(&indirdep->ir_trunc))
10378 		return;
10379 	/*
10380 	 * Replace up-to-date version with safe version.
10381 	 */
10382 	if (indirdep->ir_saveddata == NULL) {
10383 		FREE_LOCK(&lk);
10384 		indirdep->ir_saveddata = malloc(bp->b_bcount, M_INDIRDEP,
10385 		    M_SOFTDEP_FLAGS);
10386 		ACQUIRE_LOCK(&lk);
10387 	}
10388 	indirdep->ir_state &= ~ATTACHED;
10389 	indirdep->ir_state |= UNDONE;
10390 	bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount);
10391 	bcopy(indirdep->ir_savebp->b_data, bp->b_data,
10392 	    bp->b_bcount);
10393 }
10394 
10395 /*
10396  * Called when an inode has been cleared in a cg bitmap.  This finally
10397  * eliminates any canceled jaddrefs
10398  */
10399 void
10400 softdep_setup_inofree(mp, bp, ino, wkhd)
10401 	struct mount *mp;
10402 	struct buf *bp;
10403 	ino_t ino;
10404 	struct workhead *wkhd;
10405 {
10406 	struct worklist *wk, *wkn;
10407 	struct inodedep *inodedep;
10408 	uint8_t *inosused;
10409 	struct cg *cgp;
10410 	struct fs *fs;
10411 
10412 	ACQUIRE_LOCK(&lk);
10413 	fs = VFSTOUFS(mp)->um_fs;
10414 	cgp = (struct cg *)bp->b_data;
10415 	inosused = cg_inosused(cgp);
10416 	if (isset(inosused, ino % fs->fs_ipg))
10417 		panic("softdep_setup_inofree: inode %ju not freed.",
10418 		    (uintmax_t)ino);
10419 	if (inodedep_lookup(mp, ino, 0, &inodedep))
10420 		panic("softdep_setup_inofree: ino %ju has existing inodedep %p",
10421 		    (uintmax_t)ino, inodedep);
10422 	if (wkhd) {
10423 		LIST_FOREACH_SAFE(wk, wkhd, wk_list, wkn) {
10424 			if (wk->wk_type != D_JADDREF)
10425 				continue;
10426 			WORKLIST_REMOVE(wk);
10427 			/*
10428 			 * We can free immediately even if the jaddref
10429 			 * isn't attached in a background write as now
10430 			 * the bitmaps are reconciled.
10431 		 	 */
10432 			wk->wk_state |= COMPLETE | ATTACHED;
10433 			free_jaddref(WK_JADDREF(wk));
10434 		}
10435 		jwork_move(&bp->b_dep, wkhd);
10436 	}
10437 	FREE_LOCK(&lk);
10438 }
10439 
10440 
10441 /*
10442  * Called via ffs_blkfree() after a set of frags has been cleared from a cg
10443  * map.  Any dependencies waiting for the write to clear are added to the
10444  * buf's list and any jnewblks that are being canceled are discarded
10445  * immediately.
10446  */
10447 void
10448 softdep_setup_blkfree(mp, bp, blkno, frags, wkhd)
10449 	struct mount *mp;
10450 	struct buf *bp;
10451 	ufs2_daddr_t blkno;
10452 	int frags;
10453 	struct workhead *wkhd;
10454 {
10455 	struct bmsafemap *bmsafemap;
10456 	struct jnewblk *jnewblk;
10457 	struct worklist *wk;
10458 	struct fs *fs;
10459 #ifdef SUJ_DEBUG
10460 	uint8_t *blksfree;
10461 	struct cg *cgp;
10462 	ufs2_daddr_t jstart;
10463 	ufs2_daddr_t jend;
10464 	ufs2_daddr_t end;
10465 	long bno;
10466 	int i;
10467 #endif
10468 
10469 	CTR3(KTR_SUJ,
10470 	    "softdep_setup_blkfree: blkno %jd frags %d wk head %p",
10471 	    blkno, frags, wkhd);
10472 
10473 	ACQUIRE_LOCK(&lk);
10474 	/* Lookup the bmsafemap so we track when it is dirty. */
10475 	fs = VFSTOUFS(mp)->um_fs;
10476 	bmsafemap = bmsafemap_lookup(mp, bp, dtog(fs, blkno), NULL);
10477 	/*
10478 	 * Detach any jnewblks which have been canceled.  They must linger
10479 	 * until the bitmap is cleared again by ffs_blkfree() to prevent
10480 	 * an unjournaled allocation from hitting the disk.
10481 	 */
10482 	if (wkhd) {
10483 		while ((wk = LIST_FIRST(wkhd)) != NULL) {
10484 			CTR2(KTR_SUJ,
10485 			    "softdep_setup_blkfree: blkno %jd wk type %d",
10486 			    blkno, wk->wk_type);
10487 			WORKLIST_REMOVE(wk);
10488 			if (wk->wk_type != D_JNEWBLK) {
10489 				WORKLIST_INSERT(&bmsafemap->sm_freehd, wk);
10490 				continue;
10491 			}
10492 			jnewblk = WK_JNEWBLK(wk);
10493 			KASSERT(jnewblk->jn_state & GOINGAWAY,
10494 			    ("softdep_setup_blkfree: jnewblk not canceled."));
10495 #ifdef SUJ_DEBUG
10496 			/*
10497 			 * Assert that this block is free in the bitmap
10498 			 * before we discard the jnewblk.
10499 			 */
10500 			cgp = (struct cg *)bp->b_data;
10501 			blksfree = cg_blksfree(cgp);
10502 			bno = dtogd(fs, jnewblk->jn_blkno);
10503 			for (i = jnewblk->jn_oldfrags;
10504 			    i < jnewblk->jn_frags; i++) {
10505 				if (isset(blksfree, bno + i))
10506 					continue;
10507 				panic("softdep_setup_blkfree: not free");
10508 			}
10509 #endif
10510 			/*
10511 			 * Even if it's not attached we can free immediately
10512 			 * as the new bitmap is correct.
10513 			 */
10514 			wk->wk_state |= COMPLETE | ATTACHED;
10515 			free_jnewblk(jnewblk);
10516 		}
10517 	}
10518 
10519 #ifdef SUJ_DEBUG
10520 	/*
10521 	 * Assert that we are not freeing a block which has an outstanding
10522 	 * allocation dependency.
10523 	 */
10524 	fs = VFSTOUFS(mp)->um_fs;
10525 	bmsafemap = bmsafemap_lookup(mp, bp, dtog(fs, blkno), NULL);
10526 	end = blkno + frags;
10527 	LIST_FOREACH(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps) {
10528 		/*
10529 		 * Don't match against blocks that will be freed when the
10530 		 * background write is done.
10531 		 */
10532 		if ((jnewblk->jn_state & (ATTACHED | COMPLETE | DEPCOMPLETE)) ==
10533 		    (COMPLETE | DEPCOMPLETE))
10534 			continue;
10535 		jstart = jnewblk->jn_blkno + jnewblk->jn_oldfrags;
10536 		jend = jnewblk->jn_blkno + jnewblk->jn_frags;
10537 		if ((blkno >= jstart && blkno < jend) ||
10538 		    (end > jstart && end <= jend)) {
10539 			printf("state 0x%X %jd - %d %d dep %p\n",
10540 			    jnewblk->jn_state, jnewblk->jn_blkno,
10541 			    jnewblk->jn_oldfrags, jnewblk->jn_frags,
10542 			    jnewblk->jn_dep);
10543 			panic("softdep_setup_blkfree: "
10544 			    "%jd-%jd(%d) overlaps with %jd-%jd",
10545 			    blkno, end, frags, jstart, jend);
10546 		}
10547 	}
10548 #endif
10549 	FREE_LOCK(&lk);
10550 }
10551 
10552 /*
10553  * Revert a block allocation when the journal record that describes it
10554  * is not yet written.
10555  */
10556 int
10557 jnewblk_rollback(jnewblk, fs, cgp, blksfree)
10558 	struct jnewblk *jnewblk;
10559 	struct fs *fs;
10560 	struct cg *cgp;
10561 	uint8_t *blksfree;
10562 {
10563 	ufs1_daddr_t fragno;
10564 	long cgbno, bbase;
10565 	int frags, blk;
10566 	int i;
10567 
10568 	frags = 0;
10569 	cgbno = dtogd(fs, jnewblk->jn_blkno);
10570 	/*
10571 	 * We have to test which frags need to be rolled back.  We may
10572 	 * be operating on a stale copy when doing background writes.
10573 	 */
10574 	for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; i++)
10575 		if (isclr(blksfree, cgbno + i))
10576 			frags++;
10577 	if (frags == 0)
10578 		return (0);
10579 	/*
10580 	 * This is mostly ffs_blkfree() sans some validation and
10581 	 * superblock updates.
10582 	 */
10583 	if (frags == fs->fs_frag) {
10584 		fragno = fragstoblks(fs, cgbno);
10585 		ffs_setblock(fs, blksfree, fragno);
10586 		ffs_clusteracct(fs, cgp, fragno, 1);
10587 		cgp->cg_cs.cs_nbfree++;
10588 	} else {
10589 		cgbno += jnewblk->jn_oldfrags;
10590 		bbase = cgbno - fragnum(fs, cgbno);
10591 		/* Decrement the old frags.  */
10592 		blk = blkmap(fs, blksfree, bbase);
10593 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
10594 		/* Deallocate the fragment */
10595 		for (i = 0; i < frags; i++)
10596 			setbit(blksfree, cgbno + i);
10597 		cgp->cg_cs.cs_nffree += frags;
10598 		/* Add back in counts associated with the new frags */
10599 		blk = blkmap(fs, blksfree, bbase);
10600 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
10601                 /* If a complete block has been reassembled, account for it. */
10602 		fragno = fragstoblks(fs, bbase);
10603 		if (ffs_isblock(fs, blksfree, fragno)) {
10604 			cgp->cg_cs.cs_nffree -= fs->fs_frag;
10605 			ffs_clusteracct(fs, cgp, fragno, 1);
10606 			cgp->cg_cs.cs_nbfree++;
10607 		}
10608 	}
10609 	stat_jnewblk++;
10610 	jnewblk->jn_state &= ~ATTACHED;
10611 	jnewblk->jn_state |= UNDONE;
10612 
10613 	return (frags);
10614 }
10615 
10616 static void
10617 initiate_write_bmsafemap(bmsafemap, bp)
10618 	struct bmsafemap *bmsafemap;
10619 	struct buf *bp;			/* The cg block. */
10620 {
10621 	struct jaddref *jaddref;
10622 	struct jnewblk *jnewblk;
10623 	uint8_t *inosused;
10624 	uint8_t *blksfree;
10625 	struct cg *cgp;
10626 	struct fs *fs;
10627 	ino_t ino;
10628 
10629 	if (bmsafemap->sm_state & IOSTARTED)
10630 		return;
10631 	bmsafemap->sm_state |= IOSTARTED;
10632 	/*
10633 	 * Clear any inode allocations which are pending journal writes.
10634 	 */
10635 	if (LIST_FIRST(&bmsafemap->sm_jaddrefhd) != NULL) {
10636 		cgp = (struct cg *)bp->b_data;
10637 		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
10638 		inosused = cg_inosused(cgp);
10639 		LIST_FOREACH(jaddref, &bmsafemap->sm_jaddrefhd, ja_bmdeps) {
10640 			ino = jaddref->ja_ino % fs->fs_ipg;
10641 			if (isset(inosused, ino)) {
10642 				if ((jaddref->ja_mode & IFMT) == IFDIR)
10643 					cgp->cg_cs.cs_ndir--;
10644 				cgp->cg_cs.cs_nifree++;
10645 				clrbit(inosused, ino);
10646 				jaddref->ja_state &= ~ATTACHED;
10647 				jaddref->ja_state |= UNDONE;
10648 				stat_jaddref++;
10649 			} else
10650 				panic("initiate_write_bmsafemap: inode %ju "
10651 				    "marked free", (uintmax_t)jaddref->ja_ino);
10652 		}
10653 	}
10654 	/*
10655 	 * Clear any block allocations which are pending journal writes.
10656 	 */
10657 	if (LIST_FIRST(&bmsafemap->sm_jnewblkhd) != NULL) {
10658 		cgp = (struct cg *)bp->b_data;
10659 		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
10660 		blksfree = cg_blksfree(cgp);
10661 		LIST_FOREACH(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps) {
10662 			if (jnewblk_rollback(jnewblk, fs, cgp, blksfree))
10663 				continue;
10664 			panic("initiate_write_bmsafemap: block %jd "
10665 			    "marked free", jnewblk->jn_blkno);
10666 		}
10667 	}
10668 	/*
10669 	 * Move allocation lists to the written lists so they can be
10670 	 * cleared once the block write is complete.
10671 	 */
10672 	LIST_SWAP(&bmsafemap->sm_inodedephd, &bmsafemap->sm_inodedepwr,
10673 	    inodedep, id_deps);
10674 	LIST_SWAP(&bmsafemap->sm_newblkhd, &bmsafemap->sm_newblkwr,
10675 	    newblk, nb_deps);
10676 	LIST_SWAP(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr, worklist,
10677 	    wk_list);
10678 }
10679 
10680 /*
10681  * This routine is called during the completion interrupt
10682  * service routine for a disk write (from the procedure called
10683  * by the device driver to inform the filesystem caches of
10684  * a request completion).  It should be called early in this
10685  * procedure, before the block is made available to other
10686  * processes or other routines are called.
10687  *
10688  */
10689 static void
10690 softdep_disk_write_complete(bp)
10691 	struct buf *bp;		/* describes the completed disk write */
10692 {
10693 	struct worklist *wk;
10694 	struct worklist *owk;
10695 	struct workhead reattach;
10696 	struct freeblks *freeblks;
10697 	struct buf *sbp;
10698 
10699 	/*
10700 	 * If an error occurred while doing the write, then the data
10701 	 * has not hit the disk and the dependencies cannot be unrolled.
10702 	 */
10703 	if ((bp->b_ioflags & BIO_ERROR) != 0 && (bp->b_flags & B_INVAL) == 0)
10704 		return;
10705 	LIST_INIT(&reattach);
10706 	/*
10707 	 * This lock must not be released anywhere in this code segment.
10708 	 */
10709 	sbp = NULL;
10710 	owk = NULL;
10711 	ACQUIRE_LOCK(&lk);
10712 	while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) {
10713 		WORKLIST_REMOVE(wk);
10714 		dep_write[wk->wk_type]++;
10715 		if (wk == owk)
10716 			panic("duplicate worklist: %p\n", wk);
10717 		owk = wk;
10718 		switch (wk->wk_type) {
10719 
10720 		case D_PAGEDEP:
10721 			if (handle_written_filepage(WK_PAGEDEP(wk), bp))
10722 				WORKLIST_INSERT(&reattach, wk);
10723 			continue;
10724 
10725 		case D_INODEDEP:
10726 			if (handle_written_inodeblock(WK_INODEDEP(wk), bp))
10727 				WORKLIST_INSERT(&reattach, wk);
10728 			continue;
10729 
10730 		case D_BMSAFEMAP:
10731 			if (handle_written_bmsafemap(WK_BMSAFEMAP(wk), bp))
10732 				WORKLIST_INSERT(&reattach, wk);
10733 			continue;
10734 
10735 		case D_MKDIR:
10736 			handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY);
10737 			continue;
10738 
10739 		case D_ALLOCDIRECT:
10740 			wk->wk_state |= COMPLETE;
10741 			handle_allocdirect_partdone(WK_ALLOCDIRECT(wk), NULL);
10742 			continue;
10743 
10744 		case D_ALLOCINDIR:
10745 			wk->wk_state |= COMPLETE;
10746 			handle_allocindir_partdone(WK_ALLOCINDIR(wk));
10747 			continue;
10748 
10749 		case D_INDIRDEP:
10750 			if (handle_written_indirdep(WK_INDIRDEP(wk), bp, &sbp))
10751 				WORKLIST_INSERT(&reattach, wk);
10752 			continue;
10753 
10754 		case D_FREEBLKS:
10755 			wk->wk_state |= COMPLETE;
10756 			freeblks = WK_FREEBLKS(wk);
10757 			if ((wk->wk_state & ALLCOMPLETE) == ALLCOMPLETE &&
10758 			    LIST_EMPTY(&freeblks->fb_jblkdephd))
10759 				add_to_worklist(wk, WK_NODELAY);
10760 			continue;
10761 
10762 		case D_FREEWORK:
10763 			handle_written_freework(WK_FREEWORK(wk));
10764 			break;
10765 
10766 		case D_JSEGDEP:
10767 			free_jsegdep(WK_JSEGDEP(wk));
10768 			continue;
10769 
10770 		case D_JSEG:
10771 			handle_written_jseg(WK_JSEG(wk), bp);
10772 			continue;
10773 
10774 		case D_SBDEP:
10775 			if (handle_written_sbdep(WK_SBDEP(wk), bp))
10776 				WORKLIST_INSERT(&reattach, wk);
10777 			continue;
10778 
10779 		case D_FREEDEP:
10780 			free_freedep(WK_FREEDEP(wk));
10781 			continue;
10782 
10783 		default:
10784 			panic("handle_disk_write_complete: Unknown type %s",
10785 			    TYPENAME(wk->wk_type));
10786 			/* NOTREACHED */
10787 		}
10788 	}
10789 	/*
10790 	 * Reattach any requests that must be redone.
10791 	 */
10792 	while ((wk = LIST_FIRST(&reattach)) != NULL) {
10793 		WORKLIST_REMOVE(wk);
10794 		WORKLIST_INSERT(&bp->b_dep, wk);
10795 	}
10796 	FREE_LOCK(&lk);
10797 	if (sbp)
10798 		brelse(sbp);
10799 }
10800 
10801 /*
10802  * Called from within softdep_disk_write_complete above. Note that
10803  * this routine is always called from interrupt level with further
10804  * splbio interrupts blocked.
10805  */
10806 static void
10807 handle_allocdirect_partdone(adp, wkhd)
10808 	struct allocdirect *adp;	/* the completed allocdirect */
10809 	struct workhead *wkhd;		/* Work to do when inode is writtne. */
10810 {
10811 	struct allocdirectlst *listhead;
10812 	struct allocdirect *listadp;
10813 	struct inodedep *inodedep;
10814 	long bsize;
10815 
10816 	if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE)
10817 		return;
10818 	/*
10819 	 * The on-disk inode cannot claim to be any larger than the last
10820 	 * fragment that has been written. Otherwise, the on-disk inode
10821 	 * might have fragments that were not the last block in the file
10822 	 * which would corrupt the filesystem. Thus, we cannot free any
10823 	 * allocdirects after one whose ad_oldblkno claims a fragment as
10824 	 * these blocks must be rolled back to zero before writing the inode.
10825 	 * We check the currently active set of allocdirects in id_inoupdt
10826 	 * or id_extupdt as appropriate.
10827 	 */
10828 	inodedep = adp->ad_inodedep;
10829 	bsize = inodedep->id_fs->fs_bsize;
10830 	if (adp->ad_state & EXTDATA)
10831 		listhead = &inodedep->id_extupdt;
10832 	else
10833 		listhead = &inodedep->id_inoupdt;
10834 	TAILQ_FOREACH(listadp, listhead, ad_next) {
10835 		/* found our block */
10836 		if (listadp == adp)
10837 			break;
10838 		/* continue if ad_oldlbn is not a fragment */
10839 		if (listadp->ad_oldsize == 0 ||
10840 		    listadp->ad_oldsize == bsize)
10841 			continue;
10842 		/* hit a fragment */
10843 		return;
10844 	}
10845 	/*
10846 	 * If we have reached the end of the current list without
10847 	 * finding the just finished dependency, then it must be
10848 	 * on the future dependency list. Future dependencies cannot
10849 	 * be freed until they are moved to the current list.
10850 	 */
10851 	if (listadp == NULL) {
10852 #ifdef DEBUG
10853 		if (adp->ad_state & EXTDATA)
10854 			listhead = &inodedep->id_newextupdt;
10855 		else
10856 			listhead = &inodedep->id_newinoupdt;
10857 		TAILQ_FOREACH(listadp, listhead, ad_next)
10858 			/* found our block */
10859 			if (listadp == adp)
10860 				break;
10861 		if (listadp == NULL)
10862 			panic("handle_allocdirect_partdone: lost dep");
10863 #endif /* DEBUG */
10864 		return;
10865 	}
10866 	/*
10867 	 * If we have found the just finished dependency, then queue
10868 	 * it along with anything that follows it that is complete.
10869 	 * Since the pointer has not yet been written in the inode
10870 	 * as the dependency prevents it, place the allocdirect on the
10871 	 * bufwait list where it will be freed once the pointer is
10872 	 * valid.
10873 	 */
10874 	if (wkhd == NULL)
10875 		wkhd = &inodedep->id_bufwait;
10876 	for (; adp; adp = listadp) {
10877 		listadp = TAILQ_NEXT(adp, ad_next);
10878 		if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE)
10879 			return;
10880 		TAILQ_REMOVE(listhead, adp, ad_next);
10881 		WORKLIST_INSERT(wkhd, &adp->ad_block.nb_list);
10882 	}
10883 }
10884 
10885 /*
10886  * Called from within softdep_disk_write_complete above.  This routine
10887  * completes successfully written allocindirs.
10888  */
10889 static void
10890 handle_allocindir_partdone(aip)
10891 	struct allocindir *aip;		/* the completed allocindir */
10892 {
10893 	struct indirdep *indirdep;
10894 
10895 	if ((aip->ai_state & ALLCOMPLETE) != ALLCOMPLETE)
10896 		return;
10897 	indirdep = aip->ai_indirdep;
10898 	LIST_REMOVE(aip, ai_next);
10899 	/*
10900 	 * Don't set a pointer while the buffer is undergoing IO or while
10901 	 * we have active truncations.
10902 	 */
10903 	if (indirdep->ir_state & UNDONE || !TAILQ_EMPTY(&indirdep->ir_trunc)) {
10904 		LIST_INSERT_HEAD(&indirdep->ir_donehd, aip, ai_next);
10905 		return;
10906 	}
10907 	if (indirdep->ir_state & UFS1FMT)
10908 		((ufs1_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] =
10909 		    aip->ai_newblkno;
10910 	else
10911 		((ufs2_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] =
10912 		    aip->ai_newblkno;
10913 	/*
10914 	 * Await the pointer write before freeing the allocindir.
10915 	 */
10916 	LIST_INSERT_HEAD(&indirdep->ir_writehd, aip, ai_next);
10917 }
10918 
10919 /*
10920  * Release segments held on a jwork list.
10921  */
10922 static void
10923 handle_jwork(wkhd)
10924 	struct workhead *wkhd;
10925 {
10926 	struct worklist *wk;
10927 
10928 	while ((wk = LIST_FIRST(wkhd)) != NULL) {
10929 		WORKLIST_REMOVE(wk);
10930 		switch (wk->wk_type) {
10931 		case D_JSEGDEP:
10932 			free_jsegdep(WK_JSEGDEP(wk));
10933 			continue;
10934 		case D_FREEDEP:
10935 			free_freedep(WK_FREEDEP(wk));
10936 			continue;
10937 		case D_FREEFRAG:
10938 			rele_jseg(WK_JSEG(WK_FREEFRAG(wk)->ff_jdep));
10939 			WORKITEM_FREE(wk, D_FREEFRAG);
10940 			continue;
10941 		case D_FREEWORK:
10942 			handle_written_freework(WK_FREEWORK(wk));
10943 			continue;
10944 		default:
10945 			panic("handle_jwork: Unknown type %s\n",
10946 			    TYPENAME(wk->wk_type));
10947 		}
10948 	}
10949 }
10950 
10951 /*
10952  * Handle the bufwait list on an inode when it is safe to release items
10953  * held there.  This normally happens after an inode block is written but
10954  * may be delayed and handled later if there are pending journal items that
10955  * are not yet safe to be released.
10956  */
10957 static struct freefile *
10958 handle_bufwait(inodedep, refhd)
10959 	struct inodedep *inodedep;
10960 	struct workhead *refhd;
10961 {
10962 	struct jaddref *jaddref;
10963 	struct freefile *freefile;
10964 	struct worklist *wk;
10965 
10966 	freefile = NULL;
10967 	while ((wk = LIST_FIRST(&inodedep->id_bufwait)) != NULL) {
10968 		WORKLIST_REMOVE(wk);
10969 		switch (wk->wk_type) {
10970 		case D_FREEFILE:
10971 			/*
10972 			 * We defer adding freefile to the worklist
10973 			 * until all other additions have been made to
10974 			 * ensure that it will be done after all the
10975 			 * old blocks have been freed.
10976 			 */
10977 			if (freefile != NULL)
10978 				panic("handle_bufwait: freefile");
10979 			freefile = WK_FREEFILE(wk);
10980 			continue;
10981 
10982 		case D_MKDIR:
10983 			handle_written_mkdir(WK_MKDIR(wk), MKDIR_PARENT);
10984 			continue;
10985 
10986 		case D_DIRADD:
10987 			diradd_inode_written(WK_DIRADD(wk), inodedep);
10988 			continue;
10989 
10990 		case D_FREEFRAG:
10991 			wk->wk_state |= COMPLETE;
10992 			if ((wk->wk_state & ALLCOMPLETE) == ALLCOMPLETE)
10993 				add_to_worklist(wk, 0);
10994 			continue;
10995 
10996 		case D_DIRREM:
10997 			wk->wk_state |= COMPLETE;
10998 			add_to_worklist(wk, 0);
10999 			continue;
11000 
11001 		case D_ALLOCDIRECT:
11002 		case D_ALLOCINDIR:
11003 			free_newblk(WK_NEWBLK(wk));
11004 			continue;
11005 
11006 		case D_JNEWBLK:
11007 			wk->wk_state |= COMPLETE;
11008 			free_jnewblk(WK_JNEWBLK(wk));
11009 			continue;
11010 
11011 		/*
11012 		 * Save freed journal segments and add references on
11013 		 * the supplied list which will delay their release
11014 		 * until the cg bitmap is cleared on disk.
11015 		 */
11016 		case D_JSEGDEP:
11017 			if (refhd == NULL)
11018 				free_jsegdep(WK_JSEGDEP(wk));
11019 			else
11020 				WORKLIST_INSERT(refhd, wk);
11021 			continue;
11022 
11023 		case D_JADDREF:
11024 			jaddref = WK_JADDREF(wk);
11025 			TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref,
11026 			    if_deps);
11027 			/*
11028 			 * Transfer any jaddrefs to the list to be freed with
11029 			 * the bitmap if we're handling a removed file.
11030 			 */
11031 			if (refhd == NULL) {
11032 				wk->wk_state |= COMPLETE;
11033 				free_jaddref(jaddref);
11034 			} else
11035 				WORKLIST_INSERT(refhd, wk);
11036 			continue;
11037 
11038 		default:
11039 			panic("handle_bufwait: Unknown type %p(%s)",
11040 			    wk, TYPENAME(wk->wk_type));
11041 			/* NOTREACHED */
11042 		}
11043 	}
11044 	return (freefile);
11045 }
11046 /*
11047  * Called from within softdep_disk_write_complete above to restore
11048  * in-memory inode block contents to their most up-to-date state. Note
11049  * that this routine is always called from interrupt level with further
11050  * splbio interrupts blocked.
11051  */
11052 static int
11053 handle_written_inodeblock(inodedep, bp)
11054 	struct inodedep *inodedep;
11055 	struct buf *bp;		/* buffer containing the inode block */
11056 {
11057 	struct freefile *freefile;
11058 	struct allocdirect *adp, *nextadp;
11059 	struct ufs1_dinode *dp1 = NULL;
11060 	struct ufs2_dinode *dp2 = NULL;
11061 	struct workhead wkhd;
11062 	int hadchanges, fstype;
11063 	ino_t freelink;
11064 
11065 	LIST_INIT(&wkhd);
11066 	hadchanges = 0;
11067 	freefile = NULL;
11068 	if ((inodedep->id_state & IOSTARTED) == 0)
11069 		panic("handle_written_inodeblock: not started");
11070 	inodedep->id_state &= ~IOSTARTED;
11071 	if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC) {
11072 		fstype = UFS1;
11073 		dp1 = (struct ufs1_dinode *)bp->b_data +
11074 		    ino_to_fsbo(inodedep->id_fs, inodedep->id_ino);
11075 		freelink = dp1->di_freelink;
11076 	} else {
11077 		fstype = UFS2;
11078 		dp2 = (struct ufs2_dinode *)bp->b_data +
11079 		    ino_to_fsbo(inodedep->id_fs, inodedep->id_ino);
11080 		freelink = dp2->di_freelink;
11081 	}
11082 	/*
11083 	 * Leave this inodeblock dirty until it's in the list.
11084 	 */
11085 	if ((inodedep->id_state & (UNLINKED | UNLINKONLIST)) == UNLINKED) {
11086 		struct inodedep *inon;
11087 
11088 		inon = TAILQ_NEXT(inodedep, id_unlinked);
11089 		if ((inon == NULL && freelink == 0) ||
11090 		    (inon && inon->id_ino == freelink)) {
11091 			if (inon)
11092 				inon->id_state |= UNLINKPREV;
11093 			inodedep->id_state |= UNLINKNEXT;
11094 		}
11095 		hadchanges = 1;
11096 	}
11097 	/*
11098 	 * If we had to rollback the inode allocation because of
11099 	 * bitmaps being incomplete, then simply restore it.
11100 	 * Keep the block dirty so that it will not be reclaimed until
11101 	 * all associated dependencies have been cleared and the
11102 	 * corresponding updates written to disk.
11103 	 */
11104 	if (inodedep->id_savedino1 != NULL) {
11105 		hadchanges = 1;
11106 		if (fstype == UFS1)
11107 			*dp1 = *inodedep->id_savedino1;
11108 		else
11109 			*dp2 = *inodedep->id_savedino2;
11110 		free(inodedep->id_savedino1, M_SAVEDINO);
11111 		inodedep->id_savedino1 = NULL;
11112 		if ((bp->b_flags & B_DELWRI) == 0)
11113 			stat_inode_bitmap++;
11114 		bdirty(bp);
11115 		/*
11116 		 * If the inode is clear here and GOINGAWAY it will never
11117 		 * be written.  Process the bufwait and clear any pending
11118 		 * work which may include the freefile.
11119 		 */
11120 		if (inodedep->id_state & GOINGAWAY)
11121 			goto bufwait;
11122 		return (1);
11123 	}
11124 	inodedep->id_state |= COMPLETE;
11125 	/*
11126 	 * Roll forward anything that had to be rolled back before
11127 	 * the inode could be updated.
11128 	 */
11129 	for (adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; adp = nextadp) {
11130 		nextadp = TAILQ_NEXT(adp, ad_next);
11131 		if (adp->ad_state & ATTACHED)
11132 			panic("handle_written_inodeblock: new entry");
11133 		if (fstype == UFS1) {
11134 			if (adp->ad_offset < NDADDR) {
11135 				if (dp1->di_db[adp->ad_offset]!=adp->ad_oldblkno)
11136 					panic("%s %s #%jd mismatch %d != %jd",
11137 					    "handle_written_inodeblock:",
11138 					    "direct pointer",
11139 					    (intmax_t)adp->ad_offset,
11140 					    dp1->di_db[adp->ad_offset],
11141 					    (intmax_t)adp->ad_oldblkno);
11142 				dp1->di_db[adp->ad_offset] = adp->ad_newblkno;
11143 			} else {
11144 				if (dp1->di_ib[adp->ad_offset - NDADDR] != 0)
11145 					panic("%s: %s #%jd allocated as %d",
11146 					    "handle_written_inodeblock",
11147 					    "indirect pointer",
11148 					    (intmax_t)adp->ad_offset - NDADDR,
11149 					    dp1->di_ib[adp->ad_offset - NDADDR]);
11150 				dp1->di_ib[adp->ad_offset - NDADDR] =
11151 				    adp->ad_newblkno;
11152 			}
11153 		} else {
11154 			if (adp->ad_offset < NDADDR) {
11155 				if (dp2->di_db[adp->ad_offset]!=adp->ad_oldblkno)
11156 					panic("%s: %s #%jd %s %jd != %jd",
11157 					    "handle_written_inodeblock",
11158 					    "direct pointer",
11159 					    (intmax_t)adp->ad_offset, "mismatch",
11160 					    (intmax_t)dp2->di_db[adp->ad_offset],
11161 					    (intmax_t)adp->ad_oldblkno);
11162 				dp2->di_db[adp->ad_offset] = adp->ad_newblkno;
11163 			} else {
11164 				if (dp2->di_ib[adp->ad_offset - NDADDR] != 0)
11165 					panic("%s: %s #%jd allocated as %jd",
11166 					    "handle_written_inodeblock",
11167 					    "indirect pointer",
11168 					    (intmax_t)adp->ad_offset - NDADDR,
11169 					    (intmax_t)
11170 					    dp2->di_ib[adp->ad_offset - NDADDR]);
11171 				dp2->di_ib[adp->ad_offset - NDADDR] =
11172 				    adp->ad_newblkno;
11173 			}
11174 		}
11175 		adp->ad_state &= ~UNDONE;
11176 		adp->ad_state |= ATTACHED;
11177 		hadchanges = 1;
11178 	}
11179 	for (adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; adp = nextadp) {
11180 		nextadp = TAILQ_NEXT(adp, ad_next);
11181 		if (adp->ad_state & ATTACHED)
11182 			panic("handle_written_inodeblock: new entry");
11183 		if (dp2->di_extb[adp->ad_offset] != adp->ad_oldblkno)
11184 			panic("%s: direct pointers #%jd %s %jd != %jd",
11185 			    "handle_written_inodeblock",
11186 			    (intmax_t)adp->ad_offset, "mismatch",
11187 			    (intmax_t)dp2->di_extb[adp->ad_offset],
11188 			    (intmax_t)adp->ad_oldblkno);
11189 		dp2->di_extb[adp->ad_offset] = adp->ad_newblkno;
11190 		adp->ad_state &= ~UNDONE;
11191 		adp->ad_state |= ATTACHED;
11192 		hadchanges = 1;
11193 	}
11194 	if (hadchanges && (bp->b_flags & B_DELWRI) == 0)
11195 		stat_direct_blk_ptrs++;
11196 	/*
11197 	 * Reset the file size to its most up-to-date value.
11198 	 */
11199 	if (inodedep->id_savedsize == -1 || inodedep->id_savedextsize == -1)
11200 		panic("handle_written_inodeblock: bad size");
11201 	if (inodedep->id_savednlink > LINK_MAX)
11202 		panic("handle_written_inodeblock: Invalid link count "
11203 		    "%d for inodedep %p", inodedep->id_savednlink, inodedep);
11204 	if (fstype == UFS1) {
11205 		if (dp1->di_nlink != inodedep->id_savednlink) {
11206 			dp1->di_nlink = inodedep->id_savednlink;
11207 			hadchanges = 1;
11208 		}
11209 		if (dp1->di_size != inodedep->id_savedsize) {
11210 			dp1->di_size = inodedep->id_savedsize;
11211 			hadchanges = 1;
11212 		}
11213 	} else {
11214 		if (dp2->di_nlink != inodedep->id_savednlink) {
11215 			dp2->di_nlink = inodedep->id_savednlink;
11216 			hadchanges = 1;
11217 		}
11218 		if (dp2->di_size != inodedep->id_savedsize) {
11219 			dp2->di_size = inodedep->id_savedsize;
11220 			hadchanges = 1;
11221 		}
11222 		if (dp2->di_extsize != inodedep->id_savedextsize) {
11223 			dp2->di_extsize = inodedep->id_savedextsize;
11224 			hadchanges = 1;
11225 		}
11226 	}
11227 	inodedep->id_savedsize = -1;
11228 	inodedep->id_savedextsize = -1;
11229 	inodedep->id_savednlink = -1;
11230 	/*
11231 	 * If there were any rollbacks in the inode block, then it must be
11232 	 * marked dirty so that its will eventually get written back in
11233 	 * its correct form.
11234 	 */
11235 	if (hadchanges)
11236 		bdirty(bp);
11237 bufwait:
11238 	/*
11239 	 * Process any allocdirects that completed during the update.
11240 	 */
11241 	if ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL)
11242 		handle_allocdirect_partdone(adp, &wkhd);
11243 	if ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL)
11244 		handle_allocdirect_partdone(adp, &wkhd);
11245 	/*
11246 	 * Process deallocations that were held pending until the
11247 	 * inode had been written to disk. Freeing of the inode
11248 	 * is delayed until after all blocks have been freed to
11249 	 * avoid creation of new <vfsid, inum, lbn> triples
11250 	 * before the old ones have been deleted.  Completely
11251 	 * unlinked inodes are not processed until the unlinked
11252 	 * inode list is written or the last reference is removed.
11253 	 */
11254 	if ((inodedep->id_state & (UNLINKED | UNLINKONLIST)) != UNLINKED) {
11255 		freefile = handle_bufwait(inodedep, NULL);
11256 		if (freefile && !LIST_EMPTY(&wkhd)) {
11257 			WORKLIST_INSERT(&wkhd, &freefile->fx_list);
11258 			freefile = NULL;
11259 		}
11260 	}
11261 	/*
11262 	 * Move rolled forward dependency completions to the bufwait list
11263 	 * now that those that were already written have been processed.
11264 	 */
11265 	if (!LIST_EMPTY(&wkhd) && hadchanges == 0)
11266 		panic("handle_written_inodeblock: bufwait but no changes");
11267 	jwork_move(&inodedep->id_bufwait, &wkhd);
11268 
11269 	if (freefile != NULL) {
11270 		/*
11271 		 * If the inode is goingaway it was never written.  Fake up
11272 		 * the state here so free_inodedep() can succeed.
11273 		 */
11274 		if (inodedep->id_state & GOINGAWAY)
11275 			inodedep->id_state |= COMPLETE | DEPCOMPLETE;
11276 		if (free_inodedep(inodedep) == 0)
11277 			panic("handle_written_inodeblock: live inodedep %p",
11278 			    inodedep);
11279 		add_to_worklist(&freefile->fx_list, 0);
11280 		return (0);
11281 	}
11282 
11283 	/*
11284 	 * If no outstanding dependencies, free it.
11285 	 */
11286 	if (free_inodedep(inodedep) ||
11287 	    (TAILQ_FIRST(&inodedep->id_inoreflst) == 0 &&
11288 	     TAILQ_FIRST(&inodedep->id_inoupdt) == 0 &&
11289 	     TAILQ_FIRST(&inodedep->id_extupdt) == 0 &&
11290 	     LIST_FIRST(&inodedep->id_bufwait) == 0))
11291 		return (0);
11292 	return (hadchanges);
11293 }
11294 
11295 static int
11296 handle_written_indirdep(indirdep, bp, bpp)
11297 	struct indirdep *indirdep;
11298 	struct buf *bp;
11299 	struct buf **bpp;
11300 {
11301 	struct allocindir *aip;
11302 	struct buf *sbp;
11303 	int chgs;
11304 
11305 	if (indirdep->ir_state & GOINGAWAY)
11306 		panic("handle_written_indirdep: indirdep gone");
11307 	if ((indirdep->ir_state & IOSTARTED) == 0)
11308 		panic("handle_written_indirdep: IO not started");
11309 	chgs = 0;
11310 	/*
11311 	 * If there were rollbacks revert them here.
11312 	 */
11313 	if (indirdep->ir_saveddata) {
11314 		bcopy(indirdep->ir_saveddata, bp->b_data, bp->b_bcount);
11315 		if (TAILQ_EMPTY(&indirdep->ir_trunc)) {
11316 			free(indirdep->ir_saveddata, M_INDIRDEP);
11317 			indirdep->ir_saveddata = NULL;
11318 		}
11319 		chgs = 1;
11320 	}
11321 	indirdep->ir_state &= ~(UNDONE | IOSTARTED);
11322 	indirdep->ir_state |= ATTACHED;
11323 	/*
11324 	 * Move allocindirs with written pointers to the completehd if
11325 	 * the indirdep's pointer is not yet written.  Otherwise
11326 	 * free them here.
11327 	 */
11328 	while ((aip = LIST_FIRST(&indirdep->ir_writehd)) != 0) {
11329 		LIST_REMOVE(aip, ai_next);
11330 		if ((indirdep->ir_state & DEPCOMPLETE) == 0) {
11331 			LIST_INSERT_HEAD(&indirdep->ir_completehd, aip,
11332 			    ai_next);
11333 			newblk_freefrag(&aip->ai_block);
11334 			continue;
11335 		}
11336 		free_newblk(&aip->ai_block);
11337 	}
11338 	/*
11339 	 * Move allocindirs that have finished dependency processing from
11340 	 * the done list to the write list after updating the pointers.
11341 	 */
11342 	if (TAILQ_EMPTY(&indirdep->ir_trunc)) {
11343 		while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != 0) {
11344 			handle_allocindir_partdone(aip);
11345 			if (aip == LIST_FIRST(&indirdep->ir_donehd))
11346 				panic("disk_write_complete: not gone");
11347 			chgs = 1;
11348 		}
11349 	}
11350 	/*
11351 	 * Preserve the indirdep if there were any changes or if it is not
11352 	 * yet valid on disk.
11353 	 */
11354 	if (chgs) {
11355 		stat_indir_blk_ptrs++;
11356 		bdirty(bp);
11357 		return (1);
11358 	}
11359 	/*
11360 	 * If there were no changes we can discard the savedbp and detach
11361 	 * ourselves from the buf.  We are only carrying completed pointers
11362 	 * in this case.
11363 	 */
11364 	sbp = indirdep->ir_savebp;
11365 	sbp->b_flags |= B_INVAL | B_NOCACHE;
11366 	indirdep->ir_savebp = NULL;
11367 	indirdep->ir_bp = NULL;
11368 	if (*bpp != NULL)
11369 		panic("handle_written_indirdep: bp already exists.");
11370 	*bpp = sbp;
11371 	/*
11372 	 * The indirdep may not be freed until its parent points at it.
11373 	 */
11374 	if (indirdep->ir_state & DEPCOMPLETE)
11375 		free_indirdep(indirdep);
11376 
11377 	return (0);
11378 }
11379 
11380 /*
11381  * Process a diradd entry after its dependent inode has been written.
11382  * This routine must be called with splbio interrupts blocked.
11383  */
11384 static void
11385 diradd_inode_written(dap, inodedep)
11386 	struct diradd *dap;
11387 	struct inodedep *inodedep;
11388 {
11389 
11390 	dap->da_state |= COMPLETE;
11391 	complete_diradd(dap);
11392 	WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list);
11393 }
11394 
11395 /*
11396  * Returns true if the bmsafemap will have rollbacks when written.  Must
11397  * only be called with lk and the buf lock on the cg held.
11398  */
11399 static int
11400 bmsafemap_backgroundwrite(bmsafemap, bp)
11401 	struct bmsafemap *bmsafemap;
11402 	struct buf *bp;
11403 {
11404 	int dirty;
11405 
11406 	dirty = !LIST_EMPTY(&bmsafemap->sm_jaddrefhd) |
11407 	    !LIST_EMPTY(&bmsafemap->sm_jnewblkhd);
11408 	/*
11409 	 * If we're initiating a background write we need to process the
11410 	 * rollbacks as they exist now, not as they exist when IO starts.
11411 	 * No other consumers will look at the contents of the shadowed
11412 	 * buf so this is safe to do here.
11413 	 */
11414 	if (bp->b_xflags & BX_BKGRDMARKER)
11415 		initiate_write_bmsafemap(bmsafemap, bp);
11416 
11417 	return (dirty);
11418 }
11419 
11420 /*
11421  * Re-apply an allocation when a cg write is complete.
11422  */
11423 static int
11424 jnewblk_rollforward(jnewblk, fs, cgp, blksfree)
11425 	struct jnewblk *jnewblk;
11426 	struct fs *fs;
11427 	struct cg *cgp;
11428 	uint8_t *blksfree;
11429 {
11430 	ufs1_daddr_t fragno;
11431 	ufs2_daddr_t blkno;
11432 	long cgbno, bbase;
11433 	int frags, blk;
11434 	int i;
11435 
11436 	frags = 0;
11437 	cgbno = dtogd(fs, jnewblk->jn_blkno);
11438 	for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; i++) {
11439 		if (isclr(blksfree, cgbno + i))
11440 			panic("jnewblk_rollforward: re-allocated fragment");
11441 		frags++;
11442 	}
11443 	if (frags == fs->fs_frag) {
11444 		blkno = fragstoblks(fs, cgbno);
11445 		ffs_clrblock(fs, blksfree, (long)blkno);
11446 		ffs_clusteracct(fs, cgp, blkno, -1);
11447 		cgp->cg_cs.cs_nbfree--;
11448 	} else {
11449 		bbase = cgbno - fragnum(fs, cgbno);
11450 		cgbno += jnewblk->jn_oldfrags;
11451                 /* If a complete block had been reassembled, account for it. */
11452 		fragno = fragstoblks(fs, bbase);
11453 		if (ffs_isblock(fs, blksfree, fragno)) {
11454 			cgp->cg_cs.cs_nffree += fs->fs_frag;
11455 			ffs_clusteracct(fs, cgp, fragno, -1);
11456 			cgp->cg_cs.cs_nbfree--;
11457 		}
11458 		/* Decrement the old frags.  */
11459 		blk = blkmap(fs, blksfree, bbase);
11460 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
11461 		/* Allocate the fragment */
11462 		for (i = 0; i < frags; i++)
11463 			clrbit(blksfree, cgbno + i);
11464 		cgp->cg_cs.cs_nffree -= frags;
11465 		/* Add back in counts associated with the new frags */
11466 		blk = blkmap(fs, blksfree, bbase);
11467 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
11468 	}
11469 	return (frags);
11470 }
11471 
11472 /*
11473  * Complete a write to a bmsafemap structure.  Roll forward any bitmap
11474  * changes if it's not a background write.  Set all written dependencies
11475  * to DEPCOMPLETE and free the structure if possible.
11476  */
11477 static int
11478 handle_written_bmsafemap(bmsafemap, bp)
11479 	struct bmsafemap *bmsafemap;
11480 	struct buf *bp;
11481 {
11482 	struct newblk *newblk;
11483 	struct inodedep *inodedep;
11484 	struct jaddref *jaddref, *jatmp;
11485 	struct jnewblk *jnewblk, *jntmp;
11486 	struct ufsmount *ump;
11487 	uint8_t *inosused;
11488 	uint8_t *blksfree;
11489 	struct cg *cgp;
11490 	struct fs *fs;
11491 	ino_t ino;
11492 	int foreground;
11493 	int chgs;
11494 
11495 	if ((bmsafemap->sm_state & IOSTARTED) == 0)
11496 		panic("initiate_write_bmsafemap: Not started\n");
11497 	ump = VFSTOUFS(bmsafemap->sm_list.wk_mp);
11498 	chgs = 0;
11499 	bmsafemap->sm_state &= ~IOSTARTED;
11500 	foreground = (bp->b_xflags & BX_BKGRDMARKER) == 0;
11501 	/*
11502 	 * Release journal work that was waiting on the write.
11503 	 */
11504 	handle_jwork(&bmsafemap->sm_freewr);
11505 
11506 	/*
11507 	 * Restore unwritten inode allocation pending jaddref writes.
11508 	 */
11509 	if (!LIST_EMPTY(&bmsafemap->sm_jaddrefhd)) {
11510 		cgp = (struct cg *)bp->b_data;
11511 		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
11512 		inosused = cg_inosused(cgp);
11513 		LIST_FOREACH_SAFE(jaddref, &bmsafemap->sm_jaddrefhd,
11514 		    ja_bmdeps, jatmp) {
11515 			if ((jaddref->ja_state & UNDONE) == 0)
11516 				continue;
11517 			ino = jaddref->ja_ino % fs->fs_ipg;
11518 			if (isset(inosused, ino))
11519 				panic("handle_written_bmsafemap: "
11520 				    "re-allocated inode");
11521 			/* Do the roll-forward only if it's a real copy. */
11522 			if (foreground) {
11523 				if ((jaddref->ja_mode & IFMT) == IFDIR)
11524 					cgp->cg_cs.cs_ndir++;
11525 				cgp->cg_cs.cs_nifree--;
11526 				setbit(inosused, ino);
11527 				chgs = 1;
11528 			}
11529 			jaddref->ja_state &= ~UNDONE;
11530 			jaddref->ja_state |= ATTACHED;
11531 			free_jaddref(jaddref);
11532 		}
11533 	}
11534 	/*
11535 	 * Restore any block allocations which are pending journal writes.
11536 	 */
11537 	if (LIST_FIRST(&bmsafemap->sm_jnewblkhd) != NULL) {
11538 		cgp = (struct cg *)bp->b_data;
11539 		fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs;
11540 		blksfree = cg_blksfree(cgp);
11541 		LIST_FOREACH_SAFE(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps,
11542 		    jntmp) {
11543 			if ((jnewblk->jn_state & UNDONE) == 0)
11544 				continue;
11545 			/* Do the roll-forward only if it's a real copy. */
11546 			if (foreground &&
11547 			    jnewblk_rollforward(jnewblk, fs, cgp, blksfree))
11548 				chgs = 1;
11549 			jnewblk->jn_state &= ~(UNDONE | NEWBLOCK);
11550 			jnewblk->jn_state |= ATTACHED;
11551 			free_jnewblk(jnewblk);
11552 		}
11553 	}
11554 	while ((newblk = LIST_FIRST(&bmsafemap->sm_newblkwr))) {
11555 		newblk->nb_state |= DEPCOMPLETE;
11556 		newblk->nb_state &= ~ONDEPLIST;
11557 		newblk->nb_bmsafemap = NULL;
11558 		LIST_REMOVE(newblk, nb_deps);
11559 		if (newblk->nb_list.wk_type == D_ALLOCDIRECT)
11560 			handle_allocdirect_partdone(
11561 			    WK_ALLOCDIRECT(&newblk->nb_list), NULL);
11562 		else if (newblk->nb_list.wk_type == D_ALLOCINDIR)
11563 			handle_allocindir_partdone(
11564 			    WK_ALLOCINDIR(&newblk->nb_list));
11565 		else if (newblk->nb_list.wk_type != D_NEWBLK)
11566 			panic("handle_written_bmsafemap: Unexpected type: %s",
11567 			    TYPENAME(newblk->nb_list.wk_type));
11568 	}
11569 	while ((inodedep = LIST_FIRST(&bmsafemap->sm_inodedepwr)) != NULL) {
11570 		inodedep->id_state |= DEPCOMPLETE;
11571 		inodedep->id_state &= ~ONDEPLIST;
11572 		LIST_REMOVE(inodedep, id_deps);
11573 		inodedep->id_bmsafemap = NULL;
11574 	}
11575 	LIST_REMOVE(bmsafemap, sm_next);
11576 	if (chgs == 0 && LIST_EMPTY(&bmsafemap->sm_jaddrefhd) &&
11577 	    LIST_EMPTY(&bmsafemap->sm_jnewblkhd) &&
11578 	    LIST_EMPTY(&bmsafemap->sm_newblkhd) &&
11579 	    LIST_EMPTY(&bmsafemap->sm_inodedephd) &&
11580 	    LIST_EMPTY(&bmsafemap->sm_freehd)) {
11581 		LIST_REMOVE(bmsafemap, sm_hash);
11582 		WORKITEM_FREE(bmsafemap, D_BMSAFEMAP);
11583 		return (0);
11584 	}
11585 	LIST_INSERT_HEAD(&ump->softdep_dirtycg, bmsafemap, sm_next);
11586 	if (foreground)
11587 		bdirty(bp);
11588 	return (1);
11589 }
11590 
11591 /*
11592  * Try to free a mkdir dependency.
11593  */
11594 static void
11595 complete_mkdir(mkdir)
11596 	struct mkdir *mkdir;
11597 {
11598 	struct diradd *dap;
11599 
11600 	if ((mkdir->md_state & ALLCOMPLETE) != ALLCOMPLETE)
11601 		return;
11602 	LIST_REMOVE(mkdir, md_mkdirs);
11603 	dap = mkdir->md_diradd;
11604 	dap->da_state &= ~(mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY));
11605 	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0) {
11606 		dap->da_state |= DEPCOMPLETE;
11607 		complete_diradd(dap);
11608 	}
11609 	WORKITEM_FREE(mkdir, D_MKDIR);
11610 }
11611 
11612 /*
11613  * Handle the completion of a mkdir dependency.
11614  */
11615 static void
11616 handle_written_mkdir(mkdir, type)
11617 	struct mkdir *mkdir;
11618 	int type;
11619 {
11620 
11621 	if ((mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY)) != type)
11622 		panic("handle_written_mkdir: bad type");
11623 	mkdir->md_state |= COMPLETE;
11624 	complete_mkdir(mkdir);
11625 }
11626 
11627 static int
11628 free_pagedep(pagedep)
11629 	struct pagedep *pagedep;
11630 {
11631 	int i;
11632 
11633 	if (pagedep->pd_state & NEWBLOCK)
11634 		return (0);
11635 	if (!LIST_EMPTY(&pagedep->pd_dirremhd))
11636 		return (0);
11637 	for (i = 0; i < DAHASHSZ; i++)
11638 		if (!LIST_EMPTY(&pagedep->pd_diraddhd[i]))
11639 			return (0);
11640 	if (!LIST_EMPTY(&pagedep->pd_pendinghd))
11641 		return (0);
11642 	if (!LIST_EMPTY(&pagedep->pd_jmvrefhd))
11643 		return (0);
11644 	if (pagedep->pd_state & ONWORKLIST)
11645 		WORKLIST_REMOVE(&pagedep->pd_list);
11646 	LIST_REMOVE(pagedep, pd_hash);
11647 	WORKITEM_FREE(pagedep, D_PAGEDEP);
11648 
11649 	return (1);
11650 }
11651 
11652 /*
11653  * Called from within softdep_disk_write_complete above.
11654  * A write operation was just completed. Removed inodes can
11655  * now be freed and associated block pointers may be committed.
11656  * Note that this routine is always called from interrupt level
11657  * with further splbio interrupts blocked.
11658  */
11659 static int
11660 handle_written_filepage(pagedep, bp)
11661 	struct pagedep *pagedep;
11662 	struct buf *bp;		/* buffer containing the written page */
11663 {
11664 	struct dirrem *dirrem;
11665 	struct diradd *dap, *nextdap;
11666 	struct direct *ep;
11667 	int i, chgs;
11668 
11669 	if ((pagedep->pd_state & IOSTARTED) == 0)
11670 		panic("handle_written_filepage: not started");
11671 	pagedep->pd_state &= ~IOSTARTED;
11672 	/*
11673 	 * Process any directory removals that have been committed.
11674 	 */
11675 	while ((dirrem = LIST_FIRST(&pagedep->pd_dirremhd)) != NULL) {
11676 		LIST_REMOVE(dirrem, dm_next);
11677 		dirrem->dm_state |= COMPLETE;
11678 		dirrem->dm_dirinum = pagedep->pd_ino;
11679 		KASSERT(LIST_EMPTY(&dirrem->dm_jremrefhd),
11680 		    ("handle_written_filepage: Journal entries not written."));
11681 		add_to_worklist(&dirrem->dm_list, 0);
11682 	}
11683 	/*
11684 	 * Free any directory additions that have been committed.
11685 	 * If it is a newly allocated block, we have to wait until
11686 	 * the on-disk directory inode claims the new block.
11687 	 */
11688 	if ((pagedep->pd_state & NEWBLOCK) == 0)
11689 		while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL)
11690 			free_diradd(dap, NULL);
11691 	/*
11692 	 * Uncommitted directory entries must be restored.
11693 	 */
11694 	for (chgs = 0, i = 0; i < DAHASHSZ; i++) {
11695 		for (dap = LIST_FIRST(&pagedep->pd_diraddhd[i]); dap;
11696 		     dap = nextdap) {
11697 			nextdap = LIST_NEXT(dap, da_pdlist);
11698 			if (dap->da_state & ATTACHED)
11699 				panic("handle_written_filepage: attached");
11700 			ep = (struct direct *)
11701 			    ((char *)bp->b_data + dap->da_offset);
11702 			ep->d_ino = dap->da_newinum;
11703 			dap->da_state &= ~UNDONE;
11704 			dap->da_state |= ATTACHED;
11705 			chgs = 1;
11706 			/*
11707 			 * If the inode referenced by the directory has
11708 			 * been written out, then the dependency can be
11709 			 * moved to the pending list.
11710 			 */
11711 			if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
11712 				LIST_REMOVE(dap, da_pdlist);
11713 				LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap,
11714 				    da_pdlist);
11715 			}
11716 		}
11717 	}
11718 	/*
11719 	 * If there were any rollbacks in the directory, then it must be
11720 	 * marked dirty so that its will eventually get written back in
11721 	 * its correct form.
11722 	 */
11723 	if (chgs) {
11724 		if ((bp->b_flags & B_DELWRI) == 0)
11725 			stat_dir_entry++;
11726 		bdirty(bp);
11727 		return (1);
11728 	}
11729 	/*
11730 	 * If we are not waiting for a new directory block to be
11731 	 * claimed by its inode, then the pagedep will be freed.
11732 	 * Otherwise it will remain to track any new entries on
11733 	 * the page in case they are fsync'ed.
11734 	 */
11735 	free_pagedep(pagedep);
11736 	return (0);
11737 }
11738 
11739 /*
11740  * Writing back in-core inode structures.
11741  *
11742  * The filesystem only accesses an inode's contents when it occupies an
11743  * "in-core" inode structure.  These "in-core" structures are separate from
11744  * the page frames used to cache inode blocks.  Only the latter are
11745  * transferred to/from the disk.  So, when the updated contents of the
11746  * "in-core" inode structure are copied to the corresponding in-memory inode
11747  * block, the dependencies are also transferred.  The following procedure is
11748  * called when copying a dirty "in-core" inode to a cached inode block.
11749  */
11750 
11751 /*
11752  * Called when an inode is loaded from disk. If the effective link count
11753  * differed from the actual link count when it was last flushed, then we
11754  * need to ensure that the correct effective link count is put back.
11755  */
11756 void
11757 softdep_load_inodeblock(ip)
11758 	struct inode *ip;	/* the "in_core" copy of the inode */
11759 {
11760 	struct inodedep *inodedep;
11761 
11762 	/*
11763 	 * Check for alternate nlink count.
11764 	 */
11765 	ip->i_effnlink = ip->i_nlink;
11766 	ACQUIRE_LOCK(&lk);
11767 	if (inodedep_lookup(UFSTOVFS(ip->i_ump), ip->i_number, 0,
11768 	    &inodedep) == 0) {
11769 		FREE_LOCK(&lk);
11770 		return;
11771 	}
11772 	ip->i_effnlink -= inodedep->id_nlinkdelta;
11773 	FREE_LOCK(&lk);
11774 }
11775 
11776 /*
11777  * This routine is called just before the "in-core" inode
11778  * information is to be copied to the in-memory inode block.
11779  * Recall that an inode block contains several inodes. If
11780  * the force flag is set, then the dependencies will be
11781  * cleared so that the update can always be made. Note that
11782  * the buffer is locked when this routine is called, so we
11783  * will never be in the middle of writing the inode block
11784  * to disk.
11785  */
11786 void
11787 softdep_update_inodeblock(ip, bp, waitfor)
11788 	struct inode *ip;	/* the "in_core" copy of the inode */
11789 	struct buf *bp;		/* the buffer containing the inode block */
11790 	int waitfor;		/* nonzero => update must be allowed */
11791 {
11792 	struct inodedep *inodedep;
11793 	struct inoref *inoref;
11794 	struct worklist *wk;
11795 	struct mount *mp;
11796 	struct buf *ibp;
11797 	struct fs *fs;
11798 	int error;
11799 
11800 	mp = UFSTOVFS(ip->i_ump);
11801 	fs = ip->i_fs;
11802 	/*
11803 	 * Preserve the freelink that is on disk.  clear_unlinked_inodedep()
11804 	 * does not have access to the in-core ip so must write directly into
11805 	 * the inode block buffer when setting freelink.
11806 	 */
11807 	if (fs->fs_magic == FS_UFS1_MAGIC)
11808 		DIP_SET(ip, i_freelink, ((struct ufs1_dinode *)bp->b_data +
11809 		    ino_to_fsbo(fs, ip->i_number))->di_freelink);
11810 	else
11811 		DIP_SET(ip, i_freelink, ((struct ufs2_dinode *)bp->b_data +
11812 		    ino_to_fsbo(fs, ip->i_number))->di_freelink);
11813 	/*
11814 	 * If the effective link count is not equal to the actual link
11815 	 * count, then we must track the difference in an inodedep while
11816 	 * the inode is (potentially) tossed out of the cache. Otherwise,
11817 	 * if there is no existing inodedep, then there are no dependencies
11818 	 * to track.
11819 	 */
11820 	ACQUIRE_LOCK(&lk);
11821 again:
11822 	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) {
11823 		FREE_LOCK(&lk);
11824 		if (ip->i_effnlink != ip->i_nlink)
11825 			panic("softdep_update_inodeblock: bad link count");
11826 		return;
11827 	}
11828 	if (inodedep->id_nlinkdelta != ip->i_nlink - ip->i_effnlink)
11829 		panic("softdep_update_inodeblock: bad delta");
11830 	/*
11831 	 * If we're flushing all dependencies we must also move any waiting
11832 	 * for journal writes onto the bufwait list prior to I/O.
11833 	 */
11834 	if (waitfor) {
11835 		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
11836 			if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
11837 			    == DEPCOMPLETE) {
11838 				jwait(&inoref->if_list, MNT_WAIT);
11839 				goto again;
11840 			}
11841 		}
11842 	}
11843 	/*
11844 	 * Changes have been initiated. Anything depending on these
11845 	 * changes cannot occur until this inode has been written.
11846 	 */
11847 	inodedep->id_state &= ~COMPLETE;
11848 	if ((inodedep->id_state & ONWORKLIST) == 0)
11849 		WORKLIST_INSERT(&bp->b_dep, &inodedep->id_list);
11850 	/*
11851 	 * Any new dependencies associated with the incore inode must
11852 	 * now be moved to the list associated with the buffer holding
11853 	 * the in-memory copy of the inode. Once merged process any
11854 	 * allocdirects that are completed by the merger.
11855 	 */
11856 	merge_inode_lists(&inodedep->id_newinoupdt, &inodedep->id_inoupdt);
11857 	if (!TAILQ_EMPTY(&inodedep->id_inoupdt))
11858 		handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_inoupdt),
11859 		    NULL);
11860 	merge_inode_lists(&inodedep->id_newextupdt, &inodedep->id_extupdt);
11861 	if (!TAILQ_EMPTY(&inodedep->id_extupdt))
11862 		handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_extupdt),
11863 		    NULL);
11864 	/*
11865 	 * Now that the inode has been pushed into the buffer, the
11866 	 * operations dependent on the inode being written to disk
11867 	 * can be moved to the id_bufwait so that they will be
11868 	 * processed when the buffer I/O completes.
11869 	 */
11870 	while ((wk = LIST_FIRST(&inodedep->id_inowait)) != NULL) {
11871 		WORKLIST_REMOVE(wk);
11872 		WORKLIST_INSERT(&inodedep->id_bufwait, wk);
11873 	}
11874 	/*
11875 	 * Newly allocated inodes cannot be written until the bitmap
11876 	 * that allocates them have been written (indicated by
11877 	 * DEPCOMPLETE being set in id_state). If we are doing a
11878 	 * forced sync (e.g., an fsync on a file), we force the bitmap
11879 	 * to be written so that the update can be done.
11880 	 */
11881 	if (waitfor == 0) {
11882 		FREE_LOCK(&lk);
11883 		return;
11884 	}
11885 retry:
11886 	if ((inodedep->id_state & (DEPCOMPLETE | GOINGAWAY)) != 0) {
11887 		FREE_LOCK(&lk);
11888 		return;
11889 	}
11890 	ibp = inodedep->id_bmsafemap->sm_buf;
11891 	ibp = getdirtybuf(ibp, &lk, MNT_WAIT);
11892 	if (ibp == NULL) {
11893 		/*
11894 		 * If ibp came back as NULL, the dependency could have been
11895 		 * freed while we slept.  Look it up again, and check to see
11896 		 * that it has completed.
11897 		 */
11898 		if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0)
11899 			goto retry;
11900 		FREE_LOCK(&lk);
11901 		return;
11902 	}
11903 	FREE_LOCK(&lk);
11904 	if ((error = bwrite(ibp)) != 0)
11905 		softdep_error("softdep_update_inodeblock: bwrite", error);
11906 }
11907 
11908 /*
11909  * Merge the a new inode dependency list (such as id_newinoupdt) into an
11910  * old inode dependency list (such as id_inoupdt). This routine must be
11911  * called with splbio interrupts blocked.
11912  */
11913 static void
11914 merge_inode_lists(newlisthead, oldlisthead)
11915 	struct allocdirectlst *newlisthead;
11916 	struct allocdirectlst *oldlisthead;
11917 {
11918 	struct allocdirect *listadp, *newadp;
11919 
11920 	newadp = TAILQ_FIRST(newlisthead);
11921 	for (listadp = TAILQ_FIRST(oldlisthead); listadp && newadp;) {
11922 		if (listadp->ad_offset < newadp->ad_offset) {
11923 			listadp = TAILQ_NEXT(listadp, ad_next);
11924 			continue;
11925 		}
11926 		TAILQ_REMOVE(newlisthead, newadp, ad_next);
11927 		TAILQ_INSERT_BEFORE(listadp, newadp, ad_next);
11928 		if (listadp->ad_offset == newadp->ad_offset) {
11929 			allocdirect_merge(oldlisthead, newadp,
11930 			    listadp);
11931 			listadp = newadp;
11932 		}
11933 		newadp = TAILQ_FIRST(newlisthead);
11934 	}
11935 	while ((newadp = TAILQ_FIRST(newlisthead)) != NULL) {
11936 		TAILQ_REMOVE(newlisthead, newadp, ad_next);
11937 		TAILQ_INSERT_TAIL(oldlisthead, newadp, ad_next);
11938 	}
11939 }
11940 
11941 /*
11942  * If we are doing an fsync, then we must ensure that any directory
11943  * entries for the inode have been written after the inode gets to disk.
11944  */
11945 int
11946 softdep_fsync(vp)
11947 	struct vnode *vp;	/* the "in_core" copy of the inode */
11948 {
11949 	struct inodedep *inodedep;
11950 	struct pagedep *pagedep;
11951 	struct inoref *inoref;
11952 	struct worklist *wk;
11953 	struct diradd *dap;
11954 	struct mount *mp;
11955 	struct vnode *pvp;
11956 	struct inode *ip;
11957 	struct buf *bp;
11958 	struct fs *fs;
11959 	struct thread *td = curthread;
11960 	int error, flushparent, pagedep_new_block;
11961 	ino_t parentino;
11962 	ufs_lbn_t lbn;
11963 
11964 	ip = VTOI(vp);
11965 	fs = ip->i_fs;
11966 	mp = vp->v_mount;
11967 	ACQUIRE_LOCK(&lk);
11968 restart:
11969 	if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) {
11970 		FREE_LOCK(&lk);
11971 		return (0);
11972 	}
11973 	TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
11974 		if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
11975 		    == DEPCOMPLETE) {
11976 			jwait(&inoref->if_list, MNT_WAIT);
11977 			goto restart;
11978 		}
11979 	}
11980 	if (!LIST_EMPTY(&inodedep->id_inowait) ||
11981 	    !TAILQ_EMPTY(&inodedep->id_extupdt) ||
11982 	    !TAILQ_EMPTY(&inodedep->id_newextupdt) ||
11983 	    !TAILQ_EMPTY(&inodedep->id_inoupdt) ||
11984 	    !TAILQ_EMPTY(&inodedep->id_newinoupdt))
11985 		panic("softdep_fsync: pending ops %p", inodedep);
11986 	for (error = 0, flushparent = 0; ; ) {
11987 		if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) == NULL)
11988 			break;
11989 		if (wk->wk_type != D_DIRADD)
11990 			panic("softdep_fsync: Unexpected type %s",
11991 			    TYPENAME(wk->wk_type));
11992 		dap = WK_DIRADD(wk);
11993 		/*
11994 		 * Flush our parent if this directory entry has a MKDIR_PARENT
11995 		 * dependency or is contained in a newly allocated block.
11996 		 */
11997 		if (dap->da_state & DIRCHG)
11998 			pagedep = dap->da_previous->dm_pagedep;
11999 		else
12000 			pagedep = dap->da_pagedep;
12001 		parentino = pagedep->pd_ino;
12002 		lbn = pagedep->pd_lbn;
12003 		if ((dap->da_state & (MKDIR_BODY | COMPLETE)) != COMPLETE)
12004 			panic("softdep_fsync: dirty");
12005 		if ((dap->da_state & MKDIR_PARENT) ||
12006 		    (pagedep->pd_state & NEWBLOCK))
12007 			flushparent = 1;
12008 		else
12009 			flushparent = 0;
12010 		/*
12011 		 * If we are being fsync'ed as part of vgone'ing this vnode,
12012 		 * then we will not be able to release and recover the
12013 		 * vnode below, so we just have to give up on writing its
12014 		 * directory entry out. It will eventually be written, just
12015 		 * not now, but then the user was not asking to have it
12016 		 * written, so we are not breaking any promises.
12017 		 */
12018 		if (vp->v_iflag & VI_DOOMED)
12019 			break;
12020 		/*
12021 		 * We prevent deadlock by always fetching inodes from the
12022 		 * root, moving down the directory tree. Thus, when fetching
12023 		 * our parent directory, we first try to get the lock. If
12024 		 * that fails, we must unlock ourselves before requesting
12025 		 * the lock on our parent. See the comment in ufs_lookup
12026 		 * for details on possible races.
12027 		 */
12028 		FREE_LOCK(&lk);
12029 		if (ffs_vgetf(mp, parentino, LK_NOWAIT | LK_EXCLUSIVE, &pvp,
12030 		    FFSV_FORCEINSMQ)) {
12031 			error = vfs_busy(mp, MBF_NOWAIT);
12032 			if (error != 0) {
12033 				vfs_ref(mp);
12034 				VOP_UNLOCK(vp, 0);
12035 				error = vfs_busy(mp, 0);
12036 				vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
12037 				vfs_rel(mp);
12038 				if (error != 0)
12039 					return (ENOENT);
12040 				if (vp->v_iflag & VI_DOOMED) {
12041 					vfs_unbusy(mp);
12042 					return (ENOENT);
12043 				}
12044 			}
12045 			VOP_UNLOCK(vp, 0);
12046 			error = ffs_vgetf(mp, parentino, LK_EXCLUSIVE,
12047 			    &pvp, FFSV_FORCEINSMQ);
12048 			vfs_unbusy(mp);
12049 			vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
12050 			if (vp->v_iflag & VI_DOOMED) {
12051 				if (error == 0)
12052 					vput(pvp);
12053 				error = ENOENT;
12054 			}
12055 			if (error != 0)
12056 				return (error);
12057 		}
12058 		/*
12059 		 * All MKDIR_PARENT dependencies and all the NEWBLOCK pagedeps
12060 		 * that are contained in direct blocks will be resolved by
12061 		 * doing a ffs_update. Pagedeps contained in indirect blocks
12062 		 * may require a complete sync'ing of the directory. So, we
12063 		 * try the cheap and fast ffs_update first, and if that fails,
12064 		 * then we do the slower ffs_syncvnode of the directory.
12065 		 */
12066 		if (flushparent) {
12067 			int locked;
12068 
12069 			if ((error = ffs_update(pvp, 1)) != 0) {
12070 				vput(pvp);
12071 				return (error);
12072 			}
12073 			ACQUIRE_LOCK(&lk);
12074 			locked = 1;
12075 			if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0) {
12076 				if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) != NULL) {
12077 					if (wk->wk_type != D_DIRADD)
12078 						panic("softdep_fsync: Unexpected type %s",
12079 						      TYPENAME(wk->wk_type));
12080 					dap = WK_DIRADD(wk);
12081 					if (dap->da_state & DIRCHG)
12082 						pagedep = dap->da_previous->dm_pagedep;
12083 					else
12084 						pagedep = dap->da_pagedep;
12085 					pagedep_new_block = pagedep->pd_state & NEWBLOCK;
12086 					FREE_LOCK(&lk);
12087 					locked = 0;
12088 					if (pagedep_new_block && (error =
12089 					    ffs_syncvnode(pvp, MNT_WAIT, 0))) {
12090 						vput(pvp);
12091 						return (error);
12092 					}
12093 				}
12094 			}
12095 			if (locked)
12096 				FREE_LOCK(&lk);
12097 		}
12098 		/*
12099 		 * Flush directory page containing the inode's name.
12100 		 */
12101 		error = bread(pvp, lbn, blksize(fs, VTOI(pvp), lbn), td->td_ucred,
12102 		    &bp);
12103 		if (error == 0)
12104 			error = bwrite(bp);
12105 		else
12106 			brelse(bp);
12107 		vput(pvp);
12108 		if (error != 0)
12109 			return (error);
12110 		ACQUIRE_LOCK(&lk);
12111 		if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0)
12112 			break;
12113 	}
12114 	FREE_LOCK(&lk);
12115 	return (0);
12116 }
12117 
12118 /*
12119  * Flush all the dirty bitmaps associated with the block device
12120  * before flushing the rest of the dirty blocks so as to reduce
12121  * the number of dependencies that will have to be rolled back.
12122  *
12123  * XXX Unused?
12124  */
12125 void
12126 softdep_fsync_mountdev(vp)
12127 	struct vnode *vp;
12128 {
12129 	struct buf *bp, *nbp;
12130 	struct worklist *wk;
12131 	struct bufobj *bo;
12132 
12133 	if (!vn_isdisk(vp, NULL))
12134 		panic("softdep_fsync_mountdev: vnode not a disk");
12135 	bo = &vp->v_bufobj;
12136 restart:
12137 	BO_LOCK(bo);
12138 	ACQUIRE_LOCK(&lk);
12139 	TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
12140 		/*
12141 		 * If it is already scheduled, skip to the next buffer.
12142 		 */
12143 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL))
12144 			continue;
12145 
12146 		if ((bp->b_flags & B_DELWRI) == 0)
12147 			panic("softdep_fsync_mountdev: not dirty");
12148 		/*
12149 		 * We are only interested in bitmaps with outstanding
12150 		 * dependencies.
12151 		 */
12152 		if ((wk = LIST_FIRST(&bp->b_dep)) == NULL ||
12153 		    wk->wk_type != D_BMSAFEMAP ||
12154 		    (bp->b_vflags & BV_BKGRDINPROG)) {
12155 			BUF_UNLOCK(bp);
12156 			continue;
12157 		}
12158 		FREE_LOCK(&lk);
12159 		BO_UNLOCK(bo);
12160 		bremfree(bp);
12161 		(void) bawrite(bp);
12162 		goto restart;
12163 	}
12164 	FREE_LOCK(&lk);
12165 	drain_output(vp);
12166 	BO_UNLOCK(bo);
12167 }
12168 
12169 /*
12170  * Sync all cylinder groups that were dirty at the time this function is
12171  * called.  Newly dirtied cgs will be inserted before the sentinel.  This
12172  * is used to flush freedep activity that may be holding up writes to a
12173  * indirect block.
12174  */
12175 static int
12176 sync_cgs(mp, waitfor)
12177 	struct mount *mp;
12178 	int waitfor;
12179 {
12180 	struct bmsafemap *bmsafemap;
12181 	struct bmsafemap *sentinel;
12182 	struct ufsmount *ump;
12183 	struct buf *bp;
12184 	int error;
12185 
12186 	sentinel = malloc(sizeof(*sentinel), M_BMSAFEMAP, M_ZERO | M_WAITOK);
12187 	sentinel->sm_cg = -1;
12188 	ump = VFSTOUFS(mp);
12189 	error = 0;
12190 	ACQUIRE_LOCK(&lk);
12191 	LIST_INSERT_HEAD(&ump->softdep_dirtycg, sentinel, sm_next);
12192 	for (bmsafemap = LIST_NEXT(sentinel, sm_next); bmsafemap != NULL;
12193 	    bmsafemap = LIST_NEXT(sentinel, sm_next)) {
12194 		/* Skip sentinels and cgs with no work to release. */
12195 		if (bmsafemap->sm_cg == -1 ||
12196 		    (LIST_EMPTY(&bmsafemap->sm_freehd) &&
12197 		    LIST_EMPTY(&bmsafemap->sm_freewr))) {
12198 			LIST_REMOVE(sentinel, sm_next);
12199 			LIST_INSERT_AFTER(bmsafemap, sentinel, sm_next);
12200 			continue;
12201 		}
12202 		/*
12203 		 * If we don't get the lock and we're waiting try again, if
12204 		 * not move on to the next buf and try to sync it.
12205 		 */
12206 		bp = getdirtybuf(bmsafemap->sm_buf, &lk, waitfor);
12207 		if (bp == NULL && waitfor == MNT_WAIT)
12208 			continue;
12209 		LIST_REMOVE(sentinel, sm_next);
12210 		LIST_INSERT_AFTER(bmsafemap, sentinel, sm_next);
12211 		if (bp == NULL)
12212 			continue;
12213 		FREE_LOCK(&lk);
12214 		if (waitfor == MNT_NOWAIT)
12215 			bawrite(bp);
12216 		else
12217 			error = bwrite(bp);
12218 		ACQUIRE_LOCK(&lk);
12219 		if (error)
12220 			break;
12221 	}
12222 	LIST_REMOVE(sentinel, sm_next);
12223 	FREE_LOCK(&lk);
12224 	free(sentinel, M_BMSAFEMAP);
12225 	return (error);
12226 }
12227 
12228 /*
12229  * This routine is called when we are trying to synchronously flush a
12230  * file. This routine must eliminate any filesystem metadata dependencies
12231  * so that the syncing routine can succeed.
12232  */
12233 int
12234 softdep_sync_metadata(struct vnode *vp)
12235 {
12236 	int error;
12237 
12238 	/*
12239 	 * Ensure that any direct block dependencies have been cleared,
12240 	 * truncations are started, and inode references are journaled.
12241 	 */
12242 	ACQUIRE_LOCK(&lk);
12243 	/*
12244 	 * Write all journal records to prevent rollbacks on devvp.
12245 	 */
12246 	if (vp->v_type == VCHR)
12247 		softdep_flushjournal(vp->v_mount);
12248 	error = flush_inodedep_deps(vp, vp->v_mount, VTOI(vp)->i_number);
12249 	/*
12250 	 * Ensure that all truncates are written so we won't find deps on
12251 	 * indirect blocks.
12252 	 */
12253 	process_truncates(vp);
12254 	FREE_LOCK(&lk);
12255 
12256 	return (error);
12257 }
12258 
12259 /*
12260  * This routine is called when we are attempting to sync a buf with
12261  * dependencies.  If waitfor is MNT_NOWAIT it attempts to schedule any
12262  * other IO it can but returns EBUSY if the buffer is not yet able to
12263  * be written.  Dependencies which will not cause rollbacks will always
12264  * return 0.
12265  */
12266 int
12267 softdep_sync_buf(struct vnode *vp, struct buf *bp, int waitfor)
12268 {
12269 	struct indirdep *indirdep;
12270 	struct pagedep *pagedep;
12271 	struct allocindir *aip;
12272 	struct newblk *newblk;
12273 	struct buf *nbp;
12274 	struct worklist *wk;
12275 	int i, error;
12276 
12277 	/*
12278 	 * For VCHR we just don't want to force flush any dependencies that
12279 	 * will cause rollbacks.
12280 	 */
12281 	if (vp->v_type == VCHR) {
12282 		if (waitfor == MNT_NOWAIT && softdep_count_dependencies(bp, 0))
12283 			return (EBUSY);
12284 		return (0);
12285 	}
12286 	ACQUIRE_LOCK(&lk);
12287 	/*
12288 	 * As we hold the buffer locked, none of its dependencies
12289 	 * will disappear.
12290 	 */
12291 	error = 0;
12292 top:
12293 	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
12294 		switch (wk->wk_type) {
12295 
12296 		case D_ALLOCDIRECT:
12297 		case D_ALLOCINDIR:
12298 			newblk = WK_NEWBLK(wk);
12299 			if (newblk->nb_jnewblk != NULL) {
12300 				if (waitfor == MNT_NOWAIT) {
12301 					error = EBUSY;
12302 					goto out_unlock;
12303 				}
12304 				jwait(&newblk->nb_jnewblk->jn_list, waitfor);
12305 				goto top;
12306 			}
12307 			if (newblk->nb_state & DEPCOMPLETE ||
12308 			    waitfor == MNT_NOWAIT)
12309 				continue;
12310 			nbp = newblk->nb_bmsafemap->sm_buf;
12311 			nbp = getdirtybuf(nbp, &lk, waitfor);
12312 			if (nbp == NULL)
12313 				goto top;
12314 			FREE_LOCK(&lk);
12315 			if ((error = bwrite(nbp)) != 0)
12316 				goto out;
12317 			ACQUIRE_LOCK(&lk);
12318 			continue;
12319 
12320 		case D_INDIRDEP:
12321 			indirdep = WK_INDIRDEP(wk);
12322 			if (waitfor == MNT_NOWAIT) {
12323 				if (!TAILQ_EMPTY(&indirdep->ir_trunc) ||
12324 				    !LIST_EMPTY(&indirdep->ir_deplisthd)) {
12325 					error = EBUSY;
12326 					goto out_unlock;
12327 				}
12328 			}
12329 			if (!TAILQ_EMPTY(&indirdep->ir_trunc))
12330 				panic("softdep_sync_buf: truncation pending.");
12331 		restart:
12332 			LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) {
12333 				newblk = (struct newblk *)aip;
12334 				if (newblk->nb_jnewblk != NULL) {
12335 					jwait(&newblk->nb_jnewblk->jn_list,
12336 					    waitfor);
12337 					goto restart;
12338 				}
12339 				if (newblk->nb_state & DEPCOMPLETE)
12340 					continue;
12341 				nbp = newblk->nb_bmsafemap->sm_buf;
12342 				nbp = getdirtybuf(nbp, &lk, waitfor);
12343 				if (nbp == NULL)
12344 					goto restart;
12345 				FREE_LOCK(&lk);
12346 				if ((error = bwrite(nbp)) != 0)
12347 					goto out;
12348 				ACQUIRE_LOCK(&lk);
12349 				goto restart;
12350 			}
12351 			continue;
12352 
12353 		case D_PAGEDEP:
12354 			/*
12355 			 * Only flush directory entries in synchronous passes.
12356 			 */
12357 			if (waitfor != MNT_WAIT) {
12358 				error = EBUSY;
12359 				goto out_unlock;
12360 			}
12361 			/*
12362 			 * While syncing snapshots, we must allow recursive
12363 			 * lookups.
12364 			 */
12365 			BUF_AREC(bp);
12366 			/*
12367 			 * We are trying to sync a directory that may
12368 			 * have dependencies on both its own metadata
12369 			 * and/or dependencies on the inodes of any
12370 			 * recently allocated files. We walk its diradd
12371 			 * lists pushing out the associated inode.
12372 			 */
12373 			pagedep = WK_PAGEDEP(wk);
12374 			for (i = 0; i < DAHASHSZ; i++) {
12375 				if (LIST_FIRST(&pagedep->pd_diraddhd[i]) == 0)
12376 					continue;
12377 				if ((error = flush_pagedep_deps(vp, wk->wk_mp,
12378 				    &pagedep->pd_diraddhd[i]))) {
12379 					BUF_NOREC(bp);
12380 					goto out_unlock;
12381 				}
12382 			}
12383 			BUF_NOREC(bp);
12384 			continue;
12385 
12386 		case D_FREEWORK:
12387 		case D_FREEDEP:
12388 		case D_JSEGDEP:
12389 		case D_JNEWBLK:
12390 			continue;
12391 
12392 		default:
12393 			panic("softdep_sync_buf: Unknown type %s",
12394 			    TYPENAME(wk->wk_type));
12395 			/* NOTREACHED */
12396 		}
12397 	}
12398 out_unlock:
12399 	FREE_LOCK(&lk);
12400 out:
12401 	return (error);
12402 }
12403 
12404 /*
12405  * Flush the dependencies associated with an inodedep.
12406  * Called with splbio blocked.
12407  */
12408 static int
12409 flush_inodedep_deps(vp, mp, ino)
12410 	struct vnode *vp;
12411 	struct mount *mp;
12412 	ino_t ino;
12413 {
12414 	struct inodedep *inodedep;
12415 	struct inoref *inoref;
12416 	int error, waitfor;
12417 
12418 	/*
12419 	 * This work is done in two passes. The first pass grabs most
12420 	 * of the buffers and begins asynchronously writing them. The
12421 	 * only way to wait for these asynchronous writes is to sleep
12422 	 * on the filesystem vnode which may stay busy for a long time
12423 	 * if the filesystem is active. So, instead, we make a second
12424 	 * pass over the dependencies blocking on each write. In the
12425 	 * usual case we will be blocking against a write that we
12426 	 * initiated, so when it is done the dependency will have been
12427 	 * resolved. Thus the second pass is expected to end quickly.
12428 	 * We give a brief window at the top of the loop to allow
12429 	 * any pending I/O to complete.
12430 	 */
12431 	for (error = 0, waitfor = MNT_NOWAIT; ; ) {
12432 		if (error)
12433 			return (error);
12434 		FREE_LOCK(&lk);
12435 		ACQUIRE_LOCK(&lk);
12436 restart:
12437 		if (inodedep_lookup(mp, ino, 0, &inodedep) == 0)
12438 			return (0);
12439 		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
12440 			if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
12441 			    == DEPCOMPLETE) {
12442 				jwait(&inoref->if_list, MNT_WAIT);
12443 				goto restart;
12444 			}
12445 		}
12446 		if (flush_deplist(&inodedep->id_inoupdt, waitfor, &error) ||
12447 		    flush_deplist(&inodedep->id_newinoupdt, waitfor, &error) ||
12448 		    flush_deplist(&inodedep->id_extupdt, waitfor, &error) ||
12449 		    flush_deplist(&inodedep->id_newextupdt, waitfor, &error))
12450 			continue;
12451 		/*
12452 		 * If pass2, we are done, otherwise do pass 2.
12453 		 */
12454 		if (waitfor == MNT_WAIT)
12455 			break;
12456 		waitfor = MNT_WAIT;
12457 	}
12458 	/*
12459 	 * Try freeing inodedep in case all dependencies have been removed.
12460 	 */
12461 	if (inodedep_lookup(mp, ino, 0, &inodedep) != 0)
12462 		(void) free_inodedep(inodedep);
12463 	return (0);
12464 }
12465 
12466 /*
12467  * Flush an inode dependency list.
12468  * Called with splbio blocked.
12469  */
12470 static int
12471 flush_deplist(listhead, waitfor, errorp)
12472 	struct allocdirectlst *listhead;
12473 	int waitfor;
12474 	int *errorp;
12475 {
12476 	struct allocdirect *adp;
12477 	struct newblk *newblk;
12478 	struct buf *bp;
12479 
12480 	rw_assert(&lk, RA_WLOCKED);
12481 	TAILQ_FOREACH(adp, listhead, ad_next) {
12482 		newblk = (struct newblk *)adp;
12483 		if (newblk->nb_jnewblk != NULL) {
12484 			jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT);
12485 			return (1);
12486 		}
12487 		if (newblk->nb_state & DEPCOMPLETE)
12488 			continue;
12489 		bp = newblk->nb_bmsafemap->sm_buf;
12490 		bp = getdirtybuf(bp, &lk, waitfor);
12491 		if (bp == NULL) {
12492 			if (waitfor == MNT_NOWAIT)
12493 				continue;
12494 			return (1);
12495 		}
12496 		FREE_LOCK(&lk);
12497 		if (waitfor == MNT_NOWAIT)
12498 			bawrite(bp);
12499 		else
12500 			*errorp = bwrite(bp);
12501 		ACQUIRE_LOCK(&lk);
12502 		return (1);
12503 	}
12504 	return (0);
12505 }
12506 
12507 /*
12508  * Flush dependencies associated with an allocdirect block.
12509  */
12510 static int
12511 flush_newblk_dep(vp, mp, lbn)
12512 	struct vnode *vp;
12513 	struct mount *mp;
12514 	ufs_lbn_t lbn;
12515 {
12516 	struct newblk *newblk;
12517 	struct bufobj *bo;
12518 	struct inode *ip;
12519 	struct buf *bp;
12520 	ufs2_daddr_t blkno;
12521 	int error;
12522 
12523 	error = 0;
12524 	bo = &vp->v_bufobj;
12525 	ip = VTOI(vp);
12526 	blkno = DIP(ip, i_db[lbn]);
12527 	if (blkno == 0)
12528 		panic("flush_newblk_dep: Missing block");
12529 	ACQUIRE_LOCK(&lk);
12530 	/*
12531 	 * Loop until all dependencies related to this block are satisfied.
12532 	 * We must be careful to restart after each sleep in case a write
12533 	 * completes some part of this process for us.
12534 	 */
12535 	for (;;) {
12536 		if (newblk_lookup(mp, blkno, 0, &newblk) == 0) {
12537 			FREE_LOCK(&lk);
12538 			break;
12539 		}
12540 		if (newblk->nb_list.wk_type != D_ALLOCDIRECT)
12541 			panic("flush_newblk_deps: Bad newblk %p", newblk);
12542 		/*
12543 		 * Flush the journal.
12544 		 */
12545 		if (newblk->nb_jnewblk != NULL) {
12546 			jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT);
12547 			continue;
12548 		}
12549 		/*
12550 		 * Write the bitmap dependency.
12551 		 */
12552 		if ((newblk->nb_state & DEPCOMPLETE) == 0) {
12553 			bp = newblk->nb_bmsafemap->sm_buf;
12554 			bp = getdirtybuf(bp, &lk, MNT_WAIT);
12555 			if (bp == NULL)
12556 				continue;
12557 			FREE_LOCK(&lk);
12558 			error = bwrite(bp);
12559 			if (error)
12560 				break;
12561 			ACQUIRE_LOCK(&lk);
12562 			continue;
12563 		}
12564 		/*
12565 		 * Write the buffer.
12566 		 */
12567 		FREE_LOCK(&lk);
12568 		BO_LOCK(bo);
12569 		bp = gbincore(bo, lbn);
12570 		if (bp != NULL) {
12571 			error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL |
12572 			    LK_INTERLOCK, BO_LOCKPTR(bo));
12573 			if (error == ENOLCK) {
12574 				ACQUIRE_LOCK(&lk);
12575 				continue; /* Slept, retry */
12576 			}
12577 			if (error != 0)
12578 				break;	/* Failed */
12579 			if (bp->b_flags & B_DELWRI) {
12580 				bremfree(bp);
12581 				error = bwrite(bp);
12582 				if (error)
12583 					break;
12584 			} else
12585 				BUF_UNLOCK(bp);
12586 		} else
12587 			BO_UNLOCK(bo);
12588 		/*
12589 		 * We have to wait for the direct pointers to
12590 		 * point at the newdirblk before the dependency
12591 		 * will go away.
12592 		 */
12593 		error = ffs_update(vp, 1);
12594 		if (error)
12595 			break;
12596 		ACQUIRE_LOCK(&lk);
12597 	}
12598 	return (error);
12599 }
12600 
12601 /*
12602  * Eliminate a pagedep dependency by flushing out all its diradd dependencies.
12603  * Called with splbio blocked.
12604  */
12605 static int
12606 flush_pagedep_deps(pvp, mp, diraddhdp)
12607 	struct vnode *pvp;
12608 	struct mount *mp;
12609 	struct diraddhd *diraddhdp;
12610 {
12611 	struct inodedep *inodedep;
12612 	struct inoref *inoref;
12613 	struct ufsmount *ump;
12614 	struct diradd *dap;
12615 	struct vnode *vp;
12616 	int error = 0;
12617 	struct buf *bp;
12618 	ino_t inum;
12619 
12620 	ump = VFSTOUFS(mp);
12621 restart:
12622 	while ((dap = LIST_FIRST(diraddhdp)) != NULL) {
12623 		/*
12624 		 * Flush ourselves if this directory entry
12625 		 * has a MKDIR_PARENT dependency.
12626 		 */
12627 		if (dap->da_state & MKDIR_PARENT) {
12628 			FREE_LOCK(&lk);
12629 			if ((error = ffs_update(pvp, 1)) != 0)
12630 				break;
12631 			ACQUIRE_LOCK(&lk);
12632 			/*
12633 			 * If that cleared dependencies, go on to next.
12634 			 */
12635 			if (dap != LIST_FIRST(diraddhdp))
12636 				continue;
12637 			if (dap->da_state & MKDIR_PARENT)
12638 				panic("flush_pagedep_deps: MKDIR_PARENT");
12639 		}
12640 		/*
12641 		 * A newly allocated directory must have its "." and
12642 		 * ".." entries written out before its name can be
12643 		 * committed in its parent.
12644 		 */
12645 		inum = dap->da_newinum;
12646 		if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0)
12647 			panic("flush_pagedep_deps: lost inode1");
12648 		/*
12649 		 * Wait for any pending journal adds to complete so we don't
12650 		 * cause rollbacks while syncing.
12651 		 */
12652 		TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) {
12653 			if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY))
12654 			    == DEPCOMPLETE) {
12655 				jwait(&inoref->if_list, MNT_WAIT);
12656 				goto restart;
12657 			}
12658 		}
12659 		if (dap->da_state & MKDIR_BODY) {
12660 			FREE_LOCK(&lk);
12661 			if ((error = ffs_vgetf(mp, inum, LK_EXCLUSIVE, &vp,
12662 			    FFSV_FORCEINSMQ)))
12663 				break;
12664 			error = flush_newblk_dep(vp, mp, 0);
12665 			/*
12666 			 * If we still have the dependency we might need to
12667 			 * update the vnode to sync the new link count to
12668 			 * disk.
12669 			 */
12670 			if (error == 0 && dap == LIST_FIRST(diraddhdp))
12671 				error = ffs_update(vp, 1);
12672 			vput(vp);
12673 			if (error != 0)
12674 				break;
12675 			ACQUIRE_LOCK(&lk);
12676 			/*
12677 			 * If that cleared dependencies, go on to next.
12678 			 */
12679 			if (dap != LIST_FIRST(diraddhdp))
12680 				continue;
12681 			if (dap->da_state & MKDIR_BODY) {
12682 				inodedep_lookup(UFSTOVFS(ump), inum, 0,
12683 				    &inodedep);
12684 				panic("flush_pagedep_deps: MKDIR_BODY "
12685 				    "inodedep %p dap %p vp %p",
12686 				    inodedep, dap, vp);
12687 			}
12688 		}
12689 		/*
12690 		 * Flush the inode on which the directory entry depends.
12691 		 * Having accounted for MKDIR_PARENT and MKDIR_BODY above,
12692 		 * the only remaining dependency is that the updated inode
12693 		 * count must get pushed to disk. The inode has already
12694 		 * been pushed into its inode buffer (via VOP_UPDATE) at
12695 		 * the time of the reference count change. So we need only
12696 		 * locate that buffer, ensure that there will be no rollback
12697 		 * caused by a bitmap dependency, then write the inode buffer.
12698 		 */
12699 retry:
12700 		if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0)
12701 			panic("flush_pagedep_deps: lost inode");
12702 		/*
12703 		 * If the inode still has bitmap dependencies,
12704 		 * push them to disk.
12705 		 */
12706 		if ((inodedep->id_state & (DEPCOMPLETE | GOINGAWAY)) == 0) {
12707 			bp = inodedep->id_bmsafemap->sm_buf;
12708 			bp = getdirtybuf(bp, &lk, MNT_WAIT);
12709 			if (bp == NULL)
12710 				goto retry;
12711 			FREE_LOCK(&lk);
12712 			if ((error = bwrite(bp)) != 0)
12713 				break;
12714 			ACQUIRE_LOCK(&lk);
12715 			if (dap != LIST_FIRST(diraddhdp))
12716 				continue;
12717 		}
12718 		/*
12719 		 * If the inode is still sitting in a buffer waiting
12720 		 * to be written or waiting for the link count to be
12721 		 * adjusted update it here to flush it to disk.
12722 		 */
12723 		if (dap == LIST_FIRST(diraddhdp)) {
12724 			FREE_LOCK(&lk);
12725 			if ((error = ffs_vgetf(mp, inum, LK_EXCLUSIVE, &vp,
12726 			    FFSV_FORCEINSMQ)))
12727 				break;
12728 			error = ffs_update(vp, 1);
12729 			vput(vp);
12730 			if (error)
12731 				break;
12732 			ACQUIRE_LOCK(&lk);
12733 		}
12734 		/*
12735 		 * If we have failed to get rid of all the dependencies
12736 		 * then something is seriously wrong.
12737 		 */
12738 		if (dap == LIST_FIRST(diraddhdp)) {
12739 			inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep);
12740 			panic("flush_pagedep_deps: failed to flush "
12741 			    "inodedep %p ino %ju dap %p",
12742 			    inodedep, (uintmax_t)inum, dap);
12743 		}
12744 	}
12745 	if (error)
12746 		ACQUIRE_LOCK(&lk);
12747 	return (error);
12748 }
12749 
12750 /*
12751  * A large burst of file addition or deletion activity can drive the
12752  * memory load excessively high. First attempt to slow things down
12753  * using the techniques below. If that fails, this routine requests
12754  * the offending operations to fall back to running synchronously
12755  * until the memory load returns to a reasonable level.
12756  */
12757 int
12758 softdep_slowdown(vp)
12759 	struct vnode *vp;
12760 {
12761 	struct ufsmount *ump;
12762 	int jlow;
12763 	int max_softdeps_hard;
12764 
12765 	ACQUIRE_LOCK(&lk);
12766 	jlow = 0;
12767 	/*
12768 	 * Check for journal space if needed.
12769 	 */
12770 	if (DOINGSUJ(vp)) {
12771 		ump = VFSTOUFS(vp->v_mount);
12772 		if (journal_space(ump, 0) == 0)
12773 			jlow = 1;
12774 	}
12775 	max_softdeps_hard = max_softdeps * 11 / 10;
12776 	if (dep_current[D_DIRREM] < max_softdeps_hard / 2 &&
12777 	    dep_current[D_INODEDEP] < max_softdeps_hard &&
12778 	    VFSTOUFS(vp->v_mount)->um_numindirdeps < maxindirdeps &&
12779 	    dep_current[D_FREEBLKS] < max_softdeps_hard && jlow == 0) {
12780 		FREE_LOCK(&lk);
12781   		return (0);
12782 	}
12783 	if (VFSTOUFS(vp->v_mount)->um_numindirdeps >= maxindirdeps || jlow)
12784 		softdep_speedup();
12785 	stat_sync_limit_hit += 1;
12786 	FREE_LOCK(&lk);
12787 	if (DOINGSUJ(vp))
12788 		return (0);
12789 	return (1);
12790 }
12791 
12792 /*
12793  * Called by the allocation routines when they are about to fail
12794  * in the hope that we can free up the requested resource (inodes
12795  * or disk space).
12796  *
12797  * First check to see if the work list has anything on it. If it has,
12798  * clean up entries until we successfully free the requested resource.
12799  * Because this process holds inodes locked, we cannot handle any remove
12800  * requests that might block on a locked inode as that could lead to
12801  * deadlock. If the worklist yields none of the requested resource,
12802  * start syncing out vnodes to free up the needed space.
12803  */
12804 int
12805 softdep_request_cleanup(fs, vp, cred, resource)
12806 	struct fs *fs;
12807 	struct vnode *vp;
12808 	struct ucred *cred;
12809 	int resource;
12810 {
12811 	struct ufsmount *ump;
12812 	struct mount *mp;
12813 	struct vnode *lvp, *mvp;
12814 	long starttime;
12815 	ufs2_daddr_t needed;
12816 	int error;
12817 
12818 	/*
12819 	 * If we are being called because of a process doing a
12820 	 * copy-on-write, then it is not safe to process any
12821 	 * worklist items as we will recurse into the copyonwrite
12822 	 * routine.  This will result in an incoherent snapshot.
12823 	 * If the vnode that we hold is a snapshot, we must avoid
12824 	 * handling other resources that could cause deadlock.
12825 	 */
12826 	if ((curthread->td_pflags & TDP_COWINPROGRESS) || IS_SNAPSHOT(VTOI(vp)))
12827 		return (0);
12828 
12829 	if (resource == FLUSH_BLOCKS_WAIT)
12830 		stat_cleanup_blkrequests += 1;
12831 	else
12832 		stat_cleanup_inorequests += 1;
12833 
12834 	mp = vp->v_mount;
12835 	ump = VFSTOUFS(mp);
12836 	mtx_assert(UFS_MTX(ump), MA_OWNED);
12837 	UFS_UNLOCK(ump);
12838 	error = ffs_update(vp, 1);
12839 	if (error != 0) {
12840 		UFS_LOCK(ump);
12841 		return (0);
12842 	}
12843 	/*
12844 	 * If we are in need of resources, consider pausing for
12845 	 * tickdelay to give ourselves some breathing room.
12846 	 */
12847 	ACQUIRE_LOCK(&lk);
12848 	process_removes(vp);
12849 	process_truncates(vp);
12850 	request_cleanup(UFSTOVFS(ump), resource);
12851 	FREE_LOCK(&lk);
12852 	/*
12853 	 * Now clean up at least as many resources as we will need.
12854 	 *
12855 	 * When requested to clean up inodes, the number that are needed
12856 	 * is set by the number of simultaneous writers (mnt_writeopcount)
12857 	 * plus a bit of slop (2) in case some more writers show up while
12858 	 * we are cleaning.
12859 	 *
12860 	 * When requested to free up space, the amount of space that
12861 	 * we need is enough blocks to allocate a full-sized segment
12862 	 * (fs_contigsumsize). The number of such segments that will
12863 	 * be needed is set by the number of simultaneous writers
12864 	 * (mnt_writeopcount) plus a bit of slop (2) in case some more
12865 	 * writers show up while we are cleaning.
12866 	 *
12867 	 * Additionally, if we are unpriviledged and allocating space,
12868 	 * we need to ensure that we clean up enough blocks to get the
12869 	 * needed number of blocks over the threshhold of the minimum
12870 	 * number of blocks required to be kept free by the filesystem
12871 	 * (fs_minfree).
12872 	 */
12873 	if (resource == FLUSH_INODES_WAIT) {
12874 		needed = vp->v_mount->mnt_writeopcount + 2;
12875 	} else if (resource == FLUSH_BLOCKS_WAIT) {
12876 		needed = (vp->v_mount->mnt_writeopcount + 2) *
12877 		    fs->fs_contigsumsize;
12878 		if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE, 0))
12879 			needed += fragstoblks(fs,
12880 			    roundup((fs->fs_dsize * fs->fs_minfree / 100) -
12881 			    fs->fs_cstotal.cs_nffree, fs->fs_frag));
12882 	} else {
12883 		UFS_LOCK(ump);
12884 		printf("softdep_request_cleanup: Unknown resource type %d\n",
12885 		    resource);
12886 		return (0);
12887 	}
12888 	starttime = time_second;
12889 retry:
12890 	if ((resource == FLUSH_BLOCKS_WAIT && ump->softdep_on_worklist > 0 &&
12891 	    fs->fs_cstotal.cs_nbfree <= needed) ||
12892 	    (resource == FLUSH_INODES_WAIT && fs->fs_pendinginodes > 0 &&
12893 	    fs->fs_cstotal.cs_nifree <= needed)) {
12894 		ACQUIRE_LOCK(&lk);
12895 		if (ump->softdep_on_worklist > 0 &&
12896 		    process_worklist_item(UFSTOVFS(ump),
12897 		    ump->softdep_on_worklist, LK_NOWAIT) != 0)
12898 			stat_worklist_push += 1;
12899 		FREE_LOCK(&lk);
12900 	}
12901 	/*
12902 	 * If we still need resources and there are no more worklist
12903 	 * entries to process to obtain them, we have to start flushing
12904 	 * the dirty vnodes to force the release of additional requests
12905 	 * to the worklist that we can then process to reap addition
12906 	 * resources. We walk the vnodes associated with the mount point
12907 	 * until we get the needed worklist requests that we can reap.
12908 	 */
12909 	if ((resource == FLUSH_BLOCKS_WAIT &&
12910 	     fs->fs_cstotal.cs_nbfree <= needed) ||
12911 	    (resource == FLUSH_INODES_WAIT && fs->fs_pendinginodes > 0 &&
12912 	     fs->fs_cstotal.cs_nifree <= needed)) {
12913 		MNT_VNODE_FOREACH_ALL(lvp, mp, mvp) {
12914 			if (TAILQ_FIRST(&lvp->v_bufobj.bo_dirty.bv_hd) == 0) {
12915 				VI_UNLOCK(lvp);
12916 				continue;
12917 			}
12918 			if (vget(lvp, LK_EXCLUSIVE | LK_INTERLOCK | LK_NOWAIT,
12919 			    curthread))
12920 				continue;
12921 			if (lvp->v_vflag & VV_NOSYNC) {	/* unlinked */
12922 				vput(lvp);
12923 				continue;
12924 			}
12925 			(void) ffs_syncvnode(lvp, MNT_NOWAIT, 0);
12926 			vput(lvp);
12927 		}
12928 		lvp = ump->um_devvp;
12929 		if (vn_lock(lvp, LK_EXCLUSIVE | LK_NOWAIT) == 0) {
12930 			VOP_FSYNC(lvp, MNT_NOWAIT, curthread);
12931 			VOP_UNLOCK(lvp, 0);
12932 		}
12933 		if (ump->softdep_on_worklist > 0) {
12934 			stat_cleanup_retries += 1;
12935 			goto retry;
12936 		}
12937 		stat_cleanup_failures += 1;
12938 	}
12939 	if (time_second - starttime > stat_cleanup_high_delay)
12940 		stat_cleanup_high_delay = time_second - starttime;
12941 	UFS_LOCK(ump);
12942 	return (1);
12943 }
12944 
12945 /*
12946  * If memory utilization has gotten too high, deliberately slow things
12947  * down and speed up the I/O processing.
12948  */
12949 extern struct thread *syncertd;
12950 static int
12951 request_cleanup(mp, resource)
12952 	struct mount *mp;
12953 	int resource;
12954 {
12955 	struct thread *td = curthread;
12956 	struct ufsmount *ump;
12957 
12958 	rw_assert(&lk, RA_WLOCKED);
12959 	/*
12960 	 * We never hold up the filesystem syncer or buf daemon.
12961 	 */
12962 	if (td->td_pflags & (TDP_SOFTDEP|TDP_NORUNNINGBUF))
12963 		return (0);
12964 	ump = VFSTOUFS(mp);
12965 	/*
12966 	 * First check to see if the work list has gotten backlogged.
12967 	 * If it has, co-opt this process to help clean up two entries.
12968 	 * Because this process may hold inodes locked, we cannot
12969 	 * handle any remove requests that might block on a locked
12970 	 * inode as that could lead to deadlock.  We set TDP_SOFTDEP
12971 	 * to avoid recursively processing the worklist.
12972 	 */
12973 	if (ump->softdep_on_worklist > max_softdeps / 10) {
12974 		td->td_pflags |= TDP_SOFTDEP;
12975 		process_worklist_item(mp, 2, LK_NOWAIT);
12976 		td->td_pflags &= ~TDP_SOFTDEP;
12977 		stat_worklist_push += 2;
12978 		return(1);
12979 	}
12980 	/*
12981 	 * Next, we attempt to speed up the syncer process. If that
12982 	 * is successful, then we allow the process to continue.
12983 	 */
12984 	if (softdep_speedup() &&
12985 	    resource != FLUSH_BLOCKS_WAIT &&
12986 	    resource != FLUSH_INODES_WAIT)
12987 		return(0);
12988 	/*
12989 	 * If we are resource constrained on inode dependencies, try
12990 	 * flushing some dirty inodes. Otherwise, we are constrained
12991 	 * by file deletions, so try accelerating flushes of directories
12992 	 * with removal dependencies. We would like to do the cleanup
12993 	 * here, but we probably hold an inode locked at this point and
12994 	 * that might deadlock against one that we try to clean. So,
12995 	 * the best that we can do is request the syncer daemon to do
12996 	 * the cleanup for us.
12997 	 */
12998 	switch (resource) {
12999 
13000 	case FLUSH_INODES:
13001 	case FLUSH_INODES_WAIT:
13002 		stat_ino_limit_push += 1;
13003 		req_clear_inodedeps += 1;
13004 		stat_countp = &stat_ino_limit_hit;
13005 		break;
13006 
13007 	case FLUSH_BLOCKS:
13008 	case FLUSH_BLOCKS_WAIT:
13009 		stat_blk_limit_push += 1;
13010 		req_clear_remove += 1;
13011 		stat_countp = &stat_blk_limit_hit;
13012 		break;
13013 
13014 	default:
13015 		panic("request_cleanup: unknown type");
13016 	}
13017 	/*
13018 	 * Hopefully the syncer daemon will catch up and awaken us.
13019 	 * We wait at most tickdelay before proceeding in any case.
13020 	 */
13021 	proc_waiting += 1;
13022 	if (callout_pending(&softdep_callout) == FALSE)
13023 		callout_reset(&softdep_callout, tickdelay > 2 ? tickdelay : 2,
13024 		    pause_timer, 0);
13025 
13026 	msleep((caddr_t)&proc_waiting, &lk, PPAUSE, "softupdate", 0);
13027 	proc_waiting -= 1;
13028 	return (1);
13029 }
13030 
13031 /*
13032  * Awaken processes pausing in request_cleanup and clear proc_waiting
13033  * to indicate that there is no longer a timer running.
13034  */
13035 static void
13036 pause_timer(arg)
13037 	void *arg;
13038 {
13039 
13040 	/*
13041 	 * The callout_ API has acquired mtx and will hold it around this
13042 	 * function call.
13043 	 */
13044 	*stat_countp += 1;
13045 	wakeup_one(&proc_waiting);
13046 	if (proc_waiting > 0)
13047 		callout_reset(&softdep_callout, tickdelay > 2 ? tickdelay : 2,
13048 		    pause_timer, 0);
13049 }
13050 
13051 /*
13052  * Flush out a directory with at least one removal dependency in an effort to
13053  * reduce the number of dirrem, freefile, and freeblks dependency structures.
13054  */
13055 static void
13056 clear_remove(void)
13057 {
13058 	struct pagedep_hashhead *pagedephd;
13059 	struct pagedep *pagedep;
13060 	static int next = 0;
13061 	struct mount *mp;
13062 	struct vnode *vp;
13063 	struct bufobj *bo;
13064 	int error, cnt;
13065 	ino_t ino;
13066 
13067 	rw_assert(&lk, RA_WLOCKED);
13068 
13069 	for (cnt = 0; cnt <= pagedep_hash; cnt++) {
13070 		pagedephd = &pagedep_hashtbl[next++];
13071 		if (next > pagedep_hash)
13072 			next = 0;
13073 		LIST_FOREACH(pagedep, pagedephd, pd_hash) {
13074 			if (LIST_EMPTY(&pagedep->pd_dirremhd))
13075 				continue;
13076 			mp = pagedep->pd_list.wk_mp;
13077 			ino = pagedep->pd_ino;
13078 			if (vn_start_write(NULL, &mp, V_NOWAIT) != 0)
13079 				continue;
13080 			FREE_LOCK(&lk);
13081 
13082 			/*
13083 			 * Let unmount clear deps
13084 			 */
13085 			error = vfs_busy(mp, MBF_NOWAIT);
13086 			if (error != 0)
13087 				goto finish_write;
13088 			error = ffs_vgetf(mp, ino, LK_EXCLUSIVE, &vp,
13089 			     FFSV_FORCEINSMQ);
13090 			vfs_unbusy(mp);
13091 			if (error != 0) {
13092 				softdep_error("clear_remove: vget", error);
13093 				goto finish_write;
13094 			}
13095 			if ((error = ffs_syncvnode(vp, MNT_NOWAIT, 0)))
13096 				softdep_error("clear_remove: fsync", error);
13097 			bo = &vp->v_bufobj;
13098 			BO_LOCK(bo);
13099 			drain_output(vp);
13100 			BO_UNLOCK(bo);
13101 			vput(vp);
13102 		finish_write:
13103 			vn_finished_write(mp);
13104 			ACQUIRE_LOCK(&lk);
13105 			return;
13106 		}
13107 	}
13108 }
13109 
13110 /*
13111  * Clear out a block of dirty inodes in an effort to reduce
13112  * the number of inodedep dependency structures.
13113  */
13114 static void
13115 clear_inodedeps(void)
13116 {
13117 	struct inodedep_hashhead *inodedephd;
13118 	struct inodedep *inodedep;
13119 	static int next = 0;
13120 	struct mount *mp;
13121 	struct vnode *vp;
13122 	struct fs *fs;
13123 	int error, cnt;
13124 	ino_t firstino, lastino, ino;
13125 
13126 	rw_assert(&lk, RA_WLOCKED);
13127 	/*
13128 	 * Pick a random inode dependency to be cleared.
13129 	 * We will then gather up all the inodes in its block
13130 	 * that have dependencies and flush them out.
13131 	 */
13132 	for (cnt = 0; cnt <= inodedep_hash; cnt++) {
13133 		inodedephd = &inodedep_hashtbl[next++];
13134 		if (next > inodedep_hash)
13135 			next = 0;
13136 		if ((inodedep = LIST_FIRST(inodedephd)) != NULL)
13137 			break;
13138 	}
13139 	if (inodedep == NULL)
13140 		return;
13141 	fs = inodedep->id_fs;
13142 	mp = inodedep->id_list.wk_mp;
13143 	/*
13144 	 * Find the last inode in the block with dependencies.
13145 	 */
13146 	firstino = inodedep->id_ino & ~(INOPB(fs) - 1);
13147 	for (lastino = firstino + INOPB(fs) - 1; lastino > firstino; lastino--)
13148 		if (inodedep_lookup(mp, lastino, 0, &inodedep) != 0)
13149 			break;
13150 	/*
13151 	 * Asynchronously push all but the last inode with dependencies.
13152 	 * Synchronously push the last inode with dependencies to ensure
13153 	 * that the inode block gets written to free up the inodedeps.
13154 	 */
13155 	for (ino = firstino; ino <= lastino; ino++) {
13156 		if (inodedep_lookup(mp, ino, 0, &inodedep) == 0)
13157 			continue;
13158 		if (vn_start_write(NULL, &mp, V_NOWAIT) != 0)
13159 			continue;
13160 		FREE_LOCK(&lk);
13161 		error = vfs_busy(mp, MBF_NOWAIT); /* Let unmount clear deps */
13162 		if (error != 0) {
13163 			vn_finished_write(mp);
13164 			ACQUIRE_LOCK(&lk);
13165 			return;
13166 		}
13167 		if ((error = ffs_vgetf(mp, ino, LK_EXCLUSIVE, &vp,
13168 		    FFSV_FORCEINSMQ)) != 0) {
13169 			softdep_error("clear_inodedeps: vget", error);
13170 			vfs_unbusy(mp);
13171 			vn_finished_write(mp);
13172 			ACQUIRE_LOCK(&lk);
13173 			return;
13174 		}
13175 		vfs_unbusy(mp);
13176 		if (ino == lastino) {
13177 			if ((error = ffs_syncvnode(vp, MNT_WAIT, 0)))
13178 				softdep_error("clear_inodedeps: fsync1", error);
13179 		} else {
13180 			if ((error = ffs_syncvnode(vp, MNT_NOWAIT, 0)))
13181 				softdep_error("clear_inodedeps: fsync2", error);
13182 			BO_LOCK(&vp->v_bufobj);
13183 			drain_output(vp);
13184 			BO_UNLOCK(&vp->v_bufobj);
13185 		}
13186 		vput(vp);
13187 		vn_finished_write(mp);
13188 		ACQUIRE_LOCK(&lk);
13189 	}
13190 }
13191 
13192 void
13193 softdep_buf_append(bp, wkhd)
13194 	struct buf *bp;
13195 	struct workhead *wkhd;
13196 {
13197 	struct worklist *wk;
13198 
13199 	ACQUIRE_LOCK(&lk);
13200 	while ((wk = LIST_FIRST(wkhd)) != NULL) {
13201 		WORKLIST_REMOVE(wk);
13202 		WORKLIST_INSERT(&bp->b_dep, wk);
13203 	}
13204 	FREE_LOCK(&lk);
13205 
13206 }
13207 
13208 void
13209 softdep_inode_append(ip, cred, wkhd)
13210 	struct inode *ip;
13211 	struct ucred *cred;
13212 	struct workhead *wkhd;
13213 {
13214 	struct buf *bp;
13215 	struct fs *fs;
13216 	int error;
13217 
13218 	fs = ip->i_fs;
13219 	error = bread(ip->i_devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
13220 	    (int)fs->fs_bsize, cred, &bp);
13221 	if (error) {
13222 		bqrelse(bp);
13223 		softdep_freework(wkhd);
13224 		return;
13225 	}
13226 	softdep_buf_append(bp, wkhd);
13227 	bqrelse(bp);
13228 }
13229 
13230 void
13231 softdep_freework(wkhd)
13232 	struct workhead *wkhd;
13233 {
13234 
13235 	ACQUIRE_LOCK(&lk);
13236 	handle_jwork(wkhd);
13237 	FREE_LOCK(&lk);
13238 }
13239 
13240 /*
13241  * Function to determine if the buffer has outstanding dependencies
13242  * that will cause a roll-back if the buffer is written. If wantcount
13243  * is set, return number of dependencies, otherwise just yes or no.
13244  */
13245 static int
13246 softdep_count_dependencies(bp, wantcount)
13247 	struct buf *bp;
13248 	int wantcount;
13249 {
13250 	struct worklist *wk;
13251 	struct bmsafemap *bmsafemap;
13252 	struct freework *freework;
13253 	struct inodedep *inodedep;
13254 	struct indirdep *indirdep;
13255 	struct freeblks *freeblks;
13256 	struct allocindir *aip;
13257 	struct pagedep *pagedep;
13258 	struct dirrem *dirrem;
13259 	struct newblk *newblk;
13260 	struct mkdir *mkdir;
13261 	struct diradd *dap;
13262 	int i, retval;
13263 
13264 	retval = 0;
13265 	ACQUIRE_LOCK(&lk);
13266 	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
13267 		switch (wk->wk_type) {
13268 
13269 		case D_INODEDEP:
13270 			inodedep = WK_INODEDEP(wk);
13271 			if ((inodedep->id_state & DEPCOMPLETE) == 0) {
13272 				/* bitmap allocation dependency */
13273 				retval += 1;
13274 				if (!wantcount)
13275 					goto out;
13276 			}
13277 			if (TAILQ_FIRST(&inodedep->id_inoupdt)) {
13278 				/* direct block pointer dependency */
13279 				retval += 1;
13280 				if (!wantcount)
13281 					goto out;
13282 			}
13283 			if (TAILQ_FIRST(&inodedep->id_extupdt)) {
13284 				/* direct block pointer dependency */
13285 				retval += 1;
13286 				if (!wantcount)
13287 					goto out;
13288 			}
13289 			if (TAILQ_FIRST(&inodedep->id_inoreflst)) {
13290 				/* Add reference dependency. */
13291 				retval += 1;
13292 				if (!wantcount)
13293 					goto out;
13294 			}
13295 			continue;
13296 
13297 		case D_INDIRDEP:
13298 			indirdep = WK_INDIRDEP(wk);
13299 
13300 			TAILQ_FOREACH(freework, &indirdep->ir_trunc, fw_next) {
13301 				/* indirect truncation dependency */
13302 				retval += 1;
13303 				if (!wantcount)
13304 					goto out;
13305 			}
13306 
13307 			LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) {
13308 				/* indirect block pointer dependency */
13309 				retval += 1;
13310 				if (!wantcount)
13311 					goto out;
13312 			}
13313 			continue;
13314 
13315 		case D_PAGEDEP:
13316 			pagedep = WK_PAGEDEP(wk);
13317 			LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next) {
13318 				if (LIST_FIRST(&dirrem->dm_jremrefhd)) {
13319 					/* Journal remove ref dependency. */
13320 					retval += 1;
13321 					if (!wantcount)
13322 						goto out;
13323 				}
13324 			}
13325 			for (i = 0; i < DAHASHSZ; i++) {
13326 
13327 				LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) {
13328 					/* directory entry dependency */
13329 					retval += 1;
13330 					if (!wantcount)
13331 						goto out;
13332 				}
13333 			}
13334 			continue;
13335 
13336 		case D_BMSAFEMAP:
13337 			bmsafemap = WK_BMSAFEMAP(wk);
13338 			if (LIST_FIRST(&bmsafemap->sm_jaddrefhd)) {
13339 				/* Add reference dependency. */
13340 				retval += 1;
13341 				if (!wantcount)
13342 					goto out;
13343 			}
13344 			if (LIST_FIRST(&bmsafemap->sm_jnewblkhd)) {
13345 				/* Allocate block dependency. */
13346 				retval += 1;
13347 				if (!wantcount)
13348 					goto out;
13349 			}
13350 			continue;
13351 
13352 		case D_FREEBLKS:
13353 			freeblks = WK_FREEBLKS(wk);
13354 			if (LIST_FIRST(&freeblks->fb_jblkdephd)) {
13355 				/* Freeblk journal dependency. */
13356 				retval += 1;
13357 				if (!wantcount)
13358 					goto out;
13359 			}
13360 			continue;
13361 
13362 		case D_ALLOCDIRECT:
13363 		case D_ALLOCINDIR:
13364 			newblk = WK_NEWBLK(wk);
13365 			if (newblk->nb_jnewblk) {
13366 				/* Journal allocate dependency. */
13367 				retval += 1;
13368 				if (!wantcount)
13369 					goto out;
13370 			}
13371 			continue;
13372 
13373 		case D_MKDIR:
13374 			mkdir = WK_MKDIR(wk);
13375 			if (mkdir->md_jaddref) {
13376 				/* Journal reference dependency. */
13377 				retval += 1;
13378 				if (!wantcount)
13379 					goto out;
13380 			}
13381 			continue;
13382 
13383 		case D_FREEWORK:
13384 		case D_FREEDEP:
13385 		case D_JSEGDEP:
13386 		case D_JSEG:
13387 		case D_SBDEP:
13388 			/* never a dependency on these blocks */
13389 			continue;
13390 
13391 		default:
13392 			panic("softdep_count_dependencies: Unexpected type %s",
13393 			    TYPENAME(wk->wk_type));
13394 			/* NOTREACHED */
13395 		}
13396 	}
13397 out:
13398 	FREE_LOCK(&lk);
13399 	return retval;
13400 }
13401 
13402 /*
13403  * Acquire exclusive access to a buffer.
13404  * Must be called with a locked mtx parameter.
13405  * Return acquired buffer or NULL on failure.
13406  */
13407 static struct buf *
13408 getdirtybuf(bp, lock, waitfor)
13409 	struct buf *bp;
13410 	struct rwlock *lock;
13411 	int waitfor;
13412 {
13413 	int error;
13414 
13415 	rw_assert(lock, RA_WLOCKED);
13416 	if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0) {
13417 		if (waitfor != MNT_WAIT)
13418 			return (NULL);
13419 		error = BUF_LOCK(bp,
13420 		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, lock);
13421 		/*
13422 		 * Even if we sucessfully acquire bp here, we have dropped
13423 		 * lock, which may violates our guarantee.
13424 		 */
13425 		if (error == 0)
13426 			BUF_UNLOCK(bp);
13427 		else if (error != ENOLCK)
13428 			panic("getdirtybuf: inconsistent lock: %d", error);
13429 		rw_wlock(lock);
13430 		return (NULL);
13431 	}
13432 	if ((bp->b_vflags & BV_BKGRDINPROG) != 0) {
13433 		if (lock == &lk && waitfor == MNT_WAIT) {
13434 			rw_wunlock(lock);
13435 			BO_LOCK(bp->b_bufobj);
13436 			BUF_UNLOCK(bp);
13437 			if ((bp->b_vflags & BV_BKGRDINPROG) != 0) {
13438 				bp->b_vflags |= BV_BKGRDWAIT;
13439 				msleep(&bp->b_xflags, BO_LOCKPTR(bp->b_bufobj),
13440 				       PRIBIO | PDROP, "getbuf", 0);
13441 			} else
13442 				BO_UNLOCK(bp->b_bufobj);
13443 			rw_wlock(lock);
13444 			return (NULL);
13445 		}
13446 		BUF_UNLOCK(bp);
13447 		if (waitfor != MNT_WAIT)
13448 			return (NULL);
13449 		/*
13450 		 * The lock argument must be bp->b_vp's mutex in
13451 		 * this case.
13452 		 */
13453 #ifdef	DEBUG_VFS_LOCKS
13454 		if (bp->b_vp->v_type != VCHR)
13455 			ASSERT_BO_WLOCKED(bp->b_bufobj);
13456 #endif
13457 		bp->b_vflags |= BV_BKGRDWAIT;
13458 		rw_sleep(&bp->b_xflags, lock, PRIBIO, "getbuf", 0);
13459 		return (NULL);
13460 	}
13461 	if ((bp->b_flags & B_DELWRI) == 0) {
13462 		BUF_UNLOCK(bp);
13463 		return (NULL);
13464 	}
13465 	bremfree(bp);
13466 	return (bp);
13467 }
13468 
13469 
13470 /*
13471  * Check if it is safe to suspend the file system now.  On entry,
13472  * the vnode interlock for devvp should be held.  Return 0 with
13473  * the mount interlock held if the file system can be suspended now,
13474  * otherwise return EAGAIN with the mount interlock held.
13475  */
13476 int
13477 softdep_check_suspend(struct mount *mp,
13478 		      struct vnode *devvp,
13479 		      int softdep_deps,
13480 		      int softdep_accdeps,
13481 		      int secondary_writes,
13482 		      int secondary_accwrites)
13483 {
13484 	struct bufobj *bo;
13485 	struct ufsmount *ump;
13486 	int error;
13487 
13488 	ump = VFSTOUFS(mp);
13489 	bo = &devvp->v_bufobj;
13490 	ASSERT_BO_WLOCKED(bo);
13491 
13492 	for (;;) {
13493 		if (!TRY_ACQUIRE_LOCK(&lk)) {
13494 			BO_UNLOCK(bo);
13495 			ACQUIRE_LOCK(&lk);
13496 			FREE_LOCK(&lk);
13497 			BO_LOCK(bo);
13498 			continue;
13499 		}
13500 		MNT_ILOCK(mp);
13501 		if (mp->mnt_secondary_writes != 0) {
13502 			FREE_LOCK(&lk);
13503 			BO_UNLOCK(bo);
13504 			msleep(&mp->mnt_secondary_writes,
13505 			       MNT_MTX(mp),
13506 			       (PUSER - 1) | PDROP, "secwr", 0);
13507 			BO_LOCK(bo);
13508 			continue;
13509 		}
13510 		break;
13511 	}
13512 
13513 	/*
13514 	 * Reasons for needing more work before suspend:
13515 	 * - Dirty buffers on devvp.
13516 	 * - Softdep activity occurred after start of vnode sync loop
13517 	 * - Secondary writes occurred after start of vnode sync loop
13518 	 */
13519 	error = 0;
13520 	if (bo->bo_numoutput > 0 ||
13521 	    bo->bo_dirty.bv_cnt > 0 ||
13522 	    softdep_deps != 0 ||
13523 	    ump->softdep_deps != 0 ||
13524 	    softdep_accdeps != ump->softdep_accdeps ||
13525 	    secondary_writes != 0 ||
13526 	    mp->mnt_secondary_writes != 0 ||
13527 	    secondary_accwrites != mp->mnt_secondary_accwrites)
13528 		error = EAGAIN;
13529 	FREE_LOCK(&lk);
13530 	BO_UNLOCK(bo);
13531 	return (error);
13532 }
13533 
13534 
13535 /*
13536  * Get the number of dependency structures for the file system, both
13537  * the current number and the total number allocated.  These will
13538  * later be used to detect that softdep processing has occurred.
13539  */
13540 void
13541 softdep_get_depcounts(struct mount *mp,
13542 		      int *softdep_depsp,
13543 		      int *softdep_accdepsp)
13544 {
13545 	struct ufsmount *ump;
13546 
13547 	ump = VFSTOUFS(mp);
13548 	ACQUIRE_LOCK(&lk);
13549 	*softdep_depsp = ump->softdep_deps;
13550 	*softdep_accdepsp = ump->softdep_accdeps;
13551 	FREE_LOCK(&lk);
13552 }
13553 
13554 /*
13555  * Wait for pending output on a vnode to complete.
13556  * Must be called with vnode lock and interlock locked.
13557  *
13558  * XXX: Should just be a call to bufobj_wwait().
13559  */
13560 static void
13561 drain_output(vp)
13562 	struct vnode *vp;
13563 {
13564 	struct bufobj *bo;
13565 
13566 	bo = &vp->v_bufobj;
13567 	ASSERT_VOP_LOCKED(vp, "drain_output");
13568 	ASSERT_BO_WLOCKED(bo);
13569 
13570 	while (bo->bo_numoutput) {
13571 		bo->bo_flag |= BO_WWAIT;
13572 		msleep((caddr_t)&bo->bo_numoutput,
13573 		    BO_LOCKPTR(bo), PRIBIO + 1, "drainvp", 0);
13574 	}
13575 }
13576 
13577 /*
13578  * Called whenever a buffer that is being invalidated or reallocated
13579  * contains dependencies. This should only happen if an I/O error has
13580  * occurred. The routine is called with the buffer locked.
13581  */
13582 static void
13583 softdep_deallocate_dependencies(bp)
13584 	struct buf *bp;
13585 {
13586 
13587 	if ((bp->b_ioflags & BIO_ERROR) == 0)
13588 		panic("softdep_deallocate_dependencies: dangling deps");
13589 	if (bp->b_vp != NULL && bp->b_vp->v_mount != NULL)
13590 		softdep_error(bp->b_vp->v_mount->mnt_stat.f_mntonname, bp->b_error);
13591 	else
13592 		printf("softdep_deallocate_dependencies: "
13593 		    "got error %d while accessing filesystem\n", bp->b_error);
13594 	if (bp->b_error != ENXIO)
13595 		panic("softdep_deallocate_dependencies: unrecovered I/O error");
13596 }
13597 
13598 /*
13599  * Function to handle asynchronous write errors in the filesystem.
13600  */
13601 static void
13602 softdep_error(func, error)
13603 	char *func;
13604 	int error;
13605 {
13606 
13607 	/* XXX should do something better! */
13608 	printf("%s: got error %d while accessing filesystem\n", func, error);
13609 }
13610 
13611 #ifdef DDB
13612 
13613 static void
13614 inodedep_print(struct inodedep *inodedep, int verbose)
13615 {
13616 	db_printf("%p fs %p st %x ino %jd inoblk %jd delta %d nlink %d"
13617 	    " saveino %p\n",
13618 	    inodedep, inodedep->id_fs, inodedep->id_state,
13619 	    (intmax_t)inodedep->id_ino,
13620 	    (intmax_t)fsbtodb(inodedep->id_fs,
13621 	    ino_to_fsba(inodedep->id_fs, inodedep->id_ino)),
13622 	    inodedep->id_nlinkdelta, inodedep->id_savednlink,
13623 	    inodedep->id_savedino1);
13624 
13625 	if (verbose == 0)
13626 		return;
13627 
13628 	db_printf("\tpendinghd %p, bufwait %p, inowait %p, inoreflst %p, "
13629 	    "mkdiradd %p\n",
13630 	    LIST_FIRST(&inodedep->id_pendinghd),
13631 	    LIST_FIRST(&inodedep->id_bufwait),
13632 	    LIST_FIRST(&inodedep->id_inowait),
13633 	    TAILQ_FIRST(&inodedep->id_inoreflst),
13634 	    inodedep->id_mkdiradd);
13635 	db_printf("\tinoupdt %p, newinoupdt %p, extupdt %p, newextupdt %p\n",
13636 	    TAILQ_FIRST(&inodedep->id_inoupdt),
13637 	    TAILQ_FIRST(&inodedep->id_newinoupdt),
13638 	    TAILQ_FIRST(&inodedep->id_extupdt),
13639 	    TAILQ_FIRST(&inodedep->id_newextupdt));
13640 }
13641 
13642 DB_SHOW_COMMAND(inodedep, db_show_inodedep)
13643 {
13644 
13645 	if (have_addr == 0) {
13646 		db_printf("Address required\n");
13647 		return;
13648 	}
13649 	inodedep_print((struct inodedep*)addr, 1);
13650 }
13651 
13652 DB_SHOW_COMMAND(inodedeps, db_show_inodedeps)
13653 {
13654 	struct inodedep_hashhead *inodedephd;
13655 	struct inodedep *inodedep;
13656 	struct fs *fs;
13657 	int cnt;
13658 
13659 	fs = have_addr ? (struct fs *)addr : NULL;
13660 	for (cnt = 0; cnt < inodedep_hash; cnt++) {
13661 		inodedephd = &inodedep_hashtbl[cnt];
13662 		LIST_FOREACH(inodedep, inodedephd, id_hash) {
13663 			if (fs != NULL && fs != inodedep->id_fs)
13664 				continue;
13665 			inodedep_print(inodedep, 0);
13666 		}
13667 	}
13668 }
13669 
13670 DB_SHOW_COMMAND(worklist, db_show_worklist)
13671 {
13672 	struct worklist *wk;
13673 
13674 	if (have_addr == 0) {
13675 		db_printf("Address required\n");
13676 		return;
13677 	}
13678 	wk = (struct worklist *)addr;
13679 	printf("worklist: %p type %s state 0x%X\n",
13680 	    wk, TYPENAME(wk->wk_type), wk->wk_state);
13681 }
13682 
13683 DB_SHOW_COMMAND(workhead, db_show_workhead)
13684 {
13685 	struct workhead *wkhd;
13686 	struct worklist *wk;
13687 	int i;
13688 
13689 	if (have_addr == 0) {
13690 		db_printf("Address required\n");
13691 		return;
13692 	}
13693 	wkhd = (struct workhead *)addr;
13694 	wk = LIST_FIRST(wkhd);
13695 	for (i = 0; i < 100 && wk != NULL; i++, wk = LIST_NEXT(wk, wk_list))
13696 		db_printf("worklist: %p type %s state 0x%X",
13697 		    wk, TYPENAME(wk->wk_type), wk->wk_state);
13698 	if (i == 100)
13699 		db_printf("workhead overflow");
13700 	printf("\n");
13701 }
13702 
13703 
13704 DB_SHOW_COMMAND(mkdirs, db_show_mkdirs)
13705 {
13706 	struct jaddref *jaddref;
13707 	struct diradd *diradd;
13708 	struct mkdir *mkdir;
13709 
13710 	LIST_FOREACH(mkdir, &mkdirlisthd, md_mkdirs) {
13711 		diradd = mkdir->md_diradd;
13712 		db_printf("mkdir: %p state 0x%X dap %p state 0x%X",
13713 		    mkdir, mkdir->md_state, diradd, diradd->da_state);
13714 		if ((jaddref = mkdir->md_jaddref) != NULL)
13715 			db_printf(" jaddref %p jaddref state 0x%X",
13716 			    jaddref, jaddref->ja_state);
13717 		db_printf("\n");
13718 	}
13719 }
13720 
13721 #endif /* DDB */
13722 
13723 #endif /* SOFTUPDATES */
13724