1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright 1998, 2000 Marshall Kirk McKusick. 5 * Copyright 2009, 2010 Jeffrey W. Roberson <jeff@FreeBSD.org> 6 * All rights reserved. 7 * 8 * The soft updates code is derived from the appendix of a University 9 * of Michigan technical report (Gregory R. Ganger and Yale N. Patt, 10 * "Soft Updates: A Solution to the Metadata Update Problem in File 11 * Systems", CSE-TR-254-95, August 1995). 12 * 13 * Further information about soft updates can be obtained from: 14 * 15 * Marshall Kirk McKusick http://www.mckusick.com/softdep/ 16 * 1614 Oxford Street mckusick@mckusick.com 17 * Berkeley, CA 94709-1608 +1-510-843-9542 18 * USA 19 * 20 * Redistribution and use in source and binary forms, with or without 21 * modification, are permitted provided that the following conditions 22 * are met: 23 * 24 * 1. Redistributions of source code must retain the above copyright 25 * notice, this list of conditions and the following disclaimer. 26 * 2. Redistributions in binary form must reproduce the above copyright 27 * notice, this list of conditions and the following disclaimer in the 28 * documentation and/or other materials provided with the distribution. 29 * 30 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR 31 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 32 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 33 * IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT, 34 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 35 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS 36 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND 37 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR 38 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 39 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 40 * 41 * from: @(#)ffs_softdep.c 9.59 (McKusick) 6/21/00 42 */ 43 44 #include <sys/cdefs.h> 45 __FBSDID("$FreeBSD$"); 46 47 #include "opt_ffs.h" 48 #include "opt_quota.h" 49 #include "opt_ddb.h" 50 51 #include <sys/param.h> 52 #include <sys/kernel.h> 53 #include <sys/systm.h> 54 #include <sys/bio.h> 55 #include <sys/buf.h> 56 #include <sys/kdb.h> 57 #include <sys/kthread.h> 58 #include <sys/ktr.h> 59 #include <sys/limits.h> 60 #include <sys/lock.h> 61 #include <sys/malloc.h> 62 #include <sys/mount.h> 63 #include <sys/mutex.h> 64 #include <sys/namei.h> 65 #include <sys/priv.h> 66 #include <sys/proc.h> 67 #include <sys/racct.h> 68 #include <sys/rwlock.h> 69 #include <sys/stat.h> 70 #include <sys/sysctl.h> 71 #include <sys/syslog.h> 72 #include <sys/vnode.h> 73 #include <sys/conf.h> 74 75 #include <ufs/ufs/dir.h> 76 #include <ufs/ufs/extattr.h> 77 #include <ufs/ufs/quota.h> 78 #include <ufs/ufs/inode.h> 79 #include <ufs/ufs/ufsmount.h> 80 #include <ufs/ffs/fs.h> 81 #include <ufs/ffs/softdep.h> 82 #include <ufs/ffs/ffs_extern.h> 83 #include <ufs/ufs/ufs_extern.h> 84 85 #include <vm/vm.h> 86 #include <vm/vm_extern.h> 87 #include <vm/vm_object.h> 88 89 #include <geom/geom.h> 90 #include <geom/geom_vfs.h> 91 92 #include <ddb/ddb.h> 93 94 #define KTR_SUJ 0 /* Define to KTR_SPARE. */ 95 96 #ifndef SOFTUPDATES 97 98 int 99 softdep_flushfiles(oldmnt, flags, td) 100 struct mount *oldmnt; 101 int flags; 102 struct thread *td; 103 { 104 105 panic("softdep_flushfiles called"); 106 } 107 108 int 109 softdep_mount(devvp, mp, fs, cred) 110 struct vnode *devvp; 111 struct mount *mp; 112 struct fs *fs; 113 struct ucred *cred; 114 { 115 116 return (0); 117 } 118 119 void 120 softdep_initialize() 121 { 122 123 return; 124 } 125 126 void 127 softdep_uninitialize() 128 { 129 130 return; 131 } 132 133 void 134 softdep_unmount(mp) 135 struct mount *mp; 136 { 137 138 panic("softdep_unmount called"); 139 } 140 141 void 142 softdep_setup_sbupdate(ump, fs, bp) 143 struct ufsmount *ump; 144 struct fs *fs; 145 struct buf *bp; 146 { 147 148 panic("softdep_setup_sbupdate called"); 149 } 150 151 void 152 softdep_setup_inomapdep(bp, ip, newinum, mode) 153 struct buf *bp; 154 struct inode *ip; 155 ino_t newinum; 156 int mode; 157 { 158 159 panic("softdep_setup_inomapdep called"); 160 } 161 162 void 163 softdep_setup_blkmapdep(bp, mp, newblkno, frags, oldfrags) 164 struct buf *bp; 165 struct mount *mp; 166 ufs2_daddr_t newblkno; 167 int frags; 168 int oldfrags; 169 { 170 171 panic("softdep_setup_blkmapdep called"); 172 } 173 174 void 175 softdep_setup_allocdirect(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp) 176 struct inode *ip; 177 ufs_lbn_t lbn; 178 ufs2_daddr_t newblkno; 179 ufs2_daddr_t oldblkno; 180 long newsize; 181 long oldsize; 182 struct buf *bp; 183 { 184 185 panic("softdep_setup_allocdirect called"); 186 } 187 188 void 189 softdep_setup_allocext(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp) 190 struct inode *ip; 191 ufs_lbn_t lbn; 192 ufs2_daddr_t newblkno; 193 ufs2_daddr_t oldblkno; 194 long newsize; 195 long oldsize; 196 struct buf *bp; 197 { 198 199 panic("softdep_setup_allocext called"); 200 } 201 202 void 203 softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp) 204 struct inode *ip; 205 ufs_lbn_t lbn; 206 struct buf *bp; 207 int ptrno; 208 ufs2_daddr_t newblkno; 209 ufs2_daddr_t oldblkno; 210 struct buf *nbp; 211 { 212 213 panic("softdep_setup_allocindir_page called"); 214 } 215 216 void 217 softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno) 218 struct buf *nbp; 219 struct inode *ip; 220 struct buf *bp; 221 int ptrno; 222 ufs2_daddr_t newblkno; 223 { 224 225 panic("softdep_setup_allocindir_meta called"); 226 } 227 228 void 229 softdep_journal_freeblocks(ip, cred, length, flags) 230 struct inode *ip; 231 struct ucred *cred; 232 off_t length; 233 int flags; 234 { 235 236 panic("softdep_journal_freeblocks called"); 237 } 238 239 void 240 softdep_journal_fsync(ip) 241 struct inode *ip; 242 { 243 244 panic("softdep_journal_fsync called"); 245 } 246 247 void 248 softdep_setup_freeblocks(ip, length, flags) 249 struct inode *ip; 250 off_t length; 251 int flags; 252 { 253 254 panic("softdep_setup_freeblocks called"); 255 } 256 257 void 258 softdep_freefile(pvp, ino, mode) 259 struct vnode *pvp; 260 ino_t ino; 261 int mode; 262 { 263 264 panic("softdep_freefile called"); 265 } 266 267 int 268 softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk) 269 struct buf *bp; 270 struct inode *dp; 271 off_t diroffset; 272 ino_t newinum; 273 struct buf *newdirbp; 274 int isnewblk; 275 { 276 277 panic("softdep_setup_directory_add called"); 278 } 279 280 void 281 softdep_change_directoryentry_offset(bp, dp, base, oldloc, newloc, entrysize) 282 struct buf *bp; 283 struct inode *dp; 284 caddr_t base; 285 caddr_t oldloc; 286 caddr_t newloc; 287 int entrysize; 288 { 289 290 panic("softdep_change_directoryentry_offset called"); 291 } 292 293 void 294 softdep_setup_remove(bp, dp, ip, isrmdir) 295 struct buf *bp; 296 struct inode *dp; 297 struct inode *ip; 298 int isrmdir; 299 { 300 301 panic("softdep_setup_remove called"); 302 } 303 304 void 305 softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir) 306 struct buf *bp; 307 struct inode *dp; 308 struct inode *ip; 309 ino_t newinum; 310 int isrmdir; 311 { 312 313 panic("softdep_setup_directory_change called"); 314 } 315 316 void 317 softdep_setup_blkfree(mp, bp, blkno, frags, wkhd) 318 struct mount *mp; 319 struct buf *bp; 320 ufs2_daddr_t blkno; 321 int frags; 322 struct workhead *wkhd; 323 { 324 325 panic("%s called", __FUNCTION__); 326 } 327 328 void 329 softdep_setup_inofree(mp, bp, ino, wkhd) 330 struct mount *mp; 331 struct buf *bp; 332 ino_t ino; 333 struct workhead *wkhd; 334 { 335 336 panic("%s called", __FUNCTION__); 337 } 338 339 void 340 softdep_setup_unlink(dp, ip) 341 struct inode *dp; 342 struct inode *ip; 343 { 344 345 panic("%s called", __FUNCTION__); 346 } 347 348 void 349 softdep_setup_link(dp, ip) 350 struct inode *dp; 351 struct inode *ip; 352 { 353 354 panic("%s called", __FUNCTION__); 355 } 356 357 void 358 softdep_revert_link(dp, ip) 359 struct inode *dp; 360 struct inode *ip; 361 { 362 363 panic("%s called", __FUNCTION__); 364 } 365 366 void 367 softdep_setup_rmdir(dp, ip) 368 struct inode *dp; 369 struct inode *ip; 370 { 371 372 panic("%s called", __FUNCTION__); 373 } 374 375 void 376 softdep_revert_rmdir(dp, ip) 377 struct inode *dp; 378 struct inode *ip; 379 { 380 381 panic("%s called", __FUNCTION__); 382 } 383 384 void 385 softdep_setup_create(dp, ip) 386 struct inode *dp; 387 struct inode *ip; 388 { 389 390 panic("%s called", __FUNCTION__); 391 } 392 393 void 394 softdep_revert_create(dp, ip) 395 struct inode *dp; 396 struct inode *ip; 397 { 398 399 panic("%s called", __FUNCTION__); 400 } 401 402 void 403 softdep_setup_mkdir(dp, ip) 404 struct inode *dp; 405 struct inode *ip; 406 { 407 408 panic("%s called", __FUNCTION__); 409 } 410 411 void 412 softdep_revert_mkdir(dp, ip) 413 struct inode *dp; 414 struct inode *ip; 415 { 416 417 panic("%s called", __FUNCTION__); 418 } 419 420 void 421 softdep_setup_dotdot_link(dp, ip) 422 struct inode *dp; 423 struct inode *ip; 424 { 425 426 panic("%s called", __FUNCTION__); 427 } 428 429 int 430 softdep_prealloc(vp, waitok) 431 struct vnode *vp; 432 int waitok; 433 { 434 435 panic("%s called", __FUNCTION__); 436 } 437 438 int 439 softdep_journal_lookup(mp, vpp) 440 struct mount *mp; 441 struct vnode **vpp; 442 { 443 444 return (ENOENT); 445 } 446 447 void 448 softdep_change_linkcnt(ip) 449 struct inode *ip; 450 { 451 452 panic("softdep_change_linkcnt called"); 453 } 454 455 void 456 softdep_load_inodeblock(ip) 457 struct inode *ip; 458 { 459 460 panic("softdep_load_inodeblock called"); 461 } 462 463 void 464 softdep_update_inodeblock(ip, bp, waitfor) 465 struct inode *ip; 466 struct buf *bp; 467 int waitfor; 468 { 469 470 panic("softdep_update_inodeblock called"); 471 } 472 473 int 474 softdep_fsync(vp) 475 struct vnode *vp; /* the "in_core" copy of the inode */ 476 { 477 478 return (0); 479 } 480 481 void 482 softdep_fsync_mountdev(vp) 483 struct vnode *vp; 484 { 485 486 return; 487 } 488 489 int 490 softdep_flushworklist(oldmnt, countp, td) 491 struct mount *oldmnt; 492 int *countp; 493 struct thread *td; 494 { 495 496 *countp = 0; 497 return (0); 498 } 499 500 int 501 softdep_sync_metadata(struct vnode *vp) 502 { 503 504 panic("softdep_sync_metadata called"); 505 } 506 507 int 508 softdep_sync_buf(struct vnode *vp, struct buf *bp, int waitfor) 509 { 510 511 panic("softdep_sync_buf called"); 512 } 513 514 int 515 softdep_slowdown(vp) 516 struct vnode *vp; 517 { 518 519 panic("softdep_slowdown called"); 520 } 521 522 int 523 softdep_request_cleanup(fs, vp, cred, resource) 524 struct fs *fs; 525 struct vnode *vp; 526 struct ucred *cred; 527 int resource; 528 { 529 530 return (0); 531 } 532 533 int 534 softdep_check_suspend(struct mount *mp, 535 struct vnode *devvp, 536 int softdep_depcnt, 537 int softdep_accdepcnt, 538 int secondary_writes, 539 int secondary_accwrites) 540 { 541 struct bufobj *bo; 542 int error; 543 544 (void) softdep_depcnt, 545 (void) softdep_accdepcnt; 546 547 bo = &devvp->v_bufobj; 548 ASSERT_BO_WLOCKED(bo); 549 550 MNT_ILOCK(mp); 551 while (mp->mnt_secondary_writes != 0) { 552 BO_UNLOCK(bo); 553 msleep(&mp->mnt_secondary_writes, MNT_MTX(mp), 554 (PUSER - 1) | PDROP, "secwr", 0); 555 BO_LOCK(bo); 556 MNT_ILOCK(mp); 557 } 558 559 /* 560 * Reasons for needing more work before suspend: 561 * - Dirty buffers on devvp. 562 * - Secondary writes occurred after start of vnode sync loop 563 */ 564 error = 0; 565 if (bo->bo_numoutput > 0 || 566 bo->bo_dirty.bv_cnt > 0 || 567 secondary_writes != 0 || 568 mp->mnt_secondary_writes != 0 || 569 secondary_accwrites != mp->mnt_secondary_accwrites) 570 error = EAGAIN; 571 BO_UNLOCK(bo); 572 return (error); 573 } 574 575 void 576 softdep_get_depcounts(struct mount *mp, 577 int *softdepactivep, 578 int *softdepactiveaccp) 579 { 580 (void) mp; 581 *softdepactivep = 0; 582 *softdepactiveaccp = 0; 583 } 584 585 void 586 softdep_buf_append(bp, wkhd) 587 struct buf *bp; 588 struct workhead *wkhd; 589 { 590 591 panic("softdep_buf_appendwork called"); 592 } 593 594 void 595 softdep_inode_append(ip, cred, wkhd) 596 struct inode *ip; 597 struct ucred *cred; 598 struct workhead *wkhd; 599 { 600 601 panic("softdep_inode_appendwork called"); 602 } 603 604 void 605 softdep_freework(wkhd) 606 struct workhead *wkhd; 607 { 608 609 panic("softdep_freework called"); 610 } 611 612 int 613 softdep_prerename(fdvp, fvp, tdvp, tvp) 614 struct vnode *fdvp; 615 struct vnode *fvp; 616 struct vnode *tdvp; 617 struct vnode *tvp; 618 { 619 620 panic("softdep_prerename called"); 621 } 622 623 int 624 softdep_prelink(dvp, vp, will_direnter) 625 struct vnode *dvp; 626 struct vnode *vp; 627 int will_direnter; 628 { 629 630 panic("softdep_prelink called"); 631 } 632 633 #else 634 635 FEATURE(softupdates, "FFS soft-updates support"); 636 637 static SYSCTL_NODE(_debug, OID_AUTO, softdep, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 638 "soft updates stats"); 639 static SYSCTL_NODE(_debug_softdep, OID_AUTO, total, 640 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 641 "total dependencies allocated"); 642 static SYSCTL_NODE(_debug_softdep, OID_AUTO, highuse, 643 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 644 "high use dependencies allocated"); 645 static SYSCTL_NODE(_debug_softdep, OID_AUTO, current, 646 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 647 "current dependencies allocated"); 648 static SYSCTL_NODE(_debug_softdep, OID_AUTO, write, 649 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 650 "current dependencies written"); 651 652 unsigned long dep_current[D_LAST + 1]; 653 unsigned long dep_highuse[D_LAST + 1]; 654 unsigned long dep_total[D_LAST + 1]; 655 unsigned long dep_write[D_LAST + 1]; 656 657 #define SOFTDEP_TYPE(type, str, long) \ 658 static MALLOC_DEFINE(M_ ## type, #str, long); \ 659 SYSCTL_ULONG(_debug_softdep_total, OID_AUTO, str, CTLFLAG_RD, \ 660 &dep_total[D_ ## type], 0, ""); \ 661 SYSCTL_ULONG(_debug_softdep_current, OID_AUTO, str, CTLFLAG_RD, \ 662 &dep_current[D_ ## type], 0, ""); \ 663 SYSCTL_ULONG(_debug_softdep_highuse, OID_AUTO, str, CTLFLAG_RD, \ 664 &dep_highuse[D_ ## type], 0, ""); \ 665 SYSCTL_ULONG(_debug_softdep_write, OID_AUTO, str, CTLFLAG_RD, \ 666 &dep_write[D_ ## type], 0, ""); 667 668 SOFTDEP_TYPE(PAGEDEP, pagedep, "File page dependencies"); 669 SOFTDEP_TYPE(INODEDEP, inodedep, "Inode dependencies"); 670 SOFTDEP_TYPE(BMSAFEMAP, bmsafemap, 671 "Block or frag allocated from cyl group map"); 672 SOFTDEP_TYPE(NEWBLK, newblk, "New block or frag allocation dependency"); 673 SOFTDEP_TYPE(ALLOCDIRECT, allocdirect, "Block or frag dependency for an inode"); 674 SOFTDEP_TYPE(INDIRDEP, indirdep, "Indirect block dependencies"); 675 SOFTDEP_TYPE(ALLOCINDIR, allocindir, "Block dependency for an indirect block"); 676 SOFTDEP_TYPE(FREEFRAG, freefrag, "Previously used frag for an inode"); 677 SOFTDEP_TYPE(FREEBLKS, freeblks, "Blocks freed from an inode"); 678 SOFTDEP_TYPE(FREEFILE, freefile, "Inode deallocated"); 679 SOFTDEP_TYPE(DIRADD, diradd, "New directory entry"); 680 SOFTDEP_TYPE(MKDIR, mkdir, "New directory"); 681 SOFTDEP_TYPE(DIRREM, dirrem, "Directory entry deleted"); 682 SOFTDEP_TYPE(NEWDIRBLK, newdirblk, "Unclaimed new directory block"); 683 SOFTDEP_TYPE(FREEWORK, freework, "free an inode block"); 684 SOFTDEP_TYPE(FREEDEP, freedep, "track a block free"); 685 SOFTDEP_TYPE(JADDREF, jaddref, "Journal inode ref add"); 686 SOFTDEP_TYPE(JREMREF, jremref, "Journal inode ref remove"); 687 SOFTDEP_TYPE(JMVREF, jmvref, "Journal inode ref move"); 688 SOFTDEP_TYPE(JNEWBLK, jnewblk, "Journal new block"); 689 SOFTDEP_TYPE(JFREEBLK, jfreeblk, "Journal free block"); 690 SOFTDEP_TYPE(JFREEFRAG, jfreefrag, "Journal free frag"); 691 SOFTDEP_TYPE(JSEG, jseg, "Journal segment"); 692 SOFTDEP_TYPE(JSEGDEP, jsegdep, "Journal segment complete"); 693 SOFTDEP_TYPE(SBDEP, sbdep, "Superblock write dependency"); 694 SOFTDEP_TYPE(JTRUNC, jtrunc, "Journal inode truncation"); 695 SOFTDEP_TYPE(JFSYNC, jfsync, "Journal fsync complete"); 696 697 static MALLOC_DEFINE(M_SENTINEL, "sentinel", "Worklist sentinel"); 698 699 static MALLOC_DEFINE(M_SAVEDINO, "savedino", "Saved inodes"); 700 static MALLOC_DEFINE(M_JBLOCKS, "jblocks", "Journal block locations"); 701 static MALLOC_DEFINE(M_MOUNTDATA, "softdep", "Softdep per-mount data"); 702 703 #define M_SOFTDEP_FLAGS (M_WAITOK) 704 705 /* 706 * translate from workitem type to memory type 707 * MUST match the defines above, such that memtype[D_XXX] == M_XXX 708 */ 709 static struct malloc_type *memtype[] = { 710 NULL, 711 M_PAGEDEP, 712 M_INODEDEP, 713 M_BMSAFEMAP, 714 M_NEWBLK, 715 M_ALLOCDIRECT, 716 M_INDIRDEP, 717 M_ALLOCINDIR, 718 M_FREEFRAG, 719 M_FREEBLKS, 720 M_FREEFILE, 721 M_DIRADD, 722 M_MKDIR, 723 M_DIRREM, 724 M_NEWDIRBLK, 725 M_FREEWORK, 726 M_FREEDEP, 727 M_JADDREF, 728 M_JREMREF, 729 M_JMVREF, 730 M_JNEWBLK, 731 M_JFREEBLK, 732 M_JFREEFRAG, 733 M_JSEG, 734 M_JSEGDEP, 735 M_SBDEP, 736 M_JTRUNC, 737 M_JFSYNC, 738 M_SENTINEL 739 }; 740 741 #define DtoM(type) (memtype[type]) 742 743 /* 744 * Names of malloc types. 745 */ 746 #define TYPENAME(type) \ 747 ((unsigned)(type) <= D_LAST && (unsigned)(type) >= D_FIRST ? \ 748 memtype[type]->ks_shortdesc : "???") 749 /* 750 * End system adaptation definitions. 751 */ 752 753 #define DOTDOT_OFFSET offsetof(struct dirtemplate, dotdot_ino) 754 #define DOT_OFFSET offsetof(struct dirtemplate, dot_ino) 755 756 /* 757 * Internal function prototypes. 758 */ 759 static void check_clear_deps(struct mount *); 760 static void softdep_error(char *, int); 761 static int softdep_process_worklist(struct mount *, int); 762 static int softdep_waitidle(struct mount *, int); 763 static void drain_output(struct vnode *); 764 static struct buf *getdirtybuf(struct buf *, struct rwlock *, int); 765 static int check_inodedep_free(struct inodedep *); 766 static void clear_remove(struct mount *); 767 static void clear_inodedeps(struct mount *); 768 static void unlinked_inodedep(struct mount *, struct inodedep *); 769 static void clear_unlinked_inodedep(struct inodedep *); 770 static struct inodedep *first_unlinked_inodedep(struct ufsmount *); 771 static int flush_pagedep_deps(struct vnode *, struct mount *, 772 struct diraddhd *, struct buf *); 773 static int free_pagedep(struct pagedep *); 774 static int flush_newblk_dep(struct vnode *, struct mount *, ufs_lbn_t); 775 static int flush_inodedep_deps(struct vnode *, struct mount *, ino_t); 776 static int flush_deplist(struct allocdirectlst *, int, int *); 777 static int sync_cgs(struct mount *, int); 778 static int handle_written_filepage(struct pagedep *, struct buf *, int); 779 static int handle_written_sbdep(struct sbdep *, struct buf *); 780 static void initiate_write_sbdep(struct sbdep *); 781 static void diradd_inode_written(struct diradd *, struct inodedep *); 782 static int handle_written_indirdep(struct indirdep *, struct buf *, 783 struct buf**, int); 784 static int handle_written_inodeblock(struct inodedep *, struct buf *, int); 785 static int jnewblk_rollforward(struct jnewblk *, struct fs *, struct cg *, 786 uint8_t *); 787 static int handle_written_bmsafemap(struct bmsafemap *, struct buf *, int); 788 static void handle_written_jaddref(struct jaddref *); 789 static void handle_written_jremref(struct jremref *); 790 static void handle_written_jseg(struct jseg *, struct buf *); 791 static void handle_written_jnewblk(struct jnewblk *); 792 static void handle_written_jblkdep(struct jblkdep *); 793 static void handle_written_jfreefrag(struct jfreefrag *); 794 static void complete_jseg(struct jseg *); 795 static void complete_jsegs(struct jseg *); 796 static void jseg_write(struct ufsmount *ump, struct jseg *, uint8_t *); 797 static void jaddref_write(struct jaddref *, struct jseg *, uint8_t *); 798 static void jremref_write(struct jremref *, struct jseg *, uint8_t *); 799 static void jmvref_write(struct jmvref *, struct jseg *, uint8_t *); 800 static void jtrunc_write(struct jtrunc *, struct jseg *, uint8_t *); 801 static void jfsync_write(struct jfsync *, struct jseg *, uint8_t *data); 802 static void jnewblk_write(struct jnewblk *, struct jseg *, uint8_t *); 803 static void jfreeblk_write(struct jfreeblk *, struct jseg *, uint8_t *); 804 static void jfreefrag_write(struct jfreefrag *, struct jseg *, uint8_t *); 805 static inline void inoref_write(struct inoref *, struct jseg *, 806 struct jrefrec *); 807 static void handle_allocdirect_partdone(struct allocdirect *, 808 struct workhead *); 809 static struct jnewblk *cancel_newblk(struct newblk *, struct worklist *, 810 struct workhead *); 811 static void indirdep_complete(struct indirdep *); 812 static int indirblk_lookup(struct mount *, ufs2_daddr_t); 813 static void indirblk_insert(struct freework *); 814 static void indirblk_remove(struct freework *); 815 static void handle_allocindir_partdone(struct allocindir *); 816 static void initiate_write_filepage(struct pagedep *, struct buf *); 817 static void initiate_write_indirdep(struct indirdep*, struct buf *); 818 static void handle_written_mkdir(struct mkdir *, int); 819 static int jnewblk_rollback(struct jnewblk *, struct fs *, struct cg *, 820 uint8_t *); 821 static void initiate_write_bmsafemap(struct bmsafemap *, struct buf *); 822 static void initiate_write_inodeblock_ufs1(struct inodedep *, struct buf *); 823 static void initiate_write_inodeblock_ufs2(struct inodedep *, struct buf *); 824 static void handle_workitem_freefile(struct freefile *); 825 static int handle_workitem_remove(struct dirrem *, int); 826 static struct dirrem *newdirrem(struct buf *, struct inode *, 827 struct inode *, int, struct dirrem **); 828 static struct indirdep *indirdep_lookup(struct mount *, struct inode *, 829 struct buf *); 830 static void cancel_indirdep(struct indirdep *, struct buf *, 831 struct freeblks *); 832 static void free_indirdep(struct indirdep *); 833 static void free_diradd(struct diradd *, struct workhead *); 834 static void merge_diradd(struct inodedep *, struct diradd *); 835 static void complete_diradd(struct diradd *); 836 static struct diradd *diradd_lookup(struct pagedep *, int); 837 static struct jremref *cancel_diradd_dotdot(struct inode *, struct dirrem *, 838 struct jremref *); 839 static struct jremref *cancel_mkdir_dotdot(struct inode *, struct dirrem *, 840 struct jremref *); 841 static void cancel_diradd(struct diradd *, struct dirrem *, struct jremref *, 842 struct jremref *, struct jremref *); 843 static void dirrem_journal(struct dirrem *, struct jremref *, struct jremref *, 844 struct jremref *); 845 static void cancel_allocindir(struct allocindir *, struct buf *bp, 846 struct freeblks *, int); 847 static int setup_trunc_indir(struct freeblks *, struct inode *, 848 ufs_lbn_t, ufs_lbn_t, ufs2_daddr_t); 849 static void complete_trunc_indir(struct freework *); 850 static void trunc_indirdep(struct indirdep *, struct freeblks *, struct buf *, 851 int); 852 static void complete_mkdir(struct mkdir *); 853 static void free_newdirblk(struct newdirblk *); 854 static void free_jremref(struct jremref *); 855 static void free_jaddref(struct jaddref *); 856 static void free_jsegdep(struct jsegdep *); 857 static void free_jsegs(struct jblocks *); 858 static void rele_jseg(struct jseg *); 859 static void free_jseg(struct jseg *, struct jblocks *); 860 static void free_jnewblk(struct jnewblk *); 861 static void free_jblkdep(struct jblkdep *); 862 static void free_jfreefrag(struct jfreefrag *); 863 static void free_freedep(struct freedep *); 864 static void journal_jremref(struct dirrem *, struct jremref *, 865 struct inodedep *); 866 static void cancel_jnewblk(struct jnewblk *, struct workhead *); 867 static int cancel_jaddref(struct jaddref *, struct inodedep *, 868 struct workhead *); 869 static void cancel_jfreefrag(struct jfreefrag *); 870 static inline void setup_freedirect(struct freeblks *, struct inode *, 871 int, int); 872 static inline void setup_freeext(struct freeblks *, struct inode *, int, int); 873 static inline void setup_freeindir(struct freeblks *, struct inode *, int, 874 ufs_lbn_t, int); 875 static inline struct freeblks *newfreeblks(struct mount *, struct inode *); 876 static void freeblks_free(struct ufsmount *, struct freeblks *, int); 877 static void indir_trunc(struct freework *, ufs2_daddr_t, ufs_lbn_t); 878 static ufs2_daddr_t blkcount(struct fs *, ufs2_daddr_t, off_t); 879 static int trunc_check_buf(struct buf *, int *, ufs_lbn_t, int, int); 880 static void trunc_dependencies(struct inode *, struct freeblks *, ufs_lbn_t, 881 int, int); 882 static void trunc_pages(struct inode *, off_t, ufs2_daddr_t, int); 883 static int cancel_pagedep(struct pagedep *, struct freeblks *, int); 884 static int deallocate_dependencies(struct buf *, struct freeblks *, int); 885 static void newblk_freefrag(struct newblk*); 886 static void free_newblk(struct newblk *); 887 static void cancel_allocdirect(struct allocdirectlst *, 888 struct allocdirect *, struct freeblks *); 889 static int check_inode_unwritten(struct inodedep *); 890 static int free_inodedep(struct inodedep *); 891 static void freework_freeblock(struct freework *, u_long); 892 static void freework_enqueue(struct freework *); 893 static int handle_workitem_freeblocks(struct freeblks *, int); 894 static int handle_complete_freeblocks(struct freeblks *, int); 895 static void handle_workitem_indirblk(struct freework *); 896 static void handle_written_freework(struct freework *); 897 static void merge_inode_lists(struct allocdirectlst *,struct allocdirectlst *); 898 static struct worklist *jnewblk_merge(struct worklist *, struct worklist *, 899 struct workhead *); 900 static struct freefrag *setup_allocindir_phase2(struct buf *, struct inode *, 901 struct inodedep *, struct allocindir *, ufs_lbn_t); 902 static struct allocindir *newallocindir(struct inode *, int, ufs2_daddr_t, 903 ufs2_daddr_t, ufs_lbn_t); 904 static void handle_workitem_freefrag(struct freefrag *); 905 static struct freefrag *newfreefrag(struct inode *, ufs2_daddr_t, long, 906 ufs_lbn_t, u_long); 907 static void allocdirect_merge(struct allocdirectlst *, 908 struct allocdirect *, struct allocdirect *); 909 static struct freefrag *allocindir_merge(struct allocindir *, 910 struct allocindir *); 911 static int bmsafemap_find(struct bmsafemap_hashhead *, int, 912 struct bmsafemap **); 913 static struct bmsafemap *bmsafemap_lookup(struct mount *, struct buf *, 914 int cg, struct bmsafemap *); 915 static int newblk_find(struct newblk_hashhead *, ufs2_daddr_t, int, 916 struct newblk **); 917 static int newblk_lookup(struct mount *, ufs2_daddr_t, int, struct newblk **); 918 static int inodedep_find(struct inodedep_hashhead *, ino_t, 919 struct inodedep **); 920 static int inodedep_lookup(struct mount *, ino_t, int, struct inodedep **); 921 static int pagedep_lookup(struct mount *, struct buf *bp, ino_t, ufs_lbn_t, 922 int, struct pagedep **); 923 static int pagedep_find(struct pagedep_hashhead *, ino_t, ufs_lbn_t, 924 struct pagedep **); 925 static void pause_timer(void *); 926 static int request_cleanup(struct mount *, int); 927 static int softdep_request_cleanup_flush(struct mount *, struct ufsmount *); 928 static void schedule_cleanup(struct mount *); 929 static void softdep_ast_cleanup_proc(struct thread *); 930 static struct ufsmount *softdep_bp_to_mp(struct buf *bp); 931 static int process_worklist_item(struct mount *, int, int); 932 static void process_removes(struct vnode *); 933 static void process_truncates(struct vnode *); 934 static void jwork_move(struct workhead *, struct workhead *); 935 static void jwork_insert(struct workhead *, struct jsegdep *); 936 static void add_to_worklist(struct worklist *, int); 937 static void wake_worklist(struct worklist *); 938 static void wait_worklist(struct worklist *, char *); 939 static void remove_from_worklist(struct worklist *); 940 static void softdep_flush(void *); 941 static void softdep_flushjournal(struct mount *); 942 static int softdep_speedup(struct ufsmount *); 943 static void worklist_speedup(struct mount *); 944 static int journal_mount(struct mount *, struct fs *, struct ucred *); 945 static void journal_unmount(struct ufsmount *); 946 static int journal_space(struct ufsmount *, int); 947 static void journal_suspend(struct ufsmount *); 948 static int journal_unsuspend(struct ufsmount *ump); 949 static void add_to_journal(struct worklist *); 950 static void remove_from_journal(struct worklist *); 951 static bool softdep_excess_items(struct ufsmount *, int); 952 static void softdep_process_journal(struct mount *, struct worklist *, int); 953 static struct jremref *newjremref(struct dirrem *, struct inode *, 954 struct inode *ip, off_t, nlink_t); 955 static struct jaddref *newjaddref(struct inode *, ino_t, off_t, int16_t, 956 uint16_t); 957 static inline void newinoref(struct inoref *, ino_t, ino_t, off_t, nlink_t, 958 uint16_t); 959 static inline struct jsegdep *inoref_jseg(struct inoref *); 960 static struct jmvref *newjmvref(struct inode *, ino_t, off_t, off_t); 961 static struct jfreeblk *newjfreeblk(struct freeblks *, ufs_lbn_t, 962 ufs2_daddr_t, int); 963 static void adjust_newfreework(struct freeblks *, int); 964 static struct jtrunc *newjtrunc(struct freeblks *, off_t, int); 965 static void move_newblock_dep(struct jaddref *, struct inodedep *); 966 static void cancel_jfreeblk(struct freeblks *, ufs2_daddr_t); 967 static struct jfreefrag *newjfreefrag(struct freefrag *, struct inode *, 968 ufs2_daddr_t, long, ufs_lbn_t); 969 static struct freework *newfreework(struct ufsmount *, struct freeblks *, 970 struct freework *, ufs_lbn_t, ufs2_daddr_t, int, int, int); 971 static int jwait(struct worklist *, int); 972 static struct inodedep *inodedep_lookup_ip(struct inode *); 973 static int bmsafemap_backgroundwrite(struct bmsafemap *, struct buf *); 974 static struct freefile *handle_bufwait(struct inodedep *, struct workhead *); 975 static void handle_jwork(struct workhead *); 976 static struct mkdir *setup_newdir(struct diradd *, ino_t, ino_t, struct buf *, 977 struct mkdir **); 978 static struct jblocks *jblocks_create(void); 979 static ufs2_daddr_t jblocks_alloc(struct jblocks *, int, int *); 980 static void jblocks_free(struct jblocks *, struct mount *, int); 981 static void jblocks_destroy(struct jblocks *); 982 static void jblocks_add(struct jblocks *, ufs2_daddr_t, int); 983 984 /* 985 * Exported softdep operations. 986 */ 987 static void softdep_disk_io_initiation(struct buf *); 988 static void softdep_disk_write_complete(struct buf *); 989 static void softdep_deallocate_dependencies(struct buf *); 990 static int softdep_count_dependencies(struct buf *bp, int); 991 992 /* 993 * Global lock over all of soft updates. 994 */ 995 static struct mtx lk; 996 MTX_SYSINIT(softdep_lock, &lk, "global softdep", MTX_DEF); 997 998 #define ACQUIRE_GBLLOCK(lk) mtx_lock(lk) 999 #define FREE_GBLLOCK(lk) mtx_unlock(lk) 1000 #define GBLLOCK_OWNED(lk) mtx_assert((lk), MA_OWNED) 1001 1002 /* 1003 * Per-filesystem soft-updates locking. 1004 */ 1005 #define LOCK_PTR(ump) (&(ump)->um_softdep->sd_fslock) 1006 #define TRY_ACQUIRE_LOCK(ump) rw_try_wlock(&(ump)->um_softdep->sd_fslock) 1007 #define ACQUIRE_LOCK(ump) rw_wlock(&(ump)->um_softdep->sd_fslock) 1008 #define FREE_LOCK(ump) rw_wunlock(&(ump)->um_softdep->sd_fslock) 1009 #define LOCK_OWNED(ump) rw_assert(&(ump)->um_softdep->sd_fslock, \ 1010 RA_WLOCKED) 1011 1012 #define BUF_AREC(bp) lockallowrecurse(&(bp)->b_lock) 1013 #define BUF_NOREC(bp) lockdisablerecurse(&(bp)->b_lock) 1014 1015 /* 1016 * Worklist queue management. 1017 * These routines require that the lock be held. 1018 */ 1019 #ifndef /* NOT */ INVARIANTS 1020 #define WORKLIST_INSERT(head, item) do { \ 1021 (item)->wk_state |= ONWORKLIST; \ 1022 LIST_INSERT_HEAD(head, item, wk_list); \ 1023 } while (0) 1024 #define WORKLIST_REMOVE(item) do { \ 1025 (item)->wk_state &= ~ONWORKLIST; \ 1026 LIST_REMOVE(item, wk_list); \ 1027 } while (0) 1028 #define WORKLIST_INSERT_UNLOCKED WORKLIST_INSERT 1029 #define WORKLIST_REMOVE_UNLOCKED WORKLIST_REMOVE 1030 1031 #else /* INVARIANTS */ 1032 static void worklist_insert(struct workhead *, struct worklist *, int, 1033 const char *, int); 1034 static void worklist_remove(struct worklist *, int, const char *, int); 1035 1036 #define WORKLIST_INSERT(head, item) \ 1037 worklist_insert(head, item, 1, __func__, __LINE__) 1038 #define WORKLIST_INSERT_UNLOCKED(head, item)\ 1039 worklist_insert(head, item, 0, __func__, __LINE__) 1040 #define WORKLIST_REMOVE(item)\ 1041 worklist_remove(item, 1, __func__, __LINE__) 1042 #define WORKLIST_REMOVE_UNLOCKED(item)\ 1043 worklist_remove(item, 0, __func__, __LINE__) 1044 1045 static void 1046 worklist_insert(head, item, locked, func, line) 1047 struct workhead *head; 1048 struct worklist *item; 1049 int locked; 1050 const char *func; 1051 int line; 1052 { 1053 1054 if (locked) 1055 LOCK_OWNED(VFSTOUFS(item->wk_mp)); 1056 if (item->wk_state & ONWORKLIST) 1057 panic("worklist_insert: %p %s(0x%X) already on list, " 1058 "added in function %s at line %d", 1059 item, TYPENAME(item->wk_type), item->wk_state, 1060 item->wk_func, item->wk_line); 1061 item->wk_state |= ONWORKLIST; 1062 item->wk_func = func; 1063 item->wk_line = line; 1064 LIST_INSERT_HEAD(head, item, wk_list); 1065 } 1066 1067 static void 1068 worklist_remove(item, locked, func, line) 1069 struct worklist *item; 1070 int locked; 1071 const char *func; 1072 int line; 1073 { 1074 1075 if (locked) 1076 LOCK_OWNED(VFSTOUFS(item->wk_mp)); 1077 if ((item->wk_state & ONWORKLIST) == 0) 1078 panic("worklist_remove: %p %s(0x%X) not on list, " 1079 "removed in function %s at line %d", 1080 item, TYPENAME(item->wk_type), item->wk_state, 1081 item->wk_func, item->wk_line); 1082 item->wk_state &= ~ONWORKLIST; 1083 item->wk_func = func; 1084 item->wk_line = line; 1085 LIST_REMOVE(item, wk_list); 1086 } 1087 #endif /* INVARIANTS */ 1088 1089 /* 1090 * Merge two jsegdeps keeping only the oldest one as newer references 1091 * can't be discarded until after older references. 1092 */ 1093 static inline struct jsegdep * 1094 jsegdep_merge(struct jsegdep *one, struct jsegdep *two) 1095 { 1096 struct jsegdep *swp; 1097 1098 if (two == NULL) 1099 return (one); 1100 1101 if (one->jd_seg->js_seq > two->jd_seg->js_seq) { 1102 swp = one; 1103 one = two; 1104 two = swp; 1105 } 1106 WORKLIST_REMOVE(&two->jd_list); 1107 free_jsegdep(two); 1108 1109 return (one); 1110 } 1111 1112 /* 1113 * If two freedeps are compatible free one to reduce list size. 1114 */ 1115 static inline struct freedep * 1116 freedep_merge(struct freedep *one, struct freedep *two) 1117 { 1118 if (two == NULL) 1119 return (one); 1120 1121 if (one->fd_freework == two->fd_freework) { 1122 WORKLIST_REMOVE(&two->fd_list); 1123 free_freedep(two); 1124 } 1125 return (one); 1126 } 1127 1128 /* 1129 * Move journal work from one list to another. Duplicate freedeps and 1130 * jsegdeps are coalesced to keep the lists as small as possible. 1131 */ 1132 static void 1133 jwork_move(dst, src) 1134 struct workhead *dst; 1135 struct workhead *src; 1136 { 1137 struct freedep *freedep; 1138 struct jsegdep *jsegdep; 1139 struct worklist *wkn; 1140 struct worklist *wk; 1141 1142 KASSERT(dst != src, 1143 ("jwork_move: dst == src")); 1144 freedep = NULL; 1145 jsegdep = NULL; 1146 LIST_FOREACH_SAFE(wk, dst, wk_list, wkn) { 1147 if (wk->wk_type == D_JSEGDEP) 1148 jsegdep = jsegdep_merge(WK_JSEGDEP(wk), jsegdep); 1149 else if (wk->wk_type == D_FREEDEP) 1150 freedep = freedep_merge(WK_FREEDEP(wk), freedep); 1151 } 1152 1153 while ((wk = LIST_FIRST(src)) != NULL) { 1154 WORKLIST_REMOVE(wk); 1155 WORKLIST_INSERT(dst, wk); 1156 if (wk->wk_type == D_JSEGDEP) { 1157 jsegdep = jsegdep_merge(WK_JSEGDEP(wk), jsegdep); 1158 continue; 1159 } 1160 if (wk->wk_type == D_FREEDEP) 1161 freedep = freedep_merge(WK_FREEDEP(wk), freedep); 1162 } 1163 } 1164 1165 static void 1166 jwork_insert(dst, jsegdep) 1167 struct workhead *dst; 1168 struct jsegdep *jsegdep; 1169 { 1170 struct jsegdep *jsegdepn; 1171 struct worklist *wk; 1172 1173 LIST_FOREACH(wk, dst, wk_list) 1174 if (wk->wk_type == D_JSEGDEP) 1175 break; 1176 if (wk == NULL) { 1177 WORKLIST_INSERT(dst, &jsegdep->jd_list); 1178 return; 1179 } 1180 jsegdepn = WK_JSEGDEP(wk); 1181 if (jsegdep->jd_seg->js_seq < jsegdepn->jd_seg->js_seq) { 1182 WORKLIST_REMOVE(wk); 1183 free_jsegdep(jsegdepn); 1184 WORKLIST_INSERT(dst, &jsegdep->jd_list); 1185 } else 1186 free_jsegdep(jsegdep); 1187 } 1188 1189 /* 1190 * Routines for tracking and managing workitems. 1191 */ 1192 static void workitem_free(struct worklist *, int); 1193 static void workitem_alloc(struct worklist *, int, struct mount *); 1194 static void workitem_reassign(struct worklist *, int); 1195 1196 #define WORKITEM_FREE(item, type) \ 1197 workitem_free((struct worklist *)(item), (type)) 1198 #define WORKITEM_REASSIGN(item, type) \ 1199 workitem_reassign((struct worklist *)(item), (type)) 1200 1201 static void 1202 workitem_free(item, type) 1203 struct worklist *item; 1204 int type; 1205 { 1206 struct ufsmount *ump; 1207 1208 #ifdef INVARIANTS 1209 if (item->wk_state & ONWORKLIST) 1210 panic("workitem_free: %s(0x%X) still on list, " 1211 "added in function %s at line %d", 1212 TYPENAME(item->wk_type), item->wk_state, 1213 item->wk_func, item->wk_line); 1214 if (item->wk_type != type && type != D_NEWBLK) 1215 panic("workitem_free: type mismatch %s != %s", 1216 TYPENAME(item->wk_type), TYPENAME(type)); 1217 #endif 1218 if (item->wk_state & IOWAITING) 1219 wakeup(item); 1220 ump = VFSTOUFS(item->wk_mp); 1221 LOCK_OWNED(ump); 1222 KASSERT(ump->softdep_deps > 0, 1223 ("workitem_free: %s: softdep_deps going negative", 1224 ump->um_fs->fs_fsmnt)); 1225 if (--ump->softdep_deps == 0 && ump->softdep_req) 1226 wakeup(&ump->softdep_deps); 1227 KASSERT(dep_current[item->wk_type] > 0, 1228 ("workitem_free: %s: dep_current[%s] going negative", 1229 ump->um_fs->fs_fsmnt, TYPENAME(item->wk_type))); 1230 KASSERT(ump->softdep_curdeps[item->wk_type] > 0, 1231 ("workitem_free: %s: softdep_curdeps[%s] going negative", 1232 ump->um_fs->fs_fsmnt, TYPENAME(item->wk_type))); 1233 atomic_subtract_long(&dep_current[item->wk_type], 1); 1234 ump->softdep_curdeps[item->wk_type] -= 1; 1235 #ifdef INVARIANTS 1236 LIST_REMOVE(item, wk_all); 1237 #endif 1238 free(item, DtoM(type)); 1239 } 1240 1241 static void 1242 workitem_alloc(item, type, mp) 1243 struct worklist *item; 1244 int type; 1245 struct mount *mp; 1246 { 1247 struct ufsmount *ump; 1248 1249 item->wk_type = type; 1250 item->wk_mp = mp; 1251 item->wk_state = 0; 1252 1253 ump = VFSTOUFS(mp); 1254 ACQUIRE_GBLLOCK(&lk); 1255 dep_current[type]++; 1256 if (dep_current[type] > dep_highuse[type]) 1257 dep_highuse[type] = dep_current[type]; 1258 dep_total[type]++; 1259 FREE_GBLLOCK(&lk); 1260 ACQUIRE_LOCK(ump); 1261 ump->softdep_curdeps[type] += 1; 1262 ump->softdep_deps++; 1263 ump->softdep_accdeps++; 1264 #ifdef INVARIANTS 1265 LIST_INSERT_HEAD(&ump->softdep_alldeps[type], item, wk_all); 1266 #endif 1267 FREE_LOCK(ump); 1268 } 1269 1270 static void 1271 workitem_reassign(item, newtype) 1272 struct worklist *item; 1273 int newtype; 1274 { 1275 struct ufsmount *ump; 1276 1277 ump = VFSTOUFS(item->wk_mp); 1278 LOCK_OWNED(ump); 1279 KASSERT(ump->softdep_curdeps[item->wk_type] > 0, 1280 ("workitem_reassign: %s: softdep_curdeps[%s] going negative", 1281 VFSTOUFS(item->wk_mp)->um_fs->fs_fsmnt, TYPENAME(item->wk_type))); 1282 ump->softdep_curdeps[item->wk_type] -= 1; 1283 ump->softdep_curdeps[newtype] += 1; 1284 KASSERT(dep_current[item->wk_type] > 0, 1285 ("workitem_reassign: %s: dep_current[%s] going negative", 1286 VFSTOUFS(item->wk_mp)->um_fs->fs_fsmnt, TYPENAME(item->wk_type))); 1287 ACQUIRE_GBLLOCK(&lk); 1288 dep_current[newtype]++; 1289 dep_current[item->wk_type]--; 1290 if (dep_current[newtype] > dep_highuse[newtype]) 1291 dep_highuse[newtype] = dep_current[newtype]; 1292 dep_total[newtype]++; 1293 FREE_GBLLOCK(&lk); 1294 item->wk_type = newtype; 1295 } 1296 1297 /* 1298 * Workitem queue management 1299 */ 1300 static int max_softdeps; /* maximum number of structs before slowdown */ 1301 static int tickdelay = 2; /* number of ticks to pause during slowdown */ 1302 static int proc_waiting; /* tracks whether we have a timeout posted */ 1303 static int *stat_countp; /* statistic to count in proc_waiting timeout */ 1304 static struct callout softdep_callout; 1305 static int req_clear_inodedeps; /* syncer process flush some inodedeps */ 1306 static int req_clear_remove; /* syncer process flush some freeblks */ 1307 static int softdep_flushcache = 0; /* Should we do BIO_FLUSH? */ 1308 1309 /* 1310 * runtime statistics 1311 */ 1312 static int stat_flush_threads; /* number of softdep flushing threads */ 1313 static int stat_worklist_push; /* number of worklist cleanups */ 1314 static int stat_blk_limit_push; /* number of times block limit neared */ 1315 static int stat_ino_limit_push; /* number of times inode limit neared */ 1316 static int stat_blk_limit_hit; /* number of times block slowdown imposed */ 1317 static int stat_ino_limit_hit; /* number of times inode slowdown imposed */ 1318 static int stat_sync_limit_hit; /* number of synchronous slowdowns imposed */ 1319 static int stat_indir_blk_ptrs; /* bufs redirtied as indir ptrs not written */ 1320 static int stat_inode_bitmap; /* bufs redirtied as inode bitmap not written */ 1321 static int stat_direct_blk_ptrs;/* bufs redirtied as direct ptrs not written */ 1322 static int stat_dir_entry; /* bufs redirtied as dir entry cannot write */ 1323 static int stat_jaddref; /* bufs redirtied as ino bitmap can not write */ 1324 static int stat_jnewblk; /* bufs redirtied as blk bitmap can not write */ 1325 static int stat_journal_min; /* Times hit journal min threshold */ 1326 static int stat_journal_low; /* Times hit journal low threshold */ 1327 static int stat_journal_wait; /* Times blocked in jwait(). */ 1328 static int stat_jwait_filepage; /* Times blocked in jwait() for filepage. */ 1329 static int stat_jwait_freeblks; /* Times blocked in jwait() for freeblks. */ 1330 static int stat_jwait_inode; /* Times blocked in jwait() for inodes. */ 1331 static int stat_jwait_newblk; /* Times blocked in jwait() for newblks. */ 1332 static int stat_cleanup_high_delay; /* Maximum cleanup delay (in ticks) */ 1333 static int stat_cleanup_blkrequests; /* Number of block cleanup requests */ 1334 static int stat_cleanup_inorequests; /* Number of inode cleanup requests */ 1335 static int stat_cleanup_retries; /* Number of cleanups that needed to flush */ 1336 static int stat_cleanup_failures; /* Number of cleanup requests that failed */ 1337 static int stat_emptyjblocks; /* Number of potentially empty journal blocks */ 1338 1339 SYSCTL_INT(_debug_softdep, OID_AUTO, max_softdeps, CTLFLAG_RW, 1340 &max_softdeps, 0, ""); 1341 SYSCTL_INT(_debug_softdep, OID_AUTO, tickdelay, CTLFLAG_RW, 1342 &tickdelay, 0, ""); 1343 SYSCTL_INT(_debug_softdep, OID_AUTO, flush_threads, CTLFLAG_RD, 1344 &stat_flush_threads, 0, ""); 1345 SYSCTL_INT(_debug_softdep, OID_AUTO, worklist_push, 1346 CTLFLAG_RW | CTLFLAG_STATS, &stat_worklist_push, 0,""); 1347 SYSCTL_INT(_debug_softdep, OID_AUTO, blk_limit_push, 1348 CTLFLAG_RW | CTLFLAG_STATS, &stat_blk_limit_push, 0,""); 1349 SYSCTL_INT(_debug_softdep, OID_AUTO, ino_limit_push, 1350 CTLFLAG_RW | CTLFLAG_STATS, &stat_ino_limit_push, 0,""); 1351 SYSCTL_INT(_debug_softdep, OID_AUTO, blk_limit_hit, 1352 CTLFLAG_RW | CTLFLAG_STATS, &stat_blk_limit_hit, 0, ""); 1353 SYSCTL_INT(_debug_softdep, OID_AUTO, ino_limit_hit, 1354 CTLFLAG_RW | CTLFLAG_STATS, &stat_ino_limit_hit, 0, ""); 1355 SYSCTL_INT(_debug_softdep, OID_AUTO, sync_limit_hit, 1356 CTLFLAG_RW | CTLFLAG_STATS, &stat_sync_limit_hit, 0, ""); 1357 SYSCTL_INT(_debug_softdep, OID_AUTO, indir_blk_ptrs, 1358 CTLFLAG_RW | CTLFLAG_STATS, &stat_indir_blk_ptrs, 0, ""); 1359 SYSCTL_INT(_debug_softdep, OID_AUTO, inode_bitmap, 1360 CTLFLAG_RW | CTLFLAG_STATS, &stat_inode_bitmap, 0, ""); 1361 SYSCTL_INT(_debug_softdep, OID_AUTO, direct_blk_ptrs, 1362 CTLFLAG_RW | CTLFLAG_STATS, &stat_direct_blk_ptrs, 0, ""); 1363 SYSCTL_INT(_debug_softdep, OID_AUTO, dir_entry, 1364 CTLFLAG_RW | CTLFLAG_STATS, &stat_dir_entry, 0, ""); 1365 SYSCTL_INT(_debug_softdep, OID_AUTO, jaddref_rollback, 1366 CTLFLAG_RW | CTLFLAG_STATS, &stat_jaddref, 0, ""); 1367 SYSCTL_INT(_debug_softdep, OID_AUTO, jnewblk_rollback, 1368 CTLFLAG_RW | CTLFLAG_STATS, &stat_jnewblk, 0, ""); 1369 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_low, 1370 CTLFLAG_RW | CTLFLAG_STATS, &stat_journal_low, 0, ""); 1371 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_min, 1372 CTLFLAG_RW | CTLFLAG_STATS, &stat_journal_min, 0, ""); 1373 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_wait, 1374 CTLFLAG_RW | CTLFLAG_STATS, &stat_journal_wait, 0, ""); 1375 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_filepage, 1376 CTLFLAG_RW | CTLFLAG_STATS, &stat_jwait_filepage, 0, ""); 1377 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_freeblks, 1378 CTLFLAG_RW | CTLFLAG_STATS, &stat_jwait_freeblks, 0, ""); 1379 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_inode, 1380 CTLFLAG_RW | CTLFLAG_STATS, &stat_jwait_inode, 0, ""); 1381 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_newblk, 1382 CTLFLAG_RW | CTLFLAG_STATS, &stat_jwait_newblk, 0, ""); 1383 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_blkrequests, 1384 CTLFLAG_RW | CTLFLAG_STATS, &stat_cleanup_blkrequests, 0, ""); 1385 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_inorequests, 1386 CTLFLAG_RW | CTLFLAG_STATS, &stat_cleanup_inorequests, 0, ""); 1387 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_high_delay, 1388 CTLFLAG_RW | CTLFLAG_STATS, &stat_cleanup_high_delay, 0, ""); 1389 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_retries, 1390 CTLFLAG_RW | CTLFLAG_STATS, &stat_cleanup_retries, 0, ""); 1391 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_failures, 1392 CTLFLAG_RW | CTLFLAG_STATS, &stat_cleanup_failures, 0, ""); 1393 1394 SYSCTL_INT(_debug_softdep, OID_AUTO, flushcache, CTLFLAG_RW, 1395 &softdep_flushcache, 0, ""); 1396 SYSCTL_INT(_debug_softdep, OID_AUTO, emptyjblocks, CTLFLAG_RD, 1397 &stat_emptyjblocks, 0, ""); 1398 1399 SYSCTL_DECL(_vfs_ffs); 1400 1401 /* Whether to recompute the summary at mount time */ 1402 static int compute_summary_at_mount = 0; 1403 SYSCTL_INT(_vfs_ffs, OID_AUTO, compute_summary_at_mount, CTLFLAG_RW, 1404 &compute_summary_at_mount, 0, "Recompute summary at mount"); 1405 static int print_threads = 0; 1406 SYSCTL_INT(_debug_softdep, OID_AUTO, print_threads, CTLFLAG_RW, 1407 &print_threads, 0, "Notify flusher thread start/stop"); 1408 1409 /* List of all filesystems mounted with soft updates */ 1410 static TAILQ_HEAD(, mount_softdeps) softdepmounts; 1411 1412 static void 1413 get_parent_vp_unlock_bp(struct mount *mp, struct buf *bp, 1414 struct diraddhd *diraddhdp, struct diraddhd *unfinishedp) 1415 { 1416 struct diradd *dap; 1417 1418 /* 1419 * Requeue unfinished dependencies before 1420 * unlocking buffer, which could make 1421 * diraddhdp invalid. 1422 */ 1423 ACQUIRE_LOCK(VFSTOUFS(mp)); 1424 while ((dap = LIST_FIRST(unfinishedp)) != NULL) { 1425 LIST_REMOVE(dap, da_pdlist); 1426 LIST_INSERT_HEAD(diraddhdp, dap, da_pdlist); 1427 } 1428 FREE_LOCK(VFSTOUFS(mp)); 1429 1430 bp->b_vflags &= ~BV_SCANNED; 1431 BUF_NOREC(bp); 1432 BUF_UNLOCK(bp); 1433 } 1434 1435 /* 1436 * This function fetches inode inum on mount point mp. We already 1437 * hold a locked vnode vp, and might have a locked buffer bp belonging 1438 * to vp. 1439 1440 * We must not block on acquiring the new inode lock as we will get 1441 * into a lock-order reversal with the buffer lock and possibly get a 1442 * deadlock. Thus if we cannot instantiate the requested vnode 1443 * without sleeping on its lock, we must unlock the vnode and the 1444 * buffer before doing a blocking on the vnode lock. We return 1445 * ERELOOKUP if we have had to unlock either the vnode or the buffer so 1446 * that the caller can reassess its state. 1447 * 1448 * Top-level VFS code (for syscalls and other consumers, e.g. callers 1449 * of VOP_FSYNC() in syncer) check for ERELOOKUP and restart at safe 1450 * point. 1451 * 1452 * Since callers expect to operate on fully constructed vnode, we also 1453 * recheck v_data after relock, and return ENOENT if NULL. 1454 * 1455 * If unlocking bp, we must unroll dequeueing its unfinished 1456 * dependencies, and clear scan flag, before unlocking. If unlocking 1457 * vp while it is under deactivation, we re-queue deactivation. 1458 */ 1459 static int 1460 get_parent_vp(struct vnode *vp, struct mount *mp, ino_t inum, struct buf *bp, 1461 struct diraddhd *diraddhdp, struct diraddhd *unfinishedp, 1462 struct vnode **rvp) 1463 { 1464 struct vnode *pvp; 1465 int error; 1466 bool bplocked; 1467 1468 ASSERT_VOP_ELOCKED(vp, "child vnode must be locked"); 1469 for (bplocked = true, pvp = NULL;;) { 1470 error = ffs_vgetf(mp, inum, LK_EXCLUSIVE | LK_NOWAIT, &pvp, 1471 FFSV_FORCEINSMQ); 1472 if (error == 0) { 1473 /* 1474 * Since we could have unlocked vp, the inode 1475 * number could no longer indicate a 1476 * constructed node. In this case, we must 1477 * restart the syscall. 1478 */ 1479 if (VTOI(pvp)->i_mode == 0 || !bplocked) { 1480 if (bp != NULL && bplocked) 1481 get_parent_vp_unlock_bp(mp, bp, 1482 diraddhdp, unfinishedp); 1483 if (VTOI(pvp)->i_mode == 0) 1484 vgone(pvp); 1485 error = ERELOOKUP; 1486 goto out2; 1487 } 1488 goto out1; 1489 } 1490 if (bp != NULL && bplocked) { 1491 get_parent_vp_unlock_bp(mp, bp, diraddhdp, unfinishedp); 1492 bplocked = false; 1493 } 1494 1495 /* 1496 * Do not drop vnode lock while inactivating. This 1497 * would result in leaks of the VI flags and 1498 * reclaiming of non-truncated vnode. Instead, 1499 * re-schedule inactivation hoping that we would be 1500 * able to sync inode later. 1501 */ 1502 if ((vp->v_iflag & VI_DOINGINACT) != 0) { 1503 VI_LOCK(vp); 1504 vp->v_iflag |= VI_OWEINACT; 1505 VI_UNLOCK(vp); 1506 return (ERELOOKUP); 1507 } 1508 1509 VOP_UNLOCK(vp); 1510 error = ffs_vgetf(mp, inum, LK_EXCLUSIVE, &pvp, 1511 FFSV_FORCEINSMQ); 1512 if (error != 0) { 1513 MPASS(error != ERELOOKUP); 1514 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 1515 break; 1516 } 1517 if (VTOI(pvp)->i_mode == 0) { 1518 vgone(pvp); 1519 vput(pvp); 1520 pvp = NULL; 1521 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 1522 error = ERELOOKUP; 1523 break; 1524 } 1525 error = vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT); 1526 if (error == 0) 1527 break; 1528 vput(pvp); 1529 pvp = NULL; 1530 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 1531 if (vp->v_data == NULL) { 1532 error = ENOENT; 1533 break; 1534 } 1535 } 1536 if (bp != NULL) { 1537 MPASS(!bplocked); 1538 error = ERELOOKUP; 1539 } 1540 out2: 1541 if (error != 0 && pvp != NULL) { 1542 vput(pvp); 1543 pvp = NULL; 1544 } 1545 out1: 1546 *rvp = pvp; 1547 ASSERT_VOP_ELOCKED(vp, "child vnode must be locked on return"); 1548 return (error); 1549 } 1550 1551 /* 1552 * This function cleans the worklist for a filesystem. 1553 * Each filesystem running with soft dependencies gets its own 1554 * thread to run in this function. The thread is started up in 1555 * softdep_mount and shutdown in softdep_unmount. They show up 1556 * as part of the kernel "bufdaemon" process whose process 1557 * entry is available in bufdaemonproc. 1558 */ 1559 static int searchfailed; 1560 extern struct proc *bufdaemonproc; 1561 static void 1562 softdep_flush(addr) 1563 void *addr; 1564 { 1565 struct mount *mp; 1566 struct thread *td; 1567 struct ufsmount *ump; 1568 1569 td = curthread; 1570 td->td_pflags |= TDP_NORUNNINGBUF; 1571 mp = (struct mount *)addr; 1572 ump = VFSTOUFS(mp); 1573 atomic_add_int(&stat_flush_threads, 1); 1574 ACQUIRE_LOCK(ump); 1575 ump->softdep_flags &= ~FLUSH_STARTING; 1576 wakeup(&ump->softdep_flushtd); 1577 FREE_LOCK(ump); 1578 if (print_threads) { 1579 if (stat_flush_threads == 1) 1580 printf("Running %s at pid %d\n", bufdaemonproc->p_comm, 1581 bufdaemonproc->p_pid); 1582 printf("Start thread %s\n", td->td_name); 1583 } 1584 for (;;) { 1585 while (softdep_process_worklist(mp, 0) > 0 || 1586 (MOUNTEDSUJ(mp) && 1587 VFSTOUFS(mp)->softdep_jblocks->jb_suspended)) 1588 kthread_suspend_check(); 1589 ACQUIRE_LOCK(ump); 1590 if ((ump->softdep_flags & (FLUSH_CLEANUP | FLUSH_EXIT)) == 0) 1591 msleep(&ump->softdep_flushtd, LOCK_PTR(ump), PVM, 1592 "sdflush", hz / 2); 1593 ump->softdep_flags &= ~FLUSH_CLEANUP; 1594 /* 1595 * Check to see if we are done and need to exit. 1596 */ 1597 if ((ump->softdep_flags & FLUSH_EXIT) == 0) { 1598 FREE_LOCK(ump); 1599 continue; 1600 } 1601 ump->softdep_flags &= ~FLUSH_EXIT; 1602 FREE_LOCK(ump); 1603 wakeup(&ump->softdep_flags); 1604 if (print_threads) 1605 printf("Stop thread %s: searchfailed %d, did cleanups %d\n", td->td_name, searchfailed, ump->um_softdep->sd_cleanups); 1606 atomic_subtract_int(&stat_flush_threads, 1); 1607 kthread_exit(); 1608 panic("kthread_exit failed\n"); 1609 } 1610 } 1611 1612 static void 1613 worklist_speedup(mp) 1614 struct mount *mp; 1615 { 1616 struct ufsmount *ump; 1617 1618 ump = VFSTOUFS(mp); 1619 LOCK_OWNED(ump); 1620 if ((ump->softdep_flags & (FLUSH_CLEANUP | FLUSH_EXIT)) == 0) 1621 ump->softdep_flags |= FLUSH_CLEANUP; 1622 wakeup(&ump->softdep_flushtd); 1623 } 1624 1625 static void 1626 softdep_send_speedup(struct ufsmount *ump, off_t shortage, u_int flags) 1627 { 1628 struct buf *bp; 1629 1630 if ((ump->um_flags & UM_CANSPEEDUP) == 0) 1631 return; 1632 1633 bp = malloc(sizeof(*bp), M_TRIM, M_WAITOK | M_ZERO); 1634 bp->b_iocmd = BIO_SPEEDUP; 1635 bp->b_ioflags = flags; 1636 bp->b_bcount = omin(shortage, LONG_MAX); 1637 g_vfs_strategy(ump->um_bo, bp); 1638 bufwait(bp); 1639 free(bp, M_TRIM); 1640 } 1641 1642 static int 1643 softdep_speedup(ump) 1644 struct ufsmount *ump; 1645 { 1646 struct ufsmount *altump; 1647 struct mount_softdeps *sdp; 1648 1649 LOCK_OWNED(ump); 1650 worklist_speedup(ump->um_mountp); 1651 bd_speedup(); 1652 /* 1653 * If we have global shortages, then we need other 1654 * filesystems to help with the cleanup. Here we wakeup a 1655 * flusher thread for a filesystem that is over its fair 1656 * share of resources. 1657 */ 1658 if (req_clear_inodedeps || req_clear_remove) { 1659 ACQUIRE_GBLLOCK(&lk); 1660 TAILQ_FOREACH(sdp, &softdepmounts, sd_next) { 1661 if ((altump = sdp->sd_ump) == ump) 1662 continue; 1663 if (((req_clear_inodedeps && 1664 altump->softdep_curdeps[D_INODEDEP] > 1665 max_softdeps / stat_flush_threads) || 1666 (req_clear_remove && 1667 altump->softdep_curdeps[D_DIRREM] > 1668 (max_softdeps / 2) / stat_flush_threads)) && 1669 TRY_ACQUIRE_LOCK(altump)) 1670 break; 1671 } 1672 if (sdp == NULL) { 1673 searchfailed++; 1674 FREE_GBLLOCK(&lk); 1675 } else { 1676 /* 1677 * Move to the end of the list so we pick a 1678 * different one on out next try. 1679 */ 1680 TAILQ_REMOVE(&softdepmounts, sdp, sd_next); 1681 TAILQ_INSERT_TAIL(&softdepmounts, sdp, sd_next); 1682 FREE_GBLLOCK(&lk); 1683 if ((altump->softdep_flags & 1684 (FLUSH_CLEANUP | FLUSH_EXIT)) == 0) 1685 altump->softdep_flags |= FLUSH_CLEANUP; 1686 altump->um_softdep->sd_cleanups++; 1687 wakeup(&altump->softdep_flushtd); 1688 FREE_LOCK(altump); 1689 } 1690 } 1691 return (speedup_syncer()); 1692 } 1693 1694 /* 1695 * Add an item to the end of the work queue. 1696 * This routine requires that the lock be held. 1697 * This is the only routine that adds items to the list. 1698 * The following routine is the only one that removes items 1699 * and does so in order from first to last. 1700 */ 1701 1702 #define WK_HEAD 0x0001 /* Add to HEAD. */ 1703 #define WK_NODELAY 0x0002 /* Process immediately. */ 1704 1705 static void 1706 add_to_worklist(wk, flags) 1707 struct worklist *wk; 1708 int flags; 1709 { 1710 struct ufsmount *ump; 1711 1712 ump = VFSTOUFS(wk->wk_mp); 1713 LOCK_OWNED(ump); 1714 if (wk->wk_state & ONWORKLIST) 1715 panic("add_to_worklist: %s(0x%X) already on list", 1716 TYPENAME(wk->wk_type), wk->wk_state); 1717 wk->wk_state |= ONWORKLIST; 1718 if (ump->softdep_on_worklist == 0) { 1719 LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list); 1720 ump->softdep_worklist_tail = wk; 1721 } else if (flags & WK_HEAD) { 1722 LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list); 1723 } else { 1724 LIST_INSERT_AFTER(ump->softdep_worklist_tail, wk, wk_list); 1725 ump->softdep_worklist_tail = wk; 1726 } 1727 ump->softdep_on_worklist += 1; 1728 if (flags & WK_NODELAY) 1729 worklist_speedup(wk->wk_mp); 1730 } 1731 1732 /* 1733 * Remove the item to be processed. If we are removing the last 1734 * item on the list, we need to recalculate the tail pointer. 1735 */ 1736 static void 1737 remove_from_worklist(wk) 1738 struct worklist *wk; 1739 { 1740 struct ufsmount *ump; 1741 1742 ump = VFSTOUFS(wk->wk_mp); 1743 if (ump->softdep_worklist_tail == wk) 1744 ump->softdep_worklist_tail = 1745 (struct worklist *)wk->wk_list.le_prev; 1746 WORKLIST_REMOVE(wk); 1747 ump->softdep_on_worklist -= 1; 1748 } 1749 1750 static void 1751 wake_worklist(wk) 1752 struct worklist *wk; 1753 { 1754 if (wk->wk_state & IOWAITING) { 1755 wk->wk_state &= ~IOWAITING; 1756 wakeup(wk); 1757 } 1758 } 1759 1760 static void 1761 wait_worklist(wk, wmesg) 1762 struct worklist *wk; 1763 char *wmesg; 1764 { 1765 struct ufsmount *ump; 1766 1767 ump = VFSTOUFS(wk->wk_mp); 1768 wk->wk_state |= IOWAITING; 1769 msleep(wk, LOCK_PTR(ump), PVM, wmesg, 0); 1770 } 1771 1772 /* 1773 * Process that runs once per second to handle items in the background queue. 1774 * 1775 * Note that we ensure that everything is done in the order in which they 1776 * appear in the queue. The code below depends on this property to ensure 1777 * that blocks of a file are freed before the inode itself is freed. This 1778 * ordering ensures that no new <vfsid, inum, lbn> triples will be generated 1779 * until all the old ones have been purged from the dependency lists. 1780 */ 1781 static int 1782 softdep_process_worklist(mp, full) 1783 struct mount *mp; 1784 int full; 1785 { 1786 int cnt, matchcnt; 1787 struct ufsmount *ump; 1788 long starttime; 1789 1790 KASSERT(mp != NULL, ("softdep_process_worklist: NULL mp")); 1791 if (MOUNTEDSOFTDEP(mp) == 0) 1792 return (0); 1793 matchcnt = 0; 1794 ump = VFSTOUFS(mp); 1795 ACQUIRE_LOCK(ump); 1796 starttime = time_second; 1797 softdep_process_journal(mp, NULL, full ? MNT_WAIT : 0); 1798 check_clear_deps(mp); 1799 while (ump->softdep_on_worklist > 0) { 1800 if ((cnt = process_worklist_item(mp, 10, LK_NOWAIT)) == 0) 1801 break; 1802 else 1803 matchcnt += cnt; 1804 check_clear_deps(mp); 1805 /* 1806 * We do not generally want to stop for buffer space, but if 1807 * we are really being a buffer hog, we will stop and wait. 1808 */ 1809 if (should_yield()) { 1810 FREE_LOCK(ump); 1811 kern_yield(PRI_USER); 1812 bwillwrite(); 1813 ACQUIRE_LOCK(ump); 1814 } 1815 /* 1816 * Never allow processing to run for more than one 1817 * second. This gives the syncer thread the opportunity 1818 * to pause if appropriate. 1819 */ 1820 if (!full && starttime != time_second) 1821 break; 1822 } 1823 if (full == 0) 1824 journal_unsuspend(ump); 1825 FREE_LOCK(ump); 1826 return (matchcnt); 1827 } 1828 1829 /* 1830 * Process all removes associated with a vnode if we are running out of 1831 * journal space. Any other process which attempts to flush these will 1832 * be unable as we have the vnodes locked. 1833 */ 1834 static void 1835 process_removes(vp) 1836 struct vnode *vp; 1837 { 1838 struct inodedep *inodedep; 1839 struct dirrem *dirrem; 1840 struct ufsmount *ump; 1841 struct mount *mp; 1842 ino_t inum; 1843 1844 mp = vp->v_mount; 1845 ump = VFSTOUFS(mp); 1846 LOCK_OWNED(ump); 1847 inum = VTOI(vp)->i_number; 1848 for (;;) { 1849 top: 1850 if (inodedep_lookup(mp, inum, 0, &inodedep) == 0) 1851 return; 1852 LIST_FOREACH(dirrem, &inodedep->id_dirremhd, dm_inonext) { 1853 /* 1854 * If another thread is trying to lock this vnode 1855 * it will fail but we must wait for it to do so 1856 * before we can proceed. 1857 */ 1858 if (dirrem->dm_state & INPROGRESS) { 1859 wait_worklist(&dirrem->dm_list, "pwrwait"); 1860 goto top; 1861 } 1862 if ((dirrem->dm_state & (COMPLETE | ONWORKLIST)) == 1863 (COMPLETE | ONWORKLIST)) 1864 break; 1865 } 1866 if (dirrem == NULL) 1867 return; 1868 remove_from_worklist(&dirrem->dm_list); 1869 FREE_LOCK(ump); 1870 if (vn_start_secondary_write(NULL, &mp, V_NOWAIT)) 1871 panic("process_removes: suspended filesystem"); 1872 handle_workitem_remove(dirrem, 0); 1873 vn_finished_secondary_write(mp); 1874 ACQUIRE_LOCK(ump); 1875 } 1876 } 1877 1878 /* 1879 * Process all truncations associated with a vnode if we are running out 1880 * of journal space. This is called when the vnode lock is already held 1881 * and no other process can clear the truncation. This function returns 1882 * a value greater than zero if it did any work. 1883 */ 1884 static void 1885 process_truncates(vp) 1886 struct vnode *vp; 1887 { 1888 struct inodedep *inodedep; 1889 struct freeblks *freeblks; 1890 struct ufsmount *ump; 1891 struct mount *mp; 1892 ino_t inum; 1893 int cgwait; 1894 1895 mp = vp->v_mount; 1896 ump = VFSTOUFS(mp); 1897 LOCK_OWNED(ump); 1898 inum = VTOI(vp)->i_number; 1899 for (;;) { 1900 if (inodedep_lookup(mp, inum, 0, &inodedep) == 0) 1901 return; 1902 cgwait = 0; 1903 TAILQ_FOREACH(freeblks, &inodedep->id_freeblklst, fb_next) { 1904 /* Journal entries not yet written. */ 1905 if (!LIST_EMPTY(&freeblks->fb_jblkdephd)) { 1906 jwait(&LIST_FIRST( 1907 &freeblks->fb_jblkdephd)->jb_list, 1908 MNT_WAIT); 1909 break; 1910 } 1911 /* Another thread is executing this item. */ 1912 if (freeblks->fb_state & INPROGRESS) { 1913 wait_worklist(&freeblks->fb_list, "ptrwait"); 1914 break; 1915 } 1916 /* Freeblks is waiting on a inode write. */ 1917 if ((freeblks->fb_state & COMPLETE) == 0) { 1918 FREE_LOCK(ump); 1919 ffs_update(vp, 1); 1920 ACQUIRE_LOCK(ump); 1921 break; 1922 } 1923 if ((freeblks->fb_state & (ALLCOMPLETE | ONWORKLIST)) == 1924 (ALLCOMPLETE | ONWORKLIST)) { 1925 remove_from_worklist(&freeblks->fb_list); 1926 freeblks->fb_state |= INPROGRESS; 1927 FREE_LOCK(ump); 1928 if (vn_start_secondary_write(NULL, &mp, 1929 V_NOWAIT)) 1930 panic("process_truncates: " 1931 "suspended filesystem"); 1932 handle_workitem_freeblocks(freeblks, 0); 1933 vn_finished_secondary_write(mp); 1934 ACQUIRE_LOCK(ump); 1935 break; 1936 } 1937 if (freeblks->fb_cgwait) 1938 cgwait++; 1939 } 1940 if (cgwait) { 1941 FREE_LOCK(ump); 1942 sync_cgs(mp, MNT_WAIT); 1943 ffs_sync_snap(mp, MNT_WAIT); 1944 ACQUIRE_LOCK(ump); 1945 continue; 1946 } 1947 if (freeblks == NULL) 1948 break; 1949 } 1950 return; 1951 } 1952 1953 /* 1954 * Process one item on the worklist. 1955 */ 1956 static int 1957 process_worklist_item(mp, target, flags) 1958 struct mount *mp; 1959 int target; 1960 int flags; 1961 { 1962 struct worklist sentinel; 1963 struct worklist *wk; 1964 struct ufsmount *ump; 1965 int matchcnt; 1966 int error; 1967 1968 KASSERT(mp != NULL, ("process_worklist_item: NULL mp")); 1969 /* 1970 * If we are being called because of a process doing a 1971 * copy-on-write, then it is not safe to write as we may 1972 * recurse into the copy-on-write routine. 1973 */ 1974 if (curthread->td_pflags & TDP_COWINPROGRESS) 1975 return (-1); 1976 PHOLD(curproc); /* Don't let the stack go away. */ 1977 ump = VFSTOUFS(mp); 1978 LOCK_OWNED(ump); 1979 matchcnt = 0; 1980 sentinel.wk_mp = NULL; 1981 sentinel.wk_type = D_SENTINEL; 1982 LIST_INSERT_HEAD(&ump->softdep_workitem_pending, &sentinel, wk_list); 1983 for (wk = LIST_NEXT(&sentinel, wk_list); wk != NULL; 1984 wk = LIST_NEXT(&sentinel, wk_list)) { 1985 if (wk->wk_type == D_SENTINEL) { 1986 LIST_REMOVE(&sentinel, wk_list); 1987 LIST_INSERT_AFTER(wk, &sentinel, wk_list); 1988 continue; 1989 } 1990 if (wk->wk_state & INPROGRESS) 1991 panic("process_worklist_item: %p already in progress.", 1992 wk); 1993 wk->wk_state |= INPROGRESS; 1994 remove_from_worklist(wk); 1995 FREE_LOCK(ump); 1996 if (vn_start_secondary_write(NULL, &mp, V_NOWAIT)) 1997 panic("process_worklist_item: suspended filesystem"); 1998 switch (wk->wk_type) { 1999 case D_DIRREM: 2000 /* removal of a directory entry */ 2001 error = handle_workitem_remove(WK_DIRREM(wk), flags); 2002 break; 2003 2004 case D_FREEBLKS: 2005 /* releasing blocks and/or fragments from a file */ 2006 error = handle_workitem_freeblocks(WK_FREEBLKS(wk), 2007 flags); 2008 break; 2009 2010 case D_FREEFRAG: 2011 /* releasing a fragment when replaced as a file grows */ 2012 handle_workitem_freefrag(WK_FREEFRAG(wk)); 2013 error = 0; 2014 break; 2015 2016 case D_FREEFILE: 2017 /* releasing an inode when its link count drops to 0 */ 2018 handle_workitem_freefile(WK_FREEFILE(wk)); 2019 error = 0; 2020 break; 2021 2022 default: 2023 panic("%s_process_worklist: Unknown type %s", 2024 "softdep", TYPENAME(wk->wk_type)); 2025 /* NOTREACHED */ 2026 } 2027 vn_finished_secondary_write(mp); 2028 ACQUIRE_LOCK(ump); 2029 if (error == 0) { 2030 if (++matchcnt == target) 2031 break; 2032 continue; 2033 } 2034 /* 2035 * We have to retry the worklist item later. Wake up any 2036 * waiters who may be able to complete it immediately and 2037 * add the item back to the head so we don't try to execute 2038 * it again. 2039 */ 2040 wk->wk_state &= ~INPROGRESS; 2041 wake_worklist(wk); 2042 add_to_worklist(wk, WK_HEAD); 2043 } 2044 /* Sentinal could've become the tail from remove_from_worklist. */ 2045 if (ump->softdep_worklist_tail == &sentinel) 2046 ump->softdep_worklist_tail = 2047 (struct worklist *)sentinel.wk_list.le_prev; 2048 LIST_REMOVE(&sentinel, wk_list); 2049 PRELE(curproc); 2050 return (matchcnt); 2051 } 2052 2053 /* 2054 * Move dependencies from one buffer to another. 2055 */ 2056 int 2057 softdep_move_dependencies(oldbp, newbp) 2058 struct buf *oldbp; 2059 struct buf *newbp; 2060 { 2061 struct worklist *wk, *wktail; 2062 struct ufsmount *ump; 2063 int dirty; 2064 2065 if ((wk = LIST_FIRST(&oldbp->b_dep)) == NULL) 2066 return (0); 2067 KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0, 2068 ("softdep_move_dependencies called on non-softdep filesystem")); 2069 dirty = 0; 2070 wktail = NULL; 2071 ump = VFSTOUFS(wk->wk_mp); 2072 ACQUIRE_LOCK(ump); 2073 while ((wk = LIST_FIRST(&oldbp->b_dep)) != NULL) { 2074 LIST_REMOVE(wk, wk_list); 2075 if (wk->wk_type == D_BMSAFEMAP && 2076 bmsafemap_backgroundwrite(WK_BMSAFEMAP(wk), newbp)) 2077 dirty = 1; 2078 if (wktail == NULL) 2079 LIST_INSERT_HEAD(&newbp->b_dep, wk, wk_list); 2080 else 2081 LIST_INSERT_AFTER(wktail, wk, wk_list); 2082 wktail = wk; 2083 } 2084 FREE_LOCK(ump); 2085 2086 return (dirty); 2087 } 2088 2089 /* 2090 * Purge the work list of all items associated with a particular mount point. 2091 */ 2092 int 2093 softdep_flushworklist(oldmnt, countp, td) 2094 struct mount *oldmnt; 2095 int *countp; 2096 struct thread *td; 2097 { 2098 struct vnode *devvp; 2099 struct ufsmount *ump; 2100 int count, error; 2101 2102 /* 2103 * Alternately flush the block device associated with the mount 2104 * point and process any dependencies that the flushing 2105 * creates. We continue until no more worklist dependencies 2106 * are found. 2107 */ 2108 *countp = 0; 2109 error = 0; 2110 ump = VFSTOUFS(oldmnt); 2111 devvp = ump->um_devvp; 2112 while ((count = softdep_process_worklist(oldmnt, 1)) > 0) { 2113 *countp += count; 2114 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY); 2115 error = VOP_FSYNC(devvp, MNT_WAIT, td); 2116 VOP_UNLOCK(devvp); 2117 if (error != 0) 2118 break; 2119 } 2120 return (error); 2121 } 2122 2123 #define SU_WAITIDLE_RETRIES 20 2124 static int 2125 softdep_waitidle(struct mount *mp, int flags __unused) 2126 { 2127 struct ufsmount *ump; 2128 struct vnode *devvp; 2129 struct thread *td; 2130 int error, i; 2131 2132 ump = VFSTOUFS(mp); 2133 devvp = ump->um_devvp; 2134 td = curthread; 2135 error = 0; 2136 ACQUIRE_LOCK(ump); 2137 for (i = 0; i < SU_WAITIDLE_RETRIES && ump->softdep_deps != 0; i++) { 2138 ump->softdep_req = 1; 2139 KASSERT((flags & FORCECLOSE) == 0 || 2140 ump->softdep_on_worklist == 0, 2141 ("softdep_waitidle: work added after flush")); 2142 msleep(&ump->softdep_deps, LOCK_PTR(ump), PVM | PDROP, 2143 "softdeps", 10 * hz); 2144 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY); 2145 error = VOP_FSYNC(devvp, MNT_WAIT, td); 2146 VOP_UNLOCK(devvp); 2147 ACQUIRE_LOCK(ump); 2148 if (error != 0) 2149 break; 2150 } 2151 ump->softdep_req = 0; 2152 if (i == SU_WAITIDLE_RETRIES && error == 0 && ump->softdep_deps != 0) { 2153 error = EBUSY; 2154 printf("softdep_waitidle: Failed to flush worklist for %p\n", 2155 mp); 2156 } 2157 FREE_LOCK(ump); 2158 return (error); 2159 } 2160 2161 /* 2162 * Flush all vnodes and worklist items associated with a specified mount point. 2163 */ 2164 int 2165 softdep_flushfiles(oldmnt, flags, td) 2166 struct mount *oldmnt; 2167 int flags; 2168 struct thread *td; 2169 { 2170 #ifdef QUOTA 2171 struct ufsmount *ump; 2172 int i; 2173 #endif 2174 int error, early, depcount, loopcnt, retry_flush_count, retry; 2175 int morework; 2176 2177 KASSERT(MOUNTEDSOFTDEP(oldmnt) != 0, 2178 ("softdep_flushfiles called on non-softdep filesystem")); 2179 loopcnt = 10; 2180 retry_flush_count = 3; 2181 retry_flush: 2182 error = 0; 2183 2184 /* 2185 * Alternately flush the vnodes associated with the mount 2186 * point and process any dependencies that the flushing 2187 * creates. In theory, this loop can happen at most twice, 2188 * but we give it a few extra just to be sure. 2189 */ 2190 for (; loopcnt > 0; loopcnt--) { 2191 /* 2192 * Do another flush in case any vnodes were brought in 2193 * as part of the cleanup operations. 2194 */ 2195 early = retry_flush_count == 1 || (oldmnt->mnt_kern_flag & 2196 MNTK_UNMOUNT) == 0 ? 0 : EARLYFLUSH; 2197 if ((error = ffs_flushfiles(oldmnt, flags | early, td)) != 0) 2198 break; 2199 if ((error = softdep_flushworklist(oldmnt, &depcount, td)) != 0 || 2200 depcount == 0) 2201 break; 2202 } 2203 /* 2204 * If we are unmounting then it is an error to fail. If we 2205 * are simply trying to downgrade to read-only, then filesystem 2206 * activity can keep us busy forever, so we just fail with EBUSY. 2207 */ 2208 if (loopcnt == 0) { 2209 if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT) 2210 panic("softdep_flushfiles: looping"); 2211 error = EBUSY; 2212 } 2213 if (!error) 2214 error = softdep_waitidle(oldmnt, flags); 2215 if (!error) { 2216 if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT) { 2217 retry = 0; 2218 MNT_ILOCK(oldmnt); 2219 morework = oldmnt->mnt_nvnodelistsize > 0; 2220 #ifdef QUOTA 2221 ump = VFSTOUFS(oldmnt); 2222 UFS_LOCK(ump); 2223 for (i = 0; i < MAXQUOTAS; i++) { 2224 if (ump->um_quotas[i] != NULLVP) 2225 morework = 1; 2226 } 2227 UFS_UNLOCK(ump); 2228 #endif 2229 if (morework) { 2230 if (--retry_flush_count > 0) { 2231 retry = 1; 2232 loopcnt = 3; 2233 } else 2234 error = EBUSY; 2235 } 2236 MNT_IUNLOCK(oldmnt); 2237 if (retry) 2238 goto retry_flush; 2239 } 2240 } 2241 return (error); 2242 } 2243 2244 /* 2245 * Structure hashing. 2246 * 2247 * There are four types of structures that can be looked up: 2248 * 1) pagedep structures identified by mount point, inode number, 2249 * and logical block. 2250 * 2) inodedep structures identified by mount point and inode number. 2251 * 3) newblk structures identified by mount point and 2252 * physical block number. 2253 * 4) bmsafemap structures identified by mount point and 2254 * cylinder group number. 2255 * 2256 * The "pagedep" and "inodedep" dependency structures are hashed 2257 * separately from the file blocks and inodes to which they correspond. 2258 * This separation helps when the in-memory copy of an inode or 2259 * file block must be replaced. It also obviates the need to access 2260 * an inode or file page when simply updating (or de-allocating) 2261 * dependency structures. Lookup of newblk structures is needed to 2262 * find newly allocated blocks when trying to associate them with 2263 * their allocdirect or allocindir structure. 2264 * 2265 * The lookup routines optionally create and hash a new instance when 2266 * an existing entry is not found. The bmsafemap lookup routine always 2267 * allocates a new structure if an existing one is not found. 2268 */ 2269 #define DEPALLOC 0x0001 /* allocate structure if lookup fails */ 2270 2271 /* 2272 * Structures and routines associated with pagedep caching. 2273 */ 2274 #define PAGEDEP_HASH(ump, inum, lbn) \ 2275 (&(ump)->pagedep_hashtbl[((inum) + (lbn)) & (ump)->pagedep_hash_size]) 2276 2277 static int 2278 pagedep_find(pagedephd, ino, lbn, pagedeppp) 2279 struct pagedep_hashhead *pagedephd; 2280 ino_t ino; 2281 ufs_lbn_t lbn; 2282 struct pagedep **pagedeppp; 2283 { 2284 struct pagedep *pagedep; 2285 2286 LIST_FOREACH(pagedep, pagedephd, pd_hash) { 2287 if (ino == pagedep->pd_ino && lbn == pagedep->pd_lbn) { 2288 *pagedeppp = pagedep; 2289 return (1); 2290 } 2291 } 2292 *pagedeppp = NULL; 2293 return (0); 2294 } 2295 /* 2296 * Look up a pagedep. Return 1 if found, 0 otherwise. 2297 * If not found, allocate if DEPALLOC flag is passed. 2298 * Found or allocated entry is returned in pagedeppp. 2299 */ 2300 static int 2301 pagedep_lookup(mp, bp, ino, lbn, flags, pagedeppp) 2302 struct mount *mp; 2303 struct buf *bp; 2304 ino_t ino; 2305 ufs_lbn_t lbn; 2306 int flags; 2307 struct pagedep **pagedeppp; 2308 { 2309 struct pagedep *pagedep; 2310 struct pagedep_hashhead *pagedephd; 2311 struct worklist *wk; 2312 struct ufsmount *ump; 2313 int ret; 2314 int i; 2315 2316 ump = VFSTOUFS(mp); 2317 LOCK_OWNED(ump); 2318 if (bp) { 2319 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 2320 if (wk->wk_type == D_PAGEDEP) { 2321 *pagedeppp = WK_PAGEDEP(wk); 2322 return (1); 2323 } 2324 } 2325 } 2326 pagedephd = PAGEDEP_HASH(ump, ino, lbn); 2327 ret = pagedep_find(pagedephd, ino, lbn, pagedeppp); 2328 if (ret) { 2329 if (((*pagedeppp)->pd_state & ONWORKLIST) == 0 && bp) 2330 WORKLIST_INSERT(&bp->b_dep, &(*pagedeppp)->pd_list); 2331 return (1); 2332 } 2333 if ((flags & DEPALLOC) == 0) 2334 return (0); 2335 FREE_LOCK(ump); 2336 pagedep = malloc(sizeof(struct pagedep), 2337 M_PAGEDEP, M_SOFTDEP_FLAGS|M_ZERO); 2338 workitem_alloc(&pagedep->pd_list, D_PAGEDEP, mp); 2339 ACQUIRE_LOCK(ump); 2340 ret = pagedep_find(pagedephd, ino, lbn, pagedeppp); 2341 if (*pagedeppp) { 2342 /* 2343 * This should never happen since we only create pagedeps 2344 * with the vnode lock held. Could be an assert. 2345 */ 2346 WORKITEM_FREE(pagedep, D_PAGEDEP); 2347 return (ret); 2348 } 2349 pagedep->pd_ino = ino; 2350 pagedep->pd_lbn = lbn; 2351 LIST_INIT(&pagedep->pd_dirremhd); 2352 LIST_INIT(&pagedep->pd_pendinghd); 2353 for (i = 0; i < DAHASHSZ; i++) 2354 LIST_INIT(&pagedep->pd_diraddhd[i]); 2355 LIST_INSERT_HEAD(pagedephd, pagedep, pd_hash); 2356 WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list); 2357 *pagedeppp = pagedep; 2358 return (0); 2359 } 2360 2361 /* 2362 * Structures and routines associated with inodedep caching. 2363 */ 2364 #define INODEDEP_HASH(ump, inum) \ 2365 (&(ump)->inodedep_hashtbl[(inum) & (ump)->inodedep_hash_size]) 2366 2367 static int 2368 inodedep_find(inodedephd, inum, inodedeppp) 2369 struct inodedep_hashhead *inodedephd; 2370 ino_t inum; 2371 struct inodedep **inodedeppp; 2372 { 2373 struct inodedep *inodedep; 2374 2375 LIST_FOREACH(inodedep, inodedephd, id_hash) 2376 if (inum == inodedep->id_ino) 2377 break; 2378 if (inodedep) { 2379 *inodedeppp = inodedep; 2380 return (1); 2381 } 2382 *inodedeppp = NULL; 2383 2384 return (0); 2385 } 2386 /* 2387 * Look up an inodedep. Return 1 if found, 0 if not found. 2388 * If not found, allocate if DEPALLOC flag is passed. 2389 * Found or allocated entry is returned in inodedeppp. 2390 */ 2391 static int 2392 inodedep_lookup(mp, inum, flags, inodedeppp) 2393 struct mount *mp; 2394 ino_t inum; 2395 int flags; 2396 struct inodedep **inodedeppp; 2397 { 2398 struct inodedep *inodedep; 2399 struct inodedep_hashhead *inodedephd; 2400 struct ufsmount *ump; 2401 struct fs *fs; 2402 2403 ump = VFSTOUFS(mp); 2404 LOCK_OWNED(ump); 2405 fs = ump->um_fs; 2406 inodedephd = INODEDEP_HASH(ump, inum); 2407 2408 if (inodedep_find(inodedephd, inum, inodedeppp)) 2409 return (1); 2410 if ((flags & DEPALLOC) == 0) 2411 return (0); 2412 /* 2413 * If the system is over its limit and our filesystem is 2414 * responsible for more than our share of that usage and 2415 * we are not in a rush, request some inodedep cleanup. 2416 */ 2417 if (softdep_excess_items(ump, D_INODEDEP)) 2418 schedule_cleanup(mp); 2419 else 2420 FREE_LOCK(ump); 2421 inodedep = malloc(sizeof(struct inodedep), 2422 M_INODEDEP, M_SOFTDEP_FLAGS); 2423 workitem_alloc(&inodedep->id_list, D_INODEDEP, mp); 2424 ACQUIRE_LOCK(ump); 2425 if (inodedep_find(inodedephd, inum, inodedeppp)) { 2426 WORKITEM_FREE(inodedep, D_INODEDEP); 2427 return (1); 2428 } 2429 inodedep->id_fs = fs; 2430 inodedep->id_ino = inum; 2431 inodedep->id_state = ALLCOMPLETE; 2432 inodedep->id_nlinkdelta = 0; 2433 inodedep->id_nlinkwrote = -1; 2434 inodedep->id_savedino1 = NULL; 2435 inodedep->id_savedsize = -1; 2436 inodedep->id_savedextsize = -1; 2437 inodedep->id_savednlink = -1; 2438 inodedep->id_bmsafemap = NULL; 2439 inodedep->id_mkdiradd = NULL; 2440 LIST_INIT(&inodedep->id_dirremhd); 2441 LIST_INIT(&inodedep->id_pendinghd); 2442 LIST_INIT(&inodedep->id_inowait); 2443 LIST_INIT(&inodedep->id_bufwait); 2444 TAILQ_INIT(&inodedep->id_inoreflst); 2445 TAILQ_INIT(&inodedep->id_inoupdt); 2446 TAILQ_INIT(&inodedep->id_newinoupdt); 2447 TAILQ_INIT(&inodedep->id_extupdt); 2448 TAILQ_INIT(&inodedep->id_newextupdt); 2449 TAILQ_INIT(&inodedep->id_freeblklst); 2450 LIST_INSERT_HEAD(inodedephd, inodedep, id_hash); 2451 *inodedeppp = inodedep; 2452 return (0); 2453 } 2454 2455 /* 2456 * Structures and routines associated with newblk caching. 2457 */ 2458 #define NEWBLK_HASH(ump, inum) \ 2459 (&(ump)->newblk_hashtbl[(inum) & (ump)->newblk_hash_size]) 2460 2461 static int 2462 newblk_find(newblkhd, newblkno, flags, newblkpp) 2463 struct newblk_hashhead *newblkhd; 2464 ufs2_daddr_t newblkno; 2465 int flags; 2466 struct newblk **newblkpp; 2467 { 2468 struct newblk *newblk; 2469 2470 LIST_FOREACH(newblk, newblkhd, nb_hash) { 2471 if (newblkno != newblk->nb_newblkno) 2472 continue; 2473 /* 2474 * If we're creating a new dependency don't match those that 2475 * have already been converted to allocdirects. This is for 2476 * a frag extend. 2477 */ 2478 if ((flags & DEPALLOC) && newblk->nb_list.wk_type != D_NEWBLK) 2479 continue; 2480 break; 2481 } 2482 if (newblk) { 2483 *newblkpp = newblk; 2484 return (1); 2485 } 2486 *newblkpp = NULL; 2487 return (0); 2488 } 2489 2490 /* 2491 * Look up a newblk. Return 1 if found, 0 if not found. 2492 * If not found, allocate if DEPALLOC flag is passed. 2493 * Found or allocated entry is returned in newblkpp. 2494 */ 2495 static int 2496 newblk_lookup(mp, newblkno, flags, newblkpp) 2497 struct mount *mp; 2498 ufs2_daddr_t newblkno; 2499 int flags; 2500 struct newblk **newblkpp; 2501 { 2502 struct newblk *newblk; 2503 struct newblk_hashhead *newblkhd; 2504 struct ufsmount *ump; 2505 2506 ump = VFSTOUFS(mp); 2507 LOCK_OWNED(ump); 2508 newblkhd = NEWBLK_HASH(ump, newblkno); 2509 if (newblk_find(newblkhd, newblkno, flags, newblkpp)) 2510 return (1); 2511 if ((flags & DEPALLOC) == 0) 2512 return (0); 2513 if (softdep_excess_items(ump, D_NEWBLK) || 2514 softdep_excess_items(ump, D_ALLOCDIRECT) || 2515 softdep_excess_items(ump, D_ALLOCINDIR)) 2516 schedule_cleanup(mp); 2517 else 2518 FREE_LOCK(ump); 2519 newblk = malloc(sizeof(union allblk), M_NEWBLK, 2520 M_SOFTDEP_FLAGS | M_ZERO); 2521 workitem_alloc(&newblk->nb_list, D_NEWBLK, mp); 2522 ACQUIRE_LOCK(ump); 2523 if (newblk_find(newblkhd, newblkno, flags, newblkpp)) { 2524 WORKITEM_FREE(newblk, D_NEWBLK); 2525 return (1); 2526 } 2527 newblk->nb_freefrag = NULL; 2528 LIST_INIT(&newblk->nb_indirdeps); 2529 LIST_INIT(&newblk->nb_newdirblk); 2530 LIST_INIT(&newblk->nb_jwork); 2531 newblk->nb_state = ATTACHED; 2532 newblk->nb_newblkno = newblkno; 2533 LIST_INSERT_HEAD(newblkhd, newblk, nb_hash); 2534 *newblkpp = newblk; 2535 return (0); 2536 } 2537 2538 /* 2539 * Structures and routines associated with freed indirect block caching. 2540 */ 2541 #define INDIR_HASH(ump, blkno) \ 2542 (&(ump)->indir_hashtbl[(blkno) & (ump)->indir_hash_size]) 2543 2544 /* 2545 * Lookup an indirect block in the indir hash table. The freework is 2546 * removed and potentially freed. The caller must do a blocking journal 2547 * write before writing to the blkno. 2548 */ 2549 static int 2550 indirblk_lookup(mp, blkno) 2551 struct mount *mp; 2552 ufs2_daddr_t blkno; 2553 { 2554 struct freework *freework; 2555 struct indir_hashhead *wkhd; 2556 struct ufsmount *ump; 2557 2558 ump = VFSTOUFS(mp); 2559 wkhd = INDIR_HASH(ump, blkno); 2560 TAILQ_FOREACH(freework, wkhd, fw_next) { 2561 if (freework->fw_blkno != blkno) 2562 continue; 2563 indirblk_remove(freework); 2564 return (1); 2565 } 2566 return (0); 2567 } 2568 2569 /* 2570 * Insert an indirect block represented by freework into the indirblk 2571 * hash table so that it may prevent the block from being re-used prior 2572 * to the journal being written. 2573 */ 2574 static void 2575 indirblk_insert(freework) 2576 struct freework *freework; 2577 { 2578 struct jblocks *jblocks; 2579 struct jseg *jseg; 2580 struct ufsmount *ump; 2581 2582 ump = VFSTOUFS(freework->fw_list.wk_mp); 2583 jblocks = ump->softdep_jblocks; 2584 jseg = TAILQ_LAST(&jblocks->jb_segs, jseglst); 2585 if (jseg == NULL) 2586 return; 2587 2588 LIST_INSERT_HEAD(&jseg->js_indirs, freework, fw_segs); 2589 TAILQ_INSERT_HEAD(INDIR_HASH(ump, freework->fw_blkno), freework, 2590 fw_next); 2591 freework->fw_state &= ~DEPCOMPLETE; 2592 } 2593 2594 static void 2595 indirblk_remove(freework) 2596 struct freework *freework; 2597 { 2598 struct ufsmount *ump; 2599 2600 ump = VFSTOUFS(freework->fw_list.wk_mp); 2601 LIST_REMOVE(freework, fw_segs); 2602 TAILQ_REMOVE(INDIR_HASH(ump, freework->fw_blkno), freework, fw_next); 2603 freework->fw_state |= DEPCOMPLETE; 2604 if ((freework->fw_state & ALLCOMPLETE) == ALLCOMPLETE) 2605 WORKITEM_FREE(freework, D_FREEWORK); 2606 } 2607 2608 /* 2609 * Executed during filesystem system initialization before 2610 * mounting any filesystems. 2611 */ 2612 void 2613 softdep_initialize() 2614 { 2615 2616 TAILQ_INIT(&softdepmounts); 2617 #ifdef __LP64__ 2618 max_softdeps = desiredvnodes * 4; 2619 #else 2620 max_softdeps = desiredvnodes * 2; 2621 #endif 2622 2623 /* initialise bioops hack */ 2624 bioops.io_start = softdep_disk_io_initiation; 2625 bioops.io_complete = softdep_disk_write_complete; 2626 bioops.io_deallocate = softdep_deallocate_dependencies; 2627 bioops.io_countdeps = softdep_count_dependencies; 2628 softdep_ast_cleanup = softdep_ast_cleanup_proc; 2629 2630 /* Initialize the callout with an mtx. */ 2631 callout_init_mtx(&softdep_callout, &lk, 0); 2632 } 2633 2634 /* 2635 * Executed after all filesystems have been unmounted during 2636 * filesystem module unload. 2637 */ 2638 void 2639 softdep_uninitialize() 2640 { 2641 2642 /* clear bioops hack */ 2643 bioops.io_start = NULL; 2644 bioops.io_complete = NULL; 2645 bioops.io_deallocate = NULL; 2646 bioops.io_countdeps = NULL; 2647 softdep_ast_cleanup = NULL; 2648 2649 callout_drain(&softdep_callout); 2650 } 2651 2652 /* 2653 * Called at mount time to notify the dependency code that a 2654 * filesystem wishes to use it. 2655 */ 2656 int 2657 softdep_mount(devvp, mp, fs, cred) 2658 struct vnode *devvp; 2659 struct mount *mp; 2660 struct fs *fs; 2661 struct ucred *cred; 2662 { 2663 struct csum_total cstotal; 2664 struct mount_softdeps *sdp; 2665 struct ufsmount *ump; 2666 struct cg *cgp; 2667 struct buf *bp; 2668 u_int cyl, i; 2669 int error; 2670 2671 sdp = malloc(sizeof(struct mount_softdeps), M_MOUNTDATA, 2672 M_WAITOK | M_ZERO); 2673 MNT_ILOCK(mp); 2674 mp->mnt_flag = (mp->mnt_flag & ~MNT_ASYNC) | MNT_SOFTDEP; 2675 if ((mp->mnt_kern_flag & MNTK_SOFTDEP) == 0) { 2676 mp->mnt_kern_flag = (mp->mnt_kern_flag & ~MNTK_ASYNC) | 2677 MNTK_SOFTDEP | MNTK_NOASYNC; 2678 } 2679 ump = VFSTOUFS(mp); 2680 ump->um_softdep = sdp; 2681 MNT_IUNLOCK(mp); 2682 rw_init(LOCK_PTR(ump), "per-fs softdep"); 2683 sdp->sd_ump = ump; 2684 LIST_INIT(&ump->softdep_workitem_pending); 2685 LIST_INIT(&ump->softdep_journal_pending); 2686 TAILQ_INIT(&ump->softdep_unlinked); 2687 LIST_INIT(&ump->softdep_dirtycg); 2688 ump->softdep_worklist_tail = NULL; 2689 ump->softdep_on_worklist = 0; 2690 ump->softdep_deps = 0; 2691 LIST_INIT(&ump->softdep_mkdirlisthd); 2692 ump->pagedep_hashtbl = hashinit(desiredvnodes / 5, M_PAGEDEP, 2693 &ump->pagedep_hash_size); 2694 ump->pagedep_nextclean = 0; 2695 ump->inodedep_hashtbl = hashinit(desiredvnodes, M_INODEDEP, 2696 &ump->inodedep_hash_size); 2697 ump->inodedep_nextclean = 0; 2698 ump->newblk_hashtbl = hashinit(max_softdeps / 2, M_NEWBLK, 2699 &ump->newblk_hash_size); 2700 ump->bmsafemap_hashtbl = hashinit(1024, M_BMSAFEMAP, 2701 &ump->bmsafemap_hash_size); 2702 i = 1 << (ffs(desiredvnodes / 10) - 1); 2703 ump->indir_hashtbl = malloc(i * sizeof(struct indir_hashhead), 2704 M_FREEWORK, M_WAITOK); 2705 ump->indir_hash_size = i - 1; 2706 for (i = 0; i <= ump->indir_hash_size; i++) 2707 TAILQ_INIT(&ump->indir_hashtbl[i]); 2708 #ifdef INVARIANTS 2709 for (i = 0; i <= D_LAST; i++) 2710 LIST_INIT(&ump->softdep_alldeps[i]); 2711 #endif 2712 ACQUIRE_GBLLOCK(&lk); 2713 TAILQ_INSERT_TAIL(&softdepmounts, sdp, sd_next); 2714 FREE_GBLLOCK(&lk); 2715 if ((fs->fs_flags & FS_SUJ) && 2716 (error = journal_mount(mp, fs, cred)) != 0) { 2717 printf("Failed to start journal: %d\n", error); 2718 softdep_unmount(mp); 2719 return (error); 2720 } 2721 /* 2722 * Start our flushing thread in the bufdaemon process. 2723 */ 2724 ACQUIRE_LOCK(ump); 2725 ump->softdep_flags |= FLUSH_STARTING; 2726 FREE_LOCK(ump); 2727 kproc_kthread_add(&softdep_flush, mp, &bufdaemonproc, 2728 &ump->softdep_flushtd, 0, 0, "softdepflush", "%s worker", 2729 mp->mnt_stat.f_mntonname); 2730 ACQUIRE_LOCK(ump); 2731 while ((ump->softdep_flags & FLUSH_STARTING) != 0) { 2732 msleep(&ump->softdep_flushtd, LOCK_PTR(ump), PVM, "sdstart", 2733 hz / 2); 2734 } 2735 FREE_LOCK(ump); 2736 /* 2737 * When doing soft updates, the counters in the 2738 * superblock may have gotten out of sync. Recomputation 2739 * can take a long time and can be deferred for background 2740 * fsck. However, the old behavior of scanning the cylinder 2741 * groups and recalculating them at mount time is available 2742 * by setting vfs.ffs.compute_summary_at_mount to one. 2743 */ 2744 if (compute_summary_at_mount == 0 || fs->fs_clean != 0) 2745 return (0); 2746 bzero(&cstotal, sizeof cstotal); 2747 for (cyl = 0; cyl < fs->fs_ncg; cyl++) { 2748 if ((error = bread(devvp, fsbtodb(fs, cgtod(fs, cyl)), 2749 fs->fs_cgsize, cred, &bp)) != 0) { 2750 brelse(bp); 2751 softdep_unmount(mp); 2752 return (error); 2753 } 2754 cgp = (struct cg *)bp->b_data; 2755 cstotal.cs_nffree += cgp->cg_cs.cs_nffree; 2756 cstotal.cs_nbfree += cgp->cg_cs.cs_nbfree; 2757 cstotal.cs_nifree += cgp->cg_cs.cs_nifree; 2758 cstotal.cs_ndir += cgp->cg_cs.cs_ndir; 2759 fs->fs_cs(fs, cyl) = cgp->cg_cs; 2760 brelse(bp); 2761 } 2762 #ifdef INVARIANTS 2763 if (bcmp(&cstotal, &fs->fs_cstotal, sizeof cstotal)) 2764 printf("%s: superblock summary recomputed\n", fs->fs_fsmnt); 2765 #endif 2766 bcopy(&cstotal, &fs->fs_cstotal, sizeof cstotal); 2767 return (0); 2768 } 2769 2770 void 2771 softdep_unmount(mp) 2772 struct mount *mp; 2773 { 2774 struct ufsmount *ump; 2775 #ifdef INVARIANTS 2776 int i; 2777 #endif 2778 2779 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 2780 ("softdep_unmount called on non-softdep filesystem")); 2781 ump = VFSTOUFS(mp); 2782 MNT_ILOCK(mp); 2783 mp->mnt_flag &= ~MNT_SOFTDEP; 2784 if (MOUNTEDSUJ(mp) == 0) { 2785 MNT_IUNLOCK(mp); 2786 } else { 2787 mp->mnt_flag &= ~MNT_SUJ; 2788 MNT_IUNLOCK(mp); 2789 journal_unmount(ump); 2790 } 2791 /* 2792 * Shut down our flushing thread. Check for NULL is if 2793 * softdep_mount errors out before the thread has been created. 2794 */ 2795 if (ump->softdep_flushtd != NULL) { 2796 ACQUIRE_LOCK(ump); 2797 ump->softdep_flags |= FLUSH_EXIT; 2798 wakeup(&ump->softdep_flushtd); 2799 msleep(&ump->softdep_flags, LOCK_PTR(ump), PVM | PDROP, 2800 "sdwait", 0); 2801 KASSERT((ump->softdep_flags & FLUSH_EXIT) == 0, 2802 ("Thread shutdown failed")); 2803 } 2804 /* 2805 * Free up our resources. 2806 */ 2807 ACQUIRE_GBLLOCK(&lk); 2808 TAILQ_REMOVE(&softdepmounts, ump->um_softdep, sd_next); 2809 FREE_GBLLOCK(&lk); 2810 rw_destroy(LOCK_PTR(ump)); 2811 hashdestroy(ump->pagedep_hashtbl, M_PAGEDEP, ump->pagedep_hash_size); 2812 hashdestroy(ump->inodedep_hashtbl, M_INODEDEP, ump->inodedep_hash_size); 2813 hashdestroy(ump->newblk_hashtbl, M_NEWBLK, ump->newblk_hash_size); 2814 hashdestroy(ump->bmsafemap_hashtbl, M_BMSAFEMAP, 2815 ump->bmsafemap_hash_size); 2816 free(ump->indir_hashtbl, M_FREEWORK); 2817 #ifdef INVARIANTS 2818 for (i = 0; i <= D_LAST; i++) { 2819 KASSERT(ump->softdep_curdeps[i] == 0, 2820 ("Unmount %s: Dep type %s != 0 (%ld)", ump->um_fs->fs_fsmnt, 2821 TYPENAME(i), ump->softdep_curdeps[i])); 2822 KASSERT(LIST_EMPTY(&ump->softdep_alldeps[i]), 2823 ("Unmount %s: Dep type %s not empty (%p)", ump->um_fs->fs_fsmnt, 2824 TYPENAME(i), LIST_FIRST(&ump->softdep_alldeps[i]))); 2825 } 2826 #endif 2827 free(ump->um_softdep, M_MOUNTDATA); 2828 } 2829 2830 static struct jblocks * 2831 jblocks_create(void) 2832 { 2833 struct jblocks *jblocks; 2834 2835 jblocks = malloc(sizeof(*jblocks), M_JBLOCKS, M_WAITOK | M_ZERO); 2836 TAILQ_INIT(&jblocks->jb_segs); 2837 jblocks->jb_avail = 10; 2838 jblocks->jb_extent = malloc(sizeof(struct jextent) * jblocks->jb_avail, 2839 M_JBLOCKS, M_WAITOK | M_ZERO); 2840 2841 return (jblocks); 2842 } 2843 2844 static ufs2_daddr_t 2845 jblocks_alloc(jblocks, bytes, actual) 2846 struct jblocks *jblocks; 2847 int bytes; 2848 int *actual; 2849 { 2850 ufs2_daddr_t daddr; 2851 struct jextent *jext; 2852 int freecnt; 2853 int blocks; 2854 2855 blocks = bytes / DEV_BSIZE; 2856 jext = &jblocks->jb_extent[jblocks->jb_head]; 2857 freecnt = jext->je_blocks - jblocks->jb_off; 2858 if (freecnt == 0) { 2859 jblocks->jb_off = 0; 2860 if (++jblocks->jb_head > jblocks->jb_used) 2861 jblocks->jb_head = 0; 2862 jext = &jblocks->jb_extent[jblocks->jb_head]; 2863 freecnt = jext->je_blocks; 2864 } 2865 if (freecnt > blocks) 2866 freecnt = blocks; 2867 *actual = freecnt * DEV_BSIZE; 2868 daddr = jext->je_daddr + jblocks->jb_off; 2869 jblocks->jb_off += freecnt; 2870 jblocks->jb_free -= freecnt; 2871 2872 return (daddr); 2873 } 2874 2875 static void 2876 jblocks_free(jblocks, mp, bytes) 2877 struct jblocks *jblocks; 2878 struct mount *mp; 2879 int bytes; 2880 { 2881 2882 LOCK_OWNED(VFSTOUFS(mp)); 2883 jblocks->jb_free += bytes / DEV_BSIZE; 2884 if (jblocks->jb_suspended) 2885 worklist_speedup(mp); 2886 wakeup(jblocks); 2887 } 2888 2889 static void 2890 jblocks_destroy(jblocks) 2891 struct jblocks *jblocks; 2892 { 2893 2894 if (jblocks->jb_extent) 2895 free(jblocks->jb_extent, M_JBLOCKS); 2896 free(jblocks, M_JBLOCKS); 2897 } 2898 2899 static void 2900 jblocks_add(jblocks, daddr, blocks) 2901 struct jblocks *jblocks; 2902 ufs2_daddr_t daddr; 2903 int blocks; 2904 { 2905 struct jextent *jext; 2906 2907 jblocks->jb_blocks += blocks; 2908 jblocks->jb_free += blocks; 2909 jext = &jblocks->jb_extent[jblocks->jb_used]; 2910 /* Adding the first block. */ 2911 if (jext->je_daddr == 0) { 2912 jext->je_daddr = daddr; 2913 jext->je_blocks = blocks; 2914 return; 2915 } 2916 /* Extending the last extent. */ 2917 if (jext->je_daddr + jext->je_blocks == daddr) { 2918 jext->je_blocks += blocks; 2919 return; 2920 } 2921 /* Adding a new extent. */ 2922 if (++jblocks->jb_used == jblocks->jb_avail) { 2923 jblocks->jb_avail *= 2; 2924 jext = malloc(sizeof(struct jextent) * jblocks->jb_avail, 2925 M_JBLOCKS, M_WAITOK | M_ZERO); 2926 memcpy(jext, jblocks->jb_extent, 2927 sizeof(struct jextent) * jblocks->jb_used); 2928 free(jblocks->jb_extent, M_JBLOCKS); 2929 jblocks->jb_extent = jext; 2930 } 2931 jext = &jblocks->jb_extent[jblocks->jb_used]; 2932 jext->je_daddr = daddr; 2933 jext->je_blocks = blocks; 2934 return; 2935 } 2936 2937 int 2938 softdep_journal_lookup(mp, vpp) 2939 struct mount *mp; 2940 struct vnode **vpp; 2941 { 2942 struct componentname cnp; 2943 struct vnode *dvp; 2944 ino_t sujournal; 2945 int error; 2946 2947 error = VFS_VGET(mp, UFS_ROOTINO, LK_EXCLUSIVE, &dvp); 2948 if (error) 2949 return (error); 2950 bzero(&cnp, sizeof(cnp)); 2951 cnp.cn_nameiop = LOOKUP; 2952 cnp.cn_flags = ISLASTCN; 2953 cnp.cn_thread = curthread; 2954 cnp.cn_cred = curthread->td_ucred; 2955 cnp.cn_pnbuf = SUJ_FILE; 2956 cnp.cn_nameptr = SUJ_FILE; 2957 cnp.cn_namelen = strlen(SUJ_FILE); 2958 error = ufs_lookup_ino(dvp, NULL, &cnp, &sujournal); 2959 vput(dvp); 2960 if (error != 0) 2961 return (error); 2962 error = VFS_VGET(mp, sujournal, LK_EXCLUSIVE, vpp); 2963 return (error); 2964 } 2965 2966 /* 2967 * Open and verify the journal file. 2968 */ 2969 static int 2970 journal_mount(mp, fs, cred) 2971 struct mount *mp; 2972 struct fs *fs; 2973 struct ucred *cred; 2974 { 2975 struct jblocks *jblocks; 2976 struct ufsmount *ump; 2977 struct vnode *vp; 2978 struct inode *ip; 2979 ufs2_daddr_t blkno; 2980 int bcount; 2981 int error; 2982 int i; 2983 2984 ump = VFSTOUFS(mp); 2985 ump->softdep_journal_tail = NULL; 2986 ump->softdep_on_journal = 0; 2987 ump->softdep_accdeps = 0; 2988 ump->softdep_req = 0; 2989 ump->softdep_jblocks = NULL; 2990 error = softdep_journal_lookup(mp, &vp); 2991 if (error != 0) { 2992 printf("Failed to find journal. Use tunefs to create one\n"); 2993 return (error); 2994 } 2995 ip = VTOI(vp); 2996 if (ip->i_size < SUJ_MIN) { 2997 error = ENOSPC; 2998 goto out; 2999 } 3000 bcount = lblkno(fs, ip->i_size); /* Only use whole blocks. */ 3001 jblocks = jblocks_create(); 3002 for (i = 0; i < bcount; i++) { 3003 error = ufs_bmaparray(vp, i, &blkno, NULL, NULL, NULL); 3004 if (error) 3005 break; 3006 jblocks_add(jblocks, blkno, fsbtodb(fs, fs->fs_frag)); 3007 } 3008 if (error) { 3009 jblocks_destroy(jblocks); 3010 goto out; 3011 } 3012 jblocks->jb_low = jblocks->jb_free / 3; /* Reserve 33%. */ 3013 jblocks->jb_min = jblocks->jb_free / 10; /* Suspend at 10%. */ 3014 ump->softdep_jblocks = jblocks; 3015 out: 3016 if (error == 0) { 3017 MNT_ILOCK(mp); 3018 mp->mnt_flag |= MNT_SUJ; 3019 mp->mnt_flag &= ~MNT_SOFTDEP; 3020 MNT_IUNLOCK(mp); 3021 /* 3022 * Only validate the journal contents if the 3023 * filesystem is clean, otherwise we write the logs 3024 * but they'll never be used. If the filesystem was 3025 * still dirty when we mounted it the journal is 3026 * invalid and a new journal can only be valid if it 3027 * starts from a clean mount. 3028 */ 3029 if (fs->fs_clean) { 3030 DIP_SET(ip, i_modrev, fs->fs_mtime); 3031 ip->i_flags |= IN_MODIFIED; 3032 ffs_update(vp, 1); 3033 } 3034 } 3035 vput(vp); 3036 return (error); 3037 } 3038 3039 static void 3040 journal_unmount(ump) 3041 struct ufsmount *ump; 3042 { 3043 3044 if (ump->softdep_jblocks) 3045 jblocks_destroy(ump->softdep_jblocks); 3046 ump->softdep_jblocks = NULL; 3047 } 3048 3049 /* 3050 * Called when a journal record is ready to be written. Space is allocated 3051 * and the journal entry is created when the journal is flushed to stable 3052 * store. 3053 */ 3054 static void 3055 add_to_journal(wk) 3056 struct worklist *wk; 3057 { 3058 struct ufsmount *ump; 3059 3060 ump = VFSTOUFS(wk->wk_mp); 3061 LOCK_OWNED(ump); 3062 if (wk->wk_state & ONWORKLIST) 3063 panic("add_to_journal: %s(0x%X) already on list", 3064 TYPENAME(wk->wk_type), wk->wk_state); 3065 wk->wk_state |= ONWORKLIST | DEPCOMPLETE; 3066 if (LIST_EMPTY(&ump->softdep_journal_pending)) { 3067 ump->softdep_jblocks->jb_age = ticks; 3068 LIST_INSERT_HEAD(&ump->softdep_journal_pending, wk, wk_list); 3069 } else 3070 LIST_INSERT_AFTER(ump->softdep_journal_tail, wk, wk_list); 3071 ump->softdep_journal_tail = wk; 3072 ump->softdep_on_journal += 1; 3073 } 3074 3075 /* 3076 * Remove an arbitrary item for the journal worklist maintain the tail 3077 * pointer. This happens when a new operation obviates the need to 3078 * journal an old operation. 3079 */ 3080 static void 3081 remove_from_journal(wk) 3082 struct worklist *wk; 3083 { 3084 struct ufsmount *ump; 3085 3086 ump = VFSTOUFS(wk->wk_mp); 3087 LOCK_OWNED(ump); 3088 #ifdef INVARIANTS 3089 { 3090 struct worklist *wkn; 3091 3092 LIST_FOREACH(wkn, &ump->softdep_journal_pending, wk_list) 3093 if (wkn == wk) 3094 break; 3095 if (wkn == NULL) 3096 panic("remove_from_journal: %p is not in journal", wk); 3097 } 3098 #endif 3099 /* 3100 * We emulate a TAILQ to save space in most structures which do not 3101 * require TAILQ semantics. Here we must update the tail position 3102 * when removing the tail which is not the final entry. This works 3103 * only if the worklist linkage are at the beginning of the structure. 3104 */ 3105 if (ump->softdep_journal_tail == wk) 3106 ump->softdep_journal_tail = 3107 (struct worklist *)wk->wk_list.le_prev; 3108 WORKLIST_REMOVE(wk); 3109 ump->softdep_on_journal -= 1; 3110 } 3111 3112 /* 3113 * Check for journal space as well as dependency limits so the prelink 3114 * code can throttle both journaled and non-journaled filesystems. 3115 * Threshold is 0 for low and 1 for min. 3116 */ 3117 static int 3118 journal_space(ump, thresh) 3119 struct ufsmount *ump; 3120 int thresh; 3121 { 3122 struct jblocks *jblocks; 3123 int limit, avail; 3124 3125 jblocks = ump->softdep_jblocks; 3126 if (jblocks == NULL) 3127 return (1); 3128 /* 3129 * We use a tighter restriction here to prevent request_cleanup() 3130 * running in threads from running into locks we currently hold. 3131 * We have to be over the limit and our filesystem has to be 3132 * responsible for more than our share of that usage. 3133 */ 3134 limit = (max_softdeps / 10) * 9; 3135 if (dep_current[D_INODEDEP] > limit && 3136 ump->softdep_curdeps[D_INODEDEP] > limit / stat_flush_threads) 3137 return (0); 3138 if (thresh) 3139 thresh = jblocks->jb_min; 3140 else 3141 thresh = jblocks->jb_low; 3142 avail = (ump->softdep_on_journal * JREC_SIZE) / DEV_BSIZE; 3143 avail = jblocks->jb_free - avail; 3144 3145 return (avail > thresh); 3146 } 3147 3148 static void 3149 journal_suspend(ump) 3150 struct ufsmount *ump; 3151 { 3152 struct jblocks *jblocks; 3153 struct mount *mp; 3154 bool set; 3155 3156 mp = UFSTOVFS(ump); 3157 if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) 3158 return; 3159 3160 jblocks = ump->softdep_jblocks; 3161 vfs_op_enter(mp); 3162 set = false; 3163 MNT_ILOCK(mp); 3164 if ((mp->mnt_kern_flag & MNTK_SUSPEND) == 0) { 3165 stat_journal_min++; 3166 mp->mnt_kern_flag |= MNTK_SUSPEND; 3167 mp->mnt_susp_owner = ump->softdep_flushtd; 3168 set = true; 3169 } 3170 jblocks->jb_suspended = 1; 3171 MNT_IUNLOCK(mp); 3172 if (!set) 3173 vfs_op_exit(mp); 3174 } 3175 3176 static int 3177 journal_unsuspend(struct ufsmount *ump) 3178 { 3179 struct jblocks *jblocks; 3180 struct mount *mp; 3181 3182 mp = UFSTOVFS(ump); 3183 jblocks = ump->softdep_jblocks; 3184 3185 if (jblocks != NULL && jblocks->jb_suspended && 3186 journal_space(ump, jblocks->jb_min)) { 3187 jblocks->jb_suspended = 0; 3188 FREE_LOCK(ump); 3189 mp->mnt_susp_owner = curthread; 3190 vfs_write_resume(mp, 0); 3191 ACQUIRE_LOCK(ump); 3192 return (1); 3193 } 3194 return (0); 3195 } 3196 3197 /* 3198 * Called before any allocation function to be certain that there is 3199 * sufficient space in the journal prior to creating any new records. 3200 * Since in the case of block allocation we may have multiple locked 3201 * buffers at the time of the actual allocation we can not block 3202 * when the journal records are created. Doing so would create a deadlock 3203 * if any of these buffers needed to be flushed to reclaim space. Instead 3204 * we require a sufficiently large amount of available space such that 3205 * each thread in the system could have passed this allocation check and 3206 * still have sufficient free space. With 20% of a minimum journal size 3207 * of 1MB we have 6553 records available. 3208 */ 3209 int 3210 softdep_prealloc(vp, waitok) 3211 struct vnode *vp; 3212 int waitok; 3213 { 3214 struct ufsmount *ump; 3215 3216 KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0, 3217 ("softdep_prealloc called on non-softdep filesystem")); 3218 /* 3219 * Nothing to do if we are not running journaled soft updates. 3220 * If we currently hold the snapshot lock, we must avoid 3221 * handling other resources that could cause deadlock. Do not 3222 * touch quotas vnode since it is typically recursed with 3223 * other vnode locks held. 3224 */ 3225 if (DOINGSUJ(vp) == 0 || IS_SNAPSHOT(VTOI(vp)) || 3226 (vp->v_vflag & VV_SYSTEM) != 0) 3227 return (0); 3228 ump = VFSTOUFS(vp->v_mount); 3229 ACQUIRE_LOCK(ump); 3230 if (journal_space(ump, 0)) { 3231 FREE_LOCK(ump); 3232 return (0); 3233 } 3234 stat_journal_low++; 3235 FREE_LOCK(ump); 3236 if (waitok == MNT_NOWAIT) 3237 return (ENOSPC); 3238 /* 3239 * Attempt to sync this vnode once to flush any journal 3240 * work attached to it. 3241 */ 3242 if ((curthread->td_pflags & TDP_COWINPROGRESS) == 0) 3243 ffs_syncvnode(vp, waitok, 0); 3244 ACQUIRE_LOCK(ump); 3245 process_removes(vp); 3246 process_truncates(vp); 3247 if (journal_space(ump, 0) == 0) { 3248 softdep_speedup(ump); 3249 if (journal_space(ump, 1) == 0) 3250 journal_suspend(ump); 3251 } 3252 FREE_LOCK(ump); 3253 3254 return (0); 3255 } 3256 3257 /* 3258 * Try hard to sync all data and metadata for the vnode, and workitems 3259 * flushing which might conflict with the vnode lock. This is a 3260 * helper for softdep_prerename(). 3261 */ 3262 static int 3263 softdep_prerename_vnode(ump, vp) 3264 struct ufsmount *ump; 3265 struct vnode *vp; 3266 { 3267 int error; 3268 3269 ASSERT_VOP_ELOCKED(vp, "prehandle"); 3270 if (vp->v_data == NULL) 3271 return (0); 3272 error = VOP_FSYNC(vp, MNT_WAIT, curthread); 3273 if (error != 0) 3274 return (error); 3275 ACQUIRE_LOCK(ump); 3276 process_removes(vp); 3277 process_truncates(vp); 3278 FREE_LOCK(ump); 3279 return (0); 3280 } 3281 3282 /* 3283 * Must be called from VOP_RENAME() after all vnodes are locked. 3284 * Ensures that there is enough journal space for rename. It is 3285 * sufficiently different from softdep_prelink() by having to handle 3286 * four vnodes. 3287 */ 3288 int 3289 softdep_prerename(fdvp, fvp, tdvp, tvp) 3290 struct vnode *fdvp; 3291 struct vnode *fvp; 3292 struct vnode *tdvp; 3293 struct vnode *tvp; 3294 { 3295 struct ufsmount *ump; 3296 int error; 3297 3298 ump = VFSTOUFS(fdvp->v_mount); 3299 3300 if (journal_space(ump, 0)) 3301 return (0); 3302 3303 VOP_UNLOCK(tdvp); 3304 VOP_UNLOCK(fvp); 3305 if (tvp != NULL && tvp != tdvp) 3306 VOP_UNLOCK(tvp); 3307 3308 error = softdep_prerename_vnode(ump, fdvp); 3309 VOP_UNLOCK(fdvp); 3310 if (error != 0) 3311 return (error); 3312 3313 VOP_LOCK(fvp, LK_EXCLUSIVE | LK_RETRY); 3314 error = softdep_prerename_vnode(ump, fvp); 3315 VOP_UNLOCK(fvp); 3316 if (error != 0) 3317 return (error); 3318 3319 if (tdvp != fdvp) { 3320 VOP_LOCK(tdvp, LK_EXCLUSIVE | LK_RETRY); 3321 error = softdep_prerename_vnode(ump, tdvp); 3322 VOP_UNLOCK(tdvp); 3323 if (error != 0) 3324 return (error); 3325 } 3326 3327 if (tvp != fvp && tvp != NULL) { 3328 VOP_LOCK(tvp, LK_EXCLUSIVE | LK_RETRY); 3329 error = softdep_prerename_vnode(ump, tvp); 3330 VOP_UNLOCK(tvp); 3331 if (error != 0) 3332 return (error); 3333 } 3334 3335 ACQUIRE_LOCK(ump); 3336 softdep_speedup(ump); 3337 process_worklist_item(UFSTOVFS(ump), 2, LK_NOWAIT); 3338 if (journal_space(ump, 0) == 0) { 3339 softdep_speedup(ump); 3340 if (journal_space(ump, 1) == 0) 3341 journal_suspend(ump); 3342 } 3343 FREE_LOCK(ump); 3344 return (ERELOOKUP); 3345 } 3346 3347 /* 3348 * Before adjusting a link count on a vnode verify that we have sufficient 3349 * journal space. If not, process operations that depend on the currently 3350 * locked pair of vnodes to try to flush space as the syncer, buf daemon, 3351 * and softdep flush threads can not acquire these locks to reclaim space. 3352 * 3353 * Returns 0 if all owned locks are still valid and were not dropped 3354 * in the process, in other case it returns either an error from sync, 3355 * or ERELOOKUP if any of the locks were re-acquired. In the later 3356 * case, the state of the vnodes cannot be relied upon and our VFS 3357 * syscall must be restarted at top level from the lookup. 3358 */ 3359 int 3360 softdep_prelink(dvp, vp, will_direnter) 3361 struct vnode *dvp; 3362 struct vnode *vp; 3363 int will_direnter; 3364 { 3365 struct ufsmount *ump; 3366 int error, error1; 3367 3368 ASSERT_VOP_ELOCKED(dvp, "prelink dvp"); 3369 if (vp != NULL) 3370 ASSERT_VOP_ELOCKED(vp, "prelink vp"); 3371 ump = VFSTOUFS(dvp->v_mount); 3372 3373 /* 3374 * Nothing to do if we have sufficient journal space. 3375 * If we currently hold the snapshot lock, we must avoid 3376 * handling other resources that could cause deadlock. 3377 * 3378 * will_direnter == 1: In case allocated a directory block in 3379 * an indirect block, we must prevent holes in the directory 3380 * created if directory entries are written out of order. To 3381 * accomplish this we fsync when we extend a directory into 3382 * indirects. During rename it's not safe to drop the tvp 3383 * lock so sync must be delayed until it is. 3384 * 3385 * This synchronous step could be removed if fsck and the 3386 * kernel were taught to fill in sparse directories rather 3387 * than panic. 3388 */ 3389 if (journal_space(ump, 0) || (vp != NULL && IS_SNAPSHOT(VTOI(vp)))) { 3390 error = 0; 3391 if (will_direnter && (vp == NULL || !IS_SNAPSHOT(VTOI(vp)))) { 3392 if (vp != NULL) 3393 VOP_UNLOCK(vp); 3394 error = ffs_syncvnode(dvp, MNT_WAIT, 0); 3395 if (vp != NULL) { 3396 error1 = vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT); 3397 if (error1 != 0) { 3398 vn_lock_pair(dvp, true, vp, false); 3399 if (error == 0) 3400 error = ERELOOKUP; 3401 } else if (vp->v_data == NULL) { 3402 error = ERELOOKUP; 3403 } 3404 } 3405 } 3406 return (error); 3407 } 3408 3409 stat_journal_low++; 3410 if (vp != NULL) { 3411 VOP_UNLOCK(dvp); 3412 ffs_syncvnode(vp, MNT_NOWAIT, 0); 3413 vn_lock_pair(dvp, false, vp, true); 3414 if (dvp->v_data == NULL) 3415 return (ERELOOKUP); 3416 } 3417 if (vp != NULL) 3418 VOP_UNLOCK(vp); 3419 ffs_syncvnode(dvp, MNT_WAIT, 0); 3420 VOP_UNLOCK(dvp); 3421 3422 /* Process vp before dvp as it may create .. removes. */ 3423 if (vp != NULL) { 3424 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 3425 if (vp->v_data == NULL) { 3426 vn_lock_pair(dvp, false, vp, true); 3427 return (ERELOOKUP); 3428 } 3429 ACQUIRE_LOCK(ump); 3430 process_removes(vp); 3431 process_truncates(vp); 3432 FREE_LOCK(ump); 3433 VOP_UNLOCK(vp); 3434 } 3435 3436 vn_lock(dvp, LK_EXCLUSIVE | LK_RETRY); 3437 if (dvp->v_data == NULL) { 3438 vn_lock_pair(dvp, true, vp, false); 3439 return (ERELOOKUP); 3440 } 3441 3442 ACQUIRE_LOCK(ump); 3443 process_removes(dvp); 3444 process_truncates(dvp); 3445 VOP_UNLOCK(dvp); 3446 softdep_speedup(ump); 3447 3448 process_worklist_item(UFSTOVFS(ump), 2, LK_NOWAIT); 3449 if (journal_space(ump, 0) == 0) { 3450 softdep_speedup(ump); 3451 if (journal_space(ump, 1) == 0) 3452 journal_suspend(ump); 3453 } 3454 FREE_LOCK(ump); 3455 3456 vn_lock_pair(dvp, false, vp, false); 3457 return (ERELOOKUP); 3458 } 3459 3460 static void 3461 jseg_write(ump, jseg, data) 3462 struct ufsmount *ump; 3463 struct jseg *jseg; 3464 uint8_t *data; 3465 { 3466 struct jsegrec *rec; 3467 3468 rec = (struct jsegrec *)data; 3469 rec->jsr_seq = jseg->js_seq; 3470 rec->jsr_oldest = jseg->js_oldseq; 3471 rec->jsr_cnt = jseg->js_cnt; 3472 rec->jsr_blocks = jseg->js_size / ump->um_devvp->v_bufobj.bo_bsize; 3473 rec->jsr_crc = 0; 3474 rec->jsr_time = ump->um_fs->fs_mtime; 3475 } 3476 3477 static inline void 3478 inoref_write(inoref, jseg, rec) 3479 struct inoref *inoref; 3480 struct jseg *jseg; 3481 struct jrefrec *rec; 3482 { 3483 3484 inoref->if_jsegdep->jd_seg = jseg; 3485 rec->jr_ino = inoref->if_ino; 3486 rec->jr_parent = inoref->if_parent; 3487 rec->jr_nlink = inoref->if_nlink; 3488 rec->jr_mode = inoref->if_mode; 3489 rec->jr_diroff = inoref->if_diroff; 3490 } 3491 3492 static void 3493 jaddref_write(jaddref, jseg, data) 3494 struct jaddref *jaddref; 3495 struct jseg *jseg; 3496 uint8_t *data; 3497 { 3498 struct jrefrec *rec; 3499 3500 rec = (struct jrefrec *)data; 3501 rec->jr_op = JOP_ADDREF; 3502 inoref_write(&jaddref->ja_ref, jseg, rec); 3503 } 3504 3505 static void 3506 jremref_write(jremref, jseg, data) 3507 struct jremref *jremref; 3508 struct jseg *jseg; 3509 uint8_t *data; 3510 { 3511 struct jrefrec *rec; 3512 3513 rec = (struct jrefrec *)data; 3514 rec->jr_op = JOP_REMREF; 3515 inoref_write(&jremref->jr_ref, jseg, rec); 3516 } 3517 3518 static void 3519 jmvref_write(jmvref, jseg, data) 3520 struct jmvref *jmvref; 3521 struct jseg *jseg; 3522 uint8_t *data; 3523 { 3524 struct jmvrec *rec; 3525 3526 rec = (struct jmvrec *)data; 3527 rec->jm_op = JOP_MVREF; 3528 rec->jm_ino = jmvref->jm_ino; 3529 rec->jm_parent = jmvref->jm_parent; 3530 rec->jm_oldoff = jmvref->jm_oldoff; 3531 rec->jm_newoff = jmvref->jm_newoff; 3532 } 3533 3534 static void 3535 jnewblk_write(jnewblk, jseg, data) 3536 struct jnewblk *jnewblk; 3537 struct jseg *jseg; 3538 uint8_t *data; 3539 { 3540 struct jblkrec *rec; 3541 3542 jnewblk->jn_jsegdep->jd_seg = jseg; 3543 rec = (struct jblkrec *)data; 3544 rec->jb_op = JOP_NEWBLK; 3545 rec->jb_ino = jnewblk->jn_ino; 3546 rec->jb_blkno = jnewblk->jn_blkno; 3547 rec->jb_lbn = jnewblk->jn_lbn; 3548 rec->jb_frags = jnewblk->jn_frags; 3549 rec->jb_oldfrags = jnewblk->jn_oldfrags; 3550 } 3551 3552 static void 3553 jfreeblk_write(jfreeblk, jseg, data) 3554 struct jfreeblk *jfreeblk; 3555 struct jseg *jseg; 3556 uint8_t *data; 3557 { 3558 struct jblkrec *rec; 3559 3560 jfreeblk->jf_dep.jb_jsegdep->jd_seg = jseg; 3561 rec = (struct jblkrec *)data; 3562 rec->jb_op = JOP_FREEBLK; 3563 rec->jb_ino = jfreeblk->jf_ino; 3564 rec->jb_blkno = jfreeblk->jf_blkno; 3565 rec->jb_lbn = jfreeblk->jf_lbn; 3566 rec->jb_frags = jfreeblk->jf_frags; 3567 rec->jb_oldfrags = 0; 3568 } 3569 3570 static void 3571 jfreefrag_write(jfreefrag, jseg, data) 3572 struct jfreefrag *jfreefrag; 3573 struct jseg *jseg; 3574 uint8_t *data; 3575 { 3576 struct jblkrec *rec; 3577 3578 jfreefrag->fr_jsegdep->jd_seg = jseg; 3579 rec = (struct jblkrec *)data; 3580 rec->jb_op = JOP_FREEBLK; 3581 rec->jb_ino = jfreefrag->fr_ino; 3582 rec->jb_blkno = jfreefrag->fr_blkno; 3583 rec->jb_lbn = jfreefrag->fr_lbn; 3584 rec->jb_frags = jfreefrag->fr_frags; 3585 rec->jb_oldfrags = 0; 3586 } 3587 3588 static void 3589 jtrunc_write(jtrunc, jseg, data) 3590 struct jtrunc *jtrunc; 3591 struct jseg *jseg; 3592 uint8_t *data; 3593 { 3594 struct jtrncrec *rec; 3595 3596 jtrunc->jt_dep.jb_jsegdep->jd_seg = jseg; 3597 rec = (struct jtrncrec *)data; 3598 rec->jt_op = JOP_TRUNC; 3599 rec->jt_ino = jtrunc->jt_ino; 3600 rec->jt_size = jtrunc->jt_size; 3601 rec->jt_extsize = jtrunc->jt_extsize; 3602 } 3603 3604 static void 3605 jfsync_write(jfsync, jseg, data) 3606 struct jfsync *jfsync; 3607 struct jseg *jseg; 3608 uint8_t *data; 3609 { 3610 struct jtrncrec *rec; 3611 3612 rec = (struct jtrncrec *)data; 3613 rec->jt_op = JOP_SYNC; 3614 rec->jt_ino = jfsync->jfs_ino; 3615 rec->jt_size = jfsync->jfs_size; 3616 rec->jt_extsize = jfsync->jfs_extsize; 3617 } 3618 3619 static void 3620 softdep_flushjournal(mp) 3621 struct mount *mp; 3622 { 3623 struct jblocks *jblocks; 3624 struct ufsmount *ump; 3625 3626 if (MOUNTEDSUJ(mp) == 0) 3627 return; 3628 ump = VFSTOUFS(mp); 3629 jblocks = ump->softdep_jblocks; 3630 ACQUIRE_LOCK(ump); 3631 while (ump->softdep_on_journal) { 3632 jblocks->jb_needseg = 1; 3633 softdep_process_journal(mp, NULL, MNT_WAIT); 3634 } 3635 FREE_LOCK(ump); 3636 } 3637 3638 static void softdep_synchronize_completed(struct bio *); 3639 static void softdep_synchronize(struct bio *, struct ufsmount *, void *); 3640 3641 static void 3642 softdep_synchronize_completed(bp) 3643 struct bio *bp; 3644 { 3645 struct jseg *oldest; 3646 struct jseg *jseg; 3647 struct ufsmount *ump; 3648 3649 /* 3650 * caller1 marks the last segment written before we issued the 3651 * synchronize cache. 3652 */ 3653 jseg = bp->bio_caller1; 3654 if (jseg == NULL) { 3655 g_destroy_bio(bp); 3656 return; 3657 } 3658 ump = VFSTOUFS(jseg->js_list.wk_mp); 3659 ACQUIRE_LOCK(ump); 3660 oldest = NULL; 3661 /* 3662 * Mark all the journal entries waiting on the synchronize cache 3663 * as completed so they may continue on. 3664 */ 3665 while (jseg != NULL && (jseg->js_state & COMPLETE) == 0) { 3666 jseg->js_state |= COMPLETE; 3667 oldest = jseg; 3668 jseg = TAILQ_PREV(jseg, jseglst, js_next); 3669 } 3670 /* 3671 * Restart deferred journal entry processing from the oldest 3672 * completed jseg. 3673 */ 3674 if (oldest) 3675 complete_jsegs(oldest); 3676 3677 FREE_LOCK(ump); 3678 g_destroy_bio(bp); 3679 } 3680 3681 /* 3682 * Send BIO_FLUSH/SYNCHRONIZE CACHE to the device to enforce write ordering 3683 * barriers. The journal must be written prior to any blocks that depend 3684 * on it and the journal can not be released until the blocks have be 3685 * written. This code handles both barriers simultaneously. 3686 */ 3687 static void 3688 softdep_synchronize(bp, ump, caller1) 3689 struct bio *bp; 3690 struct ufsmount *ump; 3691 void *caller1; 3692 { 3693 3694 bp->bio_cmd = BIO_FLUSH; 3695 bp->bio_flags |= BIO_ORDERED; 3696 bp->bio_data = NULL; 3697 bp->bio_offset = ump->um_cp->provider->mediasize; 3698 bp->bio_length = 0; 3699 bp->bio_done = softdep_synchronize_completed; 3700 bp->bio_caller1 = caller1; 3701 g_io_request(bp, ump->um_cp); 3702 } 3703 3704 /* 3705 * Flush some journal records to disk. 3706 */ 3707 static void 3708 softdep_process_journal(mp, needwk, flags) 3709 struct mount *mp; 3710 struct worklist *needwk; 3711 int flags; 3712 { 3713 struct jblocks *jblocks; 3714 struct ufsmount *ump; 3715 struct worklist *wk; 3716 struct jseg *jseg; 3717 struct buf *bp; 3718 struct bio *bio; 3719 uint8_t *data; 3720 struct fs *fs; 3721 int shouldflush; 3722 int segwritten; 3723 int jrecmin; /* Minimum records per block. */ 3724 int jrecmax; /* Maximum records per block. */ 3725 int size; 3726 int cnt; 3727 int off; 3728 int devbsize; 3729 3730 if (MOUNTEDSUJ(mp) == 0) 3731 return; 3732 shouldflush = softdep_flushcache; 3733 bio = NULL; 3734 jseg = NULL; 3735 ump = VFSTOUFS(mp); 3736 LOCK_OWNED(ump); 3737 fs = ump->um_fs; 3738 jblocks = ump->softdep_jblocks; 3739 devbsize = ump->um_devvp->v_bufobj.bo_bsize; 3740 /* 3741 * We write anywhere between a disk block and fs block. The upper 3742 * bound is picked to prevent buffer cache fragmentation and limit 3743 * processing time per I/O. 3744 */ 3745 jrecmin = (devbsize / JREC_SIZE) - 1; /* -1 for seg header */ 3746 jrecmax = (fs->fs_bsize / devbsize) * jrecmin; 3747 segwritten = 0; 3748 for (;;) { 3749 cnt = ump->softdep_on_journal; 3750 /* 3751 * Criteria for writing a segment: 3752 * 1) We have a full block. 3753 * 2) We're called from jwait() and haven't found the 3754 * journal item yet. 3755 * 3) Always write if needseg is set. 3756 * 4) If we are called from process_worklist and have 3757 * not yet written anything we write a partial block 3758 * to enforce a 1 second maximum latency on journal 3759 * entries. 3760 */ 3761 if (cnt < (jrecmax - 1) && needwk == NULL && 3762 jblocks->jb_needseg == 0 && (segwritten || cnt == 0)) 3763 break; 3764 cnt++; 3765 /* 3766 * Verify some free journal space. softdep_prealloc() should 3767 * guarantee that we don't run out so this is indicative of 3768 * a problem with the flow control. Try to recover 3769 * gracefully in any event. 3770 */ 3771 while (jblocks->jb_free == 0) { 3772 if (flags != MNT_WAIT) 3773 break; 3774 printf("softdep: Out of journal space!\n"); 3775 softdep_speedup(ump); 3776 msleep(jblocks, LOCK_PTR(ump), PRIBIO, "jblocks", hz); 3777 } 3778 FREE_LOCK(ump); 3779 jseg = malloc(sizeof(*jseg), M_JSEG, M_SOFTDEP_FLAGS); 3780 workitem_alloc(&jseg->js_list, D_JSEG, mp); 3781 LIST_INIT(&jseg->js_entries); 3782 LIST_INIT(&jseg->js_indirs); 3783 jseg->js_state = ATTACHED; 3784 if (shouldflush == 0) 3785 jseg->js_state |= COMPLETE; 3786 else if (bio == NULL) 3787 bio = g_alloc_bio(); 3788 jseg->js_jblocks = jblocks; 3789 bp = geteblk(fs->fs_bsize, 0); 3790 ACQUIRE_LOCK(ump); 3791 /* 3792 * If there was a race while we were allocating the block 3793 * and jseg the entry we care about was likely written. 3794 * We bail out in both the WAIT and NOWAIT case and assume 3795 * the caller will loop if the entry it cares about is 3796 * not written. 3797 */ 3798 cnt = ump->softdep_on_journal; 3799 if (cnt + jblocks->jb_needseg == 0 || jblocks->jb_free == 0) { 3800 bp->b_flags |= B_INVAL | B_NOCACHE; 3801 WORKITEM_FREE(jseg, D_JSEG); 3802 FREE_LOCK(ump); 3803 brelse(bp); 3804 ACQUIRE_LOCK(ump); 3805 break; 3806 } 3807 /* 3808 * Calculate the disk block size required for the available 3809 * records rounded to the min size. 3810 */ 3811 if (cnt == 0) 3812 size = devbsize; 3813 else if (cnt < jrecmax) 3814 size = howmany(cnt, jrecmin) * devbsize; 3815 else 3816 size = fs->fs_bsize; 3817 /* 3818 * Allocate a disk block for this journal data and account 3819 * for truncation of the requested size if enough contiguous 3820 * space was not available. 3821 */ 3822 bp->b_blkno = jblocks_alloc(jblocks, size, &size); 3823 bp->b_lblkno = bp->b_blkno; 3824 bp->b_offset = bp->b_blkno * DEV_BSIZE; 3825 bp->b_bcount = size; 3826 bp->b_flags &= ~B_INVAL; 3827 bp->b_flags |= B_VALIDSUSPWRT | B_NOCOPY; 3828 /* 3829 * Initialize our jseg with cnt records. Assign the next 3830 * sequence number to it and link it in-order. 3831 */ 3832 cnt = MIN(cnt, (size / devbsize) * jrecmin); 3833 jseg->js_buf = bp; 3834 jseg->js_cnt = cnt; 3835 jseg->js_refs = cnt + 1; /* Self ref. */ 3836 jseg->js_size = size; 3837 jseg->js_seq = jblocks->jb_nextseq++; 3838 if (jblocks->jb_oldestseg == NULL) 3839 jblocks->jb_oldestseg = jseg; 3840 jseg->js_oldseq = jblocks->jb_oldestseg->js_seq; 3841 TAILQ_INSERT_TAIL(&jblocks->jb_segs, jseg, js_next); 3842 if (jblocks->jb_writeseg == NULL) 3843 jblocks->jb_writeseg = jseg; 3844 /* 3845 * Start filling in records from the pending list. 3846 */ 3847 data = bp->b_data; 3848 off = 0; 3849 3850 /* 3851 * Always put a header on the first block. 3852 * XXX As with below, there might not be a chance to get 3853 * into the loop. Ensure that something valid is written. 3854 */ 3855 jseg_write(ump, jseg, data); 3856 off += JREC_SIZE; 3857 data = bp->b_data + off; 3858 3859 /* 3860 * XXX Something is wrong here. There's no work to do, 3861 * but we need to perform and I/O and allow it to complete 3862 * anyways. 3863 */ 3864 if (LIST_EMPTY(&ump->softdep_journal_pending)) 3865 stat_emptyjblocks++; 3866 3867 while ((wk = LIST_FIRST(&ump->softdep_journal_pending)) 3868 != NULL) { 3869 if (cnt == 0) 3870 break; 3871 /* Place a segment header on every device block. */ 3872 if ((off % devbsize) == 0) { 3873 jseg_write(ump, jseg, data); 3874 off += JREC_SIZE; 3875 data = bp->b_data + off; 3876 } 3877 if (wk == needwk) 3878 needwk = NULL; 3879 remove_from_journal(wk); 3880 wk->wk_state |= INPROGRESS; 3881 WORKLIST_INSERT(&jseg->js_entries, wk); 3882 switch (wk->wk_type) { 3883 case D_JADDREF: 3884 jaddref_write(WK_JADDREF(wk), jseg, data); 3885 break; 3886 case D_JREMREF: 3887 jremref_write(WK_JREMREF(wk), jseg, data); 3888 break; 3889 case D_JMVREF: 3890 jmvref_write(WK_JMVREF(wk), jseg, data); 3891 break; 3892 case D_JNEWBLK: 3893 jnewblk_write(WK_JNEWBLK(wk), jseg, data); 3894 break; 3895 case D_JFREEBLK: 3896 jfreeblk_write(WK_JFREEBLK(wk), jseg, data); 3897 break; 3898 case D_JFREEFRAG: 3899 jfreefrag_write(WK_JFREEFRAG(wk), jseg, data); 3900 break; 3901 case D_JTRUNC: 3902 jtrunc_write(WK_JTRUNC(wk), jseg, data); 3903 break; 3904 case D_JFSYNC: 3905 jfsync_write(WK_JFSYNC(wk), jseg, data); 3906 break; 3907 default: 3908 panic("process_journal: Unknown type %s", 3909 TYPENAME(wk->wk_type)); 3910 /* NOTREACHED */ 3911 } 3912 off += JREC_SIZE; 3913 data = bp->b_data + off; 3914 cnt--; 3915 } 3916 3917 /* Clear any remaining space so we don't leak kernel data */ 3918 if (size > off) 3919 bzero(data, size - off); 3920 3921 /* 3922 * Write this one buffer and continue. 3923 */ 3924 segwritten = 1; 3925 jblocks->jb_needseg = 0; 3926 WORKLIST_INSERT(&bp->b_dep, &jseg->js_list); 3927 FREE_LOCK(ump); 3928 bp->b_xflags |= BX_CVTENXIO; 3929 pbgetvp(ump->um_devvp, bp); 3930 /* 3931 * We only do the blocking wait once we find the journal 3932 * entry we're looking for. 3933 */ 3934 if (needwk == NULL && flags == MNT_WAIT) 3935 bwrite(bp); 3936 else 3937 bawrite(bp); 3938 ACQUIRE_LOCK(ump); 3939 } 3940 /* 3941 * If we wrote a segment issue a synchronize cache so the journal 3942 * is reflected on disk before the data is written. Since reclaiming 3943 * journal space also requires writing a journal record this 3944 * process also enforces a barrier before reclamation. 3945 */ 3946 if (segwritten && shouldflush) { 3947 softdep_synchronize(bio, ump, 3948 TAILQ_LAST(&jblocks->jb_segs, jseglst)); 3949 } else if (bio) 3950 g_destroy_bio(bio); 3951 /* 3952 * If we've suspended the filesystem because we ran out of journal 3953 * space either try to sync it here to make some progress or 3954 * unsuspend it if we already have. 3955 */ 3956 if (flags == 0 && jblocks->jb_suspended) { 3957 if (journal_unsuspend(ump)) 3958 return; 3959 FREE_LOCK(ump); 3960 VFS_SYNC(mp, MNT_NOWAIT); 3961 ffs_sbupdate(ump, MNT_WAIT, 0); 3962 ACQUIRE_LOCK(ump); 3963 } 3964 } 3965 3966 /* 3967 * Complete a jseg, allowing all dependencies awaiting journal writes 3968 * to proceed. Each journal dependency also attaches a jsegdep to dependent 3969 * structures so that the journal segment can be freed to reclaim space. 3970 */ 3971 static void 3972 complete_jseg(jseg) 3973 struct jseg *jseg; 3974 { 3975 struct worklist *wk; 3976 struct jmvref *jmvref; 3977 #ifdef INVARIANTS 3978 int i = 0; 3979 #endif 3980 3981 while ((wk = LIST_FIRST(&jseg->js_entries)) != NULL) { 3982 WORKLIST_REMOVE(wk); 3983 wk->wk_state &= ~INPROGRESS; 3984 wk->wk_state |= COMPLETE; 3985 KASSERT(i++ < jseg->js_cnt, 3986 ("handle_written_jseg: overflow %d >= %d", 3987 i - 1, jseg->js_cnt)); 3988 switch (wk->wk_type) { 3989 case D_JADDREF: 3990 handle_written_jaddref(WK_JADDREF(wk)); 3991 break; 3992 case D_JREMREF: 3993 handle_written_jremref(WK_JREMREF(wk)); 3994 break; 3995 case D_JMVREF: 3996 rele_jseg(jseg); /* No jsegdep. */ 3997 jmvref = WK_JMVREF(wk); 3998 LIST_REMOVE(jmvref, jm_deps); 3999 if ((jmvref->jm_pagedep->pd_state & ONWORKLIST) == 0) 4000 free_pagedep(jmvref->jm_pagedep); 4001 WORKITEM_FREE(jmvref, D_JMVREF); 4002 break; 4003 case D_JNEWBLK: 4004 handle_written_jnewblk(WK_JNEWBLK(wk)); 4005 break; 4006 case D_JFREEBLK: 4007 handle_written_jblkdep(&WK_JFREEBLK(wk)->jf_dep); 4008 break; 4009 case D_JTRUNC: 4010 handle_written_jblkdep(&WK_JTRUNC(wk)->jt_dep); 4011 break; 4012 case D_JFSYNC: 4013 rele_jseg(jseg); /* No jsegdep. */ 4014 WORKITEM_FREE(wk, D_JFSYNC); 4015 break; 4016 case D_JFREEFRAG: 4017 handle_written_jfreefrag(WK_JFREEFRAG(wk)); 4018 break; 4019 default: 4020 panic("handle_written_jseg: Unknown type %s", 4021 TYPENAME(wk->wk_type)); 4022 /* NOTREACHED */ 4023 } 4024 } 4025 /* Release the self reference so the structure may be freed. */ 4026 rele_jseg(jseg); 4027 } 4028 4029 /* 4030 * Determine which jsegs are ready for completion processing. Waits for 4031 * synchronize cache to complete as well as forcing in-order completion 4032 * of journal entries. 4033 */ 4034 static void 4035 complete_jsegs(jseg) 4036 struct jseg *jseg; 4037 { 4038 struct jblocks *jblocks; 4039 struct jseg *jsegn; 4040 4041 jblocks = jseg->js_jblocks; 4042 /* 4043 * Don't allow out of order completions. If this isn't the first 4044 * block wait for it to write before we're done. 4045 */ 4046 if (jseg != jblocks->jb_writeseg) 4047 return; 4048 /* Iterate through available jsegs processing their entries. */ 4049 while (jseg && (jseg->js_state & ALLCOMPLETE) == ALLCOMPLETE) { 4050 jblocks->jb_oldestwrseq = jseg->js_oldseq; 4051 jsegn = TAILQ_NEXT(jseg, js_next); 4052 complete_jseg(jseg); 4053 jseg = jsegn; 4054 } 4055 jblocks->jb_writeseg = jseg; 4056 /* 4057 * Attempt to free jsegs now that oldestwrseq may have advanced. 4058 */ 4059 free_jsegs(jblocks); 4060 } 4061 4062 /* 4063 * Mark a jseg as DEPCOMPLETE and throw away the buffer. Attempt to handle 4064 * the final completions. 4065 */ 4066 static void 4067 handle_written_jseg(jseg, bp) 4068 struct jseg *jseg; 4069 struct buf *bp; 4070 { 4071 4072 if (jseg->js_refs == 0) 4073 panic("handle_written_jseg: No self-reference on %p", jseg); 4074 jseg->js_state |= DEPCOMPLETE; 4075 /* 4076 * We'll never need this buffer again, set flags so it will be 4077 * discarded. 4078 */ 4079 bp->b_flags |= B_INVAL | B_NOCACHE; 4080 pbrelvp(bp); 4081 complete_jsegs(jseg); 4082 } 4083 4084 static inline struct jsegdep * 4085 inoref_jseg(inoref) 4086 struct inoref *inoref; 4087 { 4088 struct jsegdep *jsegdep; 4089 4090 jsegdep = inoref->if_jsegdep; 4091 inoref->if_jsegdep = NULL; 4092 4093 return (jsegdep); 4094 } 4095 4096 /* 4097 * Called once a jremref has made it to stable store. The jremref is marked 4098 * complete and we attempt to free it. Any pagedeps writes sleeping waiting 4099 * for the jremref to complete will be awoken by free_jremref. 4100 */ 4101 static void 4102 handle_written_jremref(jremref) 4103 struct jremref *jremref; 4104 { 4105 struct inodedep *inodedep; 4106 struct jsegdep *jsegdep; 4107 struct dirrem *dirrem; 4108 4109 /* Grab the jsegdep. */ 4110 jsegdep = inoref_jseg(&jremref->jr_ref); 4111 /* 4112 * Remove us from the inoref list. 4113 */ 4114 if (inodedep_lookup(jremref->jr_list.wk_mp, jremref->jr_ref.if_ino, 4115 0, &inodedep) == 0) 4116 panic("handle_written_jremref: Lost inodedep"); 4117 TAILQ_REMOVE(&inodedep->id_inoreflst, &jremref->jr_ref, if_deps); 4118 /* 4119 * Complete the dirrem. 4120 */ 4121 dirrem = jremref->jr_dirrem; 4122 jremref->jr_dirrem = NULL; 4123 LIST_REMOVE(jremref, jr_deps); 4124 jsegdep->jd_state |= jremref->jr_state & MKDIR_PARENT; 4125 jwork_insert(&dirrem->dm_jwork, jsegdep); 4126 if (LIST_EMPTY(&dirrem->dm_jremrefhd) && 4127 (dirrem->dm_state & COMPLETE) != 0) 4128 add_to_worklist(&dirrem->dm_list, 0); 4129 free_jremref(jremref); 4130 } 4131 4132 /* 4133 * Called once a jaddref has made it to stable store. The dependency is 4134 * marked complete and any dependent structures are added to the inode 4135 * bufwait list to be completed as soon as it is written. If a bitmap write 4136 * depends on this entry we move the inode into the inodedephd of the 4137 * bmsafemap dependency and attempt to remove the jaddref from the bmsafemap. 4138 */ 4139 static void 4140 handle_written_jaddref(jaddref) 4141 struct jaddref *jaddref; 4142 { 4143 struct jsegdep *jsegdep; 4144 struct inodedep *inodedep; 4145 struct diradd *diradd; 4146 struct mkdir *mkdir; 4147 4148 /* Grab the jsegdep. */ 4149 jsegdep = inoref_jseg(&jaddref->ja_ref); 4150 mkdir = NULL; 4151 diradd = NULL; 4152 if (inodedep_lookup(jaddref->ja_list.wk_mp, jaddref->ja_ino, 4153 0, &inodedep) == 0) 4154 panic("handle_written_jaddref: Lost inodedep."); 4155 if (jaddref->ja_diradd == NULL) 4156 panic("handle_written_jaddref: No dependency"); 4157 if (jaddref->ja_diradd->da_list.wk_type == D_DIRADD) { 4158 diradd = jaddref->ja_diradd; 4159 WORKLIST_INSERT(&inodedep->id_bufwait, &diradd->da_list); 4160 } else if (jaddref->ja_state & MKDIR_PARENT) { 4161 mkdir = jaddref->ja_mkdir; 4162 WORKLIST_INSERT(&inodedep->id_bufwait, &mkdir->md_list); 4163 } else if (jaddref->ja_state & MKDIR_BODY) 4164 mkdir = jaddref->ja_mkdir; 4165 else 4166 panic("handle_written_jaddref: Unknown dependency %p", 4167 jaddref->ja_diradd); 4168 jaddref->ja_diradd = NULL; /* also clears ja_mkdir */ 4169 /* 4170 * Remove us from the inode list. 4171 */ 4172 TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref, if_deps); 4173 /* 4174 * The mkdir may be waiting on the jaddref to clear before freeing. 4175 */ 4176 if (mkdir) { 4177 KASSERT(mkdir->md_list.wk_type == D_MKDIR, 4178 ("handle_written_jaddref: Incorrect type for mkdir %s", 4179 TYPENAME(mkdir->md_list.wk_type))); 4180 mkdir->md_jaddref = NULL; 4181 diradd = mkdir->md_diradd; 4182 mkdir->md_state |= DEPCOMPLETE; 4183 complete_mkdir(mkdir); 4184 } 4185 jwork_insert(&diradd->da_jwork, jsegdep); 4186 if (jaddref->ja_state & NEWBLOCK) { 4187 inodedep->id_state |= ONDEPLIST; 4188 LIST_INSERT_HEAD(&inodedep->id_bmsafemap->sm_inodedephd, 4189 inodedep, id_deps); 4190 } 4191 free_jaddref(jaddref); 4192 } 4193 4194 /* 4195 * Called once a jnewblk journal is written. The allocdirect or allocindir 4196 * is placed in the bmsafemap to await notification of a written bitmap. If 4197 * the operation was canceled we add the segdep to the appropriate 4198 * dependency to free the journal space once the canceling operation 4199 * completes. 4200 */ 4201 static void 4202 handle_written_jnewblk(jnewblk) 4203 struct jnewblk *jnewblk; 4204 { 4205 struct bmsafemap *bmsafemap; 4206 struct freefrag *freefrag; 4207 struct freework *freework; 4208 struct jsegdep *jsegdep; 4209 struct newblk *newblk; 4210 4211 /* Grab the jsegdep. */ 4212 jsegdep = jnewblk->jn_jsegdep; 4213 jnewblk->jn_jsegdep = NULL; 4214 if (jnewblk->jn_dep == NULL) 4215 panic("handle_written_jnewblk: No dependency for the segdep."); 4216 switch (jnewblk->jn_dep->wk_type) { 4217 case D_NEWBLK: 4218 case D_ALLOCDIRECT: 4219 case D_ALLOCINDIR: 4220 /* 4221 * Add the written block to the bmsafemap so it can 4222 * be notified when the bitmap is on disk. 4223 */ 4224 newblk = WK_NEWBLK(jnewblk->jn_dep); 4225 newblk->nb_jnewblk = NULL; 4226 if ((newblk->nb_state & GOINGAWAY) == 0) { 4227 bmsafemap = newblk->nb_bmsafemap; 4228 newblk->nb_state |= ONDEPLIST; 4229 LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, 4230 nb_deps); 4231 } 4232 jwork_insert(&newblk->nb_jwork, jsegdep); 4233 break; 4234 case D_FREEFRAG: 4235 /* 4236 * A newblock being removed by a freefrag when replaced by 4237 * frag extension. 4238 */ 4239 freefrag = WK_FREEFRAG(jnewblk->jn_dep); 4240 freefrag->ff_jdep = NULL; 4241 jwork_insert(&freefrag->ff_jwork, jsegdep); 4242 break; 4243 case D_FREEWORK: 4244 /* 4245 * A direct block was removed by truncate. 4246 */ 4247 freework = WK_FREEWORK(jnewblk->jn_dep); 4248 freework->fw_jnewblk = NULL; 4249 jwork_insert(&freework->fw_freeblks->fb_jwork, jsegdep); 4250 break; 4251 default: 4252 panic("handle_written_jnewblk: Unknown type %d.", 4253 jnewblk->jn_dep->wk_type); 4254 } 4255 jnewblk->jn_dep = NULL; 4256 free_jnewblk(jnewblk); 4257 } 4258 4259 /* 4260 * Cancel a jfreefrag that won't be needed, probably due to colliding with 4261 * an in-flight allocation that has not yet been committed. Divorce us 4262 * from the freefrag and mark it DEPCOMPLETE so that it may be added 4263 * to the worklist. 4264 */ 4265 static void 4266 cancel_jfreefrag(jfreefrag) 4267 struct jfreefrag *jfreefrag; 4268 { 4269 struct freefrag *freefrag; 4270 4271 if (jfreefrag->fr_jsegdep) { 4272 free_jsegdep(jfreefrag->fr_jsegdep); 4273 jfreefrag->fr_jsegdep = NULL; 4274 } 4275 freefrag = jfreefrag->fr_freefrag; 4276 jfreefrag->fr_freefrag = NULL; 4277 free_jfreefrag(jfreefrag); 4278 freefrag->ff_state |= DEPCOMPLETE; 4279 CTR1(KTR_SUJ, "cancel_jfreefrag: blkno %jd", freefrag->ff_blkno); 4280 } 4281 4282 /* 4283 * Free a jfreefrag when the parent freefrag is rendered obsolete. 4284 */ 4285 static void 4286 free_jfreefrag(jfreefrag) 4287 struct jfreefrag *jfreefrag; 4288 { 4289 4290 if (jfreefrag->fr_state & INPROGRESS) 4291 WORKLIST_REMOVE(&jfreefrag->fr_list); 4292 else if (jfreefrag->fr_state & ONWORKLIST) 4293 remove_from_journal(&jfreefrag->fr_list); 4294 if (jfreefrag->fr_freefrag != NULL) 4295 panic("free_jfreefrag: Still attached to a freefrag."); 4296 WORKITEM_FREE(jfreefrag, D_JFREEFRAG); 4297 } 4298 4299 /* 4300 * Called when the journal write for a jfreefrag completes. The parent 4301 * freefrag is added to the worklist if this completes its dependencies. 4302 */ 4303 static void 4304 handle_written_jfreefrag(jfreefrag) 4305 struct jfreefrag *jfreefrag; 4306 { 4307 struct jsegdep *jsegdep; 4308 struct freefrag *freefrag; 4309 4310 /* Grab the jsegdep. */ 4311 jsegdep = jfreefrag->fr_jsegdep; 4312 jfreefrag->fr_jsegdep = NULL; 4313 freefrag = jfreefrag->fr_freefrag; 4314 if (freefrag == NULL) 4315 panic("handle_written_jfreefrag: No freefrag."); 4316 freefrag->ff_state |= DEPCOMPLETE; 4317 freefrag->ff_jdep = NULL; 4318 jwork_insert(&freefrag->ff_jwork, jsegdep); 4319 if ((freefrag->ff_state & ALLCOMPLETE) == ALLCOMPLETE) 4320 add_to_worklist(&freefrag->ff_list, 0); 4321 jfreefrag->fr_freefrag = NULL; 4322 free_jfreefrag(jfreefrag); 4323 } 4324 4325 /* 4326 * Called when the journal write for a jfreeblk completes. The jfreeblk 4327 * is removed from the freeblks list of pending journal writes and the 4328 * jsegdep is moved to the freeblks jwork to be completed when all blocks 4329 * have been reclaimed. 4330 */ 4331 static void 4332 handle_written_jblkdep(jblkdep) 4333 struct jblkdep *jblkdep; 4334 { 4335 struct freeblks *freeblks; 4336 struct jsegdep *jsegdep; 4337 4338 /* Grab the jsegdep. */ 4339 jsegdep = jblkdep->jb_jsegdep; 4340 jblkdep->jb_jsegdep = NULL; 4341 freeblks = jblkdep->jb_freeblks; 4342 LIST_REMOVE(jblkdep, jb_deps); 4343 jwork_insert(&freeblks->fb_jwork, jsegdep); 4344 /* 4345 * If the freeblks is all journaled, we can add it to the worklist. 4346 */ 4347 if (LIST_EMPTY(&freeblks->fb_jblkdephd) && 4348 (freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE) 4349 add_to_worklist(&freeblks->fb_list, WK_NODELAY); 4350 4351 free_jblkdep(jblkdep); 4352 } 4353 4354 static struct jsegdep * 4355 newjsegdep(struct worklist *wk) 4356 { 4357 struct jsegdep *jsegdep; 4358 4359 jsegdep = malloc(sizeof(*jsegdep), M_JSEGDEP, M_SOFTDEP_FLAGS); 4360 workitem_alloc(&jsegdep->jd_list, D_JSEGDEP, wk->wk_mp); 4361 jsegdep->jd_seg = NULL; 4362 4363 return (jsegdep); 4364 } 4365 4366 static struct jmvref * 4367 newjmvref(dp, ino, oldoff, newoff) 4368 struct inode *dp; 4369 ino_t ino; 4370 off_t oldoff; 4371 off_t newoff; 4372 { 4373 struct jmvref *jmvref; 4374 4375 jmvref = malloc(sizeof(*jmvref), M_JMVREF, M_SOFTDEP_FLAGS); 4376 workitem_alloc(&jmvref->jm_list, D_JMVREF, ITOVFS(dp)); 4377 jmvref->jm_list.wk_state = ATTACHED | DEPCOMPLETE; 4378 jmvref->jm_parent = dp->i_number; 4379 jmvref->jm_ino = ino; 4380 jmvref->jm_oldoff = oldoff; 4381 jmvref->jm_newoff = newoff; 4382 4383 return (jmvref); 4384 } 4385 4386 /* 4387 * Allocate a new jremref that tracks the removal of ip from dp with the 4388 * directory entry offset of diroff. Mark the entry as ATTACHED and 4389 * DEPCOMPLETE as we have all the information required for the journal write 4390 * and the directory has already been removed from the buffer. The caller 4391 * is responsible for linking the jremref into the pagedep and adding it 4392 * to the journal to write. The MKDIR_PARENT flag is set if we're doing 4393 * a DOTDOT addition so handle_workitem_remove() can properly assign 4394 * the jsegdep when we're done. 4395 */ 4396 static struct jremref * 4397 newjremref(struct dirrem *dirrem, struct inode *dp, struct inode *ip, 4398 off_t diroff, nlink_t nlink) 4399 { 4400 struct jremref *jremref; 4401 4402 jremref = malloc(sizeof(*jremref), M_JREMREF, M_SOFTDEP_FLAGS); 4403 workitem_alloc(&jremref->jr_list, D_JREMREF, ITOVFS(dp)); 4404 jremref->jr_state = ATTACHED; 4405 newinoref(&jremref->jr_ref, ip->i_number, dp->i_number, diroff, 4406 nlink, ip->i_mode); 4407 jremref->jr_dirrem = dirrem; 4408 4409 return (jremref); 4410 } 4411 4412 static inline void 4413 newinoref(struct inoref *inoref, ino_t ino, ino_t parent, off_t diroff, 4414 nlink_t nlink, uint16_t mode) 4415 { 4416 4417 inoref->if_jsegdep = newjsegdep(&inoref->if_list); 4418 inoref->if_diroff = diroff; 4419 inoref->if_ino = ino; 4420 inoref->if_parent = parent; 4421 inoref->if_nlink = nlink; 4422 inoref->if_mode = mode; 4423 } 4424 4425 /* 4426 * Allocate a new jaddref to track the addition of ino to dp at diroff. The 4427 * directory offset may not be known until later. The caller is responsible 4428 * adding the entry to the journal when this information is available. nlink 4429 * should be the link count prior to the addition and mode is only required 4430 * to have the correct FMT. 4431 */ 4432 static struct jaddref * 4433 newjaddref(struct inode *dp, ino_t ino, off_t diroff, int16_t nlink, 4434 uint16_t mode) 4435 { 4436 struct jaddref *jaddref; 4437 4438 jaddref = malloc(sizeof(*jaddref), M_JADDREF, M_SOFTDEP_FLAGS); 4439 workitem_alloc(&jaddref->ja_list, D_JADDREF, ITOVFS(dp)); 4440 jaddref->ja_state = ATTACHED; 4441 jaddref->ja_mkdir = NULL; 4442 newinoref(&jaddref->ja_ref, ino, dp->i_number, diroff, nlink, mode); 4443 4444 return (jaddref); 4445 } 4446 4447 /* 4448 * Create a new free dependency for a freework. The caller is responsible 4449 * for adjusting the reference count when it has the lock held. The freedep 4450 * will track an outstanding bitmap write that will ultimately clear the 4451 * freework to continue. 4452 */ 4453 static struct freedep * 4454 newfreedep(struct freework *freework) 4455 { 4456 struct freedep *freedep; 4457 4458 freedep = malloc(sizeof(*freedep), M_FREEDEP, M_SOFTDEP_FLAGS); 4459 workitem_alloc(&freedep->fd_list, D_FREEDEP, freework->fw_list.wk_mp); 4460 freedep->fd_freework = freework; 4461 4462 return (freedep); 4463 } 4464 4465 /* 4466 * Free a freedep structure once the buffer it is linked to is written. If 4467 * this is the last reference to the freework schedule it for completion. 4468 */ 4469 static void 4470 free_freedep(freedep) 4471 struct freedep *freedep; 4472 { 4473 struct freework *freework; 4474 4475 freework = freedep->fd_freework; 4476 freework->fw_freeblks->fb_cgwait--; 4477 if (--freework->fw_ref == 0) 4478 freework_enqueue(freework); 4479 WORKITEM_FREE(freedep, D_FREEDEP); 4480 } 4481 4482 /* 4483 * Allocate a new freework structure that may be a level in an indirect 4484 * when parent is not NULL or a top level block when it is. The top level 4485 * freework structures are allocated without the per-filesystem lock held 4486 * and before the freeblks is visible outside of softdep_setup_freeblocks(). 4487 */ 4488 static struct freework * 4489 newfreework(ump, freeblks, parent, lbn, nb, frags, off, journal) 4490 struct ufsmount *ump; 4491 struct freeblks *freeblks; 4492 struct freework *parent; 4493 ufs_lbn_t lbn; 4494 ufs2_daddr_t nb; 4495 int frags; 4496 int off; 4497 int journal; 4498 { 4499 struct freework *freework; 4500 4501 freework = malloc(sizeof(*freework), M_FREEWORK, M_SOFTDEP_FLAGS); 4502 workitem_alloc(&freework->fw_list, D_FREEWORK, freeblks->fb_list.wk_mp); 4503 freework->fw_state = ATTACHED; 4504 freework->fw_jnewblk = NULL; 4505 freework->fw_freeblks = freeblks; 4506 freework->fw_parent = parent; 4507 freework->fw_lbn = lbn; 4508 freework->fw_blkno = nb; 4509 freework->fw_frags = frags; 4510 freework->fw_indir = NULL; 4511 freework->fw_ref = (MOUNTEDSUJ(UFSTOVFS(ump)) == 0 || 4512 lbn >= -UFS_NXADDR) ? 0 : NINDIR(ump->um_fs) + 1; 4513 freework->fw_start = freework->fw_off = off; 4514 if (journal) 4515 newjfreeblk(freeblks, lbn, nb, frags); 4516 if (parent == NULL) { 4517 ACQUIRE_LOCK(ump); 4518 WORKLIST_INSERT(&freeblks->fb_freeworkhd, &freework->fw_list); 4519 freeblks->fb_ref++; 4520 FREE_LOCK(ump); 4521 } 4522 4523 return (freework); 4524 } 4525 4526 /* 4527 * Eliminate a jfreeblk for a block that does not need journaling. 4528 */ 4529 static void 4530 cancel_jfreeblk(freeblks, blkno) 4531 struct freeblks *freeblks; 4532 ufs2_daddr_t blkno; 4533 { 4534 struct jfreeblk *jfreeblk; 4535 struct jblkdep *jblkdep; 4536 4537 LIST_FOREACH(jblkdep, &freeblks->fb_jblkdephd, jb_deps) { 4538 if (jblkdep->jb_list.wk_type != D_JFREEBLK) 4539 continue; 4540 jfreeblk = WK_JFREEBLK(&jblkdep->jb_list); 4541 if (jfreeblk->jf_blkno == blkno) 4542 break; 4543 } 4544 if (jblkdep == NULL) 4545 return; 4546 CTR1(KTR_SUJ, "cancel_jfreeblk: blkno %jd", blkno); 4547 free_jsegdep(jblkdep->jb_jsegdep); 4548 LIST_REMOVE(jblkdep, jb_deps); 4549 WORKITEM_FREE(jfreeblk, D_JFREEBLK); 4550 } 4551 4552 /* 4553 * Allocate a new jfreeblk to journal top level block pointer when truncating 4554 * a file. The caller must add this to the worklist when the per-filesystem 4555 * lock is held. 4556 */ 4557 static struct jfreeblk * 4558 newjfreeblk(freeblks, lbn, blkno, frags) 4559 struct freeblks *freeblks; 4560 ufs_lbn_t lbn; 4561 ufs2_daddr_t blkno; 4562 int frags; 4563 { 4564 struct jfreeblk *jfreeblk; 4565 4566 jfreeblk = malloc(sizeof(*jfreeblk), M_JFREEBLK, M_SOFTDEP_FLAGS); 4567 workitem_alloc(&jfreeblk->jf_dep.jb_list, D_JFREEBLK, 4568 freeblks->fb_list.wk_mp); 4569 jfreeblk->jf_dep.jb_jsegdep = newjsegdep(&jfreeblk->jf_dep.jb_list); 4570 jfreeblk->jf_dep.jb_freeblks = freeblks; 4571 jfreeblk->jf_ino = freeblks->fb_inum; 4572 jfreeblk->jf_lbn = lbn; 4573 jfreeblk->jf_blkno = blkno; 4574 jfreeblk->jf_frags = frags; 4575 LIST_INSERT_HEAD(&freeblks->fb_jblkdephd, &jfreeblk->jf_dep, jb_deps); 4576 4577 return (jfreeblk); 4578 } 4579 4580 /* 4581 * The journal is only prepared to handle full-size block numbers, so we 4582 * have to adjust the record to reflect the change to a full-size block. 4583 * For example, suppose we have a block made up of fragments 8-15 and 4584 * want to free its last two fragments. We are given a request that says: 4585 * FREEBLK ino=5, blkno=14, lbn=0, frags=2, oldfrags=0 4586 * where frags are the number of fragments to free and oldfrags are the 4587 * number of fragments to keep. To block align it, we have to change it to 4588 * have a valid full-size blkno, so it becomes: 4589 * FREEBLK ino=5, blkno=8, lbn=0, frags=2, oldfrags=6 4590 */ 4591 static void 4592 adjust_newfreework(freeblks, frag_offset) 4593 struct freeblks *freeblks; 4594 int frag_offset; 4595 { 4596 struct jfreeblk *jfreeblk; 4597 4598 KASSERT((LIST_FIRST(&freeblks->fb_jblkdephd) != NULL && 4599 LIST_FIRST(&freeblks->fb_jblkdephd)->jb_list.wk_type == D_JFREEBLK), 4600 ("adjust_newfreework: Missing freeblks dependency")); 4601 4602 jfreeblk = WK_JFREEBLK(LIST_FIRST(&freeblks->fb_jblkdephd)); 4603 jfreeblk->jf_blkno -= frag_offset; 4604 jfreeblk->jf_frags += frag_offset; 4605 } 4606 4607 /* 4608 * Allocate a new jtrunc to track a partial truncation. 4609 */ 4610 static struct jtrunc * 4611 newjtrunc(freeblks, size, extsize) 4612 struct freeblks *freeblks; 4613 off_t size; 4614 int extsize; 4615 { 4616 struct jtrunc *jtrunc; 4617 4618 jtrunc = malloc(sizeof(*jtrunc), M_JTRUNC, M_SOFTDEP_FLAGS); 4619 workitem_alloc(&jtrunc->jt_dep.jb_list, D_JTRUNC, 4620 freeblks->fb_list.wk_mp); 4621 jtrunc->jt_dep.jb_jsegdep = newjsegdep(&jtrunc->jt_dep.jb_list); 4622 jtrunc->jt_dep.jb_freeblks = freeblks; 4623 jtrunc->jt_ino = freeblks->fb_inum; 4624 jtrunc->jt_size = size; 4625 jtrunc->jt_extsize = extsize; 4626 LIST_INSERT_HEAD(&freeblks->fb_jblkdephd, &jtrunc->jt_dep, jb_deps); 4627 4628 return (jtrunc); 4629 } 4630 4631 /* 4632 * If we're canceling a new bitmap we have to search for another ref 4633 * to move into the bmsafemap dep. This might be better expressed 4634 * with another structure. 4635 */ 4636 static void 4637 move_newblock_dep(jaddref, inodedep) 4638 struct jaddref *jaddref; 4639 struct inodedep *inodedep; 4640 { 4641 struct inoref *inoref; 4642 struct jaddref *jaddrefn; 4643 4644 jaddrefn = NULL; 4645 for (inoref = TAILQ_NEXT(&jaddref->ja_ref, if_deps); inoref; 4646 inoref = TAILQ_NEXT(inoref, if_deps)) { 4647 if ((jaddref->ja_state & NEWBLOCK) && 4648 inoref->if_list.wk_type == D_JADDREF) { 4649 jaddrefn = (struct jaddref *)inoref; 4650 break; 4651 } 4652 } 4653 if (jaddrefn == NULL) 4654 return; 4655 jaddrefn->ja_state &= ~(ATTACHED | UNDONE); 4656 jaddrefn->ja_state |= jaddref->ja_state & 4657 (ATTACHED | UNDONE | NEWBLOCK); 4658 jaddref->ja_state &= ~(ATTACHED | UNDONE | NEWBLOCK); 4659 jaddref->ja_state |= ATTACHED; 4660 LIST_REMOVE(jaddref, ja_bmdeps); 4661 LIST_INSERT_HEAD(&inodedep->id_bmsafemap->sm_jaddrefhd, jaddrefn, 4662 ja_bmdeps); 4663 } 4664 4665 /* 4666 * Cancel a jaddref either before it has been written or while it is being 4667 * written. This happens when a link is removed before the add reaches 4668 * the disk. The jaddref dependency is kept linked into the bmsafemap 4669 * and inode to prevent the link count or bitmap from reaching the disk 4670 * until handle_workitem_remove() re-adjusts the counts and bitmaps as 4671 * required. 4672 * 4673 * Returns 1 if the canceled addref requires journaling of the remove and 4674 * 0 otherwise. 4675 */ 4676 static int 4677 cancel_jaddref(jaddref, inodedep, wkhd) 4678 struct jaddref *jaddref; 4679 struct inodedep *inodedep; 4680 struct workhead *wkhd; 4681 { 4682 struct inoref *inoref; 4683 struct jsegdep *jsegdep; 4684 int needsj; 4685 4686 KASSERT((jaddref->ja_state & COMPLETE) == 0, 4687 ("cancel_jaddref: Canceling complete jaddref")); 4688 if (jaddref->ja_state & (INPROGRESS | COMPLETE)) 4689 needsj = 1; 4690 else 4691 needsj = 0; 4692 if (inodedep == NULL) 4693 if (inodedep_lookup(jaddref->ja_list.wk_mp, jaddref->ja_ino, 4694 0, &inodedep) == 0) 4695 panic("cancel_jaddref: Lost inodedep"); 4696 /* 4697 * We must adjust the nlink of any reference operation that follows 4698 * us so that it is consistent with the in-memory reference. This 4699 * ensures that inode nlink rollbacks always have the correct link. 4700 */ 4701 if (needsj == 0) { 4702 for (inoref = TAILQ_NEXT(&jaddref->ja_ref, if_deps); inoref; 4703 inoref = TAILQ_NEXT(inoref, if_deps)) { 4704 if (inoref->if_state & GOINGAWAY) 4705 break; 4706 inoref->if_nlink--; 4707 } 4708 } 4709 jsegdep = inoref_jseg(&jaddref->ja_ref); 4710 if (jaddref->ja_state & NEWBLOCK) 4711 move_newblock_dep(jaddref, inodedep); 4712 wake_worklist(&jaddref->ja_list); 4713 jaddref->ja_mkdir = NULL; 4714 if (jaddref->ja_state & INPROGRESS) { 4715 jaddref->ja_state &= ~INPROGRESS; 4716 WORKLIST_REMOVE(&jaddref->ja_list); 4717 jwork_insert(wkhd, jsegdep); 4718 } else { 4719 free_jsegdep(jsegdep); 4720 if (jaddref->ja_state & DEPCOMPLETE) 4721 remove_from_journal(&jaddref->ja_list); 4722 } 4723 jaddref->ja_state |= (GOINGAWAY | DEPCOMPLETE); 4724 /* 4725 * Leave NEWBLOCK jaddrefs on the inodedep so handle_workitem_remove 4726 * can arrange for them to be freed with the bitmap. Otherwise we 4727 * no longer need this addref attached to the inoreflst and it 4728 * will incorrectly adjust nlink if we leave it. 4729 */ 4730 if ((jaddref->ja_state & NEWBLOCK) == 0) { 4731 TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref, 4732 if_deps); 4733 jaddref->ja_state |= COMPLETE; 4734 free_jaddref(jaddref); 4735 return (needsj); 4736 } 4737 /* 4738 * Leave the head of the list for jsegdeps for fast merging. 4739 */ 4740 if (LIST_FIRST(wkhd) != NULL) { 4741 jaddref->ja_state |= ONWORKLIST; 4742 LIST_INSERT_AFTER(LIST_FIRST(wkhd), &jaddref->ja_list, wk_list); 4743 } else 4744 WORKLIST_INSERT(wkhd, &jaddref->ja_list); 4745 4746 return (needsj); 4747 } 4748 4749 /* 4750 * Attempt to free a jaddref structure when some work completes. This 4751 * should only succeed once the entry is written and all dependencies have 4752 * been notified. 4753 */ 4754 static void 4755 free_jaddref(jaddref) 4756 struct jaddref *jaddref; 4757 { 4758 4759 if ((jaddref->ja_state & ALLCOMPLETE) != ALLCOMPLETE) 4760 return; 4761 if (jaddref->ja_ref.if_jsegdep) 4762 panic("free_jaddref: segdep attached to jaddref %p(0x%X)\n", 4763 jaddref, jaddref->ja_state); 4764 if (jaddref->ja_state & NEWBLOCK) 4765 LIST_REMOVE(jaddref, ja_bmdeps); 4766 if (jaddref->ja_state & (INPROGRESS | ONWORKLIST)) 4767 panic("free_jaddref: Bad state %p(0x%X)", 4768 jaddref, jaddref->ja_state); 4769 if (jaddref->ja_mkdir != NULL) 4770 panic("free_jaddref: Work pending, 0x%X\n", jaddref->ja_state); 4771 WORKITEM_FREE(jaddref, D_JADDREF); 4772 } 4773 4774 /* 4775 * Free a jremref structure once it has been written or discarded. 4776 */ 4777 static void 4778 free_jremref(jremref) 4779 struct jremref *jremref; 4780 { 4781 4782 if (jremref->jr_ref.if_jsegdep) 4783 free_jsegdep(jremref->jr_ref.if_jsegdep); 4784 if (jremref->jr_state & INPROGRESS) 4785 panic("free_jremref: IO still pending"); 4786 WORKITEM_FREE(jremref, D_JREMREF); 4787 } 4788 4789 /* 4790 * Free a jnewblk structure. 4791 */ 4792 static void 4793 free_jnewblk(jnewblk) 4794 struct jnewblk *jnewblk; 4795 { 4796 4797 if ((jnewblk->jn_state & ALLCOMPLETE) != ALLCOMPLETE) 4798 return; 4799 LIST_REMOVE(jnewblk, jn_deps); 4800 if (jnewblk->jn_dep != NULL) 4801 panic("free_jnewblk: Dependency still attached."); 4802 WORKITEM_FREE(jnewblk, D_JNEWBLK); 4803 } 4804 4805 /* 4806 * Cancel a jnewblk which has been been made redundant by frag extension. 4807 */ 4808 static void 4809 cancel_jnewblk(jnewblk, wkhd) 4810 struct jnewblk *jnewblk; 4811 struct workhead *wkhd; 4812 { 4813 struct jsegdep *jsegdep; 4814 4815 CTR1(KTR_SUJ, "cancel_jnewblk: blkno %jd", jnewblk->jn_blkno); 4816 jsegdep = jnewblk->jn_jsegdep; 4817 if (jnewblk->jn_jsegdep == NULL || jnewblk->jn_dep == NULL) 4818 panic("cancel_jnewblk: Invalid state"); 4819 jnewblk->jn_jsegdep = NULL; 4820 jnewblk->jn_dep = NULL; 4821 jnewblk->jn_state |= GOINGAWAY; 4822 if (jnewblk->jn_state & INPROGRESS) { 4823 jnewblk->jn_state &= ~INPROGRESS; 4824 WORKLIST_REMOVE(&jnewblk->jn_list); 4825 jwork_insert(wkhd, jsegdep); 4826 } else { 4827 free_jsegdep(jsegdep); 4828 remove_from_journal(&jnewblk->jn_list); 4829 } 4830 wake_worklist(&jnewblk->jn_list); 4831 WORKLIST_INSERT(wkhd, &jnewblk->jn_list); 4832 } 4833 4834 static void 4835 free_jblkdep(jblkdep) 4836 struct jblkdep *jblkdep; 4837 { 4838 4839 if (jblkdep->jb_list.wk_type == D_JFREEBLK) 4840 WORKITEM_FREE(jblkdep, D_JFREEBLK); 4841 else if (jblkdep->jb_list.wk_type == D_JTRUNC) 4842 WORKITEM_FREE(jblkdep, D_JTRUNC); 4843 else 4844 panic("free_jblkdep: Unexpected type %s", 4845 TYPENAME(jblkdep->jb_list.wk_type)); 4846 } 4847 4848 /* 4849 * Free a single jseg once it is no longer referenced in memory or on 4850 * disk. Reclaim journal blocks and dependencies waiting for the segment 4851 * to disappear. 4852 */ 4853 static void 4854 free_jseg(jseg, jblocks) 4855 struct jseg *jseg; 4856 struct jblocks *jblocks; 4857 { 4858 struct freework *freework; 4859 4860 /* 4861 * Free freework structures that were lingering to indicate freed 4862 * indirect blocks that forced journal write ordering on reallocate. 4863 */ 4864 while ((freework = LIST_FIRST(&jseg->js_indirs)) != NULL) 4865 indirblk_remove(freework); 4866 if (jblocks->jb_oldestseg == jseg) 4867 jblocks->jb_oldestseg = TAILQ_NEXT(jseg, js_next); 4868 TAILQ_REMOVE(&jblocks->jb_segs, jseg, js_next); 4869 jblocks_free(jblocks, jseg->js_list.wk_mp, jseg->js_size); 4870 KASSERT(LIST_EMPTY(&jseg->js_entries), 4871 ("free_jseg: Freed jseg has valid entries.")); 4872 WORKITEM_FREE(jseg, D_JSEG); 4873 } 4874 4875 /* 4876 * Free all jsegs that meet the criteria for being reclaimed and update 4877 * oldestseg. 4878 */ 4879 static void 4880 free_jsegs(jblocks) 4881 struct jblocks *jblocks; 4882 { 4883 struct jseg *jseg; 4884 4885 /* 4886 * Free only those jsegs which have none allocated before them to 4887 * preserve the journal space ordering. 4888 */ 4889 while ((jseg = TAILQ_FIRST(&jblocks->jb_segs)) != NULL) { 4890 /* 4891 * Only reclaim space when nothing depends on this journal 4892 * set and another set has written that it is no longer 4893 * valid. 4894 */ 4895 if (jseg->js_refs != 0) { 4896 jblocks->jb_oldestseg = jseg; 4897 return; 4898 } 4899 if ((jseg->js_state & ALLCOMPLETE) != ALLCOMPLETE) 4900 break; 4901 if (jseg->js_seq > jblocks->jb_oldestwrseq) 4902 break; 4903 /* 4904 * We can free jsegs that didn't write entries when 4905 * oldestwrseq == js_seq. 4906 */ 4907 if (jseg->js_seq == jblocks->jb_oldestwrseq && 4908 jseg->js_cnt != 0) 4909 break; 4910 free_jseg(jseg, jblocks); 4911 } 4912 /* 4913 * If we exited the loop above we still must discover the 4914 * oldest valid segment. 4915 */ 4916 if (jseg) 4917 for (jseg = jblocks->jb_oldestseg; jseg != NULL; 4918 jseg = TAILQ_NEXT(jseg, js_next)) 4919 if (jseg->js_refs != 0) 4920 break; 4921 jblocks->jb_oldestseg = jseg; 4922 /* 4923 * The journal has no valid records but some jsegs may still be 4924 * waiting on oldestwrseq to advance. We force a small record 4925 * out to permit these lingering records to be reclaimed. 4926 */ 4927 if (jblocks->jb_oldestseg == NULL && !TAILQ_EMPTY(&jblocks->jb_segs)) 4928 jblocks->jb_needseg = 1; 4929 } 4930 4931 /* 4932 * Release one reference to a jseg and free it if the count reaches 0. This 4933 * should eventually reclaim journal space as well. 4934 */ 4935 static void 4936 rele_jseg(jseg) 4937 struct jseg *jseg; 4938 { 4939 4940 KASSERT(jseg->js_refs > 0, 4941 ("free_jseg: Invalid refcnt %d", jseg->js_refs)); 4942 if (--jseg->js_refs != 0) 4943 return; 4944 free_jsegs(jseg->js_jblocks); 4945 } 4946 4947 /* 4948 * Release a jsegdep and decrement the jseg count. 4949 */ 4950 static void 4951 free_jsegdep(jsegdep) 4952 struct jsegdep *jsegdep; 4953 { 4954 4955 if (jsegdep->jd_seg) 4956 rele_jseg(jsegdep->jd_seg); 4957 WORKITEM_FREE(jsegdep, D_JSEGDEP); 4958 } 4959 4960 /* 4961 * Wait for a journal item to make it to disk. Initiate journal processing 4962 * if required. 4963 */ 4964 static int 4965 jwait(wk, waitfor) 4966 struct worklist *wk; 4967 int waitfor; 4968 { 4969 4970 LOCK_OWNED(VFSTOUFS(wk->wk_mp)); 4971 /* 4972 * Blocking journal waits cause slow synchronous behavior. Record 4973 * stats on the frequency of these blocking operations. 4974 */ 4975 if (waitfor == MNT_WAIT) { 4976 stat_journal_wait++; 4977 switch (wk->wk_type) { 4978 case D_JREMREF: 4979 case D_JMVREF: 4980 stat_jwait_filepage++; 4981 break; 4982 case D_JTRUNC: 4983 case D_JFREEBLK: 4984 stat_jwait_freeblks++; 4985 break; 4986 case D_JNEWBLK: 4987 stat_jwait_newblk++; 4988 break; 4989 case D_JADDREF: 4990 stat_jwait_inode++; 4991 break; 4992 default: 4993 break; 4994 } 4995 } 4996 /* 4997 * If IO has not started we process the journal. We can't mark the 4998 * worklist item as IOWAITING because we drop the lock while 4999 * processing the journal and the worklist entry may be freed after 5000 * this point. The caller may call back in and re-issue the request. 5001 */ 5002 if ((wk->wk_state & INPROGRESS) == 0) { 5003 softdep_process_journal(wk->wk_mp, wk, waitfor); 5004 if (waitfor != MNT_WAIT) 5005 return (EBUSY); 5006 return (0); 5007 } 5008 if (waitfor != MNT_WAIT) 5009 return (EBUSY); 5010 wait_worklist(wk, "jwait"); 5011 return (0); 5012 } 5013 5014 /* 5015 * Lookup an inodedep based on an inode pointer and set the nlinkdelta as 5016 * appropriate. This is a convenience function to reduce duplicate code 5017 * for the setup and revert functions below. 5018 */ 5019 static struct inodedep * 5020 inodedep_lookup_ip(ip) 5021 struct inode *ip; 5022 { 5023 struct inodedep *inodedep; 5024 5025 KASSERT(ip->i_nlink >= ip->i_effnlink, 5026 ("inodedep_lookup_ip: bad delta")); 5027 (void) inodedep_lookup(ITOVFS(ip), ip->i_number, DEPALLOC, 5028 &inodedep); 5029 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 5030 KASSERT((inodedep->id_state & UNLINKED) == 0, ("inode unlinked")); 5031 5032 return (inodedep); 5033 } 5034 5035 /* 5036 * Called prior to creating a new inode and linking it to a directory. The 5037 * jaddref structure must already be allocated by softdep_setup_inomapdep 5038 * and it is discovered here so we can initialize the mode and update 5039 * nlinkdelta. 5040 */ 5041 void 5042 softdep_setup_create(dp, ip) 5043 struct inode *dp; 5044 struct inode *ip; 5045 { 5046 struct inodedep *inodedep; 5047 struct jaddref *jaddref; 5048 struct vnode *dvp; 5049 5050 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 5051 ("softdep_setup_create called on non-softdep filesystem")); 5052 KASSERT(ip->i_nlink == 1, 5053 ("softdep_setup_create: Invalid link count.")); 5054 dvp = ITOV(dp); 5055 ACQUIRE_LOCK(ITOUMP(dp)); 5056 inodedep = inodedep_lookup_ip(ip); 5057 if (DOINGSUJ(dvp)) { 5058 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 5059 inoreflst); 5060 KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number, 5061 ("softdep_setup_create: No addref structure present.")); 5062 } 5063 FREE_LOCK(ITOUMP(dp)); 5064 } 5065 5066 /* 5067 * Create a jaddref structure to track the addition of a DOTDOT link when 5068 * we are reparenting an inode as part of a rename. This jaddref will be 5069 * found by softdep_setup_directory_change. Adjusts nlinkdelta for 5070 * non-journaling softdep. 5071 */ 5072 void 5073 softdep_setup_dotdot_link(dp, ip) 5074 struct inode *dp; 5075 struct inode *ip; 5076 { 5077 struct inodedep *inodedep; 5078 struct jaddref *jaddref; 5079 struct vnode *dvp; 5080 5081 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 5082 ("softdep_setup_dotdot_link called on non-softdep filesystem")); 5083 dvp = ITOV(dp); 5084 jaddref = NULL; 5085 /* 5086 * We don't set MKDIR_PARENT as this is not tied to a mkdir and 5087 * is used as a normal link would be. 5088 */ 5089 if (DOINGSUJ(dvp)) 5090 jaddref = newjaddref(ip, dp->i_number, DOTDOT_OFFSET, 5091 dp->i_effnlink - 1, dp->i_mode); 5092 ACQUIRE_LOCK(ITOUMP(dp)); 5093 inodedep = inodedep_lookup_ip(dp); 5094 if (jaddref) 5095 TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref, 5096 if_deps); 5097 FREE_LOCK(ITOUMP(dp)); 5098 } 5099 5100 /* 5101 * Create a jaddref structure to track a new link to an inode. The directory 5102 * offset is not known until softdep_setup_directory_add or 5103 * softdep_setup_directory_change. Adjusts nlinkdelta for non-journaling 5104 * softdep. 5105 */ 5106 void 5107 softdep_setup_link(dp, ip) 5108 struct inode *dp; 5109 struct inode *ip; 5110 { 5111 struct inodedep *inodedep; 5112 struct jaddref *jaddref; 5113 struct vnode *dvp; 5114 5115 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 5116 ("softdep_setup_link called on non-softdep filesystem")); 5117 dvp = ITOV(dp); 5118 jaddref = NULL; 5119 if (DOINGSUJ(dvp)) 5120 jaddref = newjaddref(dp, ip->i_number, 0, ip->i_effnlink - 1, 5121 ip->i_mode); 5122 ACQUIRE_LOCK(ITOUMP(dp)); 5123 inodedep = inodedep_lookup_ip(ip); 5124 if (jaddref) 5125 TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref, 5126 if_deps); 5127 FREE_LOCK(ITOUMP(dp)); 5128 } 5129 5130 /* 5131 * Called to create the jaddref structures to track . and .. references as 5132 * well as lookup and further initialize the incomplete jaddref created 5133 * by softdep_setup_inomapdep when the inode was allocated. Adjusts 5134 * nlinkdelta for non-journaling softdep. 5135 */ 5136 void 5137 softdep_setup_mkdir(dp, ip) 5138 struct inode *dp; 5139 struct inode *ip; 5140 { 5141 struct inodedep *inodedep; 5142 struct jaddref *dotdotaddref; 5143 struct jaddref *dotaddref; 5144 struct jaddref *jaddref; 5145 struct vnode *dvp; 5146 5147 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 5148 ("softdep_setup_mkdir called on non-softdep filesystem")); 5149 dvp = ITOV(dp); 5150 dotaddref = dotdotaddref = NULL; 5151 if (DOINGSUJ(dvp)) { 5152 dotaddref = newjaddref(ip, ip->i_number, DOT_OFFSET, 1, 5153 ip->i_mode); 5154 dotaddref->ja_state |= MKDIR_BODY; 5155 dotdotaddref = newjaddref(ip, dp->i_number, DOTDOT_OFFSET, 5156 dp->i_effnlink - 1, dp->i_mode); 5157 dotdotaddref->ja_state |= MKDIR_PARENT; 5158 } 5159 ACQUIRE_LOCK(ITOUMP(dp)); 5160 inodedep = inodedep_lookup_ip(ip); 5161 if (DOINGSUJ(dvp)) { 5162 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 5163 inoreflst); 5164 KASSERT(jaddref != NULL, 5165 ("softdep_setup_mkdir: No addref structure present.")); 5166 KASSERT(jaddref->ja_parent == dp->i_number, 5167 ("softdep_setup_mkdir: bad parent %ju", 5168 (uintmax_t)jaddref->ja_parent)); 5169 TAILQ_INSERT_BEFORE(&jaddref->ja_ref, &dotaddref->ja_ref, 5170 if_deps); 5171 } 5172 inodedep = inodedep_lookup_ip(dp); 5173 if (DOINGSUJ(dvp)) 5174 TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, 5175 &dotdotaddref->ja_ref, if_deps); 5176 FREE_LOCK(ITOUMP(dp)); 5177 } 5178 5179 /* 5180 * Called to track nlinkdelta of the inode and parent directories prior to 5181 * unlinking a directory. 5182 */ 5183 void 5184 softdep_setup_rmdir(dp, ip) 5185 struct inode *dp; 5186 struct inode *ip; 5187 { 5188 struct vnode *dvp; 5189 5190 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 5191 ("softdep_setup_rmdir called on non-softdep filesystem")); 5192 dvp = ITOV(dp); 5193 ACQUIRE_LOCK(ITOUMP(dp)); 5194 (void) inodedep_lookup_ip(ip); 5195 (void) inodedep_lookup_ip(dp); 5196 FREE_LOCK(ITOUMP(dp)); 5197 } 5198 5199 /* 5200 * Called to track nlinkdelta of the inode and parent directories prior to 5201 * unlink. 5202 */ 5203 void 5204 softdep_setup_unlink(dp, ip) 5205 struct inode *dp; 5206 struct inode *ip; 5207 { 5208 struct vnode *dvp; 5209 5210 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 5211 ("softdep_setup_unlink called on non-softdep filesystem")); 5212 dvp = ITOV(dp); 5213 ACQUIRE_LOCK(ITOUMP(dp)); 5214 (void) inodedep_lookup_ip(ip); 5215 (void) inodedep_lookup_ip(dp); 5216 FREE_LOCK(ITOUMP(dp)); 5217 } 5218 5219 /* 5220 * Called to release the journal structures created by a failed non-directory 5221 * creation. Adjusts nlinkdelta for non-journaling softdep. 5222 */ 5223 void 5224 softdep_revert_create(dp, ip) 5225 struct inode *dp; 5226 struct inode *ip; 5227 { 5228 struct inodedep *inodedep; 5229 struct jaddref *jaddref; 5230 struct vnode *dvp; 5231 5232 KASSERT(MOUNTEDSOFTDEP(ITOVFS((dp))) != 0, 5233 ("softdep_revert_create called on non-softdep filesystem")); 5234 dvp = ITOV(dp); 5235 ACQUIRE_LOCK(ITOUMP(dp)); 5236 inodedep = inodedep_lookup_ip(ip); 5237 if (DOINGSUJ(dvp)) { 5238 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 5239 inoreflst); 5240 KASSERT(jaddref->ja_parent == dp->i_number, 5241 ("softdep_revert_create: addref parent mismatch")); 5242 cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait); 5243 } 5244 FREE_LOCK(ITOUMP(dp)); 5245 } 5246 5247 /* 5248 * Called to release the journal structures created by a failed link 5249 * addition. Adjusts nlinkdelta for non-journaling softdep. 5250 */ 5251 void 5252 softdep_revert_link(dp, ip) 5253 struct inode *dp; 5254 struct inode *ip; 5255 { 5256 struct inodedep *inodedep; 5257 struct jaddref *jaddref; 5258 struct vnode *dvp; 5259 5260 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 5261 ("softdep_revert_link called on non-softdep filesystem")); 5262 dvp = ITOV(dp); 5263 ACQUIRE_LOCK(ITOUMP(dp)); 5264 inodedep = inodedep_lookup_ip(ip); 5265 if (DOINGSUJ(dvp)) { 5266 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 5267 inoreflst); 5268 KASSERT(jaddref->ja_parent == dp->i_number, 5269 ("softdep_revert_link: addref parent mismatch")); 5270 cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait); 5271 } 5272 FREE_LOCK(ITOUMP(dp)); 5273 } 5274 5275 /* 5276 * Called to release the journal structures created by a failed mkdir 5277 * attempt. Adjusts nlinkdelta for non-journaling softdep. 5278 */ 5279 void 5280 softdep_revert_mkdir(dp, ip) 5281 struct inode *dp; 5282 struct inode *ip; 5283 { 5284 struct inodedep *inodedep; 5285 struct jaddref *jaddref; 5286 struct jaddref *dotaddref; 5287 struct vnode *dvp; 5288 5289 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 5290 ("softdep_revert_mkdir called on non-softdep filesystem")); 5291 dvp = ITOV(dp); 5292 5293 ACQUIRE_LOCK(ITOUMP(dp)); 5294 inodedep = inodedep_lookup_ip(dp); 5295 if (DOINGSUJ(dvp)) { 5296 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 5297 inoreflst); 5298 KASSERT(jaddref->ja_parent == ip->i_number, 5299 ("softdep_revert_mkdir: dotdot addref parent mismatch")); 5300 cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait); 5301 } 5302 inodedep = inodedep_lookup_ip(ip); 5303 if (DOINGSUJ(dvp)) { 5304 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 5305 inoreflst); 5306 KASSERT(jaddref->ja_parent == dp->i_number, 5307 ("softdep_revert_mkdir: addref parent mismatch")); 5308 dotaddref = (struct jaddref *)TAILQ_PREV(&jaddref->ja_ref, 5309 inoreflst, if_deps); 5310 cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait); 5311 KASSERT(dotaddref->ja_parent == ip->i_number, 5312 ("softdep_revert_mkdir: dot addref parent mismatch")); 5313 cancel_jaddref(dotaddref, inodedep, &inodedep->id_inowait); 5314 } 5315 FREE_LOCK(ITOUMP(dp)); 5316 } 5317 5318 /* 5319 * Called to correct nlinkdelta after a failed rmdir. 5320 */ 5321 void 5322 softdep_revert_rmdir(dp, ip) 5323 struct inode *dp; 5324 struct inode *ip; 5325 { 5326 5327 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 5328 ("softdep_revert_rmdir called on non-softdep filesystem")); 5329 ACQUIRE_LOCK(ITOUMP(dp)); 5330 (void) inodedep_lookup_ip(ip); 5331 (void) inodedep_lookup_ip(dp); 5332 FREE_LOCK(ITOUMP(dp)); 5333 } 5334 5335 /* 5336 * Protecting the freemaps (or bitmaps). 5337 * 5338 * To eliminate the need to execute fsck before mounting a filesystem 5339 * after a power failure, one must (conservatively) guarantee that the 5340 * on-disk copy of the bitmaps never indicate that a live inode or block is 5341 * free. So, when a block or inode is allocated, the bitmap should be 5342 * updated (on disk) before any new pointers. When a block or inode is 5343 * freed, the bitmap should not be updated until all pointers have been 5344 * reset. The latter dependency is handled by the delayed de-allocation 5345 * approach described below for block and inode de-allocation. The former 5346 * dependency is handled by calling the following procedure when a block or 5347 * inode is allocated. When an inode is allocated an "inodedep" is created 5348 * with its DEPCOMPLETE flag cleared until its bitmap is written to disk. 5349 * Each "inodedep" is also inserted into the hash indexing structure so 5350 * that any additional link additions can be made dependent on the inode 5351 * allocation. 5352 * 5353 * The ufs filesystem maintains a number of free block counts (e.g., per 5354 * cylinder group, per cylinder and per <cylinder, rotational position> pair) 5355 * in addition to the bitmaps. These counts are used to improve efficiency 5356 * during allocation and therefore must be consistent with the bitmaps. 5357 * There is no convenient way to guarantee post-crash consistency of these 5358 * counts with simple update ordering, for two main reasons: (1) The counts 5359 * and bitmaps for a single cylinder group block are not in the same disk 5360 * sector. If a disk write is interrupted (e.g., by power failure), one may 5361 * be written and the other not. (2) Some of the counts are located in the 5362 * superblock rather than the cylinder group block. So, we focus our soft 5363 * updates implementation on protecting the bitmaps. When mounting a 5364 * filesystem, we recompute the auxiliary counts from the bitmaps. 5365 */ 5366 5367 /* 5368 * Called just after updating the cylinder group block to allocate an inode. 5369 */ 5370 void 5371 softdep_setup_inomapdep(bp, ip, newinum, mode) 5372 struct buf *bp; /* buffer for cylgroup block with inode map */ 5373 struct inode *ip; /* inode related to allocation */ 5374 ino_t newinum; /* new inode number being allocated */ 5375 int mode; 5376 { 5377 struct inodedep *inodedep; 5378 struct bmsafemap *bmsafemap; 5379 struct jaddref *jaddref; 5380 struct mount *mp; 5381 struct fs *fs; 5382 5383 mp = ITOVFS(ip); 5384 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 5385 ("softdep_setup_inomapdep called on non-softdep filesystem")); 5386 fs = VFSTOUFS(mp)->um_fs; 5387 jaddref = NULL; 5388 5389 /* 5390 * Allocate the journal reference add structure so that the bitmap 5391 * can be dependent on it. 5392 */ 5393 if (MOUNTEDSUJ(mp)) { 5394 jaddref = newjaddref(ip, newinum, 0, 0, mode); 5395 jaddref->ja_state |= NEWBLOCK; 5396 } 5397 5398 /* 5399 * Create a dependency for the newly allocated inode. 5400 * Panic if it already exists as something is seriously wrong. 5401 * Otherwise add it to the dependency list for the buffer holding 5402 * the cylinder group map from which it was allocated. 5403 * 5404 * We have to preallocate a bmsafemap entry in case it is needed 5405 * in bmsafemap_lookup since once we allocate the inodedep, we 5406 * have to finish initializing it before we can FREE_LOCK(). 5407 * By preallocating, we avoid FREE_LOCK() while doing a malloc 5408 * in bmsafemap_lookup. We cannot call bmsafemap_lookup before 5409 * creating the inodedep as it can be freed during the time 5410 * that we FREE_LOCK() while allocating the inodedep. We must 5411 * call workitem_alloc() before entering the locked section as 5412 * it also acquires the lock and we must avoid trying doing so 5413 * recursively. 5414 */ 5415 bmsafemap = malloc(sizeof(struct bmsafemap), 5416 M_BMSAFEMAP, M_SOFTDEP_FLAGS); 5417 workitem_alloc(&bmsafemap->sm_list, D_BMSAFEMAP, mp); 5418 ACQUIRE_LOCK(ITOUMP(ip)); 5419 if ((inodedep_lookup(mp, newinum, DEPALLOC, &inodedep))) 5420 panic("softdep_setup_inomapdep: dependency %p for new" 5421 "inode already exists", inodedep); 5422 bmsafemap = bmsafemap_lookup(mp, bp, ino_to_cg(fs, newinum), bmsafemap); 5423 if (jaddref) { 5424 LIST_INSERT_HEAD(&bmsafemap->sm_jaddrefhd, jaddref, ja_bmdeps); 5425 TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref, 5426 if_deps); 5427 } else { 5428 inodedep->id_state |= ONDEPLIST; 5429 LIST_INSERT_HEAD(&bmsafemap->sm_inodedephd, inodedep, id_deps); 5430 } 5431 inodedep->id_bmsafemap = bmsafemap; 5432 inodedep->id_state &= ~DEPCOMPLETE; 5433 FREE_LOCK(ITOUMP(ip)); 5434 } 5435 5436 /* 5437 * Called just after updating the cylinder group block to 5438 * allocate block or fragment. 5439 */ 5440 void 5441 softdep_setup_blkmapdep(bp, mp, newblkno, frags, oldfrags) 5442 struct buf *bp; /* buffer for cylgroup block with block map */ 5443 struct mount *mp; /* filesystem doing allocation */ 5444 ufs2_daddr_t newblkno; /* number of newly allocated block */ 5445 int frags; /* Number of fragments. */ 5446 int oldfrags; /* Previous number of fragments for extend. */ 5447 { 5448 struct newblk *newblk; 5449 struct bmsafemap *bmsafemap; 5450 struct jnewblk *jnewblk; 5451 struct ufsmount *ump; 5452 struct fs *fs; 5453 5454 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 5455 ("softdep_setup_blkmapdep called on non-softdep filesystem")); 5456 ump = VFSTOUFS(mp); 5457 fs = ump->um_fs; 5458 jnewblk = NULL; 5459 /* 5460 * Create a dependency for the newly allocated block. 5461 * Add it to the dependency list for the buffer holding 5462 * the cylinder group map from which it was allocated. 5463 */ 5464 if (MOUNTEDSUJ(mp)) { 5465 jnewblk = malloc(sizeof(*jnewblk), M_JNEWBLK, M_SOFTDEP_FLAGS); 5466 workitem_alloc(&jnewblk->jn_list, D_JNEWBLK, mp); 5467 jnewblk->jn_jsegdep = newjsegdep(&jnewblk->jn_list); 5468 jnewblk->jn_state = ATTACHED; 5469 jnewblk->jn_blkno = newblkno; 5470 jnewblk->jn_frags = frags; 5471 jnewblk->jn_oldfrags = oldfrags; 5472 #ifdef INVARIANTS 5473 { 5474 struct cg *cgp; 5475 uint8_t *blksfree; 5476 long bno; 5477 int i; 5478 5479 cgp = (struct cg *)bp->b_data; 5480 blksfree = cg_blksfree(cgp); 5481 bno = dtogd(fs, jnewblk->jn_blkno); 5482 for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; 5483 i++) { 5484 if (isset(blksfree, bno + i)) 5485 panic("softdep_setup_blkmapdep: " 5486 "free fragment %d from %d-%d " 5487 "state 0x%X dep %p", i, 5488 jnewblk->jn_oldfrags, 5489 jnewblk->jn_frags, 5490 jnewblk->jn_state, 5491 jnewblk->jn_dep); 5492 } 5493 } 5494 #endif 5495 } 5496 5497 CTR3(KTR_SUJ, 5498 "softdep_setup_blkmapdep: blkno %jd frags %d oldfrags %d", 5499 newblkno, frags, oldfrags); 5500 ACQUIRE_LOCK(ump); 5501 if (newblk_lookup(mp, newblkno, DEPALLOC, &newblk) != 0) 5502 panic("softdep_setup_blkmapdep: found block"); 5503 newblk->nb_bmsafemap = bmsafemap = bmsafemap_lookup(mp, bp, 5504 dtog(fs, newblkno), NULL); 5505 if (jnewblk) { 5506 jnewblk->jn_dep = (struct worklist *)newblk; 5507 LIST_INSERT_HEAD(&bmsafemap->sm_jnewblkhd, jnewblk, jn_deps); 5508 } else { 5509 newblk->nb_state |= ONDEPLIST; 5510 LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, nb_deps); 5511 } 5512 newblk->nb_bmsafemap = bmsafemap; 5513 newblk->nb_jnewblk = jnewblk; 5514 FREE_LOCK(ump); 5515 } 5516 5517 #define BMSAFEMAP_HASH(ump, cg) \ 5518 (&(ump)->bmsafemap_hashtbl[(cg) & (ump)->bmsafemap_hash_size]) 5519 5520 static int 5521 bmsafemap_find(bmsafemaphd, cg, bmsafemapp) 5522 struct bmsafemap_hashhead *bmsafemaphd; 5523 int cg; 5524 struct bmsafemap **bmsafemapp; 5525 { 5526 struct bmsafemap *bmsafemap; 5527 5528 LIST_FOREACH(bmsafemap, bmsafemaphd, sm_hash) 5529 if (bmsafemap->sm_cg == cg) 5530 break; 5531 if (bmsafemap) { 5532 *bmsafemapp = bmsafemap; 5533 return (1); 5534 } 5535 *bmsafemapp = NULL; 5536 5537 return (0); 5538 } 5539 5540 /* 5541 * Find the bmsafemap associated with a cylinder group buffer. 5542 * If none exists, create one. The buffer must be locked when 5543 * this routine is called and this routine must be called with 5544 * the softdep lock held. To avoid giving up the lock while 5545 * allocating a new bmsafemap, a preallocated bmsafemap may be 5546 * provided. If it is provided but not needed, it is freed. 5547 */ 5548 static struct bmsafemap * 5549 bmsafemap_lookup(mp, bp, cg, newbmsafemap) 5550 struct mount *mp; 5551 struct buf *bp; 5552 int cg; 5553 struct bmsafemap *newbmsafemap; 5554 { 5555 struct bmsafemap_hashhead *bmsafemaphd; 5556 struct bmsafemap *bmsafemap, *collision; 5557 struct worklist *wk; 5558 struct ufsmount *ump; 5559 5560 ump = VFSTOUFS(mp); 5561 LOCK_OWNED(ump); 5562 KASSERT(bp != NULL, ("bmsafemap_lookup: missing buffer")); 5563 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 5564 if (wk->wk_type == D_BMSAFEMAP) { 5565 if (newbmsafemap) 5566 WORKITEM_FREE(newbmsafemap, D_BMSAFEMAP); 5567 return (WK_BMSAFEMAP(wk)); 5568 } 5569 } 5570 bmsafemaphd = BMSAFEMAP_HASH(ump, cg); 5571 if (bmsafemap_find(bmsafemaphd, cg, &bmsafemap) == 1) { 5572 if (newbmsafemap) 5573 WORKITEM_FREE(newbmsafemap, D_BMSAFEMAP); 5574 return (bmsafemap); 5575 } 5576 if (newbmsafemap) { 5577 bmsafemap = newbmsafemap; 5578 } else { 5579 FREE_LOCK(ump); 5580 bmsafemap = malloc(sizeof(struct bmsafemap), 5581 M_BMSAFEMAP, M_SOFTDEP_FLAGS); 5582 workitem_alloc(&bmsafemap->sm_list, D_BMSAFEMAP, mp); 5583 ACQUIRE_LOCK(ump); 5584 } 5585 bmsafemap->sm_buf = bp; 5586 LIST_INIT(&bmsafemap->sm_inodedephd); 5587 LIST_INIT(&bmsafemap->sm_inodedepwr); 5588 LIST_INIT(&bmsafemap->sm_newblkhd); 5589 LIST_INIT(&bmsafemap->sm_newblkwr); 5590 LIST_INIT(&bmsafemap->sm_jaddrefhd); 5591 LIST_INIT(&bmsafemap->sm_jnewblkhd); 5592 LIST_INIT(&bmsafemap->sm_freehd); 5593 LIST_INIT(&bmsafemap->sm_freewr); 5594 if (bmsafemap_find(bmsafemaphd, cg, &collision) == 1) { 5595 WORKITEM_FREE(bmsafemap, D_BMSAFEMAP); 5596 return (collision); 5597 } 5598 bmsafemap->sm_cg = cg; 5599 LIST_INSERT_HEAD(bmsafemaphd, bmsafemap, sm_hash); 5600 LIST_INSERT_HEAD(&ump->softdep_dirtycg, bmsafemap, sm_next); 5601 WORKLIST_INSERT(&bp->b_dep, &bmsafemap->sm_list); 5602 return (bmsafemap); 5603 } 5604 5605 /* 5606 * Direct block allocation dependencies. 5607 * 5608 * When a new block is allocated, the corresponding disk locations must be 5609 * initialized (with zeros or new data) before the on-disk inode points to 5610 * them. Also, the freemap from which the block was allocated must be 5611 * updated (on disk) before the inode's pointer. These two dependencies are 5612 * independent of each other and are needed for all file blocks and indirect 5613 * blocks that are pointed to directly by the inode. Just before the 5614 * "in-core" version of the inode is updated with a newly allocated block 5615 * number, a procedure (below) is called to setup allocation dependency 5616 * structures. These structures are removed when the corresponding 5617 * dependencies are satisfied or when the block allocation becomes obsolete 5618 * (i.e., the file is deleted, the block is de-allocated, or the block is a 5619 * fragment that gets upgraded). All of these cases are handled in 5620 * procedures described later. 5621 * 5622 * When a file extension causes a fragment to be upgraded, either to a larger 5623 * fragment or to a full block, the on-disk location may change (if the 5624 * previous fragment could not simply be extended). In this case, the old 5625 * fragment must be de-allocated, but not until after the inode's pointer has 5626 * been updated. In most cases, this is handled by later procedures, which 5627 * will construct a "freefrag" structure to be added to the workitem queue 5628 * when the inode update is complete (or obsolete). The main exception to 5629 * this is when an allocation occurs while a pending allocation dependency 5630 * (for the same block pointer) remains. This case is handled in the main 5631 * allocation dependency setup procedure by immediately freeing the 5632 * unreferenced fragments. 5633 */ 5634 void 5635 softdep_setup_allocdirect(ip, off, newblkno, oldblkno, newsize, oldsize, bp) 5636 struct inode *ip; /* inode to which block is being added */ 5637 ufs_lbn_t off; /* block pointer within inode */ 5638 ufs2_daddr_t newblkno; /* disk block number being added */ 5639 ufs2_daddr_t oldblkno; /* previous block number, 0 unless frag */ 5640 long newsize; /* size of new block */ 5641 long oldsize; /* size of new block */ 5642 struct buf *bp; /* bp for allocated block */ 5643 { 5644 struct allocdirect *adp, *oldadp; 5645 struct allocdirectlst *adphead; 5646 struct freefrag *freefrag; 5647 struct inodedep *inodedep; 5648 struct pagedep *pagedep; 5649 struct jnewblk *jnewblk; 5650 struct newblk *newblk; 5651 struct mount *mp; 5652 ufs_lbn_t lbn; 5653 5654 lbn = bp->b_lblkno; 5655 mp = ITOVFS(ip); 5656 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 5657 ("softdep_setup_allocdirect called on non-softdep filesystem")); 5658 if (oldblkno && oldblkno != newblkno) 5659 /* 5660 * The usual case is that a smaller fragment that 5661 * was just allocated has been replaced with a bigger 5662 * fragment or a full-size block. If it is marked as 5663 * B_DELWRI, the current contents have not been written 5664 * to disk. It is possible that the block was written 5665 * earlier, but very uncommon. If the block has never 5666 * been written, there is no need to send a BIO_DELETE 5667 * for it when it is freed. The gain from avoiding the 5668 * TRIMs for the common case of unwritten blocks far 5669 * exceeds the cost of the write amplification for the 5670 * uncommon case of failing to send a TRIM for a block 5671 * that had been written. 5672 */ 5673 freefrag = newfreefrag(ip, oldblkno, oldsize, lbn, 5674 (bp->b_flags & B_DELWRI) != 0 ? NOTRIM_KEY : SINGLETON_KEY); 5675 else 5676 freefrag = NULL; 5677 5678 CTR6(KTR_SUJ, 5679 "softdep_setup_allocdirect: ino %d blkno %jd oldblkno %jd " 5680 "off %jd newsize %ld oldsize %d", 5681 ip->i_number, newblkno, oldblkno, off, newsize, oldsize); 5682 ACQUIRE_LOCK(ITOUMP(ip)); 5683 if (off >= UFS_NDADDR) { 5684 if (lbn > 0) 5685 panic("softdep_setup_allocdirect: bad lbn %jd, off %jd", 5686 lbn, off); 5687 /* allocating an indirect block */ 5688 if (oldblkno != 0) 5689 panic("softdep_setup_allocdirect: non-zero indir"); 5690 } else { 5691 if (off != lbn) 5692 panic("softdep_setup_allocdirect: lbn %jd != off %jd", 5693 lbn, off); 5694 /* 5695 * Allocating a direct block. 5696 * 5697 * If we are allocating a directory block, then we must 5698 * allocate an associated pagedep to track additions and 5699 * deletions. 5700 */ 5701 if ((ip->i_mode & IFMT) == IFDIR) 5702 pagedep_lookup(mp, bp, ip->i_number, off, DEPALLOC, 5703 &pagedep); 5704 } 5705 if (newblk_lookup(mp, newblkno, 0, &newblk) == 0) 5706 panic("softdep_setup_allocdirect: lost block"); 5707 KASSERT(newblk->nb_list.wk_type == D_NEWBLK, 5708 ("softdep_setup_allocdirect: newblk already initialized")); 5709 /* 5710 * Convert the newblk to an allocdirect. 5711 */ 5712 WORKITEM_REASSIGN(newblk, D_ALLOCDIRECT); 5713 adp = (struct allocdirect *)newblk; 5714 newblk->nb_freefrag = freefrag; 5715 adp->ad_offset = off; 5716 adp->ad_oldblkno = oldblkno; 5717 adp->ad_newsize = newsize; 5718 adp->ad_oldsize = oldsize; 5719 5720 /* 5721 * Finish initializing the journal. 5722 */ 5723 if ((jnewblk = newblk->nb_jnewblk) != NULL) { 5724 jnewblk->jn_ino = ip->i_number; 5725 jnewblk->jn_lbn = lbn; 5726 add_to_journal(&jnewblk->jn_list); 5727 } 5728 if (freefrag && freefrag->ff_jdep != NULL && 5729 freefrag->ff_jdep->wk_type == D_JFREEFRAG) 5730 add_to_journal(freefrag->ff_jdep); 5731 inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep); 5732 adp->ad_inodedep = inodedep; 5733 5734 WORKLIST_INSERT(&bp->b_dep, &newblk->nb_list); 5735 /* 5736 * The list of allocdirects must be kept in sorted and ascending 5737 * order so that the rollback routines can quickly determine the 5738 * first uncommitted block (the size of the file stored on disk 5739 * ends at the end of the lowest committed fragment, or if there 5740 * are no fragments, at the end of the highest committed block). 5741 * Since files generally grow, the typical case is that the new 5742 * block is to be added at the end of the list. We speed this 5743 * special case by checking against the last allocdirect in the 5744 * list before laboriously traversing the list looking for the 5745 * insertion point. 5746 */ 5747 adphead = &inodedep->id_newinoupdt; 5748 oldadp = TAILQ_LAST(adphead, allocdirectlst); 5749 if (oldadp == NULL || oldadp->ad_offset <= off) { 5750 /* insert at end of list */ 5751 TAILQ_INSERT_TAIL(adphead, adp, ad_next); 5752 if (oldadp != NULL && oldadp->ad_offset == off) 5753 allocdirect_merge(adphead, adp, oldadp); 5754 FREE_LOCK(ITOUMP(ip)); 5755 return; 5756 } 5757 TAILQ_FOREACH(oldadp, adphead, ad_next) { 5758 if (oldadp->ad_offset >= off) 5759 break; 5760 } 5761 if (oldadp == NULL) 5762 panic("softdep_setup_allocdirect: lost entry"); 5763 /* insert in middle of list */ 5764 TAILQ_INSERT_BEFORE(oldadp, adp, ad_next); 5765 if (oldadp->ad_offset == off) 5766 allocdirect_merge(adphead, adp, oldadp); 5767 5768 FREE_LOCK(ITOUMP(ip)); 5769 } 5770 5771 /* 5772 * Merge a newer and older journal record to be stored either in a 5773 * newblock or freefrag. This handles aggregating journal records for 5774 * fragment allocation into a second record as well as replacing a 5775 * journal free with an aborted journal allocation. A segment for the 5776 * oldest record will be placed on wkhd if it has been written. If not 5777 * the segment for the newer record will suffice. 5778 */ 5779 static struct worklist * 5780 jnewblk_merge(new, old, wkhd) 5781 struct worklist *new; 5782 struct worklist *old; 5783 struct workhead *wkhd; 5784 { 5785 struct jnewblk *njnewblk; 5786 struct jnewblk *jnewblk; 5787 5788 /* Handle NULLs to simplify callers. */ 5789 if (new == NULL) 5790 return (old); 5791 if (old == NULL) 5792 return (new); 5793 /* Replace a jfreefrag with a jnewblk. */ 5794 if (new->wk_type == D_JFREEFRAG) { 5795 if (WK_JNEWBLK(old)->jn_blkno != WK_JFREEFRAG(new)->fr_blkno) 5796 panic("jnewblk_merge: blkno mismatch: %p, %p", 5797 old, new); 5798 cancel_jfreefrag(WK_JFREEFRAG(new)); 5799 return (old); 5800 } 5801 if (old->wk_type != D_JNEWBLK || new->wk_type != D_JNEWBLK) 5802 panic("jnewblk_merge: Bad type: old %d new %d\n", 5803 old->wk_type, new->wk_type); 5804 /* 5805 * Handle merging of two jnewblk records that describe 5806 * different sets of fragments in the same block. 5807 */ 5808 jnewblk = WK_JNEWBLK(old); 5809 njnewblk = WK_JNEWBLK(new); 5810 if (jnewblk->jn_blkno != njnewblk->jn_blkno) 5811 panic("jnewblk_merge: Merging disparate blocks."); 5812 /* 5813 * The record may be rolled back in the cg. 5814 */ 5815 if (jnewblk->jn_state & UNDONE) { 5816 jnewblk->jn_state &= ~UNDONE; 5817 njnewblk->jn_state |= UNDONE; 5818 njnewblk->jn_state &= ~ATTACHED; 5819 } 5820 /* 5821 * We modify the newer addref and free the older so that if neither 5822 * has been written the most up-to-date copy will be on disk. If 5823 * both have been written but rolled back we only temporarily need 5824 * one of them to fix the bits when the cg write completes. 5825 */ 5826 jnewblk->jn_state |= ATTACHED | COMPLETE; 5827 njnewblk->jn_oldfrags = jnewblk->jn_oldfrags; 5828 cancel_jnewblk(jnewblk, wkhd); 5829 WORKLIST_REMOVE(&jnewblk->jn_list); 5830 free_jnewblk(jnewblk); 5831 return (new); 5832 } 5833 5834 /* 5835 * Replace an old allocdirect dependency with a newer one. 5836 */ 5837 static void 5838 allocdirect_merge(adphead, newadp, oldadp) 5839 struct allocdirectlst *adphead; /* head of list holding allocdirects */ 5840 struct allocdirect *newadp; /* allocdirect being added */ 5841 struct allocdirect *oldadp; /* existing allocdirect being checked */ 5842 { 5843 struct worklist *wk; 5844 struct freefrag *freefrag; 5845 5846 freefrag = NULL; 5847 LOCK_OWNED(VFSTOUFS(newadp->ad_list.wk_mp)); 5848 if (newadp->ad_oldblkno != oldadp->ad_newblkno || 5849 newadp->ad_oldsize != oldadp->ad_newsize || 5850 newadp->ad_offset >= UFS_NDADDR) 5851 panic("%s %jd != new %jd || old size %ld != new %ld", 5852 "allocdirect_merge: old blkno", 5853 (intmax_t)newadp->ad_oldblkno, 5854 (intmax_t)oldadp->ad_newblkno, 5855 newadp->ad_oldsize, oldadp->ad_newsize); 5856 newadp->ad_oldblkno = oldadp->ad_oldblkno; 5857 newadp->ad_oldsize = oldadp->ad_oldsize; 5858 /* 5859 * If the old dependency had a fragment to free or had never 5860 * previously had a block allocated, then the new dependency 5861 * can immediately post its freefrag and adopt the old freefrag. 5862 * This action is done by swapping the freefrag dependencies. 5863 * The new dependency gains the old one's freefrag, and the 5864 * old one gets the new one and then immediately puts it on 5865 * the worklist when it is freed by free_newblk. It is 5866 * not possible to do this swap when the old dependency had a 5867 * non-zero size but no previous fragment to free. This condition 5868 * arises when the new block is an extension of the old block. 5869 * Here, the first part of the fragment allocated to the new 5870 * dependency is part of the block currently claimed on disk by 5871 * the old dependency, so cannot legitimately be freed until the 5872 * conditions for the new dependency are fulfilled. 5873 */ 5874 freefrag = newadp->ad_freefrag; 5875 if (oldadp->ad_freefrag != NULL || oldadp->ad_oldblkno == 0) { 5876 newadp->ad_freefrag = oldadp->ad_freefrag; 5877 oldadp->ad_freefrag = freefrag; 5878 } 5879 /* 5880 * If we are tracking a new directory-block allocation, 5881 * move it from the old allocdirect to the new allocdirect. 5882 */ 5883 if ((wk = LIST_FIRST(&oldadp->ad_newdirblk)) != NULL) { 5884 WORKLIST_REMOVE(wk); 5885 if (!LIST_EMPTY(&oldadp->ad_newdirblk)) 5886 panic("allocdirect_merge: extra newdirblk"); 5887 WORKLIST_INSERT(&newadp->ad_newdirblk, wk); 5888 } 5889 TAILQ_REMOVE(adphead, oldadp, ad_next); 5890 /* 5891 * We need to move any journal dependencies over to the freefrag 5892 * that releases this block if it exists. Otherwise we are 5893 * extending an existing block and we'll wait until that is 5894 * complete to release the journal space and extend the 5895 * new journal to cover this old space as well. 5896 */ 5897 if (freefrag == NULL) { 5898 if (oldadp->ad_newblkno != newadp->ad_newblkno) 5899 panic("allocdirect_merge: %jd != %jd", 5900 oldadp->ad_newblkno, newadp->ad_newblkno); 5901 newadp->ad_block.nb_jnewblk = (struct jnewblk *) 5902 jnewblk_merge(&newadp->ad_block.nb_jnewblk->jn_list, 5903 &oldadp->ad_block.nb_jnewblk->jn_list, 5904 &newadp->ad_block.nb_jwork); 5905 oldadp->ad_block.nb_jnewblk = NULL; 5906 cancel_newblk(&oldadp->ad_block, NULL, 5907 &newadp->ad_block.nb_jwork); 5908 } else { 5909 wk = (struct worklist *) cancel_newblk(&oldadp->ad_block, 5910 &freefrag->ff_list, &freefrag->ff_jwork); 5911 freefrag->ff_jdep = jnewblk_merge(freefrag->ff_jdep, wk, 5912 &freefrag->ff_jwork); 5913 } 5914 free_newblk(&oldadp->ad_block); 5915 } 5916 5917 /* 5918 * Allocate a jfreefrag structure to journal a single block free. 5919 */ 5920 static struct jfreefrag * 5921 newjfreefrag(freefrag, ip, blkno, size, lbn) 5922 struct freefrag *freefrag; 5923 struct inode *ip; 5924 ufs2_daddr_t blkno; 5925 long size; 5926 ufs_lbn_t lbn; 5927 { 5928 struct jfreefrag *jfreefrag; 5929 struct fs *fs; 5930 5931 fs = ITOFS(ip); 5932 jfreefrag = malloc(sizeof(struct jfreefrag), M_JFREEFRAG, 5933 M_SOFTDEP_FLAGS); 5934 workitem_alloc(&jfreefrag->fr_list, D_JFREEFRAG, ITOVFS(ip)); 5935 jfreefrag->fr_jsegdep = newjsegdep(&jfreefrag->fr_list); 5936 jfreefrag->fr_state = ATTACHED | DEPCOMPLETE; 5937 jfreefrag->fr_ino = ip->i_number; 5938 jfreefrag->fr_lbn = lbn; 5939 jfreefrag->fr_blkno = blkno; 5940 jfreefrag->fr_frags = numfrags(fs, size); 5941 jfreefrag->fr_freefrag = freefrag; 5942 5943 return (jfreefrag); 5944 } 5945 5946 /* 5947 * Allocate a new freefrag structure. 5948 */ 5949 static struct freefrag * 5950 newfreefrag(ip, blkno, size, lbn, key) 5951 struct inode *ip; 5952 ufs2_daddr_t blkno; 5953 long size; 5954 ufs_lbn_t lbn; 5955 u_long key; 5956 { 5957 struct freefrag *freefrag; 5958 struct ufsmount *ump; 5959 struct fs *fs; 5960 5961 CTR4(KTR_SUJ, "newfreefrag: ino %d blkno %jd size %ld lbn %jd", 5962 ip->i_number, blkno, size, lbn); 5963 ump = ITOUMP(ip); 5964 fs = ump->um_fs; 5965 if (fragnum(fs, blkno) + numfrags(fs, size) > fs->fs_frag) 5966 panic("newfreefrag: frag size"); 5967 freefrag = malloc(sizeof(struct freefrag), 5968 M_FREEFRAG, M_SOFTDEP_FLAGS); 5969 workitem_alloc(&freefrag->ff_list, D_FREEFRAG, UFSTOVFS(ump)); 5970 freefrag->ff_state = ATTACHED; 5971 LIST_INIT(&freefrag->ff_jwork); 5972 freefrag->ff_inum = ip->i_number; 5973 freefrag->ff_vtype = ITOV(ip)->v_type; 5974 freefrag->ff_blkno = blkno; 5975 freefrag->ff_fragsize = size; 5976 freefrag->ff_key = key; 5977 5978 if (MOUNTEDSUJ(UFSTOVFS(ump))) { 5979 freefrag->ff_jdep = (struct worklist *) 5980 newjfreefrag(freefrag, ip, blkno, size, lbn); 5981 } else { 5982 freefrag->ff_state |= DEPCOMPLETE; 5983 freefrag->ff_jdep = NULL; 5984 } 5985 5986 return (freefrag); 5987 } 5988 5989 /* 5990 * This workitem de-allocates fragments that were replaced during 5991 * file block allocation. 5992 */ 5993 static void 5994 handle_workitem_freefrag(freefrag) 5995 struct freefrag *freefrag; 5996 { 5997 struct ufsmount *ump = VFSTOUFS(freefrag->ff_list.wk_mp); 5998 struct workhead wkhd; 5999 6000 CTR3(KTR_SUJ, 6001 "handle_workitem_freefrag: ino %d blkno %jd size %ld", 6002 freefrag->ff_inum, freefrag->ff_blkno, freefrag->ff_fragsize); 6003 /* 6004 * It would be illegal to add new completion items to the 6005 * freefrag after it was schedule to be done so it must be 6006 * safe to modify the list head here. 6007 */ 6008 LIST_INIT(&wkhd); 6009 ACQUIRE_LOCK(ump); 6010 LIST_SWAP(&freefrag->ff_jwork, &wkhd, worklist, wk_list); 6011 /* 6012 * If the journal has not been written we must cancel it here. 6013 */ 6014 if (freefrag->ff_jdep) { 6015 if (freefrag->ff_jdep->wk_type != D_JNEWBLK) 6016 panic("handle_workitem_freefrag: Unexpected type %d\n", 6017 freefrag->ff_jdep->wk_type); 6018 cancel_jnewblk(WK_JNEWBLK(freefrag->ff_jdep), &wkhd); 6019 } 6020 FREE_LOCK(ump); 6021 ffs_blkfree(ump, ump->um_fs, ump->um_devvp, freefrag->ff_blkno, 6022 freefrag->ff_fragsize, freefrag->ff_inum, freefrag->ff_vtype, 6023 &wkhd, freefrag->ff_key); 6024 ACQUIRE_LOCK(ump); 6025 WORKITEM_FREE(freefrag, D_FREEFRAG); 6026 FREE_LOCK(ump); 6027 } 6028 6029 /* 6030 * Set up a dependency structure for an external attributes data block. 6031 * This routine follows much of the structure of softdep_setup_allocdirect. 6032 * See the description of softdep_setup_allocdirect above for details. 6033 */ 6034 void 6035 softdep_setup_allocext(ip, off, newblkno, oldblkno, newsize, oldsize, bp) 6036 struct inode *ip; 6037 ufs_lbn_t off; 6038 ufs2_daddr_t newblkno; 6039 ufs2_daddr_t oldblkno; 6040 long newsize; 6041 long oldsize; 6042 struct buf *bp; 6043 { 6044 struct allocdirect *adp, *oldadp; 6045 struct allocdirectlst *adphead; 6046 struct freefrag *freefrag; 6047 struct inodedep *inodedep; 6048 struct jnewblk *jnewblk; 6049 struct newblk *newblk; 6050 struct mount *mp; 6051 struct ufsmount *ump; 6052 ufs_lbn_t lbn; 6053 6054 mp = ITOVFS(ip); 6055 ump = VFSTOUFS(mp); 6056 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 6057 ("softdep_setup_allocext called on non-softdep filesystem")); 6058 KASSERT(off < UFS_NXADDR, 6059 ("softdep_setup_allocext: lbn %lld > UFS_NXADDR", (long long)off)); 6060 6061 lbn = bp->b_lblkno; 6062 if (oldblkno && oldblkno != newblkno) 6063 /* 6064 * The usual case is that a smaller fragment that 6065 * was just allocated has been replaced with a bigger 6066 * fragment or a full-size block. If it is marked as 6067 * B_DELWRI, the current contents have not been written 6068 * to disk. It is possible that the block was written 6069 * earlier, but very uncommon. If the block has never 6070 * been written, there is no need to send a BIO_DELETE 6071 * for it when it is freed. The gain from avoiding the 6072 * TRIMs for the common case of unwritten blocks far 6073 * exceeds the cost of the write amplification for the 6074 * uncommon case of failing to send a TRIM for a block 6075 * that had been written. 6076 */ 6077 freefrag = newfreefrag(ip, oldblkno, oldsize, lbn, 6078 (bp->b_flags & B_DELWRI) != 0 ? NOTRIM_KEY : SINGLETON_KEY); 6079 else 6080 freefrag = NULL; 6081 6082 ACQUIRE_LOCK(ump); 6083 if (newblk_lookup(mp, newblkno, 0, &newblk) == 0) 6084 panic("softdep_setup_allocext: lost block"); 6085 KASSERT(newblk->nb_list.wk_type == D_NEWBLK, 6086 ("softdep_setup_allocext: newblk already initialized")); 6087 /* 6088 * Convert the newblk to an allocdirect. 6089 */ 6090 WORKITEM_REASSIGN(newblk, D_ALLOCDIRECT); 6091 adp = (struct allocdirect *)newblk; 6092 newblk->nb_freefrag = freefrag; 6093 adp->ad_offset = off; 6094 adp->ad_oldblkno = oldblkno; 6095 adp->ad_newsize = newsize; 6096 adp->ad_oldsize = oldsize; 6097 adp->ad_state |= EXTDATA; 6098 6099 /* 6100 * Finish initializing the journal. 6101 */ 6102 if ((jnewblk = newblk->nb_jnewblk) != NULL) { 6103 jnewblk->jn_ino = ip->i_number; 6104 jnewblk->jn_lbn = lbn; 6105 add_to_journal(&jnewblk->jn_list); 6106 } 6107 if (freefrag && freefrag->ff_jdep != NULL && 6108 freefrag->ff_jdep->wk_type == D_JFREEFRAG) 6109 add_to_journal(freefrag->ff_jdep); 6110 inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep); 6111 adp->ad_inodedep = inodedep; 6112 6113 WORKLIST_INSERT(&bp->b_dep, &newblk->nb_list); 6114 /* 6115 * The list of allocdirects must be kept in sorted and ascending 6116 * order so that the rollback routines can quickly determine the 6117 * first uncommitted block (the size of the file stored on disk 6118 * ends at the end of the lowest committed fragment, or if there 6119 * are no fragments, at the end of the highest committed block). 6120 * Since files generally grow, the typical case is that the new 6121 * block is to be added at the end of the list. We speed this 6122 * special case by checking against the last allocdirect in the 6123 * list before laboriously traversing the list looking for the 6124 * insertion point. 6125 */ 6126 adphead = &inodedep->id_newextupdt; 6127 oldadp = TAILQ_LAST(adphead, allocdirectlst); 6128 if (oldadp == NULL || oldadp->ad_offset <= off) { 6129 /* insert at end of list */ 6130 TAILQ_INSERT_TAIL(adphead, adp, ad_next); 6131 if (oldadp != NULL && oldadp->ad_offset == off) 6132 allocdirect_merge(adphead, adp, oldadp); 6133 FREE_LOCK(ump); 6134 return; 6135 } 6136 TAILQ_FOREACH(oldadp, adphead, ad_next) { 6137 if (oldadp->ad_offset >= off) 6138 break; 6139 } 6140 if (oldadp == NULL) 6141 panic("softdep_setup_allocext: lost entry"); 6142 /* insert in middle of list */ 6143 TAILQ_INSERT_BEFORE(oldadp, adp, ad_next); 6144 if (oldadp->ad_offset == off) 6145 allocdirect_merge(adphead, adp, oldadp); 6146 FREE_LOCK(ump); 6147 } 6148 6149 /* 6150 * Indirect block allocation dependencies. 6151 * 6152 * The same dependencies that exist for a direct block also exist when 6153 * a new block is allocated and pointed to by an entry in a block of 6154 * indirect pointers. The undo/redo states described above are also 6155 * used here. Because an indirect block contains many pointers that 6156 * may have dependencies, a second copy of the entire in-memory indirect 6157 * block is kept. The buffer cache copy is always completely up-to-date. 6158 * The second copy, which is used only as a source for disk writes, 6159 * contains only the safe pointers (i.e., those that have no remaining 6160 * update dependencies). The second copy is freed when all pointers 6161 * are safe. The cache is not allowed to replace indirect blocks with 6162 * pending update dependencies. If a buffer containing an indirect 6163 * block with dependencies is written, these routines will mark it 6164 * dirty again. It can only be successfully written once all the 6165 * dependencies are removed. The ffs_fsync routine in conjunction with 6166 * softdep_sync_metadata work together to get all the dependencies 6167 * removed so that a file can be successfully written to disk. Three 6168 * procedures are used when setting up indirect block pointer 6169 * dependencies. The division is necessary because of the organization 6170 * of the "balloc" routine and because of the distinction between file 6171 * pages and file metadata blocks. 6172 */ 6173 6174 /* 6175 * Allocate a new allocindir structure. 6176 */ 6177 static struct allocindir * 6178 newallocindir(ip, ptrno, newblkno, oldblkno, lbn) 6179 struct inode *ip; /* inode for file being extended */ 6180 int ptrno; /* offset of pointer in indirect block */ 6181 ufs2_daddr_t newblkno; /* disk block number being added */ 6182 ufs2_daddr_t oldblkno; /* previous block number, 0 if none */ 6183 ufs_lbn_t lbn; 6184 { 6185 struct newblk *newblk; 6186 struct allocindir *aip; 6187 struct freefrag *freefrag; 6188 struct jnewblk *jnewblk; 6189 6190 if (oldblkno) 6191 freefrag = newfreefrag(ip, oldblkno, ITOFS(ip)->fs_bsize, lbn, 6192 SINGLETON_KEY); 6193 else 6194 freefrag = NULL; 6195 ACQUIRE_LOCK(ITOUMP(ip)); 6196 if (newblk_lookup(ITOVFS(ip), newblkno, 0, &newblk) == 0) 6197 panic("new_allocindir: lost block"); 6198 KASSERT(newblk->nb_list.wk_type == D_NEWBLK, 6199 ("newallocindir: newblk already initialized")); 6200 WORKITEM_REASSIGN(newblk, D_ALLOCINDIR); 6201 newblk->nb_freefrag = freefrag; 6202 aip = (struct allocindir *)newblk; 6203 aip->ai_offset = ptrno; 6204 aip->ai_oldblkno = oldblkno; 6205 aip->ai_lbn = lbn; 6206 if ((jnewblk = newblk->nb_jnewblk) != NULL) { 6207 jnewblk->jn_ino = ip->i_number; 6208 jnewblk->jn_lbn = lbn; 6209 add_to_journal(&jnewblk->jn_list); 6210 } 6211 if (freefrag && freefrag->ff_jdep != NULL && 6212 freefrag->ff_jdep->wk_type == D_JFREEFRAG) 6213 add_to_journal(freefrag->ff_jdep); 6214 return (aip); 6215 } 6216 6217 /* 6218 * Called just before setting an indirect block pointer 6219 * to a newly allocated file page. 6220 */ 6221 void 6222 softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp) 6223 struct inode *ip; /* inode for file being extended */ 6224 ufs_lbn_t lbn; /* allocated block number within file */ 6225 struct buf *bp; /* buffer with indirect blk referencing page */ 6226 int ptrno; /* offset of pointer in indirect block */ 6227 ufs2_daddr_t newblkno; /* disk block number being added */ 6228 ufs2_daddr_t oldblkno; /* previous block number, 0 if none */ 6229 struct buf *nbp; /* buffer holding allocated page */ 6230 { 6231 struct inodedep *inodedep; 6232 struct freefrag *freefrag; 6233 struct allocindir *aip; 6234 struct pagedep *pagedep; 6235 struct mount *mp; 6236 struct ufsmount *ump; 6237 6238 mp = ITOVFS(ip); 6239 ump = VFSTOUFS(mp); 6240 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 6241 ("softdep_setup_allocindir_page called on non-softdep filesystem")); 6242 KASSERT(lbn == nbp->b_lblkno, 6243 ("softdep_setup_allocindir_page: lbn %jd != lblkno %jd", 6244 lbn, bp->b_lblkno)); 6245 CTR4(KTR_SUJ, 6246 "softdep_setup_allocindir_page: ino %d blkno %jd oldblkno %jd " 6247 "lbn %jd", ip->i_number, newblkno, oldblkno, lbn); 6248 ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_page"); 6249 aip = newallocindir(ip, ptrno, newblkno, oldblkno, lbn); 6250 (void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep); 6251 /* 6252 * If we are allocating a directory page, then we must 6253 * allocate an associated pagedep to track additions and 6254 * deletions. 6255 */ 6256 if ((ip->i_mode & IFMT) == IFDIR) 6257 pagedep_lookup(mp, nbp, ip->i_number, lbn, DEPALLOC, &pagedep); 6258 WORKLIST_INSERT(&nbp->b_dep, &aip->ai_block.nb_list); 6259 freefrag = setup_allocindir_phase2(bp, ip, inodedep, aip, lbn); 6260 FREE_LOCK(ump); 6261 if (freefrag) 6262 handle_workitem_freefrag(freefrag); 6263 } 6264 6265 /* 6266 * Called just before setting an indirect block pointer to a 6267 * newly allocated indirect block. 6268 */ 6269 void 6270 softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno) 6271 struct buf *nbp; /* newly allocated indirect block */ 6272 struct inode *ip; /* inode for file being extended */ 6273 struct buf *bp; /* indirect block referencing allocated block */ 6274 int ptrno; /* offset of pointer in indirect block */ 6275 ufs2_daddr_t newblkno; /* disk block number being added */ 6276 { 6277 struct inodedep *inodedep; 6278 struct allocindir *aip; 6279 struct ufsmount *ump; 6280 ufs_lbn_t lbn; 6281 6282 ump = ITOUMP(ip); 6283 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 6284 ("softdep_setup_allocindir_meta called on non-softdep filesystem")); 6285 CTR3(KTR_SUJ, 6286 "softdep_setup_allocindir_meta: ino %d blkno %jd ptrno %d", 6287 ip->i_number, newblkno, ptrno); 6288 lbn = nbp->b_lblkno; 6289 ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_meta"); 6290 aip = newallocindir(ip, ptrno, newblkno, 0, lbn); 6291 inodedep_lookup(UFSTOVFS(ump), ip->i_number, DEPALLOC, &inodedep); 6292 WORKLIST_INSERT(&nbp->b_dep, &aip->ai_block.nb_list); 6293 if (setup_allocindir_phase2(bp, ip, inodedep, aip, lbn)) 6294 panic("softdep_setup_allocindir_meta: Block already existed"); 6295 FREE_LOCK(ump); 6296 } 6297 6298 static void 6299 indirdep_complete(indirdep) 6300 struct indirdep *indirdep; 6301 { 6302 struct allocindir *aip; 6303 6304 LIST_REMOVE(indirdep, ir_next); 6305 indirdep->ir_state |= DEPCOMPLETE; 6306 6307 while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != NULL) { 6308 LIST_REMOVE(aip, ai_next); 6309 free_newblk(&aip->ai_block); 6310 } 6311 /* 6312 * If this indirdep is not attached to a buf it was simply waiting 6313 * on completion to clear completehd. free_indirdep() asserts 6314 * that nothing is dangling. 6315 */ 6316 if ((indirdep->ir_state & ONWORKLIST) == 0) 6317 free_indirdep(indirdep); 6318 } 6319 6320 static struct indirdep * 6321 indirdep_lookup(mp, ip, bp) 6322 struct mount *mp; 6323 struct inode *ip; 6324 struct buf *bp; 6325 { 6326 struct indirdep *indirdep, *newindirdep; 6327 struct newblk *newblk; 6328 struct ufsmount *ump; 6329 struct worklist *wk; 6330 struct fs *fs; 6331 ufs2_daddr_t blkno; 6332 6333 ump = VFSTOUFS(mp); 6334 LOCK_OWNED(ump); 6335 indirdep = NULL; 6336 newindirdep = NULL; 6337 fs = ump->um_fs; 6338 for (;;) { 6339 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 6340 if (wk->wk_type != D_INDIRDEP) 6341 continue; 6342 indirdep = WK_INDIRDEP(wk); 6343 break; 6344 } 6345 /* Found on the buffer worklist, no new structure to free. */ 6346 if (indirdep != NULL && newindirdep == NULL) 6347 return (indirdep); 6348 if (indirdep != NULL && newindirdep != NULL) 6349 panic("indirdep_lookup: simultaneous create"); 6350 /* None found on the buffer and a new structure is ready. */ 6351 if (indirdep == NULL && newindirdep != NULL) 6352 break; 6353 /* None found and no new structure available. */ 6354 FREE_LOCK(ump); 6355 newindirdep = malloc(sizeof(struct indirdep), 6356 M_INDIRDEP, M_SOFTDEP_FLAGS); 6357 workitem_alloc(&newindirdep->ir_list, D_INDIRDEP, mp); 6358 newindirdep->ir_state = ATTACHED; 6359 if (I_IS_UFS1(ip)) 6360 newindirdep->ir_state |= UFS1FMT; 6361 TAILQ_INIT(&newindirdep->ir_trunc); 6362 newindirdep->ir_saveddata = NULL; 6363 LIST_INIT(&newindirdep->ir_deplisthd); 6364 LIST_INIT(&newindirdep->ir_donehd); 6365 LIST_INIT(&newindirdep->ir_writehd); 6366 LIST_INIT(&newindirdep->ir_completehd); 6367 if (bp->b_blkno == bp->b_lblkno) { 6368 ufs_bmaparray(bp->b_vp, bp->b_lblkno, &blkno, bp, 6369 NULL, NULL); 6370 bp->b_blkno = blkno; 6371 } 6372 newindirdep->ir_freeblks = NULL; 6373 newindirdep->ir_savebp = 6374 getblk(ump->um_devvp, bp->b_blkno, bp->b_bcount, 0, 0, 0); 6375 newindirdep->ir_bp = bp; 6376 BUF_KERNPROC(newindirdep->ir_savebp); 6377 bcopy(bp->b_data, newindirdep->ir_savebp->b_data, bp->b_bcount); 6378 ACQUIRE_LOCK(ump); 6379 } 6380 indirdep = newindirdep; 6381 WORKLIST_INSERT(&bp->b_dep, &indirdep->ir_list); 6382 /* 6383 * If the block is not yet allocated we don't set DEPCOMPLETE so 6384 * that we don't free dependencies until the pointers are valid. 6385 * This could search b_dep for D_ALLOCDIRECT/D_ALLOCINDIR rather 6386 * than using the hash. 6387 */ 6388 if (newblk_lookup(mp, dbtofsb(fs, bp->b_blkno), 0, &newblk)) 6389 LIST_INSERT_HEAD(&newblk->nb_indirdeps, indirdep, ir_next); 6390 else 6391 indirdep->ir_state |= DEPCOMPLETE; 6392 return (indirdep); 6393 } 6394 6395 /* 6396 * Called to finish the allocation of the "aip" allocated 6397 * by one of the two routines above. 6398 */ 6399 static struct freefrag * 6400 setup_allocindir_phase2(bp, ip, inodedep, aip, lbn) 6401 struct buf *bp; /* in-memory copy of the indirect block */ 6402 struct inode *ip; /* inode for file being extended */ 6403 struct inodedep *inodedep; /* Inodedep for ip */ 6404 struct allocindir *aip; /* allocindir allocated by the above routines */ 6405 ufs_lbn_t lbn; /* Logical block number for this block. */ 6406 { 6407 struct fs *fs; 6408 struct indirdep *indirdep; 6409 struct allocindir *oldaip; 6410 struct freefrag *freefrag; 6411 struct mount *mp; 6412 struct ufsmount *ump; 6413 6414 mp = ITOVFS(ip); 6415 ump = VFSTOUFS(mp); 6416 LOCK_OWNED(ump); 6417 fs = ump->um_fs; 6418 if (bp->b_lblkno >= 0) 6419 panic("setup_allocindir_phase2: not indir blk"); 6420 KASSERT(aip->ai_offset >= 0 && aip->ai_offset < NINDIR(fs), 6421 ("setup_allocindir_phase2: Bad offset %d", aip->ai_offset)); 6422 indirdep = indirdep_lookup(mp, ip, bp); 6423 KASSERT(indirdep->ir_savebp != NULL, 6424 ("setup_allocindir_phase2 NULL ir_savebp")); 6425 aip->ai_indirdep = indirdep; 6426 /* 6427 * Check for an unwritten dependency for this indirect offset. If 6428 * there is, merge the old dependency into the new one. This happens 6429 * as a result of reallocblk only. 6430 */ 6431 freefrag = NULL; 6432 if (aip->ai_oldblkno != 0) { 6433 LIST_FOREACH(oldaip, &indirdep->ir_deplisthd, ai_next) { 6434 if (oldaip->ai_offset == aip->ai_offset) { 6435 freefrag = allocindir_merge(aip, oldaip); 6436 goto done; 6437 } 6438 } 6439 LIST_FOREACH(oldaip, &indirdep->ir_donehd, ai_next) { 6440 if (oldaip->ai_offset == aip->ai_offset) { 6441 freefrag = allocindir_merge(aip, oldaip); 6442 goto done; 6443 } 6444 } 6445 } 6446 done: 6447 LIST_INSERT_HEAD(&indirdep->ir_deplisthd, aip, ai_next); 6448 return (freefrag); 6449 } 6450 6451 /* 6452 * Merge two allocindirs which refer to the same block. Move newblock 6453 * dependencies and setup the freefrags appropriately. 6454 */ 6455 static struct freefrag * 6456 allocindir_merge(aip, oldaip) 6457 struct allocindir *aip; 6458 struct allocindir *oldaip; 6459 { 6460 struct freefrag *freefrag; 6461 struct worklist *wk; 6462 6463 if (oldaip->ai_newblkno != aip->ai_oldblkno) 6464 panic("allocindir_merge: blkno"); 6465 aip->ai_oldblkno = oldaip->ai_oldblkno; 6466 freefrag = aip->ai_freefrag; 6467 aip->ai_freefrag = oldaip->ai_freefrag; 6468 oldaip->ai_freefrag = NULL; 6469 KASSERT(freefrag != NULL, ("setup_allocindir_phase2: No freefrag")); 6470 /* 6471 * If we are tracking a new directory-block allocation, 6472 * move it from the old allocindir to the new allocindir. 6473 */ 6474 if ((wk = LIST_FIRST(&oldaip->ai_newdirblk)) != NULL) { 6475 WORKLIST_REMOVE(wk); 6476 if (!LIST_EMPTY(&oldaip->ai_newdirblk)) 6477 panic("allocindir_merge: extra newdirblk"); 6478 WORKLIST_INSERT(&aip->ai_newdirblk, wk); 6479 } 6480 /* 6481 * We can skip journaling for this freefrag and just complete 6482 * any pending journal work for the allocindir that is being 6483 * removed after the freefrag completes. 6484 */ 6485 if (freefrag->ff_jdep) 6486 cancel_jfreefrag(WK_JFREEFRAG(freefrag->ff_jdep)); 6487 LIST_REMOVE(oldaip, ai_next); 6488 freefrag->ff_jdep = (struct worklist *)cancel_newblk(&oldaip->ai_block, 6489 &freefrag->ff_list, &freefrag->ff_jwork); 6490 free_newblk(&oldaip->ai_block); 6491 6492 return (freefrag); 6493 } 6494 6495 static inline void 6496 setup_freedirect(freeblks, ip, i, needj) 6497 struct freeblks *freeblks; 6498 struct inode *ip; 6499 int i; 6500 int needj; 6501 { 6502 struct ufsmount *ump; 6503 ufs2_daddr_t blkno; 6504 int frags; 6505 6506 blkno = DIP(ip, i_db[i]); 6507 if (blkno == 0) 6508 return; 6509 DIP_SET(ip, i_db[i], 0); 6510 ump = ITOUMP(ip); 6511 frags = sblksize(ump->um_fs, ip->i_size, i); 6512 frags = numfrags(ump->um_fs, frags); 6513 newfreework(ump, freeblks, NULL, i, blkno, frags, 0, needj); 6514 } 6515 6516 static inline void 6517 setup_freeext(freeblks, ip, i, needj) 6518 struct freeblks *freeblks; 6519 struct inode *ip; 6520 int i; 6521 int needj; 6522 { 6523 struct ufsmount *ump; 6524 ufs2_daddr_t blkno; 6525 int frags; 6526 6527 blkno = ip->i_din2->di_extb[i]; 6528 if (blkno == 0) 6529 return; 6530 ip->i_din2->di_extb[i] = 0; 6531 ump = ITOUMP(ip); 6532 frags = sblksize(ump->um_fs, ip->i_din2->di_extsize, i); 6533 frags = numfrags(ump->um_fs, frags); 6534 newfreework(ump, freeblks, NULL, -1 - i, blkno, frags, 0, needj); 6535 } 6536 6537 static inline void 6538 setup_freeindir(freeblks, ip, i, lbn, needj) 6539 struct freeblks *freeblks; 6540 struct inode *ip; 6541 int i; 6542 ufs_lbn_t lbn; 6543 int needj; 6544 { 6545 struct ufsmount *ump; 6546 ufs2_daddr_t blkno; 6547 6548 blkno = DIP(ip, i_ib[i]); 6549 if (blkno == 0) 6550 return; 6551 DIP_SET(ip, i_ib[i], 0); 6552 ump = ITOUMP(ip); 6553 newfreework(ump, freeblks, NULL, lbn, blkno, ump->um_fs->fs_frag, 6554 0, needj); 6555 } 6556 6557 static inline struct freeblks * 6558 newfreeblks(mp, ip) 6559 struct mount *mp; 6560 struct inode *ip; 6561 { 6562 struct freeblks *freeblks; 6563 6564 freeblks = malloc(sizeof(struct freeblks), 6565 M_FREEBLKS, M_SOFTDEP_FLAGS|M_ZERO); 6566 workitem_alloc(&freeblks->fb_list, D_FREEBLKS, mp); 6567 LIST_INIT(&freeblks->fb_jblkdephd); 6568 LIST_INIT(&freeblks->fb_jwork); 6569 freeblks->fb_ref = 0; 6570 freeblks->fb_cgwait = 0; 6571 freeblks->fb_state = ATTACHED; 6572 freeblks->fb_uid = ip->i_uid; 6573 freeblks->fb_inum = ip->i_number; 6574 freeblks->fb_vtype = ITOV(ip)->v_type; 6575 freeblks->fb_modrev = DIP(ip, i_modrev); 6576 freeblks->fb_devvp = ITODEVVP(ip); 6577 freeblks->fb_chkcnt = 0; 6578 freeblks->fb_len = 0; 6579 6580 return (freeblks); 6581 } 6582 6583 static void 6584 trunc_indirdep(indirdep, freeblks, bp, off) 6585 struct indirdep *indirdep; 6586 struct freeblks *freeblks; 6587 struct buf *bp; 6588 int off; 6589 { 6590 struct allocindir *aip, *aipn; 6591 6592 /* 6593 * The first set of allocindirs won't be in savedbp. 6594 */ 6595 LIST_FOREACH_SAFE(aip, &indirdep->ir_deplisthd, ai_next, aipn) 6596 if (aip->ai_offset > off) 6597 cancel_allocindir(aip, bp, freeblks, 1); 6598 LIST_FOREACH_SAFE(aip, &indirdep->ir_donehd, ai_next, aipn) 6599 if (aip->ai_offset > off) 6600 cancel_allocindir(aip, bp, freeblks, 1); 6601 /* 6602 * These will exist in savedbp. 6603 */ 6604 LIST_FOREACH_SAFE(aip, &indirdep->ir_writehd, ai_next, aipn) 6605 if (aip->ai_offset > off) 6606 cancel_allocindir(aip, NULL, freeblks, 0); 6607 LIST_FOREACH_SAFE(aip, &indirdep->ir_completehd, ai_next, aipn) 6608 if (aip->ai_offset > off) 6609 cancel_allocindir(aip, NULL, freeblks, 0); 6610 } 6611 6612 /* 6613 * Follow the chain of indirects down to lastlbn creating a freework 6614 * structure for each. This will be used to start indir_trunc() at 6615 * the right offset and create the journal records for the parrtial 6616 * truncation. A second step will handle the truncated dependencies. 6617 */ 6618 static int 6619 setup_trunc_indir(freeblks, ip, lbn, lastlbn, blkno) 6620 struct freeblks *freeblks; 6621 struct inode *ip; 6622 ufs_lbn_t lbn; 6623 ufs_lbn_t lastlbn; 6624 ufs2_daddr_t blkno; 6625 { 6626 struct indirdep *indirdep; 6627 struct indirdep *indirn; 6628 struct freework *freework; 6629 struct newblk *newblk; 6630 struct mount *mp; 6631 struct ufsmount *ump; 6632 struct buf *bp; 6633 uint8_t *start; 6634 uint8_t *end; 6635 ufs_lbn_t lbnadd; 6636 int level; 6637 int error; 6638 int off; 6639 6640 freework = NULL; 6641 if (blkno == 0) 6642 return (0); 6643 mp = freeblks->fb_list.wk_mp; 6644 ump = VFSTOUFS(mp); 6645 /* 6646 * Here, calls to VOP_BMAP() will fail. However, we already have 6647 * the on-disk address, so we just pass it to bread() instead of 6648 * having bread() attempt to calculate it using VOP_BMAP(). 6649 */ 6650 error = ffs_breadz(ump, ITOV(ip), lbn, blkptrtodb(ump, blkno), 6651 (int)mp->mnt_stat.f_iosize, NULL, NULL, 0, NOCRED, 0, NULL, &bp); 6652 if (error) 6653 return (error); 6654 level = lbn_level(lbn); 6655 lbnadd = lbn_offset(ump->um_fs, level); 6656 /* 6657 * Compute the offset of the last block we want to keep. Store 6658 * in the freework the first block we want to completely free. 6659 */ 6660 off = (lastlbn - -(lbn + level)) / lbnadd; 6661 if (off + 1 == NINDIR(ump->um_fs)) 6662 goto nowork; 6663 freework = newfreework(ump, freeblks, NULL, lbn, blkno, 0, off + 1, 0); 6664 /* 6665 * Link the freework into the indirdep. This will prevent any new 6666 * allocations from proceeding until we are finished with the 6667 * truncate and the block is written. 6668 */ 6669 ACQUIRE_LOCK(ump); 6670 indirdep = indirdep_lookup(mp, ip, bp); 6671 if (indirdep->ir_freeblks) 6672 panic("setup_trunc_indir: indirdep already truncated."); 6673 TAILQ_INSERT_TAIL(&indirdep->ir_trunc, freework, fw_next); 6674 freework->fw_indir = indirdep; 6675 /* 6676 * Cancel any allocindirs that will not make it to disk. 6677 * We have to do this for all copies of the indirdep that 6678 * live on this newblk. 6679 */ 6680 if ((indirdep->ir_state & DEPCOMPLETE) == 0) { 6681 if (newblk_lookup(mp, dbtofsb(ump->um_fs, bp->b_blkno), 0, 6682 &newblk) == 0) 6683 panic("setup_trunc_indir: lost block"); 6684 LIST_FOREACH(indirn, &newblk->nb_indirdeps, ir_next) 6685 trunc_indirdep(indirn, freeblks, bp, off); 6686 } else 6687 trunc_indirdep(indirdep, freeblks, bp, off); 6688 FREE_LOCK(ump); 6689 /* 6690 * Creation is protected by the buf lock. The saveddata is only 6691 * needed if a full truncation follows a partial truncation but it 6692 * is difficult to allocate in that case so we fetch it anyway. 6693 */ 6694 if (indirdep->ir_saveddata == NULL) 6695 indirdep->ir_saveddata = malloc(bp->b_bcount, M_INDIRDEP, 6696 M_SOFTDEP_FLAGS); 6697 nowork: 6698 /* Fetch the blkno of the child and the zero start offset. */ 6699 if (I_IS_UFS1(ip)) { 6700 blkno = ((ufs1_daddr_t *)bp->b_data)[off]; 6701 start = (uint8_t *)&((ufs1_daddr_t *)bp->b_data)[off+1]; 6702 } else { 6703 blkno = ((ufs2_daddr_t *)bp->b_data)[off]; 6704 start = (uint8_t *)&((ufs2_daddr_t *)bp->b_data)[off+1]; 6705 } 6706 if (freework) { 6707 /* Zero the truncated pointers. */ 6708 end = bp->b_data + bp->b_bcount; 6709 bzero(start, end - start); 6710 bdwrite(bp); 6711 } else 6712 bqrelse(bp); 6713 if (level == 0) 6714 return (0); 6715 lbn++; /* adjust level */ 6716 lbn -= (off * lbnadd); 6717 return setup_trunc_indir(freeblks, ip, lbn, lastlbn, blkno); 6718 } 6719 6720 /* 6721 * Complete the partial truncation of an indirect block setup by 6722 * setup_trunc_indir(). This zeros the truncated pointers in the saved 6723 * copy and writes them to disk before the freeblks is allowed to complete. 6724 */ 6725 static void 6726 complete_trunc_indir(freework) 6727 struct freework *freework; 6728 { 6729 struct freework *fwn; 6730 struct indirdep *indirdep; 6731 struct ufsmount *ump; 6732 struct buf *bp; 6733 uintptr_t start; 6734 int count; 6735 6736 ump = VFSTOUFS(freework->fw_list.wk_mp); 6737 LOCK_OWNED(ump); 6738 indirdep = freework->fw_indir; 6739 for (;;) { 6740 bp = indirdep->ir_bp; 6741 /* See if the block was discarded. */ 6742 if (bp == NULL) 6743 break; 6744 /* Inline part of getdirtybuf(). We dont want bremfree. */ 6745 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) == 0) 6746 break; 6747 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, 6748 LOCK_PTR(ump)) == 0) 6749 BUF_UNLOCK(bp); 6750 ACQUIRE_LOCK(ump); 6751 } 6752 freework->fw_state |= DEPCOMPLETE; 6753 TAILQ_REMOVE(&indirdep->ir_trunc, freework, fw_next); 6754 /* 6755 * Zero the pointers in the saved copy. 6756 */ 6757 if (indirdep->ir_state & UFS1FMT) 6758 start = sizeof(ufs1_daddr_t); 6759 else 6760 start = sizeof(ufs2_daddr_t); 6761 start *= freework->fw_start; 6762 count = indirdep->ir_savebp->b_bcount - start; 6763 start += (uintptr_t)indirdep->ir_savebp->b_data; 6764 bzero((char *)start, count); 6765 /* 6766 * We need to start the next truncation in the list if it has not 6767 * been started yet. 6768 */ 6769 fwn = TAILQ_FIRST(&indirdep->ir_trunc); 6770 if (fwn != NULL) { 6771 if (fwn->fw_freeblks == indirdep->ir_freeblks) 6772 TAILQ_REMOVE(&indirdep->ir_trunc, fwn, fw_next); 6773 if ((fwn->fw_state & ONWORKLIST) == 0) 6774 freework_enqueue(fwn); 6775 } 6776 /* 6777 * If bp is NULL the block was fully truncated, restore 6778 * the saved block list otherwise free it if it is no 6779 * longer needed. 6780 */ 6781 if (TAILQ_EMPTY(&indirdep->ir_trunc)) { 6782 if (bp == NULL) 6783 bcopy(indirdep->ir_saveddata, 6784 indirdep->ir_savebp->b_data, 6785 indirdep->ir_savebp->b_bcount); 6786 free(indirdep->ir_saveddata, M_INDIRDEP); 6787 indirdep->ir_saveddata = NULL; 6788 } 6789 /* 6790 * When bp is NULL there is a full truncation pending. We 6791 * must wait for this full truncation to be journaled before 6792 * we can release this freework because the disk pointers will 6793 * never be written as zero. 6794 */ 6795 if (bp == NULL) { 6796 if (LIST_EMPTY(&indirdep->ir_freeblks->fb_jblkdephd)) 6797 handle_written_freework(freework); 6798 else 6799 WORKLIST_INSERT(&indirdep->ir_freeblks->fb_freeworkhd, 6800 &freework->fw_list); 6801 if (fwn == NULL) { 6802 freework->fw_indir = (void *)0x0000deadbeef0000; 6803 bp = indirdep->ir_savebp; 6804 indirdep->ir_savebp = NULL; 6805 free_indirdep(indirdep); 6806 FREE_LOCK(ump); 6807 brelse(bp); 6808 ACQUIRE_LOCK(ump); 6809 } 6810 } else { 6811 /* Complete when the real copy is written. */ 6812 WORKLIST_INSERT(&bp->b_dep, &freework->fw_list); 6813 BUF_UNLOCK(bp); 6814 } 6815 } 6816 6817 /* 6818 * Calculate the number of blocks we are going to release where datablocks 6819 * is the current total and length is the new file size. 6820 */ 6821 static ufs2_daddr_t 6822 blkcount(fs, datablocks, length) 6823 struct fs *fs; 6824 ufs2_daddr_t datablocks; 6825 off_t length; 6826 { 6827 off_t totblks, numblks; 6828 6829 totblks = 0; 6830 numblks = howmany(length, fs->fs_bsize); 6831 if (numblks <= UFS_NDADDR) { 6832 totblks = howmany(length, fs->fs_fsize); 6833 goto out; 6834 } 6835 totblks = blkstofrags(fs, numblks); 6836 numblks -= UFS_NDADDR; 6837 /* 6838 * Count all single, then double, then triple indirects required. 6839 * Subtracting one indirects worth of blocks for each pass 6840 * acknowledges one of each pointed to by the inode. 6841 */ 6842 for (;;) { 6843 totblks += blkstofrags(fs, howmany(numblks, NINDIR(fs))); 6844 numblks -= NINDIR(fs); 6845 if (numblks <= 0) 6846 break; 6847 numblks = howmany(numblks, NINDIR(fs)); 6848 } 6849 out: 6850 totblks = fsbtodb(fs, totblks); 6851 /* 6852 * Handle sparse files. We can't reclaim more blocks than the inode 6853 * references. We will correct it later in handle_complete_freeblks() 6854 * when we know the real count. 6855 */ 6856 if (totblks > datablocks) 6857 return (0); 6858 return (datablocks - totblks); 6859 } 6860 6861 /* 6862 * Handle freeblocks for journaled softupdate filesystems. 6863 * 6864 * Contrary to normal softupdates, we must preserve the block pointers in 6865 * indirects until their subordinates are free. This is to avoid journaling 6866 * every block that is freed which may consume more space than the journal 6867 * itself. The recovery program will see the free block journals at the 6868 * base of the truncated area and traverse them to reclaim space. The 6869 * pointers in the inode may be cleared immediately after the journal 6870 * records are written because each direct and indirect pointer in the 6871 * inode is recorded in a journal. This permits full truncation to proceed 6872 * asynchronously. The write order is journal -> inode -> cgs -> indirects. 6873 * 6874 * The algorithm is as follows: 6875 * 1) Traverse the in-memory state and create journal entries to release 6876 * the relevant blocks and full indirect trees. 6877 * 2) Traverse the indirect block chain adding partial truncation freework 6878 * records to indirects in the path to lastlbn. The freework will 6879 * prevent new allocation dependencies from being satisfied in this 6880 * indirect until the truncation completes. 6881 * 3) Read and lock the inode block, performing an update with the new size 6882 * and pointers. This prevents truncated data from becoming valid on 6883 * disk through step 4. 6884 * 4) Reap unsatisfied dependencies that are beyond the truncated area, 6885 * eliminate journal work for those records that do not require it. 6886 * 5) Schedule the journal records to be written followed by the inode block. 6887 * 6) Allocate any necessary frags for the end of file. 6888 * 7) Zero any partially truncated blocks. 6889 * 6890 * From this truncation proceeds asynchronously using the freework and 6891 * indir_trunc machinery. The file will not be extended again into a 6892 * partially truncated indirect block until all work is completed but 6893 * the normal dependency mechanism ensures that it is rolled back/forward 6894 * as appropriate. Further truncation may occur without delay and is 6895 * serialized in indir_trunc(). 6896 */ 6897 void 6898 softdep_journal_freeblocks(ip, cred, length, flags) 6899 struct inode *ip; /* The inode whose length is to be reduced */ 6900 struct ucred *cred; 6901 off_t length; /* The new length for the file */ 6902 int flags; /* IO_EXT and/or IO_NORMAL */ 6903 { 6904 struct freeblks *freeblks, *fbn; 6905 struct worklist *wk, *wkn; 6906 struct inodedep *inodedep; 6907 struct jblkdep *jblkdep; 6908 struct allocdirect *adp, *adpn; 6909 struct ufsmount *ump; 6910 struct fs *fs; 6911 struct buf *bp; 6912 struct vnode *vp; 6913 struct mount *mp; 6914 daddr_t dbn; 6915 ufs2_daddr_t extblocks, datablocks; 6916 ufs_lbn_t tmpval, lbn, lastlbn; 6917 int frags, lastoff, iboff, allocblock, needj, error, i; 6918 6919 ump = ITOUMP(ip); 6920 mp = UFSTOVFS(ump); 6921 fs = ump->um_fs; 6922 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 6923 ("softdep_journal_freeblocks called on non-softdep filesystem")); 6924 vp = ITOV(ip); 6925 needj = 1; 6926 iboff = -1; 6927 allocblock = 0; 6928 extblocks = 0; 6929 datablocks = 0; 6930 frags = 0; 6931 freeblks = newfreeblks(mp, ip); 6932 ACQUIRE_LOCK(ump); 6933 /* 6934 * If we're truncating a removed file that will never be written 6935 * we don't need to journal the block frees. The canceled journals 6936 * for the allocations will suffice. 6937 */ 6938 inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep); 6939 if ((inodedep->id_state & (UNLINKED | DEPCOMPLETE)) == UNLINKED && 6940 length == 0) 6941 needj = 0; 6942 CTR3(KTR_SUJ, "softdep_journal_freeblks: ip %d length %ld needj %d", 6943 ip->i_number, length, needj); 6944 FREE_LOCK(ump); 6945 /* 6946 * Calculate the lbn that we are truncating to. This results in -1 6947 * if we're truncating the 0 bytes. So it is the last lbn we want 6948 * to keep, not the first lbn we want to truncate. 6949 */ 6950 lastlbn = lblkno(fs, length + fs->fs_bsize - 1) - 1; 6951 lastoff = blkoff(fs, length); 6952 /* 6953 * Compute frags we are keeping in lastlbn. 0 means all. 6954 */ 6955 if (lastlbn >= 0 && lastlbn < UFS_NDADDR) { 6956 frags = fragroundup(fs, lastoff); 6957 /* adp offset of last valid allocdirect. */ 6958 iboff = lastlbn; 6959 } else if (lastlbn > 0) 6960 iboff = UFS_NDADDR; 6961 if (fs->fs_magic == FS_UFS2_MAGIC) 6962 extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize)); 6963 /* 6964 * Handle normal data blocks and indirects. This section saves 6965 * values used after the inode update to complete frag and indirect 6966 * truncation. 6967 */ 6968 if ((flags & IO_NORMAL) != 0) { 6969 /* 6970 * Handle truncation of whole direct and indirect blocks. 6971 */ 6972 for (i = iboff + 1; i < UFS_NDADDR; i++) 6973 setup_freedirect(freeblks, ip, i, needj); 6974 for (i = 0, tmpval = NINDIR(fs), lbn = UFS_NDADDR; 6975 i < UFS_NIADDR; 6976 i++, lbn += tmpval, tmpval *= NINDIR(fs)) { 6977 /* Release a whole indirect tree. */ 6978 if (lbn > lastlbn) { 6979 setup_freeindir(freeblks, ip, i, -lbn -i, 6980 needj); 6981 continue; 6982 } 6983 iboff = i + UFS_NDADDR; 6984 /* 6985 * Traverse partially truncated indirect tree. 6986 */ 6987 if (lbn <= lastlbn && lbn + tmpval - 1 > lastlbn) 6988 setup_trunc_indir(freeblks, ip, -lbn - i, 6989 lastlbn, DIP(ip, i_ib[i])); 6990 } 6991 /* 6992 * Handle partial truncation to a frag boundary. 6993 */ 6994 if (frags) { 6995 ufs2_daddr_t blkno; 6996 long oldfrags; 6997 6998 oldfrags = blksize(fs, ip, lastlbn); 6999 blkno = DIP(ip, i_db[lastlbn]); 7000 if (blkno && oldfrags != frags) { 7001 oldfrags -= frags; 7002 oldfrags = numfrags(fs, oldfrags); 7003 blkno += numfrags(fs, frags); 7004 newfreework(ump, freeblks, NULL, lastlbn, 7005 blkno, oldfrags, 0, needj); 7006 if (needj) 7007 adjust_newfreework(freeblks, 7008 numfrags(fs, frags)); 7009 } else if (blkno == 0) 7010 allocblock = 1; 7011 } 7012 /* 7013 * Add a journal record for partial truncate if we are 7014 * handling indirect blocks. Non-indirects need no extra 7015 * journaling. 7016 */ 7017 if (length != 0 && lastlbn >= UFS_NDADDR) { 7018 UFS_INODE_SET_FLAG(ip, IN_TRUNCATED); 7019 newjtrunc(freeblks, length, 0); 7020 } 7021 ip->i_size = length; 7022 DIP_SET(ip, i_size, ip->i_size); 7023 UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE); 7024 datablocks = DIP(ip, i_blocks) - extblocks; 7025 if (length != 0) 7026 datablocks = blkcount(fs, datablocks, length); 7027 freeblks->fb_len = length; 7028 } 7029 if ((flags & IO_EXT) != 0) { 7030 for (i = 0; i < UFS_NXADDR; i++) 7031 setup_freeext(freeblks, ip, i, needj); 7032 ip->i_din2->di_extsize = 0; 7033 datablocks += extblocks; 7034 UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE); 7035 } 7036 #ifdef QUOTA 7037 /* Reference the quotas in case the block count is wrong in the end. */ 7038 quotaref(vp, freeblks->fb_quota); 7039 (void) chkdq(ip, -datablocks, NOCRED, FORCE); 7040 #endif 7041 freeblks->fb_chkcnt = -datablocks; 7042 UFS_LOCK(ump); 7043 fs->fs_pendingblocks += datablocks; 7044 UFS_UNLOCK(ump); 7045 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - datablocks); 7046 /* 7047 * Handle truncation of incomplete alloc direct dependencies. We 7048 * hold the inode block locked to prevent incomplete dependencies 7049 * from reaching the disk while we are eliminating those that 7050 * have been truncated. This is a partially inlined ffs_update(). 7051 */ 7052 ufs_itimes(vp); 7053 ip->i_flag &= ~(IN_LAZYACCESS | IN_LAZYMOD | IN_MODIFIED); 7054 dbn = fsbtodb(fs, ino_to_fsba(fs, ip->i_number)); 7055 error = ffs_breadz(ump, ump->um_devvp, dbn, dbn, (int)fs->fs_bsize, 7056 NULL, NULL, 0, cred, 0, NULL, &bp); 7057 if (error) { 7058 softdep_error("softdep_journal_freeblocks", error); 7059 return; 7060 } 7061 if (bp->b_bufsize == fs->fs_bsize) 7062 bp->b_flags |= B_CLUSTEROK; 7063 softdep_update_inodeblock(ip, bp, 0); 7064 if (ump->um_fstype == UFS1) { 7065 *((struct ufs1_dinode *)bp->b_data + 7066 ino_to_fsbo(fs, ip->i_number)) = *ip->i_din1; 7067 } else { 7068 ffs_update_dinode_ckhash(fs, ip->i_din2); 7069 *((struct ufs2_dinode *)bp->b_data + 7070 ino_to_fsbo(fs, ip->i_number)) = *ip->i_din2; 7071 } 7072 ACQUIRE_LOCK(ump); 7073 (void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep); 7074 if ((inodedep->id_state & IOSTARTED) != 0) 7075 panic("softdep_setup_freeblocks: inode busy"); 7076 /* 7077 * Add the freeblks structure to the list of operations that 7078 * must await the zero'ed inode being written to disk. If we 7079 * still have a bitmap dependency (needj), then the inode 7080 * has never been written to disk, so we can process the 7081 * freeblks below once we have deleted the dependencies. 7082 */ 7083 if (needj) 7084 WORKLIST_INSERT(&bp->b_dep, &freeblks->fb_list); 7085 else 7086 freeblks->fb_state |= COMPLETE; 7087 if ((flags & IO_NORMAL) != 0) { 7088 TAILQ_FOREACH_SAFE(adp, &inodedep->id_inoupdt, ad_next, adpn) { 7089 if (adp->ad_offset > iboff) 7090 cancel_allocdirect(&inodedep->id_inoupdt, adp, 7091 freeblks); 7092 /* 7093 * Truncate the allocdirect. We could eliminate 7094 * or modify journal records as well. 7095 */ 7096 else if (adp->ad_offset == iboff && frags) 7097 adp->ad_newsize = frags; 7098 } 7099 } 7100 if ((flags & IO_EXT) != 0) 7101 while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL) 7102 cancel_allocdirect(&inodedep->id_extupdt, adp, 7103 freeblks); 7104 /* 7105 * Scan the bufwait list for newblock dependencies that will never 7106 * make it to disk. 7107 */ 7108 LIST_FOREACH_SAFE(wk, &inodedep->id_bufwait, wk_list, wkn) { 7109 if (wk->wk_type != D_ALLOCDIRECT) 7110 continue; 7111 adp = WK_ALLOCDIRECT(wk); 7112 if (((flags & IO_NORMAL) != 0 && (adp->ad_offset > iboff)) || 7113 ((flags & IO_EXT) != 0 && (adp->ad_state & EXTDATA))) { 7114 cancel_jfreeblk(freeblks, adp->ad_newblkno); 7115 cancel_newblk(WK_NEWBLK(wk), NULL, &freeblks->fb_jwork); 7116 WORKLIST_INSERT(&freeblks->fb_freeworkhd, wk); 7117 } 7118 } 7119 /* 7120 * Add journal work. 7121 */ 7122 LIST_FOREACH(jblkdep, &freeblks->fb_jblkdephd, jb_deps) 7123 add_to_journal(&jblkdep->jb_list); 7124 FREE_LOCK(ump); 7125 bdwrite(bp); 7126 /* 7127 * Truncate dependency structures beyond length. 7128 */ 7129 trunc_dependencies(ip, freeblks, lastlbn, frags, flags); 7130 /* 7131 * This is only set when we need to allocate a fragment because 7132 * none existed at the end of a frag-sized file. It handles only 7133 * allocating a new, zero filled block. 7134 */ 7135 if (allocblock) { 7136 ip->i_size = length - lastoff; 7137 DIP_SET(ip, i_size, ip->i_size); 7138 error = UFS_BALLOC(vp, length - 1, 1, cred, BA_CLRBUF, &bp); 7139 if (error != 0) { 7140 softdep_error("softdep_journal_freeblks", error); 7141 return; 7142 } 7143 ip->i_size = length; 7144 DIP_SET(ip, i_size, length); 7145 UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE | IN_UPDATE); 7146 allocbuf(bp, frags); 7147 ffs_update(vp, 0); 7148 bawrite(bp); 7149 } else if (lastoff != 0 && vp->v_type != VDIR) { 7150 int size; 7151 7152 /* 7153 * Zero the end of a truncated frag or block. 7154 */ 7155 size = sblksize(fs, length, lastlbn); 7156 error = bread(vp, lastlbn, size, cred, &bp); 7157 if (error == 0) { 7158 bzero((char *)bp->b_data + lastoff, size - lastoff); 7159 bawrite(bp); 7160 } else if (!ffs_fsfail_cleanup(ump, error)) { 7161 softdep_error("softdep_journal_freeblks", error); 7162 return; 7163 } 7164 } 7165 ACQUIRE_LOCK(ump); 7166 inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep); 7167 TAILQ_INSERT_TAIL(&inodedep->id_freeblklst, freeblks, fb_next); 7168 freeblks->fb_state |= DEPCOMPLETE | ONDEPLIST; 7169 /* 7170 * We zero earlier truncations so they don't erroneously 7171 * update i_blocks. 7172 */ 7173 if (freeblks->fb_len == 0 && (flags & IO_NORMAL) != 0) 7174 TAILQ_FOREACH(fbn, &inodedep->id_freeblklst, fb_next) 7175 fbn->fb_len = 0; 7176 if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE && 7177 LIST_EMPTY(&freeblks->fb_jblkdephd)) 7178 freeblks->fb_state |= INPROGRESS; 7179 else 7180 freeblks = NULL; 7181 FREE_LOCK(ump); 7182 if (freeblks) 7183 handle_workitem_freeblocks(freeblks, 0); 7184 trunc_pages(ip, length, extblocks, flags); 7185 7186 } 7187 7188 /* 7189 * Flush a JOP_SYNC to the journal. 7190 */ 7191 void 7192 softdep_journal_fsync(ip) 7193 struct inode *ip; 7194 { 7195 struct jfsync *jfsync; 7196 struct ufsmount *ump; 7197 7198 ump = ITOUMP(ip); 7199 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 7200 ("softdep_journal_fsync called on non-softdep filesystem")); 7201 if ((ip->i_flag & IN_TRUNCATED) == 0) 7202 return; 7203 ip->i_flag &= ~IN_TRUNCATED; 7204 jfsync = malloc(sizeof(*jfsync), M_JFSYNC, M_SOFTDEP_FLAGS | M_ZERO); 7205 workitem_alloc(&jfsync->jfs_list, D_JFSYNC, UFSTOVFS(ump)); 7206 jfsync->jfs_size = ip->i_size; 7207 jfsync->jfs_ino = ip->i_number; 7208 ACQUIRE_LOCK(ump); 7209 add_to_journal(&jfsync->jfs_list); 7210 jwait(&jfsync->jfs_list, MNT_WAIT); 7211 FREE_LOCK(ump); 7212 } 7213 7214 /* 7215 * Block de-allocation dependencies. 7216 * 7217 * When blocks are de-allocated, the on-disk pointers must be nullified before 7218 * the blocks are made available for use by other files. (The true 7219 * requirement is that old pointers must be nullified before new on-disk 7220 * pointers are set. We chose this slightly more stringent requirement to 7221 * reduce complexity.) Our implementation handles this dependency by updating 7222 * the inode (or indirect block) appropriately but delaying the actual block 7223 * de-allocation (i.e., freemap and free space count manipulation) until 7224 * after the updated versions reach stable storage. After the disk is 7225 * updated, the blocks can be safely de-allocated whenever it is convenient. 7226 * This implementation handles only the common case of reducing a file's 7227 * length to zero. Other cases are handled by the conventional synchronous 7228 * write approach. 7229 * 7230 * The ffs implementation with which we worked double-checks 7231 * the state of the block pointers and file size as it reduces 7232 * a file's length. Some of this code is replicated here in our 7233 * soft updates implementation. The freeblks->fb_chkcnt field is 7234 * used to transfer a part of this information to the procedure 7235 * that eventually de-allocates the blocks. 7236 * 7237 * This routine should be called from the routine that shortens 7238 * a file's length, before the inode's size or block pointers 7239 * are modified. It will save the block pointer information for 7240 * later release and zero the inode so that the calling routine 7241 * can release it. 7242 */ 7243 void 7244 softdep_setup_freeblocks(ip, length, flags) 7245 struct inode *ip; /* The inode whose length is to be reduced */ 7246 off_t length; /* The new length for the file */ 7247 int flags; /* IO_EXT and/or IO_NORMAL */ 7248 { 7249 struct ufs1_dinode *dp1; 7250 struct ufs2_dinode *dp2; 7251 struct freeblks *freeblks; 7252 struct inodedep *inodedep; 7253 struct allocdirect *adp; 7254 struct ufsmount *ump; 7255 struct buf *bp; 7256 struct fs *fs; 7257 ufs2_daddr_t extblocks, datablocks; 7258 struct mount *mp; 7259 int i, delay, error; 7260 ufs_lbn_t tmpval; 7261 ufs_lbn_t lbn; 7262 7263 ump = ITOUMP(ip); 7264 mp = UFSTOVFS(ump); 7265 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 7266 ("softdep_setup_freeblocks called on non-softdep filesystem")); 7267 CTR2(KTR_SUJ, "softdep_setup_freeblks: ip %d length %ld", 7268 ip->i_number, length); 7269 KASSERT(length == 0, ("softdep_setup_freeblocks: non-zero length")); 7270 fs = ump->um_fs; 7271 if ((error = bread(ump->um_devvp, 7272 fsbtodb(fs, ino_to_fsba(fs, ip->i_number)), 7273 (int)fs->fs_bsize, NOCRED, &bp)) != 0) { 7274 if (!ffs_fsfail_cleanup(ump, error)) 7275 softdep_error("softdep_setup_freeblocks", error); 7276 return; 7277 } 7278 freeblks = newfreeblks(mp, ip); 7279 extblocks = 0; 7280 datablocks = 0; 7281 if (fs->fs_magic == FS_UFS2_MAGIC) 7282 extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize)); 7283 if ((flags & IO_NORMAL) != 0) { 7284 for (i = 0; i < UFS_NDADDR; i++) 7285 setup_freedirect(freeblks, ip, i, 0); 7286 for (i = 0, tmpval = NINDIR(fs), lbn = UFS_NDADDR; 7287 i < UFS_NIADDR; 7288 i++, lbn += tmpval, tmpval *= NINDIR(fs)) 7289 setup_freeindir(freeblks, ip, i, -lbn -i, 0); 7290 ip->i_size = 0; 7291 DIP_SET(ip, i_size, 0); 7292 UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE); 7293 datablocks = DIP(ip, i_blocks) - extblocks; 7294 } 7295 if ((flags & IO_EXT) != 0) { 7296 for (i = 0; i < UFS_NXADDR; i++) 7297 setup_freeext(freeblks, ip, i, 0); 7298 ip->i_din2->di_extsize = 0; 7299 datablocks += extblocks; 7300 UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE); 7301 } 7302 #ifdef QUOTA 7303 /* Reference the quotas in case the block count is wrong in the end. */ 7304 quotaref(ITOV(ip), freeblks->fb_quota); 7305 (void) chkdq(ip, -datablocks, NOCRED, FORCE); 7306 #endif 7307 freeblks->fb_chkcnt = -datablocks; 7308 UFS_LOCK(ump); 7309 fs->fs_pendingblocks += datablocks; 7310 UFS_UNLOCK(ump); 7311 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - datablocks); 7312 /* 7313 * Push the zero'ed inode to its disk buffer so that we are free 7314 * to delete its dependencies below. Once the dependencies are gone 7315 * the buffer can be safely released. 7316 */ 7317 if (ump->um_fstype == UFS1) { 7318 dp1 = ((struct ufs1_dinode *)bp->b_data + 7319 ino_to_fsbo(fs, ip->i_number)); 7320 ip->i_din1->di_freelink = dp1->di_freelink; 7321 *dp1 = *ip->i_din1; 7322 } else { 7323 dp2 = ((struct ufs2_dinode *)bp->b_data + 7324 ino_to_fsbo(fs, ip->i_number)); 7325 ip->i_din2->di_freelink = dp2->di_freelink; 7326 ffs_update_dinode_ckhash(fs, ip->i_din2); 7327 *dp2 = *ip->i_din2; 7328 } 7329 /* 7330 * Find and eliminate any inode dependencies. 7331 */ 7332 ACQUIRE_LOCK(ump); 7333 (void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep); 7334 if ((inodedep->id_state & IOSTARTED) != 0) 7335 panic("softdep_setup_freeblocks: inode busy"); 7336 /* 7337 * Add the freeblks structure to the list of operations that 7338 * must await the zero'ed inode being written to disk. If we 7339 * still have a bitmap dependency (delay == 0), then the inode 7340 * has never been written to disk, so we can process the 7341 * freeblks below once we have deleted the dependencies. 7342 */ 7343 delay = (inodedep->id_state & DEPCOMPLETE); 7344 if (delay) 7345 WORKLIST_INSERT(&bp->b_dep, &freeblks->fb_list); 7346 else 7347 freeblks->fb_state |= COMPLETE; 7348 /* 7349 * Because the file length has been truncated to zero, any 7350 * pending block allocation dependency structures associated 7351 * with this inode are obsolete and can simply be de-allocated. 7352 * We must first merge the two dependency lists to get rid of 7353 * any duplicate freefrag structures, then purge the merged list. 7354 * If we still have a bitmap dependency, then the inode has never 7355 * been written to disk, so we can free any fragments without delay. 7356 */ 7357 if (flags & IO_NORMAL) { 7358 merge_inode_lists(&inodedep->id_newinoupdt, 7359 &inodedep->id_inoupdt); 7360 while ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL) 7361 cancel_allocdirect(&inodedep->id_inoupdt, adp, 7362 freeblks); 7363 } 7364 if (flags & IO_EXT) { 7365 merge_inode_lists(&inodedep->id_newextupdt, 7366 &inodedep->id_extupdt); 7367 while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL) 7368 cancel_allocdirect(&inodedep->id_extupdt, adp, 7369 freeblks); 7370 } 7371 FREE_LOCK(ump); 7372 bdwrite(bp); 7373 trunc_dependencies(ip, freeblks, -1, 0, flags); 7374 ACQUIRE_LOCK(ump); 7375 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0) 7376 (void) free_inodedep(inodedep); 7377 freeblks->fb_state |= DEPCOMPLETE; 7378 /* 7379 * If the inode with zeroed block pointers is now on disk 7380 * we can start freeing blocks. 7381 */ 7382 if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE) 7383 freeblks->fb_state |= INPROGRESS; 7384 else 7385 freeblks = NULL; 7386 FREE_LOCK(ump); 7387 if (freeblks) 7388 handle_workitem_freeblocks(freeblks, 0); 7389 trunc_pages(ip, length, extblocks, flags); 7390 } 7391 7392 /* 7393 * Eliminate pages from the page cache that back parts of this inode and 7394 * adjust the vnode pager's idea of our size. This prevents stale data 7395 * from hanging around in the page cache. 7396 */ 7397 static void 7398 trunc_pages(ip, length, extblocks, flags) 7399 struct inode *ip; 7400 off_t length; 7401 ufs2_daddr_t extblocks; 7402 int flags; 7403 { 7404 struct vnode *vp; 7405 struct fs *fs; 7406 ufs_lbn_t lbn; 7407 off_t end, extend; 7408 7409 vp = ITOV(ip); 7410 fs = ITOFS(ip); 7411 extend = OFF_TO_IDX(lblktosize(fs, -extblocks)); 7412 if ((flags & IO_EXT) != 0) 7413 vn_pages_remove(vp, extend, 0); 7414 if ((flags & IO_NORMAL) == 0) 7415 return; 7416 BO_LOCK(&vp->v_bufobj); 7417 drain_output(vp); 7418 BO_UNLOCK(&vp->v_bufobj); 7419 /* 7420 * The vnode pager eliminates file pages we eliminate indirects 7421 * below. 7422 */ 7423 vnode_pager_setsize(vp, length); 7424 /* 7425 * Calculate the end based on the last indirect we want to keep. If 7426 * the block extends into indirects we can just use the negative of 7427 * its lbn. Doubles and triples exist at lower numbers so we must 7428 * be careful not to remove those, if they exist. double and triple 7429 * indirect lbns do not overlap with others so it is not important 7430 * to verify how many levels are required. 7431 */ 7432 lbn = lblkno(fs, length); 7433 if (lbn >= UFS_NDADDR) { 7434 /* Calculate the virtual lbn of the triple indirect. */ 7435 lbn = -lbn - (UFS_NIADDR - 1); 7436 end = OFF_TO_IDX(lblktosize(fs, lbn)); 7437 } else 7438 end = extend; 7439 vn_pages_remove(vp, OFF_TO_IDX(OFF_MAX), end); 7440 } 7441 7442 /* 7443 * See if the buf bp is in the range eliminated by truncation. 7444 */ 7445 static int 7446 trunc_check_buf(bp, blkoffp, lastlbn, lastoff, flags) 7447 struct buf *bp; 7448 int *blkoffp; 7449 ufs_lbn_t lastlbn; 7450 int lastoff; 7451 int flags; 7452 { 7453 ufs_lbn_t lbn; 7454 7455 *blkoffp = 0; 7456 /* Only match ext/normal blocks as appropriate. */ 7457 if (((flags & IO_EXT) == 0 && (bp->b_xflags & BX_ALTDATA)) || 7458 ((flags & IO_NORMAL) == 0 && (bp->b_xflags & BX_ALTDATA) == 0)) 7459 return (0); 7460 /* ALTDATA is always a full truncation. */ 7461 if ((bp->b_xflags & BX_ALTDATA) != 0) 7462 return (1); 7463 /* -1 is full truncation. */ 7464 if (lastlbn == -1) 7465 return (1); 7466 /* 7467 * If this is a partial truncate we only want those 7468 * blocks and indirect blocks that cover the range 7469 * we're after. 7470 */ 7471 lbn = bp->b_lblkno; 7472 if (lbn < 0) 7473 lbn = -(lbn + lbn_level(lbn)); 7474 if (lbn < lastlbn) 7475 return (0); 7476 /* Here we only truncate lblkno if it's partial. */ 7477 if (lbn == lastlbn) { 7478 if (lastoff == 0) 7479 return (0); 7480 *blkoffp = lastoff; 7481 } 7482 return (1); 7483 } 7484 7485 /* 7486 * Eliminate any dependencies that exist in memory beyond lblkno:off 7487 */ 7488 static void 7489 trunc_dependencies(ip, freeblks, lastlbn, lastoff, flags) 7490 struct inode *ip; 7491 struct freeblks *freeblks; 7492 ufs_lbn_t lastlbn; 7493 int lastoff; 7494 int flags; 7495 { 7496 struct bufobj *bo; 7497 struct vnode *vp; 7498 struct buf *bp; 7499 int blkoff; 7500 7501 /* 7502 * We must wait for any I/O in progress to finish so that 7503 * all potential buffers on the dirty list will be visible. 7504 * Once they are all there, walk the list and get rid of 7505 * any dependencies. 7506 */ 7507 vp = ITOV(ip); 7508 bo = &vp->v_bufobj; 7509 BO_LOCK(bo); 7510 drain_output(vp); 7511 TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) 7512 bp->b_vflags &= ~BV_SCANNED; 7513 restart: 7514 TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) { 7515 if (bp->b_vflags & BV_SCANNED) 7516 continue; 7517 if (!trunc_check_buf(bp, &blkoff, lastlbn, lastoff, flags)) { 7518 bp->b_vflags |= BV_SCANNED; 7519 continue; 7520 } 7521 KASSERT(bp->b_bufobj == bo, ("Wrong object in buffer")); 7522 if ((bp = getdirtybuf(bp, BO_LOCKPTR(bo), MNT_WAIT)) == NULL) 7523 goto restart; 7524 BO_UNLOCK(bo); 7525 if (deallocate_dependencies(bp, freeblks, blkoff)) 7526 bqrelse(bp); 7527 else 7528 brelse(bp); 7529 BO_LOCK(bo); 7530 goto restart; 7531 } 7532 /* 7533 * Now do the work of vtruncbuf while also matching indirect blocks. 7534 */ 7535 TAILQ_FOREACH(bp, &bo->bo_clean.bv_hd, b_bobufs) 7536 bp->b_vflags &= ~BV_SCANNED; 7537 cleanrestart: 7538 TAILQ_FOREACH(bp, &bo->bo_clean.bv_hd, b_bobufs) { 7539 if (bp->b_vflags & BV_SCANNED) 7540 continue; 7541 if (!trunc_check_buf(bp, &blkoff, lastlbn, lastoff, flags)) { 7542 bp->b_vflags |= BV_SCANNED; 7543 continue; 7544 } 7545 if (BUF_LOCK(bp, 7546 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, 7547 BO_LOCKPTR(bo)) == ENOLCK) { 7548 BO_LOCK(bo); 7549 goto cleanrestart; 7550 } 7551 bp->b_vflags |= BV_SCANNED; 7552 bremfree(bp); 7553 if (blkoff != 0) { 7554 allocbuf(bp, blkoff); 7555 bqrelse(bp); 7556 } else { 7557 bp->b_flags |= B_INVAL | B_NOCACHE | B_RELBUF; 7558 brelse(bp); 7559 } 7560 BO_LOCK(bo); 7561 goto cleanrestart; 7562 } 7563 drain_output(vp); 7564 BO_UNLOCK(bo); 7565 } 7566 7567 static int 7568 cancel_pagedep(pagedep, freeblks, blkoff) 7569 struct pagedep *pagedep; 7570 struct freeblks *freeblks; 7571 int blkoff; 7572 { 7573 struct jremref *jremref; 7574 struct jmvref *jmvref; 7575 struct dirrem *dirrem, *tmp; 7576 int i; 7577 7578 /* 7579 * Copy any directory remove dependencies to the list 7580 * to be processed after the freeblks proceeds. If 7581 * directory entry never made it to disk they 7582 * can be dumped directly onto the work list. 7583 */ 7584 LIST_FOREACH_SAFE(dirrem, &pagedep->pd_dirremhd, dm_next, tmp) { 7585 /* Skip this directory removal if it is intended to remain. */ 7586 if (dirrem->dm_offset < blkoff) 7587 continue; 7588 /* 7589 * If there are any dirrems we wait for the journal write 7590 * to complete and then restart the buf scan as the lock 7591 * has been dropped. 7592 */ 7593 while ((jremref = LIST_FIRST(&dirrem->dm_jremrefhd)) != NULL) { 7594 jwait(&jremref->jr_list, MNT_WAIT); 7595 return (ERESTART); 7596 } 7597 LIST_REMOVE(dirrem, dm_next); 7598 dirrem->dm_dirinum = pagedep->pd_ino; 7599 WORKLIST_INSERT(&freeblks->fb_freeworkhd, &dirrem->dm_list); 7600 } 7601 while ((jmvref = LIST_FIRST(&pagedep->pd_jmvrefhd)) != NULL) { 7602 jwait(&jmvref->jm_list, MNT_WAIT); 7603 return (ERESTART); 7604 } 7605 /* 7606 * When we're partially truncating a pagedep we just want to flush 7607 * journal entries and return. There can not be any adds in the 7608 * truncated portion of the directory and newblk must remain if 7609 * part of the block remains. 7610 */ 7611 if (blkoff != 0) { 7612 struct diradd *dap; 7613 7614 LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist) 7615 if (dap->da_offset > blkoff) 7616 panic("cancel_pagedep: diradd %p off %d > %d", 7617 dap, dap->da_offset, blkoff); 7618 for (i = 0; i < DAHASHSZ; i++) 7619 LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) 7620 if (dap->da_offset > blkoff) 7621 panic("cancel_pagedep: diradd %p off %d > %d", 7622 dap, dap->da_offset, blkoff); 7623 return (0); 7624 } 7625 /* 7626 * There should be no directory add dependencies present 7627 * as the directory could not be truncated until all 7628 * children were removed. 7629 */ 7630 KASSERT(LIST_FIRST(&pagedep->pd_pendinghd) == NULL, 7631 ("deallocate_dependencies: pendinghd != NULL")); 7632 for (i = 0; i < DAHASHSZ; i++) 7633 KASSERT(LIST_FIRST(&pagedep->pd_diraddhd[i]) == NULL, 7634 ("deallocate_dependencies: diraddhd != NULL")); 7635 if ((pagedep->pd_state & NEWBLOCK) != 0) 7636 free_newdirblk(pagedep->pd_newdirblk); 7637 if (free_pagedep(pagedep) == 0) 7638 panic("Failed to free pagedep %p", pagedep); 7639 return (0); 7640 } 7641 7642 /* 7643 * Reclaim any dependency structures from a buffer that is about to 7644 * be reallocated to a new vnode. The buffer must be locked, thus, 7645 * no I/O completion operations can occur while we are manipulating 7646 * its associated dependencies. The mutex is held so that other I/O's 7647 * associated with related dependencies do not occur. 7648 */ 7649 static int 7650 deallocate_dependencies(bp, freeblks, off) 7651 struct buf *bp; 7652 struct freeblks *freeblks; 7653 int off; 7654 { 7655 struct indirdep *indirdep; 7656 struct pagedep *pagedep; 7657 struct worklist *wk, *wkn; 7658 struct ufsmount *ump; 7659 7660 ump = softdep_bp_to_mp(bp); 7661 if (ump == NULL) 7662 goto done; 7663 ACQUIRE_LOCK(ump); 7664 LIST_FOREACH_SAFE(wk, &bp->b_dep, wk_list, wkn) { 7665 switch (wk->wk_type) { 7666 case D_INDIRDEP: 7667 indirdep = WK_INDIRDEP(wk); 7668 if (bp->b_lblkno >= 0 || 7669 bp->b_blkno != indirdep->ir_savebp->b_lblkno) 7670 panic("deallocate_dependencies: not indir"); 7671 cancel_indirdep(indirdep, bp, freeblks); 7672 continue; 7673 7674 case D_PAGEDEP: 7675 pagedep = WK_PAGEDEP(wk); 7676 if (cancel_pagedep(pagedep, freeblks, off)) { 7677 FREE_LOCK(ump); 7678 return (ERESTART); 7679 } 7680 continue; 7681 7682 case D_ALLOCINDIR: 7683 /* 7684 * Simply remove the allocindir, we'll find it via 7685 * the indirdep where we can clear pointers if 7686 * needed. 7687 */ 7688 WORKLIST_REMOVE(wk); 7689 continue; 7690 7691 case D_FREEWORK: 7692 /* 7693 * A truncation is waiting for the zero'd pointers 7694 * to be written. It can be freed when the freeblks 7695 * is journaled. 7696 */ 7697 WORKLIST_REMOVE(wk); 7698 wk->wk_state |= ONDEPLIST; 7699 WORKLIST_INSERT(&freeblks->fb_freeworkhd, wk); 7700 break; 7701 7702 case D_ALLOCDIRECT: 7703 if (off != 0) 7704 continue; 7705 /* FALLTHROUGH */ 7706 default: 7707 panic("deallocate_dependencies: Unexpected type %s", 7708 TYPENAME(wk->wk_type)); 7709 /* NOTREACHED */ 7710 } 7711 } 7712 FREE_LOCK(ump); 7713 done: 7714 /* 7715 * Don't throw away this buf, we were partially truncating and 7716 * some deps may always remain. 7717 */ 7718 if (off) { 7719 allocbuf(bp, off); 7720 bp->b_vflags |= BV_SCANNED; 7721 return (EBUSY); 7722 } 7723 bp->b_flags |= B_INVAL | B_NOCACHE; 7724 7725 return (0); 7726 } 7727 7728 /* 7729 * An allocdirect is being canceled due to a truncate. We must make sure 7730 * the journal entry is released in concert with the blkfree that releases 7731 * the storage. Completed journal entries must not be released until the 7732 * space is no longer pointed to by the inode or in the bitmap. 7733 */ 7734 static void 7735 cancel_allocdirect(adphead, adp, freeblks) 7736 struct allocdirectlst *adphead; 7737 struct allocdirect *adp; 7738 struct freeblks *freeblks; 7739 { 7740 struct freework *freework; 7741 struct newblk *newblk; 7742 struct worklist *wk; 7743 7744 TAILQ_REMOVE(adphead, adp, ad_next); 7745 newblk = (struct newblk *)adp; 7746 freework = NULL; 7747 /* 7748 * Find the correct freework structure. 7749 */ 7750 LIST_FOREACH(wk, &freeblks->fb_freeworkhd, wk_list) { 7751 if (wk->wk_type != D_FREEWORK) 7752 continue; 7753 freework = WK_FREEWORK(wk); 7754 if (freework->fw_blkno == newblk->nb_newblkno) 7755 break; 7756 } 7757 if (freework == NULL) 7758 panic("cancel_allocdirect: Freework not found"); 7759 /* 7760 * If a newblk exists at all we still have the journal entry that 7761 * initiated the allocation so we do not need to journal the free. 7762 */ 7763 cancel_jfreeblk(freeblks, freework->fw_blkno); 7764 /* 7765 * If the journal hasn't been written the jnewblk must be passed 7766 * to the call to ffs_blkfree that reclaims the space. We accomplish 7767 * this by linking the journal dependency into the freework to be 7768 * freed when freework_freeblock() is called. If the journal has 7769 * been written we can simply reclaim the journal space when the 7770 * freeblks work is complete. 7771 */ 7772 freework->fw_jnewblk = cancel_newblk(newblk, &freework->fw_list, 7773 &freeblks->fb_jwork); 7774 WORKLIST_INSERT(&freeblks->fb_freeworkhd, &newblk->nb_list); 7775 } 7776 7777 /* 7778 * Cancel a new block allocation. May be an indirect or direct block. We 7779 * remove it from various lists and return any journal record that needs to 7780 * be resolved by the caller. 7781 * 7782 * A special consideration is made for indirects which were never pointed 7783 * at on disk and will never be found once this block is released. 7784 */ 7785 static struct jnewblk * 7786 cancel_newblk(newblk, wk, wkhd) 7787 struct newblk *newblk; 7788 struct worklist *wk; 7789 struct workhead *wkhd; 7790 { 7791 struct jnewblk *jnewblk; 7792 7793 CTR1(KTR_SUJ, "cancel_newblk: blkno %jd", newblk->nb_newblkno); 7794 7795 newblk->nb_state |= GOINGAWAY; 7796 /* 7797 * Previously we traversed the completedhd on each indirdep 7798 * attached to this newblk to cancel them and gather journal 7799 * work. Since we need only the oldest journal segment and 7800 * the lowest point on the tree will always have the oldest 7801 * journal segment we are free to release the segments 7802 * of any subordinates and may leave the indirdep list to 7803 * indirdep_complete() when this newblk is freed. 7804 */ 7805 if (newblk->nb_state & ONDEPLIST) { 7806 newblk->nb_state &= ~ONDEPLIST; 7807 LIST_REMOVE(newblk, nb_deps); 7808 } 7809 if (newblk->nb_state & ONWORKLIST) 7810 WORKLIST_REMOVE(&newblk->nb_list); 7811 /* 7812 * If the journal entry hasn't been written we save a pointer to 7813 * the dependency that frees it until it is written or the 7814 * superseding operation completes. 7815 */ 7816 jnewblk = newblk->nb_jnewblk; 7817 if (jnewblk != NULL && wk != NULL) { 7818 newblk->nb_jnewblk = NULL; 7819 jnewblk->jn_dep = wk; 7820 } 7821 if (!LIST_EMPTY(&newblk->nb_jwork)) 7822 jwork_move(wkhd, &newblk->nb_jwork); 7823 /* 7824 * When truncating we must free the newdirblk early to remove 7825 * the pagedep from the hash before returning. 7826 */ 7827 if ((wk = LIST_FIRST(&newblk->nb_newdirblk)) != NULL) 7828 free_newdirblk(WK_NEWDIRBLK(wk)); 7829 if (!LIST_EMPTY(&newblk->nb_newdirblk)) 7830 panic("cancel_newblk: extra newdirblk"); 7831 7832 return (jnewblk); 7833 } 7834 7835 /* 7836 * Schedule the freefrag associated with a newblk to be released once 7837 * the pointers are written and the previous block is no longer needed. 7838 */ 7839 static void 7840 newblk_freefrag(newblk) 7841 struct newblk *newblk; 7842 { 7843 struct freefrag *freefrag; 7844 7845 if (newblk->nb_freefrag == NULL) 7846 return; 7847 freefrag = newblk->nb_freefrag; 7848 newblk->nb_freefrag = NULL; 7849 freefrag->ff_state |= COMPLETE; 7850 if ((freefrag->ff_state & ALLCOMPLETE) == ALLCOMPLETE) 7851 add_to_worklist(&freefrag->ff_list, 0); 7852 } 7853 7854 /* 7855 * Free a newblk. Generate a new freefrag work request if appropriate. 7856 * This must be called after the inode pointer and any direct block pointers 7857 * are valid or fully removed via truncate or frag extension. 7858 */ 7859 static void 7860 free_newblk(newblk) 7861 struct newblk *newblk; 7862 { 7863 struct indirdep *indirdep; 7864 struct worklist *wk; 7865 7866 KASSERT(newblk->nb_jnewblk == NULL, 7867 ("free_newblk: jnewblk %p still attached", newblk->nb_jnewblk)); 7868 KASSERT(newblk->nb_list.wk_type != D_NEWBLK, 7869 ("free_newblk: unclaimed newblk")); 7870 LOCK_OWNED(VFSTOUFS(newblk->nb_list.wk_mp)); 7871 newblk_freefrag(newblk); 7872 if (newblk->nb_state & ONDEPLIST) 7873 LIST_REMOVE(newblk, nb_deps); 7874 if (newblk->nb_state & ONWORKLIST) 7875 WORKLIST_REMOVE(&newblk->nb_list); 7876 LIST_REMOVE(newblk, nb_hash); 7877 if ((wk = LIST_FIRST(&newblk->nb_newdirblk)) != NULL) 7878 free_newdirblk(WK_NEWDIRBLK(wk)); 7879 if (!LIST_EMPTY(&newblk->nb_newdirblk)) 7880 panic("free_newblk: extra newdirblk"); 7881 while ((indirdep = LIST_FIRST(&newblk->nb_indirdeps)) != NULL) 7882 indirdep_complete(indirdep); 7883 handle_jwork(&newblk->nb_jwork); 7884 WORKITEM_FREE(newblk, D_NEWBLK); 7885 } 7886 7887 /* 7888 * Free a newdirblk. Clear the NEWBLOCK flag on its associated pagedep. 7889 */ 7890 static void 7891 free_newdirblk(newdirblk) 7892 struct newdirblk *newdirblk; 7893 { 7894 struct pagedep *pagedep; 7895 struct diradd *dap; 7896 struct worklist *wk; 7897 7898 LOCK_OWNED(VFSTOUFS(newdirblk->db_list.wk_mp)); 7899 WORKLIST_REMOVE(&newdirblk->db_list); 7900 /* 7901 * If the pagedep is still linked onto the directory buffer 7902 * dependency chain, then some of the entries on the 7903 * pd_pendinghd list may not be committed to disk yet. In 7904 * this case, we will simply clear the NEWBLOCK flag and 7905 * let the pd_pendinghd list be processed when the pagedep 7906 * is next written. If the pagedep is no longer on the buffer 7907 * dependency chain, then all the entries on the pd_pending 7908 * list are committed to disk and we can free them here. 7909 */ 7910 pagedep = newdirblk->db_pagedep; 7911 pagedep->pd_state &= ~NEWBLOCK; 7912 if ((pagedep->pd_state & ONWORKLIST) == 0) { 7913 while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL) 7914 free_diradd(dap, NULL); 7915 /* 7916 * If no dependencies remain, the pagedep will be freed. 7917 */ 7918 free_pagedep(pagedep); 7919 } 7920 /* Should only ever be one item in the list. */ 7921 while ((wk = LIST_FIRST(&newdirblk->db_mkdir)) != NULL) { 7922 WORKLIST_REMOVE(wk); 7923 handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY); 7924 } 7925 WORKITEM_FREE(newdirblk, D_NEWDIRBLK); 7926 } 7927 7928 /* 7929 * Prepare an inode to be freed. The actual free operation is not 7930 * done until the zero'ed inode has been written to disk. 7931 */ 7932 void 7933 softdep_freefile(pvp, ino, mode) 7934 struct vnode *pvp; 7935 ino_t ino; 7936 int mode; 7937 { 7938 struct inode *ip = VTOI(pvp); 7939 struct inodedep *inodedep; 7940 struct freefile *freefile; 7941 struct freeblks *freeblks; 7942 struct ufsmount *ump; 7943 7944 ump = ITOUMP(ip); 7945 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 7946 ("softdep_freefile called on non-softdep filesystem")); 7947 /* 7948 * This sets up the inode de-allocation dependency. 7949 */ 7950 freefile = malloc(sizeof(struct freefile), 7951 M_FREEFILE, M_SOFTDEP_FLAGS); 7952 workitem_alloc(&freefile->fx_list, D_FREEFILE, pvp->v_mount); 7953 freefile->fx_mode = mode; 7954 freefile->fx_oldinum = ino; 7955 freefile->fx_devvp = ump->um_devvp; 7956 LIST_INIT(&freefile->fx_jwork); 7957 UFS_LOCK(ump); 7958 ump->um_fs->fs_pendinginodes += 1; 7959 UFS_UNLOCK(ump); 7960 7961 /* 7962 * If the inodedep does not exist, then the zero'ed inode has 7963 * been written to disk. If the allocated inode has never been 7964 * written to disk, then the on-disk inode is zero'ed. In either 7965 * case we can free the file immediately. If the journal was 7966 * canceled before being written the inode will never make it to 7967 * disk and we must send the canceled journal entrys to 7968 * ffs_freefile() to be cleared in conjunction with the bitmap. 7969 * Any blocks waiting on the inode to write can be safely freed 7970 * here as it will never been written. 7971 */ 7972 ACQUIRE_LOCK(ump); 7973 inodedep_lookup(pvp->v_mount, ino, 0, &inodedep); 7974 if (inodedep) { 7975 /* 7976 * Clear out freeblks that no longer need to reference 7977 * this inode. 7978 */ 7979 while ((freeblks = 7980 TAILQ_FIRST(&inodedep->id_freeblklst)) != NULL) { 7981 TAILQ_REMOVE(&inodedep->id_freeblklst, freeblks, 7982 fb_next); 7983 freeblks->fb_state &= ~ONDEPLIST; 7984 } 7985 /* 7986 * Remove this inode from the unlinked list. 7987 */ 7988 if (inodedep->id_state & UNLINKED) { 7989 /* 7990 * Save the journal work to be freed with the bitmap 7991 * before we clear UNLINKED. Otherwise it can be lost 7992 * if the inode block is written. 7993 */ 7994 handle_bufwait(inodedep, &freefile->fx_jwork); 7995 clear_unlinked_inodedep(inodedep); 7996 /* 7997 * Re-acquire inodedep as we've dropped the 7998 * per-filesystem lock in clear_unlinked_inodedep(). 7999 */ 8000 inodedep_lookup(pvp->v_mount, ino, 0, &inodedep); 8001 } 8002 } 8003 if (inodedep == NULL || check_inode_unwritten(inodedep)) { 8004 FREE_LOCK(ump); 8005 handle_workitem_freefile(freefile); 8006 return; 8007 } 8008 if ((inodedep->id_state & DEPCOMPLETE) == 0) 8009 inodedep->id_state |= GOINGAWAY; 8010 WORKLIST_INSERT(&inodedep->id_inowait, &freefile->fx_list); 8011 FREE_LOCK(ump); 8012 if (ip->i_number == ino) 8013 UFS_INODE_SET_FLAG(ip, IN_MODIFIED); 8014 } 8015 8016 /* 8017 * Check to see if an inode has never been written to disk. If 8018 * so free the inodedep and return success, otherwise return failure. 8019 * 8020 * If we still have a bitmap dependency, then the inode has never 8021 * been written to disk. Drop the dependency as it is no longer 8022 * necessary since the inode is being deallocated. We set the 8023 * ALLCOMPLETE flags since the bitmap now properly shows that the 8024 * inode is not allocated. Even if the inode is actively being 8025 * written, it has been rolled back to its zero'ed state, so we 8026 * are ensured that a zero inode is what is on the disk. For short 8027 * lived files, this change will usually result in removing all the 8028 * dependencies from the inode so that it can be freed immediately. 8029 */ 8030 static int 8031 check_inode_unwritten(inodedep) 8032 struct inodedep *inodedep; 8033 { 8034 8035 LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp)); 8036 8037 if ((inodedep->id_state & (DEPCOMPLETE | UNLINKED)) != 0 || 8038 !LIST_EMPTY(&inodedep->id_dirremhd) || 8039 !LIST_EMPTY(&inodedep->id_pendinghd) || 8040 !LIST_EMPTY(&inodedep->id_bufwait) || 8041 !LIST_EMPTY(&inodedep->id_inowait) || 8042 !TAILQ_EMPTY(&inodedep->id_inoreflst) || 8043 !TAILQ_EMPTY(&inodedep->id_inoupdt) || 8044 !TAILQ_EMPTY(&inodedep->id_newinoupdt) || 8045 !TAILQ_EMPTY(&inodedep->id_extupdt) || 8046 !TAILQ_EMPTY(&inodedep->id_newextupdt) || 8047 !TAILQ_EMPTY(&inodedep->id_freeblklst) || 8048 inodedep->id_mkdiradd != NULL || 8049 inodedep->id_nlinkdelta != 0) 8050 return (0); 8051 /* 8052 * Another process might be in initiate_write_inodeblock_ufs[12] 8053 * trying to allocate memory without holding "Softdep Lock". 8054 */ 8055 if ((inodedep->id_state & IOSTARTED) != 0 && 8056 inodedep->id_savedino1 == NULL) 8057 return (0); 8058 8059 if (inodedep->id_state & ONDEPLIST) 8060 LIST_REMOVE(inodedep, id_deps); 8061 inodedep->id_state &= ~ONDEPLIST; 8062 inodedep->id_state |= ALLCOMPLETE; 8063 inodedep->id_bmsafemap = NULL; 8064 if (inodedep->id_state & ONWORKLIST) 8065 WORKLIST_REMOVE(&inodedep->id_list); 8066 if (inodedep->id_savedino1 != NULL) { 8067 free(inodedep->id_savedino1, M_SAVEDINO); 8068 inodedep->id_savedino1 = NULL; 8069 } 8070 if (free_inodedep(inodedep) == 0) 8071 panic("check_inode_unwritten: busy inode"); 8072 return (1); 8073 } 8074 8075 static int 8076 check_inodedep_free(inodedep) 8077 struct inodedep *inodedep; 8078 { 8079 8080 LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp)); 8081 if ((inodedep->id_state & ALLCOMPLETE) != ALLCOMPLETE || 8082 !LIST_EMPTY(&inodedep->id_dirremhd) || 8083 !LIST_EMPTY(&inodedep->id_pendinghd) || 8084 !LIST_EMPTY(&inodedep->id_bufwait) || 8085 !LIST_EMPTY(&inodedep->id_inowait) || 8086 !TAILQ_EMPTY(&inodedep->id_inoreflst) || 8087 !TAILQ_EMPTY(&inodedep->id_inoupdt) || 8088 !TAILQ_EMPTY(&inodedep->id_newinoupdt) || 8089 !TAILQ_EMPTY(&inodedep->id_extupdt) || 8090 !TAILQ_EMPTY(&inodedep->id_newextupdt) || 8091 !TAILQ_EMPTY(&inodedep->id_freeblklst) || 8092 inodedep->id_mkdiradd != NULL || 8093 inodedep->id_nlinkdelta != 0 || 8094 inodedep->id_savedino1 != NULL) 8095 return (0); 8096 return (1); 8097 } 8098 8099 /* 8100 * Try to free an inodedep structure. Return 1 if it could be freed. 8101 */ 8102 static int 8103 free_inodedep(inodedep) 8104 struct inodedep *inodedep; 8105 { 8106 8107 LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp)); 8108 if ((inodedep->id_state & (ONWORKLIST | UNLINKED)) != 0 || 8109 !check_inodedep_free(inodedep)) 8110 return (0); 8111 if (inodedep->id_state & ONDEPLIST) 8112 LIST_REMOVE(inodedep, id_deps); 8113 LIST_REMOVE(inodedep, id_hash); 8114 WORKITEM_FREE(inodedep, D_INODEDEP); 8115 return (1); 8116 } 8117 8118 /* 8119 * Free the block referenced by a freework structure. The parent freeblks 8120 * structure is released and completed when the final cg bitmap reaches 8121 * the disk. This routine may be freeing a jnewblk which never made it to 8122 * disk in which case we do not have to wait as the operation is undone 8123 * in memory immediately. 8124 */ 8125 static void 8126 freework_freeblock(freework, key) 8127 struct freework *freework; 8128 u_long key; 8129 { 8130 struct freeblks *freeblks; 8131 struct jnewblk *jnewblk; 8132 struct ufsmount *ump; 8133 struct workhead wkhd; 8134 struct fs *fs; 8135 int bsize; 8136 int needj; 8137 8138 ump = VFSTOUFS(freework->fw_list.wk_mp); 8139 LOCK_OWNED(ump); 8140 /* 8141 * Handle partial truncate separately. 8142 */ 8143 if (freework->fw_indir) { 8144 complete_trunc_indir(freework); 8145 return; 8146 } 8147 freeblks = freework->fw_freeblks; 8148 fs = ump->um_fs; 8149 needj = MOUNTEDSUJ(freeblks->fb_list.wk_mp) != 0; 8150 bsize = lfragtosize(fs, freework->fw_frags); 8151 LIST_INIT(&wkhd); 8152 /* 8153 * DEPCOMPLETE is cleared in indirblk_insert() if the block lives 8154 * on the indirblk hashtable and prevents premature freeing. 8155 */ 8156 freework->fw_state |= DEPCOMPLETE; 8157 /* 8158 * SUJ needs to wait for the segment referencing freed indirect 8159 * blocks to expire so that we know the checker will not confuse 8160 * a re-allocated indirect block with its old contents. 8161 */ 8162 if (needj && freework->fw_lbn <= -UFS_NDADDR) 8163 indirblk_insert(freework); 8164 /* 8165 * If we are canceling an existing jnewblk pass it to the free 8166 * routine, otherwise pass the freeblk which will ultimately 8167 * release the freeblks. If we're not journaling, we can just 8168 * free the freeblks immediately. 8169 */ 8170 jnewblk = freework->fw_jnewblk; 8171 if (jnewblk != NULL) { 8172 cancel_jnewblk(jnewblk, &wkhd); 8173 needj = 0; 8174 } else if (needj) { 8175 freework->fw_state |= DELAYEDFREE; 8176 freeblks->fb_cgwait++; 8177 WORKLIST_INSERT(&wkhd, &freework->fw_list); 8178 } 8179 FREE_LOCK(ump); 8180 freeblks_free(ump, freeblks, btodb(bsize)); 8181 CTR4(KTR_SUJ, 8182 "freework_freeblock: ino %jd blkno %jd lbn %jd size %d", 8183 freeblks->fb_inum, freework->fw_blkno, freework->fw_lbn, bsize); 8184 ffs_blkfree(ump, fs, freeblks->fb_devvp, freework->fw_blkno, bsize, 8185 freeblks->fb_inum, freeblks->fb_vtype, &wkhd, key); 8186 ACQUIRE_LOCK(ump); 8187 /* 8188 * The jnewblk will be discarded and the bits in the map never 8189 * made it to disk. We can immediately free the freeblk. 8190 */ 8191 if (needj == 0) 8192 handle_written_freework(freework); 8193 } 8194 8195 /* 8196 * We enqueue freework items that need processing back on the freeblks and 8197 * add the freeblks to the worklist. This makes it easier to find all work 8198 * required to flush a truncation in process_truncates(). 8199 */ 8200 static void 8201 freework_enqueue(freework) 8202 struct freework *freework; 8203 { 8204 struct freeblks *freeblks; 8205 8206 freeblks = freework->fw_freeblks; 8207 if ((freework->fw_state & INPROGRESS) == 0) 8208 WORKLIST_INSERT(&freeblks->fb_freeworkhd, &freework->fw_list); 8209 if ((freeblks->fb_state & 8210 (ONWORKLIST | INPROGRESS | ALLCOMPLETE)) == ALLCOMPLETE && 8211 LIST_EMPTY(&freeblks->fb_jblkdephd)) 8212 add_to_worklist(&freeblks->fb_list, WK_NODELAY); 8213 } 8214 8215 /* 8216 * Start, continue, or finish the process of freeing an indirect block tree. 8217 * The free operation may be paused at any point with fw_off containing the 8218 * offset to restart from. This enables us to implement some flow control 8219 * for large truncates which may fan out and generate a huge number of 8220 * dependencies. 8221 */ 8222 static void 8223 handle_workitem_indirblk(freework) 8224 struct freework *freework; 8225 { 8226 struct freeblks *freeblks; 8227 struct ufsmount *ump; 8228 struct fs *fs; 8229 8230 freeblks = freework->fw_freeblks; 8231 ump = VFSTOUFS(freeblks->fb_list.wk_mp); 8232 fs = ump->um_fs; 8233 if (freework->fw_state & DEPCOMPLETE) { 8234 handle_written_freework(freework); 8235 return; 8236 } 8237 if (freework->fw_off == NINDIR(fs)) { 8238 freework_freeblock(freework, SINGLETON_KEY); 8239 return; 8240 } 8241 freework->fw_state |= INPROGRESS; 8242 FREE_LOCK(ump); 8243 indir_trunc(freework, fsbtodb(fs, freework->fw_blkno), 8244 freework->fw_lbn); 8245 ACQUIRE_LOCK(ump); 8246 } 8247 8248 /* 8249 * Called when a freework structure attached to a cg buf is written. The 8250 * ref on either the parent or the freeblks structure is released and 8251 * the freeblks is added back to the worklist if there is more work to do. 8252 */ 8253 static void 8254 handle_written_freework(freework) 8255 struct freework *freework; 8256 { 8257 struct freeblks *freeblks; 8258 struct freework *parent; 8259 8260 freeblks = freework->fw_freeblks; 8261 parent = freework->fw_parent; 8262 if (freework->fw_state & DELAYEDFREE) 8263 freeblks->fb_cgwait--; 8264 freework->fw_state |= COMPLETE; 8265 if ((freework->fw_state & ALLCOMPLETE) == ALLCOMPLETE) 8266 WORKITEM_FREE(freework, D_FREEWORK); 8267 if (parent) { 8268 if (--parent->fw_ref == 0) 8269 freework_enqueue(parent); 8270 return; 8271 } 8272 if (--freeblks->fb_ref != 0) 8273 return; 8274 if ((freeblks->fb_state & (ALLCOMPLETE | ONWORKLIST | INPROGRESS)) == 8275 ALLCOMPLETE && LIST_EMPTY(&freeblks->fb_jblkdephd)) 8276 add_to_worklist(&freeblks->fb_list, WK_NODELAY); 8277 } 8278 8279 /* 8280 * This workitem routine performs the block de-allocation. 8281 * The workitem is added to the pending list after the updated 8282 * inode block has been written to disk. As mentioned above, 8283 * checks regarding the number of blocks de-allocated (compared 8284 * to the number of blocks allocated for the file) are also 8285 * performed in this function. 8286 */ 8287 static int 8288 handle_workitem_freeblocks(freeblks, flags) 8289 struct freeblks *freeblks; 8290 int flags; 8291 { 8292 struct freework *freework; 8293 struct newblk *newblk; 8294 struct allocindir *aip; 8295 struct ufsmount *ump; 8296 struct worklist *wk; 8297 u_long key; 8298 8299 KASSERT(LIST_EMPTY(&freeblks->fb_jblkdephd), 8300 ("handle_workitem_freeblocks: Journal entries not written.")); 8301 ump = VFSTOUFS(freeblks->fb_list.wk_mp); 8302 key = ffs_blkrelease_start(ump, freeblks->fb_devvp, freeblks->fb_inum); 8303 ACQUIRE_LOCK(ump); 8304 while ((wk = LIST_FIRST(&freeblks->fb_freeworkhd)) != NULL) { 8305 WORKLIST_REMOVE(wk); 8306 switch (wk->wk_type) { 8307 case D_DIRREM: 8308 wk->wk_state |= COMPLETE; 8309 add_to_worklist(wk, 0); 8310 continue; 8311 8312 case D_ALLOCDIRECT: 8313 free_newblk(WK_NEWBLK(wk)); 8314 continue; 8315 8316 case D_ALLOCINDIR: 8317 aip = WK_ALLOCINDIR(wk); 8318 freework = NULL; 8319 if (aip->ai_state & DELAYEDFREE) { 8320 FREE_LOCK(ump); 8321 freework = newfreework(ump, freeblks, NULL, 8322 aip->ai_lbn, aip->ai_newblkno, 8323 ump->um_fs->fs_frag, 0, 0); 8324 ACQUIRE_LOCK(ump); 8325 } 8326 newblk = WK_NEWBLK(wk); 8327 if (newblk->nb_jnewblk) { 8328 freework->fw_jnewblk = newblk->nb_jnewblk; 8329 newblk->nb_jnewblk->jn_dep = &freework->fw_list; 8330 newblk->nb_jnewblk = NULL; 8331 } 8332 free_newblk(newblk); 8333 continue; 8334 8335 case D_FREEWORK: 8336 freework = WK_FREEWORK(wk); 8337 if (freework->fw_lbn <= -UFS_NDADDR) 8338 handle_workitem_indirblk(freework); 8339 else 8340 freework_freeblock(freework, key); 8341 continue; 8342 default: 8343 panic("handle_workitem_freeblocks: Unknown type %s", 8344 TYPENAME(wk->wk_type)); 8345 } 8346 } 8347 if (freeblks->fb_ref != 0) { 8348 freeblks->fb_state &= ~INPROGRESS; 8349 wake_worklist(&freeblks->fb_list); 8350 freeblks = NULL; 8351 } 8352 FREE_LOCK(ump); 8353 ffs_blkrelease_finish(ump, key); 8354 if (freeblks) 8355 return handle_complete_freeblocks(freeblks, flags); 8356 return (0); 8357 } 8358 8359 /* 8360 * Handle completion of block free via truncate. This allows fs_pending 8361 * to track the actual free block count more closely than if we only updated 8362 * it at the end. We must be careful to handle cases where the block count 8363 * on free was incorrect. 8364 */ 8365 static void 8366 freeblks_free(ump, freeblks, blocks) 8367 struct ufsmount *ump; 8368 struct freeblks *freeblks; 8369 int blocks; 8370 { 8371 struct fs *fs; 8372 ufs2_daddr_t remain; 8373 8374 UFS_LOCK(ump); 8375 remain = -freeblks->fb_chkcnt; 8376 freeblks->fb_chkcnt += blocks; 8377 if (remain > 0) { 8378 if (remain < blocks) 8379 blocks = remain; 8380 fs = ump->um_fs; 8381 fs->fs_pendingblocks -= blocks; 8382 } 8383 UFS_UNLOCK(ump); 8384 } 8385 8386 /* 8387 * Once all of the freework workitems are complete we can retire the 8388 * freeblocks dependency and any journal work awaiting completion. This 8389 * can not be called until all other dependencies are stable on disk. 8390 */ 8391 static int 8392 handle_complete_freeblocks(freeblks, flags) 8393 struct freeblks *freeblks; 8394 int flags; 8395 { 8396 struct inodedep *inodedep; 8397 struct inode *ip; 8398 struct vnode *vp; 8399 struct fs *fs; 8400 struct ufsmount *ump; 8401 ufs2_daddr_t spare; 8402 8403 ump = VFSTOUFS(freeblks->fb_list.wk_mp); 8404 fs = ump->um_fs; 8405 flags = LK_EXCLUSIVE | flags; 8406 spare = freeblks->fb_chkcnt; 8407 8408 /* 8409 * If we did not release the expected number of blocks we may have 8410 * to adjust the inode block count here. Only do so if it wasn't 8411 * a truncation to zero and the modrev still matches. 8412 */ 8413 if (spare && freeblks->fb_len != 0) { 8414 if (ffs_vgetf(freeblks->fb_list.wk_mp, freeblks->fb_inum, 8415 flags, &vp, FFSV_FORCEINSMQ) != 0) 8416 return (EBUSY); 8417 ip = VTOI(vp); 8418 if (ip->i_mode == 0) { 8419 vgone(vp); 8420 } else if (DIP(ip, i_modrev) == freeblks->fb_modrev) { 8421 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - spare); 8422 UFS_INODE_SET_FLAG(ip, IN_CHANGE); 8423 /* 8424 * We must wait so this happens before the 8425 * journal is reclaimed. 8426 */ 8427 ffs_update(vp, 1); 8428 } 8429 vput(vp); 8430 } 8431 if (spare < 0) { 8432 UFS_LOCK(ump); 8433 fs->fs_pendingblocks += spare; 8434 UFS_UNLOCK(ump); 8435 } 8436 #ifdef QUOTA 8437 /* Handle spare. */ 8438 if (spare) 8439 quotaadj(freeblks->fb_quota, ump, -spare); 8440 quotarele(freeblks->fb_quota); 8441 #endif 8442 ACQUIRE_LOCK(ump); 8443 if (freeblks->fb_state & ONDEPLIST) { 8444 inodedep_lookup(freeblks->fb_list.wk_mp, freeblks->fb_inum, 8445 0, &inodedep); 8446 TAILQ_REMOVE(&inodedep->id_freeblklst, freeblks, fb_next); 8447 freeblks->fb_state &= ~ONDEPLIST; 8448 if (TAILQ_EMPTY(&inodedep->id_freeblklst)) 8449 free_inodedep(inodedep); 8450 } 8451 /* 8452 * All of the freeblock deps must be complete prior to this call 8453 * so it's now safe to complete earlier outstanding journal entries. 8454 */ 8455 handle_jwork(&freeblks->fb_jwork); 8456 WORKITEM_FREE(freeblks, D_FREEBLKS); 8457 FREE_LOCK(ump); 8458 return (0); 8459 } 8460 8461 /* 8462 * Release blocks associated with the freeblks and stored in the indirect 8463 * block dbn. If level is greater than SINGLE, the block is an indirect block 8464 * and recursive calls to indirtrunc must be used to cleanse other indirect 8465 * blocks. 8466 * 8467 * This handles partial and complete truncation of blocks. Partial is noted 8468 * with goingaway == 0. In this case the freework is completed after the 8469 * zero'd indirects are written to disk. For full truncation the freework 8470 * is completed after the block is freed. 8471 */ 8472 static void 8473 indir_trunc(freework, dbn, lbn) 8474 struct freework *freework; 8475 ufs2_daddr_t dbn; 8476 ufs_lbn_t lbn; 8477 { 8478 struct freework *nfreework; 8479 struct workhead wkhd; 8480 struct freeblks *freeblks; 8481 struct buf *bp; 8482 struct fs *fs; 8483 struct indirdep *indirdep; 8484 struct mount *mp; 8485 struct ufsmount *ump; 8486 ufs1_daddr_t *bap1; 8487 ufs2_daddr_t nb, nnb, *bap2; 8488 ufs_lbn_t lbnadd, nlbn; 8489 u_long key; 8490 int nblocks, ufs1fmt, freedblocks; 8491 int goingaway, freedeps, needj, level, cnt, i, error; 8492 8493 freeblks = freework->fw_freeblks; 8494 mp = freeblks->fb_list.wk_mp; 8495 ump = VFSTOUFS(mp); 8496 fs = ump->um_fs; 8497 /* 8498 * Get buffer of block pointers to be freed. There are three cases: 8499 * 8500 * 1) Partial truncate caches the indirdep pointer in the freework 8501 * which provides us a back copy to the save bp which holds the 8502 * pointers we want to clear. When this completes the zero 8503 * pointers are written to the real copy. 8504 * 2) The indirect is being completely truncated, cancel_indirdep() 8505 * eliminated the real copy and placed the indirdep on the saved 8506 * copy. The indirdep and buf are discarded when this completes. 8507 * 3) The indirect was not in memory, we read a copy off of the disk 8508 * using the devvp and drop and invalidate the buffer when we're 8509 * done. 8510 */ 8511 goingaway = 1; 8512 indirdep = NULL; 8513 if (freework->fw_indir != NULL) { 8514 goingaway = 0; 8515 indirdep = freework->fw_indir; 8516 bp = indirdep->ir_savebp; 8517 if (bp == NULL || bp->b_blkno != dbn) 8518 panic("indir_trunc: Bad saved buf %p blkno %jd", 8519 bp, (intmax_t)dbn); 8520 } else if ((bp = incore(&freeblks->fb_devvp->v_bufobj, dbn)) != NULL) { 8521 /* 8522 * The lock prevents the buf dep list from changing and 8523 * indirects on devvp should only ever have one dependency. 8524 */ 8525 indirdep = WK_INDIRDEP(LIST_FIRST(&bp->b_dep)); 8526 if (indirdep == NULL || (indirdep->ir_state & GOINGAWAY) == 0) 8527 panic("indir_trunc: Bad indirdep %p from buf %p", 8528 indirdep, bp); 8529 } else { 8530 error = ffs_breadz(ump, freeblks->fb_devvp, dbn, dbn, 8531 (int)fs->fs_bsize, NULL, NULL, 0, NOCRED, 0, NULL, &bp); 8532 if (error) 8533 return; 8534 } 8535 ACQUIRE_LOCK(ump); 8536 /* Protects against a race with complete_trunc_indir(). */ 8537 freework->fw_state &= ~INPROGRESS; 8538 /* 8539 * If we have an indirdep we need to enforce the truncation order 8540 * and discard it when it is complete. 8541 */ 8542 if (indirdep) { 8543 if (freework != TAILQ_FIRST(&indirdep->ir_trunc) && 8544 !TAILQ_EMPTY(&indirdep->ir_trunc)) { 8545 /* 8546 * Add the complete truncate to the list on the 8547 * indirdep to enforce in-order processing. 8548 */ 8549 if (freework->fw_indir == NULL) 8550 TAILQ_INSERT_TAIL(&indirdep->ir_trunc, 8551 freework, fw_next); 8552 FREE_LOCK(ump); 8553 return; 8554 } 8555 /* 8556 * If we're goingaway, free the indirdep. Otherwise it will 8557 * linger until the write completes. 8558 */ 8559 if (goingaway) { 8560 KASSERT(indirdep->ir_savebp == bp, 8561 ("indir_trunc: losing ir_savebp %p", 8562 indirdep->ir_savebp)); 8563 indirdep->ir_savebp = NULL; 8564 free_indirdep(indirdep); 8565 } 8566 } 8567 FREE_LOCK(ump); 8568 /* Initialize pointers depending on block size. */ 8569 if (ump->um_fstype == UFS1) { 8570 bap1 = (ufs1_daddr_t *)bp->b_data; 8571 nb = bap1[freework->fw_off]; 8572 ufs1fmt = 1; 8573 bap2 = NULL; 8574 } else { 8575 bap2 = (ufs2_daddr_t *)bp->b_data; 8576 nb = bap2[freework->fw_off]; 8577 ufs1fmt = 0; 8578 bap1 = NULL; 8579 } 8580 level = lbn_level(lbn); 8581 needj = MOUNTEDSUJ(UFSTOVFS(ump)) != 0; 8582 lbnadd = lbn_offset(fs, level); 8583 nblocks = btodb(fs->fs_bsize); 8584 nfreework = freework; 8585 freedeps = 0; 8586 cnt = 0; 8587 /* 8588 * Reclaim blocks. Traverses into nested indirect levels and 8589 * arranges for the current level to be freed when subordinates 8590 * are free when journaling. 8591 */ 8592 key = ffs_blkrelease_start(ump, freeblks->fb_devvp, freeblks->fb_inum); 8593 for (i = freework->fw_off; i < NINDIR(fs); i++, nb = nnb) { 8594 if (UFS_CHECK_BLKNO(mp, freeblks->fb_inum, nb, 8595 fs->fs_bsize) != 0) 8596 nb = 0; 8597 if (i != NINDIR(fs) - 1) { 8598 if (ufs1fmt) 8599 nnb = bap1[i+1]; 8600 else 8601 nnb = bap2[i+1]; 8602 } else 8603 nnb = 0; 8604 if (nb == 0) 8605 continue; 8606 cnt++; 8607 if (level != 0) { 8608 nlbn = (lbn + 1) - (i * lbnadd); 8609 if (needj != 0) { 8610 nfreework = newfreework(ump, freeblks, freework, 8611 nlbn, nb, fs->fs_frag, 0, 0); 8612 freedeps++; 8613 } 8614 indir_trunc(nfreework, fsbtodb(fs, nb), nlbn); 8615 } else { 8616 struct freedep *freedep; 8617 8618 /* 8619 * Attempt to aggregate freedep dependencies for 8620 * all blocks being released to the same CG. 8621 */ 8622 LIST_INIT(&wkhd); 8623 if (needj != 0 && 8624 (nnb == 0 || (dtog(fs, nb) != dtog(fs, nnb)))) { 8625 freedep = newfreedep(freework); 8626 WORKLIST_INSERT_UNLOCKED(&wkhd, 8627 &freedep->fd_list); 8628 freedeps++; 8629 } 8630 CTR3(KTR_SUJ, 8631 "indir_trunc: ino %jd blkno %jd size %d", 8632 freeblks->fb_inum, nb, fs->fs_bsize); 8633 ffs_blkfree(ump, fs, freeblks->fb_devvp, nb, 8634 fs->fs_bsize, freeblks->fb_inum, 8635 freeblks->fb_vtype, &wkhd, key); 8636 } 8637 } 8638 ffs_blkrelease_finish(ump, key); 8639 if (goingaway) { 8640 bp->b_flags |= B_INVAL | B_NOCACHE; 8641 brelse(bp); 8642 } 8643 freedblocks = 0; 8644 if (level == 0) 8645 freedblocks = (nblocks * cnt); 8646 if (needj == 0) 8647 freedblocks += nblocks; 8648 freeblks_free(ump, freeblks, freedblocks); 8649 /* 8650 * If we are journaling set up the ref counts and offset so this 8651 * indirect can be completed when its children are free. 8652 */ 8653 if (needj) { 8654 ACQUIRE_LOCK(ump); 8655 freework->fw_off = i; 8656 freework->fw_ref += freedeps; 8657 freework->fw_ref -= NINDIR(fs) + 1; 8658 if (level == 0) 8659 freeblks->fb_cgwait += freedeps; 8660 if (freework->fw_ref == 0) 8661 freework_freeblock(freework, SINGLETON_KEY); 8662 FREE_LOCK(ump); 8663 return; 8664 } 8665 /* 8666 * If we're not journaling we can free the indirect now. 8667 */ 8668 dbn = dbtofsb(fs, dbn); 8669 CTR3(KTR_SUJ, 8670 "indir_trunc 2: ino %jd blkno %jd size %d", 8671 freeblks->fb_inum, dbn, fs->fs_bsize); 8672 ffs_blkfree(ump, fs, freeblks->fb_devvp, dbn, fs->fs_bsize, 8673 freeblks->fb_inum, freeblks->fb_vtype, NULL, SINGLETON_KEY); 8674 /* Non SUJ softdep does single-threaded truncations. */ 8675 if (freework->fw_blkno == dbn) { 8676 freework->fw_state |= ALLCOMPLETE; 8677 ACQUIRE_LOCK(ump); 8678 handle_written_freework(freework); 8679 FREE_LOCK(ump); 8680 } 8681 return; 8682 } 8683 8684 /* 8685 * Cancel an allocindir when it is removed via truncation. When bp is not 8686 * NULL the indirect never appeared on disk and is scheduled to be freed 8687 * independently of the indir so we can more easily track journal work. 8688 */ 8689 static void 8690 cancel_allocindir(aip, bp, freeblks, trunc) 8691 struct allocindir *aip; 8692 struct buf *bp; 8693 struct freeblks *freeblks; 8694 int trunc; 8695 { 8696 struct indirdep *indirdep; 8697 struct freefrag *freefrag; 8698 struct newblk *newblk; 8699 8700 newblk = (struct newblk *)aip; 8701 LIST_REMOVE(aip, ai_next); 8702 /* 8703 * We must eliminate the pointer in bp if it must be freed on its 8704 * own due to partial truncate or pending journal work. 8705 */ 8706 if (bp && (trunc || newblk->nb_jnewblk)) { 8707 /* 8708 * Clear the pointer and mark the aip to be freed 8709 * directly if it never existed on disk. 8710 */ 8711 aip->ai_state |= DELAYEDFREE; 8712 indirdep = aip->ai_indirdep; 8713 if (indirdep->ir_state & UFS1FMT) 8714 ((ufs1_daddr_t *)bp->b_data)[aip->ai_offset] = 0; 8715 else 8716 ((ufs2_daddr_t *)bp->b_data)[aip->ai_offset] = 0; 8717 } 8718 /* 8719 * When truncating the previous pointer will be freed via 8720 * savedbp. Eliminate the freefrag which would dup free. 8721 */ 8722 if (trunc && (freefrag = newblk->nb_freefrag) != NULL) { 8723 newblk->nb_freefrag = NULL; 8724 if (freefrag->ff_jdep) 8725 cancel_jfreefrag( 8726 WK_JFREEFRAG(freefrag->ff_jdep)); 8727 jwork_move(&freeblks->fb_jwork, &freefrag->ff_jwork); 8728 WORKITEM_FREE(freefrag, D_FREEFRAG); 8729 } 8730 /* 8731 * If the journal hasn't been written the jnewblk must be passed 8732 * to the call to ffs_blkfree that reclaims the space. We accomplish 8733 * this by leaving the journal dependency on the newblk to be freed 8734 * when a freework is created in handle_workitem_freeblocks(). 8735 */ 8736 cancel_newblk(newblk, NULL, &freeblks->fb_jwork); 8737 WORKLIST_INSERT(&freeblks->fb_freeworkhd, &newblk->nb_list); 8738 } 8739 8740 /* 8741 * Create the mkdir dependencies for . and .. in a new directory. Link them 8742 * in to a newdirblk so any subsequent additions are tracked properly. The 8743 * caller is responsible for adding the mkdir1 dependency to the journal 8744 * and updating id_mkdiradd. This function returns with the per-filesystem 8745 * lock held. 8746 */ 8747 static struct mkdir * 8748 setup_newdir(dap, newinum, dinum, newdirbp, mkdirp) 8749 struct diradd *dap; 8750 ino_t newinum; 8751 ino_t dinum; 8752 struct buf *newdirbp; 8753 struct mkdir **mkdirp; 8754 { 8755 struct newblk *newblk; 8756 struct pagedep *pagedep; 8757 struct inodedep *inodedep; 8758 struct newdirblk *newdirblk; 8759 struct mkdir *mkdir1, *mkdir2; 8760 struct worklist *wk; 8761 struct jaddref *jaddref; 8762 struct ufsmount *ump; 8763 struct mount *mp; 8764 8765 mp = dap->da_list.wk_mp; 8766 ump = VFSTOUFS(mp); 8767 newdirblk = malloc(sizeof(struct newdirblk), M_NEWDIRBLK, 8768 M_SOFTDEP_FLAGS); 8769 workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp); 8770 LIST_INIT(&newdirblk->db_mkdir); 8771 mkdir1 = malloc(sizeof(struct mkdir), M_MKDIR, M_SOFTDEP_FLAGS); 8772 workitem_alloc(&mkdir1->md_list, D_MKDIR, mp); 8773 mkdir1->md_state = ATTACHED | MKDIR_BODY; 8774 mkdir1->md_diradd = dap; 8775 mkdir1->md_jaddref = NULL; 8776 mkdir2 = malloc(sizeof(struct mkdir), M_MKDIR, M_SOFTDEP_FLAGS); 8777 workitem_alloc(&mkdir2->md_list, D_MKDIR, mp); 8778 mkdir2->md_state = ATTACHED | MKDIR_PARENT; 8779 mkdir2->md_diradd = dap; 8780 mkdir2->md_jaddref = NULL; 8781 if (MOUNTEDSUJ(mp) == 0) { 8782 mkdir1->md_state |= DEPCOMPLETE; 8783 mkdir2->md_state |= DEPCOMPLETE; 8784 } 8785 /* 8786 * Dependency on "." and ".." being written to disk. 8787 */ 8788 mkdir1->md_buf = newdirbp; 8789 ACQUIRE_LOCK(VFSTOUFS(mp)); 8790 LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir1, md_mkdirs); 8791 /* 8792 * We must link the pagedep, allocdirect, and newdirblk for 8793 * the initial file page so the pointer to the new directory 8794 * is not written until the directory contents are live and 8795 * any subsequent additions are not marked live until the 8796 * block is reachable via the inode. 8797 */ 8798 if (pagedep_lookup(mp, newdirbp, newinum, 0, 0, &pagedep) == 0) 8799 panic("setup_newdir: lost pagedep"); 8800 LIST_FOREACH(wk, &newdirbp->b_dep, wk_list) 8801 if (wk->wk_type == D_ALLOCDIRECT) 8802 break; 8803 if (wk == NULL) 8804 panic("setup_newdir: lost allocdirect"); 8805 if (pagedep->pd_state & NEWBLOCK) 8806 panic("setup_newdir: NEWBLOCK already set"); 8807 newblk = WK_NEWBLK(wk); 8808 pagedep->pd_state |= NEWBLOCK; 8809 pagedep->pd_newdirblk = newdirblk; 8810 newdirblk->db_pagedep = pagedep; 8811 WORKLIST_INSERT(&newblk->nb_newdirblk, &newdirblk->db_list); 8812 WORKLIST_INSERT(&newdirblk->db_mkdir, &mkdir1->md_list); 8813 /* 8814 * Look up the inodedep for the parent directory so that we 8815 * can link mkdir2 into the pending dotdot jaddref or 8816 * the inode write if there is none. If the inode is 8817 * ALLCOMPLETE and no jaddref is present all dependencies have 8818 * been satisfied and mkdir2 can be freed. 8819 */ 8820 inodedep_lookup(mp, dinum, 0, &inodedep); 8821 if (MOUNTEDSUJ(mp)) { 8822 if (inodedep == NULL) 8823 panic("setup_newdir: Lost parent."); 8824 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 8825 inoreflst); 8826 KASSERT(jaddref != NULL && jaddref->ja_parent == newinum && 8827 (jaddref->ja_state & MKDIR_PARENT), 8828 ("setup_newdir: bad dotdot jaddref %p", jaddref)); 8829 LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir2, md_mkdirs); 8830 mkdir2->md_jaddref = jaddref; 8831 jaddref->ja_mkdir = mkdir2; 8832 } else if (inodedep == NULL || 8833 (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) { 8834 dap->da_state &= ~MKDIR_PARENT; 8835 WORKITEM_FREE(mkdir2, D_MKDIR); 8836 mkdir2 = NULL; 8837 } else { 8838 LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir2, md_mkdirs); 8839 WORKLIST_INSERT(&inodedep->id_bufwait, &mkdir2->md_list); 8840 } 8841 *mkdirp = mkdir2; 8842 8843 return (mkdir1); 8844 } 8845 8846 /* 8847 * Directory entry addition dependencies. 8848 * 8849 * When adding a new directory entry, the inode (with its incremented link 8850 * count) must be written to disk before the directory entry's pointer to it. 8851 * Also, if the inode is newly allocated, the corresponding freemap must be 8852 * updated (on disk) before the directory entry's pointer. These requirements 8853 * are met via undo/redo on the directory entry's pointer, which consists 8854 * simply of the inode number. 8855 * 8856 * As directory entries are added and deleted, the free space within a 8857 * directory block can become fragmented. The ufs filesystem will compact 8858 * a fragmented directory block to make space for a new entry. When this 8859 * occurs, the offsets of previously added entries change. Any "diradd" 8860 * dependency structures corresponding to these entries must be updated with 8861 * the new offsets. 8862 */ 8863 8864 /* 8865 * This routine is called after the in-memory inode's link 8866 * count has been incremented, but before the directory entry's 8867 * pointer to the inode has been set. 8868 */ 8869 int 8870 softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk) 8871 struct buf *bp; /* buffer containing directory block */ 8872 struct inode *dp; /* inode for directory */ 8873 off_t diroffset; /* offset of new entry in directory */ 8874 ino_t newinum; /* inode referenced by new directory entry */ 8875 struct buf *newdirbp; /* non-NULL => contents of new mkdir */ 8876 int isnewblk; /* entry is in a newly allocated block */ 8877 { 8878 int offset; /* offset of new entry within directory block */ 8879 ufs_lbn_t lbn; /* block in directory containing new entry */ 8880 struct fs *fs; 8881 struct diradd *dap; 8882 struct newblk *newblk; 8883 struct pagedep *pagedep; 8884 struct inodedep *inodedep; 8885 struct newdirblk *newdirblk; 8886 struct mkdir *mkdir1, *mkdir2; 8887 struct jaddref *jaddref; 8888 struct ufsmount *ump; 8889 struct mount *mp; 8890 int isindir; 8891 8892 mp = ITOVFS(dp); 8893 ump = VFSTOUFS(mp); 8894 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 8895 ("softdep_setup_directory_add called on non-softdep filesystem")); 8896 /* 8897 * Whiteouts have no dependencies. 8898 */ 8899 if (newinum == UFS_WINO) { 8900 if (newdirbp != NULL) 8901 bdwrite(newdirbp); 8902 return (0); 8903 } 8904 jaddref = NULL; 8905 mkdir1 = mkdir2 = NULL; 8906 fs = ump->um_fs; 8907 lbn = lblkno(fs, diroffset); 8908 offset = blkoff(fs, diroffset); 8909 dap = malloc(sizeof(struct diradd), M_DIRADD, 8910 M_SOFTDEP_FLAGS|M_ZERO); 8911 workitem_alloc(&dap->da_list, D_DIRADD, mp); 8912 dap->da_offset = offset; 8913 dap->da_newinum = newinum; 8914 dap->da_state = ATTACHED; 8915 LIST_INIT(&dap->da_jwork); 8916 isindir = bp->b_lblkno >= UFS_NDADDR; 8917 newdirblk = NULL; 8918 if (isnewblk && 8919 (isindir ? blkoff(fs, diroffset) : fragoff(fs, diroffset)) == 0) { 8920 newdirblk = malloc(sizeof(struct newdirblk), 8921 M_NEWDIRBLK, M_SOFTDEP_FLAGS); 8922 workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp); 8923 LIST_INIT(&newdirblk->db_mkdir); 8924 } 8925 /* 8926 * If we're creating a new directory setup the dependencies and set 8927 * the dap state to wait for them. Otherwise it's COMPLETE and 8928 * we can move on. 8929 */ 8930 if (newdirbp == NULL) { 8931 dap->da_state |= DEPCOMPLETE; 8932 ACQUIRE_LOCK(ump); 8933 } else { 8934 dap->da_state |= MKDIR_BODY | MKDIR_PARENT; 8935 mkdir1 = setup_newdir(dap, newinum, dp->i_number, newdirbp, 8936 &mkdir2); 8937 } 8938 /* 8939 * Link into parent directory pagedep to await its being written. 8940 */ 8941 pagedep_lookup(mp, bp, dp->i_number, lbn, DEPALLOC, &pagedep); 8942 #ifdef INVARIANTS 8943 if (diradd_lookup(pagedep, offset) != NULL) 8944 panic("softdep_setup_directory_add: %p already at off %d\n", 8945 diradd_lookup(pagedep, offset), offset); 8946 #endif 8947 dap->da_pagedep = pagedep; 8948 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], dap, 8949 da_pdlist); 8950 inodedep_lookup(mp, newinum, DEPALLOC, &inodedep); 8951 /* 8952 * If we're journaling, link the diradd into the jaddref so it 8953 * may be completed after the journal entry is written. Otherwise, 8954 * link the diradd into its inodedep. If the inode is not yet 8955 * written place it on the bufwait list, otherwise do the post-inode 8956 * write processing to put it on the id_pendinghd list. 8957 */ 8958 if (MOUNTEDSUJ(mp)) { 8959 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 8960 inoreflst); 8961 KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number, 8962 ("softdep_setup_directory_add: bad jaddref %p", jaddref)); 8963 jaddref->ja_diroff = diroffset; 8964 jaddref->ja_diradd = dap; 8965 add_to_journal(&jaddref->ja_list); 8966 } else if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) 8967 diradd_inode_written(dap, inodedep); 8968 else 8969 WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list); 8970 /* 8971 * Add the journal entries for . and .. links now that the primary 8972 * link is written. 8973 */ 8974 if (mkdir1 != NULL && MOUNTEDSUJ(mp)) { 8975 jaddref = (struct jaddref *)TAILQ_PREV(&jaddref->ja_ref, 8976 inoreflst, if_deps); 8977 KASSERT(jaddref != NULL && 8978 jaddref->ja_ino == jaddref->ja_parent && 8979 (jaddref->ja_state & MKDIR_BODY), 8980 ("softdep_setup_directory_add: bad dot jaddref %p", 8981 jaddref)); 8982 mkdir1->md_jaddref = jaddref; 8983 jaddref->ja_mkdir = mkdir1; 8984 /* 8985 * It is important that the dotdot journal entry 8986 * is added prior to the dot entry since dot writes 8987 * both the dot and dotdot links. These both must 8988 * be added after the primary link for the journal 8989 * to remain consistent. 8990 */ 8991 add_to_journal(&mkdir2->md_jaddref->ja_list); 8992 add_to_journal(&jaddref->ja_list); 8993 } 8994 /* 8995 * If we are adding a new directory remember this diradd so that if 8996 * we rename it we can keep the dot and dotdot dependencies. If 8997 * we are adding a new name for an inode that has a mkdiradd we 8998 * must be in rename and we have to move the dot and dotdot 8999 * dependencies to this new name. The old name is being orphaned 9000 * soon. 9001 */ 9002 if (mkdir1 != NULL) { 9003 if (inodedep->id_mkdiradd != NULL) 9004 panic("softdep_setup_directory_add: Existing mkdir"); 9005 inodedep->id_mkdiradd = dap; 9006 } else if (inodedep->id_mkdiradd) 9007 merge_diradd(inodedep, dap); 9008 if (newdirblk != NULL) { 9009 /* 9010 * There is nothing to do if we are already tracking 9011 * this block. 9012 */ 9013 if ((pagedep->pd_state & NEWBLOCK) != 0) { 9014 WORKITEM_FREE(newdirblk, D_NEWDIRBLK); 9015 FREE_LOCK(ump); 9016 return (0); 9017 } 9018 if (newblk_lookup(mp, dbtofsb(fs, bp->b_blkno), 0, &newblk) 9019 == 0) 9020 panic("softdep_setup_directory_add: lost entry"); 9021 WORKLIST_INSERT(&newblk->nb_newdirblk, &newdirblk->db_list); 9022 pagedep->pd_state |= NEWBLOCK; 9023 pagedep->pd_newdirblk = newdirblk; 9024 newdirblk->db_pagedep = pagedep; 9025 FREE_LOCK(ump); 9026 /* 9027 * If we extended into an indirect signal direnter to sync. 9028 */ 9029 if (isindir) 9030 return (1); 9031 return (0); 9032 } 9033 FREE_LOCK(ump); 9034 return (0); 9035 } 9036 9037 /* 9038 * This procedure is called to change the offset of a directory 9039 * entry when compacting a directory block which must be owned 9040 * exclusively by the caller. Note that the actual entry movement 9041 * must be done in this procedure to ensure that no I/O completions 9042 * occur while the move is in progress. 9043 */ 9044 void 9045 softdep_change_directoryentry_offset(bp, dp, base, oldloc, newloc, entrysize) 9046 struct buf *bp; /* Buffer holding directory block. */ 9047 struct inode *dp; /* inode for directory */ 9048 caddr_t base; /* address of dp->i_offset */ 9049 caddr_t oldloc; /* address of old directory location */ 9050 caddr_t newloc; /* address of new directory location */ 9051 int entrysize; /* size of directory entry */ 9052 { 9053 int offset, oldoffset, newoffset; 9054 struct pagedep *pagedep; 9055 struct jmvref *jmvref; 9056 struct diradd *dap; 9057 struct direct *de; 9058 struct mount *mp; 9059 struct ufsmount *ump; 9060 ufs_lbn_t lbn; 9061 int flags; 9062 9063 mp = ITOVFS(dp); 9064 ump = VFSTOUFS(mp); 9065 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 9066 ("softdep_change_directoryentry_offset called on " 9067 "non-softdep filesystem")); 9068 de = (struct direct *)oldloc; 9069 jmvref = NULL; 9070 flags = 0; 9071 /* 9072 * Moves are always journaled as it would be too complex to 9073 * determine if any affected adds or removes are present in the 9074 * journal. 9075 */ 9076 if (MOUNTEDSUJ(mp)) { 9077 flags = DEPALLOC; 9078 jmvref = newjmvref(dp, de->d_ino, 9079 I_OFFSET(dp) + (oldloc - base), 9080 I_OFFSET(dp) + (newloc - base)); 9081 } 9082 lbn = lblkno(ump->um_fs, I_OFFSET(dp)); 9083 offset = blkoff(ump->um_fs, I_OFFSET(dp)); 9084 oldoffset = offset + (oldloc - base); 9085 newoffset = offset + (newloc - base); 9086 ACQUIRE_LOCK(ump); 9087 if (pagedep_lookup(mp, bp, dp->i_number, lbn, flags, &pagedep) == 0) 9088 goto done; 9089 dap = diradd_lookup(pagedep, oldoffset); 9090 if (dap) { 9091 dap->da_offset = newoffset; 9092 newoffset = DIRADDHASH(newoffset); 9093 oldoffset = DIRADDHASH(oldoffset); 9094 if ((dap->da_state & ALLCOMPLETE) != ALLCOMPLETE && 9095 newoffset != oldoffset) { 9096 LIST_REMOVE(dap, da_pdlist); 9097 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[newoffset], 9098 dap, da_pdlist); 9099 } 9100 } 9101 done: 9102 if (jmvref) { 9103 jmvref->jm_pagedep = pagedep; 9104 LIST_INSERT_HEAD(&pagedep->pd_jmvrefhd, jmvref, jm_deps); 9105 add_to_journal(&jmvref->jm_list); 9106 } 9107 bcopy(oldloc, newloc, entrysize); 9108 FREE_LOCK(ump); 9109 } 9110 9111 /* 9112 * Move the mkdir dependencies and journal work from one diradd to another 9113 * when renaming a directory. The new name must depend on the mkdir deps 9114 * completing as the old name did. Directories can only have one valid link 9115 * at a time so one must be canonical. 9116 */ 9117 static void 9118 merge_diradd(inodedep, newdap) 9119 struct inodedep *inodedep; 9120 struct diradd *newdap; 9121 { 9122 struct diradd *olddap; 9123 struct mkdir *mkdir, *nextmd; 9124 struct ufsmount *ump; 9125 short state; 9126 9127 olddap = inodedep->id_mkdiradd; 9128 inodedep->id_mkdiradd = newdap; 9129 if ((olddap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) { 9130 newdap->da_state &= ~DEPCOMPLETE; 9131 ump = VFSTOUFS(inodedep->id_list.wk_mp); 9132 for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir; 9133 mkdir = nextmd) { 9134 nextmd = LIST_NEXT(mkdir, md_mkdirs); 9135 if (mkdir->md_diradd != olddap) 9136 continue; 9137 mkdir->md_diradd = newdap; 9138 state = mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY); 9139 newdap->da_state |= state; 9140 olddap->da_state &= ~state; 9141 if ((olddap->da_state & 9142 (MKDIR_PARENT | MKDIR_BODY)) == 0) 9143 break; 9144 } 9145 if ((olddap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) 9146 panic("merge_diradd: unfound ref"); 9147 } 9148 /* 9149 * Any mkdir related journal items are not safe to be freed until 9150 * the new name is stable. 9151 */ 9152 jwork_move(&newdap->da_jwork, &olddap->da_jwork); 9153 olddap->da_state |= DEPCOMPLETE; 9154 complete_diradd(olddap); 9155 } 9156 9157 /* 9158 * Move the diradd to the pending list when all diradd dependencies are 9159 * complete. 9160 */ 9161 static void 9162 complete_diradd(dap) 9163 struct diradd *dap; 9164 { 9165 struct pagedep *pagedep; 9166 9167 if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) { 9168 if (dap->da_state & DIRCHG) 9169 pagedep = dap->da_previous->dm_pagedep; 9170 else 9171 pagedep = dap->da_pagedep; 9172 LIST_REMOVE(dap, da_pdlist); 9173 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist); 9174 } 9175 } 9176 9177 /* 9178 * Cancel a diradd when a dirrem overlaps with it. We must cancel the journal 9179 * add entries and conditonally journal the remove. 9180 */ 9181 static void 9182 cancel_diradd(dap, dirrem, jremref, dotremref, dotdotremref) 9183 struct diradd *dap; 9184 struct dirrem *dirrem; 9185 struct jremref *jremref; 9186 struct jremref *dotremref; 9187 struct jremref *dotdotremref; 9188 { 9189 struct inodedep *inodedep; 9190 struct jaddref *jaddref; 9191 struct inoref *inoref; 9192 struct ufsmount *ump; 9193 struct mkdir *mkdir; 9194 9195 /* 9196 * If no remove references were allocated we're on a non-journaled 9197 * filesystem and can skip the cancel step. 9198 */ 9199 if (jremref == NULL) { 9200 free_diradd(dap, NULL); 9201 return; 9202 } 9203 /* 9204 * Cancel the primary name an free it if it does not require 9205 * journaling. 9206 */ 9207 if (inodedep_lookup(dap->da_list.wk_mp, dap->da_newinum, 9208 0, &inodedep) != 0) { 9209 /* Abort the addref that reference this diradd. */ 9210 TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) { 9211 if (inoref->if_list.wk_type != D_JADDREF) 9212 continue; 9213 jaddref = (struct jaddref *)inoref; 9214 if (jaddref->ja_diradd != dap) 9215 continue; 9216 if (cancel_jaddref(jaddref, inodedep, 9217 &dirrem->dm_jwork) == 0) { 9218 free_jremref(jremref); 9219 jremref = NULL; 9220 } 9221 break; 9222 } 9223 } 9224 /* 9225 * Cancel subordinate names and free them if they do not require 9226 * journaling. 9227 */ 9228 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) { 9229 ump = VFSTOUFS(dap->da_list.wk_mp); 9230 LIST_FOREACH(mkdir, &ump->softdep_mkdirlisthd, md_mkdirs) { 9231 if (mkdir->md_diradd != dap) 9232 continue; 9233 if ((jaddref = mkdir->md_jaddref) == NULL) 9234 continue; 9235 mkdir->md_jaddref = NULL; 9236 if (mkdir->md_state & MKDIR_PARENT) { 9237 if (cancel_jaddref(jaddref, NULL, 9238 &dirrem->dm_jwork) == 0) { 9239 free_jremref(dotdotremref); 9240 dotdotremref = NULL; 9241 } 9242 } else { 9243 if (cancel_jaddref(jaddref, inodedep, 9244 &dirrem->dm_jwork) == 0) { 9245 free_jremref(dotremref); 9246 dotremref = NULL; 9247 } 9248 } 9249 } 9250 } 9251 9252 if (jremref) 9253 journal_jremref(dirrem, jremref, inodedep); 9254 if (dotremref) 9255 journal_jremref(dirrem, dotremref, inodedep); 9256 if (dotdotremref) 9257 journal_jremref(dirrem, dotdotremref, NULL); 9258 jwork_move(&dirrem->dm_jwork, &dap->da_jwork); 9259 free_diradd(dap, &dirrem->dm_jwork); 9260 } 9261 9262 /* 9263 * Free a diradd dependency structure. 9264 */ 9265 static void 9266 free_diradd(dap, wkhd) 9267 struct diradd *dap; 9268 struct workhead *wkhd; 9269 { 9270 struct dirrem *dirrem; 9271 struct pagedep *pagedep; 9272 struct inodedep *inodedep; 9273 struct mkdir *mkdir, *nextmd; 9274 struct ufsmount *ump; 9275 9276 ump = VFSTOUFS(dap->da_list.wk_mp); 9277 LOCK_OWNED(ump); 9278 LIST_REMOVE(dap, da_pdlist); 9279 if (dap->da_state & ONWORKLIST) 9280 WORKLIST_REMOVE(&dap->da_list); 9281 if ((dap->da_state & DIRCHG) == 0) { 9282 pagedep = dap->da_pagedep; 9283 } else { 9284 dirrem = dap->da_previous; 9285 pagedep = dirrem->dm_pagedep; 9286 dirrem->dm_dirinum = pagedep->pd_ino; 9287 dirrem->dm_state |= COMPLETE; 9288 if (LIST_EMPTY(&dirrem->dm_jremrefhd)) 9289 add_to_worklist(&dirrem->dm_list, 0); 9290 } 9291 if (inodedep_lookup(pagedep->pd_list.wk_mp, dap->da_newinum, 9292 0, &inodedep) != 0) 9293 if (inodedep->id_mkdiradd == dap) 9294 inodedep->id_mkdiradd = NULL; 9295 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) { 9296 for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir; 9297 mkdir = nextmd) { 9298 nextmd = LIST_NEXT(mkdir, md_mkdirs); 9299 if (mkdir->md_diradd != dap) 9300 continue; 9301 dap->da_state &= 9302 ~(mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY)); 9303 LIST_REMOVE(mkdir, md_mkdirs); 9304 if (mkdir->md_state & ONWORKLIST) 9305 WORKLIST_REMOVE(&mkdir->md_list); 9306 if (mkdir->md_jaddref != NULL) 9307 panic("free_diradd: Unexpected jaddref"); 9308 WORKITEM_FREE(mkdir, D_MKDIR); 9309 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0) 9310 break; 9311 } 9312 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) 9313 panic("free_diradd: unfound ref"); 9314 } 9315 if (inodedep) 9316 free_inodedep(inodedep); 9317 /* 9318 * Free any journal segments waiting for the directory write. 9319 */ 9320 handle_jwork(&dap->da_jwork); 9321 WORKITEM_FREE(dap, D_DIRADD); 9322 } 9323 9324 /* 9325 * Directory entry removal dependencies. 9326 * 9327 * When removing a directory entry, the entry's inode pointer must be 9328 * zero'ed on disk before the corresponding inode's link count is decremented 9329 * (possibly freeing the inode for re-use). This dependency is handled by 9330 * updating the directory entry but delaying the inode count reduction until 9331 * after the directory block has been written to disk. After this point, the 9332 * inode count can be decremented whenever it is convenient. 9333 */ 9334 9335 /* 9336 * This routine should be called immediately after removing 9337 * a directory entry. The inode's link count should not be 9338 * decremented by the calling procedure -- the soft updates 9339 * code will do this task when it is safe. 9340 */ 9341 void 9342 softdep_setup_remove(bp, dp, ip, isrmdir) 9343 struct buf *bp; /* buffer containing directory block */ 9344 struct inode *dp; /* inode for the directory being modified */ 9345 struct inode *ip; /* inode for directory entry being removed */ 9346 int isrmdir; /* indicates if doing RMDIR */ 9347 { 9348 struct dirrem *dirrem, *prevdirrem; 9349 struct inodedep *inodedep; 9350 struct ufsmount *ump; 9351 int direct; 9352 9353 ump = ITOUMP(ip); 9354 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 9355 ("softdep_setup_remove called on non-softdep filesystem")); 9356 /* 9357 * Allocate a new dirrem if appropriate and ACQUIRE_LOCK. We want 9358 * newdirrem() to setup the full directory remove which requires 9359 * isrmdir > 1. 9360 */ 9361 dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem); 9362 /* 9363 * Add the dirrem to the inodedep's pending remove list for quick 9364 * discovery later. 9365 */ 9366 if (inodedep_lookup(UFSTOVFS(ump), ip->i_number, 0, &inodedep) == 0) 9367 panic("softdep_setup_remove: Lost inodedep."); 9368 KASSERT((inodedep->id_state & UNLINKED) == 0, ("inode unlinked")); 9369 dirrem->dm_state |= ONDEPLIST; 9370 LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext); 9371 9372 /* 9373 * If the COMPLETE flag is clear, then there were no active 9374 * entries and we want to roll back to a zeroed entry until 9375 * the new inode is committed to disk. If the COMPLETE flag is 9376 * set then we have deleted an entry that never made it to 9377 * disk. If the entry we deleted resulted from a name change, 9378 * then the old name still resides on disk. We cannot delete 9379 * its inode (returned to us in prevdirrem) until the zeroed 9380 * directory entry gets to disk. The new inode has never been 9381 * referenced on the disk, so can be deleted immediately. 9382 */ 9383 if ((dirrem->dm_state & COMPLETE) == 0) { 9384 LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, dirrem, 9385 dm_next); 9386 FREE_LOCK(ump); 9387 } else { 9388 if (prevdirrem != NULL) 9389 LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, 9390 prevdirrem, dm_next); 9391 dirrem->dm_dirinum = dirrem->dm_pagedep->pd_ino; 9392 direct = LIST_EMPTY(&dirrem->dm_jremrefhd); 9393 FREE_LOCK(ump); 9394 if (direct) 9395 handle_workitem_remove(dirrem, 0); 9396 } 9397 } 9398 9399 /* 9400 * Check for an entry matching 'offset' on both the pd_dirraddhd list and the 9401 * pd_pendinghd list of a pagedep. 9402 */ 9403 static struct diradd * 9404 diradd_lookup(pagedep, offset) 9405 struct pagedep *pagedep; 9406 int offset; 9407 { 9408 struct diradd *dap; 9409 9410 LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(offset)], da_pdlist) 9411 if (dap->da_offset == offset) 9412 return (dap); 9413 LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist) 9414 if (dap->da_offset == offset) 9415 return (dap); 9416 return (NULL); 9417 } 9418 9419 /* 9420 * Search for a .. diradd dependency in a directory that is being removed. 9421 * If the directory was renamed to a new parent we have a diradd rather 9422 * than a mkdir for the .. entry. We need to cancel it now before 9423 * it is found in truncate(). 9424 */ 9425 static struct jremref * 9426 cancel_diradd_dotdot(ip, dirrem, jremref) 9427 struct inode *ip; 9428 struct dirrem *dirrem; 9429 struct jremref *jremref; 9430 { 9431 struct pagedep *pagedep; 9432 struct diradd *dap; 9433 struct worklist *wk; 9434 9435 if (pagedep_lookup(ITOVFS(ip), NULL, ip->i_number, 0, 0, &pagedep) == 0) 9436 return (jremref); 9437 dap = diradd_lookup(pagedep, DOTDOT_OFFSET); 9438 if (dap == NULL) 9439 return (jremref); 9440 cancel_diradd(dap, dirrem, jremref, NULL, NULL); 9441 /* 9442 * Mark any journal work as belonging to the parent so it is freed 9443 * with the .. reference. 9444 */ 9445 LIST_FOREACH(wk, &dirrem->dm_jwork, wk_list) 9446 wk->wk_state |= MKDIR_PARENT; 9447 return (NULL); 9448 } 9449 9450 /* 9451 * Cancel the MKDIR_PARENT mkdir component of a diradd when we're going to 9452 * replace it with a dirrem/diradd pair as a result of re-parenting a 9453 * directory. This ensures that we don't simultaneously have a mkdir and 9454 * a diradd for the same .. entry. 9455 */ 9456 static struct jremref * 9457 cancel_mkdir_dotdot(ip, dirrem, jremref) 9458 struct inode *ip; 9459 struct dirrem *dirrem; 9460 struct jremref *jremref; 9461 { 9462 struct inodedep *inodedep; 9463 struct jaddref *jaddref; 9464 struct ufsmount *ump; 9465 struct mkdir *mkdir; 9466 struct diradd *dap; 9467 struct mount *mp; 9468 9469 mp = ITOVFS(ip); 9470 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) 9471 return (jremref); 9472 dap = inodedep->id_mkdiradd; 9473 if (dap == NULL || (dap->da_state & MKDIR_PARENT) == 0) 9474 return (jremref); 9475 ump = VFSTOUFS(inodedep->id_list.wk_mp); 9476 for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir; 9477 mkdir = LIST_NEXT(mkdir, md_mkdirs)) 9478 if (mkdir->md_diradd == dap && mkdir->md_state & MKDIR_PARENT) 9479 break; 9480 if (mkdir == NULL) 9481 panic("cancel_mkdir_dotdot: Unable to find mkdir\n"); 9482 if ((jaddref = mkdir->md_jaddref) != NULL) { 9483 mkdir->md_jaddref = NULL; 9484 jaddref->ja_state &= ~MKDIR_PARENT; 9485 if (inodedep_lookup(mp, jaddref->ja_ino, 0, &inodedep) == 0) 9486 panic("cancel_mkdir_dotdot: Lost parent inodedep"); 9487 if (cancel_jaddref(jaddref, inodedep, &dirrem->dm_jwork)) { 9488 journal_jremref(dirrem, jremref, inodedep); 9489 jremref = NULL; 9490 } 9491 } 9492 if (mkdir->md_state & ONWORKLIST) 9493 WORKLIST_REMOVE(&mkdir->md_list); 9494 mkdir->md_state |= ALLCOMPLETE; 9495 complete_mkdir(mkdir); 9496 return (jremref); 9497 } 9498 9499 static void 9500 journal_jremref(dirrem, jremref, inodedep) 9501 struct dirrem *dirrem; 9502 struct jremref *jremref; 9503 struct inodedep *inodedep; 9504 { 9505 9506 if (inodedep == NULL) 9507 if (inodedep_lookup(jremref->jr_list.wk_mp, 9508 jremref->jr_ref.if_ino, 0, &inodedep) == 0) 9509 panic("journal_jremref: Lost inodedep"); 9510 LIST_INSERT_HEAD(&dirrem->dm_jremrefhd, jremref, jr_deps); 9511 TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jremref->jr_ref, if_deps); 9512 add_to_journal(&jremref->jr_list); 9513 } 9514 9515 static void 9516 dirrem_journal(dirrem, jremref, dotremref, dotdotremref) 9517 struct dirrem *dirrem; 9518 struct jremref *jremref; 9519 struct jremref *dotremref; 9520 struct jremref *dotdotremref; 9521 { 9522 struct inodedep *inodedep; 9523 9524 if (inodedep_lookup(jremref->jr_list.wk_mp, jremref->jr_ref.if_ino, 0, 9525 &inodedep) == 0) 9526 panic("dirrem_journal: Lost inodedep"); 9527 journal_jremref(dirrem, jremref, inodedep); 9528 if (dotremref) 9529 journal_jremref(dirrem, dotremref, inodedep); 9530 if (dotdotremref) 9531 journal_jremref(dirrem, dotdotremref, NULL); 9532 } 9533 9534 /* 9535 * Allocate a new dirrem if appropriate and return it along with 9536 * its associated pagedep. Called without a lock, returns with lock. 9537 */ 9538 static struct dirrem * 9539 newdirrem(bp, dp, ip, isrmdir, prevdirremp) 9540 struct buf *bp; /* buffer containing directory block */ 9541 struct inode *dp; /* inode for the directory being modified */ 9542 struct inode *ip; /* inode for directory entry being removed */ 9543 int isrmdir; /* indicates if doing RMDIR */ 9544 struct dirrem **prevdirremp; /* previously referenced inode, if any */ 9545 { 9546 int offset; 9547 ufs_lbn_t lbn; 9548 struct diradd *dap; 9549 struct dirrem *dirrem; 9550 struct pagedep *pagedep; 9551 struct jremref *jremref; 9552 struct jremref *dotremref; 9553 struct jremref *dotdotremref; 9554 struct vnode *dvp; 9555 struct ufsmount *ump; 9556 9557 /* 9558 * Whiteouts have no deletion dependencies. 9559 */ 9560 if (ip == NULL) 9561 panic("newdirrem: whiteout"); 9562 dvp = ITOV(dp); 9563 ump = ITOUMP(dp); 9564 9565 /* 9566 * If the system is over its limit and our filesystem is 9567 * responsible for more than our share of that usage and 9568 * we are not a snapshot, request some inodedep cleanup. 9569 * Limiting the number of dirrem structures will also limit 9570 * the number of freefile and freeblks structures. 9571 */ 9572 ACQUIRE_LOCK(ump); 9573 if (!IS_SNAPSHOT(ip) && softdep_excess_items(ump, D_DIRREM)) 9574 schedule_cleanup(UFSTOVFS(ump)); 9575 else 9576 FREE_LOCK(ump); 9577 dirrem = malloc(sizeof(struct dirrem), M_DIRREM, M_SOFTDEP_FLAGS | 9578 M_ZERO); 9579 workitem_alloc(&dirrem->dm_list, D_DIRREM, dvp->v_mount); 9580 LIST_INIT(&dirrem->dm_jremrefhd); 9581 LIST_INIT(&dirrem->dm_jwork); 9582 dirrem->dm_state = isrmdir ? RMDIR : 0; 9583 dirrem->dm_oldinum = ip->i_number; 9584 *prevdirremp = NULL; 9585 /* 9586 * Allocate remove reference structures to track journal write 9587 * dependencies. We will always have one for the link and 9588 * when doing directories we will always have one more for dot. 9589 * When renaming a directory we skip the dotdot link change so 9590 * this is not needed. 9591 */ 9592 jremref = dotremref = dotdotremref = NULL; 9593 if (DOINGSUJ(dvp)) { 9594 if (isrmdir) { 9595 jremref = newjremref(dirrem, dp, ip, I_OFFSET(dp), 9596 ip->i_effnlink + 2); 9597 dotremref = newjremref(dirrem, ip, ip, DOT_OFFSET, 9598 ip->i_effnlink + 1); 9599 dotdotremref = newjremref(dirrem, ip, dp, DOTDOT_OFFSET, 9600 dp->i_effnlink + 1); 9601 dotdotremref->jr_state |= MKDIR_PARENT; 9602 } else 9603 jremref = newjremref(dirrem, dp, ip, I_OFFSET(dp), 9604 ip->i_effnlink + 1); 9605 } 9606 ACQUIRE_LOCK(ump); 9607 lbn = lblkno(ump->um_fs, I_OFFSET(dp)); 9608 offset = blkoff(ump->um_fs, I_OFFSET(dp)); 9609 pagedep_lookup(UFSTOVFS(ump), bp, dp->i_number, lbn, DEPALLOC, 9610 &pagedep); 9611 dirrem->dm_pagedep = pagedep; 9612 dirrem->dm_offset = offset; 9613 /* 9614 * If we're renaming a .. link to a new directory, cancel any 9615 * existing MKDIR_PARENT mkdir. If it has already been canceled 9616 * the jremref is preserved for any potential diradd in this 9617 * location. This can not coincide with a rmdir. 9618 */ 9619 if (I_OFFSET(dp) == DOTDOT_OFFSET) { 9620 if (isrmdir) 9621 panic("newdirrem: .. directory change during remove?"); 9622 jremref = cancel_mkdir_dotdot(dp, dirrem, jremref); 9623 } 9624 /* 9625 * If we're removing a directory search for the .. dependency now and 9626 * cancel it. Any pending journal work will be added to the dirrem 9627 * to be completed when the workitem remove completes. 9628 */ 9629 if (isrmdir) 9630 dotdotremref = cancel_diradd_dotdot(ip, dirrem, dotdotremref); 9631 /* 9632 * Check for a diradd dependency for the same directory entry. 9633 * If present, then both dependencies become obsolete and can 9634 * be de-allocated. 9635 */ 9636 dap = diradd_lookup(pagedep, offset); 9637 if (dap == NULL) { 9638 /* 9639 * Link the jremref structures into the dirrem so they are 9640 * written prior to the pagedep. 9641 */ 9642 if (jremref) 9643 dirrem_journal(dirrem, jremref, dotremref, 9644 dotdotremref); 9645 return (dirrem); 9646 } 9647 /* 9648 * Must be ATTACHED at this point. 9649 */ 9650 if ((dap->da_state & ATTACHED) == 0) 9651 panic("newdirrem: not ATTACHED"); 9652 if (dap->da_newinum != ip->i_number) 9653 panic("newdirrem: inum %ju should be %ju", 9654 (uintmax_t)ip->i_number, (uintmax_t)dap->da_newinum); 9655 /* 9656 * If we are deleting a changed name that never made it to disk, 9657 * then return the dirrem describing the previous inode (which 9658 * represents the inode currently referenced from this entry on disk). 9659 */ 9660 if ((dap->da_state & DIRCHG) != 0) { 9661 *prevdirremp = dap->da_previous; 9662 dap->da_state &= ~DIRCHG; 9663 dap->da_pagedep = pagedep; 9664 } 9665 /* 9666 * We are deleting an entry that never made it to disk. 9667 * Mark it COMPLETE so we can delete its inode immediately. 9668 */ 9669 dirrem->dm_state |= COMPLETE; 9670 cancel_diradd(dap, dirrem, jremref, dotremref, dotdotremref); 9671 #ifdef INVARIANTS 9672 if (isrmdir == 0) { 9673 struct worklist *wk; 9674 9675 LIST_FOREACH(wk, &dirrem->dm_jwork, wk_list) 9676 if (wk->wk_state & (MKDIR_BODY | MKDIR_PARENT)) 9677 panic("bad wk %p (0x%X)\n", wk, wk->wk_state); 9678 } 9679 #endif 9680 9681 return (dirrem); 9682 } 9683 9684 /* 9685 * Directory entry change dependencies. 9686 * 9687 * Changing an existing directory entry requires that an add operation 9688 * be completed first followed by a deletion. The semantics for the addition 9689 * are identical to the description of adding a new entry above except 9690 * that the rollback is to the old inode number rather than zero. Once 9691 * the addition dependency is completed, the removal is done as described 9692 * in the removal routine above. 9693 */ 9694 9695 /* 9696 * This routine should be called immediately after changing 9697 * a directory entry. The inode's link count should not be 9698 * decremented by the calling procedure -- the soft updates 9699 * code will perform this task when it is safe. 9700 */ 9701 void 9702 softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir) 9703 struct buf *bp; /* buffer containing directory block */ 9704 struct inode *dp; /* inode for the directory being modified */ 9705 struct inode *ip; /* inode for directory entry being removed */ 9706 ino_t newinum; /* new inode number for changed entry */ 9707 int isrmdir; /* indicates if doing RMDIR */ 9708 { 9709 int offset; 9710 struct diradd *dap = NULL; 9711 struct dirrem *dirrem, *prevdirrem; 9712 struct pagedep *pagedep; 9713 struct inodedep *inodedep; 9714 struct jaddref *jaddref; 9715 struct mount *mp; 9716 struct ufsmount *ump; 9717 9718 mp = ITOVFS(dp); 9719 ump = VFSTOUFS(mp); 9720 offset = blkoff(ump->um_fs, I_OFFSET(dp)); 9721 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 9722 ("softdep_setup_directory_change called on non-softdep filesystem")); 9723 9724 /* 9725 * Whiteouts do not need diradd dependencies. 9726 */ 9727 if (newinum != UFS_WINO) { 9728 dap = malloc(sizeof(struct diradd), 9729 M_DIRADD, M_SOFTDEP_FLAGS|M_ZERO); 9730 workitem_alloc(&dap->da_list, D_DIRADD, mp); 9731 dap->da_state = DIRCHG | ATTACHED | DEPCOMPLETE; 9732 dap->da_offset = offset; 9733 dap->da_newinum = newinum; 9734 LIST_INIT(&dap->da_jwork); 9735 } 9736 9737 /* 9738 * Allocate a new dirrem and ACQUIRE_LOCK. 9739 */ 9740 dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem); 9741 pagedep = dirrem->dm_pagedep; 9742 /* 9743 * The possible values for isrmdir: 9744 * 0 - non-directory file rename 9745 * 1 - directory rename within same directory 9746 * inum - directory rename to new directory of given inode number 9747 * When renaming to a new directory, we are both deleting and 9748 * creating a new directory entry, so the link count on the new 9749 * directory should not change. Thus we do not need the followup 9750 * dirrem which is usually done in handle_workitem_remove. We set 9751 * the DIRCHG flag to tell handle_workitem_remove to skip the 9752 * followup dirrem. 9753 */ 9754 if (isrmdir > 1) 9755 dirrem->dm_state |= DIRCHG; 9756 9757 /* 9758 * Whiteouts have no additional dependencies, 9759 * so just put the dirrem on the correct list. 9760 */ 9761 if (newinum == UFS_WINO) { 9762 if ((dirrem->dm_state & COMPLETE) == 0) { 9763 LIST_INSERT_HEAD(&pagedep->pd_dirremhd, dirrem, 9764 dm_next); 9765 } else { 9766 dirrem->dm_dirinum = pagedep->pd_ino; 9767 if (LIST_EMPTY(&dirrem->dm_jremrefhd)) 9768 add_to_worklist(&dirrem->dm_list, 0); 9769 } 9770 FREE_LOCK(ump); 9771 return; 9772 } 9773 /* 9774 * Add the dirrem to the inodedep's pending remove list for quick 9775 * discovery later. A valid nlinkdelta ensures that this lookup 9776 * will not fail. 9777 */ 9778 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) 9779 panic("softdep_setup_directory_change: Lost inodedep."); 9780 dirrem->dm_state |= ONDEPLIST; 9781 LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext); 9782 9783 /* 9784 * If the COMPLETE flag is clear, then there were no active 9785 * entries and we want to roll back to the previous inode until 9786 * the new inode is committed to disk. If the COMPLETE flag is 9787 * set, then we have deleted an entry that never made it to disk. 9788 * If the entry we deleted resulted from a name change, then the old 9789 * inode reference still resides on disk. Any rollback that we do 9790 * needs to be to that old inode (returned to us in prevdirrem). If 9791 * the entry we deleted resulted from a create, then there is 9792 * no entry on the disk, so we want to roll back to zero rather 9793 * than the uncommitted inode. In either of the COMPLETE cases we 9794 * want to immediately free the unwritten and unreferenced inode. 9795 */ 9796 if ((dirrem->dm_state & COMPLETE) == 0) { 9797 dap->da_previous = dirrem; 9798 } else { 9799 if (prevdirrem != NULL) { 9800 dap->da_previous = prevdirrem; 9801 } else { 9802 dap->da_state &= ~DIRCHG; 9803 dap->da_pagedep = pagedep; 9804 } 9805 dirrem->dm_dirinum = pagedep->pd_ino; 9806 if (LIST_EMPTY(&dirrem->dm_jremrefhd)) 9807 add_to_worklist(&dirrem->dm_list, 0); 9808 } 9809 /* 9810 * Lookup the jaddref for this journal entry. We must finish 9811 * initializing it and make the diradd write dependent on it. 9812 * If we're not journaling, put it on the id_bufwait list if the 9813 * inode is not yet written. If it is written, do the post-inode 9814 * write processing to put it on the id_pendinghd list. 9815 */ 9816 inodedep_lookup(mp, newinum, DEPALLOC, &inodedep); 9817 if (MOUNTEDSUJ(mp)) { 9818 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 9819 inoreflst); 9820 KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number, 9821 ("softdep_setup_directory_change: bad jaddref %p", 9822 jaddref)); 9823 jaddref->ja_diroff = I_OFFSET(dp); 9824 jaddref->ja_diradd = dap; 9825 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], 9826 dap, da_pdlist); 9827 add_to_journal(&jaddref->ja_list); 9828 } else if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) { 9829 dap->da_state |= COMPLETE; 9830 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist); 9831 WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list); 9832 } else { 9833 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], 9834 dap, da_pdlist); 9835 WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list); 9836 } 9837 /* 9838 * If we're making a new name for a directory that has not been 9839 * committed when need to move the dot and dotdot references to 9840 * this new name. 9841 */ 9842 if (inodedep->id_mkdiradd && I_OFFSET(dp) != DOTDOT_OFFSET) 9843 merge_diradd(inodedep, dap); 9844 FREE_LOCK(ump); 9845 } 9846 9847 /* 9848 * Called whenever the link count on an inode is changed. 9849 * It creates an inode dependency so that the new reference(s) 9850 * to the inode cannot be committed to disk until the updated 9851 * inode has been written. 9852 */ 9853 void 9854 softdep_change_linkcnt(ip) 9855 struct inode *ip; /* the inode with the increased link count */ 9856 { 9857 struct inodedep *inodedep; 9858 struct ufsmount *ump; 9859 9860 ump = ITOUMP(ip); 9861 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 9862 ("softdep_change_linkcnt called on non-softdep filesystem")); 9863 ACQUIRE_LOCK(ump); 9864 inodedep_lookup(UFSTOVFS(ump), ip->i_number, DEPALLOC, &inodedep); 9865 if (ip->i_nlink < ip->i_effnlink) 9866 panic("softdep_change_linkcnt: bad delta"); 9867 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 9868 FREE_LOCK(ump); 9869 } 9870 9871 /* 9872 * Attach a sbdep dependency to the superblock buf so that we can keep 9873 * track of the head of the linked list of referenced but unlinked inodes. 9874 */ 9875 void 9876 softdep_setup_sbupdate(ump, fs, bp) 9877 struct ufsmount *ump; 9878 struct fs *fs; 9879 struct buf *bp; 9880 { 9881 struct sbdep *sbdep; 9882 struct worklist *wk; 9883 9884 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 9885 ("softdep_setup_sbupdate called on non-softdep filesystem")); 9886 LIST_FOREACH(wk, &bp->b_dep, wk_list) 9887 if (wk->wk_type == D_SBDEP) 9888 break; 9889 if (wk != NULL) 9890 return; 9891 sbdep = malloc(sizeof(struct sbdep), M_SBDEP, M_SOFTDEP_FLAGS); 9892 workitem_alloc(&sbdep->sb_list, D_SBDEP, UFSTOVFS(ump)); 9893 sbdep->sb_fs = fs; 9894 sbdep->sb_ump = ump; 9895 ACQUIRE_LOCK(ump); 9896 WORKLIST_INSERT(&bp->b_dep, &sbdep->sb_list); 9897 FREE_LOCK(ump); 9898 } 9899 9900 /* 9901 * Return the first unlinked inodedep which is ready to be the head of the 9902 * list. The inodedep and all those after it must have valid next pointers. 9903 */ 9904 static struct inodedep * 9905 first_unlinked_inodedep(ump) 9906 struct ufsmount *ump; 9907 { 9908 struct inodedep *inodedep; 9909 struct inodedep *idp; 9910 9911 LOCK_OWNED(ump); 9912 for (inodedep = TAILQ_LAST(&ump->softdep_unlinked, inodedeplst); 9913 inodedep; inodedep = idp) { 9914 if ((inodedep->id_state & UNLINKNEXT) == 0) 9915 return (NULL); 9916 idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked); 9917 if (idp == NULL || (idp->id_state & UNLINKNEXT) == 0) 9918 break; 9919 if ((inodedep->id_state & UNLINKPREV) == 0) 9920 break; 9921 } 9922 return (inodedep); 9923 } 9924 9925 /* 9926 * Set the sujfree unlinked head pointer prior to writing a superblock. 9927 */ 9928 static void 9929 initiate_write_sbdep(sbdep) 9930 struct sbdep *sbdep; 9931 { 9932 struct inodedep *inodedep; 9933 struct fs *bpfs; 9934 struct fs *fs; 9935 9936 bpfs = sbdep->sb_fs; 9937 fs = sbdep->sb_ump->um_fs; 9938 inodedep = first_unlinked_inodedep(sbdep->sb_ump); 9939 if (inodedep) { 9940 fs->fs_sujfree = inodedep->id_ino; 9941 inodedep->id_state |= UNLINKPREV; 9942 } else 9943 fs->fs_sujfree = 0; 9944 bpfs->fs_sujfree = fs->fs_sujfree; 9945 /* 9946 * Because we have made changes to the superblock, we need to 9947 * recompute its check-hash. 9948 */ 9949 bpfs->fs_ckhash = ffs_calc_sbhash(bpfs); 9950 } 9951 9952 /* 9953 * After a superblock is written determine whether it must be written again 9954 * due to a changing unlinked list head. 9955 */ 9956 static int 9957 handle_written_sbdep(sbdep, bp) 9958 struct sbdep *sbdep; 9959 struct buf *bp; 9960 { 9961 struct inodedep *inodedep; 9962 struct fs *fs; 9963 9964 LOCK_OWNED(sbdep->sb_ump); 9965 fs = sbdep->sb_fs; 9966 /* 9967 * If the superblock doesn't match the in-memory list start over. 9968 */ 9969 inodedep = first_unlinked_inodedep(sbdep->sb_ump); 9970 if ((inodedep && fs->fs_sujfree != inodedep->id_ino) || 9971 (inodedep == NULL && fs->fs_sujfree != 0)) { 9972 bdirty(bp); 9973 return (1); 9974 } 9975 WORKITEM_FREE(sbdep, D_SBDEP); 9976 if (fs->fs_sujfree == 0) 9977 return (0); 9978 /* 9979 * Now that we have a record of this inode in stable store allow it 9980 * to be written to free up pending work. Inodes may see a lot of 9981 * write activity after they are unlinked which we must not hold up. 9982 */ 9983 for (; inodedep != NULL; inodedep = TAILQ_NEXT(inodedep, id_unlinked)) { 9984 if ((inodedep->id_state & UNLINKLINKS) != UNLINKLINKS) 9985 panic("handle_written_sbdep: Bad inodedep %p (0x%X)", 9986 inodedep, inodedep->id_state); 9987 if (inodedep->id_state & UNLINKONLIST) 9988 break; 9989 inodedep->id_state |= DEPCOMPLETE | UNLINKONLIST; 9990 } 9991 9992 return (0); 9993 } 9994 9995 /* 9996 * Mark an inodedep as unlinked and insert it into the in-memory unlinked list. 9997 */ 9998 static void 9999 unlinked_inodedep(mp, inodedep) 10000 struct mount *mp; 10001 struct inodedep *inodedep; 10002 { 10003 struct ufsmount *ump; 10004 10005 ump = VFSTOUFS(mp); 10006 LOCK_OWNED(ump); 10007 if (MOUNTEDSUJ(mp) == 0) 10008 return; 10009 ump->um_fs->fs_fmod = 1; 10010 if (inodedep->id_state & UNLINKED) 10011 panic("unlinked_inodedep: %p already unlinked\n", inodedep); 10012 inodedep->id_state |= UNLINKED; 10013 TAILQ_INSERT_HEAD(&ump->softdep_unlinked, inodedep, id_unlinked); 10014 } 10015 10016 /* 10017 * Remove an inodedep from the unlinked inodedep list. This may require 10018 * disk writes if the inode has made it that far. 10019 */ 10020 static void 10021 clear_unlinked_inodedep(inodedep) 10022 struct inodedep *inodedep; 10023 { 10024 struct ufs2_dinode *dip; 10025 struct ufsmount *ump; 10026 struct inodedep *idp; 10027 struct inodedep *idn; 10028 struct fs *fs, *bpfs; 10029 struct buf *bp; 10030 daddr_t dbn; 10031 ino_t ino; 10032 ino_t nino; 10033 ino_t pino; 10034 int error; 10035 10036 ump = VFSTOUFS(inodedep->id_list.wk_mp); 10037 fs = ump->um_fs; 10038 ino = inodedep->id_ino; 10039 error = 0; 10040 for (;;) { 10041 LOCK_OWNED(ump); 10042 KASSERT((inodedep->id_state & UNLINKED) != 0, 10043 ("clear_unlinked_inodedep: inodedep %p not unlinked", 10044 inodedep)); 10045 /* 10046 * If nothing has yet been written simply remove us from 10047 * the in memory list and return. This is the most common 10048 * case where handle_workitem_remove() loses the final 10049 * reference. 10050 */ 10051 if ((inodedep->id_state & UNLINKLINKS) == 0) 10052 break; 10053 /* 10054 * If we have a NEXT pointer and no PREV pointer we can simply 10055 * clear NEXT's PREV and remove ourselves from the list. Be 10056 * careful not to clear PREV if the superblock points at 10057 * next as well. 10058 */ 10059 idn = TAILQ_NEXT(inodedep, id_unlinked); 10060 if ((inodedep->id_state & UNLINKLINKS) == UNLINKNEXT) { 10061 if (idn && fs->fs_sujfree != idn->id_ino) 10062 idn->id_state &= ~UNLINKPREV; 10063 break; 10064 } 10065 /* 10066 * Here we have an inodedep which is actually linked into 10067 * the list. We must remove it by forcing a write to the 10068 * link before us, whether it be the superblock or an inode. 10069 * Unfortunately the list may change while we're waiting 10070 * on the buf lock for either resource so we must loop until 10071 * we lock the right one. If both the superblock and an 10072 * inode point to this inode we must clear the inode first 10073 * followed by the superblock. 10074 */ 10075 idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked); 10076 pino = 0; 10077 if (idp && (idp->id_state & UNLINKNEXT)) 10078 pino = idp->id_ino; 10079 FREE_LOCK(ump); 10080 if (pino == 0) { 10081 bp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc), 10082 (int)fs->fs_sbsize, 0, 0, 0); 10083 } else { 10084 dbn = fsbtodb(fs, ino_to_fsba(fs, pino)); 10085 error = ffs_breadz(ump, ump->um_devvp, dbn, dbn, 10086 (int)fs->fs_bsize, NULL, NULL, 0, NOCRED, 0, NULL, 10087 &bp); 10088 } 10089 ACQUIRE_LOCK(ump); 10090 if (error) 10091 break; 10092 /* If the list has changed restart the loop. */ 10093 idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked); 10094 nino = 0; 10095 if (idp && (idp->id_state & UNLINKNEXT)) 10096 nino = idp->id_ino; 10097 if (nino != pino || 10098 (inodedep->id_state & UNLINKPREV) != UNLINKPREV) { 10099 FREE_LOCK(ump); 10100 brelse(bp); 10101 ACQUIRE_LOCK(ump); 10102 continue; 10103 } 10104 nino = 0; 10105 idn = TAILQ_NEXT(inodedep, id_unlinked); 10106 if (idn) 10107 nino = idn->id_ino; 10108 /* 10109 * Remove us from the in memory list. After this we cannot 10110 * access the inodedep. 10111 */ 10112 KASSERT((inodedep->id_state & UNLINKED) != 0, 10113 ("clear_unlinked_inodedep: inodedep %p not unlinked", 10114 inodedep)); 10115 inodedep->id_state &= ~(UNLINKED | UNLINKLINKS | UNLINKONLIST); 10116 TAILQ_REMOVE(&ump->softdep_unlinked, inodedep, id_unlinked); 10117 FREE_LOCK(ump); 10118 /* 10119 * The predecessor's next pointer is manually updated here 10120 * so that the NEXT flag is never cleared for an element 10121 * that is in the list. 10122 */ 10123 if (pino == 0) { 10124 bcopy((caddr_t)fs, bp->b_data, (u_int)fs->fs_sbsize); 10125 bpfs = (struct fs *)bp->b_data; 10126 ffs_oldfscompat_write(bpfs, ump); 10127 softdep_setup_sbupdate(ump, bpfs, bp); 10128 /* 10129 * Because we may have made changes to the superblock, 10130 * we need to recompute its check-hash. 10131 */ 10132 bpfs->fs_ckhash = ffs_calc_sbhash(bpfs); 10133 } else if (fs->fs_magic == FS_UFS1_MAGIC) { 10134 ((struct ufs1_dinode *)bp->b_data + 10135 ino_to_fsbo(fs, pino))->di_freelink = nino; 10136 } else { 10137 dip = (struct ufs2_dinode *)bp->b_data + 10138 ino_to_fsbo(fs, pino); 10139 dip->di_freelink = nino; 10140 ffs_update_dinode_ckhash(fs, dip); 10141 } 10142 /* 10143 * If the bwrite fails we have no recourse to recover. The 10144 * filesystem is corrupted already. 10145 */ 10146 bwrite(bp); 10147 ACQUIRE_LOCK(ump); 10148 /* 10149 * If the superblock pointer still needs to be cleared force 10150 * a write here. 10151 */ 10152 if (fs->fs_sujfree == ino) { 10153 FREE_LOCK(ump); 10154 bp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc), 10155 (int)fs->fs_sbsize, 0, 0, 0); 10156 bcopy((caddr_t)fs, bp->b_data, (u_int)fs->fs_sbsize); 10157 bpfs = (struct fs *)bp->b_data; 10158 ffs_oldfscompat_write(bpfs, ump); 10159 softdep_setup_sbupdate(ump, bpfs, bp); 10160 /* 10161 * Because we may have made changes to the superblock, 10162 * we need to recompute its check-hash. 10163 */ 10164 bpfs->fs_ckhash = ffs_calc_sbhash(bpfs); 10165 bwrite(bp); 10166 ACQUIRE_LOCK(ump); 10167 } 10168 10169 if (fs->fs_sujfree != ino) 10170 return; 10171 panic("clear_unlinked_inodedep: Failed to clear free head"); 10172 } 10173 if (inodedep->id_ino == fs->fs_sujfree) 10174 panic("clear_unlinked_inodedep: Freeing head of free list"); 10175 inodedep->id_state &= ~(UNLINKED | UNLINKLINKS | UNLINKONLIST); 10176 TAILQ_REMOVE(&ump->softdep_unlinked, inodedep, id_unlinked); 10177 return; 10178 } 10179 10180 /* 10181 * This workitem decrements the inode's link count. 10182 * If the link count reaches zero, the file is removed. 10183 */ 10184 static int 10185 handle_workitem_remove(dirrem, flags) 10186 struct dirrem *dirrem; 10187 int flags; 10188 { 10189 struct inodedep *inodedep; 10190 struct workhead dotdotwk; 10191 struct worklist *wk; 10192 struct ufsmount *ump; 10193 struct mount *mp; 10194 struct vnode *vp; 10195 struct inode *ip; 10196 ino_t oldinum; 10197 10198 if (dirrem->dm_state & ONWORKLIST) 10199 panic("handle_workitem_remove: dirrem %p still on worklist", 10200 dirrem); 10201 oldinum = dirrem->dm_oldinum; 10202 mp = dirrem->dm_list.wk_mp; 10203 ump = VFSTOUFS(mp); 10204 flags |= LK_EXCLUSIVE; 10205 if (ffs_vgetf(mp, oldinum, flags, &vp, FFSV_FORCEINSMQ) != 0) 10206 return (EBUSY); 10207 ip = VTOI(vp); 10208 MPASS(ip->i_mode != 0); 10209 ACQUIRE_LOCK(ump); 10210 if ((inodedep_lookup(mp, oldinum, 0, &inodedep)) == 0) 10211 panic("handle_workitem_remove: lost inodedep"); 10212 if (dirrem->dm_state & ONDEPLIST) 10213 LIST_REMOVE(dirrem, dm_inonext); 10214 KASSERT(LIST_EMPTY(&dirrem->dm_jremrefhd), 10215 ("handle_workitem_remove: Journal entries not written.")); 10216 10217 /* 10218 * Move all dependencies waiting on the remove to complete 10219 * from the dirrem to the inode inowait list to be completed 10220 * after the inode has been updated and written to disk. 10221 * 10222 * Any marked MKDIR_PARENT are saved to be completed when the 10223 * dotdot ref is removed unless DIRCHG is specified. For 10224 * directory change operations there will be no further 10225 * directory writes and the jsegdeps need to be moved along 10226 * with the rest to be completed when the inode is free or 10227 * stable in the inode free list. 10228 */ 10229 LIST_INIT(&dotdotwk); 10230 while ((wk = LIST_FIRST(&dirrem->dm_jwork)) != NULL) { 10231 WORKLIST_REMOVE(wk); 10232 if ((dirrem->dm_state & DIRCHG) == 0 && 10233 wk->wk_state & MKDIR_PARENT) { 10234 wk->wk_state &= ~MKDIR_PARENT; 10235 WORKLIST_INSERT(&dotdotwk, wk); 10236 continue; 10237 } 10238 WORKLIST_INSERT(&inodedep->id_inowait, wk); 10239 } 10240 LIST_SWAP(&dirrem->dm_jwork, &dotdotwk, worklist, wk_list); 10241 /* 10242 * Normal file deletion. 10243 */ 10244 if ((dirrem->dm_state & RMDIR) == 0) { 10245 ip->i_nlink--; 10246 KASSERT(ip->i_nlink >= 0, ("handle_workitem_remove: file ino " 10247 "%ju negative i_nlink %d", (intmax_t)ip->i_number, 10248 ip->i_nlink)); 10249 DIP_SET(ip, i_nlink, ip->i_nlink); 10250 UFS_INODE_SET_FLAG(ip, IN_CHANGE); 10251 if (ip->i_nlink < ip->i_effnlink) 10252 panic("handle_workitem_remove: bad file delta"); 10253 if (ip->i_nlink == 0) 10254 unlinked_inodedep(mp, inodedep); 10255 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 10256 KASSERT(LIST_EMPTY(&dirrem->dm_jwork), 10257 ("handle_workitem_remove: worklist not empty. %s", 10258 TYPENAME(LIST_FIRST(&dirrem->dm_jwork)->wk_type))); 10259 WORKITEM_FREE(dirrem, D_DIRREM); 10260 FREE_LOCK(ump); 10261 goto out; 10262 } 10263 /* 10264 * Directory deletion. Decrement reference count for both the 10265 * just deleted parent directory entry and the reference for ".". 10266 * Arrange to have the reference count on the parent decremented 10267 * to account for the loss of "..". 10268 */ 10269 ip->i_nlink -= 2; 10270 KASSERT(ip->i_nlink >= 0, ("handle_workitem_remove: directory ino " 10271 "%ju negative i_nlink %d", (intmax_t)ip->i_number, ip->i_nlink)); 10272 DIP_SET(ip, i_nlink, ip->i_nlink); 10273 UFS_INODE_SET_FLAG(ip, IN_CHANGE); 10274 if (ip->i_nlink < ip->i_effnlink) 10275 panic("handle_workitem_remove: bad dir delta"); 10276 if (ip->i_nlink == 0) 10277 unlinked_inodedep(mp, inodedep); 10278 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 10279 /* 10280 * Rename a directory to a new parent. Since, we are both deleting 10281 * and creating a new directory entry, the link count on the new 10282 * directory should not change. Thus we skip the followup dirrem. 10283 */ 10284 if (dirrem->dm_state & DIRCHG) { 10285 KASSERT(LIST_EMPTY(&dirrem->dm_jwork), 10286 ("handle_workitem_remove: DIRCHG and worklist not empty.")); 10287 WORKITEM_FREE(dirrem, D_DIRREM); 10288 FREE_LOCK(ump); 10289 goto out; 10290 } 10291 dirrem->dm_state = ONDEPLIST; 10292 dirrem->dm_oldinum = dirrem->dm_dirinum; 10293 /* 10294 * Place the dirrem on the parent's diremhd list. 10295 */ 10296 if (inodedep_lookup(mp, dirrem->dm_oldinum, 0, &inodedep) == 0) 10297 panic("handle_workitem_remove: lost dir inodedep"); 10298 LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext); 10299 /* 10300 * If the allocated inode has never been written to disk, then 10301 * the on-disk inode is zero'ed and we can remove the file 10302 * immediately. When journaling if the inode has been marked 10303 * unlinked and not DEPCOMPLETE we know it can never be written. 10304 */ 10305 inodedep_lookup(mp, oldinum, 0, &inodedep); 10306 if (inodedep == NULL || 10307 (inodedep->id_state & (DEPCOMPLETE | UNLINKED)) == UNLINKED || 10308 check_inode_unwritten(inodedep)) { 10309 FREE_LOCK(ump); 10310 vput(vp); 10311 return handle_workitem_remove(dirrem, flags); 10312 } 10313 WORKLIST_INSERT(&inodedep->id_inowait, &dirrem->dm_list); 10314 FREE_LOCK(ump); 10315 UFS_INODE_SET_FLAG(ip, IN_CHANGE); 10316 out: 10317 ffs_update(vp, 0); 10318 vput(vp); 10319 return (0); 10320 } 10321 10322 /* 10323 * Inode de-allocation dependencies. 10324 * 10325 * When an inode's link count is reduced to zero, it can be de-allocated. We 10326 * found it convenient to postpone de-allocation until after the inode is 10327 * written to disk with its new link count (zero). At this point, all of the 10328 * on-disk inode's block pointers are nullified and, with careful dependency 10329 * list ordering, all dependencies related to the inode will be satisfied and 10330 * the corresponding dependency structures de-allocated. So, if/when the 10331 * inode is reused, there will be no mixing of old dependencies with new 10332 * ones. This artificial dependency is set up by the block de-allocation 10333 * procedure above (softdep_setup_freeblocks) and completed by the 10334 * following procedure. 10335 */ 10336 static void 10337 handle_workitem_freefile(freefile) 10338 struct freefile *freefile; 10339 { 10340 struct workhead wkhd; 10341 struct fs *fs; 10342 struct ufsmount *ump; 10343 int error; 10344 #ifdef INVARIANTS 10345 struct inodedep *idp; 10346 #endif 10347 10348 ump = VFSTOUFS(freefile->fx_list.wk_mp); 10349 fs = ump->um_fs; 10350 #ifdef INVARIANTS 10351 ACQUIRE_LOCK(ump); 10352 error = inodedep_lookup(UFSTOVFS(ump), freefile->fx_oldinum, 0, &idp); 10353 FREE_LOCK(ump); 10354 if (error) 10355 panic("handle_workitem_freefile: inodedep %p survived", idp); 10356 #endif 10357 UFS_LOCK(ump); 10358 fs->fs_pendinginodes -= 1; 10359 UFS_UNLOCK(ump); 10360 LIST_INIT(&wkhd); 10361 LIST_SWAP(&freefile->fx_jwork, &wkhd, worklist, wk_list); 10362 if ((error = ffs_freefile(ump, fs, freefile->fx_devvp, 10363 freefile->fx_oldinum, freefile->fx_mode, &wkhd)) != 0) 10364 softdep_error("handle_workitem_freefile", error); 10365 ACQUIRE_LOCK(ump); 10366 WORKITEM_FREE(freefile, D_FREEFILE); 10367 FREE_LOCK(ump); 10368 } 10369 10370 /* 10371 * Helper function which unlinks marker element from work list and returns 10372 * the next element on the list. 10373 */ 10374 static __inline struct worklist * 10375 markernext(struct worklist *marker) 10376 { 10377 struct worklist *next; 10378 10379 next = LIST_NEXT(marker, wk_list); 10380 LIST_REMOVE(marker, wk_list); 10381 return next; 10382 } 10383 10384 /* 10385 * Disk writes. 10386 * 10387 * The dependency structures constructed above are most actively used when file 10388 * system blocks are written to disk. No constraints are placed on when a 10389 * block can be written, but unsatisfied update dependencies are made safe by 10390 * modifying (or replacing) the source memory for the duration of the disk 10391 * write. When the disk write completes, the memory block is again brought 10392 * up-to-date. 10393 * 10394 * In-core inode structure reclamation. 10395 * 10396 * Because there are a finite number of "in-core" inode structures, they are 10397 * reused regularly. By transferring all inode-related dependencies to the 10398 * in-memory inode block and indexing them separately (via "inodedep"s), we 10399 * can allow "in-core" inode structures to be reused at any time and avoid 10400 * any increase in contention. 10401 * 10402 * Called just before entering the device driver to initiate a new disk I/O. 10403 * The buffer must be locked, thus, no I/O completion operations can occur 10404 * while we are manipulating its associated dependencies. 10405 */ 10406 static void 10407 softdep_disk_io_initiation(bp) 10408 struct buf *bp; /* structure describing disk write to occur */ 10409 { 10410 struct worklist *wk; 10411 struct worklist marker; 10412 struct inodedep *inodedep; 10413 struct freeblks *freeblks; 10414 struct jblkdep *jblkdep; 10415 struct newblk *newblk; 10416 struct ufsmount *ump; 10417 10418 /* 10419 * We only care about write operations. There should never 10420 * be dependencies for reads. 10421 */ 10422 if (bp->b_iocmd != BIO_WRITE) 10423 panic("softdep_disk_io_initiation: not write"); 10424 10425 if (bp->b_vflags & BV_BKGRDINPROG) 10426 panic("softdep_disk_io_initiation: Writing buffer with " 10427 "background write in progress: %p", bp); 10428 10429 ump = softdep_bp_to_mp(bp); 10430 if (ump == NULL) 10431 return; 10432 10433 marker.wk_type = D_LAST + 1; /* Not a normal workitem */ 10434 PHOLD(curproc); /* Don't swap out kernel stack */ 10435 ACQUIRE_LOCK(ump); 10436 /* 10437 * Do any necessary pre-I/O processing. 10438 */ 10439 for (wk = LIST_FIRST(&bp->b_dep); wk != NULL; 10440 wk = markernext(&marker)) { 10441 LIST_INSERT_AFTER(wk, &marker, wk_list); 10442 switch (wk->wk_type) { 10443 case D_PAGEDEP: 10444 initiate_write_filepage(WK_PAGEDEP(wk), bp); 10445 continue; 10446 10447 case D_INODEDEP: 10448 inodedep = WK_INODEDEP(wk); 10449 if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC) 10450 initiate_write_inodeblock_ufs1(inodedep, bp); 10451 else 10452 initiate_write_inodeblock_ufs2(inodedep, bp); 10453 continue; 10454 10455 case D_INDIRDEP: 10456 initiate_write_indirdep(WK_INDIRDEP(wk), bp); 10457 continue; 10458 10459 case D_BMSAFEMAP: 10460 initiate_write_bmsafemap(WK_BMSAFEMAP(wk), bp); 10461 continue; 10462 10463 case D_JSEG: 10464 WK_JSEG(wk)->js_buf = NULL; 10465 continue; 10466 10467 case D_FREEBLKS: 10468 freeblks = WK_FREEBLKS(wk); 10469 jblkdep = LIST_FIRST(&freeblks->fb_jblkdephd); 10470 /* 10471 * We have to wait for the freeblks to be journaled 10472 * before we can write an inodeblock with updated 10473 * pointers. Be careful to arrange the marker so 10474 * we revisit the freeblks if it's not removed by 10475 * the first jwait(). 10476 */ 10477 if (jblkdep != NULL) { 10478 LIST_REMOVE(&marker, wk_list); 10479 LIST_INSERT_BEFORE(wk, &marker, wk_list); 10480 jwait(&jblkdep->jb_list, MNT_WAIT); 10481 } 10482 continue; 10483 case D_ALLOCDIRECT: 10484 case D_ALLOCINDIR: 10485 /* 10486 * We have to wait for the jnewblk to be journaled 10487 * before we can write to a block if the contents 10488 * may be confused with an earlier file's indirect 10489 * at recovery time. Handle the marker as described 10490 * above. 10491 */ 10492 newblk = WK_NEWBLK(wk); 10493 if (newblk->nb_jnewblk != NULL && 10494 indirblk_lookup(newblk->nb_list.wk_mp, 10495 newblk->nb_newblkno)) { 10496 LIST_REMOVE(&marker, wk_list); 10497 LIST_INSERT_BEFORE(wk, &marker, wk_list); 10498 jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT); 10499 } 10500 continue; 10501 10502 case D_SBDEP: 10503 initiate_write_sbdep(WK_SBDEP(wk)); 10504 continue; 10505 10506 case D_MKDIR: 10507 case D_FREEWORK: 10508 case D_FREEDEP: 10509 case D_JSEGDEP: 10510 continue; 10511 10512 default: 10513 panic("handle_disk_io_initiation: Unexpected type %s", 10514 TYPENAME(wk->wk_type)); 10515 /* NOTREACHED */ 10516 } 10517 } 10518 FREE_LOCK(ump); 10519 PRELE(curproc); /* Allow swapout of kernel stack */ 10520 } 10521 10522 /* 10523 * Called from within the procedure above to deal with unsatisfied 10524 * allocation dependencies in a directory. The buffer must be locked, 10525 * thus, no I/O completion operations can occur while we are 10526 * manipulating its associated dependencies. 10527 */ 10528 static void 10529 initiate_write_filepage(pagedep, bp) 10530 struct pagedep *pagedep; 10531 struct buf *bp; 10532 { 10533 struct jremref *jremref; 10534 struct jmvref *jmvref; 10535 struct dirrem *dirrem; 10536 struct diradd *dap; 10537 struct direct *ep; 10538 int i; 10539 10540 if (pagedep->pd_state & IOSTARTED) { 10541 /* 10542 * This can only happen if there is a driver that does not 10543 * understand chaining. Here biodone will reissue the call 10544 * to strategy for the incomplete buffers. 10545 */ 10546 printf("initiate_write_filepage: already started\n"); 10547 return; 10548 } 10549 pagedep->pd_state |= IOSTARTED; 10550 /* 10551 * Wait for all journal remove dependencies to hit the disk. 10552 * We can not allow any potentially conflicting directory adds 10553 * to be visible before removes and rollback is too difficult. 10554 * The per-filesystem lock may be dropped and re-acquired, however 10555 * we hold the buf locked so the dependency can not go away. 10556 */ 10557 LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next) 10558 while ((jremref = LIST_FIRST(&dirrem->dm_jremrefhd)) != NULL) 10559 jwait(&jremref->jr_list, MNT_WAIT); 10560 while ((jmvref = LIST_FIRST(&pagedep->pd_jmvrefhd)) != NULL) 10561 jwait(&jmvref->jm_list, MNT_WAIT); 10562 for (i = 0; i < DAHASHSZ; i++) { 10563 LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) { 10564 ep = (struct direct *) 10565 ((char *)bp->b_data + dap->da_offset); 10566 if (ep->d_ino != dap->da_newinum) 10567 panic("%s: dir inum %ju != new %ju", 10568 "initiate_write_filepage", 10569 (uintmax_t)ep->d_ino, 10570 (uintmax_t)dap->da_newinum); 10571 if (dap->da_state & DIRCHG) 10572 ep->d_ino = dap->da_previous->dm_oldinum; 10573 else 10574 ep->d_ino = 0; 10575 dap->da_state &= ~ATTACHED; 10576 dap->da_state |= UNDONE; 10577 } 10578 } 10579 } 10580 10581 /* 10582 * Version of initiate_write_inodeblock that handles UFS1 dinodes. 10583 * Note that any bug fixes made to this routine must be done in the 10584 * version found below. 10585 * 10586 * Called from within the procedure above to deal with unsatisfied 10587 * allocation dependencies in an inodeblock. The buffer must be 10588 * locked, thus, no I/O completion operations can occur while we 10589 * are manipulating its associated dependencies. 10590 */ 10591 static void 10592 initiate_write_inodeblock_ufs1(inodedep, bp) 10593 struct inodedep *inodedep; 10594 struct buf *bp; /* The inode block */ 10595 { 10596 struct allocdirect *adp, *lastadp; 10597 struct ufs1_dinode *dp; 10598 struct ufs1_dinode *sip; 10599 struct inoref *inoref; 10600 struct ufsmount *ump; 10601 struct fs *fs; 10602 ufs_lbn_t i; 10603 #ifdef INVARIANTS 10604 ufs_lbn_t prevlbn = 0; 10605 #endif 10606 int deplist; 10607 10608 if (inodedep->id_state & IOSTARTED) 10609 panic("initiate_write_inodeblock_ufs1: already started"); 10610 inodedep->id_state |= IOSTARTED; 10611 fs = inodedep->id_fs; 10612 ump = VFSTOUFS(inodedep->id_list.wk_mp); 10613 LOCK_OWNED(ump); 10614 dp = (struct ufs1_dinode *)bp->b_data + 10615 ino_to_fsbo(fs, inodedep->id_ino); 10616 10617 /* 10618 * If we're on the unlinked list but have not yet written our 10619 * next pointer initialize it here. 10620 */ 10621 if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) { 10622 struct inodedep *inon; 10623 10624 inon = TAILQ_NEXT(inodedep, id_unlinked); 10625 dp->di_freelink = inon ? inon->id_ino : 0; 10626 } 10627 /* 10628 * If the bitmap is not yet written, then the allocated 10629 * inode cannot be written to disk. 10630 */ 10631 if ((inodedep->id_state & DEPCOMPLETE) == 0) { 10632 if (inodedep->id_savedino1 != NULL) 10633 panic("initiate_write_inodeblock_ufs1: I/O underway"); 10634 FREE_LOCK(ump); 10635 sip = malloc(sizeof(struct ufs1_dinode), 10636 M_SAVEDINO, M_SOFTDEP_FLAGS); 10637 ACQUIRE_LOCK(ump); 10638 inodedep->id_savedino1 = sip; 10639 *inodedep->id_savedino1 = *dp; 10640 bzero((caddr_t)dp, sizeof(struct ufs1_dinode)); 10641 dp->di_gen = inodedep->id_savedino1->di_gen; 10642 dp->di_freelink = inodedep->id_savedino1->di_freelink; 10643 return; 10644 } 10645 /* 10646 * If no dependencies, then there is nothing to roll back. 10647 */ 10648 inodedep->id_savedsize = dp->di_size; 10649 inodedep->id_savedextsize = 0; 10650 inodedep->id_savednlink = dp->di_nlink; 10651 if (TAILQ_EMPTY(&inodedep->id_inoupdt) && 10652 TAILQ_EMPTY(&inodedep->id_inoreflst)) 10653 return; 10654 /* 10655 * Revert the link count to that of the first unwritten journal entry. 10656 */ 10657 inoref = TAILQ_FIRST(&inodedep->id_inoreflst); 10658 if (inoref) 10659 dp->di_nlink = inoref->if_nlink; 10660 /* 10661 * Set the dependencies to busy. 10662 */ 10663 for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 10664 adp = TAILQ_NEXT(adp, ad_next)) { 10665 #ifdef INVARIANTS 10666 if (deplist != 0 && prevlbn >= adp->ad_offset) 10667 panic("softdep_write_inodeblock: lbn order"); 10668 prevlbn = adp->ad_offset; 10669 if (adp->ad_offset < UFS_NDADDR && 10670 dp->di_db[adp->ad_offset] != adp->ad_newblkno) 10671 panic("initiate_write_inodeblock_ufs1: " 10672 "direct pointer #%jd mismatch %d != %jd", 10673 (intmax_t)adp->ad_offset, 10674 dp->di_db[adp->ad_offset], 10675 (intmax_t)adp->ad_newblkno); 10676 if (adp->ad_offset >= UFS_NDADDR && 10677 dp->di_ib[adp->ad_offset - UFS_NDADDR] != adp->ad_newblkno) 10678 panic("initiate_write_inodeblock_ufs1: " 10679 "indirect pointer #%jd mismatch %d != %jd", 10680 (intmax_t)adp->ad_offset - UFS_NDADDR, 10681 dp->di_ib[adp->ad_offset - UFS_NDADDR], 10682 (intmax_t)adp->ad_newblkno); 10683 deplist |= 1 << adp->ad_offset; 10684 if ((adp->ad_state & ATTACHED) == 0) 10685 panic("initiate_write_inodeblock_ufs1: " 10686 "Unknown state 0x%x", adp->ad_state); 10687 #endif /* INVARIANTS */ 10688 adp->ad_state &= ~ATTACHED; 10689 adp->ad_state |= UNDONE; 10690 } 10691 /* 10692 * The on-disk inode cannot claim to be any larger than the last 10693 * fragment that has been written. Otherwise, the on-disk inode 10694 * might have fragments that were not the last block in the file 10695 * which would corrupt the filesystem. 10696 */ 10697 for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 10698 lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) { 10699 if (adp->ad_offset >= UFS_NDADDR) 10700 break; 10701 dp->di_db[adp->ad_offset] = adp->ad_oldblkno; 10702 /* keep going until hitting a rollback to a frag */ 10703 if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize) 10704 continue; 10705 dp->di_size = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize; 10706 for (i = adp->ad_offset + 1; i < UFS_NDADDR; i++) { 10707 #ifdef INVARIANTS 10708 if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0) 10709 panic("initiate_write_inodeblock_ufs1: " 10710 "lost dep1"); 10711 #endif /* INVARIANTS */ 10712 dp->di_db[i] = 0; 10713 } 10714 for (i = 0; i < UFS_NIADDR; i++) { 10715 #ifdef INVARIANTS 10716 if (dp->di_ib[i] != 0 && 10717 (deplist & ((1 << UFS_NDADDR) << i)) == 0) 10718 panic("initiate_write_inodeblock_ufs1: " 10719 "lost dep2"); 10720 #endif /* INVARIANTS */ 10721 dp->di_ib[i] = 0; 10722 } 10723 return; 10724 } 10725 /* 10726 * If we have zero'ed out the last allocated block of the file, 10727 * roll back the size to the last currently allocated block. 10728 * We know that this last allocated block is a full-sized as 10729 * we already checked for fragments in the loop above. 10730 */ 10731 if (lastadp != NULL && 10732 dp->di_size <= (lastadp->ad_offset + 1) * fs->fs_bsize) { 10733 for (i = lastadp->ad_offset; i >= 0; i--) 10734 if (dp->di_db[i] != 0) 10735 break; 10736 dp->di_size = (i + 1) * fs->fs_bsize; 10737 } 10738 /* 10739 * The only dependencies are for indirect blocks. 10740 * 10741 * The file size for indirect block additions is not guaranteed. 10742 * Such a guarantee would be non-trivial to achieve. The conventional 10743 * synchronous write implementation also does not make this guarantee. 10744 * Fsck should catch and fix discrepancies. Arguably, the file size 10745 * can be over-estimated without destroying integrity when the file 10746 * moves into the indirect blocks (i.e., is large). If we want to 10747 * postpone fsck, we are stuck with this argument. 10748 */ 10749 for (; adp; adp = TAILQ_NEXT(adp, ad_next)) 10750 dp->di_ib[adp->ad_offset - UFS_NDADDR] = 0; 10751 } 10752 10753 /* 10754 * Version of initiate_write_inodeblock that handles UFS2 dinodes. 10755 * Note that any bug fixes made to this routine must be done in the 10756 * version found above. 10757 * 10758 * Called from within the procedure above to deal with unsatisfied 10759 * allocation dependencies in an inodeblock. The buffer must be 10760 * locked, thus, no I/O completion operations can occur while we 10761 * are manipulating its associated dependencies. 10762 */ 10763 static void 10764 initiate_write_inodeblock_ufs2(inodedep, bp) 10765 struct inodedep *inodedep; 10766 struct buf *bp; /* The inode block */ 10767 { 10768 struct allocdirect *adp, *lastadp; 10769 struct ufs2_dinode *dp; 10770 struct ufs2_dinode *sip; 10771 struct inoref *inoref; 10772 struct ufsmount *ump; 10773 struct fs *fs; 10774 ufs_lbn_t i; 10775 #ifdef INVARIANTS 10776 ufs_lbn_t prevlbn = 0; 10777 #endif 10778 int deplist; 10779 10780 if (inodedep->id_state & IOSTARTED) 10781 panic("initiate_write_inodeblock_ufs2: already started"); 10782 inodedep->id_state |= IOSTARTED; 10783 fs = inodedep->id_fs; 10784 ump = VFSTOUFS(inodedep->id_list.wk_mp); 10785 LOCK_OWNED(ump); 10786 dp = (struct ufs2_dinode *)bp->b_data + 10787 ino_to_fsbo(fs, inodedep->id_ino); 10788 10789 /* 10790 * If we're on the unlinked list but have not yet written our 10791 * next pointer initialize it here. 10792 */ 10793 if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) { 10794 struct inodedep *inon; 10795 10796 inon = TAILQ_NEXT(inodedep, id_unlinked); 10797 dp->di_freelink = inon ? inon->id_ino : 0; 10798 ffs_update_dinode_ckhash(fs, dp); 10799 } 10800 /* 10801 * If the bitmap is not yet written, then the allocated 10802 * inode cannot be written to disk. 10803 */ 10804 if ((inodedep->id_state & DEPCOMPLETE) == 0) { 10805 if (inodedep->id_savedino2 != NULL) 10806 panic("initiate_write_inodeblock_ufs2: I/O underway"); 10807 FREE_LOCK(ump); 10808 sip = malloc(sizeof(struct ufs2_dinode), 10809 M_SAVEDINO, M_SOFTDEP_FLAGS); 10810 ACQUIRE_LOCK(ump); 10811 inodedep->id_savedino2 = sip; 10812 *inodedep->id_savedino2 = *dp; 10813 bzero((caddr_t)dp, sizeof(struct ufs2_dinode)); 10814 dp->di_gen = inodedep->id_savedino2->di_gen; 10815 dp->di_freelink = inodedep->id_savedino2->di_freelink; 10816 return; 10817 } 10818 /* 10819 * If no dependencies, then there is nothing to roll back. 10820 */ 10821 inodedep->id_savedsize = dp->di_size; 10822 inodedep->id_savedextsize = dp->di_extsize; 10823 inodedep->id_savednlink = dp->di_nlink; 10824 if (TAILQ_EMPTY(&inodedep->id_inoupdt) && 10825 TAILQ_EMPTY(&inodedep->id_extupdt) && 10826 TAILQ_EMPTY(&inodedep->id_inoreflst)) 10827 return; 10828 /* 10829 * Revert the link count to that of the first unwritten journal entry. 10830 */ 10831 inoref = TAILQ_FIRST(&inodedep->id_inoreflst); 10832 if (inoref) 10833 dp->di_nlink = inoref->if_nlink; 10834 10835 /* 10836 * Set the ext data dependencies to busy. 10837 */ 10838 for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; 10839 adp = TAILQ_NEXT(adp, ad_next)) { 10840 #ifdef INVARIANTS 10841 if (deplist != 0 && prevlbn >= adp->ad_offset) 10842 panic("initiate_write_inodeblock_ufs2: lbn order"); 10843 prevlbn = adp->ad_offset; 10844 if (dp->di_extb[adp->ad_offset] != adp->ad_newblkno) 10845 panic("initiate_write_inodeblock_ufs2: " 10846 "ext pointer #%jd mismatch %jd != %jd", 10847 (intmax_t)adp->ad_offset, 10848 (intmax_t)dp->di_extb[adp->ad_offset], 10849 (intmax_t)adp->ad_newblkno); 10850 deplist |= 1 << adp->ad_offset; 10851 if ((adp->ad_state & ATTACHED) == 0) 10852 panic("initiate_write_inodeblock_ufs2: Unknown " 10853 "state 0x%x", adp->ad_state); 10854 #endif /* INVARIANTS */ 10855 adp->ad_state &= ~ATTACHED; 10856 adp->ad_state |= UNDONE; 10857 } 10858 /* 10859 * The on-disk inode cannot claim to be any larger than the last 10860 * fragment that has been written. Otherwise, the on-disk inode 10861 * might have fragments that were not the last block in the ext 10862 * data which would corrupt the filesystem. 10863 */ 10864 for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; 10865 lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) { 10866 dp->di_extb[adp->ad_offset] = adp->ad_oldblkno; 10867 /* keep going until hitting a rollback to a frag */ 10868 if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize) 10869 continue; 10870 dp->di_extsize = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize; 10871 for (i = adp->ad_offset + 1; i < UFS_NXADDR; i++) { 10872 #ifdef INVARIANTS 10873 if (dp->di_extb[i] != 0 && (deplist & (1 << i)) == 0) 10874 panic("initiate_write_inodeblock_ufs2: " 10875 "lost dep1"); 10876 #endif /* INVARIANTS */ 10877 dp->di_extb[i] = 0; 10878 } 10879 lastadp = NULL; 10880 break; 10881 } 10882 /* 10883 * If we have zero'ed out the last allocated block of the ext 10884 * data, roll back the size to the last currently allocated block. 10885 * We know that this last allocated block is a full-sized as 10886 * we already checked for fragments in the loop above. 10887 */ 10888 if (lastadp != NULL && 10889 dp->di_extsize <= (lastadp->ad_offset + 1) * fs->fs_bsize) { 10890 for (i = lastadp->ad_offset; i >= 0; i--) 10891 if (dp->di_extb[i] != 0) 10892 break; 10893 dp->di_extsize = (i + 1) * fs->fs_bsize; 10894 } 10895 /* 10896 * Set the file data dependencies to busy. 10897 */ 10898 for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 10899 adp = TAILQ_NEXT(adp, ad_next)) { 10900 #ifdef INVARIANTS 10901 if (deplist != 0 && prevlbn >= adp->ad_offset) 10902 panic("softdep_write_inodeblock: lbn order"); 10903 if ((adp->ad_state & ATTACHED) == 0) 10904 panic("inodedep %p and adp %p not attached", inodedep, adp); 10905 prevlbn = adp->ad_offset; 10906 if (!ffs_fsfail_cleanup(ump, 0) && 10907 adp->ad_offset < UFS_NDADDR && 10908 dp->di_db[adp->ad_offset] != adp->ad_newblkno) 10909 panic("initiate_write_inodeblock_ufs2: " 10910 "direct pointer #%jd mismatch %jd != %jd", 10911 (intmax_t)adp->ad_offset, 10912 (intmax_t)dp->di_db[adp->ad_offset], 10913 (intmax_t)adp->ad_newblkno); 10914 if (!ffs_fsfail_cleanup(ump, 0) && 10915 adp->ad_offset >= UFS_NDADDR && 10916 dp->di_ib[adp->ad_offset - UFS_NDADDR] != adp->ad_newblkno) 10917 panic("initiate_write_inodeblock_ufs2: " 10918 "indirect pointer #%jd mismatch %jd != %jd", 10919 (intmax_t)adp->ad_offset - UFS_NDADDR, 10920 (intmax_t)dp->di_ib[adp->ad_offset - UFS_NDADDR], 10921 (intmax_t)adp->ad_newblkno); 10922 deplist |= 1 << adp->ad_offset; 10923 if ((adp->ad_state & ATTACHED) == 0) 10924 panic("initiate_write_inodeblock_ufs2: Unknown " 10925 "state 0x%x", adp->ad_state); 10926 #endif /* INVARIANTS */ 10927 adp->ad_state &= ~ATTACHED; 10928 adp->ad_state |= UNDONE; 10929 } 10930 /* 10931 * The on-disk inode cannot claim to be any larger than the last 10932 * fragment that has been written. Otherwise, the on-disk inode 10933 * might have fragments that were not the last block in the file 10934 * which would corrupt the filesystem. 10935 */ 10936 for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 10937 lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) { 10938 if (adp->ad_offset >= UFS_NDADDR) 10939 break; 10940 dp->di_db[adp->ad_offset] = adp->ad_oldblkno; 10941 /* keep going until hitting a rollback to a frag */ 10942 if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize) 10943 continue; 10944 dp->di_size = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize; 10945 for (i = adp->ad_offset + 1; i < UFS_NDADDR; i++) { 10946 #ifdef INVARIANTS 10947 if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0) 10948 panic("initiate_write_inodeblock_ufs2: " 10949 "lost dep2"); 10950 #endif /* INVARIANTS */ 10951 dp->di_db[i] = 0; 10952 } 10953 for (i = 0; i < UFS_NIADDR; i++) { 10954 #ifdef INVARIANTS 10955 if (dp->di_ib[i] != 0 && 10956 (deplist & ((1 << UFS_NDADDR) << i)) == 0) 10957 panic("initiate_write_inodeblock_ufs2: " 10958 "lost dep3"); 10959 #endif /* INVARIANTS */ 10960 dp->di_ib[i] = 0; 10961 } 10962 ffs_update_dinode_ckhash(fs, dp); 10963 return; 10964 } 10965 /* 10966 * If we have zero'ed out the last allocated block of the file, 10967 * roll back the size to the last currently allocated block. 10968 * We know that this last allocated block is a full-sized as 10969 * we already checked for fragments in the loop above. 10970 */ 10971 if (lastadp != NULL && 10972 dp->di_size <= (lastadp->ad_offset + 1) * fs->fs_bsize) { 10973 for (i = lastadp->ad_offset; i >= 0; i--) 10974 if (dp->di_db[i] != 0) 10975 break; 10976 dp->di_size = (i + 1) * fs->fs_bsize; 10977 } 10978 /* 10979 * The only dependencies are for indirect blocks. 10980 * 10981 * The file size for indirect block additions is not guaranteed. 10982 * Such a guarantee would be non-trivial to achieve. The conventional 10983 * synchronous write implementation also does not make this guarantee. 10984 * Fsck should catch and fix discrepancies. Arguably, the file size 10985 * can be over-estimated without destroying integrity when the file 10986 * moves into the indirect blocks (i.e., is large). If we want to 10987 * postpone fsck, we are stuck with this argument. 10988 */ 10989 for (; adp; adp = TAILQ_NEXT(adp, ad_next)) 10990 dp->di_ib[adp->ad_offset - UFS_NDADDR] = 0; 10991 ffs_update_dinode_ckhash(fs, dp); 10992 } 10993 10994 /* 10995 * Cancel an indirdep as a result of truncation. Release all of the 10996 * children allocindirs and place their journal work on the appropriate 10997 * list. 10998 */ 10999 static void 11000 cancel_indirdep(indirdep, bp, freeblks) 11001 struct indirdep *indirdep; 11002 struct buf *bp; 11003 struct freeblks *freeblks; 11004 { 11005 struct allocindir *aip; 11006 11007 /* 11008 * None of the indirect pointers will ever be visible, 11009 * so they can simply be tossed. GOINGAWAY ensures 11010 * that allocated pointers will be saved in the buffer 11011 * cache until they are freed. Note that they will 11012 * only be able to be found by their physical address 11013 * since the inode mapping the logical address will 11014 * be gone. The save buffer used for the safe copy 11015 * was allocated in setup_allocindir_phase2 using 11016 * the physical address so it could be used for this 11017 * purpose. Hence we swap the safe copy with the real 11018 * copy, allowing the safe copy to be freed and holding 11019 * on to the real copy for later use in indir_trunc. 11020 */ 11021 if (indirdep->ir_state & GOINGAWAY) 11022 panic("cancel_indirdep: already gone"); 11023 if ((indirdep->ir_state & DEPCOMPLETE) == 0) { 11024 indirdep->ir_state |= DEPCOMPLETE; 11025 LIST_REMOVE(indirdep, ir_next); 11026 } 11027 indirdep->ir_state |= GOINGAWAY; 11028 /* 11029 * Pass in bp for blocks still have journal writes 11030 * pending so we can cancel them on their own. 11031 */ 11032 while ((aip = LIST_FIRST(&indirdep->ir_deplisthd)) != NULL) 11033 cancel_allocindir(aip, bp, freeblks, 0); 11034 while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != NULL) 11035 cancel_allocindir(aip, NULL, freeblks, 0); 11036 while ((aip = LIST_FIRST(&indirdep->ir_writehd)) != NULL) 11037 cancel_allocindir(aip, NULL, freeblks, 0); 11038 while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != NULL) 11039 cancel_allocindir(aip, NULL, freeblks, 0); 11040 /* 11041 * If there are pending partial truncations we need to keep the 11042 * old block copy around until they complete. This is because 11043 * the current b_data is not a perfect superset of the available 11044 * blocks. 11045 */ 11046 if (TAILQ_EMPTY(&indirdep->ir_trunc)) 11047 bcopy(bp->b_data, indirdep->ir_savebp->b_data, bp->b_bcount); 11048 else 11049 bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount); 11050 WORKLIST_REMOVE(&indirdep->ir_list); 11051 WORKLIST_INSERT(&indirdep->ir_savebp->b_dep, &indirdep->ir_list); 11052 indirdep->ir_bp = NULL; 11053 indirdep->ir_freeblks = freeblks; 11054 } 11055 11056 /* 11057 * Free an indirdep once it no longer has new pointers to track. 11058 */ 11059 static void 11060 free_indirdep(indirdep) 11061 struct indirdep *indirdep; 11062 { 11063 11064 KASSERT(TAILQ_EMPTY(&indirdep->ir_trunc), 11065 ("free_indirdep: Indir trunc list not empty.")); 11066 KASSERT(LIST_EMPTY(&indirdep->ir_completehd), 11067 ("free_indirdep: Complete head not empty.")); 11068 KASSERT(LIST_EMPTY(&indirdep->ir_writehd), 11069 ("free_indirdep: write head not empty.")); 11070 KASSERT(LIST_EMPTY(&indirdep->ir_donehd), 11071 ("free_indirdep: done head not empty.")); 11072 KASSERT(LIST_EMPTY(&indirdep->ir_deplisthd), 11073 ("free_indirdep: deplist head not empty.")); 11074 KASSERT((indirdep->ir_state & DEPCOMPLETE), 11075 ("free_indirdep: %p still on newblk list.", indirdep)); 11076 KASSERT(indirdep->ir_saveddata == NULL, 11077 ("free_indirdep: %p still has saved data.", indirdep)); 11078 KASSERT(indirdep->ir_savebp == NULL, 11079 ("free_indirdep: %p still has savebp buffer.", indirdep)); 11080 if (indirdep->ir_state & ONWORKLIST) 11081 WORKLIST_REMOVE(&indirdep->ir_list); 11082 WORKITEM_FREE(indirdep, D_INDIRDEP); 11083 } 11084 11085 /* 11086 * Called before a write to an indirdep. This routine is responsible for 11087 * rolling back pointers to a safe state which includes only those 11088 * allocindirs which have been completed. 11089 */ 11090 static void 11091 initiate_write_indirdep(indirdep, bp) 11092 struct indirdep *indirdep; 11093 struct buf *bp; 11094 { 11095 struct ufsmount *ump; 11096 11097 indirdep->ir_state |= IOSTARTED; 11098 if (indirdep->ir_state & GOINGAWAY) 11099 panic("disk_io_initiation: indirdep gone"); 11100 /* 11101 * If there are no remaining dependencies, this will be writing 11102 * the real pointers. 11103 */ 11104 if (LIST_EMPTY(&indirdep->ir_deplisthd) && 11105 TAILQ_EMPTY(&indirdep->ir_trunc)) 11106 return; 11107 /* 11108 * Replace up-to-date version with safe version. 11109 */ 11110 if (indirdep->ir_saveddata == NULL) { 11111 ump = VFSTOUFS(indirdep->ir_list.wk_mp); 11112 LOCK_OWNED(ump); 11113 FREE_LOCK(ump); 11114 indirdep->ir_saveddata = malloc(bp->b_bcount, M_INDIRDEP, 11115 M_SOFTDEP_FLAGS); 11116 ACQUIRE_LOCK(ump); 11117 } 11118 indirdep->ir_state &= ~ATTACHED; 11119 indirdep->ir_state |= UNDONE; 11120 bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount); 11121 bcopy(indirdep->ir_savebp->b_data, bp->b_data, 11122 bp->b_bcount); 11123 } 11124 11125 /* 11126 * Called when an inode has been cleared in a cg bitmap. This finally 11127 * eliminates any canceled jaddrefs 11128 */ 11129 void 11130 softdep_setup_inofree(mp, bp, ino, wkhd) 11131 struct mount *mp; 11132 struct buf *bp; 11133 ino_t ino; 11134 struct workhead *wkhd; 11135 { 11136 struct worklist *wk, *wkn; 11137 struct inodedep *inodedep; 11138 struct ufsmount *ump; 11139 uint8_t *inosused; 11140 struct cg *cgp; 11141 struct fs *fs; 11142 11143 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 11144 ("softdep_setup_inofree called on non-softdep filesystem")); 11145 ump = VFSTOUFS(mp); 11146 ACQUIRE_LOCK(ump); 11147 if (!ffs_fsfail_cleanup(ump, 0)) { 11148 fs = ump->um_fs; 11149 cgp = (struct cg *)bp->b_data; 11150 inosused = cg_inosused(cgp); 11151 if (isset(inosused, ino % fs->fs_ipg)) 11152 panic("softdep_setup_inofree: inode %ju not freed.", 11153 (uintmax_t)ino); 11154 } 11155 if (inodedep_lookup(mp, ino, 0, &inodedep)) 11156 panic("softdep_setup_inofree: ino %ju has existing inodedep %p", 11157 (uintmax_t)ino, inodedep); 11158 if (wkhd) { 11159 LIST_FOREACH_SAFE(wk, wkhd, wk_list, wkn) { 11160 if (wk->wk_type != D_JADDREF) 11161 continue; 11162 WORKLIST_REMOVE(wk); 11163 /* 11164 * We can free immediately even if the jaddref 11165 * isn't attached in a background write as now 11166 * the bitmaps are reconciled. 11167 */ 11168 wk->wk_state |= COMPLETE | ATTACHED; 11169 free_jaddref(WK_JADDREF(wk)); 11170 } 11171 jwork_move(&bp->b_dep, wkhd); 11172 } 11173 FREE_LOCK(ump); 11174 } 11175 11176 /* 11177 * Called via ffs_blkfree() after a set of frags has been cleared from a cg 11178 * map. Any dependencies waiting for the write to clear are added to the 11179 * buf's list and any jnewblks that are being canceled are discarded 11180 * immediately. 11181 */ 11182 void 11183 softdep_setup_blkfree(mp, bp, blkno, frags, wkhd) 11184 struct mount *mp; 11185 struct buf *bp; 11186 ufs2_daddr_t blkno; 11187 int frags; 11188 struct workhead *wkhd; 11189 { 11190 struct bmsafemap *bmsafemap; 11191 struct jnewblk *jnewblk; 11192 struct ufsmount *ump; 11193 struct worklist *wk; 11194 struct fs *fs; 11195 #ifdef INVARIANTS 11196 uint8_t *blksfree; 11197 struct cg *cgp; 11198 ufs2_daddr_t jstart; 11199 ufs2_daddr_t jend; 11200 ufs2_daddr_t end; 11201 long bno; 11202 int i; 11203 #endif 11204 11205 CTR3(KTR_SUJ, 11206 "softdep_setup_blkfree: blkno %jd frags %d wk head %p", 11207 blkno, frags, wkhd); 11208 11209 ump = VFSTOUFS(mp); 11210 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 11211 ("softdep_setup_blkfree called on non-softdep filesystem")); 11212 ACQUIRE_LOCK(ump); 11213 /* Lookup the bmsafemap so we track when it is dirty. */ 11214 fs = ump->um_fs; 11215 bmsafemap = bmsafemap_lookup(mp, bp, dtog(fs, blkno), NULL); 11216 /* 11217 * Detach any jnewblks which have been canceled. They must linger 11218 * until the bitmap is cleared again by ffs_blkfree() to prevent 11219 * an unjournaled allocation from hitting the disk. 11220 */ 11221 if (wkhd) { 11222 while ((wk = LIST_FIRST(wkhd)) != NULL) { 11223 CTR2(KTR_SUJ, 11224 "softdep_setup_blkfree: blkno %jd wk type %d", 11225 blkno, wk->wk_type); 11226 WORKLIST_REMOVE(wk); 11227 if (wk->wk_type != D_JNEWBLK) { 11228 WORKLIST_INSERT(&bmsafemap->sm_freehd, wk); 11229 continue; 11230 } 11231 jnewblk = WK_JNEWBLK(wk); 11232 KASSERT(jnewblk->jn_state & GOINGAWAY, 11233 ("softdep_setup_blkfree: jnewblk not canceled.")); 11234 #ifdef INVARIANTS 11235 /* 11236 * Assert that this block is free in the bitmap 11237 * before we discard the jnewblk. 11238 */ 11239 cgp = (struct cg *)bp->b_data; 11240 blksfree = cg_blksfree(cgp); 11241 bno = dtogd(fs, jnewblk->jn_blkno); 11242 for (i = jnewblk->jn_oldfrags; 11243 i < jnewblk->jn_frags; i++) { 11244 if (isset(blksfree, bno + i)) 11245 continue; 11246 panic("softdep_setup_blkfree: not free"); 11247 } 11248 #endif 11249 /* 11250 * Even if it's not attached we can free immediately 11251 * as the new bitmap is correct. 11252 */ 11253 wk->wk_state |= COMPLETE | ATTACHED; 11254 free_jnewblk(jnewblk); 11255 } 11256 } 11257 11258 #ifdef INVARIANTS 11259 /* 11260 * Assert that we are not freeing a block which has an outstanding 11261 * allocation dependency. 11262 */ 11263 fs = VFSTOUFS(mp)->um_fs; 11264 bmsafemap = bmsafemap_lookup(mp, bp, dtog(fs, blkno), NULL); 11265 end = blkno + frags; 11266 LIST_FOREACH(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps) { 11267 /* 11268 * Don't match against blocks that will be freed when the 11269 * background write is done. 11270 */ 11271 if ((jnewblk->jn_state & (ATTACHED | COMPLETE | DEPCOMPLETE)) == 11272 (COMPLETE | DEPCOMPLETE)) 11273 continue; 11274 jstart = jnewblk->jn_blkno + jnewblk->jn_oldfrags; 11275 jend = jnewblk->jn_blkno + jnewblk->jn_frags; 11276 if ((blkno >= jstart && blkno < jend) || 11277 (end > jstart && end <= jend)) { 11278 printf("state 0x%X %jd - %d %d dep %p\n", 11279 jnewblk->jn_state, jnewblk->jn_blkno, 11280 jnewblk->jn_oldfrags, jnewblk->jn_frags, 11281 jnewblk->jn_dep); 11282 panic("softdep_setup_blkfree: " 11283 "%jd-%jd(%d) overlaps with %jd-%jd", 11284 blkno, end, frags, jstart, jend); 11285 } 11286 } 11287 #endif 11288 FREE_LOCK(ump); 11289 } 11290 11291 /* 11292 * Revert a block allocation when the journal record that describes it 11293 * is not yet written. 11294 */ 11295 static int 11296 jnewblk_rollback(jnewblk, fs, cgp, blksfree) 11297 struct jnewblk *jnewblk; 11298 struct fs *fs; 11299 struct cg *cgp; 11300 uint8_t *blksfree; 11301 { 11302 ufs1_daddr_t fragno; 11303 long cgbno, bbase; 11304 int frags, blk; 11305 int i; 11306 11307 frags = 0; 11308 cgbno = dtogd(fs, jnewblk->jn_blkno); 11309 /* 11310 * We have to test which frags need to be rolled back. We may 11311 * be operating on a stale copy when doing background writes. 11312 */ 11313 for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; i++) 11314 if (isclr(blksfree, cgbno + i)) 11315 frags++; 11316 if (frags == 0) 11317 return (0); 11318 /* 11319 * This is mostly ffs_blkfree() sans some validation and 11320 * superblock updates. 11321 */ 11322 if (frags == fs->fs_frag) { 11323 fragno = fragstoblks(fs, cgbno); 11324 ffs_setblock(fs, blksfree, fragno); 11325 ffs_clusteracct(fs, cgp, fragno, 1); 11326 cgp->cg_cs.cs_nbfree++; 11327 } else { 11328 cgbno += jnewblk->jn_oldfrags; 11329 bbase = cgbno - fragnum(fs, cgbno); 11330 /* Decrement the old frags. */ 11331 blk = blkmap(fs, blksfree, bbase); 11332 ffs_fragacct(fs, blk, cgp->cg_frsum, -1); 11333 /* Deallocate the fragment */ 11334 for (i = 0; i < frags; i++) 11335 setbit(blksfree, cgbno + i); 11336 cgp->cg_cs.cs_nffree += frags; 11337 /* Add back in counts associated with the new frags */ 11338 blk = blkmap(fs, blksfree, bbase); 11339 ffs_fragacct(fs, blk, cgp->cg_frsum, 1); 11340 /* If a complete block has been reassembled, account for it. */ 11341 fragno = fragstoblks(fs, bbase); 11342 if (ffs_isblock(fs, blksfree, fragno)) { 11343 cgp->cg_cs.cs_nffree -= fs->fs_frag; 11344 ffs_clusteracct(fs, cgp, fragno, 1); 11345 cgp->cg_cs.cs_nbfree++; 11346 } 11347 } 11348 stat_jnewblk++; 11349 jnewblk->jn_state &= ~ATTACHED; 11350 jnewblk->jn_state |= UNDONE; 11351 11352 return (frags); 11353 } 11354 11355 static void 11356 initiate_write_bmsafemap(bmsafemap, bp) 11357 struct bmsafemap *bmsafemap; 11358 struct buf *bp; /* The cg block. */ 11359 { 11360 struct jaddref *jaddref; 11361 struct jnewblk *jnewblk; 11362 uint8_t *inosused; 11363 uint8_t *blksfree; 11364 struct cg *cgp; 11365 struct fs *fs; 11366 ino_t ino; 11367 11368 /* 11369 * If this is a background write, we did this at the time that 11370 * the copy was made, so do not need to do it again. 11371 */ 11372 if (bmsafemap->sm_state & IOSTARTED) 11373 return; 11374 bmsafemap->sm_state |= IOSTARTED; 11375 /* 11376 * Clear any inode allocations which are pending journal writes. 11377 */ 11378 if (LIST_FIRST(&bmsafemap->sm_jaddrefhd) != NULL) { 11379 cgp = (struct cg *)bp->b_data; 11380 fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs; 11381 inosused = cg_inosused(cgp); 11382 LIST_FOREACH(jaddref, &bmsafemap->sm_jaddrefhd, ja_bmdeps) { 11383 ino = jaddref->ja_ino % fs->fs_ipg; 11384 if (isset(inosused, ino)) { 11385 if ((jaddref->ja_mode & IFMT) == IFDIR) 11386 cgp->cg_cs.cs_ndir--; 11387 cgp->cg_cs.cs_nifree++; 11388 clrbit(inosused, ino); 11389 jaddref->ja_state &= ~ATTACHED; 11390 jaddref->ja_state |= UNDONE; 11391 stat_jaddref++; 11392 } else 11393 panic("initiate_write_bmsafemap: inode %ju " 11394 "marked free", (uintmax_t)jaddref->ja_ino); 11395 } 11396 } 11397 /* 11398 * Clear any block allocations which are pending journal writes. 11399 */ 11400 if (LIST_FIRST(&bmsafemap->sm_jnewblkhd) != NULL) { 11401 cgp = (struct cg *)bp->b_data; 11402 fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs; 11403 blksfree = cg_blksfree(cgp); 11404 LIST_FOREACH(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps) { 11405 if (jnewblk_rollback(jnewblk, fs, cgp, blksfree)) 11406 continue; 11407 panic("initiate_write_bmsafemap: block %jd " 11408 "marked free", jnewblk->jn_blkno); 11409 } 11410 } 11411 /* 11412 * Move allocation lists to the written lists so they can be 11413 * cleared once the block write is complete. 11414 */ 11415 LIST_SWAP(&bmsafemap->sm_inodedephd, &bmsafemap->sm_inodedepwr, 11416 inodedep, id_deps); 11417 LIST_SWAP(&bmsafemap->sm_newblkhd, &bmsafemap->sm_newblkwr, 11418 newblk, nb_deps); 11419 LIST_SWAP(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr, worklist, 11420 wk_list); 11421 } 11422 11423 void 11424 softdep_handle_error(struct buf *bp) 11425 { 11426 struct ufsmount *ump; 11427 11428 ump = softdep_bp_to_mp(bp); 11429 if (ump == NULL) 11430 return; 11431 11432 if (ffs_fsfail_cleanup(ump, bp->b_error)) { 11433 /* 11434 * No future writes will succeed, so the on-disk image is safe. 11435 * Pretend that this write succeeded so that the softdep state 11436 * will be cleaned up naturally. 11437 */ 11438 bp->b_ioflags &= ~BIO_ERROR; 11439 bp->b_error = 0; 11440 } 11441 } 11442 11443 /* 11444 * This routine is called during the completion interrupt 11445 * service routine for a disk write (from the procedure called 11446 * by the device driver to inform the filesystem caches of 11447 * a request completion). It should be called early in this 11448 * procedure, before the block is made available to other 11449 * processes or other routines are called. 11450 * 11451 */ 11452 static void 11453 softdep_disk_write_complete(bp) 11454 struct buf *bp; /* describes the completed disk write */ 11455 { 11456 struct worklist *wk; 11457 struct worklist *owk; 11458 struct ufsmount *ump; 11459 struct workhead reattach; 11460 struct freeblks *freeblks; 11461 struct buf *sbp; 11462 11463 ump = softdep_bp_to_mp(bp); 11464 KASSERT(LIST_EMPTY(&bp->b_dep) || ump != NULL, 11465 ("softdep_disk_write_complete: softdep_bp_to_mp returned NULL " 11466 "with outstanding dependencies for buffer %p", bp)); 11467 if (ump == NULL) 11468 return; 11469 if ((bp->b_ioflags & BIO_ERROR) != 0) 11470 softdep_handle_error(bp); 11471 /* 11472 * If an error occurred while doing the write, then the data 11473 * has not hit the disk and the dependencies cannot be processed. 11474 * But we do have to go through and roll forward any dependencies 11475 * that were rolled back before the disk write. 11476 */ 11477 sbp = NULL; 11478 ACQUIRE_LOCK(ump); 11479 if ((bp->b_ioflags & BIO_ERROR) != 0 && (bp->b_flags & B_INVAL) == 0) { 11480 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 11481 switch (wk->wk_type) { 11482 case D_PAGEDEP: 11483 handle_written_filepage(WK_PAGEDEP(wk), bp, 0); 11484 continue; 11485 11486 case D_INODEDEP: 11487 handle_written_inodeblock(WK_INODEDEP(wk), 11488 bp, 0); 11489 continue; 11490 11491 case D_BMSAFEMAP: 11492 handle_written_bmsafemap(WK_BMSAFEMAP(wk), 11493 bp, 0); 11494 continue; 11495 11496 case D_INDIRDEP: 11497 handle_written_indirdep(WK_INDIRDEP(wk), 11498 bp, &sbp, 0); 11499 continue; 11500 default: 11501 /* nothing to roll forward */ 11502 continue; 11503 } 11504 } 11505 FREE_LOCK(ump); 11506 if (sbp) 11507 brelse(sbp); 11508 return; 11509 } 11510 LIST_INIT(&reattach); 11511 11512 /* 11513 * Ump SU lock must not be released anywhere in this code segment. 11514 */ 11515 owk = NULL; 11516 while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) { 11517 WORKLIST_REMOVE(wk); 11518 atomic_add_long(&dep_write[wk->wk_type], 1); 11519 if (wk == owk) 11520 panic("duplicate worklist: %p\n", wk); 11521 owk = wk; 11522 switch (wk->wk_type) { 11523 case D_PAGEDEP: 11524 if (handle_written_filepage(WK_PAGEDEP(wk), bp, 11525 WRITESUCCEEDED)) 11526 WORKLIST_INSERT(&reattach, wk); 11527 continue; 11528 11529 case D_INODEDEP: 11530 if (handle_written_inodeblock(WK_INODEDEP(wk), bp, 11531 WRITESUCCEEDED)) 11532 WORKLIST_INSERT(&reattach, wk); 11533 continue; 11534 11535 case D_BMSAFEMAP: 11536 if (handle_written_bmsafemap(WK_BMSAFEMAP(wk), bp, 11537 WRITESUCCEEDED)) 11538 WORKLIST_INSERT(&reattach, wk); 11539 continue; 11540 11541 case D_MKDIR: 11542 handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY); 11543 continue; 11544 11545 case D_ALLOCDIRECT: 11546 wk->wk_state |= COMPLETE; 11547 handle_allocdirect_partdone(WK_ALLOCDIRECT(wk), NULL); 11548 continue; 11549 11550 case D_ALLOCINDIR: 11551 wk->wk_state |= COMPLETE; 11552 handle_allocindir_partdone(WK_ALLOCINDIR(wk)); 11553 continue; 11554 11555 case D_INDIRDEP: 11556 if (handle_written_indirdep(WK_INDIRDEP(wk), bp, &sbp, 11557 WRITESUCCEEDED)) 11558 WORKLIST_INSERT(&reattach, wk); 11559 continue; 11560 11561 case D_FREEBLKS: 11562 wk->wk_state |= COMPLETE; 11563 freeblks = WK_FREEBLKS(wk); 11564 if ((wk->wk_state & ALLCOMPLETE) == ALLCOMPLETE && 11565 LIST_EMPTY(&freeblks->fb_jblkdephd)) 11566 add_to_worklist(wk, WK_NODELAY); 11567 continue; 11568 11569 case D_FREEWORK: 11570 handle_written_freework(WK_FREEWORK(wk)); 11571 break; 11572 11573 case D_JSEGDEP: 11574 free_jsegdep(WK_JSEGDEP(wk)); 11575 continue; 11576 11577 case D_JSEG: 11578 handle_written_jseg(WK_JSEG(wk), bp); 11579 continue; 11580 11581 case D_SBDEP: 11582 if (handle_written_sbdep(WK_SBDEP(wk), bp)) 11583 WORKLIST_INSERT(&reattach, wk); 11584 continue; 11585 11586 case D_FREEDEP: 11587 free_freedep(WK_FREEDEP(wk)); 11588 continue; 11589 11590 default: 11591 panic("handle_disk_write_complete: Unknown type %s", 11592 TYPENAME(wk->wk_type)); 11593 /* NOTREACHED */ 11594 } 11595 } 11596 /* 11597 * Reattach any requests that must be redone. 11598 */ 11599 while ((wk = LIST_FIRST(&reattach)) != NULL) { 11600 WORKLIST_REMOVE(wk); 11601 WORKLIST_INSERT(&bp->b_dep, wk); 11602 } 11603 FREE_LOCK(ump); 11604 if (sbp) 11605 brelse(sbp); 11606 } 11607 11608 /* 11609 * Called from within softdep_disk_write_complete above. 11610 */ 11611 static void 11612 handle_allocdirect_partdone(adp, wkhd) 11613 struct allocdirect *adp; /* the completed allocdirect */ 11614 struct workhead *wkhd; /* Work to do when inode is writtne. */ 11615 { 11616 struct allocdirectlst *listhead; 11617 struct allocdirect *listadp; 11618 struct inodedep *inodedep; 11619 long bsize; 11620 11621 LOCK_OWNED(VFSTOUFS(adp->ad_block.nb_list.wk_mp)); 11622 if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE) 11623 return; 11624 /* 11625 * The on-disk inode cannot claim to be any larger than the last 11626 * fragment that has been written. Otherwise, the on-disk inode 11627 * might have fragments that were not the last block in the file 11628 * which would corrupt the filesystem. Thus, we cannot free any 11629 * allocdirects after one whose ad_oldblkno claims a fragment as 11630 * these blocks must be rolled back to zero before writing the inode. 11631 * We check the currently active set of allocdirects in id_inoupdt 11632 * or id_extupdt as appropriate. 11633 */ 11634 inodedep = adp->ad_inodedep; 11635 bsize = inodedep->id_fs->fs_bsize; 11636 if (adp->ad_state & EXTDATA) 11637 listhead = &inodedep->id_extupdt; 11638 else 11639 listhead = &inodedep->id_inoupdt; 11640 TAILQ_FOREACH(listadp, listhead, ad_next) { 11641 /* found our block */ 11642 if (listadp == adp) 11643 break; 11644 /* continue if ad_oldlbn is not a fragment */ 11645 if (listadp->ad_oldsize == 0 || 11646 listadp->ad_oldsize == bsize) 11647 continue; 11648 /* hit a fragment */ 11649 return; 11650 } 11651 /* 11652 * If we have reached the end of the current list without 11653 * finding the just finished dependency, then it must be 11654 * on the future dependency list. Future dependencies cannot 11655 * be freed until they are moved to the current list. 11656 */ 11657 if (listadp == NULL) { 11658 #ifdef INVARIANTS 11659 if (adp->ad_state & EXTDATA) 11660 listhead = &inodedep->id_newextupdt; 11661 else 11662 listhead = &inodedep->id_newinoupdt; 11663 TAILQ_FOREACH(listadp, listhead, ad_next) 11664 /* found our block */ 11665 if (listadp == adp) 11666 break; 11667 if (listadp == NULL) 11668 panic("handle_allocdirect_partdone: lost dep"); 11669 #endif /* INVARIANTS */ 11670 return; 11671 } 11672 /* 11673 * If we have found the just finished dependency, then queue 11674 * it along with anything that follows it that is complete. 11675 * Since the pointer has not yet been written in the inode 11676 * as the dependency prevents it, place the allocdirect on the 11677 * bufwait list where it will be freed once the pointer is 11678 * valid. 11679 */ 11680 if (wkhd == NULL) 11681 wkhd = &inodedep->id_bufwait; 11682 for (; adp; adp = listadp) { 11683 listadp = TAILQ_NEXT(adp, ad_next); 11684 if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE) 11685 return; 11686 TAILQ_REMOVE(listhead, adp, ad_next); 11687 WORKLIST_INSERT(wkhd, &adp->ad_block.nb_list); 11688 } 11689 } 11690 11691 /* 11692 * Called from within softdep_disk_write_complete above. This routine 11693 * completes successfully written allocindirs. 11694 */ 11695 static void 11696 handle_allocindir_partdone(aip) 11697 struct allocindir *aip; /* the completed allocindir */ 11698 { 11699 struct indirdep *indirdep; 11700 11701 if ((aip->ai_state & ALLCOMPLETE) != ALLCOMPLETE) 11702 return; 11703 indirdep = aip->ai_indirdep; 11704 LIST_REMOVE(aip, ai_next); 11705 /* 11706 * Don't set a pointer while the buffer is undergoing IO or while 11707 * we have active truncations. 11708 */ 11709 if (indirdep->ir_state & UNDONE || !TAILQ_EMPTY(&indirdep->ir_trunc)) { 11710 LIST_INSERT_HEAD(&indirdep->ir_donehd, aip, ai_next); 11711 return; 11712 } 11713 if (indirdep->ir_state & UFS1FMT) 11714 ((ufs1_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] = 11715 aip->ai_newblkno; 11716 else 11717 ((ufs2_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] = 11718 aip->ai_newblkno; 11719 /* 11720 * Await the pointer write before freeing the allocindir. 11721 */ 11722 LIST_INSERT_HEAD(&indirdep->ir_writehd, aip, ai_next); 11723 } 11724 11725 /* 11726 * Release segments held on a jwork list. 11727 */ 11728 static void 11729 handle_jwork(wkhd) 11730 struct workhead *wkhd; 11731 { 11732 struct worklist *wk; 11733 11734 while ((wk = LIST_FIRST(wkhd)) != NULL) { 11735 WORKLIST_REMOVE(wk); 11736 switch (wk->wk_type) { 11737 case D_JSEGDEP: 11738 free_jsegdep(WK_JSEGDEP(wk)); 11739 continue; 11740 case D_FREEDEP: 11741 free_freedep(WK_FREEDEP(wk)); 11742 continue; 11743 case D_FREEFRAG: 11744 rele_jseg(WK_JSEG(WK_FREEFRAG(wk)->ff_jdep)); 11745 WORKITEM_FREE(wk, D_FREEFRAG); 11746 continue; 11747 case D_FREEWORK: 11748 handle_written_freework(WK_FREEWORK(wk)); 11749 continue; 11750 default: 11751 panic("handle_jwork: Unknown type %s\n", 11752 TYPENAME(wk->wk_type)); 11753 } 11754 } 11755 } 11756 11757 /* 11758 * Handle the bufwait list on an inode when it is safe to release items 11759 * held there. This normally happens after an inode block is written but 11760 * may be delayed and handled later if there are pending journal items that 11761 * are not yet safe to be released. 11762 */ 11763 static struct freefile * 11764 handle_bufwait(inodedep, refhd) 11765 struct inodedep *inodedep; 11766 struct workhead *refhd; 11767 { 11768 struct jaddref *jaddref; 11769 struct freefile *freefile; 11770 struct worklist *wk; 11771 11772 freefile = NULL; 11773 while ((wk = LIST_FIRST(&inodedep->id_bufwait)) != NULL) { 11774 WORKLIST_REMOVE(wk); 11775 switch (wk->wk_type) { 11776 case D_FREEFILE: 11777 /* 11778 * We defer adding freefile to the worklist 11779 * until all other additions have been made to 11780 * ensure that it will be done after all the 11781 * old blocks have been freed. 11782 */ 11783 if (freefile != NULL) 11784 panic("handle_bufwait: freefile"); 11785 freefile = WK_FREEFILE(wk); 11786 continue; 11787 11788 case D_MKDIR: 11789 handle_written_mkdir(WK_MKDIR(wk), MKDIR_PARENT); 11790 continue; 11791 11792 case D_DIRADD: 11793 diradd_inode_written(WK_DIRADD(wk), inodedep); 11794 continue; 11795 11796 case D_FREEFRAG: 11797 wk->wk_state |= COMPLETE; 11798 if ((wk->wk_state & ALLCOMPLETE) == ALLCOMPLETE) 11799 add_to_worklist(wk, 0); 11800 continue; 11801 11802 case D_DIRREM: 11803 wk->wk_state |= COMPLETE; 11804 add_to_worklist(wk, 0); 11805 continue; 11806 11807 case D_ALLOCDIRECT: 11808 case D_ALLOCINDIR: 11809 free_newblk(WK_NEWBLK(wk)); 11810 continue; 11811 11812 case D_JNEWBLK: 11813 wk->wk_state |= COMPLETE; 11814 free_jnewblk(WK_JNEWBLK(wk)); 11815 continue; 11816 11817 /* 11818 * Save freed journal segments and add references on 11819 * the supplied list which will delay their release 11820 * until the cg bitmap is cleared on disk. 11821 */ 11822 case D_JSEGDEP: 11823 if (refhd == NULL) 11824 free_jsegdep(WK_JSEGDEP(wk)); 11825 else 11826 WORKLIST_INSERT(refhd, wk); 11827 continue; 11828 11829 case D_JADDREF: 11830 jaddref = WK_JADDREF(wk); 11831 TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref, 11832 if_deps); 11833 /* 11834 * Transfer any jaddrefs to the list to be freed with 11835 * the bitmap if we're handling a removed file. 11836 */ 11837 if (refhd == NULL) { 11838 wk->wk_state |= COMPLETE; 11839 free_jaddref(jaddref); 11840 } else 11841 WORKLIST_INSERT(refhd, wk); 11842 continue; 11843 11844 default: 11845 panic("handle_bufwait: Unknown type %p(%s)", 11846 wk, TYPENAME(wk->wk_type)); 11847 /* NOTREACHED */ 11848 } 11849 } 11850 return (freefile); 11851 } 11852 /* 11853 * Called from within softdep_disk_write_complete above to restore 11854 * in-memory inode block contents to their most up-to-date state. Note 11855 * that this routine is always called from interrupt level with further 11856 * interrupts from this device blocked. 11857 * 11858 * If the write did not succeed, we will do all the roll-forward 11859 * operations, but we will not take the actions that will allow its 11860 * dependencies to be processed. 11861 */ 11862 static int 11863 handle_written_inodeblock(inodedep, bp, flags) 11864 struct inodedep *inodedep; 11865 struct buf *bp; /* buffer containing the inode block */ 11866 int flags; 11867 { 11868 struct freefile *freefile; 11869 struct allocdirect *adp, *nextadp; 11870 struct ufs1_dinode *dp1 = NULL; 11871 struct ufs2_dinode *dp2 = NULL; 11872 struct workhead wkhd; 11873 int hadchanges, fstype; 11874 ino_t freelink; 11875 11876 LIST_INIT(&wkhd); 11877 hadchanges = 0; 11878 freefile = NULL; 11879 if ((inodedep->id_state & IOSTARTED) == 0) 11880 panic("handle_written_inodeblock: not started"); 11881 inodedep->id_state &= ~IOSTARTED; 11882 if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC) { 11883 fstype = UFS1; 11884 dp1 = (struct ufs1_dinode *)bp->b_data + 11885 ino_to_fsbo(inodedep->id_fs, inodedep->id_ino); 11886 freelink = dp1->di_freelink; 11887 } else { 11888 fstype = UFS2; 11889 dp2 = (struct ufs2_dinode *)bp->b_data + 11890 ino_to_fsbo(inodedep->id_fs, inodedep->id_ino); 11891 freelink = dp2->di_freelink; 11892 } 11893 /* 11894 * Leave this inodeblock dirty until it's in the list. 11895 */ 11896 if ((inodedep->id_state & (UNLINKED | UNLINKONLIST)) == UNLINKED && 11897 (flags & WRITESUCCEEDED)) { 11898 struct inodedep *inon; 11899 11900 inon = TAILQ_NEXT(inodedep, id_unlinked); 11901 if ((inon == NULL && freelink == 0) || 11902 (inon && inon->id_ino == freelink)) { 11903 if (inon) 11904 inon->id_state |= UNLINKPREV; 11905 inodedep->id_state |= UNLINKNEXT; 11906 } 11907 hadchanges = 1; 11908 } 11909 /* 11910 * If we had to rollback the inode allocation because of 11911 * bitmaps being incomplete, then simply restore it. 11912 * Keep the block dirty so that it will not be reclaimed until 11913 * all associated dependencies have been cleared and the 11914 * corresponding updates written to disk. 11915 */ 11916 if (inodedep->id_savedino1 != NULL) { 11917 hadchanges = 1; 11918 if (fstype == UFS1) 11919 *dp1 = *inodedep->id_savedino1; 11920 else 11921 *dp2 = *inodedep->id_savedino2; 11922 free(inodedep->id_savedino1, M_SAVEDINO); 11923 inodedep->id_savedino1 = NULL; 11924 if ((bp->b_flags & B_DELWRI) == 0) 11925 stat_inode_bitmap++; 11926 bdirty(bp); 11927 /* 11928 * If the inode is clear here and GOINGAWAY it will never 11929 * be written. Process the bufwait and clear any pending 11930 * work which may include the freefile. 11931 */ 11932 if (inodedep->id_state & GOINGAWAY) 11933 goto bufwait; 11934 return (1); 11935 } 11936 if (flags & WRITESUCCEEDED) 11937 inodedep->id_state |= COMPLETE; 11938 /* 11939 * Roll forward anything that had to be rolled back before 11940 * the inode could be updated. 11941 */ 11942 for (adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; adp = nextadp) { 11943 nextadp = TAILQ_NEXT(adp, ad_next); 11944 if (adp->ad_state & ATTACHED) 11945 panic("handle_written_inodeblock: new entry"); 11946 if (fstype == UFS1) { 11947 if (adp->ad_offset < UFS_NDADDR) { 11948 if (dp1->di_db[adp->ad_offset]!=adp->ad_oldblkno) 11949 panic("%s %s #%jd mismatch %d != %jd", 11950 "handle_written_inodeblock:", 11951 "direct pointer", 11952 (intmax_t)adp->ad_offset, 11953 dp1->di_db[adp->ad_offset], 11954 (intmax_t)adp->ad_oldblkno); 11955 dp1->di_db[adp->ad_offset] = adp->ad_newblkno; 11956 } else { 11957 if (dp1->di_ib[adp->ad_offset - UFS_NDADDR] != 11958 0) 11959 panic("%s: %s #%jd allocated as %d", 11960 "handle_written_inodeblock", 11961 "indirect pointer", 11962 (intmax_t)adp->ad_offset - 11963 UFS_NDADDR, 11964 dp1->di_ib[adp->ad_offset - 11965 UFS_NDADDR]); 11966 dp1->di_ib[adp->ad_offset - UFS_NDADDR] = 11967 adp->ad_newblkno; 11968 } 11969 } else { 11970 if (adp->ad_offset < UFS_NDADDR) { 11971 if (dp2->di_db[adp->ad_offset]!=adp->ad_oldblkno) 11972 panic("%s: %s #%jd %s %jd != %jd", 11973 "handle_written_inodeblock", 11974 "direct pointer", 11975 (intmax_t)adp->ad_offset, "mismatch", 11976 (intmax_t)dp2->di_db[adp->ad_offset], 11977 (intmax_t)adp->ad_oldblkno); 11978 dp2->di_db[adp->ad_offset] = adp->ad_newblkno; 11979 } else { 11980 if (dp2->di_ib[adp->ad_offset - UFS_NDADDR] != 11981 0) 11982 panic("%s: %s #%jd allocated as %jd", 11983 "handle_written_inodeblock", 11984 "indirect pointer", 11985 (intmax_t)adp->ad_offset - 11986 UFS_NDADDR, 11987 (intmax_t) 11988 dp2->di_ib[adp->ad_offset - 11989 UFS_NDADDR]); 11990 dp2->di_ib[adp->ad_offset - UFS_NDADDR] = 11991 adp->ad_newblkno; 11992 } 11993 } 11994 adp->ad_state &= ~UNDONE; 11995 adp->ad_state |= ATTACHED; 11996 hadchanges = 1; 11997 } 11998 for (adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; adp = nextadp) { 11999 nextadp = TAILQ_NEXT(adp, ad_next); 12000 if (adp->ad_state & ATTACHED) 12001 panic("handle_written_inodeblock: new entry"); 12002 if (dp2->di_extb[adp->ad_offset] != adp->ad_oldblkno) 12003 panic("%s: direct pointers #%jd %s %jd != %jd", 12004 "handle_written_inodeblock", 12005 (intmax_t)adp->ad_offset, "mismatch", 12006 (intmax_t)dp2->di_extb[adp->ad_offset], 12007 (intmax_t)adp->ad_oldblkno); 12008 dp2->di_extb[adp->ad_offset] = adp->ad_newblkno; 12009 adp->ad_state &= ~UNDONE; 12010 adp->ad_state |= ATTACHED; 12011 hadchanges = 1; 12012 } 12013 if (hadchanges && (bp->b_flags & B_DELWRI) == 0) 12014 stat_direct_blk_ptrs++; 12015 /* 12016 * Reset the file size to its most up-to-date value. 12017 */ 12018 if (inodedep->id_savedsize == -1 || inodedep->id_savedextsize == -1) 12019 panic("handle_written_inodeblock: bad size"); 12020 if (inodedep->id_savednlink > UFS_LINK_MAX) 12021 panic("handle_written_inodeblock: Invalid link count " 12022 "%jd for inodedep %p", (uintmax_t)inodedep->id_savednlink, 12023 inodedep); 12024 if (fstype == UFS1) { 12025 if (dp1->di_nlink != inodedep->id_savednlink) { 12026 dp1->di_nlink = inodedep->id_savednlink; 12027 hadchanges = 1; 12028 } 12029 if (dp1->di_size != inodedep->id_savedsize) { 12030 dp1->di_size = inodedep->id_savedsize; 12031 hadchanges = 1; 12032 } 12033 } else { 12034 if (dp2->di_nlink != inodedep->id_savednlink) { 12035 dp2->di_nlink = inodedep->id_savednlink; 12036 hadchanges = 1; 12037 } 12038 if (dp2->di_size != inodedep->id_savedsize) { 12039 dp2->di_size = inodedep->id_savedsize; 12040 hadchanges = 1; 12041 } 12042 if (dp2->di_extsize != inodedep->id_savedextsize) { 12043 dp2->di_extsize = inodedep->id_savedextsize; 12044 hadchanges = 1; 12045 } 12046 } 12047 inodedep->id_savedsize = -1; 12048 inodedep->id_savedextsize = -1; 12049 inodedep->id_savednlink = -1; 12050 /* 12051 * If there were any rollbacks in the inode block, then it must be 12052 * marked dirty so that its will eventually get written back in 12053 * its correct form. 12054 */ 12055 if (hadchanges) { 12056 if (fstype == UFS2) 12057 ffs_update_dinode_ckhash(inodedep->id_fs, dp2); 12058 bdirty(bp); 12059 } 12060 bufwait: 12061 /* 12062 * If the write did not succeed, we have done all the roll-forward 12063 * operations, but we cannot take the actions that will allow its 12064 * dependencies to be processed. 12065 */ 12066 if ((flags & WRITESUCCEEDED) == 0) 12067 return (hadchanges); 12068 /* 12069 * Process any allocdirects that completed during the update. 12070 */ 12071 if ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL) 12072 handle_allocdirect_partdone(adp, &wkhd); 12073 if ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL) 12074 handle_allocdirect_partdone(adp, &wkhd); 12075 /* 12076 * Process deallocations that were held pending until the 12077 * inode had been written to disk. Freeing of the inode 12078 * is delayed until after all blocks have been freed to 12079 * avoid creation of new <vfsid, inum, lbn> triples 12080 * before the old ones have been deleted. Completely 12081 * unlinked inodes are not processed until the unlinked 12082 * inode list is written or the last reference is removed. 12083 */ 12084 if ((inodedep->id_state & (UNLINKED | UNLINKONLIST)) != UNLINKED) { 12085 freefile = handle_bufwait(inodedep, NULL); 12086 if (freefile && !LIST_EMPTY(&wkhd)) { 12087 WORKLIST_INSERT(&wkhd, &freefile->fx_list); 12088 freefile = NULL; 12089 } 12090 } 12091 /* 12092 * Move rolled forward dependency completions to the bufwait list 12093 * now that those that were already written have been processed. 12094 */ 12095 if (!LIST_EMPTY(&wkhd) && hadchanges == 0) 12096 panic("handle_written_inodeblock: bufwait but no changes"); 12097 jwork_move(&inodedep->id_bufwait, &wkhd); 12098 12099 if (freefile != NULL) { 12100 /* 12101 * If the inode is goingaway it was never written. Fake up 12102 * the state here so free_inodedep() can succeed. 12103 */ 12104 if (inodedep->id_state & GOINGAWAY) 12105 inodedep->id_state |= COMPLETE | DEPCOMPLETE; 12106 if (free_inodedep(inodedep) == 0) 12107 panic("handle_written_inodeblock: live inodedep %p", 12108 inodedep); 12109 add_to_worklist(&freefile->fx_list, 0); 12110 return (0); 12111 } 12112 12113 /* 12114 * If no outstanding dependencies, free it. 12115 */ 12116 if (free_inodedep(inodedep) || 12117 (TAILQ_FIRST(&inodedep->id_inoreflst) == 0 && 12118 TAILQ_FIRST(&inodedep->id_inoupdt) == 0 && 12119 TAILQ_FIRST(&inodedep->id_extupdt) == 0 && 12120 LIST_FIRST(&inodedep->id_bufwait) == 0)) 12121 return (0); 12122 return (hadchanges); 12123 } 12124 12125 /* 12126 * Perform needed roll-forwards and kick off any dependencies that 12127 * can now be processed. 12128 * 12129 * If the write did not succeed, we will do all the roll-forward 12130 * operations, but we will not take the actions that will allow its 12131 * dependencies to be processed. 12132 */ 12133 static int 12134 handle_written_indirdep(indirdep, bp, bpp, flags) 12135 struct indirdep *indirdep; 12136 struct buf *bp; 12137 struct buf **bpp; 12138 int flags; 12139 { 12140 struct allocindir *aip; 12141 struct buf *sbp; 12142 int chgs; 12143 12144 if (indirdep->ir_state & GOINGAWAY) 12145 panic("handle_written_indirdep: indirdep gone"); 12146 if ((indirdep->ir_state & IOSTARTED) == 0) 12147 panic("handle_written_indirdep: IO not started"); 12148 chgs = 0; 12149 /* 12150 * If there were rollbacks revert them here. 12151 */ 12152 if (indirdep->ir_saveddata) { 12153 bcopy(indirdep->ir_saveddata, bp->b_data, bp->b_bcount); 12154 if (TAILQ_EMPTY(&indirdep->ir_trunc)) { 12155 free(indirdep->ir_saveddata, M_INDIRDEP); 12156 indirdep->ir_saveddata = NULL; 12157 } 12158 chgs = 1; 12159 } 12160 indirdep->ir_state &= ~(UNDONE | IOSTARTED); 12161 indirdep->ir_state |= ATTACHED; 12162 /* 12163 * If the write did not succeed, we have done all the roll-forward 12164 * operations, but we cannot take the actions that will allow its 12165 * dependencies to be processed. 12166 */ 12167 if ((flags & WRITESUCCEEDED) == 0) { 12168 stat_indir_blk_ptrs++; 12169 bdirty(bp); 12170 return (1); 12171 } 12172 /* 12173 * Move allocindirs with written pointers to the completehd if 12174 * the indirdep's pointer is not yet written. Otherwise 12175 * free them here. 12176 */ 12177 while ((aip = LIST_FIRST(&indirdep->ir_writehd)) != NULL) { 12178 LIST_REMOVE(aip, ai_next); 12179 if ((indirdep->ir_state & DEPCOMPLETE) == 0) { 12180 LIST_INSERT_HEAD(&indirdep->ir_completehd, aip, 12181 ai_next); 12182 newblk_freefrag(&aip->ai_block); 12183 continue; 12184 } 12185 free_newblk(&aip->ai_block); 12186 } 12187 /* 12188 * Move allocindirs that have finished dependency processing from 12189 * the done list to the write list after updating the pointers. 12190 */ 12191 if (TAILQ_EMPTY(&indirdep->ir_trunc)) { 12192 while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != NULL) { 12193 handle_allocindir_partdone(aip); 12194 if (aip == LIST_FIRST(&indirdep->ir_donehd)) 12195 panic("disk_write_complete: not gone"); 12196 chgs = 1; 12197 } 12198 } 12199 /* 12200 * Preserve the indirdep if there were any changes or if it is not 12201 * yet valid on disk. 12202 */ 12203 if (chgs) { 12204 stat_indir_blk_ptrs++; 12205 bdirty(bp); 12206 return (1); 12207 } 12208 /* 12209 * If there were no changes we can discard the savedbp and detach 12210 * ourselves from the buf. We are only carrying completed pointers 12211 * in this case. 12212 */ 12213 sbp = indirdep->ir_savebp; 12214 sbp->b_flags |= B_INVAL | B_NOCACHE; 12215 indirdep->ir_savebp = NULL; 12216 indirdep->ir_bp = NULL; 12217 if (*bpp != NULL) 12218 panic("handle_written_indirdep: bp already exists."); 12219 *bpp = sbp; 12220 /* 12221 * The indirdep may not be freed until its parent points at it. 12222 */ 12223 if (indirdep->ir_state & DEPCOMPLETE) 12224 free_indirdep(indirdep); 12225 12226 return (0); 12227 } 12228 12229 /* 12230 * Process a diradd entry after its dependent inode has been written. 12231 */ 12232 static void 12233 diradd_inode_written(dap, inodedep) 12234 struct diradd *dap; 12235 struct inodedep *inodedep; 12236 { 12237 12238 LOCK_OWNED(VFSTOUFS(dap->da_list.wk_mp)); 12239 dap->da_state |= COMPLETE; 12240 complete_diradd(dap); 12241 WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list); 12242 } 12243 12244 /* 12245 * Returns true if the bmsafemap will have rollbacks when written. Must only 12246 * be called with the per-filesystem lock and the buf lock on the cg held. 12247 */ 12248 static int 12249 bmsafemap_backgroundwrite(bmsafemap, bp) 12250 struct bmsafemap *bmsafemap; 12251 struct buf *bp; 12252 { 12253 int dirty; 12254 12255 LOCK_OWNED(VFSTOUFS(bmsafemap->sm_list.wk_mp)); 12256 dirty = !LIST_EMPTY(&bmsafemap->sm_jaddrefhd) | 12257 !LIST_EMPTY(&bmsafemap->sm_jnewblkhd); 12258 /* 12259 * If we're initiating a background write we need to process the 12260 * rollbacks as they exist now, not as they exist when IO starts. 12261 * No other consumers will look at the contents of the shadowed 12262 * buf so this is safe to do here. 12263 */ 12264 if (bp->b_xflags & BX_BKGRDMARKER) 12265 initiate_write_bmsafemap(bmsafemap, bp); 12266 12267 return (dirty); 12268 } 12269 12270 /* 12271 * Re-apply an allocation when a cg write is complete. 12272 */ 12273 static int 12274 jnewblk_rollforward(jnewblk, fs, cgp, blksfree) 12275 struct jnewblk *jnewblk; 12276 struct fs *fs; 12277 struct cg *cgp; 12278 uint8_t *blksfree; 12279 { 12280 ufs1_daddr_t fragno; 12281 ufs2_daddr_t blkno; 12282 long cgbno, bbase; 12283 int frags, blk; 12284 int i; 12285 12286 frags = 0; 12287 cgbno = dtogd(fs, jnewblk->jn_blkno); 12288 for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; i++) { 12289 if (isclr(blksfree, cgbno + i)) 12290 panic("jnewblk_rollforward: re-allocated fragment"); 12291 frags++; 12292 } 12293 if (frags == fs->fs_frag) { 12294 blkno = fragstoblks(fs, cgbno); 12295 ffs_clrblock(fs, blksfree, (long)blkno); 12296 ffs_clusteracct(fs, cgp, blkno, -1); 12297 cgp->cg_cs.cs_nbfree--; 12298 } else { 12299 bbase = cgbno - fragnum(fs, cgbno); 12300 cgbno += jnewblk->jn_oldfrags; 12301 /* If a complete block had been reassembled, account for it. */ 12302 fragno = fragstoblks(fs, bbase); 12303 if (ffs_isblock(fs, blksfree, fragno)) { 12304 cgp->cg_cs.cs_nffree += fs->fs_frag; 12305 ffs_clusteracct(fs, cgp, fragno, -1); 12306 cgp->cg_cs.cs_nbfree--; 12307 } 12308 /* Decrement the old frags. */ 12309 blk = blkmap(fs, blksfree, bbase); 12310 ffs_fragacct(fs, blk, cgp->cg_frsum, -1); 12311 /* Allocate the fragment */ 12312 for (i = 0; i < frags; i++) 12313 clrbit(blksfree, cgbno + i); 12314 cgp->cg_cs.cs_nffree -= frags; 12315 /* Add back in counts associated with the new frags */ 12316 blk = blkmap(fs, blksfree, bbase); 12317 ffs_fragacct(fs, blk, cgp->cg_frsum, 1); 12318 } 12319 return (frags); 12320 } 12321 12322 /* 12323 * Complete a write to a bmsafemap structure. Roll forward any bitmap 12324 * changes if it's not a background write. Set all written dependencies 12325 * to DEPCOMPLETE and free the structure if possible. 12326 * 12327 * If the write did not succeed, we will do all the roll-forward 12328 * operations, but we will not take the actions that will allow its 12329 * dependencies to be processed. 12330 */ 12331 static int 12332 handle_written_bmsafemap(bmsafemap, bp, flags) 12333 struct bmsafemap *bmsafemap; 12334 struct buf *bp; 12335 int flags; 12336 { 12337 struct newblk *newblk; 12338 struct inodedep *inodedep; 12339 struct jaddref *jaddref, *jatmp; 12340 struct jnewblk *jnewblk, *jntmp; 12341 struct ufsmount *ump; 12342 uint8_t *inosused; 12343 uint8_t *blksfree; 12344 struct cg *cgp; 12345 struct fs *fs; 12346 ino_t ino; 12347 int foreground; 12348 int chgs; 12349 12350 if ((bmsafemap->sm_state & IOSTARTED) == 0) 12351 panic("handle_written_bmsafemap: Not started\n"); 12352 ump = VFSTOUFS(bmsafemap->sm_list.wk_mp); 12353 chgs = 0; 12354 bmsafemap->sm_state &= ~IOSTARTED; 12355 foreground = (bp->b_xflags & BX_BKGRDMARKER) == 0; 12356 /* 12357 * If write was successful, release journal work that was waiting 12358 * on the write. Otherwise move the work back. 12359 */ 12360 if (flags & WRITESUCCEEDED) 12361 handle_jwork(&bmsafemap->sm_freewr); 12362 else 12363 LIST_CONCAT(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr, 12364 worklist, wk_list); 12365 12366 /* 12367 * Restore unwritten inode allocation pending jaddref writes. 12368 */ 12369 if (!LIST_EMPTY(&bmsafemap->sm_jaddrefhd)) { 12370 cgp = (struct cg *)bp->b_data; 12371 fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs; 12372 inosused = cg_inosused(cgp); 12373 LIST_FOREACH_SAFE(jaddref, &bmsafemap->sm_jaddrefhd, 12374 ja_bmdeps, jatmp) { 12375 if ((jaddref->ja_state & UNDONE) == 0) 12376 continue; 12377 ino = jaddref->ja_ino % fs->fs_ipg; 12378 if (isset(inosused, ino)) 12379 panic("handle_written_bmsafemap: " 12380 "re-allocated inode"); 12381 /* Do the roll-forward only if it's a real copy. */ 12382 if (foreground) { 12383 if ((jaddref->ja_mode & IFMT) == IFDIR) 12384 cgp->cg_cs.cs_ndir++; 12385 cgp->cg_cs.cs_nifree--; 12386 setbit(inosused, ino); 12387 chgs = 1; 12388 } 12389 jaddref->ja_state &= ~UNDONE; 12390 jaddref->ja_state |= ATTACHED; 12391 free_jaddref(jaddref); 12392 } 12393 } 12394 /* 12395 * Restore any block allocations which are pending journal writes. 12396 */ 12397 if (LIST_FIRST(&bmsafemap->sm_jnewblkhd) != NULL) { 12398 cgp = (struct cg *)bp->b_data; 12399 fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs; 12400 blksfree = cg_blksfree(cgp); 12401 LIST_FOREACH_SAFE(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps, 12402 jntmp) { 12403 if ((jnewblk->jn_state & UNDONE) == 0) 12404 continue; 12405 /* Do the roll-forward only if it's a real copy. */ 12406 if (foreground && 12407 jnewblk_rollforward(jnewblk, fs, cgp, blksfree)) 12408 chgs = 1; 12409 jnewblk->jn_state &= ~(UNDONE | NEWBLOCK); 12410 jnewblk->jn_state |= ATTACHED; 12411 free_jnewblk(jnewblk); 12412 } 12413 } 12414 /* 12415 * If the write did not succeed, we have done all the roll-forward 12416 * operations, but we cannot take the actions that will allow its 12417 * dependencies to be processed. 12418 */ 12419 if ((flags & WRITESUCCEEDED) == 0) { 12420 LIST_CONCAT(&bmsafemap->sm_newblkhd, &bmsafemap->sm_newblkwr, 12421 newblk, nb_deps); 12422 LIST_CONCAT(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr, 12423 worklist, wk_list); 12424 if (foreground) 12425 bdirty(bp); 12426 return (1); 12427 } 12428 while ((newblk = LIST_FIRST(&bmsafemap->sm_newblkwr))) { 12429 newblk->nb_state |= DEPCOMPLETE; 12430 newblk->nb_state &= ~ONDEPLIST; 12431 newblk->nb_bmsafemap = NULL; 12432 LIST_REMOVE(newblk, nb_deps); 12433 if (newblk->nb_list.wk_type == D_ALLOCDIRECT) 12434 handle_allocdirect_partdone( 12435 WK_ALLOCDIRECT(&newblk->nb_list), NULL); 12436 else if (newblk->nb_list.wk_type == D_ALLOCINDIR) 12437 handle_allocindir_partdone( 12438 WK_ALLOCINDIR(&newblk->nb_list)); 12439 else if (newblk->nb_list.wk_type != D_NEWBLK) 12440 panic("handle_written_bmsafemap: Unexpected type: %s", 12441 TYPENAME(newblk->nb_list.wk_type)); 12442 } 12443 while ((inodedep = LIST_FIRST(&bmsafemap->sm_inodedepwr)) != NULL) { 12444 inodedep->id_state |= DEPCOMPLETE; 12445 inodedep->id_state &= ~ONDEPLIST; 12446 LIST_REMOVE(inodedep, id_deps); 12447 inodedep->id_bmsafemap = NULL; 12448 } 12449 LIST_REMOVE(bmsafemap, sm_next); 12450 if (chgs == 0 && LIST_EMPTY(&bmsafemap->sm_jaddrefhd) && 12451 LIST_EMPTY(&bmsafemap->sm_jnewblkhd) && 12452 LIST_EMPTY(&bmsafemap->sm_newblkhd) && 12453 LIST_EMPTY(&bmsafemap->sm_inodedephd) && 12454 LIST_EMPTY(&bmsafemap->sm_freehd)) { 12455 LIST_REMOVE(bmsafemap, sm_hash); 12456 WORKITEM_FREE(bmsafemap, D_BMSAFEMAP); 12457 return (0); 12458 } 12459 LIST_INSERT_HEAD(&ump->softdep_dirtycg, bmsafemap, sm_next); 12460 if (foreground) 12461 bdirty(bp); 12462 return (1); 12463 } 12464 12465 /* 12466 * Try to free a mkdir dependency. 12467 */ 12468 static void 12469 complete_mkdir(mkdir) 12470 struct mkdir *mkdir; 12471 { 12472 struct diradd *dap; 12473 12474 if ((mkdir->md_state & ALLCOMPLETE) != ALLCOMPLETE) 12475 return; 12476 LIST_REMOVE(mkdir, md_mkdirs); 12477 dap = mkdir->md_diradd; 12478 dap->da_state &= ~(mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY)); 12479 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0) { 12480 dap->da_state |= DEPCOMPLETE; 12481 complete_diradd(dap); 12482 } 12483 WORKITEM_FREE(mkdir, D_MKDIR); 12484 } 12485 12486 /* 12487 * Handle the completion of a mkdir dependency. 12488 */ 12489 static void 12490 handle_written_mkdir(mkdir, type) 12491 struct mkdir *mkdir; 12492 int type; 12493 { 12494 12495 if ((mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY)) != type) 12496 panic("handle_written_mkdir: bad type"); 12497 mkdir->md_state |= COMPLETE; 12498 complete_mkdir(mkdir); 12499 } 12500 12501 static int 12502 free_pagedep(pagedep) 12503 struct pagedep *pagedep; 12504 { 12505 int i; 12506 12507 if (pagedep->pd_state & NEWBLOCK) 12508 return (0); 12509 if (!LIST_EMPTY(&pagedep->pd_dirremhd)) 12510 return (0); 12511 for (i = 0; i < DAHASHSZ; i++) 12512 if (!LIST_EMPTY(&pagedep->pd_diraddhd[i])) 12513 return (0); 12514 if (!LIST_EMPTY(&pagedep->pd_pendinghd)) 12515 return (0); 12516 if (!LIST_EMPTY(&pagedep->pd_jmvrefhd)) 12517 return (0); 12518 if (pagedep->pd_state & ONWORKLIST) 12519 WORKLIST_REMOVE(&pagedep->pd_list); 12520 LIST_REMOVE(pagedep, pd_hash); 12521 WORKITEM_FREE(pagedep, D_PAGEDEP); 12522 12523 return (1); 12524 } 12525 12526 /* 12527 * Called from within softdep_disk_write_complete above. 12528 * A write operation was just completed. Removed inodes can 12529 * now be freed and associated block pointers may be committed. 12530 * Note that this routine is always called from interrupt level 12531 * with further interrupts from this device blocked. 12532 * 12533 * If the write did not succeed, we will do all the roll-forward 12534 * operations, but we will not take the actions that will allow its 12535 * dependencies to be processed. 12536 */ 12537 static int 12538 handle_written_filepage(pagedep, bp, flags) 12539 struct pagedep *pagedep; 12540 struct buf *bp; /* buffer containing the written page */ 12541 int flags; 12542 { 12543 struct dirrem *dirrem; 12544 struct diradd *dap, *nextdap; 12545 struct direct *ep; 12546 int i, chgs; 12547 12548 if ((pagedep->pd_state & IOSTARTED) == 0) 12549 panic("handle_written_filepage: not started"); 12550 pagedep->pd_state &= ~IOSTARTED; 12551 if ((flags & WRITESUCCEEDED) == 0) 12552 goto rollforward; 12553 /* 12554 * Process any directory removals that have been committed. 12555 */ 12556 while ((dirrem = LIST_FIRST(&pagedep->pd_dirremhd)) != NULL) { 12557 LIST_REMOVE(dirrem, dm_next); 12558 dirrem->dm_state |= COMPLETE; 12559 dirrem->dm_dirinum = pagedep->pd_ino; 12560 KASSERT(LIST_EMPTY(&dirrem->dm_jremrefhd), 12561 ("handle_written_filepage: Journal entries not written.")); 12562 add_to_worklist(&dirrem->dm_list, 0); 12563 } 12564 /* 12565 * Free any directory additions that have been committed. 12566 * If it is a newly allocated block, we have to wait until 12567 * the on-disk directory inode claims the new block. 12568 */ 12569 if ((pagedep->pd_state & NEWBLOCK) == 0) 12570 while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL) 12571 free_diradd(dap, NULL); 12572 rollforward: 12573 /* 12574 * Uncommitted directory entries must be restored. 12575 */ 12576 for (chgs = 0, i = 0; i < DAHASHSZ; i++) { 12577 for (dap = LIST_FIRST(&pagedep->pd_diraddhd[i]); dap; 12578 dap = nextdap) { 12579 nextdap = LIST_NEXT(dap, da_pdlist); 12580 if (dap->da_state & ATTACHED) 12581 panic("handle_written_filepage: attached"); 12582 ep = (struct direct *) 12583 ((char *)bp->b_data + dap->da_offset); 12584 ep->d_ino = dap->da_newinum; 12585 dap->da_state &= ~UNDONE; 12586 dap->da_state |= ATTACHED; 12587 chgs = 1; 12588 /* 12589 * If the inode referenced by the directory has 12590 * been written out, then the dependency can be 12591 * moved to the pending list. 12592 */ 12593 if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) { 12594 LIST_REMOVE(dap, da_pdlist); 12595 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, 12596 da_pdlist); 12597 } 12598 } 12599 } 12600 /* 12601 * If there were any rollbacks in the directory, then it must be 12602 * marked dirty so that its will eventually get written back in 12603 * its correct form. 12604 */ 12605 if (chgs || (flags & WRITESUCCEEDED) == 0) { 12606 if ((bp->b_flags & B_DELWRI) == 0) 12607 stat_dir_entry++; 12608 bdirty(bp); 12609 return (1); 12610 } 12611 /* 12612 * If we are not waiting for a new directory block to be 12613 * claimed by its inode, then the pagedep will be freed. 12614 * Otherwise it will remain to track any new entries on 12615 * the page in case they are fsync'ed. 12616 */ 12617 free_pagedep(pagedep); 12618 return (0); 12619 } 12620 12621 /* 12622 * Writing back in-core inode structures. 12623 * 12624 * The filesystem only accesses an inode's contents when it occupies an 12625 * "in-core" inode structure. These "in-core" structures are separate from 12626 * the page frames used to cache inode blocks. Only the latter are 12627 * transferred to/from the disk. So, when the updated contents of the 12628 * "in-core" inode structure are copied to the corresponding in-memory inode 12629 * block, the dependencies are also transferred. The following procedure is 12630 * called when copying a dirty "in-core" inode to a cached inode block. 12631 */ 12632 12633 /* 12634 * Called when an inode is loaded from disk. If the effective link count 12635 * differed from the actual link count when it was last flushed, then we 12636 * need to ensure that the correct effective link count is put back. 12637 */ 12638 void 12639 softdep_load_inodeblock(ip) 12640 struct inode *ip; /* the "in_core" copy of the inode */ 12641 { 12642 struct inodedep *inodedep; 12643 struct ufsmount *ump; 12644 12645 ump = ITOUMP(ip); 12646 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 12647 ("softdep_load_inodeblock called on non-softdep filesystem")); 12648 /* 12649 * Check for alternate nlink count. 12650 */ 12651 ip->i_effnlink = ip->i_nlink; 12652 ACQUIRE_LOCK(ump); 12653 if (inodedep_lookup(UFSTOVFS(ump), ip->i_number, 0, &inodedep) == 0) { 12654 FREE_LOCK(ump); 12655 return; 12656 } 12657 if (ip->i_nlink != inodedep->id_nlinkwrote && 12658 inodedep->id_nlinkwrote != -1) { 12659 KASSERT(ip->i_nlink == 0 && 12660 (ump->um_flags & UM_FSFAIL_CLEANUP) != 0, 12661 ("read bad i_nlink value")); 12662 ip->i_effnlink = ip->i_nlink = inodedep->id_nlinkwrote; 12663 } 12664 ip->i_effnlink -= inodedep->id_nlinkdelta; 12665 KASSERT(ip->i_effnlink >= 0, 12666 ("softdep_load_inodeblock: negative i_effnlink")); 12667 FREE_LOCK(ump); 12668 } 12669 12670 /* 12671 * This routine is called just before the "in-core" inode 12672 * information is to be copied to the in-memory inode block. 12673 * Recall that an inode block contains several inodes. If 12674 * the force flag is set, then the dependencies will be 12675 * cleared so that the update can always be made. Note that 12676 * the buffer is locked when this routine is called, so we 12677 * will never be in the middle of writing the inode block 12678 * to disk. 12679 */ 12680 void 12681 softdep_update_inodeblock(ip, bp, waitfor) 12682 struct inode *ip; /* the "in_core" copy of the inode */ 12683 struct buf *bp; /* the buffer containing the inode block */ 12684 int waitfor; /* nonzero => update must be allowed */ 12685 { 12686 struct inodedep *inodedep; 12687 struct inoref *inoref; 12688 struct ufsmount *ump; 12689 struct worklist *wk; 12690 struct mount *mp; 12691 struct buf *ibp; 12692 struct fs *fs; 12693 int error; 12694 12695 ump = ITOUMP(ip); 12696 mp = UFSTOVFS(ump); 12697 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 12698 ("softdep_update_inodeblock called on non-softdep filesystem")); 12699 fs = ump->um_fs; 12700 /* 12701 * Preserve the freelink that is on disk. clear_unlinked_inodedep() 12702 * does not have access to the in-core ip so must write directly into 12703 * the inode block buffer when setting freelink. 12704 */ 12705 if (fs->fs_magic == FS_UFS1_MAGIC) 12706 DIP_SET(ip, i_freelink, ((struct ufs1_dinode *)bp->b_data + 12707 ino_to_fsbo(fs, ip->i_number))->di_freelink); 12708 else 12709 DIP_SET(ip, i_freelink, ((struct ufs2_dinode *)bp->b_data + 12710 ino_to_fsbo(fs, ip->i_number))->di_freelink); 12711 /* 12712 * If the effective link count is not equal to the actual link 12713 * count, then we must track the difference in an inodedep while 12714 * the inode is (potentially) tossed out of the cache. Otherwise, 12715 * if there is no existing inodedep, then there are no dependencies 12716 * to track. 12717 */ 12718 ACQUIRE_LOCK(ump); 12719 again: 12720 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) { 12721 FREE_LOCK(ump); 12722 if (ip->i_effnlink != ip->i_nlink) 12723 panic("softdep_update_inodeblock: bad link count"); 12724 return; 12725 } 12726 KASSERT(ip->i_nlink >= inodedep->id_nlinkdelta, 12727 ("softdep_update_inodeblock inconsistent ip %p i_nlink %d " 12728 "inodedep %p id_nlinkdelta %jd", 12729 ip, ip->i_nlink, inodedep, (intmax_t)inodedep->id_nlinkdelta)); 12730 inodedep->id_nlinkwrote = ip->i_nlink; 12731 if (inodedep->id_nlinkdelta != ip->i_nlink - ip->i_effnlink) 12732 panic("softdep_update_inodeblock: bad delta"); 12733 /* 12734 * If we're flushing all dependencies we must also move any waiting 12735 * for journal writes onto the bufwait list prior to I/O. 12736 */ 12737 if (waitfor) { 12738 TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) { 12739 if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY)) 12740 == DEPCOMPLETE) { 12741 jwait(&inoref->if_list, MNT_WAIT); 12742 goto again; 12743 } 12744 } 12745 } 12746 /* 12747 * Changes have been initiated. Anything depending on these 12748 * changes cannot occur until this inode has been written. 12749 */ 12750 inodedep->id_state &= ~COMPLETE; 12751 if ((inodedep->id_state & ONWORKLIST) == 0) 12752 WORKLIST_INSERT(&bp->b_dep, &inodedep->id_list); 12753 /* 12754 * Any new dependencies associated with the incore inode must 12755 * now be moved to the list associated with the buffer holding 12756 * the in-memory copy of the inode. Once merged process any 12757 * allocdirects that are completed by the merger. 12758 */ 12759 merge_inode_lists(&inodedep->id_newinoupdt, &inodedep->id_inoupdt); 12760 if (!TAILQ_EMPTY(&inodedep->id_inoupdt)) 12761 handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_inoupdt), 12762 NULL); 12763 merge_inode_lists(&inodedep->id_newextupdt, &inodedep->id_extupdt); 12764 if (!TAILQ_EMPTY(&inodedep->id_extupdt)) 12765 handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_extupdt), 12766 NULL); 12767 /* 12768 * Now that the inode has been pushed into the buffer, the 12769 * operations dependent on the inode being written to disk 12770 * can be moved to the id_bufwait so that they will be 12771 * processed when the buffer I/O completes. 12772 */ 12773 while ((wk = LIST_FIRST(&inodedep->id_inowait)) != NULL) { 12774 WORKLIST_REMOVE(wk); 12775 WORKLIST_INSERT(&inodedep->id_bufwait, wk); 12776 } 12777 /* 12778 * Newly allocated inodes cannot be written until the bitmap 12779 * that allocates them have been written (indicated by 12780 * DEPCOMPLETE being set in id_state). If we are doing a 12781 * forced sync (e.g., an fsync on a file), we force the bitmap 12782 * to be written so that the update can be done. 12783 */ 12784 if (waitfor == 0) { 12785 FREE_LOCK(ump); 12786 return; 12787 } 12788 retry: 12789 if ((inodedep->id_state & (DEPCOMPLETE | GOINGAWAY)) != 0) { 12790 FREE_LOCK(ump); 12791 return; 12792 } 12793 ibp = inodedep->id_bmsafemap->sm_buf; 12794 ibp = getdirtybuf(ibp, LOCK_PTR(ump), MNT_WAIT); 12795 if (ibp == NULL) { 12796 /* 12797 * If ibp came back as NULL, the dependency could have been 12798 * freed while we slept. Look it up again, and check to see 12799 * that it has completed. 12800 */ 12801 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0) 12802 goto retry; 12803 FREE_LOCK(ump); 12804 return; 12805 } 12806 FREE_LOCK(ump); 12807 if ((error = bwrite(ibp)) != 0) 12808 softdep_error("softdep_update_inodeblock: bwrite", error); 12809 } 12810 12811 /* 12812 * Merge the a new inode dependency list (such as id_newinoupdt) into an 12813 * old inode dependency list (such as id_inoupdt). 12814 */ 12815 static void 12816 merge_inode_lists(newlisthead, oldlisthead) 12817 struct allocdirectlst *newlisthead; 12818 struct allocdirectlst *oldlisthead; 12819 { 12820 struct allocdirect *listadp, *newadp; 12821 12822 newadp = TAILQ_FIRST(newlisthead); 12823 if (newadp != NULL) 12824 LOCK_OWNED(VFSTOUFS(newadp->ad_block.nb_list.wk_mp)); 12825 for (listadp = TAILQ_FIRST(oldlisthead); listadp && newadp;) { 12826 if (listadp->ad_offset < newadp->ad_offset) { 12827 listadp = TAILQ_NEXT(listadp, ad_next); 12828 continue; 12829 } 12830 TAILQ_REMOVE(newlisthead, newadp, ad_next); 12831 TAILQ_INSERT_BEFORE(listadp, newadp, ad_next); 12832 if (listadp->ad_offset == newadp->ad_offset) { 12833 allocdirect_merge(oldlisthead, newadp, 12834 listadp); 12835 listadp = newadp; 12836 } 12837 newadp = TAILQ_FIRST(newlisthead); 12838 } 12839 while ((newadp = TAILQ_FIRST(newlisthead)) != NULL) { 12840 TAILQ_REMOVE(newlisthead, newadp, ad_next); 12841 TAILQ_INSERT_TAIL(oldlisthead, newadp, ad_next); 12842 } 12843 } 12844 12845 /* 12846 * If we are doing an fsync, then we must ensure that any directory 12847 * entries for the inode have been written after the inode gets to disk. 12848 */ 12849 int 12850 softdep_fsync(vp) 12851 struct vnode *vp; /* the "in_core" copy of the inode */ 12852 { 12853 struct inodedep *inodedep; 12854 struct pagedep *pagedep; 12855 struct inoref *inoref; 12856 struct ufsmount *ump; 12857 struct worklist *wk; 12858 struct diradd *dap; 12859 struct mount *mp; 12860 struct vnode *pvp; 12861 struct inode *ip; 12862 struct buf *bp; 12863 struct fs *fs; 12864 struct thread *td = curthread; 12865 int error, flushparent, pagedep_new_block; 12866 ino_t parentino; 12867 ufs_lbn_t lbn; 12868 12869 ip = VTOI(vp); 12870 mp = vp->v_mount; 12871 ump = VFSTOUFS(mp); 12872 fs = ump->um_fs; 12873 if (MOUNTEDSOFTDEP(mp) == 0) 12874 return (0); 12875 ACQUIRE_LOCK(ump); 12876 restart: 12877 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) { 12878 FREE_LOCK(ump); 12879 return (0); 12880 } 12881 TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) { 12882 if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY)) 12883 == DEPCOMPLETE) { 12884 jwait(&inoref->if_list, MNT_WAIT); 12885 goto restart; 12886 } 12887 } 12888 if (!LIST_EMPTY(&inodedep->id_inowait) || 12889 !TAILQ_EMPTY(&inodedep->id_extupdt) || 12890 !TAILQ_EMPTY(&inodedep->id_newextupdt) || 12891 !TAILQ_EMPTY(&inodedep->id_inoupdt) || 12892 !TAILQ_EMPTY(&inodedep->id_newinoupdt)) 12893 panic("softdep_fsync: pending ops %p", inodedep); 12894 for (error = 0, flushparent = 0; ; ) { 12895 if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) == NULL) 12896 break; 12897 if (wk->wk_type != D_DIRADD) 12898 panic("softdep_fsync: Unexpected type %s", 12899 TYPENAME(wk->wk_type)); 12900 dap = WK_DIRADD(wk); 12901 /* 12902 * Flush our parent if this directory entry has a MKDIR_PARENT 12903 * dependency or is contained in a newly allocated block. 12904 */ 12905 if (dap->da_state & DIRCHG) 12906 pagedep = dap->da_previous->dm_pagedep; 12907 else 12908 pagedep = dap->da_pagedep; 12909 parentino = pagedep->pd_ino; 12910 lbn = pagedep->pd_lbn; 12911 if ((dap->da_state & (MKDIR_BODY | COMPLETE)) != COMPLETE) 12912 panic("softdep_fsync: dirty"); 12913 if ((dap->da_state & MKDIR_PARENT) || 12914 (pagedep->pd_state & NEWBLOCK)) 12915 flushparent = 1; 12916 else 12917 flushparent = 0; 12918 /* 12919 * If we are being fsync'ed as part of vgone'ing this vnode, 12920 * then we will not be able to release and recover the 12921 * vnode below, so we just have to give up on writing its 12922 * directory entry out. It will eventually be written, just 12923 * not now, but then the user was not asking to have it 12924 * written, so we are not breaking any promises. 12925 */ 12926 if (VN_IS_DOOMED(vp)) 12927 break; 12928 /* 12929 * We prevent deadlock by always fetching inodes from the 12930 * root, moving down the directory tree. Thus, when fetching 12931 * our parent directory, we first try to get the lock. If 12932 * that fails, we must unlock ourselves before requesting 12933 * the lock on our parent. See the comment in ufs_lookup 12934 * for details on possible races. 12935 */ 12936 FREE_LOCK(ump); 12937 error = get_parent_vp(vp, mp, parentino, NULL, NULL, NULL, 12938 &pvp); 12939 if (error == ERELOOKUP) 12940 error = 0; 12941 if (error != 0) 12942 return (error); 12943 /* 12944 * All MKDIR_PARENT dependencies and all the NEWBLOCK pagedeps 12945 * that are contained in direct blocks will be resolved by 12946 * doing a ffs_update. Pagedeps contained in indirect blocks 12947 * may require a complete sync'ing of the directory. So, we 12948 * try the cheap and fast ffs_update first, and if that fails, 12949 * then we do the slower ffs_syncvnode of the directory. 12950 */ 12951 if (flushparent) { 12952 int locked; 12953 12954 if ((error = ffs_update(pvp, 1)) != 0) { 12955 vput(pvp); 12956 return (error); 12957 } 12958 ACQUIRE_LOCK(ump); 12959 locked = 1; 12960 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0) { 12961 if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) != NULL) { 12962 if (wk->wk_type != D_DIRADD) 12963 panic("softdep_fsync: Unexpected type %s", 12964 TYPENAME(wk->wk_type)); 12965 dap = WK_DIRADD(wk); 12966 if (dap->da_state & DIRCHG) 12967 pagedep = dap->da_previous->dm_pagedep; 12968 else 12969 pagedep = dap->da_pagedep; 12970 pagedep_new_block = pagedep->pd_state & NEWBLOCK; 12971 FREE_LOCK(ump); 12972 locked = 0; 12973 if (pagedep_new_block && (error = 12974 ffs_syncvnode(pvp, MNT_WAIT, 0))) { 12975 vput(pvp); 12976 return (error); 12977 } 12978 } 12979 } 12980 if (locked) 12981 FREE_LOCK(ump); 12982 } 12983 /* 12984 * Flush directory page containing the inode's name. 12985 */ 12986 error = bread(pvp, lbn, blksize(fs, VTOI(pvp), lbn), td->td_ucred, 12987 &bp); 12988 if (error == 0) 12989 error = bwrite(bp); 12990 else 12991 brelse(bp); 12992 vput(pvp); 12993 if (!ffs_fsfail_cleanup(ump, error)) 12994 return (error); 12995 ACQUIRE_LOCK(ump); 12996 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) 12997 break; 12998 } 12999 FREE_LOCK(ump); 13000 return (0); 13001 } 13002 13003 /* 13004 * Flush all the dirty bitmaps associated with the block device 13005 * before flushing the rest of the dirty blocks so as to reduce 13006 * the number of dependencies that will have to be rolled back. 13007 * 13008 * XXX Unused? 13009 */ 13010 void 13011 softdep_fsync_mountdev(vp) 13012 struct vnode *vp; 13013 { 13014 struct buf *bp, *nbp; 13015 struct worklist *wk; 13016 struct bufobj *bo; 13017 13018 if (!vn_isdisk(vp)) 13019 panic("softdep_fsync_mountdev: vnode not a disk"); 13020 bo = &vp->v_bufobj; 13021 restart: 13022 BO_LOCK(bo); 13023 TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) { 13024 /* 13025 * If it is already scheduled, skip to the next buffer. 13026 */ 13027 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL)) 13028 continue; 13029 13030 if ((bp->b_flags & B_DELWRI) == 0) 13031 panic("softdep_fsync_mountdev: not dirty"); 13032 /* 13033 * We are only interested in bitmaps with outstanding 13034 * dependencies. 13035 */ 13036 if ((wk = LIST_FIRST(&bp->b_dep)) == NULL || 13037 wk->wk_type != D_BMSAFEMAP || 13038 (bp->b_vflags & BV_BKGRDINPROG)) { 13039 BUF_UNLOCK(bp); 13040 continue; 13041 } 13042 BO_UNLOCK(bo); 13043 bremfree(bp); 13044 (void) bawrite(bp); 13045 goto restart; 13046 } 13047 drain_output(vp); 13048 BO_UNLOCK(bo); 13049 } 13050 13051 /* 13052 * Sync all cylinder groups that were dirty at the time this function is 13053 * called. Newly dirtied cgs will be inserted before the sentinel. This 13054 * is used to flush freedep activity that may be holding up writes to a 13055 * indirect block. 13056 */ 13057 static int 13058 sync_cgs(mp, waitfor) 13059 struct mount *mp; 13060 int waitfor; 13061 { 13062 struct bmsafemap *bmsafemap; 13063 struct bmsafemap *sentinel; 13064 struct ufsmount *ump; 13065 struct buf *bp; 13066 int error; 13067 13068 sentinel = malloc(sizeof(*sentinel), M_BMSAFEMAP, M_ZERO | M_WAITOK); 13069 sentinel->sm_cg = -1; 13070 ump = VFSTOUFS(mp); 13071 error = 0; 13072 ACQUIRE_LOCK(ump); 13073 LIST_INSERT_HEAD(&ump->softdep_dirtycg, sentinel, sm_next); 13074 for (bmsafemap = LIST_NEXT(sentinel, sm_next); bmsafemap != NULL; 13075 bmsafemap = LIST_NEXT(sentinel, sm_next)) { 13076 /* Skip sentinels and cgs with no work to release. */ 13077 if (bmsafemap->sm_cg == -1 || 13078 (LIST_EMPTY(&bmsafemap->sm_freehd) && 13079 LIST_EMPTY(&bmsafemap->sm_freewr))) { 13080 LIST_REMOVE(sentinel, sm_next); 13081 LIST_INSERT_AFTER(bmsafemap, sentinel, sm_next); 13082 continue; 13083 } 13084 /* 13085 * If we don't get the lock and we're waiting try again, if 13086 * not move on to the next buf and try to sync it. 13087 */ 13088 bp = getdirtybuf(bmsafemap->sm_buf, LOCK_PTR(ump), waitfor); 13089 if (bp == NULL && waitfor == MNT_WAIT) 13090 continue; 13091 LIST_REMOVE(sentinel, sm_next); 13092 LIST_INSERT_AFTER(bmsafemap, sentinel, sm_next); 13093 if (bp == NULL) 13094 continue; 13095 FREE_LOCK(ump); 13096 if (waitfor == MNT_NOWAIT) 13097 bawrite(bp); 13098 else 13099 error = bwrite(bp); 13100 ACQUIRE_LOCK(ump); 13101 if (error) 13102 break; 13103 } 13104 LIST_REMOVE(sentinel, sm_next); 13105 FREE_LOCK(ump); 13106 free(sentinel, M_BMSAFEMAP); 13107 return (error); 13108 } 13109 13110 /* 13111 * This routine is called when we are trying to synchronously flush a 13112 * file. This routine must eliminate any filesystem metadata dependencies 13113 * so that the syncing routine can succeed. 13114 */ 13115 int 13116 softdep_sync_metadata(struct vnode *vp) 13117 { 13118 struct inode *ip; 13119 int error; 13120 13121 ip = VTOI(vp); 13122 KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0, 13123 ("softdep_sync_metadata called on non-softdep filesystem")); 13124 /* 13125 * Ensure that any direct block dependencies have been cleared, 13126 * truncations are started, and inode references are journaled. 13127 */ 13128 ACQUIRE_LOCK(VFSTOUFS(vp->v_mount)); 13129 /* 13130 * Write all journal records to prevent rollbacks on devvp. 13131 */ 13132 if (vp->v_type == VCHR) 13133 softdep_flushjournal(vp->v_mount); 13134 error = flush_inodedep_deps(vp, vp->v_mount, ip->i_number); 13135 /* 13136 * Ensure that all truncates are written so we won't find deps on 13137 * indirect blocks. 13138 */ 13139 process_truncates(vp); 13140 FREE_LOCK(VFSTOUFS(vp->v_mount)); 13141 13142 return (error); 13143 } 13144 13145 /* 13146 * This routine is called when we are attempting to sync a buf with 13147 * dependencies. If waitfor is MNT_NOWAIT it attempts to schedule any 13148 * other IO it can but returns EBUSY if the buffer is not yet able to 13149 * be written. Dependencies which will not cause rollbacks will always 13150 * return 0. 13151 */ 13152 int 13153 softdep_sync_buf(struct vnode *vp, struct buf *bp, int waitfor) 13154 { 13155 struct indirdep *indirdep; 13156 struct pagedep *pagedep; 13157 struct allocindir *aip; 13158 struct newblk *newblk; 13159 struct ufsmount *ump; 13160 struct buf *nbp; 13161 struct worklist *wk; 13162 int i, error; 13163 13164 KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0, 13165 ("softdep_sync_buf called on non-softdep filesystem")); 13166 /* 13167 * For VCHR we just don't want to force flush any dependencies that 13168 * will cause rollbacks. 13169 */ 13170 if (vp->v_type == VCHR) { 13171 if (waitfor == MNT_NOWAIT && softdep_count_dependencies(bp, 0)) 13172 return (EBUSY); 13173 return (0); 13174 } 13175 ump = VFSTOUFS(vp->v_mount); 13176 ACQUIRE_LOCK(ump); 13177 /* 13178 * As we hold the buffer locked, none of its dependencies 13179 * will disappear. 13180 */ 13181 error = 0; 13182 top: 13183 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 13184 switch (wk->wk_type) { 13185 case D_ALLOCDIRECT: 13186 case D_ALLOCINDIR: 13187 newblk = WK_NEWBLK(wk); 13188 if (newblk->nb_jnewblk != NULL) { 13189 if (waitfor == MNT_NOWAIT) { 13190 error = EBUSY; 13191 goto out_unlock; 13192 } 13193 jwait(&newblk->nb_jnewblk->jn_list, waitfor); 13194 goto top; 13195 } 13196 if (newblk->nb_state & DEPCOMPLETE || 13197 waitfor == MNT_NOWAIT) 13198 continue; 13199 nbp = newblk->nb_bmsafemap->sm_buf; 13200 nbp = getdirtybuf(nbp, LOCK_PTR(ump), waitfor); 13201 if (nbp == NULL) 13202 goto top; 13203 FREE_LOCK(ump); 13204 if ((error = bwrite(nbp)) != 0) 13205 goto out; 13206 ACQUIRE_LOCK(ump); 13207 continue; 13208 13209 case D_INDIRDEP: 13210 indirdep = WK_INDIRDEP(wk); 13211 if (waitfor == MNT_NOWAIT) { 13212 if (!TAILQ_EMPTY(&indirdep->ir_trunc) || 13213 !LIST_EMPTY(&indirdep->ir_deplisthd)) { 13214 error = EBUSY; 13215 goto out_unlock; 13216 } 13217 } 13218 if (!TAILQ_EMPTY(&indirdep->ir_trunc)) 13219 panic("softdep_sync_buf: truncation pending."); 13220 restart: 13221 LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) { 13222 newblk = (struct newblk *)aip; 13223 if (newblk->nb_jnewblk != NULL) { 13224 jwait(&newblk->nb_jnewblk->jn_list, 13225 waitfor); 13226 goto restart; 13227 } 13228 if (newblk->nb_state & DEPCOMPLETE) 13229 continue; 13230 nbp = newblk->nb_bmsafemap->sm_buf; 13231 nbp = getdirtybuf(nbp, LOCK_PTR(ump), waitfor); 13232 if (nbp == NULL) 13233 goto restart; 13234 FREE_LOCK(ump); 13235 if ((error = bwrite(nbp)) != 0) 13236 goto out; 13237 ACQUIRE_LOCK(ump); 13238 goto restart; 13239 } 13240 continue; 13241 13242 case D_PAGEDEP: 13243 /* 13244 * Only flush directory entries in synchronous passes. 13245 */ 13246 if (waitfor != MNT_WAIT) { 13247 error = EBUSY; 13248 goto out_unlock; 13249 } 13250 /* 13251 * While syncing snapshots, we must allow recursive 13252 * lookups. 13253 */ 13254 BUF_AREC(bp); 13255 /* 13256 * We are trying to sync a directory that may 13257 * have dependencies on both its own metadata 13258 * and/or dependencies on the inodes of any 13259 * recently allocated files. We walk its diradd 13260 * lists pushing out the associated inode. 13261 */ 13262 pagedep = WK_PAGEDEP(wk); 13263 for (i = 0; i < DAHASHSZ; i++) { 13264 if (LIST_FIRST(&pagedep->pd_diraddhd[i]) == 0) 13265 continue; 13266 error = flush_pagedep_deps(vp, wk->wk_mp, 13267 &pagedep->pd_diraddhd[i], bp); 13268 if (error != 0) { 13269 if (error != ERELOOKUP) 13270 BUF_NOREC(bp); 13271 goto out_unlock; 13272 } 13273 } 13274 BUF_NOREC(bp); 13275 continue; 13276 13277 case D_FREEWORK: 13278 case D_FREEDEP: 13279 case D_JSEGDEP: 13280 case D_JNEWBLK: 13281 continue; 13282 13283 default: 13284 panic("softdep_sync_buf: Unknown type %s", 13285 TYPENAME(wk->wk_type)); 13286 /* NOTREACHED */ 13287 } 13288 } 13289 out_unlock: 13290 FREE_LOCK(ump); 13291 out: 13292 return (error); 13293 } 13294 13295 /* 13296 * Flush the dependencies associated with an inodedep. 13297 */ 13298 static int 13299 flush_inodedep_deps(vp, mp, ino) 13300 struct vnode *vp; 13301 struct mount *mp; 13302 ino_t ino; 13303 { 13304 struct inodedep *inodedep; 13305 struct inoref *inoref; 13306 struct ufsmount *ump; 13307 int error, waitfor; 13308 13309 /* 13310 * This work is done in two passes. The first pass grabs most 13311 * of the buffers and begins asynchronously writing them. The 13312 * only way to wait for these asynchronous writes is to sleep 13313 * on the filesystem vnode which may stay busy for a long time 13314 * if the filesystem is active. So, instead, we make a second 13315 * pass over the dependencies blocking on each write. In the 13316 * usual case we will be blocking against a write that we 13317 * initiated, so when it is done the dependency will have been 13318 * resolved. Thus the second pass is expected to end quickly. 13319 * We give a brief window at the top of the loop to allow 13320 * any pending I/O to complete. 13321 */ 13322 ump = VFSTOUFS(mp); 13323 LOCK_OWNED(ump); 13324 for (error = 0, waitfor = MNT_NOWAIT; ; ) { 13325 if (error) 13326 return (error); 13327 FREE_LOCK(ump); 13328 ACQUIRE_LOCK(ump); 13329 restart: 13330 if (inodedep_lookup(mp, ino, 0, &inodedep) == 0) 13331 return (0); 13332 TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) { 13333 if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY)) 13334 == DEPCOMPLETE) { 13335 jwait(&inoref->if_list, MNT_WAIT); 13336 goto restart; 13337 } 13338 } 13339 if (flush_deplist(&inodedep->id_inoupdt, waitfor, &error) || 13340 flush_deplist(&inodedep->id_newinoupdt, waitfor, &error) || 13341 flush_deplist(&inodedep->id_extupdt, waitfor, &error) || 13342 flush_deplist(&inodedep->id_newextupdt, waitfor, &error)) 13343 continue; 13344 /* 13345 * If pass2, we are done, otherwise do pass 2. 13346 */ 13347 if (waitfor == MNT_WAIT) 13348 break; 13349 waitfor = MNT_WAIT; 13350 } 13351 /* 13352 * Try freeing inodedep in case all dependencies have been removed. 13353 */ 13354 if (inodedep_lookup(mp, ino, 0, &inodedep) != 0) 13355 (void) free_inodedep(inodedep); 13356 return (0); 13357 } 13358 13359 /* 13360 * Flush an inode dependency list. 13361 */ 13362 static int 13363 flush_deplist(listhead, waitfor, errorp) 13364 struct allocdirectlst *listhead; 13365 int waitfor; 13366 int *errorp; 13367 { 13368 struct allocdirect *adp; 13369 struct newblk *newblk; 13370 struct ufsmount *ump; 13371 struct buf *bp; 13372 13373 if ((adp = TAILQ_FIRST(listhead)) == NULL) 13374 return (0); 13375 ump = VFSTOUFS(adp->ad_list.wk_mp); 13376 LOCK_OWNED(ump); 13377 TAILQ_FOREACH(adp, listhead, ad_next) { 13378 newblk = (struct newblk *)adp; 13379 if (newblk->nb_jnewblk != NULL) { 13380 jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT); 13381 return (1); 13382 } 13383 if (newblk->nb_state & DEPCOMPLETE) 13384 continue; 13385 bp = newblk->nb_bmsafemap->sm_buf; 13386 bp = getdirtybuf(bp, LOCK_PTR(ump), waitfor); 13387 if (bp == NULL) { 13388 if (waitfor == MNT_NOWAIT) 13389 continue; 13390 return (1); 13391 } 13392 FREE_LOCK(ump); 13393 if (waitfor == MNT_NOWAIT) 13394 bawrite(bp); 13395 else 13396 *errorp = bwrite(bp); 13397 ACQUIRE_LOCK(ump); 13398 return (1); 13399 } 13400 return (0); 13401 } 13402 13403 /* 13404 * Flush dependencies associated with an allocdirect block. 13405 */ 13406 static int 13407 flush_newblk_dep(vp, mp, lbn) 13408 struct vnode *vp; 13409 struct mount *mp; 13410 ufs_lbn_t lbn; 13411 { 13412 struct newblk *newblk; 13413 struct ufsmount *ump; 13414 struct bufobj *bo; 13415 struct inode *ip; 13416 struct buf *bp; 13417 ufs2_daddr_t blkno; 13418 int error; 13419 13420 error = 0; 13421 bo = &vp->v_bufobj; 13422 ip = VTOI(vp); 13423 blkno = DIP(ip, i_db[lbn]); 13424 if (blkno == 0) 13425 panic("flush_newblk_dep: Missing block"); 13426 ump = VFSTOUFS(mp); 13427 ACQUIRE_LOCK(ump); 13428 /* 13429 * Loop until all dependencies related to this block are satisfied. 13430 * We must be careful to restart after each sleep in case a write 13431 * completes some part of this process for us. 13432 */ 13433 for (;;) { 13434 if (newblk_lookup(mp, blkno, 0, &newblk) == 0) { 13435 FREE_LOCK(ump); 13436 break; 13437 } 13438 if (newblk->nb_list.wk_type != D_ALLOCDIRECT) 13439 panic("flush_newblk_dep: Bad newblk %p", newblk); 13440 /* 13441 * Flush the journal. 13442 */ 13443 if (newblk->nb_jnewblk != NULL) { 13444 jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT); 13445 continue; 13446 } 13447 /* 13448 * Write the bitmap dependency. 13449 */ 13450 if ((newblk->nb_state & DEPCOMPLETE) == 0) { 13451 bp = newblk->nb_bmsafemap->sm_buf; 13452 bp = getdirtybuf(bp, LOCK_PTR(ump), MNT_WAIT); 13453 if (bp == NULL) 13454 continue; 13455 FREE_LOCK(ump); 13456 error = bwrite(bp); 13457 if (error) 13458 break; 13459 ACQUIRE_LOCK(ump); 13460 continue; 13461 } 13462 /* 13463 * Write the buffer. 13464 */ 13465 FREE_LOCK(ump); 13466 BO_LOCK(bo); 13467 bp = gbincore(bo, lbn); 13468 if (bp != NULL) { 13469 error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL | 13470 LK_INTERLOCK, BO_LOCKPTR(bo)); 13471 if (error == ENOLCK) { 13472 ACQUIRE_LOCK(ump); 13473 error = 0; 13474 continue; /* Slept, retry */ 13475 } 13476 if (error != 0) 13477 break; /* Failed */ 13478 if (bp->b_flags & B_DELWRI) { 13479 bremfree(bp); 13480 error = bwrite(bp); 13481 if (error) 13482 break; 13483 } else 13484 BUF_UNLOCK(bp); 13485 } else 13486 BO_UNLOCK(bo); 13487 /* 13488 * We have to wait for the direct pointers to 13489 * point at the newdirblk before the dependency 13490 * will go away. 13491 */ 13492 error = ffs_update(vp, 1); 13493 if (error) 13494 break; 13495 ACQUIRE_LOCK(ump); 13496 } 13497 return (error); 13498 } 13499 13500 /* 13501 * Eliminate a pagedep dependency by flushing out all its diradd dependencies. 13502 */ 13503 static int 13504 flush_pagedep_deps(pvp, mp, diraddhdp, locked_bp) 13505 struct vnode *pvp; 13506 struct mount *mp; 13507 struct diraddhd *diraddhdp; 13508 struct buf *locked_bp; 13509 { 13510 struct inodedep *inodedep; 13511 struct inoref *inoref; 13512 struct ufsmount *ump; 13513 struct diradd *dap; 13514 struct vnode *vp; 13515 int error = 0; 13516 struct buf *bp; 13517 ino_t inum; 13518 struct diraddhd unfinished; 13519 13520 LIST_INIT(&unfinished); 13521 ump = VFSTOUFS(mp); 13522 LOCK_OWNED(ump); 13523 restart: 13524 while ((dap = LIST_FIRST(diraddhdp)) != NULL) { 13525 /* 13526 * Flush ourselves if this directory entry 13527 * has a MKDIR_PARENT dependency. 13528 */ 13529 if (dap->da_state & MKDIR_PARENT) { 13530 FREE_LOCK(ump); 13531 if ((error = ffs_update(pvp, 1)) != 0) 13532 break; 13533 ACQUIRE_LOCK(ump); 13534 /* 13535 * If that cleared dependencies, go on to next. 13536 */ 13537 if (dap != LIST_FIRST(diraddhdp)) 13538 continue; 13539 /* 13540 * All MKDIR_PARENT dependencies and all the 13541 * NEWBLOCK pagedeps that are contained in direct 13542 * blocks were resolved by doing above ffs_update. 13543 * Pagedeps contained in indirect blocks may 13544 * require a complete sync'ing of the directory. 13545 * We are in the midst of doing a complete sync, 13546 * so if they are not resolved in this pass we 13547 * defer them for now as they will be sync'ed by 13548 * our caller shortly. 13549 */ 13550 LIST_REMOVE(dap, da_pdlist); 13551 LIST_INSERT_HEAD(&unfinished, dap, da_pdlist); 13552 continue; 13553 } 13554 /* 13555 * A newly allocated directory must have its "." and 13556 * ".." entries written out before its name can be 13557 * committed in its parent. 13558 */ 13559 inum = dap->da_newinum; 13560 if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0) 13561 panic("flush_pagedep_deps: lost inode1"); 13562 /* 13563 * Wait for any pending journal adds to complete so we don't 13564 * cause rollbacks while syncing. 13565 */ 13566 TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) { 13567 if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY)) 13568 == DEPCOMPLETE) { 13569 jwait(&inoref->if_list, MNT_WAIT); 13570 goto restart; 13571 } 13572 } 13573 if (dap->da_state & MKDIR_BODY) { 13574 FREE_LOCK(ump); 13575 error = get_parent_vp(pvp, mp, inum, locked_bp, 13576 diraddhdp, &unfinished, &vp); 13577 if (error != 0) 13578 break; 13579 error = flush_newblk_dep(vp, mp, 0); 13580 /* 13581 * If we still have the dependency we might need to 13582 * update the vnode to sync the new link count to 13583 * disk. 13584 */ 13585 if (error == 0 && dap == LIST_FIRST(diraddhdp)) 13586 error = ffs_update(vp, 1); 13587 vput(vp); 13588 if (error != 0) 13589 break; 13590 ACQUIRE_LOCK(ump); 13591 /* 13592 * If that cleared dependencies, go on to next. 13593 */ 13594 if (dap != LIST_FIRST(diraddhdp)) 13595 continue; 13596 if (dap->da_state & MKDIR_BODY) { 13597 inodedep_lookup(UFSTOVFS(ump), inum, 0, 13598 &inodedep); 13599 panic("flush_pagedep_deps: MKDIR_BODY " 13600 "inodedep %p dap %p vp %p", 13601 inodedep, dap, vp); 13602 } 13603 } 13604 /* 13605 * Flush the inode on which the directory entry depends. 13606 * Having accounted for MKDIR_PARENT and MKDIR_BODY above, 13607 * the only remaining dependency is that the updated inode 13608 * count must get pushed to disk. The inode has already 13609 * been pushed into its inode buffer (via VOP_UPDATE) at 13610 * the time of the reference count change. So we need only 13611 * locate that buffer, ensure that there will be no rollback 13612 * caused by a bitmap dependency, then write the inode buffer. 13613 */ 13614 retry: 13615 if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0) 13616 panic("flush_pagedep_deps: lost inode"); 13617 /* 13618 * If the inode still has bitmap dependencies, 13619 * push them to disk. 13620 */ 13621 if ((inodedep->id_state & (DEPCOMPLETE | GOINGAWAY)) == 0) { 13622 bp = inodedep->id_bmsafemap->sm_buf; 13623 bp = getdirtybuf(bp, LOCK_PTR(ump), MNT_WAIT); 13624 if (bp == NULL) 13625 goto retry; 13626 FREE_LOCK(ump); 13627 if ((error = bwrite(bp)) != 0) 13628 break; 13629 ACQUIRE_LOCK(ump); 13630 if (dap != LIST_FIRST(diraddhdp)) 13631 continue; 13632 } 13633 /* 13634 * If the inode is still sitting in a buffer waiting 13635 * to be written or waiting for the link count to be 13636 * adjusted update it here to flush it to disk. 13637 */ 13638 if (dap == LIST_FIRST(diraddhdp)) { 13639 FREE_LOCK(ump); 13640 error = get_parent_vp(pvp, mp, inum, locked_bp, 13641 diraddhdp, &unfinished, &vp); 13642 if (error != 0) 13643 break; 13644 error = ffs_update(vp, 1); 13645 vput(vp); 13646 if (error) 13647 break; 13648 ACQUIRE_LOCK(ump); 13649 } 13650 /* 13651 * If we have failed to get rid of all the dependencies 13652 * then something is seriously wrong. 13653 */ 13654 if (dap == LIST_FIRST(diraddhdp)) { 13655 inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep); 13656 panic("flush_pagedep_deps: failed to flush " 13657 "inodedep %p ino %ju dap %p", 13658 inodedep, (uintmax_t)inum, dap); 13659 } 13660 } 13661 if (error) 13662 ACQUIRE_LOCK(ump); 13663 while ((dap = LIST_FIRST(&unfinished)) != NULL) { 13664 LIST_REMOVE(dap, da_pdlist); 13665 LIST_INSERT_HEAD(diraddhdp, dap, da_pdlist); 13666 } 13667 return (error); 13668 } 13669 13670 /* 13671 * A large burst of file addition or deletion activity can drive the 13672 * memory load excessively high. First attempt to slow things down 13673 * using the techniques below. If that fails, this routine requests 13674 * the offending operations to fall back to running synchronously 13675 * until the memory load returns to a reasonable level. 13676 */ 13677 int 13678 softdep_slowdown(vp) 13679 struct vnode *vp; 13680 { 13681 struct ufsmount *ump; 13682 int jlow; 13683 int max_softdeps_hard; 13684 13685 KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0, 13686 ("softdep_slowdown called on non-softdep filesystem")); 13687 ump = VFSTOUFS(vp->v_mount); 13688 ACQUIRE_LOCK(ump); 13689 jlow = 0; 13690 /* 13691 * Check for journal space if needed. 13692 */ 13693 if (DOINGSUJ(vp)) { 13694 if (journal_space(ump, 0) == 0) 13695 jlow = 1; 13696 } 13697 /* 13698 * If the system is under its limits and our filesystem is 13699 * not responsible for more than our share of the usage and 13700 * we are not low on journal space, then no need to slow down. 13701 */ 13702 max_softdeps_hard = max_softdeps * 11 / 10; 13703 if (dep_current[D_DIRREM] < max_softdeps_hard / 2 && 13704 dep_current[D_INODEDEP] < max_softdeps_hard && 13705 dep_current[D_INDIRDEP] < max_softdeps_hard / 1000 && 13706 dep_current[D_FREEBLKS] < max_softdeps_hard && jlow == 0 && 13707 ump->softdep_curdeps[D_DIRREM] < 13708 (max_softdeps_hard / 2) / stat_flush_threads && 13709 ump->softdep_curdeps[D_INODEDEP] < 13710 max_softdeps_hard / stat_flush_threads && 13711 ump->softdep_curdeps[D_INDIRDEP] < 13712 (max_softdeps_hard / 1000) / stat_flush_threads && 13713 ump->softdep_curdeps[D_FREEBLKS] < 13714 max_softdeps_hard / stat_flush_threads) { 13715 FREE_LOCK(ump); 13716 return (0); 13717 } 13718 /* 13719 * If the journal is low or our filesystem is over its limit 13720 * then speedup the cleanup. 13721 */ 13722 if (ump->softdep_curdeps[D_INDIRDEP] < 13723 (max_softdeps_hard / 1000) / stat_flush_threads || jlow) 13724 softdep_speedup(ump); 13725 stat_sync_limit_hit += 1; 13726 FREE_LOCK(ump); 13727 /* 13728 * We only slow down the rate at which new dependencies are 13729 * generated if we are not using journaling. With journaling, 13730 * the cleanup should always be sufficient to keep things 13731 * under control. 13732 */ 13733 if (DOINGSUJ(vp)) 13734 return (0); 13735 return (1); 13736 } 13737 13738 /* 13739 * Called by the allocation routines when they are about to fail 13740 * in the hope that we can free up the requested resource (inodes 13741 * or disk space). 13742 * 13743 * First check to see if the work list has anything on it. If it has, 13744 * clean up entries until we successfully free the requested resource. 13745 * Because this process holds inodes locked, we cannot handle any remove 13746 * requests that might block on a locked inode as that could lead to 13747 * deadlock. If the worklist yields none of the requested resource, 13748 * start syncing out vnodes to free up the needed space. 13749 */ 13750 int 13751 softdep_request_cleanup(fs, vp, cred, resource) 13752 struct fs *fs; 13753 struct vnode *vp; 13754 struct ucred *cred; 13755 int resource; 13756 { 13757 struct ufsmount *ump; 13758 struct mount *mp; 13759 long starttime; 13760 ufs2_daddr_t needed; 13761 int error, failed_vnode; 13762 13763 /* 13764 * If we are being called because of a process doing a 13765 * copy-on-write, then it is not safe to process any 13766 * worklist items as we will recurse into the copyonwrite 13767 * routine. This will result in an incoherent snapshot. 13768 * If the vnode that we hold is a snapshot, we must avoid 13769 * handling other resources that could cause deadlock. 13770 */ 13771 if ((curthread->td_pflags & TDP_COWINPROGRESS) || IS_SNAPSHOT(VTOI(vp))) 13772 return (0); 13773 13774 if (resource == FLUSH_BLOCKS_WAIT) 13775 stat_cleanup_blkrequests += 1; 13776 else 13777 stat_cleanup_inorequests += 1; 13778 13779 mp = vp->v_mount; 13780 ump = VFSTOUFS(mp); 13781 mtx_assert(UFS_MTX(ump), MA_OWNED); 13782 UFS_UNLOCK(ump); 13783 error = ffs_update(vp, 1); 13784 if (error != 0 || MOUNTEDSOFTDEP(mp) == 0) { 13785 UFS_LOCK(ump); 13786 return (0); 13787 } 13788 /* 13789 * If we are in need of resources, start by cleaning up 13790 * any block removals associated with our inode. 13791 */ 13792 ACQUIRE_LOCK(ump); 13793 process_removes(vp); 13794 process_truncates(vp); 13795 FREE_LOCK(ump); 13796 /* 13797 * Now clean up at least as many resources as we will need. 13798 * 13799 * When requested to clean up inodes, the number that are needed 13800 * is set by the number of simultaneous writers (mnt_writeopcount) 13801 * plus a bit of slop (2) in case some more writers show up while 13802 * we are cleaning. 13803 * 13804 * When requested to free up space, the amount of space that 13805 * we need is enough blocks to allocate a full-sized segment 13806 * (fs_contigsumsize). The number of such segments that will 13807 * be needed is set by the number of simultaneous writers 13808 * (mnt_writeopcount) plus a bit of slop (2) in case some more 13809 * writers show up while we are cleaning. 13810 * 13811 * Additionally, if we are unpriviledged and allocating space, 13812 * we need to ensure that we clean up enough blocks to get the 13813 * needed number of blocks over the threshold of the minimum 13814 * number of blocks required to be kept free by the filesystem 13815 * (fs_minfree). 13816 */ 13817 if (resource == FLUSH_INODES_WAIT) { 13818 needed = vfs_mount_fetch_counter(vp->v_mount, 13819 MNT_COUNT_WRITEOPCOUNT) + 2; 13820 } else if (resource == FLUSH_BLOCKS_WAIT) { 13821 needed = (vfs_mount_fetch_counter(vp->v_mount, 13822 MNT_COUNT_WRITEOPCOUNT) + 2) * fs->fs_contigsumsize; 13823 if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE)) 13824 needed += fragstoblks(fs, 13825 roundup((fs->fs_dsize * fs->fs_minfree / 100) - 13826 fs->fs_cstotal.cs_nffree, fs->fs_frag)); 13827 } else { 13828 printf("softdep_request_cleanup: Unknown resource type %d\n", 13829 resource); 13830 UFS_LOCK(ump); 13831 return (0); 13832 } 13833 starttime = time_second; 13834 retry: 13835 if (resource == FLUSH_BLOCKS_WAIT && 13836 fs->fs_cstotal.cs_nbfree <= needed) 13837 softdep_send_speedup(ump, needed * fs->fs_bsize, 13838 BIO_SPEEDUP_TRIM); 13839 if ((resource == FLUSH_BLOCKS_WAIT && ump->softdep_on_worklist > 0 && 13840 fs->fs_cstotal.cs_nbfree <= needed) || 13841 (resource == FLUSH_INODES_WAIT && fs->fs_pendinginodes > 0 && 13842 fs->fs_cstotal.cs_nifree <= needed)) { 13843 ACQUIRE_LOCK(ump); 13844 if (ump->softdep_on_worklist > 0 && 13845 process_worklist_item(UFSTOVFS(ump), 13846 ump->softdep_on_worklist, LK_NOWAIT) != 0) 13847 stat_worklist_push += 1; 13848 FREE_LOCK(ump); 13849 } 13850 /* 13851 * If we still need resources and there are no more worklist 13852 * entries to process to obtain them, we have to start flushing 13853 * the dirty vnodes to force the release of additional requests 13854 * to the worklist that we can then process to reap addition 13855 * resources. We walk the vnodes associated with the mount point 13856 * until we get the needed worklist requests that we can reap. 13857 * 13858 * If there are several threads all needing to clean the same 13859 * mount point, only one is allowed to walk the mount list. 13860 * When several threads all try to walk the same mount list, 13861 * they end up competing with each other and often end up in 13862 * livelock. This approach ensures that forward progress is 13863 * made at the cost of occational ENOSPC errors being returned 13864 * that might otherwise have been avoided. 13865 */ 13866 error = 1; 13867 if ((resource == FLUSH_BLOCKS_WAIT && 13868 fs->fs_cstotal.cs_nbfree <= needed) || 13869 (resource == FLUSH_INODES_WAIT && fs->fs_pendinginodes > 0 && 13870 fs->fs_cstotal.cs_nifree <= needed)) { 13871 ACQUIRE_LOCK(ump); 13872 if ((ump->um_softdep->sd_flags & FLUSH_RC_ACTIVE) == 0) { 13873 ump->um_softdep->sd_flags |= FLUSH_RC_ACTIVE; 13874 FREE_LOCK(ump); 13875 failed_vnode = softdep_request_cleanup_flush(mp, ump); 13876 ACQUIRE_LOCK(ump); 13877 ump->um_softdep->sd_flags &= ~FLUSH_RC_ACTIVE; 13878 FREE_LOCK(ump); 13879 if (ump->softdep_on_worklist > 0) { 13880 stat_cleanup_retries += 1; 13881 if (!failed_vnode) 13882 goto retry; 13883 } 13884 } else { 13885 FREE_LOCK(ump); 13886 error = 0; 13887 } 13888 stat_cleanup_failures += 1; 13889 } 13890 if (time_second - starttime > stat_cleanup_high_delay) 13891 stat_cleanup_high_delay = time_second - starttime; 13892 UFS_LOCK(ump); 13893 return (error); 13894 } 13895 13896 /* 13897 * Scan the vnodes for the specified mount point flushing out any 13898 * vnodes that can be locked without waiting. Finally, try to flush 13899 * the device associated with the mount point if it can be locked 13900 * without waiting. 13901 * 13902 * We return 0 if we were able to lock every vnode in our scan. 13903 * If we had to skip one or more vnodes, we return 1. 13904 */ 13905 static int 13906 softdep_request_cleanup_flush(mp, ump) 13907 struct mount *mp; 13908 struct ufsmount *ump; 13909 { 13910 struct thread *td; 13911 struct vnode *lvp, *mvp; 13912 int failed_vnode; 13913 13914 failed_vnode = 0; 13915 td = curthread; 13916 MNT_VNODE_FOREACH_ALL(lvp, mp, mvp) { 13917 if (TAILQ_FIRST(&lvp->v_bufobj.bo_dirty.bv_hd) == 0) { 13918 VI_UNLOCK(lvp); 13919 continue; 13920 } 13921 if (vget(lvp, LK_EXCLUSIVE | LK_INTERLOCK | LK_NOWAIT) != 0) { 13922 failed_vnode = 1; 13923 continue; 13924 } 13925 if (lvp->v_vflag & VV_NOSYNC) { /* unlinked */ 13926 vput(lvp); 13927 continue; 13928 } 13929 (void) ffs_syncvnode(lvp, MNT_NOWAIT, 0); 13930 vput(lvp); 13931 } 13932 lvp = ump->um_devvp; 13933 if (vn_lock(lvp, LK_EXCLUSIVE | LK_NOWAIT) == 0) { 13934 VOP_FSYNC(lvp, MNT_NOWAIT, td); 13935 VOP_UNLOCK(lvp); 13936 } 13937 return (failed_vnode); 13938 } 13939 13940 static bool 13941 softdep_excess_items(struct ufsmount *ump, int item) 13942 { 13943 13944 KASSERT(item >= 0 && item < D_LAST, ("item %d", item)); 13945 return (dep_current[item] > max_softdeps && 13946 ump->softdep_curdeps[item] > max_softdeps / 13947 stat_flush_threads); 13948 } 13949 13950 static void 13951 schedule_cleanup(struct mount *mp) 13952 { 13953 struct ufsmount *ump; 13954 struct thread *td; 13955 13956 ump = VFSTOUFS(mp); 13957 LOCK_OWNED(ump); 13958 FREE_LOCK(ump); 13959 td = curthread; 13960 if ((td->td_pflags & TDP_KTHREAD) != 0 && 13961 (td->td_proc->p_flag2 & P2_AST_SU) == 0) { 13962 /* 13963 * No ast is delivered to kernel threads, so nobody 13964 * would deref the mp. Some kernel threads 13965 * explicitely check for AST, e.g. NFS daemon does 13966 * this in the serving loop. 13967 */ 13968 return; 13969 } 13970 if (td->td_su != NULL) 13971 vfs_rel(td->td_su); 13972 vfs_ref(mp); 13973 td->td_su = mp; 13974 thread_lock(td); 13975 td->td_flags |= TDF_ASTPENDING; 13976 thread_unlock(td); 13977 } 13978 13979 static void 13980 softdep_ast_cleanup_proc(struct thread *td) 13981 { 13982 struct mount *mp; 13983 struct ufsmount *ump; 13984 int error; 13985 bool req; 13986 13987 while ((mp = td->td_su) != NULL) { 13988 td->td_su = NULL; 13989 error = vfs_busy(mp, MBF_NOWAIT); 13990 vfs_rel(mp); 13991 if (error != 0) 13992 return; 13993 if (ffs_own_mount(mp) && MOUNTEDSOFTDEP(mp)) { 13994 ump = VFSTOUFS(mp); 13995 for (;;) { 13996 req = false; 13997 ACQUIRE_LOCK(ump); 13998 if (softdep_excess_items(ump, D_INODEDEP)) { 13999 req = true; 14000 request_cleanup(mp, FLUSH_INODES); 14001 } 14002 if (softdep_excess_items(ump, D_DIRREM)) { 14003 req = true; 14004 request_cleanup(mp, FLUSH_BLOCKS); 14005 } 14006 FREE_LOCK(ump); 14007 if (softdep_excess_items(ump, D_NEWBLK) || 14008 softdep_excess_items(ump, D_ALLOCDIRECT) || 14009 softdep_excess_items(ump, D_ALLOCINDIR)) { 14010 error = vn_start_write(NULL, &mp, 14011 V_WAIT); 14012 if (error == 0) { 14013 req = true; 14014 VFS_SYNC(mp, MNT_WAIT); 14015 vn_finished_write(mp); 14016 } 14017 } 14018 if ((td->td_pflags & TDP_KTHREAD) != 0 || !req) 14019 break; 14020 } 14021 } 14022 vfs_unbusy(mp); 14023 } 14024 if ((mp = td->td_su) != NULL) { 14025 td->td_su = NULL; 14026 vfs_rel(mp); 14027 } 14028 } 14029 14030 /* 14031 * If memory utilization has gotten too high, deliberately slow things 14032 * down and speed up the I/O processing. 14033 */ 14034 static int 14035 request_cleanup(mp, resource) 14036 struct mount *mp; 14037 int resource; 14038 { 14039 struct thread *td = curthread; 14040 struct ufsmount *ump; 14041 14042 ump = VFSTOUFS(mp); 14043 LOCK_OWNED(ump); 14044 /* 14045 * We never hold up the filesystem syncer or buf daemon. 14046 */ 14047 if (td->td_pflags & (TDP_SOFTDEP|TDP_NORUNNINGBUF)) 14048 return (0); 14049 /* 14050 * First check to see if the work list has gotten backlogged. 14051 * If it has, co-opt this process to help clean up two entries. 14052 * Because this process may hold inodes locked, we cannot 14053 * handle any remove requests that might block on a locked 14054 * inode as that could lead to deadlock. We set TDP_SOFTDEP 14055 * to avoid recursively processing the worklist. 14056 */ 14057 if (ump->softdep_on_worklist > max_softdeps / 10) { 14058 td->td_pflags |= TDP_SOFTDEP; 14059 process_worklist_item(mp, 2, LK_NOWAIT); 14060 td->td_pflags &= ~TDP_SOFTDEP; 14061 stat_worklist_push += 2; 14062 return(1); 14063 } 14064 /* 14065 * Next, we attempt to speed up the syncer process. If that 14066 * is successful, then we allow the process to continue. 14067 */ 14068 if (softdep_speedup(ump) && 14069 resource != FLUSH_BLOCKS_WAIT && 14070 resource != FLUSH_INODES_WAIT) 14071 return(0); 14072 /* 14073 * If we are resource constrained on inode dependencies, try 14074 * flushing some dirty inodes. Otherwise, we are constrained 14075 * by file deletions, so try accelerating flushes of directories 14076 * with removal dependencies. We would like to do the cleanup 14077 * here, but we probably hold an inode locked at this point and 14078 * that might deadlock against one that we try to clean. So, 14079 * the best that we can do is request the syncer daemon to do 14080 * the cleanup for us. 14081 */ 14082 switch (resource) { 14083 case FLUSH_INODES: 14084 case FLUSH_INODES_WAIT: 14085 ACQUIRE_GBLLOCK(&lk); 14086 stat_ino_limit_push += 1; 14087 req_clear_inodedeps += 1; 14088 FREE_GBLLOCK(&lk); 14089 stat_countp = &stat_ino_limit_hit; 14090 break; 14091 14092 case FLUSH_BLOCKS: 14093 case FLUSH_BLOCKS_WAIT: 14094 ACQUIRE_GBLLOCK(&lk); 14095 stat_blk_limit_push += 1; 14096 req_clear_remove += 1; 14097 FREE_GBLLOCK(&lk); 14098 stat_countp = &stat_blk_limit_hit; 14099 break; 14100 14101 default: 14102 panic("request_cleanup: unknown type"); 14103 } 14104 /* 14105 * Hopefully the syncer daemon will catch up and awaken us. 14106 * We wait at most tickdelay before proceeding in any case. 14107 */ 14108 ACQUIRE_GBLLOCK(&lk); 14109 FREE_LOCK(ump); 14110 proc_waiting += 1; 14111 if (callout_pending(&softdep_callout) == FALSE) 14112 callout_reset(&softdep_callout, tickdelay > 2 ? tickdelay : 2, 14113 pause_timer, 0); 14114 14115 if ((td->td_pflags & TDP_KTHREAD) == 0) 14116 msleep((caddr_t)&proc_waiting, &lk, PPAUSE, "softupdate", 0); 14117 proc_waiting -= 1; 14118 FREE_GBLLOCK(&lk); 14119 ACQUIRE_LOCK(ump); 14120 return (1); 14121 } 14122 14123 /* 14124 * Awaken processes pausing in request_cleanup and clear proc_waiting 14125 * to indicate that there is no longer a timer running. Pause_timer 14126 * will be called with the global softdep mutex (&lk) locked. 14127 */ 14128 static void 14129 pause_timer(arg) 14130 void *arg; 14131 { 14132 14133 GBLLOCK_OWNED(&lk); 14134 /* 14135 * The callout_ API has acquired mtx and will hold it around this 14136 * function call. 14137 */ 14138 *stat_countp += proc_waiting; 14139 wakeup(&proc_waiting); 14140 } 14141 14142 /* 14143 * If requested, try removing inode or removal dependencies. 14144 */ 14145 static void 14146 check_clear_deps(mp) 14147 struct mount *mp; 14148 { 14149 struct ufsmount *ump; 14150 bool suj_susp; 14151 14152 /* 14153 * Tell the lower layers that any TRIM or WRITE transactions that have 14154 * been delayed for performance reasons should proceed to help alleviate 14155 * the shortage faster. The race between checking req_* and the softdep 14156 * mutex (lk) is fine since this is an advisory operation that at most 14157 * causes deferred work to be done sooner. 14158 */ 14159 ump = VFSTOUFS(mp); 14160 suj_susp = MOUNTEDSUJ(mp) && ump->softdep_jblocks->jb_suspended; 14161 if (req_clear_remove || req_clear_inodedeps || suj_susp) { 14162 FREE_LOCK(ump); 14163 softdep_send_speedup(ump, 0, BIO_SPEEDUP_TRIM | BIO_SPEEDUP_WRITE); 14164 ACQUIRE_LOCK(ump); 14165 } 14166 14167 /* 14168 * If we are suspended, it may be because of our using 14169 * too many inodedeps, so help clear them out. 14170 */ 14171 if (suj_susp) 14172 clear_inodedeps(mp); 14173 14174 /* 14175 * General requests for cleanup of backed up dependencies 14176 */ 14177 ACQUIRE_GBLLOCK(&lk); 14178 if (req_clear_inodedeps) { 14179 req_clear_inodedeps -= 1; 14180 FREE_GBLLOCK(&lk); 14181 clear_inodedeps(mp); 14182 ACQUIRE_GBLLOCK(&lk); 14183 wakeup(&proc_waiting); 14184 } 14185 if (req_clear_remove) { 14186 req_clear_remove -= 1; 14187 FREE_GBLLOCK(&lk); 14188 clear_remove(mp); 14189 ACQUIRE_GBLLOCK(&lk); 14190 wakeup(&proc_waiting); 14191 } 14192 FREE_GBLLOCK(&lk); 14193 } 14194 14195 /* 14196 * Flush out a directory with at least one removal dependency in an effort to 14197 * reduce the number of dirrem, freefile, and freeblks dependency structures. 14198 */ 14199 static void 14200 clear_remove(mp) 14201 struct mount *mp; 14202 { 14203 struct pagedep_hashhead *pagedephd; 14204 struct pagedep *pagedep; 14205 struct ufsmount *ump; 14206 struct vnode *vp; 14207 struct bufobj *bo; 14208 int error, cnt; 14209 ino_t ino; 14210 14211 ump = VFSTOUFS(mp); 14212 LOCK_OWNED(ump); 14213 14214 for (cnt = 0; cnt <= ump->pagedep_hash_size; cnt++) { 14215 pagedephd = &ump->pagedep_hashtbl[ump->pagedep_nextclean++]; 14216 if (ump->pagedep_nextclean > ump->pagedep_hash_size) 14217 ump->pagedep_nextclean = 0; 14218 LIST_FOREACH(pagedep, pagedephd, pd_hash) { 14219 if (LIST_EMPTY(&pagedep->pd_dirremhd)) 14220 continue; 14221 ino = pagedep->pd_ino; 14222 if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) 14223 continue; 14224 FREE_LOCK(ump); 14225 14226 /* 14227 * Let unmount clear deps 14228 */ 14229 error = vfs_busy(mp, MBF_NOWAIT); 14230 if (error != 0) 14231 goto finish_write; 14232 error = ffs_vgetf(mp, ino, LK_EXCLUSIVE, &vp, 14233 FFSV_FORCEINSMQ); 14234 vfs_unbusy(mp); 14235 if (error != 0) { 14236 softdep_error("clear_remove: vget", error); 14237 goto finish_write; 14238 } 14239 MPASS(VTOI(vp)->i_mode != 0); 14240 if ((error = ffs_syncvnode(vp, MNT_NOWAIT, 0))) 14241 softdep_error("clear_remove: fsync", error); 14242 bo = &vp->v_bufobj; 14243 BO_LOCK(bo); 14244 drain_output(vp); 14245 BO_UNLOCK(bo); 14246 vput(vp); 14247 finish_write: 14248 vn_finished_write(mp); 14249 ACQUIRE_LOCK(ump); 14250 return; 14251 } 14252 } 14253 } 14254 14255 /* 14256 * Clear out a block of dirty inodes in an effort to reduce 14257 * the number of inodedep dependency structures. 14258 */ 14259 static void 14260 clear_inodedeps(mp) 14261 struct mount *mp; 14262 { 14263 struct inodedep_hashhead *inodedephd; 14264 struct inodedep *inodedep; 14265 struct ufsmount *ump; 14266 struct vnode *vp; 14267 struct fs *fs; 14268 int error, cnt; 14269 ino_t firstino, lastino, ino; 14270 14271 ump = VFSTOUFS(mp); 14272 fs = ump->um_fs; 14273 LOCK_OWNED(ump); 14274 /* 14275 * Pick a random inode dependency to be cleared. 14276 * We will then gather up all the inodes in its block 14277 * that have dependencies and flush them out. 14278 */ 14279 for (cnt = 0; cnt <= ump->inodedep_hash_size; cnt++) { 14280 inodedephd = &ump->inodedep_hashtbl[ump->inodedep_nextclean++]; 14281 if (ump->inodedep_nextclean > ump->inodedep_hash_size) 14282 ump->inodedep_nextclean = 0; 14283 if ((inodedep = LIST_FIRST(inodedephd)) != NULL) 14284 break; 14285 } 14286 if (inodedep == NULL) 14287 return; 14288 /* 14289 * Find the last inode in the block with dependencies. 14290 */ 14291 firstino = rounddown2(inodedep->id_ino, INOPB(fs)); 14292 for (lastino = firstino + INOPB(fs) - 1; lastino > firstino; lastino--) 14293 if (inodedep_lookup(mp, lastino, 0, &inodedep) != 0) 14294 break; 14295 /* 14296 * Asynchronously push all but the last inode with dependencies. 14297 * Synchronously push the last inode with dependencies to ensure 14298 * that the inode block gets written to free up the inodedeps. 14299 */ 14300 for (ino = firstino; ino <= lastino; ino++) { 14301 if (inodedep_lookup(mp, ino, 0, &inodedep) == 0) 14302 continue; 14303 if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) 14304 continue; 14305 FREE_LOCK(ump); 14306 error = vfs_busy(mp, MBF_NOWAIT); /* Let unmount clear deps */ 14307 if (error != 0) { 14308 vn_finished_write(mp); 14309 ACQUIRE_LOCK(ump); 14310 return; 14311 } 14312 if ((error = ffs_vgetf(mp, ino, LK_EXCLUSIVE, &vp, 14313 FFSV_FORCEINSMQ)) != 0) { 14314 softdep_error("clear_inodedeps: vget", error); 14315 vfs_unbusy(mp); 14316 vn_finished_write(mp); 14317 ACQUIRE_LOCK(ump); 14318 return; 14319 } 14320 vfs_unbusy(mp); 14321 if (VTOI(vp)->i_mode == 0) { 14322 vgone(vp); 14323 } else if (ino == lastino) { 14324 do { 14325 error = ffs_syncvnode(vp, MNT_WAIT, 0); 14326 } while (error == ERELOOKUP); 14327 if (error != 0) 14328 softdep_error("clear_inodedeps: fsync1", error); 14329 } else { 14330 if ((error = ffs_syncvnode(vp, MNT_NOWAIT, 0))) 14331 softdep_error("clear_inodedeps: fsync2", error); 14332 BO_LOCK(&vp->v_bufobj); 14333 drain_output(vp); 14334 BO_UNLOCK(&vp->v_bufobj); 14335 } 14336 vput(vp); 14337 vn_finished_write(mp); 14338 ACQUIRE_LOCK(ump); 14339 } 14340 } 14341 14342 void 14343 softdep_buf_append(bp, wkhd) 14344 struct buf *bp; 14345 struct workhead *wkhd; 14346 { 14347 struct worklist *wk; 14348 struct ufsmount *ump; 14349 14350 if ((wk = LIST_FIRST(wkhd)) == NULL) 14351 return; 14352 KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0, 14353 ("softdep_buf_append called on non-softdep filesystem")); 14354 ump = VFSTOUFS(wk->wk_mp); 14355 ACQUIRE_LOCK(ump); 14356 while ((wk = LIST_FIRST(wkhd)) != NULL) { 14357 WORKLIST_REMOVE(wk); 14358 WORKLIST_INSERT(&bp->b_dep, wk); 14359 } 14360 FREE_LOCK(ump); 14361 14362 } 14363 14364 void 14365 softdep_inode_append(ip, cred, wkhd) 14366 struct inode *ip; 14367 struct ucred *cred; 14368 struct workhead *wkhd; 14369 { 14370 struct buf *bp; 14371 struct fs *fs; 14372 struct ufsmount *ump; 14373 int error; 14374 14375 ump = ITOUMP(ip); 14376 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 14377 ("softdep_inode_append called on non-softdep filesystem")); 14378 fs = ump->um_fs; 14379 error = bread(ump->um_devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)), 14380 (int)fs->fs_bsize, cred, &bp); 14381 if (error) { 14382 bqrelse(bp); 14383 softdep_freework(wkhd); 14384 return; 14385 } 14386 softdep_buf_append(bp, wkhd); 14387 bqrelse(bp); 14388 } 14389 14390 void 14391 softdep_freework(wkhd) 14392 struct workhead *wkhd; 14393 { 14394 struct worklist *wk; 14395 struct ufsmount *ump; 14396 14397 if ((wk = LIST_FIRST(wkhd)) == NULL) 14398 return; 14399 KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0, 14400 ("softdep_freework called on non-softdep filesystem")); 14401 ump = VFSTOUFS(wk->wk_mp); 14402 ACQUIRE_LOCK(ump); 14403 handle_jwork(wkhd); 14404 FREE_LOCK(ump); 14405 } 14406 14407 static struct ufsmount * 14408 softdep_bp_to_mp(bp) 14409 struct buf *bp; 14410 { 14411 struct mount *mp; 14412 struct vnode *vp; 14413 14414 if (LIST_EMPTY(&bp->b_dep)) 14415 return (NULL); 14416 vp = bp->b_vp; 14417 KASSERT(vp != NULL, 14418 ("%s, buffer with dependencies lacks vnode", __func__)); 14419 14420 /* 14421 * The ump mount point is stable after we get a correct 14422 * pointer, since bp is locked and this prevents unmount from 14423 * proceeding. But to get to it, we cannot dereference bp->b_dep 14424 * head wk_mp, because we do not yet own SU ump lock and 14425 * workitem might be freed while dereferenced. 14426 */ 14427 retry: 14428 switch (vp->v_type) { 14429 case VCHR: 14430 VI_LOCK(vp); 14431 mp = vp->v_type == VCHR ? vp->v_rdev->si_mountpt : NULL; 14432 VI_UNLOCK(vp); 14433 if (mp == NULL) 14434 goto retry; 14435 break; 14436 case VREG: 14437 case VDIR: 14438 case VLNK: 14439 case VFIFO: 14440 case VSOCK: 14441 mp = vp->v_mount; 14442 break; 14443 case VBLK: 14444 vn_printf(vp, "softdep_bp_to_mp: unexpected block device\n"); 14445 /* FALLTHROUGH */ 14446 case VNON: 14447 case VBAD: 14448 case VMARKER: 14449 mp = NULL; 14450 break; 14451 default: 14452 vn_printf(vp, "unknown vnode type"); 14453 mp = NULL; 14454 break; 14455 } 14456 return (VFSTOUFS(mp)); 14457 } 14458 14459 /* 14460 * Function to determine if the buffer has outstanding dependencies 14461 * that will cause a roll-back if the buffer is written. If wantcount 14462 * is set, return number of dependencies, otherwise just yes or no. 14463 */ 14464 static int 14465 softdep_count_dependencies(bp, wantcount) 14466 struct buf *bp; 14467 int wantcount; 14468 { 14469 struct worklist *wk; 14470 struct ufsmount *ump; 14471 struct bmsafemap *bmsafemap; 14472 struct freework *freework; 14473 struct inodedep *inodedep; 14474 struct indirdep *indirdep; 14475 struct freeblks *freeblks; 14476 struct allocindir *aip; 14477 struct pagedep *pagedep; 14478 struct dirrem *dirrem; 14479 struct newblk *newblk; 14480 struct mkdir *mkdir; 14481 struct diradd *dap; 14482 int i, retval; 14483 14484 ump = softdep_bp_to_mp(bp); 14485 if (ump == NULL) 14486 return (0); 14487 retval = 0; 14488 ACQUIRE_LOCK(ump); 14489 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 14490 switch (wk->wk_type) { 14491 case D_INODEDEP: 14492 inodedep = WK_INODEDEP(wk); 14493 if ((inodedep->id_state & DEPCOMPLETE) == 0) { 14494 /* bitmap allocation dependency */ 14495 retval += 1; 14496 if (!wantcount) 14497 goto out; 14498 } 14499 if (TAILQ_FIRST(&inodedep->id_inoupdt)) { 14500 /* direct block pointer dependency */ 14501 retval += 1; 14502 if (!wantcount) 14503 goto out; 14504 } 14505 if (TAILQ_FIRST(&inodedep->id_extupdt)) { 14506 /* direct block pointer dependency */ 14507 retval += 1; 14508 if (!wantcount) 14509 goto out; 14510 } 14511 if (TAILQ_FIRST(&inodedep->id_inoreflst)) { 14512 /* Add reference dependency. */ 14513 retval += 1; 14514 if (!wantcount) 14515 goto out; 14516 } 14517 continue; 14518 14519 case D_INDIRDEP: 14520 indirdep = WK_INDIRDEP(wk); 14521 14522 TAILQ_FOREACH(freework, &indirdep->ir_trunc, fw_next) { 14523 /* indirect truncation dependency */ 14524 retval += 1; 14525 if (!wantcount) 14526 goto out; 14527 } 14528 14529 LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) { 14530 /* indirect block pointer dependency */ 14531 retval += 1; 14532 if (!wantcount) 14533 goto out; 14534 } 14535 continue; 14536 14537 case D_PAGEDEP: 14538 pagedep = WK_PAGEDEP(wk); 14539 LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next) { 14540 if (LIST_FIRST(&dirrem->dm_jremrefhd)) { 14541 /* Journal remove ref dependency. */ 14542 retval += 1; 14543 if (!wantcount) 14544 goto out; 14545 } 14546 } 14547 for (i = 0; i < DAHASHSZ; i++) { 14548 LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) { 14549 /* directory entry dependency */ 14550 retval += 1; 14551 if (!wantcount) 14552 goto out; 14553 } 14554 } 14555 continue; 14556 14557 case D_BMSAFEMAP: 14558 bmsafemap = WK_BMSAFEMAP(wk); 14559 if (LIST_FIRST(&bmsafemap->sm_jaddrefhd)) { 14560 /* Add reference dependency. */ 14561 retval += 1; 14562 if (!wantcount) 14563 goto out; 14564 } 14565 if (LIST_FIRST(&bmsafemap->sm_jnewblkhd)) { 14566 /* Allocate block dependency. */ 14567 retval += 1; 14568 if (!wantcount) 14569 goto out; 14570 } 14571 continue; 14572 14573 case D_FREEBLKS: 14574 freeblks = WK_FREEBLKS(wk); 14575 if (LIST_FIRST(&freeblks->fb_jblkdephd)) { 14576 /* Freeblk journal dependency. */ 14577 retval += 1; 14578 if (!wantcount) 14579 goto out; 14580 } 14581 continue; 14582 14583 case D_ALLOCDIRECT: 14584 case D_ALLOCINDIR: 14585 newblk = WK_NEWBLK(wk); 14586 if (newblk->nb_jnewblk) { 14587 /* Journal allocate dependency. */ 14588 retval += 1; 14589 if (!wantcount) 14590 goto out; 14591 } 14592 continue; 14593 14594 case D_MKDIR: 14595 mkdir = WK_MKDIR(wk); 14596 if (mkdir->md_jaddref) { 14597 /* Journal reference dependency. */ 14598 retval += 1; 14599 if (!wantcount) 14600 goto out; 14601 } 14602 continue; 14603 14604 case D_FREEWORK: 14605 case D_FREEDEP: 14606 case D_JSEGDEP: 14607 case D_JSEG: 14608 case D_SBDEP: 14609 /* never a dependency on these blocks */ 14610 continue; 14611 14612 default: 14613 panic("softdep_count_dependencies: Unexpected type %s", 14614 TYPENAME(wk->wk_type)); 14615 /* NOTREACHED */ 14616 } 14617 } 14618 out: 14619 FREE_LOCK(ump); 14620 return (retval); 14621 } 14622 14623 /* 14624 * Acquire exclusive access to a buffer. 14625 * Must be called with a locked mtx parameter. 14626 * Return acquired buffer or NULL on failure. 14627 */ 14628 static struct buf * 14629 getdirtybuf(bp, lock, waitfor) 14630 struct buf *bp; 14631 struct rwlock *lock; 14632 int waitfor; 14633 { 14634 int error; 14635 14636 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0) { 14637 if (waitfor != MNT_WAIT) 14638 return (NULL); 14639 error = BUF_LOCK(bp, 14640 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, lock); 14641 /* 14642 * Even if we successfully acquire bp here, we have dropped 14643 * lock, which may violates our guarantee. 14644 */ 14645 if (error == 0) 14646 BUF_UNLOCK(bp); 14647 else if (error != ENOLCK) 14648 panic("getdirtybuf: inconsistent lock: %d", error); 14649 rw_wlock(lock); 14650 return (NULL); 14651 } 14652 if ((bp->b_vflags & BV_BKGRDINPROG) != 0) { 14653 if (lock != BO_LOCKPTR(bp->b_bufobj) && waitfor == MNT_WAIT) { 14654 rw_wunlock(lock); 14655 BO_LOCK(bp->b_bufobj); 14656 BUF_UNLOCK(bp); 14657 if ((bp->b_vflags & BV_BKGRDINPROG) != 0) { 14658 bp->b_vflags |= BV_BKGRDWAIT; 14659 msleep(&bp->b_xflags, BO_LOCKPTR(bp->b_bufobj), 14660 PRIBIO | PDROP, "getbuf", 0); 14661 } else 14662 BO_UNLOCK(bp->b_bufobj); 14663 rw_wlock(lock); 14664 return (NULL); 14665 } 14666 BUF_UNLOCK(bp); 14667 if (waitfor != MNT_WAIT) 14668 return (NULL); 14669 #ifdef DEBUG_VFS_LOCKS 14670 if (bp->b_vp->v_type != VCHR) 14671 ASSERT_BO_WLOCKED(bp->b_bufobj); 14672 #endif 14673 bp->b_vflags |= BV_BKGRDWAIT; 14674 rw_sleep(&bp->b_xflags, lock, PRIBIO, "getbuf", 0); 14675 return (NULL); 14676 } 14677 if ((bp->b_flags & B_DELWRI) == 0) { 14678 BUF_UNLOCK(bp); 14679 return (NULL); 14680 } 14681 bremfree(bp); 14682 return (bp); 14683 } 14684 14685 /* 14686 * Check if it is safe to suspend the file system now. On entry, 14687 * the vnode interlock for devvp should be held. Return 0 with 14688 * the mount interlock held if the file system can be suspended now, 14689 * otherwise return EAGAIN with the mount interlock held. 14690 */ 14691 int 14692 softdep_check_suspend(struct mount *mp, 14693 struct vnode *devvp, 14694 int softdep_depcnt, 14695 int softdep_accdepcnt, 14696 int secondary_writes, 14697 int secondary_accwrites) 14698 { 14699 struct bufobj *bo; 14700 struct ufsmount *ump; 14701 struct inodedep *inodedep; 14702 int error, unlinked; 14703 14704 bo = &devvp->v_bufobj; 14705 ASSERT_BO_WLOCKED(bo); 14706 14707 /* 14708 * If we are not running with soft updates, then we need only 14709 * deal with secondary writes as we try to suspend. 14710 */ 14711 if (MOUNTEDSOFTDEP(mp) == 0) { 14712 MNT_ILOCK(mp); 14713 while (mp->mnt_secondary_writes != 0) { 14714 BO_UNLOCK(bo); 14715 msleep(&mp->mnt_secondary_writes, MNT_MTX(mp), 14716 (PUSER - 1) | PDROP, "secwr", 0); 14717 BO_LOCK(bo); 14718 MNT_ILOCK(mp); 14719 } 14720 14721 /* 14722 * Reasons for needing more work before suspend: 14723 * - Dirty buffers on devvp. 14724 * - Secondary writes occurred after start of vnode sync loop 14725 */ 14726 error = 0; 14727 if (bo->bo_numoutput > 0 || 14728 bo->bo_dirty.bv_cnt > 0 || 14729 secondary_writes != 0 || 14730 mp->mnt_secondary_writes != 0 || 14731 secondary_accwrites != mp->mnt_secondary_accwrites) 14732 error = EAGAIN; 14733 BO_UNLOCK(bo); 14734 return (error); 14735 } 14736 14737 /* 14738 * If we are running with soft updates, then we need to coordinate 14739 * with them as we try to suspend. 14740 */ 14741 ump = VFSTOUFS(mp); 14742 for (;;) { 14743 if (!TRY_ACQUIRE_LOCK(ump)) { 14744 BO_UNLOCK(bo); 14745 ACQUIRE_LOCK(ump); 14746 FREE_LOCK(ump); 14747 BO_LOCK(bo); 14748 continue; 14749 } 14750 MNT_ILOCK(mp); 14751 if (mp->mnt_secondary_writes != 0) { 14752 FREE_LOCK(ump); 14753 BO_UNLOCK(bo); 14754 msleep(&mp->mnt_secondary_writes, 14755 MNT_MTX(mp), 14756 (PUSER - 1) | PDROP, "secwr", 0); 14757 BO_LOCK(bo); 14758 continue; 14759 } 14760 break; 14761 } 14762 14763 unlinked = 0; 14764 if (MOUNTEDSUJ(mp)) { 14765 for (inodedep = TAILQ_FIRST(&ump->softdep_unlinked); 14766 inodedep != NULL; 14767 inodedep = TAILQ_NEXT(inodedep, id_unlinked)) { 14768 if ((inodedep->id_state & (UNLINKED | UNLINKLINKS | 14769 UNLINKONLIST)) != (UNLINKED | UNLINKLINKS | 14770 UNLINKONLIST) || 14771 !check_inodedep_free(inodedep)) 14772 continue; 14773 unlinked++; 14774 } 14775 } 14776 14777 /* 14778 * Reasons for needing more work before suspend: 14779 * - Dirty buffers on devvp. 14780 * - Softdep activity occurred after start of vnode sync loop 14781 * - Secondary writes occurred after start of vnode sync loop 14782 */ 14783 error = 0; 14784 if (bo->bo_numoutput > 0 || 14785 bo->bo_dirty.bv_cnt > 0 || 14786 softdep_depcnt != unlinked || 14787 ump->softdep_deps != unlinked || 14788 softdep_accdepcnt != ump->softdep_accdeps || 14789 secondary_writes != 0 || 14790 mp->mnt_secondary_writes != 0 || 14791 secondary_accwrites != mp->mnt_secondary_accwrites) 14792 error = EAGAIN; 14793 FREE_LOCK(ump); 14794 BO_UNLOCK(bo); 14795 return (error); 14796 } 14797 14798 /* 14799 * Get the number of dependency structures for the file system, both 14800 * the current number and the total number allocated. These will 14801 * later be used to detect that softdep processing has occurred. 14802 */ 14803 void 14804 softdep_get_depcounts(struct mount *mp, 14805 int *softdep_depsp, 14806 int *softdep_accdepsp) 14807 { 14808 struct ufsmount *ump; 14809 14810 if (MOUNTEDSOFTDEP(mp) == 0) { 14811 *softdep_depsp = 0; 14812 *softdep_accdepsp = 0; 14813 return; 14814 } 14815 ump = VFSTOUFS(mp); 14816 ACQUIRE_LOCK(ump); 14817 *softdep_depsp = ump->softdep_deps; 14818 *softdep_accdepsp = ump->softdep_accdeps; 14819 FREE_LOCK(ump); 14820 } 14821 14822 /* 14823 * Wait for pending output on a vnode to complete. 14824 */ 14825 static void 14826 drain_output(vp) 14827 struct vnode *vp; 14828 { 14829 14830 ASSERT_VOP_LOCKED(vp, "drain_output"); 14831 (void)bufobj_wwait(&vp->v_bufobj, 0, 0); 14832 } 14833 14834 /* 14835 * Called whenever a buffer that is being invalidated or reallocated 14836 * contains dependencies. This should only happen if an I/O error has 14837 * occurred. The routine is called with the buffer locked. 14838 */ 14839 static void 14840 softdep_deallocate_dependencies(bp) 14841 struct buf *bp; 14842 { 14843 14844 if ((bp->b_ioflags & BIO_ERROR) == 0) 14845 panic("softdep_deallocate_dependencies: dangling deps"); 14846 if (bp->b_vp != NULL && bp->b_vp->v_mount != NULL) 14847 softdep_error(bp->b_vp->v_mount->mnt_stat.f_mntonname, bp->b_error); 14848 else 14849 printf("softdep_deallocate_dependencies: " 14850 "got error %d while accessing filesystem\n", bp->b_error); 14851 if (bp->b_error != ENXIO) 14852 panic("softdep_deallocate_dependencies: unrecovered I/O error"); 14853 } 14854 14855 /* 14856 * Function to handle asynchronous write errors in the filesystem. 14857 */ 14858 static void 14859 softdep_error(func, error) 14860 char *func; 14861 int error; 14862 { 14863 14864 /* XXX should do something better! */ 14865 printf("%s: got error %d while accessing filesystem\n", func, error); 14866 } 14867 14868 #ifdef DDB 14869 14870 /* exported to ffs_vfsops.c */ 14871 extern void db_print_ffs(struct ufsmount *ump); 14872 void 14873 db_print_ffs(struct ufsmount *ump) 14874 { 14875 db_printf("mp %p (%s) devvp %p\n", ump->um_mountp, 14876 ump->um_mountp->mnt_stat.f_mntonname, ump->um_devvp); 14877 db_printf(" fs %p su_wl %d su_deps %d su_req %d\n", 14878 ump->um_fs, ump->softdep_on_worklist, 14879 ump->softdep_deps, ump->softdep_req); 14880 } 14881 14882 static void 14883 worklist_print(struct worklist *wk, int verbose) 14884 { 14885 14886 if (!verbose) { 14887 db_printf("%s: %p state 0x%b\n", TYPENAME(wk->wk_type), wk, 14888 (u_int)wk->wk_state, PRINT_SOFTDEP_FLAGS); 14889 return; 14890 } 14891 db_printf("worklist: %p type %s state 0x%b next %p\n ", wk, 14892 TYPENAME(wk->wk_type), (u_int)wk->wk_state, PRINT_SOFTDEP_FLAGS, 14893 LIST_NEXT(wk, wk_list)); 14894 db_print_ffs(VFSTOUFS(wk->wk_mp)); 14895 } 14896 14897 static void 14898 inodedep_print(struct inodedep *inodedep, int verbose) 14899 { 14900 14901 worklist_print(&inodedep->id_list, 0); 14902 db_printf(" fs %p ino %jd inoblk %jd delta %jd nlink %jd\n", 14903 inodedep->id_fs, 14904 (intmax_t)inodedep->id_ino, 14905 (intmax_t)fsbtodb(inodedep->id_fs, 14906 ino_to_fsba(inodedep->id_fs, inodedep->id_ino)), 14907 (intmax_t)inodedep->id_nlinkdelta, 14908 (intmax_t)inodedep->id_savednlink); 14909 14910 if (verbose == 0) 14911 return; 14912 14913 db_printf(" bmsafemap %p, mkdiradd %p, inoreflst %p\n", 14914 inodedep->id_bmsafemap, 14915 inodedep->id_mkdiradd, 14916 TAILQ_FIRST(&inodedep->id_inoreflst)); 14917 db_printf(" dirremhd %p, pendinghd %p, bufwait %p\n", 14918 LIST_FIRST(&inodedep->id_dirremhd), 14919 LIST_FIRST(&inodedep->id_pendinghd), 14920 LIST_FIRST(&inodedep->id_bufwait)); 14921 db_printf(" inowait %p, inoupdt %p, newinoupdt %p\n", 14922 LIST_FIRST(&inodedep->id_inowait), 14923 TAILQ_FIRST(&inodedep->id_inoupdt), 14924 TAILQ_FIRST(&inodedep->id_newinoupdt)); 14925 db_printf(" extupdt %p, newextupdt %p, freeblklst %p\n", 14926 TAILQ_FIRST(&inodedep->id_extupdt), 14927 TAILQ_FIRST(&inodedep->id_newextupdt), 14928 TAILQ_FIRST(&inodedep->id_freeblklst)); 14929 db_printf(" saveino %p, savedsize %jd, savedextsize %jd\n", 14930 inodedep->id_savedino1, 14931 (intmax_t)inodedep->id_savedsize, 14932 (intmax_t)inodedep->id_savedextsize); 14933 } 14934 14935 static void 14936 newblk_print(struct newblk *nbp) 14937 { 14938 14939 worklist_print(&nbp->nb_list, 0); 14940 db_printf(" newblkno %jd\n", (intmax_t)nbp->nb_newblkno); 14941 db_printf(" jnewblk %p, bmsafemap %p, freefrag %p\n", 14942 &nbp->nb_jnewblk, 14943 &nbp->nb_bmsafemap, 14944 &nbp->nb_freefrag); 14945 db_printf(" indirdeps %p, newdirblk %p, jwork %p\n", 14946 LIST_FIRST(&nbp->nb_indirdeps), 14947 LIST_FIRST(&nbp->nb_newdirblk), 14948 LIST_FIRST(&nbp->nb_jwork)); 14949 } 14950 14951 static void 14952 allocdirect_print(struct allocdirect *adp) 14953 { 14954 14955 newblk_print(&adp->ad_block); 14956 db_printf(" oldblkno %jd, oldsize %ld, newsize %ld\n", 14957 adp->ad_oldblkno, adp->ad_oldsize, adp->ad_newsize); 14958 db_printf(" offset %d, inodedep %p\n", 14959 adp->ad_offset, adp->ad_inodedep); 14960 } 14961 14962 static void 14963 allocindir_print(struct allocindir *aip) 14964 { 14965 14966 newblk_print(&aip->ai_block); 14967 db_printf(" oldblkno %jd, lbn %jd\n", 14968 (intmax_t)aip->ai_oldblkno, (intmax_t)aip->ai_lbn); 14969 db_printf(" offset %d, indirdep %p\n", 14970 aip->ai_offset, aip->ai_indirdep); 14971 } 14972 14973 static void 14974 mkdir_print(struct mkdir *mkdir) 14975 { 14976 14977 worklist_print(&mkdir->md_list, 0); 14978 db_printf(" diradd %p, jaddref %p, buf %p\n", 14979 mkdir->md_diradd, mkdir->md_jaddref, mkdir->md_buf); 14980 } 14981 14982 DB_SHOW_COMMAND(sd_inodedep, db_show_sd_inodedep) 14983 { 14984 14985 if (have_addr == 0) { 14986 db_printf("inodedep address required\n"); 14987 return; 14988 } 14989 inodedep_print((struct inodedep*)addr, 1); 14990 } 14991 14992 DB_SHOW_COMMAND(sd_allinodedeps, db_show_sd_allinodedeps) 14993 { 14994 struct inodedep_hashhead *inodedephd; 14995 struct inodedep *inodedep; 14996 struct ufsmount *ump; 14997 int cnt; 14998 14999 if (have_addr == 0) { 15000 db_printf("ufsmount address required\n"); 15001 return; 15002 } 15003 ump = (struct ufsmount *)addr; 15004 for (cnt = 0; cnt < ump->inodedep_hash_size; cnt++) { 15005 inodedephd = &ump->inodedep_hashtbl[cnt]; 15006 LIST_FOREACH(inodedep, inodedephd, id_hash) { 15007 inodedep_print(inodedep, 0); 15008 } 15009 } 15010 } 15011 15012 DB_SHOW_COMMAND(sd_worklist, db_show_sd_worklist) 15013 { 15014 15015 if (have_addr == 0) { 15016 db_printf("worklist address required\n"); 15017 return; 15018 } 15019 worklist_print((struct worklist *)addr, 1); 15020 } 15021 15022 DB_SHOW_COMMAND(sd_workhead, db_show_sd_workhead) 15023 { 15024 struct worklist *wk; 15025 struct workhead *wkhd; 15026 15027 if (have_addr == 0) { 15028 db_printf("worklist address required " 15029 "(for example value in bp->b_dep)\n"); 15030 return; 15031 } 15032 /* 15033 * We often do not have the address of the worklist head but 15034 * instead a pointer to its first entry (e.g., we have the 15035 * contents of bp->b_dep rather than &bp->b_dep). But the back 15036 * pointer of bp->b_dep will point at the head of the list, so 15037 * we cheat and use that instead. If we are in the middle of 15038 * a list we will still get the same result, so nothing 15039 * unexpected will result. 15040 */ 15041 wk = (struct worklist *)addr; 15042 if (wk == NULL) 15043 return; 15044 wkhd = (struct workhead *)wk->wk_list.le_prev; 15045 LIST_FOREACH(wk, wkhd, wk_list) { 15046 switch(wk->wk_type) { 15047 case D_INODEDEP: 15048 inodedep_print(WK_INODEDEP(wk), 0); 15049 continue; 15050 case D_ALLOCDIRECT: 15051 allocdirect_print(WK_ALLOCDIRECT(wk)); 15052 continue; 15053 case D_ALLOCINDIR: 15054 allocindir_print(WK_ALLOCINDIR(wk)); 15055 continue; 15056 case D_MKDIR: 15057 mkdir_print(WK_MKDIR(wk)); 15058 continue; 15059 default: 15060 worklist_print(wk, 0); 15061 continue; 15062 } 15063 } 15064 } 15065 15066 DB_SHOW_COMMAND(sd_mkdir, db_show_sd_mkdir) 15067 { 15068 if (have_addr == 0) { 15069 db_printf("mkdir address required\n"); 15070 return; 15071 } 15072 mkdir_print((struct mkdir *)addr); 15073 } 15074 15075 DB_SHOW_COMMAND(sd_mkdir_list, db_show_sd_mkdir_list) 15076 { 15077 struct mkdirlist *mkdirlisthd; 15078 struct mkdir *mkdir; 15079 15080 if (have_addr == 0) { 15081 db_printf("mkdir listhead address required\n"); 15082 return; 15083 } 15084 mkdirlisthd = (struct mkdirlist *)addr; 15085 LIST_FOREACH(mkdir, mkdirlisthd, md_mkdirs) { 15086 mkdir_print(mkdir); 15087 if (mkdir->md_diradd != NULL) { 15088 db_printf(" "); 15089 worklist_print(&mkdir->md_diradd->da_list, 0); 15090 } 15091 if (mkdir->md_jaddref != NULL) { 15092 db_printf(" "); 15093 worklist_print(&mkdir->md_jaddref->ja_list, 0); 15094 } 15095 } 15096 } 15097 15098 DB_SHOW_COMMAND(sd_allocdirect, db_show_sd_allocdirect) 15099 { 15100 if (have_addr == 0) { 15101 db_printf("allocdirect address required\n"); 15102 return; 15103 } 15104 allocdirect_print((struct allocdirect *)addr); 15105 } 15106 15107 DB_SHOW_COMMAND(sd_allocindir, db_show_sd_allocindir) 15108 { 15109 if (have_addr == 0) { 15110 db_printf("allocindir address required\n"); 15111 return; 15112 } 15113 allocindir_print((struct allocindir *)addr); 15114 } 15115 15116 #endif /* DDB */ 15117 15118 #endif /* SOFTUPDATES */ 15119